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German Summary

Survey Daten können unter verschiedensten Blickwinkeln als unvollständig bzw. als partiell
fehlend angesehen werden und es gibt verschiedene Möglichkeiten, mit diesen Daten in
der Prädiktion und Schätzung interessierender volkswirtschaftlicher Größen umzugehen.
In dieser Arbeit werden zwei ausgewählte Forschungskontexte vorgestellt, in denen die
Prädiktion bzw. Schätzung unter unvollständigen Survey Daten untersucht wird. Diese
Kontexte sind zum einen die Untersuchung zusammengesetzter Schätzer im deutschen
Mikrozensus (Kapitel 3 und 4) und zum anderen Erweiterungen multivariater Fay-Herriot
(MFH) Modelle (Kapitel 5 und 6), die bei Small Area Problemen Anwendung finden.

Zusammengesetzte Schätzer sind Schätzmethoden, die die Stichprobenüberlappung in
rotierenden Panel Surveys wie dem deutschen Mikrozensus zur Stabilisierung der Schätzung
interessierender Größen (z.B. Erwerbsstatistiken) nutzen. Durch die partiellen Stich-
probenüberlappungen in rotierenden Panel Surveys liegen immer nur für einen Teil der
Befragten Informationen aus vorangegangenen Erhebungen vor. Die resultierenden Daten
sind damit partiell fehlend.

MFH Modelle sind modellbasierte Schätzmethoden, die mit aggregierten Survey Daten
arbeiten, um im Vergleich zu klassischen Schätzmethoden präzisere Schätzergebnisse für
Small Area Probleme zu erhalten. In den Modellen werden mehrere interessierende Größen
gleichzeitig modelliert. Die Survey-Schätzwerte dieser Größen, die in MFH Modelle als
Input eingehen, sind häufig partiell fehlend. Wenn die interessierenden Domains nicht
explizit im Stichprobendesign berücksichtigt wurden, kann es sein, dass die Größe der
Stichprobe, die auf sie entfällt, so klein ist, dass entweder gar keine Schätzwerte berechnet
werden können oder aber die Schätzwerte von statistischen Ämtern nicht veröffentlicht
werden, da ihre Varianzen zu groß ist.

Nach einem Überblick zu theoretischen und methodischen Grundlagen der Survey Statistik
in Kapitel 2 stellt Kapitel 3 die Generierung eines Längsschnittdatensatz vor, auf Basis
dessen in Kapitel 4 designbasierte Simulationsstudien zum Einsatz von zusammengesetzten
Schätzern im Mikrozensus durchgeführt werden. Für diese Studien wird ein Längss-
chnittdatensatz mit monatlichen Erwerbsinformationen benötigt, der die deutsche Wohn-
bevölkerung abbildet. Auf Grundlage des SIAB Datensatzes1 (Antoni et al., 2019) werden
Prädiktionsmodelle für monatliche Erwerbsübergänge geschätzt, mit denen monatliche
Erwerbsinformationen im RIFOSS Datensatz2, einem halb-synthetischen Querschnittdaten-
satz der deutschen Wohnbevölkerung, generiert werden. Für die Prädiktionsmodelle werden
mehrere generalisierte additive Modelle, die jeweils auf Substichproben der aufbereiteten
SIAB Daten geschätzt werden (Subagging), zu optimal gewichteten Ensemble Modellen
(Stacking) verbunden. In der Optimierung der Ensemble Gewichte wird eine in diesem
Kapitel vorgestellte Erweiterung des Brier Scores verwendet.

1Factually anonymous Version of the Sample of Integrated Labour Market Biographies (SIAB-Regionalfile)
Version 7517 v1.

2Version RIFOSS_GG_v0.1.1_vanilla_ice_cream.
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German Summary ix

In Kapitel 4 wird der Einsatz von zusammengesetzten Schätzern für Erwerbsstatistiken im
deutschen Mikrozensus untersucht. Das Design des deutschen Mikrozensus wurde 2020
wesentlichen Änderungen unterzogen, welche neue Möglichkeiten für den Einsatz dieser
Schätzmethoden schaffen. In dem Kapitel wird analysiert, welche Einsatzmöglichkeiten sich
für zusammengesetzte Schätzer aus dem neuen Mikrozensus Design ergeben. Beispielsweise
bieten sich verschiedene Stichprobenüberlappungen zu vorangegangenen Zeitpunkten für
die Nutzung in den zusammengesetzten Schätzern an. Zusätzlich werden Anpassungen der
Formeln der zusammengesetzten Schätzer für die sich aus dem Mikrozensus Design ergeben-
den regional heterogenen Stichprobenüberlappungen vorgestellt. In einer designbasierten
Simulationsstudie, deren Basis der in Kapitel 3 erstellte Datensatz ist, wird die Performanz
der angepassten Methoden unter verschiedenen Sets an Stichprobenüberlappungen für
verschiedene Erwerbsstatistiken verglichen.

Im Fokus von Kapitel 5 und 6 stehen unvollständige aggregierte Survey-Schätzwerte,
die zur Small Area Schätzung in MFH Modellen verwendet werden. Mit den Beiträgen
der beiden Kapitel ist es möglich, die unter den jeweiligen Modellen sogenannten besten
Prädiktoren multivariater Domain-Indikatoren zu berechnen, auch wenn die in die Modelle
eingehenden Survey-Schätzwerte partiell fehlen.

Kapitel 5 beschäftigt sich mit den besten Prädiktoren von (potenziell nicht-linearen)
Indikatoren unter MFH Modellen. Ein nicht-linearer Indikator kann beispielsweise die
Erwerbslosenrate sein. Für diese und andere Indikatoren werden häufig Plug-in Schätzer
genutzt. Als Alternative werden in Kapitel 5 die MSE-optimalen Prädiktoren von Domain-
Indikatoren unter MFH Modellen untersucht. Diese sind als mehrdimensionale Integrale
gegeben, die sich im generellen Fall nicht analytisch berechnen lassen. Es werden deswe-
gen verschiedene Methoden zur Approximation dieser Integrale verglichen. Zur MSE
Schätzung werden parametrische Bootstrap Prozeduren vorgestellt. In modellbasierten
Simulationsstudien werden die verschiedenen Approximationen evaluiert und ihre Per-
formanz mit der Performanz der entsprechenden Plug-in Prädiktoren verglichen. Des
Weiteren werden die MSE Schätzer evaluiert. Die vorgestellte Methode wird anhand der
Schätzung der Erwerbslosenrate in Kreuzkombinationen spanischer Provinzen mit Alters-
und Geschlechtsklassen illustriert. Dazu werden öffentlich zugängliche Mikrodaten der
spanischen Arbeitskräfteerhebung verwendet.

MFH Modelle können nur auf Grundlage der Domain-Informationen geschätzt werden, für
die Survey-Schätzwerte für alle abhängigen Variablen vorliegen, was ihre Anwendbarkeit
in der Praxis wesentlich beschränkt. In Kapitel 6 wird eine Generalisierung von MFH
Modellen für partiell fehlende Werte, genannt MMFH Modelle, vorgestellt. Für die
MMFH Modelle werden Algorithmen zur ML und REML Parameterschätzung gegeben
und die Formeln für die besten Prädiktoren unter dem Modell sowie deren MSE Schätzer
hergeleitet. In einer modellbasierten Simulationsstudie werden die vorgestellten MMFH
Algorithmen und Formeln validiert. Des Weiteren wird ihre Performanz mit der Performanz
der entsprechenden univariaten und multivariaten Fay-Herriot Modelle verglichen. Eine
illustrative Anwendung basierend auf öffentlich zugänglichen Daten des U.S. Zensus Büros
zeigt die praktische Notwendigkeit der vorgestellten Methode sowie ihre Anwendbarkeit.

Kapitel 7 fasst die Beiträge und Ergebnisse der Arbeit abschließend zusammen.
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Notation

Unless stated differently: A scalar is denoted as x, a vector as x, a matrix as X. Vectors
are defined as column vectors.

As is common in the survey and small area literature, e.g. Searle et al. (2006, p. 139) and
Särndal et al. (1992, p. 226), we often times do not formally distinguish between random
variables and their realisations. For instance, we often do not formally distinguish an
estimator from its estimates or a model from its predictions.

General symbols
M−1 Inverse of matrix M
M> Transpose of matrix M
det(M) Determinant of matrix M
tr(M) Trace of matrix M
Ix x× x identity matrix
col Matrix operator stacking by columns

diag Matrix operator stacking the elements row-wise to a block-diagonal
matrix

row Matrix operator stacking by rows
∼ N(x, y) Normal distribution with mean x and variance y

∼ Nm(x,Y ) m-variate normal distribution with mean vector x ∈ Rm and
covariance matrix Y ∈ Rm×m

∼ Unif(x, y) Uniform distribution in interval [x, y]
E[X] Expectation of X
AVar(X) Approximated variance of X
Bias(X) Bias of X
Cov(X,Y ) Covariance of X and Y
Corr(X,Y ) Correlation of X and Y
MSE(X) Mean squared error of X
Var(X) Variance of X
I Indicator function taking values in {0, 1}
` Log-likelihood

O, OP , O, OP
Landau-Bachmann notation, similar to Jiang (2007, Appendix C.3),
Morales et al. (2021, p. 523)

Pr(x) Probability of an event x
|x| Absolute value of x
x̂, x̂ Estimator/estimate/predictor/prediction of x
#
(
X
)

Cardinality of a set X

Chapter-specific notation The chapters of the thesis deal with different theories and
concepts, each of which has its own typical notation. To maintain the recognition value of
the basic literature and the readability of the individual chapters, certain quantities are

xvi
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redefined and replaced in individual chapters. The following lists contain selected symbols
that are frequently used in the individual chapters. Symbols that are defined and used
only in individual sections are not included.

Survey Sampling (Section 2.2, 2.3, Chapter 4)
A Parameter of AK estimator
D Number of domains
dk (dkt) Design weight of unit k ∈ U (at time t)
gk Correction weight of unit k ∈ s
K Parameter of (A)K estimator
N Population size
n Sample size
p Number of auxiliary variables
p Sampling design
q Number of additional auxiliary variables in composite estimators
S Set-valued random variable
s (st) Sample (at time t)
st ∩ st′ Overlapping sample in t, t′

st \ st′ Non-overlapping sample in t, t′

S Set of all possible realisations of S
t, t′, t′′ Time points, t′′ < t′ < t
U Finite population of size N
wk (wkt) Calibration weight of unit k ∈ s (k ∈ st)
xk (xkt) Vector of auxiliary values of unit k ∈ U (at time t) of length p
xkj Value of the j-th auxiliary variable of unit k ∈ U
Y Variable of interest
yk (ykt) Value of Y of unit k ∈ U (at time t)
zkt Vector of additional auxiliary values of unit k ∈ st of length q
zkt Value of additional auxiliary variable of unit k ∈ st

α Parameter of RC estimator
β Vector of fixed effects
θ Quantity of interest
θtt′ Sample overlap between st and st′

πk (πkt) First-order inclusion probability of unit k ∈ U (at time t)
πkl (πklt) Second-order inclusion probability of units k, l ∈ U (at time t)
τx (τxt) Population totals of p auxiliary variables (at time t)
τxj Population total of the j-th auxiliary variable
τy (τyt) Population total of Y (at time t)
τzt Population totals of q additional auxiliary variables at time t
τzt Population total of an additional auxiliary variable at time t

Small area estimation (Section 2.4, Chapters 5, 6)
Ad Additional set for domain d in MMFH model
bδ̂ Bias in estimation of variance parameters δ
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uk) Random effect variance (of variable k)

In the MMFH model, we define two additional versions for certain quantities to account
for missing values. For a quantity rd, e.g. a vector, r̆d corresponds to rd reduced to the
observed variables of interest in domain d and ŕd corresponds to rd, where all elements
referring to missing direct estimates are set to zero.

Modelling employment histories (Chapter 3)
B Brier score
BSSj Brier skill score for category j
Bw Weighted Brier score
D Arbitrary dataset consisting of n observation tuples
d = (d1, . . . , dJ)> Category weight vector for Bw
f Arbitrary function, a model
g Monotonic link function for the exponential family of distributions
J Number of categories
L Loss function
M Number of individual models
n (nj) Number of observation (of category j)
p Number of auxiliary variables
p̂(Yi = j|xi) Predicted probability that Yi takes category j given xi

SB Stratified Brier score
wm Ensemble weight for model f̂ ∗

m

xi Vector of auxiliary variables for i of length p
X Matrix of auxiliary information
Yi Random variable with expectation µi

β Vector of fixed effects
η (ηj) Linear or additive predictor (for category j)
µi Expectation of Yi

πj (πij) Probability of category j (for unit i)



Chapter 1

Introduction

Survey data can be viewed as incomplete or partially missing from a variety of perspectives
and there are different ways of dealing with this kind of data in the prediction and the
estimation of economic quantities. In this thesis, we present two selected research contexts
in which the prediction or estimation of economic quantities is examined under incomplete
survey data.

These contexts are first the investigation of composite estimators in the German Microcen-
sus (Chapters 3 and 4) and second extensions of multivariate Fay-Herriot (MFH) models
(Chapters 5 and 6), which are applied to small area problems.

Composite estimators are estimation methods that take into account the sample overlap in
rotating panel surveys such as the German Microcensus in order to stabilise the estimation
of the statistics of interest (e.g. employment statistics). Due to the partial sample overlaps,
information from previous samples is only available for some of the respondents, so the
data are partially missing.

MFH models are model-based estimation methods that work with aggregated survey data
in order to obtain more precise estimation results for small area problems compared to
classical estimation methods. In these models, several variables of interest are modelled
simultaneously. The survey estimates of these variables, which are used as input in the
MFH models, are often partially missing. If the domains of interest are not explicitly
accounted for in a sampling design, the sizes of the samples allocated to them can, by
chance, be small. As a result, it can happen that either no estimates can be calculated
at all or that the estimated values are not published by statistical offices because their
variances are too large. In the following, we give a more detailed description of the chapters
of this thesis.

Chapter 2: Fundamentals of Survey Estimation
Chapter 2 gives a brief overview of the theoretical and methodological concepts needed for
the developments in the later chapters. These include foundations of design-based and
model-based survey estimation, Monte Carlo simulation methods, and Fay-Herriot models,
which belong to the class of model-based area-level small area estimation methods.

Chapter 3: Generation of a Longitudinal Employment Dataset for Simulations
Chapter 3 deals with the extension of a cross-sectional dataset with longitudinal employment
information, which then serves as the simulation population for the studies in Chapter 4.
For the research questions in Chapter 4, a longitudinal dataset is needed that represents
the German resident population including monthly employment information such that the
design of the German Microcensus and the production of employment statistics can be
replicated in its full regional depth and temporal dimension. For that purpose, we use

1
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the RIFOSS and SIAB dataset: The RIFOSS dataset1 is a semi-synthetic cross-sectional
dataset of the German resident population. The SIAB dataset2 is a random sample drawn
from the Integrated Employment Biographies of the Institute for Employment Research
(Antoni et al., 2019).

In Chapter 3, we describe the editing, aggregation, and validation of the SIAB dataset.
Based on this data, we calculate prediction models for monthly employment categories.
With the prediction models, we generate longitudinal employment information in the
RIFOSS dataset. We also discuss the evaluation of probability predictions for imbalanced
categorical data such as the employment status. In the course of the discussion, we propose
an extension of the Brier score, the so-called weighted Brier score, to account for the
imbalanced categories. For the prediction models, we use several generalised additive
models, each estimated on subsamples of the processed SIAB data (subagging). The models
are combined into optimally weighted ensemble models (stacking). In the optimisation
of the ensemble weights, the proposed weighted Brier score is used as a loss function,
which constitutes a quadratic optimisation problem. With the final ensemble models, we
generate longitudinal employment information in the RIFOSS dataset. We validate the
generated data with information from the SIAB dataset and aggregate statistics published
by the German statistical institute (Destatis).

Chapter 4: Composite Estimation in the German Microcensus
The Microcensus is the largest annual household survey of official statistics in Germany.
Every year around 1% of all German households participate in the survey and answer
questions related to their working and living conditions. The sampling design of the survey
underwent major changes beginning in 2020, including a modified rotation scheme and the
integration of different household surveys, which were previously conducted separately.

The rotation design of the Microcensus results in sample overlaps of different time points.
The sample overlaps constitute incomplete survey data: For each time point, information
from previous samples is available for only a subset of the respondents in a sample.
The rotation pattern of the sampling design determines the magnitude of the overlaps.
Composite estimators use the partial overlaps with previous samples in the estimation
process. Particularly for employment statistics, the inclusion of this additional information
can lead to more efficient estimators since the employment status is typically rather stable
over time.

The new rotation design of the Microcensus creates new opportunities for the application
of composite estimators. After an overview of different composite estimators and their
applications, we describe the Microcensus design and its changes in 2020, and analyse how
composite estimators can be applied in this survey. Thereafter, we present adjustments
of the composite estimators to account for the regionally heterogeneous sample overlaps
resulting from the Microcensus design. In a design-based simulation study based on the
dataset created in Chapter 3 we compare the performance of the adjusted composite

1Version RIFOSS_GG_v0.1.1_vanilla_ice_cream.
2Factually anonymous Version of the Sample of Integrated Labour Market Biographies (SIAB-Regionalfile)

Version 7517 v1.
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estimators. We evaluate the estimators for various employment statistics like monthly and
quarterly totals and changes of the number of employed and unemployed at different regional
levels. Furthermore, we evaluate them for different sets of sample overlap information.

Chapter 5: Empirical Best Prediction in Multivariate Fay-Herriot Models
Keeping everything else fixed, the variance of design-based methods continues to increase as
domain sizes decrease due to small sample sizes. That is, for small domains, design-based
estimation methods typically have high variances. The challenge of producing estimates
based on small sample sizes is referred to as a small area estimation problem. Different
model-based small area methods have been developed and studied for this problem. MFH
models are area-level small area methods which take aggregate survey information as
input and model several dependent variables at the same time. They have been an
active field of research in recent years. In Chapters 5 and 6, we present two additional
methodological developments for these models. Taken together, the combination of the
contributions presented in these two chapters allows for the approximation of the empirical
best predictors (BPs) of multi-variable, potentially non-linear domain indicators under
the MFH models, even in domains for which some survey estimates are missing.

Chapter 5 focuses on multi-variable domain indicators. An example of such an indicator
is the domain unemployment rate, defined as the number of unemployed divided by the
sum of employed and unemployed. For such indicators, so-called plug-in estimators are
frequently used. They are calculated by substituting the indicator input values by their
survey estimates. However, plug-in estimators do not consider the joint distribution of
their inputs. Furthermore, plug-in estimators are not unbiased for non-linear indicators
and asymptotic unbiasedness cannot be assumed when dealing with small sample sizes.

As an alternative to plug-in predictors in small area problems, we study BPs of multi-
variable domain indicators in MFH models in Chapter 5. By definition, the BPs are the
estimators with minimum mean squared error (MSE) in the class of all model-unbiased
predictors and therefore advantageous to the model-based plug-in predictors. As the
BPs do not have a closed form, we analyse different techniques for approximating their
integrals. Furthermore, we present parametric bootstrap procedures for estimating the
MSE of the approximations. In several model-based simulation studies, each replicating
the estimation of domain unemployment rates, we evaluate the approximations and
compare their performance with that of the corresponding plug-in predictors. In addition,
we evaluate the proposed MSE estimators, including recommendations for the number
of repetitions in the parametric bootstrap procedures. The chapter concludes with an
illustrative application of the approach to publicly available Spanish labour force data
aimed at estimating the unemployment rates of Spanish provinces crossed by age classes
and sex.

Chapter 6: Multivariate Fay-Herriot Models under Missing Direct Estimates
MFH models take domain survey estimates of the dependent variables as input. However,
they can only use information from domains with fully available survey estimates, both
for parameter estimation and for the calculation of BPs under the model. This limits
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the applicability of MFH models for practical purposes, where the multi-variable survey
estimates are often partially missing.

In Chapter 6, we present the MFH model under missings (MMFH) as a generalisation
of the MFH model. The MMFH model is capable of considering all those domains for
which at least one of the survey estimates is available, both for estimating the model
parameters and calculating BPs under the model. We present Fisher-Scoring algorithms for
model parameter estimation, both using the maximum likelihood and restricted maximum
likelihood approach. Furthermore, we present formulas for the MSE estimation, both
for the BPs under the model and for synthetic MFH predictors. The proposed MMFH
algorithms and formulas are evaluated in model-based simulation studies. We compare
their performance to that of different competing Fay-Herriot models. The chapter closes
with an illustrative application of the MMFH model to publicly available data from the
American Community Survey. The target is the estimation of the median annual income
of the population with Hispanic or Latino origin in 2010 and 2011 for U.S. counties.

Chapter 7: Summary and Conclusions
We summarise the contributions and findings of the thesis in Chapter 7, including an
outlook for potential future research.



Chapter 2

Fundamentals of Survey Estimation

2.1 Introduction

In this chapter we briefly introduce some basic concepts which are needed for the develop-
ments and investigations in the subsequent chapters. It is structured as follows. Section 2.2
presents basic concepts of survey estimation including the distinction of design-based and
model-based approaches and descriptions of design-based estimators and their properties.
The Horvitz-Thompson estimator and the generalised regression estimator are described in
Section 2.3. The design-based concepts and estimators are in the focus of Chapters 3 and
4. The following Section 2.4 gives an introduction to the theory of linear mixed models,
specifically tailored to model-based small area estimation techniques with the Fay-Herriot
model in particular. Multivariate versions of the Fay-Herriot model and their extensions
are the research subjects of Chapters 5 and 6.

2.2 Basic concepts of survey estimation

Surveys are used to obtain information on a target population by means of population
samples. A sampling design determines the procedure by which a sample of population
units is chosen from that target population. The elements of a sample are the sampling
units. For example, in the German Microcensus the target population is the resident
population of Germany, the sampling units are clusters of persons in households, for
example street sections, and the samples are drawn via a one-stage cluster sampling design
(Destatis, 2021). In order to make inferences about the target population based on a
concrete sample, estimation methods are applied. For a comprehensive overview of the
general theory of survey sampling and estimation, we refer to Cochran (1977), Lohr (2010),
and Särndal et al. (1992).

2.2.1 Design-based, model-assisted, and model-based approach

There are essentially two approaches according to which survey information can be analysed:
The design-based (and model-assisted) and the model-based approach. In Chapters 3 and
4, the focus is on the design-based (and model-assisted) approach, while the model-based
approach is applied in Chapters 5 and 6. A general overview of both approaches is given
in Skinner and Wakefield (2017), on which the following description is based. We refer to
Lehtonen and Veijanen (2009), Morales et al. (2021), and Rao and Molina (2015) for a
discussion of the approaches with a focus on small area estimation.

5
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The design-based approach focuses on fixed and finite populations. The parameters/statis-
tics of interest, e.g. the unemployment rate in certain domains, are interpreted as fixed
and typically unknown quantities which can be estimated using population samples. The
only randomness considered in this approach is the process of drawing samples according
to a sampling design. Each sample is seen as a random realisation of the sampling process,
the distribution of all possible samples is determined by the sampling design. Design-based
estimators are designed and evaluated with respect to the randomisation process of the
sampling design. For example, the properties design-unbiasedness and design-consistency,
covered in Section 2.2.3, are defined with respect to the distribution of all possible samples
under a specific design. Classical examples of design-based estimators are the Horvitz-
Thompson estimator, covered in Section 2.3.1, and the Hájek estimator, which is e.g.
described in Särndal et al. (1992).

Model-assisted estimators include a statistical model which links the target information
in a sample to additional auxiliary information. In addition to the sampling information,
there is usually further information available that can be used for the estimation process.
For example, population statistics on the number of persons for different demographic and
regional levels could be available from the last Census and incorporated into the estimation
process. Model-assisted estimators are only assisted by a model, not model-dependent,
as certain design-based features hold, at least asymptotically, regardless of the (implicit)
choice of the model. The estimators are often more efficient than estimators which do not
incorporate additional information. Furthermore, they can be used to ensure consistent
estimates, for example of different surveys. A prominent example of a model-assisted
estimator is the generalised regression estimator, covered in Section 2.3.2. It is for example
used in the German Microcensus with key figures from the current population update as
auxiliary information (Destatis, 2020b). Often, the term design-based is used to refer to
both kinds of methods, design-based and model-assisted, which is what we will do in the
following.

In the model-based approach, a population is interpreted as a realisation from a super-
population model. Thereby, the target quantities are seen as random variables. Similar
to model-assisted estimators, model-based estimators also include models linking the
target survey information to additional data. Model-based estimators are model-dependent,
i.e. they are derived under concrete model assumptions and their features are evaluated
with respect to these assumptions. In practical applications, the model assumptions of a
model-based estimator have to be carefully evaluated. When the model assumptions are
not met by the data at hand, model-based estimators can exhibit huge biases. However,
there are applications where model-based estimators have significant advantages over
design-based estimators.

One particular application area of model-based estimators is small area estimation, covered
in Section 2.4.1 It targets the analysis of survey data when sample sizes are small and the
variances of design-based estimators are high. In these small area problems, model-based
estimators can have substantially smaller mean squared errors than design-based methods.
General information on small area estimation techniques, the theory of linear mixed
models, and Fay-Herriot models as particular model-based small area models are covered
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in Section 2.4. They build the theoretical basis for the developments based on multivariate
Fay-Herriot models, which are presented in Chapters 5 and 6.

2.2.2 Sampling design and inclusion probabilities

In the following, the focus is on the design-based approach. The description is based on
Särndal et al. (1992). Let there be a fixed and finite population U = {1, . . . , N}, N ∈ N.
A sampling design, denoted by p, returns the probability of selecting a specific sample
s ⊆ U from that population, denoted by p(s). A sample s is a set of population units of
size n. It can be regarded as a realisation of a set-valued random variable S. In this thesis,
only sampling designs where each population unit appears at most once in a sample are
considered, called sampling without replacement, which implies n ≤ N . Sampling design p
determines the distribution of S, Pr(S = s) = p(s). The set of all possible realisations of
S is denoted as S . We have p(s) ≥ 0, ∀s ∈ S , and ∑s∈S p(s) = 1.

Under a specific sampling design, each unit of the population can be assigned the probability
of being included in a sample drawn according to that design. The first-order inclusion
probability of a population unit k is given by (Särndal et al., 1992, Equation 2.4.2)

πk = Pr(k ∈ S) =
∑
s3k

p(s), ∀k ∈ U, (2.1)

where ∑s3k denotes the sum of all possible samples in which unit k is included. The
second-order inclusion probability of population units k and l is given by

πkl = Pr(k&l ∈ S) =
∑

s3k&l

p(s), ∀k, l ∈ U, (2.2)

where ∑s3k&l denotes the sum of all possible samples in which both units k and l are
included. We have πkk = πk, ∀k ∈ U . In this thesis, only probability sampling designs
are considered, implying that πk > 0 holds, ∀k ∈ U (Särndal et al., 1992, p. 32). That
is, all units of the target population U have a known, fixed, positive probability of being
included in a sample. Furthermore, we always consider πkl > 0, ∀k, l ∈ U , i.e. the design
is measurable (Särndal et al., 1992, p. 33).

The design weights of the population units are defined as the inverse of the first-order
inclusion probabilities, given by (Lehtonen & Veijanen, 2009, p. 222)

dk = 1/πk, ∀k ∈ U. (2.3)

In praxis, the design weights of the sampling units are typically additionally adjusted,
e.g. to account for non-response. As an example, we refer to Afentakis and Bihler (2005,
Section 2.2) for the description of the non-response adjustment in the German Microcensus.
In Section 2.3.2, calibration estimators are presented, with the generalised regression
estimator in particular, which can be used for non-response adjustment.
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2.2.3 Basic properties of estimators

Survey samples are used to estimate various unknown quantities of the target population,
like totals, means, or ratios of different variables. Consider a variable of interest Y , where
(y1, . . . , yN )> are the values of that variable for the units of population U . We are interested
in a real-valued function of the variable of interest, given by θ = f((y1, . . . , yN)>), which
is called a statistic/quantity/parameter. For example, the variable of interest can be an
dummy variable with value 1 if a person in population U is unemployed and 0 otherwise.
A corresponding statistic of interest could be the total or the proportion of unemployed
persons.

A function which maps the data of sample s, and potentially additional data, to a concrete
estimate of θ is called estimator and denoted as θ̂. In the design-based context, the
properties of an estimator θ̂ are evaluated with respect to its distribution under a sampling
design p. As θ̂ = θ̂(S) is a statistic over the random set S, θ̂(S) itself is a random variable.
The following description of the properties of estimators is based on Särndal et al. (1992,
Section 2.7).

The design-expectation and design-variance of an estimator θ̂ are given by (Särndal et al.,
1992, Definition 2.5.1, Section 2.7)

E[θ̂] =
∑
s∈S

p(s)θ̂(s), (2.4)

Var(θ̂) = E
[
(θ̂ − E[θ̂])2

]
=
∑
s∈S

p(s)
(
θ̂(s) − E[θ̂]

)2
. (2.5)

In accordance to the design-variance of one estimator, the design-covariance of two
estimators θ̂1 and θ̂2 is given by

Cov(θ̂1, θ̂2) = E
[
(θ̂1 − E[θ̂1])(θ̂2 − E[θ̂2])

]
=
∑
s∈S

p(s)
(
(θ̂1 − E[θ̂1])(θ̂2 − E[θ̂2])

)
. (2.6)

The design-bias of an estimator θ̂ is given by

Bias(θ̂) = E[θ̂] − θ. (2.7)

Estimator θ̂ is said to be design-unbiased if Bias(θ̂) = 0. The design-based mean squared
error (MSE) is used as a measure of precision and defined as

MSE(θ̂) = E
[
(θ̂ − θ)2

]
= E

[
(θ̂ − E(θ̂))2

]
+ 2

(
E[θ̂] − θ

)
E
[
θ̂ − E[θ̂]

]
+
(

E[θ̂] − θ
)2

= Var(θ̂) + (Bias(θ̂))2. (2.8)

As E
[
θ̂ − E[θ̂]

]
= E[θ̂] − E

[
E[θ̂]

]
= E[θ̂] − E[θ̂] = 0, by the law of iterated expectation,

the cross-product term vanishes. From (2.8), we see that for unbiased estimators the MSE
equals the variance. The MSE takes into account both variance and bias of an estimator
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and is especially useful when comparing estimators which are not unbiased. It is useful to
consider the bias in addition to the MSE when evaluating estimators as the bias is for
example essential for the construction and validity of confidence intervals (Särndal et al.,
1992, p. 164).

Two additional features of estimators are asymptotic unbiasedness and consistency, the
description of which is based on Särndal et al. (1992, Section 5.3). Let there be n
independently and identically distributed random variables ι(n) = (ι1, . . . , ιn)>. An
estimator θ̂(n) = θ̂(ι(n)) of quantity θ is asymptotically unbiased if

lim
n→∞

E[θ̂(n)] = θ (2.9)

and consistent if

lim
n→∞

Pr
(
|θ̂(n) − θ| > ε

)
= 0, (2.10)

for any fixed ε > 0. For large n, an asymptotically unbiased estimator can be considered
approximately unbiased and a consistent estimator can be considered to be concentrated
around the true parameter θ. To apply both concepts to finite populations, one has to
consider the limes for both n and N increasing to infinity. We refer to Särndal et al. (1992,
Section 5.3) for further details.

Just as the design-based properties of estimators are defined over the randomisation process
of the sampling design, the model-based properties of estimators are defined over the
randomisation process of the underlying super-population model. In this thesis, it should
be clear from the context whether the focus is on the design- or model-based properties of
estimators, which is why the prefixes design- and model- are often omitted.

2.2.4 Monte Carlo simulation studies

In concrete applications with complex survey designs, it can be difficult to analytically
derive the theoretical properties of estimators, like their MSE for specific target quantities.
Both, design- and model-based properties of estimators, under different data, sampling
designs, and model scenarios, can be approximated using Monte Carlo simulation studies.

In a Monte Carlo simulation, the randomisation process of a sampling design (design-
based simulation study) or the randomisation process of the super-population model
(model-based simulation study) is simulated repeatability using random numbers. The
properties of the estimators can be inferred over the simulated randomisation process by
analysing their Monte Carlo distribution. For a valid analysis, it should be ensured that
the considered randomisation process has been simulated often enough to approximate
the corresponding quantities sufficiently well, e.g. by comparing the results for different
numbers of repetitions. We refer to Gentle (2003) for a general overview of random number
generation and Monte Carlo methods and Burgard et al. (2020a) for an overview of Monte
Carlo methods tailored to survey statistics.
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In the simulation studies presented in this thesis, we mainly focus on the approximation of
different variants of the bias or MSE of an estimator. In a Monte Carlo simulation study,
the Bias and MSE of an estimator θ̂ can be approximated by

Bias(θ̂) = 1
MC

MC∑
mc=1

θ̂(mc) − θ(mc), MSE(θ̂) = 1
MC

MC∑
mc=1

(θ̂(mc) − θ(mc))2, (2.11)

where MC is the number of simulation repetitions. θ(mc) and θ̂(mc) refer to the values of
the quantity of interest and its estimate in iteration mc.

In a design-based study, such as the study presented in Chapter 4, the true values are
considered fix, i.e. θ(mc) = θ, ∀mc ∈ {1, . . . ,MC}. In each Monte Carlo iteration, a
random sample is drawn from the population according to a specific sampling design and
different estimators are applied to the sample to estimate θ. In a model-based simulation
study, such as the studies presented in Chapters 5 and 6, the true values are considered
random. In each Monte Carlo iteration, a population is drawn as a realisation of an
underlying super-population model and θ(mc) is a random variable.

Throughout this thesis, we use R package baseR with functions runif and rnorm to simulate
random draws from the uniform and normal distribution. To simulate multivariate normal
draws from independent univariate draws, we use Algorithm 5.1, which we will look at in
more detail in Section 5.2.

2.3 Horvitz-Thompson and generalised regression
estimator

2.3.1 Horvitz-Thompson estimator

Two of the most well-known survey estimators are the Horvitz-Thompson estimator and
the generalised regression estimator, which are described in the following. We take the
population total of a variable of interest Y as the parameter of interest, denoted by
τy = ∑

k∈U yk.

The Horvitz-Thompson (HT) estimator, named after Horvitz and Thompson (1952), is a
design-unbiased and design-consistent (Isaki & Fuller, 1982) estimator of τy, which, based
on a sample s, is given by

τ̂HT
y =

∑
k∈s

yk

πk

=
∑
k∈s

ykdk. (2.12)

The following description of the HT estimator is based on Särndal et al. (1992, Section 2.8).
The HT estimator is often called π-estimator as it produces estimates as a π-weighted
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sums of the sample values, i.e. weighted by the inclusion probabilities. The variance of
the estimator is given by

Var(τ̂HT
y ) =

∑
k∈U

∑
l∈U

(πkl − πkπl)
yk

πk

yl

πl

. (2.13)

Given that for the joint inclusion probability πkl > 0, ∀k, l ∈ U , holds, an unbiased
estimator of the variance is given by

V̂ar(τ̂HT
y ) =

∑
k∈s

∑
l∈s

(1 − πkπl

πkl

)yk

πk

yl

πl

. (2.14)

The proof is given in Särndal et al. (1992, Result 2.8.1). For the formulas of the HT point
and variance estimation for other quantities of interest, like ratios, we refer to Särndal
et al. (1992).

Using the description of the HT estimator, we would like to draw attention to another
property of the typical survey statistics notation. As seen in (2.12), the notation typically
does not distinguish between an estimator and the resulting estimate. However, it should be
clear that properties such as unbiasedness, variance, or MSE always refer to the estimator,
not the estimated value.

For certain sampling designs, the formulas of the HT estimator simplify considerably,
especially the form of the second-order inclusion probabilities. Compare e.g. the respective
formulas under stratified random sampling in Särndal et al. (1992). In practice, computing
the second-order inclusion probabilities πkl, which are needed for the variance estimation,
can be difficult, especially under complex survey designs. We do not cover variance
estimation methods in this thesis and refer to Särndal et al. (1992, Chapter 11), Wolter
(1985), and Münnich (2008) for overviews of variance approximation and estimation
techniques.

Another design-unbiased estimator is the Hájek-type estimator, which can be especially
useful for sampling designs where N̂ = ∑

k∈s dk is random. We do not consider Hájek-type
estimators in the following chapters and refer to Morales et al. (2021, Section 2.5) and
Särndal et al. (1992, Result 5.7.1) for its formulas and further information.

Using the HT estimator, we would like to introduce some additional terms related to
estimators: Domain estimation, multivariate estimation, and the distinction between direct
and indirect estimators.

Domain estimation
When conducting a survey, the interest is usually not only in statistics for the entire target
population U , but also in statistics for a variety of sub-populations. The sub-populations
are referred to as areas or domains, terms that are used synonymously in the following.
Domains can be defined by regional aspects, referring to specific time periods, demographic
information such as age and sex classes, or combinations of the three. An overview of
domain-specific estimation is given in Särndal et al. (1992, Chapter 10). We consider that
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population U can be partitioned into D sub-populations, called domains, denoted by Ud

of size Nd, d = 1 . . . , D, with (Särndal et al., 1992, Equation 10.2.1)

U =
D⋃

d=1
Ud, N =

D∑
d=1

Nd. (2.15)

Assume we are interested in estimating τyd
= ∑

k∈Ud
yk, the total of a variable Y in domain

d. The domain membership of each sampling unit in the sample s is known. Therefore, and
as the domains are non-overlapping, s can be partitioned into domain-specific sub-samples
sd, with sd = s∩Ud, d = 1, . . . , D. The domain-specific HT estimates of τyd

are given by

τ̂HT
yd

=
∑
k∈sd

ykdk, d = 1, . . . , D. (2.16)

Direct and indirect estimators
Especially in the context of small area estimation, a distinction is made between direct
estimators and indirect estimators. In this context, we refer to Lehtonen and Veijanen
(2009, Section 2.2.3) for a detailed description of the two. The HT estimator (2.16) is a
direct estimator as it uses only the sample information of Y available in domain d, given
by sd, to calculate (2.16). For a direct estimator like the HT estimator, domain-specific
estimation corresponds to treating each domain as a population of its own. The formulas
of the variance (2.13) and the estimated variance (2.14) of the HT estimator can therefore
be applied accordingly for domain estimation. Indirect estimators additionally use sample
information of the variable of interest from other domains by the use of implicit or explicit
statistical models. The generalised regression estimator, introduced in Section 2.3.2, can
be calculated as a direct or indirect estimator.

Multiple quantities of interest
Surveys are used to compute a whole range of different statistics for a wide variety of
variables and domain sets. When the sample data based on which different estimators
are calculated is (partially) overlapping, their sampling errors are correlated. Särndal
et al. (1992, Section 5.4) give an overview of the HT estimator for multiple quantities
of interest. We consider m variables of interest with population values (yk1, . . . , ykm)>,
∀k ∈ U . The quantities of interest are the total values of these variables and given by
τyj

= ∑
k∈U ykj , j = 1, . . . ,m. The HT estimator (2.12) can be calculated for each of the m

variables resulting in τ̂HT
yj

, j = 1, . . . ,m. The covariance of any two of the HT estimators
is given by (2.6). The covariance matrix of the m HT estimators can be set up with the
variances of the m estimators on the diagonal and off-diagonal elements

Cov(τ̂HT
yj
, τ̂HT

yp
) =

∑
k∈U

∑
l∈U

(πkl − πkπl)ykjdkylpdl, j, p = 1, . . . ,m. (2.17)

An unbiased estimator for the variance and covariance is derived similarly to (2.14) by
inserting the observations of a sample s instead of the population U .
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In concrete applications, estimating the covariance between two estimators can be difficult,
especially when the estimators only have some, but not all, sampling elements in common
as in the rotating panel surveys covered in Chapter 4. We refer to Berger and Priam
(2016) and the references therein for covariance estimation under rotating panel designs.

The covariances of multiple estimators play an important role for composite estimators
in rotating panel surveys, which are covered in Chapter 4. Furthermore, the covariances
between different estimators are taken as input in multivariate Fay-Herriot models, which
are covered in in Chapters 5 and 6.

2.3.2 Generalized regression estimator

In a survey sample s usually different variables are observed for all units. For example, in
the German Microcensus (Destatis, 2021) not only the employment status of a persons,
but also their age and sex are observed. In addition, information from previous survey
samples can be available. Furthermore, data from outside the survey, such as register
information or population totals from the current population update, may also be available
at the estimation stage. All this information can be used to form estimators which often
exhibit higher precision, i.e. lower variance/MSE, than the HT estimator. Furthermore,
the additional information can be used to ensure that different statistics add up to known
population values or that the estimates of the same statistic in different surveys coincide.
A prominent example of such an estimator is the generalised regression estimator, which
is a special case of a calibration estimator. In the following, calibration estimators are
introduced with the generalised regression estimator in particular.

Consider that in a sample s, in addition to the variable of interest Y , p additional variables
are observed, which are henceforth called auxiliary variables/auxiliaries/covariates. That
is, sample s contains pairs (yk,xk), where xk = (xk1, . . . , xkp)>, ∀k ∈ s. The population
totals of the p variables, τx = (τx1, . . . , τxp)>, are assumed to be known. Following the
description in Särndal (2007), a calibration estimator of population total τy is given by

τ̂ calib
y =

∑
k∈s

ykwk, (2.18)

where calibration weights wk, k ∈ s, are the solution to the optimisation problem

min
wk,k∈s

∑
k∈s

D(wk, dk)

subject to
∑
k∈s

xkwk = τx.
(2.19)

The constraints in (2.19) are called calibration constraints. D is a strictly convex and
continuously differentiable distance function for which D(wk, dk) ≥ 0, D(dk, dk) = 0, and
∂D(dk, dk)/∂wk = 0, ∀k ∈ s, hold. Calibration weights wk can be written as the product
of design weights dk and correction weights gk, wk = dkgk, ∀k ∈ s.
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Särndal (2007, p. 99) summarises important features of calibration estimators: The
optimisation of the calibration weights is independent of the choice of the variables of
interest. To put it differently, a calibration estimator returns a set of calibration weights
wk, ∀k ∈ s, regardless of the variable(s) of interest. These weights satisfy the calibration
constraints and can be used to compute all linearly weighted estimates. The calibration
estimator is not design-unbiased, but design-consistent, i.e. the contribution of the bias
to MSE of the estimator is asymptotically insignificant (Kott, 2006). Therefore, the
calibration estimator is also called nearly design-unbiased by Särndal (2007, p. 99).

The calibration constraints in (2.19) can be used for different purposes. They can be
used to ensure that different surveys return the same estimates of specific statistics or
that regional estimates add up to certain national estimates. Calibration estimators can
therefore be used to ensure the credibility of different estimates, which is considered as
an important feature for the quality of official survey estimates (Särndal, 2007, p. 100).
This is also the reasons why in practice the vector of totals τx used in the calibration
constraints often not only includes (assumed) known, but also estimated totals. The
inclusion of estimated calibration totals, however, adds additional uncertainty to the
calibration estimator, which has to be considered in its variance estimation. We refer to
Berger et al. (2009) and Dever and Valliant (2010) for further information on the variance
estimation under estimated totals. The calibration estimator can be severely biased when
the totals of the p covariates are only approximated (Särndal et al., 1992, Remark 6.4.3).
In addition to ensuring consistency with the calibration totals, calibration estimators often
have lower variance than design-based estimators which do not make use of additional
auxiliary information (Särndal, 2007, p. 101).

There are different distance functions D available, each of which leads to a different type of
calibration estimator. In this thesis, we only use calibration estimators with the chi-square
distance function, i.e. D(wk, dk) = (wk − dk)2/(dkqk), where qk > 0 is an additional scaling
factor. As in most applications, we take the scaling factor qk = 1, ∀k ∈ s, and do not
consider it further. We refer to Deville and Särndal (1992) for examples of calibration
estimation with qk 6= 1. For information on other calibration estimators, we refer to Deville
and Särndal (1992), Kott (2009), and Särndal (2007). The estimates resulting from a
calibration estimator with chi-square distance function correspond to the estimates of the
standard linear generalised regression (GREG) estimator, which is described further on.
Although the calibration estimator with chi-square distance function and the standard
GREG estimator give the same survey estimates, they are grounded in very different
philosophies. While the former focuses on the calibration to chosen totals, the GREG
estimator is motivated by a regression model. We refer to Särndal (2007) for a detailed
comparison of the two philosophies. In the following, the GREG estimator is presented in
its different forms.

The standard linear GREG estimator (Cassel et al., 1976; Isaki & Fuller, 1982; Särndal,
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1980; Wright, 1983) is given by

τ̂GREG
y =

∑
k∈s

ykwk =
∑
k∈s

ykgkdk

= τ̂HT
y + (τx − τ̂HT

x )>β̂

=
∑
k∈U

x>
k β̂ +

∑
k∈s

wk(yk − x>
k β̂)

(2.20)

with

gk = 1 + (τx − τ̂HT
x )>

∑
k∈s

xkx
>
k

πk

−1

xk, (2.21)

and the vector of estimated coefficients/fixed effects of length p

β̂ =
∑

k∈s

xkx
>
k

πk

−1∑
k∈s

xkyk

πk

. (2.22)

The matrix of the auxiliary information is assumed to be of full rank such that its cross-
product can be inverted. When it is not of full rank, the generalised inverse can be used
instead, the computation of which is for example shown in Gentle (2007, Section 3.6).

The calibration form of the GREG is given by the first row of (2.20) with correction weights
(2.21). It emphasises the incorporation of auxiliary information to receive a single set of
weights wk, ∀k ∈ s, satisfying the calibration constraints. For this formula, there is no
distributional assumption and no statistical model involved. In contrast, the regression
form of the GREG, given in the last two rows of (2.20) with weighted least squares
coefficients (2.22), emphasises fitting a statistical model which reflects well the correlations
of the variable of interest and the set of covariates. For a description of the statistical
model which can be used to motivate the GREG estimator, we refer to Särndal et al.
(1992, pp. 225–228).

Due to the complex nature of the GREG estimator, only an approximate variance formula
based on a Taylor approximation can be given by (Särndal et al., 1992, Result 6.6.1)

AVar(τ̂GREG
y ) =

∑
k∈U

∑
l∈U

(πkl − πkπl)
(yk − x>

k β)
πk

(yl − x>
l β)

πl

, (2.23)

which can be estimated by

V̂ar(τ̂GREG
y ) =

∑
k∈s

∑
l∈s

(
1 − πkπl

πkl

)
gk(yk − x>

k β̂)
πk

gl(yl − x>
l β̂)

πl

=
∑
k∈s

∑
l∈s

(
1 − πkπl

πkl

)
wk(yk − x>

k β̂)wl(yl − x>
l β̂), (2.24)

where again wk = gkdk, ∀k ∈ s. The variance formula of the HT (2.13) and GREG
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estimator (2.23) are quite similar. They differ only in that for the GREG estimator the
residuals (yk − x>

k β̂) are inserted instead of yk in the formula of the HT estimator (2.13),
∀k ∈ s. In the same way, also the formulas of the covariances of GREG estimates can be
given similar to the HT formula (2.17).

Even though the GREG estimator can be motivated by the regression approach, it is a
model-assisted estimator. The chosen set of auxiliary information constitutes an assisting
model in the sense of the regression form of the GREG. The design-based properties of
the estimator hold regardless of how well the chosen assisting model fits the data. Breidt
and Opsomer (2017) and Robinson and Särndal (1983) show that the GREG estimator is
asymptotically design-unbiased and design-consistent under mild conditions. Although the
choice of the assisting model does not influence the design-based properties of the GREG
estimator or the validity of its variance formulas, it heavily influences the magnitude of
its variance. From (2.23) it can be seen that the smaller the residuals, i.e. the better the
assisting model fits the data, the lower the variance of the GREG estimator.

The GREG estimator can be used for domain-specific estimation, either as a direct or an
indirect estimator. If the GREG estimator is applied as a direct estimator, each domain is
treated as a population of its own, similar to the domain estimation of the HT estimator
(2.16). If, however, the GREG estimator is calculated based on the joint information of
several domains and hence the estimated vector of coefficients β̂ is the same for all these
domains, it is called an indirect estimator. We refer to Lehtonen and Veijanen (2009) for
an overview of different direct and indirect GREG estimators.

There are two additional features of the presented GREG estimator which are relevant for
practical applications. Särndal (2007, Section 5) emphasises that practitioners prefer the
calibration weights wk, ∀k ∈ s, to be positive and extreme values to be avoided. In theory,
the design weights reflect the inverse of the probability of a unit to be included in a random
sample drawn according to a sampling design. Negative weights are not compatible with
this. Extreme calibration weights, i.e. a large ratio of the largest to the smallest wk, is
also seen as problematic, especially for domain estimation where sample sizes are small
and thus extreme weights have a high influence. The calculation of the calibration weights
wk = gkdk with gk according to (2.21), ∀k ∈ s, can have negative weights as outcomes. In
particular, an increasing number of calibration constraints and small sample sizes may
lead to negative weights. Statistical offices therefore frequently use additional techniques
to avoid negative or extreme weights when working with the GREG estimator. Särndal
(2007, Section 5) and Park and Fuller (2005) list several techniques which can be used
to avoid negative or extreme weights. To avoid extreme calibration weights, Münnich
et al. (2012b) add box-constraints to the calibration estimator and present a semi-smooth
Newton method for solving the resulting calibration problem. In the German Microcensus,
an iterative algorithm, presented in Nieuwenbroek and Boonstra (2002), is used which
adds dampening factors to the GREG equations (Afentakis & Bihler, 2005).
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2.4 Area-level small area estimation

2.4.1 Introduction

Surveys are designed to provide estimates of various statistics of interest for various
domain levels. The design-based direct estimators presented in Section 2.3 work well for
domain estimation when the sample sizes of the domains are large. With large sample
sizes, the variances of the (approximately) design-unbiased estimators are small. However,
when considering smaller domains, e.g. statistics for cross-combinations of regionally
fine-grained domains by age, sex, and nationality, the variance of the corresponding
design-based estimators is typically larger due to small sample sizes.

Domains for which design-based direct estimators do not suffice to provide reliable estimates
due to small sample sizes are called small areas or small domains. The research area
of small area estimation (SAE) deals with methods and techniques that are designed
for such situations. For small areas, indirect estimators that jointly use information
from several domains and potential additional information in a common model can give
domain estimators with a lower MSE than the corresponding direct estimators. This
concept is referred to as borrowing strength. The joint modelling approach with data from
several domains is said to increase the effective sample size of the domain estimates. A
comprehensive overview of SAE techniques is given in Rao and Molina (2015). Morales et al.
(2021) provide an overview with special focus on mixed model theory and R (R Core Team,
2020) implementations. Münnich et al. (2013) provide a compressed German summary.
SAE is an area of ongoing research. Ghosh (2020), Jiang and Lahiri (2006), Pfeffermann
(2002, 2013), and Rao and Molina (2015) provide overview articles of developments related
to SAE. We name a few areas of recent research, without being exhaustive. There have
been contributions on the recognition of measurement errors, e.g. in Burgard et al. (2020b,
2021a), Burgard et al. (2019a); the influence of sampling designs, e.g. in Burgard et
al. (2014), Münnich and Burgard (2012), and Zimmermann (2018); the recognition of
non-linear relationships in model-based estimators, e.g. in Wagner et al. (2017), and the
analysis on the design-based MSEs of model-based estimators in Lahiri and Pramanik
(2019) and Pfeffermann and Ben-Hur (2019).

There are different approaches of SAE, summarised e.g. in Morales et al. (2021) and Rao
and Molina (2015). In the further course of this chapter as well as in Chapters 5 and
6, we focus on model-based SAE methods. Model-based SAE methods are applied in
various contexts including official statistics. For example, in the U.S. Census Bureau’s
Small Area Income and Poverty Estimates (SAIPE) programme, described e.g. in Bell and
Robinson (2020), federal funds are allocated based on model-based small area estimates
of income and poverty for counties and school districts. Because of the importance of
SAE to official statistics, it has been designated as one of seven research areas of the U.S.
Census Bureau, which provides an overview of current projects in U.S. Bureau of the
Census (2020). Zimmermann (2019) evaluated the applicability of SAE for the German
Census 2021. The World Bank applies SAE for poverty mapping in many countries. For
example, National Statistics Bureau of Bhutan and the World Bank (2010) examined
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poverty mapping in Buthan. A summary of different projects related to the application of
SAE techniques in official statistics is given in Kordos (2014).

In Chapters 5 and 6, we present contributions to multivariate Fay-Herriot models, which
belong to the class of area-level model-based small area methods. The model-based small
area methods, which we cover in this thesis, are based on the theory of linear mixed
models. In the following, an overview of the theoretical basics of linear mixed models is
given. Based on this theory, the Fay-Herriot model is introduced in Section 2.4.3.

2.4.2 Linear mixed model

Model
Mixed models constitute a flexible modelling framework that allows both fixed effects
and random effects in a model. Searle et al. (2006, Section 1.3) and Demidenko (2013,
Chapter 1) give a detailed overview of the different philosophies of fixed and random effects
and examples of their applications. While fixed effects represent unobserved constant
parameters, random effects constitute realisations of random variables, which themselves
are functions of fixed parameters. By combining the two concepts of effects, mixed models
can be seen as a compromise between Bayesian and frequentist approaches (Demidenko,
2013, Section 1.4). The use of random effects allows for the inclusion of potentially complex
correlation structures into a model. For example, in a longitudinal dataset each data row
can refer to a specific person and a specific time point. The observations corresponding to
a particular person are often assumed to be dependent. A random effect at the person-level
can account for this dependence structure in the data by assuming that all observations of a
specific person are subject to the same realisation of a random variable and thus correlated.
In the SAE context, random effects allow to incorporate domain-specific differences in a
model.

We focus on linear mixed models (LMMs). For the notation and description, we follow Rao
and Molina (2015), Morales et al. (2021), and Henderson (1975), unless stated otherwise.
The general linear mixed model is given by

y = Xβ +Zu+ e, (2.25)

where y is a vector of observations of length n, X is a known n× p matrix of auxiliary
information, β is the vector of fixed effects associated with the p auxiliary variables, Z is
a known n× h matrix for the covariance structure of the random effects, u is a vector of
random effects of length h, and e is a vector of residuals of length n. Matrices X and Z
are assumed to be of full (column) rank. X usually incorporates a column with ones as
the first column to account for an intercept in the model. We assume an intercept column
in all models, unless stated otherwise.

In LMMs, both fixed and random effects are linearly related to observations y. In model
(2.25), there are two sources of variation, random effects u and residuals, also called
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random errors, e. We consider that

E
[
u
e

]
=
(

0
0

)
and Cov

(
u
e

)
=
(
G 0
0 R

)
. (2.26)

That is, the two sources of variation are uncorrelated, have expectation of zero, and their
covariance matrices are given by G and R respectively. The variance parameters that make
up G and R are denoted by a vector δ of length q. Under model (2.25), the covariance
matrix of y is given by V = Var (y) = R + ZGZ>. The expected values of y under
LMM (2.25) can be written in two ways. The conditional expectation is the expectation
conditioned on the realisations of the random effects and given by E [y|u] = Xβ+Zu. By
iterated expectation, the unconditional expectation is given by E [y] = E [E [y|u]] = Xβ.
In applications of mixed models in SAE, the focus is often on the conditional expectation
E [y|u].

Prediction
In SAE, we are interested in making predictions in terms of the conditional expectation.
In the general case, we are interested in linear combinations of type

µ = l>β +m>u, (2.27)

for some fixed vector l of length p and vector m of length h (Rao & Molina, 2015,
Section 5.2). In order to predict µ, we need to predict the realisations of the random effects
u. In this thesis, we focus on frequentist approaches to predict (2.27). We note that also
Bayesian approaches can be applied and refer to Morales et al. (2021, Section 16.7) and
Rao and Molina (2015, Chapter 10) for a description of the hierarchical Bayes approach
in SAE and Rao and Molina (2015, Chapter 9) for a description of the empirical Bayes
approach to SAE.

Depending on the availability of information, we differentiate between the following
predictors. For detailed derivations of the predictors, we refer to Morales et al. (2021,
Chapter 6), Searle et al. (2006, Chapter 7), and Henderson (1975), on which the following
description is based. We start with assuming that both β and δ are known. A predictor
is called best when its corresponding MSE to the true value is minimal in its class of
predictors (Searle et al., 2006, Section 7.2). The best predictor (BP) of µ and u is given
by their conditional expectation given the data,

µ̂BP = E [µ|y] , ûBP = E [u|y] . (2.28)

The best linear predictor (BLP) of µ and u is given by

µ̂BLP = t (δ,y) = l>β +m>ûBLP, (2.29)

and
ûBLP = ûBLP (δ) = GZ>V −1 (y −Xβ) . (2.30)

The term linear refers to the linearity of µ̂BLP and ûBLP in y. Under normally distributed
e and u, predictors ûBLP and µ̂BLP are also ûBP and µ̂BP (Henderson, 1975).
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Note that in LMM and SAE theory, especially for the MSE formulas presented later, it
is common to stress certain dependencies between different terms and random variables.
This is why the predictors of µ are often written as a function t of variance components δ
and observations y like µ̂BLP = t (δ,y) in (2.29).

Generally, the vector of fixed effects β is unknown. It can be estimated by generalised
least squares (GLS) giving the best linear unbiased estimator (BLUE)

β̂BLUE = β̂BLUE (δ) =
(
X>V −1X

)−1
X>V −1y. (2.31)

With normally distributed random effects and residuals, β̂BLUE also corresponds to the
maximum likelihood solution of β (Morales et al., 2021, p. 113). The linearity of β̂BLUE is
again given with respect to y. Inserting β̂BLUE in (2.29) and (2.30) yields the best linear
unbiased predictor (BLUP) (Henderson (1975), proof in Henderson (1963))

µ̂BLUP = t (δ,y) = l>β̂BLUE +m>ûBLUP (2.32)

with
ûBLUP = ûBLUP (δ) = GZ>V −1

(
y −Xβ̂BLUE

)
. (2.33)

Predictor µ̂BLUP is unbiased as E
[
µ̂BLUP

]
= E [µ].

