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Abstract

Abstract
Non-probability sampling is a topic of growing relevance in national statistical institutes
as well as academic and applied research, especially due to its occurrence in the con-
text of new emerging data sources like web surveys and Big Data. Although it offers
vast opportunities, especially for relatively cheap, fast and easy data collection, non-
probability sampling also poses substantial statistical challenges because the respective
sampling mechanisms are typically neither controlled nor known by the researchers. Well-
established principles that facilitate reliable estimation and inference in case of probability
sampling, thus, do not hold for non-probability sampling. Consequently, the use of non-
probability samples as sources of statistical information raises substantial concerns in
terms of data quality and representativity. To address these concerns and potential
remedies, the overarching aims of this thesis are to discuss, expand and evaluate var-
ious methods for tackling the specific issues of non-probability samples in a common
framework.
The main problem arising from the use of non-probability sampling is that the dependen-
cies between sample inclusion and variables of interest are unknown. Therefore, the first
methodological challenge in this context is to operationalize and quantify the selectivity
(non-representativity) of the respective sampling mechanism. The second challenge is to
account for potential selectivity and resulting biases in point estimation and inference.
Various pre-existing methods to tackle these core challenges posed by non-probability
samples are identified and summarized. Particular attention is paid to the mathemat-
ical and algorithmic foundations required to implement and apply these methods. For
quantifying selectivity, dependencies between sample inclusion and variables of interest
are examined using suitable auxiliary information. Methods considered for this purpose
are manual comparisons, statistical tests, matching, representativity indicators and a
strategy to calculate intervals for the MSE of design linear estimators. To account for
potential selectivity and biases of non-probability samples in estimation and inference, two
broader paradigms can be distinguished. The model-based paradigm predicts information
about the variables of interest outside the non-probability sample, a purpose for which
various statistical and machine learning models are considered. In the pseudo-design-based
paradigm, pseudo-design weights are estimated to mimic the design weights in probability
sampling. The methods studied in this regard are propensity and calibration weighting as
well as sub-sampling. A bandwidth of strategies to achieve a synthesis of both paradigms
is discussed as well.
The two methodological novelties proposed and implemented in the scope of this thesis
contribute to either of the two paradigms outlined above. The first proposal introduces
semi-parametric artificial neural networks as prediction models, which integrate B-spline
layers with an optimal knot positioning strategy in the general structure and fitting proce-
dure of artificial neural networks. Extending and complementing these ideas, the second
proposal introduces calibrated semi-parametric artificial neural networks to determine
pseudo-design weights for non-probability samples. The rationale behind this approach
is to establish propensity models of adaptable complexity that describe non-probability
sample selection while incorporating soft and exact calibration constraints for estimates
of totals, covariances and correlations. These two proposals constitute integrations and
extensions of estimation methods that are commonly used for non-probability samples
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and provide further possibilities and increased flexibility to utilize different types of
auxiliary information for estimation. Complementing the theoretical foundation of these
new methods, custom-made computational implementations are developed for fitting
(calibrated) semi-parametric artificial neural networks by means of (stochastic) gradient
descent, BFGS and sequential quadratic programming algorithms.
The performance of all the discussed methods with regard to the challenges posed by non-
probability sampling is evaluated and compared, considering a bandwidth of scenarios in
terms of sample selection mechanisms and available auxiliary information. This is done by
means of a Monte Carlo simulation study as well as an application to a real non-probability
sample, the WageIndicator web survey. Potentials and limitations of the different methods
for handling the specific challenges of non-probability samples under various circumstances
are highlighted by the theoretical and empirical discussion. Due to the heterogeneity
in nature and purposes of different non-probability samples, no method is found to be
suitable under all circumstances. The best strategy to use for non-probability samples
rather depends on the particular selection mechanism, research interest and available
auxiliary information. Nevertheless, the findings in this thesis show that existing methods
as well as the newly proposed (calibrated) semi-parametric artificial neural networks can
be used to ease or even fully counterbalance the issues of non-probability samples and
highlight the conditions under which this is possible.

IV



Contents

Contents
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI
List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII
List of Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XV
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXIII

1 Introduction 1

2 Issues and Challenges Regarding Non-probability Samples 7
2.1 Literature Review: Characteristics and Usage of New Data Sources . . . . . . . . 9
2.2 Overview of Probability Sampling and Design-based Estimation . . . . . . . . . . 12
2.3 Challenges in Dealing with Non-probability Samples . . . . . . . . . . . . . . . . . . . . . . 20

3 Representativity and Selectivity 25
3.1 Concepts of Representativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Auxiliary Information: Para- and Reference Data . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Comparing Auxiliary Variables to Assess Representativity . . . . . . . . . . . . . . . . 29
3.4 Testing for Selectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Matching With Auxiliary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Modeling the Participation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Representativity Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Quantifying the MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Mathematical and Computational Foundations 47
4.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Solving Triangular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Gaussian Elimination (LU-factorization) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Non-linear Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
4.2.1 Unconstrained Non-linear Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Constrained Non-linear Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
4.2.3 Substitutes for the Hessian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Approaches for Estimation from Non-probability Samples 61

V



Contents

5.1 Model-based Methods: Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.1 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.2 Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.3 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.4 Generalized Additive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.5 Generalized Additive Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.6 Regression Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.7 Multivariate Adaptive Regression Splines and Regression Trees . . . . . . . 85
5.1.8 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.9 Semi-parametric Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.10 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1.11 Shrinkage Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Pseudo-design-based Methods: Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.1 Response Propensity Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2.2 Calibration Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.3 Calibrated Semi-parametric Artificial Neural Networks . . . . . . . . . . . . . . 117
5.2.4 Sub-sampling from Non-probability Samples . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Synthesis of Model- and Pseudo-design-based Methods . . . . . . . . . . . . . . . . . . 130
5.3.1 Integration of Response and Outcome Model . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3.2 Weighted Aggregation of Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Monte Carlo Simulation Studies 141
6.1 Software for the Considered Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1.1 Pre-existing Software for Established Methods . . . . . . . . . . . . . . . . . . . . . . 142
6.1.2 Software Implementation of Newly Proposed Methods . . . . . . . . . . . . . . . 143

6.2 Prior Applicability Studies for the Developed Methods and Software. . . . .144
6.2.1 Prior Evaluation of Semi-parametric Artificial Neural Networks . . . . . 144
6.2.2 Prior Evaluation of Calibrated Semi-parametric Artificial Neural

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3 Evaluation of Methods for Non-probability Samples . . . . . . . . . . . . . . . . . . . . . 155

6.3.1 Setup of the Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.2 Results of the Simulation Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164

7 Application to the WageIndicator Web Survey 229
7.1 Assessment of Selectivity and Potential Biases . . . . . . . . . . . . . . . . . . . . . . . . . . .231
7.2 Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.3 Summary and Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245

VI



Contents

8 Conclusion and Outlook 249

Appendix A
Mathematical Background of the BFGS-update 255

Appendix B
Mathematical Background of Weighting and Prediction
Methods 261

B.1 Bias of the Maximum Likelihood Covariance Estimator . . . . . . . . . . . . . . . . . 261
B.2 Use of Design Weights for Estimation of Conditional Distributions . . . . . . 262
B.3 General Motivation of Model- and Pseudo-design-based Methods for

Non-probability Samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263
B.4 Mathematical Background of Prediction Models . . . . . . . . . . . . . . . . . . . . . . . . 266

B.4.1 Derivation of the Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
B.4.2 Additional Newton-Raphson and Fisher Scoring Update Rules for

Generalized Linear and Additive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
B.4.3 Additional Newton-Raphson and Fisher Scoring Update Rules for

Generalized Linear and Additive Mixed Models . . . . . . . . . . . . . . . . . . . . 270
B.4.4 Derivatives of B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
B.4.5 Derivation of Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
B.4.6 Derivation of Shrinkage Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

B.5 Mathematical Background of Calibrated Artificial Neural Networks . . . . . 288
B.5.1 Gradient Information for Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
B.5.2 The Link Between Covariance Calibration and Post-stratification. . .292

B.6 Rationale of MSE-intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Appendix C
Documentation of R-packages 295

C.1 Documentation for Package sqp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
C.2 Documentation for Package ann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
C.3 Documentation for Package calmod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Appendix D
Additional Results for the German WageIndicator Web Survey 325

Bibliography 363

VII



VIII



List of Figures

List of Figures
2.1 Schematic comparison of information in a probability and non-probability

sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Schematic representation of estimation approaches for non-probability
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

6.1 Comparison of knot positioning methods for out-of-sample predictions . . . . . 145
6.2 Compliance with total and (co-)variance benchmarks when combining

response and calibration weighting for µX = ΣX = 1 . . . . . . . . . . . . . . . . . . . . . . . 147
6.3 Influence of importance weights when fitting calibrated ANNs: importance

weights for the soft calibration distance components . . . . . . . . . . . . . . . . . . . . . . . 149
6.4 Flowchart of the Monte Carlo simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.5 Representativity assessment for different dependencies between X and y·1:

combined difference tests for X and Z, and estimation of µy·1
for 100%

coverage – weighting model: unweighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.6 Representativity assessment for different dependencies between X and y·1:

difference in µ̂X for matched samples, and estimation of µy·1
for 100%

coverage – weighting model: unweighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.7 Representativity assessment for different dependencies between X and y·1:

global R-Indicator R̂ (p̂nps), and unweighted estimation of µy·1
for 100%

coverage – propensity model: logit model (parametric), using a reference
sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.8 Representativity assessment for different dependencies between X and
y·1: global R-Indicator R̂ (p̂nps), and unweighted estimation of µy·1

for
100% coverage – propensity model: calibrated ANN (parametric), using a
reference sample, total and covariance constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.9 Representativity assessment for different dependencies between X and y·1:
MSE-interval based on X, and estimation of µy·1

for 100% coverage –
weighting model: unweighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.10 Representativity assessment for different dependencies between X and y·1:
MSE-interval based on X, and estimation of µy·1

for 100% coverage –
weighting model: logit model (parametric), using a reference sample . . . . . . . .175

6.11 Comparison of prediction models for different dependencies between X and
y·1: estimation of µy·1

for 100% coverage – weighting model: unweighted
(estimation from imputed reference sample). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178

6.12 Comparison of prediction models for different dependencies between X and
y·1: estimation of ρy·1y·2

for 100% coverage – weighting model: unweighted
(estimation from imputed reference sample). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182

6.13 Comparison of weighting methods for different dependencies between X
and y·1: estimation of µy·1

for 100% coverage, using a reference sample. . . . .184

IX



List of Figures

6.14 Comparison of weighting methods for different dependencies between X
and y·1: estimation of µy·1

for 100% coverage, using a reference sample. . . . .186
6.15 Comparison of weighting methods for different dependencies between X

and y·1: estimation of ρy·1y·2
for 100% coverage, using a reference sample . . 188

6.16 Comparison of weighting methods for different dependencies between X
and y·1: estimation of µy·1

for 100% coverage, using total and covariance
constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.17 Comparison of weighting methods for different dependencies between X
and y·1: estimation of µy·1

for 100% coverage, using a reference sample,
total and covariance constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

6.18 Comparison of prediction models for different dependencies between X
and y·1: estimation of µy·1

for 100% coverage – weighting model: pseudo-
weights (fixed knots), using a reference sample (estimation from imputed
reference sample) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.19 Comparison of prediction models for different dependencies between X
and y·1: estimation of µy·1

for 100% coverage – weighting model: post-
stratification, using total constraints (estimation by weighted aggregation
of predictions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.20 Comparison of prediction models for different dependencies between X and
y·1: estimation of µy·1

for 100% coverage – weighting model: calibrated
ANN (parametric), using total and covariance constraints (estimation by
weighted aggregation of predictions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.21 Comparison of prediction models for different dependencies between X
and y·1: estimation of µy·1

for 100% coverage – weighting model: logit
model (parametric) and GREG, using a reference sample, total and
covariance constraints (estimation from imputed reference sample) . . . . . . . . 202

7.1 Comparison of the German WageIndicator web survey and Microcensus
2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

X



List of Tables

List of Tables
6.1 Numerical stability and coincidence of the GREG and an equivalent

calibrated ANN (each using one parameter per observation) for different
values of µX and ΣX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2 Settings for the simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3 Confidence interval coverage rates for selected prediction models under

different dependencies between X and y·1: estimation of V
(
µ̂y·1

)
for

100% coverage – weighting model: unweighted (estimation from imputed
reference sample) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.4 Confidence interval coverage rates for selected prediction models under
different dependencies between X and y·1: estimation of V

(
ρy·1y·2

)
for

100% coverage – weighting model: unweighted (estimation from imputed
reference sample) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.5 Confidence interval coverage rates for selected weighting models under
different dependencies between X and y·1: estimation of V

(
µy·1

)
for 100%

coverage, using a reference sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.6 Confidence interval coverage rates for selected weighting models under

different dependencies between X and y·1: estimation of V
(
µy·1

)
for 100%

coverage, using a reference sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.7 Confidence interval coverage rates for selected weighting models under

different dependencies between X and y·1: estimation of V
(
ρy·1y·2

)
for

100% coverage, using a reference sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.8 Confidence interval coverage rates for selected weighting models under

different dependencies between X and y·1: estimation of V
(
µy·1

)
for 100%

coverage, using total and covariance constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.9 Confidence interval coverage rates for selected weighting models under

different dependencies between X and y·1: estimation of V
(
µy·1

)
for 100%

coverage, using a reference sample, total and covariance constraints . . . . . . . . 218
6.10 Confidence interval coverage rates for selected prediction models under

different dependencies between X and y·1: estimation of V
(
µy·1

)
for 100%

coverage – weighting model: pseudo-weights (fixed knots), using a reference
sample (estimation from imputed reference sample) . . . . . . . . . . . . . . . . . . . . . . . 220

6.11 Confidence interval coverage rates for selected prediction models under
different dependencies between X and y·1: estimation of V

(
µy·1

)
for 100%

coverage – weighting model: post-stratification, using total constraints
(estimation by weighted aggregation of predictions) . . . . . . . . . . . . . . . . . . . . . . . . 222

XI



List of Tables

6.12 Confidence interval coverage rates for selected prediction models under
different dependencies between X and y·1: estimation of V

(
µy·1

)
for 100%

coverage – weighting model: calibrated ANN (parametric), using total and
covariance constraints (estimation by weighted aggregation of predictions) .224

6.13 Confidence interval coverage rates for selected prediction models under
different dependencies between X and y·1: estimation of V

(
µy·1

)
for

100% coverage – weighting model: logit model (parametric) and GREG,
using a reference sample, total and covariance constraints (estimation from
imputed reference sample) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

7.1 Selectivity measures and tests for the German WageIndicator web survey
2012. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234

7.2 Results for model-based estimation in the German WageIndicator web
survey 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

7.3 Results for pseudo-design-based estimation in the German WageIndicator
web survey (weighting methods without response propensity model) . . . . . . .241

7.4 Results for pseudo-design-based estimation in the German WageIndicator
web survey 2012 (weighting methods with response propensity model) . . . . .244

D.1 Mean absolute errors for income class frequencies (in percentage points)
estimated by weighted aggregation of predictions in the WI (weighting
methods without response propensity model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

D.2 Mean absolute errors for income class frequencies (in percentage points)
estimated by weighted aggregation of predictions in the WI (weighting
methods with response propensity model). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327

D.3 Mean absolute errors for income class frequencies (in percentage points)
estimated from the imputed Microcensus, using a weighted loss function for
prediction models (weighting methods without response propensity model) . 328

D.4 Mean absolute errors for income class frequencies (in percentage points)
estimated from the imputed Microcensus, using a weighted loss function
for prediction models (weighting methods with response propensity model) .329

D.5 Income class frequencies (in percentage points) estimated by weighted
aggregation of predictions in the WI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

D.6 Income class frequencies (in percentage points) estimated from the imputed
Microcensus, using a weighted loss function for prediction models . . . . . . . . . . 338

D.7 Estimated standard deviations (in percentage points) for income class
frequencies estimated by weighted aggregation of predictions in the WI . . . . 346

D.8 Estimated standard deviations (in percentage points) for income class
frequencies estimated from the imputed Microcensus, using a weighted
loss function for prediction models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

XII



List of Algorithms

List of Algorithms
1 General resampling algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Forward / backward substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3 Gaussian elimination (LU-factorization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
4 Partial (row) pivoting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
5 Newton-Raphson algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6 Armijo step-size rule for unconstrained optimization . . . . . . . . . . . . . . . . . . . . . . . . 52
7 Quadratic programming using an active set strategy (QP) . . . . . . . . . . . . . . . . . . . 55
8 Sequential quadratic programming (SQP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9 Armijo step-size rule for constrained optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10 (Damped) BFGS-update rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
11 Backfitting algorithm for additive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
12 MARS: forward stepwise selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
13 MARS: backward stepwise selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
14 Cross-validation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
15 General sub-sampling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

XIII



XIV



List of Symbols

List of Symbols
General functions and symbols

General symbols
a, b, c, d, h,

s, u, v
Arbitrary numbers, defined in the respective context where they
are used

a, b, c, d, u, v Arbitrary vectors, defined in the respective context where they
are used

A, B, C, D,
U , V

Arbitrary matrices, defined in the respective context where they
are used

La, Ua Lower and upper boundary for parameters a, of same
dimension as a

Rh
>0,Rh

≥0 Sets of all positive and non-negative real-valued vectors of size h

ξ, ξ+, ξ−, ξ∗ Vectors of slack-variables

General functions
[·]i i-th element of a vector

[·]ij Element in row i, column j of a matrix
||·||p p-norm of vectors
||·||F Frobenius norm of matrices
|·| Cardinality of a set

Abs (·) Absolute value function – element-wise for vectors / matrices
δ (·) , δ̃ (·) General distance (or loss) functions

det (·) Determinant
diag (·) Diagonal-Operator:

if argument is a matrix: the vector of diagonal elements
if argument is a vector: a diagonal matrix with main diagonal
equal to the argument

dim (·) Dimension / length of a vector
exp (·) Exponential function – element-wise for vectors / matrices

F (·) Arbitrary function, if necessary defined in the respective context
where it is used

I (·) Indicator-function, being one iff the argument is true and zero
else – applied element-wise for vectors / matrices

tr (·) Trace of a matrix
L (·) Log-likelihood function, the logarithm of a likelihood function
ℓ (·) Logarithm of a density function
L (·) Likelihood function

log (·) Natural logarithm – element-wise for vectors / matrices
Max (·) Maximum value function
Min (·) Minimum value function
ncol (·) Number of columns in argument matrix

nrow (·) Number of rows in argument matrix
pinv (·) Pseudo inverse function

XV



List of Symbols

Rowmax (·) Row-wise maximum function, returning the vector of maxima
for each row of the argument

sign (·) Sign (or signum) function – element-wise for vectors / matrices
softmax (·) Softmax function

Sup (·) Supremum
vec (·) , vec-1 (·) Vectorizing function that transforms a matrix into a vector of

unique elements and its inverse function

Operators
:= Definition operator

!= ‚Must be equal‘ operator
← Assignment operator
◦ Element-wise multiplication for vectors and matrices
⊘ Element-wise division for vectors and matrices
⊗ Kronecker product

◦ Element-wise exponentiation for vectors and matrices, e.g. A◦2

T Transposition
∧ Logical conjunction

Special matrices
0p×q p× q null matrix
1p×q p× q matrix of ones

Ip p× p identity matrix
L, U Lower and upper triangular part for the LU-factorization

P Pivoting matrix for the LU-factorization

Indices & index sets
a, b, c, i, j, k, l, m (Running) indices

I, J, M Index sets, used for subsetting vectors and matrices
Ij j-th element of I

Optimization framework

General functions and symbols
α, α+, α−,

λ, λ∗, Λ
Vectors of Lagrange multipliers – symbol α has different
meaning in other contexts

argmax
x

(·) Function for maximizing argument-function w.r.t. x

argmin
x

(·) Function for minimizing argument-function w.r.t. x

∆Θ Step direction for updating Θ
ϵ Epsilon for one-sided limit calculations

sg (·) General function representing equality constraints
g̃ (·) General function representing inequality constraints

HF (·) Hessian matrix of F
JF (·) Jacobian matrix of F

XVI



List of Symbols

L (·) Lagrange function of an optimization problem
lim
x→0

(·) Limit of argument-function for x going to 0
max

x
(·) Maximum value of argument-function w.r.t. x

min
x

(·) Minimum value of argument-function w.r.t. x

Θ, Θ(a), Θ (·) Vector / Matrix of optimization parameters and its value at
iteration a – may be expressed as a function of penalty or
shrinkage parameters

(Sequential) quadratic programming
A(a) Working-set of inequality constraints active at iteration a

sG, G̃, G Left-hand side multipliers of the linear equality, inequality and
combined constraints

φ (·) Merit function for determining the step size
Ψ Combined vector of step-direction and slack-variables
Q Quadratic distance multiplier matrix in a quadratic

optimization problem
ς Penalty-parameter for the slack-variables in the SQP-algorithm
sς Updating-constant for ς in the SQP-algorithm

st, t̃, t Right-hand side of the linear equality, inequality and combined
constraints

The BFGS-update
B̃ (Damped) BFGS-approximation of the inverse of a Hessian

matrix
H̃ (Damped) BFGS-approximation of a Hessian matrix, H̃ := B̃−1

η, θ, s, y Vectors and parameters used for (modified) BFGS updating of H̃
or B̃ – symbols may have different meanings in other contexts

Distributions, related functions and parameters

General symbols related to distributions
⊥⊥ Independence

CV (·) Coefficient of variation
CV ( · |x) Conditional coefficient of variation given x
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s Matrix of adjusted dependent variable in the population and

data set s

Generalized linear & additive models
η, η (·),

ηs, ηs (·)
Systematic component / combination of independent variables
for generalized linear and additive models in the population and
data set s – may be expressed as a function of parameters

l (·) , l-1 (·) Link and inverse link function, connecting systematic
component η and conditional mean µ

κ Vector of parameters defining the transformation t (X, κ) of X

κ(i) Sub-vector of κ, defining the transformation ti (x·i, κ) of x·i

µ(s)
y·l

Vector of expected values for each observation of y·l in data set s
Σ

(s)
y·l

, Σ
(s)
y·l

(·) Covariance matrix of all observation of y·l in data set s. May be
expressed as a function of dispersion parameters

XX



List of Symbols

ϕ Dispersion parameter
W Weight-Matrix for iteratively reweighted estimation of

generalized linear or additive (mixed) models

Generalized additive mixed models
ϕ, ϕ(y·l), ϕ(u) Vectors of dispersion or variance (component) parameters
Σ

(s)
e·l

(
ϕ(y·l)

)
,

Σ
(s)
u

(
ϕ(u)

) Variance components in data set s, modeled as functions of
variance component parameters

(Multivariate adaptive regression) Splines
Bl

k (x·j, Kx·j ) k-th B-Spline basis function of order l for variable x·j,
depending on knot vector Kx·j

Ix·j , Ĩ
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1 Introduction
In modern societies, statistical information constitutes an essential foundation to address
crucial societal, political, environmental and economic needs and challenges. The demand
for such information is rising over the recent decades and commonly presumed to increase
further in the years to come (cf. e.g. European Statistical System, 2014, pp. 6 ff; Sta-
tistisches Bundesamt, 2020, pp. 14 ff; United Nations, 2013, pp. 80 ff). A part of the
data required to fulfill this demand may be obtained from full censuses, which include the
whole set of elements (e.g. persons, households or companies) constituting the population
of interest. However, the majority of statistical information is based on sample surveys,
which are limited to a subset of observations from such a population. In comparison to
full censuses, these surveys are typically cheaper, faster and easier to conduct. Under
certain conditions, they may even provide more accurate results (cf. Fuller, 2009, p. 1;
Lohr, 2010, pp. 17 f; Särndal, Swensson and Wretman, 1992, pp. 3 ff).
Although the concept of generalizing from observed elements to a larger set of similar
units is a fundamental aspect of human cognition and therefore much older, the explicit
use of sample surveys for social and economic statistics dates back to the work of Kiær
(1895; 1897; cf. Kruskal and Mosteller, 1980, pp. 172 ff). Yet, the widespread acceptance
of sampling as an accurate source of information in science, official statistics and general
society is particularly due to the scientific contributions of Bowley (1925), Neyman (1934)
as well as Hansen and Hurwitz (1943). These authors formally introduce and extend
the fundamental ideas of probability sampling, establishing a particular form of known
and controlled randomization mechanisms for sample selection. Probability samples
provide reliable information that is reasonably generalizable to a finite population while
only a subset of all relevant elements needs to be observed. Complementing the design
of sample selection procedures, the second fundamental aspect of survey statistics is
therefore to estimate population quantities from a sample and quantify the accuracy
of the resulting estimates (cf. Kish, 1965, p. 4; Särndal, Swensson and Wretman, 1992,
p. 29). In conjunction, probability sampling and corresponding estimation strategies
constitute a gold standard for drawing valid conclusions about a finite population that
is only partially observed. As a consequence, survey sampling in national statistical
institutes, academic and applied research throughout the last decades is predominantly
focused on probability sampling. Correspondingly, terms like ‘representative’ or ‘scientific
samples’ that emphasize the quality of certain sources of information are used nearly
synonymously with probability samples (cf. Baker et al., 2013b, pp. 90 ff; Elliott and
Valliant, 2017, p. 249; Kruskal and Mosteller, 1979a, p. 15).
Especially in the recent years, however, a paradigm shift in survey statistics is becoming
apparent. Obtaining proper probability samples is getting increasingly difficult and costly,
e.g. due to rising non-contact or non-response rates and declining coverage of sampling
frames. These developments are particularly severe for probability telephone samples but
pose considerable threats to other forms of probability sampling as well, especially in
light of growing demands to provide statistical information in a cost-efficient and timely
manner. At the same time, the expansion of digitalization and (online) telecommunication
leads to rapid increases in extent as well as availability of alternative and new data sources,
of which Big Data and web surveys are prevalent examples. These data sources typically
include only a subset of elements from a target population, but most commonly do not
originate from a probability sampling mechanism. Therefore, they constitute cases of
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non-probability sampling. Their most highlighted advantages are easier, cheaper and/or
faster data collection in comparison to classical probability samples. Especially Big Data
often results as by-product of other processes, such as administrative, mobile phone
location or search engine data. Such types of “organic data” (Groves, 2011, p. 866) may be
available as natural aspects of a modern society’s continuous self-observation, potentially
even in real-time. This can help to largely reduce the need to gather the information anew
for specific research purposes, lower costs of data collection and reduce the response burden
for elements in a target population. Consequently, official statistics as well as academic
and applied researchers increasingly consider and use non-probability samples as sources
of statistical information, either in addition or as an alternative to probability samples
(cf. e.g. Baker et al., 2013b; Directors-General of the National Statistical Institutes, 2013;
European Statistical System, 2014, pp. 22 ff; Münnich and Zwick, 2016; National Research
Council of the United States, 2013; Statistisches Bundesamt, 2020; United Nations,
2014).
Yet, these developments do not imply that probability sampling is outdated and can easily
be replaced by non-probability sampling. As the term non-probability sampling merely
expresses a differentiation to probability sampling, it encompasses manifold different
selection processes that are not limited to the new data sources outlined above. These
heterogeneous processes may not have much in common, but an important characteristic
that all of them share is the violation of well-established principles that facilitate estima-
tion and generalization in case of probability sampling. The arbitrary, often unknown and
uncontrolled nature of selection mechanisms raises substantial concerns in terms of data
quality and representativity. In particular, it is often unclear whether non-probability
samples predominantly or exclusively contain information about specific subgroups from
a target population. This implies that parts of the population may be systematically
excluded from or disproportionately represented in the sample, leading to coverage and
selectivity issues. For example, web survey or search engine data completely omits non-
users of the internet and over-represents frequent in comparison to rare users. Depending
on the actual research interest, such systematic differences pose a considerable risk of
biased estimates, thereby impairing accuracy and reliability of conclusions drawn from
non-probability samples. Coverage and selection biases cannot even be compensated by
the immense volume of Big Data, although the converse is sometimes argued. “Com-
pensating for quality with quantity is a doomed game” (Meng, 2018, p. 695). Therefore,
the use of non-probability samples for providing adequate statistical information raises
important methodological questions and challenges to be addressed (cf. e.g. Biffignandi
and Bethlehem, 2012; Enderle, Münnich and Bruch, 2013; European Statistical System,
2014, p. 25; Japec et al., 2015; Lohr and Raghunathan, 2017; Shlomo and Goldstein,
2015; Statistisches Bundesamt, 2020, pp. 16 f; United Nations, 2014, p. 2).
Despite all potential imperfections, non-probability samples are gaining prevalence and
relevance in research and official statistics, a development which is largely caused by the
growing abundance and availability of new digital data sources. The substantial potential
benefits and challenges of these data sources render non-probability samples a topic that
requires thorough statistical treatment. Development and evaluation of methods for
quality assessment and estimation in non-probability samples is therefore a major current
challenge for survey statistics. At the same time, the profession’s strong and historical
devotion to probability sampling is by no means obsolete. At least in the medium term, a
combination and joint usage of upcoming non-probability and classical probability samples
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is unanimously considered the most promising approach to the growing relevance of new
digital data sources (cf. e.g. Baker et al., 2013b; Daas et al., 2015; European Statistical
System, 2014, p. 25; Groves, 2011; Japec et al., 2015; Lohr and Raghunathan, 2017;
Meng, 2018; Münnich and Zwick, 2016; United Nations, 2014, p. 2).

“Sampling is not mere substitution of a partial coverage for a total coverage.
Sampling is the science and art of controlling and measuring the reliability
of useful statistical information through the theory of probability.”
(Deming, 1950, p. 2)

Following this notion of sampling, the focus in this thesis lies on methods for assessing
and compensating the problems provoked by non-probability sample selection. A variety
of such methods is proposed in the relevant literature, ranging from approaches for
examining a sample’s selectivity to strategies for estimation and inference. However,
there is considerable lack of a comprehensive joint discussion, evaluation and comparison
of these methods in a common framework. So far, most publications consider only one or
at best a few of the proposed methods (cf. Daas et al., 2015, p. 249; Elliott and Valliant,
2017, p. 262). To fill this gap, the first aim of the current work is to provide a unifying
discussion of methods that are relevant for dealing with non-probability sampling.
In addition, proposing new approaches for estimation from non-probability samples con-
stitutes the second aim of this thesis. The first proposal introduces semi-parametric
artificial neural networks for prediction, which incorporate B-spline layers that perform
knot optimization in a general neural network structure. The second methodological
proposal in scope of this thesis establishes calibrated response models to provide weights
for non-probability samples. These models are calibrated semi-parametric artificial neural
networks that can be used to model complex non-probability sampling processes while
incorporating soft and exact calibration (benchmarking) constraints for estimates of totals,
covariances and correlations. Both proposals constitute integrations and extensions of
well-established and frequently used estimation methods for non-probability samples. In
that way, they provide further possibilities and flexibility to utilize auxiliary information
in estimation, especially when jointly using non-probability and probability samples for
this purpose. In addition to these content-wise similarities, both proposals are based
on the flexibility of B-splines and artificial neural networks and use related optimization
routines, which constitutes similarities also in terms of their mathematical and compu-
tational formulation. To allow for actual application of the newly proposed methods,
custom-made computational implementations are developed in the context of this thesis
as well.
The third aim of the current work is to evaluate and compare the performance of all
considered methods with regard to the challenges posed by non-probability sampling.
This is mainly done by means of Monte Carlo simulation studies, which allow examining
a variety of scenarios for underlying population structure and sample selection mechanism.
To still not exclusively rely on simulated populations and samples, the methods are
additionally applied and evaluated with regard to a real non-probability sample.
To achieve these three research goals, this work is organized into eight chapters. Following
the current introductory chapter 1, fundamental aspects in dealing with non-probability
samples are discussed in chapter 2. The variety and relevance of non-probability samples in
manifold research areas and kinds of analyses are summarized, paying particular attention
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to new digital data sources and their important peculiarities. By referring to specific
characteristics and benefits of probability sampling that do not hold for other forms of
sample selection, a formal discussion of non-probability sampling and the core statistical
challenges arising from its use is provided.
In chapter 3, approaches for operationalizing and quantifying selectivity of non-probability
samples are presented. These include manual comparisons, statistical tests and match-
ing for examining (non-)compliance of non-probability sample estimates with suitable
auxiliary information. Furthermore, the use of propensity models for describing the non-
probability sampling process, representativity indicators, and a framework for quantifying
estimation error in non-probability samples based on the work of Meng (2018) and
Schouten (2007) are discussed.
The mathematical and computational foundations required throughout the subsequent
discussion are presented in chapter 4. The relevant methods to perform numerical op-
timization are discussed, including algorithms for linear programming as well as uncon-
strained and constrained non-linear optimization. The main purpose of these methods
in the current thesis is to facilitate estimation from non-probability samples by solving
optimization problems commonly arising in this context.
Based on these foundations, methods to perform estimation from non-probability samples
are discussed in chapter 5. These methods can be partitioned into two major paradigms.
The model-based paradigm focuses on predicting the target variable(s) or their characteris-
tics of interest for observations outside the non-probability sample. A variety of statistical
and machine learning models are considered relevant for this purpose in the scientific
discourse and successively presented. These include matching, (generalized) linear and ad-
ditive regression models and the corresponding mixed models. Further existing prediction
methods discussed in this context are (multivariate adaptive) regression splines, regression
trees, artificial neural networks and support vector machines. Semi-parametric artificial
neural networks are developed as a novel alternative to these established prediction
models. In contrast, the pseudo-design-based paradigm aims at generating surrogate
weights to mimic design weights in probability sampling. Pre-existing methods discussed
in this context include response propensity and calibration weighting as well as sub-
sampling. Calibrated semi-parametric neural networks are proposed as a new approach
to integrate and extend the ideas of propensity and calibration weighting. Strategies to
achieve a synthesis of model- and pseudo-design-based methods are discussed as well,
including the use of weighted prediction models, jointly modeling selection process and
target variables, and methods for weighted aggregation of predictions. Approaches to
perform inference from non-probability samples, which typically again refer to one of the
above paradigms, are furthermore presented.
In chapter 6, the different methods’ suitability to assess and compensate the potential se-
lectivity of non-probability samples is evaluate and compared. An overview of the applied
software packages that provide implementations of the considered methods is presented.
In a preliminary Monte Carlo simulation study, the custom-made implementations of
the proposed (calibrated) semi-parametric neural networks and corresponding numerical
solvers are evaluated. The major Monte Carlo simulation designed to evaluate, compare
and discuss the performance of all the methods for non-probability samples considered
throughout the preceding chapters under a variety of scenarios is then presented.
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To nevertheless not exclusively rely on simulations, an application to a real non-probability
sample is discussed in chapter 7. The methods for assessing and compensating selectivity
are applied and evaluated with regard to the WageIndicator volunteer web survey (cf.
Tijdens et al., 2010).
The concluding chapter 8 summarizes and discusses the main findings, advantages and
drawbacks of the research in scope of this thesis. Some topics for future research are
outlined as well.
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2 Issues and Challenges Regarding
Non-probability Samples

Probability sampling constitutes a gold standard in many scientific fields, including econ-
omy, politics, sociology, health, forestry and official statistics in particular (cf. e.g. Barratt,
Ferris and Lenton, 2015, p. 4; Berrens et al., 2003, p. 2; van den Brakel et al., 2017,
p. 183; Citro, 2014, p. 137; Einstein and Baecher, 1983; Meng, 2018, p. 689; Münnich
et al., 2016; Wooldridge, 2012, p. 6). This primacy is to a large extent due to the fact
that probability sampling provides a known randomization mechanism based on sample
selection. Using this property, statistical theory permits construction of various estimators
that are unbiased and under certain conditions generalizable to a finite population, e.g.
through variance estimates, confidence intervals and statistical tests. This is possible for
any variable of interest, without making any assumptions about its distribution (cf. Breidt
and Opsomer, 2017, p. 191; Kalton, 1983, p. 90). Although a more formal discussion of
its properties and benefits is deferred to section 2.2, probability sampling is therefore an
important tool for obtaining reliable estimates and measuring their precision based on
a single sample (cf. Wolter, 2007, p. 1; Särndal, Swensson and Wretman, 1992, p. 33).
Nevertheless, this gold standard is not an imperative in all occasions. Its necessity and
applicability depend on the area of interest.

“Great advances of the most successful sciences – astronomy, physics,
chemistry – were, and are, achieved without probability sampling. [. . .]
Probability sampling for randomization is not a dogma, but a strategy,
especially for large numbers.”
(Kish, 1965, pp. 28 f)

Even disciplines strongly devoted to probability sampling often require research which
cannot rely on its randomization for various reasons: in many cases of observational
studies for causal inference, randomized experiments are not feasible. This may be for
ethical reasons, e.g. in case of certain medical conditions and treatments (cf. Cochran
and Chambers, 1965, p. 236; Mercer et al., 2017, p. 250), drug usage (cf. Barendregt,
Van der Poel and Van de Mheen, 2005, p. 124; Heckathorn, 2002, p. 10) or influences of
educational backgrounds (cf. Wooldridge, 2012, p. 14). Besides ethical issues, another
cause to abstain from probability sampling can be timeliness, i.e. when it comes to
evaluation of long-term processes, such as effects of child nutrition (cf. Rubin, 1974,
p. 687) or certain social programs (cf. Cochran and Chambers, 1965, p. 240). In addition,
the lack of a valid sampling frame to select elements from prevents the practicability of
probability sampling for certain areas of interest (cf. Citro, 2014, p. 141). This is especially
the case when studying rare or hidden populations that are hard to locate. Purposive
or respondent-driven sampling can be advisable in such circumstances (cf. Lohr, 2010,
p. 517). Examples include research on individuals suffering from certain health conditions
(cf. Feild et al., 2006), exhibiting illegal or socially stigmatized behavior (cf. Barratt, Ferris
and Lenton, 2015, p. 4; Frank and Snijders, 1994, p. 53; Salganik and Heckathorn, 2004),
or being experts in highly specific fields (cf. Tongco, 2007, p. 147). Reasons of cost
and practicability furthermore lead researchers across various scientific fields to rely on
convenience samples that are easy and/or inexpensive to obtain (cf. Berrens et al., 2003,
p. 2; Nielsen et al., 2017, p. 31; Särndal, Swensson and Wretman, 1992, p. 529).
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In fields traditionally relying on probability sample surveys, the difficulty to achieve the
selected elements’ participation is an additional issue of growing relevance. Non-response
is rising over the years (cf. Citro, 2014, p. 142; de Heer, 1999; de Heer and de Leeuw,
2002) and often selective, i.e. related to certain characteristics of the sampled elements.
Various potential reasons for this trend are studied by Groves and Couper (1998). Even
for a sample from a probability sampling design, degree and selectivity of the occurring
non-response often raise concerns about whether the theoretical ideal of a probability
sample is still met. Hence, this is considered a threat to important theoretical benefits
of probability sampling (cf. Baker et al., 2013b, p. 91; Elliott and Valliant, 2017, p. 250;
Little, 1988b, p. 287; Lohr, 2010, p. 534). Although partially established as a remedy for
low response rates, similar arguments apply to access panels because these are typically
defined as a sampling frame that is constituted by volunteerism rather than a population
register or probability sample (cf. Amarov and Rendtel, 2013, p. 103; Enderle, Münnich
and Bruch, 2013, p. 92; Loosveldt and Sonck, 2008, p. 93).
All of these examples can constitute non-probability sampling since this term is merely
defined in differentiation to probability sampling. Although violating the requirements
of known and controlled randomization that are used in established probability sampling
theory, the above outline illustrates that non-probability samples are regularly used in
academic and applied research as well as official statistics. Rather than being neglected for
their issues and imperfections, they therefore constitute a topic that needs to be discussed
and handled in survey statistics (cf. sections 2.2 and 2.3; Baker et al., 2013b; Buelens,
Burger and van den Brakel, 2015, p. 7; Elliott, 2009, p. 1; Japec et al., 2015, p. 860).
Some of the above examples are already tackled thoroughly in statistical literature, in
particular non-response (cf. e.g. van Buuren, 2018; Little and Rubin, 2019; Rubin, 1987;
Särndal and Lundström, 2005) and observational studies (cf. e.g. Cochran, Moses and
Mosteller, 1983; Rosenbaum, 2010; Rubin, 2006).
Especially through the recent rise and quantity of new data sources, further efforts to
address non-probability samples from a statistical point of view are nevertheless demanded
because a unified framework for estimation and inference from such samples does not
exist (cf. e.g. Baker et al., 2013b, p. 93; Beręsewicz, 2015, p. 54; Daas et al., 2015,
p. 249; Gelman et al., 2016a, pp. 102 f; Japec et al., 2015, p. 860; Pfeffermann, 2015,
pp. 427 ff; Shlomo and Goldstein, 2015, p. 787). This is additionally motivated in the
following section 2.1, where a literature review on characteristics and application examples
of new data sources is given. Important concepts of probability sampling, to which
non-probability sampling is generally defined to be the negation (cf. e.g. Mercer et al.,
2017, p. 251), are summarized in section 2.2. Combining this introduction to probability
sampling with the preceding literature review, the formal discussion of statistical issues
arising from non-probability samples in section 2.3 is fostered.
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2.1 Literature Review: Characteristics and Usage
of New Data Sources

In light of declining response rates, coupled with increasing efforts to reduce costs and
provide more information in greater detail, the growing availability and scope of new data
sources are often seen as a promising trend for statistics (cf. Beręsewicz, 2015, p. 45;
Buelens, Burger and van den Brakel, 2018, p. 326; Daas et al., 2015, p. 249; Groves, 2011,
p. 868; Holt, 2007, pp. 1 ff; United Nations, 2014, p. 2). These data sources commonly
emerge with the expansion of digitalization and the internet. Important examples are Big
Data and web surveys, both being umbrella terms to manifold types of information and
ways in which they are obtained (referred to as the selection processes or data generating
mechanisms; cf. Buelens, Burger and van den Brakel, 2018, pp. 322 f; Greenacre, 2016,
p. 397; Japec et al., 2015, p. 854). Similar as for the examples mentioned before, such
new kinds of data often provide information that is otherwise not available. In addition,
they may arise as by-products of other processes and can therefore be used for reducing
cost and response-burden as well as to circumvent non-response and increase timeliness
(cf. Bethlehem and Biffignandi, 2012, p. 55; Buelens, Burger and van den Brakel, 2018,
p. 322; Dever, Rafferty and Valliant, 2008, p. 47; Münnich and Zwick, 2016, p. 74). At
the same time, these aspects tremendously differentiate many new and promising data
sources from classical survey data obtained through probability sampling. Such differences
concern size and structure, but also coverage of target populations and selectivity of the
gathered data. As a consequence, new data sources often violate the well-established
principles of probability sampling, casting doubts about quality and generalizability of
the conclusions that are drawn from such data (cf. e.g. Buelens, Burger and van den
Brakel, 2018, pp. 322 f; Pfeffermann, 2015, p. 430; Valliant and Dever, 2011, pp. 108 ff).
As the first important type of new data reinforcing the relevance and discussion of non-
probability samples, Big Data is a term of vague and various definitions. A useful
comprehensive overview is given by the National Research Council of the United States
(2013). Descriptions and definitions of Big Data typically refer to the so-called three V’s:
volume, characterizing the huge amount of data, velocity, referring to the speed with which
such data occurs and is collected, as well as variety, indicating the multitude of formats,
structures and sources (cf. Laney, 2001). Often, further aspects are emphasized in form
of additional V’s, such as variability and veracity, referring to data quality, accuracy and
trustworthiness (cf. Japec et al., 2015, pp. 841 f; Pfeffermann, 2015, pp. 427 ff). Volume,
velocity and variety are challenging aspects with regard to data storage and processing
up to estimation (cf. e.g. Govindaraju, Raghavan and Rao, 2015; Lynch, 2008; National
Research Council of the United States, 2013). Various and ongoing efforts in hardware
and algorithmic advancement, parallel computation as well as data compression and sub-
sampling tackle these issues from computer and (partially) from statistical sciences (cf.
e.g. Govindaraju, Raghavan and Rao, 2015; Lynch, 2008; National Research Council of
the United States, 2013). Variability and veracity, on the other hand, are challenging with
respect to generalizability, especially when it comes to assessing the selection process and
accounting for its effects (cf. Japec et al., 2015, p. 849; National Research Council of
the United States, 2013, p. 166). The sheer volume of information in Big Data does
not ensure precision of estimates, especially when it comes to selection bias (cf. Baker
et al., 2013a, p. 27; Buelens, Burger and van den Brakel, 2018, p. 327; Lazer et al., 2014).
These are core topics that need to be addressed by statistical science if such data is to
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be used as addition and (partial) replacement of traditional survey data (cf. Daas et al.,
2015, p. 249; Meng, 2018; Pfeffermann, 2015, p. 430; Shlomo and Goldstein, 2015; United
Nations, 2014).
Being that broadly defined, Big Data encompasses diverse data sources and has various
statistical applications. For example, satellite images are used for estimating timber
reserves (cf. Münnich et al., 2016) and indicators of poverty and social exclusion (cf. Jean
et al., 2016). To estimate the latter on local levels, mobile phone data (cf. Blumenstock,
Cadamuro and On, 2015) and GPS tracking information for vehicles (cf. Marchetti et
al., 2015) are furthermore used. Social media (mainly Twitter) posts are evaluated to
measure consumer confidence (cf. van den Brakel et al., 2017) and stock prices (cf. Ranco
et al., 2015), quantify happiness (cf. Dodds et al., 2011) and well-being (cf. Luhmann,
2017), evaluate electoral campaigns (cf. Hong and Nadler, 2012), voting behavior (cf.
Allcott and Gentzkow, 2017; Ceron et al., 2014) and epidemics (cf. Signorini, Segre and
Polgreen, 2011). Search engine data is also used for modeling epidemics (cf. Ginsberg
et al., 2009), as well as to predict private consumption (cf. Vosen and Schmidt, 2011) and
unemployment (cf. Fondeur and Karamé, 2013; Xu et al., 2013), while online food service
reviews may help to assess food safety (cf. Nsoesie, Kluberg and Brownstein, 2014).
Examples for estimators applied in this context cover averages and inequality indicators
(cf. e.g. Dodds et al., 2011), but fitting prediction models to Big Data is far more common.
The latter include e.g. linear regression (cf. Allcott and Gentzkow, 2017; Ginsberg et al.,
2009), time series (cf. Hong and Nadler, 2012; Vosen and Schmidt, 2011) and linear mixed
(small-area) models (cf. Marchetti et al., 2015) as well as support vector machines (cf.
Signorini, Segre and Polgreen, 2011), matching, regression trees (cf. Buelens, Burger and
van den Brakel, 2018) and artificial neural networks (cf. Xu et al., 2013). These selected
examples are by no means comprehensive for all the topics, methods and estimates relevant
in the context of Big Data, but merely demonstrate the increasing scientific relevance of
such data (cf. Rodríguez-Mazahua et al., 2016, p. 3081). More detailed overviews are,
for example, given by Baker et al. (2010), Govindaraju, Raghavan and Rao (2015), Japec
et al. (2015) and Rodríguez-Mazahua et al. (2016).
The second important new data source challenging and supplementing classical probability
samples are web surveys. These are somewhat closer to the classical data sources of survey
users and may in certain cases simply constitute a new mode of interviewing. This is the
case when the questionnaire in a probability sample is answered on the web (cf. e.g.
Bianchi, Biffignandi and Lynn, 2017; Cole, 2005). In most cases, however, web surveys
are not selected through probability sampling (cf. Baker et al., 2010, p. 3; Baker et al.,
2013a, p. 34; Couper, 2000, pp. 477 ff) since some form of volunteerism and/or effects
of unknown covariates are typically incorporated in the selection process (cf. Baker et
al., 2013a, p. 34; Mercer et al., 2017, p. 251). The degree of self-selection can range
from participation in access panels upon request when the recruitment group is a valid
probability sample (cf. Enderle, Münnich and Bruch, 2013; Loosveldt and Sonck, 2008)
up to fully relying on respondents that actively attempt to participate. The latter case
occurs when a survey is publicly available on the web, such that anyone can respond –
in principle even multiple times (cf. Bethlehem and Biffignandi, 2012, p. 422; Bethlehem,
2008b, p. 25; Steinmetz et al., 2014, p. 274). Since survey participation is typically
influenced by motivational and cognitive characteristics of the respondents in relation
to the survey’s topic (cf. Baker et al., 2010, p. 38; Groves, Presser and Dipko, 2004),
advertising may expand the range of such surveys, but does not necessarily reduce self-
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selection issues. This is especially the case when advertisement channels are highly related
to characteristics that influence participation, e.g. when publishing on websites where
visits are related to the survey variable(s) of interest (cf. Faas and Schoen, 2006, p. 180).
Nevertheless, many publications stress advantages of web surveys as an alternative and
extension to traditional surveys, mostly referring to aspects of cost and practicability but
also to the potential for reducing social desirability and interviewer effects (cf. e.g. Sanders
et al., 2007, p. 258).
Web surveys are used in various areas. Examples include studies of wage distributions
(cf. Tijdens and Steinmetz, 2016; Tijdens et al., 2014), associations between enterprises
(cf. Biffignandi and Pratesi, 2000; 2002), road traffic (cf. Posawang et al., 2010) and
market research (cf. Chiang, Zhang and Zhou, 2006; Roster et al., 2004). Further uses
can be found in evaluating health-care (cf. Bethell et al., 2004) and end-of-life treatment
preferences (cf. Feild et al., 2006) as well as studies on personality (cf. Buchanan and
Smith, 1999) and psychopathology (cf. Kendler et al., 2009). Political attitudes and
emotions are studied using online surveys (cf. Masch and Gabriel, 2020), just as voting
decisions and turnout (cf. Faas and Schoen, 2006; Wang et al., 2015).
Similarly as for Big Data, statistical methods used in the context of web surveys of-
ten include models, mainly (generalized) linear regression (cf. e.g. Bethell et al., 2004;
Hitchman et al., 2015; Yan and Tourangeau, 2008) and mixed models (cf. e.g. Ganesh
et al., 2017; Gelman et al., 2016a; Wang et al., 2015), but artificial neural networks (cf.
Chiang, Zhang and Zhou, 2006; Posawang et al., 2010) and regression trees (cf. Kern,
Klausch and Kreuter, 2019, p. 81) are used as well. Nonetheless, estimators for means
and proportions (cf. e.g. Barratt, Ferris and Lenton, 2015; Ryzin, 2008; Chiang, Zhang
and Zhou, 2006) as well as correlations (cf. e.g. Faas and Schoen, 2006; McCabe, 2008)
are slightly more present in this case than for Big Data. Again, these examples are not
meant to be exhaustive, but illustrate the rising usage of web surveys (cf. Greenacre,
2016, p. 399) as well as the increasing number of scientific publications based thereon (cf.
Lehdonvirta et al., 2020, p. 3). More detailed overviews and discussions of web surveys
are, for example, given by Bethlehem and Biffignandi (2012) as well as Sue and Ritter
(2012).
Big Data and web surveys constitute two major types of new data sources finding their
way into statistical science, its applications and even official statistics (cf. Buelens, Burger
and van den Brakel, 2018; Citro, 2014; Meng, 2018; Pfeffermann, 2015; Tam and Clarke,
2015). As both are inherently related to digitalization and information technology, joint
efforts from statistical and computer science are required to establish reasonable and
feasible ways for their utilization, particularly with regard to Big Data (cf. National
Research Council of the United States, 2013, p. 4). Currently, scientific collaborations
of both disciplines concerning Big Data are often focused on computability of prevalent
prediction models. The considered aspects especially regard the computational challenges
of volume, velocity and variety, somewhat neglecting the data quality aspects described
by variability and veracity (cf. Buelens, Burger and van den Brakel, 2018, p. 326; National
Research Council of the United States, 2013, pp. 93 ff; Daas et al., 2015, p. 249; Japec
et al., 2015, p. 860). These core statistical issues coincide for the two emerging sources
of information summarized above since these sources are often based on uncontrolled
data generating processes and selection mechanisms. Such data quality aspects are more
present in statistical publications about web surveys, where some focus is laid on the
evaluation and compensation of unknown data generating processes (cf. e.g. Bethlehem
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and Biffignandi, 2012; Chen, Valliant and Elliott, 2019; Elliott and Valliant, 2017; Lee,
2004; Pratesi et al., 2004). These prevalent topics shape much of the growing relevance
and upcoming challenges of non-probability samples in general and new data sources in
particular (cf. Japec et al., 2015, p. 863). To foster a more formal discussion of these
issues in section 2.3, fundamentals of probability sampling and corresponding estimation
methods are briefly summarized in the following section 2.2.

2.2 Overview of Probability Sampling and
Design-based Estimation

To understand obstacles in using non-probability samples, it is important to refer to crucial
characteristics and benefits of probability sampling that are invalid for other forms of
sample selection. Because these specific advantages concern the construction of estimators
that are unbiased and facilitate quantification of precision from a single sample (cf. Breidt
and Opsomer, 2017, p. 191; Kalton, 1983, p. 90), fundamental aspects of sampling and
design-based estimation are summarized in the current section 2.2. The given summary
is focused on aspects that are relevant to establish the subsequent discussion, based on
and in line with the works of Fuller (2009), Lohr (2010), Särndal, Swensson and Wretman
(1992) and Wolter (2007). These are advisable references for a comprehensive overview
of (probability) sampling, estimation and inference that goes beyond the scope of this
thesis.
Design-based survey sampling and estimation considers a fixed finite population P of size
N ∈ N, determined by a finite set of identifiers

SP := {1, . . . , N} (2.1)

that each uniquely represent one unit (or element) of the population. In contrast to
sampling with replacement, where the same element can be sampled multiple times,
sampling without replacement allows each element to occur at most once in a sample.
For different reasons, the without replacement scenario is typically the predominant case
in survey sampling. First of all, duplication of elements does not add any new information
when sampling from a finite population. Furthermore, uniqueness of elements facilitates a
set-theoretical representation of sampling and estimation in correspondence to definition
2.1. Last but not least, the theoretical framework of without replacement sampling even
allows obtaining estimators for the with replacement scenario (cf. Cochran, 1977, p. 30;
Fuller, 2009, p. 26; Särndal, Swensson and Wretman, 1992, pp. 48 ff, 110 ff; Wolter, 2007,
p. 32). Therefore, sampling without replacement is considered exclusively throughout this
thesis. In this case, a general sample denoted by s is defined by a subset Ss ⊆ SP of size
ns := |Ss| ≤ N. Each unit’s index i = 1, . . . , N can occur in Ss at most once. Consequently,
the sample can be described by a vector of inclusion indicators rs = [rs

1, . . . , rs
N]T ∈ {0, 1}N

with elements

rs
i := I (i ∈ Ss) =

 1 , if i ∈ Ss

0 else
(2.2)

for all i ∈ SP, where I is the indicator function. The set of all 2N possible samples from
the population (or values of rs) is denoted by S :=

{
Ss : Ss ⊆ SP

}
. A sampling design

is defined as a function D : S → [0, 1], assigning each possible sample a probability of
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being drawn, with ∑
Ss∈S

D (Ss) = 1. In a fixed and finite population setting, D is the
only probabilistic component in sampling (cf. Cochran, 1977; Fuller, 2009, p. 3; Lohr,
2010, pp. 28 ff; Särndal, Swensson and Wretman, 1992, p. 27). An overview of possible
computational implementations for sampling designs is provided by Tillé (2006).
With rs uniquely defining the sample, its stochastic behavior is the key element to describe
and account for randomness in this framework. In compliance with D (Ss) being the
probability of a sample Ss being drawn, the chance of element i being sampled under a
given design is

πs
i := E (rs

i) = P (i ∈ Ss) =
∑
Ss∈S

D (Ss) · I (i ∈ Ss) (2.3)

and called its inclusion probability. A probability sampling design is coherently defined by
two properties of D:
a) The sampling design is known, such that each sample has an identifiable proba-

bility of being selected, and
b) all elements in the population have a chance of being sampled, such that πs

i > 0
for all i ∈ SP, which implies full coverage of the target population SP.

The terms probability sampling and random sampling are typically used synonymously
(cf. also chapter 3), and simple random sampling is defined by πs

i = ns/N for all i ∈ SP.
In analogy to equation 2.3, second order inclusion probabilities indicate the probability
that two elements i and j are simultaneously part of the sample. They are defined as

πs
ij := E

(
rs

i · rs
j

)
= P (i ∈ Ss ∧ j ∈ Ss) =

∑
Ss∈S

D (Ss) · I (i ∈ Ss) · I (j ∈ Ss) , (2.4)

where πs
ii = πs

i and πs
ij ≤ Min

(
πs

i ; πs
j

)
(cf. Fuller, 2009, p. 2; Kish, 1965, p. 20; Lohr, 2010,

pp. 28 ff; Särndal, Swensson and Wretman, 1992, p. 32).
The main purpose of sampling is to perform estimation based on the collected data (cf.
Kish, 1965, p. 8; Särndal, Swensson and Wretman, 1992, p. 3). A sample survey is
conducted to obtain information about a general unknown population (or sub-population)
statistic of interest, denoted by ϑ ∈ Rh×u for given h, u ∈ N. This statistic is defined with
regard to some target variables Y . These represent a vector of o characteristics associated
with each element i in the population SP, which is denoted by yi· =

[
yi1 . . . yio

]
∈ R1×o.

The combination of these variables for all N elements in the population constitute a matrix

Y =


y11 . . . y1o
... . . . ...

yN1 . . . yNo

 ∈ RN×o (2.5)

(cf. Wolter, 2007, p. 8). Since the population is not fully observed, Y and hence ϑ
are typically unknown. Therefore, a sample consisting of units i ∈ Ss is drawn, for which
variables yi· are measured. Consequently, a sub-matrix of Y is observed, which is denoted
by

Y s := Y Ss· ∈ Rns×o , (2.6)
where Y Ss· denotes the rows of Y indexed by Ss. Estimation is required because the
remaining part of Y is considered unknown. To that end, an estimator for ϑ is defined
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as a function ϑ̂ : S→ Rh×u to obtain an estimate ϑ̂ (Ss) for an actual sample. Estimators
may use Y s alone, i.e. exclusively rely on information from the sample. Since Y s is a
matrix (cf. equation 2.5), this definition of ϑ̂ readily includes multivariate statistics, such
as ratios, covariances, correlations and regression coefficients (cf. Särndal, Swensson and
Wretman, 1992, pp. 38 ff, 176 ff). Yet, additional variables are frequently used in ϑ̂, which
provide information outside the sample and therefore differ from Y . They are referred to
as auxiliary variables and denoted by

X =


x11 . . . x1p
... . . . ...

xN1 . . . xNp

 ∈ RN×p , (2.7)

with corresponding observations Xs := XSs· for the sample in accordance with equation
2.6. The crucial difference to the target variables is that Xs is observed through the sample
and some additional information external to s is available about X. Such information
about auxiliary variables may refer to the whole population (e.g. from a register) or only
a subset of it (e.g. some other sample), on aggregated or individual level (cf. Breidt and
Opsomer, 2017, p. 192; cf. Burgard, Münnich and Rupp, 2019, p. 1). Some examples for
sources and types of such variables are given in section 3.2. The availability of external
information makes such auxiliary variables valuable, e.g. for prediction and calibration
techniques described in chapter 5 (cf. Cochran, 1977, pp. 189 ff; Fuller, 2009, p. 5; Särndal,
Swensson and Wretman, 1992, pp. 33 ff, 219 ff). More details regarding the underlying
general theory and definition of estimators are given by Dekking et al. (2005, pp. 42 ff)
and Witting (1985, pp. 17 ff).
In addition, complex probability sampling designs commonly make use of design variables,
denoted by

Z =


z11 . . . z1q
... . . . ...

zN1 . . . zNq

 ∈ RN×q (2.8)

and Zs := ZSs· as before. These variables determine the sample selection. They have
direct impact on the inclusion probabilities and have to be considered when constructing
an estimator and determining its quality. Common examples for such variables being used
in complex designs include identifiers used for stratification or clustering. In these cases,
units of the population are grouped depending on Z and elements from all (stratification)
or a subset of groups (clustering) are selected into the sample. Furthermore, size variables
used for sampling with unequal probabilities can be part of Z (cf. Fuller, 2009, pp. 18 ff,
72 ff; Lohr, 2010, pp. 73 ff, 165 ff; Särndal, Swensson and Wretman, 1992, pp. 61 ff,
124 ff). Note that there can be some overlap between the sets of variables X, Y and Z,
e.g. when design variables are used as auxiliaries or when estimating correlations between
target and auxiliary variables. Nevertheless, differentiating these three types of variables
as above simplifies notation throughout the following chapters.
With the sampling design being the only random component in a finite population setting,
the expected value of ϑ̂ is given by

E
(
ϑ̂
)

=
∑
Ss∈S

D (Ss) · ϑ̂(Ss) , (2.9)
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where ϑ̂(Ss) is the specific value of ϑ̂ for sample Ss. Important measures for the quality
of an estimator concern its accuracy in terms of the variance

V
(
ϑ̂
)

=
∑
Ss∈S

D (Ss) ·
(
ϑ̂(Ss)− E

(
ϑ̂
))2

= E
(

ϑ̂
2
)
−
(
E
(
ϑ̂
))2

, (2.10)

the bias
Bias

(
ϑ̂
)

= E
(
ϑ̂
)
− ϑ (2.11)

and the mean squared error (MSE)

MSE
(
ϑ̂
)

= E
((

ϑ̂(Ss)− ϑ
)2
)

= V
(
ϑ̂
)

+
(
Bias

(
ϑ̂
))2

. (2.12)

An estimator ϑ̂ is unbiased if Bias
(
ϑ̂
)

= 0h×u, in which case MSE
(
ϑ̂
)

= V
(
ϑ̂
)

holds
(cf. Särndal, Swensson and Wretman, 1992, pp. 34 ff; Wolter, 2007, p. 9).
Design weights are an important concept to construct unbiased estimators for probability
samples. The design weight for element i in sample s is defined as the inverse of its
inclusion probability, denoted by

ws
i := 1

πs
i

∈ R>0 for all i ∈ Ss , (2.13)

such that ws =
[
ws

1 . . . ws
ns

]T
∈ Rns

>0 is the vector of design weights for the sample. This
definition is central for estimation from probability samples, where inclusion probabilities
are identifiable at least for the sampled units and strictly positive for the whole population
(cf. Särndal, Swensson and Wretman, 1992, p. 32). For example, consider the case where
the population statistic of interest is the total of Y ,

τY :=
∑

i∈SP

yi· = 1T
N×1Y . (2.14)

The corresponding estimator for sample s is defined by

τ̂Y (ws) :=
∑
i∈Ss

ws
i · yi· = (ws)T Y s . (2.15)

Horvitz and Thompson (1952) introduced this estimator, which is therefore called the
Horvitz-Thompson estimator (HT-estimator). If s is a probability sample, such that
πs

i > 0 for all i ∈ SP, the estimator is unbiased as a consequence of definitions 2.2, 2.3
and 2.13:

E
(∑

i∈Ss
ws

i · yi·

)
= E

∑
i∈SP

rs
i · ws

i · yi·

 =
∑

i∈SP

E (rs
i)

E (rs
i)
· yi· =

∑
i∈SP

yi· (2.16)

(cf. Fuller, 2009, pp. 6 ff; Särndal, Swensson and Wretman, 1992, pp. 42 ff). A more general
but less compact and intuitive motivation of design weights is given by Pfeffermann and
Sverchkov (1999, p. 185; cf. appendix B.2).
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Further statistics that are relevant in the context of this thesis include means

µY := N−1 · τY ∈ Ro , (2.17a)

covariances

ΣY := N−1 ·
(
Y TY

)
− µT

Y µY ∈ Ro×o (2.17b)

and correlations

ρY := ΣY ⊘
(
diag (ΣY ) (diag (ΣY ))T

)◦
1
2 ∈ Ro×o .

(2.17c)

Using c ∈ {0, 1}N with elements cj := I ((yj1 ≤ yi1) ∧ · · · ∧ (yjo ≤ yio)), a distribution
function FY : R1×o → [0, 1] can furthermore be written as

FY (yi·) := P (c = 1) = µc (2.17d)

(cf. Galassi et al., 2009, pp. 263 ff; Särndal, Swensson and Wretman, 1992, pp. 181 ff).
Here and in general, ◦, ⊘ and ◦ respectively denote Hadamard (element-wise) product,
division and power (cf. Reams, 1999).
It is convenient that the population statistics defined in equations 2.17 can be written
as functions of totals. Therefore, corresponding design-based estimators are derived as
functions of estimated totals (cf. Breidt and Opsomer, 2017, p. 190; Opsomer, 2009, p. 7).
Considering that N = ∑

i∈SP
1, an estimate of the population size N is given by

N̂ (ws) :=
∑
i∈Ss

ws
i = (ws)T 1ns×1 = ||ws||1 , (2.18a)

resulting in

µ̂Y (ws) :=
(

N̂ (ws)
)−1
· τ̂Y (ws) (2.18b)

as estimator for the population mean µY . In the same manner, the estimators

Σ̃Y (ws) :=
(

N̂ (ws)
)−1
·
(
(Y s)T diag (ws) Y s

)
− (µ̂Y (ws))T µ̂Y (ws) (2.18c)

for covariances ΣY and

ρ̂Y (ws) := Σ̃Y (ws)⊘
(

diag
(
Σ̃Y (ws)

) (
diag

(
Σ̃Y (ws)

))T
)◦

1
2 (2.18d)

for correlations ρY are determined by successively plugging in these estimates. A corre-
sponding estimate F̂Y : R1×o × Rns → [0, 1] of the distribution function is given by

F̂Y (yi·, ws) := µ̂c (ws) , (2.18e)

with c defined as for equation 2.17d (cf. Galassi et al., 2009, pp. 263 ff; Särndal, Swensson
and Wretman, 1992, pp. 186 ff).
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It can be shown that the maximum likelihood (ML) estimator Σ̃Y (ws) is biased for ΣY

even under probability sampling where the other presented estimators are unbiased (cf.
appendix B.1; Dekking et al., 2005, pp. 292 f). This bias is caused by the fact that defi-
nition 2.18c does not account for the covariance of mean estimates, denoted by Σ(µ̂Y (ws)):

Bias
(
Σ̃Y (ws)

)
= − Σ(µ̂Y (ws)) ≈ (1− ν (ws)) · ΣY , (2.18f)

where
ν (ws) := N̂

(
(ws)◦2

)/(
N̂ (ws)

)2
. (2.18g)

Approximation 2.18f is commonly used for bias correction since it does not depend on
the second order inclusion probabilities defined in equation 2.4. The resulting corrected
covariance estimator is

Σ̂Y (ws) := Σ̃Y (ws) · (1− ν (ws))−1 . (2.18h)

In case of constant weights, this adjustment reduces to Bessel’s correction (using n − 1
instead of n in the denominator of the sample variance) and is therefore exact. Estimation
of correlations (equation 2.18d) does not require adjustment because numerator and
denominator are multiplied by the same factor. As an alternative but hardly ever used
way to adjust for the bias in Σ̃Y (ws), the estimates for Σ(µ̂Y (ws)) described below may
be used for correction (cf. e.g. Galassi et al., 2009, p. 266; Lumley, 2004; R Core Team,
2018; Särndal, Swensson and Wretman, 1992, pp. 186 f).
For a probability sampling design D, first and second order inclusion probabilities are
known. If both are strictly positive for samples coming from such a design, i.e. πs

ij > 0
for all i, j ∈ SP is fulfilled additionally to the positivity of πs

i required for probability
sampling, D is called measurable. In this case, the quality of an estimator with respect
to (w.r.t.) the sampling design can be quantified, and valid inference (e.g. calculation of
variance estimates, confidence intervals and statistical tests) based on a sample can be
carried out (cf. Fuller, 2009, p. 11; Särndal, Swensson and Wretman, 1992, p. 33). In case
of a probability design with only a single stage of random selection, the variance of the
total estimator (cf. definition 2.15) due to linearity can be written as

V (τ̂Y (ws)) = Σ(τ̂Y (ws)) =
∑

i∈SP

∑
j∈SP

(
πs

ij

πs
i · πs

j

− 1
)
· yi·y

T
j· . (2.19)

Horvitz and Thompson (1952, p. 670) derive an unbiased estimator for 2.19, which is
given by

V̂HT (τ̂Y (ws)) :=
∑
i∈Ss

∑
j∈Ss

1
πs

ij

·
(

πs
ij

πs
i · πs

j

− 1
)
· yi·y

T
j· . (2.20a)

A more stable version for sampling designs with fixed sample sizes is proposed by Sen
(1953, cited in Särndal, Swensson and Wretman, 1992, p. 54) as well as Yates and Grundy
(1953, p. 257), which is defined by

V̂SY G (τ̂Y (ws)) :=
∑
i∈Ss

∑
j∈Ss

(
πs

i · πs
j

πs
ij

− 1
)
·
(

yi·
πs

i

−
yj·

πs
j

)(
yi·
πs

i

−
yj·

πs
j

)T

. (2.20b)
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For complex survey designs with multiple stages of selection, the variance and its estimate
are determined by recursive application of equations 2.19 and 2.20 for each stage while
adding the expected value of variances from subsequent stages. This is, for example,
relevant when drawing groups (clusters) of elements in a first step, from which a subset
of elements are drawn in one or more subsequent steps (cf. Bruch, Münnich and Zins,
2011, p. 3; Cochran, 1977, pp. 274 ff; Durbin, 1953, p. 263). Non-linear estimators, like
those defined in equations 2.18b to 2.18h, usually require some sort of approximation to
estimate their variance (cf. Cochran, 1977, pp. 318 ff; Kovar, Rao and Wu, 1988, p. 25).
For example, Taylor linearization can be used to get an approximate variance estimator
in the form of equation 2.20 (cf. Cochran, 1977, p. 319; Münnich and Zins, 2011; Särndal,
Swensson and Wretman, 1992, pp. 172 ff; Wolter, 2007, pp. 226 ff).
As an alternative to linearization techniques for variance estimation, resampling methods
can be used for non-linear estimators and do work for linear ones as well. In the general
design-based context, these methods attempt to model the repeated sample distribution of
any statistic ϑ̂ by iterative draws from an artificial population, which often is the sample s
itself. Being an aspect of the distribution of ϑ̂, the variance (equation 2.10) or in certain
cases the MSE (equation 2.12) are then estimated from the approximated distribution
of ϑ̂. Assuming that the artificial population is defined by the sample identifiers Ss,
Chipperfield and Preston (2007) describe various resampling methods by the following
algorithm 1:

Algorithm 1: General resampling algorithm

1: Input: Ss ∈ S; ϑ̂ : S→ Rh×u; b : Nns → Rns ; ñs, a ∈ N
2: for j = 1, . . . , a do
3: Draw a sub-sample of size ñs from Ss with a corresponding vector c ∈ Nns , where

ci indicates the number of times that element i occurs in the current sub-sample
for all i = 1, . . . , ns

4: Calculate weights
wbt(j) := ws ◦ b (c) , (2.21)

depending on c by some prespecified function b

5: Calculate ϑ̂
(j) using weights wbt(j)

6: end for
7: Return:

V̂
(
ϑ̂
)

:= 1
a− 1

a∑
j=1

(
ϑ̂

(j) −
(

1
a

a∑
k=1

ϑ̂
(k)
))2

∈ Rh×u (2.22)

Depending on the choice of the sub-samples and corresponding weights, this general form
includes jackknife, bootstrap and balanced repeated replication methods (cf. Chipperfield
and Preston, 2007, p. 168). Note that other characteristics of the distribution of ϑ̂ can
be estimated via resampling as well. This is achieved by replacing equation 2.22 with the
corresponding estimate, e.g. with quantiles to directly determine a confidence interval. In
some of these cases, additional assumptions are required, for example when estimating
the MSE (cf. Efron, 1981; Rao and Wu, 1988, p. 232).
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Bootstrapping introduced by Efron (1979) is a common choice when it comes to resampling
methods because it can be applied for smooth as well as non-smooth estimators under
general sampling designs (cf. Kovar, Rao and Wu, 1988; Lohr, 2010, p. 386; Rao and
Wu, 1988; Wolter, 2007). Therefore, two variants of the bootstrap are considered in the
following: as the original form, the Monte Carlo bootstrap is based on simple random
sampling with replacement and subsamples of size ñs = ns. The weights are simply
multiplied by the number of times an element is drawn, such that b (c) = c. An
obvious limitation in the present context is the with replacement strategy, resulting in
biased variance estimates for non-negligible sampling fractions frs := ns/N (cf. Wolter,
2007, p. 200). In addition, simple random sampling is a rarely realistic approximation
when it comes to a general sampling design D that can include one or multiple stages
of stratification, clustering and/or unequal probability sampling (cf. Chipperfield and
Preston, 2007, p. 167; Rao and Wu, 1988). The rescaling bootstrap, originally proposed by
Rao and Wu (1988) and modified by Rao, Wu and Yue (1992) as well as Chipperfield and
Preston (2007) and Preston (2009), tackles these issues and allows for sampling without
replacement for complex multi-stage designs (cf. Preston, 2009). For a single-stage sample,
b is defined by

b (c) = 1 +
√(

1− ns

N

)
· ñs

ns − ñs ·
(

ns

ñs · c− 1ns×1

)
, (2.23)

with straightforward extensions to multiple stages (cf. Chipperfield and Preston, 2007;
Preston, 2009). Different other strategies for dealing with the drawbacks of the original
Monte Carlo bootstrap exist, as well as further alternatives to iteratively estimate the
variances of general estimators ϑ̂. An overview is given by Bruch, Münnich and Zins
(2011), Efron and Tibshirani (1998) or Wolter (2007).
The above summary of probability sampling and design-based estimation serves as a
foundation for methods to assess and deal with non-probability samples (cf. chapters 3
and 5). As a first step to that end, it facilitates a discussion of challenges arising from
non-probability samples in the following section 2.3.
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2.3 Challenges in Dealing with Non-probability
Samples

In section 2.2, important concepts of sampling are highlighted. In principle, general
samples are considered, for which central advantages hold if they are selected through
a (measurable) probability sampling design. For example, these advantages allow for
unbiased estimates and valid inference. To contrast non-probability with probability
sampling, a general probability sample is now denoted by ps. A design generating such a
sample by definition provides known probabilities for each possible sample Sps, implying
that the inclusion probabilities πps

i are known at least for the sampled units. Furthermore,
it ensures full coverage of the target population, such that πps

i > 0 for all i ∈ SP (cf.
Särndal, Swensson and Wretman, 1992, p. 32).
Non-probability sampling is generally characterized in differentiation to probability sam-
pling. A non-probability sample, denoted by nps and identified by a set of indices Snps ⊆ SP

is therefore defined by
a) unknown selection probabilities for at least some possible samples S∈ S, resulting

in unidentifiable inclusion probabilities πnps
i and/or

b) incomplete coverage of the target population, resulting in πnps
i = 0 for some i ∈ SP.

Both conditions are directly related to properties of the vector of inclusion probabilities
πnps ∈ [0, 1]N (cf. Biffignandi and Pratesi, 2003; Buelens, Burger and van den Brakel,
2018, p. 326; Jacoby and Handlin, 1991, p. 170; Lohr, 2010, p. 5; Pfeffermann, 2015,
p. 431; Valliant and Dever, 2011, p. 108) and may in principle be tackled by modifying
sample selection towards probability sampling.
However, non-probability samples are usually used in situations where adequate data
obtained from a probability design is neither available nor collectable, e.g. for measuring
real-time dynamics in unemployment (cf. Fondeur and Karamé, 2013) or road traffic (cf.
Buelens, Burger and van den Brakel, 2018, pp. 327 f). In this regard, ‘adequate’ may be
defined with respect to required precision, cost or time constraints (cf. Buelens, Burger
and van den Brakel, 2018, p. 322), especially when it comes to small target populations
and/or sensitive information (cf. Barendregt, Van der Poel and Van de Mheen, 2005,
p. 124; Feild et al., 2006, p. 566). At the same time, non-probability samples often result
from processes not primarily aiming at collecting this particular data (cf. section 2.1).
Therefore, adjustments in the selection of a non-probability sample are highly dependent
on the specific data context and usually not or only gradually feasible (cf. Blumenstock,
Cadamuro and On, 2015; Beręsewicz, 2015, p. 46; Japec et al., 2015, p. 843).
Consequently, the limitations discussed above commonly have to be addressed for non-
probability samples that are already collected, or at least for a given selection mechanism
that cannot be revised as probability sampling. In such situations, the definition of
non-probability sampling causes difficulties in estimation. Due to part a) of the above
definition, design weights wnps are usually not at all obtainable for non-probability samples
(cf. definition 2.13). But even when inclusion probabilities are hypothetically considered
known, part b) prohibits general statements of unbiasedness (cf. equation 2.16). There-
fore, both conditions imply that such data can be subject to biased estimates ϑ̂ for ϑ
because valid design weights in the sense of the previous section 2.2 are lacking. Potentially
even more violated are assumptions underlying design-based quality assessments for ϑ̂
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from a single sample since unbiased variance estimation additionally requires known and
positive second-order inclusion probabilities. Furthermore, the MSE no longer equals the
variance (cf. equation 2.11), and the bias component can usually only be assessed using
information that is external to sample (cf. Bethlehem, 2008b, p. 21; Buelens, Burger
and van den Brakel, 2018, p. 327; Lohr, 2010, p. 529). Overall, attempting to use non-
probability samples for obtaining point estimates that are reasonably generalizable to the
target population is a challenging task and measuring the quality of such estimates even
more. Any of these objectives is rarely achievable without making assumptions about the
data generating process and/or the variable of interest (cf. Baker et al., 2013a, p. 107;
Buelens, Burger and van den Brakel, 2015, p. 2; Lohr, 2010, p. 7; Valliant and Dever,
2011, p. 106).
To formalize these issues, the population density of Y can be written as

fY (yi·) = P (rnps
i = 1)

P (rnps
i = 1 |yi· )

· fY (yi· | r
nps
i = 1) (2.24)

by means of Bayes’ theorem, where fY (yi· | r
nps
i = 1) is the density of Y in the non-

probability sample. This is a basic framework for relating sample and population distri-
bution in the context of informative sampling discussed by Pfeffermann and Sverchkov
(1999) as well as Pfeffermann (2011) and closely related to the work of Smith (1983).
In case of a probability sample ps, inclusion probabilities πps are known and strictly
positive. Under this condition, the population’s distribution can be estimated from
the sample using design weights because it holds that P (rps

i = 1)/P (rps
i = 1 |yi· ) =

E (wps
i |yi·, rps

i = 1)/E (wps
i | r

ps
i = 1) (cf. equation 2.13; appendix B; Pfeffermann and

Sverchkov, 1999, p. 185). This is basically a slightly different justification for the use of
design weights than that discussed in the previous section 2.2.
In non-probability sampling, however, inclusion probabilities and design weights are typi-
cally unknown. As long as sample inclusion rnps and target variables Y are independent, it
holds that P (rnps

i = 1 |yi· ) = P (rnps
i = 1), such that the selection mechanism generating

rnps can be ignored. Lending on the terminology of missing data adjustments, this is
often referred to as the missing-completely-at-random (MCAR) case and e.g. occurs in
simple random sampling. Yet, this scenario is highly unlikely for non-probability samples
and generally not verifiable in reality (cf. van Buuren, 2018, p. 37; Mercer et al., 2017,
p. 257). If rnps and Y are dependent, the population and sample distribution in equality
2.24 differ, and the sample selection process must thus be accounted for. This is possible
if some auxiliary variables X ensure conditional independence of Y and rnps, which is
commonly called the missing-at-random (MAR) scenario and includes MCAR as a special
case. As introduced in section 2.2, such auxiliary variables X are observed in the non-
probability sample, and additional information about them external to the sample is
available. Methods for utilizing these variables in estimation are discussed in chapter 5.
If X cannot be determined to fulfill the conditions for MAR, dealing with the remaining
dependency between Y and rnps is only possible under strong assumptions. This setting
is labeled missing-not-at-random (MNAR; cf. appendix B; Bethlehem, 2010; Buelens,
Burger and van den Brakel, 2018; Forster and Smith, 1998; Pfeffermann, 2011; 2015;
Pfeffermann and Sikov, 2011; Rubin, 1976).
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Figure 2.1: Schematic comparison of information in a probability and non-probability sample
(cf. Yang and Kim, 2018, p. 3)

To illustrate the previous and subsequent discussion, figure 2.1 provides a schematic com-
parison of the relevant information inherent to a non-probability and a probability sample.
The data columns are split in a block-wise manner, corresponding to the classification of
variables introduced in section 2.2. Note that these blocks do not necessarily need to be
mutually exclusive and that the probability sample can by definition coincide with the
whole population (cf. Pfeffermann, 2011, p. 117). This representation solely simplifies
graphical and notational descriptions throughout this and the following chapters.
In probability sampling, it is clear which variables belong to the set of design variables
Z that determines sample inclusion probabilities and design weights. Even the values
of these variables are often considered known already before selecting a sample, e.g. for
determining stratification and cluster structures in the sampling frame. But even if their
values are known only after sampling, it is still predetermined which variables influence
the sample selection in a probability sampling design, such that inclusion probabilities and
design weights can be determined by data collected during the survey (cf. e.g. Cochran,
1977, p. 89; Fuller, 2009, p. 28; Lohr, 2010, p. 3). In contrast, it is usually not even clear
which variables have an impact on the selection processes of non-probability samples. At
best, such variables can be assumed, usually based on some auxiliary information external
to the sample (e.g. using the probability sample ps, cf. chapter 3). Even in the rather
hypothetical scenario where the set of design variables was known, knowledge about their
respective influence could still be lacking. Therefore, design weights are typically not
obtainable. These, together with full coverage of the population, would be required for
unbiased design-based estimation from a non-probability sample (cf. Baker et al., 2013a,
p. 34; Lohr, 2010, p. 529). On the other hand, design weights and full coverage of the
target population are given in case of the probability sample. However, target variables
are not (adequately) observed here, otherwise the non-probability sample would not be
required (cf. section 2.1). Although the latter does not allow for generalization without
assumptions, it therefore provides some vital information to obtain ϑ̂ that is not available
for the probability sample (cf. equation 2.24; Blumenstock, Cadamuro and On, 2015,
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p. 1073; Dever, Rafferty and Valliant, 2008, p. 47; Japec et al., 2015, p. 866; Yang and
Kim, 2018, p. 3). As a consequence, none of the samples alone is suitable to obtain
generalizable estimates ϑ̂. Possible remedies can be to relax the constraints that render
probability sampling infeasible, to ignore the selection mechanism that leads to the non-
probability sample (and acknowledge the resulting limitations), or to assess this sampling
process and account for its impact.
As indicated by the relation between sample and population density presented in equation
2.24 and the related discussion, assessment of such selection mechanisms is hardly possible
when using only the non-probability sample. If parts of the population are systematically
excluded from the sample, this data source alone does not provide any information about
them. Investigating such under-coverage is only possible using some external information
about the non-covered part of the population. Similar arguments apply even in cases
where examination is not about coverage issues: determining whether certain elements
are under- or over-represented in the non-probability sample – and may therefore differ
with respect to their inclusion probabilities – is only feasible when the sample distribution
can be compared with external benchmarks. The dependencies between sample inclusion
and other variables are, therefore, not analyzable from the non-probability sample alone,
because there is no variation of rnps in the non-probability sample (cf. definition 2.2;
Bethlehem, 2008b, p. 31; Buelens et al., 2014, p. 6; Lohr, 2010, p. 529; Loosveldt and
Sonck, 2008, p. 93).
In summary, the variables of interest for many areas of research are not observed in
scope of probability samples. In contrast, these target variables can often be observed in
non-probability samples where sampling mechanisms are uncontrolled and/or unknown.
Strategies proposed for dealing with the challenges of non-probability samples are, there-
fore, typically based on additionally utilizing some reference data set. This approach
results in scenarios as outlined in figure 2.1, where two (or more) data sets are used
complementarily to deal with the non-probability selection mechanism.
There are two main paradigms that utilize the overlapping information between both data
sets to perform estimation in such settings. On the one hand, the probability sample can
be supplemented. Modeling the target variables using the auxiliaries, for example, allows
for imputation in the reference data set. The challenge here is to find a well-performing
combination of auxiliary variables and prediction method for each and every variable of
interest. On the other hand, the auxiliary and/or assumed design variables are often
used to construct surrogate weights for the non-probability sample. Yet, mimicking the
important properties of classical design weights is challenging. For each specific non-
probability sample, auxiliary variables that adequately describe the unknown selection
process must be identified and observed. This may not always be possible, e.g. when the
selection process depends on the target variables themselves. An in-depth discussion of
these general estimation paradigms is provided in chapter 5.
In either case, a careful examination of the data generating process and the potential
selectivity of a non-probability sample is required to perform estimation. As a first step
for capturing these issues, concepts of representativity and methods for assessing it in the
context of non-probability sampling are discussed in the following chapter 3.
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3 Representativity and Selectivity
Known and strictly positive inclusion probabilities that allow for unbiased estimation and
quantifiable accuracy with regard to many important statistics of interest (cf. section
2.2) often lead researchers to equate probability sampling with representativeness (cf. e.g.
Buelens et al., 2014, p. 4; Little, 1988b, p. 287; Loosveldt and Sonck, 2008, p. 96; Pfef-
fermann, 2015, p. 448). In turn, terms like non-representative or selective are commonly
and synonymously used to characterize non-probability samples (cf. e.g. Gelman et al.,
2016b, p. 117; Pfeffermann, 2015, p. 444; Steinmetz et al., 2014, p. 275; Valliant and
Dever, 2011, p. 105). In this interpretation, non-representativity is seen as cause for the
issues related to non-probability sampling discussed in the previous section 2.3 (cf. Japec
et al., 2015, p. 864; Meng, 2018, p. 688). To analyze these issues as far as possible,
it is therefore important to consider the meaning, operationalization and assessment of
representativity.
However, despite the importance of the phrase “representative method” (Kiær, 1895;
1897, cited in Kruskal and Mosteller, 1980, pp. 172 ff; Neyman, 1934, p. 559) in the
history of statistics, the terms ‘representative’ and ‘selective’ are often used in a rather
broad sense and, hence, subject to various different interpretations (cf. Bethlehem, 2010,
p. 169; Kish, 1965, p. 26; Schouten, Cobben and Bethlehem, 2009, p. 102). An overview
of how these terms can be understood to describe non-probability samples is given in the
following section 3.1. Representativity and selectivity are frequently applied descriptions
for both a sampling design as well as a single sample realized from it (cf. Kruskal and
Mosteller, 1979a, p. 15). However, the data generating process is typically unknown for
non-probability samples. As a consequence, selectivity arguments are mostly applied to
a single realized sample (cf. e.g. Buelens et al., 2014, p. 6; Steinmetz et al., 2014, p. 288).
To assess such features of a non-probability sample, auxiliary information external to
the sample is required (cf. section 2.3; Baker et al., 2013a, p. 90), sources of which are
summarized in section 3.2.
In the subsequent sections, approaches to operationalize and quantify the selectivity of
non-probability samples are discussed. Different strategies are proposed and applied
in the relevant literature (cf. e.g. Baker et al., 2013a, pp. 34 ff, 93 ff; Bethlehem and
Biffignandi, 2012, pp. 303 ff, 385 ff; Schonlau et al., 2009; Meng, 2018; Petrucci and
Rocco, 2019). These include comparison and statistical tests for revealing (dis-)similarities
in auxiliary variables (sections 3.3 and 3.4), which can help to identify variables valuable
for characterizing the non-probability selection mechanism (sections 3.5 to 3.7). These
considerations can provide some guidance to assess the possible discrepancy between
estimated and true statistic of interest (section 3.8). Furthermore, they foster approaches
for estimation from non-probability samples, which are discussed in chapter 5.
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3.1 Concepts of Representativity
In a series of articles, Kruskal and Mosteller (1979a,b,c; 1980) review history and usage of
the concept of ‘representative sampling’ in non-scientific, general scientific and scientific
statistical literature. Although it is possible to distinguish between representativity of ei-
ther a single sample or a sample selection mechanism, this differentiation seems to get lost
in the variety of meanings attributed to representativity itself (cf. Kruskal and Mosteller,
1979a, p. 15). Elaborating on the various different connotations of representativity, the
authors provide an overview and discussion that is still relevant in contemporary research
within and beyond the context of non-probability sampling (cf. e.g. Beręsewicz, 2015,
p. 48; Schouten, Cobben and Bethlehem, 2009, p. 101; Tillé, Wilhelm et al., 2017, p. 7;
Zhang, Thomsen and Kleven, 2013, p. 276).
The findings of Kruskal and Mosteller (1979a,b,c; 1980) can be summarized as follows. A
first usage of representativity is as a rhetorical “general acclaim” (Kruskal and Mosteller,
1979a, p. 15) in a rather vague sense. In this case, representativity is used to praise
data without further elaboration. A second sense implies the “absence of selective forces”
(Kruskal and Mosteller, 1979a, p. 16). This meaning frequently appears in statistical sci-
ence and is closely related to the third idea of “coverage of the population’s heterogeneity”
(Kruskal and Mosteller, 1979c, p. 254) in a sample. This leads to a fourth perception
of representativity, implying that a sample is “typical of the population” (Kruskal and
Mosteller, 1979a, p. 14). In certain cases, this refers to samples of typical units, which
even may be of size one (single units) if in some sense lying near the center of a distribution
of interest. If typicality is interpreted such that a sample as a whole should be typical
for the population, with regards not only to the center but also (e.g.) the variability of a
distribution, this meaning reverts to the idea of covering the population’s heterogeneity.
The ideal thereof is a sample as “mirror or miniature of the population” (Kruskal and
Mosteller, 1979b, p. 111). Further meanings, which are mainly found in the statistical
literature, refer to representative sampling as a “specific sampling method”, “permitting
good estimation” or “good enough for a particular purpose” (Kruskal and Mosteller,
1979c, p. 245). These interpretations are usually rather explicitly regarding a particular
context, such as predefined estimators and research questions. Sometimes, the terms
‘representative sample’ and ‘probability sample’ are simply defined as congruent (cf.
Kruskal and Mosteller, 1979b, p. 111). This leads back to the depiction of non-probability
samples as non-representative or selective, which is discussed at the beginning of the
current chapter 3.
Beyond such equating definitions, considering the connotations of (non-)representativity
can help to describe the challenges posed by non-probability sampling. While interpre-
tations referring to specific sampling methods or purposes are highly situational, the
remaining ones are quite general and help to operationalize (non-)representativity in
a rather broad context. On the one hand, the above differentiation suggests that a
representative sample should be typical for a population, fully covering its heterogeneity,
and ideally a mirror thereof. Hence, distributions of relevant variables in the sample
should coincide with that of the population to at least some precision (depending on the
specific context). On the other hand, a sample should be selected without (untreated)
selective forces, which otherwise can prevent covering the full variability of a population
or lead to a distorted mirror image.
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In summary, except for the vague rhetorical use, all of these views on representativity and
selectivity emphasize relational aspects. Selective forces are usually defined as under-
or over-representation of certain values of (e.g.) variables Z in the non-probability
sample. On the one hand, this implies that Z and πnps are correlated, on the other
hand, the distributions of Znps and Z are typically different (cf. Kruskal and Mosteller,
1979c, pp. 261 ff). These considerations are therefore inherently linked to the relation of
population and sample density stated in equation 2.24. Employing those relational aspects
of representativity can help to assess and potentially compensate selectivity issues in
non-probability samples: first of all, comparing distributions with external benchmarks
is one way to assess whether some variables are related to the mechanism generating
the non-probability sample. These ideas are the basis for sections 3.3 and 3.4, where
comparisons and statistical tests for auxiliary variables are introduced. As extensions or
alternatives, further approaches are based on evaluating the potential of certain variables
to describe the non-probability sampling process. These are considered in sections 3.6
to 3.8. To obtain benchmarks and/or evaluate the dependencies between variables and
the sample selection mechanism, some source of auxiliary information external to the
non-probability sample is needed. A short overview on types of auxiliary data that are
commonly considered in such contexts is provided in section 3.2.

3.2 Auxiliary Information: Para- and Reference
Data

As discussed in section 3.1, representativity and selectivity are commonly defined with
regards to relational aspects of sample and population distributions (cf. equation 2.24).
Consequently, nearly all methods proposed for assessing the potential selectivity of non-
probability samples aim at examining this relationship, although in different ways. For
some variables of interest Y nps observed in a non-probability sample, this would only be
feasible if the sample distribution fY nps (yi·) could be compared to that of the population,
fY (yi·). However, this is essentially an ideal case that hardly ever occurs in real appli-
cations of non-probability samples. If the distribution of Y was known for the entire
population, it could be used to compute the population statistics of interest. In this case,
no sample would be needed at all.
Therefore, common strategies rely on auxiliary variables to obtain some proxy information
about a sample’s selectivity with regard to the target variables Y (cf. e.g. Bethlehem,
2008b, p. 31; Loosveldt and Sonck, 2008, p. 93; Schouten et al., 2016, p. 732). As intro-
duced in section 2.2, auxiliary variables denoted by X are observed in the non-probability
sample, and some external information about X outside this sample is available. As far as
these auxiliaries are related to the target variables, representativity with regard to X can
be considered an indication that the same holds regarding Y , although this is neither a
necessary nor sufficient condition (cf. Kruskal and Mosteller, 1979c, p. 263). As discussed
before, the sets of variables X and Y may even be overlapping.
Availability of information about X may mean that the population distribution fX (xi·)
itself or some of its characteristics (e.g. the means µX) are considered known. This
distribution or its characteristics are used as a ‘gold standard’ or benchmark for assessing
representativity and therefore must be based on external information about X that is
of high quality. This suggests the use of an ideal probability reference sample with
no or ignorable non-response, in which the auxiliary variables are measured in exactly
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the same manner as in the non-probability sample (cf. sections 2.3 and 2.2; Biffignandi
and Bethlehem, 2012, p. 370).1 By definition, such a probability reference sample can
encompass the whole population. For certain target populations, this kind of information
is available and frequently used, e.g. in form of population or business registers. In
other cases, estimates for fX (xi·) or its characteristics from a probability sample are
used as benchmarks (cf. e.g. Bethlehem, 2010, p. 174; Daas et al., 2015, p. 257; Kreuter
et al., 2010, pp. 391 f; Särndal and Lundström, 2005, pp. 10 f; Schouten, Shlomo and
Skinner, 2009, p. 13). Sometimes, reference surveys are conducted specifically for the
purpose of comparison with the non-probability sample, in which case exactly coinciding
questionnaires and modes of interviewing are applied. However, this is mainly done when
the primary research goal is to evaluate the quality of non-probability samples (cf. e.g.
Spijkerman et al., 2009, p. 1642). Reference samples that are already available but not
specifically designed for the purpose of comparison are far more common in most other
scenarios of non-probability sampling (cf. e.g. Barratt, Ferris and Lenton, 2015, p. 10;
Bethell et al., 2004, p. 5; Ryzin, 2008, p. 246). In these latter cases, differences in survey
modes and questionnaire designs interfering with the comparisons of non-probability and
reference sample can be an additional issue (cf. Schonlau, Van Soest and Kapteyn, 2007,
p. 9; Yeager et al., 2011, pp. 712 ff).
A further type of auxiliary information besides population and reference sample data is
para-data (cf. e.g. Buelens, Burger and van den Brakel, 2015, p. 28; Shlomo, Skinner and
Schouten, 2012, p. 210; Steinmetz et al., 2014, p. 287). Although this term itself is not
uniquely defined, para-data is commonly constituted by information gathered during the
sampling process but external to the survey itself (cf. Kreuter and Olson, 2013, pp. 2 f).
For example, characteristics of the environment (e.g. residential area), the person that
was contacted (e.g. gender) or the type of initial contact (e.g. questions asked to the
interviewer) may be recorded as para-data in case of interviewer-administered surveys.
Further information can either be gathered by the interviewer or, especially when using
computer-aided interviewing, automatically collected. Examples include the frequencies
and timestamps of certain events when sampling and surveying, e.g. the number and
time of (attempted) contacts or provided answers. Automation can provide further
information especially for data that is gathered online, such as “device-type para-data
and questionnaire navigation para-data” (Callegaro, 2013, p. 262). For example, this
data can include information about the device, browser and system language used to visit
a (survey) page, as well as keystroke and mouse click frequencies (cf. Callegaro, 2013;
Durrant, D’Arrigo and Müller, 2013; Olson and Parkhurst, 2013).
“In most real life studies, auxiliary variables are available” (Schouten, 2018, p. 33),
and all of the above examples can be seen as constituting some kind of reference data
set containing information about elements which are not (necessarily) part of the non-
probability sample. In context of the current chapter 3, such auxiliary information is
central to the different strategies for investigating the potential selectivity and biases
of non-probability samples, for which different methods are discussed in the following
sections. Introducing rather informal comparisons of reference and non-probability sample
in section 3.3, this leads to more refined strategies in the subsequent discussion. The use
of auxiliary information to compensate for selectivity is discussed in chapter 5.

1 The assumption that non-response in the reference sample is ignorable is not always valid, but typically
itself not testable without even better reference data (cf. e.g. Barratt, Ferris and Lenton, 2015, p. 5;
Biffignandi and Bethlehem, 2012, p. 370; Ghitza and Gelman, 2013, p. 769; Pasek, 2016, p. 286).
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3.3 Comparing Auxiliary Variables to Assess
Representativity

Combining the discussion in sections 2.2 to 3.2, sample and population distribution of the
auxiliary variables X are linked through the non-probability sampling process by

fX (xi·) = P (rnps
i = 1)

P (rnps
i = 1 |xi· )

· fXnps (xi·) , (3.1)

where fXnps (xi·) = fX (xi· | rnps
i = 1) and fX (xi·) respectively denote the density of X

in the sample and the population. If the vector of sample inclusion indicators rnps

and variables X are independent, these two densities do almost everywhere not differ
in expectation because P (rnps

i = 1) = P (rnps
i = 1 |xi· ) (cf. Pfeffermann and Sverchkov,

1999; Pfeffermann, 2011; Smith, 1983). Therefore, one way to assess representativity of
a sample with respect to X is by comparing fXnps (xi·) and fX (xi·) (cf. e.g. Braver and
Bay, 1992, p. 927; Gelman et al., 2016b, pp. 91 f). This approach is inherently related
to the concept of representativity as covering the full heterogeneity of a population up to
creating a miniature of this population (cf. section 3.1). If the two densities in equality
3.1 coincide, this is an indication that the sample does not exhibit over- or under-coverage
regarding values of X. If there is a large difference, the sample is prone to be selective with
respect to X, although the quantification of ‘large’ is highly situational in this context.
As discussed in section 3.2, a comparison for Y itself in terms of equation 3.1 is not
feasible when Y is known solely for the non-probability sample, but an overlap between
Y and X is possible.
A popular strategy to assess potential selectivity of non-probability samples is therefore
to compare the resulting distribution of X with that of some reference data (cf. e.g.
Bethlehem, 2008b, p. 31; Buelens et al., 2014, p. 4; van den Brakel et al., 2017, p. 184). For
real applications, this is mostly done by graphical or tabulated comparisons of frequency
distributions. In many cases, such comparisons are used exclusively with respect to socio-
demographic variables for which reference data of high quality is available, such as gender,
age groups or education (cf. Lohr, 2010, p. 529; Weisberg, 2005, pp. 172 ff). In some cases,
cross-classifications corresponding to multivariate distributions are compared (cf. e.g.
Steinmetz et al., 2014, p. 279), but in the more typical case, only marginal distributions are
used for this purpose (cf. e.g. Cumming, 1990, pp. 134 f; Feild et al., 2006, p. 577; Gelman
et al., 2016b, p. 92; Loosveldt and Sonck, 2008, p. 98; Schonlau et al., 2009, p. 305).
Continuous variables are less common but still occasionally used for such comparisons.
In these cases, specific aspects of the distributions are typically compared. As before,
this mainly concerns assessments of similarity in univariate distributional aspects, such
as means and, in case of longitudinal data, trends (cf. e.g. Beręsewicz, 2015, p. 46; van den
Brakel et al., 2017, p. 184; Lehdonvirta et al., 2020, p. 13). Multivariate characteristics,
such as regression coefficients, are considered only occasionally (cf. e.g. Bethell et al.,
2004, p. 9; Sanders et al., 2007, p. 278; Steinmetz, Tijdens and Pedraza, 2009, p. 32).
Graphical or tabulated evaluations of frequency distributions or means are common
examples when non-probability and reference samples are compared. Yet, such contrasts
do not always yield a clear picture and can therefore lead to ambiguous interpretations.
Even if it is selected by means of an ideal probability sampling design, a single realized
sample can exhibit huge deviations from some benchmark data due to sampling variance
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alone (cf. Särndal, Swensson and Wretman, 1992, p. 41). This is especially true when the
benchmark itself is subject to sampling or non-sampling errors (cf. Baker et al., 2013a,
p. 90; Biffignandi and Bethlehem, 2012, p. 370; Steinmetz et al., 2014, p. 288). Partially
relaxing these limitations, some authors adopt the use of statistical tests as a way to
formalize the comparisons discussed in the current section 3.3. This strategy for assessing
selectivity of non-probability samples is presented in the following section 3.4.

3.4 Testing for Selectivity
To formally compare data sets in order to assess deviations of the non-probability sample
from some benchmark data source, statistical tests are an apparent way (cf. e.g. Kruskal
and Mosteller, 1979c, pp. 261 ff; Little, 1988a; Särndal, 2011). An advantage when
applying these tests for selectivity assessment is that sampling errors of the reference
data set can be incorporated, a topic that is rarely considered for the simple comparisons
discussed in the previous section 3.3 (cf. Baker et al., 2013a, p. 90; Steinmetz et al., 2014,
p. 288). A possible limitation of such tests in the present context is that general non-
probability samples do not necessarily fulfill the assumptions concerning the randomness
of the data generating process that are required for the validity of these tests (cf. e.g.
Hawkins, 1981, p. 107; Stephens, 1976, p. 357). Nevertheless, statistical tests are de facto
commonly used to assess selectivity of non-probability samples, which may be the case
for exploratory or naive reasons or due to the lack of methodologically more adequate
alternatives (cf. e.g. Barratt, Ferris and Lenton, 2015, p. 7; Drabble et al., 2018, p. 7;
Loosveldt and Sonck, 2008, p. 96; Schillewaert and Meulemeester, 2005, p. 166; Smyk,
Tyrowicz and Van der Velde, 2021, pp. 438 ff; Yeager et al., 2011, p. 718). It is therefore
important to discuss and evaluate the usability of such tests for selectivity assessment. In
the following paragraphs, a number of selected parametric and non-parametric tests are
introduced for this purpose, which can be used to compare distributions or their moments
(means and variances).
In a general framework, S arbitrary separate data sets Ss of sizes ns for s = 1, . . . , S are
considered for comparison by means of a statistical test. The combination of these data
sets is defined by

Su :=
S⋃

s=1
Ss (3.2)

for the combined data set u of size nu. For example, Su = Snps∪Sps may be the combination
of a non-probability and a reference sample. Denoting the matrices of (partially) common
variables for each data set s by

As =
[
Xs Zs Y s

]
∈ Rns×v (3.3)

for notational simplicity, the matrix for the combined data set is

Au =


A1

...
AS

 ∈ Rnu×v . (3.4)

Partial but not necessarily complete overlap in the variables then implies that some
columns au

·j are observed for all of the data sources. Other variables may be unknown for
some data sets, leading to missing values in certain rows of Au.
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In the context of missing data, various tests are used for testing whether the missing
values follow a MCAR or MAR pattern (cf. van Buuren, 2018, p. 37). As outlined above
and depicted in figure 2.1, missingness also occurs for the combination of non-probability
and reference samples, where missing values arise in data sets where Y is not observed.
Consequently, tests for missing data patterns can be adapted to assess selectivity of non-
probability samples (cf. section 2.3; Mercer et al., 2017, p. 253). Jamshidian and Jalal
(2010) discuss and evaluate a range of such tests, which are included as part of the
subsequent discussion.
Note that to allow for weighting in the considered tests, a vector of weights

wu =
[
(w1)T

. . .
(
wS

)T
]T

∈ Rnu (3.5)

in analogy to equation 3.4 is assumed for the combined data set. Since classical design
weights are typically unknown for the non-probability sample (cf. section 2.3), an arbitrary
vector w̃ ∈ Rnnps is used for this sample. The simplest approach is to set these weights to
ones, implying that all observations are given the same relevance (cf. e.g. Steinmetz et al.,
2014, p. 279). Techniques for constructing more sophisticated weights for non-probability
samples are discussed in section 5.2, e.g. to attribute more relevance to cases that appear
under-represented in the non-probability sample.
Several tests for response patterns are based on variance decomposition. The main idea in
this regard is to break down the total variability around the mean into parts corresponding
to variance within and between the different data sets. The variation within each of the
sub-data sets s = 1, . . . , S is that around the estimated mean µ̂A (ws) for this data set.
It is calculated from the centered variables for all i = 1, . . . , ns observations, denoted by

e (as
i·) := as

i· − µ̂A (ws) . (3.6a)

The variability between groups is based on the differences between means of the sub- and
combined data set, expressed by

e (µ̂A (ws)) := µ̂A (ws)− µ̂A (wu) . (3.6b)

Little (1988a) proposes testing the equality of means for all sub-data data sets (groups)
to deduce whether a MCAR pattern can be rejected. The suggested test assumes that
variables As for all s = 1, . . . , S data sources come from a population that follows a
v-variate normal distribution, i.e.

As ∼ N
(
µ(s)

A ,ΣA

)
, (3.7)

or that sample sizes are sufficiently large to employ the central limit theorem (cf. Linde-
berg, 1922; Little, 1988a, p. 1200). In this formulation, µ(s)

A is the true mean vector in
the target population of data set s, which may be different for the S data sets. The test’s
null hypothesis of equal means is

H0 : µA = µ(1)
A = . . . = µ(S)

A , (3.8)
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where µA is mean in the combined population. The covariances ΣA are assumed to be
the same across all populations. Without loss of generality, assume the first cs variables,
corresponding to columns of A indexed by Is = {1, . . . , cs}, are observed for the s-th
data source. The employed test-statistic T̂ ∈ R≥0 is then given by

T̂ =
S∑

s=1
N̂ (ws) · [e (µ̂A (ws))]Is

[
Σ̂A (wu)

]−1

IsIs
([e (µ̂A (ws))]Is)T , (3.9)

where [·]Is denotes a sub-vector with elements indexed by Is and [·]IsIs is a sub-matrix
with rows and columns indexed by Is. If null hypothesis 3.8 and normality assumption
3.7 hold, each of the single terms summed in equation 3.9 follows an F-distribution with
1 and ns − 2 degrees of freedom. In this case, T̂ is asymptotically χ2-distributed, with
||c||1 − v degrees of freedom, which can be used for testing the null hypothesis. Note
that to calculate T̂ from equation 3.9, the complete data estimates µ̂A (wu) and Σ̂A (wu)
for means and covariances are required (cf. definition 3.6b). When some variables as

·j
are unobserved, parts of the information required to directly estimate these quantities
are missing. To obtain a complete data set in this case, imputation methods can be
used. Little (1988a, p. 1200) suggests using the expectation-maximization algorithm
for this purpose (cf. Dempster, Laird and Rubin, 1977; Orchard and Woodbury, 1972).
Nevertheless, other imputation methods (cf. e.g. van Buuren, 2018; Fuller, 2009, pp. 288 ff)
can likewise be used to obtain the required complete data estimates. This reasoning
equally applies to the following tests whenever testing is performed for variables that are
not observed in all S data sets (cf. Jamshidian and Jalal, 2010; Jamshidian, Jalal and
Jansen, 2014). As discussed above, equation 3.9 assumes that the covariance matrix ΣA

is the same across all data sets. In terms of sensitivity and power, Little (1988a, p. 1202)
argues against a possible extension to relax this assumption.
Nevertheless, Jamshidian and Jalal (2010) suggest testing the equality of covariances
(homoscedasticity) as well as the feasibility of multivariate normality assumptions based
on the work of Hawkins (1981). Again, this test assumes multivariate normality of the
target population of each data set s = 1, . . . , S , i.e.

As ∼ N
(
µ(s)

A ,Σ
(s)
A

)
. (3.10)

In this case, the covariances Σ
(s)
A may vary between populations, differentiating it from

assumption 3.7. The null hypothesis is the equality of covariances in all S populations:

H0 : ΣA = Σ
(1)
A = . . . = Σ

(S)
A . (3.11)

Denoted by ΣA is the combined data covariance, which is estimated using the pooled
covariance estimator

Σ̂A =
S∑

s=1

ns − 1
nu − S Σ̂A (ws) . (3.12)

The test statistic is then given by T̂ =
[
T̂ 1

1 . . . T̂ 1
n1 . . . T̂ S

nS

]T
∈ Rnu , with elements

T̂ s
i =

(
(nu − S − v) · e (as

i·) Σ̂
−1
A (e (as

i·))
T
)

(
v ·
(
(ns − 1) (nu − S)− ns · e (as

i·) Σ̂
−1
A (e (as

i·))
T
)) (3.13)
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for i = 1, . . . , ns and s = 1, . . . , S . Matrices of size 1×1 are treated as scalars for equation
3.13. Note that this constitutes T̂ as a vector- rather than a scalar-valued test statistic,
and essentially the same can occur for the following tests as well. Approaches to deal
with vector-valued test statistics are therefore discussed after summarizing these tests.
Hawkins (1981, p. 106) shows that under normality assumption 3.10 and null hypothesis
3.11, these test statistics are exactly F-distributed with v and n−v−S degrees of freedom.
This result can be used to test null hypothesis 3.11 and normality assumption 3.10, but
only simultaneously (cf. Hawkins, 1981, p. 109).
Being based on ratios of variance components, both tests discussed so far are closely
related to the F-test for the classical analysis of variance (ANOVA; cf. e.g. Faraway,
2002). The null hypothesis in this case is again the equality of means defined in equation
3.8, and a separate test statistic T̂ ∈ Rv

≥0 is computed for each column (variable) au
·j.

Components of T̂ are determined as ratios of between and within variances, defined by

T̂j =
N̂ (wu)− S

S − 1 ·

S∑
s=1

N̂ (ws) ·
(
e
(
µ̂as

·j
(ws)

))2

S∑
s=1

N̂ (ws) · Σ̃as
·j

(ws)
(3.14)

for all j = 1, . . . , v variables. Under null hypothesis 3.8 and normality assumption 3.7,
each T̂j is F-distributed with S − 1 and nu − S degrees of freedom. The two-tailed t-test
is a very commonly used and therefore noteworthy special case of the F-test for S = 2 (cf.
Aspin and Welch, 1949; Blitzstein and Hwang, 2013, p. 442; Box, 1953, p. 320; Moser,
Stevens and Watts, 1989, p. 3964; Satterthwaite, 1946; Welch, 1947, p. 32).
As outlined, the above tests assume normally distributed populations or sufficient sample
sizes to employ the central limit theorem in case of Little’s and t-test (cf. Klenke, 2013,
pp. 320 ff). For cases where these requirements are not fulfilled, Jamshidian and Jalal
(2010) propose applying non-parametric methods to test for inequality of distributions in
different data sets. Common examples for such non-parametric tests are the Kolmogorov-
Smirnov (cf. Kolmogorov, 1933 and Smirnov, 1936, cited in Birnbaum, 1952), Kruskal-
Wallis (cf. Kruskal and Wallis, 1952) or Anderson-Darling test (cf. Anderson and Darling,
1952; Scholz and Stephens, 1987), which are introduced in the following.
In the present context, the null hypothesis of the Kolmogorov-Smirnov test is that distri-
butions of A are equal in all target populations of the s = 1, . . . , S sub-data sets:

H0 : FA = F(1)
A = . . . = F(S)

A , (3.15)

where F(s)
A is the distribution in the target population of data set s, and FA is the combined

distribution. This test is based on the vector T̂ =
[
T̂ 1

1 . . . T̂ 1
v . . . T̂ S

v

]T
∈ RS ·v of

test statistics, with elements defined by

T̂ s
j = max

a ∈ au
·j

(
Abs

(
F̂a·j (a, wu)− F̂a·j (a, ws)

))
(3.16)

for j = 1, . . . , v and s = 1, . . . , S . These represent the maximum absolute difference in the
estimated distribution functions between sub- and combined data set for all variables and
sub-data sets (cf. definition 2.18e). Kolmogorov (1933, cited in Birnbaum, 1952, p. 425)

33



Representativity and Selectivity

derives the asymptotic distribution

F̂(T̂ s
j /ns)

 T̂ s
j

ns

 = 1− 2 ·
∞∑

i=1
(−1)(i−1) · exp

(
−2 · i2 ·

(
T̂ s

j

)2
)

(3.17)

for T̂ s
j (cf. Feller et al., 1948; Darling, 1957). Smirnov (1936, cited in Birnbaum, 1952,

p. 425) presents critical values for testing hypothesis 3.15, which can be computed by
means of recursive formulae (cf. Birnbaum, 1952; Lilliefors, 1967; Massey, 1950).
As an alternative, the Anderson-Darling test likewise tests hypothesis 3.15 based on
differences between empirical distribution functions. Applied to multiple data sets (or
groups), as proposed by Scholz and Stephens (1987), its test statistics T̂ ∈ Rv is defined
by elements

T̂j =
S∑

s=1
ns ·

∫
a ∈ au

·j

(
F̂a·j (a, ws)− F̂a·j (a, wu)

)2

F̂a·j (a, wu) ·
(
1− F̂a·j (a, wu)

) d F̂a·j (a, wu) (3.18)

for all j = 1, . . . , v. As before, F̂a·j denotes the weighted empirical distribution function
of column j in A. Under null hypothesis 3.15 to be tested, the distribution of each
T̂j converges to a weighted sum of independent χ2-distributed variables with S − 1
degrees of freedom (cf. Anderson and Darling, 1952). The result is a “strange distribution
function” (Marsaglia and Marsaglia, 2004, p. 2), for which a number of authors provide
approximations and tabulated values for hypothesis testing, together with computational
simplifications for non-continuous variables (cf. e.g. Anderson and Darling, 1954; Giles,
2001; Lewis, 1961; Marsaglia and Marsaglia, 2004; Scholz and Stephens, 1987; Sinclair
and Spurr, 1988).
The test proposed by Kruskal and Wallis (1952) applied to the outlined setting is based on
variance decomposition of the ranks for each column au

·j in Au. Its test statistics T̂ ∈ Rv
≥0

is defined by ratios of between and total variance of these ranks for all j = 1, . . . , v, i.e.

T̂j =
S∑

s=1
N̂ (ws) ·

(
e
(
µ̂d·j (ws)

))2 (
Σ̂d·j (wu)

)−1
, (3.19)

where d·j represents the ranks of variable au
·j. Under null hypothesis 3.15, T̂j is asymp-

totically χ2-distributed with S − 1 degrees of freedom (cf. Breslow, 1970; Kruskal, 1952).
Different methods to obtain the exact small sample distribution of this test statistic are
presented and compared by Iman and Davenport (1976) as well as Choi et al. (2003).
All tests presented so far are difference tests. These are frequently used in real appli-
cations, even though the research goal commonly is to show that there is no difference
between data sources. If the null hypothesis is not rejected, this is considered an indication
that the distribution of relevant variables does not differ between data sets. At least
with respect to these variables, selectivity of the non-probability is then rejected (cf. e.g.
Barratt, Ferris and Lenton, 2015, p. 13; Braunsberger, Wybenga and Gates, 2007, p. 761;
Faas and Schoen, 2006, p. 183; Ryzin, 2008, p. 256; Yeager et al., 2011). Nevertheless,
difference tests are based on using equalities, e.g. of means, covariances or distributions,
as their respective null hypothesis (cf. hypotheses 3.8, 3.11 and 3.15). As the decision
imposed by a statistical test is to reject or not reject its null hypothesis, difference tests are
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therefore improper tools to accept hypotheses of equality (cf. Schuirmann, 1987, p. 659;
Storey, 2002, p. 479). Hence, they have to be used and interpreted very carefully in
the outlined context, and it seems important to discuss equivalence tests as a remedy
for these obstacles. Such tests use equalities as alternative hypothesis, formalized as an
interval in which the difference(s) T̂ ∈ Rv of the respective characteristics of Au (e.g. as
above, means, variances or values of the distribution functions) are considered equal. The
resulting null hypothesis is thus

H0 : T̂ ≤ L
T̂

or T̂ ≥ U
T̂

(3.20)

for lower and upper interval boundaries L
T̂

, U
T̂
∈ Rv. A common strategy to perform an

equivalence test is by testing the lower and upper part of hypothesis 3.20 separately. Each
of them is used as null hypothesis in a one-sided test, with significance level corresponding
to that of the whole test. If both tests are significant, hypothesis 3.20 can be rejected (cf.
e.g. Berger, Hsu et al., 1996; Kirkwood and Westlake, 1981; Lakens, 2017; Schuirmann,
1987; Westlake, 1976). Alternatively, one can check whether the confidence interval for T̂
corresponding to twice the significance level of the test is completely enclosed by L

T̂
and

U
T̂

(cf. Kirkwood and Westlake, 1981, p. 593; Limentani et al., 2005, p. 223; Schuirmann,
1987, p. 661). When using equivalence tests, selecting L

T̂
and U

T̂
is the main difficulty.

The choice has to be made with respect to the specific variable and research interest
(cf. Dong et al., 2017; Schuirmann, 1987, p. 659; Tsong, Dong and Shen, 2017). In
the scientific literature, the most relevant case of equivalence tests deals with equality
of means, corresponding to hypothesis 3.8 as alternative hypothesis. Its realization is
commonly based on t-tests, which are a special case of the ANOVA described in the
context of equation 3.14 (cf. Lakens, 2017, p. 357; Schuirmann, 1987; Welch, 1951;
Westlake, 1976).
As stressed before, all approaches apart from Little’s (1988a) test presented throughout
this section can result in a vector of test statistics rather than a single number. There
are different approaches to apply tests for vector-valued test statistics. One option is to
apply the theorem presented by Rosenblatt (1952). To that end, p-values are obtained
from the respective distributions of the test statistics, and it is tested whether these p-
values come from a uniform distribution. For example, this can be done by applying the
test proposed by Neyman (1937; cf. Ledwina, 1994). It can either be applied to tests
performed on Au after a Mahalanobis transformation (cf. Hawkins, 1981; Kessy, Lewin
and Strimmer, 2018, p. 310) or when using multivariate distribution functions instead of
univariate ones (cf. Justel, Peña and Zamar, 1997). An additional approach would be
to perform multiple univariate tests, with corresponding adjustment of significance levels
(cf. e.g. Holm, 1979). In this case, one has to consider that the research goal often is
to provide evidence for equivalence of data sources. Therefore, significance adjustments
have to be made such that it is harder to provide evidence for multiple variables than
for a single one. In particular, suppose that one uses a difference test to conclude that a
non-probability sample has a distribution that is similar to some reference data in case of
a non-significant result. Lowering the significance level would make such a result much
more likely, making the adjustment highly misleading – not to say wrong – for showing
equivalence. Examples can be found in scientific publications (cf. e.g. Faas and Schoen,
2006, p. 183; Schillewaert and Meulemeester, 2005, p. 174) that motivate this word of
caution.
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To summarize the previous considerations, tests for selectivity provide decision rules for
whether certain characteristics of variables in the non-probability sample coincide with
those in some reference data set. As for the comparisons discussed in the previous section
3.3, this reflects the ideas of representativity as covering the full heterogeneity or producing
mirror images of the target population (cf. section 3.1). In general, assumptions about
differences or equalities can be used either as null or alternative hypotheses, but difference
tests constitute the standard in applications even for showing equivalence. Assuming that
there is no full overlap in the variable(s) of interest, tests may either rely on only the
overlapping part or make use of methods for handling missing data (e.g. imputation; cf.
Buelens, Burger and van den Brakel, 2018, p. 333; Kim et al., 2018). Applying these
tests is of exploratory character in the context of non-probability sampling since they are
developed assuming an underlying randomness in terms of the data generating process
(cf. e.g. Hawkins, 1981, p. 107; Stephens, 1976, p. 357). This requirement may not
generally hold in the context of non-probability samples. Results surely have to be used
with caution, even though these tests are applied for missing data in the cited literature,
where this limitation is in principle present as well (cf. e.g. section 3.8). An alternative to
finding differences between non-probability and reference sample for assessing selectivity
is to identify variables Z that are able to predict the selection mechanism. As a technique
which is applicable for this purpose, matching is introduced in the following section 3.5.

3.5 Matching With Auxiliary Data
Approaches to assess representativeness in the sense of ideally yielding miniatures of the
population are introduced in the previous sections 3.3 and 3.4. One benefit of these
methods is that they can help to identify variables that are strongly related to rnps

and, thus, able to represent the response process and its selectivity (cf. equation 3.1).
Referring to section 2.2, and in correspondence with figure 2.1, variables used to describe
the selection process are denoted by Z in the subsequent discussion. Again, there can
be overlaps between X, Y and Z, such that the methods discussed above may e.g. be
used to identify Z as a subset of columns from X. In the ideal case, the variables Z
perfectly describe the selection of a non-probability sample, such that the true inclusion
probabilities πnps are known for observed Z, just as in probability samples (cf. Schouten,
Shlomo and Skinner, 2009, p. 11). Any other variable is then conditionally independent
from rnps given Z, e.g.

(Y ⊥⊥ rnps) |Z . (3.21)
In this case, it can be shown that

fY nps (yi· | zi· ) = fY (yi· | zi· ) , (3.22)

i.e. the conditional distributions of Y given Z are the same for sample and population
(cf. appendix B; Rosenbaum and Rubin, 1983, p. 44). Although linked to the previous
sections, this relation 3.21 is closer to the notion of representativity as absence of selec-
tive forces discussed in section 3.1. However, conditional independence as required for
equality 3.22 is highly dependent on the actual response process, available information
and variables of interest. The outlined ideal case is usually hard to achieve in reality and
typically not ultimately verifiable (cf. Mercer et al., 2017, p. 255).
Matching can be used to obtain some evidence whether assumption 3.21 is true since
equality 3.22 should hold in that case. If it does, identical values in Z imply equal

36



Representativity and Selectivity

distributions in Y , regardless of whether an observation is in the non-probability sample or
not (cf. Rosenbaum and Rubin, 1983, p. 45). Consequently, comparing observations with
coinciding or similar values for Z in- and outside the non-probability sample can provide
an indication for conditional independence. As before, some reference data set is required
for comparison, such that selectivity assessment is again not feasible for variables Y when
these are known exclusively for the non-probability sample. As a consequence, auxiliary
variables X and Z are required to use matching for selectivity assessment. Moreover,
X must contain variables that are not included in Z, which is e.g. the case when not all
overlapping variables between a non-probability and reference sample are part of Z (cf.
figure 2.1). If auxiliary variables X are related to Y , they may be substituted as a proxy
for checking equation 3.22. Hence, fXnps (xi· | zi· ) and fX (xi· | zi· ) should not differ under
assumption 3.21. Since both X and Z are auxiliary variables for which information in-
and outside the non-probability sample is available as before, the two densities can be
evaluated and compared in this setting to check whether conditional independence holds
(cf. Biffignandi and Pratesi, 2003, p. 5; Biffignandi and Bethlehem, 2012, p. 371; Buelens,
Burger and van den Brakel, 2018, p. 325; Heckman et al., 1998, p. 1021; Mercer et al.,
2017, p. 264).
Elements with coinciding or similar values for Z in- and outside the non-probability
sample are determined for matching. The set of elements outside the non-probability
sample that are matched to an element i in the non-probability sample is defined as

J(i) := {j /∈ Snps : δ (zi·, zj·) ≤ ai} (3.23)

for all i ∈ Snps, using some prespecified distance measure δ : R1×q × R1×q → R≥0 and a
vector of boundaries a =

[
a1 . . . annps

]T
∈ Rnnps

≥0 (cf. Stuart, 2010, pp. 5 ff).

When matches are exact, it holds that zi· = zj· for all j ∈ J(i). As a consequence, the
distributions of xi· and corresponding matched rows XJ(i)· are equal under conditional
independence of X and rnps given Z (cf. equality 3.22). Since xi· and XJ(i)· are both
observed, their (dis-)similarities can be assessed to check whether they actually follow
the same distribution. Such comparisons often concern the mean, e.g. when estimating
treatment effects in observational studies (cf. Cochran and Chambers, 1965, pp. 244 f;
Rosenbaum and Rubin, 1983, pp. 49 ff). In analogy, the bias of µ̂X in the non-probability
sample can be approximated by

Bias (µ̂X (w̃)) ≈ Ê
(

Ê (xi· | zi·, rnps
i = 1)− Ê (xi· | zi· )

∣∣∣ rnps
i = 1

)
≈ Ê

(
xi· − Ê

(
XJ(i)·

) ∣∣∣ rnps
i = 1

)
,

(3.24)

assuming unbiasedness of the reference sample to estimate Ê
(
Ê (xi· | zi· )

)
(cf. Biffignandi

and Pratesi, 2003; Mercer et al., 2017, p. 264; Rivers, 2007). However, matching can also
be used to compare further aspects of distributions, such as variances and measures of
dependency for variables X (cf. Iacus, King and Porro, 2012, p. 2; Stuart, 2010, p. 11).
In that regard, matching resembles the comparisons of auxiliary variables discussed in
section 3.3 but considers differences conditional on Z rather than unconditional ones.
Exact matches are typically obtained by setting ai = 0 since it holds for the most common
choices of δ that δ (zi·, zj·) = 0 iff zi· = zj·. However, the number of possible values for
zi· and zj· grows tremendously with both the number of possible values for each variable
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and the number of variables. Depending on the quantity and nature of variables Z, it is
therefore often not feasible to find identical matches (cf. Cochran, Moses and Mosteller,
1983, pp. 78 ff; Rosenbaum and Rubin, 1983, pp. 49 ff). As a consequence, various
approaches exist to construct matches for pairs of values where zi· ≈ zj· rather than
zi· = zj·. These approaches emerge from different choices of δ and a (cf. Biffignandi and
Bethlehem, 2012, pp. 371 f; Mercer et al., 2017, p. 262). A short summary of selected
methods is given below, Stuart (2010) provides an overview in greater detail.
As outlined above, exact matching arises from setting a = 0nnps×1, as long as the choice
of δ is such that δ (zi·, zj·) = 0 iff zi· = zj·. The original idea of caliper matching is to use

δ (zi·, zj·) = Abs (zi· − zj·) (3.25)

in combination with some predefined vector a, which often is a scalar multiple of a vector
of ones (cf. Cochran and Rubin, 1973, pp. 420 f). Application of the absolute value
and comparison with ai has to be done element-wise. Therefore, this approach does not
generally account for different scales of variables in Z, which is why it is mainly used
when Z contains a single column and/or in conjunction with other methods, such as
propensity score matching (cf. section 3.6; Rosenbaum and Rubin, 1985, p. 37; Rubin and
Thomas, 2000). One way for normalizing the distance for multiple variables in Z is to
use generalized Mahalanobis matching, which is defined by

δ (zi·, zj·) = (zi· − zj·)
(((

Σ̂Zu (wu)
)0.5

)T
C
(
Σ̂Zu (wu)

)0.5
)−1

(zi· − zj·)T . (3.26)

Here,
(
Σ̂Zu (wu)

)0.5
denotes the Cholesky decomposition of the covariance matrix that

is estimated from the union of non-probability and reference data outlined in definition
3.2. Furthermore, C ∈ Rq×q is a diagonal weighting matrix to quantify the relevance of
different variables in Z. If it is the identity matrix, equation 3.26 reduces to the classical
Mahalanobis distance. To include categorical variables, dummy coding can be applied
(cf. Diamond and Sekhon, 2013, p. 934; Rubin, 1979, p. 319).
To sum up, if Z is valuable for providing conditional independence between the non-
probability selection process and X, the distribution of X given Z is the same for non-
probability sample and population. This can be checked by means of matching, where
elements in- and outside the non-probability sample that exhibit equal or similar values
in Z are joined and compared. If X is related to Y , differences in matched values of X
can provide an indication for (non-)selectivity with regard to Y when controlling for Z.
As outlined above, finding similar units becomes very challenging with growing number
of columns or presence of continuous variables in Z, which is a major difficulty with the
discussed methods (cf. Rosenbaum and Rubin, 1983, p. 49; Stuart, 2010, p. 6). Besides
Mahalanobis matching, two further approaches deal with this challenge. The idea of
coarsened exact matching is quite similar to exact matching and closely related to the
concept of sub-classification (cf. Cochran and Chambers, 1965, pp. 243 f; Cochran, 1968).
Observed values of Z are coarsened before matching, e.g. by constructing age classes or
less detailed occupational categories. Exact matches are then determined based on these
coarsened values (cf. Iacus, King and Porro, 2009; 2011; 2012).
The still most common matching methods are based on propensity scores (or response
propensities) and likewise reduce the outlined dimensionality issue in advance (cf. e.g. King
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and Nielsen, 2019, p. 435; Pearl, 2010, p. 114; Rosenbaum and Rubin, 1983). Response
propensities are introduced in the following section 3.6.

3.6 Modeling the Participation Process
Propensity scores are commonly used to match similar elements without using a poten-
tially large number of matching variables. These scores are defined as the conditional
probability of element i being in the non-probability sample nps given its covariates zi·:

pnps
i := P (rnps

i = 1 | zi· ) for all i ∈ SP . (3.27)

The vector of response propensities pnps ∈ [0; 1]N somewhat resembles the inclusion
probabilities πps that could be used in case of a random sample ps (cf. equation 2.3),
but both need to be distinguished explicitly. Since inclusion probabilities are induced
by the sampling design, the design variables influencing them are predefined, such that
πps is exactly known. Response propensities, on the other hand, are simply conditional
probabilities given a set of variables Z, which only in ideal (and mostly theoretical) cases
are able to perfectly describe the non-probability sample selection process. In addition,
the true response propensities are typically unknown and cannot be estimated from a non-
probability sample alone (cf. Schouten, Cobben and Bethlehem, 2009, p. 105; Schouten,
Shlomo and Skinner, 2011, p. 234). Due to these differences, the term ‘propensity’ is
used for differentiation from any (assumed or manifest) true inclusion probability for the
non-probability sample (cf. e.g. Shlomo et al., 2009a, p. 6). The naming differentiation
within the class of propensity scores, e.g. between response or participation propensities
(cf. e.g. Little, 1988b, p. 293; Lynn, 2014), is of rather minor importance for presenting
the corresponding theory and application. Therefore, it is disregarded in the following,
and the terms are used synonymously.
As for matching in general, the original application of propensity scores stems from
observational studies. In this context, the propensities are used to analyze differences
between two quasi-experimental groups, each exclusively being subject to one treatment,
for which random assignment is not possible (cf. Rosenbaum and Rubin, 1983; Rubin,
1973; 1974; 1979; Rubin and Thomas, 1996). In the meanwhile, it is a widespread
practice to use response propensities also for non-response adjustments in probability
samples. The key interest here is the potential non-response bias caused by differences
between respondents and non-respondents (cf. Buelens et al., 2012, p. 8; Little, 1986;
1988b; Kott, 2006, p. 141). A similar reasoning applies to non-probability samples, where
differences between observed and unobserved values of Y are of interest. As discussed
in chapter 2, non-response can be interpreted as a form of non-probability sampling, and
response propensities are commonly used to account for other types of non-probability
sampling as well (cf. e.g. Biffignandi and Bethlehem, 2012, p. 368; Baker et al., 2013b, p. 8;
Enderle, Münnich and Bruch, 2013, p. 92; Isaksson and Lee, 2005, p. 3143; Loosveldt and
Sonck, 2008, p. 93; Valliant and Dever, 2011, p. 115). Their importance is motivated by
the fact that if Y and rnps are conditionally independent given Z, this holds as well when
conditioning on pnps instead of Z. Consequently, Z can be replaced by the propensity
scores for the purpose of matching, which reduces the problem to a single matching
variable (cf. appendix B; Rosenbaum and Rubin, 1983, p. 45).
However, true propensities are typically unknown, and one sample constitutes only a single
realization of rnps (cf. Schouten, Cobben and Bethlehem, 2009, p. 105; Schouten, Shlomo
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and Skinner, 2011, p. 234). Therefore, a common approach is to specify a statistical or
machine learning model to obtain estimates

p̂nps
i = P̂ (rnps

i = 1 | zi·) (3.28)

for the true response propensities defined in equation 3.27 (cf. Little, 1988b, p. 293;
Rosenbaum and Rubin, 1983; 1985). Various models and fitting strategies are available
for predicting the probabilities of the binary variable rnps outlined in equality 3.28. Since
such models are used in many ways for dealing with non-probability samples, a general
overview of model formulation and estimation strategies is given in section 5.1. Briefly
spoken, the most common way to model response propensities is through parametric
models which are fit by maximum likelihood estimation, especially the binary logistic
regression models discussed in section 5.1.3 (cf. e.g. Berkson, 1944; Isaksson and Lee, 2005,
p. 3146; Rosenbaum and Rubin, 1983, p. 47; Schouten, Shlomo and Skinner, 2011, p. 238).
Besides and beyond these, non-parametric and machine learning models, examples of
which are presented in sections 5.1.4 to 5.1.9, are increasingly considered for estimation of
propensity scores as well (cf. e.g. Brookhart et al., 2006, p. 1151; Buskirk and Kolenikov,
2015; Hirano, Imbens and Ridder, 2003, p. 1161; Lee, Lessler and Stuart, 2010, pp. 337 ff).
Note that for fitting any of these models, it is required that there are observed values of
Z in- and outside the non-probability sample, just as discussed and presumed in the
previous section 3.5. Without such information, the observed outcome rnps to be modeled
would not have any variance, and a model could, thus, not be fit (cf. Schonlau et al., 2009,
p. 294; Schouten, Cobben and Bethlehem, 2009, p. 105). The outcome of the model that
is relevant to the current context is the vector of estimated conditional probabilities p̂nps

corresponding to equation 3.28 (cf. also section 5.2.1).
In summary, by matching on such estimated response propensities rather than on Z, the
complexity is reduced from multiple to a single matching variable. Nevertheless, general
response propensities as well as their predictions are continuous variables. Therefore, it
is in many cases again infeasible to obtain exact matches. As before (cf. section 3.5),
distance functions can be used to match values that are similar rather than equal, or
some classification rule can be applied to the propensities to obtain a categorical variable
for exact matching (cf. Rosenbaum and Rubin, 1983, pp. 51 f). As indicated in the
previous section 3.5, an alternative that uses ideas similar to classification but does not
rely on estimated propensities is coarsened exact matching. By matching exactly on
coarsened values of Z rather than on estimated propensities that combine all columns
of Z into a single vector, the reliance on model assumptions for pnps is circumvented.
Such assumptions are essential for nearly all applications of propensity score matching
(cf. Cochran, 1968; Iacus, King and Porro, 2009; 2011; 2012; King and Nielsen, 2019).
Despite criticism of overly depending on modeling assumptions, matching on estimated
propensity scores is still the most common method for this purpose when Z contains a
large number of columns (cf. e.g. King and Nielsen, 2019, p. 435; Pearl, 2010, p. 114).
Furthermore, response propensities are useful in a broader sense, e.g. for weighting non-
probability samples (cf. section 5.2.1). Another application of these scores, which is
relevant for assessing selectivity of non-probability samples, is the usage of propensities
for estimating representativity indicators. These are introduced in the following section
3.7.
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3.7 Representativity Indicators
As an alternative for measuring representativity in the context of non-response, Schouten,
Cobben and Bethlehem (2009) as well as Skinner et al. (2009) introduce the representa-
tivity indicators (R-indicators). Although developed for this special case of missing data,
the framework can be at least experimentally applied to non-probability sampling in
general (cf. Petrucci and Rocco, 2019). R-indicators basically depend on the variance of
response propensities, Σ̂pnps (w̃). Since true propensities pnps are rarely known, estimated
R-indicators are computed from model predictions p̂nps (cf. section 3.6). The estimated
overall R-indicator as a function R̂ : [0; 1]n

nps
→ [0; 1] is then defined by

R̂ (p̂nps) := 1− 2 ·
(
Σ̂p̂nps (w̃)

)1
2 (3.29)

(cf. Schouten, Cobben and Bethlehem, 2009; Skinner et al., 2009).2 As before, w̃ is an
arbitrary vector of weights for the non-probability sample. The basic idea of definition 3.29
is that if there is no dependency between rnps and the variables Z used for the propensity
model, the variance of the response propensities is zero (cf. equation 3.28; Schouten et al.,
2016, pp. 730 f). Consequently, R̂ (p̂nps) being close to one is an indication for absence
of selective forces with regard to Z as a whole (cf. section 3.1). As before, weights w̃ for
the non-probability sample may all be ones or obtained from the more refined methods
discussed in section 5.2.
In extension to the overall R-indicator, Schouten and Bethlehem (2009) as well as Schouten,
Shlomo and Skinner (2011) define partial R-indicators, which are meant to assess the
lack of representativity with respect to single variables. They propose unconditional
as well as conditional partial R-indicators, which are respectively denoted by R̂u, R̂c :
[0; 1]n

nps
×Rnnps → [0; 0.5]. Both are computed by means of variance decomposition, for Z

consisting of categorical variables only. The estimated unconditional partial R-indicator of
a categorical variable znps

·j is calculated from the propensity score’s variation attributable
to this variable. Denoting the K possible values of znps

·j by a :=
[
a1, . . . , aK

]T
, this

R-indicator is defined by the between standard deviation of the propensities given z·j:

R̂u
(
p̂nps, znps

·j

)
:=

 K∑
k=1

N̂
(
w̃ ◦ I

(
znps

·j = ak

))
N̂ (w̃)

·
(
µ̂p̂nps

(
w̃ ◦ I

(
znps

·j = ak

))
− µ̂p̂nps (w̃)

)2


1
2

.

