
Hybrid Modelling of Dynamical
Systems in Mechanics

DISSERTATION

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt am Fachbereich IV - Mathematik
der Universität Trier von

Jan Sokolowski

Pellingen / Trier / Bissen im Juni 2022

Gutachter: Prof. Dr. Volker H. Schulz
Prof. Dr. Nicole Marheineke

i

“Newton was the greatest genius that existed, and the most fortunate, for we cannot find more

than once a system of the world to establish.”

Joseph-Louis Lagrange

“Ce que nous connaissons est peu de chose, ce que nous ignorons est immense.”

Pierre-Simon Laplace

“Meine Ergebnisse habe ich schon, ich weiß nur noch nicht, auf welchem Wege ich zu ihnen

gelangen werde.”

Carl Friedrich Gauß

“Just go on... And faith will soon return.”

Jean-Baptiste le Rond d’Alembert

“Es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben,

nicht das Dasein, sondern das Hinkommen, was den größten Genuß gewährt.”

Carl Friedrich Gauß

ii

UNIVERSITÄT TRIER

Abstract
Fachbereich IV

Mathematik

Hybrid Modelling of Dynamical Systems in Mechanics

by Jan SOKOLOWSKI

Hybrid Modelling in general, describes the combination of at least two different methods to
solve one specific task. As far as this work is concerned, Hybrid Models describe an approach
to combine sophisticated, well-studied mathematical methods with Deep Neural Networks to
solve parameter estimation tasks. To combine these two methods, the data structure of artifi-
cially generated acceleration data of an approximate vehicle model, the Quarter-Car-Model,
is exploited. Acceleration of individual components within a coupled dynamical system, can
be described as a second order ordinary differential equation, including velocity and dis-
placement of coupled states, scaled by spring - and damping-coefficient of the system. An
appropriate numerical integration scheme can then be used to simulate discrete acceleration
profiles of the Quarter-Car-Model with a random variation of the parameters of the system.
Given explicit knowledge about the data structure, one can then investigate under which con-
ditions it is possible to estimate the parameters of the dynamical system for a set of randomly
generated data samples. We test, if Neural Networks are capable to solve parameter estima-
tion problems in general, or if they can be used to solve several sub-tasks, which support
a state-of-the-art parameter estimation method. Hybrid Models are presented for parameter
estimation under uncertainties, including for instance measurement noise or incompleteness
of measurements, which combine knowledge about the data structure and several Neural
Networks for robust parameter estimation within a dynamical system.

HTTP://WWW.UNI-TRIER.DE
https://www.uni-trier.de/universitaet/fachbereiche-faecher/fachbereich-iv/
https://www.uni-trier.de/universitaet/fachbereiche-faecher/fachbereich-iv/faecher/mathematik/profil

iii

UNIVERSITÄT TRIER

Zusammenfassung
Fachbereich IV

Mathematik

Hybride Modellierung von Dynamischen Systemen in der Mechanik

von Jan SOKOLOWSKI

Hybride Modellierung bezeichnet im Allgemeinen die Kombination von mindestens zwei
unterschiedlichen Methoden zum Lösen einer speziellen Problemstellung. Soweit es diese
Arbeit betrifft, beschreiben Hybride Modelle einen Ansatz, elegante und allseits bekan-
nte mathematische Modelle mit tiefen Neuronalen Netzen zu kombinieren, um Parame-
terschätzprobleme zu lösen. Um diese beiden Methoden zu verbinden, wird die Daten-
struktur von künstlich generierten Beschleunigungsdaten eines vereinfachten Fahrzeugmod-
ells, dem Viertelfahrzeugmodell, ausgenutzt. Beschleunigung der unterschiedlichen Kom-
ponenten in einem gekoppelten dynamischen System kann als gewöhnliche Differentialgle-
ichung zweiter Ordnung beschrieben werden und beinhaltet die Geschwindigkeit und die
Verlagerung der gekoppelten Zustände, skaliert mit den Feder - und Dämpfungskoeffizien-
ten des Systems. Eine angemessene numerische Integrationsmethode kann benutzt werden,
um diskrete Beschleunigungsprofile des Viertelfahrzeuges mit einer zufälligen Variation der
Systemparameter zu simulieren. Explizites Wissen über die Datenstruktur gibt Aufschluss
darüber, unter welchen Umständen die Parameter des dynamischen Systems, für einen Satz
von zufällig generierten Daten, bestimmt werden können. Wir untersuchen, ob Neuronale
Netze die Fähigkeit besitzen, Parameterschätzprobleme im Allgemeinen zu lösen oder ob sie
dazu benutzt werden können, Standardmethoden für die Parameterschätzung zu unterstützen.
Es werden Hybride Modelle für Parameterschätzung unter Unsicherheiten, beispielsweise
Messfehler oder Datenunvollständigkeit, vorgestellt, welche Vorwissen über die Datenstruk-
tur und unterschiedliche Neuronale Netztypen für die robuste Parameterschätzung eines dy-
namischen Systems verbinden.

HTTP://WWW.UNI-TRIER.DE
https://www.uni-trier.de/universitaet/fachbereiche-faecher/fachbereich-iv/
https://www.uni-trier.de/universitaet/fachbereiche-faecher/fachbereich-iv/faecher/mathematik/profil

iv

Acknowledgements
First of all, I would like to thank my thesis advisor, Prof. Dr. Volker H. Schulz, who has
always led the research of the thesis into the right direction, such that it has become possible
to achieve the results, which are presented in this work. If investigations had shown to be
misleading during the progress of this thesis, Volker Schulz was always capable of finding
another good approach to bring the research back to course.
Moreover, I would also like to thank Prof. Dr. Nicole Marheineke for taking the time to deal
with the thesis and for giving me valuable feedback to improve the content of my work.
Further, I would like to thank Dr. Udo Schröder, who has always been open to discuss the
progress of the thesis, on a theoretical as well as on a practical basis, and to discuss possible
further steps and investigations. I am thankful to had a lot of good discussions with him, for
instance concerning the numerical part of the thesis. Regular discussions have shown to be
essential for the thesis to converge to the end.
I would also like to thank Prof. Dr. Hans-Peter Beise, who has always shown to be the right
contact to discuss abstract contexts, which have not been obvious for me. Regular discus-
sions to talk about a specific theoretical problem, have been of high importance to clarify the
theoretical concepts of the thesis.
Next, I would like to thank Dr. Thomas Stifter, who made it possible for me to have the time
I needed to finish the thesis. It was further a benefit for me, to have the opportunity to discuss
concepts of mechanics to a physicist.
I would like to thank Steve Dias Da Cruz, who has probably the broadest knowledge about
training methods and architectures of Neural Networks, concerning the people I know. Al-
though we have worked on complete different problems, it was always helpful for me to have
short discussions with him.
Moreover, I would like to thank Manuel Klar, who helped me especially at the beginning
of the thesis to ask the right questions concerning the problems, I wanted to solve. He has
always found the time to discuss and talk about barriers that have been found, when defining
the direction of the thesis. Thanks to Dominik Annen, to let me draw attention to several
spelling and typing mistakes.
In addition, I would like to thank the company IEE S.A., especially the Basics and Mathemat-
ical Models department, to make this collaboration possible and to offer me the opportunity
to write a PhD thesis in this specific field.
I would like to thank the Research Training Group on Algorithmic Optimization (ALOP) of
the Trier University, where I have learned to present and discuss recent results of my research.
Discussions with other PhD students throughout different fields of mathematical research has
improved my way of handling the problems of my thesis.
Finally, I would also like to thank Marcel Dawen, who is a friend of mine for more than
twenty years now and gave me mental support, especially throughout the last two years and
the final days, that was required to keep on and finish this thesis.

v

Contents

Abstract ii

Zusammenfassung iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 1
1.2 Automotive Sensors . 2
1.3 Hybrid Neural Networks and Parameter Estimation 3
1.4 Content . 4

2 Mathematical Modelling 7
2.1 Modelling with Physical Equations . 7

2.1.1 Motion of Particles and Newton’s Laws 8
2.1.2 Calculus of Variations . 9
2.1.3 Energy Conservation and Euler-Lagrange Equation 11
2.1.4 Rayleigh Dissipation and Potential Energy 16

2.2 Coupled Dynamical Systems . 17
2.2.1 Rotational and Translational Energy 18
2.2.2 Quarter-Car-Model . 22
2.2.3 Half-Car-Model . 25
2.2.4 Full-Car-Model . 28

2.3 Road Modelling . 30
2.3.1 Power Spectral Density and Fourier Transform 30
2.3.2 Random Time Series and Sinusoidal Approach 33

3 Neural Networks 37
3.1 Statistical Learning Theory . 38

3.1.1 Learning Problem and Risk . 38
3.1.2 Empirical Risk Minimization . 40
3.1.3 Training of Neural Networks . 42

3.2 Neural Network Architectures . 46
3.2.1 Layer Arithmetic . 47
3.2.2 Convolutional Neural Networks . 56
3.2.3 Convolutional Auto-Encoders . 57

vi

3.2.4 U-Net . 58

4 Ordinary Differential Equations 60
4.1 Second Order Ordinary Differential Equations 61

4.1.1 Homogeneous Equations . 61
4.1.2 Non-homogeneous Equations . 67
4.1.3 Hamiltonian Systems and Geometric Integration 71
4.1.4 Numerical Solution . 74

4.2 Linear Systems . 83
4.2.1 Non-Homogeneous Equations . 84
4.2.2 Numerical Solution . 86

4.3 Data Generation from Randomly Perturbed Models 93
4.3.1 Definition of the System . 94
4.3.2 Variations of Systems . 96

5 Parameter Estimation for Dynamical Systems 103
5.1 Identifiability of Linear Time-Invariant Systems 105

5.1.1 Linear Systems and Laplace-Transform 106
5.1.2 Systems of Second Order and Impulse Response 110
5.1.3 Identifiability of Observable Systems 111

5.2 Parameter Estimation for Ordinary Differential Equations 115
5.2.1 Experiment 1: Data Driven Parameter Estimation 117
5.2.2 Experiment 2: Hybrid Training Methods 123
5.2.3 Experiment 3: Robust Parameter Estimation for Noisy Data 129
5.2.4 Experiment 4 : Denoising via Neural Networks 134

5.3 System Identification of the Quarter-Car-Model 141
5.3.1 Non-Linear Least Squares Problem 142
5.3.2 Experiment 5 : System Identification of Full-Observable Systems . . 147
5.3.3 Experiment 6 : Parameter Initialization via Neural Networks 151
5.3.4 Experiment 7 : System Identification of Identifiable Parameters . . . 154

5.4 System Identification of Uncertain Systems 157
5.4.1 Experiment 8 : Parameter Estimation for Incomplete Systems 159
5.4.2 Experiment 9 : Data Completion via Neural Networks 162
5.4.3 Experiment 10 : Parameter Estimation for Hybrid Models 165

6 Conclusion and Discussion 172

A Tensorflow and Python Source Code 176

B Neural Network Structures 182

Bibliography 185

vii

List of Figures

1.1 Laser Sensors . 2
1.2 g-sensor . 3

2.1 Pendulum . 18
2.2 Mass-Spring-Damper . 20
2.3 Quarter-Car-Model . 22
2.4 Half-Car-Model . 25
2.5 Full-Car-Model . 28
2.6 Road-Profiles . 36

3.1 Binary Threshold Function . 48
3.2 ReLU Function . 48
3.3 Sigmoid Function . 49
3.4 Hyperbolic Tangent Function . 49
3.5 2D Convolution . 52
3.6 2D Pooling . 54
3.7 CNN . 56
3.8 CAE . 57
3.9 U-Net . 58

4.1 Numerical Solution of Second Order ODE (1) 82
4.2 Numerical Solution of Second Order ODE (2) 82
4.3 Numerical Solution of Second Order ODE (3) 83
4.4 Numerical Solution of Quarter-Car-Model for v3 91
4.5 Numerical Solution of Quarter-Car-Model v2 92
4.6 Numerical Solution of Quarter-Car-Model v1 92
4.7 Numerical Solution of Quarter-Car-Model q3 93
4.8 Numerical Solution of Quarter-Car-Model q2 93
4.9 Numerical Solution of Quarter-Car-Model q1 94
4.10 Training Sample for Road Profile . 98
4.11 Training Sample for Seat and Occupant Data 98
4.12 Training Sample for Chassis Data . 99
4.13 Training Sample for Wheel-Suspension Data 100
4.14 Histogram of Training and Test Parameters (1) 100
4.15 Histogram of Training and Test Parameters (2) 101
4.16 Histogram of Training and Test Parameters (2) 102

viii

5.1 Scheme of a Generalized System . 103
5.2 Scheme of a Parameter Estimation method. 117
5.3 Experiment 1: Shape of Loss-Function for Labelled Training. 119
5.4 Experiment 1: Labelled estimation of parameter p1. 121
5.5 Experiment 1: Labelled estimation of parameter p2. 122
5.6 Experiment 1: Shape of Loss-Function for Labelled Training. 125
5.7 Experiment 2: Unlabelled estimation of parameter p1. 126
5.8 Experiment 2: Unlabelled estimation of parameter p2. 127
5.9 Experiment 3a: Noise level σ = 0.01, labelled vs. unlabelled training. 131
5.10 Experiment 3b: Noise level σ = 0.05, labelled vs. unlabelled training. 132
5.11 Training Loss and Test Loss of Denoising Auto-Encoder. 136
5.12 Experiment 4: Histograms of Mean-Squared-Error for Denoising Auto-Encoder.137
5.13 Experiment 4: Examples of Denoising for Test Samples. 137
5.14 Experiment 4: Noise level σ = 0.1, estimation for raw noisy data vs. estima-

tion for pre-processed data for labelled pre-trained network. 138
5.15 Experiment 4: Noise level σ = 0.1, estimation for raw noisy data vs. estima-

tion for pre-processed data for unlabelled pre-trained network. 140
5.16 Scheme of a System Identification method. 142
5.17 Experiment 5: Gauss-Newton parameter estimation for full-observability and

random parameter initialization. 149
5.18 Experiment 6: Gauss-Newton parameter estimation for full-observability and

parameter initialization of p1 and p2 via CNN. 153
5.19 Experiment 7: Gauss-Newton parameter estimation for full-observability, re-

stricted to the identifiable parameters and parameter initialization of p1 and
p2 via CNN. 156

5.20 Scheme of a Hybrid System Identification method. 158
5.21 Experiment 8: Gauss-Newton parameter estimation for partial observability,

restricted to the identifiable parameters and parameter initialization of p1 and
p2 via CNN. 160

5.22 Experiment 9: Training Loss and Test Loss for the Data Completion U-Net. . 164
5.23 Experiment 9: Histograms of Mean-Squared-Error for Data Completion U-Net.164
5.24 Experiment 9: Examples of Data Completion for Test Samples. 165
5.25 Experiment 10: Gauss-Newton parameter estimation for completed system

via U-Net, restricted to the identifiable parameters and parameter initializa-
tion of p1 and p2 via CNN. 168

A.1 Algorithm: Definition of CNN Network Function. 176
A.2 Algorithm: Definition of CNN Layer Function. 176
A.3 Algorithm: Training Function of Parameter Estimation Network. 176
A.4 Algorithm: Optimization Function of Parameter Estimation Network. 177
A.5 Algorithm: Definition of CAE Network Function. 177
A.6 Algorithm: Definition of CAE Layer Function. 177

ix

A.7 Algorithm: Training Function of Denoising Network. 177
A.8 Algorithm: Optimization Function of Denoising Network. 178
A.9 Algorithm: Definition of U-Net Network Function. 178
A.10 Algorithm: Definition of U-Net Layer Function. 178
A.11 Algorithm: Training Function of U-Net for State Estimation. 178
A.12 Algorithm: Optimization Function of U-Net for State Estimation. 179
A.13 Algorithm: Mapping System Matrix to Parameter Vector 179
A.14 Algorithm: Data Completion. 179
A.15 Algorithm: Parameter Initialization . 179
A.16 Algorithm: State Estimation Model. 180
A.17 Algorithm: Optimization Step for System Matrix. 180
A.18 Algorithm: Gauss-Newton Optimization Step. 181
A.19 Algorithm: Main Function. 181

B.1 Layer Structure of a Convolutional Neural Network 182
B.2 Layer Structure of a Convolutional Auto-Encoder 183
B.3 Layer Structure of a U-Net . 184

x

List of Tables

4.1 Approximation Error for Second Order Non-Homogeneous Equations 81
4.2 Approximation Error for Quarter-Car-Model (1) 89
4.3 Approximation Error for Quarter-Car-Model (2) 90
4.4 Computational time for the Quarter-Car-Model 91

5.1 Experiment 1: Error distribution of labelled parameter estimation 122
5.2 Experiment 2: Error distribution of unlabelled parameter estimation 128
5.3 Experiment 3a: Error distribution of labelled parameter estimation with noise

σ = 0.01 . 131
5.4 Experiment 3a: Error distribution of unlabelled parameter estimation with

noise σ = 0.01 . 131
5.5 Experiment 3b: Error distribution of labelled parameter estimation with noise

σ = 0.05 . 133
5.6 Experiment 3b: Error distribution of unlabelled parameter estimation with

noise σ = 0.05 . 133
5.7 Experiment 4: Error distribution of labelled parameter estimation with noise

σ = 0.1 . 139
5.8 Experiment 4: Error distribution of labelled parameter estimation with noise

σ = 0.1 and Neural Network denoising. 139
5.9 Experiment 4: Error distribution of unlabelled parameter estimation with

noise σ = 0.1 . 139
5.10 Experiment 4: Error distribution of unlabelled parameter estimation with

noise σ = 0.1 and Neural Network denoising. 140
5.11 Experiment 5: Error distribution of Gauss-Newton parameter estimation for

full-observability and random parameter initialization. 150
5.12 Experiment 6: Error distribution of Gauss-Newton parameter estimation for

full-observability and parameter initialization of p1 and p2 via CNN. 152
5.13 Experiment 7: Error distribution of Gauss-Newton parameter estimation for

full-observability, restricted to the identifiable parameters and parameter ini-
tialization of p1 and p2 via CNN. 157

5.14 Experiment 8: Error distribution of Gauss-Newton parameter estimation for
partial observability, restricted to the identifiable parameters and parameter
initialization of p1 and p2 via CNN. 161

xi

5.15 Experiment 10: Error distribution of Gauss-Newton parameter estimation
for completed system via U-Net, restricted to the identifiable parameters and
parameter initialization of p1 and p2 via CNN. 169

5.16 Computational Time of Neural Networks. 170
5.17 Computational Time of Gauss-Newton Parameter Estimation. 170

xii

List of Abbreviations

ADAM Adaptive Momentum
ANN Artificial Neural Network
BPA Back Propagation Algorithm
CAE Convolutional Auto - Encoder
CNN Convolutional Neural Network
DNN Deep Neural Network
DOF Degree Of Freedom
ERM Empirical Risk Minimization
FC Fully Connected
FCM Full Car Model
GAN Generative Adversarial Network
HCM Half Car Model
IVP Initial Value Problem
LTI Linear Time Invariant
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
MSD Mass Spring Damper
MSE Mean - Squared - Error
ODE Ordinary Differential Equation
PCA Principal Component Analysis
PDE Partial Differential Equation
PSD Power Spectral Density
QCM Quarter Car Model
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SIMO Single Input Multiple Output
SISO Single Input Single Output
SLT Statistical Learning Theory
VAE Variational Auto - Encoder

l.h.s. left hand side
r.h.s. right hand side
w.r.t. with respect to
w.l.o.g. without loss of generality

xiii

List of Symbols

Sets
N set of natural numbers
R set of real numbers
C set of complex numbers

Set Theory
a ∈ A element a member of set A

1{a∈A}(a) indicator function if a is member of A

A⊂ B A is proper subset of B

A⊆ B A is subset of B or equal to B

A\B elements in A and not in B⋂m
i=1 Ai intersection of all sets Ai⋃m
i=1 Ai union of all sets Ai

Relations
a = b a equal to b

a≈ b a is approximately b

a 6= b a not equal to b

a > b a greater than b

a� b a much greater than b

a≥ b a greater or equal to b

a < b a less than b

a� b a much less than b

a≤ b a less or equal to b

a := G(x) a defined as expression G(x)

Indexing
ak k-th entry of vector a

am;k k-th entry of vector am

al l-th iteration or time-index
a(l) value depending on layer l

Ai j i-th row and j-th column entry of matrix A

General Operators
|a| absolute value of a

‖a‖ Euclidean norm of a

bac largest integer below a

xiv

a complex conjugate of a

Re(a) real part of a

Im(a) imaginary part of a

Differentiation and Integration
dk f (t)

dtk k-th total derivative of a function f with respect to time variable t
∂ k f (t,x)

∂xk k-th partial derivative of a function f with respect to variable x

∇xF(x) Gradient of a function F with respect to variable x

C k(X ,Y) function space of k-times continuously differentiable functions
from space X to space Y

L 1(X ,Y) function space of continuously integrable functions from space
X to space Y

Probability Theory
EX∼pX [X] expected value of a random variable X with distribution pX

Var[X] variance of a random variable X

U ([a,b]) uniform distribution on interval [a,b]
N (µ ,σ2) Gaussian distribution with mean µ and variance σ2

xv

Dedicated to my parents, Monika and Joachim
and to my godchild, Quentin.

1

Chapter 1

Introduction

1.1 Motivation

Individual passenger transport has become one of the most controversially discussed topics
in recent years. Balancing professional, familial and private life can require high personal
flexibility, if large distances separate working place, home and locations of leisure activities,
since there is no area-wide and time-independent solution of public transport, which offers to
manage the daily challenge of limited time. Some of the outcomes of this individual transport
problem, are overfilled roads and traffic jams, above all in border regions and metropolitan
areas. It is nearly impossible to achieve a significant reduction of the daily traffic, if one
considers rural regions, with a non-existent rail-network, combined with a really sparse bus
connection. Working from home, in the COVID-19 global pandemic, has shown one possibil-
ity to connect working place and private life, but is nevertheless only a compromise solution
for the main problem.

To overcome the passenger transport problem in future and to connect rural areas with urban
centres, autonomous solutions for public transport are currently tested to achieve a higher in-
dividual flexibility, without being restricted to fixed travel times. With no doubt, autonomous
driving is not yet globally applicable to solve these problems within the following decades,
due to high requirements in passenger safety and reliability of decision systems, which pro-
cess and evaluate measurements of a large quantity of sensing devices.

Decision making for smart systems, requires interaction with sensing devices of a car in-
terior and as far as autonomous driving is concerned, of course also interaction with exterior
vehicles. It is therefore more than necessary, to have redundant devices, if measurement er-
rors or inferences disturb the sensors. Thus, it is not surprising, that the amount of built-in
sensing devices has grown significantly within the last years. If it is not pure autonomous
driving by now, smart systems can already be used to enable driving assistance to support
human interaction with the environment and to ensure passenger safety in case of a possible
collision.

Chapter 1. Introduction 2

1.2 Automotive Sensors

Modern research about the developments of sensing devices has shown respective progress in
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) interaction with different types
of sensors [49]. For instance, range detection technologies have been developed, using laser
devices to produce point-clouds for obstacle detection, combined with computer vision soft-
ware to calculate distances from vehicle to exterior infrastructure.

FIGURE 1.1: Possible situation of range detection as described by [49].

One prominent version of this laser technology are for instance LiDAR (Light Detection And
Ranging) systems, where distance results from measuring time, light needs to be shot onto
an object and to be reflected back to the antenna of the signal’s source [90]. Besides other
range finders, like Complementary Metal-Oxide Semi-conductor (CMOS) image sensors
[48], modern RADAR technology, like Frequently Modulated Continuous Wave (FMCW)
or Continuous Wave (CW), can also be used to measure distances, for instance between ve-
hicles and pedestrians, making use of the Doppler-spectrum [8]. In summary, there is a large
field of possible sensing devices to measure the distance of a vehicle to the environment,
including pedestrians, moving vehicles or solid objects. Nevertheless, also vehicle-interior
sensors can be used to support the decision making process of these range detection sensors.

For modern Advanced Driver Assistance Systems (ADAS), it is also relevant to detect un-
natural behaviour of the human driver, since driver distraction is one of the main collision
reasons. It is therefore not only sufficient to ensure the airbag function in case of a crash [95,
116], but to have a reliable early warning system to prevent possible collisions. Besides the
areas of powertrain control systems to observe vehicle energy use or driving performance and
chassis control systems for steering, suspension or vehicle stability, body control systems are
relevant to ensure occupant safety, security and comfort for the passengers [26]. For these
body control systems, piezoresistive (semi-conductor-based) sensors [25] can for instance be
used to convert pressure into electrical signals, to ensure functionality of the airbag control.

Chapter 1. Introduction 3

Furthermore, Inertial Measurement Units (IMU) can explicitly be used to measure an ob-
ject displacement, investigating a rate of change in the orientation of a body [46, 81]. These
IMUs combine sensors like accelerometers (g-Sensors) or gyroscopes and can for instance be
contained in so called Microelectromechanical Systems (MEMS), which give the opportunity
to build complex sensing systems by small devices in millimeter-size [50, 71, 97]. Modern
MEMS technology, uses WiFi-connections, which does not require permanent installation of
a device at a local position within a vehicle.

FIGURE 1.2: Orientation of two g-Sensors, one measuring the interior accel-
eration of a smartphone, the other measuring the acceleration of the chassis
[115]. Both measurements can be compared, due to the identical orientation

of the sensors.

Raw data of accelerometers, as component of IMUs or MEMS, can easily be acquired, since
they are nowadays included in common devices like smartphones and can therefore be used
to measure the relative displacement of a passenger with respect to a corresponding vehicle
movement, by use of three-dimensional acceleration data, as it can be seen in Figure 1.2.

Overall, it is possible to acquire large amounts of data for the body control system, which
can then be processed to give insights about the physical or mental condition of a vehicle’s
occupant. Due to the broad availability of g-Sensors, it is worth investigating what could be
achieved via processing this simply acquirable data with Artifical Intelligence (AI).

1.3 Hybrid Neural Networks and Parameter Estimation

Neural Networks can be used to process big data, including time-series forecasting prob-
lems [23], and give insights about a priori unobservable inner data structures. Since Neural
Networks have shown to be unstable for uncertainties and as a high redundancy is required
for decision making processes, one should investigate robust architectures, when trying to
include data-driven models, as it is the case for Hybrid Neural Networks.

Hybrid Neural Networks can efficiently be used to support control systems like energy and

Chapter 1. Introduction 4

building management [55]. It can then be shown, that Neural Networks can serve as success-
ful early warning systems, when forecasting anomalies in a given time-series of measurement
data. Furthermore, partial knowledge about the underlying physical systems [21] can be ex-
ploited to develop robust Hybrid Models, which outperform pure data-driven models, for
instance in parameter estimation problems or system identification.

There is no unique definition of the term "Hybrid Model", as they in general are capable
to contain combinations of data-driven methods [113], or a mixture of data-driven and de-
terministic methods. We restrict to Hybrid Models, containing Neural Networks, that are
capable to solve parameter estimation problems for dynamical systems [86], especially for
approximate vehicle models.

Parameter estimation for vehicle models is a broad field, mainly focussing on motion con-
trol for automated driving [99, 110] or vehicle detection [66, 98]. The scope of this thesis
is to focus on another field, namely parameter estimation for components of the car inte-
rior. Therefore, estimation methods with respect to robustness against measurement noise or
data incompleteness are going to be investigated. By our knowledge, there are only a few
examples of identification of an explicitly described vehicle model. Most investigations are
restricted to sprung mass identification [4] or identification of the corresponding stiffness pa-
rameters of the chassis [16].

There is no approach, that makes use of a more complex passenger-based vehicle model for
parameter estimation problems. Therefore, we are going to develop data-driven as well as
common deterministic models for parameter estimation of such vehicle models, evaluating
the performance in terms of robustness against additional measurement noise and incom-
pleteness of the observed data. We want to answer the questions, if specific Neural Network
architectures are capable to process discrete acceleration data of a dynamical system to give
an appropriate estimate of the target parameters. In addition, it is shown that an appropriate
estimate of the system parameters for heavily corrupted data or incomplete data is difficult
and therefore one needs to make use of more sophisticated Hybrid Models.

1.4 Content

Chapter 2 contains an introduction into mathematical modelling for coupled dynamical sys-
tems. Therefore, Newton’s laws of motion are used to define the kinetic and potential energy
of a conservative system. The Euler-Lagrange equation can then be used to derive ordinary
differential equations from the energy terms. Inclusion of the Rayleigh-Dissipation is then
used to extend the method to non-conservative systems, which contain an exterior force that
reacts to the components of the coupled systems. Considering rotational and translational
energy terms, as for a pendulum model, approximate vehicle models like the Quarter-Car-
Model (QCM), the Half-Car-Model (HCM) and the Full-Car-Model (FCM) can be derived
from the Euler-Lagrange formalism. At a last step, a sinusoidal approach is introduced to

Chapter 1. Introduction 5

generate random road-profiles, which are used as source term for the coupled dynamical sys-
tems.

Chapter 3 comprises a general introduction to the training of Neural Networks. At a first
step, the general terminology, as it is shown in Statistical Learning Theory (SLT) is clarified.
The training problem for Neural Networks can then be defined by finding an approximative
solution to the Empirical Risk Minimization (ERM) problem. The second part of the sec-
tion is more technical, as it gives an introduction to the layer arithmetic of specific Neural
Network architectures. As far as our investigations are concerned, we need three different
structures of Neural Networks, namely Convolutional Neural Networks (CNN) combined
with Fully-Connected (FC) layers, Convolutional Auto-Encoders (CAE) and the so called
U-Net, as a special type of a Convolutional Neural Network, containing skip-connections
between the layers.

Chapter 4 deals with the solution of ordinary differential equations to generate artificial data
for coupled dynamical systems. A short introduction into the solution theory of second order
ordinary differential equations (ODE) will be given as a first step. Therefore, homogeneous
and non-homogeneous equations are considered. Clarification about Hamiltonian systems,
which can be connected to the Euler-Lagrange formalism of Chapter 2, then leads to a geo-
metric integration scheme, which can efficiently be used to find appropriate solutions of the
coupled system of second order ordinary differential equations. Afterwards, the system of
second order ordinary differential equations is transferred into a system of first order equa-
tions, which can then easily be solved with different appropriate Euler integration schemes.
A random variation of the parameter values and of the road-profiles can then be used to gen-
erate datasets of arbitrary size, which serve as simulated measurements for the interior of the
Quarter-Car-Model.

Chapter 5 deals with system identification and parameter estimation of dynamical systems.
The task is to estimate the parameters from several data samples, which have randomly been
generated in Chapter 4. The first part will clarify the conditions, on which all parameters
of the system can uniquely be determined. Then several experiments are described, which
deal with parameter estimation of the Quarter-Car-Model. Therefore, it is shown, how Neu-
ral Networks and state-of-the-art methods can appropriately be combined to define Hybrid
Models, which give sufficient estimates of the parameters. We therefore start with a simple,
data-driven experiment, where it is tested, whether Neural Networks are capable to predict
a two-dimensional parameter estimation problem appropriately. One can then compare the
data-driven approach with an unlabelled objective function, using the same network archi-
tecture as for the first experiments. The two methods can then be compared in terms of
robustness against Gaussian noise and generalization performance for the test samples. Fur-
ther, one can test, if Neural Networks can also be used for denoising of corrupted sequential
input data. In contrast to the two-dimensional parameter estimation problem, we then inves-
tigate parameter estimation for the entire Quarter-Car-Model. We will show, under which

Chapter 1. Introduction 6

conditions it is possible to estimate all identifiable parameters of the system. Finally, we
make use of several different network architectures to develop robust Hybrid Models for pa-
rameter estimation in an uncertain system.

Chapter 6 summarizes the main achievements of the work. It is further discussed what can
be learned from the results shown in the previous section. Specific questions occur from the
shown results, which could be investigated in future research.

Appendix A contains source code of the most important functions for parameter estimation
and the training of Neural Networks, which has been used for the experiments of Chapter 5.

Appendix B shows the specific layer structure of the three different Neural Networks, which
have been considered in this work.

7

Chapter 2

Mathematical Modelling

The following chapter deals with the problem of appropriately deriving a mathematical model
of a coupled dynamical system from Newton’s laws of motion. Therefore, we discuss in a
first step, how one can derive equations of motion from the Euler-Lagrange formalism, as
part of variational calculus.

Defining kinetic, potential and exterior energy terms, one can derive a mathematical de-
scription of any dynamical system, following the Euler-Lagrange approach. We explain
the principle for conservative as well as for non-conservative systems. The derivation of
a passenger-based Quarter-Car-Model, Half-Car-Model and Full-Car-Model, following the
Euler-Lagrange formalism, is shown in detail in this chapter.

As a last step, we explain the idea of randomly generating road-profiles, following ISO 8606
road roughness classification, which we use to serve as exterior control of the derived ap-
proximate vehicle models.

2.1 Modelling with Physical Equations

We mainly focus on the concepts stated in [32, 54, 93], which serve as a general introduc-
tion into the field of mechanics, to derive mathematical models from principles of classical
mechanics. Force equations within a mechanical system can appropriately be used to derive
mathematical equations from energy terms of particles for a system of arbitrary dimension.
These concepts can be applied to a system of coupled rigid masses, instead of free mass par-
ticles, connected by springs and dampers, serving as a simplification of a vehicle model for
further investigations.

As far as mechanical systems are concerned, main principles can be derived from relations
between force, work and power. The standardized units are given by N = kg·m

s2 (Newton) for
force, J = kg·m2

s2 (Joule) for work and W = kg·m2

s3 (Watt) for power. Moreover, the concepts
can mathematically be connected, as power describes the rate of change of work over time
(derivative) and work describes the amount of power transferred from one point to another
(integral). These basic dependencies will serve as fundamental properties of mathematical

Chapter 2. Mathematical Modelling 8

modelling in the following sections.

2.1.1 Motion of Particles and Newton’s Laws

Referring to [54] in classical mechanics, the concepts of space and time are in general con-
tinuous problems. This can mathematically be experienced, when dealing with partial differ-
ential equations (PDE) which contain time and state derivatives. We can observe motion of
individual or coupled objects with respect to time in classical mechanics. Theoretical con-
cepts can then be derived from Newton’s laws of motion, if we assume rigid bodies to be
treated as point particles with centered mass. Therefore, we start with a system of arbitrary
particles following [32].

We define a finite time horizon T := [t0, tn] ⊂ R for which the d - dimensional position
vector or radius vector, with d ∈N, can be described as a twice continuously differentiable
function ri ∈ C 2(T ,Rd), for a particle with index i ∈ {1,2, ...,N} and N ∈N. Further, the
velocities of a particle at time t ∈T are derivatives of the position with respect to time by

vi(t) :=
dri(t)

dt
= ṙi(t), (2.1)

where we frequently use Newton’s notation ṙi(t) for derivatives, as far as dynamical systems
are considered. Since all state vectors are twice differentiable functions with respect to time,
we can also define acceleration of particles by

ai(t) :=
dvi(t)

dt
=

d2ri(t)
dt2 = r̈i(t). (2.2)

As higher order derivatives are not considered in this context, we can now define Newton’s
laws of motion for a system of particles with constant, time-independent centered masses
[32, 54].

The first law ("principle of inertia") [32, 54] states that if there are no forces acting on a
particle, it has constant velocity at that time. For each particle indexed by i ∈ {1,2, ...,N}, the
first law can mathematically be described by

Fi(t) =
N

∑
j=1

Fi j(t)+Fe
i (t) = 0 ⇔ dvi(t)

dt
= 0, (2.3)

where Fi j(t) describes the internal force of the system, acting from particle with index i in
direction to particle j for i, j ∈ {1,2, ...,N} and N ∈N. Furthermore, we denote by Fe

i (t) a
possible external force acting in direction to particle i ∈ {1,2, ...,N}. Then Fi(t) is the total
resulting force for a particle with index i ∈ {1,2, ...,N} at time t ∈T .

The second law ("principle of linear momentum") [32, 54] states that if the momentum

Chapter 2. Mathematical Modelling 9

of a particle with mass mi > 0 for i ∈ {1,2, ...,N} is given by

pi(t) := mivi(t), (2.4)

then the total force Fi(t) equals the derivative of linear momentum with respect to time

Fi(t) =
dpi(t)

dt
= mi

dvi(t)
dt

= miv̇i(t). (2.5)

The third law ("principle of actio and reactio") [32, 54] states that all particles of a system
cause individual forces to the other particles, where Fi j(t) describes the force acting from
particle i to particle j and Fji(t) describes the force acting from particle j to particle i. It then
holds that

Fi j(t) = −Fji(t) (2.6)

for all i, j ∈ {1,2, ...,N} and thus we have Fii(t) = 0.

We have shortly introduced a formal description of Newton’s laws of motion with Eq. (2.3),
Eq. (2.5) and Eq. (2.6) within an arbitrary particle system. The equations are necessary to
derive the Euler-Lagrange formalism in a latter section, after having clarified the general
concept of variational calculus.

2.1.2 Calculus of Variations

Since differential equations can be used to describe the behaviour of a system depending
upon slight variations of state and time, we give a short example about the calculus of vari-
ations, which gives insights how to derive the general Euler-Lagrange equations of motion.
Variational priniples based on classical mechanics can again be found in [32, 54], where a
general theoretical introduction is given by [29, 67]. Principles of variational calculus with
respect to physical or engineering problems are well described by [112].

Definition 1 (Variation of State and Velocity [67])
The position of a particle with dimension d ∈ N at time t ∈ [t0, tn] ⊂ R is given by r ∈
C 2([t0, tn],Rd). The variational state vector ρ ∈ C 2([t0, tn]×R,Rd) is given by

ρ(t,ε) := r(t)+ εη(t) (2.7)

and the variational velocity analogously as

ρ̇(t,ε) := ṙ(t)+ εη̇(t), (2.8)

where η(t) is called the perturbation at t ∈ [t0, tn] with η ∈ C 2([t0, tn],Rd) and 0 < ε � 1,

such that the boundary conditions of the variational state ρ(t1,ε) = r(t1) and ρ(tn,ε) = r(tn)

Chapter 2. Mathematical Modelling 10

yield that

η(t1) = η(tn) = 0. (2.9)

Lemma 1 (Fundamental Lemma of Variational Calculus [29])
Let two continuous real-valued functions be given by g,h ∈ C 0([t0, tn],R). If

∫ tn

t0
g(t)h(t)dt = 0 (2.10)

for all h with h(t0) = h(tn) = 0, then it follows that g(t) = 0 for t ∈ [t0, tn].

Proof. Let us assume that g(t)> 0 for t ∈ [a,b]⊂ [t0, tn]. We can construct a function h such
that h(t) > 0 for t ∈ [t0, tn] and h(t0) = h(tn) = 0, for instance by h(t) = (t− t0)(tn− t). As
g(t) = 0 for t ∈ [t0,a]∪ [b, tn], we have

∫ tn

t0
g(t)h(t)dt =

∫ a

t0
g(t)h(t)dt︸ ︷︷ ︸

=0

+
∫ b

a
g(t)h(t)dt +

∫ tn

b
g(t)h(t)dt︸ ︷︷ ︸

=0

=
∫ b

a
g(t)h(t)dt 6= 0,

(2.11)
since g(t),h(t)> 0 for t ∈ [a,b] by construction. This contradicts the assumption, that the in-
tegral is supposed to be zero for t ∈ [t0, tn]. Therefore, g(t) = 0 for t ∈ [a,b], which completes
the proof.

We consider a continuously differential functional f ∈ C 1
((
[t0, tn]×Rd×Rd

)
,R
)
, defin-

ing a mapping (t,ρ(t,ε), ρ̇(t,ε)) 7→ f (t,ρ(t,ε), ρ̇(t,ε)) for all t ∈ [t0, tn]. Then the cost
functional can be defined via

I(ε) :=
∫ tn

t0
f (t,ρ(t,ε), ρ̇(t,ε))dt, (2.12)

where ε ≥ 0 is a variation rate. The integral I(ε) is called a cost functional, due to the fact
that it describes the size of the area between a variational path and the optimal path defined
by the state vectors r(t) and the velocity ṙ(t).

A cost functional I(ε) is stationary, if I(ε) = 0 for ε ≥ 0. Considering ε = 0, which implies
that ρ(t,0) = r(t) for all t ∈ [t0, tn], then I(0) = 0.

The variation of the cost functional is then given by

δ I :=
d

dε
I(ε)

∣∣∣∣
ε=0

(2.13)

and since it is said to be stationary at ε = 0, we need to analyse the equation δ I = 0. As the
Leibniz integral rule holds due to the continuity of the functional, we get

d
dε

I(ε) =
∫ tn

t0

d
dε

f (t,ρ(t,ε), ρ̇(t,ε))dt.

Chapter 2. Mathematical Modelling 11

Computation of the general cost function’s total derivative w.r.t. the variation rate ε ≥ 0
yields

d
dε

f (t,ρ(t,ε), ρ̇(t,ε)) =
∂ f (t,ρ(t,ε), ρ̇(t,ε))

∂ρ(t,ε)
∂ρ(t,ε)

∂ε
+

∂ f (t,ρ(t,ε), ρ̇(t,ε))
∂ ρ̇(t,ε)

∂ ρ̇(t,ε)
∂ε

=
∂ f (t,ρ(t,ε), ρ̇(t,ε))

∂ρ(t,ε)
η(t)+

∂ f (t,ρ(t,ε), ρ̇(t,ε))
∂ ρ̇(t,ε)

η̇(t).

Using integration by parts, we get

d
dε

I(ε) =
∫ tn

t0

(
∂ f (t,ρ(t,ε), ρ̇(t,ε))

∂ρ(t,ε)
η(t)+

∂ f (t,ρ(t,ε), ρ̇(t,ε))
∂ ρ̇(t,ε))

η̇(t)
)

dt

=
∫ tn

t0

∂ f (t,ρ(t,ε), ρ̇(t,ε))
∂ρ(t,ε)

η(t)dt +
∂ f (t,ρ(t,ε), ρ̇(t,ε))

∂ ρ̇(t,ε))
η(t)

∣∣∣∣tn
t0

−
∫ tn

t0

d
dt

(
∂ f (t,ρ(t,ε), ρ̇(t,ε))

∂ ρ̇(t,ε))

)
η(t)dt. (2.14)

Due to η(t0) = η(tn) = 0, it follows from Eq. (2.14)

d
dε

I(ε) =
∫ tn

t0

(
∂ f (t,ρ(t,ε), ρ̇(t,ε))

∂ρ(t,ε)
− d

dt
∂ f (t,ρ(t,ε), ρ̇(t,ε))

∂ ρ̇(t,ε))

)
η(t)dt = 0

for ε = 0. Thus, if we directly apply Lemma 1, setting g(t) := ∂ f (t,ρ(t,0),ρ̇(t,0))
∂ρ(t,0) − d

dt
∂ f (t,ρ(t,0),ρ̇(t,0))

∂ ρ̇(t,0) ,
if δ I = 0, then (

∂ f (t,ρ(t,ε), ρ̇(t,ε))
∂ρ(t,ε)

− d
dt

∂ f (t,ρ(t,ε), ρ̇(t,ε))
∂ ρ̇(t,ε)

)∣∣∣∣
ε=0

= 0, (2.15)

which is known as the Euler-Lagrange equation. The herein shown formalism of variational
calculus can now be applied to the dynamical system of particles to derive the equations of
motion.

2.1.3 Energy Conservation and Euler-Lagrange Equation

After having described Newton’s laws of motion for a system of particles with central mass
and the concept of deriving the Euler-Lagrange equation from variational calculus, we now
combine these approaches to get appropriate motion equations for conservative and non-
conservative systems, again mainly based on [32, 54].

Let us therefore resume that for a particle with index i∈ {1,2, ...,N} in equilibrium, Newton’s
second law states that

Fi(t) = ṗi(t) = mir̈i(t),

which is equal to

(Fi(t)−mir̈i(t)) = 0 (2.16)

for all i∈ {1,2, ...,N} and t ∈ [t0, tn]. The state vectors ri(t)∈Rd , with i∈ {1,2, ...,N}, d ∈N

and t ∈ [t0, tn], have previously been defined as time-dependent, continuously differentiable

Chapter 2. Mathematical Modelling 12

functions. Following [54, 112], the state vectors are supposed to depend upon the time-
variable, as well as on generalized coordinates

q(t) := (q1(t),q2(t), ...,qd(t))
T ∈Rd , (2.17)

where q j ∈ C 2 ([t0, tn],R) with d ∈N.

One can then define the individual variation of the generalized coordinates, similar to
the previously given principles in the last section, especially in Eq. (2.13), for t ∈ [t0, tn] and
j ∈ {1,2, ...,N}, by

δq j :=
d

dε
(q j(t)+ εη j(t))

∣∣
ε=0 ,

where η ∈ C 2([t0, tn],Rd) is a perturbation with variation rate ε ≥ 0 in the sense of Lemma
1. Analogously, the variation of the generalized velocities is thus given by

δ q̇ j :=
d

dε
(q̇ j(t)+ εη̇ j(t))

∣∣
ε=0 =

d
dt

δq j.

For simplification, let us use q j := q j(t) for all t ∈ [t0, tn]. Therefore, we use the short forms

ri := ri(t,q), (2.18)

assuming that the state is differentiable for all q j with j ∈ {1,2, ...,d}. Thus, it also holds that
for the vector of velocities ṙi and the vector of accelerations r̈i for i ∈ {1,2, ...,N}, we make
use of

ṙi :=
d
dt

ri(t,q), r̈i :=
d2

dt2 ri(t,q). (2.19)

The variation of the state [54] is then explicitly given by

δ ri :=
d

∑
j=1

∂ ri

∂q j
δq j. (2.20)

It holds true, that for variations δ ri for i ∈ {1,2, ...,N} and Newton’s second law, Eq. (2.16),
we have

N

∑
i=1

(Fi(t)−mir̈i)δ ri = 0

and we assume no forces of constraint [32] to occur in our context. The concept, mathemati-
cally described by Eq. (2.1.3) is also known as D’Alembert’s Principle. As a next step, we
consider the variation of virtual work by

δW :=
N

∑
i=1

Fi(t)δ ri, (2.21)

Chapter 2. Mathematical Modelling 13

such that from Eq. (2.1.3), it is obvious that the variation is also equal to

δW =
N

∑
i=1

mir̈iδ ri. (2.22)

Thus, inserting Eq. (2.20) in Eq. (2.21) yields

δW =
N

∑
i=1

Fi(t)δ ri =
N

∑
i=1

Fi(t)
d

∑
j=1

∂ ri

∂q j
δq j =

d

∑
j=1

N

∑
i=1

Fi(t)
∂ ri

∂q j
δq j =

d

∑
j=1

Q jδq j, (2.23)

where

Q j :=
N

∑
i=1

Fi(t)
∂ ri

∂q j
(2.24)

is the generalized force for j ∈ {1,2, ...,d}. Since the product rule for differentiation yields

d
dt

(
miṙi

∂ ri

∂q j

)
= mir̈i

∂ ri

∂q j
+miṙi

d
dt

∂ ri

∂q j
,

it follows that Eq. (2.22) equals

δW =
N

∑
i=1

mir̈iδ ri

=
N

∑
i=1

mir̈i

d

∑
j=1

∂ ri

∂q j
δq j

=
d

∑
j=1

N

∑
i=1

(
d
dt

(
miṙi

∂ ri

∂q j

)
−miṙi

d
dt

∂ ri

∂q j

)
δq j. (2.25)

Following the dependencies as stated in Eq. (2.18), the total derivative of the state vector is
given by

ṙi =
d
dt

ri(t,q) =
d

∑
j=1

∂ ri

∂q j
q̇ j +

∂ ri

∂ t
.

Thus ∂ ṙi
∂ q̇ j

= ∂ ri
∂q j

for i ∈ {1,2, ...,N} and j ∈ {1,2, ...,d}, such that Eq. (2.25) simplifies to

δW =
d

∑
j=1

N

∑
i=1

(
d
dt

(
miṙi

∂ ṙi

∂ q̇ j

)
−miṙi

∂ ṙi

∂q j

)
δq j. (2.26)

As a next step, we consider the kinetic energy of a system to be generally defined as a
function of time, state and velocity by

T : T ×Rd×Rd →R (2.27)

(t,q, q̇) 7→ T (t,q, q̇), (2.28)

Chapter 2. Mathematical Modelling 14

with a finite time horizon T = [t0, tn] ⊂R. Making use of Eq.(2.19), it can be shown that

T (t,q, q̇) =
N

∑
i=1

1
2

mi
d
dt

ri(t,q)2 =
N

∑
i=1

1
2

miṙ2
i (2.29)

such that the variation of the kinetic energy is given by

δT :=
N

∑
i=1

miṙiδ ṙi. (2.30)

Regarding the derivatives of Eq. (2.26), it then holds that

N

∑
i=1

d
dt

miṙi
∂ ṙi

∂ q̇ j
=

d
dt

∂

∂ q̇ j

N

∑
i=1

1
2

miṙ2
i =

d
dt

∂T (t,q, q̇)
∂ q̇ j

(2.31)

and analogously
N

∑
i=1

miṙi
∂ ṙi

∂q j
=

∂

∂q j

N

∑
i=1

1
2

miṙ2
i =

∂T (t,q, q̇)
∂q j

, (2.32)

which yields that the variation of virtual work can be expressed in terms of derivatives of
the kinetic energy. In order to apply Lemma 1, we use the following integral description,
including the variation of the kinetic energy such that we derive the following expression
with the help of integration by parts and the boundary conditions δ ri(t0) = δ ri(tn) = 0 of the
variations δ ri:

∫ tn

t0
δT dt =

∫ tn

t0

N

∑
i=1

miṙiδ ṙidt

=
N

∑
i=1

(
miṙiδ ri|tnt0−

∫ tn

t0
mir̈iδ ridt

)
= −

∫ tn

t0

N

∑
i=1

mir̈iδ ridt

= −
∫ tn

t0
δWdt.

We can therefore derive the following expression in the sense of variational calculus by∫ tn

t0
(δT + δW)dt = 0, (2.33)

which is known as energy conservation for a physical system. A dynamical system, satisfy-
ing Eq. (2.33) is therefore called conservative system.

The equations of motion, summarizing the results as stated by the generalized force in
Eq. (2.24), the simplified expression in Eq. (2.26) and the dependencies of the variation of
virtual work in terms of differentials of the kinetic energy in Eq. (2.31) and Eq. (2.32) are
given through

Chapter 2. Mathematical Modelling 15

δ I :=
∫ tn

t0
(δT + δW)dt =

d

∑
j=1

∫ tn

t0

((
∂T (t,q, q̇)

∂q j
− d

dt
∂T (t,q, q̇)

∂ q̇ j

)
δq j +Q jδq j

)
dt

=
d

∑
j=1

∫ tn

t0

(
∂T (t,q, q̇)

∂q j
− d

dt
∂T (t,q, q̇)

∂ q̇ j
+Q j

)
δq jdt (2.34)

!
= 0. (2.35)

Since the generalized coordinates are independent [32, 54] on each other and the conditions
of Lemma 1 hold, it follows that

∂T (t,q, q̇)
∂q j

− d
dt

∂T (t,q, q̇)
∂ q̇ j

+Q j = 0 (2.36)

for all j = {1,2, ...,d}. The generalized forces Q j with j ∈ {1,2, ...,d} in Eq. (2.36) need now
to be specified for a conservative system. Following the assumption, that a potential energy
function

V : T ×Rd×Rd →R (2.37)

(t,q, q̇) 7→V (t,q, q̇) (2.38)

for a finite time horizon T = [t0, tn] ⊂R is differentiable w.r.t. the generalized coordinates
of the vector q ∈Rd , we define the generalized forces as

Q j := −∂V (t,q, q̇)
∂q j

for all j ∈ {1,2, ...,d} such that ∂V (t,q,q̇)
∂ q̇ j

= 0. Thus the potential energy for a conservative
system does not depend upon the generalized velocities q̇ j. Defining the Lagrange function
as the difference between kinetic and potential energy of a conservative system, thus

L : T ×Rd×Rd →R (2.39)

(t,q, q̇) 7→ T (t,q, q̇)−V (t,q, q̇), (2.40)

it can then be shown that Eq. (2.36) equals

∂T (t,q, q̇)
∂q j

− d
dt

∂T (t,q, q̇)
∂ q̇ j

+Q j = 0

⇔ ∂T (t,q, q̇)
∂q j

− ∂V (t,q, q̇)
∂q j

− d
dt

∂T (t,q, q̇)
∂ q̇ j

= 0 (2.41)

⇔ d
dt

∂L(t,q, q̇)
∂ q̇ j

− ∂L(t,q, q̇)
∂q j

= 0. (2.42)

The above stated Eq. (2.41) and Eq. (2.42) are the Lagrangian equations of motion for
a conservative dynamical system. Since we focus on coupled dynamical systems in the
following chapters including an external driving force, we specify the generalized force in a

Chapter 2. Mathematical Modelling 16

different way with the help of the Rayleigh-Dissipation function in the next section, such that
we can derive a similar expression as Eq. (2.42) for non-conservative systems.

2.1.4 Rayleigh Dissipation and Potential Energy

We have already derived the general equation of motion for a conservative particle system
in Eq. (2.41), resulting from the Euler-Lagrange formalism of variational calculus. Since we
want to investigate the equations of motions of an approximate vehicle model, we restrict to
coupled Mass-Spring-Damper (MSD) systems. The main target of this section is therefore to
derive a similar expression as Eq. (2.41) for a coupled dynamical MSD system.

To distinguish between conservative systems in the sense of closed particle systems and
non-conservative systems, which we assume to be dynamical systems, driven by external
forces, we need to again specify the generalized forces Q j for j ∈ {1,2, ...,d}. We will later
on see, that the analogy to d ∈N being the number of generalized coordinates of a system
with free particles, is that d ∈N equals the degrees of freedom (DOF) of a dynamical system
with coupled components. The main approaches to specify such generalized forces are again
based on [32, 54].