Alternatively, ûBLUP and β̂BLUE can be derived by the mixed model equations (Henderson
(1975), proof in Henderson (1963)), denoted by additional superscript ∗, taking

µ̂BLUP ∗ = l>β̂BLUE ∗ +m>ûBLUP ∗ (2.34)

with (
X>R−1X X>R−1Z
Z>R−1X Z>R−1Z +G−1

)(
β̂BLUE ∗

ûBLUP ∗

)
=
(
X>R−1y
Z>R−1y

)
. (2.35)

The mixed model equations avoid the computation of V −1 in (2.33) and can therefore be
computationally simpler when G and R have a (block-)diagonal structure.

The preceding predictors are defined for known variance components δ, i.e. the covariance
matrix V is fully specified. Vector δ is generally unknown and can be replaced by
estimates δ̂ = δ̂ (y). Up to now, except for the noted exceptions, the assumption of
normally distributed u and e was not necessary. If both u and e are assumed to be
normally distributed, the model is referred to as gaussian linear mixed model. We refer
to Jiang (2007) for an overview of gaussian and non-gaussian mixed models. In this
thesis, only gaussian mixed models are considered, i.e. u ∼ Nn (0,G) and e ∼ Nn (0,R).
Therefore, the conditional and marginal distribution of the observations are given by

y|u ∼ Nn (Xβ +Zu,R) (2.36)
y ∼ Nn

(
Xβ,R+ZGZ>

)
. (2.37)

By making distributional assumptions about the random variables of the LMM, likelihood-
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based methods can be applied to estimate variance parameters δ, namely Maximum
Likelihood (ML) and Restricted Maximum Likelihood (REML), which give consistent
parameter estimates. They are described in Section 2.4.2. Inserting ML or REML
estimates δ̂ for δ in the BLUP formula (2.32) yields the empirical BLUP (EBLUP). Also
β̂BLUE is a function of δ. Plugging in δ̂ for δ in (2.31) yields the empirical BLUE (EBLUE)
β̂EBLUE, which is henceforth denoted as β̂.

Mean squared error
We are not only interested in finding a good prediction of the linear combination (2.27), but
also want to determine the uncertainty associated with the prediction, given by its MSE. As
shown in Rao and Molina (2015, Section 5.2.2), we can define d> = l> −m>GZ>V −1X
and express the MSE of µ̂BLUP as

MSE
(
µ̂BLUP

)
= MSE (t (δ,y))

= MSE
(
µ̂BLP

)
+ Var

(
d>

(
β̂BLUE − β

))
= g1 (δ) + g2 (δ)

(2.38)

with

g1 (δ) = m>
(
G−GZ>V −1ZG

)
m (2.39)

g2 (δ) = d>
(
X>V −1X

)−1
d (2.40)

such that terms g1 (δ) and g2 (δ) account for the variability of the BLP for known β and
the variability of estimating β respectively.

Compared to the MSE of µ̂BLUP, the MSE of µ̂EBLUP contains an additional component
to account for the variability attributed to estimating δ. For estimators δ̂, which are
translation-invariant and even like ML/REML, and normally distributed random effects
and residuals, which we always assume here, it is given by (Kackar & Harville, 1981)

MSE
(
µ̂EBLUP

)
= MSE

(
t
(
δ̂,y

))
= MSE

(
µ̂BLUP

)
+ E

[
µ̂EBLUP − µ̂BLUP

]2
= MSE

(
µ̂BLUP

)
+ E

[
t
(
δ̂,y

)
− t (δ,y)

]2
.

(2.41)

Term E
[
µ̂EBLUP − µ̂BLUP

]2
does not have a closed form expression. Das et al. (2004) devel-

oped approximations of (2.41) for general LMMs. By specifying the covariance structure
of the LMM, the approximation and estimation of MSE

(
µ̂EBLUP

)
can be simplified. After

a description of likelihood-based estimation of β and δ in the following Section 2.4.2, we
give an approximation of (2.41) for LMMs with block-diagonal covariance structures in
Section 2.4 as we only consider LMMs with block-diagonal covariance structures in this
thesis.
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Parameter estimation
The standard approaches to estimating variance parameters δ in LMMs are based on
likelihood maximization. One can either apply maximum likelihood (ML), which uses the
unrestricted likelihood, or restricted maximum likelihood (REML), where the restricted
likelihood, also called residual likelihood, is used. With the term maximum likelihood
we will refer to both methods, ML and REML. Alternative approaches to estimate the
variance components in LMMs include the Minimum Norm Quadratic Unbiased Estimation
(MINQUE) and method of moments. We refer to Demidenko (2013, Chapter 3) for more
information on these. The following description of ML and REML is based on Jiang (2007,
Section 1.3).

With (2.37), the distribution of y is n-variate normal with density function

f (y) = 1
(2π)n/2 det (V )1/2 exp

(
−1

2 (y −Xβ)> V −1 (y −Xβ)
)

(2.42)

and log-likelihood

` (β, δ) = c− 1
2 log (det (V )) − 1

2 (y −Xβ)> V −1 (y −Xβ) , (2.43)

where c is a constant term.

In ML estimation, (2.43) is maximised by choice of δ and β. The first derivatives of (2.43)
with respect to these parameters are given by

∂`

∂β
=X>V −1y −X>V −1Xβ, (2.44)

∂`

∂δr

= − 1
2

(
(y −Xβ)> V −1∂V

∂δr

V −1 (y −Xβ) − tr
(
V −1∂V

∂δr

))
, (2.45)

r = 1, . . . , q.

The vectors of the first partial derivatives are called score vectors.

ML estimation has one particular drawback: It generally does not lead to unbiased
estimators of the variance components. To show this with a simple example, Neyman
and Scott (1948) presented the problem of estimating the variance parameter σ2 of a
normal distribution based on sample data. The sample observations of the variable
of interest are denoted by yi, i = 1, . . . , n. An unbiased estimator of the variance is
given by s2 =

(∑n
i=1 (yi −∑n

i=1 yi/n)2
)
/ (n− 1). The ML estimator, however, yields

σ̂2 = ((n− 1) /n) s2 and hence is biased. Similarly, in general LMMs the loss in degrees of
freedom caused by estimating β is not accounted for in ML, leading to a biased estimators
of δ. When the number of fixed effects is constant, ML estimators are consistent and
asymptotically normally distributed (Jiang, 2007, p. 11). In the above mentioned example
we see that for a constant number of fixed effects, the difference between s2 and σ̂2 vanishes
for n → ∞. We refer to Demidenko (2013, Section 3.6) for more information on the
statistical properties of ML estimates of β and δ for small and large samples.
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To avoid the potential bias in ML, especially for small sample sizes, often REML is applied
instead. The formulation of REML estimation was presented in Patterson and Thompson
(1971), extending the ideas of Nelder (1968) to incomplete block designs. The procedure is
e.g. described in Jiang (2007, Section 1.3.2), which is the main source of the following
description. The idea of REML is based on transforming the likelihood of the data such
that it no longer depends on β. For that, recall thatX is assumed to be of full column-rank
p. The transformation is achieved by constructing an n× (n− p) matrix A of rank n− p

such that A>X = 0. Then, set z = A> such that z ∼ Nn−p

(
0,A>V A

)
. Following

(2.37), the distribution of y is n-variate normal and the density function of z is thus given
by

f (z) = 1
(2π)(n−p)/2 det (A>V A)1/2 exp

(
−1

2z
>
(
A>V A

)−1
z
)

(2.46)

such that the log of the restricted likelihood is given by

`REML (δ) = c− 1
2 log

(
det

(
A>V A

))
− 1

2z
>
(
A>V A

)−1
z. (2.47)

In REML estimation, (2.47) is maximised by choice of δ. Plugging in the REML estimates
δ̂ in the GLS equation (2.31) yields REML solutions β̂. The REML log-likelihood can also
be motivated by a Bayesian approach, see Laird and Ware (1982) and Demidenko (2013,
Section 2.2.6) respectively. The first partial derivatives of (2.47) are given by

∂`REML

∂δr

= 1
2

(
y>P

∂V

∂δr

Py − tr
(
P
∂V

∂δr

))
, r = 1, . . . , q, (2.48)

where we set

P = V −1 − V −1X
(
X>V −1X

)−1
X>V −1

= A
(
A>V A

)−1
A>.

(2.49)

Jiang (2007, Section 1.8) summarised some findings and literature for the asymptotic
behaviour of ML and REML estimation. Similar to ML, also REML estimators are
consistent and asymptotically follow a normal distribution. Under normality and fixed
rank p of design matrix X, the ML and REML estimators are asymptotically equivalent.
However, Neyman and Scott (1948) show that ML estimators can be inconsistent and
REML estimation superior when the number of fixed effects grows with the sample size n.
See the discussion in Jiang (2007, Section 1.8) for further information.

We already showed the first partial derivatives of ML and REML with respect to the
unknown parameters ψ, i.e. ψ =

(
β>, δ>

)>
for ML and ψ = δ for REML. Recall that

the quadratic matrix of the second partial derivatives with respect to ψ is called Hessian
matrix H . The Fisher information matrix F is given by the negative expectation of the
Hessian matrix, i.e.

F (ψ) = − E [H ] = −
(

E
[

∂2`

∂ψψ>

])
. (2.50)
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For the second partial derivatives we use notation ∂2`/∂ψψ> = `ψψ. For ML, we have
(Searle et al., 2006, Section 6.3)

FML (ψ) = FML
(
β
δ

)
= − E

[
`ββ `βδ
`δβ `δδ

]
, (2.51)

where

− E [`ββ] = X>V −1X, (2.52)

− E [`δrδl
] = 1

2 tr
(
V −1∂V

∂δr

V −1∂V

∂δl

)
, r, l = 1, . . . , q (2.53)

− E [`βrδl
] = − E [`δlβr ] = 0, r = 1, . . . , p, l = 1, . . . , q. (2.54)

Likewise, for REML we have (Searle et al., 2006, Section 6.6)

F REML (δ) = − E
[
`REML
δδ

]
, (2.55)

where
− E

[
`REML

δrδl

]
= 1

2 tr
(
P
∂V

∂δr

P
∂V

∂δl

)
, r, l = 1, . . . , q. (2.56)

We do not only want to estimate the unknown parameters ψ, but also determine the
variance of the estimates. The large-sample, or asymptotic as n → ∞, dispersion matrix
of ML/REML estimates ψ̂ is given by

AVar
(
ψ̂
)

= (F (ψ))−1 , (2.57)

where AVar denotes the asymptotic covariance matrix, similar to the notation in Rao and
Molina (2015, Section 5). The technical details of (2.57) are given in Searle et al. (2006,
Appendix S. 7). We have

AVar
(
β̂ML

)
= AVar

(
β̂REML

)
=
(
X>V −1X

)−1
(2.58)

AVar
(
δ̂ML

)
=
(
FML (ψ)

)−1
(2.59)

AVar
(
δ̂REML

)
=
(
F REML (ψ)

)−1
. (2.60)

From the first partial derivatives of ML and REML with respect to ψ, it follows that there
are interdependencies wherefore the likelihood can generally not be maximised analytically
in LMMs. Instead, iterative procedures such as the algorithms Expectation-Maximization
(EM), Fisher-Scoring (FS), and Newton-Raphson (NR) can be used. Demidenko (2013,
Chapter 2) gives detailed descriptions of the three algorithms in the context of LMMs.
NR and FS are closely related. NR uses the negative Hessian matrix, whereas FS uses the
information matrix. Using FS instead of NR has the advantage that the information matrix
is always positive definite and therefore invertible. This does not hold for the negative
Hessian in the NR algorithm. In addition, the findings in Demidenko and Spiegelman
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(1997) support the use of using FS instead of NR. Demidenko (2013, p. 85) argues that FS is
more robust to outliers and performs better for far-off starting values than NR. Compared
to EM, the asymptotic covariance matrix of the estimated parameters is calculated as a
by-product in NR and FS. Furthermore, in the context of the later discussed Fay-Herriot
models, which build upon the presented LMM theory, it is common to use the FS algorithm.
Therefore, in Chapters 5 and 6 we use the FS algorithm, presented in Algorithms 6.1 and
6.2, for the parameter estimation in the presented multivariate Fay-Herriot models.

LMMs with block-diagonal structure
The previous description of LMMs and best predictors was rather general. In this thesis,
we focus on data with block-diagonal covariance structures, where the data of each domain
represents a block. That is, the observations of a particular domain are assumed to all
be subject to the same realisation of a domain-specific random effect and are therefore
correlated, whereas observations from different domains are uncorrelated.

Rao and Molina (2015, Section 5.3) displayed how to transfer the general LMM theory
to LMMs with block-diagonal covariance structure and are taken as the main source of
the following description. Consider D domains of interest. A block-diagonal covariance
structure implies that LMM (2.25) can be rewritten as

yd = Xdβ +Zdud + ed, d = 1, . . . , D, (2.61)

where

y = col
1≤d≤D

(yd) =
(
y>

1 , . . . ,y
>
D

)>
, X = col

1≤d≤D
(Xd) ,

Z = diag
1≤d≤D

(Zd) , u = col
1≤d≤D

(ud) , e = col
1≤d≤D

(ed) .
(2.62)

As the observations of different domains are uncorrelated, we have that Vd = Var(yd) =
Rd + ZdGdZ

>
d with G = diag

1≤d≤D
Gd, d = 1, . . . , D. Note that the number of data rows

assigned to any domain d is allowed to vary, i.e. the blocks may be of different size.

With block-diagonal LMMs, the linear combinations of interest are domain specific, given
by

µd = l>d β +m>
d ud, d = 1, . . . , D, (2.63)

for some fixed vectors ld of length p and md of length hd. The predictors and estimators
of Section 2.4.2 can be re-expressed as

β̂BLUE = β̂BLUE (δ) =
(

D∑
d=1
X>

d V
−1

d Xd

)−1 ( D∑
d=1
X>

d V
−1

d yd

)
, (2.64)

ûBLUP
d = ûBLUP

d (δ) = GdZ
>
d V

−1
d

(
yd −Xdβ̂

BLUE
)
, (2.65)

µ̂BLUP
d = td (δ,y) = l>d β̂

BLUE +m>
d û

BLUP
d , d = 1, . . . , D. (2.66)

The empirical predictors of µd and ud and the empirical BLUE of β are obtained as
described in Section 2.4.2, by plugging the ML/REML parameter estimates δ̂ for δ into
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the above formulas.

Also the formulas of the MSE in Section 2.4.2 can be re-expressed under a block-diagonal
covariance structure as (Rao & Molina, 2015, Section 5.3.1)

MSE
(
µ̂BLUP

d

)
= MSE (td (δ,y)) = g1d (δ) + g2d (δ) , d = 1, . . . , D (2.67)

with

g1d (δ) = m>
d

(
Gd −GdZ

>
d V

−1
d ZdGd

)
md, (2.68)

g2d (δ) = d>
d

(
X>

d V
−1

d Xd

)−1
dd, (2.69)

d>
d = l>d −m>

dGdZ
>
d V

−1
d Xd. (2.70)

In Section 2.4.2, we only gave a rather general expression of MSE
(
µ̂EBLUP

)
as

MSE
(
µ̂EBLUP

)
= MSE

(
t
(
δ̂,y

))
= MSE

(
µ̂BLUP

)
+ E

[
µ̂EBLUP − µ̂BLUP

]2
= MSE

(
µ̂BLUP

)
+ E

[
t
(
δ̂,y

)
− t (δ,y)

]2 (2.71)

due to the difficulty of expressing term E
[
µ̂EBLUP − µ̂BLUP

]2
for general LMMs. With

a block-diagonal covariance structure, the expression simplifies. Building on the work
of Kackar and Harville (1984), Prasad and Rao (1990) presented the following MSE
approximation for LMMs with block-diagonal covariance structures

MSE
(
µ̂EBLUP

d

)
= MSE

(
td
(
δ̂,y

))
≈ g1d (δ) + g2d (δ) + g3d (δ) (2.72)

with

g3d (δ) = tr
(∂b>

d

∂δ

)
Vd

(
∂b>

d

∂δ

)>

E
[
(δ̂ − δ)(δ̂ − δ)>

] , (2.73)

where b>
d = m>

dGdZ
>
d V

−1
d , g1d (δ) and g2d (δ) are given in (2.68) and (2.69), and g1d (δ) is

the leading term. For the later described Fay-Herriot model, the neglected term in the
approximation is of order O (D−1) for large D.

For an estimator of the MSE, we have to take a look at the expectations of the three terms
in (2.72) when plugging in ML/REML estimates δ̂ for δ. For this we lean on Datta and
Lahiri (2000). The expectations are given by

E
[
g1d

(
δ̂
)]

≈ g1d (δ) + g3d (δ) (2.74)

E
[
g2d

(
δ̂
)]

≈ g2d (δ) (2.75)

E
[
g3d

(
δ̂
)]

≈ g3d (δ) , d = 1, . . . , D. (2.76)
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Datta and Lahiri (2000) build on the work of Prasad and Rao (1990), but additionally
recognize term

bδ̂ (δ) = E
[
δ̂ − δ

]
(2.77)

as the bias of estimating the variance parameter up to order O (D−1). We denote by
∇g1d (δ) the gradient of term g1d (δ) with respect to the components of δ. Then, we
have

M̂SE
(
µ̂EBLUP

d

)
= M̂SE

(
td
(
δ̂,y

))
= g1d

(
δ̂
)

+ g2d

(
δ̂
)

+ 2g3d

(
δ̂
)

− b>
δ̂

(
δ̂
)

∇g1d

(
δ̂
)
, d = 1, . . . , D,

(2.78)

as an estimator of MSE (td (δ,y)) with E
[
MSE

(
td
(
δ̂,y

))]
≈ MSE (td (δ,y)).

As shown in Datta and Lahiri (2000, Appendix A.3), the bias term (2.77) is zero when
estimating the parameters by REML and should not be neglected when estimating by ML.
When δ is estimated by ML, the bias term is given by (Rao & Molina, 2015, p. 109)

bML
δ̂

(δ) = 1
2D

(
(FML(δ))−1 col

1≤r≤q

(
tr
(

D∑
d=1

(X>
d V

−1
d Xd)−1

D∑
d=1
X>

d

∂V −1
d

∂δr

Xd

)))
(2.79)

with

(FML(δ))r,s = 1
2

D∑
d=1

tr
(
V −1

d

∂Vd

∂δr

)(
V −1

d

∂Vd

∂δs

)
, r, s = 1, . . . , q, (2.80)

where (FML(δ))r,s refers to the element in the r-th row and s-th column of (FML(δ)).

2.4.3 Fay-Herriot model

Model-based approaches to small area estimation
There are two main types of model-based SAE techniques, unit-level models and area-level
models. Following the works of Battese et al. (1988) and Fay and Herriot (1979), their most
prominent variants are referred to as the Battese-Harter-Fuller (BHF) and the Fay-Herriot
(FH) model respectively. Both are special cases of LMMs with block-diagonal covariance
structure (2.61).

Unit-level models can be calculated when the sample information is available at the
unit-level, i.e. at the level of the sampling units. The sample observations are modelled as
domain clusters, where each cluster is subject to a realisation of a domain-specific random
effect. The model is therefore also called nested-error regression model. For a general
description of the model, we refer to Rao and Molina (2015, Chapter 7) and Morales et al.
(2021, Chapter 7).

In practice, there are many situations where it is not possible to compute unit-level,
but only area-level models. Official statistics make micro-data from surveys available to
interested users. Methods summarised under the term disclosure control are applied to
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the micro-data before the publication to minimize the risk of involuntary data release.
We refer to Templ (2017) and Willenborg and De Waal (2012) for more information on
disclosure control. Such disclosure control measures are designed to prevent a micro-data
user from being able to identify individuals in surveys and thus obtain sensitive information
about them. Therefore, compared to the full sample, publicly available survey micro-data
or data provided to researchers on request usually contains only significantly coarsened
information. For example, often only a highly coarsened identifier for regional affiliation
is provided in the micro-data. As a result, outside the statistical offices it is often not
possible to calculate estimates for the small areas of interest with the micro-data provided.
The risk of discloser is much smaller for aggregated information than for micro-data.
Therefore, statistical agencies typically provide aggregated sample information for much
finer domains than identifiers are available in micro-data. These survey aggregates can be
used in area-level models.

Even in cases where unit-level sampling information is available for the domains of
interest, unit-level model cannot always be calculated. As argued by Morales et al. (2021,
Section 16.1), for linear statistics such as domain means and totals, it is sufficient to
have domain averages of auxiliary information as input in unit-level models. However,
for non-linear statistics, such as most poverty statistics, a Census file with the auxiliary
information is needed for unit-level models. That is, the auxiliary information is needed
for each unit of the population, not only for the sampling units. This requirement is rarely
met in real-world applications. Even though unit-level models cannot be computed in the
situations presented, area-level models like the Fay-Herriot model can often be computed
and are presented in the following.

Model
The most prominent area-level small area model, the Fay-Herriot model, was introduced by
Fay and Herriot (1979). In the following, we present the Fay-Herriot model in accordance
with the notation and description in Morales et al. (2021, Section 16.3). Again, consider
that population U can be partitioned into D domains of interest, U1, . . . , UD. Let µd be
the characteristic of interest in domain d. For example, we might be interested in a domain
mean or total of a variable, or some non-linear poverty measure. Let yd be the direct
estimate of µd calculated by using the data of a survey sample.

The Fay-Herriot model is defined in two stages. The first stage specifies the sampling
model

yd = µd + ed, d = 1, . . . , D, (2.81)

where ed
ind∼ N (0, σ2

ed) and σ2
ed is assumed to be known such that yd|µd

ind∼ N (µd, σ
2
ed). σ2

ed

is the design-based variance of direct estimator yd. The sampling model implies that the
direct survey estimator yd is unbiased for characteristic µd and that its variance σ2

ed is
estimated without error.

The second stage specifies the relationship of the characteristic of interest µd to the domain-
specific auxiliary information xd = (xd1, . . . , xdp)> via fixed effects β = (β1, . . . , βp)> and
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domain-specific random effects ud. The linking model is given by

µd = x>
d β + ud, d = 1, . . . , D, (2.82)

where ud
iid∼ N (0, σ2

u) such that µd
ind∼ N

(
x>

d β, σ
2
u

)
. The random components ud and ed are

assumed to be independent. The linking model implies that the same linear relationship
holds between the µd and the p auxiliary variables for all domains and that domain-specific
systematic differences are captured in random effects ud.

Putting the linking and sampling model together, the Fay-Herriot model is given as a
specific form of a block-diagonal LMM in the form

yd = µd + ed = x>
d β + ud + ed, d = 1, . . . , D, (2.83)

with independent ud and ed, where ud
iid∼ N (0, σ2

u), ed
ind∼ N (0, σ2

ed). Rao and Molina (2015,
Chapter 6) gave a detailed description of how the LMM quantities in (2.61) are specified
to obtain (2.83).

Prediction
Rewriting formulas (2.64), (2.65), and (2.66) for the FH model yields

β̂BLUE = β̂BLUE
(
σ2

u

)
=
(

D∑
d=1

xdx
>
d

σ2
u + σ2

ed

)−1 ( D∑
d=1

xdyd

σ2
u + σ2

ed

)
, (2.84)

ûBLUP
d = σ2

u

σ2
u + σ2

ed

(yd − x>
d β̂

BLUE), (2.85)

µ̂BLUP
d = x>

d β̂
BLUE + ûBLUP

d

= x>
d β̂

BLUE + σ2
u

σ2
u + σ2

ed

(yd − x>
d β̂

BLUE)

= γdyd + (1 − γd) x>
d β̂

BLUE︸ ︷︷ ︸
= synthetic predictor

(2.86)

with shrinkage factor

γd = σ2
u

σ2
u + σ2

ed

, 0 ≤ γd ≤ 1. (2.87)

The calculation of the FH model only requires knowledge of domain-specific direct estimates
yd with their design-based variance estimates σ2

ed and a set of domain-specific auxiliary
values xd, d = 1, . . . , D. The BLUP formula (2.86) reveals important features of the FH
model. The FH BLUP is a convex combination of two estimators, weighted by shrinkage
factor γd. Thus, it can be referred to as composite estimator of the direct estimator yd

and the synthetic predictor x>
d β̂

BLUE. The lower the sampling variance σ2
ed in relation to

the model variance σ2
u in a domain, the more weight is put on the direct estimator. To

put it differently, in domains with precise direct estimators the FH BLUPs are close to
the direct estimates, while in domains with imprecise direct estimators the FH BLUPs are
close to the domain-specific synthetic predictions. While direct design-based estimators
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are (asymptotically) unbiased, they can have a large variance, especially under small
underlying sample sizes. By contrast, synthetic predictors can be highly biased, but
generally have small variances. The FH predictors gives domain-specific MSE-optimal
weighted combination of the two estimator. Thereby, they establish a model-based
weighting of the bias-variance trade-off, which is e.g. discussed in Münnich et al. (2013)
for SAE models. Predictor (2.86) is also design-consistent as γd → 1 for σ2

ed → 0 (Rao
& Molina, 2015, p. 125). However, e.g. Jiang and Lahiri (2006, Section 5) argued that
design-consistency is a negligible feature in the context of SAE as SAE problems handle
survey estimates with small underlying sample sizes.

We note that the FH model can also be motivated by a Bayesian approach and refer to
Morales et al. (2021, Section 16.7), Rao and Molina (2015, Sections 9.2, 10.3), Datta
et al. (1996), and Jiang and Lahiri (2006, pp. 4–5) for further details on the connection of
Bayesian statistics and the FH model.

The empirical versions of the predictors and estimators in the above formulas are obtained
by plugging in ML/REML estimator σ̂2

u for σ2
u. The EBLUE of β is given by

β̂ = β̂BLUE
(
σ̂2

u

)
=
(

D∑
d=1

xdx
>
d

σ̂2
u + σ2

ed

)−1 ( D∑
d=1

xdyd

σ̂2
u + σ2

ed

)
. (2.88)

Equivalently, the EBLUPs of ud and µd are given by

ûEBLUP = σ̂2
u

σ̂2
u + σ2

ed

(yd − x>
d β̂) (2.89)

µ̂EBLUP
d = x>

d β̂
BLUE︸ ︷︷ ︸

= synthetic predictor

+ ûEBLUP
d (2.90)

Mean squared error
In Section 2.4.2, we shortly discussed the Datta and Lahiri (2000) and Prasad and Rao
(1990) approximation to the MSE of the BLUP for block-diagonal LMMs. For the FH
model and parameter estimation via ML/REML, the formulas reduce to (Rao & Molina,
2015, Sections 6.1, 6.2)

MSE
(
µ̂EBLUP

d

)
≈ g1d

(
σ2

u

)
+ g2d

(
σ2

u

)
+ g3d

(
σ2

u

)
(2.91)

with

g1d

(
σ2

u

)
= σ2

uσ
2
ed

σ2
u + σ2

ed

= γdσ
2
ed, (2.92)

g2d

(
σ2

u

)
= (1 − γd)2 x>

d

(
D∑

d=1

xdx
>
d

σ2
ed + σ2

u

)−1

xd, (2.93)

g3d

(
σ2

u

)
= σ4

ed

(σ2
u + σ2

ed)3 AVar
(
σ̂2

u

)
. (2.94)
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and

AVar
(
σ̂2,ML

u

)
= AVar

(
σ̂2,REML

u

)
= 2

(
D∑

d=1

(
σ2

u + σ2
ed

)−2
)−1

(2.95)

as the asymptotic variances of the ML and REML estimators for σ2
u. Then, formula (2.78)

becomes

M̂SE
(
µ̂EBLUP

d

)
= M̂SE

(
td
(
σ̂2

u,y
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)
+ 2g3d
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)
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σ̂2
u

(
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)
∇g1d

(
σ̂2

u

)
.

(2.96)

As we saw in Section 2.4.2, the additional bias correction term is zero for REML and
non-zero when estimating the variance components by ML. In the FH model, for ML we
have (Datta & Lahiri, 2000, Remark 1)

∇g1
(
σ2

u

)
=
(

σ2
ed

σ2
u + σ2

ed

)2

> 0 (2.97)

and

bσ̂2,ML
u

(
σ2

u

)
= − tr

( D∑
d=1

xdx
>
d

σ2
u + σ2

ed

)−1 ( D∑
d=1

xdx
>
d

(σ2
u + σ2

ed)2

) / D∑
d=1

(
σ2

u + σ2
ed

)−2
. (2.98)

In Chapter 5, we present the multivariate version of the FH model and investigate the
prediction of non-linear domain indicators. In Chapter 6, we extend the multivariate FH
model for missing direct estimates.



Chapter 3

Generation of a Longitudinal Employment
Dataset for Simulations

3.1 Introduction

The design-based properties of estimators for a specific survey application can be approxi-
mated by design-based simulation studies. In such studies, a chosen simulation dataset is
treated as the simulation population. In each iteration of the simulation, a sample is drawn
from that population according to the sampling design of the specific application. To each
sample, different estimators are applied. The design-based properties of these estimators
are then inferred over all simulated samples. For more details, we refer to the descriptions
of Monte Carlo studies in Section 2.2.4. With such a simulation study, researchers can
for example examine the performance of the GREG estimator, presented in Section 2.3.2,
under different sets of auxiliary variables and for different target statistics.

Several aspect have to be considered for choosing a simulation dataset for such design-based
simulation study. The simulation dataset should contain all the information necessary
to adequately simulate the possibly complex sampling design of interest, e.g. with all
regional levels. Furthermore, it is crucial that the joint distributions of the variables in the
simulation dataset adequately represent their distributions in the target population, i.e.
the population for which the study is conducted. Using the GREG example from earlier,
we see from the approximated GREG variance (2.23) that the correlation of the target
variable with the auxiliary variables plays a crucial role for evaluating the efficiency of the
GREG estimator under different set of auxiliary variables.

In order to meet the requirements of a simulation dataset tailored to a specific research
question, it is often necessary to modify or extend existing datasets or even create
a completely new dataset. In this chapter, we create a simulation dataset tailored
to the design-based simulation studies in Chapter 4. In Chapter 4, we evaluate the
application composite estimators for the production of employment statistics in the
German Microcensus. In order to define the requirements for a simulation dataset for this
study, the following information is relevant.

The target population of the German Microcensus is the German resident population,
which is structured in strata. In each strata, the sampling units are constituted by clusters
of persons in households. For a detailed description of the Microcensus design, we refer
to Destatis (2020b); a description of the design with focus on its changes in 2020 and
the rotation pattern is given in Section 4.3. The focus of the studies in Chapter 4 is on
the estimation of employment statistics by composite estimators, which make use of the
rotational design of the Microcensus. The performance of the estimators is significantly

32
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affected by the rotation pattern, which is determined by the sampling design, and by the
dependencies of the person-specific employment categories over time.

For the simulation dataset for the studies in Chapter 4 we therefore set the following re-
quirements. The dataset should contain person-level information and adequately represent
the German resident population with its person and regional structure. In particular, the
regional information in the dataset should be fine enough so that the sampling design
of the German Microcensus can be simulated in its full regional depth and employment
estimators can be calculated down to the NUTS2-level. Since the research focus in Chapter
4 is on estimation procedures which exploit the rotational design of the Microcensus for the
production of employment statistics, the dataset must include longitudinal employment
categories. More precisely, a longitudinal dataset is needed that contains a monthly
employment status for each person in the data for a predefined sequence of months. The
employment status should be defined in accordance with the definition of the International
Labour Organization (ILO) as this is the definition used in the Microcensus. It refers to
individuals being assigned to one of three categories: Employed, unemployed, or not in
labour force. At the person level, the monthly employment categories should have realistic
patterns since these patterns play an important role in the performance of the estimation
methods evaluated in Chapter 4. For example, an employed person may be more likely to
be employed in the following month than an unemployed person. At the aggregate level,
the longitudinal employment information should reflect the seasonal patterns and trends
evident in statistics from the German national statistics institute.

There are two datasets available for generating the simulation dataset for Chapter 4, the
RIFOSS dataset, presented in Section 3.3.1, and the SIAB dataset, presented in Section
3.3.2. The RIFOSS dataset is only cross-sectional, but otherwise meets the requirements
for the simulation dataset. The SIAB dataset contains register information on longitudinal
employment categories, but otherwise does not meet the criteria for the simulation dataset.
For example, it do not cover the complete German resident population, does not contain
any regional information, and the longitudinal employment categories from the registers
are not in accordance to the ILO definition. In this chapter, we aim at overcoming the
disadvantages of both datasets by combining them with a model-based approach. For data
security reasons, it is not allowed to match the SIAB dataset with other data. Therefore,
only prediction models can be used to transfer the longitudinal employment information
in the SIAB dataset to the RIFOSS dataset.

The chapter is organised as follows. Section 3.2 provides a brief description of employment
categories in terms of the ILO definition. The RIFOSS and SIAB dataset are described
in Section 3.3. In Section 3.4, we present how we edit the SIAB dataset such that a
consistent longitudinal dataset with monthly employment categories is obtained. This
includes the derivation of the employment status according to the ILO definition from the
SIAB register information and the validation of it. Based on the processed SIAB dataset,
we can fit prediction models for monthly employment transitions. In Section 3.5, we give
a short introduction to generalised additive models and ensemble methods. Furthermore,
we discuss evaluation criteria for probability predictions and present an extension of the
Brier score, called weighted Brier score, tailored to imbalanced categorical data like the
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employment status. We show that a combination of the ensemble methods subagging
and stacking with the proposed Brier score as a loss function in stacking represents
quadratic programming. In Section 3.6, we apply the subagging-stacking combination with
generalised additive models and the proposed weighted Brier score to model the monthly
employment transitions in the SIAB dataset. With the models, we extend the RIFOSS
dataset with monthly employment information. We validate the generated data with the
original SIAB dataset on the person- and aggregated level and with aggregate statistics
from Destatis, the German national statistical institute. Section 3.7 provides a summary
and an outlook.

3.2 ILO employment status

Throughout this chapter and Chapter 4, the employment status is defined according
to the concept of the ILO. The ILO sets guidelines to provide a general definition of
employment to achieve international comparability of employment statistics. In order to
obtain comparable labour market statistics within the countries of the European Union
(EU), the European Commission sets standards for LFS statistics based on the ILO
definition, summarised e.g. in European Commission (2016). In specific EU countries,
there can be divergences from these recommendations. In this chapter and Chapter 4,
the focus is on the German LFS, which is integrated in the German Microcensus. The
employment definition used in the German Microcensus can be found in Destatis (2020b,
Section 2.1.3). Rengers (2004) provided a detailed overview of the application of the ILO
concept in Germany and its historical development.

Table 3.1 presents an overview of the employment categories. It is based on Table 1 in
Rengers (2004). There are three categories of ILO employment: Employed, unemployed,
and not in labour force (LF). The definitions of the categories are rather broad and
formulated in such a way that they allow for comparable statistics despite country-specific
definitions of employed and unemployed persons, e.g. for national accounts. The employed
and unemployed persons build the LF, which is also referred to as the active population.
If a person neither qualifies as employed nor unemployed it is considered not in LF.
Unemployed persons and those not in LF build the non-employed population.

In Germany, there are different definitions and statistics on employment. Next to statistics
based on the Microcensus, with included LFS, based on the ILO definition of employment,
there are also the employment statistics of the Federal Employment Agency. Fritsch
and Lüken (2004), Hartmann and Riede (2005), and Körner and Marder-Puch (2015)
summarised the differences between the two statistics. The different definitions are the
reason why the employment status according to ILO can only be approximated from the
employment information available in the SIAB dataset, which is described in Section 3.4.
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Table 3.1: ILO concept of employment, based on Rengers (2004, Table 1)
Labour force (LF) Not in LF
(Currently active population) (Not currently active popu-

lation)
Employed Unemployed Not in LF
Persons aged 15 and over
which are working in a for-
mal employment relation-
ship with at least one hour
per week, even if this was
temporarily not exercised
during the reporting period
(e.g. due to vacation or ill-
ness) or self-employed per-
sons or freelancers or sol-
diers/civilian service mem-
bers of unpaid family work-
ers or apprentices.

Persons aged 15 − 74 which
are not employed during
the reference week and ac-
tively looking for a job in
the four weeks prior to
the interview (the temporal
scope of the activity sought
is irrelevant) and can start
a new job within two weeks.
The involvement of an em-
ployment agency for em-
ployment or a municipal
agency in the search efforts
is not required.

Persons aged 15 and over
which are neither consid-
ered employed nor consid-
ered unemployed.

Employed Non-employed

3.3 Data description

3.3.1 RIFOSS dataset

The RIFOSS dataset1 is a cross-sectional semi-synthetic dataset which was generated
at the Economic and Social Statistics department at Trier University. It reflects the
German person- and household-level population and contains detailed regional information.
It allows to mimic large-scale household surveys such as the German Microcensus in
design-based simulation studies.

The generation of the RIFOSS dataset took place in two phases. Münnich et al. (2012a)
investigated methodologies for the German Census 2011 and generated a simulation dataset
for that purpose. The simulated population was built using anonymized population register
data for all of Germany, 2006 Microcensus information, anonymized material from Census
tests, and postal code information. Kolb (2013, Section 5.1) and Münnich et al. (2012a,
Section 3.1) provided detailed descriptions of the data generation. The aim of the generation
was to provide a dataset that reflects the target population of the German Microcensus
while preserving the heterogeneity of the data, e.g. between administrative units. In
the course of the RIFOSS2 project, funded by the federal statistical office of Germany,

1Version RIFOSS_GG_v0.1.1_vanilla_ice_cream.
2RIFOSS: Research Innovation for Official and Survey Statistics.
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the dataset was further enriched by 2008 Microcensus Scientific Use File3 information.
Categorical variables were generated using multinomial logistic regression models, further
information on these models is given in Section 3.5. The data were aligned to match
results of the German Census 20114. A description of the German Census 2011 is given in
Statistische Ämter des Bundes und der Länder (2015). For the alignments, calibration
methods (Deville & Särndal, 1992) and heuristic optimisation methods such as simulated
annealing (van Laarhoven & Aarts, 1987) were used. The RIFOSS dataset was used for
the analyses in Rupp (2018) and, in an adjusted form, in Burgard et al. (2020c).

The RIFOSS dataset consists of about 85 million persons, thereof 82.5 million persons at
their main residence, which are grouped in about 38 million households. Table 3.2 lists
those RIFOSS variables which we use in the further applications to the data in this chapter
as well as in Chapter 4. We note that for the extension of the RIFOSS dataset with
monthly employment categories, we can only use those variables that are present in both
the RIFOSS and the SIAB dataset. The RIFOSS variables are defined in accordance to the
Microcensus 2008 Scientific Use File (Destatis & GESIS, 2012); an English description of
the labels is given in Research Data Centres of the Statistical Offices of the Federation and
the Federal States (2018). To clarify the definitions, the German expressions of some of the
variables are added in brackets in Table 3.2. Compared to the original RIFOSS dataset,
we reduced variable EF29, which corresponds to the employment status according to ILO,
to the three ILO categories given in Table 3.1. Table 3.3 displays the absolute and relative
frequencies of the employment categories in the RIFOSS dataset. Variable AGS is a regional
identifier, indicating the federal state (NUTS1-level), government district (NUTS2-level),
NUTS3-level, and the municipality identifier. For details on the regional levels of Germany,
we refer to Destatis (2020a). Variables AGS, EF3, HID, EF30, and EF570 are not of further
concern in this chapter, but used for the implementation of the Microcensus sampling
design in Chapter 4.

3Available from https://www.forschungsdatenzentrum.de/en/household/microcensus.
4Available from https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html. Table
Bevölkerung im 100 Meter-Gitter.

https://www.forschungsdatenzentrum.de/en/household/microcensus
https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html
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Table 3.2: RIFOSS: Chosen variables
Variable Information
AGS Official municipality key (Amtlicher Gemeindeschlüssel)
EF3 Number of district (Auswahlbezirksnummer)
HID Household identifier
EF29 Employment type
EF30 Population at primary residence
EF44 Age (in years)
EF46 Sex
EF310 Highest school-leaving qualification
EF312 Highest vocational qualification
EF540 Highest grade of educational or vocational training (ISCED97)
EF570 Classified building sizes (building layers) (Anschriftengrößenklasse)

Table 3.3: RIFOSS: Absolute and relative employment frequencies
Persons Employed Unemployed Not in LF
All ages 43, 296, 693 (50.95%) 2, 335, 098 (2.75%) 39, 352, 060 (46.31%)
Aged 15 and over 43, 296, 693 (58.47%) 2, 335, 098 (3.15%) 28, 415, 818 (38.38%)

3.3.2 SIAB dataset

The SIAB dataset is the regional file of the Sample of Integrated Labour Market Biographies
1975-2017 (SIAB-R7517). It is a factually anonymous scientific use file of a 2% sample of
the Integrated Employment Biographies (IEB) of the Institute for Employment Research
(IAB). The dataset is longitudinal and consists of about 62 million data rows from about
1.8 million persons. The IEB is an administrative dataset comprising all individuals in
Germany officially recognized by different administrative sources during a respective time
period. A detailed description of the data and its variables is given in Antoni et al. (2019),
which is the main source for the following description.

Table 3.4 displays those variables of the SIAB dataset, which are used in the following.
Their outcomes and relative frequencies are given in Antoni et al. (2019). The SIAB
dataset bundles information from different administrative data sources. Variable source_gr
indicates from which data source the information of a specific data row originates. The
different data sources are listed in Table 3.5, including the number of data rows associated
with each. The person-specific identifier variable persnr enables the matching of a person’s
data rows in the different data sources. The different data sources and their information
are specific to German administrative procedures. We refer to Antoni et al. (2019) for
further information.

Variables begepi and endepi are day-specific and together mark a day-specific time interval
for each data row. One data row in the SIAB dataset corresponds to an observation of a
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Table 3.4: SIAB: Chosen variables
Variable Information
persnr Individual ID
quelle_gr Source of spell, grouped
begepi Episode start date
endepi Episode end date
frau Gender
gebjahr Year of birth
ausbildung_gr Vocational training, grouped
ausbildung_imp Vocational training, imputed
schule School leaving qualification
tentgelt_gr Daily wage/daily benefit
teilzeit Part-time
erwstat_gr Employment status, grouped

Table 3.5: SIAB: Data sources
Data source (quelle_gr) Information Nr. of data rows
BeH Employee History Employment subject to social

security and marginal part-time
employment

38, 710, 742

LeH Benefit Recipient History Receipt of benefits in accor-
dance with Social Code Book
(SGB) III

6, 483, 432

LHG Unemployment Benefit II
Recipient History

Receipt of benefits in accor-
dance with SGB II

4, 225, 937

(X)MTH Participants-in-Measures
History Files

Participation in employment
and training measures

1, 785, 856

(X)ASU Jobseeker Histories Periods of job search recorded
by the Federal Employment
Agency or by municipal institu-
tions responsible for implement-
ing SGB II

11, 134, 554
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person (persnr) in a day-specific period of time (begepi, endepi) from a specific data
source (quelle_gr), with data-source specific information, for example on the employment
status erwstat_gr. It appears that for one person and period of time there can be multiple
data rows from different data sources. For example, there could be two data rows from
BeH, one row for a full-time and another for a part-time employment, and one data row
from (X)ASU. The age of a person can be approximated using their year of birth and the
time interval of the respective data row. In the data there are persons aged 17 to 62 years.
Next to the variables in Table 3.4, there are many more variables available in the SIAB
dataset. However, only those are of interest, which coincide with the RIFOSS variables of
Table 3.2 and can be used to model monthly employment transitions.

The SIAB dataset has some features that are particularly relevant to the goal of extending
the RIFOSS dataset by monthly employment information with prediction models calculated
on the SIAB dataset. (1) The information in the SIAB dataset comes from administrative
sources. This means that, in contrast to the RIFOSS dataset, the German resident
population is not fully covered in the SIAB dataset. (2) In the SIAB dataset, some
information is only available for observations corresponding to specific data sources. For
example, variable schule is partially available for BeH entries, almost completely available
for (X)ASU and (X)MTH entries and not available for LeH and LHG entries, see Antoni
et al. (2019, Table 4). (3) There are also inconsistencies in the data due to the way data is
collected by different sources. For example, in the dataset it can appear that the education
status of a person is decreasing over time. (4) Each row of the SIAB dataset contains
information about a person, in a specific time period, from a specific data source. Several
data rows from the same person can refer to the same period of time. In order for the
dataset to be used to model monthly employment transitions, the data must be aggregated
in time so that there is only one data row per person per month, including an employment
status according to ILO. (5) There are variables in the SIAB dataset that are related to a
person’s working life. However, there is no employment status in the data that corresponds
to the ILO definition in Table 3.1. We refer to Hartmann and Riede (2005) and Körner and
Marder-Puch (2015) for an overview of the differences between the employment definition
according to ILO used in the Microcensus and the employment information collected by
the Federal Employment Agency which applies to the SIAB dataset.

Because of these features of the SIAB dataset, in the next Section 3.4, we impute missing
values and edit the data to have consistent person-specific information. In addition,
we aggregate the data to have one data row per person and month, derive a monthly
employment status according to the ILO definition, and evaluate whether the resulting
employment data reflects realistic employment transitions and seasonal patterns.
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3.4 Derivation of a monthly employment status in the
SIAB dataset

3.4.1 Data editing

For some of the SIAB dataset sources there is no data available for certain time intervals,
compare Antoni et al. (2019, Table 2). Furthermore, there are incomplete observations in
data source LHG until the beginning of 2007 (Antoni et al., 2019, p. 18). Therefore, we
restrict the dataset to data rows with begepi referring to 2007-2017.

There are missing values in the different variables of the SIAB dataset. For the variables
with missing values, Table 3.6 shows the percentage of missings, both in the complete
dataset (second column) and for each data source. We see that the occurrence of missing
values is closely related to the data sources from which a data rows originates. For example,
for the school leaving qualification variable schule, there is no information available in
data sources LeH and LHG. For variable frau, there 11 missing values which are not visible
from the percentages in Table 3.6. Next to missing values, there are also inconsistencies in
the dataset. For example, there are individuals in the data for whom the level of education
decreases over time.

Table 3.6: SIAB: Missing values (in %) of chosen variables per data source
Variable SIAB BeH LeH LHG (X)MTH (X)ASU
frau 0.00 0.00 0.00 0.00 0.00 0.00
ausbildung_gr 42.95 38.22 100.00 100.00 15.13 12.35
ausbildung_imp 52.04 4.67 100.00 100.00 100.00 100.00
schule 40.83 35.54 100.00 100.00 8.67 10.37
Note: For variable frau there are 11 missing values
(thereof 2, 6, and 3 for LHG, (X)MTH, and (X)ASU respectively)

To reduce the percentages of missing values and potential data inconsistencies, we apply
Algorithm 3.1. The algorithm ensures that for each person in the dataset the nominal
variables frau and gebjahr take only one unique value and missing values are filled by the
person-specific modus of the variable. For the ordinal education variables ausbildung_gr,
ausbildung_imp, and schule, the algorithm ensures that missing values are filled by other
information of the same person. Variable begepi, the episode start date, is used to deter-
mine the chronological order of the observations. From Table 3.6, we see that some variables
are data source specific. For example, variable ausbildung_imp is only available for BeH
entries. By the algorithm, if a person has at least one BeH entry where ausbildung_imp
is available, this value is used to impute missing values of ausbildung_imp in other data
rows of that person. Furthermore, the algorithm ensures time consistency of the ordinal
variables. That is, their values can only increase over time.
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Table 3.7 shows the percentages of missing values in the SIAB dataset before and after
applying Algorithm 3.1. From the table, we see that the application of Algorithm 3.1
significantly reduced the proportion of missing values.

Algorithm 3.1 SIAB: Imputation of missing values, correction of data inconsistencies
For each person p in the SIAB dataset do

1. Take all data rows corresponding to person p, denote them as Up, and proceed with
Up.

2. For nominal variable j ∈ {frau, gebjahr} do
• Set all values of variable j to the modus of variable j.

3. For ordinal variable j ∈ {ausbildung_gr, ausbildung_imp, schule} do
• Fill missing values of variable j by the nearest previously observed non-missing

value of variable j.
• Starting from oldest to newest entry in Up, according to begepi: If the value

of variable j is lower than the nearest previous value of variable j, set it to the
nearest previously value of variable j.

Table 3.7: SIAB: Missing values (in %) before and after applying Algorithm 3.1
Variable Before imputation After imputation
frau 0.00 0.00
ausbildung_gr 42.95 2.57
ausbildung_imp 52.04 9.59
schule 40.83 2.47
Note: For variable frau there are 11 missing values
before and after imputation.

3.4.2 Aggregation to monthly data

In the original SIAB dataset, each data row refers to a specific person, day-specific time
interval in 2007-2017, and data source. Thereby, for a person there may be several data
rows referring to at least one day of a specific month. For modelling monthly employment
transitions, the SIAB dataset needs to be aggregated such that there is only one data row
per person and month from January 2007 to December 2017. The variables to be included
in the aggregated SIAB dataset are listed in Table 3.8, where the variable ym indicates the
year and month a data row refers to.

Algorithm 3.2 is applied to get from the non-aggregated to the aggregated SIAB dataset,
which contains the variables listed in Table 3.8. For each person and month, the algorithm
chooses the data rows which cover at least one day of that month for the chosen person,
by use of variables persnr, begepi, and endepi. Since for a person, there can be several
data rows representing different numbers of days in a month, only those data rows that
represent the largest number of days in a month are selected. For example, a person could
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Table 3.8: SIAB: Variables in aggregated data with one data row per person and month
Variable Information
persnr Individual ID
ym Year-month
quelle_gr Source of spell, grouped
frau Gender
age Age (year in ym − gebjahr)
ausbildung_gr Vocational training, grouped
ausbildung_imp Vocational training, imputed
schule School leaving qualification
erwstat_gr Employment status, grouped
ILO ILO employment status

be employed for 25 days of a month with a corresponding BeH entry and unemployed
for 5 days of the same month with a corresponding (X)ASU entry. Then, only the BeH
information referring to 25 days of a month is kept, all other information is deleted.

It is possible that there are data rows from different data sources referring to the same
period of time and same person. For this case, decision rules are defined in the algorithm
to determine which of the information should be deleted and which should be retained.
From the ILO definition in Table 3.1, it is clear that information indicating employment is
more relevant for determining the ILO employment status than e.g. possible additional
job searches of a person. A BeH data row indicating employment specifies that the
corresponding person should be classified as employed as defined by the ILO for the time
interval to which the data row refers. Therefore, information from the BeH data source
is given priority. Following the same logic, there are decision rules in the algorithm that
determine which information is retained when there are multiple data rows from the same
data source. Assume that for a person there are several data rows, each representing all
days of a chosen month, including one BeH entry for a full-time employment, an additional
BeH entry for a part-time employment, and an (X)ASU entry. With the decision rules set
in the algorithm, only the BeH data row for the full-time employment is kept, all other
data rows are removed. After the application of the algorithm, only one row of data per
person and month remains.

We would like to draw particular attention to the last piece of the algorithm. It deals
with those months in 2007-2017 for which no information is available for a person in the
SIAB dataset. When there is no record of an individual in BeH, LeH, LHG, (X)MTH, or
(X)ASU in a month, we interpret this as information in itself. From the information of
the construction of the SIAB dataset, we conclude that in the months without a SIAB
record a person is likely to be classified as not in LF (instead of employed or unemployed)
according to the ILO definition. Therefore, also for the months in 2007-2017 with no
record of a person in the original SIAB dataset, we add data rows to the aggregated SIAB
dataset. The person-specific information for these months, including the year of birth,
gender, and education related information, is imputed by the person-specific information
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of other months. After applying Algorithm 3.2, in the aggregated SIAB dataset there are
132 data rows for each person, one for each month in January 2007 to December 2017.

From the aggregated data, variable age in Table 3.8 is calculated as ym-gebjahr. In the
original SIAB dataset there were only persons aged 17 − 62. Therefore, the aggregated
data is restricted to rows with age in 17 − 62. Observations with missing sex (frau) are
removed from the dataset.
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Algorithm 3.2 SIAB: Aggregation to one data row per person and month
For each person p in the SIAB dataset do
1. Take all data rows corresponding to person p, denote them as Up, and proceed with Up.
2. For all months m ∈ {2007-01, . . . , 2017-12}, for which at least one day is covered in Up,

do
a) Take all data rows covering at least one day of month m, denote them as Upm, and

proceed with Upm.
b) Keep only those data rows covering the highest available number of days in month

m.
c) If the remaining data rows correspond to multiple data sources (quelle_gr), then

keep only the rows that belong to the highest prioritized available source. The order
from highest to lowest is: BeH, (X)MTH, (X)ASU, LeH, LHG.

d) If there is more than one data row corresponding to BeH, then
- If there is at least one data row with teilzeit = 0 (full-time), then keep only

these data rows.
- If there is at least one data row with erwstat_gr = 1 (employees subject to social

security), then keep only these data rows.
- Keep only data rows with highest value of tentgelt_gr.

e) If there is more than one data row corresponding to (X)MTH, then
- If there is at least one data row with erwstat_gr = 42 (start an employment),

then keep only these data rows.
- If there is at least one data row with erwstat_gr = 43 (career choice and vocation),

then keep only these data rows.
- If there is at least one data row with erwstat_gr = 44 (employment-generating

measure), then keep only these data rows.
f) Keep only data rows with lowest number of missing values.
g) Keep only the first data row.
h) There remains one data row for person p in month m. With this data row, fill in the

values of the variables in Table 3.8, missing values are set to NA.
3. For months m ∈ {2007-01, . . . , 2017-12} for which no day is covered in Up do

- Create a data row for person p in month m with variables in Table 3.8, missing
values set to NA.

- Find the nearest previously observed month m∗ ∈ {2007-01, . . . , 2017-12} for person
p.

- Fill variables frau, gebjahr, ausbildung_gr, ausbildung_imp, schule by the
values observed for person p in month m∗.
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3.4.3 Derivation of employment status according to ILO

We apply Algorithm 3.3 to derive a monthly employment status according to the ILO
definition from the aggregated SIAB dataset. The decision rules in the algorithm are defined
based on a comparison of the ILO employment definition in Table 3.1 and the available
SIAB information. In the first step, it is checked whether there are any indications of
employment. If not, it is checked whether there are indications that a person is unemployed.
If neither is true, a person in a specific month is categorized as not in LF.

Algorithm 3.3 SIAB: Derivation of ILO employment variable ILO
Define variable ILO with categories

1 Employed,
2 Unemployed,
3 Not in LF,

by applying the following rules
• Set ILO = 3.
• If quelle_gr = BeH then set ILO = 1.
• If quelle_gr = (X)MTH & erwstat_gr ∈ {42, 44} then set ILO = 1

(42: Start an employment, 44: Employment-generating measures).
• If ILO 6= 1 & quelle_gr = (X)ASU & erwstat_gr = 21 then set ILO = 2

(21: Unemployed, registered as a job seeker (ALO)).

Figure 3.1 shows the monthly aggregates of the created monthly employment categories
in the SIAB dataset. We can see both seasonal patterns and a trend in the data, e.g.
number of employed persons increases over time. The absolute and relative frequencies of
categories of the derived variable ILO are displayed in Table 3.9.

Table 3.9: SIAB: Absolute (relative) frequencies of variable ILO

Employed Unemployed Not in LF
84, 056, 668 (63.64%) 6, 247, 089 (4.73%) 41, 781, 047 (31.63%)

In the description of the SIAB dataset in Section 3.3.2, we already see that it covers only
certain parts of the target population of the German Microcensus, which is the German
resident population. In addition, variable ILO could only be inferred to some extent from
the available information in the dataset. In the following, we therefore address the question
of how well the SIAB dataset covers the target population and how well the employment
status according to ILO could be derived from the available information. We conduct this
analysis first in terms of content and then with a comparison to aggregated data from
official statistics.

Using the information on the SIAB dataset in Antoni et al. (2019) and the employment
definitions in Section 3.2, we can make some statements about how well the SIAB
dataset represents the German resident population and information according to the
ILO employment status. The SIAB dataset covers persons employed subject to social
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Figure 3.1: Monthly aggregates of variable ILO

security, including trainees and interns, in the BeH data source. Individuals which are
self-employed, freelancers, soldiers, civil servants, family workers, or work, but not subject
to social security, such as mini-jobbers, are not covered in the BeH data source. Therefore,
those population groups are likely to be missing completely in the SIAB dataset and there
is an under-coverage of the employed persons of the target population. Destatis (2018,
p. 378) report that about 84% of all employed persons are either employed subject to
social security or marginally part-time employed. Therefore, we assume that most of the
employed persons are represented in the SIAB data and variable ILO still captures the
large amount of employed persons.

In the SIAB dataset, we only classify persons as unemployed when they have a correspond-
ing (X)ASU record for being registered unemployed. All other persons which are out of
work, currently available for work, and seeking work are not covered in the SIAB dataset.
Hence, it is plausible that there is a large under-coverage of unemployed persons in the
SIAB dataset.

We only classify persons as not in LF in the SIAB dataset when they are neither considered
employed nor unemployed. Large parts of the German resident population, which are
categorized as not in LF, do not appear in the SIAB dataset as they are not captured by
the different data sources. To be more specific, all persons who are not employed, not
registered at the unemployment agency, and not receiving any benefits subject to the social
code book are not included in the SIAB dataset. Hence, we expect a large under-coverage
of persons not in LF in the SIAB dataset. Furthermore, in SIAB there are only persons
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aged 17 − 62. All persons aged 16 and younger or 63 and over are not covered at all in the
dataset.

To see whether the aggregates of variable ILO are realistic despite the coverage problems of
the SIAB dataset, we compare them to external information. For that, we use aggregated
labour market statistics, released by Destatis, the German national statistical institute. For
analysis purposes, it is important to note that the SIAB dataset include only individuals
aged 17-62, so age differences must be carefully considered when making comparisons.
Furthermore, only relative frequencies can be used for the comparison.