(3.30)

The estimated conditional partial R-indicator of variable znps
·j is conditioned on the other

variables in Z. It is basically the within standard deviation of the propensity scores given

2 Note that due to using the bias corrected rather than the ML estimate of the variance, this definition
by Schouten, Cobben and Bethlehem (2009, pp. 103 ff) and Skinner et al. (2009) can actually result
in estimated global R-indicators below zero. The lowest theoretically possible estimate for the global
R-indicator where it is still defined is 1− 2 ·

√
0.5 ≈ −0.41 (cf. equation 2.18f). This is ignored by the

authors, who assume R̂ (p̂nps) to lie between zero and one. However, such values below zero typically
do not occur for real samples since they require very few observations or extremely odd weights w̃. A
similar reasoning applies to the partial R-indicators as well.
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all other variables used to calculate them. Denote by Z ·J for J := {1, . . . , q}\j the matrix
of all Z-variables except the j-th column. For l = 1, . . . , L unique possible values of Z ·J

denoted by B :=
[
bT

1·, . . . , bT
L·

]T
∈ RL×(q−1), the conditional partial R-indicator for znps

·j is
defined as

R̂c
(
p̂nps, znps

·j

)
:=

 L∑
l=1

N̂
(
w̃ ◦ I

(
Znps

·J = bl·
))

N̂ (w̃)
· Σ̃p̂nps

(
w̃ ◦ I

(
Znps

·J = bl·
))

1
2

,
(3.31)

where the indicator function is applied row-wise. Shlomo et al. (2009b) show that equation
3.29 is biased for the corresponding population quantity based on the true response
propensity pnps and propose a bias correction, which Heij, Schouten and Shlomo (2010)
extend to the partial indicators defined in equations 3.30 and 3.31. However, the correction
is derived with respect to a specific model for p̂nps and by using design-based estimates for
means and variances (cf. section 2.2; Shlomo et al., 2009a, pp. 42 ff; Shlomo, Skinner and
Schouten, 2012, p. 205; Heij, Schouten and Shlomo, 2010). Therefore, it is not generally
applicable in the present context of non-probability sampling.
In the following paragraphs, potential minor modifications and extensions for the R-
indicators are discussed, which especially concern their interpretability and applicability
in the context of non-probability samples. In terms of interpretation, note that the ranges
of R-indicators are restricted by the inequalities

0 ≤ R̂ (p̂nps) ≤ 1

0 ≤ R̂c
(
p̂nps, znps

·j

)
, R̂u

(
p̂nps, znps

·j

)
≤ 1− R̂ (p̂nps)

2 ≤ 0.5 ,
(3.32)

with higher values corresponding to more representativity in case of the overall R-indicator
R̂ (p̂nps). In contrast, larger values for the partial R-indicators imply more contribution of
the respective variable to non-representativeness and, hence, less representativeness with
regard to this variable (cf. Schouten, Cobben and Bethlehem, 2009, pp. 104 ff; Schouten,
Shlomo and Skinner, 2011, pp. 236 f). This can be counterintuitive when interpreting
the indicators. As a possible remedy to make direction and scale of the three types of
indicators less ambiguous, it may be sensible to transform the partial indicators in the
same manner as the overall one, i.e. by using R̃k

(
p̂nps, znps

·j

)
:= 1 − 2 · R̂k

(
p̂nps, znps

·j

)
for k ∈ {u; c}. In that case, a value of one corresponds to perfect representativity with
respect to the underlying propensity model for all R-indicators.
So far, R-indicators were proposed for categorical Z-variables only. In such a setting,
the indicators can be written as (functions of) total, between and within variance of
groups defined by sub-matrices of Z, whereas continuous variables are considered a future
research topic (cf. Heij, Schouten and Shlomo, 2010, p. 8; Schouten and Bethlehem, 2009,
p. 2; Schouten, Shlomo and Skinner, 2011, p. 233). Such continuous variables can play a
role when assessing selectivity of non-probability samples. While the overall R-indicator
is readily applicable for continuous variables, the framework for partial indicators needs
to be slightly extended for considering such variables. Note that the idea of variance
decomposition on which partial R-indicators are based is quite generally applicable:
equations 3.30 and 3.31 are functions of explained and unexplained variability in an
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ANOVA context. Such variance decompositions can be expressed by linear regression
models, which are described in section 5.1.2 (cf. also equations 3.6 and 3.14; Faraway,
2002, p. 168). To assess selectivity for continuous variables, it, hence, seems sensible to
express partial R-indicators in terms of explained and residual variances of linear models.
In summary, R-indicators can be used to evaluate (non-)representativity for the set of
variables Z as a whole or for single variables z·j. This is an advantage when aiming
at aggregate measures of representativity that are not specific to the target variables.
On the other hand, it constitutes a limitation since resulting R-indicators are different
depending on the choice of variables Z (cf. Schouten, Shlomo and Skinner, 2011, p. 235)
but not for different target variables Y . Yet, a non-probability sample can exhibit differing
degrees of selectivity for different target variables (cf. Bethlehem, 2008a, p. 10; Buelens
et al., 2014, p. 4; Shlomo, Skinner and Schouten, 2012, p. 202). Therefore, Schouten,
Cobben and Bethlehem, 2009, p. 107 as well as Shlomo, Skinner and Schouten (2012,
p. 203) stress an additional use for R-indicators in determining the magnitude of possible
biases in estimation with regard to Y . This is discussed as part of the following section
3.8.

3.8 Quantifying the MSE
In the previous sections 3.3 to 3.7, methods for assessing selectivity of non-probability
samples are discussed. These can help to identify variables that (partially) explain the
selection process and quantify selectivity of non-probability samples. Based on some
of these considerations, Meng (2018) and Schouten (2007) introduce a framework for
representing the accuracy of an estimator by decomposing its error. To again allow for
arbitrary weights w̃ ∈ Rnnps in the non-probability sample, a weighted version r̃ nps ∈ RN

of the sample inclusion indicator rnps is used. It is defined by

r̃ nps
i :=

w̃i if i ∈ Snps

0 else .
(3.33)

On this basis, many weighted estimators (e.g. for means, other moments, or distributions)
can be written as design linear, i.e.

ϑ̂ = ϑ̂(Snps) =
∑

i∈SP

r̃ nps
i · t (yi·)

/∑
j∈SP

r̃ nps
j , (3.34)

by adequate choice of a transformation function t : R1×o → R1×h for given h ∈ N and
w̃. The deviation between estimated and true statistics ϑ̂k and ϑk for all k = 1, . . . , h
elements of ϑ̂ ∈ Rh in such cases can then be expressed as

ϑ̂k − ϑk = ρtk(Y )r̃ nps ·
√

1− frnps

frnps ·
√

V (tk (Y )) ·

√√√√1 + (CV (w̃))2

1− frnps . (3.35)

The coefficient of variation for weights applied to the non-probability sample is defined
by

CV (w̃) :=
√

V (w̃)
/

(E (w̃))2 . (3.36)
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This coefficient is zero if the weights w̃ are constant over all sampled units. Furthermore,
frnps := nnps/N is again the sampling fraction, and tk (Y ) denotes the k-th component
or column of t (Y ), for which the correlation with r̃ nps is given by ρtk(Y )r̃ nps (cf. Fuller,
2009, p. 6; Meng, 2018, p. 702). Similar expressions for the context of non-response are
proposed by Bethlehem (1988, p. 254), Särndal and Lundström (2005, p. 92) and Schouten
(2007, p. 57).
As discussed by Meng (2018, p. 690), the components of equality 3.35 determine the
estimation error in arbitrary samples, which is appealing in terms of interpretability.
Referred to as data quality is the correlation between sample inclusion and target quantity
ρtk(Y )r̃ nps , which is also called the “data defect correlation” (Meng, 2018, p. 691). The
data quantity expressed by

√
(1− frnps)/frnps depends on the sampling fraction. Problem

difficulty is denoted by
√

V (t (Y )), which is the standard deviation for the quantity
of interest. Since varying weights increase an estimator’s variance and hence error,
the additional factor

(
1 + (CV (w̃))2

/
(1− frnps)

)0.5
accounts for variation of weights.

Despite inducing higher variability, the use of weights can often be sensible to reduce the
data defect correlation (cf. section 5.2; Meng, 2018, pp. 690 ff).
Conditional on the sample size, only ρtk(Y )r̃ nps and CV (w̃) depend on the sample selection
process, such that the MSE of an estimator ϑ̂k can be written as

MSE
(
ϑ̂k

)
= E

((
ϑ̂k − ϑk

)2
)

= E
(
ρ2

tk(Y )r̃ nps ·
(

1 + (CV (w̃))2

1− frnps

))
· 1− frnps

frnps · V (tk (Y )) ,
(3.37)

where expectation is with respect to the sampling mechanism (possible values of rnps; cf.
definition 2.12). From equation 3.37, it becomes evident that unless a probability sampling
design is used to control ρ2

tk(Y )r̃ nps , this data defect correlation and – by definition of the
sampling fraction – the population size N determine estimation quality far more than the
sample size (cf. Meng, 2018, pp. 695 ff). Underlining the discussion in section 2.1, more
observations alone do, hence, not guarantee better estimates when using non-probability
samples.
As intuitive and appealing as equations 3.35 and 3.37 are, an obvious limitation with
regards to realized non-probability samples is their dependency on ρtk(Y )r̃ nps . This pop-
ulation correlation coefficient between r̃ nps and a quantity of interest tk (Y ) is generally
unknown and difficult to estimate. Direct computation of ρtk(Y )r̃ nps would require that
Y was available for the whole population, in which case no sample would be needed
at all. Even when using a reference data set, Y is typically known only for the non-
probability sample, in which rnps is constant and adequate estimation of ρtk(Y )r̃ nps thus
not possible (cf. definition 3.33). Consequently, Schouten, Cobben and Bethlehem (2009,
p. 107) as well as Shlomo, Skinner and Schouten (2012, p. 203) approximate ρtk(Y )r̃ nps

by the correlation between tk (Y ) and the estimated response propensities (cf. equation
3.28). They use the worst-case scenario where this correlation is one in magnitude to
obtain an upper limit for the possible absolute bias due to non-response as a function of
the R-indicator. Going beyond this worst-case assumption, the fact that the correlation
of two variables is bounded by their correlation with a third (cf. e.g. McCornack, 1956,
p. 343; Yule, 1922, p. 250) is used by Schouten (2007, p. 57) as well as Schouten et al.
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(2016, pp. 745 ff) to quantify the unknown correlation’s magnitude in form of an interval:

ρtk(Y )r̃ nps ∈ ρz·l tk(Y ) ·ρz·lr̃
nps ±

(√
1− ρ2

z·l tk(Y ) ·
√

1− ρ2
z·lr̃

nps

)
. (3.38)

Here, ρz·lr̃
nps and ρz·l tk(Y ) denote the correlations between an auxiliary variable z·l and

the weighted response indicator r̃ nps or the k-th component of t (Y ), respectively.
When, as before, information about Z external to the non-probability sample is available,
components of expression 3.38 can be estimated from the non-probability and reference
data set. In particular, ρ̂z·l tk(Y ) is obtained from the non-probability sample and ρ̂z·lr̃

nps

from the combined non-probability and reference data set. Similar as before (cf. section
3.6), conditional independence of tk (Y ) and r̃ nps given z·l is required for unbiased
estimation of ρz·l tk(Y ) in this setting. By plugging the boundaries obtained from relation
3.38 into equation 3.37, an estimated MSE-interval can be obtained. For this interval to be
sufficiently narrow enough for a meaningful quantification of the MSE (cf. equation 3.37)
based on realized samples, it is essential to find a variable z·l that is strongly correlated
with quantity of interest tk (Y ) as well as the response process generating r̃ nps. Schouten
(2007, pp. 60 ff) reverses this argument to detect such variables by means of the interval’s
width.
Especially due to its intuitive character for representing the challenges (not only) of
non-probability samples, the framework introduced in this section is an appealing case
for design linear estimators in the form of equality 3.34. Although various important
estimators are not themselves design linear, many of them can be written as functions of
such estimators (cf. section 2.2). To make meaningful use of this framework for quantifying
precision from a single realized sample, it is important to identify auxiliary variables Z
that provide conditional independence of and are highly related to both the quantities of
interest and the response process.
Determining such variables is one purpose of the approaches discussed throughout the
current chapter 3. The overall objective of these methods is to use auxiliary variables
for assessing possible errors in non-probability samples, in particular considering the
issues of selectivity and bias. Underpinned by these evaluations, the apparent next
step is to examine estimation approaches for non-probability samples that consider and
– if possible – compensate potential deviations from representativity (cf. e.g. Bethlehem,
2008b, p. 31; Feild et al., 2006, p. 566; Loosveldt and Sonck, 2008, p. 96; Valliant and
Dever, 2011, p. 106). Methods to perform estimation from non-probability samples are
therefore presented in chapter 5. As most of those rely on a similar set of mathematical
foundations, these required basics are introduced in the following chapter 4 to foster the
subsequent discussion.
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4 Mathematical and Computational
Foundations

In this chapter, the mathematical and computational framework required to describe
methods that deal with non-probability samples is introduced. The aim is to give a
concise overview of selected concepts, approaches and algorithms that is oriented towards
the subsequent chapters. To that end, the current chapter is rather technical and requires
some prior computational and algebraic knowledge. More details regarding the underlying
mathematical considerations are given in the referred literature. Especially Geiger and
Kanzow (2002), Gill, Murray and Wright (1981) as well as Nocedal and Wright (1999)
provide valuable and comprehensive overviews.
The presented fundamentals are frequently used in the context of survey statistics and
non-probability samples (cf. e.g. Biffignandi and Pratesi, 2003, p. 8; Burgard, Münnich
and Rupp, 2019; 2020; Deville, Särndal and Sautory, 1993, p. 1013; Folsom and Singh,
2000, p. 599; Nelder and Wedderburn, 1972, p. 373), and therefore central for discussing
and implementing well-established statistical methods. In particular, almost all of the
prediction and weighting models considered in the following chapter 5 are fit by means
of methods that are presented in the current chapter 4. This also includes (calibrated)
semi-parametric neural networks, which are introduced in sections 5.1.9 and 5.2.3, and
for which development and implementation heavily rely on these foundations as well.
As a fundamental element, linear programming methods for computationally solving
systems of linear equations are introduced in section 4.1. These are required for the
methods discussed in section 4.2, which allow performing unconstrained and constrained
non-linear optimization.

4.1 Linear Programming
For computationally solving tasks that commonly arise in the context of (non-probability)
sampling and estimation, a fundamental component is to find the solution c ∈ Rh to an
exactly determined system of linear equations defined by

a11 · · · a1h
... . . . ...

ah1 · · · ahh




c1
...

ch

 =


b1
...

bh

 (4.1)

for a given matrix A ∈ Rh×h and a given vector b ∈ Rh. Various iterative and direct
methods exist to solve equation 4.1 for c (cf. Hackbusch, 1994; Saad, 2003). One popular
approach is Gaussian elimination (cf. Anderson et al., 1999; Demmel, 1997, pp. 38 ff;
Li, 2005; Sanderson and Curtin, 2016), which is motivated in section 4.1.1 and formally
introduced in section 4.1.2.
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4.1.1 Solving Triangular Systems
Consider the special case of A being a lower triangular matrix, such that aij = 0 for all
j > i. In this setting, system 4.1 can be written as

a11 · c1 = b1

a21 · c1 + a22 · c2 = b2
...

ah1 · c1 + ah2 · c2 + · · · + ahh · ch = bh .

(4.2)

The first equation can be solved directly by c1 = b1/a11 , and this result can then be used
to successively solve each following equation for one more element of c, which is called
forward substitution.
If matrices B, C ∈ Rh×s are used instead of vectors b and c (e.g. for matrix inversion), the
result constitutes s of such systems in form of equalities 4.2 that can be solved separately.
This procedure is formalized in algorithm 2.

Algorithm 2: Forward / backward substitution

1: Input: A ∈ Rh×h ; B ∈ Rh×s

2: Initialize C = 0h×s

3: for i = 1, . . . , h do
4: for j = 1, . . . , s do
5: cij ←

bij − ai·c·j

aii
6: end for
7: end for
8: Return: C

In case of A being an upper triangular matrix, the solution is analogous, except that
the sequence in step 3 has to be last-to-first row (i = h, . . . , 1). This is referred to as
backward substitution (cf. Gill, Murray and Wright, 1981, pp. 3 f).

4.1.2 Gaussian Elimination (LU-factorization)
If A is not a triangular but general non-singular square matrix, it is useful to represent
it as a product of two triangular matrices. In that way, the original system 4.1 can be
formulated as a case of solving triangular systems described in the previous section 4.1.1:
when it holds that

LU
!= A (4.3)

for lower and upper triangular matrices L, U ∈ Rh×h, the original system 4.1 can be
written as

Ac = L (Uc) = b , (4.4)
which is again defined by triangular matrices. Hence, to solve equation 4.4, v := Uc ∈ Rh

can be found as the solution of Lv = b, based on which Uc = v can be solved for c as
the solution of equation 4.1.
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To enable this strategy, Gaussian elimination can be used to obtain U and L in compliance
with equation 4.3. Starting with A, it is based on reducing the lower triangular part of A
to zeros. This is formally achieved by subtracting a scalar multiple (aij/aii) ·ai· of row ai·
from row aj·, assuming that aii ̸= 0. Since aij − (aij/aii) · aii = 0, this subtraction results
in the new aij being zero. The desired triangular matrices are constructed by iteratively
applying this idea. Columns below the main diagonal of A are reduced to zeros, which
is equivalent to finding U = L−1A. Determining v = L−1b is equivalent to applying the
corresponding changes to b. This strategy to reduce system 4.1 to triangular form 4.2 is
thus equivalent to the method that is used by most people to solve (small) linear systems
by hand: the outlined multiplications of A and b with L−1 constitute the reformulations
in left- and right-hand side of the original system 4.1 that are required to express one
particular element cj in the i-th equation as a linear combination of the other elements
of c (cf. Gill, Murray and Wright, 1981, pp. 33 ff; Golub and Van Loan, 1996, pp. 94 ff).
An obvious problem with this approach occurs when aii = 0 since these preliminary
considerations would then result in division by zero. A general solution for this issue is
to interchange rows in both A and b to prevent aii from becoming zero. Such an order
permutation is called partial (or row) pivoting and formally expressed as multiplication
with a permutation matrix P ∈ {0; 1}h×h that contains one exactly once in each row
and column and zeros everywhere else. Through pivoting, it is assured that L and U
fulfilling P A = LU exist and are non-singular for any non-singular square matrix A.
Reordering of rows does not alter system 4.4 since the original order is restored when
using LUc = P b to solve the problem for c (cf. Demmel, Gilbert and Li, 1999, pp. 38 ff;
Gill, Murray and Wright, 1981, pp. 33 ff; Golub and Van Loan, 1996, pp. 94 ff). The
iterative application of these ideas to find L and U is formalized in algorithm 3.

Algorithm 3: Gaussian elimination (LU-factorization)

1: Input: A ∈ Rh×h

2: Optional: Use algorithm 4 to initialize P for partial pivoting, otherwise use P := Ih

3: Initialize U := P A and L−1 := Ih

4: for i = 1 to (h− 1) do
5: Define J := {i + 1, . . . , h} and calculate

B := Ih − u−1
ii ·

0i×1

UJi

 [01×(i−1) 1 01×(h−i)

]

6: Update U ← BU and L−1 ← L−1B

7: end for
8: Return: L−1, U and P

In the notation introduced in section 2.2, UJi in algorithm 3 corresponds to the column-
vector defined as the sub-matrix of U with rows indexed by J and a single column
indexed by i. Zero and identity matrices of the specified size are denoted by 0 and I.
Note that here and in the remaining parts of this thesis, certain row- or column-vectors are
introduced and treated as matrices for notational and verbal simplicity. In particular, this
eases general cases where matrices with one or more rows or columns can occur without
requiring further specification. Each iteration of the for-loop in this algorithm 3 reduces
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uij to zero for all rows i = j + 1, . . . , h, using the ideas described above. In that way, U is
reduced to upper triangular form. The transformations used to achieve this are described
by L−1 and hence can be inverted by pre-multiplication with L, such that one obtains
equation 4.3. Since v is found by v = L−1b, it is often not necessary to determine L
itself. If nevertheless needed, the required inversion of L−1 can be based on algorithm
2 since this matrix is triangular (cf. Gill, Murray and Wright, 1981, pp. 33 ff; Trefethen
and Bau, 1997, pp. 151 ff).
As outlined above, the LU-factorization works only for pivoting elements uii ̸= 0, such
that partial pivoting in step 2 of algorithm 3 may be required to achieve a valid solution.
Therefore, the following algorithm 4 generates the pivoting matrix P to avoid these issues.

Algorithm 4: Partial (row) pivoting

1: Input: A ∈ Rh×h

2: Initialize P := Ih

3: for i = 1 to (h− 1) do
4: Determine the index of the largest absolute value in the subsequent rows of column

i as b := Max
({

c : Abs (a∗
ci) = Max

(
Abs

(
A∗

Ji

))})
, where J := {i, . . . , h} and

A∗ := P A

5: Reorder the rows of P : swap pi· with pb·

6: end for
7: Return: P

By using the largest absolute entry in the respective column of A, the pivoting elements
are bounded as far away from zero as possible. Similar strategies can be applied for
additional column-wise reordering of A, e.g. to enhance sparsity and stability of the
system. This combination is then termed full pivoting. By the use of LU-factorization
with pivoting, algorithm 2 can be used to solve problem 4.1 (cf. Golub and Van Loan,
1996, pp. 94 ff; Li, 2005, p. 2). The main purpose of this strategy in the context of this
thesis is to facilitate non-linear optimization, which is described in the following section
4.2.

4.2 Non-linear Optimization
Methods for solving exactly determined systems of linear equations of the form Ac = b
for c are presented in section 4.1. Based on this foundation, gradient methods can be
used to perform optimization with regard to a general function δ : Rh → R≥0, which
is usually non-linear. The crucial use of gradient information to achieve this goal is the
reason for the designation of these methods (cf. Hackbusch, 1994, pp. 248 ff; Nesterov,
2004, pp. 25 ff). Note that throughout the subsequent discussion, optimization techniques
are presented for minimization problems. Maximization can nevertheless be achieved in
a corresponding manner, e.g. by minimizing the negative of a function. Relying on the
linear solving techniques introduced in the previous section, a summary of unconstrained
(section 4.2.1) as well as constrained non-linear optimization (section 4.2.2) is provided
in the following discussion. Simplifying approximations for the Hessian matrix of δ that
are frequently used for this purpose are considered in section 4.2.3. These optimization
methods are fundamental for fitting most of the prediction and weighting models for
non-probability samples discussed in the following chapter 5.
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4.2.1 Unconstrained Non-linear Optimization
The objective in unconstrained optimization is to find a minimum

Θ∗ = argmin
Θ

(δ (Θ)) . (4.5)

for a function δ : Rh → R≥0 with respect to a vector of parameters Θ ∈ Rh of given size
h ∈ N. As outlined above, maximization is not considered separately because it can be
achieved analogously. The optimality criteria require the Jacobian matrix Jδ (Θ) ∈ R1×h

of δ (Θ) to be zero at this optimal solution (cf. Geiger and Kanzow, 2002, pp. 46 f):

Jδ (Θ∗) = 01×h . (4.6)

One of the most influential methods to find Θ∗ in this context is the Newton-Raphson
algorithm, for which a historical overview is provided by Cajori (1911). He states that the
idea was first published in Wallis (1685, pp. 338 ff) and later refined by Raphson (1690) to
its present form shown in algorithm 5 (cf. Abramowitz and Stegun, 1970, p. 18). Applying
the Newton-Raphson method to find Θ∗ is based on a first order Taylor approximation of
the Jacobian matrix (or equivalently, a second order approximation of δ itself; cf. Nesterov,
2004, pp. 37 ff), which yields

Jδ (Θ + ∆Θ) ≈ Jδ (Θ) + (Hδ (Θ) ∆Θ)T , (4.7)

where Hδ (Θ) ∈ Rh×h is the Hessian matrix of δ (Θ), and ∆Θ ∈ Rh defines some distance
from Θ for which the change in Jδ (Θ) is approximated. It is referred to as the step
direction (cf. algorithm 5). By using this approximation 4.7 for optimality condition 4.6,
it is evident that Jδ (Θ + ∆Θ) ≈ 01×h if

Hδ (Θ) ∆Θ = − (Jδ (Θ))T

⇔ ∆Θ = − (Hδ (Θ))−1 (Jδ (Θ))T .
(4.8)

Equations 4.8 constitute a system of linear equations that can be solved by the methods
discussed in section 4.1 because the Hessian is always a square matrix (cf. Lawson and
Hanson, 1995, pp. 36 ff). The Newton-Raphson method is based on repeatedly updating
Θ∗ by solving this approximation to condition 4.6 until the optimality requirement is
actually fulfilled (cf. Jarre and Stoer, 2004, pp. 68 ff; Nesterov, 2004, pp. 37 ff). Algorithm
5 formally represents this approach.
In this algorithm, v denotes an arbitrary boundary for numerical tolerance, depending on
the required precision, and Θ(a) is the value of Θ at iteration a. Equations 4.8 are solved
repeatedly until optimality condition 4.6 is met, or until all changes in parameters Θ are
smaller than v in magnitude. However, to guarantee that this procedure actually reduces
Jδ

(
Θ(a−1)

)
in each iteration, it needs to hold that

Jδ

(
Θ(a−1)

)
∆Θ < 0 (4.9)

(cf. Nocedal and Wright, 1999, p. 36). As can be seen by using equalities 4.8, this
requirement 4.9 is readily fulfilled in cases where Hδ

(
Θ(a−1)

)
is positive definite. To

achieve a decrease such that the new value δ
(
Θ(a)

)
= δ

(
Θ(a−1) + t ·∆Θ

)
is sufficiently
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Algorithm 5: Newton-Raphson algorithm

1: Input: Θ(0) ∈ Rh; δ : Rh → R≥0; v > 0
2: Set a = 1
3: Use algorithms 2 and 3 to compute the step direction ∆Θ as the solution of

Hδ

(
Θ(a−1)

)
∆Θ = −

(
Jδ

(
Θ(a−1)

))T

4: Optional: Compute a step size t through algorithm 6, otherwise use t = 1
5: Set Θ(a) := Θ(a−1) + t ·∆Θ

6: if
(
Jδ

(
Θ(a−1)

)
= 01×h or Max

(
Abs

(
∆Θ ⊘Θ(a) − 1

))
< v

)
then

7: Return: Θ(a)

8: else
9: Update a← a + 1 and go to step 3

10: end if

lower than the previous one regardless of the function δ and starting point Θ(0), the step
direction ∆Θ can be multiplied by a step-size factor t ∈ (0, 1] determined by an Armijo-
type line search to achieve better convergence properties (cf. Armijo, 1966, p. 2; Jarre
and Stoer, 2004, pp. 140 ff; Nocedal and Wright, 1999, pp. 55 ff). For this reason, the
following algorithm 6 can be used in step 4 of algorithm 5.

Algorithm 6: Armijo step-size rule for unconstrained optimization

1: Input: Θ, ∆Θ ∈ Rh ; b, c ∈ (0, 1)
2: Set v = 0
3: if

(
δ (Θ + cv ·∆Θ) ≤ δ (Θ) + b · cv · (Jδ (Θ))T ∆Θ

)
then

4: Return: t = cv

5: else
6: Set v ← v + 1 and go to step 3
7: end if

In this algorithm, b is a quantifier for a decrease in δ that is sufficient in relation to the
change projected by the Jacobian, and c determines the step size for searching along this
projection. Such a line search enforces the Armijo (1966) condition, which corresponds
to the first condition introduced by Wolfe (1969). In comparison to using both (or even
the strong) Wolfe conditions, this approach reduces the computational effort, resulting
usually in more but cheaper iterations (cf. Geiger and Kanzow, 2002, pp. 273 f; Nocedal
and Wright, 1999, pp. 35 ff).
There are different strategies that attempt to reduce the computational burden that is
imposed by using the Hessian matrix in step 3 of algorithm 5. For example, the BFGS-
method approximates the Hessian matrix using only parameter and gradient information.
As an additional benefit, it ensures that all sub-problems of algorithm 5 are convex (cf.
Nocedal and Wright, 1999, pp. 194 ff). An overview of this and selected other quasi-
Newton methods is provided jointly for unconstrained and constrained optimization in
section 4.2.3, after considering constrained optimization in the following section 4.2.2.

52



Mathematical and Computational Foundations

4.2.2 Constrained Non-linear Optimization
In constrained optimization, the goal is again to find a vector of parameters Θ∗ ∈ Rh of
given size h ∈ N that minimizes the function δ, but with respect to some general equality
and/or inequality constraints. Problem 4.5 is thus extended to

Θ∗ = argmin
Θ

(δ (Θ))

s. t. sg (Θ∗) = 0
g̃ (Θ∗) ≤ 0 .

(4.10)

As before, δ : Rh → R≥0 is the function to be minimized, while sg : Rh → Rs and
g̃ : Rh → Ru respectively are functions expressing the equality and inequality constraints
of arbitrary dimensions s, u ∈ N imposed to the problem. Here and in the following,
inequalities are applied element-wise, just as equalities. Denoting the corresponding
Lagrange multipliers for equality and inequality constraints by α ∈ Rs and λ ∈ Ru,
respectively, the Lagrange function of this optimization problem is defined by

L (Θ, α, λ) = δ (Θ) + αT
sg (Θ) + λT g̃ (Θ) (4.11)

(cf. Geiger and Kanzow, 2002, p. 242; Nocedal and Wright, 1999, p. 327).
The Karush-Kuhn-Tucker optimality criteria (KKT-conditions; cf. Karush, 1939, quoted
in Kjeldsen, 2000; Kuhn and Tucker, 1951) that parameters Θ∗ must fulfill in order to be
an optimal solution for the non-linear problem 4.10 are then given by

Jδ (Θ∗) + αTJ
sg (Θ∗) + λTJg̃ (Θ∗) = 0

sg (Θ∗) = 0
g̃ (Θ∗) ≤ 0

λ ≥ 0
λT g̃ (Θ∗) = 0 .

(4.12)

In conditions 4.12, Jδ (Θ) ∈ R1×h, J
sg (Θ) ∈ Rs×h and Jg̃ (Θ) ∈ Ru×h respectively denote

the Jacobian matrices of the distance, equality and inequality constraint function (cf.
Geiger and Kanzow, 2002, p. 46; Gill, Murray and Wright, 1981, pp. 77 ff; Nocedal and
Wright, 1999, p. 328). In the course of the following sections, the foundation for uncon-
strained minimization of potentially non-linear functions through iterative approximation
of the optimality condition presented in section 4.2.1 is extended to account for constraints
in the optimization process.

4.2.2.1 Quadratic Programming
First, the special case of problem 4.10 where the loss function is quadratic and the
constraints are linear is considered. It is defined by

δ (Θ) := ΘTQΘ + ΘTc

sg (Θ) := sGΘ− st

g̃ (Θ) := G̃Θ− t̃ ,

(4.13)
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where Q ∈ Rh×h and c ∈ Rh constitute multipliers for the quadratic and linear part of
the distance, respectively. Furthermore are sG ∈ Rs×h, G̃ ∈ Ru×h, st ∈ Rs and t̃ ∈ Ru the
linear multipliers, targets and upper bounds for equality and inequality constraints. It is
easy to see that KKT-conditions 4.12 for problem 4.13 are

QΘ∗ + αT
sG + λTG̃ + c = 0

sGΘ∗ = st

G̃Θ∗ ≤ t̃

λ ≥ 0
λTG̃Θ∗ = 0

(4.14)

and in this case all linear in Θ∗, but still include inequality constraints (cf. Geiger and
Kanzow, 2002, pp. 197 ff). If there were only equality constraints, the solution could
simply be found through solving[

Q sG
T

sG 0s×s

] [
Θ
α

]
=
[
−c
st

]
(4.15)

by means of algorithms 2 and 3. Thus, only the inequality constraints prevent the use
of linear solvers for this problem directly. Yet, these inequality restrictions can be either
exactly binding or negligible for the optimization problem. If it holds that g̃i·Θ∗ = t̃i at
a point Θ∗ that is feasible for conditions 4.14, then the restriction imposed by the i-th
row of G̃ is said to be active (or binding) and, hence, constitutes an equality constraint.
If g̃i·Θ∗ < t̃i, then the constraint is inactive and does not restrict the feasibility at Θ∗.
Following this reasoning, treating a subset of the inequalities – the active set – as equalities
while all other inequality constraints are disregarded allows bringing these conditions into
the form of equation 4.15. Such an active set strategy is formalized by repeatedly selecting
a working set (rows of G̃) and solving the system of linear equations while expanding or
reducing the working set. This can again be done by means of the techniques described
in section 4.1 (cf. Fletcher, 1971, pp. 80 ff; Geiger and Kanzow, 2002, pp. 197 ff; Gill,
Murray and Wright, 1981, pp. 71 ff, 167 ff; Nocedal and Wright, 1999, pp. 444 f).
The outlined procedure is described in algorithm 7. By starting from a feasible point
(cf. step 1) and iteratively updating the active constraints and parameters, the algorithm
optimizes Θ without violating the feasible region. Steps 16 and 19 lead to the largest pos-
sible update that keeps Θ in this region while potentially activating relevant constraints.
Step 12 discards inequality constraints that are no longer binding. Through those steps,
inequality constraints enter or leave the working set until a feasible minimum of the
distance function is found, such that problem 4.13 can be solved by linear techniques (cf.
Fletcher, 1971; Geiger and Kanzow, 2002, pp. 199 ff; Gill and Murray, 1978, p. 351; Gill,
Murray and Wright, 1981, pp. 167 ff; Lenard, 1979; Nocedal and Wright, 1999, pp. 444 f).
Note that quadratic problems without any or with exclusively linear equality constraints
are special cases of problem 4.13 that require only one iteration in algorithm 7 because
the active set is fixed in these cases. Based on this algorithm, optimization of general
non-linear loss and constraint functions can be implemented as described in the following
section 4.2.2.2.
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Algorithm 7: Quadratic programming using an active set strategy (QP)

1: Input: Θ(0) ∈ Rh feasible for problem 4.13; Q ∈ Rh×h; sG ∈ Rs×h; G̃ ∈ Ru×h ; t̃ ∈ Ru

2: Initialize α(0) := 0s×1 , λ(0) := 0u×1 , a := 0 and find the current working set
A(0) :=

{
i : g̃i·Θ(0) = t̃i

}
3: if Θ(a), α(a) and λ(a) fulfill KKT-conditions 4.14 then

4: Return:
[(

Θ(a)
)T (

α(a)
)T (

λ(a)
)T
]T

5: end if
6: Initialize λ(a+1) := 0s×1 and let G̃A(a)· be the sub-matrix of G̃ containing the active

rows with row-indices given by A(a) and λ
(a+1)
A(a) the corresponding sub-vector of λ(a+1).

Use algorithms 2 and 3 to solve


Q sG
T

G̃
T
A(a)·

sG 0 0
G̃A(a)· 0 0




∆Θ

α(a+1)

λ
(a+1)
A(a)

 = −


c

0
0



7: if ∆Θ = 0 then
8: if λi

a+1 ≥ 0 for all i then
9: Return:

[(
Θ(a)

)T (
α(a)

)T (
λ(a)

)T
]T

10: else
11: Select one index j ∈

{
k : λk

a+1 = Min
(
λ(a+1)

)}
,

12: Set Θ(a+1) := Θ(a) , A(a+1) := A(a) \ {j} and go to step 22
13: end if
14: else
15: if Θ(a) + ∆Θ is feasible for problem 4.13 then
16: Set Θ(a+1) := Θ(a) + ∆Θ , A(a+1) := A(a) and go to step 22
17: else
18: Select one index

j ∈
{

k :
(

t̃k − g̃k·Θ(a)

g̃k·∆Θ
= Min

(
t̃l − g̃l·Θ(a)

g̃l·∆Θ

∣∣∣∣∣ l /∈ A(a) and g̃l·∆Θ > 0
))}

19: Set Θ(a+1) := Θ(a) +
t̃j − g̃j·Θ(a)

g̃j·∆Θ
·∆Θ , A(a+1) := A(a)∪{j} and go to step 22

20: end if
21: end if
22: Set a← a + 1 and go to step 3
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4.2.2.2 Sequential Quadratic Programming
Based on the solution for quadratic optimization problems under linear constraints pre-
sented in the previous section 4.2.2.1, the general non-linear problem 4.10 can be tackled.
Building on ideas of the Newton-Raphson method presented in section 4.2.1, sequential
quadratic programming (SQP) solves this non-linearly constrained non-linear problem by
iterative linear approximations of its optimality conditions 4.12 (cf. Geiger and Kanzow,
2002, p. 239). Similar to algorithm 5, the distance function is approximated by its
Jacobian Jδ (Θ) and a matrix H̃ ∈ Rh×h, which usually is an approximated Hessian
of the Lagrange function 4.11 (cf. section 4.2.3). The reason for choosing the Hessian
matrix of the Lagrange function L rather than that of the distance function δ is that
faster convergence can be achieved by additionally incorporating information about the
constraints (cf. Powell, 1978, pp. 146 ff). Linear approximations of the constraint func-
tions are determined by their respective Jacobian matrices, J

sg (Θ) and Jg̃ (Θ). These
approximations were first introduced for constrained non-linear optimization by Wilson
(1963, p. 41) and Fletcher (1972, p. 136). With respect to a step direction ∆Θ as before,
they constitute a quadratic distance function under linear constraint functions and, thus,
can be solved by means of algorithm 7 (cf. Geiger and Kanzow, 2002, p. 243; Kraft, 1988).
The following algorithm 8 represents such an iterative updating procedure for Θ to find
an optimal solution Θ∗.
As before, v denotes an arbitrary boundary for numerical tolerance, depending on the
required precision. Further, α+, α− ∈ Rs and λ∗ ∈ Ru are Lagrange multipliers to
restrict the slack variables ξ+, ξ− ∈ Rs

≥0 and ξ∗ ∈ Ru
≥0 to be non-negative. These slack

variables are required since some of the sub-problems in step 6 may have no feasible
solution otherwise. They allow for violations of the constraints and are penalized by the
parameter ς(a) that is updated in every iteration using a prespecified constant sς. Updating
H̃ in step 11 can, for example, be done by means of algorithm 10 (cf. Geiger and Kanzow,
2002, pp. 234 ff; Jarre and Stoer, 2004, pp. 327 ff; Kraft, 1988; Nocedal and Wright, 1999,
pp. 528 ff).
Just like in the unconstrained scenario, step size determination (step 10) can be used to
achieve global convergence of the SQP method. In the constrained case, this is achieved
by using a merit function φ (t, ς ) for a line search, which was proposed by Armijo (1966,
p. 2). Han (1977, p. 299) and Schittkowski (1981, p. 87) introduced further simplifications
that lead to algorithm 9.
The merit function used in that algorithm throughout the following chapters is given by

φ (t, ς ) = δ (Θ + t ·∆Θ)

+ ς ·
(

Abs (sg (Θ + t ·∆Θ))

+ Rowmax ([g̃ (Θ + t ·∆Θ) , 0u×1])
)

,

(4.16)

where ς is a penalty parameter, for which an updating rule proposed by Powell (1978,

p. 151) is applied in algorithm 8. Note that the approximation ∂(φ (t, ς ))
∂ (∆Θ) ≈ ∆Θ

TH̃ is

used in this line search algorithm, which is based on H̃ being the (approximate) Hessian
matrix of the Lagrange function (cf. section 4.2.3). Theoretical justification for this line
search approach is closely related to that in the unconstrained case (cf. algorithm 6).
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Algorithm 8: Sequential quadratic programming (SQP)

1: Input: Θ(0) ∈ Rh; δ : Rh → R≥0; sg : Rh → Rs; g̃ : Rh → Ru; symmetric H̃
(0) ∈ Rh×h;

b, c ∈ (0, 1); ς(0), sς ∈ R+; v > 0 depending on the required precision
2: Initialize α(0) := 0s×1 , λ(0) := 0u×1 and a := 0
3: if Θ(a), α(a) and λ(a) fulfill KKT-conditions 4.12 then
4: Return: Θ(a)

5: end if
6: By using algorithm 7, compute parameters Ψ(a) :=

[
∆T

Θ

(
ξ+
)T (

ξ−
)T

(ξ∗)T
]T

and Lagrange multipliers Λ(a+1) :=
[(

α(a+1)
)T (

λ(a+1)
)T

(α+)T (α−)T (λ∗)T
]T

from Ψ(a)

Λ(a+1)

 = argmin
(Ψ,Λ)

1
2 ·Ψ

 H̃
(a)

0h×(s+u)

0(s+u)×h 0(s+u)×(s+u)

Ψ +
[
Jδ

(
Θ(a)

)
ς(a) · 11×(s+u)

]
Ψ


s. t.
[
J

sg
(
Θ(a)

)
Is −Is 0s×u

]
Ψ = − sg

(
Θ(a)

)
Jg̃

(
Θ(a)

)
0u×(2s) −Iu

0(2s+u)×h −I(2s+u)

Ψ ≤ −
g̃

(
Θ(a)

)
0(2s+u)×1



7: if
(
Max

(
Abs

(
∆Θ ⊘Θ(a) − 1

))
≤ v

)
then

8: Return: Θ(a)

9: end if
10: Optional: Compute a step size t through algorithm 9, otherwise use t = 1
11: Update Θ(a+1) := Θ(a)+t·∆Θ and ς(a+1) := Max

(
ς(a), Max

(
λ(a+1), Abs

(
α(a+1)

))
+ sς

)
,

select symmetric H̃
(a+1) ∈ Rh×h, set a← a + 1 and go to 3

Algorithm 9: Armijo step-size rule for constrained optimization

1: Input: Θ, ∆Θ ∈ Rh; H̃ ∈ Rh×h; φ : (0, 1]× R+ → R+; b, c ∈ (0, 1)
2: Set v = 0
3: if

(
φ (cv, ς ) ≤ φ (0, ς )− b · cv ·∆Θ

TH̃∆Θ
)

then
4: Return: t = cv

5: else
6: Set v ← v + 1 and go to step 3
7: end if

Details and theoretical evaluations of the resulting convergence properties can be found
in Geiger and Kanzow (2002, pp. 274 ff), Jarre and Stoer (2004, pp. 333 ff) as well as
Nocedal and Wright (1999, pp. 544 ff).
SQP-methods as presented in algorithm 8 are widespread and successfully applied in
various areas. In comparison to other methods for solving problem 4.10, their sub-
problems are often more complex. Yet, they are considered favorable when second
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derivatives are approximated rather than exact (cf. Boggs and Tolle, 1995; Geiger and
Kanzow, 2002, pp. 256 ff; Jarre and Stoer, 2004, p. 337). This aspect is important in
the subsequent chapters, especially for implementing calibrated semi-parametric artificial
neural networks (cf. section 5.2.3). In the following section 4.2.3, an overview of selected
strategies for approximating a function’s Hessian matrix is provided.

4.2.3 Substitutes for the Hessian Matrix
Computing the Hessian matrix in each iteration of the Newton-Raphson or SQP algo-
rithm imposes considerable computational burden, especially in case of a large number
of optimization parameters Θ. In addition, positive definiteness of the Hessian is an
important property for achieving global convergence that is, especially in the constrained
case, not generally guaranteed for arbitrary values of Θ (cf. also inequality 4.9 and the
related discussion). To overcome these issues, many computational implementations,
such as quasi-Newton (or variable metric; cf. Nesterov, 2004, p. 38) methods, rely on
an approximation H̃ of the actual Hessian matrix. Typically, H̃ is positive definite,
iteratively updated in the optimization algorithm and computationally simpler than the
Hessian itself (cf. Geiger and Kanzow, 2002, p. 256; Nocedal and Wright, 1999, pp. 128 ff,
540; Powell, 1978, p. 145). For example, Fisher (1925) proposes replacing the Hessian
by its expected value (called the Fisher information), which results in the Fisher scoring
algorithm (cf. Osborne, 1992, p. 105). The steepest descent (or gradient descent) method
simply replaces the Hessian by an identity matrix (cf. Gill, Murray and Wright, 1981,
p. 103; Nocedal and Wright, 1999, p. 35).
These examples primarily aim at unconstrained optimization problems. A quasi-Newton
approach applicable to both unconstrained and constrained optimization is the (damped)
Broyden-Fletcher-Goldfarb-Shanno-algorithm (BFGS-algorithm) introduced by Broyden
(1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970), which is commonly consid-
ered to be the most relevant quasi-Newton method (cf. e.g. Jarre and Stoer, 2004, p. 180
Nocedal and Wright, 1999, p. 197). The rationale behind the original BFGS-approach is
to approximate the inverse Hessian matrix, in order to skip the common inversion step
when using it (e.g. in algorithm 5):

B̃ :=
(
H̃
)−1
≈ (Hδ (Θ))−1 . (4.17)

Approximating the inverse rather than the Hessian itself is the sole difference between
the BFGS-approximation and its predecessor, the Davidon-Fletcher-Powell (DFP) method
proposed by Davidon (1959), Fletcher and Powell (1963), where the Hessian itself is
approximated in an equivalent way.
By definition, the Hessian matrix has two important properties for optimization: it is
symmetric and fulfills the Taylor approximation given in equation 4.7, which can be
reformulated as

Hδ (Θ) ∆Θ ≈ (Jδ (Θ + ∆Θ)− Jδ (Θ))T (4.18)
(cf. Jarre and Stoer, 2004, pp. 127 f; Nesterov, 2004, p. 19; Nocedal and Wright, 1999,
pp. 24, 194 f). The idea behind the BFGS-method is to enforce these properties when
updating the current approximation B̃(a) for iteration a while modifying it as little as
possible. Denoting the changes in parameter and gradient vector by

s := Θ(a+1) −Θ(a) (4.19)
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and
y := JL

(
Θ(a+1)

)
− JL

(
Θ(a)

)
, (4.20)

respectively, approximation 4.18 leads to the secant (or quasi-Newton) condition

B̃(a+1)y = s , (4.21)

while the symmetry condition is given by

B̃(a+1) =
(
B̃(a+1)

)T (4.22)

(cf. Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970; Jarre and Stoer, 2004,
pp. 176 ff; Nocedal and Wright, 1999, pp. 194 ff).3 The distance between the current
and the updated approximation is measured in terms of the squared weighted Frobenius
norm, i.e. by∣∣∣∣∣∣B̃(a+1) − B̃(a)

∣∣∣∣∣∣2
FW

= tr
((

B̃(a+1) − B̃(a)
)T

W T
(
B̃(a+1) − B̃(a)

)
W
)

, (4.23)

where W can be any symmetric matrix with property

W s
!= y , (4.24)

which is used to make the solution independent of the units of s (cf. Greenstadt, 1970,
p. 4; Goldfarb, 1970, p. 23; Trefethen and Bau, 1997, pp. 24 ff; Gill, Murray and Wright,
1981, p. 29; Nocedal and Wright, 1999, p. 196). This leads to the update rule

B̃(a+1) =
(

Ih −
syT

yTs

)
B̃(a)

(
Ih −

ysT

yTs

)
+ ssT

yTs
(4.25)

for B̃. Due to the Sherman-Morrison-Woodbury formula (cf. Nocedal and Wright, 1999,
p. 605; Hager, 1989; Sherman and Morrison, 1950), it is equivalent to update H̃ by

H̃
(a+1) = H̃

(a) + yyT

yTs
− H̃

(a)
ssTH̃

(a)

sTH̃
(a)

s
. (4.26)

Details for obtaining equations 4.25 and 4.26 are provided in appendix A.
The starting point for the BFGS approximation is an initial guess B̃(0), which is a symmetric
positive definite matrix chosen by the user. A scalar multiple of the identity matrix or an
approximation based on finite differences are common choices if no additional information
is available (cf. Nocedal and Wright, 1999, p. 198). Using this approximation, B̃(a) or H̃

(a)

can be updated iteratively while using only first order information that is anyway required
for the remaining parts of the optimization algorithms 5 and 8.

3 Note that to achieve notational compliance with the referred literature for the BFGS-update, y is used
here in a manner deviating from the use of Y and its sub-matrices throughout the other chapters of
this thesis. For the same reason, s is used here, which is not related to the symbol s used in other
contexts.
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As described in section 4.2.1, Armijo condition 4.9 holds if H̃
(a) and thus B̃(a) are positive

definite. In order to fulfill this, the BFGS-update (due to equality 4.21) requires that

sTy > 0 , (4.27)

which at the same time is a necessary condition for fulfilling the curvature (or second
Wolfe) condition (cf. Nocedal and Wright, 1999, p. 195; Jarre and Stoer, 2004, p. 181;
Wolfe, 1969). However, inequality 4.27 does not always hold automatically, especially
in case of constrained optimization problems (cf. Nocedal and Wright, 1999, pp. 540 f).
Consequently, Powell (1978, pp. 147 ff) proposes a modified updating rule, which is called
the damped BFGS-method. Where possible while respecting condition 4.27, the original
update is used, but if equalities 4.25 and 4.26 result in matrices violating this inequality,
a convex combination of left- and right-hand side of the quasi-Newton condition 4.21 is
used to assure positive definiteness. This updating rule is summarized in algorithm 10.

Algorithm 10: (Damped) BFGS-update rule

1: Input: Θ(a), Θ(a+1) ∈ Rh ; Jδ

(
Θ(a)

)
, Jδ

(
Θ(a+1)

)
∈ R1×h ; symmetric H̃

(a) ∈ Rh×h

2: Calculate the changes in parameters and Jacobian matrix as
s := Θ(a+1) −Θ(a) and y := JL

(
Θ(a+1)

)
− JL

(
Θ(a)

)
3: Optional: Determine

θ(a) :=


1 , if sTy ≥ 0.2 · sTH̃

(a)
s

0.8 · sTH̃
(a)

s

sTH̃
(a)

s− sTy
, else ,

otherwise use θ(a) = 1
4: Update y ← θ(a) · y +

(
1− θ(a)

)
· H̃(a)

s

5: Return: H̃
(a+1) := H̃

(a) + yyT

sTy
− H̃

(a)
ssTH̃

(a)

sTH̃
(a)

s

The modification solely differs from the original one in potentially setting θ(a) < 1 in step
3 of the algorithm. It therefore reduces to the original update rule 4.26 in cases where
θ(a) = 1, while H̃

(a+1) ≈ H̃
(a) for θ(a) = 0. This approach is, thus, called a damped

BFGS method. The convex combination that is determined by θ(a) is used to assure that
curvature condition 4.27 holds for the approximated Hessian matrix, especially in case of
the constrained quadratic sub-problems that occur in step 6 of algorithm 8.
Deeper theoretical justification for the BFGS-method, the dampening procedure and es-
pecially its global convergence properties are e.g. given by Geiger and Kanzow (2002,
pp. 256 ff), Gill, Murray and Wright (1981, pp. 116 ff), Jarre and Stoer (2004, pp. 330 ff),
Nocedal and Wright (1999, pp. 193 ff, 540 ff) and Saad (2003, pp. 32 ff).
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5 Approaches for Estimation from
Non-probability Samples

In the previous chapters, the challenges in dealing with non-probability samples and their
potential selectivity are discussed, together with approaches for assessing these issues.
Based on that discussion (and the references cited therein), it becomes evident that
the limitations and pitfalls of such data have to be considered and as far as possible
compensated when it comes to estimation from non-probability samples. Consequently,
various methods to deal with potential selectivity are proposed in the scientific literature.
In the following, a summarizing overview of these strategies is given. In addition, new
methods for estimation from non-probability samples are proposed. These are constituted
by semi-parametric artificial neural networks as well as a calibrated version thereof, which
extend and integrate the ideas underlying some of the pre-existing estimation approaches.
As described in section 2.3, the challenges of non-probability samples can be characterized
as potential coverage errors and missingness of information that would be required for
classical design-based estimation. This missing information corresponds to
a) (parts of the) variables of interest Y that are not observed in an (adequate)

probability sample, e.g. the auxiliary data introduced in chapter 3, and
b) the design weights wnps (or equivalently inclusion probabilities πnps) for the non-

probability sample
(cf. also Yang and Kim, 2018, p. 3), which in principle constitute two separable issues.
Correspondingly, methods proposed for estimation from non-probability samples can be
divided into two broader paradigms (cf. e.g. Baker et al., 2013b, pp. 96 f; Buelens, Burger
and van den Brakel, 2018, pp. 329 ff; Valliant and Dever, 2011, p. 109). Each of these
paradigms tackles one the of issues a) and b) in resemblance to established methods
that are used for non-response adjustment in a probability sampling context (cf. e.g. van
Buuren, 2018; Little and Rubin, 2019; Särndal and Lundström, 2005; Särndal, 2011; Kott,
2006) and observational studies (cf. e.g. Cochran, Moses and Mosteller, 1983; Rosenbaum,
2010; Rubin, 2006). The common ground underlying both paradigms is that they aim at
accounting for selection bias by using some auxiliary variables X or Z which (ideally)
assure conditional independence of Y and the inclusion indicator rnps, e.g.

(Y ⊥⊥ rnps) |X , (5.1)

such that selectivity is MAR (cf. sections 2.3 and 3.5). This is typically referred to
as the conditional independence assumption (cf. e.g. Bethlehem and Biffignandi, 2012,
p. 394; Schonlau et al., 2009, p. 299). The methods discussed in chapter 3 can provide an
indication on variables that are useful for fulfilling this assumption. To make use of such
variables, it is typically required for any of the following methods that some information
about X or Z outside the non-probability sample is available (cf. Buelens, Burger and van
den Brakel, 2018, p. 340; Kim et al., 2018, p. 18). To illustrate how and which auxiliary
information is used, a schematic representation based on the discussion in chapter 2 is
given in figure 5.1 (cf. also Yang and Kim, 2018, p. 3). As before, the sets of variables X,
Y and Z do not necessarily need to be mutually exclusive. Furthermore, the probability
sample can by definition coincide with the whole population (cf. sections 2.2 and 2.3;
Pfeffermann, 2011, p. 117).
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Figure 5.1: Schematic representation of estimation approaches for non-probability samples

The model-based paradigm attempts to predict the variable(s) of interest for an auxiliary
data set to solve the outlined issue a). It relies on models for expressing certain aspects
of the target variables Y in dependency of the auxiliaries X, assuming an underlying
structural relationship between both groups of variables. These models can be fit in the
non-probability sample, while the distribution of X or at least some of its properties
are considered to be known also for the probability reference sample. Estimation and
inference for statistics of Y is then based on this distribution of X by using the structural
relationship expressed by the model. This is typically done by predicting Y for the
probability sample, which leads to imputation of entire variables and is thus also called
‘mass imputation’ (e.g. Beręsewicz, 2016, p. 79; Kim et al., 2018, p. 1). A difficulty with
this paradigm is that model-based methods usually require a separate prediction model
for every single target variable (cf. Baker et al., 2013a, p. 10; Boonstra and Buelens, 2011,
p. 5; Buelens, Burger and van den Brakel, 2018, pp. 329 f; Japec et al., 2015, p. 867).
As an alternative, the pseudo-design-based paradigm tackles issue b) by interpreting non-
probability samples in the classical design-based context of random sampling. As there
is no known probability sampling design in this case, the aim is to obtain weights based
on auxiliary and/or assumed design variables X and Z. These pseudo-design weights
are intended to mimic classical design weights in probability sampling (cf. definition
2.13). Estimation is then performed as if the non-probability sample was generated by a
probability sampling design yielding the pseudo-design weights. In contrast to the model-
based paradigm, one set of weights is usually intended for use with all variables of interest
(cf. Buelens et al., 2012, p. 10; Breidt and Opsomer, 2017, p. 196).
The model- and the pseudo-design-based paradigm for non-probability samples are often
considered as mutually exclusive (cf. e.g. Buelens, Burger and van den Brakel, 2018; Elliott
and Valliant, 2017; Kim et al., 2018). Nevertheless, there are some inclusive proposals
to combine methods from both frameworks, attempting to integrate desirable properties
from both (cf. e.g. Beaumont, 2000; Gelman et al., 2016b; Pfeffermann and Sikov, 2011;
Valliant and Dever, 2011, p. 109; Wang et al., 2015).
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These two paradigms and their syntheses partition the variety of methods for handling
non-probability samples and shape the scientific discussion (cf. e.g. Baker et al., 2013b;
Buelens, Burger and van den Brakel, 2018; Chen, Valliant and Elliott, 2019; Elliott and
Valliant, 2017; Kim et al., 2018; Yang and Kim, 2018). Since one purpose of this thesis is
to summarize and compare methods proposed for non-probability samples, an overview of
important realizations from both paradigms is given in the following section. Model-based
methods are discussed first in section 5.1. Some of these are required for pseudo-design-
based approaches as well, which are considered in section 5.2. Syntheses between both
lines of thought are then presented in section 5.3. Inferential approaches, which typically
refer to one of these paradigms as well, are discussed in section 5.4.

5.1 Model-based Methods: Prediction
As outlined above, the model-based paradigm aims at modeling the target variables in
different ways. These variables of interest are observed in the non-probability sample,
and their unobserved values or distributions in a probability reference sample, which may
be the whole population, are predicted (cf. figure 5.1). Design-based estimation can then
be applied to the imputed reference data set. Prediction errors of the imputed variables,
however, have to be taken into account in this case as well (cf. e.g. section 5.4).
To obtain predictions, a general statistical or machine learning model for an arbitrary
data set denoted by s is defined as a function m : Rns×p ×Rh×u → Rns×o. This is usually
a prespecified function that maps the matrix of independent variables Xs ∈ Rns×p to the
matrix of predicted dependent variables Ŷ

s
∈ Rns×o. A general matrix of parameters

Θ ∈ Rh×u is used for this purpose. Structure and impact of Θ as well as its dimensions
h, u ∈ N depend on the applied model (cf. Breiman, 2001b, p. 205; Buelens et al., 2012,
p. 9). The model’s output

Ŷ
s =

[
ŷs

·1 . . . ŷs
·o

]
:= m (Xs, Θ) (5.2)

is a prediction for
Y s = Ŷ

s + Es . (5.3)

In this context Es ∈ Rns×o is a matrix of prediction errors (residuals) of the same
dimensions as Y s (cf. Hastie, Tibshirani and Friedman, 2008, pp. 9 ff).
The model parameters Θ are usually determined by minimizing a loss-function δ : Rh×u →
R≥0, which is used to quantify the error when predicting observed values Y s by Ŷ

s. This
is referred to as model fitting and commonly done by means of the optimization framework
presented in chapter 4. In the following discussion and subsequent sections, s generally
denotes the data set in which the model is fit to find parameters Θ. The distance function
δ to be minimized is denoted with regard to Θ as its only argument because Xs and Y s

are considered fix in the present finite population sampling context (cf. section 2.2). For
example, the quadratic loss functions defined by

δ (Θ) = E
(
(Y s −m (Xs, Θ))2

)
= E

(
E
(

(Y s −m (Xs, Θ))2
∣∣∣Xs

)) (5.4)
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is frequently used for this purpose. Due to the fact that

m (Xs, Θ) = E (Y s |Xs ) (5.5)

is optimal in terms of equations 5.4, this conditional expectation is explicitly represented
by many models. When using such models in form of equation 5.5, unbiasedness of the
overall mean E (Y s) = E (E (Y s |Xs )) is commonly facilitated by including a constant
column in X. This intercept column is typically specified to be the first in X and filled
with ones, i.e. x·1 = 1N×1, (cf. Berk, 2008, pp. 35 ff; Hastie, Tibshirani and Friedman,
2008, pp. 11 ff). This specification is commonly used in the subsequent discussion.
The concept of minimizing prediction errors for fitting the model requires values of Y that
are actually observed and is therefore referred to as ‘supervised learning’ (cf. e.g. Hastie,
Tibshirani and Friedman, 2008, p. 29). As indicated in figures 2.1 and 5.1 as well as the
related discussion, a partial overlap of variables between non-probability and reference
sample is assumed, such that Y is observed only in the non-probability sample. Therefore,
prediction models are typically fit to the non-probability sample (s = nps), for which
Xnps and Y nps are both available (cf. section 2.3). In line with the referred literature, the
following discussion is hence focused on supervised learning. ‘Unsupervised learning’ (cf.
e.g. Hastie, Tibshirani and Friedman, 2008, pp. 485 ff; Ripley, 1996, pp. 287 ff) is usually
not considered to compensate for non-probability sample selection because it would use
only the overlapping variables and, thus, neglect observed values and predictions for target
variables Y . As indicated in equation 5.5, supervised learning is generally based on
properties of the conditional distribution fY (yi· |xi· ). This may, but does not necessarily,
imply to explicitly model this conditional distribution as a whole (cf. Hastie, Tibshirani
and Friedman, 2008, p. 485).
Once parameters Θ are determined by minimizing δ in data set s as described above, the
model can be used for prediction in any data set t for which independent variables X t

are observed. Definition 5.2 allows for such predictions even if Y t is unknown since

Ŷ
t =

[
ŷt

·1 . . . ŷt
·o

]
:= m (X t, Θ) (5.6)

does not depend on Y t. A data set for which predictions are obtained from a model
that is fit on a different data set is generally denoted by t in the following discussion and
subsequent sections. The main purpose for fitting models in the context of the current
section 5.1 is to obtain predictions as in equality 5.6 since they constitute substitutes for
unobserved values of the target variables Y (cf. figure 5.1).
The rationale behind this approach is that when assuming conditional independence
of sample inclusion and target variables given X (cf. assumption 5.1), the conditional
distribution of Y given X in sample s can be used for estimation and inference for
statistics of Y . By Bayes’ theorem and in analogy to equation 2.24, the conditional
distribution in the population is defined by

fY (yi· |xi· ) = P (rs
i = 1 |xi· )

P (rs
i = 1 |xi·, yi· )

· fY (yi· |xi·, rs
i = 1) , (5.7)

where fY (yi· |xi·, rs
i = 1) = fY s (yi· |xj· ) is the conditional distribution in sample s, and

rs is the inclusion indicator for this sample (cf. equation 2.2). When the conditional
independence assumption holds, it follows that P (rs

i = 1 |xi· ) = P (rs
i = 1 |xi·, yi· ) (cf.
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Dawid, 1979, p. 3), and if this conditional probability is positive for all i ∈ SP, an unbiased
estimate for the conditional distribution fY (yi· |xj· ) can be obtained from sample s. If,
furthermore, fX (xj·) is considered to be known for the population, the distribution of Y
can be computed by integrating out all p variables in xj·:

fY (yi·) =
∫

fY (yi· |xj· ) · fX (xj·) d xj· . (5.8)

The same reasoning holds when using an unbiased estimate for fX (xj·) that is obtained
from data set t, but one has to consider its uncertainty when it comes to inference. In
special cases, some marginal information for X instead of the full distribution may be
sufficient as well (cf. appendix B; Pfeffermann, 2011; Smith, 1983).
The typical case for the model-based paradigm in the context of non-probability samples
is to fit a model in the non-probability sample (s = nps), using the observed values of
Y nps and Xnps for supervised learning. This model represents the conditional distribution
fY nps (yi· |xj· ) or its relevant properties, e.g. the conditional mean (cf. equalities 5.4 and
5.5). As a consequence of equality 5.7, this estimate is unbiased for the population’s
conditional distribution if conditional independence assumption 5.1 and full coverage
of the population are fulfilled (cf. appendix B; Pfeffermann, 2011; Smith, 1983). The
strategy represented by equality 5.8 is then commonly implemented by explicitly imputing
(predicting) the unknown values of Y ps by Ŷ

ps for the probability reference sample (t = ps;
cf. equation 5.6). In that way, the distribution fXps (xj·) of observed values Xps is used
to obtain a substitute f

Ŷ
ps (ŷi·) ≈ fY ps (yi·) from the model. Estimation is then based

on this modeled distribution f
Ŷ

ps (ŷi·) since the actual values Y ps are not observed (cf.
figure 5.1). A special case of this approach occurs if information about the independent
variables is known on population level, such that predictions can be made for the whole
population (t = ps = P). In a finite population, inference is then solely based on the
model’s prediction error (cf. Buelens, Burger and van den Brakel, 2018, pp. 329 f; Kim,
Kwon and Paik, 2016; Särndal, 1978, p. 34; Sverchkov and Pfeffermann, 2004, p. 81).
In case of classical statistical models, m is typically used to express a functional relation-
ship between Xs and Y s by explicitly representing the underlying conditional distribution
fY s (yi· |xj· ). An extensive theoretical framework is built around different assumptions
about how this distribution is modeled (cf. e.g. Wood, 2017; Hastie and Tibshirani,
1990; McCullagh and Nelder, 1989), with linear or generalized linear models described
in sections 5.1.2 and 5.1.3 as the most popular examples (cf. Buelens, Burger and van
den Brakel, 2018, p. 323). An important aspect for most of these models is the trade-off
between interpretability and predictive power that results from their explicit distributional
assumptions (cf. Breiman, 2001b, pp. 209 f; Hastie, Tibshirani and Friedman, 2008,
p. 304). For example, modeling fY s (yi· |xj· ) implies that parameters Θ can not only
represent the dependency between Y s and Xs in form of equalities 5.2 and 5.3 but also on
a distributional level. Model selection can therefore be based on the distribution of Y , e.g.
when using likelihood-ratio tests or information criteria. This is frequently used to choose
a subset of potential variables with regard to their predictive accuracy for modeling Y , or
to determine shrinkage or other parameters that are not part of the original optimization
parameters Θ (cf. e.g. section 5.1.11). An important further benefit of statistical models
relying on distributional assumptions is that the actual or asymptotic distribution fΘ (Θ)
of Θ can be derived from that of Y s. Confidence intervals or statistical tests can then
be based on fΘ (Θ) to facilitate inference for the parameters (cf. e.g. Akaike, 1973; Green
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and Silverman, 1994, pp. 95 ff; Hastie and Tibshirani, 1990, pp. 65 ff, 155 ff; Hastie,
Tibshirani and Friedman, 2008, pp. 219 ff; Lee and Nelder, 1996, pp. 635 f; Lee, Nelder
and Pawitan, 2006, pp. 97 ff, 183 ff; Wood, 2017). Alternative methods for model selection
and inference are discussed in sections 5.1.11 and 5.4 as well as the references cited therein.
Conditional independence assumption 5.1 is nevertheless a core element when it comes to
model-based estimation from non-probability samples. Variable selection should therefore
always consider variables that allow fulfilling this assumption as far as possible, which
can e.g. be identified using the methods discussed in chapter 3. Similarly as for the tests
discussed in section 3.4, inference for models and parameters has to be applied cautiously
in the context of non-probability samples since the conditional distribution expressed by
the model is not unbiased if conditional independence is violated (cf. equality 5.7).
Extending the view from such classical statistical models, Buelens, Burger and van den
Brakel (2018), Lee, Lessler and Stuart (2010, p. 338), Pfeffermann (2015, p. 431) as well
as Rafei, Flannagan and Elliott (2020, p. 175) emphasize the importance and potential
of machine learning models for dealing with non-probability samples and their possible
selectivity. In this context, simplicity and interpretability regarding the relation between
independent and dependent variables is usually of less importance than for the classical
statistical models. However, despite originating and being motivated in somewhat dif-
ferent contexts, various similarities and overlaps between both types of models exist. In
many cases, classical statistical models can be interpreted as machine learning methods
since the common aim of both is to achieve good predictions for Y based on X, and
similar strategies are applied for this purpose. For example, coinciding loss functions
and model specifications are commonly used in either setting, leading to similar distribu-
tional characteristics and predictions (cf. e.g. equations 5.4 and 5.5). Therefore, classical
statistical and machine learning models are closely related to and often not uniquely
differentiated from each other (cf. Breiman, 2001a, p. 23; Buelens, Burger and van den
Brakel, 2018, p. 323). Machine learning methods are also labeled “algorithmic models”
(Breiman, 2001b, p. 199) or “learning algorithms” (Hastie, Tibshirani and Friedman,
2008, p. 29) because their typical focus is to find algorithms that are capable of producing
good predictions. Unlike classical statistical models, machine learning methods do not
generally assume a prespecified type of underlying conditional distribution to be modeled
for the purpose of prediction, but merely rely on a functional relationship between Xs

and Y s as in equations 5.2 and 5.3. The sole distributional assumption that is commonly
made in this context concerns the requirement that observations are independently and
identically distributed (i.i.d.), which is necessary for many of the model fitting techniques
(cf. e.g. Breidt and Opsomer, 2017; Breiman, 2001b; Hastie, Tibshirani and Friedman,
2008; Lee, Lessler and Stuart, 2010, p. 2; Sra, Nowozin and Wright, 2012).
Since all model-based methods rely more or less explicitly on the common distribution of
Y s and Xs, potential difficulties in this context lie on the one hand in identifying proper
prediction models for all variables of interest (cf. Baker et al., 2013a, p. 76; Buelens,
Burger and van den Brakel, 2015, p. 6). On the other hand, even a good model rarely
provides perfect predictions for real values of Y , such that some uncertainty is usually left
after applying these methods. The same holds for potentially remaining selection biases
since perfect conditional independence of sample inclusion and target variables is often
not realistic (cf. Buelens et al., 2012, pp. 9 f; Magnussen, 2015, p. 317).
The scientific discourse revolves around a bandwidth of specific models for handling
non-probability samples (cf. e.g. Buelens, Burger and van den Brakel, 2018; Elliott and
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Valliant, 2017; Kim et al., 2018; Rafei, Flannagan and Elliott, 2020; Yang and Kim, 2018).
Since one aim of this thesis is to summarize and compare methods for non-probability
samples, an overview is given throughout the following sections. Note that while some of
these models are straightforwardly representable for a general matrix of predictions Ŷ

s as
in definition 5.2, others are written for single output variables ys

·l to not overcomplicate
notation. However, the latter can be applied to each variable ys

·l for l = 1, . . . , o separately
to constitute a matrix of predictions Ŷ

s if the residuals’ covariance matrix ΣEs is assumed
to be diagonal. If this assumption is not reasonable, a model representing all required
interactions of dependent variables (cf. McCullagh and Nelder, 1989, pp. 219 ff) or
optimization based on a decorrelating (e.g. Mahalanobis) transformation can be used
(cf. Hastie, Tibshirani and Friedman, 2008, pp. 84 ff; Kessy, Lewin and Strimmer, 2018;
Schaid et al., 2019, pp. 113 f; Wood, Pya and Säfken, 2016, pp. 15 f).
The following discussion is structured as follows. The very basic ideas of modeling are
closely related to those of matching (cf. section 3.5), which is adapted for prediction
in section 5.1.1. However, models that apply stronger structural assumptions are more
common. Starting with the presumably most popular ones of these (cf. Berk, 2008, p. 8),
(generalized) linear models are discussed in sections 5.1.2 and 5.1.3, extending the view
to (generalized) additive models in section 5.1.4 and the corresponding mixed models
in section 5.1.5. Based on these methods, (multivariate adaptive) regression splines are
reviewed in sections 5.1.6 and 5.1.7. Artificial neural networks are introduced in section
5.1.8, followed by a proposal for extending and integrating these with regression splines in
form of semi-parametric artificial neural networks that is presented in section 5.1.9. As an
alternative non-linear prediction model, support vector machines are discussed in section
5.1.10. Shrinkage methods are an important part or extension applicable to the fitting
techniques used for all of these models, and therefore summarized in section 5.1.11.

5.1.1 Matching
In section 3.5, matching is introduced as a way to compare the conditional distribution
fY (yi· |xi· ) in non-probability and reference sample. As discussed with regard to equation
5.5, predictions in a supervised learning context are typically based on this conditional
distribution. Therefore, an apparent way to obtain predictions is to rely on matching
again. To predict Y t for data set t based on observed values in data set s, a set J(i) ⊆ Ss

of units which are matched to each unit i = 1, . . . , nt observed in t is defined by

J(i) :=
{
j : δ

(
xt

i·, xs
j·

)
≤ ai

}
. (5.9)

Similar as for equation 3.23, a ∈ Rnt
≥0 is a vector of cut-off constants. Due to definition 5.9,

the rows Xs
J(i)· for the matched units each are (at least) similar to xt

i·. Predictions that
are based on the conditional expectation E (Y s |Xs ) as in equality 5.5 can, therefore, be
approximated by the expected values over these observations, i.e.

ŷt
i· := 1

|J(i)|
∑

j∈J(i)

ys
j· for all i ∈ St , (5.10)

where the number of elements in J(i) is denoted by
∣∣∣J(i)

∣∣∣. In the general model formulation

5.2, parameters Θ =
[
J(1) . . . J(nt)

]T
∈ Nh represent the concatenation of all h = ∑

i∈St

∣∣∣J(i)
∣∣∣
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sets of matching observations for all units i ∈ St. These parameters can be found by using
the framework of matching techniques described in section 3.5, in which different distance
measures as well as cut-off values can be applied. As before, exact matching is often
infeasible since there are usually no two exactly identical rows in X if it contains more
than a few categorical variables. In that case, conditioning is relaxed to the neighborhood-
region in data set s instead of a single point (cf. equation 5.5; Hastie, Tibshirani and
Friedman, 2008, p. 18). These ideas are often used for imputation methods (cf. e.g.
Andridge and Little, 2010; Okner, 1972).
However, there are several problems with such applications of matching. On the one
hand, the approximation via neighborhood-regions gets worse with an increasing number
of matching variables because similarity is less easily achievable in higher dimensions. On
the other hand, the predictions are rather instable since the matching model is constituted
by a locally constant function. To overcome these limitations, models that rely on stronger
structural assumptions for the dependency between X and Y are therefore more common
(cf. Hastie, Tibshirani and Friedman, 2008, pp. 16 ff). The following sections introduce a
number of such models, starting with linear regression in section 5.1.2.

5.1.2 Linear Models
Dating back to the beginning of the 19th century (cf. Gauss, 1809; Legendre, 1805, both
cited in Farebrother, 1999, p. 165), linear regression models are still the presumably most
prevalent statistical models. Beyond their canonical value, they constitute a valuable
foundation for the more complex models that are introduced subsequently and can often
be interpreted as extensions and generalizations of linear models (cf. e.g. Berk, 2008, p. 8;
Hastie, Tibshirani and Friedman, 2008, p. 35; James et al., 2013, p. 59; Royall, 1970).
A linear regression model with potentially multiple independent and dependent variables
for data set t is defined by

Ŷ
t = m (X t, Θ) := X tβ . (5.11)

It is called a linear regression due to the fact that m represents a linear function of
X t. Note that in general, optimization is denoted with respect to Θ to avoid ambiguities
when it comes to the iterative updating procedures and multiple types of parameters in the
following sections. Therefore, the optimization parameters are defined by Θ := β ∈ Rp×o

in this context, using β in definition 5.11 because it is the common symbol for regression
coefficients. Assuming that an intercept column xt

·1 = 1ns×1 is included in X t, β1 is the
intercept of the linear model.
As described in the introduction to section 5.1, the data set in which the model is fit is
generally denoted by s. For fitting a linear regression model, the least squares approach is
commonly used (cf. e.g. equation 5.4; Hastie, Tibshirani and Friedman, 2008, pp. 44 ff).
It corresponds to applying the weighted residual sum of squares as distance function for
estimating Θ, which is defined by

δ (Θ) = (Es)T diag (ws) Es

= (Y s −Xsβ)T diag (ws) (Y s −Xsβ) .
(5.12)

The residuals Es represent the observed prediction errors, and design weights ws are
applied to obtain a HT-estimator for the sum of these squared errors in the population
(cf. equations 2.15 and 5.3; Binder, 1983, p. 282; Pfeffermann, 2011, p. 122). Since the
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conditional expectation is the best prediction in terms of squared loss, it is equivalent
to assume that E (Y s |Xs ) = Xsβ (cf. equation 5.5; Hastie, Tibshirani and Friedman,
2008, p. 18).
The parameters are found using the methods presented in section 4.2.1. Setting the
Jacobian matrix

Jδ (Θ) = 2 · (XsΘ− Y s)T diag (ws) Xs (5.13)
to zero yields

Θ =
(
(Xs)T diag (ws) Xs

)−1
(Xs)T diag (ws) Y s (5.14)

as a closed form solution for the minimum of equation 5.12. This is equivalent to the
result of a single iteration of the Newton-Raphson algorithm 5 since the Hessian matrix
in this case is given by

Hδ (Θ) = (Xs)T diag (ws) Xs (5.15)
(cf. appendix B.4.1). Furthermore, this least squares estimate 5.14 for the linear regres-
sion’s coefficients coincides with the generalized method of moments estimator and the
maximum likelihood estimator when assuming that the residuals es

·l all follow a normal
distribution. In the linear regression model, this residual distribution is equivalent to
the conditional distributions of Y given X (cf. Amemiya, 1985, pp. 4 ff; Greene, 2008,
pp. 168, 456). To obtain models for other kinds of conditional distributions, generalized
linear models are introduced in the following section 5.1.3.

5.1.3 Generalized Linear Models
As described in section 5.1.2, linear regression is designed for predicting continuous
variables Y and can be interpreted as assuming a conditional normal distribution for Y
given X. For many variables, however, it is not reasonable to assume such a conditional
distribution, e.g. in case of count or categorical data. For such variables, linear regression
is not an adequate model and can produce invalid results due to violated assumptions. To
facilitate models and predictions for other types of variables and conditional distributions,
Nelder and Wedderburn (1972) propose a unified framework for generalized linear models
(GLMs).
Three assumptions are used as foundation for this generalization (cf. Nelder and Wedder-
burn, 1972, pp. 371 f; McCullagh and Nelder, 1989, pp. 21 ff; Venables and Ripley, 2002,
pp. 183 ff):
a) The variable of interest yt

·l ∈ Rnt×1 in an arbitrary data set t is a realization from
a nt-dimensional probability density function belonging to the exponential family,
with mean µ(t)

y·l
∈ Rnt and covariance matrix Σ

(t)
y·l
∈ Rnt×nt . The general form for

its density fyt
·l

: Rnt → [0; 1]n
t

is

fyt
·l

(yt
·l |θ, ϕ) = exp

(
(a (ϕ))−1 (yt

·l ◦ θ − b (θ)) + c (yt
·l, ϕ)

)
(5.16)

in vector-notation. Here, a : R≥0 → Rnt×nt , b : Rnt → Rnt and c : Rnt × R≥0 →
Rnt denote component functions of the exponential family. Further, θ ∈ Rnt is the
parameter of the exponential family, and ϕ ∈ R≥0 is a dispersion parameter. For
the generalized linear models, it must hold that a (ϕ) is positive definite, b (θ) is
twice differentiable and normalization of fyt

·l
(yt

·l |θ, ϕ) is possible.
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b) The distribution of yt
·l is influenced by the independent variables X t through a

linear combination ηt ∈ Rnt , called the systematic component.
c) The predictor ηt is related to the expectation by a smooth and invertible linking

function l : Rnt → Rnt , such that l
(
µ(t)

y·l

)
= ηt. If l

(
µ(t)

y·l

)
= θ holds, l is called a

canonical link function.
For distributions belonging to the exponential family, it holds that the expected value
and covariance for observations yt

·l are determined by

µ(t)
y·l

= ∂ (b (θ))
∂ (θ)

Σ
(t)
y·l

= Σ
(t)
y·l

(ϕ) = a (ϕ) ∂2 (b (θ))
∂ (θ)2 = a (ϕ) V

(
µ(t)

y·l

) (5.17)

for Σ
(t)
y·l

: R≥0 → Rnt×nt . These equalities are important for some of the following
derivations in relation to this family of distributions (cf. McCullagh and Nelder, 1989,
pp. 29, 42; Simonoff, 2003, p. 126; Wood, 2017, pp. 62 f).
In the generalized linear models, different choices of a, b, c, θ and ϕ lead to a variety of
distributions. For example, Nelder and Wedderburn (1972, p. 375) as well as McCullagh
and Nelder (1989, p. 28) show that the linear regression introduced in section 5.1.2 results
from assuming
a) a normal distribution for dependent variable, i.e. yt

·l ∼ N
(
µ(t)

y·l
, σ2

)
, by choosing

θ = µ(t)
y·l

ϕ = σ2 a (ϕ) = ϕ · Int b (θ) = 1
2 · θ

◦2

c (yt
·l, ϕ) = − 1

2 ·
(
diag

(
yt

·l (yt
·l)

T (a (ϕ))−1
)

+ log (a (ϕ)) + log (2π)
)

,
(5.18)

b) the systematic component ηt := X tβ for β ∈ Rp, and
c) the identity as canonical link function, such that

l
(
µ(t)

y·l

)
= θ = µ(t)

y·l
. (5.19)

In case of a dichotomous variable of interest yt
·l, the logit model can be applied. It is based

on the following assumptions (cf. Nelder and Wedderburn, 1972, p. 375; McCullagh and
Nelder, 1989, p. 30):
a) yt

·l is a realization from a binomial distribution with h trials and success probabi-
lity p = µ(t)

y·l
· h−1, i.e. yt

·l ∼ B (h, p). This is expressed by

θ = log (p⊘ (1− p)) ϕ = 1 a (ϕ) = Int

b (θ) = h · log (1 + exp (θ)) c (yt
·l, ϕ) = log

((
h
yt

·l

))
,

(5.20)

where the binomial coefficient
(

h
yt

·l

)
is applied element-wise.

b) The systematic component is ηt := X tβ for β ∈ Rp, and
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c) the link function is canonical, such that

l
(
µ(t)

y·l

)
= θ = log (p⊘ (1− p)) . (5.21)

As before (cf. section 5.1.2), the data set used for fitting a model is generally denoted by
s. The regression parameters β are typically obtained by maximizing the log-likelihood
resulting from equation 5.16, which is referred to as maximum likelihood (ML) estimation
(cf. Nelder and Wedderburn, 1972, pp. 372 ff; McCullagh and Nelder, 1989, pp. 40 ff).
Unlike for the linear regression itself (cf. equation 5.14), there is usually no closed form
solution in this generalized case. Consequently, the iterative methods discussed in section
4.2 are commonly used to find the optimization parameters Θ := β, in particular the
Fisher scoring algorithm (cf. Green, 1984; Jørgensen, 1984). A general assumption
made for fitting (generalized) linear models is that all observations are i.i.d. given the
independent variables (cf. Hastie, Tibshirani and Friedman, 2008, p. 28; Nelder and
Wedderburn, 1972, p. 372). In this case, the covariance matrix of all observations in
ys

·l (cf. equation 5.17), is a scalar multiple of the identity matrix. Therefore, the weighted
log-likelihood of the generalized linear model in data set s can be written component-wise
as

L (Θ) =
ns∑

i=1
ws

i ·Li (Θ) =
ns∑

i=1
ws

i ·
ys

il · θi − b (θi)
[a (ϕ)]ii

+ [c (ys
·l, ϕ)]i , (5.22)

where [c (ys
·l, ϕ)]i and [a (ϕ)]ii respectively denote the i-th (diagonal) element of c (ys

·l, ϕ)
and a (ϕ). Due to the i.i.d. assumption, the dispersion parameter ϕ can be separated
from β for optimization and can be obtained from the (intermediate) values of Θ based
on equation 5.17 if it is not fixed in advance (cf. McCullagh and Nelder, 1989, p. 295;
Ruppert, Wand and Carroll, 2003, pp. 197 ff). Incorporating design weights ws

i , equation
5.22 is again a weighted total (HT-)estimator for the population log-likelihood, often
referred to as ‘pseudo log-likelihood’ (cf. equation 2.15; Binder, 1983, p. 282; Fuller, 2009,
p. 378; Lumley and Scott, 2017, p. 268; Pfeffermann, 2011, p. 122).
The distance function that is used for minimization is typically minus twice the weighted
log-likelihood, i.e.

δ (Θ) = − 2 ·L (Θ) . (5.23)
The negative log-likelihood is also referred to as the deviance or cross-entropy and is
a sample estimate for the prediction error measured by the Kullback-Leibler distance
(cf. Hastie and Tibshirani, 1986, p. 300; Hastie, Tibshirani and Friedman, 2008, p. 32;
Kullback and Leibler, 1951). To minimize this distance, the Jacobian and negative Fisher
information matrix of δ are required. These are determined by

Jδ (Θ) = − 2 ·
ns∑

i=1
ws

i · xs
i· ·
[
Σ

(s)
y·l

(ϕ)
]−1

ii
·
(
ys

il −
[
µ(s)

y·l

]
i

)
·
[
Jl-1 (ηs)

]
ii

= − 2 ·
(
(Xs)T W

(
Jl

(
µ(s)

y·l

)) (
ys

·l − µ(s)
y·l

))T
(5.24)

and
E (Hδ (Θ)) = 2 ·

ns∑
i=1

[
Jl-1 (ηs)

]◦2

ii
·
[
Σ

(s)
y·l

(ϕ)
]−1

ii
· E

(
(xs

i·)
T xs

i·

)
= 2 · (Xs)T W Xs ,

(5.25)
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using
W := diag (ws)

(
Jl-1 (ηs)

)T (
Σ

(s)
y·l

(ϕ)
)−1

Jl-1 (ηs) . (5.26)

The matrix W is diagonal due to the i.i.d. assumption, and Jacobian matrices of the link
and inverse link function are respectively denoted by Jl

(
µ(s)

y·l

)
and Jl-1 (ηs). When using

a canonical link function, Fisher scoring and Newton-Raphson algorithm coincide due to
the fact that expected and actual value of the Hessian matrix are the same in this case
(cf. appendix B.4.2; Kale, 1961, p. 453; McCullagh and Nelder, 1989, pp. 29–43; Nelder
and Wedderburn, 1972, pp. 372 ff; Rao, 1952, p. 165).
The Fisher scoring algorithm can be implemented as an iteratively reweighted least squares
(IRWLS) procedure. The updating rule for Θ introduced in algorithm 5 can be written
as

Θ(a) := Θ(a−1) − (E (Hδ (Θ)))−1 (Jδ (Θ))T

=
(
(Xs)T W Xs

)−1 (
(Xs)T W Xs

)
Θ(a−1)

+
(
(Xs)T W Xs

)−1
(Xs)T W Jl

(
µ(s)

y·l

) (
ys

·l − µ(s)
y·l

)
=

(
(Xs)T W Xs

)−1
(Xs)T W

(
ηs + Jl

(
µ(s)

y·l

) (
ys

·l − µ(s)
y·l

))
,

(5.27)

which is exactly the form of the weighted least squares coefficients defined in equation
5.14. Therefore, equalities 5.27 can be interpreted as the result of a linear regression of
the adjusted dependent variable

ỹs
·l := ηs + Jl

(
µ(s)

y·l

) (
ys

·l − µ(s)
y·l

)
(5.28)

on Xs, with weights defined by the diagonal entries of W in equation 5.26. This property
is handy due to the importance and implementation of linear regression in most software,
which can be used to iteratively solve GLMs (cf. Green, 1984; Jørgensen, 1984, p. 287;
McCullagh and Nelder, 1989, p. 40; Simonoff, 2003, pp. 127 f).
The (generalized) linear regression models belong to the most popular models for data
analysis and offer a straightforward interpretability. This particularly concerns the dis-
tribution of parameters β = Θ as well as the way in which they describe the influence
of X on Y (cf. e.g. Green and Silverman, 1994, p. 1; Hastie and Tibshirani, 1990, pp. 1,
86; Wood, 2017, p. 107). Once parameters β are estimated based on equalities 5.22
to 5.28, GLMs can readily solve prediction problems when the underlying relationships
between independent and dependent variables (approximately) follow their respective
assumptions. As outlined in equation 5.5, predictions for data set t are then determined
by ŷt

·l = E (yt
·l |X t ) = l-1 (ηt) = l-1 (X tβ). One assumption of GLMs that needs to

hold for this purpose is that the functional relationship between auxiliary variables X
and systematic components η is a fixed linear function. For many dependencies between
X and Y , however, this requirement of linearity is not fulfilled. For example, it is
often more reasonable to assume a non-linear influence of a person’s age on η, e.g. when
modeling wages, the risk of certain diseases, or the willingness to respond in a survey.
Such non-linear relationships can be incorporated in (generalized) linear models through
adjustments, e.g. by splitting the respective variable into groups to allow for different
slopes or by applying transformations like logarithms or exponentials to X. However, such
adjustments reduce interpretability and require a decent amount of time and expertise

72



Approaches for Estimation from Non-probability Samples

to find transformations that suit the specific variables (cf. Greene, 2008, pp. 12, 111 ff;
Hastie and Tibshirani, 1990, pp. 1 ff; James et al., 2013, pp. 265 ff; Ruppert, Wand
and Carroll, 2003, pp. 2 ff; Weisberg, 2005, pp. 172 ff). Relaxations of the linearity
assumptions with lower demand in selecting appropriate adjustments can be achieved by
using non- or semi-parametric models, which do not assume a fixed number of parameters
to model the conditional distribution of Y given X. An important realization thereof is
constituted by generalized additive models, which are introduced in the following section
5.1.4.

5.1.4 Generalized Additive Models
Generalized linear regression models consider the systematic component as a fixed linear
function of the independent variables. Since the conditional distribution of Y is fully
described by a fixed number (p) of model parameters, these models are typically referred
to as parametric models. They require refining adjustments when their respective assump-
tions about the shape of the functional relationship do not hold. Non-parametric models
achieve relaxation of the linearity assumption with lower demands in selecting appropriate
adjustments while still preserving many desirable properties, such as continuity and
differentiability of the function m. Rather than assuming the systematic component
to be defined by ηt = X tβ (cf. section 5.1.3), non-parametric models postulate a more
general functional relationship

ηt := F (X t) , (5.29)

representing by F : Rnt×p → Rnt a smooth function of X t to be estimated. Models in form
of equality 5.29 are called non-parametric because F can depend on an adaptable number
of (effective) parameters (cf. also section 5.1.11). The case of mixing non-parametric and
parametric ideas in the form of ηt := X tβ+F (X t) is often referred to as semi-parametric
models, but can as well be expressed as a special case of the non-parametric formulation
(cf. Green and Silverman, 1994, pp. 8, 64; Hastie and Tibshirani, 1990, pp. 3 ff, 118;
Ruppert, Wand and Carroll, 2003, pp. 57 ff, 161 ff).
Generalized additive models (GAMs) introduced by Hastie and Tibshirani (1984; 1986;
1990) are the presumably most common approach for implementing non-parametric mod-
els (cf. Green and Silverman, 1994, pp. 83 ff; Ruppert, Wand and Carroll, 2003, p. 36).
Just like for generalized linear models, the dependent variable yt

·l is assumed to be a
realization from a distribution belonging to the exponential family that is influenced by
the systematic component ηt. The difference between GAMs to GLMs lies in defining ηt

by

ηt :=
h∑

j=1
tj (X t) = t (X t) . (5.30)

The overall transformation t : Rnt×p → Rnt is a sum of h smooth component transfor-
mations tj : Rnt×p → Rnt for j = 1, . . . , h, where h ∈ N is an arbitrary given number of
transformations. One of these transformations can constitute an intercept. To achieve
relatively simple models, it is common to consider each component tj to be a univariate
function that transforms only a single column of X t. However, the more complex case
where multivariate transformations are applied is also possible (cf. e.g. section 5.1.7).
Besides definition 5.30 not requiring linearity of tj with respect to X t, the remaining
properties and assumptions of generalized linear models are kept (cf. Coull, Ruppert and
Wand, 2001; Hastie and Tibshirani, 1986, p. 300; 1990, pp. 264 ff; Wood, 2017, pp. 119 ff).
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Although this is not required for definition 5.30, the transformation for GAMs is typically
chosen to be fully parametrizable. In this case, each of the h component transformations
tj : Rnt×p × Rcj → Rnt is completely described by a vector of transformation parameters
κ(j) ∈ Rcj . The numbers of parameters used for all transformations constitute a vector
c =

[
c1 . . . ch

]T
∈ Nh. Equality 5.30 is then written as

ηt = ηt (κ) :=
h∑

j=1
tj
(
X t, κ(j)

)
= t (X t, κ) , (5.31)

defining the systematic component as a function ηt : Rd → Rnt of parameters κ to be
determined. Here, κ :=

[(
κ(1)

)T
, . . . ,

(
κ(h)

)T
]T
∈ Rd for d = ||c||1. is the concatenation

of all parameters defining the parametrized overall transformation t : Rnt×p × Rd → Rnt .
Similarly as for GLMs, an intercept is typically included by defining t1

(
X t, κ(1)

)
:=

κ
(1)
1 · 1nt×1. Frequently used transformations for GAMs are spline functions, which are

discussed in section 5.1.6 (cf. Coull, Ruppert and Wand, 2001; Hastie and Tibshirani,
1984; 1986; 1990; Wood, 2017).
Just as in section 5.1.3, parameters κ are commonly obtained by ML estimation in data set
s, using the optimization techniques discussed in chapter 4. As before, it is assumed that
observations of ys

·l given Xs in data set s are i.i.d. The distance function to be minimized
for estimating parameters Θ := κ is again twice the weighted deviance (negative weighted
log-likelihood):

δ (Θ) = −2 ·L (Θ) = −2 ·
n∑

i=1
ws

i ·Li (t (xs
i·, κ))

= − 2 ·
n∑

i=1
ws

i ·
ys

il · θi − b (θi)
[a (ϕ)]ii

+ [c (ys
·l, ϕ)]i .

(5.32)

This is basically the same that is used for GLMs (cf. equations 5.22 and 5.23), but the
parametrization is different (cf. Hastie and Tibshirani, 1986, p. 300). As before, the
dispersion parameter ϕ can be separated from Θ for optimization. If it is not fixed in
advance, ϕ can be obtained from the (intermediate) values of Θ by using equation 5.17
where necessary (cf. McCullagh and Nelder, 1989, p. 295; Ruppert, Wand and Carroll,
2003, pp. 197 ff). Assuming that all required derivatives exist, the corresponding Jacobian
and expected Hessian matrix of δ are determined by

Jδ (Θ) = − 2 ·
(
(Jηs (Θ))T W

(
Jl

(
µ(s)

y·l

)) (
ys

·l − µ(s)
y·l

))T
(5.33)

and

E (Hδ (Θ)) = 2 · (Jηs (Θ))T W (Jηs (Θ)) . (5.34)

The weights
W := diag (ws)

(
Jl-1 (ηs)

)T (
Σ

(s)
y·l

(ϕ)
)−1

Jl-1 (ηs) (5.35)

are equal to those used for GLMs (cf. equation 5.26). Therefore, this Jacobian and Fisher
information matrix resemble the ones that are used for GLMs, but Xs is replaced by
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Jηs (Θ) (cf. equations 5.24 and 5.25). Consequently, GLMs are a special case of GAMs,
where κ = β and t (Xs, κ) = Xsβ. As before, the Fisher scoring and Newton-Raphson
algorithm coincide in case of a canonical link function if t is linear in κ since expected
and actual value of the Hessian matrix are again the same in this case (cf. appendix B.4.2;
Hastie and Tibshirani, 1986, p. 302; McCullagh and Nelder, 1989, pp. 29 ff; Nelder and
Wedderburn, 1972, pp. 372 ff). The resulting update rule for Fisher scoring (cf. algorithm
5) is

Θ(a) := Θ(a−1) − (E (Hδ (Θ)))−1 (Jδ (Θ))T

= Θ(a−1) +
(
(Jηs (Θ))T W (Jηs (Θ))

)−1
(Jηs (Θ))T W

(
Jl

(
µ(s)

y·l

)) (
ys

·l − µ(s)
y·l

)
.

(5.36)
This solution based on the methods discussed in section 4.2.1 is also called local scoring
for GAMs (cf. Hastie and Tibshirani, 1986; Nelder and Wedderburn, 1972; Yee and Wild,
1996). It can once again be implemented by means of iteratively reweighted least squares.
The update ∆Θ = Θ(a)−Θ(a−1) is the resulting vector of coefficients when regressing the
adjusted dependent variable

ỹs
·l :=

(
Jl

(
µ(s)

y·l

)) (
ys

·l − µ(s)
y·l

)
∈ Rns (5.37)

on the adjusted auxiliaries

X̃
s := Jηs (Θ) ∈ Rns×d . (5.38)

Again, a vector of weights containing the diagonal elements of W defined in equation 5.35
is used, similarly as for the GLMs (cf. Wood, 2017, p. 165; Yee and Wild, 1996, p. 484).
For optimization by means of Fisher scoring as implied in equalities 5.33 to 5.36, it is
required that the transformation t is fully described by and differentiable with respect
to the parameters κ. Nevertheless, transformations for GAMs can be chosen differently
and do not necessarily fulfill these requirements. For example, this is the case when
one of the additive components in equality 5.30 incorporates recursive partitioning as
in regression trees (cf. section 5.1.7). In such settings, the optimization parameters are
commonly defined as the systematic component itself, i.e. Θ = ηs ∈ Rns . Updating the
actual j = 1, . . . , h transformations tj is, hence, not part of equality 5.36 (cf. definition
5.30) but rather done in a separate step that is additionally incorporated in each iteration.
This update of the transformations can be done using the backfitting algorithm proposed
by Friedman and Stuetzle (1981) and leads to the fitting procedure originally proposed
for GAMs by Hastie and Tibshirani (1984, p. 16; 1986, pp. 305 f; 1990, pp. 140 ff). To
that end, the desired transformations of Xs are fit to the adjusted dependent variable as
defined in equations 5.37 by means of the following algorithm 11. This adaptation results
in iteratively reweighted backfitting in place of iteratively reweighted least squares (cf.
also Friedman, 1991b; Wood, 2017, pp. 208 ff).
Starting from an intercept-only model, this algorithm proceeds to fit each transformation
tk to the residuals remaining from all other transformations tj (j ∈ {1, . . . , h} \ k). This
process is repeated until the transformations converge, which is measured by the change
in their output being smaller than a given tolerance v. As long as the predictions are
linear in Y s (i.e. application of a linear smoother / hat-matrix), which is almost always
the case, backfitting is equivalent to the Gauss-Seidel algorithm exploiting the special
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Algorithm 11: Backfitting algorithm for additive models

1: Input: Xs ∈ Rns×p; ys
·l ∈ Rns ; ws ∈ Rns ; δ : ns → R≥0 v ∈ R≥0 ; h ∈ N

2: Initialize intercept t1 (Xs) := µ̂ys
·l

(ws) and transformations tj (Xs) := 0ns×1 for all
j > 1

3: Set B ← t (Xs)
4: for k = 1 to h do
5: Keeping all h−1 other transformations fixed, update tk (Xs) such that it is optimal

w.r.t. δ:

t∗
k (Xs) ← argmin

tk(Xs)
(δ (t (Xs)))

tk (Xs) ← t∗
k (Xs)− µ̂t*

k(Xs) (ws)

6: end for
7: if Max (Abs (t (Xs)−B)) ≤ v then
8: Return: t (Xs)
9: else

10: go to step 3
11: end if

structure of GAMs. It is not equivalent to the Newton-Raphson or Fisher scoring method
presented above (cf. e.g. equation 5.36) and does not require a specific type of optimization
in step 5. A weighted distance function can be applied, and the technique is usable for
transformations that do not meet the requirements of quasi-Newton methods. Algorithm
11 can nevertheless be used as an alternative for parametrizable and differentiable trans-
formations as well (cf. Buja, Hastie and Tibshirani, 1989; Friedman and Stuetzle, 1981,
p. 818; Hackbusch, 1994, p. 70; Hastie and Tibshirani, 1984; 1986; 1990, pp. 90 ff; Hastie,
Tibshirani and Friedman, 2008, p. 298; Wood, 2017, pp. 209 ff).
Once all j = 1, . . . , h component transformations tj are fit by using IRWLS or iteratively
reweighted backfitting, the predictions for data set t are ŷt

·l = E (yt
·l |X t ) = l-1 (ηt).

By relaxing the linearity assumption of generalized linear models for computing ηt,
GAMs provide more flexibility regarding the dependencies between X and Y that can
be considered in the model. However, one limitation still lies in the i.i.d. assumption,
especially since observations in sampling are not always independent. In the following
section 5.1.5, generalized additive mixed models are introduced, which help to overcome
this restriction.
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5.1.5 Generalized Additive Mixed Models
In sections 5.1.3 and 5.1.4, the fitting methods for generalized linear and additive models
generally require that values of the dependent variable ys

·l are assumed to be i.i.d. given
the auxiliary variables Xs. Under this assumption, the unknown matrix of covariances
between values of ys

·l given Xs is a scalar multiple of the identity matrix that depends on
a single dispersion parameter ϕ, such that

Σ
(t)
y·l

(ϕ) = a (ϕ) V
(
µ(t)

y·l

)
(5.39)

(cf. e.g. equalities 5.18 and 5.20). As a consequence, the log-likelihood can be written
as a sum over all independent observations, and the variance component can be factored
out when updating the parameters (cf. e.g. McCullagh and Nelder, 1989, p. 295). How-
ever, the i.i.d. assumption does not always hold. For example, this can be the case for
repeated measurements in observational studies or non-probability web-panels. Similarly,
respondent-driven sampling or recruitment via website or newspaper advertisements can
lead to clusters in which observations are not independent of each other. The only
alternative for fitting the models considered so far is to assume that Σ

(t)
y·l

(ϕ) is known
(cf. Elliott and Valliant, 2017, p. 257; Heckathorn, 2002, p. 16; Henderson et al., 1959,
p. 196; Lee, Nelder and Pawitan, 2006, pp. 65 ff; Wood, 2017, pp. 274 ff).
To allow for dependencies between observations when estimating regression models, gen-
eralized additive mixed models (GAMMs) are used to relax the i.i.d. assumption. For
this purpose, the total covariance matrix of observations yt

·l given X t is expressed as a
function Σ

(t)
y·l

: Rs → Rnt×nt of a vector of dispersion (or variance) parameters

ϕ :=
[(

ϕ(y·l)
)T (

ϕ(u)
)T
]T

∈ Rs , (5.40)

where ϕ(y·l) ∈ Rb and ϕ(u) ∈ Rc, such that s = b + c. This vector ϕ is usually considered
unknown and estimated within the fitting procedure of the model. A common choice for
Σ

(t)
y·l

is
Σ

(t)
y·l

(ϕ) := Σ
(t)
e·l

(
ϕ(y·l)

)
+ Dt

Σ
(t)
u

(
ϕ(u)

)
(Dt)T

, (5.41)

where Dt ∈ Rnt×v is a known design matrix for some random effects u ∈ Rv. Note that
this is basically a form of decomposing the conditional covariance of observations ys

·l into
a within and a between component denoted by Σ

(t)
e·l

: Rb → Rnt×nt and Σ
(t)
u : Rc → Rv×v,

respectively (cf. Pinheiro and Bates, 2000, pp. 57 ff; Harville, 1977, p. 321; Henderson,
1953). Here and in the following discussion, indices are used to denote whether a mean,
covariance or component function of the exponential family (cf. equation 5.16) are meant
with respect to y·l as a whole or its components e·l or u. In the context of GAMMs,
usually only Σ

(t)
e·l

(
ϕ(y·l)

)
is assumed to be a scalar multiple of the identity matrix, such

that it holds due to equations 5.17 that

ay·l

(
ϕ(y·l)

)
:=

[
ϕ(y·l)

]
1
· Int (5.42)

and

V
(
µ(t)

y·l

)
:=

Int + 1[
ϕ(y·l)

]
1

·Dt
Σ

(t)
u

(
ϕ(u)

)
(Dt)T

 , (5.43)
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which means that observations need only to be independent and identically distributed
given the random effects (cf. Henderson, 1950; Henderson et al., 1959, p. 204; Pinheiro
and Bates, 2000, pp. 202 f; Wood, 2017, pp. 287 f). To that end, the coefficients to be
estimated are extended to include the random effects u and dispersion parameters ϕ:

Θ :=
[
κT uT ϕT

]T
∈ Rd+v+s , (5.44)

where κ :=
[(

κ(1)
)T

, . . . ,
(
κ(h)

)T
]T
∈ Rd denotes a vector of transformation parameters

of arbitrary given size, as in the previous section 5.1.4. To model the covariance structure
that is implied by equation 5.41, the random effects are included in the systematic
component. It is now defined as a function ηt : Rd+v+s → Rnt of the form

ηt = ηt (Θ) :=
h∑

j=1
tj
(
X t, κ(j)

)
+ Dtu

= t (X t, κ) + Dtu ,

(5.45)

using (component) transformations tj and t as in section 5.1.4. Similar as before, gen-
eralized linear mixed model (GLMMs) are constituted by the special case when κ := β
and t (X t, κ) := X tβ (cf. section 5.1.4; Hastie and Tibshirani, 1984, p. 9; Wood, 2017,
p. 309).
The remaining assumptions for the GAMs are kept for fitting the model, which is again
denoted for a data set s as in the previous sections. Consequently, it is assumed that the
conditional distribution for the dependent variable given the random effects as well as the
distribution of the random effects both belong to the exponential family. In this case, the
log-likelihood

L (ys
·l |u) =

∑
i∈Ss

log
(
fys

·l
(ys

il |u)
)

=
∣∣∣∣∣∣∣∣(ay·l

(
ϕ(y·l)

))−1 (
ys

·l ◦ θys
·l
− bys

·l

(
θys

·l

))
+ cys

·l

(
ys

·l, ϕ(y·l)
)∣∣∣∣∣∣∣∣

1

(5.46)

as well as the logarithm of the density function

ℓ (u) =
v∑

i=1
log (fu (ui)) =

∣∣∣∣∣∣∣∣(u ◦ θu − bu (θu))
(
au

(
ϕ(u)

))−1
+ cu

(
u, ϕ(u)

)∣∣∣∣∣∣∣∣
1

.(5.47)

emerge. The function to be maximized for finding the optimization parameters Θ is
denoted by

L (Θ) = L (ys
·l |u) + ℓ (u) (5.48)

(cf. Bates, 2018, p. 5; Lee and Nelder, 1996, pp. 620 f). Note that equation 5.47 and
consequently 5.48 are called a log-likelihood in early publications of Henderson (e.g. 1950).
Out of equalities 5.46 to 5.48, however, only equation 5.46 is the logarithm of a function
that is usually considered a classical likelihood in the sense of Fisher (1922b) because
u is a random variable (cf. Robinson et al., 1991, pp. 18, 29). For this reason, L (Θ)
as defined in equation 5.48 is called a hierarchical log-likelihood and thus denoted by
a different symbol in some publications (cf. e.g. Lee and Nelder, 1996; Lee, Nelder and
Pawitan, 2006; Noh, Wu and Lee, 2012). Other authors still call it a log-likelihood and
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denote it by the corresponding symbol (cf. e.g. Bates, 2018, p. 16; Burgard, 2013, pp. 22 f;
Pinheiro and Bates, 2000, p. 62). As there is no risk of ambiguity in the context of this
thesis, the latter convention is used here for the sake of linguistic and notational brevity.
As for GLMs and GAMs, the parameters for GAMMs are typically determined by ML
estimation using the Fisher scoring algorithm (cf. section 4.2). The model is fit by
minimizing twice the weighted deviance (negative weighted log-likelihood), such that

δ (Θ) = − 2 ·L (Θ) (5.49)

is the distance function. The Jacobian matrix of δ is

Jδ (Θ) =

− 2 ·
(∂(L (ys

·l |u))
∂ (κ)

)T (
∂(ℓ (u) + L (ys

·l |u))
∂ (u)

)T
∂(L (ys

·l |u))
∂
(
ϕ(y·l)

)
T∂(ℓ (u))

∂
(
ϕ(u)

)
T ,

(5.50)
while the expected Hessian matrix used for Fisher scoring is

E (Hδ (Θ)) =

− 2 · E





∂2 (L (ys
·l |u))

∂ (κ) ∂ (κ)
∂2 (L (ys

·l |u))
∂ (κ) ∂ (u) 0 0

∂2 (L (ys
·l |u))

∂ (u) ∂ (κ)
∂2 (L (ys

·l |u) + ℓ (u))
∂ (u) ∂ (u) 0

∂2 (ℓ (u))
∂ (u) ∂

(
ϕ(u)

)
0 0

∂2 (L (ys
·l |u))

∂
(
ϕ(y·l)

)
∂
(
ϕ(y·l)

) 0

0
∂2 (ℓ (u))

∂
(
ϕ(u)

)
∂ (u)

0
∂2 (ℓ (u))

∂
(
ϕ(u)

)
∂
(
ϕ(u)

)




.

(5.51)
Elements of these matrices are rather extensive in derivation and representation (cf. e.g.
Bates, 2018; Lee and Nelder, 1996; Rao, 2003, pp. 100 ff; Searle, Casella and McCulloch,
2006, pp. 235 ff, 456). They are therefore deferred to appendix B.4.3, and only a few
selected results are presented below. The weights to maximize the pseudo log-likelihood
as a HT-type estimator (cf. equation 2.15; Binder, 1983, p. 282; Fuller, 2009, p. 378;
Lumley and Scott, 2017, p. 268; Pfeffermann, 2011, p. 122) are defined as

W := diag (ws) Jl-1 (ηs)
(
Σ

(s)
y·l

(ϕ)
)−1 (

Jl-1 (ηs)
)T

. (5.52)

Apart from ϕ being part of Θ and a more complex structure for Σ
(s)
y·l

, definition 5.52
coincides with those for GLMs and GAMs (cf. equations 5.26 and 5.35). Furthermore, it
becomes evident from

E
 ∂2 (ℓ (u))

∂
(
ϕ(u)

)
∂ (u)

 = E

∂
((

au

(
ϕ(u)

))−1
)

∂
(
ϕ(u)

) θu

+ E
∂2

(
cu

(
u, ϕ(u)

))
∂
(
ϕ(u)

)
∂ (u)

 (5.53)

why most commonly, u is assumed to be normally distributed (cf. e.g. Bates et al., 2015;
Breslow and Clayton, 1993; Ghosh et al., 1998; Harville, 1977; Henderson, 1950; Schall,
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1991), although other distributions may be used as well (cf. Lee and Nelder, 1996; Rao,
2003, p. 206; Searle, Casella and McCulloch, 2006, p. 341). If it holds that

u ∼ N
(
0,Σ(s)

u

(
ϕ(u)

))
, (5.54)

it can be shown (by using equalities 5.18) that equation 5.53 results in a matrix of zeros
(cf. appendix B.4.3). This is a convenient characteristic because it reduces the expected
Hessian matrix defined in equation 5.51 to a block-diagonal form. In that case, the
updating rules can be split in a block-wise manner. This means that fitting GAMMs can
be done by updating the parameters for modeling the conditional mean by[

κ(a)

u(a)

]
:=

[
κ(a−1)

u(a−1)

]
−
[
Jδ

(
Θ(a−1)

)]
·I

([
E
(
Hδ

(
Θ(a−1)

))]
II

)−1
, (5.55)

where using I = {1, . . . , d + v} results in the submatrices of JL (Θ) and E (HL (Θ))
that correspond to κ and u. If the model is a linear mixed model, the update rule for all
other parameters is furthermore independent of the current values u(a−1). In this case,
the random effects do not need to be updated in every Fisher scoring iteration and can
be determined once optimization is completed. When using the marginal log-likelihood
that results from integrating out the random effects u for optimization, this advantage
is preserved for fitting generalized linear mixed models as well (cf. Lee and Nelder, 1996,
pp. 631 f; Pinheiro and Bates, 2000, p. 71; Wood, 2017, pp. 292 f). In correspondence to
equality 5.55, variance components are updated by(

ϕ(y·l)
)(a) :=

(
ϕ(y·l)

)(a−1)
−
[
Jδ

(
Θ(a−1)

)]
·J

[
E
(
Hδ

(
Θ(a−1)

))]−1

JJ(
ϕ(u)

)(a) :=
(
ϕ(u)

)(a−1)
−
[
Jδ

(
Θ(a−1)

)]
·M

([
E
(
Hδ

(
Θ(a−1)

))]
MM

)−1
(5.56)

for J = {d + v + 1, . . . , d + v + b} and M = {d + v + b + 1, . . . , d + v + s} (cf. e.g. Har-
ville, 1977, pp. 322 ff; Henderson, 1950; Rao and Molina, 2015, pp. 102 ff; Searle, Casella
and McCulloch, 2006, pp. 235 ff). When comparing this case to the GAMs presented
in section 5.1.4, extending update 5.55 to include the random effects and introducing
update 5.56 as an additional step in the optimization procedure are the extensions made
to account for dependency between observations.
An advantage of this strategy is that it facilitates the use of residual (or restricted)
maximum likelihood (REML) estimation for variance parameters. In general, ML es-
timation of variance components Σ

(s)
e·l

(
ϕ(y·l)

)
and Σ

(s)
u

(
ϕ(u)

)
as described above is not

unbiased because the degrees of freedom that are used for estimating parameters κ are
not accounted for. In case of mixed models, this can even result in negative variance
estimates, although the true variances are always non-negative by definition. If variance
components can be updated separately from the remaining parameters as in equalities
5.56, this bias can be compensated by using the REML criterion

LR (Θ) :=
∫

L (Θ) d κ (5.57)

instead of the joint log-likelihood L (Θ) for updating ϕ. Criterion 5.57 corresponds to
the scaled average of L (Θ) over all possible values of κ. This renders variance parameter
updates independent from κ and results in unbiased variance estimates (cf. Bates, 2018,
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pp. 9 ff; Patterson and Thompson, 1971; Pinheiro and Bates, 2000, pp. 75 f; Searle,
Casella and McCulloch, 2006, pp. 249 ff; Thompson et al., 1962; Wood, 2017, pp. 293 f).
For computing updates 5.55 and 5.56, one can either use a mixture of parameters already
updated in the current iteration together with non-updated ones from the previous it-
eration (Gauss-Seidel iteration) or the full set of parameters from the previous iteration
(Jacobi iteration). In particular, one can calculate κ(a) and u(a) based on ϕ(a−1) and
then use these new values to obtain ϕ(a), or still use κ(a−1) and u(a−1) to determine the
dispersion parameters ϕ(a) (cf. Hackbusch, 1994, pp. 68 f). For example, Burgard (2013,
p. 11) as well as Rao and Molina (2015, pp. 102 f) use the Jacobi variant, while Schall
(1991, p. 722), Breslow and Clayton (1993, p. 12) and Wolfinger and O’connell (1993,
pp. 238 f) tend to use the Gauss-Seidel variant.
In the general case where no explicit distribution is assumed for u to simplify equation 5.53
(e.g. as in assumption 5.54), the parameter updates for mean and covariance structure can
not necessarily be separated. Yet, it is still possible to use the Fisher scoring algorithm
with Jacobian and expected Hessian matrix defined in equations 5.50 and 5.51 for ML
estimation. As the updates in general form a system of linear equations, they can in
principle be calculated using a linear regression (cf. Bates et al., 2015; Henderson, 1950;
1953; 1963; Wood, 2017, pp. 309 ff; Rao and Molina, 2015, p. 99; Wolfinger and O’connell,
1993, p. 239). However, Σ(s)

y·l
(ϕ) and hence W are no longer diagonal matrices, but the

input for linear regression in most common software packages does only allow for a vector
of diagonal elements (cf. e.g. Faraway, 2002, p. 62; Ruppert, Wand and Carroll, 2003,
p. 85). Therefore, the handy implementation of Fisher scoring as an IRWLS scheme that
is used for GLMs and GAMs (cf. equations 5.27 and 5.36) is not generally applicable for
GAMMs. As before (cf. section 5.1.4), a strategy based on algorithm 11 can be used for
transformations t that are not (fully) described by a parametrization κ (cf. section 5.1.4).
Predictions for data set t can be obtained by ŷt

·l = E (yt
·l |X t, Dt ) = l-1 (ηt) once

optimization of parameters Θ is completed, similarly as in the previous section 5.1.4.
For commonly used models where E (u) = 0 (cf. assumption 5.54), prediction is even
possible when Dt is not observed because the marginal expectation can be written as
E (yt

·l |X t ) = l-1 (t (X t, κ)) (cf. Wood, 2017, p. 292; Pinheiro and Bates, 2000, p. 94).
To introduce generalized additive (mixed) models, general transformation functions tj are
assumed throughout the current and previous section. B-spline transformations constitute
an important example of such functions and are very common for GAMs and GAMMs
(cf. Hastie and Tibshirani, 1986; 1990; Wood, 2017, pp. 142 ff). These transformations
are introduced in the following section 5.1.6.
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5.1.6 Regression Splines
In the previous sections 5.1.4 and 5.1.5, generalized additive (mixed) models for expressing
dependencies between auxiliary and target variables are discussed with regard to general
transformation functions t. One specific type of such transformations that is of particular
relevance for GAMs and GAMMs (cf. Hastie and Tibshirani, 1986; 1990; Wood, 2017,
pp. 142 ff) as well as in various other applications (cf. e.g. Böhm, Farin and Kahmann,
1984; Ward and Ronald, 2008, pp. 404 ff) are basis splines (B-splines). Favorable proper-
ties of these transformations include high numerical stability (cf. Hastie and Tibshirani,
1990, p. 25; Reinsch, 1967; Ruppert, Wand and Carroll, 2003, p. 70), continuity and
smoothness of the resulting functions (cf. Wood, 2017, pp. 142 ff) as well as analytically
solvable derivatives and integrals for linear combinations (cf. de Boor, 1978, p. 138; Ward
and Ronald, 2008, pp. 408 f).
B-spline base functions for a single input variable x·j are recursively defined by

B0
k (x·j, Kx·j ) := I

(
K

x·j
k ≤ x·j < K

x·j
k+1

)
(5.58a)

Bl
k (x·j, Kx·j ) := x·j −K

x·j
k

K
x·j
k+l −K

x·j
k

·Bl−1
k (x·j, Kx·j )

+ K
x·j
k+l+1 − xij

K
x·j
k+l+1 −K

x·j
k+1
·Bl−1

k+1 (x·j, Kx·j ) ,

(5.58b)

where k and l respectively denote the interval and order of the splines. The points K
x·j
k

splitting the range of a variable x·j into intervals are called knots and denoted by the
vector

Kx·j :=
[
K

x·j
1 · · · Kx·j

aj

]T
∈ Raj . (5.59)

The number of resulting base functions for variable x·j is determined by bj := aj + l − 1,
where aj := |Kx·j | is the number of knots that is used for this variable (cf. Curry and
Schoenberg, 1947; 1966; de Boor, 1978, pp. 109, 131).
Depending on the order of the splines, computation of these base functions requires l
additional outer knots each before the first and after the last knot. As their definition is
arbitrary, these outer knots are often defined by repeating the first and last knot l times,
i.e. in form of

K
x·j
k :=

{
K

x·j
1 if k < 1

Kx·j
aj

if k > h .
(5.60)

To avoid division by zero, one then has to additionally define 0/0 := 0 because denomi-
nator(s) and base function of degree (l − 1) in definition 5.58b can both be zero, but only
simultaneously (cf. Boor, 2001, pp. 110 ff; Curry and Schoenberg, 1966, p. 79; Hastie,
Tibshirani and Friedman, 2008, pp. 186 ff).
For multiple X-variables, B-spline transformations can be applied in a column-wise
manner, i.e.

tj (x·j, Kx·j ) :=
[
Bl

1 (x·j, Kx·j ) · · · Bl
s (x·j, Kx·j )

]
, (5.61)

where tj : Rnt × Raj → [0; 1]n
t×bj is a component transformation used for input variable

x·j as in the previous sections. When applying such a B-spline transformation to all p
columns in X, the concatenation of the knots for all t1, . . . , tp resulting transformations
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is denoted by
KX :=

[
(Kx·1)T · · · (Kx·p)T

]T
∈ R||a||1 (5.62)

for a =
[
a1, . . . , ap

]T
∈ Np containing the number of knots for all variables. The output

of these p transformations is the transformed predictor matrix

X̃ := t
(
X, KX

)
:=
[
t1 (x·1, Kx·1) · · · tp (x·p, Kx·p)

]
∈ [0; 1]n×||b||1 . (5.63)

In equation 5.63, b =
[
b1, . . . , bp

]T
∈ Np with elements defined above is the vector

determining the number of output columns resulting from each of the p B-spline trans-
formations. Combining the component transformations tj for each variable in form of a
general transformation function t : Rnt×p×R||a||1 → Rnt×||b||1 achieves notational coherence
with the previous and following sections.
As outlined above, B-splines are an attractive and widespread approach for GAMs. When
using transformations X̃ in place of X as independent variables for GLMs, non-parametric
models emerge. Mixtures of both that use a subset of columns X ·I from X together with
a subset of columns X̃ ·J from X̃ result in semi-parametric models. In any case, these
models can be fit by means of the techniques discussed in the previous sections 5.1.2 to
5.1.5 (cf. Ruppert, Wand and Carroll, 2003, p. 161; Hastie and Tibshirani, 1990, p. 118).
For example, the model Ŷ

s = X̃
s
β specifies a regression spline that is equivalent to an

additive model with B-spline transformation. Since this model is linear in X̃
s, β ∈ R||b||1×o

may in principle be estimated by a linear regression of Y s on X̃
s (cf. equations 5.11 and

5.31). However, simply using X̃
s in place of the independent variables X in a (generalized)

linear model usually results in overfitting. This means that the regression function strongly
adheres to observed values Y s but often generalizes poorly to unobserved values, e.g. when
used for out-of-sample prediction. Therefore, this strategy typically “leads to a wiggly fit”
(Ruppert, Wand and Carroll, 2003, p. 65) because even small random fluctuations in the
data are represented in the model (cf. Hastie, Tibshirani and Friedman, 2008, pp. 151 ff;
Ruppert, Wand and Carroll, 2003, pp. 58 ff).
To overcome this issue, obtain smoother regression functions and predictions of higher
stability, it is therefore quite common to use a penalty term when fitting regression splines.
This is an example of the shrinkage methods discussed more generally in section 5.1.11.
In case of B-splines, the typical penalty is

p (β) := λ · βTV β , (5.64)

where V ∈ R||b||1×||b||1 is a penalty matrix. The smoothing (or penalty) parameter λ ∈ R≥0
may be considered a fixed predetermined constant but is more commonly estimated by
using optimality criteria (cf. Hastie, Tibshirani and Friedman, 2008, pp. 156 ff; Wood,
2017, pp. 126 ff). Penalties for non-smoothness of the regression function in form of
equation 5.64 are added to the distance function that is used for model fitting (cf. sections
5.1.2 to 5.1.5) to achieve predictions that are less volatile. A more general and detailed
discussion of penalization and the choice of λ is provided in section 5.1.11.
The type of smoothness that is achieved by using the penalties defined in equation 5.64
depends on the exact specification of V . Going back to the work of Reinsch (1967),
this penalty matrix for regression splines is often based on the second derivatives of the
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transformations with respect to β (cf. e.g. Boor, 2001, p. 207; Hastie, Tibshirani and
Friedman, 2008, p. 154; Wood, 2017, pp. 126 ff), such that

V :=


V (1) 0 0

0 . . . 0
0 0 V (p)

 ∈ R||b||1×||b||1 . (5.65)

Elements of the component matrices V (m) ∈ Rbm×bm for all m = 1, . . . p are then defined
by

v
(m)
jk =

∫ ∂2
(
Bl

j (c, Kx·m)
)

∂ (c) ∂ (c)
∂2
(
Bl

k (c, Kx·m)
)

∂ (c) ∂ (c) d c (5.66)

for all j, k = 1, . . . , bm and m = 1, . . . , p (cf. Hastie and Tibshirani, 1990, p. 28). In that
regard, it is convenient that the derivative of a B-spline of order l with respect to the
input variable x·j is determined by a B-spline transformation of order l − 1 through

∂
(
Bl

k (x·j, Kx·j )
)

∂ (x·j)
= l ·

(
Bl−1

k (x·j, Kx·j )
K

x·j
k+l −K

x·j
k

−
Bl−1

k+1 (x·j, Kx·j )
K

x·j
k+l+1 −K

x·j
k+1

)
. (5.67)

Derivatives of higher order follow by recursion (cf. appendix B.4.4.2; de Boor, 1972; 1978,
p. 138; Piegl and Tiller, 1997, pp. 59 ff). An important benefit when using equation 5.66
is that the result for base functions of degree l = 3 is a natural cubic spline, implying that
the regression function is linear outside the interval of observed values (cf. Hastie and
Tibshirani, 1990, pp. 27 ff). Since this strategy aims at a smoother regression line than in
the non-penalized model, it is commonly referred to as ‘smoothing splines’ (cf. e.g. Eilers
and Marx, 1996, p. 89; Hastie and Tibshirani, 1990, p. 27; Wood, 2017, p. 144). However,
the use of second derivatives in equality 5.66 imposes considerable computational burden
in optimization (cf. e.g. Wood, 2017, p. 144). An important computationally cheaper
alternative are penalized splines (P-splines) introduced by Eilers and Marx (1996). In
this case, multiplication with V is used to construct differences of the values in β. For
example, using

V (m) :=


1 −1 0 . . . 0 0 0 0
−1 2 −1 . . . 0 0 0 0

... . . . ...
0 0 0 . . . 0 0 −1 1

 (5.68)

as components for equation 5.65 constitutes squared first differences, but the penalty’s
order is easily adjustable (cf. Wood, 2017, pp. 149 f).
In many cases, the knots that are used to define the B-spline base functions in equations
5.58 are predefined or evenly spaced over the range or quantiles of the independent
variables (cf. Wood, 2017, pp. 133, 149). Nevertheless, knot positioning can be subject
to optimization as well, e.g. by using the gradient-based methods described in section 4.2
(cf. section 5.1.9; de Boor, 1978, pp. 181, 271 f; de Boor and Rice, 1968a,b; Laube, Franz
and Umlauf, 2018). The derivative of a base function Bl

k (x·j, Kx·j ) with respect to the
knots that can be used for this purpose is defined by

∂
(
Bl

k (x·j, Kx·j )
)

∂ (Kx·j ) =
∂
(
Bl

k (x·j, Kx·j )
)

∂
(
K

x·j
1

) · · ·
∂
(
Bl

k (x·j, Kx·j )
)

∂
(
K

x·j
s

)
 . (5.69)
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Its components are

∂
(
Bl

k (x·j, Kx·j )
)

∂
(
K

x·j
m

) =



0 , if 0 < k < m− l − 1

Bl
k+1

(
x·j, ĎK

x·j
)

K
x·j
m −K

x·j
k+1

, if k = m− l − 1

Bl
k+1

(
x·j, ĎK

x·j
)

K
x·j
k+l+1 −K

x·j
k

−
Bl

k

(
x·j, ĎK

x·j
)

K
x·j
k+l −K

x·j
k

, if m− l ≤ k ≤ m− 1

−
Bl

k

(
x·j, ĎK

x·j
)

K
x·j
k+l −K

x·j
m

, if k = m

0 , if m < k < u .
(5.70)

These are based on the modified knot vector

ĎK
x·j :=

[
K

x·j
1 · · · Kx·j

m Kx·j
m · · · Kx·j

u

]
, (5.71)

i.e. the original knot vector Kx·j where the respective knot K
x·j
m is duplicated (cf. appendix

B.4.4.1; Piegl and Tiller, 1998, p. 931).
These results are particularly important also for section 5.1.9, where gradient-based knot
selection in artificial neural networks is proposed. Beforehand, multivariate adaptive
regression splines are introduced in the following section 5.1.7. This established approach
aims at finding optimal knot locations and interaction terms for regression splines using
a trial-and-error strategy (cf. Hastie and Tibshirani, 1990, p. 249).

5.1.7 Multivariate Adaptive Regression Splines and
Regression Trees

Multivariate adaptive regression splines (MARS) constitute an extension to the regression
splines introduced in the previous section 5.1.6. To obtain a possibly better prediction
model for Y , the main idea of MARS is to make an optimal choice for the number and
location of knots KX , as well as for interaction terms between spline transformations of
X. The optimization parameters in this context are

Θ :=
[
KX β

]
∈ Ru , (5.72)

with dimension u not being predetermined. These parameters are again chosen such that
a distance function δ : Ru → R≥0 is minimized. The regression parameters β are usually
optimized using the fitting methods discussed in the previous sections 5.1.2 to 5.1.6. In
contrast, the knot locations and B-spline interaction terms in this context are selected
by a greedy trial-and-error strategy. MARS models and the outlined fitting strategy are
proposed by Friedman (1991b, p. 17). Considering such a model for y·l, the steps for
determining the model’s parameters from data set s are described by algorithm 12.
In this algorithm, c is the predefined number of utilized transformations. The output is
the combination of these transformations X̃

(j)
∈ Rns×vj for j = 1, . . . , c, of which all but

X̃
(1) and X̃

(2) are potentially constructed as interaction terms from multiple columns of
Xs. To that end, V(a) denotes the set of indices for all variables that are used in the a-th
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Algorithm 12: MARS: forward stepwise selection

1: Input: Xs ∈ Rns×p; ys
·l ∈ Rns ; ws ∈ Rns ; δ : Ru → R≥0; c ∈ N

2: Initialize the intercept X̃
(1) := 1ns×1, K := 00×0 d := d∗ :=

[
∞ . . . ∞

]T
∈ Rc

≥0,
and set V(1) := ∅

3: for b = 2, . . . , c do
4: for a = 1 to (b− 1) do
5: for j /∈ V(a) do
6: for Kxs

·j ∈Kxs
·j do

7: Construct the candidate matrix X̃
∗
∈ Rns×(h·u), containing all inter-

actions of columns in X̃
(a)
∈ Rns×h and candidate transformation

t
(
xs

·j, Kxs
·j
)
∈ Rns×u:

X̃
∗ :=

[
x̃

(a)
·1 ◦

[
t
(
xs

·j, Kxs
·j
)]

·1
. . . x̃

(a)
·h ◦

[
t
(
xs

·j, Kxs
·j
)]

·u

]
.

8: Calculate the prediction error when using X̃
∗ in addition to the already

chosen transformations, such that the matrix of independent variables
is given by

[
X̃

(1)
. . . X̃

(b−1)
X̃

∗]:
d∗

b := min
β

(
δ

([
KT

(
Kxs

·j
)T

βT
]T
))

9: if d∗
b < db then

10: Choose X̃
∗ as (intermediate) b-th transformation:

Set X̃
(b) := X̃

∗, K∗ := Kxs
·j , V(b) := V(a) ∪ j and db := d∗

b

11: end if
12: end for
13: end for
14: end for
15: Update K ←

[
KT (K∗)T

]T
16: end for
17: Calculate

β∗ := argmin
β

(
δ
([

KT βT
]T))

18: Return: X̃
s :=

[
X̃

(1)
. . . X̃

(c)] and Θ :=
[
KT (β∗)T

]T
base function. Further, t

(
xs

·j, Kxs
·j
)

is a candidate transformation of xs
·j (cf. definition

5.61), and Kxs
·j denotes the set of all possible knot combinations for xs

·j. In addition, K∗

is an intermediate storage for potential knots, and K contains the final knots. The latter
is constructed by successively concatenating the chosen knots, starting from the empty
vector 00×0. The output transformations are found by evaluating the interaction terms
of candidate and previously chosen transformations with regard to their reduction of the
distance function δ. The lowest possible value for δ is sought by comparison of d and d∗.
A distance function that is commonly used in this context is a modified version of the
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generalized cross-validation (gcv) criterion proposed by Craven and Wahba (1979; cf. also
Friedman, 1991b, p. 20). It is defined by

δ (Θ) =
(

1− dim (β) + λ · dim (K)
ns

)−2

· (ws)T (ys
·l − ŷs

·l)
◦2 , (5.73)

which is the weighted residual sum of squares multiplied by a penalty for model-complexity.
A general justification of this criterion is given in section 5.1.11, but in the present context,
the penalty is defined by the number of parameters used to generate Ŷ . This number is
determined by dim (β) and dim (K), which respectively denote the number of regression
parameters and knots. In this regard, λ ∈ R≥0 is a penalty constant, which is usually
set to three for models with and two for models without interaction terms (cf. Hastie
and Tibshirani, 1990, p. 275; Hastie, Tibshirani and Friedman, 2008, p. 325). Other loss
functions can be applied as well, e.g. the negative log-likelihood for binomial variables in
conjunction with a link function (cf. section 5.1.4; Friedman, 1991b, p. 47). Starting from
an intercept-only model, every iteration of the outer loop (starting in step 3) in algorithm
12 chooses new base functions as the interactions of an already chosen and an additional
transformation, respectively denoted by X̃

(a) and t
(
xs

·j, Kxs
·j
)
. The three inner loops

(beginning in steps 4 to 6) determine the best choice for these new base functions with
respect to δ, but only interactions using distinct variables are considered.
However, letting each of these loops iterate over all possible values tremendously increases
computation time, especially for larger data sets. To overcome this issue, Friedman
(1991a,b; 1993) proposes different strategies to evaluate only a subset of values in each
loop. First of all, two-sided truncated power base functions rather than B-splines are used
in most MARS implementations. For splines of order l, the former are defined by

tl (x·j, Kx·j ) :=
[
I (x·j ≤Kx·j ) · (x·j −Kx·j )l I (x·j ≥Kx·j ) · (x·j −Kx·j )l

]
(5.74)

and constitute an alternative but in numerical terms less appealing spline representation
when compared to B-splines (cf. de Boor, 1972, p. 50; Friedman, 1991b, p. 29). Neverthe-
less, their usage is justified by reducing the complexity of algorithm 12: each of these base
function is defined by a single knot, such that the set of possible knot-combinations Kx·j

reduces to the set of unique values of x·j. Furthermore, the number of resulting candidate
base functions is two (cf. Bakin, Hegland and Osborne, 1997; Friedman, 1991b; Hastie
and Tibshirani, 1990, p. 275). The second approach to improve the computation speed
of the MARS model is to reduce the number of possible parent functions x̃·a in the loop
beginning in step 4. This can be done by using a “parent priority queue” (Friedman, 1993,
p. 6). Only parent functions (identified by the index a) that substantially decreased the
distance in the preceding iteration are considered in this strategy. To avoid diminishing
a parent function for all later steps by giving them a very low priority in one step and
never re-evaluating them, the natural “‘aging’ property” (Friedman, 1993, p. 8) of this
approach is assisted through adjusting the priority by the number of iterations they were
not evaluated. A similar strategy, conditional on the values in the superordinate loops, is
applied to the subsequent loops beginning in steps 5 and 6 (cf. Friedman, 1993, pp. 9 f).
A model generated by algorithm 12 is usually overfit and rather complex. Therefore, it
typically needs some reduction to be used for actual predictions, which is achieved by a
procedure similar to algorithm 12. Through successively deleting columns of X̃

s, only
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those that provide the lowest respective value of δ are kept. Since the base functions can
overlap due to the interaction terms, this can be done by deleting a single column in every
step, as formalized in algorithm 13 (cf. Friedman, 1991b, p. 17).

