
A Penalty Branch-and-Bound Method
for Piecewise Convex Objective Functions

Vom Fachbereich IV der Universität Trier zur Verleihung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte

Dissertation

betreut und begutachtet von
Prof. Dr. Sven de Vries und Prof. Dr. Martin Schmidt

vorgelegt von

Lukas Winkel

Trier, 2023





Berichterstatter: Prof. Dr. Sven de Vries
Prof. Dr. Martin Schmidt





Curriculum Vitae

04/2019 – heute Mitglied im Graduiertenkolleg ALOP
Prof. Dr. Volker Schulz

03/2019 Master of Science, Wirtschaftsmathematik
11/2016 – 03/2019 Studium der Wirtschaftsmathematik

an der Universität zu Köln
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“Humans are not good at maths. People see people who are good at maths and think:
≫They must be geniuses, it must come naturally to them.≪ For the vast majority of people

who are into maths, they don’t find it easy.
They are just people who enjoy, how difficult it is.”

– Matt Parker (2019)

“99 % of mathematics is not understanding stuff and 1 % is wondering why you didn’t
understand it earlier.”

– Unknown





Zusammenfassung

Die Dissertation beschäftigt sich mit einer neuartigen Art von Branch-and-Bound Algorith-
men, deren Unterschied zu klassischen Branch-and-Bound Algorithmen darin besteht, dass
das Branching durch die Addition von nicht-negativen Straftermen zur Zielfunktion erfolgt
anstatt durch das Hinzufügen weiterer Nebenbedingungen. Die Arbeit zeigt die theoretis-
che Korrektheit des Algorithmusprinzips für verschiedene allgemeine Klassen von Proble-
men und evaluiert die Methode für verschiedene konkrete Problemklassen. Für diese Prob-
lemklassen, genauer Monotone und Nicht-Monotone Gemischtganzzahlige Lineare Komple-
mentaritätsprobleme und Gemischtganzzahlige Lineare Probleme, präsentiert die Arbeit
verschiedene problemspezifische Verbesserungsmöglichkeiten und evaluiert diese numerisch.
Weiterhin vergleicht die Arbeit die neue Methode mit verschiedenen Benchmark-Methoden
mit größtenteils guten Ergebnissen und gibt einen Ausblick auf weitere Anwendungsgebiete
und zu beantwortende Forschungsfragen.
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Chapter 1
Introduction

The strive for optimization is older than humankind itself. Since the beginning of time,
nature optimized itself through the means of evolution. Living creatures changed and op-
timized their behavior and physical characteristics in order to gain an advantage. But also
inanimate objects optimize certain features naturally. Bubbles form close to perfect spheres
in order to minimize the surface to volume ratio and water flows or light rays take the
shortest path through a medium. Humans of all millennia further developed these undeter-
mined and randomly happening optimization processes by making deliberate decisions in
order to minimize travel times or effort and maximize benefits and profits. Today, society in
its modern form would be unimaginable without the optimization efforts of the past. GPS
navigation systems tell us the shortest way to the airport, airlines schedule their work force
in an optimized way, manufacturers design their airplanes to improve flight performance,
investors invest in these companies based on optimization methods and advertisements for
our holidays are shown to people most likely to book it. Today, every major decision all
around us is supported by some form of optimization to improve results. The rise of artificial
intelligence in the 21st century subsequently put optimization techniques in the spotlight of
a broader audience although under a slightly different name. In every case, the goal is to
find the “best” solution out of the possibilities available.
The earliest formalizations of optimization problems in the mathematical sense are from
the 17th and 18th century, where mathematicians such as Pierre de Fermat, Joseph-Louis
Lagrange, Isaac Newton, and Carl Friedrich Gauss came up with first methods to find math-
ematically optimal solutions. With the beginning of the 20th century efforts to categorize
and solve optimization problems increased and formed Mathematical Optimization into its
own subfield of mathematics. In the mathematical sense, an optimization problem consists
of two components. One is the set of constraints, that describes the set of all possibilities,
the so-called feasible set. The second is the objective function, i.e., a quantitative measure
of quality for every element of the feasible set. Then, the goal of optimizing is to find the
element in the feasible set, which has the lowest or highest objective value. A mathematical
optimization problem can be formalized in the following way.
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1. Introduction

Definition 1.0.1 (General Optimization Problem). Let X ⊆ Rn be the feasible set and
f : X 7→ R be the objective function. The corresponding optimization problem reads

min
x∈Rn

f(x) (1.0.1a)

s.t. x ∈ X. (1.0.1b)

In this general form, the problems can be arbitrarily difficult depending on the properties
of the objective function and the feasible set. Hence, there is no one-solves-all method for
this general form. Therefore, mathematicians began categorizing the problems regarding
different features. A first big differentiation is the one into unconstrained problems, i.e.,
problems with a feasible set X = Rn, and constrained problems, i.e., problems with a
feasible set X ⊊ Rn. For a long time constrained problems were mostly categorized into
linear, i.e., problems where both the objective function is linear and the feasible set can be
described by linear inequalities, and nonlinear optimization problems. For linear problems
(LP), many fast solution methods exist and, in general, solving LPs is not a challenge. But
as a famous quote of unknown origin says:

“Categorizing mathematical objects into linear and nonlinear is like categorizing real
objects into banana and non-banana.”,

which is why for the last decades a new, more important classification became dominant.
Nowadays, the most important distinction is the one between convex optimization prob-
lems, i.e., problems where both the objective function and the feasible set are convex, and
non-convex problems. This distinction appears to be a good measure for the difficulty of
problems, as a lot of optimization theory, that allows for faster solution methods, only
holds for convex problems. For example, the first-order necessary optimality conditions
first stated by William Karush in 1939 as reported by Kuhn (1976) are sufficient for convex
optimization problems and locally optimal points are also globally optimal. Linear problems
are trivially convex problems and therefore unsurprisingly fall into the easier-to-solve cate-
gory. For non-convex problems it is oftentimes too difficult to find global optima and one
has to settle for the search of local optima instead of global ones, or additional measures to
convexify the problem or to exploit locally convex structures have to be taken. An example
for such a technique are Spatial Branch-and-Bound methods (Liberti et al. (2006)). There
is one exception for the research into non-convex optimization problems. Technically, inte-
grality constraints are non-convex constraints, but, because they have a nice combinatorial
structure and have been well researched for decades, a lot of good solution methods exist
and (mixed-)integer constraints are considered individually, even though theoretical com-
plexity remains the same. For other non-convexities there still are not many global solution
techniques.

This thesis ventures into the realms of global non-convex optimization and presents a
novel global solution technique for certain non-convex and non-smooth optimization prob-
lems, that have a convex feasible set and a non-convex objective function with a certain

2
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combinatorial structure. We present a novel type of branch-and-bound algorithm, which
is able to solve different optimization problems with non-convex and non-smooth objec-
tive functions. We present the algorithm for different possible problem classes, investigate
further enhancement strategies, and test it numerically.

1.1. State-of-the-Art

In this section, we will give a brief introduction into the two known techniques, that the
main algorithmic concept of this thesis is based on. In Section 1.1.1, we will introduce the
general principles of branch-and-bound (BB) methods, which go back to Land and Doig
(1960). The second technique is the reformulation of problems via the means of penalty
functions, where some constraints of the problem are replaced by penalty terms in the
objective function, which we will discuss in Section 1.1.2. The method we present later on
is a fusion of both approaches, where a novel branch-and-bound method is used to solve
penalty reformulations of the investigated problem classes.

1.1.1. Branch-and-Bound

Branch-and-bound methods are a class of divide-and-conquer algorithms that have been
developed in order to solve (mixed-)integer optimization problems. We will present the
principles of this algorithm class on the example of mixed-integer linear problems (MILP),
which are defined in the following. It has to be noted that MILP are only decidable in
general, if the integer variables are bounded by the constraint set (Benichou et al. (1971)).
As the class of bounded and integer constrained LPs is equivalent to the class of binary
constrained LPs, we will concern ourselves predominantly with binary constrained problems,
but we will use the terms “integer constraints” and “binary constraints” interchangeably.

Definition 1.1.1 (Mixed-Integer Linear Problem). Let c ∈ Rn, b ∈ Rm be vectors, A ∈
Rm×n a matrix and I ⊆ {1, . . . , n} a set of indices. Then, the corresponding Mixed-Integer
Linear Problem is:

min
x∈Rn

c⊤x (1.1.1a)

s.t. Ax ≤ b, (1.1.1b)
x ≥ 0, (1.1.1c)
xi ∈ {0, 1} for all i ∈ I. (1.1.1d)

Without the integer constraints, it would be easy to solve the resulting LP. The branch-
and-bound algorithm therefore removes all integrality constraints at first and then adds
them in successively. By doing this, the feasible set is divided into subsets to be investigated
individually. This is the branching part of the method. During the process, some subsets of
the feasible set are disregarded, when it can be proven that they do not contain an optimal
point. This is the bounding part of the method. We will look into more details in the
following sections.

3



1. Introduction

Branching

As mentioned before, all integer constraints are removed at first and the resulting linear
relaxation is solved.

Definition 1.1.2 (Linear Relaxation of a MILP). The linear relaxation of the MILP defined
in Definition 1.1.1 is given by

min
x∈Rn

c⊤x (1.1.2a)

s.t. Ax ≤ b, (1.1.2b)
x ≥ 0, (1.1.2c)
xi ∈ [0, 1] for all i ∈ I. (1.1.2d)

This will be the problem in the root node of the so-called branch-and-bound tree, which
is built from here on out.

In order to build the tree, the optimal solution of the root node is investigated. If no
integrality constraints are violated, we have found the optimal solution of the MILP. If there
is a variable, which is supposed to be integer but is fractional, there are two possibilities for
the optimal solution of the MILP. That variable has to be either 0 or 1. Two child problems
are created for both possibilities. We will denote one of the indices for which the integrality
constraint is violated by j ∈ I. The two child nodes can then be written in the following
way.

Definition 1.1.3 (Left Child of the Root Node of BB for MILP). The left child of the root
node problem defined in Definition 1.1.2 is defined as

min
x∈Rn

c⊤x (1.1.3a)

s.t. Ax ≤ b, (1.1.3b)
x ≥ 0, (1.1.3c)
xi ∈ [0, 1] for all i ∈ I, (1.1.3d)
xj = 0. (1.1.3e)

Definition 1.1.4 (Right Child of the Root Node of BB for MILP). The right child of the
root node problem defined in Definition 1.1.2 is defined as

min
x∈Rn

c⊤x (1.1.4a)

s.t. Ax ≤ b, (1.1.4b)
x ≥ 0, (1.1.4c)
xi ∈ [0, 1] for all i ∈ I, (1.1.4d)
xj = 1. (1.1.4e)

4



1.1 State-of-the-Art

Both problems are then solved independently of each other and the process is repeated.
Optimal solutions of the node problems are evaluated and new child nodes are created for an
index for which integrality constraints are violated. This results in a binary tree structure
as every node with violated integrality constraints will get two child nodes. Every node in
that tree has a certain structure, that can be defined by the indices and binary values, that
were used in the branching process up to that point in the tree. We will use the following
notation. A node N = (I0, I1) is defined by two sets I0 and I1. The set I0 contains all
branching decisions that were taken along the branch from the node N to the root node,
where the ancestor of N was the left child. In other words, j ∈ I0 denotes the fact, that at
some point along the bpath from root node to that node, the constraint xj = 0 was added
to the constraint set. The set I1 is defined analogously for right child nodes.

Definition 1.1.5 (Node Problem of BB for MILP). Let N = (I0, I1) be a node in the tree.
Then, the node problem reads

min
x∈Rn

c⊤x (1.1.5a)

s.t. Ax ≤ b, (1.1.5b)
x ≥ 0, (1.1.5c)
xi ∈ [0, 1] for all i ∈ I, (1.1.5d)
xj = 0 for all j ∈ I0, (1.1.5e)
xj = 1 for all j ∈ I1. (1.1.5f)

Note, that we obtain the root node problem for I0 = I1 = ∅. It can be shown, that by
taking the optimal solution of a leaf node problem, i.e., a problem of a node that has no
children of its own, that minimizes the objective function over all optimal solutions of leaf
node problems, we get the optimal solution of the MILP. While this procedure would solve
the MILP, it would take a lot of time as the number of nodes would grow exponentially with
the number of integer variables. We therefore want to take measures to avoid enumerating
all possible leaf node problems.

Bounding

In order to avoid enumerating and evaluating all possible subproblems created by the branch-
ing part of the algorithm, we want to use upper and lower bounds on the optimal objective
value. These bounds can be established during the branching process in every node of the
tree. As a first step it is important to notice that the feasible set of the root node problem
is a superset of the feasible set of the original MILP and the feasible sets of all other node
problems. Therefore, the optimal objective value of the root node problem is a lower bound
of the optimal objective value of the original problem and all child node problems. Further-
more, when we consider the tree to be a directed tree with edge directions going away from
the root node towards the leaves of the tree, the feasible sets along a directed path of the
tree are nested in the sense that the feasible set of a node problem is a subset of the feasible

5



1. Introduction

set of its parent node problem. Hence, the optimal objective value of every node problem
is a local lower bound for every node problem in the subtree rooted in that node.

Secondly, every integer feasible solution yields a global upper bound, as the optimal
integer feasible solution has to be at least as good as that. Integer feasible solutions either
appear in the branching process by chance if an optimal solution of a node problem is integer
feasible or they can be computed by heuristics. The best known integer feasible point is
called the incumbent and will be denoted by x∗

inc.
From these bounds, three possibilities arise to dispose a node problem in the tree and

stop adding child nodes to that node. This is called pruning. The first possibility is pruning
because of suboptimality. If the optimal objective value of a node problem is larger than
the best upper bound known for x∗

inc, the optimal solution of the MILP cannot appear in
the subtree rooted in that node, because we already have a point that is at least as good
as the best possible point that could come up. Therefore, no new child nodes have to be
added. The second possibility is pruning due to integer feasibility. If the optimal solution of
a node problem is integer feasible, we can show that that point is already the best solution
possible in that subtree and therefore the subtree does not have to be investigated further.
The third possibility is pruning because of infeasibility. As the feasible set gets smaller
along a branch of the tree, it is possible that a node problem becomes infeasible and hence
trivially the subtree rooted in that node cannot contain the optimal solution of the MILP.
In practice, this allows for educed branch-and-bound trees and faster solution times, even
though the worst-case complexity is still exponential.

Algorithmic Description

We now want to bring the branching and bounding together and give the algorithmic de-
scription of the method. For now, we denote the feasible set of a node Problem N defined
by the tuple (I0, I1) by XN .

Algorithm 1 A Branch-and-Bound Algorithm for MILPs
Input: c ∈ Rn, b ∈ Rm, A ∈ Rm×n, I ⊆ {1, . . . , n}.
Output: A global optimum x∗ of Problem 1.1.1 or indication of infeasibility.
Set N ← {(∅, ∅)}, finc ←∞, and x∗

inc ← none.
while N ̸= ∅ do

Choose N = (I0, I1) ∈ N and set N ← N \ {N}.
Compute x∗

N ∈ argmin{c⊤x : x ∈ XN}.
if x∗

N exists
if c⊤x∗

N < finc and (x∗
N )I ∈ {0, 1}I do

Set x∗
inc ← x∗

N and finc ← c⊤x∗
N .

if there is a j ∈ I with (x∗
N )j /∈ {0, 1} do

Choose j ∈ I with (x∗
N )j /∈ {0, 1}.

Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}.
return x∗

inc

6



1.1 State-of-the-Art

Theorem 1.1.6. If there are upper and lower bounds on all integer variables and the root
node problem is bounded, Algorithm 1 terminates after finitely many steps with a global
optimal solution of Problem 1.1.1.

A proof of this theorem can be found in many publications on branch-and-bound methods,
such as the original paper by Land and Doig (1960) and will therefore be omitted at this
point.

Further Enhancements

So far we have stated the general principles of branch-and-bound methods, but there are
further enhancements possible. As mentioned before, fast and problem specific heuristics
can be used to improve the upper bound c⊤x∗

inc early on. Also, in the algorithmic description
we have not specified on how we choose both the next subproblem to solve N ∈ N and
the next index j ∈ I to branch on. While the choice is irrelevant for the correctness of
the method, it may have a big impact on the performance as the order of choices impacts
the quality of both the upper and the lower bound and there are often many candidates
to choose from. Investigations into both choices are for example done in Achterberg et al.
(2005) and Wojtaszek and Chinneck (2010). Another technique to increase performance
is warmstarting the node problems. As we progress down in the tree, the node problems
along a branch only change slightly, which is why we can expect that in many cases the
optimal solution of a node problem only differs by little to the optimal solutions of its child
nodes. Therefore, it can be sensible to use the optimal basis vector of a node as the starting
basis for the simplex method used to solve the child nodes. In alot of cases, problems
can also be simplified before starting the progress using pre-solve techniques. Aside from
these possibilities, usually the biggest impact on the performance have valid inequalities.
These are inequalities, that can be added to the constraint set of a node and are supposed
to cut off fractional optimal solutions of the relaxations solved, while not cutting of the
optimal solution of the MILP. By doing so, the relaxation is tightened. Such cuts have been
investigated extensively and many different types of valid inequalities have been found,
examples can be found in Cornuéjols (2008).

1.1.2. Penalty Formulations

The second concept we briefly want to introduce are penalty reformulations and methods.
Here, some or all constraints are omitted from the constraint set and added as penalty terms
to the objective function to model the constraints. For minimization problems, a penalty
term for a constraint is a function, that is strictly non-negative for any point that violates
the constraint and zero otherwise. In other words, if we have a constraint h(x) ≥ 0, a
penalty term for that constraint is a function f with

f(x)
{
> 0, if h(x) < 0,
= 0, else.
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1. Introduction

Usually, the value of the penalty term increases with an increase of some measure of vio-
lation of the constraint. Therefore, if we add a penalty term to the objective function the
optimal solution should tend to a lower violation. By including penalty terms instead of
constraints, constrained optimization problems can be converted into unconstrained prob-
lems. For example, a way to model an equality constraint h(x) = 0 is adding a quadratic
penalty term h(x)2, as the function h2(x)2 has a minimum in h(x) = 0, which is also the
point for which the constraint would not be violated. Details on penalty methods can be
found in Nocedal and Wright (1999). For other types of constraints, there are more specific
penalty functions. Penalty functions for binary constraints have been investigated in many
publications such as in De Santis et al. (2013), Giannessi and Tardella (1998), Lucidi and
Rinaldi (2010), Rinaldi (2009), and Zhu (2003). They can be modeled by basically any
function that is strictly non-negative on the interval [0, 1] and zero if and only if xj ∈ {0, 1}.
One way to penalize non-integrality is linearly. Here, the farther the variable xj is from
both 0 and 1, i.e., the closer it is to 0.5, the higher is the penalization, while growing lin-
early. This penalty function can be described by a minimum function in the following way:
min{xi, 1− xi}. The penalization of multiple integrality constraints for an index set I with
the sum of such minimum functions, i.e.,

PI(x) :=
∑
i∈I

min{xj , 1− xj},

will have a prominent role in subsequent chapters.
However, there are some things to consider. Usually, by moving constraints to the ob-

jective function as penalty terms, the objective function becomes rather complicated. Also,
oftentimes, the penalty reformulation is not exact and only approximates the optimal solu-
tion of the underlying problem.

Feasibility Problems

In the case of feasibility problems, i.e., problems that do not have an objective function,
showing that a penalty reformulation is exact is easy. We can solve the feasibility problem by
solving the reformulation to global optimality, because whenever the objective value of the
reformulation is 0 for a point, this point is feasible for the original problem. Further, if the
optimal objective value of the reformulation is larger than zero, the original problem does
not have a feasible point. Additionally, in case there is no point that is actually feasible, the
penalty reformulation has the advantage of delivering a point that minimizes the violation
of the constraints that were moved to the objective function, which might be reasonable in
some applications. So if we have, for example, the following feasibility problem

∃ x ∈ Rn (1.1.6a)
s.t. hi(x) = 0 for all i ∈ JE , (1.1.6b)

hi(x) ≥ 0 for all i ∈ JI , (1.1.6c)
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we can, for example, move all equality constraints to the objective function in the following
way

min
x∈Rn

∑
i∈JE

µih
2
i (x) (1.1.7a)

hi(x) ≥ 0 for all i ∈ JI , (1.1.7b)

and solve the reformulation to solve the feasibility problem. In that case, the vector µ ∈ R|JE |
>0

is a vector of emphasis parameters. With that vector, we can stress the importance of each
constraint. In case there is no point that is feasible for all constraints, higher parameter
values for some constraints prioritize these constraints over others. For solving the original
feasibility problem, the values of the parameters do not matter as the globally optimal point
of the reformulation delivers a feasible point for all parameter vectors, if there is one.

Optimality Problems

When the original problem already has a non-trivial objective function, it becomes more
difficult. Now the value of the emphasis parameters matters for the exactness of the re-
formulation. If the parameters are too small, the penalization might be too little and the
globally optimal point of the reformulation might not be feasible for the original problem. If
the parameters are too big, numerical troubles might arise. Also, it is non-trivial to decide,
how big a parameter has to be so that the reformulation is exact finds the optimal solution
of the original problem. A way to tackle this challenge is to start with smaller parameters
and increase them if the computed solution is infeasible. It can be shown that there is a
parameter big enough, but similarly to other big-M formulations, it is in general not easy
to say, when the method can stop increasing the parameter. Also, repeatedly solving the
problem is computationally expensive.

1.2. Contributions

In this thesis, a novel branch-and-bound method is presented. For the method to be appli-
cable, the feasible set needs to be convex and the objective function needs to have a certain
combinatorial structure but does not need to be convex. In classic branch-and-bound meth-
ods, the branching is done by successively adding constraints to relaxations of the original
problem while the objective function stays the same. Our method works differently. We
exploit the non-convex and non-smooth structure of the objective function of the problem
and realize the branching decisions by successively adding non-negative terms to a relaxed
version of the original problem. Different to classic branch-and-bound methods, the feasible
set remains the same throughout the process. Problems, that have the structure needed to
apply our method often arise in penalty reformulations. For example, the penalty term PI

introduced in Section 1.1.2 has such a structure. We propose the method for different refor-
mulations of problem classes and numerically compare them to other benchmark approaches
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with mostly competitive results. Furthermore, we investigate which problem classes could
be solved theoretically by such a method and characterize two very general possible prob-
lem classes. These problem classes have a non-convex, non-smooth but piecewise convex
objective function in common.

1.3. Structure and Notation

The remainder of the thesis is structured in the following way. In Chapter 2 we present the
problem class of Mixed-Integer Linear Complementarity Problems, for which we originally
developed the method and explain the principles of our novel branch-and-bound method
using this problem class. We present possible problem specific enhancements and compare
our method with a benchmark approach. In Chapter 3 we describe two general possible
problem classes, that can be theoretically solved by the method as a proof of concept.
In Chapter 4, we present a fourth problem class, which is the canonical extension of the
problem class from Chapter 2 and for which we investigate and improve our method. Again,
we test the improved version of the algorithm against a benchmark approach. In Chapter 5
we present possible use cases of the method for the broad class of MILP. Here, we not
only investigate solving MILPs with the method but make use of the implicit ability of the
algorithm to find lower and upper bounds on the optimal objective value. We conclude the
thesis in Chapter 6.

There will be recurring notation we briefly want to introduce now. In the optimization
problems that follow, the vector of optimization variables is referred to as x or z. The
feasible sets are referred to as X or Z and the objective functions are referred to as f .
During branch-and-bound processes, the objective function of a specific node N is referred
to as fN . Usually, x∗ or z∗ refers to the optimal solution of an optimization problem. Other
functions are mostly denoted by g or h and refer to specific terms in the objective function
or the constraint set. The index set I refers to the set of indices of the binary variables of
the problems. A vector xI then refers to the subvector of x containing all variables with
indices in I. During the branching process, the index sets I0 and I1 refer to the indices for
which branching decisions were made. Further, [n] refers to the range of integers from 1 to
n, i.e., [n] := {1, . . . , n}.

1.4. Acknowledgement
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Chapter 2
A Novel Approach to Monotone
Mixed-Integer Linear Complementarity
Problems

In this chapter we introduce our novel branch-and-bound method using the class of problems
for which we originally devised the method for as an example. In Section 2.1 we introduce
said problem class and the state-of-the-art research on these problems. In Section 2.2
we present the basic principles of the algorithm and prove its correctness. In Section 2.3
we investigate possible problem specific enhancements of the method, which we will test
numerically in Section 2.4. Here, we also compare our method to benchmark reformulations
based on a solution approach from the literature. Parts of this chapter and the results have
already been published in Santis et al. (2022).

2.1. The Linear Complementarity Problem

Linear complementarity problems (LCP) are a well studied class of feasibility problems.
They consist of linear inequality and quadratic equality constraints and are generally non-
convex. They have been studied since the middle of the 20th century and have many appli-
cations in different fields. In mathematics itself, the KKT conditions for some optimization
problems, e.g., quadratic problems, can be modeled as LCPs. In related fields, such as
mechanics, economics and game theory, many equilibrium problems can be modeled and
analyzed by reformulating them as LCPs. An extensive overview over the state-of-the-art
on LCPs can be found in the seminal textbook by Cottle et al. (2009).
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2. A Novel Approach to Monotone MILCP

2.1.1. The Continuous Case

The continuous version of an LCP is defined as follows:

Definition 2.1.1. Let q ∈ Rn, M ∈ Rn×n be given. The linear complementarity problem
denoted by LCP(q,M) is the task to find a vector z ∈ Rn that satisfies

z ≥ 0, (2.1.1a)
q +Mz ≥ 0, (2.1.1b)

z⊤(q +Mz) = 0 (2.1.1c)

or to show that no such vector exists.

For continuous LCPs the two biggest questions are the questions of existence and unique-
ness of solutions. Many theoretical results and characterizations of matrix classes, for which
the corresponding LCPs have certain properties, exist for these questions. There are also
many reformulations and algorithms to solve LCPs constructively and find a solution. For
example, there is Lemke’s Algorithm, a simplex-like method based on a basis exchange prin-
ciple, which is described in Lemke and Howson (1962). Another possibility is the following
quadratic problem (QP), which is a penalty reformulation:

Reformulation 2.1.2 (QP Penalty Reformulation of an LCP). The LCP(q,M) can be
reformulated as

min
z∈Rn

z⊤(q +Mz) (2.1.2a)

s.t. z ≥ 0, (2.1.2b)
q +Mz ≥ 0. (2.1.2c)

Here the term z⊤(q+Mz) is a penalty term for the complementarity constraints. As both z
and q + Mz are non-negative, the QP is bounded from below by 0 and the corresponding
LCP has a solution if and only if the reformulation has a global optimal objective value of
0. We will denote this penalty function by PQ

C , i.e.,

PQ
C (z) := z⊤(q +Mz).

This solution approach is a good approach especially in the case of monotone LCPs, i.e.,
LCPs with a positive semi-definite matrix M , as in that case Reformulation 2.1.2 is convex.

2.1.2. Linear Complementarity Problems with Integer Constraints

In many practical cases, there might arise problems, for which some of the variables have
to take on integer values, i.e., zi ∈ Z for i ∈ I ⊆ [n]. These might be equilibrium quantities
that can only be integer in practice or other combinatorial constraints. Such applications
can be found in, e.g., Gabriel (2017), Gabriel et al. (2013a,b), and Weinhold and Gabriel
(2020).
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As mentioned before, optimization problems with integrality constraints are only decid-
able if the integer variables are bounded and we therefore concern ourselves primarily with
binary constrained LCPs. We will still refer to the binary constraints also as integrality
constraints.

The resulting mixed-integer linear complementarity problem (MILCP) is defined as fol-
lows.

Definition 2.1.3 (Mixed-Integer Linear Complementarity Problem).
Let q ∈ Rn, M ∈ Rn×n, I ⊆ [n] be given. The mixed-integer linear complementarity
problem denoted by LCP(q,M, I) is the task to find a vector z ∈ Rn that satisfies

z ≥ 0, (2.1.3a)
q +Mz ≥ 0, (2.1.3b)

z⊤(q +Mz) = 0, (2.1.3c)
zI ∈ {0, 1}I . (2.1.3d)

or to show that no such vector exists.

The literature on MILCPs is rather sparse compared to the research done on continuous
LCPs. Most publications are of theoretical nature. For example for purely integer LCPs,
in Chandrasekaran et al. (1998) and Cunningham and Geelen (1998) the authors found
a characterization for a matrix class that contains all matrices that ensure that for every
integer vector q and every subset I, the corresponding MILCP always has a solution, if the
corresponding continuous LCP has a solution. More recent results can be found in Dubey
and Neogy (2018) and Sumita et al. (2018). There is also some literature of constructive
nature that aims at actually computing a feasible point for a given MILCP. A first solution
approach goes back to Pardalos and Nagurney (1990), with more recent results in Chan-
drasekaran et al. (1998) and very recent approaches in, e.g., Fomeni et al. (2019a,b), Gabriel
(2017), and Gabriel et al. (2013a, 2021).
One takeaway from the theoretical publications is that the combination of complementarity
and integrality constraints is very restrictive in the sense that for many problems there will
be no solution that is both complementarity and integer feasible. Therefore, in many cases,
the result of an MILCP is simply that no feasible point exists without giving any further
insides into the problem. But there are cases for which not only actually feasible points are
relevant, but also points that minimize some form of measure of infeasibility, if there is no
feasible point. For our purposes, we want to relax both the integrality and complementarity
constraints by including them in the objective function as penalty terms. We will not relax
the linear constraints as they are not the source of infeasibility usually.

The existing techniques to solve MILCPs have different downsides. The first approaches
that were found are mostly enumeration techniques and therefore do not necessarily perform
well and only find points that are actually feasible, e.g., Pardalos and Nagurney (1990),
while later techniques are mostly MILP reformulations that use big-M constraints for which
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2. A Novel Approach to Monotone MILCP

appropriate big-Ms are not always known, e.g., Gabriel (2017) and Gabriel et al. (2013a),
or continuous reformulations that only find local optima, e.g., Gabriel et al. (2021).

We strive to find a method that not only performs well and provably finds a solution
if there is one, but that also finds a point that minimizes some measure of infeasibility
for the integrality and complementarity constraints if there is no solution. In the case of
monotone MILCPs we can use the the canonical extension of Reformulation 2.1.2, which is
the following convex mixed-integer quadratic problem (MIQP):

Reformulation 2.1.4 (MIQP Penalty Reformulation of an MILCP). The LCP(q,M, I)
can be reformulated as

min
z∈Rn

z⊤(q +Mz) (2.1.4a)

s.t. z ≥ 0, (2.1.4b)
q +Mz ≥ 0, (2.1.4c)
zI ∈ {0, 1}I . (2.1.4d)

Again, this reformulation is bounded from below by 0, as both z and q + Mz are non-
negative and the corresponding MILCP has a feasible point if and only if the MIQP refor-
mulation has an optimal objective value of 0. This formulation not only finds solutions, but
also points that are integer feasible and not necessarily complementarity feasible.

As we also want to find points that are neither integer nor complementarity feasible,
we also want to include a penalty function for the integrality constraints. Therefore, we
take a convex combination of penalty terms for both complementarity and integrality as
the objective function. Such a reformulation was proposed in Gabriel et al. (2013a). As
mentioned before, there the authors reformulate the MILCP as an MILP with additional
binary variables and big-M constraints to model complementarity constraints. Note that
we use the notation B for the large constants to avoid confusion with the LCP’s matrix M .
The respective MILP then reads as follows.

Reformulation 2.1.5. The LCP(q,M, I) can be reformulated with α ∈ (0, 1) and B ∈ R>0
large enough as

min
z,z′,z′′,ρ,σ

α
n∑

i=1
ρi + (1− α)

∑
i∈I

σi (2.1.5a)

s.t. z ≥ 0, q +Mz ≥ 0, (2.1.5b)
z ≤ Bz′ + ρ, (2.1.5c)
q +Mz ≤ B(1− z′) + ρ, (2.1.5d)
0 ≤ zI ≤ z′′ + σ, (2.1.5e)
z′′ − σ ≤ zI ≤ 1, (2.1.5f)
z ∈ Rn, z′ ∈ {0, 1}n, z′′ ∈ {0, 1}I , (2.1.5g)
σ ∈ RI

≥0, ρ ∈ Rn
≥0. (2.1.5h)
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Here, ρi is used to bound the violation of the complementarity constraint for each index,
while σi bounds the violation of the binary constraints. The parameter α balances the
emphasis between the penalization of either non-complementarity or non-integrality. The
variables z′

i are indicator variables that decide if for index i the corresponding variable zi or
(q +Mz)i is as close as possible to 0. Analogously, the indicator variables z′′

i , i ∈ I, decide
if the corresponding variable zi is as close as possible to 0 or to 1.

We go a different route. As we focus on monotone MILCPs in this chapter, we can use
the quadratic penalty function for complementarity PQ

C from Reformulation 2.1.4 instead of
using

∑n
i=1 ρi. As the penalty function for the integrality constraints, we use the function PI

from Section 1.1.2 instead of the term
∑

i∈I σi. The resulting reformulation readsas follows.

Reformulation 2.1.6 (Non-Convex Penalty Reformulation of a Monotone MILCP). The
LCP(q,M, I) can be reformulated with α ∈ (0, 1) as

min
z∈Rn

αz⊤(q +Mz) + (1− α)
∑
i∈I

min{zi, 1− zi} (2.1.6a)

s.t. z ≥ 0, (2.1.6b)
q +Mz ≥ 0, (2.1.6c)
zI ∈ [0, 1]I . (2.1.6d)

As before, the reformulation is bounded from below by 0, as both z and q+Mz are non-
negative and the corresponding MILCP has a solution if and only if Reformulation 2.1.6
has an optimal objective value of 0. By including both penalty terms, the globally optimal
point of the reformulation is either a feasible point of the corresponding MILCP or a point
that minimizes that measure of infeasibility, if no solution exists. The above formulation
is both non-convex and non-smooth and therefore difficult to solve to global optimality. In
the following section, we will introduce a penalty branch-and-bound method to tackle the
reformulation by exploiting the combinatorial structure of the otherwise problematic second
penalty function.

2.2. The Penalty Branch-and-Bound Method

As mentioned before, in order to solve the problem stated in Reformulation 2.1.6, we want to
employ a novel type of branch-and-bound method that exploits the combinatorial structure
of the problematic non-convex terms in the objective function. In classic branch-and-bound
methods, relaxations are solved and the feasible set is further divided by the addition of
equality or inequality constraints. While the objective function stays the same in the entire
branch-and-bound tree, the feasible set is further constrained as we go down the tree. In
a sense, our method works the opposite way. For our method, the feasible set remains
constant throughout the entire branching tree, but the objective function is altered at every
node as additional penalty terms are added to incorporate the branching decisions. We will
call this principle a penalty branch-and-bound (PBB). In the following, we will denote the
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feasible set of Reformulation 2.1.6 by Z, i.e.,

Z := {z ∈ Rn : z ≥ 0, q +Mz ≥ 0, zI ∈ [0, 1]I}.

Further, we denote the objective function of Reformulation 2.1.6 by f , i.e.,

f(z) := αz⊤(q +Mz) + (1− α)
∑
i∈I

min{zi, 1− zi}.

2.2.1. Branching

In classic branch-and-bound methods, the relaxations solved during the process are obtained
by relaxing the non-convex integer constraints. In our method, we obtain the relaxations
to solve by relaxing the non-convex integer penalty term of the objective function. Hence,
the first problem to solve is the following.

Definition 2.2.1 (Root Node Problem of PBB for Monotone MILCPs). The root node
problem of the PBB for the LCP(q,M, I) is defined as

min
z∈Rn

αz⊤(q +Mz) (2.2.1a)

s.t. z ∈ Z. (2.2.1b)

Note, that because M is positive semi-definite this problem is a convex QP and therefore
tractable.

Then, very similar to classic branch-and-bound methods, two child nodes are created,
both with a different objective function. For the left child node, the term (1−α)zj is added,
where j ∈ I is an index, for which the optimal solution of Problem 2.2.1 has a fractional
value. For the right child, the term (1−α)(1−zj) is added and the two resulting child node
problems are the following.

Definition 2.2.2 (Left Child Problem of the Root Node of PBB for Monotone MILCPs).
The left child problem of the PBB for the LCP(q,M, I) is defined as

min
z∈Rn

αz⊤(q +Mz) + (1− α)zj (2.2.2a)

s.t. z ∈ Z. (2.2.2b)

Definition 2.2.3 (Right Child Problem of the Root Node of PBB for Monotone MILCPs).
The right child problem of the PBB for the LCP(q,M, I) is defined as

min
z∈Rn

αz⊤(q +Mz) + (1− α)(1− zj) (2.2.3a)

s.t. z ∈ Z. (2.2.3b)
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The idea is that, by taking the minimum of these problem, we can model the non-convex
function min{zj , 1− zj}, i.e.,

min
z∈Z
{αz⊤(q +Mz) + (1− α) min{zj , 1− zj}}

= min
{

min
z∈Z

αz⊤(q +Mz) + (1− α)zj ,min
z∈Z

αz⊤(q +Mz) + (1− α)(1− zj)
}
.

(2.2.4)

These problems are then solved independently and the addition of left and right child
nodes is continued. Therefore, at an arbitrary node of the tree a certain combination of
these penalty terms for different indices has been added. In the following, we denote I0 ⊆ I
to be the set of indices j ∈ I for which (1−α)zj has been added and I1 ⊆ I to be the set of
indices j ∈ I for which (1−α)(1− zj) has been added. We can then uniquely identify every
node of the tree by those sets and we denote a node as N = (I0, I1). The corresponding
node problem reads as follows.

