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Kurzfassung 

 
Die vorliegende Dissertation beschäftigt sich mit der Anwendung und Weiterentwicklung phy-

sikalisch basierter, räumlich verteilter Niederschlag-Abfluss-Modelle. Diese Modelle simulie-

ren die hydrologischen Prozesse detailliert und berücksichtigen dabei die räumlichen und zeit-

lichen Dynamiken hydrologischer Variablen. Die konventionelle Modellbewertung basiert 

überwiegend auf Abflussdaten, was zu einer eingeschränkten Darstellung der Einzugsgebiets-

dynamik führen kann. Die Arbeit unterstreicht daher die Notwendigkeit, eine umfassendere 

Bewertung der Modelle zu implementieren, die sowohl interne hydrologische Prozesse als 

auch andere Wasserbilanzkomponenten einbezieht. 

Ein wesentliches Element der Dissertation ist die kritische Analyse der Auswahl und An-

wendung von Pedo-Transfer-Funktionen (PTFs). Diese Funktionen sind entscheidend für die 

Parametrisierung von Bodenwasserretentions- und Hydraulikeigenschaften. Es wird gezeigt, 

dass die Wahl der PTFs erheblichen Einfluss auf die Modellsensitivität in Bezug auf die räum-

liche Verteilung dieser Eigenschaften und auf die Simulation der hydrologischen Prozesse hat. 

Durch den Einsatz verschiedener PTFs in einem kalibrierten und validierten Modell konnte 

die Variabilität der Simulationsergebnisse bezüglich der Bodenfeuchte, der Evapotranspiration 

und der Abflusskomponenten deutlich dargestellt werden. 

 

1. Manuskript: Evaluation des hydrologischen Modellverhaltens unter Nutzung 

eines Multi-Kriterien-Bewertungsschemas, das sowohl quantitative als auch qualitative 

Daten integriert. Hierdurch konnten optimale Parameterkonfigurationen für Boden und 

Vegetation identifiziert werden, die zu konsistenten Simulationsresultaten für Transpi-

ration und Bodenwasser im Vergleich zu gemessenen Daten führten. 
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2. Manuskript: Es behandelt die Sensitivität des Wasserhaushaltsmodells bezüg-

lich der Auswahl von PTFs in einem kleinen Einzugsgebiet in Bayern. Durch Variation 

der PTFs in einem kalibrierten Modell wurden deren Auswirkungen auf die räumliche 

Verteilung der Bodenhydraulikeigenschaften sowie auf die Wasserbilanz und die räum-

lich-zeitliche Variation der Abflusskomponenten aufgezeigt 

 

3. Manuskript: Fokussiert auf die Verbesserung der räumlichen Darstellung do-

minanter Abflussprozesse in einem mesoskaligen Einzugsgebiet in Südwestdeutsch-

land. Die Anwendung einer räumlichen Leistungsmetrik (SPAEF) ermöglichte den Ver-

gleich der simulierten Muster mit den Mustern, die aus digitalen Bodenkarten abgeleitet 

wurden, und zeigte eine hohe Variabilität in Bezug auf Landnutzung, Topographie und 

angewandte Niederschlagsraten. 

 

Die Ergebnisse der Dissertation tragen zur Lösung der in der hydrologischen Forschung 

identifizierten Probleme bei, insbesondere in Bezug auf die räumliche Variabilität und die Me-

thoden der Modellierung. Sie bieten neue Perspektiven für die Kalibrierungsverfahren, die da-

rauf abzielen, plausible Dynamiken (sowohl räumlich als auch zeitlich) der hydrologischen 

Prozesse innerhalb des Wassereinzugsgebiets zu reproduzieren. Die weiterführenden Untersu-

chungen, die in dieser Arbeit gefördert werden, sind von großer Bedeutung für die Entwick-

lung umfassender Modellkalibrierungsstrategien, die multiple Datenquellen simultan berück-

sichtigen und somit zu nachhaltigeren Wasserwirtschaftsentscheidungen beitragen können. 
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Summary 

 
Physically-based distributed rainfall-runoff models as the standard analysis tools for hydrolog-

ical processes have been used to simulate the water system in detail, which includes spatial 

patterns and temporal dynamics of hydrological variables and processes (Davison et al., 2015; 

Ek and Holtslag, 2004). In general, catchment models are parameterized with spatial infor-

mation on soil, vegetation and topography. However, traditional approaches for evaluation of 

the hydrological model performance are usually motivated with respect to discharge data alone. 

This may thus cloud model realism and hamper understanding of the catchment behavior. It is 

necessary to evaluate the model performance with respect to internal hydrological processes 

within the catchment area as well as other components of water balance rather than runoff 

discharge at the catchment outlet only. In particular, a considerable amount of dynamics in a 

catchment occurs in the processes related to interactions of the water, soil and vegetation. 

Evapotranspiration process, for instance, is one of those key interactive elements, and the pa-

rameterization of soil and vegetation in water balance modeling strongly influences the simu-

lation of evapotranspiration. Specifically, to parameterize the water flow in unsaturated soil 

zone, the functional relationships that describe the soil water retention and hydraulic conduc-

tivity characteristics are important. To define these functional relationships, Pedo-Transfer 

Functions (PTFs) are common to use in hydrological modeling. Opting the appropriate PTFs 

for the region under investigation is a crucial task in estimating the soil hydraulic parameters, 

but this choice in a hydrological model is often made arbitrary and without evaluating the 

spatial and temporal patterns of evapotranspiration, soil moisture, and distribution and inten-

sity of runoff processes. This may ultimately lead to implausible modeling results and possibly 

to incorrect decisions in regional water management. Therefore, the use of reliable evaluation 

approaches is continually required to analyze the dynamics of the current interactive hydro-

logical processes and predict the future changes in the water cycle, which eventually contrib-

utes to sustainable environmental planning and decisions in water management. 
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Remarkable endeavors have been made in development of modelling tools that provide in-

sights into the current and future of hydrological patterns in different scales and their impacts 

on the water resources and climate changes (Doell et al., 2014; Wood et al., 2011). Although, 

there is a need to consider a proper balance between parameter identifiability and the model's 

ability to realistically represent the response of the natural system. Nevertheless, tackling this 

issue entails investigation of additional information, which usually has to be elaborately as-

sembled, for instance, by mapping the dominant runoff generation processes in the intended 

area, or retrieving the spatial patterns of soil moisture and evapotranspiration by using remote 

sensing methods, and evaluation at a scale commensurate with hydrological model (Koch et 

al., 2022; Zink et al., 2018). The present work therefore aims to give insights into the modeling 

approaches to simulate water balance and to improve the soil and vegetation parameterization 

scheme in the hydrological model subject to producing more reliable spatial and temporal pat-

terns of evapotranspiration and runoff processes in the catchment.  

An important contribution to the overall body of work is a book chapter included among 

publications. The book chapter provides a comprehensive overview of the topic and valuable 

insights into the understanding the water balance and its estimation methods.   

Moreover, the first paper aimed to evaluate the hydrological model behavior with respect 

to contribution of various sources of information. To do so, a multi-criteria evaluation metric 

including soft and hard data was used to define constraints on outputs of the 1-D hydrological 

model WaSiM-ETH. Applying this evaluation metric, we could identify the optimal soil and 

vegetation parameter sets that resulted in a “behavioral” forest stand water balance model. It 

was found out that even if simulations of transpiration and soil water content are consistent 

with measured data, but still the dominant runoff generation processes or total water balance 

might be wrongly calculated. Therefore, only using an evaluation scheme which looks over 

different sources of data and embraces an understanding of the local controls of water loss 

through soil and plant, allowed us to exclude the unrealistic modeling outputs. The results 

suggested that we may need to question the generally accepted soil parameterization proce-

dures that apply default parameter sets.   

The second paper attempts to tackle the pointed model evaluation hindrance by getting 

down to the small-scale catchment (in Bavaria). Here, a methodology was introduced to ana-

lyze the sensitivity of the catchment water balance model to the choice of the Pedo-Transfer 
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Functions (PTF). By varying the underlying PTFs in a calibrated and validated model, we 

could determine the resulting effects on the spatial distribution of soil hydraulic properties, 

total water balance in catchment outlet, and the spatial and temporal variation of the runoff 

components. Results revealed that the water distribution in the hydrologic system significantly 

differs amongst various PTFs. Moreover, the simulations of water balance components showed 

high sensitivity to the spatial distribution of soil hydraulic properties. Therefore, it was sug-

gested that opting the PTFs in hydrological modeling should be carefully tested by looking 

over the spatio-temporal distribution of simulated evapotranspiration and runoff generation 

processes, whether they are reasonably represented.   

To fulfill the previous studies’ suggestions, the third paper then aims to focus on evaluating 

the hydrological model through improving the spatial representation of dominant runoff pro-

cesses. It was implemented in a mesoscale catchment in southwestern Germany using the hy-

drological model WaSiM-ETH. Dealing with the issues of inadequate spatial observations for 

rigorous spatial model evaluation, we made use of a reference soil hydrologic map available 

for the study area to discern the expected dominant runoff processes across a wide range of 

hydrological conditions. The model was parameterized by applying 11 PTFs and run by mul-

tiple synthetic rainfall events. To compare the simulated spatial patterns to the patterns derived 

by digital soil map, a multiple-component spatial performance metric (SPAEF) was applied. 

The simulated DRPs showed a large variability with regard to land use, topography, applied 

rainfall rates, and the different PTFs, which highly influence the rapid runoff generation under 

wet conditions. 

The three published manuscripts proceeded towards the model evaluation viewpoints that 

ultimately attain the behavioral model outputs.  It was performed through obtaining infor-

mation about internal hydrological processes that lead to certain model behaviors, and also 

about the function and sensitivity of some of the soil and vegetation parameters that may pri-

marily influence those internal processes in a catchment. Accordingly, using this understand-

ing on model reactions, and by setting multiple evaluation criteria, it was possible to identify 

which parameterization could lead to behavioral model realization. This work, in fact, will 

contribute to solving some of the issues (e.g., spatial variability and modeling methods) iden-

tified as the 23 unsolved problems in hydrology in the 21st century (Blöschl et al., 2019). The 
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results obtained in the present work encourage the further investigations toward a comprehen-

sive model calibration procedure considering multiple data sources simultaneously. This will 

enable developing the new perspectives to the current parameter estimation methods, which in 

essence, focus on reproducing the plausible dynamics (spatio-temporal) of the other hydrolog-

ical processes within the watershed.  
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1 Introduction and Objectives 

 
The current global climate change and land use intensification are causing significant alterations 

in the terrestrial water cycle. These changes in the process of transforming rainfall into runoff 

may result in heightened risks of drought and flooding events, which can negatively affect fresh-

water resources, ecosystem functioning, biodiversity, and various water-dependent socio-eco-

nomic sectors such as agriculture, forestry, energy, and transportation. The terrestrial water cy-

cle involves intricate interactions among subsurface, surface, and atmospheric processes that 

have significant impacts on the energy and carbon cycles. Due to the worldwide impact of these 

issues, extensive efforts have been made to develop modeling tools that can provide a forecast 

of the future large-scale hydrological patterns and their impacts (Wood et al., 2011; Doell et al., 

2014). Predicted changes in the water cycle at subnational, regional, and local levels aren't di-

rectly applicable to findings from global assessments. As a result, regional and local assessments 

of water cycles require either downscaling global climatic and hydrological models or develop-

ing models that are able to accurately represent spatial and temporal dynamics of the specific 

region. Rainfall-runoff models can provide a suitable approach for such analyses (Huang et al., 

2013; Surfleet et al., 2012). In the realm of hydrology, rainfall-runoff models have established 

themselves as the conventional tools for analyzing hydrological processes, due to their versatil-

ity and suitability for a wide variety of modelling approaches that can be adapted to fit diverse 

applications. 

In contrast to conceptual models, “physically-based” hydrological models (i.e., models in-

cluding equations based on principles of physics that incorporates information about the physi-

cal properties of the land surface, such as topography, soil properties, vegetation, and meteoro-

logical data) offer a more detailed representation of the terrestrial water system, including the 

spatial patterns and temporal dynamics of state and process variables. This more detailed repre-

sentation allows for a deeper understanding of the coupling fluxes between land and atmosphere, 

which are highly sensitive to both the temporal dynamics of atmospheric conditions and the 

spatial heterogeneity of land surface states. As such, the use of physically-based hydrological 
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models can facilitate a deeper understanding of land-atmosphere interactions, offering valuable 

insights into the functioning of the terrestrial water system (Davison et al., 2015; Ek and 

Holtslag, 2004). 

As we face anticipated changes in the terrestrial water cycle, there is a pressing need for 

modelling frameworks and approaches that are capable of capturing the complex variability in 

hydrologic processes at scales that are most relevant for local and regional water resource man-

agement. Moreover, these modeling frameworks should accurately simulate the interactions be-

tween various components of the water cycle at appropriate spatial and temporal scales, taking 

into account the local variability in environmental conditions. By utilizing such frameworks, it 

will thus be possible to enhance our understanding of the terrestrial water system and to develop 

effective strategies for managing water resources at various scales in the face of changing cli-

matic conditions. 

When applied at the catchment scale, physically-based hydrological models must account for 

the local topography and landscape characteristics which regulate the type of runoff generation 

processes (e.g., infiltration- or saturation excess flow) and the hydrological connectivity in both 

surface and subsurface flow paths. This is because these factors have a direct impact on the 

hydrological processes occurring within the catchment, and therefore must be accurately repre-

sented in the model to ensure reliable predictions. In other words, the physical features of a 

landscape, such as the shape of the land and the soil properties, can significantly impact how 

water flows through it, and this must be accounted for in any hydrological model aimed at pre-

dicting runoff patterns at catchment scale (Gupta et al., 2006; Ogden et al., 2013). Within 

mesoscale catchments (10 - 1000 km²), a set of specific questions arise due to future changes in 

climate and land use. For instance, questions related to water retention capacity and drought 

stress tolerance of the landscape resulting from water storage in soil and ground-water. These 

questions can be best addressed by using “distributed physically-based” hydrological models 

that accurately map the local water cycles (Fatichi et al., 2016). 

A calibrated model that accurately mimics the behaviour of a hydrologic system, also known 

as a "behavioural" model, is essential for predicting runoff patterns in ungagged catchments or 

when there are significant changes in land use or climate over time. According to Gupta et al. 

(2006), the fundamental characteristics of a behavioural hydrologic model are: (i) it produces 

input-state-output behaviour that matches with observed measurements; (ii) it generates accu-

rate predictions that are essentially unbiased; and (iii) its structure and behaviour align with our 
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current understanding of hydrological processes in the real world. Therefore, it is necessary for 

"Physically-based" models to exhibit coherence with observational evidence of process dynam-

ics that portray the performance of a natural hydrological system (Beven, 2002). In catchment 

modeling, spatial data on soil, vegetation, and topography are typically used to parameterize the 

models. These models simulate all aspects of the hydrological cycle but are often only calibrated 

using streamflow measurements at the catchment outlet. Available spatially distributed infor-

mation is often not considered adequately in model calibration and validation procedures. Spa-

tial knowledge on runoff generation processes (with relevant feedbacks on the other hydrologi-

cal variables) is not usually included in the model parameterization process and not used to 

define constraints in the parameter space. Furthermore, spatially-distributed land surface param-

eters, such as soil hydraulic properties, vegetation cover, and land use/cover, are often defined 

as static parameters without sufficient attention to their spatial and temporal fluctuations, as well 

as the techniques employed to obtain them. For example, when using Pedo-Transfer functions 

(PTFs) to estimate soil hydraulic properties and parameterize the soil, the effect of choosing 

different parameterization methods on runoff components and evapotranspiration is usually dis-

regarded. This approach may result in inadequate simulations of other hydrological components 

(rather than discharge) that are spatially distributed, while contradicting the notion of a behav-

ioural model. The resulting uncertainty in the representation of the variability of the hydrologi-

cal variable within a catchment then hampers the utility of the model predictions. There is thus 

a need to move away from the traditional calibration and evaluation framework including only 

aggregated observations to a more integrated framework that instead embraces spatially distrib-

uted observations, hydrological components others than discharge, and knowledge of runoff 

generation and soil hydraulic properties in the model evaluation process (Herman et al., 2018; 

Koch et al., 2017, 2016; Refsgaard, 2001; Stisen et al., 2008). 

Consequently, the objective of the present PhD thesis is to address the challenges involved 

in assessment approaches within the context of mesoscale hydrological modeling, and to de-

velop an evaluation framework that carefully considers information on distribution of internal 

process variables (also including their temporal and spatial patterns) in a hydrological boundary. 

The thesis aims to establish a multi-criteria evaluation approach for physically-based hydrolog-

ical modeling leveraging spatially detailed information on dominant runoff generation pro-

cesses, soil hydraulic properties, land cover, topography, as well as streamflow at the catchment 

outlet. Our approach involves utilizing the flexible framework of the WaSiM-ETH model to 
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create a representative mesoscale rainfall-runoff model that accurately captures the spatio-tem-

poral dynamics of the terrestrial water cycle at an hourly resolution. In order to effectively in-

corporate our current knowledge of the dominant runoff generation processes, which involve 

the interplay between topography, physical soil properties, groundwater levels, and land cover, 

into a behavioural model, we will account for the spatial heterogeneity of the catchment at a 

resolution of 50-100 meters. In the case of a mesoscale catchment, a resolution of 50 to 100 

meters is suitable for evaluating the impact of important land surface features, such as topogra-

phy and soil properties. As a "behavioural" model aims to replicate not just the catchment's 

overall runoff but also its spatial distribution, we intend to introduce novel spatial metrics into 

our evaluation process to analyze the dynamic temporal and spatial patterns of both runoff gen-

eration and water balance components within the catchment. The evaluation process thus incor-

porates discharge data at the catchment outlet, spatial data related to the dominant runoff gen-

eration and soil hydraulic properties, and also field observations of soil water content and plant 

transpiration. Through this multi-criteria evaluation approach, we will focus on addressing 

both global sources of uncertainty such as bias, as well as local uncertainties, such as the runoff 

generation processes and soil hydraulic properties. By ensuring proper evaluation, a behavioural 

physically-based model that is can effectively capture the impact of climate and land use varia-

tions. This, in turn, can enable us to understand how the hydrological cycle will respond to 

anticipated global environmental changes in the future. The PhD thesis at hand focuses on eval-

uating hydrological modeling with regard to different hydrological variables in three domains: 

(i) soil moisture content and transpiration in a plot scale in Luxembourg region; (ii) spatial dis-

tribution of soil hydraulic properties, and the spatio-temporal variation of the runoff components 

in a small catchment in Bavaria, Germany, and (iii) spatial patterns of dominant runoff genera-

tion processes in a mesoscale catchment in Rhineland-Palatinate, Germany. The proposed ap-

proach provides a novel tool for interpreting the model parameters with regard to their physical 

meaning related to the simulated hydrological processes and identifying parameter sets that sim-

ultaneously meet multiple objectives and lead to a behavioural model. 

The following chapter will provide a brief background to the topic. First, we start with the 

section 2.1 which is devoted to a book chapter as one of the publications included in this thesis, 

and it provides a significant contribution to the overall body of work by offering a comprehen-

sive overview of the topic and valuable insights into understanding the water balance and its 

estimation methods. Thereafter, section 2.2 explores the state of the art of modeling water fluxes 
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in the unsaturated zone and the interactions between soil, water, plants, and the atmosphere, 

followed by section 2.3 that discusses the model evaluation perspectives and their limitations. 

Finally, chapter 3 concludes the study by summarizing the key findings and presenting conclu-

sive remarks. Three papers published based on the thesis outcomes can be found in the Appen-

dix. 
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2 Scientific background  

 
Within this chapter, it is aimed to provide a concise background on the topic. The focal point of 

section 2.1 lies in a book chapter, which is among the publications encompassed in this thesis. 

This particular section holds immense significance within the overall body of work, as it imparts 

valuable insights into the overall topic, by introducing the estimation methods used to compre-

hend the water balance and its various components. Moving forward, section 2.2 delves into 

the state-of-the-art in modeling water fluxes within the unsaturated zone, exploring the intricate 

interactions that occur among soil, water, plants, and the atmosphere. Subsequently, section 2.3 

discusses the perspectives and limitations associated with evaluating the model. 
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2.1  Understanding the water balance and its estimation methods 

 
  



Chapter 9

Understanding the water
balance and its estimation
methods

Hadis Mohajerani1, Demetrio Antonio Zema2, Manuel Esteban Lucas-Borja3

and Markus Casper1
1Department of Physical Geography, Universität Trier, Trier, Germany, 2Department Agraria,

Mediterranean University of Reggio Calabria, Reggio Calabria, Italy, 3University of Castilla-La

Mancha, E.T.S.I.A.M., Albacete, Spain

Introduction to the hydrological cycle

A system can be described as an aggregation of interrelated components

subject to regular interactions. The operation of a system is to generate out-

put from input or interrelate input and output. Therefore, a hydrologic sys-

tem could be explained as a hydrological system (hereafter will be referred

as hydro-system), including components of a landscape that store water in

its natural state (solid, liquid, and gas) that interact regularly according to

the physical laws that govern the state, movement and storage of water

(Dooge, 1968).

The natural and continuous processes of water movement near or below

the earth’s surface form the so-called hydrological cycle (Fig. 9.1) where

water moves either from one location to another or is being transformed

from a state (i.e., liquid, solid, gas) to another. This cycle encompasses the

three main terrestrial components: water bodies (including oceans), atmo-

sphere, and land (including vegetation). The hydrological cycle starts with

the evaporation from the ocean, due to the radiant (heat) energy from the sun

(solar radiation). Convection lifts the water evaporated from the ocean to the

atmosphere where, under suitable conditions, the vapor turns into precipita-

tion (water, snow or ice). Precipitation can:

� First gets intercepted by the vegetation and then directly evaporates back

into the atmosphere (interception)
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� Infiltrates (entering the soil) and evaporates from the soil surface or tran-

spires through vegetation (evapotranspiration)

� Turns into an overland water stream (surface runoff)

� Migrate into the deeper layers of soil (infiltration).

All these hydrological processes, which originate from the interactions

among the precipitation (on its turn considered as a hydrological process)

on one side and land-vegetation, water bodies and atmosphere on the

other side (interception, evapotranspiration, infiltration, runoff), are com-

ponents of the hydrological cycle and vary significantly in both, time, and

space.

The hydrological processes generate the water fluxes (or water flows,

depending on the object of focus), which are usually defined as follows:

� Surface water flux, which is the volumetric flow of water passing through the

land surface

� Sub-surface water flux, which is the volumetric flow per unit of the

cross-sectional area of the porous medium (soil) constituting the ground-

water storage in the saturated zone

� Atmospheric water flux, which is either in the form of precipitation reach-

ing the land surface from the atmosphere or returned to the atmosphere

through the evapotranspiration process.

While the dimension for water flow is [L3], generally, the water flux is

related to the surface unit of the hydro-system, and thus the dimension is [L].

FIGURE 9.1 Different processes of the hydrological cycle.
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The water balance

According to the law of conservation of mass, the rate of change in water storage

within a hydro-system over any specific period of time must be equal to the differ-

ence between the rates of inflow and outflow of water across its boundaries

(Byeon, 2014). To describe water flow into and out of a hydro-system (i.e., through

the various hydrological processes) and quantify the rate of change in the water

being stored in the hydro-system (i.e., in the land, atmosphere, and water bodies), a

water balance equation is used. The spatial scale of the hydrological system for

which the water balance is calculated may range from a small sample of soil (plot

scale) to an entire catchment (catchment scale) or the global/continental scale.

To estimate the water balance, it is first necessary to define the spatial bound-

aries of the considered hydro-system (called control volume) and the reference

period of time. The control volume (e.g., a catchment or a soil column) is a volume

in space in which fluxes of water, energy and other mass are stored internally or

transported across its boundaries. For instance, with regard to a catchment to which

the water balance must be applied, the control volume is the space within (1) the

ground surface; (2) the horizontal layer (roof) over the tallest vegetation; and (3)

the vertical lines extruded from the perimeter of the ground/impervious surface and

the roof of vegetation. The reference period is the temporal scale (event, monthly,

seasonal, annual, decadal or longer) when the changes in the water storage and

fluxes of the control volume are estimated. Thus, the total amount of water that is

stored in a control volume is the water storage, with the dimension [L3].

A water balance accounts for the horizontal flow of water through the

landscape in watercourses, for the vertical water fluxes among the atmo-

sphere, ground surface, and groundwater and for the changes in water storage

within the control volumes. In its general form, the water balance can be

expressed using the following equation (Sutcliffe, 2004):

P1 I5ET1Q1ΔS1ΔG1ΔW ð9:1Þ
where P is precipitation, I the inflow (the water flow entering the control volume),

ET the evapotranspiration, Q the outflow (the water flow leaving the control vol-

ume), and ΔS, ΔG and ΔW the changes in the water content of soil (in the

unsaturated zone), groundwater storage (in the saturated zone), and water amount

stored into surface water bodies, respectively. In the following, we discuss the

water balance at different spatial scales.

Plot scale

The water balance at the plot scale (Fig. 9.2) is usually applied for agricul-

tural purposes. It considers the root zone per unit area as the control volume.

The difference between the water fluxes entering and leaving the control vol-

ume must be equal to the changes in the water content, throughout the refer-

ence period. In a nutshell, the water content of the soil volume increases
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when water is added due to infiltration or capillary rise and decreases when

water is lost by evapotranspiration or deep percolation. The water balance

equation at plot scale is usually represented as follows (Zhang, Walker, &

Dawes, 2002), where all the values are expressed as water fluxes or equiva-

lent water depth throughout the reference time period:

ΔS5 P� I� E� T� Q� DP1CR ð9:2Þ
where ΔS is the change in water content of the root zone, P is the precipita-

tion, I is the interception, E is the direct evaporation from the soil surface, T

is the transpiration through vegetation, Q is the runoff (surface runoff and

interflow, see section 3.2 and 3.3), DP is the deep percolation towards the

groundwater storage, and CR is the capillary rise.

Catchment scale

A catchment, divided by watershed from the adjacent system, is the geo-

graphical unit of interest for terrestrial hydrology to apply the water balance

FIGURE 9.2 Scheme of the water balance at the plot scale (root zone) (lateral flow5 interflow

1 groundwater flow).
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and part of the extensive water cycle. Precipitation is caught up by catch-

ment, and the drainage network of the catchment collects and conveys part

of this water to a common outlet. The catchment outlet can be the mouth of

the main watercourse into the sea, the confluence into another stream, or the

section where it flows into a lake, reservoir or wetland (Fig. 9.3). By defini-

tion, when applying the water balance at the catchment scale (i.e., when the

catchment is the control volume), the streamflow at the catchment outlet repre-

sents the integrated response to all hydrological processes within the catchment

(Kirchner, 2009; Singh & Woolhiser, 2002). At the catchment scale, the water

balance equation can be expressed as follows (Zhang, Dawes, & Walker, 2001),

where all water fluxes are estimated as the catchment-scale spatially average:

ΔS1ΔG1ΔW5 P� ET� Q ð9:3Þ
where ΔS, ΔG, and ΔW are the changes in water content of the soil,

groundwater, and surface water bodies, P is the precipitation, ET is the

evapotranspiration, Q is the runoff (streamflow).

Global/continental scale

At global or continental scales, the water balance is generally accounted for

the fundamental components, i.e., precipitation on the land surface is bal-

anced out by streamflow, evapotranspiration, and the change in water stor-

age. Since the water quantity of the oceans is considered to be constant for

long periods of time, the streamflow (quantity of water returned from conti-

nents to the sea) and the water of oceans loss by evaporation must be equal

(Marcinek, 2007). To satisfy the water balance equation at the global or con-

tinental scales, the observations of all the components of the hydrological

cycle with a global perspective are required. Particularly, precipitation needs

continuous monitoring, as it is the major component of the cycle.

FIGURE 9.3 Scheme of a catchment (control volume); ET5 evapotranspiration; P5 precipitation;

Q5 runoff; the brown area is the soil surface, while the gray area is the sub-soil; the vertical box is

the soil column.
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Water balance components/fluxes

Atmospheric water

Atmospheric water consists of precipitation and evapotranspiration. Precipitation

accounts for the major contribution to the water balance of a terrestrial control

volume and consists of water that drops from the atmosphere in either liquid or

solid-state. Precipitation is generated by the condensation of moisture in the

atmosphere, because of the cooling of an air portion. Formation of precipitation

is driven by the origin of the lifting motion that triggers it, which eventually

leads to various temporal and spatial rainfall regimens, which are typical of the

climatic type of an area. According to the Köppen-Geiger Climate Classification

System (Koppen, 1936), five major climatic types are recognized based on the

annual and monthly averages of temperature and precipitation:

a. Tropical Moist Climates: all months have average temperatures above

18�C, which cause the daily intense convective precipitation

b. Dry Climates with deficient precipitation during most of the year, which

lead to convective precipitation events (while in general precipitation rate

is low, but occurs in form of extreme events with high intensity)

c. Moist Mid-latitude Climates with Mild Winters, with mid-latitude cyclones

causing the winter storms

d. Moist Mid-Latitude Climates with Cold Winters, similar to the C cate-

gory, but with precipitation mostly in form of snowfall in winter

e. Polar Climates: with extremely cold winters and summers, which cause dry

conditions with a low amount of precipitation and mostly in the form of snow.

Rainfall is the liquid form of precipitation while reaching the earth. Other

forms of precipitation are snowfall, which is frozen water in a crystalline

state; hail that is frozen water in a massive state; sleet, which is melted

snow, regarded as a mixture of snowfall and rainfall. Precipitation is charac-

terized by high spatial and temporal variability, which can be analyzed by its

main attributes:

� Depth (volume of precipitation accumulated on a horizontal surface area

in a certain time, if precipitation can not drain, evaporate or percolate

from this surface, dimensions [L3/L2])

� Duration (the time from the start to the end of precipitation, [T])

� Intensity (time rate of rainfall depth, equal to the ratio of the precipitation

depth by its duration, [L/T]).

Usually, precipitation depths and intensities of a storm are graphically

reported in charts that are called pluviographs and hyetographs.

Other characteristics determining precipitation variability are:

� Frequency (the number of times, during a certain period, that precipita-

tion of a specific magnitude or greater occurs)

198 PART | II Monitoring, mapping and tools to assess precipitation events



� Pattern (shape of the temporal diagram of a precipitation event)

� Areal extent

� Movement

� Location.

Rainfall frequency provides the information on how often precipitation

with a given characteristic is likely to happen, which will consequently deter-

mine the frequency of occurrence (or return period) of the resulting runoff

(in particular, the frequency of the peak flow). Precipitation pattern, areal

extent, and movement determine how a portion of the drainage area contri-

butes over time to the runoff, usually caused by the type of storm (rainfall

event, which is caused by the original climate conditions). For instance, pre-

cipitation associated with cold fronts (thunderstorms) tends to be more

regional, faster moving, and of shorter duration, while warm fronts tend to

generate slowly moving storms of broader areal extent and longer durations.

Moreover, the location where a regional storm occurs in the catchment influ-

ences the temporal distribution of the runoff. To give an example, a storm

falling near the catchment outlet will result in a very quick occurrence of

peak flow, as well as a rapid passage of the flood. Precipitation movement

affects the runoff rate, depending on the catchment shape (particularly in

elongated catchments).

