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Abstract

Modern decision making in the digital age is highly driven by the massive amount of
data collected from different technologies and thus affects both individuals as well as
economic businesses. The benefit of using these data and turning them into knowledge
requires appropriate statistical models that describe the underlying observations well.
Imposing a certain parametric statistical model goes along with the need of finding
optimal parameters such that the model describes the data best. This often results in
challenging mathematical optimization problems with respect to the model’s parameters
which potentially involve covariance matrices. Positive definiteness of covariance matrices
is required for many advanced statistical models and these constraints must be imposed
for standard Euclidean nonlinear optimization methods which often results in a high
computational effort. As Riemannian optimization techniques proved efficient to handle
difficult matrix-valued geometric constraints, we consider optimization over the manifold
of positive definite matrices to estimate parameters of statistical models. The statistical
models treated in this thesis assume that the underlying data sets used for parameter
fitting have a clustering structure which results in complex optimization problems. This
motivates to use the intrinsic geometric structure of the parameter space. In this thesis,
we analyze the appropriateness of Riemannian optimization over the manifold of positive
definite matrices on two advanced statistical models. We establish important problem-
specific Riemannian characteristics of the two problems and demonstrate the importance
of exploiting the Riemannian geometry of covariance matrices based on numerical studies.
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Preface

As part of this thesis, a refereed publication was written, which appears as [124] in the
bibliography. The content of this work, including figures and results of numerical tests,
can be found in Chapter 5.
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CHAPTER 1

Introduction

In the last decades, the digital age has been shaping our society substantially. Due
to the massive amount of information available, decision making in businesses and our
individual life is based on data [121]. We can track our individual health status with
wearables or predict defaults of machines with the help of connected technologies in the
context of the Industry of Things (IoT) [121, 138]. The exponential growth of data drives
the demand of mathematical models to support data-driven decision making. A famous
quote in the context of the digital transformation is [126, 131]

"Information is the oil of the 21st century, and analytics is the combustion
engine." Peter Sondergaard, 2011

This underlines the importance of suitable models to gain insights from collected raw
data, e.g. in the area of economics, health care and engineering. Data comes in many
forms and shapes like images, time series, text. The choice for appropriate models to
analyze observations is at the heart of data-driven decision making in the digital age [3].

Data-based decision making with statistical models assumes a specific mathemati-
cal model which typically incorporates parameters that need to be set such that the
model describes the observed data well. Fitting such a parametric statistical model, that
is finding appropriate values for the model parameters, typically results in solving an
optimization problem [47, 105]. For a parameterized statistical model, the maximum



likelihood approach is a common choice to address the fitting and answers the question
[86]: under the assumed statistical model, which parameters make the observed data most
probable?

In this thesis, we consider two different statistical models that are popular choices for
data-driven decision making, namely Gaussian mixture models and linear mixed models.
These models assume some clustering in the data. The former one, the Gaussian mixture
model, makes the assumption that observations follow a probability distribution which
is a mixture of K Gaussian distributions. This covers the typical situation where the
data are assumed to be grouped into K clusters. In each cluster the data follow the
same Gaussian distribution [3, Section 3.2.2]. Fitting a Gaussian mixture model con-
sists of finding optimal parameters of the K Gaussian components as well as the mixing
proportions, i.e. the proportion of each of the K components. The latter model, the lin-
ear mixed model, can be considered as a generalization of the classical linear model with
clustered observations. It often is the model of choice when analyzing linear relationships
if observations are collected from K different groups. The groups are assumed to capture
a relevant part of the overall variance. In contrast to the Gaussian mixture model, the
clustering is known beforehand and the structure is exploited during fitting [40, Section
1.17]. Linear mixed models are composed of fixed effects, like in a classical linear model,
and random effects that model the variation introduced by considering specific clusters.
Fitting a linear mixed model means to find optimal parameters of the effects parameters
and to specify the distribution parameters of within-group and between-group errors [40,
Section 1.1].

Beside the clustering assumption, the two models have another commonality being
central to this thesis: the models’ parameters incorporate covariance matrices. Covari-
ance matrices are symmetric positive semidefinite [48]. For the models studied in this
thesis, we assume they fulfill positive definiteness in order to guarantee well-definedness
of the according objectives. This poses a challenge for classical nonlinear optimization al-
gorithms since we need to optimize over the set of (symmetric) positive definite matrices
which are open in the set of symmetric matrices of the same dimension. Hence, di-
rectly applying classical unconstrained nonlinear optimization algorithms carries the risk
of leaving the feasible parameter space unless we explicitly impose positive definiteness.
This can be done by incorporating additional constraints, for example by introducing a
Cholesky decomposition. Yet, imposing such constraints usually comes with an unfavor-
able high computational effort [24]. As a surrogate, one can formulate the constraints as
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geometric constraints, that is to interpret the parameter space as a Riemannian manifold
[2].

In the present thesis, we exploit the geometry of covariance matrices to impose posi-
tive definiteness by making use of the evolving field of Riemannian optimization [2, 120].
Riemannian optimization deals with the optimization of real-valued functions defined on
a manifold, that is the consideration of the problem

min
θ∈M

f(θ), (1.1)

where θ is the parameter of interest and M is a Riemannian manifold. Optimization
problems of the form (1.1) are constrained by parameters living on a Riemannian mani-
fold. The basic idea of Riemannian optimization is to consider the problem (1.1) as an
unconstrained problem and to generalize classical nonlinear unconstrained optimization
theory to a manifold setting, i.e. to potentially nonlinear, curved spaces. Driven by
many applications in engineering, physics and data mining, much research has been done
in the last decades to build efficient algorithms for the optimization problem (1.1), see
[1, 73, 120]. These algorithms can be used to solve important fitting problems of statis-
tical models in a Riemannian framework and thus to address geometric constraints like
a positive definiteness property of covariance matrices [17].

In this thesis, we use techniques from Riemannian optimization to solve optimization
problems for two advanced statistical problems incorporating a clustering of data. To
that end, we consider the manifold of positive definite matrices in order to model a posi-
tive definiteness constraint of covariance matrices. This allows us to exploit the intrinsic
geometric structure of the parameter space yielding efficient solvers.

Contributions

The following contributions to the interplay of statistical analysis and mathematical op-
timization are achieved with this thesis:

Gaussian mixture models. For the fitting of Gaussian mixture models, a maximum
likelihood approach is considered for the objective function. The contributions to Gaus-
sian mixture models are based on the works by Hosseini and Sra [65, 66] who formulated
the fitting problem as a Riemannian optimization problem and introduced important
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reformulations of the objective. In this thesis, we derive explicit expressions for the Rie-
mannian gradient and the Riemannian Hessian for the problem of interest. This is a
novelty compared to the works [65, 66]. The formula of the Riemannian Hessian allows
to study second-order information of the problem and to use Newton-type methods for
solving the Riemannian optimization problem. It contributes to a deeper understand-
ing of the underlying geometry of Gaussian mixture models. Based on the attained
problem-specific derivatives, we introduce a Riemannian Newton trust-region algorithm
for Gaussian mixture models. We investigate the performance of the Riemannian New-
ton trust-region algorithm numerically. This includes implementation of the algorithm as
well as numerical tests for various data settings. We provide numerical insights for both
a clustering and a probability density estimation task with different levels of overlap of
the K Gaussian components. Further, we compare the Riemannian Newton trust-region
algorithm to other optimizers. These points bring algorithmic advances based on Rie-
mannian geometry to the important class of Gaussian mixture models.

Linear mixed models. In this thesis, we focus on the task of estimating variance pa-
rameters of the linear mixed models, that is the covariance of the between-group error and
the variance of the within-group error based on a residual maximum likelihood (REML)
approach. In the course of this work, we formulate the problem of REML estimation as a
Riemannian optimization problem which contributes to the geometric understanding of
the parameter space of linear mixed models. To establish this reformulation, we take into
account the specific structure of random effects covariance matrices and random effects
design matrices. Based on the introduced Riemannian formulation of the optimization
problem, we derive expressions for the Riemannian gradient and the Riemannian Hessian.
These expressions are used for the application of a Riemannian Newton trust-region al-
gorithm and a Riemannian nonlinear conjugate gradient method for linear mixed models.
The establishment of these Riemannian algorithms for linear mixed models are used for
the implementation as well as the numerical testing on different settings. We investigate
the feasibility of Riemannian optimizers for linear mixed models in comparison to opti-
mizers from the lme4 package [44]. With this thesis, a novel geometric-based view on
variance parameter estimation in linear mixed model is achieved. This is underlined by
computational experiments giving rise to further investigation of important extensions
of linear mixed models.
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Structure of the thesis

The structure of this thesis is as follows. In Chapter 2, we introduce the foundations
of Riemannian optimization. The chapter is divided into two major parts. The first part
deals with the differential-geometric basics that we need to formally introduce optimiza-
tion on Riemannian manifolds. We introduce the main concepts from an algorithmic
rather than from an analytic perspective. This builds the foundation for the second part,
where we generalize concepts from Euclidean nonlinear unconstrained optimization onto
Riemannian manifolds. The chapter forms the basis for the establishment of geometric
algorithms for the advanced statistical models studied in this work. One way to fit the
statistical models is to use the approach of maximum likelihood estimation resulting in
objectives that can be formulated as real-valued functions on Riemannian manifolds.
Chapter 3 is thus dedicated to the concept of maximum likelihood estimation. The sta-
tistical models studied can be considered as models with latent variables for what reason
we study such a setting in Chapter 3 in further detail. We then review the Expectation
Maximization algorithm which is designed for finding optimal parameters of parametric
statistical models with latent variables. Fitting the statistical models of interest is based
on a maximum likelihood approach in this thesis and involves the estimation of covariance
matrices. The content of the subsequent chapter, Chapter 4, deals with the Riemannian
geometry of covariance matrices and thus serves as a connection of the foundations of
Riemannian optimization (Chapter 2) and maximum likelihood estimation (Chapter 3)
with covariance matrices. We present the manifold of positive definite matrices as well as
its Riemannian characteristics in order to formulate the maximum likelihood estimation
problems studied in this thesis as Riemannian optimization problems. Equipped with an
understanding of the underlying geometry of covariance matrices, we consider the afore-
mentioned advanced statistical models in the subsequent chapters. In Chapter 5, we
consider the problem of fitting Gaussian mixture models. We introduce the Riemannian
optimization problem as established in the works [65, 66] and derive the Riemannian
gradient and the Riemannian Hessian. Based on that, we develop a Riemannian Newton
trust-region algorithm for Gaussian mixture models and analyze it both theoretically and
numerically. The chapter is closed with a discussion of potential future work based on the
present thesis. In Chapter 6, we consider variance estimation in linear mixed models
with a Riemannian framework. We give an overview of linear mixed models and present
the variance estimation problem for which we derive a Riemannian formulation of the
associated optimization problem. Based on this novel geometric view on linear mixed
models, we establish expressions for the according Riemannian gradient and Riemannian
Hessian. We test the approach numerically by presenting computational results for two
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different Riemannian optimizers and discuss the results. Further, we give an overview
of potential future research directions. The last chapter, Chapter 7, summarizes the
findings of the research presented in this thesis.
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CHAPTER 2

Foundations of Riemannian Optimization

Riemannian optimization has gained increasing interest in recent research due to its
broad applicability to many problems in the area of engineering [82], computer vision
[29], data science [140] and many others [120]. The field of Riemannian optimization
addresses nonlinear objectives with geometric constraints, meaning that the solution of
the optimization problem lies on a Riemannian manifold [2]. The authors of the pop-
ular text book by Absil, Baker and Gallivan [2] calls this "unconstrained optimization
in a constrained search space". The basic idea of Riemannian optimization, also re-
ferred to as manifold optimization [22, 65], is to generalize concepts and algorithms of
unconstrained Euclidean nonlinear optimization onto objectives defined on manifolds by
considering local vector space approximations called tangent spaces. In this chapter, we
give an introduction to Riemannian optimization which serves as the basis for the follow-
ing chapters. This chapter explains the relevant concepts for Riemannian optimization
rather from an algorithmic perspective than from an analytic perspective. We motivate
differential-geometric concepts that are relevant for optimization and focus on these. For
this, we follow the structure and notations from the textbooks [2, 22, 120]. For an an-
alytic introduction to Riemannian manifolds, we refer to [80, 81]. In this chapter, we
state all necessary theorems but omit their proofs and refer to according sources.

Due to the popularity of Riemannian optimization within the last years, e.g, in the
area of engineering and data science, efforts on the development of software libraries has
been expended. Toolboxes for Riemannian optimization include Manopt in Matlab [23],



2.1. Elements of Riemannian Geometry

pymanopt in Python [136], ROPTLIB in C++ [68] and Manopt.jl in Julia [16].

The present chapter is divided into two major parts. In the first part, Section 2.1,
we give an introduction to the differential-geometric framework needed for Riemannian
optimization. This includes the formal definition of Riemannian manifolds as well as the
formalization of higher-order information for functions defined on manifolds. A special
focus is set on submanifolds embedded in the Euclidean space since these are of relevance
for the statistical models studied in this thesis. In the second part of this chapter, Section
2.2, we generalize the concepts of unconstrained Euclidean nonlinear optimizations onto
objectives defined on Riemannian manifolds. We present both first and second-order
optimization algorithms for objectives defined on Riemannian manifolds which we later
make use of in Chapter 5 and Chapter 6.

2.1 Elements of Riemannian Geometry

In this section, we introduce the differential-geometric definition of a manifold together
with the necessary concepts to perform Riemannian optimization. In Section 2.1.1, we
establish the definition of a (differentiable) manifold followed by the introduction of
tangent spaces and differentiability of functions defined on manifolds in Section 2.1.2.
Then, we generalize the notion of the gradient and Hessian onto the Riemannian setting in
Section 2.1.3 and Section 2.1.4, respectively. Section 2.1.5 generalizes the understanding
of shortest paths to manifolds. In this thesis, Euclidean submanifolds, that is subsets of
Euclidean space with a special structure, are of particular interest. We introduce general
embedded submanifolds in Section 2.1.6 and the special case of Euclidean submanifolds
in Section 2.1.7.

2.1.1 Manifolds

Manifolds are spaces that locally resemble the Euclidean space, meaning that they can
be locally identified with coordinate patches of Rd [21]. The identification with subsets in
Rd is done via so-called charts and if the whole set can be endowed with suitable charts,
it can be given a manifold structure. We establish the definition of a manifold formally
in the following:

Definition 2.1. (chart) [2, Section 3.1.1] A d-dimensional chart on a topological space
M is a pair (U , ϕ) consisting of an open subset U of M and a homeomorphism ϕ : U → V

with V ⊂ Rd open.
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2.1. Elements of Riemannian Geometry

The concept of charts allows to study objects associated with U with real analysis by
bringing them to their coordinate representation ϕ(U) [2, Section 3.1.1]. For example,
for a real-valued function f : U → R, the coordinate representative f̃ = f ◦ ϕ−1 is a
function from Rd to R with domain ϕ(U). This gives us an understanding of smoothness
of a function defined on M : f is smooth at θ ∈ M if f̃ is smooth at ϕ(θ). Smoothness
of f requires that two charts (U , ϕ), (V, ψ) on M yield the same conclusions regarding
the differentiability of functions at θ: if a real-valued function f is defined on U ∩ V,
then f ◦ ϕ−1 and f ◦ ψ−1 should have the same differentiability properties on U ∩ V [22,
Section 8.1]. Compatibility between charts captures this property:

Definition 2.2. (compatible charts) [2, Section 3.1.1] Two charts (U , ϕ), (V, ψ) on
M are compatible if they have the same dimension d and either U ∩V = ∅ or U ∩V 6= ∅
and

1. ϕ(U ∩ V) is open in Rd,

2. ψ(U ∩ V) is open in Rd and

3. ψ ◦ ϕ−1 : ϕ(U ∩ V)→ ψ(U ∩ V) is a diffeomorphism.

To generalize the concept of differentiability to the whole setM , we must ensure that
the whole set can be equipped with charts. Compatible charts that cover the whole set
M form an atlas [22, Section 8.1]:

Definition 2.3. (atlas, maximal atlas) [2, Section 3.1.1] A (d-dimensional) atlas A
on a setM is a collection of pairwise compatible d-dimensional charts (U , ϕ) onM whose
domains U cover M . For an atlas A, the maximal atlas A+ is defined as the collection
of charts on M which are compatible with all charts of A. A maximal atlas is itself an
atlas.

The definition of a maximal atlas allows us to equip a set M with a differentiable
structure and to have a meaningful representation of locally linearizable spaces. However,
we need to impose additional topological assumptions on the atlas to study optimization
theory on such spaces. First, we need to avoid that a sequence of points can converge
to more than one limit point. Second, we need a notion of length via a Riemannian
metric [22, Section 8.2]. This yields the following definition of a manifold which we use
throughout this thesis.

Definition 2.4. (manifold) [2, Section 3.1.1] A d-dimensional differentiable manifold
is a tuple M = (M,A+), where M is a set and A+ is a d-dimensional maximal atlas
such that the topology induced by A+ is Hausdorff and second-countable.
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2.1. Elements of Riemannian Geometry

A few remarks to the Definition 2.4 are in order:

(i) Two techniqual requirements are made in Definition 2.4: the atlas topology is
assumed Hausdorff, i.e. any two disjoint points of M have disjoint neighborhoods,
and assumed to be second-countable, i.e. the atlas topology has a countable basis
(for formal definitions, see Appendix A.1). These assumptions ensure that the
considerations above hold true: with Definition 2.4, any convergent sequence in M
has a unique limit point in M and the manifold admits a Riemannian metric. For
details, see [81].

(ii) In the literature, a manifold is sometimes simply defined as a set endowed with
a maximal atlas, which does not preclude certain counterintuitive properties of
(M,A+) (see e.g. [120, Section 2.3] for such examples). Throughout this thesis,
we stick to Definition 2.4 when we talk about manifolds. Further, when writing
"manifolds" in this thesis, we always mean differentiable manifolds in the sense of
Definition 2.4.

(iii) If M = (M,A+) is a manifold, we will usually drop the atlas and use M and M
interchangeably when there is no ambiguity.

(iv) When talking about manifolds M in this thesis, we assume they are connected,
meaning thatM cannot be expressed as the disjoint union of two nonempty sets.
This ensures that we can find a path contained inM that connects any two points
on the manifold [2, Section 3.1.1].

In practice, it is necessary to check the Hausdorff and second-countable property of
an atlas topology. The following result provides a helpful characterization of an atlas to
fulfill these properties:

Theorem 2.5. [22, Proposition 8.22] Let A be an atlas for the set M . Assume that

1. For all θ1, θ2 ∈M distinct, either both θ1 and θ2 are in the domain of some chart,
or there exist two disjoint chart domains U ,V such that θ1 ∈ U and θ2 ∈ V and

2. Countably many of the chart domains suffice to cover M .

Then the atlas topology of A+ is Hausdorff and second-countable, so thatM = (M,A+)

is a manifold.

Proof. For a proof of Theorem 2.5, see [81, Lemma 1.35].
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2.1. Elements of Riemannian Geometry

Coordinate representations

With the definition of a manifold, we are able to consider differentiability of functions
F mapping from a manifoldM1 of dimension d1 to a manifoldM2 of dimension d2 [2,
Section 3.2]. For θ ∈M1, we choose charts ϕ1, ϕ2 around θ and F (θ) ∈M2, respectively.
We introduce the coordinate representation F̂ of F given by

F̂ = ϕ2 ◦ F ◦ ϕ−1
1 : Rd1 → Rd2 . (2.1)

Then, we say that F is differentiable or smooth at θ if F̂ is of class C∞ at ϕ1(θ). Further,
a function F : M1 → M2 is called smooth if it is smooth at every point of its domain
[2, Section 3.2].

Product manifolds

In many applications, variables of interest for optimization live on different manifolds
which together again constitute a manifold, namely a product manifold [2, Section 3.1.6].
Product manifolds are composed of several single manifolds. Formally, let M1,M2 be
manifolds of dimensions d1, d2, respectively. Let (U1, ϕ1) and (U2, ϕ2) be charts of the
manifoldsM1 andM2, respectively and θ = (θ1, θ2) ∈ M1 ×M2 of dimension d1 + d2,
where θ1 ∈M1, θ2 ∈M2. Then, the mapping

ϕ1 × ϕ2 : U1 × U2 → Rd1 × Rd2 : (θ1, θ2) 7→ (ϕ1(θ1), ϕ2(θ2))

is a chart for the set M1×M2. We can thus form an atlas for the set M1×M2 out of the
charts ofM1 andM2 and endow M1×M2 with a differentiable structure. The resulting
manifoldM1 ×M2 is called the product of the manifoldsM1 andM2 and has dimen-
sion d1+d2. Its manifold topology is equivalent to the product topology [2, Section 3.1.6].

2.1.2 Tangent Spaces and Differential Maps

With the definition of a manifold (Definition 2.4), we are able to generalize real analysis
to manifolds. To study differentiability of a function f : M → R at a point θ without
considering their coordinate representations, we introduce tangent vectors and tangent
spaces formally.
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Definition 2.6. (curve, tangent vector, tangent space, tangent bundle, vector
field)[2, Section 3.5.1] LetM be a manifold.

1. A smooth mapping γ ∈ C∞ with

γ : I →M : t 7→ γ(t), 0 ∈ I ⊆ R

is called a curve inM.

2. Let Fθ(M) denote the set of all smooth, real-valued functions defined on a neigh-
bourhood of θ. A tangent vector ξθ at θ ∈M is a mapping from Fθ(M) to R such
that there exists a curve γ onM with

γ(0) = θ,

ξθf = γ̇(0)f :=
D

d t
f(γ(t))|t=0 ∀f ∈ Fθ(M).

Such a curve is said to realize the tangent vector ξθ. The point θ is called the foot
of the tangent vector ξθ.

3. The tangent space to M at a point θ, denoted by TθM, is the set of all tangent
vectors toM at θ.

4. The tangent bundle TM is defined as the union of tangent spaces at all points from
M, i.e.

TM :=
⋃
θ∈M

TθM = {(θ, ξ) : θ ∈M, ξ ∈ TθM}.

5. A vector field V on a manifold M is a smooth function from M to the tangent
bundle TM that assigns to each point θ ∈M a tangent vector in TθM.

Tangent spaces are an important tool for Riemannian optimization technique as they
give local vector space approximations around each point of a manifold. Like this, we do
not necessarily need to specify the atlas of a manifold to apply concepts of real analysis
[2, Section 3.5].

We make a few remarks for tangent vectors and spaces:

(i) Tangent spaces are vector spaces: let γ̇1(0), γ̇2(0) in TθM and α, β ∈ R. Define

(αγ̇1(0) + βγ̇2(0))f := α(γ̇1(0)f) + β(γ̇2(0)f).

Consider a chart (U , ϕ) with θ ∈ U and the curve γ(t) = ϕ−1(αϕ(γ1(t))+βϕ(γ2(t))).
Then we see that γ̇(0) = αγ̇1(0) + βγ̇2(0) yielding that αγ̇1(0) + βγ̇2(0) is a well-
defined tangent vector at θ [2, Section 3.5.1].
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(ii) The tangent vector at a point θ is well-defined, i.e. the definition does not depend
on the choice of the curve γ, see [2, Section 3.5.4] for details.

(iii) We sometimes drop the index and simply write ξ for a tangent vector when there
is no ambiguity to which tangent space it refers.

With the definition of tangent vectors, we are now in a position where we can define
derivatives on manifolds without using the coordinate representation (2.1) [2, Section
3.5.6]. For this, let F : M1 → M2 be a smooth mapping between two manifolds M1

andM2 and ξθ be a tangent vector at a point θ ofM2. Then, the mapping DF (θ)[ξθ]

from FF (θ)(M2) to R defined by

(DF (θ)[ξθ])f := ξθ(f ◦ F )

is a tangent vector to M2 at F (θ). The tangent vector DF (θ)[ξθ] is realized by F ◦ γ,
where γ is any curve that realizes ξθ. The mapping

DF (θ) : TθM1 → TF (θ)M2 : ξθ 7→ DF (θ)[ξθ]

is a linear mapping called the differential (or differential map, derivative or tangent map)
of F at θ [2, Section 3.5.6].

2.1.3 Riemannian Metrics and Gradients

In the previous sections, we introduced manifolds with local linear space approximations.
Endowing the local vector space approximations with inner products provides a notion
of length and angles on these spaces [2, Section 3.6]. We formally define Riemannian
metrics in the following.

Definition 2.7. (Riemannian metric)[120, Definition 3.14] LetM be a differentiable
manifold. For any θ ∈ M, let gθ : TθM× TθM → R be an inner product on TθM. If
g : θ 7→ gθ is smooth, g is called a Riemannian metric onM and the pair (M, g) is called
a Riemannian manifold.

A few remarks for Definition 2.7 are in order:

(i) Throughout this thesis, we will often refer to a Riemannian manifold (M, g) simply
asM when the metric is clear from the context.

(ii) Since gθ is an inner product on TθM, we mostly use the notation 〈 · , · 〉θ for gθ.
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(iii) We denote the Riemannian norm at θ by ‖ξ‖θ :=
√
gθ(ξθ, χθ) =

√
〈ξ, ξ〉θ for a

tangent vector ξ ∈ TθM.

(iv) One can show that for every manifold in the sense of Definition 2.4, there exists a
Riemannian metric (see [120, Theorem 3.3] and Appendix A.1).

(v) When working with product manifolds, one can easily construct a Riemannian met-
ric out of the Riemannian metrics of the single components:
LetM =M1 × · · · ×MK be a product manifold and θ = (θ1, . . . , θK) ∈M,
θj ∈ Mj and ξθ = (ξθ1 , . . . , ξθK ), χθ = (χθ1 , . . . , χθK ) corresponding tangent vec-
tors, that is ξθj , χθj ∈ TθjMj . Further, let 〈 · , · 〉θj be inner products on the tangent
spaces TθjMj that vary smoothly with θj in the sense of Definition 2.7. Then,

〈ξθ, χθ〉θ = 〈ξθ1 , χθ1〉θ1 + · · ·+ 〈ξθK , χθK 〉θK (2.2)

defines an inner product on TθM that varies smoothly with θ, making M a Rie-
mannian manifold [22, Section 3.7].

For a function f :M→ R, we seek to define the gradient, which is a vector field on
M. On Riemannian manifolds, we can generalize the Euclidean gradient to the manifold
setting by identifying it with the differential and the inner product:

Definition 2.8. (Riemannian gradient)[2, Section 3.5] LetM be a Riemannian man-
ifold and f :M→ R smooth. The Riemannian gradient of f at θ, denoted by grad f(θ),
is defined as the unique element of TθM that satisfies

〈grad f(θ), ξθ〉θ = D f(θ)[ξθ] ∀ξθ ∈ TθM,

where 〈 · , · 〉θ is the inner product defined on TθM.

WhenM =M1× · · · ×MK is a product manifold, one can easily see with the inner
product (2.2) that the gradient grad f(θ) ∈ TθM reads

grad f(θ) =
(
gradθ1 f(θ), . . . , gradθK f(θ)

)
,

where gradθj f(θ) ∈ TθjMj is the Riemannian gradient of f with respect to θj [22,
Section 3.8].

2.1.4 Affine Connections and the Riemannian Hessian

In the last section, we introduced the Riemannian gradient which characterizes first
derivatives on Riemannian manifolds. In this section, we seek to generalize the second
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derivative for Riemannian manifolds. To do so, we note that differentiating the gradi-
ent means differentiating over vector fields, for what reason we introduce Riemannian
connections, which are affine connections with special characteristics.

Definition 2.9. (affine connection, covariant derivative)[2, Section 5.2] LetM be
a manifold. We denote the set of all vector fields onM by X(M). We define:

1. Given a vector field V on M and a smooth real-valued function f on M, let V f
denote the function onM defined by

(V f)(θ) := ξθf,

for all θ ∈M and ξθf as in Definition 2.6.

2. An affine connection ∇ on a manifold is a mapping

∇ : X(M)× X(M)→ X(M) : (V,U) 7→ ∇V U

which satisfies the following properties:

(a) F(M)-linearity in V : ∇f1V+f2WU = f1∇V U + f2∇WU ,

(b) R-linearity in U : ∇V (αU + βŨ) = α∇V U + β∇V Ũ ,

(c) Leibniz’ law: ∇V (fU) = (V f)U + f∇V U ,

for any U, Ũ , V,W ∈ X(M), f, f1, f2 ∈ F(M) and α, β ∈ R. The vector field ∇V U
is called the covariant derivative of U with respect to V for the affine connection
∇.

3. An affine connection at θ is given by restricting an affine connection to θ, i.e. it is
the mapping

TθM× X(θ)→ X(θ) : (∇Vθ , ξθ) 7→ ∇Vθξθ,

where X(θ) denotes the set of vector fields onM whose domain includes θ.

With affine connections, we are able to differentiate vector fields like the Rieman-
nian gradient along other vector fields. It can be shown that there exists at least one
affine connection for every manifold [2, Proposition 5.2.1]. However, uniqueness is not
necessarily given and we need to impose additional properties on the affine connection
in order to achieve uniqueness. To formalize these properties, we first introduce some
helpful notations [22, Definition 5.5]:
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For U, V ∈ X(M) and f ∈ F(U) for U open inM, let

i) Uf ∈ F(U) such that (Uf)(θ) = D f(θ)[U(θ)],

ii) [U, V ] : F(U)→ F(U), f 7→ U(V f)− V (Uf) (Lie-bracket of U and V )

iii) 〈U, V 〉 ∈ F(M) such that 〈U, V 〉(θ) = 〈U(θ), V (θ)〉θ

With these notations, we can state the following important theorem which gives us
uniqueness of a specific affine connection, the Levi-Civita connection.

Theorem 2.10. (Levi-Civita, [2, Theorem 5.2.1]) On a Riemannian manifoldM, there
exists a unique affine connection ∇ that satisfies

i) Symmetry: ∇V U −∇UV = [U, V ] and

ii) Compatibility with the Riemannian metric: W 〈U, V 〉 = 〈∇WU, V 〉+ 〈U,∇WU〉.

The affine connection satisfying i) and ii) is called the Levi-Civita connection or the
Riemannian connection ofM. It is the unique solution to the Koszul-formula

2〈∇WV,U〉 = W 〈V,U〉+ V 〈U,W 〉 − U〈W,V 〉 − 〈W, [U, V ]〉+ 〈V, [U,W ]〉+ 〈U, [V,W ]〉.
(2.3)

Proof. We refer to [22, Section 5.4 & 9.10] for a proof.

With the Riemannian connection, we are able to generalize the Hessian to functions
defined on manifolds.

Definition 2.11. (Riemannian Hessian)[2, Section 5.5] Let f be a real-valued smooth
function on a Riemannian manifold M and ∇ the according Riemannian connection.
Then the Riemannian Hessian of f at a point θ inM is the linear mapping

Hess f(θ) : TθM→ TθM

defined by

Hess f(θ)[ξθ] = ∇ξθ grad f(θ) (2.4)

for all ξθ in TθM.

Hence, at any point θ ∈ M, the Riemannian Hessian defines a linear operator from
the tangent space TθM onto itself. The operator Hess f maps elements from X(M) to
elements from X(M) as Hess f [V ] = ∇V grad f .
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A few remarks are in order:

(i) The Riemannian Hessian is self-adjoint with respect to the Riemannian metric,
that is for all θ ∈M and ξ, χ ∈ TθM [22, Proposition 8.66],

〈Hess(f(θ)[ξ]), χ〉θ = 〈ξ,Hess f(θ)[χ]〉θ.

(ii) The definition of the Riemannian Hessian by (2.4) ensures that Hess f(θ)[ξθ] is an
element of TθM. This is not ensured if we simply take the derivative of gradient
vector fields, for an example see [22, Section 5.1].

(iii) WhenM =×K
j=1Mj is a product manifold and ∇(1), . . . ,∇(K) are the respective

Riemannian connections ofM1, . . . ,MK , one can show that the single components
of the Riemannian Hessian

Hess f(θ)[ξθ] =
(

(Hess f(θ))θ1 , . . . , (Hess f(θ))θK

)
are given by

(Hess f(θ))θj = ∇(j)
ξθj

gradθj f(θj) +
K∑
r=1
r 6=j

Dθr

(
gradθj f(θr)

)
[ξθr ], (2.5)

see [22, Sections 5.3 & 5.4]. Here, the expression gradθj f(θr) denotes the gradient
at position θj , where all other variables than θr are assumed fixed (differentiation
with respect to θr).

2.1.5 Generalizing Straight Lines: Geodesics and Distances

With the concept of Riemannian connections, we are able to generalize the concept of
straight lines in Rd to manifolds. A geometric interpretation of straight lines t 7→ x+ tv

for x, v ∈ Rd is given by their vanishing second derivative, i.e. they have zero acceleration
[22, Section 10.1]. We have already introduced the notion of a tangent vector γ̇ for a
curve γ in a manifoldM, yielding an interpretation as the velocity of the curve γ at t.
The according mapping t 7→ γ̇(t) defines the velocity vector field along γ [2, Section 5.4].
We define the acceleration vector field γ̈ of the curve γ in the following. To that end, let
M be a manifold equipped with an affine connection ∇ and let γ be a curve inM with
domain I ⊆ R. A smooth vector field on the curve γ smoothly assigns to each t ∈ I a
tangent vector toM at γ(t). The set of all smooth vector fields on γ is denoted by X(γ).
It can be shown [80, Chapter 4] that there is a unique function ξ 7→ D

d tξ from X(γ) to
X(γ) such that
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1. D
d t(aξ + bζ) = a D

d tξ + b D
d tζ (a, b ∈ R),

2. D
d t(fξ) = f ′ξ + f D

d tξ (f ∈ F(I)),

3. D
d t(η ◦ γ)(t) = ∇γ̇(t)η (t ∈ I, η ∈ X(M)).

Based on that, we define the acceleration vector field :

Definition 2.12. (acceleration vector field)[2, Section 5.4] The acceleration vector
field D2

d t2
γ on γ is given by

γ̈ =
D2

d t2
γ :=

D

d t
γ̇.

With this definition, we can generalize straight lines in Rd to a manifold via the zero
acceleration property:

Definition 2.13. (geodesic)[2, Section 5.4] A geodesic γ on a manifold M endowed
with an affine connection ∇ is a curve with zero acceleration, i.e.

γ̈(t) = 0

for all t in the domain of γ.

We note that different affine connections produce different geodesics, see [2, Section 5.4]
for details.

Another interpretation of straight lines is to think about them as the shortest path
between two points in Rd. We need a notion of length to study a similar characterization
for manifolds:

Definition 2.14. (length of a curve, Riemannian distance, minimizing curve)[2,
Section 3.6] Let (M, g) be a Riemannian manifold.

i) The length of a curve γ : R ⊇ I →M is given by

L(γ) =

∫
I

√
g(γ̇(t), γ̇(t)) d t.

ii) The Riemannian distance is given by

dist :M×M→ R : (θ1, θ2) 7→ inf
γ∈Γθ1,θ2

L(γ), (2.6)

where Γθ1,θ2 is the set of all curves inM joining the points θ1, θ2 inM.
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iii) If the infimum in (2.6) is attained for some curve γ, we call γ a minimizing curve.

One can show that, up to parameterization, minimizing curves are geodesics. For
details, see [80, Chapter 6]. This result shows that there is a clear connection between the
two viewpoints of straight lines: the generalization of the zero-acceleration characteristic
and the generalization of the shortest-path property [22, Section 10.1].

2.1.6 Submanifolds

An important special case of manifolds are submanifolds, i.e. subsets of manifolds with
a suitable differential structure. For this, we consider a manifold M = (M,A+) and a
subset N ⊂M . We first study the special case where N is an open subset of M . For any
chart (U , ϕ) ofM with U ∩N 6= ∅, we build the chart (U ∩N,ϕ) on N . The collection
of these charts naturally forms a (maximal) atlas B+ for N , turning it into an atlas for
N and turning it into a manifold [22, Section 8.2]. The manifold N = (N,B+) is called
an open submanifold ofM [22, Definition 8.24].

For more general subsets N of M , we consider immersed submanifolds with a special
topology. In order to define these, we introduce the rank of a differentiable function F
mapping from a manifold M1 of dimension d1 to another manifold M2 of dimension
d2. Given a point θ ∈ M1, the rank of F is the dimension of the range of the Jacobian
D F̂ (ϕ1(θ))[ · ] : Rd1 → Rd2 , where F̂ is a coordinate representation of F given by (2.1)
and D F̂ (ϕ1(θ)) denotes the (Fréchet) differential of F̂ [2, Section 3.2.1].