Table 3.10 shows the relative frequencies of the ILO categories for the SIAB dataset
and Destatis information (Destatis, 2018, Section 13.1.2), each for 2017. The relative
frequencies of the categories differ substantially between the two data sources. This is
largely attributable to the different age structures underlying the aggregates. The Destatis
aggregates refer to the complete population in 2017, i.e. about 82 million persons. In the
SIAB dataset, only persons aged 17 − 62 are covered, wherefore the percentage of persons
not in LF is expected to be substantially lower in the SIAB dataset. Persons aged 14 and
younger are considered to be not in LF. Those persons are completely missing in the SIAB
dataset, but appear in the Destatis numbers in Table 3.10. Similarly, also old persons,
which are likely to be categorized as not in LF, are not covered in the SIAB dataset.

Table 3.10: Relative frequencies (in %) of ILO employment categories in 2017
Employed Unemployed Not in LF

Destatis 50.94 1.98 47.07
SIAB 67.23 4.04 28.72

We take a look at additional statistics for specific age and person groups to get further
insight into the coverage of SIAB variable ILO. Table 3.11 presents the relative frequencies
of both sexes for the three employment categories. Destatis aggregates are from Destatis
(2018, Section 13.1.3). For both Destatis and SIAB aggregates and all three employment
categories, the percentage of males in employed and unemployed persons is higher than
the percentage of females. The sex proportions are quite similar in the SIAB and Destatis
data. Only for persons not in LF the percentages differ. In the Destatis publications, the
percentage of females is about 55%, whereas only about 50% of the persons not in LF are
females in the SIAB dataset.

Table 3.11: Relative frequencies (in %) of sexes for the employment categories in 2017
Male (%) Female (%)

Destatis SIAB Destatis SIAB
Employed 53.49 52.17 46.51 47.83
Unemployed 59.01 57.17 40.99 42.83
Not in LF 44.94 50.28 55.06 49.73
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The labour force is composed of employed and unemployed person and referred to as the
active population, compare Table 3.1. Figure 3.2 shows the monthly relative frequencies of
employed and unemployed persons in the labour force, for the monthly aggregated SIAB
dataset and Destatis information5 for both sexes in 2007-2017. The Destatis information
on the labour force is for persons aged 15 − 74. The magnitude of the relative frequencies,
the seasonal patterns, and the trend in the SIAB dataset fit well to the official Destatis
statistics. Although the SIAB dataset covers only part of the German resident population,
on the aggregated level the monthly ILO employment categories reflect official employment
statistics.
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Figure 3.2: Active population: Percentages of employed and unemployed per month and
sex

5GENESIS-Online. Code: 13231-0002. https://www-genesis.destatis.de/genesis/online.

https://www-genesis.destatis.de/genesis/online
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In summary, although there are coverage problems in the SIAB dataset, particularly for
persons not in the LF, the monthly SIAB employment data reflect actual seasonal patterns
and trends. We therefore consider the resulting SIAB dataset with monthly employment
categories as sufficient to model monthly employment transitions.

3.5 Class probability prediction

3.5.1 Introduction

In this section, we briefly introduce and discuss techniques for modelling monthly em-
ployment transitions. These techniques are later applied to the SIAB dataset in Section
3.6.

The employment status, as defined in Section 3.2, is a categorical variable with three
categories. We model the monthly employment status in the SIAB dataset to generate
monthly employment transitions in the RIFOSS dataset with these models. Since we want
to generate synthetic data with the models, we are interested in models which give realistic
probability predictions in order to then generate data from these probabilities. Low
probability categories should then also be generated with frequencies according to their
probabilities. We therefore also evaluate different candidate models for their probability
predictions of the employment categories. In contrast, for other applications the interest
is often not so much in the probability predictions, but in classifications.

There are various methods with which probability predictions can be calculated for
categorical variables. For an overview, we refer to Hastie et al. (2009). For the research
focus of this chapter, we identify generalised additive models (GAMs) as useful model
types and briefly describe them in Section 3.5.2 for categorical dependent variables. To
further improve model predictions, the ensemble methods subagging and stacking are
considered in Section 3.5.3. To evaluate the probability predictions of candidate models,
evaluation criteria based on Brier scores are presented in Section 3.5.4. Further, we propose
an extension of the Brier score for imbalanced categorical data, which we call weighted
Brier score, and show how to solve a stacking optimisation problem with the proposed
weighted Brier score as a loss function.

3.5.2 Generalized additive models

Consider a dataset of n observations for which the pairs {yi,xi}n
i=1 are available, where yi

is an observation of a random variable Yi with E(Yi) = µi, and xi = (xi1, . . . , xip)> is a
p-dimensional vector of auxiliary information. The following general model description is
based on Hastie et al. (2009, Chapter 2). We seek for a model f with functional form

µi = f(xi) = E(Yi|xi), i = 1, . . . , n. (3.99)
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Model f returns the expected value of the variable of interest given a set of auxiliary
variables. As can be seen from (3.99), we focus on models which seek to minimize the mean
squared error of the observations and predictions, compare Hastie et al. (2009, p. 18). We
can choose a parametrization of f and estimate these parameters from data. The model
with plugged in parameter estimates is called fitted model and denoted by f̂ . For any
observation for which the vector of covariates of length p is available, f̂ returns predictions
of the variable of interest.

In this chapter we have decided to use GAMs as models (3.99) for the following reasons.
GAMs allow for various functional relationships between the dependent variable and the
auxiliary information. This allows us to take non-linear relationships such as seasonal
effects into account in the model. Furthermore, by the use of GAMs we can make sure that
all variables common to the RIFOSS and SIAB dataset are included in the model. Thereby,
even when a variable does not have a good predictive power for employment, there will still
be some correlation preserved in the generated data. For categorical dependent variables
GAMs directly return probability predictions which sum up to one without the need for
additional calibration. The following description of GAMs is based on Wood (2017).

In a GAM, the functional relationship of the variable of interest and the covariates (3.99)
can be represented as

f(xi) = E(Yi|xi) = g−1(η(xi)), i = 1, . . . , n, (3.100)

where g is a link function and the predictor η specifies the functional relationship of the
covariates to g(µi). To understand GAMs, we first describe generalised linear models
(GLMs), i.e. we focus on the description of link function g. Then, we introduce additive
models to relax the linearity assumption, i.e. we focus on the description of predictor η.

Generalized linear models
The predictor function η specifies the functional relationship of the covariates to g(µi).
For now, we focus on the link function g and take η as a linear predictor. That is, η is a
linear function of the covariates given by

η(xi) =
p∑

k=1
βkxik = x>

i β, i = 1, . . . , n, (3.101)

or, in matrix notation,
η(X) = Xβ, (3.102)

where β ∈ Rp is the vector of fixed effects and X = row
1≤i≤n

(xi) is the model matrix which
is assumed to be of full rank p. Thereby, (3.99) can be written as

f(xi) = g−1(η(xi)) = g−1(x>
i β), i = 1, . . . , n. (3.103)

Link function g allows to model the distributions of variables Yi, i = 1, . . . , n, as any member
of the exponential family of distributions. Note that the Yi, i = 1, . . . , n, are assumed
to be independent. Examples of the exponential family of distributions are the normal
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distribution for continuous variables, the poisson distribution for non-negative counts, and
the binomial distribution for dichotomous variables. An overview of the relationship of
different data types to the parameters of the exponential family of distributions is given
in Wood (2017, Table 3.1). For each member of the exponential family of distributions
there exists a bijective monotonic link function g for which E(Yi|xi) = g−1(η(xi)), or
equivalently g(E(Yi|xi)) = η(xi), holds. Taking the identity link g(µi) = µi and η as
a linear predictor (3.101) results in a general linear model. For a general linear model,
(weighted) least squares can be applied to estimate β. Taking the link g as any member of
the exponential family of distributions and η as a linear predictor, (3.101) results in a GLM.
GLMs were introduced by Nelder and Wedderburn (1972). A comprehensive overview of
GLMs is given in McCullagh and Nelder (1989) and Wood (2017). In GLMs, we cannot
directly solve for fixed effects β. Instead, iteratively re-weighted least squares (IRLS) can
be applied to estimate β. We refer to Wood (2017, Chapter 3) for more details on IRLS.

The variable of interest in focus of this chapter is the ILO employment status, compare
Table 3.1. It is a categorical variable with J = 3 categories. For categorical variables, we
recall some basic features of the multinomial distribution. The description is based on
Agresti (2019, p. 5). The multinomial distribution is a multi-categorical generalization of
the binomial distribution, which is part of the exponential family of distributions. The
probability distribution of the counts of a categorical variable follows the multinomial
distribution if the category observations are independent realisations of a fixed set of
category probabilities. The non-negative probabilities of the J categories are denoted by
(π1, . . . , πJ)> with ∑J

j=1 πj = 1. For n random realisations of the multinomial distribution,
the absolute counts of the J categories are denoted by n1, . . . , nJ , with ∑J

j=1 nj = n. The
probabilities of these counts are given by

Pr(n1, n2, . . . , nJ) =
(

n!
n1!n2! · · ·nJ !

)
πn1

1 πn2
2 · · · πnJ

J . (3.104)

In a GLM for multinomial data, the counts of Yi are modelled as realisations of a
multinomial distribution with probabilities (πi1, . . . , πiJ)>. πij = Pr(Yi = j|xi) is the non-
negative probability that Yi takes category j given covariates xi, j = 1, . . . , J , i = 1, . . . , n.
For identifiability, category J is taken as the baseline category in a multinomial model and
the predictor η is defined for each of the remaining J − 1 categories separately. For each
of the J − 1 categories, the predictor returns the log-odds (Agresti, 2002, Equation 7.1)

ηj(xi) = ln
(
πij

πiJ

)
, j = 1, . . . , J, i = 1, . . . , n, (3.105)

such that ηJ(xi) = 0. By re-arranging (3.105), the category-specific probabilities can be
expressed as

πij = exp(ηj(xi))∑J
k=1 exp(ηk(xi))

, j = 1, . . . , J, i = 1, . . . , n. (3.106)

For each of the J − 1 categories, a different specification of predictor ηj can be chosen, e.g.
a different set of auxiliary variables. For any observation i, a GLM f for multinomial data
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returns a vector of probability predictions for all J categories, formally

f : Rp → [0, 1]J , xi 7→ (Pr(Yi = 1|xi), . . . ,Pr(Yi = J |xi))>. (3.107)

For further details and examples of modelling of multinomial data, we refer to Agresti
(2019, Chapter 6) and Agresti (2002, Chapter 7).

In LMMs, compare Section 2.4.2, we already saw that the model matrix X usually
contains an n-dimensional vector of ones as first column in order to include an intercept.
Furthermore, the model matrixX allows for various transformations of potential covariates.
Take the observations of a candidate variable zi, i = 1, . . . , n. Then, as a covariate in a
linear model, we could inter alia set the j-th variable xij = zi, xij = log(zi), or xij = z2

i .
Hence, it is straightforward to include polynomial relations, log-transformations, Box-Cox
transformations (Box & Cox, 1964), or interaction effects between different variables into
a GLM. Although these transformations, especially polynomials, may be flexible with
regard to representing non-linear relationships, Wood (2017, Chapter 4.2.1) argues that
they can oscillate widely, especially when they are of high degree. Additive models can
solve this problem and are described in the following.

Additive models
Instead of defining η as a linear function of the covariates, it can be specified as an additive
composition of smooth functions of covariates. It is then called additive predictor and
given by

η(xi) = h1(xi1) + h2(xi2) + h3(xi3, xi4) + . . . , i = 1, . . . , n, (3.108)

where h1, h2, h3, . . . are smooth functions. The following description of additive models is
based on Wood (2017). Taking the identity link g(µ) = µ and η as an additive predictor
(3.108) results in a general additive model. Taking g as the link for any member of the
exponential family of distributions and η as an additive predictor, (3.108) results in a GAM
(Hastie & Tibshirani, 1986, 1990). Formulation (3.108) allows for arbitrary interaction
smooths of covariates, see Wood (2017) for examples and further information. In this
chapter, only univariate smooth functions are considered.

By further specifying some of the smooth functions in (3.108), e.g. to be linear functions
in the covariates, a GAM can be written as a semi-parametric model. Without loss of
generality, xi can be reordered as xi = (xi1, . . . , xi(pa), . . . , xi(pa+pb))>, i = 1, . . . , n, where
p = pa + pb such that pa and pb represent the covariates which enter the additive predictor
linearly or additively (by a smooth function) respectively. A semi-parametric GAM is then
given by

η(xi) =
pa∑

l=1
βlxil︸ ︷︷ ︸

parametric part

+
pa+pb∑

l=(pa+1)
hl(xil)

︸ ︷︷ ︸
non-parametric part

, i = 1, . . . , n.
(3.109)

GAMs offer a high flexibility with respect to the choice of the functional relations while
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allowing for the investigation of the effects of single variables. In the modelling process,
we can for example choose that some relationships are modelled as linear or cyclical
functions.

The functions in (3.109) can be parametrized in order to have them in a dependence of a
parameter vector which can be estimated from data. For simplicity, we demonstrate this
parametrization for a single predictor variable x ∈ Rn, based on Wood (2017, Section 4.2.1).
To parametrize a function h, which takes the predictor variable x as input, we choose
a basis. The basis is chosen such that the assumed form of h lies within the space of
functions which can be represented by that basis. Function h can then be rewritten as a
sum of K basis functions bk, as

h(xi) =
K∑

k=1
bk(xi)βh

k , i = 1, . . . , n, (3.110)

where βh
k denotes the unknown parameter associated with the basis function bk. By

reformulating all smooth functions via basis functions, the predictor η (3.108) is again
linear in a vector of regression coefficients which can be estimated from data by IRLS.

There are various basis functions which can be used to parametrize a function for an
additive model. Wood (2017, Chapter 5) gives an overview of different smoothers. For
the presented research, we consider (cyclical) cubic regression splines as basis functions.
We briefly list some features of these splines and then justify why we chose them. The
following description is based on Wood (2017, sections 5.1, 5.3.1, 5.3.2), to which we also
refer for a more technical description. For a chosen covariate, a cubic regression spline is a
function for which the following criteria hold. The spline is defined on the range of the
covariate and is continuous to the second derivative. For the spline one has to choose a
number of knots K and their placement in the range of the covariate. The space between
any two neighbouring knots defines a subinterval. On each of the K − 1 subintervals,
a cubic polynomial, i.e. a polynomial of order three, is defined. At each knot, the two
neighbouring piecewise polynomials are equal in their value as well as in their first two
derivatives. If furthermore, the second derivatives are zero at the first and last knot, the
spline is known as a natural cubic spline. A cubic regression spline can also be specified as
a cyclic spline. In that case, the start and end of the spline have the same value. Cyclical
splines are especially useful for incorporating seasonal effects like the effect of the month
of an observation. With the number and placement of the knots, the corresponding basis
functions in (3.110) are fully specified. The corresponding formulas for the (cyclical) cubic
splines are e.g. given in Wood (2017, Table 5.1). Natural cubic splines are a frequent
choice for univariate smooth functions. They are the smoothest interpolators in the class
of all those functions which are continuous on the interval of x, have absolutely continuous
first derivatives, and interpolate observation pairs xi, yi (Wood, 2017, Section 5.1.1).

A potential problem with splines is that their fit may be following the observations in the
data too closely or even exactly, so-called overfitting. In this case, the estimated spline
may be less suitable for out-of-sample predictions than a spline which is smoother and
thereby follows the data points less closely. To achieve better predictions, an additional



Chapter 3 Generation of longitudinal employment data for simulations 54

penalty term can be added, weighted by a penalty parameter λ. We consider penalties
associated with the squared second derivative of the spline to handle its curvature. The
penalty parameter can be used to set a trade-off between the data fit of the spline and
its smoothness. Given a penalty parameter λ, the unknown parameters of a GAM can
be estimated by penalized IRLS. A detailed overview of this fitting procedures is given in
Wood (2017, Section 3.4.1).

The penalty parameter λ can be chosen via cross-validation. There are many different
forms in which one can conduct cross-validation. We refer to Hastie et al. (2009) for some
examples. In a simple cross-validation, the available data is randomly partitioned in two
parts, one for fitting the model, the other for evaluating the predictions of the model. This
procedure can be repeated several times. Cross-validation allows to approximate how well
a model performs for out-of-sample prediction under different candidate values for λ.

We can see that GAMs provide a very flexible modelling tool for categorical variables of
interest. They facilitate to include various functional forms in the model, e.g. cyclical
non-linear effects. GAMs are implemented in standard statistical software. We use the
mgcv package (Wood, 2003, 2004, 2011, 2017; Wood et al., 2016) in R (R Core Team,
2020). Function gam of the package facilitates to calculate GAMs for multinomial data
with integrated choice of the penalty parameter, based on the theory presented in Wood
et al. (2016).

3.5.3 Ensemble methods

After the editing and aggregation process of Section 3.4, the SIAB dataset contains a
total of 132, 084, 804 data rows. It can thus be difficult to include all observations in the
estimation of a single GAM, either because of memory or time limitations. We therefore
consider that a chosen GAM can only be calculated on samples of the SIAB dataset.
With parallelizable infrastructure, it is, however, possible to simultaneously draw multiple
samples and compute models on them, which then can be combined into a joint model.
Approaches that combine several models into a new, joint model are summarized under
the term ensemble methods. An overview of different ensemble methods is given in Hastie
et al. (2009, Chapter 16), Polikar (2006), and Bühlmann (2012), on which the following
description is based. Ensemble models are often found to provide a better performance for
prediction than each of their input models alone and therefore considered as profitable
candidate methods for the given research task. In the following, we refer to non-ensemble
models as individual models and combinations of at least two individual models as ensemble
models.

Let there by M fitted individual models f̂ ∗
m, m = 1, . . . ,M . For example, each individual

model is a GAM fitted to a sample of the SIAB dataset. An ensemble model f̂E is built
as

f̂E =
M∑

m=1
wmf̂

∗
m, (3.111)
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where w = (w1, . . . , wM)> are the ensemble weights with wm ≥ 0, ∑M
m=1 wm = 1. An

ensemble model thereby returns a weighted sum of the predictions of the individual
models.

The performance gains of an ensemble model f̂E over its individual input models f̂ ∗
m,

m = 1, . . . ,M , are particularly high when the individual models are diverse and relatively
weak. The individual models can differ from each other especially if they are calculated
on different sample data, with different weights of the same data, with different learning
algorithms, or different model specifications. Popular examples of ensemble methods are
bootstrap aggregating (bagging) (Breiman, 1996a), the random forest algorithm which
is based on the idea of bagging (Breiman, 2001), boosting (Schapire, 1990), especially
ADABoost (Freund, 1995; Freund & Schapire, 1997), and stacked generalisation (stacking)
(Wolpert, 1992). Ensemble methods are mostly used when the research focus is on
prediction or classification rather than on the interpretative character of the models. They
are applied to various fields of interest and appear under various names like multiple
classifier systems, mixtures of experts, or composite classifier systems, to name only a few,
see Polikar (2006) for an overview. We focus on the ensemble methods bagging and stacking
as they are applicable to parallel computation and allow for an easy implementation in
combination with GAMs. In the following, we use D to denote the collection of observation
tuples {yi,xi}n

i=1.

In bagging (Breiman, 1996a), the following steps are performed. M bootstrap samples are
drawn from D. For a dataset of size n, a classic bootstrap sample is a sample of size n
from that data, drawn with replacement. For more information on bootstrap procedures,
we refer to Efron and Tibshirani (1993). On each sample, a chosen learning algorithm, e.g.
a GAM, is applied, resulting in an individual model f̂ ∗

m, m = 1, . . . ,M . Ensemble model
f̂ bagging is defined as

f̂ bagging = 1
M

M∑
m=1

f̂ ∗
m. (3.112)

In bagging, the ensemble weights are set to the inverse of the number of individual models
and usually the same learning algorithm is used for all individual models, e.g. a specific
GAM. Bagging can lead to substantial gains in accuracy when the variance between the
individual models is high, as it then reduces the variance of the prediction error. As
classification and regression trees often have high variance and low bias, they are frequently
used as a learning algorithm for the individual models in bagging. For further information
on classification and regression trees, we refer to Hastie et al. (2009, Section 9.2). Breiman
(2001) extended the use of bagging with classification and regression trees by additionally
sampling the covariates available to each tree, known as the random forest algorithm.
Instead of bootstrap samples of size n with replacement, also subsamples, i.e. samples of
size less than n, can be drawn from D, with or without replacement. The ensemble method
is then called subsample aggregating (subagging) (Bühlmann & Yu, 2002). Subagging
can be especially useful when the available data consist of many observations as it allows
to calculate the individual models on different parts of the available data. Bagging is
straightforward to implement, can be used with arbitrary learning algorithms for the
individual models, and the individual models can be calculated in parallel.



Chapter 3 Generation of longitudinal employment data for simulations 56

We consider that due to memory and computation time restrictions only a limited number
of individual models, e.g. M ≤ 50, can be calculated. With a limited number of individual
models, however, the potential of variance reduction of bagging or subagging with their
equally weighted individual models can be low when using GAMs. It can therefore be useful
to apply them in conjunction with another ensemble method called stacking. Stacking was
proposed in Wolpert (1992) and further studied in Breiman (1996b). The original idea
was to apply different learning algorithms to the same data, each giving a fitted model
f̂ ∗

m, and building an ensemble by an optimal combination of these individual models. We
define the vector of ensemble weights ŵstacking as the solution of optimization problem

min
w∈RM

+

n∑
i=1

L(yi,
M∑

m=1
wmf̂

∗
m(xi))

subject to
M∑

m=1
wm = 1.

(3.113)

That is, the stacking ensemble weights ŵstacking are obtained as the solution of minimizing
a loss function L, which takes into account the difference of observations yi and their
ensemble predictions ∑M

m=1 wmf̂
∗
m(xi) for all observation tuples in D. We discuss suitable

loss functions in the next section. The stacking ensemble model is given by

f̂ stacking =
M∑

m=1
ŵstacking

m f̂ ∗
m. (3.114)

To avoid overfitting, the individual models and the ensemble weight optimisation should
be calculated on different sets of data.

There is only little research about the use of GAMs in ensemble methods. De Bock et al.
(2010), De Bock and Van den Poel (2012), and De Bock et al. (2019) investigated ensembles
with GAMs for the task of binary classification in the context of customer churn prediction.
Their studies showed that GAMs are well suited as a individual models due to their
attractive properties such as flexibility regarding the relationships to be modelled. They
investigated combinations of GAMs with bagging, random samples of auxiliary variables,
and combinations of the two. They furthermore investigated how the interpretability of
GAMs can be preserved in ensemble methods. With the presented approaches in this
chapter, we add to the research of the use of GAMs with ensemble methods.

3.5.4 Evaluation of probability predictions

In the following, we discuss different criteria for evaluating the probability predictions of
a model. These criteria can be used as loss function L in stacking optimisation problem
(3.113). We again consider D as a set of observation tuples {yi,xi}n

i=1, where observations
yi are categorical with J categories and xi is a vector of p auxiliary variables. Assume
there is a model f̂ , which was fitted for this categorical dependent variable. The vector of
probability predictions, which f̂ returns for plugged in covariate information, is denoted by
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(p̂(Yi = 1|xi), . . . , p̂(Yi = J |xi))>. The following criteria evaluate how well the probability
predictions of a model fit to a set of observed categories.

A popular metric for evaluating probability predictions is the Brier score (Brier, 1950). It
corresponds to the mean squared error between the predicted category probabilities and
the actual categories and was introduced for binary variables. Based on data D, the Brier
score B of a model f̂ is given by

B(f̂) = 1
2n

J∑
j=1

n∑
i=1

(I(yi = j) − p̂(Yi = j|xi))2, (3.115)

where I is an indicator function. The division by 2n ensure that B(f̂) ∈ [0, 1]. Lower values
of the Brier Score represent better models. From (3.115), we see that the information from
the n observations enters the Brier Score with equal weights. The Brier score is frequently
used to assess probability predictions for various learning algorithms, e.g. in Wood et al.
(2016) and Kruppa et al. (2014a). For calculating the Brier score, a sufficient number of
observations n should be considered such that the observed categories can be expected to
sufficiently represent their underlying probabilities (Wilks, 2010). We note that in some
publications, e.g. Bradley et al. (2008) and Kruppa et al. (2014b), authors distinguish
between the Brier score and estimates of the Brier score. In the present research, we only
calculate the Brier score based on some fitted models and observation data and do not
make the distinction, similarly to e.g. Wood et al. (2016).

The absolute values of the Brier score as such allow for little interpretation. They can
only be used to compare different models for the same data. In order to get an idea of
how well a model actually works, the Brier skill score can be calculated, where the value
of the Brier score of a model is divided by the value of the Brier score of an uninformative
model such as the intercept only model (Bradley et al., 2008).

The evaluation of probability predictions for imbalanced data presents a particular challenge.
A categorical variable is said to be imbalanced, also called unbalanced, if its relative
frequencies differ significantly from each other. The ILO employment status in SIAB,
with relative frequencies shown in Table 3.9, can be considered to be imbalanced. The
category with the highest and lowest relative frequency is referred to as the majority
class and minority class respectively. For classification, not probability prediction, the
issues of imbalanced data are well recognized in the literature. Yang and Wu (2006) list
imbalanced data as one out of ten challenging problems in data mining research, Fernández
et al. (2018) and He and Garcia (2009) gave an overview of the issue of imbalanced data
and different techniques to tackle it, Galar et al. (2011) focused on the combination of
ensemble techniques for imbalanced data. We note that there is substantially less research
concerning the evaluation of imbalanced data when the focus is on probability prediction
rather than classification.

In Table 3.12, we present an illustrative example to show how different scores for probability
predictions rate different models under imbalanced categorical data. Let there be three
fitted models f̂m1, f̂m2, and f̂m3. The table presents some example data for which the
models return probability predictions. The example data consists of 100 observations of a
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categorical variable with J = 3 categories. It is imbalanced, there are 90 data rows with
category 1 and 5 data rows with category 2 and 3 each. For each model, the corresponding
probability predictions are displayed in the three columns of each model. For illustration,
each model returns the same probability predictions for the 90, 5, and 5 observations
of each category respectively. Model f̂m1 returns probability predictions of 100% for
the majority class and 0% else. Model f̂m2 is an intercept only model returning the
relative frequencies as the probability predictions. Model f̂m1 and f̂m2 are considered to
be uninformative, they always return the same probability predictions regardless of the
covariate values. Model f̂m3 is considered to be a fairly good model. It returns probability
predictions which depend on the covariate information and reflect the actually observed
categories. For the observations of category 2 and 3, the probability predictions of f̂m3

even perfectly match the actually observed categories.

Table 3.12: Example 1: Brier scores for imbalanced data

Nr. of f̂m1 f̂m2 f̂m3

data rows yi 1 2 3 1 2 3 1 2 3
90 1 1 0 0 0.90 0.05 0.05 0.6 0.2 0.2
5 2 1 0 0 0.90 0.05 0.05 0.0 1.0 0.0
5 3 1 0 0 0.90 0.05 0.05 0.0 0.0 1.0
Brier score B(.) ∗ 100 10.0 9.2 10.8
Stratified Brier score SB(.) ∗ 100 66.7 60.5 5.3
Weighted Brier score Bw(d, .) ∗ 100 14.6 12.6 0.9
Note: We take d = (0.027, 0.486, 0.486)>, which is the normalized
inverse of the relative frequencies.

Under the fitted models, the values of three different scores are displayed. For now, we
only focus on the first row, the Brier score, the scores in the last two rows are explained
later. The Brier score returns lower values for the uninformative models f̂m1 and f̂m2

than for model f̂m3. In the case of imbalanced data, the majority class almost entirely
determines the value of the Brier score. Thus, even models that are uninformative but
generally assign high probabilities to the majority class perform well according to the
Brier score.

Wallace and Dahabreh (2012) recognized that the Brier score performs poorly for imbal-
anced data and proposed the stratified Brier score as an alternative. For observations D,
the stratified Brier score SB of a model f̂ is defined as

SB(f̂) = 1
J

J∑
j=1

(
n∑

i=1
I(yi = j)

)−1 n∑
i=1

I(yi = j)(1 − p̂(Yi = j|xi))2. (3.116)

As with the Brier score, SB(f̂) ∈ [0, 1]. The stratified Brier score is calculated as the
average of category-specific scores. For the category-specific scores, only those observations
yi which are in the respective category are included in the measure. Thereby, an observation
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of the minority class contributes more to the stratified Brier score than an observation of
the minority class. The stratified Brier score is for example applied in Collell et al. (2018)
for evaluating the classification performance under imbalanced data. In Table 3.12, the
values of the stratified Brier are added in the second last row. The stratified Brier score
clearly favours model f̂m3 over the two uninformative models and is thus considered more
suitable than the Brier score for imbalanced data.

For a categorical variable with more than two categories, we recognize a significant
drawback of the stratified Brier score in (3.116). To see this, we add another illustrative
example in Table 3.13. The example data presented in the table is the same as in Table
3.12, but we consider the two candidate models f̂m4 and f̂m5. Comparing the observed
categories in the data and the probability predictions of the two model, we would consider
f̂m4 to be a better model than f̂m5. For example, for category one, model f̂m4 assigns the
highest probability predictions to that category, whereas model f̂m5 assigns the highest
probability to category two. As, however, both models f̂m4 and f̂m5 assign probability 0.4
to the actually observed categories, the stratified Brier score of both models is identical.
As we can see from the table and the formula of the stratified Brier score (3.116), for the
category-specific measures the stratified Brier score only considers the differences between
the actually observed category and the probability predictions for only this category. In
the presented example, the Brier score (3.115), however, clearly favours model f̂m4 over
model f̂m5. We conclude that, for our research aim, the evaluation of multi-categorical
probability predictions under imbalanced data, neither the Brier nor the stratified Brier
score is an optimal choice.

Table 3.13: Example 2: Brier scores for imbalanced data

Nr. of f̂m4 f̂m5

data rows yi 1 2 3 1 2 3
90 1 0.4 0.3 0.3 0.4 0.6 0.0
5 2 0.3 0.4 0.3 0.0 0.4 0.6
5 3 0.3 0.3 0.4 0.6 0.0 0.4
Brier score B(.) ∗ 100 27 36
Stratified Brier score SB(.) ∗ 100 36 36
Weighted Brier score Bw(d, .) ∗ 100 5.9 7.9
Note: We take d = (0.027, 0.486, 0.486)>, which is the normalized
inverse of the relative frequencies.

With the examples of Tables 3.12 and 3.13, we saw that for imbalanced data with more
than two categories, neither the Brier score nor the stratified Brier score is an optimal
choice. A potential solution is to evaluate different models separately for each category.
However, for optimisation purposes, such as the stacking problem (3.113), it is often
desirable to have a scalarization, i.e. a loss function returning a single value for evaluating
a model. As a solution, we propose a weighted Brier score Bw. For observations D, the
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weighted Brier score Bw of a model f̂ is given by

Bw(d, f̂) = J

2n

J∑
j=1

dj

n∑
i=1

(I(yi = j) − p̂(Yi = j|xi))2, (3.117)

where ∑J
j=1 dj = 1, dj > 0, j = 1, . . . , J , and, similar to the other two Brier scores,

Bw(d, f̂) ∈ [0, 1]. Compared to the original Brier score (3.115), in the weighted Brier score
a vector of category weights d = (d1, . . . , dJ)> is added. For equal category weights, i.e.
dj = 1/J , j = 1, . . . , J , the weighted Brier score reduces to the Brier score. The category
weights allow for a category-specific weighting in the score. For example, one can choose
the category-specific weights to equal the normalized inverse of the relative frequencies.
Thereby, the few observations of the minority class get much more weight in the score
than they would in the original Brier score.

In the last row of Tables 3.12 and 3.13, we added the values of the weighted Brier score,
where category weights d are set to the normalized inverse of the relative frequencies.
Unlike the stratified Brier score, the proposed weighted Brier score takes into account
all probability predictions. Furthermore, it allows to account for data imbalancedness by
category weights. We see that in both tables, the weighted Brier score clearly favours the
prioritized models. That is, in Table 3.12, it returns the lowest value for model f̂m3 and
in Table 3.13 it returns the lowest value for model f̂m4.

Proposition 3.1 shows that the stacking optimisation problem (3.113) with the weighted
Brier score (3.117) as a loss function L is a convex quadratic programming (QP). QPs can
be solved with standard statistical software such as the R (R Core Team, 2020) function
solve.QP from the quadprog package, (Turlach & Weingessel, 2019) which uses the dual
method of Goldfarb and Idnani (1982, 1983). For further information on QPs, we refer to
Nocedal and Wright (2006, Chapter 16).

Proposition 3.1. The stacking optimisation problem (3.113) with the weighted Brier
score (3.117) as loss function L is a convex QP of the form

min
w

L(w) = (1/2)w>Qw + v>w

subject to a>w = 1
w ≥ b,

(3.118)

whereQ is a symmetric positive definite M×M matrix, v ∈ RM , w ∈ RM , a = (1, . . . , 1)>

and b = (0, . . . , 0)> are vectors of length M such that a>w = ∑M
m=1 wm.

Proof. We introduce some additional notation. Again, the variable of interest is categorical
with J categories and a dataset D consisting of n observations is used for finding optimal
ensemble weights. The absolute frequencies of the J categories in data D are denoted
by n1, . . . , nJ . An ensemble model f̂E is given by f̂E = ∑M

m=1 wmf̂
∗
m, where f̂ ∗

m is an
individual model. An individual model f̂ ∗

m returns a vector of J predictions. Let p̂m∗
ij

denote the j-th probability prediction of f̂ ∗
m(xi), m = 1, . . . ,M , i = 1, . . . , n, j = 1, . . . , J .
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Set p̂M
ij = (p̂1∗

ij , . . . , p̂
M∗
ij )> , j = 1, . . . , J , i = 1, . . . , n. The category-specific vectors are

combined to form vectors of length nJ , indicated by superscript ?:

p̂m? = (p̂m
11, . . . , p̂

m
n1, . . . , p̂

m
1J , . . . , p̂

m
nJ)>, (3.119)

y̆? = ((I(y1 = 1))×n, . . . , (I(y1 = J))×n)>, (3.120)
d? = ((d1)×n, . . . , (dJ)×n)>, (3.121)
r? = ((n−1

1 )×n, . . . , (n−1
J )×n)>, (3.122)

where (a)×n means that value a is repeated n times. Let furthermore P̂M? = (p̂1?, . . . , p̂M?)
such that P̂M? is an n×M -dimensional matrix.

With the additional notation, the weighted Brier score Bw in (3.117) for an ensemble
model f̂E with ensemble weights w can be reformulated as

Bw(d, f̂E) = J

2n

J∑
j=1

dj

n∑
i=1

(I(yi = j) − p̂(Yi = j|xi))2

∝
J∑

j=1
dj

n∑
i=1

(I(yi = j) −w>p̂M
ij )2

=
J∑

j=1

n∑
i=1

djI(yi = j)2 − 2djI(yi = j)w>p̂M
ij + djw

>p̂M
ij p̂

M>
ij w

= d?>y̆? − 2(d?> ◦ y̆?>)P̂M?w +w>P̂M?> diag(d?)P̂M?w

= c+ v>w + (1/2)w>Qw,

(3.123)

where ◦ denotes the Hadamard product, c = d?>y̆? is a constant, v = −2P̂M?>(d? ◦ y̆?) is
a vector of length M , and Q = P̂M?> diag(2d?)P̂M? is a symmetric positive semi-definite
M ×M matrix.

The QP is strictly convex if matrix Q is positive definite. It is positive definite if and
only if there exists a matrix Q̊ ∈ Rů×M , M ≤ ů, of full column rank M with Q = Q̊>Q̊
(Gentle, 2007, Section 3.3.7).

Define nJ-dimensional vector u with

uz =
{

1, if d?
z > 0

0, else
, z = 1, . . . , nJ, (3.124)

and set ů = ∑nJ
z=1 uz. Let U be the diagonal matrix of u, where all rows with row sum

equal to zero are deleted, such that U ∈ Rů×nJ . Then

Q = P̂M?> diag(2d?)P̂M?

= P̂M?>U> diag(2Ud?)UP̂M?

= (P̂M?
√

2d?)>U>U(P̂M?
√

2d?)
= Q̊>Q̊,

(3.125)
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where Q̊ = U(P̂M?
√

2d?) ∈ Rů×M , diag(a) denotes the diagonal matrix of a vector a.
This implies that Q is positive definite as long as rank(Q̊) = M .

For an ensemble, rank(Q̊) = M holds unless at least two individual models give the same
predictions. Before calculating the optimal ensemble weights, it should therefore be verified
that no two individual models provide the same predictions. If two models provide the
same predictions, it would not make sense to include both in a weighted ensemble anyway.
Therefore, when the considered individual models lead different probability predictions,
the stacking optimisation problem (3.113) with the weighted Brier score (3.117) as a loss
function L is a strictly convex QP, each local optimum is then the global optimum.

3.6 Modelling and generation of monthly employment
transitions

3.6.1 Choice of covariates

In this section, we take a closer look at the relationships of the potential covariates and
the monthly employment status in the SIAB dataset. Based on this analysis, we then
choose the concrete specification of GAMs in Section 3.6.2.

From the SIAB dataset, only those variables which are also present in the RIFOSS dataset
can be used as covariates. The SIAB variables are given in Table 3.8, the RIFOSS
variables are given in Table 3.2. The potential covariates are (with corresponding RIFOSS
variable names in brackets): ILO (EF29), frau (EF46), age (EF44), schule (EF310),
ausbildung_gr (EF312), ausbildung_imp (EF312). Furthermore, the month and year
of an observation can be used as covariates. The simulations in Chapter 4 are based on
the data generated in this chapter. For the analysis in Chapter 4, it is important that
the generated employment data show realistic transitions on the person-level and realistic
seasonal patterns on the aggregated level. Furthermore, it is important that the joint
distributions of the monthly employment status and other variables like sex is preserved.
For that, all variables common to the RIFOSS and SIAB dataset should be included in a
model.

For the variables related to education, i.e. schule, ausbildung_gr, and ausbildung_imp,
there are some discontinuities in the data in 2010-2012. Therefore, we restrict the SIAB
dataset to observations in 2012-2017.

The definitions of the education variables in the SIAB dataset (schule, ausbildung_gr,
ausbildung_imp) do not fully match those in the RIFOSS dataset (EF310, EF312), compare
their descriptions in Antoni et al. (2019) and Research Data Centres of the Statistical Offices
of the Federation and the Federal States (2018). The RIFOSS variable EF310 approximately
corresponds to the SIAB variable school. Likewise, the definitions of the RIFOSS
variable EF312 approximately corresponds to the SIAB variables education_gr and
education_imp. As there are less missing values in variable ausbildung_gr (10.48%) than
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in variable ausbildung_imp (15.37%), variable ausbildung_imp is not further considered.
To harmonize the SIAB and RIFOSS variables, two new dichotomous variables EF310_SIAB
and EF312_SIAB are introduced in both datasets. Their definitions are shown in Table
3.14. The table shows which of the original SIAB and RIFOSS categories are assigned
to the two harmonized categories for each of the two variables. After that, observations
with missing values in EF310_SIAB (9.62% missings) or EF312_SIAB (10.48% missings) are
deleted from the SIAB dataset. There remain 64, 024, 692 observations of 947, 897 persons
in SIAB.

Table 3.14: Categories of original and harmonized SIAB and RIFOSS variables
RIFOSS variable SIAB variable Harmonized variable
EF310 schule EF310_SIAB

1-3, 6, 7 1, 4-6 1
4, 5 7-9 2

RIFOSS variable SIAB variable Harmonized variable
EF312 ausbildung_gr EF312_SIAB

1-7, 11, 12 1, 2 1
8-10 3, 4 2

For the prediction of monthly employment, it is particularly interesting to investigate
the predictive power of employment lags, i.e. the employment status at previous months.
Table 3.15 displays chosen employment patterns in the SIAB dataset. From the table,
we can see that 80% of all observations have the same employment status in month t,
t− 1, t− 3, t− 6, t− 9, and t− 12. Furthermore, for about 97% of all observations the
employment status in a month is the same as the month before. The employment status
is thus relatively persistent over time and employment lags are a good predictor of the
current employment status.

Table 3.16 shows the employment transitions in months t, t − 1, and t − 12. We use
the table to see whether multiple employment lags provide more information about the
employment status of a month than a single employment lag. In the table, constant
employment categories in t, t− 1, and t− 12 are marked in bold. For example, 61.55%
of observations have employment status 1 (employed) in a month t, the previous month
(t− 1), and the same month one year before (t− 12). The table shows that not only the
employment status in the previous month, but also the employment status in the previous
year is an important predictor of the current employment status. For example, 5.05%
of all observations are employed in months t and t − 1, but not in LF in the previous
year t− 12. This suggests that in the models multiple employment lags should be used as
predictors to capture realistic long-term employment transitions.

There are two non-categorical variables available for modelling the employment status in
the SIAB dataset, the age of a person and the month of the observation. In Figures 3.3
and 3.4, the relative frequencies of the three employment categories are shown for age and
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Table 3.15: SIAB: Employment patterns
Month Pattern Observations (in %)

t
1 69.30
2 4.73
3 25.96
Σ 100.00

t-1 | t
11 67.95
22 3.95
33 24.71
Σ 96.61

t-12 | t-9 | t-6 | t-3 | t-2 | t-1 | t
1111111 58.95
2222222 1.27
3333333 18.69

Σ 78.91
Note: 1 employed, 2 unemployed, 3 not in LF

Table 3.16: Employment transitions in month t, t− 1, and t− 12 (% of data)
t-12

t t-1 1 2 3
1 61.55 1.35 5.06

1 2 0.22 0.09 0.08
3 0.41 0.04 0.51
1 0.26 0.07 0.05

2 2 1.14 1.85 0.96
3 0.11 0.11 0.18
1 0.57 0.04 0.25

3 2 0.12 0.14 0.13
3 3.60 1.08 20.02

Note: 1 employed, 2 unemployed, 3 not in LF
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month. The plots are shown separately for persons which were employed, unemployed, or
not in LF the month before (t − 1). Both for the age of a person and the month of the
observation there is a non-linear effect on the relative frequencies of employment. The
effects differ depending on the previous employment status, i.e. in column one, two, and
three the non-linear relationships look different. From the figures, we decide to include
age and month via non-linear effects in a GAM, with separate effects for each category of
the previous employment status.
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3.6.2 Modelling

In the following, we describe the calculation of the final models which are fitted to the
SIAB dataset to model the monthly employment status. For modelling, we consider
a subagging-stacking combination with GAMs as individual models and the proposed
weighted Brier score (3.117) as a loss function in the stacking optimisation problem (3.113).
The calculation of the individual GAMs (bagging), the calculation of the ensemble weights
(stacking), and the evaluation of the individual and ensemble models should be based on
different parts of the SIAB dataset. This can be done, for example, by cross-validation.
However, since the SIAB dataset consists of many observations, we instead divide the
SIAB dataset only once into modelling (bagging), optimisation (stacking), and evaluation
data with percentages of 90%, 5%, and 5%. The data subsets are referred to as SIABM ,
SIABO, and SIABE. The rows of the 947, 897 persons in the SIAB dataset are randomly
assigned to one of the three data subsets. Thereby, we make sure that there is no person
for whom there is information in more than one data subset. The relative frequencies of
employment, years of observation, and months of observation are the same in the data
subsets.

The investigation of the SIAB dataset in Section 3.6.1 showed that it is useful to include
several past employment categories as predictors. Auxiliary variables which correspond to
past values of the dependent variable are called lagged dependent variables. In the context
of microsimulation, the lagged employment status is often used as an auxiliary variable
for modelling the employment status. For example, Leombruni and Richiardi (2006), Li
and O’Donoghue (2012), and McLay et al. (2015), used lagged dependent variables for
simulating employment transitions in microsimulations, Levell and Shaw (2016) used the
lagged employment status of several past times.

A potential problem that arises from lagged dependent variables is unobserved heterogeneity.
The SIAB dataset is a longitudinal dataset consisting of observations from different
individuals at different time points. Therefore, it is plausible that there are cluster-specific
effects such as person-specific random or fixed effects. For the definition of random effects,
see the description in Section 2.4.2 in the context of LMMs. If there are person-specific
effects in the data, which are not accounted for in the modelling process of a longitudinal
dataset, the estimated coefficients are potentially biased (Richiardi & Poggi, 2014). If
a dataset is composed of many clusters and one is interested in time-invariant effects
such as sex, random instead of fixed effects should be used to account for these clusters
(Honoré, 2002). However, a simultaneous consideration of a lagged dependent variable and
cluster random effects is problematic as, by definition, the distribution of random effects
is independent of the values of the other covariates. Furthermore, even if cluster-specific
random effects are modelled, it is difficult to use these effects in out-of-sample prediction,
although Richiardi and Poggi (2014) evaluated some methods for that purpose.

To circumvent the difficulties of including person-level random effects and lagged dependent
variables jointly in a GAM, we apply the following procedure to the SIAB dataset. In the
subagging-stacking procedure, for each individual model a sample of SIABM is drawn and
a chosen GAM is calculated on it. The M samples are drawn such that each person occurs
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at most once in a sample. Thereby, in the M samples there are no clusters of person
observations. The existence of person-specific effects would then, in expectation, only
lead to an increase of the model variance, as long as their distribution is symmetric. Also
Richardson et al. (2018) argued that considering unobserved heterogeneity can be difficult
and that the effect of neglecting unobserved heterogeneity is negligible when the focus is
on predicting employment transitions, not analysing individual employment transitions.

We want to specify the functional form of the GAM, which we calculate in the individual
models. In Section 3.6.1, we evaluated the choices and functional forms of the covariates.
Additional analysis of different GAM specifications supported that including more lagged
dependent variables gave better predictions. Furthermore, the consideration of several
lagged dependent variables is also relevant for the investigations that follow in Chapter
4. So ideally, a GAM specification with several lags of employment is chosen. However,
the RIFOSS dataset is a cross-sectional dataset and we augment it month by month by
additional employment information. This means that, for example, for the first new month
for which we want to generate the employment status in the RIFOSS dataset, only the
employment status of the previous month is available as a predictor, no further lags of
employment. When more monthly employment data is generated in the RIFOSS dataset,
more employment lags are available as predictors. We therefore choose to specify six
different GAMs, starting with only one lagged dependent variable, t − 1, to all lagged
dependent variables in vector t̃ = ((t− 1), (t− 2), (t− 3), (t− 6), (t− 9), (t− 12))>. For
observation i, the additive predictor of the models is specified as

ηjl(xijl) =βj0 + βj1I(fraui = 2) + βj2I(EF310_SIABi = 2)

+ βj3I(EF312_SIABi = 2) +
5∑

q=1
βj(3+q)I(yeari = (2011 + q))

+
6∑

e=1
I(l ≥ e)

2∑
k=1

βj(9+(2e)+k)I(ILOt̃e
i = k)

+
3∑

k=1
I(ILOt−1

i = k)sj1k(agei)

+
3∑

k=1
I(ILOt−1

i = k)sj2k(monthi), j = 1, 2, l = 1, . . . , 6.

(3.126)

βj0 is an intercept, I is an indicator function, frau, EF310_SIAB, and EF312_SIAB are
dichotomous variables with values in {1, 2}. Index l = 1, . . . , 6 represents the six GAM
specifications, which only differ in the availability of employment lags. We use the same
model specification for all employment categories.

Variable year only takes six different values. As a linear effect of year was not supported
by the data, we added dummy variables for five of the six values of year to capture
year-specific effects. sj2k(age) is a cubic regression spline with 20 evenly spaced knots.
sj3k(month) is a cyclical cubic regression spline to capture seasonal month effects with 10
fixed knots which are equally spaced in [1, 13], as proposed in Wood (2017) for monthly
cyclical splines. Considering knots in [1, 13] instead of [1, 12] ensures that January and
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December are not modelled as the same month. Both splines are defined separately for
the three categories of employment in month t− 1 as was suggested from the analysis of
Figures 3.3 and 3.4.

We apply a subagging-stacking procedure to the SIAB subsets SIABM and SIABO as
shown in Algorithm 3.4. On each of the M = 50 samples of SIABM GAMs are calculated.
The GAMs are specified according to (3.126). That is, on each sample six different GAMs
are calculated. For the calculation of the GAMs, R (R Core Team, 2020) function gam
from the mgcv package (Wood, 2003, 2004, 2011, 2017; Wood et al., 2016) is used. With
the GAMs, optimal ensemble weights wopt are calculated with stacking, based on SIABO.
For stacking, the proposed weighted Brier score (3.117) is used as a loss function. For
the weighted Brier score, category weights d have to be set. The relative frequencies of
employment in SIAB are around 69.3% (employed), 4.7% (unemployed), and 26% (not
in LF). To take into account the imbalance of the data and focus especially on employed
and unemployed, as they are in the focus in Chapter 4, we chose d = (0.1, 0.6, 0.3)>.
For stacking, the R (R Core Team, 2020) function solve.QP from the quadprog package
(Turlach & Weingessel, 2019) is applied, which uses the dual method of Goldfarb and
Idnani (1982, 1983).

Algorithm 3.4 Calculation of prediction models based on the processed SIAB dataset
1. Take SIABM .

For m = 1, . . . , 50 do
i. Draw a random sample of size 500, 000, called sm. The sample is drawn

such that it contains maximum one data row per person.
ii. For l = 1, . . . , 6, calculate a multinomial GAM (3.126) based on sm, called

f̂ ∗
l,m.

2. Take SIABO.
For l = 1, . . . , 6 do
a) Solve the stacking optimisation problem (3.113) with weighted Brier score

Bw(d, f̂E
l ) (3.117) as loss function L, returning weight vector wopt

l ∈ R50.
The inputs of Bw are d = (0.1, 0.6, 0.3)>, f̂E

l = ∑50
m=1 wmf̂

∗
l,m.

3. For l = 1, . . . , 6, the procedure results in the following models:
• Individual models f̂ ∗

l,m, m = 1, . . . ,M ,
• Ensemble model with equal weights f̂E

l,wequal , wequal
m = 1/50, m = 1, . . . , 50,

• Ensemble with optimised weights f̂E
l,wopt

l

.

We want to compare the predictive performance of the different models returned by
Algorithm 3.4. Algorithm 3.4 returns 50 individual GAMs, an ensemble with equal weights,
and an ensemble with optimised weights for each of the six scenarios of lagged dependent
variables in (3.126). By comparing the performances, we can see whether the proposed
subagging-stacking combination gives better probability predictions than the other models.
To have a fair comparison, we calculate evaluation measures for each single category. That
is, we calculate the category-specific Brier skill scores BSSj based on SIABE, where, for
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j = 1, . . . , J ,

BSSj(f̂) = Bj(f̂)/Bj(f̂ intercept) ∗ 100, (3.127)

Bj(f̂) = 1
n

n∑
i=1

(I(yi = j) − pr(Yi = j|xi))2, (3.128)

and f̂ intercept is an intercept only model.

The predictive performances of the models resulting from Algorithm 3.4 are displayed in
Table 3.17, They are shown for the models with t̃6 in (3.126), i.e. the GAM specification
with most available employment lags. We therefore skip index l in Table 3.4. In row
one, the mean scores of the M = 50 individual models is displayed. For all models,
all category-specific values are substantially lower than 100, indicating that the models
perform much better than an intercept only model. This is especially visible for categories
employed and not in LF.

Among the different models, the optimally weighted ensemble f̂E
wopt performs best for all

three categories, followed by the equally weighted ensemble f̂E
wequ and average individual

model. The absolute performance differences are, however, small.

Comparing the equally weighted ensemble f̂E
wequ and the optimally weighted ensemble

f̂E
wopt , we note the following. The calculation of optimised ensemble weights wopt is fast

as the optimisation problem is quadratic, compare Proposition 3.1. The ensemble f̂E
wopt

performs slightly better then the ensemble f̂E
wequ , for all three employment categories. Next

to the performance, there is an additional advantage of the ensemble model f̂E
wopt over

f̂E
wequ . In wopt there are only 7 of the 50 values greater than 10−15. To put it differently,

the ensemble model f̂E
wopt requires storing only 7 out of 50 individual models. It therefore

allows for faster prediction than f̂E
wequ , which is especially useful for creating synthetic

data with many observations. We therefore use ensemble models f̂E
l,wopt , l = 1, . . . , 6 to

generate longitudinal employment in the RIFOSS dataset in the following Section 3.6.3.

Table 3.17: Prediction performance of different models based on SIABE

Employed Unemployed Not in LF
j = 1 j = 2 j = 3

1/M ∑M
m=1 BSSj(f̂ ∗

m) 11.477 31.357 12.628
BSSj(f̂E

wequal) 11.473 31.336 12.623
BSSj(f̂E

wopt) 11.472 31.307 12.618



Chapter 3 Generation of longitudinal employment data for simulations 71

3.6.3 Generation of monthly employment transitions in the
RIFOSS dataset

The RIFOSS dataset is cross-sectional. The employment status in the RIOFSS dataset is
treated as the employment status in January 2012. To generate additional monthly values
of the employment variable EF29 in the RIFOSS dataset, the following procedure is applied
sequentially for all months in February 2012 to December 2014. All other variables, also
the age of the persons, stay fixed. For each month, the optimally weighted ensemble model
f̂E

l,wopt
l

, l = 1, . . . , 6, calculated in Section 3.6.2, with most available previous information
on variable EF29 is selected. For example, for creating employment categories for February
2012, only January 2012 is available as lagged employment information. Therefore, the
ensemble model f̂E

1,wopt
1

is applied. For the next month, employment categories for January
and February 2012 are available, wherefore the ensemble model f̂E

2,wopt
2

is applied.

With the chosen ensemble model, probability predictions of the employment categories are
calculated in the RIFOSS dataset. For persons aged less than 15 and more than 80, the
probability of being not in the LF is set to one, for persons aged over 74 the probability of
being unemployed it set to zero. The cut-off at 80 years is used as the oldest employed
persons in the RIFOSS dataset are 80 years old. Concrete employment categories are
drawn from the probability predictions according to the multinomial distribution. In the
SIAB dataset, there are persons aged 17-62, in the RIFOSS dataset the persons in the LF
are aged 15-80. Therefore, for persons aged 15-17 and 62-80, the generated employment
transitions should be treated with caution.

We note that in the context of microsimulation or data generation, probabilities or
categories are often aligned, for example to values from official statistics. We refer to
Burgard et al. (2021b), Li and O’Donoghue (2014), and Stephensen (2016) for information
on different alignment approaches. We do not use any alignment in the data generation
for two reasons. Firstly, for the studies in Chapter 4, it is more important to preserve the
joint distributions of the variables than to return actual official aggregates. Secondly, the
aggregates that we would otherwise have used for alignment can be used to validate the
generated data at the aggregate level.

We take a look at the generated monthly employment data in the RIFOSS dataset. Figure
3.5 displays the absolute frequencies of the generated employment categories per month.
Both seasonal patterns and a trend are visible in the generated RIFOSS employment data.
This is similar to Figure 3.1 which showed the monthly aggregates in the SIAB dataset in
2007-2018.

We want to examine whether the relationships of the variables in the SIAB dataset were
preserved in the RIFOSS dataset. For that, the RIFOSS aggregates are added to Figures
3.3 and 3.4, resulting in Figures 3.6 and 3.7. As there are only persons aged 17-62 in
the SIAB dataset, the RIFOSS aggregates in the figures are also given for persons aged
17-62. We seen that through modelling, most of the non-linear relationships in the SIAB
dataset could be replicated in the data generation, both for the age and the month of an
observation.
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Figure 3.5: Employment aggregates in extended RIFOSS dataset

The employment patterns of SIAB and RIFOSS dataset can be compared by extending
Table 3.15 by the RIFOSS aggregates of persons aged 17-62, resulting in Table 3.18. The
persistence in employment at the person-level could be preserved in the generated data.
About 85.04% of all observations in RIFOSS have the same employment status in months
t, t− 1, t− 2, t− 3, t− 6, t− 9, and t− 12.

Next, we compare the aggregates of the generated data for the single years 2012-2014.
This is particularly interesting as no alignment was used for the generation. Figure 3.8
displays the absolute number of persons being employed, unemployed, and not in LF
for chosen age classes in the three years. In addition to the RIFOSS aggregates, official
Destatis information6 and the relative frequencies of the SIAB dataset are added. Even
though no alignment was used, the generated RIFOSS employment statistics reflect the
official employment statistics by age group. The quality of the generated data, however,
decreases with the years. We note that the number of unemployed persons over 65 years
of age increases with the years and is far off the official statistics in 2014. In the SIAB
dataset there were only persons aged 17-62. Therefore, the data generation is not expected
to perform well for persons aged under 17 or over 62. In Figure 3.8, we therefore see why
the prediction of population groups which were not present in the modelling data should
be treated with caution. As we, however, do not focus on specific age groups in the data
analysis in Chapter 4, the data is considered sufficient for the three generated years.

6GENESIS-Online. Code: 12211-0002. https://www-genesis.destatis.de/genesis/online.

https://www-genesis.destatis.de/genesis/online
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Figure 3.6: Employment aggregates per age (in %)
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Figure 3.8: Relative frequencies (in %) of employment aggregates per age class
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Table 3.18: Employment patterns
Month Pattern Observations (in %)

SIAB RIFOSS

t
1 69.30 49.68
2 4.73 2.93
3 25.96 47.39
Σ 100.00 100.00

t-1 | t
11 67.95 48.80
22 3.95 2.43
33 24.71 46.50
Σ 96.61 97.73

t-12 | t-9 | t-6 | t-3 | t-2 | t-1 | t
1111111 58.95 42.67
2222222 1.27 0.95
3333333 18.69 41.42

Σ 78.91 85.04
Note: 1 employed, 2 unemployed, 3 not in LF

Figure 3.9 shows the percentages of employed and unemployed persons as part of the
active population, by sex. The statistics are shown for the generated RIFOSS dataset, the
official Destatis data7, and the SIAB dataset. The seasonal patterns in the aggregated
data are quite similar in the three datasets although their magnitudes differ.

