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Co-supervisor: Prof. Partha Lahiri, PhD

Trier, 12.04.2010





Acknowledgment

I would like to express my deep and sincere gratitude to my supervisor, Professor Dr. Ralf
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INTRODUCTION

1 Introduction

For the first time, the German Census 2011 will be conducted via a new method the register

based census. In contrast to a traditional census, where all inhabitants are surveyed, the

German government will mainly attempt to count individuals using population registers of

administrative authorities, such as the municipalities and the Federal Employment Agency.

Census data that cannot be collected from the registers, such as information on education,

training, and occupation, will be collected by an interview-based sample survey. Moreover,

the new method reduces citizens’ obligations to provide information and helps reduce costs

significantly (see Website: Census, 2010a).

The census provides information as a basis for a number of political and economic decisions.

For example, the revenue equalization between the Länder and between the Länder and

its municipalities is calculated on the basis of population figures (see Website: Census,

2010b). Further, the data supports future leaders in answering questions such as: ”How

many schools and kindergartens does a city need?”. The survey also has the task to

examine the quality of the data from the registers (see Website: Census, 2010d).

The use of sample surveys is limited if results with a detailed regional or subject-matter

breakdown have to be prepared. Classical estimation methods are sometimes criticized,

since estimation is often problematic for small samples (see Website: Census, 2010c).

Fortunately, model based small area estimators (cf. Rao, 2003 and Jiang and Lahiri,

2006) serve as an alternative. These methods help to increase the information, and hence

the effective sample size. For example, we can combine information from similar structured

areas or by including auxiliary information out of the administrative registers, in essence

borrowing strength from neighboring areas. (cf. Jiang and Lahiri, 2006, pp. 3).1

In the German Census 2011 it is possible to embed areas on a map in a geographical

context. This may offer additional information, such as neighborhood relations or spatial

interactions. Figure 1 shows the unemployment rate in Germany at the federal state

1Further information about the German Census 2011 may be found among others in Magg et al.

(2006), Münnich et al. (2007) and on the official website www.zensus2011.de.
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INTRODUCTION

level in 2007. The map provides a visual image of spatial interaction, showing that the

unemployment rate increases from west to east and from south to north. Standard small

area models, like Fay-Herriot (cf. Fay and Herriot, 1979) or Battese-Harter-Fuller (cf.

Battese et al., 1988), do not account for such interactions explicitly. The aim of our

work is to extend the classical models by integrating the spatial information explicitly into

the model. In addition, the possible gain in efficiency will be analyzed.

Figure 1: Unemployment Rate 2007 in Germany at the Federal State Level; Data Source:

Bundesagentur für Arbeit (2008).

We consider three model classes, the Gaussian general linear mixed model, the Bernoulli

mixed model, and the Fay-Herriot model, which all allow the modeling of many problems.

For all of these classes we show how to include spatial information via a Bayesian method,

where the complete inference is based on the posterior distribution. Bayesian methods

often assume improper prior for the hyperparameters, which could result in an improper

posterior distribution. This can cause misleading results (cf. Hobert and Casella,

2



INTRODUCTION

1996). Therefore, in the present work the propriety of the posterior distribution under

certain assumptions for the three model classes is shown. The existence theorems build

the theoretical basis for applying the proposed models.

Possible gains and limitations of the derived models, with special focus on applications to

the German Census 2011 are tested by means of a simulation study. Since German census

data is not available, a data set with similar structure and variables is chosen: the public

use file of the German Mikrocensus (see German Mikrocensus, 2002).

The organization of the remaining chapters follows accordingly:

In Chapter 2, a review is done of technical background in small area estimation, Bayesian

modeling, Markov chain Monte Carlo, and spatial modeling. Standard small area models

(Fay-Herriot and Battese-Harter-Fuller) are introduced (Section 2.1) and we show how to

extend them to hierarchical small area models in Section 2.2. In addition, improper prior

distributions and possible resulting impropriety of the posterior distribution are discussed.

Because the posterior distributions of hierarchical models are often intractable, Markov

chain Monte Carlo Methods (MCMC) are often employed. These methods are introduced

in Section 2.3. Furthermore, standard small area models and their hierarchical exten-

sions assume independent random effects. This assumption is changed to allow for spatial

correlations in Section 2.4 and we explain how to model those correlations.

In Chapter 3, the propriety of the posterior distribution is proved for the spatial general

linear mixed model with homoscedastic sampling variances, which includes the spatial

hierarchical extension of the Battese-Harter-Fuller model. Moreover, the Gibbs condition-

als, necessary for the implementation of the Gibbs sampler, are derived. Benefits of this

method are shown via an application to unemployment data at the federal state level in

Germany.

In Chapter 4, normality is not assumed and the propriety is proved for the posterior of

the spatial Bernoulli mixed model. Then the model is applied to the unemployment data

and compared to the according non-spatial version and the normal model of Chapter 3.

3
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The model class of Chapter 3 covers a wide variety of area and unit-level spatial small area

models. However, one popular area-level model is not included the Fay-Herriot model.

Finally in Chapter 5, the Fay-Herriot model is extended to a spatial hierarchical Fay-

Herriot model and the propriety of the posterior distribution is proved. Afterward, the

model is applied to Small Area Income and Poverty Estimates (SAIPE) of the U.S. Census

Bureau. In this setting one area is assumed to be unsampled, and the area mean of this

area is predicted via a spatial and non-spatial model.

The model classes of the previous sections allow modeling many variables of the German

Census 2011. In Chapter 6, gains and limitations of area and unit-level models out of

these classes are tested via simulation study. Various parameter combinations have been

adopted, allowing investigation of a number of model configurations.

The results are summarized in Chapter 7.

Appendix A illustrates the computer code for a situation where the posterior distribution

is improper and the Gibbs sampler leads to misleading results. Appendix B includes the

WinBUGS models used in this work.

4



BASICS AND FUNDAMENTAL CONCEPTS

2 Basics and Fundamental Concepts

In this chapter, fundamentals of small area estimation, Bayesian modeling, Markov chain

Monte Carlo methods, and spatial modeling will be explained.

2.1 Fundamental Concepts of Small Area Estimation

In the following the term small area estimation is defined and the underlying idea is

explained by means of an example using unemployment data. Afterward, two basic small

area models are introduced: the area-level Fay-Herriot model (cf. Fay and Herriot,

1979) and the Battese-Harter-Fuller unit-level model (cf. Battese et al., 1988).

2.1.1 The Basic Idea of Small Area Estimation

Central to the concept of small area estimation is the definition of small areas. Rao, 2003,

p. xxi defines a small area as any subpopulation for which direct estimates of adequate

precision cannot be produced. Similarly, Jiang and Lahiri, 2006, p. 1 note that the term

small area typically refers to a population for which reliable statistics of interest cannot

be produced due to certain limitations of the available data. Thus, an area is considered

to be small if reliable statistics of adequate precision cannot be produced. However, there

does not exist a cut off for deciding whether or not an area is too small (cf. Münnich

and Schmidt, 2002). Small area estimation refers to techniques with the intension to

overcome the problem of the small sample size. This is done by combining information

from similar structured areas and thus to extend the effective sample size. In the following

example a simple shrinkage small area estimator (cf. James and Stein, 1960) is derived.

Example 2.1: The second column of Table 1 on page 7 shows the unemployment rate of

the 16 German federal states from 2007. In this example this data is seen as the underlying

gold standard which shall be estimated. To do this for every state a sample (simple random

sampling) of size 20 is drawn out of a Bernoulli distribution with probability equal to the

corresponding gold standard. The sample mean for every state is given in column 3.
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A direct and a small area estimator will be derived. The estimators will then be compared

by the sum of the quadratic difference between the corresponding estimator and the gold

standard value, θi, where the quadratic difference is defined to be:

S2 =
16∑
i=1

(Estimatori − θi)2. (2.1)

Since in this setting the samples are independent of each other and no covariates are

available the direct estimator is equal to the sample mean given in column 3 of Table 1.

In this case S2 = 461.46.

Next, an alternative method is presented. Using the central limit theorem, assuming that

the approximation is valid, the sum of unemployed (sample size 20) in the ith area, Zi, is

approximately normally distributed according to:

Zi ∼ N(20θi, 20θi(1− θi)),

where θi is the gold standard unemployment rate. The unemployment rate for a sample

size of 20 in the ith area Yi = Zi/20 is then also normally distributed:

Yi ∼ N

(
θi,

θi(1− θi)
20

)
,

with mean θi and variance
θi(1− θi)

20
= σ2

ε,i. Therefore, the observed sample yi (column 3

of Table 1) is a realization out of a normal distribution. If the sample size is small, the

direct estimator will be unreliable. One idea to stabilize the estimator might be to take

the mean of all sample values and combine it with the sample value of one state. The

direct estimator moves toward the overall sample mean of all federal states, θo = 1
16

16∑
i=1

yi.

The larger the variance of Yi the less reliable is the direct estimator, and thus, the weight

of the overall mean should increase. Since the variance of Yi is unknown an estimator σ̂2
ε,i

will be used: σ̂2
ε,i =

yi(1− yi)
20

. Combining the above idea with the variance estimator σ̂2
ε,i

yields a new estimator:

θ̂i = θo +

(
1−

σ̂2
ε,i

σ̂2
u + σ̂2

ε,i

)
(yi − θo), i = 1, · · · , 16, (2.2)

where σ̂2
u =

θo(1− θo)
20

is an estimator for the variance of the overall mean. Formula (2.2)

may be interpreted as follows: The variance σ̂2
u represents the uncertainty of the overall

6
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State Gold standard Sample mean Shrinkage estimator

Berlin 15.5 15 13.1

Bremen 12.7 20 13.9

Brandenburg 14.9 10 10.8

Baden-Württ. 4.9 10 10.8

Bavaria 5.3 15 13.1

Hamburg 9.2 10 10.8

Hesse 7.6 5 5.9

Mecklenburg-Vorp. 16.5 15 13.1

Lower Saxony 8.9 10 10.8

North Rhine Westph. 9.5 15 13.1

Rhineland-Palatinate 6.5 10 10.8

Saxony-Anhalt 16 15 13.1

Saxony 14.7 20 13.9

Schleswig-Holstein 8.4 15 13.1

Saarland 8.4 0 0

Thuringia 13.2 5 5.9

Table 1: Unemployment Rate for the 16 German Federal States in Percent, as well as the

Direct and Shrinkage Estimator; Data Source: Bundesagentur für Arbeit (2008).

mean. If σ̂2
u is large, then the overall mean is not reliable and thus θ̂i is close to the direct

estimator yi. If the sample variance σ̂ε,i is large, then more weight is given to the overall

mean. The estimated values for the unemployment data are given in column 4 of Table

1. The squared deviance (2.1) for this estimator is S2 = 325.28. Thus, S2 is considerably

larger when using the direct estimate compared to the estimator in (2.2).

The estimator in (2.2) is a simple form of a small area estimator, also known as shrinkage

estimator (cf. James and Stein, 1960). In Vogt (2007), the shrinkage estimator is

explained and derived in more detail.
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In Example 2.1 a direct estimator using information of one federal state and a shrinkage

estimator which combines information of all states were presented. This technique helped

to reduce the sum of the squared deviance. In other words, because the sample size was too

small to obtain reliable direct estimates strength was borrowed (Ghosh and Rao, 1994,

p. 55) from other states. In the example, the sum of the squared deviance for the small

area estimator is smaller than that for the direct estimator. On the contrary, the squared

deviance might not be smaller for each of the states. Row 1 of Table 1 shows the data for

Berlin with a relatively high unemployment rate. In this case the direct estimator is closer

to the gold standard value than the small area estimator. This is due to the fact, that the

overall mean is not representative for this state. Therefore, in the next section, extensions

of the above derived small area estimator are presented, making use of covariates. The

connection to the shrinkage estimator is visible in Example 2.12.

2.1.2 Standard Small Area Models

In this section the two basic small area models, the Fay and Herriot (1979) and the

Battese et al. (1988) model, are introduced using the German Census 2011 and un-

employment data at the federal state level in Germany. Both model types are currently

analyzed for a possible application within the German census (cf. Münnich et al., 2007).

Extensions of these models play a vital role throughout the work.

Example 2.2: We briefly introduce the Fay-Herriot model. A detailed derivation can be

found in Vogt (2007). However before doing so, as explained in Chapter 1, the German

Census 2011 will be conducted using a new method. Rather than a total enumeration,

a sample is drawn. Unfortunately, the sample size might be too small to obtain reliable

results with a detailed regional or subject-matter breakdown with classical estimation

methods (cf. Website: Census, 2010c). A way around this problem may be to impose

model assumptions.

8



BASICS AND FUNDAMENTAL CONCEPTS

To explain what is meant by model assumptions, imagine the following situation: Assume

that the unemployment rate at the federal state level in Germany is of interest (Figure 1 on

page 2).2 We assume that Yi, the proportion of people unemployed in state i, is normally

distributed with unknown mean θi and variance component σ2
ε,i. The parameter of interest

θi represents the true proportion of unemployed. Thus, our model becomes:

Yi
ind∼ N(θi, σ

2
ε,i), i = 1, · · · , k.

The sample is a realization of this distribution. If the sample size is too small to obtain

directly reliable estimates of θi, the idea is to employ prior information on the mean θi. In

the German Census 2011 prior information out of the administrative registers may be used,

by means of covariates (see Website: Census, 2010c). To include prior information, a

second model assumption is made, by specifying a distribution for θi as well, where:

θi
ind∼ N(Xiβ, σ

2
u), i = 1, · · · , k.

This means that θi is normally distributed around a regression coefficient, representing

information out of the registers. Thus, the complete model is:

Yi
ind∼ N(θi, σ

2
ε,i) (2.3)

θi
ind∼ N(Xiβ, σ

2
u), i = 1, · · · , k,

which can be transformed into:

Yi
ind∼ N(θi, σ

2
ε,i) (2.4)

θi = Xiβ + ui

ui
i.i.d.∼ N(0, σ2

u), i = 1, · · · , k,

where ind stands for independently distributed and i.i.d. for independently and identically

distributed.

2In the German Census 2011 the sample size at the federal state level will be large enough. Problems

may arise on smaller areas, like small municipalities with less than 10,000 inhabitants (cf. Website:

Census, 2010c).
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The model may be further transformed into (cf. Jiang and Lahiri, 2006, p. 6):

Yi = Xiβ + ui + εi (2.5)

ui
i.i.d.∼ N(0, σ2

u)

εi
ind∼ N(0, σ2

ε,i), i = 1, · · · , k.

Definition 2.3: The models (2.3), (2.4), and (2.5) are defined as Fay-Herriot (FH)

model (cf. Fay and Herriot, 1979).

In the specification (2.5) the Fay-Herriot model can be viewed as a mixed regression model.

The factor is called random effect and u incorporates additional variation between the areas

not accounted for by the regression component. In Example 2.12 it is shown how to obtain

estimates under this model.

In the next example the Battese-Harter-Fuller model will be introduced.

Example 2.4: In Example 2.2, for every small area one sample value Yi is used. This

means that data enters the modeling process in an aggregated way, namely at the federal

state (area) level. Therefore, this type of model is called an area-level model. In contrast,

the Battese-Harter-Fuller model is a unit-level model, meaning that the data is at the

individual level. For example in area i, ni individuals may be sampled. The model may

then be defined as follows:

Definition 2.5: The Battese-Harter-Fuller (BHF) model is defined as (cf. Bat-

tese et al., 1988):

Yij = Xijβ + ui + εij (2.6)

ui
i.i.d.∼ N(0, σ2

u)

εij
i.i.d.∼ N(0, σ2

ε ), i = 1, · · · , k, j = 1, · · · , ni,

where we denote the area by index i the individual by index j.

Like the Fay-Herriot model, the Battese-Harter-Fuller model consists of three components,

namely a regression term Xijβ, a random effect ui and errors εij. The Battese-Harter-Fuller

10



BASICS AND FUNDAMENTAL CONCEPTS

model is a particular case of a general model, known as general linear mixed model. This

model is quite flexible and allows for unit and area-level specification. It is defined below.

Definition 2.6: The general linear mixed model is defined as (cf. Hobert and

Casella, 1996):

Y = Xβ + Zu+ ε

ε ∼ N(0,Σε) (2.7)

u ∼ N(0,Σu),

where Y is n × 1, X is n × p, β is p × 1, ε is n × 1. Further, Σε = Inσ
2
ε , Z is n × q,

u = (u1, · · · , ur) is q × 1, where ui is qi × 1 and
∑r

i=1 qi = q. Finally, Σu = ⊕ri=1Iqiσ
2
u,i,

where the direct sum ⊕ of two matrices A,B is defined as A⊕B =

 A 0

0 B

 .
Notes 2.7:

1. Jiang and Lahiri, 2006, pp. 8, present a specification of model (2.7), where the

Fay-Herriot model (2.5) is included. In this work (Chapter 3), a theorem of Hobert

and Casella (1996) is extended and their specification of model (2.7) is followed.

2. In Chapter 3 the existence of the posterior distribution for a spatial adaption of

model (2.7) is proved. In the spatial model, only one random effect is considered,

and thus, the dimension of u is equal to the number of areas k.

The theory and applications of mixed models is explained in Demidenko (2004) and

Faraway (2006) in more detail.

Example 2.8: The Battese-Harter-Fuller model (2.6) may be written in the form (2.7):

y11

...

y1n1

y21

...

yknk


=


1 x111 · · · xp11

1 x112 · · · xp12

...
...

...

1 x1knk · · · xpknk

 ·


β1

β2

...

βp

+⊕ki=1Ini ·


u1

...

uk

+


ε1
...

εn

 .
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In this section, we have introduced the ideas behind small area estimation as well as

the standard small area models. A comprehensive introduction can be found in Rao

(2003). Other books explaining the concepts and ideas of small area estimation are writ-

ten by Mukhopadhyay (1998) (Small Area Estimation in Survey Sampling) and Long-

ford (2005) (Missing Data and Small-Area Estimation). Some review papers involving

small area estimation include Rao (1986), Rao (1999), Rao (2001), Ghosh and Rao

(1994), Marker (1999), Pfeffermann (2002), Lahiri and Meza (2002), and Jiang

and Lahiri (2006). Finally, the Eurarea (2004) project report describes various small

area estimation methods.
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2.2 The Posterior Distribution and Improper Priors in Bayesian

Analysis

The idea of the basic small area models of Section 2.1.2 is to specify a distribution for

the data, as well as for the unknown variables of interest θi. The distribution on θi repre-

sents the idea that there exists extra information about the parameter. Other parameters

are included in the Fay-Herriot model (2.3) due to its hierarchical structure such as the

regression coefficient β and the variance component σ2
u. If prior information on these pa-

rameters is available we can include this in the model by specifying distributions on the

unknown parameters. In a Bayesian framework these beliefs can be represented by a prior

distribution, which is placed on the unknown parameter. For the Fay-Herriot model (2.3)

such priors are given in the next example.

Example 2.9: The Fay-Herriot model (2.3) may be extended to a hierarchical Fay-

Herriot model, by assuming prior distributions for β and σ2
u.

Following Hobert and Casella (1996) this might be:

πβ(β) ∝ 1 (2.8)

πσ2
u
(σ2

u | b) ∝ (σ2
u)
−(b+1),

where b is a constant. Another option for σ2
u is an inverse gamma distribution (cf. Sun

et al., 1999):

1/σ2
u ∼ Γ(0.5, 0.0005). (2.9)

Figure 2 shows the prior distribution (2.9). This distribution takes positive values and

states the belief that the random effects standard deviation is centered around 0.05 with a

1% prior probability of being smaller than 0.01 or larger than 2.5 (cf. GeoBUGS User

Manual, 2004).
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Figure 2: Gamma Prior Distribution for (σ2
u)
−1 with Parameters 0.5 and 0.0005.

It is not easy to select appropriate prior distributions (cf. Kass and Wassermann, 1996).

Throughout the present work standard priors distributions are taken and the question of

how to choose prior distributions is not considered.

The representation of information, as well as the uncertainty about parameters as prob-

abilities is central to Bayesian inference, and this concept is explained in more detail in

various texts. For instance, introductions in Bayesian methodology and computation in-

clude Ghosh et al. (2006) and Albert (2007). Classical Bayesian books to consider are

Box and Tiao (1973) and Berger (1985). Congdon (2003), Congdon (2005), and

Congdon (2007) deal with various topics in Bayesian statistics, like Bayesian modeling

and Bayesian categorical data analysis. Carlin and Louis (2000) cover Bayes and Em-
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pirical Bayes methods for data analysis. Bernardo and Smith (1994) explain Bayesian

theory from a mathematical perspective. Finally, the books Gelman et al. (1995) and

Gelman and Hill (2007) are about Bayesian data analysis and multilevel models.

In the next section, we show how to utilize Bayesian methods for inference, via the posterior

distribution.

2.2.1 The Posterior Distribution

If all the uncertainty is included in the model it is possible to combine prior and sample

information and thus, perform an update via the posterior distribution. The complete

inference is then based on this distribution. This concept is introduced more formally in

Witting, 1985, pp. 128.

Definition 2.10: Let X and Y be real-valued random variables defined on an abstract

probability space (Ω, S, P ) with joint density:

fX,Y : R2 → R.

The posterior density (conditional density function) of the posterior distribution

of X given Y = y is defined by:

fX|Y=y(x) =
fX,Y (x, y)∫

R fX,Y (ξ, y)dξ
, x ∈ R

for all y as long as the denominator is defined.

Theorem 2.11: Let X and Y be random variables as those in Definition 2.10, and

furthermore, let f̃ denote the probability function of X. The conditional density function

of the distribution of X given Y = y is given by:

fX|Y=y(x) =
fY |X=x(y)f̃(x)

∞∫
−∞

fY |X=x(y)f̃(x)dx

. (2.10)

The proof can be found in Witting, 1985, pp. 128.
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The posterior density in the form (2.10) states the principle that updated knowledge com-

bines prior knowledge with the data at hand:

posterior density =
likelihood× prior density

(
∫

likelihood× prior density)
,

where the denominator is a fixed normalizing factor which ensures that the posterior

probabilities sum to 1 (cf. Congdon, 2007, p. 3). We can then show:

posterior density ∝ likelihood× prior density.