We assume that for a non-conservative system, the generalized forces for each particle can
be derived from the generalized coordinates q j of a potential energy function V , as well as
from the generalized velocities q̇ j of a corresponding additional potential function U , known
as the Rayleigh-Dissipation-Function [32], defined as

U : T ×Rd →R (2.43)

(t, q̇) 7→U(t, q̇). (2.44)

In summary, this then yields that for each particle, indexed by j∈{1,2, ...,d}, the generalized
force for a non-conservative system can be expressed in terms of

Qnc
j := −∂V (t,q, q̇)

∂q j
− ∂U(t, q̇)

∂ q̇ j
. (2.45)

It is obvious, that inserting Eq. (2.45) for the generalized force into Eq. (2.36) directly gives
an expression for non-conservative systems, which is essential to derive systems of ordinary
differential equations for approximative vehicle models in the next section. Therefore it holds
for all j ∈ {1,2, ...,d} that

∂T (t,q, q̇)
∂q j

− d
dt

∂T (t,q, q̇)
∂ q̇ j

+Qnc
j = 0

⇔ d
dt

∂T (t,q, q̇)
∂ q̇ j

− ∂T (t,q, q̇)
∂q j

−Qnc
j = 0

⇔ d
dt

∂T (t,q, q̇)
∂ q̇ j

+
∂V (t,q, q̇)

∂q j
+

∂U(t, q̇)
∂ q̇ j

= 0 (2.46)

Chapter 2. Mathematical Modelling 17

⇔ d
dt

∂L(t,q, q̇)
∂ q̇ j

− ∂L(t,q, q̇)
∂q j

+
∂U(t, q̇)

∂ q̇ j
= 0. (2.47)

Since it always holds in our case that d
dt

∂V (t,q,q̇)
∂ q̇ j

= 0, it is most sufficient and preferable for
sake of simplicity, to use Eq. (2.46) instead of the more general Eq. (2.47).

We have clarified all required terms of the general equations of motion for non-conservative
systems, stated by Eq. (2.47). Besides, the derivation of the Euler-Lagrange equation for
non-conservative systems, including Rayleigh-Dissipation, can be done via definition of the
generalized force Q j for all coordinates q j with index j ∈ {1,2, ...,d}. We can therefore move
from the theoretical concept of general particle systems to more specific coupled dynamical
systems in the next section.

2.2 Coupled Dynamical Systems

Given the theoretical concepts derived in Section 2.1, the Euler-Lagrange equations for non-
conservative systems can be used to derive mathematical expressions for coupled Mass-
Spring-Damper (MSD) systems, serving as approximative vehicle models. We therefore
derive now systems of second order differential equations, by definition of the energy terms
and applying Eq. (2.46) to get a variant of the prominent Quarter-Car-Model (QCM), the
Half-Car-Model (HCM) and the Full-Car-Model (FCM). In general, the mentioned models,
distinguish in the number of the modelled wheel-suspensions, which results in a variation of
the degrees of freedom (DOFs) of the model. It is possible to derive detailed and realistic ve-
hicle models [107], when there is a very large number of DOFs for the individual components
of the model. Nevertheless, it is quite difficult to analyse the dependencies between complex
models and data simulated by these models, since a larger number of DOFs corresponds to a
significantly larger number of system parameters.

In case of a general three-dimensional Cartesian system, the motion of a rigid body can be
described through six DOFs, three for motion along the axes and three for rotation around the
axes of a Cartesian coordinate system. In engineering, the three motions along the axes, the
rotational degrees of freedom, are also called "rolling", "pitching" and "yawing", where
the translational degrees of freedom are called "heaving", "swaying" and "surging".

For a coupled MSD system, the motion of each component can be described by a maxi-
mum of six DOFs, nevertheless, the complexity of the system depends upon the total number
of DOFs of the whole vehicle model. It is then also possible to connect a dynamical model
of a vehicle to another passenger model, which can again be described as a complex MSD
system [1]. Since we are interested in deriving generalized vehicle models, we start with
a three components Quarter-Car-Model [59], where each component has only one DOF in
vertical direction ("heaving"). Similar approaches for a simplified passenger-based vehicle

Chapter 2. Mathematical Modelling 18

model can be extended to the Half-Car-Model [60] as well as to the Full-Car-Model [37]. For
the latter two models, it is necessary to also include rotational DOFs, such as "rolling" and
"pitching".

2.2.1 Rotational and Translational Energy

Since we want to investigate approximative vehicle models, where the complexity of the
models depends on the number of translational and rotational DOFs per rigid mass com-
ponent, we introduce a simple 1DOF Pendulum model and a simple 1DOF MSD model.
Combining these concepts and the Lagrange-Equation methodology of Section 2.1, leads to
a sophisticated method to derive approximate vehicle models from physical equations.

Mathematical Pendulum
We herein restrict to a simple mathematical pendulum, as it is shown in Figure 2.1 or de-
scribed in [18]. Theoretical investigations have also been done to derive systems of coupled
pendulum models, as it is stated in [7] containing "Mathematical and Physical Pendulum" or
about coupled pendulum models with variable mass in [61]. As far as the rotational motion
of approximate vehicle models is concerned, it is sufficient to use a simple pendulum for
clarification as described below.

FIGURE 2.1: Simple Pendulum Model with mass m > 0, pendulum length
l > 0 and angle α ∈ [−π ,π].

The mathematical pendulum, as it is shown in Figure 2.1, depends upon one generalized
coordinate. Since we always consider time-dependent variables in the context of dynamical
systems, the angular displacement α(t)∈ [−π ,π] for t ∈ [t0, tn] is in fact a twice continuously
differential function α ∈ C 2([t0, t1], [−π ,π]). For sake of simplicity, we use α := α(t). We
have previously shown the Euler-Lagrange formalism for dynamical systems, therefore we
can now directly derive the equation of motion with respect to the rotational angular displace-
ment, via defining the kinetic energy T and the potential energy V for the pendulum model.
The herein considered model is conservative and has therefore no external forces acting on
it. Similar to the kinetic energy being defined for point masses of linear motion through the

Chapter 2. Mathematical Modelling 19

product of mass and relative velocity, the kinetic energy for rotational motions depends upon
the mass moment of inertia and the angular velocity of the model.

For the simple model, with pendulum length l > 0 and mass m > 0 the mass moment of
inertia for the rotation angle α is given by

Iα := ml2. (2.48)

The kinetic energy T (t,α , α̇) for the simple model is then

T (t,α , α̇) =
1
2

Iα α̇
2

and the potential energy, due to the influence of gravitational force with constant g≈ 9.81 m
s2

is defined as
V (t,α , α̇) = mgh

for the relative height h≥ 0 to the equilibrium point, when α = 0. Since the generalized coor-
dinates of a system need to be derivable from the potential energy function V , there is the need
of a dependence of the potential energy and the rotation angle α , which cannot be verified
from V (t,α , α̇) = mgh. Due to l2 = l2(cos2 α + sin2

α) = (l sinα)2 +(l cosα)2 it follows,
and can also be verified by having a look at Figure 2.1, that with l = l(cosα +(1− cosα)),
we get h = l(1− cosα).

The potential energy is therefore given by

V (t,α , α̇) = mgl(1− cosα)

and since there is no exterior force, the Lagrange function yields

L(t,α , α̇) = T (t,α , α̇)−V (t,α , α̇) =
1
2
(
Iα α̇

2)−mgl(1−cosα) =
1
2
(
Iα α̇

2)+mgl cosα−mgl.
(2.49)

The Euler-Lagrange equation for conservative systems with the generalized coordinate q1 =

α , then directly gives

d
dt

∂L(t,α , α̇)

∂ α̇
− ∂L(t,α , α̇)

∂α
= 0

⇔ d
dt

Iα α̇ +mgl sinα = 0

⇔ Iα α̈ +mgl sinα = 0. (2.50)

The equation of motion for the simple pendulum model is given by Eq. (2.50) and is often
simplified to

Iα α̈ +mglα = 0 (2.51)

Chapter 2. Mathematical Modelling 20

which uses the power series expansion of the cosine for small oscillations by

cosα =
∞

∑
n=0

(−1)n x2n

(2n)!
≈ 1− α2

2
.

The potential energy V (t,α , α̇) then simplifies to V (t,α , α̇) = 1
2 mglα2 and then leads to

Eq. (2.51).

The pendulum model is not discussed in detail for the further progress of the section, nev-
ertheless, when defining the kinetic energy term for the approximative vehicle models, the
terms of mass moment of inertia and the rotational displacements need to be clarified before-
hand.

Mass-Spring-Damper
Mass-Spring-Damper (MSD) systems are broadly used to model the motion profile for sev-
eral experiments, for instance a model of a bouncing ball [75]. Nevertheless, we mainly focus
on MSD systems to model several components of approximate vehicle models in the course
of the section.

FIGURE 2.2: Simple driven Mass-Spring-Damper system with external
source displacement u. A displacement of the external source causes a defor-
mation of the spring and damper, coupled to a rigid body with mass m > 0.

The relative displacement of the rigid body is denoted by x.

The model can be visualized by having a look at Figure 2.2. Similar to the pendulum model,
we have one generalized coordinate, described by the time-dependent state variable x. In
contrast to the conservative pendulum, an additional control variable is shown, denoted by
u. The variable u leads to a deformation of the spring and the damper, that are connected
to the rigid body with mass m > 0. The vertical displacement of this rigid body can then be
recognized by the trajectory of the state variable x.

We now focus on a non-conservative dynamical system, where the mentioned variables are
continuously differentiable functions with x ∈ C 2 ([t0, tn],R) and u ∈ C 1 ([t0, tn],R). Since
the system is driven by the control variable u, we assume that the system is in equilibrium

Chapter 2. Mathematical Modelling 21

at the initial point of the defined time frame, meaning we have u0 = u(t0) = 0 as well as
x0 = x(t0) = 0.

We have already mentioned that the system is non-conservative. Therefore, to derive the
equation of motion with the help of the Euler-Lagrange formalism, we need to define, as
usual, the kinetic and potential energy and the Rayleigh-Dissipation function. At a given
time t ∈ [t0, tn], a displacement of a driving term, denoted by u(t), results into a deformation
of the spring and damper, coupled to a body with mass m. Is is herein assumed that corre-
sponding spring forces are linear in relative displacement and damping forces behave linear
to relative velocity.

As usual, the kinetic energy T (t,x, ẋ) of an object with mass m and relative state x := x(t) for
t ∈ [t0, tn] can be expressed as

T (t,x, ẋ) =
1
2

mẋ2.

As the potential energy is given by the effective spring force with constant K > 0, which
behaves proportional to the current relative spring length l > 0, here obviously l = |x− u|,
with u := u(t) for t ∈ [t0, tn] we get

V (t,x, ẋ) =
1
2

K(x−u)2

and in analogy, the Rayleigh-Dissipation is then given for a damper with constant C > 0
proportional to the relative effective velocity |ẋ− u̇| by

U(t, ẋ) =
1
2

C(ẋ− u̇)2.

Since we only have one generalized coordinate, namely q1 = x, it is obvious with

Qnc
1 = −∂U(t, ẋ)

∂ ẋ
− ∂V (t,x, ẋ)

∂x

that the Euler-Lagrange equation then yields

d
dt

∂T (t,x, ẋ)
∂ ẋ

+
∂V (t,x, ẋ)

∂x
+

∂U(t, ẋ)
∂ ẋ

= 0. (2.52)

Explicit derivation of Eq. (2.52) then directly gives the equations of motion for the MSD
system by

mẍ+C(ẋ− u̇)+K(x−u) = 0.

We have finally derived all necessary components with the simple pendulum model and the
herein described MSD system to now define more complex Euler-Lagrange equations to de-
rive mathematical systems of approximate vehicle models.

Chapter 2. Mathematical Modelling 22

2.2.2 Quarter-Car-Model

The Quarter-Car-Model (QCM) is one of the most prominent concepts, when dealing with
approximations of vehicles in research. General models can for instance be investigated in
[27, 108] without considering a coupled passenger component. Passenger models can for
instance be modelled with the use of complex, hierarchically coupled MSD systems as it is
shown in [74], but we restrict for sake of simplicity to a passenger model, consisting of a sin-
gle rigid mass [59]. As far as understanding the principle to come from Quarter-Car-Model
to Half-Car-Model and Full-Car-Model, there is no benefit at this point to consider complex
passenger models.

FIGURE 2.3: Passenger-based Quarter-Car-Model. Similar to the Mass-
Spring-Damper model, a source term is denoted by u, which causes a defor-
mation of a spring, coupled to the wheel-suspensions with mass m1 > 0 and
relative displacement x1. The wheel-suspensions are coupled to the chassis,
via an additional spring and damper, with mass m2 > 0 and state x2. Finally,
the chassis is again coupled with another spring-damper-pair to the seat with
state x3, where m3 > 0 describes the mass of the seat and an occupant located

on it.

Based upon the visualized structure of the Quarter-Car-Model in Figure 2.3, similar to the
general MSD system of the previous section, a driving term u(t), for instance a displacement
of the road-surface at time t ∈ [t0, tn] affects a system. In this case, the coupled system, which
contains three rigid bodies with non-zero masses m1, m2 and m3 is systematically for the
dynamical behaviour of a quarter part of a vehicle model. Here, m1 describes the mass of a
wheel-suspension, m2 is the mass of the car body (chassis) and m3 is the combined mass of
a seat and a passenger located on the seat. We assume, that the displacement of the wheels,
affected by the road displacement can be described via a spring connection between road-
profile and wheel-suspension with spring constant K1 > 0. Similar to a real car, there are
of course several springs and dampers, connecting the suspensions to the car body. There-
fore the connections of wheel-suspensions and chassis with masses m1 and m2 is done with
the help of a spring and a damper with non-zero constants K2 and C2. Since there are also

Chapter 2. Mathematical Modelling 23

springs and dampers, connecting the seat to the chassis, another pair of springs and dampers
with non-zero constants K3 and C3 can be used to model this connection. It is then obvious,
due to this hierarchically coupled structure, that a displacement of the road u(t) at t ∈ [t0, tn],
deforms the spring and results in a displacement of the wheel-suspension state x1(t). This
then causes a deformation of the connected springs and dampers and results in a displacement
of the car-body, denoted by x2(t), and finally a displacement of the seat, denoted by x3(t).

Since in most physical systems, we assume to be able to at least measure acceleration at
each time t ∈ [t0, tn], the displacements of the above defined components should satisfy to be
defined as twice continuously differentiable functions xi ∈ C 2 ([t0, tn],R) for all i = 1,2,3.
Since the connection of road-surface to suspension is modelled without damper, there is no
need for the control function to be differentiable. It is therefore sufficient to have a contin-
uous u ∈ C 0 ([t0, tn],R). It further holds for the initial values of the states, similar to the
simple MSD system, that xi(t0) = 0, ẋi(t0) = 0 as well as ẍi(t0) = 0 for i = 1,2,3, meaning
that the system is in equilibrium at t = t0. The relative displacement for the individual states
is therefore given with respect to the equilibrium for the entire time frame.

We can now already define the kinetic and the potential energy, as well as the Rayleigh-
Dissipation, since we again have a non-conservative dynamical system. The kinetic energy
is given by

T (t,x, ẋ) =
1
2

3

∑
i=1

miẋ2
i ,

the potential energy, resulting from the relative spring length is defined as

V (t,x, ẋ) =
1
2
(
K1(x1−u)2 +K2(x2− x1)

2 +K3(x3− x2)
2)

and finally, the Rayleigh-Dissipation function is expressed in terms of damping-constants
and relative velocities as

U(t, ẋ) =
1
2
(
C2(ẋ2− ẋ1)

2 +C3(ẋ3− ẋ2)
2) ,

since the model only considers two dampers in the coupled structure. We recognize that
T (t,x, ẋ) depends upon the derivative of d = 3 generalized coordinates, xi for i = 1,2,3,
therefore we consider three Euler-Lagrange equations

d
dt

∂T (t,x, ẋ)
∂ ẋi

+
∂U(t, ẋ)

∂ ẋi
+

∂V (t,x, ẋ)
∂xi

= 0 (2.53)

for i = 1,2,3. Since we try to formalize the visualization of the QCM, we derive the second
order ODEs in hierarchical order, starting from the top component (occupant and seat). In
addition, we can assume mi > 0 for all components of the vehicle, because there are no
wheels, car bodies or seats without a mass. Then, finally Eq. (2.53) gives

Chapter 2. Mathematical Modelling 24

m3ẍ3 +C3(ẋ3− ẋ2)+K3(x3− x2) = 0

⇔ m3ẍ3 = −C3ẋ3 +C3ẋ2−K3x3 +K3x2

⇔ ẍ3 = −
C3

m3
ẋ3 +

C3

m3
ẋ2−

K3

m3
x3 +

K3

m3
x2, (2.54)

m2ẍ2 +C3(ẋ3− ẋ2) · (−1)+C2(ẋ2− ẋ1)+K3(x3− x2) · (−1)+K2(x2− x1) = 0

⇔ m2ẍ2 =C3ẋ3− (C2 +C3)ẋ2 +C2ẋ1 +K3x3− (K2 +K3)x2 +K2x1

⇔ ẍ2 =
C3

m2
ẋ3−

C2 +C3

m2
ẋ2 +

C2

m2
ẋ1 +

K3

m2
x3−

K2 +K3

m2
x2 +

K2

m2
x1, (2.55)

m1ẍ1 +C2(ẋ2− ẋ1) · (−1)+K2(x2− x1) · (−1)+K1(x1−u) = 0

⇔ m1ẍ1 =C2ẋ2−C2ẋ1 +K2x2− (K2 +K1)x1 +K1u

⇔ ẍ1 =
C2

m1
ẋ2−

C2

m1
ẋ1 +

K2

m1
x2−

K2 +K1

m1
x1 +

K1

m1
u. (2.56)

Summarizing, Eq. (2.54) - (2.56) show, that the acceleration of the three components in a
QCM can be expressed in terms of displacement and velocity, combined with the quotient of
the corresponding spring - and damping - coefficients and the masses.

It should be clear, that the above system of second order ODE can formally also be described
as a high-dimensional system of first order ODE, expressed by

ẍ3

ẍ2

ẍ1

ẋ3

ẋ2

ẋ1


=



−C3
m3

C3
m3

0 −K3
m3

K3
m3

0
C3
m2

−C2+C3
m2

C2
m2

K3
m2

−K2+K3
m2

K2
m2

0 C2
m1

−C2
m1

0 K2
m1

−K2+K1
m1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


·



ẋ3

ẋ2

ẋ1

x3

x2

x1


+



0
0

K1
m1

u

0
0
0


. (2.57)

The system described by Eq. (2.57) is a complete formal description for the motions of equa-
tion in the QCM and could also be denoted by

ω̇ = Aω + b, (2.58)

where the parameter matrix A is then also called the system matrix of the QCM. A more
detailed mathematical description of such linear first order systems is given in Chapter 4.
The same concepts are now applied to derive similar systems of first order ODE for more
complex vehicle models.

Chapter 2. Mathematical Modelling 25

2.2.3 Half-Car-Model

We want to give a short overview, how a more detailed vehicle model, in comparison to the
simple QCM, can be derived. Therefore, we herein present the Half-Car-Model (HCM), in-
cluding two components of wheel-suspensions, leading to additional translational DOFs for
the car-body [31]. Similar to the QCM, we present a passenger-based HCM, comparable
to [1], but again restricting the seat and passenger mass to be described by a single rigid
body. The QCM can be interpreted as a 3DOF vehicle model, since we restricted it to three
translational generalized coordinates. The now presented HCM is a 5DOF vehicle model,
consisting of four translational generalized coordinates and one additional rotational coordi-
nate. We further assume that the seat is located at the back of the car body. Of course, it is
also possible to derive a similar model with the seat located at the front or at the center of the
chassis.

FIGURE 2.4: Passenger-based Half-Car-Model. Similar structure to the
Quarter-Car-Model. Displacements of the source terms are denoted with
u f for the front of the car and ub for the back. Displacements of the wheel-
suspensions are denoted by x1 f and x2 f with masses m1 f , m2 f > 0, displace-
ments caused by rotational and translational states for the chassis by x2 f and
x2b for front and back, and x2 for the center of the chassis with mass m2 > 0.
The displacement of the seat is denoted by x3, where m3 > 0 is the mass of

the seat and a possible occupant on it.

As it can be seen in Figure 2.4, we now discuss a double wheel-suspension model, con-
taining two different control functions, u f and ub, acting in parallel on the vehicle model.
Since the vehicle is supposed to drive along one specific road, it could be sufficient to have
ub(t) = u f (t + ∆t), where ∆t describes the time, the vehicle needs to pass a distance of
L f + Lb. Therefore, L f describes the distance from front-wheel to the mass center of the
car-body and analogously Lb describes the distance from back-wheel to the mass center of
the chassis. Thus, we have in principle two parallel QCMs, coupled by the car-body. The dif-
ference of both displacements then results in a rotational displacement α of the car-body. We

Chapter 2. Mathematical Modelling 26

have already seen with the help of the simple pendulum, how such an angular displacement
can be modelled. In this case, both, Lb and L f , can be interpreted as the pendulum length,
acting in different direction having the same rotation angle. Since we only assume small
rotation angles for the car-body, we use L f cosα ≈ L f and Lb cosα ≈ Lb, which describes the
rotational behaviour of the partial car-bodies. It then follows for the vertical displacement of
the car-bodies, that it can be described by L f sinα and Lb sinα . Since we have assumed to
have only small rotation angles, we use another approximation sinα ≈ α .

The displacements at the front and the back, resulting from translational and rotational mo-
tion can be described by

x2 f = x2 +L f α (2.59)

x2b = x2−Lbα , (2.60)

where x2 describes the reference state at the mass center of the car-body. The displacement
x3 is then directly dependent on the displacement of the back part of the car-body, denoted
by x2b. Holding in mind that for angular displacement, the mass moment of inertia Iα needs
to be included in the computation of the kinetic energy, we can already define the required
energy terms to apply the Euler-Lagrange formalism, using x ∈ C 2

(
[t0, tn],R5

)
. We get

T (t,x, ẋ) =
1
2
(m1 f ẋ2

1 f +m1bẋ2
1b +m2ẋ2

2 +m3ẋ2
3 + Iα α̇

2),

V (t,x, ẋ) =
1
2
(K1 f (x1 f −u1 f)

2 +K1b(x1b−u1b)
2 +K2 f (x2 f − x1 f)

2 +K2b(x2b− x1b)
2

+K3(x3− x2b)
2)

=
1
2
(K1 f (x1 f −u1 f)

2 +K1b(x1b−u1b)
2 +K2 f (x2 +L f α− x1 f)

2

+K2b(x2−Lbα− x1b)
2 +K3(x3− x2 +Lbα)2),

U(t, ẋ) =
1
2
(C2 f (ẋ2 f − ẋ1 f)

2 +C2b(ẋ2b− ẋ1b)
2 +C3(ẋ3− ẋ2b)

2)

=
1
2
(C2 f (ẋ2 +L f α̇− ẋ1 f)

2 +C2b(ẋ2−Lbα̇− ẋ1b)
2 +C3(ẋ3− ẋ2 +Lbα̇)2),

where x(t) := (x3,x2,x1 f ,x1b,α)T . Evaluating the individual Euler-Lagrange equations with
respect to the generalized states as denoted by x, we get the system of ordinary differential
equations by

m3ẍ3 =−C3ẋ3 +C3ẋ2−LbC3α̇−K3x3 +K3x2−LbK3α ,

m2ẍ2 =C3ẋ3− (C3 +C2 f +C2b)ẋ2 +C2 f ẋ1 f +C2bẋ1b +(LbC3 +LbC2b−L fC2 f)α̇

+K3x3− (K3 +K2b +K2 f)x2 +K2bx1b +K2 f x1 f +(LbK3 +LbK2b−L f K2 f)α ,

m1 f ẍ1 f =C2 f ẋ2−C2 f ẋ1 f +L fC2 f α̇ +K2 f x2− (K2 f +K1 f)x1 f +L f K2 f α +K1 f u f ,

Chapter 2. Mathematical Modelling 27

m1bẍ1b =C2bẋ2−C2bẋ1b−LbC2bα̇ +K2bx2− (K2b +K1b)x1b−LbK2bα +K1bub,

Iα α̈ =−C3Lbẋ3 +(LbC3 +LbC2b−L fC2 f)ẋ2−LbC2bẋ1b +L fC2 f ẋ1 f

+(L2
bC3−L2

bC2b−L2
fC2 f)α̇−LbK3x3 +(LbK3 +LbK2b−L f K2 f)x2

−LbK2bx1b +L f K2 f x1 f +(L2
bK3−L2

bC2b−L2
fC2 f)α .

Consequently, a first order ODE system ω̇ = Aω + b can be derived, similar to Eq. (2.58)
with the help of the block-matrix structure

A =

[
D S

I 0

]
, (2.61)

where D ∈R5×5 is the damping-coefficient-matrix with

D =



−C3
m3

C3
m3

0 0 −LbC3
m3

C3
m2

−C3+C2 f +C2b
m2

C2 f
m2

C2b
m2

Lb(C3+C2b)−L f C2 f
m2

0 C2 f
m1 f

−C2 f
m1 f

0 L f C2 f
m1 f

0 C2b
m1b

0 −C2b
m1b

−LbC2b
m1b

−LbC3
Iα

Lb(C3+C2b)−L f C2 f
Iα

L f C2 f
Iα

−LbC2b
Iα

L2
b(C3−C2b)−L2

f C2 f

Iα


(2.62)

and S ∈R5×5 is the spring-coefficient-matrix with

S =



−K3
m3

K3
m3

0 0 −LbK3
m3

K3
m2

−K3+K2 f +K2b
m2

K2 f
m2

K2b
m2

Lb(K3+K2b)−L f K2 f
m2

0 K2 f
m1 f

−K2 f
m1 f

0 L f K2 f
m1 f

0 K2b
m1b

0 −K2b
m1b

−LbK2b
m1b

−LbK3
Iα

Lb(K3+K2b)−L f K2 f
Iα

L f K2 f
Iα

−LbK2b
Iα

L2
b(K3−K2b)−L2

f K2 f

Iα


. (2.63)

The identity I ∈ R5×5 and the null matrix O ∈ R5×5 have the same size as the damping-
coefficient matrix and the spring-coefficient matrix. Furthermore, we have

ω :=



ẋ3

ẋ2

ẋ1 f

ẋ1b

α̇

x3

x2

x1 f

x1b

α



and b :=



0
0

K1 f
m1 f

u f
K1b
m1b

ub

0
0
0
0
0
0



,

Chapter 2. Mathematical Modelling 28

where ω ∈R10 contains the velocity and state variables of the system, while the source vector
b ∈R10 directly shows, which states are affected by the control variables. Summarizing, one
can see that we have developed a straight forward modelling technique to derive first order
ODE systems from the energy terms T (t,x, ẋ), V (t,x, ẋ) and U(t, ẋ). Therefore, any coupled
dynamical system could in principle be derived from the Euler-Lagrange equation, having
pre-defined energy terms. Anyhow, we can see that if F ∈N describes the DOFs of the sys-
tem, then for each system matrix A it holds that A ∈R2F×2F . Consequently, describing more
complex approximate vehicle models, makes it much more difficult to explicitly describe the
mathematical system.

2.2.4 Full-Car-Model

Following the principles developed in the previous sections, we can derive a mathematical
system for a Full-Car-Model (FCM) with 8DOF from the well-known Euler-Lagrange for-
malism. In this case, we consider a model with four wheel-suspensions, containing four
different displacements of the road for each point of time. As far as the HCM has been con-
cerned, we have used a rotational generalized coordinate α , resulting from the longitudinal
difference of the road displacements. Since we also consider lateral road displacements, we
get an additional rotational coordinate, denoted by β . We herein follow the 7DOF-FCM as
it can be found in [47, 72], where we again extend the model to a coupled passenger MSD
component.

FIGURE 2.5: Passenger-based Full-Car-Model. Description of the Full-
Car-Model is done in analogy to the Half-Car-Model, including four source
terms, caused by displacements of the road, denoted by u f r for the front-
right, u f l for the front-left, ubr for the back-right and ubl for the back-left.
Description of the displacements with corresponding masses then follow

with consistent notation , comparable to the Half-Car-Model.

Chapter 2. Mathematical Modelling 29

We shortly describe the principle of the FCM with the help of the above Figure 2.5. As al-
ready mentioned in the introduction of this section, we regard longitudinal displacements of
the road as well as lateral displacements indexed by "fr" for the displacement that acts on
the front right wheel, "fl" for the front left, "br" for the back right and finally "bl" for the
back left. The FCM could therefore be considered as a coupled HCM, where the length L f

describes the distance from front wheel to center of mass of the chassis, Lb the distance from
center to back, Lr from center to right suspensions and Ll from center to left suspensions.
Then the total length of the chassis equals L f +Lb, where the total width is given by the term
Lr +Ll .

It therefore follows, that the displacement resulting from rotation with respect to α for the
left of the chassis is given by L f α , for the right of the wheel by−Lbα . Analogously, we have
for the pure rotational displacement with respect to β , for the right of the chassis the vertical
displacement Lrβ and for the left of the chassis as a consequence −Llβ .

The displacements for the edges of the chassis, denoted by x2 f r,x2 f l , x2br and x2bl can then
be defined, similar to the HCM for one rotational DOF in Eq. (2.59) and Eq. (2.60) relative
to the center state of the car-body x2 via

x2 f r = x2 +L f α +Lrβ , (2.64)

x2 f l = x2 +L f α−Llβ , (2.65)

x2br = x2−Lbα +Lrβ , (2.66)

x2bl = x2−Lbα−Llβ . (2.67)

Furthermore, we assume that the passenger’s seat is located at the left back of the chassis.
Of course, the location of the seat is variable and can also vary for another car model. In
addition, one could also model a multi-seat vehicle model with the herein described assump-
tions. For obvious reasons, we will not derive the explicit system matrix of the FCM at this
point. We end this modelling section, with describing further steps, if one is interested in the
system matrix of the FCM. As the potential energy V depends on the spring length and the
Rayleigh-Dissipation U depends on the difference of velocity, one needs to take the l.h.s. of
Eq. (2.64) - (2.67) to define the energy terms. Then, the r.h.s. needs to be inserted in the
energy terms, analogously to the definition of the energy terms for the HCM, to guarantee a
dependence on the generalized coordinates x2, α and β .

As a final step, we define the point-wise evaluations of the generalized coordinate function
x ∈ C 2

(
[t0, tn],R8

)
with the help of the following expression

x(t) := (x3,x2,x1 f r,x1 f l ,x1br,x1bl ,α ,β)T , (2.68)

for t ∈ [t0, tn]. Then we can derive the equations of motion with the help of Eq. (2.46) from
the energy terms T (t,x, ẋ), V (t,x, ẋ) and U(t, ẋ) and transfer them into a system of first order

Chapter 2. Mathematical Modelling 30

ODE to get the explicit description of the system matrix A ∈R16×16 for the FCM.

Deriving mathematical systems of approximate vehicle models, as coupled MSD systems,
requires basic knowledge about rotational displacements and energy terms from the simple
pendulum model and knowledge about vertical displacements in a MSD model. Then it is
possible to derive a mathematical model for any coupled system, using the Euler-Lagrange
formalism, based on variational calculus for motion in a system of free particles.

2.3 Road Modelling

We have shown how arbitrary dynamical systems can be derived from the Euler-Lagrange
formalism in the previous section, especially for approximate vehicle models. Since for those
models, we have always assumed, that a dynamical behaviour of the components results from
a driving term, namely the road-profile, we need now to clarify, how such a profile can be
modelled. Then, given any parameter configuration and realizations of the road-profile, the
ODE system could even explicitly be solved.

We give a detailed description, how a road-profile according to the ISO 8606 road rough-
ness classification can be generated. Therefore, we will mainly focus on [106] and develop
a methodology based on Power Spectral Density (PSD) for roughness classification and a
sinusoidal approximation of the road displacement.

2.3.1 Power Spectral Density and Fourier Transform

For the course of the following section, we assume the reader to be familiar with the basic
concepts of continuous random variables and stochastic processes. For a more detailed intro-
duction, we refer to [22]. For a more sophisticated description of probability theory, based on
the concepts of measurable spaces, one could for instance refer to [11]. Furthermore, details
concerning Fourier analysis that are used, can be found in [34] or [19]. We start by giving
some basic probabilistic definitions to clarify the general setting.

Definition 2 (Random Variable [11])
Let (Ψ,A ,P) be a probability space and (S,S) be a measurable space. An A −S−measurable

mapping

X : Ψ→ S

is called a random variable.

Definition 3 (Stochastic Process [11])
Let (Ψ,A ,P) be a probability space and (S,S) be a measurable space. A collection of

random variables X = {X(t)}t∈T , where T ⊂R is a finite time horizon, with values in S is

called a stochastic process.

Chapter 2. Mathematical Modelling 31

Definition 4 (Stationary Process [11])
A stochastic process {X(t)}t∈T is weakly stationary, for all t ∈T if

• The expected value E [X(t)] is constant for all t ∈T .

• The variance Var [X(t)] = E
[
(X(t)−E [X(t)])2

]
is finite for all t ∈T .

Then the autocorrelation function is independent on time and only depends on the time

delay, such that for t, s ∈T it holds that

R(τ) := E
[
X(t)X(t + τ)

]
= E

[
X(s)X(s+ τ)

]
, (2.69)

with τ ∈R, such that t + τ , s+ τ ∈T , where X(t) is the complex conjugate of X(t).

If X(t) is real-valued for all t ∈ T , then X(t) = X(t). Furthermore, let us assume that
s = t− τ , then with Eq. (2.69), we get for a real-valued stationary process that

R(τ) = E [X(s)X(s+ τ)] = E [X(t− τ)X(t)] = E [X(t)X(t− τ)] = E [X(t)X(t + τ)] .
(2.70)

We restrict ourselves to real-valued signals, here expressed by realizations of a stochastic
process. The Fourier transform [34] can in general be defined for continuously integrable
functions, which we use for the following section.

Definition 5 (Fourier Transform [34])
Let f ∈L 1(R,R) be a continuously integrable function. Then the Fourier Transform f̂ :
R→R is defined by

f̂ (s) =
∫

∞

−∞

e−isx f (x)dx (2.71)

for s ∈R and i =
√
−1 the imaginary variable.

Theorem 1 (Inversion of Fourier Transform [34])
Let f ∈ L 1(R,R) be a continuously integrable function. Let f̂ : R→ R be the Fourier

transform of f . Then it holds that

f (x) =
1

2π

∫
∞

−∞

eisx f̂ (s)ds (2.72)

for x ∈R.

Since we want to define roughness degrees for the road-profiles, we define the Power Spectral
Density (PSD) with the help of the following theorem.

Theorem 2 (Wiener-Khintchine-Theorem [70])
Let the autocorrelation function for a time delay τ ∈ R of a stationary process {X(t)}t∈R

be defined by R(τ). Let furthermore, the spacial frequency Ω be defined by Ω = 2π

λ
, where

λ > 0 is the wave length of a signal. The Power Spectral Density is then defined by

S(Ω) := lim
T→∞

E

[
1

2T
|F{XT} (Ω)|2

]
(2.73)

Chapter 2. Mathematical Modelling 32

for T ≥ 0 and with the Fourier transform of the truncated process being defined as

F{XT} (Ω) :=
∫ T

−T
X(τ)e−iΩτdτ .

It then holds that

S(Ω) =
∫

∞

−∞

R(τ)e−iΩτdτ (2.74)

and further

R(τ) =
1

2π

∫
∞

−∞

S(Ω)eiΩτdΩ. (2.75)

Proof. We mainly follow [70] to prove the theorem. Since the absolute square of a complex
number is given by |z|2 = zz̄, it can be verified with the help of Fubini’s theorem that

|F{XT} (Ω)|2 = F{XT} (Ω)F{XT} (Ω)

= F{XT} (Ω)
∫ T

−T
X(s)eiΩsds

=
∫ T

−T
F{XT} (Ω)X(s)eiΩsds

=
∫ T

−T

∫ T

−T
X(t)e−iΩtdtX(s)eiΩsds

=
∫ T

−T
X(t)

∫ T

−T
X(s)e−iΩ(t−s)dsdt.

We now use change of variables with s = t − τ . It then holds, since we want to compute
the integral for s ∈ [−T ,T], that τ ∈ [T + t,−T + t] and we set ds = −dτ . Then the above
integral equals again with Fubini’s theorem

∫ T

−T
X(t) ·

(
−
∫ −T+t

T+t
X(t− τ)e−iΩτdτ

)
dt =

∫ T

−T
X(t)

∫ T+t

−T+t
X(t− τ)e−iΩτdτdt

=
∫ T

−T

∫ T+t

−T+t
X(t)X(t− τ)e−iΩτdtdτ .

Computation of the expected value for both sides of the equation and applying Eq. (2.70) for
real-valued functions then yields

E
[
|F{XT} (Ω)|2

]
=
∫ T

−T

∫ T+t

−T+t
E [X(t)X(t− τ)]e−iΩτdtdτ

=
∫ T

−T

∫ T+t

−T+t
1 ·R(τ)e−iΩτdtdτ

= 2T
∫ T

−T
R(τ)e−iΩτdτ .

Dividing both sides by 2T and computing the limit, then finally gives

S(Ω) =
∫

∞

−∞

R(τ)e−iΩτdτ ,

Chapter 2. Mathematical Modelling 33

meaning, that the power spectral density S(Ω) equals the Fourier transform of the autocorre-
lation function R(τ). Then it directly follows with Theorem 1 that

R(τ) =
1

2π

∫
∞

−∞

S(Ω)eiΩτdτ ,

which completes the proof of the theorem.

Since we consider the stochastic process {X(t)}t∈R to serve as a random, real-valued signal,
the autocorrelation function is also real and even, such that R(τ) = R(−τ). The PSD then
simplifies to

S(Ω) = 2
∫

∞

0
R(τ)Re(e−iΩτ)dτ = 2

∫
∞

0
R(τ)cos(Ωτ)dτ (2.76)

and the autocorrelation yields

R(τ) =
1
π

∫
∞

0
S(Ω)Re(eiΩτ)dΩ =

1
π

∫
∞

0
S(Ω)cos(Ωτ)dΩ. (2.77)

Defining the one-sided PSD by Φ(Ω) := 2S(Ω), for Ω ≥ 0, then gives

R(τ) =
1

2π

∫
∞

0
Φ(Ω)cos(Ωτ)dΩ. (2.78)

The herein shown and proved relation between PSD and autocorrelation is essential for the
following section, where we finally model a one-dimensional longitudinal road-profile.

2.3.2 Random Time Series and Sinusoidal Approach

We introduce a method to compute random road-profiles from realizations of uniformly dis-
tributed random variables, following a sinusoidal approximation approach [106]. General
definitions from probability theory are again based on [11, 22].

Definition 6 (Uniform Distribution [11])
Let φ be a continuous random variable with φ : Ψ→ S and values s = φ (x) in [a,b] ⊂ R.

If the probability distribution is given by p(s) = 1
b−a 1[a,b](s), then φ is called a uniformly

distributed random variable. We denote φ ∼U ([a,b]) as a short notation.

The following theorem needs to be proved to uniquely define the road-profiles.

Theorem 3 (Sinusoidal Road-Profiles [106])
Let φi ∼U ([0,2π)) be identical and independently distributed (i.i.d.) random variables for

i ∈ {1,2, ...,N} with N ∈N, such that a track of a road-profile can be defined by

u(s) :=
N

∑
i=1

Ai sin(Ωis−φi), (2.79)

Chapter 2. Mathematical Modelling 34

where Ai ≥ 0 is the amplitude, Ωi a specific frequency and s ∈ [0,Lu] the current position of

the track for a road with length Lu ≥ 0. It then holds that

E [u(s)] = 0 and Var [u(s)] =
1
2

N

∑
i=1

A2
i .

Proof. A very short description of the proof is shown in [106]. For a further understanding,
more intermediate steps are done at this point by ourself. Since sin(x− y) = sin(x)cos(y)−
cos(x) sin(y) for x, y ∈R, it holds that

µ := E [u(s)] =
N

∑
i=1

AiE [sin(Ωis−φi)]

=
N

∑
i=1

Ai (sin(Ωis)E [cos(φi)]− cos(Ωis)E [sin(φi)])

= 0,

which results from the uniform distribution of the random variables φi with

E [cos(φi)] =
∫

R
cos(x)

1
2π

1[0,2π)(x)dx =
1

2π

∫ 2π

0
cos(x)dx = 0

and
E [sin(φi)] =

∫
R

sin(x)
1

2π
1[0,2π)(x)dx =

1
2π

∫ 2π

0
sin(x)dx = 0,

where 1[0,2π)(x) is the indicator function for the interval [0,2π). Further the variance can be
computed, using the property of independence for the expected values. Then

σ
2 := Var [u(s)] = E

[
(u(s)−µ)2]= E

[
(u(s))2]

= E

[(
N

∑
i=1

Ai sin(Ωis−φi)

)(
N

∑
j=1

A j sin(Ω js−φ j)

)]

= E

(N

∑
i=1

A2
i sin2(Ωis−φi)

)
+

 N

∑
i, j=0
i6= j

AiA j sin(Ωis−φi) sin(Ω js−φ j)




=
N

∑
i=1

A2
i E
[
sin2(Ωis−φi)

]
+

N

∑
i, j=0
i 6= j

AiA jE [sin(Ωis−φi) sin(Ω js−φ j)]

=
N

∑
i=1

A2
i E
[
sin2(Ωis−φi)

]
+

N

∑
i, j=0
i 6= j

AiA j E [sin(Ωis−φi)]︸ ︷︷ ︸
=0

E [sin(Ω js−φ j)]︸ ︷︷ ︸
=0

=
N

∑
i=1

A2
i E
[
sin2(Ωis−φi)

]
.

The expected value for the squared sine equals

E
[
sin2(Ωis−φi)

]
=
∫

R
sin2(Ωis− x)

1
2π

1[0,2π)(x)dx

Chapter 2. Mathematical Modelling 35

=
1

2π

∫ 2π

0
sin2(Ωis− x)dx

=
1

2π

∫ Ωis+2π

Ωis
sin2(y)dy

=
1

2π

(
1
2
(y− cos(y) sin(y))|Ωis+2π

Ωis

)
=

1
2

for all i ∈ {1,2, ...,N}. Therefore,

σ
2 =

1
2

N

∑
i=1

A2
i ,

which completes the proof.

It is easy to verify with Eq. (2.70), that for τ = 0, the autocorrelation R(0) is equal to the
variance σ2. Then by Eq. (2.78),

σ
2 = R(0) =

1
2π

∫
∞

0
Φ(Ω)dΩ ≈ 1

2π

N

∑
i=0

Φ(Ωi)∆Ω (2.80)

for N sufficiently large, where Ωi are the wave numbers to lie in an equidistant grid with
Ωi+1 = Ωi+∆Ω and ∆Ω = ΩN−Ω1

N−1 . As it is described in [106], the ISO 8606 uses Ω0 = 1 1
m ,

Ω1 = 0.02π
1
m and ΩN = 6π

1
m .

It then follows with Theorem 3 that

σ
2 =

1
2

N

∑
i=1

A2
i ≈

1
2

N

∑
i=1

Φ(Ωi)
∆Ω
π

,

which implies that for all i ∈ {1,2, ...,N}

Ai ≈
√

Φ(Ωi)
∆Ω
π

. (2.81)

Following again ISO 8606 the PSD can be computed as

Φ (Ωi) = Φ (Ω0)
(

Ω−2
1

Ω0

)
for Ω1 < Ωi ≤ΩN , (2.82)

where the degree of roughness then depends upon the value of Φ (Ω0). In detail, for road-
profile classification [106], we have a road of class A, if Φ (Ω0) = 40 · 10−6m3, a road of
class B for Φ (Ω0) = 41 ·10−6m3 and a road of class C, if Φ (Ω0) = 42 ·10−6m3. where the
value Φ(Ω0) characterizes the degree of roughness, which directly affects the scaling of the
amplitudes Ai.

The below Figure 2.6 shows an example for a sinusoidal approximation of a longitudinal
road-profile, using the same realization of the random variables φi for different Φ(Ω0). The
result is then a change in the amplitude of the road-profile, which characterizes the degree of

Chapter 2. Mathematical Modelling 36

FIGURE 2.6: Road-Profile Modelling for one realization of the random-
variable φi for i∈ {1,2, ...,1000}. The current position of the road is given by
s on the abscissa, where the corresponding road-displacement u(s) is shown
on the ordinate. One can recognize that the realizations differ for a higher

roughness degree on the scaling of the road-profile for class A.

roughness from good profiles to bad profiles.

We have shown and derived a detailed concept to construct mathematical descriptions of
approximate vehicle models, especially the Quarter-Car-Model, driven by an external dis-
placement of a randomly generated road-profile in this section. As the models can be de-
scribed as a system of first order ordinary differential equations, it is therefore possible to
explicitly solve the equations, resulting in an explicit description of the displacements for the
individual components of the model.

37

Chapter 3

Neural Networks

Artificial Neural Networks (ANN), especially Deep Neural Networks (DNN), have become
one of the main attractors in modern research. Some of the most successful achievements in
Deep Learning (DL) are probably in autonomous game solving by Reinforcement Learning
(RL) [88, 103] and of course image processing, dimension reduction and object classification
via Convolutional Neural Networks (CNN).

For the latter, Neural Network algorithms have been developed that even outperform hu-
man beings as far as classification skills are concerned. Moreover, compressing networks
like Auto-Encoders [111], have intensively been studied to find low-dimensional represen-
tations of high-dimensional input samples in competition to Principle Component Analysis
(PCA). This pure reduction, using the bottleneck structure of an Auto-Encoder, also named
latent space, has been extended to generative networks like the prominent Variational Auto-
Encoder (VAE) [57] or Generative Adversarial Networks (GAN) [20]. Since it can in general
be expensive to acquire a sufficiently large amount of data to efficiently train a Neural Net-
work to serve as a function estimator for a specific mapping from input space to target space,
generative models are used to artificially extend given small-sized datasets.

In case of sequential data, creating synthetic dataset of a dynamical system could of course
also be done by "white box models" (numerical solvers) instead of the herein described gen-
erative "black box models" (ANN), as we will investigate in Chapter 4.

As Deep Learning can be categorized in the broad field of Statistical Learning Theory (SLT),
for data-driven multidimensional function approximations, we start this section with a short
introduction to function estimation and risk minimization in Section 3.1. Connecting risk
minimization to Empirical Risk Minimization (ERM), can then be applied to the common
Deep Learning terminology of training, testing and generalization. We will investigate the
general training of Neural Networks as gradient-based optimization, using the Backpropagation-
algorithm (BP) and Stochastic Gradient Descent (SGD).

Section 3.2 then gives more specific insights in explicit Neural Network architectures, es-
pecially Fully-Connected (FC) networks, Convolutional Autoencoders (CAE) and U-Net,

Chapter 3. Neural Networks 38

which play essential roles for parameter estimation problems for uncertain systems in Chap-
ter 5.

3.1 Statistical Learning Theory

We want to give a short introduction to Statistical Learning Theory (SLT), as it is given in
detail by [109]. The general setting and motivation is then sufficient to describe the learn-
ing problem for Neural Networks as they can be defined to result from minimizing a risk
functional connected to a learning machine. A modern mathematical description of the Deep
Learning problem and function approximation is also stated in [10] in the context of SLT. We
therefore focus and combine the main principles given in [10, 109] to clarify the setting of
the Neural Network training problem.

3.1.1 Learning Problem and Risk

The learning problem in general is set in continuous spaces, as data samples can in theory be
assumed to be drawn from a probability distribution [109]. We therefore assume to have data
samples x∈X and corresponding target values y∈Y, where X and Y are general spaces. Then
a pair (x,y) ∈ X×Y can be assumed to follow a joint probability density function p(x,y).
If we assume that for instance x is vector-valued with dimension d ∈N, then X = Rd . The
same holds for y.

Given finite subsets of the joint space X×Y, denoted by S and T with S∩T = /0, the task of
the learning problem is then defined to find a mapping f : X→ Y such that f (x) = y for all
(x,y) ∈ S∪T. The finite subsets are specified in a latter part of this section. As a first step,
we give a detailed definition about the function space.

Definition 7 (Set of measurable functions [44])
Assume (X,A) and (Y,B) to be measurable spaces, where A is a σ -algebra on X and B

a σ -algebra on Y. A function

f : X→ Y

is called (A ,B)-measurable if

f−1(B) = {x ∈ X | f (x) ∈ B} ∈A (3.1)

for all B ∈B. The set of (A ,B)-measurable functions is defined by the function space

M (X,Y) := { f : X→ Y | f is (A ,B)−measurable} . (3.2)

The set M (X,Y) in general describes all possible measurable functions, mapping from X to
Y. As far as statistical learning for Neural Networks is concerned, we restrict to a specific

Chapter 3. Neural Networks 39

type of parametrized functions, depending upon a finite set of parameters. Let therefore
the parameters be denoted by θ of a parameter space Θ, which characterizes the (A ,B)-
measurable functions fθ . If the function is characterized by n ∈N different parameters,
given as entries in θ , then Θ = Rn. Applied to Eq. (3.2), the parametrized function space
can therefore be defined by

MΘ (X,Y) := { fθ : X→ Y | fθ is (A ,B)−measurable,θ ∈Θ} . (3.3)

The above definition of parametrized function spaces states that MΘ (X,Y) ⊂M (X,Y),
which means that due to the constraint of parametrizable functions fθ ∈MΘ (X,Y), there
exist other measurable functions f ∈M (X,Y) \MΘ (X,Y). If we restrict to parametrizable
functions fθ ∈MΘ (X,Y), it is obviously to have a bijection θ ↔ fθ . One can therefore
restrict to the parameter space Θ instead of considering the function space MΘ (X,Y), which
is in addition significantly simpler. Nevertheless, it is possible to have θα , θβ ∈ Θ with
fθα

(x) = y for all S∪T and fθβ
(x) = y for all S∪T, which does in general not imply θα = θβ .

Since not necessarily fθ (x) = y for all (x,y) ∈ S∪ T for any θ ∈ Θ, one needs to make
use of a loss-function, which evaluates the choice of θ ∈Θ for the learning problem.

Definition 8 (Loss-Function [10])
Let MΘ (X,Y) be a set of measurable functions fθ : X→ Y and θ ∈Θ. Then

L : Y×Y→R

(ỹ,y) 7→L (ỹ,y) (3.4)

is called a loss-function for a Neural Network fθ , if ỹ = fθ (x).

Example 1 (Regression)
Let fθ : Rn→R, n ∈N and (x,y) ∈Rn×R. Then for a regression learning task [109], one

can use the loss-function

L (fθ (x),y) = (fθ (x)− y)2 .

Example 2 (Binary Classification)
Let fθ : Rn→ {0,1}, n ∈N and (x,y) ∈Rn×{0,1}. Then for a binary classification task

[109], one can use the loss-function

L (fθ (x),y) =

{
0, if fθ (x) = y

1, else.

Example 3 (Denoising)
Let fθ : Rn → Rn, n ∈N, where for x̃ ∈ X = Rn and x ∈ Y = Rn it holds that x̃ = x+ ξ .

Here, by ξ ∈Rn we denote an additive error term, hence x̃ is a corrupted version of a clean

sample x. Then for a denoising task, one can use the loss-function

L (fθ (x̃),x) =
1
n

n

∑
i=1

(fθ (x̃)i− xi)
2 .

Chapter 3. Neural Networks 40

Data samples (x,y) have been assumed in the introduction of this section to be randomly
drawn from X× Y following the joint density function p(x,y). As a next step, we want
to define optimality for a loss-function, since we want to find criteria to solve the training
problem for Neural Networks.

Definition 9 (Expected risk [109])
Assume that there is a set of parametrized measurable functions given by MΘ (X,Y) and a

loss-function L : Y×Y→R. Then the expected risk on X×Y is defined as

R(fθ) := E [L (fθ (x),y)] =
∫
X×Y

L (fθ (x),y)dp(x,y). (3.5)

Definition 10 (Bayes Error and Bayes Optimality [109])
Assume that a measurable parametrized function fθ ∗ ∈MΘ (X,Y), has the smallest value for

the expected risk R∗ = R(fθ ∗) for a given loss function L : Y×Y→R, namely

R(fθ ∗) := inf
θ∈Θ

R (fθ) . (3.6)

Then R∗ is called Bayes Error and fθ ∗ is a Bayes-optimal function.

Since in general, the density function p(x,y) for (x,y) ∈ X×Y is unknown, it is not possible
to analytically find a Bayes-optimal function in sense of Definition 10. We therefore need
to restrict to finite subsets of the continuous data spaces, to find a sufficiently good estimate
θ̂ ≈ θ ∗.

3.1.2 Empirical Risk Minimization

As we cannot in general compute the expected risk due to the unknown data distribution,
we make use of Empirical Risk Minimization (ERM), as described by [10, 109] to approxi-
mate the true value of the expected risk. We therefore focus on a finite training dataset with
arbitrary size, which can also be used to find an approximation to the Bayes-optimal function.

Let us therefore assume that (xm,ym) ∈ X×Y, for m ∈ {1,2, ...,NS} with NS ∈N, describe
a finite set of realizations of the continuous joint space X×Y. Then, one can define a set,
which contains all pairs (xm,ym), for m ∈ {1,2, ...,NS} by

S= {(xm,ym)}NS
m=1 ⊂ X×Y. (3.7)

Such a finite set S can for instance be used to describe a training dataset, where the elements
(xm,ym) ∈ S for all m ∈ {1,2, ...,NS}, satisfy several data-specific conditions. A precise ex-
ample of such a dataset is given in Chapter 4. Similar to Definition 9, which describes the
expected risk for the continuous data space, we can then use a finite dataset S to find an
analogous discrete expression.

Definition 11 (Empirical risk [109])
The empirical risk for an arbitrary large dataset S = {(xm,ym)}NS

m=1 ⊂ X×Y with NS ∈N,

Chapter 3. Neural Networks 41

a parametrized measurable function fθ ∈MΘ(X,Y) and a loss-function L : Y×Y→R is

defined by

R̂S(fθ) :=
1

NS

NS

∑
m=1

L (fθ (xm),ym) . (3.8)

If S is a training dataset, then R̂S(fθ) can also be referred to the training error.

Comparable to the learning problem for the continuous risk functional, we can now search
for a candidate θ̂ ∈Θ that minimizes the empirical risk. The aim of minimizing the empirical
risk for a sufficiently large training dataset is then that θ̂ ≈ θ ∗. This is motivated by the weak
law of large numbers (WLLN) [22], where we assume to have convergence in probability of
the empirical risk to the expected risk, given by

R̂S(fθ) =
1

NS

NS

∑
m=1

L (fθ (xm),ym)
P−→

NS→∞
E [L (fθ (x),y)] = R(fθ). (3.9)

As a consequence this means, that if θ̂ minimizes the empirical risk for NS → ∞, then θ̂ is
also a good candidate to find an approximation of the Bayes-optimal function by f

θ̂
≈ fθ ∗ .