Duration, intensity, and frequency of precipitation are often considered in

combination, to constitute the intensity-duration-frequency (IDF) curve. This

is the diagram of intensity versus duration that is provided for each fre-

quency (or return period) of precipitation. The IDF curves are specific for a

given location. The storm (the so-called critical event) used for predicting or

estimating the runoff hydrograph (see sub-chapter 3.5) with a specific return

period (or a certain frequency) is considered as “design storm,” which can be

derived from the IDF curves or the statistical analysis of observed rainfall.

Since the amount and timing of runoff depend on the magnitude, the spatial

and temporal distribution of rainfall, the hyetographs of both actual and

design storms are fundamental elements for projects requiring hydrological

information and for hydrological modeling (McCuen, 1982; Chow, 1964;

Haan, Barfield, & Hayes, 1994).

The other component of atmospheric water is evapotranspiration (ET)

that includes the processes in which water is transferred into gas flux (vapor)

to the atmosphere. ET processes are generally referred to as (Labedzki,

2011):

� Evaporation, the water transfer from the surface of a water body or from

bare soil to the atmosphere

� Transpiration, the water absorbed by vegetation roots from the soil and

routed through the leaves (across the canopy stomata) to the atmosphere

� Evaporation of intercepted water, the share of precipitation which falls onto

the vegetation canopy surface and is directly returned into the atmosphere.
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We can distinguish potential and current ET. Potential ET can be defined

as the water loss from a surface with no water limitation. It can be expressed

as a function of the physical variables of the atmosphere (i.e., depends on

the energy that is available to convert liquid water to vapor from climatic

driving forces, like solar net radiation), where the resulting water vapor can

freely move away from the surface. The water content of soil and ET are

known to be highly correlated. To calculate the actual ET, potential ET is

reduced based on real soil water content (Beven, 2011). Allen (1998) identi-

fied the following variables influencing ET:

� Meteorological parameters, such as solar radiation and air temperature,

humidity, and wind speed

� Crop parameters, such as species, growth stage, height, ground cover,

water stress, and rooting characteristics

� Soil parameters, such as roughness, salinity, fertility and albedo

� Management parameters, such as the application of fertilizers and soil

cultivation practices.

The estimation of ET from vegetated areas is a basic tool to compute

the water balance for estimating the water requirements of irrigated

crops and for planning water management. Since direct measurements of

ET are difficult, in many cases it is easier to estimate ET fluxes as a

residual of the water balance equation, or by application of models using

meteorological and other data as input. Generally, the difference

between precipitation and ET largely controls the amount of water sur-

plus in a hydro-system (except at the event scale). Sub-chapters 4.1.1

and 4.2 provide an overview of methods and models widely applied to

measure and/or estimate ET.

Surface water

Surface water is the hydrological response of soil to a precipitation event.

During a storm, the share of atmospheric water that is not intercepted by

vegetation does not infiltrate or percolate through soil (see section 1), flows

by gravity over the soil along hillslopes and then in stream channels (surface

runoff) (Fig. 9.4). Of the total runoff, the share directly generated by rainfall

takes a rapid route to the stream channels (direct runoff or quickflow), while

the other part of precipitation that infiltrates into the soil takes a much

slower route (base flow or delayed flow) (Ward & Robinson, 1967).

Generally, while interception, evapotranspiration and infiltration run out with

precipitation, runoff may also continue in dry periods, fed by the base flow.

Runoff is usually expressed as water depth per time and space units (mm,

that is m3 per m2 of the area and per hour or day), which makes the compari-

son with precipitation (measured by the same unit) simpler.
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The total runoff or streamflow is the result of several water flow paths

(Ward & Robinson, 1967) (Fig. 9.4):

(i) Direct precipitation over the water surface

(ii) Overland flow

(iii) Interflow (shallow sub-surface water)

(iv) Groundwater flow (deep sub-surface water).

The direct precipitation is the share of the atmospheric water input that

directly falls over the water surfaces (lakes, artificial reservoirs, stream chan-

nels of the hydrographic network). This share is usually limited since these

surfaces cover a very small area of the catchment system.

The overland flow includes the sheet flow (the laminar water stream

flowing downslope) and the concentrated flow into rills and gullies. The

overland flow generates surface runoff, which is the faster component of the

quick flow (Fig. 9.4).

Sub-surface water

The interflow is the share of the water infiltrating through the soil surface

that flows laterally (calculated according to Darcy’s law, regulating the

FIGURE 9.4 Schematization of total runoff components (Ward & Robinson, 1967). Modified

from R. C. Ward and M. Robinson (1967). Principles of hydrology (No. 551.49/W262). New York:

McGraw-Hill.
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filtration process into porous media) into the upper soil layer to the channel.

This flow occurs in the unsaturated zone or the capillary edge over the aqui-

fer when the horizontal hydraulic conductivity is much higher compared to

the vertical conductivity into the soil profile. Moreover, the horizontal

hydraulic conductivity decreases with soil layer depth (in absence of artifi-

cial disturbance, such as tillage and soil compaction), which makes the inter-

flow of the upper soil layers much faster than the delayed interflow and

groundwater flow in the deeper layers. Quick interflow and part of the

delayed interflow feed the sub-surface runoff (Fig. 9.4).

The water that moves vertically is known as deep percolation, which is

the water flux below the root zone. The groundwater flow is fed by the per-

colation of the infiltrated rainfall into the deep soil layers, reaching water

tables, and runs towards the stream channel through the saturated zone.

Sometimes, the infiltrated rainfall can directly generate the groundwater

flow. The groundwater flow is delayed by days or even months with respect

to precipitation, surface runoff or interflow, due to the very low hydraulic

conductivity, but does not fluctuate rapidly (Fig. 9.5).

Groundwater flow and delayed interflow, beside a share of the sub-surface

runoff, are the components of the base flow (or delayed flow) (Fig. 9.4).

The different time rates and amounts of the runoff components of the

streamflow determine the nature and magnitude of the hydrological response

of a territorial unit (e.g., plot, hillslope, and catchment) to precipitation.

P
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tQ
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FIGURE 9.5 The different components of runoff along a hillslope (P5 precipitation; Qp5 direct

precipitation over water surfaces; Qo5 overland flow; Qt5 interflow; Qg5 groundwater flow).
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The current comprehension of this hydrological response can be attributed to

two different runoff generation mechanisms, conceptualized by two famous

hydrologists (Hewlett, 1961; Horton, 1933).

Runoff generation mechanisms

Infiltration-excess (or Horton’s) mechanism

In 1933, R.E. Horton hypothesized that, at the soil surface, the shares of net

precipitation infiltrating or moving over the soil as overland flow strictly

depends on the soil infiltration capacity ( f). This is the maximum rate at

which rainfall infiltrates into the soil when water is continuously and suffi-

ciently available over its surface (Hillel, 1998). Once the storm starts, f grad-

ually decreases with time until a steady value ( fc), due to the progressive

soil saturation during precipitation; the decrease rate of f theoretically fol-

lows an exponential law from an initial value ( f0) until the asymptotic fc.

After the storm event, the initial f0 is recovered. If f is higher than the rain-

fall intensity (i), all net precipitation infiltrates, feeding the sub-surface

flows, and no runoff is observed (Fig. 9.6A). By contrast, if f , i, the excess

precipitation, equal to difference i - f, is the overland flow (Fig. 9.6B),

accordingly defined as infiltration-excess (or Hortonian) overland flow. The

runoff generation mechanism conceptualized by Horton is typical of the arid

or semi-arid areas, where the overland flow is produced by infrequent but

heavy rainfalls and is influenced by soil surface processes, such as sealing,

cracking, and freezing.

Saturation-excess (or Hewlett’s) mechanism

Later, in 1961, J.D. Hewlett hypothesized that, during intense and prolonged

events, the precipitation infiltrating into the soil feeds the sub-surface water.

Due to the progressive saturation of the soil profile, the water table rises up,

primarily starting on the lower slopes of the catchment and along valley bot-

toms adjacent to stream channels (Fig. 9.7A). Throughout the storm, progres-

sively larger areas, on which the soil infiltration capacity decreases to zero,

saturated in the catchment, and the excess precipitation feeds the surface

water, accordingly defined saturation-excess overland flow (Fig. 9.7B); only

the saturated areas contribute to surface runoff. The runoff generation mech-

anism theorized by Hewlett is typical of the humid and sub-humid areas,

where the morphology and other properties of soils let the water table rise

easier during the precipitation events.

Temporal evolution of surface and sub-surface water

In humid and sub-humid climates, perennial watercourses have permanent

water flow. In arid or semi-arid areas (such as in the Mediterranean
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environment), watercourses are intermittent. Here, the water flows in the

channels for some months during the year. In ephemeral watercourses, the

water flows only for hours or days following a storm (Wohl, 2017).
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FIGURE 9.6 The runoff generation mechanism by infiltration excess. (A) Flow paths in the

hillslope profile (P5 precipitation; Qp5 direct precipitation over water surfaces; Qo5 overland

flow); (B) the theoretical diagram ( f5 infiltration rate; fc5 steady infiltration rate; f05 initial

infiltration rate; tp5 precipitation duration; i5 precipitation intensity; Q05 overland flow).
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Usually, a diagram (hydrograph) graphically represents the time evolution of

runoff, from the precipitation start until the flood depletion. The hydrograph is

commonly reported together with the hyetograph (that is, the time evolution of

the rainfall intensity) of the generating precipitation event. Schematically, a hydro-

graph consists of three components:

� A rapidly increasing curve (concentration or rising limb), which starts from

the time when the hydrological response of the stream channel to the precipi-

tation begins by an increase in discharge (see point S of Fig. 9.8) until to the

flood peak (the maximum value of the surface runoff, point P of Fig. 9.8)

� The peak discharge—that is the highest point on the hydrograph, —which

occurs when different parts of the catchment simultaneously contribute to

the runoff at the outlet
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FIGURE 9.7 The runoff generation mechanism by saturation-excess. (A) Flow paths in the

hillslope profile at the start (a1) and during (a2) precipitation (P5 precipitation; Qp5 direct pre-

cipitation over water surfaces; Qo5 overland flow; Qt5 interflow; Qg5 groundwater flow); (B)

the progressive saturation mechanisms of the contributing areas (saturation degree increases with

the gray intensity).
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� A slowly decreasing curve (recession or falling limb), which represents

the runoff depletion after the storm until the time when the stream flow

regime returns to the regular value of the dry period (baseflow).

The duration of the concentration limb is much lower compared to the

recession limb. The time between the precipitation start and the flood peak is

called concentration time (Fig. 9.8), while the time between the flood start

and end is called flood duration.

The hydrograph shape is influenced by the amount and velocity of each runoff

component. It is practically impossible to individually identify these components

(except for very small catchments with a simple hydrographic network, such as

the headwaters). Conversely, the separation of the quick flow and delayed flow

components is generally feasible, using a set of arbitrary graphical techniques,

which allows the identification of the direct runoff and the base flow hydrographs.

Each separation technique requires the detection of the start and end of the flood.

While the flood start is easily recognizable (it is simply the time when the hydro-

graph suddenly increases after the precipitation start), the identification of the

flood end is much more difficult. The literature proposes hydrograph separation

techniques of different complexity. The most common techniques are based on

drawing a line passing across the hydrograph from the point of flood start:

(i) A horizontal separation line

(ii) A line of constant slope (0.000546 m3/s/km2)

(iii) A straight line to a selected point on the recession limb (point E of

Fig. 9.8), which can alternatively be: (a) the point of greatest curvature

close to the lower end of the recession limb; (b) the point when the
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FIGURE 9.8 Schematic flood hydrograph with a possible separation method (tp5 rainfall dura-

tion; Q0,p5 peak runoff; i5 rainfall; Q05 runoff; S5 flood start; P5 hydrograph peak;

E5 flood end).
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recession limb starts to decrease according to an exponential law:

(c) the point corresponding to a given time interval from peak flow

(iv) the broken line consisting of (1) the line prolonged from the pre-storm

hydrograph below the concentration limb until the vertical under the

peak flow, and (2) the line whose extremes are the intersection of the

previous line with the vertical under the peak flow and the point over

the recession limb selected as above at the point (iii).

The technique (i) is simple but can lead to unrealistic results (that is, a

constant hydrograph of sub-surface water, which thus does not reflect the

effects of the precipitation). By contrast, the techniques (ii) to (iv), although

being complex, seem to be more realistic and appropriate to reproduce the

actual hydrological effects of floods.

Methods for components/fluxes estimation in the water
balance

Field measurements

Atmospheric water

Precipitation

The amount of precipitation falling on the ground and retained over the soil

without any water losses (evaporation, infiltration, depression storage) or

runoff is measured (in m3 or mm) at regular time intervals (e.g., daily;

hourly; every 15 min etc.) using rain gauges. These devices must be installed

in the open air on a horizontal surface close to the ground (to reduce wind

effects), but avoiding rain splash or submersion by floods, and far from

obstacles (to prevent rainfall interception).

Rain gauges generally consist of open cylindrical vessels collecting rainfall

with or without recording equipment. Some rain gauges (pluviometers) do not

record the precipitation depth. A pluviometer is simply a small metal tank

(diameter of about 0.10 m) placed on a horizontal plane at a height of about

0.30 m above the ground level. The tank contains an upper funnel receiving pre-

cipitation, which is collected into a lower bottle or the tank bottom; the upper

net protects the pluviometer from dirt (Fig. 9.9A). Once a day, the collected

rainwater is manually measured, and this record is the total rainfall of that day.

Other rain gauges (pluviographs) continuously and automatically record the

precipitation depth. A writing pen activated by the surveying equipment traces

the record on a graduated paper mounted on clockwork driven drum or mass

memory. These records, which also report the duration of the precipitation

event, allow the rainfall intensity calculation. The types of pluviographs are:

� Tipping bucket pluviograph (Fig. 9.9B), based on a pair of small buckets

under the funnel, which alternatively tip, when a given rain volume falls

into the buckets and actuates the writing pen
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� Weighing pluviograph (Fig. 9.9C), where a weighing mechanism under

the tank receiving the rainwater is connected to the writing pen

� Natural siphon pluviograph (Fig. 9.9D), where the collected rainwater is

poured into a float chamber, causing the float to rise and actuate the writ-

ing pen. When full, a syphon pipe automatically empties the float cham-

ber and the writing pen is reset to zero for the next record

� Recently, the rainfall measurements of rain gauges are progressively

replaced by estimations by radar. The latter devices use microwaves with a

wavelength from 0.03 to 0.10 cm and operate at several hundreds of kilo-

meters from rainstorms. Beside rainfall amounts and intensity, radar allows

the simultaneous measurement of areal extent, location, and movement of

the storm and even the velocity and distribution of raindrops.

Evaporation and evapotranspiration

Evaporation from water bodies (e.g., lakes, reservoirs, river channels) and

evapotranspiration from vegetated surfaces can be directly measured or esti-

mated using indirect methods.

Evaporation from water bodies is directly measured by evaluating the

reduction of level for a sample of open water in an evaporation pan (with

standardized size) over time; generally, the related atmospheric variables,

such as the precipitation, temperature, wind speed and humidity of air are

Tap

Collected
rainwater

Protection
net

Funnel

Collected
rainwater

Protection
net

Tap

Tipping
bucket

Rotating
drum

Recording
pen

Clock

(a) (b)

(c) (d)

FIGURE 9.9 Sketches of some rain gauge types (A, pluviometer; B, tipping bucket pluvio-

graph; C, weighing pluviograph; D, natural syphon pluviograph).
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simultaneously measured using a weather station. Daily, water evaporation

from the pan (expressed in mm/day) is the difference of the water levels in

two consecutive days, depurated from rainfall over the pan and other water

losses, such as bird or animal consumption. The water evaporation of the

specific pan must be corrected through a coefficient (Kp), which depends on

the type of pan, environment and operations.

Evapotranspiration from vegetated surfaces is directly measured using

lysimeters. A lysimeter is a hydraulically isolated tank filled with soil cores

(with or without vegetation). In this tank, evapotranspiration is evaluated

weighing the lysimeter over time and simultaneously measuring the precipi-

tation over the tank and the drainage from the sample as components of the

water balance equation.

The indirect methods for estimating evaporation and evapotranspiration

are:

� Bowen ratio method, which estimates evapotranspiration as a function of

the Bowen ratio (sensible to latent heat), on its turn calculated from mea-

sures of the atmospheric temperature and humidity gradients close to

vegetation

� Eddy correlation (or covariance) method, which estimates evapotranspi-

ration as the temporal average from the correlation coefficient between

variations in vertical wind speed and atmospheric humidity measured

above the vegetation.

Recently, other methods based on remote sensing systems (such as drones

and satellites) have been proposed. These systems measure atmospheric vari-

ables (such as the water vapor concentration, temperature, sensible heat,

aerodynamic exchange resistance) surrounding the measurement area, and

calculate the evapotranspiration fluxes from these derived measurements

using mathematical algorithms and/or energy balance equations.

Surface water

Surface runoff can be measured using methods that can be classified as fol-

lows (Dobriyal, Badola, Tuboi, & Hussain, 2017; Fig. 9.10):

� Direct method (it is a volumetric method, based on filling a tank of

known volume during a given time)

� Velocity-area methods, based on the integration of simultaneous measures

of local low velocities by cell areas of a channel cross-section, including:

o The float method, where the flow velocity is the ratio between the

floating distance of an object of low density and the related travel

time

o The dilution gauging method, which measures flow velocity as a func-

tion of the diffusion rate of a tracer, e.g., chemical or radioisotopes
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o The trajectory method, where the flow velocity is measured using the

hydraulic equations at the outlet jet of pipeline in which all the stream-

flow is diverted

o The current meter method, assuming that the flow velocity is propor-

tional to the rotation speed of a mechanical rotor (Fig. 9.11A)

o The acoustic Doppler current profiler method, where the flow velocity

is estimated by the difference in the frequency of the sound transmitted

by the device into the water and echoes received from suspended parti-

cles (Fig. 9.11B)

FIGURE 9.11 A current meter (Valeport Inc., UK, A) and an acoustic Doppler profiler (SonTek

Inc., USA, B).
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Constricted flow
methods

Weir method

Flume method

Broad 
crested weir

Sharp 
crested weir

HS, H, 
HL type 
flume

Venturi 
flume

San 
Dimas 
flume

FIGURE 9.10 Classification of methods for surface runoff measurement (Source: P. Dobriyal,

R. Badola, C. Tuboi, and S.A. Hussain (2017). A review of methods for monitoring streamflow

for sustainable water resource management. Applied Water Science, 7, 2617�2628, modified).
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o The electromagnetic method, measuring by electromagnetic probes

placed on each side of the stream the electromotive force induced in

the water by a generated earth’s magnetic field, which is directly pro-

portional to the flow velocity.

� Constricted flow methods, based on forcing the water stream passing over

a broad crested or sharp-crested weir (weir method, Fig. 9.12A) or an

HS, H and HL type, Venturi, Parshall and San Dimas flumes (flume

method, Fig. 9.12B) of known geometry, for which the application of the

hydraulic equations to the measured water depth gives the surface runoff

� Non-contact methods, consisting of the remote sensing methods (using

passive or active sensors), which provide:

o Direct measures of water surface levels from radar altimeters/ high-

resolution satellite imagery

o Correlations of remotely-sensed water surface areas with ground mea-

surements (water depths or discharges), and the particle image veloci-

metry method (i.e., determining the water velocity recording the laser

light scattered by liquid or solid particles on a photo-camera).

Overall, the direct and constricted flow methods are quite accurate but

are advised for surface runoff measures in very small channels. The other

methods are more suitable for streamflow measurements in medium to large

rivers. In particular, the velocity-area methods can be used in easily accessi-

ble watercourses for instantaneous measurements and construction of water

depth-discharge equations. The non-contact methods, although being quite

expensive, do not require the presence of surveyors close to the channel and

are better suitable for continuous and real-time flow measurements also in

the case of floods.

FIGURE 9.12 A Parshall flume (Badger Meter GMBH, Germany, A) and a triangular weir

(IEI Inc., USA, B).
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Sub-surface water

Measuring infiltration is of fundamental importance since the related process

governs both the surface and sub-surface water. The infiltration measure-

ments are based on field evaluation of the hydraulic conductivity, which is

not constant, but varies in time (with soil saturation during a storm) and

space (from point to point, depending on several soil properties, such as tex-

ture and aggregate stability). The methods for soil hydraulic conductivity

measurement use infiltrometers or permeameters that can be classified as fol-

lows (Angulo-Jaramillo et al., 2000):

� One-dimensional pressure ring-infiltrometers (e.g., one-ring and double-

ring infiltrometers, mini-disk infiltrometers, Fig. 9.13A), in which the

water, supplied to the soil surface at a positive pressure head, infiltrates

vertically in a ring (or two coaxial rings) pressed into the soil. This pro-

cess carries on until a constant infiltration rate is observed, which is

assumed to be the soil infiltration capacity;

� Unconfined three-dimensional tension disk infiltrometers (Fig. 9.13B),

which supply the soil with water at negative pressure at its surface (to

prevent wetting up of soil larger pores with possible short circuits for

flow), thus allowing the evaluation of soil-water properties of the soil

matrix without being dominated by flows in the larger pores (Youngs,

1991).

Infiltration can be also indirectly measured using rainfall simulators

(Fig. 9.14). These devices generate an artificial rainfall with controlled

depth, intensity and drop size; the infiltrated flow is the difference between

precipitation and surface runoff, and the ratio to the infiltration time gives

the hydraulic conductivity.

FIGURE 9.13 Minidisk infiltrometer (Decagon Inc., USA, A) and double-ring infiltrometer (B).
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Modeling

Experiments about hydrology and specifically the estimation of the water

balance components are usually costly and time-consuming, and sometimes

not even applicable on large spatial scales and long-term periods. A possible

alternative solution is the use of models in replacement of hydrological

experiments and to the calculation of the water balance. In order to develop

appropriate and sustainable strategies for management of water resources ı̀,

the modeling approach, combined with field observations and laboratory

experiments, allows a better understanding of the hydrological cycle and pro-

vides scientifically sound information about the hydrological processes and

fluxes. According to the description of hydrological models provided by

Kirkby (1996), “Models are thought experiments which help refine our

understanding of the dominant processes, testing whether we have a suffi-

cient and consistent theoretical explanation of physical processes.” Water

balance models generally simulate all components of the terrestrial hydrolog-

ical cycle and the interaction of surface and sub-surface processes holisti-

cally, maintaining a continuous water balance for the area of interest (Beven,

2011; Wagener, Wheater, & Gupta, 2004). Some of these components are

interrelated, and therefore require iterative calculations; to model some

hydrological processes, the estimation of a certain number of input para-

meters is required. Water balance modeling is based on Eqs. (9.1) to (9.3),

FIGURE 9.14 A rainfall simulator (Eijkelkamp, Nederland).
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depending on the control volume. In principle, modeling the water balance

sounds simple; however, in practice, it is difficult to measure or estimate

every single component of the hydrological cycle, particularly at larger spa-

tial scales (i.e., from hillslope to continental scales). Such models can incor-

porate the spatial and temporal variability of the primary driving forces, such

as precipitation and solar radiation, and land-surface heterogeneity (e.g., soil,

vegetation). A mathematical description based on laws of physics (e.g., mass

and momentum conservation applied to soil and water) is the first step in the

formulation of a model that will produce quantitative predictions of the

hydrological processes and fluxes. The general structure of all water balance

models is similar. To set up a model, it is necessary to write equations that

relate the rates of change in water storage in the control volume to the

hydrological fluxes across its external surface throughout the reference

period. To summarize, although many equations differ in their structure,

complexity and input parameters, the most common equations related to the

estimation of hydrological processes and/or fluxes in water balance models

are the following:

� For sub-surface flow in:

o Saturated zone: Darcy’s law (1856), which assumes a linear relationship

between the flow velocity and hydraulic gradient through a coefficient of

proportionality (hydraulic conductivity)

o Unsaturated zone: Richards’ equation (1931), which is the combination of

Darcy’s law with the continuity or mass balance equation in a non-linear

partial differential equation

� For surface flow: (1) Saint-Venant equations (1797�1886), which assume

that the flow can be expressed in terms of average cross-sectional veloci-

ties and depths, and are based on the balances of both flow mass and

momentum; (2) Diffusion wave and Kinematic wave equations, which

are simplifications of Saint-Venant equations, where some terms are

neglected (Lighthill & Whitham, 1955)

� For atmospheric water flow (evapotranspiration): (1) Penman-Monteith’s

equation, which is the most widely used and recommended method to

directly estimate the potential ET, and indirectly actual ET by reducing

the potential ET according to the actual soil water content (Monteith,

Szeicz, & Waggoner, 1965); (2) Haude (1955); (3) Hamon (Federer &

Lash, 1978); (iv) Hargreaves-Samani (1982); (v) Thornthwaite (1948),

and other models; however, the low availability of meteorological data

and field measurements may be a limiting factor in applying some of the

more demanding methods/equations and particularly Penman-Monteith

equation.

When it is necessary to calculate the infiltration rate at the soil surface,

Horton (1933, 1940) and Green�Ampt (Green & Ampt, 1911) models can

be used.
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In general, the water balance models allow the estimation or prediction

of surface and sub-surface flows and are commonly known as hydrologi-

cal models. The models mostly differ in how ET and soil water content

are conceptually considered and mathematically simulated. There are sev-

eral classifications of hydrological models, based on structure, spatial

scale, time scale, a time step of computation, interpretation of the catch-

ment processes, etc. Tables 9.1 and 9.2 illustrate two possible classifica-

tions of hydrological models. These classifications are based on model

structure and spatial processes, respectively. The model structure,

roughly varying from simple model to complex model based on the gov-

erning equations and number of modeled variables/input parameters, iden-

tifies how water balance components are calculated. Simple models need

relatively few variables, while the most complex models (such as the

physical-based models, Fig. 9.15) require a large number of intercon-

nected variables to simulate the hydrological processes and fluxes in the

water balance of the hydro-system (Sitterson, et al., 2017).

Spatial variability in geology, topography, vegetation, and soil influ-

ence the hydrological processes (and in particular the rainfall-runoff

transformation) within a catchment, and, thus, should be carefully con-

sidered in modeling (Beven, 2011). According to the spatial structure

classification, the hydrological models can be classified as lumped (aver-

age weather and geomorphological conditions are assumed for the mod-

eled catchment), semi-distributed (the catchment is discretized in sub-

catchments or hydrologically homogenous response units), and fully-

distributed (a catchment is discretized in grid cells) (Fig. 9.16 and

Table 9.2).

With regard to the model time scale, the water balance is generally set up

for an adequately long period, such as wet/dry season, calendar or hydrologi-

cal year, decade, etc. Depending on the variability of the captured hydrologi-

cal flux or process of the water balance (e.g., surface water, rainfall,

groundwater, or overall water availability), different temporal output data are

provided, such as daily, monthly, seasonal, annual, or multi-year runoff

volumes or sediment flows (averages or totals). Some hydrological models

work at the event scale, that is, they estimate or predict the simulated hydro-

logical variable as the product of a storm or a precipitation event. In addition

to the time scale of models, the time step of computation (e.g., monthly,

daily, hourly, etc.) is another important characteristic of the water balance

models, since it influences the accuracy of the output variable and the

computational time of the simulation procedure (i.e., the finer the time step,

the longer the model computation).

A key issue for the practical use of the hydrological models is the

reliability of their outputs for the modeler’s purpose. The reliability of a

model prediction or estimation is evaluated through a comparison of the

modeled hydrological variable with a field measurement corresponding
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TABLE 9.1 Classification of hydrological models according to the structure

(Pechlivanidis, Jackson, Mcintyre, & Wheater, 2011; Sitterson, et al., 2017).

Characteristics Hydrological model

Empirical Conceptual Physical-based

(process-based

or mechanistic)

Methodological
approach

Non-linear
statistical
relationship
between inputs
and outputs;
observation-
oriented; black-
box concept

Simplified water
balance
equations
representing
hydrological
components in
the catchment

Physical laws
formulated as
partial differential
hydrodynamic
and porous media
flow equations
and resolved by
numerical
techniques

Advantages Small number of
input parameters;
fast computational
time

Simple model
structure; easy to
calibrate

Very accurate; the
connection
between model
parameters and
physical
catchment
characteristics

Limitations Lack of physical
significance
between model
parameters and
catchment
properties; input
data falsification

Spatial variability
within catchment
not entirely
addressed; lack of
physical meaning
in governing
equations and
parameters

A large number of
data and
parameters needed
for running and
calibration;
catchment-specific

Most
suitable applications

Ungauged
catchments; runoff
only desired
output; rough
estimation of
output

Limited
computational
time; low detail
of catchment
characteristics

Availability of
large and accurate
input data; fine
spatial and
temporal scales

Examples SCS-Curve
Number; Artificial
Neural Networks

TOPMODEL;
HSPF; HBV;
Stanford

MIKE-SHE;
KINEROS; VIC;
WaSiM-ETH

I. G. Pechlivanidis, B. M. Jackson, N. R. Mcintyre, and H. S. Wheater (2011). Catchment scale
hydrological modelling: a review of model types, calibration approaches and uncertainty analysis
methods in the context of recent developments in technology and applications. Global NEST
Journal, 13(3), 193�214; J. Sitterson, C. Knightes, R. Parmar, K. Wolfe, M. Muche, and B. Avant
(2017). An overview of rainfall-runoff model types. United States Environmental Protection
Agency, Washington, DC. EPA/600/R-17/482.
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TABLE 9.2 Classification of hydrological models according to the spatial

structure (Sitterson, et al., 2017; Beven, 2011).

Characteristics Hydrological model

Lumped Semi-

distributed

Distributed

Methodological
approach

Spatial variability
is not considered;
entire catchment
is modeled as one
unit; calculation
of one runoff
value for the
entire catchment
at the outlet; all
data are constant
over space and
time

Reflect some
spatial variability;
dividing the
catchment into
smaller sub-
catchments
(Hydrological
Response Units),
with different
parameters for
each; calculate
runoff at the pour
point for each
sub-catchment,
but do not
calculate runoff
at every grid cell

Accounts for
detailed spatial
heterogeneity in
inputs and
parameters by
grid cells (small
elements);
calculates distinct
hydrological
response for each
cell separately

Input data All data averaged
for the entire
catchment

Separated within
the catchment
but homogenous
within the sub-
catchments

All specific data
at grid cell: DEM;
land use;
precipitation; soil
properties;
topography; and
catchment
characteristics

Advantages Fast
computational
time; ideal for
simulating
average
conditions

Represents
important
features in the
catchment; fast
computational
time; fewer data
and parameters
needed than a
distributed model

Physically related
to hydrological
processes

Limitations Loss of spatial
variability; not
representative for
large areas; over-
or under-
parameterization

Data into sub-
catchments are
averaged, and
manipulation of
input data is
possible; loss of
spatial resolution

Data intense;
long
computational
time

(Continued )
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to the same meteorological input in an instrumented catchment. For

example, the accuracy of a modeled peak flow for a flood after a storm

is checked by its comparison with the maximum flow observed for the

same storm and measured at the outlet of a catchment equipped by a

flume (see sub-chapter 4.2). Sensitivity analysis and calibration/valida-

tion are useful procedures to facilitate model evaluation and application.