Example 2.12: The posterior distribution of θi of the standard Fay-Herriot model (2.3)

is given by (see for example Vogt, 2007, p. 52):

θi|Yi ∼ N

(
Xiβ +

(
1−

σ2
ε,i

σ2
u + σ2

ε,i

)
(Yi −Xiβ),

σ2
ε,iσ

2
u

σ2
ε,i + σ2

u

)
, i = 1, · · · , k.

The posterior mean is a weighted average of the prior mean Xiβ and the data Yi. Note

that the posterior mean is an extension of the shrinkage estimator derived in Example 2.1.

The following hierarchical version of the general linear mixed model (2.7) is given by

Hobert and Casella, 1996, p. 1463:

y | u, σ2
ε , β ∼ Nn(Xβ + Zu, Iσ2

ε ) (2.11)

πβ(β) ∝ 1

u | σ2
u,1, · · · , σ2

u,r ∼ Nq(0,Σu)

πε(σ
2
ε | b) ∝ (σ2

ε )
−(b+1)

πσ2
u,i

(σ2
u,i | ai) ∝ (σ2

u,i)
−(ai+1), i = 1, · · · , 16,

where y is n× 1, β is a p× 1 vector of fixed effects, u = (u
′
1, u

′
2, · · · , u

′
r)
′

is a q × 1 vector,

ui is qi × 1,Σu = ⊕ri=1Iqiσ
2
u,i,
∑r

i=1 qi = q, X and Z are known design matrices whose

dimensions are n× p and n× q. Also, ai and b are constants.

In this model the posterior density is given by (cf. Hobert and Casella, 1996, p. 1463):

f(σ2
u,1, · · · , σ2

u,r, σ
2
ε , u, β | y) ∝ f(y | u, σ2

ε , β)f(u | σ2
u,1, · · · , σ2

u,r) · (2.12)

·πβ(β)πσ2
ε
(σ2

ε | b)
r∏
i=1

πσ2
u,i

(σ2
u,i | ai) .
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It is often difficult, or even not possible, to integrate posterior densities analytically. For

the simple Fay-Herriot model (2.3) the posterior distribution is given in Example 2.12.

Unfortunately, the posterior density (2.12) for model (2.11) is not analytically tractable

and may even not be proper (cf. Hobert and Casella, 1996). The propriety will be

further discussed in the next section.

2.2.2 Improper Priors

In the previous section the general linear mixed model (2.7) has been extended to a hier-

archical version (2.11) by specifying prior distributions on all parameters. If there is neat

information about a parameter the prior distribution may be quite specific. Consider for

example the unemployment data of Example 2.2 and the Fay-Herriot model (2.3). Assume

that for a specific covariate, for example education, there might be some knowledge about

the connection to unemployment, and thus, for the regression component β perhaps a

normal distribution with a small variance might be specified. The small variance repre-

sents strong confidence in the prior information. In many other settings prior information

on parameters are quite vague. When prior information is unknown improper priors are

chosen (cf. Gelman et al., 1995, p. 52 or Ghosh et al., 2006, p. 40), which are defined

below.

Definition 2.13: A density f(θ) is called improper, if f(·) is non-negative for all

θ ∈ Θ 6= ∅ and: ∫
Θ

f(θ)d(θ) =∞.

One example is the improper prior (2.8) used in the hierarchical extension of the Fay-

Herriot model, where πβ(β) ∝ 1.

If an improper prior is taken, the posterior density of the corresponding model might also

not integrate to a finite number and thus might fail to be a proper probability distribution.

Since all the inference is based on the posterior distribution, this is problematic in Bayesian

inference. Another possible danger is that frequently Markov chain Monte Carlo methods

like the Gibbs sampler (presented in the next Section 2.3) are used to obtain estimates using
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the posterior distribution. These methods may not detect impropriety (Datta and Smith,

2003, p. 176) and lead to wrong conclusions, as will be shown in Example 2.16. Therefore, it

is vital to check the propriety of the posterior distribution in advance. In Chapters 3, 4, and

5 we introduce existence theorems regarding the propriety of the posterior distribution for

extensions of three model classes widely used in small area estimation. The model classes

considered are the general linear mixed model, the Bernoulli model, and the hierarchical

Fay-Herriot model.

Propriety for similar model classes is discussed by Ibrahim and Laud (1991), who proved

a sufficient condition for the existence of the posterior for the general linear model. Ghosh

et al. (1998) considered generalized linear models for small area estimation and showed

the propriety for spatial and non-spatial models under this framework. The theorem is

generalized in Ghosh et al. (1999). Datta and Smith (2003) showed the propriety for

(non-spatial) small area models, like the Fay-Herriot model under a bounded prior.

In this section the idea of Bayesian modeling has been explained, where all the variation

is included in the model by specifying prior distributions on all unknown parameters. The

inference is then based on an update of the sample and the prior information, yielding the

posterior distribution. However, the derivation of posterior densities (2.10) is not easy and

involves (multi-dimensional) integration. Therefore, in most applications the density is

not derived, but a sample out of the distribution is drawn via Markov chain Monte Carlo

methods. These methods are introduced in the next section.
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2.3 The Impact of Impropriety on Markov Chain Monte Carlo

Methods

When using hierarchical Bayes methods (Section 2.2) there is a need to calculate the pos-

terior distribution (2.10), and thus, to compute multi-dimensional integrals. One method

used to compute posterior quantities is exact numerical integration. However, the numer-

ical integration is not applicable in high dimensions, making MCMC procedures a natural

choice for approximating posterior densities. The idea behind these methods is to construct

a Markov chain which eventually converges to the posterior distribution. Instead of cal-

culating the posterior distribution directly, a sample from the posterior is obtained. Then

the mean, variance, and other statistics of the posterior distribution may be estimated.

The most popular MCMC procedure is the Gibbs sampler, which will be introduced in the

next section. In addition, it is shown that the Gibbs sampler may lead to misleading results

if the posterior distribution is improper. We also introduce software for implementing

MCMC methods.

2.3.1 The Effect of Impropriety on the Gibbs Sampler

The Gibbs sampler was derived by Geman and Geman (1984). An explanation is given

by Casella and George (1992). The Gibbs sampler is a technique for generating ran-

dom variables from a distribution with density, say f(x). But rather than to compute or

approximate the distribution directly; the Gibbs sampler generates the sample by gener-

ating the conditional distributions of the model of interest.

In a two random variable case, say (X, Y ) the Gibbs sampler constructs a sample of

fX(x) by sampling instead from the conditional densities (Gibbs conditionals) fX|Y=y(x)

and fY |X=x(y), that are more likely to be known in statistical models (cf. Casella and

George, 1992, p. 168). Then the basic scheme of the Gibbs sampler is as follows:

1. Choose an arbitrary starting point, say (x0, y0).
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2. Suppose we have generated some arbitrary point in the chain (xi, yi),

Generate xi+1 ∼ fXi+1|Y=yi(x)

Generate yi+1 ∼ fYi+1|X=xi+1
(y)

3. Now that (xi+1, yi+1) has been generated update and repeat the cycle.

It can be shown that the Gibbs sampler converges under certain regularity conditions to a

stationary distribution (cf. Gelfand and Smith, 1990). Thus, after some finite number

of steps the generated values from the Gibbs sampler represent values from the stationary

distribution. But why do the stationary and the posterior distribution coincide? The

following theorem shall clarify the ties between the posterior distribution and the Gibbs

conditionals (cf. Cressie, 1993, pp. 412 and Besag, 1974, pp. 195). The same theorem is

frequently used to prove an important result in spatial modeling (Theorem 2.22 in Section

2.4).

Theorem 2.14: Let X1, · · · , Xk be a finite collection of random variables with joint

probability mass function f(·) whose support satisfies the positivity condition. That is, if

f(xi) > 0 for each i, then f(x) > 0. That means if x1, · · · , xk can individually occur at

sites 1, · · · , k, then they can occur together. Let x = (x1, · · · , xk) and y = (y1, · · · , yk) be

two realizations of X1, · · · , Xk. Then:

f(x)

f(y)
=

k∏
i=1

fXi|X−i(xi|x1, · · · , xi−1, yi+1, · · · , yk)
fXi|X−i(yi|x1, · · · , xi−1, yi+1, · · · , yk)

. (2.13)

The proof may be drawn from (Cressie, 1993, pp. 412) and (Besag, 1974, pp. 195).

Theorem 2.14 shows that under certain assumptions the posterior density is essentially

proportional to the Gibbs conditionals. But this does not mean that the posterior distri-

bution exists every time the Gibbs conditionals exist, as the following example shows (cf.

Robert and Casella, 2010, pp. 232).

Example 2.15: Let the Gibbs conditionals be given by:

X1|X2 = x2 ∼ Exp(x2)

X2|X1 = x1 ∼ Exp(x1),
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where Exp denotes the Exponential distribution. Using Theorem 2.14 it follows that:

f(x1, x2) ∝
fX1|X2(x1|y2) · fX2|X1(x2|x1)

fX1|X2(y1|y2) · fX2|X1(y2|x1)

∝ exp(−x1x2).

Since: ∫ ∫
exp(−x1x2)dx1dx2 =∞,

there exists no joint density with the above Gibbs conditionals.

In Example 2.15 it can be seen, that the existence of Gibbs conditionals does not ensure

the propriety of the joint distribution. This is a potentially perilous situation, since the

Gibbs conditionals allow implementing the Gibbs sampler, but there is no joint distribution

to which the Gibbs sampler may converge. What happens in this case? The dangerous

effects are illustrated in the next example, where an example from Casella and George

(1992) is implemented in R and analyzed. The code is given in Appendix A.

Example 2.16: Consider the conditional densities given by:

fX|Y=y(x) ∝ y exp(−yx), 0 < x <∞ (2.14)

fY |X=x(y) ∝ x exp(−xy), 0 < y <∞.

For these densities, Casella and George, 1992, p. 171 showed that the marginal density

for which the Gibbs sampler should converge is given by:

f(x) =
1

x
.

However, f(x) is not a proper density. This may have serious implications for the con-

vergence of the Gibbs sampler as will be shown. Convergence is typically assessed by

the scale reduction factor (R̂) developed by Gelman and Rubin (1992). To accomplish

this different Markov chains from overdispersed starting points are run parallel and the

within-chain and between-chain variances are compared. Convergence is diagnosed if the

output from all chains is indistinguishable (independent of the initial values). The scale

reduction factor points to 1 in this case. Table 2 shows the maximum value of the scale

reduction factor for varying number of iterations. Some of the values are near 1 and point
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to convergence. This is a dangerous situation. Despite the fact that R̂ indicates conver-

gence, the Gibbs sampler did not converge. One indication of this is that starting with

iteration number 6000 and contributing on, all the R̂ values increase. From Figure 3, we

can see that we are clearly not reaching the stationary distribution of the chain. In the

case of convergence, we should see that the two chains are eventually mixing.

If the conditionals (2.15) are restricted to the interval (0, K), whereK is a positive constant,

the marginal distribution is proper. Table 3 and Figure 4 give the values of the scale

reduction factor and the trace plot for the proper model (K = 20). In this case both

measures indicate the model has not failed to converge.

Note the difference that trace plots are able to detect, which is not detected by R̂. This is

dangerous in simulation studies, where typically many repetitions are made. In this case, it

is difficult to check convergence by means of plots and R̂ is much more convenient since it

allows to check for convergence automatically. In addition, Robert and Casella, 2010,

p. 233 mention that graphical monitoring may sometimes lead to misleading results.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

1.04 1.28 1.16 1.06 1.13 1.31 1.22 1.07 1.17 1.28

5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

1.00 1.21 1.76 2.13 2.46 2.81 3.08 3.41 3.87 3.85

Table 2: Number of Iterations and Values of the Scale Reduction Factor for the Improper

Model.
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Figure 3: Trace Plot of the Simulated Values of x (Chain 1 : Red, Chain 2 : Blue) of the

Gibbs Sampler for the Improper Model.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3: Number of Iterations and Values of the Scale Reduction Factor for the Proper

Model.
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Figure 4: Trace Plot of the Simulated Values of x (Chain 1 : Red, Chain 2 : Blue) of the

Gibbs Sampler for the Proper Model.

The situation of Example 2.16 may arise when the Gibbs sampler is applied to a model

with improper priors (see Section 2.2.2). Then, as in Example 2.15, the Gibbs conditionals

may be of standard forms, but the posterior distribution for which the Gibbs conditionals

correspond may be improper. Example 2.16 showed that this is a dangerous situation

because the Gibbs sampler may lead to seemingly reasonable inferences about an improper

posterior distribution (Hobert and Casella, 1996, p. 1462). Robert and Casella,

2010, p. 233 mention that the only way to make sure the Gibbs sampler is valid is to

check that the joint density has a finite integral. Thus, it is absolutely vital to apply only

models with proper posterior distributions. Therefore, in Chapters 3, 4, and 5 theorems

are proved, which ensure the existence of the posterior distribution for different models of

interest.
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Besides the Gibbs sampler there are numerous other MCMC methods, like the Metropolis-

Hastings algorithm. Since the Gibbs sampler is the only explicitly used MCMC method in

this work, the reader is referred to the literature for other methods (for example Fishman,

2006 or Gilks et al., 1996).

2.3.2 Markov Chain Monte Carlo in R and WinBUGS

In the last section, the Gibbs sampler and general MCMC methods were introduced.

Several R packages to implement these methods in R are described in the CRAN Task

View: Bayesian Inference (cran.r-project.org/web/ views/Bayesian.html). For example

the R package UMACS (Universal Markov chain sampler) allows implementation of some

MCMC methods, such as the Gibbs sampler. However, the problem is that the Gibbs

conditionals are needed, which are often hard to derive. Therefore, in this section, we

introduce another software package, called WinBUGS. WinBUGS allows for an easier

implementation of Bayesian models (Ntzoufras, 2009 covers Bayesian modeling using

WinBUGS) at the cost of flexibility.

The following example provides the Gibbs conditionals for the Fay-Herriot model. In

addition the corresponding Gibbs sampler is implemented in UMACS.

Example 2.17: The Gibbs conditionals for the Fay-Herriot model (2.4) with known

homoscedastic variances σ2
ε and σ2

u are given by (cf. Hobert and Casella, 1996, p.

1464):

f(u|σ2
ε , y, σ

2
u, β) = N

(
(Ik +

σ2
ε

σ2
u

Ik)
−1(y −Xβ), σ2

ε (Ik +
σ2
ε

σ2
u

Ik)
−1

)
(2.15)

f(β|σ2
ε , y, σ

2
u, u) = N

(
(X ′X)−1X ′(y − u), σ2

ε (X
′X)−1

)
.

Those functions may be used to implement the Gibbs sampler for example via UMACS. The

UMACS code consists of initial values of u, β, and θ, update functions containing the Gibbs

conditionals (2.15), and the sampler. The sampler contains the needed variables and data.

One cycle of the Gibbs sampler is completed when all parameters are updated once. Each

update step ends with random numbers drawn out of the corresponding Gibbs conditional.
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As soon as convergence is reached, we can sample from the posterior distribution. For

model (2.15) the update functions are:

1

u.update <− function ( ) {

t h e t a . h a t <− solve (diag(k )+sigmau/sigmae∗diag(k ) )%∗%y−(X%∗%t(beta ) )

V.theta <− ( sigmau∗solve (diag(k )+sigmau/sigmae∗diag(k ) ) )

rmnorm( 1 , theta .hat , V.theta )

6 }

beta .update <− function ( ) {

u<− as.vector (u)

V.beta <− sigmau∗solve ( t (X)%∗%(X) )

11 beta .ha t <− 1/sigmau∗V.beta%∗%t(X)%∗%(y−u)

rmnorm( 1 , beta .hat , (V.beta ) )

}

theta .update <− function( ) {

16 u<− as.vector (u)

theta <−X%∗%t(beta )+u

theta <− as.vector ( theta )

theta # There are no Gibbs c o n d i t i o n a l s f o r t h e t a . theta i s X%∗%t ( beta )+u ,

# but fo rma l l y a Gibbs update has to be d e f i n e d .

21 }

Listing 1: UMACS Update Functions for the Fay-Herriot Model with Known

Homoscedastic Variances

UMACS allows implementation of various MCMC methods, and thus, specially tailored

algorithms may be programmed. The drawback of this flexibility is that it may not be

easy to obtain the update functions. In Section 3.4 the needed Gibbs conditionals for an

implementation, for example in UMACS, of a spatial extension of model (2.7) are derived.

An alternative to programming in R is WinBUGS. Like UMACS, WinBUGS uses MCMC

methods to calculate samples out of the posterior distribution. But statisticians just have

to specify the model, there is no need to worry about Gibbs conditionals or to program

the MCMC methods explicitly. The following example provides the WinBUGS code for

the Fay-Herriot model.
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Example 2.18: The WinBUGS model specification for the Fay-Herriot model (2.4) with

known homoscedastic variances σ2
ε and σ2

u is as follows:

model {

for ( i in 1 : k ) {

4 Y[ i ]∼dnorm( theta [ i ] , s igmae )

theta [ i ] <− alpha+beta∗X[ i ]+u [ i ]

}

alpha∼d f l a t ( )

9 beta∼d f l a t ( )

for ( i in 1 : k ) {

u [ i ]∼dnorm( 0 , sigmau )

}

14 }

Listing 2: WinBUGS Specification of the Fay-Herriot Model with Known Homoscedastic

Variances

The code reflects the notation of the Fay-Herriot model (2.4). Thus, the main advantage

of WinBUGS is that models can be directly written down and WinBUGS does all the

work. This is especially useful if different models are tested against each other. However,

the user still has to be cautious about issues like convergence, the number of chains, the

length of burn-in, or the propriety of the posterior distribution. In Chapters 3, 4, and 5

the last of these issues, propriety of the posterior, is tackled by providing theorems for

different model classes, which ensure the propriety.

The results of the applications in the thesis are obtained via WinBUGS controlled by

R (package R2WinBUGS). The R code and the WinBUGS models are provided in the

appendix.

Until now the idea of small area estimation as well as standard models have been introduced

and the models were extended to hierarchical models by specifying prior distributions on

all parameters. Example 2.16 underlined that one has to be careful with certain priors
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(improper priors) since this may lead to misleading results. This topic will be further

discussed in Chapters 3, 4, and 5. Before doing so, in the next section, the independence

assumption of the random effects of the standard and hierarchical models will be dropped

and spatial correlations will be included in the models.
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2.4 Spatial Modeling in Small Area Estimation

In Example 2.2 we explain how to use the Fay-Herriot model to estimate the unemployment

rates for the federal states in Germany. One assumption of model (2.11) is independence of

the random effects ui. Thus, the variation in addition to the regression component between

the areas is assumed to be independent. This assumption is not always appropriate, since

people tend to cluster. Clustering can occur geographically such as in towns, villages or

socially. Spatial interactions may be included into a model by means of spatial modeling.

Introductions can be found in the landmark work by Cressie (1993) and the Practical

Handbook of Spatial Statistics by Griffith (1996), in Haining (2003), and Ripley

(2004). The book by Banerjee et al. (2004) combines hierarchical modeling and analysis

for spatial data and Rao (2003) includes a section on spatial modeling in small area

estimation. Bivand et al. (2008) explain how to use R for spatial modeling.

2.4.1 Spatial Data

Standard statistical data consists of a data vector Y, and possibly auxiliary variables X.

So questions like ”Why?”, ”How?” and ”When?” can be tackled. But sometimes it is

interesting to know ”Where?”. Therefore spatial data consists of X, Y, and the location.

Cressie, 1993, p. 8 defines spatial data in a very general form.

Definition 2.19: Let s ∈ Rd be a generic data location in d-dimensional Euclidean space

and suppose that the potential datum Z(s) is a random quantity. Now let s vary over index

set D ⊂ Rd so as to generate the random process:

{Z(s) : s ∈ D} . (2.16)

Then a realization of (2.16), denoted by {z(s) : s ∈ D} , is called spatial data.

Where can spatial data be observed? Probably Bivand et al., 2008, p. 1 puts it best

by saying ”spatial data are everywhere”. Examples of spatial data include the weather

forecast, route planners, or plain maps showing the temperature or unemployment rate in

a certain region.
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Since there are many kinds of spatial data, we define three types of spatial data below (cf.

Cressie, 1993, pp. 8-13 or Banerjee et al., 2004, p. 2).

Definition 2.20:

1. Spatial data is called geostatistical or point-referenced data if D is a fixed subset

of Rd that contains a d-dimensional rectangle of positive volume and Y(s) is a random

vector at a location s ∈ R , where s varies continuously over D.

This means that the data can be theoretically measured everywhere (continuously).

One example of this occurrence is temperature in a certain region.

2. The data is referred to as point pattern data if the location, D, is random.

This data type arises if the location is the important variable to analyze, such as the

location of a certain tree type.

3. Spatial data is called lattice or areal data if D is a fixed subset partitioned into a

finite number of areal units with well-defined boundaries.

Unemployment data on federal state, county, or municipality level in Germany is

an example of areal data. The data arising from the German Census 2011 will be

partitioned into well-defined areas, such as municipalities or cities. Thus, the data

is areal. Because the focus of our work is using small area estimation techniques in

the context of the German Census 2011, we will only consider areal data.

2.4.2 Spatial Modeling: Conditional Autoregressive Model

In the last section three types of spatial data were introduced. Shortly, we will show how

to include spatial information in a model, like the Fay-Herriot (2.4) or hierarchical linear

mixed model (2.11). There are several options to do this. In our work the focus will be on

the conditional autoregressive (CAR) spatial model, which allows us to incorporate spatial

information into a model of interest.