Since the parameter θ ∈Θ is usually a vector of thousands or millions of elements, it is again
non-trivial to find an appropriate value θ̂ , therefore, one tries to find a sequence, {θ l}N

l=1⊂Θ
with N ∈N, for instance iteratively, to get

R̂S(fθ N) ≈ R̂S(f
θ̂
) (3.10)

for N→∞. As the training dataset is a finite subset of the entire data space X×Y, it can hap-
pen, that there exist elements (x,y) 6= S with a large value of a given loss-function. Therefore,
we want to define a disjoint set of finite samples, to have another measure of quality for mea-
surable functions fθ ∈MΘ (X,Y).

Let us therefore have S = {(xm,ym)}NS
m=1 ⊂ X×Y with NS ∈N and assume that S is a fi-

nite training set. Then
T = {(xm,ym)}NT

m=NS+1 ⊂ X×Y (3.11)

is another set of realizations, with NT ∈N elements, which is not used to find a sequence
{θ l}N

l=1 ⊂Θ that minimizes the empirical risk, therefore S∩T = /0. The disjoint set T is then
called a test dataset.

Similar to the empirical risk for the training data can be defined as the training error, we
can also apply the definition of the empirical risk to the test dataset T, giving

R̂T(fθ) :=
1

NT

NT

∑
m=NS+1

L (fθ (xm),ym) , (3.12)

which is known as the test error. One can then compare the terms R̂S(fθ) and R̂T(fθ),
which should be comparable since they are averaged functions of the loss-functions.

Chapter 3. Neural Networks 42

3.1.3 Training of Neural Networks

We have shown, that in theory, given a sufficiently large training set S of data samples,
the empirical risk converges to the expected risk for the samples on a data space, which is
the general idea of the generalization property for large training sets. The basic setting for
the learning problem should therefore be sufficiently clear at this point. We have restricted
the setting to general parametrized measurable functions in the previous section and now
deal with more specific functions, namely (Deep) Neural Networks. As far as the following
gradient-based optimization techniques, including the Back-Propagation algorithm [43] are
concerned, it is not necessary to specify the explicit network structure at a first step.

As an initial step, we assume that a generalized DNN fθ : X→ Y can be expressed by com-
binations of parametrized sub-functions f (j)

θ j
for j ∈ {1,2, ...,M} with M ∈N, such that the

full network can be expressed as

fθ = f (M)
θM
◦ f (M−1)

θM−1
◦ · · · ◦ f (2)

θ2
◦ f (1)

θ1
(3.13)

where θ = {θ1, ...,θM} is called the set of network parameters and θ j are the layer-specific
parameters of a layer, indexed by j ∈ {1,2, ...,M}. The j-th layer can therefore formally be
expressed by the sub-function f (j)

θ j
.

Each layer f (j)
θ j

then consists of K j ∈N individual layer parameters, which can explicitly
be defined by

θ j = {θ j;1,θ j;2, ...,θ j;K j}

for j ∈ {1,2, ...,M}.

For the set of functions MΘ (X,Y), we assume M to be fixed for one specific training process
and the layers to only differ in the realization of the corresponding layer parameters. The
number of layers M is then also called depth of the Neural Network.

As can be found in [10], the training of a Neural Network can be formally defined by the
now following definition. The training algorithm will later on be specified.

Definition 12 (Training for Neural Networks [10])
Given a training dataset S = {(xm,ym)}NS

m=1 with size NS ∈N, a set of Neural Networks

MΘ (X,Y) and a local minimal point θ̂ ∈Θ, which satisfies

θ̂ = argmin
θ∈Θ

R̂S (fθ) ,

a training algorithm is given by iteratively applying the mapping

A : S×Θ→Θ (3.14)

(S,θ) 7→ A(S,θ), (3.15)

Chapter 3. Neural Networks 43

with S⊂ S, such that for a finite series, indexed by l ∈ {0,1, ...,N}, we have θ l+1 =A(Sl ,θ l).

The current value of the network parameters are denoted by θ l , the subset of training sam-

ples, used for update l + 1 is denoted by Sl ⊂ S. The aim of the training algorithm is to

terminate after N ∈N iterations, such that R̂S (fθ N) ≈ R̂S (f
θ̂
).

We now want to apply gradient-based optimization techniques to find an explicit method for
definition of a training algorithm. As the empirical risk (training error) needs to be minimized
and as it is a sum of individual loss-functions, it is necessary to assume L ∈ C 1 (Y×Y,R)

and one can also conclude that it is then necessary to have fθ ∈ C 1 (Θ×X,Y).

Assume that θ̂ ∈Θ is a local minimal point for the empirical risk R̂S (fθ), then

∇θ R̂S (f
θ̂
) =

1
NS

NS

∑
m=1

∇θ L (f
θ̂
(xm),ym) = 0. (3.16)

If we have an appropriate candidate θ N ∈ Θ with R̂S (fθ N) ≈ R̂S (f
θ̂
), then it should also

hold that ∇θ R̂S (fθ)
∣∣
θ=θ N ≈ 0.

Computation of ∇θ L (fθ (x),y) for (x,y) ∈ X×Y is a non-trivial problem due to the depth
of a Neural Network and the non-linearity of the layers. For the sake of simplicity we use the
short notation ∇θ L = ∇θ L (fθ (x),y). It is then obvious that

∇θ L = (∇θ1L , ...,∇θML)T

and further

∇θ jL =

(
∂L

∂θ j1
, ...,

∂L

∂θ jK j

)T

with ∂L
∂θ ji

= ∂L
∂ fθ

∂ fθ

∂θ ji
for i ∈ {1,2, ...,K j} and j ∈ {1,2, ...,M}. Since fθ is a function composi-

tion, it obviously holds that

∂ fθ

∂θ ji
=

(
j+1

∏
i=M

∂ fθi

∂ fθi−1

)
·

∂ fθ j

∂θ ji
,

which will be explained in more detail for the now following Backpropagation algorithm.

We refer to [43] to a general explanation of the Backpropagation calculus and apply it to our
notation of DNN. We mention at this point, that there are more explanations for specific layer
structures and loss-functions as can be seen in [64, 91].

Backpropagation and Gradient-Descent
We now show an efficient way to compute ∇θ L in terms of ∂L

∂θ ji
for i ∈ {1,2, ...,K j} and

j ∈ {1,2, ...,M}, where M ∈N is the depth of the network, by applying the chain rule and
investigating shared terms for the derivatives. Let us therefore, for simplicity, restrict to a

Chapter 3. Neural Networks 44

general training sample (x,y) ∈ S. Furthermore, assume that we can define the input-output
relation for layer j by

a(j) := f (j)
θ j

(
a(j−1)

)
(3.17)

for j ∈ {1,2, ...,M} with a(0) := x and a(M) := fθ (x). It is then obvious that for a layer
j ∈ {1,2, ...,M}, we have

∂a(j)

∂θ ji
=

∂a(j)

∂a(j−1)

∂a(j−1)

∂θ ji
.

For the output layer j = M and the parameters of the M-th layer, it then holds that

∂L

∂θMi
=

∂L

∂a(M)

∂a(M)

∂θMi
= δ

M ∂a(M)

∂θMi
, (3.18)

where δ M := ∂L
∂a(M) . For the parameters of an arbitrary hidden layer j ∈ {1,2, ...,M− 1}, it

can be shown that

∂L

∂θ ji
=

∂L

∂a(M)

∂a(M)

∂a(M−1)
. . .

∂a(j+1)

∂a(j)

∂a(j)

∂θ ji

= δ
j ∂a(j)

∂θ ji

= δ
j+1 ∂a(j+1)

∂a(j)

∂a(j)

∂θ ji
,

where we can define the differential operator δ j for j ∈ {1,2, ...,M−1} by

δ
j :=

∂L

∂a(M)

j+1

∏
l=M

∂a(l)

∂a(l−1)
= δ

M
j+1

∏
l=M

∂a(l)

∂a(l−1)
. (3.19)

Obviously, it therefore holds that

δ
j = δ

j+1 ∂a(j+1)

∂a(j)
(3.20)

for j ∈ {1,2, ...,M−1}. Then, Eq. (3.20) mathematically explains, what is meant by "Back-
propagation": Starting at the output layer M, one can use the equation to describe how the
loss "propagates" through the hidden layers until it reaches the input layer.

One can find another description of the Backpropagation algorithm [64], including the terms
"weights", "biases", "activation functions" and "neurons". The description then restricts
to Fully-Connected Neural Networks, which will be precisely explained in the next section.
It can then also occur that the terms ∂a(l)

∂a(l−1) again need to be computed by applying the chain
rule, since layers are in general combinations of simple linear operations evaluated by non-
linear functions. Nevertheless, this general description of Backpropagation also holds and is
sufficient to explain the computational effort to get the gradient of the loss-function for the
training of Neural Networks.

Chapter 3. Neural Networks 45

Since DNN can consist of thousands or millions of parameters, and due to the non-linear
structure of the Neural Network, it is almost impossible to find the optimal set of parame-
ters of this high-dimensional non-convex optimization problem. Therefore Gradient-Descent
methods are commonly used in training DNN, as they are capable to iteratively deliver good
approximations to a local minimal point.

Definition 13 (Gradient Descent for Neural Networks [33])
Given an initial parameter set θ 0 ∈ Θ for fixed Neural Network structures fθ ∈MΘ (X,Y),
a loss-function L ∈ C 1 ((Y×Y) ,R) and a training dataset S⊂X×Y with size NS ∈N, the

update-rule

θ
k+1 = θ

k−ηk∇θ R̂S (fθ k) (3.21)

is called Gradient-Descent optimization scheme for a training step k ∈N, where ηk > 0 is

the step-width or learning-rate of the training algorithm.

It is obvious, due to R̂S (fθ) =
1

NS
∑

NS
m=1 L (fθ (xm),ym) that for a large training set, one step

of Gradient-Descent optimization can require high computational effort. We therefore in-
troduce now Stochastic Gradient-Descent, which is the standard optimization technique to
efficiently train Deep Neural Networks for large training datasets.

Stochastic Gradient Descent
We introduce Stochastic Gradient-Descent (SGD) for fast training of DNN as it can be found
in [12, 33]. Therefore, some terms have to be explained beforehand.

Definition 14 (Training Batch)
Given a training set S⊂ X×Y with size NS ∈N such that we find a description

S=
B⋃

j=1

{(xm,ym)}m∈I j
=

B⋃
j=1

S j (3.22)

with
⋃B

j=1 I j = {1,2, ...,NS} and
⋂B

j=1 I j = /0 for B ∈N. Then S j = {(xm,ym)}m∈I j
is called

training batch and
∣∣S j
∣∣ is the batch-size of S j for j = {1,2, ...,B}.

If it holds that the remainder of dividing NS by B equals zero, denoted with NS(mod B) =

0, then one can choose batches of size
∣∣I j
∣∣ = NS

B for j ∈ {1,2, ...,B}. Otherwise, the set
can not be separated into batches of equal size and we need to choose

∣∣I j
∣∣ = ⌊ NS

B−1

⌋
for

j ∈ {1,2, ...,B− 1} and |IB| = NS− (B− 1)
⌊ NS

B−1

⌋
, such that the conditions of the disjoint

representation of the training data are fulfilled.

Example 4
Assume we have NS = 100 training samples and we want to have B = 7 batches. Then⌊ NS

B−1

⌋
= 16 for batches j ∈ {1,2, ...,6} and NS− (B−1)

⌊ NS
B−1

⌋
= 100−6 ·16 = 4 elements

for the last batch.

Definition 15 (Stochastic Gradient-Descent for Neural Networks [33])
Given a batched training set S =

⋃B
j=1 S j and a loss-function L ∈ C 1 ((Y×Y) ,R), the

Chapter 3. Neural Networks 46

Stochastic Gradient-Descent optimization scheme for training a DNN with initial value θ 0 ∈
Θ is given by

θ
k+1 = θ

k−ηk∇θ R̂S j (fθ k) = θ
k− ηk

|I j| ∑
m∈I j

∇θ L (fθ k(xm),ym) (3.23)

for a batch S j with j ∈ {1,2, ...,B}.

If we have two different disjoint representations, denoted by α and β , with S =
⋃B

j=1 Sα
j =⋃B

j=1 Sβ

j , where the resulting index set Iα
j and Iβ

j are not necessarily equal for j ∈ {1,2, ...,B},
then one can use the batches Sα

j for B optimization steps of SGD. Exactly these B optimiza-
tion steps of the same disjoint batch-representation of the training set are called a training
epoch. If we use the batches Sβ

j for the next B optimization steps, then this is another epoch
of training.

Definition 16 (Empirical Generalization Error [33])
Assume that for the training of a Neural Network, θ N ∈Θ is the value of the network param-

eters after N ∈N optimization steps. Then for a training set S with size NS ∈N and a test

set T with size NT ∈N, the absolute value

ε
N =

∣∣R̂S (fθ N)− R̂T (fθ N)
∣∣ (3.24)

is called generalization error after N ∈N optimization steps.

As long as 0 ≤ εN ≤ εmax, where εmax is an acceptable error bound, we say that a Neural
Network fθ N generalizes well on the test data. Otherwise the model overfits, for instance if
εN > εmax and

∣∣R̂S (fθ N)
∣∣< ∣∣R̂T (fθ N)

∣∣.
Since one optimization step for SGD strongly depends upon the randomly chosen batch,
it is possible that the empirical risk R̂S j(fθ k) of a batch S j ∈ S strongly differs from R̂S(fθ k)

for a step k ∈N. It can therefore also happen, since a batch S j+1 is used to compute θ k+1,
that R̂S j(fθ k) < R̂S j+1(fθ k+1), although a steady decrease of the empirical risk is desired.
Therefore one can use momentum Gradient-Descent methods like ADAM [56] or similar, to
average the gradient for several batches. Furthermore to overcome the problem of overfit-
ting, several regularization methods for Neural Network training have been developed, like
Batch-Normalization [92], Drop-Out [100], Data-Augmentation [80] or L2-regularization of
the network parameters [62], which need to be mentioned at this point, but is not explained
in detail here. A more detailed overview about specific Neural Network architectures, with
different types of layers, is shown in the now following section.

3.2 Neural Network Architectures

We have restricted Neural Networks to general combinations of non-linear layer functions
in the previous section to clarify the main principles of Neural Network training. Of course,

Chapter 3. Neural Networks 47

there is a fast growing amount of explicit Neural Network architectures in the modern Deep
Learning community, trying to reach new benchmarks for individual tasks. One of the
most prominent examples for image classification are for instance AlexNet [3, 58] or LeNet
[65] for CNN and Long-Short-Term-Memory (LSTM) [45] for Recurrent Neural Networks
(RNN) to solve time-series forecasting problems or language processing.

We clarify the layer structures of arbitrary Convolutional Neural Networks and Convolu-
tional Auto-Encoders. As a specialized type, one can then also easily explain the U-Net
architecture [89].

3.2.1 Layer Arithmetic

A Neural Network has previously been defined as a measurable function fθ ∈MΘ (X,Y) for
training and test samples (x,y) ∈ S∪T. Furthermore, the input layer has been denoted by
a(0) = x, the output layer by a(M) = fθ (x) and an arbitrary hidden layer by a(l) = f (l)

θl
(a(l−1))

for l ∈ {1,2, ...,M− 1}, where M ∈N is the depth of the network . It is therefore obvious,
that the structure of the layers strongly depends upon the dimension of X and Y, if no pre-
processing is done to change the dimension of the data.

Fully-Connected Layers [33]
Probably the most simple type of all layer structures is the Fully-Connected (FC) layer.
Therefore, we assume that for an arbitrary DNN fθ : X→ Y with depth M ∈N, we have
one specific layer l ∈ {1,2, ...,M−1} as stated by Eq. (3.17),

a(l) = f (l)
θl

(
a(l−1)

)
with a(l−1) ∈ Rdl−1 and a(l) ∈ Rdl vector-valued or vectorized layer input and output with
input dimension dl−1 and dl ∈ N for layer (l − 1) and layer l. Resuming that we have
described the layers as non-linear functions, a Fully-Connected layer can explicitly be defined
as

a(l) = σ
(l)
(

W (l)a(l−1)+ b(l)
)

, (3.25)

where W (l) ∈Rdl×dl−1 is a weighting matrix, transforming the input from dimension dl−1 to
dimension dl , the term b(l) ∈Rdl is a bias vector for multi-dimensional affine transformation
and σ (l) : Rdl →Rdl is a point-wise applied non-linear activation function for the elements
of an input array.

We herein give four examples of activation functions, which are mainly used for the ar-
chitecture of Neural Networks. Of course, one can define individual activation functions for
different optimization problems.

Chapter 3. Neural Networks 48

Example 5
The first example is the Binary Threshold function.

As it can be seen from the figure and the function description, there are only two possible

σ : R→{0,1}
x 7→ 1{x>0}(x)

(a) Function description (b) Plot

FIGURE 3.1: Binary Threshold Function

values for the output of the Binary Threshold. Therefore it can for instance be used as an

activation function for binary classification, where negative values result from a false classi-

fication and are not relevant for following layers, since the product of weighting matrix and

the null-vector is also equal to zero. The activation of the next layer then only depends upon

the bias vector.

Similar to the Binary Threshold, the Rectified Linear Unit function (ReLU) is used to acti-

vate positive values of the function input.

Since it can make a difference, if the input value is close to zero or not, the ReLU function

σ : R→ [0,∞)

x 7→max{x,0}

(a) Function description (b) Plot

FIGURE 3.2: ReLU Function

is linear for positive values and zero for all negative values. Neural Networks with ReLU

activations can therefore be used for (piecewise) linear function approximations.

Besides the introduced "one-sided" activation functions, there are also several symmetric

activation functions, like the Sigmoid activation function, which also maps negative input

values to a specific interval.

For x = 0 the sigmoid function has value σ(0) = e0

1+e0 = 1
2 . For large negative values, it

Chapter 3. Neural Networks 49

σ : R→ (0,1)

x 7→ ex

1+ ex

(a) Function description (b) Plot

FIGURE 3.3: Sigmoid Function

converges to 0, for large positive values, it converges to 1. The activation function can there-

fore for instance be used, if we want to find discrete probability estimations, as it is the case

for multi-classification problems. Then the output of a vector-valued input, gives insights

about the discrete probability distribution for several classes.

The last activation function, we present, is the Hyperbolic Tangent. Similar to the sigmoid

function, negative and positive input values are equally weighted, due to the symmetric shape

of the function.

For x = 0, we get tanh(x) = 0. For large negative values, the function converges to −1,

σ : R→ (−1,1)
x 7→ tanh(x)

(a) Function description (b) Plot

FIGURE 3.4: Hyperbolic Tangent Function

for large positive values, it converges to 1. Therefore, the Hyperbolic Tangent function can

be used, if we want to process sequential data, since in case for dynamical systems, negative

displacements and positive displacements give both useful information and should therefore

both be considered for further processing by the Neural Network.

If we want to apply the BP algorithm to a Fully-Connected layer structure, we need to com-

pute the partial derivatives ∂a(l)

∂a(l−1) =
∂σ (l)(W (l−1)a(l−1)+b(l))

∂a(l−1) , which is critical for the Binary
Threshold function and the ReLU function for an argument close to zero. Contrarily, the
derivatives are well defined for the Sigmoid activation function and the Hyperbolic Tangent.

Chapter 3. Neural Networks 50

Definition 17 (Deep Fully-connected Neural Network)
Assume fθ ∈MΘ (X,Y) to be a DNN with depth M ∈N. If

a(l) = σ
(l)
(

W (l)a(l−1)+ b(l)
)

for layers l ∈ {1,2, ..,M} with input a(0) = x, output a(M) = fθ (x), weighting matrices W (l) ∈
Rdl×dl−1 , bias vectors b(l) ∈ Rdl , point-wise activation functions σ (l) : Rdl → Rdl , layer

input dimension dl ∈N for l ∈ {0,1, ...,M} and x ∈Rd0 , y ∈RdM , then fθ is a Deep Fully-
connected Neural Network.

Since W (l) ∈ Rdl×dl−1 and b(l) ∈ Rdl , the generalized layer parameters can be expressed by
the set

θ
(l) =

{
W (l)

i j |i ∈ {1,2, ...,dl}, j ∈ {1,2, ...,dl−1}
}
∪
{

b(l)i |i ∈ {1,2, ..,dl}
}

. (3.26)

for l ∈ {1,2, ...,M}. In summary, the generalized layer parameters contain all entries of the
weighting-matrices and all elements of the bias-vector.

Flattening and Reshaping [33]
Fully-Connected Neural Networks are restricted to vector-valued input data. Nevertheless, a
multi-dimensional array x ∈Rd1×d2×...×dn with d j ∈N for j ∈ {1,2, ...,n} can be processed
via FC layers, using a flattening operation [33] ν : Rd1×d2×...×dn →Rd1·d2·...·dn . In addition, a
reshaping operation ρ : Rd1·d2·...·dn →Rd1×d2×...×dn serves as inverse to the flattening opera-
tion, such that ρ(ν(x)) = x.

Reshaping and flattening are necessary operations, if we want to define Neural Networks with
a bottleneck structure, for instance in case of dimension reduction for arbitrary images. We
will later on explain the importance of such operations, when talking about Auto-Encoders.

Convolutional Layers [33]
Although Fully-Connected Neural Networks could in principle be used to process any multi-
dimensional input sample x∈X, it can often be inefficient to use FC-layers, due to a resulting
high number of network parameters causing overfitting. For Fully-Connected layers, each el-
ement of the input vector is separately weighted, ignoring possible dependencies within the
elements of the inputs.

Fully-Connected structures often make sense, if the elements (features) of the data samples
are independent on each other. In most cases, data is not structured by well-defined attributes.
Neural Networks can be used to process data structures like images or sequential data. For
images, there can be local dependencies, like the contours of an object or the color, while for
sequential data, it is possible to process the dynamical structure for a specific time horizon.

In both cases, convolutional layers can be used, processing multi-dimensional arrays without

Chapter 3. Neural Networks 51

having the need to use a flattening operation. The convolutional layers make use of effi-
cient parameter sharing by filters (kernels) of weights. Detailed descriptions of convolutional
layers can for instance be found in [33, 36, 114]. We give a short introduction, how convolu-
tional operations can be defined, describing 1D, 2D and 3D convolution.

1D Convolution [114]
We herein focus on [114] to describe a one-dimensional convolution for vector-valued as
well as for matrix-valued inputs. Furthermore, detailed examples for convolutional layers
are given by [24]. Assume we have a(l−1) ∈Rhl×wl as input to a layer l ∈ {1,2, ...,M} and a
weighting kernel κ ∈Rhl×w′l with M, hl , wl , w′l ∈N . Then

a(l) = σ
(l)
(

a(l−1) ∗κ + b(l)
)

(3.27)

with

c(l)j′ =
(

a(l−1) ∗κ

)(1D)

j
:=

hl

∑
m=1

w′l

∑
n=1

a(l−1)
m, j−n+1κmn. (3.28)

The dimension for a(l−1) ∗κ , b(l) and σ (l) have not been specified yet, since they are equal
and strongly depend upon the type of convolution, such that a(l) ∈Rwl+1 with

wl+1 =

⌊
wl−wl′+ 2p

s

⌋
+ 1. (3.29)

It then holds that for the elements of the convolution c(l)j′ , we have j′ ∈ {1,2, ...,wl+1} and
j ∈ {0,1, ...,wl +w′l − 1}, if we choose a stride of size 1. Zero padding, connected to the
number p∈N, is required, if we want to use a(l−1)

i, j−n+1 with j−n+1≤ 0 or j−n+1>wl . We

then use a(l−1)
i, j−n+1 = 0 to apply the convolution anyway. We assume to then have zero-valued

elements equally distributed at the left and right border of the array. The value 2p there-
fore describes the total number of artificially created zero elements for the one-dimensional
convolution. Furthermore a different striding scheme with s ∈N can be chosen to only
compute a convolution for j = sι + 1 with ι ∈N. Then, the index set for the input elements
is reduced, such that j ∈ {0,s,2s, ...wl +w′l−1}. This can for instance be used to control the
reduction of dimension for the output. Since further the height of kernel and input array are
equal for the one-dimensional convolution, the output is vector-valued and therefore it holds
that b(l),c(l) ∈Rwl+1 and σ (l) : Rwl+1 →Rwl+1 .

2D Convolution and higher order [114]
Comparable to the one-dimensional convolution, higher order convolutional layers can be
defined for an input element a(l−1) ∈Rhl×wl and a filter κ ∈Rhl′×wl′ , simply via

c(l)i′, j′ =
(

a(l−1) ∗κ

)(2D)

i j
:=

hl′

∑
m=1

wl′

∑
n=1

a(l−1)
i−m+1, j−n+1κmn (3.30)

Chapter 3. Neural Networks 52

with i′ ∈
{

1,2, ...,
⌊

hl−hl′+2pq
sq

⌋
+ 1
}

, j′ ∈
{

1,2, ...,
⌊

wl−wl′+2pr
sr

⌋
+ 1
}

and i∈{0,sq,2sq, ...hl +

h′l−1}, j ∈ {0,sr,2sr, ...wl +w′l−1}.

The above description of the two-dimensional convolution can simply be verified by ap-
plying a one-dimensional convolution along the rows and also along the columns of the layer
input. Therefore, padding and stride scheme have to be defined for the row-convolution with
pr ∈N and sr ∈N and the column-convolution with pq ∈N and sq ∈N. The output c(l) is
then a feature map. Since one single kernel may not be sufficient to extract all dependencies
of the input, it is required to use dl ∈N kernels for convolutional layer l, producing multiple
feature maps, such that c(l) ∈Rhl+1×wl+1×dl . In case that another convolutional layer follows
layer l, it is possible to proceed in two ways: Assume there are another dl+1 kernels for layer
l + 1, then a two-dimensional convolution could be applied to each input map, such that the
output of the convolutional layer is given by a(l+1) ∈Rhl+2×wl+2×dl ·dl+1 . Another possibility,
which is also used to control the dimensionality, is to compute the sum of the convolution for
the feature maps, such that a(l+1) ∈Rhl+2×wl+2×dl+1 .

FIGURE 3.5: 2D Convolution of a 5×5 input map, using a 3×3 weighting
kernel. The kernel is passed along the rows and the columns to compute the
sum of the Hadamard product for each intersection. The computed values are
stored in a 3×3 output map, which requires 3 ·3 = 9 computational steps.

We can see one example of a discrete convolution in Figure 3.5. Given a 3× 3 weighting-
kernel and a 5×5 input map, the convolution computes a feature map with pr = 1, pq = 1,
sr = 2 and sq = 2, which can easily be verified using Eq. (3.29) for vertical (column) and
horizontal (row) convolution.

Chapter 3. Neural Networks 53

We mainly focus on one-dimensional and two-dimensional convolutional layers. Neverthe-
less the above formula can be applied to 3D convolution or even higher dimensions. If we
have input values a(l) ∈Rhl×wl×dl and kernels κ ∈Rhl′×wl′×dl′ such that we get

c(l)i′ j′k′ =
(

a(l−1) ∗κ

)(3D)

i jk
:=

hl′

∑
m=1

wl′

∑
n=1

dl′

∑
o=1

a(l−1)
i−m+1, j−n+1,k−o+1κmno (3.31)

with i′ ∈
{

1,2, ...,
⌊

hl−hl′+2pq
sq

⌋
+ 1
}

, j′ ∈
{

1,2, ...,
⌊

wl−wl′+2pr
sr

⌋
+ 1
}

, k′ ∈
{

1,2, ...,
⌊

dl−dl′+2pt
st

⌋
+ 1
}

and i ∈ {0,sq,2sq, ...hl + h′l − 1}, j ∈ {0,sr,2sr, ...wl +w′l − 1}, k ∈ {0,st ,2st , ...dl + d′l − 1},
similar to the two-dimensional scheme.

Transposed Convolutional Layers [114]
In general, convolutional layers are used to reduce the dimension of the input. Nevertheless,
it can also be used to maximize the dimension via so called transposed convolution. For the
sake of simplicity, we restrict to row-convolution, and as it has previously been shown, the
dependence of the dimension of layer l and layer l + 1 is given by wl+1 =

⌊
wl+wl′+2p

s

⌋
+ 1,

where wl , wl′ , p, s ∈N are pre-defined sizes. For a transposed convolution, the dimension
formula also holds, but here, the target dimension wl+1 and the input dimension wl are fixed.
Therefore, one needs to find a kernel-size wl′ , a padding-scheme p and a stride-size s such
that ⌊

wl−wl′+ 2p
s

⌋
+ 1 !

= wl+1,

where wl′ , p and s are variable and thus there is no unique method for the construction of
transposed convolutional operators.

Example 6
Assume we have an output width of size wl+1 = 4, input width of size wl = 2. Then with

wl′ = 3, p = 2 and s = 1, it holds that
⌊2−3+2·2

1

⌋
+ 1 = 4. In a similar way, we can also find

sizes to apply a transposed convolution to order 2 or higher, which is straight forward.

Pooling and Upsampling [33]
Instead of using convolutional or transposed convolutional layers to adjust dimension, we
can also use pooling-layers for dimension reduction or upsampling-layers for dimension
extension. Assume therefore that we have a pooling layer l ∈ {1,2, ...,M}, where M ∈N is
the depth of the network with input a(l−1) ∈ Rhl×wl . We then want to map a sub-matrix of
0 < m≤ hl rows and 0 < n≤ wl columns to a real number.

Example 7
Assume we have a matrix a ∈ Rm×n, we then define three types of pooling operations p :
Rm×n→R for the matrix a, which is a sub-matrix of the layer’s input a(l−1) ∈Rhl×wl :

• Maximum-Pooling: p(a) = max
i∈{1,2,...,m}
j∈{1,2,...,n}

ai j,

• Average Pooling: p(a) = 1
mn ∑

m
i=1 ∑

n
j=1 ai j,

Chapter 3. Neural Networks 54

• Lp-Pooling: p(a) =
∣∣∑m

i=1 ∑
n
j=1 |ai j|p

∣∣ 1
p for p ∈ {1,2, ...,∞}.

FIGURE 3.6: 2D Pooling of a 5×5 input map, using a 3×3 pooling kernel.
The kernel is passed along the rows and columns of the input map. The
shown operation is a Maximum-Pooling layer, where the maximum of the
intersection is mapped to one element of the 3×3 output map. The pooling

operation requires a total number of 3 ·3 = 9 computational steps.

We can see one example for Maximum-Pooling of a 5× 5 input map with a 3× 3 pooling
kernel and strides s = 1 in Figure 3.6. The output is shown to be a 3× 3 pooled feature
map, where again the dimension formula of Eq. (3.29) can be used to verify the dimension
reduction, since there are no padding elements for pooling here.

As an opposite operation to pooling-layers, one can also define upsampling-layers to artifi-
cially enlarge an input value a(l−1) ∈ Rhl×wl . Assume we have an upsampling kernel of m

rows and n columns.

Example 8
Assume we have a scalar a ∈ R and an upsampling operator u : R→ Rm×n. Then similar

to a pooling layer, we give some examples about possible upsampling operators. Further let

i′ ∈ {1,2, ...,m} and j′ ∈ {1,2, ...,n} be a fixed target index, for instance (i′, j′) = (1,1). Two

types of upsampling or unpooling are then given by

• Maximum-Unpooling: u(a)i j =

{
a, if i = i′, j = j′

0, else.
,

• Average-Unpooling: u(a)i j =
a

mn for all i ∈ {1,2, ...,m} and j ∈ {1,2, ...,n}.

Residual Blocks and Skip-Connections [89]
One special structure of layer connections are so called Residual blocks as it is explained by
[42] and essential to understand the concept of an U-Net architecture. Therefore we assume
to have a DNN with depth M ∈N such that a(l) ∈ Rhl×wl×dl and a(l+λ) ∈ Rhl×wl×dl and

Chapter 3. Neural Networks 55

l + λ ≤M. Again, there are different possibilities to define the residual blocks of a Neural
Networks.

If we refer to [42], then for the above outputs of layers l and l + λ , a residual block or
skip-connection can be described as

r(l+λ) = a(l)+ a(l+λ) ∈Rhl×wl×dl . (3.32)

Anyway, we have a different definition for residual blocks in [10, 89] for U-Net, namely

r(l+λ) = a(l)⊕a(l+λ) :=
(

a(l),a(l+λ)
)
∈Rhl×wl×(2dl), (3.33)

which is in precise a concatenation for values of different dimension. Then of course, one
can combine the concatenated value with a pooling or transposed convolution operator, to
reduce the up-sized dimension of the residual block.

Batch-Normalization [33]
It has already been mentioned before that there are a lot of regularization methods to prevent
DNN from overfitting. We herein shortly introduce Batch-Normalization [33, 92], which is
one of the most helpful and simplest regularization methods and can easily be used as an
additional layer of the Neural Network. Since usually, a whole batch can be passed simul-
taneously through the network, Batch-Normalization can be defined for an arbitrary batch
S j = {(xm,ym)}m∈I j

⊂ S⊂ X×Y with j ∈ {1,2, ...,B}.

Assume w.l.o.g. that xm ∈Rd with d ∈N for all m ∈ I j with j ∈ {1,2, ...,B}. The point-wise
batch-mean µ(S j) ∈Rd can then be defined as

µ (S j) :=
1∣∣I j
∣∣ ∑

m∈I j

xm (3.34)

and analogously, the point-wise batch-variance σ2 (S j) by

σ
2 (S j) =

1∣∣I j
∣∣ ∑

m∈I j

(xm−µ (S j))
2 . (3.35)

Then, for all xm, one uses the normalization

x̂m;k =
xm;k−µ (S j)k√

σ2 (S j)k + εk

(3.36)

for all elements k ∈ {1,2, ...,d} of a sample xm ∈ Rd , such that xm;k := (xm)k ∈ R and an
arbitrary large stabilization term εk > 0 is used to prevent division by zero. Then as a final
step one uses the parameter shift

x̄m;k = γk · x̂m;k +βk, (3.37)

Chapter 3. Neural Networks 56

where γ ,β ∈Rd are additional trainable parameters, such that

θ
(1) =

{
W (1)

i j |i ∈ {1,2, ...,d1}, j ∈ {1,2, ...,d}
}
∪
{

b(1)i |i ∈ {1,2, ..,d1}
}
∪{γ ,β} , (3.38)

if we use Batch-Normalization before processing it by a first Fully-Connected layer. The
input of the next layer is then given by

a(1) = σ
(1)
(

W (1)x̄m + b(l)
)

(3.39)

for elements xm ∈ S j.

It is obvious, that Batch-Normalization in Eq. (3.37) can preserve identity mapping with
γk =

√
σ2 (S j)k + εk and βk = µ (S j)k for all k ∈ {1,2, ...,d}. Therefore, it is also possible to

apply Eq. (3.36) to any layer with general input a(l) with l ∈ {1,2, ...,M}.

We now shortly present some specific Neural Network architectures in the next sections,
which are later on used to compute valuable results for the parameter estimation problem in
Chapter 5.

3.2.2 Convolutional Neural Networks

FIGURE 3.7: CNN architecture, combining convolutional layers with a
Fully-Connected network. An input map of size 10× 8 is processed via
several convolutional, pooling and fully-connected layers to an output di-

mension of 4.

We consider a specific Convolutional Neural Network (CNN) architecture in Figure 3.7, sim-
ilar to [10]. As one can see, the herein described architecture shows a Neural Network,
consisting of several convolutional layers and finally connected to a Fully-Connected sub-
network. In this specific example, we have a matrix valued input map, which is processed via
4 weighting kernels to a feature map with depth 4. Then a pooling layer follows, halving the
dimension along the rows and the columns. Afterwards another convolutional layer is cho-
sen, with weighting-kernels, such that the depth of the output map is equal to 8. Afterwards,
the output is flattened, connecting it to three Fully-Connected layers of different size. The
output layer has dimension 4. Therefore, the herein shown CNN maps matrices of a specific
size to a low-dimensional vector-valued output and could therefore for instance be used for

Chapter 3. Neural Networks 57

classification, if the number of different classes for the input samples would be equal to 4,
the dimension of the output layer.

3.2.3 Convolutional Auto-Encoders

FIGURE 3.8: Convolutional Autoencoder architecture, which maps an in-
put map of size 10× 8 to an output map of equal size, using convolutional
and transposed convolutional layers. The transposed operation is also called
"Deconvolution" in some cases. For this specific architecture, the input map
is processed, using a convolutional layer with 4 weighting kernels, followed
by a pooling layers. Another convolutional layer with 2 weighting kernels
for each feature map, then defines the bottleneck of the network architecture,
given by 8 feature maps of size 5×4. This structure is then mapped back to

the original space, using transposed layer operations.

Where CNN architectures as shown above can be used for feature extraction, another type
of Neural Network architectures are (Convolutional) Auto-Encoders [63], as it is visualized
in Figure 3.8. As far as Auto-Encoders are concerned, the main task is to reduce a high-
dimensional input image to a latent space representation and re-transform it to the original
space. In this context, one uses the terms "Encoder", "Bottleneck" and "Decoder". It
can be simply explained that the Encoder maps the input-space to a lower dimensional latent
space, which is also referred to as the "Bottleneck". Then, this latent space representation
is projected back to the dimension of the input-data, using a "Decoder", which could in
principle be described as the transposed operation of the Encoder. Therefore let us assume to
have a Neural Network with input space X= Rh0×w0×d0 . Then the Auto-Encoder is a Neural
Network, defined as a function

fθ : Rh0×w0×d0 →Rh0×w0×d0

x 7→ fθ (x),

with layers

f (1)
θ1

: Rh0×w0×d0 →Rh1×w1×d1 ,

f (2)
θ2

: Rh1×w1×d1 →Rh2×w2×d2 ,

f (3)
θ3

: Rh2×w2×d2 →Rh1×w1×d1 ,

f (4)
θ4

: Rh1×w1×d1 →Rh0×w0×d0 .

Chapter 3. Neural Networks 58

It is then obvious, that the Encoder can be defined as f (2)
θ2
◦ f (1)

θ1
and the decoder as f (4)

θ4
◦ f (3)

θ3
.

It should then also be clear, that one can moreover define Fully-Connected Auto-Encoders,
using vector-valued input and output, as well as vector-valued layers. Auto-Encoder struc-
tures can for instance be used for denoising tasks, or to find the lowest dimension of the latent
space, such that the reconstructed image is close to the original input image.

3.2.4 U-Net

FIGURE 3.9: U-Net architecture, mapping a 10× 8 input map to an output
map of equal size. The structure can be described via two directions, where
similar to a Convolutional Auto-Encoder, the general structure can be de-
scribed by an Encoder, mapping the input to the bottleneck via convolutional
and pooling layers. Contrarily, the Decoder uses transposed convolution and
upsampling layers. The second direction is a horizontal alignment of the lay-
ers, combining elements of the Encoder and the Decoder, which have equal

size via skip-connections.

The last structure we herein want to present is the U-Net by [89] and schematically shown in
Figure 3.9. As one can imagine, the name "U-Net" is not an abbreviation for a Neural Net-
work specific, technical term, but refers to the structure of the shown figure. In general, the
U-Net can be described as a Convolutional Neural Network, serving as an Encoder structure,
combined with an appropriate transposed network as Decoder structure. Furthermore, layers
with equal dimension are coupled via skip-connections.

More in detail, we can recognize convolutional layers and pooling layers on the down-sizing
part of the U-Net for an input map with size 10× 8, similar to the CAE structure. For the
bottleneck of the network, we have a total number of 16 feature maps with size 3×2. Then
the first residual block adds the 3× 2 feature maps to the reshaping layer via concatenation
and processes the residual block via convolution. Further up-sizing operations can either be
done via upsampling or transposed convolution. As for the down-sizing part, only pooling
layers have been used for dimension reduction, it is close to use up-sampling layers as there

Chapter 3. Neural Networks 59

are additional convolutional layers to process the residual blocks. The combination of up-
sampling, concatenation and processing of the residual blocks is then done, until the output
reaches the dimension of the original input space. The U-Net architecture has achieved ex-
cellent results in biomedical image processing and segmentation.

We have introduced the motivation of applying the training of Neural Networks in the sense
of SLT and in precise introduced several possible layer structures, which will be used for
the parameter estimation problem including Neural Networks. The herein described network
structures give sufficient insights, how to combine several layers to define complex Neural
Network architectures. It could also be mentioned here, that regularization methods, like the
presented Batch-Normalization, can easily be combined as a pre-processing layer for the pre-
sented architectures. Technically, Neural Networks are combinations of more or less simple,
non-linear sub-functions, namely the layer functions.

60

Chapter 4

Ordinary Differential Equations

A mathematical description of approximate vehicle models, for instance the Quarter-Car-
Model, has already been introduced in Section 2. It has also been shown that the accelera-
tion of the components, namely wheel-suspensions, chassis and seat, including the occupant,
can be expressed as a system of second order ordinary differential equations, depending on
displacement and velocity and the corresponding parameters of mass, spring-constant and
damping-constant. Analogously, this system can be redefined as a system of first order ordi-
nary differential equations by doubling the dimension of the system and by defining a system
matrix, which contains smaller square block-matrices. A general description of this linear
system equation has been shown in the same section.

In case an exterior force acting on the dynamical system is considered, which results from
scaling the road-profile displacements with the mass-spring-coefficient of the wheel-suspensions,
it is possible to explicitly solve the system of differential equations by computing the homo-
geneous and non-homogeneous solutions. An explicit solution of the displacements and ve-
locities makes it then possible to even compute the acceleration of the vehicle’s components,
which can then serve as simulated data of a g-sensor for further theoretical investigations.

The differential equations of the Quarter-Car-Model can therefore either be explicitly solved
by computing the solution of each second order ordinary differential equation individually
or by solving the linear first order system in parallel. We show, that even the computation
of the homogeneous explicit solution can be time-consuming. Thus it is necessary to define
efficient discrete methods to get sufficiently good approximations of the exact solution via
numerical schemes.

We start this chapter with a short introduction to general second order ordinary differen-
tial equations for homogeneous as well as for non-homogeneous equations. The next section
then is an analogous description of finding the solution of general first order systems, re-
sulting from a reduction of the second order equations. It should then be clarified, which
method is preferable in terms of computational efficiency and approximation quality. There-
fore, we compare different numerical methods and introduce structure-preserving algorithms
as for instance the Symplectic Euler scheme, which is one efficient method to find stable ap-
proximations of the coupled states within an appropriate computational time. The numerical

Chapter 4. Ordinary Differential Equations 61

methods can then be used, as mentioned at the beginning of this section, to generate synthetic
data of arbitrary size, where a variation of the road-profile and the system parameters, follow-
ing a pre-defined distribution, can be used to develop appropriate training and test datasets
for Neural Network investigations. The generation of such data is the aim of Chapter 4.

4.1 Second Order Ordinary Differential Equations

Acceleration of a particle in a mechanical system can formally be described using a second
order ordinary differential equation, following Newton’s laws of motion. Especially for the
coupled dynamical system of the Quarter-Car-Model, a system of second order ODE can be
used to formally express the interconnected relation of the acceleration profiles in terms of
states and velocities following the characteristics of the equation. We are therefore going
to give insights about how the general solution of a single second order ODE can be com-
puted. Further, we give a short introduction about the theory of solving non-homogeneous
differential equations and show the complexity of even simple non-homogeneous equations.
Therefore, we evaluate the approximation quality of straight forward numerical approxima-
tion schemes.

4.1.1 Homogeneous Equations

We clarify the most relevant theoretical aspects in solving second order ordinary differential
equations. For further reading, we refer for instance to [13, 104]. The now introduced the-
orems and definitions are mainly based upon [76], but can also be found in the previously
mentioned sources. We introduce the section with the following general definition.

Definition 18 (Second Order Ordinary Differential Equation [76])
Let t ∈ [t0, tn]⊂R be a time variable in a finite time horizon and let further y∈C 2 ([t0, tn],R)

be a twice continuously differentiable function. A second order linear differential equation
for y is then defined by

ÿ(t)+ a1(t)ẏ(t)+ a0(t)y(t) = b(t), (4.1)

where ÿ(t) = d2y(t)
dt2 and ẏ(t) = dy(t)

dt are the first and second order total derivatives with re-

spect to time and a1 : [t0, tn]→R, a2 : [t0, tn]→R, b : [t0, tn]→R are arbitrary continuous

functions.

Then, the differential equation is homogeneous, if and only if b(t) = 0 for all t ∈ [t0, tn].
Further, if a1 and a2 are constant on the finite time horizon, then the equation is said to be of

constant coefficients, otherwise it has variable, time-dependent coefficients.

For simplicity reasons, we may use the notation

ÿ+ a1(t)ẏ+ a0(t)y = b(t) (4.2)

Chapter 4. Ordinary Differential Equations 62

instead of Eq. (4.1). Nevertheless, it should be clear that all components depend upon the

time variable t ∈ [t0, tn].

Two models of dynamical systems have already been shown in Chapter 2. We can now show
and define them as second order differential equations.

Example 9 (Mathematical Pendulum)
The mathematical pendulum, as given by Eq. (2.51) can be described by the simplified equa-

tion

Iα α̈ +mglα = 0,

where Iα = ml2 is the mass moment of inertia with the mass m > 0, the length of the pen-

dulum l > 0, the gravitational constant g≈ 9.81 m
s2 and the function of angular displacement

α ∈C 2 ([t0, tn],R) as a twice continuously differentiable function and therefore α̈(t) = d2α(t)
dt2

is the angular acceleration.

Since Iα > 0, it holds that the pendulum equation is equal to

α̈ +
mglα

Iα

= 0

⇔ α̈ +
mglα
ml2 = 0

⇔ α̈ +
g
l

α = 0.

The mathematical pendulum can therefore be defined as a second order linear differential

equation with a1(t) = 0, a2(t) =
g
l and b(t) = 0 for all t ∈ [t0, tn] and is therefore a homo-

geneous equation with constant coefficients.

Example 10 (Mass-Spring-Damper)
A simplified Mass-Spring-Damper model is given via the equation

mẍ+ dẋ+ kx = f (t)

for t ∈ [t0, tn] with the mass-parameter m > 0, the damping constant d ≥ 0, the spring-

constant k ≥ 0 and the non-linear function f ∈ C 0 ([t0, tn],R). Further, the displacement

is given by the twice continuously differentiable function x ∈ C 2 ([t0, tn],R). Similar to the

mathematical pendulum, following the assumption of a non-zero mass parameter m > 0, the

above equation is equal to

ẍ+
d
m

ẋ+
k
m

x =
1
m

f (t).

Therefore, following the general definition of a second order ODE, we have a1(t) = d
m ,

a0(t) = k
m and b(t) = 1

m f (t) for t ∈ [t0, tn]. Thus it is a non-homogeneous differential
equation with constant coefficients.

The now introduced concepts for uniqueness and existence of the general solution of a second
order ordinary differential equation should be in principle well-known and can be found for
instance in [13, 76]. We therefore shortly clarify the theoretical framework to show that the

Chapter 4. Ordinary Differential Equations 63

dynamical systems do have unique solutions. Most of the theorems are shown without proof,
but can be found in [76], as for instance the following.

Theorem 4 (Unique Solution of Initial Value Problems [76])
Assume a1, a0, b ∈ C 0 ([t0, tn],R) and y ∈ C 2 ([t0, tn],R). Let further y0 := y(t0) and v0 :=
ẏ(t0) be arbitrary constants. The initial value problem (IVP) for a second order ordinary

differential equation, given by

ÿ+ a1(t)ẏ+ a0(t)y = b(t) (4.3)

y(t0) = y0, ẏ(t0) = v0 (4.4)

has a unique solution on [t0, tn].

Proof. A detailed description to prove the uniqueness of the IVP, can also be found in [104],
applying the theorem of Picard-Lindelöf to the second order problem.

In order to find the general solution of a homogeneous second order ordinary differential
equation, one is probably already familiar with the concepts of linear operators. Nevertheless,
we quickly introduce them for consistence of formalism. Again, the following set of theorems
and definitions are mainly based on [13, 76].

Theorem 5 (Linearity of the Homogeneous Equation [76])
Let us define an operator of the second order equation by

L(y) = ÿ+ a1(t)ẏ+ a0(t)y (4.5)

with a1, a0 ∈ C 0 ([t0, tn],R) and y ∈ C 2 ([t0, tn],R). Then L(y) is a linear operator.

Proof. Since for constants c1, c2 ∈R and a pair of functions y1, y2 ∈ C 2 ([t0, tn],R), it holds
for a linear operator that L(c1y1 + c2y2) = c1L(y1)+ c2L(y2), we make use of Eq. (4.5) to
proof the condition. It is obvious that with y = c1y1 + c2y2, we get

L(c1y1 + c2y2) = (c1ÿ1 + c2ÿ2)+ a1(t)(c1ẏ1 + c2ẏ2)+ a0(t)(c1y1 + c2y2)

= c1(ÿ1 + a1(t)ẏ1 + a0(t)y1)+ c2(ÿ2 + a1(t)ẏ2 + a0(t)y2)

= c1L(y1)+ c2L(y2),

for t ∈ [t0, tn], which completes the proof.

Theorem 6 (General Homogeneous Solution [76])
Assume y1, y2 ∈ C 2 ([t0, tn],R) to be linearly independent, satisfying L(yi) = ÿi + a1(t)ẏi +

a0(t)yi = 0 for i ∈ {1,2} with a1, a0 ∈ C 0 ([t0, tn],R). Then the general solution y ∈
C 2 ([t0, tn],R), which solves L(y) = 0 is given by

y(t) = c1y1(t)+ c2y2(t) (4.6)

for t ∈ [t0, tn] and c1, c2 ∈R are arbitrary constants.

Chapter 4. Ordinary Differential Equations 64

Definition 19 (Characteristic Polynomial [76])
Given the homogeneous second order ordinary differential equation for a function y∈C 2 ([t0, tn],R)

with constant coefficients a1 := a1(t) ∈R, a0 := a0(t) ∈R for all t ∈ [t0, tn] by

ÿ+ a1ẏ+ a0y = 0,

the characteristic polynomial is defined by

ρ(r) := r2 + a1r+ a0 (4.7)

with r ∈ C.

Theorem 7 (General Homogeneous Solution with Constant Coefficients [76])
Let p(r) = r2 + a1r + a0 be the characteristic polynomial with r ∈ C for the second order

homogeneous equation ÿ+ a1ẏ+ a0y = 0 with a1, a0 ∈R and y ∈ C 2 ([t0, tn],R).

If r1, r2 ∈ C are the roots of p(r) with r1 6= r2 and c1, c2 ∈R are arbitrary constants, then

the general homogeneous solution is given by

yh(t) = c1er1t + c2er2t (4.8)

for t ∈ [t0, tn] ⊂R. If in contrast r1 = r2, then the homogeneous solution is given by

yh(t) = c1er1t + c2ter1t (4.9)

for t ∈ [t0, tn] ⊂R.

Due to Theorem 4, given initial conditions y(t0) = y0 and ẏ(t0) = v0, a unique solution exists.
Therefore, the coefficients c1 and c2 can uniquely be determined to satisfy the IVP. We again
now show an application to the above concepts, analysing the homogeneous solutions for the
mathematical pendulum and the mass-spring damper model.

Example 11
We again regard the mathematical pendulum as earlier in this section described by the sim-

plified homogeneous equation

α̈ +
g
l

α = 0,

where α ∈C 2 ([t0, tn],R) is the angular displacement function, g≈ 9.81 m
s2 is the gravitational

constant and l > 0 is the pendulum length. The characteristic polynomial is then given by

ρ(r) = r2 +
g
l

.

Hence it follows that the general solution is given by

α(t) = c1ei
√ g

l t + c2e−i
√ g

l t (4.10)

Chapter 4. Ordinary Differential Equations 65

with i =
√
−1 ∈ C and it can be derived that the velocity can be expressed as

α̇(t) = c1i
√

g
l

ei
√ g

l t − ic2

√
g
l

e−i
√ g

l t (4.11)

as well as the acceleration by

α̈(t) = −c1
g
l

ei
√ g

l t − c2
g
l

e−i
√ g

l t = −g
l

α(t). (4.12)

Consequently, Eq. (4.10) satisfies the second order equation.

Furthermore, if any unique initial conditions α(t0) = y0 and α(t0) = v0 are given and if

t0 = 0, then

α(t0) = c1e0 + c2e0 = y0

⇔ c1 = y0− c2

and

α̇(t0) = c1i
√

g
l

e0− c2i
√

g
l

e0 = v0

⇔ c2 =
1
2

(
y0−

v0
√

l
i
√

g

)
,

thus c1 =
1
2

(
y0 +

v0
√

l
i
√

g

)
. The unique solution of the IVP, satisfying the second order homo-

geneous equation as well as the initial condition is therefore given by

α(t) =
1
2

(
y0 +

v0
√

l
i
√

g

)
ei
√ g

l t +
1
2

(
y0−

v0
√

l
i
√

g

)
e−i
√ g

l t (4.13)

= y0 cos
(√

g
l
t
)
+ v0

√
l
g

sin
(√

g
l
t
)

. (4.14)

Example 12
We now consider a homogeneous mass-spring-damper system, following the second order

equation

ẍ+
d
m

ẋ+
k
m

x = 0 (4.15)

for x ∈ C 2 ([t0, tn],R) the displacement function, d ≥ 0 the damping-constant, k ≥ 0 the

spring-constant and m> 0 the mass of the model. In a similar way, compared to the pendulum

model, one can find the roots of the characteristic polynomial

ρ(r) = r2 +
d
m

r+
k
m

,

which gives the general homogeneous solution

x(t) = c1e
1

2m (−d+
√

d2−4km)t + c2e
1

2m (−d−
√

d2−4km)t . (4.16)

Chapter 4. Ordinary Differential Equations 66

For the sake of simplicity, we make use of the general form

x(t) = c1er1t + c2er2t (4.17)

to show, if the second order equation is satisfied. The first and second order derivatives of

the general solution are thus given by

ẋ(t) = c1r1er1t + c2r2er2t (4.18)

and

ẍ(t) = c1r2
1er1t + c2r2

2er2t . (4.19)

Therefore, it follows that

ẍ(t)+
d
m

ẋ(t)+
k
m

x(t)

= c1r2
1er1t + c2r2

2er2t +
d
m
(c1r1er1t + c2r2er2t)+

k
m
(c1er1t + c2er2t)

= c1er1t
(

r2
1 +

d
m

r1 +
k
m

)
+ c2er2t

(
r2

2 +
d
m

r2 +
k
m

)
= c1er1t

ρ(r1)+ c2er2t
ρ(r2) = 0.