Sensitivity analysis allows the identification of the model parameter(s)

to which a model is most sensitive. Calibration adjusts one parameter or

a set of parameters to make the simulated variable as close as possible to

the corresponding observation. Model validation is the process to run a

model by using model parameters determined during the calibration pro-

cess (Moriasi, et al., 2007).

From the notion of the global water system and the interdependency of

earth components, which needs the integration of those systems in inte-

grated models, Global Hydrological Models have been developed, in

which the global water flow is connected to other hydrological systems

through physical relationships (Alcamo et al., 2003). They are similar to

catchment models but differ in processes description, parameter estima-

tion approaches, and the temporal and spatial resolution of input data and

outputs. Global models provide useful spatial and temporal estimates of

global water resources and, hence, the analysis of possible changes is

attainable, particularly, under the explosion of global data availability

from satellites in the last two decades (Sood & Smakhtin, 2015).

TABLE 9.2 (Continued)

Characteristics Hydrological model

Lumped Semi-

distributed

Distributed

Most
suitable applications

Regulatory
purposes that look
at long-term
conditions

- Formanagement
practices by
providing detailed
data for small
elements

Examples Empirical and
conceptual
models; machine
learning

Conceptual and
some physical
models;
TOPMODEL;
SWAT

Physically
distributed
models, MIKE
SHE; VELMA;
WASiM-ETH

Sitterson, C. Knightes, R. Parmar, K. Wolfe, M. Muche, and B. Avant (2017). An overview of
rainfall-runoff model types. United States Environmental Protection Agency, Washington, DC. EPA/
600/R-17/482; Beven, K.J. (2011). Rainfall-runoff modelling: The primer. John Wiley & Sons.
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FIGURE 9.16 Spatial structure classification of hydrological models. A: Lumped model,

B: Semi-distributed model, C: Distributed model.

FIGURE 9.15 Schematization of the hydrological processes and control volume (in soil layers

and Triangular Irregular Network) of a physical-based model.
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2.2  Modeling water fluxes in the unsaturated zone  

 
The river basin or catchment is a typical geographical scale employed in the management of 

water resources. Within a catchment, all precipitation within the watershed merges at a singular 

discharge point. At this point, water can be perceived either as a potential threat or harm in 

relation to flooding, or as a means to fulfill human requirements such as irrigation or potable 

water. 

During the first century of hydrological modeling, models relied on manual calculations 

(such as Sherman, 1932; Mulvany, 1850, and Nash, 1959). These models were empirical and 

were developed through analyzing input and output data without considering hydrological pro-

cesses. With the advent of computer technology, many conceptual model codes were introduced, 

beginning with the Stanford Watershed IV in 1966, followed by various model codes still in use 

today, such as NAM (Nielsen & Hansen, 1973); Sacramento (Burnash & Ferral, 1973), and 

HBV (Bergström & Forsman, 1973). Although these conceptual models were based on sound 

hydrological process knowledge, they couldn't directly exploit point-scale process equations and 

data, as the entire catchment served as the computational unit. The next phase towards develop-

ing model types that could encompass more hydrological field data and process knowledge was 

spurred by a blueprint by Freeze and Harlan (1969) and the development of the first spatially 

distributed process-based (physics-based) model codes such as SHE (Abbott et al., 1986a, 

1986b), IHDM (Beven et al., 1987), and THALES (Grayson et al., 1992). 

Computing power has undergone an exponential increase over the past 40 years, resulting in 

the ability to provide numerical solutions to highly non-linear equations for a wide range of 

initial and boundary conditions. Prior to this advancement, hydrologists were limited to analyt-

ical solutions for specific cases, such as the Burgers solution and Dirac delta solution for line-

arizing soil hydraulic properties to provide analytic solutions to Richards’ equation (Smith et 

al., 2002). While these solutions continue to provide insights for verifying numerical models, 

numerical modeling has emerged as the preferred approach in hydrological studies. Another 

crucial development that has shaped the direction of hydrological modeling is the increasing 
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availability and resolution of digital elevation models, coinciding with the emergence of varia-

ble source area hydrology that departs from earlier Hortonian concepts of runoff dominated 

solely by the infiltration-excess process. The advent of geographical information systems has 

further accelerated the development and application of spatially distributed deterministic hydro-

logic models by enabling the storage, retrieval, and rapid manipulation of spatial data. Variable 

source area hydrology is a concept that describes how the spatial patterns of water movement 

and storage in a watershed can vary significantly depending on the properties of the soil, vege-

tation, and topography. It recognizes that in some areas, surface runoff and subsurface flow may 

be limited to specific locations, while in other areas, water movement may be more diffuse and 

widespread. In other words, variable source area hydrology emerged as an alternative to earlier 

concepts, such as the Hortonian overland flow model, which assumed that runoff was primarily 

generated by a uniform infiltration-excess mechanism over the entire watershed. This empha-

sizes the role of topography, soil properties, and vegetation cover in generating and storing wa-

ter, and it has been widely applied in hydrological modeling studies to simulate the dynamics of 

water movement and storage in different types of landscapes (Litwin et al., 2023; Su et al., 2023; 

Guo et al., 2022; Collick et al., 2015; Pachepsky et al., 2004, and Troch et al., 2003).  

Richards equation (Richards, 1931) is a mathematical model which describes the movement 

of water in unsaturated soils by combining the Darcy–Buckingham law with the continuity equa-

tion. This equation is widely recognized as the primary concept in soil physics and is discussed 

in hydrological textbooks (Ebel & Loague, 2006; Qu & Duffy, 2007; Ivanov et al., 2008). It is 

regarded as the fundamental principle underlying physically-based hydrological models (Mo-

hajerani et al., 2021; Yi et al., 2023; Ebel et al., 2023). It describes how water moves through 

the soil matrix under the influence of gravity, capillary forces, and pressure gradients. This 

equation can be used to simulate soil water movement and the effects of plant and atmospheric 

interactions in hydrological modeling. In order to solve Richards equation, knowledge of the 

soil hydraulic properties is necessary. The hydraulic properties of the soil play a significant role 

in the primary hydrological processes that occur in catchment areas (Wösten et al., 2001; 

Elsenbeer, 2001; Porporato et al., 2004; Montzka et al., 2017; Vereecken et al., 2022). Hence, 

having information about these soil properties is essential for modeling water balance, and ap-

propriately parameterizing soils is among the top-priority tasks in physically based catchment 

modeling (Arnold et al., 2000; Rieger & Disse, 2013; Novick et al., 2022). Typically, soil prop-

erty parameters are assessed through point observations at a small scale. Nonetheless, when it 
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comes to water balance modeling in catchments, parameter values need to be determined for 

larger spatial scales, like grid cells or the entire catchment (Bogena et al., 2010). One can pa-

rameterize the Richards equation by utilizing either observed soil properties, which involves 

measured relationships between soil water content and matric potential, or constitutive equa-

tions like the Gardner-Russo model, the Brooks-Corey model (Brooks & Corey, 1966), or the 

Mualem-van Genuchten model (Mualem, 1976; Van Genuchten, 1980). These empirical models 

capture a fundamental hydro-physical characteristic of the soil, namely the relationship between 

soil water content and matric potential (Aubertin & Patric, 1974). 

Hence, the solution for Richards equation relies on two soil water constitutive relationships 

that are highly nonlinear and empirical in nature. These relationships are (1) the unsaturated 

hydraulic conductivity function, which can be either constant or close to zero for capillary heads 

that are non-positive, and (2) the capillary head function, which can take on extremely small 

values when relative saturations are near 100%, regardless of their actual value (Farthing & 

Ogden, 2017). Challenges arise when solving the equation due to the extremes in the behavior 

of soil water, as described by the unsaturated hydraulic conductivity and the pressure head, 

which can cause degeneracy in the solution of Richards equation. These functions may not have 

smooth differentiability at these extremes, and may exhibit high slopes, hysteresis, and even 

discontinuity at low relative saturations. Additionally, when dry soils are infiltrated, the result-

ing sharp wetting fronts can produce very large spatial gradients of soil hydraulic properties 

(Zha et al., 2017). The presence of nonlinearities poses several challenges. For instance, in the 

widely used van Genuchten and Mualem constitutive relations (Van Genuchten, 1980), the pres-

sure head function (or the suction) and specific moisture capacity (i.e., change in water content 

with respect to change in pressure head in a porous medium) approach zero as the moisture 

content nears saturation, whereas the soil-water diffusivity can increase without bound. In gen-

eral, this behavior can lead to degeneracy, a condition in which the coefficients in Richards 

equation approach values of zero or infinity, hindering the solution. Thus, the inherent nonline-

arity and degeneracy present in the behavior of soil water make it very challenging to design 

and analyze numerical schemes for solving Richards equation (Miller et al., 2013; Zhou et al., 

2022; Maranzoni & Tomirotti, 2023; Soomere, 2023). The numerical approach developed by 

Celia et al. (1990) for obtaining one-dimensional solutions of Richards equation, which employs 

modified Picard iterations to enhance mass conservation, has become the commonly used stand-

ard method. Therefore, the method remains the basis of many production codes, including the 
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USDA Hydrus-1D Richards equation solver (Simunek, 2005). Infiltration is commonly consid-

ered a one-dimensional process occurring in the vertical direction (Or et al., 2015). Because of 

the one-dimensional vertical assumption, it is then possible for large-scale models to use multi-

ple, separate one-dimensional computations instead of a fully coupled three-dimensional solu-

tion.  

The dynamics of soil water content, simulated by Richards equation, have an impact on the 

availability of water to plants in hydrological modeling. Therefore, incorporating the interac-

tions between soil, water, plants, and the atmosphere into the equation through boundary con-

ditions is crucial. Boundary conditions that can here be taken into account are, for example, the 

infiltration of water into the soil, evaporation from the soil surface, and water uptake by plant 

roots, followed by transpiration by the crop. To include root water uptake, a boundary condition 

can be specified at the root surface, modeled using a sink term in the equation that represents 

water extraction by the roots. Likewise, evapotranspiration can be incorporated by defining a 

boundary condition at the soil surface that accounts for evaporation and transpiration fluxes. 

The root water uptake term, which is a function of depth, is determined by the potential transpi-

ration and the root density.  

Under non-stress conditions, plants can achieve their maximum potential for root water up-

take. However, if the soil is either too dry or too wet, plants become stressed and their roots are 

unable to take up water effectively, resulting in reduced transpiration. To model the decrease in 

root water uptake caused by stress, a stress factor is utilized, which is dependent on soil hydrau-

lic properties and plant characteristics (Feddes et al., 1978, Kowalik and Zaradny 1978; 

Pachepsky et al., 2004). In other words, the transpiration rates are influenced by soil hydraulic 

properties through the stress factor, and stress factor is influenced by changes in the soil's ability 

to conduct water. This is because the hydraulic conductivity of the soil surface decreases as 

water evaporates from the upper layer, which in turn affects the matric potential at the soil sur-

face. To ensure that water can still move upwards to the drying surface, the matric potential 

must decrease. However, it is important to note that there is a critical threshold value below 

which the potential cannot drop. Once this threshold is reached, the potential at the surface re-

mains constant, resulting in a decrease in the rate of evaporation over time. Thus, the extent to 

which the soil's hydraulic properties impact the evaporation rate can be predicted by using Rich-

ards' equation.  
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The potential evapotranspiration (ETP) is dependent on several factors such as the type of 

plant, the stage of plant-cover development, and the climatic region. It is further divided into 

potential evaporation from the soil surface and transpiration from the crop. The potential tran-

spiration can then be determined by subtracting the potential evaporation from the potential 

evapotranspiration. To calculate the potential evapotranspiration of a cropped or bare soil sur-

face, the reference evapotranspiration (ET₀) is used (Doorenbos & Pruitt, 1977). ET₀ represents 

the amount of evapotranspiration that would occur from a well-watered grass surface. ET₀ is 

usually estimated using empirical equations that incorporate meteorological variables such as 

temperature, humidity, solar radiation, and wind speed. The most widely used method for cal-

culating ET₀ is the Penman-Monteith equation (Monteith, 1975; Allen et al., 1998), which is 

recommended by the Food and Agriculture Organization (FAO). The Penman-Monteith equa-

tion is a complex and comprehensive method that takes into account the energy balance and 

aerodynamic resistance of the crop, as well as the evaporative demand of the atmosphere. It 

requires a variety of meteorological data, including air temperature, relative humidity, wind 

speed, solar radiation, and atmospheric pressure. Other empirical equations that are simpler to 

use but less accurate than the Penman-Monteith equation are the Hargreaves equation (Har-

greaves & Samani, 1985), the Priestley-Taylor equation (Priestley & Taylor, 1972), and the 

Blaney-Criddleequation (Blaney, 1952). These equations are widely used in situations where 

meteorological data are limited or not available. It is important to note that the accuracy of ET₀ 

estimation depends on the quality and availability of meteorological data, as well as the suita-

bility of the selected method for the specific climatic and environmental conditions.  

As soils dry, the matric potential Ψ becomes more negative, resulting in a reduction of the 

effective radius of water-filled pores in the soil. This process shapes the water-retention curve, 

which is also known as the "moisture characteristic" or "water release" curve, as it illustrates the 

relationship between matric potential and volumetric soil moisture content θ. It is worth noting 

that differences in soil physical properties can cause Ψ to vary significantly across soil types, 

even if θ remains constant (Campbell, 1974; van Genuchten, 1980). In order to link water-bal-

ance equations with potential-driven flows in soil (i.e., infiltration, plant uptake, drainage, ca-

pillary rise, and evaporation), it is crucial to develop methods that establish a relationship be-

tween soil water content (θ) and matric potential (Ψ) in models. Due to its widespread use and 

reliance on soil properties, the van Genuchten model is commonly employed by hydrological 

models to calculate the water retention curve when estimating this relationship (Van Looy et al., 
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2017). However, in order to put this model into practice, it is crucial to obtain its unknown 

empirical fitting parameters through the use of known experimental data, such as a measured 

soil water retention curve. As the spatial scales increase, such as in catchment models, obtaining 

direct measurements becomes impractical due to the soil properties' heterogeneity and area cov-

erage. Therefore, several methods have been devised to determine the van Genuchten parame-

ters and subsequently the soil water retention curves by using easily measurable soil parameters 

such as texture, organic matter content, and bulk density. These functional relationships, which 

convert available measurable soil properties into missing soil properties such as soil hydraulic 

and soil chemical characteristics, are referred to as pedotransfer functions (PTFs) (Clapp & 

Hornberger, 1978; Bouma, 1989; Zhang & Schaap, 2017). Typically, the development of a PTF 

involves a two-step process. The first step involves fitting a selected water retention function, 

such as the van Genuchten function, to measured water retention curves. In the second step, the 

parameter values obtained in the fitting process are linked to the chosen soil properties (Wösten 

et al., 1999; Vereecken et al., 2010). Over the past three decades, soil scientists have created a 

vast array of PTFs that differ in terms of: (i) the techniques utilized (e.g., statistical regression 

methods, data exploration and mining techniques); (ii) the database of measured soil moisture 

retention data used to estimate the van Genuchten model; and (iii) the input parameters or pre-

dictors required (e.g., grain size distribution, bulk density, organic matter content) to develop 

the PTF. It has been demonstrated that the effectiveness of PTFs can be significantly influenced 

by several factors, such as the data utilized for calibration and assessment, the input soil prop-

erties, and the various methods employed. Notably, the databases used to generate PTFs exhibit 

four significant distinctions: (1) the laboratory techniques utilized to obtain a complete soil 

moisture retention characteristic; (2) the soil texture composition, where the extreme examples 

are presented in the databases of Schaap and Bouten (1996), which exclusively contain sandy 

materials, and Schaap and Leij (1998), which primarily feature coarse-textured soils and almost 

no silty soils; (4) discrepancies in the number of data points and pressure head values utilized 

to establish the WRC , and (5) to effectively parameterize soil hydraulic properties, it is neces-

sary to consider hydrological processes. 

The uncertainty associated with PTFs can have significant implications for water balance 

models (Gutmann & Small, 2005; Weihermüller et al., 2021). It is shown that van Genuchten 

model parameters, which are often estimated using PTFs, are the primary source of uncertainty 

in coupled 3D land-surface and hydrological models (Shi et al., 2014) To address this issue, it 
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is essential to estimate the water-retention-curve parameters locally and optimize them through 

data assimilation, as confirmed by observations (Shi et al., 2015). Moreover, it is crucial to select 

PTFs carefully when parametrizing hydrological models and only use PTFs that can result in 

plausible model predictions (Casper et al., 2019; Mohajerani et al., 2021; Mohajerani et al., 

2023). By doing so, the uncertainty linked to PTFs can be minimized, leading to more accurate 

and reliable predictions in water balance models.  

The WaSiM model (Version 10.06.00, 2021) utilizes Richards equation to simulate the water 

fluxes in unsaturated soils In a one-dimensional vertical direction. The equation is solved using 

a vertical finite difference (FD) scheme. The soil is represented as a series of layered columns, 

where each column is characterized by its distinct properties and thickness for each (Schulla & 

Jasper, 2012). These characteristics include the water retention curve, which is described using 

van Genuchten parameters, as well as the saturated hydraulic conductivity. The discharge mod-

eled by the WaSiM-ETH is composed of three components, representing different response 

types: surface flow, interflow, and base flow, with varying speeds. This allows for an analysis 

of the runoff behavior of the catchment, with the ability to observe the effects of changes in soil 

hydraulic properties resulting from different soil parametrizations (utilizing various PTFs). The 

model incorporates the spatial variability of soil properties and land use, and as a result, it cap-

tures the spatial structure and heterogeneity of flow processes occurring at the interface between 

the soil and the atmosphere. In addition, the model accounts for the dynamic changes in water 

flow within the soil in response to the dynamic changes in boundary conditions. The infiltration 

is considered the upper boundary condition, which is estimated using the extended approach 

after Peschke (1977, 1987) following the Green and Ampt (1911) method. The lower boundary 

condition is the depth of the groundwater layer, which remains constant for a particular time 

step but varies over time due to groundwater flow, recharge, or capillary rise. The discretized 

Richards equation can be expressed as: 

 
ΔΘ
Δ𝑞𝑞

=
Δ𝑞𝑞
Δ𝑧𝑧

= 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜  

 

Where,Qin is inflow into the actual soil layer [m/s], and Qout is outflow from the actual soil layer 

(including interflow and artificial drainage) [m/s]. 
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The model considers the hydraulic properties' dependencies on soil water content discretely. 

As a result, the flux q between the upper and lower layers (indexed as u and l, respectively) is 

expressed as: 

𝑞𝑞 = 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 .
ℎℎ(Θ𝑢𝑢) − ℎℎ(Θ𝑙𝑙)

0.5. (𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑙𝑙)
 

 

Where, q is flux between two discrete layers [m/s], keff is effective hydraulic conductivity [m/s], 

and hh is hydraulic head (dependent on the water content and given as sum of suction), ψ(Θ) 

describes suction at different soil water contents, hgeo is geodetic altitude [m], and d is thickness 

of the layers under consideration [m]. 
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2.3  Model evaluation and its limitation 

 
The purpose of hydrological models is to comprehend processes, evaluate hypotheses, and aid 

in decision-making. These models utilize diverse levels of complexity to solve empirical and 

governing equations, depending on how the governing equations are approached across various 

spatial configurations, such as lumped (Bergström, 1976), semi-distributed (Ajami et al., 2004), 

or fully distributed areas (Bitew & Gebremichael, 2011), and the degree of interrelation between 

variables and processes. Despite advancements in modeling to account for various complexities 

and processes, the modelling process still necessitates the empirical idealization and simplifica-

tion of catchments. As a result, the simplified representations of real hydrological processes in 

catchment used in the models are subject to uncertainties in the resulting predictions. Uncertain-

ties in hydrological models might come from parameters, model structure, observation, and in-

put data (Jajarmizadeh et al., 2012; Pandi et al., 2021; Moges et al., 2021). Moreover, the process 

of simplification and separation of precipitation can introduce inaccuracies arising from insuf-

ficient understanding of the interrelationships among all the components in a catchment (Nash 

& Sutcliffe, 1970). In another word, every hydrological model is subject to certain limitations, 

leading to disparities between observed (natural system) and simulated data. Hence, the primary 

objective in hydrological modelling is to devise an assessment plan that yields simulations of 

the rainfall-runoff relationship that closely approximates reality (Krause et al., 2005). 

As stated by the US EPA (2002), models must exhibit scientific soundness, robustness, and 

justifiability to produce satisfactory outcomes. To achieve this, the models usually need to un-

dergo sensitivity analysis, calibration, and validation. Sensitivity analysis involves assessing the 

model output's responsiveness to its input and identifying the critical model parameters in the 

process. Calibration involves determining the identified parameters by comparing observed and 

predicted discharges. Finally, validation verifies that the parameters and the model, in general, 

yield adequately accurate predictions. The assessment of the disparities between observations 

and simulations serves as the foundation for evaluating the model's performance.  
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Mathematical criteria are frequently employed as measures of model efficiency, and they typi-

cally calculate the disparity between simulated and measured stream flow values over a speci-

fied time interval. The various efficiency measures can be broadly classified into three major 

types: standard regression criteria (e.g., slope and y-intercept, coefficient of determination and 

Pearson correlation coefficient); dimensionless criteria (e.g., Index of Agreement, Nash-Sut-

cliffe efficiency-NSE, NSE with logarithmic, Kling-Gupta efficiency-KGE), and error index 

criteria (Percent Bias-PBIAS, RMSE-observations and Standard deviation ratio) (Nash & Sut-

cliffe, 1970; Legates & McCabe, 1999; Krause et al., 2005; Moriasi et al., 2007; Gupta et al, 

2009; Crochemore, 2011). The objective of performance criteria is not solely to measure the 

degree of conformity but also to utilize the insights gained to enhance the models (Krause et al., 

2005). The process of evaluating a model is still quite intricate and closely tied to the specific 

goals of the modeling task. 

The way a hydrologist views a particular hydrological system has a significant impact on the 

extent of conceptualization that needs to be converted into the model's structure. The signifi-

cance of various system response modes that need to be simulated by the model, on the other 

hand, is dependent on the modeling objective. Therefore, determining the appropriate level of 

model complexity necessitates a thoughtful evaluation of the crucial processes integrated into 

the model structure and the necessary level of predictive precision (Waseem et al., 2017). Be-

sides reducing model complexity, an alternative strategy for mitigating parameter uncertainty is 

to enhance the quantity of data accessible to identify the model parameters. This can be accom-

plished by incorporating supplementary output variables and measurements to restrict the pa-

rameter range. Nevertheless, the effectiveness of the additional data may rely on the suitability 

of the examined model structure. Another strategy can involve maximizing the utilization of 

existing information. Hence, the objective is to strike a balance between the model's perfor-

mance and the ability to identify its parameters.  

Advancements in data acquisition, such as earth observation techniques (e.g. McCabe et al., 

2017), novel geophysical techniques (e.g. Auken et al., 2017), and citizen data collection (e.g., 

Le Coz et al., 2016), have ushered in a new era in hydrological modeling. These breakthroughs 

have made an unprecedented amount and variety of data easily accessible, coupled with the 

continually increasing computing power. As a result, there is an opportunity to leverage this 

hydrological data and process knowledge to advance hydrological modeling (e.g., Kollet et al., 
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2010). It is yet to be determined how much of this potential can be fully utilized. The conver-

gence of enhanced computer power, together with our advanced comprehension of hydrological 

processes, and greater accessibility to spatial data has facilitated the creation of progressively 

complex hydrological models with increasingly refined spatial resolutions (e.g., Liu & Gupta, 

2007). However, it is crucial to acknowledge that utilizing sophisticated, high-resolution models 

does not necessarily ensure more precise simulations, if the internal process representation or 

parameterization is inadequate and if the internal processes themselves cannot be accurately 

represented (e.g., Refsgaard et al., 2022). For example, the availability of remotely sensed high-

resolution spatial data has greatly improved in recent years. This has allowed researchers to test 

the ability of spatially distributed models to replicate observed spatial patterns. Nevertheless, it 

has been revealed through such tests that while these models may perform well in simulating 

observations of streamflow and groundwater heads, they often struggle to accurately simulate 

spatial patterns in land surface temperature and evapotranspiration (e.g., Demirel et al., 2018; 

Stisen et al., 2018).  

Proper evaluation of hydrological models must consider uncertainties in model parameters, 

conceptualization, and catchment-specific information. Factors such as over-parameterization 

that might result in equifinality (Beven, 2006); spatial scale mismatch (Blöschl & Sivapalan, 

1995; Beven, 1995); lack of high-quality data, and inadequate calibration can limit the reliability 

of complex models. Hence, thorough evaluation of model simulations and associated uncertain-

ties is crucial for enhancing our understanding of hydrological processes and establishing the 

credibility of hydrological model simulations (Beven, 1989; Refsgaard, 1996; Jakeman et al., 

2006; Refsgaard et al., 2007). However, many of hydrological process understanding has not 

usually been utilized in state-of-the-art catchment modelling and in evaluation strategies. When 

evaluating the reliability of models, it's important to consider how much catchment data and 

observations were used in the modeling process. This can be done by using a single objective 

function (usually discharge) or by performing multiple evaluations with various parameter sets 

and different data types. For instance, multiple parameter sets can be estimated by calibrating 

against both discharge and soil moisture data or by considering other water balance components 

such as evapotranspiration (e.g., Refsgaard et al., 2022; Acevedo et al., 2023; Mohajerani et al., 

2023; Lotz et al., 2023).  

Multiple studies have highlighted the constrained information provided by discharge when it 

comes to understanding the underlying processes and spatial variability within a catchment (e.g., 
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Stisen et al., 2011; Pokhrel & Gupta, 2011). Discharge represents an aggregated measure of 

catchment response and has limitations in its ability to reveal detailed spatial variations within 

the catchment. This is due to the general lack of suitable model evaluation frameworks that are 

oriented towards spatial patterns. As a result, the evaluation of hydrological models is hampered 

by a lack of attention to spatial patterns, which can negatively impact the accuracy and reliability 

of spatial predictions. Furthermore, the development and application of distributed models, is 

based on the rationale of capturing spatial heterogeneity and variability. Therefore, it goes 

against this rationale to neglect the importance of spatial patterns in the evaluation of hydrolog-

ical models (Freeze & Harlan, 1969; Refsgaard, 1997). For instance, in a case study conducted 

by Refsgaard et al. (2022), modelling was considered at two resolutions of 100 m and 500m. it 

was clearly observed that grids exhibiting a water level near the surface displayed cooler Land 

Surface Temperature (LST), while warmer grids were associated with a deeper water level. This 

correlation was only evident in the model with 100 m resolution, as the 500 m model failed to 

capture this relationship. Therefore, such local-scale differences were not captured by the ob-

jective functions used for calibration or by comparing patterns at a larger scale. It is while these 

local-scale differences will have significant impacts on interactions between groundwater and 

surface water, as well as flow paths. After a thorough evaluation using high-resolution surface 

wetness proxy data (LST) from Landsat, they considered the 100 m model and the resulting 

understanding of hydrological processes to be more reliable. 

Patterns in general can arise due to the inherent properties of a system that lead to self-or-

ganization, as well as the emergence of new properties resulting from changes in scale and the 

presence of organizational controls within the system. These patterns can be visualized and de-

scribed using a variety of tools, including (1) images and maps, (2) concepts, parameters, and 

statistics suitable for describing spatially distributed, temporal, and spatiotemporal data, and (3) 

models that can be applied to such data. When patterns are used to predict a system's behavior, 

it is important to quantify and characterize both the patterns themselves and the system's behav-

ior. Identifying patterns is a crucial aspect of machine learning (Bishop, 2006). With the advent 

of the big data era and our ability to observe the Earth's surface and ecosystems on a larger scale, 

and also inexpensive in-situ measurement techniques, the importance of studying patterns has 

grown. The ability to generalize this data extensively is dependent on the ability to recognize 

patterns within it. Soil-water-vegetation-atmosphere systems display a diverse range of patterns 

that tend to recur and appear regularly in both space and time, and at varying scales (Vereecken 
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et al., 2016). These patterns present new opportunities to utilize the information they contain to 

enhance hydrological models and gain a deeper understanding of the intricate feedback loops 

between the different components of the hydrological system. The theoretical framework and 

terminology for the concept of spatial pattern comparisons in catchment hydrology was first 

established by Grayson and Blöschl (2000). Over the past decade, there has been a growing 

interest in emphasizing spatial patterns in hydrological modeling (Wealands et al., 2005; Grabs 

et al., 2009; Ryo et al., 2015; Mendiguren et al., 2017; Koch et al., 2018; Dembélé et al., 2020; 

Gaur et al., 2022). Therefore, comparing observed and simulated spatial patterns has become an 

integral component of current best practices in evaluating distributed models, while it is not an 

entirely new concept in the field of hydrology. This is because, instead of simply answering 

questions about the quantity and quality of water in a stream, it has become more crucial to 

determine where the water originates from and where to allocate limited financial resources for 

improvement. As a result, modeling spatial patterns has naturally become a more prominent 

focus. However, to conduct accurate evaluations of simulated spatial patterns, reliable observa-

tions are essential (Mendiguren et al., 2017).  

Models that are fully-distributed have the ability to predict spatial patterns with varying lev-

els of complexity. These patterns are influenced by the spatial variability of numerous parame-

ters and forcing data that are used as input for the model. Essentially, any input that has a spatial 

dimension can potentially impact the simulated spatial patterns in the modeling outputs. Several 

studies, including those conducted by Chaney et al. (2015), Rosenbaum et al. (2012), Western 

et al. (2004), and Vereecken et al. (2007), have examined the quantification of drivers behind 

the spatial heterogeneity of simulated soil moisture patterns. For instance, Chaney et al. (2015) 

discovered a complex interplay among four drivers: soil heterogeneity, topography, land cover, 

and precipitation, showing distinct seasonality.  

The ability to clearly differentiate between similar and dissimilar patterns is considered a 

crucial characteristic of a reliable performance metric, and as such, the various metrics differ in 

their capacity to achieve this with certainty. Over the past few years, there have been numerous 

studies suggesting spatial performance metrics that allow for a meaningful comparison of hy-

drological variables' patterns, surpassing the limitations of basic cell-to-cell comparisons (e.g., 

Wealands et al., 2005; Chiles & Delfiner, 2012; Renard & Allard, 2013; Wolff et al., 2014; 

Koch et al., 2016; Vereecken et al., 2016; Koch et al., 2018; Dembélé  et al., 2020; Gaur et al., 

2022). However, for instance, in a citizen science project conducted by Koch and Stisen (2017), 
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they utilized human perception to evaluate the similarity and dissimilarity of simulated spatial 

patterns in various scenarios of a hydrological catchment model. Their aim was to assess 

whether advanced statistical performance metrics could accurately replicate human perception 

in distinguishing between similarity and dissimilarity. The findings indicated that while more 

complex metrics did not necessarily excel in emulating human perception, they did offer addi-

tional valuable information for model diagnostics. 

Overall, accurate hydrological modeling outputs rely on incorporating additional observa-

tions and reproducing spatial patterns of various hydrological variables beyond streamflow, both 

of which are critical components. The scientific community has, in fact, been advocating for the 

incorporation of spatial data in the evaluation of distributed hydrological models for a consid-

erable period of time. For instance, remotely sensed datasets possess the capability to enhance 

models, either through data assimilation (Leroux et al., 2016; Tangdamrongsub et al., 2017; 

Tian et al., 2017) or model evaluation (Rientjes et al., 2013; Li et al., 2018; Bai et al., 2018). 