Consider the hierarchical linear mixed model (2.11) and assume that the data of interest

is areal (Definition 2.20) with an observed spatial trend, such as the unemployment rate
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example in Figure 1. The random effects ui in the models (2.4) and (2.11) shall handle the

differences between the areas which are not captured by the standard regression model. In

both models the random effects ui are assumed to be independent and thus the covariance

matrix Σu in the following distribution:

u | σ2
u,1, · · · , σ2

u,k ∼ Nk(0,Σu) (2.17)

is diagonal. One way to incorporate spatial effects is done by allowing for dependence

between the random effects. This may be achieved via the conditional autoregressive

model (cf. Rao, 2003, pp. 412 or Banerjee et al., 2004, p. 79).

Definition 2.21: Let u = (u1, · · · , uk) be a k dimensional vector of random variables.

Then, the conditional autoregressive (CAR) spatial model assumes that the condi-

tional distribution of ui given {ul : l 6= i} is given by:

ui|{ul : l 6= i} ∼ N

(
p
∑
l∈Ai

Qilul, σ
2
u,i

)
, (2.18)

where Ai denotes a set of neighboring areas of the ith area, {Qi,l} are known constants

satisfying Qil = Qli and p, σ2
u,i is the unknown parameter vector.

In the CAR model the random effect ui of area i depends on the effect of the other

areas. For better theoretical handling of Formula (2.18), it will be shown that the joint

distribution of u = (u1, · · · , uk) is given by:

u ∼ Nk(0, (I − pQ)−1M), (2.19)

where Q = (Qi,l) is a k × k matrix with Qi,l = 0 whenever l /∈ Ai (including Qi,i = 0) and

M = diag(σ2
u,i). Assumption (2.19) is similar to the independence structure (2.17) with

a non-diagonal covariance matrix Σu. Using Theorem 2.14 the following theorem may be

proved (cf. Cressie, 1993, pp. 412).

Theorem 2.22: The conditional autoregressive specification (2.18) is given by:

ui|{ul : l 6= i} ∼ N

(
p
∑
l∈Ai

Qi,lul, σ
2
u,i

)
,

31



BASICS AND FUNDAMENTAL CONCEPTS

which implies that:

u ∼ N(0, (I − pQ)−1M),

provided that (I − pQ) is invertible and (I − pQ)−1 is symmetric and positive-definite.

The proof is given in Cressie, 1993, pp. 412.

Banerjee et al., 2004, p. 79 ensure that the covariance matrix in Theorem 2.22 is sym-

metric and positive-definite by choosing:

ui|{ul : l 6= i} ∼ N

p∑
l∈Ai

Qi,l

k∑
j=1

Qi,j

ul,
σ2
u

k∑
j=1

Qi,j

 . (2.20)

The CAR structure in the form (2.20) will be used throughout the work.

Remark 2.23:

1. The CAR structures (2.18) and (2.20) are convenient for the implementation of the

Gibbs sampler, since the conditional specification reflects the form of the Gibbs

conditionals (cf. Banerjee et al., 2004, p. 86).

2. In applications, the neighborhood matrix Q is symmetric if the neighbors of an area

have the area as a neighbor.

3. Another popular spatial model is the simultaneous autoregressive (SAR) model,

defined as (cf. Banerjee et al., 2004, p. 84) the following:

u ∼ N

(
0, σ2

u

[
(I − pQ)(I − pQ)

′
]−1
)
.

In this work, the focus will be on the CAR structure, since the conditional specifi-

cation is more convenient in the Bayesian framework (cf. Banerjee et al., 2004, p.

86).

Theorem 2.22 demonstrates the fact that the conditional autoregressive model imposes

a dependence structure on the random effects. We need to decide how to choose this

structure in a concrete setting, since the results depend on the chosen neighborhood set

Ai in equation (2.20). This topic is discussed next.
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2.4.3 Specifying the Geographic Weights Matrix

In Sections 2.4.1 and 2.4.2, we introduced spatial data and the conditional autoregressive

structure. The CAR approach (2.18) and (2.20) allows us to incorporate neighborhood

information into the model. However, the CAR structure depends on the neighborhood

matrix Q. In this matrix the correlation structure between the areas is defined.

In general the spatial neighborhood (weight) matrix is defined as follows (cf. Bavaud,

1998, p. 154).

Definition 2.24: Let S = {1, · · · , k} be a set of places. A spatial weight matrix is a

k × k matrix Q of components Qji satisfying:

1. Qji ≥ 0, i = 1, · · · , k, j = 1, · · · , k

2.
k∑
i=1

Qji = 1, j = 1, · · · , k.

In addition, frequently Qii is assumed to be 0 for i = 1, · · · , k, indicating that an area

cannot be its neighbor.

We still must resolve how to specify the set of neighbors, and the literature on this is

quite sparse. In many texts on spatial statistics the need to specify the geographic weights

matrix is noted and some ideas are mentioned briefly.

1. Cressie, 1993, pp. 384 mentions the following:

(a) Call any area j, which is within a certain distance from area i a neighbor of

that area.

(b) Define areas as neighbors who share a common boundary.

(c) Consider different distance metrics: At times a site may be close as the crow

flies to another site, but a spatial analysis based on this distance may be strictly

for our feathered friends. The closeness of two areas might be a function of both

distance and, say, percent urbanization.
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2. Banerjee et al., 2004, p. 4 notes using an irregular lattice that physical adjacency

is the most obvious (but not the only) way to define a region’s neighbor.

3. Hurn et al., 2003, p. 90 mentions that in image analysis problems, typical structures

are nearest neighbor with either 4, 8 or 12 neighbors (see Figure 5 for a nearest

neighbor setting).

4. In Moura and Migon, 2002, p. 6, they consider Bayesian spatial models for small

area estimation of proportions and define two areas to be neighbors if they are con-

tiguous.

5. Haining, 2003, pp. 80, notes that rather than defining linkages between objects in

purely geometrical or spatial terms, ancillary data may be used.

6. Bivand et al., 2008, pp. 239 show how to construct contiguity, graph and distance

based, higher order, and grid neighbors with R.

Example 2.25: Figure 5 shows different neighborhood structures at the federal state

level in Germany. In each plot, non-neighbor states are plotted in yellow, neighbor states

in orange, and the actual state in red. The first three plots show the nearest neighbor

structure for states Thuringia, Rhineland-Palatinate, and Berlin. Thuringia and Berlin

are surrounded by neighbors. Rhineland-Palatinate is situated at the border to Belgium,

France, and Luxembourg and thus is not completely surrounded by federal states. Even

though Berlin is recognized as a state, it is contained within the state Brandenburg as

shown in southwest quadrant of Figure 5. Thus, even though a nearest neighbor structure

is assumed for every state the actual structure differs from state to state.

The nearest neighbor structure is taken for example in the Application 4.5. It can be

also observed there (Figure 10) that an increase in the number of neighbors leads to an

improvement of the quality of the estimates. The last plot in Figure 5 shows a different

neighborhood structure. Neighbors of the city state Berlin are the following German city

states: Bremen, Hamburg, and the small state Saarland. This structure is tested in the

simulation study of Section 6.4.3.
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Figure 5: Different Neighborhood Structures for Federal States in Germany.

Example 2.26: For a situation with 3 areas ordered according to Figure 6 the nearest

neigbor matrix Q is given by:

Q =


0 1 0

1 0 1

0 1 0

 .

Figure 6: Nearest Neighbor Structure of 3 Areas in a Row.

Although there are many possibilities in choosing the neighborhood structure, only

Griffith, 1996 points out some rules of thumb how to choose the neighborhood matrix.
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1. It is better to posit some reasonable geographic weights matrix specification than to

assume independence.

2. It is best to use a surface partitioning that falls somewhere between a regular square

and a regular hexagonal tessellation.

3. Relative large numbers of areal units should be employed.

4. In general, it is better to employ a somewhat under-specified than a somewhat over-

specified geographic weights matrix, as long as dependence is assumed.

In the applications of this work the nearest neighbor approach is employed and it is not

discussed how to choose the neighborhood structure. The purpose of this section has been

to show that many different neighborhood structures are possible. Further research on

how to choose the neighborhood in special problems is ongoing and extends the goal of

this work.
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3 Propriety of the Posterior Distribution for Spatial

Hierarchical Linear Mixed Models

In Chapter 2, the concept of Bayesian analysis was introduced, where prior distributions are

imposed on all unknown parameters. If only weak prior information is available, frequently

improper priors are chosen, which may result in the posterior distributions possibly being

improper. Example 2.16 illustrated that this is a dangerous situation. Thus, it is important

to check the propriety of the posterior distribution before using a model. Hobert and

Casella (1996) proved the propriety of the posterior distribution for the linear mixed

model with power priors on the variance components (2.11). Sun et al. (1999) and Sun

et al. (2001) extended the Hobert and Casella (1996) theorem to allow for spatial

correlations with inverse gamma priors on the variance components and also considered

generalized linear mixed models. In this chapter, a simpler proof is presented for a widely

used model class with power priors on the variance components. This class includes many

models which may be applied to the German Census 2011, for example the spatial extension

of the Battese-Harter-Fuller model.

3.1 Introduction

In Bayesian mixed modeling, the distribution of the variance components is generally spec-

ified. If this information is not available, non-informative prior distributions are applied,

as described in Section 2.2.2. This, however, may lead to integrability problems of the

posterior distribution, if the non-informative prior distributions are improper (cf. Datta

and Ghosh, 1995 for a discussion of non-informative priors).

Hobert and Casella (1996) proved a theorem that ensures the propriety of the posterior

distribution (2.12) for the general linear mixed model (2.11). However, in Hobert and

Casella (1996), the random effects are assumed to be independent. In many applications

the independence assumption seems to be unreasonable, since spatial correlations are ob-

served. This occurs for example in the case of the unemployment data of Figure 1 on page
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2. Spatial interactions are also likely to be present in the context of the German Census

2011. Especially, when sample sizes are small, like in small area estimation, any additional

information may be extremely valuable and should be included into the model. Spatial

information may be integrated into the model via the popular conditional autoregressive

(CAR) approach as described in Section 2.4.2.

In the following section, we review the Hobert and Casella (1996) result regarding

propriety of the general linear mixed model. Then the model is extended to allow for

spatial correlations, and the propriety of the posterior for the spatial extension is shown.

Moreover, the Gibbs conditionals, necessary for an implementation of the Gibbs sampler

are derived. Finally, an application to the unemployment data shows potential gains of a

spatial model over a non-spatial one.

3.2 The Hobert and Casella Propriety Theorem

Hobert and Casella (1996) considered the following general linear mixed model (2.11):

y | u, σ2
ε , β ∼ Nn(Xβ + Zu, Iσ2

ε )

πβ(β) ∝ 1

u | σ2
u,1, · · · , σ2

u,r ∼ Nq(0,Σu)

πε(σ
2
ε | b) ∝ (σ2

ε )
−(b+1)

πσ2
u,i

(σ2
u,i | ai) ∝ (σ2

u,i)
−(ai+1), i = 1, · · · , 16,

where y is n× 1, β is a p× 1 vector of fixed effects, u = (u
′
1, u

′
2, · · · , u

′
r)
′

is a q × 1 vector,

ui is qi × 1, Σu = ⊕ri=1Iqiσ
2
u,i,
∑r

i=1 qi = q, X and Z are known design matrices whose

dimensions are n× p and n× q.

They proved the following theorem with necessary and sufficient conditions for the propri-

ety of the posterior distribution.

Theorem 3.1: Let t = rank(PXZ) = rank(Z
′
PXZ) ≤ q and define PX = (I−X(X

′
X)−1X

′
).

There are two cases:
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1. If t = q or if r = 1 then the following conditions (a), (b), and (c) are necessary and

sufficient for the propriety of the posterior distribution of model (2.11):

(a) ai < 0

(b) qi > q − t− 2ai

(c) n+ 2
∑
ai + 2b− p > 0.

2. If t < q and r > 1 then the foregoing conditions (a), (b), and (c) are sufficient for

the propriety of the posterior distribution of model (2.11) while necessary conditions

result when (b) is replaced with (b’) qi > −2ai.

In the next section, this model will be adapted to allow for spatial correlation.

3.3 The Spatial Adaption

In the general linear mixed model (2.11) the random effects are assumed to be independent.

This assumption is changed, when allowing for spatial correlation, via the following CAR

structure (2.20):

u | σ2
u, p ∼ Nq(0, σ

2
u(I − pQ̃)−1W ),

where W = diag(1/
∑k

j=1Qi,j) and Q̃ = {Qi,l/
∑k

j=1Qi,j}il. Note that in contrast to model

(2.11) just one random variable u will be included here. Therefore, the dimension of u (q)

is equal to the number of areas k. The case of different random variables with variances

σ2
u,i is discussed in the Notes 3.3. The spatial model is then given by:

y | u, σ2
ε , β ∼ Nn(Xβ + Zu, Iσ2

ε ) (3.1)

πβ(β) ∝ 1

u | σ2
u, p ∼ Nk(0, σ

2
u(I − pQ̃)−1W )

πε(σ
2
ε | b) ∝ (σ2

ε )
−(b+1)

πσ2
u
(σ2

u | a) ∝ (σ2
u)
−(a+1).

In the spirit of Hobert and Casella (1996), the following existence theorem is stated.
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Theorem 3.2: Let t = rank(PXZ) = rank(Z
′
PXZ) ≤ k, where PX = (I−X(X

′
X)−1X

′
).

The following conditions (a), (b), and (c) are necessary and sufficient for the propriety of

the posterior distribution of the above model:

(a) a < 0

(b) t > −2a

(c) n+ 2a+ 2b− p > 0,

Note that r = 1 and therefore just the first case of Theorem 3.1 will be considered.

Proof: Since the covariance matrix is symmetric and positive definite, there exists an

orthogonal transformation O such that:

O
′
(I − pQ̃)−1WO = diag(λi),

where λi, i = 1, · · · , q are the eigenvalues of the covariance matrix. Therefore:

(I − pQ̃)−1W = ODDO
′
=: AA

′

with D = diag(
√
λi) and A = OD. It then follows that:

A−1u ∼ N
(

0, A−1σ2
u(I − pQ̃)−1W (A−1)

′
)

= N(0, σ2
uI).

Defining u∗ = A−1u and Z∗ = ZA, yields:

y | u∗, σ2
ε , β ∼ Nn(Xβ + Z∗u∗, Iσ2

ε )

πβ(β) ∝ 1

u∗ | σ2
u, p ∼ Nk(0, σ

2
uI)

πε(σ
2
ε | b) ∝ (σ2

ε )
−(b+1)

πσ2
u
(σ2

u | a) ∝ (σ2
u)
−(a+1),

and thus, the original theorem with r = 1 may be applied. �
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Notes 3.3:

1. (a) The standardization via orthogonal transformation is not possible when using

the original model with different variance components σ2
u,i on the random effects.

The covariance matrix is (I−pQ)−1M in this case, where M = diag(σ2
u,i). Then

the orthogonal transformation of the matrix (I − pQ)−1 leads to:

(I − pQ)−1 = ODDO
′
=: AA

′

with D = diag(
√
λi) and A = OD. It follows that:

A−1u ∼ N
(

0, A−1(I − pQ)−1M(A−1)
′
)
.

Unfortunately, generally:

(A−1)
′
M 6= M(A−1)

′
.

(b) The transformation:

(I − pQ)−1M = ODDO
′
=: AA

′

leads to:

A−1u ∼ N
(

0, A−1(I − pQ)−1M(A−1)
′
)

= N(0, I),

but leaving a dependency of σ2
u,i in the orthogonal matrices O and is thus not

valid.

2. The model with different variance components is not proper. Calculating the full

conditional density of σ2
u,i yields:

f(σ2
u,i | σ2

u,1, · · · , σ2
u,i−1, σ

2
u,i+1, · · · , σ2

u,k, y, u, σ
2
ε , β)

=
f(y|u, β, σ2

ε )f(u|σ2
u,1, · · · , σ2

u,k)
∏k

i=1 πi(σ
2
u,i|ai)π(β)πε(σ

2
ε | b)∫

f(y|u, β, σ2
ε )f(u|σ2

u,1, · · · , σ2
u,k)
∏k

i=1 πi(σ
2
u,i|ai)π(β)πε(σ2

ε | b)dσ2
u,i

∝
(det(Σu))

− 1
2 exp(−1

2
u
′
Σ−1
u u)(σ2

u,i)
−(ai+1)∫

(det(Σu))
− 1

2 exp(−1
2
u′Σ−1

u u)(σ2
u,i)
−(ai+1)dσ2

u,i

,
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where the fraction in the above formulas is reduced by the terms independent of σ2
u,i.

Note that:

det(Σu) = det((I − pQ)−1M) = det(M) det((I − pQ)−1) =
k∏
i=1

σ2
u,i det((I − pQ)−1),

which is proportional to σ2
u,i. Therefore:

f(σ2
u,i | σ2

u,1, · · · , σ2
u,i−1, σ

2
u,i+1, · · · , σ2

u,k, y, u, σ
2
ε , β)

∝ (σ2
u,i)
− 1

2 exp(−1

2
u
′
Σ−1
u u)(σ2

u,i)
−(ai+1)

= (σ2
u,i)
−( 3

2
+ai) exp(−1

2
u
′
Σ−1
u u),

where Σ−1
u = M−1(I − pQ) is a symmetric matrix and M−1 = diag(1/σ2

u,i). For the

exponential function, it follows that:

exp(−1

2
u
′
Σ−1
u u) = exp(−1

2
u
′
M−1(I − pQ)u)

∝ exp(−1

2
ui

n∑
j=1

(I − pQ)ijuj1/σ
2
u,i).

Hence:

f(σ2
u,i | σ2

u,1, · · · , σ2
u,i−1, σ

2
u,i+1, · · · , σ2

u,k, y, u, σ
2
ε , β)

∝ (σ2
u,i)
−( 3

2
+ai) exp(−1

2
ui

n∑
j=1

(I − pQ)ijuj1/σ
2
u,i)

and:

f(σ2
u,1 | σ2

u,i, · · · , σ2
u,i−1, σ

2
u,i+1, · · · , σ2

u,k, y, u, σ
2
ε , β) =

= IG

(
ai +

1

2
,

2

ui
∑n

j=1(I − pQ)ijuj

)
,

where IG stands for inverse gamma and X ∼ IG(r, s) if fX(t) ∝ t−r−1 exp(−1/st)

for positive t. The inverse gamma distribution is defined only when both parameters

are positive. Since ui is normally distributed this may not be the case here. One

improper conditional implies an improper posterior (Hobert and Casella, 1996,

p. 1464). Therefore, a direct extension of the Hobert and Casella theorem is not

possible.
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3. Hobert and Casella (1996) applied a similar transformation to an animal breeding

model using a different correlation structure: ui | σ2
u,i ∼ Nqi(0, Giσ

2
u,i), where Gi are

known positive definite matrices.

3.4 The Gibbs Conditionals

In the last section the propriety of the spatial hierarchical general linear mixed model

(3.1) was proved under certain conditions. The propriety of the posterior is vital for a

meaningful analysis of researchers. The model type (3.1) is typically implemented via

MCMC methods, such as the Gibbs sampler, introduced in Section 2.3. To implement the

Gibbs sampler, the Gibbs conditionals have to be known. These conditionals are derived

below.

Hobert and Casella (1996) derive the following conditionals for the hierarchical general

linear model (2.11):

f(σ2
u,i | σ2

u,i, · · · , σ2
u,i−1, σ

2
u,i+1, · · · , σ2

u,r, y, u, σ
2
ε , β) = IG

(
ai +

qi
2
,

2

u
′
iui

)
,

f(σ2
ε | σ2

u,1, · · · , σ2
u,r, y, u, β) = IG

(
b+

n

2
, 2{(y − (Xβ + Zu))

′
(y − (Xβ + Zu))}−1

)
,

f(u | σ2
u,1, · · · , σ2

u,r, y, σ
2
ε , β) = Nk

(
(Z
′
Z + σ2

εΣ
−1
u )−1Z

′
(y −Xβ), σ2

ε (Z
′
Z + σ2

εΣ
−1
u )−1

)
,

f(β | σ2
u,1, · · · , σ2

u,r, y, σ
2
ε , u) = Np

(
(X

′
X)−1X

′
(y − Zu), σ2

ε (X
′
X)−1

)
.

These Gibbs conditionals are implemented in an adapted version via UMACS in Section

2.3.2.

Using the above work, the full Gibbs conditionals for the spatial model (3.1) of the unknown

parameters of interest σ2
ε , u, and β are given by:

f(σ2
ε | σ2

u, y, u, β) = IG
(
b+

n

2
, 2{(y − (Xβ + Zu))

′ × (y − (Xβ + Zu))}−1
)

f(u | σ2
u, σ

2
ε , β) = Nk

(
(Z
′
Z + σ2

εΣ
−1
u )−1Z

′
(y −Xβ), σ2

ε (Z
′
Z + σ2

εΣ
−1
u )−1

)
f(β | σ2

u, y, σ
2
ε , u) = Np

(
(X

′
X)−1X

′
(y − Zu), σ2

ε (X
′
X)−1

)
,

where Σu = σ2
u(I − pQ)−1W. But the conditional density of σ2

u still needs to be calculated.
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Corollary 3.4: The full conditional density of σ2
u of model (3.1) is given by:

f(σ2
u | y, u, σ2

ε , β) = IG

(
a+

k

2
,

2

u′(W−1 − pQ̃)u

)
.