Definition 2.2.4 (Node Problem of PBB for Monotone MILCPs). The node problem of
PBB for monotone MILCP at node N = (I0, I1) is defined as

min
z∈Rn

αz⊤(q +Mz) + (1− α)
∑
i∈I0

zi + (1− α)
∑
i∈I1

(1− zi) (2.2.5a)

s.t. z ∈ Z. (2.2.5b)

Note that as we only add linear terms, every node problem in the tree is a convex QP. In
the following, we will call the addition of a left child node “downwards branching” and the
addtion of a right child “upwards branching” and we will denote the objective function of
the node problem of N = (I0, I1) by fN , i.e.,

fN (z) := αz⊤(q +Mz) + (1− α)
∑
i∈I0

zi + (1− α)
∑
i∈I1

(1− zi).

Now, we show that enumerating all possible partitions (I0, I1) of I, i.e., I = I0 ∪ I1 with
I0 ∩ I1 = ∅, yields the global optimum of Problem 2.1.6. In other words, we show that
the minimum among the optimal solutions of the problems of all leaf nodes of the fully
enumerated branch-and-bound tree is optimal solution of Reformulation 2.1.6.

Lemma 2.2.5. Let z∗ be an optimal solution of Problem 2.1.6. Then, it holds

f(z∗) = min {fN (z∗
N ) : N = (I0, I1) with I0 ∪ I1 = I and I0 ∩ I1 = ∅} .

Proof. Note that the feasible set does not depend on N . Hence, all optimal points are
feasible for all nodes. Let N∗ = (I∗

0 , I
∗
1 ) be the leaf with I∗

0 := {i ∈ I : z∗
i ≤ 1− z∗

i } and
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I∗
1 := {i ∈ I : z∗

i > 1− z∗
i }. We then have

f(z∗) = α(z∗)⊤(q +Mz∗) + (1− α)
∑
j∈I

min
{
z∗

j , 1− z∗
j

}
= α(z∗)⊤(q +Mz∗) + (1− α)

∑
j∈I∗

0

z∗
j + (1− α)

∑
j∈I∗

1

(1− z∗
j )

= fN∗(z∗) ≥ fN∗(z∗
N∗).

Hence,

f(z∗) ≥ min {fN (z∗
N ) : N = (I0, I1) with I0 ∪ I1 = I and I0 ∩ I1 = ∅}

holds. To show the other inequality, we assume that there exists a node N ′ = (I ′
0, I

′
1) with

I ′
0 ∪ I ′

1 = I and I ′
0 ∩ I ′

1 = ∅ such that

fN ′(z∗
N ′) < f(z∗)

holds. We thus obtain fN ′(z∗
N ′) < f(z∗

N ′) or, equivalently,

α(z∗
N ′)⊤(q +Mz∗

N ′) + (1− α)
∑
j∈I′

0

(z∗
N ′)j + (1− α)

∑
j∈I′

1

(1− (z∗
N ′)j)

< α(z∗
N ′)⊤(q +Mz∗

N ′) + (1− α)
∑
j∈I

min {(z∗
N ′)j , 1− (z∗

N ′)j} .

This implies∑
j∈I′

0

((z∗
N ′)j −min {(z∗

N ′)j , 1− (z∗
N ′)j}) +

∑
j∈I′

1

(1− (z∗
N ′)j −min {(z∗

N ′)j , 1− (z∗
N ′)j}) < 0,

which is impossible as
(z∗

N ′)j ≥ min {(z∗
N ′)j , 1− (z∗

N ′)j}

and
1− (z∗

N ′)j ≥ min {(z∗
N ′)j , 1− (z∗

N ′)j} .

Hence,

f(z∗) ≤ min {fN (z∗
N ) : N = (I0, I1) with I0 ∪ I1 = I and I0 ∩ I1 = ∅}

holds and the claim follows.

This is the first necessary step in order to prove the overall correctness of our method.
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2.2.2. Bounding

We now want to show ways to avoid fully enumerating all exponentially many combinations.
Similar to classic branch-and-bound methods, we can establish local lower bounds on the
optimal solution for the different nodes and global upper bounds for the optimal solution
of Problem 2.1.6. Obviously, the value of f at any feasible point is a global upper bound.
Hence, f(z∗) ≤ f(z∗

N ) holds with N being an arbitrary node of the branch-and-bound tree.
We denote by z∗

inc the incumbent, i.e., the point so that f(z∗
inc) constitutes the best upper

bound for Problem 2.1.6 found so far.
Next, we prove that the optimal value of the problem defined at a certain node is a lower

bound for the optimal value of the problem defined at any of its successor nodes.

Lemma 2.2.6. Let N ′ = (I ′
0, I

′
1) be a successor of some node N = (I0, I1) in the branch-

and-bound tree, i.e., I0 ⊆ I ′
0 and I1 ⊆ I ′

1 holds. Then,

fN (z∗
N ) ≤ fN ′(z∗

N ′)

holds.

Proof. Since the feasible set does not change during the branching process all feasible points
remain feasible for all nodes. Thus,

fN ′(z∗
N ′) = α (z∗

N ′)⊤(q +Mz∗
N ′) + (1− α)

∑
j∈I′

0

(z∗
N ′)j + (1− α)

∑
j∈I′

1

(1− (z∗
N ′)j)

= α (z∗
N ′)⊤(q +Mz∗

N ′) + (1− α)
∑
j∈I0

(z∗
N ′)j + (1− α)

∑
j∈I1

(1− (z∗
N ′)j)

+ (1− α)
∑

j∈I′
0\I0

(z∗
N ′)j + (1− α)

∑
j∈I′

1\I1

(1− (z∗
N ′)j)

≥ α (z∗
N ′)⊤(q +Mz∗

N ′) + (1− α)
∑
j∈I0

(z∗
N ′)j + (1− α)

∑
j∈I1

(1− (z∗
N ′)j)

= fN (z∗
N ′) ≥ fN (z∗

N ).

Note that the first inequality is due to the fact that (z∗
N ′)j ≥ 0 and 1− (z∗

N ′)j ≥ 0 for j ∈ I
on the feasible set. The second inequality follows from optimality.

This allows us to stop adding child nodes in certain cases. If we compute an optimal
solution z∗

N at a node N that has the property

fN (z∗
N ) ≥ f(z∗

inc), (2.2.6)

we know that any node in the subtree rooted in N including the leaves cannot yield a
better solution than the best solution already known. This is the penalty-equivalent of
suboptimality pruning known from classic branch-and-bound methods. Obviously, we can
also stop adding nodes in the case, that there are no fractional variables left that are
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2. A Novel Approach to Monotone MILCP

supposed to be integer, which is the equivalent to feasibility pruning in classic branch-and-
bound methods. Note, that as the feasible set does not change throughout the process,
there is no equivalent to infeasibility pruning in classic branch-and-bound methods for now.

2.2.3. Algorithmic Description

We are now ready to give the full algorithmic description of our penalty branch-and-bound
algorithm.

Algorithm 2 A Penalty Branch-and-Bound Algorithm for MILCPs
Input: q ∈ Rn, M ∈ Rn×n, I ⊆ [n], α ∈ (0, 1)
Output: A global optimum z∗ of Problem 2.1.6.
Set N ← {(∅, ∅)}.
Set finc ←∞, z∗

inc ← none.
while N ̸= ∅ do

Choose N = (I0, I1) ∈ N and set N ← N \ {N}.
Compute z∗

N ∈ argmin{fN (z) : z ∈ Z}.
if f(z∗

N ) < finc then
Set z∗

inc ← z∗
N and set finc ← f(z∗

N ).
if fN (z∗

N ) < finc and if there is a j ∈ I \ (I0 ∪ I1) with (z∗
N )j /∈ {0, 1} then

Choose j ∈ I \ (I0 ∪ I1) with (z∗
N )j /∈ {0, 1}.

Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}.
return z∗

inc

Theorem 2.2.7. Algorithm 2 terminates after finitely many steps with a global optimal
solution of Problem 2.1.6.

Proof. The algorithm terminates after finitely many steps since the set I is finite. Thus, at
some point, I = I0 ∪ I1 holds and we can no longer find a branching variable in the node
and no child node can be generated. Assume now that fN (z∗

N ) < f(z∗
inc) always holds in

the second if-clause. Then, the correctness of the algorithm follows from Lemma 2.2.5 as we
iterate through the complete branch-and-bound tree. Finally, in the cases in which fN (z∗

N ) ≥
f(z∗

inc) holds, the nodes that are not added can be excluded due to Lemma 2.2.6.

2.3. Further Enhancements of the Method

As mentioned in Section 1.1.1, there are some ways to enhance the performance of classic
branch-and-bound methods. In this section we investigate possible approaches to achieve
analogous improvements for our method. In Section 2.3.1 we investigate different ways
to choose the next branching index j ∈ I and, in Section 2.3.2, ways to choose the next
subproblem N ∈ N to solve, both of which have not been specified in Algorithm 2, as they
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2.3 Further Enhancements of the Method

are not relevant for the correctness of the method. In Section 2.3.3 we briefly discuss the
possibilities of warmstarting the different node problems and in Section 2.3.4 we propose
two different types of cutting planes.

2.3.1. Choosing the Branching Index

In every node N = (I0, I1) of our penalty branch-and-bound method, we need to choose an
index j ∈ I \ (I0 ∪ I1) for which (z∗

N )j is fractional to define the objective functions of the
problems in the child nodes. There are various ways to do that. We propose two different
branching strategies: “pseudocost branching”, which is well-known from mixed-integer pro-
gramming and “MIQP-based branching”. In our numerical experiments, we compare these
two strategies with random branching, i.e., the naive approach of choosing the index j ∈ I at
random, and most-violated branching, i.e., choosing the index of the variable closest to 1/2.

Pseudocost Branching

Pseudocost branching is a technique commonly used in branch-and-bound algorithms for
mixed-integer programs that goes back to Benichou et al. (1971).

The idea is to measure the expected objective gain when branching on a specific variable
index. The strategy is to keep track of the change in the objective function when an index
j ∈ I has been chosen to be branched on. The rule then chooses the index that is predicted
to have the largest impact on the objective function based on these past changes.

We transfer this idea to our context in the following. Let φ1
N,j be the objective gain per

unit change when branching upwards on variable j ∈ I at node N :

φ1
N,j :=

f(z∗
N1

)− f(z∗
N )

⌈(z∗
N1

)j⌉ − (z∗
N1

)j
.

Here, N1 is the child of N created by upwards branching. We denote by ψ1
j the expected

objective gain per unit change when branching upwards on variable j. To this end, let N j

be the set of nodes where j ∈ I is chosen as the variable to branch on. Then, we define ψ1
j

as
ψ1

j := 1
|N j |

∑
N∈Nj

φ1
N,j .

Analogously, we define φ0
N,j and ψ0

j for branching downwards on variable j ∈ I, with the
only difference being the denominator of φ0

N,j . The average gain is then calculated as

sj := µmin
{
ψ0

j · ((z∗
N0)j − ⌊(z∗

N0)j⌋), ψ1
j · (⌈(z∗

N1)j⌉ − (z∗
N1)j)

}
+ (1− µ) max

{
ψ0

j · ((z∗
N0)j − ⌊(z∗

N0)j⌋), ψ1
j · (⌈(z∗

N1)j⌉ − (z∗
N1)j)

}
with µ ∈ (0, 1). The pseudocost-based branching candidate is the index j ∈ I with the
largest score sj . At the beginning of our branch-and-bound, we initialize the average ψ0,1

j
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2. A Novel Approach to Monotone MILCP

with 1. If at a certain node N , we have not yet branched on a candidate j ∈ I, namely
N j = ∅, we initialize that ψ0,1

j with the average of all other ψ0,1
i for i ∈ I with i ̸= j.

MIQP-Based Branching

We have also devised a second technique. In a pre-processing phase of the algorithm we
can sort the indices j ∈ I in a way, so that we branch on the indices for which we expect
good lower bounds first. For every index j ∈ I, we solve the following MIQP with a single
integer variable:

min
z∈Rn

z⊤(q +Mz) (2.3.1a)

s.t. q +Mz ≥ 0, z ≥ 0, (2.3.1b)
zj ∈ {0, 1}. (2.3.1c)

As discussed in the introduction, we know that it is likely that the overall MILCP has no
solution and that this is due to the combination of complementarity as well as integrality
conditions. By solving all |I| many MIQPs we measure the impact of the ith binary variable
on the infeasibility of the problem (if it is infeasible at all). The indices j ∈ I are then sorted
with decreasing optimal objective function values of Problem (2.3.1). Moreover, infeasible
problems are formally assigned the objective function value ∞. The resulting branching
strategy then chooses the branching candidate at the top of the list while skipping all integer-
feasible indices as well as all indices that have been branched on already. Additionally, we
can use the optimal solutions of each of these MIQPs to constitute a first upper bound on
our branch-and-bound process, as each of the points is also feasible for our method.

2.3.2. Choosing the Next Subproblem to Solve

For the selection of the next node N ∈ N to solve we propose one technique, which we will
call the “lower bound push” strategy. In our implementation we test that strategy against
both breadth- and depth-first search as benchmarks.

Lower Bound Push

We know that the optimal value fN (z∗
N ) of the problem defined at a node N is a local lower

bound for the subtree rooted in N . Hence, the global lower bound is the smallest value
among the lower bounds obtained from nodes that have unsolved children. As the node to
be solved next, we thus select a child of the node N that has the lowest objective value
fN (z∗

N ). When both children of N are not yet solved, we take the left child if (zN )∗
j ≤ 0.5

with j ∈ I being the index that has been branched on last and the right child otherwise.
Then, we choose the child node with the smaller value as we would expect this to result in
a smaller lower bound. This lower bound may then be improved in the new node.
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2.3 Further Enhancements of the Method

2.3.3. Warmstarting the Node Problems

Recall that all nodes of the search tree share the same feasible set and that the objective
functions change only slightly from a parent node to its child nodes. This allows for warm-
starting the QP solver for solving the child nodes. To this end, we take the optimal primal
basis of the parent node as the starting basis for the child nodes.

2.3.4. First Types of Valid Inequalities

In this section, we propose two classes of inequalities. In classic branch-and-bound methods,
valid inequalities are used to cut off points that are feasible for the relaxations of the problem
but not the problem itself in order to tighten the relaxation. In our method, the feasible set
does not change, which is why we need different criteria. The cuts we propose are not valid
for the overall Problem 2.1.6 in the classic sense but are locally valid. The first class of valid
inequalities are called “simple cuts”. They are used to split the feasible set according to the
branching decisions that were already made. The second class are called “optimality cuts”.
They are supposed to cut of points, that do not fulfill necessary optimality conditions.

Simple Cuts

Assume that we just solved node N and that we decide to branch on the variable zj , j ∈ I.
Then, in the nodes corresponding to the downwards branching subtree, we add the bound
constraint zj ≤ 0.5, while in the nodes belonging to the upwards branching subtree, we add
the bound constraint zj ≥ 0.5. We first show that the minimum among the optimal solutions
of the leaves when including the simple cuts is the optimal solution of Problem 2.1.6.

Lemma 2.3.1. Let

z∗
N ∈ argmin {fN (z) : z ∈ Z, zI0 ≤ 0.5, zI1 ≥ 0.5}

be an optimal solution at node N when all simple cuts are included. Then,

f(z∗) = min {fN (z∗
N ) : N = (I0, I1) with I0 ∪ I1 = I}

holds.

Proof. Let N∗ = (I∗
0 , I

∗
1 ) be the leaf defined by I∗

0 := {j ∈ I : z∗
j ≤ 1− z∗

j } and
I∗

1 := {j ∈ I : z∗
j > 1− z∗

j }. We then have

f(z∗) = α(z∗)⊤(q +Mz∗) + (1− α)
∑
i∈I

min {z∗
i , 1− z∗

i }

= α(z∗)⊤(q +Mz∗) + (1− α)
∑
j∈I∗

0

z∗
j + (1− α)

∑
j∈I∗

1

(1− z∗
j )

= fN∗(z∗) ≥ fN∗(z∗
N∗).

23



2. A Novel Approach to Monotone MILCP

The last inequality holds because, by definition, we have z∗
j ≤ 0.5 for all j ∈ I∗

0 and z∗
j ≥ 0.5

for all j ∈ I∗
1 . Thus, z∗ is feasible for N = (I∗

0 , I
∗
1 ), which is a leaf by definition. Hence,

f(z∗) ≥ min {fN (z∗
N ) : N = (I0, I1) with I0 ∪ I1 = I}

holds. To show the other inequality, we assume that there exists a node N ′ = (I ′
0, I

′
1) with

I ′
0 ∪ I ′

1 = I such that
fN ′(z∗

N ′) < f(z∗)

holds. With f(z∗) ≤ f(z∗
N ′), we obtain

fN ′(z∗
N ′) < f(z∗

N ′)

or, equivalently,

α(z∗
N ′)⊤(q +Mz∗

N ′) + (1− α)
∑
j∈I′

0

(z∗
N ′)j + (1− α)

∑
j∈I′

1

(z∗
N ′)j

< α(z∗
N ′)⊤(q +Mz∗

N ′) + (1− α)
∑
j∈I

min {(z∗
N ′)j , 1− (z∗

N ′)j} .

This implies∑
j∈I′

0

(
z∗

N ′,j −min {(z∗
N ′)j , 1− (z∗

N ′)j}
)

+
∑
j∈I′

1

(1− (z∗
N ′)j −min {(z∗

N ′)j , 1− (z∗
N ′)j}) < 0,

which is a contradiction by definition. Hence,

f(z∗) ≤ min {fN (z∗
N ) : N = (I0, I1) with I0 ∪̇ I1 = I}

holds and the claim follows.

As a second result, we show that Lemma 2.2.6 is also valid when simple cuts are used in
the branch-and-bound method.

Lemma 2.3.2. Let N ′ = (I ′
0, I

′
1) be a successor of some node N = (I0, I1) in the branching

tree, i.e., I0 ⊆ I ′
0 and I1 ⊆ I ′

1 holds. Further, let z∗
N , z

∗
N ′ be optimal solutions of nodes N

and N ′, respectively, when simple cuts are used. Then,

fN (z∗
N ) ≤ fN ′(z∗

N ′)

holds.

Proof. Note that (z∗
N ′)j ≥ 0 and 1− (z∗

N ′)j ≥ 0 are valid on the feasible set and the feasible
sets of the nodes are nested in the sense, that the feasible set of node N ′ is a subset of the
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feasible set of node N . By definition, we then have

fN ′(z∗
N ′) = α(z∗

N ′)⊤(q +Mz∗
N ′) + (1− α)

∑
j∈I′

0

(z∗
N ′)j + (1− α)

∑
j∈I′

1

(1− (z∗
N ′)j)

= α(z∗
N ′)⊤(q +Mz∗

N ′) + (1− α)
∑
j∈I0

(z∗
N ′)j + (1− α)

∑
j∈I1

(1− (z∗
N ′)j)

+ (1− α)
∑

j∈I′
0\I0

(z∗
N ′)j + (1− α)

∑
j∈I′

1\I1

(1− (z∗
N ′)j)

≥ α(z∗
N ′)⊤(q +Mz∗

N ′) + (1− α)
∑
j∈I0

(z∗
N ′)j + (1− α)

∑
j∈I1

(1− (z∗
N ′)j)

= fN (z∗
N ′) ≥ fN (z∗

N ).

Hence, every feasible point of N ′ is also feasible for N .

Theorem 2.3.3. Algorithm 2 remains correct when simple cuts

zj ≤ 0.5 for all j ∈ I0, zj ≥ 0.5 for all j ∈ I1

are added at any node N = (I0, I1).

Proof. From Lemma 2.3.1, we know that the optimal solution of Problem 2.1.6 is the optimal
solution of a leaf node. From Lemma 2.3.2, we know that the objective value of every
ancestor node of a leaf yields a lower bound for the objective value of this leaf. Hence, if
we have a feasible point z∗

inc of Problem 2.1.6 and some node N for which

f(z∗
inc) ≤ fN (z∗

N )

holds, we know that z∗
inc is a solution that is as good as every solution that any leaf being

a successor of N can yield. Thus, we can prune the subtree rooted in N . The same applies
for the case in which a node problem becomes infeasible due to the introduction of cuts.
Hence, Algorithm 2 remains correct when simple cuts are used.

Optimality Cuts

In order to define the optimality cuts, we use the necessary optimality conditions for Prob-
lem 2.1.6; see, e.g., Corollary 3.68 in Beck (2017). Let z∗ ∈ Z be an optimal solution of
Problem 2.1.6, then g ∈ ∂f(z∗) exists such that

g⊤(z − z∗) ≥ 0 for all z ∈ Z.

Hence, if we find a point z∗ during our branch-and-bound search that does not fulfill this
inequality for any known feasible point z ∈ Z, we can cut off z∗. In particular, we derive
the valid inequality

g⊤z′ ≥ g⊤z
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with z′ ∈ Z being some fixed feasible solution. Furthermore, for any ḡ, g̃ ∈ ∂f(z) such that
ḡ⊤z′ ≥ g⊤z′ and g̃⊤z ≤ g⊤z holds, the following inequality is also valid:

ḡ⊤z′ ≥ g̃⊤z.

This will be necessary to convexify the valid inequality.

Lemma 2.3.4. Let z′ ∈ Z be a feasible solution and let N = (I0, I1). Then,

αz⊤(q + 2Mz) + (1− α)
∑
j∈I0

zj + (1− α)
∑
j∈I1

(1− zj)− (1− α)|I \ I0|

≤ α(z′)⊤(q + 2Mz) + (1− α)
∑

j∈I\I1

z′
j

is a valid inequality for the subtree rooted at node N .

Proof. Let z′ ∈ Z, z ∈ Z, and g ∈ ∂f(z) be given. We need to underestimate g⊤z and
overestimate g⊤z′. The ith component of g ∈ ∂f(z) is given by

gi = αqi + α
∑

j∈[n]
2Mi,jzj


+(1− α), for zi < 0.5, i ∈ I,
−(1− α), for zi > 0.5, i ∈ I,
+(1− α)yi, for zi = 0.5, i ∈ I,
+0, for i /∈ I,

for some yi ∈ [−1, 1].
We can then underestimate g⊤z as follows:

g⊤z = αz⊤(q + 2Mz) + (1− α)

 ∑
i∈I:

zi<0.5

zi −
∑
i∈I:

zi>0.5

zi +
∑
i∈I:

zi=0.5

yg
i zi



≥ αz⊤(q + 2Mz) + (1− α)

 ∑
i∈I:

zi<0.5

zi −
∑
i∈I:

zi>0.5

zi −
∑
i∈I:

zi=0.5

zi



= αz⊤(q + 2Mz) + (1− α)

 ∑
i∈I:

zi<0.5

zi +
∑
i∈I:

zi≥0.5

(1− zi)−
∑
i∈I:

zi≥0.5

1


≥ αz⊤(q + 2Mz) + (1− α)

∑
i∈I

min{zi, 1− zi} − (1− α)|I|

≥ αz⊤(q + 2Mz) + (1− α)
∑
i∈I0

zi + (1− α)
∑
i∈I1

(1− zi)− (1− α)|I|.

26



2.4 Numerical Results

Note that the term |I| can be replaced by |I \ I0| if simple cuts are included. On the other
hand, we can overestimate g⊤z′ as follows:

g⊤z′ = α(z′)⊤(q + 2Mz) + (1− α)

 ∑
i∈I:

zi<0.5

z′
i −

∑
i∈I:

zi>0.5

z′
i +

∑
i∈I:

zi=0.5

yg
i z

′
i



≤ α(z′)⊤(q + 2Mz) + (1− α)

 ∑
i∈I:

zi<0.5

z′
i −

∑
i∈I:

zi>0.5

z′
i +

∑
i∈I:

zi=0.5

z′
i



= α(z′)⊤(q + 2Mz) + (1− α)

 ∑
i∈I:

zi≤0.5

z′
i −

∑
i∈I:

zi>0.5

z′
i


≤ α(z′)⊤(q + 2Mz) + (1− α)

∑
i∈I\I1

z′
i − (1− α)

∑
i∈I1:

zi ̸=0.5

z′
i

≤ α(z′)⊤(q + 2Mz) + (1− α)
∑

i∈I\I1

z′.

The combination of the two inequalities yields the lemma.

2.4. Numerical Results

In Section 2.3 we proposed various ways to improve the overall performance of our method.
In this section, we will present the results of numerical experiments we conducted to compare
the different techniques performance-wise. We tested all types of enhancements indepen-
dently of each other. For every test we take the best settings from previous tests together
with “standard” settings for untested parameters. We start with a test of the different
branching rules in Section 2.4.1, followed by a test of the node selection strategies in Sec-
tion 2.4.2, different warm starting techniques in Section 2.4.3, and different strategies for
the inclusion of valid inequalities in Section 2.4.4. Afterwards, we test our method with the
best setting we identified against two benchmark approaches.

We used Python 3.7 to implement the penalty branch-and-bound method presented in Sec-
tion 2.2. All node problems are solved with the QP solver of Gurobi 9.1.2 and all the tests
were run on an Intel Xeon CPU E5-2699 v4 @ 2.20 GHz (88 cores) with 756 GB RAM. In
this section, we refer to the implementation of Algorithm 2 as MILCP-PBB. For our tests,
we consider instances that we randomly generated as follows. The positive semi-definite
matrices M ∈ Rn×n have been created using the sprandsym function of MATLAB for sizes

n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.
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We then built vectors q ∈ Rn in four different ways, each reflecting a certain “degree of fea-
sibility” in the resulting instance. Let z∗ ∈ Rn be a solution of an instance of Problem 2.1.3.
Then, it satisfies

(i) Feasibility w.r.t. Z: z∗ ∈ Z,

(ii) Integrality: z∗
i ∈ {0, 1} for all i ∈ I,

(iii) Complementarity: (z∗)⊤(q +Mz∗) = 0.

The vectors q have been created to satisfy at least one of the conditions above. More
precisely, we built instances for which z ∈ Rn exists so that

(a) only Condition (i) is guaranteed to be satisfied,

(b) only Conditions (i) and (ii) are guaranteed to be satisfied,

(c) only Conditions (i) and (iii) are guaranteed to be satisfied,

(d) all Conditions (i)–(iii) are guaranteed to be satisfied.

We created 10 instances for every size n and the types (a)–(c), yielding 300 different instances
in total. Type (d) appeared to be very easy to solve, which is why we exclude these
instances from the test set. More details on how the test set has been built can be found in
Appendix A.

For the comparisons presented in this section we use logarithmic performance profiles in
the sense of Dolan and Moré (2002) as well as tables with the most important statistical
measures. For the tables, we aggregated all instances that have been solved by all parameter
settings or solution approaches for the specific test w.r.t. the instance size. The first column
always states the dimension n of the problem. The second column contains the arithmetic
mean of node counts and running times respectively for all instances solved by every pa-
rameterization. The next columns contain the median, the minimum, and the maximum
value of the data set. The sixth and seventh column contain the 0.25-quantile, i.e., the node
count or running time after which 25 % of instances were solved, as well as the 0.75-quantile.
The next column contains the geometric shifted mean. The shift is 100 for the node counts
and 10 for the running times. The last column contains the percentage of instances solved
to global optimality for the parameterization and instance size. The best value for every
measure and instance size among all tables for that test is printed in bold font. The table
of the winning setting, i.e., the best performing parameterization, is included in this section
whereas the tables of the other settings are included in Appendix B. The timelimit for these
tests is set to 1 h.

2.4.1. The Impact of Different Branching Rules

We now compare the performance of MILCP-PBB when equipped with the four different
branching rules described in Section 2.3.1. For these tests, the node selection strategy is set
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Figure 2.1.: Performance profiles for the number of branch-and-bound nodes (left) and the running time (right) of
all branching rules

to breadth-first search, warmstarts are disabled, and no valid inequalities are added. For
the pseudocost branching strategy, we set µ = 0.5. We exclude 32 instances from the test
set since no parameterization is able to solve them within the time limit. Figure 2.1 displays
the performance profiles w.r.t. the required number of branch-and-bound nodes (left figure)
and running times (right figure). One can see that the running time and the number of
nodes for the random branching rule, the pseudocost branching strategy, and the branching
strategy based on the most fractional variable do not differ much. However, the MIQP-based
branching rule yields a significant improvement in terms of the required number of nodes, the
running time, and also in terms of the overall number of solved instances. This improvement
is especially true for the number of nodes as our MIQP-based approach visits significantly
fewer nodes for the vast majority of the instances, while also solving the overall largest
number of instances to global optimality. The improvement regarding the running times
is a little less significant. This is to be expected since the ordering of branching priorities
during the presolve phase is more expensive compared to the computational effort required
by the other branching strategies. However, the advantage regarding the number of nodes
overcompensates this disadvantage and the MIQP-based branching rule also dominates all
other strategies w.r.t. running times as well.

Similar conclusions can be drawn from the statistical measures as displayed in the Ta-
ble 2.1 (and Tables B.1–B.3 in the appendix). In comparison of all tables one sees that,
except for the minimum running time, the MIQP-based branching rule outperforms the
other approaches w.r.t. almost every other measure and every instance size.

2.4.2. The Impact of Different Node Selection Strategies

We now compare the three node selection strategies described in Section 2.3.2. To this
end, we use the MIQP-based branching strategy, while warmstarts and valid inequalities
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Table 2.1.: Aggregated node counts (top) and runtimes (bottom) for the branching rule test with MIQP-based
branching

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 9.0 3.0 37.0 5.0 21.0 13.4 100
100 17.5 13.0 3.0 73.0 7.0 21.0 16.7 100
150 38.5 33.0 7.0 139.0 14.0 44.5 35.4 100
200 60.1 44.0 15.0 235.0 31.0 82.5 55.3 100
250 116.5 96.0 5.0 353.0 68.5 132.5 100.7 100
300 273.9 155.0 15.0 1199.0 95.5 292.0 203.3 100
350 549.8 331.0 7.0 2705.0 80.0 729.0 333.0 100
400 426.7 248.0 47.0 1245.0 76.5 750.5 289.7 80
450 408.3 349.0 51.0 1713.0 139.0 511.0 305.2 67
500 544.1 543.0 71.0 1043.0 342.0 734.0 444.9 40

50 0.3 0.3 0.1 0.5 0.2 0.3 0.3 100
100 2.4 1.7 0.6 9.4 1.1 2.9 2.2 100
150 15.1 12.6 3.3 54.0 5.2 18.2 12.7 100
200 45.5 31.5 13.2 147.6 24.0 58.1 38.8 100
250 149.8 112.8 16.3 504.9 75.4 180.4 110.1 100
300 448.8 291.2 48.5 1918.0 162.0 550.5 306.8 100
350 889.3 574.3 54.2 2853.7 211.5 1575.2 559.2 100
400 821.3 726.8 191.3 2429.7 302.9 1260.8 620.7 80
450 909.3 941.1 260.4 2325.1 469.1 1176.4 766.6 67
500 1106.9 1197.4 355.0 1666.5 870.6 1394.2 1000.5 40

are disabled. We exclude 54 instances from the set since no parameterization of our method
is able to solve them within the time limit. Based on Figure 2.2, one can notice that
the node selection strategies only have a minor impact on the performance of the overall
method both in terms of the number of nodes and the running time. Especially regarding
the required number of branch-and-bound nodes, no parameterization seems to have an
advantage. Regarding the running time, the lower-bound-push strategy seems to be slightly
worse, while breadth-first and depth-first search are very close in comparison with a slight
advantage for the depth-first search. Again, this is due to the higher computational cost for
the ordering of the nodes. As the depth-first search also solves slightly more instances, we
choose it for our “best-setting” implementation of MILCP-PBB.

The statistical measures we present in Tables 2.2, B.4, and B.5 support these conclusions.
For most measures the depth-first search strategy performs best, followed by the breadth-
first search strategy. But nevertheless, for all measures and instance sizes, the differences
are rather small.
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Figure 2.2.: Performance profiles on the number of branch-and-bound nodes (left) and the running time (right) of
all node selection strategies.

Table 2.2.: Aggregated node counts (top) and runtimes (bottom) for the node selection test with depth-first search

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.6 24.0 7.0 139.0 13.5 42.5 32.6 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.9 100
250 112.3 96.0 5.0 353.0 67.5 131.0 97.6 100
300 193.3 141.0 15.0 741.0 95.0 254.5 161.7 100
350 277.0 144.0 7.0 735.0 79.0 479.0 203.1 77
400 351.2 271.0 47.0 813.0 78.0 613.0 259.3 70
450 314.7 345.0 51.0 647.0 126.5 473.5 263.7 47
500 461.3 519.0 71.0 923.0 265.50 546.0 381.8 23

50 0.3 0.2 0.1 0.4 0.2 0.3 0.3 100
100 4.5 2.6 1.4 24.1 2.0 5.4 4.0 100
150 27.1 18.1 6.4 97.0 10.6 32.6 22.1 100
200 91.9 65.1 30.4 299.9 49.8 111.6 78.5 100
250 249.5 221.9 37.5 788.4 156.2 286.80 198.9 100
300 566.8 427.2 132.4 1889.0 266.2 769.5 454.1 100
350 1064.1 543.2 102.3 2983.5 401.0 1623.7 716.8 77
400 1457.7 1146.4 309.1 3215.6 419.6 2474.4 1060.7 70
450 1540.1 1468.0 369.0 2823.5 654.3 2489.2 1243.7 47
500 2098.4 2272.3 553.1 3178.9 1553.9 2817.7 1821.9 23
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Figure 2.3.: Performance profiles for the number of branch-and-bound nodes (left) and the running time (right) of
the warmstart test.

2.4.3. The Impact of Warmstarts

We now compare the performance of MILCP-PBB with and without warmstarts. To this
end, we use the MIQP-based approach branching rule, the depth-first search node selection
strategy, and avoid the use of any valid inequalities. We tried two different techniques within
Gurobi to warm start the node problems. First, we used the Gurobi attributes VBasis and
CBasis, i.e., we started every node problem with the optimal basis of its parent node. Second,
we used the attributes PStart and DStart, where the optimal basis vector of the parent node
is computed from the optimal solution. In case that warmstarts are used, we need to solve
the node problems using the primal simplex method within Gurobi. However, this leads
to some numerical instabilities that we detected during our preliminary testing. Thus, we
implemented a backup strategy that disables warmstarts in the case of numerical troubles
and then allows that Gurobi chooses any other method for solving the node problems. We
exclude 46 instances from the set as no parameterization is able to solve them within the
time limit. As expected, warmstarts significantly help to reduce the running time; see
Figure 2.3 (right). Especially the use of parameters VBasis and CBasis have a big impact,
which is expected as it is not needed to compute the basis vector first. Let us finally
comment on the surprising result that using warmstarts or not leads to a different number
of branch-and-bound nodes required to solve the problems; see Figure 2.3 (left). This is
due to the occurrence of node problems with non-unique optimal solutions. In such a case,
using warmstarts or not might lead to different solutions of the node problems, which, in
turn, effects the overall search tree. The same can be seen in Tables 2.3, B.6, and B.7.
For the node counts, differences are not remarkably large with a slight advantage for the
warmstarted methods on most instances. With respect to running times, the warmstarting
strategy using VBasis and CBasis gives a significant advantage for all measures and instance
sizes.
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Table 2.3.: Aggregated node counts (top) and runtimes (bottom) for the warmstart test using VBasis/CBasis

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.3 24.0 7.0 139.0 12.0 42.5 32.3 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.8 100
250 112.2 96.0 5.0 353.0 67.5 131.0 97.6 100
300 193.3 141.0 15.0 741.0 95.0 254.5 161.6 100
350 355.4 215.0 7.0 1107.0 79.0 679.0 249.9 87
400 417.6 279.0 47.0 1245.0 81.0 719.0 300.3 77
450 312.4 345.0 41.0 649.0 126.5 473.5 258.6 50
500 476.6 543.0 61.0 1043.0 189.0 547.0 366.6 33

50 0.3 0.3 0.1 0.8 0.2 0.3 0.3 100
100 3.3 2.2 0.6 11.8 1.6 3.9 3.1 100
150 22.4 14.0 4.0 76.0 9.4 28.3 18.2 100
200 82.2 56.7 24.3 284.7 43.7 104.3 69.1 100
250 213.9 191.8 30.8 624.4 136.7 260.3 169.0 100
300 439.1 381.3 91.9 1387.5 224.9 521.4 360.3 100
350 1079.0 720.5 94.8 3339.2 324.2 1721.9 718.9 87
400 1421.9 1497.6 284.9 3090.9 403.4 2060.3 1040.5 77
450 1291.5 1534.2 301.1 2426.3 629.0 1838.2 1064.9 50
500 2119.2 2200.6 503.5 3396.8 1265.3 3229.8 1730.6 33

2.4.4. The Impact of the Inclusion of Valid Inequalities

We tested different types of valid inequalities as described in Section 2.3.4. Unfortunately,
incorporating the optimality cuts results in severe numerical troubles for Gurobi. Possible
reasons for that might be that these cuts are both quadratic second-order-cone constraints
and very dense. We also tried different relaxations of these cuts to obtain sparser cuts
but this did not resolve the numerical troubles. We also tested a linearized version of this
quadratic cut. This resolved almost all numerical issues but, on the other hand, lead to the
fact that we do not cut off any points anymore. Thus, making these optimality cuts work
in a practical implementation is still subject of future work. Consequently, we only consider
simple cuts. Note that these cuts can be set up at no computational cost and that it is to be
expected that they only have a minimal impact on the computational time required to solve
the node problems since they are merely variable bounds. We compare a version of MILCP-
PBB in which all possible simple cuts are added in every node with a version of MILCP-PBB
in which no simple cuts are added. For this test, the branching rule is set to the MIQP-based
branching rule, the node selection strategy is set to depth-first search, and warmstarts are
disabled. Let us quickly comment on why warmstarts are disabled for this test even though
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Figure 2.4.: Performance profiles for the number of branch-and-bounds nodes (left) and the running time (right) for
variants with all possible simple cuts and without any.

they have a positive impact on the performance. For technical reasons, Gurobi needs both
parameters VBasis and CBasis to warmstart a node problem, which contain the variable
basis vector and the constraint basis vector. When cuts are added, the constraint basis
vector needed to warmstart the problem is of higher dimension than the constraint basis
vector of the parent node, which is why the use of VBasis/CBasis is mutually exclusive with
the use of cuts. It would be possible, to use the parameters PStart/DStart, as Gurobi only
needs a primal start pointing, which is available even with added cuts. However, as the
difference between a warmstart with PStart/DStart and no warmstart is not significant, we
choose to disable the warmstart here for simplicity. No instances are excluded for this test.
As can be seen in Figure 2.4, incorporating the simple cuts has a great impact both on the
number of branch-and-bound nodes as well as on the running time. This is also obvious
from the results in Tables 2.4 and B.8. For almost all measures and instance sizes, the
approach with the simple cuts significantly outperforms the method without the cuts both
w.r.t. the node counts and the running times. Moreover, we see in Table 2.4 that we can
solve almost all instances of the entire test set.