Algorithm 13: MARS: backward stepwise selection

1: Input: X̃
s
∈ Rns×h ; ys

·l ∈ Rns ; ws ∈ Rns ; δ : Ru → R≥0

2: Initialize I := J(h+1) := {1, . . . , h}, d := min
Θ

(δ (Θ)) and d := d∗ :=
[
∞ . . . ∞

]T
∈

Rh
≥0

3: for b = h to 2 do
4: for a = 2 to k do
5: Set M(a) := J(b+1) \ {a} and calculate the loss function value when using

only the subset X̃
s
·M(a) defined by M(a) as predictors:

d∗
a := min

β

(
δ

([
KT

(
Kxs

·j
)T

βT
]T
))

6: if d∗
a < d then

7: Set d := d∗
a and I := M(a)

8: end if
9: if d∗

a < db then
10: Set db := d∗

a and J(b) := M(a)

11: end if
12: end for
13: end for
14: Return: I

As before, X̃
s
·M(a) denotes a subset of columns in X̃

s that is defined by the set M(a).
Consequently, each iteration of the outer for-loop beginning in step 3 of algorithm 13
deletes one single column of X̃

s. The inner loop that begins in step 4 determines the best
choice for this deletion with respect to δ, but the intercept column can never be removed.
The model with the lowest distance value is sought, using comparisons of d, d and d∗.
It is determined by the set of column-indices I, which defines the output (cf. Friedman,
1991a,b; Hastie, Tibshirani and Friedman, 2008, pp. 321 ff).
MARS can be interpreted as a continuous generalization of regression trees. The latter
emerge from using truncated power functions of order zero, such that transformations are
given by

t0 (x·j, Kx·j ) :=
[
I (x·j ≤Kx·j ) I (x·j ≥Kx·j )

]
. (5.75)

In this case, each base function is a binary partitioning of the covariate space (cf. Friedman,
1991b, pp. 10 ff; Hastie and Tibshirani, 1990, pp. 275 f).
The idea of MARS is to find optimal knots and interaction terms for regression splines.
This is achieved by combining the fitting methods outlined in the previous sections with
a greedy trial-and-error strategy for knots and interactions. Although the strategies for
acceleration and simplification discussed above considerably reduce computation times
for the MARS algorithm, evaluating a large number of potential knots and interactions is
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still computationally expensive. This is especially true when the output is non-linear in
X̃

s, e.g. when using a link function to predict categorical variables (cf. Friedman, 1991b,
p. 47). Application for more complex transformations, such as B-splines, is therefore
typically hardly feasible (cf. Bakin, Hegland and Osborne, 2000, p. 468). An alternative
approach that is frequently compared to MARS (cf. e.g. Ahmadi et al., 2019; Friedman,
1993, p. 1; Mirabbasi et al., 2019; Zhang and Goh, 2016) and can even be used to
perform knot selection for B-splines (cf. section 5.1.9; Laube, Franz and Umlauf, 2018)
is constituted by artificial neural networks. Similar to MARS, these can perform flexible
optimization regarding the underlying transformations of input variables. They even
allow for combinations of multiple transformations, but typically do not select interaction
terms. Artificial neural networks are introduced in the following section 5.1.8.

5.1.8 Artificial Neural Networks
Generalized additive models are quite flexible in describing various relations between in-
dependent and dependent variables. However, if the underlying transformation functions
are not considered fixed, their specification, e.g. with respect to the knots in case of B-
splines, is typically rather difficult and costly (cf. section 5.1.7; Friedman, 1991b; Hastie
and Tibshirani, 1990, pp. 235 ff; Wood, 2017, pp. 119, 150 ff).
Artificial neural networks (ANNs) are an alternative way to transform predictor variables
X for building a potentially non-linear prediction model for Y (cf. Bishop, 1995, p. 6).
Although these models do not incorporate an optimal selection of interaction terms as
in the MARS algorithm 12, predetermined interaction terms that are represented in
X are feasible, just as for (generalized) linear and additive models. Furthermore, it
can be shown that ANNs are able to approximate any functional relationship to any
desired degree of precision (cf. Hornik, Stinchcombe, White et al., 1989). Artificial neural
networks can therefore be used to model arbitrary relationships between the independent
and dependent variables X and Y . Continuing the notation of the preceding sections,
their structure resembles a system of chained non-linear regression equations that are
based on transformation functions. In this manner, ANNs keep up with the flexibility of
GAMs by using a potentially larger number of transformations that are chained but often
simpler than those discussed before (cf. Bishop, 1995, pp. 136 f; Ripley, 1996, pp. 143 ff).
An ANN with A− 1 hidden layers predicting Y t from X t is defined by

X̃
(0) := X t

X̃
(i) := ti

 A∑
j=0

X̃
(j)

β(ij)

 for all i = 1, . . . , A

Ŷ
t := X̃

(A)
.

(5.76)

The output of each layer i = 1, . . . , A is a matrix X̃
(i)
∈ Rnt×ci with columns x̃(i)

·m and
possibly an intercept column x̃

(i)
·1 := 1n×1. In the literature relating to neural networks,

intercept coefficients are commonly referred to as the bias (cf. e.g. Bishop, 1995, p. 81;
Hagan et al., 1996, p. 2-12; Hastie, Tibshirani and Friedman, 2008, pp. 392 f). In this
context, the vector c =

[
c0 . . . cA

]T
∈ RA+1 contains the number of columns for each

layer’s output, using c0 := p for notational coherence to denote the input dimension, which
corresponds to the output of the zeroth (or input) layer.
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For A ≥ i > 0, each column x̃(i)
·m that does not represent an intercept is called a derived

feature. Such a single column is commonly interpreted as the output of a hidden unit m
in layer i of the ANN, which is termed an artificial neuron. This column x̃(i)

·m represents
a transformation of independent variables X t, computed as a linear combination of the
outputs X̃

(j) from any layer j for 0 ≤ j ≤ A. These outputs are combined using neuron-
specific parameter vectors β(ij)

·m ∈ Rcj , and the linear combination is transformed by
a potentially non-linear prespecified layer-specific transformation ti : Rnt×h → Rnt×s

for arbitrary given dimensions h, s ∈ N. Correspondingly, calculation of the complete
layer can be written in matrix notation using β(ij) =

[
β

(ij)
·1 . . . β(ij)

·ci

]T
∈ Rcj×ci as

outlined in definition 5.76. In the context of artificial neural networks, ti is called an
activation function, and the predictions are simply given by the output of the last layer
(cf. Bishop, 1995, p. 82; Hagan et al., 1996, p. 2-2 ff; Hastie, Tibshirani and Friedman,
2008, pp. 392 ff).
In a feed-forward neural network, only information from preceding layers is used in each
layer i, implying that many of the coefficients are restricted to zero and thereby reducing
model complexity:

β(ij) != 0 for all j ≥ i . (5.77)

In contrast, recurrent ANNs may also use information X̃
(j) from layers j ≥ i in layer i

and, thus, do not impose this restriction. The number of free parameters is often reduced
even further, by using only the output X̃

(i−1) from the immediately preceding layer, such
that

β(ij) != 0 for all j ̸= i− 1 . (5.78)
However, this is not necessarily the case, and using information from more than the imme-
diately preceding layer is called a skip layer connection. Additional equality constraints
can be imposed for certain parameters, resulting in convolutional ANNs (cf. Hastie,
Tibshirani and Friedman, 2008, p. 407; Goller and Kuchler, 1996; Hagan et al., 1996,
p. 2-13 ff; Ripley, 1996, pp. 143 ff).
An artificial neural network is fit by minimizing a distance function with respect to the
model parameters, which as in the previous sections is denoted for a data set s. To
represent this optimization while avoiding tedious tensor or array notation, the following
paragraphs use vectorized (flattened) coefficient-matrices. These are defined by a function
vec : Rcj×ci → Rcj ·ci , such that

vec
(
β(ij)

)
:=


β

(ij)
·1
...

β(ij)
·ci

 ∈ Rci·cj (5.79)

for all i = 1, . . . , A and j = 0, . . . , A as well as

Θ :=


vec

(
β(10)

)
...

vec
(
β(AA)

)
 ∈ Rdim(Θ) (5.80)

simply concatenate all columns of (each) β(jk) to a vector of length dim (Θ) := cT1A×Ac.
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Apart from this flattening, the coefficient matrices (and their entries in particular) do not
change. Since the dimension of Θ grows quickly, it becomes evident why many of the
coefficients need to be restricted to zero for fitting the model (cf. equations 5.77 and 5.78;
Hagan et al., 1996, p. 12-22 ff; Ripley, 1996, pp. 148 ff).
Determining the parameters Θ from data set s is again based on minimizing a distance
function δm : Rdim(Θ) → R≥0, such that

Θ∗ = argmin
Θ

(δm (Θ)) (5.81)

for different possible types of distance functions that are indicated by using subscripts (m
in this general case). These loss functions δm are usually a weighted sum over the loss of
each individual observation and variable, i.e.

δm (Θ) =
ns∑

k=1
ws

k · δ̃m (ŷs
k·) . (5.82)

Here, δ̃m : R1×o → R≥0 is a non-negative function expressing the prediction error for
the o variables ys

k· ∈ R1×o for observation k ∈ Ss. Neural networks are usually fit
using gradient-based methods described in chapter 4 for optimization. To that end, it
is assumed that all required derivatives exist, which implies that activation functions ti
for all layers i = 1, . . . , A need to be differentiable. However, due to the large number
of free parameters, it is common to avoid using Hessian matrices, and even Fisher and
Quasi-Newton approximations are often considered too costly. The common practice is to
apply gradient descent methods for fitting ANNs, in which case the Hessian is substituted
by an identity matrix. This strategy is labeled backpropagation of errors in the context of
neural networks. Computing the transformations to construct X̃

(i) for all i = 1, . . . , A is
similarly labeled the forward pass (cf. section 4.2.3; Bishop, 1995, pp. 140 ff, 287; Hagan
et al., 1996, p. 9-1 ff; Hastie, Tibshirani and Friedman, 2008, pp. 396 f; Ripley and
Venables, 2016).
For this setting, only the Jacobian matrix Jδm (Θ) of distance function 5.82 is required
for optimization. For the feed-forward neural networks exclusively used throughout the
following chapters, it is defined by

Jδm (Θ) =
ns∑

k=1
ws

k · Jδ̃m
(ŷs

k·) Jŷ
s
k·

(Θ) . (5.83)

Expressing each predicted row ŷs
k· as a response function ŷs

k· : Rdim(Θ) → Ro of parameters
Θ, equality 5.83 is determined by multiplying the Jacobian matrices of distance and
response function of the ANN, which are respectively denoted by J

δ̃m
and Jŷ

s
k·

. While the
first Jacobian depends on the chosen distance function (examples of which are discussed
below), the second is only dependent on the transformation functions since

Jŷ
s
k·

(Θ) =
 ∂(ŷs

k·)
∂
(
vec

(
β(10)

)) · · · ∂(ŷs
k·)

∂
(
vec

(
β(AA)

)) (5.84)

holds due to definition 5.80. The convenient thing about neural networks is that the
entries of this Jacobian can be found by recursively applying the chain rule. Because
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equality 5.83 is a sum over all observations, each row of Ŷ
s can be considered separately

in equation 5.84. For an efficient representation of derivatives, the factors

d
(ij)
k := ∂(ŷs

k·)
∂
(
x̃

(j)
k·

) =


Jti

(
A∑

a=0
x̃

(a)
k· β(ia)

)(
β(ij)

)T
if i = A

(
A∑

a=1
d

(ai)
k

)
Jti

(
A∑

a=0
x̃

(a)
k· β(ia)

)(
β(ij)

)T
if 0 < i < A

(5.85)

are defined for all elements k ∈ Ss. As a direct consequence of definition 5.76, these
factors can be passed backwards from layer i to j to determine equation 5.84, which is
why this approach is called backpropagation. The partial derivatives of the predictions
ŷs

k· with respect to the parameters β(ij) required for this purpose are then given by

∂(ŷs
k·)

∂
(
vec

(
β(ij)

)) =


Jti

(
A∑

a=0
x̃

(a)
k· β(ia)

)
⊗ x̃

(j)
k· if i = A

(
A∑

a=1
d

(ai)
k

)(
Jti

(
A∑

a=0
x̃

(a)
k· β(ia)

)
⊗ x̃

(j)
k·

)
if 0 < i < A .

.(5.86)

Here, ⊗ denotes the Kronecker product, and Jti is the Jacobian matrix of the i-th layer’s
activation function, examples of which are discussed below (cf. Bishop, 1995, pp. 263 ff;
Goller and Kuchler, 1996; Hagan et al., 1996, p. 11-7 ff; Ripley, 1996, pp. 150 ff; Hastie,
Tibshirani and Friedman, 2008, p. 396).
For neural networks that are not strictly feeding forward, solutions can be found by
very similar strategies, e.g. by backpropagation through time or structure (cf. Mozer,
1995, pp. 354 f; Goller and Kuchler, 1996) as well as real-time recurrent learning. These
approaches strongly resemble the method presented above, but unfold (iterate through)
the recursive connection a finite number of times while calculating the parameter updates
(cf. Hagan et al., 1996, p. 14-11 ff).
Equations 5.76 to 5.86 describe structure and estimation techniques for general ANNs. A
brief overview of selected distance and activation functions specifically used throughout
this thesis is given in the following paragraphs. Common choices for loss functions to be
applied to each observation (cf. equation 5.82) are the squared (or quadratic) loss

δ̃Q (ŷs
i·) := ||ys

i· − ŷs
i·||

2
2 (5.87)

in case of continuous dependent variables. For categorical outcomes, the cross-entropy
(or deviance)

δ̃D (ŷs
i·) := − ys

i· ◦ log (ŷs
i·) (5.88)

can be used, which is e.g. motivated by the estimated Kullback-Leibler distance (negative
log-likelihood) used in sections 5.1.3 and 5.1.4. The derivatives of these loss functions are
given by

J
δ̃Q

(ŷs
i·) = − 2 · (ys

i· − ŷs
i·) (5.89)

and
J

δ̃D
(ŷs

i·) = − ys
i· ⊘ ŷs

i· (5.90)
(cf. Bishop, 1995, pp. 89 ff, 237 ff; Hastie, Tibshirani and Friedman, 2008, pp. 395 ff).
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Typical choices for activation functions ti that are relevant in the present context are
the linear and the softmax function. To introduce these functions, preliminarily note
that equations 5.85 and 5.86 are calculated separately for each element k = 1, . . . , ns.
Therefore, tedious tensor or array notation can once again be avoided by defining the
transformations in a row-wise fashion, i.e. applied to a vector v ∈ Rh, such that their
derivatives are again given in form of Jacobian matrices. Computationally, an array
containing the ns resulting Jacobians is used in backpropagation. By multiplication with
the Jacobian of the distance function and summation over all observations as introduced
in equation 5.83, this array is reduced to an aggregate Jacobian matrix (cf. Bishop, 1995,
pp. 140 ff). Following these considerations, the linear activation function is defined by

t(l) (v) := v (5.91)

with corresponding Jacobian matrix

Jt(l) (v) = Ih . (5.92)

The softmax function is defined by

t(s) (v) := softmax (v) = exp (v) ·
∣∣∣∣∣∣(exp (v))◦(−1)

∣∣∣∣∣∣
1

. (5.93)

Its Jacobian is

Jt(s) (v) = − aTa + diag
(
a◦2 + a ◦ (1h×1 − a)

)
, (5.94)

where a := softmax (v) (cf. Bishop, 1995, p. 64; Hagan et al., 1996, p. 24-6 ff). Note
that if a bias (intercept) column is added to the transformation, a leading row of zeros
is inserted in the Jacobian matrices because the constant is not determined by v. These
functions are just a small subset of the many activation functions that can be used
for ANNs. Further examples include the hyperbolic tangent, radial basis or rectified
linear unit activation functions (cf. e.g. Bishop, 1995, pp. 121 ff; Hastie, Tibshirani and
Friedman, 2008, p. 392; Schmidt-Hieber et al., 2020).
An important advantage of ANNs is that many of the approaches presented before can
be seen as special cases thereof, which are determined by the choice of distance and
activation functions. In particular, this holds for the (generalized) linear and additive
regression models, as long as the transformation functions are fixed and differentiable
(cf. Hagan et al., 1996, p. 22-17 ff; Hastie, Tibshirani and Friedman, 2008, pp. 392 ff;
Venables and Ripley, 2002, pp. 243 ff). Examples thereof are the linear regression (cf.
section 5.1.2), which uses the squared loss and linear activation function, as well as GLMs
and GAMs for binary data, which typically use special cases of the cross-entropy loss and
softmax activation function. Furthermore, the multinomial regression is an ANN without
any hidden layers, using the softmax activation and cross-entropy distance function. In
case of categorical variables, Y represents one indicator (dummy) variable for each of
the o possible values (cf. Hastie, Tibshirani and Friedman, 2008, pp. 389 ff; Venables
and Ripley, 2002, pp. 243 ff). Further special cases of ANNs include certain types of
the projection pursuit regression, but the latter usually uses fewer but more complex
transformation functions (cf. Hastie, Tibshirani and Friedman, 2008, pp. 394 f).
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As described above, the most common fitting method for neural networks is backprop-
agation (gradient descent), mainly because ANNs usually have a large number of free
parameters. Backpropagation typically results in algorithms requiring more but cheaper
iterations than methods using the actual Hessian matrix or more refined substitutes. The
latter are applied for most of the special cases discussed above, which may lead to deviating
results in parameter estimates. However, ANNs themselves can likewise be estimated e.g.
by Newton or Quasi-Newton approaches, provided that all required derivatives exist (cf.
Bishop, 1995, pp. 287 ff; Hagan et al., 1996, p. 9-10 ff; Ripley, 1996, pp. 158 ff).
Established activation functions already offer a tremendous flexibility. Nevertheless, a
further convenient feature of artificial neural networks that are fit by backpropagation is
that it is rather straightforward to introduce new transformation functions. Incorporating
a new activation function in an ANN merely requires implementation of this function
and its Jacobian, i.e. as in equations 5.91 to 5.94 (cf. e.g. Bishop, 1995, pp. 121 ff).
This property is used in the following section 5.1.9 to further integrate the ideas of
artificial neural networks and generalized additive models. In particular, a non-parametric
component based on B-spline layers with optimized knot positioning is introduced.

5.1.9 Semi-parametric Artificial Neural Networks
The connection between semi-parametric GAMs on the one and ANNs on the other side
is regularly emphasized and deepened (cf. e.g. Brath, Montanari and Toth, 2002; Breidt
and Opsomer, 2009, p. 106; Insua and Müller, 1998; Ripley, 1996, pp. 182 ff; Schmidt-
Hieber et al., 2020; Specht et al., 1991). As outlined in section 5.1.6, B-splines are the
perhaps most common transformation used in the context of GAMs and have various
further applications (cf. e.g. Böhm, Farin and Kahmann, 1984; Hastie and Tibshirani,
1986; Wood, 2017, pp. 142 ff). At the same time, artificial neural networks introduced
in section 5.1.8 are very flexible and can be used to represent many important types of
models. As a consequence, there are various approaches to use splines as transformations
for artificial neural networks (cf. e.g. Folgheraiter, 2016; Guarnieri, Piazza and Uncini,
1999; Hong and Chen, 2011; Lin et al., 2006; Raya-Armenta, Lozano-Garcia and Avina-
Cervantes, 2018; Wang and Lei, 2001; Zhang et al., 2017).
One problem in this regard is that spline base functions generally depend on the input
variables as well as the vectors of knots. For the regression context, these knots are
often considered to be prespecified and fix (cf. section 5.1.6; Hastie and Tibshirani, 1990,
p. 247; Wood, 2017, pp. 122 ff), a limitation that is e.g. tackled by the MARS algorithm
(cf. section 5.1.7; Friedman, 1991a,b).
When considering the application of spline transformations as general activation functions
in artificial neural networks, both the fixed knots approach as well as the trial-and-error
strategy of the MARS algorithm appear sensible only for transformations of the input
variables X̃

(0) but not of derived features X̃
(i) (i > 0). On the one hand, splines require

knots that span the entire range of possible input values to yield adequate results. This
is because the respective base functions become zero for values beyond the first or the
last knot and, thus, perform poorly for extrapolation outside the interval between these
knots (cf. equations 5.58 and 5.74; Hastie, Tibshirani and Friedman, 2008, p. 144; Piegl
and Tiller, 1997, p. 58). Since the realized values of the derived features in an ANN may
change in every iteration of the fitting procedure (cf. definition 5.76), an adequate spline
transformation of these derived features is, hence, not possible when using predetermined
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knots that are not adjusted to the changes in the range of X̃
(i). On the other hand,

the approach proposed for the MARS algorithm is capable of adjusting the knots to the
changes in the derived features between iterations of the fitting procedure. However, it
cannot be incorporated in backpropagation, which heavily relies on recursive applications
of the chain rule to represent the interdependencies between parameters in an ANN.
This would no longer be possible if the knots were, as in the MARS algorithm, updated
independently from the remaining parameters since the gradient information used to
update all other coefficients would not account for any changes in the knots (cf. sections
5.1.7 and 5.1.8). Backpropagation as the most prevalent fitting method for ANNs is
hence not compatible with the MARS approach because the dependencies between knots
and regression coefficients in the ANN cannot be represented correctly for updating the
parameters in this case. Basically the same argument holds when considering the use of
knots that are evenly spaced over the range or quantiles of the input variables because
these knots would require adjustments for every update of the derived features as well.
As a consequence, current extensions and applications of splines in context of artificial
neural networks are limited to transformations of the input variables alone. In some
cases, the knots used for this purpose are optimized by heuristic approaches, such as
simulated annealing and evolutionary algorithms, which again leads to trial-and-error
components in conjunction with random permutations of the input (cf. e.g. Santos Coelho
and Guerra, 2008; Van To and Kositviwat, 2005; Yiu et al., 2001). Such strategies rely
on comparably costly iterative procedures for each update of the knots, which is why a
set of prespecified knots is used in most cases (cf. e.g. Folgheraiter, 2016, p. 8; Hong and
Chen, 2011, p. 820; Lin et al., 2006, p. 1447; Raya-Armenta, Lozano-Garcia and Avina-
Cervantes, 2018, p. 2805; Wang and Lei, 2001, p. 6; Zhang et al., 2017, p. 12), or a fixed
transformation is applied to approximate a spline’s behavior (cf. Guarnieri, Piazza and
Uncini, 1999).
However, neural networks can be used to perform knot selection for B-splines by means
of gradient-based optimization. For example, Laube, Franz and Umlauf (2018) employ
two separate ANNs to choose knots as well as regression coefficients for graphical curve
and surface approximations via B-splines.
As a generalization of this approach, the following paragraphs introduce semi-parametric
artificial neural networks. The basic idea is to incorporate general B-spline layers in an
ANN, a strategy that allows for adaptive optimized B-spline transformations of input
variables and derived features while maintaining the feasibility of backpropagation. By
helping to overcome the limitations outlined above, this new methodological proposal
extends and generalizes the use of non-parametric components in artificial neural networks
within and beyond the regression context.
When including a B-spline layer as the i-th layer in an ANN, the output of this layer is
defined by equation 5.63, i.e. as B-spline base functions of degree l applied to the input
X̃

(j) obtained from an arbitrary layer j ̸= i:

X̃
(i) := ti

(
X̃

(j)
, KX̃

(j)

(i)

)

=
Bl

1

(
x̃

(j)
·1 , K

x̃
(j)
·1

(i)

)
· · · Bl

s

(
x̃(j)

·cj
, K

x̃
(j)
·cj

(i)

) .

(5.95)
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As before is cj = ncol
(

X̃
(j)
)

the number of columns in X̃
(j), while s =

∣∣∣∣∣K x̃
(j)
·cj

(i)

∣∣∣∣∣+ l − 1

in this context denotes the number of B-spline base functions resulting for the last input
column x̃(j)

·cj
in X̃

(j). The vectors of knots that are used to transform all cj input columns
x̃(j)

·1 . . . x̃(j)
·cj

are specific for output layer i and, as in equation 5.62, concatenated in

KX̃
(j)

(i) :=
[(

K
x̃

(j)
·1

(i)

)T

. . .

(
K

x̃
(j)
·cj

(i)

)T]T

. (5.96)

Therefore, KX̃
(j)

(i) is considered as the vector of neural network parameters for B-spline
layer i. Note that in order to simplify notation, X̃

(j) is the sole input in this represen-
tation. This does not limit generality because transformations of different input layers
are independent, such that multiple B-spline layers can be used to transform the output
of multiple other layers. By using concatenation layers, the output from an arbitrary
number of B-spline (or any other) layers can then be combined if necessary.4

For optimizing the B-spline knots when fitting an ANN, the same logic that is used for
equations 5.85 and 5.86 can be applied. For this purpose, the backpropagation factors for
spline layer i with respect to input layer j are defined as

d
(ij)
k :=



∂
(

ti

(
x̃

(j)
k· , KX̃

(j)

(i)

))
∂
(
x̃

(j)
k·

) if i = A

(
A∑

a=1
d

(ai)
k

)∂
(

ti

(
x̃

(j)
k· , KX̃

(j)

(i)

))
∂
(
x̃

(j)
k·

) if 0 < i < A

(5.97)

for all k ∈ Ss. Calculating these factors requires the block-diagonal matrix

∂
(

ti

(
x̃

(j)
k· , KX̃

(j)

(i)

))
∂
(
x̃

(j)
k·

) =


D(1) 0 · · · 0

0 D(2) · · · 0
... ... . . . ...
0 · · · 0 D(cj)

 . (5.98)

Its elements

D(m) :=
∂
(

ti

(
x̃

(j)
km, K

x̃
(j)
·m

(i)

))
∂
(
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km
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(j)
km

)


T (5.99)

for all m = 1, . . . , cj can be determined using equation 5.67. In this context denoted by
h =

∣∣∣∣K x̃
(j)
·m

(i)

∣∣∣∣+l−1 is the number of resulting base functions of degree l for input column x̃(j)
·m .

4 Concatenation layers simply have an identity link and fixed identity matrices as coefficients.
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The corresponding derivatives of the predictions with respect to the vector of knots are
given by

∂(ŷi·)

∂
(

K
x̃

(j)
·m

(i)

) =



∂
(

ti
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x̃

(j)
km, K
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(j)
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))
∂
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a=1
d
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(
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(
x̃

(j)
km, K

x̃
(j)
·m

(i)

))
∂
(

K
x̃

(j)
·m

(i)

) if 0 < i < A ,

(5.100)

which can be computed using equation 5.69.
The above considerations allow including general B-spline layers with optimized knot
positioning in the structure and fitting procedure of artificial neural networks. The
backward pass is defined by using coefficients KX̃

(j)

(i) instead of β(ij) in equations 5.80
and 5.86, which requires application of equalities 5.97 and 5.100 in backpropagation. The
forward pass is determined by equations 5.76 and 5.95. Since current pre-existing software
packages for ANNs do not consider such spline layers, a custom-made C++ implementation
of semi-parametric ANNs is developed in the context of this thesis. An outline is given
in section 6.1.2, more details can be found in appendix C.2. Among others, one purpose
of this implementation is to evaluate such ANNs in the Monte Carlo simulations and the
application study in chapters 6 and 7.
An alternative machine learning approach that is proposed for prediction from non-
probability samples and sometimes compared to ANNs is constituted by support vector
machines (cf. e.g. Buelens, Burger and van den Brakel, 2018, p. 323; Xu et al., 2013,
p. 33). These models are likewise based on non-linear transformations of the independent
variables, but rely on a single transformation. In that way, they can efficiently apply
high-dimensional transformations by using a specialized optimization approach. Support
vector machines are introduced in the following section 5.1.10.

5.1.10 Support Vector Machines
To fit a non-linear prediction model for Y , the basic idea of support vector machines
(SVMs) is to apply linear methods in a transformed space of the input variables. There-
fore, they are non-linear in the original space of Xs and can be seen as ANNs with a
single hidden layer (cf. Boser, Guyon and Vapnik, 1992, p. 144). The main difference
between SVMs and the models discussed so far lies in the fitting method: by focusing
on influential observations, optimization for SVMs is considered advantageous in case
of certain high-dimensional transformations (cf. Hastie, Tibshirani and Friedman, 2008,
p. 431). Since support vector machines can be used for classification (cf. Boser, Guyon
and Vapnik, 1992) as well as continuous regression tasks (cf. Drucker et al., 1997), both
cases are introduced in the following overview.
To start with classification tasks, the support vector classifier considers a single binary
variable of interest, yt

·l ∈ {−1; 1}nt
. Similar as in the previous sections, a matrix of

transformed predictors X̃
t := t (X t) ∈ Rnt×h is constructed by means of a transformation

t : Rnt×p → Rnt×h, where x̃t
·1 := 1nt×1 constitutes an intercept column. To obtain
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predictions based on a vector of parameters β ∈ Rh, a decision boundary

F (β) := β1 +
h∑

j=2
x̃t

ij · βj = X̃
t
β (5.101)

is constructed. For F (β) = 0, this boundary constitutes a hyperplane which is intended to
separate the two classes in an optimal way. Correspondingly, the predictions are defined
by

ŷt
·l := sign

(
X̃

t
β
)

, (5.102)

where the sign-function sign : Rnt → {−1; 1}nt
is applied element-wise (cf. Boser, Guyon

and Vapnik, 1992, p. 145).
The main difference between SVMs and the methods discussed before lies in the formu-
lation of the optimization problem. The underlying idea for classification is to determine
the coefficients β ∈ Rh from data set s, such that the minimal distance e ∈ R≥0 between
the hyperplane and observations of each group is maximized. For cases when perfect
separation is not feasible, a slack variable ξ ∈ Rns

≥0 similar to those used in section
4.2.2.2 is required to quantify the violation of this ideal classification. A penalty for
such violations is added to the distance function by multiplying ξ with a given vector
of individual penalty (or cost) parameters c ∈ Rns

≥0. Note that c, for example, can be a
vector of survey weights. The preliminary optimization problem is then given by

argmin
(β,ξ)

1
2 ·

h∑
j=2

β2
j + cTξ


s. t. ys

·l ◦ ŷs
·l + ξ ≥ 1ns×1

ξ ≥ 0ns×1 ,

(5.103)

where inequalities are applied component-wise. Note that the minimal margin e does not
occur in this problem since it is fixed by

e :=


√√√√√ h∑

j=2
β2

j


−1

. (5.104)

This can be arbitrarily defined, as the hyperplane is orthogonal to
[
β2, . . . , βh

]T
. There-

fore, any scalar multiple of this vector constitutes the same hyperplane for an adjusted
value of the intercept β1. Definition 5.104 merely selects one of an infinite number of
possible solutions for the same hyperplane. The support vectors in problem 5.103 are
given by the values

[
xs

i· ys
il

]
for all i ∈ {j : ξj > 0}. These contain the observed values

that are relevant for obtaining the final parameters, all other observations (for which
ξj = 0) are disregarded in that respect (cf. Boser, Guyon and Vapnik, 1992, p. 146;
Hastie, Tibshirani and Friedman, 2008, pp. 129 ff, 418 ff).
Problem 5.103 can be solved by means of the methods discussed in chapter 4. However,
the reason that SVMs gain advantages when the number of transformations h = ncol

(
X̃

s)
is large lies in the fact that the problem can be reformulated in dual form (cf. appendix
B.4.5.1; Boser, Guyon and Vapnik, 1992; Cortes and Vapnik, 1995; Geiger and Kanzow,
2002, pp. 314 ff). In that case, optimization can be done solely for the Lagrange multipliers
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α ∈ Rns that are used to enforce the margin (first inequality) constraint in problem 5.103.
Defining the optimization parameters as Θ := α, the dual optimization problem is then
defined by

Θ∗ = argmin
Θ

(1
2ΘTQΘ− 11×nsΘ

)
s. t. (ys

·l)
T Θ != 0

Θ ≥ 0ns×1

Θ ≤ c ,

(5.105)

where inequalities are again applied element-wise. The quadratic multiplier is defined by

Q :=
(
ys

·l (ys
·l)

T
)
◦
(

X̃
s
·I

(
X̃

s
·I

)T
)
∈ Rns×ns

, (5.106)

for which X̃
s
·I using I := {2, . . . , h} denotes all variables in X̃

s except the intercept
column. This approach can reduce the number of optimization parameters to the number
of observations in case of a large number of transformations h > ns.
The convex quadratic problem 5.105 has exactly the same form as problem 4.13 because
Θ ≥ 0ns×1 can be equivalently written as −Θ ≤ 0ns×1. Problem 5.105 may therefore be
solved using the methods discussed in section 4.2.2.1 (cf. Hastie, Tibshirani and Friedman,
2008, pp. 420 f). However, Q grows quadratically with increasing sample size, and the
constraints each concern only a single observation. Therefore, it is more common to use
decomposition methods in this context. These iteratively select a subset of observations
as working set, and solve problem 5.105 for this subset. Different strategies are available
for this purpose, an overview is given by Chang and Lin (2011) as well as Fan, Chen
and Lin (2005). The support vectors in the dual problem are defined by

[
xs

i· ys
il

]
for all

i ∈ {j : αj > 0}.
Once the Lagrange multipliers are found, regression parameters β are determined to define
the separating hyperplane and predictions. Using the KKT-conditions (cf. definition 4.12;
Karush, 1939, quoted in Kjeldsen, 2000; Kuhn and Tucker, 1951), β is found as

βj = (α ◦ ys
·l)

T x̃s
·j for all j = 2, . . . , h (5.107a)

and

β1 = E
ys

il −
h∑

j=2
xs

ij · βj

∣∣∣∣∣∣0 < αi < ci

 . (5.107b)

If the condition in equation 5.107b is not met by any αi, the intercept is determined as

β1 ≈
1
2 ·
Max

ys
il −

h∑
j=2

x̃s
ij · βj

∣∣∣∣∣∣αi = ci, ys
il = −1


+ Min

ys
il −

h∑
j=2

x̃s
ij · βj

∣∣∣∣∣∣αi = ci, ys
il = 1

 (5.107c)

(cf. appendix B.4.5.1; Chang and Lin, 2011, p. 10; Smola and Schölkopf, 2004, p. 201).
Extensions of the support vector classifier to more than two classes are typically based
on solving multiple binary classification problems (cf. e.g. Friedman, 1996; Hastie and
Tibshirani, 1998).
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To apply similar ideas for regression of continuous dependent variables yt
·k ∈ Rnt , support

vector regression can be used. Just like in the least-squares model for transformations X̃
t

(cf. sections 5.1.2 and 5.1.6), the predictions are defined by

ŷt
·i := X̃

t
β . (5.108)

The parameters β are determined from data set s similarly as for the support vector
classifier. Following a closely related reasoning, a regression line (hyperplane) that is linear
in the transformed but non-linear in the original space of Xs is sought. As the prediction
error here is constituted by the absolute distance of observations to this regression surface,
the maximal permissible distance of points to the regression line is constrained by e ∈
R≥0. Thus, support vector regression reduces the number of observations needed to
compute the parameters, by taking into account only residuals larger than e. Again,
slack-variables ξ, ξ∗ ∈ Rns

≥0 are used to quantify the violation of the given boundary
e. As for the support vector classifier, c ∈ Rns

≥0 is a vector of observation-specific cost
parameters attributed to these slack variables, which can be survey weights. The primal
and preliminary optimization problem in this setting is given by

argmin
(β,ξ,ξ*)

(
1
2 ·

h∑
j=2

β2
j + cT (ξ + ξ∗)

)

s. t. ys
·l − ŷs

·l − ξ ≤ e

ŷs
·l − ys

·l − ξ∗ ≤ e

ξ, ξ∗ ≥ 0ns×1 .

(5.109)

Similar as before, observed values for elements with absolute prediction errors above the
boundary e constitute the support vectors

[
xs

i· ys
il

]
for all i ∈

{
(j : ξj > 0) ∨

(
ξ∗

j > 0
)}

that are relevant for determining the final parameters, and inequalities are applied compo-
nent-wise (cf. Hastie, Tibshirani and Friedman, 2008, p. 436).
Just like for the support vector classifier, problem 5.109 can be solved by using the methods
discussed in chapter 4 but is again more conveniently reformulated in dual form to reduce
the problem’s dimension if the number of columns in X̃

s is large. For Lagrange parameters
α, α∗ ∈ Rns corresponding to the margin (first two inequality) constraints in problem
5.109, the optimization parameters are given by Θ :=

[
αT (α∗)T

]T
. The resulting

optimization problem is then

Θ∗ = argmin
Θ

(
1
2 ·Θ

T
[

Q −Q
−Q Q

]
Θ−ΘT

[
e · 1ns×1 + ys

·l
e · 1ns×1 − ys

·l

])
s. t.

[
11×ns −11×ns

]
Θ != 0
Θ ≥ 0(2·ns)×1

Θ ≤
[
cT cT

]T
.

(5.110)

The quadratic multiplier in this case is constituted by elements

Q := X̃
s
·I

(
X̃

s
·I

)T
∈ Rns×ns

, (5.111)

again denoting by X̃
s
·I for I := {2, . . . , h} all transformed variables in X̃

s except the inter-
cept column. The equality constraint in problem 5.110 simply requires that ||αi −α∗

i ||1 = 0,
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and the inequalities constitute box-constraints for the Lagrange multipliers, such that
0 ≤ αi , α∗

i ≤ ci holds for all i ∈ Ss (cf. appendix B.4.5.2; Chang and Lin, 2011, p. 8).
Again, the convex quadratic problem 5.110 is exactly in the form of problem 4.13 and may
readily be solved using the methods discussed in section 4.2.2.1 (cf. Hastie, Tibshirani and
Friedman, 2008, pp. 420 f). As for the support vector classifier, however, it is commonly
decomposed into smaller problems of the same form to improve computability for large
samples (cf. Chang and Lin, 2011; Fan, Chen and Lin, 2005).
Once the Lagrange multipliers are found, regression parameters can be calculated from the
support vectors by using the KKT-conditions (cf. definition 4.12; Karush, 1939, quoted
in Kjeldsen, 2000; Kuhn and Tucker, 1951). The parameters are determined by

βj = (α−α∗)T x̃s
·j for all j = 2, . . . , h (5.112a)

and

β1 = 1
2 ·

E
ys

il + e−
h∑

j=2
x̃s

ij · βj

∣∣∣∣∣∣0 < α∗
i < ci



+ E
ys

il − e−
h∑

j=2
x̃s

ij · βj

∣∣∣∣∣∣0 < αi < ci


 .

(5.112b)

If the conditions in equation 5.112b are not met by any αi or α∗
i , the intercept is

determined as

β1 ≈
1
2 ·

Max
ys

il + e−
h∑

j=2
x̃s

ij · βj

∣∣∣∣∣∣α∗
i = ci



+ Min
ys

il − e−
h∑

j=2
x̃s

ij · βj

∣∣∣∣∣∣αi = ci




(5.112c)

(cf. appendix B.4.5.2; Chang and Lin, 2011, p. 10; Smola and Schölkopf, 2004, p. 201).
As outlined in the previous discussion, the quadratic multipliers Q in the dual problems
5.105 and 5.110 are determined by using the matrix product X̃

s
·I

(
X̃

s
·I

)T
that includes

all columns in X̃
s except the intercept column (cf. equations 5.106 and 5.111). At the

same time, the number of optimization parameters is not influenced by the number of
columns h in X̃

s. Therefore, solving the dual optimization problems for SVMs solely
requires the above matrix product, but not the actual transformation t. In fact, only the
kernel function

K
(
xs

i·, xs
j·

)
:=

(
t
(
xs

j·

))T
t (xs

i·) = (x̃s
i·)

T x̃s
j· (5.113)

that returns the inner product of two transformed observations needs to be specified and
evaluated for SVMs (cf. Boser, Guyon and Vapnik, 1992, pp. 147 f; Chang and Lin, 2011,
p. 3; Cortes and Vapnik, 1995, p. 283). As a result, SVMs provide an approach for using
transformations to very high and even infinite dimensional spaces, as long as these are
represented by such a kernel function K that can be evaluated (cf. Cortes and Vapnik,
1995, p. 276; Hastie, Tibshirani and Friedman, 2008, p. 423). There are various choices
for K, such as radial (Gaussian), polynomial and hyperbolic tangent functions, for which
an overview with discussion is given by Smola and Schölkopf (2004, pp. 201 ff).
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Support vector machines strongly depend on the penalization of parameter volatility in
their loss function, which is expressed by the sum of squared slope parameters in equations
5.103 and 5.109 (cf. Hastie, Tibshirani and Friedman, 2008, p. 424). Similar as for smooth-
ing and P-splines (cf. section 5.1.6), this penalty constitutes an essential component of
SVMs. However, such penalties can also be applied for any of the other models discussed
throughout the current section 5.1. When used for this purpose, penalization is also
referred to as ‘shrinkage’ (cf. e.g. Berk, 2008, pp. 70 ff; Hastie, Tibshirani and Friedman,
2008, pp. 61 ff), for which an overview is given in the following section 5.1.11.

5.1.11 Shrinkage Methods
Various prediction models are described in the previous sections 5.1.1 to 5.1.10. They all
rely on different assumptions about the relationships (and partially the distributions)
of dependent and independent variables. Yet, model fitting is mostly done in quite
similar ways, i.e. through minimization of a loss function by means of the gradient based
optimization methods described in section 4.2.
Shrinkage or regularization methods constitute an extension to this approach. As such,
they can be viewed as an adaptation of the fitting techniques presented so far rather than
defining new types of models. These methods are particularly useful in cases of ill-posed
problems, for which a (unique) solution to the optimization may not even exist without
shrinkage. Examples can be found in cases where the number of (potential) predictors b
is high, where ‘high’ is usually expressed in relation to the number of observations ns in
data set s to which the model is fit. The rationale behind this idea is that if the ratio
b/ns approaches one, the variability of parameters Θ and predictions Ŷ usually increases
heavily. In cases where this ratio exceeds one, a unique solution to the optimization
problem does often not even exist (cf. e.g. Breidt and Opsomer, 2017, p. 202; Hastie,
Tibshirani and Friedman, 2008, pp. 61 ff; Friedman, Hastie and Tibshirani, 2010, p. 3).
Often, it is sensible to make a qualified choice for including certain potential explanatory
variables and excluding others, e.g. on grounds of theoretical justification and/or cross-
validation. An overview is provided by Hastie, Tibshirani and Friedman (2008, pp. 219 ff)
and James et al. (2013, pp. 202 ff). For cases where such a choice is not feasible,
shrinkage methods address this difficulty by incorporating a measure of variability for the
optimization parameters Θ ∈ Rh directly in the model fitting procedure. The variability
is quantified by a non-negative penalty function p : Rh → R≥0 and limited by including
an (additional) constraint of the form

p (Θ) ≤ b (5.114)

for some prespecified constant b ≥ 0. The KKT-conditions 4.12 state that an optimal
solution

[
(Θ∗)T α

]T
fulfills

Jδ (Θ∗) + α · Jp (Θ∗) = 0
p (Θ∗)− b ≤ 0

α ≥ 0
α · (p (Θ∗)− b) = 0 ,

(5.115)

where δ : Rh → R is the model’s original loss function and α ∈ R is a Lagrange multiplier
for constraint 5.114.
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In principle, SQP-methods as presented in section 4.2.2 can be used to find a solution
for this problem. However, it is often considered to be computationally advantageous
to perform unconstrained optimization and use a penalized version of δ: by choosing
b := p (Θ∗), it is easy to see that

Θ∗ = Θ (λ) := argmin
Θ

(δ (Θ) + λ · p (Θ)) (5.116)

fulfills conditions 5.115 for λ = α (cf. Kloft et al., 2011, pp. 990 f). To denote their
dependency on the penalty or shrinkage parameter λ ∈ R≥0, the optimal parameters are
expressed as a function Θ : R≥0 → Rh of λ in this specification. Since b is a monotonically
decreasing function of λ, it is usually computationally simpler to minimize the penalized
version of the original loss function δ defined in equation 5.116 rather than solving an
optimization problem under constraint 5.114 (cf. Fan and Li, 2006; Hastie, Tibshirani and
Friedman, 2008, pp. 61 ff; Hoerl and Kennard, 1970; Tibshirani, 1996; 1997). Strategies for
choosing λ in this penalization context are described below. As long as p is differentiable
once or twice (as required by the applied optimization algorithm), penalization simply
results in adding λ times the respective Jacobian Jp (Θ) and, where required, Hessian
Hp (Θ) to the ones derived for the unpenalized model. By means of this extension,
optimization is guided towards lower variation in parameters (and hence predictions) as
expressed by p. The downside is that penalty terms can induce bias to the parameter
estimates and predictions, a problem which is commonly referred to as the bias-variance
trade-off (cf. e.g. Berk, 2008, pp. 70 ff; Hoerl and Kennard, 1970, pp. 60 f; James et al.,
2013, pp. 217 ff).
Regularization is, for example, used in support vector machines to achieve a unique
solution and for smoothing and P-splines to reduce volatility of the regression function
(cf. sections 5.1.6 and 5.1.10). In the general regression context, p is commonly chosen
to be a vector norm, for which Fan and Li (2006) show that it includes many model
selection criteria used throughout different scientific disciplines as special cases. The two
most prominent shrinkage methods in this field are ridge regression proposed by Hoerl and
Kennard (1970) and LASSO (‘least absolute shrinkage and selection operator’) introduced
by Tibshirani (1996; cf. e.g. Berk, 2008, pp. 70 ff; James et al., 2013, pp. 214 ff; Ruppert,
Wand and Carroll, 2003, pp. 65 ff). Note that intercept parameters are typically not
penalized to prevent bias in the overall mean of the predictions. Therefore, a vector
c =

[
c1 . . . ch

]T
∈ {0; 1}h is used to exclude these elements of Θ in the following

discussion and simplify notation, i.e. it is one only for non-intercept parameters and zero
else: ci := I (Θi is not an intercept parameter).
In ridge regression, p is chosen to be the squared 2-norm, i.e.

pr (Θ) := cTΘ◦2 = ||ΘI||22 , (5.117)

where I := {i : ci = 1} selects the non-intercept elements of Θ. In this case, the Jacobian
and Hessian matrix are given by

Jpr (Θ) = 2 · (c ◦Θ)T (5.118)

and
Hpr (Θ) = 2 · diag (c) . (5.119)
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In contrast, the LASSO uses the 1-norm, such that

pl (Θ) := cT Abs (Θ) = ||ΘI||1 , (5.120)

with I as before. The first and second derivatives respectively are

∂ (pl (Θ))
∂ (Θj)

= cj ◦ sign (Θj) for all Θj ̸= 0

∂2 (pl (Θ))
∂ (Θj) ∂ (Θj)

= 0 for all Θj ̸= 0 ,

(5.121)

but the Jacobian and Hessian matrix of pl do not exist because the absolute value function
is not differentiable at zero. Therefore, it is difficult to include the LASSO shrinkage into a
general unconstrained optimization scenario in form of equation 5.116. For the context of
(generalized) linear regression models, however, a number of specialized and efficient solu-
tions are available, such as the least angle regression (cf. Efron et al., 2004) and the coordi-
nate descent algorithm (cf. Friedman et al., 2007; Friedman, Hastie and Tibshirani, 2010).
Even though the outlined non-differentiability prevents using a LASSO penalty in general
unconstrained optimization problems, this is still possible in the constrained optimization
procedures discussed in section 4.2.2. Despite the fact that Jacobian and Hessian matrix
of penalty 5.120 do not exist when optimizing w.r.t. Θ, the penalty can be expressed by
decomposing Θ into its positive and negative parts, which are denoted by ξ+, ξ− ∈ Rh

≥0
and included in the optimization problem. Using element-wise inequalities, the constraints

ξ+ − ξ− != Θ
ξ+, ξ− ≥ 0(2·h)×1

(5.122)

allow reformulating equation 5.120 as

pl (Θ) = pl

([(
ξ+
)T (

ξ−
)T
]T
)

= cT
(
ξ+ + ξ−

)
, (5.123)

which is differentiable with respect to ξ+ and ξ−. Using an extended vector of optimization
parameters Θ̃ =

[
ΘT

(
ξ+
)T (

ξ−
)T
]T

, the Jacobian and Hessian matrix of the original
optimization problem can be complemented by the partial derivatives

∂
(
pl

(
Θ̃
))

∂
(
ξ+
) =

∂
(
pl

(
Θ̃
))

∂
(
ξ−
) = 11×h

∂
(
pl

(
Θ̃
))

∂
(
ξ+
)

∂
(
ξ+
) =

∂
(
pl

(
Θ̃
))

∂
(
ξ−
)

∂
(
ξ−
) = 0h×h .

(5.124)

The cost of doing so is having 2·h additional parameters and 3·h supplementary constraints
in the optimization problem (cf. He, 2011, pp. 9 ff).
Therefore, the LASSO is computationally more demanding than the ridge penalty. How-
ever, its advantage is that for sufficiently large values of λ, it will cause some of the
regression coefficients to become exactly zero, thereby providing “a kind of continuous
subset selection” (Hastie, Tibshirani and Friedman, 2008, p. 69) for the auxiliary variables.
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To combine this appealing property with the better computational tractability of ridge
penalties, Zou and Hastie (2005) introduce the elastic-net penalty, which is a convex
combination of both. For regression models, an efficient solution can again be based on
least angle regression (cf. Efron et al., 2004; Zou and Hastie, 2005).
The shrinkage parameter λ may be considered as a fixed constant, but it is more commonly
determined by minimizing a distance measure δ̃ : R≥0 → R≥0, i.e.

λ∗ = argmin
λ

(
δ̃ (λ)

)
. (5.125)

Typically, this distance is an estimate of the expected prediction or generalization error
when the model is used to predict observations that are independent from those considered
for fitting the model. When the distance δ (Θ) that is used to quantify the prediction error
for model fitting depends on the predictions obtained from parameters Θ (cf. sections 5.1.2
to 5.1.6), an estimate for the expected prediction error of λ for the whole population is

δ̃ (λ) = Ê (δ (Θ (λ))) (5.126)

for Θ (λ) as the solution of problem 5.116. Unfortunately, the actual distance value
δ (Θ (λ)) in data set s to which the model is fit is not a good estimate for the generalization
error in equality 5.126. Since it is used to estimate parameters Θ (λ), δ (Θ (λ)) can be
driven to zero if the model is of sufficient complexity, which leads to overfitting. Different
more adequate ways to estimate the generalization error exist, of which (generalized) cross-
validation techniques are the most common ones (cf. e.g. Craven and Wahba, 1979, p. 379;
Hastie, Tibshirani and Friedman, 2008, pp. 219 ff; McLachlan, 2004, pp. 337 ff; Wood,
2017, p. 169). Cross-validation for fitting a model in data set s is described in algorithm 14.

Algorithm 14: Cross-validation algorithm

1: Input: Ss ∈ S; Xs ∈ Rns×p; ys
·a ∈ Rns×o; ws ∈ Rns ; δ̃ : RR≥0 → R≥0; λ ∈ Rc

≥0; b ∈ N
2: Initialize d = 0c×1 and ŷ·a = 0ns×1

3: Randomly partition the set of observations Ss into b mutually exclusive subsets S(l)

of (up to integer rounding precision) size
∣∣∣S(l)

∣∣∣ ≈ ns/b for all l = 1, . . . , b, such that

Ss =
J⋃

l=1
S(l) and ∅ = S(k) ∩ S(l) for all k ̸= l

4: for k = 1, . . . , c do
5: for l = 1, . . . , b do
6: Determine Θ(l) (λk) as the solution to problem 5.116 by fitting a model

ml
(
XI·, Θ(l) (λk)

)
for ys

·a to all observations i ∈ I that are not in the l-th
subset, i.e. I := Ss \ S(l)

7: Use parameters Θ(l) (λk) to predict yS(l)a by ŷS(l)a ← ml
(
XS(l)·, Θ(l) (λk)

)
for

all observations i ∈ S(l) that are not considered for fitting the model
8: end for
9: Calculate dk ← δ̃ (λk) as the expected loss over all predictions in ŷs

·a, which are
uniquely defined since Ss is the union of all mutually exclusive subsets S(l)

10: end for
11: Return: λk for k = Min ({l : dl = Min (d)})
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To determine an optimal value λ∗ of the shrinkage parameter in the sense of problem
5.125 by means of this algorithm, various prespecified candidate values that are combined
in a vector λ ∈ Ru

≥0 are evaluated in a grid search. For each of these values, estimation of
the generalization error requires a sample that is used for fitting the model. To achieve
this requirement, cross-validation removes certain observations i ∈ S(l) from data set s
before model fitting. The remaining observations j ∈

{
Ss \ S(l)

}
are called the training

set because they are used for fitting the model. The generalization error is evaluated
only for observations i ∈ S(l) that are not in the training set and hence referred to as the
validation set. This is repeated for all l = 1, . . . , b subsets S(l), such that the estimated
generalization error can be obtained for the whole data set s. The element of λ which
results in the lowest estimated generalization error is returned as the optimal solution λ∗

(cf. Allen, 1974; Hastie, Tibshirani and Friedman, 2008, pp. 219 ff; Stone, 1974; 1977).
The formulation of this cross-validation algorithm 14 is quite general but can be com-
putationally demanding. This is especially the case when multiple shrinkage parameters
have to be estimated for different shrinkage terms, which is e.g. common for smoothing
and P-splines that use multiple independent variables (cf. Hastie and Tibshirani, 1990,
p. 159; Wood, 2017, p. 170). Important simplifications of leave-one-out cross-validation
are possible if predictions are linear in ŷs

·a, i.e.

ŷs
·a = A (Θ (λ)) ys

·a , (5.127)

where the smoother matrix A (Θ (λ)) for A : Rh → Rns×ns depends on Θ (λ) and hence
on λ but not on ys

·a. Leave-one-out cross-validation results from setting b = 1 in algorithm
14. Consequently, a model mi

(
xs

i·, Θ(i) (λ)
)

that excludes only a single observation i is
fit in step 6 of algorithm 14 for all i = 1, . . . , ns and each candidate value for λ. If the
predictions are linear in ys

·a as in equality 5.127, all these models can be obtained directly
from the full model’s smoother matrix A (Θ (λ)) through

Bys
·a =


m1

(
xs

1·, Θ(1) (λ)
)

...
mns

(
xs

ns·, Θ(ns) (λ)
)
 . (5.128a)

In this context,
B := (A (Θ (λ))−C)⊘ ((Ins −C) 1ns×ns) ∈ Rns×ns (5.128b)

is used to construct the predictions ŷs
ia obtained from a model that is fit excluding element

i for all i ∈ Ss, similarly as A (Θ (λ)) constitutes the predictions of the full model in
equality 5.127. This matrix B is defined by means of

C := diag (diag (A (Θ (λ)))) ∈ Rns×ns
, (5.128c)

which denotes a diagonal matrix that contains only the diagonal elements of A (Θ (λ))
(cf. appendix B.4.6.2; Craven and Wahba, 1979; Hastie and Tibshirani, 1990, pp. 46 ff;
Golub, Heath and Wahba, 1979; Wood, 2017, pp. 169 ff).
For loss functions that are based on the residual sum of squares (cf. e.g. equalities 5.12 and
5.87), Craven and Wahba (1979) as well as Golub, Heath and Wahba (1979) propose a
further simplification, which is referred to as generalized cross-validation. From equalities
5.128, it directly follows that the generalization error for element i when excluding it from
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model fitting is given by

mi
(
xs

i·, Θ(i) (λ)
)
− ys

ia = (1− aii)−1 · (ŷs
ia − ys

ia) (5.129a)
≈ (1− tr (A)/ns )−1 · (ŷs

ia − ys
ia) . (5.129b)

The generalized cross-validation (gcv) criterion is therefore

gcv (λ) := ns · ||ŷs
·a − ys

·a||
2
2

/
(ns − tr (A))2 . (5.130)

The rationale of approximation 5.129b is to replace diagonal element aii in equality 5.129a
by its expectation E (diag (A)) = tr (A)/ns to obtain an asymptotically optimal estimate
for λ. In linear models, tr (A) is simply the number of model parameters, such that
tr (A) is often referred to as the effective number of parameters or degrees of freedom
used for a general smoother matrix A. In addition, the use of generalized cross-validation
further simplifies calculation of squared generalization errors in algorithm 14, which can
be obtained from the full model’s residuals (cf. appendix B.4.6.2; Craven and Wahba,
1979; Hastie and Tibshirani, 1990, pp. 46 ff; Golub, Heath and Wahba, 1979; Wood,
2017, pp. 16, 166 ff).
However, the simplifications obtained from equalities 5.128 to 5.130 are based on equality
5.127 and, hence, do not hold for models that are non-linear in ŷs

·a, e.g. for generalized
linear or additive models. Following O’Sullivan, Yandell and Raynor (1986), Hastie and
Tibshirani (1990, p. 159) nevertheless propose using approximation 5.129b and replace
the residual sum of squares

(
ns · ||ŷs

·a − ys
·a||

2
2

)
by the deviance (−ns · ||ys

·a ◦ log (ŷs
·a)||1)

obtained from the converged GLM or GAM (cf. equation 5.88). The rationale behind
this approach is that a quadratic approximation of the deviance is used in each step of
the iteratively reweighted least squared (or backfitting) procedure, such that the actual
deviance can be used in place of the approximation in the final model. In contrast, Gu
(1990; 1992) proposes optimizing penalty parameters for each single working model that
is fit in the IRWLS procedure. This is motivated by the fact that approximation 5.129b
can be used directly for each of the linear models that are fit to the adjusted dependent
variables to implement Fisher scoring (cf. equalities 5.27 and 5.36). This method can
be computationally faster than using the deviance of the final model because it does not
require performing the entire IRWLS sequence for each potential value of λ, but it may
also lead to convergence issues. A detailed overview and discussion of both approaches is
provided by Wood (2017, pp. 173 ff).
Similarly as for choosing shrinkage parameters, (generalized) cross-validation can be used
to compare the generalization error of different models. Therefore, it can also be used for
variable and model selection as well as for choosing other hyper-parameters based on data
set s. The gcv criterion defined in equality 5.130 is approximately identical to Akaike’s
(1973) information criterion, which is also a common tool for this purpose (cf. Hastie and
Tibshirani, 1990, p. 158; Wood, 2017, p. 174).
All the model-based methods discussed throughout the current section 5.1 rely on the fact
that under conditional independence assumption 5.1, unbiased estimation of fY (yi· |xi· )
from the non-probability sample is possible. Generalization to a population or probability
sample in this context is then achieved by using the distribution of X (cf. equation 5.8).
A different approach is considered in the following section 5.2, where pseudo-design-based
methods for weighting non-probability samples are discussed.
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5.2 Pseudo-design-based Methods: Weighting
For non-probability samples, the unknown and/or uncontrolled nature of the sample
selection process can result in systematically differing distributions of target variables
Y in population and sample. From equation 2.24, it is evident that both are related by

fY nps (yi·)
fY (yi·)

= P (rnps
i = 1 |yi· )

P (rnps
i = 1) , (5.131)

where fY nps (yi·) and fY (yi·) respectively denote the density of Y in the non-probability
sample and the population. If sampling mechanism and variables of interest are related,
this ratio is typically different from one, which may occur in a probability sample as
well. To account for potential bias in this case (cf. section 2.3), one major way is
constituted by model-based approaches discussed in the previous section 5.1. Classi-
cal design-based estimation, however, resolves this matter using design weights that
compensate for the sample selection process (cf. section 2.2 and the references cited
therein). This is achieved by relying on the fact that P (rps

i = 1 |yi· )/P (rps
i = 1) =

E (wps
i | r

ps
i = 1)/E (wps

i |yi·, rps
i = 1) constitutes the right-hand side of equality 5.131 for

a probability sample ps (cf. appendix B; Pfeffermann and Sverchkov, 1999, p. 185).
Therefore, one major issue for estimation from non-probability samples can be seen in
the lack of analogous design weights. As outlined in figure 5.1, pseudo-design-based
methods for non-probability samples deal with this problem by generating some surrogate
weights, which are referred to as pseudo-design weights and denoted by w̃ ∈ Rnnps . These
pseudo-design weights are then substituted for design weights in classical design-based
estimation, i.e. the non-probability sample is treated as if it was obtained by probability
sampling with the corresponding design weights w̃ (cf. Buelens, Burger and van den
Brakel, 2018, pp. 331 f; Elliott and Valliant, 2017, p. 259). These ideas resemble those
of weighting adjustment procedures that are frequently applied for probability samples,
e.g. to compensate for non-response or construct more efficient estimators (cf. e.g. Deville
and Särndal, 1992; Little, 1986; Särndal and Lundström, 2005; Kott, 2006).
In contrast to model-based approaches that rely on the conditional distribution of Y
to compensate for the sample’s selectivity, the basic idea in the pseudo-design-based
framework is to focus on equality 5.131 to achieve the same objective. Since the true
data generating process is typically unknown for non-probability samples, computation
of pseudo-design weights has to rely on some sort of assumptions, of which two main
realizations can be found. First, the right-hand side of equation 5.131 highlights the
relevance of representing the non-probability sample selection process to obtain proper
weights. This suggests the use of response propensities introduced in section 3.6 to express
the relation of conditional and unconditional probabilities of elements being observed in
the non-probability sample. To estimate these propensities, different prediction models
discussed in the previous section 5.1 are adopted. Second, the left-hand side of equality
5.131 requires that weighted sample and population distribution coincide if selectivity is
ignorable. Calibration is therefore based on explicitly adopting constraints that enforce
conformity in certain aspects of distributions (mostly means or totals) for weighting a
non-probability sample. As in the preceding sections, both of these ideas use auxiliary
variables, for which information in- and outside the non-probability sample is required
(cf. e.g. Buelens, Burger and van den Brakel, 2018, p. 332; Dever, Rafferty and Valliant,
2008, p. 60; Pfeffermann, 2015, pp. 443 f; Valliant and Dever, 2011, p. 108).
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In comparison to the model-based approaches discussed in section 5.1, the pseudo-design-
based framework has an appealing property: if a single set of weights can be found
to perfectly describe the sample selection mechanism, it can be applied to estimate any
quantity of interest, just like design weights. Even though this ideal case is rarely realistic,
it is still worthwhile to strive for (cf. Baker et al., 2013b, p. 102; Buelens et al., 2012,
p. 10). Nevertheless, it may often be easier to obtain good prediction models for a single
or few target variables than a good weighting scheme to account for the entire selectivity
of a non-probability sample (cf. Steinmetz, Tijdens and Pedraza, 2009, p. 16).
To summarize, compare and extend methods for non-probability samples, the subsequent
discussion is structured as follows. Weighting based on estimated response propensities
is discussed in section 5.2.1, followed by established calibration methods in section 5.2.2.
In section 5.2.3, both ideas are combined and extended by introducing response models
in the general form of semi-parametric neural networks that can incorporate calibration
constrains for totals, covariances and/or correlations. Sub-sampling constitutes a further
strategy that can be framed as pseudo-design-based (cf. Posner and Ash, 2012, p. 4) and
is described in section 5.2.4.

5.2.1 Response Propensity Weighting
The concept of obtaining weights for non-probability samples is inherently related to
classical design-based estimation. As outlined above (cf. equality 5.131), the first idea
is to mimic the implied but usually unknown inclusion probabilities πnps

i = P (i ∈ Snps)
for a non-probability sample nps. Unfortunately, one sample constitutes only a single
realization of rnps. Consequently, the individual probabilities πnps

i cannot be obtained
as the expected value over all possible samples, which would be the case in probability
sampling (cf. definition 2.3; Schouten, Cobben and Bethlehem, 2009, p. 105). Therefore,
auxiliary variables are used to describe the response process, which are denoted by Z
as before (cf. figure 5.1). If these variables perfectly describe the sampling process, the
true inclusion probabilities πnps could be obtained from Z, just as for probability samples.
Consequently, the response propensity pnps

i = P (rnps
i = 1 | zi· ) for all i ∈ SP (cf. definition

3.27) can be seen as an approximation for πnps
i when assuming probability sampling by

a design that is solely determined through Z (cf. Biffignandi and Pratesi, 2003, p. 8;
Enderle, Münnich and Bruch, 2013, p. 92; Schouten, Shlomo and Skinner, 2009, p. 11).
This corresponds to assuming conditional independence (Y ⊥⊥ rnps) |Z in the form of
assumption 5.1, from which it follows that

pnps
i = P (rnps

i = 1 | zi· ) = P (rnps
i = 1 |yi·, zi· ) . (5.132)

Under this condition, weighting by the inverse of pnps
i achieves unbiasedness for design

linear estimators if pnps
i > 0 for all i ∈ SP, similarly to the Horvitz-Thompson estimator

(cf. appendix B; Dawid, 1979, p. 3; Horvitz and Thompson, 1952, pp. 667 ff; Imbens,
2000, p. 708; Lunceford and Davidian, 2004, p. 2941):

E
( ∑

i∈Snps

yi·
pnps

i

)
=

∑
i∈SP

E
(

E
(

rnps
i · yi·
pnps

i

∣∣∣∣∣yi·, zi·

))

=
∑

i∈SP

E
(

yi· ·
E (rnps

i |yi·, zi· )
pnps

i

)
=
∑

i∈SP

yi· .

(5.133)
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However, the true response propensities are usually unknown because rnps is only a single
realization obtained from a non-probability sampling mechanism that is itself not known.
Therefore, it is typically necessary to rely on a model to obtain estimated response
propensities p̂nps (cf. section 3.6; Rosenbaum and Rubin, 1983, p. 47). In this case, p̂nps

is a prediction from a response model m that is assumed to describe the non-probability
sample selection process, such that

p̂nps
i = P̂ (rnps

i = 1 | zi·) := m (zi·, Θ) for all i ∈ SP . (5.134)

In most applications, one of the models described in section 5.1 is fit to the binary
dependent variable rnps (cf. section 5.1) for this purpose. Generalized linear (logit) models
are of particular relevance in this context, but additive and machine learning models are
increasingly applied as well (cf. section 3.6; Lee, Lessler and Stuart, 2010, pp. 337 ff;
Rosenbaum and Rubin, 1983, p. 47; Schonlau et al., 2009, p. 294; Schouten, Cobben and
Bethlehem, 2009, p. 105). In any case, it is required that observed values of Z in- and
outside the non-probability sample are available because fitting such a model requires
measured variability in rnps. As before, observations outside the non-probability sample
may, for example, come from a full population register or a reference sample (cf. also
sections 3.2 and 3.6).
A closely related but slightly more specialized adaptation is proposed by Elliott (2009,
pp. 2 f) as well as Elliott and Valliant (2017, pp. 256 f), to which the authors refer
as estimation of ‘pseudo-weights’.5 For this approach, it is assumed that the observed
values outside the non-probability sample required to model pnps come from a reference
probability sample res with corresponding inclusion indicator variable rres. Furthermore,
the sampling design generating rres is considered known and either perfectly or at least
very well described by the variables Z. The indicator for whether an element is part of
the non-probability and/or the reference sample is denoted by ru

i := I (i ∈ (Snps ∪ Sres)) ∈
{0; 1} for all i ∈ SP. The true propensity can then be written as

pnps
i ∝ fZ (zi· | rnps

i = 1)
fZ (zi· | rres

i = 1) · P (rres
i = 1 | zi· ) (5.135)

for all i ∈ SP. The fraction applied in relation 5.135 is then determined by

fZ (zi· | rnps
i = 1)

fZ (zi· | rres
i = 1) ≈

fZ (zi· | rnps
i = 1, ru

i = 1)
fZ (zi· | rnps

i = 0, ru
i = 1) ∝

P (rnps
i = 1 | zi·, ru

i = 1)
P (rnps

i = 0 | zi·, ru
i = 1) , (5.136)

assuming that the intersection (Snps ∩ Sres) is negligible, such that ru ≈ rnps + rres

(cf. appendix B). The reason for using such an approximation is that it eases estima-
tion of response propensities since numerator and denominator in the right-hand side
of relation 5.136 are then based on complementary events. The authors propose using
P̂ (rnps

i = 1 | zi·, ru
i = 1) = 1 − P (rnps

i = 0 | zi·, ru
i = 1) = m (zi·, Θ) for estimating the

probability of these events. As in equality 5.134, a model m for rnps is required for this
purpose, but the modeled probability is now conditional on being in the combined sample.
Therefore, the model can be fit without using design weights wres for the reference sample,

5 The phrase ‘pseudo-weights’ is used specifically for the approach proposed by Elliott (2009) as well
as Elliott and Valliant (2017). It is not to be confused with the more general term ‘pseudo-design
weights’, which can refer to any of the weights discussed in the current section 5.2.
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which differentiates it from typical propensity score models (cf. Elliott and Valliant, 2017,
p. 257). From relations 5.135 and 5.136, the estimated propensity scores for all i ∈ SP

follow as
p̂nps

i = m (zi·, Θ)
1−m (zi·, Θ) · P (rres

i = 1 | zi· ) . (5.137)

The model m is thus used for predicting non-probability sample membership for element
i, conditional on i being in the combined sample.
For identifying p̂nps based on this model m, it is still necessary to determine the condi-
tional probability P (rres

i = 1 | zi· ) of element i being in the reference sample given its value
of zi·. If Z includes all design variables used for selecting res, this conditional probability
may be directly obtained from zi· and the reference sample’s design. However, it is more
likely that this is not the case, such that Z does not perfectly describe the sampling design
generating rres. In this scenario, an estimate P̂ (rres

i = 1 | zi·) can be obtained from a model
as well. If this model coincides with m, i.e. by defining P̂ (rres

i = 1 | zi·) := 1−m (zi·, Θ),
equations 5.134 and 5.137 are equivalent (cf. equations 5.135 and 5.136). However, a
central property of probability sample res is that design weights wres are known. Using
this information, Elliott and Valliant (2017, p. 257) propose modeling πres = (wres)◦(−1)

as a function of Z, e.g. by means of beta regression (cf. section 2.2; Ferrari and Cribari-
Neto, 2004). Predictions obtained from this model for πres correspond to the estimated
conditional probabilities P̂ (rres

i = 1 | zi·) required to determine equation 5.137. In any
case, the quality of this approach highly depends on the sample selection of both samples
being well described by variables Z (cf. Elliott and Valliant, 2017, p. 256).
Once response propensities are estimated from equalities 5.134 or 5.137, they are com-
monly used as an approximation for inclusion probabilities in classical design-based es-
timation (cf. equation 5.133 and section 2.2). In analogy to definition 2.13, the pseudo-
design weights

w̃i := wnps
i

p̂nps
i

for all i ∈ Snps (5.138)

in this case result as the inverse estimated response propensities, multiplied by some
initial weights wnps

i . The latter are typically set to ones (wnps := 1nnps×1) if there is no
prior information available to specify them (cf. e.g. Biffignandi and Pratesi, 2000, p. 1528;
Chang and Kott, 2008, p. 556; Lee, Lessler and Stuart, 2010, p. 340; Little, 1988b, p. 293;
Pfeffermann, 2015, p. 444; Särndal and Lundström, 2005, pp. 51, 106; Schonlau et al.,
2009, p. 294; Valliant and Dever, 2011, p. 109).
Despite the validity of equalities 5.133, an issue with propensity weights is that they can
lead to instabilities and high variances due to their reliance on the underlying model. To
reduce the variability of weights and resulting estimates as well as the potential impacts
of a misspecified model, the estimated propensities are often stabilized by creating groups
and using the group-averaged estimated propensity score for weighting. To that end, the
population SP is partitioned into J mutually exclusive subsets, such that SP =

J⋃
j=1

S(j)

and ∅ = S(j) ∩ S(k) for all j ̸= k, where the assignment of element i to one of these subsets
is determined by the magnitude of p̂nps

i (cf. e.g. Brick, 2013, p. 336; Little, 1986, p. 147;
Rosenbaum and Rubin, 1983, pp. 51 ff). In this case, weights are calculated using the
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mean propensity score within each subset observed in the non-probability sample, i.e.

w̃i := wnps
i ·


J∑

j=1

I
(
i ∈

(
Snps ∩ S(j)

))
|(Snps ∩ S(j))| ·

∑
k∈Snps,
k∈S(j)

p̂nps
k


−1

for all i ∈ Snps , (5.139)

where
(
Snps ∩ S(j)

)
identifies elements in the non-probability sample that belong to the

j-th group (cf. Little, 1986, p. 147; Valliant and Dever, 2011, p. 115).
Besides their application as approximate inclusion probabilities for non-probability sam-
ples, an additional use of propensity scores occurs in propensity post-stratification. Similar
as before, the observations are split into subsets depending on the propensity scores for
this purpose, but the actual weights are determined by aligning the subsets’ weighted
proportions with some external benchmarks. In that case, a matrix of auxiliary variables
defined by J indicators for membership in subsets S(1), . . . ,S(J) as above, i.e.

X̃ :=


I
(
1 ∈ S(1)

)
· · · I

(
1 ∈ S(J)

)
... . . . ...

I
(
N ∈ S(1)

)
· · · I

(
N ∈ S(J)

)
 (5.140)

is defined but usually not fully observed (cf. e.g. Valliant and Dever, 2011, pp. 116 f). The
weighted estimates of each subset’s size in the non-probability sample are then adapted
to meet the respective size in the reference sample. This adaptation can be achieved by
using X̃ as defined in equality 5.140 as calibration variable for the calibration methods
that are discussed in the following section 5.2.2.

5.2.2 Calibration Weighting
Calibration weighting is considered the second essential pseudo-design-based approach
for dealing with non-probability samples (cf. e.g. Bianchi and Biffignandi, 2013, p. 39;
Buelens, Burger and van den Brakel, 2018, p. 332; Enderle, Münnich and Bruch, 2013,
p. 94). It includes various methods to calculate weights for non-probability samples, of
which propensity post-stratification (cf. section 5.2.1) is only a small subset. A summary of
important concepts and strategies for calibration is given in the current section 5.2.2. The
aim is to provide an overview and unifying notation of different but related ideas, serving
as a motivation and foundation for the subsequent discussion. To that end, important
aspects regarding the (numerical) solution of the calibration approaches are deferred to
the following section 5.2.3.
From the previous discussion (cf. sections 2.2 and 5.2.1), it is evident that ideal design
or pseudo-design weights compensate for any systematic differences between sample and
population distribution of Y and therefore allow for unbiased estimates (cf. equation
5.131). Since an unbiased estimator and the true value (or another unbiased estimator)
coincide in expectation, the basic idea of calibration is to reverse these arguments and
find weights that explicitly enforce such conformity.
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“A calibration estimator uses calibrated weights, which are as close as
possible, according to a given distance measure, to the original sampling
design weights π−1

k while also respecting a set of constraints, the calibration
equations.”
(Deville and Särndal, 1992, p. 376)

Assuming that some external benchmarks are available for the auxiliary variables, the
calibration constraints ensure adaptation of the weighted sample estimates towards these
benchmarks. A set of weights can, thus, be determined by means of constrained opti-
mization, where a distance measure is minimized with respect to these constraints (cf.
also Deming and Stephan, 1940, p. 428; Zhang, 2000, p. 178).
For application to non-probability samples, the basic justification of this approach is sim-
ilar to that outlined in equations 5.131 to 5.133 for propensity weights. Under conditional
independence assumption 5.1, it holds that P (rnps

i = 1 |xi· ) = P (rnps
i = 1 |yi·, xi· ). To

determine this conditional probability and construct pseudo-design weights, calibration
utilizes the fact that P (rnps

i = 1 |xi· ) ∝ fXnps (xi·)/fX (xi·) , which is evident from equation
5.131. Using the inverse of P (rnps

i = 1 |xi· ) for weighting, unbiased design linear estima-
tors can then be obtained as in equalities 5.133 if P (rnps

i = 1 |xi· ) > 0 for all i ∈ SP.
Following these considerations, ideal calibration constraints would enforce congruence of
the weighted non-probability sample and the known population density of X. Unless
X contains only a small number of categorical variables, however, this is usually not
feasible. On the one hand, full population densities are rarely ever available as auxiliary
information if the number of possible values in X is not very limited. On the other hand,
a solution would anyhow be impossible in most cases where this number of possible values
is large because at least some realizations of X would typically be not at all observed in
the sample (cf. e.g. Chen, Valliant and Elliott, 2019, p. 665; Deville and Särndal, 1992,
pp. 379 f; Deville, Särndal and Sautory, 1993, pp. 1014 f; Zhang, 2000, pp. 179 f).
As a simplification that is more practicable, calibration constraints are commonly specified
with regard to only totals (or means) of the auxiliary variables X, which are also referred
to as the calibration variables in this context. The calibration estimators formalized on
this basis by Deville and Särndal (1992) are the presumably most commonly cited and
used ones. The aim of these authors is to find a vector of calibration weights

w̃ := wnps ◦ g ∈ Rnnps
, (5.141)

where g ∈ Rnnps is a vector of rescaling factors, which are termed correction weights.
These are used to calibrate the original weights wnps, such that weighted total estimates
for the non-probability sample nps coincide with known or estimated totals for a calibration
benchmark data source cal:

τ̂X (w̃) != τ̂X

(
wcal

)
. (5.142)

Equation 5.142 constitutes the calibration constraints in this case. As before, a non-
informative value for wnps is a vector of ones, and wcal denotes weights for data set cal.
Correspondingly, τ̂X (w̃) and τ̂X

(
wcal

)
respectively are weighted total estimates from the

non-probability and benchmark sample, the latter being referred to as calibration targets
or, as above, benchmarks (cf. section 2.2). To induce as little change as possible to wnps

while achieving compliance with equality 5.142, a distance function δ : Rnnps → Rnnps
≥0

is used. Calibration of total estimates from a non-probability sample to those from
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the calibration benchmark data set for auxiliary variables X is thus determined by the
optimization problem

argmin
g

(
(wnps)T δ (g)

)
s. t. τ̂X (w̃) = τ̂X

(
wcal

)
,

(5.143)

which leads to minimization of a weighted sum of distances w.r.t. calibration constraints
(cf. Deville and Särndal, 1992, pp. 376 ff).
The most prominent example of this approach is the generalized regression estimator
(GREG), which minimizes the quadratic relative distance between w̃ and wnps:

δ (g) = 1
2 · (1nnps×1 − g)◦2 . (5.144)

A closed-form solution is available for this special case, such that the calibration weights
can be determined by

g = 1 + Xnps
(
(Xnps)T diag (wnps) Xnps

)−1 (
τ̂X

(
wcal

)
− τ̂X (wnps)

)T
. (5.145)

The estimator’s name is due to the fact that the resulting totals τ̂X (w̃) can be written as
a function of predictions and residuals from a regression model (cf. equation 5.14; Breidt
and Opsomer, 2017, pp. 195 f; Cassel, Särndal and Wretman, 1976; Rupp, 2018, p. 20;
Särndal, 2007, p. 103). Although frequently treated as a separate calibration technique (cf.
e.g. Brick, 2013, p. 334; Loosveldt and Sonck, 2008, p. 94; Pedraza, Tijdens and Bustillo,
2007, p. 21; Steinmetz and Tijdens, 2009, p. 29), post-stratification is a special case of the
GREG: by using an X-matrix that only contains indicator variables (interaction terms)
for the cross-classification of post-stratification variables, the weighted frequencies in cross
tables of X are adjusted to those of the benchmark data set cal (cf. Zhang, 2000, p. 181).
Even though the GREG is the presumably most popular calibration approach, it suffers
from certain limitations. In particular, the resulting calibration weights can be smaller
than zero, making their justification in a design-based context difficult (cf. Deville and
Särndal, 1992, p. 376; Fuller, 2002, p. 16; Park and Fuller, 2005, p. 85). Consequently,
a number of alternatives are discussed in the relevant literature: Deville and Särndal
(1992, p. 378) as well as Deville, Särndal and Sautory (1993, p. 1014) discuss different
distance functions which lead to results that are asymptotically equivalent to the GREG,
for example to limit the possible range of resulting correction weights (cf. also Münnich,
Sachs and Wagner, 2012, p. 472). An additional benefit in this case is that the ratio of the
largest to the smallest calibration weight, which is termed “Gelman factor” by Münnich
et al. (2012, p. 27), can be restricted. Generally speaking, the MSE of resulting weighted
estimators typically increases rapidly when this ratio becomes larger (cf. Gelman, 2007;
Meng et al., 2009). To incorporate lower and upper boundaries for the weights, problem
5.143 can be extended by the additional inequality constraints

Lg ≤ gi ≤ Ug (5.146)

for all i = 1, . . . , nnps, where Lg , Ug ∈ R respectively represent a single scalar that serves as
lower and upper boundary for all values in g. Deville and Särndal (1992, p. 378) include
constraints 5.146 by means of a penalized distance function rather than adding inequality
constraints to problem 5.143.
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Based on these ideas, Estevao and Särndal (2000) demonstrate that different distance func-
tions often lead to very similar results. Questioning the advantage of distance functions in
general, they propose the functional form approach, which is also called “instrument vector
approach” (Estevao and Särndal, 2006, p. 129; cf. Folsom and Singh, 2000; Guggemos and
Tillé, 2010, pp. 3201 ff; Kott, 2003; 2006). The idea is to determine correction weights
as a function g : Rs → Rnnps of a vector of weighting parameters ω ∈ Rs, which is of
arbitrary given length s ∈ N. In this formulation, definition 5.141 is re-written as a
function w̃ : Rs → Rnnps :

w̃ = w̃ (ω) := wnps ◦ g (ω) . (5.147)
In this approach, the parameters ω are determined exclusively from calibration constraints
for X, but the function g (ω) can depend on variables Z. With g (ω) being defined by
parameters the ω and a matrix Z, definition 5.147 provides a link between propensity
and calibration weighting. In particular, g (ω) can be defined as the reciprocals of some
estimated propensity scores, such that the functional form of calibration weights is the
same as for the propensity weights discussed in the previous section 5.2.1. For example,
this is the case when choosing g (ω) = (m (Znps, ω))◦−1 to achieve coincidence with
equations 5.134 and 5.138, such that the parameters ω play the same role for calibration
as for propensity weighting. Nevertheless, the optimization problems to determine these
parameters with respect to calibration constraints are clearly different from fitting typical
response propensity models (cf. e.g. section 5.1.3; Chang and Kott, 2008, p. 555; Estevao
and Särndal, 2000, pp. 382 ff; Kott, 2006, pp. 134 ff).
Following these considerations, Folsom and Singh (2000) as well as Kott (2006) introduce
the generalized raking

g (ω) := exp (Znpsω) (5.148)
and the logit model

g (ω) := 1 + exp (−Znpsω) (5.149)
in the context of calibration (cf. also Berkson, 1944; Deming and Stephan, 1940; Dev-
ille and Särndal, 1992, p. 378). The close link between functional form approach and
propensity weighting is emphasized by equation 5.149. The reciprocal of the logistic
function used for computing calibration weights is the same by which propensity weights
are computed from a generalized linear logit model (cf. equations 5.21 and 5.138; Folsom
and Singh, 2000, p. 591). Alternative concepts for bringing together propensity and
calibration weighting are mainly based on a two-step procedure. In that case, response
propensities are estimated in a first step, and the resulting propensity weights are then
calibrated in a second step, i.e. by choosing wnps = 1/p̂nps in definition 5.141 (cf. e.g.
Enderle, Münnich and Bruch, 2013, p. 94; Lee and Valliant, 2009, p. 335; Särndal and
Lundström, 2005, pp. 51 f; Valliant and Dever, 2011, p. 109).
For the calibration approaches discussed so far, the benchmark data set cal ideally corre-
sponds to the whole population. The calibration targets indeed may come from known
population information, e.g. from registers, but, especially in the context of non-probability
samples, it is more common to use calibration benchmarks that are subject to uncertainty
themselves (cf. e.g. Bethlehem, 2008b, p. 34; Schouten, 2007, p. 55; Steinmetz et al.,
2014, pp. 282 f). For example, this is the case when cal is a probability sample rather
than the full population. In such settings, as well as when using a large number of
calibration variables, enforcing exact compliance of weighted estimates and benchmarks
may be impossible, unreasonable from a theoretical point of view or lead to highly instable
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weights (cf. Burgard, Münnich and Rupp, 2020, p. 12; Deville and Särndal, 1992, p. 380;
Deville, Särndal and Sautory, 1993, p. 1015; Guggemos and Tillé, 2010, p. 3199). As a
consequence, further extensions to the ideas discussed above concern the quality of the
calibration targets determined from cal.
To relax exact calibration, there is a growing discussion on methods that apply soft
calibration constraints, where exact compliance (as stated in equation 5.143) is substituted
by a sufficient closeness to the calibration targets. Chang and Kott (2008, p. 557) suggest
solving

argmin
ω,ϵ

(
p∑

k=1
vk ·

(1− ϵk)2

2

)
s. t. τ̂X (w̃) = τ̂X

(
wcal

)
◦ ϵT

(5.150)

for the previously defined raking or logit model, such that calibration weights w̃ = w̃ (ω)
depend on ω and are, thus, based on the functional form approach (cf. equations 5.147
to 5.149). In problem 5.150, ϵ =

[
ϵ1 . . . ϵp

]T
∈ Rp represents a vector of multiplicative

error terms to be minimized. These terms quantify the deviations of the estimated from
the benchmark totals for all p calibration variables. Denoted by v ∈ Rp is a corresponding
vector of predefined importance weights to combine these errors into a weighted sum (cf.
also Jahn, 2011, pp. 292 ff). In contrast, the ‘penalized calibration’ method proposed by
Guggemos and Tillé (2010) does not apply the functional form approach and is stronger
related to the GREG (cf. definitions 5.141 and 5.147). The optimization problem in this
case is

argmin
g,ϵ

(
nnps∑
j=1

wnps
j ·

(1− gj)2

2 +
p∑

k=1
vk ·

(1− ϵk)2

2

)
s. t. τ̂X (w̃) = τ̂X

(
wcal

)
◦ ϵT

Lϵk
≤ ϵk ≤ Uϵk

for all k = 1, . . . , p .

(5.151)

In problem 5.151, a vector of error multipliers ϵ is used as before, but its values are
constrained by lower and upper boundaries Lϵk

, Uϵk
∈ R for all k = 1, . . . , p . These

boundaries are used by Guggemos and Tillé (2010, p. 3204) to enforce exact calibration
as in equality 5.142 by setting Lϵk

= Uϵk
= 1 for some auxiliary variables. For other vari-

ables, the calibration errors are left completely unconstrained, which results in penalizing
deviations from the corresponding calibration benchmarks as in problem 5.150 and adding
these penalties to the GREG’s distance function (cf. equality 5.144). Burgard, Münnich
and Rupp (2019, p. 5) as well as Rupp (2018, p. 126) extend these ideas and consider box-
constraints defined by arbitrary boundaries Lϵk

and Uϵk
for the calibration errors. This

idea is based on the work of Münnich, Sachs and Wagner (2012, p. 473) as well as Wagner
(2013, pp. 102 ff), where the approach described in equation 5.151 is supplemented by
arbitrary boundaries Lw̃i

, Uw̃i
∈ R for the weights, such that Lw̃i

≤ w̃i ≤ Uw̃i
for all

i ∈ Snps. In case of these two latter extensions, efficient computational implementations
for solving the calibration problems are proposed.
Note that the present notation is based on the work of Burgard, Münnich and Rupp
(2019), Münnich, Sachs and Wagner (2012), Rupp (2018) as well as Wagner (2013). Aim
of the current formulation is to provide a coherent description of the various calibration
approaches as well as to make the problem independent from different scales of X-
variables. For most references cited above, the adaptation merely concerns the unification
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of mathematical symbols. The notation of problems 5.150 and 5.151 does, however, differ
slightly from the original ones used by Guggemos and Tillé (2010) as well as Chang and
Kott (2008). These authors use weighted absolute instead of relative deviances from
the calibration targets and have a clearer depiction of interactions between calibration
errors. However, their representation can be equivalently reformulated as outlined above
by appropriate selection of importance weights and interaction effects in the X-matrix.
Except for the GREG, there is usually no (general) analytical solution for the presented
calibration methods. As a consequence, numerical solutions based on the methods dis-
cussed in chapter 4 are typically used (cf. e.g. Chang and Kott, 2008, pp. 558 f; Deville
and Särndal, 1992; Deville, Särndal and Sautory, 1993; Guggemos and Tillé, 2010; Kott,
2006, p. 141; Münnich, Sachs and Wagner, 2012; Särndal, 2007, p. 106). Introducing a
framework for unification and extension of the pseudo-design-based methods discussed so
far, a detailed formulation of a possible numerical solution strategy is provided as part of
the following section 5.2.3.

5.2.3 Calibrated Semi-parametric Artificial Neural Networks
As summarized in the previous sections 5.2.1 and 5.2.2, the pseudo-design-based frame-
work for estimation from non-probability samples encompasses methods for propensity
and calibration weighting. A deeper integration of these ideas appears therefore desirable
to establish a comprehensive weighting framework for non-probability samples (cf. e.g.
Baker et al., 2010, p. 47; Kott, 2006, p. 564; Lee and Valliant, 2009, p. 341; Valliant and
Dever, 2011, p. 109). Such an integration is proposed in the current section 5.2.3 and
supplemented by particular extensions, which are motivated below.
Based on the functional form approach (cf. equation 5.147 and the related discussion),
different proposals for a synthesis of propensity and calibration weighting exist (cf. e.g.
Chang and Kott, 2008; Estevao and Särndal, 2006; Kim, Kwon and Paik, 2016; Kim
and Park, 2010; Kott, 2006). However, all current methods that can be used to obtain
pseudo-design weights for non-probability samples suffer from one or more of the following
drawbacks that are already discussed in the scientific debate (cf. e.g. Chang and Kott,
2008, pp. 556 ff; Deville, Särndal and Sautory, 1993, pp. 1014 ff; Guggemos and Tillé,
2010, p. 3199; Kott and Liao, 2017, p. 161; Kott, 2006, pp. 136 ff):
a) the variables that determine the response propensities need to be observed in the

non-probability and a reference sample,
b) a solution can only be found for certain relations between the numbers of calibra-

tion constraints and response model variables,
c) the range of the resulting weights cannot be restricted,
d) compliance with calibration benchmarks is necessarily exact, which imposes strong

assumptions with regard to their accuracies, and/or
e) response and calibration model are not integrated but used sequentially.

A further shortcoming is hardly ever explicitly discussed in the academic literature:
pseudo-design weights should ideally provide unbiasedness with respect to the whole
distribution, not only its first moments (cf. equation 5.131). Hence, a weighting procedure
should be able to consider aspects of the relevant distributions beyond means and totals
(cf. Lenau and Münnich, 2017, pp. 62 f) since there can also be biases in higher moments
and other aspects of the distribution (cf. Elliott and Valliant, 2017, p. 262; Groves and
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Couper, 1998, pp. 10 f; Schouten, 2007, p. 67; Weisberg, 2005, p. 190). However, calibra-
tion constraints are usually limited to means or totals, even though the statistics to be
estimated from most samples are not (cf. sections 2.2 and 5.2.2). When considering typical
uses of non-probability samples, measures of association are of substantial relevance. In
particular, covariances and correlations are common statistics of interest and at the same
time serve as foundation for various more complex statistics and models (cf. chapter 2
and section 5.1; Baker et al., 2013a, p. 22; Groves and Couper, 1998, pp. 10 f; Japec et al.,
2015, p. 850). In many cases, it is simply assumed that there is no bias in covariances
or correlations (cf. e.g. Andridge et al., 2019, p. 1481; Pasek, 2016, p. 283; Steinmetz,
Tijdens and Pedraza, 2009, p. 27) or that total calibration adjusts for these and other
aspects of the distribution as well (cf. e.g. Rubin, 1979, p. 319; Schouten, 2007, p. 67).
Since these assumptions are not necessarily valid, it seems worthwhile to consider addi-
tional types of calibration constraints to better account for possible selection biases. Such
an approach is proposed as part of the following discussion. To integrate the different ideas
of pseudo-design weights for non-probability samples and overcome the limitations dis-
cussed above, a new calibrated response model is introduced. The structural form implied
for the pseudo-design weights is outlined first, followed by the specification of calibration
constraints. These constraints allow for soft and exact calibration not only of totals but
also of covariances or correlations, which is motivated by the above-mentioned relevance of
these quantities for many applications of non-probability sampling. Considering a rather
general distance function, a fitting procedure based on the methods summarized in chapter
4 is then introduced. The discussion concludes with illustrating the proposed method’s
potential to integrate many existing weighting methods as special cases. Yet, the sug-
gested approach is not limited to these special cases and provides a number of extensions.

Structure of the Model
As a foundation for integrating pseudo-design-based ideas for non-probability samples, the
functional form approach establishes a close relation between propensity and calibration
weighting. For both of these approaches, the respective pseudo-design weights w̃ are
determined through multiplying some (often non-informative) prior weights wnps by a
factor g := g (ω). It is defined as a function of weighting parameters ω ∈ Rs, often with
regard to some response model variables Z (cf. equation 5.147). Therefore, g (ω) can be
interpreted as a vector of model predictions or their reciprocals. Various strategies for
choosing the form of this function g to determine the pseudo-design weights are available.
In principle, these options include all types of model specifications presented in section
5.1, as long as they are suitable for binary dependent variables and allow predicting the
corresponding probabilities (cf. sections 5.2.1 and 5.2.2).
To make a choice for g that is useful for integrating propensity and calibration weighting,
it is necessary to consider the differences between both strategies, which primarily concern
the computation of ω. As discussed in section 5.2.1, response propensity models rely on
describing the data generating process of the non-probability sample, while calibration
weighting determines weights such that they align the non-probability sample with exter-
nally obtained benchmarks (cf. section 5.2.2). To combine both ideas, these considerations
suggest an integration and trade-off between modeling the sample inclusion and relying
on calibration constraints to determine the weights. In any case, it appears sensible to
allow for restrictions in the possible range of the resulting weights (cf. Burgard, Münnich
and Rupp, 2019, p. 4; Kott, 2006, p. 142; Little, 1986, p. 147).
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Most of the models discussed in section 5.1 that are suitable for propensity modeling are
fit by means of gradient-based optimization. At the same time, the general calibration and
box-constraints discussed in section 5.2.2 can be non-linear in the parameters. For fitting
a calibrated response model, optimization by means of sequential quadratic programming
(cf. section 4.2) is therefore an apparent choice, and similar numerical strategies are
applied for the majority of existing calibration methods summarized in section 5.2.2 (cf.
e.g. Chang and Kott, 2008, p. 558; Deville and Särndal, 1992, p. 380; Guggemos and Tillé,
2010, p. 3210). However, some of the models presented in section 5.1 are not compatible
with SQP. These models on the one hand encompass MARS, which only partially rely on
gradient information for optimization. On the other hand, the parameters for SVMs are
determined from the support vectors alone, while the nature of calibration constraints
requires jointly considering all elements of the non-probability sample.
To propose a class of calibrated response models that is as flexible as possible and feasible
for the gradient-based optimization methods presented in section 4.2.2, the subsequent
discussion formally introduces calibrated semi-parametric artificial neural networks. Such
ANNs are versatile and therefore allow integrating various established weighting methods,
an advantage which is illustrated after elaborating the details of the proposed method, at
the end of the current section 5.2.3. For establishing the weighting model, let ω represent
the vectorized neural network coefficients as in equation 5.80. Combining the functional
form approach for calibration with propensity weighting, the pseudo-design weights are
defined in correspondence to equations 5.138 and 5.147:

w̃ = w̃ (ω) := wnps ◦ g (ω) = wnps ◦ (p̂nps (ω))◦(−1) , (5.152)

where g (ω) := (p̂nps (ω))◦(−1) is a vector of inverse estimated propensities obtained
from an artificial neural network (cf. sections 5.1.8 and 5.1.9). These predictions are
expressed as a function p̂nps : Rs → Rnnps of the weighting parameters ω. Similar as in
linear probability models, the codomain of p̂nps is Rnnps rather than [0, 1]n

nps
(cf. Greene,

2008, pp. 772 ff; Wooldridge, 2012, pp. 248 ff). This definition allows for general real-
valued pseudo-design weights and achieves coherence with the definitions of g and w̃
in section 5.2.2. For example, this is required for expressing the GREG as a special
case of formulation 5.152. In the end, pseudo-design weights are treated as a function
w̃ : Rs → Rnnps of the weighting parameters. These parameters are then determined such
that calibration constraints depending on w̃ are fulfilled.
Such constraints, which are expressed for calibration variables X as before, define the
adjustment of weighted estimates in the non-probability sample nps to those in the
calibration benchmark data set cal. To e.g. allow for targets of different quality (cf.
section 5.2.2), exact as well as soft calibration are considered. In correspondence to
problems 5.150 and 5.151, the total calibration constraints are constituted by

τ̂X (w̃) != τ̂X

(
wcal

)
◦ ϵT (5.153)

(cf. Chang and Kott, 2008, p. 557; Guggemos and Tillé, 2010, p. 3204; Burgard, Münnich
and Rupp, 2019, p. 5). As before, ϵ ∈ Rp is a vector of multiplicative calibration errors
that quantifies the deviations of the estimates from the benchmark values.
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As motivated above, calibration constraints for covariance and correlation matrices are
additionally introduced. Note that calibration of first as well as second moments may in
principle be achieved by using only total constraints in form of equation 5.153 if main
and interaction terms are included in the matrix of calibration variables X. Maximum
likelihood covariance estimates, which are a function of estimated first and second mo-
ments, can be calibrated in that way. The same argument holds for correlations when all
relevant (co-)variances are calibrated in this manner. Post-stratification or raking to cross-
tables are examples where this is the case (cf. appendix B.5.2; Lenau and Münnich, 2017,
pp. 62 f). However, this strategy suffers from major limitations in the present context. On
the one hand, errors of main as well as interaction terms (different columns in X) have an
influence on the error of a calibrated covariance or correlation. Consequently, there is no
straightforward extension for soft calibration of these quantities in analogy to equation
5.153. On the other hand, calibration of covariances by means of total constraints is
possible only for ML estimation of (co-)variances but not for the bias corrected estimates.
Although the magnitude of bias when using ML estimates is negligible for large simple
random samples (cf. equation 2.18f), it generally depends on the pseudo-design weights
themselves in the weighted case. Therefore, calibration of the corrected covariance esti-
mates appears preferable. A third issue when including interaction or squared terms in
total calibration can be numerical instability, which is illustrated in section 6.2.
Calibration constraints for covariance and correlation matrices are therefore imposed
autonomously and in analogy to equation 5.153. As these matrices are symmetric, their
number of unique elements is given by r =

p∑
l=1

l = (p2 + p)/2 , with diagonal entries being
all ones for correlation matrices. Using a function vec : Rp×p → Rr that returns the
vector of unique elements in these matrices, the corresponding calibration equations are

vec
(
Σ̃X (w̃)

) != vec
(
Σ̃X

(
wcal

))
◦ εT (5.154a)

vec
(
Σ̂X (w̃)

) != vec
(
Σ̂X

(
wcal

))
◦ εT (5.154b)

vec (ρ̂X (w̃)) != vec
(
ρ̂X

(
wcal

))
◦ εT (5.154c)

for ML and bias corrected covariance as well as correlation estimates, respectively. In anal-
ogy to ϵ in equation 5.153, a vector ε ∈ Rr is used to quantify the deviations of estimates
from benchmarks, i.e. it represents the multiplicative calibration errors for covariances or
correlations. For the sake of notational brevity, the three cases of equations 5.154 are only
distinguished in the following discussion where required for mathematical correctness. In
all other cases, the corresponding equations and references to these are interchangeable.
Note that ϵ and ε can be interpreted as vectors containing ratios of estimated to bench-
mark quantities that are used for calibration. When ϵk = 1 or εl = 1, the corresponding
calibration target is met exactly. In case of ϵk < 1 or εl < 1, there is an underestimation
of the target quantity, while ϵk > 1 or εl > 1 indicate overestimation. To limit the
possible degree of deviation, these values can be restricted by box-constraints in the form
of Lϵk

≤ ϵk ≤ Uϵk
and Lεl

≤ εl ≤ Uεl
for some or all constraints. Setting both the lower and

upper boundary to one enforces exact calibration for the respective quantity (cf. Burgard,
Münnich and Rupp, 2019, p. 5; Münnich, Sachs and Wagner, 2012, p. 473; Rupp, 2018,
p. 126; Wagner, 2013, p. 102). In the following discussion, Lh and Uh generally denote
prespecified lower and upper boundaries for arbitrary parameters h.
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Whether a distance function should be used to determine calibration weights is subject to
scientific debates. To achieve a general weighting model that is able to integrate a variety
of existing pseudo-design-based approaches, such a function nevertheless has to be applied
because many of these existing methods do rely on distance measures (cf. sections 5.2.1
and 5.2.2). With regard to these established methods, different reasons to use a distance
function can be identified, which determine three main components that appear worth
considering when fitting a calibrated response model:
a) All models presented in section 5.1 that are suitable and commonly used in the

context of propensity weighting, such as GLMs and GAMs, make use of a loss
function to represent the estimated propensities’ quality. Since the dependent
variable in these models is typically the binary sample inclusion indicator, a
predominant choice in response models is to use the binomial log-likelihood as
a special case of the cross-entropy (or deviance; cf. sections 5.1 and 5.2.1; Skinner
et al., 2009, p. 6; Valliant and Dever, 2011, p. 133).

b) Following the discussion in section 5.2.2, the application of soft calibration con-
straints is motivated above. This concept urges the need for measuring closeness
to the calibration targets when determining the weights, such that deviations of
the estimates from their corresponding benchmark values are typically included in
the distance metric. A weighted sum of the squared relative deviations is a popular
choice for this purpose. Including such a component in the distance function is
of particular importance for fitting a weighting model by using only calibration
constraint, e.g. in absence of a reference sample to be used for the above component
a) (cf. problems 5.150 and 5.151; equations 5.153 and 5.154; Chang and Kott,
2008; Guggemos and Tillé, 2010; Wagner, 2013, p. 102; Rupp, 2018, p. 117).

c) Some weighting methods include a squared loss component that penalizes the
deviation of parameters ω from a vector of constants (cf. equations 5.144 and
5.151). This strategy is closely related to the shrinkage methods for model fitting
presented in section 5.1.11 and can be used to reduce the variability of the resulting
weights. It is particularly relevant to achieve a unique solution for weighting
methods that employ a large number of parameters, e.g. in case of the GREG
where this number equals the sample size (cf. Deville and Särndal, 1992, p. 377).

The most common approach to consider such different types of criteria for optimization
is by combining them using a weighted sum (cf. Ehrgott, 2005, pp. 55 ff; Jahn, 2011,
pp. 292 ff; Marler and Arora, 2004, p. 375). This idea is frequently employed for
calibration (cf. e.g. problems 5.150 and 5.151; Chang and Kott, 2008, p. 557; Guggemos
and Tillé, 2010, p. 3204; Münnich, Sachs and Wagner, 2012, p. 473; Burgard, Münnich
and Rupp, 2019, p. 5) and adopted in the present context as well. To that end, a vector
of predetermined importance weights v ∈ Rs+p+r+1

≥0 is introduced to achieve a scalar-
valued distance function for optimization that combines the above components a) to
c) and allows controlling each of these components’ relevance. Based on the outlined
considerations, the distance function δ : Rs × Rp × Rr → R≥0 for fitting the proposed
calibrated semi-parametric artificial neural networks is hence

δ (ω, ϵ, ε) = v1 · δm (ω) +
s∑

j=1
v(j+1) ·

(
ωj − Cωj

)2
/

2

+
p∑

k=1
v(s+k+1) · (ϵk − 1)2

/
2 +

r∑
l=1

v(s+p+l+1) · (εl − 1)2
/

2 .

(5.155)
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The first component a) is constituted by the ANN’s distance function δm (ω), which is
defined in equation 5.82. It is used to incorporate a propensity model’s loss function
and only meaningful when reference data for modeling the selection process is available
that provides observations outside the non-probability sample, just as for common pro-
pensity models (cf. section 5.2.1). In cases where no such observations are available, this
component can be disregarded in equation 5.155 by setting v1 = 0.
The second component b) is incorporated by means of the second and third sum (second
row) in equation 5.155. These sums are used to penalize deviations from total- and
covariance or correlation benchmarks, which are respectively expressed by ϵ and ε. Since
calibration targets are met exactly when ϵ and ε are vectors of ones, their respective
values are penalized for deviating from ones to be as close as possible to the benchmarks
while considering the other parts of the distance function (cf. equations 5.153 and 5.154).
In a similar manner, the third component c) is represented by the first sum in equation
5.155. It is used for penalizing the distance between weighting parameters ω and a
vector of centering constants Cω ∈ Rs, with element Cωj

:= [Cω]j corresponding to the
constant for parameter ωj. Adequate choices for these constants depend on the selected
functional form for g (i.e. the ANN) and can incorporate potential assumptions about the
response process. Adapting the discussion in section 5.1.11, a non-informative option for
Cω can be a vector of weighting parameters that leads to constant weights. For example,
the centering constants can be chosen to penalize deviation from the inverse sampling
fraction, i.e. such that w̃ (Cω) = N/nnps ·1nnps×1 assigns each element the inverse average
response propensity (cf. equation 5.152; Folsom and Singh, 2000, p. 599). Penalization
of intercept parameter(s) can be avoided by setting the respective importance weights to
zero (cf. Hastie, Tibshirani and Friedman, 2008, p. 64).
Depending on the choice of the importance weights v and the centering values Cω,
different types of distance functions evolve from equation 5.155. Important special cases
are discussed at the end of the current section 5.2.3. While importance weights v are
assumed to be predetermined in the present context, more detailed considerations and
illustrations regarding the choice of these weights are discussed in section 6.2. In any
case, this distance function is minimized by means of constrained optimization to fit the
weighting model. A detailed description of the fitting procedure is provided below.

Fitting Calibrated Semi-parametric Artificial Neural Networks
To summarize the preceding considerations, the objective is to determine pseudo-design
weights w̃ for the non-probability sample by fitting a calibrated response model. To that
end, an optimal vector of model parameters

Θ =
[
ωT ϵT εT

]T
∈ Ru (5.156)

needs to be determined. It includes the vector of weighting parameters ω ∈ Rs in
conjunction with the vectors of calibration ratios for totals and covariances (or corre-
lations), respectively denoted by ϵ ∈ Rp and ε ∈ Rr. Consequently, u = s + p + r
denotes the cumulated number of weighting parameters, total and covariance constraints.
The following overview describes the numerical strategy that is used to determine these
parameters Θ.
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Following the definition of Deville and Särndal (1992, p. 376), Θ is found by minimizing a
distance function under constraints, as outlined in the previous paragraphs (cf. equalities
5.152 to 5.155). The optimization problem is hence defined by

Θ∗ = argmin
Θ

(δ (ω, ϵ, ε))

s. t. τ̂X (w̃) = τ̂X

(
wcal

)
◦ ϵT

vec
(
Σ̃X (w̃)

)
= vec

(
Σ̃X

(
wcal

))
◦ εT

Lωj
≤ ωj ≤ Uωj

for all j = 1, . . . , s

Lϵk
≤ ϵk ≤ Uϵk

for all k = 1, . . . , p

Lεl
≤ εl ≤ Uεl

for all l = 1, . . . , r ,

(5.157)

taking into account soft calibration constraints for totals and covariances as well as box-
constraints for all optimization parameters. Modifications for considering correlation and
bias-corrected covariance estimates are discussed below. Solving problem 5.157 represents
fitting a calibrated semi-parametric artificial neural network. In this context, the distance
function δ and the pseudo-design weights w̃ can take different forms, but the weights are
generally determined by inverse participations propensities p̂nps (ω) predicted from an
ANN (cf. definitions 5.152 and 5.155).
As indicated above, a numerical solution via sequential quadratic programming seems
advantageous in this case. An important reason is that ANNs in general allow for a quite
modifiable model structure and, thus, rely heavily on utilizing the chain rule to optimize
parameters. As a consequence, there is no general formulation for Hessian matrices when
considering ANNs of arbitrary structures. The prevalent fitting technique for ANNs
(backpropagation) is therefore solely based on gradient information and cannot account
for potentially non-linear constraints. Nevertheless, neural networks can alternatively be
fit by Quasi-Newton approaches. In particular, it is straightforward to apply the BFGS
method (cf. algorithms 5 and 10) for fitting any ANN that is feasible for backpropagation
because the required first differences in parameters and gradient must be available for
gradient descent methods as well (cf. section 5.1.8; Bishop, 1995, pp. 287 ff; Hagan
et al., 1996, p. 9-10 ff). An approximated rather than exact Hessian matrix is used
for optimization in this case, for which SQP typically offers numerical advantages in
comparison to other constrained optimization methods (cf. section 4.2; Boggs and Tolle,
1995; Geiger and Kanzow, 2002, pp. 256 ff; Jarre and Stoer, 2004, p. 337).
For applying sequential quadratic programming as defined in algorithm 8, problem 5.157
is rewritten more compactly in the form of problem 4.10:

Θ∗ = argmin
Θ

(δ (Θ))

s. t. sg (Θ) = 0(p+r)×1

g̃ (Θ) ≤ 0u×1 ,

(5.158)

where the relational operators are again applied element-wise. The components of problem
5.158 and their respective Jacobian matrices required for optimization are discussed below.
Corresponding to the compact notation of problem 5.158, lower- and upper boundaries as
well as centering constants LΘj

, UΘj
, CΘj

for all j = 1, . . . , u elements of Θ are denoted
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by vectors
LΘ :=

[
LT

ω LT
ϵ LT

ε

]T
∈ Ru

UΘ :=
[
UT

ω UT
ϵ UT

ε

]T
∈ Ru

CΘ :=
[
CT

ω 11×p 11×r

]T
∈ Ru .

(5.159)

Using importance weights v ∈ Ru+1
≥0 as before, the distance function to be minimized is

thus defined by
δ (Θ) := v1 · δm (ω) + 1

2 · v
T
I (Θ−CΘ)◦2 (5.160)

as in equation 5.155, using I = {2, . . . , u + 1} to subset all elements of v but the first.
The corresponding Jacobian matrix is

Jδ (Θ) = v1 ·
[
Jδm (ω) 01×p 01×r

]
+ (vI ◦ (Θ−CΘ))T . (5.161)

As above, δm (ω) is the distance function of the artificial neural network defined in
equation 5.82, and its Jacobi matrix Jδm (ω) is determined by equation 5.83.

Furthermore, the pseudo-design weights are defined by w̃ (ω) = wnps ◦ (p̂nps (ω))◦(−1) (cf.
definition 5.152). Since p̂nps (ω) is the vector of response propensities predicted from the
artificial neural network, it holds that Jp̂nps (ω) is the Jacobian matrix of ANN predictions
defined in equation 5.84. Therefore, the Jacobian matrix of w̃ can be obtained as

Jw̃ (ω) = −
(
11×s ⊗

(
wnps ◦ (p̂nps (ω))◦(−2)

))
◦ Jp̂nps (ω) , (5.162)

which can be used to incorporate inequality and equality constraints. These are respec-
tively constituted by the functions g̃ : Ru → R2·u and sg : Ru → Rp+r, which are defined
as

g̃ (Θ) :=
[
LΘ
Θ

]
−
[

Θ
UΘ

]
(5.163)

and

sg (Θ) :=

 (τ̂X (w̃))T(
vec

(
Σ̃X (w̃)

))T

 −


(
τ̂X

(
wcal

))T(
vec

(
Σ̃X

(
wcal

)))T

 ◦
ϵ

ε

 . (5.164)

The corresponding Jacobi matrix of the box-constraints g̃ (Θ) is given by

Jg̃ (Θ) =
[
−Iu

Iu

]
. (5.165)

For equality constraints sg (Θ), the Jacobian matrix is determined by

J
sg (Θ) =

(Xnps)T Jw̃ (ω) −diag
(
τ̂X

(
wcal

))
0p×r∂

(
vec

(
Σ̃X (w̃)

))
∂ (w̃)

T

Jw̃ (ω) 0r×p −diag
(
vec

(
Σ̃X

(
wcal

)))
 ,

(5.166)
where Jw̃ (ω) is the Jacobian of pseudo-design weights w̃, as defined in equation 5.162.
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Furthermore is

∂
(
vec

(
Σ̃X (w̃)

))
∂ (w̃) =

∂
([
Σ̃X (w̃)

]
11

)
∂ (w̃)

∂
([
Σ̃X (w̃)

]
12

)
∂ (w̃) · · ·

∂
([

Σ̃X (w̃)
]

pp

)
∂ (w̃)

 (5.167)

the matrix containing the gradients for each unique entry of the estimated covariance
matrix with respect to w̃.
As discussed with regard to equations 5.154, equivalent expressions for calibrating bias-
corrected covariance as well as correlation estimates follow by respectively substituting
Σ̂ or ρ̂ for Σ̃ in equations 5.157 to 5.167. The derivatives required to solve problem
5.158 for each of these options are provided below. In equation 5.167, the weighted ML
estimate for the covariance of any two columns x·k and x·l is denoted by

[
Σ̃X (w̃)

]
kl

. The
corresponding derivatives are

∂
([
Σ̃X (w̃)

]
kl

)
∂ (w̃) =

(
e (x·k ◦ x·l)− xnps

·k · µ̂x·l
(w̃)− xnps

·l · µ̂x·k
(w̃)

)
·
(

N̂ (w̃)
)−1

, (5.168)

where e : Ru → Ru represents centering around the weighted mean as in equation 3.6a.
Based on this expression, and using a corresponding notation for elements of bias-corrected
covariance as well as correlation matrices, the derivatives of the former are defined by

∂
([
Σ̂X (w̃)

]
kl

)
∂ (w̃) =

1
1− ν (w̃) ·

∂
([
Σ̃X (w̃)

]
kl

)
∂ (w̃) + 2 ·

(
w̃ · N̂ (w̃)− N̂

(
w̃◦2

))
·

[
Σ̂X (w̃)

]
kl(

N̂ (w̃)
)3

 .

(5.169)

As before, ν (w̃) denotes the bias correction factor for covariances defined in equation
2.18g. Differentiation of the correlation coefficient yields

∂([ρ̂X (w̃)]kl)
∂ (w̃) =

∂
([
Σ̃X (w̃)

]
kl

)
∂ (w̃) ·

(√[
Σ̃X (w̃)

]
kk
·
[
Σ̃X (w̃)

]
ll

)−1

− [ρ̂X (w̃)]kl

2 ·
∂
([
Σ̃X (w̃)

]
kk

)
∂ (w̃) ·

([
Σ̃X (w̃)

]
kk

)−1

− [ρ̂X (w̃)]kl

2 ·
∂
([
Σ̃X (w̃)

]
ll

)
∂ (w̃) ·

([
Σ̃X (w̃)

]
ll

)−1
.

(5.170)

For obtaining pseudo-design weights for non-probability samples, calibrated semi-para-
metric neural networks can be fit through sequential quadratic programming by using
the above components (cf. problem formulations 5.157 and 5.158 as well as section 4.2).
Detailed derivations of the presented Jacobian matrices are provided in appendix B.5.1.
As for the semi-parametric artificial neural networks in general (cf. section 5.1.9), a
calibrated version thereof is apparently not implemented in any pre-existing software. To
make this approach employable for the simulation study and practical use (cf. chapters 6
and 7), a custom-made implementation in C++ is developed in the context of this thesis.
An outline is given in section 6.1.2, and more details can be found in appendix C.3.
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Integration of Existing Approaches
The purpose of the current section 5.2.3 is to suggest an integrative weighting framework
that combines relevant ideas of pseudo-design-based approaches for non-probability sam-
ples. Illustrating that common weighting methods (cf. e.g. Deville and Särndal, 1992;
Deville, Särndal and Sautory, 1993; Folsom and Singh, 2000; Kott, 2006 and the further
references given in the previous sections) are readily incorporated as special cases, the
integrative potential of the proposed calibrated semi-parametric artificial neural networks
is summarized in the following discussion.
As outlined in sections 5.1.8 and 5.1.9, ANNs include highly relevant special cases, such as
generalized linear and additive regression models, which are typical choices for response
propensity models (cf. Biffignandi and Pratesi, 2000, p. 1530; Brookhart et al., 2006,
p. 1151; Enderle, Münnich and Bruch, 2013, p. 94). Hence, propensity weighting based
on a generalized linear or additive logit model is equivalent to fitting an ANN without
constraints when applying the softmax activation and cross-entropy distance function (cf.
Berkson, 1944; Deville and Särndal, 1992, p. 378). The generalized raking model (cf.
Deming and Stephan, 1940; Deville and Särndal, 1992, p. 378) defined in equation 5.148
is closely related to the logit model but uses a different activation function. Note that to
incorporate this function in a neural network, one has to additionally define the inverse
of this transformation as activation function. In accordance with equations 5.92 to 5.94,
the raking transformation applied to a vector v ∈ Rh of arbitrary given size h is defined
by

t(r) (v) = exp (−v) (5.171)
with corresponding Jacobian matrix

Jt(r) (v) = − t(r) (v) . (5.172)

Furthermore, the GREG can be written as a single layer neural network with linear
activation function and response model variables Znps = Innps set to an identity matrix.
In this case, the loss function (cf. equation 5.144) reduces to the penalty component for
the weighting parameters, with centering constants all being one. Importance weights are
thus equal to wnps for this component and zero for all others. The total constraints have
to be met exactly, and there are no covariance constraints in this case (cf. problem 5.143
and equation 5.144).
The further extensions discussed in section 5.1.8 can likewise be seen as special cases of the
proposed framework. The approach introduced by Chang and Kott (2008) corresponds
to a single layer ANN with raking or softmax activation function. In this case, the loss
function reduces to the weighted quadratic distance of the total errors ϵ by setting all other
importance weights to zero, and there are no covariance or box-constraints. The result
is calibration problem 5.150. ‘Penalized calibration’ introduced by Guggemos and Tillé
(2010) can be represented as a calibrated ANN in analogy to the GREG described above.
The only required adaptation is that some of the box-constraints for total estimates are
discarded while the weighted quadratic calibration errors for these quantities are added
to the loss function, which results in problem 5.151. As specified before, interactions of
calibration errors (ϵk · ϵl) can be accounted for by extending the matrix of calibration
variables by the corresponding interactions of variables. The extended box-constraints
introduced by Burgard, Münnich and Rupp (2019), Rupp (2018), Münnich, Sachs and
Wagner (2012) as well as Wagner (2013) are directly adopted in problem 5.157.
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The outlined special cases emphasize the integrative potential of the proposed calibrated
semi-parametric artificial neural networks. However, highly specialized algorithms to
perform optimization are available for some of those special cases (cf. e.g. Münnich, Sachs
and Wagner, 2012, p. 474; Rupp, 2018, pp. 121 ff). These specialized algorithms are hardly
adaptable to the present context because all calibration constraints can be non-linear in
the weighting parameters ω (cf. definition 5.152; Burgard, Münnich and Rupp, 2019,
p. 7). Consequently, a rather general SQP routine is applied for the proposed weighting
model to allow for versatile specifications of weights and loss function. In that regard,
numerical optimization is performed differently than for the methods discussed above in
order to not limit the tremendous flexibility of calibrated neural networks to these special
cases. In principle, the definition of ANNs (cf. equations 5.76 to 5.95) allows for far more
sophisticated and complex model specifications. For example, multi-layer non-parametric
weighting models are also feasible. This allows for a flexible representation of the non-
probability sample selection or participation process that is approximated by the neural
network. Moreover, soft calibration of covariances and correlations provides an extension
to established total calibration methods (not only) for non-probability samples that are
potentially biased in the estimated dependencies between variables.
A further proposal for compensating selectivity of non-probability samples is sub-sampling
(cf. e.g. Kim and Wang, 2019, p. 181; Meng, 2018, p. 710). Since this approach can be
interpreted in the pseudo-design-based paradigm (cf. Posner and Ash, 2012, p. 4), it is
described in the following section 5.2.4.

5.2.4 Sub-sampling from Non-probability Samples
Sub-sampling is a further approach for estimation from non-probability samples. The
basic idea is to select a subset of observations from a non-probability sample and rely
on this sub-sample for estimation. This strategy is particularly common to maintain
computability in the context of Big Data, e.g. when fitting prediction models. At the
same time, it can be used to reduce biases under certain conditions (cf. section 2.1;
Ai et al., 2018; Kim and Wang, 2019; Ma and Sun, 2015; Pfeffermann, 2015, p. 430;
Schouten et al., 2016, p. 745; Wang et al., 2016). Sub-sampling is often treated as
standalone approach that is considered to be unrelated to model- or pseudo-design-based
paradigms for non-probability samples. Nevertheless, it is closely linked to the latter.
A sub-sample from the set of observations Snps constituting a non-probability sample
simply excludes certain elements from this set, potentially adjusting the weights of the
remaining observations. As for resampling (cf. algorithm 1), sub-sampling can be done
either with or without replacement (cf. Genuer et al., 2017; Wang, Yang and Stufken,
2019, p. 395). By multiplying an initial weight by the number of times an element occurs
in the sub-sample, ideas of sub-sampling can be represented in the pseudo-design-based
framework (cf. Ai et al., 2018, pp. 3 f; Kim and Wang, 2019, p. 180; Posner and Ash,
2012, p. 4).
Closely related to the ideas of the previous sections 5.2.1 to 5.2.3, there are different
ways to select sub-samples and determine weights, even though all of them define certain
weights to be zero. In general, sub-sampling is constituted by the steps which are described
in the following algorithm 15 (cf. Ai et al., 2018, p. 4; Kim and Wang, 2019, p. 184; Ma
and Sun, 2015).
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Algorithm 15: General sub-sampling algorithm

1: Input: Snps ∈ S; b : [0, 1]n
nps
→ Rnnps ; nsub ∈ N

2: Assign each element i ∈ Snps a probability πsub
i of being selected into the sub-sample.

3: Draw a sub-sample of size nsub from Snps, where elements are selected according to
their assigned probability πsub

i .
4: Determine the vector c ∈ Nnnps , with elements ci denoting the number of times that

unit i is selected for the sub-sample for all i ∈ Snps.
5: Calculate the pseudo-design weights w̃

w̃ := wnps ◦ b
(
πsub

)
◦ c ∈ Rnnps (5.173)

that depends on πsub by some prespecified function b.
6: Return: w̃

In analogy to equations 2.16 and 5.133, the expected value of τ̂Y (w̃) can then be written
as

E
 ∑

i∈Ssub

w̃i · yi·

 =
∑

i∈Snps
E
(
rsub

i · w̃i

)
· yi·

=
∑

i∈SP

E
(
rnps

i · rsub
i · w̃i

)
· yi· =

∑
i∈SP

E (rnps
i · w̃i) · yi· ,

(5.174)

using the vector of inclusion indicators rsub for the sub-sample as before (cf. definition
2.2). Note that equalities 5.174 follow from definition 5.173 simply because w̃i = 0
if rsub

i = 0. The general representation of sub-sampling in algorithm 15 encompasses
different realizations which depend on the choice of the probabilities πsub as well as the
selection of the sub-samples and the corresponding weights. In the simplest form, sub-
sampling is done by simple random sampling with or without replacement. In this case,
selection probabilities πsub

i = E
(
rsub

i · ci

)
:= nsub

/
nnps are constant for all i ∈ Snps, and

weights are defined by b
(
πsub

)
:=
(
πsub

)◦(−1)
. As long as πsub

i is positive, this approach
solely reduces the number of observations but does not alter the bias since, conditional
on the sample sizes, it holds that E

(
rsub

i · w̃i

)
= E (rnps

i · w
nps
i ) · πsub

i

/
πsub

i = E (rnps
i · w

nps
i )

(cf. National Research Council of the United States, 2013, p. 108; Varian, 2014, p. 4).
For the purpose of bias reduction, more refined sub-sampling approaches therefore attempt
to find πsub such that it ideally holds that

πsub
i ∝ 1/πnps

i . (5.175)

If this is the case, and if πnps
i > 0 for all i ∈ SP, pseudo-design weights w̃i = N

/
nsub · ci

for all i ∈ Snps are sufficient to achieve approximately unbiased linear statistics when
assuming that E

(
rnps

i · rsub
i

)
≈ E (rnps

i ) · E
(
rsub

i

)
(cf. Kim and Wang, 2019, pp. 179 ff).

This idea goes back to approaches for obtaining a simple random sample from a complex
probability survey design, which use sub-sampling from a realized probability sample to
revert its complex but known selection mechanism. Therefore, it is referred to as inverse
sampling (cf. e.g. Hinkins, Oh and Scheuren, 1997; Rao, Scott and Benhin, 2003). In
contrast to probability sampling, however, the true inclusion probability πnps

i is typically
unknown for non-probability samples (cf. section 2.3). Thus, the challenge is to determine
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πsub
i such that it fulfills relation 5.175. In some cases, this is integrated as part of the non-

probability sampling procedure itself, e.g. by using prior response rates to adjust the gross
sample sizes of certain groups (cf. Loosveldt and Sonck, 2008, p. 96), or by applying quota
sampling (cf. Mercer et al., 2017, p. 260) or sample matching (cf. section 3.5; Rivers, 2007,
p. 1) when drawing from a non-probability panel. In this setting, it is assumed that the
non-probability sampling mechanism is adequately described by the auxiliary variables
which are used for grouping, quotation or matching. As for other pseudo-design-based
approaches, this is valid only when conditional independence assumption 5.1 holds.
This assumption is equally relevant when sub-sampling from an already obtained data
set rather than a panel. If conditional independence holds, propensity or calibration
weights are valid approximations for the inverse probability 1/πnps

i (cf. sections 5.2.1 to
5.2.3). Consequently, Kim and Wang (2019, p. 181) propose choosing πsub

i proportional to
such previously determined pseudo-design weights. By using this strategy, sub-sampling
approximates propensity or calibration weighting. Hence, an alternative but highly similar
approach is to draw the sub-sample by simple random sampling as above and determine
the weights by choosing the function b in correspondence to the respective weighting
method. In particular, b

(
πsub

)
◦ c may constitute the inverse propensity scores or

correction weights, as in equations 5.138 and 5.141 (cf. Kim and Wang, 2019, pp. 184 f). In
this case, sub-sampling itself is again a tool solely for reducing the size and complexity of
computations while other pseudo-design-based methods are used to account for selectivity.
Further strategies are used to construct multiple sub-samples instead of a single one. In
this case, algorithm 15 is applied a ∈ N times, and estimation is done using the a different
vectors of pseudo-design weights. The estimates resulting from these weights are then
combined, i.e. by (weighted) averaging or majority rules. This idea closely resembles
that of resampling (cf. algorithm 1), a detailed overview of such algorithms for Big
Data is provided by Wang et al. (2016). Different strategies for sub-sampling, weighting
and aggregation of the a estimates are subsumed under this general approach. They
encompass many ideas for fitting a model through ensemble learning, such as bootstrap
aggregation (bagging), boosting or stacking. As a further extension, random selection of
the independent variables in a model can be added as well (cf. Genuer et al., 2017; Hastie,
Tibshirani and Friedman, 2008, pp. 588, 616 ff; Varian, 2014, p. 14).
In summary, sub-sampling methods choose and potentially re-weight a subset of observa-
tions. Under certain conditions, applying sub-sample selection and weighting techniques
can be used to address the challenges of non-probability sampling discussed in section
2.3. In addition, elements that are excluded from the sub-sample do not need to be
observed. When applied during the actual non-probability sampling stage, sub-sampling
may therefore allow for better allocation of resources if adequate auxiliary information is
available (cf. Rivers, 2007, p. 2). For similar reasons, it is applied for estimation from
Big Data sources, where computational power is typically the limited resource that needs
to be used efficiently (cf. Pfeffermann, 2015, p. 433). Because it can be represented by
assignment of (partially zero) pseudo-design weights, sub-sampling is considered a pseudo-
design-based approach in this thesis.
However, the distinction between the model- and the pseudo-design-based paradigm for
estimation from non-probability samples anyhow suggests a strict separation between
both frameworks that is not necessarily meaningful in real applications. Approaches to
combine both lines of thought are therefore discussed in the following section 5.3.
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5.3 Synthesis of Model- and Pseudo-design-based
Methods

In the previous sections, an overview of prediction and weighting methods (not only) for
non-probability samples is provided, subdivided into the model- and the pseudo-design-
based paradigm. Both lines of thought attempt to solve the challenges of non-probability
samples outlined in section 2.3 and can be seen as realizations of the framework for
informative sampling discussed by Pfeffermann (2011; cf. also Pfeffermann and Sverchkov,
1999). In linking population and sample distribution as described in equation 2.24, the
ideal case for both paradigms occurs if Y and r are conditionally independent given a
set of auxiliary variables, for now uniformly denoted by X solely to facilitate a coherent
discussion. Under this conditional independence assumption 5.1, it holds that

P (ri = 1 |yi·, xi· ) = P (ri = 1 |xi· ) . (5.176)

The model- and the pseudo-design-based paradigm both seek to account for potential
selectivity of non-probability samples by using equality 5.176, although in different ways
(cf. equation 5.132; appendix B.3). Model-based methods rely on the fact that equality
5.176 implies that fY (yi· |xi· ) = fY (yi· |xi·, ri = 1). Using a model for this conditional
distribution, estimation is then based on external information about the distribution
of X, most commonly by predicting Y for the population or a reference data set (cf.
equations 5.6 to 5.8). In contrast, pseudo-design-based approaches derive estimates
P̂ (ri = 1 |xi·) for the right-hand side of equation 5.176, mostly by means of propensity
models and/or calibration. Weighting by the inverse of this estimated probability is then
used to compensate for selection bias (cf. equalities 5.131 and 5.133).
In many publications on methods for non-probability samples, ideas from the model- and
the pseudo-design-based paradigm are considered separately, and even joint discussions
of both paradigms are rather rare (for exceptions, cf. e.g. Buelens, Burger and van den
Brakel, 2018; Elliott and Valliant, 2017). This separation is presumably attributable
to the historical rivalry between design- and model-based inference in survey statistics,
which goes back to the influential papers of Neyman (1934) and Royall (1970; cf. Buelens,
Burger and van den Brakel, 2018, p. 325; Magnussen, 2015, p. 317; Särndal, 1978). Yet,
such a twofold classification implies a strict separation between both paradigms that is
not necessarily of major importance in actual applications of non-probability sampling.
Indeed, the approaches discussed in the preceding sections 5.1 and 5.2 already exhibit
some overlap and synthesis of both worlds, and “boundaries between design-based and
predictive inference have been fading for some time” (Buelens et al., 2012, p. 18).
Important cases of such an overlap between the two paradigms are ‘model-assisted’ es-
timators, which make use of prediction models but remain in the (pseudo-)design-based
framework. The presumably best known example for such an estimator is the GREG
introduced in section 5.2.2, for which resulting design linear estimates can alternatively
be written as a function of predictions and residuals from a regression model (cf. e.g.
equations 5.14 and 5.145; Breidt and Opsomer, 2017, pp. 191 ff; Cassel, Särndal and
Wretman, 1976; Wu and Sitter, 2001, p. 185). Moreover, all methods to obtain pseudo-
design weights for non-probability samples heavily rely on models for P (ri = 1 |xi· ).
From alternating points of view, such weighting techniques may themselves be viewed as
prediction models and are, thus, clearly different from classical design weights (cf. sections
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2.2 and 5.2; Baker et al., 2013a, p. 67; Buelens et al., 2012, p. 8; Little, 1993, p. 1002;
Valliant and Dever, 2011, p. 109). Furthermore, the prediction models described in section
5.1 can be fit by using survey weights. This strategy is commonly applied in probability
samples, where inverse inclusion probabilities can be used to represent P (ri = 1 |yi· ).
Optimizing a HT-estimate of the population’s loss function accounts for cases where
the inclusion probabilities may be related to the target variables (cf. e.g. equations 5.12
and 5.22; section 2.3; Binder, 1983, p. 282; Pfeffermann, 2011, p. 122). Therefore,
weighted prediction models make use of concepts which are inherently related to the
(pseudo-)design-based framework. Considering pseudo-design weights as a surrogate for
design weights in case of non-probability sampling, a straightforward extension is to
use weighted loss functions for model fitting as well (cf. e.g. Beaumont, 2000; Breidt
and Opsomer, 2017; Fuller, 2009, p. 378; Pfeffermann and Sverchkov, 1999; Ripley and
Venables, 2016; Särndal, Swensson and Wretman, 1992, pp. 192 ff; Wood, 2017, p. 181).
Although most publications on non-probability sampling tend to strictly separate pseudo-
design and model-based approaches, it appears sensible to consider such a combined use
of both paradigms since conditional independence is rarely perfect in real applications. In
extension to the connections between both schools of thoughts already established in the
previous sections and summarized above, there are some alternative approaches. These
tackle the challenges of non-probability samples and closely related fields in a slightly
more specialized way. A brief overview is provided in the following discussion. To that
end, section 5.3.1 introduces a joint model for response indicator and target variable,
while section 5.3.2 focuses on weighted aggregation of predictions.

5.3.1 Integration of Response and Outcome Model
A first alternative to the estimation methods discussed so far is based on explicitly
modeling the joint distribution of rnps and Y . As in section 5.1, the goal is to find
some predictions ŷ·k for y·k as a function of X and parameters Θ. The conditional
distribution expressed by a statistical model is that of the residuals e·k = y·k − ŷ·k,

fy·k (yik |xi·, Θ) = fe·k (eik) . (5.177)

In case of any dependency between y·k and rnps that is not explained by X, the conditional
distribution in the non-probability sample

fe·k (eik |rnps
i = 1) = P (rnps

i = 1 |eik )
P (rnps

i = 1) · fe·k (eik) (5.178)

differs from that in the population if P (rnps
i = 1 |eik ) ̸= P (rnps

i = 1) (cf. equality 2.24;
Pfeffermann, 2011, p. 116). To find a solution for estimating Θ from equation 5.178, a
bivariate model for y·k and rnps

i can be specified.
The probably most popular example thereof (cf. Brick, 2013, p. 335; van Buuren, 2018,
p. 97) is the model proposed by Heckman (1976; 1979). The assumed conditional distri-
bution is e·k ∼ N (0,Σe·k) under the linear regression model ŷ·k = E (y·k |X ) = Xβ·k for
Θ = β·k, as introduced in section 5.1.2. For the full population, the model can be written
as

yik = xi·β·k + eik for all i ∈ SP . (5.179)
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Therefore, the model equation for the non-probability sample nps from which the para-
meters are estimated is

ynps
ik = xnps

i· β·k + E (eik |rnps
i = 1) + ẽik for all i ∈ Snps . (5.180)

Here, ẽ·k ∈ Rnnps is a new residual variable with mean zero, which is used to differ-
entiate sample and population density (cf. equation 5.178). When estimating β·k from
equation 5.180, dependencies between y·k and rnps which are not explained by X result
in E (eik |rnps

i = 1) ̸= E (eik |rnps
i = 0) because conditional independence assumption 5.1

does not hold. In this case, omitting E (eik |rnps
i = 1) leads to biased parameter estimates

due to violation of the Gauss-Markov theorem (cf. Greene, 2008, p. 44; Heckman, 1976,
p. 478; Wooldridge, 2012, pp. 83 ff).
For fitting a prediction model that accounts for this issue, Heckman (1976; 1979) intro-
duces a latent (unobserved) variable to express an underlying response or participation
tendency, which is defined by a second regression equation

y∗
il = zi·β

∗ + e∗
il for all i ∈ SP . (5.181)

It is assumed that the non-probability sample’s membership indicator can be expressed
by this tendency through

rnps
i = I (y∗

il ≥ 0) = I (e∗
il ≥ −zi·β

∗) for all i ∈ SP . (5.182)

Furthermore assuming that the residuals in equations 5.179 and 5.181 are realizations
from a bivariate normal distribution, i.e.