To summarise, the generated monthly RIFOSS employment transitions reflect the variables’
relationships on the person-level as well as the person-level transitions of the SIAB dataset.
On the aggregated level, both seasonal patterns and a trend of employment categories are
visible, which is similar to the aggregated information from official statistics and the SIAB
dataset.

7GENESIS-Online. Code: 13231-0002. https://www-genesis.destatis.de/genesis/online.

https://www-genesis.destatis.de/genesis/online
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Figure 3.9: Active population: Percentages of employed and unemployed per month

3.7 Summary and outlook

In this chapter, we synthetically expanded the cross-sectional RIFOSS dataset by a
monthly employment status for three years. For that, we used prediction models for
monthly employment categories based on the SIAB dataset. The generated dataset serves
as the simulation dataset in the design-based study in Chapter 4. Several steps were
necessary to achieve the expansion of the RIFOSS dataset.

Before we could use the SIAB dataset to calculate prediction models for monthly em-
ployment information, we had to edit and aggregate the information in the dataset. We
imputed missing values, removed data inconsistencies, aggregated the data to monthly
data, derived employment categories in accordance to the ILO definition, and validated
the final data. Based on the processed SIAB dataset, we calculated prediction models for
the monthly employment transitions. Then, we used these models to generate monthly
employment transitions in the RIFOSS dataset. For modelling the imbalanced employment
status in the SIAB dataset, we combined GAMs with ensemble techniques subagging and
stacking. For the evaluation of probability predictions under imbalanced data, we pointed
out the shortcomings of the Brier score and the stratified Brier score and proposed what
we call the weighted Brier score as a compromise between the two. We furthermore showed
that the stacking optimisation problem with the weighted Brier score as loss function is a
quadratic optimization problem.

In the application to the SIAB dataset, the proposed subagging-stacking combination
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showed small improvements in the quality of the probability predictions compared to an
equally weighted ensemble or the individual input GAMs. We generated the monthly
employment status in the RIFOSS dataset with the subagging-stacking GAMs and vali-
dated the generated data. The validation showed that the generated monthly RIFOSS
employment data reflect both the patterns in the SIAB dataset on the person-level and the
aggregated level and aggregate statistics published by the German statistical institute.

For future research, it would be interesting to consider additional techniques for handling
imbalanced categorical data, such as balancing techniques, see e.g. Fernández et al. (2018,
Section 7.3). Those could be used to adjust the frequencies of the modelling data already
to the target data. In addition, a potential future research area would be to find sparse
solutions to the stacking optimisation problem, e.g. by inclusion of the `q quasi-norm,
0 < q < 1 penalty, compare Xu et al. (2012) and Zeng et al. (2014).



Chapter 4

Composite Estimation in the German
Microcensus

4.1 Introduction

The design of the German Microcensus underwent major changes in 2020 (Bihler &
Zimmermann, 2016; Destatis, 2021; Hochgürtel, 2013; Hundenborn & Enderer, 2019;
Riede, 2013). Previously, the surveys Microcensus with the integrated Labour Force Survey
(LFS), the European Statistics on Income and Living Conditions (EU-SILC), and the
survey on Information and Communication Technologies (ICT) were conducted separately.
As of 2020, these household surveys are conducted within an integrated system called
Microcensus. Furthermore, the rotation pattern, i.e. the time sequence of a total of four
interviews per sampled household, has changed. Previous to 2020, all households sampled
in the Microcensus were surveyed once a year in a fixed reference week for a total of four
years. Starting in 2020, there are two different rotation schemes within the Microcensus:
The sampled households which are assigned to the LFS module have a different rotation
scheme than all other sampled households.

Rotating panel surveys are surveys with multiple interviews, where at each time point both
new population units are sampled into the survey and other population units, which already
had at least one previous interview, rotate out of the survey. We refer to Kalton (2009)
for a general overview of such surveys. The Microcensus, both in its old and new design,
is an example of such a survey. Rotating panel surveys result in partially overlapping
samples of different time points. For each time point, information from previous samples
is available for a subset of the respondents of the sample. The design of the rotating panel
survey determines the magnitude of the overlaps. Composite estimators are estimation
methods which use the information of the partial overlaps with previous samples in the
estimation process. Particularly for employment statistics, the inclusion of this additional
information can lead to more efficient estimators since the employment status is typically
rather stable over time. The estimators differ in how they handle the partially available
prior information from previous interviews. In this chapter, we examine the applicability
and performance of composite estimators in the new design of the Microcensus through
design-based simulation studies. In the course of this, we also present adjustments of the
methods to account for regionally heterogeneous sample overlaps, a particular feature
of the new Microcensus design. The focus of the study is the regional (NUTS2-level)
estimation of monthly and quarterly employment statistics of employed and unemployed
persons such as totals and changes.

The chapter is structured as follows. In Section 4.2, we give an overview of rotating panel
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surveys and composite estimators. In Section 4.3, the design of the German Microcensus
is described with emphasis on the design changes starting from 2020. We analyse the
applicability of composite estimators in the Microcensus and present adjustments to
the formulas of the composite estimators to allow for regionally heterogeneous sample
overlaps. Section 4.4 presents a design-based simulation study based on the RIFOSS
dataset, which was extended with longitudinal employment information in Chapter 3. In
the simulation study, the adjusted composite estimators are compared for monthly and
quarterly estimation of employment statistics at the NUTS2-level. The chapter closes with
a summary and outlook in Section 4.5.

4.2 Estimation in rotating panel surveys

4.2.1 Rotating panel surveys

Official national household surveys are usually repeated at certain intervals, e.g. annually.
Steel and McLaren (2009) gave an overview of different designs and estimation methods
for surveys which are repeated over time and are taken as the main source for the following
description. In repeated surveys, the sampled households are often interviewed not just
once, but multiple times at fixed intervals. Monthly rotating panel surveys are those in
which each month both new households are sampled into a survey and households leave
the survey after a fixed number of interviews. The rotation pattern determines the timing
of the interviews. In an in-for-x design, sampled household are interviewed for x successive
time points and then rotate out of the survey. In an x-(y)-z design, sampled households are
interviewed for x successive time points, pause for y successive time points, and are again
interviewed for z successive time points. With a rotational pattern, a survey can be divided
into different rotation groups. A rotation group contains a group of sample units that
is interviewed within the same interview cycle. Rotating panel surveys result in sample
overlaps. For example, in an in-for-6 months design 5/6 of the households interviewed
in a month were also interviewed in the previous month. For simplicity, in the following
description we assume monthly surveys, where within a month there is no sample overlap,
but between different months there is. The sample overlaps lead to correlated monthly
estimates. The consequences of these correlations for the HT (2.12) and the GREG (2.20)
estimator are described below.

We extend the notation of the HT and GREG estimator, presented in Sections 2.3.1 and
2.3.2, for longitudinal surveys. Consider a fixed population U of size N . That is, we
consider the population to stay fixed for different time points. In each month t, units are
sampled from U without replacement according to a specified sampling design. The first-
and second-order inclusion probabilities are denoted by πkt and πklt, for all k, l ∈ U , for
month t. Sample st denotes the set of sampled elements of U in month t. The design
weights are given by the inverse first-order inclusion probabilities and denoted by dkt,
for all k ∈ st. We consider a variable of interest Y which takes different values for the
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population U in each month t with population total τyt = ∑
k∈U ykt. The HT estimator of

population total τyt is given by
τ̂HT

yt
=
∑
k∈st

yktdkt. (4.129)

The GREG estimator of population total τyt is given by

τ̂GREG
yt

=
∑
k∈st

yktwkt (4.130)

with

wkt = dkt

1 + (τxt − τ̂xt)>

∑
k∈st

xktx
>
ktdkt

−1

xkt

 , (4.131)

where xkt is a vector of covariate information for sampling unit k ∈ st of length p with
corresponding known population totals τxt .

Rotating panel surveys are commonly applied in the context of LFSs, where the interest is
in different employment statistics such as level estimates and estimates of change. The
total change of a variable Y in t to t′ is given by

∆ytt′ = τyt − τyt′ . (4.132)

It can be estimated by plugging in the corresponding HT or GREG estimates of the totals.
For example, for the HT estimator the change is estimated by ∆̂ytt′ = τ̂yt − τ̂yt′ . Although
a sample overlap in t to t′ does not influence the formula of the change estimators, it
influences its variance. The variance of the change estimator is given by (Steel & McLaren,
2009, p. 293)

Var(∆̂ytt′ ) = Var(τ̂yt) + Var(τ̂yt′ ) − 2
√

Var(τ̂yt) Var(τ̂yt′ ) Corr(τ̂yt , τ̂yt′ )
= Var(τ̂yt) + Var(τ̂yt′ ) − 2 Cov(τ̂yt , τ̂yt′ ).

(4.133)

The covariance of two HT estimators, Cov(τ̂yt , τ̂yt′ ), is given in (2.17) and can similarly
be given for the GREG estimator considering (2.23). Without sample overlap, i.e. with
Corr(τ̂yt , τ̂yt′ ) = 0, the variance of the change estimator is about double the variance of one
of the total estimators. When the variable of interest Y is positively correlated over time
and there is a sample overlap, Corr(τ̂yt , τ̂yt′ ) > 0 holds. From (4.133), we see that a sample
overlap can significantly reduce the variance of the change estimator. The exact magnitude
of the variance reduction depends on the interplay of the correlation of Y over time and
the magnitude of the sample overlap. The higher the sample overlap and the higher the
correlation of Y in t to t′, the higher the variance reduction of the change estimator.
With the same argumentation, we can also see that a sample overlap between t and t′

can lead to an increase in variance when estimating the sum or average of τyt and τyt′ ,
compare also Steel and McLaren (2009, pp. 294–295). For employment and unemployment
the correlation over time is typically highly and moderately positive respectively, see e.g.
Gambino et al. (2001). For variance estimation of the change estimator in rotating panel
survey, we refer to Berger and Priam (2016).
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Based on the correlations of the monthly estimates obtained from rotating panel surveys,
also the best linear unbiased estimator (BLUE), introduced by Yansaneh and Fuller (1998),
can be constructed. It is an estimator, derived to have optimal theoretical properties. Let T
be the total number of time points for which estimates are available and R be the number of
rotation groups. Define τ̂ T R

y = (τ̂y11, . . . , τ̂y1R, . . . , τ̂yT 1, . . . , τ̂yT R)> as the vector of rotation
group specific design-unbiased estimates of true population totals τ T

y = (τy1, . . . , τyT )>.
Define the covariance matrix of the design-unbiased estimates as Var(τ̂ T R

y ) = V̇ and
matrix Ẋ = 1R ⊗ IT , where 1R is a vector of 1 of length R, ⊗ denotes the Kronecker
product, and IT denotes the T × T identity matrix. The BLUE estimator of population
totals τ T

y is then given by

τ̂BLUE
y =

(
Ẋ>V̇ −1Ẋ

)−1
Ẋ>V̇ −1τ̂ T R

y (4.134)

with variance

Var(τ̂BLUE
y ) =

(
Ẋ>V̇ −1Ẋ

)−1
. (4.135)

Note that (4.134) is the generalised least squares solution, similar to β̂BLUE (2.31), discussed
in the context of LMMs in Section 2.4.2. A multivariate version of the BLUE, i.e. for
more than one variable of interest, is given in Bonnéry et al. (2020).

Despite its theoretical optimality, the BLUE is not frequently applied in rotating panel
surveys. The dimensions of the matrices which need to to be stored for the BLUE increase
each time the survey is conducted and require the inversion of ever-growing matrices.
Furthermore, the covariance matrix V̇ needs to be estimated from sample data. The
optimality of the BLUE, however, only holds for the exact covariance matrix V̇ . In a
design-based simulation study, Bonnéry et al. (2020) showed that when the covariance
matrix V̇ is estimated from sample information, the performance of the BLUE estimator
can be low. They argue in favour of the use of composite estimators. Furthermore, the
efficiency of composite estimators can be close to the efficiency of the BLUE in practical
applications (Steel & McLaren, 2009). In addition, each new time point at which the BLUE
estimator is calculated results in a revision of all previous estimates. There are several
extensions to the BLUE which are especially designed to circumvent growing matrices.
Yansaneh and Fuller (1998) reformulated the BLUE as a recursive estimator. A BLUE
based on a fixed time window is proposed in Bell (1999, 2001). Due to its disadvantages
compared to other estimators and its limited application in rotating panel surveys, the
BLUE is not discussed further and we focus on composite estimators instead.

In the context of rotating panel surveys and composite estimators, we note that often
the presence and impact of a potential rotation group bias (RGB), also called time-in-
survey bias, is examined. The RGB refers to systematic differences between different
rotation groups and was first investigated by Bailar (1975). The RGB can influence
certain estimators like composite estimators. It is specific to each survey design, content,
and interview modes and is being studied primarily in the context of the U.S. Current
Population Survey (CPS), for example Bonnéry et al. (2020), Cheng et al. (2013), Erkens
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(2012), Halpern-Manners and Warren (2012), and Krueger et al. (2017). The U.S. CPS
is a household survey with voluntary participation, which is used for the production of
employment statistics (U.S. Bureau of Labor Statistics, 2006). When the response patterns
are related to the employment status of the interviewed persons, the RGB can have a large
influence on the quality of the employment estimates. In this chapter, the focus is on the
German Microcensus, in which subjects have the obligation to provide information. We
therefore expect a RGB to be less relevant than in the U.S. CPS. Moreover, under the
new design of the Microcensus, see Section 4.3, there is not yet enough historical data to
examine the existence and structure of a RGB. Therefore, a RGB is not considered further
and remains as a possible research object for future investigations.

4.2.2 Composite estimators

Composite estimators are frequently applied in the context of rotating panel surveys. They
are design-based estimators which make explicit use of the sample overlap at time t to a
previous sample from t′, t′ < t, to produce estimates for time t. As they borrow strength
from time, the estimators belong to the class of indirect estimators. For that, compare
the definition of direct and indirect estimators in Section 2.2. Composite estimators are
recursive. That is, for producing composite estimates for time t, the composite estimates
of t′, t′ < t, are used as input which themselves are composite estimates using information
from t′′, t′′ < t′, and so forth. When composite estimators are calculated for the first time,
direct estimates such as HT or GREG estimates are used as input estimates for t′ until
composite estimates are available for t′. The most prominent composite estimators are
different types of AK estimators, modified regression estimators, and regression composite
estimators which are described in the following.

We present the estimators for a single variable of interest Y at time t and the estimation of
its total τyt = ∑

k∈U ykt. In practice, not only one, but many different statistics of different
variables of a survey are of interest, for example the total number and monthly changes of
employed and unemployed at the NUTS2-level. In the simulation study in Section 4.4,
the estimators are evaluated for different variables of interest. For ease of description, we
again consider that a time point t represents a certain month, there are no sample overlaps
within a month, only between different months. Alternatively one could also consider the
time points to represent quarters or years. Thereby, st denotes the sample in month t. For
any two months t and t′, where t′ < t, sample st can be partitioned into st ∩ st′ and st \ st′ ,
the overlapping and non-overlapping sample.

AK estimator
In the AK estimator, the estimate of month t′ is updated by the information of the sample
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in t to get an estimate for month t. It is given by

τ̂AK
yt

= (1 −K)τ̂GREG
yt︸ ︷︷ ︸

= term 1

+K
(
τ̂AK

yt′ + θ−1
tt′ (τ̂GREG, overlap

yt
− τ̂GREG, overlap

y′
t

)
)

︸ ︷︷ ︸
= term 2

+ A
(
(1 − θtt′)−1τ̂GREG, non-overlap

yt
− θ−1

tt′ τ̂GREG, overlap
yt

)
︸ ︷︷ ︸

= term 3

(4.136)

with
τ̂GREG, overlap

yt
=

∑
k∈st∩st′

wktykt, τ̂GREG, non-overlap
yt

=
∑

k∈st\st′

wktykt, (4.137)

sample overlap
θtt′ =

∑
k∈st∩st′

wkt/
∑
k∈st

wkt, (4.138)

and parameters K ∈ [0, 1] and A; A is typically chosen in the interval [0, 1]. The estimator
consists of three terms. Term 1 and 2 correspond to the original K estimator (Hansen
et al., 1955). The K estimator is a convex combination of the GREG estimator in t and
the K estimator in t′, which is corrected for the change observed in the overlapping sample.
Gurney and Daly (1965) additionally added term 3 to account for differences between the
overlapping and non-overlapping sample to reduce the influence of a RGB.

For a specific variable of interest Y , the AK parameters A and K can be chosen optimally
in the sense of minimizing the variance of τ̂AK

yt
. Variance formulas for the AK estimator

are given in Cantwell (1990). For different variables, for example employment and
unemployment, typically different values of A and K are variance optimal. Lent et al.
(1994) and Lent et al. (1999) studied the choice of A and K for the estimation of employed
and unemployed in the U.S. CPS and proposed values K = 0.7 and A = 0.4 for employed,
K = 0.4 and A = 0.3 for unemployed. Consistent estimates, however, require that the
same parameters are used for the production of all AK estimates. For example, the same
values of A and K would have to be used for the production of the AK estimates of
employment and unemployment to ensure that they add up to the labour force.

There are different extensions of the AK estimator. AK composite weighting (Fuller, 1990;
Lent et al., 1994; Lent et al., 1999) is a two-step procedure. In the first step, for each
key study variable the AK estimator is calculated with variable-specific choice of A and
K. In the second step, a calibration estimator such as the GREG estimator is applied
with the AK estimates of the chosen key variables as additional control totals. Thereby,
the resulting calibration weights return the different AK estimates, which were calculated
with different parameter choices, and consistent estimates. Next to ensuring consistency
and allowing for variable-specific parameter choices, this method also has the advantage
that, in contrast to the original AK estimator, it returns a single set of weights which
are used to produce all estimates based on sample st and can be shared with micro-data
users. There are further AK variants. Breau and Ernst (1983) introduced a generalised
composite estimator with rotation group specific weights. Singh et al. (2001a) proposed a
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version of the AK estimator with micro-level matching. Ciepiela et al. (2012) suggested a
dynamic K estimator for arbitrary rotation schemes. Cheng et al. (2017) presented an
iterative procedure for AK estimation to calculate MSE optimal values for A and K.

Modified regression estimators
In modified regression (MR) estimators (Singh et al., 1997; Singh & Merkouris, 1995),
the sample information from t′ is used as additional auxiliary information in a GREG
procedure. For a chosen set of q key variables of interest, a vector of additional auxiliary
information zkt of length q, for all k ∈ st, is defined. The corresponding control totals are
denoted by τ̂MR

zt
. MR estimators are given by

τ̂MR
yt

=
∑
k∈st

wMR
kt ykt (4.139)

with

wMR
kt = dkt

1 + x∗>
kt

∑
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x∗
ktx

∗>
kt dkt

−1

(τ ∗
xt

− τ̂ ∗
xt

)>
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and
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>
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xt
, τ̂MR >

zt
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xt
= (τ̂>

xt
, τ̂>
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The formula of MR estimators thus corresponds to the formula of the GREG estimator
(4.130) with q additional variables. For the q additional variables the true population
values are unknown and estimates τ̂MR

zt
are used instead. With weights wMR

kt , all statistics
of interest can be calculated based on the sample st. The choice of the q key variables, for
which additional auxiliary variables are defined, is typically limited as too many additional
auxiliary variables could lead to a distortion of the final weights wMR

kt (Gambino et al.,
2001). To make an example, in the Canadian LFS the key study variables chosen in the
MR procedure are ILO statistics by age and sex groups and provincial levels as well as
specific industries (Singh et al., 2001b).

The use of the q additional auxiliary variables is expected to give more precise estimators
than the corresponding GREG estimator if the additional auxiliary variables are highly
correlated to the variable of interest. With high correlation, they assist in further reducing
the residuals in the variance formula, compare the variance formula of the GREG estimator
(2.23). That is, the efficiency gains from using an MR instead of the GREG estimator
are expected to be high for those key variables which are used as additional auxiliary
information and those which are highly correlated to the key variables. This is empirically
shown, for example in Bell (2001), Gambino et al. (2001), and Salonen (2014).

There are different ways of defining the additional auxiliary variables and corresponding
estimated control totals in MR estimators. The information of the selected key study
variables is only partially available for previous time points as there is only a partial
overlap between different samples. The different types of MR estimators differ essentially
in how they deal with this partially missing information. From the class of MR estimators,
we present the so-called MR1, MR2, MR3, MRR, and RC estimator below. They are
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explained for a single key variable of interest Y with additional auxiliary variable zkt with
control total τ̂MR

zt
.

In all MR estimators, the additional covariate and control total are defined in such a way
that the design weighted sample values, in expectation, match the corresponding control
total, i.e. that

E
[ ∑

k∈st

dktzkt

]
= τ̂MR

zt
(4.142)

holds (Preston, 2015). For the MR estimators, we define the overlap of samples st and st′ ,
θtt′ , as

θtt′ =
∑

k∈st∩st′

dkt/
∑
k∈st

dkt. (4.143)

The MR1 estimator, proposed by Singh (1996), emphasises the values of Y in t′ observed
from the overlapping sample. In the MR1 estimator, the additional auxiliary variable zMR

kt

and its control total τ̂MR
zt

are defined as

zMR
kt = zMR1

kt =
ykt′ k ∈ st ∩ st′

τ̂MR1
yt′ /Nt′ k ∈ st \ st′

, τ̂MR
zt

= τ̂MR1
yt′ . (4.144)

For the overlapping sample, the observations of t′ are used. For the non-overlapping
sample, the values are filled via mean imputation such that (4.142) holds.

Instead of emphasising the observed values themselves, the MR2 estimator, proposed by
Singh (1996) and Singh et al. (1997), emphasises the change observed from the overlapping
sample. In the MR2 estimator, the additional auxiliary variable zMR

kt and its control total
τ̂MR

zt
are defined as

zMR
kt = zMR2

kt =
ykt + θ−1

tt′ (ykt′ − ykt) k ∈ st ∩ st′

ykt k ∈ st \ st′
, τ̂MR

zt
= τ̂MR2

yt′ . (4.145)

The values of the overlapping sample are set to the observed values in t adjusted for
the observed change from t′ to t. To ensure that (4.142) holds, in the MR2 estimator
carry-backward imputation is used for the values of the non-overlapping sample. Fuller
and Rao (2001) recognized a potential drift problem for the MR2 estimator. The drift
problem describes a situation where the MR2 estimates deviate substantially from the
direct estimates over a potentially long period of time. The authors expect the drift
problem to appear for variables which are highly correlated over time, i.e. for employment
rather than for unemployment.

An additional MR approach was proposed by Gatto et al. (2009) and Loriga (2014) and
is henceforth called MR3 estimator. The idea here is to avoid any imputation in the
additional auxiliary variable and instead adjust its control total. In the MR3 estimator,
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the additional auxiliary variable zMR
kt and its control total τ̂MR

zt
are defined as

zMR
kt = zMR3

kt =
ykt′ k ∈ st ∩ st′

0 k ∈ st \ st′
, τ̂MR

zt
= θtt′ τ̂MR3

y′
t

. (4.146)

Similar to the MR1 estimator, for the overlapping sample the additional auxiliary variable
takes the observed values in t′. For the non-overlapping sample, there is no information
on the values in t′ and zMR3

kt is set to zero. The control total θtt′ τ̂MR3
y′

t
adjusts the MR3

estimate of t′ for the sampling fraction of the overlapping sample to ensure that (4.142)
holds.

Beaumont and Bocci (2005), based on Beaumont (2005), proposed another MR variant,
called MRR estimator. The values for the overlapping sample and the control totals are
defined similar to the MR1 estimator (4.144). For the non-overlapping sample a correction
factor is calculated based on the observed change in the overlapping sample. In the MRR
estimator, the additional auxiliary variable zMR

kt and its control total τ̂MR
zt

are defined as

zMR
kt = zMRR

kt =


ykt′ k ∈ st ∩ st′

ykt + 1−θtt′
θtt′

∑
k∈st∩st′

dkt(ykt′ −ykt)∑
k∈st\st′

dkt
k ∈ st \ st′

, τ̂MR
zt

= τ̂MRR
yt′ . (4.147)

In different empirical applications, the MR1 estimator showed good results for level and
the MR2 estimator for change estimation. For the design of the Canadian LFS, Fuller
and Rao (2001) gave a theoretical illustration of this finding based on limit variances and
a first-order autoregressive process. In theory, one could use both, additional auxiliary
variables according to the MR1 and MR2 definition in a MR estimator to ensure efficient
level and change estimation. A large number of auxiliary variables, however, may lead
to a distortion of the final weights (Gambino et al., 2001, p. 67). As a compromise,
designed to work well for level and change estimation while avoiding a large number of
additional auxiliary variables, Fuller and Rao (2001) proposed the regression composite
(RC) estimator. In the RC estimator, the additional auxiliary variable zMR

kt and its control
total τ̂MR

zt
are defined as

zMR
kt = zRC

kt = (1 − α)zMR1
kt + αzMR2

kt , τ̂MR
zt

= τ̂RC
yt′ (4.148)

with α ∈ [0, 1].

The RC estimator requires the choice of parameter α. It reduces to the MR1 and MR2
estimator for α = 0 and α = 1 respectively. An optimal choice of α, in the sense of
minimizing the variance of the RC estimator, depends on the sampling design, the variable
under study, and the importance of level versus change estimation. For the Canadian
LFS, the performance of the RC estimator with different α was evaluated in Chen and Liu
(2002), Fuller and Rao (2001), and Gambino et al. (2001). In the survey, the RC estimator
is applied with α = 2/3 (Gambino et al., 2001, p. 67). Fuller and Rao (2001) argued that
the choice of α in the RC estimator can also be used to reduce the probability of the
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drift problem of the MR2 estimator. In a design-based simulation study, Preston (2015),
however, found indications of a potential drift problem also for the RC estimator.

Gambino et al. (2001, Section 3) and Singh et al. (2001a, pp. 33–34) summarized the
features of MR estimators. MR estimators allow for a simple implementation with standard
statistical software, use the information of the overlapping and non-overlapping sample on
the level of the sampling units, require only a single step to produce final weights, ensure
consistency between different estimates, and facilitate to increase the efficiency of level and
change estimators compared to the corresponding GREG estimator. When the population
size changes considerably in t to t′, an adjusted version of the MR estimators can be used,
as proposed in Preston (2015).

For estimating the variance of MR estimators, it not only has to be considered that the
additional control totals are themselves estimates, but also that the additional auxiliary
information is partly imputed or altered. The variance estimation of composite estimators
is out of the scope of this thesis and we refer to Berger et al. (2009) and Dever and Valliant
(2010) for further information.

4.2.3 Composite estimators in selected Labour Force Surveys

The underlying sampling design is critical to the performance and choice of composite
estimators. Various combinations of rotating panel designs and composite estimators are
used in official LFSs. We briefly review some selected applications and related research.

The U.S. CPS is conducted with a 4-8-4 months rotation scheme and AK composite
weighting is applied for the estimation of employment statistics (U.S. Bureau of Labor
Statistics, 2006). The parameters for AK composite weighting are set to K = 0.4 and
A = 0.3/4 = 0.075 for the estimation of unemployed and K = 0.7 and A = 0.4/4 = 0.1 for
the estimation of employed. We note that due to slight differences in the formulas, the
values of A in U.S. Bureau of Labor Statistics (2006, Section 10-10) need to be divided by
4 to fit formula (4.136).

Bonnéry et al. (2020) evaluated the performance of different composite estimators for the
U.S. CPS in a design-based simulation study. In their study, both the AK and BLUE
estimator performed poorer than the GREG or RC estimator once the parameters and
input quantities of the estimators were estimated from sample data. Compared to the
corresponding GREG estimator, the RC estimator showed a good performance in their
study, for different choices of α.

The Canadian LFS rotates with an in-for-6 months design. The RC estimator is used with
α = 2/3 as a compromise between level and change estimation (Statistics Canada, 2017).
In their theoretical studies, Fuller and Rao (2001) found that for the Canadian LFS the
MR2 estimator performs similar to the GREG estimator for level and significantly better
than the GREG estimator for change estimation. Additionally, they found that the MR1
estimator performed well for estimation of levels, but less well than the MR2 estimator for
change. Gambino et al. (2001) empirically compared the GREG and three-month moving
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averages with the RCα=0.67 estimator showing efficiency gains of the RC estimator over the
two others for the key variables which were included as additional calibration constraints.
Also Beaumont and Bocci (2005) empirically investigated different composite estimators
for the Canadian LFS using historical survey data, comparing the MR1, MR2, RCα=0.7,
and MRR estimator. For the estimation of employment levels, the RC estimator performed
best followed by the MR2 and MR1 estimator. For unemployment, the performance of
the estimators was more close and the RC estimator performed slightly better than the
others. For monthly changes of employed and unemployed the order of best to worst
performance was MRR, MR2, RC, and MR1. The findings are somewhat surprising as for
the same survey Fuller and Rao (2001) argued that MR1 works best for level and MR2 for
change estimation. Consistent with Fuller and Rao (2001), other works, such as Steel and
McLaren (2009, p. 301) and Gambino et al. (2001, pp. 66–67), also treated MR1 as the
go-to estimator for level and MR2 for change estimation.

The Australian LFS rotates with an in-for-8 months design. Bell (2001) empirically
evaluated different composite estimators for the application to the Australian LFS, including
the BLUE, BLUE with a fixed window, the AK, MR2, and RCα=0.7 estimator. They
recognized a potential drift problem of the MR2 and RC estimator as their estimates
differed considerably from the GREG estimates over time. Considering the standard errors
of the estimates, both MR2 and RC estimator performed significantly better than the AK
and BLUE estimator, both for level and change estimation. This was especially true for the
estimation of employment. For unemployment, the results of the different estimators were
quite close. The performance superiority of the MR2 and RC estimator was, however, only
visible for the key study variables, i.e. for those variables used as additional calibration
constraints. Due to the potential drift problem in the MR2 and RC estimator, a variant of
the fixed window BLUE is applied to the Australian LFS since 2007 (Australian Bureau
of Statistics, 2018; Pink, 2007).

Salonen (2014, 2016) investigated the use of the RC and MR3 estimator for the Finish LFS
which rotates with a 1-(2)-1-(2)-1-(5)-1-(2)-1 months pattern. The empirical investigation
showed high efficiency gains for level and change estimation for both estimators. The
efficiency gains were high for the estimation of employed and modest for unemployed.

To summarise, the different applications show that the performance of composite estimators
is highly dependent on the underlying sampling design and the statistics of interest. For
employment estimation in LFSs, different composite estimators are applied. What most
of the applications and investigations have in common is the following. Most composite
estimators perform better than the corresponding GREG estimator for both level and
change estimation of employment statistics. The efficiency gains are especially high for
change as opposed to level estimation. The efficiency gains are higher for statistics of
employed than of unemployed as employment is higher correlated over time. Some results
also slightly contradict each other, such as the performance of the MR1 and MR2 estimator
for level and change estimation in the Canadian LFS in Fuller and Rao (2001) and Gambino
et al. (2001) versus Beaumont and Bocci (2005).

The results emphasise that the evaluation of composite estimators should be tailored to a
specific application and that a careful investigation with realistic survey data is necessary.
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In the simulation study in Section 4.4, therefore the simulation population and procedure
of the design-based study are tailored to the design and estimation procedure in the
German Microcensus.

4.3 German Microcensus

4.3.1 Overview

The German Microcensus is a yearly conducted 1% household survey by the German
national statistical office Destatis. General information about the Microcensus is given in
Destatis (2021). The survey covers the entire resident population in Germany, that is all
persons in private households and shared accommodations at their main and secondary
residence.

It is conducted as a one-stage stratified cluster sampling. The strata are the 38 German
NUTS2 regions. In the strata, the sampling units are clusters of households, formed
by street segments, among other criteria. In the sampled clusters, each household is
interviewed. The participation in the survey is mandatory, on the basis of §13 of the
German Microcensus Law. For more detailed information, e.g. on the stratification and
the formation of selection districts, we refer to Destatis (2021) and the literature cited
there.

The German Microcensus gives information on the socio-economic, demographic, and
household structure of the German population including working and living conditions,
health, migration, education, and employment, among others. The estimates of the
Microcensus have particular political relevance and scope. Among other things, they are
the basis for many studies of the labour market and occupational research and the federal
government’s annual pension insurance report.

The LFS is conducted as part of the Microcensus. It is in the focus of this chapter. The
LFS questionnaire is harmonized to fulfil the standards of the ILO and the European
Statistical Office (EUROSTAT). The standardization aims to make the results of the LFS
comparable between different European countries. The main aim of the LFS is to provide
population statistics of employment according to the ILO definition, compare Section 3.2.
Example of such estimates are the number of persons aged 15 and older being employed,
unemployed, and not in labour force. The results of the LFS are inter alia used for the
distribution of regional and social funds of the European Union.

4.3.2 Design changes since 2020

There were major changes to the design of the German Microcensus in 2020. Overview
articles of the changes are given in Bihler and Zimmermann (2016), Hochgürtel (2013),
Hundenborn and Enderer (2019), and Riede (2013), which are the main sources for the
following description of the design.
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Until 2020, the official household surveys Microcensus, with the integrated LFS, EU-SILC,
and the survey on ICT were conducted separately. Since 2020, they have been conducted
as an integrated system of household surveys called Microcensus. In the integrated system,
each sampled household receives a core programme of questions. The core programme
contains those questions for which high quality estimates are needed such as the ILO
employment status. Next to the core programme, each sampled household can receive
maximum one additional module of questions. There are the LFS, SILC, and ICT module,
and a potential extra module. Over the whole year the sampling fraction of the Microcensus
at NUTS0, i.e. federal level, is 1%. Over the year on NUTS0 about 45%, 12%, and 3.5%
of the Microcensus sampling units receive modules LFS, SILC, and ICT respectively
(Hundenborn & Enderer, 2019). At the NUTS2-level, i.e. for the 38 government districts,
both the overall sampling fraction as well as the relative frequencies of the modules
systematically differ from the above values to meet certain quality criteria.

The rotation design of the Microcensus has also changed. Until 2020, households were
interviewed a total of four times, once per year for four consecutive years. Since 2020,
household are still interviewed a total of four times, but the rotation pattern of the four
interviews changed, as described in the following. For the description, we distinguish two
parts of the Microcensus which correspond to two different rotation schemes: (1) The part
of the Microcensus which is assigned to the LFS module, i.e. the core plus LFS module,
and (2) The part of the Microcensus which is not assigned to the LFS module. Households
which are assigned to the LFS module are interviewed with a 2-(2)-2 quarters pattern, i.e.
they are interviewed in a quarter, in the next quarter, pause for two quarters, and are
again interviewed for two consecutive quarters. They remain in the survey for six quarters.
All households which are not assigned to the LFS module are interviewed once a year,
thus remaining in the survey for four years.

4.3.3 Sample overlaps

Composite estimators take advantage of sample overlaps to previous time points which
result from a rotating panel survey. Therefore, to assess the applicability of composite
estimators for the production of employment statistics from the Microcensus, we analyse
which sample overlaps arise from the Microcensus design in the following. For this purpose,
Table 4.1 shows the Microcensus interviews of the rotation groups in the two rotation
schemes; the Microcensus with the LFS module and the Microcensus without the LFS
module. By design, there are no overlapping sampling units within a quarter. Therefore,
the rotation groups are defined by the quarter of the first interview. The absolute sizes of
the rotation groups within th two rotation schemes are equal in expectation. In Table 4.1,
we added the quarters of the previous interview to see sample overlaps resulting from the
design.

From Table 4.1, we see that in the Microcensus plus LFS module, the sample overlap of a
quarter to the previous quarter (Q-1) is 50%, the overlap of a quarter to the same quarter
in the previous year (Q-4) is 50%. In the Microcensus without the LFS module, the sample
overlap of a quarter to the previous quarter (Q-1) is 0%, the overlap of a quarter to the
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Table 4.1: Microcensus rotation groups (RGs) for the quarters of one year
Quarters (Q) in previous year Quarters (Q) in current year

RG Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

1 2 3 4
2 1 2 3 4
3 1 2 3 4
4 1 2 3 4
5 1 2 3
6 1 2
7 1 2
8 1 2
9 1
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1 1
2 1 2
3 2 3
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5 1
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9 1
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11 2 3
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13 1
14 1 2
15 2 3
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16 3 4

Table 4.2: Microcensus sample overlaps for composite estimators
Sample overlap Q to Time proximity Magnitude of overlap
Q-1 Higher ≈ 27%
Q-4 Lower ≈ 61%
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same quarter in the previous year (Q-4) is 75%. As over the year on NUTS0 about 45%
of the Microcensus sample receive the LFS module, the approximative overall sample
overlaps of Table 4.2 result. Note that the overlaps in Table 4.2 are only on NUT0-level;
at the NUTS2-level they differ.

From Section 4.2.1, we saw that for composite estimators two factors are important: The
magnitude of the sample overlap and the correlation over time of those variables, which
are used as key study variables. In most applications of composite estimators that we
presented in Section 4.2.3, there was only one sample overlap that could be considered
for use in composite estimators. For example, in the Canadian LFS the monthly overlap
is 5/6. The information from the previous month in the Canadian LFS has both, high
magnitude (5/6) and high time proximity to the current month. Similarly, also in the
other applications of composite estimators covered in Section 4.2.3 the previous time point
is the most promising sample overlap to use for the composite estimators. This is not
the case for the German Microcensus as can be seen from Table 4.2. In the Microcensus,
there are two candidate overlaps to be used for composite estimators. Taking the overlap
to the previous quarter (Q-1) ensures higher time proximity to the current quarter, but
means low sample overlap (≈ 27%). Taking the overlap to the quarter one year before
(Q-4) has lower time proximity, but ensures higher sample overlap (≈ 61%). A central
question for the simulation study in Section 4.4 is therefore not only how the different
composite estimators perform, but also whether they should be applied using the sample
overlap information from Q-1 or Q-4.

To simulate the Microcensus sampling and estimation process as in the original design
in the studies of Section 4.4, we note some additional features of the Microcensus. In
the German Microcensus, population units are sampled via stratified one-stage cluster
sampling (Destatis, 2021). On the first stage, strata are formed by the cross-combination
of address size categories and regional domains. In each strata, clusters are sampled
randomly with stratum-specific inclusion probabilities. The clusters are for example
formed by streets; all households located in a street belong to the same cluster. All
households belonging to a sampled cluster are interviewed. In Sections 2.3.1 and 2.3.2,
the HT and GREG estimator were described for general sampling designs. As shown in
Särndal et al. (1992, Chapter 4), it is straightforward to apply the formulas of the HT
and GREG estimator under one-stage cluster sampling; the inclusion probabilities of all
units in a cluster are equal to the inclusion probability of the corresponding cluster. We
note that for the variance estimation, however, the cluster sampling has to be explicitly
accounted for. The focus of this chapter is on point estimation, not on variance estimation.
We therefore refer to Särndal et al. (1992, Chapter 4) for the variance estimation formulas
of the HT and GREG estimator under cluster sampling. For the German Microcensus
in particular, a description of the variance estimation can be found in Destatis (2020b,
Appendix B), Afentakis and Bihler (2005) and, for the scientific use file of the Microcensus,
in Schimpl-Neimanns (2011).

For the production of estimates from the Microcensus, the GREG estimator is applied
to quarterly sample data, after non-response adjustment (Destatis, 2021). The resulting
GREG weights are used for producing quarterly and monthly estimates of the Microcensus.



Chapter 4 Composite Estimators in the German Microcensus 94

For the monthly estimate the number of weeks per month relative to the total number of
weeks per quarter is used to adjust the quarterly GREG weights. A detailed overview of
the GREG application in the Microcensus can be found in Afentakis and Bihler (2005,
Table 2). For the quarterly application of the GREG estimator the auxiliary variables are:
(1) Age classes (under 15, 15-44, 45 and over) crossed by sex on NUTS0, (2) Regular and
professional soldiers including federal and riot police, basic military conscripts, civilian
population on NUTS0, (3) Total population on NUTS0, (4) Nationality (German, not
German) crossed by sex on NUTS1, i.e. the level of the 16 federal states, (5) Total
population on NUTS2, i.e. the level of the 38 government districts.

4.3.4 Adjustments of composite estimators to account for
regionally heterogeneous sample overlaps

For the Microcensus, Table 4.2 displays the resulting sample overlaps of a quarter to
Q-1 (one quarter before) and Q-4 (the same quarter a year before) on NUTS0. These
overlaps differ in the different NUTS2 regions. Applying the composite estimators with
the formulas of Section 4.2.2 right away would lead to biased NUTS2-level estimates of
employment statistics. In the following, we therefore present adjustments to the formulas
of the estimators to account for regionally heterogeneous sample overlaps. The adjustments
are similar to the presentation of composite estimators in Preston (2015) who adjusted the
formulas composite estimators for stratified designs and survey frame changes in business
surveys.

Consider that the target population can be partitioned into D strata, the NUTS2 regions.
We can rewrite all population-specific quantities as stratum-specific quantities and denotes
these by adding subscripts d, d = 1, . . . , D. For example, with std we denote the part of
sample st which corresponds to domain d. For simplicity, we do not distinguish between
the names of the original and adjusted estimators as we only use the adjusted estimators
hereafter.

The AK estimator, adjusted to stratum-specific sample overlaps, is given by

τ̂AK
yt

=(1 −K)τ̂GREG
yt

+K

(
τ̂AK

yt′ +
D∑

d=1
θ−1

tt′d(τ̂GREG, overlap
ytd

− τ̂GREG, overlap
yt′d

)
)

+ A

(
D∑

d=1
(1 − θtt′d)−1τ̂GREG, non-overlap

ytd
− θ−1

tt′dτ̂
GREG, overlap
ytd

) (4.149)

with

τ̂GREG, overlap
ytd

=
∑

k∈std∩st′d

wktykt, τ̂GREG, non-overlap
ytd

=
∑

k∈std\st′d

wktykt, (4.150)
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K ∈ [0, 1], and stratum-specific sample overlap

θtt′d =
∑

k∈std∩st′d

wkt/
∑

k∈std

wkt, d = 1, . . . , D. (4.151)

Similarly, with d = 1, . . . , D, an additional auxiliary variable for the adjusted MR estima-
tors is defined as

zMR1
kt =

ykt′

τ̂MR1
yt′d

/Nd

k ∈ std ∩ st′d

k ∈ std \ st′d

, (4.152)

zMR2
kt =

ykt + θ−1
tt′d(ykt′ − ykt)

ykt

k ∈ std ∩ st′d

k ∈ std \ st′d

, (4.153)

zMR3
kt =

ykt′

0
k ∈ std ∩ st′d

k ∈ std \ st′d

, (4.154)

zMRR
kt =


ykt′

ykt + 1−θtt′d

θtt′d

∑
k∈std∩st′d

dkt(ykt′ −ykt)∑
k∈std\st′d
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k ∈ std ∩ st′d

k ∈ std \ st′d

, (4.155)

with
τ̂MR1

yt′d
=

∑
k∈st′d

wMR 1
kt′ ykt′ , (4.156)

θtt′d =
∑

k∈std∩st′d

dkt/
∑

k∈std

dkt, (4.157)

and Nd as the size of stratum d. For the MR3 estimator the control total of the additional
variable has to be adjusted and is given by τ̂MR

zt
= ∑D

d=1 τ̂
MR3
yt′d

θ−1
tt′d. The formula of the RC

estimator remains as (4.148), only that now the adjusted formulas of the MR1 and MR2
auxiliaries are used.

4.4 Simulation

To evaluate the composite estimators for employment estimation under the Microcensus
design, we apply a design-based simulation study. The study aims at replicating the target
population, design, and estimation procedure of the German Microcensus as closely as
possible. We therefore use the RIFOSS dataset as the simulation population; the extension
of the RIFOSS dataset to include longitudinal employment categories is discussed in
Chapter 3. The performance evaluation of the estimators is conducted for both quarterly
and monthly estimates of employed and unemployed on the NUTS2-level. Three different
statistics are considered: Level, change to previous time point (change_t1), and change to
previous year (change_ty). In Section 4.3, we saw that there are two candidate overlaps
for composite estimators resulting from the Microcensus design. That is, the overlap of
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a quarter to the previous quarter (Q-1) with higher time proximity and lower overlap
magnitude and the overlap of a quarter to the same quarter the year before (Q-4) with lower
time proximity but higher overlap magnitude. We therefore not only compare different
composite estimators, but also evaluate whether the sample overlap to the previous quarter
or previous year is better suited in the Microcensus. For composite estimators, we not only
analyse which temporal overlap is best to use, but also at which regional level. To this
end, we examine the estimators with both auxiliary information at NUTS1 and NUTS2.

4.4.1 Simulation population

The RIFOSS dataset with longitudinal employment information is considered as the
simulation population. Chapter 3 gives a detailed description of how the data were
enriched with monthly employment categories according to the ILO definition. For the
simulation, we only use those observations from the RIFOSS dataset referring to persons in
their main residence. The RIFOSS dataset consists of about 82.5 million persons in their
main residence which are grouped in about 38 million households. The dataset enables
simulations of the Microcensus design in all its detail and regional depth. As can be seen
in Chapter 3, the monthly employment information in the RIFOSS dataset were generated
replicating the months of the years 2012-2014. Since the new Microcensus design has only
been used since 2020, we treat the data as if they represent years 2022-2024. We chose
2022-2024 as the number of weeks per quarter is more regularly distributed in 2022-2024
than e.g. in 2020-2022. In 2022-2024, all quarters contain 13 weeks. In 2020-2022, there
are quarters with 12, 13, and 14 weeks, which would require additional adjustments in the
sampling and estimation process.

The monthly and quarterly aggregates of employed and unemployed persons in the RIFOSS
dataset are given in Figure 4.1. On the aggregated level, the data show both seasonal
effects and a trend for employed and unemployed. There is a negative and positive trend for
the number of employed and unemployed persons respectively. On average, the percentages
of employment, unemployment, and not in labour force in the RIFOSS dataset, i.e. for
persons all ages, are 49.56%, 2.82%, and 47.61%. For persons aged 15 to 64 the percentages
are 73.6%, 4%, and 22.4%.

As discussed previously, the performance of the composite estimators for the estimation of
employed and unemployed is significantly influenced by the correlation of employment or
unemployment over time and the magnitude of the sample overlap used. From Section
4.3.3, we saw that the sample overlaps to one quarter before (Q-1) and one year before
(Q-4) both have interesting features for composite estimators in terms of time proximity
and magnitude of sample overlap. Table 4.3 shows the average employment transitions
from one quarter to others in the RIFOSS dataset. For example, 96% means that in the
RIFOSS dataset 96% of the persons which are employed in a quarter were also employed
the quarter before. The correlation of employment is high to Q-1, even to Q-4. For
unemployment, the correlation to Q-1 is moderate and decreasing significantly in time, it
is only at 40% for Q-4. The correlations shown in Table 4.3 are in line with other empirical
LFS data, e.g. Gambino et al. (2001).
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Figure 4.1: Employment aggregates in the simulation population

Table 4.3: Observations in RIFOSS population having the same employment status in
quarter Q and quarter Q-1 or Q-4 (in %)

Same status in Q and Employed Unemployed
Q-1 96% 65%
Q-4 91% 40%
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4.4.2 Simulation setup

The steps for the simulation are given in Algorithm 4.1. We will go through them step by
step.

Algorithm 4.1 Simulation steps
1. For r = 1, . . . , 4.000 do

a) Draw monthly samples from the RIFOSS population for 2022-2024 according
to the design of the German Microcensus.

b) For quarter q = 2022.q1, . . . , 2024.q4 do
i. Calculate the GREG estimator resulting in a set of weights.
ii. Calculate all composite estimators for all combinations of additional auxil-

iary information in Table 4.4. Each combination results in a set of weights.
iii. Calculate estimates of all quantities of interest, i.e. the cross-combinations

of the variables in Table 4.5 with the HT, the GREG, and the composite
estimators.

2. For all estimators ζ and all different statistics of interest γ (Table 4.5) calculate

RBias(γ̂ζ) = 100R−1
R∑

r=1

γ̂ζ(r) − γ

γ
, MSE(γ̂ζ) = R−1

R∑
r=1

(γ̂ζ(r) − γ)2

MSE. rel(γ̂ζ) = 100 MSE(γ̂ζ)
MSE(γ̂GREG) .

Table 4.4: Additional auxiliary information for composite estimators
Auxiliary information Details
Regional - Aux. NUTS1 16 NUTS1 regions resulting in 32 additional auxiliary

variables
- Aux. NUTS2 38 NUTS2 regions resulting in 76 additional auxiliary

variables
Time - Aux. Q-1 Using the overlapping sample of a quarter to the pre-

vious quarter
- Aux. Q-4 Using the overlapping sample of a quarter to the same

quarter a year before

In each simulation run a sample is drawn in accordance with the Microcensus sampling
design. For each sample, sequentially for each quarter in the data in 2022-2024, the HT and
GREG estimator are applied as baseline estimators. The estimators are applied similar
to the actual procedure in the German Microcensus, described e.g. in Afentakis and
Bihler (2005). Although we aim at reproducing the Microcensus procedure as closely as
possible, there are some deviations from the GREG calculation in the simulation study to
its Microcensus implementation. Auxiliary variables related to nationality and soldiers are
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Table 4.5: Quantities of interest
Level Values
Regional - 38 NUTS2 regions
Time - 12 quarters in 2022-2024

- 36 months in 2022-2024
Variable - Employed

- Unemployed
Measure - Level: Quarterly and monthly totals

- Change_t1: Change to previous time point (quarters: change from
one quarter to next quarter, months: change from one month to next
month)
- Change_ty: Change to previous year (quarters: change from one
quarter to the same quarter the year after, months: change from one
month to the same month the year after)

not available in the RIFOSS dataset and therefore not included as auxiliary information
in the GREG estimator. Since the employment status in the RIFOSS dataset is available
at a monthly, not a weekly, basis the simulation study is set up as if all months contained
the same number of weeks. Otherwise, with the interviews distributed evenly over the
weeks of a year, biased estimates would occur with monthly data. We do not simulate
any non-response and therefore do not apply any non-response adjustment. We calculate
the final weights of the GREG estimator using formula (4.131). In the Microcensus, an
additional iterative procedure is used to ensure non-negative weights (Afentakis & Bihler,
2005).

The composite estimators are all based on the baseline GREG estimator, i.e. the AK
estimator uses the GREG estimates as input and the MR estimators use the GREG
auxiliary information. We apply composite estimators MR1, MR2, MR3, MRR, RC
(α ∈ {0.25, 0.5, 0.75}), and the AK estimator. Three different versions of the AK composite
weighting are applied with the same parameters K and A for the estimation of employment
and unemployment, AK1 (K = 0.7, A = 0), AK2 (K = 0.4, A = 0), and AK3 (K = 0.4,
A = 0.05), similar to the parameters used in the U.S. CPS (U.S. Bureau of Labor Statistics,
2006, Chapter 10). For the composite estimators, the formulas of Section 4.3.4 are applied,
i.e. the formulas adjusted for regionally heterogeneous sample overlaps.

The composite estimators are calculated sequentially for the quarters of 2022-2024 as
they are recursive, compare Section 4.2.2. Table 4.4 displays the different versions of
auxiliary data each composite estimator is calculated with. The composite estimators are
applied using the overlap to the previous quarter Q-1 and the quarter in the previous year
Q-4 as these overlaps were shown to be the most promising ones, see Section 4.3.3. For
composite estimators, it is necessary to specify not only which sample overlap to use, but
also the regional level of the information. Using information on employed and unemployed
on NUTS1 (16 regions) results in 32 additional auxiliary variables. Using information
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on employed and unemployed on NUTS2 (38 regions) is more detailed, but results in
76 additional auxiliary variables which could lead to a distortion of the final weights.
Therefore, both NUTS1- and NUTS2-level information is investigated for both Q-1 and
Q-4 auxiliary information for composite estimators. Note that due to their recursive
nature, the composite estimators with sample overlap Q-1 can be calculated beginning in
the second quarter of 2022. With sample overlap Q-4, the composite estimators can be
calculated beginning in the first quarter of 2023. Before that, only HT/GREG estimates
can be calculated.

With each combination of auxiliary information in Table 4.4, we get a different vector
of quarterly calibration weights per estimator. With these final weights, all quantities
of interest are calculated for all estimators. As quantities of interest we consider all
cross-combinations of Table 4.5. Note that change_t1 is the month-to-month change and
quarter-to-quarter change when considering monthly and quarterly estimates respectively.
Equivalently, change_ty is the month to month in year before and quarter to quarter in
year before change when considering monthly and quarterly estimates respectively.

As evaluation metrics, we calculate the relative bias, RBias, and the relative MSE, MSE.rel.
MSE.rel is frequently used to assess the efficiency gains of a composite estimator over the
corresponding GREG estimator.

4.4.3 Overall performance

We first evaluate whether the proposed formulas of the composite estimators, which were
adjusted to account for regionally heterogeneous sample overlaps, give unbiased estimates
for quarterly employment statistics on NUTS2. Table 4.6 displays the average RBias of
the estimates for the levels, i.e. the totals, of employed and unemployed. The values are
the average values over the 38 NUTS2 regions and 12 quarters in 2022-2024. The different
columns refer to the different sets of additional auxiliary information used in the estimators,
i.e. sample overlap information from Q-1 or Q-4, on NUTS1 or NUTS2. The RBias of
the HT and GREG estimator resulting from the simulation lie within [−0.01, 0.00]. For
unemployment the RBias values are larger than for employment as there are substantially
fewer unemployed persons in the simulation population. Thus, the MC convergence rate
of the RBias is lower for unemployed and we expect that they become more similar with
more iterations. Only for the AK estimators the values of the RBias notably differ from
zero, especially for sample overlap Q-1. For the other estimators, the RBias is close to zero.
Therefore, we see no indication off a bias for the adjusted composite estimators (except
the AK). Although not shown here, we note that the original formulas of the composite
estimators gave significantly biased NUTS2-level estimates.

To get an overview of the performance of the different composite estimators, the mean
values of MSE.rel over the 38 NUTS2 regions and 12 quarters are shown in Tables 4.7,
4.8, and 4.9 for estimates of level, change_t1, and change_ty, for quarterly NUTS2-level
statistics. Values of MSE.rel smaller than 100 indicate that an estimator is more efficient
than the GREG estimator, values greater than 100 indicate it is less efficient.
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Table 4.6: Mean RBias (in %) of quarterly NUTS2-level estimates
(a) Employed
Additional auxiliaries
NUTS1 NUTS2

Q-1 Q-4 Q-1 Q-4
MR1 0.00 -0.01 0.00 -0.01
MR2 0.00 0.00 0.01 0.00
MR3 -0.01 0.00 0.00 0.00
MRR -0.04 -0.11 -0.02 0.00
RCα=0.25 0.00 -0.01 0.01 0.00
RCα=0.5 0.00 0.00 0.02 0.00
RCα=0.75 0.00 0.00 0.01 0.00
AK1 -0.30 -0.07 -0.32 -0.07
AK2 -0.11 -0.04 -0.11 -0.04
AK3 -0.10 -0.04 -0.11 -0.04

(b) Unemployed
Additional auxiliaries
NUTS1 NUTS2

Q-1 Q-4 Q-1 Q-4
MR1 0.00 -0.01 -0.01 -0.01
MR2 -0.09 -0.05 -0.23 -0.14
MR3 -0.01 0.00 -0.01 0.00
MRR -0.11 0.12 0.46 0.00
RCα=0.25 0.03 -0.01 0.07 -0.01
RCα=0.5 -0.04 -0.02 -0.09 -0.05
RCα=0.75 -0.07 -0.04 -0.18 -0.10
AK1 -0.31 -0.07 -0.33 -0.07
AK2 -0.11 -0.03 -0.12 -0.04
AK3 -0.11 -0.04 -0.12 -0.04

Table 4.7: Mean MSE.rel (in %) of quarterly NUTS2-level estimates
Employed
Additional auxiliaries
NUTS1 NUTS2

Q-1 Q-4 Q-1 Q-4
MR1 95 94 83 81
MR2 87 95 64 86
MR3 96 95 87 84
MRR 185 112 259 109
RCα=0.25 97 92 165 76
RCα=0.5 94 92 107 78
RCα=0.75 88 93 70 82
AK1 248 196 409 311
AK2 140 121 184 146
AK3 141 122 186 148

Unemployed
Additional auxiliaries
NUTS1 NUTS2

Q-1 Q-4 Q-1 Q-4
MR1 96 98 91 96
MR2 96 99 92 98
MR3 96 98 91 96
MRR 407 126 719 134
RCα=0.25 96 98 90 96
RCα=0.5 96 98 90 96
RCα=0.75 96 99 91 97
AK1 173 123 274 154
AK2 103 101 108 103
AK3 106 103 115 108
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Table 4.8: Mean MSE.rel (in %) of quarterly NUTS2 change_t1 estimates
Employed
Additional auxiliaries
NUTS1 NUTS2

Q-1 Q-4 Q-1 Q-4
MR1 95 94 82 79
MR2 72 97 24 91
MR3 95 94 84 82
MRR 74 111 25 116
RCα=0.25 83 92 54 76
RCα=0.5 76 93 32 80
RCα=0.75 73 95 24 86
AK1 264 201 449 320
AK2 161 122 228 147
AK3 160 124 226 151

Unemployed
Additional auxiliaries
NUTS1 NUTS2

Q-1 Q-4 Q-1 Q-4
MR1 96 98 91 96
MR2 91 100 80 100
MR3 96 98 91 96
MRR 120 127 133 142
RCα=0.25 92 99 81 97
RCα=0.5 91 99 79 98
RCα=0.75 91 100 79 99
AK1 110 127 123 162
AK2 95 102 87 106
AK3 95 105 89 112

Table 4.9: Mean MSE.rel (in %) of quarterly NUTS2 change_ty estimates
Employed
Additional auxiliaries
NUTS1 NUTS2

Q-1 Q-4 Q-1 Q-4
MR1 93 94 79 79
MR2 93 80 76 43
MR3 95 94 84 79
MRR 135 83 147 39
RCα=0.25 89 87 110 61
RCα=0.5 88 83 69 48
RCα=0.75 91 80 70 43
AK1 229 200 382 324
AK2 130 137 164 183
AK3 132 137 169 181

Unemployed
Additional auxiliaries
NUTS1 NUTS2

Q-1 Q-4 Q-1 Q-4
MR1 97 98 93 96
MR2 99 97 98 93
MR3 97 98 93 96
MRR 278 106 466 100
RCα=0.25 98 97 95 94
RCα=0.5 99 97 97 93
RCα=0.75 99 97 98 93
AK1 173 104 275 110
AK2 108 98 120 96
AK3 112 99 129 98
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We start analysing the results by looking at the overall performance of the composite
estimators in Tables 4.7, 4.8, and 4.9, i.e. for all different sets of sample overlap information.
Except for the MRR and AK estimators, the composite estimators show efficiency gains
over the GREG estimator for the different statistics of employment and unemployment
and different sets of sample overlap information. As expected, efficiency gains are generally
higher for employment than for unemployment estimation, expect for the AK estimators.
Especially for the estimation of change, the efficiency gains are significantly high, see the
MR2 and RC estimator with sample overlap Q-1. This is in line with other research on
composite estimators, e.g. Bell (2001) and Beaumont and Bocci (2005).