With this notation, we define immersed submanifolds and embedded submanifolds:

Definition 2.15. (immersed submanifold, embedded submanifold)[2, Section
3.1.1] Consider two manifolds N = (N,B+), M = (M,A+) where N ⊂ M . We in-
troduce the inclusion map

i : N →M : θ 7→ θ

which maps points in N to themselves in M . Then we define

1. If i is smooth and D i(θ) has rank equal to dimN for all θ ∈ N , we say that N is
an immersed submanifold ofM.

2. If N is an immersed submanifold of M and its atlas topology coincides with the
subspace topology of N ⊂M induced from the topological spaceM (i.e. every open
set of N is the intersection of some open set of M with N), then N is called an
embedded submanifold ofM, whileM is called the embedding space of N .
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Whereas immersed submanifolds give some freedom regarding the differentiable structure
of the manifold, the notion of an embedded submanifold requires a specific one that is
compatible with M. It can be shown that given a subset N of a manifold M, there
exists at most one such compatible structure:

Theorem 2.16. [81, Theorem 5.13] Let M = (M,A+) be a manifold. A subset N of
M admits at most one differentiable structure that makes it an embedded submanifold of
M.

Proof. We refer to [81, Chapter 5] for a proof.

With this result, we can give a complete characterization of (embedded) submanifolds:

Theorem 2.17. [22, Theorem 8.75] Let M = (M,A+) be a manifold. A subset N 6= ∅
of M is an embedded submanifold ofM if either of the following holds:

1. N is an open subset of M. Then, we call N = (N,B+) an open submanifold of
M and dimN = dimM.

2. For a fixed integer d ≥ 1 and for each θ ∈ N there exists a smooth neighborhood V
of θ inM and a smooth function h : V → Rd such that

a) if θ̄ is in V, then θ̄ ∈ N if and only if h(θ̄) = 0; and

b) rank Dh(θ̄) = d for all θ̄ ∈ N ∩ V.

Then, dimN = dimM− d and h is called a local defining function.

Proof. A proof can be found in [81, Chapter 5].

2.1.7 Submanifolds of Euclidean Spaces

In this thesis, we will consider submanifolds of Euclidean spaces. As some of the concepts
introduced in the previous sections simplify for this special case, we study Euclidean sub-
manifolds in more detail. We formalize Euclidean submanifolds and state the concepts
of the previous sections for Euclidean submanifolds in the following.

Let E denote a vector space over the reals, that is a set equipped with (and closed
under) vector addition and scalar multiplication by real numbers. Typical examples in-
clude Rd, Rd1×d2 or the set of real, symmetric matrices of size d denoted by Sd. A vector
space E equipped with an inner product is an Euclidean space [22, Section 3.1]. Since
an inner product can be defined for each vector space over the reals E , we will use the
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notation E also for an Euclidean space. Euclidean spaces have a natural linear manifold
structure, which becomes clear when we consider the set of real matrices of dimension
d1 × d2 denoted by Rd1×d2 as a representative example [2, Section 3.1.5]. Consider the
mapping ϕ : Rd1×d2 → Rd1d2 : A 7→ vec(A), where vec(A) denotes the vector obtained
by stacking the columns of A below one another. An atlas for Rd1×d2 can be formed by
this single chart, and by Theorem 2.5, E admits a manifold structure. Accordingly, we
can build a manifold structure for any Euclidean space E by using such a vectorization
[22, Section 7.1].

In this thesis, embedded submanifolds of E are of particular interest. Subsets of
the manifold E can be given differentiable structures as pointed out in Section 2.1.6.
With Theorem 2.17, we are able to define embedded submanifolds in E as Euclidean
submanifolds in the following way:

Definition 2.18. (Euclidean submanifold)[22, Definition 3.10] Let E be a linear space
of dimension d. A subset M of E is an embedded submanifold of E or an Euclidean
submanifold of dimension n if either of the following holds:

1. n = d andM is open in E. Then, we callM an open submanifold. IfM = E, we
call it a linear manifold,

2. n = d− k for some k ≥ 1 and, for each θ ∈ M there exists a neighborhood U of θ
in E and a smooth function h : U → Rk such that

a) if θ̄ is in U , then θ̄ ∈M if and only if h(θ̄) = 0; and

b) rank Dh(θ̄) = k.

The function h is called a local defining function forM at θ.

From now on, we assumeM to be an Euclidean submanifold in the sense of Definition
2.18 unless otherwise stated. We consider the following setting: Let U be a neighborhood
of θ in E and f̄ a real-valued function defined on U . Further, let f be the restriction of
f̄ to the manifold, that is f = f̄|U∩M.

We first investigate the tangent space TθM for an Euclidean submanifoldM. Let γ
be a curve inM with γ(0) = θ. Define

γ′(0) := lim
t→0

γ(t)− γ(0)

t
.

Being a curve inM, γ induces a tangent vector γ̇(0) ∈ TθM. We observe that

γ̇(0)f =
D

d t
f(γ(t))|t=0 =

D

d t
f̄(γ(t))|t=0 = D f̄(θ)[γ′(0)],
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which yields the identification of TθM given by

TθM = {γ′(0)|γ : R→M with γ(0) = θ},

see [22, Section 3.5]. Thus, TθM is a linear subspace of E . For an open submanifold
M of E , the tangent space TθM at a point θ ∈ M is the Euclidean space itself, i.e.
TθM = E . If it is an embedded submanifold in the sense of Definition 2.18, we get that
TθM = ker Dh(θ), where h is any local defining function for M at θ. For a proof, we
refer to [2, Section 3.5.7].

These considerations yield much easier representations of Riemannian metrics, gra-
dients and Hessians: An Euclidean submanifold can be naturally transferred into a Rie-
mannian manifold by inheriting the standard metric defined on the Euclidean space E :
Let 〈 · , · 〉 be the Euclidean metric on E . Then, the metric on M defined at each θ by
restriction, i.e. 〈ξθ, χθ〉θ = 〈ξθ, χθ〉 for ξθ, χθ ∈ TθM is a Riemannian metric [2, Section
3.6.1]. We define the Euclidean submanifoldM endowed with such a metric a Rieman-
nian submanifold of E .

In order to compute a gradient of an Euclidean submanifold, we observe that for all
ξθ ∈ TθM, it holds that

〈ξθ, grad f(θ)〉θ = D f(θ)[ξθ] = D f̄(θ)[ξθ] = 〈ξθ, grade f̄(θ)〉, (2.7)

where grade f̄(θ) denotes the classical Euclidean gradient of the function f̄ . We can
use this to get an easier presentation of the Riemannian gradient grad f(θ), which is
an element of TθM: Since TθM is a subspace of E , there exists a decomposition of
grad f̄(θ) in E into a part in TθM and its orthogonal complement [22, Section 3.8].
Thus, to compute the Riemannian gradient of a Riemannian submanifold of E , we can
derive the Euclidean gradient and then orthogonally project it back onto the respective
tangent space:

Theorem 2.19. [2, Section 3.6.1] Let M be a Riemannian submanifold of E endowed
with the metric 〈 · , · 〉. By

Projθ : E → TθM, (2.8)

we denote the projector from E to TθM, orthogonal with respect to 〈 · , · 〉.
For a smooth function f :M→ R, the Riemannian gradient of f is given by

grad f(θ) = Projθ(grade f̄(θ)),

where f̄ is a smooth extension of f to a neighborhood ofM in E.
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Proof. Since the tangent space TθM is a subspace of E , we can decompose each tangent
vector as the sum of an element in TθM and its complement which gives the desired
expression, see [22, Section 3.8].

With this charaterization of the Riemannian gradient, we can derive a similar ex-
pression for the Riemannian Hessian: we consider a smooth extension of the Riemannian
gradient vector field to E and project it back onto respective the tangent space.

Theorem 2.20. [2, Corollary 5.17] LetM be a Riemannian submanifold of E. Consid-
ering a smooth function f :M→ R, let grad f be a smooth extension of grad f , that is
grad f(θ) is defined in a neighborhood U of grad f(θ) in E and grad f(θ) = grad f(θ)|U∩M.
Then, the Riemannian Hessian can be expressed as

Hess f(θ)[ξθ] = Projθ
(
D
(
grad f(θ)

)
[ξθ]
)
,

where Projθ is the projector from (2.8).

Proof. The Riemannian connection of an Euclidean submanifold is the classical Euclidean
gradient vector field projected onto the tangent space, see [22, Section 5.4] for details.
The result follows directly from (2.4).

These characterizations for Euclidean submanifolds help us to derive the necessary
concepts for performing Riemannian optimization on the manifold of positive definite
matrices in Chapter 4.

In the second part of this chapter, Section 2.2, we introduce the concepts of Rie-
mannian optimization based on the differential-geometric foundations introduced in this
section.

2.2 Riemannian Optimization Methods

In the previous section, we have built the main basis for solving optimization problems
of the form

min
θ∈M

f(θ), (2.9)

whereM is a smooth Riemannian manifold and f :M→ R is a smooth function. In this
section, we will first introduce analogies to Euclidean optimization theory for necessary
and sufficient conditions for local optima of f . In Section 2.2.2, we introduce tools
that allow to move an manifolds which helps us to build optimization algorithms in the
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subsequent sections, Sections 2.2.3 - 2.2.5. We will discuss the Riemannian trust-region
algorithm in detail in Section 2.2.4 as it is central to Chapters 5 and 6.

2.2.1 Optimality on Manifolds and Convergence of Algorithms

We first define local and global optima for problem (2.9):

Definition 2.21. (global and local minimizer, global and local minimum)[22,
Section 4.2] We consider the optimization problem (2.9).

1. A point θ∗ ∈M is called a global minimizer to problem (2.9), if

f(θ∗) ≤ f(θ) ∀θ ∈M.

The value f(θ∗) is called a global minimum of f in M. If f(θ∗) < f(θ) for all
θ ∈M\{θ∗}, we say that θ∗ is a strict global minimizer and f(θ∗) is a strict global
minimum of f inM.

2. A point θ∗ is called a local minimizer to problem (2.9), if there exists a neighborhood
U of θ inM such that

f(θ∗) ≤ f(θ) ∀θ ∈ U .

The value f(θ∗) is called a local minimum of f inM. If θ∗ is a local minimizer of
f inM and f(θ∗) < f(θ) for θ ∈ U \{θ∗}, then θ∗ is called a strict local minimizer.

A few remarks are in order:

(i) Throughout this section, we assume that f is lower-bounded, such that the expres-
sion (2.9) is well-defined.

(ii) Similar to the Euclidean case, our framework allows to work with maximization
problems of the form

max
θ∈M

f(θ), (2.10)

for f :M→ R smooth.

(iii) In the case of a maximization problem of the form (2.10), we define (strict) global
and local maximizers as in Definition 2.21 by exchanging the ” ≤ ”, ” < ” signs
by ” ≥ ”, ” > ” signs. A maximization problem (2.10) can be transformed into a
minimization problem (2.9), since

arg max
θ∈M

f(θ) = − arg min
θ∈M

(−f(θ))

holds true.
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In analogy to the Euclidean gradient, the Riemannian gradient plays a central role for
optimization theory. The first important fact is that local minimizers are critical points,
that is the gradient vanishes in that point (first-order necessary condition):

Theorem 2.22. [120, Theorem 3.4] Let f :M→ R be a smooth function and θ∗ ∈ M
a local minimizer of f . Then the gradient at θ∗ vanishes, that is

grad f(θ∗) = 0.

Proof. We refer to [120, Section 3.3].

Theorem 2.22 is the basis for the optimization algorithms presented in this thesis: We
seek to build iterates converging to a point θ∗ at which the gradient vanishes. Another
important fact of the gradient is used to build optimization methods: The Riemannian
gradient is the steepest-ascent direction of f at θ, making it important for various opti-
mization methods:

arg max
ξθ∈TθM
‖ξθ‖θ=1

D f(θ)[ξ] =
grad f(θ)

‖grad f(θ)‖θ
,

where ‖·‖θ =
√
〈 · , · 〉θ [2, Section 3.6].

In accordance with Euclidean optimization theory, the Riemannian Hessian charac-
terizes the second-order necessary and sufficient optimality condition for the Riemannian
setting:

Theorem 2.23. [22, Proposition 6.2 & 6.3] Consider the optimization problem (2.9).
The following statements hold true.

i) If θ∗ is a local minimizer of f , then the Hessian at θ∗ is positive semidefinite, i.e.
Hess f(θ∗)[ξθ∗] ≥ 0 for all ξθ∗ ∈ Tθ∗M (second-order necessary condition).

ii) If grad f(θ∗) = 0 and Hess f(θ∗)[ξθ∗ ] > 0 for all ξθ∗ ∈ Tθ∗M, θ∗ ∈M, then θ∗ is a
local minimizer of f (second-order sufficient condition).

Proof. For a proof, see [120, Section 3.3].

Geodesic convexity

Most algorithms are designed to converge to local minima, in general, we cannot know
whether there is a better minimum in the domain and heuristics are needed to find a
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global minimum. In the Euclidean setting however, we can approach global minima if
we have a convex optimization problem, meaning that both the set of constraints and
the function is convex [105, Chapter 1]. An analogue can be derived for the Riemannian
setting by geodesic convexity : we characterize convex sets by special geodesics joining
two points in a set being fully contained in the set. For convex functions defined on a
manifold, we consider the concatenation of the function defined on a manifold with the
geodesic. The subsequent definition formalizes this generalization:

Definition 2.24. (geodesically convex sets, geodesically convex functions)[22,
Definition 11.2 & 11.3] Let N be a subset of a manifold M and f : N → R a smooth
function.

1. The subset N is called geodesically convex if for every θ1, θ2 ∈ N , there exists a
geodesic γ : [0, 1] → M such that γ(0) = θ1, γ(1) = θ2 and γ(t) is in N for all
t ∈ [0, 1].

2. The function f is called geodesically convex if the set N is geodesically convex and
f ◦ γ : [0, 1] → R is Euclidean convex for any geodesic segment γ : [0, 1] → M
whose image is in N , i.e. for all θ1, θ2 ∈ N and all geodesics γ connecting θ1 and
θ2 in N ,

f(γ(t)) ≤ (1− t)f(θ1) + tf(θ2)

for all t ∈ [0, 1].

3. We say f : S → R is geodesically concave if −f is geodesically convex.

4. If f is both geodesically convex and geodesically concave, it is called geodesically
linear.

Geodesic convexity of an objective function f ensures that any local minimizer is a
global maximizer, which is an analogy to Euclidean spaces:

Theorem 2.25. [22, Theorem 11.6] If f :M→ R is geodesically convex, then any local
minimizer is a global minimizer.

Proof. We refer to [22, Section 11.2] for a proof.

Convergence on manifolds

With the characterization of local and global minima, we seek to build algorithms that
produce iterates converging to a minimum of an objective. Formally, an infinite sequence
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{θt}t∈N0 is said to be convergent if there exists a chart (U , ϕ) of M, a point θ∗ ∈ U
and an integer T > 0 such that θt is in U for all t ≥ T and such that the sequence
{ϕ(θt)}t=T,T+1,... converges to ϕ(θ∗) [2, Section 4.5.1]. The point ϕ−1(limt→∞(θt)) ∈M
is called the limit of the convergent sequence {θt}t∈N0 . Due to the Hausdorff property
of a manifold, any convergent sequence of a manifold has one and only one limit point,
see Appendix A.1. Further, given a sequence {θt}t∈N0 , we say that θ∗ is an accumulation
point or limit point if there exists a subsequence {θjt}t∈N0 that converges to θ∗.
Algorithms that produce convergent sequences with limit points being local minima are
of major interest and algorithms achieving this fast are desirable, for which reason we
introduce the order of convergence in analogy to optimization theory in Euclidean spaces:

Definition 2.26. (linear, superlinear convergence, convergence of order p) [2,
Section 4.5.1] Let M be a Riemannian manifold and let dist denote the Riemannian
distance onM. Let {θt}t∈N0 be a sequence converging to a limit point θ∗ ∈M.

1. We say that the sequence {θt}t∈N0 converges linearly to a point θ∗ ∈ M if there
exists a constant c ∈ (0, 1) and an integer T ≥ 0 such that, for all t ≥ T , it holds
that

dist(θt+1, θ∗) ≤ cdist(θt, θ∗) (2.11)

2. An iterative algorithm onM is said to converge locally linearly to a point θ∗ if there
exists a neighborhood V of θ∗ and a constant c ∈ (0, 1) such that for every initial
point θ0 ∈ V, the sequence {θt}t∈N0 generated by the algorithm satisfies (2.11). The
constant c is called the convergence rate.

3. Let (U , ϕ) be a chart ofM with θ ∈ U . If

lim
k→∞

‖ϕ(θt+1)− ϕ(θ∗)‖
‖ϕ(θt)− ϕ(θ∗)‖

= 0,

then {θt}t∈N0 is said to converge superlinearly to θ∗. If there exist constants p > 0,
c ≥ 0 and T ≥ 0 such that for all t ≥ T it holds that

‖ϕ(θt+1)− ϕ(θ∗)‖ ≥ c‖ϕ(θt)− ϕ(θ∗)‖p, (2.12)

then {θt}t∈N0 is said to converge to θ∗ with order at least p.

4. An iterative algorithm on M is said to converge locally to a point θ∗ with order
at least p if there exists a chart (V, ϕ) at θ∗ and a constant c > 0 such that, for
every initial point θ0 ∈ V, the sequence {θt}t∈N0 generated by the algorithm satisfies
(2.12). If p = 2, the convergence rate is said to be quadratic.
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2.2.2 Moving on Manifolds and Line-search Methods

Equipped with sufficient and necessary conditions for local minima on manifolds and a
notion of convergence speed, we are in the position to construct optimization algorithms,
that is, to generalize numerical algorithms designed for unconstrained Euclidean opti-
mization to optimization problems on manifolds of the form (2.9). Typical algorithms in
unconstrained nonlinear optimization in Rd consist of line-search methods, where iterates
θt+1 at iteration t+ 1 are updated by the formula

θt+1 = θt + βtvt, (2.13)

where vt ∈ Rd is the search direction and βt ∈ R is the step size [105, Chapter 3]. The
step size and the search direction are typically chosen such that the iterates converge
to a critical point. For example, the famous gradient descent algorithm chooses the
search direction vt as the negative gradient at point θt [105, Section 3.3]. If we want to
generalize the gradient descent method to the manifold setting, vt could be chosen as
− grad f(θt), being a tangent vector to θt. However, the expression "θt + βtvt" might
not be well-defined on a manifold. Thus, we need a tool on how to move on manifolds
such that within a Riemannian version of line-search methods like gradient descent, we
produce new iterates that are still elements of the respective manifolds [22, Section 3.6].
The key idea to construct such algorithms consists of performing the search along a curve
inM whose tangent vector at t = 0 is equal to vt. The choice of such a curve is where
the exponential map and retractions come into play.

We first consider the special curves onM that are geodesics. One can show that for
every tangent vector ξθ ∈ TθM, there exists an interval I around 0 and a unique geodesic
γgd ∈ Γ, γgd(t; θ, ξθ) : I → M, such that γ(0) = θ and γ̇(0) = ξθ, [80, Theorem 4.10].
Moreover, the homogenity property γgd(t; θ, aξθ) = γgd(at; θ, ξθ) holds [2, Section 5.4].
This geodesic characterizes the exponential map:

Definition 2.27. (exponential map) [2, Section 5.4] The mapping

Expθ : TθM→M : ξθ 7→ Expθ(ξθ) = γgd(1; θ, ξθ)

is called the exponential map at θ. In particular, Expθ(0) = θ.

With the exponential map, we are equipped with a natural tool to construct new
iterates on a manifold via a generalization of the line-search method: By applying the
exponential map on βtvt, where vt ∈ TθtM, we move along a curve with a velocity
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M

θ
TθMβv.

Rθ(βv)

Figure 2.1: Retraction R on a manifoldM

equal to the search direction. At the same time, if we do not make any step, that is
βt = 0, we remain in the point θt, this is the so-called rigidity condition [2, Section 4.1].
These are favorable properties of the exponential map since they generalize the Euclidean
line-search method in both intuitions. Though, in many cases, the exponential map is
very expensive to compute resulting in slow Riemannian optimization methods. Recent
literature on Riemannian optimization [2, 22, 120] is thus based on retractions: these are
curves equipped with the same favorable properties as exponential maps.

Definition 2.28. (retraction)[2, Definition 4.1.1.] A retraction on a manifold M
is a smooth map R : TM → M with the following properties. For each θ ∈ M, let
Rθ : TθM→M be the restriction of R at θ. Then,

1. Rθ(0) = θ (rigidity condition), and

2. DRθ(0) : TθM→ TθM is the identity map: DRθ(0)[ξθ] = ξθ.

Note that the exponential map is a special choice of a retraction and thus for ev-
ery Riemannian manifold, there exists at least one retraction. With the definition of a
retraction, we can thus generalize the Euclidean line-search update θt+1 = θt + βtvt by
using θt+1 = Rθt(β

tvt) to produce a new update on a manifold, see Figure 2.1.

Besides its ability to transform points from TθM toM, retractions have an additional
purpose: they allow to transform cost functions defined in a neighborhood of θ ∈M into
cost functions defined on the vector space TθM [22, Section 3.6]. To be more precise,
we introduce the curve γ : R→M : t 7→ Rθ(tv) for a retraction R and a tangent vector
v ∈ TθM. Let g be a smooth function defined by g : R → R : t 7→ f(γ(t)). By a
first-order Taylor expansion of g around 0, we get

g(t) = f(γ(t)) = f(θ) + t〈grad f(θ), v〉θ +O(t2) (2.14)
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due to the rigidity condition of the retraction. By setting ξ = tv, we introduce f̂ = f ◦R,
denoted the pullback of the tangent spaces via f and R. It is a smooth function from
TM to R, and

f̂θ = f ◦Rθ

denotes the restriction of f̂ to TθM. With (2.14), we get

f̂θ(ξ) = f(Rθ(ξ)) + 〈grad f(θ), ξ〉θ +O(‖ξ‖2θ). (2.15)

Algorithm 1: Line-search methods on manifolds [2, Section 4.2]
Input: objective f , initial iterate θ0 ∈M, retraction R
Output: sequence of parameters {θt}

1 for t = 0, 1, 2, . . . do
2 Choose appropriate βt, vt ∈ TθtM such that there is a decay in the objective
3 Set

θt+1 = Rθt(β
tvt)

4 end for

The expression (2.14) is central to Riemannian line-search methods, as it allows to
generalize convergence theory of Euclidean line-search methods onto the manifold setting.
It can be shown that under suitable conditions on the step length βt in Algorithm 1, the
algorithm converges to a critical point with linear speed. A precise characterization
is beyond the scope of this thesis, we refer the reader to [2, Sections 4.3-4.5] and [22,
Chapter 4] for a detailed investigation.

2.2.3 Second Order Taylor’s Expansion on Curves and Newton’s Al-
gorithm

So far we have considered algorithms based on the gradient, only. In the Euclidean set-
ting, optimization algorithms benefit from second-order information via the Hessian and
yield faster local convergence rates [105]. We thus derive a generalization of Newton’s
method for the Riemannian case.
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We again consider the concatenation g : R → R : t 7→ f(γ(t)), where γ denotes the
curve associated with an arbitrary retraction R. With (2.14), the second-order Taylor
expansion of g around 0 reads

g(t) = f(θ) + t〈grad f(θ), v〉θ +
t2

2
γ̈(0) +O(t3). (2.16)

For the second last term in (2.16), we get

γ̈(0) =
D

d t
〈grad f(γ(t)), γ̇(t)〉γ(t)

= 〈Hess f(γ(t))[γ̇(t)], γ̇(t)〉γ(t) + 〈grad f(γ(t)), γ̈(t)〉γ̇(t)

by the Leibniz property of the Riemannian connection (Definition 2.9) and hence

g(t) = f(γ(t)) = f(θ) + t〈grad f(θ), v〉θ +
t2

2
〈Hess f(θ)[v], v〉θ

+
t2

2
〈grad f(θ), γ̈(0)〉θ +O(t3) (2.17)

by the ridigity property of the retraction [22, Section 5.9]. The expression (2.17) does
not fully generalize the Euclidean second-order taylor expansion due to the term

t2

2
〈grad f(θ), γ̈(0)〉θ.

It is of order t2 and depends on γ (and thus on the retraction) which is unfortunate [22,
Section 6.2]. However, this term vanishes if θ is a critical point or if γ̈(0) equals zero.
This leads us to the following definition of a second-order retraction:

Definition 2.29. (second-order retraction) [2, Section 5.5] A second-order retraction
R on a Riemannian manifoldM is a retraction such that for all θ ∈M and ξθ ∈ TθM,
the curve γ(t) = Rθ(tv) has zero acceleration at t = 0, i.e. γ̈(t) = 0.

Note that the exponential map is a second-order retraction as the according curve γ
is a geodesic.

With a second-order retraction R, the Taylor expansion (2.17) provides a quadratic
approximation mθ : TθM→ R for the function f ◦Rθ given by

mθ(ξ) = f(θ) + 〈grad f(θ), ξ〉θ +
1

2
〈Hess f(θ)[ξ], ξ〉θ. (2.18)

Thus, if the Riemannian Hessian is positive definite, we can minimize mθ to search for
a minimum of f . Since mθ is smooth, any minimizer must be a critical point of mθ. We
get

gradmθ(ξ) = grad f(θ) + Hess f(θ)[ξ],
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which vanishes if and only if the Riemannian Newton equation

Hess f(θ)[ξ] = − grad f(θ) (2.19)

is fulfilled [2, Section 6.2].

This yields the Riemannian Newton algorithm, see Algorithm 2.

Algorithm 2: Riemannian Newton method [2, p. 113]
Input: objective f with Riemannian gradient grad f and Hessian Hess f , initial

iterate θ0 ∈M, retraction R
Output: sequence of parameters {θt}

1 for t = 0, 1, 2, . . . do
2 Solve the Newton equation

Hess f(θt)[ξt] = − grad f(θt).

for the unknown ξt ∈ TθtM.
3 Set

θt+1 = Rθt(ξ
t)

4 end for

It can be shown that under suitable conditions, the Riemannian Newton algorithm
converges locally superlinearly to a critical point:

Theorem 2.30. [2, Theorem 6.3.2] Under the requirements and notation of Algorithm
2, assume that there exists θ∗ ∈M such that grad f(θ∗) = 0 and Hess f(θ∗) is invertible.
Then there exists a neighbourhood U of θ∗ in M such that for all θ0 ∈ U , Algorithm 2
generates an infinite sequence {θt}t∈N0 converging superlinearly (at least quadratically)
to θ∗.

Proof. We refer to [2, Section 6.3] for a proof.

Note that this result holds for general retractions, in particular for retractions that
are not second-order. This is due to the fact that

Hess f(θ∗) = Hess(f ◦Rθ∗)(0)

holds true for any critical point θ∗ of f [2, Section 6.3].
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2.2.4 The Riemannian Trust-Region Method

We have introduced a Riemannian version of the Newton algorithm which gives us local
superlinear convergence. However, the shortcomings of the Euclidean Newton method
transfer to the Riemannian setting [2, Chapter 7]. One of the major drawbacks is that
Newton’s method is not globally convergent, meaning that convergence to a critical point
from any starting point is not ensured. Convergence is ensured only in a neighborhood
of a critical point but this neighborhood may be arbitrarily small. One key wish thus
consists in globalizing Newton’s method such that it converges to a critical point inde-
pendently from the starting point. Furthermore, Theorem 2.30 ensures local convergence
to critical points, only. From an optimization perspective, however, only the cases where
Hess f(θ∗) � 0 are beneficial since we wish to avoid converging to local maxima or saddle
points [2, Chapter 7].

A remedy to the drawbacks of the Riemannian Newton method consists in considering
Riemannian trust-region methods which are globally convergent methods to local minima
while at the same time they preserve the local convergence properties of Newton’s method
under suitable conditions [1]. They are based on a generalization of the quadratic model
(2.18), that is we consider the quadratic model

f(Rθ(s)) ≈ mθ(s) = f(θ) + 〈grad f(θ), s〉θ +
1

2
〈Hθ[s], ξ〉θ, (2.20)

where s ∈ TθM and Hθ is allowed to be any linear operator on TθM that is self-adjoint,
that is 〈Hθ[s], v〉θ = 〈Hθ[v], s〉θ for all s, v in TθM [1]. A typical, suitable choice for Hθ

is the Riemannian Hessian Hess f(θ), which then results in the second-order Taylor ex-
pansion given by (2.17). If the Riemannian Hessian is used in (2.20), we call the method
presented in the following a Riemannian Newton trust-region method (R-NTR).

The main idea of the Riemannian trust-region method is not to compute the critical
points of mθ directly, but instead minimizing the quadratic model mθ in every step.
Since the model is only a local approximation of the pullback f̂ around θ, we further
restrict the minimization problem to a ball around the origin in the tangent space, to
the so-called trust-region [1, 105]. At iteration t, we solve the problem

min
s∈TθtM

mθt(s) subject to ‖s‖θt ≤ ∆t. (2.21)

for some ∆t > 0 (trust-region radius) to obtain a descent direction at iteration t. For
better readability, we write mt for mθt in the following. The quadratic problem in (2.21)
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is called the trust-region subproblem and is a constrained quadratic optimization problem
defined on the tangent space TθtM with the inner product 〈 · , · 〉θt . The solution s to the
subproblem (2.21) is then mapped back onto the manifold M via a retraction, that is
the next tentative iterate θ+ is given by θ+ = Rθt(s). Depending on how well the model
mt approximates the local pullback f̂ in TθtM in the neighborhood of 0θt ∈ TθtM, the
tentative iterate is accepted (θt+1 = θ+) or rejected (θt+1 = θt). To quantify the model
quality at iterate t, the ratio of actual to model improvement is computed [2, Section
7.2.2]:

ρt =
f(θt)− f(θ+)

mt(0)−mt(s)
=
f(θt)− f(Rθt(s))

mt(0)−mt(s)
. (2.22)

If ρt is below a pre-specified threshold ρ′, the local model is deemed inaccurate and the
step must be rejected. In order to get a globally convergent algorithm, this factor ρ′ must
be no larger than 1/4, see Theorem 2.31. Furthermore, the trust-region radius ∆t must
be reduced by a factor τ1 < 1. Conversely, if ρt is close to 1, the model mt is a very good
fit for the pullback f̂ and the trust-region radius can be increased in order to be able to
perform bigger steps in the next iteration. In between these two extremes, if ρt is small
but above the threshold ρ′, the step typically is accepted but the trust-region is scaled
down [1]. In case ρ � 1, the overall optimization is producing a big decrease despite a
poor model fit. Then, we accept the step and still increase the trust-region radius as long
as we stay below a a predefined bound ∆̄ > 0 [22, Section 6.4]. The overall procedure is
summarized in Algorithm 3.

Typical choices of the parameters are ω1 = 0.25, ω2 = 0.75 and τ1 = 0.25, τ2 = 2,
a detailed discussion of these parameters for the Euclidean trust-region method can be
found in [34, Chapter 17].

One can show that the Riemannian trust-region algorithm converges to a critical
point independently of the starting point if the rejection threshold ρ′ is below 1/4 and
additional regularity assumptions are met, see [2, Theorem 7.4.4]. These assumptions
are in particular fulfilled in case the level set is compact.

Theorem 2.31. [2, Section 7.4.1] LetM be a manifold and f :M→ R be smooth and
bounded from below. Consider Algorithm 3 with starting point θ0 and ρ′ < 1/4, and let
{θt}t∈N0 be a sequence of iterates generated by the algorithm. If the sequence {θt}t∈N0

produced by Algorithm 3, where the quadratic subproblem is solved by tCG (Algorithm 4),
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stays in a compact set, it holds that

lim
t→∞

grad f(θt) = 0.

Proof. The proof is a generalization of the proof for global convergence of the trust-region
method in the Euclidean setting [105, Section 4.3] and we refer to [2, Section 7.4.1] for
the proof in the manifold setting.

Algorithm 3: Riemannian trust-region method [2, p. 142]
Input: objective f with linear operator H, retraction R, initial iterate θ0 ∈M,

initial TR-radius ∆0, maximal TR-radius ∆̄, rejection threshold
ρ′ ∈ [0, 1/4), acceptance parameters 0 ≤ ω1 ≤ ω2 ≤ 1, τ1 < 1, τ2 > 1

Output: sequence of parameters {θt}
1 for t = 0, 1, 2, . . . do
2 Obtain st by (approximately) solving the TR-subproblem

min
s∈TθtM

m̂θt(s) = f(θt) + 〈grad f(θt), s〉θt +
1

2
〈Ht[s], s〉θt s.t. 〈s, s〉θt ≤ ∆2

t ;

3 Evaluate ρt =
f(θt)−f(Rθt (s

t))
m̂θt (0θt )−m̂θt (st)

4 if ρt < ω1 then
5 ∆t+1 = τ1∆t;
6 else if ρt > ω2 and ‖st‖θt = ∆t then
7 ∆t+1 = min(τ2∆t, ∆̄);
8 else
9 ∆t+1 = ∆t;

10 if ρt > ρ′ then
11 θt+1 = Rθt(s

t);
12 else
13 θt+1 = θt

14 set t = t+ 1;

15 end for

The crucial part in the Riemannian trust-region method consists in solving the
quadratic subproblem (2.21) efficiently in every step. Since this is a problem posed
on a tangent space and thus a vector space endowed with the inner product 〈 · , · 〉θ, clas-
sical algorithms to solve constrained quadratic problems can be applied. Methods to
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solve this can be mainly divided into exact methods and methods based on finding an
approximate solution, an overview can be found in [34, Chapter 7]. We call the itera-
tions of algorithms to solve the subproblem inner iterations, whereas the iterations of
the overall trust-region algorithm (Algorithm 3) are called outer iterations.

We here present an efficient way to approximately solve the quadratic problem, the
truncated conjugate gradient method (tCG) from Steihaug [132]. This method is espe-
cially favorable for the Riemannian setting proposed here, as the dimension of the tangent
space usually is large, especially in case of matrix manifolds. Besides its advantages for
large-scale problems, the truncated conjugate gradient method is matrix-free, meaning
that it is suited for problems where the Hessian is given as a linear operator, only [34,
Section 7.5.1]. This makes it a favorable method to solve the quadratic subproblem
in Riemannian trust-region methods. The key idea of truncated conjugate gradient is
that if we stay within the trust-region radius, the subproblem (2.21) coincides with the
second-order Taylor expansion (2.17), where Hess f(θt) is replaced by Ht. If Ht is pos-
itive definite, we can thus try to solve the Newton equations (2.19) until we leave the
trust-region. If we are within the trust-region, the process of building new iterates is
borrowed from the well-known conjugate gradient method, an iterative method to solve
large linear systems of equations with a symmetric, positive definite operator. A detailed
discussion of the CG method can be found in [105, Chapter 5]. In case we face negative
curvature at an iterate, we can no longer assume that Ht is positive definite and thus we
need to stop with generating iterates by the conjugate gradient method. Similarly, if a
step is larger than the trust-region radius, we do not trust the quadratic model anymore.
In both cases, we compute the next inner iteration by following the potential next conju-
gate direction until we reach the boundary of the trust-region radius, that is we truncate
the conjugate direction at the boundary [22, Section 6.5].
Optionally, a preconditioner Mt can be used in order to achieve a faster convergence
behavior of the method (see [34, Section 5.1.6] for details). The preconditioned tCG
method is summarized in Algorithm 4.

It can be shown that for iterates sn, n = 0, 1, 2, . . . , the quadratic model mt decreases
[2, Proposition 7.3.2]. However, note that the quadratic subproblem must be solved in
every outer iteration, so early stopping of the truncated conjugate gradient method is
desirable [22, Section 6.5]. The simplest stopping criterion to use is to stop after a fixed
number of iterations, whereas the stopping criterion

‖zn+1‖ ≤ ‖z0‖min(‖z0‖δ, κ) (2.23)

36



2.2. Riemannian Optimization Methods

Algorithm 4: Truncated conjugate gradient method on a tangent space [2, p.
144]
Input: Riemannian gradient grad f(θt), linear operator Ht, inner product

〈 · , · 〉θt , optional preconditioner Mt, TR radius ∆t, termination
parameter δ, κ

Output: sequence of parameters {sn}
1 Set s0 = 0, r0 = grad f(θt), z0 = Mtr0, p0 = −z0;
2 for n = 0, 1, 2, . . . do
3 if 〈pn, Ht[pn]〉θt ≤ 0 then
4 Compute τ tCG = arg min

τ
m̂θt(sn + τpn) s.t. ‖sn + τpn‖θt = ∆t;

5 Set sn+1 = sn + τ tCGpn;
6 return sn+1;

7 Compute αtCGn =
〈rn,zn〉θt
〈pn,Ht[pn]〉θt

;

8 if ‖sn + αtCGn pn‖θt > ∆t then
9 Compute τ tCG = arg min

τ
m̂θt(sn + τpn) s.t. ‖sn + τpn‖θt = ∆t;

10 Set sn+1 = sn + τ tCGpn;
11 return sn+1;

12 else
13 sn+1 = sn + αtCGn pn;
14 rn+1 = rn + αtCGn Ht[pn];
15 zn+1 = Mtrn+1;

16 βtCGn+1 =
〈zn+1zn+1〉θt
〈zn,zn〉θt

;

17 pn+1 = −zn+1 + βtCGn+1pn;
18 if ‖zn+1‖θt ≤ ‖z0‖θt min(‖z0‖δθt , κ) then
19 return sn+1;

20 end for

for δ > 0, κ ≥ 0 real parameters chosen in advance, ensures superlinear convergence of
the Riemannian trust-region problem, see Theorem 2.32.