[
e·k e∗

·l

]
∼ N

((
0
0

)
,

(
1 ρe·ke*

·l
·
√
Σe·k

ρe·ke*
·l
·
√
Σe·k Σe·k

))
, (5.183)

allows replacing the conditional expectation in equation 5.180 for all i ∈ Snps by

E (eik |rnps
i = 1) = ρe·ke*

·l
·
√
Σe·k · E (e∗

il |e∗
il ≥ −zi·β

∗ )

= ρe·ke*
·l
·
√
Σe·k ·

Φ′ (zi·β
∗)

Φ (zi·β
∗) .

(5.184)

Here Φ′ : R → (0, 1) and Φ : R → (0, 1) respectively denote density and distribution
function of the standard normal distribution, and their ratio is the inverse Mill’s ratio (cf.
Greene, 2008, p. 866; Johnson and Kotz, 1972, pp. 112 f; Mills, 1926; Wooldridge, 2012,
p. 618). Consequently, this ratio can be used as additional auxiliary variable to rewrite
equation 5.180 as

ynps
ik = xnps

i· β·k + β̃k ·
Φ′ (zi·β

∗)
Φ (zi·β

∗) + ẽik for all i ∈ Snps , (5.185)

where β̃k = ρe·ke*
·l
·
√
Σe·k . This is basically an adaptation of the Tobit model developed

by Tobin (1958).
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The difficulty in identifying equation 5.185 is that y∗
·l is not observed to estimate β∗ from

equality 5.181. However, the outcome rnps is observed. By assumptions 5.181 to 5.183,
the conditional probability to participate is defined by the probit model

P (rnps
i = 1|zi·) = Φ (zi·β

∗) for all i ∈ SP (5.186)

(cf. Amemiya, 1985, pp. 268 ff; Maddala, 1983, p. 269; Simonoff, 2003, pp. 393 f).
This formulation constitutes a generalized linear model, which can be used to estimate
coefficients β∗ and thus determine the inverse Mill’s ratio (cf. section 5.1.3; Heckman,
1979, p. 157; Toomet and Henningsen, 2008). In comparison to the generalized linear logit
model, the only modification lies in the use of an alternative (non-canonical) link function
Φ. The remaining discussion of section 5.1.3 is directly applicable, in particular the use
of Fisher scoring for finding the coefficients β∗ and the necessity to have observations in-
and outside the non-probability sample (cf. also section 5.2.1). Once β∗ is obtained from
a GLM, equation 5.185 can be used to estimate β and β̃k by means of a linear model.
However, this strategy suffers from some severe limitations. On the one hand, it requires
strong distributional assumptions that are easily violated. On the other hand, the model
is designed for cases where some variables z·l exclusively predict sample inclusion but are
not included in X for predicting the target variable. If this is not the case, the inverse
Mill’s ratio is typically almost collinear to X (cf. Little, 1988b, p. 290; Rubin, 2006, p. 11;
Wooldridge, 2012, p. 619; Weisberg, 2005, pp. 151 ff).
To incorporate dependencies between sample inclusion indicator and variable(s) of in-
terest, information about the (approximated) selection process is included as additional
auxiliary variable in the Heckman model introduced in the current section 5.3.1. This is
an alternative way of conditioning on the propensities other than matching or weighting
(cf. sections 3.5 and 5.2.1; Lee, Lessler and Stuart, 2010, p. 337). Note that differences
between predictions from logit and probit models are usually negligible, and coefficients
are even approximately convertible between the two link functions (cf. e.g. Amemiya,
1981, p. 1488; Hahn and Soyer, 2005, p. 1; Simonoff, 2003, pp. 393 f). Therefore, it may
be reasonable to use response propensities from logit rather than probit models for this
purpose as well.6 In any case, modeling the joint distribution of rnps and Y constitutes
a link between model- and pseudo-design-based methods. As an alternative strategy to
establish such a link, weighted aggregation of predictions is introduced in the following
section 5.3.2.

6 In some applications, the predicted probabilities from logit models are even used directly as auxiliary
variables for predicting Y , rather than calculating and using the inverse Mill’s ratio for this purpose
(cf. e.g. Nassimbeni, 2001, p. 258; Xu, Wong and Choi, 2014, p. 8).
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5.3.2 Weighted Aggregation of Predictions
An alternative way to integrate model- and pseudo-design-based approaches is to use
a model for the conditional distribution fY (yi· |zi· ) of the target variable as in section
5.1, and a separate model for P (ri = 1)/P (ri = 1 | zi· ) to represent the sampling pro-
cess as in section 5.2. When assuming conditional independence of r and Y given
Z, both models can be fit by jointly using a non-probability and a reference sample
(cf. equations 5.7 and 5.132 as well as the related discussion). Through application of
Bayes’ theorem for estimating the distribution of Z as outlined in equation 2.24, the
unconditional distribution of Y is then estimated by means of equality 5.8. This strategy
can be implemented by using the model predictions Ŷ

nps in place of the observed values
Y nps when performing pseudo-design weighted estimation in the non-probability sample,
where weights are proportional to the inverse estimated propensities 1

/
P̂ (ri = 1 | zi·) .

It is therefore referred to as weighted aggregation of predictions in the context of this
thesis. The advantage of this approach in comparison to the Heckman model discussed
in the previous section 5.3.1 is that no further assumptions for the underlying bivariate
distribution of Y and rnps are required (cf. assumption 5.183).
A form of weighted aggregation of predictions that is of notable interest (cf. e.g. Elliott and
Valliant, 2017, p. 260; Lax and Phillips, 2009; Mercer et al., 2017, pp. 264 f) is ‘multilevel
regression and post-stratification’ (MRP), proposed for non-probability samples by Wang
et al. (2015; cf. also Gelman and Little, 1997; Gelman et al., 2016a,b; Park, Gelman
and Bafumi, 2004). As its name suggests, this approach represents fY (yi· |zi· ) by means
of a mixed model, most commonly a (generalized) linear one (cf. section 5.1.5). Post-
stratification weights that calibrate estimated and known population totals of Z (cf.
section 5.2.2) are then applied to estimate the relevant statistics of the unconditional
distribution of Y from the mixed model’s predictions Ŷ

nps in the non-probability sample.
In this setting, Z is generally defined to be a matrix of J indicator variables. These
variables represent the membership in mutually exclusive subsets S(j) for j = 1, . . . , J of
the population, such that SP =

J⋃
j=1

S(j), ∅ = S(j) ∩ S(k) for all j ̸= k and

Z =


I
(
1 ∈ S(1)

)
· · · I

(
1 ∈ S(J)

)
... . . . ...

I
(
N ∈ S(1)

)
· · · I

(
N ∈ S(J)

)
 . (5.187)

For example, Z may express the cross-combinations of socio-demographic and geograph-
ical information (cf. Park, Gelman and Bafumi, 2004, p. 376). The design matrix for the
random components of the mixed model is likewise determined by this matrix Z, option-
ally in conjunction with additional random slope terms containing selected interactions of
model variables X and response variables Z (cf. section 5.1.5; Ghitza and Gelman, 2013,
p. 766).
Weighted aggregation of predictions in general constitutes a synthesis of model- and
pseudo-design-based ideas. On the one hand, it is different but still closely related to
mass-imputation, where predictions are made for observations in the reference sample (cf.
section 5.1). On the other hand, it resembles pseudo-design-based estimation but relies
on model predictions Ŷ

nps in place of actually observed values for target variables Y nps

in the non-probability sample (cf. section 5.2). As summarized in the introduction to
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the current section 5.3, an alternative approach to jointly use weighting and prediction
methods for non-probability samples is to apply weights when fitting the model. This
can be done by minimizing a weighted loss function for fitting a prediction model for Y
(cf. e.g. Beaumont, 2000; Breidt and Opsomer, 2017; Fuller, 2009, p. 378; Pfeffermann
and Sverchkov, 1999; Ripley and Venables, 2016; Särndal, Swensson and Wretman, 1992,
pp. 192 ff; Wood, 2017, p. 181). In principle, both of these approaches allow combining all
of the discussed weighting and prediction models and are, therefore, quite comprehensive
and adaptive. An important advantage of MRP is that calibration benchmarks suffice as
auxiliary information, which is rarely the case for weighted prediction models (cf. section
5.1; Pfeffermann, 2011). In contrast, a major benefit of fitting weighted prediction models
is that this approach allows encompassing purely model- and design-based methods as
border cases: when weights are constant over all observations, the fully model-based
approach emerges, while the purely pseudo-design-based framework uses the observed
distribution of Y in place of the model (cf. sections 2.2, 5.1 and 5.2).
In sections 5.1 to 5.3, various approaches for estimation from non-probability samples are
discussed. These are mainly proposed for reducing biases in point estimation methods,
which is the major focus of the scientific debate around non-probability samples. Inference
is then predominantly based on classical design- or model-based strategies, yet partially
with extensions as those used for multiple imputation (cf. e.g. Buelens, Burger and van
den Brakel, 2018; Elliott and Valliant, 2017; Kim et al., 2018; Rafei, Flannagan and
Elliott, 2020). An overview is given in the following section 5.4.

5.4 Inference
A major advantage of probability sampling is that it provides a known randomization
process through sample selection. For measurable probability sampling designs, an esti-
mator’s quality can therefore be assessed from a realized sample, and valid inference can
be carried out, e.g. by means of variance estimates, confidence intervals or statistical tests.
Such inferential methods that are valid for arbitrary variables of interest without making
any assumptions about their distribution require design-based concepts of repeated sam-
pling variation of (asymptotically) unbiased estimates around the true population statistic
of interest (cf. section 2.2; Breidt and Opsomer, 2017, p. 191; Kalton, 1983, p. 90).
Due to unknown and/or uncontrolled selection processes, it is difficult to perfectly transfer
these concepts and hence classical design-based inference to non-probability samples. This
is especially the case when unbiasedness of point estimates is not even asymptotically
guaranteed (cf. section 2.3; Buelens, Burger and van den Brakel, 2018, p. 327; Japec
et al., 2015, p. 862) and one reason why the discussion on estimation methods for non-
probability samples mainly focuses on bias reduction in the referred literature as well as
the previous sections 5.1 to 5.3. Yet, the ways in which inference from non-probability
samples is attempted strongly adhere to concepts discussed in these preceding sections,
and likewise utilize prediction and weighting models. Indeed, there is no perfectly valid
way for inference from non-probability samples in general, unless the respective modeling
assumptions discussed throughout the previous sections hold and, thus, allow compensat-
ing for selection bias. If those assumptions are violated, estimating the bias component of
the MSE requires even stronger knowledge or assumptions about the selection process (cf.
e.g. chapter 3). If such additional premises appear available and reasonable for inference,
they typically could be used to actually compensate for the bias, rather than estimating
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it solely for inferential purposes (cf. e.g. Baker et al., 2010, p. 47; 2013a, p. 107; Mercer
et al., 2017, p. 258; Pfeffermann, 2015, pp. 441 ff; Schouten, 2007). As a consequence,
methods for inference are typically limited to the same assumptions and information that
are already used to facilitate point estimation by means of prediction or weighting models
(cf. sections 5.1 to 5.3). Inference for non-probability samples is then typically based
exclusively on variance estimation because MSE and variance coincide if an adequate
weighting or prediction model is found (cf. Buelens, Burger and van den Brakel, 2018,
p. 330; Chen, Valliant and Elliott, 2019, p. 673; Elliott and Valliant, 2017, p. 257; Kim
et al., 2018, p. 10; Rafei, Flannagan and Elliott, 2020, p. 159). A summary of inferential
approaches proposed for non-probability samples is provided in the current section. Such
methods typically refer to either classical design- or model-based inference. Therefore,
the following presentation is merely a summary of central ideas in each of these paradigms
that can be applied for non-probability samples. Comprehensives overviews for the general
context of survey sampling are e.g. given by Lohr (2010), Pfeffermann and Rao (2009),
Särndal (1978), Valliant (2009) as well as Wolter (2007).
As outlined in the previous sections, model- as well as pseudo-design-based approaches in
general obtain estimators ϑ̂ based on parameters Θ, e.g. through models for predicting
target variables or response propensities. By the law of total variance (cf. e.g. Blitzstein
and Hwang, 2013, p. 401), the variance of an estimator ϑ̂ can, thus, be decomposed as

V
(
ϑ̂
)

= E
(
V
(

ϑ̂
∣∣∣Θ))

+ V
(
E
(

ϑ̂
∣∣∣Θ))

(5.188)

into a within and between component. These can be interpreted as the variability due
to sample selection given the model and the uncertainty about the actual model (cf.
Binder and Roberts, 2009, pp. 43 ff; Opsomer, 2009, p. 7; Rafei, Flannagan and Elliott,
2020, pp. 159 f). This decomposition is commonly used when inferential methods for
non-probability samples are proposed (cf. e.g. Elliott and Valliant, 2017, p. 259; Isaksson
and Lee, 2005, p. 3145; Kim et al., 2018, pp. 10 f).

If Θ is considered predetermined and hence fix rather than estimated, E
(

ϑ̂
∣∣∣Θ)

is con-
stant and equality 5.188 thus reduces to the within variance V

(
ϑ̂
∣∣∣Θ)

= E
(
V
(

ϑ̂
∣∣∣Θ))

.
In this case, estimating the variance from a single prediction or weighting model with a
fixed set of parameters is feasible. This occurs e.g. in the pseudo-design-based framework
when pseudo-design weights are assumed to perfectly describe the non-probability sam-
pling process, such that w̃ constitutes an ideal substitution for some hypothetical design
weights. Under this condition and full coverage of the target population, classical design-
based methods can be applied for inference in non-probability samples, just as for proba-
bility samples. Typically, it is additionally assumed in this context that non-probability
sample inclusion of two elements is independent to achieve further simplification. Treating
the weights as fixed, the resulting approaches encompass closed-form variance estimates
for linear and linearized non-linear statistics as well as general non-parametric resampling
techniques (cf. e.g. Barratt, Ferris and Lenton, 2015; Faas and Schoen, 2006; Guarte and
Barrios, 2006; Spijkerman et al., 2009). An introductory overview to general design-based
inference is given in section 2.2, together with further references which provide an ex-
haustive presentation (cf. e.g. Wolter, 2007). However, treating a pseudo-design weighted
non-probability sample as if it was a probability sample with known design weights can
lead to considerable underestimation of actual variances (cf. Breidt and Opsomer, 2009,
pp. 117 f; Lee and Valliant, 2009, p. 341; Rafei, Flannagan and Elliott, 2020, p. 160).
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Nevertheless, similar ideas are likewise applied when using mass imputation for reference
samples. In such cases, the imputed variable of interest is treated as if it was an actually
observed variable (cf. e.g. Yang and Kim, 2018, p. 5). For the model-based framework,
alternatives to this somewhat naive form of inference emerge when assuming that a known
statistical model with fixed parameters Θ describes fY (yi· |xi· ) for the population. When
this is the case, inference can be based on knowledge about the distribution of X, which
can e.g. be obtained from a reference sample (cf. section 5.1; Pfeffermann, 2011). A
core element for inference in this setting typically is the residual variance ΣE, which
corresponds to V (Y |X ) under the model. As an example for this model-based inference
approach, consider the estimator for τY . Since τY = N · E (Y ), it can be estimated as
τ̂Y = N · E

(
Ê (Y |X )

)
by using a known population distribution of X and a model

for the conditional expectation. If this model holds, the estimator’s variance is given
by V (τ̂Y ) = N2 ·V

(
E
(
Ê (Y |X )

))
and can be estimated from the model as well. In

certain combinations of estimators and models, this expression may be solved analytically
after the model is fit. For example, under the linear model’s assumptions 5.18, the
result is V̂ (τ̂Y ) = N2/nnps · Σ̂E, where Σ̂E is the residual variance estimated from the
model (cf. e.g. Breidenbach, McRoberts and Astrup, 2016, p. 276; Valliant, Dorfman
and Royall, 2000, p. 145). Similar arguments apply to other estimators and models
as well (cf. Buelens, Burger and van den Brakel, 2018, p. 330). In many situations,
however, no such analytic expression for the model-based variance is available. In such
cases, parametric resampling methods can be applied, which draw resamples from the
model distribution rather than real observations (cf. algorithm 1; Efron and Tibshirani,
1998, pp. 53 ff, 296 ff). Exhaustive overviews and details for model-based inference are
e.g. given by Royall (1970; 1992), Särndal (1978), Valliant, Dorfman and Royall (2000)
or Valliant (2009). Besides assuming that the model is true, a further limitation of
these approaches is that they require the conditional distribution to be obtainable from
the model. Therefore, they are not applicable to most machine learning models, which
typically do not explicitly consider distributional assumptions (cf. Hastie, Tibshirani and
Friedman, 2008, pp. 261 ff).

The strategies discussed so far exclusively rely on V
(

ϑ̂
∣∣∣Θ)

to estimate V
(
ϑ̂
)

and
consider Θ as fix for this purpose. However, this is rarely a realistic assumption. Even
if the presumed structural form of the prediction or weighting model is true, fitting
parameters Θ to a sample still induces some degree of model uncertainty (cf. Binder and
Roberts, 2009, p. 45; Opsomer, 2009, p. 7). More refined methods for inference therefore
incorporate the variation of Θ and in particular the second component V

(
E
(

ϑ̂
∣∣∣Θ))

of equation 5.188. This is the variation between different sets of parameters Θ, which
are now considered random due to the sampling variance (cf. Binder and Roberts, 2009,
p. 54; Kim et al., 2018, pp. 8 f). However, closed-form expressions to estimate equation
5.188 are usually not available for general combinations of models and estimators (cf.
Buelens, Burger and van den Brakel, 2018, p. 330). Consequently, it is common practice
to approximate the distribution of Θ through resampling methods, which typically apply
strategies as represented by algorithm 1 (cf. e.g. Buelens, Burger and van den Brakel,
2018; Elliott and Valliant, 2017; Guarte and Barrios, 2006, p. 279; Kim et al., 2018;
Lee and Valliant, 2009). From each non-probability sample, a resamples are drawn
as described below, and a prediction or weighting model is fit to each of these. For
each resample j = 1, . . . , a, estimates ϑ̂

(j) are then obtained exactly as for the original
sample, i.e. by weighting the resample or using it to impute for the reference sample.
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The estimated between variance is then determined from the variation over all resamples,
i.e.

V̂b = V̂
(
Ê
(

ϑ̂
∣∣∣Θ))

:= 1
a− 1 ·

a∑
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(
ϑ̂

(j) −
(

1
a
·
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ϑ̂
(k)
))2

. (5.189a)

Furthermore, estimates V̂
(

ϑ̂
(j)
∣∣∣∣Θ(j)

)
can be obtained for each of the iterations by means

of the strategies described above. This may be done by using model-based strategies that
rely on the residual variance or parametric bootstrapping. However, the more typical case
is to naively apply classical design-based variance estimation in each iteration, treating the
pseudo-design weighted non-probability or the imputed reference sample as if they were
probability samples with known design weights and target variables (cf. Rafei, Flannagan
and Elliott, 2020, p. 160; Yang and Kim, 2018, p. 5). In whatever way these values are
calculated, Rafei, Flannagan and Elliott (2020, p. 160) propose using them for estimating
the expectation for the within variance by
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)
(5.189b)

to jointly consider within and between variance components. Rubin’s (1987, pp. 89 f)
rules are then used to combine estimates for both by
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(5.189c)

as an estimator for equality 5.188. In equation 5.189c, the factor (1 + 1/a) is used to
achieve unbiasedness regarding the between variance estimator due to a finite number of
resampling iterations. These ideas correspond to methods for inference that are applied
in multiple imputation (cf. e.g. van Buuren, 2018, p. 43; Little and Rubin, 2019; Rubin,
1987). Since the distribution of Θ depends on the unknown non-probability sampling
process in the present context, such approaches still have to rely on assumptions to
implement a resampling procedure in the context of non-probability samples (cf. Elliott
and Valliant, 2017, p. 257). Most commonly, it is assumed that simple random sampling
is an adequate approximation to the non-probability sampling mechanism for the purpose
of resampling (cf. e.g. Buelens, Burger and van den Brakel, 2018, p. 330; Kim et al.,
2018, p. 10; Lee and Valliant, 2009, p. 330). As for the naive application of classical
design-based variance estimation to obtain estimator 5.189b, this assumption is typically
a simplification rather than a realistic representation of the actual selection mechanism.
Nevertheless, additionally or exclusively considering the between component of decompo-
sition 5.188 can yield variance estimates that are less sensitive to miss-specified models
and provide better inference than the even more simplifying approaches discussed above,
which assume the estimated model to be true (cf. Kim et al., 2018, pp. 20 ff; Lee and
Valliant, 2009, p. 341).
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Another foundation for estimating the potential deviation from the true population pa-
rameter, which even includes the bias component, is based on the work of Meng (2018) as
well as Schouten (2007) and discussed in section 3.8. As described in that context, ϑ̂−ϑ
for design linear estimators can be expressed as a function of correlation, variance and
sampling fraction, additionally incorporating the variation of weights where applicable.
If a third variable is available that is strongly correlated to both the variables of interest
and the inclusion indicator rnps, an accuracy interval for ϑ̂ can be obtained from using
non-probability and reference sample. Yet, the high magnitude of both correlations that
is required to make this interval narrow enough to facilitate meaningful inference is rarely
available in practical applications (cf. Schouten, 2007, p. 66). Therefore, this approach
rather constitutes an indication for selectivity of non-probability samples in most cases,
similar as the other methods discussed in chapter 3. Nevertheless, all of those techniques
for assessing selectivity may provide at least some guidance for the accuracy of estimates
obtained from a non-probability sample.
In summary, inference for non-probability samples is typically based on prediction or
weighting models, corresponding to the model- or the pseudo-design-based approaches
discussed in the preceding sections 5.1 to 5.3. Using the decomposition denoted in equa-
tions 5.188 and 5.189, methods that incorporate the between component V

(
E
(

ϑ̂
∣∣∣Θ))

are often considered as providing better results. These approaches commonly rely on
resampling to approximate the variation of Θ between possible non-probability samples.
Nevertheless, a general inferential framework for non-probability sampling seems to be
hardly feasible because all techniques proposed for this purpose have to rely on modeling
assumptions (cf. Baker et al., 2013a, p. 105). Therefore, the possibility to assess the quality
of a point estimator from a single non-probability sample is clearly more situational than
in probability sampling and depends on whether these assumptions hold or not.
The degree to which the outlined inferential methods are suitable for different settings
of estimation from non-probability samples is examined as part of the simulation studies
discussed in the following chapter 6. The main purpose of these simulations is to eval-
uate and compare the performance of methods discussed throughout chapters 3 to 5 for
assessing and correcting potential issues of non-probability samples.
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6 Monte Carlo Simulation Studies
Various approaches proposed for assessing and compensating the potential issues of non-
probability samples (cf. chapter 2) are discussed in the preceding chapters 3 and 5. In
the current chapter 6, the aim is to investigate the performance and limitations of these
methods. Typically, an estimator’s quality is defined with respect to its distribution over
all possible samples and the population statistic to be estimated (cf. e.g. equations 2.10
to 2.12). For an appropriate evaluation and comparison of the proposed methods, it is
therefore necessary that the truth is known about both the underlying non-probability
sample selection mechanism and the target population (cf. e.g. Buelens, Burger and van
den Brakel, 2018, p. 327).
This kind of knowledge is typically not available in case of real data obtained from
non-probability sampling. When nevertheless used for methodological evaluations, such
realized data sets often pose further challenges (besides the selection mechanism) that
limit the reliability of results. For example, differences between a non-probability and
a reference (benchmark) sample in terms of survey mode and questionnaire design can
introduce additional sources of potential errors. Such differences are not inherently linked
to non-probability sampling, but typically not distinguishable from the bias caused by
sample selection if only one non-probability and one reference sample are available (cf.
chapters 2 and 7; Bethlehem and Biffignandi, 2012, pp. 97 ff, 242; Biffignandi and Artaz,
2012, p. 368; Elliott and Valliant, 2017, pp. 252 ff; Groves, 1989, pp. 295 ff; Weisberg,
2005).
For a fair and reliable evaluation and comparison of the methods proposed for non-
probability samples, simulation studies are, therefore, typically more appropriate than
applying methods to a single real non-probability sample (cf. Buelens, Burger and van
den Brakel, 2018, p. 327; Enderle, Münnich and Bruch, 2013, p. 95). In the context of
survey sampling and estimation, Monte Carlo simulations are a common and versatile way
to analyze the properties of various estimators (cf. e.g. Bethlehem and Biffignandi, 2012,
pp. 407 ff; Kim et al., 2018, pp. 12 ff; Münnich, Burgard and Vogt, 2013, pp. 178 ff; Rafei,
Flannagan and Elliott, 2020, pp. 160 ff; Särndal, Swensson and Wretman, 1992, pp. 276 ff;
Wolter, 2007, pp. 315 ff). A comprehensive summary of Monte Carlo simulations in survey
statistics is provided by Burgard, Dörr and Münnich (2020), of which only some important
aspects are outlined below. The general idea is to approximate the repeated sampling
distribution of an estimator ϑ̂ by a large number of draws from a finite population and/or
a super-population model. Different types of Monte Carlo simulation studies can be
distinguished in dependence of how and what is drawn. In any case, such simulations allow
strictly controlling all relevant influences on estimation and, hence, prevent contamination
by other sources of errors when evaluating methods for non-probability samples (cf. Rafei,
Flannagan and Elliott, 2020, p. 154). Furthermore, the true population and quantities to
be estimated as well as the non-probability sampling process are known. To mimic the
information that is available in real non-probability samples, this truth is not used for
estimation purposes but nevertheless required for measuring an estimator’s performance
(cf. also Burgard, 2013, pp. 92 ff; Münnich et al., 2003; Rafei, Flannagan and Elliott,
2020, p. 161).
With regard to the differentiation of Monte Carlo simulations summarized by Burgard,
Dörr and Münnich (2020, p. 17), all simulation studies in the current chapter 6 can be
classified as (quasi) design-based. In each case, a fixed population is considered, and
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randomness is only due to sample selection. This setting corresponds to the basic design-
based framework introduced in sections 2.2 and 2.3. However, it is hardly ever possible to
use real populations in simulations because full register or census data for these typically
either does not exist or is not available due to confidentiality reasons (cf. Burgard et al.,
2017b, p. 235; Merkle, Burgard and Münnich, 2016, p. 6). As a consequence, synthetic
populations are used for the subsequent simulation studies. Yet, there are manifold
types and characteristics of non-probability samples, e.g. in terms of highly different
target populations, sample selection mechanisms and variables of interest. Depending
on these characteristics, each of the various methods for non-probability samples may
be more or less adequate because all these methods incorporate different assumptions
(cf. chapters 3 and 5). Therefore, using only a single synthetic population and sampling
mechanism limits generalizability to any other cases of non-probability sampling unless
they strongly resemble the simulated one (cf. chapter 2; Burgard, Dörr and Münnich,
2020, pp. 16 ff; Kim et al., 2018, p. 12). To overcome this limitation and cover a variety
of possible application settings for the methods under consideration, a set of fixed and
finite scenario populations and sampling mechanisms is used in the following sections. For
each of these populations, the methods are evaluated in a coinciding manner to achieve
comparable results. To still not exclusively rely on synthetic data and simulated samples,
an application study using a real non-probability sample is presented in the following
chapter 7.
A summary of the software that is used in the simulation and application studies is given
in section 6.1. For the methods that are newly proposed or extended in the context of
this thesis, novel computational implementations are provided and then evaluated in a
preliminary simulation study, which is discussed in section 6.2. To assess all methods for
non-probability samples discussed in chapters 3 and 5, a larger Monte Carlo simulation
is presented in section 6.3.

6.1 Software for the Considered Methods
Simulation and application studies throughout the subsequent sections are implemented
in the statistical computing software R (cf. R Core Team, 2018). Many of the methods
discussed in chapters 3 to 5 are readily accessible in R or one of the various existing
packages that can be used to extend it. Available packages used for the simulation studies
are summarized in section 6.1.1. For the methods that are newly proposed in the context
of this thesis, custom-made implementations are developed. A corresponding overview of
these implementations and the utilized software libraries is provided in section 6.1.2.

6.1.1 Pre-existing Software for Established Methods
Tests for selectivity discussed in section 3.4 constitute a first group of methods for
which implementations are required. While ANOVA as well as (univariate) Kolmogorov-
Smirnov and Kruskal-Wallis test are implemented in the elementary R-software as part
of the stats package (cf. R Core Team, 2018), equivalence tests for means (in the
univariate case) can be performed using the R-package TOSTER (cf. Lakens, 2017). The
tests proposed by Hawkins (1981) and Anderson and Darling (1952) are implemented in
the R-package MissMech (cf. Jamshidian, Jalal and Jansen, 2014). An alternative and
faster implementation for the Anderson-Darling test is available in the C-implementation
provided by Marsaglia and Marsaglia (2004). As a prerequisite for applying Rosenblatt’s
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(1952) theorem, the package uniftest (cf. Melnik and Pusev, 2015) provides tests for
uniformly distributed variables, e.g. the one proposed by Neyman (1937; cf. Ledwina,
1994). An implementation for matching (cf. section 3.5) is provided in the package
Matching (cf. Diamond and Sekhon, 2013).
In addition, implementations for prediction models discussed in section 5.1 are required.
Generalized additive (mixed) models are available from the package mgcv (cf. Wood, 2011;
2017). The MARS algorithms are implemented in the R-Packages earth for the MARS
model (Milborrow, 2019) and rpart (cf. Therneau and Atkinson, 2018) for the special
case of regression trees. Support vector machines are available from the package e1071
(cf. Meyer et al., 2019). Since this package does not allow for individual weights but is
only a user interface for the C++ library LIBSVM (cf. Chang and Lin, 2011), an available
extension for LIBSVM (cf. Chang et al., n.d.) is used to allow for such individual weights.
The R-package glmnet (cf. Simon et al., 2011) provides penalized versions of generalized
linear regression models (LASSO, ridge and elastic net). Multivariate sample selection and
dependent variable models, such as the Heckman model (cf. section 5.3.1), are available
from package sampleSelection (cf. Toomet and Henningsen, 2008). Further packages
which are used in the simulations include data.table (cf. Dowle and Srinivasan, 2019),
mvtnorm (cf. Genz and Bretz, 2009) and survey (cf. Lumley, 2004). For the methods
that are newly proposed in the context of this thesis, custom-made implementations are
introduced in the following section 6.1.2 because pre-existing software does not exist.

6.1.2 Software Implementation of Newly Proposed Methods
The two main methodological novelties proposed in the context of this thesis are semi-
parametric neural networks (cf. section 5.1.9) and a calibrated version thereof (cf. section
5.2.3). As these methods are newly suggested, there is no pre-existing software implemen-
tation. Inter alia to make these ideas assessable in the following simulation and application
studies, custom-made computational implementations in C++ are developed as part of the
following R-packages: package sqp (cf. appendix C.1; Lenau, 2020) provides the basic
routines for sequential quadratic programming as well as unconstrained optimization using
the BFGS algorithm (cf. section 4.2). It serves as a foundation to be used in the other
packages. Semi-parametric artificial neural networks are implemented in package ann (cf.
appendix C.2). Among other options, this package provides the possibility for B-spline
layers and corresponding fitting routines (backpropagation as well as BFGS), which are
partially based on the sqp package. Both of these packages constitute the foundation for
package calmod (cf. appendix C.3), which facilitates calibrated semi-parametric artificial
neural networks as response models with calibration constraints. Its optimization routines
are entirely based on sqp.
Implementation of these three packages is largely based on the linear algebra library
Armadillo (cf. Sanderson and Curtin, 2016; 2018), which provides a “high-level applica-
tion programming interface” (Sanderson and Curtin, 2016, p. 1). It serves as a wrapper
for the linear algebra package LAPACK (cf. Anderson et al., 1999; Demmel, 1997), which
can use any adequate implementation of basic linear algebra subprograms (BLAS), such as
RBLAS (cf. R Core Team, 2018) or Open BLAS (cf. Wang et al., 2013). The latter is used
for the simulations. For integration of C++, Armadillo and R, the R-packages Rcpp (cf.
Eddelbuettel et al., 2011) and RcppArmadillo (cf. Eddelbuettel and Sanderson, 2014) are
used.
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As described in chapter 4, an elementary component of the applied optimization tech-
niques is to solve systems of linear equations. With a large variety of freely available
software libraries implementing linear solvers, a selection of them is available and can
be used for this purpose in sqp (and thus ann and calmod). The default solver, which
is implemented in the software library SuperLU (cf. Demmel, Gilbert and Li, 1999; Li,
2005), uses LU-factorization (Gaussian elimination) as presented in section 4.1. By choice
of the user, it can be interchanged with other approaches, for instance Cholesky- (cf.
Martin, Peters and Wilkinson, 1965; 1966) or QR-factorization (cf. Businger and Golub,
1965). Further available options are the conjugate gradient (cf. Fletcher and Reeves, 1964;
Hestenes and Stiefel, 1952) and generalized minimal residuals (cf. Saad and Schultz, 1986)
methods. To incorporate these options, the C++ libraries ViennaCL (cf. Rupp et al., 2016)
and Eigen (cf. Guennebaud, Jacob et al., 2010) are used, the latter in conjunction with
its R-integration provided in package RcppEigen (cf. Bates and Eddelbuettel, 2013). In
addition, calmod contains one complete out-of-the-box implementation of SQP, which is
available from the NLOPT-library for non-linear-optimization (cf. Johnson, n.d.). This is
the sequential least squares quadratic programming (SLSQP) approach proposed by Kraft
(1988; 1994). As further utility functions closely related to the pseudo-design weights,
calmod provides implementations of weighted estimates and R-indicator (cf. sections
2.2 and 3.7). The remaining methods discussed in chapters 3 to 5 but not explicitly
mentioned throughout the current section 6.1 are either readily available in R itself or can
be straightforwardly implemented based on its utility.

6.2 Prior Applicability Studies for the Developed
Methods and Software

As described in the previous section 6.1.2, three R-packages are developed in the context
of this thesis to provide computational implementations for (calibrated) semi-parametric
neural networks. In the current section 6.2, two introductory simulation studies are
presented. Their purpose is to test the proper functionality of the custom-made imple-
mentations and illustrate basic ideas and potential advantages of the newly proposed
methods and developed R-packages.

6.2.1 Prior Evaluation of Semi-parametric Artificial Neural
Networks

The proposed semi-parametric neural networks (cf. section 5.1.9) apply B-spline transfor-
mations and optimize the respective knot locations. To evaluate this basic idea, a first
Monte Carlo simulation is presented. In summary, the purpose of this study is to compare
the following options to select B-spline knots for regression contexts:
a) knots are evenly spaced over the range X,
b) knots are located at the quantiles of X, and
c) knots are optimized as parameters of the model.

Strategies a) and b) are commonly used for regression splines, such that they constitute
classical additive models (cf. section 5.1.6). Option c) can be realized in form of a semi-
parametric artificial neural network and corresponds to a regression spline with joint
optimization of knots and regression parameters (cf. section 5.1.9). These three options
are compared with regard to their predictive performance.
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Figure 6.1: Comparison of knot positioning methods for out-of-sample predictions

The aim in this preliminary study is solely to evaluate the idea of knot optimization
in ANNs and the provided computational implementation. This strategy is compared
to the outlined alternatives that choose predetermined knots. Therefore, the following
simulation setup is rather simplistic and does not represent a realistic scenario of survey
statistics. Non-probability sampling is not considered here, but incorporated in the
following simulations. In the current setting, two variables are generated in a finite
population of size N = 10 000. The auxiliary variable X is log-normally distributed, such
that log (X) ∼ N (0, 1). The target variable Y follows a conditional normal distribution
given X, such that Y ∼ N (0.5 ·X, 1), and the correlation between both variables is
ρXY = 0.5. From this finite population, 10 000 simple random samples of size n = 100
are drawn.
Each of these samples is used to fit three prediction models. All of these use X as
input variable, apply a B-spline transformation to it and determine predictions for the
population as a linear combination of the B-spline base functions, as discussed in section
5.1.9. The only difference between the three models that are fit to each sample lies in
the selection of four knots KX ∈ R4, which is done in accordance to strategies a) to c)
outlined above. Considering the population values of X as known auxiliary information,
these three options are compared with respect to their predictive power. The main
relevance of prediction models in the context of non-probability sampling and this thesis
is to provide out-of-sample predictions (cf. figure 5.1; Buelens, Burger and van den Brakel,
2018, p. 325). Therefore, the prediction error made by each approach is measured by the
prediction MSE over all elements of the population, i.e. the mean-squared-error when the
model is fit on the sample and predictions are made for the whole population.
The results are depicted in figure 6.1, with boxplots representing the distribution of
prediction MSEs over all 10 000 samples. Means over all iterations are indicated in purple.
The comparison reveals that knots which are evenly spaced over the range of X yield
the highest minimal, average and maximal MSE of the three knot selection strategies.
Placing the knots at quantiles of X performs slightly better. In this case, minimum,
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average and maximum of the resulting prediction MSEs are lower than for evenly spaced
knots, and the same holds for the variance. Even better results are achieved when using
knot optimization in an ANN. When applied for prediction in the current setting, this
strategy is able to further reduce the minimal, mean and maximal MSE.
Under the rather simple conditions in this simulation and in comparison to both ap-
proaches for choosing predetermined knots, the proposed optimal knot selection strategy,
thus, allows reducing the average prediction error for semi-parametric models. Therefore,
the method and its implementation perform as expected. Altering the conditional distri-
bution for Y |X , e.g. by using a conditional log-normal instead of a normal distribution,
yields highly similar results when comparing the three knot selection strategies. Any
further tuning of hyper-parameters, e.g. in form of cross-validation to determine optimal
shrinkage parameters, is not considered in this preliminary study but may be used to
improve the results for all of the three options. Furthermore, no conclusions regarding
the relative performance of other prediction models (cf. section 5.1) can be drawn. This
limitation is tackled in the more realistic and comprehensive simulation study presented in
section 6.3. As a preparation for that simulation, incorporation of calibration constraints
when fitting semi-parametric ANNs is subject to further preliminary evaluations, which
are presented in the following section 6.2.2.

6.2.2 Prior Evaluation of Calibrated Semi-parametric
Artificial Neural Networks

A calibrated extension to semi-parametric neural networks is proposed in section 5.2.3,
in particular to facilitate response (propensity) models that can incorporate calibration
constraints. The basic idea and custom-made implementation of such models for pseudo-
design weighting is tested and evaluated in the current section 6.2.2 by means of a second
preliminary Monte Carlo simulation. In a first step, three options for pseudo-design
weights are considered:
a) Propensity weights based on a generalized linear logit model.
b) Propensity weights from option a) are calibrated in a second step using the GREG.
c) A calibrated neural network with soft calibration and logit (softmax) activation

function is used to obtain propensity weights.
These methods represent a bandwidth of those discussed in section 5.2. The first two
approaches are well-established ones (cf. e.g. Enderle, Münnich and Bruch, 2013, p. 94;
Särndal and Lundström, 2005, pp. 51 f) and included for illustrative reasons only. The
main purpose of the following study is to assess the applicability of the newly proposed
option c). This calibrated ANN basically constitutes a logit model that is fit w.r.t.
soft calibration constraints. Therefore, it integrates the structural form of the response
propensity model outlined in option a) with calibration constraints as added in option
b), using a single rather than two separate steps to determine the weights.
Because the simulation study is designed solely for testing the proposed method and
software, it is again based on a simple model rather than a realistic scenario. Two variables
X and Z for a finite population of size N = 100 000 are generated from a bivariate normal
distribution, such that

[
X Z

]
∼ N

([
µX

10

]
,

[
ΣX 0.3 ·

√
ΣX

0.3 ·
√
ΣX 1

])
. (6.1)

146



Monte Carlo Simulation Studies

Total τX Variance ΣX

85 90 95 100 105 110 115 0.8 0.9 1 1.1 1.2 1.3

Logit model

Logit model & GREG

Calibrated ANN

Estimated total τ̂X (in thousands) Estimated variance Σ̃X

Box–constraint boundariesTrue value / benchmark Mean

Figure 6.2: Compliance with total and (co-)variance benchmarks when
combining response and calibration weighting for µX = ΣX = 1

From this population, 10 000 non-probability samples of size nnps = 500 are drawn. Sample
selection is implemented by using unequal probability sampling without replacement,
where selection probabilities πnps are correlated with X and Z by ρXπnps = 0.3 and
ρZπnps = 0.6. These probabilities are not used for estimation but only for selecting the
samples, which is a common way to simulate a non-probability sampling process (cf.
section 6.3; Valliant and Dever, 2011, p. 122). For fitting response propensity models as
outlined above, a complementary reference sample res of size nres = 250 is drawn by simple
random sampling without replacement for each of the 10 000 non-probability samples.
To evaluate the three weighting techniques summarized above in options a) to c), X
is used as calibration variable, for which total τX and variance ΣX are available as
calibration benchmarks. The GREG is calibrated to τX and τX◦2 (the total of the squared
X-variable) to meet both constraints (cf. section 5.2.3). For the response (propensity)
model, X and Z observed in the non-probability and the reference samples are used as
auxiliary variables, additionally including an intercept in the model. A parametric logit
GLM is used as propensity model. The calibrated ANN is specified accordingly, with the
only modification that it incorporates soft calibration constraints. Since the aim is to
evaluate the compliance of calibrated ANNs with calibration constraints when using the
R-package calmod, estimators for the total and variance of X are considered. For the
three weighting methods, the distribution of resulting estimates from all 10 000 samples
is shown as boxplots in figure 6.2 for the case of µX = ΣX = 1. Estimates and (soft)
calibration constraints for the total τX and variance ΣX are respectively shown in the
left and right panel of the figure.
As the logit model in option a) does not incorporate calibration, the resulting propensity
weighted estimates are not limited by any constraint. As a consequence, the variation of
the resulting estimates for total and variance of X is the highest of all three weighting
approaches. Furthermore, there is some bias when estimating the total τX , as the Monte
Carlo mean of the estimates (purple line) is different from the true population value (red
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line). Because the theoretical foundation of propensity weighting for eliminating bias
holds for true rather than estimated response propensities, this remaining bias is caused
by the small sampling fractions and, thus, vanishes with increasing sample sizes nnps and
nres (cf. also King and Nielsen, 2019, p. 443). In the present context, however, it illustrates
the use of calibration to further reduce bias. In contrast to pure propensity weighting,
applying the GREG in a second step to calibrate propensity weights towards true total
and variance of X (option b)) results in estimates that are unbiased and constant over
all replications. All estimates coincide with the calibration targets because the GREG
enforces exact compliance with these benchmarks. The calibrated neural network outlined
in option c) applies soft calibration, permitting 5% deviation from the population total
and 10% from the variance. Variation of estimates is permissible and occurs within the
interval defined by these boundary constraints, which are shown as green dashed lines.
In that regard, calibrated neural networks constitute a middle course, with limiting cases
corresponding to either one of the other two represented methods. By choosing infinitely
small boxes, exact calibration can be enforced, as in case of the GREG. Choosing infinitely
large boxes can lead to plain propensity weights obtained from the logit model.
To exactly achieve these limiting cases, the applied loss function has to be determined
correspondingly to incorporate deviance as well as penalization for soft calibration (cf.
section 5.2.3). To that end, a vector of importance weights v is introduced in equation
5.155. These weights facilitate a flexible combination of the ANN’s distance function
(i.e. the deviance / negative log-likelihood of the response model) with penalties for soft
calibration and parameter shrinkage. Therefore, the distance measure used for fitting
the weighting model is smoothly adaptable between these components. One aim of this
approach is to represent existing weighting methods as special cases of the proposed
calibrated ANNs, which is e.g. the case for weights obtained from the logit propensity
model or generalized regression estimation depicted in figure 6.2.
Beyond representing such special cases, calibrated semi-parametric neural networks fa-
cilitate a smooth transition between the ideas of propensity weighting on the one and
calibration weighting on the other side, facilitating combinations and trade-offs between
both approaches. For this purpose, importance weights v have to be chosen to represent
the desired combination and degree of penalization in the distance measure. An open
question in this regard is how to select the respective importance weights for the different
elements of the loss function (cf. section 5.2.3; Chang and Kott, 2008, p. 559; Guggemos
and Tillé, 2010, p. 3205; Marler and Arora, 2004, p. 375; Rupp, 2018, pp. 150 f). Figure 6.3
illustrates the influence of these importance weights and their default values in R-package
calmod.
To that end, six out of the 10 000 samples represented in figure 6.2 are selected for
illustrative purposes, which are labeled sample #1 to #6 for simplicity. Estimation of
the total τX and variance ΣX in each of the six samples is depicted in figure 6.3. The
resulting estimates are represented in dependency of the importance weights that control
the degree of penalization for soft calibration towards the corresponding benchmarks. In
correspondence to equation 5.155, these importance weights for soft calibration of total
and variance are respectively denoted by v5 and v6. All other importance weights, i.e. for
the deviance or parameter shrinkage, are kept constant at their default values in calmod,
which are discussed below. Also, the penalty for variance soft calibration is kept fixed for
total estimates, such that only the penalization for soft calibration of the total is adjusted
in the first row of figure 6.3. The reverse holds for variance estimates in the second row.
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Figure 6.3: Influence of importance weights when fitting calibrated ANNs: importance weights
for the soft calibration distance components

In most of the six samples, it is evident that the distance between estimated and true
calibration benchmark is a monotonically decreasing function of the respective importance
weight. This is the desired behavior and main rationale for including soft calibration
penalties for optimization (cf. also Rupp, 2018, pp. 150 f). Sample #3 constitutes a
somewhat inconvenient exception because values of v6 show almost no visible influence
on estimates of ΣX . Since calibration is non-linear in the response model’s parameters
and only three of such parameters are used in the present model, this can occur because
the set of feasible solutions does not allow any other result. Even more important, the
above-mentioned monotonicity does not hold in sample #3 if soft calibration of the total is
nearly unpenalized, i.e. when v5 is close to zero. The reason is that in this case, the size of
the response model’s deviance overshadows all other components in the distance metric.
To avoid soft calibration penalties which are nearly negligible for the overall distance
measure, the respective importance weights should therefore not be too small. A general
rule to determine these weights is, however, not directly evident. This finding is underlined
by the results obtained from the remaining samples. For sample #4, comparably small
values of v5 and v6 suffice to bring estimates close to the total and variance benchmark.
In contrast, penalties for both soft calibration constraints need to be relatively large for
sample #6 to achieve estimates that are at least fairly close to the calibration targets.
Results for the other samples mostly lie somewhere in between. In general, the calibrated
estimates resulting from coinciding degrees of penalization expressed by the values of v5
or v6 can be highly different between samples. Except for the inconvenient exception in
sample #3 mentioned above, the influence of v5 on meeting the benchmark total τX at
least seems to be of similar shape across the samples, but the strength of this influence
differs. For estimates of the variance, the differences between samples are even more severe
and benchmarks are not necessarily met even for strong penalization. As discussed above,
this is caused by the low number of parameters in relation to the number of non-linear
constraints.
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These findings suggest that predetermining importance weights v5 or v6 for soft calibration
without considering the actual sample may not be an adequate strategy. A sample-
dependent choice for the degree of penalization appears more reasonable for two reasons.
On the one hand, samples can strongly differ regarding their similarity to the population
even if they are realizations from the same sample selection mechanism. This holds
already for perfect probability sampling and may be even more severe in case of non-
probability samples (cf. chapter 3; Kish, 1965, p. 403; Särndal, Swensson and Wretman,
1992, p. 41). Therefore, closeness of estimates and calibration benchmarks can be very
different already before fitting a weighting model. The fact that this closeness influences
the initial conditions for optimization, e.g. in terms of starting values and the need for slack
variables, should be accounted for when choosing the degree of penalization (cf. algorithm
8). On the other hand, importance weights for the response model’s deviance (negative
log-likelihood) are kept constant in figure 6.3. The deviance as distance component does
not only depend on the non-probability sample’s composition but also on that of the
reference sample. Therefore, the choice of importance weights should generally consider
that distance components can take quite different values for distinct samples (cf. equation
5.155; sections 5.1.3 and 5.1.8)
The default implementation of importance weights in calmod when combining calibration
and propensity weighting is based on the above considerations. When no user-defined
importance weights are provided, the strategy is to determine elements of v such that
each component of the distance function (deviance, penalties for total and covariance
soft calibration as well as parameter shrinkage) defined in equation 5.155 has the same
maximum. Since only the relation of importance weights is relevant for minimizing the
loss function (up to a scaling constant; cf. Chang and Kott, 2008, p. 569), it is arbitrary
to define this maximum for each component to be one. All default choices of importance
weights are defined to meet this maximum.
Considering the general case and the notation introduced in section 5.2.3, the vector
of optimization parameters Θ contains s weighting parameters as well as p total and r
covariance multipliers for calibration. The response model’s (ANN’s) maximum deviance
is assumed to be that of the null model, which is the response model where all non-
intercept parameters are zero. The first default entry v1 is consequently given by

v1 = 1
/

δm
(
ω(0)

)
, (6.2a)

where δm
(
ω(0)

)
is the ANN’s distance function for the initial weighting coefficients ω(0),

which are all zero except for the intercept(s), i.e. the deviance of the null model.7 Ne-
vertheless, note that it is possible to construct cases where the final deviance of the
response model after optimization is actually higher than that of the null model. The
simplest example occurs when using box-constraints for the parameters that are highly
contradictory to the actual data. Such cases, however, are of a theoretical rather than
practical relevance when a plausible response model is specified. The deviance typically
does not exceed δm

(
ω(0)

)
, such that it seems reasonable to assume this as an upper

7 The intercept parameters for the null model can by determined from the initial population size estimates
from non-probability and reference sample, e.g. as log

(
N̂ (wnps)

/
N̂ (wres)

)
for the logit model used

in figures 6.2 and 6.3. The vector of initial weights wnps for the non-probability sample can be scaled
in advance to meet potential population size calibration constraints if necessary.
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bound. For all other distance components, the maximum value depends on the vectors of
centering constants CΘ as well as lower and upper boundaries of the box-constraints LΘ
and UΘ. The maximum contribution of each element of the optimization parameters Θ
can therefore be expressed by a vector

d := 1
2 ·Rowmax

([
(UΘ −CΘ)◦2 (CΘ −LΘ)◦2

])
∈ Rs+p+r

≥0 . (6.2b)

Based on definition 6.2b, default importance weights for all other distance components
are hence determined by

vI = 1/||dI||1 (6.2c)

for all I∈ {{2, . . . , s + 1} , {s + 2, . . . , s + p + 1} , {s + p + 2, . . . , s + p + r + 1}}, i.e. for
parameter shrinkage, total and covariance calibration penalties. This ensures that the
highest possible contribution of each of these components to the overall distance function
is equal to one.
Note that the shrinkage penalty for weighting parameters in equation 5.155 is

s∑
j=1

v(j+1)

2 ·
(
ωj − Cωj

)2
= 1

2 · v
T
J

(
ΘJ−CΘJ

)◦2
for J= {2, . . . , s + 1} , (6.3)

for which the maximum value is set to be the same as for the other components of
the distance function when using the default importance weights defined in equations
6.2. It may seem that this leads to over-shrinkage of weighting parameters ωj because
penalization of parameters deviating from centering values Cωj

is too strong. However,
calibration constraints are non-linear in ω and initial values ω(0) are usually relatively far
from an optimal solution. Therefore, the feasible range Uω−Lω between lower and upper
bounds for ω typically needs to be much larger than that for the soft calibration multipliers
ϵ and ε to be adequate for numerical optimization. By considering these boundaries in
equality 6.2b, penalization of weighting parameters when using default values for v is
therefore much lower than for soft calibration and typically does not lead to over-shrinkage
(cf. also Hastie, Tibshirani and Friedman, 2008, pp. 156 ff; Wood, 2017, p. 128).
A further benefit of equalities 6.2 is that they help to prevent certain distance components
from becoming overly dominant in the optimization problem, which would make all other
components negligible in relation. As discussed with regard to sample #3 in figure 6.3, this
problem can occur if e.g. soft calibration penalties or the response model’s deviance are
much higher than the remaining components. The issue of one component being dominant
for optimization is at least partially counterbalanced when using importance weights which
enforce all distance components to have the same maximum (cf. Craven and Wahba, 1979,
p. 379; Hastie, Tibshirani and Friedman, 2008, pp. 228 ff; Wood, 2011, p. 8).
Note that for the related but simpler special cases in problems 5.150 and 5.151, Chang
and Kott (2008, p. 559) as well as Guggemos and Tillé (2010, p. 3205) propose alternative
strategies for finding importance weights that are based on some quality measure (e.g.
the estimated variance of a point estimator). However, optimizing importance weights
with respect to a single estimator has the general drawback that it somewhat limits the
use of weights for multi-purpose estimation (cf. section 5.2). An even stronger argument
against such an approach in the present context is that suitable methods for estimating
variances or MSEs in non-probability samples are currently at best situationally available
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(cf. section 5.4) and, therefore, hardly usable to determine v. Consequently, default
importance weights in calmod are based on equalities 6.2 rather than being optimized
with regard to a quality measure.
In figure 6.3, the default importance weights and corresponding estimated values are
represented as purple crosses. It is evident that in samples where it is relatively cheap to
come close to the calibration targets, a high degree of alignment with these benchmarks is
obtained when using the default values. In cases where it is relatively costly, only some ad-
justment towards the targets is made. The results for the calibrated ANNs in figure 6.2 are
entirely based on the default values. For most samples, the resulting estimates are quite
close to the calibration benchmarks. However, this becomes too costly some cases, such
that estimates deviate farther from the benchmarks but box-constraints still limit the es-
timates’ feasible range and prevent results that are too far off from the calibration targets.
Nevertheless, the above proposal solely concerns the computation of default values in R-
package calmod. These are used only when no choice for v is made by the user. Arbitrary
user-defined importance weights can nevertheless be specified (cf. appendix C.3).
As outlined with regard to the estimated variance for sample #3 in figure 6.3, constraints
in calibrated neural networks can be quite restrictive. Especially when using a parametric
calibrated response model as in the above examples, the number of constraints is often
not much smaller than that of the weighting model’s parameters (ω) and calibration is
typically non-linear in these parameters. In some cases, this can lead to the feasible set of
solutions being empty, such that the problem is unsolvable. In figure 6.2, roughly 2.8% of
the samples are excluded, for which infeasible constraints prevent finding valid solutions.
This problem is not specific to the implementation in calmod, and it is very difficult to
detect such cases a priori. Possible remedies can be the relaxation of constraints or to rely
on a response model that is more flexible, e.g. due to a larger number of free parameters
(cf. Johnson, n.d.; Rupp, 2018, pp. 150 f).
An example for using a high number of model parameters is the GREG. In contrast to
the three weighting parameters employed by logit model and calibrated ANN in the
above example, the GREG optimizes the weights themselves, and thus employs one
optimization parameter for each observation in the non-probability sample (cf. section
5.2.2). As the number of free weighting model parameters is equal to the sample size,
the corresponding calibration problem is solvable for all samples considered in figure 6.2.
For a fair comparison, it is useful that the GREG can be interpreted as special case of a
calibrated artificial neural network for which a single linear activation layer, an identity
matrix as independent variables and exact calibration are used (cf. section 5.2.3). As
a second part of the above simulation, computational performance of the GREG (cf.
equation 5.145) is compared with such an equivalent calibrated ANN. Both weighting
methods constitute alternate formulations for solving the same optimization problem and
hence offer the same degree of flexibility. The GREG is calculated using the R-package
survey, the calibrated ANN using calmod. Exact calibration is enforced in both cases,
i.e. exact rather than soft constraints are considered for the ANN. Because one weighting
parameter is used for each observation in the non-probability sample, the variable Z and
the reference sample are irrelevant for the optimization problem and therefore not used
in this context. The remaining setup of the simulation is the same as before, considering
a range of values for the mean µX and variance ΣX of X for data generation model 6.1.
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Table 6.1: Numerical stability and coincidence of the GREG and an equivalent calibrated ANN
(each using one parameter per observation) for different values of µX and ΣX

Total calibration Total and variance calibration
Valid solutions Max.

diff.
Valid solutions Max.

diff.µX
√
ΣX GREG cal. ANN GREG cal. ANN

100 100 100 100 0 100 100 0
101 100 100 0 100 100 0
102 100 100 0 100 100 0
103 100 100 0 100 100 0
104 100 100 0 0 100

102 100 100 100 0 18 100 0
101 100 100 0 100 100 0
102 100 100 0 100 100 0
103 100 100 0 100 100 0
104 100 100 0 0 100

104 100 0 100 0 25
101 100 100 0 0 0
102 100 100 0 0 100
103 100 100 0 0 100
104 100 100 0 0 100

All numbers are in (rounded) percentage points.
cal. ANN: Calibrated artificial neural network
Valid solutions: Share of samples for which calibration constraints are met
Max. diff.: Maximal unsigned relative difference between valid weights from both

methods in all 10 000 samples. Empty cells denote cases where at least
one of the methods does not result in any valid solutions.

The shares of valid solutions found with the GREG and the calibrated ANN are repre-
sented in table 6.1. These shares represent the fractions of samples for which the resulting
weights actually fulfill the imposed calibration constraints. Although some scenarios are
rather artificial, it turns out that the classical formulation of the GREG often provides
less numerical stability than fitting an equivalent calibrated neural network. For µX = 1,
both options perform similar unless the variance of X is high and used for calibration. In
this case, the GREG needs to calibrate the total τX of X as well as that of the squared
variable, τX◦2 . It fails to meet the benchmarks because the numerical solution becomes
unstable when one of the targets is much larger than the other. Therefore, valid weights
are obtained for none of the samples by the classical GREG-formulation when µX = 1 and√
ΣX = 10 000. In contrast, the calibrated ANN still complies with all constraints in this

case because the variance is calibrated as an actual central moment, rather than using the
ordinary moment of the squared variable. The results are similar for µX = 100, except for
the GREG with variance constraint being unreliable also for the case of ΣX = 1. Due to
the fact that the ratio τX/τX◦2 is again highly different from one in this case, calibration
constraints are met in only 18% of the samples. For these first two choices of µX discussed
so far, total constraints alone do not cause any issues with both methods, and additional
calibration of the variance is always feasible for the calibrated ANN formulation. Both
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changes when the mean of X is increased even further, for µX = 10 000. In case of low
variance

(√
ΣX = 1

)
, even total calibration alone is not feasible with the classical GREG

formula. The same holds when adding a variance constraint, regardless of the size of this
variance. In contrast, the ANN with only a total constraint yields valid weights for all
samples and values of ΣX . When incorporating calibration of the variance, however, the
share of valid solutions drops to 25% for

√
ΣX = 1 and 0% for

√
ΣX = 10. Calibration

of higher variances performs well, such that this is presumably for the same reasons that
hinder the GREG from finding solutions in many scenarios, i.e. a coefficient of variation
that is very different from one. In all situations where both methods find valid solutions
to the calibration problem, the respective weights coincide. This is denoted in the column
representing the maximum unsigned relative difference between valid weights from the
two compared procedures (‘max. diff.’). Clearly, this quantity can only be calculated for
cases where both methods yield any valid solutions.
Although the current simulation hardly represents a realistic example for non-probability
sampling, the above results nevertheless illustrate the applicability of the proposed cali-
brated neural networks. Such ANNs facilitate a middle course between pure propensity
on the one and calibration weighting on the other side, allowing for flexible adjustments
between these two border cases (cf. section 5.2.3). Although the combination of distance
function components is based on a rather simple strategy (cf. equalities 6.2), the realized
implementation for numerical optimization in presence of soft calibration under box-
constraints appears suitable and yields adequate results in most cases. As any other
computational implementation of statistical methods, the SQP optimization algorithm
has its limits in terms of numerical precision, and the feasible set must be non-empty to
find a valid solution. When compared to the GREG as a well-established and widely used
weighting method, the results in table 6.1 nevertheless stress numerical advantages of the
proposed calibrated neural networks and corresponding optimization routines. Especially
in challenging cases, the examples show that calibrated ANNs can be more reliable than
the classical GREG formulation and achieve coinciding results for all considered situations
where both can be applied. These differences occur when using the common routines of
the survey package but can be validated for an independent implementation of equation
5.145 as well. The above results are therefore not specific to a particular implementation of
the GREG weights. Overall, the advantages of calibrated neural networks are particularly
evident when not only the totals are used as calibration benchmarks.
The simulation studies discussed in the current section 6.2 serve as a prior assessment
and illustration of the proposed (calibrated) semi-parametric artificial neural networks
as well as of the corresponding custom-made implementations in scope of the three R-
packages sqp, ann and calmod. For prediction, semi-parametric neural networks yield
on average lower population MSEs in comparison to fixed predetermined knot selection
strategies. Calibrated ANNs constitute an integration and extension to existing weighting
methods and provide higher numerical stability than the GREG as a frequently applied
calibration approach. Therefore, the newly proposed methods exhibit advantages over
some well-established and widely used ones. Nevertheless, the above simulations are
intended for preliminary evaluation and testing only and therefore follow an admittedly
rather simplifying and artificial setup. To examine and compare the full bandwidth of
methods discussed in chapters 3 and 5, especially for cases of non-probability sampling
that are closer to reality, a more comprehensive Monte Carlo simulation is presented in
the following section 6.3.
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6.3 Evaluation of Methods for Non-probability
Samples

Various methods for assessing and compensating the issues and challenges of non-probability
samples are discussed in chapters 3 and 5. An evaluation and comparison of the proposed
methods with regard to their benefits and pitfalls in the context of non-probability
samples is essential, especially when considering the rising amount and relevance of data
obtained from such samples (cf. also chapter 2; Daas et al., 2015, p. 249; Groves, 2011,
p. 869; Japec et al., 2015, p. 860). Although Buelens, Burger and van den Brakel (2015;
2018) already cover as least a considerable range of the presented estimation methods,
most other publications exclusively focus on a single or at best a few methods for non-
probability samples (cf. e.g. Chen, Valliant and Elliott, 2019; Elliott, 2009; Kim et al.,
2018; Rafei, Flannagan and Elliott, 2020; Yang and Kim, 2018). Despite its importance for
methodological developments, an overarching comparison of the large variety of methods
proposed for non-probability samples is hardly to be found in studies published so far (cf.
Elliott and Valliant, 2017, p. 262). One purpose of this thesis is to tackle this gap. To
that end, a simulation study evaluating the presented methods under different scenarios
of non-probability sampling is conducted.
In contrast to classical probability sampling designs, non-probability selection mechanisms
are manifold and often hard to identify (cf. chapter 2). As a consequence, setting up
simulations in the context of non-probability sampling is typically less standardized than
for studies applied in more traditional fields of survey statistics (cf. e.g. Buelens, Burger
and van den Brakel, 2018, p. 328; Chen, Valliant and Elliott, 2019, p. 672; Kim et al.,
2018, pp. 12 ff; Rafei, Flannagan and Elliott, 2020, p. 160; Yang and Kim, 2018, p. 10).
A thorough description of setup and work-flow of the simulation study is therefore given
in the following section 6.3.1, before results are discussed in section 6.3.2.

6.3.1 Setup of the Simulation Study
As discussed in chapter 2, non-probability samples can arise from various populations and
selection mechanisms and are, therefore, subject to manifold and often unknown degrees
of selectivity. At the same time, the available auxiliary information and its potential to
assess and compensate this selectivity is likewise highly diverse. The same holds for the
respective variables of interest when considering the different types of non-probability
samples. Therefore, a simulation study focusing on methods for non-probability samples
has to consider a variety of potential options.
Central challenges of non-probability sampling resemble the impact of complex probability
sampling designs (cf. chapter 2). This immediately suggests the use of (quasi) design-based
simulations, which are the typical studies conducted in the context of non-probability
sampling (cf. e.g. Buelens, Burger and van den Brakel, 2018, p. 328; Chen, Valliant
and Elliott, 2019, p. 672; Rafei, Flannagan and Elliott, 2020, p. 160). However, the
real data generating mechanism in non-probability sampling is usually unknown. Even
in cases where assessment of the selection process is possible, it is often limited by the
availability of external information and depends on (modeling) assumptions (cf. chapter 3;
Biffignandi and Pratesi, 2002; Biffignandi et al., 2002; Steinmetz et al., 2014, pp. 278 ff).
Implementing a realistic non-probability sampling procedure for a simulation study is
therefore hardly possible without making assumptions about the selection process (cf.
Enderle, Münnich and Bruch, 2013, p. 95; Lee and Valliant, 2009, p. 331).
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When assessing and comparing methods in the general context of non-probability sam-
pling, varying degrees of selectivity and auxiliary information in real data suggest in-
corporating simulation scenarios that represent relevant settings of these aspects. As
a consequence, simulations that evaluate methods for non-probability samples in many
publications are either
a) focused on a specific real data set, using a realistic population that is closely

related to this data and a selection model that is assumed to hold for the particular
setting (cf. e.g. Buelens, Burger and van den Brakel, 2018, p. 327; Chen, Valliant
and Elliott, 2019, pp. 672 f; Valliant and Dever, 2011, p. 120), or

b) relying on an explicit statistical model to create synthetic target variables and/or
non-probability selection mechanisms under different scenarios (cf. e.g. Kim et
al., 2018, p. 12; Rafei, Flannagan and Elliott, 2020, p. 160; Yang and Kim, 2018,
p. 10).

Both of these approaches have particular (dis-)advantages. In the context of option a),
only a single population, selectivity scenario and set of target variables are considered.
These characteristics are intended to mimic those of the real non-probability sample for
which the simulation is designed. If set up correctly, conclusions from such simulations
are well suited for this specific setting. However, focusing on a single scenario, even if it
is based on a real-life example, is too narrow to draw conclusions that generalize well to
different types and applications of non-probability sampling. In contrast, models used for
option b) are more suitable for constructing and comparing different scenarios. However,
the use of explicit structural assumptions that is required in statistical models can lead to
simulation results that are again hardly generalizable to any other (real) settings for which
these assumptions may be invalid (cf. chapter 2; Buelens, Burger and van den Brakel,
2018; Burgard, Dörr and Münnich, 2020, pp. 16 ff). For both options, a prevalent problem
occurs when variables and/or participation mechanisms are constructed from a model that
is later evaluated with respect to its quality for estimation (cf. e.g. Chen, Valliant and
Elliott, 2019, pp. 672 f; Lee and Valliant, 2009, p. 331). Such a strategy can cause issues
and limitations when interpreting simulation results, and may be prone to circular rea-
soning (cf. Kim et al., 2018, pp. 12 ff; Setoguchi et al., 2008, p. 548; Stürmer et al., 2007,
p. 1111). A realistic population and a participation process which both do not follow such
a specific model considered for estimation are therefore desirable. Consequently, the design
of the Monte Carlo simulation in the present section 6.3 is a combination and trade-off
between the two approaches. This goal is pursued by using an authentic population and
implementing different scenarios of sample selection and available auxiliary information.
When a realistic population is required for simulations, a common problem is that real
population (e.g. register or census) data is usually not available, because it either does
not exist or is not accessible due to confidentiality reasons (cf. Burgard et al., 2017b,
p. 235; Merkle, Burgard and Münnich, 2016, p. 6). Therefore, the following simulation
is based on the fully synthetic AMELIA data set, “which provides a realistic framework
for open and reproducible research” (Burgard et al., 2017b, p. 235). AMELIA is designed
to mimic the EU-SILC (European Union Statistics on Income and Living Conditions)
population, explicitly incorporating marginal distributions and fundamental interactions
of the real EU-SILC variables. Its main purpose is to serve as a sound artificial population
of households and persons that can be used for evaluation of statistical methods in
Monte Carlo simulations. The synthetic population is a research outcome of the AMELI
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(Advanced Methodology for European Laeken Indicators) project, with extensions being
developed under the InGRID (Inclusive Growth Research Infrastructure Diffusion) and
InGRID2 project (cf. Graf et al., 2011; Merkle, Burgard and Münnich, 2016). Since
it is synthetically constructed, the population contains realistic but not real persons or
households. This helps to overcome disclosure risks, such that the data set is publicly
available. Detailed descriptions of the data and its generation are provided by Alfons
et al. (2011), Kolb (2012) as well as Burgard et al. (2017a,b).
As motivated above, it seems sensible to apply a bandwidth of scenarios to not only
represent a single setting of non-probability sampling. This is done by altering strictly
controlled factors to represent different degrees of selectivity and utility of available
auxiliary information. The objective is to assess and compare the methods proposed for
non-probability samples under variation of those factors. Since the performance of these
methods is assumed to be influenced by these controlled conditions, insights into the
relative advantages and pitfalls of the different methods can be obtained (cf. Bethlehem,
2008a, pp. 36 ff; Buelens, Burger and van den Brakel, 2015, p. 14; 2018, p. 327).
The degree of selectivity and utility of auxiliary information both are mainly determined
by the dependencies between non-probability sampling mechanism, auxiliary and target
variables (cf. chapters 3 and 5). Consequently, these dependencies are varied across
the simulated scenarios, which is a common strategy when simulating non-probability
sampling (cf. e.g. Bethlehem, 2010, p. 181; Buelens, Burger and van den Brakel, 2018,
p. 328; Chen, Valliant and Elliott, 2019, p. 672; Kim et al., 2018, p. 12; Rafei, Flannagan
and Elliott, 2020, pp. 160 f; Yang and Kim, 2018, p. 10). To initialize the scenario
populations, a random subset of size N = 20 000 is drawn from AMELIA.8 It is then
restructured as outlined below to establish a number of patterns representing cross-
combinations of the factors to be varied. The following AMELIA variables are used
in the simulation study:

➤ The main target variable y·1 is personal income. To be able to consider not
only univariate statistics of target variables, a second variable of interest
is used. This second variable is denoted by y·2 and generated using the
same subsequently described strategy and univariate (i.e. personal income)
distribution as for y·1. The two target variables are correlated by ρy·1y·2

= 0.5.
➤ Household income serves as auxiliary variable X. It is used as predictor in

model-based and as calibration variable in pseudo-design-based methods.
➤ Age is considered as additional auxiliary variable Z that is used as independent

variables for the response model in addition to X.
➤ Selection probabilities πnps are used to select non-probability samples for the

simulation. The initial probabilities are constructed proportional to draws
from a conditional standard normal distribution given X, y·1 and Z. By re-
ordering as described below, the conditional distribution is no longer Gaussian.

The correlations between these variables are then adjusted to obtain different scenarios
of selectivity and available auxiliary information. For a fair comparison of methods, not
only linear but also non-linear dependencies have to be considered, which is achieved by
including quadratic terms (cf. Buelens, Burger and van den Brakel, 2015, pp. 15 f; Kim

8 Restricting the population size is necessary to account for the rather slow computational performance
in some pre-existing R-packages that implement the examined methods.
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Table 6.2: Settings for the simulation study

Setting 1 ρXy·1
∈ {0.0; 0.3; 0.6}

ρX◦2y·1
∈

{
0.0; 0.3; 0.6; ρXy·1

·ρXX◦2

}
ρy·1πnps ∈

{
0.6; ρZy·1

·ρZπnps

}
Setting 2 ρXy·1

∈ {0.6}
ρX◦2y·1

∈ {0.3}
ρy·1πnps ∈ {0.0; 0.3; 0.6}
ρy·1

◦2πnps ∈
{
0.0; 0.3; 0.6; ρy·1πnps ·ρy·1y·1

◦2

}
ρZ◦2πnps ∈ {0.6; ρZZ◦2 ·ρZπnps}

Further fixed correlations in both settings are ρXZ = ρZy·1
= ρZπnps = 0.6. The

remaining dependencies result as products of the specified ones, i.e. are determined by
conditional independence. Conditional independence also holds in case of products of two
correlations specified as elements of the respective sets. Both settings are combined with
100% and 80% coverage of the target population.

et al., 2018, p. 12; Rafei, Flannagan and Elliott, 2020, p. 160; Yang and Kim, 2018, p. 10).
The correlations that define the simulation scenarios consequently are those

➤ of Z with X and X◦2,
➤ of y·1 with X, Z, X◦2 and Z◦2, as well as
➤ of πnps with y·1, Z, y·1

◦2 and Z◦2.
The original dependencies between AMELIA variables are modified by reordering the
existing values of Z, y·1 and πnps to adjust the correlations between the variables. In this
way, different scenario populations and participation patterns are generated without using
any explicit model, and the marginal distributions of variables in AMELIA are not altered,
thereby retaining their similarity to real ones. Furthermore, these marginal distributions
coincide over all scenarios, which fosters comparability between the different settings.
In general, values from {0.0; 0.3; 0.6} are considered for the correlations outlined above.
In addition, it seems important to contrast purely linear with non-linear dependencies
between the variables and to compare the methods’ performance under fulfillment and
violation of conditional independence (cf. chapter 5). This is achieved by additionally
including scenarios that constitute conditional independence between y·1 and πnps given
Z and between any squared variable and all other quantities given the respective linear
variable. An example for the latter case is ρX◦2y·1

= ρXX◦2 ·ρXy·1
, which corresponds

to
(
y·1 ⊥⊥X◦2

) ∣∣∣X (cf. Dawid, 1979, p. 3). The possible combinations of these values
constitute a mixture and trade-off between values that are commonly chosen in other
simulation studies (cf. e.g. Andridge et al., 2019, p. 1471; Elliott, 2009, p. 4; Kim et al.,
2018, p. 12; Rafei, Flannagan and Elliott, 2020, pp. 160 f; Yang and Kim, 2018, p. 10).
With a total of 34 · 46 = 331 776 possible populations being computationally infeasible for
a simulation study, selected cross-combinations are chosen from the outlined values.9 The
simulation scenarios therefore result from two settings, which are outlined in table 6.2. In
9 For the four correlations to be varied between X and Z on the one and all other variables on the

other hand, 34 combinations are possible since each of these correlations is chosen from {0.0; 0.3; 0.6}.
Considering the six remaining correlations to be varied, the number of possible combinations is 46

because conditional independence constitutes a fourth option to choose.
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each of these settings, different correlations are varied, while all other relations are kept
fix or correspond to conditional independence. These variations are chosen to represent a
bandwidth of possible selectivity with respect to y·1 as well as different potentials of the
independent variables X and Z to predict the target variable y·1 and the non-probability
sampling process (πnps). In the first setting, the capability of X and its squared values to
explain y·1 is varied. This is combined with two different degrees of selectivity, expressed
by the correlation between πnps and y·1. In the second setting, the amount of selectivity
is altered further, by choosing different correlations of πnps with y·1 and its quadratic
term. In addition, the non-linear relationship between response variables Z and selection
probability πnps, as expressed by ρZ◦2πnps , is varied.
Besides this dependency structure, incorporating possible coverage issues in a simulation
study is closely related to the generation of participation probabilities πnps. In simulating
non-probability samples, there are two perspectives concerning potential coverage errors:
some authors (e.g. Bethlehem, 2010, p. 181; Lee and Valliant, 2009, pp. 331 f) use fixed
indicator variables for whether an element is in the sampling frame. Hence, πnps

i is zero
for some elements i of the population. In contrast, others (e.g. Valliant and Dever,
2011, p. 123) tend to treat coverage as random. A new indicator is generated in each
sampling step. This scenario does not systematically exclude parts of the population over
all simulation runs and is therefore representable by full coverage with adjusted values of
πnps (cf. Bethlehem, 1988, p. 253; Särndal and Lundström, 2005, pp. 49 f). Both points
of view are represented in the simulation, by additionally considering the cases where
100% and 80% of the population are covered. Under-coverage is constructed by using a
threshold value for πnps such that the lowest 20% of the inclusion probabilities are set to
zero.
Combining each of the possible combinations from table 6.2 with 100% and 80% coverage,
the result is a total number of 94 populations. To avoid ambiguity due to this still large
number of cross-combinations, the corresponding parameters defining the scenario popula-
tions are provided in the context of the simulation results as well. Note that these scenarios
are not designed to necessarily mirror realistic dependencies for the variables chosen as
X, y·1 and Z (e.g. personal and household income). As motivated above, restructuring
the original AMELIA constitutes a trade-off between realistic data, comparability and the
ability to represent different scenarios for the degree of sample selectivity and usefulness
of auxiliary information.
Sampling for the simulation consists of drawing non-probability as well as reference
samples. From each scenario population, 1 000 samples of each kind are independently
selected. Non-probability samples are drawn by means of unequal probability sampling,
using inclusion probabilities πnps to mimic selection processes in real samples. Poisson
sampling without replacement is applied for this purpose (cf. Tillé, 2006, pp. 76 ff), using
an expected sample size E (nnps) = 500. Once the sample is drawn, selection probabilities
are assumed to be unknown (i.e. for estimation), which is the common case in non-
probability sampling (cf. chapter 3). Even though reference samples often originate from
complex survey designs in reality, these designs are of negligible interest for evaluating
methods in the context of non-probability samples. Reference samples in this simulation
are therefore selected by simple random sampling without replacement for the sake of
simplicity. Since reference samples are typically smaller than non-probability samples in
real applications, their size in the simulation is nres = 200. As depicted in figures 2.1
and 5.1, only auxiliary variables X and Z are observed in the reference sample, but y·1
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is not. The outlined sampling procedures are widespread in published simulation studies
focusing on non-probability samples (cf. e.g. Andridge et al., 2019, p. 1472; Bethlehem and
Biffignandi, 2012, pp. 406 ff; Chen, Valliant and Elliott, 2019, p. 673; Rafei, Flannagan
and Elliott, 2020, p. 161; Valliant and Dever, 2011, p. 122).
The selected samples constitute the foundation to evaluate the methods proposed for ex-
amining and compensating the issues of non-probability selection processes. As described
in chapters 3 and 5, there are different archetypal settings of auxiliary information which
are typically considered for these purposes. In summary, these settings correspond to
availability of
a) micro-data for the reference sample,
b) calibration benchmarks for the population, or
c) a combination of both.

To limit the computational burden in the already large-scale study, the simulation is
restricted to these three settings because they are rather typical. Nevertheless, further
scenarios could be constructed, e.g. by considering availability of certain types of micro-
data for the whole population or by determining calibration benchmarks from the reference
sample rather than the population (cf. e.g. chapter 7; Buelens, Burger and van den Brakel,
2018, p. 329; Chen, Valliant and Elliott, 2019, p. 672; Rafei, Flannagan and Elliott, 2020,
pp. 160 f).
To calculate weights for the simulated non-probability samples, the pseudo-design-based
methods discussed in section 5.2 are applied. These can be based on scenarios a) to c) of
available auxiliary information and assume particular functional forms and loss functions
for determining the weights. For each non-probability sample, 41 distinct weighting
vectors are computed, one of which is defined to be non-informative, i.e. equal to a vector
of ones, such that the non-probability sample is unweighted in this case. As outlined
above, auxiliary variables X and Z are used in case of response (propensity) models.
Where calibration benchmarks are used, these correspond to population statistics of X.
For weighting methods that use soft calibration (i.e. calibrated ANNs), the permissible
maximum absolute deviation from targets is set to 2.5% for totals and 10% for variances.
The model-based (prediction) approaches under consideration are those discussed in
section 5.1 and apply different types of loss functions, fitting methods and assumptions
about the relationship between independent and dependent variable. In total, 14 different
types of prediction models are examined in the simulation. Because y·1 and Z are not
inherently related, X is used as the only predictor for almost all of these models. For
mixed models, however, the common use for non-probability samples is to incorporate
variables that affect sample inclusion as random effects (cf. sections 5.1.5 and 5.3.2;
Gelman et al., 2016a; Wang et al., 2015). Therefore, a classified version of Z is used
to specify the random effects for mixed models, which has the further benefit that the
use of additionally incorporating Z for prediction can be evaluated. Classes of Z for this
purpose are generated by splitting the observations into 10 groups, according to their
values in Z. In case of matching, an average of the five nearest neighbors in terms of
the Mahalanobis distance is used as prediction (cf. section 5.1.1). Once the models are
fit, they can be used to impute the target variable y·1 for the reference sample, where
classical design-based methods are employed for estimation (cf. section 2.2).
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To jointly apply weights and prediction models, the most common strategy is to rely
on a weighted loss-function (cf. e.g. Beaumont, 2000; Breidt and Opsomer, 2017; Fuller,
2009, p. 378). Purely model- or pseudo-design-based strategies are special cases thereof,
respectively using non-informative weights or the weighted distribution of y·1 in place
of the model. In between these border cases, numerous cross-combinations of weighting
and prediction models are possible. An alternative, which is sometimes considered in the
context of non-probability sampling, is to obtain weighted estimates from the modeled
distribution (or predictions) for the non-probability sample itself, rather than imputing
for a reference data set. The main example of this strategy is multilevel regression and
post-stratification (Wang et al., 2015). Joint models for selection process and target
variables, like the one proposed by Heckman (1976; 1979), constitute further alternatives
to combine the model- and the pseudo-design-based paradigm. All these options are
discussed in section 5.3 and applied in the simulation.
The determined (and potentially non-informative) pseudo-design weights are furthermore
used in methods that assess the selectivity of non-probability samples. The approaches
discussed in chapter 3, which include statistical tests, matching, R-indicators and MSE-
intervals, are considered in the simulation. In total, these result in 59 different measures
to examine the selectivity in each non-probability sample.
Estimation is performed using the weighted non-probability or the imputed reference
samples. With regard to the considered types of estimators, existing simulation studies in
the context of non-probability sampling mainly focus on means and totals (cf. e.g. Beth-
lehem and Biffignandi, 2012, p. 295; Buelens, Burger and van den Brakel, 2018, p. 328;
Chen, Valliant and Elliott, 2019, p. 672; Valliant and Dever, 2011, p. 124; Rafei, Flannagan
and Elliott, 2020, p. 161). However, the literature review in section 2.1 reveals that mul-
tivariate statistics are of considerable importance for many real-life applications of non-
probability samples as well. To cover a bandwidth of uni- and multivariate statistics that
appear relevant in that review, the point estimators considered for the simulation study
include totals and means as well as covariances, correlations and regression coefficients.
Even though approaches for assessing selectivity can provide some indication about the
bias of estimates, there is no general theory for quantifying it from a single non-probability
sample. For inference, actually estimating the MSE’s bias component would require even
stronger assumptions and/or better auxiliaries than those used for point estimation. Such
additional variables or assumptions could typically be used to compensate the bias, rather
than to quantify it only for inference. Therefore, inference in the simulation study is
based on variance estimation methods, which is the typical case considered in the context
of non-probability samples (cf. chapter 5; Buelens, Burger and van den Brakel, 2018,
p. 330; Chen, Valliant and Elliott, 2019, p. 673; Elliott and Valliant, 2017, p. 257; Kim
et al., 2018, p. 10; Rafei, Flannagan and Elliott, 2020, p. 159). As described in section
5.4, a first naive approach is to apply classical design-based variance estimates for this
purpose (cf. e.g. equations 2.20). To that end, a pseudo-design weighted non-probability
or an imputed reference sample is treated as if it was a probability sample with known
design weights and target variables. These methods are considered in the simulation
because they are frequently used for real non-probability samples (cf. e.g. Barratt, Ferris
and Lenton, 2015; Faas and Schoen, 2006; Guarte and Barrios, 2006; Spijkerman et al.,
2009). Nevertheless, such approaches ignore the fact that estimation from non-probability
samples typically requires weighting and/or prediction models. This can lead to seriously
biased inference, which is why resampling techniques are typically considered to be more
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adequate in this context (cf. Baker et al., 2010, p. 47; Bethlehem, 2008b, p. 21; Lee and
Valliant, 2009, p. 341; Rafei, Flannagan and Elliott, 2020, p. 160). To consider resampling
methods, the Monte Carlo and rescaling bootstrap are applied in the simulation, from
which variance estimates are obtained as described in equations 5.189. Because the within
and between component of the variance are considered either separately or jointly in
different publications, each of these options is evaluated for both resampling methods
under consideration in the simulation. Note that for all of these variance estimates, it
is typically assumed that the non-probability sample inclusion of two distinct elements
is independent. This assumption holds for the Poisson sampling strategy applied for the
simulation, but may be violated in real cases of non-probability sampling (cf. Buelens,
Burger and van den Brakel, 2018; Chen, Valliant and Elliott, 2019; Elliott and Valliant,
2017; Guarte and Barrios, 2006; Kim et al., 2018; Tillé, 2006, p. 77).
In a final step, the simulation’s output is used to evaluate and compare the performance
of all the discussed assessment and estimation methods for non-probability samples. This
is done by means of graphical illustration as well as with regard to the relative bias

RBias
(
ϑ̂
)

= Bias
(
ϑ̂
)
⊘ ϑ (6.4)

and relative root mean squared error

RRMSE
(
ϑ̂
)

=
√

MSE
(
ϑ̂
)
⊘ ϑ (6.5)

as normalized quality measures for general estimators (cf. section 2.2). Variance estimates
are typically used to construct confidence intervals rather than reported themselves. The
coverage rates of these intervals (confidence interval coverage rates, CI-rates or CIRs) in
the simulation are therefore examined to assess the quality of variance estimates. These
CI-rates are defined by

CIR
(
ϑ̂ij

)
:= E

(
I
(

Abs
(
ϑ̂ij − ϑij

)
≤ Φ-1 (1− α/2) ·

√
V̂
(
ϑ̂ij

)))
(6.6)

for all estimates ϑ̂ij, where Φ-1 (1− α/2) is the (1− α/2) quantile of the standard normal
distribution. The common significance level of α = 0.05 is used in the simulation (cf. e.g.
Bethlehem and Biffignandi, 2012, p. 170; Dekking et al., 2005, pp. 383 ff; Efron and
Tibshirani, 1986, p. 55; Elliott and Valliant, 2017, p. 261; Rafei, Flannagan and Elliott,
2020, p. 162).
Since repeated sample selection in the simulation is used to approximate the behavior
of estimators ϑ̂ over all possible samples, the expectations used to define equalities 6.4
to 6.6 are all evaluated over the 1 000 estimates obtained from each of the Monte Carlo
iterations. The true values (statistics of interest ϑ) to be estimated in the simulation
are obtained from the known finite scenario populations. All the specific estimators and
statistics of interest that are relevant in the simulation are defined in section 2.2.
An overview of all outlined steps for the simulation study in form of a flowchart is provided
in figure 6.4. The results obtained from this study are presented and discussed in the
following section 6.3.2.
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Figure 6.4: Flowchart of the Monte Carlo simulation study
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6.3.2 Results of the Simulation Study
Considering the number of scenario populations and approaches for weighting, prediction
and selectivity assessment, the simulation study’s outcomes are extensive. To provide an
overview, the following discussion focuses on a selected subset of results. This subset is
chosen to cover important overall findings from the Monte Carlo simulation by illustrating
patterns that generalize to other similar cases in the simulation study. Following the
order in figure 6.4 and chapters 3 to 5, methods for selectivity assessment are evaluated in
section 6.3.2.1. Simulation results for point estimation and inferential approaches follow
in sections 6.3.2.2 and 6.3.2.3.

6.3.2.1 Methods for Assessing Selectivity and Bias
Different approaches to examine whether a non-probability sample is selective and biased
are discussed throughout chapter 3. To that end, these methods typically make joint
use of a non-probability and a reference sample (cf. e.g. equations 3.2 to 3.5). For each
of these approaches for selectivity assessment, selected simulation results are successively
presented in the following paragraphs. The order corresponds to that in chapter 3, starting
with statistical tests for selectivity patterns, followed by matching, R-indicators and MSE-
intervals.

Tests for Selectivity
As a first formal approach to assess potential selectivity of non-probability samples,
statistical tests are frequently applied (cf. section 3.4). To check whether they are actually
fit for this purpose, it is evaluated whether decisions based on such tests can provide some
guidance on the magnitude of error occurring in non-probability sample estimates. This
estimation error is the difference between the estimated and the true statistic of interest
(cf. section 2.2). Results are represented in figure 6.5, applying combined difference tests
for X and Z.
Since most of the following figures follow a highly similar pattern, the general structure is
summarized as a first step. As outlined in table 6.2, correlational structure and coverage
of the target population are the only factors varied in the simulation. In figure 6.5, twelve
distinct scenario populations are considered, representing different types of linear and
quadratic relations between auxiliary and target variables X and y·1. These dependencies
are structured and labeled in rows and columns to form a grid, such that each cell in the
grid represents one of these twelve scenarios. As discussed above, certain correlations
between simulation variables are kept fix across all results in this figure. These are
indicated below the plot. As a result of conditional independence, all other correlations
are products of the denoted ones. The degree to which the target population is covered
by the non-probability samples is also fixed and denoted in the figure’s caption. Within
the grid cells, each boxplot refers to the distribution of estimates under a certain setting.
The mean of the respective estimates is depicted as a purple line within the box while
the corresponding values of RBias and RRMSE are denoted in the two columns next to
it. The distribution of estimates is represented as deviation from the true values in the
respective population, which are represented as red lines at zero deviation.
In the current figure 6.5, each boxplot represents the distribution of unweighted estimates
µ̂y·1

in dependency of the decisions resulting from the various difference tests discussed
in section 3.4. A significance level of 5% and non-informative weights w̃ = 1nnps×1 for the
non-probability sample are used. The tests are jointly performed for X and Z, applying
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Figure 6.5: Representativity assessment for different dependencies between X and y·1: com-
bined difference tests for X and Z, and estimation of µy·1

for 100% coverage –
weighting model: unweighted
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Rosenblatt’s (1952) theorem where the original test does not allow for more than one
variable. Correlations ρXZ , ρZy·1

and ρZπnps between Z and respectively X, y·1 and
πnps are all fixed to 0.6, while linear and quadratic dependencies between X and y·1 are
varied across the grid. All other relations between the variables are defined by conditional
independence (cf. section 6.3.1).
Since difference tests indicate whether there is a significant inequality between non-
probability and reference sample, non-significant result are commonly used as evidence for
absence of selectivity, even though they formally are an improper tool to accept hypotheses
of equality (cf. section 3.4). Results in figure 6.5 show that for each but the Hawkins test,
a significant difference in X and Z is indeed associated with a higher bias and MSE in
µ̂y·1

. However, a large amount of bias remains even when the tests are non-significant.
This pattern holds over all examined relational structures between X and y·1. Regardless
of the resulting test decision, the bias of µ̂y·1

in most cases tends to increase with higher
correlation between y·1 and X, i.e. from left to right grid cells. The increase is caused
by inclusion probabilities πnps and X both being correlated with Z since the auxiliary
variables are not used to compensate for selectivity in this setting.
When comparing the different types of tests, Hawkins’ test exhibits comparably poor
performance. It is the only test where RBias and RRMSE of the estimated mean are not
generally lower if the test outcomes are non-significant. This behavior may be due to the
fact that it tests for inequality in variances, which constitute an important component
especially for the remaining parametric tests. Differences between most other types of
tests are rather small over all scenario populations, but Little’s test slightly outperforms its
competitors regarding bias and MSE in many cases. From the non-parametric tests alone,
the Kruskal-Wallis test seems slightly better than the Anderson-Darling or Kolmogorov-
Smirnov test in average over all scenarios.
These findings are largely stable when using weights, i.e. for performing weighted tests
to assess weighted estimates. The same holds when estimating correlations or regression
coefficients instead of the mean µ̂y·1

and for the different further scenario populations. For
all these cases considered in the simulation, results are highly similar to those presented
in figure 6.5. In general, some amount of bias is detected when testing for differences
in the auxiliary variables. Therefore, it seems reasonable to assume that such significant
differences in auxiliary variables indicate a higher bias in comparison to non-significant
ones. However, such tests are typically applied in reality to provide evidence that there
is no difference between non-probability and reference sample (cf. section 3.4). The
above results show that it is not generally appropriate to assume non-selectivity and
unbiasedness when differences in auxiliary variables are not significant. For most cases
in the simulation, a considerable amount of bias remains even when the difference tests’
results are not significant.
Although it is from a theoretical perspective more appropriate to show coherence of
two data sources (cf. section 3.4), the use of equivalence tests leads to quite similar
findings. The bias is typically lower when equivalence is significant, but the contrary
occurs in various cases as well. A probable reason for this finding is the necessity to
choose boundaries for the equivalence interval (cf. inequalities 3.20), which requires more
effort and specific knowledge than the application of difference tests. Therefore, the
use of equivalence tests for non-probability samples appears more situational and the
corresponding results are more ambiguous than for difference tests.
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In the simulation, tests for (non-)selectivity therefore permit some degree of bias assess-
ment but do not allow drawing reliable conclusions about unbiasedness of non-probability
sample estimates. This limited explanatory power is likely at least partially caused by
rather small sampling fractions, resulting in relatively imprecise statistical tests. Although
selected by simple random sampling, each reference sample only constitutes a small
random subset of the population, from which the distributions of X and Z are used for
testing. In addition, selective non-probability samples are subject to some degree of purely
random variation as well if the selection process is not fully deterministic. Systematic
differences between non-probability and reference sample may, thus, be concealed by the
random variation of both data sources. In cases where samples are considerably larger (or
more precise due to any other reason; cf. Groves, 1989; Weisberg, 2005), statistical tests
might therefore be better indicators for selectivity and bias of non-probability samples.
Nevertheless, available data in real applications is often limited and sampling fractions
have to be considered fixed in many applications (cf. chapter 2; section 3.2; Bethlehem,
2008b, p. 35). Alternative ways to examine selectivity of non-probability samples may
hence be more useful for the settings considered in the simulation study.

Matching
Matching constitutes an alternative approach for selectivity assessment of non-probability
samples. As discussed in section 3.5, the distributions of matched observations in reference
and non-probability sample are compared to assess selection bias in the latter, and
differences in matched samples are used as an indication about systematic errors in non-
probability sample estimates.
Simulation results to examine this usage of matching are shown in figure 6.6, following the
same fundamental structure and scenarios as before (cf. figure 6.5). The approximated
bias of µ̂X obtained from matching is used as a proxy for the estimation error of µ̂y·1
(cf. approximation 3.24). The performance of this approach is evaluated by plotting
the expected difference in µ̂X against actual discrepancies between µy·1

and µ̂y·1
in

a scatter plot. For each of the twelve scenario populations, these plots represent the
dependency between approximate and actual error over all 1 000 samples. Additionally
denoted is the coefficient of determination R2, which in this bivariate case is the squared
correlation between both quantities (cf. definition 2.17c). This coefficient expresses the
share of variation of the error µ̂y·1

−µy·1
that can be explained by a linear function of

the approximated bias of µ̂X . As before, unweighted estimates are considered, such that
there is no correction for selectivity in the estimates.
It is remarkable that the difference for µ̂X in the two matched samples is nearly unrelated
to the error made when estimating µ̂y·1

from the non-probability sample. Even if X
and y·1 exhibit considerable correlation, matching results for µ̂X in the simulation hardly
allow for any valid conclusions about the quality of µ̂y·1

. These results hold regardless of
the underlying dependency between both variables, and non-linear dependencies are as
well not evident.
This pattern is also found when considering different scenario populations, estimates other
than the mean µ̂y·1

(such as correlation or regression coefficients) or weighted estimates.
In general, results for other settings of matching in the simulation are very similar. The
general finding is that matching provides useful information about the bias of a non-
probability sample only if the actual variable(s) of interest can be compared for the
matched samples. To that end, the variables relevant for the estimator (i.e. y·1 in the
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current case) must be part of the auxiliary variables, as they need to be observed in
the reference sample. In some real applications of non-probability sampling, this may
be the case. However, non-probability samples are more commonly used to measure
target variables that are not (yet) observed in existing probability samples. In such cases,
evaluation of matched samples with respect to y·1 is infeasible because this variable is
unknown for the reference sample (cf. chapter 2).
In the present simulation, differences in auxiliary variables (e.g. in µ̂X) between matched
samples exhibit poor explanatory power for predicting selectivity in target variables (e.g.
bias in µ̂y·1

). As for the statistical tests considered in figure 6.5, this may again be at
least partially explained by rather small sampling fractions of non-probability and refer-
ence samples. The bias component of the MSE may again be concealed by the random
variation of both data sources, such that samples of higher precision might be more suit-
able for examining selectivity and bias of non-probability samples by means of matching.

Representativity Indicators
R-indicators constitute the third option considered for selectivity assessment of non-
probability samples (cf. section 3.7). These indicators depend on the variability of the
estimated response propensities p̂nps, such that a higher overall R-indicator R̂ (p̂nps) sug-
gests less dependency between non-probability selection process and independent variables
used in the response model. When these auxiliary variables are correlated with the target
variables, a higher value of R̂ (p̂nps) should, hence, indicate a lower systematic difference
between estimated and true population statistic of interest. The utility of these indicators
for assessing selectivity in the simulation study is evaluated in analogy to that of matching.
Results are presented in figure 6.7, for which response propensities are estimated from a
parametric logit GLM. For each scenario population, differences between µy·1

and µ̂y·1
are

evaluated in dependency of the overall R-indicators calculated from these propensities.
The structure and scenarios are the same as for the previous figures, such that ρZy·1

= 0.6
is fixed, while (non-)linear dependencies between X and y·1 are determined by the grid
cells. In comparison to matching (cf. figure 6.6), the R-indicator provides slightly more
evidence about the error made by an unweighted non-probability sample estimate µ̂y·1

.
The general tendency is a negative correlation between R-indicator and error in µ̂y·1

for
the non-probability sample, which meets the above expectations that higher values in
R̂ (p̂nps) imply lower bias in µ̂y·1

. Since y·1 and Z are always correlated, this pattern
holds over all examined dependencies between X and y·1, although a stronger linear
relation ρXy·1

tends to allow slightly better results. Nevertheless, the predictive power of
the R-indicator for the error of unweighted non-probability sample estimates µ̂y·1

is rather
small in all considered scenarios. Even in the best case, the coefficient of determination
does not exceed 11% and non-linear dependencies are not evident.
A similar pattern recurs in other settings of the simulation. In most cases, the error of
unweighted non-probability sample estimates is largely unrelated to overall, conditional
and unconditional representativity indicators. This holds when estimating univariate
statistics, such as means and totals, as well as multivariate ones, which include correlation
and regression coefficients.
A major improvement is evident only when additional population benchmarking informa-
tion in form of calibration constraints is incorporated in the response propensity model,
e.g. by using calibrated neural networks (cf. section 5.2.3). An example is shown in figure
6.8, considering identical scenarios as above. The propensity model used for computing
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Figure 6.7: Representativity assessment for different dependencies between X and y·1: global
R-Indicator R̂ (p̂nps), and unweighted estimation of µy·1

for 100% coverage –
propensity model: logit model (parametric), using a reference sample
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for 100% coverage –
propensity model: calibrated ANN (parametric), using a reference sample, total
and covariance constraints
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the R-indicator is of the same form as in figure 6.7 but additionally incorporates total and
variance constraints for the X-variable by using soft calibration as described in section
6.3.1. Incorporating such benchmarks in the response model considerably increases the
value of all types of R-indicators for measuring selectivity in non-probability samples, such
that they are more valuable predictors for the error of the (still unweighted) estimates µ̂y·1

.
Because total and covariance calibration respectively exploit linear and non-linear depen-
dencies between X and y·1, this is especially true if ρXy·1

and ρX◦2y·1
are both high. If this

is the case, up to 51% of the error’s variability can be explained in figure 6.8. A probable
reason for this positive effect when calibration constraints are incorporated is the restric-
tion of the feasible parameter region. These restrictions limit the possible values and
hence variability of the R-indicators, leading to a stronger relation to the error of µ̂y·1

.
However, further simulation results show that this correlation vanishes once propensities
(or any other form of compensating weights) are used for actual weighted estimation.
Even with this increased predictive power, representativity indicators seem therefore
more appropriate to identify and compensate selectivity during the sampling stage, which
corresponds to their original purpose (cf. Schouten et al., 2012, p. 389). For assessing the
error of estimates that use compensation methods discussed in chapter 5, R-indicators
appear to be less applicable.
When additional auxiliary information in form of calibration benchmarks is included in
the propensity model, the value of representativity indicators to determine selectivity
of non-probability samples considerably increases in the current simulation. The pro-
posed calibrated neural networks constitute an option for incorporating such information.
However, R-indicators are originally based on pure response models that do not perform
any calibration. In such cases, use of these indicators for evaluating selectivity of non-
probability samples is generally rather limited. As in the case of matching, these results
may partially be explained by small sampling fractions of non-probability and reference
samples. The sampling variability might simply conceal any systematic differences in the
response model underlying the R-indicators. To make representativity indicators more
valuable for non-probability samples, it might again be sensible to use larger samples (or
otherwise more precise reference samples) where possible.

MSE-intervals
MSE-intervals are the last option considered for detecting selectivity in non-probability
samples (cf. section 3.8). The core element here is to obtain an interval for the correlation
between target variable and non-probability inclusion indicator, which is based on their
respective correlations with a third variable. For a given target variable and sample
size, an interval for the MSE of design linear estimators can be directly obtained from
this correlation. Although such an interval is rarely sufficiently narrow to be used for
actual inference (cf. also sections 5.4 and 6.3.2.3), it may still be applied to examine the
potential error of a non-probability sample estimate. Since this interval is applied to
quantify the difference between estimated and true statistic, its midpoint should ideally
perfectly describe the estimation error in a non-probability sample. Using equalities 3.37
and 3.38 to approximate the estimation error of µ̂y·1

(w̃) in the outlined manner leads to

µ̂y·1
(w̃)− µy·1

≈

ρ̂Xy·1
(w̃) · ρ̂Xr̃

nps (wu) ·
√

1− frnps

frnps ·
√
Σ̂y·1 (w̃) ·

√√√√1 + (CV (w̃))2

1− frnps .
(6.7)
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In approximation 6.7, a vector of weights w̃ is used for the non-probability sample, and
wu denotes the combined vector of weights for the non-probability and the reference
sample (cf. equation 3.5). As the third variable required to approximate ρr̃

nps
y·1

, X is
used. When the true population variance and correlations are known and plugged in,
this approximation is exact under conditional independence of y·1 and r̃ nps given X (cf.
assumption 5.1). Both requirements do not hold in the simulation, and estimates are used
for approximation 6.7 to assess the performance of MSE-intervals as estimated measures
of selectivity for realized samples. As outlined in section 3.8, ρ̂Xr̃

nps is determined from
the combined non-probability and reference sample. Estimates ρ̂y·1X and Σ̂y·1 as well as
the sampling fraction frnps and the coefficient of variation CV (w̃) are obtained from the
non-probability sample alone.
Simulation results for left- and right-hand side of approximation 6.7 are presented in figure
6.9, considering again the unweighted case (w̃ = 1nnps×1). Structure and scenarios are the
same as for the previous figures. As discussed in section 3.8, the quality of approximation
6.7 depends on the correlation of a third variable (X) with both the target variable and
the weighted response indicator. For the current results, the population’s correlation of X
and rnps is fixed through ρXπnps = ρXZ ·ρZπnps = 0.36. Consequently, the MSE-intervals’
centers provide very limited information about the error of µ̂y·1

in case of small or no
dependency between y·1 and X as well as its squared term X◦2. But when at least one
of these correlations is higher, the linear association between the center of the estimated
MSE-intervals and the estimation error of µ̂y·1

improves considerably. Especially when the
specified linear and non-linear dependencies are both high, the coefficient of determination
increases up to 31%. In all scenarios, the approximated error indeed seems to be linearly
associated with the true one. However, the ranges of possible values are considerably
different, such that the relation between both still deviates substantially from identity.
Furthermore, the amount of unexplained variability remaining in all settings is too high to
be neglected. Approximation 6.7 is, thus, still not a precise measure of estimation error.
Nevertheless, these results indicate that MSE-intervals mostly outperform the previously
discussed approaches whenever only a reference sample is used for assessing selectivity
with regard to design linear estimators (cf. figures 6.5 to 6.8). These findings are similar in
the further simulation scenarios and hold whether conditional independence is fulfilled or
not. They also extend to weighted estimates of approximation 6.7 and µy·1

. In particular
when using plain propensity weights, MSE-intervals can provide valuable indications for
the resulting estimation errors. An example is shown in figure 6.10, where the errors of
mean estimates that use propensity weighting are assessed under otherwise coinciding con-
ditions as in figure 6.9. For medium to high population correlations between y·1 and X
as well as its squared term X◦2, the estimation error of µ̂y·1

is to a large extent (up to 79%)
explainable as a linear function of the MSE-interval’s midpoints. When ρX◦2y·1

is not addi-
tionally controlled, this is also feasible in case of high values for ρXy·1

alone. As before, the
relation between approximated and true error appears far from identity since the ranges
of the possible values are visibly different. Nevertheless, the linear dependency between
approximated and true error is considerable. The scatterplots suggest that this may to a
large extent be caused by samples where both sides of approximation 6.7 strongly depart
from the majority of samples. In presence of adequately correlated auxiliary variables,
approximation 6.7 seems therefore especially worthwhile to assess whether a propensity
weighted non-probability sample is particularly prone to large errors in linear statistics.
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However, these results only hold as long as total calibration is not applied for the auxiliary
variable that is used for the MSE-intervals. This is caused by the fact that calibration
adjusts for biases in linear statistics as far as X and y·1 are correlated. The amount of
bias determined by this correlation ρXy·1

is exactly the systematic error that is captured
by approximation 6.7, which is the case due to the underlying conditional independence
assumption (cf. section 5.2; Bethlehem, 2008b, p. 33). Consequently, MSE-intervals can
mainly help to assess non-probability sampling bias when this dependency between X
and y·1 is not already fully exploited for compensation. For valid estimates of the MSE’s
variance component to represent the entire estimation error, however, the correlations
used in the simulation are simply too small.
Throughout the current section 6.3.2.1, the approaches for assessing selectivity of a non-
probability sample discussed in chapter 3 are evaluated and compared. All of these
approaches depend on auxiliary variables that are highly correlated with both the target
variable and the non-probability sample’s inclusion indicator. Auxiliary variables to be
used for this purpose should, therefore, be chosen with regard to these correlations (cf.
Schouten, 2007, pp. 60 ff). The tremendous importance of such highly correlated variables
is underlined by the simulation results, despite none of the considered methods being
able to perfectly describe the error of the non-probability sample estimates in any of
the simulated conditions. Nevertheless, particular strategies appear more appropriate
under certain circumstances. When only a relatively small reference sample is available,
the considered statistical tests for selectivity allow rather limited conclusions about the
estimation error, and the same holds for matching. Both methods are presumably affected
by the high uncertainty of the reference sample estimates, which typically has to be
considered as given for realistic scenarios (cf. e.g. Bethlehem, 2008b, p. 35; Isaksson
and Lee, 2005, p. 3143). The use of representativity indicators is more feasible in some
situations. It is noteworthy mainly for evaluating selectivity and sample composition
when suitable auxiliary variables are used for calibrating the underlying response propen-
sities. However, R-indicators seem less useful for determining the errors of estimates
that are already based on any of the compensation methods discussed in chapter 5,
e.g. for propensity weighted estimates. In such cases, MSE-intervals based on the work
of Meng (2018) and Schouten (2007) appear as the most promising approach, at least
for their intended use with regard to design linear estimators. The midpoints of these
intervals predict the estimation errors relatively well, for both unweighted as well as
weighted estimates. However, these results only hold as long as total calibration is not
applied for the auxiliary variable that is used for the MSE-intervals. Otherwise, this
calibration adjusts exactly for the amount of bias that is measured by these intervals.
A detailed investigation of these and other methods that attempt to compensate for
selectivity of non-probability samples in point estimation is provided in the following
section 6.3.2.2.
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6.3.2.2 Methods for Point Estimation
The point estimation methods for non-probability samples are partitioned by the model-
and the pseudo-design-based paradigm, with some approaches aiming at a combination
of both (cf. sections 5.1 to 5.3). In the current section 6.3.2.2, the objective is to evaluate,
compare and discuss the performance of these methods in the simulation study. As in
the previous section 6.3.2.1, only selected results can be presented due to the manifold
different scenarios considered in the simulation. The following selection is chosen to
provide a profound overview, considering different settings of sample selectivity, available
auxiliary information and statistics to be estimated. Following the structure in chapter 5,
the model-based methods are discussed first, before examining the pseudo-design-based
techniques and approaches for integrating both.

Model-based Methods
In section 5.1, the model-based paradigm for estimation from non-probability samples is
introduced, which is strongly based on conditional independence assumption 5.1. When
this assumption holds, the conditional distribution fY (yi· |xi· ) of the target variables Y
given some auxiliary variables X can be estimated unbiasedly from the non-probability
sample. The unconditional distribution of Y is then obtained by using external informa-
tion about the distribution of X, e.g. based on the reference sample (cf. equations 5.7 and
5.8). The model-based paradigm relies on a bandwidth of specific statistical or machine
learning models to represent the target variables’ conditional distribution (or certain
aspects thereof), ranging from matching (cf. section 5.1.1) to support vector machines
(cf. section 5.1.10). In the simulation, each of these prediction models is used to obtain
estimates for all 1 000 non-probability samples drawn from every scenario population.
With regard to these estimates, the respective performance of the different models in
point estimation is evaluated and compared. As before, a summary and discussion of
important findings is given in the context of the following figures. As a base-line and
reference point for comparison, plain non-probability sample estimates (‘nps-estimates’)
that do not use any model are included.
The potential of model-based methods to estimate the mean µy·1

by using mass-imputation
for the reference sample is evaluated in figure 6.11. The simulated scenarios and structure
coincide with those in the previous figures 6.5 to 6.10. Different linear and non-linear
dependencies between predictors X and target variable y·1 are considered in form of a
grid, using fixed correlations ρXZ = ρZy·1

= ρZπnps = 0.6 (as stated below the figure)
to determine the scenario populations. All other relations between these variables are
determined by products of the stated ones, corresponding to conditional independence
(cf. section 6.3.1). Similar as in figure 6.5, the distributions of the estimates obtained
from each of the models over all 1 000 samples are represented as boxplots. RBias and
RRMSE are supplementarily reported beside each boxplot.
Examining the reference point of the rather naive non-probability sample estimates that do
not use any method to compensate for selectivity, it is evident that the plain (unweighted)
non-probability sample mean is severely biased in all represented scenarios. This is the
case because selection probabilities πnps and target variable y·1 are both correlated with
Z. The bias to a large extent determines the MSE of estimators and increases with higher
correlations ρXy·1

because X and Z are also correlated.

177



Monte Carlo Simulation Studies

ρ
X

◦2
y

·1
=

0.
6

ρ
X

◦2
y

·1
=

0.
3

ρ
X

◦2
y

·1
=

0.
0

ρ
X

◦2
y

·1
=
ρ

X
y

·1
·ρ

X
X

◦2
ρXy·1

= 0.0 ρXy·1
= 0.3 ρXy·1

= 0.6

13.4
8.8
8.0
8.0
9.6
9.0
9.1

10.1
10.8
10.5
9.6

-44.0
1.0
0.3

>99

15.3
12.0
10.8
10.8
11.8
11.6
11.7
12.7
13.2
12.9
11.8
44.3
7.5
8.3

>99

17.1
8.1
7.4
7.4
8.0
7.5
7.5
9.6

10.6
9.8
9.0

-38.1
1.0
0.4

>99

18.7
11.4
10.9
10.9
11.1
11.0
11.0
12.5
13.3
12.6
11.5
38.6
8.3
8.6

>99

20.4
6.3
6.1
6.1
7.0
6.2
6.2
7.5
8.4
7.7
7.0

-24.1
0.7
0.4

>99

21.8
10.6
10.6
10.6
10.8
10.6
10.6
11.6
12.2
11.6
10.5
25.3
9.0
9.3

>99

15.9
13.1
13.0
13.0
14.4
14.3
14.3
13.6
14.2
14.2
13.6

-42.4
0.9
0.3

>99

17.5
15.8
15.0
15.0
16.2
16.2
16.2
15.3
16.3
16.0
15.4
42.7
8.4
8.2

>99

18.5
11.7
11.8
11.8
12.6
12.2
12.2
11.8
12.5
11.9
11.9

-36.8
0.9
0.6

>99

20.1
14.7
14.3
14.3
14.7
14.6
14.6
13.9
15.1
14.2
14.1
37.3
8.7
8.2

>99

19.4
7.2
8.1
8.1
8.9
8.5
8.5
6.7
7.3
6.8
6.8

-19.4
1.0
1.1

>99

20.9
11.8
11.3
11.3
11.9
11.7
11.6
11.3
11.2
10.8
10.8
20.8
8.6
9.5

>99

17.9
16.9
18.0
18.0
17.9
17.9
17.9
17.1
17.1
16.9
17.1

-38.8
0.9
0.7

>99

19.3
19.5
19.5
19.5
19.4
19.4
19.4
18.7
19.1
18.6
18.8
39.2
9.4
9.4

>99

18.0
12.3
13.8
13.8
14.3
14.1
14.1
12.1
12.2
12.0
12.2

-33.6
0.8
0.7

>99

19.5
15.4
15.6
15.6
16.0
15.8
15.8
14.2
14.6
14.1
14.2
34.1
8.6
8.6

>99

18.2
8.6

10.2
10.2
10.8
10.6
10.6
8.1
8.6
8.1
8.4

-25.7
1.1
1.0

>99

19.7
12.5
12.5
12.5
13.0
12.9
12.8
11.3
11.9
11.2
11.4
26.6
8.4
8.5

>99

-0.
4

-0.
2 0.0 0.2 0.4

17.0
16.1
16.8
16.8
16.9
16.8
16.8
16.2
15.9
16.1
16.1

-40.7
0.5
0.3

>99

18.4
18.6
18.4
18.4
18.4
18.4
18.4
17.8
17.9
17.8
17.8
41.0
9.1
9.1

>99

-0.
4

-0.
2 0.0 0.2 0.4

20.2
13.7
14.6
14.6
15.0
14.8
14.8
13.8
13.8
13.6
13.6

-33.6
0.7
0.7

>99

21.3
16.5
16.2
16.2
16.6
16.5
16.4
15.6
16.0
15.4
15.4
34.2
8.5
8.5

>99

-0.
4

-0.
2 0.0 0.2 0.4

20.8
6.9
6.9
6.9
7.7
7.0
7.0
8.1
8.6
8.0
7.5

-23.5
1.1
1.2

>99

22.2
11.2
11.1
11.1
11.3
11.1
11.1
12.3
12.3
11.7
11.0
24.8
9.1
9.7

>99

R
Bi

as
(%

)

R
Bi

as
(%

)

R
Bi

as
(%

)

R
R

M
SE

(%
)

R
R

M
SE

(%
)

R
R

M
SE

(%
)

Deviation from true value: µ̂y·1
−µy·1

Mean
True value / benchmark Prediction model variables: X Response model variables:X, Z

Random effects variables: Z-classes

ρXZ = 0.6 ρZy·1
= 0.6 ρZπnps = 0.6

All other correlations result as products of the stated ones.

No model (nps-estimate)
Matching
GLM
ANN (linear)
Ridge regression
Elastic net
LASSO
GAM
Regression tree
MARS
ANN (optimized knots)
SVM
GLMM
GAMM
Heckman Model

No model (nps-estimate)
Matching
GLM
ANN (linear)
Ridge regression
Elastic net
LASSO
GAM
Regression tree
MARS
ANN (optimized knots)
SVM
GLMM
GAMM
Heckman Model

No model (nps-estimate)
Matching
GLM
ANN (linear)
Ridge regression
Elastic net
LASSO
GAM
Regression tree
MARS
ANN (optimized knots)
SVM
GLMM
GAMM
Heckman Model

No model (nps-estimate)
Matching
GLM
ANN (linear)
Ridge regression
Elastic net
LASSO
GAM
Regression tree
MARS
ANN (optimized knots)
SVM
GLMM
GAMM
Heckman Model

Figure 6.11: Comparison of prediction models for different dependencies between X and y·1:
estimation of µy·1

for 100% coverage – weighting model: unweighted (estimation
from imputed reference sample)
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As one would expect, the results in figure 6.11 indicate that the potential of model-based
methods to compensate for selection bias and reduce the MSE in comparison to the above
naive estimates strongly depends on the relation between auxiliary and target variables.
When there is no dependency between X and y·1, estimation by using the imputed
reference sample performs similar to the unweighted non-probability sample mean for
most of the considered models. But if any such dependency is present, most model-based
estimates are able to considerably reduce the bias and MSE. The results show that the
amount of bias reduction depends less on the choice of a specific model than on the
strength of the linear and non-linear dependencies between target variable and predictor,
which are determined by ρXy·1

and ρX◦2y·1
. However, prediction models are usually by far

simpler to choose, alter and modify than available auxiliary variables in real applications
(cf. section 3.2). Therefore, some differences between the considered imputation methods
are nevertheless worth discussing.
The importance of conditional independence for model-based estimation discussed in
section 5.1 is underlined by the performance of GLMMs and GAMMs. These mixed
models make use of Z as additional auxiliary variable. Employing a coarsened version
of Z in form of ten classes used to specify the random effects leads to quite good results
and nearly eliminates selection bias across all scenarios. The reason is that y·1 and rnps

are actually conditionally independent given Z in the present context, which corresponds
to a MAR pattern for the non-probability sampling mechanism (cf. section 6.3.1). When
comparing both types of mixed models, the linear ones typically yield slightly higher biases
but lower MSEs than the additive ones. This is an example for the bias-variance trade-off
that commonly occurs when higher model complexity allows reducing bias but increases
variability (cf. e.g. Hastie, Tibshirani and Friedman, 2008, pp. 37 f). In contrast to all
other considered models, which solely rely on X for prediction, the use of an additional
explanatory variable leads to considerably better results for these mixed models. The
conclusion that this gain in precision is caused by the use of Z is further underpinned in
the following discussion (cf. figure 6.18). Despite also employing Z as auxiliary variable for
the response model, the Heckman model is generally highly unstable and hence not useful
in the present context. This is caused by the fact that this model is highly vulnerable to
violated assumptions (cf. section 5.3.1). In particular, availability of auxiliary variables
that are solely related to the non-probability selection process but independent from the
target variables is required for this model to perform well. This requirement is not fulfilled
in the simulation, and the same holds in most real applications (cf. section 5.3.1; Weisberg,
2005, pp. 151 ff). To still be able to visually distinguish the remaining methods, figure
6.11 is set to partially exclude the boxes for Heckman models.
When focusing on models that use only a single auxiliary variable X and are thus subject
to MNAR selectivity, most of these models perform somewhat similar to each other and
result in larger biases than the mixed models discussed above. When the dependency
between X and y·1 is of mainly linear nature

(
ρXy·1

> ρX◦2y·1

)
, matching often results in

slightly lower or similar bias in comparison to the other models, but its MSE is typically
higher. With increasing non-linear dependencies, however, even purely linear prediction
methods are better than matching. Regarding these linear models, least-squares (the
plain GLM) seems more suitable for obtaining parameters in the current setting than its
penalized versions in form of the LASSO, ridge and elastic net regression (cf. sections
5.1.2 and 5.1.11). Least-squares results in lower bias and MSEs across all scenarios where
any dependency between X and y·1 is present. The linear ANN is exactly of the same

179



Monte Carlo Simulation Studies

form as the GLM and hence yields coinciding results. It is included for illustrative and
code benchmarking purposes only. Because the ann-package with backpropagation is used
to fit this model, no Hessian information is required for this purpose. The fact that the
results are consistent with those for the GLM indicates that the implementation works
as expected and gradient information suffices for estimating this rather simple model. It
is somewhat surprising that of all models that use only X, these two linear regressions
yield the lowest bias in case of a strong correlation between y·1 and squared X-variable(
ρX◦2y·1

= 0.6
)
. Although differences between models are rather small, a strong non-

linear dependency at least does not seem to generally reduce the bias for models that do
not assume a purely linear influence of X on y·1.
Considering such non-linear prediction models, GAMs are better than GLMs in terms
of bias and MSE only when the linear relation between both variables is stronger than
the non-linear one

(
ρX◦2y·1

< ρXy·1

)
, and similar findings occur for the other non-linear

models. In comparison to regression trees, which use base functions of zeroth-order to
approximate y·1 by a locally constant function, the use of higher order splines in the
general MARS model typically improves bias and MSE (cf. section 5.1.7). In particular
when ρX◦2y·1

= 0, this model outperforms all others that use the same auxiliary infor-
mation. The performance of regression splines that are based on non-parametric ANNs
with optimized knots (cf. section 5.1.9) is typically slightly worse than that of MARS
models when the dependencies are mainly linear. Nevertheless, these ANNs are better or
at least highly similar in bias and MSE for stronger non-linear dependencies between X
and y·1

(
ρXy·1

≤ ρX◦2y·1

)
. As for the linear ANN, optimization through backpropagation

hence seems to work as expected. Estimates based on predictions from a support vector
regression are typically much worse than when using any other (except the Heckman)
model, and even unweighted estimates from the non-probability sample perform better.
This latter result may be partially explained by the fact that the minimal distance e from
the hyperplane as well as the radial kernel transformation are both predetermined across
the whole simulation for these SVMs. Methods for making a separate choice for each
sample, e.g. by means of cross-validation, could help to overcome this issue (cf. section
5.1.11; Chang and Lin, 2011, p. 24; Drucker et al., 1997, p. 160; Buelens, Burger and van
den Brakel, 2015, p. 17).
None of the non-linear models in figure 6.11 appears better than linear ones unless
ρX◦2y·1

is smaller than ρXy·1
. A possible explanation for this somewhat unexpected and

counterintuitive result may again be given by low sampling fractions. Fitting a non-linear
model can be advantageous but less stable than a linear one (cf. e.g. Hastie, Tibshirani
and Friedman, 2008, p. 22) and therefore requires more information. The sample sizes
in the present context might thus be too small to provide sufficient information for
gaining efficiency by using models that can represent non-linear dependencies, leading
to increasing sampling errors for these models. Linear models do not suffer from this
problem because they assume a purely linear relationship, regardless of whether non-linear
dependencies exist or not. In contrast, non-linear models can also represent plain linear
relationships and offer more flexibility. Higher stability in their estimated parameters may
therefore be a reason why accuracy of these models is higher when the actual dependency
between X and y·1 is mainly linear.
When considering other scenarios in the simulation, the results for estimates of means and
totals of y·1 are very similar. Especially the relative performance of prediction models
in comparison to each other is largely stable across conditions. In general, model-based
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methods are able to (nearly) fully compensate the bias when selectivity is MAR, as in case
of the mixed models in figure 6.11. In case of selection mechanisms that follow a MNAR
pattern, the bias is typically reduced but not fully compensated through model-based
estimation, e.g. for the models that use only X in the above results. However, a general
issue with all considered prediction models occurs when the aim is to obtain non-linear
estimates, such as for correlation coefficients. Analyzing such measures of association is
a common use for non-probability samples (cf. chapter 2), which may be complicated by
the model-based paradigm.
An example is given in figure 6.12, evaluating the estimated correlations between y·1
and the second target variable y·2 under the same conditions as in figure 6.11. Although
unweighted non-probability sample estimates are biased in all scenarios, they still perform
better than any estimator obtained from mass imputation of the reference sample. There
are again some dissimilarities between models: as above, GLMMs and GAMMs gain some
advantage through additionally using Z, and the Heckman model suffers from violated
assumptions. All other models under consideration perform more or less similar. In
summary, the bias resulting from all model-based methods is severe, such that none of
them seems appropriate for estimating ρy·1y·2

in the simulation. This bias is due to the fact
that these model-based methods for non-probability samples are typically implemented
by directly using predictions for mass imputation (cf. e.g. Buelens, Burger and van den
Brakel, 2018, p. 330; Kim et al., 2018, p. 7; Yang and Kim, 2018, pp. 4 ff). In the
most common case where these predictions correspond to the conditional mean under
the model, this strategy can be adequate for estimating statistics like means or totals
under conditional independence (cf. equations 5.2 and 5.5). It is, however, of limited use
to represent the target variables’ actual distribution since any conditional (or residual)
covariance is ignored, which induces bias to the model-based estimates in figure 6.12.
Similar results are obtained for other measures of association, such as covariances or
regression coefficients. For estimating such statistics that incorporate not only means but
also (co-)variances or other higher moments of one or multiple variables, it is advisable
to rely not only on predictions but to also consider variance components that are not
explained by the model. A common strategy to achieve this when compensating for
non-response and other forms of missing data in survey research is by means of multiple
imputation (cf. e.g. van Buuren, 2018, pp. 63 ff; Little and Rubin, 2019, p. 72; Rubin, 1987,
p. 159). It appears sensible to consider this approach for future research on estimation
from non-probability samples as well (cf. also Elliott and Valliant, 2017, p. 261).
In general, incorporating auxiliary variables that ensure conditional independence of
target variables and sample inclusion is of tremendous importance when using statistical
or machine learning models to compensate for selection bias in non-probability samples.
When the selectivity pattern is MAR, such prediction methods are able to (almost)
completely counterbalance the selection bias for linear statistics. In cases of selectivity
that is MNAR, model-based estimation can still reduce but not fully compensate the bias.
For estimating non-linear statistics, however, common approaches that use predictions for
imputation are of very questionable benefit. Strategies that do not exclusively focus on
predictions but also incorporate the unexplained variability, such as common methods for
multiple imputation, should therefore be considered for estimation from non-probability
samples in future research. An alternative option is the use of weighting methods or their
synthesis with prediction models. These are evaluated in the following discussion.
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Figure 6.12: Comparison of prediction models for different dependencies between X and y·1:
estimation of ρy·1y·2

for 100% coverage – weighting model: unweighted (estimation
from imputed reference sample)
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Pseudo-design-based Methods
Although pseudo-design-based methods attempt to use auxiliary information in a different
way than model-based approaches, conditional independence assumption 5.1 is the com-
mon ground underlying both frameworks. Based on this foundation, different methods
to generate pseudo-design weights for non-probability samples are discussed in section
5.2, leading to the proposal of an integrative weighting approach in form of calibrated
semi-parametric artificial neural networks. All these pseudo-design-based methods rely
on a model for the non-probability sampling process and/or adjustments of the data
to external benchmarks (cf. e.g. equations 5.152 to 5.154). Depending on the type and
extent of available auxiliary information, various forms of pseudo-design weights for non-
probability samples are eligible. As discussed in section 6.3.1, different possible settings
of such auxiliary information are considered in the simulation. Results for each of these
settings are successively presented in the following paragraphs. Similar as before, a base-
line or reference point for comparison is included in each of the figures, which is given by
plain non-probability sample estimates that do not use any weights (‘unweighted’).
In figure 6.13, it is assumed that only a reference sample is available as auxiliary informa-
tion for modeling response propensities. In such cases, the common weighting strategy
is to rely on inverse estimated response propensities, for which the discussion in sections
5.1 and 5.2.1 facilitates different modeling strategies. The most common choice is to
rely on inverse predicted probabilities from a GLM with logit link (‘logit model’). In
the simulation, this model is compared to an ANN of the same structural form (i.e. a
single layer with softmax activation and deviance loss function) and ‘pseudo-weights’ (cf.
section 5.2). Following Elliott and Valliant (2017, p. 257), these pseudo-weights are as well
based on a GLM, but obtained as outlined in equation 5.137 rather than using the inverse
predictions directly. The neural networks that are employed for weighting follow the
framework described in section 5.2.3 and hence are generally labeled as calibrated (‘cal.
ANN’). Although no calibration is applied for the results in figure 6.13, this facilitates
coherence with the following figures. For each of these weighting methods, a parametric
and a non-parametric model specification is considered. The latter is constituted in form
of B-spline regression with five evenly spaced (‘fixed’) knots, while the former does not use
any transformation of the independent variables (cf. section 5.1.6). In case of ANNs, knot
optimization as proposed in section 5.1.9 is additionally considered (‘optimized knots’).
For all of these models, the auxiliary variables X and Z observed in the non-probability
and the reference sample are used.
From the results in figure 6.13, it is evident that unweighted estimates from the non-
probability sample are biased in all depicted scenarios. This is because target variable
y·1 and selection probability πnps are both correlated with Z as in the previous figures
6.11 and 6.12. Selectivity is MAR for all of the considered propensity models since Z
is used as auxiliary variable. Consequently, most of the represented pseudo-design-based
approaches are able to reduce the bias in comparison to unweighted estimates over all
scenarios but to different degrees. In terms of MSE, only some methods perform better
than unweighted estimates across all scenarios.
Considering parametric models first, pseudo-weights typically result in the lowest bias
in this category if there is any linear or non-linear relationship between X and y·1.
Especially for stronger non-linear dependencies, however, parametric ANNs result in lower
MSEs, with biases usually lying in between those of logit and pseudo-weights. Propensity
weights obtained from the logit model perform worse than both other parametric weighting
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Figure 6.13: Comparison of weighting methods for different dependencies between X and y·1:
estimation of µy·1

for 100% coverage, using a reference sample
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approaches unless the correlation of y·1 with X and its squared values are both zero. Since
ANN and logit model are of the same structural form (cf. section 5.1.8), backpropagation
seems more suitable than Fisher scoring for propensity models, especially in presence of
non-linear dependencies. This is presumably caused by the fact that the use of (expected)
Hessian matrices for optimization is prone to finding saddle points rather than global
optima (cf. Hagan et al., 1996, p. 281). Instead of using a GLM to calculate pseudo-
weights, which is the strategy proposed by Elliott and Valliant (2017, p. 257), it may
therefore be worthwhile to use ANNs (or GLMs that use gradient descent) to achieve
better stability and lower bias, thereby combining the advantages of both methods.
When applying spline regression with fixed knots rather than parametric propensity
models, the gain in bias correction is considerable. This improvement is particularly
strong in case of pseudo-weights, where it nearly eliminates the bias across all scenarios.
Nevertheless, the magnitude of biases in case of logit model and ANN decreases as well
if there is any dependency between X and y·1. In case of the logit model, this bias
reduction often comes at the price of a MSE that is higher than for the parametric
variant. This drawback hardly occurs for pseudo-weights or ANNs, and only if the non-
linear dependency of X and y·1 is negligible. In most cases, the MSEs of these two
latter approaches are rather close to each other. As in the parametric case, this suggests
that a combination of both may be sensible since pseudo-weights have lower biases but
ANNs have lower variances. As before, this is presumably due to the fact that gradient
descent is less prone to finding saddle point solutions than Fisher scoring, which is used for
calculating pseudo-weights. Propensity weighting that is based on an ANN with optimized
knots in general performs rather poor and partially even worse than the unweighted
estimator. If at all, it may be considered worthwhile for weighting in case of strong
and purely non-linear dependency between X and y·1

(
ρXy·1

= 0 and ρX◦2y·1
= 0.6

)
,

where the resulting MSE is the lowest of all methods. Since ANNs with optimized knots
perform reasonably well for purely predictive tasks (cf. figure 6.11), this poor quality
in case of propensity weighting is likely caused by over-fitting, such that the particular
sample characteristics have more influence on weights than the general selectivity pattern.
For plain propensity weighting, the results when estimating the mean µy·1

in other
settings of the simulation are highly similar, although (nearly) unbiased estimation is
only possible when selectivity is based on a MAR pattern. Different degrees of selectivity,
coverage and violation of conditional independence (cf. assumption 5.1) affect the extent
of bias and MSE, and no method achieves unbiasedness in case of MNAR. Weighting by
inverse propensities derived from a logit GLM is typically worse than using any of the
other two considered models. Pseudo-weights seem preferable for the simulated scenarios
since they typically result in the lowest bias and provide similar MSEs as the ANNs. In
general, non-parametric response models appear better than parametric ones, especially
in case of strong dependency between variable of interest and sample inclusion. However,
this typically increases the MSE for logit models. Overall, the relative performance of
propensity weighting methods in comparison to each other is quite stable across different
simulation scenarios.
This finding is underlined by the results presented in figure 6.14. For achieving selectivity
that violates conditional independence assumption 5.1 and hence corresponds to a MNAR
scenario, sample inclusion and target variable y·1 are set to be correlated by ρy·1πnps =
0.6. The remaining setting is the same as in the previous figure 6.13. These results
demonstrate that none of the propensity weighting methods is able to fully compensate

185



Monte Carlo Simulation Studies

ρ
X

◦2
y

·1
=

0.
6

ρ
X

◦2
y

·1
=

0.
3

ρ
X

◦2
y

·1
=

0.
0

ρ
X

◦2
y

·1
=
ρ

X
y

·1
·ρ

X
X

◦2
ρXy·1

= 0.0 ρXy·1
= 0.3 ρXy·1

= 0.6

46.9

42.8

39.1

17.3

11.3

15.8

12.1

32.7

59.6

51.4

45.2

69.9

15.4

20.5

14.9

34.2

47.3

43.0

39.2

16.9

9.0

13.6

22.1

33.0

59.0

51.3

45.1

77.7

13.9

19.4

24.1

34.5

48.7

44.0

39.8

13.2

7.4

11.7

36.6

32.9

62.2

53.3

46.4

35.8

13.3

17.4

38.7

34.4

43.1

36.7

35.3

12.8

11.0

15.6

19.1

32.9

58.1

47.7

42.6

17.6

15.9

18.6

21.0

34.3

44.3

37.1

35.5

13.2

10.3

14.6

32.7

32.6

64.2

51.4

44.7

21.0

15.6

18.0

34.8

34.1

23.6

20.1

23.4

11.7

7.3

10.2

35.9

32.2

25.8

22.7

25.5

26.4

14.4

14.9

38.3

33.9

12.3

4.8

13.8

9.9

9.2

13.8

29.3

32.5

15.4

12.0

16.5

16.9

14.8

17.4

30.9

33.9

16.4

10.1

17.3

11.1

10.0

14.2

50.5

32.5

19.0

14.5

19.7

17.9

15.0

17.6

52.8

34.1

21.2

16.7

21.4

12.1

9.6

12.8

44.6

32.2

23.4

19.7

23.5

25.2

15.3

16.6

46.4

33.8

0.0 0.5 1.0

12.3

4.9

13.7

10.1

9.3

13.8

23.8

32.2

15.6

12.1

16.6

16.7

14.9

17.5

25.6

33.8

0.0 0.5 1.0

16.0

9.6

16.9

10.9

8.7

13.0

32.4

32.6

18.4

13.8

19.1

15.8

14.3

16.7

34.3

34.1

0.0 0.5 1.0

47.8

42.7

38.7

13.2

7.6

11.5

37.4

32.4

63.6

54.0

46.2

47.8

13.6

15.2

39.6

33.7

R
Bi

as
(%

)

R
Bi

as
(%

)

R
Bi

as
(%

)

R
R

M
SE

(%
)

R
R

M
SE

(%
)

R
R

M
SE

(%
)

Deviation from true value: µ̂y·1
−µy·1

Mean
True value / benchmark Response model variables:X, Z

ρXZ = 0.6 ρZy·1
= 0.6 ρZπnps = 0.6 ρy·1πnps = 0.6

All other correlations result as products of the stated ones.

unweighted

Logit model (parametric)

Pseudo-weights
(parametric)

cal. ANN (parametric)

Logit model (fixed knots)

Pseudo-weights
(fixed knots)

cal. ANN (fixed knots)

cal. ANN (optimized
knots)

unweighted

Logit model (parametric)

Pseudo-weights
(parametric)

cal. ANN (parametric)

Logit model (fixed knots)

Pseudo-weights
(fixed knots)

cal. ANN (fixed knots)

cal. ANN (optimized
knots)

unweighted

Logit model (parametric)

Pseudo-weights
(parametric)

cal. ANN (parametric)

Logit model (fixed knots)

Pseudo-weights
(fixed knots)

cal. ANN (fixed knots)

cal. ANN (optimized
knots)

unweighted

Logit model (parametric)

Pseudo-weights
(parametric)

cal. ANN (parametric)

Logit model (fixed knots)

Pseudo-weights
(fixed knots)

cal. ANN (fixed knots)

cal. ANN (optimized
knots)

Figure 6.14: Comparison of weighting methods for different dependencies between X and y·1:
estimation of µy·1

for 100% coverage, using a reference sample

186



Monte Carlo Simulation Studies

for selection bias in this case of stronger (MNAR) selectivity. Nevertheless, the finding
that pseudo-weights outperform all other propensity weights under consideration is clearly
the same as for the MAR case in figure 6.13. If anything, this is even more evident from the
MNAR scenario in figure 6.14 because all changes in the methods’ relative performances
in comparison to figure 6.13 are in favor of the pseudo-weights. In real applications, it
is typically very difficult or even impossible to detect whether it is reasonable to assume
conditional independence and hence MAR rather than MNAR selectivity. Since the latter
is by far the more challenging case (cf. Elliott and Valliant, 2017, p. 262; Little and Rubin,
2019, p. 26; Mercer et al., 2017, p. 257; Pfeffermann, 2011, p. 117), the following figures
focus on settings where selectivity is MNAR as in figure 6.14.
The general finding that pseudo-weights lead to better estimates than the other considered
propensity weights is similar for estimation of multi- or bi- rather than univariate statistics
in cases of selectivity patterns that are MAR. However, the general picture is clearly
different if selectivity is MNAR. In this case, pseudo-weights seem less appropriate for
estimating measures of dependencies, while non-parametric ANNs with knot optimization
appear favorable. An example for this finding is presented in figure 6.15, considering
estimates for the correlation between y·1 and y·2. The setting is the same as in figure 6.14.
Although unweighted estimates are again considerably biased, all parametric weighting
models even increase this bias in all scenarios. In some cases, the respective MSEs are
lower for the weighted than for unweighted estimates, but these differences are rather
small. As before, non-parametric propensity models with fixed spline knots show some
advantages over parametric ones in terms of bias as well as MSE. However, the relative gain
is not as large as in figure 6.13. Consequently, there is at best some minor improvement
in bias and MSE over using no weights at all, and results are still even partially worsened
by applying propensity weighting. Overall, parametric as well as non-parametric response
models perform only gradually different in this setting as long as the B-spline knots are
predetermined. In contrast, the improvements when using the proposed knot optimization
technique in semi-parametric ANNs are considerable. Although unbiasedness is still not
achieved, this estimation approach outperforms all others in figure 6.15 in each but one
scenario

(
ρXy·1

= 0.3 and ρX◦2y·1
= 0

)
in terms of bias as well as MSE.