The performance of the AK estimators stands out. Only for certain sets of additional
auxiliary information they give efficiency gains over the GREG estimator, and that only
for the estimation of unemployment change. The AK3 (K = 0.4, A = 0.05) estimator
performs slightly worse than AK2 (K = 0.4, A = 0) estimator for most scenarios, which
can be attributed to the fact that there is no RGB in the simulation which would justify
choosing A different from zero. The AK1 (K = 0.7, A = 0) estimator performs much
worse than the AK2 (K = 0.4, A = 0) estimator, for both employment and unemployment.
This highlights the sensitivity of the performance of the estimator with respect to the
choice of K. In the present simulation study, for all scenarios and statistics where an AK
estimator yields efficiency gains over the GREG estimator, the efficiency gains from the
MR2 estimator are higher. The results are similar to those in Bell (2001, Section 6.1), where
the AK estimator (K = 0.7, A = 0.06) had higher standard errors than the MR estimators.
Also the design-based study in Bonnéry et al. (2020) showed that the performance of the
AK estimator is sensitive to the parameter choices. Since the other composite estimators
have better performance than the AK estimators, the AK estimators are not further
considered.

Both MR2 and MRR estimator emphasise the change observed from the overlapping
sample. The MR2 estimator performs similar to the MRR estimator for cases where
the MRR estimator is highly efficient, but performs significantly better for cases where
the MRR estimator is less efficient than the GREG estimator. It seems that the MRR
estimator is sensitive to the magnitude of the sample overlap as the performance varies
to a great extend when using additional auxiliary information from Q-1 versus Q-4. By
comparing the MR2 and MRR formulas (4.145) and (4.147), we see that in the MRR
estimator the auxiliary values are adjusted for the non-overlapping sample whereas in the
MR2 estimator they are adjusted for the overlapping sample. With small sample overlaps,
i.e. Q-1, there is more adjustment in the MRR than in the MR2 estimator. In Beaumont
and Bocci (2005) and Preston (2015), the MRR estimator performed well for change
estimation of employment and unemployment as well as level estimation of employment.
Also, the performance was more close to that of the MR2 estimator. The results of the
simulation study presented here emphasise that performance results from specific surveys
cannot be expected to be similar under another sampling design and that each application
requires an evaluation tailored to the specific design. The MRR estimator is not further
considered.

The MR1 and MR3 estimator show a similar performance. They are also close in their
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definition, only that in the MR1 estimator mean imputation is used for the non-overlapping
sample and in the MR3 estimator the control total is adjusted by the value of the sample
overlap. In both estimators the definition of the additional auxiliary information is based on
the observed levels in the previous sample. For all quantities of interest and combinations
of auxiliary information shown in Tables 4.7, 4.8, and 4.9, the MR1 performs better than
the MR3 estimator. Therefore, the MR3 estimator is not further considered.

4.4.4 Sample overlap information on NUTS1 versus NUTS2

The remaining estimators are the MR1, MR2, and the RC estimator. Apart from the RC
estimator with α ∈ {0.25, 0.5}, the estimators give efficiency gains for employment and
unemployment for both level and change estimation and all sets of additional auxiliary
information. The efficiency gains are generally higher when considering additional auxiliary
information from NUTS2 instead of from NUTS1. As we evaluate the estimators for
NUTS2-level statistics, we also expect NUTS2-level auxiliary information to give more
valuable information than NUTS1-level auxiliary information. The results indicate that
using the many NUTS2 auxiliary variables (76 additional auxiliary variables) does not
lead to a distortion of the resulting weights and should be preferred over NUTS1 auxiliary
variables. In the following, therefore only the results of the MR1, MR2, and the RC
estimator with NUTS2 auxiliary variables are considered.

4.4.5 Performance for single NUTS2 regions and quarters

The performance of the RC estimator with α ∈ {0.25, 0.5} in Table 4.7 for the level
estimates of employment are particularly striking. There, with additional auxiliary
information from Q-1, the RC estimator with α ∈ {0.25, 0.5} performs better with NUTS1
than with NUTS2 auxiliaries. To analyse these results, we display the performance for
quarterly NUTS2-level estimation for the single NUTS2 regions (average values over the
12 quarters) in Figure 4.2 and single time points (average values over 38 NUTS2 regions)
in Figure 4.3. The values in Table 4.7 correspond to the mean values over the quarters
and NUTS2 regions in Figures 4.2 and 4.3. Note that from Figure 4.2, we can also see
that the earliest possible calculation of the composite estimators with sample overlap Q-4
is the first quarter of 2023. With sample overlap Q-1, composite estimators can already
be calculated for the second quarter of 2022.

From Figures 4.2 and 4.3 we see that the performance of the MR1, MR2, and RCα=0.75
estimator is relatively constant across the quarters of 2022-2024 and the single NUTS2
regions. For the RC (α ∈ {0.25, 0.5}) estimator, however, with additional auxiliaries on
NUTS2 from Q-1, the performance of the employment level estimation is very noticeable.
The efficiency gains of the RC (α ∈ {0.25, 0.5}) estimator over the GREG estimator drift
away for proceeding quarters in Figure 4.2. Similar to the drift problem described in Fuller
and Rao (2001) for the MR2 estimator, the efficiency loss only applies to the estimation
of employment, not for unemployment. This indicates that it only appears when the
additional auxiliary information is highly correlated to the variable of interest, compare
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Figure 4.2: MSE.rel of quarterly NUTS2-level estimates, mean values over 38 NUTS2
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Table 4.3. Also Preston (2015) found indications of a potential drift problem for the RC
estimator. Contrary to the results in Fuller and Rao (2001) or Preston (2015), in the
presented figures only the RC (α ∈ {0.25, 0.5}) estimator shows this pattern, not the MR1,
MR2, or RCα=0.75 estimator. The results imply that the performance of the RC estimator
can be sensitive to the choice of α.

The performance of the RC (α ∈ {0.25, 0.5}) estimator also differs to a great extent for
the different NUTS2 regions as can be seen in Figure 4.3. In some NUTS2 regions, the
values of MSE.rel of the RC (α ∈ {0.25, 0.5}) estimator are significantly lower than in
others. The NUTS2 regions for which the performance is better are those where the
percentage of the LFS module is higher, leading to higher sample overlap to Q-1 than in
the other regions. This implies that not only the correlation of the variable of interest to
the additional auxiliary information, but also the magnitude of the sample overlap can
play an important role for the efficiency and sensitivity of the RC estimator and optimal
choice of α. Estimators RCα=0.25 and RCα=0.5 are not further considered.

4.4.6 Sample overlap information from Q-1 versus Q-4

Estimators MR1, MR2, and RCα=0.75 show a good performance for the different level and
change estimations with NUTS2 auxiliary information compared to the corresponding
GREG estimator. It remains to be analysed whether they perform better with sample
overlap information from Q-1 versus Q-4. Table 4.2 showed that the overlap to Q-1 gives
higher time proximity, but has a lower magnitude of overlap (≈ 27%), whereas Q-4 gives
lower time proximity, but has a higher magnitude of overlap (≈ 61%).

The performance of the MR1, MR2, and RCα=0.75 estimator with Q-1 versus Q-4 NUTS2-
level auxiliaries can be compared using the two right columns of Tables 4.7, 4.8, and 4.9. For
the estimation of levels and quarterly changes, the MR2 and RCα=0.75 estimator perform
best with sample overlap information from Q-1, both for employment and unemployment
estimation. The efficiency gains over the GREG estimator can be high for quarterly change
estimation. The values of MSE.rel of the MR2 estimator is only 24% for the estimation
of quarterly employment change. When, however, the focus is on yearly change, both
estimators perform better with Q-4 auxiliaries as then the additional auxiliaries are more
highly correlated to the statistic of interest.

For the MR1 estimator the picture is a bit different. With the MR1 estimator, the
estimation of employment statistics is more efficient using auxiliary information from Q-4,
the estimation of unemployment statistics is more efficient using auxiliary information
from Q-1. The MR1 estimator slightly outperforms the MR2 and RCα=0.75 estimator when
NUTS2-level sample overlap information from Q-4 is used, for level and quarterly change
estimation of employed and unemployed. This indicates that the magnitude of the sample
overlap effects the performance of the MR1 and MR2 estimator and that for the choice of
MR1 versus MR2 or RC the underlying sampling design and magnitude of sample overlap
should be considered.
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Overall, for level and quarterly change estimation of employed and unemployed on NUTS2,
we recommend the use of the MR2 and RCα=0.75 estimator with auxiliaries from Q-1 on
NUTS2. For the estimation of yearly change of employed and unemployed on NUTS2,
we recommend the use of the MR2 and RCα=0.75 estimator with auxiliaries from Q-4 on
NUTS2.

4.4.7 Performance of monthly estimation

As in the Microcensus, compare Afentakis and Bihler (2005), we applied the GREG
estimator quarter-wise in the simulation study. Similarly, also the composite estimators
were applied to quarterly sample data. The quarterly weights returned from the GREG
and the composite estimators can be used to calculate monthly estimates by adjusting
them for the relative number of weeks that each month represents in a given quarter. Table
4.10 shows the relative MSE of the monthly NUTS2-level estimates of the MR1, MR2,
and RCα=0.75 estimator. The estimators are shown for additional auxiliary information on
NUTS2 from Q-1 as this combination showed the best performance gains over the GREG
estimator in the previous analyses.

Although the estimators are always at least as efficient as the corresponding GREG
estimator, we see that the efficiency gains from using composite estimators are significantly
lower for monthly than for quarterly statistics. This suggests that the additional quarterly
auxiliary information in MR estimators is less suited for monthly than for quarterly
estimation. It also confirms the findings of the other presented applications of composite
estimators: They give efficiency gains especially for those variables which as used as the
key variables in composite estimators, compare e.g. Bell (2001). For other variables,
in this case the monthly quantities, the efficiency gains are small. Therefore, thorough
consideration should be given to which variables are important enough to be used as key
study variables.

Table 4.10: Mean MSE.rel (in %) of monthly NUTS2 estimates with additional auxiliaries
on NUTS2 from Q-1

Employed
Level Change_t1 Change_ty

MR1 99 100 99
MR2 98 99 99
RCα=0.75 98 99 98

Unemployed
Level Change_t1 Change_ty

MR1 98 100 98
MR2 98 98 99
RCα=0.75 97 99 99
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4.5 Summary and outlook

We evaluated the use of composite estimators for the production of employment statistics
under the new design of the German Microcensus. We started by presenting the formulas
of different composite estimators, the design and design changes in the Microcensus in
2020, and an analyses which sample overlap information available from the Microcensus
sampling design should be used in the composite estimators. After that, we presented
adjustments of the formulas of the composite estimators to account for the regionally
heterogeneous sample overlaps arising from the Microcensus design.

In a design-based simulation study, we compared the performance of the adjusted composite
estimators in a setting replicating the population and design od the Microcensus as well as
the production of employment estimates used in the survey. For that, the RIFOSS dataset
was used as the simulation population, see Chapter 3 for further details on the generation
of longitudinal employment information in this dataset. In the Microcensus there are two
candidate overlaps which can be used in composite estimators, the overlap to the previous
quarter (Q-1) and previous year (Q-4). Both options were studied in the simulation study,
on NUTS1- and NUTS2-level. The estimators were evaluated for quarterly and monthly
estimation of the levels, change to the previous time point (change_t1), and change to the
previous year (change_ty) of employed and unemployed at the NUTS2-level.

The simulation study showed that there is no systematic bias in the adjusted composite
estimators, which indicates that the presented adjustments of the formulas of the composite
estimators work as expected. Among the composite estimators, the MR1, MR2, and RC
(α = 0.75) estimator showed the best performance, in terms of MSE, for the different
estimation goals. The efficiency gains over the corresponding GREG estimator were
generally higher for the estimation of employment than for unemployment, higher for the
estimation of change_t1 than levels, and higher with NUTS2- instead of NUTS1-level
sample overlap information. Overall, the interest of LFSs is mostly in the estimation of
levels and recent changes. Based on the results of the simulation study, we recommend
the use of the MR2 and RCα=0.75 estimator for the Microcensus, using the NUTS2-level
auxiliaries based on the sample overlap to Q-1. The simulation study also showed that
we can only expect performance gains from the estimators for those variables that are
explicitly included as key study variables in the composite estimators. In the study, we
achieve significant performance gains in the quarterly estimates but only small performance
gains in the monthly estimates from composite estimators using quarterly sample overlap
information.

The simulation study revealed further interesting results. The performance of the RC
estimator was very sensitive with respect to the choice of α, indicating a kind of drift
problem which was not apparent for the MR1 or MR2 estimator. The analysis showed
that the sensitivity of the method is related to the magnitude of the sample overlap. Also
the different versions of the AK estimator were sensitive to the magnitude of the sample
overlap and performed worse than the corresponding GREG estimator for most quantities
of interest. Overall, the simulation study sheds light on the interplay of sampling design
and sample overlap for the performance of composite estimators. This was achieved in
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particular by examining not only their performance under a particular design, but also
under different sets of sample overlaps as auxiliary information. In other studies, generally
only a single sample overlap is studied with composite estimators.

In the design-based study we neither considered non-response nor potential differences
between rotation groups as there was no historic information available on the two under
the new German Microcensus design. In future research it would be interesting to see
how a potential RGB influences the performance of the estimators. Potential future
research also involves the investigation of variance estimation procedures for the composite
estimators.



Chapter 5

Empirical Best Prediction in Multivariate
Fay-Herriot Models

5.1 Introduction

In Chapter 4, we considered different design-based estimators for domain-specific em-
ployment estimation in the German Microcensus. The sample sizes in the considered
domains were large enough such that the designed-based methods provided accurate
estimates. However, if we were to consider finer and finer domains, e.g. estimates for
finer and finer territorial units, we would find that the variances of the design-based
methods become too large to call them accurate. That is, for ever smaller domains we run
into small area problems. Among others, area-level model-based small area methods like
the FH model, presented in Section 2.4.3, are designed for such problems and can give
more accurate domain estimates than classic design-based estimators at the cost of being
model-dependent.

In this chapter and the following Chapter 6 we present methodological developments of
multivariate versions of the FH model. With the methodological extensions, we address
two challenges that researchers face in practical applications of multivariate FH (MFH)
models. Namely, the prediction of arbitrary multi-variable domain indicators (in this
chapter) and dealing with partially missing direct estimates (in Chapter 6). The theory of
the two chapter can be combined to predict multi-variable domain indicators with MFH
models even for domains for which the corresponding multi-variable survey estimates are
partially missing.

With MFH models, several dependent variables can be modelled jointly. For example, one
can take the domain-specific totals of employed and unemployed persons as the dependent
variables in a MFH model. As the model explicitly considers the joint distribution of
the dependent variables, for many situation it leads to more precise predictions than the
corresponding univariate FH models.

In practical applications, frequently the interest is not in the domain-specific values of
different variables alone, but in arbitrary (potentially non-linear) indicators of these.
Again, consider the totals of employed and unemployed. The interest can be in the totals
themselves or non-linear combinations of them like the unemployment rate, which is defined
as the total number of unemployed divided by the sum of employed and unemployed, or
the relative difference of the two variables.

To compute survey estimates of such indicators, often plug-in estimators are used. That
is, estimates for the components of an indicator are plugged into its formula to get an

111
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estimate. Plug-in estimators, however, do not consider the joint distribution of the input
estimates, which can be inefficient. Furthermore, plug-in estimators are biased for non-
linear functions and asymptotic unbiasedness of plug-in estimators cannot be assumed for
small area problems with small sample sizes.

For small area problems, as an alternative to plug-in predictors, we examine the theory of
best predictors (BPs) of multi-variable domain indicators under MFH models. By definition,
the BPs are the predictors with minimum MSE in the class of all model-unbiased predictors
and therefore theoretically advantageous to the plug-in predictors. For general indicators,
the BPs of the MFH models are given by multi-dimensional integrals. As these integrals
do not have a closed-form solution, we consider different integral approximations and
compare the performance of the approximations to the performance of the corresponding
plug-in predictors.

The chapter is structured as follows. We briefly cover different techniques for approximating
multivariate integrals over the normal distribution in Section 5.2. The MFH model,
together with additional remarks and a literature overview, is presented in Section 5.3.
Based on the integration techniques of Section 5.2, we discuss different approaches for
approximating the BPs of general multi-variable domain indicators in MFH models in
Section 5.5. Furthermore, we present bootstrap approaches for their MSE estimation in
Section 5.6. The different approaches are evaluated in model-based simulation studies in
Section 5.7. In the studies, we also compare the performance of the BP approximations
to the performance of the corresponding plug-in predictors. In an illustrative application
to publicly available data from the Spanish LFS, we use the presented methodology to
predict unemployment rate in Spanish provinces crossed by sex and age classes in Section
5.8. The chapter closes with a summary and outlook in Section 5.9.

5.2 Integral approximation

In Section 5.5, we are interested in m-dimensional integrals over the m-variate normal
distribution. Formally, we are interested in m-dimensional integrals of the form∫

Rm
g(x)f(x)dx, (5.158)

where g : Rm → R is a continuous and bounded function, and f : Rm → R is the m-variate
normal density function with mean vector µ and covariance matrix Σ. Then, integral
(5.158) exists and is finite, i.e. |

∫
Rm g(x)f(x)dx| < ∞ holds. To name an example, we

will later consider the case of m = 2 and g as the unemployment rate which takes the
total number of employed and unemployed as input.

We assume that it is not analytically feasible to calculate (5.158) exactly. In the following,
we therefore briefly cover some basics of numerical integration, so-called quadrature
techniques, for approximating (5.158). The numerical integration techniques which we
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cover approximate the integral by a weighted sum of T function evaluations, i.e.
∫
Rm

g(x)f(x)dx ≈
T∑

t=1
wtg(xt). (5.159)

The points where the function is evaluated, xt ∈ Rm, are called nodes, with corresponding
weights wt ∈ R, t = 1 . . . , T .

We consider the integral approximation techniques Gauss-Hermite, Monte Carlo (MC), and
Quasi MC. In each method, the nodes and weight of the integral approximation (5.159) are
chosen differently. Gauss-Hermite quadrature can especially be used for low-dimensional
problems, provided that the function g can be well approximated polynomially. For higher-
dimensional problems and situations where little is known about the functional form of
g, MC and Quasi MC integration are more commonly used. As we provide a general
approach for approximating BPs for m-dimensional problems, we briefly cover all listed
methods. For a concrete application, choosing the appropriate approximation method
depends on the form of the concrete non-linear indicator of interest and its dimension. We
refer to Gentle (2003, p. 233) or Press et al. (2007, Section 4.8) for a general discussion of
the different multi-dimensional integration methods. González et al. (2006) compared the
methods under different dimensionalities in the context of logistic-normal models.

5.2.1 Gauss-Hermite quadrature

General form
Gauss-Hermite quadrature is a specific Gaussian quadrature method. We refer to Press
et al. (2007, Section 4.6) for general information on Gaussian quadrature methods. We
will see why Gauss-Hermite quadrature is particularly useful for integrating over the
normal distribution shortly. We start with one-dimensional integration, i.e. m = 1. In
Gauss-Hermite quadrature, we have (Davis & Rabinowitz, 1984, p. 222)

∫
R
g̃(x) exp

(
−x2

)
dx =

T∑
t=1

wtg̃(xt), (5.160)

where g̃ is a polynomial of degree 2T − 1. The nodes in (5.160) correspond to the roots of
the Hermite polynomial HT (x). Hermite polynomials HT (x) have the recurrence relation
(Davis & Rabinowitz, 1984, p. 41)

H0(x) = 1, H1(x) = 2x, HT +1(x) = 2xHT (x) − 2T HT −1(x). (5.161)

A detailed description of Hermite polynomials is given in Davis and Rabinowitz (1984,
Sections 1.12, 1.13) and Hochstrasser (1968). The weights wt of (5.160) are given by (Davis
& Rabinowitz, 1984, p. 224)

wt = 2T +1T !
√
π

(HT +1(xt))2 . (5.162)
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Press et al. (2007, pp. 185–186) present an algorithm for calculating the Gauss-Hermite
nodes and weights which exploits recurrence relations of Hermite polynomials and is
especially useful for large T . From the above formulas we see that the Gauss-Hermite
nodes and weights can be calculated independently from function g. They can therefore
be found in standard tables for various T , e.g. Davis and Polonsky (1968, Table 25.10).
The better the function of interest g can be approximated by polynomials of degree T , the
better the Gauss-Hermite quadrature approximates the integral (5.158).

Gauss-Hermite quadrature for specific normal distribution
Let us consider the univariate case, m = 1, and f as the density of a normal distribution
with mean µ and standard deviation σ. The integral which we are interested in is given
by

∫
R

1√
2πσ2

exp
(

−(y − µ)2

2σ2

)
g(y)dy. (5.163)

To apply Gauss-Hermite quadrature, we can transform (5.163) in accordance with the left
hand side of (5.160) . By applying the substitution rule, similar to e.g. Liu and Pierce
(1994), taking x = (y − µ)/

√
2σ ⇔ y =

√
2σx+ µ, and dy =

√
2σdx, we get∫

R

1√
2πσ2

exp
(
−x2

)
g(

√
2σx+ µ)

√
2σdx = 1√

π

∫
R

exp
(
−x2

)
g(

√
2σx+ µ)dx. (5.164)

Integral (5.163) can thus be approximated by Gauss-Hermite quadrature via

∫
R

1√
2πσ2

exp
(

−(y − µ)2

2σ2

)
g(y)dy ≈

T∑
t=1

w̃tg(x̃t), (5.165)

with x̃t =
√

2σxt + µ, and w̃t = π−0.5wt, t = 1, . . . , T . The xt and wt are the standard
Gauss-Hermite nodes and weights for T function evaluations. w̃t = π−0.5wt are also known
as normalized weights.

Multi-dimensional Gauss-Hermite quadrature
For multi-dimensional integrals such as (5.158), we can repeat the one-dimensional quadra-
ture over the different dimensions, according to the so-called product rule. We then have,
compare e.g. Cools (1997, p. 10),

∫
Rm

exp
(
−x>x

)
g(x)dx ≈

T∑
t1=1

· · ·
T∑

tm=1

m∏
k=1

wtk
g(xt1 , . . . , xtm). (5.166)

Next to the product rule, there exist various other techniques for multivariate numerical
quadrature like sparse grids. We only consider the product rule and refer to Cools (1997,
2002) and Stroud (1971) for alternative methods. When we consider T evaluations for
each dimension, we end up with a total of Tm evaluations in multivariate quadrature with
product rule. Therefore, for higher-dimensional integrals, the use of (Quasi) MC methods
is often preferred. These are described in Sections 5.2.2 and 5.2.3.
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Multi-dimensional Gauss-Hermite quadrature for m-variate normal distribution

For a concrete m-dimensional multivariate normal distribution with mean vector µ and
covariance matrix Σ, we are interested in approximating an integral∫

Rm

1
(2π)m/2 det(Σ)1/2 exp

(
−1

2(y − µ)>Σ−1(y − µ)
)
g(y)dy. (5.167)

We can again apply a substitution of the integration variable to get to the Gauss-Hermite
quadrature form. For that we need a decomposition of the covariance matrix Σ in the form
Σ = LL>, where L is an m×m matrix, like the Cholesky decomposition, e.g. described
in Press et al. (2007, p. 378), or the eigen-decomposition, e.g. described in Wood (2017,
B.9).

We take x = 2−0.5L−1(y − µ) ⇔ y =
√

2Lx + µ, note that
√

det(Σ) = | det(L)| and
dy =

√
2| det(L)|dx and get∫

Rm

1
(2π)m/2 det(Σ)1/2 exp

(
−1

2(y − µ)>Σ−1(y − µ)
)
g(y)dy

=π−m/2
∫
Rm

exp
(
−x>x

)
g(

√
2Lx+ µ)dx.

(5.168)

Integral (5.158) can thus be approximated by Gauss-Hermite quadrature with product rule
via ∫

Rm

1
(2π)m/2 det(Σ)1/2 exp

(
−1

2(y − µ)>Σ−1(y − µ)
)
g(y)dy

≈
T∑

t1=1
· · ·

T∑
tm=1

m∏
k=1

w̃tk
g(x̃t1,...,tm)

(5.169)

with w̃tk
= π−m/2wtk

, x̃t1,...,tm =
√

2L(xt1 , . . . , xtm)+µ, weights wtk
and nodes xtk

from the
univariate Gauss-Hermite quadrature, t = 1, . . . , T , k = 1, . . . ,m. This product formula
for Gauss-Hermite quadrature for a specific multivariate normal distribution is e.g. used
in Wu et al. (2006) and Judd et al. (2011).

5.2.2 Monte Carlo integration

MC integration is a numerical integration technique which gives unbiased estimates of
integrals, independent from the concrete functional form of g. It is especially useful for
higher-dimensional integrals and when the function g cannot be well approximated by
polynomials. Another advantage of MC integration is that it is always possible draw more
random numbers until the convergence of the approximation is satisfactory. This is not
possible for the Gauss-Hermite quadrature as the weights and nodes depend on the chosen
number of function evaluations T . In Gauss-Hermite quadrature, the nodes for a chosen
number of function evaluations T̃ cannot be reused for any other T̃ 6= T .
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MC integration is based on random numbers. The integral in (5.158) over the m-variate
normal density f with mean vector µ and covariance matrix Σ can be approximated via
MC integration as

T−1
T∑

t=1
g(xt), xt ∼ Nm(µ,Σ), t = 1, . . . , T. (5.170)

The formula corresponds to (5.159) with weights wt = 1/T , t = 1, . . . , T , and random
draws from the multivariate normal distribution f as nodes xt. The approximation error
is of order O(1/

√
T ). That is, if we want to half the MC approximation error, we have to

multiply the number of function evaluations T by four (Gentle, 2003, p. 233).

We refer to Gentle (2007) and Press et al. (2007, Chapter 7) for information on random
number generation for specific distributions and the features of the algorithms. In this
thesis, we use R package baseR with functions runif and rnorm whenever we use random
numbers from the uniform and normal distribution respectively. To generate multivariate
normal draws from univariate normal draws, Algorithm 5.1 can be used. The algorithm is
based on Press et al. (2007, Section 7.8), who also present a proof.

Algorithm 5.1 Generation of realisations from multivariate normal distribution
The aim is to have n random numbers from a specific m-multivariate normal distribution
with mean vector µ ∈ Rm and m×m covariance matrix Σ.

1. Take a vector of random numbers x̃ iid∼ N(0, 1) of length m× n.
2. With x̃, form a n×m matrix X̃ of arbitrary order.
3. Calculate (Cholesky or eigenvalue-) decomposition Σ = LL>.
4. Take X = LX̃ + µ.

The resulting X is a matrix of n random realisations from the desired m-variate normal
distribution.

Antithetic variates
In the standard MC integration, we aim for independently and identically distributed
random numbers. To reduce the variance of the approximation, there exist several
approaches which use correlated values as integration nodes. An overview of these variance
reduction techniques is for example given in Gentle (2003, section 7.5). Here, we only
consider antithetic variates as a variance reduction technique. The following description is
based on Gentle (2003, p. 245).

When integrating over a symmetric distribution like the normal or uniform distribution,
we can use the symmetry to reduce the variance of the MC integral approximation. That
is, for each random draw, we define an antithetic variate corresponding to the symmetric
counterpart of that random draw. With antithetic variates, only T/2 random draws have to
be generated to get T function evaluations. For T function evaluations, the approximation
of (5.158) with MC and antithetic variates is calculated as

T−1
T/2∑
i=1

(g(xt) + g(x̃t)), xt ∼ Nm(µ,Σ), x̃t = 2µ− xt, t = 1, . . . , T/2. (5.171)



Chapter 5 EBPs in Multivariate Fay-Herriot Models 117

Following the description in Gentle (2003, p. 246), the variance of approximation (5.171)
is the variance of a sum. The variance of a sum of two elements equals the variance of
the summands plus two times the covariance, compare e.g. (4.133). The covariance of the
nodes and their antithetic variates is negative. Therefore, antithetic variates lead to a
variance reduction of MC quadrature.

5.2.3 Quasi Monte Carlo integration

MC integration is based on random numbers, which simulate random processes. Especially
for a small to medium number of function evaluations T it can happen that, by chance,
the generated values are not evenly spaced. For example, samples from two independent
uniform distributions can by chance be clustered on a unit-cube. We already saw that we
can reduce the MC variance by taking into account the symmetry of the uniform or normal
distribution with the use of antithetic variates. With the standard normal distribution,
using antithetic variates ensures that the mean of the random numbers plus antithetic
variates is equal to zero.

The idea of correlated numbers is taken even further with quasi-random numbers. We
base our description of quasi-random numbers on Gentle (2003, Chapter 3). The idea of
quasi-random numbers is to define algorithms which produce sequences of values which,
on the unit cube, are maximally apart from each other and thereby span the unit cube
more evenly than random numbers would. The resulting sequences are referred to as
low-discrepancy sequences. A particular advantage of these sequences compared to Gauss-
Hermite is that we can always produce additional values of a quasi-random sequence when
we want to increase the number of function evaluations T . That is, when T is increased,
the already produced quasi-random numbers can be re-used. There is no stochastic element
in quasi-random numbers, they are deterministic. For general overview of quasi-random
number theory and different quasi-random sequences and their algorithms, we refer to
Press et al. (2007, Section 7.8), Gentle (2003, Chapter 3), and the references therein.

In this chapter, we consider the Halton sequence (Halton, 1960) and the Sobol sequence
(Sobol’, 1967, 1976) for quasi-random number generation. The algorithms for generating
these sequences are e.g. given in Press et al. (2007, Section 7.8). The sequences are
implemented in standard statistical software, e.g. the R (R Core Team, 2020) package
fOptions (Wuertz et al., 2017).

Figure 5.1 displays 200 random numbers and numbers from the Halton and Sobol sequence,
all for both the bivariate uniform distribution in interval [0, 1] and the standard bivariate
normal distribution. For the random numbers with antithetic variates, the first 100 values
are the random numbers, the rest 100 values are their antithetic variates. Especially when
we focus on the unit cube, we see that the random numbers, by chance, tend to cluster and
the quasi-random numbers span the grid more evenly. Focusing on the standard bivariate
normal, we see that the antithetic variates ensue that the values are placed symmetrically
around the origin, compared to the completely random numbers. We can furthermore
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see that both the Halton and Sobol sequence result in different sets of quasi-random
numbers.

For higher-dimensional problems, we note that Gentle (2003, p. 95) recommended not to
use the Halton sequence. Furthermore, we refer to the studies in Jäckel (2002, Chapter 8),
who compared different quasi-random sequences for high-dimensional finance applications.
We only consider low-dimensional integrals in this chapter. The unemployment rate as a
function of employment and unemployment, for example, requires the approximation of a
two-dimensional integral only.
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Figure 5.1: 200 (quasi-)random numbers
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5.3 Multivariate Fay-Herriot model

5.3.1 Model

Multivariate models are those in which not one, but several dependent variables are modelled
simultaneously. Instead of a joint multivariate model, one can also calculate separate
univariate models for each dependent variable. However, a joint modelling approach
comes with several advantages, e.g. listed in Snijders and Bosker (2012, Section 16.1). If
the dependent variables are sufficiently correlated, a joint modelling approach can result
in more precise parameter estimates and predictions than the corresponding univariate
models. A multivariate analysis allows to make inferences about the covariance structure of
the dependent variables such as in-group variances. There are also research questions where
the focus is on the simultaneous effect of some auxiliary variables on several dependent
variables; only a multivariate analysis is suitable then. In Sections 5.4 and 5.5, we use
the joint distribution of the dependent variables to give best predictions of multi-variable
indicators.

We presented the (univariate) FH model as a special kind of a LMM with block-diagonal
covariance structure in Section 2.4.3. A multivariate FH (MFH) model is a FH model
which takes into account multiple dependent variables. The MFH model was introduced
by Datta et al. (1991) and Fay (1987) and further investigated by Benavent and Morales
(2016). A detailed description of the model for the case of two dependent variables, also
called bivariate FH model, was given in Morales et al. (2021, Chapter 19). In the following,
we describe the MFH model, based on Benavent and Morales (2016).

Let U be a finite population which can be partitioned into D domains U1, . . . , UD,
µd = (µd1, . . . , µdm)> be a vector of m characteristics of interest in domain d, and
yd = (yd1, . . . , ydm)> be a vector of the corresponding m direct estimates of µd, calculated
by using the data of the target survey sample, d = 1, . . . , D.

The multivariate Fay-Herriot model is defined in two stages. The first stage indicates that
direct estimators yd are unbiased and follow the sampling model

yd = µd + ed, d = 1, . . . , D, (5.172)

where the vectors ed = (ed1, . . . , edm)> ∼ Nm(0,Ved) are independent with known covari-
ance matrices Ved ∈ Rm×m. The covariance matrices Ved of direct estimators yd are given
by

Ved =


σ2

ed1 σed12 · · · σed1m

σed12 σ2
ed2 · · · σed2m

... ... . . . ...
σed1m σed2m · · · σ2

edm

 , d = 1, . . . , D. (5.173)

The diagonal elements of Ved correspond to the variances of the m direct estimators,
σedab = ρedab

√
σ2

edaσ
2
edb is the sampling error covariance of variables a and b with sampling

error correlation ρedab, a, b = 1, . . . ,m, a 6= b.
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In the second stage, for domain d = 1, . . . , D, the true domain characteristic µdk is assumed
to be linearly related to pk explanatory variables, k = 1, . . . ,m. We define p = ∑m

k=1 pk as
the total number of explanatory variables for all m target variables. The domain-specific
aggregates of the pk explanatory variables for µdk are given by xdk = (xdk1, . . . , xdkpk

)>,
k = 1, . . . ,m. For every domain, we can combine the auxiliary information of the m
dependent variables into a m×p block-diagonal auxiliary matrixXd = diag

(
x>

d1, . . . ,x
>
dm

)
,

which is assumed to be of full rank. Let βk = (βk1, . . . , βkpk
)> ∈ Rpk contain the regression

parameters for µdk, k = 1, . . . ,m, and let β = (β>
1 , . . . ,β

>
m)> ∈ Rp be the vector of fixed

effects for all m characteristics.

The linking model is

µd = Xdβ + ud, ud = (ud1, . . . , udm)> ∼ Nm(0,Vud), d = 1, . . . , D, (5.174)

where random effects ud and sampling errors ed are independent and vectors ua and ub

are independent, a, b = 1, . . . , D, a 6= b.

The covariance matrix of the random effects Vud ∈ Rm×m depends on q = m (m+ 1) /2
variance parameters, consisting of m variances and m (m− 1) /2 covariances. It is given
by

Vud =


σ2

u1 ρ12σu1σu2 · · · ρ1mσu1σum

ρ12σu1σu2 σ2
u2 · · · ρ2mσu2σum

... ... . . . ...
ρ1mσu1σum ρ2mσu2σum . . . σ2

um

 , (5.175)

where σ2
ua denotes the random effects variance of variable a and ρab denotes the random

effect correlation of variables a and b, a, b = 1, . . . ,m, a 6= b. The vector of variance
parameters is denoted by

θ = (σ2
u1, σ

2
u2, . . . , σ

2
um, ρ12, ρ13, . . . , ρ23, ρ24, . . . , ρm−1,m)> ∈ Rq. (5.176)

The first m elements of θ correspond to the random effect variances, the q − m last
elements correspond to the random effect correlations.

The covariance matrix Vud given by formula (5.175) is an unspecified covariance matrix
with q = m (m+ 1) /2 unknown parameters. Depending on the data, it can make sense
to further specify the matrix and thereby restrict the number of unknown parameters.
For example, in the context of MFH models, Benavent and Morales (2016) specified Vud

according to an auto-regressive process. Models with a specified covariance matrix are
nested within the model with unspecified Vud. Therefore, they can be compared via
likelihood ratio tests (Littell, 2002, p. 482). We refer to Littell et al. (2004) for some
examples of specifications of Vud. In this thesis we only consider unspecified covariance
matrices Vud.

Taking together the sampling and linking model, the MFH model can be expressed as a
single model in the form

yd = Xdβ + ud + ed, d = 1, . . . , D, (5.177)
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or in matrix form
y = Xβ + u+ e, (5.178)

with

y = col
1≤d≤D

(yd) ∈ RmD, u = col
1≤d≤D

(ud) ∈ RmD,

e = col
1≤d≤D

(ed) ∈ RmD, X = col
1≤d≤D

(Xd) ∈ RmD×p.
(5.179)

The MFH model (5.177) is a generalisation of the bivariate, trivariate, and multivariate
Fay-Herriot models studied by Burgard et al. (2021c), Esteban et al. (2020), and Benavent
and Morales (2016) respectively. Under model (5.177), it holds that y ∼ Nm(Xβ,V ) with
covariance matrix V = Vu + Ve = diag

1≤d≤D
(Vd) ∈ RmD×mD, where

Vu = diag
1≤d≤D

(Vud), Ve = diag
1≤d≤D

(Ved), Vd = Vud + Ved, d = 1, . . . , D. (5.180)

For the variance components, Lemma 5.1 gives a useful relationship.

Lemma 5.1. It holds that

VudV
−1

d = (V −1
ed + V −1

ud )−1V −1
ed , d = 1, . . . , D (5.181)

Proof. By applying the inversion formula

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1, (5.182)

with A = V −1
ed , C = V −1

ud , B = D = Im, where Im is the m×m identity matrix, we have(
V −1

ed + V −1
ud

)−1
= Ved − Ved(Vud + Ved)−1Ved = Ved − VedV

−1
d Ved. (5.183)

Therefore

(V −1
ed + V −1

ud )−1V −1
ed =

(
Ved − VedV

−1
d Ved

)
V −1

ed = Im − VedV
−1

d (5.184)
= (Vd − Ved)V −1

d = VudV
−1

d , d = 1, . . . , D. (5.185)

5.3.2 Parameter estimation

The vector of model parameters is ψ = (β>,θ>)> ∈ Rp+q. For estimating ψ, we can
use the ML or REML approach with a Fisher-Scoring algorithm as described in Section
2.4.2.

In Chapter 6, we present the Fisher-Scoring algorithm for the MFH model under partially
missing direct estimates (MMFH). When there are no missing direct estimates, the MMFH
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model reduces to the MFH model. Therefore, the algorithms presented in Section 6.5 can
also be used for the MFH model and we refrain from repeating the formulas here.

5.3.3 Prediction

Proposition 5.1. The conditional distribution of ud given yd is multivariate normal with
with mean vector and variance matrix

E
[
ud|yd;β,θ

]
= ΦdV

−1
ed (yd −Xdβ) = VudV

−1
d (yd −Xdβ), (5.186)

Var(ud|yd;β,θ) = Φd =
(
V −1

ed + V −1
ud

)−1
= VudV

−1
d Ved, (5.187)

d = 1, . . . , D.

Proof. We recall that the kernel of the m-variate normal probability density function for
variables Ỹ1, . . . , Ỹm with mean µ̃ and covariance matrix Σ̃ is

f(ỹ|µ̃, Σ̃) = 1

(2π)m/2 det
(
Σ̃
)1/2 exp

{
− 1

2(ỹ − µ̃)>Σ̃−1(ỹ − µ̃)
}

∝ exp
{

− 1
2 ỹ

>Σ̃−1ỹ + µ̃>Σ̃−1ỹ
}
.

(5.188)

The conditional distribution of ud given yd, for d = 1, . . . , D, is then given by

f(ud|yd)
∝ f(yd|ud)f(ud)

= 1
(2π)m/2 det(Ved)1/2 exp

{
− 1

2(yd −Xdβ − ud)>V −1
ed (yd −Xdβ − ud)

}

· 1
(2π)m/2 det(Vud)1/2 exp

{
− 1

2u
>
d V

−1
ud ud

}

∝ exp
{

− 1
2u

>
d V

−1
ed ud + u>

d V
−1

ed (yd −Xdβ)
}

exp
{

− 1
2u

>
d V

−1
ud ud

}
= exp

{
− 1

2u
>
d

(
V −1

ed + V −1
ud

)
ud + u>

d Φ−1
d

(
Φd V

−1
ed (yd −Xdβ)

)}
.

(5.189)

Therefore, f(ud|yd) is a multivariate normal distribution with parameters

E
[
ud|yd;β,θ

]
= Φd V

−1
ed (yd −Xdβ) (5.190)

Var(ud|yd;β,θ) =
(
V −1

ed + V −1
ud

)−1
= Φd. (5.191)

This and Lemma 5.1 complete the proof.
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If β and θ are known, the best predictors (BP) of u and µ under the MFH model are

ûBP = E
[
ud|yd;β,θ

]
= VuV

−1(y −Xβ), (5.192)
µ̂BP = Xβ + ûBP. (5.193)

If θ is known and β is unknown, the best linear unbiased estimator (BLUE) of β and the
best linear unbiased predictor (BLUP) of u and µ = Xβ + u are

β̂BLUE = (X>V −1X)−1X>V −1y, (5.194)
ûBLUP = VuV

−1(y −Xβ̂BLUE), (5.195)
µ̂BLUP = Xβ̂BLUE + ûBLUP. (5.196)

By substituting θ by a consistent estimator θ̂, we obtain the empirical BLUE (EBLUE)
of β and the empirical BLUP (EBLUP) of u and µ = Xβ + u, i.e.

β̂ = (X>V̂ −1X)−1X>V̂ −1y, (5.197)
ûEBLUP = V̂uV̂

−1(y −Xβ̂), (5.198)
µ̂EBLUP = Xβ̂ + ûEBLUP, (5.199)

where V̂u = Vu(θ̂) and V̂ = V̂u + Ve are obtained by plugging θ̂ in the place of θ.

5.3.4 Mean squared error

In the MFH model, we consider a vector of characteristics of interest µd of length m in
each domain d = 1, . . . , D. The MSE of the EBLUPs of µd are therefore given by an
m × m MSE matrix, which is often referred to as the matrix of mean squared crossed
errors. The diagonal of the matrix corresponds to the MSEs of the single characteristics.
The derivation of the matrix for some classes of MFH models is given in Benavent and
Morales (2016). Morales et al. (2021, Chapter 19) gave a detailed description of the MSEs
of the bivariate FH model. We note that the MSE matrix can also be derived from the
formulation of LMMs with block-diagonal covariance matrices presented in Section 2.4.2,
by rewriting (2.27) for m ≥ 2 characteristics of interest.

For the MSE matrix, we recall that the vector of variance parameters θ is of length q. The
formulas of the MSE matrix in Morales et al. (2021, Chapter 19) are given for bivariate
FH models, i.e. m = 2. For general m ≥ 2, MSE approximation (2.72) becomes

MSE
(
µ̂EBLUP

)
≈ G1 (θ) +G2 (θ) +G3 (θ) (5.200)
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with

G1 (θ) = T , (5.201)
G2 (θ) = (X − TV −1

e X)Q(X> −X>V −1
e T ), (5.202)

G3 (θ) =
q∑

a=1

q∑
b=1

Cov(θ̂a, θ̂b)L(a)V L(b)>, (5.203)

T = Vu − VuV
−1Vu, Q = (X>V −1X)−1, (5.204)

L = ∂VuV
−1

∂σ2
u

, L(a) = (ImD − VuV
−1)∂Vu

∂θa

V −1, a = 1, . . . , q. (5.205)

ImD is the mD × mD identity matrix. The MSE approximation (5.200) is of order
O(D−1)mD×mD. The covariances Cov(θ̂a, θ̂b), a, b = 1, . . . , q, depend on the estimation
method, in Section 2.4.2 they are displayed for ML and REML estimators.

Similar to formula (2.78), based on Datta and Lahiri (2000) and Prasad and Rao (1990),
an estimator of the MSE matrix is given by

M̂SE
(
µ̂EBLUP

)
= G1

(
θ̂
)

+G2
(
θ̂
)

+ 2G3
(
θ̂
)
, (5.206)

where θ̂ is the vector of the q likelihood-based variance parameter estimates. In this
chapter, we focus on parameter and MSE estimation via REML. For parameter estimation
via ML, an additional bias term has to be considered, similar to (2.79). We refer to Datta
and Lahiri (2000) for more information on the bias correction for ML.

5.3.5 Literature review and remarks

In the class of area-level small area models, multivariate Fay-Herriot models have received
more attention in recent years. The MFH model was introduced in Fay (1987) and further
studied by Benavent and Morales (2016), Datta et al. (1996), Datta et al. (1991), and
Ghosh et al. (1996). The studies showed that the multivariate model can give predictions
with lower MSE than the corresponding univariate models when the dependent variables
are sufficiently correlated. Since then, there were many different contributions to MFH
models of which we will list some, without being exhaustive.

González-Manteiga et al. (2008) evaluated different analytical and bootstrap MSE approx-
imations for a special case of MFH models. Benavent and Morales (2016) proposed MSE
estimators for general MFH models and compared different MFH model specifications. A
detailed description of the theory of bivariate FH models was given in Morales et al. (2021,
Chapter 19). Esteban et al. (2020) introduced area-level compositional mixed models by
applying transformations to a MFH model.

MFH models are commonly used for time-series data, i.e. the dependent variables in the
model correspond to one variable at different time points. Esteban et al. (2012) considered
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MFH time models for poverty indicators. Benavent and Morales (2021) studied a bivariate
FH model with independent time effects. Furthermore, Marchetti and Secondi (2017) and
Ubaidillah et al. (2019) used MFH models for the prediction of household consumption
expenditures. Porter et al. (2015) considered MFH models with latent spatial dependencies.
Huang and Bell (2004, 2012) empirically investigated bivariate FH models for SAIPE
poverty estimation.

Many research contributions were also made to consider different kinds of measurement
errors in the covariates of FH models. Ybarra and Lohr (2008) investigated measurement
errors in (univariate) FH models. In Lohr and Ybarra (2002) and Ybarra and Lohr (2008),
the authors showed the connection of the resulting measurement error model to MFH
models. Their model was further extended by Burgard et al. (2020b) for the univariate and
Burgard et al. (2021a) for the bivariate case. Arima et al. (2017) considered measurement
errors in MFH models using a Bayesian approach. Krause et al. (2022) proposed robust
estimation in the presence of measurement errors for generalised versions of MFH models.

In the following, we give two additional remarks for the MFH model which help to
understand certain results of the simulation studies which are presented in Section 5.7.

Remark 5.1. Special case: β̂EBLUE and β̂BLUE coincide in the FH model.

Consider the (univariate) FH model. It corresponds to the MFH model with m = 1
dependent variable and is described in Section 2.4.3. We consider the case σ2

ed = σ2
e ,

d = 1, . . . , D, i.e. the sampling error variance is the same in all domains. In that case,
β̂EBLUE and β̂BLUE coincide in the FH model. To see that, compare formula (2.84), where
term 1/(σ2

ed + σ2
u) cancels out when σ2

ed = σ2
e , d = 1, . . . , D. Note that this remark only

holds for the FH, not the MFH model.

Remark 5.2. Special case: FH and MFH model give the same predictions of random
effects ud.

Consider m = 2 dependent variables and the special case σ2
u1 = σ2

u2, σ2
ed1 = σ2

ed2, σ2
ed1 = σ2

e1,
d = 1, . . . , D, ρu = ρe = ρ. That is, the random effects variances of the two variables
of interest coincide, the sampling error variances are the same in all areas and for both
variables of interest, the random effects and sampling error correlation coincide. In that
case, we can rewrite the variance matrices as follows

Vud =
(

σ2
u1 ρσu1σu1

ρσu1σu1 σ2
u1

)
=
(
σ2

u1 ρσ2
u1

ρσ2
u1 σ2

u1

)
, (5.207)

Ved =
(

σ2
e1 ρσe1σe1

ρσe1σe1 σ2
e1

)
=
(
σ2

e1 ρσ2
e1

ρσ2
e1 σ2

e1

)
, (5.208)

Vd = Vud + Ved =
(

σ2
u1 + σ2

e1 ρ (σ2
u1 + σ2

e1)
ρ (σ2

u1 + σ2
e1) σ2

u1 + σ2
e1

)
, (5.209)

V −1
d = 1

det(Vd)

(
σ2

u1 + σ2
e1 −ρ (σ2

u1 + σ2
e1)

−ρ (σ2
u1 + σ2

e1) σ2
u1 + σ2

e1

)
, d = 1, . . . , D. (5.210)
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In this special case, the off-diagonal elements of VudV
−1

d are zero. For example, take the
upper-right element of VudV

−1
d ,

(VudV
−1

d )(1,2) = σ2
u1 (−ρ (σ2

u1 + σ2
e1)) + ρσ2

u1 (σ2
u1 + σ2

e1)
det(Vd) = 0. (5.211)

In this special case, the BLUP formulas of the random effects in the FH (2.85) and MFH
model (5.195) give the same results.

The remark shows that also for non-zero random effects and sampling error correlations,
there are special cases in which the MFH model does not give efficiency gains over the
corresponding FH models. For illustration, we have shown the remark for the case of
m = 2 variables. It can, however, be readily extended to the general multivariate case
with m ≥ 2 variables.

5.4 Empirical best prediction of linear domain
indicators

In Section 5.3, we considered the prediction of the µd ∈ Rm. We now take into account a
more general concept and consider that the domain parameters of interest take the form

Gd = Gd(ud,β) = g(µd), d = 1, . . . , D, (5.212)

where g : Rm 7→ R is a function.

We first consider the case where Gd corresponds to a linear function in ud and β such
that g is a linear function in µd. For example, take a MFH model where the dependent
variables are the domain totals of employed and unemployed persons. Assume our domain
parameter of interest is the sum of employed and unemployed and g : R2 7→ R. We can
then simply plug-in the output of the MFH model to calculate (empirical) BLUPs of Gd

and their MSE estimates as shown in Remark 5.3.

Remark 5.3. When Gd is a linear function in ud and β, the domain parameters of interest
take the form

Gd = Gd(ud,β) = g(µd) = λ>µd + α, d = 1, . . . , D, (5.213)

with λ ∈ Rm and α ∈ R such that g : Rm 7→ R is linear function in µd, d = 1, . . . , D. By
the linearity of expectation, see e.g. Dekking et al. (2005, p. 137), it holds that

E[λ>µd + α] = λ> E[µd] + α, d = 1, . . . , D. (5.214)

The BLUP of Gd is given by

ĜBLUP
d = g(µ̂BLUP

d ) = λ>µ̂BLUP
d + α, d = 1, . . . , D. (5.215)
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The EBLUP of Gd is obtained by substituting µ̂BLUP in (5.199) for µ̂EBLUP (5.193) and
given by

ĜEBLUP
d = g(µ̂EBLUP

d ) = λ>µ̂EBLUP
d + α, d = 1, . . . , D. (5.216)

Likewise, an estimator of MSE(ĜEBLUP
d ) = E

[
(ĜEBLUP

d −Gd)2
]

is given by

M̂SE(ĜEBLUP
d ) = λ>M̂SE(µ̂EBLUP

d )λ, (5.217)

where M̂SE(µ̂EBLUP
d ) is given by (5.206).

Thus, when the target domain parameters are given by a linear function of µd, the
predictions ĜEBLUP

d and MSE estimates M̂SE(ĜEBLUP
d ), d = 1, . . . , D, can be directly

calculated from the output of the MFH model.

5.5 Empirical best prediction of non-linear domain
indicators

Consider again that the domain parameters of interest take the form

Gd = Gd(ud,β) = g(µd), d = 1, . . . , D, (5.218)

where g : Rm 7→ Rm is a function. In contrast to Section 5.4, we now assume that we
cannot simplify Gd any further and that it corresponds to a general, potentially non-linear,
function in ud and β. Consequently, g is a general, potentially non-linear, function in
µd.

The best predictor (BP) of Gd is

ĜBP
d = Eψ[Gd|yd] =

∫
Rm

Gd(ud,β)fψ(ud|yd) dud, d = 1, . . . , D. (5.219)

The EBP of Gd is obtained by substituting ψ = (β>,θ>)> by a consistent estimator in
(5.219), like the ML/REML estimator. The EBP of Gd is

ĜEBP
d = Eψ̂[Gd|yd] =

∫
Rm

Gd(ud, β̂)fψ̂(ud|yd) dud, d = 1, . . . , D. (5.220)

In practice, instead of approximating the integral form of Gd, often plug-in predictors are
used. We denote the best plug-in predictor (BI) as

ĜBI
d = Gd(ûBLUP

d ,β) = g(µ̂BLUP
d ), d = 1, . . . , D. (5.221)

The empirical BI (EBI) of Gd is obtained by substituting µ̂BLUP
d and β by µ̂EBLUP

d and
consistent estimator β̂ and given by

ĜEBI
d = Gd(ûEBLUP

d , β̂) = g(µ̂EBLUP
d ), d = 1, . . . , D. (5.222)
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Note that although we use the term best, the quantities ĜBI
d and ĜEBI

d are not defined
according to the LMM theory from Section 2.4.2, where term best is used to denote MSE
optimality. Rather, we chose the terms to allow for easier comparison of plug-ins to
BPs. From (5.221) and (5.222), we see that the plug-in predictors do not take the joint
distribution of the domain random effects into account and, in general, we have ĜBI

d 6= ĜBP
d ,

d = 1, . . . , D.

The m-dimensional integral (5.219) of the BPs is, in general, not analytically calculable.
We therefore approximate it with the techniques presented in Section 5.2. To simplify the
description of the integral approximations, we use the same notation for the actual BPs,
i.e. with their integral form, and the approximated BPs. Formally, we denote both by
ĜBP

d , d = 1, . . . , D. We proceed in the same way for the EBPs and approximated EBPs.
Recall that in practice, we only calculate the approximated (E)BPs.

The integral ĜBP
d (5.219) can be presented in different forms. Table 5.1 shows the different

variants of (5.219) which we consider in the following, namely I1, I2, and I3. For the EBP,
the same formulas can be used, substituting ψ = (β>,θ>)> by a consistent estimator. For
the integral forms I1, I2, and I3, we can apply the approximation methods presented in
Section 5.2. They are listed in Table 5.2, together with the abbreviations which we hereafter
use for them. In Simulation 1, we investigate the performance of the cross-combinations
of the approximation methods in Table 5.2 and integral forms in Table 5.1.

The application of the integral approximation methods of Table 5.2 is very similar for
integral forms I1, I2, and I3 of Table 5.1. We therefore illustrate them only for integral
form I1 in Algorithms 5.2, 5.3, 5.4, and 5.5. For the algorithms, note that for fψ(ud|yd)
we have

µud|yd
(β,θ) = Vud(θ)V −1

d (θ)(yd −Xdβ), (5.227)
Vud|yd

(θ) = Vud(θ)V −1
d (θ)Ved, d = 1, . . . , D. (5.228)
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Table 5.1: Integral forms of ĜBP
d

I1 We consider the integral form in (5.219)

ĜBP
d =

∫
Rm

Gd(ud,β)fψ(ud|yd) dud, d = 1, . . . , D. (5.223)

I2 For the conditional distribution it holds that

fψ(ud|yd) = fψ(ud,yd)
fψ(yd) = fψ(yd|ud)fθ(ud)

fψ(yd) , d = 1, . . . , D. (5.224)

We can therefore rewrite the BP of Gd as
ĜBP

d =
∫
Rm

Gd(ud,β)fψ(yd|ud)fθ(ud)
fψ(yd) dud

=
∫
Rm Gd(ud,β)fψ(yd|ud)fθ(ud) dud

fψ(yd)

=
∫
Rm Gd(ud,β)fψ(yd|ud)fθ(ud) dud∫

Rm fψ(yd|ud)fθ(ud) dud

= Ad(yd,β,θ)
Bd(yd,β,θ) , d = 1, . . . , D.

I3 The denominator in formula (5.1) is fψ(yd) and we have
yd ∼ Nm(Xdβ,Vd). Therefore, we have additional integral form

ĜBP
d = det(Vd)1/2

det(Ved)1/2
Ad(yd,β,θ)
Cd(yd,β,θ) , d = 1, . . . , D, (5.225)

where

Cd(yd,β,θ) = (2π)m/2 det(Vd)1/2fψ(yd) = exp
(

− 1
2r

>
d V

−1
d rd

)
. (5.226)

Compared to I2, in integral form I3, we only have to approximate an
integral in the nominator, not the denominator.

Table 5.2: Integral approximation techniques
Name Approximation technique
GH Gauss-Hermite quadrature (Section 5.2.1, Algorithm 5.2)
MC Monte Carlo integration (Section 5.2.2, Algorithm 5.3)
MCA Monte Carlo integration with antithetic variates (Section 5.2.2, Algorithm 5.4)
QMCH Quasi Monte Carlo integration with Halton sequence (Section 5.2.3, Algorithm

5.5)
QMCS Quasi Monte Carlo integration with Sobol sequence (Section 5.2.3, Algorithm

5.5)
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Algorithm 5.2 Gauss-Hermite quadrature (GH) for I1

Choose T ∈ N+.
For d = 1, . . . , D do

1. Take decomposition Vud|yd
(θ) = LdL

>
d and

zd = 2−0.5L−1
d (ud − µud|yd

) ⇐⇒ ud =
√

2Ldzd + µud|yd
, such that

ĜBP
d = π−m/2

∫
Rm

Gd(
√

2Ldzd + µud|yd
,β) exp

(
− z>

d zd

)
dzd.

