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INTRODUCTION

1 Introduction

For the first time, the German Census 2011 will be conducted via a new method the register
based census. In contrast to a traditional census, where all inhabitants are surveyed, the
German government will mainly attempt to count individuals using population registers of
administrative authorities, such as the municipalities and the Federal Employment Agency.
Census data that cannot be collected from the registers, such as information on education,
training, and occupation, will be collected by an interview-based sample survey. Moreover,
the new method reduces citizens’ obligations to provide information and helps reduce costs

significantly (see WEBSITE: CENSUS, 2010a).

The census provides information as a basis for a number of political and economic decisions.
For example, the revenue equalization between the Lander and between the Lander and
its municipalities is calculated on the basis of population figures (see WEBSITE: CENSUS,
2010b). Further, the data supports future leaders in answering questions such as: ”How
many schools and kindergartens does a city need?”. The survey also has the task to

examine the quality of the data from the registers (see WEBSITE: CENSUS, 2010d).

The use of sample surveys is limited if results with a detailed regional or subject-matter
breakdown have to be prepared. Classical estimation methods are sometimes criticized,
since estimation is often problematic for small samples (see WEBSITE: CENSUS, 2010c).
Fortunately, model based small area estimators (cf. RA0, 2003 and JIANG and LAHIRI,
2006) serve as an alternative. These methods help to increase the information, and hence
the effective sample size. For example, we can combine information from similar structured
areas or by including auxiliary information out of the administrative registers, in essence

borrowing strength from neighboring areas. (cf. JIANG and LAHIRI, 2006, pp. 3).!

In the German Census 2011 it is possible to embed areas on a map in a geographical
context. This may offer additional information, such as neighborhood relations or spatial

interactions. Figure 1 shows the unemployment rate in Germany at the federal state

!Further information about the German Census 2011 may be found among others in MAGG et al.

(2006), MUNNICH et al. (2007) and on the official website www.zensus2011.de.
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level in 2007. The map provides a visual image of spatial interaction, showing that the
unemployment rate increases from west to east and from south to north. Standard small
area models, like Fay-Herriot (cf. FAy and HERRIOT, 1979) or Battese-Harter-Fuller (cf.
BATTESE et al., 1988), do not account for such interactions explicitly. The aim of our
work is to extend the classical models by integrating the spatial information explicitly into

the model. In addition, the possible gain in efficiency will be analyzed.

under 0.08
008-009
008-015
over 0.15

Figure 1: Unemployment Rate 2007 in Germany at the Federal State Level; Data Source:

BUNDESAGENTUR FUR ARBEIT (2008).

We consider three model classes, the Gaussian general linear mixed model, the Bernoulli
mixed model, and the Fay-Herriot model, which all allow the modeling of many problems.
For all of these classes we show how to include spatial information via a Bayesian method,
where the complete inference is based on the posterior distribution. Bayesian methods
often assume improper prior for the hyperparameters, which could result in an improper

posterior distribution. This can cause misleading results (cf. HOBERT and CASELLA,
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1996). Therefore, in the present work the propriety of the posterior distribution under
certain assumptions for the three model classes is shown. The existence theorems build

the theoretical basis for applying the proposed models.

Possible gains and limitations of the derived models, with special focus on applications to
the German Census 2011 are tested by means of a simulation study. Since German census
data is not available, a data set with similar structure and variables is chosen: the public

use file of the German Mikrocensus (see GERMAN MIKROCENSUS, 2002).
The organization of the remaining chapters follows accordingly:

In Chapter 2, a review is done of technical background in small area estimation, Bayesian
modeling, Markov chain Monte Carlo, and spatial modeling. Standard small area models
(Fay-Herriot and Battese-Harter-Fuller) are introduced (Section 2.1) and we show how to
extend them to hierarchical small area models in Section 2.2. In addition, improper prior
distributions and possible resulting impropriety of the posterior distribution are discussed.
Because the posterior distributions of hierarchical models are often intractable, Markov
chain Monte Carlo Methods (MCMC) are often employed. These methods are introduced
in Section 2.3. Furthermore, standard small area models and their hierarchical exten-
sions assume independent random effects. This assumption is changed to allow for spatial

correlations in Section 2.4 and we explain how to model those correlations.