Proof: The conditional density of σ2
u given all other parameters may be written as:

f(σ2
u | y, u, σ2

ε , β)

=
f(y|u, β, σ2

ε )f(u|σ2)π(σ2
u|a)π(β)πε(σ

2
ε | b)∫

f(y|u, β, σ2
ε )f(u|σ2

u)π(σ2
u|a)π(β)πε(σ2

ε | b)dσ2
u

∝
(det(Σu))

− 1
2 exp(−1

2
u
′
Σ−1
u u)(σ2

u)
−(a+1)∫

(det(Σu))
− 1

2 exp(−1
2
u′Σ−1

u u)(σ2
u)
−(a+1)dσ2

u

,

where the fraction in the above formulas is reduced by the terms independent of σ2
u. Note

that:

det(Σu) = det(σ2
uW (I − pQ̃)−1) = (σ2

u)
k det(W (I − pQ̃)−1),

which is proportional to (σ2
u)
k. Therefore:

f(σ2
u | y, u, σ2

ε , β)

∝ (σ2
u)
− k

2 exp(−1

2
u
′
Σ−1
u u)(σ2

u)
−(a+1)

= (σ2
u)
−( k

2
+a+1) exp(−1

2
u
′
Σ−1
u u),

where Σ−1
u = W−1(I − pQ̃)/(σ2

u) and:

exp(−1

2
u
′
Σ−1
u u) = exp

(
−1

2
u
′ 1

σ2
u

W−1(I − pQ̃)u

)
.

Furthermore:

f(σ2
u | y, u, σ2

ε , β) = IG

(
a+

k

2
,

2

u′(W−1 − pQ̃)u

)
,

where (W−1−pQ̃) is positive definite. This is due to the fact that every covariance matrix

is positive semi definite and hence every eigenvalue is greater than or equal to 0. Since

(W−1 − pQ̃) is invertible, every eigenvalue is greater than 0. �

We can now show that the posterior distribution of the spatial adaption of model (2.11)

is proper under certain conditions. In addition, the Gibbs conditionals, necessary for
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the implementation of the Gibbs sampler can be derived. Thus, the theory allows an

implementation of the spatial model. But, just because it is possible to implement a

model this does not mean that it is actually worthy to do so. Therefore, in the next

section an application is presented which demonstrates positive effects of spatial modeling.

3.5 Application

In this section an application to unemployment data in Germany shows potential ad-

vantages of the spatial model (3.1) over the non-spatial version (2.11). The models are

compared via a simulation study using real data. The data set (see Table 4 and Figure

7) consists of 16 values representing the unemployment rates from 2007 for the 16 federal

states in Germany. This application treats these values as true and no covariates are in-

cluded. For the simulation setup, 1000 samples of size 16 · 20 are drawn (simple random

sampling) out of a Bernoulli distribution with probability equal to the true value for each

area. Each sample represents unit-level information on unemployment. The simulation is

done in R and WinBUGS (package R2WinBUGS). The WinBUGS models are included in

Appendix B.

In this application a spatial hierarchical extension of the Battese-Harter-Fuller model (2.6)

is chosen, contained in model (3.1):

Yij = β + ui + εij (3.2)

u | σ2
u, p ∼ Nk(0, σ

2
u(I − pQ̃)−1W )

εij
i.i.d.∼ N(0, σ2

ε ), i = 1, · · · , k, j = 1, · · · , ni

πβ(β) ∝ 1

πε(σ
2
ε | b) ∝ (σ2

ε )
−(b+1)

πσ2
u
(σ2

u | a) ∝ (σ2
u)
−(a+1).

The non-spatial model is equal to model (3.2) except that:

u|σ2
u ∼ Nk(0, σ

2
uI).
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Bias of results RRMSE of results

Federal state Data Non-sp. Spatial Non-sp. Spatial Diff.

Berlin 15.5 −0.0280 −0.0173 0.3235 0.3359 −0.0124

Bremen 12.7 −0.0118 −0.0114 0.3068 0.3430 −0.0362

Brandenburg 14.9 −0.0259 −0.0225 0.3229 0.2551 0.0678

Baden-Württ. 4.9 0.0328 0.0322 0.8402 0.8109 0.0293

Bavaria 5.3 0.0301 0.0378 0.7491 0.8180 −0.0689

Hamburg 9.2 0.0077 0.0081 0.3763 0.3616 0.0147

Hesse 7.6 0.0181 0.0172 0.4396 0.3501 0.0895

Mecklenburg-Vorp. 16.5 −0.0349 −0.0389 0.3402 0.3155 0.0247

Lower Saxony 8.9 0.0092 0.0181 0.3685 0.3045 0.0640

North Rhine Westph. 9.5 0.0075 0.0021 0.3382 0.2710 0.0672

Rhineland-Palatinate 6.5 0.0248 0.0210 0.5727 0.4848 0.0879

Saxony-Anhalt 16 −0.0292 −0.0333 0.3285 0.2920 0.0365

Saxony 14.7 −0.0231 −0.0248 0.3190 0.2742 0.0448

Schleswig-Holstein 8.4 0.0125 0.0178 0.3833 0.3732 0.0101

Saarland 8.4 0.0109 0.0027 0.3830 0.4178 −0.0348

Thuringia 13.2 −0.0121 −0.0186 0.3290 0.2585 0.0705

Table 4: Unemployment Rate for the 16 German Federal States, as well as Bias, RRMSE,

and Difference of the RRMSE for the BHF Models; Data Source: Bundesagentur für

Arbeit (2008).

In this application a = b = −0.05 and p = 0.95. Other choices of the parameters are

discussed in Sections 6.4.4 and 6.4.5. Since rank(PXZ) = 1, Theorem 3.2 ensures the

propriety. Note that such models may also be applied to the German Census 2011. The

models are compared via the following measures:

• Relative Root Mean-Squared Error (RRMSE) for each area i :

RRMSEi,model =

√√√√ 1

1000
·

1000∑
l=1

(
θ̂l,i,model − θi

θi

)2

,
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where the model is either a spatial or a non-spatial model.

• Bias, where:

Biasi =
1

1000

1000∑
l=1

θ̂l,i,model − θi.

• Average Gain, where the Gain of sample l is defined by:

Gainl =

16∑
i=1

(θ̂l,i,non-spatial − θi)2

16∑
i=1

(θ̂l,i,spatial − θi)2

.

Figure 7: Unemployment Rate 2007 in the Federal States in Germany and Deviance of the

RRMSE for the Normal Models.

In the simulation study an average Gain of 1.19 was obtained, indicating an average gain

for the spatial model of 19%. In 82.4% of the samples there was a gain greater than 1.

Furthermore, the deviance of the RRMSE was found to be:

16∑
i=1

(RRMSEi,non-spatial − RRMSEi,spatial) = 0.45,
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illustrating the better overall performance of the spatial model. For some regions the

RRMSE of the non-spatial model is smaller. This will be further discussed in Section 4.5.

The above measures indicate positive effects of spatial modeling. The sum of the absolute

values of the bias is 0.319 for the non-spatial model and 0.324 for the spatial. Thus,

the bias is slightly smaller for the non-spatial model. This may be due to the fact, that

in the spatial model information from other areas is taken into account more explicitly,

which may increase the bias if the areas do not follow the model. Figures 7 and 8 show

and compare the RRMSE on the map for the spatial and non-spatial model. These plots

reflect the better performance of the spatial model as noted before.

Figure 8: RRMSE for the Spatial and Non-spatial Normal Model.

3.6 Conclusion

In this chapter the propriety of the posterior distribution for the spatial general linear

mixed model has been proved. This model class includes a wide range of area as well
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as unit-level models, like the spatial hierarchical extension of the Battese-Harter-Fuller

model. Since posterior propriety is vital for an application of Bayesian models, this section

provided the theoretical basis for models of use to data from the German Census 2011.

In addition, the derived Gibbs conditionals allow implementation of the Gibbs sampler,

for example via the R package UMACS. An application to unemployment data showed

possible gains of spatial modeling.
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4 An Existence Theorem of the Posterior Distribu-

tion for a Class of Spatial Bernoulli Mixed Models

In Chapter 3 the propriety of the posterior distribution was proved for a Gaussian hier-

archical model. In many applications, like the German Census 2011, frequently variables

are categorical and normality may not be satisfied. Natarajan and McCulloch (1995)

considered a class of Bernoulli mixed models with a power prior on the variance com-

ponent and showed the propriety for the posterior of the variance component. Vogt

and Münnich (2009) extended the Natarajan and McCulloch (1995) model to allow

for spatially correlated random effects, proving the propriety of the posterior distribution

and demonstrating potential benefits of spatial modeling by means of an application us-

ing unemployment data in Germany. This work is presented here. In addition to Vogt

and Münnich (2009), an alternative proof of propriety is given, where knowledge of the

Natarajan and McCulloch (1995) theorem is not necessary, and the application to

unemployment data is explained in more detail. Finally, the results are compared to the

findings of Section 3.5.

4.1 Introduction

A typical small area situation is where yij is binary, and the parameters of interest are

the small area proportions Y i. =
∑

j yij/ni (cf. Rao, 2003, p. 91). This situation arises,

for example, in the case of unemployment data, where 0 represents employed and 1 un-

employed. Something of interest might be the proportion of unemployed in a federal state

in Germany (see Figure 1). In this situation a logistic regression model with random

area-specific effects to estimate Y i. might be appropriate, where:

yij
ind∼ Bernoulli(θij)

logit(θij) = log

(
θij

1− θij

)
= xTijβ + ui, i = 1, · · · , k, j = 1, · · · , ni,

where u = (u1, · · · , uk)T ∼ N(0, σ2
uI) and the xij are unit-specific covariates. An alterna-

tive formulation of this model in vector form, where y1 corresponds to y1,1 and yn to yk,nk ,
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is as follows:

yi ∼ Bernoulli
(
h(xTi β + ziu)

)
(4.1)

u ∼ N(0, σ2
uI), i = 1, · · · , n.

Here, zi is the first row of the matrix Z which consists of the blocks of length ni of 1′s and:

h(·) =
exp(·)

1 + exp(·)
.

Denote the variance σ2
uI of u as Σu. This more general notation allows for a non-diagonal

spatial structure which will be considered later. In a hierarchical version of this model

there is a need to specify priors on the hyperparameters. If little is known, a diffuse prior

might be formulated, but care must be taken, since as shown in Section 2.2.2 this can lead

to an improper posterior distribution. Since mixed effect models with Bernoulli responses

are typically implemented via Markov chain Monte Carlo (MCMC) methods, the results of

the MCMC iteration may be seriously misleading in cases where the posterior distribution

is improper (see Example 2.16). Natarajan and McCulloch (1995) proved a theorem

ensuring the propriety of the posterior distribution of the variance component for a class

of mixed models with Bernoulli responses. This, however, has serious implications on the

use of MCMC methods in Bayesian random effect modeling.

In Natarajan and McCulloch (1995) the random effects are assumed to be inde-

pendent. In many applications as in economics, social, or geographical sciences, spatial

correlations are observed frequently such that the independence assumption seems to be

violated. Spatial interactions may occur for example when modeling unemployment data

(see Figure 1 on page 2), or in the context of the German Census 2011. Especially when

sample sizes are small, any additional information should be included into the model in

order to stabilize or improve estimates. Spatial information may be integrated into the

model by allowing for dependencies between the random effects. This can be done via the

popular conditional autoregressive (CAR) approach described in Section 2.4.2.

The next section reviews the model and theorem previously mentioned of Natarajan

and McCulloch (1995). Then, spatial correlations are added to our model and the

propriety of the posterior distribution of the variance component for the new model is
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verified. Finally, an application (Section 4.5) to unemployment data in Germany reveals

potential benefits of the spatial method.

4.2 The Natarajan and McCulloch Theorem

Let y1, · · · , yn be a set of n correlated binary observations. A flexible class of models is

assumed by linking the mean to fixed and random effects via a function h(·). Assuming

a prior distribution on the variance component σ2
u, the Natarajan and McCulloch

(1995) model is:

yi|u ∼ Bernoulli (h(xiβ + ziu))

u|σ2
u ∼ Nk(0, σ

2
uI) (4.2)

πσ2
u
(σ2

u|a) ∝ 1

(σ2
u)
a+1

.

The pre-specified constant a characterizes the prior distribution of σ2
u, and u is a vector of

length k of independent random effects. One interpretation of this model in terms of small

area estimation is that a binary sample of size n is drawn out of k areas. The random

effects vector u accounts for differences between the areas not covered by the regression

term xiβ. In this model the random effects are independent, indicating that apart from the

spatial correlation explained by xiβ, the areas being modeled are treated as independent.

To implement this model via MCMC methods, it is vital that the posterior distribution

is proper. Natarajan and McCulloch (1995) proved the existence of the posterior

distribution of the variance component σ2
u given by:

f(σ2
u|y1, · · · , yn) =

∫
L(β, u|y1, · · · , yn)f(u|σ2

u)f(σ2
u|a)du∫ ∫

L(β, u|y1, · · · , yn)f(u|σ2
u)f(σ2

u|a)dudσ2
u

(4.3)

for model (4.2), where:

L(β, u|y1, · · · , yn) =
n∏
i=1

{1− h(x∗iβ + z∗i u)}

and x∗i = −xi if yi = 1, and x∗i = xi if yi = 0. Further, X∗ is a n× p matrix with rows x∗i

and Z∗ a n× k matrix with the rows z∗i , where z∗i is defined similarly to x∗i .

The existence theorem (Natarajan and McCulloch, 1995, p. 641) is as follows.
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Theorem 4.1: For the model (4.2)

1. The posterior distribution of σ2
u exists only when Π1 is satisfied and −k

2
< a < 0.

2. When h(·) is the logit or probit function, the posterior distribution of σ2
u exists if Π2

is satisfied and −1
2
< a < 0,

where Π1 : dimension(ϕ1) < k and Π2 : dimension(ϕ2) < k and ϕ1 and ϕ2 are polyhedral

cones given by

ϕ1 = {α : Z∗α ≤ 0}, ϕ2 = {α : (X∗β + Z∗α) ≤ 0}.

The proof is given in Natarajan and McCulloch, 1995, pp. 642.

Notes 4.2:

1. The conditions Π1 and Π2 are satisfied, i.e. the cones are less than full-dimensional,

if for at least one level of the random effect there is a success and a failure (cf.

Natarajan and McCulloch, 1995, pp. 641).

2. Chen et al. (2002) extended the Natarajan and McCulloch (1995) model to

allow for more than one independent random effect and gave necessary and sufficient

conditions for the propriety of generalized linear mixed models. In this chapter,

similar to Chapter 3, just one random effect per area is considered.

4.3 The Spatial Existence Theorem

Model (4.2) may be extended to a spatial model by substituting the distribution of the

random effect by the CAR structure (2.20):

u|σ2
u ∼ Nk(0, σ

2
u(I − pQ̃)−1W ),

where W = diag(1/
∑k

j=1Qi,j) and Q̃ = {Qi,l/
∑k

j=1Qi,j}il. This leads to the model:

yi|u ∼ Bernoulli (h(xiβ + ziu))

u|σ2
u ∼ Nk(0, σ

2
u(I − pQ̃)−1W ) (4.4)

πσ2
u
(σ2

u|a) ∝ 1

(σ2
u)
a+1

,
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where p is a constant between the smallest and largest eigenvalue of (I − pQ̃)−1W.

Then, the result below holds.

Theorem 4.3: For model (4.4)

• The posterior distribution of σ2
u exists only when Π1 is satisfied and −k

2
< a < 0.

• When h(·) is the logit or probit function, the posterior distribution of σ2
u exists if Π2

is satisfied and −1
2
< a < 0.

There will be two proofs presented in this work. The first proof follows the lines of

Natarajan and McCulloch (1995). In this case knowledge of the original Theorem

4.1 is not necessary. The second proof makes use of the Natarajan and McCulloch

(1995) theorem and is much shorter.

Proof: Denote the denominator in (4.3) by I. The posterior distribution with density

f(σ2
u|y1, · · · , yn) is proper if and only if I converges.

(i) Necessity. First it is shown that the condition −k
2
< a < 0 is necessary by re-writing I

as:

I =

∫
σ2
u

∫
u

n∏
i=1

{1− h(x∗iβ + z∗i u)}((2π)k det((I − pQ̃)−1Wσ2
u)
− 1

2 ) ·

· exp

(
−1

2
u
′W−1(I − pQ̃)

σ2
u

u

)
du

dσ2
u

(σ2
u)
a+1

. (4.5)

Since (det(σ2
u(I − pQ̃)−1W ))−

1
2 = (σ2

u)
−k/2(det((I − pQ̃)−1W ))−

1
2 the integral (4.5) is pro-

portional to:

I ∝
∫
σ2
u

∫
u

n∏
i=1

{1−h(x∗iβ+z∗i u)}(det((I−pQ̃)−1W ))−
1
2 exp

(
−1

2
u
′W−1(I − pQ̃)

σ2
u

u

)
du

dσ2
u

(σ2
u)
a+k/2+1

.

Since (det((I − pQ̃)−1W ))−
1
2 is finite and nonzero it follows that:

I ∝
∫
σ2
u

∫
u

n∏
i=1

{1− h(x∗iβ + z∗i u)} exp

(
−1

2
u
′W−1(I − pQ̃)

σ2
u

u

)
du

dσ2
u

(σ2
u)
a+k/2+1

. (4.6)
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Substitute u = v(σ2
u)

1
2 gives:

I ∝
∫
σ2
u

∫
v

n∏
i=1

{1− h(x∗iβ + (σ2
u)

1
2 z∗i v)} exp

(
−1

2
v
′
W−1(I − pQ̃)v

)
dv

dσ2
u

(σ2
u)
a+1

. (4.7)

The integral (4.7) diverges for σ2
u in a neighborhood of zero if a > 0.

For large σ2
u, let x = 1

σ2
u
. Then:∫

σ2
u

e
− c

σ2u (
1

σ2
u

)b+1dσ2
u = −

∫ ∞
0

e−cxxb+1dx

x2
= −

∫ ∞
0

e−cxxb−1dx.

The above integral exists if c > 0 and b−1 > −1. Thus, for the integral (4.6) this condition

is equivalent to
u
′
W−1(I − pQ̃)u

2
> 0 (fulfilled since positive definite) and a+ k/2 > 0.

It is now proved that Π1 is necessary. Suppose that Π1 is not satisfied. Since the integrand

in (4.7) is nonnegative, h(·) is monotone, and because σ2
u is nonnegative it follows that:

I ≥
∫
σ2
u

∫
ϕ1

n∑
i=1

{1− h(x∗iβ)} exp

(
−1

2
v
′
(W−1(I − pQ̃))v

)
dv

dσ2
u

(σ2
u)
a+1

. (4.8)

The right hand side of (4.8) diverges due to the integral over σ2
u.

(ii) Sufficiency. Since: ∫ ∞
0

xne−axdx =
Γ(n+ 1)

an+1

if n > −1 and a > 0, it follows after integrating (4.6) over σ2
u that:

I ∝
∫
u

n∏
i=1

{1− h(x∗iβ + z∗i u)} du

(u′(W−1(I − pQ̃))u)(a+k/2)
.

If Π2 holds, then for every u there exists some index ju ∈ {1, · · · , n} such that

x∗juβ + z∗juu > 0. Remember that u is a k-dimensional vector and the integration area is

[−∞,∞]k. Since for every u there exists some index ju such that x∗juβ+z∗juu > 0, changing

the integration area to x∗jβ + z∗ju > 0 yields a larger integration area. Therefore, I can be

bounded in the following way:

I ≤
n∑
j=1

∫
{u:x∗jβ+z∗j u>0}

{1− h(x∗iβ + z∗i u)} du

(u′W−1(I − pQ̃)u)(a+k/2)
,

where the fact is used that 1− h(·) ≤ 1, and therefore, it suffices to retain only one term

in the product. It is, therefore, enough to inspect the convergence of:

Ij =

∫
{u:x∗jβ+z∗j u>0}

{1− h(x∗iβ + z∗i u)} du

(u′W−1(I − pQ̃)u)(a+k/2)
.
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If h(·) is the logit link, it follows that:

h(x∗iβ + z∗i u) =
exp(x∗iβ + z∗i u)

1 + exp(x∗iβ + z∗i u)

and thus:

1− h(·) = 1− exp(·)
1 + exp(·)

=
1

1 + exp(·)
≤ 1

exp(·)
.

Therefore:

Ij ≤
∫
{u:x∗jβ+z∗j u>0}

exp{−(x∗jβ + z∗ju)} du

(u′W−1(I − pQ̃)u)(a+k/2)
.

Without loss of generality, it is assumed that z∗j = (1, 0, · · · , 0), since this merely corre-

sponds to the transformation v1 = z∗ju and vi = ui (i = 2, · · · , k). Thus:

Ij ≤
∫
{u1:x∗jβ+u1>0}

∫
u2

· · ·
∫
uk

exp{−(x∗jβ + u1)} du

(u′(W−1(I − pQ̃))u)(a+k/2)
.

Using the fact, that W−1(I − pQ̃) = W−1 − pQ and Q is symmetric it follows that:

u
′
Qu = (u2Q2,1 + · · ·+ ukQk,1)u1 + (u1Q1,2 + u3Q3,2 + · · ·+ ukQk,2)u2 +

+ · · ·+ (u1Q1,k + · · ·+ ukQk−1,k)uk

= u1(u2Q2,1 + · · ·+ ukQk1 + u2Q1,2 + · · ·+ ukQ1,k) + (u3Q3,2 + · · ·+ ukQk,2)u2 +

+ · · ·+ (u2Q2,k + · · ·+ uk−1Qk−1,k)uk

= u2
1[2(

u2

u1

Q2,1 + · · ·+ uk
u1

Qk,1) + (
u2

u1

u3

u1

Q3,2 + · · ·+ u2

u1

uk
u1

Qk,2) +

+ · · ·+ (
u2

u1

uk
u1

Q2,k + · · ·+ uk−1

u1

uk
u1

Qk−1,k)].