When utilizing remote sensing data for parameter estimation through the spatial pattern evalu-

ation process, the current methods involve either using solely spatial patterns of remote sensed 

variables or a combination of remote sensing data and in-situ estimations, often streamflow data 

(Immerzeel & Droogers, 2008; Rajib et al., 2018; Li et al., 2018; Wambura et al., 2018). Hence, 

recent literatures, such as the study by Stisen et al. (2018), have increasingly explored the sim-

ultaneous assessment of hydrological models using streamflow and diverse combinations of 

complementary data that incorporate spatial patterns of various hydrological processes, such as 

dominant runoff generation, soil moisture content, and evapotranspiration. For example, Dem-

bélé et al. (2020) propose a multivariate calibration strategy to test a hydrological model's ability 

to reproduce spatial patterns of evaporation, soil moisture, terrestrial water storage, and stream-

flow observations. The aim is to improve the model's performance by simultaneously consider-

ing multiple variables and capturing relative spatial differences within the hydrological system. 

In other words, the incorporation of such complementary data has the potential to significantly 

narrow down the range of feasible models and parameters’ space, resulting in more realistic 

internal model dynamics and associated hydrological characteristics (Shafii & Tolson, 2015; 

Clark et al., 2017). Ultimately, this approach can improve the overall representation of catch-

ment functioning. Consequently, it is essential to evaluate the model's performance in capturing 

different aspects of the water cycle within a catchment, particularly the dynamics of their spatial 

patterns. Therefore, when determining the relevant parameters in the model, it is important to 
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consider, for example, if we obtain realistic results with regards to spatial patterns of dominant 

runoff processes, soil hydraulic properties, and evapotranspiration. 
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3 Conclusion and Outlook 
 
The quote presented below was concluded by hydrology pioneers Wagener et al. (2001), 22 years ago: 

“A framework is required that balances the level of model complexity supported by the available data 

with the level of performance suitable for the desired application. Tools are needed that make optimal 

use of the information available in the data to identify model structure and parameters, and that allow a 

detailed analysis of model behaviour.” 

Following that, Gupta et al. (2006) introduced a hydrological model evaluation approach with the 

objective of obtaining a model they referred to as a "behavioral" model, characterized by the following 

attributes: 

“(i) the input-state-output behavior of the model is consistent with the measurements of catchment be-

havior, (ii) the model predictions are accurate (i.e. they have negligible bias) and precise (i.e. the pre-

diction uncertainty is relatively small), and (iii) the model structure and behavior are consistent with 

current hydrologic understanding of reality.” 

In light of the preceding insights, Wagener et al. (2010) further emphasized the necessity for 

a paradigm shift in hydrology, which means a fundamental change in how we approach the 

study of water systems. Traditionally, hydrologists have relied on observations and data from 

the past to make predictions about how water systems behave. However, this approach may no 

longer be sufficient in situations where there are significant changes in the physical character-

istics of the system or when the system shows behavior that goes beyond what has been previ-

ously observed. To achieve this paradigm shift, hydrologists need to adopt two important roles: 

synthesists and analysts. As synthesists, they need to observe and analyze the hydrological 

system as a whole, considering all its interconnected components and their interactions. This 

holistic approach allows them to understand the system's behavior as an integrated entity, rather 

than focusing solely on individual elements. For example, when studying a river basin, a hy-

drologist might consider the rainfall patterns, the runoff processes, the water stored in soils and 

lakes, and the movement of groundwater. They would examine how these different components 

interact and influence each other, considering factors like topography, climate, land use, and 
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geological conditions. By analyzing the system as a whole, they gain a better understanding of 

its behavior and can make predictions beyond what has been previously observed. On the other 

hand, hydrologists also need to be analysts, meaning they should understand the functioning of 

individual components of the system in detail. This involves studying the properties and pro-

cesses of individual elements, such as rainfall intensity, river flow dynamics, groundwater re-

charge rates, soil moisture distribution, dominant runoff processes, and evaporation rates. By 

comprehending these individual aspects, they can accurately assess how changes in specific 

components may impact the overall behavior of the hydrological system. For instance, an ana-

lyst might study how changes in land use, such as deforestation or urbanization, affect the rain-

fall patterns in a region. By understanding the relationship between land cover and rainfall, they 

can anticipate potential changes in the water system's behavior due to altered conditions. By 

combining these roles, hydrologists can effectively adapt to new challenges and uncertainties. 

For example, in the face of climate change, hydrologists need to predict how changes in tem-

perature and precipitation patterns will affect water resources. By being synthesists, they can 

understand the broader impacts on the entire water system, including changes in river flows and 

groundwater levels. At the same time, by being analysts, they can study the specific mechanisms 

by which climate change alters evaporation rates, soil moisture, runoff generation processes, or 

alters the timing and intensity of storms. 

The motivation behind the PhD thesis at hand is therefore encapsulated by the findings con-

tained within the above mentioned statements. These findings emphasize the need to confront 

the challenges and act as a catalyst for essential enhancements in hydrological model evaluation. 

However, to do so, it is crucial to actively engage in a long-term initiative that adopts a model 

parameterization approach aligned with local topography, soil, and geology. As a result, by in-

corporating these site-specific characteristics into the model parameterization process and aim-

ing to achieve a “behavioral model”, this thesis intends to contribute to improvement of hydro-

logical modeling and provide valuable insights for robust evaluation of simulated hydrological 

processes. 

The studies contained in this thesis question the conventional approach of model performance 

evaluation with respect to discharge data alone at the outlet as well as the common practice of 

relying on default parameterization, i.e., often using Pedo-Transfer-Functions (PTFs) without 

careful consideration of their suitability for the study area and their implications for the other 



 
55 

 

simulated processes. In other words, the study strikes a proper balance between the identifiabil-

ity of parameters and the model's capacity to accurately depict the observed system response. 

By setting up a 1-D water balance model, we tried to reproduce soil water flux dynamics and 

physiological control of water loss (plant transpiration) for a beech stand in Western Luxem-

bourg. It is found that achieving consistency between model simulations and measurements of 

transpiration and soil moisture does not necessarily guarantee accurate estimation of runoff gen-

eration or total water balance. Therefore, to identify parameter sets that produce realistic out-

puts, it was necessary to set up a multi-criteria evaluation scheme that integrates various sources 

of information including expert knowledge of local controls and dominant hydrological pro-

cesses in the region. As a result, even slight variations in parameterization, e.g., saturated water 

content and water retention curve, could lead to implausible model behavior (e.g., in terms of 

dominant runoff generation processes in the area). Consequently, in order to develop a method-

ology for quantifying the impact of diverse soil parameterization methods (e.g., utilizing various 

PTFs) on water distribution within the hydrologic system, the model was established at the 

catchment scale. It was discovered that the spatial variability of soil hydraulic properties, influ-

enced by different PTFs, significantly affects the water balance and leads to a wide range of 

hydrological model behaviors. Surprisingly, even with variations in the runoff components gen-

erated by different PTFs, the resulting discharge hydrograph could still be adequately depicted. 

In order to account for the spatial variability of soil hydraulic properties and align the parame-

terization of soil towards capturing realistic spatial patterns of hydrological processes, supple-

mentary information is necessary. This additional information may involve mapping dominant 

runoff processes or deriving patterns of soil moisture and evapotranspiration through remote 

sensing methods. 

Taking one step further, spatial pattern information from a regional soil hydrological map 

was integrated into a catchment model to improve the representation of dominant runoff pro-

cesses. The map contents were translated and reclassified into dominant runoff process classes 

consistent with the modeling approach. Various PTFs were also incorporated into the parame-

terization scheme to convert soil properties into model parameters. By analyzing the model's 

response to synthetic rainfall events and incorporating multiple PTFs, the ability of the models 

to reproduce the spatial patterns of dominant runoff processes was assessed. In this phase of the 

study, a spatial pattern-oriented evaluation of dominant runoff processes was conducted using a 

bias-insensitive and multicomponent metric. The identification of dominant runoff processes 
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was based on specific rainfall event types and location-specific soil and topographic character-

istics through the use of different PTFs. As a result, distinct model reactions in reproducing the 

patterns of dominant runoff processes are observed, reflecting the variation in topographic relief 

and geomorphologic characteristics across different areas, such as uplands, hill slopes, and low-

lying areas in the alluvial plain. For instance, areas with steeper slopes and fine-grained soils 

exhibit higher responsiveness to intense rainfall events of shorter durations, resulting in faster 

runoff processes (e.g., saturated over land flow). Conversely, soil water stored in steep hillslope 

zones play a significant role in interflow generation. Constant saturation within the riparian zone 

gives rise to distinct source areas marked by groundwater influences. Spatial patterns in such 

cases are often unaffected by climate forcing, as it is considered constant and does not leave a 

noticeable impact. 

The integration of spatial information (e.g., from digital soil hydrological maps) provides 

insights into the distribution of heterogeneities that influence rapid runoff generation during wet 

conditions and water retention during dry conditions. Notably, in smaller catchments with com-

plex topography, the choice of PTFs becomes critical as it has a substantial impact on hydro-

logical fluxes within the drainage basin (e.g., Paschalis et al., 2022). This phase of the study 

emphasizes the improvements achieved in modeling hydrological processes by incorporating 

spatial patterns and addressing uncertainties related to PTFs. It showcases the progress made in 

accurately representing the complexities of hydrological systems. 

Building upon the insights of our PhD research, our latest publication (as part of the 

MESOHYD project) introduces a significant enhancement through the calibration of land-use-

dependent evapotranspiration parameters. This approach leverages MODIS evaporation time 

series data to refine the simulation of actual evapotranspiration (ETa) patterns across mesoscale 

catchments. By integrating land-use-specific calibration and validating against LANDSAT ETa 

data, we demonstrate a marked improvement in model accuracy, specifically in representing 

spatial ETa patterns. This publication not only complements the thesis by providing a practical 

example of addressing model parameterization challenges but also underscores the integration 

of cutting-edge remote sensing data to refine the calibration of vegetation parameters—a meth-

odology that profoundly aligns with the thesis's broader ambition of enhancing hydrological 

models' fidelity through site-specific characterizations and nuanced multi-criteria evaluations 

(Casper et al., 2023). 
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The complexity of process dependency in spatial patterns extends across a broad range of 

spatial and temporal scales. It encompasses the intricate interactions and relationships that exist 

within hydrological systems at different scales. As a result, various types of patterns emerge at 

different scales, each associated with distinct hydrological processes. Spatial patterns in a meso-

scale domain, spanning a range of 500 meters to a few kilometers, can be effectively observed 

using remote sensing. However, valuable insights into spatial patterns can also be derived from 

well-established regional digital soil hydrologic mapping or soil moisture networks in the field. 

The choice of modeling scale is typically constrained by the available data for informing model 

parameters, as well as the computational resources at hand. Nevertheless, it is expected that 

future advancements will allow for even finer modeling scales, thereby reshaping our under-

standing of the processes across different scales. Moreover, the development of the next gener-

ation of georeferenced and local-attribute-based PTFs is envisioned to be advanced, and there-

fore, enhance soil hydrologic process-related information by incorporating a multidimensional 

framework. The richness of information and advanced analytical methods will then surpass the 

current approach of generic-attribute-based PTFs. This provision will then foster a continuous 

process of improvement and enhance understanding within the field of hydrology (e.g., 

Arrouays et al., 2014; Vereecken et al., 2022). Furthermore, it is imperative that new evaluation 

approaches encompass calibration methodologies to achieve improved simulation of spatial pat-

terns and multiple hydrological variables (e.g., Stisen et al., 2023; Refsgaard et al., 2022). 

Potential future works can expand the current study by incorporating calibration strategies 

that utilize a spatial pattern-oriented objective function for improved estimation of evapotran-

spiration (ET) patterns, by integrating remotely sensed spatial patterns 

(e.g., Amani & Shafizadeh-Moghadam, 2023). It is particularly important at the catchment scale 

where land cover and soil characteristics play a significant role in driving spatial variability 

(e.g., Koch et al., 2022). Furthermore, the development of methods that replace fixed vegetation 

parameters (such as leaf area index (LAI), fractional vegetation cover (FVC), vegetation height, 

canopy resistance, root distribution, and phenological information) in hydrological models with 

remotely sensed data can enhance the estimation of ET. Integrating remotely sensed data 

through the parameter regionalization scheme allows for better consideration of the spatial het-

erogeneity of vegetation, resulting in more precise ET estimations (e.g., Soltani et al., 2021). 

Furthermore, it is important to evaluate the influence of soil parameterization using different 
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PTFs on the spatial patterns of simulated ET. Assessing the impact of different soil parameteri-

zation methods on ET estimation will provide valuable insights into the overall reliability and 

performance of the modeling approach. To summarize, future work can focus on implementing 

calibration strategies that target ET spatial patterns, incorporating remotely sensed data for veg-

etation parameterization and spatial pattern-oriented evaluation, and assessing the influence of 

different soil parameterizations on the spatial patterns of simulated ET. 
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Abstract: Evapotranspiration is often estimated by numerical simulation. However, to produce accurate simulations, 
these models usually require on-site measurements for parameterization or calibration. We have to make sure that the 
model realistically reproduces both, the temporal patterns of soil moisture and evapotranspiration. In this study, we 
combine three sources of information: (i) measurements of sap velocities; (ii) soil moisture; and (iii) expert knowledge 
on local runoff generation and water balance to define constraints for a “behavioral” forest stand water balance model. 
Aiming for a behavioral model, we adjusted soil moisture at saturation, bulk resistance parameters and the parameters of 
the water retention curve (WRC). We found that the shape of the WRC influences substantially the behavior of the 
simulation model. Here, only one model realization could be referred to as “behavioral”. All other realizations failed for 
a least one of our evaluation criteria: Not only transpiration and soil moisture are simulated consistently with our 
observations, but also total water balance and runoff generation processes. The introduction of a multi-criteria evaluation 
scheme for the detection of unrealistic outputs made it possible to identify a well performing parameter set. Our findings 
indicate that measurement of different fluxes and state variables instead of just one and expert knowledge concerning 
runoff generation facilitate the parameterization of a hydrological model. 
 
Keywords: Forest evapotranspiration; Water balance simulation; Soil parameterization; Behavioral model. 
 

INTRODUCTION 
 
Extraction of water from the soil by the root system and re-

turn of water to the atmosphere as plant transpiration are im-
portant processes in the global circulation of water (Kramer and 
Boyer, 1995). Quantitative means of describing transpiration 
are essential for an improved understanding of water and ener-
gy exchange processes between the land surface and the atmos-
phere. Transpiration is controlled by a combination of biotic 
factors (e.g. stomatal functions; leaf area; root depth and distri-
bution, and hydraulic characteristics) and abiotic factors (e.g. 
soil water availability; climate, and depth to groundwater) 
(Durigon et al., 2016).  

There is a variety of techniques to measure transpiration at 
different scales such as direct measurements of sap flow on 
individual trees (Lu et al., 2004), eddy flux gradient analyses 
(Saugier et al., 1997), or gauged watersheds (Wilson et al., 
2001). Alternatively, simulation models are used to estimate 
transpiration. However, to produce accurate simulations, these 
usually require on-site parameterization or calibration (Durigon 
et al., 2016; Vose et al., 2003). Recently, a simple approach 
was developed by Ayyoub et al (2017) relating the normalized 
daily sap velocities and the daily reference evapotranspiration 
(ET0). This method used both, FAO-Penman-Monteith (FAO-
PM) method and Hargreaves-Samani (HARG) method to esti-
mate ET0. The FAO-PM method produced the highest correla-
tions to daily sap velocities (Ayyoub et al., 2017). 

System state (“soil moisture”) and actual evapotranspiration 
are known to be highly correlated. Therefore, all water balance 
models directly couple these two components. Wrong estimates 
of temporal or spatial patterns of soil moisture result in errone-
ous temporal or spatial patterns of transpiration (Casper and 
Vohland, 2008; Koch et al., 2017). Therefore, soil parameteri-

zation, and especially the representation of the Water Retention 
Curve - as one of the most important soil-physical characteris-
tics - strongly influence the simulation of evapotranspiration. A 
similar effect can be observed when canopy resistances are 
wrongly estimated (Bie et al., 2015). In order to find an appro-
priate model parametrization, we have to verify that the model 
realistically reproduces both, the temporal patterns of soil mois-
ture and evapotranspiration. This has been done in a study 
carried out by Holst et al. (2010) where the water balance of two 
beech stands in Southwest Germany was investigated using two 
different forest hydrological models (DNDC and BROOK90). 
They demonstrated that both models were able to reproduce the 
observed dynamics of the soil water content in the uppermost 
30 cm and the transpiration estimates from sap flow measure-
ments (Holst et al., 2010). 

To analyze different assumptions on catchment behavior and 
hydrological processes, it is necessary to evaluate the model 
performance with respect to multiple indicators that evaluate 
the contribution of different sources of data (Gupta et al., 
1998). The value of these additional data sources has been 
demonstrated by Fenicia et al. (2008a). They evaluated the 
accuracy of a hydrological simulation with respect to the ob-
served discharge, groundwater level dynamics, and isotope 
signatures. If appropriate data is lacking, incorporation of ex-
pert knowledge (as an alternative source of information) into 
hydrological modeling and water management issues becomes 
more important (Bromley et al., 2005; Cash et al., 2003; Mo-
hajerani et al., 2017). As recent studies suggest, use of expert 
knowledge in choosing parameter sets and introducing con-
straints by forcing the model to reproduce the processes ob-
served in the real system, can also improve the model perfor-
mance even without traditional calibration (Bahremand, 2016; 
Gharari et al., 2014; Hrachowitz et al., 2014). For instance, 
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having expert knowledge on local runoff generation processes, 
as a potential source of information in every hydrologic unit, 
can considerably improve hydrological simulations (Antonetti 
and Zappa, 2018; Casper et al., 2015; Franks et al., 1998; 
Seibert and McDonnell, 2002). Modelers need to consider a 
proper balance between parameter identifiability and the mod-
el's ability to precisely represent the observed system response. 
This has prompted the development of alternative approaches to 
hydrological modeling including the dominant process concept 
(Fenicia et al., 2008b; Grayson and Blöschl, 2001; Wagener et 
al., 2001). The concept of dominant runoff generation process 
(DRGP) assumes that at a particular location one particular 
runoff generation mechanism is dominant (Blöschl, 2001). In 
most of the studies, however, modelers have evaluated the 
model performance with respect to discharge data alone. This 
may cloud model realism and hamper understanding of catch-
ment behavior. In fact, to accurately evaluate hydrological 
models, one has to carefully look at the hydrological responses 
that a model is challenged to represent rather than just being 
satisfied with a simple calibration. This interestingly takes us 
back to what Fenicia et al. (2008a) call the “Art of Modeling” 
and what Gupta et al. (2005) call the “Behavioral Model”. The 
former says: “…modeling is both an Art and a Science. The 
science lies in the use of fundamental scientific principles and 
the formality of analysis; the art accounts for professional expe-
rience, insight, creativity and intuition. The latter is particularly 
important in developing a perceptual and conceptual model that 
captures the main processes at play, while maintaining mini-
mum levels of complexity…”. A “behavioral”model has the 
following characteristics: (i) the input-state-output behavior of 
the model is consistent with the measurements, (ii) the model 
predictions are accurate (i.e. they have negligible bias) and  
(iii) model structure and behavior are consistent with our hy-
drologic understanding of reality (Fenicia et al., 2008a; Gupta 
et al., 2005). 

The present study combines three sources of information: 
measurements of sap velocities; soil moisture data; and expert 
knowledge of local runoff generation and water balance to 
define constraints for a “behavioral” forest stand water balance 
model. We evaluated the model by defining multi-criteria  
performance measures according to the constraints that data are 
supposed to impose on model behavior. In particular, we inves-
tigated the following research questions: (i) How can we  
combine different sources of information to modify the parame-
terization scheme in order to achieve a “behavioral model”?  
(ii) How does the implementation of expert knowledge of site-
specific dominant runoff generation processes affect the simu-
lation results? (iii) What are the impacts of model setup, i.e. the 
parameterization approach and the parameter allocation strategy 
on the simulated soil moisture and evapotranspiration dynamics 
(e.g. the effect of different parameterizations of the water reten-
tion curve of the soil)?  

To address the research questions listed above, we used a 
one-dimensional (1-D) hydrological model (WaSiM-ETH) to 
simulate the soil water content as well as the actual transpira-
tion at stand level. The basic motivation of 1-D models is often 
to simulate soil water content, and water balance components 
such as evapotranspiration, deep drainage and runoff. In the 1-
D models, no groundwater flow is simulated and the upper and 
lower limits are soil water content at field capacity and perma-
nent wilting point, and upper and lower loss of soil water is 
caused by evapotranspiration and deep percolation, respectively 
(Walker and Zhang, 2002). WaSiM-ETH was selected due to 
its highly differentiated 1-D model structure. The model repre-
sents all relevant hydrological processes at the point scale in a 

physically meaningful way (Schulla, 2017). As all measured 
data including soil moisture and sap velocity are point meas-
urements, setting up a “1-D model” is sufficient for our pur-
pose. A site in the sandstone region of western Luxembourg 
was used as a test case. On sandstone, we expect neither stream 
channels nor surface runoff due to the high hydraulic conduc-
tivities of the sandy soils. The headwaters start at springs on top 
of the less permeable marls underlying the sandstone. While 
this work is not going to provide new insights of the behavior 
of the study catchment, it arguably is going to contribute to 
understanding of the value of different sources of data and 
information for hydrological modeling. The test case is used as 
a “proof-of-concept” location to investigate how different pa-
rameterization with different content of information can affect 
the model behavior. Our investigation is subdivided into four 
scenarios, i.e. different soil parameterizations. For each scenar-
io the simulation results are evaluated by the model perfor-
mance criteria defined in the section 2.4. In scenario A, the soil 
parameterization is taken from Tepee et al. 2003. In the two 
scenarios B1 and B2, we parameterize the water retention curve 
with three different variations of the van Genuchten parameters 
according to (Sauer, 2007). In a last step (scenario C), we eval-
uate the model performance using the soil parameter set pro-
vided by Sprenger et al. (2016). All scenarios are summarized 
in Table 6. 

 
METHODS 
Site description 

 
The study area is the Huewelerbach, a sub-catchment (2.7 

km² in area, ranging from 280 to 400 m in elevation) of the 
Attert River basin located in the west of Luxembourg (for de-
tailed information see Martinez-Carreras et al. (2010)). The 
whole area is part of the "Catchments As Organized Systems" 
(CAOS) observatory investigating landscape-scale structures, 
patterns and interactions in hydrological processes for model 
development (Zehe et al., 2014). The catchment is mainly  
forested, but the alluvial section of the area is dominated by 
grassland. The mean annual precipitation of the area is approx-
imately 850 mm (Pfister et al., 2000). In terms of lithology, the  
Huewelerbach catchment consists of jurassic Luxembourg 
sandstone which is underlain by marls (Martínez-Carreras et al., 
2012, 2010). According to previous studies, the sandstone 
bedrock and the underlying marls produce a very stable base 
flow regime (Juilleret et al., 2012). Rainfall–runoff reaction is 
delayed on the deep sandy soils on hillslopes (deep percolation 
and subsurface flow). Siltation and compaction in the valley 
bottom may cause sporadic surface runoff (Sprenger et al., 2016). 
Measurements at sites Sa_G and Sa_K include meteorological 
variables such as air temperature, humidity and solar radiation 
and soil moisture at three depths in three different profiles. At the 
forested site Sa_G there are also measurements of sap velocity at 
4 trees, two of them European Beech (Fagus sylvatica L.) and 
two hornbeams (Carpinus betulus L.). Figure 1 shows the study 
area and the location of the selected sites. Dominant vegetation at 
site Sa_G is a relatively young beech forest with a basal area of 
16 m²/ha. Within the measurement plot we find 34 stems with a 
mean diameter of 19 cm (median: 14 cm). 

 
Hydrological model 

 
To simulate the actual evapotranspiration (ETa), we applied 

a hydrological model – WaSiM-ETH (Schulla, 1997). This 
model is a distributed, deterministic, mainly physical and grid-
based hydrological model running with variable time steps  
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Fig. 1. Location of the study area Huewelerbach catchment with 
the test sites Sa_G (forest) and Sa_K (grassland). 
 
(Schulla, 2017). The WaSiM-ETH model has performed well in 
sub-alpine and alpine catchments (Cullmann et al., 2006; Gurtz 
et al., 2003; Jasper, 2001; Jasper et al., 2002; Klok et al., 2001; 
Verbunt et al., 2003), also in middle-mountain (Bie et al., 2015; 
Grigoryan et al., 2010; Middelkoop et al., 2001), and lowland 
catchments (Elfert and Bormann, 2010). The model is docu-
mented in both English and German and can be used free of 
cost (http://www.wasim.ch). The model comprises different 
components (e.g. evapotranspiration model, soil model, snow 
model, glacier model, silting up, surface routing, groundwater 
model, discharge routing model, lake model etc.). In our case 
only the modules related to the soil model and evapotranspira-
tion were used and all other components were disregarded. 

 
Calculation of evapotranspiration  

 
There are three main steps to estimate the ETa (plant transpi-

ration as well as evaporation from the soil separately) in 
WaSiM-ETH. First, estimation of potential evapotranspiration 
(ETp) on the basis of the ground-measured meteorological data; 
second, simulation of soil water content in vertical direction via 
Richards equation (Richards, 1931). In the third step, the 
amount of ETa is simulated at every time step by reducing ETp 
according to the actual soil water content. 

There are four different methods available in WaSiM-ETH 
model to calculate the ETp rates: Penman-Monteith approach 
(Monteith, 1981; Monteith et al., 1965); Wendling (Wendling, 
1975); Haude (Haude, 1955) and Hamon (Federer and Lash, 
1978). In this study, we choose Penman-Monteith equation 
(Monteith et al., 1965) (see equation 1). It is the most widely 
used and recommended method for ETp estimation, first devel-
oped for agricultural contexts and later also applied to other 
land covers such as forests (Allen et al., 1998; Droogers and 
Allen, 2002). This method is based on simulated potential tran-
spiration and the available water content. In our case, actual 
plant transpiration is simulated in hourly time steps. However, 
the Penman-Monteith approach has some limitations in practi-
cal terms, as a large number of environmental variables are 
required to determine ETa. This is particularly challenging 
especially when there is a lack of appropriate atmospheric data 
(Allen et. al., 1998). 
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where λ is the latent vaporization heat, λ = (2500.8−2.372·T) kJ 
kg−1, with T is the temperature in °C; E is the latent heat flux in 
mm m−2 ≡ kg m−2; Δ is the tangent to the saturated vapor  
pressure curve in hPa K−1; Rn is the net radiation in Wh m−2 and 
G = 0.1·Rn is the soil heat flux in Wh m−2, the factor 3.6 is used 
to convert both fluxes from W h m−2 to kJ m−2; ρ is the density 
of dry air, ρ = p/(RL·T), at 0 °C and 1013.25 hPa, ρ = 1.29 
kg m−3; cp is the specific heat capacity of the dry air at constant 
pressure, cp = 1.005 kJ kg−1 K−1; es is the saturation vapor pres-
sure at temperature T, in hPa; e is the observed actual vapor 
pressure in hPa; ti is the number of seconds within a time step; 
γp is the psychrometric constant in hPa K−1; ra and rs are the 
bulk-aerodynamic resistance and the bulk-surface resistance in 
s m−1, respectively. 

 
Resistances for evapotranspiration  

 
The two resistance parameters in the Penman-Monteith 

equation: the bulk aerodynamic resistance ra and the bulk sur-
face resistance rs play an important role. However, rs (with 
diurnal and seasonal variations) is more important than ra in a 
forested area for ETa estimation (Beven, 1979). The bulk sur-
face resistance rs can be divided into two terms, the soil surface 
resistance rse for evaporation from bare soil; and the canopy 
surface resistance rsc describing the plant resistances in the 
transpiration process. There are default values of bulk surface 
resistance parameters in WaSiM-ETH. The maximum amount 
of canopy surface resistance rsc is in November to February, 
whereas in May to September, it reduces to its annual lowest 
level (Bie et al., 2015; Schulla, 2017). The soil surface re-
sistance rse remains constant for the entire year. Table 1 shows 
the standard values applied for surface resistances parameters in 
the WaSiM-ETH model (Schulla, 2017). 
 
Table 1. Canopy surface resistance rsc (s m−1) and soil surface 
resistance rse (s m−1). 
 

 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

rsc 100 100 95 75 65 65 65 65 65 85 100 100 

rse 230 230 230 230 230 230 230 230 230 230 230 230 

 
Simulation of soil water content  

 
For estimation of actual transpiration, WaSiM-ETH simu-

lates soil moisture in the root zone. The soil module in WaSiM-
ETH uses the van Genuchten method (Van Genuchten, 1980) 
for parameterization of the water retention curve to solve the 
Richard Equation. Water fluxes are simulated vertically in one 
dimension. Soil moisture in the root soil layer can potentially 
limit transpiration (Paço et al., 2014). In WaSiM-ETH, soil 
moisture simulation and ETa are linked, reduction of ETa 
would result in more water availability in the soil whereas 
increase of ETa will decrease the soil moisture. The Penman-
Monteith equation implicitly includes the influence of soil 
moisture on plant transpiration through parameter rsc (canopy 
surface resistance). Water content in soil profiles changes with 
time and values of the rsc also show diurnal and seasonal varia-
tions. In dry periods, rsc is very sensitive to soil moisture. When 
soil moisture content falls below a given point, the plants start 
decreasing transpiration to prevent internal water losses. Below 
that point, soil water availability becomes a key factor in ob-
taining ETa. ETa is gradually reduced until soil moisture reach-
es the wilting point at which water is no longer available for 
transpiration (Allen et al., 1998; Anderson et al., 2007).  
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Soil parameterization  
 
Certain predefined parameters of the WaSiM-ETH model 

are specific for the area where the model was developed. Thus, 
these parameters should be modified for each new study area. 
In the investigated area, the predominant soil type was de-
scribed as “Podzolic Cambisol”. The soil texture is loamy sand. 
It developed on a sandstone bedrock. The maximum rooting 
depth for the soil was observed at approx. 100 cm. The stone 
content is relatively low and the unaltered parent sandstone is 
usually not reached within the first 200 cm below soil surface 
(Sprenger et al., 2016). These quite sandy soils show a high 
permeability resulting in deep percolation as the dominant 
hydrological process.  

In the model, the van Genuchten parameters alpha (m–1) and 
n (–) are empirical constants that determine the shape of the 
WRC, and therefore influence substantially the behavior of the 
simulation model. We chose three different methods to deter-
mine the parameters of the WRC. 

 
(i) Baseline parameterization after Teepe et al. 2003 

We derived the corresponding van Genuchten parameters in 
the different soil horizons based on soil texture and bulk density 
classification obtained by Teepe et al. (2003). This formed our 
baseline parameterization of the soil in our study area (Table 2). 
 
Table 2. Baseline soil parameterization of the WaSiM-ETH soil 
model (based on Teepe et al. (2003)). 
 