2. Approximate

ĜBP
d ≈

T∑
t1=1

· · ·
T∑

tm=1
π−m/2Gd(z̃t1 , . . . , z̃tm)

m∏
k=1

wtk
,

with z̃t1 , . . . , z̃tm =
√

2Ld(zt1 , . . . , ztm)> +µud|yd
, where ztk

and wtk
are the standard

Gauss-Hermite nodes and weights for chosen T , k = 1, . . . ,m, t = 1, . . . , T .

Algorithm 5.3 Monte Carlo integration (MC) for I1

Choose T ∈ N+.
For d = 1, . . . , D do

1. For t = 1, . . . , T do
a) Draw random numbers u(t)

d
iid∼ Nm(µud|yd

(θ),Vud|yd
(θ)).

b) Calculate G(t)
d = Gd(u(t)

d ,β).
2. Approximate ĜBP

d ≈ T−1
T∑

t=1
G

(t)
d .

Algorithm 5.4 Monte Carlo integration with antithetic variates (MCA) for I1

Choose T ∈ N+.
For d = 1, . . . , D do

1. For t = 1, . . . , T do
a) Draw random numbers u(t)

d
iid∼ Nm(µud|yd

(θ),Vud|yd
(θ)).

b) Set antithetic variates u(T +t)
d = 2µud|yd

(β,θ) − u(t)
d .

c) Calculate G(t)
d = Gd(u(t)

d ,β), G(T +t)
d = Gd(u(T +t)

d ,β).
2. Approximate ĜBP

d ≈ 2T−1 2T∑
t=1

G
(t)
d .
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Algorithm 5.5 Quasi Monte Carlo integration (QMC) for I1

Choose T ∈ N+.
For d = 1, . . . , D do

1. For t = 1, . . . , T do
a) Take the values u(t)

d of the Halton/Sobol sequence which correspond to
Nm(µud|yd

(θ),Vud|yd
(θ)).

For that, we use R (R Core Team, 2020) functions rnorm.sobol and
rnorm.halton from the fOptions package (Wuertz et al., 2017). The sequences
are adjusted to a specific m-variate normal distribution using Algorithm 5.1.

b) Calculate G(t)
d = Gd(u(t)

d ,β).
2. Approximate ĜBP

d ≈ T−1
T∑

t=1
G

(t)
d .

5.6 Mean squared error of non-linear domain
indicators

5.6.1 Parametric bootstrap for MSE

The MSE of the approximations of ĜEBP
d cannot be given analytically for general functional

forms of Gd. Instead, we propose a parametric bootstrap estimator for estimating the
MSE of ĜEBP

d , MSE(ĜEBP
d ) = E

[
(ĜEBP

d −Gd)2
]
. For estimating the MSE, we calculate

the ML/REML estimates β̂ and θ̂ by using the observed data (yd,Xd), d = 1, . . . , D, and
run the following Algorithm 5.6.

Algorithm 5.6 Parametric bootstrap for estimating the MSE of ĜEBP
d

1. For b = 1, . . . , B, B ∈ N+, do
a) For d = 1, . . . , D do

i. Generate u∗(b)
d ∼ Nm(0, V̂u), e∗(b)

d ∼ Nm(0,Ved).
ii. Calculate

y
∗(b)
d = µ

∗(b)
d + e∗(b)

d , µ
∗(b)
d = Xdβ̂ + u∗(b)

d ,

G
∗(b)
d = g(µ∗(b)

d1 , . . . ,µ
∗(b)
dm ).

(5.229)

b) By using the bootstrap data (y∗(b)
d ,Xd), d = 1, . . . , D, calculate

i. ML/REML estimates β̂∗(b) and θ̂∗(b),
ii. EBPs ĜEBP ∗(b)

d . For the approximation, use one of the techniques of Table
5.2 with one of the integral forms of Table 5.1 under the MFH model
(5.229).

2. For d = 1, . . . , D, calculate M̂SE
∗
1d = B−1

B∑
b=1

(
Ĝ

EBP ∗(b)
d −G

∗(b)
d

)2
.
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5.6.2 Parametric bootstrap for a component of the MSE

We note that the MSE of ĜEBP
d can be divided into two parts. The MSE contains integrals

with respect to the joint probability density function f(yd,ud) = f(ud|yd)f(yd). Note
that we have

Gd = Gd(ud,β), (5.230)
ĜBP

d = ĜBP
d (yd,β,θ), (5.231)

ĜEBP
d = ĜBP

d (yd, β̂, θ̂) = ĜEBP
d (yd), d = 1, . . . , D. (5.232)

We can rewrite the MSE of ĜEBP
d as

E
[
(ĜEBP

d −Gd)2
]

= E
[(

(ĜEBP
d − ĜBP

d ) + (ĜBP
d −Gd)

)2
]

= E
[(
ĜEBP

d − ĜBP
d

)2
]

︸ ︷︷ ︸
=S1d

+ E
[(
ĜBP

d −Gd

)2
]

︸ ︷︷ ︸
=S2d

, d = 1, . . . , D. (5.233)

As E
[
Gd|yd

]
= ĜBP

d , in the above formulas the cross-moment term is

E
[
(ĜEBP

d − ĜBP
d ) + (ĜBP

d −Gd)
]

= Eyd

[(
ĜEBP

d − ĜBP
d

)
E
(
ĜBP

d −Gd|yd

)]
= 0. (5.234)

As an alternative to Algorithm 5.6, we propose an independent estimation of the terms S1d

and S2d in (5.233). We calculate the ML/REML estimates β̂ and θ̂ by using the observed
data (yd,Xd), d = 1, . . . , D, and run Algorithm 5.7 for the estimation of S1d in (5.233).

Algorithm 5.7 Parametric bootstrap for estimating S1d in (5.233)
1. For b = 1, . . . , B, B ∈ N+, do

a) For d = 1, . . . , D do
i. Generate u∗(b)

d ∼ Nm(0, V̂u), e∗(b)
d ∼ Nm(0,Ved).

ii. Calculate
y

∗(b)
d = µ

∗(b)
d + e∗(b)

d , µ
∗(b)
d = Xdβ̂ + u∗(b)

d . (5.235)

b) By using the bootstrap data (y∗(b)
d ,Xd), d = 1, . . . , D, calculate

i. ML/REML estimates β̂∗(b) and θ̂∗(b),
ii. BPs ĜBP ∗(b)

d and EBPs ĜEBP ∗(b)
d . For the approximation, use one of the

techniques of Table 5.2 with one of the integral forms of Table 5.1 under
model (5.235).

2. For d = 1, . . . , D calculate Ŝ∗
1d = B−1

B∑
b=1

(
Ĝ

EBP ∗(b)
d − Ĝ

BP ∗(b)
d

)2
.
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The second summand in (5.233) is

S2d = E
[(
ĜBP

d −Gd

)2
]

= Eyd

[
E
((
Gd − ĜBP

d

)2
|yd

)]
= Eyd

[
Var

(
Gd|yd

)]
. (5.236)

In integral form, we have

S2d =
∫
Rm

( ∫
Rm

(
ĜBP

d −Gd

)2
f(ud|yd) dud

)
︸ ︷︷ ︸

= Sinner
2d

f(yd) dyd. (5.237)

We calculate the ML/REML estimates β̂ and θ̂ by using the observed data (yd,Xd),
d = 1, . . . , D, and run the following Algorithm 5.8 to approximate S2d. In Algorithm 5.8,
we use a nested GH technique to approximate the nested integral of (5.237). Alternatively,
also (Quasi) MC integration could be used to approximate S2d.

Finally, an estimator of the MSE of ĜEBP
d is

M̂SE
∗
2d = Ŝ∗

1d + Ŝ2d. (5.238)

For higher-dimensional integrals, Algorithm 5.8, might get too demanding because of the
double integral. For the estimation of S2d, we therefore propose an additional estimator
which only approximates the inner integral in (5.237). To put it differently, we avoid
approximating the double integral by estimating an expected value (expectation with
respect to f(yd)) with observed values. The inner integral is

Sinner
2d = Var

(
Gd|yd

)
=
∫
Rm

(
Gd − ĜBP

d

)2
f(ud|yd) dud, ĜBP

d = E
[
Gd|yd

]
. (5.239)

We use the procedure for calculating approximation Ŝinner
2d in Algorithm 5.8 with observed yd

and set Ŝinner
2d = Ŝinner

2d (yd). To put it differently, we only apply the inner GH approximation
of Algorithm 5.8 with observed yd. Finally, an estimator of the MSE of ĜEBP

d is

M̂SE
∗
3d = Ŝ∗

1d + Ŝinner
2d . (5.240)
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Algorithm 5.8 Nested GH quadrature for estimating S2d in (5.233)
For d = 1, . . . , D do

1. Take decomposition V̂d(θ̂) = PdP
>
d and

zd = 2−0.5P−1
d (yd −Xdβ̂) ⇐⇒ yd =

√
2Pdzd +Xdβ̂, such that

S2d =
∫
Rm

( ∫
Rm

(
ĜBP

d −Gd

)2
f(ud|yd) dud

)
︸ ︷︷ ︸

= Sinner
2d

f(yd) dyd

= π−m/2
∫
Rm

Sinner
2d (

√
2Pdzd +Xdβ̂) exp

(
−z>

d zd

)
dzd

2. Calculate approximation

Ŝ2d =
T∑

t1=1
· · ·

T∑
tm=1

π−m/2Ŝinner
2d (z̃t1 , . . . , z̃tm)

m∏
k=1

wtk
,

with z̃t1 , . . . , z̃tm =
√

2Pd(zt1 , . . . , ztm)> + Xdβ̂, where ztk
and wtk

and are the
standard GH nodes and weights for chosen T ∈ N+, k = 1, . . . ,m, t = 1, . . . , T .
Ŝinner

2d = Ŝinner
2d (yd) is approximated as follows, based on (5.227) and (5.228).

a) Take decomposition V̂ud|yd
(θ̂) = LdL

>
d and

cd = 2−0.5L−1
d (ud − µud|yd

) ⇐⇒ ud =
√

2Ldcd + µud|yd
, such that

ĜBP
d = π−m/2

∫
Rm

Gd(
√

2Ldcd + µud|yd
, β̂) exp

(
− c>

d cd

)
dcd.

b) Calculate approximation

Ŝinner
2d =

R∑
r1=1

· · ·
R∑

rm=1
π−m/2(Gd(c̃r1 , . . . , c̃rm) − ĜEBP

d )2
m∏

k=1
vrk

with c̃r1 , . . . , c̃rm =
√

2Ld(cr1 , . . . , crm)> +µud|yd
, where crk

and vrk
and are the

standard GH nodes and weights for chosen R ∈ N+, k = 1, . . . ,m, r = 1, . . . , R.
The EBPs ĜEBP

d in Ŝinner
2d are the EBP predictions from the MFH model,

calculated using one of the techniques of Table 5.2 with one of the integral
forms of Table 5.1.
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5.7 Simulation

We proposed different approximations of ĜBP
d and ĜEBP

d and the MSE of ĜEBP
d . In the

following, we evaluate the different approaches in simulation studies and compare the
performance of the proposed approximations of ĜBP

d and ĜEBP
d to the performance of the

corresponding plug-in predictors ĜBI
d and ĜEBI

d .

The parameter settings of the simulation studies are inspired by the illustrative application
which we present in Section 5.8. We consider a bivariate FH (BFH) model, i.e. a
MFH model with m = 2 dependent variables, and take the percentages of employed and
unemployed as the dependent variables in the model. Our domain parameter of interest
is the unemployment rate which is given by the percentage of unemployed divided by
the sum of the percentages of employed and unemployed. The unemployment rate is an
example of a multi-variable non-linear domain indicator. Formally, under the BFH model,
the domain-specific unemployment rates are given by

Rd = Rd(ud,β) = µd1

µd1 + µd2
= x>

d1β1 + ud1

x>
d1β1 + ud1 + x>

d2β2 + ud2
, d = 1, . . . , D, (5.241)

where µd1 and µd2 are the percentages of unemployed and employed respectively.

5.7.1 Simulation setup

We use the following simulation setup for all of the following simulation studies 1, 2, 3,
and 4. Consider the particular bivariate Fay-Herriot (BFH) model

yd = Xdβ + ud + ed, d = 1, . . . , D, (5.242)

the parameters of which we set in the following.

We consider one auxiliary variable plus intercept for both dependent variables in the
model. Therefore, p1 = p2 = 2, p = p1 + p2 = 4. Set β1 = (β11,β12)> = (0, 0.2)>,
β2 = (β21,β22)> = (0.6, 0.2)>, β = (β>

1 ,β
>
2 )>.

The auxiliary information is generated once and remains fixed throughout the iterations
of the simulations. For d = 1, . . . , D, we take Xd = diag(x>

d1,x
>
d2)2×4, xd1 = (xd11, xd12)>,

xd2 = (xd21, xd22)>, xd11 = xd21 = 1. Generate xd12 = Ud1, Ud1
ind∼ Unif(0.49, 0.51),

xd22 = Ud2, Ud2
ind∼ Unif(0.49, 0.51), where Unif is the uniform distribution.

The random effects ud and the sampling errors ed, d = 1, . . . , D, of the model are generated
in each iteration of the simulations. We take ud ∼ N2(0,Vud) and ed ∼ N2(0,Ved) with

Vud =
(

σ2
u1 ρuσu1σu2

ρuσu1σu2 σ2
u2

)
, Ved =

(
σ2

e1 ρeσe1σe2
ρeσe1σe2 σ2

e2

)
, d = 1, . . . , D,

(5.243)
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where σu1 = σu2 = 0.012, σe1 = σe2 = 0.014. The variance components are given by vector
θ of length 3 with θ1 = σ2

u1, θ2 = σ2
u2, and θ3 = ρ12 = ρu.

Correlations are crucial when working with multivariate models. In the simulations, we
therefore consider different values of random effects correlation ρu and sampling error
correlation ρe. For the proportions of unemployed and employed, we would expect both
random effects and sampling errors to be negatively correlated. Therefore, especially
scenario ρe = ρu = −0.5 is of interest.

The above parameter configurations generate y1d and y2d as the proportions of unemployed
and employed people in domain d. The proportions of unemployed, employed, and inactive
people resulting from the simulation setting are around 0.1, 0.7 and 0.2, respectively. This
implies unemployment rates around 0.125 (12.5%).

5.7.2 Simulation 1: Integral approximations of R̂BP
d

Research question
We proposed different approximations of ĜBP

d in Section 5.5. In this simulation, we want
to see which integral approximation, given by the cross-combinations of the integral form
(Table 5.1) and approximation technique (Table 5.2), works best for the unemployment
rate Rd. The best working combination is then used for the follow-up simulations.

To have a fair comparison between GH, MC, MCA, QMCH, and QMCS, we compare their
performance for similar numbers of function evaluations e. For GH, we can only have
squared numbers of function evaluations because of the product formula. For MCA, we
can only have even numbers of function evaluations because of the antithetic variates.
To give an example, with e = 100 function evaluations, we calculate the following. GH
is calculated with 10 nodes and weights for each of the two dimensions. MC, QMCH,
and QMCS are calculated with 100 (quasi-)random numbers. MCA is calculated with 50
random numbers and the corresponding 50 antithetic variates.

Simulation settings
The focus of this simulation is purely on the approximation of Rd as defined in (5.241). We
therefore choose D = 1 to focus on a single domain and use the true values ψ = (β>,θ>)>

in the predictions. We conduct the simulation via Algorithm 5.9. The only randomness
considered in this simulation is from generating random effects ud and sampling errors ed

in each iteration. We simulate the data with random effects correlation ρu = −0.5 and
sampling error correlation ρe ∈ {−0.5, 0, 0.25}.

Results
We evaluate the results for scenario ρu = ρe = −0.5. In the Appendix A.1, the results are
displayed for ρu = −0.5 and sampling error correlation ρe ∈ {0, 0.25}. The conclusions are
quite similar to the conclusions under ρe = −0.5.

For the plug-in predictors R̂FH,BI
d and R̂BI

d the ARBias (in %) is 0.03 and 0.03 and the
RRMSE (in %) is 8.83 and 8.83 respectively. With Remark 5.2, we see why R̂FH,BI

d and
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Algorithm 5.9 Steps of Simulation 1
The steps of Simulation 1 are

1. Generate xdk, d = 1, k = 1, 2.
2. For i = 1, . . . , I, I = 1, 000, do

a) Generate u(i)
d ∼ N2(0,Vud), e(i)

d ∼ N2(0,Ved).
b) For d = 1, . . . , D, calculate

µ
(i)
d = Xdβ + u(i)

d , R
(i)
d = µ

(i)
d1

µ
(i)
d1 + µ(i)

d2
, y

(i)
d = Xdβ + u(i)

d + e(i)
d .

c) With two marginal FH models, known θ and β, calculate, k = 1, 2,

û
FH,BP(i)
dk = σ2

uk

σ2
uk + σ2

ekd

(
y

(i)
dk − xdkβk

)
, µ̂

FH,BP(i)
dk = xdkβk + û

FH,BP(i)
dk ,

R̂
FH,BI(i)
d = µ̂

FH,BP(i)
d1

µ̂
FH,BP(i)
d1 + µ̂

FH,BP(i)
d2

.

d) With the BFH model, known θ and β, calculate

û
BP(i)
d = VudV

−1
d

(
y

(i)
d −Xdβ

)
, µ̂

BP(i)
d = Xdβ + ûBP(i)

d ,

R̂
BI(i)
d = µ̂

BP(i)
d1

µ̂
BP(i)
d1 + µ̂

BP(i)
d2

.

e) Approximate R̂BP(i)
d by the integral forms of Table 5.1 and the approximation

techniques given in Table 5.2.
3. For d = 1, . . . , D, R̂(i)

d ∈ {R̂FH,BI(i)
d , R̂

BI(i)
d , R̂

BP(i)
d }, calculate

ARBiasd = 100 |I−1∑I
i=1(R̂

(i)
d −R

(i)
d )|

|I−1∑I
i=1 R

(i)
d |

, RRMSEd = 100

(
I−1∑I

i=1(R̂
(i)
d −R

(i)
d )2

)1/2

|I−1∑I
i=1 R

(i)
d |

.



Chapter 5 EBPs in Multivariate Fay-Herriot Models 138

R̂BI
d give the same predictions in this simulation scenario and therefore also the same

values of ARBias and RRMSE.

The ARBias (in %) and RRMSE (in %) of the different approximation techniques and
integral forms are given in Tables 5.3 and 5.4. Note the case of e = 24/25 function
evaluations. In this case, we use 25 function evaluations for GH (product formula) and 24
function evaluations for the other approximation techniques.

For 40, 000 function evaluations, the different approximation techniques and integral forms
give very similar results. Comparing the different integral forms, the approximations
work best for I1, both in terms of ARBias and RRMSE. Comparing the approximation
techniques, GH gives the best and most stable results for different integral forms and a small
number of function evaluations. Comparing MC and MCA, the use of the antithetic variates
reduces the variance of the Monte Carlo integration for most considered cases. Comparing
QMCH and QMCS, the performance difference between the Halton and Sobol sequences
are rather small. Comparing the integration using quasi-random numbers in QMCH and
QMCS with random numbers in MC and MCA, the RRMSE under quasi-random numbers
is often smaller, see e.g. the RRMSE for I3 and small e.

Comparing the plug-in predictors with GH under I1, the ARBias of GH is lower, already for
e = 16 function evaluations, and we see no difference in the RRMSE. This is consistent with
the theory as the BPs are derived to be best (minimal MSE) in the class of model-unbiased
predictors. The plug-in predictors are not model-unbiased, but theoretically can exhibit a
smaller RRMSE. In the following simulations, we use GH with I1 and e = 25 function
evaluations for approximating R̂BP

d and R̂EBP
d . Especially for the MSE approximation by

bootstrap, it is advantageous to have only few function evaluations.
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Table 5.3: ARBias (in %), ρe = −0.5
Number of function evaluations e

Int. Approx. 16 24/25 100 400 2,500 10,000 40,000
MC 0.01 0.03 0.02 0.04 0.02 0.02 0.01
MCA 0.01 0.01 0.01 0.01 0.01 0.01 0.01

I1 GH 0.01 0.01 0.01 0.01 0.01 0.01 0.01
QMCH 0.51 0.49 0.20 0.07 0.03 0.02 0.01
QMCS 0.65 0.10 0.06 0.06 0.02 0.01 0.01
MC 0.03 0.10 0.02 0.02 0.01 0.01 0.02
MCA 0.10 0.10 0.08 0.01 0.01 0.01 0.01

I2 GH 0.02 0.01 0.01 0.01 0.01 0.01 0.01
QMCH 0.40 0.40 0.16 0.06 0.02 0.02 0.01
QMCS 0.44 0.13 0.05 0.04 0.02 0.01 0.01
MC 0.91 1.12 0.28 0.14 0.08 0.04 0.04
MCA 0.50 0.95 0.29 0.39 0.04 0.00 0.01

I3 GH 0.03 0.00 0.01 0.01 0.01 0.01 0.01
QMCH 1.21 1.08 0.36 0.09 0.03 0.01 0.01
QMCS 1.26 0.08 0.33 0.13 0.03 0.01 0.01

Table 5.4: RRMSE (in %), ρe = −0.5
Number of function evaluations e

Int. Approx. 16 24/25 100 400 2,500 10,000 40,000
MC 9.16 9.04 8.88 8.84 8.84 8.83 8.83
MCA 8.83 8.83 8.83 8.83 8.83 8.83 8.83

I1 GH 8.83 8.83 8.83 8.83 8.83 8.83 8.83
QMCH 8.85 8.85 8.84 8.83 8.83 8.83 8.83
QMCS 8.86 8.83 8.83 8.83 8.83 8.83 8.83
MC 9.35 9.18 8.99 8.90 8.83 8.84 8.84
MCA 9.39 9.17 8.95 8.82 8.84 8.84 8.84

I2 GH 8.85 8.83 8.83 8.83 8.83 8.83 8.83
QMCH 8.95 9.00 8.86 8.84 8.84 8.83 8.83
QMCS 9.02 8.94 8.89 8.85 8.83 8.83 8.83
MC 32.93 27.00 15.51 10.92 9.14 8.87 8.84
MCA 38.93 29.71 13.98 10.99 9.16 8.89 8.86

I3 GH 8.88 8.83 8.83 8.83 8.83 8.83 8.83
QMCH 20.37 17.07 10.72 9.07 8.87 8.84 8.84
QMCS 19.48 14.16 10.75 9.12 8.85 8.84 8.84



Chapter 5 EBPs in Multivariate Fay-Herriot Models 140

5.7.3 Simulation 2: EBPs and plug-in predictors

Research question
Simulation 2 evaluates the performance of the plug-in predictors from two marginal
FH models and the BFH model against the performance of the proposed BFH EBP
approximations of the unemployment rates Rd. For approximating the EBPs of the
unemployment rates, we use GH quadrature with a total of 25 function evaluations and
integral form I1 because of its good performance in Simulation 1. The different predictors
and approximations are compared for different combinations of sampling error and random
effect correlations ρe and ρu.

Simulation settings
We take D = 200 domains, correlations ρe ∈ {−0.5, 0, 0.25}, ρu ∈ {−0.75, −0.5, −0.25, 0,
0.25, 0.5, 0.75}, and conduct the simulation via Algorithm 5.10.

Results
Tables 5.5, 5.6, and 5.7 present the simulation results, i.e. the RBIAS, ARBias, and
RRMSE of the different predictions of the unemployment rates for different combinations
of sampling error and random effect correlation.

Let us first compare the plug-in predictors based on the FH and BFH model. The plug-
ins of the BFH model give better results than the plug-ins of the FH models, for most
scenarios, especially in terms of RRMSE. There are two reasons for that. First, the BFH
model takes into account the joint distribution of the two dependent variables which, in
most applications, leads to more efficient estimates of β and θ. Second, it gives more
efficient predictions of µd, d = 1, . . . , D. For that, consider also the additional material to
Simulation 1 in Appendix A.1, where the true parameters β and θ were used. There, with
ρu = −0.5 and ρe ∈ {0, 0.25}, the BFH plug-in has lower RRMSE than the FH plug-in.

We compare the BFH plug-in and the approximation of the EBP of Rd by GH quadrature
in Tables 5.5, 5.6, and 5.7. Approximating the EBP results in lower RBias and ARBias
and very similar RRMSE compared to the BFH plug-in, for most scenarios. Because of the
lower bias, approximating REBP

d is to be preferred over the BFH plug-in predictor. The
approximation also needs only e = 25 function evaluations and is therefore computationally
not much more complex than the plug-in predictor.

Comparing the different correlation scenarios, mainly we see differences between the
FH and BFH plug-in for varying correlations. When sampling error and random effect
correlation are of high magnitude and opposite sign, the gains of using the BFH instead of
the FH plug-in are highest.
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Algorithm 5.10 Steps of Simulation 2
The steps of Simulation 2 are

1. Generate xdk, d = 1, k = 1, 2.
2. For i = 1, . . . , I, I = 2, 000, do

a) Generate u(i)
d ∼ N2(0,Vud), e(i)

d ∼ N2(0,Ved).
b) For d = 1, . . . , D, calculate

µ
(i)
d = Xdβ + u(i)

d , R
(i)
d = µ

(i)
d1

µ
(i)
d1 + µ

(i)
d2
, y

(i)
d = Xdβ + u(i)

d + e(i)
d .

c) With two marginal FH models, calculate FH-REML estimators σ̂2
uk and β̂,

k = 1, 2, and

û
FH,EBLUP(i)
dk = σ̂2

uk

σ̂2
uk + σ2

ekd

(
y

(i)
dk − xdkβ̂k(σ̂2

uk)
)
,

µ̂
FH,EBLUP(i)
dk = xdkβ̂k(σ̂2

uk) + û
FH,EBLUP(i)
dk ,

R̂
FH,EBI(i)
d = µ̂

FH,EBLUP(i)
d1

µ̂
FH,EBLUP(i)
d1 + µ̂

FH,EBLUP(i)
d2

.

d) With the BFH model, calculate BFH-REML estimators θ̂ and β̂, and

û
EBLUP(i)
d = V̂uV

−1
d

(
y

(i)
d −Xdβ̂(θ̂)

)
, µ̂

EBLUP(i)
d = Xdβ̂(θ̂) + ûEBLUP(i)

d ,

R̂
EBI(i)
d = µ̂

EBLUP(i)
d1

µ̂
EBLUP(i)
d1 + µ̂

EBLUP(i)
d2

.

e) Apply GH, with BFH-REML estimators θ̂ and β̂, for obtaining R̂EBP(i)
d .

3. For d = 1, . . . , D, R̂(i)
d ∈ {R̂FH,EBI(i)

d , R̂
EBI(i)
d , R̂

EBP(i)
d }, calculate

RBiasd = 100I
−1∑I

i=1(R̂
(i)
d −R

(i)
d )

|I−1∑I
i=1 R

(i)
d |

, RRMSEd = 100

(
I−1∑I

i=1(R̂
(i)
d −R

(i)
d )2

)1/2

|I−1∑I
i=1 R

(i)
d |

,

ARBias = D−1
D∑

d=1
| RBiasd |, RRMSE = D−1

D∑
d=1

RRMSEd .
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Table 5.5: RBias (in %)
ρu

ρe Method -0.75 -0.5 -0.25 0 0.25 0.5 0.75
Plug-in FH 0.02 0.03 0.08 0.08 0.11 0.16 0.19

-0.5 Plug-in BFH 0.04 0.03 0.07 0.04 0.05 0.07 0.08
EBP GH 0.01 −0.01 0.02 −0.01 −0.01 0.01 0.01
Plug-in FH −0.03 0.01 0.04 0.09 0.12 0.13 0.16

0 Plug-in BFH 0 0.03 0.05 0.09 0.10 0.09 0.10
EBP GH −0.03 −0.01 −0.01 0.01 0.02 0 0
Plug-in FH −0.03 −0.01 0.04 0.05 0.08 0.12 0.14

0.25 Plug-in BFH 0.01 0.02 0.07 0.06 0.08 0.10 0.11
EBP GH −0.02 −0.03 0 −0.02 −0.01 −0.01 −0.01

Table 5.6: ARBias (in %)
ρu

ρe Method -0.75 -0.5 -0.25 0 0.25 0.5 0.75
Plug-in FH 0.16 0.15 0.17 0.16 0.17 0.20 0.21

-0.5 Plug-in BFH 0.16 0.15 0.16 0.15 0.13 0.14 0.12
EBP GH 0.16 0.14 0.15 0.14 0.13 0.13 0.10
Plug-in FH 0.15 0.16 0.15 0.16 0.17 0.18 0.19

0 Plug-in BFH 0.14 0.16 0.16 0.16 0.16 0.16 0.15
EBP GH 0.14 0.15 0.15 0.14 0.13 0.14 0.12
Plug-in FH 0.14 0.16 0.15 0.14 0.16 0.17 0.19

0.25 Plug-in BFH 0.13 0.15 0.15 0.14 0.16 0.16 0.16
EBP GH 0.13 0.15 0.13 0.14 0.14 0.13 0.14

Table 5.7: RRMSE (in %)
ρu

ρe Method -0.75 -0.5 -0.25 0 0.25 0.5 0.75
Plug-in FH 8.88 8.71 8.57 8.43 8.27 8.12 7.96

-0.5 Plug-in BFH 8.83 8.74 8.54 8.24 7.78 7.17 6.28
EBP GH 8.83 8.74 8.54 8.24 7.78 7.17 6.28
Plug-in FH 8.62 8.48 8.34 8.18 8.03 7.88 7.70

0 Plug-in BFH 8.11 8.28 8.30 8.21 8.00 7.63 7.02
EBP GH 8.11 8.28 8.30 8.21 8.00 7.63 7.02
Plug-in FH 8.52 8.37 8.21 8.05 7.92 7.73 7.59

0.25 Plug-in BFH 7.59 7.87 7.98 8.01 7.94 7.68 7.24
EBP GH 7.59 7.87 7.98 8.01 7.94 7.68 7.24
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5.7.4 Simulation 3: Number of bootstrap samples B

Research question
Simulations 3 and 4 evaluate the proposed MSE estimators of the approximated EBPs of
the unemployment rates, which were presented in Section 5.6. Simulation 3 is a preliminary
study for the two bootstrap procedures in Algorithms 5.6 and 5.7. With the simulation,
we want to evaluate how many bootstrap samples B are needed such that the convergence
of the bootstrap algorithms is acceptable.

Simulation settings
For the simulation, we again take D = 200 areas and ρu = ρe = −0.5. As in Simulation 2,
we apply GH quadrature with integral form I1 and 25 function evaluations to approximate
the EBPs of the unemployment rates. We simulate the data once, estimate the coefficients
of the BFH model, and apply B = 1, 000 bootstrap replicates. The steps of this preliminary
simulation are given in Algorithm 5.11.

Algorithm 5.11 Steps of Simulation 3
The steps of Simulation 3 are

1. Generate data xdk, k = 1, 2, ud ∼ N2(0,Vud), ed ∼ N2(0,Ved), yd = Xdβ +ud + ed

d = 1, . . . , D.
2. Calculate the BFH-REML estimators β̂ and θ̂ by using the observed data (yd,Xd),
d = 1, . . . , D,

3. For b = 1, . . . , B, B = 1, 000, do
a) For d = 1, . . . , D, generate u∗(b)

d ∼ Nm(0, V̂u), e∗(b)
d ∼ Nm(0,Ved) and calculate

y
∗(b)
d = µ

∗(b)
d + e∗(b)

d , µ∗(b)
d = Xdβ̂ + u∗(b)

d , R∗(b)
d = g(µ∗(b)

d1 , . . . ,µ
∗(b)
dm ).

b) By using the bootstrap data (y∗(b)
d ,Xd), d = 1, . . . , D, calculate BFH REML

estimators β̂∗(b) and θ̂∗(b), EBPs R̂EBP ∗(b)
d by GH.

4. For d = 1, . . . , D, b̃ = 1, . . . , B, B = 1, 000, calculate

M̂SE
∗,b̃

1d = b̃−1
b̃∑

b=1

(
R̂

EBP ∗(b)
d −R

∗(b)
d

)2
, RDiff(M̂SE

∗,b̃

1d ) = 100(M̂SE
∗,b̃

1d − M̂SE
∗,B

1d )

M̂SE
∗,B

1d

,

Ŝ∗,b̃
1d = b̃−1

b̃∑
b=1

(
R̂

EBP ∗(b)
d −R

BP ∗(b)
d

)2
, RDiff(Ŝ∗,b̃

1d ) = 100(Ŝ∗,b̃
1d − Ŝ∗,B

1d )
Ŝ∗,B

1d

.

Results
Figures 5.2 and 5.3 show the relative differences RDiff(M̂SE

∗,b̃

1d ) and RDiff(Ŝ∗,b̃
1d ). They are

the relative difference of the bootstrap values in dependence of the number of iterations b̃
with respect to M̂SE

∗,B

1d and Ŝ∗,B
1d for b̃ = 1, . . . , B, B = 1, 000. The plots show the mean

values over the D = 200 domains and the inner 90% and 70% percent of domains for each
b̃ = 1, . . . , 1000.
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For M̂SE
∗
1d, we recommend to implement the bootstrap algorithm with B = 400 to obtain

a similar precision to B = 1, 000 replicates. For Ŝ∗
1d, we recommend to implement the

bootstrap algorithm with B = 500 replicates to obtain a similar precision to B = 1, 000
replicates.

Note that Ŝ∗
1d is a very small quantity compared to M̂SE

∗
1d. The area-mean of Ŝ∗,1,000

1d is only
about 1/74 of that of M̂SE

∗,1,000
1d . Therefore, in computing RDiff(Ŝ∗,b̃

1d ), the denominator
is close to zero which typically results in volatile results as we can see in Figure 5.3. We
want to recall that the value of Ŝ1d plays only a minor role for the total MSE. Therefore,
we do not consider the convergence behaviour visible in Figure 5.3 to be problematic and
recommend B = 500 replicates.
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Figure 5.2: Convergence of M̂SE
∗,b̃

1d relative to M̂SE
∗,B

1d , d = 1, . . . , 200
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5.7.5 Simulation 4: MSE estimators

Research question
Simulation 4 evaluates the MSE estimators presented in Section 5.6. That is, M̂SE

∗
1d,

calculated with Algorithm 5.6, M̂SE
∗
2d (5.238), calculated with Algorithms 5.7 and 5.8,

and M̂SE
∗
3d (5.240), calculated with Algorithm 5.7 and Algorithm 5.8 for only the inner

integral.

Simulation settings
Based on the results of Simulation 3, we choose B = 500 bootstrap replicates for the two
bootstrap procedures in Algorithms 5.6 and 5.7. For the simulation, we again take D = 200
areas and ρu = ρe = −0.5. As in Simulation 2 and 3, we apply GH quadrature with integral
form I1 and 25 function evaluations to approximate the EBPs of the unemployment rates.
The steps of Simulation 3 are given in Algorithm 5.12.

Results
Figure 5.4 shows the RBias and RRMSE (in %) of the three different MSE estimators.
The mean values are presented in Table 5.8.

For all three estimators, there is a slight negative relative bias of 2.39%. As the bias is
small, we still consider the estimators suitable. There are no differences visible between the
RBias of the different estimators. In terms of RRMSE, the proposed separate estimation of
the two MSE summands, as done in M̂SE

∗
2d and M̂SE

∗
3d, is superior to the solely parametric

bootstrap estimation of the MSE given by M̂SE
∗
1d. Also, the measures for M̂SE

∗
2d and

M̂SE
∗
3d are close, implying that Sinner

2d is a good estimator of S2d. The use of M̂SE
∗
3d with
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Algorithm 5.12 Steps of Simulation 4
The steps of Simulation 4 are

1. Generate data xdk, k = 1, 2, ud ∼ N2(0,Vud), ed ∼ N2(0,Ved), yd = Xdβ +ud + ed

d = 1, . . . , D.
2. For i = 1, . . . , I, I = 1, 000, do

a) Generate u(i)
d ∼ N2(0,Vud), e(i)

d ∼ N2(0,Ved).
b) Calculate the true means, the true unemployment rate, and the direct estimates,
µ

(i)
d = Xdβ + u

(i)
d , R(i)

d = µ
(i)
d1

µ
(i)
d1 +µ(i)

d2
, y(i)

d = Xdβ + u(i)
d + e(i)

d , d = 1, . . . , D.

c) Calculate the BFH REML estimators β̂(i) and θ̂(i) by using the observed
data (y(i)

d ,Xd), d = 1, . . . , D. Calculate BFH EBPs R̂EBP(i)
d , d = 1, . . . , D by

applying GH quadrature. For the MSE estimation run the following algorithm.
i. For b = 1, . . . , B (B = 500) do

A. For d = 1, . . . , D, generate u∗(b)
d ∼ Nm(0, V̂u), e∗(b)

d ∼ Nm(0,Ved)
and calculate y∗(b)

d = µ
∗(b)
d + e

∗(b)
d , µ∗(b)

d = Xdβ̂
(i) + u

∗(b)
d , R∗(b)

d =
g(µ∗(b)

d1 , . . . ,µ
∗(b)
dm ).

B. By using the bootstrap data (y∗(b)
d ,Xd), d = 1, . . . , D, calculate BFH

REML estimators β̂∗(b) and θ̂∗(b). Calculate BFH EBPs R̂EBP ∗(b)
d by

applying GH quadrature.
ii. For d = 1, . . . , D, calculate M̂SE

∗(i)
1d = B−1

B∑
b=1

(
R̂

EBP ∗(b)
d −R

∗(b)
d

)2
,

Ŝ
∗(i)
1d = B−1

B∑
b=1

(
R̂

EBP ∗(b)
d −R

BP ∗(b)
d

)2
.

d) For d = 1, . . . , D calculate
M̂SE

∗(i)
2d = Ŝ

∗(i)
1d + Ŝ

(i)
2d , M̂SE

∗(i)
3d = Ŝ

∗(i)
1d + Ŝ

inner(i)
2d , where Ŝ(i)

2d and Ŝ
inner(i)
2d are

calculated using Algorithms 5.8 and Algorithm 5.8 for only the inner integral
with T = R = 5, the total number of nodes in each dimension for the outer
and inner integral. For Algorithms 5.8 and Algorithm 5.8 for only the inner
integral, this results in 54 = 625 (due to the double integral) and 52 = 25
function evaluations respectively.

3. For d = 1, . . . , D, M̂SE
∗(i)
d ∈ {M̂SE

∗(i)
1d , M̂SE

∗(i)
2d , M̂SE

∗(i)
3d } calculate

MSEd = I−1
I∑

i=1
(R̂EBP(i)

d −R
(i)
d )2, M̂SE

∗
d = I−1

I∑
i=1

M̂SE
∗(i)
d ,

RBiasd = 100M̂SE
∗
d − MSEd

MSEd

, RRMSEd = 100

(
I−1∑I

i=1(M̂SE
∗(i)
d − MSEd)2

)1/2

MSEd

,

RBias = D−1
D∑

d=1
| RBiasd |, RRMSE = D−1

D∑
d=1

RRMSEd .
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Figure 5.4: Performance of MSE estimators

Sinner
2d instead of M̂SE

∗
2d with S2d can be especially useful for higher-dimensional problems

as it significantly reduces the number of function evaluations.

Table 5.8: Performance of MSE estimators
MSE estimator RBias (in %) RRMSE (in %)

M̂SE
∗
1d −2.39 15.47

M̂SE
∗
2d −2.39 14.14

M̂SE
∗
3d −2.39 14.34

5.8 Application

5.8.1 Data description

As an illustrative example of the proposed methodology, we estimate unemployment rates
for small domains using publicly available data from the Spanish Labour Force Survey
(SLFS) for the first quarter of 2021.

Similar to the German LFS, which is conducted as part of the German Microcensus,
compare Section 4.3, the questions of the Spanish LFS are also harmonized to the standards
of the ILO and EUROSTAT. The focus of the SLFS is to provide different statistics on the
number of persons being employed, unemployed, and not in labour force, among others.
Note that, different from the ILO definition applied by most European countries including
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Germany, the minimum age for persons to be considered employed/unemployed in the
SLFS is 16, not 151.

The SLFS is conducted quarterly by the Spanish Statistical Office (INE). The samples are
drawn via two-stage stratified random sampling for each Spanish province. At the first
stage, municipality areas are drawn as the primary sampling units. At the second stage,
dwellings are drawn from strata of each municipality. In the dwellings, all households are
interviewed.

On the INE website2, SLFS micro-data for the first quarter of 2021 are publicly availably.
The data contain around 140, 000 observations at the person-level. Geographically, the
most detailed information available in the micro-data is an indicator for the Spanish
provinces. Next to geographical information, the sample micro-data contain information
on persons demography, education, studies, labour activity during the reference week, and
employment characteristics, among others. Furthermore, the data contain elevation factors.
The elevation factors correspond to the inverses of the inclusion probabilities corrected for
non-response and calibrated to known province quantities. With the evaluation factors,
we can calculate direct estimators by province from the micro-level SLFS data.

5.8.2 Domains of interest and direct estimates

From the SLFS age variable, which differentiates between five age categories, we define
the broader categories AGE1 (16-24 years), AGE2 (25-54 years), and AGE3 (55-64 years). As
domains of interest, we take the cross-combinations of the 50 Spanish provinces plus the
autonomous cities Ceuta and Melilla, persons sex, and the three age classes, resulting in a
total of D = 52 × 2 × 3 = 312 domains. As dependent variables for a bivariate FH (BFH)
model, we calculate the proportions of employed and unemployed in the domains, similar
to the simulation studies in Section 5.7.

In the micro-data, dummy variables ydi1 and ydi2 indicates whether person i in domain
d is employed or unemployed respectively. For person i in domain d, the non-negative
elevation factor is given by wdi. With sd, we denote the sample in domain d, d = 1, . . . , D.
The domain sizes are unknown and estimated by

N̂d =
∑
i∈sd

wdi, d = 1, . . . , D. (5.244)

The proportions of employed and unemployed in the domains of interest are calculated
as

ˆ̄µDir
dk = N̂−1

d

∑
i∈sd

wdiydik, d = 1, . . . , D, k = 1, 2. (5.245)

Direct estimates ˆ̄µDir
dk are used as dependent variables ydk in BFH model 5.177.

1https://ec.europa.eu/eurostat/cache/metadata/en/lfsi_esms.htm.
2https://www.ine.es/en/index.htm.

https://ec.europa.eu/eurostat/cache/metadata/en/lfsi_esms.htm
https://www.ine.es/en/index.htm
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There is one domain (province 49 - Zamora, male, AGE1) with no unemployed person.
Hence, the direct estimate of the proportion of unemployed is zero and no variance estimate
can be calculated. We exclude this domain and thereby consider the remaining D = 311
domains as domains interest.

For the BFH model, sampling covariance matrices Ved, d = 1, . . . , D, are needed. From
the INE, no second-order inclusion probabilities are provided. We therefore approximate
the design-based variance of ˆ̄µDir

dk by using the Hajek-approximation which only uses the
first-order inclusion probabilities (Hájek, 1964), giving

σ2
edk = V̂ar(ˆ̄µDir

dk ), d = 1, . . . , D, k = 1, 2. (5.246)

Elements σ2
ed1 and σ2

ed2 are the diagonal elements of Ved, d = 1, . . . , D. We further need
the off-diagonal elements of Ved, given by the covariances of the direct estimates. We
approximate the covariances by (Wood, 2008)

Ĉov(ˆ̄µDir
d1 , ˆ̄µDir

d2 ) = 1
2(V̂ar(ˆ̄µDir

d1 ) + V̂ar(ˆ̄µDir
d2 ) − V̂ar(ˆ̄µDir

d1 − ˆ̄µDir
d2 )), d = 1, . . . , D. (5.247)

The sampling error correlation of ˆ̄µDir
d1 and ˆ̄µDir

d2 , d = 1, . . . , D, is calculated by

ρ̂ed = Ĉov(ˆ̄µDir
d1 , ˆ̄µDir

d2 )
/(

V̂ar(ˆ̄µDir
d1 )V̂ar(ˆ̄µDir

d2 )
)1/2

, d = 1, . . . , D, (5.248)

Table 5.9 displays the quantiles of ρ̂ed, d = 1, . . . , D. The sampling errors of the dependent
variables have a negative correlation of moderate to small magnitude.

Table 5.9: Quantiles of ρ̂ed, d = 1, . . . , D
0% 25% 50% 75% 100%

-0.58 -0.38 -0.24 -0.15 -0.04

5.8.3 Model choice

We have calculated direct estimates of the domain-specific proportions of employed and
unemployed ˆ̄µDir

dk , k = 1, 2, including estimates of their sampling error covariance matrices
Ved, d = 1, . . . , D. For a BFH model, we additionally need auxiliary information on the
domain level.

The INE does not publish aggregate data for our domains of interest, which are provinces
crossed by sex and three age classes. For this illustration, we therefore take four waves of
SLFS sample data from 2020, estimate domain aggregates with these data, and take these
estimated aggregates as known auxiliary information. The auxiliary estimates are then
based on four times as many observations as the estimates of the dependent variables,
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wherefore we expect their sampling variances to be considerably lower than those of the
dependent variables.

We note that the auxiliary information as defined above are subject to measurement
errors, violating the assumptions of the MFH model, as we introduced it in Section 5.3.
When working with estimated auxiliary information which are subject to sampling errors,
measurement error models as proposed by Arima et al. (2017), Burgard et al. (2020b,
2021a), and Burgard et al. (2022), Ybarra and Lohr (2008) should be applied to account
for the extra uncertainty in the model. A combination of EBP approximations in MFH
models and measurement errors in the covariates, however, is out of the scope of the
presented chapter and left as future research area. For an illustration of the proposed
method, we find the estimated auxiliary data suitable.

As auxiliary information from the four SLFS waves of 2020, we consider person-level
dummy variables Edu.Pri (indicator for primary education of less), Edu.Sec (indicator
for secondary education), and Nat.Spa (indicator for Spanish nationality). The reference
category Edu.Sup (indicator for superior education) is excluded.

A BFH model is fitted. As input, we use the domain-specific proportions of employed and
unemployed ˆ̄µDir

dk as the dependent variables ydk, k = 1, 2, with sampling error covariance
matrices Ved, d = 1, . . . , D, estimated from the SLFS data. As covariates, we consider
SLFS estimates (from the four SLFS waves of 2020) of the domain-specific proportions
of dummy variables Edu.Pri, Edu.Sec, and Nat.Spa. In addition, we consider domain-
specific dummy variables AGE2, AGE3, and sex.male as covariates. After considering
different models, we chose the proportions of variables Edu.Pri and Edu.Sec and the
dummy variables AGE2, AGE3, and sex.male as covariates, for both dependent variables.
With the data, we estimate a BFH model and apply the REML Fisher-Scoring algorithm
to estimate the model parameters as we did in the simulation studies.

5.8.4 Parameter estimates

We first discuss the estimated variances components and fixed effects of the BFH model.
Table 5.10 displays the estimated variance components with 95% confidence intervals. The
confidence intervals of the random effect variances do not contain zero, indicating that the
model including the domain-specific random effects explains part of the variability of the
target variables. The estimated correlation of the random effects is considerably negative,
indicating that when the domain-specific random effect of the employment proportion is
high in a domain, the unemployment proportion is low and vice versa.

The estimated fixed effects of the model are displayed in Table 5.11. All parameter
estimates are significant at the 5% level. For the estimated fixed effects, we recall
that the reference category for education variables Edu.Pri and Edu.Sec is superior
education. A higher proportion of persons in primary and secondary education (Edu.Pri
and Edu.Sec) is associated with a higher proportion of unemployed and a lower proportion
of employed. Domains for the male population are associated with higher employment and
lower unemployment proportions than domains for the female population. As this is an
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Table 5.10: Variance component estimates and asymptotic 95% confidence intervals

θ̂ Lower limit Upper limit
σ̂u1 0.028 0.024 0.031
σ̂u2 0.052 0.046 0.058
ρ̂12 -0.731 -0.832 -0.629

illustrative example based on estimated covariate records, the coefficients values, however,
should be treated with caution.

Table 5.11: Estimated fixed effects for proportion of unemployed and employed
Unemployed Employed

β̂ std.err. t-value p-value β̂ std.err. t-value p-value
(Intercept) 0.025 0.028 0.915 0.360 0.404 0.051 7.903 0.000
Edu.Pri 0.231 0.037 6.308 0.000 -0.611 0.067 -9.094 0.000
Edu.Sec 0.102 0.034 3.019 0.003 -0.319 0.062 -5.121 0.000
AGE2 0.038 0.011 3.425 0.001 0.474 0.020 24.078 0.000
AGE3 -0.035 0.009 -3.978 0.000 0.362 0.016 22.534 0.000
sex.male -0.015 0.004 -3.428 0.001 0.122 0.008 15.469 0.000

5.8.5 Model diagnostics

In Figure 5.5, we present different diagnostics to check the validity of the calculated BFH
model. The diagnostics are separately shown for the dependent variables proportion of
unemployed (left) and proportion of employed (right).

In the first row, as proposed in Brown et al. (2001), the direct estimates are plotted
against the EBLUPs and the diagonal line y = x is added to the plots. From theory, the
direct estimates are design-unbiased, although they can exhibit large variances for small
domains. Therefore, plotting the direct estimates versus the EBLUPs of a FH model can
indicate a potential model bias. From the figure, we see no systematic deviations from
direct estimates to EBLUPs for the proportion of employment. For the proportion of
unemployed, the model EBLUPs are systematically lower than the direct estimates for
higher unemployment proportions. We note that in the application high direct estimates
of unemployment proportions are associated with high sampling variances of the direct
estimators. Therefore, for large unemployment proportions, the BFH model smooths the
predictions more towards the model-based part than the direct estimates. We therefore do
not see indications of a model bias from the figures.

In row 2 of Figure 5.5, we plot the BFH EBLUPs versus standardized residuals. With
the figures, we want to see whether the assumption of normally distributed residuals is
valid. The residuals are calculated as rEBLUP

dk = ˆ̄µDir
dk − ˆ̄µEBLUP

dk , k = 1, 2, d = 1, . . . , D. The
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standardized residuals are calculated as (rEBLUP
dk −D−1∑D

d=1 r
EBLUP
dk )/std(rEBLUP

dk ), where
std(rEBLUP

dk ) is the standard deviation of the set of residuals, k = 1, 2, d = 1, . . . , D. By
the definition of the BFH model, the residuals should be normally distributed with mean
zero. Furthermore, no systematic differences should be visible in the residual distribution
for changing magnitudes of EBLUPs. Both for employment and unemployment most
residuals are within range. 1.3% (4/311) of the absolute residual values are larger than
three for each, the proportion of unemployed and employed. We consider this as acceptable
and hence see no model violation in it. For unemployment, there is a noticeably large
standardized residual. The underlying sample size of the corresponding direct estimate
is very small (41 persons) such that the BFH EBLUP is smoothed more towards the
model-based estimator.

To see whether there are efficiency gains in applying the BFH model instead of direct
estimators, the standard errors of the direct estimators are plotted against the RMSEs of
the BFH EBLUPs in the last row of Figure 5.5 with the additional diagonal line y = x.
The BFH EBPLUPs are at least as efficient as the direct estimators as all points lie along
or below the diagonal line. For large standard errors of direct estimates, the BFH EBLUPs
give high efficiency gains over the direct estimators. For these cases, the BFH model puts
more weight on the estimated model than on the direct estimates. For future research
it would be interesting to see the efficiency gains when the measurement errors in the
auxiliaries are fully accounted for.
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5.8.6 Unemployment rates

From the calculated model, we can calculate plug-in EBIs and BFH EBPs of the unemploy-
ment rate as shown in Section 5.5 and Simulation 2. Similar to Simulation 2, the plug-in
EBIs are calculated as R̂EBI

d = ˆ̄µEBLUP
d1 /(ˆ̄µEBLUP

d1 + ˆ̄µEBLUP
d2 ), where ˆ̄µEBLUP

d1 and ˆ̄µEBLUP
d2 are

the BFH EBLUPs of the proportions of unemployed and employed, and the EBPs R̂EBP
d

are calculated with GH quadrature with a total of 25 function evaluations, d = 1, . . . , D.

To see whether the resulting predictions of the unemployment rates are realistic, we
additionally calculate the direct estimates of the unemployment rates from the SLFS data
and compare them to the model EBIs and EBPs. Figure 5.6 shows the direct estimates of
the unemployment rates versus EBIs (left) and EBPs (right). The diagonal line y = x
is added to the plot. Neither EBPs nor EBIs show systematic differences to the direct
estimates. Furthermore, we see that in this particular application the differences between
the EBPs and EBIs are small. From the figure, we barely see any differences between the
two plots, the correlation of the values is close to one, so they are almost identical. The
results from Simulation 2 show that the performance difference of EBIs and EBPs is small
when the correlations of sampling errors and random effects have same sign and similar
magnitude. In this application, both correlations are estimated to be moderately negative,
compare Tables 5.9 and 5.10. From the correlations and the results of Simulation 2, we
would therefore also not expect the predictions to differ to a great extend.

For the BFH EBPs, we can calculate MSE estimates based on the theory presented in
Section 5.6 and Simulations 3 and 4. Following the results of the simulation studies, we
use estimator M̂SE

∗
2d = Ŝ∗

1d + Ŝ2d (5.238) with B = 500 bootstrap samples for Ŝ∗
1d and

nested GH with T = 5 evaluations for each dimension, resulting in a total of 625 function
evaluations, for Ŝ2d.

We are especially interested in the EBPs of the unemployment rate for AGE1 (16-24 years)
for the 52 regional domains by sex. On the INE website3, the national unemployment rates
of persons under 25 years of age are estimated at 38.18% (males) and 41.18% (females)
respectively. To put the numbers in perspective, we take the labour force statistics for
persons aged 15-24 in the first quarter of 2021 for the European countries provided by
Eurostat4. The overall unemployment rates for the European Union 27 countries are
18.2% (males) and 19.0% (females). For the comparison, recall that, unlike most European
countries, the INE sets the minimum age for unemployed persons at 16, whereas other
European countries, e.g. Germany, set it to 15. Despite this small difference in definition,
we see that the Spanish unemployment rates for persons aged 24 and younger is one of
the highest among all European countries and therefore the unemployment rates for AGE1
(16-24 years) are of special political interest.

Figure 5.7 shows the BFH EBPs (row one) and corresponding root MSEs (RMSEs) (row
two) for the 52 provinces by sex for AGE1. The corresponding figures for AGE2 and AGE3
are given in Appendix A.2. Note that we use different colour scales per age class. The

3https://www.ine.es/jaxiT3/Datos.htm?t=4247.
4Eurostat. Unemployment by sex and age quarterly data [UNE_RT_Q__custom_2134929].

https://www.ine.es/jaxiT3/Datos.htm?t=4247
https://ec.europa.eu/eurostat/databrowser/bookmark/73cd0ef3-a548-434e-869a-685cf21e0033?lang=en
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unemployment rates for AGE1 are significantly higher than for AGE2 and AGE3. From Figure
5.7, we can see that the unemployment rates are higher for females than for males and that
they differ to a great extend between the 52 geographical areas. For the EBPs of males,
there is a grey shaded province in Figure 5.7, which corresponds to the province which
was excluded from the model as there were no unemployed persons in the sample and
we could not calculate a variance estimate. From the figure, we see that the magnitude
of the MSEs is quite heterogeneous, indicating that for some domains the model-based
predictions worked well whereas for others the predicted unemployment rates should be
interpreted with caution. Recall that in the model and MSE estimation we did not consider
the measurement error in the covariates, but left it as a future research area.

5.9 Summary and outlook

In this chapter, we introduced approximations of BPs of general, potentially non-linear,
multi-variable domain indicators like the unemployment rate in MFH models. Under
the linear mixed model theory, the introduced BPs of these indicators are unbiased
with minimum MSE in the class of model-unbiased predictors. The BPs, however, are
given in integral forms and can only be approximated. We therefore presented different
integral approximation techniques aimed at different dimensions of the non-linear indicator
considered.

With several simulation studies, we empirically investigated the applicability of the
proposed BP approximations by simulating employment and unemployment proportions as
dependent variables for a BFH model and approximating the (E)BPs of the unemployment
rates from the model.

Simulation 1 investigated the choice of the integral approximation for the BPs. For the
approximation, we considered Gauss-Hermite quadrature, MC integration plus antithetic
variates, and Quasi MC integration with the Sobol and Halton sequence in combination with
different integral forms. Especially Gauss-Hermite quadrature showed a good performance
in approximating the BPs of the unemployment rates, especially with only few function
evaluations.

Simulation 2 compared the performance of the plug-in predictors to the EBP approxi-
mations of the unemployment rates under different correlation scenarios. The simulation
revealed that approximating the EBPs of the unemployment rates mostly gave lower rela-
tive bias than the corresponding plug-in predictors, while inhibiting very similar RRMSEs,
which is in line with the theory.

Simulation 3 investigated the number of samples B for the parametric bootstrap proce-
dures for estimating the MSE of the approximated EBPs and Simulation 4 analysed the
performance of the different MSE estimators. We saw that estimating the two components
of the MSE separately gave the best results. Furthermore, another proposed MSE esti-
mator which only approximates the expectation of the inner integral of the second MSE
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component and therefore needs significantly fewer function evaluations, showed a good
performance.

In an illustrative application, we applied the proposed procedure to publicly available
Spanish LFS data. Similar to the simulation studies, we applied a BFH model using the
proportions of employed and unemployed as dependent variables. The domains of interest
were constituted by the cross-combinations of 52 regions, three age classes, and sex. The
indicators of interest were the unemployment rates, which we predicted with the proposed
EBP approximation and the BFH plug-in predictor. We evaluated the model fit and the
estimated unemployment rates.