In Chapter 3, the propriety of the posterior distribution is proved for the spatial general
linear mixed model with homoscedastic sampling variances, which includes the spatial
hierarchical extension of the Battese-Harter-Fuller model. Moreover, the Gibbs condition-
als, necessary for the implementation of the Gibbs sampler, are derived. Benefits of this
method are shown via an application to unemployment data at the federal state level in

Germany.

In Chapter 4, normality is not assumed and the propriety is proved for the posterior of
the spatial Bernoulli mixed model. Then the model is applied to the unemployment data

and compared to the according non-spatial version and the normal model of Chapter 3.
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The model class of Chapter 3 covers a wide variety of area and unit-level spatial small area
models. However, one popular area-level model is not included the Fay-Herriot model.
Finally in Chapter 5, the Fay-Herriot model is extended to a spatial hierarchical Fay-
Herriot model and the propriety of the posterior distribution is proved. Afterward, the
model is applied to Small Area Income and Poverty Estimates (SAIPE) of the U.S. Census
Bureau. In this setting one area is assumed to be unsampled, and the area mean of this

area is predicted via a spatial and non-spatial model.

The model classes of the previous sections allow modeling many variables of the German
Census 2011. In Chapter 6, gains and limitations of area and unit-level models out of
these classes are tested via simulation study. Various parameter combinations have been

adopted, allowing investigation of a number of model configurations.
The results are summarized in Chapter 7.

Appendix A illustrates the computer code for a situation where the posterior distribution
is improper and the Gibbs sampler leads to misleading results. Appendix B includes the

WinBUGS models used in this work.



BASICS AND FUNDAMENTAL CONCEPTS

2 Basics and Fundamental Concepts

In this chapter, fundamentals of small area estimation, Bayesian modeling, Markov chain

Monte Carlo methods, and spatial modeling will be explained.

2.1 Fundamental Concepts of Small Area Estimation

In the following the term small area estimation is defined and the underlying idea is
explained by means of an example using unemployment data. Afterward, two basic small
area models are introduced: the area-level Fay-Herriot model (cf. FAy and HERRIOT,

1979) and the Battese-Harter-Fuller unit-level model (cf. BATTESE et al., 1988).

2.1.1 The Basic Idea of Small Area Estimation

Central to the concept of small area estimation is the definition of small areas. RAo, 2003,
p. xxi defines a small area as any subpopulation for which direct estimates of adequate
precision cannot be produced. Similarly, JIANG and LAHIRI, 2006, p. 1 note that the term
small area typically refers to a population for which reliable statistics of interest cannot
be produced due to certain limitations of the available data. Thus, an area is considered
to be small if reliable statistics of adequate precision cannot be produced. However, there
does not exist a cut off for deciding whether or not an area is too small (c¢f. MUNNICH
and SCHMIDT, 2002). Small area estimation refers to techniques with the intension to
overcome the problem of the small sample size. This is done by combining information
from similar structured areas and thus to extend the effective sample size. In the following

example a simple shrinkage small area estimator (cf. JAMES and STEIN, 1960) is derived.

Example 2.1: The second column of Table 1 on page 7 shows the unemployment rate of
the 16 German federal states from 2007. In this example this data is seen as the underlying
gold standard which shall be estimated. To do this for every state a sample (simple random
sampling) of size 20 is drawn out of a Bernoulli distribution with probability equal to the

corresponding gold standard. The sample mean for every state is given in column 3.
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A direct and a small area estimator will be derived. The estimators will then be compared
by the sum of the quadratic difference between the corresponding estimator and the gold

standard value, 6;, where the quadratic difference is defined to be:

16
S? = Z(Estimatori —0,)% (2.1)

i=1
Since in this setting the samples are independent of each other and no covariates are
available the direct estimator is equal to the sample mean given in column 3 of Table 1.