2.4.5. Comparison of the Method to Commercial Benchmark Approaches

Our preliminary numerical tests reveal that the best parameterization of MILCP-PBB uses
the MIQP-based branching rule and adds all possible simple cuts at every node and warm-
starts are disabled. As mentioned before, we choose depth-first search as our node selection
strategy.

In order to compare MILCP-PBB with other approaches from the literature, we consider
the MILP Reformulation 2.1.5, that was proposed in Gabriel et al. (2013a). Note that
this formulation will result in different optimal objective function values compared to our
approach as the violation of the complementarity constraint is penalized in a different way.
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Table 2.4.: Aggregated node counts (top) and runtimes (bottom) for the valid inequalities test with all simple cuts

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 7.7 7.0 3.0 15.0 5.0 11.0 7.7 100
100 8.6 9.0 3.0 15.0 5.5 11.0 8.6 100
150 12.4 13.0 7.0 23.0 9.5 13.0 12.3 100
200 15.8 16.0 9.0 27.0 13.0 17.0 15.7 100
250 18.5 19.0 5.0 29.0 17.0 21.0 18.4 97
300 23.0 23.0 11.0 37.0 19.5 27.0 22.9 100
350 30.0 31.0 7.0 47.0 21.0 37.0 29.7 97
400 37.3 33.0 17.0 81.0 22.0 50.0 36.4 100
450 32.4 28.0 23.0 63.0 27.0 31.0 32.1 93
500 35.4 35.0 23.0 51.0 32.0 37.0 35.2 100

50 0.2 0.3 0.1 0.3 0.2 0.3 0.2 100
100 1.2 1.2 0.7 2.2 1.1 1.3 1.2 100
150 4.5 4.4 2.8 6.7 3.9 4.9 4.4 100
200 10.8 10.7 7.9 14.5 9.5 11.9 10.7 100
250 20.5 20.6 13.5 26.9 17.2 23.4 20.2 97
300 34.5 32.9 27.0 45.6 29.8 39.2 34.1 100
350 57.2 56.1 33.1 80.4 48.8 64.4 56.2 97
400 85.0 78.8 61.9 150.2 69.6 92.6 82.9 100
450 104.6 101.6 84.9 167.8 91.4 112.8 103.2 93
500 124.9 128.3 74.5 155.0 116.5 134.3 123.0 100

Furthermore, note that Problem 2.1.5 requires a significantly larger set of 3n + 2|I| vari-
ables. Besides the significantly larger number of variables, one additional drawback of
Problem 2.1.5 is that it requires to determine sufficiently large big-B constraints. However,
we can actually modify Problem 2.1.5 to get rid of these big-Bs and to measure the violation
of the complementarity constraints using the same term as in our approach. This leads to
the following reformulation.

Reformulation 2.4.1. The LCP(q,M, I) can be reformulated with α ∈ (0, 1) as:

min
z,z′,σ

αz⊤(q +Mz) + (1− α)
∑
i∈I

σi (2.4.1a)

s.t. z ≥ 0, q +Mz ≥ 0, (2.4.1b)
0 ≤ zI ≤ z′ + σ, (2.4.1c)
z′ − σ ≤ zI ≤ 1, (2.4.1d)
z ∈ Rn, z′ ∈ {0, 1}I , (2.4.1e)
σ ∈ RI

≥0. (2.4.1f)
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Figure 2.5.: Performance profiles for the number of branch-and-bound nodes (left) and the running time (right) for
the MIQP reformulation, the MILP reformulation and MILCP-PBB.

Instead of using variables ρi for bounding the violation of the complementarity, we use
the direct penalization via the corresponding quadratic term. The violation of the binary
constraints is still measured in the same way as in the MILP 2.1.5 with z′

i being the cor-
responding indicator variables as before. Note that the MIQP 2.4.1 only has |I| additional
binary variables z′ and |I| additional continuous variables σi when compared to the original
MILCP. Thus, the number of additionally required auxiliary variables is significantly re-
duced compared to the MILP reformulation 2.1.5. This makes a huge difference in practice:
Gurobi is able to solve the MIQP 2.4.1 in significantly less time compared to what is required
for solving the MILP 2.1.5; see Figure 2.5. When 2.1.5 and 2.4.1 are solved using Gurobi, all
presolve techniques and heuristics have been disabled. For obtaining a fair comparison, we
further restrict both the MIQP solver of Gurobi and the QP solver of Gurobi used for solving
the nodes within MILCP-PBB to only use a single thread. For a first comparison we use the
same instances as before and no instances are excluded. Figure 2.5 shows the performance
profiles of MILCP-PBB and Gurobi for both the MILP and the MIQP formulation w.r.t. the
number of nodes and running times. It can be seen that MILCP-PBB needs significantly
fewer nodes, while still needing more running time. The increased running time can prob-
ably be attributed to inefficiencies from our Python implementation. More details can be
found in Tables 2.5, 2.6, and B.9. It is evident that our approach clearly outperforms the
two benchmark approaches w.r.t. the node count for all measures and sizes. For the running
time it is evident that the MIQP approach outperforms both our approach and the MILP
formulation.

As the MIQP reformulation has no failures and MILCP-PBB only has four, we increased
the difficulty of the test set to have a further comparison on a harder test set for the MIQP
reformulation and MILCP-PBB. As the other two methods clearly outperform the MILP
formulation, we do not compare the MILP formulation on the more difficult set. We built
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Table 2.5.: Aggregated node counts (top) and runtimes (bottom) for the first benchmark test for MILCP-PBB

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 7.7 7.0 3.0 15.0 5.0 11.0 7.7 100
100 8.6 9.0 3.0 15.0 5.5 11.0 8.6 100
150 12.4 13.0 7.0 23.0 9.5 13.0 12.3 100
200 15.8 16.0 9.0 27.0 13.0 17.0 15.7 100
250 19.3 19.0 11.0 29.0 17.0 21.5 19.2 97
300 26.5 26.0 13.0 37.0 23.5 33.0 26.3 100

50 0.2 0.3 0.1 0.3 0.2 0.3 0.2 100
100 1.2 1.2 0.7 2.2 1.1 1.3 1.2 100
150 4.5 4.4 2.8 6.7 3.9 4.9 4.4 100
200 10.8 10.7 7.9 14.5 9.5 11.9 10.7 100
250 20.8 20.7 14.1 26.9 17.6 23.5 20.6 97
300 38.5 38.8 29.6 45.6 35.5 42.2 38.2 100

Table 2.6.: Aggregated node counts (top) and runtimes (bottom) for the first benchmark test for the MIQP refor-
mulation

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 9.9 6.0 3.0 27.0 4.0 15.0 9.6 100
100 11.3 9.5 3.0 39.0 5.2 13.8 11.0 100
150 21.4 16.5 5.0 61.0 10.0 26.2 20.5 100
200 35.4 28.0 12.0 75.0 21.0 50.5 34.2 100
250 65.4 66.0 7.0 175.0 35.8 71.5 60.4 100
300 128.0 77.0 8.0 447.0 61.5 142.8 102.6 100

50 0.1 0.1 0.1 0.2 0.1 0.2 0.1 100
100 0.3 0.3 0.1 0.4 0.2 0.3 0.3 100
150 0.7 0.7 0.5 1.0 0.6 0.8 0.7 100
200 1.4 1.4 1.2 1.7 1.4 1.5 1.4 100
250 2.2 2.2 1.7 2.9 2.0 2.4 2.2 100
300 3.5 3.0 2.5 6.0 3.0 3.6 3.4 100

a second test set of 300 random instances as before but doubled both the instance sizes as
well as the number of integer variables. For this test, we also tripled the time limit and now
consider as failures only those instances that are not solved within 3 h. The comparison
of the methods applied to these instances is shown in Figure 2.6 and Tables 2.7 and B.10,
where we excluded 86 instances that no method solved. We can notice that, again, the
number of nodes needed by MILCP-PBB is significantly smaller than the number of nodes
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Figure 2.6.: Performance profiles for the number of branch-and-bound nodes (left) and the running time (right) for
the MIQP reformulation and our algorithm (for the second test set with larger instances).

Table 2.7.: Aggregated node counts (top) and runtimes (bottom) for the second benchmark test for MILCP-PBB

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

100 17.1 17.0 9.0 31.0 13.5 21.0 17.0 100
200 43.1 39.0 21.0 107.0 30.5 49.5 42.1 93
300 96.6 76.0 35.0 259.0 67.5 123.5 91.0 93
400 246.8 183.0 37.0 779.0 139.0 309.0 205.6 87
500 296.5 297.0 113.0 685.0 131.0 385.0 262.0 93
600 183.0 185.0 163.0 201.0 174.0 193.0 182.6 80

100 2.4 2.4 1.7 3.1 2.2 2.6 2.4 100
200 21.7 19.5 13.4 52.9 17.3 24.6 21.0 93
300 99.6 92.9 49.0 215.8 70.9 123.2 93.5 93
400 370.0 336.0 134.3 955.4 235.2 379.4 319.4 87
500 483.9 421.7 154.6 881.9 385.2 479.0 441.9 93
600 662.2 698.5 512.0 775.9 605.3 737.2 652.4 80
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2.4 Numerical Results

needed by Gurobi. MILCP-PBB is also faster and has significantly less unsolved instances.
Thus, it turns out to be more robust as well. MILCP-PBB and Gurobi have 19 as well
as 49, respectively, failures on instances of Type (a), 34 and 53 failures on instances of
Type (b), as well as 40 and 61 failures on instances of Type (c). A possible explanation for
these results is the difference in the size of the respective branching trees. As the size of
a branch-and-bound tree roughly grows exponentially with the number of binary variables,
the larger number of nodes in the tree of the MIQP reformulation becomes even larger for
the more difficult instances. While Gurobi needs less time per node and probably also finds
the optimal solution, the sheer size of the tree prevents it from proving optimality within the
time limit. Extensive tables including node counts, running times, and optimality gaps for
all instances including the instances not solved by both solvers can be found in Appendix C.
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Chapter 3
Generalization of the Method

In this chapter, we want to extend the possibilities of the algorithm and give a proof-of-
concept for problem classes that are very general. We discuss two possible generalizations.
The first is a class of problems, that have a convex feasible set and an objective function
in which the non-convex part is the sum of minimum functions, which we describe in Sec-
tion 3.1. This class is the direct extension of the reformulation defined in Definition 2.1.6.
The second class is the class of problems with a convex feasible set and an objective function
in which the objective function is piecewise convex. We present this class in Section 3.2.
While the first class we discuss is in fact a special case of the second class, its formulation is
more compact and needs no additional information, which is why we discuss it separately.
As these problem classes are purely of theoretical interest for now, we will not discuss a
computational study.

3.1. Problems with a Sum of Minimum Functions

We want to describe a first very general class of problems, that could be solved with our
method. In Section 3.1.1 we give a formal description of the problem class. In Section 3.1.2
we describe the generalization of our algorithm and show its correctness. In Section 3.1.3
we give first hints for possible enhancements of the method, such as valid inequalities.

3.1.1. Stating the Problem Class

In this section we will investigate non-convex, non-smooth optimization problems, whose
objective functions are a convex function together with a sum of minimum functions each
over a convex feasible set. The general version of this problem class reads as follows.

Definition 3.1.1. Let h : Rn → R and gij : Rn → R, i ∈ I, j ∈ Ji, be convex functions
with I and Ji, i ∈ I, being index sets. Let X ⊆ Rn be a convex set. The optimization
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3. Generalization of the Method

problem then reads

min
x∈Rn

h(x) +
∑
i∈I

min{gij(x) : j ∈ Ji} (3.1.1a)

s.t. x ∈ X. (3.1.1b)

As seen before, the objective function is obviously not convex and therefore problematic to
solve. The second part of the function

∑
i∈I min{gij(x) : j ∈ Ji} is non-convex in general, as

the gij are convex and the minimum function is concave. This is the part of the problem, that
we want to tackle by using our penalty branch-and-bound method, that we have described
in the section before. In order to prove the correctness of the method, we need to assume,
that the problem is bounded. We further need to assume, that the single parts of the second
part of the objective function are bounded, i.e., Li := minx∈X min{gij(x) : j ∈ Ji} for all
i ∈ I should be finite.

Lemma 3.1.2. Let Li as defined above be finite numbers for an instance of Problem 3.1.1
and let there be i1 ∈ I, j1 ∈ Ji, x1 ∈ X such that gi1j1(x1) < 0 for that instance. We can
find an equivalent formulation for Problem 3.1.1 with functions h′, g′

ij, for which g′
ij(x) ≥ 0

for all i ∈ I, j ∈ Ji, x ∈ X.

Proof. Let L := mini∈ILi. We can then do the following transformation:

h(x) +
∑
i∈I

min{gij(x) : j ∈ Ji}

= h(x)− |I|L+
∑
i∈I

(min{gij(x) : j ∈ Ji}+ L)

= h(x)− |I|L+
∑
i∈I

min{gij(x) + L : j ∈ Ji}

= h′(x) +
∑
i∈I

min{g′
ij(x) : j ∈ Ji}

with h′(x) = h(x)− |I|L and g′
ij(x) + L, and the lemma follows.

Therefore, it is reasonable to assume in the following, that gij(x) ≥ 0 for all i ∈ I, j ∈ Ji,
x ∈ X. In the following, we will denote the objective function of Problem 3.1.1 by f , i.e.,

f(x) := h(x) +
∑
i∈I

min{gij(x) : j ∈ Ji}.

3.1.2. The Penalty Branch-and-Bound Method for this Class

In this section we will give a generalized version of the algorithm presented in Section 2.2.
The algorithm we propose solves the non-convex optimization problem described in Defini-
tion 3.1.1 to global optimality.
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3.1 Problems with a Sum of Minimum Functions

Branching

Analogously to Section 2.2, we obtain the root node by ignoring the non-convex part of the
objective function. Therefore the root node is the following convex optimization problem:

Definition 3.1.3 (Root Node Problem of PBB for Problem 3.1.1). The root node problem
of the PBB for Problem 3.1.1 is defined as

min
x∈Rn

h(x) (3.1.2a)

s.t. x ∈ X. (3.1.2b)

By definition, this optimization problem is convex and therefore tractable. We then add
child nodes to the branching tree, for which the objective function is altered by adding
penalty terms. Here, the number of child nodes is not necessarily two but depends on the
branching index i ∈ I and the size of the index set Ji. For every j ∈ Ji we add a child
node, where we add the term gij to the objective function. The child nodes of the root node
therefore read as follows:

Definition 3.1.4 (Child Problems of the Root Node of PBB for Problem 3.1.1). The set
of child nodes of the root node of PBB for Problem 3.1.1 are defined as the problems

min
x∈Rn

h(x) + gij(x) (3.1.3a)

s.t. x ∈ X, (3.1.3b)

for all j ∈ Ji with i ∈ I being the chosen branching index.

Analogously to Section 2.2 the idea is to compute the minimum of the minimum function
min{gij(x) : j ∈ Ji} over x ∈ X, by taking the minimum of the single functions, i.e.,

min
x∈X

{
min
j∈Ji

gij(x)
}

= min
j∈Ji

{
min
x∈X

gij(x)
}
.

We then solve the child nodes independently as we did before and repeat the process. As
with every branching decision we keep adding convex functions, every node of the branch-
and-bound tree is a convex optimization problem. An arbitrary node N in the tree can be
described by the branching decisions that have been made. We define IN ⊆ I to be the
indices for which branching decisions have been made up to node N . We further define
JN to be the |IN |-dimensional tuple containing all branching decisions. In other words,
JN :=

(
j1, . . . , j|IN |

)
with (JN )i being the branching decision for index (IN )i. We can then

describe any node N by these vectors. In the following we will also denote the branching
decision taken for an index i ∈ I by ji ∈ Ji. Then, the problem at node N = (IN , JN ) reads
as follows.
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3. Generalization of the Method

Definition 3.1.5 (Node Problem of PBB for Problem 3.1.1). The node problem of PBB
for Problem 3.1.1 at node N = (IN , JN ) is defined as

min
x∈Rn

h(x) +
∑

i∈IN

giji(x) (3.1.4a)

s.t. x ∈ X. (3.1.4b)

We denote the optimal solution of that problem by x∗
N and the objective function by fN ,

i.e.,
fN (x) := h(x) +

∑
i∈IN

giji(x).

Analogously to Section 2.2, we first show that this branching routine would solve Prob-
lem 3.1.1 by iterating over all possible combinations.

Lemma 3.1.6. Let x∗ be an optimal solution of Problem 3.1.1. Then, it holds

f(x∗) = min {fN (x∗
N ) : N = (IN , JN ) with IN = I} .

Proof. Note that the feasible set does not depend onN . Hence, all optimal points are feasible
for all nodes. Let N∗ = (IN∗ , JN∗) with IN∗ = I and JN∗ =

(
j∗

(IN∗ )1
, . . . , j∗

(IN∗ )|IN∗ |

)
be

the leaf with gij∗
i
(x) ≤ gij(x) for all j ∈ Ji and i ∈ I. We then have

f(x∗) = h(x∗) +
∑
i∈I

min{gij(x∗) : j ∈ Ji}

= h(x∗) +
∑
i∈I

gij∗
i
(x∗)

= fN∗(x∗) ≥ fN∗(x∗
N∗).

Hence,
f(x∗) ≥ min {fN (x∗

N ) : N = (IN , JN ) with IN = I}

holds. To show the other inequality, we assume that there exists a node N ′ = (IN ′ , JN ′)
with IN ′ and JN ′ = (j′

1, . . . , j
′
|IN′ |) such that

fN ′(x∗
N ′) < f(x∗)

holds. We thus obtain fN ′(x∗
N ′) < f(x∗

N ′) or, equivalently,

h(x∗
N ′) +

∑
i∈I

gij′
i
(x∗

N ′) < h(x∗
N ′) +

∑
i∈I

min{gij(x∗
N ′) : j ∈ Ji}.

This implies ∑
i∈I

(
gij′

i
(x∗

N ′)−min{gij(x∗
N ′) : j ∈ Ji}

)
< 0,
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3.1 Problems with a Sum of Minimum Functions

which is impossible as
gij′

i
(x∗

N ′) ≥ min{gij(x∗
N ′) : j ∈ Ji}.

Hence,
f(x∗) ≤ min {fN (x∗

N ) : N = (IN , JN ) with IN = I}

holds and the claim follows.

Bounding

We now want to show, that it is not necessary to compute solutions for all possible combi-
nations of functions but that, instead, we can establish upper and lower bounds to prune
certain branches of the branch-and-bound tree as we did in Section 2.2 and as done in
classic branch-and-bound methods. Again, as the feasible set does not change throughout
the process, every optimal solution of every node in the tree yields a global upper bound
when plugged into the objective function of the master problem. We denote x∗

inc to be the
incumbent of the process, i.e., the point so that f(x∗

inc) constitutes the best known upper
bound. We now want to show, that we can also establish local lower bounds.

Lemma 3.1.7. Let N ′ = (IN ′ , JN ′) be a successor of some node N = (IN , JN ) in the
branch-and-bound tree, i.e., IN ⊆ IN ′ and (JN )i = (JN ′)i for all i ∈ IN holds. Then,

fN (x∗
N ) ≤ fN ′(x∗

N ′)

holds.

Proof. Since the feasible set does not change during the branching process all feasible points
remain feasible for all nodes. Thus,

fN ′(x∗
N ′) = h(x∗

N ′) +
∑

i∈IN′

gij′
i
(x∗

N ′)

= h(x∗
N ′) +

∑
i∈IN

gij′
i
(x∗

N ′) +
∑

i∈IN′ \IN

gij′
i
(x∗

N ′)

≥ h(x∗
N ′) +

∑
i∈IN

gij′
i
(x∗

N ′)

= h(x∗
N ′) +

∑
i∈IN

giji(x∗
N ′)

= fN (x∗
N ′) ≥ fN (x∗

N ).

Note that the first inequality is due to the fact that gij′
i
(x∗

N ′) ≥ 0 for i ∈ IN on the feasible
set. The second inequality follows from optimality.

From Lemma 3.1.7 we therefore know that if it is the case in some node N during the
process that

fN (x∗
N ) ≥ f(x∗

inc),
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3. Generalization of the Method

we know that any leaf node of the subtree rooted in N will not yield a better solution than
the incumbent we already know does. Hence, we can prune that subtree. Note, that in
general we cannot prune due to “feasibility”, as we are not looking for solutions in the sense
of Chapter 2.

Algorithmic Description

We are now ready to give an algorithmic description of the method in Algorithm 3 and show
its correctness.

Algorithm 3 A Penalty Branch-and-Bound Algorithm for Problem 3.1.1
Input: h : Rn → R, gij : Rn → R, i ∈ I, j ∈ Ji convex functions, I, Ji, i ∈ I, index sets,
X ⊆ Rn

Output: A global optimum x∗ of Problem 3.1.1.
Set N ← {(∅, ∅)}, finc ←∞, and x∗

inc ← none.
while N ̸= ∅ do

Choose N = (IN , JN ) ∈ N and set N ← N \ {N}.
Compute x∗

N ∈ argmin{fN (x) : x ∈ X}.
if f(x∗

N ) < finc do
Set x∗

inc ← x∗
N and finc ← f(x∗

N ).
if fN (x∗

N ) < finc and I \ IN ̸= ∅ do
Choose i ∈ I \ IN , set N ← N ∪

⋃
j∈Ji

(IN ∪ {i}, JN × {j}).
return x∗

inc

Theorem 3.1.8. Algorithm 3 terminates after finitely many steps with a global optimal
solution of Problem 3.1.1, if the root node problem is bounded and Li for all i ∈ I are finite.

Proof. The algorithm terminates after finitely many steps since the set I is finite. Thus, at
some point, IN = I holds and we can no longer find a branching variable in the node and
no child node can be generated. We only add a finite number of nodes in every step, as the
sets Ji are finite. Assume now that fN (x∗

N ) < f(x∗
inc) always holds in the second if-clause.

Then the correctness of the algorithm follows from Lemma 3.1.6, as we iterate through the
complete branch-and-bound tree. Finally, in the cases, in which fN (x∗

N ) ≥ f(x∗
inc) holds,

the nodes that are not added can be excluded due to Lemma 3.1.7.

While the correctness of the algorithm and convexity of the different node problems does
not depend on the structure of the index sets I and Ji, it is to expect that they have an
impact on the performance of the algorithm. For example, if the set I only has one element
and the set J1 is very large, the algorithm will enumerate over all possibilities and the
bounding part will never come into effect. Therefore it is to be expected, that for a large
cardinality of the setI and small cardinalities for the setsJi, as it is the case in Section 2.2,
the strengths of the algorithm are used best.
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3.1 Problems with a Sum of Minimum Functions

3.1.3. Further Enhancements of the Method

We want to consider some improvements of the method above. Again, the choice of the
next node to solve and the choice of the next index to branch on are not specified. But we
will not investigate these choices, as strategies for both choices are heuristics that have to
be evaluated in numerical experiments. However, we want to show that a generalization of
the simple cuts as introduced in Section 2.3.4 is possible here as well.

For the simple cuts in Section 2.3.4 we have exploited that the break point for which the
penalty term zj gets bigger than the term (1 − zj) is known. In the generalized version of
the cut, we do not know this point but instead create inequalities that pairwise compare
the different penalty terms. So if we have branched on index i ∈ I by adding the penalty
function giji(x) with ji ∈ Ji, we know that we can enforce that penalization to be smaller
than the penalizations by the other terms gij(x) for all j ̸= ji. In other words, at every
node N = (IN , JN ) we can add

giji(x) ≤ gij(x) for all i ∈ I and j ∈ Ji.

This is obviously only a sensible thing to do when these inequalities describe a convex set,
i.e., when the functions gij are linear. We will again show first, that the optimal solution
will not be cut-off during the process. For this section, we will denote the optimal solution
of the modified node problem by x∗

N , i.e.,

x∗
N ∈ argmin {fN (x) : x ∈ X, giji(x) ≤ gij(x) for all i ∈ I, j ∈ Ji} .

Lemma 3.1.9. Let x∗
N be an optimal solution at node N = (IN , JN ) when all cuts are

included. Then,

f(x∗) = min {fN (x∗
N ) : N = (IN , JN ) with IN = I}

holds.

Proof. Let N∗ = (IN∗ , JN∗) with IN∗ = I and JN∗ =
(
j∗

1 , . . . , j
∗
|IN∗ |

)
be the leaf with

gij∗
i
(x) ≤ gij(x) for all j ∈ Ji and i ∈ I. We then have

f(x∗) = h(x∗) +
∑
i∈I

min{gij(x∗) : j ∈ Ji}

= h(x∗) +
∑
i∈I

gij∗
i
(x∗)

= fN∗(x∗) ≥ fN∗(x∗
N∗).

The last inequality holds, because by definition x∗ does not violate any of the simple cuts
added and is therefore feasible for node N∗. Hence,

f(x∗) ≥ min {fN (x∗
N ) : N = (IN , JN ) with IN = I}
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3. Generalization of the Method

holds. To show the other inequality, we assume that there exists a node N ′ = (IN ′ , JN ′)
with IN ′ = I and JN ′ = (j′

1, . . . , j
′
|IN′ |) such that

fN ′(x∗
N ′) < f(x∗)

holds. We thus obtain fN ′(x∗
N ′) < f(x∗

N ′) or, equivalently,

h(x∗
N ′) +

∑
i∈I

gij′
i
(x∗

N ′) < h(x∗
N ′) +

∑
i∈I

min{gij(x∗
N ′) : j ∈ Ji}.

This implies ∑
i∈I

(
gij′

i
(x∗

N ′)−min{gij(x∗
N ′) : j ∈ Ji}

)
< 0,

which is impossible as
gij′

i
(x∗

N ′) ≥ min{gij(x∗
N ′) : j ∈ Ji}.

Hence,
f(x∗) ≤ min {fN (x∗

N ) : N = (IN , JN ) with IN = I}

holds and the claim follows.

Next we show that the bounding step of the algorithm remains correct as well when all
cuts are added.

Lemma 3.1.10. Let N ′ = (IN ′ , JN ′) be a successor of some node N = (IN , JN ) in the
branch-and-bound tree, i.e., IN ⊆ IN ′ and (JN )i = (JN ′)i for all i ∈ IN holds. Then,

fN (x∗
N ) ≤ fN ′(x∗

N ′)

holds.

Proof. By definition, we have

fN ′(x∗
N ′) = h(x∗

N ′) +
∑

i∈IN′

gij′
i
(x∗

N ′)

= h(x∗
N ′) +

∑
i∈IN

gij′
i
(x∗

N ′) +
∑

i∈IN′ \IN

gij′
i
(x∗

N ′)

≥ h(x∗
N ′) +

∑
i∈IN

gij′
i
(x∗

N ′)

= h(x∗
N ′) +

∑
i∈IN

giji(x∗
N ′)

= fN (x∗
N ′) ≥ fN (x∗

N ).

Note that the first inequality is due to the fact that gij′
i
(x∗

N ′) ≥ 0 for all i ∈ IN on the feasible
set. The second inequality follows from optimality as the feasible sets are nested in the sense
that if a point is feasible for node N , it is also feasible for any successor node N ′.
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3.2 Problems with a Sum of Piecewise Convex Functions

Theorem 3.1.11. Algorithm 3 remains correct if simple cuts

giji(x) ≤ gij(x) for all i ∈ I and j ∈ Ji

are added at any node N = (IN , JN ).

Proof. From Lemma 3.1.9, we know that the optimal solution of Problem 3.1.1 is the optimal
solution of a leaf node. From Lemma 3.1.10, we know that the objective value of every
ancestor node of a leaf yields a lower bound for the objective value of this leaf. Hence, if
we have a feasible point x∗

inc of Problem 3.1.1 and some node N for which

f(x∗
inc) ≤ fN (x∗

N )

holds, we know that x∗
inc is a solution that is as good as every solution that any leaf being

a successor of N can yield. Thus, we can prune the subtree rooted in N . The same applies
for the case in which a node problem becomes infeasible due to the introduction of cuts.
Hence, Algorithm 3 remains correct when simple cuts are used.

3.2. Problems with a Sum of Piecewise Convex Functions

We now come to a second class of problems that can be solved with our method. In
Section 3.2.1 we give a formal description of the problem class. In Section 3.2.2 we describe
another general form of our algorithm and show its correctness.

3.2.1. Stating the Problem Class

In this section we will investigate a different generalization for which we can use our penalty
branch-and-bound method. It is a different class of non-convex, non-smooth optimization
problems, whose objective functions are piecewise convex. While in general this generaliza-
tion covers a bigger set of objective functions, we need additional information. In order for
the algorithm to work, we need to know the breakpoints in the objective functions, i.e., the
sets of the domain for which the objective function is convex. The problem class then reads
as follows.

Definition 3.2.1. Let h : Rn → R and gij : Aij → R, i ∈ I, j ∈ Ji be convex functions with
I and Ji, i ∈ I, being index sets and Aij ⊆ Rn being compact sets for all j ∈ Ji, i ∈ I and
with their interior points being pairwise disjoint for j ∈ Ji and a fixed i ∈ I. Let X ⊆ Rn

be a convex set. The optimization problem then reads

min
x∈Rn

h(x) +
∑
i∈I

∑
j∈Ji

gij(x)χAij (x) (3.2.1a)

s.t. x ∈ X, (3.2.1b)
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3. Generalization of the Method

where χAij (x) is the characteristic function of the set Aij , i.e.,

χAij (x) :=
{

1, if x ∈ Aij ,

0, else.

Again, the objective function is obviously non-convex. The second part of the function∑
i∈I

∑
j∈Ji

gij(x)χAij (x) is non-convex in general. This is again the part of the problem,
that we want to tackle by using our penalty branch-and-bound method, that we have de-
scribed before. As theAij are compact, we can assume that Li := minx∈X

∑
j∈Ji

gij(x)χAij (x)
is finite for all i ∈ I. With the same arguments as before, we can therefore assume in the
following, that gij(x) ≥ 0 for all i ∈ I, j ∈ Ji, x ∈ X. In the following, we will denote the
objective function of Problem 3.2.1 by f , i.e.,

f(x) := h(x) +
∑
i∈I

∑
j∈Ji

gij(x)χAij (x).

3.2.2. The Penalty Branch-and-Bound Method for this Class

In this section we will give another generalized version of the algorithm presented in Sec-
tion 2.2. The algorithm we propose solves the non-convex optimization problem described
in Definition 3.2.1 to global optimality.

Branching

Analogously to Sections 2.2 and 3.1.2, we obtain the root node by ignoring the non-convex
part of the objective function. Therefore the root node is the following convex optimization
problem:

Definition 3.2.2 (Root Node Problem of PBB for Problem 3.2.1). The root node problem
of the PBB for Problem 3.2.1 is defined as

min
x∈Rn

h(x) (3.2.2a)

s.t. x ∈ X. (3.2.2b)

Again, we then add child nodes to the branching tree, for which the objective function
is extended by adding penalty terms. Again, the number of child nodes is not necessarily
two but depends on the branching index i ∈ I and the size of the index set Ji. As a big
difference to the other generalization, it is necessary to change the feasible set, as we need
to make sure, that for each point of the feasible node the objective function coincides with
the objective function of the master problem. The child nodes therefore are the following
set of nodes:
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3.2 Problems with a Sum of Piecewise Convex Functions

Definition 3.2.3 (Child Problems of the Root Node of PBB for Problem 3.2.1). The set
of child nodes of the root node of PBB for Problem 3.2.1 are defined as the problems

min
x∈Rn

h(x) + gij(x) (3.2.3a)

s.t. x ∈ X, (3.2.3b)
x ∈ Aij , (3.2.3c)

for all j ∈ Ji with i ∈ I being the chosen branching index.

The rationale is the same as before. We want to compute the minimum of the sum∑
j∈Ji

gij(x)χAij (x) over x ∈ X, by taking the minimum of the single functions on their
respective domains, i.e.,

min
x∈X

 ∑
j∈Ji

gij(x)χAij (x)

 = min
j∈Ji

{
min

x∈X∩Aij

gij(x)χAij (x)
}
.

We then solve the child nodes independently as we did before and repeat the process. As
with every branching decision we keep adding convex functions and convex constraints to
the feasible set, every node of the branch-and-bound tree is a convex optimization problem.
An arbitrary node N in the tree can be described by the branching decisions that have been
made. We denote the nodes the same way as we did in Section 3.1 and define IN ⊆ I to
be the indices for which branching decisions have been made at node N . We further define
JN to be the |IN |-dimensional tuple containing all branching decisions. In other words,
JN :=

(
j1, . . . , j|IN |

)
with (JN )i being the branching decision for index (IN )i. Again, we

can define w.l.o.g. that ji ∈ Ji describes the corresponding branching decision for i ∈ I. We
can then describe any node N by these objects. Then, the problem at node N = (IN , JN )
reads as follows.

Definition 3.2.4 (Node Problem of PBB for Problem 3.2.1). The node problem of PBB
for Problem 3.2.1 at node N = (IN , JN ) is defined as

min
x∈Rn

h(x) +
∑

i∈IN

giji(x) (3.2.4a)

s.t. x ∈ X, (3.2.4b)
x ∈

⋂
i∈IN

Aiji . (3.2.4c)

We denote the optimal solution of that problem by x∗
N and the objective function by fN ,

i.e.,
fN (x) := h(x) +

∑
i∈IN

giji(x).

Again, we first show that this branching routine would solve Problem 3.2.1 by iterating
through all possible combinations.
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3. Generalization of the Method

Lemma 3.2.5. Let x∗ be an optimal solution of Problem 3.2.1. Then, it holds

f(x∗) = min {fN (x∗
N ) : N = (IN , JN ) with IN = I} .

Proof. Let N∗ = (IN∗ , JN∗) with IN∗ = I and JN∗ =
(
j∗

1 , . . . , j
∗
|IN∗ |

)
be the leaf with

x∗ ∈ Aij for all j ∈ Ji and i ∈ I. We then have

f(x∗) = h(x∗) +
∑
i∈I

∑
j∈Ji

gij(x)χAij (x)

= h(x∗) +
∑
i∈I

gij∗
i
(x∗)

= fN∗(x∗) ≥ fN∗(x∗
N∗).

The last inequality holds due to optimality as the point x∗ is feasible for node N∗. Hence,

f(x∗) ≥ min {fN (x∗
N ) : N = (IN , JN ) with IN = I}

holds. To show the other inequality, we assume that there exists a node N ′ = (IN ′ , JN ′)
with IN ′ = I and JN ′ =

(
j′

1, . . . , j
′
|IN′ |

)
such that

fN ′(x∗
N ′) < f(x∗)

holds. We thus obtain fN ′(x∗
N ′) < f(x∗

N ′) or, equivalently,

h(x∗
N ′) +

∑
i∈I

gij′
i
(x∗

N ′) < h(x∗
N ′) +

∑
i∈I

∑
j∈Ji

gij(x∗
N ′)χAij (x∗

N ′).

Because the gij(x) are non-negative on the feasible set, we therefore know that there is an
index ı̂ ∈ I for which

gı̂j′
ı̂
(x∗

N ′) <
∑
j∈Jı̂

gı̂j(x∗
N ′)χAı̂j

(x∗
N ′).

By definition we know that χAı̂j
(x∗

N ′) = 0 for all j ̸= j′
ı̂ and χAı̂j′

ı̂

(x∗
N ′) = 1. This implies

gı̂j′
ı̂
(x∗

N ′) < gı̂j′
ı̂
(x∗

N ′),

which is a contradiction. Hence,

f(x∗) ≤ min {fN (x∗
N ) : N = (IN , JN ) with IN = I}

holds and the claim follows.
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3.2 Problems with a Sum of Piecewise Convex Functions

Bounding

We now want to show, that it is not necessary to compute solutions for all possible com-
binations of functions, but that instead we can establish upper and lower bounds to prune
certain branches of the branch-and-bound tree. As the feasible set of the master problem
contains the feasible sets of all node problems, every optimal solution of every node in the
tree yields a global upper bound when plugged into the objective function of the master
problem. We denote x∗

inc to be the incumbent of the process, i.e., the point so that f(x∗
inc)

constitutes the best known upper bound. We now want to show, that we can also establish
local lower bounds.