The application gave rise to potential future research. As there were not suitable, publicly
available auxiliary information available, we estimated auxiliary variables from a larger
sample of micro-data from the SLFS. In the application, we took this auxiliary information
as given and estimated without error. For future application, it would be interesting
to combine the theory of multi-variable area-level domain indicators and measurement
errors in the covariates. Furthermore, we illustrated the approach for a rather simple
non-linear indicator, the unemployment rate. For future research it would be interesting
to investigate the behaviour of the proposed approach for different non-linear indicators of
different dimensions.



Chapter 6

Multivariate Fay-Herriot Models under
Missing Direct Estimates

6.1 Introduction

The standard multivariate Fay-Herriot (MFH) model presented in Section 5.3 is based on
the assumption that all direct estimates yd ∈ Rm of parameters µd ∈ Rm are known for all
domains d = 1, . . . , D. In practical application, this assumption is usually not fulfilled. In
particular, the direct estimates of one of the m variables may be missing for some domains
while direct estimates of another variable may be missing in other domains.

As an example, consider a MFH model where the m dependent variables correspond to
the values of one variable at m different time points. When the domains of interest are
not explicitly considered in the sampling process, e.g. as strata, it can happen that for
small domains the sample sizes are, by chance, zero at specific time points. Then no direct
estimates can be calculated for some domain-time combinations, resulting in partially
missing direct estimates for MFH models.

In a MFH model, based on the theory presented in Section 5.3, only those domains can be
used for which the direct estimates of the m variables are complete. Already a domain
where only one of the m direct estimates is missing, would have to be excluded from the
modelling process. This has two effects. One is that not all available information is used
for parameter estimation of the model. The other is that for the excluded domain, i.e. the
domain for which at least one direct estimate was missing, only synthetic predictions can
be computed under the MFH model.

In this chapter, we introduce the multivariate Fay-Herriot model under partially missing
direct estimates (MMFH) to solve these problems. The MMFH model is capable of including
all observations of direct estimates into the model for efficient parameter estimation.
Furthermore, we derive best predictions for multiple domain variables with missing direct
estimates. They draw from the information of the available direct estimates of a domain
to predict the domain random effects of all m variables of that domain.

We note that part of the work presented in this chapter is already published. Preliminary
work on this chapter dealing with the case of bivariate FH models under partial missing
direct estimators is published in Burgard et al. (2019b, 2021c). The application shown in
this chapter is the same application which is published in Burgard et al. (2021c).

The chapter proceeds as follows. Section 6.2 gives additional information on MFH models
under missing direct estimates. We discuss situations in which partially missing direct
estimates occur to stress the practical necessity of the proposed approach. Furthermore,

158
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we propose an MSE estimator for MFH synthetic predictions. The multivariate FH model
under partially missing direct estimates (MMFH) is presented in Section 6.3. We derive
best predictions under the MMFH model in Section 6.4, and algorithms for the ML/REML
parameter estimation under the model in Section 6.5. Formulas for approximating the
MSE of the predictions are derived in Section 6.6. In Section 6.7, we use simulation
studies to analyse the behaviour of the proposed parameter estimation, prediction of
the characteristics of interest, and MSE estimation. Section 6.8 presents an illustrative
application of the proposed approach to publicly available data from the U.S. Census
Bureau.

6.2 Missing direct estimates in MFH models

6.2.1 Reasons for missing direct estimates

While we have already briefly touched on the possibility of missing direct estimates, we
would like to go into a little more detail about the problem. We consider two main reasons
for missing direct estimates: Domain-specific sample sizes smaller than two and publication
restrictions.

We first take a look at the case of sample sizes smaller than two. When small domains
are not explicitly accounted for in a sampling design, so-called unplanned domains, the
randomisation process of the sampling design can result in domain-specific sample sizes
smaller than two, compare Lehtonen and Veijanen (2009, Section 2.2.1). When a domain-
specific sample size is zero, the domain is referred to as an unsampled domain and no
direct estimate can be calculated. When a domain-specific sample size is one, we can
calculate a simple direct estimator like the domain mean or total, but we cannot calculate
a variance estimator unless there are at least two sampling observations. Sampling
techniques like stratification can assure a fixed and high sample size in chosen domains.
However, a survey is usually constructed to have a variance-optimal allocation for key
variables while considering cost restrictions and response burden of the survey objects.
These considerations naturally prohibit the possibility of designing surveys which give
direct estimates with low design-variance for various variable and domain combinations.
Therefore, depending on the domains of interest, there may be unsampled domains and
domains with small sample sizes also in large national surveys.

Another reason for missing direct estimates are publication restrictions. In official statis-
tics direct estimates are typically only published when they meet certain requirements.
Publications in official statistics are usually bound to estimators where the coefficient of
variation is not higher than 20% (Molina & Marhuenda, 2015, p. 85). For example, in the
German Microcensus, yearly estimates of population counts with values under 5.000 are
not published as the anticipated standard error of the estimates is considered too high
(Destatis, 2020a, Section 4.2). That is, also when domain-specific sample sizes are high
enough to compute direct estimates and estimates of their variances, the estimates are not
necessarily publicly available.
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As an example of data with partially missing direct estimates, we include an illustrative
application of the proposed MMFH model to publicly available data in Section 6.8. There,
we focus on publicly available U.S. county-level data from a variable in two consecutive
years t and t′. For both t and t′, some of the county direct estimates are missing. In
particular, many of the direct estimates which are not available in t are available in t′ and
vice versa. Hence, we have partially missing direct estimates and this is exactly the data
situation for which we present the MFH model with partially missing values (MMFH),
develop the algorithms for the parameter estimation, and derive the best prediction and
MSE formulas in Sections 6.3, 6.4, 6.5, and 6.6.

We would like to point out that with the MMFH model, auxiliary information that is
partially missing and subject to measurement error can also be included in the model as
additional dependent variables.

6.2.2 MFH synthetic predictors

When we encounter partially missing direct estimates in MFH models, for the domains
with missing direct estimates only synthetic predictions can be calculated. In the following,
we therefore briefly present synthetic predictors and an estimator to their MSEs under
MFH models. In Section 5.3, we presented the MFH model (5.177) as

yd = Xdβ + ud + ed, d = 1, . . . , D, (5.177)

with ud ∼ Nm(0,Vud), ed ∼ Nm(0,Ved), and independent ed and ud. As in Section 5.3,
the parameters of Vud are denoted by θ ∈ Rq, with q = m(m + 1)/2, and the Ved are
assumed known, d = 1, . . . , D.

Let us assume that some of the yd are partially or fully missing, while all the Xd are
known, d = 1, . . . , D. Without loss of generality, we reorder the domains such that we can
partition the set of domains D = {1, . . . , D} into the two subsets

Dmis = {1, . . . , Dmis} with Dmis ≤ D and

Dobs = {Dmis + 1, . . . , D}.

We assume that the vector of direct estimates yd of length m is fully observed if d ∈ Dobs

and that at least one of the m direct estimates yd is missing if d ∈ Dmis. Further, Ved,
with diagonal elements σedk > 0, k = 1, . . . ,m, is assumed to be known for d ∈ Dobs, but
is missing for d ∈ Dmis. For the subset Dobs, we consider the vectors and matrices

Xobs = col
1≤d≤Dobs

(Xd), V obs = diag
1≤d≤Dobs

(Vud + Ved). (6.249)

The MFH synthetic predictor is given by

µ̂syn
d = Xdβ̂, d = 1, . . . , D, (6.250)
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where β̂ is estimated by using the data from Dobs.

So far, there exist only vague MSE estimators for the MFH synthetic predictor. In Burgard
et al. (2021c, Appendix 5), we presented an MSE approximation of the (univariate) FH
synthetic predictor, Morales et al. (2021, pp. 441–442) extended the approximation to
the bivariate FH model. Here, we extend the proposed approximation to the multivariate
case.

If β̂ and θ̂, both estimated using the data from Dobs, are asymptotically consistent and
independent estimators of β and θ, as the ML and REML estimators are, then the mean
and variance of µ̂syn

d are

E[µ̂syn
d ] ≈ Xdβ, (6.251)

Var(µ̂syn
d ) = Xd Var(β̂)X>

d ≈ Xd

[
(Xobs)>(V obs)−1Xobs

]−1
X>

d (6.252)
d = 1, . . . , D.

As µd = Xdβ + ud, the MSE of µ̂syn
d = Xdβ̂, β̂ = β̂(θ̂), is

MSE(µ̂syn
d ) = E

[
(µ̂syn

d − µd)2
]

= E
[
(Xdβ̂ −Xdβ − ud)2

]
= E

[
(Xd(β̂ − β) − ud)2

]
= Xd E

[
(β̂ − β)(β̂ − β)>

]
X>

d + E[u2
d] − 2 E

[
Xd(β̂ − β)ud

]
≈ Xd

[
(Xobs)>(V obs(θ̂))−1Xobs

]−1
X>

d + Vud − 2 E
[
Xdβ̂ud

]
d = 1, . . . , D.

(6.253)

If d ∈ Dmis, then ud and β̂ are independent, so that E[Xdβ̂ud] = Xd E[β̂] E[ud] = 0 and

MSE(µ̂syn
d ) ≈ Xd

[
(Xobs)>(V obs(θ̂))−1Xobs

]−1
X>

d + Vud, ∀d ∈ Dmis. (6.254)

An estimator is given by substituting Vud by V̂ud = Vud(θ̂) resulting in

M̂SE(µ̂syn
d ) = Xd

[
(Xobs)>(V obs(θ̂))−1Xobs

]−1
X>

d + V̂ud, ∀d ∈ Dmis. (6.255)

In the simulation presented in Section 6.7, we evaluate the proposed MSE estimator.

6.3 Model

MFH model
In the following, we introduce the MFH model with partial missing direct estimates
(MMFH) based on the MFH model. For this purpose, we briefly repeat the different
quantities of the MFH model, which is described in more detail in Section 5.3.1.
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Let U be a finite population which can be partitioned into D domains U1, . . . , UD,
µd = (µd1, . . . , µdm)> be a vector of m characteristics of interest in domain d, and
yd = (yd1, . . . , ydm)> be a vector of the corresponding m direct estimates of µd, calculated
by using the data of the target survey sample, d = 1, . . . , D.

The MFH model can be expressed as a single model in the form

yd = Xdβ + ud + ed, d = 1, . . . , D, (5.177)

or in the matrix form
y = Xβ + u+ e, (5.178)

with

y = col
1≤d≤D

(yd) ∈ RmD, u = col
1≤d≤D

(ud) ∈ RmD,

e = col
1≤d≤D

(ed) ∈ RmD, X = col
1≤d≤D

(Xd) ∈ RmD×p.
(6.256)

The quantities appearing in 5.177 and 5.178 are described in the following for domains
d = 1, . . . , D and variables of interest k = 1, . . . ,m.

Sampling errors ed = (ed1, . . . , edm)> ∼ Nm(0,Ved) are independent with known covariance
matrices Ved ∈ Rm×m, given by

Ved =


σ2

ed1 σed12 · · · σed1m

σed12 σ2
ed2 · · · σed2m

... ... . . . ...
σed1m σed2m · · · σ2

edm

 . (6.257)

There are pk explanatory variables for variable k, k = 1, . . . ,m. The total number of
explanatory variables for allm target variables is given by p = ∑m

k=1 pk. The domain-specific
aggregates of the pk explanatory variables of µdk are given by xdk = (xdk1, . . . , xdkpk

)>. For
every domain d, we can combine the auxiliary information of the m dependent variables into
a m× p block-diagonal auxiliary matrix Xd = diag

(
x>

d1, . . . ,x
>
dm

)
, which is assumed to

be of full rank. Let βk = (βk1, . . . , βkpk
)> ∈ Rpk contain the regression parameters for µdk

and let β = (β>
1 , . . . ,β

>
m)> ∈ Rp be the vector of fixed effects for all m characteristics.

Random effects ud are given by ud = (ud1, . . . , udm)> ∼ Nm(0,Vud). Random effects ud

and sampling errors ed are assumed to be independent. The covariance matrix of the
random effects Vud ∈ Rm×m depends on q = m (m+ 1) /2 variance parameters, consisting
of m variances and m (m− 1) /2 covariances. It is given by

Vud =


σ2

u1 ρ12σu1σu2 · · · ρ1mσu1σum

ρ12σu1σu2 σ2
u2 · · · ρ2mσu2σum

... ... . . . ...
ρ1mσu1σum ρ2mσu2σum . . . σ2

um

 , (5.175)
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where σ2
ua denotes the random effects variance of variable a and ρab denotes the random

effects correlation of variables a and b, a, b = 1, . . . ,m, a 6= b. The vector of variance
parameters is denoted by

θ = (σ2
u1, σ

2
u2, . . . , σ

2
um, ρ12, ρ13, . . . , ρ23, ρ24, . . . , ρm−1,m)> ∈ Rq. (6.258)

The first m elements of θ refer to the random effect variances, the q − m last elements
refer to the random effect correlations.

Under model (5.177), it holds that y ∼ NmD(Xβ,V ) with covariance matrix V =
Vu + Ve = diag

1≤d≤D
(Vd) ∈ RmD×mD, where

Vu = diag
1≤d≤D

(Vud), Ve = diag
1≤d≤D

(Ved), Vd = Vud + Ved, d = 1, . . . , D. (6.259)

Additional quantities for missing direct estimates
Let us assume that some entries of the yd are missing. For d = 1, . . . , D, k = 1, . . . ,m, we
introduce the additional quantities

λdk =
{

1, if ydk is observed,
0, otherwise,

λd = (λd1, . . . , λdm)>, (6.260)

and sets
Ad =

{
k ∈ N : 1 ≤ k ≤ m,λdk = 1

}
, (6.261)

to indicate which of the m variables are observed in domain d.

To account for arbitrary missing structures in the domains, we define domain-specific
sub-vectors and sub-matrices of certain quantities of the MFH model representing the
structure of the observed variables of interest in domain d = 1, . . . , D. For any quantity
rd, for example a vector, we define quantity r̆d which corresponds to rd reduced to the
observed variables of interest in domain d.

Define m̆d = ∑m
k=1 λdk = #

(
Ad

)
, representing the number of observed variables of interest

in each domain. Let Λd be the diagonal matrix of λd where all rows with row sum equal
to zero are deleted, such that Λd ∈ Rm̆d×m. Let y̆d = Λdyd ∈ Rm̆d containing the observed
variables of interest in domain d. We also consider domain-specific auxiliary variables
referring to the observed variables of interest. For this sake, we define p̆d = ∑m

k=1 pkλdk

and β̆d = col
k∈Ad

(βk), such that β̆d ∈ Rp̆d . Further, let X̆d be a block-diagonal matrix of

those xdk for which λdk = 1, such that X̆d ∈ Rm̆d×p̆d .

In a similar manner, let the domain-specific random effects of the observed variables be
denoted by ŭd = Λdud ∈ Rm̆d . The corresponding domain-specific covariance matrices
of the random terms are defined by V̆ed = ΛdVedΛ>

d ∈ Rm̆d×m̆d and V̆ud = ΛdVudΛ>
d ∈

Rm̆d×m̆d , respectively, such that V̆d = V̆ud + V̆ed. We furthermore define

Qd =
{
a ∈ N : 1 ≤ a ≤ q, θa is a parameter of V̆ud

}
(6.262)
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and θ̆d = col
a∈Qd

(θa) as the vector of parameters θ appearing in V̆ud.

MMFH model
If the MFH model (5.177) holds for d ∈ {1, . . . , D} with arbitrary missing data of interest
in each domain, we say that target vectors yd obey a missing data MFH (MMFH) model.

The MMFH model can be expressed as a single model in the form

y̆d = X̆dβ̆d + ŭd + ĕd, d = 1, . . . , D, (6.263)

or in the matrix form
y̆ = Λ(Xβ) + ŭ+ ĕ, (6.264)

with

y̆ = col
1≤d≤D

(y̆d) ∈ RM̆ , ŭ = col
1≤d≤D

(ŭd) ∈ RM̆ ,

ĕ = col
1≤d≤D

(ĕd) ∈ RM̆ , Λ = col
1≤d≤D

Λd ∈ RM̆×m,
(6.265)

M̆ = ∑D
d=1 m̆d and Λ is the diagonal matrix of (λ>

1 , . . . ,λ
>
D)> ∈ RmD where all rows with

row sum equal to zero are deleted, such that Λ ∈ RM̆×(mD).

If the MMFH model holds, then

y̆d ∼ Nm̆d
(X̆dβ̆d, V̆ud + V̆ed) (6.266)

y̆d|ŭd
∼ Nm̆d

(X̆dβ̆d + ŭd, V̆ed), d = 1, . . . , D. (6.267)

Note that the (univariate) FH model (2.83), the MFH model (5.177), and the bivariate FH
model under missing direct estimates, proposed in Burgard et al. (2021c), are special cases
of the above formulation.

6.4 Prediction

Let D = {1, . . . , D} contain all domains of interest. Without loss of generality, we reorder
the domains such that we can partition the set of domains D into the two subsets:

Dmis = {1, . . . , Dmis} contains the Dmis ≤ D domains where 1 ≤ m̆d < m and thus
at least one variable of interest is not observed. We assume that at least one of the
m variables is observed in each domain.

Dobs = {Dmis + 1, . . . , D} contains the Dobs = D − Dmis domains where m̆d = m
and thus all m variables of interest are observed.

In a situation where the target data follows a MMFH model, the MFH model is strictly
applicable only to Dobs, but not to Dmis. For example, under the MFH model we can only
calculate EBLUPs of µd or ud for d ∈ Dobs. However, in what follows we show that it is
possible calculate EBLUPs for d ∈ Dmis under the MMFH model. The only requirements
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for that are: At least one of the m direct estimates has to be observed in each domain
d ∈ Dmis and there have to be enough domains D with combinations of the m direct
estimates available such that their random effect correlations can be estimated.

In order to derive EBLUPs for domains with arbitrary missing structures of the target
variables, we introduce additional domain-specific quantities for d = 1, . . . , D which are
of same size for all domains, but where certain entries are set to zero depending on the
observed variables of interest. For any quantity rd, for example a vector, we define quantity
ŕd corresponding to rd, where all elements referring to missing direct estimates are set to
zero.

We define ýd = Λ>
d Λdyd = Λ>

d y̆ ∈ Rm such that ýd is a vector containing zeros where direct
estimates yd are missing. Let V́ed = Λ>

d V̆edΛd ∈ Rm×m and V́ inv
ed = Λ>

d V̆
−1

ed Λd ∈ Rm×m,
be matrices containing the entries of V̆ed and V̆ −1

ed for the variables observed in domain d
and zeros else.

Proposition 6.1. The conditional distribution of ud given yd under the MMFH model is
multivariate normal with with mean vector and variance matrix

E[ud|y̆d] = Var(ud|y̆d;β,θ) = ΦdV́
inv

ed (ýd −Xdβ) (6.268)
= (V́ inv

ed + V −1
ud )−1V́ inv

ed (ýd −Xdβ),
Φd = Var(ud|y̆d;β,θ) = (V́ inv

ed + V −1
ud )−1, d = 1, . . . , D. (6.269)

Proof. We recall that the kernel of the m-variate normal probability density function for
variables Ỹ1, . . . , Ỹm with mean µ̃ and covariance matrix Σ̃ is

f(ỹ|µ̃, Σ̃) = 1

(2π)m/2 det
(
Σ̃
)1/2 exp

{
− 1

2(ỹ − µ̃)>Σ̃−1(ỹ − µ̃)
}

∝ exp
{

− 1
2 ỹ

>Σ̃−1ỹ + µ̃>Σ̃−1ỹ
}
.

(6.270)

The conditional distribution of ud given y̆d is then given by

f(ud|y̆d)
∝ f(y̆d|ud)f(ud) = f(y̆d|ŭd)f(ud)

= 1

(2π)m̆d/2 det
(
V̆ed

)1/2 exp
{

− 1
2(y̆d − X̆dβ̆d − ŭd)>V̆ −1

ed (y̆d − X̆dβ̆d − ŭd)
}

· 1
(2π)md/2 det(Vud)1/2 exp

{
− 1

2u
>
d V

−1
ud ud

}

∝ exp
{

− 1
2ŭ

>
d V̆

−1
ed ŭd + ŭ>

d V̆
−1

ed (y̆d − X̆dβ̆d) − 1
2u

>
d V

−1
ud ud

}
= exp

{
− 1

2u
>
d

(
Λ>

d V̆
−1

ed Λd + V −1
ud

)
ud + u>

d Λ>
d V̆

−1
ed Λd(ýd −Xdβ)

}
= exp

{
− 1

2u
>
d (V́ inv

ed + V −1
ud )ud + u>

d Φ−1
d

(
Φd V́

inv
ed (ýd −Xdβ)

)}
.

(6.271)
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Therefore, f(ud|y̆d) is a multivariate normal distribution with parameters

E[ud|y̆d] = Φd V́
inv

ed (ýd −Xdβ) (6.272)

Var(ud|y̆d) =
(
V́ inv

ed + V −1
ud

)−1
= Φd, d = 1, . . . , D. (6.273)

If β and θ are known, the best predictors (BPs) of ud and µd are

ûBP
d = E

[
ud|y̆d;β,θ

]
= Φd V́

inv
ed (ýd −Xdβ), (6.274)

µ̂BP
d = Xβ + ûBP, d = 1, . . . , D. (6.275)

If θ is known and β is unknown, the best linear unbiased estimator (BLUE) of β and the
best linear unbiased predictor (BLUP) of u and µ = Xβ + u are

β̂BLUE = (X̆>V̆ −1(θ)X̆)−1X̆>V̆ −1(θ)y̆, (6.276)
ûBLUP

d = ΦdV́
inv

ed (ýd −Xdβ̂
BLUE) = ΦdV́

inv
ed (Λ>

d y̆d −Xdβ̂
BLUE), (6.277)

µ̂BLUP
d = Xdβ̂

BLUE + ûBLUP
d , d = 1, . . . , D, (6.278)

where y̆ = (y̆>
1 , . . . , y̆

>
D)> ∈ RM̆ , V̆ ∈ RM̆×M̆ is the block-diagonal covariance matrix of y̆

with blocks of size m̆d × m̆d, and X̆ = (X̆1, . . . , X̆D)> ∈ RM̆×p, d = 1, . . . , D.

Note that the formulas are very close to the formulas for the MFH model. For the MFH
model, the derivations of the BLUPs and BLUE are listed in detail for example in Morales
et al. (2021, Section 16.2). Compared to the MFH model, what changes in the MMFH
model is simply that different quantities of the model are adjusted to represent only those
entries which refer to be observed values of y. Furthermore, the linearity in the BLUE
and BLUP formulas in the MMFH model is with respect to the observed values y̆.

By substituting θ by an estimator θ̂, we obtain the empirical BLUE (EBLUE) of β and
the empirical BLUP (EBLUP) of ud and µd = Xdβd + ud, i.e.

β̂ = (X̆>V̆ −1(θ̂)X̆)−1X̆>V̆ −1(θ̂)y̆, (6.279)
ûEBLUP

d = ΦdV́
inv

ed (ýd −Xdβ̂) = ΦdV́
inv

ed (Λ>
d y̆d −Xdβ̂), (6.280)

µ̂EBLUP
d = Xdβ̂ + ûEBLUP

d , d = 1, . . . , D. (6.281)

Examples
To illustrate Proposition 6.1 and the BLUP of ud (6.277) under the MMFH model, we
consider three data examples. For that, we need some additional notation. For an arbitrary
matrix M̃ =

(
m̃ij

)
∈ Rã×b̃, we use (M̃ )i,j, (M̃ )i,∗, and (M̃ )∗,j to indicate entry m̃ij, the

i-th row vector (m̃i1, . . . , m̃ib̃), and the j-th column vector (m̃1j, . . . , m̃ãj), respectively,
i = 1, . . . , ã, j = 1, . . . , b̃.
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Example 6.1. Domain with no missing direct estimates.
If there are no missing direct estimates for a domain d, we have m̆d = m, y̆d = ýd = yd ∈ Rm

and V́ inv
ed = V −1

ed ∈ Rm×m.

The BLUP of ud under the MMFH model is equivalent to the BLUP under the MFH
model, i.e.

ûBLUP
d = E[ud|yd] = ΦdV

−1
ed (yd −Xdβ̂

BLUE), Φd = (V −1
ed + V −1

ud )−1. (6.282)

Example 6.2. Domain with a direct estimate only for the first variable of interest.
If only for the first variable of interest a direct estimate is observed for a domain d, we
have m̆d = 1, y̆d = yd1 ∈ R, ýd = (yd1, 0, . . . , 0)> ∈ Rm, V̆ed = (Ved)1,1 = σ2

ed1 ∈ R.

The BLUP of ud under the MMFH model is then given by

ûBLUP
d = E[ud|yd1] = ΦdV́

inv
ed

(
(yd1, 0, . . . , 0)> −Xdβ̂

BLUE
)
, (6.283)

where

V́ inv
ed =


σ−2

ed1 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0

 ∈ Rm×m, Φd =



σ−2

ed1 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0

+ V −1
ud


−1

.

(6.284)

Example 6.3. Domain with a direct estimate only for the first and third variable of
interest.
If only for the first and third variable of interest a direct estimate is observed for a domain
d, we have m̆d = 2, y̆d = (yd1, yd3)> ∈ R2, ýd = (yd1, 0, yd3, . . . , 0)> ∈ Rm,

V̆ed =
(

σ2
ed1

σed1
σed3

σed1
σed3

σ2
ed3

)
∈ R2×2, V́ inv

ed =


(V̆ −1

ed )1,1 0 (V̆ −1
ed )1,3 · · · 0

0 0 0 · · · 0
(V̆ −1

ed )1,3 0 (V̆ −1
ed )3,3

. . . ...
0 0 0 · · · 0

 ∈ Rm×m.

(6.285)

The BLUP of ud under the MMFH model is then given by

ûBLUP
d = E[ud|(yd1, yd3)>] = ΦdV́

inv
ed

(
(yd1, 0, yd3, . . . , 0)> −Xdβ̂

BLUE
)
, (6.286)

where

Φd =




(V̆ −1
ed )1,1 0 (V̆ −1

ed )1,3 · · · 0
0 0 0 · · · 0

(V̆ −1
ed )1,3 0 (V̆ −1

ed )3,3
. . . ...

0 0 0 · · · 0

+ V −1
ud


−1

. (6.287)
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6.5 Parameter estimation

This section presents the maximum likelihood (ML) and residual maximum likelihood
(REML) method for estimating the model parameters under the introduced MMFH model.
As the MFH model is a special case of the MMFH model, the algorithms can also be
applied to get ML and REML parameter estimates under the MFH model. For the theory
of ML and REML parameter estimation, we refer to Section 2.4.2. We proceed with
the derivations in analogy to Morales et al. (2021, Section 19.4, 19.5), who give detailed
derivations of ML and REML procedures for BFH models.

6.5.1 Maximum likelihood method

First and second partial derivatives of Vud

Before we get to the likelihood itself, we take a look at the derivatives of the random effect
covariance matrix Vud. These are later used in the derivatives of the likelihood.

Recall that vector θ of length q = m (m+ 1) /2 is given by (6.258), the first m elements of
θ refer to the random effect variances, and the q −m last elements refer to the random
effect correlations.

Let us define the subset of natural numbers Nm = {1, 2, . . . , 0.5m(m−1)} and the function
gm : Nm 7→ N2 such that

gm(1) = (1, 2),
gm(2) = (1, 3),

...,
gm(m− 1) = (1,m),

gm(m) = (2, 3),
...

gm(2m− 3) = (2,m),
gm(2m− 2) = (3, 4),

...
gm(3m− 6) = (3,m),

...
gm(0.5m(m− 1)/2) = (m− 1,m).

We use function gm to get the coordinates of the random effect correlations in covariance
matrix Vud. For an example, take m = 3. Then g(1) = (1, 2) are the column and row
coordinates of ρ12 in Vud.

If 1 ≤ a ≤ m, the components of the first partial derivatives of Vud are

(
∂Vud

∂θa

)
i,j

=
(
∂Vud

∂θa

)
j,i

=


1 if i = j = a,
(ρijσuj)/(2σui) if i = a, j 6= a,
0 otherwise.

(6.288)

If m+ 1 ≤ a ≤ q, the components of the first partial derivatives of Vud are
(
∂Vud

∂θa

)
i,j

=
(
∂Vud

∂θa

)
j,i

=
{
σuiσuj if gm(a−m) = (i, j),
0 otherwise. (6.289)
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If 1 ≤ a ≤ m, the components of the second partial derivatives of Vud are
(
∂2Vud

∂θ2
a

)
i,j

=
(
∂2Vud

∂θ2
a

)
j,i

=
{

−(ρijσuj)/(4σ3
ui) if i = a, j 6= a,

0 otherwise. (6.290)

If 1 ≤ a ≤ m, 1 ≤ b ≤ m, a 6= b, the components of the second partial derivatives of Vud

are (
∂2Vud

∂θa∂θb

)
i,j

=
(
∂2Vud

∂θa∂θb

)
j,i

=
{

(ρij)/(4σuiσuj) if i = a, j = b,
0 otherwise. (6.291)

If 1 ≤ a ≤ m, m + 1 ≤ b ≤ q, the components of the second partial derivatives of Vud

are (
∂2Vud

∂θa∂θb

)
i,j

=
(
∂2Vud

∂θa∂θb

)
j,i

=
{
σuj/(2σui) if gm(b−m) = (i, j), i = a,
0 otherwise. (6.292)

If m+ 1 ≤ a ≤ q, m+ 1 ≤ b ≤ q, the components of the second partial derivatives of Vud

are (
∂2Vud

∂θa∂θb

)
i,j

=
(
∂2Vud

∂θa∂θb

)
j,i

= 0. (6.293)

For ease of exposition, we use the reduced matrix notation

Vuda =
(
∂Vud

∂θa

)
, Vudab =

(
∂2Vud

∂θa∂θb

)
, a, b = 1, . . . , q. (6.294)

Let the domain-specific derivatives of V̆ud be defined by V̆uda = ΛdVudaΛ>
d ∈ Rm̆d×m̆d and

V̆udab = ΛdVudabΛ>
d ∈ Rm̆d×m̆d , d = 1, . . . , D, a, b = 1, . . . , q. The vector of domain-specific

model parameters for the observed variables of interest is ψ̆d = (β̆>
d , θ̆

>
d )> ∈ R(p̆d+q̆d),

where q̆d is the length of θ̆d, d = 1, . . . , D.

Log-likelihood
The log-likelihood of observations y̆ ∈ RM̆ is ` = ∑D

d=1 `d, where

`d = −m̆d

2 log(2π) − 1
2 log

(
det

(
V̆d

))
− 1

2(y̆d − X̆dβ̆d)>V̆ −1
d (y̆d − X̆dβ̆d), (6.295)

d = 1, . . . , D.

First partial derivatives
The first partial derivatives of `d with respect to the components of ψ = (β>,θ>)> ∈ R(p+q)

are

∂`d

∂β̆d

= X̆>
d V̆

−1
d (y̆d − X̆dβ̆d), (6.296)

∂`d

∂θa

= −1
2 tr

(
V̆ −1

d V̆uda

)
+ 1

2(y̆d − X̆dβ̆d)>V̆ −1
d V̆udaV̆

−1
d (y̆d − X̆dβ̆d), (6.297)

a ∈ Qd.



Chapter 6 MFH models Under Missing Direct Estimates 170

The remaining first derivatives with respect to the parameters of ψ that are not in ψ̆d are
equal to zero. Recall that Qd is defined in (6.262).

Score vector
The components of the score vector are

st =
D∑

d=1

∂ld
∂ψt

, t = 1, . . . , p+ q. (6.298)

The score vector is s(ψ) = (s>
β (ψ), s>

θ (ψ))> ∈ R(p+q), where

sβ(ψ) = (s1, . . . , sp)>, sθ(ψ)> = (sp+1, . . . , sp+q)>. (6.299)

Second partial derivatives
The second partial derivatives of `d with respect to the components of ψ are

∂`2
d

∂β̆d∂β̆>
d

= −X̆>
d V̆

−1
d X̆d, (6.300)

∂`2
d

∂β̆d∂θa

= −X̆>
d V̆

−1
d V̆udaV̆

−1
d (y̆d − X̆dβ̆d), a ∈ Qd, (6.301)

∂`2
d

∂θa∂θb

= 1
2 tr

(
V̆ −1

d V̆udaV̆
−1

d V̆udb

)
− 1

2 tr
(
V̆ −1

d V̆udab

)
(6.302)

− (y̆d − X̆dβ̆d)>V̆ −1
d V̆udaV̆

−1
d V̆udbV̆

−1
d (y̆d − X̆dβ̆d)

+ 1
2(y̆d − X̆dβ̆d)>V̆ −1

d V̆udabV̆
−1

d (y̆d − X̆dβ̆d), a, b ∈ Qd.

The remaining second derivatives with respect to parameters of ψ that are not in ψ̆d are
equal to zero.

Fisher information matrix
By changing the sign and taking the expectation of the second partial derivatives, we have
the Fisher information matrix Fd = − E

[
∂2`d

∂ψ∂ψ>

]
, with block-matrix components

Fdβ̆dβ̆d
= X̆>

d V̆
−1

d X̆d, Fdθaθb
= 1

2 tr
(
V̆ −1

d V̆udaV̆
−1

d V̆udb

)
, a, b ∈ Qd. (6.303)

The remaining block-matrix components of Fd with respect to the parameters of ψ that
are not in ψ̆d are equal to zero.

The components of the Fisher information matrix are

Fst =
D∑

d=1
Fdst, s, t = 1, . . . , p+ q. (6.304)
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The Fisher information matrix is then given by

F (ψ)

=



Fβ11β11 · · · Fβ11βmpm
Fβ11σ2

u1
· · · Fβ11σ2

um
Fβ11ρ12 · · · Fβ11ρm−1,m

... . . .

...

Fβ11βmpm
· · · Fβmpmβmpm

. . .
Fβ11σ2

u1
Fσ2

u1σ2
u1... . . .

Fβ11σ2
um

. . . Fσ2
umσ2

um

Fβ11ρ12 Fρ12ρ12
... . . .

Fβ11ρm−1,m · · · Fρm−1,mρm−1,m


=
(
Fββ 0
0 Fθθ

)
∈ R(p+q)×(p+q), (6.305)

where Fββ ∈ Rp×p and Fθθ ∈ Rq×q.

ML Fisher-Scoring
The ML Fisher-Scoring procedure is given by Algorithm 6.1.

Algorithm 6.1 ML Fisher-Scoring
1. Set the initial values ψ(0) = (β(0)>,θ(0)>)> ∈ R(p+q) and tolerance conditions εs > 0,

∀s ∈ {1, . . . , p+ q}.
2. Repeat the following steps until the tolerance or the boundary conditions are fulfilled.

a) Updating equations:

β(r+1) = β(r) + F−1
ββ (θ(r),β(r))sβ(ψ(r)),

θ(r+1) = θ(r) + F−1
θθ (θ(r),β(r+1))sθ(ψ(r)).

b) Boundary conditions:
If θ(r+1)

a > 0, ∀a ∈ {1, . . . ,m} and |θ(r+1)
a | < 1, ∀a ∈ {m+ 1, . . . , q}, continue.

Otherwise, do ψ̂ = ψ(r) and stop.
c) Tolerance conditions:

If |ψ(r+1)
s − ψ(r)

s | > εs, ∀s ∈ {1, . . . , p+ q}, continue. Otherwise, do ψ̂ = ψ(r+1)

and stop.
3. Output: ψ̂ = (θ̂>, β̂>)>, F−1(θ̂).

As starting values for β and (θ1, . . . , θm), which correspond to (σ2
u1, . . . , σ

2
um), we take the

ML estimates of the corresponding univariate Fay-Herriot models for each target variable.
As starting values for (θm+1, . . . , θq), which correspond to the random effect correlations,
we take the correlation of the two corresponding direct estimates in the data if possible
and 0 else.
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In Section 2.4.2, we saw that the ML estimators are consistent and follow an asymptotically
normal distribution. The asymptotic distributions of the ML estimators θ̂ and β̂,

θ̂ ∼ Nq

(
θ,F−1(θ)

)
, β̂ ∼ Np

(
β, (X̆>V̆ −1(θ)X̆)−1

)
, (6.306)

can therefore be used to construct (1 − α)-level confidence intervals for the components θa

of θ and βt of β. The confidence intervals are given by

θ̂a ± zα/2 ν
1/2
aa , ∀a ∈ {1, . . . , q}, β̂t ± zα/2 q

1/2
st , ∀t ∈ {1, . . . , p}, (6.307)

where F−1(θ̂) = (νab)a,b=1,...,q, (X̆>V̆ −1(θ̂)X̆)−1 = (qst)s,t=1,...,p and zα is the α-quantile of
the N(0, 1) distribution. For β̂t = β0, the p-value for testing the hypothesis H0 : βt = 0
is

p-value = 2 Pr
H0

(β̂t > |β0|) = 2 Pr(N(0, 1) > |β0|/
√
qtt ). (6.308)

6.5.2 Residual maximum likelihood method

Restricted log-likelihood in the MFH model
In the MFH model, where all direct estimates are available, the restricted log-likelihood is
given by

`reml(θ) = c− 1
2 log(det(V )) − 1

2 log
(
det

(
X>V −1X

))
− 1

2 y
>Py, (6.309)

where c is a constant term, y = (y>
1 , . . . ,y

>
D)> ∈ RmD, V ∈ RmD×mD is the block-diagonal

covariance matrix of y with blocks of size m × m, X = (X1, . . . ,XD)> ∈ RmD×p and
having full column rank, P = V −1 −V −1X(X>V −1X)−1X>V −1, and PV P = P with
PX = 0.

Restricted log-likelihood in the MMFH model
Under the MMFH model, the REML log-likelihood takes the form (6.309), with vector y
and matrices X and V reduced to those rows and columns that correspond to observed
values y̆.

Recall that M̆ = ∑D
d=1 m̆d, y̆ = (y̆>

1 , . . . , y̆
>
D)> ∈ RM̆ , V̆ ∈ RM̆×M̆ is the block-diagonal

covariance matrix of y̆ with blocks of size m̆d × m̆d, and X̆ = (X̆1, . . . , X̆D)> ∈ RM̆×p.
Let P̆ = V̆ −1 − V̆ −1X̆(X̆>V̆ −1X̆)−1X̆>V̆ −1 ∈ RM̆×M̆ . For the MMFH model, we then
have

`reml(θ) = c− 1
2 log

(
det

(
V̆
))

− 1
2 log

(
det

(
X̆>V̆ −1X̆

))
− 1

2 y̆
>P̆ y̆, (6.310)

where c is a constant term.
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First partial derivatives
By applying the formulas

∂ log det
(
V̆
)

∂θa

= tr
(
V̆ −1∂V̆

∂θa

)
,

∂V̆ −1

∂θa

= −V̆ −1∂V̆

∂θa

V̆ −1, (6.311)

we calculate the first partial derivatives of `reml with respect to θa, i.e.

∂`reml(θ)
∂θa

= −1
2 tr

(
P̆
∂V̆

∂θa

)
− 1

2 y̆
>∂P̆

∂θa

y̆, a = 1, . . . , q. (6.312)

Let us define Ğ = V̆ −1X̆(X̆>V̆ −1X̆)−1, so that P̆ = (I − ĞX̆>)V̆ −1 = V̆ −1(I − X̆Ğ>).
The first partial derivatives of P̆ with respect to θa are

∂P̆

∂θa

= −(I − ĞX̆>)V̆ −1∂V̆

∂θa

V̆ −1(I − ĞX̆>)> = −P̆ ∂V̆
∂θa

P̆ , a = 1, . . . , q. (6.313)

Score vector
Therefore, the score vector is

s(θ) =(s1, . . . , sq)>, (6.314)

sa =sa(θ) = ∂`reml

∂θa

= −1
2 tr(P̆ V̆a) + 1

2 y̆
>P̆ V̆aP̆ y̆, a = 1, . . . , q, (6.315)

where V̆a = ∂V̆ /∂θa = diag
1≤d≤D

(V̆uda) and the elements of V̆uda are given in Section 6.5.1.

Second partial derivatives
For a, b ∈ {1, . . . , q}, the second partial derivatives of the REML log-likelihood function
are

∂`2
reml(θ)
∂θa∂θb

=1
2 tr

(
P̆ V̆aP̆ V̆b

)
− tr

(
P̆ V̆ab

)
− y̆>P̆ V̆aP̆ V̆bP̆ y̆ + 1

2 y̆
>P̆ V̆abP̆ y̆, (6.316)

as V̆a is symmetric, a = 1, . . . , q.

Fisher information matrix
Note that P̆ X̆ = 0, P̆ V̆ = I − V̆ −1X̆Q̆X̆>, where Q̆ = (X̆>V̆ −1X̆)−1 and

E[y̆>A y̆] = tr
(
A Var(y̆)

)
+ E[y̆]>A E[y̆] (6.317)

for an arbitrary M̆ × M̆ -matrix A. By changing the sign and taking the expectation of the
second partial derivatives, we get the components of the Fisher information matrix, i.e.

Fab = Fab(θ) = 1
2 tr

(
P̆ V̆aP̆ V̆b

)
, a, b = 1, . . . , q. (6.318)
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Therefore, the Fisher information matrix is

F (θ) = (Fab)a,b=1,...,q, Fab = Fab(θ) = 1
2 tr

(
P̆ V̆aP̆ V̆b

)
, a, b = 1, . . . , q. (6.319)

REML Fisher-Scoring
The REML Fisher-Scoring procedure is given by Algorithm 6.2. As starting values for
β and (θ1, . . . , θm), which correspond to (σ2

u1 , . . . , σ
2
um

), we take the REML estimates of
the corresponding univariate Fay-Herriot models for each target variable. As starting
values for (θm+1, . . . , θq), which correspond to the random effect correlations, we take the
correlation of the two corresponding direct estimates in the data if possible and 0 else.

Algorithm 6.2 REML Fisher-Scoring
1. Set the initial values ψ(0) = (β(0)>,θ(0)>)> ∈ R(p+q) and tolerance conditions εs > 0,

∀s ∈ {1, . . . , p+ q}.
2. Repeat the following steps until the tolerance or the boundary conditions are fulfilled.

a) Updating equation for θ:

θ(r+1) = θ(r) + F−1(θ(r))s(θ(r)).

b) Boundary conditions:
If θ(r+1)

a > 0, ∀a ∈ {1, . . . ,m} and |θ(r+1)
a | < 1, ∀a ∈ {m+ 1, . . . , q}, continue.

Otherwise, do ψ̂ = ψ(r) and stop.
c) Updating equation for β:

β(r+1) = (X̆>V̆ −1(θ(r+1))X̆)−1X̆>V̆ −1(θ(r+1))y̆.

d) Tolerance conditions:
If |ψ(r+1)

s − ψ(r)
s | > εs, ∀s ∈ {1, . . . , p+ q}, continue. Otherwise, do ψ̂ = ψ(r+1)

and stop.
3. Output: ψ̂ = (θ̂>, β̂>)>, F−1(θ̂).

In Section 2.4.2, we saw that the REML estimators are consistent and follow an asymptot-
ically normal distribution. The asymptotic distributions of the REML estimators θ̂ and
β̂,

θ̂ ∼ Nq

(
θ,F−1(θ)

)
, β̂ ∼ Np

(
β, (X̆>V̆ −1(θ)X̆)−1

)
, (6.320)

can therefore be used to construct (1 − α)-level confidence intervals for the components θa

of θ and βt of β. The confidence intervals are given by

θ̂a ± zα/2 ν
1/2
aa , ∀a ∈ {1, . . . , q}, β̂t ± zα/2 q

1/2
st , ∀t ∈ {1, . . . , p}, (6.321)

where F−1(θ̂) = (νab)a,b=1,...,q, (X̆>V̆ −1(θ̂)X̆)−1 = (qst)s,t=1,...,p and zα is the α-quantile of
the N(0, 1) distribution. For β̂t = β0, the p-value for testing the hypothesis H0 : βt = 0
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is
p-value = 2 Pr

H0
(β̂t > |β0|) = 2 Pr(N(0, 1) > |β0|/

√
qtt ). (6.322)

6.6 Mean squared error

6.6.1 Best predictors

Recall that V́ed = Λ>
d V̆edΛd ∈ Rm×m and V́ inv

ed = Λ>
d V̆

−1
ed Λd ∈ Rm×m contain the entries

of V̆ed and V̆ −1
ed for the variables observed in d and zeros otherwise, d = 1, . . . , D.

If θ and β are known, the best predictor (BP) of u and µ = Xβ + u are

ûBP
d = ΦdV́

inv
ed (ýd −Xdβ) = ΦdV́

inv
ed (Λ>

d y̆d −Xdβ), (6.277)
µ̂BP

d = Xdβ + ûBP
d , d = 1, . . . , D, (6.278)

where

Φd =
(
V́ inv

ed + V −1
ud

)−1
=


φd,11 · · · φd,1m

... . . . ...
φd,1m · · · φd,mm

 . (6.323)

The variance matrix of µ̂BP
d , with éd = Λ>

d Λded ∈ Rm, is

Var(µ̂BP
d ) = Var(ûBP

d ) = E[ûBP
d (ûBP

d )>] = ΦdV́
inv

ed Var(ud + éd)V́ inv
ed Φd

= ΦdV́
inv

ed (Vud + V́ed)V́ inv
ed Φd.

(6.324)

Further, the expectation matrix E[ûBP
d u>

d ] is

E[ûBP
d u>

d ] = ΦdV́
inv

ed Vud. (6.325)

As µ̂BP
d − µd = ûBP

d − ud, the MSE matrix of µ̂BP
d is

MSE(µ̂BP
d ) = MSE(ûBP

d ) = E
[
(ûBP

d − ud)(ûBP
d − ud)>

]
= ΦdV́

inv
ed (Vud + V́ed)V́ inv

ed Φd + Vud − 2ΦdV́
inv

ed Vud.
(6.326)

6.6.2 Empirical best linear unbiased predictors

Recall that for ML/REML estimators θ̂, the empirical BLUE (EBLUE) of β and the
empirical BLUP (EBLUP) of ud and µd = Xdβd + ud are given by

β̂ = (X̆>V̆ −1(θ̂)X̆)−1X̆>V̆ −1(θ̂)y̆, (6.279)
ûBLUP

d = ΦdV́
inv

ed (ýd −Xdβ̂) = ΦdV́
inv

ed (Λ>
d y̆d −Xdβ̂), (6.274)

µ̂EBLUP
d = Xdβ̂ + ûEBLUP

d , d = 1, . . . , D. (6.275)
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The MSE of µ̂EBLUP
d is given by

MSE(µ̂EBLUP
d )

= E[(µ̂EBLUP
d − µd)(µ̂EBLUP

d − µd)>]
= E

[
(µ̂BP

d − µd)(µ̂BP
d − µd)>

]
+ E

[
(µ̂EBLUP

d − µ̂BP
d )(µ̂EBLUP

d − µ̂BP
d )>

]
+ E

[
(µ̂EBLUP

d − µ̂BP
d )(µ̂BP

d − µd)>
]

+ E
[
(µ̂BP

d − µd)(µ̂EBLUP
d − µ̂BP

d )>
]
,

= E
[
(µ̂BP

d − µd)(µ̂BP
d − µd)>

]
︸ ︷︷ ︸

= M1d

+ E
[
(µ̂EBLUP

d − µ̂BP
d )(µ̂EBLUP

d − µ̂BP
d )>

]
︸ ︷︷ ︸

= M2d

.

(6.327)

Kackar and Harville (1984) proved that for the ML/REML estimators of θ and normally
distributed sampling errors and random effects, terms E

[
(µ̂EBLUP

d −µ̂BP
d )(µ̂EBLUP

d −µ̂BP
d )>

]
and E

[
(µ̂BP

d − µd)(µ̂EBLUP
d − µ̂BP

d )>
]

are zero.

Approximation of the first summand M1d

The first summand is M1d = E
[
(µ̂BP

d − µd)(µ̂BP
d − µd)>

]
= MSE(µ̂BP

d ) and given by
(6.326).

Approximation of the second summand M2d

The second summand is M2d = E
[
(µ̂EBLUP

d − µ̂BP
d )(µ̂EBLUP

d − µ̂BP
d )>

]
. The EBLUP is a

function of the estimators (β̂, θ̂) and ýd. For the sake of brevity, we write

hd(β̂, θ̂) = µ̂EBLUP
d = Xdβ̂ + Φ̂dV́

inv
ed (ýd −Xdβ̂), (6.328)

where

Φ̂d = Φd(θ̂) = (V́ inv
ed + V̂ −1

ud )−1, (6.329)

V̂ud = Vud(θ̂) =


σ̂2

u1 ρ̂12σ̂u1σ̂u2 · · · ρ̂1mσ̂u1σ̂um

ρ̂12σ̂u1σ̂u2 σ̂2
u2 · · · ρ̂2mσ̂u2σ̂um

... ... . . . ...
ρ̂1mσ̂u1σ̂um ρ̂2mσ̂u2σ̂um . . . σ̂2

um

 . (6.330)

For a = 1, . . . , q, the derivatives of matrix Φd(θ), with respect to θa, are

Φda = ∂Φd

∂θa

= (V́ inv
ed + V −1

ud )−1V −1
ud VudaV

−1
ud (V́ inv

ed + V −1
ud )−1

=


φda,11 · · · φda,1m

... . . . ...
φda,1m · · · φda,mm

 . (6.331)

For d = 1, . . . , D, k = 1, . . . ,m, we define X́dk ∈ Rm×pk with rows

(X́dk)l,∗ =
{
xdk if l = k,

0 otherwise.
, l = 1, . . . ,m. (6.332)
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For k = 1, . . . ,m, t = 1, . . . , pk, a = 1, . . . , q, the derivatives of hd(β,θ) with respect to β
and θ, are

∂hd

∂βkt

=


hdβkt,1

...
hdβkt,m

 =
(X́dk)∗,t − ΦdV́

inv
ed (X́dk)∗,t = (Im − ΦdV́

inv
ed )(X́dk)∗,t if k ∈ Ad,

(X́dk)∗,t otherwise,

(6.333)

∂hd

∂θa

=


hdθa,1

...
hdθa,m

 = ΦdaV́
inv

ed (ýd −Xdβ). (6.334)

For k, l = 1, . . . ,m, the vectors containing the derivatives of hd(β,θ) and Φd, with respect
to β and θ, are

hdβk,l = col
1≤t≤pk

(hdβkt,l) ∈ Rpk , (6.335)

hdθ,l = col
1≤a≤q

(hdθa,l) =
m∑

k=1

ýdk − x>
dkβk

σ2
edk

gdθ,lkλdk ∈ Rq, (6.336)

gdθ,lk = col
1≤a≤q

(φda,kl) ∈ Rq. (6.337)

For the above formula, recall that λdk is defined in (6.260) and Ad is defined in (6.261).
For a, b, k, l = 1, . . . ,m, the corresponding matrices are defined as

Hdβkβl,ab = hdβk,ah
>
dβl,b

∈ Rpk×pl , Hdθθ,ab = hdθ,ah
>
dθ,b ∈ Rq×q, and (6.338)

Hdβkθ,ab = H>
dθβk,ab = hdβk,ah

>
dθ,b ∈ Rpk×q. (6.339)

For k, l = 1, . . . ,m, we furthermore define the matrices

Hdβk
= row

1≤l≤m
(hdβk,l) ∈ Rpk×m and Hdθ = row

1≤l≤m
(hdθ,l) ∈ Rq×m. (6.340)

A Taylor series expansion of hd(β̂, θ̂) ∈ Rm around (β,θ) yields

hd(β̂, θ̂) =hd(β,θ) +
m∑

k=1

pk∑
t=1

∂h>
d (β,θ)
∂βkt

(β̂kt − βkt) +
q∑

a=1

∂h>
d (β,θ)
∂θa

(θ̂a − θa)

+ OP (‖β̂ − β‖2) + OP (‖θ̂ − θ‖2).
(6.341)

Therefore,

hd(β̂, θ̂) = hd(β,θ)+
m∑

k=1
H>

dβk
(β̂k−βk)+H>

dθ(θ̂−θ)+OP (‖β̂−β‖2)+OP (‖θ̂−θ‖2) (6.342)
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and

M2d = E
[
(µ̂EBLUP

d − µ̂BLUP
d )(µ̂EBLUP

d − µ̂BLUP
d )>

]
= E

[(
hd(β̂, θ̂) − hd(β,θ)

)(
hd(β̂, θ̂) − hd(β,θ)

)>
]

=
m∑

k=1

m∑
l=1

E
[
H>

dβk
(β̂k − βk)(β̂l − βl)>Hdβl

]
︸ ︷︷ ︸

= M2.1d

+ E
[
H>

dθ(θ̂ − θ)(θ̂ − θ)>Hdθ

]
︸ ︷︷ ︸

= M2.2d

+
m∑

k=1
E
[
H>

dβk
(β̂k − βk)(θ̂ − θ)>Hdθ

]
︸ ︷︷ ︸

= M2.3d

+
m∑

k=1
E
[
H>

dθ(θ̂ − θ)(β̂k − βk)>Hdβk

]
︸ ︷︷ ︸

= M2.4d

+ OP (‖β̂ − β‖2
2) + OP (‖θ̂ − θ‖2

2).
(6.343)

Approximation of parts of M2d: M2.1d

Concerning the first part of M2d,

M2.1d =
m∑

k=1

m∑
l=1

E
[
H>

dβk
(β̂k − βk)(β̂l − βl)>Hdβl

]
=

m∑
k=1

m∑
l=1
M2.1dkl, (6.344)

we observe that

H>
dβk

(β̂k − βk)(β̂l − βl)>Hdβl
=

h>
dβk,1(β̂k − βk)(β̂l − βl)>hdβl,1 · · · h>

dβk,1(β̂k − βk)(β̂l − βl)>hdβl,m
... . . . ...

h>
dβk,m(β̂k − βk)(β̂l − βl)>hdβl,1 · · · h>

dβk,m(β̂k − βk)(β̂l − βl)>hdβl,m

 .

(6.345)

Note that h>
dβk,a(β̂k − βk) is a scalar. Then, we have

h>
dβk,a(β̂k − βk)(β̂l − βl)>hdβl,b = (β̂l − βl)>hdβl,bh

>
dβk,a(β̂k − βk)

= (β̂l − βl)>Hdβlβk,ba(β̂k − βk).
(6.346)
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Therefore,

M2.1d,kl = E




(β̂l − βl)>Hdβlβk,11(β̂k − βk) · · · (β̂l − βl)>Hdβlβk,m1(β̂k − βk)
... . . . ...

(β̂l − βl)>Hdβlβk,1m(β̂k − βk) · · · (β̂l − βl)>Hdβlβk,mm(β̂k − βk)


 .

(6.347)

We apply to z = β̂k − βk the formula

E[z>Az] = tr
(
A Var(z)

)
+ E[z]>AE[z] (6.348)

for an arbitrary pk × pk-matrix A, k = 1, . . . ,m. As the matrices Hdβlβk,ab are not random
and E[β̂k − βk] = O(‖β̂k − βk‖2), we obtain

M2.1d,kl =


tr
(
Hdβlβk,11 Cov(β̂k, β̂l)

)
· · · tr

(
Hdβlβk,m1 Cov(β̂k, β̂l)

)
... . . . ...

tr
(
Hdβlβk,1m Cov(β̂k, β̂l)

)
· · · tr

(
Hdβlβk,mm Cov(β̂k, β̂l)

)


+ Om×m(‖β̂k − βk‖2‖β̂l − βl‖2).

(6.349)

Approximation of parts of M2d: M2.2d

The second part of M2d, M2.2d = E
[
H>

dθ(θ̂ − θ)(θ̂ − θ)>Hdθ

]
, is

M2.2d = E




(θ̂ − θ)>Hdθθ,11(θ̂ − θ) · · · (θ̂ − θ)>Hdθθ,m1(θ̂ − θ)
... . . . ...

(θ̂ − θ)>Hdθθ,1m(θ̂ − θ) · · · (θ̂ − θ)>Hdθθ,mm(θ̂ − θ)


 . (6.350)

We recall that Hdθθ,ab is random. This is why we calculate M2.2d for the estimators θ̂−d

and β̂−d
k , based on ý−d = col

1≤d′≤D,d′ 6=d
(ý>

1 , . . . , ý
>
D)> ∈ Rm(D−1), d = 1, . . . , D, k = 1, . . . ,m.

As the target data y can be split into the independent parts ý−d and ýd, for a, b = 1, . . . ,m
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we have that

M−d
2.2d,ab

= E
[
(θ̂−d − θ)>Hdθθ,ab(θ̂−d − θ)

]
= Eý−d

[
Eýd

[
(θ̂−d − θ)>Hdθθ,ab(θ̂−d − θ)

]]
= Eý−d

[
Eýd

[
(θ̂−d − θ)>hdθ,ah

>
dθ,b(θ̂−d − θ)

]]

= Eý−d

Eýd

[
(θ̂−d − θ)>

( m∑
k=1

ýdk − x>
dkβk

σ2
edk

gdθ,akλdk

)
( m∑

l=1

ýdl − x>
dlβl

σ2
edl

gdθ,blλdl

)>
(θ̂−d − θ)

]
=

m∑
k=1

m∑
l=1

Eý−d

[
(θ̂−d − θ)>gdθ,akλdkg

>
dθ,blλdl

(θ̂−d − θ)

σ−2
edkσ

−2
edlEýd

(
(ýdk − x>

dkβk)(ýdl − x>
dlβl)

)]
=

m∑
k=1

m∑
l=1

(Vd)k,l

σ−2
edkσ

−2
edl

tr
(
gdθ,akλdkg

>
dθ,blλdl

Var(θ̂−d)
)

+ Om×m(‖θ̂−d − θ‖2
2).