We now assume, that initial conditions are given by x(t0) = x(0) = y0 and ẋ(t0) = ẋ(0) = v0.

It is then clear to see that

x(0) = c1 + c2 = y0

⇔ c1 = y0− c2

and

ẋ(0) = c1r1 + c2r2 = v0

⇔ c2 =
v0− r1y0

r2− r1
,

which finally gives

c1 = −
v0− r2y0

r2− r1
.

Thus the exact homogeneous solution is given by

x(t) =
(
−v0− r2y0

r2− r1

)
er1t +

(
v0− r1y0

r2− r1

)
er2t , (4.20)

holding in mind that r1 =
d

2m

(
−d +

√
d2−4km

)
and r2 =

d
2m

(
−d−

√
d2−4km

)
. One can

recognize that even the homogeneous solution of a simple second order ordinary differential

equation requires exact computation of a relatively complex term.

Chapter 4. Ordinary Differential Equations 67

We have shown a compact introduction in solving general homogeneous second order or-
dinary differential equations. Since the Quarter-Car-Model is a system of coupled non-
homogeneous second order equations, the general solution requires the computation of a
particular solution in addition to the general homogeneous solution. The complexity in solv-
ing this task becomes clear, if we consider the following section.

4.1.2 Non-homogeneous Equations

Similar to the previous section, we now introduce the most relevant theoretical concepts in
solving non-homogeneous second order equations. We therefore show, how to compute the
particular solution of a second order equation, given the general homogeneous solution with
the help of the Wronskian [13]. The definitions and theorems presented, are again strongly
based on [76], but can also be found in [13, 104]. Detailed proofs can also be found in the
references, but are mostly skipped at this point.

Theorem 8 (General Solution of Non-Homogeneous Second Order Equations [76])
Given a linear operator L(y) = ÿ+ a1ẏ+ a0y, of the homogeneous second order ordinary

differential equation for a finite time horizon [t0, tn]⊂R with constant coefficients a1, a0 ∈R,

and a two-times continuously differentiable function y ∈ C 2 ([t0, tn],R), a non-homogeneous

equation can be defined by

L(y) = b(t) (4.21)

for a continuous function b ∈ C 0 ([t0, tn],R). Then every solution of the non-homogeneous
ordinary differential equation follows

y(t) = c1y1(t)+ c2y2(t)+ yp(t) (4.22)

= yh(t)+ yp(t),

for t ∈ [t0, tn] with constants c1, c2 ∈R, which is the combination of the homogeneous solu-

tions y1, y2 ∈ C 2 ([t0, tn],R) with L(y1) = 0 and L(y2) = 0 and where yp ∈ C 2 ([t0, tn],R) is

one particular solution, satisfying L(yp) = b(t) for all t ∈ [t0, tn].

A particular solution for simple equations can in some cases be found by guessing, but is
non-trivial for more complex functions b. Nevertheless, there is a method to explicitly find
a particular solution, using the Wronskian of the linearly independent homogeneous solution
of the equation.

Definition 20 (Wronskian [76])
Given two differentiable functions y1 and y2 on [t0, tn], the Wronskian is defined by

W (t) = y1(t)ẏ2(t)− ẏ1(t)y2(t) (4.23)

for t ∈ [t0, tn].

Chapter 4. Ordinary Differential Equations 68

Theorem 9 (Variation of Parameters [76])
For the non-homogeneous second order ordinary differential equation

L(y) = ÿ+ a1ẏ+ a0y = b(t),

let a1, a0 ∈ R be constants, b ∈ C 0 ([t0, tn],R) and y ∈ C 2 ([t0, tn],R). Then a particular

solution to L(y) = b(t) is given by the variation of parameters formula

yp(t) = u1(t)y1(t)+ u2(t)y2(t) (4.24)

for t ∈ [t0, tn] with y1 and y2 general homogeneous solutions, satisfying L(y1) = 0 and

L(y2) = 0 and

u1(t) =
∫
−y2(t)b(t)

W (t)
dt, u2(t) =

∫ y1(t)b(t)
W (t)

dt, (4.25)

where W (t) = y1(t)ẏ2(t)− ẏ1(t)y2(t) is the Wronskian, such that W (t) 6= 0 for t ∈ [t0, tn],
since the general homogeneous solutions are linearly independent.

Example 13
We show that solving a "simple" non-homogeneous second order differential equation with

the help of Theorem 9 is straight forward, but it is not obvious at a first glance, that the com-

puted particular solution indeed solves the second order equation. Let us therefore assume

to have a single Mass-Spring-Damper system, driven by a general sine-wave function, with

arbitrary amplitude, frequency and phase. The equation is thus given by

ẍ+
d
m

ẋ+
k
m

x = asin(ωt−ϕ), (4.26)

with x ∈ C 2 ([t0, tn],R) describing the state function, d ≥ 0 is the damping constant, k ≥ 0
the spring constant, m > 0 the mass of the object, a ∈ R is the amplitude of the sine-wave,

ω = 2π f ∈ R is the angular frequency, where f is the ordinary frequency of the wave and

ϕ ∈ [0,2π) is the phase shift. All of the herein introduced parameters are assumed to be

constant for t ∈ [t0, tn].

It should be clear that the general homogeneous solutions are given by the twice contin-

uously differentiable functions x1, x2 ∈ C 2 ([t0, tn],R) with x1(t) = er1t and x2(t) = er2t for

t ∈ [t0, tn], where r1, r2 ∈C are the roots of the characteristic polynomial ρ(r) = r2+ d
m r+ k

m .

Furthermore, it follows that the Wronskian can explicitly be written as

W (t) = x1(t)ẋ2(t)− ẋ1(t)x2(t)

= er1tr2er2t − r1er1ter2t

= (r2− r1)e(r1+r2)t .

It is obvious that

u1(t) =
∫
−er2tasin(ωt−ϕ)

(r2− r1)e(r1+r2)t
dt = − a

r2− r1

∫
e−r1t sin(ωt−ϕ)dt (4.27)

Chapter 4. Ordinary Differential Equations 69

and it therefore also holds that

u2(t) =
∫ er1tasin(ωt−ϕ)

(r2− r1)e(r1+r2)t
dt =

a
r2− r1

∫
e−r2t sin(ωt−ϕ)dt. (4.28)

Let us therefore use a general variable r ∈ {r1,r2} to compute the indefinite integral for both

terms. We can verify that∫
e−rt sin(ωt−ϕ)dt = −e−rt cos(ωt−ϕ)

1
ω
−
∫

re−rt cos(ωt−ϕ)
1
ω

dt

= − 1
ω

e−rt cos(ωt−ϕ)− r
ω

∫
e−rt cos(ωt−ϕ)dt

= − 1
ω

e−rt cos(ωt−ϕ)− r
ω2 e−rt sin(ωt−ϕ)− r2

ω2

∫
e−rt sin(ωt−ϕ)dt.

Hence, it follows with

1+
r2

ω2 =
ω2 + r2

ω2

that we finally get

∫
e−rt sin(ωt−ϕ)dt = − ω2

ω2 + r2

(
1
ω

e−rt cos(ωt−ϕ)+
r

ω2 e−rt sin(ωt−ϕ)

)
.

Then the particular solution of the non-homogeneous equation xp ∈ C 2 ([t0, tn],R) is given,

using

u1(t) =
a

r2− r1

ω2

ω2 + r2
1

(
1
ω

e−r1t cos(ωt−ϕ)+
r1

ω2 e−r1t sin(ωt−ϕ)

)
and

u2(t) = −
a

r2− r1

ω2

ω2 + r2
2

(
1
ω

e−r2t cos(ωt−ϕ)+
r2

ω2 e−r2t sin(ωt−ϕ)

)
,

by

xp(t) =
a

r2− r1

[
ω

ω2 + r2
1

(
cos(ωt−ϕ)+

r1

ω
sin(ωt−ϕ)

)
− ω

ω2 + r2
2

(
cos(ωt−ϕ)+

r2

ω
sin(ωt−ϕ)

)]
.

As a next step, we need to verify, if the computed particular solution indeed solves the differ-

ential equation

ẍp +
d
m

ẋp +
k
m

xp = asin(ωt−ϕ) (4.29)

for t ∈ [t0, tn]. Therefore, one needs to compute the first and second order derivatives. Thus

we get by differentiating that

ẋp(t) =
a

r2− r1

[
ω

ω2 + r2
1
(−sin(ωt−ϕ)ω + r1 cos(ωt−ϕ))

− ω

ω2 + r2
2
(−sin(ωt−ϕ)ω + r2 cos(ωt−ϕ))

]

Chapter 4. Ordinary Differential Equations 70

and therefore the second order derivative yields

ẍp(t) =
a

r2− r1

[
ω

ω2 + r2
1

(
−cos(ωt−ϕ)ω2− r1ω sin(ωt−ϕ)

)
− ω

ω2 + r2
2

(
−cos(ωt−ϕ)ω2− r2ω sin(ωt−ϕ)

)]
.

Sorting by terms of asin(ωt −ϕ) and acos(ωt −ϕ), one can recognize that the l.h.s. of

Eq. (4.29) equals

asin(ωt−ϕ)

[
1

r2− r1

(
ω

ω2 + r2
1

(
−r1ω− d

m
ω +

k
m

r1

ω

)
− ω

ω2 + r2
2

(
−r2ω− d

m
ω +

k
m

r2

ω

))]
︸ ︷︷ ︸

=:α

+acos(ωt−ϕ)

[
1

r2− r1

(
ω

ω2 + r2
1

(
−ω

2 +
d
m

r1 +
k
m

)
− ω

ω2 + r2
2

(
−ω

2 +
d
m

r2 +
k
m

))]
︸ ︷︷ ︸

=:β

.

Consequently, if α = 1 and β = 0, then the second order equation holds for the particular

solution. In order to show that β = 0, we need to remind that due to ρ(r) = 0 for r ∈ {r1,r2},
it holds that r d

m + k
m = −r2. We get

β =
1

r2− r1

(
ω

ω2 + r2
1

(
−ω

2 +
d
m

r1 +
k
m

)
− ω

ω2 + r2
2

(
−ω

2 +
d
m

r2 +
k
m

))
=

1
r2− r1

(
ω

ω2 + r2
1

(
−ω

2− r2
1
)
− ω

ω2 + r2
2

(
−ω

2− r2
2
))

=
1

r2− r1
(−ω +ω) = 0.

We need to use the relation − d
m = r + 1

r
k
m for the roots of the characteristic polynomial to

prove α = 1. Computing the product of the roots r1 and r2 moreover yields that

r1r2 =

− d
2m

+

√(
d

2m

)2

− k
m

− d
2m
−

√(
d

2m

)2

− k
m

=
k
m

.

Then it is obvious that

α =
1

r2− r1

(
ω

ω2 + r2
1

(
−r1ω− d

m
ω +

k
m

r1

ω

)
− ω

ω2 + r2
2

(
−r2ω− d

m
ω +

k
m

r2

ω

))
=

1
r2− r1

(
ω

ω2 + r2
1

(
−r1ω +

(
r1 +

1
r1

k
m

)
ω +

k
m

r1

ω

)
− ω

ω2 + r2
2

(
−r2ω +

(
r2 +

1
r2

k
m

)
ω +

k
m

r2

ω

))
=

1
r2− r1

(
ω

ω2 + r2
1

(
k
m

ω

r1
+

k
m

r1

ω

)
− ω

ω2 + r2
2

(
k
m

ω

r2
+

k
m

r2

ω

))
=

1
r2− r1

(
ω

ω2 + r2
1

(
k
m

r2
1 +ω2

ωr1

)
− ω

ω2 + r2
2

(
k
m

r2
2 +ω2

ωr2

))
=

1
r2− r1

(
ω

k
m

1
ωr1
−ω

k
m

1
ωr2

)

Chapter 4. Ordinary Differential Equations 71

=
1

r2− r1

(
r1r2

r2− r1

r1r2

)
= 1.

We have therefore shown that the l.h.s of Eq. (4.29) is equal to asin(ωt−ϕ). Hence, xp is a

particular solution to the non-homogeneous second order equation.

The above example shows that even the computation of a simple non-homogeneous equation,
like the Mass-Spring-Damper system, can require high effort and cannot easily be verified.
Since the sequential data in this section is discrete, we therefore want to focus now on ef-
ficient numerical methods, either explicit, implicit or semi-implicit, to find an appropriate
approximation to the true continuous solution at each discrete point.

4.1.3 Hamiltonian Systems and Geometric Integration

We have in general introduced the main concepts to non-homogeneous second order ordinary
differential equations in the previous section. Since we are considering dynamical systems,
as introduced in Chapter 2, the states and the derivatives of the system follow physical laws.
Therefore, we shortly introduce the connection of Lagrangian and Hamiltonian equations
of motion [39, 40, 73, 102]. The general idea is based on Hamiltonian conservative sys-
tems. We make use of such conservative systems, though we are in general considering non-
conservative systems, which also contain the Rayleigh-Dissipation for the damping and the
exterior driving term of the system, simulated by the road-profile. Nevertheless, the Hamil-
tonian approach can be used to later on derive efficient numerical approximation schemes in
the next section.

To introduce the Hamiltonian of a conservative system, we shortly recapture simplified defi-
nitions of the energy terms, as they have been defined in Chapter 2. Therefore, we make again
use of a system of d ∈N particles, where we have the generalized coordinates q j := q j(t)

with j ∈ {1,2, ...,d} and the derivatives q̇ j =
dq j
dt for t ∈ [t0, tn].

The kinetic energy then depends on time t ∈ [t0, tn] and velocity q̇ = (q̇1, q̇2, ..., q̇d)
T ∈Rd ,

such that it can be expressed as a differentiable function T (t, q̇) with T ∈C 1
((
[t0, tn]×Rd

)
,R
)
.

Let us further define a potential energy term with V (t,q), where q = (q1,q2, ...,qd) ∈ Rd

is the vector of generalized coordinates, such that V ∈ C 1
((
[t0, tn]×Rd

)
,R
)
. The potential

energy in the conservative case only depends upon the generalized coordinates and time, and
is therefore independent on the generalized velocities.

The Lagrangian L ∈ C 1
((
[t0, tn]×Rd×Rd

)
,R
)

is then defined as the difference between
kinetic and potential energy and can be expressed as

L(t,q, q̇) := T (t, q̇)−V (t,q).

Chapter 4. Ordinary Differential Equations 72

The Euler-Lagrange equations of motion are then given for the conservative system by

d
dt

∂L(t,q, q̇)
∂ q̇ j

− ∂L(t,q, q̇)
∂q j

= 0

for j ∈ {1,2, ...,d}.

Definition 21 (Conjugate Momenta and Hamiltonian [40])
Let L ∈ C 1

((
[t0, tn]×Rd×Rd

)
,R
)

be the Lagrangian with L(t,q, q̇) = T (t, q̇)−V (t,q) on

t ∈ [t0, tn], with q ∈Rd the vector of generalized coordinates and q̇ ∈Rd the corresponding

vector of generalized velocities, where d ∈N and T (t, q̇) ∈ C 1
((
[t0, tn]×Rd

)
,R
)

is the

kinetic energy as well as V (t,q) ∈ C 1
((
[t0, tn]×Rd

)
,R
)

is the potential energy for a point

t ∈ [t0, tn]. The conjugate momenta are then defined by

p j :=
∂L(t,q, q̇)

∂ q̇ j
(4.30)

for j ∈ {1,2, ...,d}, where it is again point-wise defined by p j := p j(t) for all t ∈ [t0, tn].
The vector of all conjugate momenta can therefore be expressed as p = (p1, p2, ..., pd)

T ∈
Rd . Then, the Hamiltonian H ∈ C 2

((
[t0, tn]×Rd×Rd

)
,R
)

for conjugate momenta and

generalized states (p,q) is defined as

H(t, p,q) := pT q̇−L(t,q, q̇), (4.31)

where q̇ = q̇(t, p,q) is assumed to explicitly depend upon time, conjugate momenta and gen-

eralized coordinates.

It is straight forward to verify that the Hamiltonian describes the total energy of the system.
If there are mass parameters m j ≥ 0 for each particle j ∈ {1,2, ...,d}, with d ∈N, then the
kinetic energy can explicitly be written in the form

T (t, q̇) =
1
2

d

∑
j=1

m jq̇2
j .

Since
p j =

∂L(t,q, q̇)
∂ q̇ j

=
∂ (T (t, q̇)−V (t,q))

∂ q̇ j
=

∂T (t, q̇)
∂ q̇ j

= m jq̇ j,

we can verify that the Hamiltonian indeed is equal to

H(t, p,q) = pT q̇−L(t,q, q̇)

=
d

∑
j=1

p jq̇ j−L(t,q, q̇)

= 2 · 1
2

d

∑
j=1

m jq̇2
j −T (t, q̇)+V (t,q)

= 2T (t, q̇)−T (t, q̇)+V (t,q)

Chapter 4. Ordinary Differential Equations 73

= T (t, q̇)+V (t,q),

which is the total energy of the conservative system. Since we have now clarified the most
important terms for the Hamiltonian, we can now use and proof the following theorem [39]
to connect the Lagrangian to the Hamiltonian formalism.

Theorem 10 (Hamiltonian Equations of Motion [40])
Let the Lagrangian be given by L ∈ C 1

((
[t0, tn]×Rd×Rd

)
,R
)

with L(t,q, q̇) = T (t, q̇)−
V (t,q) for t ∈ [t0, tn], q ∈ Rd the vector of generalized states and q̇ ∈ Rd the vector of

generalized velocities, such that q̇ j =
dq j
dt for j ∈ {1,2, ...,d}. Further let the conjugate

momenta p ∈ Rd be point-wise defined by p j =
∂L(t,q,q̇)

∂ q̇ j
with j ∈ {1,2, ...,d}. The Hamil-

tonian H ∈ C 2
((
[t0, tn]×Rd×Rd

)
,R
)

is thus given by H(t, p,q) = pT q̇− L(t,q, q̇) with

q̇ = q̇(t, p,q).

Then the Euler-Lagrange equations

d
dt

∂L(t,q, q̇)
∂ q̇ j

− ∂L(t,q, q̇)
∂q j

= 0

for j ∈ {1,2, ...,d} are equivalent to the Hamiltonian equations of motion, given by

ṗ j = −
∂H(t, p,q)

∂q j
, q̇ j =

∂H(t, p,q)
∂ p j

(4.32)

for all j ∈ {1,2, ...,d}.

Proof. Since the Hamiltonian is equal to

H(t, p,q) =
d

∑
j=1

p jq̇ j−L(t,q, q̇),

it holds that
∂H(t, p,q)

∂ p j
= q̇ j + p j

∂ q̇ j

∂ p j
− ∂L(t,q, q̇)

∂ q̇ j

∂ q̇ j

∂ p j
= q̇ j, (4.33)

by definition of the conjugate momenta. Further, we have

∂H(t, p,q)
∂q j

= p j
∂ q̇ j

∂q j
− ∂L(t,q, q̇)

∂q j
− ∂L(t,q, q̇)

∂ q̇ j

∂ q̇ j

∂q j
= −∂L(t,q, q̇)

∂q j
. (4.34)

Then, since

ṗ j = −
∂H(t, p,q)

∂q j
=

∂L(t,q, q̇)
∂q j

(4.35)

and due to
p j =

∂L(t,q, q̇)
∂ q̇ j

, (4.36)

it finally holds that

ṗ j = −
∂H(t, p,q)

∂q j

Chapter 4. Ordinary Differential Equations 74

⇔ d
dt

p j =
∂L(t,q, q̇)

∂q j

⇔ d
dt

∂L(t,q, q̇)
∂ q̇ j

− ∂L(t,q, q̇)
∂q j

= 0

for all j ∈ {1,2, ...,d}, which completes the proof.

For the sake of simplicity, let us assume that the equations of motion can be defined in a
more compact sense [14], using the gradient of the Hamiltonian with respect to the vectors
of conjugate momenta and generalized coordinates to get

ṗ := −∇qH(t, p,q) =
(
−∂H(t, p,q)

∂q1
,−∂H(t, p,q)

∂q2
, ...,−∂H(t, p,q)

∂qd

)T

∈Rd , (4.37)

q̇ := ∇pH(t, p,q) =
(

∂H(t, p,q)
∂ p1

,
∂H(t, p,q)

∂ p2
, ...,

∂H(t, p,q)
∂ pd

)T

∈Rd . (4.38)

The above gradient-based notation of the Hamiltonian equations of motion, is further used
in the following section, to derive efficient numerical integration schemes for dynamical sys-
tems, in comparison to state-of-the-art methods. Therefore, one uses the equations of motion
and directly applies them to the examples given in the next section. It is then obvious, that
the conjugate momenta simplify to more specified terms of the dynamical system.

4.1.4 Numerical Solution

We have described the basic concepts to explicitly solve non-homogeneous second order or-
dinary differential equations in the previous section. In addition, we have investigated that
explicitly solving Mass-Spring-Damper systems as non-homogeneous equations is in princi-
ple possible, nevertheless it requires a relatively high computational effort to find the general
solution. The aim of this section is therefore to introduce numerical methods to approximate
the solution of non-homogeneous second order ordinary differential equations.

Since there exist efficient and well-known methods to solve first order equations, we make
use of the following theorem, introduced and proved for instance in [76].

Theorem 11 (Reduction of Order [76])
Assume a non-homogeneous second order ordinary differential equation is given by

L(y) = ÿ+ a1ẏ+ a0y = b(t)

with constants a1, a0 ∈ R, a non-linear continuous function b ∈ C 0 ([t0, tn],R) and a twice

continuously differentiable state function y ∈ C 2 ([t0, tn],R). Then y is a solution to the non-

homogeneous equation L(y) = b(t) for all t ∈ [t0, tn], if and only if, x1 = y and x2 = ẏ are

Chapter 4. Ordinary Differential Equations 75

solutions to the system of first order ordinary differential equations

ẋ1 = x2 (4.39)

ẋ2 = −a0x1−a1x2 + b(t), (4.40)

for all t ∈ [t0, tn] with constants a1, a0 ∈R and b ∈ C 0 ([t0, tn],R).

The system of first order ODE can be expressed w.l.o.g. as

ẋ1 = f (t,x1,x2) (4.41)

ẋ2 = g(t,x1,x2) (4.42)

with f (t,x1,x2) = x2 and g(t,x1,x2) = −a0x1− a1x2 + b(t). We can therefore now use an
appropriate time discretization of the continuous finite time horizon to then apply numerical
solution methods for the first order system

Definition 22 (Time-Discretization)
Given a continuous time horizon T = [t0, tn], a discretization of T is given by the set

D (T) =
{

t0, t1, ..., tN} , (4.43)

containing N + 1 discrete time points t i ∈ T for i ∈ {0,1, ...,N} with N ∈N. If t i+1− t i =

h is constant for all i ∈ {0,1, ...,N − 1}, then Dh (T) := D (T) is called an equidistant
discretization of the time horizon T .

We in general regard numerical integrators for reduced order systems, based on the con-
cepts introduced in [14, 17]. Therefore, we assume that one is familiar with the concepts of
one-step methods, to solve a system of ordinary differential equations, as they are given by
Eq. (4.41) and Eq. (4.42).

Euler Schemes
We herein introduce numerical integrators [14, 17] for the following general initial value
problem of a first order ordinary differential system

ẋ(t) = Φ(t,x(t)), x(t0) = x0 (4.44)

where the time-variable is given by t ∈ [t0, tn], the state function by x ∈ C 1
(
[t0, tn],Rd

)
and

Φ ∈ C 0
((
[t0, tn],Rd

)
,Rd

)
is a Lipschitz-continuous function with dimension d ∈N. The

initial condition is given by the constant x0 ∈Rd .

Given an equidistant time-horizon Dh (T) = {t0, t1, ..., tN} with N ∈N and h = t i+1− t i > 0
for all i ∈ {0,1, ...,N−1}, such that t0 = t0, a forward Euler scheme [17] is defined by the
equation

uk+1 = uk + hΦ(tk,uk), (4.45)

where a backward Euler scheme [17] is in contrast defined by the equation

Chapter 4. Ordinary Differential Equations 76

uk+1 = uk + hΦ(tk+1,uk+1). (4.46)

We use the terms uk with u0 = x0 and k ∈ {1,2, ...,N} to ensure to differ the approximated
values uk and the true values xk = x(tk) for all tk ∈Dh (T). One therefore is able to compare
pairs (uk,xk) ∈Rd×2 for all k ∈ {1,2, ...,N}, such that the approximation error[14] can be
defined by

ek
h = ‖xk+1−uk−hΦ(tk,uk)‖ (4.47)

for the forward Euler scheme and in an analogous way also for the backward Euler scheme.

Semi-Implicit Euler Scheme for Conservative Systems
We have already introduced the general Hamiltonian equations of motion Eq. (4.32) in the
previous section, as it can be found in [39, 40, 73, 102]. Furthermore one can also use these
equations to derive sympletic or semi-implicit numerical integration schemes for dynamical
systems [14, 39, 40].

Since the Hamiltonian has been shown to equal the total energy of a dynamical system, we
now assume that for a conservative system of dimension d ∈N, the kinetic energy is defined
by

T (t, q̇) =
1
2

d

∑
i=1

miq̇i
2, (4.48)

where t ∈ [t0, tn], mi > 0 is the mass of a particle indexed by i ∈ {1,2, ...,d} and q̇ ∈Rd is the
vector of generalized velocities. Further let the potential energy be defined by

V (t,q) =
1
2

d

∑
i=1

kiq2
i , (4.49)

where t ∈ [t0, tn], ki ≥ 0 is a characteristic parameter, for instance a spring-constant and
q ∈ Rd is the vector of generalized coordinates of the system. Let us further hold in mind
that the Lagrangian of the system is defined by the difference of kinetic and potential en-
ergy, L(t,q, q̇) = T (t, q̇)−V (t,q), where the Hamiltonian of the system is the total energy,
H(t, p,q) = T (t, q̇)+V (t,q).

Since Eq. (4.37) and Eq. (4.38) hold for the conjugate momenta and the generalized veloci-
ties of a system with d ∈N, namely

ṗ = −∇qH(t, p,q) ∈Rd ,

q̇ = ∇pH(t, p,q) ∈Rd ,

a Symplectic Euler scheme [14, 39, 40] can be defined by

pk+1 = pk−h∇qH(tk, pk+1,qk) (4.50)

qk+1 = qk + h∇pH(tk, pk+1,qk) (4.51)

Chapter 4. Ordinary Differential Equations 77

or

pk+1 = pk−h∇qH(tk, pk,qk+1) (4.52)

qk+1 = qk + h∇pH(tk, pk,qk+1), (4.53)

for an equidistant discrete time-horizon Dh (T) = {t0, t1, ..., tN}, such that h = tk+1 − tk

constant for all k ∈ {0,1, ...,N− 1}, N ∈N and initial values p0 ∈ Rd and q0 ∈ Rd . The
Symplectic Euler method is therefore also called Semi-Implicit Euler, since it is an explicit
method for one of the two arguments and an implicit method for the other one.

Following Eq. (4.48) and Eq. (4.49), one can recognize that the components of ∇qH(t, p,q),
namely the derivatives of the conjugate momenta, can be computed by

ṗ j = −
∂H(t, p,q)

∂q j
=

∂L(t,q, q̇)
∂q j

= −∂V (t,q)
∂q j

= −k jq j (4.54)

for all j ∈ {1,2, ...,d}. Furthermore, it holds that the conjugate momenta p j for each compo-
nent, equal the impulse m jq̇ j for a particle with centred mass m j > 0 and generalized velocity
q̇ j with j ∈ {1,2, ...,d}. This can be verified using the equation and definition of conjugate
momenta,

p j =
∂L(t,q, q̇)

∂ q̇ j
=

∂T (t, q̇)
∂ q̇ j

= m jq̇ j. (4.55)

Since the Hamiltonian is derivable with respect to the conjugate momenta, one can further
notice that the components of ∇pH(p,q) are given as

q̇ j =
∂H(t, p,q)

∂ p j
=

∂

∂ p j

1
2

d

∑
i=1

miq̇i
2 =

∂

∂ p j

1
2

d

∑
i=1

(miq̇i)2

mi
=

∂

∂ p j

1
2

d

∑
i=1

p2
i

mi
=

p j

m j

for all j ∈ {1,2, ...,d}. It is therefore obvious that the Symplectic Euler scheme can also be
defined per components, such that the iteration rule for the conjugate momenta gives

pk+1
j = pk

j−h
∂H(tk, pk+1,qk)

∂q j
= pk

j−hk jqk
j (4.56)

⇔ m jq̇k+1
j = m jq̇k

j−hk jqk
j (4.57)

⇔ q̇k+1
j = q̇k

j−h
k j

m j
qk

j, (4.58)

which means, that the update for the conjugate momenta is equal to the update of the gen-
eralized velocities, since the parameters are assumed to be constant over time. Further, the
update rule for the components of the generalized velocity vector are given by

qk+1
j = qk

j + h
∂H(tk, pk+1,qk)

∂ p j
(4.59)

Chapter 4. Ordinary Differential Equations 78

⇔ qk+1
j = qk

j + h
pk+1

j

m j
(4.60)

⇔ qk+1
j = qk

j + h
m j · q̇k+1

j

m j
(4.61)

⇔ qk+1
j = qk

j + hq̇ j
k+1 (4.62)

⇔ qk+1
j = qk

j + h
(

q̇k
j−h

k j

m j
qk

j

)
. (4.63)

We have derived a semi-implicit or symplectic Euler integration scheme as shown by [14,
40, 39]. In a final step, we assume that the scheme can also be applied to non-conservative
systems. Summarizing, the symplectic schemes are used to update the generalized veloci-
ties and then use the updated velocities to update the generalized states, as can be seen in
Eq. (4.58) and Eq. (4.62).

Semi-Implicit Scheme for Non-Conservative Systems
It is obvious that Eq. (4.58) is a forward integration scheme for a canonical second order
ordinary differential equation of the form

q̈ j +
k j

m j
q j = 0, (4.64)

for each component j ∈ {1,2, ...,d}, with d ∈N the size of the system. It is therefore a for-
ward scheme for a homogeneous second order ordinary differential equation with constant
coefficients, using the reduction of order method.

Assume that a non-homogeneous second order ordinary differential equation for a non-
conservative system could be defined by

q̈ j +
d j

m j
q̇ j +

k j

m j
q j =

1
m j

b j(tk), (4.65)

for t ∈ [t0, tn], an additional set of parameters d j ≥ 0 for all j ∈ {1,2, ...,d} and a continuous
source function b ∈ C 0

(
[t0, tn],Rd

)
.

Then, in analogy to the conservative system, a Semi-Explicit integration scheme for d ∈N

individual components can be defined by

q̇k+1
j = q̇k

j + h
(
−

d j

m j
q̇k

j−
k j

m j
qk

j +
1

m j
b j(tk)

)
(4.66)

qk+1
j = qk

j + hq̇k+1
j . (4.67)

Since Eq. (4.66) and Eq. (4.67) are no implicit schemes at all, in the sense of Eq. (4.46),
we now distinguish between the following general integration schemes for a reduced order
system.

Chapter 4. Ordinary Differential Equations 79

Assume that for a second order ordinary differential equation in the sense of Theorem 11,
a reduced order system is given by

ẋ1 = f (t,x1,x2) (4.68)

ẋ2 = g(t,x1,x2) (4.69)

with f (t,x1,x2) = x2 and g(t,x1,x2) = −a0x1−a1x2 + b(t) for x1, x2 ∈ C 1 ([t0, tn],R). Fur-
ther, let again a1, a0 ∈ R be constants and b ∈ C 0 ([t0, tn],R) a continuous source term on
[t0, tn] ⊂R.

If two initial values x1(t0) = x0
1 ∈ R and x2(t0) = x0

2 ∈ R are given, then for an equidis-
tant Dh (T) = {t0, t1, ..., tN}, N ∈N and k ∈ {0,1, ...,N−1}, the forward Euler scheme is
given by

xk+1
1 = xk

1 + h f (tk,xk
1,xk

2) (4.70)

xk+1
2 = xk

2 + hg(tk,xk
1,xk

2) (4.71)

for the reduced system.

Further let us consider the Semi-Explicit or Semi-Forward Euler scheme

xk+1
1 = xk

1 + h f (tk,xk
1,xk

2) (4.72)

xk+1
2 = xk

2 + hg(tk,xk+1
1 ,xk

2), (4.73)

as it is formally, implicit for one argument of the second equation. Nevertheless, the second
update rule can be applied straight forward, since the implicit argument results from the for-
ward Euler scheme of the first equation.

Since the Symplectic or Semi-Implicit Euler scheme is always implicit for one argument
and explicit for the other, we define it for a reduced order system by

xk+1
1 = xk

1 + h f (tk,xk+1
1 ,xk

2) (4.74)

xk+1
2 = xk

2 + hg(tk,xk+1
1 ,xk

2) (4.75)

which requires solving the first equation with respect to xk+1
1 . In addition, one could also

consider other numerical integration schemes, like the implicit Midpoint method, applied
to the first component, to get

xk+1
1 = xk

1 + h f
(

tk +
h
2

,
1
2

(
xk

1 + xk+1
1

)
,xk

2

)
(4.76)

xk+1
2 = xk

2 + hg(tk,xk+1
1 ,xk

2) (4.77)

Chapter 4. Ordinary Differential Equations 80

or a Runge-Kutta ("RK4") scheme, resulting in

k1 = f
(

tk,xk
1,xk

2

)
k2 = f

(
tk +

h
2

,xk
1 +

h
2

k1,xk
2

)
k3 = f

(
tk +

h
2

,xk
1 +

h
2

k2,xk
2

)
k4 = f

(
tk + h,xk

1 + hk3,xk
2

)
xk+1

1 = xk
1 + h

(k1 + 2(k2 + k3)+ k4)

6
(4.78)

xk+1
2 = xk

2 + hg(tk,xk+1
1 ,xk

2). (4.79)

We now give an example for a non-homogeneous second order equation, where we compare
the true solution at discrete time-steps with the above defined Euler schemes for a reduced
order system.

Example 14
We herein refer to the already introduced Example 13 and compare the numerical solutions

for

ẍ+
d
m

ẋ+
k
m

x = asin(ωt−ϕ),

with the specified parameters d = 615.0, k = 98935.0, m = 100.0, a = 2.0, ω = 6π and

ϕ = π

2 . Furthermore, since we have a non-homogeneous equation, we choose the initial con-

ditions x(t0) = x0 = 0 and ẋ(t0) = v0 = 0 for a time horizon T = [0,1], therefore t0 = t0 = 0
and tn = 1.

Let further for the equidistant discrete time-horizon Dh (T), the approximate solution for the

true value xk = x(tk) be given by the expression uk for k ∈ {1,2, ...,N}, with a given step-size

h > 0, such that we can define the total approximation error

ζ1(x) :=
1
h

N

∑
k=1
|xk−uk| (4.80)

and the Euclidean distance

ζ2(x) :=
1
h

√
N

∑
k=1
|xk−uk|2, (4.81)

which are two appropriate functions to measure the approximation error of the numerical

integration schemes. We therefore compare the Forward, Symplectic, Semi-Forward Euler,

implicit Midpoint and Runge-Kutta method for step-sizes h = 10−2, h = 10−3 and h = 10−5

of the reduced order system. Therefore, we have N = 103 discrete steps for the first, N = 105

steps for the second and N = 107 steps for the third step-size. It is well known, that numerical

approximations converge to the true value of the solution for h→ 0 [76]. The approximation

errors, as shown in Table 4.1, give an overview about the quality of the introduced numerical

Chapter 4. Ordinary Differential Equations 81

h = 10−2 t ζ1(x) ζ2(x)

Forward Euler 0.00031 49.26396 6.60912
Semi-Explicit Euler 0.00030 3.99688 0.47119

Symplectic Euler 0.00032 3.69807 0.41979
Midpoint 0.00062 3.80150 0.43549

Runge-Kutta 0.00122 3.79504 0.43442

h = 10−3 t ζ1(x) ζ2(x)

Forward Euler 0.00274 10.57208 1.30188
Semi-Explicit Euler 0.00272 3.95689 0.45932

Symplectic Euler 0.00271 3.63999 0.41217
Midpoint 0.00600 3.74183 0.42371

Runge-Kutta 0.01112 3.74115 0.42361

h = 10−5 t ζ1(x) ζ2(x)

Forward Euler 0.26928 9.75392 1.21097
Semi-Explicit Euler 0.26767 3.97149 0.46094

Symplectic Euler 0.26936 3.65582 0.41466
Midpoint 0.55707 3.75953 0.42559

Runge-Kutta 1.10489 3.75952 0.42559

TABLE 4.1: Computation of the approximative solution for the introduced
integration schemes and varying step-sizes. On the left, the computational
time (in seconds) is given to compute the solution. On the two columns
on the right, the error constants of Euler integration schemes for total ap-
proximation error (ζ1(x)) and Euclidean distance (ζ2(x)) are given. To have
comparable measures, we evaluated the error terms for all t ∈D0.01([0,1]).

Chapter 4. Ordinary Differential Equations 82

schemes for step-sizes h ∈
{

10−2,10−3,10−5
}

. It needs to be mentioned, that h = 0.01 is

not an appropriate step-size for the Forward Euler scheme to compare it to the remaining

methods, since it is then not numerically stable. Nevertheless, it can be mentioned, that the

Forward Euler method converges to the exact solution at each t ∈ D0.01([0,1]) for smaller

step-sizes. If we compare the remaining methods, it is obvious that the error terms are ap-

proximately within the same range for all methods, even for smaller step-sizes. Regarding

the computational time, we can recognize almost equal times for the Euler methods, where

the Midpoint rule and the Runge-Kutta method require a larger amount of time, due to the

more sophisticated integration schemes.

FIGURE 4.1: Exact solution (green) of the example, compared to the
Forward-Euler (red), Symplectic Euler (cyan), Semi-Forward (magenta),
Midpoint (yellow) and Runge-Kutta (black) integration schemes for the in-

terval [0,1] and step-size h = 10−2.

FIGURE 4.2: Exact solution (green) of the example, compared to the
Forward-Euler (red), Symplectic Euler (cyan), Semi-Forward (magenta),
Midpoint (yellow) and Runge-Kutta (black) integration schemes for the in-

terval [0,1] and step-size h = 10−3.

Chapter 4. Ordinary Differential Equations 83

FIGURE 4.3: Exact solution (green) of the example, compared to the
Forward-Euler (red), Symplectic Euler (cyan), Semi-Forward (magenta),
Midpoint (yellow) and Runge-Kutta (black) integration schemes for the in-

terval [0,1] and step-size h = 10−5.

Visualizations of the numerical results for h ∈
{

10−2,10−3,10−5
}

are shown in Figure 4.1 -

4.3. As it has been mentioned for the error terms, one can recognize that the Forward Euler is

not stable for smaller step-sizes, but converges to the exact solution for h→ 0. All introduced

integration schemes converge to the exact solution for small step-sizes, where the approxima-

tions of the Semi-Forward, Symplectic, Midpoint and Runge-Kutta scheme are comparably

exact for all shown step-sizes. In terms of efficiency, one should consider to use an Euler in-

tegration method, as it requires significantly less computational time and is within the same

error range as the methods of higher order.

4.2 Linear Systems

We have seen in the previous section that a second order non-homogeneous ordinary dif-
ferential equation can be transformed into a system of two first order ordinary differential
equations. Analogously, a system of three second order ordinary differential equations, like
the Quarter-Car-Model, can therefore also be transformed into a system of six first order
differential equations, which makes the numerical computation of the approximate solution
significantly simpler. The aim of this section is therefore in a final step to compute the nu-
merical solution of the Quarter-Car-Model.

We again give some insights about solving general homogeneous and non-homogeneous
systems of arbitrary size explicitly and finally apply the numerical solution methods of the
previous section to such systems. Finally, the proposed structure of the system matrix for
the Quarter-Car-Model, offers the opportunity to apply the Semi-Implicit Euler scheme to
approximate the solution of the system and to compare it to other state-of-the-art approxima-
tion methods.

Chapter 4. Ordinary Differential Equations 84

4.2.1 Non-Homogeneous Equations

Again, we clarify some general concepts and definitions of linear differential systems, mainly
based on [13, 76, 104]. Therefore, we start with general descriptions of the systems, similar
to the general second order ordinary differential equations in the previous section. Neverthe-
less, since the concepts of homogeneous and non-homogeneous equations should be clear by
now, we suppose that it is sufficient to shortly discuss them, without splitting it into separate
sections again.

The theorems and definitions now presented are broadly based on [76], where one can also
find a detailed description including proofs of the theorems.

Definition 23 (First Order Differential System [76])
A system of first order ordinary differential equations, given by

ẋ(t) = A(t)x(t)+ b(t) (4.82)

for t ∈ [t0, tn] with A(t) ∈ Rd×d a continuous coefficient matrix with d ∈N, the unknown

state vector x ∈ C 1
(
[t0, tn],Rd

)
and a continuous source vector b(t) ∈Rd , is homogeneous

if b(t) = 0 for all t ∈ [t0, tn] and of constant coefficients, if A := A(t) is constant for t ∈ [t0, tn].

The above definition is the general description of a non-homogeneous first order differential
system. We now introduce, analogously to the second order equations, a theorem [76] to
state that there indeed exists a unique solution to the differential system, if there are initial
conditions given.

Theorem 12 (Existence and Uniqueness of Solutions to First Order Systems [76])
Assume that A∈Rd×d is constant and b∈C 0 ([t0, tn],R) is a continuous function. Then for a

constant x0 ∈Rd , there exists a unique function x ∈ C 1
(
[t0, tn],Rd

)
with [t0, tn]⊂R, which

solves the initial value problem

ẋ(t) = Ax(t)+ b(t) (4.83)

x(t0) = x0. (4.84)

Theorem 13 (Unique Solution of Non-Homogeneous Differential Systems)
The initial value problem of the first order homogeneous differential system for t ∈ [t0, tn],
given by

ẋ(t) = Ax(t)+ b(t)

x(t0) = x0

with a continuously differentiable function x ∈ C 1
(
[t0, tn],Rd

)
, a constant matrix A ∈Rd×d ,

a continuous source vector b ∈ C 0
(
[t0, tn],Rd

)
and dimension d ∈N has a unique solution

x(t) = eA(t−t0)x0 + eAt
∫ t

t0
e−A(τ−t0)b(τ)dτ (4.85)

Chapter 4. Ordinary Differential Equations 85

for t ∈ [t0, tn].

Example 15
Similar to the non-homogeneous second order differential equation, we here give an exam-

ple how the exact solution of a non-homogeneous system can be computed with the help of

Theorem 13. Since we have discussed the steps in detail for the second order ordinary differ-

ential equation cases, we give the main idea how to solve non-homogeneous systems. Let us

therefore assume that a non-homogeneous equation is given by

ẋ(t) = Ax(t)+ asin(ωt−ϕ) (4.86)

for t ∈ [t0, tn], with x ∈ C 1
(
[t0, tn],Rd

)
and a constant matrix A ∈Rd×d . For the non-linear

driving term, we assume that

asin(ωt−ϕ) = (a1 sin(ωt−ϕ),a2 sin(ωt−ϕ), ...,ad sin(ωt−ϕ))T (4.87)

differs for each dimension in the amplitudes a j ∈ R, j ∈ {1,2, ...,d}, where the remaining

parameters, namely frequency ω ∈ R and phase ϕ ∈ [0,2π), are equal for all states, such

that
d
dt

asin(ωt−ϕ) = ωacos(ωt−ϕ).

Further, let t0 = 0 and x0 = 0. The general unique solution of the differential system therefore

simplifies to

x(t) = eA(t−t0)x0 + eAt
∫ t

t0
e−A(τ−t0)asin(ωτ−ϕ)dτ = eAt

∫ t

t0
e−Aτasin(ωτ−ϕ)dτ . (4.88)

One can then verify, using two-times integration by parts such that computation of the indef-

inite integral gives

∫
e−Atasin(ωt−ϕ)dt =

(
I +

1
ω2 A2

)−1(
− 1

ω
e−Atacos(ωt−ϕ)− 1

ω2 Ae−At sin(ωt−ϕ)

)
,

where I ∈Rd×d is the identity matrix. Thus the solution is given by

x(t) = eAt
(

I +
1

ω2 A2
)−1(

− 1
ω

e−Atacos(ωt−ϕ)− 1
ω2 Ae−Atasin(ωt−ϕ)+ c0

)
,

(4.89)
with

c0 =
1
ω

acos(ϕ)− 1
ω2 Aasin(ϕ) (4.90)

which ensures that x(t0) = x0 = 0. Finally, one can recognize that

ẋ(t) = Ax(t)+ eAt
(

I +
1

ω2 A2
)−1(1

ω
Ae−Atacos(ωt−ϕ)+ e−Atasin(ωt−ϕ)

+
1

ω2 A2e−At sin(ωt−ϕ)− 1
ω

Ae−Atacos(ωt−ϕ)

)

Chapter 4. Ordinary Differential Equations 86

and it therefore follows that

ẋ(t) = Ax(t)+ eAt
(

I +
1

ω2 A2
)−1(

e−Atb(t)+
1

ω2 A2e−Atb(t)
)

= Ax(t)+ eAt
(

I +
1

ω2 A2
)−1(

I +
1

ω2 A2
)

e−Atb(t)

= Ax(t)+ eAte−Atb(t)

= Ax(t)+ b(t).

So far, we have seen how to compute the exact solution of a non-homogeneous second or-
der ordinary differential equation, as well as the solution of a non-homogeneous first order
differential system, where we on the one hand used Theorem 9 for the first, and Theorem 13
for the latter. We have also already seen that we can define efficient numerical integration
schemes for a reduced order system, which converge to the true solution for small step-sizes.
Therefore, we are now going to apply the same for the first order system.

4.2.2 Numerical Solution

We now focus on a specific linear system, which describes a coupled dynamical model as it
is given by the already mentioned and broadly introduced Quarter-Car-Model of Chapter 2.
In general, the system can be described by the common equation

ẋ(t) = Ax(t)+ b(t), (4.91)

where we now have a more specified structure for the coupled system, such that Eq. (4.91)
can equally be described as the system(

v̇(t)

q̇(t)

)
=

[
D S

I O

](
v(t)

q(t)

)
+

(
bv(t)

bq(t)

)
, (4.92)

where D, S ∈ Rd×d are the matrices of relevant damping and spring-coefficients, I ∈ Rd×d

is the identity matrix and O ∈ Rd×d is the null matrix. Further, let v ∈ C 1
(
[t0, tn],Rd

)
and

q ∈ C 2
(
[t0, tn],Rd

)
and bx(t) = 0 for all t ∈ [t0, tn], such that it can be decoupled into a

system of first order differential equations with

v̇(t) = Dv(t)+ Sq(t)+ bv(t)

q̇(t) = Iv(t)

for a continuous function bv ∈ C 0
(
[t0, tn],Rd

)
. It is then obvious that one can define the

function f (t,q(t),v(t)) := Dv(t) + Sq(t) + bv(t) as well as g(t,q(t),v(t)) := v(t) for all
t ∈ [t0, tn] such that we can directly apply the numerical integration schemes, as they are
stated by Eq. (4.70), Eq. (4.71) for the Forward Euler, by Eq. (4.72), Eq. (4.73) for the Semi-
Explicit Euler and by Eq. (4.74), Eq. (4.75) for the Symplectic Euler scheme.

Chapter 4. Ordinary Differential Equations 87

Since we consider the Quarter-Car-Model, which has a hierarchical structure, depending
upon the source term, let us assume that v(t) := (v3(t),v2(t),v1(t))

T ∈ Rd and q(t) :=
(q3(t),q2(t),q1(t))

T ∈Rd for all t ∈ [t0, tn]. Then, index 3 describes the motion and velocity
for the occupant and the seat, index 2 for the chassis and index 1 for the wheel-suspensions.

Given initial conditions v0 = v(t0) ∈ Rd and q0 = q(t0) ∈ Rd and a time discretization
Dh (T) = {t0, t1, ..., tN}, a Forward Euler scheme for the Quarter-Car-Model is then de-
fined for an equidistant step-width h = tk+1− tk, k ∈ {0,1, ...,N−1} by

vk+1 = vk + h
(

Dvk + Sqk + bv(tk)
)

qk+1 = qk + hvk.

A Semi-Explicit Euler scheme can analogously be defined by the equations

vk+1 = vk + h
(

Dvk + Sqk + bv(tk)
)

(4.93)

qk+1 = qk + hvk+1 (4.94)

and a Symplectic Euler scheme by

vk+1 = vk + h
(

Dvk+1 + Sqk + bv(tk)
)

⇔ vk+1 = (I−hD)−1
(

vk + h
(

Sqk + bv(tk)
))

qk+1 = qk + hvk+1.

In comparison to the previous example, we can also derive an adapted Midpoint scheme,
resulting in

vk+1 = vk + h
(

D
1
2

(
vk+1 + vk

)
+ Sqk + bv

(
tk +

h
2

))
qk+1 = qk + hvk+1

and a Runge-Kutta ("RK4") method

k1 =
(

Dvk + Sqk + bv

(
tk
))

k2 =

(
D
(

vk +
h
2

k1

)
+ Sqk + bv

(
tk +

h
2

))
k3 =

(
D
(

vk +
h
2

k2

)
+ Sqk + bv

(
tk +

h
2

))
k4 =

(
D
(

vk + hk3

)
+ Sqk + bv

(
tk + h

))
vk+1 = vk +

h
6
(k1 + 2(k2 + k3)+ k4)

qk+1 = qk + hvk+1,

where we update the first component with the explicit methods of higher order and use the

Chapter 4. Ordinary Differential Equations 88

updated velocity vk+1 to compute the new value of the state qk+1.

We recognize, that both, the Forward Euler as well as the Semi-Explicit Euler and the Runge-
Kutta scheme can be applied straight forward, where the Symplectic Euler scheme and the
Midpoint scheme, due to the implicit update rule, require computation of a constant inverse
for each step.

Example 16
We regard a first order differential system, which can be separated into a velocity differential

system and a displacement differential system via a first order reduction by(
v̇(t)

q̇(t)

)
=

[
D S

I O

](
v(t)

q(t)

)
+

(
bv(t)

bq(t)

)
, (4.95)

where we have v ∈ C 1
(
[0,0.5],R3

)
and q ∈ C 2

(
[0,0.5],R3

)
with initial values v0 = q0 =

(0,0,0)T . Further, the damping and spring coefficient matrices have been generated from

the reference model, given

D =

−6.15 6.15 0
0.28 −2.48 2.19

0 32.67 −32.67

 , S =

−989.35 989.35 0
45.80 −114.86 69.060

0 1028.77 −1304.63

 , (4.96)

resulting from parameters [60] with C3 = 615 Ns
m , C2 = 4761 Ns

m , C1 = 0, K3 = 98935 N
m ,

K2 = 149171 N
m , K1 = 40000 N

m , m3 = 80kg, m2 = 2160kg and m1 = 145kg for the Quarter-

Car-Model. It should be obvious that we have I ∈ R3×3 for the identity block and O ∈
R3×3 for the null block. Finally, we use bx(t) = (0,0,0)T for all t ∈ [0,0.5] and bv(t) =

(0,0,asin(ωt−ϕ))T with a = 2.0, ω = 6π and ϕ = π

2 .

Similar to the numerical solution of the reduced system in the previous section, we can

now compare the numerical solution of the coupled system. Since we regard a first order

transformation of the Quarter-Car-Model, we have in total three approximate solutions of

the velocities of the system, as well as three approximate solutions for the displacements.

We regard the approximation error for t ∈ D0.01([0,1]) in Table 4.2 for all components and

different step-sizes. Applying the numerical schemes to step-sizes smaller than 0.01, requires

interpolation of the road-profile, since all road-profiles are generated using h = 0.01. We can

therefore recognize that a reduction of the step-size does not necessarily lead to a reduction of

the approximation error for the Runge-Kutta scheme, which considers intermediate steps h
2 .

Semi-Explicit and Symplectic Euler method show similar error terms for h ∈
{

10−3,10−4
}

.

The implicit Midpoint rule is on average the most accurate method for smaller step-sizes but

has increasing error terms from h = 10−3 to h = 10−4. As seen in the previous section, the

Forward Euler method is not stable for h = 10−2, but delivers accurate results for appropri-

ate step-sizes.

In addition to Table 4.2, we can also analyse the Euclidean distance of the numerical

Chapter 4. Ordinary Differential Equations 89

Method Error h = 10−2 h = 10−3 h = 10−4

Forward

ζ1(v3)

43.03835 9.31297 8.49140
Semi-Explicit 2.03304 1.52442 1.41172

Symplectic 1.11990 1.46738 1.65275
Midpoint 0.49203 0.05602 0.35486

Runge-Kutta 2.99215 3.91158 4.09688
Forward

ζ1(v2)

3.09337 1.72503 1.64962
Semi-Explicit 0.95686 0.74430 0.71432

Symplectic 0.57501 0.70889 0.73998
Midpoint 0.24170 0.02696 0.04241

Runge-Kutta 0.53120 0.64547 0.66906
Forward

ζ1(v1)

34.72506 22.73031 21.77863
Semi-Explicit 14.78967 11.55345 11.19035

Symplectic 9.21607 11.19727 11.55005
Midpoint 3.73631 0.353710 0.27885

Runge-Kutta 7.72363 9.18361 9.54374
Forward

ζ1(q3)

1.27215 0.27731 0.25536
Semi-Explicit 0.07970 0.06761 0.06260

Symplectic 0.03109 0.03717 0.05002
Midpoint 0.04481 0.03810 0.04176

Runge-Kutta 0.10371 0.13047 0.13870
Forward

ζ1(q2)

0.09163 0.06008 0.05325
Semi-Explicit 0.03721 0.03251 0.03808

Symplectic 0.02756 0.02878 0.03570
Midpoint 0.02788 0.02740 0.03393

Runge-Kutta 0.03629 0.03864 0.04848
Forward

ζ1(q1)

0.88201 0.54094 0.51510
Semi-Explicit 0.57264 0.52426 0.52051

Symplectic 0.14363 0.16574 0.17354
Midpoint 0.34463 0.29878 0.29581

Runge-Kutta 0.36435 0.40312 0.41164

TABLE 4.2: Comparison of the constant of the approximation error for dif-
ferent step-sizes h and the introduced Euler schemes as given by Eq. (4.80).
To have comparable measures, we evaluated the error terms for all t ∈
D0.01([0,1]). The dimension of the solution is equal to the dimension of
the system, therefore we have in total six solutions to compare, describing

the velocities (v3,v2,v1) and the displacements (q3,q2,q1).