The following result gives details about the local convergence rate of the Riemannian
trust-region algorithm (Algorithm 3), where the subproblem is solved by the truncated
conjugate gradient method (Algorithm 4):
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Theorem 2.32. [2, Theorem 7.4.11 & Theorem 7.4.12] Consider Algorithm 3, where
the subproblem is solved by Algorithm 4 with stopping criterion (2.23). Suppose that f is
smooth, R is a second-order retraction and that

‖Ht −Hess(f ◦Rθt)(0θt)‖ ≤ βH‖grad f(θt)‖

for some constant βH . Let θ∗ ∈ M be a local minimizer of f with positive definite
Hessian Hess f(θ∗). Further, assume that Hess(f ◦Rθt)(0θt) is Lipschitz continous at 0θt

uniformly in θ in a neighborhood of θ∗, i.e. there exists βL2 > 0, ε1 > 0 and ε2 > 0, such
that for all θ ∈ Bε1(θ∗) and all ξ ∈ Bε2(0θ) it holds that

‖Hess((f ◦Rθ)(ξ))−Hess((f ◦Rθ)(0θ))‖ ≤ βL2‖ξ‖θ

Here, ‖·‖ on the left hand-side denotes the operator norm in TθM given by

‖Hess((f ◦Rθ)(ξ))‖ := sup{‖Hess((f ◦Rθ)(ξ))[ζ]‖θt : ζ ∈ TθM, ‖ζ‖θ = 1}.

and Bε1(θ∗) = {θ ∈ M : dist(θ∗, θ) < ε1}, Bε2(0θ) = {ξ ∈ Tθ∗M : ‖ξ‖ < ε2} the ball
around θ∗, 0θ with radius ε1, ε2, respectively.

1. For all sequences {θt}t∈N0 generated by the algorithm converging to θ∗, there exists
T > 0 such that there exists cd > 0 such that

dist(θt+1, θ∗) ≤ cd
(
dist(θt, θ∗)

)min{δ+1,2} ¸

with δ > 0 as in (2.23) and for all t > T .

2. Further, if δ + 1 < 2, then given cg > 1, there exists T > 0 such that

‖grad f(θt+1)‖θt+1 ≤ cg‖grad f(θt)‖θt
δ+1

for all t > T .

The variable δ in the exponential is the variable δ from equation (2.23)

Proof. We refer to [2, Section 7.4.2], [1] for a proof.

2.2.5 Superlinear Methods based on Vector Transport

In the previous section, we introduced the Riemannian Newton trust-region method
which can be seen as a practical Newton’s method with a specific safeguarding strategy.
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However, trust-region methods may not perform ideally on all problems and an expres-
sion for the Riemannian Hessian is not always available [2, Chapter 8]. In such a case,
either a Hessian approximation (e.g. based on finite differences) is necessary or alter-
native algorithms with local superlinear convergence can be used. Typical algorithms
with local superlinear convergence are the (nonlinear) conjugate gradient (CG) method
and the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method [105, Section 5.2 & Section
8.1]. As these are line-search methods, one can transfer their concepts to Riemannian
manifolds via a retraction (Section 2.2.2). However, for computing descent directions
in the mentioned algorithms, the computation of the gradient at two different positions
θt+1, θt ∈M needs to be computed, that is the expression

grad f(θt+1)− grad f(θt). (2.24)

Here, the gradient of θt+1, i.e. grad f(θt+1), is a tangent vector in the tangent space
Tθt+1M whereas the gradient of θt, i.e. grad f(θt), is a tangent vector in the tangent
space TθtM, meaning that the two gradients possibly live in different spaces. Thus, in
order to generalize the CG method and the BFGS method to a Riemannian setting, we
need a tool that allows us to compare tangent vectors at distinct points on the manifold.
For this reason, we introduce vector transport in the following.

Definition 2.33. (vector transport)[120, Definition 4.1] We introduce the Whitney
sum as

TM⊕ TM := {(η, ξ) | η, ξ ∈ TθM, θ ∈M}.

A map T : TM⊕ TM → TM : (η, ξ) 7→ Tη(ξ) is called a vector transport on M if
there exists a retraction R onM and T satisfies the following conditions for any θ ∈M:

1. Tη(ξ) ∈ TRθ(η)M, η, ξ ∈ TθM,

2. T0θ(ξ) = ξ, ξ ∈ TθM,

3. Tη(aξ + bζ) = aTη(ξ) + bTη(ζ), a, b ∈ R, η, ξ, ζ ∈ TθM.

Note that vector transport is not a standard concept of differential geometry [120,
Section 4.3]. However, when the retraction R is the exponential map, we get the parallel
translation, which is an important tool in classical differential geometry. The reason for
using more general vector transports is that it is often computationally more efficient,
similar to the motivation for using standard retractions instead of exponential maps. A
vector transport can also be characterized by an affine connection and a retraction, for
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details see [2, Section 8.1.1] and [22, Section 10.3].

IfM is an Euclidean submanifold endowed with a retraction R, we can find a vector
transport in what follows: Since TθM ⊂ E for any θ ∈ M, we can define the vector
transport T for η, ξ ∈ TθM by

Tη(ξ) = ProjRθ(η)(ξ), (2.25)

where ProjRθ denotes the orthogonal projector from E to TRθ(η), see Section 2.1.7.

Equipped with a tool to subtract gradients from different tangent spaces to each
other, we can generalize the conjugate gradients method and the (limited-memory) BFGS
method to a Riemannian setting. We briefly state the Riemannian CG method (Algo-
rithm 5) and the Riemannian BFGS method in the following. Since they are not as
central as the Riemannian trust-region method to this thesis, we do not discuss choices
of step lengths or convergence theory of these methods here but refer to [120, Chapter
4] and [2, Sections 8.2-8.3] for details.

Algorithm 5: Riemannian (nonlinear) conjugate gradients method [2, p. 182]
Input: objective f , vector transport T with associated retraction R, initial

iterate θ0 ∈M
Output: sequence of parameters {θt}

1 Set η0 = − grad f(θ0)

2 for t = 0, 1, . . . do
3 Compute a suitable step size αt and set

θt+1 = Rθt(α
tηt);

4 Compute βt+1 and set

ηt+1 = − grad f(θt+1) + βt+1Tαtηt(η
t).

5 end for

Another method with local superlinear convergence theory is the BFGS method which
can be transferred to a manifold setting with the help of a vector transport, called Rie-
mannian BFGS method (R-BFGS). Similar to the Euclidean case, one can also formulate
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a version of the R-BFGS algorithm via approximations of the Hessian inverse, see [115].
Further, the R-BFGS method can also be extended to a Riemannian limited-memory
BFGS method (R-LBFGS), the extension is straightforward to the Euclidean case [105,
Section 9.1]. In Algorithm 6, we present the general R-BFGS method. Note that it is
crucial for the algorithm that we get a descent direction in every iteration, for this reason
the Wolfe conditions need to be fulfilled (see [105, 65, 115] for a thorough explanation).

Algorithm 6: Riemannian BFGS method [115, 65]
Input: objective f , vector transport T with associated retraction R, initial

iterate θ0 ∈M, initial Hessian approximation B0, gradient grad f

Output: sequence of parameters {θt}
1 for t = 0, 1, . . . do
2 Obtain ηt ∈ TθtM by solving Btηt = − grad f(θt);
3 Obtain suitable step-length αt such that the Wolfe conditions are fulfilled

and set

θt+1 = Rθt(α
tηt);

4 Set st = Tαtηt(α
tηt) and yt = grad f(θt+1)−Tαtηt(grad f(θt));

5 Define the linear operator Bt+1 : Tθt+1M→ Tθt+1M by

Bt+1p = B̃tp− 〈s
t, B̃tp〉θt+1

〈st, B̃tp〉θt+1

B̃tst +
〈yt, p〉θt+1

〈yt, stp〉θt+1

yt for all p ∈ Tθt+1M

with

B̃t = Tαtηt ◦Bt ◦
(
Tαtηt

)−1
.

6 end for

In the following chapter, we consider maximum likelihood estimation, which is a typ-
ical approach for fitting parameters in statistical models. We will see later in this thesis
that we can formulate maximum likelihood estimation problems involving covariance
matrices as Riemannian optimization problems.
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CHAPTER 3

Maximum Likelihood Estimation and the EM algorithm

Maximum likelihood estimation is a popular approach to make inference about the dis-
tribution of data arising from an experiment. We assume that the distribution is char-
acterized by a parameter and we aim to find this parameter such that it fits observed
data. The question we seek to answer with maximum likelihood estimation is "under
an assumed statistical parametric model, which parameters make the observed data most
probable?" [86]. Estimating parameters of statistical models results in the optimization
of a (log-)likelihood and is the basis for the objectives studied in Chapter 5 and Chapter 6.

In this chapter, we review the method of maximum likelihood estimation for parame-
ter estimation in statistical models. We put a special focus on estimation problems with
unobservable information, i.e. we assume that there exist latent, unobservable variables.
We first give a brief introduction to maximum likelihood estimation in Section 3.1. Dif-
ficult maximum likelihood estimation tasks frequently involve latent variables and are
often solved by the Expectation Maximization (EM) algorithm. Due to its popularity
and relevance to this thesis, we study the setting of maximum likelihood estimation with
hidden information and present the EM algorithm with its properties in Section 3.2.



3.1. Maximum Likelihood Estimation for Parameterized Density Estimation

3.1 Maximum Likelihood Estimation for Parameterized Den-
sity Estimation

We start with introducing the statistical setting of interest. The notation mainly follows
the introductory books [86, 128, 47].

We consider a sample denoted by x = (x1, . . . , xn), xi ∈ Rd that has been produced
by an experiment and the central goal is to find the probability distribution F that the
data x1, . . . , xn is drawn from. We assume that the probability distribution function F
admits a corresponding continuous probability density function f .

In the statistical literature, there are two major approaches to tackle the problem
of fitting a probability distribution to known data: the parametric approach and the
nonparametric approach [86]. In this thesis, we consider the parametric approach: We
assume that the distribution is known up to values of a parameter θ from some finite-
dimensional parameter space Θ. Here, the parameter space Θ can be identified with a
subset of Rp for some p ≥ 1 [86]. We summarize the notation used in this chapter in the
following.

Notation:

• We assume that the observations x = (x1, . . . , xn) are drawn from a random vector
X = (X1, . . . , Xn). We denote the joint probability distribution function by Fθ.
We write X ∼ Fθ.

• To avoid confusion, we write x = (x1, . . . , xn) for real-valued observations and
xv = (xv1, . . . , x

v
n) for real-valued variables arising in probability density functions.

For fixed θ ∈ Θ, the expression

fX(x; θ)

denotes a real-valued scalar (namely fX evaluated at observation x), whereas the
expression

fX(xv; θ)

denotes a function of the arguments xv and θ.

• For each θ ∈ Θ, we suppose that Fθ admits a probability density function fθ such
that Fθ(xv) =

∫
fθ(x

v) dxv. In order to stress the dependence of the random
variable X, we write fX( · ; θ) for fθ.
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Our goal is to find values for θ such that fθ is an appropriate model for the observed
data. One way to achieve this is given by the maximum likelihood approach: the key idea
consists in maximizing the joint probability of X1, . . . , Xn over the parameter space Θ,
while fixing the random variables at the observation samples x1, . . . , xn [86, Section 3.1.3].

We consider the joint distribution of X1, . . . , Xn, that is

fX(xv; θ) = fX1,...,Xn(xv1, . . . , x
v
n; θ) (3.1)

and fix it at the observations x1, . . . , xn. If the random variables X1, . . . , Xn are indepen-
dent and identically distributed (iid) with probability density functions fXi , i = 1, . . . , n,
the joint probability density function reads

fX(xv; θ) =

n∏
i=1

fXi(x
v
i ; θ), (3.2)

where xv = (xv1, . . . , x
v
n). When fixing the joint probability density function (3.1) at the

observations x1, . . . , xn, we can express it as a function of θ, only. The procedure now
consists of maximizing this function (3.1) over all possible values of θ: we seek to find the
parameter θ̂ that makes the observed sample x1, . . . , xn most probable under the model
assumption fθ [86, Section 3.1.3]. This leads to the following definitions.

Definition 3.1. (likelihood function, log-likelihood function, maximum likeli-
hood estimator, maximum a posterior estimator) [128, Chapter 2] We assume the
setting introduced previously.

1. The likelihood function of x = (x1, . . . , xn) is given by

L(θ) = fX(x) = fX1,...,Xn(x1, . . . , xn; θ).

2. If the maximum of L(θ) over Θ exists, a maximum likelihood estimator (MLE) θ̂
of θ is given by

θ̂ = arg max
θ∈Θ

L(θ) (3.3)

3. The log-likelihood function of x1, . . . , xn is given by

l(θ) = log (fX1,...,Xn(x1, . . . , xn; θ)) .

Since the logarithm is a monotonically increasing function, it holds that

θ̂ = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

l(θ).
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4. Similar to the frequentist setting above, we define a MLE for the Bayesian set-
ting (see Appendix A.2). Assume we have a prior density for θ denoted by g(θ).
Then, the maximum a posterior estimator θ̂MAP is defined as the maximizer of the
posterior density of θ given x1, · · ·xn, that is [86, Chapter 8]

θ̂MAP = arg max
θ∈Θ

fX1,...,Xn(x1, . . . , xn; θ)g(θ)

= arg max
θ∈Θ

L(θ)g(θ).

Considering the log-likelihood function l is particularly useful in the case of indepen-
dent and identically distributed random variables. Then, the log-likelihood reads

l(θ) =
n∑
i=1

log fXi(xi; θ) (3.4)

which usually yields objectives that are easier to differentiate [47, Section 8.2].

In the statistical literature, one often talks about "the" maximum likelihood estima-
tor suggesting that it is unique. However, uniqueness of the solution might not be given
although we obtain it in many classical probability distributions, where L is concave and
the MLE can even be derived analytically. As an example, we show the MLE for the
Gaussian distribution in the following. For more complicated probability distributions,
there might exist many local maxima of the likelihood function [94, Section 3.4]. Another
issue with the definition of the MLE is that L can be unbounded from above, such that
existence of a maximum likelihood estimator is not ensured [47, Section 8.2]. An exam-
ple for this is the maximum likelihood estimation of a univariate Gaussian distribution
N (µ, σ2), where the mean µ coincides with a single observation xi∗ ; we refer to [79] for
more examples. In such a case, an alternative can be to use penalized maximum likelihood
estimation in order to obtain a penalized maximum likelihood estimator [94, Section 5.18].

The Gaussian distribution plays a central role in this thesis, for what reason we
briefly present its MLE. Assume that X1, . . . , Xn

iid∼ N (µ,Σ), where N (µ,Σ) denotes
the Gaussian distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d. The
parameter θ and its according parameter space Θ are given by [128, Section 2.9.1]

θ = (µ,Σ), Θ = Rd × Pd.

Here, Pd denotes the set of symmetric, positive definite matrices of dimension d, that is

Pd = {A ∈ Rd×d : A = AT , xTAx > 0 ∀x ∈ Rd \ {0}} (3.5)
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The log-likelihood function of x1, . . . , xn reads

l(θ) = −1

2

(
n(d log(2π) + log det(Σ)) +

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

)
. (3.6)

Since (3.6) is a differentiable and concave function, we get the maximum likelihood
estimator θ̂ by setting the gradient of l(θ) equal to zero. We obtain the maximum
likelihood estimator

θ̂ = (µ̂, Σ̂),

where

µ̂ =
1

n

n∑
i=1

xi.

Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T .

3.2 Maximum Likelihood Estimation with Latent Variables

In some cases, the maximum likelihood estimator cannot be derived analytically and
iterative algorithms become necessary. Nonlinear optimization algorithms can be used,
but precaution is required that iterations are performed over the respective parameter
space Θ [94, Section 1.3]. For example, in many statistical models we have a positive
definiteness constraint which might be computationally expensive to impose (see Section
4.1). A popular alternative is to use the Expectation Maximization algorithm (EM)
which is designed for settings where there is unobservable information or hidden data.
We give a brief introduction to such a setting and derive the EM algorithm. The con-
tent that follows can be found in many books on computational statistics, for example
[101, 19, 94], we here follow the notations from [101, Chapter 11] and [94].

As before, we consider realizations x = (x1, . . . , xn) of a random variable
X = (X1, . . . , Xn). Additionally to this, we assume that there exist so-called hidden
or latent random variables Z = (Z1, . . . , Zn) which X1, . . . , Xn depend on. Thus, the
probability density function fX is a marginal likelihood, that is we get fX by integrating
Z out of the joint distribution,

fX(xv; θ) =

∞∫
−∞

f(X,Z)(x
v, zv; θ)dzv.
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Here, f(X,Z) denotes the joint distribution of X and Z. If we had complete data, that
is if we had observations z = (z1, . . . , zn) for the random variables Z1, . . . , Zn, the log-
likelihood of X would read [94, Section 1.5.1]

lX(θ) = log fX(x; θ) = log

 ∞∫
−∞

f(X,Z)(x, z; θ)dz

 . (3.7)

Unfortunately, the expression (3.7) is intractable because the variables z1, . . . , zn are
not observable, i.e. they are latent. Still, for many practical problems, the complete
log-likelihood lcX,Z of (X,Z) given by

lc(X,Z) = log
(
f(X,Z)(x, z; θ)

)
(3.8)

could be easily maximized if the zi were observable. For many problems, the maximiza-
tion of (3.8) would yield analytical solutions if the zi were available. The widely used
Expectation Maximization algorithm is an iterative algorithm that exploits this. Instead
of considering the complete log-likelihood of X and Z which is unavailable, we take its
expectation with respect to the latent variable Z. The algorithm then alternates be-
tween an expectation step (E-step), where the expectation of the complete log-likelihood
is computed, and a maximization step (M-step), where the expression is maximized with
respect to θ. We state it in the following.

3.2.1 Expectation Maximization Algorithm

The Expectation Maximization algorithm was introduced by Dempster, Laird and Ware
[41] in 1977, although a similar idea has been proposed by earlier works [94, Section 1.8.2].

The Expectation Maximization algorithm alternates between the following two steps.

E-step:
At an iterate θt, t = 0, 1, . . . , we take the expectation of the logarithm of the joint log-
likelihood of X and Z (called the expected complete log-likelihood). Here, the expectation
is taken with respect to the conditional random variable Z|X = x dependent of the
current iterate θt, that is we compute the function

Q(θ, θt) = EZ=zv |X=x;θt
[
log
(
f(X,Z) ((x, zv); θ)

)]
=

∞∫
−∞

log
(
f(X,Z)((x, z

v); θ)
)
fZ=zv |X=x

(
(zv|x); θt

)
dzv. (3.9)

47



3.2. Maximum Likelihood Estimation with Latent Variables

M-step:
Choose θt+1 from the parameter space Θ such that the expectation of the complete
log-likelihood (3.9) is maximized, that is

θt+1 = arg max
θ∈Θ

Q(θ, θt). (3.10)

We state the method in Algorithm 7.

Note that for many probabilistic models, the latent variables Z are assumed to be
discrete, for which reason the evaluation of (3.9) consists of a sum instead of an integral
(see Appendix B and [94]).

Algorithm 7: Expectation Maximization algorithm [19, p. 440f.]
Input: initial parameter θ0 in parameter space Θ

Output: sequence of parameters {θt}
1 for t = 0, 1, 2, . . . do
2 E-step: Set

Q(θ, θt) = EZ|X=x;θt
[
log
(
f(X,Z)((x, z

v); θ)
)]

;

3 M-step: Maximize Q(θ, θt) subject to θ ∈ Θ and set

θt+1 = arg max
θ∈Θ

Q(θ, θt);

4 end for

The main motivation for the EM algorithm is that maximization of the expected com-
plete log-likelihood Q is much easier than the maximization of the original (marginal)
log-likelihood lX(θ). For many statistical models, the objective in the M-step (3.10) is
concave and there exists a closed-form solution [101, Section 11.4]. In such cases, the
per-iteration costs of Algorithm 7 are remarkably low. However, when the problem in the
M-step is more complicated, iterative solvers for problem (3.10) become necessary. Then,
we speak of Generalized Expectation Maximization, where a nonlinear optimizer is used
for the M-step, or Expectation Conditional Maximization, where the problem is divided
into several, easier constrained subproblems [19, p. 454], [94, Section 1.5]. Precaution
is required that the problem in the M-step is well-defined, which is fulfilled in most ap-
plication problems. What might be more challenging is that the parameter θ remains
in its parameter space Θ. This might add an additional computational overhead, which
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weakens the simplicity of the EM algorithm [40, Section 2.14.2].

The EM algorithm can be interpreted as an alternating direction method [105, Sec-
tion 2.7], where we alternate between maximization of the parameters of the distribution
of the latent variables and maximization of the complete log-likelihood, see [58, Section
8.5.3].

A typical stopping criterion of Algorithm 7 is if the relative change in either the
log-likelihood or in the parameter itself between two subsequent iterations falls below
some threshold [94, Section 4.9]. Although this is in general rather a measure of lack
of progress and not necessarily an indication of convergence, this stopping criterion is
meaningful as it can be shown that the log-likelihood increases in every step of EM unless
a critical point is reached (see [41] and explanation in Section 3.2.2).

The Expectation Maximization algorithm can also be modified for a Bayesian frame-
work, namely for maximum a posterior (MAP) estimation with latent variables. For this,
in the E-step, we compute

QMAP (θ, θt) = Q(θ, θt) + log (g(θ)) , (3.11)

where Q(θ, θt) is as in (3.9) and g(θ) is a suitable prior density for θ. In the M-step, the
conditional expectation of the log-complete data posterior density (3.11) is maximized,
see [94, Section 1.6.1]. The properties of EM discussed in the next section generalize also
to the Bayesian version of EM for maximum a posterior estimation.

3.2.2 Properties of the Expectation Maximization Algorithm

At a first glance, the approach of considering the complete log-likelihood instead of
marginalizing the hidden data out by equation (3.7) is not obvious since we cannot simply
interchange the logarithm and the integral. We will now outline why this approach is
meaningful nevertheless.
As the logarithm is a concave function, we can apply Jensen’s inequality and get the
lower bound

lX(θ) ≥ Q(θ, θt)− EZ|X=x

[
log
(
fZ|X=x

(
(zv|x); θt

))]
(3.12)

for all t = 0, 1, . . . . The expected complete log-likelihood is a lower bound for the log-
likelihood of X. Further, the lower bound in (3.12) for θ = θt reads

Q(θt, θt)− EZ|X=x

[
log
(
fZ|X=x

(
(zv|x); θt

))]
= log

(
fX(x; θt)

)
= lX(θt)
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where Bayes’ rule is used, see Appendix A.2. Thus, the lower bound in (3.12) coincides
with the log-likelihood we aim to maximize at the point θt. This means that the lower
bound is tight after the E-step and maximizing the expected complete log-likelihood
Q(θ, θt) will lift the log-likelihood l(θ) to a higher level. In total, we have

lX(θt+1) ≥ Q(θt+1, θt) ≥ Q(θt, θt) = lX(θt), (3.13)

where the second inequality follows from the maximization step (3.10). The Expecta-
tion Maximization algorithm, Algorithm 7, thus ensures that the log-likelihood is non-
decreasing in every iteration. We have equality in (3.13) if θt is a stationary point and
lX is bounded from above [101, Section 11.4].

Besides its properties of improving the log-likelihood in every step, the (generalized)
EM algorithm converges to a stationary point under suitable conditions. Details can be
found in the original work on the Expectation Maximization algorithm by Dempster,
Laird and Rubin [41], who derive convergence results to local maxima lying in the in-
terior of the parameter space Θ. The work by Nettleton [103] transfers the conditions
of [41] to cases where a local maximum lies at the boundary of the parameter space Θ.
Although EM theoretically can converge to stationary points that are not local maxima,
such cases are of rather artificial nature and rarely occur in practice. We refer to [94,
Section 3.6] for examples of such unnatural behavior. A remedy to this can be to restart
the algorithm from another value [94, Section 3.6].

The convergence rate of EM has been shown to be linear [41] and for some examples,
the convergence rate can be worse, namely sublinear [63]. The slow convergence of EM is
a well-known drawback addressed in many earlier works [145, 88] and more recent works
[31, 146, 117]. The convergence rate of EM is related to the share of hidden, unobservable
information in the data: a higher share usually results in (sub-) linear convergence [94,
Section 3.9.3], [133]. On the other hand, Salakhutdinov, Roweis and Ghahramani [117]
showed that EM has local superlinear behavior similar to Newton’s method if the ratio
of missing information to complete information is very small. However, this is rarely the
case in practice such that we mostly end up in linear convergence [94, Section 3.9].

Since the famous work by Dempster, Laird and Rubin [41], some approaches have
been proposed to speed up the EM algorithm. These approaches mostly rely on hy-
brid approaches between EM and nonlinear optimization techniques like the conjugate
gradient method (hybrid EM-ECG algorithm [117], generalized conjugate gradients al-
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gorithm [71]) or Newton’s method [4, 116]. A detailed discussion of these extensions can
be found in [94, Chapter 4]. Another approach is given by adapting the M-step such
that maximization is performed over a larger, statistically meaningful parameter space.
This approach is known as parameter-expanded EM, we refer to [88, 83] for a thorough
analysis. Although these methods often lead to better convergence rates, their use in
practice is often limited and the standard EM algorithm (Algorithm 7) is used. This
is because the mentioned extensions of EM usually add a big computational overhead
by imposing additional constraints such as positive definiteness of covariance matrices,
resulting in higher per-iteration costs and thus weakening the advantage of an improved
convergence rate [94, Chapter 4]. In addition, most hybrid methods do not guarantee any
more that the likelihood increases (or remains the same in the optimum) in every step,
which is a very strong property of Algorithm 7. Besides, theoretical results for the con-
vergence speed for some extensions of EM are missing and only experimental evidence is
available. Thus, the Expectation Maximization in its standard form is often used in prac-
tice despite its low convergence. Its simplicity, its non-decreasing property in every step
and its statistical interpretation are the main advantages which make it favored for users.

The Expectation Maximization algorithm is a popular choice when it comes to max-
imum likelihood estimation with covariance matrices, because the M-step then often ad-
mits a closed-form solution such that the positive definiteness constraint is automatically
fulfilled. In Chapter 4, we review alternative numerical methods to estimate covariance
matrices and discuss their properties. Motivated by the drawbacks of existing methods,
we study the Riemannian geometry of covariance matrices, allowing to make use of the
concepts of Riemannian Optimization introduced in Chapter 2.
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CHAPTER 4

Riemannian Geometry of Covariance Matrices

In the previous chapter, we introduced maximum likelihood estimation to fit parame-
terized statistical models. For many models, this results in optimization problems over
covariance matrices. Thus, we often need to impose positive definiteness of matrices as
a constraint. This chapter deals with optimization with respect to covariance matrices
and is divided into two parts. In Section 4.1, we briefly review approaches for nonlinear
optimization with respect to covariance matrices. Motivated by the limitations of these
approaches, the second part, Section 4.2, deals with the Riemannian geometry of positive
definite matrices. This allows to formulate challenging maximum likelihood estimation
tasks as Riemannian optimization problems over product manifolds incorporating the
manifold of positive definite matrices. The present chapter thus connects the two previ-
ous chapters and builds the basis to use Riemannian optimization for the two statistical
models studied in Chapter 5 and 6.

4.1 Estimation Approaches for Covariance Matrices in Sta-
tistical Models

For many probability distributions, the parameter of interest θ in maximum likelihood
estimation involves the covariance matrix denoted by Σ. An important property of a
covariance matrix Σ is that it is positive semidefinite [48, Chapter 5]. However, for many
distributions such as the Gaussian distribution, the condition is even stronger, that is
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the covariance matrix must be (strictly) positive definite in order to have well-defined
expressions for the probability distribution and density functions [86, Section 3.7]. For
MLE, this means maximization over coordinates of the parameter space Pd, where Pd

denotes the set of positive definite matrices characterized by

Pd = {Σ ∈ Rd×d|Σ = ΣT and Σ � 0} (4.1)

see (3.5). Here, the notation Σ � 0 means that Σ is positive definite, that is xTΣx > 0

for all x ∈ Rd \ {0}.
Riemannian optimization has recently gained increasing interest in the field of data sci-
ence If the problem can be formulated as a problem with hidden information like described
in Section 3.2, the Expectation Maximization algorithm is often the method of choice
[94]. The advantage of using Expectation Maximization for MLE involving covariance
matrices is that Algorithm 7 produces iterates that fulfill positive semidefiniteness, and
in most applications strict positive definiteness with the EM algorithm is fulfilled [94,
Section 2.7]. However, as pointed out in Section 3.2.2, the EM algorithm suffers from
slow convergence, especially if the share of hidden information is high [94, Section 3.9.3].
Alternatively, Newton-type methods might be a better choice in order to achieve super-
linear convergence [105]. Still, when it comes to optimizing over the open cone (4.1),
precaution is required that iterates stay in the interior of the set Pd.

One way to ensure this is to reformulate the objective with a Cholesky decomposi-
tion Σ = LLT and to impose positivity of the diagonal elements of the lower triangular
matrix L ∈ Rd×d [15]. This approach consists of optimizing over d(d + 1)/2 entries of
the lower triangular matrix L with additional constraints. Though, when d increases,
the number of parameters to be estimated increases quadratically, making the approach
inappropriate for larger dimensions. In addition, such a reformulation can add additional
spurious critical points [65, 24].

A related field to satisfy at least a positive semidefinite condition is the field of
semidefinite programming [143]. Here, the condition Σ � 0 is ensured by a reformulation
as a Cholesky decomposition, for example by using smooth convex inequalities [139] or
by a mapping to a nonlinear optimization problem by projections [24]. Most algorithms
for semidefinite programming are based on interior point methods [143]. Nevertheless,
semidefinite programming is related to convex or even linear optimization problems,
which is rarely the setting for challenging maximum likelihood estimation tasks. Exten-
sions to non-convex objectives are available and based on convex relaxations [49, 107, 92],
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but semidefinite programming for convex functions can already be challenging and the
relaxation should be tight in order to get meaningful results [13]. Another issue with
methods for semidefinite programming is the limited scalability to larger problems. In a
recent work, Majumdar et. al [92] surveyed scalability advances in semidefinite program-
ming, like exploiting sparsity. But such extensions are introduced for linear or convex
problems, making them hardly usable for the problem of complicated maximum likeli-
hood estimation.

As outlined above, existing methods for maximum likelihood estimation for covari-
ances based on Cholesky decompositions come with some drawbacks, for what reason
in practice often the Expectation Maximization algorithm is used despite the slow con-
vergence rate [101, Section 11.4]. Recently, exploiting the geometry of positive definite
matrices to apply Riemannian optimization has gained increasing interest and often al-
lows for faster convergence. In the last decade, there has been a lot of research on the
geometry of positive definite matrices in the field of machine learning. This is mainly mo-
tivated by a wide range of application fields raising from computer vision [29], (medical)
image analysis [62, 99] to radar signal processing [9, 67]. For the purpose of Riemannian
optimization, acting on the manifold of Pd is still quite novel. A prominent example
of Riemannian optimization of Pd is the computation of the Karcher mean [73], that is
the computation of the center of given positive definite matrices. The works on fitting
Gaussian mixture models with a Riemannian approach by Hosseini and Sra [65, 66] re-
cently have gained attention and are also the basis for Chapter 5 of this thesis. The
former work by Sra and Hosseini, appearing as [130] in the bibliography, derives im-
portant results on geodesic convexity on the manifold of positive definite matrices with
a special focus on maximum likelihood estimation for elliptically contoured distributions.

In the following, we review the Riemannian geometry of positive definite matrices to
make use of the concepts of Riemannian optimization introduced in Chapter 2. Equipped
with the Riemannian tools for the parameter space of interest, we are then able to apply
Riemannian optimization on two maximum likelihood estimation tasks in Chapter 5 and
Chapter 6.

4.2 The Manifold of Positive Definite Matrices

The set of symmetric positive definite matrices is well-known to be a smooth manifold
[17, Chapter 6], [98]. In this section, we review the differential-geometric properties of the
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set of symmetric positive definite matrices needed to perform Riemannian optimization
on that space.

We recall that the parameter space we seek to optimize over is the set of (symmetric)
real positive definite matrices of fixed dimension d denoted by

Pd = {Σ ∈ Rd×d|Σ = ΣT and Σ � 0}.

The set Pd is an open cone in the set of symmetric real matrices of size d [17, Chapter
6], denoted by

Sd = {A ∈ Rd×d|A = AT }. (4.2)

As an open set in an Euclidean space, it is an Euclidean submanifold in the sense of
Definition 2.18 and Theorem 2.17 with dimension d(d + 1)/2. Further, Pd is an open
submanifold, hence its tangent space is the whole embedding space: at a point Σ ∈ Pd,
the tangent space is given by

TΣPd = Sd, (4.3)

see Section 2.1.7. The manifold of positive definite matrices Pd can thus be globally
approximated by the same linear space Sd. In the following, we omit the index Σ for
tangent vectors and simply write ξ, χ ∈ Sd for tangent vectors.

4.2.1 Riemannian Metrics for Covariance Matrices

To make the manifold Pd a Riemannian manifold, we must equip its tangent space Sd with
a suitable metric 〈 · , · 〉Σ at any positive definite matrix Σ ∈ Pd. There are many metrics
proposed for the manifold of positive definite matrices [134]. We here discuss three met-
rics that mostly appear in the context of Riemannian optimization on Pd. They come
with computationally tractable and efficient expressions for gradients, Hessians and re-
tractions which is desirable for Riemannian optimization.

The most obvious idea of defining a Riemannian metric consists in inheriting the
standard Euclidean inner product of the set of symmetric matrices, that is

〈ξ, χ〉symΣ = tr(ξχ), (4.4)
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where tr(A) =
d∑
i=1

aii is the trace of matrix A and ξ, χ ∈ Sd.

However, this inner product does not take into account the curvature of the set of
positive definite matrices because it is independent of a point Σ on the manifold. Another
issue with the Euclidean inner product (4.4) is that the associated geodesic γsymΣ1,Σ2

joining
two points Σ1,Σ2 in Pd is a straight line, that is [73]

γsymΣ1,Σ2
(t) = Σ1 + t(Σ2 − Σ1). (4.5)

This is unfavorable, since it might occur that for some choices of t, Σ1,Σ2, the matrix
γsymΣ1,Σ2

(t) is not positive definite [73, 62]. Furthermore, the geodesic (4.4) completely ne-
glects the interpretation of Pd as a manifold. In Figure 4.1, the shortest path with respect
to different metrics is visualized. We observe from the figure that the Euclidean metric
〈ξ, χ〉symΣ neglects the curvature of the space Pd as an open cone (red, solid line). In con-
trast, the shortest paths induced by the affine-invariant metric and the Bures-Wasserstein
metric are in line with the curvature property of Pd, these are introduced in the following.

Figure 4.1: Open cone of P2. Visualized are the geodesics connecting Σ1,Σ2 ∈
P2 with respect to the Euclidean metric 〈 · , · 〉sym (red, solid line), the affine-
invariant metric 〈 · , · 〉ai (blue, dashed line) and the Bures-Wasserstein metric
〈 · , · 〉bw (magenta, dotted line). Figure inspired by [62].

There are several other inner products that have been studied in the context of
positive definite matrices. These slightly vary with points Σ on the manifold, which is the
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natural intuition of a Riemannian metric. In the context of Riemannian Optimization,
the affine-invariant metric is the one that is most associated with the manifold of interest,
see [99, 65, 148, 130]. Up to date, it is the default inner product implemented in toolboxes
on manifold optimization (Manopt [23], Manopt.jl [16], pymanopt [136], ROPTLIB [68]) .

The affine-invariant metric is given by [17, Chapter 6]

〈ξΣ, χΣ〉aiΣ = tr(ξΣΣ−1χΣΣ−1). (4.6)

This inner product is intuitively well suited for performing optimization on Pd: close to
the boundary of the parameter space, steps become large and we potentially leave the
boundary fast. The matrix exponential and matrix logarithm play a central role for the
affine-invariant geometry. For completeness reasons, we state them in the following. The
matrix exponential for a non-singular matrix A is given by the convergent series

exp(A) =
∞∑
k=0

1

k!
Ak.

Accordingly, logarithms of a matrix A are solutions X to the matrix equation
exp(X) = A. If A has positive eigenvalues, there exists a unique real logarithm denoted
by log(A), the matrix logarithm, see [36, 98].