PMacroThresh  20 
MacroCapacity  4 
CapacityRedu  0.5 
MacroDepth 1  
Horizon 1 2 3 4 5 6 
Name Ahe Ae Bvs Bsv IIBvs IIBvs 
Ksat 1.01E-4 7.95E-05 1.65E-04 1.29E-04 4.84E-05 4.84E-05 
K_recession 1 1 1 1 1 1 
Theta_sat 0.41 0.41 0.41 0.41 0.41 0.41 
Theta_res 0.11 0.05 0.06 0.06 0.13 0.13 
Alpha 0.3 0.3 0.26 0.41 0.2 0.2 
Par_n 1.17 1.17 1.203 1.191 1.191 1.191 
Par_tau 0.5 0.5 0.5 0.5 0.5 0.5 
Thickness 0.1 0.1 0.1 0.1 0.1 1 
Layers 1 1 1 3 4 7 

 

PMacroThresh (mm/h) is given by the precipitation threshold value and if is 
reached or exceeded, water can infiltrate into the macropore; MacroDepth 
(m) is depth of the macropores; MacroCapacity (mm/h) is capacity of the 
macropores; CapacityRedu (m–1) defines the reduction of the macropore 
capacity per meter soil depth; Ksat (m s–1) is saturated hydraulic conductivity 
that can be given for each soil layer; K_recession (–) is specified for each 
soil type describing the recession of the saturated conductivity with depth; 
theta_sat (m3/m3) is saturated water content; theta_res (–) is the residual 
water content which cannot be extracted by transpiration; alpha (m–1) and 
Par_n (–) are empirical van-Genuchten parameters; Par_tau is Mualem 
parameter; thickness (m) is the thickness of every single numerical layer in 
the given horizon, and layers defines the number of layers in the given 
horizon. 

 
(ii) Parameterization after Sauer (2007) 

Sauer (2007) proposes three different methods to derive the 
van-Genuchten parameters alpha and n: 

Variation 1: Fitting of WRC based on grain size fractions, 
bulk density and water content at pF 2.5 and 4.2 using the soft-
ware “Rosetta Lite” (Schaap et al., 2001). 

Variation 2: Fitting of WRC based on water content at pF 1.8, 
2.5, 4.2 and Theta_sat (= 41%) using the software “RETC” (Van 
Genuchten et al., 1991). 

Variation 3: Fitting of WRC based on water content at pF 1.8, 
2.5, 4.2 using the software “RETC” (Van Genuchten et al., 1991). 
See Table 3 for the three variations of parameters alpha and n.  

Table 3. Variations of van Genuchten parameters alpha (m–1) and n 
(dimensionless) in different soil horizons as re-parameterization of 
the baseline (Table 2). 
 
Horizon                 Ahe Ae Bvs Bsv IIBvs IIBvs 
Variation 1 alpha 0.83 0.83 0.58 0.58 0.88 1.83 

n 1.5653 1.5653 1.6416 1.6416 1.4974 1.4553 
Variation 2
 

alpha 2.86 2.86 3.97 3.97 4.96 1.83 
n 1.3656 1.3656 1.3965 1.3965 1.4598 1.4553 

Variation 3
 

alpha 25.73 25.73 35.87 35.87 29.34 1.83 
n 1.2138 1.2138 1.2506 1.2506 1.3009 1.4553 

 
(iii) Parameterization after Sprenger et al. (2016) 

Sprenger et al. (2016) list soil parameters for the same site 
(Sa_G). These parameters were obtained by fitting the simula-
tion results to observed soil moisture and pore water stable 
isotope data. In this case the soil profile was divided into three 
different horizons (Table 4).  
 
Table 4. Parameterization of WRC for the site Sa_G (Sprenger et 
al., 2016). 
 

Horizon Ah B II_B 
width 11 cm 110 cm > 80 cm 
theta_sat 0.546 0.319 0.470 
alpha 0.033 0.005 0.005 
n 1.228 1.194 1.194 
ksat 6.11E-04 1.53E-04 6.16E-04 

 
Data description  

 
To simulate transpiration and soil water content at the forest 

site Sa_G, climate data from the grassland site Sa_K were used 
as input for the model (Figure 1). These data better represent 
the atmospheric conditions above the trees which mainly drive 
the transpiration of the trees. In contrast, climate data from site 
Sa_G represents the conditions inside the forest and therefore 
this data cannot be used in our simulation study. To run the 
model, climate data between 2013 and 2016 is available. All 
subsequent model evaluation is done for the year 2015. The 
years 2013 and 2014 are used as spin-up period until stabiliza-
tion of the model. Climate data includes air temperature, rela-
tive humidity, wind speed, global radiation as five-minute 
measurements, and precipitation as hourly data. All data were 
checked for errors and the data gaps were filled. Soil moisture 
was measured in three profiles per site at 10 cm, 30 cm and 50 
cm depth. For our analyses we took the average across all 
depths and profiles estimating the average soil moisture in the 
top 60 cm for each site (Hassler et al., 2018). Precipitation data 
(station Useldange) are available as hourly values with annual 
mean value of 791 mm for the year 2015 (Agrarmeteorologie 
Luxemburg: /http://www.agrimeteo.lu). Therefore, all other 
climate variables and the soil moisture measurements are aver-
aged to hourly values.  

Based on the soil moisture and grain size distribution charac-
teristics of the study area, deep percolation is usually observed as 
dominant runoff generation process. Saturation excess flow or 
Hortonian overland flow can be excluded. 

For the year 2015, transpiration of the adult beech overstory 
was analyzed by determining sap velocities using the heat ratio 
method with a central heater needle and two thermistor needles 
located upstream and downstream of the heater (Köstner et al., 
1996). The sap velocity sensors, manufactured by East30Sensors 
in Washington, were installed at breast height on the north-facing 
side of the stem and protected with a reflective cover (Hassler et 
al., 2018). Sap velocities at each of those locations were calculat-
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ed from the temperatures measured at the corresponding thermis-
tor pairs according to Equation (2) (Campbell et al., 1991): 

 

( )
2  ln u

sap
w u d d

k TV
C r r T

 Δ=  + Δ 
 (2) 

 

where sapV  is the sap velocity (m s–1),  k is the thermal conduc-

tivity of the sapwood, set to 0.5 W m–1 K–1,  wC  is the specific 
heat of water (J m–3 K–1),  r  is the distance (m) from the heater 
needle to the sensor (in our case 6 mm) and TΔ  is the tempera-
ture difference (K) before heating and 60 seconds after the heat 
pulse. Subscripts u  and d  stand for location upstream and 
downstream of the heater. 

These values were corrected to account for wounding of the 
xylem tissue because of the drilling according to the numerical 
model solutions for the heat pulse velocity method as suggested 
by Burgess et al. (2001): 

 
2 3 c sap sap sapV bV cV dV= + +   (3) 

 
where Vc is the corrected sap velocity (m s–1) and b, c and d are 
correction coefficients; for the 2-mm-wounds we have set b = 
1.8558, c = –0.0018 s m–1, d = 0.0003 s2 m–2 (Burgess et al., 
2001). 

We selected a dataset of continuous sap velocity measure-
ments from four trees. Daily mean values of the sap velocities 
were used for the photosynthetically active period from May to 
October 2015 in which there was a complete time series of sap 
flow measurements available. Simulated daily sums of actual 
transpiration from the model were then compared with the 
average sap velocity of the four trees at the site for the same 
period (growing season). 

For better comparison sap velocities and simulated transpira-
tion were normalized. 

 
Evaluation of model behavior 

 
In our definition, a model is “behavioral”, when it is able to 

simulate runoff generation, water balance and the temporal 
pattern of soil moisture and evapotranspiration consistently 
with the reality. Therefore, we propose a scheme including four 
qualitative performance evaluation criteria to check the simu-
lated output. This scheme allows excluding simulations that are 
not realistic in terms of the four sources of information men-
tioned above (see Table 5). Sap velocity (SV) and soil moisture 
(SM) criteria define the necessity of temporal consistency be-
tween observed and simulated time series of transpiration and 
soil water content (by comparing stand transpiration simula-
tions with sap velocity measurements, and by comparing simu-
lated and observed temporal pattern of soil moisture, re- 
 

spectively). Therefore, all simulated time series that would be 
less consistent with the temporal variability of observations will 
be rejected. Since actual evapotranspiration is usually less than 
precipitation in the water budget (Hasenmueller and Criss, 2013), 
the RETa (“Realistic amount of actual evapotranspiration”) crite-
rion eliminates simulations in which the total amount of evapo-
transpiration exceeds 750 mm/year. According to our knowledge 
of local terrain properties and field surveys, RRGP (“Realistic 
Runoff Generation Process”) criterion was set to deep percolation 
as the most plausible hydrological process at our site.  

In addition to the criteria mentioned above, three widely 
used statistical goodness-of-fit measures complement the quali-
tative evaluation of model performance: Mean absolute error 
(MAE), correlation (R²) and Nash-Sutcliffe efficiency index 
(NSE) provide additional information on the goodness-of-fit 
between normalized simulated transpiration and normalized sap 
velocity (SV) and simulated and observed soil moisture (SM). 
MAE (Eq. 4) is a basic index (McKeen et al., 2005; Savage et 
al., 2013) derived from the mean error (difference) between 
simulated variable and observed variable with the same length 
and dimensions. This measure is recommended for model per-
formance evaluation (Fox, 1981). It is calculated as follows: 
 

1

1

N

i i
i

MAE N P O−

=
= −     (4) 

 
where N is the number of the cases, ; P is the 
simulation time series, and O is the observation time series. 

While MAE estimates the size of difference, the correlation 
index R² quantitatively estimates the agreement between obser-
vations and simulations. R2 can be expressed as the squared 
ratio between the covariance and the multiplied standard devia-
tions of the predicted and observed values. Higher R2 value 
indicates higher correlation (Legates and McCabe, 1999; Will-
mott, 1982). 

The Nash-Sutcliffe efficiency index (NSE), is dimensionless 
describing the relative error between simulations and measured 
data (Nash and Sutcliffe, 1970). It is calculated as: 
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 (5) 

 
where the NSE index demonstrates the normalized ratio of re-
sidual variance (noise) to the observation variance ranging 
between –∞ and 1. An NSE value is considered to be acceptable 
when it ranges between 0 and 1. Fewer errors between simula-
tions and observations always lead to a bigger NSE value and a 
better model performance. It is important to mention that a nega-
tive NSE value (NSE < 0) indicates a bad model performance that 
is even worse than the mean of the observed variable.  

 

Table 5. Model performance evaluation criteria. 
 

Evaluation element Description Evaluation criterion 

Sap velocity measurements 
(SV) 

Temporal pattern of sap velocities in terms of 
normalized values 

SV criterion : There should be similar variability and no high devia-
tions between the sap velocities and simulated transpiration amounts 

Soil moisture measurements 
(SM) 

Temporal pattern of soil moisture measure-
ments in terms of mean values (%) for upper-
most 50 cm of soil layer  

SM criterion: There should be similar variability and no high devia-
tions between the soil moisture measurements and simulated soil 
moisture amounts  

Realistic amount of actual 
evapotranspiration (RETa) 

Total amount of evapotranspiration as a com-
ponent of the water budget in terms of mm/year  

RETa criterion: Total evapotranspiration simulated should be be-
tween 450 to 750 mm/year 

Realistic runoff generation 
process (RRGP) 

Derived from runoff component of the water 
balance  

RRGP criterion: The simulated runoff generation process should be 
deep percolation and no direct runoff as saturation or Hortonian 
overland flow  

1, 2,3,i N= …
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Based on the four evaluation criteria from Table 5 and three 
performance measures, unrealistic simulations will be eliminat-
ed from consideration to attain the best parameterization which 
provides an overall agreement among the combined perfor-
mance criteria. Therefore, only under this condition, the simula-
tion will be categorized as “behavioral”. 

Applying three groups of scenarios (Table 6), we investigat-
ed the soil parameterization that reaches to the behavioral mod-
el. The simulation results of each scenario were evaluated by 
the model performance criteria and statistical goodness-of-fit 
measures. The soil parameterization in scenario A was taken 
from Tepee et al. (2003). In the two scenarios B1 and B2, the 
water retention curve was parameterized with three different 
variations of the van-Genuchten parameters according to (Sau-
er, 2007). In scenario C, the model performance was evaluated 
using the soil parameter set provided by Sprenger et al. (2016).  
 
RESULTS  
SCENARIO A: Model parameterization according to Teepe 
et al. (2003) 
 

Since logged air or stone fraction may reduce maximum soil 
moisture at saturation by up to 30% (Mualem, 1974), theta_sat 
(saturated water content) is reduced in scenario A1 in three 
steps from 41% (baseline parameterization according to Teepe 
et al. (2003), see Table 2) to 35% and finally to 30%. Soil mois-
ture simulated with the baseline parameterization of the soil 
Table (theta_sat = 41%) shows much higher values than the 
measurements (Figure 2). As the parameter theta_sat decreases, 
the simulated soil moisture values also decrease. Simulated soil 
water content with theta_sat = 30% shows the highest similarity 
with the measurements. However, the simulated dynamics of the 
soil moisture simulations do not match the measured dynamics.  

Sap velocity rose in the transition from spring to summer 
and it started to decrease again with the end of the summer 
(Figure 3). A rapid drop in the sap velocity was observed in 
June and August 2015 while there was a steep rise in July 2015 
for all measuring points. The simulated transpiration with dif-
ferent theta_sat values and the sap velocity measurements have 
a similar temporal pattern. Changing the theta_sat value has 
only a negligible effect on transpiration (Figure 3). 

Evaluation of the water balance (see Table A in the 
appendix) unveiled that total simulated evapotranspiration (775, 
773 and 762 mm/year for theta_sat = 41, 35 and 30 
respectively) is too high. It is close to the annual precipitation 
amount (791 mm) which is not realistic. The dominant runoff  
 

generation process was saturation excess flow or Hortonian 
overland flow which is not realistic according to landscape 
characteristics. Table 7 illustrates the model performance in 
scenario A1 evaluated by the three statistical efficiency 
measures as well as by four criteria. Meeting or not meeting a 
criterion is expressed in terms of “Yes” or “No” respectively. 
All simulations are highly correlated with the corresponding 
measurements (R² ≥ 0.73 for all simulations). Model 
performances for transpiration show the same values for all 
theta_sat. While for the soil moisture, the simulation with 
theta_sat = 30 Vol% shows the lowest bias (MAE = 0.02) and a 
positive NSE (0.55). This confirms the results obtained from 
visual inspection. 

To investigate the effect of scaling the bulk surface 
resistance parameters (rsc and rse), in scenario A2, the 
parameters rsc and rse are adjusted in the evapotranspiration 
module of the WaSiM-ETH model. The applied percentage 
changes were 25, 50, 75, 150, 200 and 400% according to the 
standard values in the model for deciduous forest (Table 1). 
Parameter theta_sat was set to 30 Vol% due to the relatively 
satisfactory simulation results obtained from scenario A1.  

Changing the bulk surface resistance parameters affects the 
simulated soil water content. The dynamics of the soil moisture 
simulations are now more consistent with measured values 
(Figure 2). The best fit could be obtained by decreasing the rsc 
and rse values to 75% and 50% of their standard values, 
respectively. By lowering the bulk surface resistance 
parameters, the (potential) evapotranspiration increases. This 
extracts more water through plant transpiration and soil 
evaporation. Hence, under these conditions, simulated soil 
moisture was reduced and became closer to the measured 
values. The dynamics of the simulated transpiration also 
corresponds well to the sap velocity measurements (Figure 3).  

However, the amount of evapotranspiration losses (850 mm 
and 867 mm with rsc = 75% and rse = 50%, respectively) 
exceeded precipitation input. The simulated runoff generation 
process was saturation excess flow or Hortonian overland flow 
which was unrealistic with regard to real soil characteristics at 
site Sa_G (Table A in appendix). Evaluation of the results 
obtained from the scenario A2 is shown in Table 8. Here, all 
measures indicate an almost perfect fit after scaling the bulk 
surface resistance (NSE = 0.74 for transpiration, and NSE = 
0.85 or 0.91 for soil moisture). This confirms a substantial 
improvement of simulation accuracy. Nevertheless, runoff 
generation process and water balance are not correctly 
reproduced. 

 
Table 6. Overview of different scenario combinations. 
 

SCENARIO A 
(using soil parameterization after 
Teepe el al. (2003)) 
 

A1 
(Scaling theta_sat) 

 

–41% 
–35% 
–30% 

A2 
Scaling bulk surface resistances 

theta_sat = 30% 
 

A2-1 
(Scaling soil surface 

resistance r
se

)  

25%-50%-75%-100%-
150%-200%-400% 

 
A2-2 

(Scaling canopy surface 
resistance r

sc
) 

25%-50%-75%-100%-
150%-200%-400% 

SCENARIO B 
(using soil parameterization after 
Sauer (2007)) 
 

B1 
Re-parameterization of Water Retention Curve 

with theta_sat = 30% 

-Variation 1 
-Variation 2 
-Variation 3 

B2 
Re-parameterization of Water Retention Curve 

with theta_sat = 41% 

-Variation 1 
-Variation 2 
-Variation 3 

 
SCENARIO C 
 

Soil parameterization after Sprenger et al. 
(2016) 

Comparison to best performing parameter set  
(theta_sat = 41%, Var1) 
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Table 7. Criteria evaluation and efficiency measures in scenario A1. 
 

Scenario A1: scaling theta_sat 
Criterion 30 Vol% 35 Vol% 41 Vol% 
SV Yes Yes Yes 
SM No No No 
RETa No No No 
RRGP No No No 

Efficiency  
measure 

   
Transpiration Soil moisture Transpiration Soil moisture Transpiration Soil moisture 

R² 0.73 0.95 0.73 0.95 0.73 0.93 
MAE 0.42 0.02 0.42 0.08 0.42 0.13 
NSE 0.71 0.55 0.71 –2.66 0.71 –8.92 

 
Table 8. Criteria evaluation and efficiency measures in scenario A2. 
 

Criterion 30 Vol% (baseline) A2-1 (rse = 50%) A2-2 (rsc = 75%) 
SV Yes Yes Yes 
SM No Yes Yes 
RETa No No No 
RRGP No No No 

Efficiency  
measure 

   
Transpiration Soil moisture Transpiration Soil moisture Transpiration Soil moisture 

R² 0.73 0.95 0.73 0.94 0.76 0.94 
MAE 0.42 0.02 0.39 0.01 0.39 0.01 
NSE 0.71 0.55 0.74 0.91 0.74 0.85 

 
Table 9. Criteria evaluation and efficiency measures for model performances in scenarios B1 and B2. 
 

Criterion 
Re-parameterization of the water retention curve – scenario B 

scenario B1 (theta_sat = 30 %) scenario B2 (theta_sat = 41%) 

Baseline Var1 Var2 Var3 Baseline Var1 Var2 Var3 
SV Yes  No No No Yes  Yes No No 
SM No No No No No Yes No No 
RETa No Yes Yes Yes No Yes Yes Yes 
RRGP No Yes Yes Yes No Yes Yes Yes 

Efficiency measure 
        

SM Tr SM Tr SM Tr SM Tr SM Tr SM Tr SM Tr SM Tr 
R² 0.95 0.73 0.75 0.64 0.60 0.37 0.62 0.11 0.93 0.61 0.74 0.73 0.67 0.5 0.62 0.11 
MAE 0.02 0.42 0.05 0.53 0.07 0.75 0.06 0.97 0.13 0.42 0.02 0.43 0.04 0.66 0.06 0.97 
NSE 0.55 0.71 –0.44 0.6 –1.98 0.21 –1.64 –0.34 –8.92 0.71 0.65 0.71 –0.01 0.41 –1.64 –0.34 

 

 
SCENARIO B: Re-parameterization of Water Retention 
Curve 

 
In scenario B1, van Genuchten parameters of the baseline 

parametrization of the soil were re-parameterized according to 
Sauer (2007), where three variations of the parameters “alpha” 
and “n” were proposed for the same soil type “loamy sand”. 
Figure 2 depicts soil moisture of the three variations of van 
Genuchten parameters for a soil with theta_sat = 30%. All 
variants underestimate the measured values. Variation of van 
Genuchten parameters also affects simulated actual transpiration 
rates: In Figure 3, we clearly see that simulated transpiration does 
not match the temporal pattern of sap velocity measurements. 

In all three variations, the soil was significantly dryer than 
the measured value. In variation 2 and 3 the soil water content 
came close to the residual water content. For the simulated 
transpiration, its temporal consistency with sap velocity de-
creased from variation 1 to 3. As all three variations performed 
worse than the best A1 scenario all three variants are rejected. 

In scenario B2 we changed theta_sat from 30 to 41 Vol% 
and then repeated the three variations of alpha and n after Sauer 
(2007) and then checked both soil moisture (Figure 2) and 

transpiration dynamics (Figure 3). Simulation results with 
theta_sat = 41% for the transpiration dynamics are relatively 
consistent with the observed sap velocities over the entire 
vegetation period for variation 1. In scenario B2, variation 1 
provided sufficient soil water during the vegetation period for 
plant transpiration. This corresponds well to temporal patterns 
of sap velocities. Nevertheless, in variation 2 and 3, simulated 
transpiration did not reproduce the temporal patterns of the sap 
velocity data. There is a strong deviation in July and August 
2015 and at some points the simulated transpiration drops to 
zero. This is the result of the low soil water content in summer 
(close to residual water content) for these two variations.  

Table 9 provides all evaluation results related to the scenario 
B. Runoff generation process for all three variations with 
theta_sat = 30% and 41% is now deep percolation (Table A in 
appendix). Furthermore, the total amount of evapotranspiration 
was less than 750 mm for all variations. Variation 1 with 
theta_sat = 41% fulfills all four evaluation criteria. This is 
confirmed by the three statistical efficiency measures. Here, 
variation 1 with theta_sat = 41% clearly performs the best. In 
accordance with our definition we can label this model 
parameterization as “behavioral”.  
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Fig. 2. Simulated and measured 
soil moisture in the root zone 
(Vol%) in 2015 for Scenarios 
A1, A2, B1 and B2. Red verti-
cal lines indicate the growing 
season. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Simulated transpiration 
(normalized) and normalized 
mean values of sap velocity 
(measured) for growing season 
2015 (Scenarios A1, A2, B1, 
B2). In Scenario A1 all simula-
tions show the same transpira-
tion (identical lines). 
 

 
 

 
SCENARIO C: Soil parameterization after Sprenger et al. 
(2016) 

 
Sprenger et al. (2016) provided a soil parameter set for the 

Site Sa_G. In the scenario C, this parameter set was determined 
by automatic fitting to soil moisture measurements and stable 
isotope data. We compared this parameterization with our best 
performing model from the previous section (variation 1 from 
scenario B2 with theta_sat = 41%). 

The simulated runoff generation process was deep 
percolation which is plausible (Table A in appendix). Total 

evapotranspiration (602 mm) was estimated to be lower than 
precipitation (791 mm) which is also correct. But it can be seen 
in Figure 4 that soil moisture simulation does not show the 
correct dynamics compared to the measured time series. Here 
again, the parameterization of WRC is the reason that the soil is 
drying out in summer. This causes a significant reduction in 
transpiration during August which does not correspond to our 
sap velocity measurements. Additionally, the statistical 
efficiency measures (Table 10) reveal that the model performs 
very weak in simulating soil moisture (negative value for NSE). 
Simulated transpiration is therefore not consistent with the 
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corresponding sap velocity time series (Figure 5). It shows an 
overestimation in spring and a slight underestimation in 
summer, which is also indicated by lower model performance 
measures compared to the simulation with the optimal 
parameter set (B2, variation 1 with theta_sat = 41%) from the 
previous section. 

 

 
 

Fig. 4. Simulated soil water content for soil parameters according 
to Sprenger et al. 2016 compared to corresponding measured val-
ues and simulated soil moisture from variation 1 (theta_sat = 41%) 
in 2015. Red vertical lines indicate the growing season. 

 

 
 

Fig. 5. Normalized simulated transpiration for soil parameters 
according to Sprenger et al. 2016 compared to normalized mean 
sap velocity (measured) and normalized simulated transpiration for 
variation 1 (theta_sat = 41%) in growing season 2015. 

 
Table 10. Criteria evaluation and efficiency measures for soil 
parameterization according to Sprenger et al. (2016). 
 

Criterion 
Optimal parameter set 

(theta_sat = 41%,  
Variation 1) 

Sprenger et al. 2016 

SV Yes No 
SM Yes No 
REtr Yes Yes 
RRGP Yes Yes 

Efficiency  
measure 

 

Transpiration Soil 
moisture Transpiration Soil 

moisture 
R² 0.73 0.74 0.61 0.89 
MAE 0.43 0.02 0.55 0.04 
NSE 0.71 0.65 0.57 –0.11 

 
 

DISCUSSION  
 
The main objective of this study was to build up a behavioral 

forest stand water balance model to characterize the temporal 
changes in hydrological components of water balance by mak-
ing use of both observed soil moisture and sap velocities as 
well as expert knowledge of local runoff generation processes. A 
behavioral model was defined as a model in which simulation 
results have to be consistent with measurements of soil moisture 
and sap velocity and with our hydrologic understanding of run-
off generation processes in the area of investigation. To accom-
plish the objectives, a multi-criteria evaluation scheme was 
developed. While 24 model realizations were tested, only one 
model realization could be categorized as “behavioral”. 

Results of this study demonstrated that without the use of 
additional information (e.g. using sap velocity measurements 
for transpiration dynamics; different soil parameterizations, and 
expert knowledge), it is not possible to identify a model which 
captures these processes and dynamics adequately. This sheds 
light on the value of the contribution of different forms of data 
in representing the catchment behavior. In a case study in a 
Swiss Pre-Alpine catchment, it was also found that the applica-
tion of expert knowledge and the concept of dominant process-
es can increase the realism of the hydrological models (An-
tonetti and Zappa, 2018). Taking into consideration that model 
evaluation would always be partly subjective, we looked at the 
model behavior from different perspectives through application 
of multi criteria evaluation that integrated this additional infor-
mation. Therefore, we were able to select a behavioral parame-
ter set from a number of equally likely soil parameterizations. 
The development of a multi-criteria approach for model evalua-
tion is based on the consideration that a single measure of per-
formance does not properly extract the information contained in 
the data (Gupta et al., 1998). This approach includes multiple 
performance measures and allows to evaluate if the hydrologi-
cal model is able to represent the behavior of internal catchment 
processes (Fenicia et al., 2008b). Moreover, our results are also 
in line with Livneh (2012). He improved model performance 
significantly by the application of a multi-criteria scheme to 
evaluate multiple model outputs and by adding supplementary 
information in the parameterization process (Livneh, 2012). 
Another study showed that the introduction of constraints was 
efficient in reducing simulation uncertainty, in conditioning 
parameters, and in identifying critical parameters (Senapati et 
al., 2016). 

All functions describing soil water retention imply a specific 
soil hydraulic behavior. Soil parameterization schemes accord-
ing to Teepe et al. (2003) and Sauer (2007) use different 
amounts of soil information to derive pedo-transfer functions to 
translate soil information into van Genuchten parameters. Our 
results revealed that different parameterizations of the corre-
sponding soil led to diverse simulation results. This issue is of 
great significance in all models applying the Richard’s equation 
(e.g. WaSiM-ETH). Therefore, finding a behavioral model for 
evapotranspiration is highly dependent on the identification of 
an appropriate WRC. This is consistent with the results of Gar-
rigues et al. (2018). They compared the performance of two 
water transfer models in simulating evapotranspiration using 
different soil parameterizations. They found an unexpectedly 
high model sensitivity to soil moisture at field capacity, root 
extinction coefficient, and the proportion of homogeneous root 
distribution (Garrigues et al., 2018). In our proof-of-concept 
study based on a 1-D model, we took the measurements of 
sapflow and soil moisture as representative for the “sandstone 
area” where the dominant hydrologic process is deep percola-
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tion. This made it possible to identify a behavioral model. It is 
known that models might work for the wrong reasons (i.e. 
reproducing discharge with incorrect process representations) 
(Beven, 2006; Walker and Zhang, 2002). This makes it advisa-
ble to implement expert knowledge to develop a proper pa-
rameterization to reflect our perceptions of the processes ob-
served. 
 
CONCLUSION 

 
A considerable amount of effort is still being devoted to the 

development of hydrological models, and there is a continuing 
need to advance the techniques for their parameter estimation. 
It is also important to develop a good working knowledge of 
their sensitivity, and strengths and weaknesses. 

This study underlines the importance of correctly setting up 
the 1-D water balance simulation model WaSiM-ETH in order 
to reproduce the dynamics of soil water fluxes and the physio-
logical control of water loss through transpiration at a specific 
site (beech forest in Western Luxembourg). Adjustment of the 
parametrization of the WRC showed a high impact on simula-
tion results. Our main finding was that: even though all parame-
ter sets refer to the same soil (“loamy sand”), a slightly differ-
ent parameterization of soil moisture at saturation (theta_sat), 
bulk surface resistance parameters and WRC may result in 
implausible model behavior. Even if transpiration and soil 
moisture are simulated consistently with our observations, 
runoff generation or total water balance may be wrongly esti-
mated. Therefore, only the introduction of a multi-criteria eval-
uation scheme for exclusion of unrealistic outputs allowed 
finding a well performing parameter set for our test site. These 
findings suggest that using different sources of information such 
as expert knowledge on the dominant hydrological processes 
and the understanding of local controls facilitate parameteriza-
tion and evaluation of a hydrological model. We should question 
the generally accepted procedure to parametrize soils using 
“default” parameter sets based on soil texture description or 
similar. Only if porosity and WRC for all soil horizons are cor-
rectly adjusted, a “physically based” model may simulate runoff 
processes and transpiration consistently with observations. Only 
in this case, we may refer to a model as “behavioral” (Gupta et 
al., 2005). We recommend finding “prototype soils” which are 
in accordance with soil description (e.g. texture) and expert 
knowledge on runoff processes in the area under investigation. 
This in turn implies that model parameterization, evaluation or 
calibration has to incorporate this “soft” knowledge. 

Setups identified as optimal for 1-D simulations will go a 
long way of improving the application of WaSiM-ETH water 
balance model on catchment scale to answer questions about 
watershed characteristics and water resources management. 
Since point measurements are not valid on catchment scale, we 
may try to address the spatiotemporal distribution of evapotran-
spiration, soil moisture and runoff generation processes at 
catchment scale as well as the estimation of overall water bal-
ance at the corresponding gaging station(s) (Koch et al., 2016, 
2015). The current study showed that soil parameterization 
affects not only the temporal distribution of soil moisture and 
transpiration, but also the runoff generation process. This also 
highlights the need to consider the incorporation of several data 
products to increase knowledge about the hydrological process-
es on catchment scale (Casper et al., 2015). Remotely sensed 
data will open up the possibility to analyze spatial patterns of 
actual evapotranspiration (ETa) or soil moisture (Koch et al., 
2017). Together with additional knowledge of the spatial distri-
bution of dominant runoff processes on catchment scale this 

will facilitate the parameterization of the hydrological model 
WaSiM-ETH and its subsequent optimization by extending the 
traditional model evaluation procedure at gaging stations with 
the search for a best fit of spatial patterns of ETa and runoff 
processes on catchment scale. A number of automatic mapping 
approaches for delineation of dominant runoff process exist, 
which can be used to constrain the uncertainty of hydrological 
simulations (Antonetti et al., 2016; Behrens et al., 2010). The 
model RoGeR (Runoff Generation Research) demonstrated its 
ability to quantify runoff process in high spatial and temporal 
resolution without the need of parameter calibration (Steinbrich 
et al., 2016). This approach combines knowledge of runoff 
process gained through long term research with spatially dis-
tributed data sets and can thus be used to extend the here pre-
sented approach to the catchment scale. 
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APPENDIX 
 
Table A. Water balance for all simulation runs, DP = Deep Percolation. SOF = Saturation Overland Flow, HOF = Hortonian Overland Flow. 
 