Lemma 3.2.6. Let N ′ = (IN ′ , JN ′) be a successor of some node N = (IN , JN ) in the
branch-and-bound tree, i.e., IN ⊆ IN ′ and (JN )i = (JN ′)i for all i ∈ IN holds. Then,

fN (x∗
N ) ≤ fN ′(x∗

N ′)

holds.

Proof. By definition, we have

fN ′(x∗
N ′) = h(x∗

N ′) +
∑

i∈IN′

gij′
i
(x∗

N ′)

= h(x∗
N ′) +

∑
i∈IN

gij′
i
(x∗

N ′) +
∑

i∈IN′ \IN

gij′
i
(x∗

N ′)

≥ h(x∗
N ′) +

∑
i∈IN

gij′
i
(x∗

N ′)

= h(x∗
N ′) +

∑
i∈IN

giji(x∗
N ′)

= fN (x∗
N ′) ≥ fN (z∗

N ).

Note that the first inequality is due to the fact that gij′
i
(x∗

N ′) ≥ 0 for all i ∈ IN on the
feasible set. The second inequality follows from optimality, as the feasible sets are nested
in the sense, that if a point is feasible for node N , it is also feasible for any successor node
N ′.

From Lemma 3.2.6 we therefore know, that if during the process it is the case in some
node N , that

fN (x∗
N ) ≥ f(x∗

inc),

we know that any leaf node of the subtree rooted in N will not yield a better solution than
the incumbent we already know does. Hence, we can prune that subtree. Note, that again
we cannot prune due to “feasibility” in general, as we are not looking for feasible points in
the sense of Chapter 2. In this version of a penalty branch-and-bound method, we have
to add additional constraints to the constraint set with every branching decision, similar
to classic branch-and-bound algorithms. Therefore, it is possible, that some node problems
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3. Generalization of the Method

become infeasible and we can make use of the pruning due to infeasibility as known from
classic branch-and-bound methods.

Algorithmic Description

We are now ready to give an algorithmic description of the method in Algorithm 4 and show
its correctness.

Algorithm 4 A Penalty Branch-and-Bound Algorithm for Problem 3.2.1
Input: h : Rn → R, gij : Aij → R, i ∈ I, j ∈ Ji, convex functions, Aij compact sets,
I, Ji, i ∈ I index sets, X ⊆ Rn

Output: A global optimum x∗ of Problem 3.2.1.
Set N ← {(∅, ∅)}, finc ←∞, and x∗

inc ← none.
while N ̸= ∅ do

Choose N = (IN , JN ) ∈ N and set N ← N \ {N}.
Compute x∗

N ∈ argmin{fN (x) : x ∈ X, x ∈
⋂

i∈IN
Aiji}.

if x∗
N exists and f(x∗

N ) < finc do
Set x∗

inc ← x∗
N and finc ← f(x∗

N ).
if fN (x∗

N ) < finc and I \ IN ̸= ∅ do
Choose i ∈ I \ IN , set N ← N ∪

⋃
j∈Ji
{(IN ∪ {i}, JN × j)}.

return x∗
inc

Theorem 3.2.7. Algorithm 4 terminates after finitely many steps with a global optimal
solution of Problem 3.2.1, if the root node problem is bounded.

Proof. The algorithm terminates after finitely many steps since the set I is finite. Thus, at
some point, I = IN holds and we can no longer find a branching variable in the node and
no child node can be generated. We only add finite number of nodes in every step, as the
sets Ji are finite. Assume now that fN (x∗

N ) < f(x∗
inc) always holds in the second if-clause.

Then the correctness of the algorithm follows from Lemma 3.2.5, as we iterate through the
complete branch-and-bound tree. Finally, in the cases, in which fN (x∗

N ) ≥ f(x∗
inc) holds,

the nodes that are not added can be excluded due to Lemma 3.2.6.

Note, that the cutting planes presented as enhancements in Section 3.1.3 for Algorithm 3
are necessarily included in the algorithm for this generalization. Again, while the correctness
of the algorithm and the convexity of the different node problems does not depend on the
structure of the index sets I and Ji, it is to expect that they have an impact on the
performance of the algorithm. For example, if the set I only has one element and the
resulting set J1 is very large, the algorithm will enumerate over all possibilities and the
bounding part will never come into effect. Therefore it is to be expected, that a large
cardinality of the set I and small cardinalities for the sets Ji, as it is the case in Section 2.2,
the strength of the algorithm are used best.
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Chapter 4
Solving Non-Monotone Mixed-Integer
Linear Complementarity Problems

The canonical extension of monotone mixed-integer linear complementarity problems, i.e.,
MILCPs with a positive semi-definite matrix M , are MILCPs, where the matrix M does
not necessarily have this property. For positive semi-definite matrices, the node problems
given in Definition 2.2.4 are tractable problems, as the objective function is convex and
quadratic. In the general case, we cannot assume convexity, hence making it not sensible
to base our approach on Reformulation 2.1.6 to solve non-monotone MILCP. Therefore, we
need to find a different formulation, which we describe in the next section. In Section 4.2,
we describe the penalty branch-and-bound method that we use to solve that reformulation.
In Section 4.3, we present possible problem-specific enhancements of the algorithm, which
we test numerically in Section 4.4.

4.1. Another Reformulation for Mixed-Integer Linear
Complementarity Problems

As the big-M constants in the reformulation by Gabriel et al. (2013a) are not always ob-
tainable and the complementarity penalty term from Reformulation 2.1.6 is only tractable
for monotone MILCP, we come up with another reformulation.

Reformulation 4.1.1 (Non-Convex Penalty Reformulation of a Non-Monotone MILCP).
The LCP(q,M, I) can be reformulated with α ∈ (0, 1) as

min
z

α
n∑

i=1
min{zi, (q +Mz)i}+ (1− α)

∑
i∈I

min{zi, 1− zi} (4.1.1a)

s.t. z ≥ 0, q +Mz ≥ 0, (4.1.1b)
zI ∈ [0, 1]I . (4.1.1c)
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4. Solving Non-Monotone Mixed-Integer Linear Complementarity Problems

In a sense, this reformulation is a mixture of the MILP formulation by Gabriel et al.
(2013a) and the reformulation we used in Section 2, Reformulation 2.1.6. Again, the pa-
rameter α controls the emphasis that is put on each of the two penalty terms. We retain all
the properties that we had for the Reformulation 2.1.6, i.e., if and only if the Reformula-
tion 2.1.6 has an optimal solution with objective value of 0, the corresponding non-monotone
MILCP has a solution. If the MILCP has no solution, the reformulation has an optimal
point that violates the integrality and complementarity constraints as little as possible and
is therefore as close as possible to being a solution of the original MILCP.

In the following, we will denote an optimal solution of the problem by z∗, its objective
function by f , i.e.,

f(z) := α
n∑

i=1
min{zi, (q +Mz)i}+ (1− α)

∑
i∈I

min{zi, 1− zi},

and its feasible set by Z, i.e.,

Z := {z ∈ Rn : z ≥ 0, q +Mz ≥ 0, zi ≤ 1 for i ∈ I} .

4.2. The Penalty Branch-and-Bound Method for this
Reformulation

Instead of only branching on the penalty term for the integrality constraints as we did in
Section 2.2, we also have to branch on the penalty term for the complementarity constraints.
This results in a greatly increased depth of the branch-and-bound tree. This is not surprising
considering the additional non-convexities added by the complementarity constraints of the
non-monotone MILCP. As an additional difficulty, the global lower bound at the beginning
of the process is zero, as there is no function that is common for every node. Additional to
the question, which index we branch on first, we also have to decide whether we want to
branch on the integrality or on the complementarity constraints first. As the version of the
algorithm is a particular case of Algorithm 3, we will go into less details and only describe
the special branching process and afterwards the algorithmic description.

4.2.1. Branching

As there is no term in the objective function of Problem 4.1.1 that is common for all nodes,
the root node of the problem is a feasibility problem, as its objective function is 0:
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4.2 The Penalty Branch-and-Bound Method for this Reformulation

Definition 4.2.1 (Root Node Problem of PBB for Non-Monotone MILCPs). The root node
problem of the PBB for the non-monotone LCP(q,M, I) is defined as

min
z∈Rn

0 (4.2.1a)

s.t. z ∈ Z. (4.2.1b)

We then start to create child nodes by adding penalty terms for the different types of
penalizations. In contrast to the process in Chapter 2, we have two different types of
branching decisions and with every branching decision we take, we first have to decide
on the branching type. After solving the root node problem, we can either choose binary
branching and an index j ∈ I of a fractional variable and on which we have not yet branched
on in the binary sense as we did in Section 2.2, or we choose complementarity branching
and an index j ∈ [n] for which the complementarity constraint is violated and on which we
have not yet branched on in the complementarity sense. The process for binary branching
is done in the same way as we described before by either adding the penalty term (1−α)zj

or the term (1−α)(1− zj). The process for complementarity branching is similar. Here we
either add the penalty term αzj or the term α(q+Mz)j . Therefore, there are the following
possibilities as child nodes for the root node. If we have chosen complementarity branching,
the first new node problems are the following:

Definition 4.2.2 (Left Complementarity Child Problem of the Root Node of PBB for
Problem 4.1.1). The left complementarity child problem of the root node of PBB for the
non-monotone LCP(q,M, I) is defined as

min
z∈Rn

αzj (4.2.2a)

s.t. z ∈ Z, (4.2.2b)

Definition 4.2.3 (Right Complementarity Child Problem of the Root Node of PBB for
Problem 4.1.1). The right complementarity child problem of the root node of PBB for the
non-monotone LCP(q,M, I) is defined as

min
z∈Rn

α(q +Mz)j (4.2.3a)

s.t. z ∈ Z. (4.2.3b)

For binary branching the first new node problems are the following two.

Definition 4.2.4 (Left Binary Child Problem of the Root Node of PBB for Problem 4.1.1).
The left binary child problem of the root node of PBB for the non-monotone LCP(q,M, I)
is defined as

min
z∈Rn

(1− α)zj (4.2.4a)

s.t. z ∈ Z, (4.2.4b)
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4. Solving Non-Monotone Mixed-Integer Linear Complementarity Problems

Definition 4.2.5 (Right Binary Child Problem of the Root Node of PBB for Problem 4.1.1).
The right binary child problem of the root node of PBB for the non-monotone LCP(q,M, I)
is defined as

min
z∈Rn

(1− α)(1− zj) (4.2.5a)

s.t. z ∈ Z. (4.2.5b)

As described in the previous chapters, these new problems are solved independently and
more penalty terms are added successively, until there are no more branching candidates.

In the following we will refer to the process of creating a left binary child node as “down-
wards” branching, the process of creating a right binary child node as “upwards” branching,
the process of creating a left complementarity child node as “leftwards” branching and the
process of creating a right complementarity child node as “rightwards” branching.

For binary branching, we will again denote the indices on which we have already branched
on downwards as I0 and the indices we have already branched on upwards as I1. For the
complementarity branching, we denote the indices we have already branched on leftwards
by C0 and the indices for which we have already branched on rightwards as C1. With this
notation, we can define any node in the branch-and-bound tree by the tuple (I0, I1, C0, C1)
and the node problem of a node N = (I0, I1, C0, C1) is the following:

Definition 4.2.6 (Node Problem of PBB for Problem 4.1.1). The node problem of the
PBB for the non-monotone LCP(q,M, I) at node N = (I0, I1, C0, C1) is defined as

min
z∈Rn

α
∑
i∈C0

zi + α
∑
i∈C1

(q +Mz)i + (1− α)
∑
i∈I0

zi + (1− α)
∑
i∈I1

(1− zi) (4.2.6a)

s.t. z ∈ Z. (4.2.6b)

In the following, we will refer to the objective function of the node problem at node
N = (I0, I1, C0, C1) as fN , i.e.,

fN (z) := α
∑
i∈C0

zi + α
∑
i∈C1

(q +Mz)i + (1− α)
∑
i∈I0

zi + (1− α)
∑
i∈I1

(1− zi).

4.2.2. Algorithmic Description

We will now formally state the scheme of the penalty branch-and-bound method for non-
monotone MILCP in Algorithm 5.

As we have already proven the finiteness and correctness of a more general version of the
algorithm, we can prove correctness and finiteness for this version by reduction.

Theorem 4.2.7. Algorithm 5 terminates after finitely many steps with a global optimal
solution of Problem 4.1.1.

Proof. Let J = ([n],m) = {1m(1), . . . , nm(n)} be the multiset of all indices with m(i) = 1 for
all i /∈ I and m(i) = 2 for all i ∈ I. Let further Ji = {1, 2} for all i ∈ J and gi1(z) = αzi for
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4.3 Further Enhancements of the Method

Algorithm 5 A Penalty Branch-and-Bound Algorithm for Non-Monotone MILCPs
Input: q ∈ Rn, M ∈ Rn×n, I ⊆ [n], α ∈ (0, 1)
Output: A global optimum z∗ of Problem 4.1.1.
Set N ← {(∅, ∅, ∅, ∅)}, finc ←∞, and z∗

inc ← none.
while N ̸= ∅ do

Choose N = (I0, I1, C0, C1) ∈ N and set N ← N \ {N}.
Compute z∗

N ∈ argmin{fN (z) : z ∈ Z}.
if f(z∗

N ) < finc do
Set z∗

inc ← z∗
N and finc ← f(z∗

N ).
if fN (z∗

N ) < finc and (I \ (I0 ∪ I1) ̸= ∅ or ([n] \ (C0 ∪ C1) ̸= ∅) do
Choose j1 ∈ I \ (I0 ∪ I1) and
set N ← N ∪ {(I0 ∪ {j1}, I1, C0, C1), (I0, I1 ∪ {j1}, C0, C1)}
or
Choose j2 ∈ [n] \ (C0 ∪ C1) and
set N ← N ∪ {(I0, I1, C0 ∪ {j2}, C1), (I0, I1, C0, C1 ∪ {j2})}.

return z∗
inc

every first occurrence of the index i in the multiset J and gi1(z) = (1−α)zi for every second
occurrence. Let gi2(z) = α(q+Mz)i for every first occurrence of the index i in the multiset
J and gi2(z) = (1− α)(1− zi) for every second occurrence. Let h(z) = 0 and X = Z. Now,
Problem 4.1.1 is in the form of Problem 3.1.1 and correctness of Algorithm 5 follows from
Theorem 3.1.8.

4.3. Further Enhancements of the Method

Again, there are different ways to improve the performance of our algorithm. We have not
specified how to choose the next branching index j1 ∈ I or j2 ∈ [n] or how to choose the next
unsolved subproblem N in Algorithm 5. Again, there are also different ways to compute
the optimal solution of a node problem. For example, we can warmstart each node to solve
the node quicker or we can implement cutting planes to improve lower bounds.

4.3.1. Choosing the Branching Index

In most branch-and-bound methods, the branching is solely done on the binary or integrality
constraints. Here, we have a different situation. In this special case, we not only need to
decide on an index, but we also need to decide on the type of branching.

For the choice of the branching type, we propose four different strategies. We can either
choose the type randomly, we can choose complementarity branching for as long as there are
candidates and only then consider binary branching, we can do the same with reversed roles
or we can base the choice of branching type on the same score that we use to choose the
index to branch on as we did with pseudocost and MIQP-based branching in Section 2.3.
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4. Solving Non-Monotone Mixed-Integer Linear Complementarity Problems

For the choice of the branching index we propose two branching strategies, that we have
already used for the monotonic case and that are well known from classic branch-and-bound
methods. The first is a direct adaption of “pseudocost branching”. Unfortunately, there is
no direct analogy for our “MIQP-based branching” from Section 2.3.1, which is why we have
to modify that approach. We call that approach “preprocessed order branching”. We will
also consider the random choice of the index and choosing the constraint that is violated
the most as benchmark strategies.

In our numerical experiments, we compare different combinations of type and index choice
strategies. For the benchmark strategies we use the following combinations. For the random
index choice strategy, we also choose the type of branching at random with a proportional
probability, i.e., the probability of choosing binary branching is the ratio of the number
of binary branching candidates to the number of complementarity branching candidates.
For the most-violated index choice, we test two different approaches, one where we start
by branching on all binary candidates first and then on the complementarity branching
candidates and one where we do it the other way around. For the score-based strategies
that we will discuss in the following, where we use the candidate with the highest score, we
will also use the corresponding branching type, i.e., we compute the scores for all candidates
of both branching types and choose the index and type of the highest scoring constraint.

Pseudocost Branching

We have already described the principles of pseudo-cost branching in Section 2.3.1 and we
will describe the adjustments for this specific problem now.

Let φ1
N,j be the objective gain per unit change when we branch upwards on variable j ∈ I

at node N :
φ1

N,j :=
f(z∗

N1
)− f(z∗

N )
⌈(z∗

N1
)j⌉ − (z∗

N1
)j
.

Here, N1 is the child of N created by upwards branching. We denote by ψ1
j the expected

objective gain per unit change when we branch upwards on variable j. To this end, let N j

be the set of nodes where j ∈ I is chosen as the variable to branch on. Then, we define ψ1
j

as
ψ1

j := 1
|N j |

∑
Nj

φ1
N,j .

Analogously, we can define φ0
N,j and ψ0

j for downwards branching on variable j ∈ I, φl
N,j

and ψl
j for leftward branching on variable j ∈ [n] and φr

N,j and ψr
j for rightward branching

on variable j ∈ [n], but have to change the denominator for the definition of the different
φN,j . For downwards branching, the denominator has to be (z∗

N0
)j −⌊(z∗

N0
)j⌋, for leftwards

branching the denominator is just (z∗
Nl

)j and for rightwards branching it is (q+M(z∗
Nr

)j)i.
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4.3 Further Enhancements of the Method

The average gain is then calculated as

sI
j := µmin

{
ψ0

j · ((z∗
N0)j − ⌊(z∗

N0)j⌋), ψ1
j · (⌈(z∗

N1)j⌉ − (z∗
N1)j)

}
+ (1− µ) max

{
ψ0

j · ((z∗
N0)j − ⌊(z∗

N0)j⌋), ψ1
j · (⌈(z∗

N1)j⌉ − (z∗
N1)j)

}
with µ ∈ (0, 1) for binary branching and

sC
j := µmin

{
ψl

j · (z∗
Nl

)j , ψ
r
j · (q +M(z∗

Nr
)j)i

}
+ (1− µ) max

{
ψl

j · (z∗
Nl

)j , ψ
r
j · (q +M(z∗

Nr
)j)i

}
with µ ∈ (0, 1) for complementarity branching. Then, the pseudocost-based branching
candidate is the branching type and index j with the largest score sI

j or sC
j . At the beginning

of our branch-and-bound, we initialize the average ψ0,1,l,r
j with 1. If at a certain node N ,

we have not yet branched on a candidate j, namely N j = ∅, we initialize ψ0,1,l,r
j with the

average of all other ψ0,1,l,r
i for i ∈ I with i ̸= j or i ∈ [n] with i ̸= j respectively for which

N i ̸= ∅.

Preprocessed Order Branching

We want to adapt the MIQP-based approach from Section 2.3.1 as the resulting MIQPs
used would not be convex for non-monotone MILCP. Again, we propose a strategy based
on solving an optimization problem for each branching candidate in the presolve phase of
the algorithm. Again, we aim at sorting the indices of variables so that we branch on those
indices first that are expected to give good lower bounds on the optimal solution. For every
index j ∈ [n], we solve the following problem with a single integer variable:

min
z∈Rn

min{zj , (q +Mz)j} (4.3.1a)

s.t. q +Mz ≥ 0, z ≥ 0, (4.3.1b)
zj ∈ {0, 1}. (4.3.1c)

We achieve this, by solving two MILPs, one in which the objective function is zi and one
in which the objective function is (q + Mz)i, and taking the minimal objective value of
both optimal solutions. For indices i /∈ I Constraint (4.3.1c) is omitted. As discussed
before, we know that it is likely that the overall MILCP has no solution and that this is
due to the combination of complementarity and integrality constraints. By solving all 2n
many MILPs (4.3.1) we measure the impact of the every variable on the infeasibility of
the problem (if it is infeasible at all). The indices j ∈ [n] are then sorted with decreasing
optimal objective function values of Problem (4.3.1). Moreover, infeasible problems are
formally assigned the objective function value ∞. The resulting branching strategy then
chooses the branching candidate on top of the list while skipping all integer-feasible indices
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as well as all indices that have been branched on already and performs both binary and
complementarity branching (if possible).

4.3.2. Choosing the Next Subproblem to Solve

In our implementation of the penalty branch-and-bound algorithm, we consider the same
three different node selection strategies as before. The first two are depth- and breadth-first
search. The third strategy will again be referred to as the “lower bound push strategy”.

From Lemma 3.1.7, we know that the optimal value fN (z∗
N ) of the problem defined at a

node N is a local lower bound for the subtree rooted in N . Hence, the global lower bound is
the smallest value among the lower bounds obtained from nodes that have unsolved children.
As the node to be solved next, we thus select the child of the node N that has the lowest
objective value fN (z∗

N ). When both children of N are not yet solved we take the left child
if zi ≤ 0.5 and integer branching was chosen with i being the last branching index or if
zi ≤ (q +Mz)i and complementarity branching was chosen with i being the last branching
index and the right child otherwise. Then, we choose the child node with the smaller value
as we would expect this to result in a smaller lower bound. This lower bound may then be
improved in the new node.

In our numerical experiments, we consider depth- and breadth-first search strategies as a
benchmark for the lower bound push strategy.

4.3.3. Warmstarting the Node Problems

Recall that the feasible set stays the same over the entire search tree and that the objective
functions change only slightly from a parent node to its child nodes. This allows for warm-
starting the LP solver for solving the child nodes. To this end, we take the optimal primal
basis of the parent node as the starting basis for the child nodes.

4.3.4. Implementing Valid Inequalities

From Theorem 3.1.11 we know that we can add simple cuts without changing the correctness
of the algorithm. In our case, there are two different types of simple cuts. For every
index j ∈ I that we have branched on binary and downwards in a node N , we can include
zj ≤ 0.5 as a constraint in that node. This is because any point violating that cut would
yield an even better result in the sibling node that is the same only with upwards branching.
The same holds analogously for upwards branching on index j ∈ I and the cut zj ≥ 0.5.
For the complementarity branching, the cuts are zj ≤ (q +Mz)j for any index j ∈ [n] that
we have branched on leftwards and zj ≥ (q + Mz)j for any index j ∈ [n] that we have
branched on rightwards. Correctness of these cuts follows from Theorem 3.1.11. We will
test the inclusion of different combinations of these cuts.
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4.4. Numerical Results

In Section 4.3 we proposed various ways to improve the overall performance of our method.
In this section, we will present the results of the numerical experiments we conducted to
compare the different techniques performance-wise. We tested all types of enhancements
independently of each other. For every test we take, the best settings from previous tests
together with “standard” settings for untested parameters is used. We start with a test
of the different branching rules in Section 4.4.1, followed by a test of the node selection
strategies in Section 4.4.2, different warm starting techniques in Section 4.4.3, and different
strategies for the inclusion of valid inequalities in Section 4.4.4. Afterwards, we test our
method with the best setting we identified against a benchmark approach.

The test setup is the same as for the numerical experiments in Section 2.4. We imple-
mented the penalty branch-and-bound method presented in Section 4.2 in Python 3.7. All
node problems are solved with the LP solver of Gurobi 9.1.2 and all the tests were run
on an Intel Xeon CPU E5-2699 v4 @ 2.20 GHz (88 cores) with 756 GB RAM. In this sec-
tion, MILCP-PBB refers to the implementation of Algorithm 5. The test instances we use are
constructed at randomly in a similar fashion to the instances of Section 2.4. The matrices
M ∈ Rn×n have been created using the sprandsym function of MATLAB for sizes

n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

We then again built vectors q ∈ Rn in four different ways, each reflecting a certain
“degree of feasibility” in the resulting instance. Let z∗ ∈ Rn be a solution of an instance of
Problem 2.1.3. Then, it satisfies

(i) Feasibility w.r.t. Z: z∗ ∈ Z,

(ii) Integrality: z∗
i ∈ {0, 1} for all i ∈ I,

(iii) Complementarity: (z∗)⊤(q +Mz∗) = 0.

The vectors q have been created to satisfy at least one of the conditions above. Again, we
built instances for which z ∈ Rn exists so that

(a) only Condition (i) is guaranteed to be satisfied,

(b) only Conditions (i) and (ii) are guaranteed to be satisfied,

(c) only Conditions (i) and (iii) are guaranteed to be satisfied,

(d) all Conditions (i)–(iii) are guaranteed to be satisfied.

We created 10 instances for every size n and the types (a)–(d), yielding 400 different
instances in total. More details on how the test set has been built can be found in Ap-
pendix D.
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For the comparisons presented in this section we again use logarithmic performance pro-
files in the sense of Dolan and Moré (2002) as well as tables with the most important
statistical measures. For the tables, we aggregated all instances that have been solved by
all parameter settings or solution approaches for the specific test w.r.t. the instance size.
The first column always states the dimension n of the problem. The second column contains
the arithmetic mean of node counts and running times respectively for all instances solved
by every parameterization. The next columns contain the median, the minimum, and the
maximum value of the data set. The sixth and seventh column contain the 0.25-quantile,
i.e., the node count or running time after which 25 % of instances were solved, as well as the
0.75-quantile. The next column contains the geometric shifted mean. The shift is 100 for
the node counts and 10 for the running times. The last column contains the percentage of
instances solved to global optimality for the parameterization and instance size. The best
value for every measure and instance size among all tables for that test is printed bold. The
table of the winning setting, i.e., the best performing parameterization, is included in this
section whereas the tables of the other settings are included in Appendix E.

The timelimit for these tests is set to 1 h.

4.4.1. The Impact of Different Branching Rules

We now compare the performance of MILCP-PBB when equipped with the five different
branching rules. Two of these strategies are the pseudocost branching rule and the prepro-
cessed order branching described in Section 4.3.1, where we also choose the branching type
according to the score. The other three are the naive approaches described in Section 4.3.1.
One is a random branching decision, where the decision between complementarity and in-
teger branching is made at random but proportional to the number of possible branching
candidates. The other two approaches are strategies, where the index of the most-violated
constraint is used as the branching index. One time we start with all possible complemen-
tarity branching decisions and then all integer branching decisions and the second time we
do it the other way around. For these tests, the node selection strategy is set to breadth-first
search, warmstarts are disabled, and no valid inequalities are added. For the pseudocost
branching strategy, we set µ = 0.5. We exclude 83 instances from the test set since no
parameterization was able to solve them within the time limit. Figure 4.1 displays the per-
formance profiles w.r.t. the required number of branch-and-bound nodes (left figure) and
running times (right figure).

One can see that the performance of the preprocessing order branching is the worst both
in regards to the nodecount and the runtime, with the random choice being only slightly
better. The pseudocost branching and the most violated approach, where integer branching
is done first, are very close performance-wise, while the most violated approach, where
complementarity branching is done first, is the clear winner.

The conclusions that can be drawn from the statistical measures as displayed in Table 4.1
(and Tables E.1–E.4 in the appendix) are less unambiguous with a wider spread of best
results among methods. It also has to be noted, that the sample size for the larger instance
sizes are rather small, for example for n = 60 only one instance was solved by all methods.
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Figure 4.1.: Performance profiles for the number of branch-and-bound nodes (left) and the running time (right) of
all branching rules

Nevertheless, the most-violated branching rule with complementarity branching done first
appears to be the best and for some measures it can be seen, that both random branching
and our preprocessing rule are significantly worse.

Table 4.1.: Aggregated nodecounts (top) and runtimes (bottom) for the branching rule test with most fractional
branching and complementarity branching done first

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 6.0 5.0 1.0 31.0 3.0 7.0 5.9 100
20 49.2 18.0 5.0 345.0 11.0 56.5 38.6 100
30 431.1 149.0 33.0 3545.0 49.0 429.0 227.4 100
40 1726.7 207.0 33.0 10255.0 64.0 651.0 420.0 100
50 141.0 75.0 65.0 517.0 75.0 90.0 112.7 100
60 87.0 87.0 87.0 87.0 87.0 87.0 87.0 85

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0 100
20 0.2 0.1 0.0 1.4 0.1 0.2 0.2 100
30 3.9 1.4 0.3 32.8 0.5 3.8 3.0 100
40 31.0 3.6 0.7 188.4 1.3 11.4 11.7 100
50 4.1 2.5 2.3 13.8 2.4 2.7 3.7 100
60 4.4 4.4 4.4 4.4 4.4 4.4 4.4 85
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Figure 4.2.: Performance profiles on the number of branch-and-bound nodes (left) and the running time (right) of
all node selection strategies.

4.4.2. The Impact of Different Node Selection Strategies

We now compare the three node selection strategies described in Section 4.3.2. To this end,
we use the most violated branching strategy with complementarity branching done first,
while warmstarts and valid inequalities are disabled. We exclude 77 instances from the set
since no parameterization of our method is able to solve them within the time limit. It
can be seen in Figure 4.2, that for this test the choice of the node selection strategy had a
significant impact on the performance, with the depth-first search approach being the clear
winner and our lower bound push strategy being the clear runner-up.

The statistical measures we present in Tables 4.2, E.5, and E.6 support the conclusions.
For most measures the depth-first search strategy performs best, followed by the lower-
bound-push strategy.

4.4.3. The Impact of Warmstarts

We now compare the performance of MILCP-PBB with and without warmstarts. To this
end, we use the most violated branching strategy with complementarity branching done first,
the depth-first search node selection strategy, and avoid the use of any valid inequalities.
Again, we tried two different techniques within Gurobi to warm start the node problems.
First, we used the Gurobi attributes VBasis and CBasis, i.e., we started every node problem
with the optimal basis of its parent node. Second, we used the attributes PStart and DStart,
where the optimal basis vector of the parent node is computed from the optimal solution. In
case that warmstarts are used, we need to solve the node problems using the primal simplex
method within Gurobi. We exclude 75 instances from the set as no parameterization is able
to solve them within the time limit. Unfortunately, warmstarts do not help to reduce the
running time; see Figure 4.3 (right). Again, the difference in the nodecount comes from
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Table 4.2.: Aggregated nodecounts (top) and runtimes (bottom) for the node selection test with depth-first search

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 6.0 5.0 1.0 31.0 3.0 7.0 5.9 100
20 49.2 18.0 5.0 345.0 11.0 56.5 38.6 100
30 431.1 149.0 33.0 3545.0 49.0 429.0 227.4 100
40 1726.7 207.0 33.0 10255.0 64.0 651.0 420.0 100
50 141.0 75.0 65.0 517.0 75.0 90.0 112.7 100
60 87.0 87.0 87.0 87.0 87.0 87.0 87.0 85

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0 100
20 0.2 0.1 0.0 1.3 0.0 0.2 0.2 100
30 3.6 1.4 0.2 30.5 0.4 3.3 2.8 100
40 27.0 3.2 0.3 168.2 1.2 8.1 10.7 100
50 3.9 2.4 1.9 13.1 2.2 2.9 3.6 100
60 3.0 3.0 3.0 3.0 3.0 3.0 3.0 85

the different solution methods used for the node problems, which might result in different
optimal solutions for node problems with non-unique optimal solutions. In such a case,
using warmstarts or not might lead to different solutions of the node problems, which, in
turn, affects the overall search tree. The picture that Tables 4.3, E.7, and E.8 paint is a
little different. Here, parameters VBasis and CBasis are best for most measures and sizes,
but as there is no clear improvement overall, we will continue without warmstarts.

Table 4.3.: Aggregated nodecounts (top) and runtimes (bottom) for the warm start test using VBasis/CBasis

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 5.2 4.0 1.0 23.0 3.0 5.5 5.1 100
20 27.5 15.0 3.0 165.0 11.0 29.5 24.4 100
30 286.0 151.0 7.0 2193.0 41.0 315.0 176.9 100
40 930.0 169.0 29.0 5531.0 53.0 703.0 314.2 100
50 196.7 65.0 53.0 983.0 59.0 79.0 116.1 100
60 81.0 81.0 81.0 81.0 81.0 81.0 81.0 88

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0 100
20 0.1 0.1 0.0 0.7 0.1 0.1 0.1 100
30 2.7 1.5 0.1 21.2 0.4 2.9 2.3 100
40 17.3 2.8 0.6 107.1 1.0 12.2 8.5 100
50 5.8 2.1 1.7 28.1 2.0 2.5 4.3 100
60 4.3 4.3 4.3 4.3 4.3 4.3 4.3 88

67



4. Solving Non-Monotone Mixed-Integer Linear Complementarity Problems

0 1 2 3 4 5
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Fr

ac
tio

n 
of

 in
st

an
ce

s s
ol

ve
d

Warmstart Off
VBasis/CBasis
PStart/DStart

0 1 2 3 4 5
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n 

of
 in

st
an

ce
s s

ol
ve

d

Warmstart Off
VBasis/CBasis
PStart/DStart

Figure 4.3.: Performance profiles for the number of branch-and-bound nodes (left) and the running time (right) of
the warmstart test.

4.4.4. The Impact of the Inclusion of Valid Inequalities

We tested four different settings for the valid inequalities test with the cuts described in
Section 4.3.4. We compared our method without cuts, with all binary cuts, all complemen-
tarity cuts, and all simple cuts. The binary cuts can be set up at no computational cost and
therefore it is to be expected that they only have a minimal impact on the computational
time required to solve the node problems since they are merely variable bounds. The inclu-
sion of the complementarity cuts might lead to higher computational costs, as they are dense
linear inequalities in general. For this test, the branching rule is set to the most violated
branching strategy with complementarity branching done first, the node selection strategy
is set to depth-first search, and warmstarts are disabled. 88 instances were excluded for this
test. As it can be seen in Figure 4.4, incorporating the binary cuts has almost no impact
both on the number of branch-and-bound nodes as well as on the running time, while the
complementarity cuts slow down the solution process significantly. From Tables 4.4 and E.9
to E.11 we can see, that this is not due to the number of nodes needed, as the measures
are rather similar, but that the runtime increases so much that a lot of the more difficult
instances cannot be solved within the timelimit. In the tables, the version without any cuts
dominates slightly, which is why we choose that setting for the following test.

4.4.5. Testing the Method Against a Commercial Benchmark Approach

From the preliminary numerical tests we know that the best parameterization of MILCP-
PBB uses the most violated branching strategy with complementarity branching done first,
uses depth-first-search as the node selection strategy, adds no simple cuts and warmstarts
are disabled.
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Figure 4.4.: Performance profiles for the number of branch-and-bounds nodes (left) and the running time (right) for
the valid inequality test.

Table 4.4.: Aggregated nodecounts (top) and runtimes (bottom) for the valid inequality test without cuts

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 6.0 5.0 1.0 31.0 3.0 7.0 5.9 100
20 49.2 18.0 5.0 345.0 11.0 56.5 38.6 100
30 431.1 149.0 33.0 3545.0 49.0 429.0 227.4 100
40 1726.7 207.0 33.0 10255.0 64.0 651.0 420.0 100
50 141.0 75.0 65.0 517.0 75.0 90.0 112.7 100
60 87.0 87.0 87.0 87.0 87.0 87.0 87.0 85

10 0.0 0.0 0.0 0.1 0.0 0.1 0.0 100
20 0.2 0.1 0.0 1.4 0.1 0.2 0.2 100
30 4.0 1.5 0.3 33.1 0.5 4.0 3.1 100
40 31.9 3.6 0.6 190.3 1.3 11.7 12.0 100
50 4.1 2.4 2.2 13.7 2.4 2.9 3.7 100
60 4.6 4.6 4.6 4.6 4.6 4.6 4.6 85

In order to compare MILCP-PBB with other approaches from the literature, we again
consider the MILP Reformulation 2.1.5, that was proposed in Gabriel et al. (2013a). Re-
member, that the drawback of Model 2.1.5 is that it requires to determine sufficiently large
big-B constraints. For the test we used B = 105. When 2.1.5 is solved using Gurobi, all
presolve techniques and heuristics have been disabled. For obtaining a fair comparison, we
further restrict both the MILP solver of Gurobi and the LP solver of Gurobi used for solving
the nodes within MILCP-PBB to only use a single thread. For this test, 88 instances are
excluded.
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Figure 4.5.: Performance profiles for the number of branch-and-bound nodes (left) and the running time (right) for
the MILP reformulation and MILCP-PBB.

Table 4.5.: Aggregated nodecounts (top) and runtimes (bottom) for the solver test for MILCP-PBB

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 6.0 5.0 1.0 31.0 3.0 7.0 5.9 100
20 49.2 18.0 5.0 345.0 11.0 56.5 38.6 100
30 431.1 149.0 33.0 3545.0 49.0 429.0 227.4 100
40 1726.7 207.0 33.0 10255.0 64.0 651.0 420.0 100
50 141.0 75.0 65.0 517.0 75.0 90.0 112.7 100
60 87.0 87.0 87.0 87.0 87.0 87.0 87.0 85

10 0.1 0.1 0.0 0.1 0.1 0.1 0.1 100
20 0.2 0.1 0.0 1.4 0.1 0.2 0.2 100
30 4.0 1.4 0.3 33.5 0.4 3.9 3.1 100
40 32.0 3.5 0.6 193.1 1.2 11.1 11.9 100
50 4.2 2.7 2.2 14.0 2.4 2.8 3.8 100
60 4.7 4.7 4.7 4.7 4.7 4.7 4.7 85

Figure 4.5 shows the performance profiles of MILCP-PBB and Gurobi for the MILP w.r.t.
the number of nodes and running times. It can be seen that MILCP-PBB needs both signif-
icantly fewer nodes, and less runtime. More details can be found in Tables 4.5 and E.12. It
is evident that our approach clearly outperforms the benchmark approaches for all measures
and sizes, even though the MILP reformulation is faster on the easier instances, probably
due to inefficiencies in our Python implementation.