Chapter 4. Ordinary Differential Equations 90

Method Error h = 10−2 h = 10−3 h = 10−4

Forward

ζ2(v3)

5.85837 1.14705 1.05320
Semi-Explicit 0.24262 0.18341 0.17108

Symplectic 0.13611 0.17745 0.20302
Midpoint 0.05853 0.00710 0.05296

Runge-Kutta 0.37002 0.48972 0.51262
Forward

ζ2(v2)

0.38865 0.20880 0.20022
Semi-Explicit 0.12487 0.09578 0.09280

Symplectic 0.07336 0.09081 0.09407
Midpoint 0.03102 0.00358 0.00627

Runge-Kutta 0.06456 0.07710 0.07995
Forward

ζ2(v1)

4.34927 2.93091 2.81282
Semi-Explicit 1.96151 1.51540 1.46704

Symplectic 1.19827 1.46536 1.51229
Midpoint 0.49035 0.04721 0.03469

Runge-Kutta 0.99868 1.16918 1.21271
Forward

ζ2(q3)

0.17030 0.03477 0.03187
Semi-Explicit 0.00986 0.00828 0.00819

Symplectic 0.00388 0.00458 0.00605
Midpoint 0.00538 0.00460 0.00524

Runge-Kutta 0.01283 0.01631 0.01728
Forward

ζ2(q2)

0.01109 0.00734 0.00631
Semi-Explicit 0.00455 0.00397 0.00469

Symplectic 0.00321 0.00341 0.00462
Midpoint 0.00327 0.00316 0.00413

Runge-Kutta 0.00443 0.00473 0.00624
Forward

ζ2(q1)

0.11171 0.07066 0.06735
Semi-Explicit 0.07488 0.06762 0.06723

Symplectic 0.01831 0.02095 0.02186
Midpoint 0.04551 0.03954 0.03938

Runge-Kutta 0.04808 0.05281 0.05400

TABLE 4.3: Comparison of the Euclidean distance for different step-sizes
h and the introduced Euler schemes as given by Eq. (4.81). To have com-
parable measures, we evaluated the error terms for all t ∈D0.01([0,1]). The
dimension of the solution is equal to the dimension of the system, therefore
we have in total six solutions to compare, describing the velocities (v3,v2,v1)

and the displacements (q3,q2,q1).

Chapter 4. Ordinary Differential Equations 91

Method Time h = 10−2 h = 10−3 h = 10−4

Forward

t

0.00119 0.00892 0.08807
Semi-Explicit 0.00119 0.00899 0.09278

Symplectic 0.00150 0.01395 0.13597
Midpoint 0.00220 0.02510 0.25327

Runge-Kutta 0.00297 0.03008 0.30434

TABLE 4.4: The computational time (in seconds) to approximate the solu-
tion of the Quarter-Car-Model with one of the introduced numerical integra-

tion schemes is compared for different step-sizes h.

approximations in Table 4.3. The results are consistent with those shown in the previous

section. Therefore, we can conclude that all introduced methods can be appropriately used

to generate numerical approximations of the reduced Quarter-Car-Model. Nevertheless, we

need to consider efficient methods, such that one can handle generations of the road-profile,

restricted to h = 0.01.

We compare the computational effort to numerically generate the approximate solutions

of the system with the introduced schemes by regarding Table 4.4. Obviously, the Midpoint

and the Runge-Kutta scheme require a larger amount of time, due to the more complex inte-

gration scheme per step. The computational time for Forward and Semi-Explicit Euler are

approximately the same throughout all variations of h, where the Symplectic Euler requires

additional computational time, due to the computation of the matrix inverse at the starting

point of the integration.

Examples of the numerical solutions of the component’s velocities for all introduced

FIGURE 4.4: Exact solution (blue) of the example, compared to the
Forward-Euler (red), Symplectic Euler (cyan), Semi-Forward (magenta),
Midpoint (yellow) and Runge-Kutta (black) integration schemes for v3 on

interval [0,1] and step-size h = 0.001 (left) and h = 0.0001 (right).

schemes, are shown in Figure 4.4 - 4.6 for h = 10−3 on the l.h.s and h = 10−4 on the r.h.s.

Obviously, we recognize that all methods converge to the true solution for small step-sizes, as

Chapter 4. Ordinary Differential Equations 92

FIGURE 4.5: Exact solution (blue) of the example, compared to the
Forward-Euler (red), Symplectic Euler (cyan), Semi-Forward (magenta),
Midpoint (yellow) and Runge-Kutta (black) integration schemes for v2 on

interval [0,1] and step-size h = 0.001 (left) and h = 0.0001 (right).

FIGURE 4.6: Exact solution (blue) of the example, compared to the
Forward-Euler (red), Symplectic Euler (cyan), Semi-Forward (magenta),
Midpoint (yellow) and Runge-Kutta (black) integration schemes for v1 on

interval [0,1] and step-size h = 0.001 (left) and h = 0.0001 (right).

it has been analysed in the previously shown tables. Due to the stability of the Forward Euler

for small step-sizes, we can further recognize larger deviations for h = 10−3. Nevertheless,

the method converges for an appropriate step-size of h = 10−4 to the true solution. Similar

to the approximate velocities, we regard the approximate states of the system components in

Figure 4.7 - 4.9. The results are consistent with those of the approximate velocities. It is

therefore possible to use several different numerical schemes to generate appropriate results

for the first order reduction of the Quarter-Car-Model.

We have shown how to compute the solution of a family of coupled dynamical differen-
tial systems explicitly, using the solution theory of ordinary differential equations as well as
the numerical solutions for different Euler methods. We have further found out that struc-
ture preserving methods (Semi-Implicit / Semi-Explicit) give a more appropriate scheme
to efficiently compute approximations of coupled dynamical systems, even when choosing

Chapter 4. Ordinary Differential Equations 93

FIGURE 4.7: Exact solution (blue) of the example, compared to the
Forward-Euler (red), Symplectic Euler (cyan), Semi-Forward (magenta),
Midpoint (yellow) and Runge-Kutta (black) integration schemes for q3 on

interval [0,1] and step-size h = 0.001 (left) and h = 0.0001 (right).

FIGURE 4.8: Exact solution (blue) of the example, compared to the
Forward-Euler (red), Symplectic Euler (cyan), Semi-Forward (magenta),
Midpoint (yellow) and Runge-Kutta (black) integration schemes for q2 on

interval [0,1] and step-size h = 0.001 (left) and h = 0.0001 (right).

a smaller step-size, where a state-of-the-art Forward-Euler method fails. Finally, we have
shown in very detail, how to compute these solutions and can now in a last step compute
appropriate acceleration data of a dynamical system, given the numerical solutions of the
Quarter-Car-Model, introduced in the previous sections.

4.3 Data Generation from Randomly Perturbed Models

We know that the discussed second order ordinary differential equations can be used to de-
scribe the acceleration of a coupled dynamical system, using the velocities and displacements
with their corresponding spring - and damping - coefficients. Since velocities and displace-
ments are both partial solutions of the first order differential system, one can in a first step

Chapter 4. Ordinary Differential Equations 94

FIGURE 4.9: Exact solution (blue) of the example, compared to the
Forward-Euler (red), Symplectic Euler (cyan), Semi-Forward (magenta),
Midpoint (yellow) and Runge-Kutta (black) integration schemes for q1 on

interval [0,1] and step-size h = 0.001 (left) and h = 0.0001 (right).

compute the approximation of the discrete solution with an appropriate numerical integration
method and then in a second step, compute the l.h.s. of the ordinary differential equations to
acquire discrete values of the acceleration of the system.

We can then assume that this artificially created sequential data, could in principle also be
taken from a real sensing device, while a vehicle is driving on a road. Therefore, we are going
to focus for the generation of artificial data on randomly generated road-profiles, following
the principle in Chapter 2 based on [106]. In order to acquire a large amount of data, we use
random variations of the coefficients of the system matrix, based upon the explicit parameters
given in the vehicle model of [60].

4.3.1 Definition of the System

Let us shortly recapture the main components to define a separable differential system to
apply numerical solvers to it for the data generation process. Therefore, we have already seen
in Chapter 2, that the displacement of a road-profile was defined for a position s∈ [s0,sn]⊂R

for a road with length |sn− s0| by

u(s) =
N

∑
i=1

Ai sin (Ωis−ϕi) , (4.97)

where we have N = 1000 realizations of the phase shift, resulting from uniformly distributed
random phase shifts ϕi ∼U ([0,2π)) for i ∈ {1,2, ...,N}. Further we need to use an obvious
state-time shift, since the differential equations are defined to depend upon a time variable
t ∈ [t0, tn]. In this case, we make use of tvc = s for t ∈ [t0, tn] ⊂ R, where vc ∈ R is the
constant velocity of a car. For instance, let us assume that we have a track of 500 meters for
[s0,sn] = [0,500] , where the car is supposed to constantly drive a speed of 30 km

h . It then

Chapter 4. Ordinary Differential Equations 95

holds that the car needs a total time of 60 seconds and we therefore get t ∈ [t0, tn] = [0,60],
such that

u(t) =
N

∑
i=1

Ai sin (Ωitvc−ϕi) (4.98)

with Ω0 = 1 · 1
m , Ω1 = 0.02π · 1

m , ΩN = 6π · 1
m and Ωi+1 = Ωi +∆Ω for i ∈ {1,2, ...,N−1}

and ∆Ω = ΩN−Ω1
N−1 .

We now want to investigate the degree of roughness for the above description of the road-
displacement. It is therefore necessary to again regard the definition of the amplitude [106]
by

Ai =

√
Φ (Ωi)

∆Ω
π

(4.99)

with

Φ (Ωi) = Φ (Ω0)
(

Ω−2
1

Ω0

)
for Ω1 < Ωi ≤ΩN , (4.100)

where the degree of roughness then depends upon the value of Φ (Ω0). According to the ISO
8606 road-profile classification [106], we have a road of class A, if Φ (Ω0) = 40 · 10−6m3,
a road of class B for Φ (Ω0) = 41 ·10−6m3 and a road of class C, if Φ (Ω0) = 42 ·10−6m3.
We restrict our investigations to these three ISO classes, where it is obvious to see, that the
classification scheme is dependent upon a scaling of the amplitude of the road displacement
for all time-steps.

Let us now further assume that we have a fixed system matrix of our system, defined by

Aµ :=

[
Dµ Sµ

I O

]
, (4.101)

where

Dµ :=

−
C3
m3

C3
m3

0
C3
m2

−C2+C3
m2

C2
m2

0 C2
m1

−C2+C1
m1

 , Sµ :=

−
K3
m3

K3
m3

0
K3
m2

−K2+K3
m2

K2
m2

0 K2
m1

−K2+K1
m1

 , (4.102)

I ∈R3×3 is the identity matrix and O ∈R3×3 is the null matrix. In this case, we refer to [60]
and use C3 = 615 Ns

m , C2 = 4761 Ns
m , C1 = 0, K3 = 98935 N

m , K2 = 149171 N
m , K1 = 40000 N

m ,
m3 = 80kg, m2 = 2160kg and m1 = 145kg as realizations of the parameters for the Quarter-
Car-Model.

We have inserted the value C1 = 0, because in a more generic case, we could also inves-
tigate the parameters of a dynamical system, which has also a damping component for the
wheel-suspensions. It is further obvious that one can find a more compact expression for the
system parameters, since although we have Aµ ∈R6×6, we recognize that there are only 10

Chapter 4. Ordinary Differential Equations 96

parameters to distinguish in the system, such that we can define a bijection of the parameter
vector

pµ :=
(

C3

m3
,

K3

m3
,
C3

m2
,
C2

m2
,

K3

m2
,

K2

m2
,
C2

m1
,
C2 +C1

m1
,

K2

m1
,
K2 +K1

m1

)T

(4.103)

and the system matrix Aµ , using the short notation pµ ↔ Aµ .

A Semi-Explicit Euler method will be used in the following section to get approximate solu-
tions of the Quarter-Car-Model and to generate discrete acceleration values of the individual
components of the system. Therefore, we make use of a step-size h = 0.01, which equals the
sampling frequency of a common sensing device. Moreover, the computation of the road-
profile is also restricted to h = 0.01, as we do not intend to produce interpolation errors of
the road-profile for synthetic data generation. The Semi-Explicit Euler method has shown
to return appropriate approximations of the system. Besides, it requires less computational
time as for instance the implicit Method of the Runge-Kutta method and does not require the
computation of a matrix inverse.

4.3.2 Variations of Systems

We have defined the general terms of the main system in the previous section. It is now
further possible to use a variation of road-profiles and system matrices to generate arbitrarily
large datasets for Neural Network training. We want to give a short overview now, with the
help of the following scheme, to show the data generation process.

1. We generate a total number of Ntrain + Ntest ∈N road-profiles, which satisfies that we
can compute sufficiently large training and test datasets. We need to ensure that most
road-profiles belong to ISO class A (NA;train +NA;test profiles), some less to class B
(NB;train +NB;test profiles) and a few to class C (NC;train +NC;test profiles). It should
then hold that Ntrain = NA;train +NB;train +NC;train and Ntest = NA;test +NB;test +NC;test .
We choose a time-horizon [t0, tn] ⊂ R and a time-step h > 0. Therefore, each road-
profile has a total number of N = tn−t0

h discrete time-steps per road-profile. The fol-
lowing steps are explained for the training dataset, but are analogously done for the
test dataset.

2. We choose a standard deviation of σveh > 0 for the vehicle parameters, including chas-
sis and wheel-suspensions. For each road-profile, we want to compute a total num-
ber of M ∈N samples with random parameter realization. Therefore, we compute a
dataset of a total number of NS = MNtrain samples. Let one training sample be indexed
by m ∈ {1,2, ...,NS}. Let the system matrix for sample m be denoted by Am, let the
corresponding parameter vector be denoted analogously by pm. Then for all elements
of parameter pm, denoted by pm;l with l ∈ {3,4, ...,10}we randomly choose the param-
eter value for each sample k ∈ {1,2, ...,NS}, where each realization of the parameter

Chapter 4. Ordinary Differential Equations 97

values follows a Gaussian distribution N
(

pµ;l ,σ2
veh

)
. Since we have pµ;1 =

C3
m3

and
pµ;2 =

K3
m3

, we assume that the spring - and damping-constants of the seat are the same,
but the occupants mass of the system should vary. Therefore we assume that m3 varies
for all samples, following another distribution U ([m,m]), where m > 0 is the lower
limit for the mass, while m > 0 is the upper limit for the mass. This means that the
parameter values described in the previous section, are the mean values for the choice
of the random samples.

3. We denote by um ∈RN the road-profile belonging to sample m. Then for initial condi-
tions v0

m = q0
m = 0 for all m ∈ {1,2, ...,MNtrain}, we compute

vk+1
m = vk

m + h
(

Dmvk
m + Smqk

m + bk
m

)
qk+1

m = qk
m + hvk+1

m ,

with bk
m =

(
0,0, (pm,10− pm,9)uk

m
)T for k ∈ {0,1, ...,N− 1}where pm,10− pm,9 is the

coefficient of the spring, which scales the displacement of the road-profile, that acts on
the dynamical system at each time-step. We store vm ∈RN×3 and qm ∈RN×3.

4. For all time-steps k ∈ {0,1, ...,N−1}, we compute

ak
m = Dmvk

m + Smqk
m + bk

m, (4.104)

which is the l.h.s. of the differential equation and is therefore the discrete value of the
acceleration for each time-step. We store am ∈RN×3.

5. Repeat 2.-4. for the Ntest road-profiles for the test dataset.

Let then
S= {((am,vm,qm,um) , pm)}NS

m=1 (4.105)

be the artificially generated training dataset. This means, that the training samples are given
by acceleration am, velocity vm, displacement qm and road-displacement um for all m =

{1,2, ...,NS}. For the training data, according to the above scheme, we choose NA;train = 200,
NB;train = 140, NC;train = 60, [t0, tn] = [0,60], h= 0.01 and σveh = 0.1. The choice of σveh then
means that the parameters of the system, including chassis and wheel-suspensions should be
normally distributed around the mean value of the Quarter-Car-Model presented before, with
a standard deviation of 10%.

In a similar way, we can define a test dataset with

T = {((am,vm,qm,um) , pm)}NS+NT
m=NS+1 (4.106)

with the same type of data, where the road-profiles generated for the test data, are inde-
pendent on the generation of the road-profiles for the training data. We use NA;test = 100,
NB;test = 70 and NC;test = 30, such that NT = MNtest with NS = 2 ·NT , meaning that the size

Chapter 4. Ordinary Differential Equations 98

of the training set is double the size of the test set. Further, we choose m = 30 and m = 150,
meaning that the masses of the seat, including the occupant, vary uniformly distributed from
30 kg to 150 kg, where 30 kg should be the rear mass of the seat without a person on it.

Since we have in the above scheme described the data generation process of training and test
samples, resulting from the numerical solution of randomly generated Quarter-Car-Models,
we want to show now one arbitrary sample of the training set in the following section.

FIGURE 4.10: Example of a road profile for step-size h = 0.01 and a time
horizon of [0,10]

An example of a randomly generated road-profile is shown in Figure 4.10 for a time horizon
of 10 seconds and a step-size of h = 0.01. The herein shown road-profile is used for the
following generation of random training samples of the Quarter-Car-Model.

FIGURE 4.11: Example of acceleration (green), velocity (red) and displace-
ment (blue) of the occupant and seat data for step-size h = 0.01 and a time

horizon of [0,10]

Chapter 4. Ordinary Differential Equations 99

Since the solution of the differential system returns three trajectories of displacement qm;i, ve-
locity vm;i and acceleration am;i with m ∈ {1,2, ...,NS +NT} and i ∈ {1,2,3} for the Quarter-
Car-Model, we can see one example for the training dataset, resulting from the road-profile
of Figure 4.10. The data samples for the motion of the seat, including the occupant, is shown
in Figure 4.11. We can see from Eq. (4.104) that the acceleration depends upon a scaling
of velocity and displacement with the corresponding parameters. Thus one can recognize
larger amplitudes of the acceleration, where we have a more flat shape of the velocity and the
displacement for this sample.

FIGURE 4.12: Example of acceleration (green), velocity (red) and displace-
ment (blue) of the chassis data for step-size h = 0.01 and a time horizon of

[0,10]

Figure 4.12 is a similar example as given in Figure 4.11, where we can recognize the tra-
jectories of motion for the chassis of the Quarter-Car-Model. The shape of the returned
acceleration, velocity and displacement is similar to the sample shown for the motion of the
occupant. Nevertheless, the shape of the acceleration is less volatile compared to the ac-
celeration for the occupant, resulting from a significantly larger damping coefficient for the
chassis.

Figure 4.13 finally shows the trajectories of motion for the wheel-suspensions of the Quarter-
Car-Model, analogously to the chassis components in Figure 4.12 and the seat and occupant
components of Figure 4.11, resulting from the road-profile of Figure 4.10. Although the
displacement and velocity of the herein shown trajectories are comparably flat to the other
component trajectories, one can recognize a highly volatile shape of the acceleration data,
resulting from setting the damping coefficient C1 = 0.

Finally, since we have assumed the parameters to be randomly generated from Uniform and
Gaussian distributions for the training and test data, we can verify this assumption by having
a look at the histograms of the parameter values for all training and test samples.

Chapter 4. Ordinary Differential Equations 100

FIGURE 4.13: Example of acceleration (green), velocity (red) and displace-
ment (blue) of the wheel-suspension data for step-size h = 0.01 and a time

horizon of [0,10]

FIGURE 4.14: Histogram of parameters 1 and 2 for the training data (blue)
and the test data (orange) for bin-width 1. The realized parameter values
are shown on the horizontal axis, while the absolute cumulative frequency is

shown on the vertical axis.

We have assumed that the masses of the occupant component are randomly generated, fol-
lowing a uniform distribution. Since the damping - and spring - coefficients of the first
equation are scaled by the realization of the mass, one can recognize in Figure 4.14 that the
resulting parameter values are not uniformly distributed, which is an obvious investigation if
one considers a function f (m) = K

m for K > 0 and m ∈ [m,m] with m > 0 and m > 0. The
histogram on the l.h.s. according to the definition of the parameter vector in Eq. (4.103),
shows the distribution for the training and for the test samples of the damping coefficient,
while the r.h.s. shows the same for the spring coefficient. Since, we have NS = 2 ·NT it is
further obvious that there are less realizations of the test samples compared to the training
samples.

The remaining parameters of the Quarter-Car-Model have been assumed to be Gaussian dis-
tributed, since we want to have minor vehicle specific deviations of the model. Therefore,
one can recognize the realization of the parameters for the chassis in Figure 4.15. We can

Chapter 4. Ordinary Differential Equations 101

FIGURE 4.15: Histogram of parameters 3, 4, 5 and 6 for the training data
(blue) and the test data (orange) for bin-width 1.The realized parameter val-
ues are shown on the horizontal axis, while the absolute cumulative fre-

quency is shown on the vertical axis.

easily verify that the realization of the parameters for the training as well as for the test sam-
ples do indeed follow a Gaussian distribution with mean values specified in Eq. (4.103).

Finally, the realization of the parameter for the wheel-suspension in Figure 4.16 is similar to
those discussed in Figure 4.15. Again, one can recognize a discrete Gaussian distribution for
the training and test samples.

We have given a detailed introduction to solve ordinary differential equations of coupled
dynamical systems in this section. Further we have shown that arbitrarily large datasets of
random road-profiles and random parameter realizations can be used to specify a training and
a test dataset. For the final chapter, we will show that this dataset can then be used, to identify
the (then assumed to be unknown) parameters of the system. Therefore, the following chap-
ter will give a short overview about how parameters can be estimated from sequential data
for optimal systems. In a further step, we will investigate that a combination of commonly
used parameter estimation methods and data-driven methods can successfully be used to even
estimate the parameters of an uncertain system. These Hybrid Models show success for the
estimation problem, where one component of the model would fail to solve the task for the
uncertain system.

Chapter 4. Ordinary Differential Equations 102

FIGURE 4.16: Histogram of parameters 7, 8, 9 and 10 for the training data
(blue) and the test data (orange) for bin-width 1. The realized parameter
values are shown on the horizontal axis, while the absolute cumulative fre-

quency is shown on the vertical axis.

103

Chapter 5

Parameter Estimation for Dynamical
Systems

Parameter Estimation [6], in most cases also analogously called System Identification
[68], deals with the problem of fitting a hypothesis or candidate model to a given dataset
of input sources and output observations, minimizing the difference of estimated candidate
model states and observable measurements. Therefore, one needs to make use of the follow-
ing terms: Control (model input), System (model) and Response (model output). The herein
described structure of those three basic components leads to different problems in a vast field
of mathematical research. Without any detailed mathematical definition of the components,
one can for simplicity reasons denote the input of a system by u, the model by G and the
output by y, such that G(u) = y.

FIGURE 5.1: Input (control) is passed through the model (system) and gen-
erates an observation (system response). The scheme is crucial for all fol-

lowing experiments of the section.

First Problem: Assuming that the input and the model are known, one can compute the
underling true system response by solving the forward problem y = G(u). If one has
real measurements of such a system, denoted by ŷ, one can estimate the measurement er-
ror ε = ‖G(u)− ŷ‖. Computing the optimal states y of the forward problem for an optimal
system, has for instance already been investigated in Chapter 4 when solving differential
systems to approximate the discrete accelerations of the Quarter-Car-Model states with the
help of appropriate numerical schemes. As one never has continuous measurements, due to
sensing devices are restricted to given sampling frequencies, a sufficiently large finite set of
true states is appropriate to estimate the measurement noise for such problems.

Second Problem: Assuming that we have knowledge about the underlying true system and

Chapter 5. Parameter Estimation for Dynamical Systems 104

a finite set of responses, we want to estimate the corresponding value of the unknown input
control. If the system is linear, such that G is an invertible matrix, one can find the solution
of this inverse problem [6] by u = G−1y. Since it is most often the case, that the system is
in general not invertible, a more common method is finding an approximation of u by mini-
mizing the distance of given candidate controls û for ‖G(û)− y‖. Problems herein occur, if
the true system response it not exactly known, such that one needs to use the, probably noisy,
measurements ŷ as target values. The described second problem is also called reconstruc-
tion problem, as the now following last problem is sometimes also referred to as an inverse
problem in some sources.

Third Problem: Assuming that we have full knowledge about the input controls and the
corresponding system responses, we want to identify the model, which satisfies a mapping
from input to output. The problem is also called system identification [6], as we want to
estimate the system from this input-output relation. Since most systems are parametrized
functions or matrices, characterizing the given shape of measurements, one can instead also
use the term parameter estimation. One cannot explicitly solve G(u) = y for the system G,
since input and output do not necessarily need to have equal dimension. Therefore, similar
to the previously described reconstruction problem, one needs to have candidate systems Ĝ

to find such a system that minimizes ‖Ĝ(u)− y‖. Again, intense problems can occur, if the
true underlying system response y is unknown, but only noisy or incomplete measurements ŷ.

The last described problem, system identification, as it has already been intensively stud-
ied in the field of system theory, for instance by the mathematical description of dynamical
systems [51], is critical, when dealing with systems under uncertainties. Finding a unique
solution of the system then depends upon the terms controllability and observability of the
system [2, 101], which then ensures in most cases the identifiability of the system parame-
ters. Uncertainties, as for example measurement noise or partial observability, then lead to
massive problems, such that identifiability of the parameters within an acceptable confidence
interval cannot be ensured with commonly well-studied estimation methods.

System identification has thus become of intense interest, as Hybrid Models [15, 84] were
efficiently applied to overcome model or measurement uncertainties. Hybrid Models in gen-
eral describe the combination of at least two principles, for instance combining two math-
ematical methods to solve a certain problem. One possible approach is then to combine
mathematical models to solve, for instance least-squares problems, to estimate the parame-
ters of a system and combine these methods with Neural Networks, which have experienced
robustness against anomalies of the observed measurements. Prior knowledge [85] about
the underlying data structure can efficiently be exploited to define a given structure of a Hy-
brid Model.

The scope of Chapter 5 is therefore to make use of the previously achieved knowledge of
this work and efficiently apply the knowledge to define robust estimation models:

Chapter 5. Parameter Estimation for Dynamical Systems 105

• We know the structure of the Quarter-Car-Model, therefore we can simplify the estima-
tion problem to the relevant parameters of the model, since some entries of the system
matrix only differ in the sign or can be described as the negative sum of neighboured
entries.

• We know that Neural Networks can solve various data fitting problems for arbitrary
dimension of the data, where it is in principle possible to map the input data to any
output dimension.

• We know that a Semi-Explicit Euler method has been used to generate the data sam-
ples of our training and test set. Therefore, as it is commonly used for least-squares
problems, we assume that this method describes the exact behaviour of the real world,
to have full knowledge about the structure of the optimal model. We can then appropri-
ately evaluate the estimated system responses and the corresponding true observations.

The now following section can therefore be separated in a general problem description of
the system identification task, where the properties on parameter identifiability are shown,
following the structure of the transfer-function of the system. We then make use of own
developed Hybrid Models, on the one hand for a relatively simple, data-driven, parameter
estimation problem and on the other hand for an identification problem of the Quarter-Car-
Model, where a Hybrid Gauss-Newton method will be derived and explained.

5.1 Identifiability of Linear Time-Invariant Systems

We are interested in finding a sufficiently good approximation of the true underlying pa-
rameter values of given acceleration data when trying to solve system identification tasks.
Regarding a coupled dynamical system as the Quarter-Car-Model, the input control has been
described as a spring-force scaled representation of the given road-displacement, divided by
the mass of the suspensions, where there are output measurements given by the vertical accel-
eration profiles of wheel-suspensions, car-body / chassis and occupant. Since the individual
equations of the differential system, as described by Eq. (4.102), do not share any of their
parameters, as they depend upon the component specific mass, it could therefore occur, given
less than full observability of the output measurements, that the entire set of parameters can-
not be estimated within an acceptable confidence interval.

There is a wide area in research about system theory [68, 69] and identifiability of dynamical
systems, delivering different approaches to find theoretical criteria to validate whether a sys-
tem is completely identifiable or not. Therefore, the terms controllability and observability
have become of immense interest since both properties are necessary conditions on the iden-
tifiability of the system. Both terms will be described in the next session, as it is stated by
[51]. Further explanations for the identifiability of continuous systems, as discussed by [101]
or [2] then define the property of observability and controllability by corresponding matrices

Chapter 5. Parameter Estimation for Dynamical Systems 106

and their rank. Nevertheless, it can be shown, that computation of the rank for these matrices
is not trivial, since it requires computation of moments of the system matrix. We therefore
use a more common approach, considering the transfer-function and the Impulse-Response
[2, 9, 51] to find properties on identifiability. This then leads to insights, when a dynamical
system, as for instance the Quarter-Car-Model, should be identifiability, nevertheless [87] has
stated, that there is a gap between structural identifiability and practical identifiability, since
the identifiability also depends on the quality of available data.

5.1.1 Linear Systems and Laplace-Transform

We first of all consider Linear Time-Invariant (LTI) systems, as they have in principle
already been defined by the general differential systems in Chapter 4. So far, we have con-
sidered the system matrix and a source vector for the non-homogeneous term. It should
nevertheless be obvious that the non-homogeneous term can analogously be expressed by a
given control matrix and a source vector of multi-dimensional input signals. Furthermore,
we in addition make use of an observability term, since we consider a generalized expression
for the system response, which leads to the following expression, as stated by [2, 51, 101].

Definition 24 (Linear Time-Invariant Systems)
Let us consider the system

ẋ(t) = Ax(t)+Bu(t) (5.1)

y(t) =Cx(t), (5.2)

for a finite time-horizon t ∈ [t0, tn]⊂R, where x∈C 1
(
[t0, tn],Rd

)
is the state, u∈C 0 ([t0, tn],Rp)

is the control and y ∈ C 0 ([t0, tn],Rm) is the system response. Furthermore, we have the con-

stant system matrix A ∈ Rd×d , the control matrix B ∈ Rd×p and the observation matrix
C ∈Rm×d where d,m, p ∈N. The system by Eq. (5.1) and Eq. (5.2) is then called a Linear
Time-Invariant System.

Definition 25 (Controllable System [51])
A Linear Time-Invariant system is completely controllable at time t0 ∈R, if we cannot find a

separation of the state variables x ∈ C 1
(
[t0, tn],Rd

)
with x := (x1,x2)T ∈Rd , such that the

LTI system is algebraically equivalent for t ≥ t0 to a system of type

ẋ1(t) = A11x1(t)+A12x2(t)+B1u(t) (5.3)

ẋ2(t) = A22x2(t) (5.4)

y(t) =C1x1(t)+C2x2(t). (5.5)

Controllability, as stated above, in other words mean: It is not possible to find an equivalent
coordinate system, in which the state variables are separated into x1(t) ∈ Rm and x2(t) ∈
Rd−m for t ∈ [t0, tn] and d, m ∈N, such that the second group is not affected either by the
first group or the inputs of the system.

Chapter 5. Parameter Estimation for Dynamical Systems 107

Definition 26 (Observable System System [51])
A Linear Time-Invariant system is completely observable at time t0 ∈R, if we cannot find a

separation of the state variables x ∈ C 1
(
[t0, tn],Rd

)
with x := (x1,x2)T ∈Rd , such that the

LTI system is algebraically equivalent for t ≥ t0 to a system of type

ẋ1(t) = A11x1(t)+B1u(t) (5.6)

ẋ2(t) = A21x1(t)+A22x2(t)+B2u(t) (5.7)

y(t) =C1x1(t). (5.8)

Observability, similar to controllability, means: It is not possible to find an equivalent coordi-
nate system, in which the state variables are separated into x1(t) ∈Rm and x2(t) ∈Rd−m for
t ∈ [t0, tn] and d, m ∈N, such that the second group is not affected either by the first group or
the inputs of the system. A dynamical system is identifiable, if it is completely controllable
and completely observable.

Since the above definitions can be used to in general understand the terminology of control-
lability, observability and identifiability, but give no insights about how to show the property
explicitly, we need to make use of another approach to define criteria on the identifiability of
systems. Therefore, we introduce the Laplace-Transform [53, 82, 94, 96, 105] to get deeper
insights, how to define identifiable systems with the help of the Transfer-Function, which is
precisely described below.

Definition 27 (Laplace-Transform [94])
Given a function f ∈ C 2

(
[0, tn],Rd

)
, the (point-wise) Laplace-Transform is defined by

L{ f} (z) :=
∫

∞

0
e−zt � f (t)dt, (5.9)

where t ∈ [0, tn] is the time variable of the original function, d ∈N the dimension of the

function mapping and we assume that L{ f} = 0 if t < 0. Moreover, the complex variable

z ∈ C is the frequency variable of the Laplace-Transform.

Given a function g∈C 2
(
[0, tn],Rd

)
of the same class, the following properties of the Laplace-

Transform hold [94].

• The Laplace-Transform is linear, meaning that for two scalar-valued terms a,b ∈ R,
we have

L{a f + bg}= aL{ f}+ bL{g} . (5.10)

• It holds for the Laplace-Transform of the first order derivative f ′(t) := d
dt f (t) for t ≥ 0,

that
L
{

f ′
}
(z) = zL{ f} (z)− f (0). (5.11)

Chapter 5. Parameter Estimation for Dynamical Systems 108

• It holds for the Laplace-Transform of the second order derivative f ′′(t) = d2

dt2 f (t) that

L
{

f ′′
}
(z) = z2L{ f} (z)− z f (0)− f ′(0). (5.12)

Making use of the above properties of the Laplace-Transform, one can in some cases ef-
ficiently use the transformation to the frequency domain, to find a solution to a differential
equation, as for instance given in [94], without making use of the techniques stated in Chapter
4, but using other methods like partial fractions to find the original function of the transform.

Example 17
Consider a non-homogeneous ordinary differential equation of the following type

ÿ(t)− y(t) = e5t

for a time variable t ∈ [t0, tn] ⊂ R and y ∈ C 2 ([t0, tn],R) with t0 = 0 and initial conditions

y(0) = 0, ẏ(0) = 0. Then, making use of the following equation with f (t) = eat ,

L{ f} (z) =
∫

∞

0
e−zteatdt =

1
z−a

(5.13)

if Re(z) >Re(a) for a ∈ C, one obtains by applying the Laplace-Transform on the l.h.s. as

well as on the r.h.s., that

L{ÿ} (z)−L{y} (z) = 1
z−5

⇔ z2L{y} (z)−L{y} (z) = 1
z−5

⇔ L{y} (z) = 1
(z−5)(z2−1)

.

Using partial fractions, we use the approach

L{y} (z) = c1

z−5
+

c2

z−1
+

c3

z+ 1
,

with constants c1,c2,c3 ∈ C. Obviously, it needs to hold that

1 = (z2−1)c1 +(z−5)(z+ 1)c2 +(z−5)(z−1)c3,

which then results to the solution

L{y} (z) = 1
24(z−5)

− 3
24(z−1)

+
2

24(z+ 1)

and since we have already considered Eq. (5.13), we conclude that

y(t) =
1
24

e5t − 3
24

et +
2

24
e−t . (5.14)

Chapter 5. Parameter Estimation for Dynamical Systems 109

It should easily be verifiable that y(t) is indeed a solution to the above defined non-homogeneous

second order ordinary differential equation.

Applying the Laplace-Transform to a LTI-system, as stated in Definition 24, where we now
assume to have no system or observation noise and t0 = 0, x(0) = 0 and ẋ(0) = 0, we directly
obtain that

L{ẋ} (z) = AL{x} (z)+BL{u} (z)

⇔ L{x} (z) = (zI−A)−1 BL{u} (z),

where for the identity matrix I ∈Rd×d , the matrix term (zI−A) is assumed to be invertible.

The Transfer-Function [2] of the system is then given by

L{y} (z) =CL{x} (z) =C (zI−A)−1 BL{u} (z). (5.15)

Moreover, the input-output relation, or Impulse-Response of the dynamical system, can then
be defined for a LTI-system by

G1 (z;{A,B,C}) :=C (zI−A)−1 B (5.16)

as it is also stated for instance in [2, 9, 101].

Since we want to find criteria on the identifiability of the system parameters for coupled dy-
namical models, we need to analyse the invariance of the impulse-response for LTI-systems
[101] for a specific transformation. Let us therefore w.l.o.g. assume, that we have a specified
transformation of an LTI system with square matrices A, B, C ∈ Rd×d with d ∈N and a
regular transformation matrix T ∈Rd×d , such that we consider

{A,B,C} 7→
{

T−1AT ,T−1B,CT
}

. (5.17)

One can then show, that the Impulse-Response G1 (z;{A,B,C}) is invariant, for instance
under a transformation as given by Eq. (5.17), due to

G1
(
z;
{

T−1AT ,T−1B,CT
})

=CT
(
zI−T−1AT

)−1
T−1B

=CT
(
T−1 (zI−A)T

)−1
T−1B

=CT T−1 (T−1 (zI−A)
)−1

T−1B

=CT T−1 (zI−A)−1 T T−1B

=C (zI−A)−1 B

= G1 (z;{A,B,C}) .

Since we have considered a three dimensional dynamical system of second order ordinary
differential equations for the Quarter-Car-Model, we need to apply the herein shown results
to such systems in the following section.

Chapter 5. Parameter Estimation for Dynamical Systems 110

5.1.2 Systems of Second Order and Impulse Response

Similar to Definition 24, we can define a second order system with the help of the following
definition.

Definition 28 (Second Order Linear-Time Invariant System)
We consider the second order dynamical system

ẍ(t) = Dẋ(t)+ Sx(t)+Bu(t) (5.18)

y(t) =Cx(t), (5.19)

for a finite time-horizon t ∈ [t0, tn] ⊂ R, a state function x ∈ C 2
(
[t0, tn],Rd

)
, a control u ∈

C 0 ([t0, tn],Rp) and the system response y ∈ C 0 ([t0, tn],Rm) with d, p,m ∈N. Further, let

D ∈ Rd×d be the damping-coefficient matrix, S ∈ Rd×d the spring-coefficient matrix and

similar to the first order system, let us denote by B ∈ Rd×p the control matrix and by C ∈
Rm×d the observation matrix.

Let us w.l.o.g. assume that there is a transformation for a second order dynamical system,
given by

{D,S,B,C} 7→
{

T−1DT ,T−1ST ,T−1B,CT
}

, (5.20)

where again, T ∈Rd×d is a regular matrix with inverse T−1. In this case, we again have the
damping-matrix D ∈Rd×d , the spring-matrix S ∈Rd×d , the control matrix B ∈Rd×d as well
as the observation matrix C ∈Rd×d . It is obvious that the impulse-response of the second
order system, is also invariant under the above transformation, yielding that

G2 (z;{D,S,B,C}) :=C
(
z2I− zD−S

)−1
B (5.21)

=CT
(
z2I− zT−1DT −T−1ST

)−1
T−1B (5.22)

= G2
(
z;
{

T−1DT ,T−1ST ,T−1B,CT
})

. (5.23)

The above invariance of the impulse response shows that for a transformation matrix T ∈
Rd×d , the spring-matrix S ∈ Rd×d as well as the damping matrix D ∈ Rd×d are corrupted
in an equal sense, such that {D,S} 7→

{
T−1DT ,T−1ST

}
. Therefore, if one wants to find

criteria on the identifiability of the system parameters, as shown in the next section, it is
sufficient to either compare the entries of D and D̃ := T−1DT or S and S̃ := T−1ST . If
D = D̃ and therefore also S = S̃, we can assume that the system parameters can uniquely
be determined, independent on a transformation T , if the matrices are not equal, we can
conclude that there are different parameter matrices, which give the same impulse-response
under distinguishable realizations of the system parameters.

Chapter 5. Parameter Estimation for Dynamical Systems 111

5.1.3 Identifiability of Observable Systems

We want to show explicit criteria on the structural identifiability for the parameters of the
Quarter-Car-Model for partially observable systems. Therefore, the damping-coefficient ma-
trix D and the spring-coefficient matrix S can be defined by

D =

−d1 d1 0
d2 −(d2 + d3) d3

0 d4 −d5

 , S =

−s1 s1 0
s2 −(s2 + s3) s3

0 s4 −s5

 . (5.24)

Due to the hierarchical structure of the Quarter-Car-Model, the road-profile does directly
affect only the wheel-suspension’s state, such that we can assume that with B ∈R3×3, we get

B =

0 0 0
0 0 0
0 0 1

 . (5.25)

Since the control directly or indirectly affects all states of the system, the system cannot be
decoupled, such that there is a group of states not affected by the control or the remaining
group of states. Following this definition of [51] as stated in the beginning of this section,
we can conclude that the Quarter-Car-Model is controllable. Therefore, the identifiability
property of the system parameters, obviously depends upon the observation property of the
system. We therefore need to make assumptions to the realization of C in a similar way as
for the matrix B with the help of the now stated examples.

Assume that the Quarter-Car-Model is invariant under the transformation T ∈ R3×3, such
that it does not affect the output with CT = C and the input with T−1B = B as given by the
impulse-response. If the similarity matrices, as stated in the impulse response, are different
from the original matrices, namely D̃ = T−1DT 6= D and S̃ = T−1ST 6= S, then the system is
not uniquely identifiable, since {D,S} differs from

{
D̃, S̃

}
.

Since we want to investigate properties on the identifiability of the Quarter-Car-Model, we
have d = 3 as row and column size for the transformation matrix. Let us therefore in general
assume that the transformation matrix and its inverse are given by the general expression

T =

t11 t12 t13

t21 t22 t23

t31 t32 t33

 , T−1 =

τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 . (5.26)

Using the general description of the transformation and its inverse is helpful to step by step
investigate the structure in the now following examples.

Chapter 5. Parameter Estimation for Dynamical Systems 112

Example 18 (Full-Observability)
Let us assume that the observation matrix is given by the identity

C =

1 0 0
0 1 0
0 0 1

 , (5.27)

which means that all states of the system can be observed from the impulse response. Since

we assume that T−1B = B, it follows from

T−1B =

0 0 0
0 0 0
0 0 τ33

 (5.28)

that τ33 = 1. We have further assumed that CT =C. It is obvious that there is only one possi-

ble transformation, since C is equal to the identity matrix I ∈R3×3 and from IT = I it follows

that T = I. Therefore, for the inverse, it holds that T−1 = I and for the transformation of the

parameter matrices, we have T−1DT = IDI = D and T−1ST = ISI = S.

In summary, this investigation yields, that if one has full-observability of all states of the

system, then there is only the identity matrix as possible transformation which satisfies the

invariance property of the impulse-response. Since the identity matrix does not change the

parameters of the damping-matrix and the spring-matrix, there is only one possible realiza-

tion for the parameters. Therefore, the system should be identifiable from the full-observation

property. As we have investigated that the system is completely controllable and completely

observable, the identifiability of the system follows from the theoretical statements as given

by [2, 51, 101].

Example 19 (One Unobservable State)
Let us assume that the observation matrix is given by

C =

1 0 0
0 1 0
0 0 0

 , (5.29)

which means that all states, but the wheel-suspension state, of the system can be observed

from the impulse response. Since we assume that T−1B = B, it follows from

T−1B =

0 0 τ13

0 0 τ23

0 0 τ33

 (5.30)

Chapter 5. Parameter Estimation for Dynamical Systems 113

that τ13 = 0, τ23 = 0 and τ33 = 1. We have further assumed that CT = C. It is therefore

obvious from computation of the transformation

CT =

t11 t12 t13

t21 t22 t23

0 0 0

 (5.31)

that t11 = t22 = 1 and t12 = t13 = t21 = t23 = 0. Then, one can finally observe from T T−1 = I

that τ11 = τ22 = 1, τ12 = τ13 = τ21 = τ23 = 0, t33 = τ33 = 1 and τ31 =−t31, τ32 =−t32, such

that we get the structure of the transformation matrices by

T =

 1 0 0
0 1 0

t31 t32 1

 , T−1 =

 1 0 0
0 1 0
−t31 −t32 1

 . (5.32)

Computation of the transformed damping-matrix D̃ = T−1DT , then yields, that

D̃=

 −d1 d1 0
d2 + t31d3 −d2 +(t32−1)d3 d3

t31d1− t32d2− t31t32d3− t31d5 −t31d1 + t32d2 +(t32− t2
32)d3 + d4− t32d5 −t32d3−d5

 ,

(5.33)
which shows that D̃ 6= D and it is trivial that for S̃ = T−1ST , we have the same type of trans-

formation structure.

In summary, this investigation yields, that one can choose the entries of the transforma-

tion, namely t31 ∈R and t32 ∈R arbitrarily, nevertheless all possible transformations satisfy

CT =C, and T−1B = B, due to having only partial observability of the system. Therefore, we

can suggest that if we have less than full-observability of the system, that it is then not possi-

ble to uniquely determine the parameters of the model, since the impulse-response is equal for

the true parameter matrices {D,S} and all of the possible transformations {T−1DT ,T−1ST}.
It is obvious that there are an infinite number of possible transformations for this case.

Example 20 (Two Unobservable States)
Let us assume that the observation matrix is given by

C =

1 0 0
0 0 0
0 0 0

 , (5.34)

which means that only the state of the occupant of the system can be observed from the

impulse response. Since we assume that T−1B = B, it follows from

T−1B =

0 0 τ13

0 0 τ23

0 0 τ33

 (5.35)

Chapter 5. Parameter Estimation for Dynamical Systems 114

that τ13 = 0, τ23 = 0 and τ33 = 1. We have further assumed that CT = C. It is therefore

obvious from

CT =

t11 t12 t13

0 0 0
0 0 0

 (5.36)

that t11 = 1 and t12 = t13 = 0. It obviously follows from T T−1 = I that we then require

τ11 = 1 and τ12 = τ13 = 0. Furthermore, we can derive the following equations from T−1T

and similar from T−1T that

(i) τ21 + τ22t21 = 0
(ii) τ22t22 = 1
(iii) τ31 + τ32t21 + t31 = 0
(iv) τ32t22 + t32 = 0.

It is obvious, from (i)− (iv), that τ22 =
1

t22
, τ21 = − t21

t22
, τ32 = − t32

t22
and τ31 =

t32t21−t31t22
t22

if

we assume that t22 6= 0. The class of transformations and their corresponding inverses then

have the following general structure

T =

 1 0 0
t21 t22 0
t31 t32 1

 , T−1 =

 1 0 0
− t21

t22

1
t22

0
t32t21−t31t22

t22
− t32

t22
1

 . (5.37)

It can be verified, without explicitly computing the transformation D̃ = T−1DT in detail, that

we have

D̃ =

−d1 d1 0
d̃21 d̃22 d̃23

d̃31 d̃32 d̃33

 . (5.38)

Therefore, we can again notice that the first row of the parameter matrix is not transformed,

due to the condition of partial observability. Nevertheless, we recognize that in contrast to

the previous example, we have not only two transformation variables to choose a specific

acceptable transformation, but four variables, namely t21 ∈ R, t22 ∈ R \ {0}, t31 ∈ R and

t32 ∈R. Thus we have again an infinite number of possible transformation matrices, which

satisfy the given observability and controllability condition of the example. We can therefore

conclude that for this specific problem, all parameters cannot be uniquely determined from

the impulse-response of the system.

Given the above stated examples, we can conclude that for partially observable systems, the
parameters cannot be uniquely determined since there exist a family of possible parame-
ter matrices, induced by transformations of the shown types, which give the same impulse-
response of the system. Nevertheless, we have seen that for all cases, the first row of the
damping-matrix and the spring-matrix, are invariant under all possible transformations. As a
consequence, we now want to deal with the following problems:

• The parameters of the occupant’s differential equation should be identifiable. We are

Chapter 5. Parameter Estimation for Dynamical Systems 115

therefore going to make investigations from several experiments, if this is indeed the
case.

• The parameters of the Quarter-Car-Model are not all identifiable if we only have partial
observability of the system. We are therefore going to make investigations from several
experiments, where we change the grade of observability.

• We are going to develop Hybrid Models, including several Neural Networks structures,
that overcome the problems of the above stated experiments.

The now following section therefore deals with several investigations, we have done as far as
parameter estimation for optimal systems and for systems under uncertainties is concerned.
A more specific description of each problems is given in the corresponding problem specifi-
cation.

5.2 Parameter Estimation for Ordinary Differential Equations

We have observed, that for the identifiability condition of the Quarter-Car-Model parameters,
if the state of the occupant is observable, that also the corresponding parameters of the ordi-
nary differential equation, are not varied for a transformation of the system matrix. Regarding
the training and test dataset, that we have created in Chapter 4, denoted by

S= {((am,vm,qm,um) , pm)}NS
m=1

for the training data with NS = M ·Ntrain = 100 ·340 = 34000 samples and

T = {((am,vm,qm,um) , pm)}NS+NT
m=NS+1

for the test data with NT = M ·Ntest = 100 ·170 = 17000 samples, resulting from the number
of generated random road-profiles and random parameter realization for each set. Resuming
the terminology of the dataset elements, we herein give a short definition as follows:

• am ∈RN×3 is the discrete acceleration of the Quarter-Car-Model for the three observ-
able components, with length N ∈N. The length is specified for each experiment later
on.

• vm ∈RN×3 is the discrete velocity of the Quarter-Car-Model with the same dimension
as given by the definition of the acceleration profile am.

• qm ∈RN×3 is the discrete state or displacement of the Quarter-Car-Model.

• um ∈RN is the generated road-profile to the corresponding displacement, velocity and
acceleration.

• pm ∈ R10 is the vector of relevant Quarter-Car-Model parameters, such that we can
simplify the problem to the estimation of the parameter vector, instead of estimation
of the system matrix Am ∈ R6×6. As we already know, the system matrix contains

Chapter 5. Parameter Estimation for Dynamical Systems 116

four blocks, namely the damping-coefficient matrix Dm ∈R3×3, the spring coefficient
matrix Sm ∈R3×3, the identity matrix I ∈R3×3 and the null matrix O∈R3×3, resulting
from reduction of the second order system to a first order system. As it is inefficient
to estimate the identity and the null matrix and since we already know that each, the
damping- and spring-coefficient matrices, contain 5 distinguishable parameters, it is
efficient to estimate these 10 parameters, given by pm. It is then possible to switch
from pm to Am and vice versa, using a bijection pm↔ Am.

• m ∈N describes the index of the training and test samples. We have m ∈ {1,2, ...,NS}
for the training samples and m ∈ {NS + 1,NS + 2, ...,NS +NT} for the test samples.

For the sake of simplicity, let us assume that the parameter vector pm can be described by

pm := (pm;1, pm;2, pm;3, pm;4, pm;5, pm;6, pm;7, pm;8, pm;9, pm;10)
T , (5.39)

where the definition of the elements pm;i for i ∈ {1,2, ...,10} follows the random variation
of the mean parameters of Eq. (4.103) for sample m ∈ {1,2, ...,NS + NT}. Further, let us
define the scaling coefficient of the road displacement by pm;u := pm;10− pm;9. In a similar
way, the multi-dimensional acceleration profile am can be distinguished in am;3 ∈RN for the
occupant, am;2 ∈RN for the chassis and am;1 ∈RN for the wheel-suspensions. Analogously,
one can define the individual velocities vm;i and displacements qm;i for i ∈ {1,2,3} such that
the acceleration of the occupant for each sample follows the equation

am;3 = −pm;1 (vm;3− vm;2)− pm;2 (qm;3−qm;2) ∈RN , (5.40)

which corresponds to Eq. (2.54) of the Quarter-Car-Model. We can therefore observe, that
the acceleration of the occupant depends upon the damping parameter pm;1, the spring pa-
rameter pm;2, the velocity vm;3 and the displacement qm;3 of the occupant and the velocity
vm;2 and the displacement qm;2 of the chassis. The effect of the road-displacement um is im-
plicitly given by the velocity and displacement of the chassis, as it is not explicitly shown
in Eq. (5.40). If we therefore consider this sub-system of the Quarter-Car-Model for the
parameter estimation problem, the following setting is used for a first series of experiments.

• The input (control) of the system can be described by qm;2, vm;2 and am;2 as the chassis
is coupled to the occupant’s seat for the Quarter-Car-Model.

• The system is described by the parameters pm;1 and pm;2.

• The output (system response) is given by qm;3, vm;3 and am;3.

The problem of the now following experiments for the section, can be described with the
help of Figure 5.2: We want to estimate the parameters of the described sub-system, given by
pm;1 and pm;2 for each sample of the training data S and the test data T, using a data-driven
approach. Therefore, a Convolutional Neural Network is used to process the control and the
system response to predict the unknown parameter values of the system. Several approaches
will be investigated, using a labelled as well as an unlabelled training method, where we

Chapter 5. Parameter Estimation for Dynamical Systems 117

FIGURE 5.2: Data driven parameter estimation: Control and System Re-
sponse are processed via a Convolutional Neural Network to predict the val-

ues of the system parameters of an ordinary differential equation.

compare the trained Neural Networks w.r.t. the generalization error and robustness against
noise. All experiments of Chapter 5 were executed, using an NVIDIA Tesla V100 SMX2
32GB graphics card.

5.2.1 Experiment 1: Data Driven Parameter Estimation

Problem

We assume that we have access to the reduced training dataset

S(1) = {((am;3,am;2) , (pm;1, pm;2))}NS
m=1 ,

and a reduced test dataset

T(1) = {((am;3,am;2) , (pm;1, pm;2))}NS+NT
m=NS+1 ,

which means that the acceleration profile am;3 ∈RN of the occupant, as well as the acceler-
ation profile am;2 ∈RN of the chassis are observable and the corresponding labels are given
by the damping-coefficient pm;1 ∈R and the spring-coefficient pm;2 ∈R. The parameters are
characteristic for the acceleration of the occupant, as can be verified from Eq. (5.40). As it
has been defined in Chapter 4, we consider a training dataset with NS =MNtrain = 100 ·340=
34000 individual samples and a test dataset with NT = MNtest = 100 ·170 = 17000 samples.