Since u
′
W−1u = w−1

1 u2
1 + · · ·+w−1

k u2
k = u2

1[w−1
1 +

u22w
−1
2

u21
+ · · ·+ u2kw

−1
k

u21
] it follows for Ij after

substituting ui = yiu1 (i = 2, · · · , k) :

Ij ≤
∫
{u1:x∗jβ+u1>0}

exp{−(x∗jβ + u1)} du1

u2a+1
1

∫
y2

· · ·
∫
yk

dy2 · · · dyk
(∗)

, (4.9)

where:

(∗) = (w−1
1 + w−1

2 y2
2 + · · ·+ w−1

k y2
k)− 2p [(y2Q2,1 + · · ·+ ykQk,1)]︸ ︷︷ ︸

(∗∗∗)

(4.10)

−2p[(y2y3Q3,2 + · · ·+ yky2Qk,2) + · · ·+ yk−1ykQk−1,k]︸ ︷︷ ︸
(∗∗)

.
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In (∗∗) every element of the lower diagonal matrix of Q (without the diagonal elements)

is only in the sum once with the according yi and yj. This is due to symmetry.

Now the existence of the integral (4.9) is shown. Since the integral:∫
e−xx−(2a+1)dx

exists if:

−(2a+ 1) > 1⇔ a < 0,

the integral over u1 converges.

Therefore, we only need to deal with the integrals over y2, · · · , yk in formula (4.9). The

integration area is [−∞,∞]k−1. But since (W−1−pQ) is positive definite, the denominator

is greater than 0. Therefore, there are no singularities, and the integrals exist in a bounded

area. It follows, that: ∫
y2

· · ·
∫
yk

dy2 · · · dyk
(1 + y2

2 + · · ·+ y2
k)
a+k/2

(4.11)

exists if a > −1
2
. We now show that the integrals in (4.9) have the same properties than

the integrals (4.11) in Natarajan and McCulloch (1995).

Using the Binomial formula, it follows that:

xy <
1

2
(x2 + y2) < x2 + y2. (4.12)

Therefore (**) is bounded above by:

((y2
2 + y2

3)Q3,2 + · · ·+ (y2
k + y2

2)Qk,2) + · · ·+ ((y2
k−1 + y2

k)Qk−1,k).

Thus, it follows for (*) (not dealing with (***) at the moment):

w−1
1 +

k∑
i=2

w−1
i y2

i − 2p(∗∗)− 2p(∗ ∗ ∗) ≥
k∑
j=2

[(w−1
i − 2p

k∑
i=2,i 6=j

Qij)y
2
j ]− 2p(∗ ∗ ∗). (4.13)

There is still something we must handle in formula (4.13). The coefficient of some y2
j might

be negative for some j, yielding a singularity. Therefore, we must adjust the inequality in

(4.12) to that of (4.14), after dealing with (***) first.

To deal with (***) the integration area is split up into smaller parts, starting with [0,∞]k−1.

Since the integral (*) contains no singularities and exists in every bounded integration area,

it suffices to consider the area [M,∞]k−1, where M > 0 is chosen such that:

MQj,1 < yjQj,1 < y2
j εforε > 0, j = 2, · · · , k.
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To yield positive coefficients in (4.13) it is assumed that:

MQij ≤ yiyjQij ≤ (y2
i + y2

j )ε (4.14)

for 0 < ε < 1
2

1
2p(2k−3)

, i = 2, · · · , k; j = 2, · · · , k; j 6= i.

Therefore, (***) is bounded above by:

[(y2Q2,1 + · · ·+ ykQk,1)] ≤ y2
2ε+ · · ·+ y2

kε. (4.15)

And (**) is bounded above by the following alternative expression:

w−1
1 +

k∑
i=2

y2
i − 2p(∗∗)− 2p(∗ ∗ ∗) ≥

k∑
j=2

[(w−1
i − 2p(k − 2)εy2

j ]− 2p(∗ ∗ ∗). (4.16)

Combining the inequality (4.16) with (4.15) yields (see 4.10):

(∗) ≥ w−1
1 +

k∑
j=2

[(w−1
i − 2p(2k − 3)ε)︸ ︷︷ ︸

=:aj

y2
j ] = w−1

1 +
k∑
j=2

ajy
2
j .

Substituting aj · w1y
2
j = (y∗j )

2 shows that the integrals in (4.9) have the same structure in

the integration area [M,∞]k−1 as the integral in (4.11). Using ε < 1
2

1
2p(2k−3)

shows that

aj > 0 for all j. Therefore, the integral in (4.9) exists in the special integration area if

a > −1
2
.

Now the entire integration area is considered. The integration area [−∞,∞]k−1 can be

split up into all combinations of the intervals [−∞, 0] and [0,∞]. All the integrals over

these integration areas exist, since the inequality of the Binomial formula (4.12) is true for

all values. Also, if for any i, yi takes on negative values, this only enlarges the denominator,

since all entries of the matrix Q are positive. Therefore, substituting yi by 0 if yi < 0 in

(***) shows the existence of the integrals. In other words, the integration area [0,∞]k−1

is the worst possible case, which means that the integrated function is largest here. Since

the integral exists in this case, this completes the proof. Note that if h(·) is the logit link,

Natarajan and McCulloch (1995) bounded 1 − h(·) by exp{−1
2
(·)2} and the same

proof applies. �
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4.4 Alternative Proof of the Existence Theorem

In this section an alternative, much easier proof for Theorem 4.3 is presented.

Proof: Since the covariance matrix σ2
u(I − pQ̃)−1W is symmetric and positive definite

there exists an orthogonal transformation such that:

O
′
((I − pQ̃)−1W )O = diag(λi),

where λi are the eigenvalues of the covariance matrix. Hence:

(I − pQ̃)−1W = ODDO
′
=: AA

′

with D = diag(
√
λi) and A = OD. It follows that:

A−1u ∼ N
(

0, A−1σ2
u(I − pQ̃)−1W (A−1)

′
)

= N(0, σ2
uI).

Therefore, defining u∗∗ = A−1u and z∗∗i = ziA yields:

yi|u∗∗ ∼ Bernoulli{h(xiβ + z∗∗i u
∗∗)}

u∗∗|σ2
u ∼ Nk(0, σ

2
uI)

πσ2
u
(σ2

u|a) ∝ 1

(σ2
u)
a+1

,

and thus, Theorem 4.1 may be applied. �

Theorem 4.3 allows statisticians to use the spatial Bernoulli mixed models. Within the

German Census 2011 many variables will be categorical, and those models are applicable

in this framework. However, just because it is possible to use and implement a model

does not mean that the analysis will be meaningful. Therefore, in the next section the

spatial and non-spatial Bernoulli models are tested on unemployment data in Germany.

In addition, the models are compared to the normal models of Chapter 3.

4.5 Application

In this section, the spatial and non-spatial Bernoulli models (4.2) and (4.4) are tested

against each other via the same simulation setup as in Section 3.5. Then, the findings are

59



PROPRIETY FOR A CLASS OF SPATIAL BERNOULLI MIXED MODELS

Bias of results RRMSE of results

Federal state Data Non-sp. Spatial Non-sp. Spatial Diff.

Berlin 15.5 −0.0248 −0.0073 0.3437 0.3885 −0.0448

Bremen 12.7 −0.0122 −0.0059 0.3411 0.4168 −0.0757

Brandenburg 14.9 −0.0241 −0.0180 0.3488 0.2944 0.0544

Baden-Württ. 4.9 0.0303 0.0234 0.8058 0.6956 0.1103

Bavaria 5.3 0.0279 0.0289 0.7270 0.7129 0.0141

Hamburg 9.2 0.0069 0.0071 0.4033 0.4404 −0.0370

Hesse 7.6 0.0157 0.0095 0.4445 0.3366 0.1079

Mecklenburg-Vorp. 16.5 −0.031 −0.0302 0.3566 0.3319 0.0246

Lower Saxony 8.9 0.0077 0.0116 0.3913 0.3025 0.0888

North Rhine Westph. 9.5 0.0062 0.00002 0.3642 0.3421 0.0221

Rhineland-Palatinate 6.5 0.0223 0.0133 0.5645 0.4580 0.0166

Saxony-Anhalt 16 −0.0267 −0.0251 0.3512 0.3109 0.0404

Saxony 14.7 −0.0204 −0.0192 0.3435 0.3141 0.0294

Schleswig-Holstein 8.4 0.0104 0.0143 0.3972 0.4192 −0.0220

Saarland 8.4 0.0095 0.0013 0.4012 0.4870 −0.0858

Thuringia 13.2 −0.011 −0.0157 0.3649 0.3152 0.0497

Table 5: Unemployment Rate for the 16 German Federal States, as well as Bias, RRMSE,

and Difference of the RRMSE for the Bernoulli Models; Data Source: Bundesagentur

für Arbeit (2008).

compared to the results of the normal models of Section 3.5. Simulation is done using R

and WinBUGS, and the WinBUGS models are included in Appendix B.

The logit link is assumed and a = −0.05, and p = 0.95. Other choices of the parameters
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are discussed in Sections 6.4.4 and 6.4.5. Thus, the spatial model is as follows:

yi|u ∼ Bernoulli{θi,model}

logit(θi,model) = β + ui

u|σ2
u ∼ Nk(0, σ

2
u(I − 0.95Q̃)−1W )

πσ2
u
(σ2

u) ∝
1

(σ2
u)
−0.05+1

, (4.17)

where yi is of length 16 · 20 containing 0′s and 1′s representing employed and unemployed.

The neighborhood matrix is constructed via the nearest neighbor structure (see Section

2.4.3). The non-spatial model is equal to (4.17) except that:

u|σ2
u ∼ Nk(0, σ

2
uI).

Both models assign a proper, non informative normal distribution on β. It is difficult to

include the adjacency information into the non-spatial model. The estimator of the true

unemployment rate θi for the ith state given the spatial model is denoted by θ̂i,spatial and for

the non-spatial model by θ̂i,non-spatial. Assumption Π2 of Theorems 4.1 and 4.3 is satisfied

since there is at least one level of random effects for which there is a success and a failure

(cf. Natarajan and McCulloch, 1995, p. 642). Thus, Theorem 4.3 ensures posterior

propriety.

As in Section 3.5 the two models are compared by the three methods previously discussed:

RRMSE, bias, and average Gain.

The average Gain of 1.12 indicates an average gain for the spatial model is 12%. In the

simulation study, we find that in about 75% of the samples there has been a gain greater

than 1. Furthermore, the deviance of the RRMSE is 0.38, showing the better overall per-

formance of the spatial model. For some regions the RRMSE of the non-spatial model

is smaller (see Table 5), however all those regions are city states or unusually small fed-

eral states with a few number of neighbors (see Figure 10 on page 64). This may be

avoided by choosing an alternative neighborhood structure, where each state has at least

two neighbors. The topic is further discussed in Section 6.4.3. The sum of the absolute

values of the bias is 0.29 for the non-spatial model and 0.23 for the spatial one. All of
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Figure 9: Unemployment Rate 2007, RRMSE, and Deviance of the RRMSE for the Spatial

and Non-spatial Bernoulli Model.

the above measures indicate a better overall performance of the spatial model. Figure 9

shows and compares the RRMSE on the map for the spatial and non-spatial model. These

plots reflect the better performance of the spatial model as noted before. The sum of the

RRMSE and the bias of the Bernoulli models of this section as well as those quantities for

the normal models of Section 3.5 are given in Table 6. The RRMSE of the spatial normal

model is the lowest, followed by the RRMSE of the spatial Bernoulli model. We notice a
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similar occurrence for the non-spatial models. Thus, in terms of the RRMSE, the normal

models beat the Bernoulli models, but at the cost of a higher bias. Here, the spatial as

well as the non-spatial Bernoulli model beat both normal models.

Normal models Bernoulli models

Measure Non-sp. spatial Non-sp. Spatial

RRMSE 6.72 6.27 6.95 6.57

Bias 0.32 0.32 0.29 0.23

Table 6: RRMSE and Bias for the Spatial and Non-spatial Normal and Bernoulli models.

4.6 Conclusion

With the development of more powerful computers and MCMC methods, Bayesian mod-

eling has become powerful and popular. Since the results of MCMC methods may be mis-

leading if the posterior distribution is improper, Natarajan and McCulloch (1995)

proved an existence theorem for a class of Bernoulli mixed models. However, in many

applications spatial correlations are present, and thus, the independence assumption of

the random effects is replaced by the conditional autoregressive approach. Within this

chapter, we proved an extension of the Natarajan and McCulloch (1995) theorem,

which incorporates spatially correlated random effects. We showed for the unemployment

rate example that estimation results may improve if the CAR structure is utilized. Thus,

if correlation is present it is beneficial to apply spatial modeling. This happens to be the

case for many applications in economics, social sciences, or geography, and is likely to

happen in the German Census 2011 as well.
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Figure 10: Deviance of the RRMSE for the Federal States, Sorted by Number of Neighbors

(Ascending Order).
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5 The Spatial Fay-Herriot Model: Propriety and Pre-

diction

In Chapters 3 and 4 propriety theorems for two important spatial model classes were

proved, which include a wide variety of unit as well as area-level models, like the spatial

hierarchical extension of the Battese-Harter-Fuller model (2.6). However, one of the most

commonly applied small area models, the Fay-Herriot model (2.3), is not part of these

model classes. This is due to unequal sampling variances, which are not allowed in Chapter

3. The gap is closed in this chapter. Like in the previous chapters, we prove the propriety

of the posterior for the spatial extension under certain conditions. In the examples of

Chapters 3 and 4, possible gains of spatial modeling could be shown when no covariates

are present. In this chapter, the effect of covariates on the benefits of spatial modeling

will be analyzed. Therefore, covariates of different types will be included in our example.

Moreover, we consider the situation of one unsampled area.

5.1 Introduction

Due to budgetary constraints, it is generally not feasible to sample all small areas of

interest. In the framework of the German Census 2011, all geographical areas, like munic-

ipalities, are sampled. This might not be the case for areas (domains) arising from social

factors, perhaps single fathers below 20 years of age in a certain region. The estimation

for these unplanned small areas is problematic if the survey does not produce any samples

for these areas. One possible way to obtain estimates for unsampled areas, is to apply

small area models which borrow strength from other areas. However, standard small area

models borrow strength from every area without a weighting. If spatial correlations are

present, this approach may be subject to considerable bias. One potential way to reduce

the bias is to model the spatial interactions explicitly via the CAR structure (2.20) and to

increase the weight of neighboring areas.

In Section 5.2, an extension of the Fay-Herriot model that incorporates spatial correlations
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using an intrinsic spatial CAR model is proposed. The propriety of the posterior distri-

bution under certain regularity conditions is shown. In addition, we derive the necessary

theory for predicting one unsampled area and show by means of a simple example how

the CAR structure influences the estimates. The spatial extension is tested in Section

5.3 using the Small Area Income and Poverty (SAIPE) data of the United States Census

Bureau.

5.2 Theory

In this section the Fay-Herriot model is extended by including prior distributions on the

regression coefficient and the variance component. The independence assumption of the

random coefficients is replaced by the conditional autoregressive structure. Then we derive

a formula for the mean of the unsampled area, and prove the propriety of the posterior

distribution.

5.2.1 Spatial Hierarchical Extension of the Fay-Herriot Model

The Fay-Herriot model (2.3) is given by:

Yi ∼ N(θi, σ
2
ε,i)

θi = Xiβ + ui, i = 1, · · · , k

u ∼ N(0, σ2
uI),

where σ2
ε,i are assumed to be known. This model can be extended to a hierarchical model

by assuming prior distributions on the coefficients β and σ2
u. Here, the prior distributions

of Example 2.9 are taken to be:

πβ(β) ∝ 1

1/σ2
u ∼ Γ(0.5, 0.0005).

Note that it is quite difficult to choose appropriate prior distributions (cf. Kass and

Wassermann, 1996). For this analysis standard distributions are assumed (cf. Kelsall
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and Wakefield, 2008, p. 151 and GeoBUGS User Manual, 2004, p. 41). We do not

address prior selection in this work. The Fay-Herriot model (2.3) can be further extended

by assuming dependent random effects:

Yi ∼ N(θi, σ
2
ε,i) (5.1)

θi = Xiβ + ui

u ∼ N(0, σ2
u(I − pQ̃)−1W )

πβ(β) ∝ 1

1/σ2
u ∼ Γ(0.5, 0.0005),

where W = diag

(
1/

k∑
j=1

(Qi,j)

)
and Q̃i,j =

Qi,j∑k
j=1(Qi,j)

are the weights (2.20) suggested

by Banerjee et al., 2004, p. 79. The neighborhood matrix Q is symmetric with Qii = 0.

The overall goal of this section is to analyze how effective the spatial hierarchical Fay-

Herriot model (5.1) is in terms of prediction for one unsampled area, compared to the

hierarchical Bayes methodology. To achieve this, we derive a formula for the mean of the

unsampled area in the following section.

5.2.2 The Predicted Mean of One Unsampled Area

In order to derive a formula for the mean of the unsampled area under the model (5.1),

the conditional distribution of the unsampled area, YUS, given the sampled areas, YS, is

needed. Assume that β, σ2
ε,i, and σ2

u are known. Then, model (5.1) may be written in the

form:

Y ∼ N(µ,Σ)⇔

 YUS

YS

 ∼ N

 XUSβ + uUS

XSβ + uS + εS

 ,

 ΣUS ΣUS,S

ΣS,US ΣS

 , (5.2)

where ΣUS = ((Ik − pQ̃)−1Wσ2
u)US, ΣUS,S = ((Ik − pQ̃)−1Wσ2

u)US,S, ΣS,US = ((Ik −

pQ̃)−1Wσ2
u)S,US, ΣS = σ2

ε,i,SIk−1 + ((Ik − pQ̃)−1Wσ2
u)S.

Using standard results, the conditional distribution is given by:

YUS | (YS = yS, β, σ
2
u, σ

2
ε , p) ∼ N(µ̄, Σ̄),
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where µ̄ = µUS + ΣUS,SΣ−1
S (yS − µS)

and Σ̄ = ΣUS − ΣUS,SΣ−1
S ΣS,US.

The conditional mean µ̄ may be used to predict one unsampled area. Using the block

matrix inversion formula:

M =

 A B

C D

⇒M−1 =

 (A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

 ,
(5.3)

and so an alternative formulation of µ̄ can be derived. The new specification shows explic-

itly how the spatial correlations enter the model.

Lemma 5.1: Consider the model (5.1) with known β, σ2
ε,i, and σ2

u in the form (5.2).

Then, the mean µ̄ of the conditional distribution of the unsampled area YUS given the

other areas YS, may be written as:

µ̄ = XUSβ − σ2
uB
[
σ2
ε,SISW

−1
S (D − CA−1B) + σ2

uIS
]−1

(yS −XSβ), (5.4)

where A is the 1, 1 element, B the 1, 2 : n elements, C the 2 : n, 1 and D the 2 : n, 2 : n

elements of ΣT = I − pQ̃. Thus, A represents the variance of the first area, B and C the

correlation between the unsampled and the sampled areas, and D the correlation between

the sampled areas.

Proof: Model (5.2) follows with the block matrix inversion formula (5.3):

Σ =
(
0, diagk−1(σ2

ε,i)
)

+ Σ−1
T Wσ2

u

=

 (A−BD−1C)−1WUSσ
2
u −A−1B(D − CA−1B)−1WSσ

2
u

−D−1C(A−BD−1C)−1WUSσ
2
u σ2

ε,SIS + (D − CA−1B)−1WSσ
2
u


=:

 ΣUS ΣUS,S

ΣS,US ΣS

 .
Thus:

µ̄ = XUSβ + ΣUS,SΣ−1
S (yS −XSβ)

= XUSβ − A−1B(D − CA−1B)−1WSσ
2
u

[
σ2
ε,SIS + (D − CA−1B)−1WSσ

2
u

]−1
(yS −XSβ).
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Using the fact that M−1N−1 = (NM)−1 with M = (D − CA−1B)−1WS,

N =
[
σ2
ε,SIS + (D − CA−1B)−1WSσ

2
u

]−1
and A−1 = 1 it follows that:

µ̄ = XUSβ − σ2
uA
−1B

[
(σ2

ε,SIS + (D − CA−1B)−1σ2
uWS) ·W−1

S (D − CA−1B)
]−1

(yS −XSβ)

= XUSβ − σ2
uB
[
σ2
ε,SISW

−1
S (D − CB) + σ2

uIS

]−1
(yS −XSβ).

The following example clarifies the meaning of formula (5.4).

Example 5.2: In this example, the mean µ̄ of formula (5.4) will be calculated for a

situation with 3 areas, where the first area is unsampled. A nearest neighbor structure is

assumed, which means that the first area is a neighbor of the second, the second area is

a neighbor of the first and the third area, and finally the third area has got area two as a

neighbor (see Figure 6 on page 35). Therefore, the neighborhood matrix Q is as follows:

Q =


0 1 0

1 0 1

0 1 0

 .

Dividing each row of Q by the number of neighbors Q̃i,j =
Qi,j∑3
j=1Qi,j

yields:

Q̃ =


0 1 0

1
2

0 1
2

0 1 0

 .

The weight matrix W = diag

(
1∑3

j=1Qi,j

)
is given by:

W =


1 0 0

0 1
2

0

0 0 1

 .
The mean of one unsampled area shall be calculated using formula (5.4). Since the first

area is unsampled, WS are the weights for the second and third area, given by:

WS =

 1
2

0

0 1

 .
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Now µ̄ may be calculated using formula (5.4). Note that σ2
ε,S =

[
σ2
ε,2 σ2

ε,3

]
and then:

σ2
ε,SISW

−1
S =

 2σ2
ε,2 0

0 σ2
ε,3

 . (5.5)

It follows that:

I − pQ̃ =


1 −p 0

−p
2

1 −p
2

0 −p 1

 =:

 A B

C D

 , (5.6)

where A = 1, B =
[
−p 0

]
, C =

 −p
2

0

 , and D =

 1 −p
2

−p 1

 .
Using formula (5.6) yields:

D − CA−1B =

 1− p2/2 −p/2

−p 1

 . (5.7)

Using (5.5) and (5.7) it follows that:

σ2
ε,SISW

−1
S (D − CA−1B) + σ2

uIS =

 2σ2
ε,2(1− p2/2) + σ2

u −σ2
ε,2p

−pσ2
ε,3 σ2

ε,3 + σ2
u

 .
Therefore:

(σ2
ε,SISW

−1
S (D − CA−1B) + σ2

uIS)−1 =
1

m

 σ2
ε,3 + σ2

u σ2
ε,2p

pσ2
ε,3 2σ2

ε,2(1− p2/2) + σ2
u

 ,
where:

m = (2σ2
ε,2(1− p2/2) + σ2

u)(σ
2
ε,3 + σ2

u)− σ2
ε,2σ

2
ε,3p

2.