70



Chapter 5
Tackling Mixed-Integer Linear Problems

As the class of MILCP is a rather specific one, we want to investigate a more general
class of problems in detail. As mentioned before, one of the biggest and most important
problem classes is the class of MILP. We have already described these problems in Defini-
tion 1.1.1. MILPs are probably the most and best studied class of optimization problems, so
improvements would be a huge achievement. For MILPs, there are a lot of different solution
approaches and problem specific enhancements for branch-and-bound methods, such as a
zoo of different valid inequalities, branching rules, node selection strategies and heuristics.
We want to add another possible solution method to this research and will therefore study
different aspects of solving these problems with our penalty branch-and-bound methods. In
Section 5.1 we give a penalty reformulation of MILP that we can solve with our method
and we will present different theoretical results on the possibilities of finding exact solutions
as well as possibilities to establish lower and upper bounds on the solution of MILP. In
Section 5.2 we present different ways on how we might be able to improve the performance
of our method and in Section 5.3 we present the results of different numerical experiments.
In that section, we test the different possible enhancements and compare our method to
different benchmark approaches for computing lower bounds, upper bounds and exact so-
lutions both in the sense of runtime and quality of the bounds found. In this section, we
assume that the MILPs and their linear relaxations are bounden from below.

5.1. Reformulating Mixed-Integer Linear Problem with
Penalty Terms

We have already discussed the general principles of penalty reformulations in Section 1.1.2.
In order to use our penalty branch-and-bound method, we can again replace the binary
constraints by the penalty function PI introduced in Section 1.1.2 as we already did in
Chapters 2 and 4. This leads to the following reformulation.
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Reformulation 5.1.1 (Penalty Reformulation for MILPs). The MILP 1.1.1 can be refor-
mulated as

min
x∈Rn

c⊤x+ µ
∑
i∈I

min{xi, 1− xi} (5.1.1a)

s.t. Ax ≤ b, (5.1.1b)
x ≥ 0, (5.1.1c)
xI ∈ [0, 1]I , (5.1.1d)

with µ ∈ R>0 being sufficiently large.

One can see that this reformulation is very similar to Reformulation 2.1.6. Only the first
term of the objective function is linear instead of quadratic and the feasible set is a different
polytope. Therefore, we can apply a lot of the ideas from Chapter 2 to this problem class.

As we mentioned before, the value of µ is relevant for the exactness of the reformulation.
We first want to show, that independent of the value of µ, Reformulation 5.1.1 delivers a
lower bound on the optimal objective value of Problem 1.1.1.

Lemma 5.1.2. The optimal objective value of Reformulation 5.1.1 is a lower bound for the
optimal objective value of Problem 1.1.1 for any µ > 0.

Proof. Let x∗ be an optimal solution of Problem 1.1.1 and x̄ an optimal solution of Refor-
mulation 5.1.1. Let us assume that our claim is not true and that

c⊤x̄+ µPI(x̄) > c⊤x∗.

Because x∗ is integer feasible, we have

c⊤x̄+ µPI(x̄) > c⊤x∗ + µPI(x∗),

which is a contradiction to the optimality of x̄.

The next big question big question is the existence of a large-enough µ and how to identify
such a µ. For binary-constrained optimization problems with a linear objective function and
a convex feasible set, sufficient conditions have been presented for example in De Santis and
Rinaldi (2012). As MILPs are of that form, we can use these conditions and simplify them.

In what follows, we will use P := {x ∈ Rn
≥0 : Ax ≤ b, xI ∈ [0, 1]I} as the feasible set of

the linear relaxation of a MILP as described in Definition 1.1.2.

Lemma 5.1.3. Let P be a polytope with at least one fractional extreme point. Let u be an
upper bound on the optimal value of Problem 1.1.1 and l be the optimal objective value of
the linear relaxation. Let ε > 0 be such that

¯
x > ε and 1− x̄ > ε with

¯
x := min

x∈S
L(x), x̄ := max

x∈S
U(x),
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5.1 Reformulating Mixed-Integer Linear Problem with Penalty Terms

where

L(x) :=
{

min{xi : i ∈ I, xi ̸= 0}, if xI ̸= 0,
1, else,

U(x) :=
{

max{xi : i ∈ I, xi ̸= 1}, if xI ̸= 1,
0, else.

and S ⊂ Rn is the set of extreme points of P . Then for µ > u−l
ε any optimal solution of

Reformulation 5.1.1 constitutes an upper bound on the optimal solution of the MILP 1.1.1,
if the MILP is feasible.

Proof. Let µ ∈ R be such that µ > u−l
ε . Let x′ ∈ S be such that there exists a j ∈ I with

x′
j /∈ {0, 1}. We then have

PI(x′) ≥ min{x′
j , 1− x′

j}
≥ min{L(x′), 1− U(x′)}
≥ min{min

x∈S
L(x), 1−max

x∈S
U(x)}

= min{
¯
x, 1− x̄} > ε.

Hence we have that
PI(x)
ε

> 1 for all x ∈ S with xI /∈ {0, 1}I .

Now let x∗ be an optimal solution of Problem 1.1.1. We first assume, that there is a point
x̄ ∈ S, for which

c⊤x̄+ µPI(x̄) < c⊤x∗ + µPI(x∗) = c⊤x∗.

If x̄I ∈ {0, 1}I , we have a contradiction to the optimality of x∗. Therefore assume, that
x̄I /∈ {0, 1}I . We then get

c⊤x̄+ µPI(x̄) ≥ l + µPI(x̄)

> l + u− l
ε

PI(x̄)

> l + u− l
= u

≥ c⊤x∗,

which is a contradiction to our assumptions about x̄. Therefore, c⊤x̄+ µPI(x̄) ≥ c⊤x∗. the
optimal objective value of Problem 1.1.1 is smaller or equal to the optimal objective value
of Problem 5.1.1.
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Unfortunately, in general we do not know the value of
¯
x and x̄ a priori. There are

some exceptions, such as the edge formulation of the independent set problem, where all
coordinates of all extreme points of the polytope have values in {0, 0.5, 1}, but for most
problems, the value of ε would have to be guessed.

But, these sufficient conditions give additional hints on how to estimate the parameter µ.
A nice corollary from this is the following.
Corollary 5.1.4. For every instance of MILP 1.1.1 there exists a µ ∈ R>0, so that any
optimal solution of Reformulation 5.1.1 is also an optimal solution of the MILP 1.1.1.
Proof. By definition, we have

¯
x > 0 and x̄ < 1. Therefore, there exists a ε > 0 with

ε < min{
¯
x, 1− x̄} and from Lemma 5.1.2 we know, that any µ delivers a lower bound and

from Lemma 5.1.3 we know that any µ > u−l
ε also delivers an upper bound. Therefore,

there exists a µ for which the reformulation is exact.

We now want to give an algorithmic description of how our penalty branch-and-bound
method can solve Reformulation 5.1.1. As mentioned before, the reformulation is very
similar to the reformulation from Chapter 2, so the algorithm is very similar to Algorithm 2.
Therefore, we will use the same notation. We will use N = (I0, I1) as a way to identify
nodes, where I0 ⊆ I is the set of indices, we have branched on downwards up to that point
in the tree and I1 ⊆ I is the set of indices, we have branched on upwards. Further, fN

defines the function at node N , i.e.,

fN (x) := c⊤x+ µ
∑
i∈I0

xi + µ
∑
i∈I1

(1− xi).

Algorithm 6 A First Penalty Branch-and-Bound Algorithm for MILPs
Input: c ∈ Rn, P ⊆ Rn, I ⊆ [n], µ > 0
Output: A global optimum z∗ of Problem 5.1.1.
Set N ← {(∅, ∅)}.
Set finc ←∞, x∗

inc ← none.
while N ̸= ∅ do

Choose N = (I0, I1) ∈ N and set N ← N \ {N}.
Compute x∗

N ∈ argmin{fN (x) : x ∈ P}.
if x∗

N exists and f(x∗
N ) < finc then

Set x∗
inc ← x∗

N and set finc ← f(x∗
N ).

if fN (x∗
N ) < finc and there is a j ∈ I \ (I0 ∪ I1) with (x∗

N )j /∈ {0, 1} then
Choose j ∈ I \ (I0 ∪ I1) with (x∗

N )j /∈ {0, 1}.
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}.

return x∗
inc

Theorem 5.1.5. Algorithm 6 terminates after finitely many steps with a global optimal
solution of Problem 5.1.1, if the root node is bounded.
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Proof. Let Ji = {1, 2} for all i ∈ I and gi1(z) = µzi and gi2(z) = µ(1− zi). Let h(z) = c⊤x
and X = P . Now, Problem 5.1.1 is in the form of Problem 3.1.1 and the correctness of
Algorithm 6 follows from Theorem 3.1.8.

5.1.1. Lower and Upper Bounds

We now want to discuss the possibility to find lower and upper bounds for Problem 1.1.1
with our penalty branch-and-bound method. Normally, lower bounds are computed by
solving the linear relaxation of the problem, which we have described in Definition 1.1.2.
There, the lower bound does not take into account the integrality constraints at all. As
shown above, we can also establish lower bounds with our algorithm and an arbitrary µ.
This comes in handy, as we cannot determine, how big the penalty parameter µ has to be
in order to solve Problem 1.1.1 a priori. We can do something similar in order to find upper
bounds for Problem 1.1.1 while not solving the underlying MILP directly. Instead of using
a penalty parameter that might be too small, we ignore the original objective function and
solve the following problem:

min
x∈Rn

∑
i∈I

min{xi, 1− xi} (5.1.2a)

s.t. x ∈ P. (5.1.2b)

With this problem, we have the penalty reformulation of a feasibility problem as we
discussed in Section 1.1.2. Therefore, by solving Problem 5.1.2 with Algorithm 6, we will
find a feasible point for Problem 1.1.1, if there is one, or else show, that no such point exists.

5.1.2. Exact Solutions

With the results of the previous section, we can state an algorithm, that provably solves
Problem 1.1.1 with our penalty branch-and-bound method. Please note that the way µ is
increased can also be done differently, as long as it will become strictly larger withe every
iteration.

Algorithm 7 An Exact Penalty Branch-and-Bound Algorithm for MILPs
Input: c ∈ Rn, P ⊆ Rn, I ⊆ [n]
Output: A global optimum x∗ of Problem 1.1.1.
Set µ← 1, x∗ ← None
while x∗

I /∈ {0, 1}I do
Compute x∗ ∈ argmin{c⊤x+ µ

∑
i∈I min{xi, 1− xi} : x ∈ P} with Algorithm 6.

Set µ← 10µ
return x∗
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Theorem 5.1.6. Algorithm 7 terminates after finitely many steps with a global optimal
solution of Problem (1.1.1).

Proof. From Lemma 5.1.2, we know, that the optimal solution of Problem 5.1.1 is a lower
bound for every µ > 0, i.e.,

c⊤x̄+ µ
∑
i∈I

min{xi, 1− xi} ≤ c⊤x∗

with x̄ being an optimal solution of Problem 5.1.1 and x∗ being an optimal solution of
Problem 1.1.1. From Corollary 5.1.4 we know, that there is a finite µ > 0, for which
any optimal solution of Reformulation 5.1.1 is also an optimal solution of the MILP 1.1.1.
Therefore, after finitely many increments of the parameter µ, we will get a point x̄ with
x̄I ∈ {0, 1}I . Now, we have

c⊤x̄ ≤ c⊤x∗

and x̄ has to be optimal for Problem 1.1.1.

5.2. Further Enhancements of the Method

As we discussed in Sections 2.3 and 4.3, there are various ways to improve the performance
of Algorithms 6 and 7. Again, we can try different ways to choose the next index j ∈ I to
branch on, different ways to choose the next subproblem N ∈ N to solve, different tech-
niques to warmstart the node problems and different strategies to include valid inequalities.
Additionally, we can try different strategies for the choice and increment of the penalty
parameter µ > 0.

As the structure of Problem 5.1.1 is very similar to the structure of Problem 2.1.6, we can
employ the same strategies. Therefore, as branching rules we will test the random choice of a
branching index, choosing the index, for which the corresponding binary constraint is most-
violated and the two more sophisticated methods we described in Section 2.3, “pseudocost
branching” and the “MIQP-based branching”, which will be MILP-based for this problem
class. For the node selection strategy we compare breadth-first search and depth-first search
with the “lower bound push” strategy described in Section 2.3. For the warmstart, we try
to increase the performance by using the optimal basis vector of a node problem as the start
basis vector for its child nodes and use the primal simplex to solve node problems. For the
valid inequalities we try to include the binary simple cuts, we have already presented in
Sections 2.3 and 4.3. Preliminary tests showed that by choosing the initial µ according to
Lemma 5.1.3 with ε = 10−3, µ is usually large enough to solve Problem 1.1.1 on the first
try. Therefore, we do not investigate more sophisticated methods of choosing and increasing
the parameter µ.
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5.3. Numerical Results

In this section we present the results of various numerical experiments. In Section 5.3.1,
we present the results of numerical experiments we conducted to compare the different
enhancement techniques performance-wise. We tested all types of enhancements indepen-
dently of each other. For very test we take the best settings from previous tests together with
“standard” settings for untested parameters. After that, we test our method with the best
setting we identified against benchmark approaches with different objectives in Section 5.3.2.

We implemented Algorithm 7 in Python 3.7. All node problems are solved with the LP
solver of Gurobi 9.1.2 and all the tests were run on an Intel Xeon CPU E5-2699 v4 @
2.20 GHz (88 cores) with 756 GB RAM. In this section, we refer to the implementation of
Algorithm 7 as MILP-PBB. As most instances were too difficult for our solver, we consider
instances that we collected from different versions of the MIPLib for our tests. In particular,
we took instances from the MIPLib 2.0 by Bixby et al. (1992), the MIPLib 3.0 by Bixby
et al. (1998), the MIPLib 2003 by Achterberg et al. (2006), the MIPLib 2010 by Koch et al.
(2011), and the MIPLib 2017 by Gleixner et al. (2021). We restricted the test set to instances
without general integer constraints and for versions 3.0 and later we further restricted it to
instances with at most 500 binary variables. This resulted in a total of 235 instances.

For the comparisons of parameterizations and algorithms presented in this section we
again use logarithmic performance profiles in the sense of Dolan and Moré (2002) as well
as tables with the most important statistical measures. For the tables, we aggregated all
instances that have been solved by all parameter settings or solution approaches for the
specific test w.r.t. the instance size. The first column always states the interval of the
dimensions n of the problems. The second column contains the arithmetic mean of node
counts respectively running times for all instances solved by every parameterization. The
next columns contain the median, the minimum, and the maximum value of the data set.
The sixth and seventh column contain the 0.25-quantile, i.e., the node count or running
time after which 25 % of instances were solved, as well as the 0.75-quantile. The next two
columns contain the geometric mean and the geometric shifted mean. The shift is 100 for
the node counts and 10 for the running times. The last column contains the percentage of
instances solved to global optimality for the parameterization and instance size. The best
value for every measure and instance size among all tables for that test is printed bold.
The table of the winning setting, i.e., the best performing parameterization, is included in
this section whereas the tables of the other settings are included in Appendix G. In this
section, the node count is the total number of needed in all trees that were needed to solve
an instance.

The timelimit for these tests is set to 3 h.

5.3.1. Testing the Enhancement Strategies

In this section we conduct a series of tests for the different enhancement techniques discussed
in Section 5.2. We start with a test of the different branching rules, followed by a test of
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Figure 5.1.: Performance profiles for the number of branch-and-bound nodes (left) and the running time (right) of
all branching rules

the node selection strategies, different warm starting techniques, and different strategies for
the inclusion of valid inequalities.

The Impact of Different Branching Rules

We first compare the performance of MILP-PBB when equipped with the four different
branching rules described in Section 5.2. For these tests, the node selection strategy is set
to breadth-first search, warmstarts are disabled, and no valid inequalities are added. For
the pseudocost branching strategy, we set µ = 0.5. We exclude 182 instances from the
test set since no parameterization is able to solve them within the time limit. Figure 5.1
displays the performance profiles w.r.t. the required number of branch-and-bound nodes
(left figure) and running times (right figure). One can see that the different branching
strategies can be divided into two groups in regards to the number of nodes needed. Both
the MILP-based branching and the most violated branching solve the most instances and are
overall dominant. For the runtime, the picture is a little different. Here, the most violated
branching is clearly superior over the MILP-based branching rule as it is less computationally
expensive.

Similar conclusions can be drawn from the statistical measures as displayed in Table 5.1
(and Tables G.1–G.3). Here, the MILP-based branching and the most violated branching
have the best results for most measures and sizes.

The Impact of Different Node Selection Strategies

We now compare the three node selection strategies described in Section 5.2. To this end, we
use the most fractional variable branching strategy, while warmstarts and valid inequalities
are disabled. We exclude 183 instances from the set since no parameterization of our method
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Table 5.1.: Aggregated nodecounts (top) and runtimes (bottom) for the branching rule test with most-fractional
variable branching

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 14802.2 1344.0 45.0 163101.0 48.5 55.5 1885.2 14
≤ 500 7213.0 4644.0 169.0 22975.0 170.3 173.0 2058.8 16
≤ 2000 25053.8 5271.5 7.0 108761.0 7.2 7.7 2358.4 15
≤ 5000 586.3 267.0 29.0 1463.0 30.2 32.6 319.8 43
> 5000 25.5 19.0 3.0 61.0 3.1 3.2 23.7 13

≤ 200 282.2 6.6 0.0 2968.3 0.0 0.0 26.7 14
≤ 500 56.3 39.9 1.0 131.7 1.0 1.0 29.1 16
≤ 2000 1577.1 53.0 0.1 8404.1 0.1 0.1 96.3 15
≤ 5000 27.7 10.9 2.7 69.4 2.7 2.8 17.6 43
> 5000 193.2 6.6 1.0 758.3 1.0 1.0 28.0 13

is able to solve them within the time limit. Based on Figure 5.2, one can notice that again
the node selection strategies only have a minor impact on the performance of the overall
method both in terms of the number of nodes and the running time. While the depth-first
search solves the most instances the fastest, the lower bound push strategy solves slightly
more instances overall.

For the statistical measures we present in Tables 5.2, G.4, and G.5 the depth-first search
also has a slight advantage for most measures and sizes. But, as the lower bound push solved
the most instances, we choose that for our “best-setting” implementation of MILCP-PBB.

Table 5.2.: Aggregated nodecounts (top) and runtimes (bottom) for the node selection test with lower bound push

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 7521.5 1475.0 19.0 82553.0 20.3 23.0 1592.2 14
≤ 500 17443.0 7997.0 147.0 69707.0 148.5 151.4 4911.1 10
≤ 2000 21202.6 4756.0 7.0 121235.0 7.1 7.3 2846.3 17
≤ 5000 1378.0 1378.0 41.0 2715.0 47.7 61.1 530.0 40
> 5000 276.4 161.0 51.0 610.0 51.4 52.3 214.2 16

≤ 200 86.1 4.4 0.0 963.8 0.0 0.0 13.5 14
≤ 500 279.4 74.7 1.1 1262.2 1.1 1.1 85.3 10
≤ 2000 1049.4 88.9 0.1 5947.4 0.1 0.1 117.8 17
≤ 5000 58.7 58.7 2.8 114.6 3.1 3.6 29.9 40
> 5000 450.5 42.1 19.5 2043.6 19.6 20.0 102.2 16
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Figure 5.2.: Performance profiles on the number of branch-and-bound nodes (left) and the running time (right) of
all node selection strategies.

The Impact of Warmstarts

We now compare the performance of MILP-PBB with and without warmstarts. To this end,
we use the most-fractional branching, the lower bound push node selection strategy, and
avoid the use of any valid inequalities. We again tried two different techniques within Gurobi
to warm start the node problems. First, we used the Gurobi attributes VBasis and CBasis,
i.e., we started every node problem with the optimal basis of its parent node. Second, we
used the attributes PStart and DStart, where the optimal basis vector of the parent node
is computed from the optimal solution. Again, we implemented a backup strategy that
disables warmstarts in the case of numerical troubles and then allows that Gurobi chooses
any other method for solving the node problems. We exclude 184 instances from the set as
no parameterization is able to solve them within the time limit. From Figure 5.3 we can
see, that warmstarts do not have a clear impact on the performance. Surprisingly, for the
number of nodes needed the use of parameters VBasis and CBasis has a positive impact.
Again, the difference is due to the occurrence of node problems with non-unique optimal
solutions. In such a case, using warmstarts or not might lead to different solutions of the
node problems, which, in turn, effects the overall search tree. For the runtime, the same
effect cannot be observed and overall the version of MILP-PBB without warmstarts solves
the most instances.

The same can be seen in Tables 5.4, 5.3, and G.6. Both no warmstarts and the warmstarts
using parameters VBasis and CBasis dominate for most measures and sizes. Because the
warmstarts with VBasis/CBasis have an advantage in the number of nodes needed and the
version without warmstarts has an advantage in regards to the number of instances solved
overall, we will continue with both versions of MILP-PBB for the following tests.
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Figure 5.3.: Performance profiles for the number of branch-and-bound nodes (left) and the running time (right) of
the warmstart test.

Table 5.3.: Aggregated nodecounts (top) and runtimes (bottom) for the warmstart test with warmstarts off

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 15121.8 1506.0 19.0 153407.0 20.3 23.0 2032.8 14
≤ 500 17443.0 7997.0 147.0 69707.0 148.5 151.4 4911.1 10
≤ 2000 30327.2 3682.5 7.0 113937.0 26.5 65.5 3459.4 17
≤ 5000 1378.0 1378.0 41.0 2715.0 47.7 61.1 530.0 16
> 5000 1343.7 441.0 51.0 7583.0 51.6 52.9 436.1 40

≤ 200 161.9 4.5 0.0 2460.5 0.0 0.0 14.3 14
≤ 500 253.6 77.2 0.9 1135.7 0.9 0.9 80.7 10
≤ 2000 1822.6 68.7 0.1 7153.0 0.5 1.3 133.6 17
≤ 5000 57.0 57.0 3.4 110.6 3.7 4.2 30.2 16
> 5000 788.8 88.5 20.2 2985.8 20.5 21.0 209.1 40

The Impact of Valid Inequalities

We compare a version of MILP-PBB in which all possible simple cuts are added in every
node with a version of MILP-PBB in which no simple cuts are added. For this test, the
branching rule is set to the most-fractional variable branching rule and the node selection
strategy is set to lower bound push. While we wanted to continue with two different versions
of MILP-PBB, again the warmstarts using VBasis and CBasis are mutually exclusive with
the simple cuts for technical reasons. Hence, we only test the version without warmstarts
for this test. 187 instances are excluded for this test.
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Table 5.4.: Aggregated nodecounts (top) and runtimes (bottom) for the warmstart test using VBasis/CBasis

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 14900.4 1285.0 19.0 149435.0 20.2 22.7 1673.8 16
≤ 500 24306.1 4053.0 209.0 113939.0 209.9 211.8 3616.1 19
≤ 2000 31664.5 2181.0 7.0 122289.0 8.0 10.0 1821.7 17
≤ 5000 735.0 735.0 31.0 1439.0 34.5 41.6 349.0 10
> 5000 278.3 51.0 5.0 1129.0 5.1 5.3 147.7 38

≤ 200 475.3 3.6 0.0 6662.2 0.0 0.1 16.8 16
≤ 500 939.3 52.5 1.6 5372.9 1.6 1.7 92.5 19
≤ 2000 2403.9 72.0 0.1 9471.6 0.2 0.2 107.6 17
≤ 5000 34.7 34.7 3.7 65.6 3.9 4.2 22.2 10
> 5000 174.9 51.3 1.4 437.4 1.4 1.4 67.5 38
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Figure 5.4.: Performance profiles for the number of branch-and-bounds nodes (left) and the running time (right) for
variants with all possible simple cuts and without any.

As can be seen in Figure 5.4, incorporating the simple cuts has a negative impact both
on the number of branch-and-bound nodes as well as on the running time and results in less
instances solved overall. This is also obvious from the results in Tables G.7 and 5.5. For
most measures and instance sizes, the approach without the simple cuts outperforms the
method with all cuts both w.r.t. the node counts and the running times.

5.3.2. Various Benchmark Tests

We know want to compare our best-setting variants of MILP-PBB against Gurobi. For a
fairer comparison, we disabled cutting planes, heuristics, and presolve for Gurobi. Further,
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Table 5.5.: Aggregated nodecounts (top) and runtimes (bottom) for the valid inequalities test without cuts

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 14468.4 1497.0 19.0 153407.0 20.4 23.2 1997.4 40
≤ 500 25922.0 16917.0 147.0 69707.0 187.5 268.6 7151.8 10
≤ 2000 44314.9 9567.0 7.0 169097.0 46.0 124.1 8199.4 14
≤ 5000 1378.0 1378.0 41.0 2715.0 47.7 61.1 530.0 16
> 5000 1194.4 301.0 51.0 7583.0 51.7 53.2 387.1 17

≤ 200 350.2 5.0 0.0 5272.4 0.0 0.0 22.0 40
≤ 500 533.5 347.9 1.5 1436.8 1.9 2.7 151.1 10
≤ 2000 2467.3 154.8 0.1 7876.2 0.9 2.3 347.1 14
≤ 5000 58.0 58.0 3.1 113.0 3.4 3.9 30.1 16
> 5000 1186.6 370.2 26.0 3233.9 26.2 26.8 333.8 17

we restricted both the LP solver for the nodes in MILP-PBB and the MILP solver of Gurobi
to a single thread. We first evaluate possibilities two find better lower and upper bounds on
the objective value of the instances. Afterward, we also want to compare ourselves to the
benchmark in actually finding optimal solutions of the problems. The best-setting methods
use the most-fractional branching rule, the lower bound push, and no simple cuts. For
the warmstarts we test both the version without warmstarts (called MILP-PBB 1) and the
version using VBasis/CBasis (called MILP-PBB 2).

Finding Lower Bounds

As we can conclude from Lemma 5.1.2, the optimal objective value of Reformulation 5.1.1
for any µ > 0 is a lower bound for the corresponding MILP. We can therefore use the
reformulation to compute lower bound by choosing a small parameter µ. From the numerical
experiences we gained in the experiments described in Section 2.4 and Appendix A, one can
expect that a smaller parameter µ leads to a better performance. Therefore, we set µ = 0.1
for this test and do not repeat the branch-and-bound algorithm for a higher µ if we do not
find the optimal solution of the MILP directly. We compared this lower bound to the lower
bound given by the linear relaxation of the problem. Obviously, it is much faster to solve the
relaxation, as it is done in the root node of our method. Hence, it is not sensible to compare
the runtime or number of nodes needed for the two procedures. Instead we only compare
the computed lower bounds for the instances, on which at least one of the two MILP-PBB
versions did not run into the time limit. Unfortunately, the lower bounds on all instances
were identical within numerical exactness, as the penalization of non-integrality was not
high enough, and we can conclude, that MILP-PBB in its current form is not suitable to
compute lower bounds.
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5. Tackling Mixed-Integer Linear Problems

Finding Upper Bounds

In Section 5.1.1 we mentioned, that we can use our method to compute upper bounds on
the optimal objective value of MILPs with our method. To achieve this, we set the objective
function of the MILP to 0. Hence, the objective function of Reformulation 5.1.1 only consists
of the penalty term PI . We compare our method to the MILP solver of Gurobi. 27 instances
were excluded, as no solver was able to solve them.
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Figure 5.5.: Performance profiles for the number of branch-and-bounds nodes (left) and the running time (right) for
the upper bound test.

From Figure 5.5 it is obvious, that Gurobi clearly outperforms our method in regards to
the number of nodes needed and the number of instances solved overall. For the runtime,
the picture is less clear and our method is competitive for quite a few instances. But
the observations from the performance profiles are put into perspective by the results in
Tables 5.6, G.8, and G.9. Here it is obvious that for the majority of instances a feasible
point was found within the root node, which makes the results w.r.t. the runtime become
less relevant.

While runtime and node count appear to be not very interesting and important for this
test, we can notice significant differences for the quality of the bounds the different methods
produce. To compare the bounds, we again use a logarithmic performance profile which can
be seen in Figure 5.6.

Our methods produce better bounds for quite a few instances that were solved by our
method than the bounds Gurobi found. But as Gurobi had the better performance overall
and solved more instances, it also found better bounds for a lot more instances in total.
Unfortunately, we again have to conclude, that MILP-PBB in its current form is not suitable
to compute upper bounds, especially considering that there are even better and faster
heuristics to find feasible points for mixed-integer problems than Gurobi, such as rounding
or feasibility pump methods.
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5.3 Numerical Results

Table 5.6.: Aggregated nodecounts (top) and runtimes (bottom) for the upper bound test for Gurobi

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 1.4 1.0 1.0 5.0 1.0 1.0 1.4 81
≤ 500 1.4 1.0 1.0 6.0 1.0 1.0 1.4 90
≤ 2000 1.1 1.0 1.0 3.0 1.0 1.0 1.1 96
≤ 5000 11.7 1.0 1.0 65.0 1.0 1.0 9.6 95
> 5000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 83

≤ 200 0.3 0.0 0.0 3.1 0.0 0.0 0.3 81
≤ 500 0.8 0.1 0.0 7.3 0.0 0.0 0.7 90
≤ 2000 0.2 0.1 0.0 1.1 0.0 0.0 0.2 96
≤ 5000 0.9 0.8 0.2 1.8 0.2 0.2 0.9 95
> 5000 18.3 8.7 0.6 132.2 0.6 0.6 10.6 83
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Figure 5.6.: Performance profiles for the upper bound provided by the different methods in the upper bound test.

Finding Exact Solutions

We now want to compare ourselves to Gurobi in solving the instances from before to global
optimality. 122 instances were excluded, as no solver was able to solve them. It is very ob-
vious from Figure 5.7 that our method is clearly outperformed by Gurobi, which is probably
not surprising considering the nature of Gurobi as the state-of-the-art commercial solver for
MILPs. This is also apparent from Tables 5.7, G.10, and G.11.
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Figure 5.7.: Performance profiles for the number of branch-and-bounds nodes (left) and the running time (right) for
the benchmark test.

Table 5.7.: Aggregated nodecounts (top) and runtimes (bottom) for the benchmark test for Gurobi

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 3379.0 217.5 9.0 55082.0 9.7 11.0 398.0 56
≤ 500 3760.0 400.0 23.0 24277.0 23.2 23.5 490.4 33
≤ 2000 1821.5 36.0 3.0 10554.0 3.0 3.0 206.2 35
≤ 5000 378.5 378.5 12.0 745.0 13.8 17.5 207.6 66
> 5000 275.0 14.5 3.0 1133.0 3.0 3.1 101.0 41

≤ 200 1.5 0.1 0.0 27.2 0.0 0.0 0.8 56
≤ 500 5.3 1.1 0.2 32.8 0.2 0.2 3.1 33
≤ 2000 9.4 0.3 0.2 54.0 0.2 0.2 4.2 35
≤ 5000 1.8 1.8 0.6 2.9 0.6 0.6 1.7 66
> 5000 70.1 37.8 2.1 237.9 2.1 2.1 33.9 41
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Chapter 6
Conclusion

In this thesis we have presented and investigated a novel type of branch-and-bound algo-
rithms. While this algorithm class is closely related to classic branch-and-bound methods,
the principles of how the algorithms work are fundamentally different. Classic branch-and-
bound methods are methods, where a problematic, usually non-convex set of constraints is
solved by exploiting the combinatorial nature of these constraints. Usually, these constraints
are binary or integer constraints and branch-and-bound methods are the state-of-the-art for
solving mixed-integer optimization problems. The core of these methods is a divide-and-
conquer approach that deals with the problematic constraints one after another. We have
taken this core principle and turned it into a solution method for a different set of problem
classes. The problems we deal with have problematic, non-convex terms in the objective
function instead of problematic constraints. While classic branch-and-bound methods deal
with the constraints by dividing the feasible set of a problem into subsets by successively
adding constraints, we do not change the feasible set. Instead, as the problematic terms are
part of the objective function, we successively alter the objective function of the problem
by the addition of non-negative terms.

We have described the principles of this novel penalty branch-and-bound method and
analyzed the algorithm for different problem classes, for which the method is applicable.
For the specific problem classes we investigated we pointed out different problem specific
possibilities to enhance the performance of the method and tested them numerically. For
both monotone and non-monotone MILCP, we were able to show that the method is not
only very well performing compared to different benchmark approaches, but that it also
has other advantages. First, the method does not rely on big-M constants as many of the
existing solution methods. Secondly, our method not only finds solutions of the investigated
MILCP, but also finds points, that minimize a measure of infeasibility, if there is no feasible
solution.

We also investigated possibilities to solve problems from the broad class of MILP. While
not being particularly successful when we look at the numerical experiments, we were able
to present a completely novel approach for solving MILP by using penalty reformulations
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6. Conclusion

of the problem. We also analyzed different ways to enhance the performance and showed
ways to not only compute solutions of MILP, but also upper and lower bounds.

Besides investigating the applicability of our method for specific and known problem
classes, we also explored generalizations of problem classes that could be solved with our
method theoretically. We found two different generalizations. One is the class of problems
with a convex feasible set and an objective function consisting of the sum of minimum func-
tions over a set of convex functions. The second is a class of problems that have a convex
feasible set and an objective function with a sum of piecewise convex functions. For both
classes we presented an algorithm to solve them and proved its correctness.

Despite these contributions, there is still room for future work and interesting questions
remain open. One big strength of classic branch-and-bound methods are the different possi-
bilities to tailor the method to different problems. There are a lot of different classes of valid
inequalities, branching rules, node selection strategies, presolve techniques, and heuristics
that help the performance of the algorithms. While we were successful in finding similar
techniques to improve the performance of the penalty branch-and-bound algorithm, there
is still a lot to explore in order to further improve the performance.

Additionally, the instances we tested for MILCPs were created synthetically. As there are
a lot of practical problems that utilize MILCP, it would be interesting to test our method
on real-world problem instances.

Lastly, we have to say that there is a large discrepancy between the generalized problem
classes we identified and the specific problem classes we investigated in detail. While the
generalized problem classes are very big, they are not classes that appear naturally and in
this general form they are probably too difficult to solve in practice. The specific problem
classes do appear in applications, but are a rather specific classes. It would be therefore
very interesting to identify other problem classes that appear in applications and that can
be solved with our method in practice.

Overall, this novel type of algorithm provides exciting opportunities for the future of
non-convex mathematical optimization.
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Appendix A
Detailed Description of the Test Set for
Monotone MILCP

In order to build a proper test set of MILCP instances, we created matrices M ∈ Rn×n

using the sprandsym function of MATLAB for sizes

n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

For a first preliminary test set, the corresponding matrix densities have been chosen so that
they roughly follow the sigmoid-like function

d(n) := 1
1 + e

1
50 n−5

.

Moreover, we obtain a random non-negative spectrum with an upper bound of 100 for the
eigenvalues. The set of integer variables I has been chosen as a random sample of size

r(n) := 1
5

(
1 + e

1
80 n−3

) .
Finally, we built vectors q ∈ Rn for the four different “degrees of feasibility”; see Sec-

tion 2.4. In order to build instances of Type (a), for which only feasibility with respect to Z
is guaranteed (i.e., Condition (i) is satisfied), we set q = x−Mz starting from two random
vectors x, z ∈ Rn such that x ≥ 0, z ≥ 0, and zI ∈ [0, 1]I . Note that it is possible that this
process yields instances for which the integrality or complementarity constraints are satisfied
as well—although this is rather unlikely. Instances of Type (b), for which feasibility with
respect to Z (Condition (i)) and integrality (Condition (ii)) are guaranteed, have been built
by setting q = x−Mz with x, z ∈ Rn being randomly generated so that, besides x ≥ 0 and
z ≥ 0, also zI ∈ {0, 1}I holds. In order to build instances of Type (c), for which feasibility
w.r.t. Z (Condition (i)) and the complementarity constraint (Condition (iii)) are fulfilled,
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A. Detailed Description of the Test Set for Monotone MILCP

we set q = −Mz with z ∈ Rn being a randomly created point with z ≥ 0 and zI ∈ [0, 1]I .
Note that this is the same procedure as for the first test set. Instances of Type (d), for
which all three conditions are fulfilled, have been built by setting q = −Mz with z ∈ Rn

being a randomly created point with z ≥ 0 and zI ∈ {0, 1}I (as we did for the instances
of Type (b)). The “degree of feasibility” of the instance clearly has a significant impact on
its difficulty; see Figure A.1, where a comparison of the performances of MILCP-PBB with
different branching rules on the instances is reported.

Instances of Type (d) that have been created to be feasible both for the complementarity
as well as the integrality conditions, turned out to be very easy. Most of them have been
solved in the root node of the corresponding branch-and-bound tree. Thus, we decided to
exclude them from our computational analysis. Instances of Type (a) and (b) that not
have been forced to be feasible w.r.t. the complementarity conditions and which are either
forced to be integer-feasible or not are also solved rather quickly. The most complicated
instances are those of Type (c) which are forced to be feasible w.r.t. the complementarity
conditions but which are not forced to be integer feasible. This is possibly related to the
difference in which the violation of the complementarity constraint and the violation of
the integrality constraints are penalized along the nodes of MILCP-PBB. While the term
penalizing the violation of the complementarity constraint is added to every node problem,
we are penalizing the violation of all integrality constraints only at the leaf nodes. Hence,
the lower bound for instances that are complementarity feasible but that are not forced to
be integer feasible will stay closer to zero for longer.