Further results for pure propensity weighting in the simulation are highly similar as in
figures 6.13 to 6.15. The relative performance and ranking of the considered methods is
stable although the degrees of bias are different, e.g. when considering under-coverage of
the target population or estimating regression instead of correlation coefficients. Sum-
marizing these results, pseudo-weights as proposed by Elliott and Valliant (2017) seem
a promising approach to estimate linear statistics, in particular when a non-parametric
response model is used. To gain this advantage over the considered propensity weights
that are based on GLMs or ANNs, pseudo-weights require the sampling design of the
reference sample to be (nearly) perfectly described by the auxiliary variables used in the
response model. Since reference samples are drawn by simple random sampling, this
requirement is perfectly fulfilled in the present simulation. However, it is easily violated
in real applications, where complex survey designs are the usual case (cf. Elliott and
Valliant, 2017, p. 257). For example, design variables used for the reference sample may
be not available in the non-probability sample or even removed from the reference data,
e.g. to avoid potential disclosure risks (cf. e.g. Skinner, 2009, p. 383; Willenborg and De
Waal, 2001, p. 10). Performance of pseudo-weights under such less than ideal conditions
may, hence, be less efficient than in the current simulation study. Some evidence for
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Figure 6.15: Comparison of weighting methods for different dependencies between X and y·1:
estimation of ρy·1y·2

for 100% coverage, using a reference sample
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this limitation is provided in case of the application example that is discussed in chapter
7. As is apparent by reference to the considered ANNs, the use of gradient descent
rather than Fisher scoring apparently achieves higher stability for propensity weighted
estimates. Determining pseudo-weights from such ANNs (or other models that are fit
using only first derivatives for optimization) may, hence, be a sensible alternative to using
GLMs, especially when non-linear dependencies are present. For non-linear estimates
(such as measures of dependencies), the best approach for propensity weighting depends
on the sample’s selectivity. In MAR scenarios, pseudo-weights yield good results, but
when selectivity is more severe (MNAR), semi-parametric artificial neural networks with
knot optimization seem particularly promising.
In figures 6.13 and 6.15, the available auxiliary information external to the non-probability
sample is limited to a small reference sample, which is exclusively used for response (pro-
pensity) modeling. When considering availability of other types of external information,
the eligible methods for determining pseudo-design weights are different as well. One
such setting is presented in figure 6.16, considering pseudo-design-based estimates for µy·1
which use total and covariance benchmarks for X as auxiliary information for calibration.
The presumably most common weighting approach that can make use of such information
is the GREG (cf. e.g. Dever, Rafferty and Valliant, 2008, p. 60; Mercer et al., 2017,
p. 264). It is compared to different forms of calibrated semi-parametric artificial neural
networks (cf. section 5.2). As discussed in sections 5.2.3 and 6.2, one option to specify
these ANNs is in correspondence to the GREG, resembling the approaches of Burgard,
Münnich and Rupp (2019), Guggemos and Tillé (2010) and Rupp (2018, p. 126) under
additional constraints (cf. problem 5.151). This is achieved by using one parameter per
observation, in conjunction with a linear activation function and squared penalty for the
parameters. An alternative specification of calibrated ANNs incorporates the functional
form of a logit model, considering parametric and non-parametric options as in the
previous figures 6.13 and 6.15. Following the functional form approach, these models
obtain weights as a function of response model variables X and Z, which are observed only
in the non-probability sample (cf. section 5.2). Since no reference sample is available in
this setting, all weights are determined from calibration constraints alone. The considered
ANNs apply soft calibration with box-constraints, allowing a maximum of 2.5% deviation
from total and 10% from variance benchmarks (cf. equations 5.152 to 5.155).
Scenarios in figure 6.16 are the same as in figure 6.15, such that sample inclusion and
target variable y·1 are again correlated by ρy·1πnps = 0.6. Since this implies stronger
selectivity in comparison to figure 6.13, unweighted estimates are systematically more
biased and have higher MSEs. None of the weighting approaches under consideration
completely eliminates this bias because calibration is limited to X and selectivity, thus,
MNAR. Nevertheless, all of these methods are able to reduce the bias and the MSE if there
is any dependency between auxiliary and target variable or sampling mechanism. For the
GREG and calibrated ANN which both use one parameter per observation, this is the case
when X and y·1 show any linear or non-linear relationship since these methods determine
weights based on X alone. From these two, the GREG is better in almost all scenarios.
This is due to the fact that soft calibration is mainly designed for benchmarks that are
subject to (sampling) errors or highly abundant (cf. e.g. Burgard, Münnich and Rupp,
2020, p. 12; Deville, Särndal and Sautory, 1993, p. 1015), while a single population total
and variance are used for calibration in this context. Therefore, the GREG seems to be the
best of these two choices, especially in cases where a strong and mainly linear relationship
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Figure 6.16: Comparison of weighting methods for different dependencies between X and y·1:
estimation of µy·1

for 100% coverage, using total and covariance constraints
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between calibration and target variable is present
(
ρXy·1

= 0.6 and ρX◦2y·1
< 0.6

)
. How-

ever, because no calibration benchmarks are available for Z, the fact that this variable
is related to both πnps and y·1 cannot be exploited by the GREG. Calibrated ANNs
that determine weights as a function of X and Z are therefore quite competitive with the
GREG, although selectivity is still MNAR when using Z because ρy·1πnps = 0.6. As before,
the non-parametric specification with predetermined (evenly spaced) knots performs best
for these models. In most scenarios, such a non-parametric calibrated ANN is better than
all other approaches under consideration in terms of bias as well as MSE. Even in the
few settings where this is not the case, it is only slightly worse than the best option. As
before (cf. figure 6.13), knot optimization performs worse than evenly spaced knots, at
least for design linear estimates.
Similar results for calibration weighting occur in the further simulation scenarios and
also hold for estimates of other statistics, such as for totals, correlation or regression
coefficients. While soft calibration is mainly designed for cases where many or not fully
reliable benchmarks are used (cf. Burgard, Münnich and Rupp, 2020, p. 12; Deville,
Särndal and Sautory, 1993, p. 1015), the GREG is very useful when calibration is done
exclusively to relatively few known population totals. Although the GREG can also
incorporate covariance or correlation benchmarks by calibrating totals of interaction terms
or squared variables (cf. section 5.2.3), the results of calibrated ANNs are generally more
convincing when such benchmarks are available. As for other calibration methods that
follow the functional form approach, an advantage of such ANNs in comparison to the
GREG is that they can make use of the explanatory power of Z for y·1 and/or rnps

even if Z is observed only in the non-probability sample. This is the case when external
information is limited to calibration targets of X, but Z is additionally measured solely
in the non-probability sample. In principle, even Y nps itself could be used to specify the
pseudo-design weights in this setting.
The third scenario of auxiliary information investigated in the simulation therefore as-
sumes joint availability of calibration benchmarks and a reference sample for propensity
modeling. In this setting, all weighting methods can make use of auxiliary variables X
and Z to the same degree. As for figures 6.13 to 6.15, both auxiliary variables are observed
in the non-probability and the reference sample. All other simulated conditions, and in
particular the calibration benchmarks obtained from the population, are the same as in
the previous figure 6.16. While calibrated ANNs can readily incorporate reference sample
and calibration benchmarks as auxiliary information, other types of propensity weights
need to be combined with a calibration technique to achieve this. A common approach in
that regard is to obtain response propensities from a GLM with logit link and calibrate
the resulting propensity weights by means of the GREG in a second step (‘logit model
and GREG’, cf. e.g. section 6.2.2; Enderle, Münnich and Bruch, 2013, p. 94; Lee and
Valliant, 2009, p. 335; Valliant and Dever, 2011, p. 109).
Results to compare these strategies are presented in figure 6.17. When all approaches
use information about X and Z, the proposed calibrated ANNs are outperformed by
the combination of logit propensity model and GREG in all scenarios. The latter two-
step approach appears generally favorable in the current setting, regardless of whether a
parametric or spline regression model is used for the propensities. Similar as in figure 6.14,
calibrating the propensities from a parametric logit model almost generally results in the
lowest MSEs but yields slightly higher biases than the non-parametric variant for most
scenarios where dependency between X and y·1 is exclusively non-linear

(
ρXy·1

= 0
)
.
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Figure 6.17: Comparison of weighting methods for different dependencies between X and y·1:
estimation of µy·1

for 100% coverage, using a reference sample, total and covariance
constraints
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Further results in the simulation are quite similar, regardless of the degree of selectivity,
coverage of the target population and considered estimates (e.g. correlation or regression
coefficients). When jointly using calibration benchmarks and a reference sample for
modeling response propensities, the combination of GLM and GREG mostly outperforms
calibrated ANNs. When comparing figures 6.16 and 6.17, it is evident that the additional
information provided by the reference sample is advantageous when supplementing the
GREG with a propensity model. In contrast, calibrated ANNs do not gain any advantage
from this additional information. Instead, the resulting biases and MSEs even increase
for all of these models that are available under both conditions. The main reason is
the composition of the distance function that is used for fitting calibrated ANNs. In
figure 6.16, these models are fit solely by minimizing the distance between estimates and
calibration targets, whereas the deviance (negative binomial log-likelihood) is added as
a second component in the context of figure 6.17. On its own, each of these elements
is justified and used for different established approaches, such that this combination
aims at an integration and trade-off regarding these existing methods (cf. section 5.2).
However, the joint use of both distance components is of somewhat limited value in
the simulation, mainly because a way to combine them that is useful in all scenarios is
difficult to find. A vector of importance weights v is introduced in equation 5.155, which
allows for flexible specifications of such a combination. For the current simulation, the
strategy summarized in equalities 6.2 is applied. It is based on choosing v such that
each component (deviance, penalties for total and covariance soft calibration as well as
parameter shrinkage) has the same maximum contribution to the overall distance. While
this approach performs relatively well for the preliminary simulation in section 6.2, the
current results indicate that it may be too simplistic for more complex cases. Therefore, it
seems essential to develop more refined strategies to choose a proper mixture of distance
metric components when importance weights are not uniquely determined by user-defined
priorities. Alternative strategies proposed for finding such weights based on quality
measures (such as the estimated variance of a point estimator) are hardly applicable
in the present context because these measures are not generally valid for non-probability
samples. Therefore, further research is needed to establish a more adequate strategy for
choosing the importance weights to combine the multiple considered optimization criteria
(cf. sections 5.4 and 6.2; Chang and Kott, 2008, p. 559; Guggemos and Tillé, 2010, p. 3205;
Marler and Arora, 2004; 2010).
Nevertheless, the results in figures 6.13 to 6.16 indicate that calibrated ANNs perform
quite well for weighting when the distance components are not combined. Consequently,
the choice of an adequate weighting method depends on the quality and type of available
auxiliary information as well as the quantities to be estimated. When plain propensity
weighting is used, pseudo-weights perform superior to the competing approaches for means
or total estimates, but semi-parametric ANNs seem better for estimating correlations. A
limitation of pseudo-weights is that the sampling design of the reference sample has to be
(almost) perfectly described by the available auxiliary variables. This requirement is easily
violated in real applications and not needed if the propensity weights are based on ANNs
or logit models. Considering pure calibration weights, the GREG performs well when
only a few population totals are used as calibration targets. However, it is often too strict
in presence of many constraints or when benchmarks are subject to inaccuracies (such
as sampling errors; cf. Burgard, Münnich and Rupp, 2020, p. 12; Guggemos and Tillé,
2010, p. 3199). When incorporating not only total but also covariance or correlation

193



Monte Carlo Simulation Studies

benchmarks for calibration, the GREG is still applicable, but the proposed calibrated
ANNs perform better because they can use variables which are measured only in the
non-probability sample. For jointly using a reference sample and calibration benchmarks,
combining deviance and soft calibration distance components for such calibrated ANNs
still requires some refinement (cf. equation 5.155 and section 6.2). Nevertheless, calibrated
ANNs seem especially promising when dependencies between variables are of interest,
either as calibration benchmark or as the statistic to be estimated from a non-probability
sample. This implication gains some further relevance in the following discussion, where
joint usages of pseudo-design and model-based paradigms are evaluated.

Synthesis of Model- and Pseudo-design-based Methods
In the context of the previous figures 6.11 to 6.17, the model- and the pseudo-design-based
paradigm are considered as mutually exclusive. When selectivity is MAR, i.e. under
conditional independence of target variables and sample inclusion given the respective
auxiliary variables, both paradigms can provide estimates that are (nearly) unbiased.
However, such a strict separation of the two paradigms is not necessarily of major relevance
in actual applications. A combination of both may be useful especially in case of stronger
(MNAR) selectivity, where neither weighting nor prediction methods can be expected to
eliminate selection bias (cf. figures 6.11 and 6.17; Buelens et al., 2012, p. 18; Gelman
et al., 2016a, pp. 109 f; Wang et al., 2015). As discussed in section 5.3, possible strategies
proposed for integrating the model- and the pseudo-design-based paradigm are
a) to jointly model selection process and target variable,
b) to use weighted loss functions for model fitting, or
c) to apply weighted aggregation of predictions in the non-probability sample.

The Heckman model is the most common example for the first approach. As already
indicated in figures 6.11 and 6.12, it is of limited use when the underlying assumptions are
violated, which is commonly the case in real applications (cf. Weisberg, 2005, pp. 151 ff).
The performance of strategies b) and c) is evaluated in the following paragraphs, con-
sidering various combinations of weighting and prediction models discussed in sections
5.1 and 5.2. To check whether the Heckman model can be improved by additionally
incorporating pseudo-design weights, it is included as well for these evaluations.
When a reference sample is the only available auxiliary information, the results in figure
6.13 show particular advantages of pseudo-weights obtained from a non-parametric logit
model for estimating the mean µy·1

. In figure 6.18, the aim is to evaluate whether a
combination of these weights with prediction models can further improve estimation.
Considering the same scenarios as in the previous figures 6.15 to 6.17, selectivity is again
MNAR due to ρy·1πnps = 0.6. When fitting models to survey samples, strategy b) is the
typical case. Consequently, a propensity weighted loss function is applied for fitting the
prediction models, which are then used for imputing the reference sample (cf. e.g. Breidt
and Opsomer, 2017; Beaumont, 2000; Pfeffermann and Sverchkov, 1999). As a reference
point for comparison, the purely pseudo-design-based estimates from the non-probability
sample (‘nps-estimates’) are included as in figures 6.11 and 6.12.
The results in figure 6.18 illustrate that when X is a valuable predictor for y·1, the
use of mass imputation from a weighted model typically reduces bias in relation to pure
propensity weighted estimates even if X is already used for the propensity model. As
in the unweighted case, different prediction models again perform partially dissimilar.
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Figure 6.18: Comparison of prediction models for different dependencies between X and y·1:
estimation of µy·1

for 100% coverage – weighting model: pseudo-weights (fixed
knots), using a reference sample (estimation from imputed reference sample)
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Presumably for the same reasons as discussed with regard to figure 6.11, support vector
machines yield rather bad estimates. Even worse results are obtained from the Heckman
model, for which estimates are again often far off the scale due to violated assumptions.
These findings are similar in the following figures. The distributions of estimates obtained
from all other models are at least rather close to each other. Although mixed models are
still useful in this context, their strong advantage for the unweighted case in figure 6.11
is caused by the use of Z to specify the random effects. A lot of this advantage is
actually compensated when including Z in the response model that is used as foundation
for fitting propensity weighted prediction models. Considering purely linear models, it
seems again favorable to choose a least-squares fit, i.e. the plain GLM, rather than its
penalized versions. However, non-linear models are slightly better than linear ones in
all scenarios, which is different from figure 6.11. For a strong dependency between X
and y·1

(
ρXy·1

= 0.6
)
, regression splines with optimized knots seem particularly suitable.

In this setting, MARS models perform comparatively well in terms of bias and MSE,
but ANNs with knot optimization are better when considering only the MSE. Additive
(mixed) models can lead to slightly lower biases in this setting but typically result in
much worse MSEs, while linear (mixed) models mostly lead to higher biases. In scenarios
where the linear dependency is less pronounced

(
ρXy·1

< 0.6
)
, GAMs seem more favorable

when ρX◦2y·1
≥ 0.3. In all other scenarios that are not explicitly considered above, models

provide at best a minor benefit over purely pseudo-design-based estimation.
The simulation results furthermore indicate that biases for weighted prediction models
are also lower than for the unweighted ones. For example, this is evident when comparing
figures 6.18 and 6.11. Although selectivity is more severe in the former, most of the
presented estimates are still better than in the latter. Mixed models are an exception
because selectivity for those is MAR in figure 6.11 but MNAR in figure 6.18. The
results are similar for other forms of propensity weighted estimates of the mean µy·1

,
although non-parametric propensity models often perform slightly worse than parametric
ones in this context. These general patterns extend to further scenarios considered in
the simulation as well. In summary, the better y·1 is predicted by X, the more gain in
efficiency for mean or total estimates can be achieved under strong (MNAR) selectivity
by using an adequate weighted prediction model rather than plain pseudo-design-based
estimation. The same argument applies vice versa: the better the selection processes
can be modeled, the more accuracy is gained from using propensity weighted instead
of unweighted loss-functions for prediction models in mass imputation. However, these
results hold for propensity weighting only when estimating univariate statistics like means
or totals. As discussed with regard to figure 6.12, the common use of predictions as
imputed values often leads to considerable bias for non-linear (e.g. bi- or multivariate)
estimates because the residual (co-)variance is ignored, a limitation that also occurs
for weighted prediction models. Furthermore, the outlined advantages of combining
propensity weights with model-based approaches only apply when the weighted models are
actually used for imputation in the reference sample (strategy b)). Weighted aggregation
of prediction as outlined in strategy c) does not improve efficiency over plain pseudo-
design-based estimates when using inverse propensity scores for weighting.
When a reference sample is used as the only auxiliary information for estimating means
or totals, purely model- or pseudo-design-based methods are only preferable if conditional
independence (cf. assumption 5.1) holds. If this is the case, combinations of propensity
and prediction models can be less accurate than one of the approaches on its own. In all
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other settings, their joint usage in form of propensity weighted mass imputation models
appears more suitable but requires identification of adequate specifications for both the
weighting and the prediction model. Since a reference sample is anyhow required for
fitting a propensity model, the only additional requirement (e.g. in comparison to figure
6.13) is that relevant predictors for the target variables are measured in non-probability
as well as reference sample.
The setting is different when calibration benchmarks are the only available auxiliary
information, in which case imputation of the reference sample is infeasible. Under such
conditions, weighted aggregation of predictions in the non-probability sample, which
corresponds to the above strategy c), is the main approach to combine the model- and the
pseudo-design-based paradigm. This procedure applies pseudo-design weighted estimation
to model predictions rather than to the observed values in the non-probability sample but
does not impute for any reference sample. Results for this technique are presented in figure
6.19, considering the same scenarios as before. Note that in order to exactly meet the
typical specification of MRP as the most common realization of these methods (cf. section
5.3.2), calibration and random effects variables coincide just for this single example.
Based on these results, it is evident that weighted aggregation of predictions only rarely
reduces bias or MSE in comparison to calibration (i.e. post-stratification) alone. Such an
improvement only occurs when y·1 is strongly correlated with at least one of either X or
X◦2, and the gain in efficiency is rather small even in these cases. When ρXy·1

= 0.6 and
ρX◦2y·1

= 0.3, SVMs yield the lowest absolute bias and MSE. However, this may be the
case because estimates resulting from SVMs are systematically lower under these quite
specific conditions of positive bias for the pseudo-design-based estimates and, therefore,
not necessarily generalizable. The only case of a systematic improvement is given by
GLMMs. In case of a strong non-linear dependency between X and y·1

(
ρX◦2y·1

= 0.6
)

or
a strong and purely linear one

(
ρXy·1

= 0.6 and ρX◦2y·1
= ρXy·1

·ρXX◦2

)
, these models

generally result in the lowest absolute biases and MSEs. Although this improvement
provides at least some justification for MRP, it is still only a minor one in comparison to
the remaining inaccuracy.
The results are highly similar when using the original calibration variable X rather than
(as in figure 6.19) classes of Z. This holds when using classes of X for post-stratification
as well as when only a total benchmark for the actual X-variable is available. Therefore, it
seems that the benefits of strategy c) are generally rather limited in the current simulation
if only totals are available as auxiliary information. A possible explanation for the only
minor advantages especially of MRP may be the fact that Z is divided into only ten
categories to constitute the random effects and post-stratification cells. This quantity
might be simply too low for the combination of mixed models and calibration to perform
well, especially when considering the thousand or more possible cross-combinations that
are used in real applications. In more realistic cases, the stabilizing effect obtained from
prediction models may therefore help to achieve better estimates (cf. e.g. Gelman et al.,
2016b, p. 90; Wang et al., 2015, p. 981).
When such cross-combinations are used, post-stratification basically includes not only
totals but also covariances of indicator variables (cf. appendix B.5.2; Lenau and Münnich,
2017, pp. 62 f). Indeed, the simulation results are somewhat different when not solely
applying total but also covariance calibration. An example is given in figure 6.20, con-
sidering the same setting as in figure 6.19. Weights for the non-probability sample are
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Figure 6.19: Comparison of prediction models for different dependencies between X and y·1:
estimation of µy·1

for 100% coverage – weighting model: post-stratification, using
total constraints (estimation by weighted aggregation of predictions)
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determined as a function of X and Z by using a calibrated neural network that has the
structure of a parametric logit model (i.e. employs a single layer with softmax activation
function). Since no reference sample is available, the weighting model is exclusively fit to
meet the benchmarks for total and variance of X, as in figure 6.16.
From the results in figure 6.20, it is evident that the performance of purely pseudo-design
weighted estimates is worse than in figure 6.19 for most of the twelve scenario populations.
The only exception occurs in presence of a strong non-linear and at least a medium linear
dependency between X and y·1

(
ρX◦2y·1

= 0.6 and ρXy·1
≥ 0.3

)
, in which case calibrating

total and variance of X leads to a lower bias and MSE than post-stratification with
regard to classes of Z. This is because population level auxiliary information about Z is
valuable for modeling the selection process across all scenarios in figure 6.19. In contrast,
X is not directly related to the sample selection mechanism. The potential to reduce
the bias of µ̂y·1

by means of the corresponding calibration benchmarks in figure 6.20 is
therefore determined by the use of X for predicting the target variable y·1. Considering
the different prediction methods that are used in conjunction with weighted estimation
in this latter figure, the bias for SVMs is again in opposite direction when compared to
all other estimators. Similar as before, these models lead to the lowest absolute bias and
MSE in case of a mainly linear dependency

(
ρXy·1

≥ 0.3 and ρX◦2y·1
< ρXy·1

)
. Because

the results for SVMs are worse than for any other method under consideration across all
other scenarios, it seems that this is caused by a specific dependency of variables, coupled
with a positive bias of the pseudo-design-based estimates. Although this pattern appears
to be a bit more systematic than in figure 6.19, these conditions may be hard to identify
in real applications. In all other cases where a dependency between X and y·1 is present,
ordinary and mixed linear models yield better results than any other method. Even in
cases of no dependency between the two variables, the resulting estimates when using
GLMMs are in the worst case only slightly less accurate than plain pseudo-design-based
estimates. In comparison to MRP in figure 6.19, it furthermore becomes evident that
there is no necessity for limiting calibration to the variables that explain the response
process and constitute the random effects in the GLMMs. For these and other models,
calibration for further auxiliary variables can yield even better results, in particular when
these variables are strongly related to the variable of interest.
For the further conditions used in the simulation, coinciding results occur when estimating
µy·1

using calibration of total and variance of X, regardless of whether calibrated neural
networks or the GREG is applied. While the potential of support vector machines to
reduce the bias that remains after pseudo-design-based estimation is highly situational,
weighted aggregation of GLMM predictions is typically at least as good as pseudo-
design weighting applied to the observed target variables in the non-probability sample.
Therefore, it appears that for stabilizing estimators, predictions from linear mixed models
can indeed be a sensible replacement even for values of y·1 that are actually observed in
the non-probability sample. Nevertheless, it should be kept in mind that this stabilization
typically requires random effects that are strongly related to the selection mechanism in
order to be as close to conditional independence as possible. In addition, only a relatively
fine-grained weighting method actually suggests such stabilization (cf. figures 6.19 and
6.20; Gelman et al., 2016b, p. 90; Wang et al., 2015, p. 981). Furthermore, this does
again not extend to bi- or multivariate statistics because the conditional mean is used as
imputed value, which ignores the residual (co-)variance for estimation (cf. figure 6.12).
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Figure 6.20: Comparison of prediction models for different dependencies between X and y·1:
estimation of µy·1

for 100% coverage – weighting model: calibrated ANN (paramet-
ric), using total and covariance constraints (estimation by weighted aggregation of
predictions)
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When considering joint availability of a reference sample and calibration constraints as
auxiliary information, it is in principle possible to apply either one of the above strategies
b) and c). However, the former (using weighted loss functions for fitting imputation
models) performs better in nearly all simulation scenarios and is, therefore, presented in
the following example. In this setting of available auxiliary information, the combination
of parametric logit model and GREG performs well for pseudo-design-based estimation
of µy·1

(cf. figure 6.17). The use of this weighting method in conjunction with weighted
imputation models is therefore examined in figure 6.21. All other simulated conditions
coincide with those discussed above.
In comparison to using plain propensity weighting in figure 6.18, the supplementary use
of total and variance calibration improves the efficiency of pseudo-design weighted nps-
estimates in most cases where the squared X-variable is related to y·1

(
ρX◦2y·1

> 0
)
.

This largely cancels out the gain in accuracy that can be achieved by additionally using
prediction models in case of propensity weighting because calibration leads to a stronger
utilization of the dependency between X and y·1 already in the pseudo-design weights.
When comparing the different prediction methods, the findings are quite similar as in
figure 6.18. The only considered imputation approach that yields biases which are at least
similar or even better than for the plain pseudo-design weighted non-probability sample
estimates is based on additive mixed models. However, the potential improvements in
terms of the bias are again rather small and counterbalanced by an increase in variance
and also MSE.
The results in other scenarios where a response propensity model is used in conjunction
with total benchmarks to estimate means or totals are quite similar. This holds regardless
of whether covariance benchmarks are included or not. Based on the simulation results,
it therefore seems sensible to rely on purely pseudo-design-based methods when jointly
using a reference sample and total calibration. However, when propensities are calibrated
to only meet the variance, bias correction through calibration does not make use of any
linear dependency between X and y·1. In this case, weighted prediction models can
typically reduce the bias in comparison to pseudo-design-based estimates of µy·1

.
These findings indicate a possible limitation for the generalizability of the results presented
in figures 6.18 to 6.21. It is induced by using very similar auxiliary information for predic-
tion and weighting methods since both make use of the auxiliary variable X. Joint usage
of model- and pseudo-design-based methods may hence perform different when the avail-
able information for both is more distinct. However, since both of these approaches ideally
require auxiliary variables which are highly related to selection mechanism and target
variables to achieve conditional independence, it appears rather plausible that similar
auxiliary variables are used for weighting as well as prediction (cf. e.g. Baker et al., 2010,
p. 47; Isaksson and Lee, 2005, p. 3148; Kreuter et al., 2010, p. 404; Steinmetz et al., 2014,
p. 286). Adaptation of these considerations for the simulation is also required to limit the
computational burden of the already large-scale study (cf. section 6.3.1).
In summary, the benefits of combining model- and pseudo-design-based methods are most
evident when a reference sample is the only available auxiliary information. In that case,
using pseudo-weights to fit weighted prediction models is particularly beneficial in case
of MNAR selectivity, i.e. when conditional independence is not given. For this purpose,
however, it must be possible to specify adequate response as well as prediction models
based on the available auxiliary variables. When only calibration benchmarks are available
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Figure 6.21: Comparison of prediction models for different dependencies between X and y·1:
estimation of µy·1

for 100% coverage – weighting model: logit model (parametric)
and GREG, using a reference sample, total and covariance constraints (estimation
from imputed reference sample)
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as auxiliary information, it depends on the calibration problem’s complexity whether
prediction models can be additionally used to improve pseudo-design weighted estimates.
In case of calibration constraints that are manifold or hard to meet, weighted aggregation
of predictions can help to stabilize the resulting estimates, e.g. when using MRP. In cases
where calibration weights themselves are already relatively stable, it is typically better
to apply them directly to the observed values rather than predictions for estimation.
Furthermore, MRP and similar methods may often be inadequate to estimate bi- or
multivariate statistics because the predictions typically represent the target variable’s
conditional mean rather than the actual conditional distribution.
The empirical findings discussed in the current section 6.3.2.2 demonstrate that full
compensation of the selection bias in non-probability samples is possible when auxiliary
variables facilitate conditional independence of sample selection and variable(s) of interest.
In such MAR scenarios, the model- and the pseudo-design-based paradigm both provide
a valid framework for unbiased estimation, underlining the theoretical considerations in
chapter 5. However, in cases where selectivity is MNAR, none of the methods is able to
completely adjust for selection bias. Unless all available auxiliary information is already
fully exploitable by one of the methods alone, valuable improvements can be achieved
by combining both paradigms in such cases. Even though the remaining bias in these
settings is typically considerably different from zero, it often is still lower than when
relying on weighting or prediction alone. This is an important feature when considering
inferential methods for non-probability samples in the following section 6.3.2.3, because
the approaches that are proposed for this purpose typically rely on variance estimation
and assume that the (remaining) bias can be ignored (cf. section 5.4).

6.3.2.3 Methods for Inference
As discussed in section 5.4, typical approaches for inference from non-probability samples
assume that the bias due to sample selection can be compensated by model- or pseudo-
design-based point estimation methods. However, it is evident from the previous section
6.3.2.2 that this is highly dependent on the selectivity as well as available auxiliary
information and, therefore, not necessarily true. Nonetheless, inferential methods are
usually limited to the same set of assumptions and auxiliary information that is used
for point estimation. In this case, any assessment of bias for the purpose of inference
could be used to compensate for the bias already during point estimation. Therefore, the
remaining bias can usually not be estimated from a single non-probability sample unless
some information or assumption is deliberately dropped for point estimation but not for
inference (cf. e.g. Pfeffermann, 2015, pp. 441 ff; Schouten, 2007). In the typical case
where all available knowledge and assumptions are already used for point estimation, the
only strategy that is proposed for quantifying an estimator’s error is variance estimation.
For this purpose, estimated within and between variance components given the prediction
and/or weighting model are used either separately or jointly in different publications (cf.
equality 5.188; Buelens, Burger and van den Brakel, 2018, p. 330; Yang and Kim, 2018,
p. 5; Rafei, Flannagan and Elliott, 2020, p. 160). The following simulation results highlight
possibilities and limitations of these inferential approaches, considering the naive as well
as the resampling variance estimates described in sections 5.4 and 6.3.1. To provide an
overview and summary of findings in the simulation, the discussion focuses on inference for
selected point estimators which occurred in the previous discussion. As in section 6.3.2.2,
model-based estimates are considered first, followed by pseudo-design-based estimation
and approaches for combining both paradigms.

203



Monte Carlo Simulation Studies

Inference for Model-based Methods
For the model-based estimates, the first example in table 6.3 represents CI-rates of 95%
confidence intervals for selected approaches to estimate µy·1

presented in figure 6.11.
As before, naive estimates from the non-probability sample are included as a reference
point. The selected estimation approaches (naive nps-estimates, GLM and GLMM) are
denoted in boxes beside the table rows. CI-rates are presented for varying (non-)linear
dependencies ρXy·1

and ρX◦2y·1
between X and y·1, which are denoted in the first two

columns of the table and correspond to the grid cells in the previous plots. In the current
setting, correlations ρXZ = ρZy·1

= ρZπnps = 0.6 are all fixed and specified below the table.
All other relations between the considered variables result in conditional independence
and are therefore determined by products of the stated ones. RBias and RRMSE of the
point estimates are represented in the third and fourth column, and correspond to the
values in figure 6.11 in this case. The remaining columns five to eleven show the CI-rates
that result from the different variance estimation strategies described in sections 5.4 and
6.3.1. The ‘naive’ approach treats the pseudo-design weighted non-probability or imputed
reference sample as if it was a probability sample with known design weights and variables
of interest and applies classical design-based variance estimates to these samples. For the
Monte Carlo and rescaling bootstrap, variance components V̂b, V̂w and their combination
V̂t are considered, which are defined in equations 5.189 (cf. also section 2.2). All values
except for the correlations are provided in percent.
As discussed with regard to the point estimates, plain nps-estimates do not use any
compensation for selectivity and are biased in all scenarios due to the correlations of
selection probabilities πnps and target variable y·1 with Z. As X and Z are also correlated,
this bias increases with higher correlations ρXy·1

. If such biases are not accounted for, it
is evident from table 6.3 that inference can hardly perform well. For the naive variance
estimates, CI-rates are not even close to the 95% nominal coverage in any of the cases.
Higher relative bias strongly determines lower CI-rates, indicating that this is due to the
bias component of the MSE which is ignored by variance estimates. The results are similar
but even worse for the between variance estimates V̂b obtained from the Monte Carlo
or rescaling bootstrap. In case of both resampling techniques, this estimated variance
component leads to confidence intervals that cover the true value even less than the
naive confidence intervals, and the rescaling bootstrap leads to 0% CI-rates in all cases.
Underlining this finding, the estimated within variance V̂w, calculated as the average
of the naive variance estimates obtained from all resamples, seems to be more effective.
For both types of resampling, this component outperforms the confidence intervals which
are based on V̂b across all scenarios. Furthermore, its estimation when using the Monte
Carlo bootstrap performs clearly better than the naive variance estimates in all scenarios.
However, CI-rates are still considerably lower than 95% for all considered scenarios and
worse in case of the rescaling bootstrap. Using the combination V̂t of both variance
components discussed so far considerably improves the results. Especially the Monte
Carlo bootstrap yields confidence intervals which achieve CI-rates of up to 93% in this
case. Nevertheless, its CI-rates still decrease with higher biases and are therefore still
far below the nominal coverage in almost all scenarios. The rescaling bootstrap does not
improve visibly from adding V̂b to V̂w because its estimates of the between component
are generally very low. In summary, estimating the total variance V̂t by means of the
Monte Carlo bootstrap seems the most favorable of the considered approaches to make
inference for unweighted non-probability sample estimates.
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Table 6.3: Confidence interval coverage rates for selected prediction models under different
dependencies between X and y·1: estimation of V

(
µ̂y·1

)
for 100% coverage –

weighting model: unweighted (estimation from imputed reference sample)

Simulation
scenario

Quality of point
estimates

Confidence interval coverage rates

Naive
Monte Carlo

bootstrap
Rescaling
bootstrap

ρXy·1
ρX◦2y·1

RBias RRMSE V̂b V̂w V̂t V̂b V̂w V̂t

N
o

m
od

el
(n

ps
-e

st
im

at
e)

0.0 ρXy·1
·ρXX

◦2 17.0 18.4 33 23 58 79 0 42 42
0.0 17.9 19.3 30 16 45 76 0 32 32
0.3 15.9 17.5 42 21 59 86 0 40 40
0.6 13.4 15.3 59 32 78 93 0 65 65

0.3 ρXy·1
·ρXX

◦2 20.2 21.3 18 12 47 59 0 22 22
0.0 18.0 19.5 30 21 53 70 0 37 37
0.3 18.5 20.1 29 10 52 70 0 26 26
0.6 17.1 18.7 38 15 62 83 0 30 30

0.6 ρXy·1
·ρXX

◦2 20.8 22.2 20 13 42 61 0 28 28
0.0 18.2 19.7 29 16 59 76 0 32 32
0.3 19.4 20.9 23 13 42 58 0 25 25
0.6 20.4 21.8 22 10 43 62 0 23 23

G
LM

0.0 ρXy·1
·ρXX

◦2 16.8 18.4 1 26 0 28 0 0 0
0.0 18.0 19.5 0 16 3 19 0 2 2
0.3 13.0 15.0 8 33 11 39 0 9 9
0.6 8.0 10.8 28 60 31 71 0 31 31

0.3 ρXy·1
·ρXX

◦2 14.6 16.2 11 34 13 46 0 13 13
0.0 13.8 15.6 8 35 13 44 0 13 13
0.3 11.8 14.3 21 34 17 47 0 17 17
0.6 7.4 10.9 52 57 46 72 0 45 45

0.6 ρXy·1
·ρXX

◦2 6.9 11.1 77 52 79 90 0 79 79
0.0 10.2 12.5 39 43 36 76 0 36 36
0.3 8.1 11.3 69 39 76 88 0 74 74
0.6 6.1 10.6 82 46 81 93 0 82 82

G
LM

M

0.0 ρXy·1
·ρXX

◦2 0.5 9.1 87 53 82 89 0 83 83
0.0 0.9 9.4 90 53 88 90 0 87 87
0.3 0.9 8.4 84 63 82 91 0 80 80
0.6 1.0 7.5 78 79 74 91 0 75 75

0.3 ρXy·1
·ρXX

◦2 0.7 8.5 89 47 86 88 0 86 86
0.0 0.8 8.6 87 61 85 90 0 85 85
0.3 0.9 8.7 86 62 86 94 0 86 86
0.6 1.0 8.3 84 71 85 95 0 85 85

0.6 ρXy·1
·ρXX

◦2 1.1 9.1 90 49 88 92 0 88 88
0.0 1.1 8.4 84 60 78 91 0 79 79
0.3 1.0 8.6 89 55 84 91 0 85 85
0.6 0.7 9.0 91 53 88 91 0 88 88

Naive: Naive variance estimate, assuming a probability sample with observed weights and target variables
V̂b: Between variance estimate V̂w: Within variance estimate V̂t: Total variance estimate
Prediction model variables: X Random effects variables: Z-classes
Correlations determining the simulation scenario (all others result as products of the stated ones):
ρXZ = 0.6 ρZy·1

= 0.6 ρZπnps = 0.6
All numbers except for the correlations are in (rounded) percentage points.
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The advantages of this inferential approach are similarly evident for model-based es-
timates. Considering mass imputation from a GLM, confidence interval coverage is
typically lower than for nps-estimates in cases where the magnitude of bias is similar.
However, the point estimates obtained from GLM predictions allow for a considerable
reduction of bias and MSE when X and y·1 are related, and CI-rates are again strongly
influenced by the remaining bias. The dependency between auxiliary and target vari-
able thus determines whether inference works better for estimates obtained from the
unweighted non-probability or the imputed reference sample. In particular when a strong
linear dependency between the two variables

(
ρXy·1

= 0.6
)

allows a large amount of bias
reduction, confidence intervals for the GLM-based estimates exhibit better coverage than
those for the unweighted non-probability sample. The resulting CI-rates for Monte Carlo
bootstrap estimates V̂t range from 76 to 93%. In this case, point estimation as well as
inference can be improved by using a linear prediction model, although selectivity is still
MNAR for these models because they do not incorporate Z as a predictor. For the other
(linear as well as non-linear) models that only use X as independent variable, highly
similar results are obtained.
Under MAR selectivity, point estimation and confidence interval coverage can be improved
further. In the present context, this is the case for the mixed models because the
random effects variable Z guarantees conditional independence of y·1 and rnps. The non-
probability selection bias is, thus, almost fully compensated, and MSEs are considerably
lower than for other estimation methods. The results for the GLMM in table 6.3 indicate
that naive variance estimation performs relatively well in this case and leads to CI-
rates between 78 and 91% in all scenarios. Similar as for the plain non-probability
sample estimates, solely estimating the variance components V̂w or V̂b by means of
resampling does not provide a general improvement over using naive variance estimates.
But when applying the Monte Carlo bootstrap, joint usage of these components in form
of V̂t leads to the best CI-rate in almost all scenarios (except when ρXy·1

= 0.3 and
ρX◦2y·1

= ρXy·1
·ρXX◦2 , where it is 0.1% worse than the naive estimate). CI-rates between

88 and 95% can be achieved with this approach. Although these results are still not
perfect in view of the nominal 95% coverage that is reached in only one scenario, they
nevertheless seem rather convincing and reasonable. The simplifying assumption that
non-probability sample selection can be approximated by simple random sampling for
bootstrapping clearly introduces some imperfections to inference. Note that the estimator
V̂t relies on some important concepts of multiple imputation and seems clearly favorable
for inference in the present context (cf. section 5.4). This provides a further indication to
apply multiple imputation in the context of model-based estimation for non-probability
samples, underlining the results in figure 6.12. For additive mixed models, which allow a
similar degree of bias reduction as GLMMs, the resulting CI-rates are almost the same.
When comparing the different variance estimation methods, the Monte Carlo bootstrap
seems preferable over the rescaling bootstrap in all cases. As the point estimator’s bias
is not accounted for in variance estimation and leads to CI-rates that are typically too
low, this is mainly because the latter results in tremendously lower estimates V̂b. The
finite population correction, which is included in the rescaling but not in the Monte Carlo
bootstrap, may be a partial explanation for this difference. However, the large discrep-
ancies between both resampling techniques suggest that the above-mentioned simplifying
assumptions pose stronger drawbacks for the rescaling than for the Monte Carlo bootstrap.
Although better performance of the rescaling bootstrap can be found for pseudo-design-
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Table 6.4: Confidence interval coverage rates for selected prediction models under different
dependencies between X and y·1: estimation of V

(
ρy·1y·2

)
for 100% coverage –

weighting model: unweighted (estimation from imputed reference sample)

Simulation
scenario

Quality of point
estimates

Confidence interval coverage rates

Naive
Monte Carlo

bootstrap
Rescaling
bootstrap

ρXy·1
ρX

◦2
y·1

RBias RRMSE V̂b V̂w V̂t V̂b V̂w V̂t

N
o

m
od

el
(n

ps
-e

st
im

at
e)

0.0 ρXy·1
·ρXX

◦2 7.4 11.6 66 44 85 94 0 65 65
0.0 6.2 12.8 64 55 85 93 0 73 73
0.3 5.7 11.9 68 59 84 93 0 69 69
0.6 5.2 12.0 70 56 78 93 0 65 65

0.3 ρXy·1
·ρXX

◦2 8.6 12.2 62 48 82 90 0 68 68
0.0 6.9 12.1 65 51 82 90 0 67 67
0.3 6.3 13.8 60 45 74 84 0 63 63
0.6 5.8 12.9 64 51 76 91 0 61 61

0.6 ρXy·1
·ρXX

◦2 7.5 13.4 57 39 72 88 0 50 50
0.0 7.0 12.6 62 52 81 92 0 64 64
0.3 7.7 13.0 61 46 71 86 0 63 63
0.6 6.6 13.2 61 48 77 92 0 61 61

G
LM

M

0.0 ρXy·1
·ρXX

◦2 - 17.7 21.8 69 4 71 72 0 71 71
0.0 - 15.5 19.8 76 7 79 80 0 79 79
0.3 - 35.3 39.5 24 3 26 33 0 26 26
0.6 - 52.6 55.7 4 0 3 5 0 3 3

0.3 ρXy·1
·ρXX

◦2 - 17.4 21.2 71 7 73 75 0 73 73
0.0 - 25.6 28.5 45 2 46 49 0 46 46
0.3 - 30.3 34.1 36 2 46 47 0 45 45
0.6 - 41.1 44.1 14 2 16 20 0 16 16

0.6 ρXy·1
·ρXX

◦2 - 22.7 26.0 55 0 51 54 0 51 51
0.0 - 28.6 31.4 37 2 39 40 0 38 38
0.3 - 18.9 22.8 67 10 72 74 0 72 72
0.6 - 22.9 26.2 54 6 50 52 0 50 50

Naive: Naive variance estimate, assuming a probability sample with observed weights and target variables
V̂b: Between variance estimate V̂w: Within variance estimate V̂t: Total variance estimate
Prediction model variables: X Random effects variables: Z-classes
Correlations determining the simulation scenario (all others result as products of the stated ones):
ρXZ = 0.6 ρZy·1

= 0.6 ρZπnps = 0.6
All numbers except for the correlations are in (rounded) percentage points.

based estimates (cf. e.g. table 6.5), the Monte Carlo bootstrap seems generally more
appropriate for model-based estimation. Especially when it is used for estimating the
total variance V̂t, results are generally at least as good as those obtained from any other
inferential technique under consideration. Despite relying on simplifying assumptions for
variance estimation, nominal CI-rates are nearly reached when the bias of point estimators
is close to zero. These results can be as well confirmed for the other considered prediction
models. As for the ones shown in table 6.3, confidence interval coverage typically depends
on the degree of bias that is not compensated by the model. Mainly by reducing the bias
in point estimation, adequate prediction models can therefore lead to better inference
than using unweighted estimates from non-probability samples.
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As presented in figure 6.12, estimating the correlation ρy·1y·2
through mass-imputation is

rather inadequate when using predictions as imputed values. Because such predictions
typically represent the target variable’s conditional means rather than its actual condi-
tional distribution, residual (co-)variances are ignored. The bias for non-linear estimates
that are based on such predictions is therefore usually even higher than for unweighted
non-probability sample estimates and mostly prevents valid inference. This is illustrated
in table 6.4, where confidence intervals for some of the point estimation methods for ρy·1y·2
presented in figure 6.12 are evaluated.
In case of the unweighted non-probability sample estimates that do not use any compen-
sation for selectivity, the relative point estimation biases range from 5.2 to 8.6%. For
these estimates, all variance estimation approaches result in CI-rates below 95% in every
scenario. Nevertheless, CI-rates between 84 and 94% can be achieved by using Monte
Carlo bootstrap estimates of the total variance

(
V̂t
)
, which lead to the most conservative

intervals. This is clearly not perfect for a nominal CI-rate of 95%, but still way better
than what can be achieved for any of the model-based estimation methods.
In figure 6.12, mixed models perform better than any other prediction model under con-
sideration but still exhibit a larger magnitude of bias than the unweighted nps-estimates
considered above. As a consequence, inference based on variance estimation is much less
reliable for these model-based estimates. Considering GLMMs, the most conservative
approach to inference occurs again for the Monte Carlo bootstrap estimates V̂t. But
even in this case, the resulting CI-rates that range from 5 to 80% are much too low to
be considered adequate. Results when using GAMMs for prediction are very similar as
in case of GLMMs, while all other considered prediction models yield even higher biases
and lower CI-rates than these two types of mixed models.
When considering model-based point estimation by means of mass-imputation, Monte
Carlo bootstrap estimates for the total variance are typically the best option for making
inference. As is evident from tables 6.3 and 6.4, a comparatively lower bias in point
estimates generally helps to come closer to the nominal CI-rates because all considered
inferential approaches are based on variance rather than MSE estimation. Nevertheless,
perfectly unbiased point estimates are neither a necessary nor sufficient condition for
adequate inference since variance estimation in this context is a simplifying approximation
rather than an unbiased estimate for the repeated sampling variance (cf. sections 5.4 and
6.3.1). These findings are also underlined in the following tables 6.5 to 6.13. Furthermore,
point estimation and inference for measures of dependency are generally rather inaccurate
when using model-based methods in the current manner. As discussed with regard to
figure 6.12, the reason is that imputation of model predictions does not account for
variability that is not explained by the model. To estimate statistics that incorporate
not only means but also covariances or other higher moments in the context of non-
probability samples, it therefore seems essential to apply more refined forms of (multiple)
imputation (cf. e.g. van Buuren, 2018, pp. 63 ff; Little and Rubin, 2019, p. 72; Rubin,
1987, p. 159). Unless this is the case, it seems generally more reasonable to rely on
pseudo-design-based approaches for this purpose. Inference for such pseudo-design-based
methods is considered in the following paragraphs.
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Inference for Pseudo-design-based Methods
Considering the same scenarios as in table 6.3, confidence interval coverage rates for
selected propensity weighted estimates of µy·1

are presented in table 6.5, which follows
the same structure as the previously discussed ones. These results correspond to a subset
of point estimates shown in figure 6.13, which use a reference sample for the response
model as sole auxiliary information. Note that the unweighted non-probability sample
estimates coincide with the previous table 6.3 and are therefore not repeated.
While the Monte Carlo bootstrap estimate V̂t appears generally preferable for the model-
based approaches shown in table 6.3, there is no unique best choice for inference in
case of pseudo-design-based approaches. From the weighting methods represented in
figure 6.13, pseudo-weights obtained from a non-parametric logit model perform par-
ticularly well in all scenarios and almost completely eliminate selection bias for point
estimation. Considering inference for these estimates, naive variance estimates are not
too bad but generally fall short in achieving the nominal 95% CI-rate, even though
a slight increase in CI-rates for stronger non-linear dependencies between X and y·1
occurs. Estimates V̂b for the between variance obtained from the rescaling bootstrap
again result in confidence intervals that are generally too narrow to cover the true value.
Monte Carlo bootstrap estimates of this component perform better and are typically
similar or slightly superior in comparison to naive variance estimates. Even higher
coverage can be achieved when using within variance estimates V̂w for both resam-
pling methods. However, while coverage in case of the rescaling bootstrap is still gen-
erally below 95%, the Monte Carlo bootstrap results in confidence intervals that are
too wide in most cases and lead to CI-rates of up to 99%. Even though wider inter-
vals usually seem preferable over too narrow ones because they lead to more conserva-
tive inference, the ideal would be to exactly meet the nominal coverage (cf. Särndal,
Swensson and Wretman, 1992, p. 83; Wolter, 2007, p. 26). The same argument applies
for the total estimated variance V̂t, for which coverage in case of the Monte Carlo
bootstrap is way too high. For the rescaling bootstrap, this combination of V̂b and
V̂w behaves exactly as the latter, simply because V̂b is negligibly small. Therefore,
none of the considered methods performs perfect for these pseudo-weighted point esti-
mates. The most appropriate choice seems to be based on estimates V̂w using the Monte
Carlo bootstrap, even though confidence intervals are somewhat too conservative in that
case.
In contrast and despite being slightly more biased, propensity weighted point estimates
when using a non-parametric neural network as response model (with fixed B-spline knots
as for the pseudo-weights) result in higher CI-rates for each variance estimate and across
all scenarios. While naive variance estimates still fall short in reaching the nominal CI-
rate of 95%, Monte Carlo bootstrap estimates V̂b are mostly close to or a bit higher
than 95%. For the rescaling bootstrap, this estimated component again leads to intervals
which are insufficiently narrow, even though coverage is still tremendously higher than
for the pseudo-weights. The estimated within variance V̂w is again clearly larger than
the between component in all cases. This leads to confidence intervals that are too
wide in case of both resampling methods, which is particularly severe for the Monte Carlo
bootstrap. The resulting excess length of confidence intervals is carried over and magnified
for the total estimated variance V̂t because the latter includes the within component.
As a consequence, the Monte Carlo bootstrap estimate of V̂b seems the most adequate
method to obtain confidence intervals for point estimates that use plain propensity weights
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Table 6.5: Confidence interval coverage rates for selected weighting models under different
dependencies between X and y·1: estimation of V

(
µy·1

)
for 100% coverage, using

a reference sample

Simulation
scenario

Quality of point
estimates

Confidence interval coverage rates

Naive
Monte Carlo

bootstrap
Rescaling
bootstrap

ρXy·1
ρX

◦2
y·1

RBias RRMSE V̂b V̂w V̂t V̂b V̂w V̂t

Ps
eu

do
-W
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gh

ts
(fi
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d
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ot

s)

0.0 ρXy·1
·ρXX

◦2 0.0 9.2 84 84 96 98 0 76 76
0.0 0.4 9.3 83 84 96 99 0 85 85
0.3 0.2 8.7 87 91 98 99 0 87 87
0.6 - 0.3 8.2 91 90 99 100 0 88 88

0.3 ρXy·1
·ρXX

◦2 - 0.1 8.7 85 86 97 99 0 81 81
0.0 0.0 8.7 87 88 98 99 0 84 84
0.3 0.2 8.9 87 90 96 100 0 83 83
0.6 - 0.3 8.4 89 93 98 99 0 90 90

0.6 ρXy·1
·ρXX

◦2 - 0.1 8.9 86 84 97 98 0 81 81
0.0 - 0.1 8.7 86 89 97 100 0 84 84
0.3 - 0.4 8.7 85 83 92 98 0 80 80
0.6 - 0.5 8.8 86 85 96 98 0 82 82

ca
lib
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te

d
A

N
N

(fi
xe

d
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ot
s)

0.0 ρXy·1
·ρXX

◦2 3.0 9.0 88 94 99 100 74 98 98
0.0 3.6 9.2 88 95 100 100 84 98 99
0.3 3.1 8.6 90 98 99 100 92 98 99
0.6 2.4 8.3 94 98 100 100 92 99 100

0.3 ρXy·1
·ρXX

◦2 3.4 8.7 90 94 99 100 76 97 98
0.0 3.0 8.7 90 98 100 100 82 99 100
0.3 3.4 8.9 91 95 99 100 80 97 99
0.6 3.0 9.3 93 95 100 100 94 99 99

0.6 ρXy·1
·ρXX

◦2 3.3 11.1 92 94 99 100 85 98 98
0.0 2.4 8.6 89 97 100 100 78 99 100
0.3 2.2 8.3 88 90 100 100 80 94 99
0.6 2.9 9.3 91 95 100 100 83 97 100

Naive: Naive variance estimate, assuming a probability sample with observed weights and target variables
V̂b: Between variance estimate V̂w: Within variance estimate V̂t: Total variance estimate
Response model variables: X,Z
Correlations determining the simulation scenario (all others result as products of the stated ones):
ρXZ = 0.6 ρZy·1

= 0.6 ρZπnps = 0.6
All numbers except for the correlations are in (rounded) percentage points.

obtained from a non-parametric artificial neural network. A more conservative alternative
would be to estimate V̂w from the rescaling bootstrap. The results for the non-parametric
logit model are highly similar to those for the ANN, which is why it is not considered
separately.
For propensity weighted estimates of the mean µy·1

, estimating a single variance com-
ponent rather than the total variance performs better in the current setting. However,
there appears to be some interplay between the applied propensity model and the best
method to choose for inference. Although Monte Carlo bootstrap variance estimates seem
preferable for both types of propensity weights considered in table 6.5, it is the estimated
within variance V̂w that performs best in case of pseudo-weights, while V̂b appears to
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be better for the non-parametric ANN as propensity model. Unlike for the model-based
estimates (cf. table 6.3), an approach for variance estimation that is preferable regardless
of the propensity model is therefore not identifiable.
In cases of MAR selectivity patterns as in table 6.5, propensity weighting can largely
compensate selection bias. However, it is typically unknown in real applications whether
sample selection actually follows such a pattern. Since the bias is hardly fully compensable
in cases where selectivity is MNAR, inference needs to be evaluated for such cases as well,
and in particular when estimating the variance rather than the MSE, as is the case in
the present context (cf. chapter 5; Elliott and Valliant, 2017, p. 262; Mercer et al., 2017,
p. 257). MNAR selectivity is therefore considered in table 6.6, representing CI-rates for
selected point estimates depicted in figure 6.14. Apart from applying a different selection
mechanism through ρy·1πnps = 0.6, the setting is the same as in the previous table 6.5.
In comparison to the results in table 6.5, the unweighted point estimates are severely
more biased in the context of table 6.6 due to selectivity that is MNAR. Since this bias is
completely ignored when inference is solely based on variance estimation, nominal CI-rates
are achieved with none of the considered inferential approaches. As before, estimates V̂t
obtained from the Monte Carlo bootstrap as the most conservative inferential approach
seem preferable to construct confidence intervals for unweighted estimates. Nevertheless,
the resulting CI-rates between 56 and 64% are still far from the nominal 95% in all cases,
a finding that is even more severe for all other inferential approaches under consideration.
Since bias and MSE for propensity weighted estimates are likewise higher when selectivity
is MNAR rather than MAR, inference becomes correspondingly more difficult. Neverthe-
less, the CI-rates do not necessarily decline. As before, point estimates which derive
pseudo-weights from a non-parametric GLM perform comparably well in figure 6.14.
Considering inference for these estimates, CI-rates in case of naive variance estimation are
again below 95% for all scenarios. Between variance estimates V̂b obtained by the Monte
Carlo bootstrap perform better than in the previous table 6.5 and yield CI-rates between
89 and 97%. Estimating the same variance component with the rescaling bootstrap
again leads to 0% coverage in all cases. Higher CI-rates are achieved when using the
estimated within variance V̂w. For the Monte Carlo bootstrap, CI-rates ranging from 98
to 100% indicate that confidence intervals are too wide, while the opposite is true for the
rescaling bootstrap variant, where CI-rates between 80 and 92% are achieved. Similarly,
the estimated total variance V̂t overshoots nominal coverage when using the Monte Carlo
bootstrap and falls short in achieving it in case of the rescaling bootstrap. Therefore,
the Monte Carlo bootstrap seems more reasonable for inference in case of pseudo-weights.
However, the resulting estimates V̂w of the within variance are clearly too conservative
for inference, while confidence intervals based on the estimated between component V̂b
are too narrow in most cases. Therefore, both components have their flaws and none of
them is clearly preferable for all cases.
Despite higher biases and MSEs in point estimates, inference seems again slightly easier
when applying a non-parametric ANN with fixed B-spline knots as response model. Again,
the confidence intervals which are based on naive variance estimation are too narrow
to achieve 95% CI-rates. While the same holds for the estimated between variance V̂b
obtained from the rescaling bootstrap, the Monte Carlo bootstrap estimate of this variance
component leads to CI-rates between 92 and 99%. Since within variance estimates V̂w
are again on average larger than V̂b, the resulting CI-rates range from 95 to 100% in case
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Table 6.6: Confidence interval coverage rates for selected weighting models under different
dependencies between X and y·1: estimation of V

(
µy·1

)
for 100% coverage, using

a reference sample

Simulation
scenario

Quality of point
estimates

Confidence interval coverage rates

Naive
Monte Carlo

bootstrap
Rescaling
bootstrap

ρXy·1
ρX

◦2
y·1

RBias RRMSE V̂b V̂w V̂t V̂b V̂w V̂t
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0.0 ρXy·1
·ρXX

◦2 32.2 33.8 10 3 37 63 0 12 12
0.0 32.5 33.9 8 4 27 58 0 9 9
0.3 32.9 34.3 8 4 33 59 0 10 10
0.6 32.7 34.2 11 4 34 64 0 14 14

0.3 ρXy·1
·ρXX

◦2 32.6 34.1 10 2 42 63 0 9 9
0.0 32.5 34.1 8 6 35 56 0 14 14
0.3 32.6 34.1 8 1 28 61 0 5 5
0.6 33.0 34.5 8 0 32 61 0 9 9

0.6 ρXy·1
·ρXX

◦2 32.4 33.7 9 4 44 63 0 16 16
0.0 32.2 33.8 10 3 33 60 0 15 15
0.3 32.2 33.9 10 2 34 57 0 10 10
0.6 32.9 34.4 9 5 33 58 0 12 12
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ts
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0.0 ρXy·1
·ρXX

◦2 9.3 14.9 84 93 100 100 0 86 86
0.0 9.2 14.8 84 91 98 100 0 87 87
0.3 11.0 15.9 84 90 98 100 0 84 84
0.6 11.3 15.4 85 95 100 100 0 89 89

0.3 ρXy·1
·ρXX

◦2 8.7 14.3 87 90 100 100 0 80 80
0.0 10.0 15.0 83 89 100 100 0 83 83
0.3 10.3 15.6 84 93 99 100 0 84 84
0.6 9.0 13.9 90 97 99 100 0 92 92

0.6 ρXy·1
·ρXX

◦2 7.6 13.6 90 91 100 100 0 84 84
0.0 9.6 15.3 85 90 100 100 0 84 84
0.3 7.3 14.4 87 90 98 100 0 84 84
0.6 7.4 13.3 90 96 100 100 0 92 92
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0.0 ρXy·1
·ρXX

◦2 13.8 17.5 77 92 99 100 72 96 99
0.0 13.8 17.4 77 93 100 100 70 96 99
0.3 15.6 18.6 75 96 99 100 72 97 99
0.6 15.8 20.5 78 97 100 100 78 97 99

0.3 ρXy·1
·ρXX

◦2 13.0 16.7 82 96 100 100 73 98 99
0.0 14.2 17.6 77 92 100 100 70 96 100
0.3 14.6 18.0 78 95 99 100 66 95 100
0.6 13.6 19.4 85 99 100 100 88 99 100

0.6 ρXy·1
·ρXX

◦2 11.5 15.2 88 97 100 100 83 97 99
0.0 12.8 16.6 79 93 100 100 70 97 100
0.3 10.2 14.9 84 97 100 100 76 97 100
0.6 11.7 17.4 89 99 100 100 86 100 100

Naive: Naive variance estimate, assuming a probability sample with observed weights and target variables
V̂b: Between variance estimate V̂w: Within variance estimate V̂t: Total variance estimate
Response model variables: X,Z
Correlations determining the simulation scenario (all others result as products of the stated ones):
ρXZ = 0.6 ρZy·1

= 0.6 ρZπnps = 0.6 ρy·1πnps = 0.6
All numbers except for the correlations are in (rounded) percentage points.
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of the rescaling and from 99 to 100% in case of the Monte Carlo bootstrap, such that
especially the latter is too conservative when using this component. Consequently, and
as in table 6.5, the estimated total variance V̂t likewise generally overshoots the nominal
CI-rate for both resampling methods. In case of propensity weights that are obtained from
such a non-parametric ANN, Monte Carlo bootstrap estimates V̂b of the between variance
therefore again seem to be the most appropriate approach for constructing confidence
intervals that achieve CI-rates of roughly 95%. As a more conservative alternative, the
rescaling bootstrap estimate V̂w could be used in this case as well.
The most adequate method for inference in the present context again depends on the
non-probability sampling mechanism, applied weighting model and available auxiliary
information. Monte Carlo bootstrap estimates V̂b in general work well when using a
non-parametric ANN as propensity model. Because this finding coincides with the MAR
case (cf. table 6.5), it indicates a clearly favorable approach for inference when using
such a propensity model. This can be considered an advantage since selection mechanism
and population structure, which define the scenarios in the simulation, are typically not
perfectly known in reality. As described above, the picture is less clear when using pseudo-
weights, for which Monte Carlo bootstrap estimates V̂b or V̂w may be used. Nevertheless,
both of these options have their flaws, such that inference is more straightforward when
using response propensities which are predicted from an ANN.
As is evident from figure 6.15, performance and ranking of propensity weighting ap-
proaches are different when estimating ρy·1y·2

of other multi- or bi- rather than univariate
statistics in cases of selectivity patterns that are MNAR. To evaluate methods for inference
in this setting, CI-rates for a subset of point estimates considered in that figure are
presented in table 6.7.
In case of unweighted estimates, the most conservative approach to construct confidence
intervals seems preferable, just as in the previous tables 6.5 and 6.6. It is based on
estimates V̂t obtained from the Monte Carlo bootstrap and achieves CI-rates between
94 and 98%. These seem quite good, considering that selectivity is MNAR and that
simplifying assumptions are made for point as well as variance estimation (cf. section
5.4). All other considered methods for variance estimation lead to CI-rates that are way
below the nominal 95% in this case.
Although pseudo-weights that rely on a non-parametric GLM decrease point estimation
bias and MSE in at least most of the simulated scenarios, the relative benefit is much
smaller than for estimates of the mean presented in table 6.6. Nevertheless, CI-rates are
generally higher for pseudo- than for unweighted estimates. Naive and rescaling bootstrap
variance estimates still fall short of reaching the nominal CI-rate, but the Monte Carlo
bootstrap seems to be more adequate for this purpose. When using between variance
estimates V̂b, the resulting CI-rates range from 91 to 98%. The estimated within variance
component V̂w only yields 36 to 57%, while the combination of both in form of V̂t is
typically too large and results in CI-rates of 99 to 100%. Unless such highly conservative
confidence intervals are required, Monte Carlo bootstrap estimates V̂b seem to be the
most reasonable approach for this setting.
The best propensity weighted estimates for the correlation in figure 6.15 are based on
non-parametric ANNs which apply the proposed knot optimization technique. The biases
and MSEs in point estimation are considerably lower than when using pseudo- or no
weights in almost all scenarios. The resulting CI-rates are often but not generally higher

213



Monte Carlo Simulation Studies

Table 6.7: Confidence interval coverage rates for selected weighting models under different
dependencies between X and y·1: estimation of V

(
ρy·1y·2

)
for 100% coverage, using

a reference sample

Simulation
scenario

Quality of point
estimates

Confidence interval coverage rates

Naive
Monte Carlo

bootstrap
Rescaling
bootstrap

ρXy·1
ρX

◦2
y·1

RBias RRMSE V̂b V̂w V̂t V̂b V̂w V̂t

un
w

ei
gh

te
d

es
tim

at
es

0.0 ρXy·1
·ρXX

◦2 -13.9 22.8 32 73 37 96 0 29 29
0.0 -12.9 22.1 34 84 42 96 0 36 36
0.3 -13.7 22.2 34 80 39 97 0 36 36
0.6 -14.3 21.9 36 84 38 98 0 33 33

0.3 ρXy·1
·ρXX

◦2 -14.7 23.0 31 77 29 94 0 23 23
0.0 -13.1 22.3 32 80 36 97 0 32 32
0.3 -13.2 22.4 32 80 34 95 0 30 30
0.6 -13.5 21.8 34 79 34 94 0 29 29

0.6 ρXy·1
·ρXX

◦2 -12.7 22.5 31 75 36 97 0 28 28
0.0 -12.8 22.2 35 77 44 96 0 40 40
0.3 -13.0 22.2 34 75 41 95 0 36 36
0.6 -13.6 22.3 34 76 36 97 0 32 32

Ps
eu

do
-W

ei
gh

ts
(fi

xe
d

kn
ot

s)

0.0 ρXy·1
·ρXX

◦2 -15.2 22.4 38 95 45 100 0 41 41
0.0 -14.7 22.0 40 92 44 100 0 41 41
0.3 -13.7 20.9 42 97 48 100 0 40 40
0.6 -13.9 21.5 44 98 48 99 0 44 44

0.3 ρXy·1
·ρXX

◦2 -16.8 23.5 36 91 36 99 0 31 31
0.0 -14.6 21.9 39 94 42 99 0 39 39
0.3 -14.1 21.4 42 93 44 99 0 39 39
0.6 -14.5 22.3 42 91 43 100 0 37 37

0.6 ρXy·1
·ρXX

◦2 -14.8 23.4 39 93 43 99 0 38 38
0.0 -12.3 20.3 49 93 57 99 0 52 52
0.3 -12.5 20.5 48 92 53 100 0 45 45
0.6 -16.1 23.6 40 92 43 99 0 39 39

ca
lib

ra
te

d
A

N
N

(o
pt

im
iz

ed
kn

ot
s) 0.0 ρXy·1

·ρXX
◦2 - 3.1 13.3 63 92 73 98 83 56 95

0.0 - 2.9 13.1 64 92 86 100 83 69 94
0.3 - 4.4 13.4 60 94 77 100 87 53 95
0.6 - 7.8 14.9 54 100 73 100 95 57 99

0.3 ρXy·1
·ρXX

◦2 -10.1 18.3 38 92 41 99 83 27 91
0.0 -14.1 24.2 29 95 35 100 83 30 95
0.3 - 3.2 12.1 70 91 85 98 86 72 95
0.6 - 4.1 12.5 66 96 81 100 89 65 97

0.6 ρXy·1
·ρXX

◦2 - 3.9 12.1 68 96 80 98 90 68 96
0.0 - 6.2 15.1 52 96 63 100 90 49 98
0.3 - 8.9 17.5 41 94 58 99 86 42 97
0.6 - 3.3 11.5 73 96 82 100 90 66 95

Naive: Naive variance estimate, assuming a probability sample with observed weights and target variables
V̂b: Between variance estimate V̂w: Within variance estimate V̂t: Total variance estimate
Response model variables: X,Z
Correlations determining the simulation scenario (all others result as products of the stated ones):
ρXZ = 0.6 ρZy·1

= 0.6 ρZπnps = 0.6 ρy·1πnps = 0.6
All numbers except for the correlations are in (rounded) percentage points.
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than in case of the pseudo-weights summarized above. Again, naive variance estimates
are too small to achieve CI-rates of 95% or more. The same holds for estimates V̂w of
the within variance for both considered resampling methods and for V̂b obtained from
the rescaling bootstrap. When the between variance is estimated by means of the Monte
Carlo bootstrap, CI-rates between 91 and 100% are more convincing, while estimating the
total variance through Monte Carlo bootstrapping again exceeds the nominal CI-rate in
all scenarios. The most adequate results are achieved when using the rescaling bootstrap
estimate V̂t of the total variance, where CI-rates range from 91 to 99% and are closer to
95% than for Monte Carlo bootstrap estimates of the between variance in most cases.
Therefore, the best method for inference again depends on the propensity model applied
for point estimation of correlation coefficients. The results for the considered pseudo-
weights are best when relying on Monte Carlo bootstrap estimates V̂b. When using
propensity weights obtained from a non-parametric neural network with knot optimiza-
tion, it is better to rely on the rescaling bootstrap and the estimated total variance V̂t.
Considering cases where calibration benchmarks are used as the only available auxiliary
information, inference for a subset of pseudo-design weighted estimators of the mean µy·1
depicted in figure 6.16 is evaluated in table 6.8. The unweighted point estimates for this
setting coincide with those in the previous table 6.6 and are therefore not shown again.
In comparison to these unweighted estimates, a considerable amount of selection bias can
be compensated through calibration weighting if there is any relation between calibration
and target variables X and y·1, especially if this dependency is linear. However, since
selectivity is again MNAR, some bias remains even after applying calibration weights.
From the calibration methods that use one parameter per observation in the non-proba-
bility sample, the GREG performs best for estimating µy·1

from the non-probability sam-
ple (cf. figure 6.16). When evaluating inference for these estimates in table 6.8, there is no
unique approach to obtain confidence intervals that works best in all scenarios. Intervals
based on naive variance estimates as well as V̂b obtained from both resampling methods
are clearly too short in all cases. CI-rates are consequently below 95%, although coverage
increases with higher correlation ρXy·1

due to lower remaining biases. Performance of
inference using either V̂w or V̂t likewise depends on the relation of X and y·1. In case
of no to medium linear association

(
ρXy·1

< 0.6
)
, the estimated within variance yields

CI-rates that are generally below 95%. In such a setting, the use of V̂t seems to be the
most adequate choice. Because CI-rates tend to be below 95%, the rescaling bootstrap
seems preferable due to its slightly more conservative results, even though CI-rates are
still too low in some and too high in other scenarios. In contrast, CI-rates of 99 to
100% are clearly too high when using V̂t in cases of stronger linear dependency and bias
reduction

(
ρXy·1

= 0.6
)
. The estimated within variance V̂w is more useful in this context,

for which again the rescaling bootstrap yields slightly better CI-rates, ranging from 95 to
100%. This is again not perfect, but appears adequate when considering that selectivity
is MNAR and simplifying assumptions are made for inference (cf. section 5.4).
Being based on the functional form approach, the proposed non-parametric neural net-
works determine weights as a function of X and Z, but do not require information about
Z outside the non-probability sample (cf. section 5.2.3). In comparison to the GREG,
this strategy leads to lower point estimation biases for most scenario populations in the
current table 6.8, and the corresponding CI-rates are higher in all scenarios where this is
the case. Nevertheless, and as in table 6.6, CI-rates for naive variance estimation are all
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Table 6.8: Confidence interval coverage rates for selected weighting models under different
dependencies between X and y·1: estimation of V

(
µy·1

)
for 100% coverage, using

total and covariance constraints

Simulation
scenario

Quality of point
estimates

Confidence interval coverage rates

Naive
Monte Carlo

bootstrap
Rescaling
bootstrap

ρXy·1
ρX

◦2
y·1

RBias RRMSE V̂b V̂w V̂t V̂b V̂w V̂t

G
R

EG

0.0 ρXy·1
·ρXX

◦2 32.5 34.3 17 24 65 92 20 64 91
0.0 32.0 33.6 13 14 57 87 14 58 88
0.3 24.2 25.5 11 11 42 67 9 40 68
0.6 19.7 20.8 19 21 51 80 16 51 83

0.3 ρXy·1
·ρXX

◦2 25.6 27.3 36 46 85 95 36 82 97
0.0 24.7 26.4 31 33 81 94 29 85 96
0.3 21.0 22.3 21 14 61 86 11 55 87
0.6 15.4 16.5 37 23 69 91 21 70 92

0.6 ρXy·1
·ρXX

◦2 11.6 12.7 65 46 96 100 44 96 100
0.0 19.0 20.6 52 50 95 99 53 95 99
0.3 15.4 17.1 73 60 100 100 63 100 100
0.6 10.9 12.0 68 48 94 100 41 95 100

ca
lib

ra
te

d
A

N
N

(fi
xe

d
kn

ot
s)

0.0 ρXy·1
·ρXX

◦2 27.3 29.2 26 79 94 100 31 75 97
0.0 27.5 29.1 23 74 96 100 23 67 95
0.3 19.9 21.3 38 69 89 100 27 63 87
0.6 16.5 17.9 52 75 94 100 41 79 94

0.3 ρXy·1
·ρXX

◦2 23.0 24.9 46 87 98 100 44 90 99
0.0 23.5 25.3 37 86 99 100 31 89 98
0.3 17.1 18.6 51 80 97 100 42 77 96
0.6 12.0 13.5 72 91 100 100 62 93 100

0.6 ρXy·1
·ρXX

◦2 9.1 10.7 84 98 100 100 77 99 99
0.0 19.2 21.0 49 88 99 100 47 91 98
0.3 15.7 17.6 70 95 100 100 60 97 100
0.6 8.3 9.8 88 95 100 100 74 97 99

Naive: Naive variance estimate, assuming a probability sample with observed weights and target variables
V̂b: Between variance estimate V̂w: Within variance estimate V̂t: Total variance estimate
Response model variables: X,Z Calibration variables: X

Correlations determining the simulation scenario (all others result as products of the stated ones):
ρXZ = 0.6 ρZy·1

= 0.6 ρZπnps = 0.6 ρy·1πnps = 0.6
All numbers except for the correlations are in (rounded) percentage points.

below 95%. The same holds when V̂b is estimated from a rescaling bootstrap, but Monte
Carlo bootstrap estimates for this variance component seem to be the most reasonable
choice for inference when ρXy·1

= 0.6. For lower linear dependencies
(
ρXy·1

< 0.6
)
, better

CI-rates are achieved by using estimates V̂w. This holds regardless of the resampling
method, but the rescaling bootstrap appears clearly less favorable due to intervals which
never achieve 95% CI-rates. Estimates V̂t lead to CI-rates of 100% across all scenarios
for the Monte Carlo bootstrap. Although the rescaling bootstrap seems more reasonable
in case of this total variance estimate, confidence intervals are still too wide in most
scenarios. Nevertheless, it may be considered as a slightly more conservative alternative
to estimating V̂w by means of the Monte Carlo bootstrap when ρXy·1

< 0.6.
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As in case of propensity weights (cf. tables 6.5 and 6.6), there is no variance estimation
technique that is unambiguously favorable for all types of calibration weights and sce-
narios. When using the GREG, it depends on the population correlation ρXy·1

whether
rescaling bootstrap estimates V̂t or V̂w perform better, and inference is mainly reliable
when this correlation is non-negligible. This dependency between X and y·1 likewise
determines whether Monte Carlo bootstrap variance estimates V̂b or V̂w are more suitable
for constructing confidence intervals when weights are obtained from a calibrated non-
parametric ANN, although inference in this case is a bit more reliable than for the
GREG. An adequate choice of an inferential method therefore depends again on the
underlying selectivity, structural form of the weighting model and available auxiliary
information.
The case of pseudo-design-based estimates for µy·1

under joint availability of a reference
sample and calibration benchmarks is considered in table 6.9. These results correspond
to selected point estimates presented in figure 6.17. All other conditions, and thus the
unweighted point estimates for this setting, are the same as before in table 6.6 and
therefore not recapitulated.
Results in figure 6.17 indicate that to jointly use reference sample and calibration con-
straints for estimating µy·1

, the preferable approach is to fit a GLM for predicting response
propensities and subsequently calibrate the propensity weights by means of the GREG.
Considering confidence intervals for this weighting method, higher linear dependencies
between X and y·1 lead to increasing CI-rates due to reduction of the point estimates’
bias, which is similar as for the GREG on its own (cf. table 6.8). Regardless of whether
a parametric or a non-parametric GLM is used for the outlined two-step approach,
confidence intervals when using naive variance estimation reach or exceed 95% only
if ρXy·1

= 0.6, in which case they perform quite well. For less pronounced linear
dependencies

(
ρXy·1

< 0.6
)
, the estimated between variance V̂b obtained from a Monte

Carlo bootstrap is more adequate for achieving the nominal CI-rate. This approach may
also be sensible for ρXy·1

= 0.6 when using the non-parametric propensity model, although
coverage in this case is higher than 95% in all scenarios. However, this excess is too big
when applying parametric GLMs, such that the naive approach to variance estimation
seems clearly favorable in this setting. For both types of GLMs to combine with the
GREG, the estimated within variance leads to confidence intervals that are too wide in
almost all cases. Consequently, confidence intervals that use V̂w alone or as a component
of V̂t are usually too conservative for adequate inference.
In contrast, weights obtained from a calibrated non-parametric neural network (with
fixed B-spline knots) in this setting lead to considerably higher biases and MSEs in point
estimation. When using these weights, it is difficult to identify a valid approach for
inference in most scenarios. Naive variance estimation generally results in CI-rates that
are below 95%. For bootstrap variance estimates it depends on the scenario whether CI-
rates are below or above this nominal CI-rate. For ρXy·1

= 0.0, the Monte Carlo bootstrap
estimates of V̂w are at least close to 95%. Similar but slightly worse is the performance
of confidence intervals that are based on V̂t obtained from a rescaling bootstrap. The
remaining options lead to CI-rates that are either way too low or too high in all scenarios.
In case of higher correlations ρXy·1

, there is rarely any choice for variance estimation
that achieves the nominal CI-rate. For ρXy·1

= 0.3 and ρX◦2y·1
= 0.6, Monte Carlo

bootstrap estimates of the between variance V̂b or total variance estimates V̂t obtained
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Table 6.9: Confidence interval coverage rates for selected weighting models under different
dependencies between X and y·1: estimation of V

(
µy·1

)
for 100% coverage, using

a reference sample, total and covariance constraints

Simulation
scenario

Quality of point
estimates

Confidence interval coverage rates

Naive
Monte Carlo

bootstrap
Rescaling
bootstrap

ρXy·1
ρX

◦2
y·1

RBias RRMSE V̂b V̂w V̂t V̂b V̂w V̂t

Lo
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(p
ar
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&
G

R
EG

0.0 ρXy·1
·ρXX

◦2 12.2 15.8 83 95 99 100 73 98 99
0.0 11.9 15.1 84 99 100 100 67 99 100
0.3 8.3 11.5 81 95 99 100 65 98 99
0.6 8.2 10.7 80 94 99 100 69 97 99

0.3 ρXy·1
·ρXX

◦2 10.2 13.5 91 98 100 100 83 100 100
0.0 10.6 13.7 88 100 100 100 79 100 100
0.3 7.5 10.7 86 97 100 100 73 98 100
0.6 5.2 8.0 91 98 100 100 83 99 99

0.6 ρXy·1
·ρXX

◦2 3.5 6.5 97 100 100 100 84 100 100
0.0 10.3 13.1 93 99 100 100 88 100 100
0.3 8.8 11.6 97 100 100 100 88 100 100
0.6 2.9 5.8 98 100 100 100 84 100 100
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gi

t
m

od
el

(fi
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d
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&
G

R
EG

0.0 ρXy·1
·ρXX

◦2 10.7 15.6 84 95 100 100 81 99 100
0.0 10.3 15.2 86 95 100 100 84 99 100
0.3 8.1 12.1 80 91 98 100 76 94 95
0.6 7.6 10.8 82 96 99 100 82 96 98

0.3 ρXy·1
·ρXX

◦2 10.2 14.5 89 97 100 100 85 100 100
0.0 10.6 14.8 86 96 100 100 85 99 100
0.3 7.9 11.8 83 93 99 100 75 95 99
0.6 5.2 8.7 92 97 99 100 81 97 99

0.6 ρXy·1
·ρXX

◦2 4.5 8.7 97 97 100 100 84 99 100
0.0 11.0 15.7 90 98 100 100 87 99 100
0.3 9.4 13.9 95 98 100 100 91 99 100
0.6 3.5 7.1 97 100 100 100 88 100 100
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(fi
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0.0 ρXy·1
·ρXX

◦2 29.8 31.7 18 82 93 100 32 71 93
0.0 29.9 31.8 14 68 96 100 20 60 96
0.3 22.6 23.6 23 61 87 100 16 52 84
0.6 18.6 19.9 38 63 93 100 26 63 93

0.3 ρXy·1
·ρXX

◦2 25.0 26.8 34 90 100 100 35 85 100
0.0 24.9 27.1 28 88 100 100 44 75 100
0.3 19.5 20.8 43 77 91 100 27 73 86
0.6 13.1 15.8 61 95 100 100 45 91 95

0.6 ρXy·1
·ρXX

◦2 9.2 11.3 83 100 100 100 72 100 100
0.0 20.5 22.9 40 89 100 100 33 78 100
0.3 15.8 18.7 58 100 100 100 40 100 100
0.6 9.0 10.7 83 95 100 100 68 95 100

Naive: Naive variance estimate, assuming a probability sample with observed weights and target variables
V̂b: Between variance estimate V̂w: Within variance estimate V̂t: Total variance estimate
Response model variables: X,Z Calibration variables: X

Correlations determining the simulation scenario (all others result as products of the stated ones):
ρXZ = 0.6 ρZy·1

= 0.6 ρZπnps = 0.6 ρy·1πnps = 0.6
All numbers except for the correlations are in (rounded) percentage points.

218



Monte Carlo Simulation Studies

from the rescaling bootstrap yield 95% coverage. If ρXy·1
= 0.3 and ρX◦2y·1

< 0.6, all
CI-rates are either considerably below or above 95%. When ρXy·1

= ρX◦2y·1
= 0.6,

the Monte Carlo bootstrap estimates V̂b as well as the rescaling bootstrap estimates
V̂w both achieve 95% coverage. When the non-linear dependency is less pronounced(
ρXy·1

= 0.6 and ρX◦2y·1
< 0.6

)
, the aim of achieving 95% CI-rates is usually missed as

before.
In summary, there is no unique solution for inference that performs best in the context
of all pseudo-design weighted point estimates. Even for a specific weighting model, the
choice of an inferential method has to be made with respect to the actual selectivity
pattern and the potential of available auxiliary information to account for the selectivity.
This makes inference for pseudo-design-based estimation clearly more situational than for
model-based strategies. It also has an effect on inference for estimates that jointly use
pseudo-design- and model-based methods, which is considered in the following paragraphs.

Inference for the Synthesis of Model- and Pseudo-design-based
Methods

In a final step, the following discussion focuses on inference when integrating the model-
and the pseudo-design-based paradigm. Results for weighted prediction models that are
fit using pseudo-weights obtained from a non-parametric model are presented in table
6.10. This is a subset of point estimates shown in figure 6.18, where MARS and additive
mixed models yield comparatively good results in relation to the other prediction models
under consideration. Inferential methods for these two models are evaluated and again
contrasted with the reference point where no weighted prediction model but only the
pseudo-design weights are used for estimation (nps-estimates).
As ρy·1πnps = 0.6 implies a MNAR scenario for selectivity, these nps-estimates are biased
across all scenarios. As a consequence, naive variance estimation generally results in CI-
rates below 95%. Estimated between variances V̂b when using the Monte Carlo bootstrap
lead to better CI-rates, ranging from 89 to 97%. When using the corresponding rescaling
bootstrap estimates, however, the coverages drop to 0% across all scenarios. The within
component V̂w provides higher CI-rates for both resampling techniques. The results are
CI-rates that are generally above 95% for the Monte Carlo but still below 95% for the
rescaling bootstrap, with the same holding for the combination V̂t of both components.
Although not perfect, estimates V̂b obtained through Monte Carlo bootstrapping there-
fore come closest to the nominal CI-rate. A considerably more conservative approach is
obtained when using estimates for the within instead of the between component calculated
from the Monte Carlo bootstrap.
In comparison to the reference point of weighted non-probability sample estimates, using a
weighted MARS model for imputation results in point estimates that have similar or lower
biases in almost all scenarios. As for the purely model-based estimates presented in table
6.3, however, CI-rates are considerably lower for mass-imputation than for plain pseudo-
design weighted estimates when the magnitude of bias is similar. In combination with the
uncertainty and hence variation that is introduced by additionally applying prediction
models, it is more cumbersome to achieve adequate inference for the joint usage of model-
and pseudo-design-based methods. As a consequence, none of the considered variance
estimates actually achieves the nominal 95% CI-rate in any of the scenarios. Since all
empirical CI-rates fall below this target, it is the most conservative approach that comes
closest to it. This is the case for the total variance estimate V̂t obtained through Monte
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Table 6.10: Confidence interval coverage rates for selected prediction models under different
dependencies between X and y·1: estimation of V

(
µy·1

)
for 100% coverage –

weighting model: pseudo-weights (fixed knots), using a reference sample (estimation
from imputed reference sample)

Simulation
scenario

Quality of point
estimates

Confidence interval coverage rates

Naive
Monte Carlo

bootstrap
Rescaling
bootstrap

ρXy·1
ρX

◦2
y·1

RBias RRMSE V̂b V̂w V̂t V̂b V̂w V̂t

N
o

m
od

el
(n

ps
-e

st
im

at
e)

0.0 ρXy·1
·ρXX

◦2 9.3 14.9 84 93 100 100 0 86 86
0.0 9.2 14.8 84 91 98 100 0 87 87
0.3 11.0 15.9 84 90 98 100 0 84 84
0.6 11.3 15.4 85 95 100 100 0 89 89

0.3 ρXy·1
·ρXX

◦2 8.7 14.3 87 90 100 100 0 80 80
0.0 10.0 15.0 83 89 100 100 0 83 83
0.3 10.3 15.6 84 93 99 100 0 84 84
0.6 9.0 13.9 90 97 99 100 0 92 92

0.6 ρXy·1
·ρXX

◦2 7.6 13.6 90 91 100 100 0 84 84
0.0 9.6 15.3 85 90 100 100 0 84 84
0.3 7.3 14.4 87 90 98 100 0 84 84
0.6 7.4 13.3 90 96 100 100 0 92 92

M
A

R
S

0.0 ρXy·1
·ρXX

◦2 9.3 15.4 16 65 33 76 0 23 23
0.0 9.3 15.7 20 71 25 78 0 21 21
0.3 7.4 12.5 26 68 35 78 0 26 26
0.6 7.4 11.9 39 76 46 86 0 42 42

0.3 ρXy·1
·ρXX

◦2 9.1 15.2 49 66 51 82 0 47 47
0.0 10.3 16.2 48 71 51 88 0 45 45
0.3 7.3 12.7 54 64 51 77 0 42 42
0.6 5.0 10.6 70 70 71 90 0 70 70

0.6 ρXy·1
·ρXX

◦2 4.0 11.1 85 68 77 92 0 75 75
0.0 8.6 21.6 70 66 72 89 0 71 71
0.3 7.1 17.4 83 68 82 94 0 81 81
0.6 3.2 10.3 86 67 85 93 0 83 83

G
A

M
M

0.0 ρXy·1
·ρXX

◦2 8.7 14.4 79 58 76 91 0 76 76
0.0 8.6 14.4 80 58 83 92 0 84 84
0.3 6.5 11.5 79 59 79 87 0 79 79
0.6 6.6 11.1 73 63 75 90 0 78 78

0.3 ρXy·1
·ρXX

◦2 8.8 14.4 75 56 72 88 0 73 73
0.0 9.7 14.9 69 58 69 86 0 69 69
0.3 6.4 11.7 77 52 71 86 0 72 72
0.6 4.1 10.0 85 62 82 93 0 83 83

0.6 ρXy·1
·ρXX

◦2 3.9 16.5 90 55 83 89 0 81 81
0.0 11.4 139.6 71 61 75 92 0 72 72
0.3 9.8 132.1 84 62 89 92 0 79 79
0.6 2.3 20.5 90 52 89 96 0 91 91

Naive: Naive variance estimate, assuming a probability sample with observed weights and target variables
V̂b: Between variance estimate V̂w: Within variance estimate V̂t: Total variance estimate
Prediction model variables: X Random effects variables: Z-classes Response model variables: X,Z
Correlations determining the simulation scenario (all others result as products of the stated ones):
ρXZ = 0.6 ρZy·1

= 0.6 ρZπnps = 0.6 ρy·1πnps = 0.6
All numbers except for the correlations are in (rounded) percentage points.
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Carlo bootstrapping. At least for ρXy·1
= 0.6, CI-rates of 89 to 94% can be obtained

with this technique. Although such coverage clearly is not perfect, it nevertheless seems
reasonable when considering that selectivity is MNAR. However, these rates drop down
to 76% for some of the lower linear dependencies

(
ρXy·1

< 0.6
)
.

Especially for these less pronounced linear relationships
(
ρXy·1

< 0.6
)
, additive mixed

models yield slightly lower biases and MSEs than MARS models. Correspondingly,
inference for these former models appears somewhat less situational and more stable
across the different simulation scenarios than for the latter. Still, naive and rescaling
bootstrap variance estimates generally fall short in achieving nominal CI-rates. The same
holds for the separate use of variance components V̂b and V̂w estimated by means of the
Monte Carlo bootstrap, but their joint usage in form of V̂t leads to CI-rates between 86
and 96%. As for the MARS model, these results are clearly less than perfect, yet seem
reasonable for selectivity that is MNAR.
In correspondence to inference for purely model-based estimates examined in table 6.3,
Monte Carlo bootstrap estimates for the total variance V̂t are preferable even for pro-
pensity weighted imputation models. This pattern holds quite generally when using
mass-imputation for the reference sample, regardless of the chosen prediction model.
Nevertheless, confidence interval coverage depends still critically on the magnitude of
the remaining bias, such that mass imputation improves inference for non-probability
samples mainly when it considerably reduces point estimation bias.
In cases where calibration benchmarks are the only available auxiliary information, impu-
tation of the reference sample is infeasible. In this context, MRP is the most commonly
discussed technique to combine the model- and the pseudo-design-based paradigm by
weighted aggregation of predictions in the non-probability sample. Indeed, the linear
mixed model is the only prediction method that provides a clear improvement over purely
pseudo-design-based estimates of the mean µy·1

in at least some of the scenarios presented
in figure 6.19. Inferential approaches for these two strategies which apply weighted
estimation to either the observed values (‘no model’) or the predictions from such a
GLMM are evaluated in table 6.11 for simulation scenarios corresponding to the previous
table 6.10. Note that in order to exactly meet the specification of MRP as in figure 6.19,
calibration and random effects variables are both determined by classes of Z for this single
example.
In case of the plain nps-estimates that use the observed target variable, naive variance
estimation already performs relatively well when the non-linear dependency between X
and y·1 is rather small

(
ρX◦2y·1

< 0.3
)
. CI-rates based on these variance estimates range

from 90 to 96% in these cases. When ρX◦2y·1
≥ 0.3, however, the corresponding CI-

rates drop down to 70% in the worst case, and seem to be still reasonable only when
ρXy·1

= 0.6. As before, the estimated between variance component V̂b is too small
to achieve 95% coverage in any of the scenarios, regardless of the employed resampling
method. Better results are obtained by using the within variance. When estimated by
means of the Monte Carlo bootstrap, confidence intervals tend to be too conservative and
lead to CI-rates of 92 to 100%. Yet, this seems to be the best possible setting especially
for ρXy·1

< 0.6. Although the rescaling bootstrap usually results in CI-rates below 95%,
it seems to be an adequate alternative when ρXy·1

= 0.6, for which the resulting estimates
V̂w or V̂t yield CI-rates between 92 and 94%.
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Table 6.11: Confidence interval coverage rates for selected prediction models under different
dependencies between X and y·1: estimation of V

(
µy·1

)
for 100% coverage –

weighting model: post-stratification, using total constraints (estimation by weighted
aggregation of predictions)

Simulation
scenario

Quality of point
estimates

Confidence interval coverage rates

Naive
Monte Carlo

bootstrap
Rescaling
bootstrap

ρXy·1
ρX

◦2
y·1

RBias RRMSE V̂b V̂w V̂t V̂b V̂w V̂t

N
o

m
od

el
(n

ps
-e

st
im

at
e)

0.0 ρXy·1
·ρXX

◦2 12.3 14.4 91 65 99 100 0 92 92
0.0 12.2 14.0 93 48 100 100 0 93 93
0.3 14.6 16.4 83 39 99 100 0 84 84
0.6 17.0 18.7 70 39 92 99 0 74 74

0.3 ρXy·1
·ρXX

◦2 11.1 13.1 96 66 100 100 0 98 98
0.0 12.2 14.3 92 61 99 99 0 92 92
0.3 12.7 14.7 91 47 100 100 0 90 90
0.6 14.5 16.3 83 48 97 99 0 83 83

0.6 ρXy·1
·ρXX

◦2 11.7 13.6 94 64 100 100 0 94 94
0.0 12.5 14.6 90 54 98 99 0 92 92
0.3 11.9 14.1 92 63 97 100 0 94 94
0.6 12.4 14.2 93 60 98 100 0 92 92

G
LM

M

0.0 ρXy·1
·ρXX

◦2 13.6 15.7 37 64 53 91 0 39 39
0.0 13.4 15.3 35 48 57 93 0 33 33
0.3 16.6 18.7 22 25 45 80 0 25 25
0.6 17.0 18.5 24 33 45 72 0 27 27

0.3 ρXy·1
·ρXX

◦2 12.6 14.7 34 66 49 93 0 34 34
0.0 13.9 16.0 26 63 40 88 0 31 31
0.3 14.5 16.7 36 33 60 91 0 36 36
0.6 14.4 16.0 45 37 70 87 0 49 49

0.6 ρXy·1
·ρXX

◦2 11.4 13.1 73 56 94 100 0 76 76
0.0 15.0 17.1 22 56 28 83 0 24 24
0.3 14.3 16.5 29 55 44 89 0 29 29
0.6 11.8 13.4 76 49 93 98 0 81 81

Naive: Naive variance estimate, assuming a probability sample with observed weights and target variables
V̂b: Between variance estimate V̂w: Within variance estimate V̂t: Total variance estimate
Prediction model variables: X Random effects variables: Z-classes Calibration variables: X

Correlations determining the simulation scenario (all others result as products of the stated ones):
ρXZ = 0.6 ρZy·1

= 0.6 ρZπnps = 0.6 ρy·1πnps = 0.6
All numbers except for the correlations are in (rounded) percentage points.

As in tables 6.3 and 6.10, the CI-rates when a prediction model is additionally incorporated
are way lower than for pure pseudo-design-based estimates that exhibit similar magnitudes
of bias. Even in cases where the GLMM’s predictions allow for some degree of bias
reduction in comparison to the plain weighted estimates, CI-rates are lower than 95% for
almost all variance estimates. Therefore, the most conservative variance estimator, which
is V̂t obtained from the Monte Carlo bootstrap, provides the most adequate results in
most of the considered scenarios. Nevertheless, this approach still misses nominal coverage
in many cases, yielding CI-rates between 72 and 100%. As a consequence, inference for
this example of MRP is less reliable than for post-stratified estimation that does not
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additionally use a GLMM. Furthermore, the amount of bias reduction obtained from
using the GLMM is relatively small in comparison to the remaining bias, such that it may
be better to rely on pseudo-design weighting alone in the present context.

As discussed with regard to figure 6.20, the stabilizing effect obtained by using mixed
model predictions in place of actually observed target variables y·1 in the non-probability
sample is more advantageous in case of a fine-grained weighting method that leads to
stronger variability in pseudo-design weights. Results for the corresponding confidence
intervals when estimating µy·1

are presented in table 6.12. Calibration is used for the
total and variance of X. The weighting model is a calibrated neural network that has the
structure of a parametric logit model but is fit exclusively with regard to the calibration
benchmarks. The remaining settings and considered estimation approaches are kept as in
the previous table 6.11.

For estimates that use pseudo-design weights and observed target variable (nps-estimates),
naive variance estimation once again results in confidence intervals that are generally too
short to reach the nominal 95% coverage. Nevertheless, CI-rates increase with higher
correlations ρXy·1

, which help to reduce biases in point estimation. As in table 6.10, CI-
rates are higher for almost all bootstrap variance estimates. For the estimated between
variance V̂b, these rates are still mostly below 95% unless the Monte Carlo bootstrap is
used in scenarios where ρXy·1

= 0.6. CI-rates when using within variance estimates V̂w

are generally higher than for the between component. When estimating V̂w, Monte Carlo
bootstrapping yields quite adequate CI-rates when ρXy·1

= 0.3 but results in confidence
intervals which are mostly too narrow in case of ρXy·1

= 0.0 and too wide for ρXy·1
= 0.6.

For the latter case, the rescaling bootstrap performs better in most cases, yielding CI-
rates between 87 and 99%. The estimated total variance V̂t leads to confidence intervals
that are clearly too wide for the Monte Carlo bootstrap in all scenarios. When using
the rescaling bootstrap, however, CI-rates ranging from 85 to 98% seem at least fairly
acceptable for ρXy·1

= 0.0.

Predictions from GLMMs are particularly suitable for reducing the bias that remains after
pseudo-design weighting in certain scenarios considered in figure 6.20. Nevertheless, and
underlining the results in tables 6.3 and 6.10, the corresponding CI-rates are considerably
lower when using model predictions rather than the observed target variable in cases
where the magnitudes of bias are similar. Therefore, inference seems to be quite situa-
tional for weighted aggregation of GLMM predictions, and CI-rates that are close to the
nominal 95% are achieved only for specific combinations of variance estimation methods
and correlations determining the simulation scenarios. CI-rates obtained through naive
variance estimation are generally too low, and the same holds for almost all cases where
the estimated between variance V̂b is used. Results for within variance estimates V̂w
are occasionally either worse or better. However, even the estimated total variance V̂t is
mostly too small to achieve the nominal CI-rate, such that its most conservative estimate,
which is obtained by means of the Monte Carlo bootstrap, yields the best CI-rates in most
scenarios. Exceptions occur only for ρXy·1

= ρX◦2y·1
= 0.6, where V̂w obtained from the

Monte Carlo bootstrap is a better choice, and for ρXy·1
= 0.6 and ρX◦2y·1

= ρXy·1
·ρXX◦2 ,

where the rescaling bootstrap estimate V̂t or the Monte Carlo bootstrap estimate V̂b yield
better results.
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Table 6.12: Confidence interval coverage rates for selected prediction models under different
dependencies between X and y·1: estimation of V

(
µy·1

)
for 100% coverage – weight-

ing model: calibrated ANN (parametric), using total and covariance constraints
(estimation by weighted aggregation of predictions)

Simulation
scenario

Quality of point
estimates

Confidence interval coverage rates

Naive
Monte Carlo

bootstrap
Rescaling
bootstrap

ρXy·1
ρX

◦2
y·1

RBias RRMSE V̂b V̂w V̂t V̂b V̂w V̂t

N
o

m
od

el
(n

ps
-e

st
im

at
e)

0.0 ρXy·1
·ρXX

◦2 30.2 32.0 17 85 96 100 35 71 98
0.0 29.7 31.2 15 80 90 100 25 63 97
0.3 22.5 23.8 17 70 79 100 27 41 85
0.6 18.7 19.9 25 61 86 100 30 54 88

0.3 ρXy·1
·ρXX

◦2 25.8 27.6 31 88 98 100 55 83 98
0.0 25.4 27.3 27 87 96 100 47 79 98
0.3 20.2 21.5 26 79 93 100 19 64 93
0.6 14.3 15.6 46 86 98 100 46 82 100

0.6 ρXy·1
·ρXX

◦2 11.9 13.2 65 96 100 100 63 99 100
0.0 21.6 23.4 38 87 100 100 51 87 100
0.3 18.5 20.2 53 91 98 100 43 96 98
0.6 10.5 11.8 70 97 100 100 62 97 100

G
LM

M

0.0 ρXy·1
·ρXX

◦2 30.3 32.1 2 33 11 75 7 7 35
0.0 29.7 31.3 2 25 14 75 12 7 24
0.3 18.6 20.5 16 50 55 82 21 29 51
0.6 13.0 15.6 38 65 70 77 40 59 66

0.3 ρXy·1
·ρXX

◦2 26.1 27.9 5 38 14 81 10 5 26
0.0 25.8 27.6 4 38 15 77 13 13 28
0.3 17.4 19.3 22 59 67 90 22 44 62
0.6 9.1 12.0 59 81 81 96 57 74 81

0.6 ρXy·1
·ρXX

◦2 8.1 11.0 71 96 100 100 79 93 96
0.0 22.4 24.1 4 36 20 73 11 13 24
0.3 19.3 21.0 10 40 38 96 6 17 26
0.6 6.1 9.5 79 92 96 100 78 90 94

Naive: Naive variance estimate, assuming a probability sample with observed weights and target variables
V̂b: Between variance estimate V̂w: Within variance estimate V̂t: Total variance estimate
Prediction model variables: X Random effects variables: Z-classes
Response model variables: X,Z Calibration variables: X

Correlations determining the simulation scenario (all others result as products of the stated ones):
ρXZ = 0.6 ρZy·1

= 0.6 ρZπnps = 0.6 ρy·1πnps = 0.6
All numbers except for the correlations are in (rounded) percentage points.

In comparison to pseudo-design weighted point estimates, MRP and other forms of
weighted aggregation of predictions can have a positive effect on the bias in point es-
timation. Nevertheless, the use of prediction models complicates generalization to the
target population, such that there is no single method for inference that works best for all
simulated scenarios. As discussed with regard to table 6.11, it hence has to be considered
carefully whether bias reduction through using predicted rather than observed values is
(presumably) strong enough to counterbalance these inferential difficulties. Inference is
typically more reliable for the plain pseudo-design weighted estimates.
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After considering separate availability of either a reference sample or calibration con-
straints in tables 6.10 to 6.12, the final setting of possible auxiliary information is de-
termined by the joint availability of both. As summarized in the context of figure 6.21,
using a weighted loss function for fitting imputation models seems to be the best strategy
to combine model- and pseudo-design-based approaches for point estimation in such a
setting. Some of the corresponding results for inference when estimating µy·1

are depicted
in table 6.13. The simulated conditions are the same as before in table 6.12, apart from
the calculation of the employed pseudo-design weights: the reference sample is used to
fit a logit GLM as response propensity model, and the resulting propensity weights are
calibrated by means of the GREG to meet the calibration benchmarks.
As discussed with regard to figure 6.21, the results in table 6.13 show that the use of
calibrated propensity weights increases the potential to reduce bias in comparison to
plain propensity weighting. In that way, calibration constraints to a large extent absorb
the capability of prediction models to reduce the bias that remains after weighting in
table 6.10. Pseudo-design-based point estimates (nps-estimates) are therefore considerably
less biased than in the previous table 6.12, which leads to higher CI-rates in almost
all scenarios. Consequently, the naive approach for variance estimation already allows
quite reasonable inference for these point estimates when X and y·1 are strongly related(
ρXy·1

= 0.6
)
. The resulting CI-rates between 93 and 98% are closer to the nominal

95% than for all considered resampling variance estimates. When the linear dependency
between X and y·1 is less pronounced

(
ρXy·1

< 0.6
)
, inference based on between variance

estimates V̂b obtained by the Monte Carlo bootstrap seems more adequate since it leads
to CI-rates between 94 and 100%. In contrast, confidence intervals based on rescaling
bootstrap estimates of the between variance are generally too short to achieve the nominal
coverage. For both resampling methods, the CI-rates when using the estimated within
variance V̂w and thus also the total variance V̂t estimates are generally too large across
all scenarios, resulting in CI-rates which are always above 95%.
As is evident from figure 6.21, the sole case where imputation based on a weighted
prediction model reliably yields similar or lower biases than the plain pseudo-design
weighted non-probability sample estimates occurs when using a GAMM. However, the
potential improvements in bias are rather small and CI-rates in case of weighted imputa-
tion models are again lower than for pure pseudo-design-based estimates when a similar
degree of bias remains. Therefore, the separate usage of estimated variance components
V̂b and V̂w as well as naive variance estimation lead to CI-rates that are generally lower
than 95%. Consequently, and as in table 6.10, the estimated total variance V̂t leads
to the most adequate CI-rates. For obtaining these estimates, the rescaling bootstrap
performs slightly better than the Monte Carlo variant, yielding CI-rates between 92 and
97%.
As for the plain pseudo-design-based estimates, there is no unique best method for
inference when it comes to combinations of model- and pseudo-design-based methods.
Once again, the best strategy for inference depends on the sample’s selectivity, available
auxiliary information and point estimation method. Whenever a propensity model is used
for weighting, the estimated total variance V̂t seems to be the best choice for achieving
the nominal CI-rate. However, it depends on the additional utilization of calibration
benchmarks whether the Monte Carlo or the rescaling bootstrap are a better choice for
estimating this total variance. When considering weighted aggregation of predictions,
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Table 6.13: Confidence interval coverage rates for selected prediction models under different
dependencies between X and y·1: estimation of V

(
µy·1

)
for 100% coverage –

weighting model: logit model (parametric) and GREG, using a reference sample,
total and covariance constraints (estimation from imputed reference sample)

Simulation
scenario

Quality of point
estimates

Confidence interval coverage rates

Naive
Monte Carlo

bootstrap
Rescaling
bootstrap

ρXy·1
ρX

◦2
y·1

RBias RRMSE V̂b V̂w V̂t V̂b V̂w V̂t

N
o

m
od

el
(n

ps
-e

st
im

at
e)

0.0 ρXy·1
·ρXX

◦2 12.2 15.8 83 95 99 100 73 98 99
0.0 11.9 15.1 84 99 100 100 67 99 100
0.3 8.3 11.5 81 95 99 100 65 98 99
0.6 8.2 10.7 80 94 99 100 69 97 99

0.3 ρXy·1
·ρXX

◦2 10.2 13.5 91 98 100 100 83 100 100
0.0 10.6 13.7 88 100 100 100 79 100 100
0.3 7.5 10.7 86 97 100 100 73 98 100
0.6 5.2 8.0 91 98 100 100 83 99 99

0.6 ρXy·1
·ρXX

◦2 3.5 6.5 97 100 100 100 84 100 100
0.0 10.3 13.1 93 99 100 100 88 100 100
0.3 8.8 11.6 97 100 100 100 88 100 100
0.6 2.9 5.8 98 100 100 100 84 100 100

G
A

M
M

0.0 ρXy·1
·ρXX

◦2 9.0 14.4 79 72 77 96 72 79 96
0.0 8.9 14.4 81 74 84 93 75 89 93
0.3 6.6 11.5 79 68 79 91 72 81 92
0.6 7.0 11.4 74 74 78 94 75 80 93

0.3 ρXy·1
·ρXX

◦2 8.8 14.1 77 68 75 97 70 76 95
0.0 9.9 14.7 70 75 68 91 76 71 93
0.3 6.4 11.6 78 63 72 93 65 77 93
0.6 4.4 10.1 85 72 83 94 71 85 95

0.6 ρXy·1
·ρXX

◦2 3.6 10.7 90 61 82 91 63 84 93
0.0 10.5 15.6 68 77 77 97 84 84 97
0.3 8.1 15.4 82 76 87 97 80 92 97
0.6 2.8 10.0 90 61 88 96 63 89 97

Naive: Naive variance estimate, assuming a probability sample with observed weights and target variables
V̂b: Between variance estimate V̂w: Within variance estimate V̂t: Total variance estimate
Prediction model variables: X Random effects variables: Z-classes
Response model variables: X,Z Calibration variables: X

Correlations determining the simulation scenario (all others result as products of the stated ones):
ρXZ = 0.6 ρZy·1

= 0.6 ρZπnps = 0.6 ρy·1πnps = 0.6
All numbers except for the correlations are in (rounded) percentage points.
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generalization to the target population is generally more situational and less reliable.
The results do not allow identification of a single best method for inference in this
case.
In the current section 6.3.2.3, different inferential methods are examined with regard to
their suitability for non-probability samples. As discussed in sections 5.4 and 6.3.1, all
of these methods are based on variance estimates, which are simplifying approximations
rather than unbiased estimates for the repeated sampling variances in non-probability
samples. In this regard, a point estimator’s bias is not considered for inference. Adequate
CI-rates are therefore easier to achieve when this bias is relatively low, although this is
neither a necessary nor sufficient condition. As a consequence, the choice of the most ap-
propriate method for inference depends on a non-probability sample’s selectivity, available
auxiliary information and applied point estimation method. In case of mass-imputation
for the reference sample, Monte Carlo bootstrap estimates for the total variance generally
perform quite well, even though the rescaling bootstrap may occasionally yield slightly
better results. This holds regardless of whether the prediction model is fit with or without
pseudo-design weights. When using purely pseudo-design-based estimates or weighted
aggregation of predictions, the findings are far less clear. In such cases, no single method
for inference that performs best for all cases can be identified.
All results presented in the current chapter 6 are obtained by means of Monte Carlo
simulations, considering synthetic populations and simulated samples. To evaluate and
compare methods proposed for dealing with the challenges of non-probability samples,
such simulation studies are a common and usually more appropriate way than the ap-
plication to a single real data set that is obtained by non-probability sampling (cf. e.g.
section 6.3.1; Buelens, Burger and van den Brakel, 2018, p. 327; Enderle, Münnich and
Bruch, 2013, p. 95). Nevertheless, such an application to a real non-probability sample
can provide additional insights into particular benefits and pitfalls that are not considered
in the simulations. Moreover, it allows assessing the practical relevance of the simulation
results. To these ends, an application example for data collected in the WageIndicator
volunteer web survey is presented in the following chapter 7.
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7 Application to the WageIndicator Web
Survey

In the previous chapter 6, methods proposed for selectivity assessment, point estimation
and inference in the context of non-probability sampling are evaluated and compared
by means of Monte Carlo simulation studies. A crucial advantage when using such
simulations for this purpose is that the true population and underlying sample selection
mechanism are both known (cf. chapter 2; Enderle, Münnich and Bruch, 2013, p. 95).
Furthermore, any influence of other aspects of data quality and accuracy, e.g. due to dis-
similar survey modes, questionnaire designs and degrees of response error when comparing
different samples, can be prevented. This is typically not the case when considering real
non-probability samples (cf. e.g. Bethlehem and Biffignandi, 2012, pp. 103 ff; Bianchi,
Biffignandi and Lynn, 2017, p. 387; Japec et al., 2015, p. 853; Münnich and Lenau, 2019).
To nevertheless illustrate the use of all the methods introduced in chapters 3 and 5 for
a real non-probability sample and to highlight additional pitfalls not considered in the
simulation, an application to data from the WageIndicator web survey (WI) is presented
in the current chapter 7.
The WI is a project implemented by an international non-profit organization, carrying out
online surveys for 143 countries in 56 languages (as of February 2020; cf. Tijdens, 2020,
p. 1). The international online portal is accessible via https://wageindicator.org.
Since the major goal of the WI and its conductors is to improve labor market transparency
by publishing wage-related information, the web survey’s target population is the full labor
force in the surveyed countries. This does not only include workers in formal dependent
employment, but also groups like informal or self-employed workers as well as retired
persons and pupils having side jobs (cf. Tijdens, 2008, p. 92; Tijdens et al., 2010, p. 14).
With regard to this population and research interest, data collected in the WI is used
for various analyses, e.g. for quantifying mean income and income inequalities between
groups or for comparing working conditions as well as job and life satisfaction within
and between occupations (cf. e.g. Pedraza, Guzi and Tijdens, 2020; Tijdens et al., 2014;
Visintin et al., 2015). The WI is a continuous and voluntary web survey, implying that its
online questionnaires are permanently available to anyone that is willing to participate.
Sample inclusion is therefore determined by the opportunity, awareness and active decision
of potential respondents to visit the homepage and fill in the questionnaire (cf. Tijdens,
2008, p. 98). Recruitment strategies for the WI rely on different advertising channels to
increase awareness and willingness to participate in the survey, e.g. via newspapers and
online banners. Furthermore, there are lottery incentives for participation in the survey
(cf. Pedraza et al., 2010, pp. 112 ff; Smyk, Tyrowicz and Van der Velde, 2021, p. 436;
Steinmetz et al., 2014, p. 277; Tijdens, 2014, p. 27). Since the sample selection process is
merely influenced but neither fully controlled nor known even by the researchers who are
gathering the data, the WI is a non-probability sample (cf. chapter 2). A comprehensive
overview of the motivation and methods of the WI is given by Tijdens (2008) and Tijdens
et al. (2010). To have a clearly defined target population for which high-quality auxiliary
information is available, the following example is based on the German WI sample from
the year 2012.
All non-trivial methods for assessing and compensating selection bias in non-probability
samples require some kind auxiliary information (cf. chapters 3 and 5). In the cur-
rent application, the German Microcensus from the corresponding year (2012; cf. e.g.
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Statistisches Bundesamt, 2013; 2017) is used as a source of auxiliary information.10

It is considered to be a high-quality reference sample for modeling sample selection
processes due to certain advantages (cf. Enderle, Münnich and Bruch, 2013, p. 92).
Most importantly, the Microcensus is a 1% probability sample of the German resident
population conducted by the German Statistical Offices, with mandatory participation
and duty of disclosure for a large variety of variables established by law. Therefore,
it contains a large number of observations and only minimal unit or item non-response
(cf. Statistisches Bundesamt, 2013, p. 7). The Microcensus’ target population is the
whole resident population in Germany, from which the sample is drawn using a stratified
single-stage cluster sampling design. Primary sampling units (PSUs) are the so-called
‘Auswahlbezirke’, which represent clusters of neighboring dwellings that are geographically
close to each other. These dwellings can be located within either a single larger or
several smaller buildings, with a benchmark of roughly twelve dwellings per PSU. All
secondary sampling units (households and persons) within the selected primary sampling
units are surveyed. For stratification of these PSUs, a cross-combination of two variables
is used.11 On the one hand, 201 regional strata are used to represent geographical
areas with on average 350 000 inhabitants, where metropolitan areas constitute separate
strata. On the other hand, PSUs are grouped in five strata that classify the size of
the building(s) containing the sampling units, with two additional strata for communal
accommodations and new buildings. Once the sampling units are selected, computer-
assisted personal interviewing (CAPI) is carried out for most of the respondents, using
paper questionnaires sent via mail for cases where attempts for personal contact fail
multiple times. A description of the Microcensus’ sampling design and data collection
procedures in greater detail is given by Rendtel and Schimpl-Neimanns (2001), Schimpl-
Neimanns (2011, pp. 21 ff) and the German Federal Statistical Office (cf. Statistisches
Bundesamt, 2013, pp. 5 ff). Classical design-based estimation for such probability samples
is summarized in section 2.2, with a more in-depth theoretical discussion being e.g.
provided by Cochran (1977, pp. 300 ff), Fuller (2009, pp. 29 ff) or Särndal, Swensson
and Wretman (1992, pp. 124 ff).
To provide a meaningful but concise overview, the following discussion focuses on four
selected core variables. These are income, gender, age and education, which are chosen for
the following reasons: as described above, wages and related information are pivotal for
the WageIndicator web survey, which even is directly evident from its name (cf. Tijdens,
2008, p. 92; Tijdens et al., 2010, p. 14). Income earned from work is, thus, a major topic
and typical variable of interest for this survey. In the current example, the monthly net
earned income is used as the target variable. Usually, there is a strong influence of a
survey’s topic on voluntary participation, especially when advertising channels relating to
this topic are used, which is the case for the WI (cf. section 2.1; Baker et al., 2010, p. 38;
Faas and Schoen, 2006, p. 180; Pedraza et al., 2010, p. 116). Publications that attempt
to compensate for this kind of selectivity in the WI typically focus on the three socio-
demographic variables that are additionally chosen (cf. e.g. Pedraza et al., 2010, p. 112;

10 The analysis is not based on the Microcensus scientific use file but on a larger panel data set accessed
at the Economic and Social Statistics Department of Trier University.

11 Strictly speaking, the use of systematic sampling leads to another implicit level of stratification, where
100 PSUs at a time are randomly assigned to constitute one stratum, from which exactly one is drawn
to constitute the 1% sample. However, this stratification is typically disregarded since it cannot be
considered in unbiased inference and PSUs are assigned randomly to these strata (cf. Rendtel and
Schimpl-Neimanns, 2001, pp. 89 f; Wolter, 2007, pp. 298 ff).
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Smyk, Tyrowicz and Van der Velde, 2021, pp. 447 ff; Steinmetz et al., 2014, p. 296). Smyk,
Tyrowicz and Van der Velde (2021, pp. 442 ff) adduce substantial as well as pragmatical
reasons for this strategy. On the one hand, the authors argue that gender, age and
education are important indicators for human capital and, therefore, inherently related
to wages as the core survey topic. On the other hand, some sort of external auxiliary
information about these three variables is commonly available for the countries represented
in the WI data. Considering the large number of countries for which this is the case, a
weighting approach that is applicable across all countries is facilitated when using such a
common set of variables. A larger set of auxiliary variables would often require carrying
out probability reference surveys specifically for this purpose in all covered countries.
Furthermore, the authors state that the proportion of missing values in these variables
is comparably low across different countries. Therefore, additional difficulties in dealing
with non-response are reduced when using only the three socio-demographic variables
mentioned above (cf. also Steinmetz, Tijdens and Pedraza, 2009, pp. 45 ff; Steinmetz
et al., 2014; Tijdens and Steinmetz, 2016). Although other options and further variables
for weighting are evaluated as well (cf. e.g. Steinmetz and Tijdens, 2009; Steinmetz et al.,
2014), the only pseudo-design weights that are published with the WI data are propensity
weights which are exclusively based on gender and age (cf. WageIndicator Foundation,
2011). For comparability and correspondence with the referred publications, the following
discussion focuses on gender, age and education as auxiliary variables. Nevertheless, this
rather small set of variables may clearly result in over-simplification when assessing and
compensating selection bias, a limitation which is discussed at the end of the current
chapter 7. In the remaining part of this chapter, findings regarding the selectivity and
potential biases in the WI are presented in section 7.1. Results for point estimation are
considered in section 7.2, while a summarizing discussion of the results and limitations of
this application study is provided in section 7.3.

7.1 Assessment of Selectivity and Potential Biases
Assessment of selectivity as introduced in chapter 3 is commonly a first step and toolbox
for studying the properties of a non-probability sampling process. Although selectivity can
be understood with respect to either a sampling process or a single sample, it is typically
examined focusing on a single realized sample. This is due to the fact that the non-
probability selection process is usually at least partially unknown, such that the realized
sample is the only available information. An examination of the potential selectivity can
provide indications on the variables that characterize this unknown sampling process and
on the potential bias that it may induce.
As described in sections 3.3 and 3.4, a common starting point for this purpose is to
look for (dis-)similarities in the auxiliary variables between non-probability and reference
sample. The three socio-demographic auxiliary variables are measured consistently in the
Microcensus and the WI, such that a comparison is straightforward. However, monthly
net earned income in the Microcensus is only available for workers in formal dependent
employment (cf. Statistisches Bundesamt, 2017, p. 260), which only constitute a subgroup
of the WI’s target population (cf. Tijdens, 2008, p. 92; Tijdens et al., 2010, p. 14).
Following Smyk, Tyrowicz and Van der Velde (2021, pp. 453 f), the monthly net total
income in the Microcensus is therefore used as a proxy measure to still provide an
indication of selectivity for the target variable without excluding relevant subgroups.
This strategy appears reasonable because the total income heavily depends on the wage
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Microcensus WageIndicator web survey

Education: ISCED levels five and six are joined into one category for this representation due to very small case numbers
in the highest category.

Income: For the WI, monthly net earned income is the target variable. Since it is not measured in the Microcensus,
the total net income is used as a proxy benchmark in this representation.

Figure 7.1: Comparison of the German WageIndicator web survey and Microcensus 2012

(cf. e.g. Checchi and García-Peñalosa, 2010; Lerman and Yitzhaki, 1985) and is available
for the whole Microcensus. Monthly net total income in the Microcensus is also used for
benchmarking the estimates in the subsequent discussion, but not for estimation itself. It
is measured as an interval-censored variable, as indicated in figure 7.1 (cf. Statistisches
Bundesamt, 2017, p. 257).
In figure 7.1, the estimated distributions obtained from the WI (purple) and the Microcen-
sus (green) are compared for the four variables outlined above. Design weights are used
for the Microcensus to calculate population estimates as described in section 2.2. Due
to the high data quality of the Microcensus summarized above, the estimates obtained
from this sample are used as surrogates for the true population distributions and, thus,
considered as benchmarks. Since inclusion probabilities (and thus design weights) are
unknown for the WI, all observations in this non-probability sample are given the same
weight, leading to unweighted estimates in case of the proportions in figure 7.1.
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Considering the gender distribution first, the Microcensus estimates suggest approxi-
mately 49% male and 51% female persons in the population. Both proportions are much
more dissimilar in case of the WI, where roughly 65% men and 35% women are observed.
This is a strong indication that men are over-represented in this non-probability sample.
The age distributions estimated from both data sources are likewise quite different. In
the Microcensus estimates, respondents being between 40 and 49 years old constitute the
modal cohort, which contains roughly 17% of all observations. The proportions decrease
when moving towards the distribution’s tails, showing a relatively steep decrease at the
very upper tail. The largest cohort in the WI data is likewise that between the ages of
40 and 49. However, with about 30% of the respondents falling into this category, the
proportion is much higher than estimated from the Microcensus. Similar but slightly
less pronounced findings hold for the remaining age groups near this modal category,
while all other cohorts (aged below 20 or above 59) are much less frequent than in the
Microcensus estimates. This can be partially explained by the different target populations
for both surveys mentioned above, especially when considering the lower proportions for
ages below 20 in the WI. Nevertheless, this does not seem to fully justify the differing age
distributions because the WI’s target population includes pupils as well as retired workers
(cf. Tijdens, 2008, p. 92). Therefore, these results suggest that respondents close to the
age distribution’s center are over-represented in the web survey, presumably because these
persons are more typical for the population of internet users and the labor force. The
steeper decline in proportions towards the tails of the distribution furthermore implies
that the relation between age and sample inclusion is non-linear.
The respondent’s highest educational qualification is measured by the International Stan-
dard Classification of Education (ISCED) in its 1997 version (cf. Schroedter, Lechert
and Lüttinger, 2006; UNESCO, 2006; 2012). Comparing the estimated proportions, it is
evident that the ISCED levels one, two, four and six are much more frequent in the WI
than estimated from the Microcensus, implying that respondents falling in these categories
are likely over-represented in the web survey. The opposite holds for the remaining levels
three and five, which are the most frequent ones according to the Microcensus estimates
but way less common in the WI. Since the differences between both data sources do not
uniformly in- or decrease with increasing ISCED level, the relation between educational
level and sample inclusion appears non-linear as well.
In case of monthly net earned income, the pattern is somewhat more straightforward.
All benchmark proportions for incomes below 900 € estimated from the Microcensus are
higher than those in the WI, while the proportions of all but one income classes above
900 € are clearly higher in the WI than suggested by the benchmark distribution. The
only exception from this pattern is the share of respondents between 7 500 and 10 000 €,
where the benchmark proportion (0.24%) is higher than that in the non-probability
sample (0.15%), but this difference appears negligible. These results indicate an under-
representation of lower and over-representation of higher incomes in the WI. This finding
appears even more severe when considering that earned income from in the WI is compared
to total income measured in the Microcensus. Since the earned income is only a part of
the total income, the earned income (WI) figures should on average be lower than those
for the total income (Microcensus), yet the opposite is the case.
For all considered variables, the graphical evaluation in figure 7.1 indicates that the WI
deviates systematically from the benchmarks. Different approaches to provide a more
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Table 7.1: Selectivity measures and tests for the German WageIndicator web survey 2012

Measure of selectivity
Variable(s)

Gender ISCED
levels Age Income

classes

ISCED,
Age,

Income
classes

Tests for selectivity: p-values for differences between non-probability and reference sample

Fisher’s exact test < 1e-10 – – – –
t-test – < 1e-10 < 1e-10 < 1e-10 –
Kruskal-Wallis test – < 1e-10 < 1e-10 < 1e-10 –
Kolmogorov-Smirnov test – < 1e-10 < 1e-10 < 1e-10 –
Anderson-Darling test – 1.4e-09 1.2e-09 1.3e-09 –
Little’s MCAR-test – – – – < 1e-10
Hawkins’ test – – – – < 1e-10

Matching: mean difference in samples before and after matching on auxiliary variables

Mahalanobis matching 0.00 0.00 0.00 2.15 –
Propensity score matching 0.03 0.01 -1.59 2.09 –
Coarsened exact matching 0.00 0.00 0.01 2.23 –
Exact matching 0.00 0.00 0.00 2.17 –

Representativity indicators

R-indicators for propensity model without income classes
Global 0.62 0.62 0.62 – –
Unconditional 0.05 0.18 0.01 – –
Conditional 0.05 0.18 0.04 – –

R-indicators for propensity model with income classes
Global 0.77 0.77 0.77 0.77 –
Unconditional 0.03 0.10 0.00 0.05 –
Conditional 0.01 0.10 0.02 0.05 –

Estimated error for mean income based on MSE-interval

Lower bound -145136 -152165 -152640 – –
Midpoint 2227 -2424 -830 – –
Upper bound 149590 147318 150981 – –

Coding of variables: Gender is represented as a dummy variable with male=0 and female=1. For ISCED
levels and income classes, the ranks of the levels/classes as presented in figure 7.1
are used as numeric values. Age is used as continuous variable.

Matching: Nearest neighbor/exact matching is applied with replacement, using the five closest
observations from the reference sample. Coarsened exact matching is based on age
classes depicted in figure 7.1 in place of the continuous age variable but leaves ISCED
levels and gender unchanged.

Propensity models: A GLM with logit link is used as propensity model for computing R-indicators.
The model with and without income classes as auxiliary variable are represented for
illustrative purposes.

Global R-indicator: The global R-indicator is not variable-specific and, therefore, the same for all
auxiliary variables under a given propensity model.
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formal evaluation of selectivity are described in sections 3.4 to 3.8. The results obtained
from applying these methods in the current example are presented in table 7.1. For this
purpose, the ranks of the levels or classes are used as numeric values in case of ISCED as
well as income, and gender is represented by a dummy variable that indicates whether a
respondent is female.
From the statistical tests discussed in section 3.4, t-, Kruskal-Wallis, Kolmogorov-Smirnov
and Anderson-Darling tests are designed for single variables. Therefore, each of them
is applied to ISCED levels, age and income classes individually. Little’s and Hawkins’
tests assume multiple variables and are applied to these three variables jointly, but the
resulting test decisions are not altered when any of the three variables is excluded. Note
that for gender as a binary variable, none of these tests is reasonable. To nevertheless
apply a statistical difference test for gender proportions, Fisher’s (1922a) exact test is
used for the binary variable although this approach is not explicitly proposed for the
context of non-probability samples (cf. e.g. Witting, 1985, pp. 379 ff). Each of these tests
reveals significant differences between non-probability and reference sample estimates for
all respective variables it is applicable to. This underlines the differences indicated in
figure 7.1.
Matching as a measure for differences which are (not) explainable by the auxiliary vari-
ables is introduced in section 3.5. In the present context, the three socio-demographic
auxiliary variables are used for matching, but income as the target variable is not. Each
observation in the WI is matched with five respondents in the Microcensus, considering
the different methods for matching described in sections 3.5 and 3.6, i.e. Mahalanobis,
propensity score, coarsened and fully exact matching. The matches are chosen with
replacement. By calculating differences in the expected values of the matched obser-
vations, a measure for the bias of the conditional mean given the matching variables
can be obtained from approximation 3.24. By definition, it holds that the expected
difference in the auxiliary variables used for matching is zero in case of exact matches.
Despite using the age classes depicted in figure 7.1 in place of the continuous age variable,
coarsened exact matching achieves quite similar results. Only a negligible difference of
0.01 years in the mean age of respondents remains. Although nearest neighbor matching
does not need to be exact in any of the auxiliary variables, Mahalanobis matching likewise
eliminates all differences in the auxiliary variables identified in figure 7.1. In contrast, the
expected differences between non-probability and reference sample are different from zero
for all socio-demographic variables in case of propensity score matching. Although the
differences between matched observations in terms of gender and education are too small
to appear meaningful, observations in the non-probability sample are on average 1.59
years younger than their matched counterparts in the Microcensus. Therefore, propensity
score matching does not fully compensate the over-representation of younger respondents
in the WI. As a measure for potential selection bias in the income variable, matching
indicates that respondents in the WI on average report an income class that is more than
two ranks higher than that of the respective matched observations in the Microcensus.
The expected difference between the WI and the Microcensus benchmark varies between
2.09 in case of propensity score and 2.23 in case of coarsened exact matching, suggesting
that higher incomes are severely over-represented in the web survey even after controlling
for the effects of gender, age and education. This is a confirmation and reinforcement
of the findings in figure 7.1 and an indication that selectivity of the WI is MNAR when
considering only the three socio-demographic auxiliary variables.
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R-indicators introduced in section 3.7 are based on the variance of estimated response
propensities. To calculate these indicators, two nested logit propensity models are con-
sidered in table 7.1 for comparison. The first model is based on the socio-demographic
variables only, the second additionally uses income as independent variable. The global
R-indicator is not specific to a single variable and, therefore, constant across all variables
included in the model. Although its possible values range from below zero to one (cf.
equation 3.29 and the related discussion), it is difficult to judge the severity of potential
selectivity by using only this indicator, especially when it cannot be compared for different
data sets. In comparison to the values obtained in the simulation, global R-indicators of
0.62 in the model without and 0.77 in the model with income indicate dependencies
between the considered variables and sample selection (cf. figures 6.7 and 6.8). Yet,
both values suggest different degrees of selectivity with regard to the considered variables
since incorporating income as independent variable in the propensity model leads to a
higher indicated representativity. Such an increase by using an auxiliary variable that is,
as discussed above, most likely subject to selection bias does not seem desirable. This
emphasizes the heavy dependency of R-indicators on the underlying propensity model
and the caution that is required when interpreting them. For the unconditional and
conditional R-indicators, a higher value indicates less representativeness. Although this
makes interpretation slightly counter-intuitive in comparison to the global R-indicator
(where it is the other way round), this canonical definition is used here as well (cf.
section 3.7; Schouten, Cobben and Bethlehem, 2009, pp. 104 ff; Schouten, Shlomo and
Skinner, 2011, pp. 236 f). For each variable, unconditional and conditional partial R-
indicator are rather close to each other, and even differences between the two models
are in most cases fairly small. The results indicate that education has the strongest
impact on non-representativeness of the WI as measured by the underlying propensity
model. In comparison, gender has a much smaller influence, followed by age in the last
place of the three socio-demographic variables. When additionally used in the propensity
model, income appears to be of less importance than education but more relevant than the
other socio-demographic variables for the non-representativeness expressed by the model.
Nevertheless, part of the selectivity that is attributed to income in this case is ascribed to
each of the socio-demographic variables when income is not considered in the propensity
model. Once again, this underlines the dependence of R-indicators on a specific response
model and urges cautious interpretation.
An approach to estimate an interval for the error of design linear estimators in non-
probability samples is introduced in section 3.8, utilizing the correlations of response
indicator and target variable with a single auxiliary variable. Using each of the three
socio-demographic variables for this purpose, the last part of table 7.1 represents the
resulting midpoints and boundaries of these intervals for the estimated mean income. To
obtain intervals that are sufficiently narrow to be of actual value for inference, very high
correlations between auxiliary variable and selection mechanism as well as target variable
would be required. Therefore, it is not surprising that the interval’s width is quite large
for all considered auxiliary variables. Since all intervals enclose zero, the possibility of
no selection bias cannot be ruled out with regard to these results. In the simulation, the
intervals’ midpoints perform relatively well as measures of estimation error (cf. figures 6.9
and 6.10). In the present context, however, these midpoints are of considerably different
magnitudes and even signs, depending on the auxiliary variable that is used for their
calculation. While gender results in a midpoint of 2 227, the corresponding value of
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−2 424 when using education is even larger in absolute terms but negatively signed. Using
age, one obtains a value of −830 that lies somewhere in between the others but is still
negative. Since the findings of the graphical evaluation as well as matching indicate a
clearly positive bias for the mean income in the WI, the only midpoint that really matches
with this result is obtained from gender. Such ambiguous results can occur because the
multivariate dependencies between selection mechanism, auxiliary and target variables are
ignored for these intervals, which are exclusively based on bivariate correlations. These
findings illustrate the issues of directly interpreting the interval’s midpoint. It is only
an exact measure of estimation error when selection mechanism and target variable are
conditionally independent given the auxiliary variable and when variances and correlations
are known (cf. equations 3.38 and 6.7 as well as the related discussion).
Although some of the results in figure 7.1 and table 7.1 have to be interpreted with caution,
they altogether provide an indication that the WI deviates from the Microcensus estimates
with regard to each of the four considered variables. These findings are backed by the
results in various publications focusing on the WI in different countries and time periods.
Specifically for Germany, Steinmetz, Tijdens and Pedraza (2009, pp. 25 ff) find differences
which are mostly substantial for the four variables considered above when comparing the
distributions in the WI with benchmark data. Similar results are obtained by Steinmetz
et al. (2014, pp. 279 ff) for the Netherlands and by Pedraza, Tijdens and Bustillo (2007,
pp. 14 ff) for Spain. Considering a larger variety of countries from different continents,
Tijdens and Steinmetz (2016) come to the same conclusion for the socio-demographic
variables in ten developing countries, while the results for income are underpinned by the
findings of Smyk, Tyrowicz and Van der Velde (2021, pp. 446 f) for 17 industrialized and
developing countries. Therefore, the considerable differences between the distribution
of respondents and the respective target population found in the present example are
regularly emphasized in other analyses of the WI as well.
Such differences clearly are an indication for selectivity and often straightforwardly re-
ferred to as selection bias due to non-probability sampling (cf. e.g. Schillewaert and Meule-
meester, 2005, p. 177; Steinmetz, Tijdens and Pedraza, 2009, pp. 25 f). Although it is usu-
ally justified to trust benchmarks obtained from a probability sample more than estimates
from a non-probability sample, such interpretations often ignore alternative potential ex-
planations. Even perfectly unbiased estimates can be far off from some known benchmarks
solely due to sampling variance (cf. e.g. Särndal, Swensson and Wretman, 1992, p. 41).
Therefore, such random variation alone may to some extent explain deviations between the
non-probability sample estimates and the benchmarks. However, the systematic patterns
and magnitudes of these differences in figure 7.1 and table 7.1 seem too considerable to
be attributed to random variation alone (cf. Pasek, 2016, p. 283; Steinmetz et al., 2014,
p. 288; Yeager et al., 2011, p. 27). But even systematic deviations between WI and Micro-
census are not necessarily exclusively attributable to bias that is due to non-probability
sampling. The discrepancies may also be caused by other sources of error, such as effects
of questionnaire design, satisficing or social desirability. This is especially true since both
samples are obtained by means of different survey modes, for which magnitudes and direc-
tions of the various sources of estimation error are typically not the same. Yet, it is usually
not possible to differentiate between these potential explanations when only a single
non-probability and reference sample are available (cf. Bethlehem and Biffignandi, 2012,
pp. 97 ff, 242; Buelens, Burger and van den Brakel, 2018, p. 327; Groves, 1989, pp. 295 ff;
Weisberg, 2005). This potential coincidence of multiple sources of error is the reason why

237



Application to the WageIndicator Web Survey

simulations are considered preferable for the methodological evaluation and comparison
in chapter 6. As selection bias is the most serious concern in the general context of non-
probability samples and for the WI in particular, it thus has to be assumed that differences
between the WI and the Microcensus are an adequate measure for this bias in the current
example. This is only the case if the contamination by other sources of error is negligible
(cf. Bethlehem and Biffignandi, 2012, pp. 303 ff; Buelens, Burger and van den Brakel,
2018, p. 327; Smyk, Tyrowicz and Van der Velde, 2021, p. 435; Yeager et al., 2011, p. 27).