The problem, we want to investigate is: Given the acceleration profiles of the defined
training dataset, can the unknown parameters of the occupant’s acceleration be appro-
priately estimated with a data driven model, as for instance a Neural Network?

Chapter 5. Parameter Estimation for Dynamical Systems 118

Method

For the sake of simplicity, we denote by a3 ∈RN with N ∈N a general acceleration profile
of the occupant of the training data. Analogously, a2 ∈RN is the acceleration profile for the
chassis, p1 > 0 the damping-parameter and p2 > 0 the spring-parameter. We now want to
solve the above described problem with the help of a Convolutional Neural Network, which
processes the observable acceleration profiles, targeting at the values of the underlying true
parameter labels. More precisely, we can define the network with the help of the general
function description

f (1)
θ

: RN×2→R2

(a3,a2) 7→

(
p̃1(θ)

p̃2(θ)

)
,

where we can define the prediction for the damping-coefficient and the spring-coefficient in
terms of the Neural Network’s output as

p̃i(θ) = f (1)
θ

((a3,a2))i ∈R

with index i = 1 for the damping-coefficient and i = 2 for the spring-coefficient. As it has
been described in Chapter 3, the network parameters, which should be optimized in the course
of the training process, are denoted by θ .

Finally, we define the loss-function of the Neural Network training for all samples (am;3,am;2)∈
S(1) as follows:

min
θ

1
NS

NS

∑
m=1

L (θ , (am;3,am;2), (pm;1, pm;2)) =
1

NS

NS

∑
m=1

2

∑
i=1
|pm;i− p̃m;i(θ)| , (5.41)

where NS = 34000 is the size of the training dataset.

The loss-function is minimized, using the following training specifications:

• Optimization method: Adaptive Momentum (ADAM) Optimization

• Learning-rate: η = 0.005

• Batch-size: B = 1000

• Series-length of the input samples: N = 500

• Training-epochs: E = 1000

Since the size of the training set, according to the data generation description of Chapter 4, is
NS = 34000, one training epoch contains NS

B = 34 optimization steps. Having a total number
of E = 1000 epochs, then results in 34000 optimization steps for the total training process.
ADAM optimization [33] has shown to be one of the most successful optimization techniques

Chapter 5. Parameter Estimation for Dynamical Systems 119

for training of Deep Neural Networks, using an averaged Gradient-Descent step, compared
to the state-of-the-art Stochastic Gradient Descent (SGD) method [33]. After finishing the
optimization process, we want to compare the performance of the pre-trained network de-
noted by f (1)

θα
, comparing the performance for the data samples and corresponding labels of

S(1) with NS = 34000 pairs and T(1) with NT = 17000 pairs. With θα ∈ Θ, we denote the
realization of the network parameters after K = E · NS

B = 34000 optimization steps, therefore
θα = θ K .

A detailed description of the network’s layer structure is given by Figure B.1 and the source
code is shown by Figure A.1 and Figure A.2. Implementation of the training is given by
Figure A.3 and Figure A.4.

Results

The first investigation we want to make, is to analyse the minimization of the loss-function
described in the previous section for a total number of 1000 training epochs. If the loss-
function has been chosen appropriately, this should be verifiable from a visualization of the
loss-function’s shape.

(a) Loss in Parameter Space. (b) Loss in Data Space.

FIGURE 5.3: Shape of the loss-functions for labelled training approach. The horizontal axis shows
the number of training epochs. The loss-functions have been evaluated for the entire datasets at each
epoch. The vertical axis shows the value of the loss-function, as it has previously been defined. The
shape of the training loss is visualized in blue, the test loss in orange. We differ between parameter
loss in Figure 5.3a and data loss in Figure 5.3b. The parameter loss describes the value of the labelled
loss-function in Experiment 1, the data loss describes the value of the unlabelled loss-function as

defined in Experiment 2.

The shape of the loss-functions are shown in Figure 5.3. As it is described in the caption
of the function, we observe the parameter loss on the l.h.s., as well as the data loss on the
r.h.s. The data loss describes the distance in the data space, where the estimated parameter
values are used to reconstruct the acceleration profile of the occupant. Then the difference
between predicted profile and true profile can be estimated. This function will more precisely
be defined in Experiment 2. The parameter loss corresponds to the value of the loss-function

Chapter 5. Parameter Estimation for Dynamical Systems 120

described in the method of this experiment. We can recognize that for both losses, the op-
timization is done appropriately. The loss-function is minimized, the longer we train our
network. Furthermore, it seems that there is still the potential to minimize the loss after
having trained the network for 1000 epochs. Nevertheless, this training procedure requires
a significant amount of time. We can further observe, that the value of the test loss is larger
than the value of the training loss. The network therefore probably has a higher accuracy on
the training data, but since the shape of training loss and test loss correlate, we should have
an acceptable performance for the test samples as well.

We want to analyse the numerical results of this first problem with the help of the following
figures, summarizing the predictions of the trained Neural Network f (1)

θα
for all training and

test samples. Furthermore, we can have a more detailed view on the error distribution, ob-
serving the results given in the table described at the end of this experiment.

The results in Figure 5.4a show, that nearly all training predictions for parameter p1 lie within
the 10% error range, while a minor set of the estimates can be located in the larger 25% range.
Furthermore, it seems that the parameters of the Neural Network have been adjusted to un-
derestimate the parameter values, since the red point cloud does not have its center in the
middle of the green area. As far as the test results are concerned, we can observe in Figure
5.4b, that there is a higher mean deviation of the predictions, compared to those of the train-
ing set. Additionally, we recognize a tendency, that smaller parameters are more probable
to be overestimated, where in contrast larger parameters are underestimated. We can even
recognize relative deviations of more than 25% on the plot for the test samples.

The results of the second parameter estimate in Figure 5.5 are mainly comparable to those of
Figure 5.4. One difference can be observed in Figure 5.5a, where we now have more precise
predictions within the 10% boundary, broadly lying in the center of the green area. Again,
the test results in Figure 5.5b show larger deviations from the true underlying labels, where
we also have a tendency of overestimation for small values and underestimation for large
values.

The observations of Figure 5.4 and Figure 5.5 can be verified using Table 5.1: We have ob-
served that for both cases the most training predictions lie within the error bound of 25%. We
can recognize from the last column of the table that nearly 0% of the training estimates have
a deviation of more than 25%. Furthermore, we have maximum relative errors of 32% for
p1 and 26% for p2, which again verifies the previously made investigations. We have further
recognized, that the predictions for p1 are not centred in the green area, in contrast to the
training predictions of p2. This can also be recognized from the values of 0−1% deviation
and 0−5% deviation. For the second parameter, we can observe that more than 40% of the
training estimates are below 1% relative deviation, while for the first parameter, we have less
than 8%. The same holds for the 5% area, where we have approximately 94% for parameter
p2 and around 73% for parameter p1.

Chapter 5. Parameter Estimation for Dynamical Systems 121

(a) Training results for estimation of parameter 1 using a labelled objective without noise.

(b) Test results for estimation of parameter 1 using a labelled objective without noise.

FIGURE 5.4: Experiment 1: Labelled estimation of parameter p1. The results are sorted on the
horizontal axis, from 1 to 34000 or 17000, where 1 corresponds to the sample with the smallest
parameter value and contrarily, 34000 (training set) and 17000 (test set) to the largest parameter value.
The vertical axis describes the value of the parameter, which corresponds to the sorted indices on the
horizontal axis. The true label values are shown in green and the predictions of the Neural Network
are shown in red. Furthermore, a relative deviation of 0− 10% is visually shown with the help of
the green area, where a relative deviation of 10−25% is shown by the lime green area. Figure 5.4a

shows the results for the training set, where Figure 5.4b shows the results for the test set.

For the test results of this first experiment, we can observe more homogeneous observation
for both parameters. Summarizing, it is obvious that the performance of the trained Neural
Network fθα

on the test samples is worse compared to the training samples. Although 95% of
the parameter estimates lie within the 25% error range, we ave around 4.1−4.7% predicted
values above 25%. In addition the maximum relative deviation is approximately 127% for
the test data in contrast to 32% for the training data. It can be verified from all columns of
the table, that the prediction quality on the test data is below the training performance.

Chapter 5. Parameter Estimation for Dynamical Systems 122

(a) Training results for estimation of parameter 2 using a labelled objective without noise.

(b) Test results for estimation of parameter 2 using a labelled objective without noise.

FIGURE 5.5: Experiment 1: Labelled estimation of parameter p2. The description of the plots is anal-
ogous to Figure 5.4, where we now consider the results of the second parameter of the acceleration,

denoted by p2.

Data Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
Training 1 0.32057 0.04095 0.02617 0.07829 0.72485 0.96859 0.99974 0.00026
Training 2 0.26229 0.01805 0.01890 0.40865 0.93985 0.99194 0.99997 0.00003

Test 1 1.26533 0.08186 0.08818 0.09482 0.44076 0.73388 0.95265 0.04735
Test 2 1.27169 0.07241 0.08651 0.12129 0.52582 0.78576 0.95906 0.04094

TABLE 5.1: Experiment 1: Error distribution of labelled parameter estimation. The table shows the
error distribution and more statistical values of the observed estimation results. The whole datasets
are considered for the computation. "Data": Differ between training and test dataset. "Parameter":
Differ between parameter p1 and p2. "Max Error": Shows the maximum relative deviation between
predicted and true parameter value of the entire dataset. "Mean Error": Shows the mean relative
error of the entire dataset. "Std Error": Shows the mean standard deviation of the entire dataset.
"0-1%": Percentage of predictions below 1% relative deviation. "0-5%": Percentage of predictions
below 5% relative deviation. "0-10%": Percentage of predictions below 10% relative deviation. "0-
25%": Percentage of predictions below 25% relative deviation. ">25%": Percentage of predictions

above 25% relative deviation.

We have chosen a convolutional layer structure as Neural Network architecture, since it eas-
ily processes the acceleration data of the occupant and the chassis by using 1D convolutions,

Chapter 5. Parameter Estimation for Dynamical Systems 123

as it has been described by Eq. (3.27) and Eq. (3.28). Furthermore, Convolutional Neural
Networks have shown to generalize well, since they naturally require less trainable param-
eters, due to weight sharing of the convolutional kernels, compared to other structures like
Fully-Connected Neural Networks.

Comparable experiments to adjust the optimization algorithm and the hyperparameters are
not shown here, but the training configuration has shown to perform well, when trying to
solve the training problem. In addition, we have included the acceleration of the chassis as
a source term for the road-displacement, since we have also made several investigations in
which a Neural Network, mapping solely from occupant’s acceleration to parameter space,
is more sensitive with respect to the input data.

Summary

Resuming the above results, investigated in this first experiment, we can conclude that it is in
principle possible to estimate the parameters of the occupant’s acceleration from discrete data
samples of a specific time horizon. Nevertheless, we can further recognize that the deviation
of the estimated parameter values for the test dataset is above the deviation for the training
data. The model, as it is described here, therefore leads to overfitting of the training data.
A variation of the network architecture, meaning increasing the depth of the network or the
number of parameters for each layer, does not significantly lead to a more precise prediction
of the training labels. In contrast, a more shallow network with less parameters does not
necessarily lead to a lower generalization error.

5.2.2 Experiment 2: Hybrid Training Methods

Problem

We assume that we have access to the reduced training dataset

S(2) = {((am;3,am;2,vm;3,vm;2,qm;3,qm;2))}NS
m=1 (5.42)

and a reduced test dataset

T(2) = {((am;3,am;2,vm;3,vm;2,qm;3,qm;2))}NS+NT
m=NS+1 , (5.43)

where the general definitions can be verified from the description shown in Experiment 1,
without having the need to explicitly resume the terms again at this point of the section.
Therefore the acceleration, velocity and displacement for the occupant of a specific element
of training or test data can be denoted by a3, v3, q3 ∈ RN and analogously, we have a2, v2,
q2 ∈RN as dynamical data of the chassis. It can be recognized that in contrast to the datasets
of the previous experiments, the true underlying parameter values p1 > 0 and p2 > 0 cannot
be observed. Further, although we have access to velocity and displacement for the training
data, we assume that for the relevant data to test, we only have access to the acceleration
profiles. It is therefore obvious, that the estimation method should be described as a function,

Chapter 5. Parameter Estimation for Dynamical Systems 124

which uses the acceleration samples as input and maps to the parameter space, similar to the
first experiments. Nevertheless, we cannot use the true parameter values to iteratively train
such a model. We now want to investigate if the parameters can anyhow be identified from
acceleration data following a hybrid optimization method, similar to [5, 38, 79, 84]. In this
case, the exact parameters are not known, but we have appropriate prior knowledge about the
acceleration’s structure, using the corresponding second order ordinary differential equation,
as it is stated by Eq. (5.40).

The problem, we want to investigate is: Given the acceleration profiles of the defined
training dataset and the connected velocities and displacements, can the unknown pa-
rameters be appropriately estimated with a Hybrid Neural Network, which uses knowl-
edge about the data structure for the definition of an unlabelled loss function?

Method

Again, let us assume that we have a Convolutional Neural Network, with the identical struc-
ture as defined in Experiment 1, such that we can define the network for the second experi-
ment by

f (2)
θ

: RN×2→R2

(a3,a2) 7→

(
p̃1(θ)

p̃2(θ)

)
.

The aim of defining a second function f (2)
θ

is to not confuse the reader, when comparing the
results of the first and the second experiment in a latter part of the section. In addition, the
predicted parameter values are defined in terms of the network’s output by

p̃i(θ) = f (1)
θ

((a3,a2))i

with i ∈ {1,2}. It should be clear, that following Eq. (5.40), a prediction of the acceleration
profile for the occupant can be computed, using the output of the Neural Network as

ã3(θ) := −p̃1(θ) (v3− v2)− p̃2(θ) (q3−q2) ∈RN , (5.44)

since velocity and displacement are by definition assumed to be accessible for the training
data. Otherwise, given the acceleration profile, one can also use common numerical inte-
gration schemes to compute the profiles of velocity and displacement. Since we want to
investigate the idea of identifying the parameter values without having access to the true
labels, we use the exact profiles to prevent our observations from being dependent on the
approximation error of the integrated profiles.

Then, we can define the following optimization problem for the training of the Neural Net-
work, to adjust the values of the parameters implicitly, via minimization of the underlying

Chapter 5. Parameter Estimation for Dynamical Systems 125

true acceleration profiles and the predicted data by

min
θ

1
NS

NS

∑
m=1

L (θ , (am;3,am;2),am;3) =
1

NS

NS

∑
m=1

N

∑
k=1

∣∣ak
m;3− ãk

m;3(θ)
∣∣2 , (5.45)

where ak
m;3 ∈R for k ∈ {1,2, ...,N} describes the k-th entry of the vector-valued acceleration

profile am;3 ∈RN . The same holds for the entries of the predicted acceleration ãk
m;3(θ) ∈R.

The training specifications, for instance optimization method, batch-size and learning-rate,
are equal to those described in Experiment 1 and the implementation details by Figure A.1,
Figure A.2, Figure A.3 and Figure A.4. As the Neural Network has the same layer-structure
as for the first experiment, a detailed description is again shown by Figure B.1. Similar to
Experiment 1, we denote the trained network by f (2)

θβ
, where θβ ∈ Θ is the realization of

the network parameters after K = E NS
B = 34000 optimization steps. In summary, we use

the same setting, but change the loss-function for this unlabelled optimization approach. The
following results, showing the same structure as for the first experiment can therefore be used
to directly compare the unlabelled and the labelled approach.

Results

Again, we want to have a look at the shape of the loss-functions for the training of the un-
labelled approach with 1000 training epochs. If the shape of the training and the test loss
is comparable to those of the labelled approach, the unlabelled training should also be an
appropriate method for the parameter estimation problem.

(a) Loss in Parameter Space. (b) Loss in Data Space.

FIGURE 5.6: Shape of the loss-functions for labelled training approach. The horizontal axis shows
the number of training epochs. The loss-functions have been evaluated for the entire datasets at each
epoch. The vertical axis shows the value of the loss-function, as it has previously been defined. The
shape of the training loss is visualized in blue, the test loss in orange. We differ between parameter
loss in Figure 5.6a and data loss in Figure 5.6b. The parameter loss describes the value of the labelled
loss-function in Experiment 1, the data loss describes the value of the unlabelled loss-function in

Experiment 2.

As we can observe in Figure 5.6, the shapes of training and test loss, for the parameter
space as well as for the data space look similar to those of Figure 5.3. The training loss is

Chapter 5. Parameter Estimation for Dynamical Systems 126

again below the test loss, we should therefore have a better performance for the training data.
Nevertheless, we can notice that the shape of the loss-functions for the unlabelled approach
is more smooth as those of the labelled training. Most often, a smooth shape of the loss-
functions indicates a robust training method for Neural Networks.

Let us now analyse the results of the previously described unlabelled training method analo-
gously to those of the first method in Experiment 1. Therefore, let us investigate the results
shown in the following figures.

(a) Training results for estimation of parameter 1 using an unlabelled objective without noise.

(b) Test results for estimation of parameter 1 using an unlabelled objective without noise.

FIGURE 5.7: Experiment 2: Unlabelled estimation of parameter p1. A precise description of the plots
is described by the caption of Figure 5.4. The training results are shown in Figure 5.7a and the test

results in Figure 5.7b.

The results, shown in Figure 5.7, visualize the prediction of the trained Neural Network for
parameter p1 of the training dataset (Figure 5.7a) at the top and those of the test dataset (Fig-
ure 5.7b) at the bottom. Similar to the results of the first experiment for parameter p1, we
can observe that most parameter estimates for the training samples lie within the 10% error
bound, while nearly all lie within the 25% range. In addition we can observe for this case,

Chapter 5. Parameter Estimation for Dynamical Systems 127

that in contrast to the labelled approach, there is a tendency to overestimate the parameter
prediction, since the red point cloud is close to the upper bound of the 10% error range area.
The last observation is that for large values of the parameter, it seems to be more probable
that the Neural Network fθβ

estimates smaller values, since we can recognize a significant
deviation of the point cloud from the center of the green areas. The shape of the point cloud
for the test data, is similar to the training cloud. Again, the results show a tendency of over-
estimation, while the largest parameters seem to be the most difficult ones to predict. We
can further observe that the Neural Network seems to overfit the training data, since some
estimates of the test data lie outside of the 25% area. Nevertheless, it is also worth mention-
ing, that the deviations are more close to the green areas, as it is for instance for the labelled
approach in Experiment 1. We should therefore observe in the error distribution table, that
the maximal deviation is (significantly) smaller as the deviation for the labelled approach.

(a) Training results for estimation of parameter 2 using an unlabelled objective without noise.

(b) Test results for estimation of parameter 2 using an unlabelled objective without noise.

FIGURE 5.8: Experiment 2: Unlabelled estimation of parameter p2. A precise description of the plots
is described by the caption of Figure 5.4. The training results are shown in Figure 5.8a and the test

results in Figure 5.8b.

Chapter 5. Parameter Estimation for Dynamical Systems 128

The results of the second parameter p2 for the training and the test data are visualized in Fig-
ure 5.8. The results are almost similar to those of the first parameter. Similar to the labelled
approach, we cannot observe an over - or underestimation of the predictions. The estimates
are mostly distributed along the center of the green area, for the training data and for the test
data. We can therefore conclude, since this effect occurs for the labelled and the unlabelled
approach, that this effect is caused by the different value range of p1 and p2. The training
of the Neural Network is more robust for the larger parameter p2, while a small deviation
of the network parameters seems to lead to a general tendency of over - or underestimation
of all system parameters p1. Furthermore, we can also recognize that larger parameter val-
ues are more likely to be underestimated. A large value of parameter p1 or p2 is equal to a
small mass of the passenger and the seat, since p1 =

C
m and p2 =

K
m , where C is a general

damping-constant, K a spring-constant and m the mass variable. The larger the quotient, the
smaller the mass, since for the data generation only the mass has been randomly generated
and not the quotient. Therefore, we can furthermore conclude that a larger mass leads to a
more parameter-characteristic shape of the acceleration profile, while it is more difficult to
evaluate the shape of acceleration profiles connected to small masses.

Data Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
Training 1 0.32562 0.05214 0.03009 0.04403 0.52968 0.94165 0.99938 0.00062
Training 2 0.30742 0.02576 0.03233 0.33391 0.87688 0.96147 0.99865 0.00135

Test 1 0.70204 0.07552 0.06339 0.07400 0.41400 0.74294 0.97606 0.02394
Test 2 0.64694 0.06173 0.06623 0.14594 0.57724 0.80941 0.97335 0.02665

TABLE 5.2: Experiment 2: Error distribution of unlabelled parameter estimation. The table shows the
error distribution and more statistical values of the observed estimation results. The whole datasets
are considered for the computation. The description of the columns is shown in the caption of Table

5.1.

Analysing the error distribution values as they are shown in Table 5.2, again verifies the ob-
servations of the previously regarded figures. We have observed that there are smaller devia-
tions for the test dataset from the 25% area, compared to the labelled results of Experiment
1. Therefore, we can observe that the maximal deviation for parameter p1 is approximately
70% and for parameter p2 around 65%, compared to 127% for both parameters of the la-
belled training method of Experiment 1. The general overestimation of the first parameter
for training and test data can be observed from the 1% error range, where only 4.4% of the
training predictions lie within this range, while we have 33.4% for the larger scaled parameter
p2. The same observation can be made for the test samples.

Summary

In summary, we can compare Table 5.2 of the unlabelled training method and Table 5.1 of
the labelled training method as follows: For the 5% area and for the 10% area, we can ob-
serve that for the training data, we have better estimates using the labelled approach. Where
the unlabelled approach, for instance for the 5% range of parameter p1, reaches a value of
around 53%, we have 72% for the labelled approach. The same holds for the second pa-
rameter, where 94% of the training predictions lie within the 5% range, contrarily to a value

Chapter 5. Parameter Estimation for Dynamical Systems 129

of 88% for the unlabelled training approach. The most significant observation is therefore
given, if we have a look at the error distribution of the test data for both approaches. We
can observe that for the 10% and the 25% range, the unlabelled approach is on average 2%
better, compared to the first method. Finally, 4− 5% of the test predictions in Experiment
1 have an error larger than 25%, where we have around 2.5% for the unlabelled approach in
Experiment 2.

We therefore conclude, that the unlabelled training method is in general more robust for
an unknown test dataset, compared to the training method of the first experiment, although
it is just a small improvement of around 2%. The now following example will give more
obvious results concerning robustness against noise for the two training methods.

5.2.3 Experiment 3: Robust Parameter Estimation for Noisy Data

Problem

We have investigated a labelled and an unlabelled training method for an estimation prob-
lem of two parameters, containing the damping-coefficient p1 and the spring-coefficient p2,
which are significant for the occupant’s acceleration profile of the Quarter-Car-Model. Often,
Neural Networks are capable to achieve great performances on a test dataset that is similar to
an experienced training dataset. Nevertheless, it is still of immense research interest to make
networks also robust against noise of the input data.

Let us therefore assume that we have one dataset to test the Neural Networks of the pre-
vious examples, based upon Gaussian disturbances of the training samples, denoted by

S(3) = {((âm;3, âm;2))}NS
m=1 (5.46)

and a second noisy test dataset based upon disturbances of the original test data given by

T(3) = {((âm;3, âm;2))}NS+NT
m=NS+1 , (5.47)

where NS ∈N and NT ∈N are again the sizes of the training and the test dataset. We assume
that for each element m ∈ {1,2, ...,NS +NT}, for all data points with k ∈ {1,2, ...,N}, for the
occupant’s acceleration indexed by i = 3 as well as for the chassis’ acceleration indexed by
i = 2, the disturbed data is described by

âk
m;i = ak

m;i

(
1+η

k
m;i

)
(5.48)

where the random noise term is supposed to follow a Gaussian distribution with ηk
m;i ∼

N
(
0,σ2

)
. The noisy data points âk

m;i ∈R therefore deviate relatively from the clean points
ak

m;i ∈ R by multiplication of the noise term (1+ηk
m;i) ∈ R. The standard deviation σ will

be specified, when observing the results of this experiment.

Chapter 5. Parameter Estimation for Dynamical Systems 130

The problem, we want to investigate is: Given the noisy acceleration profiles for the
chassis and the occupant, how robust are the pre-trained Neural Networks to estimate
the parameter values, as it has been described in the previous experiment, from these
noisy samples?

Method

Let us assume that the trained Neural Network of Example 1 can uniquely be described by
a realization of the network parameters, denoted by θα , where the network of Example 2
is specified by θβ . This means, that θα and θβ are the values of the network parameters,
that result from ADAM optimization with 34000 iterations for the minimization problem of
Eq. (5.41) for θα and Eq. (5.45) for θβ .

Given the noisy datasets S(3) and T(3), we not want to evaluate the robustness against Gaus-
sian disturbances of the Neural Networks f (1)

θα
and f (2)

θβ
for the task to predict the parameters

p1 and p2.

Therefore, we want to observe the predictions, resulting from(
p̃1(θα)

p̃2(θα)

)
= f (1)

θα
((â3, â2)) (5.49)

and compare them to the results of the output(
p̃1(θβ)

p̃2(θβ)

)
= f (2)

θβ
((â3, â2)) (5.50)

for elements â3, â2 of the datasets S(3) and T(3). The now following results show the per-
formance of the labelled and unlabelled approach, using in a first step noisy samples with
σ = 0.01 and in a second step σ = 0.05.

Results

We separate the results, by an Experiment 3a, which describes the evaluation of the pre-
trained Neural Networks using noisy datasets with a deviation of σ = 0.01 for the random
Gaussian noise of the data. The second part, Experiment 3b, then describes the same evalu-
ation, using σ = 0.05. As a starting point, let us analyse Experiment 3a.

The visualized results in Figure 5.9 are restricted to the estimated parameter values of noisy
elements of T(3). The results for the pre-trained Neural Network f (1)

θα
are shown on the l.h.s.,

the results for f (2)
θβ

on the r.h.s. of the figure. Obviously, the prediction is relatively robust
for σ = 0.01 for both training approaches. Nevertheless, one can recognize, that similar to
the test results of Experiment 1 and Experiment 2, the unlabelled method is more robust,
since there are more larger deviations for the labelled approach compared to the unlabelled

Chapter 5. Parameter Estimation for Dynamical Systems 131

(a) Test results for labelled objective with σ = 0.01
for parameter 1.

(b) Test results for unlabelled objective with σ =
0.01 for parameter 1.

(c) Test results for labelled objective with σ = 0.01
for parameter 2.

(d) Test results for labelled objective with σ = 0.01
for parameter 2.

FIGURE 5.9: Experiment 3: Noise level σ = 0.01, labelled vs unlabelled training. A precise descrip-
tion of the plots is described by the caption of Figure 5.4. The test results for the labelled objective
are shown in Figure 5.9a for p1 and in Figure 5.9c for p2. The test results for the unlabelled objective

are shown in Figure 5.9b for p1 and in Figure 5.9d for p2.

training. A more detailed analyse is shown with the now following tables for both methods.

Data Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
Training 1 0.98915 0.06331 0.06592 0.10376 0.53153 0.82976 0.97903 0.02097
Training 2 0.95878 0.04922 0.05990 0.18032 0.67512 0.88147 0.98465 0.01535

Test 1 1.45144 0.09748 0.10591 0.08029 0.38618 0.66259 0.93053 0.06947
Test 2 1.42642 0.08714 0.10268 0.10147 0.45424 0.71724 0.93906 0.06094

TABLE 5.3: Experiment 3a: Error distribution of labelled parameter estimation with noise σ = 0.01.
The table shows the error distribution and more statistical values of the observed estimation results.
The whole datasets are considered for the computation. The description of the columns is explicitly

shown in the caption of Table 5.1.

Data Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
Training 1 0.93651 0.06238 0.04897 0.07938 0.46412 0.84091 0.99271 0.00729
Training 2 0.90251 0.04405 0.04664 0.18468 0.69488 0.90606 0.99391 0.00609

Test 1 0.93830 0.08323 0.07453 0.07882 0.39188 0.70112 0.96335 0.03665
Test 2 0.84944 0.07139 0.07516 0.12112 0.51247 0.76994 0.96347 0.03653

TABLE 5.4: Experiment 3a: Error distribution of unlabelled parameter estimation with noise σ =
0.01. The table shows the error distribution and more statistical values of the observed estimation
results. The whole datasets are considered for the computation. The description of the columns is

shown in the caption of Table 5.1.

We directly compare the results for the noisy dataset of the pre-trained network f (1)
θα

in Ta-

ble 5.3 with the results of f (2)
θβ

in Table 5.4. The results of the noisy set S(3) are similar for
both approaches, as we can recognize from comparing the tables. Let us therefore restrict to
the results of the noisy test set T(3). Concerning the maximal deviation of the approaches,
we can recognize that for the labelled approach, we have values of 145.1% for parameter

Chapter 5. Parameter Estimation for Dynamical Systems 132

p1 and 142.6% for parameter p2, while for the unlabelled method, the maximal deviation is
significantly lower with 94% for p1 and 85% for p2. Besides, we recognize a mean standard
deviation of approximately 10% for the first approach, while the hybrid / unlabelled objec-
tive leads to values of 7.5%. The unlabelled network is therefore more close to the previously
defined green error boundaries. It can also be observed that the 10% error bound is 4− 5%
larger and the 25% error bound is approximately 3% larger for the unlabelled approach. Us-
ing a deviation of σ = 0.01 therefore results in a more robust performance for f (2)

θβ
. This

unlabelled approach has also been observed to be more robust for clean test samples in Ex-
periment 2. As we can only find small improvements for the unlabelled approach, we are
now going to focus on a second experiment, increasing the noise rate of the disturbed dataset.

We continue with Experiment 3b, where we generate datasets S(3) and T(3), as defined by
the problem description, with a standard deviation of σ = 0.05. The now following results
are analogously structured to those of Experiment 3a.

(a) Test results for labelled objective with σ = 0.05
for parameter 1.

(b) Test results for unlabelled objective with σ =
0.05 for parameter 1.

(c) Test results for labelled objective with σ = 0.05
for parameter 2.

(d) Test results for labelled objective with σ = 0.05
for parameter 2.

FIGURE 5.10: Experiment 3: Noise level σ = 0.05, labelled vs unlabelled training. A precise descrip-
tion of the plots is described by the caption of Figure 5.4. The test results for the labelled objective are
shown in Figure 5.10a for p1 and in Figure 5.10c for p2. The test results for the unlabelled objective

are shown in Figure 5.10b for p1 and in Figure 5.10d for p2.

Analogous to the previously shown Figure 5.9 for σ = 0.01, we can now make use of Figure
5.10 for σ = 0.05 to visualize the predictions of the pre-trained Neural Network f (1)

θα
on the

l.h.s. and those of f (2)
θβ

on the r.h.s. of the figure. Again, we observe the results for the
labelled noisy test data on the l.h.s., while the r.h.s. of the figure shows the estimates of the
unlabelled pre-trained Neural Network. We can recognize that a deviation of σ = 0.05, sig-
nificantly leads to a much higher deviation of the parameter estimation problem, compared
to the previously shown plots for σ = 0.01. Similar to that, it is possible to observe, that the

Chapter 5. Parameter Estimation for Dynamical Systems 133

results for f (2)
θβ

are more dense to the green areas, compared to f (1)
θα

.

Data Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
Training 1 6.31576 0.22820 0.27531 0.04021 0.19950 0.37888 0.70021 0.29979
Training 2 5.97519 0.21388 0.26473 0.04785 0.22385 0.40747 0.72368 0.27632

Test 1 3.56003 0.25308 0.28616 0.03694 0.17376 0.33165 0.65841 0.34159
Test 2 3.38591 0.23831 0.27607 0.03953 0.19024 0.35900 0.68265 0.31735

TABLE 5.5: Experiment 3b: Error distribution of labelled parameter estimation with noise σ = 0.05.
The table shows the error distribution and more statistical values of the observed estimation results.
The whole datasets are considered for the computation. The description of the columns is shown in

the caption of Table 5.1.

Data Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
Training 1 3.30868 0.16372 0.19006 0.05291 0.25556 0.46888 0.80979 0.19021
Training 2 3.19051 0.15188 0.17979 0.05991 0.27974 0.50747 0.83088 0.16912

Test 1 3.22332 0.17836 0.19840 0.04806 0.23159 0.42718 0.78182 0.21818
Test 2 2.99078 0.16712 0.18897 0.05065 0.25153 0.46241 0.80053 0.19947

TABLE 5.6: Experiment 3b: Error distribution of unlabelled parameter estimation with noise σ =
0.05. The table shows the error distribution and more statistical values of the observed estimation
results. The whole datasets are considered for the computation. The description of the columns is

shown in the caption of Table 5.1.

Table 5.5 shows the results for f (1)
θα

, Table 5.6 shows the corresponding results for f (2)
θβ

,

evaluated for all samples of the noisy datasets S(3) and T(3) with σ = 0.05. All in all, the
comparison of the two tables shows more significant differences as Experiment 3a. As far as
f (1)
θα

is concerned, the results are in a comparable range for the noisy training dataset and the

noisy test dataset. The same holds for the error values of f (2)
θβ

. Obviously, we have smaller
maximal deviations, a smaller mean deviation and a smaller mean standard deviation for the
unlabelled approach in contrast to the labelled method. Furthermore, we have at least 23%
in the 5% range for unlabelled training, compared to at least 17% for the labelled training.
The same observation can be found for the 10% and 25% areas, where the unlabelled method
shows approximately 10% larger areas throughout all types of noisy data. This can also
be verified from analysing the percentage, that shows a relative deviation of more than 25%,
where we have 16.9−21.8% for the unlabelled method and 27.6−34.1% for the labelled one.
It is therefore obvious that the more sophisticated, hybrid learning method of Experiment 2
leads to significantly more robust results, throughout all error estimation values shown in the
tables.

Summary

The discussed results have shown, that the unlabelled trained Neural Network f (2)
θβ

, although

the training performance is worse compared to the labelled f (1)
θα

, considering Experiment
1 and Experiment 2, is significantly more robust against disturbances of the input data.
This holds for the disturbed training data S(3) as well as for the disturbed test data T(3) for
σ = 0.01 and σ = 0.05.

Chapter 5. Parameter Estimation for Dynamical Systems 134

We can therefore summarize the observations as follows: It is preferable to use an unlabelled
training approach for the parameter estimation problem of the occupant-related coefficients,
if we want to develop a robust model. The robust unlabelled training shows stable predictions
for clean test data and additionally less sensitivity to noisy samples, compared to a straight
forward labelled Neural Network data fitting approach.

5.2.4 Experiment 4 : Denoising via Neural Networks

Problem

Up to this point, we have analysed a labelled and an unlabelled Neural Network training ap-
proach, regarding robust prediction for unknown test data and sensitivity of Gaussian relative
noise of the input data. We have further recognized that even for deviations with σ = 0.05,
the unlabelled approach is significantly more robust compared to the labelled pre-trained
Neural Network. Nevertheless, the prediction quality for the noisy data in Experiment 3 is
much worse to those of Experiment 1 and Experiment 2. Therefore, one usually uses data
pre-processing algorithms to denoise the data, instead of directly using the raw noisy data to
estimate the parameter values.

At a last investigation for this two-dimensional parameter estimation problem, we want to
analyse, if we can develop another Hybrid Model, which maps the noisy data samples to
a denoised version, as a first step, and then uses the pre-processed samples to estimate the
parameters of the occupant’s acceleration profile. We assume, that a Convolutional Auto-
Encoder (CAE) structure, is capable to solve this problem.

Method

Let us again assume that we consider a noisy training dataset of the type

S(4) = {((âm;3, âm;2) , (am;3,am;2))}NS
m=1 (5.51)

and a corresponding test dataset

T(4) = {((âm;3, âm;2) , (am;3,am;2))}NS+NT
m=NS+1 , (5.52)

where we have observable noisy data points âk
m;i and the clean underlying true data points

ak
m;i, where m ∈ {1,2, ...,NS +NT}, k ∈ {1,2, ...,N} and i ∈ {2,3}, now serving as labels for

the denoising network. Let us therefore consider a function of the form

f (4)
θ

: RN×2→RN×2 (5.53)

(â3, â2) 7→ (ã3(θ), ã2(θ)) , (5.54)

such that the predicted clean data samples, as output of the Neural Network, are defined by

ã3(θ) = f (4)
θ

(â3, â2)1 ∈RN (5.55)

Chapter 5. Parameter Estimation for Dynamical Systems 135

and analogously
ã2(θ) = f (4)

θ
(â3, â2)2 ∈RN . (5.56)

We can then define the training problem of the denoising task as follows:

min
θ

S

∑
m=1

N

∑
k=1

3

∑
j=2

∣∣ãk
m; j(θ)−ak

m; j

∣∣2 , (5.57)

where ãk
m; j ∈ R and ak

m; j ∈ R describe the k-th element of the predicted data and the clean

data. Since the network f (4)
θ

has a different structure compared to the previously defined net-
works in Experiment 1 and Experiment 2, the network parameters θ have a different shape,
as it can be seen from the layer structure in Figure B.2. The task of the Neural Network can
therefore be described to map the noisy data to the clean underlying samples.

The now following results can be separated into two steps. First, we train the Neural Net-
work, using the following training specifications:

• Optimization method: Adaptive Momentum (ADAM) Optimization

• Learning-rate: η = 0.0001

• Batch-size: B = 100

• Series-length of the input samples: N = 500

• Training-epochs: E = 100

• Noise rate of the samples: σ = 0.1

We can then compare, if the denoising operation is appropriately done for training samples
as well as for test samples. Afterwards, the trained Neural Network, which we are going to
denote by f (4)

θγ
, where θγ is the value of the network parameters, after K = E NS

B = 100 ·340 =
34000 training steps, can be used to denoise the corrupted data as a pre-processing step. Im-
plementation details can be found in Figure A.5, Figure A.6, Figure A.7 and Figure A.8. Then,
the pre-trained Neural Networks for parameter estimation, f (1)

θα
for the labelled approach and

f (2)
θβ

for the unlabelled approach, can be used to estimate the parameters, similar to the previ-
ous experiments, taking this pre-processed data as input.

In detail, we can compare the predictions for the noisy data for f (1)
θα

, given by

f (1)
θα

(â3, â2) (5.58)

with the predictions using the denoising network, described by

f (1)
θα

(ã3(θγ), ã2(θγ)) . (5.59)

The same is then also done for the noisy predictions of the unlabelled pre-trained network
f (2)
θβ

and the predictions of a denoised input.

Chapter 5. Parameter Estimation for Dynamical Systems 136

Results

The section is separated into two steps: First, we want to investigate the training loss and
test loss of the Convolutional Auto-Encoder, similar to Experiment 1 and Experiment 2, to
evaluate if the optimization is appropriately done. Then we want to give an overview about
the approximation error of the predictions for the test data, visualized by histograms and
finally shows some examples of noisy input data, clean true data and denoised data by the
trained Neural Network.

FIGURE 5.11: Training Loss and Test Loss of Training the Convolutional Auto-Encoder for denoising
of the input data. The shape of the training loss is visualized in blue, the test loss in orange. The
horizontal axis shows the number of training epochs, the vertical axis the values of the loss-function.

The loss has been evaluate after each epoch for the entire datasets.

The shape of the training loss and the test loss is shown in Figure 5.11. Similar to Figure 5.3
and Figure 5.6, the training and the test loss are appropriately reduced for a large number of
training epochs. It is significant that there are some peaks for the area around 10 epochs for
the test loss. Nevertheless, the shapes of the training loss and the test loss are close to each
other from epoch 20 to the termination of the training after reaching 100 epochs. There is
obviously no improvement in the performance for this range, since the loss remains in the
same area and is not further minimized, if we continue the training.

The histograms in Figure 5.12, which show the Mean-Squared-Error (MSE) for the test
dataset yield, that we have the same range of the approximation error for the denoising of
the occupant’s acceleration profile as well as for the denoising of the chassis acceleration
profile. Most errors are close to zero, nearly all are below a value of 4 · 10−5. We need to
verify, if this is a sufficiently low approximation error, with the help of some examples.

Chapter 5. Parameter Estimation for Dynamical Systems 137

(a) Error Distribution of Occupant Acceleration. (b) Error Distribution of Chassis Acceleration.

FIGURE 5.12: Histograms of the Mean-Squared-Error for the predicted cleaned data of the test
dataset. The horizontal axis shows the Mean-Squared-Error for each denoised sample, according
to the true underlying clean test sample. The vertical axis shows the absolute cumulative frequency of

the error values that have been computed for the test samples.

(a) Denoising of Occupant Acceleration. (b) Denoising of Chassis Acceleration.

(c) Denoising of Occupant Acceleration. (d) Denoising of Chassis Acceleration.

FIGURE 5.13: Examples of Denoising for Test Samples. The figure shows the prediction of the
Convolutional Auto-Encoder for noisy input samples of the test dataset. The horizontal axis for each
plot describes the discrete step, we therefore have 100 discrete points for each sample. The vertical
axis shows the value of the acceleration. The plot shows the values of the noisy input, true clean

sample and the predicted denoised output.

Obviously, the denoised samples are close to the true clean samples, as it can be seen in Fig-
ure 5.13. This holds true for the denoising of the occupant’s acceleration on the l.h.s. as well
as for the chassis profile on the r.h.s. Moreover, it is worth mentioning that the noisy input
data is also close to the true clean acceleration value. Nevertheless, we have already seen

Chapter 5. Parameter Estimation for Dynamical Systems 138

that even smaller deviations of σ = 0.05, lead to a significant performance reduction for the
pre-trained Neural Networks. Therefore, we want to observe in the second part of the results,
if the herein shown denoised data, is sufficiently close to the true data, such that the accuracy
of the parameter prediction is improved.

We can easily recognize the efficient use of a pre-processing algorithm, like it is our pre-
trained denoising Convolutional Auto-Encoder, with the help of the now following figures
and tables. We therefore directly compare the parameter estimation results for the labelled
pre-trained Neural Network f (1)

θα
and the unlabelled approach f (2)

θβ
, predicting the correspond-

ing parameters from input samples with noise level σ = 0.1 and in contrast from denoised
samples using f (4)

θγ
.

(a) Test results for labelled objective with σ = 0.1
for parameter 1.

(b) Test results for labelled objective with σ = 0.1
and denoising Auto-Encoder for parameter 1.

(c) Test results for labelled objective with σ = 0.1
for parameter 2.

(d) Test results for labelled objective with σ = 0.1
and denoising Auto-Encoder for parameter 2.

FIGURE 5.14: Experiment 4: Noise level σ = 0.1, estimation for raw noisy data vs. estimation for
pre-processed data for labelled pre-trained network. A precise description of the plots is given by the
caption of Figure 5.4. The estimation results for noisy input data of the test dataset, using the labelled
pre-trained network, are shown in Figure 5.14a for p1 and in Figure 5.14c for p2. Contrarily, Figure
5.14b shows the estimation for pre-processed test samples for p1 and finally Figure 5.14d shows the

same for p2.

We can observe the visualization of the parameter estimation problem for the noisy test
dataset with σ = 0.1 in Figure 5.14, which shows the predictions of the two-dimensional
problem for the noisy input samples, using the labelled, pre-trained Convolutional Neural
Network f (1)

θα
. The l.h.s. of the figure, shows the result of the test dataset T(4), using the

noisy samples â3 and â2, where the r.h.s. in contrast shows the parameter estimation of the
same network, using the de-noised samples ã3(θγ) and ã2(θγ), resulting from the pre-trained
denoising Convolutional Auto-Encoder. Obviously, taking the raw noisy data samples pro-
duces estimates, which deviate significantly from the target values, where the pre-processed

Chapter 5. Parameter Estimation for Dynamical Systems 139

samples lead to more robust predictions, which are nearly comparable to the observed results
from Experiment 1.

Data Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
Training 1 8.70219 0.40582 0.48987 0.02121 0.10824 0.21465 0.47247 0.52753
Training 2 8.32585 0.38620 0.46855 0.02482 0.11776 0.22785 0.49391 0.50609

Test 1 9.32839 0.43248 0.52005 0.02059 0.09941 0.19847 0.44906 0.55094
Test 2 8.95942 0.41321 0.49810 0.01959 0.10818 0.21353 0.47000 0.53000

TABLE 5.7: Experiment 4: Error distribution of labelled parameter estimation with noise σ = 0.1.
The table shows the error distribution and more statistical values of the observed estimation results.
The whole datasets are considered for the computation. The description of the columns is shown in

the caption of Table 5.1.

Data Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
Training 1 0.68530 0.06077 0.04827 0.08838 0.48462 0.84374 0.99291 0.00709
Training 2 0.70370 0.04555 0.04767 0.18147 0.67679 0.89515 0.99356 0.00644

Test 1 1.02250 0.08830 0.08890 0.07765 0.39165 0.70206 0.94800 0.05200
Test 2 1.03719 0.07617 0.09009 0.11976 0.51294 0.76224 0.95335 0.04665

TABLE 5.8: Experiment 4: Error distribution of labelled parameter estimation with noise σ = 0.1,
using a pre-trained Convolutional Auto-Encoder for denoising. The table shows the error distribution
and more statistical values of the observed estimation results. The whole datasets are considered for

the computation. The description of the columns is shown in the caption of Table 5.1.

The observations, already made with respect to Figure 5.14, can further be verified, compar-
ing Table 5.7, describing the already known error structure for the noisy test data of f (1)

θα
,

where Table 5.8, shows the result of the pre-processed denoising operation of f (4)
θγ

on S(4)

and T(4). Without having the need to compare all columns separately, we can recognize that
the pre-processing significantly improves the performance of the Neural Network. We can
therefore, for instance, observe, that for the raw data in Table 5.7, more than 50% of the pa-
rameter estimates, have a relative deviation of more than 25% from the target values, where
we have less than 5.2% for the pre-processed data in Table 5.8.

We observe similar results for the pre-trained unlabelled Neural Network f (2)
θβ

in Figure 5.15,

compared to the previously seen results for f (1)
θα

in Figure 5.14. It is again obvious, that the
pre-processing of the noisy test samples, shows a significant improvement for the accuracy
of the estimated parameter values.

Data Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
Training 1 5.05091 0.28981 0.33701 0.03185 0.15476 0.29694 0.60488 0.39512
Training 2 4.82886 0.27441 0.31822 0.03453 0.16253 0.31021 0.62765 0.37235

Test 1 5.15793 0.30893 0.35039 0.02900 0.14306 0.26900 0.57182 0.42818
Test 2 4.89862 0.29352 0.33027 0.02853 0.14547 0.28294 0.59429 0.40571

TABLE 5.9: Experiment 4: Error distribution of unlabelled parameter estimation with noise σ = 0.1.
The table shows the error distribution and more statistical values of the observed estimation results.
The whole datasets are considered for the computation. The description of the columns is shown in

the caption of Table 5.1.

Chapter 5. Parameter Estimation for Dynamical Systems 140

(a) Test results for unlabelled objective with σ =
0.1 for parameter 1.

(b) Test results for unlabelled objective with σ =
0.1 and denoising auto-encoder for parameter 1.

(c) Test results for unlabelled objective with σ =
0.1 for parameter 2.

(d) Test results for unlabelled objective with σ =
0.1 and denoising auto-encoder for parameter 2.

FIGURE 5.15: Experiment 4: Noise level σ = 0.1, estimation for raw noisy data vs. estimation for
pre-processed data for unlabelled pre-trained network. A precise description of the plots is described
by the caption of Figure 5.4. The estimation results for noisy input data of the test dataset, using
the unlabelled pre-trained network, are shown in Figure 5.15a for p1 and in Figure 5.15b for p2.
Contrarily, Figure 5.15c shows the estimation for pre-processed test samples for p1 and finally Figure

5.15d shows the same for p2.

Data Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
Training 1 0.68789 0.06354 0.05211 0.08891 0.48088 0.82229 0.99068 0.00932
Training 2 0.62953 0.04755 0.04954 0.17841 0.66959 0.88012 0.99271 0.00729

Test 1 0.82857 0.07567 0.06666 0.08829 0.42641 0.74629 0.97153 0.02847
Test 2 0.76016 0.06459 0.06796 0.13188 0.56094 0.79953 0.96976 0.03024

TABLE 5.10: Experiment 4: Error distribution of unlabelled parameter estimation with noise σ = 0.1,
using a pre-trained Convolutional Auto-Encoder for denoising. The table shows the error distribution
and more statistical values of the observed estimation results. The whole datasets are considered for

the computation. The description of the columns is shown in the caption of Table 5.1.

Finally, we can make use of Table 5.9 for the noisy estimates of f (2)
θβ

and Table 5.10 for the
denoised estimates. Similar to the results shown in Table 5.7 and Table 5.8 for the labelled
approach, we can observe that the denoised experiment, delivers throughout a more robust
estimation of the strongly noise-corrupted input samples. More than 37% of the noisy sam-
ples lead to a relative deviation of more than 25%, where we have around less than 3% for the
denoised samples. Furthermore, we can recognize that again the hybrid, unlabelled approach
is significantly more robust, when processing the raw noisy data samples for parameter esti-
mation.

Summary

It is obvious, that a denoising Neural Network can efficiently be trained to improve the predic-
tion quality of Neural Networks to solve parameter estimation tasks. Summarizing the shown
results, we have investigated that unlabelled, hybrid objective functions deliver appropriate

Chapter 5. Parameter Estimation for Dynamical Systems 141

robust estimations for test samples and disturbed samples of a relatively small Gaussian noise
term. For larger deviations, another Hybrid Model can be used, considering a pre-trained de-
noising Convolutional Auto-Encoder to estimate a cleaned version of the corrupted input
data. Then, the pre-processed samples can be used to achieve good parameter estimation re-
sults, which are comparable to the results seen in Experiment 1 and Experiment 2 for clean
data samples.

We have investigated several experiments for a two-dimensional parameter estimation prob-
lem to predict the parameters of occupant-related acceleration profiles. A Hybrid Neural
Network can therefore on the one hand efficiently be used to train a robust estimation model,
using an unlabelled objective, while on the other hand an additional Hybrid Model can be de-
fined, using a denoising Convolutional Auto-Encoder network as a pre-processing algorithm,
to significantly improve the estimation quality for noisy samples. The next section therefore
investigates a more difficult problem, namely estimating all parameters of the Quarter-Car-
Model and not only the parameters of a single ordinary differential equation of the entire
system.

5.3 System Identification of the Quarter-Car-Model

The previous section has shown, that the parameters, corresponding to the acceleration profile
of the occupant of the Quarter-Car-Model, can efficiently be estimated, using two different
training methods for parameter estimation and an additional denoising network, such that the
problem can even be solved for strongly corrupted noisy test samples.

It has further been shown in Section 5.1, that varying the grade of observable states leads
to more possible variations of the system matrices of the Quarter-Car-Model, which deliver
the same output as the true underlying matrix. We therefore want to investigate in this sec-
tion, if all parameters of the Quarter-Car-Model can uniquely be determined from a given set
of acceleration profiles, if we assume all states to be observable.

We therefore want to follow the idea stated in Figure 5.16 in the now following section.
Again, we assume that there is knowledge about the input (control) of the system and the out-
put (system response). As we now want to estimate all parameters of the Quarter-Car-Model,
the input is given by the scaled road-displacement, namely the dissipative spring-force acting
on the coupled system, where for a full-observable system, we assume that the acceleration
profiles of the wheel-suspensions, the chassis and the occupant are all accessible for a given
test dataset.

Furthermore, the system is assumed to be partially unknown, as we do not know the true
values of the distinguishable relevant spring - and damping - coefficients of the system ma-
trix, but have knowledge about the coupled structure of the system. Following [28, 35, 41, 77,
78], we can define a non-linear least-squares minimization problem, basically comparable to

Chapter 5. Parameter Estimation for Dynamical Systems 142

FIGURE 5.16: Identification of the Quarter-Car-Model parameters using a
Gauss-Newton optimization method. The algorithm requires an estimate of
the System and the Control to reproduce the estimated values of the System
Response. A least-squares fit then results in an updated estimate of the Sys-

tem.

the unlabelled training approach in Experiment 2, to indirectly estimate the parameters of
the entire Quarter-Car-Model.

Therefore, we will make use of a Gauss-Newton optimization technique, where control,
estimated system and resulting system response are used to firstly estimate the predicted
responses to the estimated system, with the help of an appropriate state estimation model.
Then, as a second step, we can compute the difference of predicted and true system re-
sponses to update the estimated system parameters. An efficient decision rule to adjust a
sufficient step-size of the optimization scheme, should then lead to acceptable estimates of
the true system within a few steps. A more detailed description is now given in the course of
the following section.

5.3.1 Non-Linear Least Squares Problem

Setting

For the sake of simplicity, let us consider the following test dataset

T(5) = {((am,um))}NS+NT
m=NS+1 , (5.60)

where again NS ∈N is the size of the previously used training dataset for the Neural Networks
and NT ∈N is the actual size of the test dataset. Let us further assume that in consistency with
the previously discussed experiments, we define for a general acceleration element a ∈ T(5),

a = (a3,a2,a1) ∈RN×3, (5.61)

Chapter 5. Parameter Estimation for Dynamical Systems 143

where a3 is the acceleration profile of the occupant, a2 of the chassis and a1 of the wheel-
suspensions. The term u∈RN then again describes the road-profile with length N ∈N, spec-
ified in the latter experiments. Let us therefore clarify the following terms, which are neces-
sary to derive an appropriate method for system identification of the Quarter-Car-Model:

For a general sample (a,u) ∈ T(5), we consider

• a∈RN×3: True observable acceleration profiles of the system (multi-dimensional mea-
surements).

• u ∈RN : Road-profile as input to the system.

• p∈R10: General vector of the estimated relevant / unknown parameters of the Quarter-
Car-Model.

• p∗ ∈R10: True values of the system parameters, as target values for the problem.

• A(p) ∈ R6×6: Estimation of the system matrix, with A(p) =

[
D(p) S(p)

I O

]
, where

D(p) ∈ R3×3 is the damping-coefficient matrix, S(p) ∈ R3×3 the spring-coefficient
matrix, I ∈ R3×3, the identity matrix and O ∈ R3×3 the null matrix. It is therefore
assumed, that there is always a bijection p↔ A(p), such that we can uniquely map p

to the system matrix A(p) and vice versa.