The Riemannian distance under the affine-inner product is given by

distai(Σ1,Σ2) = ‖log
(

Σ1
−1/2Σ2Σ1

−1/2
)
‖F , (4.7)

where ‖·‖F denotes the Frobenius norm and log( ·) the (unique) matrix logarithm [17,
Section 6.1]. This distance is motivated by the hyperbolic distance between two positive
scalars [98]: One can show that

distai(Σ1,Σ2) ≥ ‖log(Σ1)− log(Σ2)‖F , (4.8)

for all Σ1,Σ2 ∈ Pd, so the map (Sd, ‖·‖F )
exp−→ (Pd, distai) increases distances or is metric-

increasing [17, Theorem 6.1.4]. In case of commuting matrices ξΣ, χΣ, there is equality
in (4.8) and the geodesic distance thus equals the Euclidean distance between the matrix
logarithms [17, Section 6.1]. Further, there exists a unique geodesic that realizes distai

which is given by [17, Theorem 6.1.6]

γaiΣ1,Σ2
(t) = Σ1

1/2
(

Σ1
−1/2Σ2Σ1

−1/2
)t

Σ1
1/2, for 0 ≤ t ≤ 1. (4.9)

It can be shown that the midpoint of the geodesic (4.9) is the geometric mean of two
positive definite matrices [73], [17, Section 6.3], which is in line with the intuition of a
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shortest path between two points on a manifold.

Although the computational effort of evaluating the affine-invariant metric (4.6) is
higher compared to the Euclidean inner product (4.4), Riemannian optimizers with the
affine-invariant metric are expected to converge faster as they take the intrinsic geometry
of Pd into account. A study for computing the geometric mean in [73] underlines this
intuition.

The Bures-Wasserstein metric is another prominent metric that is often associated
with covariance matrices. It is widely used in the context of information geometry and
is used in applications like optimal transport [7, 72, 18, 93] and quantum information
[127, 89]. The Bures-Wasserstein metric has a information-geometric interpretation: in
the case of centered Gaussians, the two distances induced by the respective metrics
coincide [18, 93]. We introduce the Bures-Wasserstein metric by

〈ξΣ, χΣ〉bwΣ =
1

2
tr(LΣ[ξΣ]χΣ) (4.10)

where LΣ[ξΣ] is the solution to the linear system LΣ[ξΣ]Σ + ΣLΣ[ξΣ] = ξΣ and is known
as the Lyapunov operator [57, 137]. The authors of [57] compared the widely used
affine-invariant metric against the Bures-Wasserstein metric in the context of Riemannian
optimization. The authors point out that the condition number of the Hessian at a point
Σ∗ with respect to the affine-invariant metric depends quadratically of Σ∗, whereas the
condition number with respect to the Bures-Wasserstein metric depends linearly of Σ∗.
This has an impact on the convergence speed of Riemannian optimization algorithms
under the relying metric, especially when the condition number of Σ∗ is large: the authors
observed that for many objectives relevant to machine learning, the Bures-Wasserstein
metric leads to faster algorithms. Yet, the authors show that maximization of the function

f(Σ) = log det(Σ) (4.11)

yields a smaller condition number with the affine-invariant metric than with the Bures-
Wasserstein metric. As the maximization of the logdet (4.11) plays a central role in
the objectives studied in this thesis, we thus consider the affine-invariant metric in the
following, only. Furthermore, throughout this thesis, we drop the superscript ai in the
metric and define

〈ξΣ, χΣ〉Σ := 〈ξΣ, χΣ〉aiΣ = tr(ξΣΣ−1χΣΣ−1).
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Other metrics than the ones discussed above include the log-Euclidean metric [69, 10],
the log-det metric [30, 129, 26], the log-Cholesky metric [85] and the the Bogoliubov-
Kubo-Mori metric [97]. In a recent work, the differential-geometric relationship between
some of these metrics has been studied [134]. A detailed comparison of the different
metrics is beyond the scope of this thesis and the understanding of metrics defined on
Pd is still subject of current research [134, 135].

4.2.2 Riemannian Gradient and Riemannian Hessian for the Affine-
invariant Metric

As outlined above, we will consider the affine-invariant metric (4.6) from now on denoted
by 〈 · , · 〉Σ. Let f : Pd → R be a smooth function and Σ ∈ Pd, ξ ∈ Sd. We denote the
Riemannian gradient with respect to the metric (4.6) by grad f . As Pd is a Euclidean
submanifold, according to (2.7) we get

tr(ξΣ−1 grad f(Σ)Σ−1) = tr(ξ gradsym f̄(Σ))

where gradsym f̄ denotes the gradient of the smooth extension f̄ to the set of symmetric
matrices with the Euclidean metric (4.4). Thus, the Riemannian gradient reads

grad f(Σ) = Σ
(
gradsym f̄(Σ)

)
Σ =

1

2
Σ
(

grade f̄(Σ) +
(
grade f̄(Σ)

)T)
Σ, (4.12)

where grade f̄ denotes the classical Euclidean gradient of the smooth extension f̄ to the
set of real matrices Rd×d with the Euclidean metric 〈A,B〉 = tr(ATB) for A,B ∈ Rd×d

[73].

For the Riemannian Hessian, we specify the Riemannian connection ∇pd. At a point
Σ ∈ Pd, it is given by

∇pdVΣ
UΣ = D (VΣ) [UΣ]− 1

2

(
UΣΣ−1VΣ + VΣΣ−1UΣ

)
, (4.13)

where UΣ, VΣ ∈ X(Σ) are vector fields whose domains include Σ and D(V )[U ] is the
classical Euclidean derivative of V along direction U [73]. It can be shown that the ex-
pression in (4.13) fulfills the Koszul formula stated in (2.3) and thus is uniquely identified
with the Riemannian connection for the affine-invariant metric (4.6), see [109, 73]. Thus,
the Riemannian Hessian at Σ reads

Hess f(Σ)[ξΣ] = ∇pdξΣ grad f(Σ)

= D (grad f(Σ)) [ξΣ]− 1

2

(
ξΣΣ−1 grad f(Σ) + grad f(Σ)Σ−1ξΣ

)
, (4.14)

where ξΣ ∈ Sd [73].
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4.2.3 Retractions for the Affine-invariant Metric

A natural candidate for the Riemannian connection with respect to the affine-invariant
metric (4.6) is given by the exponential map. The geodesic (4.9) can be equally expressed
as

γaiΣ1,Σ2
(t) = Σ

1/2
1 exp

(
t log

(
Σ1
−1/2Σ2Σ1

−1/2
))

Σ
1/2
1

yielding the tangent vector

γ̇aiΣ1,Σ2
(0) = Σ

1/2
1 log

(
Σ1
−1/2Σ2Σ1

−1/2
)

Σ
1/2
1 .

Thus, the exponential map ExpΣ at ξ ∈ TΣPd is given by

ExpΣ(ξ) = Σ1/2 exp
(

Σ−1/2ξΣ−1/2
)

Σ1/2, (4.15)

see [73, 17]. A computationally more efficient expression of the exponential map (4.15)
is given by

ExpΣ(ξ) = Σ exp(Σ−1ξ), (4.16)

which can be easily seen by the definition of the matrix exponential [130]. The use of
the exponential map for Riemannian optimization methods is desirable especially for
Newton-type algorithms because it is second-order (see Section 2.2.3). At the same time,
evaluating the exponential map in every iteration usually comes with a high computa-
tional effort. In the case of the evaluation of the exponential map (4.16), we observe that
the expression "Σ−1ξ" must be evaluated in every iteration anyway because it appears in
the inner product (4.6). Thus, the computational burden of (4.16) is determined by the
computation of the matrix exponential. The Pade approximation [5] is an efficient way
to compute the matrix exponential and is implemented in the toolboxes for Riemannian
optimization [136, 23, 96]. In a study on computing the Karcher mean of positive definite
matrices, the second-order approximation to the exponential map given by

RapproxΣ (ξ) = Σ + ξ +
1

2
ξΣ−1ξ

was investigated [73]. However, the authors observed that the use of different retractions
did not have a relevant impact on the performance of different Riemannian optimization
algorithms. For this reason, we focus on the exact exponential map (4.16) throughout
this thesis.
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4.2.4 Vector transport for the Affine-invariant Metric

In order to apply specific quasi-Newton methods on Riemannian manifolds or use finite-
difference approximations, one needs to specify a vector transport to subtract tangent
vectors of different tangent spaces from each other, see Section 2.2.5.

A natural candidate for a vector transport for Pd is the one that is associated with
the exponential map (4.16). It is given by [73, 65]

T Σ
η (ξ) = Σ

1
2 exp

(
1

2
Σ−

1
2 ηΣ−

1
2

)
Σ−

1
2 ηΣ−

1
2 exp

(
1

2
Σ−

1
2 ηΣ−

1
2

)
Σ

1
2 , (4.17)

where T Σ
η (ξ) denotes the vector transport of ξ ∈ TΣPd to η ∈ TΣPd.

The vector transport in (4.17) is computationally expensive which weakens the power
of quasi-Newton methods for the manifold of positive definite matrices [51]. In the tool-
kits for Riemannian optimization pymanopt [136] and Manopt [23], the vector transport
(4.17) is not implemented as a default. Instead, the identity mapping is used as a vector
transport. The reasoning for this is that if the step-lengths performed by the optimizers
are small enough, the transfer of gradients onto other tangent spaces can be neglected
because the set of positive definite matrices is an open cone. However, such an approach
neglects the curvature of Pd and might yield slower algorithms. In a recently published
article, the authors Godaz et. al [51] proposed two mappings in the tangent space via
a Cholesky decomposition and a second inverse root. This yields an associated vector
transport equal to identity, thus avoiding the high computational costs of the vector
transport (4.17). Nevertheless, the convergence speed for the vector transport based
method (4.17) was comparable to their introduced vector transport free method.

In this chapter, we derived the Riemannian characteristics of positive definite matri-
ces. Based on that, we are able to study Riemannian optimization for two challenging
maximum likelihood estimation tasks involving the fitting of covariance matrices in the
subsequent two chapters. In the following chapter, we study the Gaussian mixture model.
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CHAPTER 5

Riemannian Optimization for Fitting Gaussian Mixture Models

Data clustering is an important field for machine learning thanks to its wide use in
real-world applications in the absence of specific labeled information [3, Section 1.1]. In
practice, labeled data is often expensive to acquire and sometimes contains relatively
little information. For this reason, the demand for unsupervised learning models like
clustering approaches is high [101, Section 1.3]. The general question addressed with
data clustering can be posed as "Given a set of data points, what is a good partition
into groups such that data within a group are as similar as possible?" [3, p. 2]. Due
to the importance of clustering for data science, many models exist in the literature to
address this problem [3], [101, Section 1.3]. A popular approach is given by probabilistic
model-based clustering which seeks to optimize the fit between the observed data and
some probabilistic model [3, Section 3.1]. Typically, the probabilistic model of choice is
a mixture model. Here, we assume that the observed data are generated by a mixture
of K underlying probability distributions [3, Section 3.1]. Such models allow to get a
membership probability of each data point for each of the K components. Similarity
within a cluster is characterized by data points sharing the same probability distribution
[101, Chapter 11]. Mixture models are soft clustering models as the observations are not
assigned to exactly one cluster but are assigned to a specific cluster with some individual
probability [3, Section 1.2.2]. When observations are continuous-valued, the Gaussian
mixture model is a popular choice for probabilistic model-based clustering. Here, we
assume that each of the K components is a Gaussian distribution [101, Section 11.2.1].
Fitting the clustering problem by a Gaussian mixture model is thus transformed into a



parameter estimation problem as we need to specify the mixing proportions of the com-
ponents and the parameters of the K Gaussian distributions [65]. Typically, parameter
estimation is performed by a maximum likelihood approach [101, Section 11.2.1].
Besides their popularity for clustering tasks, Gaussian mixture models are also widely
used as probability density estimators or approximators [52]. Since the Gaussian mixture
model is a probability density function, we can approximate a continuous probability den-
sity function by a Gaussian mixture model with sufficient components [52], [101, Chapter
11].

Due to their generative modeling power, Gaussian mixture models are widely used
in many different application fields like image analysis [6, 45, 149], pattern recognition
[144, 19], econometrics [12, 33] and many others. The crucial part consists of finding the
distribution of the K Gaussian components and the mixing proportions. The present
chapter deals with this problem of parameter estimation in Gaussian mixture models.

The chapter is organized as follows. In Section 5.1, we formally introduce the Gaus-
sian mixture model and the resulting optimization problem for estimating its parameters.
We give a brief overview of optimization approaches for fitting Gaussian mixture models.
In Section 5.2, we formulate the optimization problem as a Riemannian optimization
problem according to Chapter 2. To that end, we use modifications for the objective as
proposed in the works of Hosseini and Sra [65, 66] that make Riemannian optimization for
Gaussian mixture models more tractable in Section 5.2.1. Based on this reformulation,
we present the resulting Riemannian optimization problem in Section 5.2.2 and we derive
expressions for the Riemannian gradient and the Riemannian Hessian. In Section 5.3, we
introduce the Riemannian Newton trust-region algorithm for Gaussian mixture models
and study its convergence. Subsequently, we show numerical results for the Riemannian
Newton trust-region algorithm for Gaussian mixture models for both a clustering task
and a probability density approximation task in Section 5.4. In the last part of this
chapter, Section 5.5, we summarize our findings and give an outlook for potential future
research directions.

The derivation of the Riemannian Hessian (Section 5.2.2) and the results of numerical
experiments (Section 5.4) have been published in a refereed publication which appears
as [124] in the bibliography.
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5.1 Problem Formulation and Related Work

We introduce the Gaussian mixture model formally in the following. We follow the no-
tations from [101, Chapter 11].

Let X ∈ Rd be a d-dimensional random variable and an integer K ∈ N be given. We
assume that X follows a distribution whose probability density function pX is a linear
combination of K Gaussian distributions. Such a probability density function is called a
Gaussian mixture model with K components. Formally, the Gaussian mixture model is
given by the probability density function

pX(xv) =
K∑
j=1

αjpN (xv;µj ,Σj), xv ∈ Rd, (5.1)

with positive mixture components αj that sum up to 1. The expression pN ( · ;µj ,Σj)

denotes the Gaussian density function with mean µj ∈ Rd and covariance matrices
Σj ∈ Rd×d. In order to have a well-defined expression, we impose Σj � 0, i.e. we
assume that the Σj are symmetric positive definite. Note that throughout this chapter,
we suppose that the number of components K is given. A discussion of approaches for
finding a suitable value for K is beyond the scope of this thesis, we refer to [95] for an
overview of existing approaches.

In practice, the parameters of a Gaussian mixture model αj , µj ,Σj are unknown and
have to be estimated. Given iid observations x1, . . . , xn, a maximum likelihood approach
is used, that is we seek to maximize the log-likelihood function

l(θ̃) =

n∑
i=1

log
(
pX(xi; θ̃)

)
, (5.2)

where θ̃ = (θ̃1, . . . , θ̃K) with θ̃j = (αj , µj ,Σj), see Definition 3.1. This yields the following
constrained nonlinear optimization problem:

max
α∈∆K

µj∈Rd
Σj�0

n∑
i=1

log

 K∑
j=1

αjpN (xi;µj ,Σj)

 , (5.3)

where

∆K = {(α1, . . . , αK), αj ∈ (0, 1)∀j,
K∑
j=1

αj = 1} (5.4)
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is the probability simplex of dimension K [65]. We observe that the objective in (5.3)
is not concave, for which reason the maximum likelihood estimator might not be unique
and we have a multimodal distribution [101, Section 11.3.1]. In addition, finding the
global optimum of (5.3) is an NP-hard problem [101, Section 11.3.1]. In this thesis, we
focus on finding a local maximum of the problem (5.3).

The optimization problem (5.3) comes with constraints. We need to ensure that the
mixing proportion variables αj , j = 1, . . . ,K are between 0 and 1, and sum up to one.
Further, we need to restrict the matrices Σj to be symmetric positive definite. Especially
the latter is a challenge for classical nonlinear optimization algorithms as outlined in Sec-
tion 4.1. Thus, in practice, the Expectation Maximization (EM) algorithm (Algorithm
7) is commonly used to iteratively solve the problem (5.3). For this, latent variables
are introduced that model the membership to one of the K clusters with probability αj ,
for details on the EM algorithm for Gaussian mixture models see Appendix B.1. For
Gaussian mixture models, the EM algorithm turns out to consist of two simple steps,
whereas the M-step (3.10) is concave and admits a closed-form solution (see Algorithm
8) [101, Section 11.4]. Though, as outlined in Section 3.2.2, the EM algorithm converges
linearly if there is a high share of hidden information [94, Section 3.5]. For Gaussian
mixture models, this means that many observations xi cannot be clearly assigned to
exactly one of the K Gaussians [95]. Considering the Gaussian mixture model as a pro-
babilistic clustering model, a high share of hidden information yields the interpretation of
a high overlap between clusters [147]. Motivated by EM’s slow convergence, alternative
approaches have been suggested such as using a hybrid approach of EM and nonlinear
conjugate gradient or Newton iterations [4, 117] or using standard nonlinear optimization
methods [147]. Here, the positive definiteness constraint is completely neglected [147] or
a regularization term is added penalizing solutions close to the boundary [27]. Besides,
search techniques like genetic and annealing algorithms [118, 110, 90] have recently been
proposed for fitting Gaussian mixture models. The aforementioned methods suffer either
from higher per-iteration costs or from missing convergence theory. For these reasons
and thanks to its very low per-iteration costs the Expectation Maximization algorithm
is the possibly most widely used algorithm for fitting Gaussian mixture models and is
also the default method in familiar data mining software packages [108].

Recently, the work by Hosseini and Sra [65] has gained increasing interest for fitting
Gaussian mixture models. The authors exploit the Riemannian geometry of the param-
eter space and formulate the problem as a Riemannian optimization problem. With
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this formulation, the authors of [65] propose a Riemannian nonlinear conjugate gradient
method and a Riemannian LBFGS (limited-memory Broyden-Fletcher-Goldfarb-Shanno
[105]) method by considering a product manifold involving the manifold of positive defi-
nite matrices. The authors point out that their method is particularly strong for highly
overlapping clusters, where the share of hidden information is large and the EM algo-
rithm shows linear convergence, only. In their follow-up paper [66], Hosseini and Sra
further introduce a Riemannian stochastic gradient descent method to address problems
with a larger number of observations. Furthermore, they propose a penalization term
for problem (5.3) allowing for maximum a posterior estimation and avoiding numerical
singularities. The works [65, 66] are the basis for this chapter. While the publications
[65, 66] do not use exact second-order information, we introduce an explicit formula for
the Riemannian Hessian of the GMM fitting problem which is used for the introduced
Riemannian Newton trust-region method (R-NTR).

In the following, we first review the modification of the objective (5.3) introduced in
[65, 66] from which Riemannian optimizers benefit in terms of convergence speed and nu-
merical stability. We then derive the Riemannian gradient and the Riemannian Hessian,
which is one of the main contributions of this thesis. Equipped with the Riemannian
Hessian, we introduce the Riemannian Newton trust-region algorithm for fitting Gaus-
sian mixture models in Section 5.3 and show numerical results of our method in Section
5.4.

5.2 Riemannian Approach for Gaussian Mixture Models

The tools of Riemannian optimization introduced in Chapter 2 and Chapter 4 allow
us to apply geometric optimization techniques of the objective (5.3) by considering the
constraint set as a product manifold. However, before directly applying Riemannian
optimization on the objective (5.3), we introduce a modification of the objective as
proposed by [65, 66].

5.2.1 Modification of the Objective

By setting f = −l(θ̃), the problem (5.3) can be formulated as a Riemannian optimization
problem of the form (2.9), see Chapter 4. Yet, Hosseini and Sra experimentally showed in
their work [65] that such a formulation of the problem leads to Riemannian optimization
methods showing inferior convergence compared to the EM algorithm. This can be mainly
led back to the fact that the maximization in the M-step of EM, i.e. the maximization
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of the log-likelihood for a single Gaussian, is a concave problem and thus very easy to
solve [65]. One of the reasons for EM’s popularity for fitting Gaussian mixture models is
that the M-step additionally admits a closed-form solution in the maximization step (see
Algorithm 8, Appendix B.1). When considering the log-likelihood of a single Gaussian
in a Riemannian setting, that is

max
µj∈Rd
Σj�0

n∑
i=1

log (pN (xi;µ,Σ)) , (5.5)

the objective is not geodesically concave in the sense of Definition 2.24 [65]. This means

that the translation of
n∑
i=1

log (pN ( · ;µ,Σ)) into a Riemannian setting adds a remarkable

geometric mismatch [65]. A surrogate to this mismatch is to reformulate the objective
in such a way such that the optimization problem with K = 1 is geodesically concave.
Hosseini and Sra introduce an alternative equivalent formulation of the objective in [65]
which corrects this geometric pathology. We explain the suggested reformulation in the
following.

Addressing the geometric mismatch: reformulation of the objective

We augment the observed data x1, . . . , xn by concatenating them with the scalar 1, that
is we introduce the data yi, i = 1, . . . , n by setting

yi =

(
xi

1

)
∈ Rd+1, i = 1, . . . , n. (5.6)

Further, we introduce the function qN as the probability density function of a centered
d+ 1-dimensional Gaussian random variable corrected by a constant factor, i.e.

qN (yi;Sj) :=
√

2π exp

(
1

2

)
pN (yi; 0, Sj). (5.7)

Here, pN (yi; 0, Sj) denotes the Gaussian probability density function with d+1-dimensional
mean 0 and covariance matrix Sj ∈ R(d+1)×(d+1) of a d+ 1-dimensional random variable
Y evaluated at observation yi. With this reformulation, we now mapped our objective
function restricted to the estimation of the covariance matrices from the manifold Pd

to the manifold Pd+1. This yields the desired geodesic concavity of a single Gaussian
component.
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Theorem 5.1. [65, Proposition 1] Define

Φ(S) = −
n∑
i=1

log (qN (yi;S)) ,

where S ∈ Pd+1. Then, the function Φ is geodesically convex.

Proof. The proof is based on showing the inequality

Φ (γS1,S2(t)) ≤ Φ(S1) + Φ(S2),

where γ is the unique geodesic (4.9), see Definition 2.24. The proof is based on an
inequality for the geodesic midpoint [17, Theorem 4.1.3] and can be found in [66].

This means that by considering the centered Gaussian distribution of the augmented
data (5.7), we have derived an analogue concavity property of the Riemannian problem
compared to the (Euclidean) M-step in the EM algorithm: geodesic concavity of the
log-likelihood of a Gaussian mixture model with K = 1 components. Considering the
Gaussian mixture model with K > 1 components, we additionally need to ensure that
the mixing proportions α = (α1, . . . , αK) are in the probability simplex ∆K , that is that
each of the αj ’s is strictly positive and that they sum up to one. This is achieved by
introducing a variable η ∈ RK−1 and the constant ηK = 0 [65]. We define the αj ’s as

αj :=
exp(ηj)
K∑
k=1

exp(ηk)

, j = 1, . . . ,K, (5.8)

such that the condition α = (α1, . . . , αK) ∈ ∆K is automatically fulfilled by design.
With these considerations in mind, we define the variable of interest as θ = (θ1, . . . , θK),
where

θj = (Sj , ηj) j = 1, . . . ,K − 1, and θK = (SK , 0).

The product manifold of interest is given by

MGMM =
K

×
j=1

(
Pd+1

)
× RK−1. (5.9)

and the reformulated problem reads

max
θ∈MGMM

L̂(θ) =

n∑
i=1

log

 K∑
j=1

hi(θj)

 , (5.10)
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where

hi(θj) =
exp(ηj)
K∑
k=1

exp(ηj)

qN (yi;Sj) =
exp(ηj)
K∑
k=1

exp(ηk)

exp
(

1
2

(
1− yTi S

−1
j yi

))
√

(2π)d det(Sj)
, (5.11)

see (5.7). This is a Riemannian optimization problem where we corrected the geometric
mismatch induced by translating the maximum-likelihood estimation task into a Rie-
mannian framework. What remains to state is that such a reformulation is meaningful.
Hosseini and Sra [65] show that the two problems (5.3) and (5.10) are equivalent in the
following sense:

Theorem 5.2. [65, Theorem 2.1 - 2.2] A local maximum of the reformulated GMM
log-likelihood L̂(θ) as in (5.10) with maximizer θ∗ = (θ1

∗, . . . , θK
∗), θj∗ = (Sj

∗, ηj
∗)

is a local maximum of the original log-likelihood l(θ̃∗) defined in (5.2) with maximizer
θ̃∗ = (αj

∗, µj
∗,Σj

∗)j=1,...,K .
Further, if θ̃∗ = (αj

∗, µj
∗,Σj

∗)j maximizes (5.3), then

n∑
i=1

log

 K∑
j=1

αj
∗pN (xi;µj

∗,Σj
∗)

 =
n∑
i=1

log

 K∑
j=1

hi(θj
∗)

 ,

where θ∗j = (S∗j , η
∗
j ) and

S∗j =

(
Σ∗j + µ∗jµ

∗
j
T µ∗j

µ∗j
T 1

)
, (5.12)

η∗j = log

(
α∗j
α∗K

)
j = 1, . . . ,K − 1; ηK ≡ 0

Proof. The proof is based on decomposing the matrices Sj via Schur complements and
can be found in [65] and [66].

This means that there is a one-to-one mapping between a local maximizer of the original
problem (5.3) and the reformulated problem (5.10) and the two objectives coincide in a
local optimum. Hosseini and Sra experimentally showed in their works [65, 66] that such
a reformulation brings the desired faster convergence of their proposed Riemannian opti-
mization algorithms as expected. For this reason, we consider the reformulated problem
(5.10) in the following.
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Evading singularity: regularization of the objective

A problem with the objective L̂ in (5.10) is its unboundedness from above which is also
observed and well studied for the original problem in (5.3), e.g. by [106, 125].

Theorem 5.3. [124, Theorem 7] The reformulated objective (5.10) is unbounded from
above.

Proof. We omit the proof as it is a straightforward extension to the proof for unbound-
edness of the original problem; the proof can be found in [125].

The unboundedness of the objective (5.10) makes convergence theory hard to study as
it might occur that a local maximum of the Riemannian optimization problem does not
even exist [105]. This problem is well-known also in the Euclidean setting, and has been
studied extensively in the literature [38, 59, 106] in particular for the EM algorithm for
Gaussian mixture models. For the EM algorithm, a typical remedy to this consists in
considering a penalized maximum likelihood approach: For the original problem in (5.3), a
penalization based on a Bayesian setting is used. The works [106, 125] suggest to modify
the objective (5.3) by adding a specific regularization term. Such a regularization is
equivalent to considering the maximum a posteriori likelihood estimator (see Definition
3.1, 4.). The authors of [106, 125] suggest to use conjugate priors for the Bayesian setting
in order to keep the structure of the estimates. These come with the advantage that the
posterior density function gθ|X(θ|x) is in the same probability distribution family as the
prior density function gθ(θ) (see Appendix A.2). This penalization yields the objective

lpen(θ̃) =
n∑
i=1

log

 K∑
j=1

αjpN (xi;µj ,Σj)

+ log
(
gdirichα (α; ζ)

)

+
K∑
j=1

(
gNµj (µj ;λ, κ,Σ) + log gWi

Σj (Σ−1
j |Λ, ν)

)
, (5.13)

where gdirichα denotes the conjugate prior of α, the density gµj denotes the conjugate prior
of µj and gΣj (Σ

−1
j |Λ, ν) the conjugate prior of Σj . The formulas and details for these

expressions are given in Appendix B.2. For the penalized log-likelihood (5.13), we can
derive a penalized EM algorithm which comes with the same simplicity as the original
EM algorithm for Gaussian mixture models (see Appendix B.2, Algorithm 9).

An according penalization term has been suggested by Hosseini in Sra in their recent
work [66] for the reformulated objective. The cruciality here is that the geodesic concav-
ity for the problem with K = 1 is not lost by the regularizer, and that the relationship
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between a local maximizer of the original problem and a local maximizer of the refor-
mulated problem (5.12) still holds [66]. The following penalizer Pen(θ; Ψ, ζ) meets these
requirements:

Pen(θ; Ψ, ζ) =
K∑
j=1

ψ(Sj ,Ψ) + ϕ(η, ζ). (5.14)

Here, the penalizer ψ(Sj ,Ψ) for the covariance matrices Sj reads

ψ(Sj ,Ψ) = −ρ
2

log det(Sj)−
β

2
tr(ΨSj

−1), (5.15)

where ρ = γ(d+ ν + 1) + β, γ, β > 0, and Ψ is a block matrix of the form

Ψ =

(
γ
βΛ + κλλT κλ

κλT κ

)

for fixed parameters Λ ∈ Rd×d, Λ � 0, λ ∈ Rd and κ > 0. The penalizer for the mixing
proportions is given by

ϕ(η, ζ) = ζ

 K∑
j=1

ηj −K log

(
K∑
k=1

exp(ηk)

) , (5.16)

where ζ > 0. It is important to note that the parameters λ, κ,Λ, ν are the same as in
the additive penalizer (5.13). This allows to state the following important theorem for
the reformulated penalized log-likelihood function.

Theorem 5.4. [66, Corollary 6] Consider the penalized reformulated log-likelihood

L̂pen(θ; Ψ, ζ) = L̂(θ) + Pen(θ; Ψ, ζ) (5.17)

with L̂ as in (5.10) and Pen as in (5.14).
Assume that

γ = β
κ− 1

d+ ν + 1

for the parameter γ in ρ = γ(d + ν + 1) + β occuring in (5.15). Then, the objec-
tive (5.17) is geodesically concave for a single component, that is K = 1. Further,
a local maximum of the reformulated penalized GMM log-likelihood L̂pen(θ) with maxi-
mizer θ∗ = (θ1

∗, . . . , θK
∗), θj∗ = (Sj

∗, ηj
∗) is a local maximum of the original penalized

log-likelihood lpen(θ̃∗) defined in (5.13) with maximizer θ̃∗ = (αj
∗, µj

∗,Σj
∗)j=1,...,K . If

θ̃∗ = (αj
∗, µj

∗,Σj
∗)j maximizes (5.13), then the maximizers θ̃∗ and θ∗ are related via

(5.12) in Theorem 5.2.
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Proof. A proof can be found in [66].

Theorem 5.4 ensures that we keep the beneficial structure of the introduced reformu-
lation when adding the regularization term Pen(θ; Ψ, ζ).

We recall that the initial motivation for using maximum a posterior estimation was
that the reformulated problem (5.10) is unbounded from above. We now show that the
penalized reformulated problem (5.17) is bounded from above.

Theorem 5.5. The penalized optimization problem in (5.17) is bounded from above.

Proof. We follow the proof for the original objective (5.13) as in [125]. The penalized
objective reads

L̂pen(θ; Ψ, ζ) =
n∑
i=1

log

 K∑
j=1

qAP
N (θj , Sj ; Ψ, ζ)

 ,

where

qAP
N (θj , Sj ; Ψ, ζ) = hi(θj)

( K∏
k=1

det(Sk)
− ρ

2 exp

(
−1

2
tr(S−1

k Ψ)

)
αk

ζ

)1/n

.

We get the upper bound

qAP
N (θj , Sj ;Ψ, ζ) ≤ hi(θj)

K∏
k=1

det(Sk)
− ρ

2 exp

(
−1

2
tr(S−1

k Ψ)

)
αζk

≤ aαj det(Sj)
− d

2

K∏
k=1

det(Sk)
− ρ

2 exp

(
−1

2
tr(S−1

k Ψ)

)

= aαj(det(Sj))
− d+ρ

2 exp

(
−1

2
tr(S−1

j Ψ)

) K∏
k=1
k 6=j

det(Sk)
− ρ

2 exp

(
−1

2
tr(S−1

k Ψ)

)
,

(5.18)

where we applied Bernoulli’s inequality in the first inequality and used the positive defi-
niteness of Sj in the second inequality. The constant a is positive and independent of Sj
and Sk.

By applying the relationship det(A)1/d ≤ 1
d tr(A) for a matrix A ∈ Rd×d by the

inequality of arithmetic and geometric means, we get for the right hand side of (5.18)
the inequality

det(Sk)
− b

2 exp(−1

2
tr(S−1

k Ψ)) ≤ (det(Sk))
− b

2 exp

(
−d+ 1

2

(
det(Ψ)

det(Sk)

) 1
d+1

)
(5.19)
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for some constant b > 0. The crucial part on the right side of (5.19) is when one of
the Sk approaches a singular matrix and thus the determinant approaches zero. This is
the situation where we reach the boundary of the parameter space Pd+1. We study this
issue in further detail: Without loss of generality , let k = 1 be the component where
we approach the boundary. Formally, let S∗1 be a singular positive semidefinite matrix of
rank r < d+ 1. Then, there exists a decomposition of the form

S∗1 = UTDU,

where D = diag(0, . . . , 0, λd−r, λd−r+1, . . . , λd+1), λl > 0 for l = d − r, . . . , d + 1 and U
an orthogonal square matrix of size d+ 1. Now consider the sequence S(m)

1 given by

S
(m)
1 = UTD(m)U, (5.20)

where

D(m) = diag(λ
(m)
1 , . . . , λ

(m)
d−r−1, λd−r, λd−r+1, . . . , λd+1)

with
(
λ

(m)
l

)
l=1,...,d−r−1

converging to 0 as m→∞.

Then, the matrix S(m)
1 converges to S(∗)

1 . Setting λ(m) =
d−r−1∏

1
λ

(m)
l and λ+ =

d+1∏
d−r

λl, the

right hand side of (5.19) reads

(
λ(m)λ+

)− b
2

exp

(
−d+ 1

2

(
det(Ψ)

λ+λ(m)

) 1
d+1

)
,

which converges to 0 as m → ∞ by the rule of L’Hôpital. This yields the required
boundedness from above of the objective L̂pen at the boundary of the parameter space.

We now have derived a bounded objective where we corrected the geometric mis-
match. This reformulation of the objective is used for Riemannian optimization. In the
next section, we formulate the Riemannian optimization problem and derive formulas for
the Riemannian gradient and the Riemannian Hessian.

5.2.2 Riemannian Setting, Gradient and Hessian

In the previous section, we have discussed some challenges to perform Riemannian opti-
mization on the standard maximum likelihood formulation for Gaussian mixture models.
We introduced a beneficial reformulation and a regularization term as suggested by Hos-
seini and Sra in [65, 66]. In the following, we specify the Riemannian setting for our
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modified optimization problem.

Problem:

Let θ = (θ1, . . . , θK) with θj = (Sj , ηj), Sj � 0, Sj ∈ Rd+1×d+1 and ηj ∈ R. For given
x1, . . . , xn ∈ Rd, Ψ ∈ Rd+1×d+1 and ζ > 0, we consider the Riemannian optimization
problem

max
θ∈MGMM

L̂pen(θ) = L̂(θ) + Pen(θ; Ψ, ζ), (5.21)

where

L̂(θ) =
n∑
i=1

log

 K∑
j=1

hi(θj)

 , hi(θj) =
exp(ηj)
K∑
k=1

exp(ηk)

exp
(

1
2

(
1− yTi S

−1
j yi

))
√

(2π)d det(Sj)

and

Pen(θ; Ψ, ζ) = −1

2

K∑
j=1

ρ log det(Sj) + β tr(ΨS−1
j ) + ζ

 K∑
j=1

ηj −K log

(
K∑
k=1

exp(ηk)

) .

Further,

MGMM =
K

×
j=1

(
Pd+1

)
× RK−1. (5.22)

Here, the observations y1, . . . , yn are related to x1, . . . , xn by (5.6), that is

yi =

(
xi

1

)
∈ Rd+1, i = 1, . . . , n.

Riemannian setting for Gaussian mixture models

The manifold of interest (5.22) is a product manifold which consists of K times the mani-
fold of positive definite matrices of dimension d + 1, denoted by Pd+1, and the natural
Euclidean manifold RK−1. With the specification of the manifold Pd+1 discussed in Chap-
ter 4, we state important Riemannian characteristics for our optimization problem (5.21).

The tangent space of Pd+1 is given by the set of symmetric matrices of dimension d+ 1,
see Section 4.2. Thus, the corresponding tangent space forMGMM reads

TθMGMM =
(
Sd+1

)K
× RK−1, (5.23)

where Sd+1 is given by (4.2).
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A metric on this tangent space TθMGMM can be constructed by metrics defined on
the component-wise tangent spaces Sd+1 and RK−1, see (2.2). Following the discussion
about Riemannian metrics for covariance matrices in Section 4.2, we choose the affine-
invariant metric (4.6) for the manifold Pd+1. For the Euclidean manifold RK−1, we choose
the standard Euclidean inner product. Let θ ∈MGMM and ξθ, χθ ∈ TθMGMM , that is

ξθ = (ξθ1 , . . . , ξθK ), ξθj = (ξSj , ξηj ) (5.24)

χθ = (χθ1 , . . . , χθK ), χθj = (χSj , χηj ). (5.25)

Then, we define an inner product 〈 · , · 〉θ on TθMGMM as

〈ξθ, χθ〉θ =
K∑
j=1

tr(S−1
j ξSjS

−1
j χSj ) + ξTη χη., (5.26)

according to Section 2.1.3.