7.2 Point Estimation
A variety of approaches for estimation from non-probability samples in presence of such
selectivity is introduced in chapter 5. The following discussion provides an overview of the
results obtained by applying these methods to the German WageIndicator web survey data
from 2012. As outlined above, monthly net earned income is the target variable, and the
three auxiliary variables used for estimation (i.e. prediction and weighting) are gender, age
and ISCED levels. As a measure of estimation accuracy, the estimated distribution of the
target variable (income) is compared with the benchmark distribution, which is based on
design-based estimates for total income measured in the Microcensus as above (cf. section
2.2). As in figure 7.1, the following analysis is focused on income classes because these
are the only information on income that is available from the Microcensus. To facilitate
a fair and realistic comparison of the considered methods, this auxiliary information on
income is not used for estimation but solely for measuring accuracy, although one could
e.g. use calibration to exactly meet this distribution (cf. section 5.2).
The results for the purely model-based approaches are presented in table 7.2. The
considered prediction models are those introduced in sections 5.1 and 5.3, using the same
specifications as in section 6.3. All these models are fit to the WI data and used for mass
imputation of the monthly net earned income in the Microcensus. The estimates obtained
from each of these models are compared with the benchmark frequencies for each of the
income classes. To ease analysis and interpretation, the benchmarks are represented at the
very top of the table. Denoted below are the deviations of the model-based estimates from
this benchmark distribution in rounded percentage points for all 13 prediction models.
Negative deviations, which correspond to underestimating the respective frequency, are
shaded in blue. Positive deviations correspond to overestimation of the class frequency
and are highlighted in red. For each income class, the highest magnitude of deviation
from the benchmark frequency is indicated by the darkest color, ranging from dark blue
for minus the highest absolute deviation to dark red for the highest absolute deviation.
Lighter colors represent values in between these limits, with white indicating a perfect
congruence of estimates and benchmark. The last column represents the mean absolute
error over all income class frequencies.
It is noteworthy that all of the models except matching (which is based on the Mahalanobis
distance in this case) can result in predicted income values below zero. Such values do not
exist in the actual Microcensus (and also not in the WI) data and are, thus, implausible
as imputed values. If not specifically accounted for, this can be a serious drawback of the
model-based approaches, but fortunately, most of the considered models yield only few or
no predictions below zero in the current example. However, a substantial number of such
implausible values occurs when applying the GAMM or the Heckman model, where about
81 and 62% of all predictions are smaller than zero, respectively. Therefore, these models
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Table 7.2: Results for model-based estimation in the German WageIndicator web survey 2012
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Regression tree 0.0 -21 -3.3 -6.8 -7.3 -7.8 -8.0 -8.1 34.1 -6.2 -2.8 -5.2 45.1 -2.0 -1.9 -1.5 -0.9 -0.9 -0.5 -0.3 -0.2 -0.3 -0.2 6.0 -0.1 6.8

MARS 0.1 -21 -2.3 -5.6 -5.9 -5.5 -5.9 -4.9 -4.4 36.6 -4.6 -2.3 34.5 -2.0 -1.9 -1.5 -0.9 -0.9 -0.5 -0.3 -0.2 -0.3 -0.2 -0.2 -0.1 5.7

ANN (opt.) 0.4 -20 -2.4 -3.0 -6.7 -3.1 -4.7 -4.1 -3.7 -1.4 6.4 2.4 3.7 10.3 6.5 6.7 5.1 6.1 1.1 1.7 -0.2 -0.3 -0.2 -0.2 -0.1 4.0

SVM 0.0 -21 -3.3 -6.8 -6.9 -4.4 -4.1 -1.1 7.6 5.5 14.6 10.4 13.1 3.3 -1.9 -1.5 -0.9 -0.9 -0.5 -0.3 -0.2 -0.3 -0.2 -0.2 -0.1 4.4

GLMM 0.1 -21 -2.5 -5.4 -6.8 -6.5 -5.2 -3.7 -3.8 -2.5 2.9 4.8 8.3 9.8 7.3 8.3 7.4 5.1 2.6 1.5 0.0 -0.3 -0.2 -0.2 -0.1 4.6

GAMM (fix) 80.7 - 2 -3.3 -6.8 -7.3 -7.8 -8.0 -8.1 -7.3 -6.2 -6.8 -5.2 -3.5 -2.0 -1.9 -1.5 -0.9 -0.9 -0.5 -0.3 -0.2 -0.3 -0.2 -0.2 -0.1 6.5

Heckman model 62.2 -15 5.1 0.4 -2.5 -4.2 -5.7 -6.9 -6.4 -5.0 -5.4 -4.5 -3.3 -1.9 -1.9 -1.5 -0.9 -0.9 -0.5 -0.3 -0.2 -0.3 -0.2 -0.2 -0.1 5.4

Minus highest absolute
deviation in column

No deviation from
benchmark

Highest absolute
deviation in column

Mean abs. err.: Mean absolute error over all income classes (fix): non-parametric, fixed knots
unweighted WI: Unweighted (observed) frequencies in the WI (opt.): non-parametric, optimized knots

are rather unreliable in the present context, which is also indicated by their mean absolute
error being considerably higher than for most other models. Except for this undesirable
peak in imputed incomes being smaller than zero, only few predictions in the income range
below 1 300€ are obtained from any of the models. This is a direct consequence of higher
incomes being over-represented in the WI (cf. figure 7.1 and table 7.1) and leads all model-
based methods to tremendously underestimate the share of persons with plausible lower
incomes. Extending the view to higher incomes as well, similar problems occur for the
upper tail of the distribution. Briefly speaking, nearly all prediction models tend to neglect
the tails and attribute more mass towards the center of the distribution in comparison to
the benchmarks. This is again caused by the fact that unexplained variation is ignored
for prediction (cf. e.g. figure 6.12) and constitutes an example for the ‘regression towards
the mean’ effect (cf. e.g. Galton, 1886; Samuels, 1991). As a consequence, none of the
model-based methods actually improves the mean absolute estimation error in comparison
to using the unweighted frequencies observed in the WI, which are presented in figure 7.1
and considered in the first row (‘unweighted WI’) of table 7.2 for comparison.
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Some differences between the prediction models are nevertheless worth mentioning. Match-
ing is the model-based approach that suffers least from the regression towards the mean
effect and the only model that results in systematic over-estimation of frequencies at
the upper tail of the income distribution. Estimates obtained by matching are therefore
relatively close to the benchmark frequencies especially for incomes between 500 and
6 000€, yielding the lowest mean absolute error of all prediction models. A model that
works comparatively well especially for the very lower tail of the distribution is the semi-
parametric ANN incorporating knot optimization, which outperforms all other considered
methods for income classes below 500€. The proposed ANN therefore seems to be well-
suited for predicting low incomes but, as most other prediction models, suffers from the
regression towards the mean effect. Nevertheless, the resulting mean absolute error over
all income classes is the second lowest of all prediction models. Between all considered
variants of linear (mixed) models, there are only minor differences. All these models, and
also the additive model, strongly exhibit the regression towards the mean effect outlined
above and therefore heavily over-estimate the frequencies of all income classes between
1 700 and 5 500€. This over-estimation is strongly linked to the over-representation of
the medium to high income classes in the WI (cf. figure 7.1) and leads to mean absolute
prediction errors which are medium in comparison to the other models. Slightly distinct
from this pattern are the results obtained from regression trees and MARS, which both
result in a large number of predictions falling into only two income classes. As in the
simulation study (cf. e.g. figure 6.11), the use of higher order splines in the general MARS
model results in improvements over regression trees, which use base functions of zeroth-
order (cf. section 5.1.7). Nevertheless, both of these models respectively result in the
third largest and largest mean absolute error. This is mostly caused by the fact that
all auxiliary variables except age are categorical, while MARS and regression trees are
designed in particular for continuous independent variables. Therefore, they seem to be of
limited applicability for imputing the monthly net earned income in the present context.
Support vector regression likewise results in severe over-estimation of frequencies in certain
income ranges, but the predictions are less concentrated within single classes than in case
of regression trees and MARS. Considering the mean absolute error, this SVM yields
results that are slightly better than for linear and additive (mixed) models, but worse
than for matching and the ANN.
In summary, none of the model-based methods is able to reliably reduce selection bias
when estimating the income distribution from the WI. Therefore, even the unweighted
frequencies from this non-probability sample are in most cases closer to the benchmark
distribution than mass imputation estimates. An important reason for this pitfall of
model-based approaches is the regression towards the mean effect. When predictions
are used as imputed values, which is typically the case for non-probability samples (cf.
e.g. Buelens, Burger and van den Brakel, 2018, p. 330; Kim et al., 2018, p. 7), the
conditional (or residual) variance of the dependent variable given the auxiliaries is ignored.
As discussed in section 6.3, it is therefore advisable for mass imputation to also consider
variance components that are not explained by the model (cf. Elliott and Valliant, 2017,
p. 261), for example by means of multiple imputation methods (cf. e.g. van Buuren, 2018,
pp. 63 ff; Little and Rubin, 2019, p. 72; Rubin, 1987, p. 159).
The results for pseudo-design-based estimation are presented below, following the same
structure as for the model-based approaches in table 7.2. As introduced in section 5.2, the
proposed methods to determine pseudo-design weights can use different types of auxiliary
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Table 7.3: Results for pseudo-design-based estimation in the German WageIndicator web survey
(weighting methods without response propensity model)
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5%
10%
15%
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Deviation from benchmark distribution, in percentage points (rounded)

Calibration benchmarks: None
unweighted WI -20 -2.7 -4.3 -4.9 -3.0 0.2 2.0 4.5 5.0 6.9 5.7 3.1 1.9 1.5 1.4 1.0 0.7 0.1 0.1 0.0 0.0 -0.1 0.0 0.7 2.8

Calibration benchmarks: Totals
GREG -20 -3.3 -5.2 -5.0 -2.4 0.4 -1.0 2.1 4.9 4.8 6.8 4.6 3.8 2.1 2.6 1.8 2.0 0.2 0.2 0.0 0.1 -0.1 0.0 0.7 3.0

cal. ANN (1 par./obs.) -20 -2.9 -4.9 -5.4 -3.3 -0.2 2.2 5.3 5.4 7.7 6.4 3.5 1.7 1.5 1.2 1.0 0.6 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.6 3.0

cal. ANN (par.) -20 -3.1 -4.8 -5.2 -2.9 0.0 0.5 3.9 5.8 6.6 6.9 4.2 2.8 1.5 1.7 0.8 0.8 -0.1 -0.1 -0.1 0.1 -0.1 -0.1 0.7 2.9

cal. ANN (fix) -20 -3.1 -4.8 -5.1 -2.7 0.1 0.5 3.7 5.5 6.4 6.8 4.2 2.8 1.7 1.7 0.9 0.9 -0.1 0.0 -0.1 0.1 -0.1 -0.1 0.7 2.9

cal. ANN (opt.) -20 -3.0 -5.2 -5.6 -3.6 -0.7 0.9 3.8 4.9 7.1 6.6 4.1 2.4 2.3 1.8 1.8 1.5 0.3 0.2 0.0 -0.1 0.0 0.0 0.7 3.1

Calibration benchmarks: Covariances
GREG -20 -2.9 -5.0 -5.3 -3.2 -0.5 1.7 4.1 5.4 7.4 6.3 3.7 2.1 1.7 1.4 1.3 1.0 0.2 0.1 0.0 -0.1 0.0 0.0 0.7 3.0

cal. ANN (1 par./obs.) -20 -2.9 -4.5 -5.2 -3.2 -0.4 1.5 4.8 5.2 7.5 6.8 3.5 2.1 1.6 1.3 0.9 0.6 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.7 2.9

cal. ANN (par.) -20 -3.1 -5.5 -6.5 -5.6 -1.8 -0.4 4.2 6.9 8.2 8.7 5.6 3.6 1.4 2.1 1.0 0.8 -0.1 -0.1 -0.2 0.0 -0.1 -0.1 0.8 3.5

cal. ANN (fix) - 6 -1.5 5.6 2.4 -5.4 -4.3 -3.0 9.7 -2.1 12.7 -1.7 -1.5 -0.9 -1.0 -0.8 -0.5 -0.5 -0.3 -0.2 -0.2 -0.2 -0.2 -0.1 0.1 2.4

cal. ANN (opt.) -20 -3.0 -5.6 -5.6 -3.7 -1.4 0.9 3.1 5.4 7.9 7.2 5.0 2.7 2.4 2.9 1.2 0.4 -0.1 0.1 -0.1 0.0 -0.2 0.0 0.6 3.2

Calibration benchmarks: Totals and covariances
GREG -20 -3.3 -6.8 -6.4 -4.0 -1.3 -2.1 0.4 5.1 6.0 8.4 6.9 3.8 2.9 3.5 3.0 2.5 0.5 0.2 0.1 -0.1 0.0 -0.1 0.8 3.5

cal. ANN (1 par./obs.) -20 -3.3 -7.9 -7.1 -4.7 -3.1 -0.8 1.9 6.2 8.9 9.0 7.5 2.7 3.2 3.1 2.3 1.3 0.2 -0.1 0.0 -0.1 0.0 -0.2 1.0 3.8

cal. ANN (par.) -20 -2.7 -2.6 -1.4 3.9 5.7 5.2 5.5 5.3 3.7 2.2 -0.6 -0.9 -0.8 -0.9 -0.4 -0.8 -0.3 -0.3 -0.1 -0.3 -0.2 0.0 0.2 2.5

cal. ANN (fix) -20 -2.7 -4.3 -4.9 -2.9 -0.6 -0.8 1.3 4.4 5.3 7.1 4.9 4.4 3.2 1.9 1.1 1.6 -0.1 0.1 -0.1 0.4 -0.1 -0.1 0.9 2.9

cal. ANN (opt.) -20 -3.0 -5.6 -5.6 -3.6 -1.3 0.7 3.4 5.1 7.8 7.4 5.0 2.5 2.6 2.7 1.2 0.5 -0.1 0.2 -0.1 0.0 -0.2 0.0 0.7 3.2

Minus highest absolute
deviation in column

No deviation from
benchmark

Highest absolute
deviation in column

Mean abs. err.: Mean absolute error over all income classes (par.): parametric
unweighted WI: Unweighted (observed) frequencies in the WI (fix): non-parametric, fixed knots
cal. ANN: calibrated ANN (opt.): non-parametric, optimized knots
(1 par./obs.): one parameter per observation (as for the GREG)
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information, i.e. benchmarks for calibration of totals and covariances (or correlations) as
well as the reference sample for modeling the response process. The corresponding results
for the WI are therefore grouped with respect to the type of auxiliary information that
is used for weighting. As outlined above, the three socio-demographic auxiliary variables
(gender, age and education) are used as independent variables for the response model as
well as for calibration, and calibration benchmarks correspond to population estimates
obtained from the Microcensus.
In table 7.3, the results for pseudo-design-based estimates that solely use calibration
to incorporate auxiliary information are considered. The blocks in this table are used
to group estimates with regard to the type of calibration benchmarks that are applied,
where the first block contains unweighted WI estimates, which do not use any auxiliary
information. As already discussed above, the results in this unweighted case indicate that
higher incomes are over-represented in the WI (cf. figure 7.1). The consequence is an
under-estimation of frequencies for all income classes below and an over-estimation for
nearly all classes above 900€, a pattern which carries over to most pseudo-design-based
strategies presented in table 7.3. The second block encompasses weighting methods that
exclusively use total calibration, all of which tend to over-estimate the proportions of
medium to high income classes. In general, the magnitude of this bias is slightly higher
than for the unweighted estimates but far less severe than for the model-based estimates
(cf. table 7.2). From all methods using total calibration, the calibrated ANN performs
best in terms of the mean absolute error over all income classes when using a parametric or
fixed-knot specification and worst when optimized knots are used. However, there are only
rather small differences between these two settings. Lying somewhere in between these
two cases, the GREG as well as the calibrated ANN resembling it by using one parameter
per observation (cf. sections 6.2 and 5.2) exhibit a highly similar pattern of estimated
frequencies. However, none of the weighting methods that use only total calibration seems
clearly preferable over unweighted estimation from the non-probability sample. These
findings are quite similar for most of the pseudo-design-based estimates that exclusively
use covariance calibration, which are presented in the third block. However, the calibrated
semi-parametric ANN with fixed B-spline knots is an exception because the pseudo-
design weights obtained from it largely counterbalance the positive bias for frequencies
of medium to high income classes. The corresponding deviations from the benchmark
frequencies are therefore in most cases considerably smaller than for almost all other
estimation approaches. The same holds for the mean absolute error over all income
classes, which also outperforms that of the unweighted estimates. When jointly using total
and covariance calibration, as presented in the fourth block, the results for the different
weighting methods are a bit more diverse than when using either type of the benchmarks
on its own. For the GREG, overestimation of frequencies for medium to high incomes
is more severe than in the first blocks, and this also holds for the mean absolute error.
This pattern is even more pronounced for the calibrated ANN that uses one parameter
per observation and is, therefore, closely linked to the GREG (cf. section 6.2.2). In
comparison, estimation errors for the parametric specification of such an ANN are mostly
smaller than for all other methods that use the same auxiliary information. The resulting
mean absolute error is, thus, the second lowest of all approaches considered in table 7.3.
When using a calibrated semi-parametric ANN with fixed or optimized knot positioning,
under- and over-estimation of class frequencies is more severe than for the parametric
specification but less serious than when using one parameter per observation or the GREG.
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Comparing the three types of calibration, covariance benchmarks are of limited use for the
GREG. However, these benchmarks can increase efficiency for calibrated ANNs, which
then outperform the GREG when specified correctly. In summary, exclusively relying on
covariance benchmarks for fitting the semi-parametric calibrated ANN with fixed knots
performs best in terms of the mean absolute error over all income classes. Only slightly
worse is the parametric ANN incorporating total as well as covariance constraints. Since
the semi-parametric specification is less rigid than the parametric one, this is an indication
that stronger structural assumptions for calibrated ANNs can help to counterbalance over-
fitting and instability of weights in presence of more calibration constraints that are harder
to meet (cf. also section 5.1.11).
Complementary to table 7.3, pseudo-design-based methods that additionally or alterna-
tively incorporate an explicit propensity model for non-probability sample membership
are considered in table 7.4. These approaches additionally use the individual observations
in the Microcensus rather than only aggregated calibration benchmarks. The results are
structured in the same manner as before. The first block encompasses pure propensity
models that do not apply any calibration constraints. Unweighted frequencies observed in
the WI are included for comparison as before, exhibiting an over-representation of medium
to high incomes. Again, this selectivity pattern carries over to all pseudo-design-based
methods considered in table 7.4, such that frequencies of higher incomes are over-estimated
in all cases. Indeed, the weighting approaches contained in the first block perform mostly
similar to the plain unweighted estimates obtained from the non-probability sample and
are not clearly better than this rather naive reference approach. Inverse response propen-
sities as well as pseudo-weights are obtained from a generalized linear logit model (cf.
section 5.2.1). Differences between both as well as between parametric or non-parametric
model specifications are rather small. Consequently, the resulting mean absolute error is
almost the same for all of the four cross-combinations resulting from these choices. This
finding underlines the importance of the additional assumptions that are required for
pseudo-weights to outperform propensity weights. Following Elliott and Valliant (2017,
p. 257), beta regression is used to model the probabilities of persons in the WI to be in
the Microcensus, which are required for computing the pseudo-weights (cf. section 5.2.1;
Ferrari and Cribari-Neto, 2004). This is necessary because the Microcensus’ sampling
design is not adequately described by the auxiliary variables used in the response model
or any other overlapping variables between both data sets (cf. Statistisches Bundesamt,
2017; Tijdens et al., 2010). It is presumably due to the additional imprecision introduced
by this strategy that the strong advantages of pseudo-weights found in the simulation
(cf. section 6.3.2.2) are not apparent for the current application example. Although
closely related, all ANNs that are used as plain propensity models in this first block
perform slightly worse than the logit or pseudo-weights but similar to each other in
terms of the mean absolute error. In contrast to the results in figure 6.13, it seems
better to actually use second derivatives when fitting the propensity model in this case.
When incorporating total calibration in the second block, calibrated ANNs perform fairly
poor when using a parametric specification or a non-parametric one with fixed B-spline
knots. The use of optimized rather than fixed knots results in improvements, but a
combination of the (especially semi-parametric) logit model and the GREG still appears to
be more adequate. However, none of the results is clearly better than the reference case of
unweighted frequencies obtained from the WI, and the additional use of total benchmarks
does not clearly improve performance in comparison to pure propensity weighting in the
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Table 7.4: Results for pseudo-design-based estimation in the German WageIndicator web survey
2012 (weighting methods with response propensity model)
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Deviation from benchmark distribution, in percentage points (rounded)

Calibration benchmarks: None
unweighted WI -20 -2.7 -4.3 -4.9 -3.0 0.2 2.0 4.5 5.0 6.9 5.7 3.1 1.9 1.5 1.4 1.0 0.7 0.1 0.1 0.0 0.0 -0.1 0.0 0.7 2.8

Logit (par.) -20 -3.1 -4.4 -4.6 -2.3 0.9 1.2 4.8 5.6 6.3 6.3 3.5 2.3 1.1 1.4 0.6 0.5 -0.2 -0.1 -0.1 0.0 -0.2 -0.1 0.6 2.8

Pseudo-Weights (par.) -20 -2.9 -4.3 -4.6 -2.3 1.2 2.2 5.0 4.9 6.4 5.4 3.1 1.9 1.2 1.1 0.7 0.6 0.0 0.0 -0.1 0.0 -0.2 0.0 0.6 2.7

cal. ANN (par.) -20 -2.9 -5.0 -5.5 -3.5 -0.6 1.5 4.5 4.9 7.5 6.7 3.9 2.1 2.0 1.6 1.3 0.9 0.1 0.1 0.0 -0.1 -0.1 0.0 0.7 3.0

Logit (fix) -20 -2.9 -4.1 -4.7 -3.2 0.5 0.7 4.7 5.5 6.4 6.6 4.2 2.4 0.9 1.4 0.6 0.5 -0.2 -0.1 -0.1 0.0 -0.2 -0.1 0.6 2.8

Pseudo-Weights (fix) -20 -2.9 -4.2 -4.6 -2.3 1.8 3.2 6.2 5.1 6.4 4.9 2.6 1.4 0.7 0.6 0.4 0.2 -0.1 -0.1 -0.1 -0.1 -0.2 0.0 0.6 2.7

cal. ANN (fix) -20 -2.9 -5.0 -5.5 -3.5 -0.6 1.5 4.5 4.9 7.5 6.7 3.9 2.1 2.0 1.6 1.3 0.9 0.1 0.1 0.0 -0.1 -0.1 0.0 0.7 3.0

cal. ANN (opt.) -20 -2.9 -5.0 -5.5 -3.5 -0.6 1.5 4.5 4.9 7.5 6.7 3.9 2.1 2.0 1.6 1.3 0.9 0.1 0.1 0.0 -0.1 -0.1 0.0 0.7 3.0

Calibration benchmarks: Totals
Logit (par.) and GREG -20 -3.2 -5.1 -5.1 -2.3 -0.3 -0.5 2.5 5.0 5.9 7.3 4.8 3.4 2.4 2.3 1.1 1.3 0.0 0.0 0.0 0.2 -0.2 -0.1 0.8 3.0

cal. ANN (par.) -21 -2.0 -5.1 -7.3 -3.7 -3.9 -6.9 -6.6 7.2 8.0 9.6 2.4 1.6 4.6 7.2 1.7 1.7 2.7 3.0 1.2 1.2 -0.2 -0.2 4.6 4.5

Logit (fix) and GREG -20 -3.1 -4.5 -4.8 -2.5 0.5 0.8 4.1 4.8 5.9 6.3 5.1 2.4 1.4 1.5 0.8 0.8 -0.1 0.0 -0.1 0.1 -0.2 -0.1 0.7 2.8

cal. ANN (fix) -21 -2.2 -5.2 -7.3 -3.2 -3.6 -6.8 -5.9 8.4 8.1 10.1 2.2 1.7 4.5 6.3 1.4 1.4 2.4 2.7 1.0 1.0 -0.2 -0.2 4.3 4.4

cal. ANN (opt.) -20 -2.9 -5.0 -5.5 -3.5 -0.6 1.5 4.4 4.9 7.5 6.7 3.9 2.1 2.0 1.6 1.3 0.9 0.1 0.1 0.0 -0.1 -0.1 0.0 0.7 3.0

Calibration benchmarks: Covariances
Logit (par.) and GREG -20 -2.9 -4.8 -5.2 -3.1 0.0 2.0 4.5 4.9 7.0 6.1 3.3 1.9 1.7 1.3 1.3 1.0 0.2 0.2 -0.1 -0.1 0.0 0.0 0.6 2.9

cal. ANN (par.) -20 -2.7 -4.5 -5.8 -4.6 -2.1 -0.4 3.5 4.2 9.0 8.7 4.7 2.8 2.6 1.9 1.2 0.8 0.2 0.1 0.0 -0.1 -0.2 0.0 0.8 3.2

Logit (fix) and GREG -20 -2.8 -4.3 -4.8 -3.0 0.1 1.9 4.4 5.0 6.8 6.1 3.4 2.0 1.4 1.3 1.1 0.7 0.1 0.1 -0.1 -0.1 -0.1 0.0 0.6 2.8

cal. ANN (fix) -20 -2.9 -4.6 -4.7 -1.4 0.9 2.4 4.3 6.6 7.1 5.6 3.0 1.4 0.7 0.4 0.7 0.2 0.0 -0.1 -0.1 -0.2 0.0 -0.1 0.6 2.7

cal. ANN (opt.) -20 -3.0 -5.2 -5.6 -3.6 -0.9 1.1 4.1 5.0 7.8 7.4 4.2 2.3 2.1 1.8 1.1 0.7 0.0 0.1 0.0 -0.1 -0.1 0.0 0.7 3.1

Calibration benchmarks: Totals and covariances
Logit (par.) and GREG -21 -3.3 -5.7 -4.5 -1.4 1.0 -2.8 1.3 3.6 3.9 6.8 4.5 5.7 2.5 3.8 2.4 2.3 0.2 0.0 0.0 0.0 -0.1 0.0 0.7 3.1

cal. ANN (par.) -21 -2.0 -5.1 -7.3 -3.7 -3.9 -6.9 -6.6 7.2 8.0 9.6 2.4 1.6 4.6 7.2 1.7 1.7 2.7 3.0 1.2 1.2 -0.2 -0.2 4.6 4.5

Logit (fix) and GREG -20 -3.0 -4.6 -5.1 -3.0 0.5 0.1 3.8 5.2 6.1 7.4 3.0 3.7 1.2 2.1 1.2 1.1 0.0 0.0 -0.2 0.1 -0.2 -0.1 0.7 2.9

cal. ANN (fix) -21 -2.2 -5.2 -7.3 -3.2 -3.6 -6.8 -5.9 8.4 8.1 10.1 2.2 1.7 4.5 6.3 1.4 1.4 2.4 2.7 1.0 1.0 -0.2 -0.2 4.3 4.4

cal. ANN (opt.) -20 -3.0 -5.3 -5.6 -3.6 -1.0 1.0 4.0 5.1 7.9 7.5 4.4 2.3 2.2 1.9 1.1 0.6 0.0 0.1 0.0 -0.1 -0.1 0.0 0.8 3.1

Minus highest absolute
deviation in column

No deviation from
benchmark

Highest absolute
deviation in column

Mean abs. err.: Mean absolute error over all income classes (par.): parametric
unweighted WI: Unweighted (observed) frequencies in the WI (fix): non-parametric, fixed knots
cal. ANN: calibrated ANN (opt.): non-parametric, optimized knots
Logit: Weights from GLM with logit link
Logit and GREG: Weights from GLM with logit link, calibrated using the GREG
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first block as well. The results are mostly similar when considering covariance calibration
in the third block. For the combination of logit model and GREG, there are only minor
differences in comparison to total calibration. While the calibrated semi-parametric ANN
with optimized B-spline knots is slightly worse than in case of total benchmarks, the
remaining two variants of such ANNs perform better for covariance calibration. Similar
as in table 7.3, the results are particularly good for the semi-parametric ANN using fixed
B-spline knots, which outperforms all other approaches in table 7.4 when considering the
mean absolute error over all income classes. As before, combining total and covariance
calibration in the fourth block does not improve estimates in comparison to using either
total or covariance calibration on its own. The joint usage of logit model and GREG
is again preferable to calibrated ANNs, but none of the methods is better than plain
propensity or even unweighted estimates. Overall, the calibrated semi-parametric ANN
that uses fixed B-spline knots and covariance constraints is the only method in table 7.4
that provides estimates which are better than using unweighted frequencies in terms of
the mean absolute error. However, the improvement over using no weights is still only
minor.
A comparison of the results in tables 7.3 and 7.4 furthermore indicates that it is better
to exclusively rely on calibration constraints rather than to additionally incorporate a
response propensity model for weighting. A similar finding particularly for calibrated
ANNs is encountered in figures 6.16 and 6.17. A different combination of the distance
function’s components (cf. equation 5.155) used for fitting these models may therefore help
to improve the resulting pseudo-design weights (cf. section 6.3.2). However, not only the
proposed calibrated ANN but also the combination of logit model and GREG fails to gain
efficiency from additionally incorporating the response propensity model. An explanation
for this finding may be that the same auxiliary variables are used for calibration and
propensity models. In comparison to their separate use, a combination of both weighting
approaches is therefore prone to increasing the weights’ variability without adding any
meaningful information to compensate for selection bias.

7.3 Summary and Limitations
In summary, it is evident that there is some selectivity in the WageIndicator web survey
with regard to all considered variables, and the consequences in terms of biased estimates
are not easily compensated. From all the model- and pseudo-design-based methods
represented in tables 7.2 to 7.4, only a few actually perform better than the unweighted
non-probability sample estimates. In terms of the mean absolute error over all income
class frequencies, the best of all considered estimation methods is to apply pseudo-
design weighting based on the calibrated semi-parametric artificial neural network with
fixed B-spline knots that only uses covariance benchmarks for fitting. This approach
also outperforms all applicable combinations of model- and pseudo-design-based methods
introduced in section 5.3. Since a large number (949) of such combinations is possible, the
corresponding results are quite extensive, and a detailed overview is deferred to appendix
D. Nevertheless, none of the examined methods seems capable of fully eliminating selection
bias in the WI by using only the three socio-demographic auxiliary variables.
This finding is in line with expectations when considering the results in section 6.3 and
table 7.1 because selectivity is presumably MNAR in the present example. A major
reason to suspect violation of conditional independence assumption 5.1 is that gender,
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age and education are the only auxiliary variables used throughout the current chapter
7. As outlined above, the main motivation for this strategy is to achieve compliance and
comparability with relevant publications and the actual pseudo-design weights that are
included in the WI data set. Nevertheless, exclusively relying on three socio-demographic
variables presumably leads to over-simplification when assessing and compensating se-
lectivity, which is why the bias can be reduced by some of the methods but not fully
compensated. Similar results are obtained by Steinmetz et al. (2014, pp. 284 ff). An
obvious alternative that may help to overcome this limitation is to use more variables to
compensate for selectivity. However, available auxiliary information as well as selectivity
patterns cannot be considered being equal between (groups of) countries in a world-
wide web survey. Therefore, such a less simplifying approach for compensating the non-
probability selection of the WI may require applying strategies that are way more country-
specific and, thus, not applicable to the web survey as a whole (cf. Steinmetz et al., 2014,
p. 287). Moreover, one has to watch out for potential over-fitting of weighting or prediction
models in case of too many auxiliary variables (cf. also section 5.1.11).
Further limitations arise because neither population nor non-probability sampling process
are fully known for the WI. To still evaluate the considered estimation methods for a
single realized non-probability sample, some sort of benchmarks for the quantities to be
estimated are required because an estimator’s quality is typically defined with respect to
such a target statistic (cf. e.g. equations 2.10 to 2.12 and 6.4 to 6.6). Since the common
strategy in this case is to compare a non-probability sample with a probability sample
of high quality, the Microcensus appears well-suited as a reference point for comparison
(cf. Enderle, Münnich and Bruch, 2013, p. 92). As outlined above, however, the target
populations of both samples do not perfectly coincide since the WI is intended to cover the
German labor force, while the Microcensus covers the resident population. In addition,
monthly net earned income as the target variable is only measured in the WI, such that
Microcensus estimates for the monthly net total income have to be used as surrogate. In
conjunction with the Microcensus estimates being subject to sampling error, the use of two
single realized samples does, hence, not allow distinguishing between different potential
explanations for inconsistencies between the non-probability and the reference sample (cf.
Bethlehem and Biffignandi, 2012, pp. 97 ff, 242; Biffignandi and Bethlehem, 2012, p. 370;
Groves, 1989, pp. 295 ff; Pasek, 2016, p. 283; Weisberg, 2005). As a consequence, it has
to be assumed that differences between the WI and the Microcensus are an adequate
measure for the WI’s selection bias.
The problem is even more evident when considering methods for inference. While it is
possible to use benchmarks obtained from external sources for point estimates, there is no
similar strategy to evaluate inferential approaches in the present context. To make this
possible, it would be necessary to assume that a model is able to fully deduce the true
sampling process from the realized samples. Such an assumption appears implausible
in the present context, in particular when considering the results in tables 7.2 to 7.4.
Furthermore, assuming a model for the true selection mechanism is prone to favoring
exactly this model for estimation, simply by design of the evaluation procedure (cf. e.g.
Kim et al., 2018, pp. 12 ff; Setoguchi et al., 2008, p. 548; Stürmer et al., 2007, p. 1111).
As a consequence, the methods for inference introduced in section 5.4 may be adequate
or not in case of the WI, but the data itself does not allow assessing this issue in a reliable
manner. Corresponding results for variance estimation are therefore deferred to appendix
D.
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In general, simulations are often more suitable than application studies to evaluate esti-
mation methods. This is the reason why the Monte Carlo simulation studies discussed in
the previous chapter 6 constitute the main focus in terms of evaluating and comparing
the performance of methods in this thesis. Among other advantages, this strategy allows
for a more profound assessment of inferential approaches. Nevertheless, the exemplary
application to the WageIndicator web survey in the current chapter 7 emphasizes ad-
ditional issues that occur in the context of real non-probability samples, ranging from
the lack of perfectly adequate auxiliary information to potential sources of error being
indistinguishable.
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8 Conclusion and Outlook
Prevalence and relevance of non-probability samples in various areas are increasing, espe-
cially due the growing abundance and availability of new digital data sources throughout
the recent years. Because an adequate use of such samples poses substantial statistical
challenges, the overarching aims of this thesis are to discuss, expand and evaluate methods
for dealing with the specific issues of non-probability samples in a common framework.
By pursuing these goals, the current thesis provides a unifying overview as well as new
theoretical developments and empirical findings on methods for non-probability samples.
Important opportunities and challenges posed by such samples are discussed in the formal
theoretical context of survey sampling as well as with regard to practical applications.
Various pre-existing methods to tackle these challenges are identified and reviewed. In
addition, new methodological approaches are developed for this purpose. Complementing
the theoretical discussion, particular attention is paid to the mathematical and algorithmic
aspects required to implement the respective methods. To evaluate and compare the
considered methods with regard to their performance in the context of non-probability
sampling, simulation and application studies are conducted. A summary of the core theo-
retical and empirical findings made in this thesis is provided in the following paragraphs.
The first major challenge when using non-probability samples is to operationalize and
quantify the selectivity (or synonymously non-representativity) of the respective sampling
mechanisms. To tackle this issue, suitable auxiliary information is used to examine the
dependency between sample inclusion and variables of interest. The basic ideas are to
check for (non-)compliance of non-probability samples with relevant external information
or to describe the non-probability sample inclusion and its effects using auxiliary variables.
In the simulation study, statistical tests and matching provide only little information
about the quality of a non-probability sample and the corresponding estimates obtained
from it. The same holds for representativity indicators in their original specification, but
their performance can be considerably improved by incorporating calibration constraints
in the underlying propensity model. Even more conclusive results in case of design linear
estimators can be obtained by means of MSE-intervals. In the application study, manual
comparisons, statistical tests and matching provide agreeing and plausible conclusions. In
contrast, the results of representativity indicators and MSE-intervals are highly dependent
on the choice of auxiliary variables required for their computation and difficult to interpret
in absence of other non-probability samples that can be used for comparison. Therefore,
these findings indicate that distinct measures of selectivity serve for different purposes.
Manual comparisons, statistical tests and matching provide straightforward interpretabil-
ity for a single realized non-probability sample, while representativity indicators and
MSE-intervals allow better comparisons of different samples. In any case, the effect of
a particular non-probability selection mechanism depends on the actual variables and
estimates of interest. Unlike probability sampling, which allows for a variety of unbiased
estimators with regard to arbitrary target variables, the question of quality when using
a non-probability sample is therefore whether it is “fit for purpose” (Baker et al., 2013b,
p. 102) concerning specific research interests.
The second fundamental challenge when using non-probability samples is to account for
their potential selectivity and resulting biases in point estimation and inference. Two
broader paradigms that address this challenge can be distinguished. The model-based
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paradigm focuses on predicting information about the variables of interest outside the
non-probability sample. Various statistical and machine learning methods relevant for this
purpose are considered. In contrast, the pseudo-design-based paradigm constructs weights
that are meant to mimic the design weights in probability sampling, for which different
methods are discussed. Although the model- and the pseudo-design-based framework are
often considered as mutually exclusive, a bandwidth of strategies to achieve a synthesis
of both paradigms is presented as well. Inferential methods for non-probability samples
are furthermore examined, which again refer to the ideas of these two paradigms.
The two major methodological novelties proposed in the context of this thesis contribute
to either of the two paradigms outlined above. Semi-parametric artificial neural networks
integrate B-spline layers and optimal knot positioning in the general structure and fitting
procedure of artificial neural networks, thereby combining and extending existing predic-
tion methods. Calibrated semi-parametric artificial neural networks constitute response
propensity models of adaptable complexity that allow incorporating soft and exact cal-
ibration of totals, covariances and correlations. This is an integration and extension of
fundamental pseudo-design-based concepts. Complementing their theoretical foundation,
custom-made computational implementations for fitting (calibrated) semi-parametric ar-
tificial neural networks by means of (stochastic) gradient descent, BFGS and sequential
quadratic programming algorithms are developed in C++ as part of three R-packages.
The empirical results of the simulation study show that most of the discussed model-
based methods allow reducing selection bias for linear estimators, e.g. for estimated means
and totals. For all considered prediction models, the degree of bias reduction is heavily
determined by the dependencies between the available auxiliary and target variables as
well as the selection mechanism. The proposed semi-parametric ANNs perform adequately
for prediction and yield results that are similar to those when using MARS models of
comparable complexity and flexibility. However, simpler methods like statistical matching
or linear regression mostly appear more suitable for the same purpose in the simulation.
Although some of the more complex and non-linear statistical or machine learning models
can perform slightly better under certain circumstances, these conditions may be hard
to identify in real applications. An issue with all of the model-based methods for non-
probability samples is that they are commonly implemented by imputing the conditional
mean under the model (cf. e.g. Buelens, Burger and van den Brakel, 2018, p. 330; Kim
et al., 2018, p. 7). Because residual (co-)variances that are not explained by the model are
ignored by this strategy, it performs rather poor in case of non-linear estimators, e.g. for
correlations, regression coefficients or a variable’s distribution. This finding is underlined
by the results of the application study, where none of the model-based approaches reliably
reduces selection bias in the income class frequencies estimated from the WageIndicator
web survey. As discussed below, future research may help to overcome this limitation.
Considering the simulation results for pseudo-design-based methods, non-parametric re-
sponse models usually outperform parametric ones for propensity weighting. Despite
being commonly used, inverse predictions from generalized linear logit models are less
reliable than other approaches for propensity weighting. Especially in case of design
linear estimates, pseudo-weights proposed by Elliott (2009, pp. 2 f) as well as Elliott
and Valliant (2017, pp. 256 f) appear particularly valuable for this purpose. With
regard to calibration weighting, the generalized regression estimator is mainly useful when
calibrating to only a few known population totals. Yet, calibrated semi-parametric ANNs
can yield more reliable estimates in most scenarios because the functional form approach
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allows for additional incorporation of variables for which no calibration benchmarks are
available. However, specifying an adequate combination of the multiple optimization
criteria used for fitting such ANNs still provokes some difficulties. Therefore, a joint
application of propensity model and GREG is usually more adequate than calibrated
ANNs when considering a combination of propensity and calibration weighting. In the
simulation, such ANNs perform best when either response or calibration weighting are
used on their own. This finding is underlined by the results of the application study. For
estimating income class frequencies from the WageIndicator web survey, pseudo-design
weights obtained from a calibrated ANN that is fit solely using covariance benchmarks
outperforms all other considered methods in terms of compensating selection bias.
As is evident from the theoretical and empirical results, the model- and the pseudo-design-
based paradigm both allow (almost) fully counterbalancing selection bias when selectivity
corresponds to a MAR pattern. This underlines the relevance of the conditional indepen-
dence assumption discussed in chapter 5. When this assumption is violated, none of the
considered methods allows for unbiased estimation. Nevertheless, the simulation results
indicate that a combination of model- and pseudo-design-based strategies can still improve
efficiency in such cases of MNAR selectivity. Especially when a reference sample is the only
available auxiliary information, propensity weighted imputation models perform better
than either propensity weighting or unweighted imputation methods on their own. In
case of calibration weighting, MRP and other forms of weighted aggregation of predictions
can be used to stabilize estimation. Yet, this improves performance only in presence of
relatively volatile weights, e.g. if a large number of calibration benchmarks is incorporated.
Considering the joint use of propensity and calibration weighting, combining model- and
pseudo-design-based methods results in a loss rather than a gain in efficiency, such that a
synthesis of the two paradigms does not seem to be advisable in this case. For estimation
of income class frequencies from the WageIndicator web survey in the application study,
the selectivity pattern is presumably again MNAR. Nevertheless, none of the combinations
of model- and pseudo-design-based methods outperforms the pseudo-design weighted
estimates when using the calibrated ANN that solely relies on covariance benchmarks.
With regard to inference, the findings in this thesis do not suggest a unique best ap-
proach. In the simulation study, valid inference is often easier to achieve when a point
estimator’s bias is comparably small in magnitude, although this is neither a necessary
nor sufficient condition. For estimation that is based on mass-imputation, Monte Carlo
bootstrap estimates of the total variance generally perform comparatively well, regardless
of whether a weighted or an unweighted prediction model is applied. The results are
far more ambiguous in case of pseudo-design-based estimates or weighted aggregation of
predictions, such that the best approach for inference still depends on the actual sampling
mechanism, available auxiliary information and specific point estimation method. Because
the underlying non-probability selection process is typically unknown in real applications,
there is no reliable strategy to evaluate inferential methods in the application study
without using additional assumptions and/or simulations.
This highlights an aspect of the Monte Carlo simulation in section 6.3 that may be
considered as either an advantage or drawback. This central simulation study is designed
to cover a bandwidth of prototype scenarios that can occur when using non-probability
samples, considering a mixture and trade-off between settings that are used in other
relevant publications. A crucial advantage of this strategy is that it provides a general
overview that can be interpreted with regard to a variety of types and applications of non-
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probability sampling and highlights important conditions under which specific methods
may be more or less suitable. A drawback of this setup is that it may be too general
to allow for a fully detailed evaluation of methods with regard to a specific real non-
probability sample. To precisely identify the best estimation strategy for such a particular
sample, more in-depth evaluations and simulation studies considering the distinct non-
probability selection mechanism and relevant variables may be required. Moreover, the
reference sample’s sampling design as well as the sizes of the non-probability and reference
sample may have an impact on the relative advantages and drawbacks of certain methods.
Further important aspects of both samples should also be taken into account, such as
effects of survey modes, questionnaire designs, non-response and data editing. Such
characteristics are not directly related to the issues of non-probability sampling, but can
provoke additional difficulties when assessing and compensating selectivity. In general,
there is no method that fits all types of non-probability samples and purposes, such that
the most adequate strategy for quality assessment, point estimation and inference has to
be determined for each and every particular non-probability sample, research interest and
available auxiliary information.
The broad definition of non-probability sampling encompasses manifold selection pro-
cesses. Due to the heterogeneous nature and evolution of these processes, research on
methods for non-probability samples presumably needs to be a steadily ongoing process.
This may be facilitated by pursuing the following important topics for future research.
The proposed calibrated semi-parametric ANNs perform well in certain settings. However,
the weighted-sum approach used for multi-criteria optimization still poses some difficulties
in specifying a general rule to define the required importance weights. Different strategies
can be used for this purpose, but typical approaches in the context of weighting rely on
design-based variance estimates for probability sampling and are therefore not straight-
forwardly applicable to non-probability samples. Hence, further research is needed to
extend the promising results of calibrated neural networks to more general circumstances.
Moreover, it may be beneficial to integrate pseudo-weights and calibrated ANNs in further
research, as both ideas appear valuable in different settings.
In addition, various more general areas for further research on non-probability samples in
the field of survey statistics exist. For example, future research could address potential de-
pendencies between observations in certain non-probability samples that lead to violation
of the i.i.d. assumption underlying most of the considered prediction or weighting models.
This issue is typically covered in publications on respondent-driven sampling (cf. e.g.
Frank and Snijders, 1994; Heckathorn, 2002) but may be extended towards more general
methods for non-probability samples. Generalized linear and additive mixed models allow
for dependencies between observations, and there are approaches for also using random
effects in support vector machines (cf. Cho, 2010; Luts et al., 2012) and artificial neural
networks (cf. Tran et al., 2020; Xiong, Kim and Singh, 2019). To account for such
dependencies between observations in the context of pseudo-design-based methods, it
may be sensible to explicitly consider the joint conditional probability of two elements
being simultaneously part of the non-probability sample in the weighting model. This
would lead to a pseudo-design-based analogy to second order inclusion probabilities.
To better incorporate the uncertainty of prediction or weighting models in point estima-
tion and inference is a further important topic for future research. As outlined above,
the straightforward and common use of conditional means expressed by a statistical or
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machine learning model for mass-imputation in model-based estimation ignores important
(co-)variance components that are not explained by the model. Similarly, treating pseudo-
design weights like known design weights can lead to severe bias especially in inference
for pseudo-design-based point estimates. Considering the challenges of non-probability
samples as a missing data problem (cf. figure 5.1), the use of multiple imputation (cf.
e.g. van Buuren, 2018; Little and Rubin, 2019; Rubin, 1987) may help to improve point
estimation and inference for non-probability samples (cf. sections 5.4 and 6.3.2.3; Elliott
and Valliant, 2017, p. 261; Rafei, Flannagan and Elliott, 2020, p. 160). A different
but related extension to the inferential methods considered in this thesis could be based
on a double bootstrap strategy. A first stage of resampling can be used to estimate
the uncertainty of the prediction or weighting model parameters while a second stage
may be used to represent the point estimator’s variability conditional on the parameters
determined in the first stage (cf. also section 5.4; Kuk, 1989; Hinkley and Shi, 1989).
Moreover, there are alternative uses and potential extensions for measures of selectivity.
For example, Chambers, Dorfman and Wehrly (1993, p. 270) derive an expression for
the bias in model-based estimates of finite population totals when using certain non-
parametric prediction models. Assuming a particular joint distribution for non-probability
sample inclusion and variable of interest, Andridge et al. (2019), Little et al. (2020) and
West et al. (2021) introduce indicators for the selectivity of a non-probability sample in
a Bayesian framework. These and similar approaches apply model-based assumptions
already for assessments of selectivity. Their development and evaluation under realistic
conditions is a further field for current and future research. In addition, a continuous non-
probability sampling process often allows calculating intermediate measures of a sample’s
selectivity already during data collection. Future research could focus on the use of such
intermediate measures for implementing adaptive non-probability sampling procedures,
potentially even in real-time. For example, sub-groups that are under-represented in the
current data can be specifically addressed to increase their participation, or additional
relevant auxiliary variables can be identified and measured to better account for selectivity
in the estimation stage (cf. Biffignandi and Pratesi, 2002, p. 65; Mercer et al., 2017, p. 266).
These considerations highlight the general relevance of variable and model selection in
all stages of conducting and analyzing non-probability samples and the potential use of
selectivity measures for this purpose that may be enhanced in future research.
Last but not least, there are further potential applications for the methods introduced
in this thesis. Because the development of calibrated (semi-parametric) ANNs is focused
on the particular challenges of non-probability samples, the specific features of these
models constitute an extension to well-established methods mainly in closely related
research areas. For example, quasi-experimental and other observational studies (cf. e.g.
Rosenbaum, 2010) as well as non-response (cf. e.g. Särndal and Lundström, 2005) can
be seen as special cases of non-probability sampling for which calibrated ANNs may be
applied. Even more versatile is the proposed optimization of B-spline knots in semi-
parametric ANNs. Although motivated with regard to non-probability sampling in this
thesis, these models can as well be used for estimation in classical probability samples (cf.
e.g. Breidt and Opsomer, 2009). Furthermore, there are potential applications beyond
the scope of survey statistics, for example in engineering or computer sciences (cf. e.g.
Folgheraiter, 2016; Piazza et al., 1997; Wang and Lei, 2001). Application and evaluation
of the newly proposed methods in such diverse contexts is therefore a further topic for
future research within or beyond the context of non-probability sampling.
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Appendix A Mathematical Background of
the BFGS-update

As described in section 4.2.3, the BFGS-algorithm is based on approximating the inverse
Hessian matrix, such that H−1 ≈ B̃. In each iteration, the weighted Frobenius-Norm
between old and new approximation is minimized, subject to the secant and symmetry
conditions 4.21 and 4.22.
As in equations 4.19 and 4.20, the changes in parameters and gradient are given by

s := Θ(a+1) −Θ(a)

y := JL
(
Θ(a+1)

)
− JL

(
Θ(a)

)
.

(A.1)

Additionally denoting the update for the current inverse Hessian approximation used to
determine the new one by

B̃∆ := B̃(a+1) − B̃(a) , (A.2)
the optimization problem is

B̃(a+1) = argmin
B̃(a+1)

(∣∣∣∣∣∣B̃∆
∣∣∣∣∣∣2

FW

)
s. t. B̃(a+1)y = s

B̃(a+1) =
(
B̃(a+1)

)T
,

(A.3)

where ∣∣∣∣∣∣B̃∆
∣∣∣∣∣∣2

FW

= tr
((

B̃∆
)T

W TB̃∆W
)

(A.4)

(cf. equations 4.21 to 4.23; Gill, Murray and Wright, 1981, pp. 121 ff; Jarre and Stoer,
2004, pp. 173 ff; Nocedal and Wright, 1999, pp. 194 ff).
The Lagrange function of optimization problem A.3 resulting from equation 4.11 is given
by

L
(
B̃(a+1)

)
= tr

((
B̃∆

)T
W TB̃∆W

)
+λT

(
B̃y − s

)
+

h∑
i=2

i−1∑
j=1

α(i/2·(i−1)+j)

(
b̃a+1

ij − b̃a+1
ji

)

= tr
((

B̃∆
)T

W TB̃∆W
)

+λT
(
B̃y − s

)
+

h∑
i=1

h∑
j=1

aijb̃
a+1
ij ,

(A.5)
where W is an arbitrary symmetric weighting matrix that fulfills equation 4.24, b̃ij is an
entry of B̃, and

aij :=


0 , if i = j

α(i/2·(i−1)+j) , if i > j

−α(i/2·(i−1)+j) , if i < j

(A.6)

are entries of a matrix A containing the Lagrange multipliers α for the symmetry condi-
tion with property

AT = −A . (A.7)

255



Mathematical Background of the BFGS-update

Consequently, the derivative follows as

∂
(
L
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))
∂
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B̃(a+1)

) =
∂
((

B̃∆
)T
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)

∂
(
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) + λyT + A

=
∂
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B̃∆

)
∂
(
B̃(a+1)

) (W TB̃∆W
)

+
∂
(
W TB̃∆W

)
∂
(
B̃(a+1)

) B̃∆ + λyT + A

= Ih

(
W TB̃∆W

)
+ W W TB̃∆ + λyT + A

= 2W B̃∆W + λyT + A .

(A.8)

The KKT-conditions resulting from equation 4.12 are given by

∂
(
L
(
B̃(a+1)

))
∂
(
B̃(a+1)

) = 0h×h

B̃(a+1)y = s

B̃(a+1) =
(
B̃(a+1)

)T
.

(A.9)

By symmetry of B̃∆ and W as well as asymmetry of A, it additionally holds that(
2W B̃∆W + λyT + A

)T
= 2W B̃∆W + yλT −A , (A.10)

which can be used to eliminate A from the first KKT-condition by

0h×h = 2W B̃∆W + λyT + A + 2W B̃∆W + yλT −A

= 4W B̃∆W + λyT + yλT .
(A.11)

By definition of B̃(a+1) and W , the equalities

W s = y

sTW = yT

W −1y = s

yTW −1 = sT

B̃∆y =
(
B̃(a+1) − B̃(a)

)
y =

(
s− B̃(a)y

)
(A.12)

hold. From equalities A.11 and A.12, it follows that((
4W B̃∆W + λyT + yλT

)
s
)T

s

= 4
(
W B̃∆W s

)T
s +

(
λyTs

)T
s +

(
yλTs

)T
s

= 4
(
W B̃∆W s

)T
s + sTyλTs + sTyλTs

= 4
(
W B̃∆W s

)T
s + 2sTyλTs

= 0 ,

(A.13)
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and thus

λTs = − 2 ·

(
W B̃∆y

)T
s

sTy
. (A.14)

Post-multiplying equation A.11 by s and plugging in equality A.14 yields

0h×h = 4W B̃∆W s + λyTs + yλTs

= 4W B̃∆W s + λyTs− 2 · y

(
W B̃∆y

)T
s

sTy
,

(A.15)

which can be solved for λ:

λ = 2y

(
W B̃∆y

)T
s

(yTs)2 − 4W B̃∆y

yTs
= 2y

yTB̃∆y

(yTs)2 − 4W B̃∆y

yTs
. (A.16)

Inserting equality A.16 into equation A.11 as well as pre- and post-multiplication with
W −1 results in

0h×h = 4 ·W −1W B̃∆W W −1 + W −1λyTW −1 + W −1yλTW −1

= 4 · B̃∆ + W −1λsT + s
(
W −1λ

)T

= 4 · B̃∆ +
(

2W −1y
yTB̃∆y

(yTs)2 − 4W −1W B̃∆y

yTs

)
sT

+ s

(
2W −1y

yTB̃∆y

(yTs)2 − 4W −1W B̃∆y

yTs

)T

= 4 · B̃∆ +
(

2s
yTB̃∆y

(yTs)2 − 4B̃∆y

yTs

)
sT + s

(
2s

yTB̃∆y

(yTs)2 − 4B̃∆y

yTs

)T

= 4 · B̃∆ + 2s
yTB̃∆y

(yTs)2 sT − 4B̃∆y

yTs
sT + 2s

yTB̃∆y

(yTs)2 sT − 4s
yTB̃∆

yTs

= B̃∆ + s
yTB̃∆y

(yTs)2 sT − B̃∆y

yTs
sT − s

yTB̃∆

yTs

= B̃∆ +
syT

(
s− B̃(a)y

)
sT

(yTs)2 −

(
s− B̃(a)y

)
sT

yTs
−

s
(
s− B̃(a)y

)T

yTs

= B̃∆ + syTssT

(yTs)2 −
syTB̃(a)ysT

(yTs)2 − ssT

yTs
+ B̃(a)ysT

yTs
− ssT

yTs
+ syTB̃(a)

yTs

= B̃∆ + ssT

yTs
− syTB̃(a)ysT

(yTs)2 − ssT

yTs
+ B̃(a)ysT

yTs
− ssT

yTs
+ syTB̃(a)

yTs

= B̃(a+1) − B̃(a) + syTB̃(a)

yTs
+ B̃(a)ysT

yTs
− syTB̃(a)ysT

(yTs)2 − ssT

yTs

= B̃(a+1) −
(

B̃(a) − syTB̃(a)

yTs

)(
Ih −

ysT

yTs

)
− ssT

yTs

= B̃(a+1) −
(

Ih −
syT

yTs

)
B̃(a)

(
Ih −

ysT

yTs

)
− ssT

yTs
.

(A.17)
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The update for B̃ is hence determined by

B̃(a+1) =
(

Ih −
syT

yTs

)
B̃(a)

(
Ih −

ysT

yTs

)
+ ssT

yTs
, (A.18)

which corresponds to equation 4.25. Equality A.18 can be equivalently written as

B̃(a+1) = B̃(a) − syTB̃(a)

yTs
− B̃(a)ysT

yTs
+ syTB̃(a)ysT

(yTs)2 + ssT

yTs

= B̃(a) −UV T ,

(A.19)

where
h :=

(
yTs

)−1
, (A.20a)

U :=
[
s B̃(a)y

]
· h (A.20b)

and

V T :=
[
1 + hyTB̃(a)y −1

−1 0

] [
sT

yTB̃(a)

]
(A.20c)

(cf. Nocedal and Wright, 1999, pp. 197, 541). Using the Woodbury formula (cf. Nocedal
and Wright, 1999, p. 605), it follows that

H̃
(a+1) = H̃

(a) − H̃
(a)

U
(

I2 + V TH̃
(a)

U
)−1

V TH̃
(a)

. (A.21)

The components of equation A.21 are obtained by

H̃
(a)

U = H̃
(a) [

s B̃(a)y
]
· h =

[
H̃

(a)
s y

]
· h , (A.22a)

V TH̃
(a) =

1 + yTB̃(a)y

yTs
−1

−1 0

 [sTH̃
(a)

yT

]
, (A.22b)

as well as

V TH̃
(a)

U

=

1 + yTB̃(a)y

yTs
−1

−1 0

 [sTH̃
(a)

yT

] [
s B̃(a)y

]
· h

=

1 + yTB̃(a)y

yTs
−1

−1 0


sTH̃

(a)
s sTH̃

(a)
B̃(a)y

yTs yTB̃(a)y

 · h

=

1 + yTB̃(a)y

yTs
−1

−1 0


sTH̃

(a)
s yTs

yTs yTB̃(a)y

 · h

=


(

1 + yTB̃(a)y

yTs

)
sTH̃

(a)
s− yTs

(
1 + yTB̃(a)y

yTs

)
yTs− yTB̃(a)y

−sTH̃
(a)

s −yTs

 · h

=


(

1 + yTB̃(a)y

yTs

)
sTH̃

(a)
s · h− 1 1

−sTH̃
(a)

s · h −1

 .

(A.22c)
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Using equalities A.22, the matrix to be inverted in equality A.21 is thus given by

(
I2 + V TH̃

(a)
U
)

=


(

1 + yTB̃(a)y

yTs

)
sTH̃

(a)
s · h 1

−sTH̃
(a)

s · h 0

 . (A.23)

Its inverse is defined as
C :=

(
I2 + V TH̃

(a)
U
)−1

, (A.24)

such that

C−1C =


(

1 + yTB̃(a)y

yTs

)
sTH̃

(a)
s · h 1

−sTH̃
(a)

s · h 0


[
c11 c12
c21 c22

]
=
[
1 0
0 1

]
. (A.25)

This is a triangular matrix, for which the strategies discussed in section 4.1.1 can be used.
The system of equations is

c11 ·
(

1 + yTB̃(a)y

yTs

)
sTH̃

(a)
s · h + c21 · 1 = 1 (A.26a)

c12 ·
(

1 + yTB̃(a)y

yTs

)
sTH̃

(a)
s · h + c22 · 1 = 0 (A.26b)

−c11 · sTH̃
(a)

s · h + c21 · 0 = 0 (A.26c)

−c12 · sTH̃
(a)

s · h + c22 · 0 = 1 . (A.26d)

Equalities A.26c and A.26d directly yield

c11 = 0 (A.27a)
and

c12 = −
(

h · sTH̃
(a)

s
)−1

, (A.27b)

such that equations A.26a and A.26b are solved by
c21 = 1 (A.27c)

and

c22 =
(

h · sTH̃
(a)

s
)−1
·
(

1 + yTB̃(a)y

yTs

)
sTH̃

(a)
s · h = 1 + yTB̃(a)y · h . (A.27d)

Therefore, C is determined by

C =

0 −
(

h · sTH̃
(a)

s
)−1

1 1 + yTB̃(a)y · h

 . (A.28)

259



Mathematical Background of the BFGS-update

Plugging equality A.28 into equation A.21 results in

H̃
(a+1) = H̃

(a) − H̃
(a)

UCV TH̃
(a)

= H̃
(a) −

[
H̃

(a)
s y

] 0 −
(

h · sTH̃
(a)

s
)−1

1 1 + yTB̃(a)y · h

 [1 + yTB̃(a)y · h −1
−1 0

] [
sTH̃

(a)

yT

]
· h

= H̃
(a) −

[
H̃

(a)
s y

] 
(

h · sTH̃
(a)

s
)−1

0
0 −1

 [sTH̃
(a)

yT

]
· h

= H̃
(a) −

[(
h · sTH̃

(a)
s
)−1

H̃
(a)

s −y

] [
sTH̃

(a)

yT

]
· h

= H̃
(a) −

(
sTH̃

(a)
s
)−1

H̃
(a)

ssTH̃
(a) + yyT · h

= H̃
(a) + yyT

yTs
− H̃

(a)
ssTH̃

(a)

sTH̃
(a)

s
,

(A.29)
which constitutes equality 4.26.
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Appendix B Mathematical Background
of Weighting and Prediction
Methods

B.1 Bias of the Maximum Likelihood Covariance
Estimator

As described in section 2.2, the ML covariance estimator Σ̃y·k,y·l is biased for a finite
population covariance Σy·k,y·l because in general, E

(
µ̂y·k

(ws) · µ̂y·k
(ws)

)
= µy·k

·µy·l
does

not hold. Assuming unbiased estimates µ̂y·k
(ws) and µ̂y·l

(ws), this can be shown by

E
(
µ̂y·k

(ws) · µ̂y·k
(ws)

)

= E

 1(
N̂ (ws)

)2

∑
i∈Ss

ws
i · yik

 ·
∑

j∈Ss
ws

j · yjl




= E

 1(
N̂ (ws)

)2 ·

∑
i∈Ss

ws
i ·
(
yik − µy·k

)+ N̂ (ws) · µy·k



·

∑
j∈Ss

(
ws

j ·
(
yjl − µy·l

))
+ N̂ (ws) · µy·l




= µy·k
·µy·l

+ E

 1(
N̂ (ws)

)2 ·

∑
i∈Ss

∑
j∈Ss

ws
iw

s
j ·
(
yik − µy·k

)
·
(
yjl − µy·l

)


+ E

 1(
N̂ (ws)

)2 · N̂ (ws) · µy·l
·

∑
i∈Ss

(
ws

i ·
(
yik − µy·k

))


+ E

 1(
N̂ (ws)

)2 · N̂ (ws) · µy·k
·

∑
j∈Ss

(
ws

j ·
(
yjl − µy·l

))


= µy·l
·µy·l

+ µy·k
·E

(
µ̂y·l

(ws)− µy·l

)
+ µy·l

·E
(
µ̂y·k

(ws)− µy·k

)

+ E

 1(
N̂ (ws)

)2 ·

∑
i∈Ss

(ws
i)

2 ·
(
yik − µy·k

)
·
(
yil − µy·l

)


+ E

 1(
N̂ (ws)

)2 ·
∑

i,j∈Ss

∑
j ̸=i

ws
iw

s
j ·
(
yik − µy·k

)
·
(
yjl − µy·l

)

(B.1a)
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≈ µy·k
·µy·l

+

1 +
N̂
(
(ws)◦2

)
(

N̂ (ws)
)2

 · Σy·ky·l . (B.1b)

Equations B.1a can alternatively be written as

E
(
µ̂y·k

(ws) · µ̂y·k
(ws)

)
= µy·k

·µy·l
+

E

 1(
N̂ (ws)

)2 ·

∑
i∈Ss

ws
i · yik − N̂ (ws) · µy·k

 ·
∑

j∈Ss
ws

j · yjl − N̂ (ws) · µy·l




= µy·k
·µy·l

+ E
((

µ̂y·k
(ws)− µy·k

)
·
(
µ̂y·l

(ws)− µy·l

))
= µy·k

·µy·l
+Σ[µ̂y·k (ws) µ̂y·l (w

s)] .

(B.1c)

Hence, the maximum likelihood estimator’s bias is equal to the covariance of µ̂y·k
(ws)

and µ̂y·l
(ws). However, using approximation B.1b to obtain

ν (ws) :=
N̂
(
(ws)◦2

)
(

N̂ (ws)
)2 , (B.2)

the correction
Σ̂Y (ws) := Σ̃Y (ws) · (1− ν (ws))−1 (B.3)

for ML covariance estimators is commonly used for estimating weighted sample covari-
ances. In case of an unweighted sample (ws

i = 1) for all i, it reduces to Bessel’s correction
(using n−1 instead of n in the denominator of the sample variance) and is therefore exact
(cf. e.g. Galassi et al., 2009, p. 266; Lumley, 2004; R Core Team, 2018; Särndal, Swensson
and Wretman, 1992, pp. 186 f).

B.2 Use of Design Weights for Estimation of
Conditional Distributions

Pfeffermann and Sverchkov (1999, p. 185) show that for probability sampling designs, it
holds that

fY (yi· | zi·, rps
i = 1) = P (rps

i = 1 |yi·, zi· )
P (rps

i = 1 | zi· )
· fY (yi· | zi· )

= E (P (rps
i = 1 |yi·, zi·, πi ) |yi·, zi· )

E (P (rps
i = 1 | zi·, πi ) | zi· )

· fY (yi· | zi· )

= E (πi |yi·, zi· )
E (πi | zi· )

· fY (yi· | zi· ) ,

(B.4a)

fw (wi | zi·, rps
i = 1) = E (πi |wi, zi· )

E (πi | zi· )
· fw (wi | zi· )

= fw (wi | zi· )
wi · E (πi | zi· )

(B.4b)
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and
E (wi | zi·, rps

i = 1) =
∫

wi ·
fw (wi | zi· )

wi · E (πi | zi· )
d wi =

∫ fw (wi | zi· )
E (πi | zi· )

d wi

= 1
E (πi | zi· )

.

(B.4c)

Using equalities B.4, the conditional distribution of Y given Z is

fY (yi· | zi· ) = E (wi |yi·, zi·, rps
i = 1)

E (wi | zi·, rps
i = 1) · fY (yi· | zi·, rps

i = 1) . (B.5)

The conditional expectation can therefore be estimated using

E (yi· | zi· ) =
∫

yi· · fY (yi· | zi·, rps
i = 1) · E (wi |yi·, zi·, rps

i = 1)
E (wi | zi·, rps

i = 1) d yj·

= E (yi· · E (wi |yi·, zi·, rps
i = 1) | zi·, rps

i = 1)
E (wi | zi·, rps

i = 1)

= E (wi · yi· | zi·, rps
i = 1)

E (wi | zi·, rps
i = 1) .

(B.6)

B.3 General Motivation of Model- and Pseudo-
design-based Methods for Non-probability
Samples

The arguments in appendix B.2 apply for probability samples with known design weights
and inclusion probabilities. Propensity weights based on a set of variables Z that provide
conditional independence of Y and rnps are motivated in a quite similar manner, by
replacing πps with P (rnps

i = 1 |yi·, zi· ) and, assuming that this conditional probability is
positive, wps with 1/P (rnps

i = 1 |yi·, zi· ) .
In general, it holds that

fY ,rnps (yi·, rnps
i = 1 | zi· ) = P (rnps

i = 1 |yi·, zi· ) · fY (yi· | zi· ) . (B.7a)

In case of conditional independence

(Y ⊥⊥ rnps) |Z , (B.7b)

equality B.7a can be rewritten as

fY ,rnps (yi·, rnps
i = 1 | zi· ) = P (rnps

i = 1 | zi· ) · fY (yi· | zi· ) . (B.7c)

From equations B.7, it follows that

P (rnps
i = 1 | zi· ) = P (rnps

i = 1 |yi·, zi· ) (B.8)

in this case (cf. Dawid, 1979, p. 3). Together, equations B.4a and B.8 imply that the
conditional distribution can be estimated unbiasedly from the sample under conditional
independence assumption B.7b. When fZ (zj·) is considered known, estimation and
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inference for the target population can then be based on fZ (zj·) since

fY (yi·) =
∫
· · ·

∫
fY (yi· | zj· ) · fZ (zj·) d zi1 · · · d ziq . (B.9)

This is the main rationale for using prediction models for Y to obtain estimates from a
non-probability sample (cf. section 5.1; Pfeffermann, 2011, pp. 120 f).
Since equality B.8 holds under conditional independence assumption B.7b, it follows that

E
∑

i∈SP

rnps
i · yi·

P (rnps
i = 1 | zi· )

 =
∑

i∈SP

E
(

rnps
i · yi·

P (rnps
i = 1 | zi· )

)

=
∑

i∈SP

E
(

E
(

rnps
i · yi·

P (rnps
i = 1 |yi·, zi· )

∣∣∣∣∣yi·, zi·

))

=
∑

i∈SP

E
(

yi· ·
E (rnps

i |yi·, zi· )
P (rnps

i = 1 |yi·, zi· )

)

= E
∑

i∈SP

yi·



(B.10)

(cf. Horvitz and Thompson, 1952, pp. 667 ff; Imbens, 2000, p. 708; Lunceford and
Davidian, 2004, p. 2941). In this case, the true conditional probability P (rnps

i = 1 | zi· )
can therefore cancel out bias when used for weighting of linear statistics in analogy to
the Horvitz-Thompson estimator, as long as the conditional probabilities are all positive.
This is the main motivation of pseudo-design-based usages of response propensities (cf.
section 5.2.1).
Matching on response propensities (cf. section 3.6) is motivated by the fact that

fY ,rnps (yi·, rnps
i = 1 |P (rnps

i = 1 |yi·, zi· ))
= P (rnps

i = 1 |yi·, P (rnps
i = 1 |yi·, zi· )) · fY (yi· |P (rnps

i = 1 |yi·, zi· ))
= P (rnps

i = 1 | zi· ) · fY (yi· |P (rnps
i = 1 | zi· )) ,

(B.11)

which implies that rnps and Y are conditionally independent given P (rnps
i = 1 | zi· ), just

as when conditioning on zi· itself. Nevertheless, P (rnps
i = 1 | zi· ) usually needs to be

estimated from a model. Most commonly, this is done by means of a generalized linear
model, but other options discussed in section 5.1 are used as well (cf. Rosenbaum and
Rubin, 1983, pp. 44 ff).
In their alternative strategy for estimating propensities and obtaining pseudo-weights,
Elliott and Valliant (2017, pp. 256 f) assume that
a) the observed values outside the non-probability sample come from a reference

sample res, with a corresponding response indicator variable rres, and
b) the sampling design generating rres is considered known and either perfectly or

at least very well describable by variables Z, such that P (rres
i = 1 | zi· ) can be

obtained with high precision for all i ∈ SP.
By Bayes’ theorem, it holds that

fZ (zi·) = fZ (zi· |rs
i = 1) · P (rs

i = 1)
P (rs

i = 1 |zi· )
(B.12a)
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and
fZ (zi· |rs

i = 1) = fZ (zi·) · P (rs
i = 1 |zi· )

P (rs
i = 1) (B.12b)

for s ∈ {nps; res}, i.e. non-probability and reference sample, such that

fZ (zi· |rnps
i = 1)

fZ (zi· |rres
i = 1) = P (rnps

i = 1 |zi· )
P (rres

i = 1 |zi· )
· P (rres

i = 1)
P (rnps

i = 1) ∝
P (rnps

i = 1 |zi· )
P (rres

i = 1 |zi· )
. (B.12c)

Based on equalities B.12, the true response propensity may be written as

P (rnps
i = 1 |zi· ) = fZ (zi· |rnps

i = 1) · P (rnps
i = 1)

fZ (zi·)

= fZ (zi· |rnps
i = 1)

fZ (zi· |rres
i = 1) ·

P (rnps
i = 1)

P (rres
i = 1) · P (rres

i = 1 |zi· )

∝ fZ (zi· |rnps
i = 1)

fZ (zi· |rres
i = 1) · P (rres

i = 1 |zi· ) ,

(B.13)

considering P (rnps
i = 1)/P (rres

i = 1) as a normalizing constant. As in section 5.2.1, denote
by r∗

i := I (i ∈ (Snps ∪ Sres)) ∈ {0; 1} for all i ∈ SP the indicator for whether an element i is
part of the non-probability and/or the reference sample. The approximation for equality
B.13 proposed by Elliott and Valliant (2017, p. 256) is then given by

fZ (zi· | rnps
i = 1)

fZ (zi· | rres
i = 1) = P (Z = zi· ∩ rnps

i = 1)/P (rnps
i = 1)

P (Z = zi· ∩ rres
i = 1)/P (rres

i = 1)

≈ P (Z = zi· ∩ rnps
i = 1 ∩ r∗

i = 1)/P (rnps
i = 1 ∩ r∗

i = 1)
P (Z = zi· ∩ rnps

i = 0 ∩ r∗
i = 1)/P (rnps

i = 0 ∩ r∗
i = 1)

= fZ (zi· | rnps
i = 1, r∗

i = 1)
fZ (zi· | rnps

i = 0, r∗
i = 1) .

(B.14)

For this approximation, it is assumed that the overlap (Snps ∩ Sres) is ignorable, such that
r∗ ≈ rnps + rres. Note that Elliott and Valliant (2017, p. 256) justify this approximation
by negligible sampling fractions for both samples, such that P (rres

i = 1 ∩ rnps
i = 0) ≈

P (rres
i = 1) and P (rnps

i = 1 ∩ rres
i = 0) ≈ P (rnps

i = 1). As becomes evident from equal-
ities B.14, however, the overlap needs to be ignorable for all values of Z. Therefore,
the stronger assumptions P (Z = zi· ∩ rnps

i = 1 ∩ rres
i = 0) ≈ P (Z = zi· ∩ rnps

i = 1) and
P (Z = zi· ∩ rres

i = 1 ∩ rnps
i = 0) ≈ P (Z = zi· ∩ rres

i = 1) are required for approximation
5.136 to be valid. As discussed in section 5.2.1, P (rres

i = 1 | zi· ) is then obtained from the
reference sample’s design or a different model.
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B.4 Mathematical Background of Prediction
Models

B.4.1 Derivation of the Linear Model
The least squares loss function of the linear regression discussed in section 5.1.2 is

δ (Θ) = (Y s −XsΘ)T W (Y s −XsΘ)
= (Y s)T W Y s − 2 · (Y s)T W XsΘ + (XsΘ)T W XsΘ ,

(B.15)

where W = diag (w). The corresponding Jacobian matrix is given by

Jδ (Θ) =
(

∂(δ (Θ))
∂ (Θ)

)T

= 2 ·
(
(Xs)T W XsΘ− (Xs)T W Y s

)T

= 2 · (XsΘ− Y s)T W Xs .

(B.16)

The minimum of δ (Θ) can be found analytically, by setting the Jacobian matrix to zero:

2 · (XsΘ− Y s)T W Xs = 0
⇔ (Xs)T W XsΘ = (Xs)T W Y s

⇔ Θ =
(
(Xs)T W Xs

)−1
(Xs)T W Y s .

(B.17)

This is equivalent to a single iteration of the Newton-Raphson algorithm 5 since it follows
from equation B.16 that the Hessian of the loss function is given by

Hδ (Θ) = (Xs)T W Xs , (B.18)

such that for iteration a, the update is

Θ(a) = Θ(a−1) −
(
Hδ

(
Θ(a−1)

))−1 (
Jδ

(
Θ(a−1)

))T

= Θ(a−1) −
(
(Xs)T W Xs

)−1
2 ·
(
(Xs)T W XsΘ(a−1) − (Xs)T W Y s

)
= −Θ(a−1) + 2 ·

(
(Xs)T W Xs

)−1 (
(Xs)T W Y s

)
.

(B.19)

The optimum is found when Θ(a−1) = Θ(a), such that

Θ(a) = −Θ(a) + 2 ·
(
(Xs)T W Xs

)−1 (
(Xs)T W Y s

)
⇔ Θ(a) =

(
(Xs)T W Xs

)−1 (
(Xs)T W Y s

)
.

(B.20)
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B.4.2 Additional Newton-Raphson and Fisher Scoring
Update Rules for Generalized Linear and Additive
Models

To simplify notation, derivation of generalized linear and additive models is considered
for the whole population. Incorporating of weights to obtain HT-estimates from a sample
is discussed in sections 5.1.3 and 5.1.4.
Denoting the vector of optimization parameters by

Θ := κ , (B.21)

the systematic component is

η = η (Θ) := t (X, κ) . (B.22)

Assuming a probability density function belonging to the exponential family (cf. equation
5.16) results in the Log-Likelihood

L (Θ) = (y·l ◦ θ − b (θ))T (a (ϕ))−1 + c (y·l, ϕ) (B.23)

for Θ (cf. Nelder and Wedderburn, 1972, p. 371). The first derivative of equation B.23
with respect to Θ is

∂(L (Θ))
∂ (Θ) = ∂(L (η))

∂ (θ)
∂(θ)

∂
(
µy·l

) ∂
(
µy·l

)
∂ (η)

∂(η)
∂ (Θ)

=
(
y·l − µy·l

)T
(a (ϕ))−1

(
V
(
µy·l

))−1 ∂
(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ)

=
(
y·l − µy·l

)T (
Σy·l(ϕ)

)−1 ∂
(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ) .

(B.24)

Equalities B.24 result from the components

∂(L (η))
∂ (θ) =

(
y·l − µy·l

)T
(a (ϕ))−1 , (B.25a)

∂(θ)
∂
(
µy·l

) = ∂(θ)

∂

(
∂(b (θ))

∂ (θ)

) =
(

∂2 b (θ)
∂ (θ)

)−1

=
(
V
(
µy·l

))−1
, (B.25b)

and

∂
(
µy·l

)
∂ (η) =

∂
(
l-1 (η)

)
∂ (η) , (B.25c)

which are based on equalities 5.17 (cf. Hastie and Tibshirani, 1986, p. 302; McCullagh
and Nelder, 1989, pp. 29–43; Nelder and Wedderburn, 1972, pp. 371 ff).
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The ML parameter estimates are obtained by setting the score function B.24 to zero.
Optimization is typically performed by the Fisher scoring or Newton-Raphson method
(cf. algorithm 5), which require the actual or expected Hessian matrix

∂2 (L (η))
∂2 (Θ) = ∂

∂ (Θ)

(y·l − µy·l

)T (
Σy·l(ϕ)

)−1 ∂
(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ)


=

(
y·l − µy·l

)T
 ∂

∂ (Θ)

(Σy·l(ϕ)
)−1 ∂

(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ)


−

∂
(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ)

T (
Σy·l(ϕ)

)−1 ∂
(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ) .

(B.26)

Equations B.25 are used again to obtain equalities B.26.
Since E

(
y·l − µy·l

)
= E (y·l − E (y·l)) = 0, the first product in equation B.26 vanishes in

expectation, hence

E
(

∂2 (L (η))
∂2 (Θ)

)
= −

∂
(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ)

T (
Σy·l(ϕ)

)−1 ∂
(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ)

(B.27)

(cf. Hastie and Tibshirani, 1986, p. 302; McCullagh and Nelder, 1989, pp. 29–43; Nelder
and Wedderburn, 1972, pp. 371 ff). This coincides with the negative Fisher information
matrix, which can be shown by

−V
(

∂(L (Θ))
∂ (Θ)

)
=

(
E
(

∂(L (Θ))
∂ (Θ)

))(
E
(

∂(L (Θ))
∂ (Θ)

))T

−E
(∂(L (Θ))

∂ (Θ)

)T (
∂(L (Θ))

∂ (Θ)

)
= −E



∂

(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ)

T (
Σy·l(ϕ)

)−1 (
y·l − µy·l

)
(y·l − µy·l

)T (
Σy·l(ϕ)

)−1 ∂
(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ)


= −

∂
(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ)

T (
Σy·l(ϕ)

)−1 ∂
(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ) .

(B.28)

The expected and actual value of the Hessian matrix (equations B.27 and B.26) coincide
in case of a canonical link function when t is linear in κ, in which case it holds that

η = θ , (B.29)

and
∂2 (η)

∂ (Θ) ∂ (Θ) = 0 . (B.30)
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It then follows that

∂
(
l-1 (η)

)
∂ (η) =

∂
(
µy·l

)
∂ (θ) =

 ∂ (θ)
∂
(
µy·l

)
−1

= V
(
µy·l

)
, (B.31)

hence

(
Σy·l(ϕ)

)−1 ∂
(
l-1 (η)

)
∂ (η) = (a (ϕ))−1

(
V
(
µy·l

))−1
V
(
µy·l

)
= (a (ϕ))−1 (B.32)

and

∂

∂ (Θ)

(Σy·l(ϕ)
)−1 ∂

(
l-1 (η)

)
∂ (η)

∂(η)
∂ (Θ)


=

∂
(
(a (ϕ))−1

)
∂ (Θ)

∂(η)
∂ (Θ) + (a (ϕ))−1 ∂2 (η)

∂ (Θ) ∂ (Θ)
= 0

(B.33)

since a (ϕ) does not depend on Θ. When equality B.33 holds, the first factor in equation
B.26 is always zero, such that Newton-Raphson and Fisher scoring algorithm coincide (cf.
Breslow and Clayton, 1993, p. 10; Hastie and Tibshirani, 1986, p. 316; McCullagh and
Nelder, 1989, p. 43).
For the generalized linear models, the following additional identities hold:

Θ = β

∂ (η)
∂ (β) = X .

(B.34)

Consequently, the Jacobian and Hessian matrix are determined by

∂(L (Θ))
∂ (β) = ∂(L (η))

∂ (η) X (B.35)

and

∂2 (L (Θ))
∂2 (β) =

(
y·l − µy·l

)T
 ∂

∂ (β)

(Σy·l(ϕ)
)−1 ∂

(
l-1 (η)

)
∂ (η)

∂ (η)
∂ (β)


−

∂
(
l-1 (η)

)
∂ (η)

∂ (η)
∂ (β)

T (
Σy·l(ϕ)

)−1 ∂
(
l-1 (η)

)
∂ (η)

∂ (η)
∂ (β)

= −
∂

(
l-1 (η)

)
∂ (η) X

T (
Σy·l(ϕ)

)−1 ∂
(
l-1 (η)

)
∂ (η) X

(B.36)

(cf. McCullagh and Nelder, 1989, pp. 29–43; Nelder and Wedderburn, 1972, pp. 371 ff).
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B.4.3 Additional Newton-Raphson and Fisher Scoring
Update Rules for Generalized Linear and Additive
Mixed Models

As in appendix B.4.2, derivation of generalized linear and additive mixed models is
considered for the whole population to simplify notation. The use of weights to obtain
HT-estimates from a sample is discussed in section 5.1.5.
As in section 5.1.5, the model is defined by

Θ :=
[
κT uT ϕT

]T
η = η (Θ) := t (X, κ) + Du

ϕ :=
[(

ϕ(y·l)
)T (

ϕ(u)
)T
]T

Σy·l(ϕ) := Σe·l

(
ϕ(y·l)

)
+ DΣu

(
ϕ(u)

)
DT .

(B.37)

The component and combined likelihoods are given by

L (ys
·l |u) :=

∣∣∣∣∣∣∣∣(ay·l

(
ϕ(y·l)

))−1 (
y·l ◦ θy·l − by·l

(
θy·l

))
+ cy·l

(
y·l, ϕ(y·l)

)∣∣∣∣∣∣∣∣
1

L (u) =
∣∣∣∣∣∣∣∣(au

(
ϕ(u)

))−1
(u ◦ θu − bu (θu)) + cu

(
u, ϕ(u)

)∣∣∣∣∣∣∣∣
1

L (Θ) = L (ys
·l |u) + L (u)

(B.38)

(cf. Bates, 2018, p. 5; Lee and Nelder, 1996, pp. 620 f).
In analogy to equation B.25, it follows that

∂(L (ys
·l |u))

∂ (κ) = ∂(L (η |u))
∂ (θ)

∂(θ)
∂
(
µy·l

) ∂
(
µy·l

)
∂ (η)

∂(η)
∂ (κ)

=
(
y·l − µy·l

)T (
Σy·l(ϕ)

)−1 ∂
(
l-1
y·l

(η)
)

∂ (η)
∂(η)
∂ (κ) ,

(B.39)

∂(L (ys
·l |u))

∂ (u) =
(
y·l − µy·l

)T (
Σy·l(ϕ)

)−1 ∂
(
l-1
y·l

(η)
)

∂ (η) D , (B.40)

and

∂(L (u))
∂ (u) = ∂

∂ (u)

((
au

(
ϕ(u)

))−1
(u ◦ θu − bu (θu)) + cu

(
u, ϕ(u)

))

=
(
au

(
ϕ(u)

))−1
θu +

∂
(
cu

(
u, ϕ(u)

))
∂ (u)

(B.41)

(cf. Hastie and Tibshirani, 1986, p. 302; Lee and Nelder, 1996, pp. 631 f; McCullagh and
Nelder, 1989, pp. 29–43; Nelder and Wedderburn, 1972, pp. 371 ff).
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Differentiation of the likelihoods w.r.t. the dispersion parameters ϕ shows that

∂(L (ys
·l |u))

∂
(
ϕ(y·l)

) =
∂
((

ay·l

(
ϕ(y·l)

))−1
)

∂
(
ϕ(y·l)

) (
y·l ◦ θy·l − by·l

(
θy·l

))

+
∂
(
cy·l

(
y·l, ϕ(y·l)

))
∂
(
ϕ(y·l)

) ,

(B.42)

∂(L (u))
∂
(
ϕ(u)

) =
∂
((

au

(
ϕ(u)

))−1
)

∂
(
ϕ(u)

) (u ◦ θu − bu (θu)) +
∂
(
cu

(
u, ϕ(u)

))
∂
(
ϕ(u)

) , (B.43)

and
∂(L (ys

·l |u))
∂
(
ϕ(u)

) = 0 . (B.44)

For equations B.42 and B.43, it holds for k ∈ {y·l, u} that

∂
((

ak
(
ϕ(k)

))−1
)

∂
(
ϕ(k)

) = −
(
ak
(
ϕ(k)

))−1 ∂
(
ak
(
ϕ(k)

))
∂
(
ϕ(k)

) (
ak
(
ϕ(k)

))−1 (B.45)

is the derivative of the inverse matrix (cf. Rao, 2003, pp. 100 ff; Searle, Casella and
McCulloch, 2006, pp. 235 ff, 456).
The second derivatives are given by

∂2 (L (ys
·l |u))

∂ (κ) ∂ (κ) =
(
y·l − µy·l

)T
 ∂

∂ (κ)

(Σy·l(ϕ)
)−1 ∂

(
l-1
y·l

(η)
)

∂ (η)
∂(η)
∂ (κ)


−

∂
(
l-1
y·l

(η)
)

∂ (κ)
∂(η)
∂ (κ)

T (
Σy·l(ϕ)

)−1 ∂
(
l-1
y·l

(η)
)

∂ (κ)
∂(η)
∂ (κ)

(B.46)

∂2 (L (ys
·l |u))

∂ (κ) ∂ (u) =
(
y·l − µy·l

)T
 ∂

∂ (u)

(Σy·l(ϕ)
)−1 ∂

(
l-1
y·l

(η)
)

∂ (η)
∂(η)
∂ (κ)


−

∂
(
l-1
y·l

(η)
)

∂ (η) D

T (
Σy·l(ϕ)

)−1 ∂
(
l-1
y·l

(η)
)

∂ (η)
∂(η)
∂ (κ)

(B.47)

∂2 (L (ys
·l |u))

∂ (κ) ∂ (ϕ) =
(
y·l − µy·l

)T ∂
((

Σy·l(ϕ)
)−1

)
∂ (ϕ)

∂
(
l-1
y·l

(η)
)

∂ (η)
∂(η)
∂ (κ)

(B.48)

for cases where the first derivatives are taken with respect to κ.
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In the cases where they are w.r.t. u, one obtains

∂2 (L (ys
·l |u))

∂ (u) ∂ (u) =
(
y·l − µy·l

)T
 ∂

∂ (u)

(Σy·l(ϕ)
)−1 ∂

(
l-1
y·l

(η)
)

∂ (η) D


−

∂
(
l-1
y·l

(η)
)

∂ (η) D

T (
Σy·l(ϕ)

)−1 ∂
(
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y·l

(η)
)

∂ (η) D

(B.49)

∂2 (L (ys
·l |u))

∂ (u) ∂ (κ) =
(
y·l − µy·l

)T
 ∂

∂ (κ)

(Σy·l(ϕ)
)−1 ∂

(
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y·l

(η)
)

∂ (η) D
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∂
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y·l

(η)
)

∂ (η)
∂(η)
∂ (κ)

T (
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∂ (η) D

(B.50)

∂2 (L (ys
·l |u))

∂ (u) ∂ (ϕ) =
(
y·l − µy·l

)T ∂
((

Σy·l(ϕ)
)−1

)
∂ (ϕ)

∂
(
l-1
y·l

(η)
)

∂ (η) D (B.51)

for the conditional Log-Likelihood of ys
·l, as well as

∂2 (L (u))
∂ (u) ∂ (u) = ∂

∂ (u)

(au

(
ϕ(u)

))−1
θu +

∂
(
cu

(
u, ϕ(u)

))
∂ (u)


=

∂2
(
cu
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u, ϕ(u)

))
∂ (u) ∂ (u)

(B.52)

and
∂2 (L (u))
∂ (u) ∂ (ϕ) = ∂

∂ (ϕ)

(au

(
ϕ(u)

))−1
θu +

∂
(
cu

(
u, ϕ(u)

))
∂ (u)



=
∂
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au

(
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(
cu

(
u, ϕ(u)

))
∂ (u) ∂ (ϕ)

(B.53)

for the Log-Likelihood of u. The second derivatives for the cases where the first derivatives
are taken w.r.t. to the variance components ϕ are given by

∂2 (L (ys
·l |u))
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(B.54)
and

∂2 (L (ys
·l |u))
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)T ∂
((

ay·l

(
ϕ(y·l)

))−1
)

∂
(
ϕ(y·l)

) (
Σy·l(ϕ)

)−1 ∂
(
l-1
y·l

(η)
)

∂ (η) D (B.55)
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based on equalities 5.17 and B.25, as well as

∂2 (L (u))
∂
(
ϕ(u)

)
∂ (u)

= ∂2 (L (u))
∂ (u) ∂ (ϕ) , (B.56)
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and, in analogy,
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For equalities B.57 and B.58 (k ∈ {η, u}), it holds that

∂2
((

ak
(
ϕ(k)

))−1
)

∂
(
ϕ(k)

)
∂
(
ϕ(k)

)

= −
∂
((

ak
(
ϕ(k)

))−1
)

∂
(
ϕ(k)

) ∂
(
ak
(
ϕ(k)

))
∂
(
ϕ(k)

) (
ak
(
ϕ(k)

))−1

−
(
ak
(
ϕ(k)

))−1

∂
(
ak
(
ϕ(k)

))
∂
(
ϕ(k)

) ∂
((

ak
(
ϕ(k)

))−1
)

∂
(
ϕ(k)

) +
∂2
(
ak
(
ϕ(k)

))
∂
(
ϕ(k)

)
∂
(
ϕ(k)

) (ak
(
ϕ(k)

))−1


=

(
ak
(
ϕ(k)

))−1 ∂
(
ak
(
ϕ(k)

))
∂
(
ϕ(k)

) (
ak
(
ϕ(k)

))−1 ∂
(
ak
(
ϕ(k)

))
∂
(
ϕ(k)

) (
ak
(
ϕ(k)

))−1

+
(
ak
(
ϕ(k)

))−1 ∂
(
ak
(
ϕ(k)

))
∂
(
ϕ(k)

) (
ak
(
ϕ(k)

))−1 ∂
(
ak
(
ϕ(k)

))
∂
(
ϕ(k)

) (
ak
(
ϕ(k)

))−1

−
(
ak
(
ϕ(k)

))−1 ∂2
(
ak
(
ϕ(k)

))
∂
(
ϕ(k)

)
∂
(
ϕ(k)

) (ak
(
ϕ(k)

))−1

=
(
ak
(
ϕ(k)

))−1
 2 ·

∂
(
ak
(
ϕ(k)

))
∂
(
ϕ(k)

) (
ak
(
ϕ(k)

))−1 ∂
(
ak
(
ϕ(k)

))
∂
(
ϕ(k)

)
−

∂2
(
ak
(
ϕ(k)

))
∂
(
ϕ(k)

)
∂
(
ϕ(k)

)
(ak

(
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(B.59)
is the second derivative of the matrix inverse (cf. e.g. Rao, 2003, pp. 100 ff; Searle, Casella
and McCulloch, 2006, pp. 235 ff, 456). These components constitute the Jacobian

JL (Θ) =(∂(L (ys
·l |u))

∂ (κ)

)T(
∂(ℓ (u) + L (ys

·l |u))
∂ (u)

)T
∂(L (ys

·l |u))
∂
(
ϕ(y·l)

)
T∂(ℓ (u))

∂
(
ϕ(u)

)
T (B.60)
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and Hessian matrix
HL (Θ) =

∂2 (L (ys
·l |u))

∂ (κ) ∂ (κ)
∂2 (L (ys

·l |u))
∂ (κ) ∂ (u)
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∂ (κ) ∂
(
ϕ(y·l)
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∂ (κ) ∂
(
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)
∂2 (L (ys

·l |u))
∂ (u) ∂ (κ)

∂2 (L (ys
·l |u) + L (u))

∂ (u) ∂ (u)
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∂ (u) ∂
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(
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∂
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∂
(
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)
∂ (u)
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·l |u))

∂
(
ϕ(y·l)

)
∂
(
ϕ(y·l)

) 0

0
∂2 (L (u))

∂
(
ϕ(u)

)
∂ (u)

0
∂2 (L (u))

∂
(
ϕ(u)

)
∂
(
ϕ(u)

)


.

(B.61)
The expected value of the Hessian used for Fisher scoring algorithm is given by

E (HL (Θ)) =

E





∂2 (L (ys
·l |u))

∂ (κ) ∂ (κ)
∂2 (L (ys

·l |u))
∂ (κ) ∂ (u) 0 0
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∂ (u) ∂ (κ)
∂2 (L (ys
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∂ (u) ∂ (u) 0
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(
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)
0 0
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∂
(
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)
∂
(
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) 0

0
∂2 (L (u))

∂
(
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)
∂ (u)

0
∂2 (L (u))

∂
(
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)
∂
(
ϕ(u)

)




.

(B.62)
A useful characteristic when assuming u to be normally distributed as

u ∼ N
(
0,Σu

(
ϕ(u)

))
(B.63)

is that by using equalities 5.18, this results in

E
 ∂2 (L (u))

∂
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ϕ(u)

)
∂ (u)

 = E
 ∂2 (L (u))

∂ (u) ∂
(
ϕ(u)
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∂
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(
ϕ(u)

))−1
)

∂
(
ϕ(u)

) θu

+ E
∂2

(
cu

(
u, ϕ(u)

))
∂
(
ϕ(u)

)
∂ (u)



= E

1
2 ·

∂
((

au

(
ϕ(u)

))−1
)

∂
(
ϕ(u)

) µ◦2
u

− E

∂
((

au

(
ϕ(u)

))−1
)

∂
(
ϕ(u)

) u


= 0 ,

(B.64)
thus rendering the expected Hessian matrix defined in equation B.62 as block-diagonal. In
that case, the updating rules can be split in a block-wise manner, as discussed in section
5.1.5 (cf. Rao, 2003, pp. 100 ff; Searle, Casella and McCulloch, 2006, pp. 235 ff).
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B.4.4 Derivatives of B-splines
B.4.4.1 Derivatives of B-splines With Respect to the Knots
For B-splines defined in equations 5.58, the derivative with respect to the knots can be
found as

∂
(
Bl

k (xij, Kx·j )
)

∂
(
K

x·j
m

) = lim
ϵ→0

(
Bl

k (xij, Ix·j )−Bl
k (xij, Kx·j )

ϵ

)
, (B.65)

where
I

x·j
k :=

{
K

x·j
k + ϵ if k = m

K
x·j
k else

(B.66)

is the original knot vector with K
x·j
m increased by ϵ. Equation B.65 can be computed by

inserting K
x·j
m into Ix·j and I

x·j
m into Kx·j , such that

K̃
x·j :=

[
K

x·j
1 · · · Kx·j

m Ix·j
m · · · Kx·j

u

]
(B.67a)

or, equivalently,

K̃
x·j
k =


K

x·j
k if k ≤ m

I
x·j
k if k = m + 1

K
x·j
k+1 if k > m + 1

(B.67b)

is used for both functions. Using the knot inserting formulae for B-splines derived by
Böhm (1980; cf. also Böhm, Farin and Kahmann, 1984, p. 18; Eck and Hadenfeld, 1995,
p. 260), the two B-spline base functions in equality B.65 can be reformulated using the
common knot vector K̃

x·j :

Bl
k (xij, Kx·j ) =



Bl
k

(
xij, K̃

x·j
)

if 0 < k < m− l

I
x·j
m − K̃

x·j
k

K̃
x·j
k+l+1 − K̃

x·j
k

·Bl
k

(
xij, K̃

x·j
)

+ K̃
x·j
k+l+2 − I

x·j
m

K̃
x·j
k+l+2 − K̃

x·j
k+1
·Bl

k+1

(
xij, K̃

x·j
) if m− l ≤ k ≤ m

Bl
k+1

(
xij, K̃

x·j
)

if m < k < u

(B.68a)

and

Bl
k (xij, Ix·j ) =



Bl
k

(
xij, K̃

x·j
)

if 0 < k < m− l − 1

K
x·j
m − K̃

x·j
k

K̃
x·j
k+l+1 − K̃

x·j
k

·Bl
k

(
xij, K̃

x·j
)

+ K̃
x·j
k+l+2 −K

x·j
m

K̃
x·j
k+l+2 − K̃

x·j
k+1
·Bl

k+1

(
xij, K̃

x·j
) if m− l − 1 ≤ k < m

Bl
k+1

(
xij, K̃

x·j
)

if m ≤ k < u

(B.68b)

(cf. Piegl and Tiller, 1998, p. 931).
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Combining equalities B.68, the numerator of equality B.65 is

Bl
k (xij, Ix·j )−Bl

k (xij, Kx·j ) =

0 if 0 < k < m− l − 1

K
x·j
m − K̃

x·j
k

K̃
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x·j
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(B.69)

The different cases in equality B.69 can be simplified. In the first non-zero case
(k = m− l − 1), one obtains

K
x·j
m − K̃

x·j
k
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x·j
m

K̃
x·j
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=
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(B.70)

276



Mathematical Background of Weighting and Prediction Methods

For the third case, where m− l ≤ k ≤ m− 1, the result is
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x·j
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=
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(B.71)

For k = m, expression B.69 can be rewritten as
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x·j
k

· Bl
k

(
xij, K̃

x·j
)

−
K̃

x·j
k+l+2 − I

x·j
m

K̃
x·j
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(B.72)

Due to definitions B.66 and B.67, the knot vector K̃
x·j tends to Kx·j with duplicated

knot K
x·j
m for ϵ→ 0:

lim
ϵ→0

(
K̃

x·j
)

= ĎK
x·j :=

[
K

x·j
1 · · · Kx·j

m Kx·j
m · · · Kx·j

u

]
. (B.73)
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Combining these results, the derivative defined in equation B.65 is

∂
(
Bl

k (xij, Kx·j )
)

∂
(
K

x·j
m

) =



0 if 0 < k < m− l − 1

Bl
k+1

(
xij, ĎK

x·j
)

K
x·j
m −K

x·j
k+1

if k = m− l − 1

Bl
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(
xij, ĎK

x·j
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−
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k

(
xij, ĎK

x·j
)

K
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x·j
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if k = m

0 if m < k < u .
(B.74)

which is equality 5.70 (cf. Piegl and Tiller, 1998, p. 931).

B.4.4.2 Derivatives of B-splines With Respect to the Input Variable
In the following, derivatives for B-spline functions up to degree l = 2 with respect to the
input variables X are provided. Derivatives of higher order splines follow recursively.
For B-spline base functions defined in equations 5.58, the derivative for a base function
of degree l = 0 w.r.t. X is given by

∂
(
B0

k (xij, Kxij )
)

∂ (xij)
= 0 (B.75)

Using this result for base functions of degree l = 1, one obtains

∂
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∂
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∂
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(B.76)
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For base functions of degree l = 2, the result is
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The same pattern recursively occurs for derivatives of higher order B-splines (l > 2) , such
that

∂
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)

∂ (xij)
= l ·

(
Bl−1

k (xij, Kx·j )
K

x·j
k+l −K

x·j
k

−
Bl−1

k+1 (xij, Kx·j )
K

x·j
k+l+1 −K

x·j
k+1

)
, (B.78)

which constitutes equality 5.67 and can be proven in different ways (cf. de Boor, 1972;
1978, p. 138; Procházková and Procházka, 2007, p. 6)

B.4.5 Derivation of Support Vector Machines
B.4.5.1 Derivation of the Support Vector Classifier
The support vector classifier for a variable ys

·l with values yil ∈ {−1; 1} is defined by

ŷs
·l = sign

(
X̃

s
β
)

, (B.79)

where X̃
s
∈ Rns×h with x̃s

·1 := 1ns×1 as intercept column. The coefficients β are deter-
mined by

β∗ = argmin
β

1
2 ·

h∑
j=2

β2
j +

ns∑
i=1

ci · ξi


s. t. ξi ≥ 0 for all i = 1, . . . , ns

yil · (x̃s
i·β) ≥ 1− ξi for all i = 1, . . . , ns ,

(B.80)

where ξ ∈ Rns

≥0 is a slack-variable and c ∈ Rns

≥0 a corresponding penalty-parameter. The
primal Lagrange function is

LP (β) = 1
2 ·

h∑
j=2

β2
j +

ns∑
i=1

ci · ξi −
ns∑

i=1
αi · (yil (x̃s

i·β)− (1− ξi ))−
ns∑

i=1
λi · ξi , (B.81)

where α, λ ∈ Rns are vectors of Lagrange multipliers for the constraints in problem
B.80. The saddle point at the minimum with respect to

[
βT ξT

]T
and the maximum

w.r.t.
[
αT λT

]T
is an optimum of problem B.81 (cf. Geiger and Kanzow, 2002, p. 316).

Calculating the corresponding derivatives yields

∂(LP (β))
∂ (β1)

=
ns∑

i=1
αi · yil ·

∂(β1)
∂ (β1)

=
ns∑

i=1
αi · yil (B.82a)

∂(LP (β))
∂ (βj)

=
∂

(
1
2 ·

h∑
j=2

β2
j

)
∂ (βj)

−
ns∑

i=1
αi · yil ·

∂(x̃s
i·β)

∂ (βj)

= βj −
ns∑

i=1
αi · yil · x̃s

ij for all j = 2, . . . , h

(B.82b)

∂(LP (β))
∂ (ξi ) =

∂

(
ns∑

i=1
ci · ξi

)
∂ (ξi ) +

ns∑
i=1

αi ·
∂(1− ξi )

∂ (ξi ) −
ns∑

i=1
λi ·

∂(ξi )
∂ (ξi )

= ci − αi − λi .

(B.82c)
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Setting these derivatives to zero results in

0 =
ns∑

i=1
αi · yil , (B.83a)

βj =
ns∑

i=1
αi · yil · x̃s

ij for all j > 1 (B.83b)

and
0 = ci − αi − λi . (B.83c)

Plugging equalities B.83 into the components of equation B.81, the result are

1
2 ·

h∑
j=2

β2
j = 1

2 ·
h∑

j=2

 ns∑
i=1

αi · yil · x̃s
ij

2

= 1
2 ·

h∑
k=2

 ns∑
i=1

αi · yil · x̃s
ik

 ·
 ns∑

j=1
αj · yjl · x̃s

jk


= 1

2 ·
ns∑

i=1

ns∑
j=1

h∑
k=2

αi · αj · yil · yjl · x̃s
ik · x̃s

jk

(B.84a)

and
ns∑

i=1
αi · (yil (x̃s

i·β)− (1− ξi ))

=
ns∑

i=1
αi ·

yil

β1 +
h∑

j=2
x̃s

ij ·

 ns∑
k=1

αk · ykl · x̃s
kj

− ns∑
i=1

αi · (1− ξi )

=
ns∑

i=1
αi · yil

 h∑
j=2

x̃s
ij ·

 ns∑
k=1

αk · ykl · x̃s
kj

+ β1 ·
ns∑

i=1
αi · yil −

ns∑
i=1

αi · (1− ξi )

=
ns∑

i=1

ns∑
j=1

h∑
k=2

αi · αj · yil · yjl · x̃s
ik · x̃s

jk −
ns∑

i=1
αi +

ns∑
i=1

αi · ξi .

(B.84b)

Using equalities B.84, the resulting dual Lagrange function is

LD (α) = 1
2 ·

ns∑
i=1

ns∑
j=1

h∑
k=2

αi · αj · yil · yjl · x̃s
ik · x̃s

jk

−
ns∑

i=1

ns∑
j=1

h∑
k=2

αi · αj · yil · yjl · x̃s
ik · x̃s

jk +
ns∑

i=1
αi

+
ns∑

i=1
(ci − αi − λi ) · ξi

=
ns∑

i=1
αi −

1
2 ·

ns∑
i=1

ns∑
j=1

h∑
k=2

αi · αj · yil · yjl · x̃s
ik · x̃s

jk .

(B.85)
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Thus, the saddle-point of problem B.81 can be found by

α∗ = argmax
α

(
argmin

β
(LD (α))

)
= argmin

α
(−LD (α))

s. t. 0 ≤ αi ≤ ci for all i = 1, . . . , ns

ns∑
i=1

αi · yil
!= 0

(B.86)

since LD (α) is independent of β.

Computation of parameters
From equations B.83, βj can be directly computed as

βj =
ns∑

i=1
αi · yil · x̃s

ij for all j > 1 . (B.87)

The Karush-Kuhn-Tucker optimality criteria (cf. Karush, 1939; Kuhn and Tucker, 1951)
in combination with equations B.83 furthermore require that

ξi ≥ 0 (B.88a)

αi ·

yil

β1 +
h∑

j=2
x̃s

ij · βj

− (1− ξi )
 = 0 (B.88b)

λi · ξi = (ci − αi ) · ξi = 0 . (B.88c)

For 0 < αi, condition B.88b can be reformulated as

β1 = yil −
h∑

k=2
x̃s

ik · βk − ξi for all i ∈ {k : ykl = 1} (B.89a)

β1 = yil −
h∑

k=2
x̃s

ik · βk + ξi for all i ∈ {k : ykl = −1} . (B.89b)

It is evident that β1 can be computed directly from equations B.89a and B.89b if any
ξi = 0. As follows from equations B.88c, this is the case if any 0 < αi < ci holds. For
numerical stability, the average of all values fulfilling the above conditions is used:

β1 = E
yil −

h∑
j=2

xij · βj

∣∣∣∣∣∣0 < αi < ci

 . (B.90)

If the condition is not met by any αi , so {i : 0 < αi < ci} = ∅, the mid-point of the
interval determined by inequality B.88a is used as approximation:

β1 ≈
1
2 ·
Max

yil −
h∑

j=2
x̃s

ij · βj

∣∣∣∣∣∣αi = ci, yil = −1


+ Min
yil −

h∑
j=2

x̃s
ij · βj

∣∣∣∣∣∣αi = ci, yil = 1
 (B.91)

(cf. Chang and Lin, 2011, p. 10; Smola and Schölkopf, 2004, p. 201).
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B.4.5.2 Derivation of the Support Vector Regression
The predictions in a support vector regression are defined by

ŷs
·l = X̃

s
β , (B.92)

where, as before, X̃
s
∈ Rns×h with x̃s

·1 := 1ns×1 as intercept column. The parameters are
determined by

β∗ = argmin
β

(
1
2 ·

h∑
j=2

β2
j +

ns∑
i=1

ci · ξi +
ns∑

i=1
ci · ξ∗

i

)
s. t. ξi , ξ∗

i ≥ 0 for all i = 1, . . . , ns

ys
il − x̃s

i·β ≤ e + ξi for all i = 1, . . . , ns

−ys
il + x̃s

i·β ≤ e + ξ∗
i for all i = 1, . . . , ns ,

(B.93)

where ξ, ξ∗ ∈ Rns

≥0 are slack-variables and c ∈ Rns

≥0 a penalty-parameter attributed to
them. The primal Lagrange function is

LP (β) = 1
2 ·

h∑
j=2

β2
j +

ns∑
i=1

ci · ξi +
ns∑

i=1
ci · ξ∗

i −
ns∑

i=1
λi · ξi −

ns∑
i=1

λ∗
i · ξ∗

i

−
ns∑

i=1
αi · (e + ξi − ys

il + x̃s
i·β)

−
ns∑

i=1
α∗

i · (e + ξ∗
i + ys

il − x̃s
i·β) ,

(B.94)

with Lagrange multipliers α, α∗, λ, λ∗ ∈ Rns for the constraints in problem B.93. As
before, the saddle point at the minimum with respect to

[
βT ξT (ξ∗)T

]T
and the

maximum w.r.t.
[
αT (α∗)T λT (λ∗)T

]T
is an optimum of problem B.94 (cf. Geiger

and Kanzow, 2002, p. 316). Calculating the corresponding derivatives yields

∂(LP (β))
∂ (β1)

=−
ns∑

i=1
αi ·

∂(β1)
∂ (β1)

−
ns∑

i=1
α∗

i ·
∂(−β1)
∂ (β1)

=
ns∑

i=1
(α∗

i − αi ) (B.95a)

∂(LP (β))
∂ (βj)

=
∂

(
1
2 ·

h∑
j=2

β2
j

)
∂ (βj)

−
ns∑

i=1
αi ·

∂

(
h∑

j=2
x̃s

ij · βj

)
∂ (βj)

−
ns∑

i=1
α∗

i ·
∂

(
−

h∑
j=2

x̃s
ij · βj

)
∂ (βj)

=βj −
ns∑

i=1
(αi − α∗

i ) · x̃s
ij

(B.95b)

∂(LP (β))
∂ (ξi ) =

∂

(
ns∑

i=1
ci · ξi

)
∂ (ξi ) −

ns∑
i=1

αi ·
∂(ξi )
∂ (ξi ) −

ns∑
i=1

λi ·
∂(ξi )
∂ (ξi ) = ci − αi − λi

(B.95c)

∂(LP (β))
∂ (ξ∗

i ) =
∂

(
ns∑

i=1
ci · ξ∗

i

)
∂ (ξ∗

i ) −
ns∑

i=1
α∗

i ·
∂(ξ∗

i )
∂ (ξ∗

i ) −
ns∑

i=1
λ∗

i ·
∂(ξ∗

i )
∂ (ξ∗

i ) = ci − α∗
i − λ∗

i .
(B.95d)
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Setting these derivatives to zero results in

0 =
ns∑

i=1
(α∗

i − αi ) (B.96a)

βj =
ns∑

i=1
(αi − α∗

i ) · x̃s
ij (B.96b)

0 = ci − αi − λi = ci − α∗
i − λ∗

i . (B.96c)

By plugging these results into the components of equation B.94, one obtains

1
2 ·

h∑
j=2

β2
j = 1

2 ·
h∑

j=2

 ns∑
i=1

(αi − α∗
i ) · x̃s

ij

2

= 1
2 ·

h∑
k=2

 ns∑
i=1

(αi − α∗
i ) · x̃s

ik

 ·
 ns∑

j=1

(
αj − α∗

j

)
· x̃s

jk


= 1

2 ·
h∑

k=2

ns∑
i=1

ns∑
j=1

(αi − α∗
i ) ·

(
αj − α∗

j

)
· x̃s

ik · x̃s
jk ,

(B.97a)

ns∑
i=1

αi · (e + ξi − ys
il + x̃s

i·β) =
ns∑

i=1
αi · β1 +

ns∑
i=1

αi · e +
ns∑

i=1
αi · ξi −

ns∑
i=1

αi · ys
il

+
h∑

k=2

ns∑
i=1

ns∑
j=1

αi ·
(
αj − α∗

j

)
· x̃s

ik · x̃s
jk

(B.97b)

and
ns∑

i=1
α∗

i · (e + ξi + ys
il − x̃s

i·β) = −
ns∑

i=1
α∗

i · β1 +
ns∑

i=1
α∗

i · e +
ns∑

i=1
α∗

i · ξ∗
i +

ns∑
i=1

α∗
i · ys

il

−
h∑

k=2

ns∑
i=1

ns∑
j=1

α∗
i ·
(
αj − α∗

j

)
· x̃s

ik · x̃s
jk .

(B.97c)

The resulting dual Lagrange function is hence

LD (α, α∗) = 1
2 ·

h∑
k=2

ns∑
i=1

ns∑
j=1

(αi − α∗
i ) ·

(
αj − α∗

j

)
· x̃s

ik · x̃s
jk

+
ns∑

i=1
ci · ξi +

ns∑
i=1

ci · ξ∗
i −

ns∑
i=1

λi · ξi −
ns∑

i=1
λ∗

i · ξ∗
i

+
ns∑

i=1
αi · ys

il −
ns∑

i=1
αi · β1 +

ns∑
i=1

αi · e +
ns∑

i=1
αi · ξi

−
h∑

k=2

ns∑
i=1

ns∑
j=1

αi ·
(
αj − α∗

j

)
· x̃s

ik · x̃s
jk

−
ns∑

i=1
α∗

i · ys
il +

ns∑
i=1

α∗
i · β1 +

ns∑
i=1

α∗
i · e +

ns∑
i=1

α∗
i · ξ∗

i

+
h∑

k=2

ns∑
i=1

ns∑
j=1

α∗
i ·
(
αj − α∗

j

)
· x̃s

ik · x̃s
jk
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= 1
2 ·

h∑
k=2

ns∑
i=1

ns∑
j=1

(αi − α∗
i ) ·

(
αj − α∗

j

)
· x̃s

ik · x̃s
jk

+
ns∑

i=1
(ci − αi − λi ) · ξi +

ns∑
i=1

(ci − α∗
i − λ∗

i ) · ξ∗
i

+
h∑

k=2

ns∑
i=1

ns∑
j=1

(α∗
i − αi ) ·

(
αj − α∗

j

)
· x̃s

ik · x̃s
jk

+
ns∑

i=1
αi · ys

il +
ns∑

i=1
αi · e

−
ns∑

i=1
α∗

i · ys
il +

ns∑
i=1

α∗
i · e + β1 ·

ns∑
i=1

(α∗
i − αi )

= 1
2 ·

h∑
k=2

ns∑
i=1

ns∑
j=1

(αi − α∗
i ) ·

(
αj − α∗

j

)
· x̃s

ik · x̃s
jk

−
h∑

k=2

ns∑
i=1

ns∑
j=1

(αi − α∗
i ) ·

(
αj − α∗

j

)
· x̃s

ik · x̃s
jk

−
ns∑

i=1
α∗

i · ys
il +

ns∑
i=1

α∗
i · e +

ns∑
i=1

αi · ys
il +

ns∑
i=1

αi · e

= − 1
2 ·

h∑
k=2

ns∑
i=1

ns∑
j=1

(αi − α∗
i ) ·

(
αj − α∗

j

)
· x̃s

ik · x̃s
jk

+
ns∑

i=1
(αi − α∗

i ) · ys
il − e ·

ns∑
i=1

(αi + α∗
i ) .

(B.98)

Thus, the saddle-point of problem B.94 can be found by

(α, α∗)∗ = argmax
(α,α*)

(
argmin

β
(LD (α, α∗))

)
= argmin

(α,α*)T
(−LD (α, α∗))

s. t. 0 ≤ αi, ≤ ci for all i = 1, . . . , ns

0 ≤ α∗
i ≤ ci for all i = 1, . . . , ns

ns∑
i=1

(αi − α∗
i ) = 0

(B.99)

since LD (α, α∗) does not depend on β.
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Computation of parameters
From equation B.96b, βj can be directly computed as

βj =
ns∑

i=1
(αi − α∗

i ) · x̃s
ij . (B.100)

The KKT-conditions introduced in section 4.2 (cf. Karush, 1939; Kuhn and Tucker, 1951)
and equations B.96c furthermore state that

ξi , ξ∗
i ≥ 0 (B.101a)

αi ·

e + ξi − ys
il + β1 +

h∑
j=2

x̃s
ij · βj

 = 0

α∗
i ·

e + ξ∗
i + ys

il − β1 −
h∑

j=2
x̃s

ij · βj

 = 0
(B.101b)

λi · ξi = (ci − αi ) · ξi = 0
λ∗

i · ξ∗
i = (ci − α∗

i ) · ξ∗
i = 0 .

(B.101c)

Transformation of conditions B.101b yields

β1 = ys
il + e + ξ∗

i −
h∑

j=2
x̃s

ij · βj for all i ∈ {k : 0 < α∗
k}

β1 = ys
kl − e− ξk −

h∑
j=2

x̃s
kj · βj for all i ∈ {k : 0 < αk} .

(B.102)

It is evident that β1 can be computed directly from equations B.102 if any ξi = 0 or ξ∗
i = 0.

As follows from equations B.101c, this is the case if any 0 < αi < ci or 0 < α∗
i < ci holds.

For numerical stability, the average of all values fulfilling the above conditions is used:

β1 = 1
2 ·

E
ys

il + e−
h∑

j=2
x̃s

ij · βj

∣∣∣∣∣∣0 < α∗
i < ci



+ E
ys

il − e−
h∑

j=2
x̃s

ij · βj

∣∣∣∣∣∣0 < αi < ci


 .

(B.103)

If the conditions are not met by any αi or α∗
i , so {k : 0 < αk < ck} = {k : 0 < α∗

k < ck} =
∅, the mid-point of the interval determined by inequalities B.101a is chosen as an approx-
imation:

β1 ≈
1
2 ·

Max
ys

il + e−
h∑

j=2
x̃s

ij · βj

∣∣∣∣∣∣α∗
i = ci



+ Min
ys

il − e−
h∑

j=2
x̃s

ij · βj

∣∣∣∣∣∣αi = ci




(B.104)

(cf. Chang and Lin, 2011, p. 10; Smola and Schölkopf, 2004, p. 201).
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B.4.6 Derivation of Shrinkage Methods
B.4.6.1 Unconstrained Shrinkage Methods
As discussed in section 5.1.11, shrinkage methods induce an (additional) constraint to the
optimization problem, which has the form

p (Θ) ≤ b (B.105)

for some prespecified constant b ≥ 0. In case of unconstrained penalization, where

Θ∗ = argmin
Θ

(δ (Θ) + λ · p (Θ)) , (B.106)

it holds that b is a monotonically decreasing function of λ.
Consider the opposite, such that λ2 > λ1 and p (Θ∗

2) > p (Θ∗
1). It then follows that

(λ2 − λ1) (p (Θ∗
2)− p (Θ∗

1)) > 0
⇒ λ1 p (Θ∗

1) + λ2 p (Θ∗
2) > λ2 p (Θ∗

1) + λ1 p (Θ∗
2)

⇒ δ (Θ∗
1) + λ1 p (Θ∗

1) + δ (Θ∗
2) + λ2 p (Θ∗

2) > δ (Θ∗
1) + λ2 p (Θ∗

1) + δ (Θ∗
2) + λ1 p (Θ∗

2) ,
(B.107)

which contradicts optimality B.106 and hence cannot be true (cf. Hastie, Tibshirani and
Friedman, 2008, pp. 61 ff; Hoerl and Kennard, 1970; Tibshirani, 1994; 1996).

B.4.6.2 Shrinkage Parameter Selection
As described in section 5.1.11, leave-one-out cross-validation results from setting b = 1 in
algorithm 14. Consequently, a model mi

(
xs

i·, Θ(i) (λ)
)

excluding only a single observation
i is fit in step 6 of algorithm 14 for all i = 1, . . . , ns and each candidate value of λ. In
analogy to equality 5.127, let B ∈ Rns×ns be the smoother matrix resulting from this
model that predicts all observations in Ss, such that

mi
(
xs

i·, Θ(i) (λk)
)

= bi·Y
s (B.108)

is the prediction for element i. When predictions are linear in Y (cf. equality 5.127 and
the related discussion), equality B.108 may equivalently be written as

mi
(
xs

i·, Θ(i) (λk)
)

= ai·Ỹ
s (B.109a)

for the adjusted dependent variable

Ỹ
s := Y s + V

(
mi

(
Xs, Θ(i) (λk)

)
− Y s

)
=

[
(ys

1·)
T . . .

(
ys

i−1·

)T (
mi

(
xs

i·, Θ(i) (λk)
))T (

ys
i+1·

)T
. . . (ys

ns·)
T
]T

,
(B.109b)

using an indicator matrix V ∈ {0; 1}ns×ns
with elements defined by

vjk := I (j = k = i) . (B.109c)

Together, equalities 5.127, B.108 and B.109 result in

bi·Y
s = ai·Ỹ

s = ai·Y
s + ai·V

(
mi

(
Xs, Θ(i) (λk)

)
− Y s

)
= ŷs

i· + aii · bi·Y
s − aii · ys

i·

= (1− aii)−1 · (ŷs
i· − aii · ys

i·) .

(B.110)
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Denoting the matrix containing only the diagonal elements of A by C := diag (diag (A)),

B := (A−C)⊘ ((Ins −C) 1ns×ns) (B.111)

is the matrix that can be used to calculate mi
(
xs

i·, Θ(i) (λk)
)

for all elements i = 1, . . . , ns

at once using equality B.108 (cf. Craven and Wahba, 1979; Hastie and Tibshirani, 1990,
pp. 46 ff; Golub, Heath and Wahba, 1979; Wood, 2017, pp. 169 ff).
From equalities B.110, it furthermore follows directly that

bi·Y
s − ys

i· = (1− aii)−1 · (ŷs
i· − aii · ys

i· − (1− aii) · ys
i·)

= (1− aii)−1 · (ŷs
i· − ys

i·) .
(B.112)

For generalized cross-validation, aii in the denominator of the right-hand side of equality
B.112 is replaced by its expectation E (aii) = tr (A)/ns to simplify computation for
the residual sum of squares (cf. Craven and Wahba, 1979; Hastie and Tibshirani, 1990,
pp. 46 ff; Golub, Heath and Wahba, 1979; Wood, 2017, pp. 169 ff).

B.5 Mathematical Background of Calibrated
Artificial Neural Networks

B.5.1 Gradient Information for Optimization
B.5.1.1 Derivatives of the Distance Function
The distance function for estimating calibrated ANNs is defined in equation 5.160 as

δ (Θ) := v1 · δm (ω) + 1
2 · v

T
I (Θ−CΘ)◦2 , (B.113)

where δm (ω) is the distance function of the artificial neural network defined in equation
5.82, and I = {2, . . . , u + 1} is used to subset all elements of v but the first. As the
derivative of a general weighted squared function is given by

∂

∂ (s)

(
h · (s− u)2

2

)
= h

2 ·
∂
(
(s− u)2

)
∂ (s− u) ·

∂(s− u)
∂ (s)

= h · (s− u) ,

(B.114)

the derivative of the quadratic parts of the distance function are given by

∂

∂ (Θj)

v(j+1) ·

(
Θj − CΘj

)2

2

 = v(j+1) ·
(
Θj − CΘj

)
. (B.115)

Hence, the resulting Jacobian for the distance function δ (Θ) is

Jδ (Θ) = v1 ·
[
Jδm (ω) 01×p 01×r

]
+ (vI ◦ (Θ−CΘ))T , (B.116)

where Jδm (ω) is the Jacobi matrix of the artificial neural network distance function defined
in equation 5.83.
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B.5.1.2 Derivatives of the Constraints
Recall that for the weighting model, the estimated participation propensities are given by
the predictions of an artificial neural network p̂nps (ω) for target variables rnps representing
the binary inclusion indicator for the non-probability sample (cf. equations 2.2 and 5.152).
The correction weights are determined by the inverse of these propensities, such that

w̃ = w̃ (ω) = wnps ⊘ p̂nps (ω) (B.117)

are the calibration weights with derivatives defined by

∂(w̃)
∂ (p̂nps) = − diag

(
wnps ⊘ (p̂nps (ω))◦2

)
. (B.118)

Therefore, the Jacobian matrix of w̃ (ω) is obtained as

Jw̃ (ω) = − diag
(
wnps ⊘ (p̂nps (ω))◦2

)
Jw̃ (p̂nps (ω))

= −
(
11×dim(ω) ⊗

(
wnps ◦ (p̂nps (ω))◦(−2)

))
◦ Jp̂nps (ω) ,

(B.119)

where dim (ω) is again the number of weighting parameters, and Jp̂nps (ω) is the Jacobian
matrix of ANN predictions defined in equation 5.84. To achieve a compact and coherent
presentation, multiplication of a vector with the inverse of a scalar is denoted as a fraction
in the following derivations, i.e. a

h
:= a · h−1. Furthermore, a variable which is centered

around its mean is again denoted by e (x·k) (cf. equations 3.6).
The following equations provide the components for calculating the Jacobi matrix of the
constraint functions used in problem 5.158, as defined in 5.164 and 5.163. The derivatives
for the sums of the weights and squared weights respectively are

∂
(

N̂ (w̃)
)

∂ (w̃) = 1nnps×1
(B.120a)

and
∂
(

N̂
(
w̃◦2

))
∂ (w̃) = 2 · w̃ . (B.120b)

Based on equalities B.120, differentiation of the bias correction factor for covariances
yields

∂(ν (w̃))
∂ (w̃)

=


∂
(

N̂
(
w̃◦2

))
∂ (w̃) ·

(
N̂ (w̃)

)2
−

∂

((
N̂ (w̃)

)2
)

∂ (w̃) · N̂
(
w̃◦2

)
 ·

(
N̂ (w̃)

)−4

=
(

2 · w̃ ·
(

N̂ (w̃)
)2
− 2 · 1nnps×1 · N̂ (w̃) · N̂

(
w̃◦2

))
·
(

N̂ (w̃)
)−4

= 2 ·
(

N̂ (w̃)
)−3
·
(

w̃ · N̂ (w̃)− 1nnps×1 · N̂
(
w̃◦2

))
.

(B.121)
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The gradients for totals and means can be calculated as

∂(τ̂x·k (w̃))
∂ (w̃) = xnps

·k (B.122)

and

∂
(
µ̂x·k

(w̃)
)

∂ (w̃) =

N̂ (w̃) · ∂(τ̂x·k (w̃))
∂ (w̃) − τ̂x·k (w̃) ·

∂
(

N̂ (w̃)
)

∂ (w̃)

 · N̂ (w̃)−2

=
(

N̂ (w̃) · xnps
·k − τ̂x·k (w̃)

)
·
(

N̂ (w̃)
)−2

=
(

N̂ (w̃)
)−1
· e (x·k) .

(B.123)

Using equality B.123, the derivative of the ML covariance estimate for two variables x·k
and x·l is

∂
([
Σ̃X (w̃)

]
kl

)
∂ (w̃)

= ∂(µ̂ (xnps
·k ◦ xnps

·l , w̃))
∂ (w̃)

−
∂
(
µ̂x·k

(w̃)
)

∂ (w̃) · µ̂x·l
(w̃) −

∂
(
µ̂x·l

(w̃)
)

∂ (w̃) · µ̂x·k
(w̃)

=
(

N̂ (w̃)
)−1
·
(
e (x·k ◦ x·l)− xnps

·k · µ̂x·l
(w̃)− xnps

·l · µ̂x·k
(w̃)

)
.

(B.124)

Equalities B.124 and B.121 can be used for differentiation of the corresponding unbiased
estimate for the covariance of x·k and x·l, which yields

∂
([
Σ̂X (w̃)

]
kl

)
∂ (w̃) =

 ∂
([
Σ̃X (w̃)

]
kl

)
∂ (w̃i)

· (1− ν (w̃))

− ∂(1− ν (w̃))
∂ (w̃) ·

[
Σ̃X (w̃)

]
kl

 · (1− ν (w̃))−2

= (1− ν (w̃))−1 ·

∂
([
Σ̃X (w̃)

]
kl

)
∂ (w̃)

+ 2 ·

[
Σ̂X (w̃)

]
kl(

N̂ (w̃)
)3 ·

(
w̃ · N̂ (w̃)− 1nnps×1 · N̂

(
w̃◦2

)) .

(B.125)
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The derivative of the product of the standard deviations of x·k and x·l is

∂
(√[

Σ̃X (w̃)
]

kk
·
√[

Σ̃X (w̃)
]

ll

)
∂ (w̃)

=
∂
([
Σ̃X (w̃)

]
kk

)
∂ (w̃) ·

∂
([

Σ̃X (w̃)
]0.5

kk

)
∂
([
Σ̃X (w̃)

]
kk

) ·√[Σ̃X (w̃)
]

ll

+
∂
([
Σ̃X (w̃)

]
ll

)
∂ (w̃) ·

∂
([

Σ̃X (w̃)
]0.5

ll

)
∂
([
Σ̃X (w̃)

]
ll

) ·√[Σ̃X (w̃)
]

kk

=
∂
([
Σ̃X (w̃)

]
kk

)
∂ (w̃) ·

√[
Σ̃X (w̃)

]
ll

2 ·
√[

Σ̃X (w̃)
]

kk

+
∂
([
Σ̃X (w̃)

]
ll

)
∂ (w̃) ·

√[
Σ̃X (w̃)

]
kk

2 ·
√[

Σ̃X (w̃)
]

ll

.

(B.126)

Using equalities B.125 and B.126, differentiation of a correlation with respect to the new
weights results in

∂([ρ̂X (w̃)]kl)
∂ (w̃) =

√[
Σ̃X (w̃)

]
kk
·
√[

Σ̃X (w̃)
]

ll[
Σ̃X (w̃)

]
kk
·
[
Σ̃X (w̃)

]
ll

·
∂
([
Σ̃X (w̃)

]
kl

)
∂ (w̃)

−

[
Σ̃X (w̃)

]
kl[

Σ̃X (w̃)
]

kk
·
[
Σ̃X (w̃)

]
ll

·
∂
(√[

Σ̃X (w̃)
]

kk
·
√[

Σ̃X (w̃)
]

ll

)
∂ (w̃)

=
(√[Σ̃X (w̃)

]
kk
·
√[

Σ̃X (w̃)
]

ll

)−1
·

∂
([
Σ̃X (w̃)

]
kl

)
∂ (w̃)



− [ρ̂X (w̃)]kl

2 ·


([Σ̃X (w̃)

]
kk

)−1 ∂
([
Σ̃X (w̃)

]
kk

)
∂ (w̃)



+
([Σ̃X (w̃)

]
ll

)−1 ∂
([
Σ̃X (w̃)

]
ll

)
∂ (w̃)


 .

(B.127)

The derivatives of weighted totals, covariances and correlations are composed of these
components. From equality B.122, it follows that

∂(τ̂ (Xnps, w̃))
∂ (w̃) =

∂(τ̂ (xnps
·1 , w̃))

∂ (w̃) · · ·
∂
(
τ̂
(
xnps

·p , w̃
))

∂ (w̃)

 = Xnps , (B.128)

and equation B.124 determines the elements of

∂
(
vec

(
Σ̃X (w̃)

))
∂ (w̃) =

∂
([
Σ̃X (w̃)

]
11

)
∂ (w̃)

∂
([
Σ̃X (w̃)

]
12

)
∂ (w̃) · · ·

∂
([

Σ̃X (w̃)
]

pp

)
∂ (w̃)

 . (B.129)
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The resulting Jacobian for the equality constraint function

sg (Θ) :=

 (τ̂X (w̃))T(
vec

(
Σ̃X (w̃)

))T

 −


(
τ̂X

(
wcal

))T(
vec

(
Σ̃X

(
wcal

)))T

 ◦
ϵ

ε

 (B.130)

defined in equation 5.164 is thus

J
sg (Θ) =


(Xnps)T Jw̃ (ω) −diag

(
τ̂X

(
wcal

))
0p×r∂

(
vec

(
Σ̃X (w̃)

))
∂ (w̃)

T

Jw̃ (ω) 0r×p −diag
(
vec

(
Σ̃X

(
wcal

)))
 .

(B.131)
Equivalent expressions for calibrating unbiased covariances or correlations follow from
respectively replacing Σ̃ by Σ̂ or ρ̂ in equations B.129 and B.131. The required derivatives
are then determined by B.125 and B.127, respectively.
Because the inequality constraints are defined as

g̃ (Θ) :=
[
LΘ
Θ

]
−
[

Θ
UΘ

]
(B.132)

in equation 5.163, the corresponding Jacobian matrix is simply

Jg̃ (Θ) =
[
−Iu

Iu

]
. (B.133)

B.5.2 The Link Between Covariance Calibration and Post-
stratification

The maximum likelihood covariance estimator for two variables x·k and x·l using weights
w̃ for the non-probability sample nps defined in equation 2.18c can be written as[

Σ̃X (w̃)
]

kl
= τ̂x·k◦x·l (w̃)

N̂ (w̃)
− τ̂x·k (w̃)

N̂ (w̃)
· τ̂x·l (w̃)

N̂ (w̃)
. (B.134)

Assuming that matrix X contains an intercept x·1 := 1N×1 as well as an interaction term
x·k ◦ x·l in addition to the main effects x·k and x·l, constraints 5.142 imply that

N̂ (w̃) != N̂
(
wcal

)
τ̂x·k (w̃) != τ̂x·k

(
wcal

)
τ̂x·l (w̃) != τ̂x·l

(
wcal

)
τ̂x·k◦x·l (w̃) != τ̂x·k◦x·l

(
wcal

)
.