Due to these preliminary tests and experiments, we decided to construct matrices with
5 % density and we further adjusted the fraction of integer variables to make the instances
of Type (a)–(c) comparably difficult. Instances of Type (a) have 8 % integer variables,
instances of Type (b) have 4 % integer variables, and instances of Type (c) have 10 %
integer variables.
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Figure A.1.: Test of different branching rules in dependence of the “degree of feasibility” of the instance
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Appendix B
Tables of Aggregated Results of Other
Settings for Monotone MILCP

In what follows, we include all tables for the aggregated running times and node counts of
the settings not reported in Section 2.4.

B.1. Branching Rule Test

Table B.1.: Aggregated node counts (top) and runtimes (bottom) for the branching rule test with random choice

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.8 8.0 3.0 39.0 5.0 21.0 13.3 100
100 18.1 14.0 3.0 83.0 7.0 26.0 17.2 100
150 40.5 37.0 7.0 155.0 17.0 44.5 37.1 100
200 69.3 60.0 15.0 269.0 34.0 95.5 63.7 100
250 142.3 118.0 9.0 399.0 79.5 196.5 122.0 100
300 335.5 224.0 17.0 1281.0 159.0 357.5 261.5 100
350 704.7 435.0 7.0 3499.0 128.0 927.0 427.0 93
400 620.4 418.0 65.0 2221.0 115.5 1061.0 407.0 70
450 630.5 473.0 73.0 2399.0 203.0 946.0 464.2 53
500 791.9 715.0 105.0 1479.0 471.0 1151.0 644.6 27

50 0.4 0.2 0.1 1.2 0.1 0.4 0.4 100
100 2.7 1.6 0.6 19.4 0.9 3.1 2.4 100
150 24.0 19.6 2.4 100.0 6.6 25.5 18.0 100
200 72.6 56.6 13.1 248.0 37.4 105.3 60.1 100
250 213.6 184.3 12.6 561.1 126.1 279.8 160.7 100
300 552.3 442.0 45.0 1494.0 300.4 653.0 424.0 100
350 1097.6 685.5 38.0 3240.6 326.9 1690.4 717.6 93
400 1105.3 1052.3 224.6 2848.0 386.3 1768.1 823.7 70
450 1327.8 1160.7 261.9 3215.6 636.7 1878.1 1074.1 53
500 1502.6 1609.6 394.5 2167.7 1201.0 1972.1 1339.9 27
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B. Tables of Aggregated Results of Other Settings for Monotone MILCP

Table B.2.: Aggregated node counts (top) and runtimes (bottom) for the branching rule test with pseudocost branch-
ing

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 15.1 9.0 3.0 43.0 5.0 26.5 14.5 100
100 18.5 16.0 3.0 63.0 7.0 25.0 17.7 100
150 41.3 38.0 7.0 147.0 15.5 44.0 37.8 100
200 73.4 51.0 17.0 287.0 34.0 97.0 66.0 100
250 142.9 104.0 11.0 421.0 75.5 194.0 120.0 100
300 345.7 235.0 19.0 1171.0 147.5 390.0 264.0 100
350 704.0 389.0 9.0 3041.0 115.0 958.0 422.5 97
400 658.7 395.0 67.0 2513.0 86.5 1090.5 394.9 67
450 620.5 377.0 53.0 2329.0 244.0 916.0 453.6 53
500 750.4 591.0 107.0 1395.0 526.0 1054.0 625.3 23

50 0.3 0.2 0.1 0.9 0.2 0.4 0.3 100
100 2.5 1.5 0.4 15.0 0.9 3.1 2.2 100
150 24.0 19.8 2.3 98.4 6.5 25.7 18.1 100
200 72.9 55.3 14.5 250.1 33.3 95.6 58.6 100
250 211.8 180.3 18.0 519.1 113.6 273.7 155.3 100
300 594.2 462.7 60.2 1607.5 310.0 767.7 450.4 100
350 1178.3 997.9 40.9 3177.6 312.5 1862.6 741.4 97
400 1185.6 914.0 251.3 3495.7 311.3 1879.6 817.2 67
450 1258.5 901.8 223.1 3084.2 598.5 1902.2 1009.1 53
500 1473.1 1581.2 352.4 2133.3 1257.9 1864.7 1302.6 23

Table B.3.: Aggregated node counts (top) and runtimes (bottom) for the branching rule test with most-fractional
variable branching

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 22.5 13.4 100
100 18.6 16.0 3.0 81.0 7.0 23.0 17.8 100
150 41.3 33.0 7.0 151.0 14.0 46.0 37.8 100
200 67.9 58.0 23.0 233.0 35.0 90.5 62.9 100
250 144.5 126.0 7.0 403.0 77.5 163.0 124.3 100
300 354.7 228.0 19.0 1385.0 139.0 391.0 263.2 100
350 742.2 439.0 7.0 3641.0 124.0 1001.0 445.6 90
400 631.0 434.0 51.0 2343.0 119.0 1038.5 412.1 63
450 648.9 539.0 93.0 2265.0 224.0 908.0 483.8 57
500 711.9 683.0 119.0 1375.0 429.0 974.0 585.0 27

50 0.2 0.1 0.1 0.8 0.1 0.2 0.2 100
100 2.6 1.5 0.4 16.5 0.9 3.1 2.3 100
150 23.4 18.3 2.8 82.8 6.2 25.7 17.8 100
200 68.1 51.8 22.4 214.4 31.5 80.8 57.1 100
250 221.7 214.7 12.4 584.8 128.8 258.4 167.0 100
300 592.6 456.9 53.9 1763.6 270.0 728.6 437.6 100
350 1224.6 956.6 32.2 3573.5 352.4 2046.3 786.4 90
400 1202.0 1106.9 197.3 3345.7 401.1 1506.8 882.5 63
450 1343.3 1298.9 329.6 3057.6 551.8 2039.7 1085.8 57
500 1390.6 1469.6 443.9 2127.8 1097.6 1749.0 1243.3 27
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B.2 Node Selection Test

B.2. Node Selection Test

Table B.4.: Aggregated node counts (top) and runtimes (bottom) for the node selection test with breadth-first search

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.6 24.0 7.0 139.0 13.5 42.5 32.6 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.9 100
250 112.3 96.0 5.0 353.0 67.5 131.0 97.6 100
300 200.3 142.0 15.0 743.0 95.0 254.5 164.4 100
350 277.1 144.0 7.0 735.0 79.0 479.5 203.2 77
400 351.3 271.0 47.0 813.0 78.0 613.0 259.4 67
450 315.1 345.0 51.0 651.0 127.0 473.5 264.1 47
500 461.0 519.0 71.0 923.0 265.5 544.5 381.6 20

50 0.3 0.2 0.2 0.7 0.2 0.3 0.3 100
100 4.7 3.0 0.8 23.8 2.0 4.7 4.1 100
150 25.9 19.0 6.0 90.3 10.3 30.6 21.1 100
200 91.2 73.2 30.4 272.7 54.4 115.7 79.3 100
250 249.2 228.0 37.1 807.3 148.4 295.5 198.8 100
300 595.8 475.8 101.4 1993.4 281.5 826.4 467.3 100
350 1103.9 576.6 110.1 3052.6 364.4 1647.0 742.1 77
400 1452.9 1173.7 304.9 3312.1 515.5 2336.5 1077.2 67
450 1599.1 1707.9 418.3 2893.0 763.8 2440.0 1328.6 47
500 2000.0 2069.0 535.6 3257.8 1530.5 2555.6 1742.3 20

Table B.5.: Aggregated node counts (top) and runtimes (bottom) for the node selection test with lower-bound-push

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.6 24.0 7.0 139.0 13.5 42.5 32.6 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.9 100
250 112.3 96.0 5.0 353.0 67.5 131.0 97.6 100
300 195.5 142.0 15.0 741.0 95.0 254.5 162.6 100
350 277.0 144.0 7.0 735.0 79.0 479.0 203.1 73
400 351.3 271.0 47.0 813.0 78.0 613.0 259.4 63
450 314.6 343.0 51.0 647.0 127.0 473.5 263.7 47
500 459.3 516.0 71.0 923.0 265.5 540.0 380.3 20

50 0.3 0.2 0.2 0.6 0.2 0.3 0.3 100
100 4.6 2.7 1.2 20.6 1.9 5.0 4.1 100
150 29.0 20.5 5.7 97.2 10.2 34.3 23.1 100
200 99.3 75.6 25.7 329.1 54.0 131.7 83.9 100
250 267.2 217.4 34.8 872.2 158.8 307.6 208.1 100
300 630.8 495.9 116.9 2252.5 350.4 761.6 501.2 100
350 1233.5 606.3 105.0 3389.2 410.1 1977.7 816.9 73
400 1594.7 1605.4 337.1 3521.9 556.6 2717.4 1179.8 63
450 1573.3 1729.7 399.1 2829.8 783.4 2206.1 1322.0 47
500 2161.2 2345.8 649.4 3359.0 1346.4 3027.0 1862.0 20
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B.3. Warmstart Test

Table B.6.: Aggregated node counts (top) and runtimes (bottom) for the warmstart test without any warmstart

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.6 24.0 7.0 139.0 13.5 42.5 32.6 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.9 100
250 112.3 96.0 5.0 353.0 67.5 131.0 97.6 100
300 193.3 141.0 15.0 741.0 95.0 254.5 161.7 100
350 356.3 215.0 7.0 1119.0 79.0 679.0 251.1 87
400 418.3 279.0 47.0 1245.0 81.0 719.0 301.1 70
450 314.7 345.0 51.0 647.0 126.5 473.5 263.7 47
500 478.6 543.0 71.0 1043.0 189.0 547.0 372.3 23

50 0.3 0.3 0.2 1.2 0.2 0.3 0.3 100
100 4.5 2.4 1.1 20.6 1.9 5.4 4.0 100
150 26.8 19.3 6.5 111.9 10.0 31.4 21.5 100
200 90.4 62.8 28.7 295.1 50.6 116.2 77.5 100
250 241.2 209.7 32.3 762.3 161.0 309.2 190.7 100
300 533.8 451.4 112.5 1764.6 260.8 655.1 429.0 100
350 1256.3 787.4 105.2 3360.6 369.7 2311.8 826.9 87
400 1550.7 1401.0 300.9 3522.8 396.9 2497.7 1125.9 70
450 1460.0 1505.9 345.3 2608.6 751.1 2112.5 1223.4 47
500 1995.4 2206.2 584.4 3375.5 1055.1 2755.9 1663.8 23

Table B.7.: Aggregated node counts (top) and runtimes (bottom) times for the warmstart test using PStart/DStart

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.3 24.0 7.0 139.0 12.0 42.5 32.3 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.8 100
250 112.2 96.0 5.0 353.0 67.5 131.0 97.6 100
300 193.3 141.0 15.0 741.0 95.0 254.5 161.6 100
350 355.4 215.0 7.0 1107.0 79.0 679.0 249.9 83
400 417.6 279.0 47.0 1245.0 81.0 719.0 300.3 70
450 312.4 345.0 41.0 649.0 126.5 473.5 258.6 47
500 476.6 543.0 61.0 1043.0 189.0 547.0 366.6 17

50 0.3 0.3 0.1 1.2 0.2 0.3 0.3 100
100 4.0 2.4 1.3 15.7 1.8 4.5 3.6 100
150 25.1 17.9 4.5 84.9 9.3 27.7 20.1 100
200 86.2 63.2 25.9 296.0 48.5 116.0 73.5 100
250 245.0 207.1 26.5 754.8 145.4 309.0 189.6 100
300 549.8 450.0 103.4 1586.1 299.5 745.0 442.9 100
350 1324.4 708.9 113.3 3361.2 383.7 2404.4 857.4 83
400 1544.5 1039.5 292.4 3201.7 460.1 2421.4 1136.5 70
450 1500.2 1591.4 406.3 2919.3 719.5 2102.1 1262.7 47
500 2119.3 2194.8 838.8 3386.6 1015.6 3160.8 1822.6 17
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B.4 Valid Inequalities Test

B.4. Valid Inequalities Test

Table B.8.: Aggregated node counts (top) and runtimes (bottom) for the valid inequalities test with no cuts

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.6 24.0 7.0 139.0 13.5 42.5 32.6 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.9 100
250 113.1 99.0 5.0 353.0 67.0 131.0 98.0 100
300 193.3 141.0 15.0 741.0 95.0 254.5 161.7 100
350 532.9 309.0 7.0 2701.0 81.0 735.0 334.5 100
400 860.0 579.0 47.0 3929.0 109.0 1056.0 493.6 90
450 593.0 402.0 51.0 1713.0 163.5 834.5 416.3 67
500 816.1 923.0 71.0 1523.0 519.0 1107.0 663.9 37

50 0.2 0.2 0.1 0.5 0.2 0.3 0.2 100
100 2.3 1.6 0.8 10.2 1.2 2.1 2.2 100
150 13.8 10.0 3.3 50.6 5.8 16.0 11.7 100
200 43.4 31.3 13.0 150.8 24.2 58.1 37.4 100
250 136.4 111.7 14.2 444.8 74.5 179.0 102.4 100
300 293.8 244.4 45.6 851.7 150.1 391.9 235.9 100
350 788.0 530.1 64.5 1962.8 212.7 1342.9 527.6 100
400 1250.2 1140.1 192.5 3514.5 364.3 1476.5 867.6 90
450 1215.6 1032.2 252.7 2872.7 445.4 1917.3 934.0 67
500 1545.5 1397.8 363.5 2646.2 1043.1 2135.5 1345.9 37

B.5. A First Benchmark Test

Table B.9.: Aggregated node counts (top) and runtimes (bottom) for the first benchmark test for the MILP refor-
mulation

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 36.9 24.0 5.0 142.0 15.0 46.8 33.7 100
100 330.6 193.0 13.0 1416.0 69.5 462.5 227.6 100
150 866.5 921.0 26.0 2928.0 167.8 1179.8 582.3 100
200 6122.2 2985.0 122.0 78700.0 1454.8 4958.8 2755.0 100
250 30406.6 11944.0 287.0 185996.0 5482.0 29671.0 12745.4 83
300 36647.2 45035.0 2065.0 71988.0 21157.5 46958.8 24581.9 27

50 0.1 0.1 0.1 0.2 0.1 0.2 0.1 100
100 0.7 0.4 0.2 1.7 0.3 0.9 0.7 100
150 2.9 3.2 0.3 7.3 0.9 4.2 2.8 100
200 64.1 28.3 1.3 941.0 10.7 46.1 28.8 100
250 599.2 239.2 2.6 3169.1 106.1 572.8 252.7 83
300 1434.6 1305.0 56.4 3529.4 809.4 1797.3 926.1 27
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B. Tables of Aggregated Results of Other Settings for Monotone MILCP

B.6. A Second Benchmark Test

Table B.10.: Aggregated node counts (top) and runtimes (bottom) for the second benchmark test for the MIQP
reformulation

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

100 45.1 33.5 11.0 209.0 18.5 63.0 41.0 100
200 639.1 408.5 34.0 2856.0 207.5 615.8 416.9 100
300 2978.9 2270.0 283.0 16147.0 1948.2 2760.5 2269.2 100
400 40317.4 16547.0 897.0 160445.0 8167.0 57017.0 17853.9 97
500 45637.3 30480.0 5734.0 165419.0 13164.0 52819.0 28969.2 47
600 88273.7 85589.0 38908.0 140324.0 62248.5 112956.5 77615.3 13

100 0.4 0.4 0.2 0.7 0.3 0.4 0.4 100
200 5.8 3.5 2.1 24.0 3.0 4.9 5.1 100
300 69.2 51.7 5.0 242.0 40.2 60.3 54.3 100
400 1597.7 471.8 39.3 6670.1 349.0 2664.9 721.6 97
500 2556.7 1768.2 409.5 6946.8 1039.5 4008.1 1845.4 47
600 8217.1 9612.1 4431.1 10608.0 7021.6 10110.0 7674.2 13
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Appendix C
Full Results for the Second Benchmark
Test for Monotone MILCP

Here, we present running times, node counts, and optimality gaps for the second test in
Section 2.4.5. The tables are split among the different types of feasibility. Note that the
instances in Table C.1 have a matrix density of 5 % and 16 % integer variables, instances in
Table C.2 have a matrix density of 5 % and 20 % integer variables, and instances in Table C.3
have a matrix density of 5 % and 8 % integer variables.

Table C.1.: Full table of results for the benchmark test with feasibility (a)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

0 100 27 3.1159 0.0 68 0.5751 0.0
1 100 15 2.3551 0.0 33 0.1886 0.0
2 100 21 2.6895 0.0 103 0.7351 0.0
3 100 17 2.2424 0.0 15 0.3592 0.0
4 100 15 2.3921 0.0 44 0.1839 0.0
5 100 19 2.2394 0.0 34 0.6797 0.0
6 100 11 2.3276 0.0 18 0.3701 0.0
7 100 15 2.1230 0.0 23 0.4201 0.0
8 100 11 2.1795 0.0 20 0.3384 0.0
9 100 13 1.8813 0.0 14 0.3545 0.0
10 200 35 17.5621 0.0 532 4.0627 0.0
11 200 27 14.9239 0.0 279 3.0247 0.0
12 200 39 18.7982 0.0 399 3.4994 0.0
13 200 43 19.6466 0.0 191 2.5610 0.0

Continued on next page
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C. Full Results for the Second Benchmark Test for Monotone MILCP

Table C.1.: Full table of results for the benchmark test with feasibility (a)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

14 200 27 16.4442 0.0 127 2.6382 0.0
15 200 35 17.0882 0.0 213 3.1579 0.0
16 200 35 19.3562 0.0 345 3.5871 0.0
17 200 29 18.7861 0.0 110 2.5195 0.0
18 200 37 18.8028 0.0 565 3.8783 0.0
19 200 14 11.0052 0.0 42 2.3146 0.0
20 300 109 99.8787 0.0 7509 189.4373 0.0
21 300 41 52.1754 0.0 2507 51.3995 0.0
22 300 63 71.4824 0.0 2413 51.9769 0.0
23 300 73 71.2369 0.0 2807 54.0534 0.0
24 300 43 64.3237 0.0 1856 31.6593 0.0
25 300 72 78.4768 0.0 1253 22.1835 0.0
26 300 63 69.7968 0.0 1979 40.4144 0.0
27 300 73 78.0971 0.0 2036 39.3973 0.0
28 300 49 61.9105 0.0 2352 47.4422 0.0
29 300 143 123.7982 0.0 2258 56.8950 0.0
30 400 69 155.2925 0.0 3991 164.9751 0.0
31 400 98 186.8513 0.0 16683 638.9243 0.0
32 400 215 354.8989 0.0 8855 348.2817 0.0
33 400 43 134.2780 0.0 1387 62.4837 0.0
34 400 139 240.8656 0.0 12310 426.6363 0.0
35 400 161 244.0987 0.0 12252 442.3353 0.0
36 400 65 166.9921 0.0 2175 87.9427 0.0
37 400 183 235.1562 0.0 16547 431.5883 0.0
38 400 485 462.7339 0.0 10324 414.0996 0.0
39 400 65 152.6845 0.0 1518 63.0660 0.0
40 500 335 608.6910 0.0 265002 10814.2415 0.0
41 500 167 388.2661 0.0 16672 1232.6245 0.0
42 500 117 466.1749 0.0 10873 681.7911 0.0
43 500 131 472.0715 0.0 11418 1039.4614 0.0
44 500 207 279.1084 0.0 5734 409.5402 0.0
45 500 123 154.5519 0.0 14787 1087.2545 0.0
46 500 321 479.0112 0.0 40024 1768.1539 0.0
47 500 134 287.6528 0.0 203450 10816.5233 0.0
48 500 313 390.9182 0.0 165419 6946.8199 0.0
49 500 297 380.2324 0.0 101750 4942.9432 0.0
50 600 293 899.3240 0.0 120917 10824.2120 0.0
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Table C.1.: Full table of results for the benchmark test with feasibility (a)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

51 600 327 696.3595 0.0 110087 10829.7680 0.0
52 600 185 512.0450 0.0 38908 4431.0990 0.0
53 600 543 1262.1285 0.0 140118 10829.3220 0.0
54 600 129 794.9032 0.0 156342 10823.6857 0.0
55 600 163 698.5480 0.0 85589 9612.0795 0.0
56 600 201 775.8917 0.0 140324 10608.0138 0.0
57 600 223 736.2904 0.0 138024 10827.5670 0.0
58 600 607 1019.5381 0.0 121674 10827.8138 0.0
59 600 677 1418.2227 0.0 134749 10823.6026 0.0
60 700 249 975.6561 0.0 70611 10836.4064 0.0
61 700 163 1091.6707 0.0 80347 10830.6276 0.0
62 700 303 1174.9706 0.0 54001 10835.4704 0.0
63 700 241 1058.5091 0.0 79913 10838.8376 0.0
64 700 837 1907.9259 0.0 88157 10833.0279 0.0
65 700 1015 2113.7192 0.0 71434 10831.3456 0.0
66 700 301 1187.2362 0.0 73266 10839.0607 0.0
67 700 369 1465.1541 0.0 75375 10841.1106 0.0
68 700 1181 2456.5842 0.0 67206 10829.3712 0.0
69 700 213 1729.2047 0.0 64898 10836.1695 0.0
70 800 209 2894.0162 0.0 50340 10851.0105 0.0
71 800 805 3542.0355 0.0 49637 10853.6512 0.0
72 800 359 1987.7595 0.0 45985 10849.3627 0.0
73 800 1099 4571.4084 0.0 45138 10847.8649 0.0
74 800 126 1556.4838 0.0 48760 10847.7848 0.0
75 800 905 2953.2680 0.0 43308 10846.2972 0.0
76 800 129 1381.9814 0.0 52954 10846.8718 0.0
77 800 246 1621.6197 0.0 64855 10844.3243 0.0
78 800 3069 6670.6305 0.0 47909 10848.3922 0.0
79 800 2215 6693.6248 0.0 51677 10843.3809 0.0
80 900 256 3563.1181 0.0 24062 10865.4706 0.0
81 900 2718 10801.2767 0.0 39963 10861.3130 0.0
82 900 1947 6118.9939 0.0 40548 10857.4068 0.0
83 900 2067 10179.3084 0.0 28530 10862.6133 0.0
84 900 1463 7062.3731 0.0 33852 10861.5166 0.0
85 900 1434 10800.9542 0.0 31292 10871.1387 0.0
86 900 401 4306.1255 0.0 26750 10863.4494 0.0
87 900 1399 10801.3957 0.0 29690 10858.3488 0.0
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C. Full Results for the Second Benchmark Test for Monotone MILCP

Table C.1.: Full table of results for the benchmark test with feasibility (a)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

88 900 641 4740.7997 0.0 32362 10857.8563 0.0
89 900 2391 10458.6046 0.0 30177 10844.8206 0.0
90 1000 1163 10802.2212 0.0 21296 10868.1840 0.0
91 1000 2982 10801.7772 0.0 21011 10866.1448 0.0
92 1000 1508 10801.4001 0.0 19055 10859.4321 0.0
93 1000 1335 9664.4435 0.0 20940 10861.2169 0.0
94 1000 830 10802.3529 0.0 19697 10870.9180 0.0
95 1000 2758 10800.8066 0.0 25807 10863.2771 0.0
96 1000 2781 10530.2989 0.0 23170 10864.4643 0.0
97 1000 1283 10801.6599 0.0 25515 10858.4379 0.0
98 1000 1250 10801.9894 0.0 17429 10864.9515 0.0
99 1000 2745 10801.4159 0.0 21093 10854.0908 0.0

Table C.2.: Full table of results for the benchmark test with feasibility (b)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

0 100 11 1.8736 0.0 11 0.2401 0.0
1 100 17 2.5071 0.0 35 0.4127 0.0
2 100 11 1.8778 0.0 14 0.3880 0.0
3 100 31 3.0990 0.0 209 0.6444 0.0
4 100 15 2.5030 0.0 51 0.3522 0.0
5 100 15 2.5308 0.0 27 0.3500 0.0
6 100 11 1.7119 0.0 12 0.3445 0.0
7 100 21 2.8848 0.0 72 0.5284 0.0
8 100 9 1.7975 0.0 11 0.2022 0.0
9 100 11 1.9970 0.0 16 0.2678 0.0
10 200 39 20.1349 0.0 478 3.4626 0.0
11 200 75 27.5083 0.0 363 3.3318 0.0
12 200 51 23.1963 0.0 2451 17.3827 0.0
13 200 31 17.3348 0.0 320 2.7709 0.0
14 200 53 24.3716 0.0 435 3.5231 0.0
15 200 21 13.3523 0.0 48 2.0762 0.0
16 200 47 20.3192 0.0 418 3.3012 0.0
17 200 21 14.0000 0.0 34 2.1945 0.0
18 200 57 25.2956 0.0 2856 19.3368 0.0
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Table C.2.: Full table of results for the benchmark test with feasibility (b)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

19 200 29 17.1288 0.0 86 2.2520 0.0
20 300 75 85.2808 0.0 2745 57.3262 0.0
21 300 39 50.5451 0.0 341 7.5386 0.0
22 300 149 131.9792 0.0 2090 46.8724 0.0
23 300 35 49.0304 0.0 283 5.0292 0.0
24 300 25 45.2144 0.0 2597 39.8905 0.0
25 300 71 74.3649 0.0 1588 27.9635 0.0
26 300 259 215.7792 0.0 1756 42.2825 0.0
27 300 95 89.7939 0.0 3977 55.6581 0.0
28 300 105 110.0118 0.0 16147 241.9878 0.0
29 300 125 108.0865 0.0 1106 21.9187 0.0
30 400 42 158.0413 0.0 3202 178.1554 0.0
31 400 255 335.9703 0.0 32060 1002.8782 0.0
32 400 309 361.5803 0.0 34792 1298.5175 0.0
33 400 75 206.8250 0.0 10523 471.8054 0.0
34 400 227 364.7588 0.0 8167 433.7521 0.0
35 400 92 210.3800 0.0 62434 2256.8009 0.0
36 400 37 138.3447 0.0 897 39.3350 0.0
37 400 243 310.8748 0.0 57017 2005.0877 0.0
38 400 165 287.8678 0.0 7969 349.0208 0.0
39 400 357 395.5973 0.0 267946 7095.4798 0.0
40 500 113 385.2338 0.0 13164 806.6624 0.0
41 500 511 845.0595 0.0 30480 2447.1081 0.0
42 500 769 1563.5448 0.0 204209 10813.9150 0.0
43 500 1009 1436.5816 0.0 171660 10815.6210 0.0
44 500 685 881.8793 0.0 48103 4008.1435 0.0
45 500 2393 3237.3454 0.0 157972 10816.5673 0.0
46 500 385 421.6556 0.0 52819 3227.4129 0.0
47 500 485 746.2523 0.0 82042 4638.5376 0.0
48 500 543 532.2371 0.0 187584 10814.5764 0.0
49 500 155 227.8922 0.0 34045 2399.3100 0.0
50 600 1221 2966.6930 0.0 115289 10824.2649 0.0
51 600 539 1488.9798 0.0 80734 10823.4649 0.0
52 600 377 781.4358 0.0 120840 10824.6150 0.0
53 600 473 1174.9950 0.0 120541 10824.3100 0.0
54 600 411 1146.9656 0.0 123993 10823.1460 0.0
55 600 531 1376.3102 0.0 135998 10823.9850 0.0
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C. Full Results for the Second Benchmark Test for Monotone MILCP

Table C.2.: Full table of results for the benchmark test with feasibility (b)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

56 600 443 862.3373 0.0 108494 10822.6135 0.0
57 600 347 708.2811 0.0 134048 10824.2348 0.0
58 600 143 722.6545 0.0 15769 1731.9034 0.0
59 600 355 1161.8243 0.0 125770 10824.3285 0.0
60 700 883 2755.3962 0.0 86915 10832.8358 0.0
61 700 981 3975.7980 0.0 60690 10834.3674 0.0
62 700 165 1288.9324 0.0 59965 10834.6514 0.0
63 700 383 1461.5977 0.0 66430 10835.0290 0.0
64 700 1031 2620.0381 0.0 71492 10837.0440 0.0
65 700 3183 5449.0948 0.0 77091 10834.8594 0.0
66 700 1219 4465.0251 0.0 64723 10832.1042 0.0
67 700 308 1820.4327 0.0 68971 10830.7743 0.0
68 700 801 2834.0616 0.0 57584 10831.4539 0.0
69 700 494 2710.5223 0.0 64278 10833.1984 0.0
70 800 1367 4188.1333 0.0 48056 10844.6034 0.0
71 800 1394 6301.3453 0.0 35039 10843.7623 0.0
72 800 2682 10800.9745 0.0 38116 10846.3990 0.0
73 800 319 2445.0687 0.0 54200 10847.9241 0.0
74 800 3698 10801.9776 0.0 41462 10850.7178 0.0
75 800 1635 4952.7012 0.0 37047 10850.4457 0.0
76 800 206 2589.2310 0.0 42891 10847.8842 0.0
77 800 1565 7296.9954 0.0 32957 10845.7794 0.0
78 800 5283 10801.1113 0.0 42228 10841.0241 0.0
79 800 1399 5201.9637 0.0 56617 10843.3123 0.0
80 900 1068 10803.4404 0.0 26577 10856.2667 0.0
81 900 1539 10800.0682 0.0 23554 10853.1402 0.0
82 900 3585 10801.5707 0.0 30402 10866.2853 0.0
83 900 2131 10801.4520 0.0 31559 10857.8554 0.0
84 900 996 10801.3616 0.0 26331 10860.5435 0.0
85 900 1157 10803.2434 0.0 1 192.6932 inf
86 900 2086 10801.6023 0.0 22924 10859.6405 0.0
87 900 3121 10800.1144 0.0 27014 10855.2115 0.0
88 900 2281 10755.1982 0.0 32147 10855.9983 0.0
89 900 1440 8768.8400 0.0 29748 10841.0772 0.0
90 1000 1267 10686.1705 0.0 18266 10865.9510 0.0
91 1000 505 7181.2388 0.0 20744 10864.9113 0.0
92 1000 387 5606.9840 0.0 18491 10863.1418 0.0
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Table C.2.: Full table of results for the benchmark test with feasibility (b)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

93 1000 1073 10800.9104 0.0 18227 10859.5245 0.0
94 1000 1420 10802.2677 0.0 18885 10852.9994 0.0
95 1000 1877 10800.4012 0.0 16198 10853.8927 0.0
96 1000 244 6376.3823 0.0 18063 10858.1245 0.0
97 1000 50 5808.5997 0.0 20066 10862.6262 0.0
98 1000 1419 10800.7780 0.0 23980 10858.5239 0.0
99 1000 1506 10800.1857 0.0 20533 10859.9718 0.0

Table C.3.: Full table of results for the benchmark test with feasibility (c)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

0 100 17 2.2032 0.0 69 0.3876 0.0
1 100 17 2.2020 0.0 35 0.3816 0.0
2 100 23 2.7185 0.0 46 0.3951 0.0
3 100 17 2.4266 0.0 25 0.3482 0.0
4 100 21 2.5839 0.0 73 0.1972 0.0
5 100 17 2.3956 0.0 60 0.1806 0.0
6 100 17 2.3847 0.0 31 0.2105 0.0
7 100 25 2.7450 0.0 93 0.3988 0.0
8 100 21 2.5308 0.0 26 0.3163 0.0
9 100 23 2.6372 0.0 64 0.3479 0.0
10 200 29 14.2188 0.0 142 3.0308 0.0
11 200 33 18.1685 0.0 768 6.0798 0.0
12 200 47 25.6820 0.0 873 7.5518 0.0
13 200 49 26.3865 0.0 451 4.4537 0.0
14 200 53 28.1232 0.0 1041 13.0250 0.0
15 200 71 33.9903 0.0 1057 8.7275 0.0
16 200 47 22.6940 0.0 220 3.0421 0.0
17 200 33 18.3735 0.5 183 2.9801 0.0
18 200 41 21.0298 0.0 444 4.0270 0.0
19 200 107 52.9182 0.0 2650 23.9550 0.0
20 300 123 135.1874 0.0 2729 87.4795 0.0
21 300 75 109.0742 0.0 2432 53.4491 0.0
22 300 171 160.6897 0.0 4016 148.4997 0.0
23 300 103 122.9437 0.0 2876 119.3457 0.0
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C. Full Results for the Second Benchmark Test for Monotone MILCP

Table C.3.: Full table of results for the benchmark test with feasibility (c)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

24 300 125 137.8550 0.0 1090 30.7861 0.0
25 300 77 97.9103 0.0 1993 56.0017 0.0
26 300 79 86.1865 0.0 2139 50.6660 0.0
27 300 203 168.5056 0.0 5906 203.0584 0.0
28 300 69 66.8797 0.0 2282 69.0258 0.0
29 300 71 95.9877 0.0 2197 50.7216 0.0
30 400 779 847.8113 0.0 121573 4819.6968 0.0
31 400 339 519.3352 0.0 51856 3256.8336 0.0
32 400 519 779.5839 0.0 107926 3578.9797 0.0
33 400 171 341.3093 0.0 62027 3165.3430 0.0
34 400 267 444.8971 0.0 245500 10808.8307 0.1
35 400 615 955.3639 0.0 70852 2664.9435 0.0
36 400 261 379.4113 0.0 160445 6670.0696 0.0
37 400 165 278.4771 0.0 29917 1243.3834 0.0
38 400 163 343.1481 0.0 47667 1712.7171 0.0
39 400 423 651.1013 0.0 134887 4788.1721 0.0
40 500 1059 2464.7738 0.0 163745 10815.2826 0.2
41 500 2059 4223.0813 0.0 165779 10818.6912 0.2
42 500 763 1678.4753 0.0 140830 10817.5013 0.2
43 500 285 765.3047 0.0 198463 10817.2753 0.1
44 500 923 885.9161 0.0 136841 10815.9276 0.2
45 500 407 647.9789 0.0 126879 10816.3697 0.1
46 500 265 284.3640 0.0 128834 10816.3495 0.3
47 500 665 1058.7074 0.0 140357 10815.7690 0.1
48 500 485 571.5811 0.0 174696 10816.4255 0.2
49 500 629 706.5074 0.0 189088 10815.0503 0.3
50 600 10808 10800.2888 0.9 79144 10826.8733 0.5
51 600 3943 3818.3468 0.0 100441 10828.4613 0.5
52 600 683 1024.9046 0.0 107480 10828.8295 0.4
53 600 631 2597.7218 0.0 97200 10826.0636 0.3
54 600 413 1049.1375 0.0 94083 10825.6469 0.5
55 600 653 2568.5341 0.0 104809 10828.5226 0.4
56 600 54 609.9500 1.0 97417 10826.1439 0.4
57 600 1453 2971.0164 0.0 102075 10829.7080 0.5
58 600 9 232.5856 1.0 74238 10828.7163 0.5
59 600 678 1588.2402 0.8 91260 10830.4672 0.5
60 700 249 1128.5292 1.0 41533 10849.1465 0.6
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Table C.3.: Full table of results for the benchmark test with feasibility (c)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

61 700 273 1297.1256 0.9 57176 10837.0305 0.6
62 700 4066 10801.5454 0.7 60318 10835.0205 0.6
63 700 13 444.0867 1.0 50058 10841.8503 0.4
64 700 805 1967.7534 1.0 45885 10844.9726 0.6
65 700 3 423.5964 1.0 58474 10842.7989 0.6
66 700 8193 10800.4775 1.0 46798 10842.8968 0.7
67 700 449 1834.5219 1.0 56457 10840.2731 0.6
68 700 2154 10801.2486 1.0 59715 10843.3221 0.6
69 700 815 4528.8139 0.0 58624 10847.4065 0.6
70 800 8 1325.5795 1.0 37286 10858.9890 0.6
71 800 1412 10802.3115 1.0 32379 10865.9849 0.6
72 800 1263 9918.1721 0.0 33698 10861.6950 0.6
73 800 283 2182.9504 1.0 26555 10859.3335 0.7
74 800 2787 10800.9629 0.9 32880 10860.2008 0.7
75 800 5184 10801.2334 1.0 33831 10860.9934 0.7
76 800 2973 10800.1716 1.0 33833 10853.8966 0.7
77 800 711 4456.3225 1.0 24822 10862.4918 0.7
78 800 29 1585.9883 1.0 29949 10863.7911 0.7
79 800 5 1418.6417 1.0 1 234.0652 inf
80 900 346 4289.8207 1.0 22578 10869.1079 0.7
81 900 1004 10802.9810 1.0 21926 10859.6112 0.7
82 900 1527 10800.4423 1.0 17300 10863.7038 0.8
83 900 539 3108.7699 1.0 20772 10861.9778 0.7
84 900 921 10803.1083 0.9 19133 10856.5056 0.7
85 900 1443 10801.9199 1.0 19178 10859.8103 0.7
86 900 135 3343.6416 1.0 17451 10858.2922 0.8
87 900 1154 10802.4067 1.0 26547 10849.0477 0.7
88 900 80 2913.2712 1.0 20462 10845.4186 0.7
89 900 1 1271.1297 1.0 19289 10844.5248 0.7
90 1000 163 5233.4671 1.0 14795 10859.0219 0.8
91 1000 2678 10800.5171 1.0 17441 10856.4719 0.8
92 1000 73 4245.0406 1.0 15919 10858.5450 0.8
93 1000 862 10802.7972 1.0 16530 10871.7120 0.8
94 1000 1326 10801.8961 1.0 18380 10868.6293 0.8
95 1000 76 4242.0261 1.0 17985 10866.4091 0.8
96 1000 1 2617.2543 1.0 22577 10864.8447 0.8
97 1000 1045 10801.3138 1.0 19917 10861.5392 0.8
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C. Full Results for the Second Benchmark Test for Monotone MILCP

Table C.3.: Full table of results for the benchmark test with feasibility (c)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

98 1000 68 3136.0200 1.0 24022 10850.9295 0.8
99 1000 30 3088.7299 1.0 19310 10854.8429 0.8
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Appendix D
Detailed Description of the Test Set for
Non-Monotone MILCP

The parameters for MATLAB’s sprandsym function were the following: matrix sizes were set
to

n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100},

while the range of the matrices was set to 100 and the matrix density was set to 10 %. The
set of integer variables I has been chosen as a random sample containing 10 % of the total
number of variables.