Scenario A1 A2 B1: B2 C 

 
base-

line 41 
baseline 

35% 
baseline 

30% 
rsc 

75% 
rse 

50% 
Var. 1 
30% 

Var. 2 
30% 

Var. 3 
30% 

Var. 1 
41% 

Var. 2 
41% 

Var. 3 
41% 

Sprenger et 
al. 2016 

Pot. Evaporation 270 270 270 281 471 270 270 270 270 270 270 270 
Real Evaporation 261 259 250 254 372 174 167 179 183 168 179 160 
Interception  
Evaporation 146 146 146 157 146 146 146 146 146 146 146 146 

ETp 851 851 851 978 1051 851 851 851 851 851 851 851 
ETr 776 774 762 850 867 613 536 497 676 569 497 602 
ETr_Layer1 = 
Transpiration 368 368 365 438 348 293 222 172 347 255 172 296 

Baseflow 145 166 107 117 73 212 278 316 251 267 316 196 
Direct Runoff 161 11 82 63 73 0 0 0 0 0 0 0 
Interflow 0 0 0 0 0 0 0 0 0 0 0 0 
Total Runoff 306 177 190 180 146 212 278 316 251 267 316 196 
GW recharge 68 114 94 103 64 190 268 307 130 248 307 156 
Delta Storage –290 –160 –161 –239 –222 –33 –22 –22 –136 –45 –22 –7 
Precipitation 791 791 791 791 791 791 791 791 791 791 791 791 
Total Balance Error 0 0 0 0 0 0 0 0 0 0 0 0 

Runoff Process SOF/H
OF 

SOF/ 
HOF/DP SOF/HOF SOF/ 

HOF 
SOF/
HOF DP DP DP DP DP DP DP 
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Abstract: Soil hydraulic properties, which are basically saturated and unsaturated hydraulic con-
ductivity and water retention characteristics, remarkably control the main hydrological processes in
catchments. Thus, adequate parameterization of soils is one of the most important tasks in physically
based catchment modeling. To estimate these properties, the choice of the PTFs in a hydrological
model is often made without taking the runoff characteristics of the catchment into consideration.
Therefore, this study introduces a methodology to analyze the sensitivity of a catchment water bal-
ance model to the choice of the PTF. To do so, we define 11 scenarios including different combinations
of PTFs to estimate the van Genuchten parameters and saturated hydraulic conductivity. We use
a calibrated/validated hydrological model (WaSiM-ETH) as a baseline scenario. By altering the
underlying PTFs, the effects on the hydraulic properties are quantified. Moreover, we analyze the
resulting changes in the spatial/temporal variation of the total runoff and in particular, the runoff
components at the catchment outlet. Results reveal that the water distribution in the hydrologic
system varies considerably amongst different PTFs, and the water balance components are highly
sensitive to the spatial structure of soil hydraulic properties. It is recommended that models be tested
by careful consideration of PTFs and orienting the soil parameterization more towards representing
a plausible hydrological behavior rather than focusing on matching the calibration data.

Keywords: pedotransfer functions; soil hydraulic parameterization; catchment water balance; runoff
components; hydrologic modeling; spatial pattern comparison; water retention curve

1. Introduction

The projected future changes in the land-use, climate, and water cycle lead to an
increasing demand for modeling approaches and frameworks for the simulation of hydro-
logical processes at local and regional scale of water resource management. Therefore, a
well parameterized and calibrated physically based hydrological model, which is capable of
realistically reproducing the behavior of the hydrologic system, is considered particularly
important in order to provide decision makers in water resources management with reliable
predictions [1]. Soil hydraulic properties have a major impact on the main hydrological
processes in catchment areas [2,3]. Therefore, information on these soil properties plays a
key role in water balance modeling, and an adequate parameterization of soils is one of the
most important tasks in physically based catchment modeling [4,5]. Richard’s equation [6],
which describes the water flow in unsaturated soil by combining the Darcy–Buckingham
law with the continuity equation, is the dominant concept of soil physics in hydrological
textbooks [7–9]. It can be considered as the fundamental concept underlying “physically-
based” hydrological models [10]. To solve this equation, information on soil hydraulic
properties is required [11].

Parameters of soil properties are usually measured as point observations at small
scales. However, water balance modeling in catchments requires parameter values at larger
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spatial scales such as grid cells or the entire catchment [12]. The Richard’s equation is pa-
rameterized by either observed soil properties (i.e., measured relations of soil water content
and matric potential) or constitutive equations such as the Gardner–Russo model [13], the
Brooks-Corey model [13], or the Mualem–van Genuchten model [14,15]. These empirical
models represent a basic hydro-physical characteristic of the soil: the relation between soil
water content and matric potential [16].

Among the empirical models developed to parameterize the water flow in unsatu-
rated soils, the traditional van Genuchten parameterization [15] has evolved to a de facto
standard and is widely used because of its higher degree of fit to observed soil water
retention data [17]. Nevertheless, to practically apply this model, obtaining its unknown
empirical fitting parameters based on known experimental data (namely, a measured soil
water retention curve) is essential. Moreover, at larger spatial scales, such as those of
catchment models, direct measurements are not feasible due to the area coverage and the
heterogeneity of the soil properties. Therefore, various methods have been developed
to determine the van Genuchten parameters, and subsequently, the soil water retention
curves using soil parameters that are easier to measure, such as texture, organic matter
content, and bulk density. The term pedotransfer function (PTF) has been introduced
to define these functional relationships that transfer available measurable soil properties
into missing soil properties (e.g., soil hydraulic and soil chemical characteristics) [18].
The derivation of a PTF is usually based on a two-step process. First, the selected water
retention function (e.g., van Genuchten) is fitted to measured water retention curves. In
the second step, the parameter values determined in this process are related to the selected
soil properties [17,19]. During the last three decades, soil scientists have developed a broad
set of PTFs that differ with respect to:

1. Applied methods (e.g., statistical regression techniques, data mining and explo-
ration techniques);

2. The underlying database of measured soil moisture retention data used to fit van
Genuchten model estimates; and

3. Required input parameters or predictors (e.g., grain size distribution, bulk density,
organic matter content) to derive PTF.

Extensive reviews on this content were given by Pachepsky and Rawls (2004) [20];
Wösten et al. (2001) [11]; Vereecken et al. (2010) [17]; and Patil and Singh (2016) [21].
Accuracy and uncertainty of PTFs were evaluated by Schaap and Leij (1998) [22]. They
showed that the performance of PTFs may depend strongly on: the data employed for
calibration and evaluation, input soil properties, and different applied methods. The
databases that have been used to derive PTFs show four remarkable differences:

1. The measurement methods and techniques used to obtain the complete soil moisture
retention characteristic in the laboratory;

2. The sample size used at different pressure heads is not the same;
3. The soil textural composition, here the extreme examples are the databases of Schaap

and Bouten (1996) [23] which contain only sandy materials, and of Schaap and Leij,
(1998) [22] which includes a large number of coarse textured soils and practically no
silty soils;

4. Variations in the number of data points, as well as the values of pressure heads used
to determine the WRC [17].

Parameterization of soil hydraulic properties should be done in such a way that the
hydrological processes simulated using a water balance model match the locally observed
processes [24,25]. From a modeler’s perspective, the inconsistencies in the data bases
used for deriving the different PTFs complicate the evaluation of their reliability in a
specific case. For instance, Vereecken et al. (1992) [26] showed that 90% of the variation
in predicted moisture supply was attributed to estimation errors in hydraulic properties
when using the PTFs developed by Vereecken et al. (1989, 1990) [27,28]. In another study,
Chirico et al. (2010) [29] analyzed the effect of PTF prediction uncertainty on soil water
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balance components at the hillslope scale. They found that simulated evaporation is more
affected by the PTF model error than by errors due to uncertainties in model input data.
This sensitivity can result in a compensation of structural model errors by soil parameters, if
no careful evaluation of the parameterization of soil hydraulic properties or the simulation
of depth-dependent soil moisture content is made [30]. As a result, investigating the model
behavior in response to change in the method used to estimate soil hydraulic properties,
such as using different types of PTFs, is of major relevance to modelers. However, selection
of PTF is usually not guided by its effect on the runoff behavior of the catchment model.

Therefore, the aim of this paper is to evaluate the impact of PTF selection on subse-
quent changes in the hydrological model behavior. We hypothesize that the PTF-specific
soil water retention and hydraulic conductivity curves distinctly affect the water balance
and runoff characteristics of the hydrological model, and the resulting differences may
be related to the respective soil hydraulic properties of the study area as well as to the
methodology to derive the PTF. To test the hypothesis (i) we adapted the soil parameteri-
zation in a calibrated and validated hydrological model by varying the underlying PTFs
and determined the effects on the soil hydraulic properties of the catchment; and (ii) we
analyzed the resulting changes in the model behavior with respect to the catchment outlet,
as well as the spatial and temporal variation of the total flow and the flow components.

2. Materials and Methods
2.1. Study Area

The Glonn catchment area is located in the Tertiary Molasse Hills in Bavaria, Germany.
The region is characterized by a low to moderate river density and a runoff coefficient of
about 35% [31]. The Molasse basin consists of deposits from the Alps, so the study area
comprises a wide range of different grain size compositions. The investigated area of the
Glonn catchment has a size of 104 km2 and an elevation difference of 95 m (Figure 1a),
resulting in an average terrain gradient of 4.7%. The soil types were derived from the
Übersichtsbodenkarte Bayern (ÜBK25) and consist mainly of Cambisol (65%) and Gley
(19%), which is located near the watercourse. These grain size compositions of the soil
types are displayed in Figure 1b and cover 71% of the KA5-texture classes [32] and 85% of
the FAO texture classes.

The analysis of the land use distribution is based on a combination of the ATKIS
dataset and the INVEKOS data and reveals an extensive agricultural use of the catchment
area (Figure 1c). Cropland is the largest land use in the area with 56%, followed by forest
(23%) and grassland (12%). Sealed areas (9%) are dominant at the outlet of the catchment
area but are more or less evenly distributed over the entire catchment area.

Since the Glonn catchment embraces a high variety of soil and land use types, we
consider this catchment to be well suited to study the general effects of different PTFs on
the distribution of water in the system and on runoff generation processes.

2.2. Model Setup and Calibration

The water balance in the catchment area was investigated by applying the hydrological
model WaSiM (http://www.wasim.ch, accessed on 14 May 2021). WaSiM is a distributed
and deterministic model, which includes mostly physical descriptions of the hydrological
processes involved. WaSiM is considered illustrative for distributed hydrological models
that apply the Richard equation and PTFs to parameterize the soil hydraulic properties.
The Richards approach simulates the unsaturated water flow in the soil [6]. In WaSiM,
the soil is represented as layered soil columns, in which the thickness as well as the soil
characteristics can be defined individually for every horizon. The description of the soil
horizons comprises the water retention curve, which are described using van Genuchten
parameters [15] and the saturated hydraulic conductivity (Table 1). The modeled discharge
has three components (surface flow, interflow, base flow), which represent different re-
sponse types (fast, intermediate, slow). The model thus allows analyzing the effects of

http://www.wasim.ch
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change in soil hydraulic properties caused by multiple soil parametrizations (with different
PTFs) on the runoff behavior of the catchment.
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Table 1. Mandatory parameters to describe a soil horizon in the WaSiM control file.

Parameter Description

Horizon ID for each soil horizon; one value per horizon.

Layer Number of numerical layers for each horizon.

Thickness Thickness of each single numerical layer in this horizon in m; one value
per horizon.

Ksat Saturated hydraulic conductivity in m/s; one value per soil horizon.

Θsat Saturated water content (fillable porosity in 1/1); one value per soil horizon.

Θres
Residual water content (in 1/1, water content which cannot be extracted by

transpiration, only by evaporation); one value per soil horizon.

α van Genuchten Parameter α; one value per soil horizon.

n van Genuchten Parameter n; one value per soil horizon.

Krecession
Ksat recession with depth: factor of recession per meter (only applied for the

uppermost 2 m of the soil); one value per horizon.

We set up the model on a spatial scale of 100 m and a temporal scale of 1 h. The
required topographic spatial data (e.g., slope, flow accumulation, sub-catchment structure)
were derived from TANALYS (i.e., a pre-processing tool of WaSim-ETH) [33] by performing
a complex analysis of the DEM. The land use map is equivalent to the above-mentioned
combination of ATKIS and INVEKOS data (Figure 1c). The soil map is derived and
parameterized based on the Übersichtsbodenkarte Bayern (ÜBK25). The depth profiles of
the bulk density and organic matter content of the soil types were adapted according to
the overlying main land use type. For the calibration of the baseline scenario, we choose:
(1) the PTF of [19] to derive the van Genuchten parameters, and (2) the KA5 [32] which
contains a table for the derivation of saturated hydraulic conductivities from texture classes.
The considered input time series contain precipitation, temperature, relative humidity,
global radiation, and wind speed interpolated from station data.

We calibrated the model manually based on stream flow data at the gaging station
of Odelzhausen near the catchment outlet. The evaluation of the model runs was based
on a visual analysis, obtaining a plausible water balance, and statistical indices. These
indices are the NSE (Nash–Sutcliffe Efficiency), NSE log (NSE with logarithmic values),
and PBIAS (percent bias) [34]. The evaluation results show a good representation of the
runoff characteristics of the catchment, while underestimating the runoff volume during
the calibration period and slightly overestimating it during the validation period (Table 2).
The volume shares of the water balance components are in a plausible range with a runoff
coefficient of about 32% to 33%, which is close to the literature value of the region [31].
The calibrated model is regarded as a benchmark model (“baseline scenario”, see Table 3).
Therefore, the effect of PTF selection will be investigated through multiple scenarios
(Table 3) without the interference of a recalibration. This means, the exact representation of
the reality is of minor importance.
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Table 2. Goodness of fit criteria and shares of water balance components for the calibration and
validation period.

Parameter Calibration Validation

Time period 1 November 1995–31 October 2004 1 November 2004–31 October 2013

NSE 0.74 0.65

NSElog 0.61 0.67

PBIAS 13.2 −1.9

Volume share of

Baseflow 0.16 0.14

Interflow 0.14 0.14

Surface runoff 0.04 0.05

Evapotranspiration 0.68 0.67

Table 3. Scenario definition: combinations of PTFs to determine the van Genuchten parameters (θsat, θres, α, n) and the
saturated hydraulic conductivity (Ksat).

Scenario Van Genuchten Parameter Saturated Hydraulic Conductivity

Baseline Wösten et al. (1999) [19] Ad-Hoc AG Boden (2006) [32]

1 Renger et al. (2009) [35] Ad-Hoc AG Boden (2006) [32]

2 Weynants et al. (2009) [36] Ad-Hoc AG Boden (2006) [32]

3 Zacharias & Wessolek (2007) [37] Ad-Hoc AG Boden (2006) [32]

4 Teepe et al. (2003) [38] Ad-Hoc AG Boden (2006) [32]

5 Zhang & Schaap (2017): Rosetta H2w [39] Ad-Hoc AG Boden (2006) [32]

6 Zhang & Schaap (2017): Rosetta H3w [39] Ad-Hoc AG Boden (2006) [32]

7 Wösten et al. (1999) [19] Wösten et al. (1999) [19]

8 Renger et al. (2009) [35] Renger et al. (2009) [35]

9 Zhang & Schaap (2017): Rosetta H2w [39] Zhang & Schaap (2017): Rosetta H2w [39]

10 Zhang & Schaap (2017): Rosetta H3w [39] Zhang & Schaap (2017): Rosetta H3w [39]

2.3. Scenario Definition

The influence of the PTF selection on the catchment runoff behavior was investigated
through different simulation runs. These include 11 scenarios in which the PTFs used to de-
termine the van Genuchten parameters and saturated hydraulic conductivity were altered.
The respective combinations are summarized in Table 3. The so-called “baseline scenario”
is the model run for which the calibration and validation was performed (Section 2.2).
It serves as the benchmark for the other scenarios and thus as the basis for the scenario
comparison. The soil profiles that were modified because of the PTF selection were limited
to areas with cropland, grassland, and forest land use. The parameterization of sealed
surfaces and water surfaces were identical in all scenarios. The definition of the saturated
hydraulic conductivities by using the table of Ad-Hoc AG Boden (2006) [32] (Scenarios 1 to
6) or the corresponding equations of selected PTFs (Scenarios 7 to 10) allows a separate
consideration of their respective influence on the runoff behavior.

The seven PTFs adopted for scenario development (Table 3), are described in Table 4.
The selection was based on the wide distribution and extensive application of the PTFs
in European studies [38,40–43]. Their potential applicability to the study area and the
respective performance were not considered in order to obtain a wider range of possible
results. The van Genuchten parameters θsat, θres, α, n, which are required for the soil de-
scription in WaSiM, are specified by all selected PTFs. The PTFs of Wösten et al. (1999) [19],
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Renger et al. (2009) [35] and Zhang & Schaap (2017) [39] additionally contain a definition
of the parameter Ksat (saturated hydraulic conductivity). The key differences among the
PTFs, apart from the underlying databases, are the number of considered soil samples and
the selected predictors. While soil texture is included in all PTFs as a predictor, in some
other PTFs, bulk density (BD), and organic matter content (OM) are not always taken into
account.

Table 4. Overview of the selected PTFs including their main characteristics.

PTF Method Database Sample Size Predictors

Wösten et al. (1999)
[19] Regression analysis HYPRES [19] 5521 Clay, Silt, OM, BD,

topsoil/subsoil

Renger et al. (2009) [35] Regression analysis various sources unknown Sand, Silt, Clay

Weynants et al.
(2009) [36] Regression analysis Vereecken et al., 1989 [27] 166 Sand, Silt, Clay,

BD, OM

Zacharias and
Wessolek (2007) [37] Regression analysis

IGBP-DIS soil data
(Tempel et al., 1996) [44];
UNSODA (Nemes et al.,

2001) [43]

676 Sand, Silt, Clay, BD

Teepe et al. (2003) [38] Regression analysis Teepe et al. (2003) [38] 1850 Lookup table: Sand,
Silt, Clay, BD

Zhang & Schaap (2017),
Rosetta H2w [39]

Single Artificial
Neural Network Schaap et al. (2001) [45] 2134 for WRC, 1306

for Ksat
Sand, Silt, Clay

Zhang & Schaap (2017),
Rosetta H3w [39]

Single Artificial
Neural Network Schaap et al. (2001) [45] 2134 for WRC, 1306

for Ksat
Sand, Silt, Clay, BD

Clay: percentage of clay, Silt: percentage of silt, OM: percentage of organic matter, BD: bulk density.

2.4. Evaluation Strategies

The differences among the modeling scenarios are caused by the respective soil
hydraulic properties, which are dependent on the underlying PTFs. Therefore, the basis
for the scenario evaluation was to identify features or patterns in the input and output
data, and to determine the causal relationships of these patterns. This process involves
various model parameters used to examine the influence of PTFs on the runoff behavior of
the catchment quantitatively and qualitatively. The evaluation strategy is to analyze the
changes in: (1) soil hydraulic properties; (2) runoff response at the catchment outlet; (3) the
partitioning of the water balance components in time and space, and (4) the resulting
dominant runoff processes. Through this, each scenario evaluation was carried out in
relation to the calibrated baseline scenario.

2.4.1. Soil Hydraulic Properties

The van Genuchten parameters, which are determined using the different PTFs, define
the shape of the water retention curve, i.e., the relationship between soil moisture and
suction. This relationship specifies the pore volume that is available for water retention at
a given matric potential. Accordingly, it has a distinct effect on the runoff characteristics of
a catchment. In combination with the saturated hydraulic conductivity, the water retention
curve also has an influence on the relationship between soil moisture and unsaturated
hydraulic conductivity. This dependency influences the vertical water movement in the
soil and thus the infiltration characteristics.

In order to quantitatively evaluate and compare the characteristics of the water reten-
tion curves and hydraulic conductivities of the different PTFs, we considered the variables
of plant-available water capacity (AWC), field capacity (FC), and saturated hydraulic con-
ductivity (Ksat). The FC corresponds to the pore volume which is filled with water at a
matric potential of pF = 1.8. The AWC is the respective pore volume between pF = 1.8 and
pF = 4.2. Values of FC and AWC were determined for each grid cell for the uppermost
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meter of the soil profile, and Ksat was analyzed for individual soil horizons. The distribu-
tion of these values were statistically examined using box plots analysis, considering only
cropland, grassland, and forest areas. In addition, demonstration of the spatial distribution
of these three variables (AWC, FC, Ksat) can be used to establish qualitative relationships
between soil hydraulic properties and land use distribution or topography.

2.4.2. Runoff Response

The total runoff at the catchment outlet or a gauging station is the most common model
parameter used for the calibration or evaluation of a hydrological model. Since the model
calibration was only performed for the baseline scenario, a comparison of the other scenar-
ios with the measured hydrographs is not meaningful. Therefore, the scenario hydrographs
were solely compared to the respective hydrograph simulated by the baseline scenario. The
evaluation includes both a visual inspection of the event characteristics and a quantitative
analysis of the differences between baseline and scenarios using signature indices.

The calculation of the signature indices is based on the flow duration curve (FDC).
FDC is equivalent to the flow exceedance probability curve and is commonly used to
represent and classify the catchment functioning. Accordingly, the FDC indicates the
ability of the catchment to produce runoff values of different magnitudes and is therefore
dependent on the vertical redistribution of the soil water content [46,47]. This vertical
redistribution results in ‘fast’, ‘intermediate’, and ‘slow’ runoff components within the
discharge hydrograph associated with surface runoff, interflow, and baseflow [48]. A
set of signature indices is considered to be a characteristic fingerprint of the respective
hydrological response of the catchment in terms of producing different runoff components.
Thus, signature indices can be used to evaluate runoff components and parameters that
control the runoff processes as well as the overall water balance. In this study, we derive
the following signature indices:

1. %BiasRR: The percent bias in overall runoff ratio is a diagnostic signature index of the
total water balance. It is expected to show primary sensitivity to model parameters
that control evapotranspiration.

2. %BiasMidslope: The percent bias of the mid-segment slope of the FDC (between 20%
and 70% exceeding probability) indicates the reactivity of the catchment to the rainfall
events and quantifies the rainfall-runoff response rate.

3. %BiasFHV: The percent bias in high-segment volumes of the FDC (<2% exceeding
probability) is related to the surface runoff and compares the peak discharges for
heavy rainfall events.

4. %BiasFLV: The percent bias in low-segment volumes of the FDC (>70% exceeding
probability), that reflects the minimum discharge values and is related to the base flow.

A detailed description of the general procedure and the relevant equations is presented
in Casper et al. (2012) [49].

2.4.3. Water Balance Components

We provide a deeper insight into the catchment behavior by a quantification of the
differences amongst scenario simulations corresponding to runoff and water balance
components, which are caused by the choice of the PTF. The components were considered
and compared at different spatial and temporal resolutions or clusters.

A detailed analysis of the water balance components was performed for the outlet
gage of the catchment using annual sums. It includes runoff components (surface runoff,
interflow, and baseflow), evaporation components (evaporation, transpiration, interception
evaporation, and snow evaporation) and storage components (soil storage, interception
storage, and snow storage). In addition, we considered the amount and distribution of
infiltration components to explain the changes in the water balance and link them to
the soil hydraulic properties obtained from the different PTFs. The investigation of the
temporal and spatial differences resulting from the PTF selection was limited to the runoff
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components of surface runoff, interflow, and baseflow. We considered the frequency of
certain shares of the flow components on the total runoff.

2.4.4. Spatial Pattern Analysis

To compare spatial pattern of water balance components simulated in different sce-
narios, we use two different metrics: (i) the Pearson correlation coefficient α between the
spatial water balance components of the baseline model (A) and PTF scenarios (B); and
(ii) the percentage of histogram intersection γ [50]. γ reveals only the agreement on the
distribution of the variable in space [51]. The term γ is calculated for a given histogram K
of the baseline maps (A) and the histogram L of the PTF scenario maps, each comprising ‘n’
bins, here we use 100 bins.

α = ρ(A, B) (1)

γ =
∑n

j=1 min
(
Kj, Lj

)
∑n

j=1 Kj
(2)

3. Results
3.1. Soil Hydraulic Properties

The distribution of the selected soil hydraulic properties in the Glonn catchment is
displayed in Figure 2. The data contains all cells with cropland, grassland and forest
land use, whereas sealed areas and water bodies are not included. AWC and FC were
summarized for the uppermost meter of the soil profile. In contrast, the Ksat is presented
for the top layer (horizon 1) and for the soil horizon 3, which accounts for a depth of about
75 cm. The thickness of the horizons, and consequently the depths of them, vary among the
soil types. For AWC and FC, we included all PTFs, which have their own specific equation
to estimate Ksat, and those that consider the parametrization of Ad-hoc-AG Boden [32]
for Ksat.

The median values of the soil hydraulic properties as well as the size of the interquar-
tile ranges show a clear dependency on the respective PTF. The range of the median values
is larger for AWC than for FC, whereas the size of the interquartile ranges or the total
variability is larger for FC. Accordingly, for each PTF, AWC is relatively similar within
one PTF for all soil types within the catchment, most notably in the PTFs of Wösten et al.
(1999) [19], Renger et al. (2009) [35], and Weynants et al. (2009) [36]. The values of AWC
for the PTF of Wösten et al. (1999) [19], which is considered in the baseline scenario, range
within the values of the other PTFs. The lowest AWC values were determined using the
PTF of Zacharias & Wessolek (2007) [37]. The PTF with the most frequent large AWC
values is the one of Zhang & Schaap (2017) [39] that does not consider bulk density as
input (Rosetta H2w). The distinction in the ranges of AWC values amongst the PTFs are
pronounced differently from those of FC. This indicates the variability of the available soil
water storage volumes depending on the preconditions.

The range of simulated Ksat by the baseline scenario (defined according to Ad-Hoc
AG Boden, 2006) [32] is within the values of the other PTFs for the considered horizons.
The largest median of Ksat was defined via Renger et al. (2009) [35]. This PTF is also
the only one for which the median increases from horizon 1 to horizon 3. The distinctly
smaller variability of Ksat in Rosetta H2w compared to Rosetta H3w is due to the lack of
consideration of the bulk density in Rosetta H2w.

The largest spatial variation of the AWC differences (∆AWC) was found for Teepe et al.
(2003) [38]. Here, the soil water storage capacities of flat areas with forest or grassland
cover are increased (compared to baseline scenario), while decreased for other land uses.
This observation is in accordance with the distribution displayed in Figure 2, which shows
a similar median as the baseline scenario, but a distinctly larger variability. The PTF of
Zacharias & Wessolek (2007) [37] results in an overall lower soil water storage with lower
values in valleys and thus a contrasting behavior compared to Teepe et al. (2003) [38].
Weynants et al. (2009) [36] and both versions of Zhang & Schaap (2017) [39] show a
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predominantly higher soil water storage with some exceptions next to the rivers. In most
cases, the areas of lower AWC in Weynants et al. (2009) [36] are not equal to those of Zhang
& Schaap (2017) [39].
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The shapes of the water retention curves are influenced by the input parameters of
the PTFs as well as the databases used for their development (Table 4). Accordingly, the
dependency of the soil water storage capacity can be related to the land use types, which
affect the bulk density and organic matter content of the respective soil type. Furthermore,
the variation of the soil texture class can have different effects on soil water holding
capacities depending on the PTF that results in the observed non-linear shift of the soil
hydraulic properties between the scenarios and the baseline scenario.

The saturated hydraulic conductivities in the topmost soil horizon of Renger et al.
(2009) [35] are mostly larger than those of Ad-Hoc AG Boden (2006) [32], whereas those of
Zhang & Schaap (2017), H2w [39] are lower (Figure 3b). The largest differences compared to
the baseline scenario (∆Ksat) were observed in Zhang and Schaap (2017), H3w [39]. Forest
sites result in much higher values of Ksat, while the increase is less distinct on grassland
sites. On cropland, the Ksat values of Zhang & Schaap (2017) [39], H3w are mostly lower
than those of Ad-Hoc AG Boden (2006) [32]. The differences in Wösten et al. (1999) [19] are
also attributed to the land use type but less distinguished. The dependency of Ksat on the
land use type is driven by the inclusion of bulk density and/or organic matter content in
the PTFs.
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3.2. Runoff Response

The different soil hydraulic properties of the PTFs result in a change in runoff behavior
that is evident in both the total volume and the event characteristics. Figure 4 shows the
hydrographs of the different scenarios (model runs) for two exemplary flood events. The
quantitative evaluation of the peak and volume changes are summarized in Table 5. The
double-peaked event in June 2013 was analyzed separately for the first and second wave.
The range of runoff peaks of the different scenarios compared to the baseline scenario is
between +43% and −65% (Table 5).
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Table 5. Peak changes (%) and volume changes (%) of the selected events in Figure 4 and the calibration and validation
periods the event in June 2013 is evaluated separately for both peaks.

Scenario
Peak Change (%) Volume Change (%)

06/2013 (1) 06/2013 (2) 09/2000 06/2013 (1) 06/2013 (2) 09/2000 calib. valid.

1 9.4 −7.9 0.0 10.0 −4.6 1.0 −4.7 −0.5

2 −3.8 −9.4 −15.1 −5.4 −11.1 −13.0 −5.2 −4.5

3 43.4 37.0 28.3 44.1 29.2 26.8 −6.7 −4.7

4 −29.8 −16.7 −33.6 −20.7 −8.0 −18.9 −5.7 −4.6

5 −52.9 −57.6 −58.0 −39.9 −42.6 −41.1 −0.6 −0.7

6 −50.5 −49.5 −55.1 −36.2 −34.6 −36.9 −0.9 −0.6

7 −2.2 −1.9 −9.5 −3.6 −2.7 −6.6 0.0 0.4

8 −45.3 −43.9 −58.8 −39.5 −21.7 −39.3 −2.4 0.3

9 −57.4 −64.6 −65.2 −49.8 −50.1 −50.4 −0.6 −0.8

10 −43.3 −39.7 −49.6 −32.3 −30.4 −34.3 −1.9 −1.6

The largest runoff response occurred in scenario 3, which is based on the PTF of
Zacharias & Wessolek (2007) [37], which resulted in the lowest AWC values, in comparison
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to other PTFs (Figure 2). The lowest runoff peaks and volumes occur in Scenarios 5 and 9,
which are based on Rosetta (H2w). This PTF resulted in the largest AWC values compared
to the different PTFs (Figure 2). The distinctly larger antecedent soil moisture conditions
during the second peak of the flood event in June 2013 results in a different change in
runoff behavior depending on the PTF. It can lead to a decrease in the percent peak change
(Scenario 4), an increase in the percent peak change (Scenario 2), or even in a reversal in
the direction of the peak change (Scenario 1) compared to the baseline scenario (Figure 2,
Table 5). The volume changes of the calibration and validation period are small compared
to those of the events. The variations indicate a different behavior in distinct discharge
ranges, whose separate analysis is therefore of special interest.