(B.135)

From constraints B.135, it follows directly that the ML covariance estimator defined in
equation B.134 is calibrated as well because all components required for its calculation
coincide: [

Σ̃X (w̃)
]

kl
=

[
Σ̃X

(
wcal

)]
kl

. (B.136)
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Therefore, covariance-based measures of association can be adjusted by using terms
that represent main and interaction effects. This, for example, is the case when it
comes to post-stratification or raking to known cell counts in cross-tables (cf. Deville
and Särndal, 1992, p. 380; Deville, Särndal and Sautory, 1993, p. 1015). In this manner,
even correlations may be aligned by calibrating all component (co-)variances (cf. equation
2.18d). Due to equality 2.18f, however, this is not the case for unbiased covariance
estimators.

B.6 Rationale of MSE-intervals
A vector of arbitrary weights w̃ ∈ Rnnps is used for the non-probability sample. The
coefficient of variation for these weights is

CV (w̃) :=
√

V (w̃)
/

(E (w̃))2 . (B.137a)

The weighted version r̃ nps ∈ RN of the sample inclusion indicator rnps is defined by

r̃ nps
i :=

w̃i if i ∈ Snps

0 else ,
(B.137b)

and the sampling fraction is

frnps := E (rnps) = nnps/N . (B.137c)

Based on definitions B.137, it holds that

E (V ( r̃ nps | rnps )) = frnps · V ( r̃ nps | rnps
i = 1)

= frnps · V (w̃)
(B.138a)

and

V (E ( r̃ nps | rnps )) = frnps ·
(

E ( r̃ nps | rnps
i = 1)

− frnps · E ( r̃ nps | rnps
i = 1)

)2

+ (1− frnps) · (frnps · E ( r̃ nps | rnps
i = 1))2

= frnps · (1− frnps) · (E (w̃))2 · (1− frnps)
+frnps · (1− frnps) · (E (w̃))2 · frnps

= frnps · (1− frnps) · (E (w̃))2 .

(B.138b)

It then follows that

E (r̃ nps) = E (E ( r̃ nps | rnps ))
= frnps · E ( r̃ nps | rnps

i = 1)
= frnps · E (w̃) ,

(B.138c)
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and, by the law of total variance (cf. e.g. Blitzstein and Hwang, 2013, p. 401),

V (r̃ nps) = E (V ( r̃ nps | rnps )) + V (E ( r̃ nps | rnps ))
= frnps ·

(
V (w̃) + (1− frnps) · (E (w̃))2

)
.

(B.138d)

Based on equalities B.137 and B.138, CV (r̃ nps) can hence be written as

CV (r̃ nps) =
√

V (r̃ nps)
/

E (r̃ nps)

=
√

frnps ·
(
V (w̃) + (1− frnps) · (E (w̃))2

)/
(frnps · E (w̃))

=
√(

1− frnps + V (w̃)
/

(E (w̃))2
)/

frnps

=
√(

1− frnps + (CV (w̃))2
)/

frnps .

(B.139)

Furthermore, it holds that√(
1− frnps + (CV (w̃))2

)/
frnps√

(1− frnps)/frnps
=

√
1− frnps + (CV (w̃))2

√
1− frnps

=

√√√√1− frnps + (CV (w̃))2

1− frnps

=

√√√√1 + (CV (w̃))2

1− frnps .

(B.140)

For design linear estimators, deviations between estimated and true statistics ϑ̂k and ϑk

for all k = 1, . . . , h elements of ϑ̂ ∈ Rh can then be written using equalities B.139 and
B.140:

ϑ̂k − ϑk = E (tk (Y ) ◦ r̃ nps) · (E (r̃ nps))−1 − E (tk (Y ))
= (E (tk (Y ) ◦ r̃ nps)− E (tk (Y )) · E (r̃ nps)) · (E (r̃ nps))−1

= ρtk(Y )r̃ nps ·
√

V (tk (Y )) ·
√

V (r̃ nps)
/

E (r̃ nps)

= ρtk(Y )r̃ nps ·
√

V (tk (Y )) ·
√(

1− frnps + (CV (w̃))2
)/

frnps

= ρtk(Y )r̃ nps ·
√

1− frnps

frnps ·
√

V (tk (Y )) ·

√√√√1 + (CV (w̃))2

1− frnps .

(B.141)

(cf. Meng, 2018, pp. 690, 702).
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Appendix C Documentation of R-packages
As summarized in section 6.1.2, three R-packages are developed in the context of this
thesis. In the current appendix C, an overview of the functionality of these packages is
provided. To that end, excerpts from the R-package manuals are subsequently presented,
which contain the descriptions of functions most relevant for this thesis. Mathematical
and computational details of the implementations chapters 4 and 5.
Note that while an alpha version for package sqp is already available via the Com-
prehensive R Archive Network (CRAN; https://cran.r-project.org/), packages
ann and calmod are still under development. Therefore, package documentations and
functionalities may be subject to updates before stable releases are available.

C.1 Documentation for Package sqp

Package ‘sqp’
15.04.2021

Type Package
Title (Sequential) Quadratic Programming
Version 0.5
Date 2020-03-25
Author Simon Lenau
Maintainer Simon Lenau <lenau@uni-trier.de>
Description Solving procedures for quadratic programming with optional equality and

inequality constraints, which can be used for by sequential quadratic programming
(SQP). Similar to Newton-Raphson methods in the unconstrained case, sequen-
tial quadratic programming solves non-linear constrained optimization problems
by iteratively solving linear approximations of the optimality conditions of such a
problem. The Hessian matrix in this strategy is commonly approximated by the
BFGS method in its damped modification (cf. Powell, 1978; Nocedal and Wright,
1999). All methods in this package are implemented in C++ as header-only library,
such that they are easily usable in other packages.

License GPL-3
Imports Matrix, Rdpack
LinkingTo Rcpp, RcppArmadillo, RcppEigen
SystemRequirements C++11, GNU Make
NeedsCompilation yes
RdMacros Rdpack
Encoding UTF-8
RoxygenNote 7.1.0
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bfgs_init (Initial) Hessian approximation based on finite differences

Description

The BFGS-update for approximating the Hessian matrix Hf (Θ(0)) of a function f
requires an initial ’guess’ for this matrix. This is usually either a scalar multiple of
the identity matrix or an approximation based on finite differences. This function
generates a finite difference approximation for the Hessian matrix, based on a vector
of initial parameters Θ(0) and a function ∇f (Θ(0)) generating the gradient. The finite
difference approximation is defined by

H̃(0)
ij (Θ(0)) = ∇f (Θ(0) + ϵ)−∇f (Θ(0))

ϵi

,

where ϵ is a vector of the same dimension as Θ(0) that contains exactly one non-zero
value, which is its i-th element ϵi > 0.

Usage

bfgs_init(
parm,
gradient_function,
eps = 1e-4,
force_symmetric = TRUE
)

Arguments
parm

Numeric vector of size N:
Initial / current parameters Θ(0) at which the finite differences approximation
should take place.

gradient_function
Function:
The gradient function ∇f , which must accept argument parm as input, and
must return a scalar or vector.

eps Numeric value:
The difference (ϵi > 0) for the finite differences approximation.

force_symmetric
Boolean value:
Whether to force the result to be symmetric. This is done by taking the mean
of the approximation and its transpose.

Value

A dense matrix of size N ×N :
The Hessian approximation H̃(0)

ij (Θ(0)) based on finite differences
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Examples
library(sqp)
set.seed(3)
N <- 5

start.parm <- cbind(runif(N))

## Analytical distance function, gradient and Hessian matrix
distance.function <- function(parm)

1/5*sum(parm^5) + 1/3*sum(parm^3)

gradient.function <- function(parm)
cbind((parm^4) + (parm^2))

hessian.function <- function(parm)
diag(c(4*parm^3+2*parm))

## Finite difference approximation
H <- bfgs_init(parm=start.parm,

gradient_function=gradient.function,
eps = 1e-12,
force_symmetric = TRUE)

## Compare analytical Hessian matrix with finite difference approximation
hessian.function(start.parm)
print(H)

bfgs_update (Damped) BFGS Hessian approximation

Description

BFGS update for approximation of the Hessian matrix Hf (Θ of a function f (cf.
Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno 1970) in its damped version
proposed by Powell (1978). The approximation is based on first-order information
(differences in parameters Θ and gradients ∇f (Θ between two iterations). The
update in iteration k is defined by

H̃(k)
ij (Θ(k)) = H̃(k−1)

ij (Θ(k−1)) + yyT

yT s
−

H̃(k−1)
ij (Θ(k−1))ssT H̃(k−1)

ij (Θ(k−1))
sT H̃(k−1)

ij (Θ(k−1))s
,

where
s = Θ(k) −Θ(k−1)

is the difference in parameters between two subsequent iterations, and

y = ∇f (Θ(k))−∇f (Θ(k−1))
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is the corresponding difference in gradients.

Usage

bfgs_update(
hessian,
old_y,
new_y,
old_gradient,
new_gradient,
constraint_adjustment = TRUE
)

Arguments
hessian

Dense matrix of size N ×N :
Current approximation H̃

(k−1)
ij of the Hessian matrix, which is updated by

reference. Needs to be symmetric positive definite. A common starting point
for the BFGS algorithm is the identity matrix or an approximation by finite
differences.

old_y, new_y, old_gradient, new_gradient
Numeric vectors of size N:
Parameters old_y,new_y (Θ(k−1) and Θ(k)), and corresponding gradients
old_gradient, new_gradient (∇f (Θ(k−1) and ∇f (Θ(k)) from previous and
current iteration.

constraint_adjustment
Boolean:
Whether to enforce positive definiteness, mainly for constrained optimization.

Value

NULL. Argument ’hessian’ is updated by reference.

References

Broyden CG (1970). “The convergence of a class of double-rank minimization al-
gorithms: 2. The new algorithm.” IMA journal of applied mathematics, 6(3), pp.
222–231. doi: 10.1093/imamat/6.3.222.
Fletcher R (1970). “A new approach to variable metric algorithms.” The computer
journal, 13(3), pp. 317–322. doi: 10.1093/comjnl/13.3.317.
Goldfarb D (1970). “A family of variable-metric methods derived by variational
means.” Mathematics of computation, 24(109), pp. 23–26. doi: 10.1090/S00255718-
197002582496.
Powell MJ (1978). “A fast algorithm for nonlinearly constrained optimization calcu-
lations.” In Numerical analysis, pp. 144–157. Springer. doi: 10.1007/BFb0067703.
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Shanno DF (1970). “Conditioning of quasi-Newton methods for function minimiza-
tion.” Mathematics of computation, 24(111), pp. 647–656. doi: 10.1090/S00255718-
19700274029X.

Examples
library(sqp)
set.seed(3)
N <- 5

start.parm <- cbind(runif(N))

## Analytical distance function, gradient and Hessian matrix
distance.function <- function(parm)

1/5*sum(parm^5) + 1/3*sum(parm^3)

gradient.function <- function(parm)
cbind((parm^4) + (parm^2))

hessian.function <- function(parm)
diag(c(4*parm^3+2*parm))

## Finite difference approximation
H <- bfgs_init(parm=start.parm,

gradient_function=gradient.function,
eps = 1e-12,
force_symmetric = TRUE)

## Compare analytical Hessian matrix with finite difference approximation
hessian.function(start.parm)
print(H)

## Make first update
parm.1 <- start.parm - solve(H)%*%gradient.function(start.parm)

## Check decrease of distance function
distance.function(start.parm)
distance.function(parm.1)

## BFGS update for Hessian approximation
bfgs_update(hessian=H,

old_y = start.parm,
new_y = parm.1,
old_gradient=gradient.function(start.parm),
new_gradient=gradient.function(parm.1),
constraint_adjustment = FALSE)

## Make second update
parm.2 <- parm.1 - solve(H)%*%gradient.function(parm.1)

## Check decrease of distance function
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distance.function(parm.1)
distance.function(parm.2)

qp_solver Quadratic optimization solver

Description

Dense & Sparse solvers for linearly constrained quadratic optimization problems (cf.
Fletcher 1971; Nocedal and Wright 1999; Powell 1978; Wilson 1963). This function
iteratively solves quadratic optimization problems under Neq linear equality and Nineq

linear inequality constraints. Slack variables ξ = [(ξ+
eq)T , (ξ−

eq)T , (ξineq)T ]T can be
used for infeasible or temporarily violated constraints. In summary, such problems
have the form

argminΘ,ξ(ΘT QΘ + ΘT l + ς · ||ξ||1)
s.t.

CeqΘ + ξ+
eq − ξ−

eq = teq

CineqΘ− ξineq ≤ tineq

ξ ≥ 0

for a vector of N unknown parameters Θ = [Θ1, . . . , ΘN ]T .

Usage

qp_solver(
Q,
C_eq = NULL,
C_ineq = NULL,
l = NULL,
t_eq = NULL,
t_ineq = NULL,
x = NULL,
penalty = 1e+10,
tol = 1e-07,
max_iter = 500,
fast = FALSE,
all_slack = FALSE,
debug = FALSE,
solver = 0

)

Arguments
Q, C_eq, C_ineq

Dense or sparse numeric matrices:
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Q N ×N -matrix:
Quadratic distance multiplier Q for the optimization problem. Typically
a (damped) BFGS approximation of the Hessian matrix.

C_eq Neq ×N -matrix:
Equality constraint multiplier Ceq for the Neq equality constraints.

C_ineq Nineq ×N -matrix:
Inequality constraint multiplier Cineq for the Nineq inequality constraints.

l, t_eq, t_ineq
Numeric vectors:
l Vector of size N :

Linear distance multiplier l for the optimization problem .
t_eq Vector of size Neq:

Targets teq for equality constraints.
t_ineq Vector of size Nineq:

upper bounds tineq for inequality constraints.
x Numeric vector of size N:

Initial values for optimization parameters Θ. Slack variables are only used for
constraints violated by this x unless all_slack is TRUE.

penalty
Numeric value:
Penalty multiplier ς for slack variables in distance function.

tol Numeric value:
Tolerance for assessing convergence criteria & constraints.

max_iter
Integer value:
Maximum number of iterations for the active set strategy in presence of
inequality constraints.

fast
Boolean:
Whether to use faster (but lower quality) solver (cf. Armadillo documen-
tation): “fast mode: disable determining solution quality via rcond, disable
iterative refinement, disable equilibration”.

all_slack
Boolean:
Whether to use slack variables for all constraints instead of
only for the ones violated by the initial values

debug
Boolean:
Whether to print debugging status messages.

solver
Solver identification used for optimization in the dense matrix case. Not yet
used.
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Details

Sequential quadratic programming relies on iteratively solving linear approximations
of the optimality conditions to update parameters Θ (cf. Kjeldsen 2000; Kuhn and
Tucker 1951). This is equivalent to minimizing a quadratic approximation of the
distance function under linearized constraint functions. Therefore, qp_solver can
be used to solve such quadratic sub-problem in sequential quadratic programming.
Solving a quadratic problem under linear equality constraints is equivalent to solving
a system of linear equations. The inequality constraints are handled by an active set
strategy, where the binding ones are treated as equalities, and the active set is found
iteratively (cf. Fletcher 1971; Nocedal and Wright 1999; Powell 1978; Wilson 1963).

Value

A named list with values
x Final values for optimization parameters
lagrange_eq, lagrange_ineq Lagrange multipliers for equality and inequality con-

straints
slack_eq_positive, slack_eq_negative Positive and negative slack variables for

equality constraints
slack_ineq Slack variables for inequalities constraints
lagrange_slack_eq_positive, lagrange_slack_eq_negative,
lagrange_slack_ineq

Lagrange multipliers for positivity of slack variables

Note

Although there is already an implementation for using the SuperLU sparse solver
within this package, the solver itself is currently not included due to licensing con-
siderations. Therefore, sparse matrices are converted to dense ones in the solving
procedure. Hopefully, this can be updated in the near future.

References

Fletcher R (1971). “A general quadratic programming algorithm.” IMA Journal of
Applied Mathematics, 7(1), pp. 76–91. doi: 10.1093/imamat/7.1.76.
Kjeldsen TH (2000). “A contextualized historical analysis of the Kuhn-Tucker theo-
rem in nonlinear programming: the impact of World War II.” Historia mathematica,
27(4), pp. 331-361. doi: 10.1006/hmat.2000.2289.
Kuhn HW and Tucker AW (1951). “Nonlinear programming.” In Neyman J (ed.),
Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Pro-
bability. http://web.math.ku.dk/~moller/undervisning/MASO2010/kuhntucker
1950.pdf.
Nocedal J and Wright SJ (1999). Numerical optimization. Springer, New York.
ISBN 387987932.
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Powell MJ (1978). “A fast algorithm for nonlinearly constrained optimization calcu-
lations.” In Numerical analysis, pp. 144–157. Springer. doi: 10.1007/BFb0067703.
Wilson RB (1963). A simplicial algorithm for concave programming. PhD thesis,
Harvard University.

Examples

set.seed(1)
n <- 5

x_init <- cbind(runif(n))

w <- runif(n)

## minimize sum(3*x^2 + 3*x)
Q <- 3*diag(n)
l <- cbind(rep(3,n))

## Equality constraints: sum(x) == 1 and sum(w*x) == 5
C_eq <- rbind(1,w)
t_eq <- rbind(1,5)
## Inequality constraints: all(x >= -4) & all(x <= 4)
C_ineq <- rbind(diag(n),-diag(n))
t_ineq <- cbind(rep(c(4,4),each=n))

output <- qp_solver(Q = Q,
C_eq = C_eq,
C_ineq = C_ineq,
l=l,
t_eq = t_eq,
t_ineq = t_ineq,
x = x_init,
tol = 1e-15)

## Check equality constraints I: sum(x) == 1
sum(output$x)
## Check equality constraints II: sum(w*x) == 5

## Check inequality constraints I: all(x >= -4)
all(output$x >= -4)
## Check inequality constraints II: all(x <= 4)
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C.2 Documentation for Package ann

Package ‘ann’
15.04.2021

Type Package
Title Artificial Neural Networks
Version 1.0
Date 2020-03-25
Author Simon Lenau
Maintainer Simon Lenau <lenau@uni-trier.de>
Description Object-oriented implementation of artificial neural networks. This package

implements ANNs in C++ and provides pointers to R. Neural networks can be fit
by gradient descent or the BFGS algorithm. Both options can be combined with
batch learning. Semi-parametric components in form of B-Spline layers may be
used, which allow optimizing knots as coefficients of the ANN.

License GPL-3
LinkingTo Rcpp, RcppArmadillo, RcppEigen, sqp
SystemRequirements C++11, GNU Make
RdMacros Rdpack
Encoding UTF-8
RoxygenNote 7.1.0

ann Semi-parametric artificial neural network object

Description

An artificial neural network (ANN) is composed of one or multiple layers i = l, . . . , L,
specified in the constructor. It maps input variables X to output variables Y, using
layer-specific activation functions t(l) and coefficients Θ(l). Predictions of the ANN
are obtained by

Ŷ = t(L)(
L∑

j=0
X̃(j)Θ(j))

X̃(l) = t(l)(
L∑

j=0
X̃(j)Θ(j))

X̃(0) = X .

(cf. Bishop 1995; Hagan et al. 1996). This package implements ANNs in an object-
oriented programming context, where the R-object is solely a pointer to a C++ object.
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The artificial neural network itself is completely implemented in C++. For ease of
fitting and use of ANNs in R, various utility wrapper functions and methods are
available (see examples and details below).
Fitting of the neural network can be done by gradient descent or by using the BFGS
algorithm implemented in package sqp. Both options can be used for batch learning
as well (see examples and details below).
As an important feature of this package, semi-parametric components in form of
B-Spline layers may be used, which allow optimizing knots as coefficients of the
ANN. Further details on theory and implementation beyond the examples and details
provided below can be found in Lenau (2021).

Usage

ann <- ann(x = x,
y = y,
layer_spec = layer_spec,
weight = weight,
distance_function = distance_function)

Arguments

x Numeric matrices:
The independent / input variables for the ann

y Numeric matrices:
The dependent / target / output variables for the ann

layer_spec
List:
The declaration of layers for the ann. Each list element of layer_spec is itself
a list, with named elements
add_bias Boolean value: Whether a bias / intercept column should be added

to the layers output.
input_layers Vector of indices for the input layers, where 0 corresponds to the

input layer. A single numeric value unless link_function='concatenation'.
link_function String value: Link function of the layer that is applied to an

input row-vector ηi for each observation i. One of
"linear" The identity activation function

t(l)(ηi) = ηi.

"softmax" The softmax activation function
t(l)(ηi) = exp(ηi)/||exp(ηi)||1 .

"raking" The raking activation function
t(l)(ηi) = exp(−ηi).

"bspline" The B-spline base functions of degree d
t(l)(ηi) = Bd(ηi, Θ(l)),
where Θ(l) are the spline’s knots.
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"concatenation" Activation function that can be used to concatenate
(combine) the outputs of two or more layers, such that e.g.
t(l)(ηk

i , ηl
i) = [ηk

i , ηk
l ],

where ηk
i is the output of layer k .

"split" Activation function that can be used to split (select certain columns
of) the output of a layer, such that e.g.
t(l)(ηi) = [[ηi]1, . . . , [ηi]j]
for j<length(ηi). In this context, [ηi]j denotes the j-th element of
ηi.

coefficients (semi-optional) Initial values for the layer’s coefficients, in ma-
trix form.

dim (semi-optional) Output dimension (number of output columns) of the
layer.

Note: At least one of coefficients or dim must be specified to define the
layer’s output dimension.

input_columns (optional) Indices of the input columns, where 0 corresponds
to the first column. Ignored unless link_function='split'.

n_knots (optional) Number of knots in a B-spline layer.
Ignored unless link_function='bspline'.

degree (optional) Degree of the B-spline base function.
Ignored unless link_function='bspline'.

optimize_knots (optional) Boolean value: Whether to optimize the knot
locations (TRUE) or keeping them fixed (FALSE).
Ignored unless link_function='bspline'.

weights
Numeric vector:
The case-weights applied for the distance function in the fitting process. If
NULL (the default), all observations are given a weight of one.

distance_function
String value:
The distance function to be used for fitting. One of:
"squared" Squared loss function, i.e. residual sum of squares over all depen-

dent variables Y
"entropy" Deviance / cross-entropy, which is the negative binomial log-likelihood

in case of a single binary dependent variable Y)
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Details

For fitting the neural network, a distance function δ(Θ(1), . . . , Θ(L)) is minimized
w.r.t. the optimization parameters Θ(l) for all l = 1, . . . , L. These parameters are
updated by

Θ(l)
new = Θ(l)

old − r ·∆Θ(l) ,

where
∆Θ(l) = Q−1 ∂ δ(Θ(1), . . . , Θ(L))

∂ Θ(l)

is the step direction and r is the step size. Furthermore Q is a symmetric matrix
whose inverse is multiplied with the distance function’s derivative w.r.t. Θ(l). In
backpropagation, r is the learning rate, and Q is an identity matrix of appropriate
dimension. In the BFGS-update, r is typically determined by a line search, and Q
is an approximation for the Hessian matrix of δ (cf. Armijo 1966; Jarre and Stoer
2004; Nocedal and Wright 1999; Nesterov 2004).
After each update of all parameters, the predictions are updated by

Ŷ = t(L)(
L∑

j=0
X̃(j)Θ(j))

X̃(l) = t(l)(
L∑

j=0
X̃(j)Θ(j))

X̃(0) = X .

In Batch learning, parameter updates are based on a subset of all observations. It can
be achieved by providing one of the optional arguments batch_size or batch_index
to functions bfgs or backward_propagation (see examples).
batch_index is a vector of observation indices that identifies observations used for
the current parameter update.
batch_size is an integer value that determines the size of a batch that is selected
from all observations by simple random sampling without replacement.

Value

ann is the constructor for an artificial neural network object.
layer_declaration returns a list that describes the layers of the ann object.
input and target respectively return numeric matrices of input and target variables.
input_centering, input_scaling target_centering and target_scaling return
boolean values that respectively indicate whether input / target variables are cur-
rently centered / scaled.
input_center, input_scale, target_center, target_scale return numeric vec-
tors of current centering / scaling values for input / target variables, respectively.
weights returns a numeric vector of current observation weights.
learning_rate returns a numeric value that constitutes the learning rate (fixed step
width).
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coef returns a list, where each list element contains coefficients Θ(l) for all layers
l = 0, . . . , l.
coef_vec returns a vector that contains all coefficients Θ(l) for all layers l = 0, . . . , l
in a vectorized form.
distance_type returns a string value that describes the current loss .
copy.ann and as.ann return an ann object.
parameter_randomization, forward_evaluation, backward_propagation, bfgs_-
init and bfgs return NULL because they are used to update an ann object by
reference.
converged returns a boolean value that indicates whether the change in individual
loss contributions for all observations and target variables is smaller than argument
tol.
distance_value returns a numeric matrix of individual loss contributions for all
observations and target variables.
fitted and residuals return numeric matrices of respectively predictions / predic-
tion errors for all observations and target variables.
intercept returns an integer vector containing the indices of intercept (bias) para-
meters in the vectorized coefficients.
as.list returns a list that contains all relevant information of the ann object.

References

Armijo L (1966). “Minimization of Functions Having Lipschitz Continuous First
Partial Derivatives.” Pacific Journal of Mathematics, 16(1), pp. 1–3. doi: 10.2140/
pjm.1966.16.1.
Bishop CM (1995). Neural Networks for Pattern Recognition. Calrendon Press,
Oxford. ISBN 978-0-19-853864-6.
Hagan MT, Demuth HB, Beale MH and De Jesus O (1996). Neural Network Design,
2 edition. Pws Pub., Boston. ISBN 0-9717321-1-6.
Jarre F and Stoer J (2004). Optimierung. Springer, Berlin. ISBN 978-3-642-18785-8.
Lenau S (2021). Statistical and Machine Learning Methods for Handling Selectivity
in Non-Probability Samples. PhD thesis, University of Trier.
Nesterov YE (2004). Introductory Lectures on Convex Optimization: A Basic Course.
Springer, New York. ISBN 978-1-4613-4691-3, doi: 10.1007/9781441988539.
Nocedal J and Wright SJ (1999). Numerical Optimization. Springer, New York.
ISBN 978-0-387-22742-9.
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Examples

library(ann)
set.seed(3)

######################################
## Generate data for basic examples
######################################

n <- 400
## Independent variable, including intercept
x <- cbind(1,rnorm(n,30,0.5))
## Dependent variable
y <- cbind(50 +

5*x[,2] +
4*(x[,2]-mean(x[,2]))^2 +
1*(x[,2]-mean(x[,2]))^3 +
rnorm(n,0,2))

## Observation weights
w <- 1/runif(n)

## Plot independent and dependent variable
plot(x[,2],y)

######################################
## Construct ANN
######################################

## Using a single layer with linear activation function,
## this ANN represents a simple linear regression structure
ann <- ann(x = x,

y = y,
layer_spec =

list(list(dim = 1,
link_function = "linear",
input_layers = 0,
add_bias = FALSE)),

weight = w,
distance_function = "squared")

## Inspect layer specification of the ANN
layer_declaration(ann)

## Get current input (independent) variables
input(ann)
## Set new input (independent) variables (same as old one in this case)
input(ann) <- x

## Get current output (dependent) variables
target(ann)
## Set new output (dependent) variables (same as old one in this case)
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target(ann) <- y

## Check whether input variables are currently centered and scaled
## using weighted means and standard deviations
input_centering(ann)
input_scaling(ann)
## Check current centering and scaling values for input variables
## (constant columns are kept unchanged)
input_center(ann)
input_scale(ann)
## Set whether input variables are centered and scaled
input_centering(ann) <- TRUE
input_scaling(ann) <- TRUE

## Check whether output variables are currently centered and scaled
## using weighted means and standard deviations
target_centering(ann)
target_scaling(ann)
## Check current centering and scaling values for target variables
## (constant columns are kept unchanged)
target_center(ann)
target_scale(ann)
## Set whether output variables are centered and scaled
target_centering(ann) <- TRUE
target_scaling(ann) <- TRUE

## Get current observation weights
weights(ann)
## Set new observation weights (same as old one in this case)
weights(ann) <- w

## Get current learning rate (multiplier for gradient descent)
learning_rate(ann)
## Set new learning rate (usually <= 1)
learning_rate(ann) <- 0.1

## Get current coefficients
coef(ann) # coefficients in layer-structure
coef_vec(ann) # coefficients in combined vector
## Randomize initial coefficients
## (gradient descent may fail if these are zero)
parameter_randomization(ann)
coef(ann)

## Get current distance (loss) function
distance_type(ann)
## Set new distance function (same as old one in this case)
distance_type(ann) <- "squared"

######################################
## Fit ANN
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######################################

## Make copy of ANN
## to compare fitting via backpropagation (gradient descent) and BFGS
ann2 <- copy.ann(ann)

## Fit using backpropagation (gradient descent)
for(i in 1:1000)
{

## Forward-pass (update predictions from coefficients)
forward_evaluation(ann)
## Backward-pass (update coefficients from gradients)
backward_propagation(ann)
## Check whether change in distance function is larger than tolerance
if(i>1 & converged(ann,tolerance=1e-12))
{

forward_evaluation(ann)
cat("Backpropagation converged after ",i," iterations\n")
break()

}
}

## Fit using BFGS updates
## (alternative to backpropagation, using approximate Hessian matrix)

## Initialize BFGS information
bfgs_init(ann2)
for(i in 1:1000)
{

## Forward-pass (update predictions from coefficients)
forward_evaluation(ann2)
## BFGS-Update
bfgs(ann2)
## Check whether change in distance function is larger than tolerance
if(i>1 & converged(ann2,tolerance=1e-12))
{

forward_evaluation(ann2)
cat("BFGS converged after ",i," iterations\n")
break()

}
}

## Get current distance function values as sums of individual components
sum(distance_value(ann))
sum(distance_value(ann2))

## Get current fitted values of the ANNs
fitted(ann)
## Add fitted values to plot
points(x=x[,2],y=fitted(ann),col="red",pch=4)
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## Check whether backpropagation and BFGS lead to the same results
all.equal(fitted(ann),fitted(ann2))
all.equal(coef_vec(ann),coef_vec(ann2))

## Get current residuals of the ANN
residuals(ann)

## Make out-of-sample predictions for different input data
x_newdata <- cbind(1,rnorm(n,30,0.5))
predict(ann,x_newdata)
## Add predictions to plot
points(x=x_newdata[,2],y=predict(ann,x_newdata),pch=1,col="blue")

######################################
## Miscellaneous functions for ANNs
######################################

## Determine intercept parameters
intercept(ann) # Intercept's position
coef_vec(ann)[intercept(ann)] # Intercept's value

## Convert ann to list, e.g.\ for saving to .RData file
ann_list <- as.list(ann)
## re-create ann from list
ann3 <- as.ann(ann_list)

C.3 Documentation for Package calmod

Package ‘calmod’
15.04.2021

Type Package
Title Calibrated semi-parametric neural networks as integrated response and calibration

models
Version 1.0
Date 2020-03-25
Author Simon Lenau
Maintainer Simon Lenau <lenau@uni-trier.de>
Description Implementation of calibrated semi-parametric neural networks which allow

for incorporation of total, covariance and correlation calibration in response models.
This package provides an integration and extensions of response (propensity) and
calibration weighting, which are widespread techniques for different purposes, such
as non-response adjustments and estimation from non-probability samples.

License GPL-3
Imports Rdpack
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LinkingTo Rcpp, RcppArmadillo, RcppEigen, RcppParallel, data.table (>= 1.11.4), sqp,
ann

SystemRequirements C++11, GNU Make
NeedsCompilation yes
RdMacros Rdpack
Encoding UTF-8
RoxygenNote 7.1.0

cov_calib General response and/or calibration models

Description

Response propensity and calibration weighting are widespread techniques for different
purposes, such as non-response adjustments and estimation from non-probability
samples. cov_calib provides an integration and extension of these approaches.
The general aim is to obtain a vector of response or calibration weights w̃ of size n
for a sample of interest. These weights are determined as a function

w̃ = f(Z, ω) ◦w

of a matrix of auxiliary variables Z, where ω is a vector of parameters to be es-
timated. Furthermore, w denotes a vector of initial weights and ◦ is element-wise
multiplication. The function f is referred to as the response model. To allow a flexible
specification, this response model can be an arbitrary semi-parametric artificial neural
network (ANN). which incorporates highly relevant special cases, such as generalized
linear and additive regression models. Semi-parametric artificial neural network are
implemented in package ann and allow for highly flexible specification of response
models f(Z, ω) = p̂◦(−1). In this context, p̂ is the estimated response propensity
obtained from the ANN, and ◦ denotes element-wise power of vector elements.
At the same time, calibration constraints may be used to enforce similarity or coin-
cidence between weighted estimates and some benchmark information. For example,
soft calibration of totals induces constraints of the form

τ̂X(w̃) = τX ◦ ϵ,

where X is a matrix of calibration variables for the sample. Further, τX is a vector of
known population totals (benchmarks) for these variables, and τ̂X(w̃) are estimates
of these totals that depend on w̃. The deviation of estimates from benchmarks is
expressed by a vector ϵ of corresponding dimension. (cf. Chang and Kott 2008;
Estevao and Saerndal 2000; Estevao and Saerndal 2006; Folsom and Singh 2000;
Kott 2006). Analogous calibration of weighted covariances or correlations is possible
as well, i.e.

Σ̂X(w̃) = ΣX ◦ E

or
ρ̂X(w̃) = ρX ◦ E,
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where Σ̂X(w̃), ΣX, ρ̂X(w̃), and ρX denote estimated and true covariances or corre-
lations, respectively. In analogy to ϵ, E represents a matrix of multipliers to express
calibration error. Since this matrix is symmetric by definition of covariances and
correlations, the unique elements of E are denoted by ε.
In general, the model is fit by finding optimization parameters

Θ = [ωT , ϵT , εT ]T

through solving the optimization problem

δ(Θ) = u · δANN(ω) + 1
2 · v ◦ (Θ−CΘ)◦2 ,

s.t.

τ̂X(w̃) = τX ◦ ϵ

Σ̂X(w̃) = ΣX ◦ E

LΘ ≤ Θ ≤ UΘ ,

where correlations ρ̂X may be calibrated instead of covariances Σ̂X, as summarized
above. In this context, u and v constitute importance weights, CΘ is a vector of
centering constants for parameters Θ of corresponding dimension, and LΘ as well as
UΘ are vectors of lower and upper bounds for Θ of the same dimension. Inequalities
are applied element-wise. Furthermore, δANN(ω) is the scalar-valued loss function of
the ANN response model. This distance component is used only when a reference
sample is available, in which case it typically corresponds to the negative binomial
log-likelihood (deviance) of the model. If no reference sample is available, δANN(ω) is
ignored by setting u = 0. The implementation for fitting these models with respect to
calibration constraints for totals, covariances and correlations is based on sequential
quadratic programming (SQP), which is implemented in package sqp.
The resulting weights are flexible and can be adapted to various degrees of auxiliary
information for weighting adjustments in the context of non-probability samples or
non-response. They allow representing many important weighting methods as special
cases, such as the generalized regression estimator (cf. Deville and Saerndal 1992) or
response propensity weighting (cf. Rosenbaum and Rubin 1983).
Further details on theory and implementation can be found in Lenau (2021).
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Usage

cov_calib(
calibration_variables = NULL,
weight = NULL,
model_variables = NULL,
parm_lb = NULL,
parm_ub = NULL,
parm_center = NULL,
calibration_variables_reference = NULL,
weight_reference = NULL,
model_variables_reference = NULL,
tau_lb = NULL,
tau_ub = NULL,
cov_lb = NULL,
cov_ub = NULL,
tau_target = NULL,
cov_target = NULL,
loss_weight = NULL,
parm_weight = NULL,
tau_weight = NULL,
cov_weight = NULL,
cutoff_min_tau = NULL,
cutoff_min_cov = NULL,
ann_specification = NULL,
GRID = NULL,
penalty_start = 0,
penalty_constant = 1e-05,
step_limitation = 0.2,
step_basis = 0.9,
maxeval = 500L,
maxeval_local = 500L,
maxeval_stepsize = 500L,
maxeval_initial_values = 50L,
weight_rescale_type = 0L,
solver_no = 0L,
batch_size = NULL,
type = "direct",
sparse = TRUE,
adjust_range = TRUE,
batch_constraints = FALSE,
cor = FALSE,
ML = FALSE,
calibrate_reference_union = FALSE,
scale_intercept = TRUE,
bfgs_init_type = 1L,
simplify_bfgs_update = FALSE,
bfgs_initial_values = FALSE,
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step_information = FALSE,
debug = FALSE,
greg_init = 0L,
raking_p_constraints = TRUE,
tolerance = 1e-08

)

Arguments
calibration_variables

Numeric matrix:
Matrix of calibration variables (X) observed in the sample of interest. Esti-
mates for these variables are adjusted towards calibration benchmarks pro-
vided as arguments tau_target and cov_target.
Default: NULL, such that no calibration constraints are used.

weight
Numeric vector or value:
Vector of initial weights (w) for the sample of interest, e.g. design weights.
Default: NULL, corresponding to constant weights for all observations.

model_variables
Numeric matrix:
Matrix of independent variables in the response model (Z) observed for the
sample of interest. These are the input variables for the artificial neural
network constructing the weights, such that resulting weights are a function
of these variables.
Default: NULL, in which case an identity matrix is used. This works only
when type='direct'.

parm_lb, parm_ub
Numeric vectors or values:
Lower and upper bounds Lω and Uω for the neural network parameters ω,
defining the feasible range of these parameters as entries of LΘ and UΘ.
Default: NULL, indicating no boundaries.

parm_center
Numeric vector or value:
Centering constants Cω for neural network parameter s ω, which are entries of
CΘ. As described above, ridge penalization is applied for parameters deviating
from these constants.
Default: NULL, indicating centering constants to be zero (except for the
intercept(s) if scale_intercept=TRUE).

calibration_variables_reference
Numeric matrix:
Matrix of calibration variables (X) observed in the reference sample. See ar-
gument calibration_variables. Used in conjunction with calibration_-
variables only if calibrate_reference_union=TRUE.
Default: NULL, corresponding to no calibration of the reference sample.
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weight_reference
Numeric vector:
Vector of observation weights (w) for the reference sample. See argument
weight. Used for weighting the response model’s loss function δANN(ω), and
for the resulting calibration weights if calibrate_reference_union=TRUE.
Default: NULL, corresponding to constant weights for all observations.

model_variables_reference
Numeric matrix:
Matrix of response model variables (Z) observed in the reference sample. See
argument model_variables. Used in conjunction with model_variables, to
calculate the ANN’s loss function δANN(ω).
Default: NULL, in which case the reference sample is not used for estimating
parameters Θ.

tau_lb, cov_lb, tau_ub, cov_ub
Numeric vectors or values:
Lower and upper bounds Lϵ, Lε, Uϵ, and Uε, for ϵ and ε. As components of
LΘ, and UΘ, these boundaries can be used to limit the permissible deviations
from calibration benchmarks.
Default: NULL, indicating no boundaries for the deviation from benchmarks.

tau_target
Numeric vector:
Vector of total calibration benchmarks τX.
Default: NULL, corresponding to no total calibration.

cov_target
Numeric matrix:
Matrix of covariance or correlation calibration benchmarks ΣX or ρX.
Default: NULL, corresponding to no covariance of correlation calibration.

loss_weight
Numeric value:
Importance weight u for the ANN’s loss-function as component of the overall
distance measure. This value determines the importance of the ANN’s loss
function δANN(ω) in optimization when estimating parameters Θ.
Default: NULL.

parm_weight
Numeric vector or value:
Importance weights (entries of v) for the squared distance (ω−Cω)◦2 between
response model parameters and parm_center as component of the overall
distance measure. These values determine the importance of the ridge penalty
terms in optimization when estimating parameters Θ.
Default: NULL.

tau_weight
Numeric vector or value:
Importance weights (entries of v) for the squared distance between estimated
and benchmark totals (ϵ−1)◦2 as component of the overall distance measure.
This value determines the importance of the deviation from total benchmarks
in optimization when estimating parameters Θ.
Default: NULL.
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cov_weight
Numeric vector or value:
Importance weights (entries of v) for the squared distance between estimated
and benchmark covariances or correlations (ε−1)◦2 as component of the overall
distance measure. This value determines the importance of the deviation
from covariance or correlation benchmarks in optimization when estimating
parameters Θ.
Default: NULL.

cutoff_min_tau, cutoff_min_cov
Numeric value:
Minimal values for benchmarks to be considered for total or covariance cal-
ibration. Benchmarks below these cutoff values are ignored because relative
deviations ϵ or ε for values close to zero can cause numerical instabilities.
Default: NULL, indicating no cutoff value.

ann_specification
List:
The layer specification for the artificial neural network, as described for ar-
gument layer_spec in package ann. Not used unless type='ann'. Default:
NULL, which does only work if type!='ann'.

GRID
List:
A named list for performing grid-searches of hyper-parameters. Currently not
used.
Default: NULL.

penalty_start
Numeric value:
Initial penalty multiplier for slack variables in sequential quadratic program-
ming. The penalty multiplier is described as argument penalty for function
qp_solver in package sqp
Default: 0

penalty_constant
Numeric value:
Minimal increase of penalty_start in each SQP iteration.
Default: 0.00001

step_limitation
Numeric value:
Lower bound for the decrease of the loss-function in the Armijo-type line
search.
Default: 0.2

step_basis
Numeric value:
Multiplier for the step-size in the Armijo-type line search.
Default: 0.9

maxeval
Integer value:
Maximum number of iterations for the SQP-algorithm.
Default: 500
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maxeval_local
Integer value:
Maximum number of iterations for the QP-algorithm, which is used within the
SQP-algorithm.
Default: 500

maxeval_stepsize
Integer value:
Maximum number of iterations for the Armijo-type line search.
Default: 500

weight_rescale_type
Integer value:
Type of weight rescaling that is applied to w before optimization. One of:
0 No rescaling
1 Weights are scaled to sum to the number of observations in target and

reference sample
2 Weights are scaled to sum to the number of observations in the target

sample
3 Weights are scaled to sum to one
4 Weights are scaled to all be smaller than one
Default: 0

solver_no
Integer value:
Solver identification used for optimization if sparse=FALSE, i.e. in the dense
matrix case. Not yet used.
Default: 0

batch_size
Integer value:
Size of batches (sub-samples) for stochastic gradient descent.
Default: NULL, corresponding to using all observations.

type
String value:
The type of weighting model to be used. One of:
"direct" GREG-type weighting model, using one parameter for each obser-

vation in the sample
"logit" Logistic regression model, corresponding to a generalized linear model

with logit link.
"raking" A generalized raking model, which is similar to the logit model with

a different link function, (cf. Kott 2006)
"ann" A general semi-parametric ANN, which requires layers to be specified

in argument ann_specification.
Default: direct
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sparse
Boolean:
Whether to use a sparse solver for optimization in the SQP-algorithm.
Default: TRUE

adjust_range
Boolean:
Whether the range of distance metric components should be scaled to have
the same maximum. This is achieved by rescaling importance weights u and
v. If adjust_range=TRUE, the ANN’s loss function δANN(ω), ridge penalty for
ANN coefficients (ω−Cω)◦2, and squared relative deviations from calibration
targets (ϵ− 1)◦2 and (ε− 1)◦2 are all ≤ 1.
Default: TRUE

batch_constraints
Boolean:
If batch learning (stochastic gradient descent) is used (batch_size!=NULL):
Whether updates of calibration constraints in SQP should also be based on the
batches rather than all observations.
Default: FALSE

cor Boolean:
Whether argument cov_target contains correlations ρ̂X (TRUE) instead of
covariances Σ̂X (FALSE).
Default: FALSE

ML Boolean:
Whether covariance calibration is to be done for maximum likelihood (TRUE)
or unbiased (FALSE) covariance estimates Σ̂X.
Default: FALSE

calibrate_reference_union
Boolean:
Whether calibration should be done for the union of target and reference
sample.
Default: FALSE, in which case only the target sample is calibrated.

scale_intercept
Boolean:
Whether intercept parameter(s) (if any) should be scaled before optimization
to account for the population size.
Default: TRUE

bfgs_init_type
Integer value:
Type of ’initial guess’ used for initializing the BFGS Hessian approximation.
One of:
0 Finite differences approximation for the Hessian of the Lagrange function
1 Finite differences approximation for the Hessian of the loss function
2 Identity matrix
Higher values result in faster but less accurate initialization of the algorithm.
Default: 1
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simplify_bfgs_update
Boolean:
Whether to use the BFGS update only for the weighting neural network
parameters ω, and keep the Hessian fixed for the calibration error parameters
ϵ and ε.
Default: FALSE

step_information
Boolean:
Whether information about each optimization step should be included in the
output.
Default: FALSE

debug
Boolean:
Whether debug information should be printed while fitting the weighting
model.
Default: FALSE

greg_init
Integer value:
Type of parameter initialization. One of:
0 Parameters are chosen such that all initial weights are equal.
1 Parameters are chosen such that initial weights are (close to) GREG weights.
2 Parameters are chosen such that initial weights are (close to) GREG weights,

but larger than one.
Default: 1

raking_p_constraints
Boolean:
Whether probabilities p̂ in the raking model should be explicitly constrained
to be numerically greater than zero. Only used if type='raking'.
Default: TRUE

tolerance
Numeric value:
Tolerance for numerical optimization.
Default: 0.00000001

Value

A list, containing the vector of weights w̃ and information about the weighting model
from which it is obtained.
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Examples

library(calmod)

set.seed(3)
N <- 50000
n <- 500

## Generate calibration variables
x0 <- cbind(rep(1,N))
x1 <- cbind(rlnorm(N))
x2 <- 0.5*x1+rlnorm(N)
X <- cbind(x0,x1,x2)

## Generate response model variables
z0 <- x0
z1 <- 0.5*x1+0.5*rlnorm(N)
z2 <- 0.75*x2+0.25*rlnorm(N)
Z <- cbind(z0,z1,z2)

## Generate response probabilities
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pi <- 1/(1+exp(-rowSums(Z)))
pi <- pi/sum(pi)*n

## draw sample (Poisson sampling)
smp <- which(runif(N) <= pi)

## draw reference sample (simple random sampling)
smp_ref <- sample.int(N,n)

## Fit calibrated propensity (logit) model
weights <- cov_calib(

calibration_variables = X[smp,],
model_variables = Z[smp,],
model_variables_reference = Z[smp_ref,],
tau_target = colSums(X),
cov_target = cov(X),
tau_lb = 0.9,
tau_ub = 1.1,
cov_lb = 0.9,
cov_ub = 1.1,
maxeval = 1000,
type = "logit",
cor=FALSE,
ML=TRUE

)
## Print summary:
## weights, weighting parameters and calibration constraints
summary(weights)
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Appendix D Additional Results for the
German WageIndicator Web
Survey

Considering the same data and variables, the following tables provide results that are
complementary to those discussed in chapter 7. Outcomes for combinations of model-
and pseudo-design-based approaches for point estimation are summarized in tables D.1
to D.4, considering the mean absolute error over all income classes. The individual
estimated frequencies for each class are provided in tables D.5 and D.6. Corresponding
estimated standard deviations of the point estimates are presented in tables D.7 and D.8.
Since it is not clear which inferential approach is the most adequate for non-probability
samples, these results are based on the most conservative approach, which are Monte
Carlo bootstrap estimates of the total variance (cf. section 5.4). Similar as in chapter 7,
each of the tables is organized in blocks that encompass methods using the same kind of
auxiliary information.
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Table D.1: Mean absolute errors for income class frequencies (in percentage points) estimated by
weighted aggregation of predictions in the WI (weighting methods without response
propensity model)
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Calibration benchmarks: None
Unweighted 2.8 3.8 3.9 3.8 3.8 3.8 7.0 5.5 3.9 4.2 3.8 3.8 3.3 2.8

Calibration benchmarks: Totals
Sub-sampling 3.3 4.5 4.5 4.5 4.5 4.5 6.6 5.1 4.5 4.5 4.5 4.5 5.4 3.3

Post-stratification 2.8 3.9 4.0 3.9 3.9 3.9 7.0 5.4 4.0 4.5 3.9 3.9 5.0 2.8

GREG 3.0 4.9 4.9 4.9 4.9 4.9 6.9 7.2 5.4 5.4 4.9 4.9 5.8 3.0

cal. ANN (1 par./obs.) 3.0 4.3 4.4 4.3 4.3 4.3 7.1 6.0 4.5 4.7 4.3 4.3 3.6 3.0

cal. ANN (par.) 2.9 4.5 4.5 4.5 4.5 4.5 6.9 6.2 4.8 4.8 4.5 4.5 4.7 2.9

cal. ANN (fix) 2.9 4.5 4.5 4.5 4.5 4.5 6.9 6.3 4.8 4.8 4.5 4.5 4.8 2.9

cal. ANN (opt.) 3.1 4.7 4.8 4.7 4.7 4.7 7.1 6.7 5.0 5.2 4.7 4.7 3.9 3.1

Calibration benchmarks: Covariances
GREG 3.0 4.4 4.4 4.4 4.4 4.4 7.1 6.4 4.7 4.9 4.4 4.4 3.6 3.0

cal. ANN (1 par./obs.) 2.9 4.5 4.5 4.5 4.5 4.5 7.1 5.7 4.5 4.6 4.5 4.5 3.8 2.9

cal. ANN (par.) 3.5 5.2 5.2 5.2 5.2 5.2 7.1 6.1 5.2 5.3 5.2 5.2 3.8 3.5

cal. ANN (fix) 2.4 6.6 6.6 6.6 6.6 6.6 7.1 7.4 6.6 6.3 6.6 6.6 7.2 2.4

cal. ANN (opt.) 3.2 4.5 4.5 4.5 4.5 4.5 7.1 6.8 4.8 5.1 4.5 4.5 4.5 3.2

Calibration benchmarks: Totals and covariances
GREG 3.5 5.5 5.5 5.4 5.4 5.5 7.0 7.2 5.8 6.0 5.5 5.5 5.2 3.5

cal. ANN (1 par./obs.) 3.8 6.5 6.4 6.4 6.4 6.5 7.5 5.6 5.5 5.5 6.5 6.5 5.1 3.8

cal. ANN (par.) 2.5 3.8 3.9 3.8 3.8 3.8 6.9 5.8 3.7 5.0 3.8 3.8 6.1 2.5

cal. ANN (fix) 2.9 6.9 6.9 6.9 6.9 6.9 7.1 7.6 6.9 7.6 6.9 6.9 7.6 2.9

cal. ANN (opt.) 3.2 4.5 4.5 4.5 4.5 4.5 7.1 6.8 4.9 5.1 4.5 4.5 4.6 3.2

Plain model-based
estimates 2.8 3.8 3.9 3.8 3.8 3.8 7.0 5.5 3.9 4.2 3.8 3.8 3.3
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cal. ANN: calibrated ANN (par.): parametric
(1 par./obs.): one parameter per observation (as for the GREG) (fix): non-parametric, fixed knots

(opt.): non-parametric, optimized knots
Plain model- / design-based estimates: Values in the last row and column are the same as in the first, but the coloring

respectively concerns exclusively model- and pseudo-design-based estimates. All other colors in the table concern the
comparison of all possible cross-combinations of weighting and prediction.
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Table D.2: Mean absolute errors for income class frequencies (in percentage points) estimated
by weighted aggregation of predictions in the WI (weighting methods with response
propensity model)
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Calibration benchmarks: None
Unweighted 2.8 3.8 3.9 3.8 3.8 3.8 7.0 5.5 3.9 4.2 3.8 3.8 3.3 2.8

Logit (par.) 2.8 4.2 4.2 4.2 4.2 4.2 6.8 5.6 4.5 4.7 4.2 4.2 5.3 2.8

Pseudo-Weights (par.) 2.7 3.9 4.0 3.9 3.9 3.9 7.0 5.8 4.0 4.5 3.9 3.9 4.1 2.7

cal. ANN (par.) 3.0 4.4 4.4 4.4 4.4 4.4 7.1 6.0 4.6 4.7 4.4 4.4 3.6 3.0

Logit (fix) 2.8 4.0 4.0 4.0 4.0 4.0 6.6 4.7 4.1 4.3 4.0 4.0 5.3 2.8

Pseudo-Weights (fix) 2.7 3.6 3.6 3.6 3.6 3.6 6.9 5.3 3.7 4.5 3.6 3.6 4.3 2.7

cal. ANN (fix) 3.0 4.4 4.4 4.4 4.4 4.4 7.1 6.0 4.6 4.7 4.4 4.4 3.6 3.0

cal. ANN (opt.) 3.0 4.4 4.4 4.4 4.4 4.4 7.1 6.0 4.6 4.7 4.4 4.4 3.6 3.0

Calibration benchmarks: Totals
Logit (par.) and
GREG 3.0 4.9 4.9 4.9 4.9 4.9 7.0 7.1 5.3 5.2 4.9 4.9 5.4 3.0

cal. ANN (par.) 4.5 7.8 7.8 7.8 7.8 7.8 7.4 5.8 7.8 5.8 7.8 7.8 5.5 4.5

Logit (fix) and GREG 2.8 4.2 4.2 4.2 4.2 4.2 6.7 5.8 4.5 4.7 4.2 4.2 5.1 2.8

cal. ANN (fix) 4.4 7.8 7.8 7.8 7.8 7.8 7.4 5.6 7.8 5.8 7.8 7.8 5.6 4.4

cal. ANN (opt.) 3.0 4.4 4.5 4.4 4.4 4.4 7.1 6.0 4.6 4.7 4.4 4.4 3.6 3.0

Calibration benchmarks: Covariances
Logit (par.) and
GREG 2.9 4.1 4.2 4.2 4.2 4.1 7.1 6.2 4.4 5.0 4.1 4.1 3.4 2.9

cal. ANN (par.) 3.2 4.8 4.8 4.8 4.8 4.8 7.1 5.5 4.7 4.5 4.8 4.8 3.8 3.2

Logit (fix) and GREG 2.8 4.2 4.2 4.2 4.2 4.2 7.1 5.6 4.3 4.3 4.2 4.2 3.5 2.8

cal. ANN (fix) 2.7 4.1 4.2 4.2 4.2 4.1 7.0 6.7 4.2 4.7 4.1 4.1 3.9 2.7

cal. ANN (opt.) 3.1 4.4 4.4 4.4 4.4 4.4 7.1 6.1 4.6 4.8 4.4 4.4 3.8 3.1

Calibration benchmarks: Totals and covariances
Logit (par.) and
GREG 3.1 5.3 5.4 5.4 5.4 5.3 6.9 7.2 5.5 6.0 5.3 5.3 6.0 3.1

cal. ANN (par.) 4.5 7.8 7.8 7.8 7.8 7.8 7.4 5.8 7.8 5.8 7.8 7.8 5.5 4.5

Logit (fix) and GREG 2.9 4.3 4.3 4.2 4.2 4.3 6.9 5.9 4.7 5.0 4.3 4.3 4.7 2.9

cal. ANN (fix) 4.4 7.8 7.8 7.8 7.8 7.8 7.4 5.6 7.8 5.8 7.8 7.8 5.6 4.4

cal. ANN (opt.) 3.1 4.4 4.4 4.4 4.4 4.4 7.1 6.2 4.7 4.9 4.4 4.4 3.9 3.1

Plain model-based
estimates 2.8 3.8 3.9 3.8 3.8 3.8 7.0 5.5 3.9 4.2 3.8 3.8 3.3
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Logit: Weights from GLM with logit link (par.): parametric
cal. ANN: calibrated ANN (fix): non-parametric, fixed knots
Logit and GREG: Weights from GLM with logit link, calibrated using

the GREG
(opt.): non-parametric, optimized knots

Plain model- / design-based estimates: Values in the last row and column are the same as in the first, but the coloring
respectively concerns exclusively model- and pseudo-design-based estimates. All other colors in the table concern the
comparison of all possible cross-combinations of weighting and prediction.
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Table D.3: Mean absolute errors for income class frequencies (in percentage points) estimated
from the imputed Microcensus, using a weighted loss function for prediction models
(weighting methods without response propensity model)
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Calibration benchmarks: None
Unweighted 2.8 3.7 4.6 4.7 4.6 4.6 4.6 6.8 5.7 4.0 4.4 4.6 6.5 5.4 2.8

Calibration benchmarks: Totals
Sub-sampling 3.3 5.0 5.0 5.0 5.0 5.0 7.1 7.7 8.0 4.0 5.2 5.5 8.0 3.3

Post-stratification 2.8 4.6 4.8 4.6 4.6 4.6 6.7 4.6 4.4 4.5 4.6 6.3 3.1 2.8

GREG 3.0 4.5 8.0 8.0 8.0 4.5 8.0 8.0 8.0 8.0 4.5 6.5 8.0 3.0

cal. ANN (1 par./obs.) 3.0 4.6 4.7 4.6 4.6 4.6 6.8 4.3 3.8 4.8 4.6 6.3 4.5 3.0

cal. ANN (par.) 2.9 4.5 4.5 4.5 4.5 4.4 6.8 5.4 4.0 5.3 4.5 6.5 4.5 2.9

cal. ANN (fix) 2.9 4.4 4.4 4.4 4.4 4.4 6.7 4.4 4.3 5.4 4.5 7.7 5.5 2.9

cal. ANN (opt.) 3.1 4.5 4.5 4.5 4.5 4.4 7.3 4.0 4.0 5.0 4.5 6.3 5.0 3.1

Calibration benchmarks: Covariances
GREG 3.0 4.7 8.0 8.0 8.0 4.7 8.0 8.0 8.0 8.0 4.7 6.3 8.0 3.0

cal. ANN (1 par./obs.) 2.9 4.5 4.5 4.5 4.5 4.5 6.4 5.3 4.1 4.6 4.5 6.5 4.9 2.9

cal. ANN (par.) 3.5 4.4 4.5 4.4 4.4 4.4 6.8 4.2 3.9 5.2 4.4 6.5 8.0 3.5

cal. ANN (fix) 2.4 4.6 5.5 4.7 4.8 5.1 6.6 5.4 8.0 3.6 4.6 6.3 8.0 2.4

cal. ANN (opt.) 3.2 4.8 4.8 4.8 4.8 4.8 7.3 4.5 3.9 4.5 4.8 6.3 8.0 3.2

Calibration benchmarks: Totals and covariances
GREG 3.5 4.5 8.0 8.0 8.0 4.5 8.0 8.0 8.0 8.0 4.5 6.3 8.0 3.5

cal. ANN (1 par./obs.) 3.8 4.5 8.0 8.0 8.0 4.5 8.0 8.0 8.0 8.0 4.5 6.5 8.0 3.8

cal. ANN (par.) 2.5 4.3 5.4 4.3 4.3 4.3 6.9 6.5 3.8 5.7 4.3 7.7 5.2 2.5

cal. ANN (fix) 2.9 6.4 7.4 7.4 7.4 4.6 7.4 8.0 8.0 3.5 8.0 8.0 8.0 2.9

cal. ANN (opt.) 3.2 4.7 4.7 4.7 4.7 4.7 7.3 6.5 4.5 6.3 4.7 6.3 4.9 3.2

Plain model-based
estimates 2.8 3.7 4.6 4.7 4.6 4.6 4.6 6.8 5.7 4.0 4.4 4.6 6.5 5.4
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cal. ANN: calibrated ANN (par.): parametric
(1 par./obs.): one parameter per observation (as for the GREG) (fix): non-parametric, fixed knots

(opt.): non-parametric, optimized knots
Plain model- / design-based estimates: Values in the last row and column are the same as in the first, but the coloring

respectively concerns exclusively model- and pseudo-design-based estimates. All other colors in the table concern the
comparison of all possible cross-combinations of weighting and prediction.

328



Additional Results for the German WageIndicator Web Survey

Table D.4: Mean absolute errors for income class frequencies (in percentage points) estimated
from the imputed Microcensus, using a weighted loss function for prediction models
(weighting methods with response propensity model)
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Calibration benchmarks: None
Unweighted 2.8 3.7 4.6 4.7 4.6 4.6 4.6 6.8 5.7 4.0 4.4 4.6 6.5 5.4 2.8

Logit (par.) 2.8 4.5 4.5 4.5 4.5 4.5 6.8 5.0 4.6 7.5 4.5 6.5 7.6 2.8

Pseudo-Weights (par.) 2.7 4.6 4.7 4.6 4.6 4.7 6.8 8.0 4.5 7.5 4.7 6.5 5.5 2.7

cal. ANN (par.) 3.0 4.6 4.6 4.6 4.6 4.6 6.8 4.3 4.1 4.9 4.6 6.3 5.3 3.0

Logit (fix) 2.8 4.5 4.6 4.5 4.5 4.1 6.4 3.9 4.1 7.5 4.6 6.5 5.7 2.8

Pseudo-Weights (fix) 2.7 4.7 4.7 4.7 4.7 4.7 6.4 8.0 4.9 7.5 4.7 6.3 5.6 2.7

cal. ANN (fix) 3.0 4.6 4.6 4.6 4.6 4.6 6.8 4.3 4.0 4.9 4.6 6.3 5.3 3.0

cal. ANN (opt.) 3.0 4.6 4.6 4.6 4.6 4.6 6.8 4.3 4.0 4.9 4.6 6.3 5.3 3.0

Calibration benchmarks: Totals
Logit (par.) and
GREG 3.0 4.4 8.0 8.0 8.0 4.4 8.0 8.0 8.0 8.0 4.4 7.7 8.0 3.0

cal. ANN (par.) 4.5 6.7 5.4 6.3 6.2 6.6 7.3 8.0 5.5 3.9 8.0 8.0 8.0 4.5

Logit (fix) and GREG 2.8 4.5 8.0 8.0 8.0 4.3 8.0 8.0 8.0 8.0 4.6 6.3 8.0 2.8

cal. ANN (fix) 4.4 6.6 5.3 6.2 6.2 6.6 7.3 8.0 5.7 3.6 8.0 8.0 8.0 4.4

cal. ANN (opt.) 3.0 4.6 4.6 4.6 4.6 4.6 6.8 4.3 4.7 5.0 4.6 6.3 5.0 3.0

Calibration benchmarks: Covariances
Logit (par.) and
GREG 2.9 4.7 8.0 8.0 8.0 4.7 8.0 8.0 8.0 8.0 4.7 6.5 8.0 2.9

cal. ANN (par.) 3.2 4.4 4.4 4.4 4.4 4.7 7.3 3.9 4.3 5.3 4.4 6.5 8.0 3.2

Logit (fix) and GREG 2.8 4.4 8.0 8.0 8.0 4.5 8.0 8.0 8.0 8.0 4.4 6.3 8.0 2.8

cal. ANN (fix) 2.7 4.5 4.9 4.5 4.5 4.3 6.5 6.5 3.8 5.1 4.5 7.7 8.0 2.7

cal. ANN (opt.) 3.1 4.6 4.7 4.6 4.6 4.6 7.3 4.4 3.5 5.0 4.6 6.3 8.0 3.1

Calibration benchmarks: Totals and covariances
Logit (par.) and
GREG 3.1 4.5 8.0 8.0 8.0 4.5 8.0 8.0 8.0 8.0 4.5 6.5 8.0 3.1

cal. ANN (par.) 4.5 6.7 5.5 6.3 6.2 6.6 7.3 8.0 5.6 3.9 8.0 8.0 8.0 4.5

Logit (fix) and GREG 2.9 4.6 8.0 8.0 8.0 4.4 8.0 8.0 8.0 8.0 4.7 6.2 8.0 2.9

cal. ANN (fix) 4.4 6.6 5.3 6.3 6.2 6.6 7.3 8.0 8.0 3.6 8.0 8.0 8.0 4.4

cal. ANN (opt.) 3.1 4.7 4.7 4.7 4.7 4.7 7.3 4.5 4.5 5.0 4.7 6.3 5.1 3.1

Plain model-based
estimates 2.8 3.7 4.6 4.7 4.6 4.6 4.6 6.8 5.7 4.0 4.4 4.6 6.5 5.4
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Logit: Weights from GLM with logit link (par.): parametric
cal. ANN: calibrated ANN (fix): non-parametric, fixed knots
Logit and GREG: Weights from GLM with logit link, calibrated using

the GREG
(opt.): non-parametric, optimized knots

Plain model- / design-based estimates: Values in the last row and column are the same as in the first, but the coloring
respectively concerns exclusively model- and pseudo-design-based estimates. All other colors in the table concern the
comparison of all possible cross-combinations of weighting and prediction.
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Table D.5: Income class frequencies (in percentage points) estimated by weighted aggregation
of predictions in the WI
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Weighting model: unweighted, using no auxiliary information
None (weighted WI) 0.0 1.0 0.6 2.6 2.4 4.8 8.2 10.1 11.7 11.2 13.6 10.9 6.6 3.9 3.4 2.9 1.9 1.6 0.6 0.5 0.2 0.2 0.1 0.1 0.8
GLM (OLS) 0.1 0.3 0.4 1.1 1.9 2.3 3.2 5.8 8.4 8.7 11.7 16.1 15.1 9.3 6.3 5.0 1.5 0.8 0.4 0.6 0.6 0.3 0.0 0.0 0.0
GLM (Ridge) 0.1 0.1 0.4 1.0 2.0 1.9 3.2 5.9 8.6 8.3 12.5 16.6 14.9 8.9 6.2 5.3 1.1 0.8 0.4 0.7 0.7 0.2 0.0 0.0 0.0
GLM (LASSO) 0.1 0.2 0.4 1.0 2.0 2.3 3.0 5.9 8.6 8.3 12.5 15.7 15.1 9.3 6.3 5.3 1.2 0.8 0.4 0.6 0.7 0.3 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.2 0.4 1.0 2.0 2.3 3.0 5.9 8.6 8.3 12.5 15.7 15.1 9.3 6.3 5.3 1.2 0.8 0.4 0.6 0.7 0.3 0.0 0.0 0.0
GAM (fix knots) 0.1 0.3 0.4 1.1 1.9 2.3 3.2 5.8 8.4 8.7 11.7 16.1 15.1 9.3 6.3 5.0 1.5 0.8 0.4 0.6 0.6 0.3 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.4 0.0 1.1 0.0 61.8 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.7 0.0
MARS 0.2 0.1 0.2 0.5 1.1 2.5 2.4 2.8 3.2 27.8 3.4 6.1 49.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.2 0.3 0.1
ANN (opt. knots) 0.1 0.4 0.4 1.2 2.1 1.8 3.7 5.0 11.5 5.9 13.8 15.8 13.4 8.2 9.5 2.8 1.4 1.2 0.5 0.5 0.9 0.2 0.0 0.0 0.0
SVM 0.0 0.0 0.2 0.2 0.5 1.4 4.7 15.8 9.6 9.3 32.5 7.6 7.0 10.2 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.3 0.4 1.1 1.9 2.3 3.2 5.8 8.4 8.7 11.7 16.1 15.1 9.3 6.3 5.0 1.5 0.8 0.4 0.6 0.6 0.3 0.0 0.0 0.0
GAMM (fix knots) 0.1 0.3 0.4 1.1 1.9 2.3 3.2 5.8 8.4 8.7 11.7 16.1 15.1 9.3 6.3 5.0 1.5 0.8 0.4 0.6 0.6 0.3 0.0 0.0 0.0
Heckman model 31.8 3.3 4.9 7.8 8.5 8.1 3.8 2.7 5.5 8.1 9.5 5.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (parametric), using propensity weights
None (weighted WI) 0.0 1.0 0.2 2.4 2.7 5.5 8.8 9.4 12.0 11.7 13.0 11.5 6.9 4.2 3.0 2.9 1.5 1.4 0.3 0.2 0.1 0.3 0.1 0.1 0.7
GLM (OLS) 0.0 0.0 0.0 0.4 1.4 1.4 2.4 6.9 9.6 7.5 12.0 18.3 15.7 13.3 5.8 4.2 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.4 1.4 1.1 2.6 6.9 9.6 7.3 12.5 19.1 15.2 12.9 5.8 4.5 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.4 1.4 1.4 2.4 6.9 9.6 7.4 12.5 18.0 15.7 13.3 5.8 4.3 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.4 1.4 1.4 2.4 6.9 9.6 7.4 12.5 18.0 15.7 13.3 5.8 4.3 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.4 1.4 1.4 2.4 6.9 9.6 7.5 12.0 18.3 15.7 13.3 5.8 4.2 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.5 0.0 4.0 0.0 54.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0
MARS 0.0 0.0 0.0 0.1 0.7 3.0 2.8 2.4 2.7 35.2 2.8 6.3 43.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.7 1.5 1.3 3.0 3.4 14.6 4.9 16.3 13.0 14.8 17.1 5.0 3.4 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.2 1.9 19.9 16.6 7.2 27.2 11.3 11.7 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.4 1.4 1.4 2.4 6.9 9.6 7.5 12.0 18.3 15.7 13.3 5.8 4.2 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.4 1.4 1.4 2.4 6.9 9.6 7.5 12.0 18.3 15.7 13.3 5.8 4.2 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 65.3 2.9 2.1 3.9 6.0 8.8 1.8 0.2 1.3 2.2 3.3 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Pseudo-Weights (parametric), using propensity weights
None (weighted WI) 0.0 1.0 0.4 2.5 2.7 5.5 9.1 10.3 12.3 11.1 13.1 10.6 6.6 3.8 3.1 2.6 1.7 1.5 0.5 0.3 0.2 0.2 0.1 0.1 0.7
GLM (OLS) 0.0 0.1 0.2 0.9 1.8 2.3 3.3 6.4 9.2 8.7 12.5 15.9 14.8 10.3 6.2 5.1 1.5 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.1 0.2 0.9 1.9 1.9 3.4 6.5 9.3 8.6 13.2 16.5 14.5 9.8 6.1 5.4 1.2 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.3 0.8 1.9 2.3 3.2 6.5 9.2 8.5 13.2 15.4 14.8 10.3 6.3 5.3 1.3 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.3 0.8 1.9 2.3 3.2 6.5 9.2 8.5 13.2 15.4 14.8 10.3 6.3 5.3 1.3 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.2 0.9 1.8 2.3 3.3 6.4 9.2 8.7 12.5 15.9 14.8 10.3 6.2 5.1 1.5 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.1 0.0 1.9 0.0 55.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0
MARS 0.1 0.1 0.2 0.4 0.9 2.3 2.1 2.2 2.6 36.3 2.4 4.4 46.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.2 0.3 1.1 2.1 1.9 3.5 4.5 14.0 6.0 14.4 14.2 13.8 10.5 7.1 3.8 1.5 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.1 0.1 0.3 0.9 3.7 19.6 13.6 7.7 30.7 8.2 8.5 6.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.2 0.9 1.8 2.3 3.3 6.4 9.2 8.7 12.5 15.9 14.8 10.3 6.2 5.1 1.5 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.1 0.2 0.9 1.8 2.3 3.3 6.4 9.2 8.7 12.5 15.9 14.8 10.3 6.2 5.1 1.5 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 48.2 3.4 3.6 5.8 7.9 9.4 4.5 1.2 2.8 4.3 4.9 3.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using propensity weights
None (weighted WI) 0.0 0.9 0.4 1.9 1.8 4.3 7.3 9.6 11.7 11.1 14.3 11.9 7.3 4.0 3.8 3.1 2.2 1.8 0.6 0.4 0.2 0.2 0.1 0.1 0.8
GLM (OLS) 0.0 0.1 0.1 0.5 1.5 1.3 1.6 4.6 8.9 8.7 10.4 21.1 19.1 9.7 7.6 3.9 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.5 1.5 1.1 1.7 4.6 9.0 8.3 10.9 22.2 18.5 9.1 7.6 4.2 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.5 1.5 1.3 1.5 4.6 9.0 8.4 11.3 20.5 19.1 9.7 7.6 4.1 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.5 1.5 1.3 1.5 4.6 9.0 8.4 11.3 20.5 19.1 9.7 7.6 4.1 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 0.5 1.5 1.3 1.6 4.6 8.9 8.7 10.4 21.1 19.1 9.7 7.6 3.9 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.7 0.0 0.2 0.0 71.8 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.1 0.5 1.5 1.5 1.6 2.4 22.2 2.7 6.9 60.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.1 0.1 0.8 1.5 0.9 1.7 2.7 13.5 6.0 12.5 17.4 20.9 7.7 11.9 1.2 0.7 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.3 2.3 15.8 6.8 7.7 41.3 6.9 5.8 12.7 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 0.5 1.5 1.3 1.6 4.6 8.9 8.7 10.4 21.1 19.1 9.7 7.6 3.9 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.1 0.1 0.5 1.5 1.3 1.6 4.6 8.9 8.7 10.4 21.1 19.1 9.7 7.6 3.9 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Heckman model 23.8 1.2 3.4 7.8 10.6 14.3 2.9 1.3 5.7 9.3 13.2 6.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots), using propensity weights
None (weighted WI) 0.0 1.4 0.4 2.7 2.6 4.6 8.4 8.8 12.0 11.6 13.2 11.8 7.6 4.3 2.8 2.9 1.5 1.4 0.3 0.2 0.2 0.3 0.0 0.1 0.7
GLM (OLS) 0.1 0.1 0.4 0.9 1.7 1.7 3.7 6.9 7.0 6.8 11.4 16.9 16.6 11.7 5.7 6.6 1.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.1 0.0 0.3 1.0 1.8 1.5 3.8 6.9 7.1 6.5 11.8 17.2 16.4 11.5 5.7 7.0 1.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.0 0.4 0.9 1.8 1.7 3.6 6.9 7.1 6.5 11.8 16.7 16.6 11.7 5.7 6.7 1.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.0 0.4 0.9 1.8 1.7 3.6 6.9 7.1 6.5 11.8 16.7 16.6 11.7 5.7 6.7 1.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.1 0.4 0.9 1.7 1.7 3.7 6.9 7.0 6.8 11.4 16.9 16.6 11.7 5.7 6.6 1.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.7 0.0 6.8 0.0 55.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0
MARS 0.6 0.2 0.3 0.6 2.1 5.5 4.9 4.1 3.9 26.5 4.5 8.5 38.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.2 0.2 0.2 1.3 1.6 2.6 4.3 4.3 9.8 4.7 15.5 13.0 14.1 15.1 5.4 5.8 1.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.2 0.1 0.3 0.4 0.7 1.6 3.8 15.0 15.2 10.1 24.2 11.9 11.6 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 0.4 0.9 1.7 1.7 3.7 6.9 7.0 6.8 11.4 16.9 16.6 11.7 5.7 6.6 1.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.1 0.1 0.4 0.9 1.7 1.7 3.7 6.9 7.0 6.8 11.4 16.9 16.6 11.7 5.7 6.6 1.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 64.8 5.0 4.1 4.4 4.2 4.6 1.5 0.3 1.4 3.0 4.2 2.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.5: Income class frequencies (in percentage points) estimated by weighted aggregation
of predictions in the WI (continued)
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Weighting model: Pseudo-Weights (fix knots), using propensity weights
None (weighted WI) 0.0 1.1 0.4 2.6 2.7 5.5 9.8 11.4 13.5 11.2 13.2 10.1 6.1 3.4 2.6 2.1 1.4 1.1 0.4 0.2 0.1 0.2 0.1 0.1 0.6
GLM (OLS) 0.0 0.2 0.2 1.1 3.1 3.6 4.1 7.3 9.7 9.9 12.4 14.8 13.6 8.9 4.7 4.4 1.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.2 1.1 3.2 3.0 4.5 7.3 9.9 9.7 13.2 15.2 13.3 8.6 4.6 4.7 1.2 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.2 1.1 3.2 3.6 4.0 7.3 9.8 9.6 13.2 14.3 13.6 8.9 4.7 4.6 1.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.2 1.1 3.2 3.6 4.0 7.3 9.8 9.6 13.2 14.3 13.6 8.9 4.7 4.6 1.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.2 0.2 1.1 3.1 3.6 4.1 7.3 9.7 9.9 12.4 14.8 13.6 8.9 4.7 4.4 1.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 43.4 0.0 2.4 0.0 53.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0
MARS 0.0 0.0 0.1 0.3 1.2 3.4 3.2 3.2 3.6 34.1 3.7 6.6 40.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.2 0.3 1.6 3.6 2.7 4.2 5.4 14.6 7.1 13.5 13.3 13.1 8.8 5.2 3.9 1.4 0.7 0.1 0.1 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.7 4.1 22.8 14.1 10.2 27.9 8.5 6.9 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.2 0.2 1.1 3.1 3.6 4.1 7.3 9.7 9.9 12.4 14.8 13.6 8.9 4.7 4.4 1.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.2 0.2 1.1 3.1 3.6 4.1 7.3 9.7 9.9 12.4 14.8 13.6 8.9 4.7 4.4 1.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 51.2 3.4 3.8 7.9 7.8 7.6 4.2 1.5 2.0 3.7 4.1 2.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using propensity weights
None (weighted WI) 0.0 0.9 0.4 1.9 1.8 4.3 7.3 9.6 11.7 11.1 14.3 11.9 7.3 4.0 3.8 3.1 2.2 1.8 0.6 0.4 0.2 0.2 0.1 0.1 0.8
GLM (OLS) 0.0 0.1 0.1 0.5 1.5 1.3 1.6 4.6 8.9 8.7 10.4 21.1 19.1 9.7 7.6 3.9 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.5 1.5 1.1 1.7 4.6 9.0 8.3 10.9 22.2 18.5 9.1 7.6 4.2 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.5 1.5 1.3 1.5 4.6 9.0 8.4 11.3 20.5 19.1 9.7 7.6 4.1 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.5 1.5 1.3 1.5 4.6 9.0 8.4 11.3 20.5 19.1 9.7 7.6 4.1 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 0.5 1.5 1.3 1.6 4.6 8.9 8.7 10.4 21.1 19.1 9.7 7.6 3.9 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.7 0.0 0.2 0.0 71.8 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.1 0.5 1.5 1.5 1.6 2.4 22.2 2.7 6.9 60.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.1 0.1 0.8 1.5 0.9 1.7 2.7 13.5 6.0 12.5 17.4 20.9 7.7 11.9 1.2 0.7 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.3 2.3 15.8 6.8 7.7 41.3 6.9 5.8 12.7 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 0.5 1.5 1.3 1.6 4.6 8.9 8.7 10.4 21.1 19.1 9.7 7.6 3.9 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.1 0.1 0.5 1.5 1.3 1.6 4.6 8.9 8.7 10.4 21.1 19.1 9.7 7.6 3.9 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Heckman model 23.8 1.2 3.4 7.8 10.6 14.3 2.9 1.3 5.7 9.3 13.2 6.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using propensity weights
None (weighted WI) 0.0 0.9 0.4 1.9 1.8 4.3 7.3 9.6 11.7 11.1 14.3 11.9 7.3 4.0 3.8 3.1 2.2 1.8 0.6 0.4 0.2 0.2 0.1 0.1 0.8
GLM (OLS) 0.0 0.1 0.1 0.5 1.5 1.3 1.6 4.6 8.9 8.7 10.4 21.1 19.1 9.7 7.6 3.9 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.5 1.5 1.1 1.7 4.6 9.0 8.3 10.9 22.2 18.5 9.1 7.6 4.2 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.5 1.5 1.3 1.5 4.6 9.0 8.4 11.3 20.5 19.1 9.7 7.6 4.1 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.5 1.5 1.3 1.5 4.6 9.0 8.4 11.3 20.5 19.1 9.7 7.6 4.1 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 0.5 1.5 1.3 1.6 4.6 8.9 8.7 10.4 21.1 19.1 9.7 7.6 3.9 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.7 0.0 0.2 0.0 71.8 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.1 0.5 1.5 1.5 1.6 2.4 22.2 2.7 6.9 60.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.1 0.1 0.8 1.5 0.9 1.7 2.7 13.5 6.0 12.5 17.4 20.9 7.7 11.9 1.2 0.7 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.3 2.3 15.8 6.8 7.7 41.3 6.9 5.8 12.7 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 0.5 1.5 1.3 1.6 4.6 8.9 8.7 10.4 21.1 19.1 9.7 7.6 3.9 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.1 0.1 0.5 1.5 1.3 1.6 4.6 8.9 8.7 10.4 21.1 19.1 9.7 7.6 3.9 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Heckman model 23.8 1.2 3.4 7.8 10.6 14.3 2.9 1.3 5.7 9.3 13.2 6.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Subsampling, using total calibration
None (weighted WI) 0.0 1.2 0.0 1.4 1.7 4.8 5.7 7.2 11.5 11.7 13.4 14.3 9.5 4.5 3.1 3.6 1.9 1.9 0.5 0.0 0.2 0.2 0.0 0.2 1.4
GLM (OLS) 0.0 0.2 0.1 0.5 0.9 1.4 3.2 5.2 4.3 5.2 10.5 14.9 15.8 12.7 7.9 11.6 3.5 1.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.1 0.1 0.5 0.9 1.2 3.1 5.4 4.1 5.2 11.0 14.9 15.5 12.7 8.3 12.1 2.7 1.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.1 0.5 0.9 1.4 2.9 5.4 4.3 5.1 11.0 14.6 15.8 12.7 8.1 11.5 3.5 1.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.1 0.5 0.9 1.4 2.9 5.4 4.3 5.1 11.0 14.6 15.8 12.7 8.1 11.5 3.5 1.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.2 0.1 0.5 0.9 1.4 3.2 5.2 4.3 5.2 10.5 14.9 15.8 12.7 7.9 11.6 3.5 1.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.3 0.0 8.7 0.0 61.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0
MARS 0.1 0.0 0.2 0.7 1.5 4.0 3.3 3.4 4.0 25.6 4.8 8.6 43.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.1 0.1 0.5 1.2 2.0 3.3 3.8 5.4 4.1 14.5 11.4 12.8 17.9 5.6 10.8 3.2 2.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.2 0.1 0.2 1.4 3.2 9.7 14.4 9.0 25.3 15.8 17.5 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.2 0.1 0.5 0.9 1.4 3.2 5.2 4.3 5.2 10.5 14.9 15.8 12.7 7.9 11.6 3.5 1.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.2 0.1 0.5 0.9 1.4 3.2 5.2 4.3 5.2 10.5 14.9 15.8 12.7 7.9 11.6 3.5 1.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 67.4 8.3 3.8 4.3 4.4 4.3 1.7 0.5 0.9 1.5 1.5 1.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Post-stratification, using total calibration
None (weighted WI) 0.0 1.1 0.4 2.5 2.6 4.8 8.9 9.7 12.7 11.3 13.0 10.9 7.1 4.3 3.0 2.9 1.6 1.5 0.3 0.2 0.1 0.3 0.0 0.1 0.8
GLM (OLS) 0.0 0.0 0.2 0.9 1.9 2.2 3.3 6.3 8.0 8.1 12.7 17.1 14.4 12.1 6.6 4.6 1.1 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.2 0.9 1.9 1.9 3.6 6.4 8.0 7.9 13.4 17.6 13.9 11.6 6.5 4.8 0.8 0.4 0.1 0.1 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.2 0.9 1.9 2.2 3.3 6.3 8.0 7.9 13.3 16.6 14.4 12.1 6.6 4.6 1.0 0.4 0.1 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.2 0.9 1.9 2.2 3.3 6.3 8.0 7.9 13.3 16.6 14.4 12.1 6.6 4.6 1.0 0.4 0.1 0.1 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.2 0.9 1.9 2.2 3.3 6.3 8.0 8.1 12.7 17.1 14.4 12.1 6.6 4.6 1.1 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.7 0.0 1.6 0.0 60.3 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.4 0.0
MARS 0.1 0.1 0.2 0.5 1.3 2.8 2.8 2.9 3.3 29.8 4.1 6.9 45.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.1 0.2 1.2 2.2 2.2 3.4 4.4 11.6 5.9 15.1 13.8 13.0 15.6 5.4 3.6 1.3 0.7 0.1 0.1 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.1 0.1 0.4 1.3 3.2 17.3 15.7 8.6 24.9 12.0 11.8 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.2 0.9 1.9 2.2 3.3 6.3 8.0 8.1 12.7 17.1 14.4 12.1 6.6 4.6 1.1 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.2 0.9 1.9 2.2 3.3 6.3 8.0 8.1 12.7 17.1 14.4 12.1 6.6 4.6 1.1 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0
Heckman model 61.7 2.9 3.0 6.2 7.3 8.1 3.2 0.4 0.5 1.7 3.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.5: Income class frequencies (in percentage points) estimated by weighted aggregation
of predictions in the WI (continued)
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Weighting model: GREG, using total calibration
None (weighted WI) 0.0 0.9 0.0 1.6 2.4 5.3 8.4 7.1 9.4 11.1 11.6 12.0 8.0 5.7 3.9 4.1 2.8 2.9 0.7 0.5 0.2 0.4 0.2 0.1 0.7
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.1 1.4 5.5 7.4 2.0 7.3 20.9 16.8 16.2 10.0 10.0 2.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 1.4 5.7 7.4 2.0 7.2 22.3 16.6 15.0 10.0 10.8 1.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.1 1.2 5.8 7.2 2.0 7.4 20.8 16.8 16.2 10.0 10.6 1.6 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.1 1.2 5.8 7.2 2.0 7.4 20.8 16.8 16.2 10.0 10.6 1.6 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.1 1.4 5.5 7.4 2.0 7.3 20.9 16.8 16.2 10.0 10.0 2.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 43.1 0.0 2.8 0.0 53.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 40.6 0.0 0.0 59.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.2 1.8 0.4 14.3 0.7 11.4 15.7 15.3 19.9 11.6 5.8 2.3 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.3 8.6 0.0 37.5 9.9 12.5 12.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.1 1.4 5.5 7.4 2.0 7.3 20.9 16.8 16.2 10.0 10.0 2.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.1 1.4 5.5 7.4 2.0 7.3 20.9 16.8 16.2 10.0 10.0 2.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 61.4 3.8 0.0 0.0 5.5 15.6 4.7 0.0 0.0 0.0 0.0 8.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (one parameter per observation, as for the GREG), using total calibration
None (weighted WI) 0.0 0.9 0.3 1.9 1.9 4.5 7.8 10.3 12.5 11.6 14.4 11.6 7.0 3.7 3.4 2.7 1.9 1.5 0.5 0.3 0.2 0.2 0.1 0.1 0.7
GLM (OLS) 0.0 0.1 0.1 0.6 1.7 1.5 1.8 5.1 9.6 8.9 11.2 22.6 18.6 8.7 5.7 3.0 0.5 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.5 1.7 1.2 2.0 5.1 9.7 8.6 11.6 23.9 18.0 8.1 5.7 3.1 0.3 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.5 1.7 1.5 1.7 5.2 9.6 8.7 12.1 22.0 18.6 8.7 5.7 3.1 0.3 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.5 1.7 1.5 1.7 5.2 9.6 8.7 12.1 22.0 18.6 8.7 5.7 3.1 0.3 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 0.6 1.7 1.5 1.8 5.1 9.6 8.9 11.2 22.6 18.6 8.7 5.7 3.0 0.5 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.8 0.0 0.3 0.0 71.7 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.1 0.6 1.6 1.4 1.5 2.1 22.8 2.7 6.5 60.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.1 0.1 0.9 1.8 1.0 2.0 3.0 14.4 6.3 13.6 17.3 21.6 7.3 8.7 1.0 0.5 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.3 2.5 17.6 6.7 7.7 44.6 6.2 5.1 9.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 0.6 1.7 1.5 1.8 5.1 9.6 8.9 11.2 22.6 18.6 8.7 5.7 3.0 0.5 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.1 0.1 0.6 1.7 1.5 1.8 5.1 9.6 8.9 11.2 22.6 18.6 8.7 5.7 3.0 0.5 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Heckman model 27.2 1.3 2.9 7.6 10.8 16.1 3.3 1.4 6.4 8.7 9.6 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using total calibration
None (weighted WI) 0.0 0.9 0.2 2.0 2.2 4.9 8.0 8.7 11.2 11.9 13.4 12.1 7.7 4.8 3.4 3.2 1.8 1.7 0.4 0.3 0.1 0.4 0.1 0.1 0.8
GLM (OLS) 0.0 0.0 0.0 0.2 0.7 0.9 1.7 5.1 8.0 6.3 11.8 20.1 16.9 14.8 7.3 4.9 0.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.2 0.7 0.7 1.7 5.1 8.1 6.2 11.8 21.0 16.7 14.3 7.3 5.2 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.2 0.7 0.9 1.5 5.2 8.0 6.2 12.2 19.8 16.9 14.8 7.4 5.0 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.2 0.7 0.9 1.5 5.2 8.0 6.2 12.2 19.8 16.9 14.8 7.4 5.0 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.2 0.7 0.9 1.7 5.1 8.0 6.3 11.8 20.1 16.9 14.8 7.3 4.9 0.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.6 0.0 2.6 0.0 63.3 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.4 0.0
MARS 0.0 0.0 0.0 0.0 0.3 1.5 1.5 1.4 1.5 31.0 1.9 4.6 56.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.3 0.8 0.7 2.3 2.6 12.0 4.0 17.8 13.5 15.6 19.0 6.1 3.8 1.0 0.4 0.1 0.0 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 1.6 15.5 13.5 5.4 33.7 11.1 14.2 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.2 0.7 0.9 1.7 5.1 8.0 6.3 11.8 20.1 16.9 14.8 7.3 4.9 0.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.2 0.7 0.9 1.7 5.1 8.0 6.3 11.8 20.1 16.9 14.8 7.3 4.9 0.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 56.7 3.6 1.9 2.7 5.6 10.4 2.8 0.6 3.9 5.6 3.6 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using total calibration
None (weighted WI) 0.0 0.9 0.1 2.1 2.3 5.0 8.1 8.6 11.0 11.6 13.2 12.0 7.6 4.8 3.5 3.2 1.8 1.8 0.4 0.3 0.1 0.4 0.1 0.1 0.8
GLM (OLS) 0.0 0.0 0.0 0.2 0.6 0.8 1.5 4.8 8.2 6.4 11.7 18.8 16.9 14.8 8.0 5.7 1.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.2 0.7 0.6 1.5 4.9 8.3 6.3 11.7 19.7 16.7 14.3 7.9 6.0 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.2 0.7 0.8 1.4 4.9 8.2 6.3 12.0 18.6 16.9 14.8 8.0 5.8 0.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.2 0.7 0.8 1.4 4.9 8.2 6.3 12.0 18.6 16.9 14.8 8.0 5.8 0.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.2 0.6 0.8 1.5 4.8 8.2 6.4 11.7 18.8 16.9 14.8 8.0 5.7 1.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.9 0.0 2.7 0.0 60.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0
MARS 0.0 0.0 0.0 0.0 0.3 1.5 1.4 1.3 1.4 33.7 1.6 3.7 54.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.3 0.7 0.6 2.1 2.3 12.7 4.0 17.3 12.6 15.6 18.6 6.8 4.4 1.3 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 1.4 15.9 14.6 5.1 31.9 10.4 14.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.2 0.6 0.8 1.5 4.8 8.2 6.4 11.7 18.8 16.9 14.8 8.0 5.7 1.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.2 0.6 0.8 1.5 4.8 8.2 6.4 11.7 18.8 16.9 14.8 8.0 5.7 1.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 57.9 3.9 1.9 2.4 5.2 10.4 3.4 0.4 3.0 5.1 3.5 2.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using total calibration
None (weighted WI) 0.0 0.8 0.2 1.6 1.7 4.1 7.2 9.0 11.1 11.1 13.8 11.8 7.5 4.3 4.2 3.3 2.7 2.5 0.8 0.5 0.3 0.2 0.2 0.2 0.8
GLM (OLS) 0.0 0.0 0.0 0.2 0.6 0.5 0.9 3.6 8.3 6.0 8.5 23.3 20.9 9.2 10.0 6.6 1.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.2 0.6 0.4 0.8 3.7 8.5 5.8 8.2 25.3 20.6 8.2 9.9 6.9 0.6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.2 0.6 0.5 0.8 3.7 8.4 5.9 8.9 23.0 20.9 9.2 10.0 6.9 0.6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.2 0.6 0.5 0.8 3.7 8.4 5.9 8.9 23.0 20.9 9.2 10.0 6.9 0.6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.2 0.6 0.5 0.9 3.6 8.3 6.0 8.5 23.3 20.9 9.2 10.0 6.6 1.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.9 0.0 0.1 0.0 73.8 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.1 0.3 0.6 0.6 0.6 0.8 24.0 1.0 2.1 69.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.3 0.6 0.3 1.4 1.7 12.8 3.6 13.3 17.9 22.4 6.8 15.5 1.8 1.1 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.2 1.6 14.6 5.2 2.7 49.3 4.2 4.9 17.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.2 0.6 0.5 0.9 3.6 8.3 6.0 8.5 23.3 20.9 9.2 10.0 6.6 1.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.2 0.6 0.5 0.9 3.6 8.3 6.0 8.5 23.3 20.9 9.2 10.0 6.6 1.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
Heckman model 23.0 1.4 1.9 2.9 8.4 19.8 4.8 0.5 6.8 10.3 9.4 10.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.5: Income class frequencies (in percentage points) estimated by weighted aggregation
of predictions in the WI (continued)
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Weighting model: GREG, using covariance calibration
None (weighted WI) 0.0 0.9 0.3 1.8 2.0 4.6 7.5 9.9 11.4 11.6 14.2 11.5 7.1 4.0 3.6 2.9 2.3 1.9 0.6 0.4 0.2 0.2 0.2 0.2 0.7
GLM (OLS) 0.0 0.0 0.0 0.5 1.4 1.3 1.6 4.9 9.3 7.7 11.1 22.5 17.4 8.5 7.2 5.1 1.1 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.4 1.4 1.0 1.7 4.8 9.4 7.3 11.0 23.6 17.5 7.9 7.1 5.6 0.7 0.1 0.0 0.1 0.2 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.4 1.4 1.3 1.5 4.9 9.4 7.4 11.8 22.1 17.4 8.5 7.2 5.5 0.8 0.1 0.0 0.1 0.2 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.4 1.4 1.3 1.5 4.9 9.4 7.4 11.8 22.1 17.4 8.5 7.2 5.5 0.8 0.1 0.0 0.1 0.2 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.5 1.4 1.3 1.6 4.9 9.3 7.7 11.1 22.5 17.4 8.5 7.2 5.1 1.1 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.2 0.0 0.0 0.0 68.6 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.1 0.4 1.0 1.1 1.1 1.7 25.9 1.2 3.3 63.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0
ANN (opt. knots) 0.0 0.0 0.1 0.7 1.5 0.8 1.7 2.3 14.6 4.8 16.4 17.6 17.3 7.1 11.3 2.0 1.2 0.3 0.1 0.1 0.2 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.2 2.1 17.8 5.6 4.5 46.4 5.3 5.3 12.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.5 1.4 1.3 1.6 4.9 9.3 7.7 11.1 22.5 17.4 8.5 7.2 5.1 1.1 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.5 1.4 1.3 1.6 4.9 9.3 7.7 11.1 22.5 17.4 8.5 7.2 5.1 1.1 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0
Heckman model 25.2 1.8 3.1 4.9 8.4 13.3 3.6 1.4 8.9 12.1 9.7 7.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (one parameter per observation, as for the GREG), using covariance calibration
None (weighted WI) 0.0 0.9 0.4 2.3 2.1 4.5 7.6 9.6 12.1 11.4 14.3 12.0 7.0 4.1 3.4 2.9 1.9 1.5 0.5 0.3 0.2 0.2 0.1 0.1 0.7
GLM (OLS) 0.0 0.1 0.1 0.4 1.1 0.9 1.5 4.7 10.5 10.0 10.3 19.1 20.0 10.5 5.7 3.9 0.8 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.4 1.1 0.7 1.4 4.7 10.7 9.7 10.8 19.9 19.7 10.0 5.7 4.2 0.5 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.4 1.1 0.9 1.4 4.7 10.6 9.7 11.0 18.7 20.0 10.5 5.7 4.1 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.4 1.1 0.9 1.4 4.7 10.6 9.7 11.0 18.7 20.0 10.5 5.7 4.1 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 0.4 1.1 0.9 1.5 4.7 10.5 10.0 10.3 19.1 20.0 10.5 5.7 3.9 0.8 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.5 0.0 0.9 0.0 69.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.1 0.5 1.6 1.6 1.9 2.7 26.0 4.7 9.9 50.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.1 0.1 0.6 1.1 0.7 2.0 3.3 15.2 6.8 12.1 17.5 18.8 10.1 8.1 2.2 0.8 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.1 0.0 0.2 0.5 2.6 16.5 10.1 9.2 35.2 9.5 7.6 8.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 0.4 1.1 0.9 1.5 4.7 10.5 10.0 10.3 19.1 20.0 10.5 5.7 3.9 0.8 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.1 0.1 0.4 1.1 0.9 1.5 4.7 10.5 10.0 10.3 19.1 20.0 10.5 5.7 3.9 0.8 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Heckman model 31.9 2.3 4.1 8.7 8.8 10.5 3.0 1.2 3.9 10.3 10.9 4.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using covariance calibration
None (weighted WI) 0.0 0.9 0.2 1.4 0.8 2.2 6.2 7.8 11.5 13.1 15.0 13.9 9.1 5.6 3.3 3.6 1.9 1.8 0.4 0.2 0.1 0.3 0.1 0.1 0.8
GLM (OLS) 0.0 0.0 0.0 0.1 0.4 0.4 0.6 1.8 4.2 5.6 10.9 27.3 18.6 16.0 6.0 6.7 1.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.4 0.3 0.6 1.7 4.2 5.4 11.0 28.3 18.2 15.5 6.0 7.2 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.4 0.4 0.6 1.7 4.3 5.5 11.5 26.7 18.6 16.0 6.0 6.8 1.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.4 0.4 0.6 1.7 4.3 5.5 11.5 26.7 18.6 16.0 6.0 6.8 1.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.4 0.4 0.6 1.8 4.2 5.6 10.9 27.3 18.6 16.0 6.0 6.7 1.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.9 0.0 0.1 0.0 91.9 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.2 0.4 0.5 0.8 1.2 7.4 6.0 12.1 71.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.2 0.5 0.3 0.7 1.6 5.5 4.1 15.5 20.0 17.7 21.4 5.1 5.7 1.1 0.4 0.0 0.0 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.2 0.9 5.4 3.6 8.2 46.2 16.6 14.6 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.4 0.4 0.6 1.8 4.2 5.6 10.9 27.3 18.6 16.0 6.0 6.7 1.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.4 0.4 0.6 1.8 4.2 5.6 10.9 27.3 18.6 16.0 6.0 6.7 1.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 40.5 5.1 2.4 5.9 8.4 13.0 2.7 1.6 6.9 7.2 4.4 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using covariance calibration
None (weighted WI) 0.0 15.2 1.7 12.4 9.7 2.4 3.6 5.1 16.9 4.1 19.4 3.5 1.9 1.0 0.9 0.7 0.5 0.4 0.1 0.1 0.0 0.0 0.0 0.1 0.2
GLM (OLS) 0.1 0.0 0.0 0.0 61.2 36.8 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.1 0.0 0.0 0.0 61.2 36.8 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.0 0.0 0.0 61.2 36.8 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.0 0.0 0.0 61.2 36.8 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.0 0.0 0.0 61.2 36.8 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.1 0.0 0.0 0.0 62.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 37.1 0.0 0.0 0.0 62.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.0 0.0 0.0 0.0 61.2 0.0 36.8 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 38.5 61.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.0 0.0 0.0 61.2 36.8 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.1 0.0 0.0 0.0 61.2 36.8 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 37.1 0.0 0.0 0.0 0.0 61.2 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using covariance calibration
None (weighted WI) 0.0 0.8 0.2 1.2 1.7 4.1 6.5 9.0 10.4 11.6 14.6 12.4 8.4 4.7 4.3 4.4 2.2 1.3 0.4 0.4 0.2 0.3 0.1 0.1 0.7
GLM (OLS) 0.0 0.0 0.0 0.2 0.5 1.2 3.8 5.9 5.3 6.8 18.8 18.4 13.7 18.4 5.0 1.2 0.3 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.5 0.8 4.2 5.9 5.1 5.8 21.5 17.8 13.1 18.2 5.0 1.3 0.2 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.5 1.2 3.8 5.9 5.3 5.9 21.3 16.8 13.7 18.4 5.0 1.2 0.2 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.5 1.2 3.8 5.9 5.3 5.9 21.3 16.8 13.7 18.4 5.0 1.2 0.2 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.2 0.5 1.2 3.8 5.9 5.3 6.8 18.8 18.4 13.7 18.4 5.0 1.2 0.3 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.3 0.0 0.1 0.0 72.3 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.3 0.4 0.4 1.0 25.6 0.6 2.5 68.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.2 0.5 0.9 2.4 3.4 9.5 4.6 16.4 18.3 17.2 16.1 9.5 0.4 0.3 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 1.1 14.8 3.2 10.8 36.5 10.0 13.7 9.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.2 0.5 1.2 3.8 5.9 5.3 6.8 18.8 18.4 13.7 18.4 5.0 1.2 0.3 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.2 0.5 1.2 3.8 5.9 5.3 6.8 18.8 18.4 13.7 18.4 5.0 1.2 0.3 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
Heckman model 22.9 0.5 1.1 8.6 19.8 8.3 0.7 2.9 4.8 2.8 25.3 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.5: Income class frequencies (in percentage points) estimated by weighted aggregation
of predictions in the WI (continued)
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Weighting model: Logit model (parametric) and GREG, using a propensity model and total calibration
None (weighted WI) 0.0 0.7 0.0 1.8 2.2 5.5 7.6 7.6 9.8 11.1 12.7 12.5 8.2 5.3 4.2 3.8 2.0 2.2 0.4 0.4 0.2 0.5 0.1 0.1 0.9
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.1 8.6 6.3 12.0 17.5 16.5 18.2 10.2 5.9 1.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.1 8.7 6.3 12.2 18.8 16.0 17.4 10.2 6.3 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 8.6 6.3 12.3 17.3 16.5 18.2 10.2 6.1 0.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 8.6 6.3 12.3 17.3 16.5 18.2 10.2 6.1 0.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.1 8.6 6.3 12.0 17.5 16.5 18.2 10.2 5.9 1.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.5 0.0 1.9 0.0 58.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 41.2 0.0 0.9 57.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 14.7 3.7 17.1 11.1 15.8 22.6 8.2 4.4 1.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.9 17.3 2.7 28.7 11.1 18.5 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.1 8.6 6.3 12.0 17.5 16.5 18.2 10.2 5.9 1.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.1 8.6 6.3 12.0 17.5 16.5 18.2 10.2 5.9 1.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 62.4 3.0 0.6 0.8 6.0 13.1 3.8 0.1 1.2 2.1 3.1 3.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using a propensity model and total calibration
None (weighted WI) 0.0 0.0 1.3 1.7 0.0 4.1 4.1 1.2 0.7 13.4 14.7 14.8 5.8 3.6 6.4 8.7 2.6 2.7 3.2 3.3 1.4 1.5 0.0 0.0 4.7
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 14.4 19.9 25.7 8.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.4 14.5 20.9 28.2 4.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 14.4 19.9 27.4 6.3 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 14.4 19.9 27.4 6.3 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 14.4 19.9 25.7 8.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.7 0.0 0.0 0.0 0.0 13.2 0.0
MARS 0.1 0.0 0.0 0.0 0.0 0.0 1.0 4.8 6.2 27.5 0.0 2.1 25.6 0.0 0.0 4.0 0.0 1.7 0.0 3.9 0.0 5.1 8.5 8.2 1.4
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 31.0 17.5 15.7 33.0 2.8 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 9.1 23.1 17.5 10.4 7.4 14.4 17.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 14.4 19.9 25.7 8.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 14.4 19.9 25.7 8.0 0.0 0.0 0.0
Heckman model 41.1 6.8 1.2 0.1 0.0 0.0 0.0 17.2 24.1 8.2 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots) and GREG, using a propensity model and total calibration
None (weighted WI) 0.0 1.1 0.2 2.3 2.6 5.3 8.5 8.9 11.3 11.0 12.6 11.5 8.6 4.3 3.3 3.0 1.7 1.7 0.3 0.3 0.2 0.4 0.1 0.1 0.7
GLM (OLS) 0.0 0.0 0.2 0.7 1.4 1.3 2.2 6.0 8.3 6.8 11.4 15.6 15.8 13.1 7.3 6.8 2.5 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.2 0.8 1.4 1.0 2.4 6.0 8.3 6.7 11.8 16.2 15.5 12.7 7.3 7.3 1.9 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.2 0.7 1.4 1.3 2.2 6.0 8.3 6.7 11.8 15.4 15.8 13.1 7.3 7.1 2.3 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.2 0.7 1.4 1.3 2.2 6.0 8.3 6.7 11.8 15.4 15.8 13.1 7.3 7.1 2.3 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.2 0.7 1.4 1.3 2.2 6.0 8.3 6.8 11.4 15.6 15.8 13.1 7.3 6.8 2.5 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.3 0.0 5.3 0.0 51.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0
MARS 0.1 0.1 0.1 0.2 0.9 3.3 2.7 2.4 2.6 36.5 1.8 4.2 45.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.1 0.1 1.2 1.5 1.3 2.6 3.0 12.6 4.5 15.7 11.2 14.5 16.1 6.6 6.2 2.1 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.5 2.0 17.2 17.3 7.5 24.8 10.3 14.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.2 0.7 1.4 1.3 2.2 6.0 8.3 6.8 11.4 15.6 15.8 13.1 7.3 6.8 2.5 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.2 0.7 1.4 1.3 2.2 6.0 8.3 6.8 11.4 15.6 15.8 13.1 7.3 6.8 2.5 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 63.8 4.5 3.2 3.6 5.4 7.3 2.7 0.3 0.7 2.0 3.2 3.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using a propensity model and total calibration
None (weighted WI) 0.0 0.0 1.1 1.6 0.0 4.5 4.4 1.3 1.4 14.6 14.9 15.3 5.7 3.7 6.4 7.8 2.3 2.3 2.9 3.1 1.2 1.2 0.0 0.0 4.3
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 35.4 13.5 20.6 23.4 6.4 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 36.0 13.5 21.6 25.2 3.2 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 35.4 13.5 20.6 24.8 5.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 35.4 13.5 20.6 24.8 5.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 35.4 13.5 20.6 23.4 6.4 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.3 0.0 0.0 0.0 0.0 10.9 0.0
MARS 0.6 0.0 0.0 0.0 0.0 0.0 1.3 5.6 7.0 28.9 0.0 2.4 25.9 0.0 0.0 3.7 0.0 1.6 0.0 3.5 0.0 4.5 7.3 6.7 1.1
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 34.5 16.3 16.7 29.8 2.2 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.4 0.2 0.0 0.0 0.0 0.3 10.6 25.2 16.9 10.7 7.4 13.3 15.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 35.4 13.5 20.6 23.4 6.4 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 35.4 13.5 20.6 23.4 6.4 0.0 0.0 0.0
Heckman model 44.8 6.0 1.0 0.1 0.0 0.0 0.0 18.4 22.1 6.7 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using a propensity model and total calibration
None (weighted WI) 0.0 0.9 0.3 1.8 1.8 4.3 7.3 9.6 11.7 11.1 14.3 11.9 7.3 4.0 3.9 3.1 2.2 1.8 0.6 0.4 0.2 0.2 0.1 0.1 0.8
GLM (OLS) 0.0 0.1 0.1 0.5 1.4 1.3 1.6 4.6 8.9 8.6 10.4 21.1 19.2 9.7 7.6 4.0 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.5 1.5 1.1 1.7 4.6 9.0 8.3 10.9 22.3 18.5 9.1 7.6 4.2 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.4 1.5 1.3 1.5 4.6 8.9 8.3 11.3 20.6 19.2 9.7 7.6 4.2 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.4 1.5 1.3 1.5 4.6 8.9 8.3 11.3 20.6 19.2 9.7 7.6 4.2 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 0.5 1.4 1.3 1.6 4.6 8.9 8.6 10.4 21.1 19.2 9.7 7.6 4.0 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.7 0.0 0.2 0.0 71.9 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.1 0.5 1.5 1.5 1.6 2.3 22.3 2.6 6.7 60.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.1 0.1 0.7 1.5 0.9 1.7 2.7 13.4 5.9 12.5 17.4 21.0 7.7 12.0 1.2 0.7 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.3 2.3 15.7 6.7 7.6 41.6 6.8 5.8 12.9 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 0.5 1.4 1.3 1.6 4.6 8.9 8.6 10.4 21.1 19.2 9.7 7.6 4.0 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.1 0.1 0.5 1.4 1.3 1.6 4.6 8.9 8.6 10.4 21.1 19.2 9.7 7.6 4.0 0.6 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Heckman model 23.8 1.2 3.4 7.7 10.5 14.5 2.9 1.3 5.7 9.3 13.2 6.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.5: Income class frequencies (in percentage points) estimated by weighted aggregation
of predictions in the WI (continued)
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Weighting model: Logit model (parametric) and GREG, using a propensity model and covariance calibration
None (weighted WI) 0.0 1.0 0.3 2.1 2.1 4.7 8.0 10.1 11.8 11.1 13.8 11.3 6.8 3.9 3.6 2.8 2.3 1.9 0.6 0.5 0.2 0.2 0.2 0.1 0.7
GLM (OLS) 0.0 0.1 0.1 0.7 1.8 1.6 2.7 6.2 9.3 7.5 9.0 20.1 18.0 8.0 7.9 5.7 1.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.6 1.8 1.3 2.6 6.2 9.5 7.2 9.0 21.3 18.2 7.3 7.8 6.2 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.6 1.8 1.6 2.5 6.3 9.4 7.2 9.6 19.8 18.0 8.0 7.9 6.1 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.6 1.8 1.6 2.5 6.3 9.4 7.2 9.6 19.8 18.0 8.0 7.9 6.1 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 0.7 1.8 1.6 2.7 6.2 9.3 7.5 9.0 20.1 18.0 8.0 7.9 5.7 1.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.0 0.0 0.1 0.0 66.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.1 0.2 0.9 2.3 2.0 1.5 1.9 25.1 1.4 3.0 61.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.1 0.1 1.0 1.8 1.3 3.6 3.4 14.2 4.9 12.6 17.2 18.0 6.1 11.8 2.4 1.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.3 3.6 19.6 3.8 4.9 44.6 4.0 6.2 12.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 0.7 1.8 1.6 2.7 6.2 9.3 7.5 9.0 20.1 18.0 8.0 7.9 5.7 1.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.1 0.1 0.7 1.8 1.6 2.7 6.2 9.3 7.5 9.0 20.1 18.0 8.0 7.9 5.7 1.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 24.4 3.1 3.6 5.0 8.5 13.4 4.1 1.1 7.8 11.6 9.7 7.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using a propensity model and covariance calibration
None (weighted WI) 0.0 0.8 0.5 2.3 1.5 3.1 5.9 7.7 10.7 10.3 15.8 13.9 8.2 4.8 4.4 3.4 2.2 1.7 0.6 0.4 0.3 0.2 0.1 0.1 0.9
GLM (OLS) 0.0 0.0 0.0 0.3 0.8 0.6 0.9 2.6 7.1 8.1 7.7 17.3 28.7 12.4 7.9 4.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.3 0.8 0.5 0.9 2.6 7.2 7.9 8.2 17.8 28.2 12.2 7.9 5.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.3 0.8 0.6 0.9 2.5 7.2 7.9 8.4 16.9 28.7 12.4 7.9 5.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.3 0.8 0.6 0.9 2.5 7.2 7.9 8.4 16.9 28.7 12.4 7.9 5.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.3 0.8 0.6 0.9 2.6 7.1 8.1 7.7 17.3 28.7 12.4 7.9 4.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.6 0.0 0.4 0.0 87.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.1 0.4 1.3 1.6 2.4 3.5 10.7 8.6 17.7 53.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.1 0.0 0.5 0.8 0.6 1.1 2.9 8.8 6.0 9.2 18.9 25.3 9.3 12.9 2.9 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.3 0.0 0.4 1.0 2.8 8.1 8.0 11.4 31.1 14.3 9.1 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.3 0.8 0.6 0.9 2.6 7.1 8.1 7.7 17.3 28.7 12.4 7.9 4.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.3 0.8 0.6 0.9 2.6 7.1 8.1 7.7 17.3 28.7 12.4 7.9 4.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 10.1 2.6 4.3 9.9 7.1 7.2 1.6 1.4 4.5 21.3 25.0 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots) and GREG, using a propensity model and covariance calibration
None (weighted WI) 0.0 1.1 0.5 2.5 2.5 4.8 8.1 10.0 11.6 11.2 13.5 11.3 6.8 4.0 3.2 2.8 2.0 1.6 0.6 0.4 0.2 0.2 0.1 0.2 0.6
GLM (OLS) 0.2 0.2 0.3 0.9 1.7 1.6 2.1 5.7 9.9 9.3 10.8 18.9 16.1 8.6 5.3 5.8 2.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.2 0.0 0.4 0.9 1.8 1.4 2.1 5.8 10.0 9.0 11.4 19.6 15.9 8.2 5.2 6.5 1.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.2 0.1 0.4 0.8 1.8 1.7 1.9 5.8 10.0 9.0 11.6 18.6 16.1 8.6 5.4 6.4 1.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.2 0.1 0.4 0.8 1.8 1.7 1.9 5.8 10.0 9.0 11.6 18.6 16.1 8.6 5.4 6.4 1.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.2 0.2 0.3 0.9 1.7 1.6 2.1 5.7 9.9 9.3 10.8 18.9 16.1 8.6 5.3 5.8 2.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.9 0.0 0.0 0.0 66.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.5 0.1 0.2 0.3 1.1 1.6 2.3 2.2 2.7 27.7 4.2 7.8 49.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.3 0.3 0.2 1.4 1.6 1.7 2.4 3.5 15.4 7.2 11.2 17.5 15.5 6.7 9.3 3.5 2.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.2 0.2 0.6 0.3 0.8 1.5 3.8 18.6 7.3 7.6 35.3 8.0 5.1 10.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.2 0.2 0.3 0.9 1.7 1.6 2.1 5.7 9.9 9.3 10.8 18.9 16.1 8.6 5.3 5.8 2.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.2 0.2 0.3 0.9 1.7 1.6 2.1 5.7 9.9 9.3 10.8 18.9 16.1 8.6 5.3 5.8 2.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 30.6 3.6 5.3 7.4 8.7 10.5 3.8 0.9 3.8 7.9 10.2 6.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using a propensity model and covariance calibration
None (weighted WI) 0.0 1.1 0.4 2.2 2.7 6.4 8.9 10.5 11.6 12.8 13.9 10.8 6.5 3.3 2.6 1.9 1.6 1.1 0.4 0.2 0.1 0.1 0.2 0.1 0.6
GLM (OLS) 0.1 0.1 0.1 0.3 0.8 1.3 3.1 8.3 11.2 7.6 13.1 25.0 15.7 6.1 4.1 2.5 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.1 0.0 0.1 0.2 0.9 1.0 2.2 8.5 11.9 7.5 12.2 25.8 16.5 5.8 4.1 2.6 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.0 0.1 0.2 0.9 1.3 2.4 9.0 11.2 7.4 13.5 24.7 15.7 6.1 4.1 2.6 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.0 0.1 0.2 0.9 1.3 2.4 9.0 11.2 7.4 13.5 24.7 15.7 6.1 4.1 2.6 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.1 0.1 0.3 0.8 1.3 3.1 8.3 11.2 7.6 13.1 25.0 15.7 6.1 4.1 2.5 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.6 0.0 1.0 0.0 60.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0
MARS 0.2 0.0 0.0 0.1 0.4 0.8 0.7 0.7 1.0 36.2 0.9 2.4 56.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.1 0.1 0.4 0.7 0.7 6.2 5.5 14.5 4.6 23.5 15.6 14.2 6.1 5.5 1.5 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.2 0.1 0.1 0.1 0.2 5.7 21.3 7.7 3.7 47.7 3.7 4.4 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 0.1 0.3 0.8 1.3 3.1 8.3 11.2 7.6 13.1 25.0 15.7 6.1 4.1 2.5 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.1 0.1 0.1 0.3 0.8 1.3 3.1 8.3 11.2 7.6 13.1 25.0 15.7 6.1 4.1 2.5 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 29.6 6.4 5.4 3.2 5.4 9.4 2.1 1.0 11.8 16.9 5.9 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using a propensity model and covariance calibration
None (weighted WI) 0.0 0.8 0.3 1.6 1.7 4.2 7.0 9.3 11.4 11.2 14.6 12.6 7.7 4.2 4.0 3.3 2.1 1.6 0.5 0.4 0.2 0.2 0.1 0.1 0.8
GLM (OLS) 0.0 0.0 0.0 0.3 1.0 1.8 2.0 4.7 7.7 9.6 12.5 19.9 19.3 10.9 6.7 2.8 0.4 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.3 1.1 1.3 2.4 4.6 7.8 8.9 13.6 20.7 18.5 10.5 6.7 2.9 0.2 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.3 1.1 1.8 2.0 4.6 7.8 9.0 13.8 19.2 19.3 10.9 6.7 2.9 0.3 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.3 1.1 1.8 2.0 4.6 7.8 9.0 13.8 19.2 19.3 10.9 6.7 2.9 0.3 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.3 1.0 1.8 2.0 4.7 7.7 9.6 12.5 19.9 19.3 10.9 6.7 2.8 0.4 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.6 0.0 0.2 0.0 71.9 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.3 0.9 1.1 1.4 2.6 22.5 1.9 7.7 61.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.5 1.2 1.3 1.8 2.7 12.1 7.2 13.1 16.8 21.9 9.0 10.6 0.9 0.4 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.2 1.6 15.1 6.1 10.4 38.5 9.8 7.2 11.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.3 1.0 1.8 2.0 4.7 7.7 9.6 12.5 19.9 19.3 10.9 6.7 2.8 0.4 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.3 1.0 1.8 2.0 4.7 7.7 9.6 12.5 19.9 19.3 10.9 6.7 2.8 0.4 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Heckman model 23.3 1.0 2.7 9.4 12.7 12.3 1.8 1.9 5.2 7.6 17.4 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

335



Additional Results for the German WageIndicator Web Survey

Table D.5: Income class frequencies (in percentage points) estimated by weighted aggregation
of predictions in the WI (continued)
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Weighting model: GREG, using total and covariance calibration
None (weighted WI) 0.0 1.1 0.0 0.0 0.9 3.7 6.6 6.0 7.7 11.3 12.7 13.6 10.3 5.7 4.8 5.0 3.9 3.4 1.0 0.5 0.3 0.1 0.3 0.0 0.8
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 2.0 2.8 6.2 0.0 0.0 5.6 37.0 15.1 10.8 13.1 7.2 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 1.5 3.2 6.7 0.0 0.0 6.0 38.6 13.3 10.3 13.1 7.2 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 2.0 2.4 7.1 0.0 0.0 6.9 35.9 14.9 10.7 13.0 7.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 2.0 2.4 7.1 0.0 0.0 6.9 35.9 14.9 10.7 13.0 7.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 2.0 2.8 6.2 0.0 0.0 5.6 37.0 15.1 10.8 13.1 7.2 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.8 0.0 1.4 0.0 69.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 17.5 0.0 0.0 81.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.3 0.9 3.0 0.0 2.7 0.0 11.0 21.2 25.4 10.5 22.2 2.5 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.0 0.0 0.0 57.1 5.8 2.5 20.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 2.0 2.8 6.2 0.0 0.0 5.6 37.0 15.1 10.8 13.1 7.2 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 2.0 2.8 6.2 0.0 0.0 5.6 37.0 15.1 10.8 13.1 7.2 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0
Heckman model 31.6 4.1 0.0 0.0 13.8 23.9 0.0 0.0 3.6 0.0 13.6 9.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (one parameter per observation, as for the GREG), using total and covariance calibration
None (weighted WI) 0.0 0.9 0.0 - 1.1 0.2 3.0 4.9 7.3 9.2 12.3 15.7 14.2 11.0 4.6 5.0 4.6 3.2 2.2 0.7 0.2 0.3 0.2 0.3 0.0 1.0
GLM (OLS) 0.1 1.2 1.0 9.5 0.5 0.0 0.0 0.0 0.0 68.7 0.0 0.0 0.0 0.0 0.0 6.9 10.0 1.4 0.0 0.9 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.1 0.3 1.6 9.6 1.7 0.0 0.0 0.0 0.0 66.3 0.0 0.0 0.0 0.0 0.0 11.3 6.9 1.4 0.0 0.9 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.6 1.5 9.4 1.5 0.0 0.0 0.0 0.0 66.6 0.0 0.0 0.0 0.0 0.0 11.6 6.3 1.4 0.0 0.9 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.6 1.5 9.4 1.5 0.0 0.0 0.0 0.0 66.6 0.0 0.0 0.0 0.0 0.0 11.6 6.3 1.4 0.0 0.9 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 1.2 1.0 9.5 0.5 0.0 0.0 0.0 0.0 68.7 0.0 0.0 0.0 0.0 0.0 6.9 10.0 1.4 0.0 0.9 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.2 0.2 0.6 1.8 7.7 12.5 0.0 0.0 0.0 0.0 47.2 29.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
ANN (opt. knots) 0.2 1.5 1.3 14.6 0.0 3.1 0.0 11.9 30.3 0.0 0.0 0.0 0.0 0.0 0.0 22.4 11.4 2.5 0.0 0.8 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.6 0.3 1.9 7.1 13.3 0.0 45.5 31.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 1.2 1.0 9.5 0.5 0.0 0.0 0.0 0.0 68.7 0.0 0.0 0.0 0.0 0.0 6.9 10.0 1.4 0.0 0.9 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.1 1.2 1.0 9.5 0.5 0.0 0.0 0.0 0.0 68.7 0.0 0.0 0.0 0.0 0.0 6.9 10.0 1.4 0.0 0.9 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 11.8 12.2 0.0 0.0 43.1 14.4 0.0 15.2 0.0 2.4 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using total and covariance calibration
None (weighted WI) 0.0 1.4 0.6 4.3 5.9 11.7 13.6 13.3 12.8 11.4 10.5 7.4 2.9 1.1 1.1 0.6 0.6 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.2
GLM (OLS) 0.0 0.3 0.2 1.0 2.3 3.1 6.3 15.3 18.1 13.0 17.5 12.9 7.5 1.4 0.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.1 0.3 0.7 2.5 2.5 5.7 15.7 18.7 12.6 18.3 13.3 6.9 1.3 0.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.3 0.8 2.6 3.1 5.5 16.1 18.1 12.4 18.1 12.9 7.5 1.4 0.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.3 0.8 2.6 3.1 5.5 16.1 18.1 12.4 18.1 12.9 7.5 1.4 0.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.3 0.2 1.0 2.3 3.1 6.3 15.3 18.1 13.0 17.5 12.9 7.5 1.4 0.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 92.6 0.0 5.7 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0
MARS 0.0 0.0 0.1 0.2 1.3 4.8 4.9 4.2 4.8 78.6 0.0 0.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.3 0.2 1.3 2.4 2.1 10.0 9.3 25.2 7.4 23.9 10.1 5.4 1.0 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.6 8.3 37.9 31.1 8.0 13.6 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.3 0.2 1.0 2.3 3.1 6.3 15.3 18.1 13.0 17.5 12.9 7.5 1.4 0.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.3 0.2 1.0 2.3 3.1 6.3 15.3 18.1 13.0 17.5 12.9 7.5 1.4 0.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 72.1 6.1 7.5 5.8 6.5 1.3 0.0 0.0 0.1 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using total and covariance calibration
None (weighted WI) 0.0 0.8 0.5 2.5 2.4 4.9 7.3 7.3 8.6 10.6 12.1 12.3 8.4 6.3 5.1 3.4 2.1 2.5 0.4 0.4 0.1 0.7 0.1 0.1 0.9
GLM (OLS) 0.0 0.0 0.0 0.0 5.4 94.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 5.4 94.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 5.4 94.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 5.4 94.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 5.4 94.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.6 0.0 0.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 94.6 0.0 0.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 5.4 0.0 94.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 94.6 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 5.4 94.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 5.4 94.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 94.6 0.0 0.0 0.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using total and covariance calibration
None (weighted WI) 0.0 0.9 0.2 1.2 1.7 4.1 6.6 8.8 10.7 11.3 14.6 12.6 8.5 4.5 4.5 4.2 2.2 1.4 0.4 0.5 0.2 0.3 0.0 0.1 0.7
GLM (OLS) 0.0 0.0 0.0 0.1 0.2 1.4 3.1 6.8 5.4 7.0 17.6 21.4 13.1 16.8 5.8 0.6 0.1 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.3 0.9 3.5 6.9 5.3 6.0 20.2 20.8 12.2 16.7 5.8 0.7 0.1 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.3 1.4 3.1 6.8 5.4 6.3 19.9 19.8 13.1 16.8 5.8 0.6 0.1 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.3 1.4 3.1 6.8 5.4 6.3 19.9 19.8 13.1 16.8 5.8 0.6 0.1 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.2 1.4 3.1 6.8 5.4 7.0 17.6 21.4 13.1 16.8 5.8 0.6 0.1 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.6 0.0 0.1 0.0 71.9 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 1.4 25.8 0.3 3.6 68.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.1 0.3 1.0 1.9 3.0 10.4 5.3 14.7 18.8 18.8 14.1 10.7 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.9 15.2 3.1 10.0 38.3 10.4 11.1 10.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.2 1.4 3.1 6.8 5.4 7.0 17.6 21.4 13.1 16.8 5.8 0.6 0.1 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.2 1.4 3.1 6.8 5.4 7.0 17.6 21.4 13.1 16.8 5.8 0.6 0.1 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
Heckman model 23.8 0.5 0.8 8.5 20.5 9.2 0.2 2.7 5.6 2.3 24.5 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.5: Income class frequencies (in percentage points) estimated by weighted aggregation
of predictions in the WI (continued)
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Weighting model: Logit model (parametric) and GREG, using a propensity model, total and covariance calibration
None (weighted WI) 0.0 0.2 0.0 1.1 2.8 6.4 9.0 5.3 8.5 9.8 10.7 12.0 7.9 7.7 4.4 5.3 3.4 3.2 0.7 0.3 0.2 0.2 0.1 0.1 0.8
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.2 2.8 13.4 8.4 0.0 0.0 15.2 23.3 23.9 6.4 4.3 1.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 2.6 13.8 8.7 0.0 0.0 15.7 22.8 23.5 6.4 5.3 1.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.2 2.3 14.5 7.9 0.0 0.0 14.9 23.4 24.0 6.4 4.7 1.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.2 2.3 14.5 7.9 0.0 0.0 14.9 23.4 24.0 6.4 4.7 1.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.2 2.8 13.4 8.4 0.0 0.0 15.2 23.3 23.9 6.4 4.3 1.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.0 0.0 3.4 0.0 51.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.4 0.0 0.0 62.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 5.5 3.5 12.6 0.0 0.0 15.9 18.7 32.8 8.2 0.9 1.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.8 0.0 0.0 35.0 17.7 12.7 8.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.2 2.8 13.4 8.4 0.0 0.0 15.2 23.3 23.9 6.4 4.3 1.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.2 2.8 13.4 8.4 0.0 0.0 15.2 23.3 23.9 6.4 4.3 1.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 57.3 3.9 0.0 0.0 10.9 19.2 0.3 0.0 0.0 0.8 0.0 7.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using a propensity model, total and covariance calibration
None (weighted WI) 0.0 0.0 1.3 1.7 0.0 4.1 4.1 1.2 0.7 13.4 14.7 14.8 5.8 3.6 6.4 8.7 2.6 2.7 3.2 3.3 1.4 1.5 0.0 0.0 4.7
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 14.4 19.9 25.7 8.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.4 14.5 20.9 28.2 4.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 14.4 19.9 27.4 6.3 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 14.4 19.9 27.4 6.3 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 14.4 19.9 25.7 8.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.7 0.0 0.0 0.0 0.0 13.2 0.0
MARS 0.1 0.0 0.0 0.0 0.0 0.0 1.0 4.8 6.2 27.5 0.0 2.1 25.6 0.0 0.0 4.0 0.0 1.7 0.0 3.9 0.0 5.1 8.5 8.2 1.4
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 31.0 17.5 15.7 33.0 2.8 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 9.1 23.1 17.5 10.4 7.4 14.4 17.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 14.4 19.9 25.7 8.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 14.4 19.9 25.7 8.0 0.0 0.0 0.0
Heckman model 41.1 6.8 1.2 0.1 0.0 0.0 0.0 17.2 24.1 8.2 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots) and GREG, using a propensity model, total and covariance calibration
None (weighted WI) 0.0 0.9 0.2 2.2 2.2 4.8 8.5 8.2 11.0 11.4 12.9 12.6 6.5 5.6 3.1 3.6 2.2 2.0 0.5 0.3 0.1 0.3 0.1 0.1 0.8
GLM (OLS) 0.1 0.2 0.0 0.1 0.5 1.5 3.5 7.0 8.7 6.8 5.4 16.5 17.5 16.7 6.9 7.4 1.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.1 0.0 0.0 0.0 0.6 1.1 3.6 7.1 8.8 6.4 6.1 16.9 17.4 16.4 6.8 8.1 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.1 0.0 0.0 0.6 1.5 3.3 7.4 8.6 6.3 6.1 16.3 17.5 16.7 6.9 7.7 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.1 0.0 0.0 0.6 1.5 3.3 7.4 8.6 6.3 6.1 16.3 17.5 16.7 6.9 7.7 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.2 0.0 0.1 0.5 1.5 3.5 7.0 8.7 6.8 5.4 16.5 17.5 16.7 6.9 7.4 1.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.6 0.0 2.5 0.0 59.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.2 0.3 2.9 1.6 1.8 2.4 26.1 2.8 7.2 54.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.1 0.9 0.6 4.6 3.3 14.2 3.7 5.0 17.3 13.8 21.7 7.6 4.9 1.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 2.7 21.1 4.6 4.9 30.0 16.7 13.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.2 0.0 0.1 0.5 1.5 3.5 7.0 8.7 6.8 5.4 16.5 17.5 16.7 6.9 7.4 1.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.1 0.2 0.0 0.1 0.5 1.5 3.5 7.0 8.7 6.8 5.4 16.5 17.5 16.7 6.9 7.4 1.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 58.3 6.6 2.9 3.1 6.4 7.8 2.8 0.0 0.0 2.2 5.0 4.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using a propensity model, total and covariance calibration
None (weighted WI) 0.0 0.0 1.1 1.6 0.0 4.5 4.4 1.3 1.4 14.6 14.9 15.3 5.7 3.7 6.4 7.8 2.3 2.3 2.9 3.1 1.2 1.2 0.0 0.0 4.3
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 35.4 13.5 20.6 23.4 6.4 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 36.0 13.5 21.6 25.2 3.2 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 35.4 13.5 20.6 24.8 5.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 35.4 13.5 20.6 24.8 5.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 35.4 13.5 20.6 23.4 6.4 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.3 0.0 0.0 0.0 0.0 10.9 0.0
MARS 0.6 0.0 0.0 0.0 0.0 0.0 1.3 5.6 7.0 28.9 0.0 2.4 25.9 0.0 0.0 3.7 0.0 1.6 0.0 3.5 0.0 4.5 7.3 6.7 1.1
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 34.5 16.3 16.7 29.8 2.2 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.4 0.2 0.0 0.0 0.0 0.3 10.6 25.2 16.9 10.7 7.4 13.3 15.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 35.4 13.5 20.6 23.4 6.4 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 35.4 13.5 20.6 23.4 6.4 0.0 0.0 0.0
Heckman model 44.8 6.0 1.0 0.1 0.0 0.0 0.0 18.4 22.1 6.7 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using a propensity model, total and covariance calibration
None (weighted WI) 0.0 0.8 0.3 1.5 1.7 4.2 6.9 9.1 11.3 11.2 14.6 12.7 7.8 4.3 4.1 3.4 2.1 1.5 0.5 0.4 0.2 0.2 0.1 0.1 0.8
GLM (OLS) 0.0 0.0 0.0 0.3 0.9 1.7 2.2 4.7 7.4 9.3 13.2 19.8 19.0 11.4 6.6 2.5 0.4 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.2 0.9 1.2 2.6 4.7 7.4 8.6 14.5 20.6 18.2 11.1 6.6 2.6 0.2 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.2 0.9 1.7 2.1 4.7 7.5 8.7 14.6 19.0 19.0 11.4 6.6 2.6 0.3 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.2 0.9 1.7 2.1 4.7 7.5 8.7 14.6 19.0 19.0 11.4 6.6 2.6 0.3 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.3 0.9 1.7 2.2 4.7 7.4 9.3 13.2 19.8 19.0 11.4 6.6 2.5 0.4 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.6 0.0 0.2 0.0 72.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.2 0.7 0.9 1.3 2.5 22.9 1.6 7.3 62.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.4 1.0 1.3 1.9 2.6 11.8 7.1 13.5 16.7 21.9 9.6 10.5 0.8 0.4 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 1.4 14.9 5.7 10.6 38.2 10.2 7.7 11.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.3 0.9 1.7 2.2 4.7 7.4 9.3 13.2 19.8 19.0 11.4 6.6 2.5 0.4 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.3 0.9 1.7 2.2 4.7 7.4 9.3 13.2 19.8 19.0 11.4 6.6 2.5 0.4 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Heckman model 23.3 0.9 2.4 9.4 13.5 12.0 1.6 2.0 5.3 6.9 18.5 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.6: Income class frequencies (in percentage points) estimated from the imputed Micro-
census, using a weighted loss function for prediction models
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Weighting model: unweighted, using no auxiliary information
Matching 0.0 0.0 0.0 0.0 1.6 4.1 4.6 7.2 9.9 11.8 17.2 12.3 5.8 13.4 5.0 2.1 0.4 0.2 0.1 0.0 0.2 0.8 0.4 1.7 1.1
GLM (OLS) 0.1 0.1 0.7 1.4 0.5 1.3 2.8 4.4 3.5 3.7 9.7 10.0 11.7 11.7 9.2 9.8 8.3 6.0 3.1 1.8 0.3 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.1 0.3 1.8 0.6 1.2 2.8 4.5 3.5 3.6 9.9 10.4 11.6 11.8 9.3 10.1 8.1 5.7 3.2 1.4 0.2 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.1 0.7 1.4 0.6 1.3 2.7 4.5 3.5 3.5 9.8 9.9 11.7 11.7 9.3 10.0 8.1 6.0 3.1 1.8 0.2 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.1 0.7 1.4 0.6 1.3 2.7 4.5 3.5 3.5 9.8 9.9 11.7 11.7 9.3 10.0 8.1 6.0 3.1 1.8 0.2 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.1 0.7 1.4 0.5 1.3 2.8 4.4 3.5 3.7 9.7 10.0 11.7 11.7 9.2 9.8 8.3 6.0 3.1 1.8 0.3 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.4 0.0 4.0 0.0 48.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 0.0
MARS 0.1 0.2 0.9 1.2 1.4 2.2 2.0 3.3 2.9 42.8 2.2 2.9 38.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.4 0.7 0.9 3.8 0.7 4.6 3.3 4.0 3.5 4.8 13.2 7.6 7.2 12.3 8.3 8.2 6.1 7.0 1.6 2.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.4 3.4 3.9 7.0 14.8 11.7 21.3 15.6 16.5 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 0.7 1.4 0.5 1.3 2.8 4.4 3.5 3.7 9.7 10.0 11.7 11.7 9.2 9.8 8.3 6.0 3.1 1.8 0.3 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 62.2 6.0 8.4 7.2 4.8 3.6 2.2 1.2 0.9 1.1 1.3 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (parametric), using propensity weights
GLM (OLS) 0.1 0.0 0.7 1.5 0.5 2.6 2.6 3.9 3.3 5.3 9.9 10.1 12.1 11.3 9.3 10.0 7.8 4.9 2.8 1.2 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.3 1.8 0.5 2.1 2.4 4.4 3.4 5.1 10.5 10.2 12.7 12.0 9.1 10.0 7.5 4.5 2.7 0.7 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.1 0.7 1.5 0.5 2.6 2.5 4.0 3.4 5.3 9.9 10.1 12.4 11.7 8.5 10.4 7.4 4.9 3.0 1.0 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.1 0.7 1.5 0.5 2.6 2.5 4.0 3.4 5.3 9.9 10.1 12.4 11.7 8.5 10.4 7.4 4.9 3.0 1.0 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.1 0.7 1.6 0.4 3.2 2.1 3.8 3.6 4.2 13.1 6.6 7.7 11.5 9.9 8.6 7.0 9.4 3.0 2.0 0.9 0.5 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.4 0.0 4.0 0.0 48.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 0.0
MARS 0.0 0.0 0.0 0.0 1.8 3.5 3.3 2.4 3.4 29.2 5.9 6.0 35.9 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.6 1.4 3.6 1.1
ANN (opt. knots) 0.1 0.3 1.0 1.1 0.6 2.3 3.8 2.8 4.1 3.3 17.2 9.3 8.5 12.6 10.0 7.6 5.0 7.7 1.4 1.4 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 1.5 0.8 0.8 2.5 3.3 3.1 2.8 5.7 10.4 8.8 11.6 12.3 9.9 8.7 8.4 5.1 2.6 1.3 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 94.9 0.3 0.4 0.5 0.5 0.6 0.7 1.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Pseudo-Weights (parametric), using propensity weights
GLM (OLS) 0.0 0.1 0.1 1.8 0.8 0.7 2.7 4.3 4.1 3.9 9.4 11.4 10.8 11.4 8.5 8.2 7.9 6.1 4.5 2.8 0.7 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 1.5 0.9 0.6 2.2 4.2 4.4 4.0 10.5 11.8 11.5 11.3 8.6 8.6 7.4 6.0 4.0 2.3 0.2 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.1 1.8 0.8 0.7 2.7 4.0 4.5 3.9 9.5 11.3 10.8 11.5 8.8 7.8 7.9 6.4 4.1 2.8 0.7 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.1 1.8 0.8 0.7 2.7 4.0 4.5 3.9 9.5 11.3 10.8 11.5 8.8 7.8 7.9 6.4 4.1 2.8 0.7 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.1 1.2 1.1 0.4 1.1 3.2 4.3 3.7 2.3 13.8 12.5 6.2 15.7 5.6 9.2 5.9 5.8 3.9 3.9 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.4 0.0 0.0 11.7 0.0 30.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.4 0.0 6.1 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.1 0.4 1.3 1.1 3.9 3.0 7.5 3.2 15.8 10.2 6.0 17.0 4.1 5.3 7.9 4.8 5.7 2.5 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 0.3 1.8 0.5 0.9 3.1 4.3 3.2 3.2 11.7 10.5 8.8 13.1 7.6 9.2 7.2 7.0 3.9 2.7 0.7 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 34.9 0.0 4.1 24.1 23.1 0.0 1.5 1.8 1.1 6.2 0.4 0.7 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using propensity weights
GLM (OLS) 0.0 0.1 0.1 1.5 0.9 0.7 3.1 3.6 4.5 4.5 12.7 13.3 13.6 12.9 9.5 10.1 5.4 2.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 1.2 1.2 0.7 3.0 3.1 5.1 4.6 12.7 14.1 13.9 12.7 9.5 10.1 4.9 2.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.1 1.5 0.9 0.7 3.0 3.7 4.4 4.6 12.7 13.4 14.2 12.5 9.7 10.0 5.3 2.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.1 1.5 0.9 0.7 3.0 3.7 4.4 4.6 12.7 13.4 14.2 12.5 9.7 10.0 5.3 2.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 1.7 0.8 1.2 2.8 4.2 3.7 4.9 13.0 15.1 13.8 12.3 9.3 10.1 4.4 2.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.5 0.0 0.0 21.1 0.0 27.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 2.4 3.1 3.7 3.0 6.0 35.3 4.4 5.8 7.5 26.7 0.5 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.1 0.7 1.4 0.5 2.0 5.9 4.2 6.5 7.0 14.6 13.3 9.6 15.3 8.6 5.1 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 3.2 10.1 13.7 22.3 19.6 29.6 0.9 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 1.5 0.9 0.7 3.1 3.6 4.5 4.5 12.7 13.3 13.6 12.9 9.5 10.1 5.4 2.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 61.8 38.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.1 1.8 0.8 0.7 1.0 3.4 4.0 5.6 7.9 12.4 11.1 11.7 13.1 10.5 9.2 4.1 2.3 0.4 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots), using propensity weights
GLM (OLS) 0.1 0.1 0.3 1.7 0.7 2.2 3.0 3.6 3.2 5.5 9.3 11.1 10.8 12.8 10.8 10.6 7.5 4.1 2.1 0.5 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.1 0.3 1.7 0.6 2.1 2.6 4.0 3.2 5.1 10.3 11.0 11.5 13.3 10.8 10.3 7.1 4.0 1.8 0.3 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.1 0.3 1.7 0.7 2.1 3.0 3.7 3.2 5.5 9.8 10.6 11.1 12.6 10.8 10.6 7.5 4.1 2.2 0.4 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.1 0.3 1.7 0.7 2.1 3.0 3.7 3.2 5.5 9.8 10.6 11.1 12.6 10.8 10.6 7.5 4.1 2.2 0.4 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 3.5 0.7 1.4 1.2 1.4 3.1 4.1 3.6 3.8 6.2 13.2 8.1 7.9 14.4 8.8 5.5 7.9 2.9 1.8 0.5 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.4 10.6 4.0 0.0 0.0 37.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.8 0.0
MARS 5.2 2.0 1.7 3.4 3.3 4.1 4.3 4.6 5.6 5.9 12.4 2.2 2.3 25.0 0.2 0.4 0.4 0.5 0.7 0.5 0.5 2.2 3.4 6.9 2.1
ANN (opt. knots) 0.3 0.6 0.5 1.0 1.2 4.6 4.7 4.3 3.4 5.5 12.9 12.4 7.1 15.7 8.0 7.3 6.5 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 0.7 1.4 0.7 2.5 3.2 3.4 2.0 5.6 11.0 9.1 11.4 14.9 9.0 10.9 7.5 4.1 1.9 0.4 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 58.4 11.8 12.0 10.7 4.4 0.0 0.0 0.2 1.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.6: Income class frequencies (in percentage points) estimated from the imputed Micro-
census, using a weighted loss function for prediction models (continued)
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Weighting model: Pseudo-Weights (fix knots), using propensity weights
GLM (OLS) 0.0 0.1 0.1 0.8 1.5 0.7 2.4 3.5 4.8 3.9 10.3 11.2 12.6 12.7 9.1 10.3 7.3 5.0 2.9 0.8 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.3 1.8 0.7 1.8 3.7 5.1 4.1 11.0 11.9 13.0 13.1 8.8 10.2 6.7 4.7 2.6 0.4 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.8 1.5 0.6 2.4 3.5 4.8 3.9 10.4 11.2 12.6 13.2 8.6 10.5 7.1 5.0 2.9 0.8 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.8 1.5 0.6 2.4 3.5 4.8 3.9 10.4 11.2 12.6 13.2 8.8 10.2 7.1 5.0 2.9 0.8 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 1.2 1.2 0.7 2.6 4.0 4.0 3.5 10.8 12.6 12.4 12.8 8.7 10.1 6.7 5.3 2.9 0.5 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.4 0.0 4.0 36.5 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.8 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.1 0.1 0.7 0.7 2.0 4.4 4.6 3.3 15.8 13.3 7.7 15.7 6.4 11.5 4.6 5.6 3.6 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 1.2 1.1 0.6 2.6 4.2 3.8 3.5 11.9 10.2 11.3 14.3 9.1 9.5 7.7 5.0 2.9 0.8 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 42.5 57.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 34.9 0.0 0.0 1.8 11.4 38.1 0.0 3.4 1.5 6.2 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using propensity weights
GLM (OLS) 0.0 0.1 0.1 1.5 0.9 0.7 3.1 3.6 4.5 4.5 12.7 13.3 13.6 12.9 9.5 10.1 5.4 2.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 1.2 1.2 0.7 3.0 3.1 5.1 4.6 12.7 14.1 13.9 12.7 9.5 10.1 4.9 2.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.1 1.5 0.9 0.7 3.0 3.7 4.4 4.6 12.7 13.4 14.2 12.5 9.7 10.0 5.3 2.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.1 1.5 0.9 0.7 3.0 3.7 4.4 4.6 12.7 13.4 14.2 12.5 9.7 10.0 5.3 2.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 1.7 0.8 1.2 2.8 4.2 3.7 4.9 13.0 15.1 13.8 12.3 9.3 10.1 4.4 2.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.5 0.0 0.0 21.1 0.0 27.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 2.4 3.1 3.7 3.0 6.0 35.3 4.4 5.8 7.5 26.7 0.5 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.1 0.4 5.0 1.1 6.2 2.7 5.8 5.6 21.3 7.5 9.3 18.8 3.9 7.8 3.8 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 3.2 10.1 13.7 22.3 19.6 29.6 0.9 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 1.5 0.9 0.7 3.1 3.6 4.5 4.5 12.7 13.3 13.6 12.9 9.5 10.1 5.4 2.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 61.8 38.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.1 1.8 0.8 0.7 1.0 3.4 4.0 5.6 7.9 12.4 11.1 11.7 13.1 10.5 9.2 4.1 2.3 0.4 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using propensity weights
GLM (OLS) 0.0 0.1 0.1 1.5 0.9 0.7 3.1 3.6 4.5 4.5 12.7 13.3 13.6 12.9 9.5 10.1 5.4 2.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 1.2 1.2 0.7 3.0 3.1 5.1 4.6 12.7 14.1 13.9 12.7 9.5 10.1 4.9 2.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.1 1.5 0.9 0.7 3.0 3.7 4.4 4.6 12.7 13.4 14.2 12.5 9.7 10.0 5.3 2.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.1 1.5 0.9 0.7 3.0 3.7 4.4 4.6 12.7 13.4 14.2 12.5 9.7 10.0 5.3 2.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 1.7 0.8 1.2 2.8 4.2 3.7 4.9 13.0 15.1 13.8 12.3 9.3 10.1 4.4 2.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.5 0.0 0.0 21.1 0.0 27.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 2.4 3.1 3.7 3.0 6.0 35.3 4.4 5.8 7.5 26.7 0.5 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.4 1.2 4.5 0.5 6.3 2.5 6.4 6.1 17.5 12.9 7.5 15.2 8.7 5.1 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 3.2 10.1 13.7 22.3 19.6 29.6 0.9 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 1.5 0.9 0.7 3.1 3.6 4.5 4.5 12.7 13.3 13.6 12.9 9.5 10.1 5.4 2.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 61.8 38.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.1 1.8 0.8 0.7 1.0 3.4 4.0 5.6 7.9 12.4 11.1 11.7 13.1 10.5 9.2 4.1 2.3 0.4 0.0 0.0 0.0 0.0