In this case S? = 461.46.

Next, an alternative method is presented. Using the central limit theorem, assuming that
the approximation is valid, the sum of unemployed (sample size 20) in the i*" area, Z;, is

approximately normally distributed according to:

where 6; is the gold standard unemployment rate. The unemployment rate for a sample

size of 20 in the i*" area Y; = Z;/20 is then also normally distributed:
0;(1—6;)
Yi~ N\ by, ——— |,

with mean 6; and variance 82(12—801) = 06272-. Therefore, the observed sample y; (column 3
of Table 1) is a realization out of a normal distribution. If the sample size is small, the
direct estimator will be unreliable. One idea to stabilize the estimator might be to take
the mean of all sample values and combine it with the sample value of one state. The
direct estimator moves toward the overall sample mean of all federal states, 6% = ;= iﬁj Yi.-
The larger the variance of Y; the less reliable is the direct estimator, and thus, the vx:ilght

of the overall mean should increase. Since the variance of Y; is unknown an estimator 62,

will be used: &372- = %(12—;%) Combining the above idea with the variance estimator &5271-
yields a new estimator:
o2,
91:90%—(1—@%%’1&31)(%—90), t=1,---,16, (2.2)
6°(1 — 6°)

where 62 = is an estimator for the variance of the overall mean. Formula (2.2)

20
may be interpreted as follows: The variance &2

= represents the uncertainty of the overall
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State Gold standard | Sample mean | Shrinkage estimator
Berlin 15.5 15 13.1
Bremen 12.7 20 13.9
Brandenburg 14.9 10 10.8
Baden-Whirtt. 4.9 10 10.8
Bavaria 5.3 15 13.1
Hamburg 9.2 10 10.8
Hesse 7.6 5 5.9
Mecklenburg-Vorp. 16.5 15 13.1
Lower Saxony 8.9 10 10.8
North Rhine Westph. 9.5 15 13.1
Rhineland-Palatinate 6.5 10 10.8
Saxony-Anhalt 16 15 13.1
Saxony 14.7 20 13.9
Schleswig-Holstein 8.4 15 13.1
Saarland 8.4 0 0
Thuringia 13.2 ) 5.9

Table 1: Unemployment Rate for the 16 German Federal States in Percent, as well as the

Direct and Shrinkage Estimator; Data Source: BUNDESAGENTUR FUR ARBEIT (2008).

mean. If 62 is large, then the overall mean is not reliable and thus 0; is close to the direct
estimator y;. If the sample variance 0., is large, then more weight is given to the overall
mean. The estimated values for the unemployment data are given in column 4 of Table
1. The squared deviance (2.1) for this estimator is S? = 325.28. Thus, S? is considerably

larger when using the direct estimate compared to the estimator in (2.2).

The estimator in (2.2) is a simple form of a small area estimator, also known as shrinkage
estimator (cf. JAMES and STEIN, 1960). In VoGt (2007), the shrinkage estimator is

explained and derived in more detail.
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In Example 2.1 a direct estimator using information of one federal state and a shrinkage
estimator which combines information of all states were presented. This technique helped
to reduce the sum of the squared deviance. In other words, because the sample size was too
small to obtain reliable direct estimates strength was borrowed (GHOSH and RAO, 1994,
p. 55) from other states. In the example, the sum of the squared deviance for the small
area estimator is smaller than that for the direct estimator. On the contrary, the squared
deviance might not be smaller for each of the states. Row 1 of Table 1 shows the data for
Berlin with a relatively high unemployment rate. In this case the direct estimator is closer
to the gold standard value than the small area estimator. This is due to the fact, that the
overall mean is not representative for this state. Therefore, in the next section, extensions
of the above derived small area estimator are presented, making use of covariates. The

connection to the shrinkage estimator is visible in Example 2.12.