Now all the necessary parts to calculate µ̄ have been found. Thus:

µ̄ = XUSβ − σ2
uB
[
σε,SISW

−1
S (D − CA−1B) + σ2

uIS

]−1
(yS −XSβ)

= XUSβ − σ2
u[ −p 0 ]

1

m

 σ2
ε,3 + σ2

u σ2
ε,2p

pσ2
ε,3 2σ2

ε,2(1− p2/2) + σ2
u

 (yS − µS).

Matrix calculation yields:

µ̄ = XUSβ +
p

m

[
(σ2

ε,3 + σ2
u) pσ2

ε,2

]
(yS −XSβ). (5.8)
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Out of formula (5.8) the following observations can be made:

1. The resulting estimate is a linear combination between the synthetic estimate XUSβ

and information of the other areas (yS −XSβ).

2. Weight is given to neighbors (area 2) and to non-neighbors (area 3).

3. Since σ2
u > 0 and p < 1, it follows that if σ2

ε,3 and σ2
ε,2 are of equal size, more power

is given to the neighborhood area 2.

4. If σ2
ε,2 is large and the information of the second area is low, then more strength is

taken from area 3 and vice versa.

5. If p = 0 and independence is assumed, just the synthetic estimate will be used.

5.2.3 Propriety of the Posterior Distribution

In applications the spatial correlation term, p, is frequently assumed to equal 1. Unfortu-

nately, this leads to an improper prior distribution on the random effects u, the so called

intrinsic CAR model (cf. Besag et al., 1991 and Besag and Kooperberg, 1995). Thus,

the propriety of the posterior distribution is not ensured and similar to Chapters 3 and 4

an existence theorem is needed.

Remark 5.3: The structure of the spatial hierarchical Fay-Herriot model slightly differs

from the structure of the models of Chapters 3 and 4. The prior distribution of the variance

component of the Fay-Herriot model is proper. Possible propriety problems enter through

the improper intrinsic CAR structure. The other two models assume a different, proper,

CAR structure. Problems might occur because the prior distributions of the variance

components are improper.

Sun et al., 1999, p. 346 considered the propriety for the intrinsic CAR model with unknown,

but equal sampling variances. Let Y = (Y1, · · · , Yn) be the vector of n observations and

let X and Z be the n×p and n×k design matrices. The least squares estimator for (β′, u′)
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is given by (β̂, û) = ((X,Z)′(X,Z))−(X,Z)′Y , where ((X,Z)′(X,Z))− is a generalized

inverse of (X,Z)′(X,Z). Finally, let SSE = Y ′{In − (X,Z)((X,Z)′(X,Z))−}Y be the

sum of squared errors. Then, the following theorem holds (cf. Sun et al., 1999, p. 346).

Theorem 5.4: Consider the linear mixed model:

Y = Xβ + Zu+ ε,

where ε ∼ N(0, σ2
ε I). Assume the prior densities f(u) ∝ exp

(
− 1

2σ2
u
u′Bu

)
, where B is

nonnegative definite but not positive definite, πβ(β) ∝ 1, πσ2
ε
(σ2

ε ) ∝ (σ2
ε )
−(aε+1) exp(−bε/σ2

ε )

and πσ2
u
(σ2

u) ∝ (σ2
u)
−(au+1) exp(−bu/σ2

u). The variance components are assumed to be a

priori independent. Assume the following conditions:

• rank(X) = p and rank(u′R1u+B) = k, where R1 = In +X(X ′X)−1X ′

• au > 0 and bu > 0

• n− p− k − 2aε > 0 and SSE + 2bε > 0

Then, the joint posterior distribution of (β, Z, σ2
ε , σ

2
u) given Y is proper.

In this theorem, the sampling variances are assumed to be unknown but equal. Therefore,

this theorem does not ensure propriety for a Fay-Herriot type model with known but

unequal sampling variances. However, Theorem 5.4 can be adapted to the spatial general

linear mixed model with known, unequal sampling variances, which includes the spatial

hierarchical Fay-Herriot model (5.1).

Theorem 5.5: Consider the linear mixed model Y = Xβ + Zu+ ε, where ε ∼ N(0,Σε)

with known sampling variance matrix Σε. In addition, we assume the following prior dis-

tributions: f(u) ∝ exp
(
− 1

2σ2
u
u′Bu

)
, where B is nonnegative definite but not positive

definite, πβ(β) ∝ 1, and πσ2
u
(σ2

u) ∝ (σ2
u)
−(a+1) exp(−b/σ2

u). Assume the following condi-

tions:

• rank(X) = p and rank(u′R1u+B) = k, where R1 = Σ−1
ε + Σ−1

ε X(X ′Σ−1
ε X)−1X ′Σ−1

ε
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• a > 0 and b > 0.

Then, the joint posterior distribution of (β, u, σ2
u) given Y is proper.

Proof: The idea is to integrate the joint posterior density of (β, u, σ2
u) with respect to

the three variables: β, u, and σ2
u. The joint posterior density is proportional to:

G = (σ2
u)
− 1

2
k · exp

(
−1

2
(Y −Xβ − Zu)′Σ−1

ε (Y −Xβ − Zu)− uTBu

2σ2
u

)
· πσ2

u
(σ2

u).

The proof is split into six parts. In parts 1 and 2 the joint posterior is transformed and

then integrated with respect to β. In parts 2 and 3 the integrated posterior is rearranged

to allow for an easier integration with respect to u. Finally, in parts 5 and 6 the joint

posterior is bounded, and thus, the propriety is shown.

1. First, G is transformed since this helps to better handle the integration with respect

to β. This is done by adding and subtracting Xβ̂ and Zû. It follows that:

(Y −Xβ − Zu)′Σ−1
ε (Y −Xβ − Zu) (5.9)

= (Y −Xβ̂ − Zû−X(β − β̂)− Z(u− û))′Σ−1
ε ·

·(Y −Xβ̂ − Zû−X(β − β̂)− Z(u− û)).

Expanding (5.9) yields:

(Y −Xβ − Zu)′Σ−1
ε (Y −Xβ − Zu) (5.10)

= e′Σ−1
ε e−

− e′Σ−1
ε X(β − β̂) +

+ (β − β̂)′X ′Σ−1
ε X(β − β̂)−

− (β − β̂)′X ′Σ−1
ε e+

+ (β − β̂)′X ′Σ−1
ε Z(u− û) + (u− û)′Z ′Σ−1

ε X(β − β̂)−

− e′Σ−1
ε Z(u− û)−

− (u− û)′Z ′Σ−1
ε e+

+ (u− û)′Z ′Σ−1
ε Z(u− û),

where e = Y −Xβ̂ − Zû.
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2. Now all of the factors in (5.10) containing (β − β̂) are collected, such that:

(Y −Xβ−Zu)′Σ−1
ε (Y −Xβ−Zu) = (β−β̂−C0−C1)′X ′Σ−1

ε X(β−β̂−C0−C1)+K0,

where

C0 = (X ′Σ−1
ε X)−1X ′Σ−1

ε e

C1 = (X ′Σ−1
ε X)−1X ′Σ−1

ε Z(u− û).

Note that X ′Σ−1
ε X is symmetric. K0 is a constant which contains all the factors

independent of β. We find that:

K0 = (u− û)′Z ′Σ−1
ε Z(u− û)− (u− û)′Z ′Σ−1

ε e−

− e′Σ−1
ε Z(u− û)− C ′1X ′Σ−1

ε XC0 −

− C ′1X
′Σ−1

ε XC1 − C ′0X ′Σ−1
ε XC1 − C ′0X ′Σ−1

ε XC0

Integrating G with respect to β yields:∫
Rp
G dβ =

(2π)
1
2
p|X ′Σ−1

ε X|− 1
2

(σ2
u)

1
2
k

exp

{
−1

2
K0 −

u′Bu

2σ2
u

}
· πσ2

u
(σ2

u). (5.11)

3. Now, we can compute the integration with respect to u. Therefore, the exponential

function (5.11) is calculated and transformed by collecting the terms containing u in

K0. The following facts are useful:

(a) C ′0X
′Σ−1

ε XC0 which is independent of all integration variables and will be seen

as a constant.

(b) C ′0X
′Σ−1

ε XC1 = ((X ′Σ−1
ε X)−1X ′Σ−1

ε e)′X ′Σ−1
ε Z(u− û)

(c) C ′1X
′Σ−1

ε XC1 = (u− û)′Z ′Σ−1
ε X(X ′Σ−1

ε X)−1X ′Σ−1
ε Z(u− û)

(d) C ′1X
′Σ−1

ε XC0 = −((X ′Σ−1
ε X)−1X ′Σ−1

ε Z(u− û))′X ′Σ−1
ε e

(e) e′Σ−1
ε Z(u− û)

(f) (u− û)′Z ′Σ−1
ε e

(g) (u− û)′Z ′Σ−1
ε Z(u− û).
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This leads to :

K0 = (u− û− C2)′Z ′R1Z(u− û− C2) + K1, (5.12)

where C2 = (Z ′R1Z)−1Z ′(R1 + Σ−1
ε )e includes the above terms with one (u − û).

Then K1 contains all terms independent of u which occur by including C2 in the

formula.

4. Now, we consider
u′Bu

σ2
u

. Therefore, formula (5.12) of the previous step is utilized,

since:

K0 +
u′Bu

σ2
u

= (u− û− C2)′Z ′R1Z(u− û− C2) + K1 +
u′Bu

σ2
u

.

This leads to:

u′Z ′R1Zu+
u′Bu

σ2
u

+ other terms. (5.13)

Rearranging (5.13) yields:

(u− C3)′R2(u− C3)− (C3)′R2C3, (5.14)

where R2 = Z ′R1Z +
B

σ2
u

and C3 = R−1
2 Z ′R1Z(û+ C2).

Using the integrated G in (5.11) together with (5.14) it follows that:∫
Rk

∫
Rp
G dβdu =

(2π)
1
2

(p+k)|X ′Σ−1
ε X|− 1

2

(σ2
u)

1
2
k+a+1|R2|

1
2

exp

{
−(C3)′R2C3 −

b

σ2
u

}
. (5.15)

Integration leads to the factor |R2|−
1
2 in front of the exponential function. Since

Z ′R1ZR
−1
2 Z ′R1Z in (C3)′R2C3 is nonnegative definite this term can be bounded by

0 and thus discarded from the integral.

5. Using the argument by Sun et al., 1999, p. 346 it follows that:

|R2|−
1
2 ≤ {min(1, (σ2

u)
−1)k · |Z ′R1Z +B|}−

1
2

< (1 + (σ2
u)

k
2 ) · |Z ′R1Z +B|−

1
2 . (5.16)

6. Finally, combining (5.15) and (5.16) yields:∫
Rk

∫
Rp
G dβdu ≤ (2π)p+k|X ′Σ−1

ε X|−
1
2 |Z ′R1Z +B|−

1
2 (J1 + J2),
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where

J1 =
1

(σ2
u)

1
2
k+a+1

exp

(
− b

σ2
u

)
,

and

J2 =
1

(σ2
u)
a+1

exp

(
− b

σ2
u

)
.

Since a > 0 and b > 0 the integrals J1 and J2 exist with respect to σ2
u.

This completes the proof. �

Notes 5.6:

1. In Theorem 5.4 by Sun et al. (1999), the sum of squared errors (SSE) arises in the

assumptions. This term is not important here, since it depends only on the known

variance-covariance matrix Σε.

2. In the proof of Theorem 5.4, all terms containing e cancel out of formula (5.10), since

SSE is orthogonal to e. This need not to be the case if Σε is non-diagonal.

5.3 Application

We have now proved the propriety of the posterior distribution of the spatial hierarchical

Fay-Herriot model and the necessary theory for spatial prediction has also been derived. In

the following the spatial hierarchical Fay-Herriot model (5.1) is compared to the according

non-spatial version in terms of prediction using real data.

5.3.1 Setup

The poverty ratio in children ages 5− 17 in families in poverty will be analyzed using data

from the Current Population Survey (CPS) for the years 1989 and 1993. Four covariates are

available and include the Internal Revenue Service (IRS) pseudo child poverty rate (x1),

the IRS non-filer rate (x2), a food stamp participation rate (x3), and the census residuals

(x4). Combining data with the covariates the U.S. Census Bureau produces Small Area

76



THE SPATIAL FAY-HERRIOT MODEL: PROPRIETY AND PREDICTION

Income and Poverty Estimates (SAIPE). In this application those estimates are seen as

a gold standard. Since the data is from the state level, a Fay-Herriot type model can

be applied. In this application, 48 US States and the District of Columbia (Hawaii and

Alaska omitted) are considered. Every area is left out once and is predicted by means of a

spatial and non-spatial model. This procedure is repeated for covariates (0−4) and for the

years 1989 and 1993. The estimation results are compared to the official estimates (gold

standard).

5.3.2 Results

Since the results are similar for the years 1989 and 1993, we will simply just analyze the data

for 1993. Tables 7 and 8 contain simulation results for 1993 and 1989 respectively. Column

1 of Table 7 shows different measures of comparison, based on the squared deviance between

the predicted estimator and the official value, the absolute deviance, and the maximum

of the deviance. Since each of the 49 areas is left out once, the deviances are averaged

over all states. The deviances are constructed for the model containing all four covariates,

no covariate or each of the covariates alone. Columns 2 and 3 contain the corresponding

values for the spatial and non-spatial model. The last two columns compare the deviances

of the spatial and non-spatial model with each other (difference and ratio). The following

observations can be made:

1. If no covariates are included, the deviances for the spatial and non-spatial model are

large. These values decrease as the quality and number of covariates increases. The

lowest value is reached when all covariates are included.

2. The ratio of the non-spatial deviance compared to the spatial is large if no or weak

covariates are included. The ratio decreases if the quality of the covariates improves.

3. If all covariates are included there is no gain by using the spatial model.

The same effects can be seen, in Figures 11, 12, and 13. These figures compare the

predicted values of the spatial and non-spatial model with varying numbers of covariates.
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Spatial Non-sp. Spatial−Non-sp.
Non-sp.

Spatial

1
49
·

49∑
i=1

((Estimatori −Officiali)
2)

all 1.08 1.08 0.00 1.00

x1 7.76 12.51 -4.75 1.61

x2 17.04 27.43 -10.38 1.61

x3 4.74 4.59 0.15 0.97

x4 23.42 34.06 -10.64 1.44

without 25.14 34.18 -9.04 1.36

1
49
·

49∑
i=1

(|Estimatori −Officiali|)

all 0.79 0.79 0.00 1.00

x1 2.20 2.71 -0.51 1.23

x2 3.00 4.04 -1.04 1.35

x3 1.76 1.76 0.00 1.00

x4 3.76 4.77 -1.01 1.27

without 3.85 4.84 -0.99 1.26

max(|Estimator−Official|)

all 0.07 0.07 0.00 1.00

x1 0.12 0.17 -0.05 1.40

x2 0.24 0.29 -0.05 1.21

x3 0.12 0.12 0.00 1.00

x4 0.26 0.32 -0.06 1.23

without 0.29 0.27 0.02 0.93

Table 7: SAIPE Simulation Results for 1993.

Figure 11 on page 80 shows that if all covariates are included, there is no visible difference

between the spatial and non-spatial model. However, if no covariates are included, then

the predicted values of the non-spatial model compared to the official values are almost

constant. On the other hand, the spatial model improves the relationship. The same effect

can be observed if covariates of a different quality are included (Figures 12 and 13). Figure
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14 on page 83 underlines these results, by showing the squared deviance of the spatial and

non-spatial model for all 4 covariates (upper plots) and no covariates (lower plots) on the

map. If no covariates are included, the spatial model performs better than the non-spatial

model. This effect diminishes if all covariates are included.

Spatial Non-sp. Spatial−Non-sp.
Non-sp.

Spatial

1
49
·

49∑
i=1

((Estimatori −Truei)
2)

all 0.97 0.95 0.02 0.98

x1 4.53 4.67 -0.14 1.03

x2 12.14 20,95 -8,81 1.73

x3 3.89 5.23 -1.34 1.34

x4 17.27 28.12 -10.85 1.63

without 16.11 26.83 -10.72 1.67

1
49
·

49∑
i=1

(|Estimatori −Truei|)

all 0.82 0.81 0.01 0.98

x1 1.51 1.52 -0.01 1.01

x2 2.64 3.43 -0.80 1.30

x3 1.58 1.82 -0.24 1.15

x4 3.13 4.02 -0.89 1.28

without 3.16 3.98 -0.82 1.26

max(|Estimator−True|)

all 0.05 0.05 0.00 1.00

x1 0.14 0.14 0.00 1.00

x2 0.25 0.32 -0.07 1.27

x3 0.09 0.10 -0.01 1.09

x4 0.30 0.36 -0.06 1.19

without 0.25 0.34 -0.09 1.35

Table 8: SAIPE Simulation Results for 1989.
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Figure 11: Predicted Values of the Spatial and Non-spatial FH Model Compared to the

Official Estimates from 1993 : 4 and No Covariates.

80



THE SPATIAL FAY-HERRIOT MODEL: PROPRIETY AND PREDICTION

Figure 12: Predicted Values of the Spatial and Non-spatial FH Model Compared to the

Official Estimates from 1993 : Covariates x3, x4.
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Figure 13: Predicted Values of the Spatial and Non-spatial FH Model Compared to the

Official Estimates from 1993 : Covariates x1, x2.
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Spatial Non-spatial

Figure 14: Squared Deviance of the Spatial and Non-spatial FH Model for 4 (Upper Plots)

and No (Lower Plots) Covariates.

5.4 Conclusion

In Chapter 3, we proved propriety of the posterior distribution for the spatial general linear

mixed model. This model class includes many area as well as unit-level models. However,

the Fay-Herriot model is not part of this class. We have reached a resolution in this

chapter: the Fay-Herriot model has been extended to allow for spatial correlation and the

propriety of the posterior distribution has been proved. Moreover, the effect of covariates

on the estimation results has been tested. An application to SAIPE data revealed that

modeling spatial correlation can considerably improve the associated hierarchical Bayes

methodology if the area specific auxiliary data are either weak or not available. This effect

diminishes if the quality of the covariates improves. Within the German Census 2011

every geographical area will be sampled, but this might not be the case for areas formed

for example by social factors, called small domains. One application revealed that in this

case spatial modeling is an interesting alternative to standard modeling.
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6 Simulation Study

Throughout our work, different spatial models have been applied by proving the propriety

of the posterior distribution. Such models include the spatial hierarchical linear mixed

models in Chapter 3, the spatial Bernoulli mixed models in Chapter 4, and the spatial

hierarchical Fay-Herriot model in Chapter 5. These classes include the spatial hierarchi-

cal extension of the Fay-Herriot and Battese-Harter-Fuller model. Both model types are

examined for a possible use within the German Census 2011 (cf. Münnich et al., 2007,

p. 2). Since many variables within the German Census 2011 are categorical, they may

be also modeled via the spatial Bernoulli mixed model. In this chapter, the normal and

Bernoulli unit-level models, as well as the hierarchical Fay-Herriot model are tested and

compared with their spatial versions, using data from the public use file of the German

Mikrocensus (2002).

6.1 Introduction and Aim

The German Mikrocensus (MC) is an annual, representative one percent sample survey

where 1% of the households are sampled. The aim of the Mikrocensus is to provide

statistical information about the economic and social situation of Germany, as well as

information about employment, labor market and education. Further details are given on

the websites Destatis (2010) and GESIS (2010). The MC data set is chosen due to the

following four reasons:

1. The structure of the Microcensus resembles the unavailable census data. Therefore,

similar problems, except outdated and missing entries, can be modeled.

2. Unit-level information is available, which is necessary for the implementation of the

models of Chapters 3 and 4.

3. It is possible to identify areas, like federal states, and locate them on a map. This

allows the use of spatial models.
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4. The data is available for free (cf. German Mikrocensus, 2002). Together with

the provided WinBUGS models in Appendix B, this allows scientists to reproduce

the presented results.

Throughout the work we showed that spatial models include extra geographical information

in an elegant way. The aim of the simulation study is to analyze how the extra spatial

information influences the estimation results. In addition, we shall test how the estimation

results are affected by different choices of the sample size, the neighborhood structure, the

prior distributions, and the spatial correlation parameter.

6.2 Dataset Description

The public use file German Mikrocensus (2002) contains 335 variables for 25,137 in-

dividuals out of 11,655 households. In order to allow an implementation of the normal

as well as the Bernoulli model of Chapters 3, 4, and 5 a categorical variable with two

realizations is chosen. This variable has number EF288 and stands for:

Beruflicher Ausbildungs- oder Hochschul-/ Fachhochschulabschluss vorhanden?

(Professional training or University/College degree?)

To shorten, this variable will be denoted by education. The categories of this variable are

yes, no, no answer, and not applicable (children below 15 years). Since missing values and

imputation extend the intension of this simulation study, persons between 16 and 65 years

old are considered. This leads to a data set containing 16,153 individuals. Table 9 shows

how the individuals are divided between the federal states.

The area mean of the variable education at the federal state level is shown in Figure 15.

In the plot, red colors represent highly educated states. It may be noted that people from

former Eastern Germany tend to be less educated than the Southern regions, and thus, a

spatial trend is visible. This is probably due to the relocation of the highly educated from

East to West Germany after the reunion of the states in 1990 (cf. Spiegel, 2003, p. 24).
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Federal state Size Federal state Size

Berlin 634 Lower Saxony 1506

Bremen 128 North Rhine Westph. 3374

Brandenburg 538 Rhineland-Palatinate 817

Baden-Württ. 2014 Saxony-Anhalt 548

Bavaria 2530 Saxony 886

Hamburg 328 Schleswig-Holstein 592

Hesse 1242 Saarland 210

Mecklenburg-Vorp. 321 Thuringia 485

Table 9: Size of the Transformed Mikrocensus Dataset per German Federal State.