For a quantitative analysis of the change in modeled runoff behavior caused by the
choice of PTFs as well as the change in distinct discharge ranges, the flow duration curves
at the basin outlet were compared, and four signature indices were calculated (Table 6).

Table 6. Signature indices of the 10 scenarios compared to the baseline scenario; evaluation period:
1 November 1995–31 October 2013.

Scenario %BiasRR %BiasMidslope %BiasFHV %BiasFLV

1 −2.6 7.5 10.1 −16.8

2 −4.8 1.0 −3.9 −11.2

3 −5.7 87.5 43.5 −47.2

4 −5.1 43.3 −11.8 −25.4

5 −0.6 20.2 −24.6 −11.1

6 −0.7 38.1 −20.8 −25.7

7 0.2 1.0 −2.5 −0.3

8 −1.0 −0.1 −23.5 6.1

9 −0.7 −3.6 −34.7 14.1

10 −1.7 27.1 −18.0 −21.3

As expected, Scenario 7 shows only minor deviations in catchment behavior. How-
ever, there are obvious deviations in estimating the water balance by different scenarios
(%Bias_RR; e.g., underestimated up to −5.7% for scenario 4), revealing that the choice
of PTF has a considerable impact on the estimated evapotranspiration. Regarding the
reactivity (%Bias_Midslope), the tendency of scenarios 3, 4, and 6 is similar: showing
markedly increased values (highly overestimated compared to the baseline scenario), that
indicates a fast reaction of catchment to rainfall events and its direct transformation into
runoff. In contrast, most scenarios exhibit an underestimation of the discharge peaks, only
the scenarios 1 and 3 overestimate the peaks (positive value of %BiasFHV). Concerning the
low flows (related to base flow components), we can see a contrasting model behavior for
the scenarios: While the hydrological model tends to underestimate low flows for most of
the scenarios (distinctly pronounced in case 3, 4, and 6), a severe underestimation of low
flows results from scenario 3 (−47.2%).

3.3. Water Balance Components and Spatial Pattern Analysis

The differences in the runoff behavior amongst the scenarios can be addressed by
analyzing the respective water balance and infiltration components. As displayed in
Table 7, there are noticeable changes occurring in the runoff components as well as in the
components influenced by the soil hydraulic properties, i.e., evaporation from the soil
and change in soil water storage. The soil hydraulic properties also control the amount of
matrix infiltration, which affects the infiltration excess and consequently the surface runoff.
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Table 7. Mean annual amount of the water balance and infiltration components for the baseline scenario and the 10 scenarios.

Water Balance Components (mm/a) Infiltration Components (mm/a)

Surface
Runoff Interflow Base

Flow Transpiration Evaporation Snow
Evaporation

Interception
Evaporation

Change in
Soil

Storage

Change in
Snow

Storage

Infiltration
Excess

Macropore
infiltration

Matrix
Infiltration

Interception
Evaporation

Snow
Evaporation

Baseline 39 117 121 99 302 14 163 4 0 39 19 625 163 14

Scenario

1 42 121 108 98 303 14 163 10 0 42 19 622 163 14

2 41 113 110 99 316 14 163 4 0 41 19 624 163 14

3 50 117 95 99 323 14 163 0 0 50 18 615 163 14

4 37 89 136 99 322 14 163 0 0 37 19 627 163 14

5 34 120 122 97 310 14 163 0 0 34 19 630 163 14

6 34 135 106 97 310 14 163 0 0 34 19 630 163 14

7 39 121 119 99 302 14 163 4 0 39 19 625 163 14

8 36 123 117 99 299 14 163 10 0 36 19 628 163 14

9 35 107 133 97 309 14 163 1 0 35 19 629 163 14

10 35 133 108 97 311 14 163 0 0 35 19 629 163 14
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The large runoff reactivity of scenario 3 (Figure 3) can be attributed to an increased
amount of surface runoff (Table 7) which is caused by a reduction in matrix infiltration and
a resulting decrease in baseflow. Compared to the baseline scenario, scenario 4 shows a
slightly increased matrix infiltration and correspondingly a reduced surface runoff volume.
Larger differences occur in the slower runoff components, with a significant reduction in
the interflow volume and an increase in the magnitude of the baseflow. Although there
is only little increase in total infiltration compared to the baseline scenario, the change in
soil hydraulic properties results in a more efficient transport of water to deeper soil layers.
The evaporation volumes of the scenarios 3 and 4 are the largest in comparison to other
scenarios, and are about 7% higher than the baseline scenario.

The lowest runoff response of the all scenarios occurs for the scenarios 5, 6, 9, and
10. In these scenarios, surface runoff volumes are reduced in a uniform manner by about
10–13% compared to the baseline scenario. The changes in interflow and baseflow are more
diverse. While the volumes are only slightly changed in scenario 5, a significant increase in
interflow with a simultaneous large reduction in baseflow could be observed in scenarios 6
and 10. In contrast, in scenario 9, the interflow is reduced and the baseflow is increased,
resulting in an enhanced proportion of surface runoff during the events and leading to
the earlier and lower peak discharge as observed in Figure 3 compared to scenario 5. We
can conclude that in both cases the use of Ksat estimated by the respective PTFs leads to a
reduction in interflow and an increase in baseflow (scenarios 5 and 6 compared to 9 and 10).
This behavior is more pronounced between scenarios 5 and 9 (Rosetta, H2w) than between
scenarios 6 and 10 (Rosetta, H3w).

Figure 5 shows the frequency of occurrence of different flow shares for all runoff compo-
nents. Blue colors indicate the dominance of the respective component (probability > 50%),
green colors indicate a flow share of 20–50%, whereas yellow to grey colors indicate a
probability below 20% for the respective runoff component. Scenarios 5, 6, and 10 show the
shortest time periods dominated by surface runoff. While Scenario 5 shows dominance of
baseflow in relatively longer time periods, Scenarios 6 and 10 remarkably indicate longer
periods with interflow as dominant runoff generation process. Scenarios 4 and 9 have the
shortest periods with dominant interflow but the longest with baseflow as the dominant
runoff generation process.

In order to compare the spatial patterns of the evapotranspiration and runoff com-
ponents simulated by 10 scenarios to the baseline scenario, we analyzed the Pearson
correlation coefficient α and percentage of histogram overlap γ, considering the spatial
mean of direct runoff, interflow, baseflow, and actual evapotranspiration (ETa) (Table 8).

For direct runoff, the spatial correlation of occurrence is very high but the absolute
amount is different, which is indicated by a low histogram overlap. For interflow, some
scenarios show both low spatial correlation and low histogram overlap, indicating that
the PTF has a high impact on this runoff generation process in the model. In contrast,
the baseflow pattern is similar in all scenarios. Interestingly, in all scenarios, the ETa
pattern show a high correlation, however, the absolute values seem to differ considerably
(relatively low values for histogram overlap).
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Table 8. Spatial correlation (correl) and histogram overlap (histo) of the 10 scenarios compared to the
baseline scenario, for spatial mean of direct runoff, Interflow, baseflow, and ETa.

Scenario Correl Histo Correl Histo Correl Histo Correl Histo

Direct Runoff Interflow Baseflow ETa

1 0.997 0.804 0.942 0.893 0.996 0.985 0.997 0.819

2 0.999 0.697 0.975 0.892 0.998 0.976 0.998 0.727

3 0.992 0.423 0.782 0.769 0.978 0.970 0.988 0.349

4 0.997 0.786 0.500 0.381 0.976 0.987 0.997 0.744

5 0.997 0.653 0.835 0.829 0.990 0.966 0.996 0.652

6 0.995 0.473 0.916 0.874 0.995 0.965 0.998 0.653

7 0.999 0.683 0.962 0.898 0.999 0.994 1.000 0.827

8 0.997 0.758 0.913 0.910 0.997 0.988 0.997 0.846

9 0.997 0.712 0.795 0.746 0.990 0.975 0.995 0.626

10 0.996 0.782 0.900 0.909 0.994 0.965 0.997 0.618

4. Discussion

The selection of the PTF to estimate the soil hydraulic properties which are included
in a hydrological model is often done without taking the runoff characteristics of the catch-
ment into consideration. Therefore, it is of particular interest to the modeling community
to have a quantitative description of the change in model behavior caused by the choice of
PTF, in order to make decisions that are more informed. We hypothesized that the water
balance and runoff behavior of a catchment are distinctly affected by the characteristics of
the PTFs that primarily represent the water retention and hydraulic conductivity curves.
Thus, we considered the soil parameterization of different PTFs in a hydrological catchment
model to quantify the changes in soil hydraulic properties of the Glonn catchment as well
as to analyze the resulting shifts in its water balance components and runoff characteristics.

As shown in Figure 1b, the Glonn catchment covers a wide range of different soil
texture classes. It is therefore well suited for studying the influence of PTFs on soil
hydraulic properties as well as the resulting runoff behavior. This high diversity allowed
holding a more profound analysis of the spatial and temporal variability of different runoff
characteristics depending on the choice of the respective PTF. The good representation of
the runoff behavior by WaSiM-ETH suggests the general suitability of this hydrological
model for the intended investigation. Moreover, the implementation of a layered soil
structure made it possible to consider the underlying soil properties in detail.

The baseline scenario and the 10 other scenarios (Table 3) were chosen in such a
way that the influence of modified van-Genuchten parameters or saturated hydraulic
conductivities could be separately explored. Since the calibration was only performed
for the baseline scenario, the differences in the runoff behavior amongst scenarios can be
directly attributed to the modified soil parameters. Nevertheless, this approach cannot
provide a definitive assessment of the suitability of the PTFs to represent the runoff behavior
in the catchment. This evaluation would require the calibration of all scenarios using the
same calibration strategy. However, due to the resulting over-imposition of the runoff
behavior by the calibration parameters, the direct analysis of the particular influence of
the changed soil properties would no longer be possible. Therefore, the calibration of
the scenarios was not performed. Nevertheless, the parameters of the calibrated baseline
scenario are within the parameter space of the other scenarios, and thus their hydrographs
scatter around the measured runoff.

The considered PTFs resulted in a wide range of different shapes for the water re-
tention and saturated hydraulic conductivity curves. The shape of the water retention
curve is mainly associated with the parameters n and α which are included in the soil
parameterization in WaSiM-ETH (Table 1). The parameters are related to the process of
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saturation and desaturation of the soil [52]. The hydraulic parameters AWC, FC, and Ksat
determined for a quantitative comparison of the curves showed significant differences in
their spatial distribution (Figure 2). These differences become particularly evident when
comparing the individual scenarios with the baseline scenario. This issue is important
because spatial variability of soil hydraulic properties is regarded as a significant factor to
water distribution in the catchment [53].

The quality and quantity of the changes in the soil hydraulic properties induced by dif-
ferent PTFs are remarkably affected by their underlying databases, predictors, and methods
used to develop the predictive equations. For example, apart from the soil texture classes,
there is a significant effect on estimates of soil hydraulic properties, when both OM and BD
variables and when only one of them are inputs to the equations (PTFs) [54]. Consequently,
the impact of land use and geographic attributes on soil BD and OM [55] leads to a different
description of the same soil in the PTFs (i.e., different input values into the equation)
and this may account for the observed variation in soil hydraulic properties [11,43]. As
a result, the spatial distribution of the differences that we observed between AWC and
Ksat simulated by the scenarios and those of the baseline scenario could be attributed to
the land use distribution as well as the proximity to watercourses (Figures 1 and 3). AWC
depends to a large extent on the bulk density and the silt content. Hence, PTFs that do not
include BD typically result in lower AWC values in soils with lower bulk densities, such
as those found in the upper soil horizons of forest soils in a study by [56,57]. They also
identified the BD and soil texture as major factors explaining spatial variance in AWC for a
study area in China.

The qualitative and quantitative analysis of the discharge hydrographs (Figure 4
and Table 5) as well as the respective signature indices analysis (Table 6) showed distinct
differences in the runoff behavior of the catchment through investigated PTFs. The variation
of the peak discharge differences between the scenarios and the baseline scenario is caused
by the respective pre-event conditions, including the initial soil moisture, and consequently
the available soil water storage volume, as well as infiltration capacity.

The differences in model behavior due to soil parameterizations through different
PTFs were already analyzed in a study by [58] using a 1D hydrological model. They
showed that even when the very same soil was considered in the entire parameterization
scheme, and simulated transpiration and soil moisture were consistent with observations,
yet the runoff processes or total water balance could be estimated incorrectly. Based on a
multi-criteria evaluation, they found that only one of 24 investigated parameterizations
resulted in a realistic behavioral model. The complexity of this evaluation is increased by
focusing on a closed hydrological catchment, as it was considered in this study. Here, in
comparison to above-mentioned 1D model (i.e., only one cell), adjusting the soil hydraulic
properties in our catchment model by various PTFs affects the neighboring cells in the
spatial domain as well.

In addition, the runoff behavior in the model is influenced by the choice of the
calibration parameters. As a result, an insufficient parameterization of the soil can be at least
partially compensated by an appropriate adjustment of the model calibration. However,
even after calibration, a model may still represent an unrealistic water distribution across
the landscape [59]. Therefore, in addition to get the right answer, for example by comparing
runoff hydrographs at the catchment outlet, it is also required to analyze whether we are
getting the “right answers for the right reasons” [60].

Ultimately, depending on the soil and topographic characteristics, we tracked the
spatial distributions of the changes in the main hydrological processes (Tables 7 and 8,
Figure 5).

Our results led to a similar conclusion where remarkable differences amongst water
balance components of the individual scenarios against the calibrated case were obtained.
Furthermore, analysis of frequency of occurrence of runoff components (Figure 5) displayed
a pronounced contrast amongst scenarios. This indicates that the dominance of surface
runoff, interflow, and baseflow within the catchment and during time periods can be
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shifted depending on how the soil hydraulic properties are parameterized. In addition to
temporal patterns of runoff components, we examined the spatial patterns of runoff and
evapotranspiration in the catchment (Table 8). The outcome was relevant to the previous
mentioned argument, where spatial patterns were also quite distinguishable amongst
different scenarios. The quantified influence of various PTFs on temporal and spatial
patterns of water budget components provided the same evidence to the fact that spatial
variability in soil hydraulic characteristics and model errors initiated from application
of different PTF cases, may introduce their own uncertainty to model simulation. This
is consistent with what has been found by [61]. They compared the performance of two
different soil hydraulic parameterization techniques in terms of outputs of catchment water
balance simulated by the model HydroGeoSphere, and underlined the potential flaws of
choosing different parameterizations in spatially distributed modeling.

Finally, it may be concluded that the information contained in streamflow data is not
sufficient to derive physically reasonable soil parameter values only via calibration. This
indicates that the resulted uncertainty most likely comes from different descriptions of soil
water characteristics (i.e., PTF cases). On this account, deriving the “spatial distribution of
variability” from different scenarios, our methodology revealed that choosing a specific
PTF may significantly influence the spatial distribution of soil hydraulic properties (e.g.,
Ksat and AWC) and also the way water is being distributed across the landscape prior to the
catchment outlet. As a result, owing to the fact that the spatial variability of Ksat and AWC
affects the temporal response of the catchment to precipitation and runoff concentration,
one can consider that selection of a particular PTF makes evident changes in the distribution
among groundwater infiltration, runoff and evapotranspiration in the catchment [53,62].

It is important to highlight the fact that most of the PTFs yet show limitations consider-
ing the effects of soil inhomogeneity due to structure or macropores, and widely available
soil datasets (e.g., FAO Harmonized World Soil Database) may fail to reflect actual field
conditions. This warrants further evaluation of PTFs using extensive observed data and
particular inclusion the effects of soil structure and macropores [39,63]. Moreover, since
soil hydrological parameters vary significantly even within a small area, most of the PTFs
are usually applicable with acceptable accuracy only in the regions where those functions
were developed [64]. This study showed that the uncertainly forced by selection of PTFs
are mainly represented in the spatial distribution of runoff components which are not
distinctly addressed by hydrological model calibration against observed discharge time
series at the catchment outlet. This recommends that emphasis should be made to soil
parameterization oriented towards a “plausible hydrological behavior in terms of spatial
patterns of runoff components” during catchment modeling.

According to our knowledge, no comprehensive work was dedicated to carefully
analyze the impact of different PTF selection on spatial distribution of internal hydrological
processes in the catchment, which underlines the novelty of this research. Indeed, at
this stage of understanding, the question of “which PTFs are performing the best?” still
remains to be addressed. Since answering this question is beyond the topic of this paper,
we therefore believe that future research is clearly required to quantify and qualify the
spatial difference in distribution of internal hydrological processes introduced by various
PTFs. In other words, application of PTFs in hydrological models without evaluating
the spatial patterns of soil moisture, evapotranspiration, and runoff processes produced
by different PTFs may ultimately lead to implausible results and possibly to incorrect
decisions in water management. This entails investigation of additional information, which
usually has to be elaborately collected, for instance, by mapping the dominant runoff
generation processes in the area, or retrieving the spatial patterns of evapotranspiration
and soil moisture using remote sensing methods, and evaluation at a scale commensurate
with hydrological model [51,65].
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5. Conclusions

The knowledge of soil hydraulic properties and land use effects on these properties
are important for efficient soil and water management. Hence, the motivation for this study
was to examine a methodology to quantify the effect of modeler’s choice of PTF on van
Genuchten parameters, and accordingly, analyze the sensitivity of simulated hydrological
processes to the spatial variability in soil hydraulic characteristics associated with different
PTFs. Our results cast a new light on the way that PTFs are routinely being opted for param-
eterization of hydrologic modeling (i.e., parameters of van Genuchten). It was revealed that
elements of the water balance are highly sensitive to the spatial structure of soil hydraulic
properties, and a wide range of different hydrological model behavior can be created just
by the option of PTFs. Despite the different proportions of various runoff components
produced by a variety of PTFs, this might still result in an acceptable representation of the
discharge hydrograph. As a result, model calibration exclusively at catchment outlet may
lead to implausible results and possibly to incorrect decisions. Since the distribution of
water in the hydrologic system differs greatly amongst PTF cases, we recommend align-
ing the soil parameterization more towards mapping a plausible hydrological behavior.
Nevertheless, to this end, additional information is required, which usually has to be
intricately clustered together, for example, by mapping the dominant runoff processes in
the hydrologic system; or deriving the soil moisture and evapotranspiration patterns by
remote sensing methods.
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Abstract: The aim of this study was to simulate dominant runoff generation processes (DRPs) in a
mesoscale catchment in southwestern Germany with the physically-based distributed hydrological
model WaSiM-ETH and to compare the resulting DRP patterns with a data-mining-based digital
soil map. The model was parameterized by using 11 Pedo-transfer functions (PTFs) and driven
by multiple synthetic rainfall events. For the pattern comparison, a multiple-component spatial
performance metric (SPAEF) was applied. The simulated DRPs showed a large variability in terms
of land use, applied rainfall rates, and the different PTFs, which highly influence the rapid runoff
generation under wet conditions.

Keywords: data-mining-based digital soil mapping; spatial pattern comparison; water balance
modeling; spatial efficiency metric

1. Introduction

Distributed physically-based hydrological models have been the mainstream in the
community of hydrological modelers, providing significant insights into understanding
and predicting hydrological fluxes and states [1,2]. Based on the rainfall–runoff response,
these models account for the spatio-temporal dynamics of hydrological processes at various
scales [3–6]. Modeling the interplay of hydrological processes in a spatially distinct manner
provides the required tool to tackle the issues at hand driven by global climate change and
land use intensification. The capability of a model to predict the spatial variabilities of hy-
drological processes, however, poses evident challenges to its modeling structure. Thereby,
considering the complex feedbacks between the hydrological processes that drive spatial
variability, distributed hydrological model applications are a challenge for spatial pattern-
oriented evaluations [7–9]. The spatial predictability of distributed model output can only
be thoroughly verified when evaluating the outputs against spatial observations [9,10],
whereas, in particular, discharge data at the catchment outlet does not provide sound
information about the spatial distribution of runoff processes within the catchment [11].

Changes in the underlying land surface conditions caused by land use, soil types,
geological, and topographical factors may alter the spatial patterns of runoff generation
processes in a catchment area, which might then cause extreme flood or drought events.
Such events may further influence the subsequent processes that govern the runoff response
of a region, particularly in smaller catchments. For example, for water resource manage-
ment and early flood warning, it is important to conduct quantitative measurements of the
effects of urbanization on surface runoff. A recent study approached runoff fluctuations
in an urban region using GIS and remote sensing technologies as well as the SCS-CN
model [12]. It was found that within the period of 15 years, the region experienced a
significant growth of urban impervious areas and a notable decline in vegetated land cover,
being the predominant drivers of surface runoff change. The rise in surface runoff was
found to be positively correlated to the growth in urbanization and negatively correlated
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to the decreased vegetation cover. Another study analyzed the effects of land use change
on runoff production by using the SCS-CN approach, remote sensing data, and GIS tools,
where runoff was predicted from precipitation, land use, and hydrological soil groups
using the SCS-CN model [13]. According to another study, the influence of different land
use covers on the soil hydraulic properties was investigated, and consequently, different
soil hydrological behaviors to heavy storms were found, and therefore, different runoff
productions were observed [14].

A well-performing hydrological model of a given catchment is in essence a virtual
reflection of how the runoff generation processes vary spatially and temporally and switch
between major flow mechanisms (i.e., surface runoff, subsurface flow, or base flow) [15].
While various runoff processes may occur on a site, only the dominant processes most
likely contribute to the total runoff of the catchment and are significantly dependent on the
site characteristics and the nature of the precipitation event [16,17]. For instance, relatively
flat areas adjacent to the flow channel are disposed to faster saturation (i.e., even during
slight precipitation events) and can quickly transfer water to the river network, which
generally results in a fast runoff response (e.g., saturation overland flow). In contrast,
runoff responses from hillslope zones are relatively slower, even during higher intensity
rainfall events, and may largely contribute to processes such as interflow. Therefore,
models that correctly discern the spatial variability of dominant runoff processes (DRPs)
and identify flow pathways consistent with spatial observations can serve as tools to
make predictions and test the hypotheses of the controls on hydrological responses [18–22].
The spatial information of DRPs in a catchment allow for a thorough evaluation of how
a model represents the spatial distribution of runoff generation and the contributing
areas under different rainfall characteristics and initial catchment conditions. The various
mapping approaches for DRPs differ regarding the time and data required for mapping,
and accordingly, the defined DRP classes might then be different [16,23,24].

While better process representations are required, it has always been quite a challenge
to acquire good quality observed datasets with minimal uncertainty for hydrological model
testing. Such datasets should then ideally transfer information about the changes in storage
and variations in travel time distributions as a catchment wets and dries out, so that
models can confidently be evaluated against the spatial distribution of runoff generation
processes and the internal moisture state in catchments with different properties [25–27].
This highlights the principle that the model evaluation should thus make use of all sources
of data available in a catchment area [25,28]. Antonetti et al. (2019) applied multiple DRP
maps to incorporate the knowledge on DRPs into hydrological modeling. They presented
divergent catchment reactions in terms of DRPs to precipitation events for flash flood
predictions. They implemented synthetic runoff simulations to assess the sensitivity of the
hydrograph to the mapping approach and found that simulations following the simplified
procedures resulted in the strongest deviations from the reference map. Furthermore, in
the Nahe catchment in Rhineland-Pfalz, Haag et al. (2016) [29] also integrated spatially
distributed information on DRPs based on the classification of Scherrer and Naef (2003) [30]
into LARSIM (large area runoff simulation model) for operational flood forecast [31] and
applied different soil parameterizations corresponding to DRPs in the catchment area.

Thereupon, in the present study, we attempted to utilize an available soil hydrological
map for the state of Rhineland-Palatinate (western Germany) from which the DRPs in a
landscape unit are identified [32]. This map reflects different flow processes, which are
plausible based on the site’s characteristics. In this paper, we intend to integrate this process
information into rainfall–runoff model evaluation. Therefore, a methodology was devel-
oped that translates the map content into runoff classes that are consistent with the model
structure in use. This would then enable spatial pattern-oriented evaluation on DRPs, for
which we adopted a multiple-component spatial performance metric (SPAEF) [33]. We then
defined a series of synthetic rainfall events with different intensities on a system moisture
state around field capacity to assess how different rainfall intensities affect the spatial
patterns of DRPs in the catchment. Furthermore, we applied 11 different Pedo-transfer
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functions (PTFs) to translate the information on soil properties into model parameters, since
the choice of PTFs has a distinctive effect on the water balance and runoff generation [7].
Overall, this study aimed to provide a basis to understand and evaluate the observed dif-
ferences in the spatial patterns of DRPs at the catchment scale and to use this information
as a significant constraint in the evaluation process of a hydrological model. This would
allow for the selection of behavioral model parameterizations (rather than compensating
through calibration).

2. Materials and Methods
2.1. Study Area

The Kronweiler catchment in the Nahe Valley is located in the state of Rhineland-
Palatinate in the southwest of Germany. The catchment, with an area of 64 km2, has a
distinct river network, and the elevation ranges from 298 m a.s.l. (in the southeast) to above
720 m a.s.l. (in the north and northwest), resulting in a mean slope gradient of 8.6 and a
notable altitude difference (see Figure 1a; [34]). Soil and geological information (Figure 1b)
were derived from the “Hydrologische Übersichtskarte Rheinland-Pfalz” (2006). Sandstone
mainly occurs in the northern parts, and siltstone underlies the southwest parts of the
region. Dominant soil types are Gleyic and Humic Podzols and Cambisols.

Land use information (Figure 1c) was taken from the Corine land cover dataset (CLC,
2006), which represents forested areas as the largest land use (66%) followed by grassland
(29%), cropland (3.9%), urban (0.9%), and wasteland (0.2%). While forests are patchily
scattered throughout the catchment, they large cover the northern areas and the areas
around the river network in the south. There are also grasslands distributed evenly over
the entire area, except for the highlands in the north.
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2.2. Model Setup and Parameterization

The hydrological model WaSiM (http://www.wasim.ch, accessed on 17 February 2023)
was applied to analyze the water balance and runoff generation processes in the catchment. As
a distributed and deterministic model, WaSiM provides physical descriptions of the involved
hydrological processes. It applies Richard’s equation [35] to simulate unsaturated water
fluxes in the soil and uses van Genuchten parameters [36] for the parameterization of the soil
hydraulic properties. WaSiM represents the soil as a layered column. This means, for each
soil horizon, that the layer thickness and water retention curve are separately defined. Every

http://www.wasim.ch
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horizon within a soil profile is characterized with a specific permeability. To describe the
water retention curve, estimations of the van Genuchten parameters as well as the saturated
hydraulic conductivities are required (i.e., by using PTFs). The model indicates different
runoff response types (fast, intermediate, slow) by simulating the three runoff components
surface runoff, interflow, and base flow. A detailed description of the procedure by which the
model determines the DRPs in the catchment is presented in the Section 2.4.2).

The model was set up with a spatial resolution of 50 m and a temporal resolution of
1 h. The required input time series of precipitation, temperature, relative humidity, global
radiation, and wind speed were taken from the meteorological station of Dienstweiler
(https://www.wetter.rlp.de/agrarmeteorologie, accessed on 17 February 2023). The pre-
processing tool of WaSim-ETH TANALYS was applied to derive the necessary spatial data
(e.g., slope, flow accumulation, sub-catchment structure, and stream network). The depth
of the bulk density and organic matter content for each soil type and horizon were adapted
considering the main land use types. The input time series of 6 years (2009–2014) was
used for the model stabilization. Then, the system moisture state on 31 December 2014
represents the catchment moisture condition around field capacity.

Overall, without the interference of model calibration, the model allows for the analysis
of the effects of changes in the soil hydraulic properties and rainfall event characteristics on
the dominant runoff behavior of the catchment and its spatial patterns. In other words, for
the purpose of this study, the exact description of the reality was of minor importance.

A combination of 11 PTFs were applied through different simulation runs to con-
sider the effect of the different soil parameterizations by PTFs on the spatial patterns of
runoff processes in the catchment. Defined PTF combinations (Table 1) determined the
van Genuchten parameters (i.e., θsat, θres, n) and saturated hydraulic conductivity Ksat.
Determination of the Ksat for the combinations of 1 to 7 was carried out according to
the table of the Ad-hoc-AG Boden (2005) [37], while for the combinations of 8 to 10, the
corresponding equations of selected PTFs were applied. The main differences among the
PTFs were the underlying databases, number of considered soil samples, and the selected
input predictors to the equations (i.e., soil texture is included in all PTFs as an input, but
bulk density and organic matter content are not always considered in some of the PTFs).
For detailed information on the following PTF combinations, see [7].

Table 1. PTF combinations to estimate the parameters of van Genuchten (θsat, θres, n) and saturated
hydraulic conductivity Ksat.

PTF Combination Van Genuchten Parameters Soil Hydraulic Conductivity Ksat

1 Wösten et al. (1999) [38] Ad-hoc-AG Boden (2005) KA5 [37]

2 Renger et al. (2009) [39] Ad-hoc-AG Boden (2005) KA5 [37]

3 Weynants et al. (2009) [40] Ad-hoc-AG Boden (2005) KA5 [37]

4 Zacharias and Wessolek (2007) [41] Ad-hoc-AG Boden (2005) KA5 [37]

5 Teepe et al. (2003) [42] Ad-hoc-AG Boden (2005) KA5 [37]

6 Zhang and Schaap (2017):
Rosetta H2w [43] Ad-hoc-AG Boden (2005) KA5 [37]

7 Zhang and Schaap (2017):
Rosetta H3w [43] Ad-hoc-AG Boden (2005) KA5 [37]

8 Wösten et al. (1999) [38] Wösten et al. (1999) [38]

9 Renger et al. (2009) [39] Renger et al. (2009) [39]

10 Zhang and Schaap (2017):
Rosetta H2w [43]

Zhang and Schaap (2017):
Rosetta H2w [43]

11 Zhang and Schaap (2017):
Rosetta H3w [43]

Zhang and Schaap (2017):
Rosetta H3w [43]

https://www.wetter.rlp.de/agrarmeteorologie
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2.3. Synthetic Rainfall Events

We defined a series of synthetic rainfall events with different intensities but fixed
volume to analyze their impact on the spatial patterns of DRPs in the catchment. Instead of
focusing on how well the model reproduces a measured discharge, the word “synthetic”
implies that the focus of this study was exclusively on the differences between the simulated
patterns and patterns derived from a digital soil map. The synthetic rainfall event series
had a consistent total rainfall amount of 100 mm of precipitation and accordingly, ascending
rainfall durations resulted in descending intensities (Table 2). According to the available
rainfall data on large precipitation events in the area, the amount of 100 mm rainfall in 3 to
10 h is realistic. In addition, this amount is high enough to force the model to reach the max-
imum infiltration rates and eventually produce overland flow. In other words, during the
3 up to 10 h of synthetic rainfall, the changes in the spatial distribution of surface runoff,
interflow, and deep percolation were analyzed.

Table 2. Overview of the rainfall characteristics of the synthetic rainfall events. Total rainfall amounts
up to 100 mm of precipitation for all events.