As described in Appendix A, we built vectors q ∈ Rn for the four different “degrees of
feasibility”; see Section 4.4. In order to build instances of Type (a), for which only feasibility
with respect to Z is guaranteed (i.e., Condition (i) is satisfied), we set q = x−Mz starting
from two random vectors x, z ∈ Rn such that x ≥ 0, z ≥ 0, and zI ∈ [0, 1]I . Note that it
is possible that this process yields instances for which the integrality or complementarity
constraints are satisfied as well—although this is rather unlikely. Instances of Type (b),
for which feasibility with respect to Z (Condition (i)) and integrality (Condition (ii)) are
guaranteed, have been built by setting q = x−Mz with x, z ∈ Rn being randomly generated
so that, besides x ≥ 0 and z ≥ 0, also zI ∈ {0, 1}I holds. In order to build instances of
Type (c), for which feasibility w.r.t. Z (Condition (i)) and the complementarity constraint
(Condition (iii)) are fulfilled, we set q = −Mz with z ∈ Rn being a randomly created point
with z ≥ 0 and zI ∈ [0, 1]I . Note that this is the same procedure as for the first test set.
Instances of Type (d), for which all three conditions are fulfilled, have been built by setting
q = −Mz with z ∈ Rn being a randomly created point with z ≥ 0 and zI ∈ {0, 1}I (as we
did for the instances of Type (b)).
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Appendix E
Tables of Aggregated Results of Other
Settings for Non-Monotone MILCP

In what follows, we include all tables for the aggregated running times and node counts of
the settings not reported in Section 4.4.

E.1. Branching Rule Test

Table E.1.: Aggregated nodecounts (top) and runtimes (bottom) for the branching rule test with random choice

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 5.8 5.0 1.0 29.0 3.0 7.0 5.7 100
20 53.6 28.0 7.0 367.0 15.0 66.0 44.4 100
30 1144.8 413.0 25.0 7937.0 55.0 1443.0 495.4 100
40 14319.9 753.0 53.0 84929.0 67.5 6732.0 1428.2 100
50 1707.9 95.0 81.0 10699.0 89.0 451.0 334.5 68
60 99.0 99.0 99.0 99.0 99.0 99.0 99.0 30

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0 100
20 0.2 0.1 0.0 1.4 0.1 0.2 0.2 100
30 9.9 3.6 0.2 68.0 0.5 12.4 6.8 100
40 296.1 12.4 0.9 1848.3 1.2 112.4 41.2 100
50 50.6 2.8 2.5 318.6 2.7 12.4 13.2 68
60 4.8 4.8 4.8 4.8 4.8 4.8 4.8 30
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E. Tables of Aggregated Results of Other Settings for Non-Monotone MILCP

Table E.2.: Aggregated nodecounts (top) and runtimes (bottom) for the branching rule test with most fractional
branching and integer branching done first

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 5.7 5.0 1.0 29.0 3.0 7.0 5.6 100
20 44.9 18.0 5.0 289.0 12.5 52.0 36.6 100
30 365.4 185.0 33.0 3019.0 57.0 501.0 223.6 100
40 1765.9 321.0 41.0 10215.0 137.5 687.0 535.5 100
50 235.0 159.0 73.0 761.0 86.0 240.0 185.1 100
60 107.0 107.0 107.0 107.0 107.0 107.0 107.0 78

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0 100
20 0.2 0.1 0.0 1.2 0.1 0.2 0.2 100
30 3.3 1.7 0.3 27.5 0.5 4.4 2.8 100
40 31.1 5.4 0.8 182.1 2.5 11.7 13.3 100
50 6.8 4.7 2.4 21.0 2.7 7.1 6.0 100
60 5.1 5.1 5.1 5.1 5.1 5.1 5.1 78

Table E.3.: Aggregated nodecounts (top) and runtimes (bottom) for the branching rule test with pseudocost branch-
ing

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 5.5 5.0 1.0 13.0 3.0 7.0 5.4 100
20 39.2 24.0 7.0 137.0 17.0 52.0 35.4 100
30 425.8 197.0 31.0 3541.0 51.0 491.0 242.5 100
40 826.9 215.0 63.0 8045.0 76.0 621.5 332.3 100
50 158.7 89.0 79.0 575.0 86.0 98.0 126.9 100
60 109.0 109.0 109.0 109.0 109.0 109.0 109.0 80

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0 100
20 0.2 0.1 0.0 0.6 0.1 0.2 0.2 100
30 4.6 2.1 0.3 40.4 0.5 5.2 3.6 100
40 17.4 4.5 1.3 169.2 1.6 12.8 9.0 100
50 5.9 3.3 2.9 21.4 3.2 3.6 5.0 100
60 6.1 6.1 6.1 6.1 6.1 6.1 6.1 80

Table E.4.: Aggregated nodecounts (top) and runtimes (bottom) for the branching rule test with preprocessed order
branching

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 6.8 5.0 1.0 21.0 3.0 11.0 6.7 100
20 58.6 34.0 9.0 317.0 20.5 64.5 49.6 100
30 1581.1 701.0 45.0 9911.0 105.0 1659.0 653.9 100
40 22282.3 5235.0 63.0 138263.0 133.0 30240.5 3105.7 88
50 11068.4 101.0 67.0 75951.0 87.0 593.0 479.5 38
60 165.0 165.0 165.0 165.0 165.0 165.0 165.0 28

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0 100
20 0.3 0.2 0.1 1.3 0.1 0.3 0.3 100
30 14.1 6.1 0.6 91.5 1.1 14.4 8.9 100
40 480.8 84.2 1.4 3507.4 2.6 564.0 84.2 88
50 360.2 3.6 2.7 2473.5 3.4 17.3 23.1 38
60 8.4 8.4 8.4 8.4 8.4 8.4 8.4 28
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E.2 Node Selection Test

E.2. Node Selection Test

Table E.5.: Aggregated nodecounts (top) and runtimes (bottom) for the node selection test with breadth-first search

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 6.6 4.0 1.0 39.0 3.0 7.0 6.4 100
20 77.5 54.0 5.0 293.0 27.0 100.5 65.6 100
30 727.7 535.0 89.0 4221.0 323.0 837.0 551.0 100
40 5528.4 2878.0 85.0 19737.0 853.5 8993.0 2457.9 100
50 6144.7 3585.0 795.0 21983.0 2154.0 6171.0 3736.7 82
60 16219.0 16219.0 16219.0 16219.0 16219.0 16219.0 16219.0 35

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0 100
20 0.3 0.2 0.0 1.2 0.1 0.3 0.3 100
30 6.3 4.7 0.9 35.3 3.2 8.1 5.6 100
40 96.8 52.4 1.7 350.8 13.6 150.3 50.7 100
50 189.0 105.9 24.1 711.6 64.7 175.9 115.4 82
60 788.4 788.4 788.4 788.4 788.4 788.4 788.4 35

Table E.6.: Aggregated nodecounts (top) and runtimes (bottom) for the node selection test with lower bound push

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 6.2 5.0 1.0 33.0 3.0 7.0 6.0 100
20 44.8 23.0 5.0 283.0 13.0 38.0 36.6 100
30 331.1 155.0 45.0 2465.0 87.0 409.0 225.6 100
40 1224.3 272.0 35.0 7097.0 113.0 990.0 462.6 100
50 719.6 585.0 119.0 1795.0 311.0 958.0 545.1 100
60 1913.0 1913.0 1913.0 1913.0 1913.0 1913.0 1913.0 92

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0 100
20 0.2 0.1 0.0 1.1 0.1 0.1 0.2 100
30 2.8 1.4 0.4 20.7 0.8 3.7 2.5 100
40 21.0 4.9 0.7 114.1 1.9 17.3 11.0 100
50 17.7 12.5 3.9 48.2 8.1 21.4 14.8 100
60 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92
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E. Tables of Aggregated Results of Other Settings for Non-Monotone MILCP

E.3. Warmstart Test

Table E.7.: Aggregated nodecounts (top) and runtimes (bottom) for the warm start test with warmstart off

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 6.0 5.0 1.0 31.0 3.0 7.0 5.9 100
20 49.2 18.0 5.0 345.0 11.0 56.5 38.6 100
30 431.1 149.0 33.0 3545.0 49.0 429.0 227.4 100
40 1726.7 207.0 33.0 10255.0 64.0 651.0 420.0 100
50 141.0 75.0 65.0 517.0 75.0 90.0 112.7 100
60 87.0 87.0 87.0 87.0 87.0 87.0 87.0 85

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0 100
20 0.2 0.1 0.0 1.4 0.1 0.2 0.2 100
30 4.0 1.4 0.3 33.5 0.5 3.9 3.0 100
40 31.5 3.5 0.7 189.6 1.2 11.7 11.9 100
50 4.1 2.5 2.2 13.6 2.4 2.8 3.7 100
60 4.7 4.7 4.7 4.7 4.7 4.7 4.7 85

Table E.8.: Aggregated nodecounts (top) and runtimes (bottom) for the warm start test using PStart/DStart

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 5.4 4.0 1.0 19.0 3.0 7.0 5.3 100
20 34.0 20.0 5.0 177.0 9.0 34.0 29.2 100
30 268.0 125.0 27.0 1473.0 47.0 367.0 178.5 100
40 879.8 285.0 27.0 6391.0 61.5 914.5 350.7 100
50 147.9 81.0 63.0 581.0 67.0 88.0 112.8 100
60 89.0 89.0 89.0 89.0 89.0 89.0 89.0 90

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0 100
20 0.2 0.1 0.0 0.8 0.0 0.2 0.2 100
30 2.6 1.2 0.3 13.5 0.5 3.5 2.3 100
40 17.1 5.0 0.6 126.2 1.2 17.1 9.2 100
50 4.5 2.8 2.1 16.2 2.3 2.9 3.9 100
60 4.7 4.7 4.7 4.7 4.7 4.7 4.7 90
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E.4 Valid Inequalities Test

E.4. Valid Inequalities Test

Table E.9.: Aggregated nodecounts (top) and runtimes (bottom) for the valid inequality test with all binary cuts

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 6.0 5.0 1.0 31.0 3.0 7.0 5.9 100
20 49.2 18.0 5.0 345.0 11.0 56.5 38.6 100
30 431.2 149.0 33.0 3545.0 49.0 437.0 227.4 100
40 1719.7 207.0 33.0 10255.0 64.0 620.0 414.0 100
50 137.9 75.0 65.0 495.0 75.0 90.0 111.6 100
60 87.0 87.0 87.0 87.0 87.0 87.0 87.0 85

10 0.0 0.0 0.0 0.1 0.0 0.1 0.0 100
20 0.2 0.1 0.0 1.4 0.1 0.2 0.2 100
30 4.1 1.6 0.3 33.8 0.5 4.0 3.2 100
40 32.0 3.7 0.6 195.4 1.3 11.0 11.9 100
50 4.2 2.7 2.1 13.5 2.5 3.0 3.8 100
60 4.8 4.8 4.8 4.8 4.8 4.8 4.8 85

Table E.10.: Aggregated nodecounts (top) and runtimes (bottom) for the valid inequality test with all complemen-
tarity cuts

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 5.7 5.0 1.0 27.0 3.0 7.0 5.6 100
20 46.8 20.0 5.0 219.0 12.5 59.0 38.6 100
30 404.9 185.0 37.0 2559.0 55.0 547.0 238.0 100
40 1599.8 227.0 25.0 10439.0 67.5 757.0 429.7 98
50 131.3 83.0 71.0 429.0 76.0 92.0 111.4 88
60 79.0 79.0 79.0 79.0 79.0 79.0 79.0 58

10 0.1 0.0 0.0 0.1 0.0 0.1 0.1 100
20 1.0 0.3 0.0 5.4 0.1 1.3 0.9 100
30 35.3 12.3 2.1 263.9 4.3 44.1 19.6 100
40 295.6 48.9 1.9 1963.2 10.6 144.9 71.0 98
50 52.9 24.8 19.4 222.4 21.4 30.3 35.1 88
60 33.9 33.9 33.9 33.9 33.9 33.9 33.9 58
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E. Tables of Aggregated Results of Other Settings for Non-Monotone MILCP

Table E.11.: Aggregated nodecounts (top) and runtimes (bottom) for the valid inequality test with all simple cuts

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 5.7 5.0 1.0 27.0 3.0 7.0 5.6 100
20 46.8 20.0 5.0 219.0 12.5 59.0 38.6 100
30 405.6 185.0 37.0 2559.0 55.0 547.0 238.4 100
40 1599.6 225.0 25.0 10439.0 67.5 757.0 429.3 98
50 129.9 83.0 71.0 419.0 76.0 92.0 110.8 85
60 79.0 79.0 79.0 79.0 79.0 79.0 79.0 58

10 0.1 0.1 0.0 0.1 0.0 0.1 0.1 100
20 0.9 0.3 0.0 5.2 0.1 1.2 0.9 100
30 35.6 12.9 2.1 264.5 4.1 46.8 19.7 100
40 294.1 49.5 2.0 1956.1 10.9 142.7 71.4 98
50 52.4 25.4 18.5 217.3 21.9 31.0 35.2 85
60 34.4 34.4 34.4 34.4 34.4 34.4 34.4 58

E.5. Benchmark Test

Table E.12.: Aggregated nodecounts (top) and runtimes (bottom) for the benchmark test for the MILP reformulation

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

10 284.1 3.0 1.0 5109.0 2.5 6.0 34.0 100
20 698.2 10.0 1.0 5120.0 6.0 18.2 99.6 100
30 9470.2 5142.0 12.0 92191.0 28.0 6664.0 2146.0 82
40 499557.1 85193.5 28.0 4061416.0 14270.5 365148.8 55051.0 50
50 3571474.1 115450.0 5169.0 24167523.0 93313.0 262775.5 179955.5 45
60 6616978.0 6616978.0 6616978.0 6616978.0 6616978.0 6616978.0 6616978.0 8

10 0.1 0.1 0.1 0.2 0.1 0.1 0.1 100
20 0.0 0.0 0.0 0.2 0.0 0.0 0.0 100
30 0.4 0.2 0.0 3.0 0.0 0.3 0.4 82
40 38.4 3.6 0.1 467.6 0.9 17.0 11.3 50
50 213.0 6.6 0.6 1440.7 5.9 15.6 22.5 45
60 476.7 476.7 476.7 476.7 476.7 476.7 476.7 8
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Appendix F
Full Results for the Benchmark Test for
Non-Monotone MILCP

Here, we present running times, node counts, and optimality gaps for the benchmark test
in Section 4.4.5.

Table F.1.: Full table of results for the benchmark test

MILCP-PBB MILP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

0 10 5 0.0485 0.0 3 0.0774 0.0
1 10 5 0.0674 0.0 1 0.0716 0.0
2 10 3 0.0645 0.0 3 0.0813 0.0
3 10 3 0.0661 0.0 3 0.0855 0.0
4 10 5 0.0645 0.0 4 0.0766 0.0
5 10 5 0.0651 0.0 3 0.0726 0.0
6 10 5 0.0678 0.0 3 0.0730 0.0
7 10 1 0.0602 0.0 3 0.0744 0.0
8 10 3 0.0592 0.0 3 0.0744 0.0
9 10 1 0.0589 0.0 1 0.0754 0.0
10 10 7 0.0672 0.0 9 0.0750 0.0
11 10 3 0.0575 0.0 5 0.0743 0.0
12 10 3 0.0617 0.0 4 0.0812 0.0
13 10 3 0.0592 0.0 1 0.0789 0.0
14 10 9 0.0656 0.0 6 0.0699 0.0
15 10 7 0.0646 0.0 4 0.0738 0.0
16 10 5 0.0589 0.0 1 0.0502 0.0

Continued on next page
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F. Full Results for the Benchmark Test for Non-Monotone MILCP

Table F.1.: Full table of results for the benchmark test

MILCP-PBB MILP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

17 10 3 0.0578 0.0 1 0.0717 0.0
18 10 19 0.0706 0.0 15 0.0800 0.0
19 10 7 0.0642 0.0 5109 0.1798 0.0
20 10 3 0.0584 0.0 3 0.0704 0.0
21 10 3 0.0592 0.0 1 0.0723 0.0
22 10 11 0.0707 0.0 1004 0.0911 0.0
23 10 9 0.0600 0.0 6 0.0978 0.0
24 10 5 0.0617 0.0 3 0.0700 0.0
25 10 7 0.0637 0.0 4 0.0699 0.0
26 10 13 0.0731 0.0 6 0.0821 0.0
27 10 31 0.0783 0.0 10 0.0713 0.0
28 10 1 0.0545 0.0 1 0.0796 0.0
29 10 7 0.0617 0.0 1 0.0719 0.0
30 10 1 0.0562 0.0 3 0.0835 0.0
31 10 9 0.0621 0.0 7 0.0923 0.0
32 10 3 0.0547 0.0 3 0.0696 0.0
33 10 11 0.0691 0.0 5109 0.1726 0.0
34 10 3 0.0561 0.0 5 0.0698 0.0
35 10 7 0.0598 0.0 6 0.0740 0.0
36 10 1 0.0531 0.0 1 0.0663 0.0
37 10 3 0.0561 0.0 4 0.0890 0.0
38 10 1 0.0548 0.0 1 0.0670 0.0
39 10 9 0.0658 0.0 5 0.0767 0.0
40 20 15 0.1032 0.0 5117 0.2371 0.0
41 20 11 0.0983 0.0 10 0.0826 0.0
42 20 29 0.1577 0.0 5120 0.2500 0.0
43 20 13 0.0885 0.0 10 0.0904 0.0
44 20 15 0.0639 0.0 7 0.0173 0.0
45 20 5 0.0158 0.0 6 0.0330 0.0
46 20 7 0.0523 0.0 7 0.0238 0.0
47 20 15 0.0502 0.0 9 0.0242 0.0
48 20 11 0.0674 0.0 15 0.0309 0.0
49 20 25 0.0993 0.0 10 0.0287 0.0
50 20 5 0.0314 0.0 1 0.0246 0.0
51 20 13 0.0625 0.0 5 0.0217 0.0
52 20 11 0.0652 0.0 8 0.0247 0.0
53 20 7 0.0485 0.0 3 0.0223 0.0
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MILCP-PBB MILP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

54 20 87 0.3608 0.0 6 0.0305 0.0
55 20 35 0.1411 0.0 18 0.0322 0.0
56 20 25 0.1146 0.0 5 0.0219 0.0
57 20 137 0.5641 0.0 1015 0.0532 0.0
58 20 13 0.0695 0.0 1004 0.0378 0.0
59 20 19 0.0922 0.0 12 0.0287 0.0
60 20 21 0.0974 0.0 5111 0.1629 0.0
61 20 345 1.3971 0.0 23 0.0248 0.0
62 20 17 0.0797 0.0 8 0.0176 0.0
63 20 19 0.0907 0.0 6 0.0114 0.0
64 20 277 1.1314 0.0 5115 0.1556 0.0
65 20 9 0.0384 0.0 15 0.0226 0.0
66 20 13 0.0602 0.0 6 0.0164 0.0
67 20 61 0.2377 0.0 8 0.0180 0.0
68 20 9 0.0410 0.0 8 0.0161 0.0
69 20 129 0.4705 0.0 15 0.0133 0.0
70 20 47 0.1955 0.0 5120 0.1768 0.0
71 20 15 0.0668 0.0 8 0.0117 0.0
72 20 77 0.3048 0.0 3 0.0156 0.0
73 20 55 0.2201 0.0 10 0.0119 0.0
74 20 23 0.0962 0.0 19 0.0189 0.0
75 20 11 0.0499 0.0 23 0.0184 0.0
76 20 79 0.3182 0.0 6 0.0133 0.0
77 20 9 0.0403 0.0 14 0.0105 0.0
78 20 169 0.6690 0.0 17 0.0155 0.0
79 20 85 0.3371 0.0 4 0.0150 0.0
80 30 49 0.4500 0.0 1510 0.0722 0.0
81 30 37 0.3598 0.0 6642 0.3085 0.0
82 30 39 0.3653 0.0 6793947 3602.7226 inf
83 30 47 0.4403 0.0 5130 0.2438 0.0
84 30 39 0.3721 0.0 21 0.0346 0.0
85 30 35 0.3382 0.0 18 0.0328 0.0
86 30 45 0.4277 0.0 25 0.0429 0.0
87 30 55 0.5133 0.0 9677 0.4744 0.0
88 30 35 0.3390 0.0 25 0.0389 0.0
89 30 43 0.4034 0.0 28 0.0396 0.0
90 30 151 1.5006 0.0 7177326 3603.9318 1.0
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F. Full Results for the Benchmark Test for Non-Monotone MILCP
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MILCP-PBB MILP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

91 30 109 1.0723 0.0 6659 0.3106 0.0
92 30 717 7.1047 0.0 5162 0.2755 0.0
93 30 755 7.5426 0.0 9014631 3601.4398 1.0
94 30 1009 9.5735 0.0 6755328 3605.3493 1.0
95 30 187 1.8717 0.0 5134 0.2333 0.0
96 30 63 0.5485 0.0 92191 2.9865 0.0
97 30 401 3.6816 0.0 8960150 3602.8095 0.1
98 30 3545 33.4889 0.0 8136 0.2947 0.0
99 30 99 0.8690 0.0 5127 0.2208 0.0
100 30 2611 22.8850 0.0 6664 0.3054 0.0
101 30 365 3.4610 0.0 5150 0.2645 0.0
102 30 807 7.0044 0.0 5144 0.2351 0.0
103 30 519 4.8498 0.0 7540 0.3528 0.0
104 30 107 0.8586 0.0 20 0.0356 0.0
105 30 311 2.8744 0.0 5166 0.3012 0.0
106 30 241 2.1818 0.0 12 0.0301 0.0
107 30 115 1.1005 0.0 9336339 3602.6633 inf
108 30 33 0.3283 0.0 6670 0.3510 0.0
109 30 429 3.4316 0.0 38 0.0370 0.0
110 30 149 1.4363 0.0 5142 0.2255 0.0
111 30 365 3.6856 0.0 5112 0.2279 0.0
112 30 525 4.9961 0.0 13 0.0287 0.0
113 30 333 3.2030 0.0 32212 1.1470 0.0
114 30 501 4.9082 0.0 57703 2.1175 0.0
115 30 83 0.7411 0.0 12 0.0277 0.0
116 30 107 0.9802 0.0 20179 0.8147 0.0
117 30 1219 12.3243 0.0 5112 0.2412 0.0
118 30 415 3.9041 0.0 5143 0.2909 0.0
119 30 99 0.9028 0.0 6493392 3604.2579 1.0
120 40 33 0.6236 0.0 5111 0.3589 0.0
121 40 73 1.3336 0.0 10663573 3600.3667 1.0
122 40 53 1.0124 0.0 59333 2.7933 0.0
123 40 67 1.2538 0.0 1998062 88.4977 0.0
124 40 65 1.2418 0.0 12579931 3601.1637 1.0
125 40 53 1.1006 0.0 28 0.0613 0.0
126 40 73 1.3673 0.0 58316 2.8901 0.0
127 40 67 1.2322 0.0 11327676 3600.5619 1.0
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128 40 63 1.1429 0.0 4061416 467.6248 0.0
129 40 63 1.2208 0.0 999168 43.8545 0.0
130 40 5755 106.5191 0.0 7951546 3601.1893 0.8
131 40 499 8.2214 0.0 16605223 3600.4410 1.0
132 40 10255 193.0888 0.0 324510 15.9380 0.0
133 40 1895 35.5647 0.0 14613127 3600.3177 inf
134 40 2991 57.7778 0.0 7460113 3601.0309 1.0
135 40 13525 266.4687 0.0 7871520 3600.9640 0.3
136 40 1515 28.0182 0.0 1237433 55.5704 0.0
137 40 9007 169.1595 0.0 8966950 3602.0799 0.5
138 40 7941 146.4297 0.0 9285 0.6387 0.0
139 40 799 13.9483 0.0 10359767 3600.6180 1.0
140 40 611 10.1220 0.0 10538431 3601.7281 1.0
141 40 257 4.3288 0.0 378695 17.4114 0.0
142 40 265 4.2006 0.0 29254 1.6259 0.0
143 40 159 2.4411 0.0 9068492 3601.2563 1.0
144 40 525 9.3265 0.0 17196306 3600.3454 inf
145 40 555 9.4832 0.0 305654 14.3585 0.0
146 40 395 6.7528 0.0 29227 1.5412 0.0
147 40 7181 131.9554 0.0 4123 0.4955 0.0
148 40 111 1.8444 0.0 47 0.0904 0.0
149 40 4481 81.6592 0.0 8360622 3600.0348 0.7
150 40 9257 168.0307 0.0 7472074 3602.0835 0.9
151 40 25387 501.5054 0.0 39936 1.7102 0.0
152 40 1733 31.3487 0.0 7601094 3601.9617 1.0
153 40 683 11.6787 0.0 111478 4.9084 0.0
154 40 2241 40.6295 0.0 10670825 3600.9092 1.0
155 40 973 17.8150 0.0 11087607 3601.9587 1.0
156 40 2875 55.8944 0.0 111054 4.3750 0.0
157 40 157 2.8850 0.0 507267 23.9759 0.0
158 40 997 18.2655 0.0 7339229 3600.6836 0.9
159 40 323 5.5933 0.0 7518166 3601.2365 1.0
160 50 75 2.4067 0.0 118074 7.4862 0.0
161 50 75 2.6881 0.0 15737523 3600.5509 1.0
162 50 93 2.9237 0.0 24167523 1440.7196 0.0
163 50 75 2.4104 0.0 16590792 3600.1574 1.0
164 50 75 2.4451 0.0 85023 5.3421 0.0
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MILCP-PBB MILP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

165 50 77 2.5095 0.0 11243485 3600.6619 1.0
166 50 65 2.2013 0.0 5169 0.6221 0.0
167 50 87 2.7419 0.0 407477 23.7957 0.0
168 50 75 2.6854 0.0 115450 6.4438 0.0
169 50 73 2.5335 0.0 9591538 3600.0894 1.0
170 50 2423 75.2438 0.0 23262723 1353.3727 0.0
171 50 3479 107.8683 0.0 10207243 3600.8648 1.0
172 50 537 16.6234 0.0 8874123 529.2525 0.0
173 50 663 19.9934 0.0 7473436 477.7615 0.0
174 50 19133 602.6309 0.0 3698842 220.2774 0.0
175 50 151 4.6737 0.0 6665548 425.8878 0.0
176 50 10073 324.3787 0.0 13777844 3601.1800 1.0
177 50 813 23.7100 0.0 25622742 3600.7314 1.0
178 50 1941 61.8037 0.0 12217351 767.3749 0.0
179 50 7917 259.3454 0.0 7812356 565.1433 0.0
180 50 517 13.9730 0.0 101603 6.5561 0.0
181 50 669 19.1249 0.0 17008333 3600.3634 1.0
182 50 2479 64.3593 0.0 8264785 3600.8681 1.0
183 50 373 10.5980 0.0 13713250 3601.2056 inf
184 50 761 25.3844 0.0 8354526 3600.5981 1.0
185 50 835 25.7378 0.0 12907715 3600.4083 1.0
186 50 3213 98.3091 0.0 11127819 3600.4181 1.0
187 50 2403 79.7049 0.0 11560675 3600.6479 1.0
188 50 297 8.1076 0.0 10892781 3600.6010 inf
189 50 257 6.8017 0.0 1008120 75.2127 0.0
190 50 7685 251.3642 0.0 26423717 3600.0538 1.0
191 50 11101 371.2965 0.0 10099296 3600.9595 1.0
192 50 211 6.5962 0.0 553920 32.7262 0.0
193 50 21983 736.7869 0.0 15149116 911.1518 0.0
194 50 829 24.8993 0.0 28089011 3600.2808 1.0
195 50 8341 284.3636 0.0 9478323 3600.9178 0.2
196 50 4347 138.9693 0.0 11969616 3600.5600 1.0
197 50 2017 60.5671 0.0 12837013 3600.4998 1.0
198 50 5749 179.4567 0.0 4593546 321.5780 0.0
199 50 3761 118.9267 0.0 24535069 3600.0516 1.0
200 60 95 5.3018 0.0 24886131 3600.0699 inf
201 60 97 4.8789 0.0 39455825 3600.3901 1.0
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MILCP-PBB MILP Reformulation
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202 60 89 5.0732 0.0 50259520 3600.0707 1.0
203 60 91 4.9021 0.0 24262141 3600.0810 inf
204 60 87 4.6540 0.0 6616978 476.7363 0.0
205 60 109 5.3670 0.0 35401147 2576.5431 0.0
206 60 119 5.9437 0.0 40436992 3600.3677 1.0
207 60 93 4.7145 0.0 19520919 3600.2277 1.0
208 60 89 4.5565 0.0 16021670 3600.3017 1.0
209 60 93 4.7323 0.0 19018050 3600.1198 inf
210 60 6037 295.2125 0.0 50200819 3600.0655 1.0
211 60 2041 95.7751 0.0 46197987 3600.0643 1.0
212 60 2967 146.5233 0.0 55507819 3600.0645 1.0
213 60 14517 742.8341 0.0 8752981 3600.0631 0.8
214 60 34181 1887.6959 0.0 51471242 3600.0702 1.0
215 60 61740 3600.0797 1.0 28888396 3600.1671 1.0
216 60 12109 613.7741 0.0 49749191 3600.0639 1.0
217 60 61843 3600.0101 1.0 41910105 3600.0652 0.8
218 60 60029 3600.0041 1.0 34435549 3600.0681 1.0
219 60 6487 313.5253 0.0 50485915 3600.0652 1.0
220 60 2065 92.3607 0.0 37154426 3600.0675 1.0
221 60 1329 58.2435 0.0 51978365 3600.0618 1.0
222 60 2199 102.9947 0.0 49909484 3600.0607 1.0
223 60 3605 173.2250 0.0 13798637 3600.8346 inf
224 60 35191 1930.7522 0.0 46423252 3600.0649 1.0
225 60 449 19.2751 0.0 12828170 3600.0870 1.0
226 60 4581 241.6146 0.0 14370212 3600.2924 1.0
227 60 1707 72.3106 0.0 12025957 3600.5277 1.0
228 60 857 42.0910 0.0 10572822 3600.0628 1.0
229 60 447 19.0982 0.0 47778010 3600.0644 1.0
230 60 9109 480.4296 0.0 46400262 3600.0838 1.0
231 60 12591 646.9530 0.0 44378091 3600.1040 1.0
232 60 28897 1657.8787 0.0 37531820 3600.6144 1.0
233 60 17657 965.3765 0.0 45138783 3600.0623 1.0
234 60 64886 3600.0059 1.0 48157788 3600.0694 1.0
235 60 35649 1872.9085 0.0 46689688 3600.0763 1.0
236 60 64875 3600.0146 1.0 31122179 3600.1779 1.0
237 60 21371 1109.2915 0.0 34486366 3600.4863 1.0
238 60 405 20.2924 0.0 46589263 3600.1261 1.0
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239 60 68694 3600.0189 1.0 46161473 3438.6199 0.0
240 70 109 8.6188 0.0 42567729 3600.0726 1.0
241 70 113 9.8997 0.0 38874776 3600.0845 1.0
242 70 105 8.8139 0.0 39860152 3600.1576 1.0
243 70 123 9.8650 0.0 38456038 3600.5312 1.0
244 70 111 8.9915 0.0 42911066 3600.1150 1.0
245 70 93 7.2621 0.0 40853430 3600.1202 1.0
246 70 129 10.2514 0.0 36640641 3600.0826 1.0
247 70 93 7.6490 0.0 24608285 3600.3091 1.0
248 70 101 8.0807 0.0 41219545 3600.0820 1.0
249 70 111 10.0252 0.0 45596393 3600.0840 1.0
250 70 47358 3600.0651 1.0 40576274 3600.1004 1.0
251 70 42187 3255.0700 0.0 18265067 3600.0882 1.0
252 70 9081 643.1961 0.0 41919912 3600.0926 1.0
253 70 5279 371.7403 0.0 39359918 3600.1038 1.0
254 70 45762 3600.0458 1.0 40670051 3600.1080 1.0
255 70 5639 395.7295 0.0 43996932 3600.1232 1.0
256 70 48895 3600.0370 1.0 40814135 3600.0926 1.0
257 70 47809 3600.0449 1.0 39977813 3600.1089 1.0
258 70 35707 2721.0497 0.0 40754231 3600.0940 1.0
259 70 14121 1025.1795 0.0 43597128 3600.0873 1.0
260 70 4375 334.7261 0.0 42817797 3600.0870 1.0
261 70 41545 3427.4645 0.0 31341882 3600.1065 1.0
262 70 34339 2705.8331 0.0 35895136 3600.1102 1.0
263 70 10931 846.5420 0.0 32521586 3600.0902 1.0
264 70 15677 1194.4300 0.0 42718678 3600.1043 1.0
265 70 3709 275.7832 0.0 21751573 3600.3133 1.0
266 70 5535 383.8608 0.0 40206796 3600.0844 1.0
267 70 7121 566.9860 0.0 42861673 3600.1063 1.0
268 70 2389 166.9705 0.0 41814757 3600.0814 1.0
269 70 4003 259.0037 0.0 27686228 3600.0991 1.0
270 70 46394 3600.0546 1.0 41778529 3600.0901 1.0
271 70 47689 3600.0304 1.0 38073755 3600.0906 1.0
272 70 4223 297.0891 0.0 41609098 3600.1751 1.0
273 70 30317 2217.2765 0.0 39343286 3600.0843 1.0
274 70 46016 3600.0892 1.0 41741473 3600.0845 1.0
275 70 46335 3600.0094 1.0 41790802 3600.0937 1.0
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276 70 27863 2097.7150 0.0 40397771 3600.0882 1.0
277 70 6817 492.6976 0.0 41169034 3600.1027 1.0
278 70 48204 3600.0415 1.0 34593215 3600.1144 1.0
279 70 17457 1258.1579 0.0 44017761 3600.1165 1.0
280 80 105 11.2785 0.0 37048535 3600.1103 inf
281 80 127 14.0814 0.0 33118169 3600.1055 1.0
282 80 133 14.6090 0.0 33375113 3600.1555 1.0
283 80 123 13.2798 0.0 34446499 3600.1007 1.0
284 80 123 13.1252 0.0 21163471 3600.1148 1.0
285 80 151 16.0503 0.0 36012728 3600.1113 1.0
286 80 97 10.8823 0.0 33777922 3600.1117 1.0
287 80 119 13.9151 0.0 33245391 3600.4252 1.0
288 80 135 15.6705 0.0 36896396 3600.1092 1.0
289 80 93 10.0849 0.0 36262101 3600.1025 1.0
290 80 1607 153.6416 0.0 36320027 3600.1353 1.0
291 80 33824 3600.0716 1.0 37148555 3600.1075 1.0
292 80 19783 1968.2480 0.0 37963021 3600.1055 1.0
293 80 35375 3600.0942 1.0 36263490 3600.1171 inf
294 80 19409 1938.5354 0.0 36041135 3600.1160 1.0
295 80 34775 3600.0294 1.0 35651234 3600.1093 1.0
296 80 9091 891.2372 0.0 22816802 3600.1098 1.0
297 80 33987 3600.0496 1.0 32713852 3600.1184 1.0
298 80 34070 3600.0215 1.0 37148706 3600.1194 1.0
299 80 35236 3600.0739 1.0 36150335 3600.1072 1.0
300 80 34368 3600.0083 1.0 37044501 3600.1438 1.0
301 80 34145 3600.1220 1.0 12718257 3600.1119 1.0
302 80 11463 1262.4349 0.0 35606393 3600.1354 1.0
303 80 29973 3376.4791 0.0 35082738 3600.1228 1.0
304 80 35710 3600.0329 1.0 37562327 3600.1011 1.0
305 80 6069 575.2140 0.0 33561958 3600.1135 1.0
306 80 16279 1767.7997 0.0 30763584 3600.1085 inf
307 80 32377 3600.1488 1.0 36400912 3600.1512 1.0
308 80 34040 3600.0696 1.0 33662507 3600.1395 1.0
309 80 32192 3600.0694 1.0 36859114 3600.1240 1.0
310 80 34455 3530.8680 0.0 34617513 3600.1253 1.0
311 80 34579 3600.1159 1.0 29326655 3600.1057 1.0
312 80 32611 3600.1423 1.0 37007489 3600.1540 inf
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313 80 33103 3600.1624 1.0 35514103 3600.1269 1.0
314 80 28505 2924.3102 0.0 33926880 3600.1404 inf
315 80 35539 3600.2558 1.0 35104508 3600.1748 1.0
316 80 32425 3290.5276 0.0 28700960 3600.1290 inf
317 80 33489 3600.0685 1.0 37450092 3600.1244 inf
318 80 34421 3600.1052 1.0 35102244 3600.1242 1.0
319 80 33877 3600.3986 1.0 33193558 3600.1392 inf
320 90 127 19.5232 0.0 16937471 3603.4166 1.0
321 90 153 22.3891 0.0 29376766 3600.1407 1.0
322 90 155 22.8672 0.0 28400929 3600.1446 1.0
323 90 103 16.2990 0.0 11030656 1310.1262 0.0
324 90 129 20.3978 0.0 15280804 3600.1487 1.0
325 90 117 17.7087 0.0 31528912 3600.1777 1.0
326 90 157 22.7151 0.0 32774609 3600.1671 inf
327 90 147 22.2076 0.0 9583300 3600.1760 inf
328 90 135 20.6060 0.0 15050902 3600.1643 inf
329 90 147 21.0489 0.0 7349433 3600.1545 inf
330 90 24160 3600.7680 1.0 30578988 3600.1763 inf
331 90 24248 3600.0638 1.0 30752831 3600.1825 inf
332 90 23512 3600.4164 1.0 10330518 3600.1849 inf
333 90 24846 3600.3358 1.0 14783669 3600.1461 inf
334 90 22740 3600.5143 1.0 11384023 3600.1609 inf
335 90 24184 3600.4909 1.0 22889268 3600.1467 inf
336 90 23297 3600.1440 1.0 27435194 3600.1436 inf
337 90 23550 3600.7915 1.0 25139388 3600.1628 1.0
338 90 23068 3600.4417 1.0 26181117 3600.1376 1.0
339 90 22413 3600.2280 1.0 13667703 3600.1619 inf
340 90 4113 438.4722 0.0 12949837 3600.1507 inf
341 90 7999 1049.6061 0.0 11562773 3600.1869 1.0
342 90 19529 3600.0214 1.0 24331461 3600.1389 1.0
343 90 20653 3600.0472 1.0 24869728 3600.1354 inf
344 90 1129 114.3678 0.0 23005084 3600.1628 1.0
345 90 18032 3601.1323 1.0 13836078 3600.1692 inf
346 90 5741 678.3576 0.0 21154208 3600.1392 1.0
347 90 18233 3600.6711 1.0 21596076 3600.1652 inf
348 90 16234 3600.5550 1.0 19934197 3600.1908 inf
349 90 15311 3600.1962 1.0 11888119 3600.1430 inf
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350 90 11055 1464.3901 0.0 12307174 3600.1554 1.0
351 90 11402 3600.1947 1.0 12361298 3600.1701 inf
352 90 10968 3600.3004 1.0 12514407 3600.1754 inf
353 90 9537 3600.0392 1.0 10986432 3600.1394 inf
354 90 8693 3600.1438 1.0 9489251 3600.1425 inf
355 90 7906 3600.2449 1.0 3203258 3600.1678 inf
356 90 6263 3600.2285 1.0 4052997 3600.1839 inf
357 90 4819 3600.8998 1.0 4090435 3600.2016 inf
358 90 4051 3600.7764 1.0 3850978 3600.1976 inf
359 90 3741 3600.7337 1.0 3704230 3600.3116 inf
360 100 133 206.8423 0.0 3770082 3600.3518 inf
361 100 149 213.4820 0.0 1837594 3600.3681 inf
362 100 119 192.6571 0.0 3692026 3600.3320 1.0
363 100 175 230.3095 0.0 3920317 3600.3986 inf
364 100 173 249.1848 0.0 3697418 3600.4362 inf
365 100 159 225.3572 0.0 3612315 3600.4405 inf
366 100 157 229.9255 0.0 3450451 3600.4868 inf
367 100 141 206.5451 0.0 409605 298.1112 0.0
368 100 159 233.7223 0.0 3653556 3600.5653 inf
369 100 165 238.6822 0.0 2221500 3600.5923 inf
370 100 2328 3601.1221 1.0 2832712 3600.2091 1.0
371 100 2418 3600.0912 1.0 1867499 3600.4453 inf
372 100 2378 3600.7563 1.0 3899805 3600.6171 1.0
373 100 2150 3600.7655 1.0 1403491 3600.8033 inf
374 100 2162 3600.2248 1.0 1544125 3600.4468 inf
375 100 2141 3601.6171 1.0 3871515 3601.0273 inf
376 100 2176 3600.0478 1.0 3155588 3600.9158 inf
377 100 2459 3600.8661 1.0 2568930 3601.0041 inf
378 100 2345 3600.2753 1.0 3077182 3600.7871 inf
379 100 2459 3600.4004 1.0 2729111 3600.8324 inf
380 100 2753 3600.6766 1.0 2312640 3600.8802 inf
381 100 2363 3600.3465 1.0 2398795 3600.5612 inf
382 100 3192 3600.7711 1.0 3093638 3600.6241 inf
383 100 3158 3600.8031 1.0 2008216 3600.6386 inf
384 100 2400 3600.3298 1.0 3613305 3600.6398 inf
385 100 2576 3600.5092 1.0 1958350 3600.3754 inf
386 100 3343 3600.6137 1.0 4008430 3600.2511 inf