We can further note, that the data points ak ∈R3 correspond to the k-th element of the com-
plete measurement sample a with k∈ {1,2, ...,N}, resulting from an equidistant discrete time-
horizon Dh ([t0, tn]) with h = 0.01. Besides, we have assumed zero-valued initial acceleration
for each sample, denoted by a0 = 0∈R3, which also holds for the initial velocity v0 = 0∈R3

and the initial displacement / state q0 = 0 ∈R3.

Least-Squares Problem

The following section shows, how one can derive an appropriate update-scheme to solve
iteratively solve a non-linear least-squares problem, following [77, 83]. We define a non-
linear least-squares problem as an optimization problem to minimize a loss-function L ∈
C 2
(
R10,R

)
by

min
p

L (p) =
1
2

N

∑
k=1

3

∑
i=1

(
ri(tk, p)

)2
(5.62)

for a twice continuously differentiable residual function r ∈ C 2
(
[t0, tn]×R10,R3

)
, evalu-

ated at N ∈N time-steps, resulting from an equidistant time-discretization Dh ([t0, tn]) with
tk ∈Dh ([t0, tn]) for all k ∈ {1,2, ...,N} . A Gradient-Descent optimization technique could be
used to iteratively find an approximation of the solution p∗ of Eq. (5.62). Nevertheless, up-
dating the parameters using Gradient-Descent would independently update the parameters,
without considering the dependencies between the system parameters. Since we regard a
coupled dynamical system, it is necessary to use an appropriate optimization method, which

Chapter 5. Parameter Estimation for Dynamical Systems 144

makes use of the interrelations of the individual parameters.

We therefore need to make use of second order derivatives, since for the gradient of the
loss-function L (p), it holds that the gradient with respect to the parameters is defined as

∇pL (p) =
(

∂L (p)
∂ p1

,
∂L (p)

∂ p2
, ...,

∂L (p)
∂ p10

)T

∈R10 (5.63)

with partial derivatives being explicitly given by

∂L (p)
∂ p j

=
N

∑
k=1

3

∑
i=1

∂ ri(tk, p)
∂ p j

ri(tk, p) (5.64)

for parameters, indexed by j ∈ {1,2, ...,10}. Therefore, the derivatives with respect to the
individual parameters p j are not related to different parameters of the system.

For a second order optimization technique, including computation of the Hessian H(p) :=
∇2

pL (p) ∈ R10×10, we can recognize that for elements H(p)n j =
∂ 2L (p)
∂ pn∂ p j

∈ R for n, j ∈
{1,2, ...,10}, it holds that

∂ 2L (p)
∂ pn∂ p j

=
N

∑
k=1

3

∑
i=1

(
∂

∂ pn

(
∂ ri(tk, p)

∂ p j
ri(tk, p)

))
=

N

∑
k=1

3

∑
i=1

(
∂ ri(tk, p)

∂ pn

∂ ri(tk, p)
∂ p j

+ ri(tk, p)
∂ 2ri(tk, p)
∂ pn∂ p j

)
. (5.65)

We recognize that the entries of the Hessian contain the product of the first order derivatives
∂ ri(tk ,p)

∂ pn

∂ ri(tk ,p)
∂ p j

as well as the second order derivatives ∂ 2ri(tk ,p)
∂ pn∂ p j

, which describes the depen-
dencies of the individual parameters on each other.

Regarding the Semi-Explicit Euler method, it is already challenging to compute the first
order derivatives, as for large k ∈ {1,2, ...,N}, gradient-computation requires applying the
chain-rule of differentiation multiple times. It is therefore obvious, that computation of sec-
ond order derivatives is even more challenging and results in high time-consumption. As we
want to develop an efficient method for parameter estimation of the Quarter-Car-Model, let
us therefore consider the following.

Making use of Eq. (5.80), we can define the vector of residuals for all steps k ∈ {1,2, ...,N}
by

R(p) :=


r(t1, p)

r(t2, p)
...

r(tN , p)

 ∈R3N . (5.66)

Chapter 5. Parameter Estimation for Dynamical Systems 145

The Jacobian matrix, which we denote by J(p) ∈R3N×10, is therefore given as

J(p) :=


J1(p)

J2(p)
...

JN(p)

 , (5.67)

where

Jk(p) :=

∇T
p r3(tk, p)

∇T
p r2(tk, p)

∇T
p r1(tk, p)

=


∂ r3(tk ,p)

∂ p1
. . .

∂ r3(tk ,p)
∂ p10

∂ r2(tk ,p)
∂ p1

. . .
∂ r2(tk ,p)

∂ p10
∂ r1(tk ,p)

∂ p1
. . .

∂ r1(tk ,p)
∂ p10

 , (5.68)

which contains all partial derivatives of the computed residuals, using the Semi-Explicit Euler
method as state estimation model. Since

(JT R(p)) j =
N

∑
k=1

3

∑
i=1

∂ ri(tk, p)
∂ p j

ri(tk, p) =
∂L (p)

∂ p j
, (5.69)

it holds that the loss-function can also be computed by ∇pL (p) = JT (p)R(p) ∈ R10. fol-
lowing from Eq. (5.64) for parameter with index j ∈ {1,2, ...,10}. As a last step, the Fisher-
matrix, as approximation of the Hessian, can be computed by F(p) = JT (p)J(p) ∈R10×10.
Thus, the matrix entries F(p)n j are given by

F(p)n j =
N

∑
k=1

3

∑
i=1

(
∂ ri(tk, p)

∂ pn

∂ ri(tk, p)
∂ p j

)
(5.70)

and as a consequence, by comparing Eq. (5.65) and Eq. (5.70), it further holds that

H(p)n j = F(p)n j +
N

∑
k=1

3

∑
i=1

(
ri(tk, p)

∂ 2ri(tk, p)
∂ pn∂ p j

)
. (5.71)

If
N

∑
k=1

3

∑
i=1

(
ri(tk, p)

∂ 2ri(tk, p)
∂ pn∂ p j

)
≈ 0 (5.72)

for all n, j ∈ {1,2, ...,10}, then
F(p) ≈ H(p). (5.73)

An iterative optimization scheme to solve the non-linear least-squares problem, can therefore
be derived, using the Fisher-matrix as approximation to the Hessian. The update rule can
then be described by

pl+1 = pl−α
lF(pl)−1JT (pl)R(pl), (5.74)

where α l > 0 is a step-size for iteration step l ∈N. The above shown update-scheme of
Eq. (5.74) can further be derived, if one tries to solve a linearized least-squares problem,
which does not require computation of second order derivatives, as shown in [35] with an
adjustable step-size.

Chapter 5. Parameter Estimation for Dynamical Systems 146

State Estimation Model

Following Eq. (4.93) and Eq. (4.94), the Semi-Explicit Euler scheme for the data generation
process can be used to define an appropriate state estimation model, using the parameter
dependent system matrices and a time-step h = 0.01 by

vk+1 = vk + h
(

D(p)vk + S(p)qk + bk
)

(5.75)

qk+1 = qk + hvk+1 (5.76)

yk+1(p) = D(p)vk+1 + S(p)qk+1 + bk+1, (5.77)

where bk =
(
0,0, puuk

)T describes the non-linear driving term for k ∈ {1,2, ...,N}with corre-
sponding spring-coefficient pu := p∗10− p∗9 ∈R. In consistency with ak = (ak

3,ak
2,ak

1)
T ∈R3,

let the model estimates be indexed by yk(p) = (yk
3(p),yk

2(p),yk
1(p))T ∈R3.

It then holds, that for the true value of the system parameters, p∗, the exact value of the
acceleration is given by

ak = yk(p∗) (5.78)

for all k ∈ {1,2, ...,N}. If in contrast, we have parameter estimates p 6= p∗, the discrete
residuals, in our case a three dimensional vector for each time-step, can then be defined as

rk(p) =
(

yk(p)−ak
)
=

yk
3(p)−ak

3

yk
2(p)−ak

2

yk
1(p)−ak

1

=

rk
3(p)

rk
2(p)

rk
1(p)

 ∈R3. (5.79)

The herein described setting then leads to a non-linear least-squares problem, trying to find
the optimal parameter value p∗ by minimizing the discrete residuals for each time-step. Re-
placing the residuals resulting from the state estimation, rk(p), with the evaluation of the con-
tinuously differentiable residual function of the previous section, r(tk, p) for k ∈ {1,2, ...,N},
one can apply the Gauss-Newton algorithm with the help of the Semi-Explicit Euler, used as
a state estimation method.

Gauss-Newton Algorithm

We can now give an overview about a simple Gauss-Newton optimization technique, con-
sidering the previously described Fisher-matrix as approximation to the Hessian. The result-
ing iteration scheme, which is stated below, then serves as an approximative second order
method, without requiring computation of the second order partial derivatives.

As inputs to the algorithm, we require a starting point for the system parameters, denoted
by p0 ∈R10, the acceleration data a ∈RN×3, and the road-profile u ∈RN . Further, we need
to predefine a constant step-size α > 0 for the Wolfe-Condition to apply the Armijo-Rule [30]
for control of the step-size. Furthermore, we need a boundary value of ε > 0 as termination
criterion for the algorithm.

Chapter 5. Parameter Estimation for Dynamical Systems 147

Algorithmic Scheme

1. Set the current value of parameters for iteration step l ≤ T as pl , where T ∈N is the
maximum iteration number. Further choose an initial step-size a > 0.

2. Compute the residuals rk
i (pl) for all i ∈ {1,2, ...,10} and k ∈ {1,2, ...,N}. Then, the

resulting residual vector R(pl) can be defined.

3. Compute the Jacobian J(pl), the Fisher-matrix F(pl) = JT (pl)J(pl) and the inverse
F(pl)−1, if it exists. Otherwise, a Pseudo-Inverse of the Fisher-matrix is required.

4. Set gl = (F(pl))−1JT (pl)R(pl) as direction of optimization.

5. Test if L (pl−αgl) ≤L (pl)−α
(
gl
)T JT (pl)R(pl).

If not, we set α = α

2 and test the condition again, until it is satisfied. If the condition
is tested for ν ∈N times, until it is satisfied, set α l = α

2ν−1 .

6. Set pl+1 = pl−α lgl .

7. Compute ∆p = 1
10 ∑

10
i=1

∣∣pl+1
i − pl

i

∣∣= 1
10 ∑

10
i=1

∣∣α lgl
i

∣∣.
If ∆p < ε or l > T , the optimization is finished.
If not, we set pl = pl+1 and continue at 2., until the termination criterion is satisfied.

The Tensorflow source code is given in Figure A.16, Figure A.17, Figure A.18 and Figure
A.19, where we can observe that it is possible to implement a Gauss-Newton method, using
Tensorflow variables, such that the entire test dataset can simultaneously be used to estimate
the corresponding parameters. Nevertheless, the above described algorithmic scheme gives a
short simplified overview, about the general steps, we have to consider.

It is obvious that for this specific Gauss-Newton method for the parameter estimation of
the Quarter-Car-Model, no Neural Network is required. Thus, we are going to investigate,
if for the described optimal case, having full-observability of the unnoisy measurements, the
parameters can uniquely be determined from the acceleration profiles, by iteratively solving
the non-linear least-squares problem.

5.3.2 Experiment 5 : System Identification of Full-Observable Systems

Problem

We consider the previously defined dataset with

T(5) = {((am,um))}NS+NT
m=NS+1 ,

such that the acceleration and the road-profile can uniquely be described by the index m ∈
{NS + 1,NS + 2, ...,NS +NT} as elements of the test dataset, different from the samples be-
longing to the training data with m ∈ {1,2, ...,NS}, which are not being considered here.
Further, let the corresponding vector of true parameter values be described by pm ∈ R10,

Chapter 5. Parameter Estimation for Dynamical Systems 148

where the individual parameters are denoted by pm;i for i ∈ {1,2, ...,10}.

The problem, we want to investigate is: Given a randomly chosen initial value of the
system parameters, is it possible to achieve a sufficiently good approximation of the true
parameter values, using the above described Gauss-Newton method for full-observability
of the acceleration profiles?

Method

We want to solve

min
p

L (p) =
1
2

N

∑
k=1

3

∑
i=1

(
rk

i (p)
)2

,

where

rk(p) =
(

yk(p)−ak
)
=

yk
3(p)−ak

3

yk
2(p)−ak

2

yk
1(p)−ak

1

 (5.80)

for all acceleration profiles a ∈ T(5).

Let further the estimated parameter value at iteration step l ∈N for each true underlying
value pm;i for m∈ {NS+1,NS+2, ...,NS+NT} and i∈ {1,2, ..,10} be denoted by pl

m;i. There-
fore, let us recall, that the parameters of a reference model have been described in Eq. (4.103)
by

pµ =

(
C3

m3
,

K3

m3
,
C3

m2
,
C2

m2
,

K3

m2
,

K2

m2
,
C2

m1
,
C2 +C1

m1
,

K2

m1
,
K2 +K1

m1

)T

,

such that the elements, denoted by pµ;i for all i∈ {1,2, ...,10} have fixed values. We can then
define a randomly drawn deviation for all elements and all parameters of the test dataset,
denoted by δm;i with δm;i ∼N

(
0,0.12

)
. Then the initial parameter values are chosen, fol-

lowing p0
m;i = pµ;i (1+ δm;i). The previously described Gauss-Newton method can then be

used to iteratively solve the non-linear least-squares problem. Furthermore, we choose a
length of the acceleration profiles of N = 100, which has been experienced from several ex-
periments to be an appropriate size for the Gauss-Newton method. Smaller realizations of
N have shown to cause problems when computing the inverse of the Fisher-matrix, larger
realizations are inefficient, as the computation of the chained partial derivatives for large N

are time-consuming.

Results

The here shown results are taken from a Gauss-Newton method with initial step-size α = 0.1.
Although, we use the Armijo-Rule to regularize the step-size, random initialization causes
problems to compute the inverse Fisher-matrix, although the condition is satisfied. This
problem obviously occurs from the poor random initialization of the system parameters, as
we compute the inverse Fisher-matrix for all samples of the test dataset simultaneously. This
means computation of the inverse for T = 17000 components.

Chapter 5. Parameter Estimation for Dynamical Systems 149

Nevertheless, let us investigate the parameter estimation results for a smaller step-size, such
that the method does not cause numerical issues.

(a) Estimation of parameter 1. (b) Estimation of parameter 2.

(c) Estimation of parameter 3. (d) Estimation of parameter 4.

(e) Estimation of parameter 5. (f) Estimation of parameter 6.

(g) Estimation of parameter 7. (h) Estimation of parameter 8.

(i) Estimation of parameter 9. (j) Estimation of parameter 10.

FIGURE 5.17: Gauss-Newton parameter estimation for full-observability and random parameter ini-
tialization. A precise description of the plots is described by the caption of Figure 5.4. We recognize
the estimation of the Quarter-Car-Model parameters, after 100 optimization steps with initial step-size
α = 0.1 in Figure 5.17a - Figure 5.17 j. The visualized estimates correspond to the error distribution

given in Table 5.11.

Chapter 5. Parameter Estimation for Dynamical Systems 150

It can be observed with the help of Figure 5.17, that there are large deviations for the param-
eter estimation of the developed Gauss-Newton method throughout nearly all parameters.
Obviously, we have overestimations of small parameter values for p1 and p2 and underesti-
mates of larger values (Figure 5.17a and Figure 5.17b). Furthermore, there is a significant
tendency to overestimate the values of p4, as can be seen in Figure 5.17d, though the most
parameters are within the 10% error boundary. More robust estimates can be seen for pa-
rameters p6 - p10, although we can also recognize underestimations of p7 in Figure 5.17g.
Apparently, following Figure 5.17c and Figure 5.17e, it is not possible in this setting, to
achieve an appropriate estimation of neither p3 nor p5.

Step Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
100 1 50.88248 0.38816 2.17220 0.24735 0.57012 0.68435 0.83188 0.16812
100 2 4.60309 0.05236 0.18841 0.28641 0.89941 0.93441 0.96171 0.03829
100 3 268.96414 7.22228 16.27473 0.01371 0.06088 0.11312 0.22976 0.77024
100 4 2.45321 0.09652 0.21055 0.38694 0.71618 0.80047 0.88871 0.11129
100 5 5.46888 0.73327 0.66495 0.00918 0.04594 0.09394 0.23471 0.76529
100 6 0.85683 0.04338 0.04304 0.17094 0.66388 0.93235 0.99453 0.00547
100 7 1.51068 0.06089 0.11921 0.27976 0.69871 0.85141 0.95118 0.04882
100 8 0.19972 0.00725 0.01417 0.81041 0.98482 0.99453 1.00000 0.00000
100 9 1.89653 0.01080 0.03369 0.72571 0.98188 0.99247 0.99506 0.00494
100 10 0.26131 0.00946 0.01882 0.77118 0.96082 0.99112 0.99988 0.00012

TABLE 5.11: Experiment 5: Error distribution of Gauss-Newton parameter estimation for full-
observability and random parameter initialization. The table shows the error distribution and more
statistical values of the observed estimation results. The whole test dataset T(5) is considered for
the computation. The description of the columns is shown in the caption of Table 5.1. The table

corresponds to the visualization of Figure 5.17.

We have already seen in Figure 5.17, that given random initialization of the parameters for
the Gauss-Newton method, several problems occur, except for a subset of the relevant pa-
rameters. The same investigation can be observed from the corresponding Table 5.11, where
it is for instance obvious that more than 75% of the estimates for p3 and p5 lie out of the
25% error bound. Furthermore, the most robust estimates can be observed for parameters
p6 to p10, as more than 85% lie within the 10% error bound, where a relatively large mean
standard deviation of 0.11921 for p7 is characteristic for the significant underestimation we
have already observed in Figure 5.17g.

Summary

The Gauss-Newton method for parameter estimation of the Quarter-Car-Model with random
initialization shows, that it is difficult to achieve appropriate results in this setting. As we can
observe a strong tendency to underestimate small values of p1 and p2, where large values are
underestimated, this could occur from poor initialization of the occupant-related coefficients.
It has already been investigated in Figure 4.14 for the data generation of the training and
test dataset, that parameters p1 and p2 are generated, using a different distribution, compared
to the remaining coefficients of the coupled dynamical system. The mass of the seat and
the occupant have been generated from a uniform distribution, which makes it difficult to

Chapter 5. Parameter Estimation for Dynamical Systems 151

randomly choose an initial value for the Gauss-Newton method. Fortunately, Experiment 1
- Experiment 4 have shown, that the parameter values can robustly be predicted from data
driven models. We can therefore use one of the pre-trained Neural Networks of the previously
investigated problems to initialize the parameter values to solve the non-linear least-squares
problem. We then want to observe, if the algorithm is stabilized using this more sophisticated
initialization. Furthermore, we will compare, if the problems stated in Experiment 5 vanish
in this case.

5.3.3 Experiment 6 : Parameter Initialization via Neural Networks

Problem

As it has already been summarized in Experiment 5, we now want to observe, if initializa-
tion by a Neural Network for parameters p1 and p2 for the data samples contained in T(5),
improves the Gauss-Newton method in multiple senses.

The problem, we want to investigate is: Given a better initialization of the first and second
parameter, as a starting point for the Gauss-Newton method, do we achieve significantly
better results for the entire parameters of the system?

Method

The method differs from that described in Experiment 5 only by choosing the initial values
for parameter p1 and p2 with the help of a pre-trained Neural Network. We have already
investigated, that the unlabelled training approach for parameter estimation is more robust
for unknown test samples. Let us further notice, that since we again assume to have a full-
observable system, the acceleration profiles a ∈ RN×3 with a = (a3,a2,a1) contain the oc-
cupant’s acceleration a3, as well as the chassis acceleration a2. We made use of these data
combination in Experiment 1 - Experiment 4. It is therefore obvious, that we can use the
pre-trained Neural Network of Experiment 2 with

f (2)
θβ

: RN×2→R2

(a3,a2) 7→

(
p̃1(θβ)

p̃2(θβ)

)
.

Obviously, we can choose the following initial value for each sample of the test dataset by

p0
m;1 =

(
f (2)
θβ

(am;3,am;2)
)

1
, p0

m;2 =
(

f (2)
θβ

(am;3,am;2)
)

2
(5.81)

and for the remaining parameters again use random initialization with p0
m;i = pµ;i (1+ δm;i)

for i ∈ {3,4, ...,10} for all m ∈ {NS + 1,NS + 2, ...,NS +NT}.

We apply the Gauss-Newton method analogously to the first experiment of this section, where
we now use a Neural Network based initialization of parameter p1 and p2. Again, we choose

Chapter 5. Parameter Estimation for Dynamical Systems 152

a vector length of N = 100 for the input data, which will remain the same for the entire sec-
tion, as far as Gauss-Newton methods for parameter estimation are concerned. Furthermore,
we try an initial step-size of α = 1.0 and apply the Armijo-Rule to adjust it throughout the
optimization process.

Results

In order to have comparable results, we use the common plots and tables, we have experi-
enced in the course of the last sections. We note, that in contrast to the 100 iterations of
the previously random initialization in Experiment 5, we only have 30 iterations, until the
algorithm terminates. The more sophisticated initialization of parameters p1 and p2 leads
therefore to an increasing stability of the algorithm such that we can apply larger step-sizes
for each optimization step.

The estimation results after 30 iterations of the Gauss-Newton method for a Neural Net-
work supported initialization of the first two parameters, can easily be summarized, if we
regard Figure 5.18. Obviously, the parameter estimates significantly lie within the 10% error
bound, where we can even recognize very small deviations for parameter p2 and p8 to p10.
Furthermore, if we consider the results for the test dataset in Experiment 5, we can even
recognize that the estimates given by the Neural Network for the test dataset can be signifi-
cantly improved using the Gauss-Newton method. Nevertheless, there is still no possibility to
appropriately estimate parameters p3 and p5 as can be seen in Figure 5.18c and Figure 5.18e.
Apparently, the value of those parameters is not as sensitive to the approximation quality of
the model states, compared to the remaining parameters.

Step Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
30 1 0.11898 0.01177 0.01193 0.56400 0.98482 0.99941 1.00000 0.00000
30 2 0.04901 0.00545 0.00528 0.84659 1.00000 1.00000 1.00000 0.00000
30 3 6.87345 0.45187 0.51629 0.03400 0.13776 0.23665 0.45700 0.54300
30 4 0.08483 0.00602 0.00678 0.83176 0.99706 1.00000 1.00000 0.00000
30 5 1.18007 0.15325 0.12715 0.04647 0.21759 0.41547 0.81076 0.18924
30 6 0.14083 0.01011 0.01070 0.64100 0.98971 0.99971 1.00000 0.00000
30 7 0.20535 0.00830 0.01253 0.76329 0.98318 0.99735 1.00000 0.00000
30 8 0.00535 0.00053 0.00057 1.00000 1.00000 1.00000 1.00000 0.00000
30 9 0.02713 0.00152 0.00206 0.98947 1.00000 1.00000 1.00000 0.00000
30 10 0.01132 0.00065 0.00080 0.99982 1.00000 1.00000 1.00000 0.00000

TABLE 5.12: Experiment 6: Error distribution of Gauss-Newton parameter estimation for full-
observability and parameter initialization of p1 and p2 via Convolutional Neural Network. The table
shows the error distribution and more statistical values of the observed estimation results. The whole
test dataset T(5) is considered for the computation. The description of the columns is shown in the

caption of Table 5.1. The table corresponds to the visualization of Figure 5.18.

The visualized results in Figure 5.18 can be verified with Table 5.12. If we compare the
results for the apparently identifiable parameters with index i ∈ {1,2,4,6,7,8,9,10} and the
practically non-identifiable remaining parameters with i∈ {3,5}, we can recognize that more
than 98.3% of the identifiable parameters lie within the 5% error bound, while we have

Chapter 5. Parameter Estimation for Dynamical Systems 153

(a) Estimation of parameter 1. (b) Estimation of parameter 2.

(c) Estimation of parameter 3. (d) Estimation of parameter 4.

(e) Estimation of parameter 5. (f) Estimation of parameter 6.

(g) Estimation of parameter 7. (h) Estimation of parameter 8.

(i) Estimation of parameter 9. (j) Estimation of parameter 10.

FIGURE 5.18: Gauss-Newton parameter estimation for full-observability and parameter initialization
of p1 and p2 via Convolutional Neural Network. A precise description of the plots is described by
the caption of Figure 5.4. We recognize the estimation of the Quarter-Car-Model parameters, after
30 optimization steps with initial step-size α = 1.0 in Figure 5.18a - Figure 5.18 j. The visualized

estimates correspond to the error distribution given in Table 5.12.

13.78% for p3 and 21.76% for p5. Furthermore, maximal deviation, mean relative deviation
and mean standard deviation show significantly larger values for p3 and p5, compared to the
remaining parameters of the Quarter-Car-Model. Comparing this to the random initialization

Chapter 5. Parameter Estimation for Dynamical Systems 154

of p1 and p2, we can investigate that now 100% of the identifiable parameters lie within the
25% error bound, where 54% of the estimates for p3 have deviations larger than 25% and
19% for p5. Nevertheless, this deviation, even for the non-identifiable parameters is much
better compared to the results of Experiment 5.

Summary

Summarizing the observed results, we need to define the index set of practically identifiable
parameters by {1,2,4,6,7,8,9,10} and the index set of practically non-identifiable param-
eters by {3,5}. It has been shown in [87], that although all parameters of a model can be
structurally identifiable for full-observable systems, it can happen that there exist practically
non-identifiable parameters resulting from the given type of data. Further experiments, to
overcome this problem have also been made, by using loss-functions similar to Experiment
1 and Experiment 2 for the acceleration profile of the chassis. The observations have shown
the same as for the Gauss-Newton method: The parameters p3 and p5 are not identifiable
within an appropriate error range for the test dataset. Although we can increase the depth
of the used Neural Network to guarantee a minimization of the training error, several Neural
Network architectures do not lead to a good generalization for the test samples.

We can therefore conclude, that in this setting or for this type of data, it is not possible
to identify the parameters p3 and p5 from the observed data. Nevertheless, poor estimates
are not sensitive to the stability of the optimization method and a sophisticated initialization
of p1 and p2 with the help of a pre-trained Convolutional Neural Network for parameter
estimation leads to a faster and more robust Hybrid Gauss-Newton estimation method.

5.3.4 Experiment 7 : System Identification of Identifiable Parameters

Problem

The previous experiment has stated, that there is a set of practically identifiable parameters
and a complementary set of unidentifiable parameters. We want to solve again Eq. (5.62) for
a full-observable system, but assume now, that the true values of the unidentifiable parame-
ters, or at least an acceptable range of the true values, are a priori known. The observable test
dataset is therefore given by

T(7) = {((am,um) , (pm;3, pm;5))}NS+NT
m=NS+1 , (5.82)

which means that the unidentifiable parameters are not considered as target values for the
iterations of the Gauss-Newton method.

The problem, we want to investigate is: Given an appropriate estimate of the uniden-
tifiable parameters p3 and p5, can the results shown in the previous experiment, be
improved by eliminating this uncertainty?

Chapter 5. Parameter Estimation for Dynamical Systems 155

Method

Instead of applying the Gauss-Newton method to the entire parameter vector pm ∈R10, for
all m ∈ {NS + 1,NS + 2, ...,NS +NT}, let us now consider the reduced parameter vector of
identifiable coefficients by

p := (p1, p2, p4, p6, p7, p8, p9, p10)
T ∈R8. (5.83)

One can then verify, that for the Gauss-Newton method, we can not consider the partial
derivatives ∂L (p)

∂ p j
for j ∈ {3,5}. As a consequence, the gradient reduces its dimension, such

that ∇pL (p) ∈ R8. Furthermore, we have a reduction of the Jacobian with J(p) ∈ R3N×8

and consequently the Fisher-matrix of the reduced parameters is given by F(p) ∈R8×8.

Having a current estimate of the reduced, identifiable parameters for iteration l ∈N, given
by pl , one can update the estimated parameter values with the Gauss-Newton step

pl+1 = pl−α
l
(

F(pl)
)−1

JT (pl)R(pl). (5.84)

Using the updated value of the identifiable parameters, then requires to map pl+1 to the vector
of all relevant parameters pl+1, where

pl+1 =
(

pl+1
1 , pl+1

2 , p3, pl+1
4 , p5, pl+1

6 , pl+1
7 , pl+1

8 , pl+1
9 , pl+1

10

)T
, (5.85)

such that the system matrix A(pl+1) can be defined for the model to estimate the updated
states y(pl+1) of the system. Again, as it has shown to improve robustness of the method, we
use the Neural Network initialization of parameters p1 and p2 and a series-length of N = 100.

Results

We can directly compare the herein shown results to the previous Experiment 7, where
we have considered the entire parameter vector for the Gauss-Newton method. The herein
shown results for the reduced parameter estimation problem, have been observed after 25
Gauss-Newton steps with application of the Armijo-Rule to adjust the step-size.

It is more than obvious, that the estimates of the parameters for the identifiable set are almost
optimal, if we consider Figure 5.19. Most of the estimates for the reduced problem with
the shown Gauss-Newton method, result in values close to the optimal value. We can only
observe small deviations for parameter p7, which has already in previous experiments been
experienced to be more difficult to identify compared to other coefficients.

The apparently optimal results for this setting can be verified using Table 5.13. Where we had
values of more than 56% in the 1% error range for the identifiable parameters in Experiment
6, we now end up at more than 99.63% for all identifiable parameters in the same range.

Chapter 5. Parameter Estimation for Dynamical Systems 156

(a) Estimation of parameter 1. (b) Estimation of parameter 2.

(c) Estimation of parameter 4. (d) Estimation of parameter 6.

(e) Estimation of parameter 7. (f) Estimation of parameter 8.

(g) Estimation of parameter 9. (h) Estimation of parameter 10.

FIGURE 5.19: Gauss-Newton parameter estimation for full-observability, restricted to the identifiable
parameters and parameter initialization of p1 and p2 via Convolutional Neural Network. A precise
description of the plots is described by the caption of Figure 5.4. We recognize the estimation of the
Quarter-Car-Model parameters, after 10 optimization steps with initial step-size α = 1.0 in Figure
5.19a - Figure 5.19h. The visualized estimates correspond to the error distribution given in Table

5.13.

Besides, we have 100% of the estimates in the 5% range. Moreover, the small values of the
maximal deviation, for instance 3.7% for p7, compared to 20.5% for Experiment 6 and mean
relative deviations smaller than 10−3, show that the method is capable to uniquely determine
the parameter values of the reduced problem .

Summary

We have observed optimal parameter estimation results for a problem, where we have full-
observability of the measurements and a partial initialization of the parameters via a pre-
trained Convolutional Neural Network. In addition, we have excluded the non-identifiable

Chapter 5. Parameter Estimation for Dynamical Systems 157

Step Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
25 1 0.01079 0.00004 0.00024 0.99994 1.00000 1.00000 1.00000 0.00000
25 2 0.02499 0.00005 0.00046 0.99959 1.00000 1.00000 1.00000 0.00000
25 4 0.02229 0.00004 0.00037 0.99976 1.00000 1.00000 1.00000 0.00000
25 6 0.01121 0.00006 0.00044 0.99982 1.00000 1.00000 1.00000 0.00000
25 7 0.03714 0.00017 0.00129 0.99635 1.00000 1.00000 1.00000 0.00000
25 8 0.00155 0.00001 0.00006 1.00000 1.00000 1.00000 1.00000 0.00000
25 9 0.00680 0.00003 0.00020 1.00000 1.00000 1.00000 1.00000 0.00000
25 10 0.00239 0.00001 0.00009 1.00000 1.00000 1.00000 1.00000 0.00000

TABLE 5.13: Experiment 7: Error distribution of Gauss-Newton parameter estimation for full-
observability, restricted to the identifiable parameters and parameter initialization of p1 and p2 via
Convolutional Neural Network. The table shows the error distribution and more statistical values
of the observed estimation results. The whole test dataset T(7) is considered for the computation.
The description of the columns is shown in the caption of Table 5.1. The table corresponds to the

visualization of Figure 5.19.

parameters, which we have observed in the previous examples to be most difficult to esti-
mate. The Gauss-Newton method is capable to solve the non-linear least-squares problem, if
we consider the best possible setting for the estimation problem.

Finally, we will consider another setting, where the conditions are not optimal at all. We have
already clarified that there is a difference between structurally and practically identifiability
of the system parameters. The practically non-identifiable parameters have therefore been
excluded in Experiment 7 and we have restricted the problem to those parameters, which
are practically and structurally identifiable for a full-observable coupled dynamical systems.
Nevertheless, we have seen that the structurally identifiability property is hurt, if we only
consider partially observable systems. Therefore, the next section deals with such systems,
in which only the acceleration profile of the occupant is accessible for the Gauss-Newton
estimation method.

5.4 System Identification of Uncertain Systems

The last investigations, we are going to consider, is system identification of uncertain sys-
tems. It has already been shown, that Hybrid Models [15, 52], can in general be described as a
combination of individual methods, which improve the performance of the combined model,
in comparison to the performance of the individual models. Moreover, we have already ex-
perienced several experiments, where we used such Hybrid Models for a two-dimensional
parameter estimation problem. We have shown the training of an unlabelled, hybrid Convo-
lutional Neural Network in Experiment 2, where we have combined the method of parameter
estimation via least-squares minimization with generic Neural Network training methods. A
second Hybrid Model has been experienced in Experiment 4, where a pre-trained Convo-
lutional Auto-Encoder has been used as a preprocessing step to significantly improve the
performance for noise-corrupted input samples. A third model has been shown in Experi-
ment 6, where a pre-trained Convolutional Neural Network has been used to initialize the
parameters of the occupant related acceleration profile. Then a Gauss-Newton method has
been used to estimate the parameters of the entire Quarter-Car-Model.

Chapter 5. Parameter Estimation for Dynamical Systems 158

Since the previous experiments, using Gauss-Newton methods for parameter estimation, have
only considered full-observable systems, we are now going to investigate the estimation ac-
curacy for uncertain systems, where we only have partially observable states.

FIGURE 5.20: Identification of the Quarter-Car-Model parameters using a
Hybrid Gauss-Newton optimization method. The initial values of the system
are partially initialized by the prediction of a pre-trained Convolutional Neu-
ral Network. The missing observations of the system response are predicted
with a pre-trained U-Net. Then the Gauss-Newton algorithm can be applied,
since all required components are predicted with several Neural Networks.

We use the scheme presented in Figure 5.20 to show the idea of the now following experi-
ments. Again, we use a Gauss-Newton method for optimization of the system coefficients
of a given test dataset. As already known, the method requires input control and the system
matrix to apply an appropriate state estimation method, by a Semi-Explicit Euler scheme.
Then the Gauss-Newton step can be applied, minimizing the difference between estimated
states and measurements.

Up to now, we have already improved the method by including a pre-trained Neural Network
to initialize a subset of the system parameters within an appropriate range. The problem, we
now investigate is, what happens to our method, if not all system responses are accessible.
This is then crucial for the non-linear least-squares problem, since the measurements are re-
quired as reference points for estimation of the residuals for each Gauss-Newton optimization
step. To overcome this problem, we will observe, if a U-Net Neural Network structure is able

Chapter 5. Parameter Estimation for Dynamical Systems 159

to artificially complete the system responses, using the input of the system and the partially
observable system responses.

5.4.1 Experiment 8 : Parameter Estimation for Incomplete Systems

Problem

The problem of parameter estimation for incomplete systems can easily be clarified, if we
consider the following accessible test dataset in consistency with the previously shown ex-
periments. Let us assume that the test dataset is given by

T(8) = {((am;3,um) , (pm;3, pm;5))}NS+NT
m=NS+1 , (5.86)

which can be interpreted, that only the acceleration profile of the occupant is observable. We
have access to the input control and do not need to estimate the practically non-identifiable
parameters, as they are assumed to be known for the test samples.

The problem, we want to investigate is: Given the partial observations of the system,
is it anyhow possible to identify the practically identifiable parameters of the Quarter-
Car-Model, if we use the initialization network for parameters p1 and p2?

Method

Since there are no observable measurements for the chassis and the wheel-suspensions, it is
only possible to solve the following non-linear least-squares problem

min
p

L (p) =
1
2

N

∑
k=1

(
rk

3(p)
)2

, (5.87)

where rk
3(p) = yk

3(p)− ak
3 for all elements of the test dataset. Obviously, this significantly

causes a dimension reduction of the Jacobian, since there is a lack of the partial derivatives
∂ rk

i (p)
∂ p j

for i ∈ {1,2} and j ∈ {1,2,4,6,7,8,9,10} for all steps k ∈ {1,2, ...,N}. The Jacobian
of the reduced parameter vector p is therefore given by J(p) ∈RN×8. Therefore, we have no
information how a deviation of a current parameter value changes the acceleration profiles
of the chassis or the wheel-suspensions. We solely have information, how a variation of the
parameters changes the observable acceleration profile of the occupant.

Again, we choose a series-length of N = 100 points for the now presented results. Since
we have again a large rate of uncertainty in our problem setting, the developed algorithm
causes problems for an initial step-size of α = 1.0. It is therefore only possible to achieve
results, if we choose a smaller step-size α = 0.1 and let the algorithm run for a significantly
larger number of iterations, compared to the experiments with a larger step-size.

Chapter 5. Parameter Estimation for Dynamical Systems 160

Results

We show the parameter estimation results of a Gauss-Newton method for an incomplete
system after 100 optimization steps with step-size α = 0.1. Therefore, a visualization of
estimated and true parameter values can be considered, as well as the error distribution table,
we have broadly used for the previous experiments.

(a) Estimation of parameter 1. (b) Estimation of parameter 2.

(c) Estimation of parameter 4. (d) Estimation of parameter 6.

(e) Estimation of parameter 7. (f) Estimation of parameter 8.

(g) Estimation of parameter 9. (h) Estimation of parameter 10.

FIGURE 5.21: Gauss-Newton parameter estimation for partial observability, restricted to the iden-
tifiable parameters and parameter initialization of p1 and p2 via Convolutional Neural Network. A
precise description of the plots is described by the caption of Figure 5.4. We recognize the estimation
of the Quarter-Car-Model parameters, after 100 optimization steps with initial step-size α = 0.1 in
Figure 5.21a - Figure 5.21h. The visualized estimates correspond to the error distribution given in

Table 5.14.

If we shortly want to summarize the visualizations which can be observed in Figure 5.21 for

Chapter 5. Parameter Estimation for Dynamical Systems 161

uncertain system identification, it is obvious, that we have a significant tendency to underes-
timate parameters p4, p7 and p8, where parameters, denoted by p6 and p10 are mainly over-
estimated if the approximation of the true value does not lie within the green area. Moreover,
we have a central deviation for parameter p9 and relatively good estimates for parameters
p1 and p2. Nevertheless, we recognize a large point cloud for small values of p1 and some
outliers for the estimates of p2. In conclusion, although we only have partial observability
of the system, it is possible to estimate the parameters of a larger subset of the test dataset
within the 10% error boundary. Nevertheless, if we require robust estimates of all system
coefficients, the herein used model is critical, since there are large deviations beyond 25%.

Step Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
100 1 6.02052 0.09647 0.27948 0.12253 0.49329 0.73282 0.93935 0.06065
100 2 2.87366 0.02875 0.10758 0.35618 0.88641 0.96771 0.99553 0.00447
100 4 3.58796 0.12843 0.33188 0.15688 0.62276 0.81506 0.90994 0.09006
100 6 3.71102 0.12381 0.33492 0.20576 0.69941 0.84488 0.91406 0.08594
100 7 3.97295 0.12139 0.27335 0.12994 0.55453 0.79582 0.89653 0.10347
100 8 0.92186 0.05128 0.08479 0.21165 0.74488 0.88541 0.96588 0.03412
100 9 1.74747 0.04371 0.05131 0.16635 0.69794 0.92535 0.99188 0.00812
100 10 3.89406 0.12055 0.34068 0.22518 0.72359 0.84459 0.91288 0.08712

TABLE 5.14: Experiment 8: Error distribution of Gauss-Newton parameter estimation for partial
observability, restricted to the identifiable parameters and parameter initialization of p1 and p2 via
Convolutional Neural Network. The table shows the error distribution and more statistical values
of the observed estimation results. The whole test dataset T(8) is considered for the computation.
The description of the columns is shown in the caption of Table 5.1. The table corresponds to the

visualization of Figure 5.21.

We again need to consider the error distribution of this example, given in Table 5.14, as
precise values cannot be investigated from Figure 5.21. The main points, we can investigate
are therefore the following. We have investigated, that it is nevertheless possible to estimate
most of the parameters within an appropriate range. As we can see on the table, more than
73.28% of the parameter estimates lie within the 10% error bound of the system. In contrast,
deviations of more than 25% are recognizable for the estimates of p1 with 6%, p4 with 9%,
p6 with 8.6%, p7 with 10.3% and p10 with 8.7%. Additionally, the maximal deviations are
around 92% for parameter p8 and 174% for parameter p9, between 287% and 397% for most
of the remaining parameters, except for p1 with even maximal 602% relative deviation from
the target value.

Summary

Estimating the parameters of an uncertain, incomplete system, using the Gauss-Newton
method, is difficult in terms of robustness for larger step-sizes, as well as robustness of the
estimated values. Although, most of the estimates lie within the 10% error bound, there are
significantly large deviations of the parameter values. If we for instance consider the maxi-
mal relative deviation of 600% for parameter p1, this is indeed a critical value for occupant
safety within the car interior. Since the parameter only considers a variation of the occupant’s

Chapter 5. Parameter Estimation for Dynamical Systems 162

mass, this could for instance lead to classification of a child as an adult, enabling the airbag-
function of the system, and killing the child in case of a crash. What we therefore need are
robust models, that do not lead to large false estimates of the parameters.

5.4.2 Experiment 9 : Data Completion via Neural Networks

Problem

It is critical to develop robust optimization methods, when not all states are observable.
Therefore, we want to investigate, if again Neural Networks can be used to overcome such
problems. Appropriate network structures, as for instance U-Net [89], have been created to
solve the problem of data segmentation for tomography images. We therefore assume, that
such structures can also be used to solve segmentation tasks to estimate unobservable se-
quential acceleration profiles.

Let us consider the training dataset

S(9) = {((am;3,um) , (am;2,am;1))}NS
m=1 (5.88)

and for latter evaluation of the generalization property, let us further define the corresponding
test dataset as

T(9) = {((am;3,um) , (am;2,am;1))}NS+NT
m=NS+1 , (5.89)

where the task almost results from investigating the structure of the training dataset. Obvi-
ously, we assume that the acceleration profiles of the occupant, am;3 ∈RN are observable, as
well as the input control um ∈RN , the randomly generated road-profile of the sample, scaled
by the spring-coefficient pu of the wheel-suspensions, such that um = puum. The target values
are therefore given by the acceleration profiles of the chassis, am;2 ∈ RN and the profile of
the wheel-suspensions, am;1 ∈RN .

The problem, we want to investigate is. Given the accessible acceleration of the occu-
pant and the scaled road-profile, can a U-Net structure be used to appropriately predict
the unobservable states of the coupled dynamical system for the training samples and
more important also generalizes for the test samples?

Method

For common elements of the training or the test data, denoted by a3 ∈RN and u ∈RN , let us
define a general U-Net structure as a function

f (9)
θ

: RN×2→RN×2 (5.90)

(a3,u) 7→ (ã2(θ), ã1(θ)) , (5.91)

Chapter 5. Parameter Estimation for Dynamical Systems 163

such that in terms of the network’s output, the predictions of the unobservable profiles are
given by

ã2(θ) =
(

f (9)
θ

(a3,u)
)

1
, ã1(θ) =

(
f (9)
θ

(a3,u)
)

2
. (5.92)

The training of the Neural Network to map the observable information to the unobservable
states, can then be defined as the optimization problem

min
θ

1
NS

NS

∑
m=1

N

∑
k=1

((
ak

m;2− ãk
m;1(θ)

)2
+
(

ak
m;1− ãk

m;2(θ)
)2
)

, (5.93)

which is obviously a similar training definition as the denoising problem in Experiment 4,
yet we do not want to map corrupted data to cleaned versions, but different measurement
profiles on each other.

The training specifications for this problem are given by

• Optimization method: Adaptive Momentum (ADAM) Optimization

• Learning-rate: η = 0.0003

• Batch-size: B = 100

• Series-length of the input samples: N = 512

• Training-epochs: E = 200

The layer structure of the U-Net, used to achieve our results, is given by Figure B.3. Imple-
mentation details are shown in Figure A.9, Figure A.10, Figure A.11 and Figure A.12. The
following results will mainly focus on the observations made for the test samples, as they are
stated in the parameter estimation problems, using the Gauss-Newton method in Experiment
10.

Results

We want to quickly evaluate the training and the generalization performance for the U-Net to
identify the unobservable states of the system. Therefore, we evaluate the loss-functions of
training and test error, the Mean-Squared-Error (MSE) of predicted state and true unobserv-
able state and finally show some examples for the test dataset. The results shown here, are
therefore structurally comparable to the denoising investigations in Experiment 4.

The shapes of the loss-functions in Figure 5.22 show, that the network parameters are appro-
priately trained. The longer the training, the lower the value of the loss-functions. This holds
for the training loss as well as for the test loss. Again, the training loss is slightly below
the test loss, but we cannot observe a significant overfitting of the training data, since the
loss-functions of training and test are obviously close to each other.

Chapter 5. Parameter Estimation for Dynamical Systems 164

FIGURE 5.22: Training Loss and Test Loss for the Data Completion U-Net. The shape of the training
loss is visualized in blue, the test loss in orange. The horizontal axis describes the number of training

epochs, the vertical axis the values of the loss function.

(a) Error Distribution of Chassis Acceleration.
(b) Error Distribution of Wheel-Suspension Accel-

eration.

FIGURE 5.23: Histograms of the Mean-Squared-Error for the predicted unobservable data of the test
dataset. The horizontal axis shows the Mean-Squared-Error for each predicted sample, according
to the true underlying unobservable test sample. The vertical axis shows the absolute cumulative

frequency of the error values that have been computed for the test samples.

The evaluation of the MSE in Figure 5.23 yields that the error range for the prediction of the
chassis profile on the l.h.s. and that of the wheel-suspensions on the r.h.s. differ. Most errors
for the chassis are below 10−5, while we have an upper bound of approximately 10−4 for
the wheel-suspension. Let us finally consider some examples of the test dataset to evaluate
the prediction accuracy of the pre-trained U-Net, which we denote in consistency with the
already discussed networks by f (9)

θδ
after K = E NS

B = 200 ·340 = 68000 optimization steps.

There can be two examples observed in Figure 5.24. The predictions of the unobservable
chassis acceleration is given on the l.h.s. while the wheel-suspension’s profile is shown on
the r.h.s. It is not possible to recognize large deviations of the predicted estimates for the
test dataset. Most estimated values are close to the true, unknown values. This means, that

Chapter 5. Parameter Estimation for Dynamical Systems 165

(a) Prediction of Chassis Acceleration. (b) Prediction of Wheel-Suspension Acceleration.

(c) Prediction of Chassis Acceleration. (d) Prediction of Chassis Acceleration.

FIGURE 5.24: Examples of Data Completion for Test Samples.

given the acceleration of the chassis and the road-profile, it is possible for unknown test data
to complete the uncertain system with the help of a pre-trained U-Net for segmentation of
sequential data.

Summary

The training of a U-Net has shown promising results to handle the problem of an incomplete
system. It is remarkable, that even for samples, which have not been used to update the
network parameters in the training process, the network is capable to give very close estimates
of the true states. Therefore, as a logical final step, we will make use of this pre-trained
network in Experiment 10, to complete the uncertain system, such that the Gauss-Newton
method of Experiment 7 can be applied to the predicted system.

5.4.3 Experiment 10 : Parameter Estimation for Hybrid Models

Problem

We have seen that it is indeed possible to train a U-Net in Experiment 9, which delivers
appropriate results on the test dataset for prediction of the unobservable acceleration profiles.
Let us therefore now consider again the test dataset of Experiment 8, by

T(8) = {((am;3,um) , (pm;3, pm;5))}NS+NT
m=NS+1 ,

Chapter 5. Parameter Estimation for Dynamical Systems 166

which has previously already been defined in detail. We have further investigated, that trying
to solve parameter estimation problems for incomplete systems is not robust against large
deviations of the approximated coefficient values.

The problem we want to investigate is: Given the acceleration of the occupant, the road-
profile and the value of the non-identifiable parameters, can we use the pre-trained
U-Net to complete the system and with the help of the initialization network for p1 and
p2 develop a more robust Hybrid Model for system identification of the Quarter-Car-
Model coefficients?

Method

Instead of directly defining the optimization problem to apply the Gauss-Newton method, we
need to execute some steps beforehand. Let us therefore consider the following:

1. The pre-trained U-Net for data completion in Experiment 9 can be denoted with the
parameter realization θδ by

f (9)
θδ

: RN×2→RN×2

(a3,u) 7→ (ã2(θδ), ã1(θδ)) ,

, with u= puu the source term of the Quarter-Car-Model. Therefore, for all am;3 and um

of the test dataset, we assume that the corresponding spring-coefficient pm;u is known,
such that we can compute um = pm;uum for all samples of the set. Then, the incomplete
system can be approximately completed, using f (9)

θδ
, such that we get

ãm;2(θδ) =
(

f (9)
θδ

(am;3,um)
)

1
, ãm;1(θδ) =

(
f (9)
θδ

(am;3,um)
)

2
(5.94)

for all m ∈ {NS +1,NS +2, ...,NS +NT}, with ãm;1(θδ), ãm;2(θδ) ∈RN . The system is
therefore artificially completed.

2. The pre-trained Convolutional Neural Network in Experiment 2 can be denoted with
the parameter realization θβ by

f (2)
θβ

: RN×2→R2

(a3,a2) 7→

(
p̃1(θβ)

p̃2(θβ)

)
.

Since execution of the pre-trained Neural Network for parameter estimation requires
acceleration data of the occupant as well as acceleration data of the chassis, we can
now use the completed system, to get initial parameter values p0

m;1 and p0
m;2 for all

m ∈ {NS + 1,NS + 2, ...,NS +NT}. It therefore holds that

p0
m;i =

(
f (2)
θβ

(
aT

m;3

ãT
m;2(θδ)

))
i

(5.95)

Chapter 5. Parameter Estimation for Dynamical Systems 167

for i ∈ {1,2}. The initialization network therefore uses the predicted acceleration pro-
file of the chassis to estimate the initial values of the occupant related parameters. The
initialization of the parameters is already a function composition of two pre-trained
Neural Networks.

3. The pre-trained U-Net has already been used to complete the system, the pre-trained
Convolutional Neural Network has been used to initialize the parameter vector. As a
final step, one can define the predicted residuals for the Gauss-Newton method to start,
for any iteration step l ∈N at any point k ∈ {1,2, ...,N} for all samples with index
m ∈ {NS + 1,NS + 2, ...,NS +NT} by

r̃k
m(pl) =

 yk
m;3(pl)−ak

m;3

yk
m;2(pl)− ãk

m;2(θδ)

yk
m;1(pl)− ãk

m;1(θδ)

 . (5.96)

We can then define the non-linear least-squares problem for parameter estimation of the arti-
ficially completed system by

min
p

L (p) =
1
2

N

∑
k=1

3

∑
i=1

(
r̃k(p)

)2
, (5.97)

which needs to be solved for all samples of the test dataset individually.

Choosing a series-length of N = 100, and trying to apply the Armijo-Rule with α = 1.0
for the now completed system, we can compare the results of the applied Gauss-Newton
method with those of the incomplete system in Experiment 8. Implementation details for
the entire model, are given by Figure A.13 - Figure A.19.

Results

We now present the last results as far as this work is concerned. It is now possible to compare,
if there are any advantages to use the artificially completed system instead of the incomplete
uncertain system in Experiment 8.

The visualization of the estimates in Figure 5.25 for the Hybrid Gauss-Newton method show,
that after 10 iterations, the results are significantly more stable, compared to the incomplete
system. There is obviously no tendency of underestimation or overestimation of a given
parameter. Most estimates are observable within the 10% error bound, while we can further-
more recognize a few outliers in the 25% area at least for p6 and p7. In addition, the most
difficult parameter to estimate still remains p7, as it is the only parameter, where we recog-
nize outliers beyond the 25% error boundary. Another significant observation is that for the
remaining parameters, which correspond to the acceleration profile of the wheel-suspensions,
the Gauss-Newton method estimates the approximative values within the same area. It is not

Chapter 5. Parameter Estimation for Dynamical Systems 168

(a) Estimation of parameter 1. (b) Estimation of parameter 2.

(c) Estimation of parameter 4. (d) Estimation of parameter 6.

(e) Estimation of parameter 7. (f) Estimation of parameter 8.

(g) Estimation of parameter 9. (h) Estimation of parameter 10.

FIGURE 5.25: Gauss-Newton parameter estimation for completed system via U-Net, restricted to the
identifiable parameters and parameter initialization of p1 and p2 via Convolutional Neural Network. A
precise description of the plots is described by the caption of Figure 5.4. We recognize the estimation
of the Quarter-Car-Model parameters, after 10 optimization steps with initial step-size α = 1.0 in
Figure 5.25a - Figure 5.25h. The visualized estimates correspond to the error distribution given in

Table 5.15.

possible to investigate a tendency for smaller or larger values of p8, p9 and p10. Neverthe-
less, the estimated value is on average close to the mean of the parameters. Therefore, no
large deviations can be observed for those parameters. This effect, apparently occurs from
the data completion of the acceleration profile of the wheel-suspensions, since Experiment
7 has already shown, that it is indeed possible to uniquely determine the parameters from a
full-observable system with exact measurements.