Rainfall Duration (Hours) Rainfall Intensity (mm/h)

3 33.33

4 25

5 20

6 16.66

7 14.29

8 12.5

9 11.11

10 10

The simulation period was set to 7 days to consider the contribution of delayed flow
processes. To ensure that no process other than the main runoff processes (i.e., overland flow,
interflow, and deep percolation) was triggered within the catchment, the air humidity was
set to a constant value of 100%, which prevents evaporation processes. Air temperatures
above 0 ◦C prevent any snow contribution. This ensures that the defined precipitation
amount predominantly transforms into runoff production.

2.4. Determination of Dominant Runoff Generation Process (DRP)
2.4.1. DRP by Reference Soil Hydrological Map

Information on the spatial distribution of runoff processes in a catchment can be
visualized in maps discerning different types of runoff [24]. There are different mapping
techniques for DRPs regarding the required time and data for mapping, and therefore, the
DRP classes might be differently defined [16,23,24,30]. For the Nahe River Basin located in
the state of Rhineland-Palatinate in southwest Germany, a runoff generation (reference) map
is available, which also encompasses the study area Kronweiler [32]. To create this reference
map, in a first step, four reference areas were mapped by experts using the mapping scheme
of Scherrer (2006) [44]. In a second step, a data-driven artificial intelligence method used
(i) these maps, (ii) the output from digital terrain analysis (e.g., slope, distance to stream) [45],
and (iii) spatial information about geology, soil, and land use to generate the final product,
a map of the dominant runoff generation processes, and the reaction time (Table 3) [46,47].
The resulting spatial structure of DRPs is plausible, for instance, if a location is close to
the stream channels or on steep slopes, runoff generation is faster and overland flow or
interflow, respectively, are more likely (Figure 2). If a location is dominated by permeable
soils or permeable geology, deep percolation or (on slopes) interflow are more likely as
dominant DRPs [32].
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Table 3. List of the DRP classes defined in the reference soil hydrological map [32,44].

DRP Class Description

SOF 1 Saturated overland flow Level 1

SOF 2 Saturated overland flow Level 2

SOF 3 Saturated overland flow Level 3

SSF 1 Subsurface flow Level 1

SSF 2 Subsurface flow Level 2

SSF 3 Subsurface flow Level 3

DP Deep percolation
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In Table 3:

(1) Saturated overland flow (SOF) describes the surface runoff, occurring when the
storage capacity is exceeded due to saturation of the soil profile. The levels (or
subclasses) describe the pace of the flow process from very fast (1) to delayed (2) and
strongly delayed (3). Subclass SOF1 arises when the soil is saturated very fast. The
subclasses SOF2 and SOF3 show an increasing saturation deficit, where saturation
happens with a delay.

(2) Subsurface flow (SSF) describes the flow processes within the soil profile, where precipi-
tation water infiltrates through the soil surface. There, it can either be stored or continues
to percolate until reaching the groundwater table. When a well-permeable soil horizon
lies above a less permeable horizon, lateral subsurface runoff can also occur.

(3) Deep percolation (DP) describes the percolation of water to deeper soil horizons.

2.4.2. Determining DRPs Using a Hydrological Model

The rainfall–runoff transformations simulated with WaSiM are represented by three
runoff components. Surface runoff and interflow simulations are directly produced by
the model runs, and by subtracting these runoff components from the total runoff, deep
percolation can be estimated. As a result, each grid cell of the catchment area individually
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represents a runoff process. Here, the evaporation or other intermediate storage is not
triggered. A runoff component comprising 75% of the precipitation is considered dominant.
Therefore, the DRPs can be initially defined into three classes:

1 = Deep percolation is dominant;
2 = Interflow is dominant;
3 = Surface runoff is dominant.
This classification holds true if the respective runoff process is triggered from at least

75% of the total precipitation. However, when there is no runoff process with a 75%
contribution rate and the runoff shares are very close to each other, two further classes can
be defined considering the second largest runoff shares. Accordingly, the grid cells are
assigned to the corresponding DRP classes (Table 4).

Table 4. Dominant runoff classification in WaSIM.

DRP Class Description

1 DP > 75, and/or
DP > SR and DP > IF

1.5
IF > 50 and DP > 25
DP > 50 and IF > 25
DP > 50 and SR > 25

2
IF > 75

IF > 50 and IF > DP
IF > SR and IF > DP

2.5 SR > 50 and DP > 25
IF > 50 and SR > 25

3
SR > 75

SR > 50 and IF > 25
SR > IF and SR > DP

For instance, class 1.5 is assigned whenever one or more of the following conditions apply:

(1) When interflow (IF) is greater than 50% and DP is greater than 25% at the same time, or
(2) If DP is greater than 50% and at the same time IF is greater than 25%, or
(3) When DP is greater than 50% and at the same time the surface runoff (SR) is greater

than 25%.

2.4.3. Reclassification of the Reference Map for DRPs

A common classification must be set because the classes used for the determination
of DRPs for the model simulations and those of the reference map do not match. For this
purpose, the classes of the reference map were adapted to those of the simulation model.
Table 5 shows the reclassification. To give an example, since class DP and DP = in the map
and class 1 in the model both represent deep percolation as DRP, DP and DP = classes of
the reference map were assigned to class 1.

Table 5. Reclassification of the soil hydrologic map corresponding to the hydrological model DRP classes.

DRP Classes in Reference Hydrological Map Corresponding DRP Classes in WaSiM Model

DP 1

SSF 3 1.5

SSF 1 and SSF 2 2

SOF 3 2.5

SOF 1 and SOF 2 3
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2.5. Quantitative Evaluation of Spatial Patterns of DRPs

The accordance of the spatial patterns between the model and reference map was
evaluated by using a spatial efficiency metric (SPAEF, see Equation (1)) developed by
Demirel et al. (2018) [33]. The SPAEF is a multi-component statistical metric inspired by
the Kling–Gupta efficiency [49] that quantifies the spatial similarity between the simulation
patterns and spatial observation. The three components of the SPAEF are (i) the Pearson cor-
relation coefficient (α); (ii) the coefficient of variation (β); and (iii) percentage of histogram
intersection (γ), as follows:

Equation (1). SPAEF spatial efficiency metric formula.

SPAEF = 1 −
√
(α − 1)2 + (β − 1)2 + (γ − 1)2 (1)

where

α = ρ (A, B); β =

(
σA
µA

)
/
(

σB
µB

)
; γ =

∑n
j=1 min

(
Kj, Lj

)
∑n

j=1 Kj

where α is the Pearson correlation coefficient between A (spatial observation by the reference
map) and B (simulated patterns). β is the fraction of the coefficient of variation representing
spatial variability. γ is the histogram overlap for the given histograms K of the patterns
of A and L of the patterns of B, each containing n bins. The spatial efficiency scale value
ranges from −∞ to 1. If the value is above 0, a pattern match can be seen. The better the
similarity between the patterns, the closer the efficiency metric value approaches unity.

3. Effects of Rainfall Intensities on Spatial Patterns of Simulated Runoff Processes

Different rainfall intensities together with different soil hydraulic properties (i.e.,
derived from various PTF combinations) can be applied to simulate the runoff processes
(i.e., surface runoff, interflow, and deep percolation) occurring in the catchment, and
accordingly, the changes in the spatial patterns are illustrated (Figures 3–5). The moisture
pre-condition for the catchment system is considered as the moisture content at the root
zone after an extended rainfall period, which amounts to soil water content near field
capacity. Here, we present only PTF combination 5 [37,42] because it showed the highest
similarity to the reference map.

Hydrology 2023, 10, x FOR PEER REVIEW 9 of 18 
 

 

SPAEF = 1 − √(𝛼 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)²  (1) 

where  

α =  𝜌 (𝐴, 𝐵); 𝛽 = (
𝜎𝐴

𝜇𝐴
) / (

𝜎𝐵

𝜇𝐵
); 𝛾 =  

∑ min(𝐾𝑗,𝐿𝑗)𝑛
𝑗=1

∑ 𝐾𝑗
𝑛
𝑗=1

  

where α is the Pearson correlation coefficient between A (spatial observation by the refer-

ence map) and B (simulated patterns). β is the fraction of the coefficient of variation rep-

resenting spatial variability. γ is the histogram overlap for the given histograms K of the 

patterns of A and L of the patterns of B, each containing n bins. The spatial efficiency scale 

value ranges from −∞ to 1. If the value is above 0, a pattern match can be seen. The better 

the similarity between the patterns, the closer the efficiency metric value approaches 

unity. 

3. Effects of Rainfall Intensities on Spatial Patterns of Simulated Runoff Processes 

Different rainfall intensities together with different soil hydraulic properties (i.e., de-

rived from various PTF combinations) can be applied to simulate the runoff processes (i.e., 

surface runoff, interflow, and deep percolation) occurring in the catchment, and accord-

ingly, the changes in the spatial patterns are illustrated (Figures 3–5). The moisture pre-

condition for the catchment system is considered as the moisture content at the root zone 

after an extended rainfall period, which amounts to soil water content near field capacity. 

Here, we present only PTF combination 5 [37,42] because it showed the highest similarity 

to the reference map. 

 

Figure 3. Variability in the spatial patterns of the simulated surface runoff within the catchment 

under different synthetic rainfall intensities (PTF combination 5 in Table 1). 

A clear variability could be seen in the spatial patterns (Figure 3). For all rainfall in-

tensities, the patterns of surface runoff with the highest values (about 80 to 100 mm) were 

observed in the stream channels or in the adjacent areas, except for some spots close to the 

channels (in blue colors), which resulted lower amounts of surface runoff. These excep-

tions showed a remarkable decreased runoff value of about 35 mm for the rainfall inten-

sity of 100 mm/3 h (displayed in light blue) and continued to show lower runoff values 

with increasing precipitation duration until it no longer generated surface runoff for a 6 h 

precipitation duration and longer (displayed in darker blue colors). In general, with an 

increase in the precipitation duration (i.e., decreasing rainfall intensity), spatial patterns 

showed a significant decline in the amount of surface runoff, distinctly in the distant lo-

cations from the river courses. These patterns were particularly recognizable in the high 

Figure 3. Variability in the spatial patterns of the simulated surface runoff within the catchment
under different synthetic rainfall intensities (PTF combination 5 in Table 1).



Hydrology 2023, 10, 55 10 of 18

Hydrology 2023, 10, x FOR PEER REVIEW 10 of 18 
 

 

elevations of the catchment in the north and northwest as well as in the low elevations in 

the south and southeast, and a sub-area in the center of the catchment.  

 

Figure 4. Variability in the spatial patterns of simulated interflow within the catchment, under dif-

ferent synthetic rainfall intensities (PTF combination 5 from Table 1). 

Obviously, with an increasing rainfall duration, and therefore a decreasing rainfall 

intensity, the interflow amount rose (Figure 4). It can be stated that the interflow largely 

developed near the river courses (i.e., not in them). It is also remarkable that the interflow 

patterns in the catchment did not change from a precipitation duration of 6 h up to 10 h. 

If the total catchment is considered, the interflow usually amounted to 15–20 mm. How-

ever, interflow occasionally reached 35–50 mm in simulations with higher rainfall inten-

sities (e.g., 100 mm in 3 and 4 h) and only in a small area close to the channels. 

 

Figure 5. Variability in the spatial patterns of simulated deep percolation within the catchment un-

der different synthetic rainfall intensities (PTF combination 5 from Table 1). 

Total deep percolation increased mostly within the catchment, as the rainfall dura-

tion became longer (Figure 5). This overall change was markedly pronounced up to the 

rainfall event of 100 mm/7 h, while a further reduction in rainfall intensity did not show a 

clear increase in deep percolation. Under the highest rainfall intensity (i.e., 100 mm/3 h), 

the simulations still showed development of the spatial patterns of deep percolation in 

Figure 4. Variability in the spatial patterns of simulated interflow within the catchment, under
different synthetic rainfall intensities (PTF combination 5 from Table 1).

Hydrology 2023, 10, x FOR PEER REVIEW 10 of 18 
 

 

elevations of the catchment in the north and northwest as well as in the low elevations in 

the south and southeast, and a sub-area in the center of the catchment.  

 

Figure 4. Variability in the spatial patterns of simulated interflow within the catchment, under dif-

ferent synthetic rainfall intensities (PTF combination 5 from Table 1). 

Obviously, with an increasing rainfall duration, and therefore a decreasing rainfall 

intensity, the interflow amount rose (Figure 4). It can be stated that the interflow largely 

developed near the river courses (i.e., not in them). It is also remarkable that the interflow 

patterns in the catchment did not change from a precipitation duration of 6 h up to 10 h. 

If the total catchment is considered, the interflow usually amounted to 15–20 mm. How-

ever, interflow occasionally reached 35–50 mm in simulations with higher rainfall inten-

sities (e.g., 100 mm in 3 and 4 h) and only in a small area close to the channels. 

 

Figure 5. Variability in the spatial patterns of simulated deep percolation within the catchment un-

der different synthetic rainfall intensities (PTF combination 5 from Table 1). 

Total deep percolation increased mostly within the catchment, as the rainfall dura-

tion became longer (Figure 5). This overall change was markedly pronounced up to the 

rainfall event of 100 mm/7 h, while a further reduction in rainfall intensity did not show a 

clear increase in deep percolation. Under the highest rainfall intensity (i.e., 100 mm/3 h), 

the simulations still showed development of the spatial patterns of deep percolation in 

Figure 5. Variability in the spatial patterns of simulated deep percolation within the catchment under
different synthetic rainfall intensities (PTF combination 5 from Table 1).

A clear variability could be seen in the spatial patterns (Figure 3). For all rainfall
intensities, the patterns of surface runoff with the highest values (about 80 to 100 mm)
were observed in the stream channels or in the adjacent areas, except for some spots close
to the channels (in blue colors), which resulted lower amounts of surface runoff. These
exceptions showed a remarkable decreased runoff value of about 35 mm for the rainfall
intensity of 100 mm/3 h (displayed in light blue) and continued to show lower runoff
values with increasing precipitation duration until it no longer generated surface runoff
for a 6 h precipitation duration and longer (displayed in darker blue colors). In general,
with an increase in the precipitation duration (i.e., decreasing rainfall intensity), spatial
patterns showed a significant decline in the amount of surface runoff, distinctly in the
distant locations from the river courses. These patterns were particularly recognizable
in the high elevations of the catchment in the north and northwest as well as in the low
elevations in the south and southeast, and a sub-area in the center of the catchment.

Obviously, with an increasing rainfall duration, and therefore a decreasing rainfall
intensity, the interflow amount rose (Figure 4). It can be stated that the interflow largely
developed near the river courses (i.e., not in them). It is also remarkable that the interflow
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patterns in the catchment did not change from a precipitation duration of 6 h up to 10 h. If
the total catchment is considered, the interflow usually amounted to 15–20 mm. However,
interflow occasionally reached 35–50 mm in simulations with higher rainfall intensities
(e.g., 100 mm in 3 and 4 h) and only in a small area close to the channels.

Total deep percolation increased mostly within the catchment, as the rainfall duration
became longer (Figure 5). This overall change was markedly pronounced up to the rainfall
event of 100 mm/7 h, while a further reduction in rainfall intensity did not show a clear
increase in deep percolation. Under the highest rainfall intensity (i.e., 100 mm/3 h), the
simulations still showed development of the spatial patterns of deep percolation in the
catchment. These patterns reached amounts between 30 mm and 45 mm in deep percolation
over large areas in the north, northwest, and central areas between the river courses and
eastern parts of the catchment. For the lowest precipitation intensity of 100 mm/10 h, the
upland areas with higher permeability transformed almost all the precipitation water into
deep percolation and produced patterns with amounts of 65–90 mm. Overall, the areas
developing the highest deep percolation shares corresponded to forest land use.

4. Spatial Evaluation of Simulated DRP Patterns

Simulated spatial patterns of DRPs by applying synthetic rainfall events and 11 PTF
combinations were evaluated using a regional reference runoff process map as the perceived
reality. Here, we only present the pattern of simulated DRPs for the rainfall event of
100 mm/7 h due to its pronounced visual similarity to the reference map (Figure 6).
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100 mm/7 h, and the corresponding reclassified reference map.

Looking at the DRPs all over the reference map, distinct spatial patterns were visible
(Figure 6, bottom right corner). DRP-class 3, which stands for fast surface runoff processes,
was distributed exclusively in the stream channels and riverbanks. Spatial patterns of
DRP-class 2.5, representing a combination of surface and fast sub-surface runoff, covered
a larger area and were mostly located on the steep slopes near the streamflow, forming a
broad strip from the west to the northeast of the catchment. This class was discerned only
occasionally and on a very small scale in the high altitudes of the north and northwest.
Patterns of DRP-class 2 indicating interflow formed a fringe alongside the river courses.
Class 1.5, which represents a shared dominance of rapid and delayed sub-surface runoff,
covered larger parts of the catchment, particularly, in the high elevations in the north and
northwest of the catchment. Patterns of DRP class 1 referring to delayed sub-surface runoff
(deep percolation) were sporadically distributed within the area such as small spots in
the north and northwest boundaries of the catchment, and a more extensive pattern was
distinct in the central part.



Hydrology 2023, 10, 55 12 of 18

By performing visual inspection, it was observed that PTF combination 5 (Table 1)
showed noticeable spatial similarities with the reference map while also encompassing
differences (Figure 7). These similarities were evident between the simulated and observed
spatial patterns of DRP class 1.5 derived from the digital soil reference map (i.e., delayed
subsurface runoff processes with dominance of deep percolation), in terms of spatial
distribution and area shares, particularly in the north, northwest, and some spots in the
east and mid-catchment area. Moreover, the spatial distribution as well as the area share
of the simulated DRP class 2.5 (i.e., which is more for faster runoff processes such as fast
interflow and surface runoff) clearly corresponded to the reference map (i.e., 28% area share
for simulations and 28.35% in reference map). Patterns of DRP class 1 (i.e., dominance of
deep percolation processes) in the simulations and reference map were evidently consistent
in terms of area share (i.e., 6.45% in the simulations and 7% in the reference map), although
the spatial distributions indicated only slight commonality. The area share of simulated
DRP class 3 (i.e., showing the dominance of fast runoff reactions such as saturated overland
flows) was clearly overestimated, while the spatial distribution of this class was consistent
with the reference map. Nevertheless, simulations with PTF combination 5 represented
only negligible amounts of interflow as the dominant runoff process (class 2) in the entire
catchment, which did not correspond to the reference map.
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Figure 7. Percentage share of DRP classes for the entire catchment in the reclassified reference map
and corresponding simulations for all PTFs and a precipitation intensity of 100 mm/7 h.

In addition to the visual inspection, the spatial patterns of simulated DRPs were evaluated
using the spatial efficiency metric (SPAEF), and the spatial similarities were quantified. Table 6
accordingly reports the results of the spatial evaluation after applying all PTF combinations
and rainfall events, while the green fields indicate positive SPAEF values.

There was an evident variation in the measure of spatial similarity amongst the
simulated DRP patterns. By using different PTFs, the SPAEF values clearly changed.
The highest SPAEF values were found for PTF combination 5, while it increased from
0.06 for 100 mm/5 h rainfall intensity to 0.32 for 7 h and dropped again to 0.17 until 10 h
rainfall. It is also remarkable that in the case of PTF combination 9 and 100 mm/7 h rainfall
intensity, SPAEF reached a maximum value of 0.20, and decreased again for the lower
rainfall intensities to the value of 0.02.
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Table 6. Spatial similarities (SPAEF values) between the simulated patterns of DPR (i.e., for all PTF
combinations and synthetic rainfall intensities) and the reclassified reference runoff process map.
Positive values are in green.

PTFs
Rainfall Intensity 1 2 3 4 5 6 7 8 9 10 11

100 mm/3 h −0.36 −0.64 −0.60 0.05 −0.34 −0.35 −0.39 −0.66 −0.62 −0.10 −0.49

100 mm/4 h −1.13 −0.52 −0.37 −0.01 −0.28 −0.02 −0.23 −0.36 −0.49 0.00 −0.37

100 mm/5 h −5.01 −0.19 −0.34 0.11 0.06 −0.04 0.17 −0.35 −0.48 −0.41 −0.39

100 mm/6 h −6.19 −0.36 −0.33 0.11 0.15 −0.36 −0.01 −0.43 −0.18 −0.89 −0.22

100 mm/7 h −7.22 −0.07 0.15 0.12 0.32 −0.49 −0.05 0.00 0.20 −0.98 0.02

100 mm/8 h −7.26 −0.21 0.20 0.07 0.27 −0.69 −0.04 −0.03 −0.12 −1.07 0.01

100 mm/9 h −7.38 0.15 0.22 0.07 0.23 −0.81 −0.25 0.06 −0.03 −1.18 0.02

100 mm/10 h −7.44 0.13 0.09 0.13 0.17 −0.90 −0.30 0.01 −0.18 −1.28 0.08

Furthermore, PTFs 1, 6, and 10 did not produce positive values. PTF 3 showed
comparatively high values from a duration of 7 h, which increased up to 9 h (0.15 to 0.20 to
0.22), and in turn decreased significantly at 10 h to 0.09. PTF 4 showed consistently positive
values (except for the 4 h duration), even if these only reached a maximum SPAEF of 0.13.
PTFs 2, 7, 8, and 11 only showed negligible positive values.

5. Discussion

A spatial pattern-oriented evaluation on dominant runoff processes was performed by
integrating the process information of the reference soil hydrological map of the region. The
map contents were translated and reclassified into the DRP classes that were consistent with
the corresponding modeling approach. Model reactions to the precipitation intensities in
terms of producing spatial patterns of DRPs were analyzed regarding the spatial structure
of the catchment. To translate the information on soil properties into the model parameters,
11 PTF combinations were incorporated into the model parameterization scheme as the
test cases exploring how the hydrological system functions. As a result, information on
soil water retention and hydraulic conductivity, together with the given precipitation data,
were considered to determine the runoff processes across the catchment.

The results described here reveal the wide range of model reactions to precipitation
events. Runoff patterns varying from tiny percentages to more than 90% of the applied
rainfall rates were observed within the catchment area. Moreover, different PTF combi-
nations also caused a large variability in the spatial distribution and magnitude of the
simulated DRPs. PTFs impact the soil water capacity and hydraulic conductivity. This may
then control the types of catchment reaction to the rainfall event (i.e., fast, or slow) in terms
of percolation or water redistribution, leading to different runoff generation processes in
hillslopes and alluvial plain [50].

The above results show that simulations of surface runoff, interflow, and deep percola-
tion (Figures 3–5) exhibited discernable variations in developing the spatial patterns within
the catchment under different rainfall events. In general, this can be mainly explained by
the spatial structure of the catchment under study, and thus attributed to the drivers such
as precipitation intensity and duration, varying physiographic features of the catchment
(i.e., the soils, topography, land slope and aspect, and local climate), infiltration capacity,
and antecedent conditions [15]. Areas with steeper slopes and fine-grained soils (e.g., in
the mid-catchment, east and western parts) were more responsive to rainfalls with higher
intensity and shorter duration in promoting the generation of faster runoff processes. High-
est surface runoff patterns were largely found in the river courses and riparian zones in
the alluvial plain. Moreover, in the model, there was continuous connectivity between the
groundwater module and the stream network, where interactions of shallow groundwater
and surface water system further increased the soil moisture in the unsaturated zone due
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to capillary rise. In fact, in alluvial plains, a shallow groundwater table plays a key role in
controlling the hydrological processes within the soil [51–53]. As a result, we saw the re-
markable development of surface runoff patterns in the valley floor and in a strip bordering
the stream network with a constant and gentle slope gradient. This is also consistent with
the results of Wang et al. (2022) [54] and Nanda and Sen (2021) [55], showing that nearly all
precipitation contributed to surface runoff as the soil reached a saturated moisture content.
Detty and McGuire (2010) [56] suggested that in such runoff production processes, when
the groundwater level rises to a near-surface soil, surface runoff is generated because of
the increased effective saturated hydraulic conductivity, which involves the transmission
feedback mechanism. In contrast, soil water stored in steep hillslope zones (i.e., particularly
in the parts between the north and northwest and the alluvial plain, and those on the
south and southwest) contributed largely to interflow generation, while it might only be
released and produce surface runoff only during higher intensity rainfall events [15]. This
might be due to the difference in the topographic relief and geomorphologic characteristics
between the uplands and the low-lying areas in the alluvial plain. The direction of the slope
is from the northwest to the southeast, and evidently, the patterns of interflow occurred
greatly on the steep slopes, and they continued developing until the longest rainfall event.
The far stream uplands of the north and northwest with very gentle slopes is where the
geology contributes to the development of sandy soils, and thereupon, lower surface runoff
and higher deep percolation (and maybe partly interflow) have occurred. Sandy soils are
characterized by intense macropores and a good matrix permeability. Therefore, geological
substratum and terrain slope trigger larger interflow and deep percolation processes, par-
ticularly during longer and less intense rainfall events [57]. This may also be attributed to
greater depths to the saturated zone in the upland areas of the north and northwest, which
equals more available storage in the unsaturated zone and a longer percolation path [50,58].
In addition, extending the rainfall duration leads to greater infiltration of precipitation
water into the deeper soils, and therefore, while surface runoff generation tends to lessen
in longer rainfall events, the interflow and deep percolation processes showed growing
patterns. As a result, an overall tendency of the runoff generation patterns simulated by
the model could be discerned, which was the increase in surface runoff generation while
deep percolation and interflow declined.

To reflect the antecedent soil moisture, we considered the condition after a persistent
period of rainfall through December 2014 that corresponded to some moisture storage
availability for the event water (i.e., soil water deficit), allowing for the infiltration of the
rainfall into soil [50]. For example, even for the highest rainfall intensities, there may still
be about 30–35% of deep percolation generated in areas on the alluvial plains in the vicinity
of the river network, which still showed a slight infiltration capacity, and even 60% of deep
percolation generated in some parts of the uplands during intensive rainfalls. Production
of these patterns may be due to the high permeability of the soil, which still exists in these
spots of the catchment.

By reclassifying the regionalized data-mining-based digital DRP map (reference map),
the corresponding DRPs could be translated into numerical classes that were commensurate
to the model’s definition of DRPs. This allowed for a spatial comparison of the simulated
DRPs and the reference map (i.e., as a benchmark for our perceived reality) for which a
measure of spatial similarity was applied. The spatial efficiency metric (SPAEF) quantified
the overall similarities (i.e., that encompasses both the amount and distribution of the
processes in the spatial domain) between the simulated patterns and discerned the DRP
patterns by the reference map. Regarding a defined system moisture precondition, a runoff
process was identified to be dominant for a given rainfall event type and specific soil and
topographic characteristics at a certain location, and subsequently by using different PTFs
into modeling. Accordingly, the results showed that only the simulations for the rainfall
event of 100 mm/7 h embraced the most pronounced visual similarity to the reference
map. In contrast, shorter rainfall events with higher intensities (e.g., 3 and 4 h rainfall
events) produced the lowest spatial contrast and the smallest similarities to the reference
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map. Surface runoff was the dominant runoff process in the catchment. The application of
synthetic precipitation events to modeling makes the spatial evaluation of the DRPs more
feasible as it excludes certain influencing factors such as evapotranspiration.

Using this methodology, we could, in general, examine the effects of different PTFs
showing a decisive role on dominant runoff production on a specific location and under the
given rainfall characteristics. Paschalis et al. (2022) explained that the complex topography
(e.g., in small catchments) particularly amplifies the importance of PTF uncertainties, where
the choice of PTF indicates a significant effect on the hydrological fluxes within the drainage
basin [59]. Furthermore, through a sensitivity analysis, Weihermüller et al. (2021) [60]
also emphasized that choosing different PTFs in hydrological models causes a substantial
variability in the simulated fluxes and soil water capacity distribution across the land. In
our results, as far as the overall similarity is concerned, PTF combination 5 (Table 1) most
closely corresponded to the pattern of DRPs in the existing reference map (i.e., in terms
of producing the reasonable patterns for all three processes of surface runoff, interflow as
well as deep percolation across the catchment area). However, when looking at individual
DRPs separately, we could see, for instance, no similarity between PTF combination 5 and
the reference map regarding the patterns of interflow whereas PTFs of 10 and 11 could
represent the spatial patterns of interflow with higher similarities to the reference map. A
possible explanation for why PTF combination 5 showed the greatest overall similarity
might be that the soil database used to develop the PTF was extracted from the forest and
agricultural soil in Germany [42]. This is perhaps one of the reasons why the soil samples
used in Teepe et al. (2003) [42] corresponded more closely to the soil types in our study
area, with 66% forests and about 33% agricultural land, whereas the rest of the PTFs used
soil samples from around the world, and not just from Germany.

This study demonstrates that a local reference map of DRPs provides a useful tool for
model evaluation. The availability of good quality datasets would ultimately allow for the
examination of fitness-for-purpose models across a wide range of conditions [25,61–63].
For example, performing the spatial pattern-oriented evaluation, Gaur et al. (2022) [10]
estimated the uncertainty associated with the spatial pattern-based evaluation of the MIKE
SHE model for the Subarnarekha Basin. In another study, Dembélé et al. (2020) introduced a
new bias-insensitive metric based on pixel-by-pixel locational matching that could be used
to improve the calibration of a hydrological model on the spatial patterns of hydrological
processes derived from a data-mining-based digital soil map [64]. While our study was in
essence a sensitivity analysis, it did not include model verification using measured fluxes
and it only employed one model.

6. Conclusions

The overall goal of the current work was to focus on improving the spatial representa-
tion of dominant runoff processes in a hydrological model using spatial pattern information
from a regional soil hydrological map. Evaluating the plausibility of reproduced dynamics
of the hydrological system, a bias-insensitive and multicomponent metric was applied
for spatial pattern matching. Dealing with the issues of inadequate spatial observations
for rigorous spatial model evaluation, we made use of a reference soil hydrologic map
available for the study area to discern the expected dominant runoff processes across a wide
range of hydrological conditions. Considering the spatial structure of the catchment, we
analyzed the model’s reaction to various synthetic rainfall events in terms of reproducing
the spatial patterns of DRPs. Moreover, multiple PTFs were incorporated in the model
parameterization scheme as the test cases translating the information on soil properties into
model parameters. In general, the information on the soil hydraulic properties, together
with the given rainfall data, were considered to determine the runoff process dynamics.
As a result, the different models’ reactions to reproduce the patterns of DRPs could be
distinguished. This spatial information would ultimately reflect the distribution of hetero-
geneities that are important in rapid runoff generation under wet conditions or retention
under dry conditions. Such improvements will be an asset for spatial hydrology and large-
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domain water management applications (e.g., flood forecast, drought monitoring, and
water accounting). This, in fact, will contribute to solving some of the issues (e.g., spatial
variability and modeling methods) identified as the 23 unsolved problems in hydrology
in the 21st century [65]. However, to the best of our knowledge, only a few studies have
applied the spatial observation of DRP by regional soil maps into the spatial evaluation
of models. The present study, nevertheless, will progress toward a comprehensive model
calibration procedure considering multiple data sources simultaneously, with the specificity
of incorporating the spatial patterns of satellite remote sensing data as well as reference
DRP maps in the parameter estimation method to reproduce the plausible dynamics of the
various hydrological processes (e.g., evapotranspiration, soil water storage, and runoff).
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