A retraction Rθ(ξθ) mapping points from the tangent space TθMGMM back onto the
manifoldMGMM is given by

Rθ(ξθ) =

 (
Sj exp

(
S−1
j ξSj

))
j=1,...,K

(ηj + ξηj )j=1,...,K−1

 , (5.27)

where the first component is the exponential map with respect to the affine-invariant
metric for positive definite matrices, see (4.16), and the second component is the natural
exponential map on the Euclidean manifold.

The Riemannian gradient for Gaussian mixture models

We specify the Riemannian gradient for the problem (5.21) in the following based on the
inner product (5.26). For better readability, we fix the regularization parameters Ψ, ζ

in the penalizer Pen(θ; Ψ, ζ) in (5.14) and simply write Pen(θ), L̂pen(θ) for Pen(θ; Ψ, ζ),
L̂pen(θ; Ψ, ζ) in the following.

Theorem 5.6. For θ ∈ MGMM , the Riemannian gradient grad L̂pen(θ) ∈ TθMGMM of
problem (5.21) is given by

grad L̂pen(θ) =


(

1
2

(
n∑
i=1

f il (yiyi
T − Sl)− (ρSl − βΨ)

))
l=1,...,K(

n∑
i=1

f ir − αr
K∑
j=1

f ij + ζ (1−Kαr)

)
r=1,...,K−1

 , (5.28)
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where

f il =
hi(θl)
K∑
j=1

hi(θj)

, αr =
exp(ηr)
K∑
k=1

exp(ηk)

.

Proof. We find the Riemannian gradient of a function defined on a product manifold by
the component-wise gradient, that is the gradient can be expressed as

grad L̂pen(θ) =


(

gradSl L̂pen(θ)
)
l=1,...,K(

gradηr L̂pen(θ)
)
r=1,...,K−1


where gradSl L̂pen(θ) ∈ Sd+1, gradηr L̂pen(θ) ∈ R denotes the gradient with respect to Sl
ηr (at position Sl, ηr), respectively, that is we fix all variables different from Sl, ηr and
differentiate with respect to Sl, ηr, respectively.
We start with the variable η ∈ RK−1. Its gradient is the classical Euclidean gradient,
hence we get by using the chain rule

gradηr L̂(θ) =

n∑
i=1

(
K∑
k=1

hi(θk)

)−1 K∑
j=1

∂hi(θj)

∂ηl
=

n∑
i=1

K∑
j=1

f ij

1{j=r} − exp(ηr)
K∑
k=1

exp(ηk)


for r = 1, . . . ,K − 1, where 1{j=r} = 1 if j = r and 0, else.
For the derivative of the penalizer with respect to ηr, we get

gradηr Pen(θ) = ζ

1−K exp(ηr)
K∑
j=1

exp(ηj)

 .

The Riemannian gradient with respect to Sj under the described setting is given by
the projected Euclidean gradient onto the tangent space Sd+1, that is, see (4.12),

gradSl L̂pen(θ) =
1

2
Sl

(
gradeSl L̂pen(θ) +

(
gradeSl L̂pen(θ)

)T)
Sl. (5.29)

Here, gradeSl L̂pen(θ) denotes the Euclidean gradient of the Euclidean smooth extension
of L̂pen(θ) with respect to Sl. In a first step, we thus compute the Euclidean gradient
with respect to a matrix Sl. We obtain

gradeSl L̂(θ) = −1

2

n∑
i=1

f il (S
−1
l yiyi

TS−1
l − S

−1
l ), (5.30)
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where we used the Leibniz rule and the partial matrix derivatives

∂
(
det(Sl)

−1/2
)

∂Sl
= −1

2
(det(Sl))

−1/2S−1
l ,

∂ exp
(
−1

2y
T
i S
−1
l yi

)
∂Sl

=
1

2
exp

(
−1

2
yTi S

−1
l yi

)
S−1
l yiyi

TS−1
l

which holds by the chain rule and the fact that S−1
l is symmetric. Using the relationship

(5.29) and using (5.30) yields the Riemannian gradient with respect to Sl. It is given by

gradSl L̂(θ) =
1

2

n∑
i=1

f il (yiyi
T − Sl).

Analogously, we compute the Euclidean gradient of the matrix penalizer ψ(Sj ,Φ) and use
the relationship (5.29) to get the Riemannian gradient of the matrix penalizer (5.15).

A nonlinear Riemannian conjugate gradient and a Riemannian LBFGS method for
Gaussian mixture models without penalization term have been proposed in the work
[65] by Hosseini and Sra. The authors experimentally showed that these methods could
compete with the Expectation Maximization algorithm. In their follow-up work [66],
the authors introduced a Riemannian stochastic gradient descent method based on the
penalized reformulated problem (5.21), allowing for improved scalability if the number
of observations n increases. However, the methods suggested by the authors do not use
exact second-order information via the Riemannian Hessian. Besides, using methods like
the nonlinear conjugate gradient method or the LBFGS method in a Riemannian setting
requires vector transport (2.25) which potentially goes along with additional numerical
costs. A contribution of this thesis is the establishment of an explicit formula for the
Hessian which allows for Newton’s method. Newton-type methods are in general expected
to show better convergence rates than the investigated methods, see [2, 105]. We derive
a formula for the Riemannian Hessian in the following.

Riemannian Hessian for Gaussian Mixture Models

The following theorem states a formula for the Hessian of the penalized reformulated
problem (5.21).

Theorem 5.7. Let θ ∈ MGMM and ξθ ∈ TθMGMM . The Riemannian Hessian of L̂pen

along the direction ξθ is given by

Hess L̂pen(θ)[ξθ] = (ζS , ζη) ∈ TθMGMM ,
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where ζS = (ζS1 , . . . , ζSk), ζη = (ζη1 , . . . , ζηK−1) and

ζSl = −1

4

 n∑
i=1

fl
i

Cli −
ali − K∑

j=1

fj
iaj

i

 (yiyi
T − Sl)

− β (ΨSl−1ξSl + ξSlSl
−1Ψ

) ,

(5.31)

ζηr =
1

2

n∑
i=1

fri(ari − K∑
j=1

fj
iaj

i

)
− 2αr

ξηr − K−1∑
j=1

αjξηj

+Kζαr

ξηr − K−1∑
j=1

αjξηj


(5.32)

for l = 1, . . . ,K, r = 1, . . . ,K − 1 and

al
i = yi

TSl
−1ξSlSl

−1yi − tr(S−1
l ξSl) + 2ξηl , fl

i =
hi(θl)
K∑
j=1

hi(θj)

, αr =
exp(ηr)
K∑
k=1

exp(ηk)

,

Cl
i = yiyi

TSl
−1ξSl + ξSlSl

−1yiyi
T , ξηK ≡ 0.

Proof. From the relationship (2.5), we get

Hess L̂pen(θ)[ξθ] = ∇θ grad L̂pen(θ)

=

((
∇pdξSl grad L̂pen(θ)

)
l=1,...,K

,
(
∇eξηr grad L̂pen(θ)

)
r=1,...,K−1

)T
,

(5.33)

where ∇pdξSl denotes the Riemannian connection for positive definite matrices specified in
(4.13) and ∇eξηr denotes the classical Euclidean vector field differentiation along direction
ξηr . We observe that

Hess L̂pen(θ)[ξθ]

=
((
∇pdξSl grad L̂(θ) +∇pdξSl grad Pen(θ)

)
l
,
(
∇eξηr grad L̂(θ) +∇eξηr grad Pen(θ)

)
r

)T
.

(5.34)

We will now specify the single components of (5.34). In the following, we derive the ex-
pressions ∇(pd)

ξSl
grad L̂(θ) and ∇eξηr grad L̂(θ) in detail, the derivation of ∇(pd)

ξSl
grad Pen(θ)

and ξeηr grad Pen(θ) is straightforward.

We denote the gradient grad L̂(θ) at position (with respect to) Sl, ηr by gradSl L̂pen(θ),
gradηr L̂pen(θ), respectively, as in the proof of Theorem 5.6.
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For the Hessian of L̂ at position ηr, we observe that the Riemannian connection ∇eξηr
for ξηr ∈ R is the classical vector field differentiation. We obtain

∇eξηr grad L̂(θ) =

K∑
j=1

DSj (gradηr L̂(θ))[ξSj ] +

K−1∑
j=1

Dηr(gradηj L̂(θ))[ξηj ], (5.35)

where DSj ( ·)[ξSj ], Dηr( ·)[ξηr ] denote the classical directional derivatives with respect to
Sj , ηj along the directions ξSj and ξηj , respectively.
For the first part on the right hand side of (5.35), we have

K∑
j=1

DSj (gradηr L̂(θ))[ξSj ] =
1

2

n∑
i=1

[
hi(θr)
K∑
k=1

hi(θk)

(
yi
TSr

−1ξSrSr
−1yi − tr(S−1

r ξSr)

−
K∑
j=1

hi(θj)
K∑
k=1

hi(θj)

(yi
TSj

−1ξSjSj
−1yi − tr(S−1

j ξSj ))

)]

and for the second part

K−1∑
j=1

Dηj (gradηr L̂(θ))[ξηj ] =
n∑
i=1

[(
hi(θr)
K∑
k=1

hi(θk)

− αr
)
ξηr + αr

K−1∑
j=1

αjξηj

− hi(θr)
K∑
k=1

hi(θj)

K−1∑
j=1

hi(θj)
K∑
k=1

hi(θj)

ξηj

]

by applying the chain rule, the Leibniz rule and the relationship αr = exp(ηr)
K∑
k=1

exp(ηk)

.

Plugging the terms into (5.35), this yields the expression for ζηr in (5.32) together with
a straightforward derivation for the penalization term.

For the Hessian with respect to the matrices Sl, we use the Riemannian connection
∇pd for the manifold of positive definite matrices with the affine-invariant metric as
specified in (4.13). Hence, for the first part in (5.34), we get

(
∇(pd)
ξSl

grad L̂(θ)
)
l

=

( K∑
j=1

DSj (gradSl L̂(θ))[ξSj ] +
K−1∑
j=1

Dηj (gradSl L̂(θ))[ξηj ]

− 1

2

(
gradSl L̂(θ)S−1

l ξSl + ξSlS
−1
l gradSl L̂(θ)

))
l

. (5.36)
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After applying the chain rule and the Leibniz rule, we obtain

K∑
j=1

DSj (gradSl L̂(θ))[ξSj ] = −1

4

n∑
i=1

f il

[
2ξSl −

(
(yi

TSl
−1ξSlSl

−1yi − tr(Sl
−1ξSl))

+
K∑
j=1

f ij(yi
TSj

−1ξSjSj
−1yi − tr(Sj

−1ξSj ))

)
(yiyi

T − Sl)
]

(5.37)

and

K−1∑
j=1

Dηj (gradSl L̂(θ))[ξηj ] =
1

2

n∑
i=1

 hi(θl)
K∑
k=1

hi(θj)

(
ξηl −

K−1∑
j=1

hi(θj)
K∑
k=1

hi(θk)

ξηk

) (yiyi
T − Sl).

(5.38)

We plug (5.37), (5.38) into (5.36) and use the Riemannian gradient (5.28) at position
Sl for the last term in (5.36). After some rearrangement of terms and an analogous
derivation for the additive penalizer, we obtain the expression for ζSl in (5.32).

With the availabity of an explicit formula for the Riemannian Hessian, we can build
richer Newton-type algorithms for Gaussian mixture models. Considering the formulas
derived for the gradient and the Hessian, we observe that when an observation xi has low
probability of being drawn from a Gaussian component l, that is a low value of hi(θl)
in (5.11), it has a neglectable impact on the gradient and Hessian at the l-th position.
This is because it results in a factor f il which is close to 0. This is an analogy to the
EM algorithm (Algorithm 8), where a low responsibility of cluster l for observation xi

results in xi having no remarkable impact on estimating the Gaussian parameters of the
l’th component (M-step), see Appendix B.

Equipped with the formulas for higher-order information derived in this section, we
introduce a Riemannian Newton trust-region algorithm for fitting Gaussian mixture mod-
els in the following.

5.3 Riemannian Newton Trust-Region algorithm for GMMs

The explicit expression for the Riemannian Hessian stated in Theorem 5.7 allows us to
apply Riemannian Newton-type algorithms for the fitting of Gaussian mixture models.
However, the Riemannian Newton method comes with a couple of limitations explained
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in Section 2.2.4, one of which is that Newton’s method is not globally convergent in
case the Hessian is not positive definite in every point [105]. Since we cannot immedi-
ately see where the Riemannian Hessian (5.31) - (5.32) is positive definite, we need some
safeguarding strategy like a trust-region approach. We consider a Riemannian Newton
trust-region approach (Algorithm 3), where we use the Riemannian gradient and the
Riemannian Hessian derived in the precedent section. For the subproblem (2.21), we use
the truncated conjugate gradient method (Algorithm 4) with the inner product given by
(5.25). In the following, we first consider theoretical convergence of R-NTR for our prob-
lem of fitting Gaussian mixture models and then discuss some practical considerations
that turned out to be beneficial in the experiments conducted.

5.3.1 Convergence of R-NTR for Gaussian Mixture Models

To show the global convergence of the Riemannian Newton trust-region problem theo-
retically, we must ensure that certain regularity requirements are fulfilled, see Theorem
2.31. Let

{θt}t∈N0 =
{(

(St1, . . . , S
t
K), ηt

)}
t∈N0

be a sequence generated by Algorithm 3. By Theorem 5.5, the matrices Stj are bounded
away from the boundary of Pd+1 and remain in the interior of Pd+1. In order to apply
Theorem 2.31, we must further ensure that the matrices Stj do not get arbitrarily large,
i.e. that for each t = 0, 1, . . . , there exists 0 < τ t < C such that

‖Stj‖ ≤ τ t‖Ψ‖, (5.39)

where ‖·‖ is an arbitrary matrix norm on R(d+1)×(d+1), Ψ is as in (5.15) and C > 0 is a
constant. Further, assume that there exists ε > 0 such that

αtj > ε (5.40)

for all t = 0, 1, . . . . With this assumption, convergence to a stationary point is ensured:

Theorem 5.8. Consider the penalized reformulated objective L̂pen from (5.17). Let
{θt}t∈N0 be a sequence generated by the Riemannian Newton trust-region Algorithm (Al-
gorithm 3), where the quadratic subproblem is solved by truncated CG (Algorithm 4).
Assume that there exists C > 0, ε > 0 such that for each t = 0, 1, . . . there exists τ t < C

such that

‖Stj‖ ≤ τ t‖Ψ‖, αtj > ε (5.41)
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for all j = 1, . . . ,K with Ψ as in (5.15). Then, it holds that

lim
t→∞

grad L̂pen(θt) = 0. (5.42)

Proof. The proof can be found in Appendix B.3.

Note that the assumption (5.41) is a strong assumption and we cannot ensure conver-
gence to a critical point by Theorem 5.8 if (5.39) and (5.40) are not fulfilled. However,
for Gaussian mixture models, the Stj are covariance matrices related to the j-th Gaussian
and thus depend on the concrete sample x1, . . . , xn. From a practical viewpoint, it is thus
very unlikely that the matrices Stj become arbitrarily large such that (5.39) is deemed
a reasonable assumption. The matrix Ψ is a prior belief about the covariance matrices
of each cluster and a typical choice is that Ψ is set to a fraction of the overall sample
covariance, see e.g. [66]. The assumption (5.40) can be considered as a lower bound of
the proportion of each Gaussian, that is we assume that in each iteration, we have enough
mass in each Gaussian. In the numerical experiments conducted, we observed numerical
convergence to critical points, indicating that both (5.39) and (5.40) were fulfilled. Yet,
to apply the theoretical global convergence result from Theorem 2.31, the assumption
(5.39) and (5.40) are required and should be checked in each iteration.

The motivation for using a Riemannian Newton trust-region algorithm is its fast local
convergence close to a local optimum. Theorem 2.32 states that the local convergence is
superlinear close to an optimum if the Hessian satisfies a local Lipschitz continuity con-
dition. For the problem of fitting Gaussian mixture models, we observe that the derived
Hessian in Theorem 5.7 is continuously differentiable. Further, a local maximizer of the
problem (5.21) is in the interior ofMGMM according to Theorem 5.5 such that we can
find a compact ball around a local nondegenerate maximizer θ∗. Thus, the extreme value
theorem [77, Section 2.3] yields the local Lipschitz continuity such that all requirements
of Theorem 2.32 are fulfilled. Therefore, if θ∗ is a local nondegenerate maximizer of
(5.21), we can find a neighborhood around θ∗ where we have local superlinear conver-
gence.

In the following, we discuss some practical considerations which turned out to be
relevant for the implementation.

5.3.2 Practical Considerations

As outlined before in Chapter 4, tool support for Riemannian Optimization methods on
the manifold of positive definite matrices is available. For the programming language
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Python, the toolkit pymanopt [136] comes with an implementation of the Riemannian
trust-region method and a truncated conjugate gradient method. Although the toolbox
is especially helpful in case the gradient and Hessian is not available due to its support for
automatic differentiation, the user can explicitly specify a formula for the gradient and
Hessian, making it applicable for our framework with the Hessian (5.31)-(5.32). However,
many terms in our problem occur both in the objective and the gradient as well as the
Hessian. For this reason, we decided to implement a Riemannian Newton trust-region
algorithm independent of the toolbox pymanopt, but followed the implementation frame-
work of the pymanopt implementation.1

Choice of parameters for the R-NTR algorithm

The Riemannian trust-region algorithm (Algorithm 3) comes with a couple of hyperpa-
rameters that need to be set in advance. The parameter study in [53] and [34, Chapter
17] propose to set the thresholds for assessing the model quality close to their boundaries,
that is ω1 close to 0 and ω2 close to 1. Further, if ρt > ω2, it is suggested by [53] to
set the expansion parameter τ2 higher than 2. Following these suggestions, we chose the
hyperparameters of Algorithm 3 to be ρ′ = 0.1, ω1 = 1e − 3, ω2 = 0.99, τ1 = 0.25 and
τ2 = 3.5. The initial trust-region radius ∆0 is set by using the method suggested by [119]
that is based on the model trust along the steepest-descent direction.

Stopping criterion of the R-NTR algorithm

A typical stopping criterion for the EM algorithm is if the increase in average log-
likelihood between two subsequent iterates falls below some threshold [94, Section 4.8].
This cannot be immediately transferred to the Riemannian trust-region algorithm be-
cause if we reject a tentative next iterate, we remain in the same point θ ∈ MGMM

thus yielding the same average log-likelihood (see Algorithm 3). For this reason, we only
terminated the proposed Riemannian Newton trust-region algorithm if the difference be-
tween the average log-likelihood difference fell below the predefined threshold and we
did not reject the tentative direction in this iteration. In addition, we observed that
for badly scaled problems, we got stuck in regions where the trust-region radius was
very small which resulted in tiny steps. For accepted tentative directions returned by
the subproblem, this resulted in a termination of the algorithm although the returned

1At the time of the conduction of numerical experiments, the pymanopt version up to date (version
0.2.5) does not support such a reuse of terms for the calculation of objective, gradient and Hessian.
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solution was far from a local optimum. Thus, we added the stopping condition that the
Riemannian gradient in its Riemannian norm is close enough to zero. This condition is
also a typical termination criterion of the classical (Riemannian) trust-region algorithm.
We stop the R-NTR algorithm when all these conditions are fulfilled in order to ensure
comparability with EM or when a prespecified number of iterations is reached.

Choice of preconditioner

In order to improve the convergence speed of the truncated conjugate gradient method, we
used a preconditioner based on a LBFGS update as proposed by [100]: At an iteration t of
Algorithm 3, we use the gradients computed in tCG (that is the residuals rn+1) and store
an inverse Hessian approximation via the LBFGS formula. The returned inverse Hessian
approximation is then used for the minimization of the next subproblem m̂θt+1 . The
use of such preconditioners has been suggested by [100] for solving a sequence of slowly
varying systems of linear equations and gave a speed-up in convergence for our method.
To be in line with a Riemannian framework, one would need to map the inverse Hessian
approximations returned in every subproblem to the respective tangent space with the
vector transport (4.17) to use it in the next iteration as a preconditioner. However, this
would come with an additional high cost. Besides, the product manifold MGMM is an
open submanifold, for which reason the Hessian inverse approximation returned after
solving the subproblem can be assumed to be a good approximation for a subsequent
iterate as long as the step is small enough. For these reasons, we did not perform parallel
transport on the inverse Hessian approximation before using it as a preconditioner in the
next iteration. This performed well for the R-NTR method. For building the inverse
Hessian approximations, we set the number of residual (gradient) storage equal to 5 for
our experiments [105, Section 9.1].

5.4 Numerical Experiments

In this section, we provide numerical results of the proposed Riemannian Newton trust-
region algorithm for Gaussian mixture models on both simulated and real-world data
sets. We compare our method with the penalized Expectation Maximization algorithm
(Appendix B.2, Algorithm 9) and with the Riemannian LBFGS method proposed by Hos-
seini and Sra in [65]. For the latter, we use the MixEst package [64] written by Hosseini
and Mash’al in Matlab. We initialized all methods by running k-means++ algorithm
[11] and setting the initial values α0

j , µ
0
j ,Σ

0
j to the sample proportion, the sample mean

and the sample covariance, respectively. We stopped all methods when the difference in
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average penalized log-likelihood for two subsequent iterates fell below 1e− 10 (with the
additional aforementioned conditions for R-NTR, see Section 5.3.2) or when the number
of iterations exceeded 1500 for clustering and 3000 for density approximation. For the
parameters of the penalization terms (5.14), we chose the parameters ρ = κ = 0.01,
α = β = 1, ζ = 1, the matrix Λ was set to 0.01 times the sample covariance matrix of
the x1, . . . , xn and λ was set to the sample mean according to [66].

All experiments in this chapter were performed in Python version 3.7 on an Intel Xeon
CPU X5650 at 2.67 GHz with 24 cores and 20GB RAM.

Typical data mining tasks performed with Gaussian mixture models in practice are
clustering and probability density approximation. We present results for both tasks in
the following sections, Section 5.4.1 and Section 5.4.2.

5.4.1 Clustering with Gaussian Mixture Models

Using Gaussian mixture models for clustering is very popular as we can equip each single
observation i with a probability rij that it belongs to a specific cluster j. When many
data points have a non-negligible probability among more than one cluster, this means
that we have a high overlap between the clusters and a high share of hidden information.
In such a case, the Expectation Maximization algorithm converges slowly as outlined in
Chapter 3. We tested our method for clustering problems with different levels of overlap
with the simulation study described in what follows.

Simulation study

We simulate data following a Gaussian mixture model with different level of overlaps.
For this, we consider the simulation design as proposed in [37, 65]. The K Gaussian
distributions are chosen such that their means satisfy

‖µi − µj‖2 ≥ cmax
i,j

(tr(Σi), tr(Σj)) i, j = 1, . . . ,K, i 6= j,

where c models the degree of separation (see Figure 5.1) Additionally, a low eccentric-
ity (or condition number) of the covariance matrices has an impact on the performance
of Expectation Maximization [37], for which reason we also consider different values of

eccentricity e =

√(
λmax(Σj)
λmin(Σj)

)
, as this is a measure of how much the data scatters. We
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followed the implementation of the MixEst toolbox [64] to generate the data.

(a) c = 0.2 (b) c = 1 (c) c = 5

Figure 5.1: Impact of the parameter c as a measure for cluster separation:
low (5.1a), mid (5.1b) and high (5.1c) separation

We test our method on 20 and 40-dimensional data and an equal distribution among
the clusters, i.e. we set αj = 1

K for all j = 1, . . . ,K. Although it is known that unbal-
anced mixing coefficients αj result in slower EM convergence, this effect is less strong
than the level of overlap [102]. For this reason, we here focus on balanced clusters.

We first take a look at the 20-dimensional data sets, for which we simulated n = 1000

data points for each parameter setting. In Table 5.1a, we show the results for very
scattered data, that is e = 1. We see that, like predicted by literature, the Expecta-
tion Maximization converges slowly in such a case. This effect is even stronger with a
lower separation constant c. The effect of the eccentricity becomes even more clear when
comparing the results of Table 5.1a with Table 5.1b. Also the Riemannian algorithms
converge more slowly for lower values of eccentricity e and separation levels c. However,
they seem to suffer less from hidden information than Expectation Maximization. The
proposed Riemannian Newton trust-region algorithm (R-NTR) beats the other methods
in terms of runtime and number of iterations (see Figure 5.2a). The Riemannian LBFGS
(R-LBFGS) method by [65] also shows faster convergence than EM, but the gain of
second-order information available by the Riemannian Hessian is obvious. However, the
R-LBFGS results created by the MixEst toolbox [64] show long runtimes compared to
the other methods. We see from Figure 5.2b that the average penalized log-likelihood is
slightly higher for R-LBFGS in some experiments. Still, the objective evaluated at the
point satisfying the termination criterion is at a competitive level in all methods (see
also Table 5.1a).
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Table 5.1: Simulation results of 20 runs for dimensions d = 20, number of
components K = 5 for different values of eccentricity

(a) eccentricity e = 1

EM R-NTR R-LBFGS

c=0.2 Iterations 295 79.4 113.4
Mean time (s) 3.8 2.7 16.0
Mean ALL -42.64 -42.63 -42.63
MSE weights 0.0014 0.0014 0.008
MSE means 0.14 0.14 0.13
MSE cov 2.27 2.5 2.28

c=1 Iterations 262 47.5 102.7
Mean time (s) 3.7 2.1 14.3
Mean ALL -41.2 -41.21 -41.21
MSE weights 0.009 0.010 0.008
MSE means 0.23 0.22 0.24
MSE cov 0.67 0.56 0.7

c=5 Iterations 208.8 54.2 92.4
Mean time (s) 2.7 2.1 13.0
Mean ALL -36.98 -36.98 -36.99
MSE weights 0.003 0.003 0.008
MSE means 0.15 0.17 0.16
MSE cov 9.81 7.1 10.19

(b) eccentricity e = 10

EM R-NTR R-LBFGS

c=0.2 Iterations 66.2 16 33.2
Mean time (s) 0.9 0.8 4.0
Mean ALL -60.06 -60.06 -60.07
MSE weights 3e-05 3e-05 0.008
MSE means 0.07 0.07 0.07
MSE cov 0.31 0.23 0.31

c=1 Iterations 56.6 17.4 30
Mean time (s) 0.7 0.8 3.6
Mean ALL -62.82 -62.82 -62.83
MSE weights 3e-05 3e-05 0.008
MSE means 0.09 0.09 0.09
MSE cov 0.17 0.16 0.17

c=5 Iterations 43.1 14.7 29
Mean time (s) 0.6 0.7 3.4
Mean ALL -61.04 -61.04 -61.05
MSE weights 4e-05 4e-05 0.008
MSE means 0.08 0.08 0.08
MSE cov 0.13 0.14 0.13

When increasing the eccentricity (Table 5.1b), we see that the Riemannian methods
still converge faster than EM in terms of number of iterations, but our method is not
faster than EM in terms of runtime. This is because EM benefits from very low per-
iteration costs and the gain in number of iterations is less strong in this case. However,
we see that the Riemannian Newton trust-region method is not substantially slower. Fur-
thermore, the average log-likelihood values (ALL) are more or less equal in all methods,
so we might assume that all methods stopped close to a similar optimum. This is also
underlined by comparable mean squared errors (MSE) to the true parameters from which
the input data has been sampled from. In average, Riemannian Newton trust-region gives
the best results in terms of runtime and number of iterations.

In Table 5.2a, we show results for dimension d = 40 and low eccentricity (e = 1) and
the same simulation protocol as above (in particular, n = 1000). We observed that with
our method, we only performed very few Newton-like steps and instead exceeded the
trust-region within the tCG many times, leading to poorer steps (see also Figure 5.3b).
One possible reason is that the number of parameters increases with d quadratically, that
is in O(Kd2), while at the same time we did not increase the number of observations
n = 1000. If we are too far from a local optimum and the clusters are not well initial-
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(a) Average penalized log-likelihood reduction (b) Average penalized log-likelihood

Figure 5.2: Average penalized log-likelihood reduction (a) and average pe-
nalized log-likelihood (b) for highly overlapping clusters: d = 20, K = 5,
e = 1, c = 0.2.

ized due to few observations, the factor f il in the Hessian (Theorem 5.7) becomes small,
leading to large potential conjugate gradients steps (see Algorithm 4). Although this
affects the E-step in the Expectation Maximization algorithm as well, the effect seems
to be much severe in our method. To underline this, we show simulation results for a
higher number of observations, that is, n = 10.000, in Table 5.2b with the same true
parameters αj , µj ,Σj as in Table 5.2a. As expected, the superiority in runtime of our
method becomes visible: The R-NTR method beats EM with a factor of 4. Just like
for the case of a lower dimension d = 20, the mean average log-likelihood and the errors
are comparable between our method and EM, whereas R-LBFGS shows slightly worse
results although it attains comparable runtimes to our method in this setting. We thus
see that the ratio between number of observations and number of parameters must be
large enough in order to benefit from the Hessian information in our method.

The simulation study performed shows that the use of the explicit formula for the
Riemannian Hessian shows better runtimes and faster convergence than state-of the art
methods for Gaussian mixture models if the number of observations n is large enough
compared to the number of dimensions d. This effect is especially strong for settings
where we have a high overlap between clusters, as in this case EM converges very slow.
To further strengthen these findings, we also tested the R-NTR method on some real-
world data sets.
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(a) Average penalized log-likelihood reduction (b) Average penalized log-likelihood

Figure 5.3: Average penalized log-likelihood reduction (a) and average pe-
nalized log-likelihood (b) for overlapping clusters: d = 40, K = 5, e = 1,
c = 1.

Table 5.2: Simulation results of 20 runs for dimensions d = 40, number of
componentsK = 5 and eccentricity e = 1 for different number of observations

(a) n = 1000 observations

EM R-NTR R-LBFGS

c=0.2 Iterations 57.4 27.9 40.7
Mean time (s) 1.3 2.3 6.7
Mean ALL -84.7935 -84.79 -84.7895
MSE weights 0.00023 0.00023 0.008
MSE means 0.104 0.09 0.104
MSE cov 0.282 0.196 0.281

c=1 Iterations 61 29 48.6
Mean time (s) 1.4 2.5 8.3
Mean ALL -82.3395 -82.3384 -82.3358
MSE weights 0.0002 0.0002 0.008
MSE means 0.076 0.084 0.076
MSE cov 0.139 0.128 0.14

c=5 Iterations 81.8 28.8 49.2
Mean time (s) 1.8 2.2 8.6
Mean ALL -92.4886 -92.4874 -92.4925
MSE weights 0.00013 0.00013 0.008
MSE means 0.08 0.095 0.08
MSE cov 0.116 0.133 0.117

(b) n = 10.000 observations

EM R-NTR R-LBFGS

c=0.2 Iterations 350.4 33.2 69.4
Mean time (s) 53.621 12.455 15.449
Mean ALL -86.5717 -86.5718 -86.5731
MSE weights 0.00043 0.00043 0.008
MSE means 0.093 0.086 0.093
MSE cov 0.207 0.195 0.206

c=1 Iterations 495.6 63.6 107.3
Mean time (s) 79.955 20.739 23.153
Mean ALL -84.3783 -84.3779 -84.3797
MSE weights 0.00062 0.00065 0.008
MSE means 0.075 0.064 0.076
MSE cov 0.075 0.038 0.075

c=5 Iterations 260.4 28.8 54
Mean time (s) 42.6 10.434 11.692
Mean ALL -94.5592 -94.5591 -94.5603
MSE weights 0.00012 0.00013 0.008
MSE means 0.071 0.086 0.071
MSE cov 0.045 0.053 0.045

Real-world data

We tested our method on some real-world data sets from UCI Machine Learning repos-
itory [46] besides the simulated data sets. For this, we normalized the data sets and
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tested the methods for different values of K.

Combined Cycle Power Plant Data Set [75]. In Table 5.3, we show the results
for the combined cycle power plant data set. Although the dimension is moderate,
we see that we can beat EM both in terms of runtime and number of iterations for
K = 5, K = 10, K = 15 by applying the Riemannian Newton trust-region method. This
underlines the results previously shown for simulation data. The gain by our method
becomes even stronger when we consider a large number of components K where the
overlap between clusters is large. We can reach a local optimum with our method in up
to 15 times less iterations and a time saving of factor close to 4.

Table 5.3: Results of (normalized) combined cycle power plant data set for
different number of components. Number of observations n = 9568, dimen-
sions d = 5.

EM R-NTR R-LBFGS

K = 2 Time (s) 0.40 0.63 2.38
Iterations 56 19 34
ALL -4.24 -4.24 -4.24

K = 5 Time (s) 3.29 2.26 7.50
Iterations 239 48 70
ALL -4.01 -4.01 -4.01

K = 10 Time (s) 31.72 4.28 23.40
Iterations 1097 58 110
ALL -3.83 -3.82 -3.83

K = 15 Time (s) 28.27 6.79 35.77
Iterations 677 67 111
ALL -3.75 -3.75 -3.75

MAGIC Gamma Telescope Data Set [20]. We also study the behaviour on a data
set with higher dimensions and a larger number of observations with the MAGIC Gamma
Telescope Data Set, see Table 5.4. Here, we can also observe a lower number of iterations
in the Riemannian Optimization methods. Similarly to the combined cycle power plant
data set, this effect becomes even stronger for a high number of clusters where the ratio
of hidden information is large. Our method shows by far the best runtimes. For this data
set, the average log-likelihood values are very close to each other except for K = 15 where
the ALL is worse for the Riemannian methods. It seems that in this case, the R-NTR
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and the R-LBFGS methods end in different local maxima than the EM. However, for
all of the methods, convergence to global maxima is theoretically not ensured and for
all methods, a globalization strategy like a split-and-merge approach [84] might improve
the final ALL values. As the Magic Gamma telescope data set is a classification data
set with 2 classes, we further report the classification performance in Table 5.5a. We
see that the geodesic distance defined on the manifold and the weighted mean squared
errors (wMSE) are comparable between all three methods. In Table 5.5b, we also report
the adjusted rand index being a cluster validation measure [70] for all methods. Here,
a value of 1 between two methods means that all data points are assigned to the same
clusters. Although the clustering performance is very low compared to the true class
labels (first row), we see that it is equal among the three methods.

Table 5.4: Results of (normalized) magic gamma telescope data set for differ-
ent number of components. Number of observations n = 19020, dimensions
d = 11.

EM R-NTR R-LBFGS

K = 2 Time (s) 1.18 0.57 1.52
Iterations 30 6 17
ALL -7.81 -7.81 -7.81

K = 5 Time (s) 3.96 1.32 5.37
Iterations 65 9 34
ALL -6.53 -6.53 -6.53

K = 10 Time (s) 36.00 6.99 20.78
Iterations 293 34 77
ALL -6.02 -6.02 -6.02

K = 15 Time (s) 56.24 12.61 50.52
Iterations 354 38 115
ALL -5.39 -5.54 -5.51

We show results on additional real-world data sets in Appendix B.
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Table 5.5: Model quality for (normalized) magic gamma telescope data set
for K = 2

(a) geodesic distance and weighted MSE

EM R-NTR R-LBFGS

distance 4.783910 4.783934 4.783922
wMSE weight 0.000034 0.000034 0.000034
wMSE mean 1.883762 1.883765 1.883759
wMSE cov 8.214824 8.214840 8.214828

(b) adjusted rand index

truth EM R-NTR R-LBFGS

truth 1 0.06 0.06 0.06
EM 1 1.00 1.00
R-NTR 1 1.00
R-LBFGS 1

5.4.2 Density Estimation with Gaussian Mixture Models

Besides the task of clustering (multidimensional) data, Gaussian mixture models are
also well-known to serve as probability density estimators for unknown smooth density
functions [123]. We describe the basic idea of probability density estimation in the fol-
lowing. We are given observations x1, . . . , xn and the goal is to find a probability density
function that fits the data well. For the problem of probability density estimation, the
true distribution family from which the observations x1, . . . , xn are drawn is unknown
and a generative model is used. Typical approaches of probability density estimation
are (nonparametric) kernel density estimation [101, Section 14.7] or using a parametric
approach like a Gaussian mixture model with sufficient components [123].

In this section, we consider Gaussian mixture models for the purpose of probability
density estimation. For fitting the parameters of a Gaussian mixture model for given
observations x1, . . . , xn, we consider the Riemannian Newton trust-region method, the
EM algorithm and the R-LBFGS method and compare the approximation power of the
resulting Gaussian mixture models with each other.