Weighting model: Subsampling, using total calibration
GLM (OLS) 3.0 1.5 1.5 1.6 1.9 2.1 2.2 2.2 2.1 2.2 3.9 4.0 4.7 5.1 5.5 7.2 7.6 8.1 9.1 7.5 6.4 9.4 1.5 0.0 0.0
GLM (Ridge) 0.0 0.0 0.6 1.0 0.7 2.2 2.6 2.6 3.3 3.1 4.5 5.7 6.7 7.4 8.5 10.5 9.6 11.7 9.6 5.5 2.7 1.5 0.0 0.0 0.0
GLM (LASSO) 2.4 0.7 2.1 1.8 1.7 2.1 2.3 2.2 2.5 2.5 3.4 4.0 4.7 5.5 6.0 7.8 7.1 8.5 9.3 7.4 6.6 8.4 1.3 0.0 0.0
GLM (Elastic net) 2.4 1.2 1.6 1.8 1.8 2.1 2.2 2.4 2.2 2.1 4.0 4.0 4.8 5.1 6.1 7.8 7.0 8.4 9.2 8.0 6.0 8.8 1.3 0.0 0.0
GAM (fix knots) 3.0 1.5 1.5 1.6 1.9 2.1 2.2 2.2 2.1 2.2 3.9 4.0 4.7 5.1 5.5 7.2 7.6 8.1 9.1 7.5 6.4 9.4 1.5 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 29.7 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 33.4 0.0 8.3 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 1.5 2.7 24.6
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.8 3.9 3.5 6.3 12.4 6.5 10.4 13.9 16.2 12.3 6.1 3.8 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 4.2 1.2 1.7 1.2 2.1 2.1 2.1 1.8 1.1 1.9 3.6 4.4 5.9 7.3 5.0 5.9 4.1 7.5 7.0 6.2 6.0 13.8 3.9 0.0 0.0
GAMM (fix knots) 18.9 23.6 38.2 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

Weighting model: Post-stratification, using total calibration
GLM (OLS) 0.1 0.1 1.5 0.8 0.5 2.2 3.0 3.9 2.8 4.0 8.8 9.4 11.1 10.5 9.8 10.3 8.4 6.6 3.3 2.2 0.6 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 1.6 0.7 0.7 2.6 4.4 3.3 3.8 10.4 10.3 12.2 12.0 9.9 10.7 7.7 5.7 2.8 1.2 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.1 1.4 0.8 0.4 2.1 3.1 3.9 2.8 4.0 9.3 8.9 11.1 10.5 9.9 10.3 8.4 6.6 3.3 2.3 0.6 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.1 1.4 0.8 0.4 2.1 3.1 3.9 2.8 4.0 9.3 8.9 11.1 10.5 9.9 10.3 8.4 6.6 3.3 2.3 0.6 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.1 1.5 0.8 0.5 2.2 3.0 3.9 2.8 4.0 8.8 9.4 11.1 10.5 9.8 10.3 8.4 6.6 3.3 2.2 0.6 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.4 0.0 4.0 0.0 36.5 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.8 0.0
MARS 0.0 0.0 0.0 0.3 3.4 2.8 2.4 2.4 3.1 7.4 10.7 22.9 6.6 7.9 19.9 0.0 1.8 2.8 5.4 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.7 0.5 1.0 0.6 1.7 3.9 2.9 4.4 5.0 13.6 9.2 7.3 11.8 7.7 10.7 4.1 10.0 2.0 1.6 1.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.4 5.4 8.8 11.7 11.9 22.3 18.9 19.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.3 1.5 0.6 0.5 2.4 3.1 3.6 2.5 4.0 10.5 7.4 9.4 12.1 9.3 11.5 7.0 8.1 3.1 2.3 0.7 0.0 0.0 0.0 0.0
GAMM (fix knots) 42.5 57.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.1 0.2 0.2 2.3 4.4 6.7 8.5 10.1 9.1 10.4 12.8 13.4 12.4 8.1 1.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.6: Income class frequencies (in percentage points) estimated from the imputed Micro-
census, using a weighted loss function for prediction models (continued)
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Weighting model: GREG, using total calibration
GLM (OLS) 0.1 0.1 1.5 0.9 0.5 2.2 2.9 4.7 3.5 4.4 11.3 12.1 11.4 12.0 9.7 9.4 7.3 4.1 1.8 0.3 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.4 1.2 0.6 0.4 1.1 2.8 3.5 3.2 3.0 5.4 12.4 14.0 10.9 11.1 10.2 9.2 6.1 3.9 0.8 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.3 1.5 0.6 0.6 2.5 2.6 4.7 3.1 4.1 12.3 11.3 11.2 12.9 9.1 9.6 7.3 4.1 1.8 0.3 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (one parameter per observation, as for the GREG), using total calibration
GLM (OLS) 0.0 0.0 0.1 0.8 1.6 0.6 2.8 3.4 4.6 5.1 12.5 14.6 14.2 12.5 9.6 9.9 4.7 2.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.4 1.9 0.7 2.7 2.9 5.2 5.1 12.5 15.2 14.3 12.6 9.5 9.9 4.4 2.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.8 1.6 0.6 2.8 3.2 4.8 5.1 12.4 14.6 14.2 12.5 9.6 9.9 4.9 2.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.8 1.6 0.6 2.8 3.2 4.8 5.1 12.4 14.6 14.2 12.5 9.6 9.9 4.9 2.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.1 0.8 1.6 0.6 2.8 3.4 4.6 5.1 12.5 14.8 14.5 12.2 9.2 10.4 4.7 2.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.5 0.0 0.0 7.7 0.0 40.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.7 3.6 3.7 4.3 4.4 35.4 5.1 6.6 8.5 25.6 0.6 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 3.0 1.2 0.3 4.2 1.4 2.7 4.0 6.4 4.7 6.8 18.5 10.8 8.4 14.2 5.2 5.8 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 3.2 10.3 12.7 22.6 19.5 28.5 2.5 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 0.8 1.6 0.6 2.8 3.4 4.6 5.1 12.5 14.6 14.2 12.5 9.6 9.9 4.7 2.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 61.8 38.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.1 0.4 1.9 0.8 3.4 3.1 5.2 5.9 14.6 14.6 15.4 11.5 9.2 9.0 3.7 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using total calibration
GLM (OLS) 0.1 0.7 1.1 0.8 0.6 2.5 3.4 3.4 3.2 4.9 9.3 10.0 10.8 11.6 8.4 9.9 7.8 5.9 3.2 1.9 0.4 0.0 0.0 0.0 0.0
GLM (Ridge) 0.1 0.1 1.5 0.8 0.5 2.2 2.7 4.4 3.5 4.3 10.1 10.1 12.0 11.6 8.8 9.7 7.8 5.3 2.9 1.5 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.7 1.1 0.7 0.6 2.6 2.9 3.9 3.2 4.8 9.4 9.9 11.1 11.4 8.4 9.9 7.9 6.0 2.9 1.9 0.3 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.7 1.1 0.7 0.6 2.6 2.9 3.9 3.2 4.8 9.4 9.9 11.1 11.4 8.4 9.9 7.9 6.0 2.9 1.9 0.3 0.0 0.0 0.0 0.0
GAM (fix knots) 0.2 1.7 0.6 0.4 1.9 2.2 3.8 2.5 3.1 4.9 11.2 6.5 7.1 11.3 7.0 11.0 6.0 10.1 4.0 2.0 1.4 1.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.4 0.0 4.0 0.0 48.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 0.0
MARS 0.0 0.1 0.6 1.7 2.1 2.2 1.4 2.4 33.7 2.3 3.7 3.1 38.2 0.0 0.2 0.2 0.2 0.2 0.4 0.2 0.2 1.1 1.7 3.4 0.6
ANN (opt. knots) 2.1 0.2 0.6 2.4 2.1 5.1 2.2 4.8 4.9 4.0 11.4 9.0 8.0 14.2 3.8 9.6 5.6 6.5 1.6 1.9 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.4 17.6 33.5 21.0 19.8 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.4 1.5 0.4 0.4 1.6 2.5 3.9 2.2 3.0 4.3 10.6 8.4 10.4 11.7 8.8 10.1 6.8 7.4 2.9 2.1 0.6 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 44.4 16.8 0.3 0.8 2.6 0.0 4.6 20.1 0.0 3.2 4.5 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using total calibration
GLM (OLS) 0.2 1.1 1.0 0.5 0.9 2.7 3.4 3.7 3.0 4.5 9.5 8.8 10.3 11.4 8.2 9.2 8.1 6.4 3.8 2.3 0.8 0.1 0.0 0.0 0.0
GLM (Ridge) 0.1 0.3 1.5 0.7 0.5 2.6 2.9 3.9 3.4 5.0 9.1 9.9 11.3 11.7 8.0 9.5 7.5 6.3 3.3 2.2 0.5 0.0 0.0 0.0 0.0
GLM (LASSO) 0.2 1.1 0.9 0.5 0.9 2.7 3.4 3.6 3.1 4.5 9.5 8.8 10.3 11.4 8.4 9.3 7.8 6.7 3.5 2.3 0.8 0.1 0.0 0.0 0.0
GLM (Elastic net) 0.2 1.1 0.9 0.5 0.9 2.7 3.4 3.6 3.1 4.5 9.5 8.8 10.3 11.4 8.4 9.3 7.8 6.7 3.5 2.3 0.8 0.1 0.0 0.0 0.0
GAM (fix knots) 0.3 1.9 0.5 0.4 2.3 2.1 4.2 2.0 3.1 4.7 11.0 5.8 6.3 11.2 5.3 11.0 6.7 10.3 4.7 2.7 1.6 1.9 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.4 0.0 4.0 0.0 36.5 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.8 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.3 6.9 5.3 7.7 7.2 1.5 12.1 15.6 9.6 1.4 2.1 2.6 2.8 2.9 3.1 2.8 6.9 5.6 2.7 0.9
ANN (opt. knots) 0.1 0.1 0.4 0.6 0.6 2.9 5.8 3.6 5.7 2.8 14.5 6.8 8.8 11.3 4.6 10.4 4.5 8.6 3.9 1.6 1.1 1.3 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.8 16.9 34.8 23.3 18.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 1.3 0.9 0.3 0.5 2.3 2.4 3.7 2.0 2.9 4.9 9.8 7.7 9.3 11.8 7.9 10.7 6.4 8.1 3.3 2.4 1.2 0.2 0.0 0.0 0.0
GAMM (fix knots) 80.7 0.0 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 61.7 1.5 1.6 0.0 7.7 14.5 2.5 0.1 2.2 3.0 4.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using total calibration
GLM (OLS) 0.0 0.1 0.1 1.8 0.9 0.8 2.4 3.7 5.0 5.6 10.0 13.0 12.3 11.2 9.1 9.4 6.5 5.0 2.7 0.3 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 1.6 1.0 0.8 2.3 3.6 4.7 6.2 10.0 13.7 12.3 11.6 8.8 9.5 6.6 4.6 2.6 0.1 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.1 1.8 0.9 0.7 2.5 3.7 5.1 5.6 9.9 13.6 12.1 11.2 8.8 9.7 6.6 4.8 2.6 0.2 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.1 1.8 0.9 0.7 2.5 3.7 5.1 5.6 9.9 13.6 12.1 11.2 8.8 9.7 6.6 4.8 2.6 0.2 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.1 1.5 0.8 0.5 1.3 3.3 3.7 5.0 5.1 13.9 13.0 9.4 9.7 10.2 10.0 3.7 6.6 2.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59.2 0.0 0.0 0.0 40.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.1 1.7 3.1 3.7 3.1 3.2 7.6 32.1 3.7 5.8 7.5 26.5 0.5 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.3 0.2 0.4 3.2 0.7 3.1 3.5 3.5 7.2 6.4 14.9 11.4 6.9 10.3 11.5 5.4 2.3 8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 2.5 10.2 13.7 23.8 19.6 28.8 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 1.8 0.9 0.8 2.4 3.7 5.0 5.6 10.0 13.0 12.3 11.2 9.1 9.4 6.5 5.0 2.7 0.3 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 61.8 38.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.1 0.4 2.0 0.8 0.7 1.0 4.2 4.9 7.2 10.4 12.3 9.2 9.6 10.7 8.2 6.5 6.1 4.1 1.6 0.0 0.0 0.0 0.0
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Table D.6: Income class frequencies (in percentage points) estimated from the imputed Micro-
census, using a weighted loss function for prediction models (continued)
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Weighting model: GREG, using covariance calibration
GLM (OLS) 0.0 0.0 0.1 0.2 2.2 0.8 1.1 3.8 4.7 5.9 12.5 16.5 14.2 12.4 10.6 9.8 4.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.1 0.4 2.0 0.7 1.2 4.0 4.9 5.5 13.0 17.1 13.5 12.3 10.5 10.3 3.9 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 0.2 2.2 0.8 1.1 3.8 4.7 5.9 12.5 16.5 14.2 12.4 10.6 9.8 4.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 61.8 38.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (one parameter per observation, as for the GREG), using covariance calibration
GLM (OLS) 0.1 0.1 0.3 1.8 0.6 1.7 3.0 3.9 4.1 4.8 11.8 12.8 12.9 12.8 9.5 9.9 5.8 3.3 0.9 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.1 0.1 1.9 0.7 1.2 3.1 4.2 4.2 4.8 12.4 13.0 12.7 13.3 9.5 9.6 5.7 2.8 0.7 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.3 1.7 0.7 1.8 3.0 3.8 4.1 4.8 11.8 12.9 13.1 12.6 9.6 9.8 5.9 3.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.3 1.7 0.7 1.8 3.0 3.8 4.1 4.8 11.8 12.9 13.2 12.6 9.6 9.8 5.9 3.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.3 1.3 0.8 0.7 2.2 3.5 3.3 3.4 6.3 12.8 14.3 12.9 12.3 9.2 9.7 4.6 2.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.5 0.0 10.6 4.5 0.0 0.0 33.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 1.8 0.6 0.6 1.5 2.2 2.5 2.1 2.2 33.0 1.5 1.9 28.5 0.2 2.5 0.4 0.4 0.4 0.4 0.7 0.7 0.5 2.2 3.3 7.4 2.3
ANN (opt. knots) 0.0 0.1 0.1 1.1 1.1 6.3 2.1 5.2 3.9 7.3 14.5 13.4 10.1 14.5 7.0 8.1 3.8 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 4.8 9.2 12.4 20.5 19.6 23.3 9.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 0.3 1.8 0.6 1.7 3.0 3.9 4.1 4.8 11.8 12.8 12.9 12.8 9.5 9.9 5.8 3.3 0.9 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.1 0.1 1.9 0.7 0.9 3.1 4.5 3.9 7.4 12.8 12.9 12.8 12.4 11.1 8.8 4.6 1.9 0.2 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using covariance calibration
GLM (OLS) 0.1 0.3 1.5 0.6 0.6 2.1 3.8 3.3 3.6 5.8 10.0 10.8 12.3 12.2 11.3 9.9 6.6 4.4 0.9 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.1 0.3 1.3 0.8 0.5 2.1 3.9 2.8 4.0 5.4 10.4 11.2 12.4 12.5 11.0 10.1 6.6 3.8 0.7 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.3 1.5 0.6 0.7 2.1 3.8 3.3 3.6 5.8 10.0 10.8 12.6 12.1 11.1 9.7 6.8 4.2 0.9 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.3 1.5 0.6 0.7 2.1 3.8 3.3 3.6 5.8 10.0 10.8 12.6 12.1 11.1 9.7 6.8 4.2 0.9 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.7 1.2 0.5 0.8 2.5 3.4 3.2 3.7 5.7 10.2 11.0 12.9 12.7 11.0 10.0 6.4 3.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.8 0.0 14.8 0.0 44.9 18.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2
MARS 0.0 0.3 0.9 2.5 1.9 1.9 3.1 3.8 20.8 3.7 6.1 22.4 4.5 5.5 6.1 5.3 4.2 3.9 2.4 0.6 0.1 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.0 2.0 0.4 0.8 3.2 6.6 2.8 5.5 7.0 9.8 14.7 10.8 10.1 9.8 9.0 3.2 2.4 1.3 0.2 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3 18.3 30.6 19.1 22.6 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.3 1.5 0.6 0.6 2.1 3.8 3.3 3.6 5.8 10.0 10.8 12.3 12.2 11.3 9.9 6.6 4.4 0.9 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using covariance calibration
GLM (OLS) 0.0 0.0 0.0 0.1 0.2 3.0 5.0 4.0 3.4 3.9 6.7 10.0 10.3 10.4 10.2 12.1 10.9 7.2 2.3 0.4 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 1.1 10.8 21.5 35.6 28.9 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 3.0 4.4 9.8 11.2 17.5 20.0 14.2 14.2 5.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 3.0 4.5 9.8 11.2 19.4 19.9 15.4 12.8 3.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 1.8 5.6 1.7 1.8 1.4 2.2 7.7 22.5 17.2 21.0 11.5 4.8 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0 1.1 0.0 58.9 0.0 0.0 27.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 1.1 3.3 1.4 3.2 2.8 2.6 1.7 28.4 51.1 0.3 1.4 1.4 0.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 6.2 0.2 0.6 1.1 3.2 3.6 5.1 8.4 12.6 7.7 10.1 14.3 11.2 14.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.2 3.0 5.0 4.0 3.4 3.9 6.7 10.0 10.3 10.4 10.2 12.1 10.9 7.2 2.3 0.4 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 57.1 42.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using covariance calibration
GLM (OLS) 0.0 0.0 0.1 0.4 1.9 0.6 1.4 3.9 4.4 4.1 10.2 11.7 13.2 12.6 9.7 10.4 7.6 4.7 2.7 0.5 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.2 2.0 0.7 1.0 3.9 4.7 4.4 10.0 12.4 13.2 13.1 9.5 10.6 7.0 4.7 2.4 0.3 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.3 1.8 0.7 1.4 3.9 4.5 4.1 10.1 12.0 13.0 13.3 9.1 10.7 7.2 4.8 2.6 0.4 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.3 1.8 0.7 1.4 3.9 4.5 4.1 10.1 12.0 13.0 13.2 9.1 10.7 7.2 4.8 2.6 0.4 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.1 0.4 1.9 0.6 1.4 3.9 4.4 4.1 10.2 11.7 13.2 12.6 9.7 10.4 7.6 4.7 2.7 0.5 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.9 0.0 0.0 79.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.1 3.0 4.3 3.7 4.0 9.6 32.5 6.5 32.6 1.8 0.6 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 1.2 0.4 0.3 1.1 2.1 3.4 3.9 3.4 8.3 7.2 13.6 11.9 8.3 15.5 4.8 6.7 5.7 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.4 5.4 8.6 12.4 10.6 22.7 18.3 20.4 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 0.4 1.9 0.6 1.4 3.9 4.4 4.1 10.2 11.7 13.2 12.6 9.7 10.4 7.6 4.7 2.7 0.5 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 57.5 42.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100
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Table D.6: Income class frequencies (in percentage points) estimated from the imputed Micro-
census, using a weighted loss function for prediction models (continued)
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Weighting model: Logit model (parametric) and GREG, using a propensity model and total calibration
GLM (OLS) 0.2 1.5 0.7 0.5 1.2 2.7 3.3 3.7 3.4 4.5 9.1 9.8 9.0 9.4 7.4 7.7 6.4 6.7 4.8 4.0 2.5 1.4 0.0 0.0 0.0
GLM (Ridge) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.7 0.4 0.3 2.3 2.8 2.8 2.7 2.0 4.7 3.7 12.5 4.0 3.6 9.3 4.9 4.7 5.7 9.8 5.8 9.0 2.2 4.2 1.7 0.0 0.0
Regression tree 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 2.3 0.3 0.3 1.9 2.6 3.1 2.1 2.0 3.9 4.6 10.1 6.0 7.6 11.3 7.8 6.2 7.0 6.5 5.2 4.2 2.6 2.3 0.0 0.0 0.0
GAMM (fix knots) 80.7 0.0 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using a propensity model and total calibration
GLM (OLS) 2.4 0.7 0.0 0.7 0.7 0.7 0.0 0.7 0.7 0.7 0.8 0.9 1.7 2.0 1.3 1.4 2.8 2.9 2.9 3.2 3.4 10.0 17.5 39.2 2.4
GLM (Ridge) 7.0 0.9 1.0 1.5 1.4 1.5 2.3 1.4 2.6 1.5 2.8 3.2 4.0 3.3 3.3 4.9 5.2 5.6 6.9 5.2 6.7 14.8 12.0 1.0 0.0
GLM (LASSO) 8.1 0.0 0.9 1.2 0.6 0.7 1.3 1.3 1.4 0.7 2.1 1.4 1.4 1.4 2.3 2.5 3.4 3.3 3.4 3.3 3.3 10.6 15.7 29.3 0.3
GLM (Elastic net) 6.0 0.7 0.7 0.8 0.2 1.2 1.3 1.3 0.7 1.3 2.1 2.1 1.4 2.1 2.2 2.3 3.3 3.4 4.4 3.3 4.1 11.7 17.5 25.9 0.0
GAM (fix knots) 57.9 0.0 0.0 1.0 0.7 0.0 1.6 1.4 1.5 2.8 0.9 0.0 2.9 4.5 0.0 0.7 0.0 0.8 0.7 2.4 3.5 1.9 3.7 1.7 9.4
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 0.0 0.0 6.9 15.7 33.4
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 15.9 1.0 0.8 1.0 1.1 1.1 1.7 2.0 3.0 0.8 1.5 4.5 3.5 1.9 4.8 4.8 2.4 3.1 4.2 1.5 1.8 5.7 5.0 9.4 17.3
SVM 0.0 0.0 0.1 0.5 2.0 4.1 5.8 10.5 14.2 8.3 12.8 16.9 16.2 8.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots) and GREG, using a propensity model and total calibration
GLM (OLS) 0.1 0.1 0.3 1.8 0.7 1.8 2.9 3.5 4.4 4.5 10.6 10.2 12.8 11.5 8.3 10.0 7.2 5.3 2.9 1.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 4.2 0.3 0.5 1.1 3.0 0.9 5.6 2.8 4.7 4.3 15.5 6.8 8.2 11.6 6.8 8.0 4.6 7.5 1.5 2.1 0.0 0.0 0.0 0.0 0.0
Regression tree 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 1.2 1.1 0.5 2.7 2.5 4.0 2.8 4.5 12.0 9.7 10.8 13.1 8.8 9.0 7.4 5.4 3.0 1.2 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 42.5 57.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using a propensity model and total calibration
GLM (OLS) 2.4 0.0 0.7 0.7 0.7 0.7 0.0 0.7 0.7 0.7 0.8 1.7 1.1 1.9 2.1 2.8 2.2 2.8 4.0 3.4 3.4 11.5 19.3 35.2 0.6
GLM (Ridge) 8.0 1.3 1.0 1.2 1.6 2.0 1.9 1.9 1.8 1.9 3.4 3.0 3.4 3.2 3.2 4.9 4.8 5.7 6.5 5.3 6.6 13.7 12.4 1.2 0.0
GLM (LASSO) 5.2 0.7 0.0 0.7 0.7 0.8 0.9 1.2 1.3 1.3 2.1 2.1 2.1 2.2 2.2 2.3 3.3 4.4 4.1 4.2 4.0 12.6 19.7 21.9 0.0
GLM (Elastic net) 6.0 0.7 0.0 0.7 0.8 0.9 0.7 1.1 1.3 1.3 2.1 2.1 1.4 2.2 2.2 3.2 3.4 3.4 4.1 4.2 3.2 12.4 19.2 23.5 0.0
GAM (fix knots) 57.9 0.0 0.0 1.0 0.7 0.7 2.4 0.7 3.0 0.0 1.5 1.5 0.7 4.5 0.7 0.7 0.0 0.8 0.7 3.4 2.5 1.9 3.7 1.7 9.4
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 0.0 0.0 6.9 15.7 33.4
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 16.5 1.0 1.5 0.5 0.8 1.1 1.7 0.7 2.0 1.9 2.4 3.0 5.1 3.3 5.4 5.3 1.6 1.5 3.1 2.0 2.2 6.1 5.0 11.3 15.1
SVM 2.5 0.5 0.6 1.2 2.2 3.9 5.5 9.2 14.2 7.2 10.5 14.6 14.7 10.7 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using a propensity model and total calibration
GLM (OLS) 0.0 0.1 0.1 1.6 0.9 0.7 3.1 3.7 4.5 4.5 12.7 13.1 13.9 12.5 9.8 10.1 5.4 2.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 1.2 1.2 0.7 3.1 3.0 5.1 4.7 12.6 14.1 13.9 12.7 9.5 10.1 4.9 2.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.1 1.5 0.9 0.7 3.1 3.6 4.4 4.7 12.6 13.4 14.2 12.5 9.7 10.0 5.2 2.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.1 1.5 0.9 0.7 3.1 3.6 4.4 4.7 12.6 13.4 14.2 12.5 9.7 10.0 5.2 2.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 1.7 0.7 1.2 2.8 4.2 3.6 4.9 13.0 15.3 13.5 12.0 9.6 9.8 4.7 2.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.5 0.0 0.0 21.1 0.0 27.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 2.4 3.1 3.7 3.0 6.0 35.3 4.4 5.8 7.5 26.7 0.5 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.1 0.1 1.9 0.7 1.2 2.9 4.2 4.4 3.7 18.6 13.1 9.4 15.9 8.4 9.3 4.1 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 2.8 10.4 13.3 23.2 19.5 29.4 0.9 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 1.6 0.9 0.7 3.1 3.7 4.5 4.5 12.7 13.1 13.9 12.5 9.8 10.1 5.4 2.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 61.8 38.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.1 0.3 1.8 0.6 0.8 2.1 4.9 3.8 6.4 11.5 12.9 12.1 11.5 12.1 8.9 6.1 3.2 0.8 0.0 0.0 0.0 0.0 0.0
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Table D.6: Income class frequencies (in percentage points) estimated from the imputed Micro-
census, using a weighted loss function for prediction models (continued)
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Weighting model: Logit model (parametric) and GREG, using a propensity model and covariance calibration
GLM (OLS) 0.0 0.0 0.1 0.8 1.6 0.7 0.9 3.6 5.1 4.5 8.7 14.0 11.2 9.9 9.2 8.9 6.4 6.3 4.8 2.8 0.3 0.0 0.0 0.0 0.0
GLM (Ridge) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 1.5 0.9 0.6 1.5 3.5 5.1 4.1 9.4 14.0 11.3 9.8 8.9 9.2 6.0 5.8 5.4 2.7 0.1 0.0 0.0 0.0 0.0
Regression tree 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 0.8 1.6 0.7 0.9 3.6 5.1 4.5 8.7 14.0 11.2 9.9 9.2 8.9 6.4 6.3 4.8 2.8 0.3 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using a propensity model and covariance calibration
GLM (OLS) 0.1 0.1 1.1 1.0 1.2 2.5 3.3 2.5 4.1 5.4 9.4 9.4 11.0 10.8 10.7 11.5 8.3 5.6 1.8 0.3 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.1 0.1 1.1 0.9 0.8 2.6 3.3 2.9 4.1 5.4 9.6 9.7 10.6 11.5 11.6 10.9 8.3 4.9 1.6 0.2 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.1 1.1 1.0 1.2 2.5 3.3 2.5 4.1 5.4 9.4 9.7 10.8 10.7 10.7 12.0 8.1 5.3 1.8 0.3 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.1 1.1 1.0 1.2 2.5 3.3 2.5 4.1 5.4 9.4 9.7 10.8 10.7 10.7 12.0 8.1 5.3 1.8 0.3 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 1.2 0.6 0.4 0.9 2.8 1.7 2.3 2.9 4.1 3.9 9.9 16.9 16.5 13.6 11.0 8.7 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.6 0.0 0.0 0.0 64.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 12.8 1.5 3.0 3.3 4.8 5.1 4.0 5.4 4.2 5.1 6.3 41.0 1.8 0.4 0.4 0.5 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.7 1.3 1.1 2.0 3.3 2.6 5.0 4.0 5.8 16.6 16.9 13.2 14.9 7.1 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.4 17.6 33.4 20.5 20.2 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 1.1 1.0 1.2 2.5 3.3 2.5 4.1 5.4 9.4 9.4 11.0 10.8 10.7 11.5 8.3 5.6 1.8 0.3 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

Weighting model: Logit model (fix knots) and GREG, using a propensity model and covariance calibration
GLM (OLS) 0.0 0.0 0.1 0.4 2.0 1.7 3.4 2.9 5.5 7.2 14.4 14.6 16.0 11.2 8.9 7.7 3.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.0 0.7 1.4 1.1 2.2 2.6 3.9 4.6 9.0 21.8 10.5 13.6 16.1 3.4 9.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 0.4 2.0 1.7 3.4 2.9 5.5 7.2 14.4 14.6 16.0 11.2 8.9 7.7 3.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 61.8 38.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using a propensity model and covariance calibration
GLM (OLS) 0.0 0.0 0.1 0.8 1.6 0.7 2.8 3.4 5.1 5.3 11.5 13.0 11.9 8.5 5.5 5.0 1.1 1.7 3.8 5.6 6.1 6.3 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 1.2 1.7 1.8 5.6 8.5 16.0 17.6 12.3 7.9 3.6 0.3 0.7 6.5 7.4 7.4 1.4 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.8 1.6 0.7 2.8 3.3 5.3 5.3 12.2 12.3 12.4 8.1 5.9 4.8 0.9 1.7 4.1 5.4 6.3 6.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.4 2.0 0.8 2.3 3.7 5.3 5.4 12.4 12.7 12.2 8.5 5.5 4.7 0.7 1.9 4.1 5.6 6.3 5.7 0.0 0.0 0.0
GAM (fix knots) 0.8 1.0 0.4 0.5 1.8 3.1 2.6 2.6 5.1 8.0 16.3 10.5 5.4 12.8 4.5 0.9 0.1 2.0 2.2 7.9 3.9 7.4 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.0 0.0 0.0 0.0 32.5 22.4 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1
MARS 0.6 0.0 0.2 0.1 0.0 0.0 0.4 38.0 0.0 0.2 0.2 35.8 0.4 0.0 3.2 0.0 0.5 0.2 0.2 0.4 0.5 19.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.2 0.4 1.2 1.3 4.8 3.0 8.5 6.2 9.5 13.1 8.6 7.5 10.1 1.5 0.7 0.0 2.1 3.5 7.5 5.7 4.7 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 2.0 7.8 16.8 29.9 18.8 23.6 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 1.2 1.2 0.4 2.4 2.8 4.1 2.7 5.1 14.3 10.0 10.9 10.2 5.6 4.4 1.1 2.4 2.5 5.9 6.4 6.4 0.0 0.0 0.0
GAMM (fix knots) 80.7 0.0 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using a propensity model and covariance calibration
GLM (OLS) 0.0 0.0 0.1 1.2 1.2 0.7 3.1 3.3 4.3 5.0 11.8 13.8 13.8 12.5 10.4 9.8 5.5 2.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.7 1.5 0.7 2.7 3.4 4.7 4.8 12.1 14.5 14.5 12.5 9.9 10.2 4.8 2.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 1.2 1.2 0.6 3.1 3.4 4.3 5.0 11.9 14.3 13.3 13.6 9.4 10.5 5.1 2.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 1.2 1.2 0.6 3.1 3.4 4.3 5.0 11.9 14.3 13.3 13.6 9.4 10.5 5.1 2.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.1 1.2 1.2 0.7 3.1 3.3 4.3 5.0 11.8 13.8 13.8 12.5 10.4 9.8 5.5 2.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.5 0.0 0.0 29.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 1.2 3.7 3.7 3.7 4.6 36.6 3.8 6.5 7.5 26.8 0.6 0.5 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.0 1.8 1.1 1.6 6.5 5.1 7.0 5.1 8.7 18.3 8.6 10.8 14.1 3.9 5.9 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 2.3 9.3 15.3 26.0 19.2 26.6 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 1.2 1.2 0.7 3.1 3.3 4.3 5.0 11.8 13.8 13.8 12.5 10.4 9.8 5.5 2.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 61.8 38.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 89.3 9.3
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Table D.6: Income class frequencies (in percentage points) estimated from the imputed Micro-
census, using a weighted loss function for prediction models (continued)
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Weighting model: GREG, using total and covariance calibration
GLM (OLS) 0.1 0.1 0.7 1.4 0.6 2.5 2.9 3.7 3.2 5.2 10.1 10.5 11.3 13.0 10.5 10.4 7.3 4.4 1.8 0.3 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.7 1.1 0.5 1.6 2.4 3.0 2.6 3.8 5.2 10.9 14.1 13.1 12.5 10.0 9.7 5.4 3.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 0.7 1.4 0.6 2.5 2.9 3.7 3.2 5.2 10.1 10.5 11.3 13.0 10.5 10.4 7.6 4.1 1.8 0.3 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 61.8 38.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (one parameter per observation, as for the GREG), using total and covariance calibration
GLM (OLS) 0.0 0.0 0.1 1.2 1.2 1.0 3.5 2.9 5.5 4.9 13.3 13.0 14.9 11.7 9.2 10.0 4.7 2.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 1.7 0.7 1.7 2.9 3.9 4.1 5.4 14.0 15.0 13.4 12.2 8.8 9.3 4.1 2.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 1.2 1.2 1.0 3.5 2.9 5.5 4.9 13.3 13.0 14.9 11.7 9.2 10.0 4.7 2.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using total and covariance calibration
GLM (OLS) 0.0 0.0 0.0 0.0 0.2 2.3 4.1 4.3 6.0 7.5 17.0 12.6 9.7 7.8 4.6 3.8 4.7 4.6 7.3 3.5 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 27.1 11.9 32.7 2.9 10.1 7.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.2 2.2 4.1 4.3 5.9 7.9 16.7 12.6 10.1 7.8 4.2 3.8 4.7 4.8 7.3 3.3 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.2 2.2 4.1 4.3 5.9 7.9 16.7 12.6 10.1 7.8 4.2 3.8 4.7 4.8 7.3 3.3 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 2.1 2.9 2.4 2.1 8.5 10.8 12.2 9.9 14.5 5.4 4.7 3.2 5.7 3.7 8.1 3.2 0.4 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 76.5 0.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.2 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 72.0 0.0 6.5 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.9 0.4 0.4 2.0 3.4 8.3 3.5
ANN (opt. knots) 0.0 0.0 0.0 0.3 1.8 3.0 3.1 8.6 9.3 10.4 12.0 7.9 12.0 6.9 1.2 2.6 5.2 4.6 9.3 1.8 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 16.3 39.3 33.7 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 1.8 2.4 3.6 1.6 6.5 9.9 13.8 11.1 11.8 6.8 5.6 3.7 4.7 4.7 7.3 4.0 0.6 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 0.0 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 63.2 6.7 4.9 6.1 2.8 3.8 5.9 3.6 1.7 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using total and covariance calibration
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 3.1 4.1 4.4 4.2 4.4 4.2 5.4 8.4 10.0 9.4 8.2 19.1 14.3 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 52.2 8.8 6.9 7.9 7.8 8.0 6.6 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 7.0 0.5 0.2 1.0 2.0 4.1 5.1 8.2 13.3 7.2 9.1 13.0 11.0 10.7 3.0 0.9 1.5 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using total and covariance calibration
GLM (OLS) 0.0 0.0 0.1 1.5 0.9 0.6 3.0 3.9 3.7 3.9 11.0 9.8 12.1 12.8 8.8 10.1 7.5 5.5 3.4 1.3 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 1.2 1.1 0.6 2.7 3.9 3.9 4.1 11.1 10.7 12.7 12.8 8.2 10.2 7.1 5.4 3.2 1.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 1.5 0.8 0.7 2.7 4.3 3.7 4.0 10.9 9.8 12.6 12.6 9.0 10.1 7.1 5.7 3.1 1.3 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 1.5 0.8 0.7 2.7 4.3 3.7 4.0 10.9 9.8 12.5 12.7 8.9 10.2 7.1 5.7 3.1 1.3 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.1 1.5 0.9 0.6 3.0 3.9 3.7 3.9 11.0 9.8 12.1 12.8 8.8 10.1 7.5 5.5 3.4 1.3 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.9 0.0 0.0 79.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.1 0.0 0.0 1.7 46.1 0.3 1.7 0.5 0.5 0.3 0.3 0.2 0.1 0.1 0.1 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.5 1.8 4.8 7.8 7.0 16.7 11.7 11.1 15.2 4.1 5.6 7.3 5.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.3 39.2 48.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 1.5 0.9 0.6 3.0 3.9 3.7 3.9 11.0 9.8 12.1 12.8 8.8 10.1 7.5 5.5 3.4 1.3 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 57.5 42.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.3 1.8 0.6 0.6 3.9 4.0 3.7 8.0 11.2 11.8 11.5 10.2 9.0 8.8 7.0 4.4 2.6 0.5 0.0 0.0 0.0 0.0
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Table D.6: Income class frequencies (in percentage points) estimated from the imputed Micro-
census, using a weighted loss function for prediction models (continued)
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Weighting model: Logit model (parametric) and GREG, using a propensity model, total and covariance calibration
GLM (OLS) 0.0 0.1 0.1 1.8 0.8 0.7 3.4 3.0 5.3 5.2 11.8 14.1 12.9 12.1 9.6 10.1 5.8 2.8 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 1.8 0.8 0.7 3.4 3.0 5.3 5.2 11.8 14.1 12.9 12.1 9.6 10.1 5.8 2.8 0.5 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 1.8 0.8 0.7 3.4 3.0 5.3 5.2 11.8 14.1 12.9 12.1 9.6 10.1 5.8 2.8 0.5 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 80.7 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using a propensity model, total and covariance calibration
GLM (OLS) 2.4 0.7 0.0 0.7 0.7 0.7 0.0 0.7 0.7 0.7 0.8 0.9 1.7 2.0 1.3 1.4 2.8 2.9 2.9 3.2 3.4 10.0 17.5 39.2 2.4
GLM (Ridge) 9.9 0.9 1.0 2.0 1.6 1.3 1.6 2.5 1.5 1.6 2.9 2.7 3.1 3.2 3.2 3.8 4.8 5.8 5.3 5.9 5.5 13.8 13.7 2.6 0.0
GLM (LASSO) 8.1 0.0 0.9 1.2 0.6 0.7 1.3 1.3 1.4 0.7 2.1 1.4 1.4 1.4 2.3 2.5 3.4 3.3 3.4 3.3 3.3 10.6 15.7 29.3 0.3
GLM (Elastic net) 7.3 0.1 0.7 0.9 1.2 0.6 1.3 0.7 1.3 1.4 1.4 2.2 2.1 1.4 1.5 3.2 2.4 3.4 4.4 3.3 3.3 10.6 17.8 27.3 0.2
GAM (fix knots) 57.9 0.0 0.0 1.0 0.7 0.0 1.6 1.4 1.5 2.8 0.9 0.0 2.9 4.5 0.0 0.7 0.0 0.8 0.7 2.4 3.5 1.9 3.7 1.7 9.4
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 0.0 0.0 6.9 15.7 33.4
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 21.4 0.1 1.3 1.1 0.3 0.6 2.6 2.4 2.2 2.9 2.7 2.0 4.4 1.9 1.1 6.8 2.4 1.6 2.3 3.4 0.7 6.1 4.2 8.5 16.8
SVM 0.0 0.0 0.1 0.5 2.0 4.1 5.8 10.2 14.5 8.3 12.8 16.7 16.4 8.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots) and GREG, using a propensity model, total and covariance calibration
GLM (OLS) 0.0 0.1 0.1 1.2 1.2 0.8 3.1 3.8 4.6 4.5 12.2 14.1 13.7 13.2 9.6 9.8 4.9 2.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 1.1 0.8 0.4 1.1 2.5 3.1 3.5 4.3 10.2 13.1 15.1 7.7 23.6 2.2 4.4 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 2.0 0.6 1.5 2.9 4.6 2.6 4.2 16.5 12.4 11.4 17.6 6.8 9.8 4.6 2.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 61.8 18.9 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using a propensity model, total and covariance calibration
GLM (OLS) 2.4 0.0 0.7 0.7 0.7 0.7 0.0 0.7 0.7 0.7 0.8 1.7 1.1 1.9 2.1 2.8 2.2 2.8 4.0 3.4 3.4 11.5 19.3 35.2 0.6
GLM (Ridge) 8.0 1.3 1.0 1.2 1.6 2.0 1.9 1.9 1.8 1.9 3.4 3.0 3.4 3.2 3.2 4.9 4.8 5.7 6.5 5.3 6.6 13.7 12.4 1.2 0.0
GLM (LASSO) 6.7 0.7 0.0 0.7 0.8 0.9 1.1 1.3 1.3 0.6 2.1 1.4 2.2 2.1 1.5 3.2 3.4 3.4 3.4 4.0 4.2 11.6 17.5 25.9 0.0
GLM (Elastic net) 1.8 0.0 0.6 1.4 0.7 0.7 0.7 0.7 1.4 0.9 2.4 1.3 2.8 2.8 2.9 2.9 4.8 5.1 5.1 4.9 5.2 15.9 21.1 13.7 0.0
GAM (fix knots) 57.9 0.0 0.0 1.0 0.7 0.7 2.4 0.7 3.0 0.0 1.5 1.5 0.7 4.5 0.7 0.7 0.0 0.8 0.7 3.4 2.5 1.9 3.7 1.7 9.4
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 0.0 0.0 6.9 15.7 33.4
MARS 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 2.5 0.5 0.6 1.2 2.2 4.0 5.4 9.8 13.6 7.2 10.5 14.6 14.7 10.7 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using a propensity model, total and covariance calibration
GLM (OLS) 0.0 0.0 0.1 1.2 1.2 0.6 2.8 3.7 4.3 4.4 12.2 13.3 14.3 12.4 10.5 9.8 5.6 3.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.8 1.5 0.7 2.7 3.1 5.0 4.4 12.3 14.1 14.1 13.1 9.9 10.2 4.9 2.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 1.2 1.2 0.6 2.8 3.7 4.3 4.4 12.2 13.3 14.3 12.4 10.5 10.4 5.0 3.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 1.2 1.2 0.6 2.8 3.7 4.3 4.4 12.2 13.3 14.3 12.4 10.5 10.4 5.0 3.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.1 1.2 1.2 0.6 2.8 3.7 4.3 4.4 12.2 13.3 14.3 12.4 10.5 9.8 5.6 3.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.5 0.0 0.0 29.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 1.2 3.7 3.7 3.1 5.2 35.9 4.4 6.6 32.4 1.9 0.6 0.5 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.1 0.8 1.1 4.2 2.5 8.2 5.8 22.4 8.6 11.7 19.0 4.6 7.7 2.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 2.3 8.2 16.9 27.8 19.0 24.7 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 1.2 1.2 0.6 2.8 3.7 4.3 4.4 12.2 13.3 14.3 12.4 10.5 9.8 5.6 3.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 61.8 38.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.1 1.9 0.7 0.7 1.7 5.2 3.6 5.9 11.6 13.2 13.0 11.3 11.8 9.3 6.2 3.0 0.8 0.0 0.0 0.0 0.0 0.0
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Table D.7: Estimated standard deviations (in percentage points) for income class frequencies
estimated by weighted aggregation of predictions in the WI
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Weighting model: unweighted, using no auxiliary information
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.3 0.4 0.4 0.8 0.3 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.1 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.4 0.2 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.1 0.1 0.3 0.3 0.3 0.4 0.4 0.6 0.6 0.6 1.5 1.3 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.3 0.3 0.4 0.2 0.2 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (parametric), using propensity weights
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.5 0.6 0.6 0.5 0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.2 0.2 0.3 0.4 0.5 0.4 0.7 0.7 1.2 0.8 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.5 0.6 0.6 0.5 0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.5 0.6 0.6 0.5 0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.5 0.6 0.6 0.5 0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.4 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.2 0.7 0.2 0.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.3 0.3 0.3 0.5 0.4 0.8 0.5 0.8 1.9 1.7 0.6 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.6 0.6 0.4 0.6 0.5 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.5 0.6 0.6 0.5 0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.5 0.6 0.6 0.5 0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Pseudo-Weights (parametric), using propensity weights
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.3 0.5 0.4 0.8 0.4 0.3 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.1 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.6 0.1 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.0 0.1 0.3 0.3 0.3 0.4 0.4 0.7 0.6 0.6 1.5 1.4 0.4 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 0.3 0.2 0.5 0.3 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using propensity weights
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.7 1.1 0.5 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.3 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.3 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.5 0.2 0.3 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.3 0.3 0.2 0.2 0.4 0.8 0.7 0.7 2.7 2.6 0.6 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.5 0.3 0.3 0.6 0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots), using propensity weights
None (weighted WI) 0.4 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.3 0.3 0.5 0.6 0.7 0.5 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.2 0.3 0.3 0.4 0.5 0.5 0.4 0.6 0.6 1.1 0.7 0.4 0.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.3 0.3 0.5 0.6 0.7 0.5 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.3 0.3 0.5 0.6 0.7 0.5 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.3 0.3 0.5 0.6 0.7 0.5 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.6 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.2 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.3 0.6 0.3 0.5 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.2 0.1 0.1 0.3 0.4 0.6 1.0 0.6 0.6 0.6 0.9 1.8 1.5 0.6 0.6 0.5 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0
SVM 0.2 0.1 0.1 0.2 0.2 0.2 0.3 0.6 0.5 0.6 0.7 0.5 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.3 0.3 0.5 0.6 0.7 0.5 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.3 0.3 0.5 0.6 0.7 0.5 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.7: Estimated standard deviations (in percentage points) for income class frequencies
estimated by weighted aggregation of predictions in the WI (continued)
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Weighting model: Pseudo-Weights (fix knots), using propensity weights
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.6 0.4 0.7 0.4 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.2 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.1 0.1 0.5 0.5 0.4 0.5 0.5 0.8 0.7 0.6 1.4 1.2 0.4 0.3 0.3 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.5 0.3 0.3 0.5 0.3 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using propensity weights
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.7 1.1 0.5 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.3 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.3 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.5 0.2 0.3 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.3 0.3 0.2 0.2 0.4 0.8 0.7 0.7 2.7 2.6 0.6 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.5 0.3 0.3 0.6 0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using propensity weights
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.7 1.1 0.5 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.3 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.3 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.5 0.2 0.3 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.3 0.3 0.2 0.2 0.4 0.8 0.7 0.7 2.7 2.6 0.6 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.5 0.3 0.3 0.6 0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Subsampling, using total calibration
None (weighted WI) 1.9 0.2 0.1 0.3 0.3 0.4 0.6 0.6 0.7 0.7 0.8 0.8 0.6 0.5 0.4 0.4 0.3 0.3 0.2 0.1 0.1 0.1 0.0 0.0 0.2
GLM (OLS) 0.0 0.1 0.1 0.3 0.4 0.5 0.7 0.9 0.9 1.0 1.3 1.5 1.5 1.5 1.0 1.2 0.6 0.5 0.3 0.1 0.1 0.1 0.0 0.0 0.0
GLM (Ridge) 0.0 0.1 0.1 0.3 0.4 0.5 0.7 0.9 1.0 0.9 1.4 1.5 1.7 1.4 1.1 1.3 0.6 0.5 0.2 0.1 0.2 0.1 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.1 0.3 0.4 0.5 0.7 0.9 0.9 1.0 1.3 1.5 1.5 1.5 1.1 1.2 0.6 0.5 0.3 0.1 0.2 0.1 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.1 0.3 0.4 0.5 0.7 0.9 0.9 1.0 1.3 1.5 1.5 1.5 1.1 1.2 0.6 0.5 0.3 0.1 0.2 0.1 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.1 0.3 0.4 0.5 0.7 0.9 0.9 1.0 1.3 1.5 1.5 1.5 1.0 1.2 0.6 0.5 0.3 0.1 0.1 0.1 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 1.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.5 0.0
MARS 0.1 0.1 0.2 0.3 0.4 0.7 0.7 0.8 0.7 1.8 0.9 1.2 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1
ANN (opt. knots) 0.1 0.1 0.1 0.4 0.4 0.6 1.0 0.9 1.1 0.8 1.6 1.8 1.7 1.6 1.4 1.4 0.6 0.6 0.2 0.2 0.2 0.1 0.0 0.0 0.0
SVM 0.0 0.0 0.1 0.1 0.2 0.4 0.7 1.3 1.5 1.2 1.8 1.5 1.5 0.7 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.1 0.3 0.4 0.5 0.7 0.9 0.9 1.0 1.3 1.5 1.5 1.5 1.0 1.2 0.6 0.5 0.3 0.1 0.1 0.1 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.1 0.1 0.3 0.4 0.5 0.7 0.9 0.9 1.0 1.3 1.5 1.5 1.5 1.0 1.2 0.6 0.5 0.3 0.1 0.1 0.1 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Post-stratification, using total calibration
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.3 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.4 0.4 0.3 0.6 0.5 0.8 0.5 0.3 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.3 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.3 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.2 0.2 0.7 0.2 0.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.1 0.1 0.1 0.4 0.4 0.4 0.5 0.5 0.7 0.7 0.8 1.4 1.2 0.4 0.5 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.4 0.3 0.2 0.4 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.3 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.3 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

347



Additional Results for the German WageIndicator Web Survey

Table D.7: Estimated standard deviations (in percentage points) for income class frequencies
estimated by weighted aggregation of predictions in the WI (continued)
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Weighting model: GREG, using total calibration
None (weighted WI) 0.5 0.1 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 0.6 0.5 0.5 0.8 0.8 0.7 0.5 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.6 0.6 0.9 1.6 0.9 0.7 0.8 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 0.6 0.5 0.5 0.8 0.9 0.7 0.5 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 0.6 0.5 0.5 0.7 0.8 0.7 0.5 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 0.6 0.5 0.5 0.8 0.8 0.7 0.5 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.3 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.9 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.3 1.3 0.8 0.9 2.3 2.5 1.0 0.7 0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0 0.9 0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 0.6 0.5 0.5 0.8 0.8 0.7 0.5 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 0.6 0.5 0.5 0.8 0.8 0.7 0.5 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (one parameter per observation, as for the GREG), using total calibration
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.2 0.1 0.2 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.8 1.1 0.5 0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.3 0.4 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.3 0.4 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.2 0.1 0.2 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.1 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.5 0.2 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.3 0.3 0.2 0.2 0.4 0.8 0.7 0.8 3.0 2.8 0.5 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.5 0.3 0.3 0.6 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.2 0.1 0.2 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.2 0.1 0.2 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using total calibration
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.4 0.3 0.5 0.6 0.6 0.6 0.4 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.4 0.3 0.6 0.7 1.4 0.8 0.5 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.4 0.3 0.5 0.6 0.6 0.6 0.4 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.4 0.3 0.5 0.6 0.6 0.6 0.4 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.4 0.3 0.5 0.6 0.6 0.6 0.4 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.2 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.1 0.6 0.2 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.3 0.7 0.4 0.9 2.1 1.8 0.7 0.5 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.5 0.3 0.7 0.5 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.4 0.3 0.5 0.6 0.6 0.6 0.4 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.4 0.3 0.5 0.6 0.6 0.6 0.4 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using total calibration
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.5 0.7 0.6 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.2 0.1 0.3 0.4 0.5 0.4 0.7 0.8 1.3 0.9 0.6 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.6 0.7 0.6 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.6 0.7 0.6 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.5 0.7 0.6 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.4 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.2 0.8 0.2 0.4 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.1 0.2 0.2 0.4 0.3 0.8 0.5 0.9 2.0 1.7 1.0 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.6 0.5 0.8 0.5 0.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.5 0.7 0.6 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.5 0.7 0.6 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using total calibration
None (weighted WI) 0.5 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.1 0.3 0.6 0.3 0.3 0.6 0.9 1.1 0.8 2.2 1.8 1.1 1.3 1.5 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.2 0.7 0.3 0.3 0.6 0.9 1.0 1.1 2.8 2.8 1.1 1.4 1.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.3 0.6 0.3 0.3 0.5 0.9 1.0 0.9 2.2 1.7 1.1 1.3 1.5 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.3 0.6 0.3 0.3 0.5 0.9 1.0 0.9 2.2 1.8 1.1 1.3 1.5 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.1 0.3 0.6 0.3 0.3 0.6 0.9 1.1 0.8 2.2 1.8 1.1 1.3 1.5 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.1 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.1 0.1 0.3 0.7 0.6 0.6 0.8 1.6 1.0 1.9 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.3 0.6 0.6 0.4 0.7 0.7 1.3 1.4 1.4 3.1 3.3 0.6 1.8 0.9 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.1 0.0 0.1 0.3 0.8 1.1 1.1 2.9 4.5 1.2 0.7 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 0.3 0.6 0.3 0.3 0.6 0.9 1.1 0.8 2.2 1.8 1.1 1.3 1.5 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.1 0.3 0.6 0.3 0.3 0.6 0.9 1.1 0.8 2.2 1.8 1.1 1.3 1.5 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.7: Estimated standard deviations (in percentage points) for income class frequencies
estimated by weighted aggregation of predictions in the WI (continued)
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Weighting model: GREG, using covariance calibration
None (weighted WI) 0.7 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.0 0.1
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.2 1.6 0.9 0.8 1.2 0.7 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 2.0 3.0 1.4 1.7 1.8 1.3 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.3 1.6 0.9 0.8 1.2 0.6 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.2 1.6 0.9 0.8 1.2 0.6 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.2 1.6 0.9 0.8 1.2 0.7 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 3.1 4.7 6.9 1.7 1.8 2.1 1.1 0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.2 0.0 0.4 1.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.2 1.6 0.9 0.8 1.2 0.7 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.2 1.6 0.9 0.8 1.2 0.7 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (one parameter per observation, as for the GREG), using covariance calibration
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.5 0.6 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.5 0.5 0.5 0.6 1.1 0.6 0.3 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.5 0.6 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.5 0.6 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.5 0.6 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.1 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.5 0.3 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.5 0.9 0.8 0.6 2.1 2.1 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.5 0.4 0.4 0.6 0.4 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.5 0.6 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.5 0.6 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using covariance calibration
None (weighted WI) 1.6 0.1 0.1 0.3 0.3 0.2 0.2 0.2 0.2 0.5 0.4 0.6 0.5 0.4 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1
GLM (OLS) 0.1 0.1 0.3 0.7 0.6 0.5 0.8 3.1 3.2 0.7 1.0 4.4 1.8 4.1 1.0 1.0 1.5 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.1 0.0 0.2 0.6 0.7 0.5 0.7 2.9 3.7 0.9 1.0 4.6 2.6 3.9 0.9 1.2 1.0 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.1 0.1 0.3 0.7 0.6 0.5 0.8 3.1 3.2 0.7 1.0 4.3 1.8 4.1 0.9 1.0 1.3 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.1 0.3 0.7 0.6 0.5 0.8 3.1 3.2 0.7 1.0 4.3 1.8 4.1 0.9 1.0 1.3 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.1 0.1 0.3 0.7 0.6 0.5 0.8 3.1 3.2 0.7 1.0 4.4 1.8 4.1 1.0 1.0 1.5 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.8 0.0 0.9 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
MARS 0.2 0.1 0.2 0.3 0.8 2.0 2.9 2.7 2.4 5.6 1.7 2.5 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.2 0.2 0.2 1.0 0.7 0.7 1.1 2.8 3.8 1.3 2.4 3.2 2.8 6.7 2.0 1.1 1.0 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0
SVM 0.1 0.1 1.5 0.3 1.0 2.5 3.1 4.2 1.9 0.7 7.5 4.3 4.3 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 0.3 0.7 0.6 0.5 0.8 3.1 3.2 0.7 1.0 4.4 1.8 4.1 1.0 1.0 1.5 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.1 0.1 0.3 0.7 0.6 0.5 0.8 3.1 3.2 0.7 1.0 4.4 1.8 4.1 1.0 1.0 1.5 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using covariance calibration
None (weighted WI) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using covariance calibration
None (weighted WI) 2.1 0.1 0.1 0.4 0.3 0.2 0.3 0.4 0.4 0.4 0.5 0.6 0.5 0.3 0.3 0.3 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.1
GLM (OLS) 0.2 0.2 0.7 2.0 2.1 0.9 0.8 2.9 3.4 3.7 3.6 3.9 3.8 4.6 2.5 1.7 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.1 0.1 0.4 1.8 2.6 1.1 0.9 2.6 4.2 3.8 4.6 4.3 4.1 4.4 2.5 1.5 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.2 0.1 0.8 2.0 2.1 0.9 0.8 2.9 3.4 3.7 4.3 3.7 3.7 4.6 2.5 1.7 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.2 0.1 0.8 2.0 2.1 0.9 0.8 2.9 3.4 3.7 4.3 3.7 3.8 4.6 2.5 1.7 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.2 0.2 0.7 2.0 2.1 0.9 0.8 2.9 3.4 3.7 3.6 3.9 3.8 4.6 2.5 1.7 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.2 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.6 0.5 0.8 1.0 2.1 2.8 4.0 3.2 2.8 4.8 3.3 5.9 16.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.8 0.5 0.7 2.6 1.9 1.2 1.6 3.2 3.1 2.8 2.7 3.4 4.3 3.8 4.0 0.5 0.2 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
SVM 0.1 0.1 1.8 0.5 1.7 4.0 4.7 2.5 3.7 4.4 9.1 3.4 3.3 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.2 0.2 0.7 2.0 2.1 0.9 0.8 2.9 3.4 3.7 3.6 3.9 3.8 4.6 2.5 1.7 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.2 0.2 0.7 2.0 2.1 0.9 0.8 2.9 3.4 3.7 3.6 3.9 3.8 4.6 2.5 1.7 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.7: Estimated standard deviations (in percentage points) for income class frequencies
estimated by weighted aggregation of predictions in the WI (continued)
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Weighting model: Logit model (parametric) and GREG, using a propensity model and total calibration
None (weighted WI) 0.5 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.5 0.4 0.6 0.7 0.6 0.7 0.6 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.5 0.4 0.8 0.9 1.4 0.9 0.6 0.7 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.5 0.4 0.6 0.7 0.6 0.7 0.6 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.5 0.4 0.6 0.7 0.6 0.7 0.6 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.5 0.4 0.6 0.7 0.6 0.7 0.6 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.3 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.8 0.1 0.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 1.0 0.7 1.0 2.2 2.0 0.9 0.7 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.4 0.7 0.6 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.5 0.4 0.6 0.7 0.6 0.7 0.6 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.5 0.4 0.6 0.7 0.6 0.7 0.6 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using a propensity model and total calibration
None (weighted WI) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots) and GREG, using a propensity model and total calibration
None (weighted WI) 0.4 0.1 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.1 0.2 0.4 0.3 0.4 0.6 0.8 0.5 0.6 1.0 0.8 1.2 0.9 0.8 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.3 0.4 0.3 0.4 0.7 0.9 0.5 0.7 1.1 1.3 1.3 1.0 0.9 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.2 0.4 0.3 0.4 0.7 0.8 0.5 0.6 1.0 0.9 1.2 0.9 0.8 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.2 0.4 0.3 0.4 0.7 0.8 0.5 0.6 1.0 0.8 1.2 0.9 0.8 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.1 0.2 0.4 0.3 0.4 0.6 0.8 0.5 0.6 1.0 0.8 1.2 0.9 0.8 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.8 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.1 0.0 0.1 0.1 0.3 0.6 0.4 0.4 0.3 1.7 0.3 0.6 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.2 0.1 0.1 0.4 0.4 0.4 0.7 0.5 1.7 0.5 1.3 1.8 1.6 1.7 1.0 0.8 0.4 0.4 0.3 0.2 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.1 0.1 0.2 0.5 1.9 0.8 0.7 1.9 1.2 1.2 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.1 0.2 0.4 0.3 0.4 0.6 0.8 0.5 0.6 1.0 0.8 1.2 0.9 0.8 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.1 0.2 0.4 0.3 0.4 0.6 0.8 0.5 0.6 1.0 0.8 1.2 0.9 0.8 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using a propensity model and total calibration
None (weighted WI) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using a propensity model and total calibration
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.7 1.1 0.5 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.3 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.3 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.5 0.2 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.3 0.3 0.2 0.2 0.4 0.8 0.7 0.7 2.7 2.6 0.6 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.5 0.3 0.3 0.6 0.3 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.3 0.4 0.4 0.4 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.7: Estimated standard deviations (in percentage points) for income class frequencies
estimated by weighted aggregation of predictions in the WI (continued)
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Weighting model: Logit model (parametric) and GREG, using a propensity model and covariance calibration
None (weighted WI) 0.6 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.7 1.5 1.3 1.1 0.8 0.8 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.6 0.7 1.9 2.2 1.7 1.1 1.3 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.7 1.5 1.3 1.1 0.8 0.9 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.7 1.5 1.3 1.1 0.8 0.9 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.7 1.5 1.3 1.1 0.8 0.8 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 1.1 1.7 6.8 7.3 0.6 1.2 1.2 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 1.1 0.0 0.9 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.7 1.5 1.3 1.1 0.8 0.8 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.7 1.5 1.3 1.1 0.8 0.8 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using a propensity model and covariance calibration
None (weighted WI) 1.2 0.0 0.1 0.2 0.4 0.8 0.6 0.5 0.2 0.3 0.7 0.8 0.6 0.4 0.3 0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1
GLM (OLS) 0.0 0.0 0.0 0.1 0.4 0.6 1.1 3.8 6.6 3.0 2.7 4.9 7.6 3.8 2.0 1.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.4 0.5 1.0 3.8 6.9 3.4 2.6 5.4 7.9 3.6 1.9 2.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.4 0.6 0.9 4.0 6.6 3.0 2.6 4.8 7.6 3.8 2.0 1.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.4 0.6 0.9 4.0 6.6 3.0 2.6 4.8 7.6 3.8 2.0 1.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.4 0.6 1.1 3.8 6.6 3.0 2.7 4.9 7.6 3.8 2.0 1.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.9 0.0 0.5 0.0 27.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.3 0.4 0.6 1.0 25.4 3.3 6.6 17.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.3 0.4 0.3 1.6 1.3 12.1 1.4 3.9 5.0 6.1 5.0 4.3 1.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.2 0.0 0.2 0.4 1.0 15.2 6.1 2.8 10.3 5.2 3.6 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.4 0.6 1.1 3.8 6.6 3.0 2.7 4.9 7.6 3.8 2.0 1.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.4 0.6 1.1 3.8 6.6 3.0 2.7 4.9 7.6 3.8 2.0 1.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots) and GREG, using a propensity model and covariance calibration
None (weighted WI) 1.2 0.1 0.0 0.1 0.3 0.7 0.4 0.6 0.3 0.4 0.4 0.5 0.5 0.4 0.4 0.3 0.2 0.2 0.1 0.1 0.0 0.1 0.0 0.0 0.1
GLM (OLS) 0.8 0.1 0.1 0.2 0.5 0.5 0.7 1.6 4.9 3.5 2.7 3.8 4.6 4.0 2.6 3.1 2.7 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.5 0.1 0.3 0.2 0.5 0.4 0.6 1.8 4.9 3.3 3.0 3.8 5.1 3.9 3.0 3.9 2.2 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.8 0.1 0.1 0.2 0.5 0.5 0.6 1.7 4.9 3.3 2.9 3.7 4.7 4.0 2.6 3.3 2.3 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.8 0.1 0.1 0.2 0.5 0.5 0.6 1.7 4.9 3.3 2.9 3.7 4.6 4.0 2.6 3.3 2.3 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.8 0.1 0.1 0.2 0.5 0.5 0.7 1.6 4.9 3.5 2.7 3.8 4.6 4.0 2.6 3.1 2.7 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 0.0 0.0 17.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
MARS 0.5 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 12.7 0.0 0.0 12.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.6 0.2 0.1 0.4 0.4 0.6 2.0 1.0 7.3 1.7 5.2 4.2 6.2 3.1 3.5 2.8 1.6 1.0 0.5 0.3 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.1 0.3 0.0 0.3 1.3 7.0 1.9 0.0 4.8 1.6 3.4 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.8 0.1 0.1 0.2 0.5 0.5 0.7 1.6 4.9 3.5 2.7 3.8 4.6 4.0 2.6 3.1 2.7 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.8 0.1 0.1 0.2 0.5 0.5 0.7 1.6 4.9 3.5 2.7 3.8 4.6 4.0 2.6 3.1 2.7 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using a propensity model and covariance calibration
None (weighted WI) 0.5 0.1 0.0 0.2 0.2 0.4 0.4 0.3 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.1
GLM (OLS) 0.1 0.1 0.3 0.4 0.5 0.4 0.7 1.8 3.2 2.2 1.6 3.5 1.6 1.1 3.4 3.0 0.4 0.3 0.3 0.2 0.5 0.2 0.0 0.0 0.0
GLM (Ridge) 0.1 0.1 0.2 0.4 0.6 0.4 0.5 1.7 3.4 2.4 1.3 3.6 2.0 1.2 3.7 2.9 0.2 0.4 0.4 0.2 0.5 0.1 0.0 0.0 0.0
GLM (LASSO) 0.1 0.1 0.3 0.4 0.5 0.4 0.5 2.0 3.2 2.3 1.6 3.6 1.6 1.1 3.4 3.1 0.2 0.3 0.3 0.2 0.5 0.1 0.0 0.0 0.0
GLM (Elastic net) 0.1 0.1 0.3 0.4 0.5 0.4 0.5 2.0 3.2 2.3 1.6 3.6 1.6 1.1 3.4 3.1 0.2 0.3 0.3 0.2 0.5 0.1 0.0 0.0 0.0
GAM (fix knots) 0.1 0.1 0.3 0.4 0.5 0.4 0.7 1.8 3.2 2.2 1.6 3.5 1.6 1.1 3.4 3.0 0.4 0.3 0.3 0.2 0.5 0.2 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.6 0.0 1.0 0.0 12.9 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.5 0.0
MARS 0.3 0.1 0.1 0.2 0.5 1.2 2.0 1.9 1.9 12.4 3.1 3.4 7.9 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.2 0.2 0.2 0.0
ANN (opt. knots) 0.2 0.1 0.2 0.6 0.6 0.7 2.1 1.8 5.5 1.5 5.6 4.9 2.5 1.3 6.0 1.4 0.4 0.3 0.4 0.1 0.6 0.1 0.0 0.0 0.0
SVM 0.1 0.1 0.9 0.3 0.8 1.6 1.6 6.7 3.1 2.6 7.7 1.8 1.1 7.3 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.1 0.1 0.3 0.4 0.5 0.4 0.7 1.8 3.2 2.2 1.6 3.5 1.6 1.1 3.4 3.0 0.4 0.3 0.3 0.2 0.5 0.2 0.0 0.0 0.0
GAMM (fix knots) 0.1 0.1 0.3 0.4 0.5 0.4 0.7 1.8 3.2 2.2 1.6 3.5 1.6 1.1 3.4 3.0 0.4 0.3 0.3 0.2 0.5 0.2 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using a propensity model and covariance calibration
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.7 0.5 0.7 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.3 0.4 0.8 0.7 0.8 1.3 0.8 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.7 0.6 0.7 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.7 0.6 0.7 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.7 0.5 0.7 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.6 0.2 0.9 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.2 0.2 0.3 0.2 0.3 0.7 0.9 0.8 2.5 2.7 1.0 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.4 0.7 1.0 0.8 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.7 0.5 0.7 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.4 0.7 0.5 0.7 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.7: Estimated standard deviations (in percentage points) for income class frequencies
estimated by weighted aggregation of predictions in the WI (continued)
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Weighting model: GREG, using total and covariance calibration
None (weighted WI) 0.5 0.1 0.0 0.0 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.6 0.5 0.0 0.6 1.1 1.1 0.6 0.7 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.2 0.4 1.0 0.4 0.0 1.4 1.5 1.5 0.7 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.6 0.4 0.0 0.6 1.2 1.1 0.6 0.7 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.6 0.4 0.0 0.6 1.1 1.1 0.6 0.7 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.6 0.5 0.0 0.6 1.1 1.1 0.6 0.7 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.2 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.2 0.6 0.4 2.5 0.0 1.5 4.5 4.3 0.6 1.1 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 1.1 0.5 0.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.6 0.5 0.0 0.6 1.1 1.1 0.6 0.7 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.6 0.5 0.0 0.6 1.1 1.1 0.6 0.7 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (one parameter per observation, as for the GREG), using total and covariance calibration
None (weighted WI) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using total and covariance calibration
None (weighted WI) 6.0 0.2 0.2 0.3 0.3 1.0 1.0 1.0 0.8 0.9 0.5 0.7 0.5 0.2 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1
GLM (OLS) 3.1 1.2 3.3 2.6 4.9 2.6 3.8 3.6 6.5 3.4 4.2 5.1 4.9 2.7 1.7 2.8 1.4 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 2.7 1.2 2.8 3.1 3.2 4.6 4.0 3.6 7.0 3.4 4.9 5.0 4.9 2.6 1.7 2.8 1.2 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 3.1 0.9 3.4 2.6 4.5 2.8 3.9 3.8 6.5 3.2 4.4 5.1 4.9 2.7 1.8 2.9 1.2 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 3.1 0.9 3.4 2.6 4.5 2.8 3.9 3.8 6.5 3.2 4.4 5.1 4.9 2.7 1.8 2.9 1.2 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 3.1 1.2 3.3 2.6 4.9 2.6 3.8 3.6 6.5 3.4 4.2 5.1 4.9 2.7 1.7 2.8 1.4 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 0.0 5.1 0.0 26.6 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.3 0.0
MARS 6.5 1.1 1.6 1.9 5.4 6.6 7.2 3.7 1.8 33.8 3.6 2.9 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 2.7 1.7 0.8 4.1 2.6 3.9 4.2 3.2 9.6 3.8 6.3 5.0 5.4 2.6 2.0 2.3 1.1 0.7 0.1 0.2 0.0 0.0 0.0 0.0 0.0
SVM 0.5 3.5 1.8 4.8 5.6 8.3 4.9 13.4 12.0 4.8 6.1 2.6 2.4 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 3.1 1.2 3.3 2.6 4.9 2.6 3.8 3.6 6.5 3.4 4.2 5.1 4.9 2.7 1.7 2.8 1.4 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 3.1 1.2 3.3 2.6 4.9 2.6 3.8 3.6 6.5 3.4 4.2 5.1 4.9 2.7 1.7 2.8 1.4 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using total and covariance calibration
None (weighted WI) 1.8 0.1 0.1 0.2 0.3 0.7 0.4 0.6 1.0 0.4 0.5 0.4 0.4 0.4 0.4 0.3 0.2 0.2 0.1 0.0 0.0 0.1 0.0 0.0 0.1
GLM (OLS) 1.0 0.1 0.4 1.1 1.3 2.4 1.4 5.9 7.3 4.6 6.2 11.8 5.5 5.2 5.4 1.3 0.2 0.4 0.2 0.1 0.4 0.2 0.0 0.0 0.0
GLM (Ridge) 0.0 1.0 0.2 0.7 2.0 2.0 1.0 5.1 7.2 4.6 5.5 10.6 6.2 5.3 4.7 1.0 0.2 0.4 0.3 0.1 0.5 0.0 0.0 0.0 0.0
GLM (LASSO) 1.0 0.0 0.4 0.7 1.9 2.4 1.0 6.0 7.3 4.5 6.1 11.8 5.5 5.2 5.4 1.3 0.2 0.4 0.2 0.1 0.5 0.1 0.0 0.0 0.0
GLM (Elastic net) 1.0 0.0 0.4 0.7 1.9 2.4 1.0 6.0 7.3 4.5 6.1 11.8 5.5 5.2 5.4 1.3 0.2 0.4 0.2 0.1 0.5 0.1 0.0 0.0 0.0
GAM (fix knots) 1.0 0.1 0.4 1.1 1.3 2.4 1.4 5.9 7.3 4.6 6.2 11.8 5.5 5.2 5.4 1.3 0.2 0.4 0.2 0.1 0.4 0.2 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.0 0.0 3.0 0.0 17.3 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.9 0.0
MARS 1.1 0.2 0.3 0.4 0.6 1.1 2.6 3.9 5.8 21.2 0.8 6.4 15.8 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.3 0.3 0.0
ANN (opt. knots) 0.3 1.0 0.4 1.1 1.8 1.6 5.8 4.3 11.6 6.7 11.1 6.3 5.4 7.1 3.2 0.7 0.2 0.4 0.3 0.0 0.6 0.1 0.0 0.0 0.0
SVM 0.0 0.3 0.4 1.1 0.9 1.4 3.1 10.3 9.3 5.9 6.5 2.9 8.3 1.8 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 1.0 0.1 0.4 1.1 1.3 2.4 1.4 5.9 7.3 4.6 6.2 11.8 5.5 5.2 5.4 1.3 0.2 0.4 0.2 0.1 0.4 0.2 0.0 0.0 0.0
GAMM (fix knots) 1.0 0.1 0.4 1.1 1.3 2.4 1.4 5.9 7.3 4.6 6.2 11.8 5.5 5.2 5.4 1.3 0.2 0.4 0.2 0.1 0.4 0.2 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using total and covariance calibration
None (weighted WI) 2.3 0.1 0.1 0.4 0.3 0.2 0.3 0.6 0.5 0.4 0.5 0.6 0.6 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.1
GLM (OLS) 0.3 0.2 0.9 1.8 2.7 0.9 1.1 3.2 4.0 3.6 4.0 5.4 4.5 4.7 3.5 3.1 2.1 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.2 0.2 0.6 1.5 3.2 1.1 1.2 3.0 4.8 3.5 5.2 6.3 5.3 4.7 3.7 3.4 1.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.3 0.1 1.0 1.8 2.7 0.9 1.1 3.2 4.0 3.6 4.7 5.2 4.5 4.7 3.5 3.3 1.9 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.3 0.1 1.0 1.8 2.7 0.9 1.1 3.2 4.0 3.6 4.7 5.2 4.5 4.7 3.5 3.3 1.9 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.3 0.2 0.9 1.8 2.7 0.9 1.1 3.2 4.0 3.6 4.0 5.4 4.5 4.7 3.5 3.1 2.1 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0 0.3 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
MARS 1.2 0.5 0.6 1.0 2.2 3.4 4.4 3.0 2.7 5.2 4.0 5.3 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.6 0.4 0.3 3.1 1.7 1.8 1.3 2.9 3.8 2.5 2.9 4.0 5.9 3.5 4.8 1.3 1.7 0.5 0.1 0.0 0.2 0.0 0.0 0.0 0.0
SVM 0.2 0.6 1.9 1.0 1.8 3.8 4.7 3.1 4.2 4.6 11.6 2.9 3.1 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.3 0.2 0.9 1.8 2.7 0.9 1.1 3.2 4.0 3.6 4.0 5.4 4.5 4.7 3.5 3.1 2.1 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.3 0.2 0.9 1.8 2.7 0.9 1.1 3.2 4.0 3.6 4.0 5.4 4.5 4.7 3.5 3.1 2.1 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.7: Estimated standard deviations (in percentage points) for income class frequencies
estimated by weighted aggregation of predictions in the WI (continued)
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Weighting model: Logit model (parametric) and GREG, using a propensity model, total and covariance calibration
None (weighted WI) 0.6 0.0 0.0 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 1.2 0.6 1.0 1.1 1.2 1.1 0.6 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.9 1.3 1.0 0.8 1.2 2.5 1.9 0.9 0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 1.2 0.6 1.0 1.2 1.2 1.1 0.6 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 1.2 0.6 1.0 1.1 1.2 1.1 0.6 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 1.2 0.6 1.0 1.1 1.2 1.1 0.6 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.4 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.9 2.3 2.1 0.6 3.0 3.2 1.2 0.6 0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 1.3 0.0 1.3 0.8 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 1.2 0.6 1.0 1.1 1.2 1.1 0.6 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 1.2 0.6 1.0 1.1 1.2 1.1 0.6 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using a propensity model, total and covariance calibration
None (weighted WI) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots) and GREG, using a propensity model, total and covariance calibration
None (weighted WI) 0.5 0.1 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.1 0.0 0.2 0.4 0.2 0.6 0.9 1.1 0.9 1.7 2.3 1.0 1.9 1.2 1.0 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.6 0.2 0.4 0.3 0.6 0.9 1.1 0.8 1.6 2.2 1.8 2.0 1.2 1.1 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.7 0.2 0.4 0.3 0.5 0.9 1.1 0.8 1.6 2.3 1.0 1.9 1.2 1.1 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.7 0.2 0.4 0.3 0.5 0.9 1.1 0.8 1.6 2.3 1.0 1.9 1.2 1.1 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.1 0.0 0.2 0.4 0.2 0.6 0.9 1.1 0.9 1.7 2.3 1.0 1.9 1.2 1.0 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.6 0.0 0.6 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.1 0.1 0.2 0.5 0.7 0.6 0.5 0.5 2.8 0.9 1.1 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.2 0.1 0.4 0.4 0.5 1.5 1.0 2.4 1.0 3.3 1.7 1.6 2.4 1.3 0.9 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 1.3 2.6 0.9 0.9 4.0 1.3 1.9 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.1 0.0 0.2 0.4 0.2 0.6 0.9 1.1 0.9 1.7 2.3 1.0 1.9 1.2 1.0 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.1 0.0 0.2 0.4 0.2 0.6 0.9 1.1 0.9 1.7 2.3 1.0 1.9 1.2 1.0 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using a propensity model, total and covariance calibration
None (weighted WI) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using a propensity model, total and covariance calibration
None (weighted WI) 0.4 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (OLS) 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.5 0.7 0.6 0.9 0.9 0.8 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.1 0.2 0.2 0.3 0.4 0.5 0.9 0.9 1.0 1.5 0.9 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.5 0.7 0.7 0.9 0.9 0.8 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.5 0.7 0.7 0.9 0.9 0.8 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.5 0.7 0.6 0.9 0.9 0.8 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.4 0.7 0.3 1.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.1 0.2 0.3 0.2 0.3 0.8 0.9 0.8 2.5 2.7 1.2 0.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.6 0.5 1.0 1.3 1.0 0.6 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.5 0.7 0.6 0.9 0.9 0.8 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.5 0.7 0.6 0.9 0.9 0.8 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.8: Estimated standard deviations (in percentage points) for income class frequencies
estimated from the imputed Microcensus, using a weighted loss function for predic-
tion models
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Weighting model: unweighted, using no auxiliary information
Matching 0.0 0.0 0.0 0.1 0.3 0.4 0.4 0.4 0.5 0.5 0.6 0.6 0.4 0.4 0.3 0.2 0.1 0.1 0.0 0.0 0.1 0.2 0.1 0.2 0.1
GLM (OLS) 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.2 0.4 0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
MARS 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.4 0.1 0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.6 0.3 0.5 0.9 0.8 1.2 1.4 1.4 1.4 1.3 1.7 1.2 1.0 1.3 1.4 0.9 0.9 0.9 0.7 0.5 0.2 0.2 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.3 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (parametric), using propensity weights
GLM (OLS) 0.0 0.2 0.5 0.4 0.2 0.3 0.4 0.5 0.5 0.5 1.4 1.4 1.3 0.9 0.6 0.5 0.8 1.3 1.1 1.1 0.7 0.5 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.4 0.5 0.3 0.5 0.6 0.5 0.6 0.5 1.2 1.4 1.2 0.6 0.6 0.5 0.8 1.0 0.9 0.7 0.2 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.2 0.5 0.4 0.2 0.3 0.4 0.5 0.5 0.5 1.3 1.5 1.3 0.9 0.6 0.5 0.9 1.3 1.1 1.0 0.7 0.5 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.2 0.5 0.4 0.2 0.3 0.4 0.5 0.5 0.5 1.3 1.5 1.3 0.9 0.6 0.5 0.9 1.3 1.2 1.0 0.7 0.5 0.0 0.0 0.0
GAM (fix knots) 0.6 0.2 0.6 0.7 0.4 0.6 0.6 0.7 0.6 1.0 1.5 3.2 3.1 1.2 2.3 1.8 1.6 2.5 2.3 1.6 1.3 2.6 2.0 0.5 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1 0.0 2.1 1.6 5.5 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 2.7 3.4
MARS 8.2 0.2 0.3 0.7 0.9 1.1 1.4 1.1 7.8 12.3 7.0 4.0 13.7 11.2 5.7 3.1 0.8 0.5 0.5 0.4 0.4 1.1 2.1 4.4 3.1
ANN (opt. knots) 0.6 0.3 0.4 0.5 0.9 1.6 1.7 1.6 1.6 1.8 2.6 2.1 1.8 1.9 2.5 2.2 2.1 2.2 2.0 1.2 0.5 0.5 0.1 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.4 0.4 1.0 3.1 1.8 2.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 16.4 18.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 16.4 18.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Pseudo-Weights (parametric), using propensity weights
GLM (OLS) 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.3 0.5 0.4 0.5 0.4 0.3 0.4 0.3 0.3 0.2 0.3 0.1 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.3 0.3 0.1 0.4 0.3 0.4 0.2 0.4 0.6 0.5 0.5 0.3 0.4 0.3 0.2 0.4 0.4 0.2 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.4 0.5 0.4 0.5 0.4 0.3 0.4 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.4 0.5 0.4 0.5 0.4 0.3 0.4 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.2 0.2 0.1 0.3 0.3 0.3 0.2 0.3 1.0 2.1 1.5 1.4 1.4 1.6 1.8 1.6 1.2 0.9 0.8 0.4 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.2 2.5 3.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 1.8 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.6 0.2 0.4 0.9 1.0 0.9 1.2 1.3 1.5 1.4 1.7 1.3 1.2 1.7 1.7 1.0 0.9 1.0 1.1 0.5 0.6 0.2 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.2 0.4 0.3 0.3 1.0 2.2 3.4 3.3 2.3 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using propensity weights
GLM (OLS) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.4 0.5 1.0 0.7 0.6 0.7 0.4 0.4 0.8 0.8 0.7 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.3 0.3 0.1 0.3 0.3 0.4 0.5 1.0 0.7 0.7 0.7 0.4 0.5 0.8 0.8 0.6 0.1 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.9 0.7 0.6 0.7 0.5 0.5 0.8 0.8 0.6 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.9 0.7 0.6 0.7 0.5 0.5 0.8 0.8 0.6 0.1 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.2 0.2 0.2 0.4 0.3 0.3 0.4 0.5 1.2 0.7 0.9 0.8 0.5 0.6 0.8 1.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 23.2 12.0 2.1 11.8 28.0 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 1.1 0.9 1.0 1.3 5.3 5.2 0.7 1.9 12.9 12.6 0.8 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.8 0.5 0.6 1.0 1.5 1.4 1.6 1.6 1.6 1.6 2.2 2.3 2.1 2.2 2.5 1.9 2.4 1.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.2 0.3 0.3 0.3 0.5 1.5 3.7 2.3 2.3 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots), using propensity weights
GLM (OLS) 0.0 0.2 0.5 0.4 0.2 0.4 0.4 0.6 0.4 0.5 1.4 1.0 1.5 1.2 0.6 0.7 1.1 1.3 0.9 0.6 0.3 0.1 0.0 0.0 0.0
GLM (Ridge) 0.0 0.1 0.4 0.4 0.3 0.5 0.5 0.6 0.4 0.5 1.4 1.1 1.5 1.0 0.7 0.7 1.2 1.2 0.9 0.6 0.2 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.2 0.5 0.4 0.2 0.4 0.4 0.6 0.4 0.5 1.4 1.0 1.5 1.1 0.6 0.7 1.1 1.3 0.9 0.7 0.3 0.1 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.2 0.5 0.4 0.2 0.4 0.4 0.6 0.4 0.5 1.4 1.0 1.5 1.1 0.6 0.7 1.1 1.3 0.9 0.7 0.3 0.1 0.0 0.0 0.0
GAM (fix knots) 2.9 0.3 0.4 0.5 0.4 0.6 0.7 0.6 0.5 0.8 2.3 2.8 2.2 1.8 2.2 2.1 1.6 1.8 1.1 0.9 0.9 1.4 0.3 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 8.4 13.0 4.7 2.4 14.7 9.6 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 2.5
MARS 3.9 0.5 0.7 1.1 1.5 1.9 2.1 2.3 11.6 10.7 8.4 3.3 13.7 8.6 3.0 3.1 2.2 1.6 1.0 0.7 0.7 1.2 1.4 2.2 2.0
ANN (opt. knots) 0.2 0.2 0.2 0.9 1.0 1.4 1.6 1.6 1.7 1.9 3.0 2.3 2.9 2.5 2.0 2.3 1.9 2.0 1.3 0.7 0.4 0.7 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.3 0.4 1.0 3.1 1.8 2.3 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 19.1 19.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 19.4 19.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.8: Estimated standard deviations (in percentage points) for income class frequencies
estimated from the imputed Microcensus, using a weighted loss function for predic-
tion models (continued)
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Weighting model: Pseudo-Weights (fix knots), using propensity weights
GLM (OLS) 0.0 0.0 0.0 0.2 0.2 0.1 0.2 0.3 0.3 0.2 0.4 0.3 0.4 0.4 0.3 0.4 0.3 0.3 0.2 0.2 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.3 0.2 0.1 0.2 0.3 0.4 0.3 0.4 0.5 0.5 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.2 0.2 0.1 0.2 0.3 0.3 0.2 0.4 0.3 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.2 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.2 0.2 0.1 0.2 0.3 0.3 0.2 0.4 0.3 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.2 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.2 0.1 0.1 0.2 0.2 0.1 0.3 0.3 0.4 0.2 0.8 0.7 1.0 0.6 0.9 0.4 0.9 0.4 0.3 0.3 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.4 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.3 0.2 0.2 1.0 1.1 1.2 1.2 1.4 1.3 1.4 1.6 1.4 1.1 1.2 1.1 1.0 1.1 0.9 0.5 0.4 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.3 0.4 1.5 3.8 2.4 2.4 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 6.6 6.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 6.6 6.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using propensity weights
GLM (OLS) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.4 0.5 1.0 0.7 0.6 0.7 0.4 0.4 0.8 0.8 0.7 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.3 0.3 0.1 0.3 0.3 0.4 0.5 1.0 0.7 0.7 0.7 0.4 0.5 0.8 0.9 0.6 0.1 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.9 0.7 0.6 0.7 0.5 0.5 0.8 0.8 0.6 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.9 0.7 0.6 0.7 0.5 0.5 0.8 0.8 0.6 0.1 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.2 0.2 0.2 0.4 0.3 0.3 0.4 0.5 1.2 0.7 0.9 0.8 0.5 0.6 0.8 1.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 23.2 12.0 2.1 11.8 28.0 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 1.1 0.9 1.0 1.3 5.3 5.2 0.7 1.9 12.9 12.6 0.8 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.6 0.5 0.5 1.1 1.3 1.4 1.6 1.6 1.6 1.7 2.4 2.1 2.1 2.4 2.1 2.1 2.4 1.6 0.5 0.2 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.2 0.3 0.3 0.3 0.5 1.5 3.7 2.3 2.3 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using propensity weights
GLM (OLS) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.4 0.5 1.0 0.7 0.6 0.7 0.4 0.4 0.8 0.8 0.7 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.3 0.3 0.1 0.3 0.3 0.4 0.5 1.0 0.7 0.7 0.7 0.4 0.5 0.8 0.9 0.6 0.1 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.9 0.7 0.6 0.7 0.5 0.5 0.8 0.8 0.6 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.9 0.7 0.6 0.7 0.5 0.5 0.8 0.8 0.6 0.1 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.2 0.2 0.2 0.4 0.3 0.3 0.4 0.5 1.2 0.7 0.9 0.8 0.5 0.6 0.8 1.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 23.2 12.0 2.1 11.8 28.0 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 1.1 0.9 1.0 1.3 5.3 5.2 0.7 1.9 12.9 12.6 0.8 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 1.0 0.3 0.8 1.0 1.2 1.6 1.6 1.6 1.6 1.6 2.4 2.4 2.0 2.2 2.1 2.1 2.2 1.3 0.5 0.3 0.2 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.2 0.3 0.3 0.3 0.5 1.5 3.7 2.3 2.3 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Subsampling, using total calibration
GLM (OLS) 2.1 0.5 0.6 0.8 0.8 1.0 1.0 1.2 1.5 2.3 4.9 4.6 3.8 2.8 1.9 2.6 2.7 3.5 3.1 2.5 2.0 3.9 1.9 0.2 0.0
GLM (Ridge) 1.1 0.2 0.5 0.7 0.7 1.1 1.3 1.7 1.9 2.8 7.5 13.1 21.1 13.1 6.7 5.2 4.3 4.2 3.3 2.2 1.6 1.6 0.0 0.0 0.0
GLM (LASSO) 1.7 0.5 0.6 0.8 0.7 0.7 1.2 1.4 1.8 3.2 14.6 27.3 36.7 21.2 5.5 5.3 4.2 4.2 3.8 3.2 2.4 3.6 0.9 0.0 0.0
GLM (Elastic net) 1.8 0.4 0.6 0.7 0.8 0.7 1.1 1.6 1.8 3.3 15.3 27.5 38.5 20.1 7.0 5.0 3.7 4.4 3.8 2.8 2.6 3.6 1.0 0.0 0.0
GAM (fix knots) 3.6 0.5 0.6 0.8 0.8 1.0 1.0 1.6 2.1 2.8 5.5 6.1 5.8 5.7 4.2 4.6 3.1 3.7 3.7 3.4 2.6 4.7 2.3 4.4 14.4
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 10.4 19.2 25.2 27.5 15.9 11.0 16.2 6.2 12.5 6.7 6.5 12.3 1.0 4.0 12.3 9.6 0.0
MARS 4.4 0.5 0.5 0.9 0.9 1.4 4.0 4.4 15.3 16.1 30.8 36.4 27.8 17.9 13.8 3.9 2.4 0.9 0.4 0.6 1.2 1.1 3.6 3.7 6.3
ANN (opt. knots) 49.3 0.9 0.9 2.2 3.3 2.2 3.2 3.2 3.1 4.2 5.8 5.2 4.4 4.0 3.0 3.1 3.3 2.6 2.7 1.7 1.7 2.2 2.8 3.5 0.0
SVM 0.0 0.0 0.2 0.7 1.0 1.5 2.2 3.4 4.5 4.2 4.3 4.7 4.4 4.5 2.8 2.3 1.5 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 20.5 19.7 5.9 5.7 1.6 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 20.5 19.7 5.9 5.7 1.6 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Post-stratification, using total calibration
GLM (OLS) 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.5 0.3 0.2 0.5 0.2 0.2 0.3 0.3 0.5 0.7 0.8 0.7 0.4 0.4 0.3 0.7 0.3 0.5 0.2 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.0 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
MARS 0.0 0.0 0.1 0.2 1.3 0.5 0.2 0.8 0.2 1.7 1.8 5.7 4.1 0.2 5.4 6.8 0.4 0.1 1.2 0.2 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.6 0.2 0.3 0.8 0.9 1.2 1.2 1.4 1.5 1.4 1.3 1.3 1.0 1.0 1.1 0.9 0.7 0.7 0.6 0.4 0.4 0.3 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.3 0.2 1.1 0.3 0.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.8: Estimated standard deviations (in percentage points) for income class frequencies
estimated from the imputed Microcensus, using a weighted loss function for predic-
tion models (continued)
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Weighting model: GREG, using total calibration
GLM (OLS) 0.0 0.2 0.2 0.2 0.1 0.3 0.3 0.3 0.4 0.6 1.0 0.9 0.6 0.7 0.5 0.4 0.7 0.9 0.8 0.6 0.2 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.3 0.3 0.3 0.1 0.4 0.3 0.4 0.6 0.4 0.7 1.4 1.3 1.4 1.0 0.8 0.9 1.0 1.5 1.2 0.5 0.5 0.5 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (one parameter per observation, as for the GREG), using total calibration
GLM (OLS) 0.0 0.0 0.0 0.3 0.3 0.1 0.4 0.3 0.3 0.5 1.0 0.7 0.6 0.7 0.4 0.5 0.8 0.9 0.6 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.2 0.2 0.1 0.4 0.2 0.3 0.5 1.1 0.7 0.6 0.7 0.5 0.6 0.8 1.0 0.5 0.1 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.3 0.3 0.1 0.4 0.3 0.3 0.5 1.0 0.7 0.5 0.7 0.4 0.5 0.8 0.9 0.5 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.3 0.3 0.1 0.4 0.3 0.3 0.5 1.0 0.8 0.5 0.7 0.4 0.5 0.7 0.9 0.5 0.1 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.3 0.3 0.1 0.4 0.3 0.4 0.5 1.2 0.8 0.6 0.7 0.4 0.5 0.8 1.0 0.5 0.1 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 11.9 0.0 6.6 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.2 0.4 0.4 0.9 0.6 0.5 0.5 3.6 0.5 3.5 12.0 12.0 3.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.8 0.3 0.5 1.1 1.0 1.4 1.5 1.8 1.7 1.7 2.5 2.6 2.0 2.2 2.6 1.9 2.3 1.4 0.5 0.4 0.4 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.3 0.4 1.0 3.2 1.9 2.4 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using total calibration
GLM (OLS) 0.2 0.5 0.4 0.3 0.3 0.4 0.5 0.6 0.5 0.5 1.3 1.4 1.3 1.0 0.6 0.7 0.7 1.2 1.2 1.1 0.9 0.9 0.0 0.0 0.0
GLM (Ridge) 0.0 0.3 0.5 0.5 0.2 0.6 0.6 0.6 0.5 0.5 1.0 1.5 1.1 0.7 0.7 0.7 0.7 1.1 1.0 0.9 0.5 0.2 0.0 0.0 0.0
GLM (LASSO) 0.2 0.5 0.4 0.3 0.3 0.4 0.5 0.6 0.5 0.5 1.3 1.4 1.3 1.0 0.7 0.7 0.7 1.2 1.2 1.1 0.9 0.9 0.0 0.0 0.0
GLM (Elastic net) 0.2 0.5 0.4 0.3 0.3 0.4 0.5 0.6 0.5 0.5 1.3 1.4 1.3 1.0 0.7 0.7 0.7 1.2 1.2 1.1 0.9 0.9 0.0 0.0 0.0
GAM (fix knots) 1.4 0.6 0.6 0.3 0.9 0.6 0.7 0.8 0.7 0.9 1.9 2.8 2.8 1.2 2.3 2.1 1.7 2.2 2.6 2.0 1.3 2.4 1.6 0.3 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 10.9 0.3 4.0 5.3 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 6.1 3.1
MARS 5.6 0.4 0.3 0.7 1.0 1.3 2.1 2.0 13.1 12.4 5.7 4.1 12.5 10.0 2.5 2.1 1.5 1.2 0.6 0.7 0.7 2.0 2.8 3.8 2.1
ANN (opt. knots) 0.7 0.6 0.5 0.6 1.4 1.3 1.4 1.4 1.6 1.7 3.0 1.9 1.8 2.0 2.0 2.2 2.0 2.2 2.4 1.6 1.1 0.8 0.1 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.3 0.4 1.0 3.1 1.8 2.4 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 5.4 7.7 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 5.4 7.7 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using total calibration
GLM (OLS) 0.6 0.5 0.4 0.3 0.5 0.5 0.5 0.7 0.5 0.5 1.2 1.5 1.4 1.2 0.7 0.8 0.7 1.1 1.2 1.2 1.1 1.4 0.0 0.0 0.0
GLM (Ridge) 0.3 0.5 0.5 0.5 0.3 0.8 0.7 0.8 0.8 0.6 1.0 1.9 1.4 0.7 0.8 0.9 0.7 1.1 1.0 0.9 0.6 0.2 0.0 0.0 0.0
GLM (LASSO) 0.6 0.5 0.4 0.3 0.5 0.5 0.5 0.7 0.5 0.5 1.2 1.5 1.4 1.2 0.7 0.8 0.7 1.2 1.2 1.2 1.1 1.4 0.0 0.0 0.0
GLM (Elastic net) 0.6 0.5 0.4 0.3 0.5 0.5 0.5 0.7 0.5 0.5 1.2 1.5 1.4 1.2 0.7 0.8 0.7 1.1 1.2 1.2 1.1 1.4 0.0 0.0 0.0
GAM (fix knots) 3.2 0.6 0.5 0.7 0.9 0.7 0.8 1.0 1.0 1.1 2.1 2.4 2.9 1.9 2.0 2.3 1.9 2.1 2.5 2.0 1.6 2.0 1.6 1.6 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.5 6.9 0.3 3.1 7.3 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 6.3 2.3
MARS 5.8 0.4 0.5 0.9 1.2 1.5 2.5 3.1 12.2 11.6 5.1 5.6 13.0 11.7 2.4 2.6 2.2 1.5 1.2 1.0 1.0 2.4 2.6 3.4 2.0
ANN (opt. knots) 0.8 0.5 0.5 1.0 1.3 1.5 1.4 1.5 1.6 1.8 2.5 1.8 1.7 2.1 2.2 2.0 1.9 2.5 2.3 1.9 1.4 1.2 0.7 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.3 0.4 1.2 3.4 2.0 2.4 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 13.3 18.7 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 13.3 18.7 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using total calibration
GLM (OLS) 0.0 0.0 0.1 0.5 0.3 0.3 0.8 0.4 0.5 1.0 1.6 1.2 1.6 1.1 0.9 1.1 1.2 1.6 1.7 1.5 1.4 5.9 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.5 0.4 0.2 0.8 0.4 0.5 1.1 2.3 1.4 1.7 1.1 1.1 1.1 1.1 1.7 1.7 1.5 1.5 6.6 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.1 0.5 0.3 0.2 0.8 0.7 0.7 1.1 2.4 1.5 1.6 1.4 1.2 1.4 1.0 1.6 1.7 1.5 1.4 6.5 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.1 0.5 0.3 0.2 0.7 0.5 0.5 1.2 2.1 1.3 1.6 1.2 1.1 1.4 1.0 1.6 1.7 1.5 1.4 6.5 0.0 0.0 0.0
GAM (fix knots) 0.0 0.2 0.5 0.4 0.1 0.5 0.3 0.5 0.6 1.0 1.6 1.4 2.1 1.7 1.2 1.7 1.0 2.1 2.5 2.0 2.5 7.8 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 8.9 4.4 20.2 7.5 0.0 10.3 14.8 8.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.2 0.3 0.7 1.1 1.1 1.1 1.5 13.4 13.7 5.4 5.7 13.8 11.9 3.5 2.8 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 1.0 0.4 0.8 1.0 1.2 1.5 1.7 1.5 1.6 1.7 2.5 3.1 2.3 3.0 3.0 2.3 2.1 2.6 3.0 2.1 1.7 5.3 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.3 0.4 0.4 0.6 1.2 2.4 3.6 3.0 2.4 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 3.3 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 4.3 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.8: Estimated standard deviations (in percentage points) for income class frequencies
estimated from the imputed Microcensus, using a weighted loss function for predic-
tion models (continued)
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Weighting model: GREG, using covariance calibration
GLM (OLS) 0.0 0.0 0.0 0.3 0.3 0.2 0.3 0.4 0.5 0.5 0.9 1.1 0.8 0.7 0.6 0.5 0.9 0.9 0.9 0.4 0.1 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.3 0.2 0.1 0.4 0.3 0.4 0.4 0.7 1.7 0.8 1.5 1.0 0.9 1.6 0.8 1.8 0.9 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (one parameter per observation, as for the GREG), using covariance calibration
GLM (OLS) 0.0 0.0 0.2 0.2 0.1 0.3 0.2 0.3 0.4 0.6 0.9 0.6 0.7 0.7 0.4 0.4 0.8 0.7 0.7 0.2 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.1 0.1 0.1 0.3 0.2 0.3 0.4 0.6 0.9 0.6 0.7 0.6 0.4 0.5 0.8 0.7 0.7 0.1 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.2 0.2 0.1 0.3 0.2 0.3 0.4 0.6 0.9 0.6 0.7 0.6 0.4 0.4 0.8 0.7 0.7 0.2 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.2 0.2 0.1 0.3 0.2 0.3 0.4 0.6 0.9 0.6 0.7 0.6 0.4 0.4 0.8 0.7 0.7 0.2 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.3 0.7 1.2 0.7 1.2 0.7 0.6 0.9 0.8 1.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 4.0 10.9 2.3 0.2 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3
MARS 0.4 0.3 0.3 0.3 0.4 0.4 1.4 0.7 7.1 0.9 3.2 6.2 4.2 2.5 2.3 2.1 1.5 0.8 0.2 0.2 0.2 0.5 0.6 0.7 2.4
ANN (opt. knots) 0.8 0.4 0.8 0.8 1.1 1.4 1.5 1.6 1.6 1.9 1.9 2.1 2.3 2.2 2.3 1.8 2.1 1.5 0.6 0.4 0.2 0.1 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.2 0.4 0.4 0.4 0.8 2.1 3.8 2.9 2.2 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using covariance calibration
GLM (OLS) 0.0 0.2 0.6 0.3 0.3 0.4 0.7 0.6 0.9 1.2 1.5 1.4 1.1 0.6 1.1 1.0 1.3 1.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.1 0.5 0.2 0.3 0.4 0.7 0.7 0.9 1.5 2.1 2.0 1.8 1.0 1.5 1.5 1.5 0.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.2 0.5 0.3 0.3 0.4 0.6 0.6 0.9 1.4 2.0 1.8 1.2 0.6 1.3 1.5 1.6 1.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.2 0.5 0.3 0.2 0.4 0.7 0.6 2.2 2.3 2.2 4.3 1.2 1.3 1.5 1.7 1.5 0.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.7 0.2 0.3 0.4 0.3 0.3 0.5 0.6 1.1 0.6 2.3 3.5 1.7 1.5 1.3 2.7 2.3 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 18.9 3.6 29.7 9.9 0.0 15.8 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
MARS 4.0 0.4 0.3 0.4 0.9 1.2 0.8 2.2 7.1 3.2 2.8 8.8 6.1 2.6 2.9 2.1 1.5 1.4 0.9 0.2 0.1 0.2 0.6 2.1 3.1
ANN (opt. knots) 10.2 0.7 0.8 0.6 1.1 1.2 1.5 1.8 1.8 1.8 4.1 2.5 2.1 1.9 2.8 2.4 1.4 0.9 0.9 0.5 0.3 0.3 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.6 0.5 0.4 0.4 0.6 1.7 1.1 1.4 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 12.2 10.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 11.5 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using covariance calibration
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using covariance calibration
GLM (OLS) 0.0 0.0 0.3 0.7 0.5 0.6 0.7 0.5 0.7 1.1 1.2 1.5 1.5 1.4 1.5 1.2 1.3 1.7 1.8 1.6 1.4 2.2 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.2 0.7 0.5 0.6 0.8 0.5 0.7 1.2 1.6 2.0 1.7 1.4 1.5 1.5 1.4 1.8 1.8 1.6 1.3 2.2 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.3 0.7 0.5 0.6 0.7 0.4 0.7 1.1 1.2 1.6 1.6 1.4 1.5 1.2 1.4 1.7 1.8 1.5 1.3 2.3 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.3 0.7 0.5 0.6 0.7 0.4 0.7 1.1 1.2 1.6 1.6 1.4 1.5 1.2 1.4 1.7 1.8 1.6 1.3 2.3 0.0 0.0 0.0
GAM (fix knots) 0.0 0.3 0.4 0.5 0.4 0.7 0.6 0.7 0.6 1.0 1.8 3.4 4.5 1.7 1.4 2.5 2.5 2.2 1.7 2.0 1.4 2.3 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.3 5.9 21.1 27.5 21.6 30.6 22.2 22.0 10.8 10.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.2
MARS 5.2 0.9 0.9 1.3 1.6 1.7 2.9 10.3 12.2 9.9 9.0 14.6 11.2 4.2 2.0 1.4 1.0 0.3 0.1 0.5 1.4 4.0 3.3 3.6 3.3
ANN (opt. knots) 25.6 0.6 0.6 0.7 1.4 1.7 2.0 1.9 2.0 2.0 4.3 3.8 4.9 3.5 2.6 2.5 2.2 2.6 2.6 3.1 1.3 5.1 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.2 0.7 0.6 0.5 0.5 2.6 2.7 2.1 3.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 11.6 11.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 11.6 11.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.8: Estimated standard deviations (in percentage points) for income class frequencies
estimated from the imputed Microcensus, using a weighted loss function for predic-
tion models (continued)
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Weighting model: Logit model (parametric) and GREG, using a propensity model and total calibration
GLM (OLS) 0.7 0.5 0.5 0.3 0.8 0.5 0.5 0.7 0.7 0.5 1.1 1.7 1.2 1.0 0.8 1.2 1.1 1.1 1.2 1.3 1.4 3.5 1.6 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 4.2 0.5 0.5 0.7 0.9 0.8 0.7 0.9 0.9 1.2 1.7 2.4 2.6 2.0 1.9 2.3 2.0 2.0 2.1 2.3 1.9 3.7 2.4 2.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 11.5 19.4 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 11.5 19.4 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using a propensity model and total calibration
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots) and GREG, using a propensity model and total calibration
GLM (OLS) 0.4 0.4 0.5 0.5 0.5 0.8 0.5 0.6 0.9 0.9 1.3 2.1 1.6 0.9 0.8 0.8 1.1 1.5 1.3 1.2 0.9 0.9 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 3.5 0.3 0.4 0.7 1.0 1.3 1.4 0.9 1.4 1.3 3.1 2.1 2.5 1.9 1.9 2.2 2.0 1.8 2.0 1.3 1.1 1.1 0.2 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 20.3 16.4 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 20.2 16.7 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using a propensity model and total calibration
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using a propensity model and total calibration
GLM (OLS) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.4 0.5 1.0 0.7 0.6 0.7 0.4 0.4 0.8 0.8 0.7 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.3 0.3 0.1 0.3 0.3 0.4 0.5 1.0 0.7 0.7 0.7 0.4 0.5 0.8 0.9 0.6 0.1 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.9 0.7 0.6 0.7 0.5 0.5 0.8 0.8 0.7 0.1 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.4 0.4 0.5 0.9 0.7 0.6 0.7 0.5 0.5 0.8 0.8 0.7 0.1 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.2 0.2 0.2 0.4 0.3 0.3 0.4 0.5 1.2 0.7 0.9 0.8 0.5 0.6 0.8 1.3 0.6 0.1 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 22.0 11.8 2.1 13.1 28.5 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 1.1 0.9 0.9 1.4 5.2 5.2 0.7 1.9 12.7 12.4 0.8 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 1.1 0.3 0.6 1.3 1.1 1.4 1.7 1.5 1.7 1.6 2.3 2.4 2.1 2.2 2.3 2.1 2.5 1.5 0.5 0.2 0.1 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.2 0.3 0.3 0.3 0.5 1.6 3.7 2.3 2.4 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.8: Estimated standard deviations (in percentage points) for income class frequencies
estimated from the imputed Microcensus, using a weighted loss function for predic-
tion models (continued)
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Weighting model: Logit model (parametric) and GREG, using a propensity model and covariance calibration
GLM (OLS) 0.0 0.0 0.4 0.5 0.4 0.3 0.3 0.5 0.8 0.7 1.0 1.0 0.9 0.7 0.5 0.6 1.0 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.4 0.4 0.4 0.3 0.3 0.5 0.8 0.6 1.1 1.3 0.9 0.8 0.7 0.6 1.0 0.8 0.5 1.6 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 11.6 11.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 11.6 11.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using a propensity model and covariance calibration
GLM (OLS) 0.0 0.1 0.5 0.5 0.6 0.6 0.4 0.5 0.8 1.4 2.1 1.6 1.3 2.4 2.7 3.8 2.9 1.8 1.9 2.4 2.6 5.4 2.9 0.0 0.0
GLM (Ridge) 0.0 0.1 0.4 0.5 0.3 0.6 0.8 0.9 1.3 3.1 4.8 2.4 1.6 3.7 4.3 4.4 2.1 2.0 3.4 2.2 0.8 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.1 0.5 0.5 0.6 0.6 0.4 0.5 0.8 1.4 2.1 1.7 1.3 2.4 2.7 3.8 2.9 1.8 1.9 2.4 2.6 5.4 2.8 0.0 0.0
GLM (Elastic net) 0.0 0.1 0.5 0.5 0.6 0.6 0.4 0.5 0.8 1.5 2.2 1.7 1.3 2.4 2.7 3.8 2.9 1.8 2.0 2.4 2.6 5.4 2.8 0.0 0.0
GAM (fix knots) 0.5 0.4 0.5 0.4 0.8 0.5 0.7 0.5 0.8 3.3 1.9 4.0 2.0 3.7 2.8 3.3 2.3 2.0 2.4 3.1 2.4 5.2 3.5 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.4 12.2 31.0 18.3 21.8 16.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 6.5 1.6
MARS 4.0 0.7 0.9 1.3 1.4 1.4 1.2 4.2 14.9 2.2 4.4 14.8 11.3 3.0 2.9 2.1 1.7 1.7 1.2 0.4 0.7 0.7 3.7 3.4 2.8
ANN (opt. knots) 1.0 0.4 0.8 0.8 1.4 1.5 1.4 1.7 1.8 3.6 2.5 4.3 2.3 3.6 3.5 3.0 1.8 2.4 2.4 2.9 2.5 4.8 7.5 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.2 0.7 0.6 0.5 0.5 1.4 2.9 2.1 2.3 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 6.1 6.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 6.3 6.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots) and GREG, using a propensity model and covariance calibration
GLM (OLS) 0.3 0.4 0.6 0.5 0.4 0.6 0.5 0.6 1.0 0.8 1.9 1.8 1.6 1.0 0.8 0.7 1.5 1.6 1.3 0.9 0.6 0.2 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 1.5 0.3 0.4 0.7 0.7 0.7 0.7 1.1 1.9 2.0 4.4 4.5 2.1 5.1 4.4 2.8 2.5 2.5 3.0 2.9 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 6.0 9.6 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 15.2 16.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using a propensity model and covariance calibration
GLM (OLS) 0.8 0.1 0.3 0.6 0.5 0.8 0.5 0.4 0.7 1.1 1.1 1.4 1.7 2.2 2.3 2.2 2.2 1.8 2.1 2.4 2.2 4.4 5.5 0.0 0.0
GLM (Ridge) 0.5 0.1 0.4 0.7 0.5 0.8 0.8 1.2 1.1 1.6 5.1 4.0 2.5 2.8 3.4 4.1 2.4 2.6 3.5 2.8 1.5 5.7 2.0 0.0 0.0
GLM (LASSO) 0.8 0.1 0.3 0.6 0.6 0.7 0.5 0.4 0.8 1.1 9.0 8.9 1.7 2.2 2.3 2.3 2.2 1.8 2.1 2.3 2.3 4.0 5.9 0.0 0.0
GLM (Elastic net) 0.8 0.2 0.3 0.6 0.6 0.7 0.5 0.4 0.8 3.4 9.0 9.2 1.7 2.2 2.3 2.3 2.3 1.9 2.3 2.4 2.3 4.0 5.1 0.0 0.0
GAM (fix knots) 1.2 0.4 0.4 0.5 0.6 0.6 0.5 0.6 1.5 1.8 2.9 4.1 4.6 2.3 3.2 2.9 2.3 2.3 2.4 2.9 2.2 4.5 6.1 4.8 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 14.3 16.4 25.4 13.1 12.8 20.0 23.1 13.0 0.0 0.1 0.3 0.0 0.0 5.3 0.5 3.6 3.3
MARS 4.5 0.6 0.7 1.0 1.3 1.7 2.6 16.5 16.2 2.4 6.4 15.2 13.6 4.9 1.4 1.5 1.7 2.1 2.4 2.1 1.1 8.5 2.2 2.2 5.2
ANN (opt. knots) 0.8 0.8 0.8 1.2 1.3 1.5 1.6 1.7 1.6 2.4 3.6 3.6 3.7 2.3 3.1 2.0 2.6 2.3 2.4 2.6 2.1 4.5 5.7 0.0 0.0
SVM 0.0 0.0 0.1 0.1 0.5 0.5 0.5 0.9 1.0 1.7 4.5 2.2 2.6 2.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 9.6 11.1 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 9.6 11.1 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using a propensity model and covariance calibration
GLM (OLS) 0.0 0.0 0.0 0.3 0.3 0.1 0.3 0.3 0.4 0.4 1.0 0.9 0.6 0.8 0.5 0.4 0.9 0.8 0.8 0.2 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.3 0.3 0.1 0.4 0.3 0.4 0.4 1.0 0.9 0.7 0.8 0.5 0.5 0.9 0.9 0.7 0.1 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.3 0.3 0.1 0.4 0.3 0.4 0.4 1.1 0.8 0.7 0.7 0.5 0.5 0.9 0.9 0.8 0.2 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.3 0.3 0.1 0.4 0.3 0.4 0.4 1.1 0.8 0.7 0.7 0.5 0.5 0.9 0.9 0.8 0.2 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.3 0.3 0.2 0.3 0.4 0.4 0.4 1.1 0.8 0.6 0.8 0.5 0.4 0.9 0.9 0.8 0.1 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.8 0.0 0.0 22.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.8 1.3 1.3 4.0 8.1 14.4 5.3 8.2 10.7 10.5 3.9 2.1 0.4 0.0 0.4 3.5 0.9 2.4 0.0 0.0 0.0 0.0
ANN (opt. knots) 1.5 0.4 1.0 1.3 1.3 1.4 1.7 1.5 1.9 1.7 2.6 2.1 2.1 2.4 1.7 1.8 2.3 2.0 0.4 0.1 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.4 0.4 1.0 3.1 1.8 2.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 2.7 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 2.7 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.8: Estimated standard deviations (in percentage points) for income class frequencies
estimated from the imputed Microcensus, using a weighted loss function for predic-
tion models (continued)
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Weighting model: GREG, using total and covariance calibration
GLM (OLS) 0.0 0.1 0.3 0.3 0.2 0.2 0.4 0.4 0.3 0.6 0.9 0.6 0.9 0.8 0.6 0.5 0.8 0.8 0.7 0.5 0.2 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 1.6 0.3 0.2 0.3 0.4 0.6 0.5 0.4 0.6 1.1 1.0 3.1 2.5 1.4 2.1 1.9 1.7 1.6 1.8 1.8 1.2 3.6 2.5 0.5 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 13.3 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 13.3 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (one parameter per observation, as for the GREG), using total and covariance calibration
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using total and covariance calibration
GLM (OLS) 2.1 0.5 0.3 0.3 0.7 0.9 0.6 0.8 1.7 2.4 5.4 3.4 2.6 2.0 1.7 2.7 2.1 2.8 2.0 2.0 2.9 5.8 2.2 0.0 0.0
GLM (Ridge) 1.7 0.5 0.4 0.5 0.6 16.3 3.0 3.4 10.8 7.1 10.9 5.3 3.8 3.9 8.5 4.0 2.9 3.3 2.5 2.2 2.4 5.2 2.2 0.0 0.0
GLM (LASSO) 2.1 0.2 0.5 0.3 0.7 11.0 0.8 1.0 24.3 22.2 5.8 3.6 2.9 2.0 10.7 2.6 2.1 2.4 1.9 2.2 2.9 5.8 2.3 0.0 0.0
GLM (Elastic net) 2.2 0.2 0.4 0.4 0.7 10.8 0.8 1.0 22.5 20.4 5.9 3.6 2.9 2.0 10.6 2.6 2.1 2.2 2.0 2.3 3.0 5.7 2.2 0.0 0.0
GAM (fix knots) 2.8 0.3 0.4 0.4 0.6 0.9 0.8 0.8 2.4 3.3 2.9 7.0 5.0 4.0 2.5 2.0 2.2 1.9 3.1 1.8 2.2 6.6 2.6 4.2 0.1
Regression tree 0.0 0.0 0.0 0.6 1.8 2.3 5.4 21.8 16.5 20.1 12.7 20.4 33.9 51.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.8 1.9 2.5
MARS 4.2 1.4 1.6 2.2 3.2 3.7 8.2 17.1 30.4 14.3 7.4 11.0 6.4 6.2 3.1 2.8 1.6 4.5 0.7 0.5 0.6 1.9 3.0 2.9 2.9
ANN (opt. knots) 49.0 0.2 0.3 0.6 1.3 1.6 2.0 2.3 2.2 3.0 5.4 6.2 3.5 2.9 2.3 2.0 1.5 1.9 2.3 2.1 2.0 3.8 0.1 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.3 0.4 0.6 2.1 2.1 12.3 10.3 6.8 5.2 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 8.7 12.4 0.3 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 8.7 12.4 0.3 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using total and covariance calibration
GLM (OLS) 22.1 0.6 0.7 0.9 0.8 0.9 1.0 0.7 1.0 1.5 3.6 3.3 3.0 1.7 1.2 2.3 2.9 2.1 2.3 1.9 3.4 4.8 0.0 0.0 0.0
GLM (Ridge) 17.5 0.3 0.4 0.9 0.9 0.7 1.4 1.2 1.0 2.9 7.2 5.2 4.7 1.7 3.5 3.3 2.7 2.2 5.3 0.3 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 20.0 0.7 0.8 0.7 0.7 0.9 1.0 0.7 1.0 1.6 28.9 3.6 3.0 1.4 0.8 2.7 2.8 2.1 2.3 1.9 3.7 1.5 0.0 0.0 0.0
GLM (Elastic net) 20.0 0.7 0.8 0.6 0.7 0.9 1.1 0.7 1.0 1.8 29.0 3.8 2.9 1.3 1.0 2.9 2.7 2.1 2.2 2.1 4.1 0.1 0.0 0.0 0.0
GAM (fix knots) 24.8 0.4 0.6 1.3 0.8 1.3 0.9 3.1 1.1 4.3 5.8 4.7 4.6 2.8 4.0 3.3 1.9 2.8 2.3 3.1 4.0 3.0 5.6 1.2 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.9 5.9 0.0 18.4 10.3 9.5 13.5 8.7 0.0 0.0 0.0 6.5 0.0 0.0 0.0 0.0 0.0 0.5
MARS 18.5 0.4 0.4 0.8 1.1 0.7 1.2 7.5 13.6 12.3 5.2 10.8 13.5 18.3 2.8 10.4 4.4 0.9 3.7 0.0 5.7 0.0 0.6 6.0 0.0
ANN (opt. knots) 25.4 0.7 0.7 1.5 2.5 2.2 2.8 1.8 3.4 1.2 5.2 5.2 4.8 3.5 3.6 2.6 1.2 2.3 2.2 0.5 3.0 0.0 0.0 0.0 0.0
SVM 10.4 0.1 0.1 0.2 0.8 1.2 1.1 1.4 1.4 6.4 3.3 3.4 6.2 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 10.3 16.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 10.3 16.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using total and covariance calibration
GLM (OLS) 0.4 0.3 0.5 0.7 0.5 0.7 0.7 0.7 0.7 1.0 2.0 1.6 1.7 1.8 1.6 2.1 1.8 2.0 1.8 1.6 1.7 4.8 4.5 6.9 0.0
GLM (Ridge) 0.2 0.2 0.5 0.7 0.5 0.7 0.7 0.8 0.9 1.2 2.1 2.7 3.2 2.0 1.9 2.2 2.1 2.1 1.9 1.7 1.8 5.0 6.0 10.0 0.0
GLM (LASSO) 0.2 0.2 0.5 0.7 0.5 0.7 0.7 0.8 1.4 1.3 3.1 1.8 9.0 3.1 1.8 2.2 2.0 2.0 1.8 1.6 1.7 4.7 5.8 10.4 0.0
GLM (Elastic net) 0.2 0.2 0.5 0.6 0.5 0.7 0.7 0.8 1.1 1.0 2.3 1.8 9.0 2.8 1.6 2.2 1.9 2.0 1.7 1.6 1.7 4.7 5.4 8.4 0.0
GAM (fix knots) 0.8 0.4 0.5 0.5 0.5 0.7 0.5 1.1 1.2 1.1 2.8 4.9 5.8 2.9 2.4 2.6 2.5 2.0 1.6 1.8 1.7 5.1 4.6 6.9 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 3.4 3.0 21.9 22.6 21.2 21.8 25.5 21.7 23.3 13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4
MARS 4.6 0.8 0.9 1.4 1.7 1.7 2.9 17.5 14.8 13.7 11.2 17.9 12.7 5.4 5.4 1.5 1.2 0.7 1.6 0.2 2.5 4.3 6.3 6.2 4.3
ANN (opt. knots) 24.7 0.7 0.6 1.0 1.7 1.8 1.8 2.2 2.1 2.4 4.0 4.5 3.9 3.2 3.7 2.8 2.3 2.4 2.5 2.8 3.1 6.9 5.6 7.0 0.0
SVM 0.0 0.0 0.0 0.0 0.3 1.0 1.0 0.8 1.1 6.3 2.5 3.2 6.6 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 11.0 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 11.7 11.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table D.8: Estimated standard deviations (in percentage points) for income class frequencies
estimated from the imputed Microcensus, using a weighted loss function for predic-
tion models (continued)
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Weighting model: Logit model (parametric) and GREG, using a propensity model, total and covariance calibration
GLM (OLS) 0.0 0.0 0.0 0.5 0.4 0.1 0.3 0.3 0.3 0.9 1.2 1.1 0.8 0.6 0.6 0.5 1.1 1.3 1.1 0.7 0.7 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.4 0.4 0.1 0.3 0.3 0.3 0.9 1.5 1.1 1.1 0.7 0.6 0.7 1.1 1.4 1.1 0.7 0.8 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 19.3 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 19.7 19.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (parametric), using a propensity model, total and covariance calibration
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: Logit model (fix knots) and GREG, using a propensity model, total and covariance calibration
GLM (OLS) 0.0 0.0 0.1 0.4 0.4 0.2 0.3 0.5 0.8 0.8 1.3 1.3 1.1 0.7 0.6 0.7 1.3 1.3 1.1 0.7 0.6 0.1 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.5 0.4 0.3 0.2 0.3 0.5 0.5 0.5 1.6 2.5 4.9 4.6 2.0 3.9 3.6 3.0 3.0 3.4 2.7 3.7 0.6 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 9.1 3.9 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 8.2 3.8 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (fix knots), using a propensity model, total and covariance calibration
GLM (OLS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ANN (opt. knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Weighting model: cal. ANN (opt. knots), using a propensity model, total and covariance calibration
GLM (OLS) 0.0 0.0 0.0 0.3 0.3 0.1 0.4 0.4 0.4 0.4 1.0 0.9 0.7 0.8 0.6 0.5 0.9 1.0 1.0 0.4 0.2 0.0 0.0 0.0 0.0
GLM (Ridge) 0.0 0.0 0.0 0.4 0.3 0.1 0.5 0.3 0.4 0.4 1.1 1.0 0.8 0.7 0.5 0.5 0.9 1.0 0.9 0.4 0.2 0.0 0.0 0.0 0.0
GLM (LASSO) 0.0 0.0 0.0 0.4 0.3 0.1 0.4 0.4 0.4 0.4 1.0 0.9 0.8 0.8 0.6 0.5 0.9 1.0 0.9 0.4 0.2 0.0 0.0 0.0 0.0
GLM (Elastic net) 0.0 0.0 0.0 0.3 0.3 0.1 0.4 0.4 0.4 0.4 1.0 0.9 0.8 0.8 0.6 0.5 0.9 1.0 0.9 0.4 0.2 0.0 0.0 0.0 0.0
GAM (fix knots) 0.0 0.0 0.0 0.3 0.3 0.2 0.4 0.4 0.4 0.4 1.0 0.9 0.7 0.8 0.6 0.4 0.9 1.0 0.9 0.4 0.2 0.0 0.0 0.0 0.0
Regression tree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.9 0.0 0.0 24.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MARS 0.0 0.0 0.0 0.7 1.1 1.1 3.8 7.1 14.4 8.1 8.1 10.4 10.3 4.3 2.2 0.8 0.2 0.0 1.7 2.1 1.5 5.5 0.0 0.0 0.0
ANN (opt. knots) 0.9 0.4 0.7 0.9 1.2 1.8 1.6 1.8 1.6 1.7 2.7 2.1 2.0 2.5 1.4 1.6 2.4 2.6 0.6 0.2 0.0 0.0 0.0 0.0 0.0
SVM 0.0 0.0 0.0 0.0 0.1 0.4 0.4 0.4 0.4 0.8 3.0 1.8 2.3 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GLMM 3.8 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GAMM (fix knots) 3.8 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heckman model 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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