Figure 15: Professional Training or University/College Degree?

In all models of the simulation study, the following two covariates are used: gender (EF32)
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and age (EF33). Both auxiliary variables are chosen, because they are typically available

in administrative registers and are thus usable within the context of the German Census

2011. The variable gender is categorized into male and female. As denoted above, the

range of age is from 16 to 65.

6.3 Simulation Setup

In this section the models, setups, and measures are described.

6.3.1 Models and Propriety

In the simulation study, three models and their spatial extensions are considered. The

first model is a hierarchical version of the Battese-Harter-Fuller model (2.6), contained in

model (2.11). Recall that:

Yij = Xijβ + ui + εij

u | σ2
u ∼ Nk(0, σ

2
uI)

εij
i.i.d.∼ N(0, σ2

ε ) i = 1, · · · , k; j = 1, · · · , ni

πβ(β) ∝ 1

πσ2
ε
(σ2

ε | b) ∝ (σ2
ε )
−(b+1)

πσ2
u
(σ2

u | a) ∝ (σ2
u)
−(a+1).

The spatial extension, see model (3.1), is the same except that the distribution of the

random effects is substituted by the CAR structure (2.20), where:

u | σ2
u, p ∼ Nk(0, σ

2
u(I − pQ̃)−1W ). (6.1)

The propriety of these models is discussed and proved in Chapter 3. The second model

type is the Bernoulli model of Chapter 4, where:

yi|u ∼ Bernoulli{h(xiβ + ziu)}

u|σ2
u ∼ Nk(0, σ

2
uI)

πσ2
u
(σ2

u|a) ∝ 1

(σ2
u)
a+1

,
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and is introduced by Natarajan and McCulloch (1995). In the spatial version, the

random effect is distributed according to (6.1). In this study, both models utilize the logit

link. In addition, a proper normal prior is assumed on the fixed effect β. The last model

pair considered are the hierarchical Fay-Herriot models of Chapter 5. The non-spatial

model is given by:

Yi ∼ N(θi, σ
2
ε,i)

θi = Xiβ + ui

u|σ2
u ∼ N(0, σ2

uI)

πβ(β) ∝ 1

1/σ2
u ∼ Γ(0.5, 0.0005).

For the spatial extension (5.1), the distribution of the random effect is substituted by

(6.1), where p = 1. The propriety is ensured by Theorem 5.5. In the Fay-Herriot model,

the sampling variances are assumed to be known. This strong assumption will be retained

throughout the simulation study, giving the Fay-Herriot model an advantage over the

unit-level models. Thus, comparisons between the corresponding non-spatial and spatial

versions are valid, but care should be taken when comparing different model types.

6.3.2 Setups

The following setups are tested:

1. Standard (Section 6.4.1): This setting is obtained by drawing a sample of size 20

out of each area, where the areas are the 16 German federal states. In addition, the

two covariates age and gender are included. Furthermore, for the unit-level models

a = (b =)− 0.9 and the spatial correlation parameter is set to 0.95. The parameters

of the standard model have been chosen, because preliminary results for theses values

behaved well (Sections 3.5 and 4.5). Throughout the simulation study this setting

will be taken as standard. All the different setups are compared to the results of

the six standard models. This is done, since due to capacity reasons (the computing

time for one setup had been about 9 days), the number of setups needs to be limited.
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2. In this setting three different simulations are done with 160 (10 sampled per area),

320 (20 per area) and 640 (40 per area) total sample sizes to check the influence of

the sample size (Section 6.4.2).

3. The effect of different neighborhood structures is considered (Section 6.4.3). In this

setting the neighborhood structure of Example 2.25 is compared to the nearest neigh-

bor structure. The basic principle is still a nearest neighbor structure, but the city

states and Saarland are separated from the other states and chosen to be neighbors

of each other.

4. Also, the influence of the prior distributions (Section 6.4.4) is checked. The prior dis-

tributions of the variance components of the spatial and non-spatial Battese-Harter-

Fuller model contain the unknown constants a and b. Similarly, the Bernoulli model

includes the parameter a. In this setting the estimates are calculated for different

values of a and b.

5. In this setting the impact of different values of the spatial correlation parameter p is

tested (Section 6.4.5).

6. In this setting a dummy variable for East Germany (Section 6.4.6) is included into the

non-spatial and spatial models and the results are compared to the models without

dummy variable.

Common to all setups is that the German Mikrocensus data is seen as a gold standard,

which means that the area means are known, where the areas are the 16 German federal

states. In each setup 1000 samples are drawn. The sampling design is simple random

sample and individuals (not households) are drawn. Further, 3 chains with a burn-in

period of 10,000 are used. The iteration number is 20,000 and 2,000 simulations are

saved per chain. Convergence is assessed if the scale reduction factor (R̂) is below 1.1 (cf.

Example 2.16). The simulation study is done on five computers with operating systems

Linux, Windows XP, and Windows 7. The used simulation software is R and WinBUGS

(via R2WinBUGS). During the simulation study WinBUGS tended to run unstable if more

than one process was run parallel. Therefore, WinBUGS was installed twice in different
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paths to ensure stability. In addition, WinBUGS under Windows performed more stable

than under Linux.

6.3.3 Measures

The following will be used to measure the estimation results:

1. Relative Root Mean-Squared Error (RRMSE) for each area i is defined as:

RRMSEi =

√√√√ 1

1000
·

1000∑
l=1

(
θ̂l,i − θi
θi

)2

.

The RRMSE measures the difference between the true value and the estimated value

for each area on the scale of the estimated value and can take values between 0 and

∞.

2. The relative Bias is defined as:

RBiasi =

1
1000

1000∑
l=1

θ̂l,i − θi

θi
.

The relative Bias illustrates the bias of the estimated values over the different sam-

ples. RBias can take values between −∞ and ∞, where negative values indicate

in average underestimation of the true value, positive values overestimation, and 0

indicates unbiased estimation.

3. The relative Dispersion is defined as:

RDispi =
Quantile(θ̂l=1···1000,i, 0.95)−Quantile(θ̂l=1···1000,i, 0.05)

θi
.

The relative Dispersion measures the difference of the 0.05 quantile to the 0.95 quan-

tile relative to the true value. RDisp can take values between 0 and∞. The larger the

relative Dispersion, the more scattered the estimated values per area over different

samples will be.
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6.4 Results

6.4.1 The Standard Models

The standard is obtained by drawing a sample of size 20 out of each area. Additionally, for

the unit-level models, a = (b =)− 0.9, and the spatial correlation parameter is set to 0.95.

Figure 16 shows the boxplots of the RRMSE for the 16 federal states for the six standard

models, which are the non-spatial and spatial Battese-Harter-Fuller (BHF), the Bernoulli

(Bern), and the Fay-Herriot (FH) models.

Figure 16: Boxplots of the RRMSE for the Standard Models.

The plot reveals that the median of the RRMSE is lower for the spatial models, compared

to the corresponding non-spatial version. Table 10 shows the maximum of the RRMSE for

the six models. Similar to the median, the maximum is lower for the spatial models. This

is especially of interest if quality constraints, such as an allowed maximum of the RRMSE
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per area are defined. The maximum is adopted in Saxony for the unit-level models, while

it is adopted for the Fay-Herriot models in Brandenburg.

RRMSE BHF Bernoulli FH

Non-sp. 1.72 1.09 1.57

Spatial 1.63 1.02 1.51

Table 10: Maximum of the RRMSE of the BHF, Bernoulli, and FH Standard Models.

Figures 17 and 18 plot the RRMSE of the spatial against the non-spatial models. The

plots indicate that spatial modeling decreases the RRMSE for most areas (federal states)

for the unit-level models, whereas the RRMSE of the spatial Fay-Herriot model is similar

to the RRMSE of the non-spatial version.

Figure 17: RRMSE for the 16 Federal States of the Spatial Against the Non-spatial BHF

and Bern Model.
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Figure 18: RRMSE for the 16 Federal States of the Spatial Against the Non-spatial FH

Model.

Tables 11, 12, and 13 show the RRMSE and the deviance of the RRMSE of the non-spatial

and spatial Battese-Harter-Fuller, Bernoulli, and Fay-Herriot models. We can observe that

the RRMSE of the spatial BHF model is lower compared to the RRMSE of the non-spatial

version in 10 of the 16 states. Like in Section 4.5 (Figure 10 on page 64), the results of

the non-spatial model are better in the small states and Bavaria. This will be further

discussed in Section 6.4.3. The results of the RRMSE of the spatial Bernoulli model

mimic this observation. The spatial Fay-Herriot model improves the RRMSE slightly in

11 states.
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RBias of results RRMSE of results

Federal state Data Non-sp. Spatial Non-sp. Spatial Diff.

Berlin 15.2 −0.0667 −0.0780 0.5306 0.6334 −0.1028

Bremen 23.1 0.0773 0.0812 0.4172 0.4554 −0.0382

Brandenburg 8.4 0.0113 0.0050 0.4304 0.3620 0.0684

Baden-Württ. 21.5 −0.0362 −0.0259 0.2633 0.2329 0.0304

Bavaria 22.3 −0.0385 −0.0509 0.2699 0.2883 −0.0184

Hamburg 19.1 −0.1496 −0.1540 0.8494 0.8772 −0.0278

Hesse 17.2 −0.0434 −0.0342 0.3458 0.2712 0.0746

Mecklenburg-Vorp. 13.5 0.0781 0.0655 0.6558 0.5638 0.0920

Lower Saxony 19.6 −0.0219 −0.0348 0.2475 0.2233 0.0243

North Rhine Westph. 20.6 −0.0209 −0.0119 0.2407 0.2177 0.0230

Rhineland-Palatinate 26.1 −0.0783 −0.0679 0.3547 0.3113 0.0434

Saxony-Anhalt 8.5 0.0760 0.0700 0.9884 0.9031 0.0853

Saxony 6.7 0.1093 0.1037 1.7179 1.6319 0.0861

Schleswig-Holstein 13.0 0.0097 0.0073 0.2826 0.2720 0.0106

Saarland 29.0 0.0171 0.0505 0.2177 0.3073 −0.0896

Thuringia 9.4 0.0896 0.0889 1.0354 1.0125 0.0229

Table 11: Professional Training or University/College Degree, as well as RBias, RRMSE,

and Difference of the RRMSE for the BHF Models; Data Source: German Mikrocensus

(2002).

Figure 19 on page 97 shows the deviance of the RRMSE of the BHF and Bern models on

the map. Yellow colored states indicate an improvement of the RRMSE through spatial

modeling. For both unit-level models the only red colored states are small city states and

the Saarland. The deviance of the RRMSE of the Fay-Herriot models is negative for 5

states. In contrast to the unit-level models those states are not mainly small or city states.

Figure 20 on page 97 shows the deviance on the map. It may be observed that the states

with negative deviance form a belt in the south of Germany.
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RBias of results RRMSE of results

Federal state Non-sp. Spatial Non-sp. Spatial Diff.

Berlin −0.0672 −0.0721 0.5044 0.5487 −0.0443

Bremen 0.0992 0.1090 0.5773 0.6457 −0.0684

Brandenburg −0.0049 −0.0105 0.3475 0.3139 0.0336

Baden-Württ. −0.0572 −0.0470 0.3600 0.3248 0.0351

Bavaria −0.0591 −0.0729 0.3620 0.3897 −0.0277

Hamburg −0.1219 −0.1225 0.6698 0.6748 −0.0050

Hesse −0.0601 −0.0574 0.4255 0.3889 0.0366

Mecklenburg-Vorp. 0.0438 0.0296 0.5084 0.4047 0.1037

Lower Saxony −0.0463 −0.0657 0.3543 0.3747 −0.0203

North Rhine Westph. −0.0434 −0.0355 0.3408 0.3113 0.0294

Rhineland-Palatinate −0.0949 −0.0879 0.4242 0.3913 0.0329

Saxony-Anhalt 0.0371 0.0294 0.6293 0.5071 0.1222

Saxony 0.0616 0.0585 1.0858 1.0173 0.0685

Schleswig-Holstein −0.0175 −0.0190 0.3267 0.3199 0.0068

Saarland 0.0453 0.0862 0.3427 0.4586 −0.1159

Thuringia 0.0474 0.0481 0.6739 0.6347 0.0392

Table 12: Professional Training or University/College Degree, as well as RBias, RRMSE,

and Difference of the RRMSE for the Bern Models; Data Source: German Mikrocensus

(2002).
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RBias of results RRMSE of results

Federal state Non-sp. Spatial Non-sp. Spatial Diff.

Berlin 0.0048 0.0007 0.2812 0.2791 0.0020

Bremen −0.0435 −0.0442 0.2803 0.2839 −0.0036

Brandenburg 0.1219 0.1169 1.5677 1.5110 0.0567

Baden-Württ. −0.0191 −0.0203 0.2290 0.2201 0.0089

Bavaria −0.0381 −0.0407 0.2203 0.2363 −0.0159

Hamburg −0.0834 −0.0811 0.5855 0.5787 0.0068

Hesse 0.0415 0.0435 0.4043 0.4243 −0.0199

Mecklenburg-Vorp. 0.0321 0.0288 0.3323 0.3125 0.0198

Lower Saxony 0.0058 0.0024 0.2034 0.2007 0.0027

North Rhine Westph. −0.0274 −0.0273 0.2035 0.1995 0.0040

Rhineland-Palatinate −0.0373 −0.0344 0.2647 0.2684 −0.0037

Saxony-Anhalt 0.0686 0.0675 0.8728 0.8614 0.0114

Saxony 0.0884 0.0907 1.3880 1.4197 −0.0318

Schleswig-Holstein 0.0604 0.0592 0.5354 0.5260 0.0094

Saarland −0.1099 −0.1019 0.4021 0.3785 0.0236

Thuringia 0.0823 0.0823 0.9281 0.9279 0.0002

Table 13: Professional Training or University/College Degree, as well as Bias, RRMSE,

and Difference of the RRMSE for the FH Models; Data Source: German Mikrocensus

(2002).
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Figure 19: Deviance of the RRMSE for the Standard BHF and Bernoulli Models.

Figure 20: Deviance of the RRMSE for the Standard Fay-Herriot Model.
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Figure 21 shows the boxplots of the relative Bias for the six models. The boxplots for the

Fay-Herriot models are symmetric, whereas the boxplots for the Battese-Harter-Fuller and

Bernoulli models are skewed. It can be observed that the skewness is reduced for the unit-

level models, when using the spatial version. In addition for all model types the median

of the RBias is closer to 0 under the spatial version. The Bernoulli models underestimate

the true value, which has been observed before (cf. Münnich et al., 2010).

Figure 21: Boxplots of the Relative Bias for the 6 Standard Models.

Figures 22, 23, and 24 show the RBias on the map. It can be seen that all models tend

to overestimate the federal states in East Germany and underestimate in West Germany.

This might be due to borrowing strength (see Example 2.1 on page 5), since the gold

standard values (see Figure 15) for the federal states in East Germany are lower than the

values for West Germany. The technique of borrowing strength combines the values of the

Eastern and Western states. This leads to increased estimated values for East Germany
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compared to the sample and decreased values in West Germany. Stronger covariates than

gender and age may reduce this effect. This can be observed in Figure 56 where a dummy

variable for East Germany is included in the model.

Figure 22: Relative Bias for the Spatial and Non-spatial BHF Models on the Map.
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Figure 23: Relative Bias for the Spatial and Non-spatial Bern Models on the Map.

Figure 24: Relative Bias for the Spatial and Non-spatial FH Models on the Map.
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Figure 25 shows the relative Dispersion of the six standard models. It may be observed

that for the unit-level models the maximum and minimum of RDisp of the spatial models

is lower, with a higher median. Whereas, the relative Dispersion of the Fay-Herriot models

is quite similar.

Figure 25: Boxplots of the Relative Dispersion for the 6 Standard Models.

6.4.2 The Influence of the Sample Size

In this section the influence of the sample size on the estimation results is described. To

do this, three different simulations are done with 160 (10 sampled per area), 320 (20 per

area), and 640 (40 per area) as total sample size.

Figures 26, 27, and 28 show the boxplots of the RRMSE of the spatial and non-spatial

BHF, Bernoulli, and FH models for varying sample size. Each plot reveals that the RRMSE

decreases as the sample size increases for all models. In addition, Table 14 shows that the
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mean and the maximum of the RRMSE decrease for all models and is lower for the spatial

models in all cases.

Figure 26: Boxplots of the RRMSE for the Spatial and Non-spatial BHF Models with

Varying Sampling Sizes.

Figure 27: Boxplots of the RRMSE for the Spatial and Non-spatial Bernoulli Models with

Varying Sampling Sizes.
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Figure 28: Boxplots of the RRMSE for the Spatial and Non-spatial FH Models with

Varying Sampling Sizes.

Measure Sample size BHF Spatial BHF Bern Spatial Bern FH Spatial FH

Mean 160 0.63 0.61 0.59 0.57 0.62 0.61

320 0.55 0.54 0.50 0.48 0.54 0.54

640 0.49 0.48 0.43 0.42 0.51 0.50

Max 160 1.90 1.81 1.24 1.16 1.65 1.58

320 1.72 1.63 1.09 1.02 1.57 1.51

640 1.48 1.41 0.90 0.85 1.53 1.48

Table 14: Mean and Maximum of the RRMSE for the BHF, Bernoulli, and FH Models

under Varying Sample Sizes.

Figures 29 and 30 show the relative Bias and the relative Dispersion of the BHF, Bern,

and FH models for varying sample sizes. These plots reveal that the reduction of the

RRMSE is due to a reduction in the variance not the relative Bias. In addition the relative

Dispersion is reduced.
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Figure 29: Boxplots of the Relative Bias for the Spatial and Non-spatial Models with

Varying Sampling Sizes.

Figure 30: Boxplots of the Relative Dispersion for the Spatial and Non-spatial Models

with Varying Sampling Sizes.
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6.4.3 The Effect of Different Neighborhood Structures

Until now in every example and application the nearest neighbor structure has been used.

Unfortunately, as may be seen in Figures 10 on page 64 and 19 on page 97, the quality of

the estimates depends on the number of neighbors. Therefore, this assumption is changed

such that every area has at least 2 neighbors. To do this the neighborhood structure of

Example 2.25 is used. The basic principle is still a nearest neighbor structure, but the

city states and Saarland are separated from the other states and chosen to be neighbors

of each other.

Figure 31 shows the RRMSE for the standard and the new models (denoted by City). It

can be observed that the new structure reduces the spread of the RRMSE for all models.

Moreover, the maximum and the mean of the RRMSE is reduced as may be seen in Table

15.

Figure 31: Boxplots of the RRMSE for the Standard and City Structure Models.
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Measure BHF NN BHF City Bern NN Bern City FH NN FH City

Mean 0.54 0.52 0.48 0.47 0.54 0.50

Max 1.63 1.58 1.02 0.96 1.51 1.51

Table 15: Mean and Maximum of the RRMSE for the Spatial BHF, Bernoulli, and FH

Models Under Nearest Neighbor (NN) and City Structure (City).

Table 16 and Figure 32 on page 109 show the deviance of the RRMSE for the spatial

nearest neighbor and city structure Battese-Harter-Fuller and Bernoulli model. It may be

observed that the RRMSE is lower for the nearest neighbor model in most states (plotted

in yellow). This goes in hand with the higher median of the RRMSE of the new models

in Figure 31. However, as noted above the mean as well as the maximum is smaller for

the city structure models. This is due to the fact, that the deviance is negative, but close

to zero. Whereas the states plotted in red (Figure 32) indicate strong gains of the new

structure.
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Federal state BHF NN BHF City Deviance Bern NN Bern City Deviance

Berlin 0.6334 0.4317 0.2017 0.5487 0.4464 0.1023

Bremen 0.4554 0.4886 -0.0332 0.6457 0.6800 -0.0343

Brandenburg 0.3620 0.3821 -0.0202 0.3139 0.3475 -0.0336

Baden-Württ. 0.2329 0.2612 -0.0284 0.3248 0.3489 -0.0240

Bavaria 0.2883 0.3098 -0.0215 0.3897 0.4052 -0.0155

Hamburg 0.8772 0.7626 0.1145 0.6748 0.6325 0.0422

Hesse 0.2712 0.3037 -0.0325 0.3889 0.4093 -0.0204

Mecklenburg-Vorp. 0.5638 0.5333 0.0305 0.4047 0.3876 0.0172

Lower Saxony 0.2233 0.2609 -0.0376 0.3747 0.3977 -0.0230

North Rhine Westph. 0.2177 0.2396 -0.0218 0.3113 0.3300 -0.0186

Rhineland-Palatinate 0.3113 0.3591 -0.0478 0.3913 0.4206 -0.0292

Saxony-Anhalt 0.9031 0.8554 0.0477 0.5071 0.4777 0.0294

Saxony 1.6319 1.5773 0.0546 1.0173 0.9560 0.0613

Schleswig-Holstein 0.2720 0.2956 -0.0237 0.3199 0.3584 -0.0385

Saarland 0.3073 0.2454 0.0620 0.4586 0.3878 0.0708

Thuringia 1.0125 0.9570 0.0555 0.6347 0.5875 0.0473

Table 16: RRMSE for the Spatial BHF and Bernoulli Models Under Nearest Neighbor

(NN) and City Structure (City).

What is the effect on areas with few neighbors? Figure 32 shows that in 3 out of the 4 small

states there has been a considerable improvement when using the city structure model.

We can summarize that the RRMSE under the nearest neighbor structure is smaller than

under the city structure for most states, but the gain is small. That is, the mean of the

RRMSE under the city structure model is smaller.