To analyze this, observations x1, . . . , xn were generated according to a bivariate Beta-
Gamma distribution (i.e. d = 2) with parameters αBeta = 0.5, βBeta = 0.5, aGamma = 1,
βGamma = 1. The joint distribution was characterized by a Gaussian copula [74, Section
1.3]. The resulting density function surface is visualized in Figure 5.4.

We simulated 100 data sets each containing n = 1000 realizations of the Beta(0.5,0.5)-
Gamma(1, 1) distribution. For each of the data sets, we fitted a Gaussian mixture model
with the Riemannian Newton trust-region method, the EM and the R-LBFGS method.
To investigate the individual approximation power, we considered different values of
K and compared the (approximated) root mean integrated squared error (RMISE) to
compare the model quality obtained with the individual optimizers against each other.
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Figure 5.4: Probability density of bivariate Beta(0.5,0.5)-Gamma(1, 1) dis-
tribution.

The RMISE is a measure of approximation power for a probability density estimator f̂
to a known probability density function f and is given by [54]

RMISE(f̂) =

√
E
(∫ (

f(x)− f̂(x)
)2
dx

)
, (5.43)

where f denotes the underlying true density, i.e. in our application Beta(0.5,0.5)-
Gamma(1, 1), and f̂ the density approximator (GMM). In order to compute the RMISE
(5.43), we consider N equidistant grid points gr and compute [54]

RMISE(f̂) ≈

√√√√ 1

N

N∑
r=1

(
f(gr)− f̂(gr)

)2
δ2
g

with grid width δg. For our simulation study, we chose 16384 grid points in the box
[0, 5] × [0, 10]. We show the results in Table 5.6, where we fit the parameters of the
GMM by the method introduced in this thesis (R-NTR) and compare against GMM
approximations where we fit the parameters with EM and R-LBFGS, respectively.

We observe that the RMISE shows comparable values for all methods. Just as for
the clustering results in Subsection 5.4.1, we have much lower runtimes for R-NTR and
a much lower number of total iterations. This is a remarkable improvement especially
for a larger number of components. We also observe that in all methods, the mean
average log-likelihood (ALL) of the training data sets with 1000 observations attains
higher values with an increasing number of components K. This supports the fact that
the approximation power of GMMs for a continuous density function is expected to
become higher if we add additional Gaussian components [123, 52]. On the other hand,
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Table 5.6: Simulation results averaged over 100 simulation runs for approxi-
mation of a Beta(0.5,0.5)-Gamma(1, 1) distribution by a Gaussian mixture
models with different values of K. Parameter Estimation by EM, R-NTR
and R-LBFGS.

EM R-NTR R-LBFGS

K=2 Mean RMISE 0.00453 0.00453 0.00453
SE RMISE 0.00017 0.00017 0.00017
Iterations 113 27.9 25.9
Mean time (s) 0.2002 0.1532 0.9877
Mean ALL -1.53103 -1.52953 -1.53103

K=5 Mean RMISE 0.00565 0.00565 0.00567
SE RMISE 0.00028 0.00024 0.00025
Iterations 346.5 47 72.9
Mean time (s) 1.0893 0.5202 6.7941
Mean ALL -1.22852 -1.22108 -1.22912

K=10 Mean RMISE 0.00639 0.00643 0.00643
SE RMISE 0.00025 0.00027 0.00029
Iterations 623.1 56.8 112.2
Mean time (s) 3.4226 1.7108 20.4754
Mean ALL -1.06821 -1.02844 -1.06781

K=15 Mean RMISE 0.00667 0.00669 0.0067
SE RMISE 0.00026 0.00027 0.00026
Iterations 791.5 62.9 135.2
Mean time (s) 6.1649 2.5701 37.6
Mean ALL -1.02677 -0.95907 -1.02604

K=20 Mean RMISE 0.00681 0.00683 0.00685
SE RMISE 0.00026 0.00025 0.00026
Iterations 874.8 66.9 144.6
Mean time (s) 8.7694 3.3773 55.6337
Mean ALL -1.02029 -0.9202 -1.02056

the RMISE (which is not based on the training data) increased in our experiments with
larger K’s. This means that we are in a situation of overfitting [101, Section 1.4.7].
The drawback of overfitting is well-known for EM [8] and we also observed this for the
R-NTR and the R-LBFGS methods. However, the RMISE are comparable and so none
of the methods outperforms another substantially in terms of overfitting. This can also
be seen from Figure 5.5 showing the distribution of the pointwise errors for K = 2 and
K = 5. Although the R-LBFGS method shows higher error values on the boundary of
the support of the distribution forK = 5, the errors show similar distributions among the
three methods at a comparable level. We propose methodologies such as cross validation
[101, Section 1.4] or applying a split-and-merge approach on the optimized parameters
[84] to address the problem of overfitting.
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(a) K = 2 (b) K = 5

Figure 5.5: Contours of pointwise root mean squared error (RMSE) for den-
sity approximation via GMMs of the Beta(0.5,0.5)-Gamma(1, 1) distribution.

5.4.3 Summary of Numerical Results

We tested our proposed method, the Riemannian Newton trust-region algorithm with
the Riemannian Hessian derived in Theorem 5.7 for both a clustering and a density
approximation task. For the experiments conducted, we see that our method is an
effective alternative for the widely used Expectation Maximization algorithm and the
Riemannian LBFGS method proposed in [65] for 20- and 40- dimensional data. Especially
in settings where there is low separation power between the K Gaussians (high value of
K and/or low eccentricity), we gain a time saving of up to factor 10 (Table 5.2b) which
is remarkable in spite of the very low per-iteration costs of the EM algorithm. For
settings where there is only very few overlap between the K Gaussians, the EM can
easily assign each data point to a cluster in the E-step and the EM converges fast as
expected following the discussion in Chapter 3. We also observed that the benefit of the
Riemannian approach cannot beat EM in such settings, see Table B.2a. Still, for such
a setting, the overall runtimes of all investigated methods are on a low level and hence
the time loss by the R-NTR method is less severe. With regard to the discussions about
the disadvantages of proposed alternatives to EM in Section 5.1, Riemannian approaches
can keep up with the EM algorithm and can thus be considered a reasonable alternative.
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5.5 Concluding Remarks and Future Research Directions

Gaussian mixture models are widely used for both clustering problems as well as probabil-
ity density approximation tasks in many application fields [94, 95]. A Gaussian mixture
model is described by a probability distribution consisting of K Gaussian distributions
and the problem of fitting the model is given by finding the mixing proportions and
parameters of the Gaussian distributions. This chapter dealt with finding optimal pa-
rameters of a Gaussian mixture model with Riemannian optimization. For this, we used
the Riemannian formulation of the corresponding optimization problem as introduced
by Hosseini and Sra in [65, 66] which exploits the Riemannian geometry of covariance
matrices appearing in the Gaussian distributions of the K Gaussians (Section 5.2). A
contribution of this thesis is the derivation of the Riemannian Hessian in Section 5.2.2.
Based on the Riemannian Hessian for Gaussian mixture models, the Riemannian New-
ton trust-region algorithm was proposed in Section 5.3 and important problem-specific
convergence results have been shown (Section 5.3.1). In Section 5.3.2, we also gave prac-
tical guidance for the Riemannian Newton trust-region method that turned out to be
beneficial for the numerical tests presented in this thesis. The novel approach for Gaus-
sian mixture models by considering a Riemannian Newton trust-region algorithms was
tested on various different data sets in Section 5.4. We observed that in the case of a
high share of hidden information, the Riemannian Newton trust-region algorithm showed
remarkably faster results than the investigated alternative approaches both in terms of
number of iterations and runtime. The following future research directions based on the
work presented within this thesis would be interesting to investigate:

• Riemannian optimization for Gaussian mixture models with higher dimension. In
the numerical experiments studied in this thesis, we considered observations of
dimensions d = 20 and d = 40 and investigated the Riemannian Newton trust-
region algorithms with respect to these dimensions. It would be interesting to
explore whether the Riemannian Newton trust-region algorithm shows superior
results compared to state of the art optimizers in higher dimensions d. When in-
creasing the dimension d, the risk of covariance singularity in Σj get higher. An
approach to avoid this singularity and the curse of dimensionality is to impose a
special structure on the covariance matrices Σj like using a principal component
analysis or factor analyzers model [95]. Incorporating such structural assumptions
into the Riemannian framework is an important future research direction. An-
other approach to give the covariance matrices Σj more structure is to assume
uncorrelatedness of variables within a Gaussian component. This results in zero
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entries at the respective positions of Σj . As an extreme example, we could impose
Σj = diag(σ2

r ), r = 1, . . . , d which reduces the complexity from O(d2) to a complex-
ity of O(d). A straightforward extension of the Riemannian framework could be to
model the covariance matrices Σj as block diagonal matrices of smaller covariance
matrix blocks.

• Reducing computational costs of evaluating the Riemannian gradient and Hessian.
In this chapter, we derived the Riemannian Hessian for Gaussian mixture models in
Theorem 5.7. The computational costs of evaluating the Riemannian Hessian highly
depends on the number of observations n as we need to sum over all observations.
As outlined in Section 5.2.2, the contribution of the i-th observation to the gradient
and Hessian of the l-th component is neglectably low if observation i is unlikely of
originating from the l-th component. Thus, for a larger number of observations n,
it might be helpful to first initialize the component membership e.g. by running
kmeans + + or performing some EM steps for Gaussian mixture models in order
to get initial component membership probabilities. Then, only observations i that
show a remarkable probability of arising from the l-th component could be used
for evaluating the Riemannian gradient and the Riemannian Hessian. Such an
approximation of the Riemannian gradient and Riemannian Hessian might yield
a big saving of computational costs. It is believed that many data points show a
high probability of arising from a few clusters K̃ < K, even for highly overlapping
settings.

• Consideration of higher number of observations n. In this thesis, we considered
data sets of a moderate number of observations n. The outlined idea of consider-
ing only a subset of data points for an approximation of the Riemannian gradient
and Riemannian Hessian could give a speed-up for the Riemannian trust-region
method for higher values of n. In the work [66], Hosseini and Sra have introduced
a Riemannian stochastic gradient descent method which they test for larger n. A
thorough comparison of the Riemannian trust-region method with possibly approx-
imate Riemannian gradient and Hessian with the Riemannian stochastic gradient
descent method proposed in [66] could reveal potential advantages and limitations
of both methods for large values of n.

In this chapter, we considered Gaussian mixture models which can be used for prob-
abilistic model-based clustering. The introduced Riemannian approach for fitting the
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parameters proved efficient for the model. In the following chapter, we consider Rie-
mannian optimization for another statistical model, that is the linear mixed model. In
contrast to the Gaussian mixture model, the clustering structure is known beforehand
and incorporated into the modeling of linear relationships between variables.
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CHAPTER 6

Riemannian Optimization for Variance Estimation in Linear Mixed
Models

In many classical statistical models, we assume that data are drawn from the same
setting/ population, that is we assume observations are independent and identically dis-
tributed (iid data assumption). A typical classical statistical model used for prediction is
the linear regression model, where we model a linear relationship between the observed
response (dependent variable) yi ∈ R and the covariate vector (independent variables)
xi ∈ Rp with homoscedastic and independent errors, that is

yi = β0 + β1x1i + · · ·+ βp−1xp−1i + εi, εi
iid∼ N (0, σ2) (6.1)

for observations (xi, yi), i = 1, . . . , n, see [128, Section 4.1]. Here, the parameter
β = (β0, . . . , βp−1) ∈ Rp and the residual variance σ2 are unknown and have to be es-
timated. The parameter β0 is called the intercept and the parameters βi, i = 1, . . . , n are
fixed effects or regression coefficients that are associated with the slopes of the variables
x1i, . . . , xp−1i. In vector notation, the linear regression model (6.1) reads

y = Xβ + ε, ε ∼ N (0, σ2In), (6.2)

where y = (y1, . . . , yn), ε = (ε1, . . . , εn). X ∈ Rn×p is the matrix resulting from stacking
the variables xi = (x1i, . . . , xp−1i) on top of each other and In is the identity matrix of
size n [128, Section 4.1].

The linear regression model (6.2) is well studied and frequently used in practice in dif-
ferent application fields. Yet, it comes with strong assumptions like the homoscedasticity
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and independence of errors which is not fulfilled in many real-world settings. Often, data
are collected from different clusters reflecting a specific sample of the overall population.
Such a grouped structure occurs for example for repeated measures design in clinical
research, where the same variables are measured repeatedly [40, Chapter 1]. In such
settings, we may reasonably suppose that the iid assumption does not hold true and the
linear regression model (6.2) is deemed inappropriate [111, Section 1.4.1]. A way to cope
with a clustered dependence structure in linear models is to consider linear mixed mod-
els or linear mixed effects (LME) models. These are an appropriate model for grouped
data capturing two sources of variation: a variation within and a variation between clus-
ters (groups) [40, Section 1.1]. This chapter deals with the fitting of linear mixed models.

The chapter is structured as follows. In Section 6.1, we introduce the linear mixed
model formally. Section 6.2 deals with parameter estimation in the linear mixed model
which can be divided into the estimation of fixed and random effects parameters and the
variance parameters involved in the model. Further, we review approaches to estimate
the variance parameters. In Section 6.3, we formulate the estimation of the variance
parameters of a linear mixed model as a Riemannian optimization problem. We derive
the Riemannnian gradient and the Riemannian Hessian for the REML log-likelihood ob-
jective. In Section 6.4, we compare the Riemannian approach with the approach from
the popular lme4 package [44] numerically. We close the chapter with a summary and a
discussion about future research directions in Section 6.5.

6.1 The Linear Mixed Model

As previously outlined, modeling a linear relationship in data with the classical linear
regression model (6.2) might not be appropriate in case we have clustered data because
the iid property might be violated. As a remedy, we consider linear mixed models. Linear
mixed models extend the classical linear regression model in the following way: Based
on the linear relationship between covariates xi and a response yi with the fixed effects
parameter β, we add an additional term that represents the variability in the model
introduced by considering different group categories in the data, i.e. the between groups
variability [40, Section 1.1]. This variability is modeled by so-called random effects. The
random effects can be considered as a realization from a random variable that models
the deviation of a specific group category from the overall population [40, Section 1.2].
Here, it is assumed that the group categories available in the data are sampled at random
from a common population and the random effects can be interpreted as surrogates of
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incomplete group-specific measurements [111, Section 1.1].
In order to model data by a linear mixed model, there must be at least one categorical
variable capturing the group structure [91]. We assume that we have K ∈ N such cate-
gorical variables of interest in our data set. We call these categorical variables grouping
factors according to [43] and denote them by Bj , j = 1, . . . ,K . Further, we assume that
Mj levels (groups, clusters) are sampled from Bj , that is in an experiment, we observed
Mj levels for a grouping factor Bj . Depending on the design of the experimental study, we
can have nested or crossed grouping factor designs describing the dependence structure
of the grouping in the data. According to [43], we say that a grouping factor B1 is nested
within a grouping factor B2 if each of the M1 levels of B1 occurs in conjunction with one
and only one level of B2. In particular, this means that M1 ≥ M2 and M1 = M2 occurs
only if B1 and B2 are identical. A collection of grouping factors B = {B1, . . . ,BK} is said
to be strictly nested if, when ordered to non-decreasing numbers of levels, each factor
is nested within its successor. In contrast, grouping factors B1 and B2 are said to be
crossed if every level of B1 occurs in conjunction with every level of B2 [43]. Apart from
completely crossed designs, linear mixed models also allow for partially crossed designs
which is a mixture of nested and crossed grouping factor interactions. We underline the
interaction of different grouping factors by the following example. We consider industrial
machines and are interested in predicting the defect based on different variables captured
by sensors installed in the machines. For this, we sample data from machines from the
same type but from M1 different manufacturers, that is we have a grouping factor B1

representing the manufacturer with M1 levels in the data. We add another grouping
factor B2 representing the operator working with the machines. Assume we have M2

operators who are working with machines from all manufacturers. Then, the grouping
factors B1 (manufacturer) and B2 (operator) are crossed. To extend the model, we add
a third grouping factor B3: each of the M2 operators is trained by exactly one of M3

instructors, where M3 ≤ M2. Then, the grouping factor B2 (operator) is nested within
grouping factor B3 (instructor). This is an example of a partially crossed design, that is
we have both crossed and nested interactions.

The flexibility of modeling different dependence structures in grouping factors make
linear mixed models a powerful tool to analyze data from complex study designs like
repeated measures, blocked or multilevel data designs or longitudinal data [56]. Appli-
cations can be found in the field of neuroscience [55], psychology [43], statistical image
analysis [40, Chapter 12] and many others.
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We state the linear mixed model and explain the single components in the following.
For this, we follow the notations of [56] and [40, Section 2.2]. In the following, we assume
that both the random effects and the residual errors follow a Gaussian distribution and
the residual errors are independent and identically distributed. Further, we here consider
the setting where the response variable y is continuous. Generalized linear mixed models,
where the response is not Gaussian, are beyond the scope of this thesis, we refer to [40]
and [111] for an overview of such an extension.

The linear mixed model is given by the relationship

y = Xβ + Zb+ ε. (6.3)

The single components of (6.3) are explained in the following:

• y ∈ Rn is the response or dependent variable of the model, where n is the number
of observations.

• The fixed effects design matrix X ∈ Rn×p contains information about the fixed
effects variables and possibly a fixed intercept. The design matrix X ∈ Rn×p is
specified by the user and is thus known.

• The fixed effects parameter β ∈ Rp describes the impact of the fixed effects variables
onto the response. Similar to the classical linear regression model, β is not known
beforehand and needs to be estimated.

• The random effects design matrix Z ∈ Rn×q describes the random effects variables.
If K ∈ N is the number of grouping factors, the matrix Z can be expressed by K
known grouping factor specific design matrices Z(j), j = 1, . . . ,K, that is

Z = (Z(1), . . . , Z(K)),

where Z(j) ∈ Rn×q̃j , q =
K∑
j=1

q̃j for q̃j ≥ 1.

• The random effects parameter b =
(
b(1), . . . , b(K)

)
∈ Rq, b(j) ∈ Rq̃j is a random

variable with zero mean. Here, the random effects parameter for group j denoted
by b(j) is associated with the grouping factor Bj . It can be interpreted as the
deviation introduced by considering a specific level/group compared to the overall
population. This can be a deviation in location (random intercept) or a deviation
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in slope (random slope) of a specific variable. We assume that b follows a Gaussian
distribution, that is

b ∼ N
(

0, G̃
)
, (6.4)

where G̃ ∈ Rq×q. The covariance matrix G̃ needs to be estimated in real-world
applications. Usually, we do not need to estimate all q(q + 1)/2 entries of the
matrix G̃, but use a parameterization G̃ = G̃(γ) with γ ∈ Rr, where r � q(q+1)/2

[56].

• The residual error ε ∈ Rn is a random variable. We assume a Gaussian distribution
with zero mean and shared variance σ2, that is

ε ∼ N (0, σ2In),

where In is the identity matrix of size n. The parameter σ2 needs to be estimated
in applications.

With the linear mixed model (6.3), we can identify the marginal distribution of the
response y as [56]

y ∼ N (Xβ, σ2H), (6.5)

where

H = ZGZT + I and G =
1

σ2
G̃. (6.6)

Some remarks with regard to the linear mixed model (6.3) are in order:

(i) The scaling of the random effects covariance matrix G = 1/σ2G̃ results in an easier
expression of the profiled log-likelihood which will be explained in Section 6.2.3 and
is thus often to be preferred [56], [40, Section 2.2].

(ii) With the linear mixed model (6.3), we can specify various random effects structures
with the covariance matrix G. However, we assume the residual errors (within-
group errors) to be iid, that is ε ∼ N (0, σ2I) but in some applications it is desirable
to allow for heteroscedascity or correlation for the within-group errors. An accord-
ing extension to the classical linear mixed model (6.3) can be found by replacing
the assumption ε ∼ N (0, σ2I) by the assumption ε ∼ N (0, R(ω)) for a covariance
matrix R(ω) ∈ Rn×n with ω ∈ Rl, l� n(n+ 1)/2 [56]. For an overview of different
structures of R(ω), we refer to [111, Chapter 5].
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(iii) The random effects design matrices Z(j) are typically constructed such that the
cross-product Z(j)TZ(j) ∈ Rq̃j×q̃j is block-diagonal for each j = 1, . . . ,K. For a
detailed guide on how to construct Z(j) for a grouping variable Bj , we refer to [15].

(iv) Modeling two nested grouping factors B1, B2, where B1 is nested in B2 via the
design matrix Z can be achieved by combining the M1 levels and M2 levels with
each other, i.e. we introduce a new grouping variable with M1M2 levels reflecting
the co-occurrence of levels from the first and the second grouping factor. Such an
approach is used in the popular lme4 package [44]. Thus, we do not distinguish
between nested and crossed effect interactions in the following.

(v) The random effects covariance matrix G ∈ Rq×q in (6.6) is a block-diagonal matrix
with K matrices Gj on the diagonal. Here, Gj refers to the j-th grouping effect
and is of size q̃j × q̃j . We have

G =


G1

. . .

GK

 , where Gj =


Ψj

. . .

Ψj

 , (6.7)

that is Gj is itself a block-diagonal matrix with Mj blocks and the same smaller
covariance matrix Ψj ∈ Rqj×qj on the diagonal. Here, q̃j = Mjqj for some qj ≥ 1

[15]. The structure of Gj reflects the assumption that each level in a grouping factor
is drawn from the same distribution (levels are sampled from the same population)
and that the b(j) are independent of each other.

6.2 Parameter Estimation in the Linear Mixed Model

In real-world experiments, we only observe realizations of the response y, of the fixed
effects design matrix X and the random effects design matrix Z. Thus, we need to
estimate the fixed effects parameter β, the random effects parameter b and the variance
parameters σ2 and G. We first examine the joint estimation of the fixed effects parameter
β and the random effects b for given variance parameters σ2, G in Section 6.2.1 and then
consider the estimation of the variance parameters σ2 and G in Section 6.2.2 according
to [56].

6.2.1 Estimation of Fixed and Random Effects Parameters

Many methods have been proposed for estimating the fixed effects parameters and ran-
dom effects parameters at the same time, see [56] for an overview. We here follow the
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approach by Henderson as proposed in [60]. Henderson models the joint distribution of
the response y and the random effects parameter b as

(b, y) ∼ N (a,A), (6.8)

where

a =

(
0

Xβ

)
∈ Rq+n

and the covariance matrix A is given by

A = σ2

(
G GZT

ZG H

)
∈ R(q+n)×(q+n).

Thus, the marginal distribution of y has the form (6.5), i.e. y ∼ N (Xβ, σ2H). The
approach suggested by [60] considers the log-joint distribution of (y, b) given by (6.8)
and maximizes it with respect to β and b. The log-joint distribution log (pN ( · ; a,A)) of
(y, b) reads [56]

log (pN ((y, b); a,A)) = −1

2

(
(n+ q) log σ2 + log det (G) +

(y −Xβ)T (y −Xβ)

σ2

+
1

σ2
(bT (ZZT +G−1)b− 2(y −Xβ)TZb)

)
.

For maximizing the log-likelihood log (pN ((y, b); a,A)) with respect to β and b, we need
to solve the mixed model equations (MME)(

XTX XTZ

ZTX ZTZ +G−1

)(
β

b

)
=

(
XT y

ZT y

)
(6.9)

for the vector (β, b) ∈ Rp+q resulting from the first-order conditions, see [60, 56]. Solving
the MME for β and b results in the following expressions specified in Theorem 6.1.

Theorem 6.1. [56, Lemma 1] The solutions of β and b from solving the MME (6.9) for
known G and σ2 are given by

β̂ = (XTH−1X)−1XTH−1y, (6.10)

b̃ = GZTH−1(y −Xβ), (6.11)

where H = ZGZT + I. The covariance matrices Cov(β̂), Cov(b̃) of β̂, b̃, respectively,
are given by

Cov(β̂) = σ2(XTH−1X)−1,
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Cov(b̃) = σ2GZTP (H)ZG,

where

P (H) = H−1 −H−1X(XTH−1X)−1XTH−1. (6.12)

Proof. A proof can be found in [56].

The predictor b̃ is known as the best linear unbiased predictor (BLUP), see [40, Sec-
tion 3.7], [56]. The expressions in Theorem 6.1 assume that G (and thus H) and σ2 are
known, but in applications they are usually not. In this case, we replace σ2, G (H) by
their estimators σ̂2, Ĝ (Ĥ) resulting from methods like maximum likelihood estimation
[56].

In the following, we consider the estimation of the variance parameters σ2, G.

6.2.2 ML and REML Estimation

An approach to estimate the parameters σ2 and G is maximum likelihood (ML) estima-
tion and residual maximum likelihood (REML) estimation.

ML Estimation

The marginal distribution of y is given by (6.5), hence the log-likelihood function lML of
y reads [56]

lML

(
(β, σ2, G)

)
= −1

2

(
n
(
log(2πσ2)

)
+ log det(H) +

(y −Xβ)TH−1(y −Xβ)

σ2

)
,

(6.13)

where H = ZGZT + I, see Section 3.1.

The maximum likelihood approach with the objective (6.13) is known to underestimate
the variance components, that is it is biased downwards [56], [111, Section 2.2.5]. This
can be led back to the fact that the maximum likelihood estimation via (6.13) does not
take into account the degrees of freedom lost in estimating the fixed effects [40, Section
2.2.5]. A surrogate for this downward biasedness is to consider the residual maximum
likelihood (REML) as an objective function.
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REML Estimation

The residual maximum likelihood approach (sometimes called restricted maximum like-
lihood [56]) maximizes the log-likelihood function for the residual vector ε̃ := y −Xβ̂,
where β̂ is given by the expression (6.10), see [56], [40, Section 2.2.5].

The REML log-likelihood function is given by [56]

lR(σ2, G)

= −1

2

(
(n− p) log(2πσ2) + log det(H) + log det(XTH−1X) +

(y −Xβ̂)TH−1(y −Xβ̂)

σ2

)
= −1

2

(
(n− p) log(2πσ2) + log det(H) + log det(XTH−1X) +

yTP (H)y

σ2

)
, (6.14)

where H = ZGZT + I and

P (H) = H−1 −H−1X(XTH−1X)−1XTH−1

as in (6.12). For a derivation of the residual log-likelihood (6.14) we refer to [40, Section
2.2.5] and [111, Section 2.2.5]. In practice, the residual log-likelihood function (6.14) is
often to be preferred due to the aforementioned biasedness of the maximum likelihood
objective (6.13). For a thorough comparison of the two approaches, we refer to [56].

One can show that both the log-likelihood function (6.13) and the REML log-likelihood
function (6.14) are bounded from above and a maximum likelihood estimator exists un-
der suitable conditions [40, Theorem 4]. More precisely, existence is ensured if the rank
of the combined design matrices of fixed and random effects is less than the number of
observations n [40, Section 2.17].

To find a maximizer of the log-likelihood or the residual log-likelihood, earlier works
propose to use Newton-type methods [87] or the Expectation Maximization (EM) al-
gorithm [42]. For this, a parameterization of the random effects covariance matrix
G = G(γ), γ ∈ Rr and r � q(q + 1)/2 is used as outlined in Section 6.1, and the
log-likelihood or the residual log-likelihood is optimized with respect to γ. For the EM
algorithm, we consider the random effects b as hidden information and alternate between
updating the conditional expectation of b|y and the variance parameters σ2, G [87]. How-
ever, the slow convergence of EM is a well-known drawback for linear mixed models [56],
[40, Section 2.12]. On the other hand, when starting too far from a local optimum, posi-
tive definiteness of the Hessian might not be given in Newton’s method and convergence
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is not ensured [56]. A modification of Newton’s method for linear mixed model is the
Fisher scoring algorithm, where the Hessian is replaced by the negative expected informa-
tion matrix in the Newton equation [56]. In case the linear mixed model is well-defined,
the expected information matrix is positive definite, for details see [40, Section 2.11].
Yet, the Fisher scoring algorithm is computationally expensive [56]. For any optimizer
we need to ensure that the random effects covariance matrix G is positive definite to
have well-definedness in the functions (6.13) and (6.14). Typical approaches to ensure
this consist in perturbing a singular iterate Gt by an adjustment matrix such that we
get positive definiteness [40, Section 2.15.3] or to use the reparameterization G = LLT ,
where L is a lower triangular matrix, via a Cholesky decomposition [40, Section 2.15.4].
The latter approach is used in the prominent lme4 package [15] implemented in R for
minimizing the deviance or the profiled REML criterion. A main feature of the lme4

package compared to other packages like the nlme package [112, 111] is that it has an
efficient implementation for crossed random effects which are usually harder to fit [15].
We explain the optimization approach implemented in the lme4 package in the following.

6.2.3 Estimation of Variance Parameters with Profiled Log-likelihood
and Profiled Residual Log-likelihood

We maximize the profiled log-likelihood or the profiled residual log-likelihood to get es-
timates for the variance parameters [56, 15], [40, Section 2.2.4]. For this, we fix the
log-likelihood lML or the residual log-likelihood lR at H and consider it as a function of
σ2, only. Since the functions lML, lR are concave in σ2, we get the maximizers

σ̂2
ML =

yTP (H)y

n
, (6.15)

σ̂2
R =

yTP (H)y

n− p
(6.16)

for the log-likelihood lML (6.13) and the residual log-likelihood lR (6.14), respectively
[56]. Plugging the expressions (6.15), (6.16) into minus twice the log-likelihood lML

and minus twice the residual log-likelihood lR, we get the profiled deviance l̃ML and the
profiled REML criterion l̃R, respectively, that is

l̃ML(G) = log det(H) + n

(
1 + log

(
2πyTP (H)y

n

))
, (6.17)

l̃R(G) = log det(H) + log det(XTH−1X) + (n− p)
(

1 + log

(
2πyTP (H)y

n− p

))
,

(6.18)
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see [15] and [40, Section 2.2.3 & 2.2.4]. Here, H = I +ZGZT as in (6.6) and P (H) as in
(6.12). As l̃ML, l̃R are independent of σ2, we can minimize the respective function with
respect to G, only.

The optimization approach implemented in the lme4 package [15] uses the profiled
deviance l̃ML or the profiled REML criterion l̃R as an objective function. The approach
consists of a reparameterization of the covariance matrix G ∈ Rq×q based on the block
diagonal structure specified in (6.7). To that end, for each of the matrices Ψj ∈ Rqj×qj ,
a Cholesky decomposition is considered, that is

Ψj = VjV
T
j , (6.19)

where Vj ∈ Rqj×qj is a lower triangular matrix. Then, a vectorization of the elements of
the template matrix Vj is performed, that is we flatten the template matrix Vj and get a
vector γj ∈ Rqj(qj+1)/2. Thus, the matrix G can be fully characterized by the parameter
γ = (γ1, . . . , γK). This means that the approach in the lme4 package [15] switches from
finding a matrix G ∈ Rq×q to a vector γ ∈ Rr of dimension r =

∑K
j=1 qj(qj + 1)/2.

Considering an optimization problem with the vector-valued parameter γ, precaution is
required that the reconstruction of Ψj via (6.19) yields a positive definite matrix. In the
lme4 package, this is realized by adding a lower box constraint for the diagonal elements
of the template matrices Vj . Let γji , i = 1, . . . ,m with m ≤ r be the diagonal elements
of the template matrix Vj . Then we introduce the constraints

elow ≤ γji , (6.20)

where elow > 0 for each of the diagonal elements γji of the template matrix Vj . Opti-
mizing with respect to parameters γj such that the diagonal elements γji of the template
matrix Vj are positive ensures that the resulting covariance matrix Ψj is positive definite
[105, Appendix A.2]. Typically, elow is set to a small value, e.g. elow = 10−4 [44].

This approach allows for using any "general-purpose nonlinear optimizer" [15] that
can handle box constraints. The authors of the lme4 package suggest to use Powell’s
BOBYQA algorithm [114] or the Nelder Mead simplex algorithm [15]. The acronym
BOBYQA of the former algorithm stands for bound-optimization by quadratic optimiza-
tion [114]. It follows a trust-region scheme, where a quadratic approximation is used
in every iteration which coincides with the objective function at a suitable number of
interpolation points. The algorithm does not require the gradient or the Hessian of the
objective and is thus a derivative-free method [114, 44]. As such, the accuracy of the

109



6.2. Parameter Estimation in the Linear Mixed Model

method highly depends on the choice of interpolation points which is a hyperparameter
in the method [114]. If the interpolation points are not suitably chosen, the quadratic
model yields a poor approximation of the objective and the algorithm possibly ends up
in slow convergence. The other default optimizer in the lme4 package is the Nelder Mead
method [50]. It is a heuristic search method which is based on polytopes of prespecified
dimension and is also a derivative-free method, where box-constraints can easily be in-
corporated [113, 114]. However, a drawback of the Nelder Mead method is that it can
converge to non-stationary points [113].

With the approach implemented in the lme4 package, we might get a singular fit
where we hit the boundary of the feasible parameter space and G is close to a singular
matrix. This frequently occurs in practice for complex covariance structures (e.g. mul-
tiple correlated random slopes) and small to medium-sized data sets [15]. Although the
lme4 package allows for singular fits, they are usually not desirable as the chances of
numerical problems get higher and the optimizer of choice possibly does not converge
[44]. Besides, post-hoc inferential procedures may be inappropriate for singular fits [44].

Summing up, the lme4 approach profiles the scaling parameter σ2 out of the REML
log-likelihood. For the optimization with respect to σ2, the closed-form expressions
(6.15), (6.16) are used. For the optimization with respect to the matrix G, we use a
Cholesky decomposition and flatten the template matrices Vj , resulting in the param-
eter vector γ over which we iterate by using optimizers imposing box-constraints [15].
The use of aforementioned heuristic search methods to optimize with respect to γ makes
convergence theory hard to study and does not use problem-specific gradient or Hessian
information [50]. Besides, the approach of flattening the template matrices Vj neglects
the matrix structure of G. Further, G must be positive definite which can be ensured
by a suitable choice of the box constraints in lme4 [44] but the lower parameter elow is a
hyperparameter and needs to be set in advance. Another issue with the approach is the
occurence of singular fits which might yield numerical problems in practice.

Motivated by these considerations, we formulate the problem of finding optimal vari-
ance parameters σ2, G as a Riemannian optimization problem in the following. As such,
we take into account the curvature and the matrix structure of G and optimize for the
residual variance σ2 and the random effects covariance matrix G together.
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6.3 Riemannian Approach for Variance Parameter Estima-
tion

We make use of the Riemannian geometry of covariance matrices to exploit the geometric
structure of the random effects covariance matrix G. To formulate the optimization
problem as a Riemannian optimization problem, we take a closer look at the structure of
the matrix H given by (6.6). We use the block-diagonal structure of the matrix G given
by (6.7) and consider the corresponding design matrix Z. As outlined in Section 6.1, the
matrix Z is composed of K blocks corresponding to the grouping variables, that is

Z =
(
Z(1), . . . , Z(K)

)
,

where Z(j) ∈ Rn×q̃j , q̃j = Mjqj . Following the construction of Z implemented by the
lme4 package [44], each of the grouping variable specific random effects design matrices
Z(j) consists itself of Mj blocks Z(j,lj), where each block Z(j,lj) is of size n× qj , that is

Z(j) =
(
Z(j,1), . . . , Z(j,Mj)

)
. (6.21)

Here, the i-th row, i = 1, . . . , n, of Z(j) denoted by
(
Z(j)

)
i
has possibly nonzero elements

in columns (lj − 1)qj + 1, . . . , ljqj if and only if observation i arises from the lj-th level
of grouping factor Bj , lj = 1, . . . ,Mj . Thus, the i-th row of the random effects design
matrix Z has

K∑
j=1

(Mj − 1) qj (6.22)

structural zeros. This means that Z is not fully populated and the sparsity increases
with the number of levels Mj [15]. We exploit the specific structure of Z given by the
expression (6.21) and rewrite the matrix H as

H = I + ZGZT = I +
K∑
j=1

Z(j)GjZ
(j)T = I +

K∑
j=1

Mj∑
lj=1

Z(j,lj)ΨjZ
(j,lj)

T
, (6.23)

where we used the block-diagonal structure of the random effects covariance matrix G
given by (6.7). With the reformulation (6.23), we can express the function H as a func-
tion of the matrices Ψj . This allows us to consider the manifold of positive definite
matrices of dimensions Pqj induced by the Ψj instead of considering the manifold of
positive definite matrices Pq induced by G. Typically, the dimension qj of Ψj is very
small (e.g. qj = 2 for a grouping factor with a random intercept and one random slope),
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whereas the dimension of G can be very large if the number of levels Mj in the data set
is large.

We formalize the Riemannian optimization problem for variance parameter estimation
of the REML in the following.