Continued on next page
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F. Full Results for the Benchmark Test for Non-Monotone MILCP

Table F.1.: Full table of results for the benchmark test

MILCP-PBB MILP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

387 100 2277 3600.6431 1.0 3442692 3600.9500 1.0
388 100 3267 3600.2265 1.0 1882170 3600.7430 inf
389 100 2487 3600.5274 1.0 3965266 3600.9704 inf
390 100 2420 3600.5672 1.0 3484015 3601.0077 inf
391 100 2417 3600.1276 1.0 2975610 3600.9602 inf
392 100 2315 3600.1726 1.0 2096589 3600.6541 inf
393 100 2690 3600.5409 1.0 1736041 3601.3589 inf
394 100 2790 3600.3883 1.0 2854415 3600.7975 inf
395 100 2867 3600.1787 1.0 2518644 3601.0965 inf
396 100 3495 3600.0890 1.0 5510967 3601.0042 inf
397 100 4203 3600.1501 1.0 7398050 3601.3565 inf
398 100 8434 3600.0030 1.0 9420922 3601.1482 inf
399 100 8911 3600.0430 1.0 10020329 3600.6226 inf
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Appendix G
Tables of Aggregated Results of Other
Settings for MILP

In what follows, we include all tables for the aggregated running times and node counts of
the settings not reported in Section 5.3.

G.1. Branching Rule Test

Table G.1.: Aggregated nodecounts (top) and runtimes (bottom) for the branching rule test with random choice

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 18625.0 1127.0 37.0 156225.0 41.2 49.6 2266.7 14
≤ 500 10206.3 6255.0 137.0 35297.0 138.2 140.8 2962.3 14
≤ 2000 52138.8 4514.5 5.0 199293.0 5.1 5.3 3268.1 15
≤ 5000 10252.3 1945.0 55.0 28757.0 64.4 83.4 1991.3 43
> 5000 66.5 33.0 17.0 183.0 17.0 17.1 55.3 11

≤ 200 324.8 9.6 0.0 2625.5 0.0 0.0 35.1 14
≤ 500 94.4 85.6 1.0 227.1 1.0 1.0 44.8 14
≤ 2000 2982.5 45.5 0.1 10242.5 0.1 0.1 146.0 15
≤ 5000 350.7 92.6 4.7 954.8 5.1 6.0 103.4 43
> 5000 519.6 11.0 1.5 2055.2 1.5 1.7 46.8 11

129



G. Tables of Aggregated Results of Other Settings for MILP

Table G.2.: Aggregated nodecounts (top) and runtimes (bottom) for the branching rule test with pseudocost branch-
ing

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 11614.5 2187.0 45.0 113727.0 49.0 57.0 2103.1 19
≤ 500 30660.0 13971.0 1303.0 94761.0 1305.3 1309.8 10885.4 16
≤ 2000 20000.8 9420.5 7.0 77791.0 7.2 7.6 2607.1 10
≤ 5000 2573.7 3357.0 33.0 4331.0 49.6 82.9 1167.7 43
> 5000 123.0 91.0 3.0 307.0 3.0 3.1 87.4 11

≤ 200 260.7 13.2 0.0 2400.6 0.0 0.0 29.7 19
≤ 500 608.5 238.6 11.1 2194.9 11.2 11.2 181.2 16
≤ 2000 1054.6 119.6 0.2 4562.4 0.2 0.2 125.7 10
≤ 5000 201.9 171.9 3.1 430.7 4.0 5.7 91.7 43
> 5000 702.7 81.3 1.5 2646.6 1.5 1.5 80.1 11

Table G.3.: Aggregated nodecounts (top) and runtimes (bottom) for the branching rule test with MILP-based
branching

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 14379.1 2010.0 43.0 109661.0 50.1 64.1 2198.6 14
≤ 500 10123.8 6103.0 119.0 33204.0 119.1 119.2 1986.7 16
≤ 2000 16784.8 2323.5 5.0 53861.0 6.6 10.0 1942.6 19
≤ 5000 1126.7 1633.0 74.0 1673.0 81.8 97.4 711.6 40
> 5000 28.5 7.0 3.0 97.0 3.0 3.0 23.4 13

≤ 200 268.6 5.9 0.0 2605.0 0.0 0.0 27.5 14
≤ 500 86.3 67.3 0.9 204.3 0.9 0.9 36.0 16
≤ 2000 476.9 15.1 0.1 1440.8 0.1 0.2 59.2 19
≤ 5000 40.1 36.3 1.9 81.9 2.1 2.5 27.0 40
> 5000 241.6 1.8 0.5 962.2 0.5 0.5 24.5 13

G.2. Node Selection Test

Table G.4.: Aggregated nodecounts (top) and runtimes (bottom) for the node selection test with breadth-first search

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 9125.2 1375.5 21.0 87809.0 22.1 24.4 1612.6 16
≤ 500 24475.0 8937.0 169.0 114935.0 170.6 173.8 3962.5 14
≤ 2000 23867.1 10168.0 7.0 108761.0 7.3 7.8 3136.4 15
≤ 5000 746.0 746.0 29.0 1463.0 32.6 39.8 349.0 42
> 5000 225.6 27.0 3.0 1026.0 3.1 3.2 92.3 11

≤ 200 215.3 5.7 0.0 3544.9 0.0 0.0 18.0 16
≤ 500 988.0 117.0 1.1 5616.4 1.1 1.2 102.3 14
≤ 2000 1864.6 205.7 0.2 9564.2 0.2 0.2 181.3 15
≤ 5000 32.8 32.8 2.1 63.5 2.2 2.6 19.8 42
> 5000 273.6 11.3 1.0 873.9 1.0 1.0 54.7 11
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G.3 Warmstart Test

Table G.5.: Aggregated nodecounts (top) and runtimes (bottom) for the node selection test with depth-first search

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 6668.7 1192.0 11.0 72279.0 12.6 15.8 1330.0 16
≤ 500 10975.9 5871.0 663.0 34971.0 672.0 690.1 5454.0 14
≤ 2000 19519.7 1936.0 5.0 117391.0 5.0 5.1 1642.4 12
≤ 5000 773.0 773.0 21.0 1525.0 24.8 32.3 343.4 40
> 5000 174.8 145.0 25.0 428.0 25.0 25.0 134.5 14

≤ 200 62.2 4.0 0.0 862.0 0.0 0.0 11.7 16
≤ 500 152.9 51.8 4.1 529.5 4.1 4.3 64.9 14
≤ 2000 1057.7 30.0 0.1 6287.4 0.1 0.1 78.1 12
≤ 5000 32.6 32.6 1.5 63.7 1.7 2.0 19.2 40
> 5000 132.2 20.4 9.1 561.1 9.1 9.2 45.0 14

G.3. Warmstart Test

Table G.6.: Aggregated nodecounts (top) and runtimes (bottom) for the warmstart test using PStart/DStart

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 16147.0 1635.0 15.0 173943.0 16.4 19.3 1934.4 14
≤ 500 16751.3 8185.0 373.0 69717.0 374.4 377.3 5439.8 14
≤ 2000 32875.0 3885.0 7.0 123723.0 24.5 59.4 3556.0 15
≤ 5000 1434.0 1434.0 41.0 2827.0 48.0 61.9 542.4 8
> 5000 1487.4 441.0 93.0 7551.0 96.8 104.3 654.2 40

≤ 200 219.8 7.9 0.0 3165.8 0.0 0.0 17.8 14
≤ 500 429.1 204.7 4.0 1518.9 4.1 4.1 144.0 14
≤ 2000 1933.1 177.8 0.2 7376.5 1.1 2.8 210.8 15
≤ 5000 102.0 102.0 7.5 196.4 8.0 8.9 50.1 8
> 5000 2499.6 1704.1 77.3 8449.3 77.5 77.7 769.2 40
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G. Tables of Aggregated Results of Other Settings for MILP

G.4. Valid Inequalities Test

Table G.7.: Aggregated nodecounts (top) and runtimes (bottom) for the valid inequalities test with all simple cuts

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 15391.7 1621.0 19.0 159447.0 20.4 23.2 2407.4 40
≤ 500 20164.5 19676.0 163.0 41143.0 200.5 275.5 6552.1 10
≤ 2000 43997.4 9567.0 7.0 169423.0 44.7 120.2 8203.7 8
≤ 5000 1378.0 1378.0 41.0 2715.0 47.7 61.1 530.0 11
> 5000 1204.9 405.0 51.0 7583.0 51.7 53.1 411.2 17

≤ 200 352.0 8.2 0.0 5160.9 0.0 0.0 25.2 40
≤ 500 367.8 316.2 1.8 836.9 2.1 2.9 127.9 10
≤ 2000 2414.4 159.2 0.1 7835.4 0.8 2.2 350.2 8
≤ 5000 59.0 59.0 3.0 114.9 3.3 3.9 30.3 11
> 5000 1206.3 326.6 24.7 3274.7 25.1 25.9 349.4 17

G.5. Upper Bound Test

Table G.8.: Aggregated nodecounts (top) and runtimes (bottom) for the upper bound test for MILP-PBB and warm-
starts off

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 57.9 1.0 1.0 969.0 1.0 1.0 16.0 36
≤ 500 2.6 1.0 1.0 43.0 1.0 1.0 2.4 44
≤ 2000 1.2 1.0 1.0 5.0 1.0 1.0 1.2 58
≤ 5000 8910.5 1.0 1.0 53458.0 1.0 1.0 187.3 33
> 5000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 42

≤ 200 0.0 0.0 0.0 0.3 0.0 0.0 0.0 36
≤ 500 0.0 0.0 0.0 0.2 0.0 0.0 0.0 44
≤ 2000 0.0 0.0 0.0 0.5 0.0 0.0 0.0 58
≤ 5000 0.1 0.1 0.0 0.1 0.0 0.0 0.1 33
> 5000 1.8 2.5 0.1 3.8 0.1 0.1 1.7 42
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G.6 Benchmark Test

Table G.9.: Aggregated nodecounts (top) and runtimes (bottom) for the upper bound test for MILP-PBB with
warmstarts using VBasis/CBasis

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 89.4 1.0 1.0 1503.0 1.0 1.0 18.8 38
≤ 500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 44
≤ 2000 10.4 1.0 1.0 255.0 1.0 1.0 5.8 60
≤ 5000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 29
> 5000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 48

≤ 200 0.1 0.0 0.0 1.3 0.0 0.0 0.1 38
≤ 500 0.0 0.0 0.0 0.2 0.0 0.0 0.0 44
≤ 2000 0.3 0.0 0.0 7.9 0.0 0.0 0.3 60
≤ 5000 0.1 0.1 0.0 0.3 0.0 0.0 0.1 29
> 5000 2.0 2.9 0.1 4.0 0.1 0.1 1.9 48

G.6. Benchmark Test

Table G.10.: Aggregated nodecounts (top) and runtimes (bottom) for the benchmark test for MILP-PBB without
warmstarts

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 15121.8 1506.0 19.0 153407.0 20.3 23.0 2032.8 14
≤ 500 17443.0 7997.0 147.0 69707.0 148.5 151.4 4911.1 10
≤ 2000 40426.2 3682.5 7.0 121235.0 7.1 7.2 3506.6 17
≤ 5000 1378.0 1378.0 41.0 2715.0 47.7 61.1 530.0 40
> 5000 1194.4 301.0 51.0 7583.0 51.7 53.2 387.1 16

≤ 200 288.0 4.7 0.1 4408.1 0.1 0.1 17.0 14
≤ 500 301.7 80.7 0.9 1338.3 0.9 0.9 85.8 10
≤ 2000 1785.5 69.6 0.1 7259.6 0.1 0.1 146.9 17
≤ 5000 60.1 60.1 3.1 117.1 3.3 3.9 30.7 40
> 5000 951.2 268.6 20.7 2503.1 21.0 21.6 270.1 16
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G. Tables of Aggregated Results of Other Settings for MILP

Table G.11.: Aggregated nodecounts (top) and runtimes (bottom) for the benchmark test for MILP-PBB with warm-
starts using VBasis/CBasis

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

≤ 200 14900.4 1285.0 19.0 149435.0 20.2 22.7 1673.8 16
≤ 500 24306.1 4053.0 209.0 113939.0 209.9 211.8 3616.1 19
≤ 2000 30071.7 2181.0 7.0 122289.0 7.1 7.2 1988.5 17
≤ 5000 735.0 735.0 31.0 1439.0 34.5 41.6 349.0 38
> 5000 292.6 178.5 5.0 1129.0 5.1 5.3 169.9 10

≤ 200 643.1 3.9 0.0 7566.8 0.0 0.0 19.4 16
≤ 500 1030.2 47.8 1.7 5688.0 1.7 1.7 97.4 19
≤ 2000 1956.1 73.6 0.2 9550.8 0.2 0.2 115.9 17
≤ 5000 37.4 37.4 3.9 70.8 4.1 4.4 23.5 38
> 5000 934.6 172.1 1.6 6356.8 1.6 1.6 120.1 10
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Appendix H
Full Results for the Benchmark Test for
MILP

Here, we present running times, node counts, and optimality gaps for the benchmark test
in Section 5.3.2. As both versions of MILP-PBB are rather similar, we only include the first
versions, as it solved slightly more instances.

Table H.1.: Full table of results for the benchmark test

MILP-PBB 1 Gurobi
Inst. Nodecount Time Gap Nodecount Time Gap

22433 10171 151.8781 0.0 23 1.0669 0.0
23588 7997 80.6618 0.0 779 1.7898 0.0

2club200v15p5scn 5228 10800.0169 1.0 37076 10800.1420 0.9
a1c1s1 137636 10800.0181 0.9 1891453 10800.1686 0.7
a2c1s1 141081 10800.0656 1.0 1809562 10800.1550 0.7

aflow30a 205652 10800.0261 0.2 40925 62.2703 0.0
air01 7 0.1431 0.0 3 0.1795 0.0
air02 467 40.7614 0.0 5 2.3438 0.0
air03 161 37.1691 0.0 3 6.0587 0.0
air04 21704 10800.0009 0.0 546 85.8062 0.0
air05 61397 10800.0007 0.0 701 44.7843 0.0
air06 51 20.6997 0.0 8 8.4369 0.0
app3 2715 117.0755 0.0 745 2.9346 0.0

assign1-5-8 230783 10800.0461 0.1 7394564 10800.0407 0.1
b-ball 234080 10800.0401 0.2 73916387 10800.0411 0.2
b1c1s1 134944 10800.1451 1.0 617748 10800.1890 0.5

Continued on next page
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H. Full Results for the Benchmark Test for MILP

Table H.1.: Full table of results for the benchmark test

MILP-PBB 1 Gurobi
Inst. Nodecount Time Gap Nodecount Time Gap

b2c1s1 127503 10800.1239 0.9 321486 10800.1831 0.5
bc 63563 10800.0464 0.9 18886 10800.3304 0.8
bc1 63610 10800.0007 0.7 78499 10800.2930 0.2

beavma 215335 10800.0136 0.8 3282 1.8216 0.0
bell3a 239 29.0565 0.0 8691 2.2281 0.0
bell3b 1123 10800.0003 0.0 8037 2.1618 0.0
bell4 216 7201.2302 0.2 23286 5.1704 0.0
bell5 1029 533.9247 0.0 9889 1.7574 0.0

bg512142 185356 10800.0492 1.0 1193795 10800.0702 0.2
bienst1 113937 7259.5778 0.0 10554 54.0371 0.0
bienst2 146903 10800.0010 0.8 77430 275.4696 0.0

binkar10 1 180654 10800.0640 0.3 2307883 5323.7408 0.0
bm23 1497 1.3843 0.0 255 0.0360 0.0

control20-5-10-5 1 0.0516 inf 1 0.1550 inf
control30-3-2-3 216297 10800.0076 inf 20752642 10800.0393 inf
control30-5-10-4 1 0.0696 inf 1 0.2158 inf

cost266-UUE 131011 10800.0516 0.7 1209038 10800.3638 0.0
cov1075 153133 10800.0751 0.1 624928 10801.1858 0.0
cracpb1 13 0.1842 0.0 3 0.1501 0.0
dano3 3 93 2175.5454 0.0 29 67.1687 0.0
dano3 5 583 10800.0036 0.0 341 790.8147 0.0
danoint 103983 10800.0383 0.1 966432 10800.0380 0.0
dcmulti 169097 6571.9724 0.0 1020 0.9485 0.0

dell 59921 6891.2883 5.2 4 0.1464 inf
diamond 0 0.0014 inf 1 0.0030 inf
dsbmip 7631 1961.3982 0.0 10 0.3505 0.0
egout 297810 10800.0254 0.7 1506 0.2326 0.0

enigma 5651 14.7379 0.0 146 0.0594 0.0
eva1aprime5x5opt 2400 10800.0038 164.4 3181 10800.1365 193.3

exp-1-500-5-5 212066 10800.0843 0.7 19763983 10800.0542 0.3
f2gap40400 69707 1338.3264 0.0 400 0.1813 0.0

fastxgemm-n2r6s0t2 56015 10800.0053 1.0 167007 9505.3164 0.0
fastxgemm-n2r7s4t1 55199 10800.0009 1.0 131785 10800.1075 0.4
fastxgemm-n3r21s3t6 4 10800.4050 1.0 1 10801.6766 inf
fastxgemm-n3r22s4t6 4 10800.0449 1.0 1 10801.6964 inf
fastxgemm-n3r23s5t6 4 10800.0821 1.0 1 10801.8025 inf

fhnw-binpack4-18 1 10800.0530 1.0 6893887 10800.0300 inf
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Table H.1.: Full table of results for the benchmark test

MILP-PBB 1 Gurobi
Inst. Nodecount Time Gap Nodecount Time Gap

fhnw-binpack4-4 1 10800.0487 1.0 9074868 10800.0357 inf
fixnet3 327476 10800.0155 0.5 24522476 10800.0921 0.1
fixnet4 395948 10800.0319 0.7 26538150 10800.0291 0.1
fixnet6 236396 10800.0260 0.8 15674807 10800.1534 0.1
flugpl 1 0.0065 0.0 251 0.0157 0.0

g503inf 12 0.0664 1.1 4 0.0130 inf
gen 10231 1048.3965 0.0 132 0.3677 0.0

glass-sc 38352 10800.0104 0.4 83349 10800.0857 0.1
glass4 229798 10800.1067 0.6 11479346 10800.0326 0.3
go19 213398 10800.0732 0.1 1013315 10801.6447 0.0
gr4x6 273 0.2732 0.0 32 0.0115 0.0

gsvm2rl11 28806 10800.0397 0.9 17027 10800.3312 0.9
gsvm2rl12 6054 10800.0041 1.0 12660 10800.3276 0.9
gsvm2rl3 197849 10800.0072 1.0 8523737 10800.0382 0.1
gsvm2rl5 185786 10800.0216 1.0 2425813 10800.0461 0.6
gsvm2rl9 83623 10800.0312 1.0 125313 10800.0741 0.8

iis-100-0-cov 75100 10800.0026 0.6 141932 7530.3781 0.0
iis-bupa-cov 58717 10800.0047 0.4 108885 10800.2832 0.1
iis-glass-cov 36066 10800.0172 0.4 32232 4915.9059 0.0
iis-hc-cov 13652 10800.0178 0.4 31485 10800.1438 0.1

istanbul-no-cutoff 7761 10800.0044 0.7 2816 1003.5724 0.0
k16x240 258770 10800.0301 0.7 24557027 10802.2853 0.2
k16x240b 220215 10800.0980 0.7 15123397 10800.0283 0.3
khb05250 9567 149.4044 0.0 1040 0.7205 0.0
l152lav 121235 3313.9982 0.0 297 1.6368 0.0

lp4l 2609 50.9222 0.0 25 0.3024 0.0
lseu 82553 1107.4340 0.0 2358 0.3670 0.0

m100n500k4r1 202884 10800.1078 0.0 924074 2537.0217 0.0
mad 207331 10800.1407 1.0 7272093 8199.7980 0.0

map06 342 10800.0271 61.0 527 10805.6785 0.3
map10 434 10800.0389 2.8 728 10805.0429 0.2
map14 1365 10800.0661 5.9 936 10807.4080 0.1

map14860-20 1072 10800.4300 0.9 1426 10805.1722 0.0
map16715-04 367 10800.1454 295.3 596 10805.7876 0.8

map18 975 10800.0838 0.1 1401 10805.3596 0.0
map20 1288 10800.0393 0.8 1865 10807.4756 0.0

markshare1 214645 10800.0008 1.0 41883775 10800.0190 1.0
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H. Full Results for the Benchmark Test for MILP

Table H.1.: Full table of results for the benchmark test

MILP-PBB 1 Gurobi
Inst. Nodecount Time Gap Nodecount Time Gap

markshare2 212938 10800.0550 1.0 38530808 10800.0209 1.0
markshare 4 0 224973 10800.0242 1.0 228246 22.7696 0.0
markshare 5 0 216190 10800.0654 1.0 39018139 8037.3730 0.0

mas74 207749 10800.1107 0.2 2821861 980.8020 0.0
mas76 218691 10800.0825 0.1 329883 70.3494 0.0

milo-v13-4-3d-3-0 136331 10800.0084 0.9 1042738 10800.0198 inf
milo-v13-4-3d-4-0 105430 10800.0305 0.9 516519 10800.0367 inf

misc01 1453 3.0617 0.0 422 0.1371 0.0
misc02 263 0.3762 0.0 53 0.0351 0.0
misc03 1515 6.3611 0.0 1099 0.7762 0.0
misc04 41 3.0556 0.0 12 0.5964 0.0

misc04inf 11 33.2024 1.0 4 0.5915 inf
misc05 1931 10.2001 0.0 227 0.2454 0.0

misc05inf 225 4.4494 1.0 22 0.0813 inf
misc06 3059 88.2802 0.0 47 0.3287 0.0
misc07 28283 488.6593 0.0 24277 32.7908 0.0
mod008 326647 10800.0492 0.1 4533 0.8086 0.0

mod008inf 3947 227.0458 1.0 414 0.1007 inf
mod010 289836 10800.0301 0.0 137 1.0603 0.0
mod011 30970 10800.1014 0.1 4517 167.8306 0.0
mod013 1105 1.9309 0.0 256 0.0518 0.0
modglob 230928 10800.0086 0.1 1126011 707.6447 0.0

neos-1122047 1602 10800.0294 0.0 1 9.1809 0.0
neos-1396125 104140 10800.0167 1.0 6380 182.6387 0.0
neos-1426635 209328 10800.0570 0.0 6773125 10800.4927 0.0
neos-1426662 191618 10800.0458 0.2 1182851 10800.5453 0.2
neos-1430701 173997 10800.0854 0.0 288699 1151.6380 0.0
neos-1436709 118396 4917.8889 0.0 1466328 10800.9059 0.0
neos-1440460 192242 10800.0143 0.0 2512389 10800.5153 0.0
neos-1442119 138852 10800.0546 0.0 784092 10800.0825 0.0
neos-1442657 186297 10800.1540 0.0 1795612 10800.6899 0.0
neos-1616732 199889 10800.0371 0.4 7715611 10801.3281 0.1

neos-2629914-sudost 4636 10800.0224 0.2 33779 10800.3394 0.2
neos-2978193-inde 24003 10800.0103 0.1 340787 10810.8394 0.0
neos-2978205-isar 5858 10800.5274 0.1 82470 11070.4134 0.0
neos-3072252-nete 175918 10800.0336 0.2 9360479 10800.0357 0.1
neos-3135526-osun 137402 10800.0011 1.0 9580774 10800.0632 inf
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Table H.1.: Full table of results for the benchmark test

MILP-PBB 1 Gurobi
Inst. Nodecount Time Gap Nodecount Time Gap

neos-3209462-rhin 442 10800.0674 1.0 1810 10804.4623 1.0
neos-3372571-onahau 1665 10800.0185 0.3 3406 10800.6498 0.1
neos-3610040-iskar 180330 10800.0813 0.1 18407 30.5564 0.0
neos-3610051-istra 154490 10800.0656 0.4 9921 58.7567 0.0
neos-3610173-itata 162830 10800.1167 0.4 9469 49.0976 0.0
neos-3611447-jijia 178235 10800.1690 0.3 11555 29.8659 0.0

neos-3611689-kaihu 177967 10800.0574 0.4 38713 77.3105 0.0
neos-3660371-kurow 39196 10800.1058 0.9 135534 4048.0624 0.0
neos-3665875-lesum 60231 10800.0010 1.0 250618 10800.4439 0.7
neos-3754480-nidda 184330 10800.0878 88.8 5474711 10800.0210 12.0
neos-4321076-ruwer 63 10800.5468 0.9 343 11585.9150 inf
neos-4333596-skien 152432 10800.0853 0.0 2446543 9727.0327 0.0

neos-480878 143829 10800.0304 0.0 13909 194.3940 0.0
neos-506422 63340 10800.0014 1.0 674 28.8153 0.0

neos-5076235-embley 6469 10800.1780 0.1 5792 10827.2823 0.2
neos-5079731-flyers 3840 10800.0478 0.2 6379 10829.0562 0.2

neos-5093327-huahum 4423 10800.2125 0.5 6955 10817.8444 0.3
neos-5100895-inster 5204 10800.4735 0.4 6834 10811.5305 0.2
neos-5102383-irwell 3518 10800.0394 0.3 4919 10836.3372 0.2
neos-5140963-mincio 210403 10800.0005 0.4 4574068 2900.5172 0.0
neos-5188808-nattai 7316 10800.1688 1.0 12008 4474.0330 0.0
neos-5192052-neckar 19 0.0535 0.0 9 0.0424 0.0
neos-5223573-tarwin 1 11286.8339 1.0 1 10811.4506 inf
neos-5251015-ogosta 1 11152.9887 1.0 1 10812.1668 inf
neos-5273874-yomtsa 1 10802.7038 inf 1 10809.5039 inf

neos-619167 78752 10800.0065 0.5 3894386 10800.1694 inf
neos-807639 130709 10800.0006 0.3 7379 112.4562 0.0
neos-848198 28062 10800.0026 0.3 687295 10801.2001 0.2

neos15 197222 10800.0144 0.8 20317568 10800.6414 0.5
neos17 164012 10800.0230 1.0 48002 174.8254 0.0
neos22 95579 10800.0395 0.9 1547871 10800.3955 0.1
neos5 234775 10800.0653 0.1 2906800 2127.3819 0.0

neos788725 234547 10800.0479 1.3 4030719 5269.0532 inf
neos858960 96721 2574.5286 1.0 3243795 5682.7336 inf
newdano 104400 10800.0204 0.8 1866388 6385.7400 0.0

nexp-50-20-1-1 209222 10800.0058 0.8 8719556 10800.0661 0.3
noswot 315792 10800.0076 0.7 498339 181.6003 0.0
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H. Full Results for the Benchmark Test for MILP

Table H.1.: Full table of results for the benchmark test

MILP-PBB 1 Gurobi
Inst. Nodecount Time Gap Nodecount Time Gap

ns2017839 149 2503.1319 0.0 13 130.7285 0.0
nsa 155899 10800.1330 0.3 1185854 10800.0480 0.0

osorio-cta 1 1.0746 0.0 179 14.4412 0.0
p0033 15415 147.3144 0.2 208 0.0581 0.0
p0040 135 0.1110 0.0 42 0.0077 0.0
p0201 5551 49.6902 0.0 738 1.0878 0.0
p0282 305562 10800.0362 0.6 202 0.0929 0.0
p0291 400796 10800.0071 0.8 59 0.0644 0.0
p0548 335807 10800.0213 1.0 1495 0.7414 0.0
p2756 243624 10800.0176 0.6 8117224 10800.3189 0.0

p2m2p1m1p0n100 250436 10800.0960 0.0 186637208 10800.0121 inf
p6000 63746 10800.0363 0.0 4460 48.3530 0.0
p6b 208047 10800.0295 3.2 3144535 10800.5097 2.3

p80x400b 236232 10800.0136 0.8 18054111 10800.2170 0.6
pb-market-split8-70-4 1 10800.0064 1.0 31659749 10800.0209 inf

pg 153132 10800.0441 0.4 6598829 10800.3773 0.3
pg5 34 153181 10800.0408 0.3 35873 577.8586 0.0

pigeon-08 212200 10800.0542 0.1 53476 61.8097 0.0
pigeon-10 195854 10800.0249 0.1 5201698 7586.2295 0.0
pigeon-11 203256 10800.0679 0.1 6009347 10800.4312 0.1

pipex 4445 7.7503 0.0 1318 0.2030 0.0
pk1 233481 10800.0142 1.0 226159 146.7137 0.0

pp08a 283030 10800.0224 0.7 33816171 10800.6341 0.1
pp08aCUTS 263406 10800.0311 0.3 1154039 874.9441 0.0
probportfolio 1 10800.0444 1.0 3167087 10800.0510 inf

prod1 200989 10800.0266 1.7 89081 80.8488 0.0
prod2 212463 10800.0888 4.4 393425 593.9626 0.0

qiu 135252 10800.0359 6.0 9671 163.7494 0.0
r50x360 230947 10800.0133 0.7 12756696 10800.0805 0.4
ran12x21 229438 10800.1168 0.3 1468587 1209.1800 0.0
ran13x13 226141 10800.0323 0.3 301760 192.2788 0.0
ran14x18 238475 10800.0523 0.3 15144004 10800.3489 0.1

ran14x18-disj-8 214916 10800.1172 0.3 2647123 10800.0587 0.0
ran16x16 237368 10800.0027 0.4 13051298 10482.5728 0.0

rd-rplusc-21 14336 10800.0210 1.0 25347 10801.4564 1.0
rentacar 267 76.5495 0.1 16 2.0770 0.0

rgn 5943 18.9108 0.0 2102 0.2852 0.0
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Table H.1.: Full table of results for the benchmark test

MILP-PBB 1 Gurobi
Inst. Nodecount Time Gap Nodecount Time Gap

rlp1 203270 10800.0277 0.4 40925616 10800.0259 0.1
rmatr100-p10 7583 2294.8982 0.0 1133 105.9677 0.0
rmatr100-p5 441 460.5619 0.0 993 237.9055 0.0
rmatr200-p10 1456 10800.0088 0.2 3442 10826.8423 0.4
rmatr200-p20 5577 10800.0051 0.2 13010 10818.3265 0.1
rmatr200-p5 201 10800.0086 0.3 1351 10827.8415 0.4

sample2 481 0.5963 0.1 89 0.0233 0.0
sentoy 4803 8.8051 0.0 112 0.0434 0.0
set1al 341672 10800.0425 0.7 40911125 10800.1220 0.2
set1ch 246933 10800.0200 0.6 28845042 10800.1036 0.2
set1cl 341645 10800.0139 0.9 42038578 10800.0376 0.5

seymour1 8784 10800.0020 0.0 9796 1979.9310 0.0
snip10x10-35r1budget17 349 10800.1876 0.7 747 10802.6392 0.6

sp150x300d 213686 10800.0429 1.0 17182426 10800.0427 0.3
stein15 273 0.2171 0.0 83 0.0224 0.0

stein15inf 367 24.6348 1.0 96 0.0429 inf
stein27 9333 23.1253 0.0 3663 0.5578 0.0
stein45 153407 4408.0642 0.0 55082 27.2081 0.0

stein45inf 244474 10800.0553 0.9 934 0.5987 inf
stein9 47 0.1549 0.0 23 0.0111 0.0

stein9inf 14 0.0893 1.0 36 0.0068 inf
sts405 106852 10800.0109 0.6 2623 10801.9358 0.6

supportcase14 147 0.8975 0.0 69 0.1508 0.0
supportcase16 245 1.5728 0.0 34 0.1633 0.0
supportcase20 154810 10800.0116 1.0 937856 10800.0561 0.9
supportcase26 199912 10800.0577 0.0 2481990 4092.8664 0.0
supportcase43 4 10800.0891 1.0 1 10808.3003 inf

tr12-30 185449 10800.0031 0.9 13507339 10800.1096 0.8
uct-subprob 156979 10800.0582 0.3 797786 10800.1632 0.1

v150d30-2hopcds 19255 10800.0051 0.4 48094 10800.1231 0.2
van 10380 10800.0284 0.7 14321 10800.8984 0.5

vpm1 315839 10800.0108 0.3 42432 15.3452 0.0
vpm2 270298 10800.0319 0.4 81683 53.6303 0.0

zib54-UUE 121090 10800.0259 0.7 659841 10801.9409 0.2
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