Similar to the observations for the unit-level models, the mean of the RRMSE of the

spatial and non-spatial Fay-Herriot model decreases when using the new structure (see

Table 15), whereas the maximum is equal. Figure 33 on page 109 shows the deviance of
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the RRMSE for the two spatial Fay-Herriot models. In this case, unlike for the unit-level

models, positive effects for the small states cannot be observed. This goes along with the

observations of Figure 20 on page 97, where a different effect of spatial modeling on the

small states under the Fay-Herriot model could be observed.

Federal state FH NN FH City Deviance

Berlin 0.2791 0.5631 -0.2840

Bremen 0.2839 0.2929 -0.0089

Brandenburg 1.5110 1.5101 0.0009

Baden-Württ. 0.2201 0.2652 -0.0452

Bavaria 0.2363 0.3026 -0.0664

Hamburg 0.5787 0.4688 0.1100

Hesse 0.4243 0.4414 -0.0171

Mecklenburg-Vorp. 0.3125 0.2880 0.0245

Lower Saxony 0.2007 0.2045 -0.0038

North Rhine Westph. 0.1995 0.3012 -0.1017

Rhineland-Palatinate 0.2684 0.2609 0.0075

Saxony-Anhalt 0.8614 0.6053 0.2561

Saxony 1.4197 1.0192 0.4005

Schleswig-Holstein 0.5260 0.4430 0.0831

Saarland 0.3785 0.2844 0.0941

Thuringia 0.9279 0.7195 0.2084

Table 17: RRMSE for the Spatial FH Models Under Nearest Neighbor (NN) and City

Structure (City) .
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Figure 32: Deviance of the RRMSE for the Nearest Neighbor and City Structure BHF and

Bern Models.

Figure 33: Deviance of the RRMSE for the Nearest Neighbor and City Structure FH

Models.
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Figure 34 shows the relative Bias for the model under the city structure neighborhood.

We can observe that the spread of the relative Bias for the BHF and FH city structure

models is smaller than for the nearest neighbor models. However, the relative Dispersion

(Figure 35) increases under the new structure.

Figure 34: Relative Bias of the BHF, Bern, and FH Models for the City Structure.

Figure 35: Relative Dispersion of the BHF, Bern, and FH Models for the City Structure.

6.4.4 The Influence of the Prior Distribution

The prior distributions of the variance components of the spatial and non-spatial Battese-

Harter-Fuller model contain the unknown constants a and b. Similarly, the Bernoulli models
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contain the parameter a. In this section the estimates are calculated for different values of

a and b. Figures 36 and 37 show the boxplots of the RRMSE of the spatial and non-spatial

BHF and Bernoulli models. These plots are drawn under different values of a = b for the

BHF models and a for the Bernoulli models. The values considered are −0.6, −0.7, −0.8,

and −0.9.

Figure 36: Boxplots of the RRMSE of the BHF Models for Different Prior Distributions.

Figure 37: Boxplots of the RRMSE of the Bern Models for Different Prior Distributions.
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The maximum of the RRMSE seems to decrease first and then increase again. Other

than that, we can observe that the estimation results are not very sensitive under different

choices of the prior distribution. The same observation can be made in Figures 38 and 39

showing the relative Bias and the relative Dispersion.

Figure 38: Boxplots of the Relative Bias for Different Prior Distributions.

Figure 39: Boxplots of the Relative Dispersion for Different Prior Distributions.

Up until this point, a has been set equal to b. In the following calculation a = −0.9
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will be held fixed, while b varies between −0.6 and −0.9. Since b is not present in the

Bernoulli models, just the BHF models will be considered. Figures 40 and 41 show the

corresponding values of the RRMSE, RBias, and RDisp. It can be observed that the results

are not sensitive with respect to changes in b.

Figure 40: RRMSE for the BHF and Spatial BHF Models with a = −0.9 and Varying b.

Figure 41: RBias and RDisp for the BHF and Spatial BHF Models with a = −0.9 and

Varying b.
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Figures 42 and 43 show the values of the RRMSE, RBias, and RDisp for the model with

fixed b = −0.9 and varying a. Similar to the case of a = −0.9 the results are insensitive to

the choice of the parameters.

Figure 42: RRMSE for the BHF and Spatial BHF Models with b = −0.9 and Varying a.

Figure 43: RBias and RDisp for the BHF and Spatial BHF Models with b = −0.9 and

Varying a.
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6.4.5 The Impact of the Spatial Correlation Parameter

When using the CAR structure (2.20) there is a need to specify the spatial correlation

parameter p. In this section the effect of different parameters is tested. Figures 44 and 45

show the RRMSE for the spatial Battese-Harter-Fuller and Bernoulli model with spatial

correlation coefficients 0.2, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95. In addition the non-spatial

models are included. The Fay-Herriot model is not included in this setting, since the

correlation parameter is set to 1.

Figure 44: RRMSE for BHF Models with Varying Spatial Correlation Parameter.

Figure 45: RRMSE for Bern Models with Varying Spatial Correlation Parameter.
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Although the boxplots are quite similar, we may observe that the maximum values of

the RRMSE decrease when the parameter increases. This effect can be better seen in

Figure 46, where the maximum of the RRMSE of the spatial Battese-Harter-Fuller and

Bernoulli model is shown. The red line indicates a simple least-squares regression line. The

non-spatial model is included at 0. The plots reveal, that values of the spatial correlation

parameter above 0.7 seem to improve the results compared to the non-spatial version.

Figure 46: Maximum of the RRMSE for BHF and Bernoulli Models with Varying Spatial

Correlation Parameter.

Figures 47 and 48 show the relative Bias and the relative Dispersion of the models under

varying spatial correlation parameter. Like the RRMSE the boxplots are quite similar,

where the maximum of the RDisp slightly decreases with increasing spatial correlation

parameter.
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Figure 47: Relative Bias of the BHF and Bern Models with Varying Spatial Correlation

Parameter.

Figure 48: RDisp for BHF and Bern Models with Varying Spatial Correlation Parameter.
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6.4.6 Dummy Variable for East Germany

Figure 15 on page 86 reveals differences in the structure of the variable education between

Eastern and Western Germany. In the previous setups this has been modeled via spatially

correlated random effects. In this setting a dummy variable for East Germany is included.

Note that in other applications with a more complex spatial structure this might not be

an option.

Figures 49 and 50 show the boxplot of the RRMSE for the Battese-Harter-Fuller, Bernoulli,

and Fay-Herriot model with dummy variable, denoted by East, and the corresponding

spatial version with and without dummy variable. It may be observed that the inclusion of

the dummy variable in the non-spatial model considerably improves the RRMSE compared

to the spatial version. However, if the dummy variable is included in the spatial model

as well, the RRMSE boxplots are quite similar. This goes along with the observations of

Chapter 5, where strong covariates led to a decrease in the gains of spatial modeling.

Figure 49: Boxplot of the RRMSE for the BHF and Bern Model with Dummy Variable

East and Spatial Versions.
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Figure 50: Boxplot of the RRMSE for the FH Model with Dummy Variable East and

Spatial Versions.

Figures 51, 52, and 53 show the deviance of the RRMSE for the models on the map. The

left plots underline the above mentioned effect that the RRMSE of the dummy variable

non-spatial models is mostly lower compared to the standard spatial model without dummy

variable. If the dummy variable is included in the spatial models as well (right plots), the

deviance of the RRMSE for the unit-level models is negative for most areas, similar to the

observations of Section 6.4.1. The deviance of the RRMSE is mostly small for the dummy

variable non-spatial and spatial Fay-Herriot model.
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Figure 51: Deviance of the RRMSE for the BHF Model with Dummy Variable East and

Spatial Versions.

Figure 52: Deviance of the RRMSE for the Bern Model with Dummy Variable East and

Spatial Versions.
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Figure 53: Deviance of the RRMSE for the FH Model with Dummy Variable East and

Spatial Versions.

Figures 54 and 55 show the RBias and the RDisp for the models with and without the

dummy variable East. The dummy variable reduces the spread of the RBias for all of the

models. This cannot be observed for the RDisp. Especially for the Fay-Herriot model,

the maximum, median, and the minimum of the RDisp of the spatial non-dummy variable

model are lower.
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Figure 54: RBias for the Models with Dummy Variable East and the Spatial Versions.

Figure 55: RDisp for the Models with Dummy Variable East and the Spatial Versions.

Figure 56 shows the RBias of the spatial and non-spatial BHF model with dummy variable

East on the map3. We may observe that compared to the RBias of the standard BHF

models (Figure 22 on page 99) the inclusion of the dummy variable removed overestimation

in East Germany and underestimation in West Germany.

3The RBias for the other model types shows similar results and is omitted.
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Figure 56: RBias for the Spatial and Non-spatial BHF Model with Dummy Variable on

the map.

6.5 Conclusion

In this chapter three models and their spatial extensions have been tested under various

settings. The simulation study revealed that especially for the unit-level models spatial

modeling improved the estimation results. The maximum of the RRMSE of the spatial

model was lower than the maximum for the non-spatial version in all settings. This is

important for applications where quality constraints for areas are specified. Furthermore,

the estimation results were insensitive with respect to the choice of the prior distribution

and the spatial correlation parameter, which is essential for applications with political

impact such as the German Census 2011. The estimation results varied under different

neighborhood structures. Further improvement of the results of spatial modeling may be

achieved by choosing specially tailored neighborhood structures. Also, it could be observed
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that similar to the findings of Chapter 5 the inclusion of strong covariates (dummy variable

for East Germany), reduces the gains of spatial modeling.

In a next step the simulation study may be enhanced to discuss further settings and

variables concerning the German Census 2011. In the German Census 2011, a modern

sampling design will be employed (cf. Gabler et al., 2010), and it is of interest to test

the performance of the Bayesian spatial models with respect to this design. One challenge

hereby is that in the German Census 2011 more areas than the 16 federal states are of

interest and the data is high dimensional. The use of WinBUGS may be limited under

this framework and specially tailored MCMC methods need to be derived.
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7 Summary and Outlook

The motivation of this work has been the German Census 2011, where a new methodology

will be employed - a register based census. In addition to the use of administrative registers

an additional sample is drawn in order to allow for correcting register errors. This leads

to statistical challenges, such as choosing estimation techniques for a large set of small

areas, where classical estimators may not be reliable (see Website: Census, 2010c).

Possible alternatives include model based small area methods, which have been derived in

the last decade. Standard small area models, like the Fay-Herriot or Battese-Harter-Fuller,

were reviewed in Section 2.1.2. These methods assume independent random effects. In

applications such as the German Census 2011, independence may not be fulfilled and the

inclusion of spatial interactions into the model may lead to improved estimates.

In Section 2.4 the independence assumption of the random effects has been dropped to

account for spatial correlations between the areas, via the conditional autoregressive (CAR)

approach using a Bayesian analysis. Depending on the chosen prior distribution, the

posterior distribution is not guaranteed to be proper (cf. Section 2.2.2). Example 2.16 in

Section 2.3 showed that this can cause misleading results if MCMC methods are utilized.

Therefore, statisticians must ensure the propriety of the posterior distribution before using

a model.

In this work, the following three model classes were considered:

1. The spatial general linear mixed model with power prior distributions on the variance

components. In Chapter 3, the propriety of the posterior has been proved under

certain assumptions for this model class. Further, the Gibbs conditionals, necessary

for an implementation of the Gibbs sampler have been derived. An application to

unemployment data showed that the spatial model may provide gains over the non-

spatial version.

2. The spatial Bernoulli model class with power prior distribution on the variance com-

ponent. In Chapter 4, two proofs for the propriety of the posterior distribution
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under certain assumptions were given. The first proof does not rely on the result

for the non-spatial model by Natarajan and McCulloch (Theorem 4.1). The second

proof makes extensive use of the result and is much shorter. Similar to the results

of Chapter 3, an application to the unemployment data showed possible gains of the

proposed model over the non-spatial version.

3. The spatial hierarchical Fay-Herriot model with inverse gamma distribution on the

variance component. In Chapter 5, the propriety of the posterior distribution has

been proved under certain assumptions. Moreover, the situation of one unsampled

area was considered, and the necessary theory for predicting the mean of the un-

sampled area has been derived. An application to SAIPE data of the U.S. Census

Bureau showed that spatial modeling may improve the estimation results in this

setting, especially if the utilized covariates are either weak or non-available.

Since the propriety of the posterior distribution is vital for the correct application of

the models, the new theorems allow statisticians to implement and use a wide variety of

different spatial models applicable within the German Census 2011, including extensions of

the frequently applied Battese-Harter-Fuller and Fay-Herriot model. Within the German

Census 2011 many variables are categorical; these variables may be also modeled via the

spatial Bernoulli mixed model.

A model comparison was performed in Chapter 6 via a simulation study. The aim was to

elaborate possible benefits of spatial modeling. The study revealed that the proposed spa-

tial models provide gains over standard small area models under various setups. Moreover,

the spatial models were insensitive to different choices of the parameters of the prior dis-

tribution and the spatial correlation parameter, which is necessary for applications with

political impact such as the German Census 2011. In addition, the study showed that

carefully chosen spatial neighborhood structures may offer additional benefits of spatial

modeling.

In addition, on basis of the theorems shown in this work, these methods can be imple-

mented in practice. In particular for variables where only few covariate information is
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present and suitable model building is challenging, the proposed models may improve the

estimation within statistical censuses. For instance, in the context of the research project

”Simulation der Strukturerhebung und Kleingebiet-Schätzungen für den schweizer Zensus”

(a project with the focus to access the feasibility of small area estimation techniques for

the Swiss Census 2010), recent simulations showed that standard small area estimators

yield unsatisfactory results when estimating the minutes of the commute (cf. Münnich

and Burgard, 2009, p. 19). Initial tests have shown that efficiency gains can be expected

in this situation, when applying the proposed spatial models.

127



APPENDIX A

A Gibbs Sampler for a Proper and an Improper Model

This section contains the UMACS code of the Gibbs sampler for the proper and improper

model of Example 2.16.

l ibrary (Umacs)

l ibrary ( rv )

l ibrary (LearnBayes )

5 x . i n i t <− function ( ) rexp( 1 , 20)

y . i n i t <− function ( ) rexp( 1 , 20)

x.update <− function ( ) {

#rexp ( 1 , r a t e = y ) #f o r the improper model

10 r t runcated ( 1 ,0 ,20 ,pexp ,qexp , y ) #f o r the proper model

}

y.update <− function ( ) {

#rexp ( 1 , r a t e = x ) #f o r the improper model

15 r t runcated ( 1 ,0 ,20 ,pexp ,qexp , y )#f o r the proper model

}

Sam <− Sampler (

. t i t l e = ” Improper Gibbs” ,

20 x = Gibbs ( x.update , x . i n i t ) ,

y = Gibbs ( y.update , y . i n i t )

)

n . i t e r=500

25 Rhat.vec <− c (rep( 0 ,20) )

for ( i in 1 : 20 ) {

Proper <−Sam( n . i t e r=n . i t e r , n . cha in s=2)

n . i t e r=n . i t e r+500

30 Rhat<−max(Proper@summary [ ,8 ] )

Rhat.vec [ i ] <−Rhat

}

s im.x <− Proper@chains [ [ 1 ] ] [ ,1 ] #simulated va lue s o f chain 1

35 s im.y <− Proper@chains [ [ 1 ] ] [ ,2 ] #simulated va lue s o f chain 2

Listing 3: Gibbs sampler for Example 2.16
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B WinBUGS Models

This section contains the WinBUGS models for the application to unemployment data in

Germany of Sections 3.5 and 4.5 and the application to SAIPE data of Section 5.3. These

models were used throughout the simulation study of Chapter 6.

model {

for ( i in 1 : n ) {

y [ i ]∼dnorm( theta [ i ] , t au2 . e ) # y i s Normal d i s t r i b u t e d

5 }

for ( i in 1 : n ) {

theta [ i ] <− b+u [ r eg i on [ i ] ]

}

10

u [ 1 : k ]∼c a r . p r o p e r (mu2 [ ] ,C[ ] , adj [ ] ,num [ ] ,M[ ] , tau2.u ,gamma)

#S p a t i a l d i s t r i b u t i o n

for ( i in 1 : k ) {

15 the ta s [ i ] <− theta [n∗ i ] #Taking every n−th value

}

t au2 . e <− 1/sigma2e

tau2 .u <− 1/sigma2u

20 sigma2e <− (pow(BBBe, 0 . 9 ) ) #Construct ion o f the power p r i o r

sigma2u<− (pow(BBBu, 0 . 9 ) ) #Construct ion o f the power p r i o r

BBBe <−BBe∗BBe

BBBu <−BBu∗BBu

25 BBe∼d f l a t ( )

BBu∼d f l a t ( )

b∼d f l a t ( ) #Pr io r o f the r e g r e s s i o n c o e f f i c i e n t

30 }

Listing 4: Spatial Normal Unit-level Model in WinBUGS
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model {

for ( i in 1 : n ) {

y [ i ]∼dnorm( theta [ i ] , t au2 . e ) # y i s Normal d i s t r i b u t e d

5 }

for ( i in 1 : n ) {

theta [ i ] <− b+u [ r eg i on [ i ] ]

}

10

for ( i in 1 : k ) {

u [ i ]∼ dnorm( 0 , tau2 .u ) #Non−s p a t i a l

}

15 for ( i in 1 : k ) {

the ta s [ i ] <− theta [n∗ i ] #Taking every n−th value

}

t au2 . e <− 1/sigma2e

20 tau2 .u <− 1/sigma2u

sigma2e <− (pow(BBBe, 0 . 9 ) ) #Construct ion o f the power p r i o r

sigma2u<− (pow(BBBu, 0 . 9 ) ) #Construct ion o f the power p r i o r

BBBe <−BBe∗BBe

25 BBBu <−BBu∗BBu

BBe∼d f l a t ( )

BBu∼d f l a t ( )

b∼d f l a t ( ) #Pr io r o f the r e g r e s s i o n c o e f f i c i e n t

30

}

Listing 5: Non-spatial Normal Unit-level Model in WinBUGS
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model {

for ( i in 1 : n ) {

4 y [ i ]∼dbern ( theta [ i ] ) # y i s B e r n o u l l i d i s t r i b u t e d

}

for ( i in 1 : n ) {

l o g i t ( theta [ i ] ) <− p [ i ] #Logit s p e c i f i c a t i o n o f the model

9 p [ i ] <− b+u [ r eg i on [ i ] ]

}

u [ 1 : k ]∼c a r . p r o p e r ( theta2 [ ] ,C[ ] , adj [ ] ,num [ ] ,M[ ] , tau2.u ,gamma)

#S p a t i a l d i s t r i b u t i o n

14

for ( i in 1 : k ) {

the ta s [ i ] <− theta [n∗ i ] #Taking every n−th value

}

19 tau2 .u <− 1/sigma2u

sigma2u<− (pow(BBBu, 0 . 9 ) ) #Construct ion o f the power p r i o r

BBBu <−BBu∗BBu

BBu∼d f l a t ( )

24 b∼dnorm(0 .0001 , 0 .0001 ) #Pr io r o f the r e g r e s s i o n c o e f f i c i e n t

}

Listing 6: Spatial Bernoulli Model in WinBUGS
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model {

for ( i in 1 :N) {

4 y [ i ]∼dbern ( theta [ i ] ) # y i s B e r n o u l l i d i s t r i b u t e d

}

for ( i in 1 :N) {

l o g i t ( theta [ i ] ) <− p [ i ] #Logit s p e c i f i c a t i o n o f the model

9 p [ i ] <− b+v [ r eg i on [ i ] ]

}

for ( i in 1 : k ) {

v [ i ]∼ dnorm( 0 , tau ) # Non−s p a t i a l d i s t r i b u t i o n

14 }

for ( i in 1 : k ) {

the ta s [ i ] <− theta [n∗ i ] #Taking every n−th value

}

19

tau <− 1/BBBB

BBBB<− (pow(BBB, 0 . 9 ) ) #Construct ion o f the power p r i o r

BB∼d f l a t ( )

24 b∼dnorm(0 .0001 , 0 .0001 ) #Pr io r o f the r e g r e s s i o n c o e f f i c i e n t

}

Listing 7: Non-spatial Bernoulli Model in WinBUGS
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model {

for ( i in 1 : k ) {

4 y [ i ]∼ dnorm( theta [ i ] ,D[ i ] )

}

for ( i in 1 : k ) {

theta [ i ] <− b [ 1 ]+b [ 2 ]∗x1 [ i ]+b [ 3 ]∗x2 [ i ]+b [ 4 ]∗x3 [ i ]+b [ 5 ]∗x4 [ i ]+v [ i ]

9 }

v [ 1 : k ]∼ car .normal ( adj [ ] ,weights [ ] ,num [ ] , tau )

for ( i in 1 : sumNumNeigh) {

14 weights [ i ] <− 1

}

for ( i in 1 : 5 ) {

b [ i ]∼ d f l a t ( )

19 }

tau ∼ dgamma(0 .5 , 0 .0005 )

var<− 1/tau

24 }

Listing 8: Spatial Fay-Herriot Model in WinBUGS
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1 model {

for ( i in 1 : k ) {

y [ i ]∼ dnorm( theta [ i ] ,D[ i ] )

}

6

for ( i in 1 : k ) {

theta [ i ] <− b [ 1 ]+b [ 2 ]∗x1 [ i ]+b [ 3 ]∗x2 [ i ]+b [ 4 ]∗x3 [ i ]+b [ 5 ]∗x4 [ i ]+u [ i ]

}

11

for ( i in 1 : k ) {

u [ i ]∼ dnorm( 0 , tau ) #Non−s p a t i a l d i s t r i b u t i o n

}

16 for ( i in 1 : 5 ) {

b [ i ]∼ d f l a t ( )

}

tau ∼ dgamma(0 .5 , 0 .0005 )

21 sigmau<− 1/tau

}

Listing 9: Non-spatial Fay-Herriot Model in WinBUGS
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