6.3.1 Riemannian Setting, Gradient and Hessian

We consider the residual log-likelihood as presented in (6.14). The parameters of interest
are the residual variance σ2 and the random effects covariance matrix G which can be
expressed via the matrix Ψj of lower dimension. For the residual variance, we introduce
a variable η ∈ R and set

η = log(σ2)

similar to the Riemannian formulation for Gaussian mixture models in Chapter 5. Fur-
ther, we use the derived relationship (6.23) between the covariance matrix H and the
matrices Ψj and rewrite the REML log-likelihood (6.14) as

lR(θ) = −1

2

(
(n− p) log(2π) + (n− p)η + log det(H) + log det(XTH−1X) +

yTP (H)y

exp(η)

)
,

(6.24)

where θ = (η,Ψ) for Ψ = (Ψ1, . . . ,ΨK) and H = I +
K∑
j=1

Mj∑
lj=1

Z(j,lj)ΨjZ
(j,lj)

T .

The expression P (H) is given by (6.12). Since the random effects covariance matrix
G is assumed to be positive definite, we must require that the matrices Ψj ∈ Rqj×qj

are positive definite. Thus, maximizing the REML objective (6.24) is a Riemannian
optimization problem over the manifold

MLME = R×

(
K

×
j=1

Pqj
)
, (6.25)

where Pqj is the manifold of positive definite matrices of dimension qj as introduced in
Chapter 4. We summarize the problem in the following.
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Problem:

Let θ = (η,Ψ) with Ψ = (Ψ1, . . . ,ΨK), Ψj � 0, Ψj ∈ Rqj×qj . For given X ∈ Rn×p,
Z = (Z(1), . . . , Z(K)) ∈ Rn×q with Z(j) = (Z(j,1), . . . , Z(j,Mj)), Z(j,lj) ∈ Rn×qj and
y ∈ Rn, we consider the Riemannian optimization problem

min
θ∈MLME

LR(θ) = (n− p)η + log det(H) + log det(XTH−1X) +
yTP (H)y

exp(η)
, (6.26)

where

H = I +
K∑
j=1

Mj∑
lj=1

Z(j,lj)ΨjZ
(j,lj)

T
, P (H) = H−1 −H−1X(XTH−1X)−1XTH−1

and

MLME = R×

(
K

×
j=1

Pqj
)
.

We note that we can formulate the maximization of the log-likelihood lML (6.13) as
an optimization problem over the product manifold (6.25) accordingly if we replace the
fixed effects parameters β by its estimator given by (6.10). The resulting objective can
be easily found by replacing the factor n − p by n in (6.24) and by dropping the term
log det(XTH−1X). For this reason, we only consider REML estimation in the following
as the consideration of ML is straightforward. Similar to the profiled approach in the lme4
package [44], we minimize minus twice the function lR in our approach, where lR is as
in (6.14). Further, we drop the term (n−p) log(2π) as it does not affect the optimization.

Riemannian setting for linear mixed models

The objective function (6.26) is a smooth function over the product manifold (6.25)
consisting of the real scalars R and the K manifolds of positive definite matrices denoted
by Pqj . Following the considerations of the manifold Pqj in Chapter 4, we get the tangent
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space of the manifold (6.25) by

TθMLME = R×

(
K

×
j=1

Sqj
)
, (6.27)

where Sqj denotes the set of symmetric matrices of dimension qj .

In compliance with the considerations about metrics for product manifolds on the
manifold of positive definite matrices in Section 2.1.3 and Section 4.2.1, we define an
inner product 〈 · , · 〉θ on TθMLME by

〈ξ, χ〉θ = ξηχη +

K∑
j=1

tr(Ψ−1
j ξΨjΨ

−1
j χΨj ), (6.28)

where θ = (η,Ψ) ∈MLME , Ψ = (Ψ1, . . . ,ΨK), ξθ = (ξη, ξΨ), χθ = (χη, χΨ) ∈ TθM with
ξΨ = (ξΨ1 , . . . , ξΨK ), χΨ = (χΨ1 , . . . , χΨK ).

Accordingly, the retraction associated with the product manifold (6.25) and the inner
product (6.28) reads

Rθ(ξθ) =


η + ξη

Ψ1 exp
(
Ψ−1

1 ξΨ1

)
...

ΨK exp
(
Ψ−1
K ξΨK

)

 , (6.29)

where θ ∈MLME and ξθ ∈ TθMLME as above, see (4.16).

In the following, we derive expressions for the Riemannian gradient and the Rieman-
nian Hessian of the problem (6.26). These contribute to a deeper understanding of the
underlying geometry of the optimization problem and allow for higher-order Riemannian
optimizers in order to solve (6.26).

Riemannian gradient for linear mixed models

We specify the Riemannian gradient for the problem (6.26) based on the inner product
(6.28).

Theorem 6.2. For θ ∈ MLME, the Riemannian gradient gradLR(θ) ∈ TθMLME of
problem (6.26) is given by

gradLR(θ) =

(
χη

χΨ

)
, (6.30)
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where χΨ = (χΨ1 , . . . , χΨK ) and

χη = (n− p)− yTP (H)y

exp(η)
, χΨj = Ψj

Mj∑
lj=1

Z(j,lj)
T

grade
H LR(θ)Z(j,lj)Ψj

with

grade
H LR(θ) = P (H) +

1

exp(η)
grade

H(yTP (H)y), (6.31)

where

grade
H(yTP (H)y) =

(
−H−1yyTH−1 +H−1yvT1 H

−1 +H−1v1y
TH−1

−H−1X(XTH−1XT )−1XT v2v
T
2 X(XTH−1XT )−1XTH−1

)
,

(6.32)

and v1 = X(XTH−1X)−1XTH−1y, v2 = H−1y, P (H) as in (6.12).

Proof. In analogy to the proof of Theorem 5.6 for the Riemannian gradient for Gaussian
mixture models, we can express the Riemannian gradient for linear mixed models as

gradLR(θ) =


gradη LR(θ)

gradΨ1
LR(θ)
...

gradΨK LR(θ)

 ,

where gradη LR(θ) ∈ R, gradΨj LR(θ) ∈ Sqj denotes the gradient with regard to η and
Ψj , respectively.

We first specify the Euclidean gradient gradη LR(θ) of LR with respect to η. Here,
the Riemannian gradient is equal to the Euclidean gradient and reads

gradη LR(θ) = (n− p)− 1

exp(η)
yTP (H)y,

yielding the expression for χη.
The Riemannian gradient with respect to Ψj under the described setting is given by

the projected Euclidean gradient onto the tangent space Sqj equipped with the affine-
invariant metric (4.12), that is

gradΨj LR(θ) =
1

2
Ψj

(
grade

Ψj LR(θ) +
(

grade
Ψj LR(θ)

)T)
Ψj , (6.33)
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where grade
Ψj LR(θ) denotes the Euclidean gradient of the Euclidean smooth extension

of LR(θ) with respect to Ψj . We now specify the Euclidean gradient grade
Ψj for all

j = 1, . . . ,K. By the chain rule, we get

grade
Ψj LR(θ) =

Mj∑
lj=1

Z(j,lj)
T

grade
H LR(θ)Z(j,lj), (6.34)

where grade
H LR(θ) is the Euclidean gradient of LR with respect to the matrixH ∈ Rn×n

given by (6.23), that is

H = I +

K∑
j=1

Mj∑
lj=1

Z(j,lj)ΨjZ
(j,lj)

T
.

By applying the chain rule, we obtain

grade
H LR(θ) = H−1 −H−1X(XTH−1XT )−1XTH−1 +

1

exp(η)

(
grade

H(yTP (H)y)
)
.

(6.35)

We define

u1(H) := yTH−1y, u2(H) := yTH−1X(XTH−1XT )−1XTH−1y,

hence the last expression in (6.35) is given by

grade
H(yTP (H)y) = grade(u1(H))− grade(u2(H)). (6.36)

With the Leibniz rule, we get

grade(u1(H)) = −H−1yyTH−1

grade(u2(H)) = −
(
H−1yvT1 H

−1 +H−1v1y
TH−1

−H−1X(XTH−1XT )−1XT v2v
T
2 X(XTH−1XT )−1XTH−1

)
,

(6.37)

where we have set v1 = X(XTH−1X)−1XTH−1y and v2 = H−1y.
We plug (6.37) into (6.36), (6.35), (6.34) and use the relationship of the Euclidean and
Riemannian gradient given by (6.33). The symmetry of the Euclidean gradient grade

Ψj

with respect to Ψj yields the expression for gradΨj LR(θ).

As outlined in Chapter 2, Riemannian optimizers often benefit from second-order
information about the objective. Thus, besides deriving the Riemannian gradient for
linear mixed models in Theorem 6.2, we present an expression for the Riemannian Hessian
of the objective (6.26) in the following.
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Riemannian Hessian for linear mixed models

The following theorem states a formula for the Hessian of the REML objective for linear
mixed models (6.26).

Theorem 6.3. Let θ ∈MLME and ξθ ∈ TθMLME, ξθ = (ξη, ξΨ) with ξΨ = (ξΨ1 , . . . , ξΨK ).
The Riemannian Hessian of problem (6.26) is given by

HessLR(θ)[ξθ] =

(
ζη

ζΨ

)
∈ TθMLME ,

where

ζη =
1

exp(η)

(
ξηy

TP (H)y −
K∑
j=1

yT
(
h1

 Mj∑
lj=1

Z(j,lj)ξΨjZ
(j,lj)

T


+ h2

 Mj∑
lj=1

Z(j,lj)ξΨjZ
(j,lj)

T

)y),
and ζΨ = (ζΨ1 , . . . , ζΨK ) with

ζΨj = Ψj

( K∑
r=1

Mj∑
lj=1

Z(j,lj)
T

DH (grade
H LR(θ)) [

Mr∑
lr=1

Z(r,lr)ξΨrZ
(r,lr)T ]Z(j,lj)

− ξη
exp(η)

Mj∑
lj=1

Z(j,lj)
T

grade
H(yTP (H)y)Z(j,lj)

)
Ψj

+
1

2

(
ξΨj

Mj∑
lj=1

Z(j,lj)
T

grade
H LR(θ)Z(j,lj)Ψj

+ Ψj

Mj∑
lj=1

Z(j,lj)
T

grade
H LR(θ)Z(j,lj)ξΨj

)
Here,

DH (grade
H LR(θ)) [ξ] = h1(ξ) + h2(ξ) +

1

exp(η)
(h3(ξ)− h4(ξ)),

where

h1(ξ) = −H−1ξH−1 (6.38)

h2(ξ) = H−1ξH−1X(XTH−1X)−1XTH−1 +H−1X(XTH−1X)−1XTH−1ξH−1

−H−1X(XTH−1X)−1XTH−1ξH−1X(XTH−1X)−1XTH−1 (6.39)
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h3(ξ) = H−1ξH−1yyTH−1 +H−1yyTH−1ξH−1 (6.40)

h4(ξ) = − (h1(ξ) + h2(ξ)) yyTH−1X(XTH−1X)−1H−1 +H−1yyTh2(ξ)

+

(
− (h1(ξ) + h2(ξ)) yyTH−1X(XTH−1X)−1H−1 +H−1yyTh2(ξ)

)T
. (6.41)

The expressions grade
H LR(θ), grade

H(yTP (H)y) are given by (6.31) and (6.32), respec-
tively.

Proof. From the relationship (2.5), we get

HessLR(θ)[ξθ] = ∇θ gradLR(θ) =

(
ζη(

ζΨj

)
j=1,...,K

)
=

 ∇eξη gradLR(θ)(
∇pdξΨj gradLR(θ)

)
j=1,...,K


(6.42)

where ∇eξη denotes the classical Euclidean vector field differentiation along direction ξη
and ∇pdξΨj denotes the Riemannian connection for positive definite matrices specified in
(4.13).

For the Hessian at position η denoted by ζη, we observe that

ζη = ∇eξη gradLR(θ) = Dη

(
grade

η LR(θ)
)

[ξη] +
K∑
j=1

DΨj

(
grade

η LR(θ)
)

[ξΨj ].

We get

Dη

(
grade

η LR(θ)
)

[ξη] =
ξη

exp(η)
yTP (H)y,

and

DΨj

(
grade

η LR(θ)
)

[ξΨj ] = − 1

exp(η)
DΨj (y

TP (H)y)[ξΨj ]

= − 1

exp(η)
DH(yTP (H)y)[

Mj∑
lj=1

Z(j,lj)ξΨjZ
(j,lj)

T
]. (6.43)

By applying the chain rule on (6.43), we get the expression for ζη in Theorem 6.3.

For the Riemannian Hessian at position Ψj denoted by ζΨj , using (2.5) and (4.14),
we get

ζΨj = ∇pdξΨj gradLR(θ)

= Dθ(gradΨj LR(θ))[ξθ]−
1

2

(
ξΨjΨj

−1 gradΨj LR(θ) + gradΨj LR(θ)Ψj
−1ξΨj

)
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= Dη(gradΨj LR(θ))[ξη] +
K∑
r=1

DΨr

(
gradΨj LR(θ)

)
[ξΨr ]

− 1

2

(
ξΨjΨj

−1 gradΨj LR(θ) + gradΨj LR(θ)Ψj
−1ξΨj

)
= Dη(gradΨj LR(θ))[ξη] + Ψj

(
K∑
r=1

DΨr

(
grade

Ψj LR(θ)
)

[ξΨr ]

)
Ψj

+
1

2

(
ξΨj grade

Ψj LR(θ)Ψj + Ψj grade
Ψj LR(θ)ξΨj

)
, (6.44)

where we used (6.34). For the first term in (6.44), we get

Dη(gradΨj LR(θ))[ξη] = − ξη
exp(η)

Ψj

 Mj∑
lj=1

Z(j,lj) grade
H(yTP (H)y)Z(j,lj)

T

Ψj , (6.45)

where grade
H(yTP (H)y) is given by (6.32).

For the second term in (6.44), we get

DΨr

(
grade

Ψj LR(θ)
)

[ξΨr ] =

Mj∑
lj=1

Z(j,lj) DΨr (grade
H LR(θ)) [ξΨr ]Z

(j,lj)
T

=

Mj∑
lj=1

Z(j,lj) DH (grade
H LR(θ)) [

Mr∑
lr=1

Z(r,lr)ξΨrZ
(r,lr)T ]Z(j,lj)

T

(6.46)

by the chain rule. After applying the Leibniz rule on (6.46) several times and rearrange-
ment of terms, we get

DH (grade
H LR(θ)) [ξ] = h1(ξ) + h2(ξ) +

1

exp(η)
(h3(ξ)− h4(ξ)), (6.47)

where h1, h2 as in (6.38), (6.39) and h3, h4 as in (6.40), (6.41).

Plugging (6.47) into (6.46) and then (6.46), (6.45) into (6.44), we get the expression for
ζΨj in Theorem 6.3.

We have derived the Riemannian gradient and Riemannian Hessian for the REML
objective in (6.24). As mentioned at the beginning of this section, we can easily transfer
the problem for the ML objective (6.13) by replacing the factor n− p with n and omit-
ting the additive terms in the Riemannian gradient and Hessian that are related to the
term log det

(
XTH−1X

)
, see (6.13), (6.14). In this thesis, we focus on the parameter
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estimation with the REML objective due to the aforementioned underestimation of the
residual error σ2 occurring with using the ML objective (see Section 6.2.2).

With the Riemannian approach presented here, we formulate the objective as a func-
tion of both σ2 and G, that is we estimate the residual variance and the random effects
covariance matrix simultaneously. As explained in Section 6.2.3, the approach imple-
mented in the lme4 package expresses the objective as a function of the random effects
covariance matrix, only, by profiling σ2 out of the objective. The Riemannian approach
presented in this chapter can be transferred into an according profiled setting. This
can be achieved by considering the profiled REML log-likelihood (6.18) as the objective
function and to optimize over the product manifold

Mprofiled
LME =

K

×
j=1

Pqj .

6.3.2 Algorithmic Considerations

When considering the objective (6.26) for Riemannian optimization, we observe that we
need to evaluate H ∈ Rn×n in every iteration as well as terms involving its inverse H−1.
Since the number of observations n is usually large in applications, precaution is required
that the matrix H as well as terms involving its inverse H−1 are implemented efficiently.
The matrix Ht at iteration t, t = 0, 1, 2, . . . reads

Ht = I + Z(Gt)ZT = I +
K∑
j=1

Z(j)(Gj)
tZ(j)T ,

where

Gtj =


Ψt
j

. . .

Ψt
j


is the random effects covariance matrix of the j-th grouping factor at iteration t and
Ψt
j ∈ Pqj is the coordinate iterate at iteration t, see (6.7). Recall that the grouping

factor specific design matrices Z(j) are sparse. For this reason, we store the matrices
Z(j)T ∈ RMjqj×n in a compressed sparse column (csc) format [28]. Further, each column
of Z(j)T consists of (Mj − 1) qj structural zeros, see (6.22). Thus, by construction of
the matrix Gtj , the positions of structural zeros in Z(j)(Gtj)Z

(j)T are the same for all
iterations t. This means that only the potential nonzero elements in the matrix H need
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to be updated in every iteration which is exploited in the implementation used for the
numerical results in Section 6.4.

Further, we need to compute factors involving the matrix inverse (Ht)−1 in every it-
eration t. For this, we use the CHOLMOD approach [141, 28] which exploits the sparsity
pattern of ZGZT for the Cholesky decomposition [15]. For details on sparse Cholesky
decomposition, we refer to [28].

Besides exploiting the sparsity of the random effects covariance matrix, an efficient
implementation of the Riemannian gradient and the Riemannian Hessian in Theorem
6.2 and Theorem 6.3, respectively, is desirable. The expressions derived contain the Eu-
clidean gradient with respect to H, that is grade

H LR(θ), and its directional derivative
DH(grade

H LR(θ))[ξ] which are of size n × n. However, the Riemannian gradient and
Hessian with respect to Ψj is of size qj × qj with qj � n and we can implement the gra-
dient and Hessian by considering matrix products of size qj × n with size n× n instead
of performing matrix products of size n×n with size n×n. This consideration was used
for the implementation.

In the following section, we show numerical results for the Riemannian Newton trust-
region method and the Riemannian nonlinear conjugate gradient method for the problem
(6.26).

6.4 Numerical Experiments

For the numerical investigation of the introduced Riemannian approach for linear mixed
models, we studied two research questions. The first one consists of the investigation
of Riemannian optimizers as an alternative to the approach in the lme4 package [44].
Section 6.4.3 deals with this investigation, we compare the quality of the Riemannian
optimizers with the ones from the lme4 package on different data sets. The second
research question addresses singular fits that sometimes occur in challenging applications
with the lme4 package [44] and possibly yield numerical problems, see Section 6.2.3
and [40, Section 2.15]. For this, we investigate whether we can improve estimates for
the variance parameters σ2, G by applying the proposed Riemannian approach after a
singular fit has been detected with the lme4 optimizers. This is explored in Section 6.4.4.
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6.4.1 Simulation Design

To test the Riemannian approach for linear mixed models as presented in Section 6.3,
we conducted numerical tests for simulated data. For this, we created data sets with 2

grouping variables B1, B2 in a crossed design with different random effects covariance
structures. Further, we used a balanced design [40, Section 2.2.1], that is we assumed
that all n observations are distributed equally among the M1, M2 levels of grouping
factors B1, B2, respectively. To generate the data sets, we followed a similar approach as
suggested in [39]. We present the simulation design in the following.

We created n = 1000 observations for our simulation design. For the fixed effects, we
considered one continuous fixed effect and a fixed intercept, thus p = 2. The fixed effects
parameter was set to β = (1, 2)T for all experiments.

For the variance parameters, we set the residual variance for all experiments equal to
σ2 = 0.1 and created n = 1000 realizations of a Gaussian distribution with zero mean
and variance σ2 to get realizations of the residual error ε, see (6.3). To incorporate the
random effects in the created data sets, we created M1, M2 categorical variables reflect-
ing the levels of the grouping variables B1 and B2, respectively. These were then used to
build the random effects design matrix Z. The numerical tests were conducted for dif-
ferent structures in the grouping variable specific covariance matrices G1, G2 (6.7). We
generated realizations of the random effects parameter b = (b(1), b(2)) with a Gaussian dis-
tribution with zero mean and the covariance matrix G = diag(G1, G2) according to (6.4).

With these choices, we created the response vector y ∈ Rn according to the linear mixed
model (6.3), that is

y = Xβ + Zb+ ε.

We created multiple data sets reflecting the same linear mixed model structure with the
described simulation approach. We recall that for testing different optimizers, only the
variables y,X and Z are available and we do not know the fixed effects parameter β or
the random effects parameter b. As outlined in Section 6.2, we can estimate β and b

by Theorem 6.1 if G and σ2 are known. In our numerical tests, we thus focused on the
problem of finding the variance parameters G and σ2.
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6.4.2 Choice of Optimizers for Numerical Tests

Equipped with the Riemannian gradient and the Riemannian Hessian derived in The-
orem 6.2 and Theorem 6.3, respectively, we can make use of Riemannian optimizers
introduced in Chapter 2. Due to their fast local convergence close to an optimum, we
applied a Riemannian Newton trust-region method (Algorithm 3) and a Riemannian non-
linear conjugate gradient method (Algorithm 5) for the problem of variance estimation in
linear mixed models as presented in (6.26). For the latter, we used the toolbox pymanopt

[136]. We used the default option implemented in pymanopt for the step-length rule (αt

in Algorithm 5) by Hestenes and Stiefel [61], for an overview of different update rules for
the Riemannian nonlinear conjugate gradient method we refer to [120, Section 4.2] and
[105, Section 5.2]. For the Riemannian Newton trust-region algorithm, we used a tuned
version independent from the toolbox pymanopt where we reused terms that occur in the
objective as well as the Riemannian gradient and Hessian (see Section 5.3.2). For the
quadratic subproblem in the Riemannian Newton trust-region algorithm (Algorithm 3),
we used the truncated conjugate gradient method (Algorithm 4) as a solver. We did not
use a preconditioner for the tCG method since we observed very small numbers of inner
iterations in the quadratic subproblem during the conduction of the experiments. The
initial trust-region radius was set to a default value at ∆0 = 1 and the hyperparameters
of the R-NTR algorithm were set to the same values as for our problem of fitting Gaus-
sian mixture models in Section 5.3.2.

As reviewed in Section 6.2.2, different optimization methods have been proposed in the
past for fitting the variance parameters of linear mixed models. Due to the popularity
of the lme4 package [44], we compared the established Riemannian optimization ap-
proach for REML estimation with the approach implemented in the lme4 package and
presented in Section 6.2.3. For this, we used the default optimizers in the lme4 package,
the BOBYQA and the Nelder Mead method [15].

We initialized the random effects covariance matrices G0
j by the identity matrix and the

residual variance (σ2)0 by the expression (6.16), these are the default initializations in
the lme4 package [44]. We stopped all methods when either the number of iterations
exceeded 1000, when the relative difference in the objective between two subsequent it-
erations fell below 10−5 (for R-NTR only if we did not reject the tentative direction
returned by tCG, see Section 5.3.2) or when the step length fell below 10−7. While the
optimizers used in lme4 [44] are derivative-free methods, the aforementioned Riemannian
optimizers compute a gradient in each iteration. Thus, we added another stopping crite-
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rion for the Riemannian optimizers, that is when the Riemannian norm of the gradient,
‖gradLR(θ)‖θ, fell below some threshold close to 0 (specified in Section 6.4.3 and Section
6.4.4).

We used Python 3.8 for the experiments in this chapter and conducted all experiments
on an Intel Xeon E3-1200 at 1.90 GHz with 8 cores and 16GB RAM.

In the following section, we address the first research question, that is whether the Rie-
mannian approach can be considered as an alternative to the approach in lme4 for stan-
dard data sets.

6.4.3 Riemannian Optimizers as an Alternative to the lme4 Approach

We tested the Riemannian approach introduced in this thesis with respect to its appro-
priateness for fitting variance parameters σ2, G of a linear mixed model. For this, we
created 100 data sets with K = 2 grouping factors B1, B2 following the explanations in
Section 6.4.1. We set the number of levels for the grouping factors equal to M1 = 15 and
M2 = 10, respectively. The Riemannian optimizers were stopped when one of the afore-
mentioned stopping criteria was fulfilled or when the Riemannian norm of the gradient,
‖gradLR(θ)‖θ, fell below 10−3. To address the first research question dealing with the
appropriateness of the Riemannian approach, two settings were tested. We present the
according results in the following.

The first setting is a crossed random effects design with two random intercepts which
results in the dimensions q1 = q2 = 1. Thus, the structure of the grouping effect specific
random effects covariance matrix is given by

Gj =


τ2
j

. . .

τ2
j

 , (6.48)

where τj is the standard deviation of the j-th random effect, j = 1, 2 and G1 ∈ R15×15,
G2 ∈ R10×10. The random effects variance parameters were chosen as τ1 = 1.2 and τ2 =

0.9 and the residual variance as σ2 = 0.1. As outlined before, the values were initialized
at τ0

1 = τ0
2 = 1. Table 6.1 shows a summary of the optimization results of 100 simulation

runs, i.e. of 100 generated data sets following the specified distribution. We observe that
the Riemannian optimizers (R-NTR, R-CG) together with the lme4 approach with the
Nelder Mead optimizer (NELDERMEAD) show the best results in terms of the objective
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value LR although the deviation from the true objective (av. deviation LR) is slightly
higher than for the BOBYQA optimizer. In terms of the mean squared errors of the
τ1, τ2 parameters (MSE τ1, τ2), we observe that both the Riemannian Newton trust-
region algorithm as well as the Nelder Mead optimizer show comparable results, whereas
the BOBYQA optimizer shows a higher error. In contrast, for the residual standard
deviation σ, BOBYQA shows the lowest mean squared errors which are slightly below
the mean squared error of the other methods. The Riemannian Newton trust-region
algorithm converged in comparably few iterations, underlining the fast local convergence
of the method. However, the Riemannian optimizers show much higher overall runtimes
compared to the lme4 approach with BOBYQA or Nelder Mead. This can be mainly
led back to the high computational costs of evaluating the Riemannian gradient (and
the Riemannian Hessian for R-NTR) in every iteration, whereas the BOBYQA and the
Nelder Mead algorithms are derivative-free and have very low per-iteration costs for
parameters of low dimensions (here: dimension 2) [15].

Table 6.1: Simulation results for two random intercepts with τ1 = 1.2,
τ2 = 0.9, σ2 = 0.1 and M1 = 15, M2 = 10.

R-NTR R-CG BOBYQA NELDERMEAD

av. number of iterations 12.01 55.17 61.43 36.16
av. runtime (s) 6.47 24.76 0.05 0.04

av. LR -1.5474 -1.5474 -1.4659 -1.5474
av. deviation LR 2.2505 2.2505 2.0669 2.2505

MSE τ1 0.0427 0.0427 0.2336 0.0434
MSE τ2 0.0426 0.0426 0.1508 0.0425
MSE σ 0.0468 0.0468 0.0446 0.0468

The appropriateness of Riemannian optimizers for linear mixed models was tested on
a second setting, where a random slope for the second grouping factor was added, i.e.
q2 = 2. The structure of the covariance matrix G1 belonging to the first grouping factor
B1 is the same as before and given by (6.48), whereas the structure of the covariance
matrix belonging to the second grouping factor B2 is given by

G2 =


τ2

21
ρ2τ21τ22

ρ2τ21τ22 τ2
22

. . .
τ2

21
ρ2τ21τ22

ρ2τ21τ22 τ2
22

 (6.49)
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For the simulation, we set τ1 = τ21 = τ22 = 1 and ρ2 = 0.1. We used the same
residual variance as above, σ2 = 0.1, to create 100 data sets for the simulation. The
simulation results for this setting are summarized in Table 6.2.

Table 6.2: Simulation results for two random effects b(1) ∈ R, b(2) ∈ R2 with
τ1 = τ21 = τ22 = 1, ρ2 = 0.1, σ2 = 0.1 and M1 = 15, M2 = 10.

R-NTR R-CG BOBYQA NELDERMEAD

av. number of iterations 21.55 30.6 79.88 83.28
av. runtime (s) 11.79 14.38 0.06 0.06

av. LR -1.5378 -1.5381 -1.5305 -1.5393
av. deviation LR 2.2922 2.2933 2.2711 2.2969

MSE τ1 0.0336 0.0341 0.0847 0.0342
MSE τ21 0.0542 0.0493 0.3093 0.3860
MSE τ22 0.2669 0.3040 0.8990 0.6209
MSE ρ2 0.000114 0.000056 0.009555 0.00862
MSE σ 0.0466 0.0466 0.0464 0.0467

When comparing the mean squared errors for the random effects covariance matrix,
we observe that the Riemannian optimizers show much better results which is visible for
the second random effect in particular (MSE τ21 , τ22). Those are remarkably low com-
pared to the lme4 optimizers. We also attain a much lower mean squared error for the
correlation ρ2 with the Riemannian optimizers. We observe that both Riemannian opti-
mizers converge much faster than the lme4 optimizers in terms of number of iterations
whereas the runtimes are much higher which we also noticed for the first setting. The
lowest value of LR (i.e. highest REML log-likelihood) is attained by the lme4 approach
with the Nelder Mead optimizer followed by the Riemannian optimizers.

Summing up, the Riemannian optimizers can keep up with the lme4 optimizers for
both settings in terms of τ1 for the intercept-only random effect. When considering an
additional random slope as in the second setting, we noticed a much better model quality
with the Riemannian optimizers which can be seen from the mean squared errors for the
second grouping factor, i.e. MSE τ21 , MSE τ22 . A possible explanation is that the lme4

approach vectorizes the parameters of the random effects covariance matrix, whereas the
Riemannian approach takes the positive definiteness and the matrix structure of Gj into
account.

126



6.4. Numerical Experiments

6.4.4 Improving Singular Fits with Riemannian Optimization

A frequently arising issue with fitting complex linear mixed models is covariance singu-
larity or singular fits as named in the lme4 package [44], where we hit the boundary of
the feasible space. As outlined in Section 6.2.3 and [15], [40, Section 2.15], this typically
occurs if we have variance close to 0, a high correlation within b(j) or complex designs
with many levels and few observations. Although the lme4 package allows for singular
fits, these are often unfavorable because they usually result in numerical problems (see
Section 6.2.3). To address singular fits, we created data sets where at least one of the
two default optimizers BOBYQA or Nelder Mead returned a singular fit with the lme4

package.

The Riemannian approach presented in Section 6.3 uses the affine-invariant inner
product for the manifold of positive definite matrices (see (4.6) and (6.28)) which po-
tentially pulls iterates close to the boundary into the interior of the cone Pqj . Thus,
intuitively, the Riemannian approach is deemed well-suited to improve singular fits. To
investigate this numerically, we generated 30 data sets yielding a singular fit with lme4

for two different settings. We then used the final iterates (σ2)t∗, Gt∗ as a starting value
for our Riemannian optimizers in order to investigate whether they can improve the fit.
In case both BOBYQA and Nelder Mead threw a singular fit, the returned iterate of the
optimizer with the higher REML log-likelihood lR (i.e. lower objective LR) was used.
The Riemannian optimizers were stopped when either one of the stopping criteria from
Section 6.4.2 was fulfilled or when the Riemannian norm of the gradient, ‖gradLR(θ)‖θ,
fell below 10−4.

For the first setting, data sets with 2 random effects each reflecting a random intercept
were generated, that is q1 = q2 = 1 and the random effects covariance structure given by
(6.48). M1 = 15 andM2 = 10 levels were created. According to this, data sets yielding a
singular fit with lme4 were generated by setting the random effects variance parameters
very close to 0, i.e. τ1 = 0.001 and τ2 = 10−8. The residual variance was set to σ2 = 0.1.
The results are summarized in Table 6.3.

We see that we have a slight improvement in the objective value for the Riemannian
optimizers. In addition, the mean squared errors of τ1 are improved for the Riemannian
CG method, whereas the mean squared error for the standard deviation for the second
grouping factor shows improved values with both of the Riemannian optimizers. Also
the mean squared error of the residual variance σ shows a lower value when applying
the Riemannian optimizers. Looking at the number of iterations, we observe that the
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Table 6.3: Improving singular fits with Riemannian optimization: τ1 = 0.001,
τ2 = 10−8, σ2 = 0.1 and M1 = 15, M2 = 10.

R-NTR R-CG BOBYQA NELDERMEAD

av. number of iterations (incl.singfit) 16.93 87.73 9.0 14.27
av. LR -1.74588 -1.74588 -1.745878 -1.745864

rel. improvement in LR -0.000008 -0.000008
MSE τ1 0.000255 0.000219 0.000545 0.000221
MSE τ2 0.002497 0.002497 0.002577 0.002587
MSE σ 0.046706 0.046706 0.04673 0.046729

Riemannian Newton trust-region method converges in much less iterations compared to
the Riemannian nonlinear CG method. During the execution of the experiments, CG
steps were performed for solving the quadratic subproblem (see Algorithm 3) in R-NTR
and only in very few cases the trust-region radius was exceeded or negative curvature was
detected (Algorithm 4). This suggests that we have a good initialization with the lme4

approach despite the singularity, resulting in a starting point close to a local optimum
with positive definite Hessian [34, Chapter 7]. In such a case, the Riemannian Newton
trust-region algorithm shows a fast local convergence (Theorem 2.32). In Figure 6.1, we
show the plotted norm of the Riemannian gradient of the iterations for a representative
generated data set. We observe that ‖gradLR(θt)‖θt attains values close to zero much
faster with the Riemannian Newton trust-region algorithm compared to the Riemannian
nonlinear CG method, reflecting the aforementioned fast local convergence of R-NTR.
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Figure 6.1: Norm of Riemannian gradient for improving lme4 singular fits.

Another typical setting where the lme4 approach frequently yields a singular fit is
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when we have many levels in the data set and only very few observations per level [40,
Section 2.15]. To investigate this setting, the Riemannian methods were tested on data
sets with more levels for the first grouping factor, that is M1 = 20. Further, both a
random intercept and a random slope was added for the first grouping factor, that is
we set q1 = 2 and the covariance matrix structure of the first grouping factor given by
(6.49). Here, τ11 = τ12 = 1 and ρ1 = 0.1 was chosen. For the second grouping variable,
a random intercept model was imposed with covariance structure (6.48) and τ2 = 1,
M2 = 10 levels. The residual variance was chosen as before, that is σ2 = 0.1. The
simulation results are summarized in Table 6.4.

Table 6.4: Improving singular fits with Riemannian optimization: τ11 = 1,
τ12 = 1, τ2 = 1, ρ1 = 0.1, σ2 = 0.1 and M1 = 20, M2 = 10.

R-NTR R-CG BOBYQA NELDERMEAD

av. number of iterations (incl.singfit) 104.9 106.73 71.33 98.17
av. LR -1.511814 -1.512387 -1.50476 -1.512825

rel. improvement in LR -0.00167 -0.002243
MSE τ11 0.3627 0.3765 0.3571 0.3876
MSE τ12 0.4879 0.4846 0.8069 0.6844
MSE τ2 1.6239 1.6291 1.8743 2.3232
MSE ρ1 0.025269 0.025281 0.013011 0.027183
MSE σ 0.046989 0.046979 0.046741 0.047005

Considering Table 6.4, we observe an improvement for the variances of the random
effects, that is in τ11 , τ12 and τ2, whereas the improvement is strongest for τ12 . The
correlation ρ1 related to the first grouping factor is closest to the true value for the
BOBYQA method, the Riemannian optimizers show slightly improved mean squared
errors for ρ1 compared to the Nelder Mead method. With the Riemannian optimizers,
we gained a slight improvement in the objective by applying the Riemannian optimizers,
but Nelder Mead shows the lowest objective value (highest REML log-likelihood). As
observed before, the mean squared error in the residual standard deviation σ is lowest for
the Riemannian optimizers, again indicating that we benefit from the simultaneous opti-
mization of σ2 and G with the Riemannian optimizers compared to the profiled approach
by the lme4 package. The number of iterations for the R-NTR method and the R-CG
method are comparable in Table 6.4. This can be mainly led back to the observation
that the truncated CG method for the subproblem in Algorithm 3 often stopped either
because negative curvature in the Hessian was detected or because the trust-region radius
was exceeded (see Algorithm 4). Frequently, the resulting truncated steps resulted in a
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bad quadratic approximation such that many steps were rejected and the trust-region
radius was reduced until the termination criterion of a very small step length was satisfied
(see Section 2.2.4 and Section 6.4.2). Like this, the R-NTR algorithm often got stuck
in ill-behaved regions and did not yield a remarkable progress in the objective. Ways
to get out of these plateaus could be to use a different approach to solve the quadratic
subproblem yielding better iterates than the Cauchy point [34, Chapter 7], to use differ-
ent hyperparameters for rejection thresholds and the initial trust-region algorithm [34,
Chapter 17] or another adaption scheme of the trust-region radius in every iteration [34,
Chapter 6]. Another possibility could be to first use a line-search method to get closer to
a local optimum and then to start the R-NTR algorithm in order to increase the chance
of attaining local superlinear convergence.