Finally, the investigations done with the help of Figure 5.25 can be verified with the well-
known error distribution of Table 5.15. In comparison with Table 5.14, it is worth mentioning

Chapter 5. Parameter Estimation for Dynamical Systems 169

Step Parameter Max Error Mean Error Std Error 0-1% 0-5% 0-10% 0-25% >25%
10 1 0.20629 0.02544 0.02155 0.27018 0.87965 0.99065 1.00000 0.00000
10 2 0.17763 0.00928 0.01119 0.69765 0.98565 0.99882 1.00000 0.00000
10 4 0.20689 0.02945 0.02228 0.20829 0.82759 0.99241 1.00000 0.00000
10 6 0.24163 0.03541 0.02809 0.17912 0.74806 0.96829 1.00000 0.00000
10 7 1.09824 0.06551 0.05899 0.10288 0.48176 0.79929 0.98618 0.01382
10 8 0.20682 0.03309 0.02536 0.18853 0.77418 0.98141 1.00000 0.00000
10 9 0.25447 0.03409 0.02683 0.19094 0.76059 0.97588 0.99994 0.00006
10 10 0.16866 0.02641 0.02069 0.24547 0.86765 0.99529 1.00000 0.00000

TABLE 5.15: Experiment 10: Error distribution of Gauss-Newton parameter estimation for completed
system via U-Net, restricted to the identifiable parameters and parameter initialization of p1 and p2
via Convolutional Neural Network. The table shows the error distribution and more statistical values
of the observed estimation results. The whole test dataset T(8) is considered for the computation.
The description of the columns is shown in the caption of Table 5.1. The table corresponds to the

visualization of Figure 5.25.

that more than 98.6% of all parameter estimates lie within the 25% boundary for the artifi-
cially completed system, while we had a value of 89.6% for the incomplete system. Analo-
gously, more than 79.9% of the completed system lie within the 10% boundary in contrast to
73.2% for Experiment 8. Moreover the maximal relative deviation is 109% for parameter p7

and below 26% for the remaining ones, while we had at least 92% for the incomplete system
and deviations, reaching from about 200% to a top value of 600%. This large deviations do
not occur for the artificially completed system.

Summary

We have used several Neural Networks to eliminate uncertainties that have been described
in Experiment 8. Where we had large deviations for the incomplete system, the data com-
pletion using U-Net now leads to a more robust estimation with relatively small maximal
deviations from the true target values. Furthermore, initialization of parameters p1 and p2

via Convolutional Neural Networks, result in stability of the algorithm to converge to the true
optimal area of the parameter values.

Before ending this section, we want to briefly give an overview about the computational
time of the main shown Neural Networks and algorithms.

The computational time to train the considered Neural Networks is given in Table 5.16. Since
individual batch-sizes and training epochs have been used, it is not possible to compare the
time-consumption of all individual networks. Nevertheless, we can recognize that the un-
labelled training approach, since it uses the same training specifications as for the labelled
approach, requires double the time compared to the labelled training approach for the Con-
volutional Neural Networks. Obviously, this effect occurs from computation of the predicted
acceleration for the unlabelled optimization of the acceleration parameters. All in all, the
networks need less than 1936.36 seconds for training, which equals around 33 minutes. In
total, all trainings require 4704 seconds of pure training time, which means that less than
80 minutes of pre-training for the Neural Networks is required to achieve the herein shown

Chapter 5. Parameter Estimation for Dynamical Systems 170

Network Time per Opt Step Time per Epoch Total Training Time
CNN (labelled) 0.03097 1.0074 1023.2019

CNN (unlabelled) 0.05704 1.98851 1966.36042
CAE 0.01556 5.28485 528.39478
U-Net 0.01742 5.95131 1187.01905

TABLE 5.16: Computational time of the training Neural Networks in seconds, which have been used
in the section. We estimate the time of the Convolutional Neural Network with labelled optimization
(CNN labelled) and unlabelled optimization (CNN unlabelled) for 1000 training epochs with batch-
size 1000 for the training dataset. Further, we have the Convolutional Auto-Encoder for Denoising
(CAE) for 100 training epochs and batch-size 100 and finally the U-Net for state estimation with 200
training epochs and batch-size 100. Time per Opt Step: Total time to apply the ADAM-Optimization
algorithm for one training step. Time per Epoch: Total time to apply the ADAM-Optimization
algorithm for the entire training-dataset (one training epoch). Total Training Time: Total time used

to train the Neural Network, with respect to the described training epochs and batch-sizes.

results. One can find Deep Neural Networks, which have been trained for hours or days to
achieve a required accuracy for a given problem.

State Gradient Fisher Inversion Model Update Total Step
Abs. Time (sec.) 0.20 27.82 0.11 29.25 0.01 29.61
Rel. Time (%) 0.69 93.97 0.37 98.78 0.03 100.00

TABLE 5.17: Computational time of the Gauss-Newton algorithm to estimate the parameters of the
entire test dataset in seconds. The rows show the mean absolute computational time for one step of the
Gauss-Newton algorithm and the mean relative time of the sub-routines. State: Total time to estimate
the model states with the Semi-Explicit Euler scheme for 100 time-steps. Gradient: Total time to
compute the partial derivatives, which are necessary for computation of the Jacobian for 100 time
steps. Fisher inversion: Time to compute the inverse of the Fisher matrix with the pre-implemented
Tensorflow inversion function. Model: Time from first Explicit-Euler step to the inversion of the
Fisher matrix, time to compute the model states and return the optimization direction for 100 time
steps. Update: Time to apply the Gauss-Newton iterative scheme to update the system parameters
and to reshape the updated values to the updated system matrix. Total Step: Total time, which is used

for one step of the Gauss-Newton method.

At last, we want to shortly discuss, what components of the Gauss-Newton method are the
most time-consuming ones. From Table 5.17, it is obvious that one Gauss-Newton step re-
quires approximately 30 seconds on the described NVIDIA Tesla V100 SMX2 32GB graph-
ics card. This means for the Hybrid Gauss-Newton method of Experiment 10, that only 3
minutes are required for the optimization, where we have around 30 minutes for the results
of the uncertain systems, for instance in Experiment 8. Furthermore, we can recognize that
almost 94% of the time for one Gauss-Newton step is required for the computation of the
derivatives. Nevertheless, the Tensorflow computation of the Gradient for the model states is
highly efficient, since it uses automatic differentiation and does not need to exactly compute
the derivatives individually for each component.

Closing the last main section of this work, we can summarize as follows: Hybrid Models, in-
cluding well-studied mathematical methods and data driven models, can therefore efficiently

Chapter 5. Parameter Estimation for Dynamical Systems 171

be used to eliminate uncertainties of a given dynamical system. It is worth mentioning that
this works at least for several different Neural Networks, which solve smaller individual
tasks. We cannot assume that there is one specific network structure to easily solve the pa-
rameter estimation problem. Further experiments have shown, that it is indeed not possible to
directly estimate the network parameters with the help of a Neural Network for a test dataset
with comparable estimation quality as presented by the shown Gauss-Newton parameter es-
timation.

172

Chapter 6

Conclusion and Discussion

This thesis has contained several interdisciplinary fields, reaching from mathematical mod-
elling of mechanical systems, from Statistical Learning Theory connected to Neural Net-
works and solving ordinary differential equations for data generation to hybrid parameter
estimation of dynamical systems. Closing this work, we want to briefly summarize the main
investigations, we have observed.

We have motivated the thesis by discussing modern individual traffic, where vehicles are
nowadays equipped with a broad set of smart sensing devices to ensure safety for interior oc-
cupants as well as exterior traffic participants. As one cannot easily make theoretical investi-
gations, since mostly, there is no full vehicle model accessible, we need to use approximative
vehicle models, which describe a simplification of the world. Therefore, we have focused on
the Quarter-Car-Model, which is in general a coupled Mass-Spring-Damper model, includ-
ing wheel-suspension, chassis and occupant (and seat) specific components, driven by a non-
linear source term, the synthetic road-profile. A general coupled dynamical model, described
as a system of differential equations can be derived from the Euler-Lagrange formalism,
which requires definition of the energy terms of an observable system. The shown principle
can easily be extended to more complex Half-Car-Models or Full-Car-Models, which contain
a larger amount of degrees of freedom. Neural Networks can be used as universal function
approximations, since there exist layer structures, which are capable to theoretically map any
input dimension to another target dimension. Given an accessible training and a test dataset
to solve a stated problem, one always tries to find a set of parameter values, for which the
Neural Network delivers comparable results for all samples of the training dataset as well
as for all samples of the test dataset, such that it solves the problem within an acceptable
error range. We have focused on three different Neural Network structures, namely Convolu-
tional Neural Networks connected to Fully-Connected layers, Convolutional Auto-Encoders
and the so-called U-Net as special type of a Convolutional Neural Network. The Quarter-
Car-Model has shown to be mathematically described as a system of second order ordinary
differential equations, which can equally be transferred into a system of first order ordinary
differential equations. It is therefore in principle possible to compute the exact acceleration of
a theoretical dynamical system with the help of general solution theory for non-homogeneous
ordinary differential equations. Since the road-profile is a complex non-linear construct, due
to the summation of random sine-waves, it is non-trivial to compute the exact solution, such

Chapter 6. Conclusion and Discussion 173

that we need efficient, structure preserving numerical integration schemes as the Symplectic
Euler scheme. Using an appropriate integration scheme, one can assume that the discrete ap-
proximated solution is a sufficiently good estimation of the true world. Random generation
of the parameters of the system matrix and random road-profiles, offers the opportunity to
get training and test datasets of arbitrary size, following pre-defined parameter distributions.

The theoretical concepts, which have been described up to this point, are necessary to clar-
ify the general setting of parameter estimation. The initial question has stated, whether it
is possible to estimate the parameters of a dynamical system, from broadly accessible sens-
ing devices like accelerometers. Assuming that the approximative vehicle model and the
numerical solution of the integration schemes are a sufficiently good approximation of the
real world, one can assume to have full-knowledge about the entire system. Therefore, one
can now try to answer the question, what information can be computed out of the artificially
created acceleration profiles. Furthermore, it has been shown that the property of estimating
all parameters of the dynamical system is restricted to the grade of observable states of the
system. It is therefore more probable, that there are several distinguishable system matrices,
which satisfy the same input and output relation, if only one component of the acceleration
profile of the entire system can be observed.

Our own investigations can roughly be separated into three sections: A two-dimensional
parameter estimation problem, if the acceleration data of the occupant and the chassis is
observable for different training methods of Neural Networks, a ten-dimensional (and later
eight-dimensional) parameter estimation problem of the Quarter-Car-Model, if all acceler-
ation profiles and the source term are accessible and an eight-dimensional parameter esti-
mation problem under uncertainties, if we assume that only one acceleration profile of the
Quarter-Car-Model is observable.

The main investigations can be summarized as follows:

1. Convolutional Neural Networks can efficiently be used to combine acceleration
profiles of different states, due to the convolutional layer structure, and map
the data to the two-dimensional parameter space for the occupant-related coef-
ficients. Convolutional layer structures have shown to be appropriate models to
process sequential data of a coupled dynamical system, since the size of the ker-
nels makes it possible to weight the shape of the acceleration profiles for a large
time-frame.

2. Unlabelled training approaches are more robust for parameter estimation com-
pared to labelled, state-of-the-art, approaches. Although the training of an un-
labelled loss-function requires a significantly larger amount of training-time, the
unlabelled trained Neural Network, is more robust for unknown test samples and
for relative Gaussian disturbances of the input data.

Chapter 6. Conclusion and Discussion 174

3. Convolutional Auto-Encoders can successfully be trained to serve as data pre-
processing algorithms for parameter estimation. Pre-processing by a trained
Convolutional Auto-Encoder and estimation of the denoised samples then leads to
accuracies, comparable to results of the true underlying clean acceleration data.

4. A Gauss-Newton method to numerically solve non-linear least-squares problems
can be implemented to estimate all parameters of the Quarter-Car-Model. Though,
each of the ten individual parameters of the Quarter-Car-Model are structurally
identifiable, practical investigations show, that a subset of two parameters highly
deviates from the true parameter values and is therefore practically non-identifiable.
Restricting the problem to the structurally and practically identifiable parame-
ters, the Gauss-Newton method delivers unique results for the parameter values
of the entire test dataset.

5. The Gauss-Newton method can be stabilized and accelerated, if one uses a pre-
trained Neural Network to estimate the initial parameter values for the first two
parameters of the Quarter-Car-Model. The remaining parameters can be initial-
ized using a Gaussian distribution under a specific standard deviation around the
mean parameter values of a reference model.

6. If we only have partial observability of the states, it is not possible to ensure a sta-
ble Gauss-Newton estimation method. One therefore needs to choose a sufficiently
low step-size to get at least any results for the unobservable system. After a signif-
icantly higher time for estimation of the system parameters, one reaches results
with high maximal deviations from the true values. It is therefore not possible to
reach robust estimates of the parameters.

7. A U-Net structure can be used to map the observable acceleration of the occupant
and the road-profile to the remaining unobservable states. This is possible for sig-
nificantly small deviations for the training data as well as for nearly all unknown
samples of the test dataset.

8. A Hybrid Gauss-Newton method can be defined, using a pre-trained Convolu-
tional Neural Network for initialization of a subset of the parameters and a pre-
trained U-Net for data completion for the non-linear least-squares problem. The
created model is robust compared to the uncertain problem and gives estimates
for all parameters within a small error bound after only a few optimization steps.

We have learnt, that Neural Networks are not universally applicable algorithms to solve any
task sufficiently good. In contrast, Neural Networks are probably capable to solve any task
within an appropriate error bound, but fail to generalize this property for another set of un-
known test samples. Furthermore, very Deep Neural Networks to solve complex task, mostly
require hours and days for efficient training of millions of network parameters. As far as
our investigations are concerned, we have restricted our research to mainly shallow Neural
Networks, which need less than one hour of training time to solve a specific sub-task of a

Chapter 6. Conclusion and Discussion 175

more complex problem. It is remarkable that neither a pure state-of-the-art Gauss-Newton
method can be used to appropriately estimate the parameters of an uncertain coupled dynam-
ical system, nor a sufficiently Deep Neural Network, since it suffers from overfitting. Only
the combination as a Hybrid Model is capable to deliver results within an appropriate error
range. We can therefore conclude that as far as this work is concerned, Neural Networks can
efficiently be used to solve smaller sub-task, which are essential to support a sophisticated
mathematical model to solve a highly complex task.

We can therefore conclude, that the main new achievements of this work are the following:

1. It is possible to use discrete acceleration profiles of a passenger-based Quarter-
Car-Model to estimate mass-specific parameters of the system. Therefore, under
optimal conditions, this could theoretically offer the opportunity to process data
of several g-sensors in a car interior to detect the mass of the occupant for safety
critical applications. Until now, there is no approach for such an application.

2. It is possible to use Convolutional Neural Networks to efficiently process time-
series. When dealing with time-series processing, for instance for time-series
forecasting, one in the most common cases uses Recurrent Neural Networks, as
for instance LSTM. It is not the usual case to use convolutional architectures
for such tasks. Furthermore, the specific U-Net structure has never before been
used to process time-series data, as the main applications are restricted to data-
segmentation for tomography images. We have shown, that the architecture, due
to the skip-connections of the network, is sufficient to also approximate unknown
acceleration profiles, when input and output of the system are known.

3. It is possible to overcome the problem of non-identifiability for incomplete obser-
vations with the help of the presented Hybrid Gauss-Newton method. By mak-
ing use of a full-observable training dataset, one can fit the network parameters
of U-Net to generalize for unknown samples of the test data. The approxima-
tion quality of the pre-trained network is sufficient to stabilize the Gauss-Newton
method. In contrast, parameter estimation for incomplete observations is unsta-
ble and delivers significant errors for a large amount of the predicted parameter
values. With the help of a Hybrid Gauss Newton method, outliers are eliminated.
There is no comparable approach that combines a Gauss-Newton method for pa-
rameter estimation tasks in combination with several pre-trained Convolutional
Neural Networks to increase the prediction quality of the method.

176

Appendix A

Tensorflow and Python Source Code

FIGURE A.1: Algorithm: Definition of CNN Network Function. Layer
structure and kernel sizes shown in the code.

FIGURE A.2: Algorithm: Definition of CNN Network Function. Structure
of the layer functions are shown in the code. Are used to define the model as

shown in the source coder above.

FIGURE A.3: Algorithm: Training Function of Parameter Estimation Net-
work. For labelled approach, we use the parameter loss for application of the

gradient, for unlabelled approach, we us the data loss.

Appendix A. Tensorflow and Python Source Code 177

FIGURE A.4: Algorithm: Optimization Function of Parameter Estimation
Network. The training is done for the number of optimization steps for all
training samples. Hyperparameter specification as batch-size, optimizer and

learning-rate are stated in the header.

FIGURE A.5: Algorithm: Definition of CAE Network Function. Layer
structure and kernel sizes shown in the code.

FIGURE A.6: Algorithm: Definition of CAE Network Function. Structure
of the layer functions are shown in the code. Are used to define the model as

shown in the source coder above.

FIGURE A.7: Algorithm: Training Function of Denoising Network. Noisy
data is input of the model, clean samples are the target values of the loss-

function.

Appendix A. Tensorflow and Python Source Code 178

FIGURE A.8: Algorithm: Optimization Function of Denoising Network.
The training is done for the number of optimization steps for all training sam-
ples. Hyperparameter specification as batch-size, optimizer and learning-rate

are stated in the header.

FIGURE A.9: Algorithm: Definition of U-Net Network Function. Layer
structure and kernel sizes shown in the code.

FIGURE A.10: Algorithm: Definition of U-Net Network Function. Structure
of the layer functions are shown in the code. Are used to define the model as

shown in the source coder above.

FIGURE A.11: Algorithm: Training Function of U-Net for State Estimation.
Observable states are input of the model, unobservable are target value of the

loss-function.

Appendix A. Tensorflow and Python Source Code 179

FIGURE A.12: Algorithm: Optimization Function of U-Net for State Es-
timation. The training is done for the number of optimization steps for all
training samples. Hyperparameter specification as batch-size, optimizer and

learning-rate are stated in the header.

FIGURE A.13: Algorithm: Mapping System Matrix to Parameter Vector.

FIGURE A.14: Algorithm: Data Completion for Gauss-Newton Optimiza-
tion with pre-trained U-Net.

FIGURE A.15: Algorithm: Parameter Initialization for p1 and p2 with Con-
volutional Neural Network.

Appendix A. Tensorflow and Python Source Code 180

FIGURE A.16: Algorithm: State Estimation Model for Gauss-Newton
Method. Semi-Explicit Euler is used for State Estimation. Derivatives and

Residuals are computed for each step.

FIGURE A.17: Algorithm: Optimization Step for System Matrix. Gradient
direction and parameter vector are used to update the new values of the pa-

rameters. Then the parameter vector is mapped to the system matrix.

Appendix A. Tensorflow and Python Source Code 181

FIGURE A.18: Algorithm: Gauss-Newton Optimization Step. Complete
optimization algorithm, including Armijo rule, for estimation of the relevant
system parameter. Method is terminated, if there is no sufficient change in

the updated parameter value.

FIGURE A.19: Algorithm: Main Function of the optimization. For all ele-
ments of the test-dataset, the data completion is done. Then the parameter

estimation algorithm is executed.

182

Appendix B

Neural Network Structures

C o n v o l u t i o n a l N e u r a l Network S t r u c t u r e

Layer (type) Outpu t Shape Param #
===
i n p u t _ 1 (I n p u t L a y e r) [(None , 500 , 2)] 0

conv1d (Conv1D) (None , 250 , 100) 10100

conv1d_1 (Conv1D) (None , 125 , 100) 100100

f l a t t e n (F l a t t e n) (None , 12500) 0

dense (Dense) (None , 100) 1250100

dense_1 (Dense) (None , 10) 1010

dense_2 (Dense) (None , 2) 22
===
T o t a l params : 1 ,361 ,332
T r a i n a b l e params : 1 ,361 ,332
Non− t r a i n a b l e params : 0
===

FIGURE B.1: Layer Structure of a Convolutional Neural Network

Appendix B. Neural Network Structures 183

C o n v o l u t i o n a l Auto − Encoder S t r u c t u r e

Layer (type) Outpu t Shape Param #
===
i n p u t _ 1 (I n p u t L a y e r) [(None , 500 , 2)] 0

conv1d (Conv1D) (None , 250 , 50) 5050

conv1d_1 (Conv1D) (None , 125 , 100) 250100

c o n v 1 d _ t r a n s p o s e (Conv1DTran (None , 250 , 100) 500100

c o n v 1 d _ t r a n s p o s e _ 1 (Conv1DTr (None , 500 , 50) 250050

c o n v 1 d _ t r a n s p o s e _ 2 (Conv1DTr (None , 500 , 2) 5002
===
T o t a l params : 1 ,010 ,302
T r a i n a b l e params : 1 ,010 ,302
Non− t r a i n a b l e params : 0
===

FIGURE B.2: Layer Structure of a Convolutional Auto-Encoder

Appendix B. Neural Network Structures 184

U−Net Layer S t r u c t u r e
__
Layer (type) Outpu t Shape Param # Connec ted t o
==
i n p u t _ 1 (I n p u t L a y e r) [(None , 512 , 2 , 1)] 0
__
b a t c h _ n o r m a l i z a t i o n (BatchNorma (None , 512 , 2 , 1) 4 i n p u t _ 1 [0] [0]
__
conv2d (Conv2D) (None , 512 , 2 , 4) 40 b a t c h _ n o r m a l i z a t i o n [0] [0]
__
conv2d_1 (Conv2D) (None , 512 , 2 , 4) 148 conv2d [0] [0]
__
max_pool ing2d (MaxPooling2D) (None , 256 , 2 , 4) 0 conv2d_1 [0] [0]
__
b a t c h _ n o r m a l i z a t i o n _ 1 (BatchNor (None , 256 , 2 , 4) 16 max_pool ing2d [0] [0]
__
conv2d_2 (Conv2D) (None , 256 , 2 , 8) 296 b a t c h _ n o r m a l i z a t i o n _ 1 [0] [0]
__
conv2d_3 (Conv2D) (None , 256 , 2 , 8) 584 conv2d_2 [0] [0]
__
max_pool ing2d_1 (MaxPooling2D) (None , 128 , 2 , 8) 0 conv2d_3 [0] [0]
__
b a t c h _ n o r m a l i z a t i o n _ 2 (BatchNor (None , 128 , 2 , 8) 32 max_pool ing2d_1 [0] [0]
__
conv2d_4 (Conv2D) (None , 128 , 2 , 16) 1168 b a t c h _ n o r m a l i z a t i o n _ 2 [0] [0]
__
conv2d_5 (Conv2D) (None , 128 , 2 , 16) 2320 conv2d_4 [0] [0]
__
max_pool ing2d_2 (MaxPooling2D) (None , 64 , 2 , 16) 0 conv2d_5 [0] [0]
__
conv2d_6 (Conv2D) (None , 64 , 2 , 32) 4640 max_pool ing2d_2 [0] [0]
__
conv2d_7 (Conv2D) (None , 64 , 2 , 32) 9248 conv2d_6 [0] [0]
__
up_sampl ing2d (UpSampling2D) (None , 128 , 2 , 32) 0 conv2d_7 [0] [0]
__
c o n c a t e n a t e (C o n c a t e n a t e) (None , 128 , 2 , 48) 0 up_sampl ing2d [0] [0]

conv2d_5 [0] [0]
__
conv2d_8 (Conv2D) (None , 128 , 2 , 16) 6928 c o n c a t e n a t e [0] [0]
__
conv2d_9 (Conv2D) (None , 128 , 2 , 16) 2320 conv2d_8 [0] [0]
__
up_sampl ing2d_1 (UpSampling2D) (None , 256 , 2 , 16) 0 conv2d_9 [0] [0]
__
c o n c a t e n a t e _ 1 (C o n c a t e n a t e) (None , 256 , 2 , 24) 0 up_sampl ing2d_1 [0] [0]

conv2d_3 [0] [0]
__
conv2d_10 (Conv2D) (None , 256 , 2 , 8) 1736 c o n c a t e n a t e _ 1 [0] [0]
__
conv2d_11 (Conv2D) (None , 256 , 2 , 8) 584 conv2d_10 [0] [0]
__
up_sampl ing2d_2 (UpSampling2D) (None , 512 , 2 , 8) 0 conv2d_11 [0] [0]
__
c o n c a t e n a t e _ 2 (C o n c a t e n a t e) (None , 512 , 2 , 12) 0 up_sampl ing2d_2 [0] [0]

conv2d_1 [0] [0]
__
conv2d_12 (Conv2D) (None , 512 , 2 , 4) 436 c o n c a t e n a t e _ 2 [0] [0]
__
conv2d_13 (Conv2D) (None , 512 , 2 , 4) 148 conv2d_12 [0] [0]
__
conv2d_14 (Conv2D) (None , 512 , 2 , 1) 5 conv2d_13 [0] [0]
==
T o t a l params : 30 ,653
T r a i n a b l e params : 30 ,627
Non− t r a i n a b l e params : 26
===

FIGURE B.3: Layer Structure of a U-Net for sequential data segmentation

185

Bibliography

[1] Wael Abbas et al. “Optimal Seat and Suspension Design for a Half-Car with Driver
Model Using Genetic Algorithm”. In: Intelligent Control and Automation 04 (Jan.
2013), pp. 199–205. DOI: 10.4236/ica.2013.42024.

[2] Luis Aguirre. “Controllability and observability of linear systems: some noninvariant
aspects”. In: Education, IEEE Transactions on 38 (Mar. 1995), pp. 33 –39. DOI:
10.1109/13.350218.

[3] Md Zahangir Alom et al. “The history began from alexnet: A comprehensive survey
on deep learning approaches”. In: arXiv preprint arXiv:1803.01164 (2018).

[4] Ervin Alvarez-Sánchez. “A Quarter-Car Suspension System: Car Body Mass Esti-
mator and Sliding Mode Control”. In: Procedia Technology 7 (2013). 3rd Iberoamer-
ican Conference on Electronics Engineering and Computer Science, CIIECC 2013,
pp. 208–214. ISSN: 2212-0173. DOI: https://doi.org/10.1016/j.protcy.
2013.04.026. URL: https://www.sciencedirect.com/science/article/
pii/S2212017313000273.

[5] Emmanuel Assidjo et al. “A Hybrid Neural Network Approach for Batch Fermenta-
tion Simulation”. In: Australian Journal of Basic and Applied Sciences 3 (Oct. 2009),
pp. 3930–3936.

[6] Richard Aster, Brian Borchers, and Clifford Thurber. “Parameter Estimation and In-
verse Problems”. In: Recherche 67 (Jan. 2012), p. 02.

[7] Jan Awrejcewicz. “Mathematical and Physical Pendulum”. In: May 2012, pp. 69–
106. ISBN: 978-1-4614-3739-0. DOI: 10.1007/978-1-4614-3740-6_2.

[8] A. Bartsch, F. Fitzek, and R. Rasshofer. “Pedestrian recognition using automotive
radar sensors”. In: Advances in Radio Science 10 (Sept. 2012), pp. 45–55. DOI: 10.
5194/ars-10-45-2012.

[9] Ror Bellman and Karl Johan Åström. “On structural identifiability”. In: Mathemati-

cal biosciences 7.3-4 (1970), pp. 329–339.

[10] Julius Berner et al. “The modern mathematics of deep learning”. In: arXiv preprint

arXiv:2105.04026 (2021).

[11] Alexandr Borovkov. Stochastic processes in queueing theory. Vol. 4. Springer Sci-
ence & Business Media, 2012.

[12] Léon Bottou. “Large-scale machine learning with stochastic gradient descent”. In:
Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

https://doi.org/10.4236/ica.2013.42024
https://doi.org/10.1109/13.350218
https://doi.org/https://doi.org/10.1016/j.protcy.2013.04.026
https://doi.org/https://doi.org/10.1016/j.protcy.2013.04.026
https://www.sciencedirect.com/science/article/pii/S2212017313000273
https://www.sciencedirect.com/science/article/pii/S2212017313000273
https://doi.org/10.1007/978-1-4614-3740-6_2
https://doi.org/10.5194/ars-10-45-2012
https://doi.org/10.5194/ars-10-45-2012

Bibliography 186

[13] Martin Braun. Differential equations and their applications. Vol. 1. Springer.

[14] Charles-Edouard Bréhier. “Introduction to numerical methods for Ordinary Differ-
ential Equations”. Licence. Lecture - Cours donné à Pristina (Kosovo), en décembre
2016, dans le cadre de l’école de recherche Franco-Kosovarde en Mathématiques.
Pristina, Kosovo, Serbia, Dec. 2016. URL: https://hal.archives-ouvertes.
fr/cel-01484274.

[15] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. “Discovering governing
equations from data by sparse identification of nonlinear dynamical systems”. In:
Proceedings of the national academy of sciences 113.15 (2016), pp. 3932–3937.

[16] G. D. Buckner and K. T. Schuetze. “Intelligent Estimation of System Parameters for
Active Vehicle Suspension Control”. In: SAE Transactions 108 (1999), pp. 1257–
1263. ISSN: 0096736X, 25771531. URL: http : / / www . jstor . org / stable /
44667996 (visited on 06/17/2022).

[17] John Charles Butcher. Numerical methods for ordinary differential equations. John
Wiley & Sons, 2016.

[18] Claudio G. Carvalhaes and Patrick Suppes. “Approximations for the period of the
simple pendulum based on the arithmetic-geometric mean”. In: American Journal of

Physics 76.12 (2008), pp. 1150–1154. DOI: 10.1119/1.2968864. eprint: https://
doi.org/10.1119/1.2968864. URL: https://doi.org/10.1119/1.2968864.

[19] Peter J Collins. Differential and integral equations. Oxford University Press, 2006.

[20] Antonia Creswell et al. “Generative adversarial networks: An overview”. In: IEEE

Signal Processing Magazine 35.1 (2018), pp. 53–65.

[21] Silvia Curteanu and Florin Leon. “Hybrid neural network models applied to a free
radical polymerization process”. In: Polymer-Plastics Technology and Engineering

45.9 (2006), pp. 1013–1023.

[22] Frederik Michel Dekking et al. A Modern Introduction to Probability and Statistics:

Understanding why and how. Springer Science & Business Media, 2005.

[23] Georg Dorffner. “Neural Networks for Time Series Processing”. In: Neural Network

World 6 (1996), pp. 447–468.

[24] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic for deep
learning”. In: arXiv preprint arXiv:1603.07285 (2016).

[25] W P Eaton and J H Smith. “Micromachined pressure sensors: review and recent
developments”. In: Smart Materials and Structures 6.5 (1997), pp. 530–539. DOI:
10.1088/0964- 1726/6/5/004. URL: https://doi.org/10.1088/0964-
1726/6/5/004.

[26] W.J. Fleming. “Overview of automotive sensors”. In: IEEE Sensors Journal 1.4 (2001),
pp. 296–308. DOI: 10.1109/7361.983469.

https://hal.archives-ouvertes.fr/cel-01484274
https://hal.archives-ouvertes.fr/cel-01484274
http://www.jstor.org/stable/44667996
http://www.jstor.org/stable/44667996
https://doi.org/10.1119/1.2968864
https://doi.org/10.1119/1.2968864
https://doi.org/10.1119/1.2968864
https://doi.org/10.1119/1.2968864
https://doi.org/10.1088/0964-1726/6/5/004
https://doi.org/10.1088/0964-1726/6/5/004
https://doi.org/10.1088/0964-1726/6/5/004
https://doi.org/10.1109/7361.983469

Bibliography 187

[27] Andronic Florin, Manolache-Rusu Ioan-Cozmin, and Pătuleanu Liliana. “Passive
suspension modeling using MATLAB, quarter-car model, input signal step type”.
In: New technologies and products in machine manufacturing technologies (2013),
pp. 258–263.

[28] Henri P. Gavin. “The Levenberg-Marquardt method for nonlinear least squares curve-
fitting problems c ©”. In: 2013.

[29] Izrail Moiseevitch Gelfand, Richard A Silverman, et al. Calculus of variations. Courier
Corporation, 2000.

[30] Jean Charles Gilbert. “On the Realization of the Wolfe Conditions in Reduced Quasi-
Newton Methods for Equality Constrained Optimization”. In: Siam Journal on Opti-

mization 7 (Aug. 1997), pp. 780–813. DOI: 10.1137/S1052623493259604.

[31] Vladimír Goga and Marian Kl’účik. “Optimization of Vehicle Suspension Parameters
with use of Evolutionary Computation”. In: Procedia Engineering 48 (Dec. 2012),
174–179. DOI: 10.1016/j.proeng.2012.09.502.

[32] Herbert Goldstein, Charles Poole, and John Safko. Classical mechanics. 2002.

[33] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[34] Loukas Grafakos. Classical fourier analysis. Vol. 2. Springer, 2008.

[35] Serge Gratton, Amos Lawless, and Nancy Nichols. “Approximate Gauss–Newton
Methods for Nonlinear Least Squares Problems”. In: SIAM Journal on Optimization

18 (Jan. 2007), pp. 106–132. DOI: 10.1137/050624935.

[36] Jiuxiang Gu et al. “Recent advances in convolutional neural networks”. In: Pattern

Recognition 77 (2018), pp. 354–377.

[37] Rahmi Güçlü. “Active control of seat vibrations of a vehicle model using various
suspension alternatives”. In: Turkish Journal of Engineering and Environmental Sci-

ences 27.6 (2003), pp. 361–374.

[38] Bing Guo and Youting Shen. “Modeling approach to coal gasification using hybrid
neural networks”. In: 37 (Feb. 1997), pp. 11–15.

[39] Ernst Hairer and Gerhard Wanner. “Euler methods, explicit, implicit, symplectic”.
In: Encyclopedia of Applied and Computational Mathematics 1 (2015), pp. 451–455.

[40] Ernst Hairer et al. “Geometric numerical integration”. In: Oberwolfach Reports 3.1
(2006), pp. 805–882.

[41] Herman O Hartley and Aaron Booker. “Nonlinear least squares estimation”. In: The

Annals of mathematical statistics 36.2 (1965), pp. 638–650.

[42] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv:
1512.03385 [cs.CV].

[43] Robert Hecht-Nielsen. “Theory of the backpropagation neural network”. In: Neural

networks for perception. Elsevier, 1992, pp. 65–93.

https://doi.org/10.1137/S1052623493259604
https://doi.org/10.1016/j.proeng.2012.09.502
https://doi.org/10.1137/050624935
https://arxiv.org/abs/1512.03385

Bibliography 188

[44] C. J. Himmelberg and F. S. Van vleck. “Some Selection Theorems for Measurable
Functions”. In: Canadian Journal of Mathematics 21 (1969), 394–399. DOI: 10.
4153/CJM-1969-041-7.

[45] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural

computation 9.8 (1997), pp. 1735–1780.

[46] Fabian Höflinger et al. “A wireless micro inertial measurement unit (IMU)”. In: IEEE

Transactions on instrumentation and measurement 62.9 (2013), pp. 2583–2595.

[47] Scott Ikenaga et al. “Active suspension control of ground vehicle based on a full-
vehicle model”. In: Proceedings of the 2000 American Control Conference. ACC

(IEEE Cat. No. 00CH36334). Vol. 6. IEEE. 2000, pp. 4019–4024.

[48] Wu Jih-Huah, Pen Cheng-Chung, and Joe-Air Jiang. “Applications of the Integrated
High-Performance CMOS Image Sensor to Range Finders – from Optical Triangula-
tion to the Automotive Field”. In: Sensors 8 (Mar. 2008). DOI: 10.3390/s8031719.

[49] Felipe Jiménez et al. “Advanced Driver Assistance System for Road Environments
to Improve Safety and Efficiency”. In: Transportation Research Procedia 14 (2016).
Transport Research Arena TRA2016, pp. 2245–2254. ISSN: 2352-1465. DOI: https:
//doi.org/10.1016/j.trpro.2016.05.240. URL: https://www.sciencedirect.
com/science/article/pii/S2352146516302460.

[50] Jack Judy. “Microelectromechanical systems (MEMS): Fabrication, design and ap-
plications”. In: Smart Materials and Structures 10 (Dec. 2001), pp. 1115–1134. DOI:
10.1088/0964-1726/10/6/301.

[51] Rudolf Emil Kalman. “Mathematical description of linear dynamical systems”. In:
Journal of the Society for Industrial and Applied Mathematics, Series A: Control 1.2
(1963), pp. 152–192.

[52] Halil Karahan, Gurhan Gurarslan, and Zong Woo Geem. “Parameter estimation of
the nonlinear Muskingum flood-routing model using a hybrid harmony search algo-
rithm”. In: Journal of Hydrologic Engineering 18.3 (2013), pp. 352–360.

[53] Suheil Khuri. “A Laplace decomposition algorithm applied to a class of nonlinear
differential equations”. In: Journal of Applied Mathematics 1 (Jan. 2001). DOI: 10.
1155/S1110757X01000183.

[54] Tom Kibble and Frank H Berkshire. Classical mechanics. world scientific publishing
company, 2004.

[55] Myoungsoo Kim et al. “A Hybrid Neural Network Model for Power Demand Fore-
casting”. In: Energies 12.5 (2019). ISSN: 1996-1073. DOI: 10.3390/en12050931.
URL: https://www.mdpi.com/1996-1073/12/5/931.

[56] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[57] Diederik P Kingma and Max Welling. “An introduction to variational autoencoders”.
In: arXiv preprint arXiv:1906.02691 (2019).

https://doi.org/10.4153/CJM-1969-041-7
https://doi.org/10.4153/CJM-1969-041-7
https://doi.org/10.3390/s8031719
https://doi.org/https://doi.org/10.1016/j.trpro.2016.05.240
https://doi.org/https://doi.org/10.1016/j.trpro.2016.05.240
https://www.sciencedirect.com/science/article/pii/S2352146516302460
https://www.sciencedirect.com/science/article/pii/S2352146516302460
https://doi.org/10.1088/0964-1726/10/6/301
https://doi.org/10.1155/S1110757X01000183
https://doi.org/10.1155/S1110757X01000183
https://doi.org/10.3390/en12050931
https://www.mdpi.com/1996-1073/12/5/931

Bibliography 189

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information pro-

cessing systems 25 (2012), pp. 1097–1105.

[59] Ambarish Kulkarni, Sagheer Ranjha, and Ajay Kapoor. “A quarter-car suspension
model for dynamic evaluations of an in-wheel electric vehicle”. In: Proceedings of

the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering

232 (Oct. 2017), p. 095440701772716. DOI: 10.1177/0954407017727165.

[60] Vivek Kumar. “Modelling and Simulation of a Passenger Car for Comfort Evalu-
ation”. In: International Journal for research in Applied Science and Engineering

Technology Vol. 6 (Apr. 2018). DOI: 10.22214/ijraset.2018.4662.

[61] Rafał Kwiatkowski, Tadeusz J. Hoffmann, and Andrzej Kołodziej. “Dynamics of a
Double Mathematical Pendulum with Variable Mass in Dimensionless Coordinates”.
In: Procedia Engineering 177 (2017). XXI Polish-Slovak Scientific Conference Ma-
chine Modeling and Simulations MMS 2016.September 6-8, 2016, Hucisko, Poland,
pp. 439–443. ISSN: 1877-7058. DOI: https://doi.org/10.1016/j.proeng.
2017.02.242. URL: https://www.sciencedirect.com/science/article/
pii/S1877705817307506.

[62] Twan van Laarhoven. “L2 Regularization versus Batch and Weight Normalization”.
In: CoRR abs/1706.05350 (2017). arXiv: 1706.05350. URL: http://arxiv.org/
abs/1706.05350.

[63] Tara Larrue, Xiaoxu Meng, and Changyoung Han. “Denoising Videos with Convo-
lutional Autoencoders A Comparison of Autoencoder Architectures”. In: 2018.

[64] Yann LeCun et al. “A theoretical framework for back-propagation”. In: Proceedings

of the 1988 connectionist models summer school. Vol. 1. 1988, pp. 21–28.

[65] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[66] Hyo Jong Lee. “Neural network approach to identify model of vehicles”. In: Interna-

tional Symposium on Neural Networks. Springer. 2006, pp. 66–72.

[67] Daniel Liberzon. Calculus of variations and optimal control theory. Princeton uni-
versity press, 2011.

[68] Lennart Ljung. “System identification”. In: Signal analysis and prediction. Springer,
1998, pp. 163–173.

[69] Lennart Ljung. “Perspectives on system identification”. In: Annual Reviews in Con-

trol 34.1 (2010), pp. 1–12.

[70] Wei Lu and Namrata Vaswani. The Wiener-Khinchin Theorem for Non-wide Sense

stationary Random Processes. 2009. arXiv: 0904.0602 [math.ST].

[71] Piotr Mackowiak et al. “Development and fabrication of a very High-g sensor for
very high impact applications”. In: Journal of Physics: Conference Series 757 (Oct.
2016), p. 012016. DOI: 10.1088/1742-6596/757/1/012016.

https://doi.org/10.1177/0954407017727165
https://doi.org/10.22214/ijraset.2018.4662
https://doi.org/https://doi.org/10.1016/j.proeng.2017.02.242
https://doi.org/https://doi.org/10.1016/j.proeng.2017.02.242
https://www.sciencedirect.com/science/article/pii/S1877705817307506
https://www.sciencedirect.com/science/article/pii/S1877705817307506
https://arxiv.org/abs/1706.05350
http://arxiv.org/abs/1706.05350
http://arxiv.org/abs/1706.05350
https://arxiv.org/abs/0904.0602
https://doi.org/10.1088/1742-6596/757/1/012016

Bibliography 190

[72] K Manoj Mahala, Prasanna Gadkari, and Anindya Deb. “Mathematical models for
designing vehicles for ride comfort”. In: ICORD 09: Proceedings of the 2nd Interna-

tional Conference on Research into Design, Bangalore, India 07.-09.01. 2009. 2009.

[73] K.R. Meyer and G.R. Hall. Introduction to Hamiltonian Dynnamical Systems and the

N-Body Problem. Vol. 2. Springer-Verlag New York, 2009. DOI: 10.1007/978-0-
387-09724-4.

[74] Mahesh P Nagarkar, Gahininath J Vikhe Patil, and Rahul N Zaware Patil. “Optimiza-
tion of nonlinear quarter car suspension–seat–driver model”. In: Journal of advanced

research 7.6 (2016), pp. 991–1007.

[75] Mark Nagurka and Shuguang Huang. “A mass-spring-damper model of a bouncing
ball”. In: Proceedings of the 2004 American control conference. Vol. 1. IEEE. 2004,
pp. 499–504.

[76] G. Nagy. Ordinary Differential Equations. 2016. URL: https://simiode.org/
resources/2681.

[77] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &
Business Media, 2006.

[78] Jorge Nocedal and Ya-xiang Yuan. “Combining trust region and line search tech-
niques”. In: Advances in nonlinear programming. Springer, 1998, pp. 153–175.

[79] Rui Oliveira. “Combining first principles modelling and artificial neural networks:
A general framework”. In: Computers & Chemical Engineering 28 (May 2004),
pp. 755–766. DOI: 10.1016/j.compchemeng.2004.02.014.

[80] Luis Perez and Jason Wang. “The effectiveness of data augmentation in image clas-
sification using deep learning”. In: arXiv preprint arXiv:1712.04621 (2017).

[81] Thilo Pfau, Thomas H Witte, and Alan M Wilson. “A method for deriving displace-
ment data during cyclical movement using an inertial sensor”. In: Journal of Experi-

mental Biology 208.13 (2005), pp. 2503–2514.

[82] Igor Podlubny. “The Laplace Transform Method for Linear Differential Equations of
the Fractional Order. UEF-02-94, The Academy of Scien”. In: Inst. of Exp. Phys.,

Kosice, Slovak Republic (1994), p. 20.

[83] R. Gerhard Pratt, Changsoo Shin, and G. J. Hick. “Gauss–Newton and full Newton
methods in frequency–space seismic waveform inversion”. In: Geophysical Journal

International 133.2 (May 1998), pp. 341–362. ISSN: 0956-540X. DOI: 10.1046/
j.1365- 246X.1998.00498.x. eprint: https://academic.oup.com/gji/
article-pdf/133/2/341/1550344/133-2-341.pdf. URL: https://doi.org/
10.1046/j.1365-246X.1998.00498.x.

[84] Dimitris C Psichogios and Lyle H Ungar. “A hybrid neural network-first principles
approach to process modeling”. In: AIChE Journal 38.10 (1992), pp. 1499–1511.

https://doi.org/10.1007/978-0-387-09724-4
https://doi.org/10.1007/978-0-387-09724-4
https://simiode.org/resources/2681
https://simiode.org/resources/2681
https://doi.org/10.1016/j.compchemeng.2004.02.014
https://doi.org/10.1046/j.1365-246X.1998.00498.x
https://doi.org/10.1046/j.1365-246X.1998.00498.x
https://academic.oup.com/gji/article-pdf/133/2/341/1550344/133-2-341.pdf
https://academic.oup.com/gji/article-pdf/133/2/341/1550344/133-2-341.pdf
https://doi.org/10.1046/j.1365-246X.1998.00498.x
https://doi.org/10.1046/j.1365-246X.1998.00498.x

Bibliography 191

[85] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations”. In: Journal of Computational

physics 378 (2019), pp. 686–707.

[86] Jitendra R Raol, Gopalrathnam Girija, and Jatinder Singh. Modelling and parameter

estimation of dynamic systems. Vol. 65. Iet, 2004.

[87] A. Raue et al. “Structural and practical identifiability analysis of partially observed
dynamical models by exploiting the profile likelihood”. In: Bioinformatics 25.15
(June 2009), pp. 1923–1929. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/
btp358. eprint: https : / / academic . oup . com / bioinformatics / article -
pdf/25/15/1923/16889623/btp358.pdf. URL: https://doi.org/10.1093/
bioinformatics/btp358.

[88] Martin Riedmiller and Thomas Gabel. “On experiences in a complex and competitive
gaming domain: Reinforcement learning meets robocup”. In: 2007 IEEE Symposium

on Computational Intelligence and Games. IEEE. 2007, pp. 17–23.

[89] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: International Conference on Medical

image computing and computer-assisted intervention. Springer. 2015, pp. 234–241.

[90] Santiago Royo and Maria Ballesta-Garcia. “An Overview of Lidar Imaging Systems
for Autonomous Vehicles”. In: Applied Sciences 9.19 (2019). ISSN: 2076-3417. DOI:
10.3390/app9194093. URL: https://www.mdpi.com/2076-3417/9/19/4093.

[91] David E Rumelhart et al. “Backpropagation: The basic theory”. In: Backpropagation:

Theory, architectures and applications (1995), pp. 1–34.

[92] Shibani Santurkar et al. “How does batch normalization help optimization?” In: Pro-

ceedings of the 32nd international conference on neural information processing sys-

tems. 2018, pp. 2488–2498.

[93] Werner Schiehlen and Peter Eberhard. Technische dynamik. Springer, 2017.

[94] Joel Schiff. The Laplace Transform: Theory and Applications. Jan. 1999. ISBN: 978-
1-4757-7262-3. DOI: 10.1007/978-0-387-22757-3.

[95] Tasnim Shaikh, Dr. Satyajeet Chaudhari, and Hiren Rasania. “Air Bag: A Safety
Restraint System of an Automobile”. In: Int. Journal of Engineering Research and

Application 3 (Oct. 2013), pp. 615–621.

[96] Dongwoo Sheen, Ian H. Sloan, and Vidar Thomée. “A Parallel Method for Time-
Discretization of Parabolic Problems Based on Contour Integral Representation and
Quadrature”. In: Mathematics of Computation 69.229 (2000), pp. 177–195. ISSN:
00255718, 10886842. URL: http://www.jstor.org/stable/2584835.

[97] Isaac Skog and Peter Händel. “Calibration of a MEMS inertial measurement unit”.
In: XVII IMEKO world congress. Citeseer. 2006, pp. 1–6.

https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1093/bioinformatics/btp358
https://academic.oup.com/bioinformatics/article-pdf/25/15/1923/16889623/btp358.pdf
https://academic.oup.com/bioinformatics/article-pdf/25/15/1923/16889623/btp358.pdf
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.3390/app9194093
https://www.mdpi.com/2076-3417/9/19/4093
https://doi.org/10.1007/978-0-387-22757-3
http://www.jstor.org/stable/2584835

Bibliography 192

[98] Foo Chong Soon et al. “PCANet-Based Convolutional Neural Network Architec-
ture For a Vehicle Model Recognition System”. In: IEEE Transactions on Intelligent

Transportation Systems PP (June 2018), pp. 1–11. DOI: 10.1109/TITS.2018.
2833620.

[99] Nathan A Spielberg et al. “Neural network vehicle models for high-performance au-
tomated driving”. In: Science robotics 4.28 (2019), eaaw1975.

[100] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from over-
fitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[101] Shelby Stanhope, J Rubin, and David Swigon. “Identifiability of Linear and Linear-
in-Parameters Dynamical Systems from a Single Trajectory”. In: SIAM Journal on

Applied Dynamical Systems 13 (Jan. 2014), pp. 1792–1815. DOI: 10.1137/130937913.

[102] Andrew Stuart and Anthony R Humphries. Dynamical systems and numerical anal-

ysis. Vol. 2. Cambridge University Press, 1998.

[103] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[104] Gerald Teschl. Ordinary differential equations and dynamical systems. Vol. 140.
American Mathematical Soc., 2012.

[105] Vidar Thomée. “A high order parallel method for time discretization of parabolic
type equations based on Laplace transformation and quadrature”. In: International

Journal of Numerical Analysis and Modeling 2 (2005), pp. 85–96.

[106] Feng Tyan et al. “Generation of random road profiles”. In: Journal of Advanced En-

gineering 4.2 (2009), pp. 1373–1378.

[107] Michael Unterreiner. “Modellbildung und Simulation von Fahrzeugmodellen unter-
schiedlicher Komplexität”. Duisburg, Essen, Univ., Diss., 2013. PhD thesis. Duis-
burg, Essen, 2014. URL: https://duepublico.uni-due.de/servlets/DocumentServlet?
id=34562.

[108] Deepak Unune and Suhas Mohite. “Ride Analysis of Quarter Vehicle Model”. In:
Nov. 2011.

[109] Vladimir Vapnik. The nature of statistical learning theory. Springer science & busi-
ness media, 2013.

[110] Cong Wang et al. “A vehicle rollover evaluation system based on enabling state and
parameter estimation”. In: IEEE Transactions on Industrial Informatics 17.6 (2020),
pp. 4003–4013.

[111] Yasi Wang, Hongxun Yao, and Sicheng Zhao. “Auto-encoder based dimensionality
reduction”. In: Neurocomputing 184 (2016), pp. 232–242.

[112] Robert Weinstock. Calculus of variations: with applications to physics and engineer-

ing. Courier Corporation, 1974.

https://doi.org/10.1109/TITS.2018.2833620
https://doi.org/10.1109/TITS.2018.2833620
https://doi.org/10.1137/130937913
https://duepublico.uni-due.de/servlets/DocumentServlet?id=34562
https://duepublico.uni-due.de/servlets/DocumentServlet?id=34562

Bibliography 193

[113] Yijia Zhang et al. “A hybrid model based on neural networks for biomedical relation
extraction”. In: Journal of Biomedical Informatics 81 (2018), pp. 83–92. ISSN: 1532-
0464. DOI: https://doi.org/10.1016/j.jbi.2018.03.011. URL: https:
//www.sciencedirect.com/science/article/pii/S1532046418300534.

[114] Youqi Zhang et al. “Vibration-based structural state identification by a 1-dimensional
convolutional neural network”. In: Computer-Aided Civil and Infrastructure Engi-

neering 34.9 (2019), pp. 822–839.

[115] Wei Zhao et al. “Real-Time Vehicle Motion Detection and Motion Altering for Con-
nected Vehicle: Algorithm Design and Practical Applications”. In: Sensors 19.19
(2019). ISSN: 1424-8220. DOI: 10.3390/s19194108. URL: https://www.mdpi.
com/1424-8220/19/19/4108.

[116] L. Zimmermann et al. “Airbag application: a microsystem including a silicon capac-
itive accelerometer, CMOS switched capacitor electronics and true self-test capabil-
ity”. In: Sensors and Actuators A: Physical 46.1 (1995), pp. 190–195. ISSN: 0924-
4247. DOI: https://doi.org/10.1016/0924-4247(94)00888-O. URL: https:
//www.sciencedirect.com/science/article/pii/092442479400888O.

https://doi.org/https://doi.org/10.1016/j.jbi.2018.03.011
https://www.sciencedirect.com/science/article/pii/S1532046418300534
https://www.sciencedirect.com/science/article/pii/S1532046418300534
https://doi.org/10.3390/s19194108
https://www.mdpi.com/1424-8220/19/19/4108
https://www.mdpi.com/1424-8220/19/19/4108
https://doi.org/https://doi.org/10.1016/0924-4247(94)00888-O
https://www.sciencedirect.com/science/article/pii/092442479400888O
https://www.sciencedirect.com/science/article/pii/092442479400888O

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Motivation
	Automotive Sensors
	Hybrid Neural Networks and Parameter Estimation
	Content

	Mathematical Modelling
	Modelling with Physical Equations
	Motion of Particles and Newton's Laws
	Calculus of Variations
	Energy Conservation and Euler-Lagrange Equation
	Rayleigh Dissipation and Potential Energy

	Coupled Dynamical Systems
	Rotational and Translational Energy
	Quarter-Car-Model
	Half-Car-Model
	Full-Car-Model

	Road Modelling
	Power Spectral Density and Fourier Transform
	Random Time Series and Sinusoidal Approach

	Neural Networks
	Statistical Learning Theory
	Learning Problem and Risk
	Empirical Risk Minimization
	Training of Neural Networks

	Neural Network Architectures
	Layer Arithmetic
	Convolutional Neural Networks
	Convolutional Auto-Encoders
	U-Net

	Ordinary Differential Equations
	Second Order Ordinary Differential Equations
	Homogeneous Equations
	Non-homogeneous Equations
	Hamiltonian Systems and Geometric Integration
	Numerical Solution

	Linear Systems
	Non-Homogeneous Equations
	Numerical Solution

	Data Generation from Randomly Perturbed Models
	Definition of the System
	Variations of Systems

	Parameter Estimation for Dynamical Systems
	Identifiability of Linear Time-Invariant Systems
	Linear Systems and Laplace-Transform
	Systems of Second Order and Impulse Response
	Identifiability of Observable Systems

	Parameter Estimation for Ordinary Differential Equations
	Experiment 1: Data Driven Parameter Estimation
	Experiment 2: Hybrid Training Methods
	Experiment 3: Robust Parameter Estimation for Noisy Data
	Experiment 4 : Denoising via Neural Networks

	System Identification of the Quarter-Car-Model
	Non-Linear Least Squares Problem
	Experiment 5 : System Identification of Full-Observable Systems
	Experiment 6 : Parameter Initialization via Neural Networks
	Experiment 7 : System Identification of Identifiable Parameters

	System Identification of Uncertain Systems
	Experiment 8 : Parameter Estimation for Incomplete Systems
	Experiment 9 : Data Completion via Neural Networks
	Experiment 10 : Parameter Estimation for Hybrid Models

	Conclusion and Discussion
	Tensorflow and Python Source Code
	Neural Network Structures
	Bibliography