(6.351)

Taking out (ýd,Xd) from the data file should not have great influence on Var(θ̂). Therefore,
we approximate M2.2d,ab by substituting θ̂−d by θ̂ in M−d

2.2d,ab, i.e.

M2.2d =


M2.2d,11 · · · M2.2d,1m

... . . . ...
M2.2d,m1 · · · M2.2d,mm

+ Om×m(‖θ̂ − θ‖2
2). (6.352)

Approximation of parts of M2d: M2.3d, M2.4d

The third and fourth part of M2d are M2.3d and M2.4d, where

M2.3dk = M>
2.4dk = E

[
h>

dβk
(β̂k − βk)(θ̂ − θ)>Hdθ

]
, k = 1, . . . ,m. (6.353)

We have

M2.3dk = E




(β̂k − βk)>Hdβkθ,11(θ̂ − θ) · · · (β̂k − βk)>Hdβkθ,m1(θ̂ − θ)
... . . . ...

(β̂k − βk)>Hdβkθ,1m(θ̂ − θ) · · · (β̂k − βk)>Hdβkθ,mm(θ̂ − θ)


 .

(6.354)
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We recall that Hdβkθ,ab is random. For b = 1, it holds that

M−d
2.3dk,a1 = E

[
(β̂−d

k − βk)>Hdβkθ,a1(θ̂−d − θ)
]

= Eý−d

[
Eýd

[
(β̂−d

k − βk)>Hdβkθ,a1(θ̂−d − θ)
]]

= Eý−d

[
Eýd

[
(β̂−d

k − βk)>hdβk,ah
>
dθ,1(θ̂−d − θ)

]]

= Eý−d

Eýd

[
(β̂−d

k − βk)>hdβk,a

( m∑
k=1

ýdk − x>
dkβk

σ2
edk

gdθ,1kλdk

)>
(θ̂−d − θ)

]
=

m∑
k=1

Eý−d

[
(β̂−d

k − βk)>hdβk,ag
>
dθ,1k(θ̂−d − θ)σ−2

edk Eýdk
[ýdk − x>

dkβk]
]

= 0.
(6.355)

Similarly, for b = 2, . . . ,m we get M−d
2.3dk,ab = 0, k = 1, . . . ,m.

Approximation of MSE(µ̂EBLUP
d )

We further assume that ‖β̂ − β‖2 = O(D−1/2) and ‖θ̂ − θ‖2 = O(D−1/2) such that
Om×m(‖θ̂ − θ‖2) = Om×m(D−1). For d ∈ D, we have the following approximation to
MSE(µ̂EBLUP

d ).

MSE(µ̂EBLUP
d ) = Gd1(θ) +Gd2(θ) +G3(θ) + Om×m(D−1), (6.356)

where Gd2(θ) = Gd2,11(θ) +Gd2,22(θ) +Gd2,12(θ) +G>
d2,12(θ) and, for k, l = 1, . . . ,m,

Gd1(θ) =Φd(θ)V́ inv
ed (θ)

(
Vud(θ) + V́ed(θ)

)
V́ inv

ed (θ)Φd(θ) (6.357)

+ Vud(θ) − 2Φd(θ)V́ inv
ed (θ)Vud(θ),

Gd2,kl(θ) =


tr
(
Hdβlβk,11(θ) Cov(β̂k, β̂l)

)
· · · tr

(
Hdβlβk,m1(θ) Cov(β̂k, β̂l)

)
... . . . ...

tr
(
Hdβlβk,1m(θ) Cov(β̂k, β̂l)

)
· · · tr

(
Hdβlβk,mm(θ) Cov(β̂k, β̂l)

)
 ,

(6.358)

Gd3(θ) =


tr
(
Hdθθ,11(θ) Var(θ̂)

)
· · · tr

(
Hdθθ,m1(θ) Var(θ̂)

)
... . . . ...

tr
(
Hdθθ,1m(θ) Var(θ̂)

)
· · · tr

(
Hdθθ,mm(θ) Var(θ̂)

)
 . (6.359)

An estimator of MSE(µ̂EBLUP
d ) is given by

M̂SE(µ̂EBLUP
d ) = Gd1(θ̂) +G2(θ̂) + 2G3(θ̂), (6.360)

similar to the MSE estimators proposed by Prasad and Rao (1990).

For ML parameter estimation, an additional bias term would have to be considered in
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the MSE formulas as shown for the FH model in (2.98). The derivation of the ML bias
term under the MMFH model is not considered in this thesis and a potential subject of
future research. For the domain prediction and MSE estimation, our focus is on REML
parameter estimation.

As an alternative to the MSE estimation via (6.360), also a resampling estimator like the
parametric bootstrap estimator presented in Algorithm 5.6 could be used, which, however,
is computationally more demanding. In the resampling, the missing direct estimators
would have to be explicitly accounted for.

6.7 Simulation

6.7.1 Motivation

We conduct model-based simulation studies to evaluate the performance of the parameter
estimators, predictors, and the MSE estimator that we derived under the introduced
MMFH model. By varying different parameters within the simulation, we aim to analyse
the behaviour of the MMFH estimators and predictors under changing data scenarios.

In the simulation we consider three dependent variables. The correlation of sampling errors
and random effects is crucial for multivariate FH models. To consider different correlation
scenarios, we simulate the following: Dependent variables 1 and 3 represent the same
variable based on two independent surveys, e.g. a survey in two different months without
any sample overlaps. The sampling error correlation between the two is therefore zero and
we expect the random effect correlation to be highly positive. Dependent variable 3 is
estimated from the same survey as variable 1. Therefore, the sampling error correlation
between the two is non-negative, and the sampling error correlation between variables 2
and 3 is zero.

We simulate a MMFH (6.263) model by including arbitrary missing data of interest in each
domain. To keep the analysis simple, we consider missing values only for variable 1. For
variable 2 and 3, we do not simulate any missing direct estimates.

To the simulated data with partially missing direct estimates we can apply different FH
estimators. We apply the univariate FH estimators of the 3 variables, a trivariate FH
estimator (MFH), and the MMFH estimator. The FH estimator for variable 1 and the
MFH estimator can only consider the domains with no missing direct estimates for the
parameter estimation and the calculation of EBLUPs. For the domains with missing direct
estimates of variable 1, only synthetic FH (for variable 1) and MFH (for all 3 variables)
estimates can be calculated. The simulation allows us not only to evaluate parameter
estimation and EBLUPs under the proposed MMFH model, but also to contrast the
performance of the different FH estimators and show the potential benefits of the proposed
MMFH estimator.
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6.7.2 Setup

We consider the particular multivariate FH model

yd = Xdβ + ud + ed, d = 1, . . . , D. (6.361)

with m = 3 dependent variables.

For the three variables, we consider one auxiliary variable plus intercept. For k = 1, 2, 3,
set the number of auxiliary variables pk = 2 and βk = (βk1,βk2)> = (2, 3)>, β =
(β>

1 ,β
>
2 ,β

>
3 )>. In total, there are p = p1 + p2 + p3 = 6 fixed effects.

The auxiliary information is generated once and remains fixed throughout the simulation.
For d = 1, . . . , D, we take Xd = diag(x>

d1,x
>
d2,x

>
d3)3×6, where, for k = 1, 2, 3, xdk =

(xdk1, xdk2)>, including intercept xdk1 = 1. Generate, for each k = 1, 2, 3, xdk2 = Udk,
Udk

ind∼ Unif(10, 100), where Unif is the uniform distribution.

For d = 1, . . . , D, the random effects ud and sampling errors ed of the model are generated
in each iteration of the simulation. We take ud ∼ N3(0,Vud) and ed ∼ N3(0,Ved) with

Vud =

 σ2
u1 ρ12σu1σu2 ρ13σu1σu3

ρ12σu1σu2 σ2
u2 ρ23σu2σu3

ρ13σu1σu2 ρ23σu2σu3 σ2
u3

 , (6.362)

Ved =

 σ2
ed1 ρed12σed1σed2 ρed13σed1σed3

ρed12σed1σed2 σ2
ed2 ρed23σed2σed3

ρed13σed1σed2 ρed13σed2σed3 σ2
ed3

 , (6.363)

with σ2
uk = 2, k = 1, 2, 3, σ2

edk = 3, d = 1, . . . , D. The variance components are given by
vector θ of length 6 with θk = σ2

uk, k = 1, 2, 3, θ4 = ρ12, θ5 = ρ13, and θ6 = ρ23.

As we simulate dependent variables 1 and 2 to be from the same and variable 3 to be
from an independent other survey, we set ρed13 = ρed23 = 0. For variable 1 and 2, we set
sampling error correlation ρed12 = −0.5. For example, when we would consider the total of
employed and unemployed in a domain as variables 1 and 2, we would expect their direct
estimators to be highly negatively correlated. As we simulate dependent variables 1 and
3 to represent the same variable in two different time points, we set their random effect
correlation relatively high with ρ13 = 0.75. We choose the random effects of variables 2
and 3 to be only moderately correlated with ρ23 = 0.25.

In the simulation, we vary the number of domains D ∈ {100, 200, 300} and the correlation
of the random effects ρ12 ∈ {−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75}.

We simulate a MMFH model by assuming the direct estimates of variable 1 are missing
for the first D/2 domains. The set of domains D = {1, . . . , D} can then be partitioned
into the two subsets:

DV1.mis = {1, . . . , D/2} contains all D/2 domains for which variable 1 is missing.
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DV1.obs = {(D/2) + 1, . . . , D} contains all D/2 domains for which variable 1 is
observed.

In a similar manner, we can define subsets DV2.obs = DV3.obs = D and DV2.mis = DV3.mis = ∅.
Table 6.1 summarises which domain sets the different FH estimators use for parameter
estimation and EBLUP calculation and for which domain sets only synthetic predictions
can be calculated. FHVk

is the univariate FH estimator for variable k = 1, 2, 3.

Table 6.1: Domain sets used by different FH estimators
FH estimator Parameter estimation and EBLUPs Synthetic predictions
FHV1 DV1.obs DV1.mis

FHV2 D
FHV3 D
MFH DV1.obs DV1.mis

MMFH D

For the univariate FH models, we use R (R Core Team, 2020) package sae (Molina
& Marhuenda, 2015) with function mseFH for parameter estimation, the calculation of
EBLUPs and MSE estimates. For the MFH and MMFH model, we estimate model
parameters with the Fisher-Scoring Algorithms 6.1 and 6.2 and use the EBLUP and MSE
formulas of the MMFH model presented in this chapter. Recall that the MFH model is a
special case of the MMFH model with no missing direct estimates.

6.7.3 Simulation 1: Parameter estimation

Research question
Simulation 1 investigates the performance of the MMFH ML/REML parameter estimation
presented in Section 6.5. In particular, we consider the relative Bias (RBias) and relative
root MSE (RRMSE) of the estimators for increasing number of domains D. From theory,
RBias and RRMSE of parameter estimators should decrease for increasing D as both ML
and REML estimators are designed to be consistent.

The MMFH estimator is capable of using more domain information in the parameter
estimation than the FH or MFH estimators. Another focus of Simulation 1 is therefore to
compare the performance of the parameter estimation under the competing FH models for
data with partially missing direct estimates.

Simulation settings
We set ρ12 = 0.5, D ∈ {100, 200, 300}, and conduct the simulation via Algorithm 6.3.
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Algorithm 6.3 Steps of Simulation 1
The steps of Simulation 1 are

1. Generate xdk, d = 1, . . . , D, k = 1, 2, 3.
2. For i = 1, . . . , I, I = 1, 000, do

a) Generate u(i)
d ∼ N3(0,Vud), e(i)

d ∼ N3(0,Ved).
b) For d = 1, . . . , D, calculate

µ
(i)
d = Xdβ + u(i)

d , y
(i)
d = Xdβ + u(i)

d + e(i)
d .

c) For d ∈ DV1.mis, set the direct estimates of variable 1, y(i)
d1 , missing.

d) For every η ∈ {β,θ}, calculate estimates η̂(i),a,b, b ∈ {ML,REML}:
- FH models FHVk

, k = 1, 2, 3, a = FHVk
, based on DV.k.obs,

- MFH model, a = MFH, based on DV1.obs,
- MMFH model, a = MMFH, based on D.

3. For every η ∈ {β,θ}, calculate the following performance measures for estimators
η̂a,b, a ∈ {MMFH,FHVk

,MFH}, b ∈ {ML,REML}, k = 1, 2, 3,

RBias(η̂a,b) = 100I
−1∑I

i=1(η̂(i),a,b − η)
|η|

, RRMSE(η̂a,b) = 100

(
I−1∑I

i=1(η̂(i),a,b − η)2
)1/2

|η|
.

Results
For the evaluation of the parameter estimation we focus on the parameters associated
with variable 1, i.e. η ∈ {β11, β12, σ

2
u1, ρ12, ρ13} since missing direct estimates are simulated

for variable 1 only. Tables 6.2, 6.3, 6.4, and 6.5 present the RBias and RRMSE (in %) of
the REML and ML parameter estimation under the different FH models for increasing
number of domains D. Note that the (univariate) FH model does not give parameter
estimates for ρ12 and ρ13, wherefore the corresponding spots are left blank.

The MMFH ML and REML Fisher-Scoring algorithm work properly as the RRMSE of the
parameter estimates decreases for increasing number of domains D. For ML, we see a bias
in the variance component estimation which decreases as D increases, which is consistent
with the ML theory. For REML, the bias is close to zero except for ρ12, for which, however,
the bias decreases as the number of domains increases. In terms of the RRMSE, the
performance of the FHV1 , MFH, and MMFH parameter estimation is quite similar for β11,
β12, and σ2

u1. For the estimation of the random effect correlations ρ12 and ρ13, the MMFH
model gives more efficient estimates (for ML and REML) than the MFH model as it takes
into account all available information. Hence, for the parameter estimation the proposed
MMFH model should be preferred over the FH and MFH model.
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Table 6.2: RBias (in %) of REML parameter estimation
η Value Model D = 100 D = 200 D = 300

FHV1 −2.265 −1.318 0.916
β11 2 MFH −2.083 −0.982 0.938

MMFH −2.221 −1.067 0.886
FHV1 0.014 0.013 −0.008

β12 3 MFH 0.012 0.008 −0.008
MMFH 0.013 0.009 −0.008
FHV1 0.164 −0.900 0.307

σ2
u1 2 MFH 0.297 −0.897 0.318

MMFH 0.512 −0.833 0.274
FHV1

ρ12 0.5 MFH 5.776 4.963 3.538
MMFH 4.836 4.449 2.499
FHV1

ρ13 0.75 MFH −6.805 −0.323 0.222
MMFH −5.681 −0.394 −0.177

Table 6.3: RRMSE (in %) of REML parameter estimation
η Value Model D = 100 D = 200 D = 300

FHV1 36.386 23.534 21.607
β11 2 MFH 36.174 24.047 21.203

MMFH 36.261 24.263 21.229
FHV1 0.411 0.259 0.230

β12 3 MFH 0.408 0.264 0.226
MMFH 0.408 0.264 0.226
FHV1 53.394 36.640 29.501

σ2
u1 2 MFH 53.224 36.620 29.500

MMFH 53.647 36.659 29.435
FHV1

ρ12 0.5 MFH 75.074 56.581 49.788
MMFH 73.567 54.720 46.459
FHV1

ρ13 0.75 MFH 38.718 28.318 23.029
MMFH 37.788 27.586 23.094
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Table 6.4: RBias (in %) of ML parameter estimation
η Value Model D = 100 D = 200 D = 300

FHV1 −2.265 −1.318 0.916
β11 2 MFH −1.815 −1.446 0.867

MMFH −1.801 −1.449 0.878
FHV1 0.014 0.013 −0.008

β12 3 MFH 0.009 0.014 −0.007
MMFH 0.010 0.014 −0.007
FHV1 −9.722 −5.879 −3.030

σ2
u1 2 MFH −9.017 −5.602 −2.833

MMFH −8.597 −5.409 −2.781
FHV1

ρ12 0.5 MFH 11.710 9.028 6.665
MMFH 9.500 7.423 4.671
FHV1

ρ13 0.75 MFH −4.066 2.065 2.245
MMFH −3.118 1.609 1.443

Table 6.5: RRMSE (in %) of ML parameter estimation
η Value Model D = 100 D = 200 D = 300

FHV1 36.386 23.534 21.607
β11 2 MFH 35.524 22.801 20.291

MMFH 35.536 22.597 20.199
FHV1 0.411 0.259 0.230

β12 3 MFH 0.398 0.246 0.212
MMFH 0.397 0.246 0.212
FHV1 51.956 36.367 29.263

σ2
u1 2 MFH 51.722 36.375 29.284

MMFH 52.140 36.406 29.242
FHV1

ρ12 0.5 MFH 75.930 58.126 50.955
MMFH 75.105 55.746 47.324
FHV1

ρ13 0.75 MFH 39.067 28.589 23.135
MMFH 37.832 27.625 23.120
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6.7.4 Simulation 2: EBLUPs and MSE estimates

Research question
Simulation 2 investigates the performance of the EBLUPs under the introduced MMFH
model and their MSE estimates under different correlation settings and for varying number
of domains D. Furthermore, Simulation 2 investigates the performance of the proposed
MSE estimators for MFH synthetic predictors (5.206). In addition, we compare the
performance of the different FH estimators with the introduced MMFH estimator.

Simulation settings
We choose ρ12 ∈ {−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75}, D ∈ {100, 200, 300} and conduct
the simulation via Algorithm 6.4. In this simulation, we only consider parameter estimation
via REML Fisher-Scoring.

Results for the domains without missing values, DV1.obs

We first focus on the domains in the set DV1.obs, where all direct estimates are available.
For this set, we can calculate EBLUPs for all three dependent variables with all three FH
models (FHVk

, k = 1, 2, 3, MFH, and MMFH). Note that the parameter estimations are
based on different sets of domains due to the missing values of variable 1, Table 6.1 gives
an overview.

The performance of the EBLUPs is evaluated for ρ12 = 0.5 with varying number of domains
D. Tables 6.6 and 6.7 show the mean RBias and RRMSE (in %) of the EBLUPs calculated
for the domains in DV1.obs. Note that, unlike for the parameter estimation, we do not
expect the RRMSE of the EBLUPs to decrease with increasing D as with increasing D also
the number of predictions increases. For all three FH models, the RBias of the EBLUPs is
close to zero. In terms of RRMSE, the MFH and MMFH models are more efficient than
the univariate FH models. The performance of the MFH and MMFH model are close.

Tables 6.8 and 6.9 show the mean RBias and MSE of the MSE estimates. Both RBias
and MSE tend towards zero for increasing D. However, we note that in terms of RBias,
the MSE estimator of the univariate FH model shows a better behaviour than the MSE
estimator of the MMFH model. Nevertheless, we consider the proposed MSE estimators
for the MMFH model to be acceptable.

Results for variable 1 in domains with missing values, DV1.mis

Next, we focus on the domains in the set DV1.mis, i.e. those domains for which the direct
estimates of variable 1 are considered missing. Again, the evaluation is done for ρ12 = 0.5
with varying number of domains D. The advantage of the proposed MMFH estimator
is not only that it can incorporate the full information in the parameter estimation, but
also that it allows to calculate EBLUPs for variable 1 in domains DV1.mis, where the
FHV1 and MFH model only allow to calculate synthetic predictions. Table 6.10 shows
the performance of the different models for the point and MSE estimation of variable 1
only. The brackets behind the models indicate whether the point estimates are synthetic
predictions or EBLUPs. For the point estimates, we see that the RBias of the estimators
is close to zero. The RRMSE of the point estimates from the MMFH model (which are
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Algorithm 6.4 Steps of Simulation 2
The steps of Simulation 2 are

1. Generate xdk, d = 1, . . . , D, k = 1, 2, 3.
2. For i = 1, . . . , I, I = 1, 000, do

a) For d = 1, . . . , D, generate u(i)
d ∼ N3(0,Vud), e(i)

d ∼ N3(0,Ved) and calculate
µ

(i)
d = Xdβ + u(i)

d ,y(i)
d = Xdβ + u(i)

d + e(i)
d .

b) For d ∈ DV1.mis, set the direct estimates of variable 1, y(i)
d1 , missing.

c) Marginal FH models FHVk
, k = 1, 2, 3,

i. Calculate FH REML estimates of σ2
uk and βk, based on DV.k.obs.

ii. For d ∈ DV.k.obs, calculate EBLUPs µ̂FHVk
(i)

dk (2.90) and MSE estimates
M̂SE

FHVk
(i)

dk = M̂SE(µ̂FHVk
(i)

dk ) (2.96).
iii. For d ∈ DV.k.mis, calculate synthetic predictors µ̂synFHVk

(i)
dk (2.90) and MSE

estimates M̂SE
synFHVk

(i)
dk = M̂SE(µ̂synFHVk

(i)
dk ) using (6.255) with m = 1.

iv. Combine all the estimates of the marginal FH models according to the
scheme µ̂FH(i)

d = (µ̂FHV1 (i)
d1 , µ̂

FHV2 (i)
d2 , µ̂

FHV3 (i)
d3 )>.

d) MFH model
i. Calculate MFH REML estimates of θ and β based on DV1.obs.
ii. For d ∈ DV1.obs, calculate EBLUPs µ̂MFH(i)

d (5.199) and MSE estimates
M̂SE

MFH(i)
d = M̂SEd(µ̂MFH(i)

d ) (5.206).
iii. For d ∈ DV1.mis, calculate synthetic predictors in µ̂

synMFH(i)
dk (6.250) and

MSE estimates M̂SE
synMFH(i)
d = M̂SE(µ̂synMFH(i)

dk ) (6.255).
e) MMFH model

i. Calculate MMFH REML estimates of θ and β based on D.
ii. For d ∈ D, calculate EBLUPs µ̂MMFH(i)

d (6.281) and MSE estimates
M̂SE

MMFH(i)
d = M̂SEd(µ̂MMFH(i)

d ) (6.360).
3. For a ∈ {FH, synFH,MFH, synMFH,MMFH}, d = 1, . . . , D, calculate

MSE(µ̂a
d) = I−1

I∑
i=1

(µ̂a(i)
d − µa(i)

d )2, RBias(µ̂a
d) = 100I

−1∑I
i=1(µ̂

a(i)
d − µa(i)

d )
I−1∑I

i=1µ
a(i)
d

,

RRMSE(µ̂a
d) = 100

(
MSE(µ̂d)

)1/2

|I−1∑I
i=1µ

a(i)
d |

, M̂SE
a∗
d = I−1

I∑
i=1

M̂SE
a(i)
d ,

RBias(M̂SE
a

d) = 100M̂SE
a∗
d − MSE(µ̂a

d)
MSE(µ̂a

d) , MSE(M̂SE
a

d) = M̂SE
a∗
d − MSE(µ̂a

d)2.
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Table 6.6: Mean RBias (in %) of EBLUPs for d ∈ DV1.obs

Variable Model D = 100 D = 200 D = 300
FHV1 0.014 0.021 0.013

1 MFH 0.014 0.012 0.011
MMFH 0.013 0.011 0.009
FHV2 0.007 0.021 0.016

2 MFH 0.005 0.018 0.011
MMFH 0.005 0.019 0.013
FHV3 0.016 0.018 0.013

3 MFH 0.003 0.013 0.012
MMFH 0.015 0.016 0.011

Table 6.7: Mean RRMSE (in %) of EBLUPs for d ∈ DV1.obs

Variable Model D = 100 D = 200 D = 300
FHV1 1.009 1.075 0.969

1 MFH 0.879 0.911 0.811
MMFH 0.872 0.908 0.809
FHV2 0.873 0.945 0.967

2 MFH 0.823 0.859 0.871
MMFH 0.791 0.841 0.856
FHV3 0.967 1.043 0.998

3 MFH 0.946 0.982 0.931
MMFH 0.912 0.961 0.917

Table 6.8: Mean RBias (in %) of the MSE estimates for d ∈ DV1.obs

Variable Model D = 100 D = 200 D = 300
FHV1 1.757 1.225 1.349

1 MFH 18.535 7.650 3.879
MMFH 16.108 6.314 3.231
FHV2 0.389 −0.068 1.076

2 MFH 12.456 4.406 2.141
MMFH 8.748 3.218 2.220
FHV3 0.745 0.794 −0.614

3 MFH 10.163 4.971 1.748
MMFH 7.114 4.227 0.688
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Table 6.9: Mean MSE (in %) of the MSE estimates for d ∈ DV1.obs

Variable Model D = 100 D = 200 D = 300
FHV1 0.004 0.003 0.004

1 MFH 0.037 0.006 0.003
MMFH 0.027 0.005 0.002
FHV2 0.003 0.003 0.003

2 MFH 0.021 0.004 0.002
MMFH 0.010 0.003 0.002
FHV3 0.004 0.003 0.004

3 MFH 0.018 0.005 0.003
MMFH 0.009 0.004 0.002

EBLUPs) are always lower than the RRMSEs of the point estimates from the FHV1 and
MFH model (which are synthetic predictions). For partially missing direct estimates,
applying the MMFH model to get EBLUPs for these values is therefore to be preferred
over the synthetic predictions.

From Table 6.10, we also see that the MSE estimation of the MMFH model works properly
for domain set DV1.mis. In Section 6.2.2, we also introduced an MSE estimator for synthetic
predictions obtained from a MFH model. Table 6.10 shows that these MSE estimates
work properly in terms of RBias and MSE.

Lastly, we look at the performance gains in terms of RRMSE from using the MMFH
instead of the FHV1 and MFH model in Table 6.11. The table displays the mean RRMSE
of the models divided by the corresponding mean RRMSE of the MMFH model. The
values are shown for D = 200 domains and varying random effect correlation ρ12. The
performance gain of using the MMFH model for predicting the values of variable 1, where
direct estimates are missing, is high for all different scenarios of random effect correlation
ρ12. Even when the random effect correlation ρ12 is zero, the model still gains from
using the non-zero random effect correlation of variables 1 and 3 and the sampling error
correlation to variable 2 for the construction of the EBLUPs.
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Table 6.10: Mean performance of the predictions and MSE estimates for variable 1 for
d ∈ DV1.mis

Estimates Measure Model D = 100 D = 200 D = 300

EBLUPS/
Synthetic
predictions

FHV1 (Synthetic) 0.012 0.017 0.016
RBias MFH (Synthetic) 0.014 0.017 0.017

MMFH (EBLUP) 0.019 0.009 0.011
FHV1 (Synthetic) 1.167 1.250 1.207

RRMSE MFH (Synthetic) 1.166 1.250 1.208
MMFH (EBLUP) 1.053 1.087 1.040

MSE

FHV1 (Synthetic) 1.122 1.873 0.712
RBias MFH (Synthetic) 0.783 1.534 0.440

MMFH (EBLUP) 10.430 6.136 1.747
FHV1 (Synthetic) 0.008 0.012 0.009

MSE MFH (Synthetic) 0.008 0.011 0.009
MMFH (EBLUP) 0.037 0.014 0.005

Table 6.11: Mean RRMSE of FH synthetic predictions divided by mean RRMSE of MMFH
EBLUPs for variable 1 for d ∈ DV1.mis

ρ12
Model −0.75 −0.5 −0.25 0 0.25 0.5 0.75
FHV1 1.223 1.198 1.135 1.106 1.108 1.149 1.242
MFH 1.219 1.195 1.133 1.105 1.107 1.150 1.244
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6.8 Application

6.8.1 Data description

As an illustrative example, we apply the proposed MMFH model to publicly available
county-level survey estimates of the median annual income (dollars) Hispanic or Latino
origin (of any race) (HC02_EST_VC12) in 2010 and 2011 from the U.S. American Community
Survey (ACS). The application is in part published in Burgard et al. (2021c).

The ACS is the largest official U.S. household survey. Every year, over 3.5 million randomly
drawn households are contacted to participate in the survey. The focus of the ACS is on
the estimation of social, housing, economic, and demographic characteristics. The U.S.
Census Bureau provides ACS 1-year, 3-year, and 5-year estimates at different demographic
and regional levels. A detailed description of the design and methodology of the survey
can be found in U.S. Census Bureau (2014).

In the publications of U.S. official statistics, special emphasise is put on statistics for the
population of Hispanic or Latino origin, e.g. Guzman (2019), Semega et al. (2019), and
U.S. Census Bureau (2014). We therefore consider the median annual income (dollars)
Hispanic or Latino origin (of any race) HC02_EST_VC12 in 2010 and 2011 as the two
dependent variables of a bivariate FH model. The domains of interest are the D = 3, 141
U.S. counties. The ACS 1-year county-level estimates of HC02_EST_VC12 in 2010 and 2011
can be downloaded from the U.S. Census Bureau website.1 In addition to the survey
estimates, their margins of error are also provided. The margins of error were calculated
as 1.645 ×

√
variance (U.S. Census Bureau, 2014, Chapter 12.3).

For the 1-year county-level estimates of HC02_EST_VC12, it is noticeable that for many
counties the survey estimates are missing, either for 2010 or 2011 or both. This is due to
two reasons, for a detailed overview of the ACS data suppression we refer to U.S. Census
Bureau (2016). First, the ACS 1-year estimates are only published for geographical entities
with populations of minimum 65, 000. Second, the publications depend on the samples on
which the estimates are based. For example, U.S. Census Bureau (2016) list minimum
cell counts and thresholds for the margins of error as reasons for the suppression of 1-year
estimates. As county-level sample sizes are random, it appears that survey estimates of
HC02_EST_VC12 in a county may be available in 2010, but not in 2011 and vice versa. In
total, estimates of HC02_EST_VC12 are available for 704 counties in 2010 and 684 counties
in 2011. There are 58 counties for which the survey estimate of HC02_EST_VC12 is missing
in 2010, but available in 2011. The other way around, there are 78 counties for which
the survey estimate of HC02_EST_VC12 is missing in 2011, but available in 2010. For 762
counties at least one survey estimate of HC02_EST_VC12 is available. There are only 626
counties for which HC02_EST_VC12 is available in 2010 and 2011.

We see that the survey estimates of HC02_EST_VC12 in 2010 and 2011 are partly missing
or associated with large margins of error. This is exactly the situation for which we

1U.S. Census Bureau website https://data.census.gov/cedsci/, TableID: S1903.

https://data.census.gov/cedsci/
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introduced the MMFH model in this chapter. With the MMFH model, we can calculate
model-based small area estimates of these county-level values.

6.8.2 Model choice

We calculate a MMFH model for the 762 counties for which at least one survey estimate
of HC02_EST_VC12 is available. We therefore have D = 762 domains of interest. For
comparison, the general MFH model for the two variables could only be applied to the
626 counties for which HC02_EST_VC12 is available in 2010 and 2011. Two univariate FH
models could only take into account the 704 domains where HC02_EST_VC12 2010 or the
684 domains where HC02_EST_VC12 2011 is available respectively.

The MMFH model is calculated with m = 2 dependent variables, the ACS 1-year county-
level estimates of variable HC02_EST_VC12 in 2010 and 2011. The covariance matrices of
the survey estimates are given by

Ved =
(
σ2

ed1 0
0 σ2

ed2

)
, d = 1, . . . , D, (6.364)

where σ2
ed1 and σ2

ed2 are calculated as (margin of error/1.645)2 of the corresponding esti-
mates. The off-diagonal elements of Ved are zero as the covariances of the sampling errors
of the direct estimates between 2010 and 2011 are expected to be zero.

As auxiliary information for the MMFH model, we consider publicly available county-level
data from the United States Census Bureau2. Note that the public availability of suitable
county-level auxiliary information is limited, but should suffice for an illustration of the
MMFH model. The model parameters are estimated via the REML Fisher-Scoring Algo-
rithm 6.2. After considering different models for HC02_EST_VC12 2010 and 2011, we choose
as auxiliary variables: the death rate in period 7/1/2010 to 6/30/2011 (RDEATH2011) and
the civilian labour force unemployment rate 2010 RTE (CLF040210D) for both dependent
variables.

6.8.3 Parameter estimates

We first discuss the estimated variances components and fixed effects of the fitted MMFH
model. Table 6.12 shows the estimated variance components with additional 95% confidence
intervals. None of the confidence intervals contains zero and the confidence intervals are
relatively small, indicating that the random effects in the model contribute to variance
identification of the dependent variables. As we model the same variable HC02_EST_VC12
in two consecutive years as the dependent variables in the model, we would expect the

2The auxiliary data used are available at https://www.census.gov/. We consider: (1) U.S. county data
files on https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html, and
(2) county population totals and components of change on https://www.census.gov/data/tables/time-
series/demo/popest/2010s-counties-total.html.

https://www.census.gov/
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-total.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-total.html


Chapter 6 MFH models Under Missing Direct Estimates 195

random effects correlation of HC02_EST_VC12 2010 and 2011 to be highly positive. This
expectation is confirmed by model estimate ρ̂12 = 0.95, shown in Table 6.12.

Table 6.13 displays the estimated fixed effects for HC02_EST_VC12 2010 and 2011. The
p-values are all zero, rounded to the fifth digit. To put it differently, all estimated fixed
effects are highly significant. The estimated fixed effects of HC02_EST_VC12 2010 and
2011 are very similar as would be expected as they represent the same variable in two
consecutive years. From the estimated coefficients, we can see that counties with higher
death rates and higher civilian labour force unemployment rate tend to have lower values
of HC02_EST_VC12 which seems plausible. As this is an illustrative example and the choice
of publicly available county-level data was limited, the coefficient should, however, be
treated with caution.

Table 6.12: Variance component estimates and asymptotic 95% confidence intervals

θ̂ Lower limit Upper limit
σ̂u1 98,348,357 98,348,357 98,348,357
σ̂u2 92,409,379 92,409,379 92,409,379
ρ̂12 0.97 0.95 0.98

Table 6.13: Estimated fixed effects for HC02_EST_VC12 2010 and 2011
HC02_EST_VC12 2010

β̂ std.err. t-value p-value
(Intercept) 61,629.72 2,151.51 28.64 0
RDEATH2011 -1,757.83 214.64 -8.19 0
CLF040210D -806.16 163.11 -4.94 0

HC02_EST_VC12 2011
β̂ std.err. t-value p-value

(Intercept) 61,122.45 2,076.02 29.44 0
RDEATH2011 -1,722.71 205.66 -8.38 0
CLF040210D -824.08 158.03 -5.21 0

6.8.4 Model diagnostics

In Figure 6.1, different diagnostics are presented to check the validity of the calcu-
lated MMFH model. On the left and right hand side, the diagnostics are displayed for
HC02_EST_VC12 2010 and 2011 respectively.

From theory, the design-based survey estimates may exhibit large variances, but are
design-unbiased. Brown et al. (2001) therefore proposed to plot the direct estimates
against the EBLUPs to see whether the model-based estimates systematically differ from
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the direct estimates. In row one, the direct estimates are plotted against the MMFH
EBLUPs with an additional diagonal line y = x. For some very large direct estimates, the
model-based EBLUPs are systematically lower. We note that these direct estimates are
associated with high standard errors, wherefore the MMFH EBLUPs are smoothed more
towards the model-based predictions. We therefore do not see indications of a model bias
from the figures.

Next, we focus on the normality assumption of the model in row two of Figure 5.5. The
MMFH EBLUPs are plotted against standardized residuals. From theory, we assume the
residuals to be normally distributed with zero mean. Furthermore, the residuals should not
indicate systematic differences for increasing EBLUP values. The residuals are calculated
as rEBLUP

dk = ˆ̄µDir
dk − ˆ̄µEBLUP

dk , where ˆ̄µDir
dk are the ACS direct estimates and ˆ̄µEBLUP

dk are the
MMFH EBLUPs, k = 1, 2, d = 1, . . . , D. The standardized residuals are calculated as
(rEBLUP

dk −D−1∑D
d=1 r

EBLUP
dk )/std(rEBLUP

dk ), where std(rEBLUP
dk ) is the standard deviation of

the set of residuals, k = 1, 2, d = 1, . . . , D. For both variables HC02_EST_VC12 2010 and
2011 most residuals are within range. However, there are some standardized residuals with
high absolute values. In total, there are 2.27% (16/704) values with absolute values larger
than three for HC02_EST_VC12 2010. For HC02_EST_VC12 2011, there are 1.75% (12/684)
values with absolute values larger than three. For the application, a further treatment of
these outliers is necessary. This, however, is beyond the scope of this illustrative example
of the proposed MMFH model and left as a potential future research topic. For robust
SAE, we refer to Sinha and Rao (2009), Schmid and Münnich (2014) for robust SAE
including spatial effects, and Baldermann et al. (2018) for the additional consideration of
spatial non-stationarity. R (R Core Team, 2020) package rsae (Schoch, 2014) provides an
implementation of robust FH models.

The plots in row three of Figure 5.5 show the standard error of the direct estimates versus
the root MSEs (RMSEs) of the MMFH EBLUPs. Diagonal line y = x is added to the plot.
The MMFH EBPLUPs are always at least as efficient as the direct estimators as all values
are along or below the diagonal line. For large standard errors of direct estimates, the
EBLUPs give high efficiency gains over the direct estimators. For these cases, the MMFH
model puts more weight on the estimated model than on the direct estimates.
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Figure 6.1: Model diagnostics for HC02_EST_VC12 2010 (left) and 2011 (right)
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6.8.5 MMFH EBLUPs

Figure 6.2 displays the ACS 1-year estimates and the MMFH EBLUPs of HC02_EST_VC12
in 2010 and 2011. The values are shown only for the counties in the two neighbouring
states of Indiana and Ohio instead of all U.S. states so that the values in the individual
counties can be seen. The counties coloured white are those for which ACS 1-year estimates
are not available in 2020 and 2011. For each year, we have outlined in red the counties for
which an ACS 1-year estimate is missing for that year but is available for the other year.
These are the counties for which the MMFH model presented in this chapter allows the
calculation of EBLUPs as can be seen in the second row of the plot. We can see that the
introduced MMFH estimator can provide a significant gain in information for concrete
applications where survey estimates are often partially missing.

To evaluate whether the MMFH EBLUPs are plausible, especially for the counties with
missing ACS 1-year estimates, we use additional information. Next to the 1-year esti-
mates which were used in the MMFH model, also 3-year and 5-year ACS estimates of
HC02_EST_VC12 are published by the U.S. Census Bureau. The 3- and 5-year estimates
are based on sample information of three and five years and available for more counties
than the 1-year estimates, compare the publication restrictions for them in U.S. Census
Bureau (2016). We note that it is not recommended to directly compare ACS 1-, 3-, and
5-year estimates. Nevertheless, for evaluating whether the MMFH EBLUPs are realistic,
especially the ones for missing ACS 1-year estimates, we consider the ACS 5-year estimates
of HC02_EST_VC12 to be suitable as benchmarks.3 The ACS 5-year estimates have lower
sample variances and they are available for many counties where ACS 1-year estimates are
missing but MMFH EBLUPs can be calculated.

ACS 5-year estimates of HC02_EST_VC12 are available for some counties for which ACS
1-year estimates are missing. However, also ACS 5-year estimates of HC02_EST_VC12 are
not available for all U.S. counties. We therefore additionally use the Census ACS estimates
for 2010 to validate the MMFH EBLUPs. Census estimates for variable HC02_EST_VC12
are not available. Instead, we use Census estimates of the Median household income in the
last 12 months (in 2009 inflation-adjusted dollars) in 2005-2009 (INC110209D). Variables
HC02_EST_VC12 and INC110209D are close in definition and INC110209D estimates for
2005-2009 are available for all U.S. counties.4

We reorder the domains such that we can partition the set of domains D = {1, . . . , D} into
two subsets according to the domains with available and missing ACS 1-year estimates of
HC02_EST_VC12 for each year:
2010: Dmis 2010 = {1, . . . , Dmis} with Dmis 2010 ≤ D,

Dobs 2010 = {Dmis 2010 + 1, . . . , D}.
2011: Dmis 2011 = {1, . . . , Dmis} with Dmis 2011 ≤ D,

Dobs 2011 = {Dmis 2011 + 1, . . . , D}.

3The ACS 5-year estimates are available at the U.S. Census Bureau website https://data.census.gov/cedsci/,
TableID: S1903.

4The Census-ACS estimates are available at the U.S. Census Bureau website https://www.census.gov/lib
rary/publications/2011/compendia/usa-counties-2011.html.

https://data.census.gov/cedsci/
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
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Figure 6.2: ACS 1-year estimates and MMFH EBLUPs of HC02_EST_VC12 for the counties
in Indiana and Ohio
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Tables 6.14 and 6.15 show the quantiles of the relative difference of ACS 1-year estimates
and MMFH EBLUPs to ACS 5-year estimates and Census estimates of INC110209D. For
domains Dobs 2010 and Dobs 2011, the quantiles of the ACS 1-year estimates and MMFH
EBLUPs are close. Taking into account the 95% quantile, the MMFH EBLUPs tend
to give less extreme deviations from the 5-year and Census estimates compared to the
ACS 1-year estimates, indicating that the model smoothes the predictions more to the
model-based part for high sampling variances. For the domains for which no ACS 1-year
estimate is available, the relative differences of the MMFH EBLUPs to the ACS 5-year
estimates is higher. However, the relative differences of these estimates to the Census
INC110209D estimates is similar for domains with fully and partially observed ACS 1-year
estimates. We therefore see the results as indications that the MMFH EBLUPs of the
partially missing values are plausible.

Table 6.14: Quantiles of the relative difference of estimates in 2010 and 2011 to ACS 5-year
estimates in 2008-2012 and 2009-2013 of variable HC02_EST_VC12 (in %)

Quantiles
Year Estimates Observations 5% 25% 50% 75% 95%

ACS 1-year in Dobs 2010 704 -32 -12 -3 7 43
2010 MMFH EBLUPs in Dobs 2011 704 -32 -13 -5 2 23

MMFH EBLUPs in Dmis 2010 58 -55 -26 -13 15 79
ACS 1-year in Dobs 2011 684 -36 -15 -5 4 41

2011 MMFH EBLUPs in Dobs 2011 684 -28 -14 -7 -1 15
MMFH EBLUPs in Dmis 2011 78 -45 -16 -6 5 34

Table 6.15: Quantiles of the relative difference of estimates in 2010 and 2011 to Census-
ACS 2005-2009 estimates of variable INC110209D (in %)

Quantiles
Year Estimates Observations 5% 25% 50% 75% 95%

ACS 1-year in Dobs 2010 704 -51 -35 -24 -10 33
2010 MMFH EBLUPs in Dobs 2010 704 -46 -33 -25 -16 2

MMFH EBLUPs in Dmis 2010 58 -54 -38 -24 -13 8
ACS 1-year in Dobs 2011 684 -52 -36 -25 -12 28

2011 MMFH EBLUPs in Dobs 2011 684 -45 -34 -26 -17 -0
MMFH EBLUPs in Dmis 2011 78 -48 -33 -22 -9 6

6.9 Summary and outlook

In this chapter, we extended the multivariate Fay-Herriot model (MFH) to partially
missing direct estimates, called MMFH model. MFH models take multi-variate domain
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survey estimates as input. The parameter estimation and calculation of EBLUPs under
the MFH model can, however, only be based on those domains for which survey estimates
are available for all dependent variables. In practical applications, such as the publicly
available U.S. ACS data presented in Section 6.8, survey estimates are often at least
partially missing for some domains of interest. The introduced MMFH model can take
all domain information with at least one available survey estimate into account for the
parameter estimation and production of EBLUPs. Under the MMFH model, we gave
ML and REML fitting algorithms for the parameter estimation, derived EBLUPs, and
presented an estimator for their MSEs. The MFH model, in contrast, can only give synthetic
predictions whenever direct estimates are missing. For MFH synthetic predictions, we
presented an MSE estimator.

In model-based Monte Carlo simulation studies, we showed the validity of the proposed
parameter estimation algorithms, the EBLUP formulas and their MSE estimators under
the MMFH model. Furthermore, we contrasted the performance and applicability of the
MMFH model to the MFH model and the corresponding univariate FH models for each
dependent variable. The studies showed that the MMFH EBLUPs for the missing direct
estimates are more efficient than the MFH or FH synthetic predictions.

In an application to publicly available U.S. ACS data, we saw not only the practical necessity
of the proposed MMFH model, but also evaluated the plausibility of the calculated EBLUPs
for the missing direct estimates. Noticeable residuals in the application suggest that further
research should investigate robust versions of the MMFH model.

The proposed MMFH model can be directly applied together with the theory in Chapter 5
for non-linear domain indicators under MFH models. Thereby, the proposed MMFH model
and approximations of Chapter 5 allow to approximate best predictors of multi-variate
domain indicators under partially missing direct estimates.



Chapter 7

Summary and Conclusions

We summarise the contributions of the thesis, which are presented in Chapters 3, 4, 5,
and 6, and give an outlook on potential future research.

Chapter 3: Generation of a Longitudinal Employment Dataset for Simulations
In Chapter 3, we extended the cross-sectional RIFOSS dataset with monthly employment
information. For that, we edited and aggregated the information in the SIAB dataset.
Based on the transformed SIAB dataset, we calculated prediction models for monthly
employment transitions. The RIFOSS dataset was then extended with monthly employment
information using these prediction models. We validated the generated longitudinal
employment information in the RIFOSS dataset and saw that they reflect the patterns
in the SIAB dataset at the person-level and the aggregated level as well as aggregate
patterns from official statistics. The generated longitudinal RIFOSS dataset served as the
simulation population for the design-based studies of Chapter 4.

Although the data generation presented in this chapter was tailored to a specific application,
some of the presented concepts provide insights for other application areas and data. This
includes the presented discussion of the evaluation of probability predictions for imbalanced
categorical data like the employment status. In the course of this discussion, we presented
an extension of the Brier score, which we called weighted Brier score. To utilise as
much information as possible from the SIAB dataset in the modelling process, we used a
combination of the ensemble methods subagging and stacking to calculate the employment
prediction models. Based on samples from the SIAB dataset, generalised additive models
were calculated (subagging). The weights with which the predictions of these models were
incorporated into the overall ensemble predictions were determined by optimised ensemble
weights (stacking). The proposed weighted Brier score was used as a loss function in
stacking, which constitutes quadratic programming.

In the evaluation of different prediction models, we saw that the proposed optimally
weighted ensemble models showed small performance gains over the corresponding equally
weighted ensembles and the ensemble input models. Comparing the optimally and equally
weighted ensembles, the ensemble weight optimisation also had the advantage that some
model weights were close to zero such that the associated individual models could be
excluded from the ensemble. This is particularly useful when large amounts of data are
generated frequently with these ensembles. For future research, we propose an investigation
of sparse ensemble weight optimisation and the consideration of additional methods for
handling imbalanced categorical data such as balancing techniques.

202
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Chapter 4: Composite Estimation in the German Microcensus
In Chapter 4, we evaluated the use of composite estimators for the production of employ-
ment statistics in the German Microcensus, the design of which underwent major changes
in 2020. Composite estimators incorporate additional information from previous samples
available in rotating panel surveys (such as the Microcensus) to get more stable estimates.
In the Chapter, we analysed the sample overlaps resulting from the sampling design of the
Microcensus and how to use them in composite estimators. Furthermore, we presented
adjustments to the formulas of the composite estimators to account for the regionally
heterogeneous sample overlaps resulting from the Microcensus design.

In a design-based study, we evaluated the performance of the adjusted composite estimators
for the production of employment statistics in the Microcensus. The study was conducted
on the basis of the RIFOSS dataset, which was extended by longitudinal employment
information in Chapter 3. The focus of the estimation was on monthly and quarterly
statistics of levels and changes of employed and unemployed persons at the NUTS2-level.
In the study, we evaluated the composite estimators with different sets of sample overlaps
at different regional levels. The simulation results revealed that the presented adjustments
of the composite estimators work properly. Based on the analysis, for the production of
NUTS2-level employment estimates we recommend the use of the composite estimators
MR2 and RCα=0.75 with sample overlap information at the NUTS2-level from the previous
quarter. The simulation also provided insights into the influence of the sampling design
and the magnitudes of the sample overlaps on the performance of composite estimators.

In the simulation, we neither considered non-response nor a rotation group bias as there
was no historic information available on the two under the new German Microcensus
design. In future research, it would be interesting to see how a potential rotation group
bias influences the performance of the estimators. Potential future research also involves
the investigation of variance estimation procedures for the composite estimators.

Chapter 5: Empirical Best Prediction in Multivariate Fay-Herriot Models
In Chapter 5, we turned to the approximation of multi-variable indicators in MFH models.
As the best predictions (BPs) of these indicators in MFH models, in their general form,
are given by multi-dimensional integrals, we proposed different approximations of them,
including Gauss-Hermite quadrature, Monte Carlo integration with antithetic variates,
and Quasi Monte Carlo integration with the Sobol and Halton sequence in combination
with different integral forms. Furthermore, we proposed different parametric bootstrap
procedures for the MSE estimation.

We conducted several model-based simulation studies tailored to data replicating survey
estimates of the proportions of employed and unemployed as dependent variables and
the unemployment rate as the indicator of interest. The simulation studies suggested
that Gauss-Hermite quadrature is well suited to approximate the BPs under the MFH
model for this indicator, already with only few function evaluations. In the simulation
studies, we also contrasted the performance of the MFH approximations of the EBPs
to the corresponding plug-in predictors. The analysis showed that, while the plug-in
predictors have similar RRMSEs, they have larger biases than the approximations of the
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EBPs, which is in line with the underlying theory. The studies further showed that the
proposed MSE estimation of the EBP approximations works properly and that a separate
estimation of components of the MSE gives the best results.

In an illustrative application, where we estimated unemployment rates in Spanish provinces
crossed by age and sex classes based on publicly available Spanish labour force (SLFS)
data, we showed the applicability of the proposed approach. The application also gave
rise to potential future research. As there was no suitable auxiliary information publicly
available, we estimated the auxiliary variables from a larger sample of micro-data from
the SLFS. In the application, we treated the auxiliary information as if it was estimated
without error. For future application, it would be interesting to combine the theory of
multi-variable area-level domain indicators and measurement errors in the covariates.

Chapter 6: Multivariate Fay-Herriot Models under Missing Direct Estimates
In Chapter 6, we addressed another research gap in the practical application of MFH
models: the consideration of partially missing survey estimates. For domains where even a
single direct estimate of the dependent variables is missing, only synthetic predictions can
be given by MFH models. We therefore introduced the MFH model with missing survey
estimates, which we call MMFH model. For the model, we presented ML and REML
Fisher scoring algorithms for parameter estimation, EBLUPs for those domains where at
least one survey estimate is available, and formulas for the associated MSE estimation.

In model-based simulation studies, we validated the presented parameter estimation
algorithms and formulas for EBLUPs and MSEs. We also contrasted the performance of
the presented MMFH model with that of competing FH models. Especially for partially-
missing survey estimates, the presented MMFH EBLUPs bring efficiency gains over the
synthetic predictions of competing FH models. We illustrated the practical necessity
and applicability of the MMFH model using publicly available data from the American
Community Survey. In the application, we estimated the median annual income of the
population with Hispanic or Latino origin for U.S. counties in 2010 and 2011. In the
model validation, we noticed large residuals. Therefore, we consider a combination of the
presented MMFH model with robust methods a possible future research topic.

Conclusion
This thesis contributes to the theory of estimation and prediction under incomplete survey
data. It demonstrates how composite estimators can use the partially available information
from sample overlaps in the German Microcensus to produce efficient labour force statistics
(Chapter 4). In addition, the thesis shows how to adapt the formulas of the estimators to
account for regionally heterogeneous sample overlaps. The methodological discussion and
the procedures applied in the generation of the simulation data for this analysis (Chapter
3) contribute to our understanding of imbalanced data in the evaluation of probability
predictions and the combination of ensemble methods with generalised additive models.
Together, the developments in Chapters 5 and 6 allow for the approximation of BPs of
multi-variable domain indicators under partially missing survey estimates in the proposed
MMFH model, which contributes to the active field of research on FH models in small
area estimation.
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Appendix A

Additional Material to Chapter 5

A.1 Simulation 1

With ρe = 0.25, for the plug-in predictors R̂FH,BI
d and R̂EBI

d the ARBias (in %) is 0.11 and
0.13 and the RRMSE (in %) is 8.33 and 7.82 respectively.

Table A.1: ARBias (in %), ρe = 0.25
Number of function evaluations e

Int. Approx. 16 24/25 100 400 2,500 10,000 40,000
MC 0.08 0.06 0.07 0.07 0.08 0.08 0.08
MCA 0.08 0.08 0.08 0.08 0.08 0.08 0.08

I1 GH 0.08 0.08 0.08 0.08 0.08 0.08 0.08
QMCH 0.53 0.44 0.14 0.01 0.06 0.07 0.08
QMCS 0.51 0.21 0.05 0.04 0.07 0.08 0.08
MC 0.30 0.29 0.12 0.10 0.08 0.08 0.08
MCA 0.02 0.03 0.13 0.10 0.08 0.07 0.08

I2 GH 0.08 0.08 0.08 0.08 0.08 0.08 0.08
QMCH 0.54 0.45 0.12 0.03 0.06 0.07 0.08
QMCS 0.41 0.21 0.07 0.06 0.08 0.08 0.08
MC 2.07 0.47 0.09 0.30 0.07 0.13 0.12
MCA 1.59 0.70 0.48 0.17 0.02 0.02 0.11

I3 GH 0.06 0.08 0.08 0.08 0.08 0.08 0.08
QMCH 1.43 1.13 0.32 0.09 0.06 0.07 0.08
QMCS 1.65 0.19 0.27 0.14 0.05 0.07 0.08

With ρe = 0, for the plug-in predictors R̂FH,BI
d and R̂EBI

d the ARBias (in %) is 0.06 and
0.08 and the RRMSE (in %) is 8.35 and 8.07 respectively.
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Table A.2: RRMSE (in %), ρe = 0.25
Number of function evaluations e

Int. Approx. 16 24/25 100 400 2,500 10,000 40,000
MC 7.97 7.96 7.89 7.85 7.82 7.82 7.82
MCA 7.82 7.82 7.82 7.82 7.82 7.82 7.82

I1 GH 7.82 7.82 7.82 7.82 7.82 7.82 7.82
QMCH 7.84 7.83 7.82 7.82 7.82 7.82 7.82
QMCS 7.84 7.82 7.82 7.82 7.82 7.82 7.82
MC 8.50 8.28 8.01 7.86 7.83 7.83 7.82
MCA 8.31 8.09 7.93 7.83 7.82 7.82 7.82

I2 GH 7.84 7.82 7.82 7.82 7.82 7.82 7.82
QMCH 8 7.97 7.85 7.83 7.82 7.82 7.82
QMCS 7.98 7.88 7.85 7.83 7.82 7.82 7.82
MC 43.39 32.15 15.97 11.68 8.75 7.98 7.87
MCA 41.50 30.20 17.14 10.21 8.49 7.94 7.85

I3 GH 7.97 7.85 7.82 7.82 7.82 7.82 7.82
QMCH 17.07 16.91 9.19 8.16 7.87 7.83 7.82
QMCS 16.90 11.90 10.08 9.74 7.84 7.83 7.82

Table A.3: ARBias (in %), ρe = 0
Number of function evaluations e

Int. Approx. 16 24/25 100 400 2,500 10,000 40,000
MC 0.05 0.03 0.03 0.02 0.03 0.03 0.04
MCA 0.03 0.03 0.03 0.03 0.03 0.03 0.03

I1 GH 0.03 0.03 0.03 0.03 0.03 0.03 0.03
QMCH 0.55 0.48 0.18 0.04 0.02 0.03 0.03
QMCS 0.58 0.16 0 0 0.03 0.03 0.03
MC 0.06 0.02 0.01 0.02 0.03 0.03 0.04
MCA 0.09 0.07 0.03 0 0.02 0.03 0.03

I2 GH 0.04 0.03 0.03 0.03 0.03 0.03 0.03
QMCH 0.59 0.51 0.16 0.03 0.02 0.03 0.03
QMCS 0.46 0.17 0 0 0.03 0.03 0.03
MC 1.01 0.40 0.01 0.08 0.06 0.01 0.06
MCA 0.67 1.11 0.20 0.07 0.03 0.04 0.03

I3 GH 0.02 0.04 0.03 0.03 0.03 0.03 0.03
QMCH 0.86 0.84 0.26 0.06 0.01 0.03 0.03
QMCS 1.30 0.03 0.13 0.04 0.04 0.03 0.04
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Table A.4: RRMSE (in %), ρe = 0
Number of function evaluations e

Int. Approx. 16 24/25 100 400 2,500 10,000 40,000
MC 8.09 8.08 8.09 8.08 8.07 8.07 8.07
MCA 8.07 8.07 8.07 8.07 8.07 8.07 8.07

I1 GH 8.07 8.07 8.07 8.07 8.07 8.07 8.07
QMCH 8.09 8.08 8.07 8.07 8.07 8.07 8.07
QMCS 8.09 8.07 8.07 8.07 8.07 8.07 8.07
MC 8.62 8.44 8.19 8.10 8.09 8.07 8.07
MCA 8.59 8.46 8.18 8.10 8.07 8.07 8.07

I2 GH 8.08 8.07 8.07 8.07 8.07 8.07 8.07
QMCH 8.14 8.18 8.08 8.07 8.07 8.07 8.07
QMCS 8.18 8.11 8.07 8.09 8.07 8.07 8.07
MC 33.49 29.05 15.79 10.27 8.53 8.23 8.09
MCA 26.23 21.18 13.51 9.63 8.29 8.12 8.10

I3 GH 8.16 8.07 8.07 8.07 8.07 8.07 8.07
QMCH 16.50 15.54 9.49 8.31 8.09 8.07 8.07
QMCS 15.93 11.14 9.74 8.25 8.07 8.07 8.07

A.2 Application

This section presents the maps of unemployment rate EBPs for the ages groups AGE2
(25-54) and AGE3 (55-64). We observe that unemployment rates are larger in the south
of Spain for both sexes and that they are larger for females. The maps of estimated
root-MSEs are also given.
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Figure A.1: BFH EBPs and their RMSEs for AGE2 (25-54 years)
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Figure A.2: BFH EBPs and their RMSEs for AGE3 (55-64 years)
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