Summing up, we investigated whether we can improve singular fits with Riemannian
optimizers on two typical settings. We observed a relative improvement of the objective
with the Riemannian optimizers as well as lower mean squared errors for the random
effects variances. The numerical results shown in this section indicate that the Rieman-
nian optimizers pull back the iterates from the boundary of the feasible space and yield
improved estimates of the variance components. In future work, this should be studied
in depth for different structures of the random effects covariance matrix G by increasing
the number of grouping factors K, the number of levels as well as the number of dimen-
sions qj or by assuming a strong correlation. Such settings typically yield singular fits
with lme4 [44] and it requires further investigation whether the Riemannian optimizers
can improve the fits with such complicated structures. A deeper investigation of cases
where the R-NTR gets stuck in the aforementioned ill-behaved plateaus should also be
considered in the future.

6.4.5 Summary of Numerical Results

We tested the introduced Riemannian approach from Section 6.3 numerically with re-
spect to two research questions. First, we investigated whether Riemannian optimizers
show comparable results for the variance parameters of REML log-likelihood estimation
as the popular lme4 package. We observed that we got comparable or improved results
with respect to the variance parameters. However, the runtimes of the Riemannian op-
timizers were much higher compared to the lme4 optimizers which can be led back to
the high computational cost of evaluating the Riemannian gradient and the Riemannian
Hessian. For the second question, we investigated whether we could improve estimates
that resulted in a singular fit with lme4. For this, we observed a slight improvement with

130



6.5. Concluding Remarks and Future Research Directions

the Riemannian optimizers indicating that the Riemannian approach is an appropriate
tool for addressing singular fits. This should be further investigated in future work, es-
pecially for complex covariance structures of the random effects.

In the conducted experiments, the random effects covariance matrices were initialized
at the identity matrix of appropriate dimension. Different approaches for a starting value
of the matrix G have been proposed in the past, e.g. initialization by performing one
step of the Fisher scoring algorithm [40, Section 2.13.1]. Another approach is based on
MINQUE [40, Section 2.13 & 3.10.3], [56], namely minimum norm quadratic unbiased
estimator, where a distribution-free estimation is imposed. Further suggestions can be
found in [78]. As the performance of Riemannian derivative-based optimizers (especially
R-NTR) highly depends on the starting value θ0, their performance is expected to be
further improved if we use an appropriate initialization strategy for G.

6.5 Concluding Remarks and Future Research Directions

Linear mixed models are typically used to model linear relationships in data, where the
observations are sampled from different groups or clusters. Given an observed data set,
parameter fitting of a linear mixed model can be divided into the estimation of the fixed
and random effects parameters (Section 6.2.1) and the estimation of the variance pa-
rameters (Section 6.2.2). In this chapter, we focused on the estimation of the variance
parameters σ2 and G. Approaches like the lme4 approach [15, 44] profile out the residual
variance σ2 of the objective and use a vectorization of the Cholesky decomposition of G in
order to estimate the random effects covariance matrix (Section 6.2.3). Such an approach
neglects the matrix structure of G and sometimes yields singular fits possibly leading to
problems in real-world applications (see Section 6.2.3). We introduced a novel Rieman-
nian framework for the fitting of the variance parameters σ2, G in Section 6.3 which
takes into account the geometric structure of the covariance matrix G and allows the
simultaneous estimation of σ2 and G. Based on the Riemannian framework, we derived
a Riemannian gradient and a Riemannian Hessian which are used to apply Riemannian
optimization methods introduced in Chapter 2. The numerical tests in Section 6.4 show
the appropriateness of a Riemannian approach to variance parameter estimation in linear
mixed models both as an alternative to existing methods as well as to improve singular
fits. In the experiments conducted, we used small sized random effects. It is believed that
for higher dimensions, optimizers based on the proposed Riemannian approach benefit
from exploiting the geometric structure of covariance matrices in higher dimensions as
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well as the simultaneous estimation of σ2 and G.

The Riemannian approach for linear mixed models introduced in this chapter was
investigated with respect to classical linear mixed models of the form (6.3). The following
extensions are conceivable and give rise to further exploration:

• Maximizing the log-likelihood (6.13) with Riemannian optimization. In our numeri-
cal tests in Section 6.4, we focused on the maximization of the REML log-likelihood.
In some applications, it is more favorable to use the classical ML approach (6.13),
for example if likelihood ratio tests are performed [56]. The Riemannian frame-
work for REML estimation presented in this thesis can be easily transferred to ML
estimation as outlined in Section 6.3 by dropping the term log det(XTH−1X) in
the objective. It is to be investigated whether the consideration of the ML ob-
jective still yields good results with the Riemannian approach compared to other
optimizers, e.g. the ones from the lme4 package studied in this chapter.

• Consideration of penalized objective functions. Like it is common for the classical
linear model (6.2), a penalty term can be added to the objective in linear mixed
models. This can be either a penalization term for the fixed effects parameter [122]
or a regularization term that pushes the random effects covariance matrix G away
from the boundary, e.g. by imposing a Bayesian prior on G and considering the
a posterior maximum likelihood (REML likelihood) [32]. It would be interesting
to explore whether the lme4 optimizers with a penalization of singular fits [32]
yield similar results for the random effects covariance matrix G compared to our
Riemannian approach (Section 6.4.4).

• Incorporation of covariance structures for the residual vector ε. The linear mixed
model (6.3) shows considerable flexibility in modeling covariance structures of the
random effects. For the residual vector ε, we assume a Gaussian distribution with
zero mean and variance σ2I, that is we assume that the within-group errors are
iid with constant variance σ2. However, some real-world applications require the
modeling of heteroscedastic and/or correlated within-group errors such that the
model (6.3) might not be appropriate [111, Chapter 5]. We can extend the classical
linear mixed model (6.3) by assuming the more general distribution ε ∼ N (0, R)

for a positive definite covariance matrix R. Thus, the matrix R can be considered
a parameter on the manifold of positive definite matrices and we can formulate
the joint variance estimation of R, G as an optimization problem over the product
manifold MR

LME = Pn ×
(
×K

j=1 P
qj
)
. The dimension of R is determined by the
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number of observations n which is usually large. However, typically R has a special
structure [111, Section 5.2 & 5.3] and the entries can be identified with a vector
ω ∈ Rl with l� n(n+1)/2 (see remark (ii) in Section 6.1). Thus, it might be helpful
to study different variance and correlation structures of the matrix R in depth. The
consideration of special structures possibly yields an optimization problem over
smaller covariance matrices similar to the dimension reduction achieved for G by
(6.23), see Section 6.3.

• Generalized linear mixed models. Linear mixed models of the form (6.3) assume a
Gaussian marginal distribution of the response vector y. A typical extension to al-
low for other distributions of the response y (e.g. discrete distributions) is to model
data by a generalized linear mixed model. Here, the relationship between the linear
predictor Xβ + Zb and the response is modeled by a link function g : Rn → Rn,
that is

y = g(Zb+Xβ) + ε, (6.50)

see [14] and [40, Chapter 7]. Considering generalized linear mixed models of the
form (6.50) introduces some nonlinearity via the link function g which makes the
model even more complex. The nonlinearity in generalized linear mixed models
frequently occurs in singular fits [44, 15] which might yield numerical problems as
outlined in Section 6.2.3 for linear mixed models. A future research direction could
thus be to generalize the Riemannian framework introduced in Section 6.3 to gen-
eralized linear mixed models and to numerically study the behavior of Riemannian
optimizers for singular fits similar to Section 6.4.4.
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CHAPTER 7

Conclusion

In this thesis, we considered parameter estimation for two advanced statistical models
with clustered data by Riemannian optimization. For this, we first introduced rele-
vant foundations of differential geometry and built the basis to formulate optimization
problems defined on Riemannian manifolds. Then, we introduced maximum likelihood
estimation being the basis for the objectives that govern two statistical models of inter-
est, namely a Gaussian mixture model and a linear mixed model. Maximum likelihood
estimation for the two studied models incorporates the optimization with respect to
covariance matrices that are assumed to be positive definite. Therefore, we built the
bridge between Riemannian optimization and maximum likelihood estimation by intro-
ducing the Riemannian geometry of positive definite matrices. In that way, maximum
likelihood estimation tasks with covariance matrix parameters can be formulated as Rie-
mannian optimization problems. This formed the basis for the last two chapters where
we studied the statistical models of interest: the Gaussian mixture model and the linear
mixed model.

In the context of Gaussian mixture models, we studied the Riemannian formulation of
maximum likelihood estimation as introduced by the works of Hosseini and Sra in [65, 66].
For the objective of interest, we derived the Riemannian Hessian which contributes to
the geometric understanding of the respective parameter space. Based on the established
expressions for higher-order information, we proposed a Riemannian Newton trust-region
algorithm to fit the parameters of a Gaussian mixture model. The theoretical consid-



erations were complemented by numerical tests for both a clustering and a probability
density approximation task. We found that the Riemannian Newton trust-region algo-
rithm could beat the popular Expectation Maximization (EM) algorithm both in terms
of runtime and in terms of number of iterations. We observed this behavior in settings
where there was a high overlap of the K clusters and the number of observations was
sufficiently high. The introduced Riemannian Newton trust-region algorithm is deemed
a practicable alternative to the EM algorithm as it exhibited faster results while show-
ing similar errors (MSE/RMISE) and objective values in the experiments investigated in
this thesis. This gives rise to further investigations of algorithms based on the framework
studied in this thesis, especially for larger data sets which we outlined in Section 5.5.
The contoured future research directions include the exploitation of the structure of the
derived Riemannian Hessian for a higher number of observations and the incorporation
of independence structures for larger dimensions.

After considering Gaussian mixture models, we studied variance parameter estima-
tion in the context of linear mixed models. We introduced the model formally and
presented the approach implemented in the prominent lme4 package [44] that is often
used for fitting linear mixed models in practice. Motivated by the drawbacks of this
approach, we established a Riemannian formulation of variance parameter estimation in
linear mixed models being one of the novelties introduced by this thesis. Based on the
Riemannian formulation, we derived the Riemannian gradient and the Riemannian Hes-
sian which contribute to a deeper understanding of the geometry of the parameter space
in linear mixed models and allow to use derivative-based Riemannian optimizers. On
top, we tested the appropriateness of Riemannian optimization for linear mixed models
numerically and gave a computational comparison to optimization with the lme4 ap-
proach [15]. We observed that we could reach similar errors as the lme4 approaches and
in some settings they were lower, indicating that Riemannian optimization yields esti-
mates closer to the true values. Further, we tested the Riemannian approach for cases
where optimizers of the lme4 package [44] hit the boundary of the feasible space. We
addressed such possibly unfavorable fits with Riemannian optimizers in the sense that
we improved the objective slightly. The presented promising computational results of
Riemannian optimization motivate to study further, more complex data sets, with the
herein introduced Riemannian framework for linear mixed models. In Section 6.5, we de-
scribed various future research directions which extend the work on linear mixed models
presented in this thesis. This includes common generalizations of the linear mixed model
which usually yields even more complex optimization problems.

135



The listed future research directions for Gaussian mixture models and linear mixed
models in Chapter 5 and Chapter 6, respectively, demonstrate the various possibilities
to extend the work within this thesis for the individual statistical models. Another
interesting future research path consists of studying Riemannian optimization for the
combination of the two models, that is to consider mixtures of linear mixed models [95].
Mixtures of linear mixed models allow to cluster data with a mixture model for dependent
variables and to incorporate covariate information into the clustering process [104, 95].
Such extended models are used for example in the area of bioinformatics [25, 104] and
are typically solved by the Expectation Maximization algorithm [104]. In this thesis,
we observed remarkable improvements with a Riemannian approach compared to other
optimizers for the individual statistical models. Therefore, applying Riemannian opti-
mization for parameter estimation in mixtures of linear mixed models would potentially
reveal chances and limitations of a geometric approach for more complex models.
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APPENDIX A

Foundations of Differential Geometry and Statistics

A.1 Foundations of Differential Geometry

In this section, we state relevant definitions and differential geometry that are mentioned
in Chapter 2. The definitions and theorems presented here can be found in [2].

Definition A.1. (topology) A topology on a set M is a collection of T subsets of M ,
called open sets, such that

1. M and ∅ are in T ,

2. the union of elements of any subcollection of T is in T and

3. the intersection of the elements of any finite subcollection of T is in T .

A subset C of M is called closed if it is the complement of an open set in M , that is,
M \ C is open. In particular, M and ∅ are both open and closed. A topological space is
a tuple (M, T ), where M is a set and T is a topology on M .

Definition A.2. (atlas topology) Given a maximal atlas A+ on a set M , the atlas
topology on M states that a subset of M is open if and only if it is the union of collection
of chart domains.

Definition A.3. (basis for a topology) A collection B of subsets of M is a basis for
a topology on M if



A.2. Brief introduction to Bayesian Statistics

1. for each x ∈M , there exists B ∈ B such that x ∈ B,

2. if x ∈ B1 ∩B2forB1, B2 ∈ B, there exists B3 ∈ B and B3 ⊂ B1 ∩B2.

If B is a basis for a topology T on M , then T equals the collection of all unions of
elements of B.

In the definition of a manifold (Definition 2.4), the following assumptions are made
regarding the atlas topology.

Definition A.4. (second-countable) A topology T on a setM is called second-countable
if there is a countable basis for T .

Definition A.5. (Hausdorff) A topology T on a set M is called Hausdorff if all pairs
of distinct points have disjoint neighborhoods, that is: for all θ 6= θ

′ in M there exist
open sets O and O′ such that θ ∈ O, θ ∈ O′ and O ∩O′ = ∅.

The following results give us the desired properties for performing optimization on
possibly non-euclidean spaces. Studying convergence to local minima is meaningful with
the Hausdorff property and the existence of a Riemannian metric is given by second-
countability of the atlas topology.

Theorem A.6. [120, Prop. 2.5] Let T be a topology on M . If T is Hausdorff, then
every sequence of points of M converges to at most one limit point of M .

Theorem A.7. [81, Prop. 13.3] Every smooth manifoldM admits a Riemannian metric.

In this thesis, we consider product manifolds. For reasons of completeness, we state
the definition of a product topology.

Definition A.8. (product topology) Let (M1, T1), (M2, T2) be topological spaces. A
family of subsets of M1 ×M2 defined by B := {U1 × U2|U1 ∈ T1, U2 ∈ T2} is an open
basis of a topology T of M1 ×M2. The topology T and topological space (M1 ×M2, T )

are called the product topology and product space, respectively.̧

A.2 Brief introduction to Bayesian Statistics

In Chapter 5, we introduce a penalization term according to [66] that is based on Bayesian
statistics. We briefly introduce the basic idea of Bayesian statistics required for a deeper
understanding for the motivation of maximum a posterior estimation. We consider the
statistical setting as in Section 3.1. In this context, we consider the (factorized) condi-
tional expectation.

155



A.2. Brief introduction to Bayesian Statistics

Definition A.9. (conditional expectation) [142, Chapter 6] Let X,Y be random
variables and assume their joint probability density function is given by fX,Y . Further,
we denote the marginal distribution of X by fX . Then, the conditional probability density
function at X = x of Y , fY |X=x is defined by

fY |X=x(y|x) =
fX,Y (x, y)

fX(x)
,

if fX(x) > 0. In case fX(x) = 0, we set fY |X=x(y|x) = 0 for all y.
The factorized conditional expectation E(Y |X = x) is given by

E(Y |X = x) =

∞∫
−∞

yfY |X=x(y|x)dy.

A parametric estimation approach can be further divided into a frequentist and a
Bayesian approach. In the frequentist approach, we assume that the parameter of interest
θ is a deterministic parameter and we estimate its value (point estimation). Contrary, in
a Bayesian setting, we assume that the parameter θ comes itself with uncertainty, that
is it is a random variable itself. The basis of Bayesian statistics is the well-known Bayes
formula:

Theorem A.10. [86] Let X, Y be random variables with probability density functions
fX , fY , respectively. For the conditional probability density function of fX|Y=y, it holds
that

fX|Y=y(x) =
fY |X=x(y)fX(x)

fY (y)
,

where fY |X=x(y) is the conditional probability density function of Y |X = x.

In Bayesian statistics, we equip the parameter of interest θ with a prior belief, that is
we impose a prior probability density function gθ(θ) reflecting our initial belief about the
value of θ. After an experiment, we have observed data x := x1, . . . , xn and we assume
that this data has been generated by a probability density function parameterized by
θ, that is Xi ∼ fX(xv|θ) and xi is a realization of the random variable Xi. With these
samples, we can update our belief about θ yielding the posterior probability density
function. According to Bayes’ theorem, it holds that

gθ|X=x(θ) = cfX(x|θ)gθ(θ),

where c is a normalizing constant. Here, gθ(θ) is called the prior probability density
function of θ and gθ|X=x(θ) is called the posterior probability density function of θ given
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x. The choice of the prior gθ(θ) has a big impact on the posterior gθ|X=x. A special
choice of the prior is a conjugate prior: We say gθ is a conjugate prior for fX if the prior
gθ and the posterior gθ|X=x are in the same distribution family. The choice of a conjugate
prior is very convenient for applications as it comes with a closed-form expression for the
posterior.
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APPENDIX B

Appendix for Gaussian Mixture Models

B.1 Classical EM for GMMs

At this place, we derive the Expectation Maximization algorithm for Gaussian mixture
models due to its centrality to Chapter 5. We start with the classical algorithm and
then with a penalized version that is in line with the penalized objective (5.13). The
derivation presented here can be found in [101, Section 11.4.2] and [94, Section 2.7].

We here show how the maximum likelihood problem (5.3) can be described with la-
tent variables as in Section 3.2.

Assume we have a clustering tasks with K clusters denoted by Cj , j = 1, . . . ,K, and
data in each cluster follows a Gaussian distribution with mean µj and covariance matrix
Σj .We introduce hidden iid variables Z1, . . . , Zn modeling the class membership, that is
the variable Zi takes on the value j if the corresponding Xi is in cluster Cj , j = 1, . . . ,K

with probability αj . Thus, we assume that Zi follows a (discrete) categorical distribution,
that is Zi ∼ Cat(α). Hence, the probability mass function of Zi reads

fZi(z
v
i = j) = αj for j = 1, . . . ,K

or equivalently

fZi(z
v
i ) =

K∏
j=1

(αj)
1{zv

i
=j}



B.1. Classical EM for GMMs

The likelihood function (5.2) of observations x1, . . . , xn can thus be expressed as

l(θ̃) =
n∑
i=1

log

 K∑
j=1

αjpN (xi;µj ,Σj)


=

n∑
i=1

log

 K∑
j=1

fZi(z
v
i = j)pN (xi;µj ,Σj)


=

n∑
i=1

log

 K∑
j=1

fXi,Zi=j(xi, zi; θ)

 .

The setting described in Section 3.2 is thus met. We now concretize the E-step and the
M-step of the EM algorithm (Algorithm 7).
For θ̃ = (θ̃1, . . . , θ̃K), where θ̃j = (αj , µj ,Σj), we observe that

Q(θ̃, θ̃t) =

n∑
i=1

EZi|Xi=xi;θ̃t

log

 K∏
j=1

αjpN (xi;µj ,Σj)

1{Zi=j}


=

n∑
i=1

K∑
j=1

EZi|Xi=xi;θ̃t
[
1{Zi=j}

]
log (αjpN (xi;µj ,Σj))

=
n∑
i=1

K∑
j=1

fZi|Xi=xi(z
v
i |xi; θ̃t) (log(αj) + log (pN (xi;µj ,Σj))) . (B.1)

We denote the responsibility of cluster j for observation xi at iteration t by rtij and
get by using Bayes’ formula

rtij := fZi|Xi=xi(z
v
i |xi; θ̃t) =

αjpN (xi;µ
t
j ,Σ

t
j)

K∑
k=1

αkpN (xi;µtk,Σ
t
k)

. (B.2)

The computation of the E-step thus consists in evaluating the responsibility (B.2) for
each observation xi. For the M-step, we maximize the function (B.1) with respect to
θ̃, that is with respect to αj , µj and Σj for all j = 1, . . . ,K. Luckily, this is a concave
problem with a closed form solution. We state the algorithm in the following.
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Algorithm 8: Expectation Maximization algorithm for Gaussian mixture mod-
els
Input: initial values for θ̃0

Output: sequence of parameters {αtj , µtj ,Σt
j} for j = 1, . . . ,K

1 for t = 0, 1, 2, . . . do
2 E-step: Evaluate

rtij =
αjpN (xi;µ

t
j ,Σ

t
j)

K∑
k=1

αkpN (xi;µtk,Σ
t
k)

;

for i = 1, . . . , n and j = 1, . . . ,K.
3 M-step: For j = 1, . . . ,K, set

αtj =
1

n

n∑
i=1

rtij ;

µtj =
1

αtj

n∑
i=1

rtijxi;

Σt
j =

1

αtj

n∑
i=1

rtij(xi − µj)(xi − µj)T ;

4 end for

B.2 Penalized EM for GMMs

We here briefly state the derivation of the penalized EM algorithm for Gaussian mixture
models as presented in [106]. As mentioned in Section 5.2.1, a penalization term can be
found by considering the a posterior log-likelihood which is the sum of the classical (fre-
quentist) log-likelihood L(θ) and the logarithm of the prior probability density function
for θ. In this section, we specify the prior probability density functions arising in the
maximum a posterior likelihood (5.13).

Since the single components of θ, i.e. α, µj , Σj , j = 1, . . . ,K are independent from
each other, the prior gθ of θ is the product of the individual priors denoted by gα, gµj
and gΣj . As priors, conjugate priors are a favorable choice for gα, gµ, gΣ as they allow
for beneficial EM update rules. As introduced in Section 3.1, we denote arguments of
the densities gα, gµj and gΣj by αv, µvj and Σv

j , respectively.
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B.2. Penalized EM for GMMs

A conjugate prior for α = (α1, . . . , αK) is the (symmetric) Dirichlet distribution
whose probability density function is given by

gdirichα (αv; ζ) = C1(ζ)
K∏
j=1

(αvj )
ζ ,

where ζ > 0 is known and C1(ζ) > 0 is a normalizing constant independent of α [106].
For each parameter µj , the conjugate prior is given by a Gaussian distribution pN with
mean ν. Its covariance matrix is given by κ−1Σj , where κ > 0 is a shrinkage parameter.
The conjugate prior for the means µj this reads

gNµj (µ
v
j ; Σj , κ, λ) = C2(κ) det(Σj)

−1/2 exp
(
−κ

2
(µvj − λ)Σ−1

j (µvj − λ)T
)
,

where κ > 0, λ ∈ Rd and C2(κ) > 0 is a constant independent of µvj , Σj , where Σj

is assumed to be given [106]. The conjugate prior for the covariance matrices Σj is an
inverse Wishart distribution, that is

gWi
Σj (Σv

j ; Λ, ν) = C3(Λ, ν) det(Σv
j )
−(ν+d+1)/2 exp

(
−1

2
tr
(
Λ(Σv

j )
−1
))

,

where C3(Λ, ν) > 0 is a parameter independent of (Σv
j )
−1. Here, Λ ∈ Rd×d is a symmetric

positive definite matrix and ν > 0. 1

Thus, the a posterior log-likelihood function for Gaussian mixture models is given by
the expression (5.13). For this objective, one can formulate a penalized version of the EM
algorithm (Algorithm 8). For a derivation of the algorithm, we refer to [106, Appendix
1]. Thanks to the conjugate priors, the E-step remains the same as in Algorithm 9, only
the M-step changes. We briefly state the algorithm in the following.

1We impose the same parameters for the conjugate priors of µj , Σj , j = 1, . . . ,K, meaning that the
parameters κ, λ,Λ, ν are independent of j.
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Algorithm 9: Penalized Expectation Maximization algorithm for Gaussian
mixture models
Input: initial values for θ̃0

Output: sequence of parameters {αtj , µtj ,Σt
j} for j = 1, . . . ,K

1 for t = 0, 1, 2, . . . do
2 E-step: Evaluate

rtij =
αjpN (xi;µ

t
j ,Σ

t
j)

K∑
k=1

αkpN (xi;µtk,Σ
t
k)

;

for i = 1, . . . , n and j = 1, . . . ,K.
3 M-step: For j = 1, . . . ,K, set

αtj =

n∑
i=1

rtij + ζ

n+Kζ
;

µtj =

n∑
i=1

rtijxi + κλ

n∑
i=1

rtij + κ

;

Σt
j =

n∑
i=1

rtij(xi − µj)(xi − µj)T + κ(µj − λ)(µj − λ)T + Λ

n∑
i=1

rtij + ν + d+ 2

;

4 end for

B.3 Convergence of R-NTR to Critical Points for Gaussian
Mixture Models

In Section 5.3, we introduced assumptions needed to show convergence of Algorithm 3 to
a critical point for Gaussian mixture models, see Theorem 5.8. We prove the Theorem
in the following.

Proof of Theorem 5.8.
According to Theorem 2.31, it suffices to show that the sequence of iterates θt remains
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bounded. Since the rejection threshold in Algorithm 3 is nonnegative, i.e. ρ′ > 0, we get

L̂pen(θ0) ≤ L̂pen(θt) (B.3)

for all iterations t = 0, 1, 2, . . . .
We show that the iterates Stj remain in the interior of Pd+1. For this, assume there

exists a subsequence θti with λmin(Stij ) → 0 as ti → ∞. By the proof of Theorem 5.5,

this implies L̂pen(θti)
ti→∞−−−−→ −∞ which is a contradiction to (B.3). Thus, there exists a

lower bound Cl > 0 such that

Cl ≤ λmin(Stj). (B.4)

For the upper bound, we consider the set of successful (unsuccessful) steps St (Ft)
generated by the algorithm until iteration t given by

St = {l ∈ {0, 1, . . . , t} : ρl > ρ′}, Ft = {l ∈ {0, 1, . . . , t} : ρl ≤ ρ′}.

Let

ξt =
((
ξtS1

, . . . , ξtSK
)
, ξη

t
)
∈ TθMGMM

be the tangent vector returned by solving the quadratic subproblem in line 2, Algorithm
3 and RStj (ξStj ) = Stj exp

(
(Stj)

−1ξStj

)
be the retraction of ξt at iteration t with respect to

Stj , see (5.27). Due to the boundedness of the quadratic subproblem in (3), there exists
∆̃ > 0 such that ‖ξSj t‖ ≤ ∆̃ for all j = 1, . . . ,K. We get

‖ξtSj‖ = ‖RStj (ξStj )‖1{t∈St} + ‖St−1
j ‖1{t∈Ft}

≤ ‖St−1
j ‖

(
exp

(
‖
(
St−1
j

)−1
‖‖ξtSj‖

)
1{t∈St} + 1{t∈Ft}

)
≤ ‖St−1

j ‖

(
1{t∈Ft} + exp

(
‖ξStj‖

λmin(St−1
j )

)
1{t∈St}

)

≤ ‖St−1
j ‖

(
1{t∈Ft} + exp

(
∆̃

Cl

)
1{t∈St}

)

≤ τ t−1‖Ψ‖

(
1{t∈Ft} + exp

(
∆̃

Cl

)
1{t∈St}

)
and from the assumption (5.41) boundedness from above follows directly.

We now show boundedness of

ηt = (ηt1, . . . , η
t
K−1) ∈ RK−1.
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By the inequality (B.3) and (5.17), we have

L̂pen(θ0) ≤ L̂pen(θt) = L̂(θt) +
K∑
j=1

ψ(Stj ,Ψ) + ϕ(ηt, ζ).

Due to (B.4), there exists C̃ > 0 such that

L̂pen(θ0) ≤ L̂pen(θt) ≤ C̃ + ϕ(ηt, ζ). (B.5)

We will study ϕ(ηt, ζ) for ηt at the boundary in the following. We distinguish between
the following two cases:

I. Assume there exists j ∈ {1, . . . , l} such that ηtj →∞.

II. Assume there does not exist a j ∈ {1, . . . ,K − 1} such that ηtj →∞.

We first study the first case, that is I. For this, we distinguish two cases:

I. a) We study the case where only some of the ηtj approach ∞. Without loss of gener-
ality, assume that ηtj → ∞ for j ∈ {1, . . . , l} for l < K − 1. Further, for all j > l,
assume that ηtj ≤ c for a constant c > 0.
Recall that

αtj =
exp(ηtj)

K∑
k=1

exp(ηtk)

for all j = 1, . . . ,K with ηK = 0 by (5.8). By assumption (5.40), we have αtj > ε.
By the rule of L’Hôpital, we get

lim
t→∞

αtj = lim
t→∞

exp(ηtj)

K∑
j=1

exp(ηtk)

=
1

l
,

yielding

lim
t→∞

K∑
j=1

αtj = 1 +
K∑

j=l+1

lim
t→∞

αtj ≥ 1 +
K∑

j=l+1

εj > 1

which is a contradiction to
K∑
j=1

αj = 1, see (5.4).
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I. b) Now assume that for all j = 1, . . . ,K − 1 we have ηtj → ∞ with the same speed,
otherwise we are in case I.a). Without loss of generality, we set n = ηtj and let
n→∞. Using ηK = 0 and exp(n) > −1, the penalization term ϕ(ηt, ζ) from (5.16)
reads

ϕ(ηt, ζ) = ζ

 K∑
j=1

ηtj −K log

(
K∑
k=1

exp(ηtk)

)
= ζ

(
(K − 1)n−K log

(
1 +

K−1∑
k=1

exp(n)

))
≤ ζ ((K − 1)n−K log(K − 2)−K exp(n))

= ζ(−n−K log(K − 2)) −−−→
n→∞

−∞

which is a contradiction to (B.5).

We now study case II., that is we assume @j ∈ {1, . . . ,K−1} : ηtj →∞. For this, assume
∃l ≤ K − 1 : j ∈ {1, . . . , l} : ηtj → −∞ and for j > l : |ηtj | ≤ c. Then, the penalization
term (5.16) reads

ϕ(ηt, ζ) = ζ

 l∑
j=1

ηtj +

K−1∑
j=l+1

ηtj −K log

(
K∑
k=1

exp(ηtk)

)
≤ ζ

 l∑
j=1

ηtj + (K − 1− l)c

 −−−−−→
ηtj→−∞

−∞,

where we used ηK = 0. As before, this is a contradiction to (B.5).

Thus, the iterates {θ}t remain in a compact set and the assumptions of Theorem 2.32
are fulfilled.

B.4 Additional results for Gaussian Mixture Models

We show additional numerical results for the experiments conducted in Section 5.4.1 for
both simulated and additional real-world data sets.
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B.4.1 Simulated Data

Table B.1: Simulation results of 20 runs for dimensions d = 20, number of
components K = 5 and eccentricity e = 5.

EM R-NTR R-LBFGS

c=0.2 Iterations 145.7 38.5 60.4
Mean time (s) 1.899 1.512 8.165
Mean ALL -50.65 -50.66 -50.66
MSE weights 0.00018 0.00019 0.008
MSE means 0.08 0.08 0.08
MSE cov 2.18 1.83 2.21

c=1 Iterations 258.9 60.4 84.1
Mean time (s) 3.061 1.951 11.64
Mean ALL -57.65 -57.65 -57.65
MSE weights 0.00037 0.0004 0.008
MSE means 0.08 0.07 0.07
MSE cov 1.02 1.39 1.04

c=5 Iterations 194.6 37.2 65.7
Mean time (s) 2.367 1.267 8.927
Mean ALL -54.86 -54.86 -54.87
MSE weights 0.00017 0.00018 0.008
MSE means 0.07 0.07 0.07
MSE cov 0.15 0.13 0.15
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Table B.2: Simulation results of 20 runs for dimensions d = 40, number of
components K = 5 and eccentricity e = 10 for different number of observa-
tions

(a) n = 1000 observations

EM R-NTR R-LBFGS

c=0.2 Iterations 4 16.3 6.6
Mean time (s) 0.091 1.336 0.622
Mean ALL -125.63 -125.63 -125.649
MSE weights 3e-05 3e-05 0.008
MSE means 0.091 0.095 0.091
MSE cov 0.224 0.215 0.224

c=1 Iterations 4 17.6 8.8
Mean time (s) 0.097 1.561 0.862
Mean ALL -110.112 -110.112 -110.14
MSE weights 3e-05 3e-05 0.008
MSE means 0.089 0.084 0.089
MSE cov 0.461 0.337 0.461

c=5 Iterations 4 17 7.2
Mean time (s) 0.094 1.497 0.697
Mean ALL -116.276 -116.276 -116.3
MSE weights 3e-05 3e-05 0.008
MSE means 0.061 0.066 0.061
MSE cov 0.351 0.43 0.351

(b) n = 10.000 observations

EM R-NTR R-LBFGS

c=0.2 Iterations 4 2.3 3.3
Mean time (s) 0.628 1.524 0.74
Mean ALL -127.762 -127.762 -127.764
MSE weights 0 0 0.008
MSE means 0.089 0.09 0.089
MSE cov 0.14 0.189 0.14

c=1 Iterations 4 2.8 3.8
Mean time (s) 0.609 1.676 0.884
Mean ALL -112.25 -112.25 -112.252
MSE weights 0 0 0.008
MSE means 0.084 0.084 0.084
MSE cov 0.313 0.29 0.313

c=5 Iterations 4 2.6 3.6
Mean time (s) 0.63 1.662 0.774
Mean ALL -118.337 -118.337 -118.339
MSE weights 0 0 0.008
MSE means 0.065 0.071 0.065
MSE cov 0.228 0.235 0.228

B.4.2 Real-world Data

Gas Turbine CO and NOx Emission Data Set [76]

Table B.3: Results of (normalized) Gas turbine CO and NOx Emission
Data Set for different number of components K. Number of observations
n = 36733, dimensions d = 11.

EM R-NTR R-LBFGS

K = 2 Time (s) 2.04 2.48 3.22
Iterations 25 22 28
ALL -5.73 -5.73 -5.73

K = 5 Time (s) 17.41 9.52 11.48
Iterations 90 46 58
ALL -1.93 -1.99 -1.93

K = 10 Time (s) 40.66 29.36 27.31
Iterations 130 61 75
ALL -1.17 -1.16 -1.17

K = 15 Time (s) 52.06 63.20 142.77
Iterations 115 76 233
ALL 0.04 -0.04 -0.05
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Wine Quality Data set [35]

Table B.4: Results of (normalized) Wine quality data set for different number
of components K. Number of observations n = 6497, dimensions d = 11.

EM R-NTR R-LBFGS

K = 2 Time (s) 0.54 0.24 1.55
Iterations 27 8 20
ALL -11.02 -11.02 -11.02

K = 5 Time (s) 4.75 1.24 5.69
Iterations 154 34 51
ALL -9.74 -9.98 -9.88

K = 10 Time (s) 12.61 5.65 22.80
Iterations 239 83 100
ALL -9.23 -9.28 -9.28

K = 15 Time (s) 91.16 11.17 51.65
Iterations 1137 70 147
ALL -8.91 -8.88 -8.89

The wine quality data set also provides classification labels: we can distinguish be-
tween white and red wine or distinguish between 7 quality labels. Besides the clustering
performance of the methods (Table B.5), we also show the goodness of fit of our method
for K = 2 and K = 7.

Table B.5: Weighted mean squared errors of (normalized) Wine data set for
K = 2 (white wine/ red wine).

EM R-NTR R-LBFGS

distance 2.757966 2.757982 2.757974
wMSE weight 0.003169 0.003169 0.003169
wMSE mean 0.073776 0.073779 0.073778
wMSE cov 0.562106 0.562113 0.562109
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Table B.6: Adjusted Rand Index for (normalized) Wine data set for K = 2

(white wine/ red wine).

ground truth EM R-NTR R-LBFGS

ground truth 1 0.78 0.78 0.78
EM 1 1.00 1.00
R-NTR 1 1.00
R-LBFGS 1

Table B.7: Weighted mean squared errors of (normalized) Wine data set
for K = 7 (quality label). Weighting by mixing coefficient of the mixing
coefficients belonging to the true labels.

EM R-NTR R-LBFGS

distance 89.259333 89.488919 88.894978
wMSE weight 0.019019 0.010065 0.035496
wMSE mean 3.442393 4.214438 3.082073
wMSE cov 12.047944 13.400811 11.327231

Table B.8: Weighted mean squared errors of (normalized) Wine data set for
K = 7 (quality label). Weighting by mixing coefficients of the respective
method.

EM R-NTR R-LBFGS

distance 89.259333 89.488919 88.894978
wMSE weight 0.019019 0.010065 0.035496
wMSE mean 6.068149 5.617490 11.996024
wMSE cov 61.808676 37.060684 55.707085

Table B.9: Adjusted Rand Index for (normalized) Wine data set for K = 7

(quality label).

ground truth EM R-NTR R-LBFGS

ground truth 1 0.02 0.01 0.02
EM 1 0.73 0.70
R-NTR 1 0.85
R-LBFGS 1
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