2.1.2 Standard Small Area Models

In this section the two basic small area models, the FAY and HERRIOT (1979) and the
BATTESE et al. (1988) model, are introduced using the German Census 2011 and un-
employment data at the federal state level in Germany. Both model types are currently
analyzed for a possible application within the German census (cf. MUNNICH et al., 2007).

Extensions of these models play a vital role throughout the work.

Example 2.2: We briefly introduce the Fay-Herriot model. A detailed derivation can be
found in VoaT (2007). However before doing so, as explained in Chapter 1, the German
Census 2011 will be conducted using a new method. Rather than a total enumeration,
a sample is drawn. Unfortunately, the sample size might be too small to obtain reliable
results with a detailed regional or subject-matter breakdown with classical estimation
methods (cf. WEBSITE: CENsuUS, 2010c). A way around this problem may be to impose

model assumptions.
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To explain what is meant by model assumptions, imagine the following situation: Assume
that the unemployment rate at the federal state level in Germany is of interest (Figure 1 on
page 2).2 We assume that Y;, the proportion of people unemployed in state 7, is normally
distributed with unknown mean 6; and variance component afﬂ.. The parameter of interest

0; represents the true proportion of unemployed. Thus, our model becomes:
Y, M N(,0%), i=1,-,k

The sample is a realization of this distribution. If the sample size is too small to obtain
directly reliable estimates of 6;, the idea is to employ prior information on the mean 6;. In
the German Census 2011 prior information out of the administrative registers may be used,
by means of covariates (see WEBSITE: CENSUS, 2010c¢). To include prior information, a

second model assumption is made, by specifying a distribution for 6; as well, where:

ind

HZNN(Xlﬂ,O'z), 221,,k

This means that 6; is normally distributed around a regression coefficient, representing

information out of the registers. Thus, the complete model is:

Y, ® N, 02) (23)
97,' i}i‘} N<X’LB7O-3>7 ZIl? 7k7

which can be transformed into:

Y, " N(,02) (24)
0; = XiB+u
ii.d.

u; N N(0,0%), i=1,---k,

where ind stands for independently distributed and i.i.d. for independently and identically
distributed.

2In the German Census 2011 the sample size at the federal state level will be large enough. Problems
may arise on smaller areas, like small municipalities with less than 10,000 inhabitants (cf. WEBSITE:

CENSUS, 2010c).
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The model may be further transformed into (cf. JIANG and LAHIRI, 2006, p. 6):

Yi = Xif+tu+e (2.5)
ui N(0,07)
ind

& ~ N(0,0%), i=1,--- k.

) Ve

Definition 2.3: The models (2.3), (2.4), and (2.5) are defined as Fay-Herriot (FH)

model (cf. FAY and HERRIOT, 1979).

In the specification (2.5) the Fay-Herriot model can be viewed as a mixed regression model.
The factor is called random effect and u incorporates additional variation between the areas
not accounted for by the regression component. In Example 2.12 it is shown how to obtain

estimates under this model.

In the next example the Battese-Harter-Fuller model will be introduced.

Example 2.4: In Example 2.2, for every small area one sample value Y; is used. This
means that data enters the modeling process in an aggregated way, namely at the federal
state (area) level. Therefore, this type of model is called an area-level model. In contrast,
the Battese-Harter-Fuller model is a unit-level model, meaning that the data is at the
individual level. For example in area ¢, n; individuals may be sampled. The model may

then be defined as follows:

Definition 2.5: The Battese-Harter-Fuller (BHF) model is defined as (cf. BAT-
TESE et al., 1988):

}/ij = XUB + U; + Gij (26)
w FON(0,02)

€ij N N(0,0’?), izla"'ak>j:17"'7ni7

where we denote the area by index ¢ the individual by index j.

Like the Fay-Herriot model, the Battese-Harter-Fuller model consists of three components,

namely a regression term X;;/3, a random effect w; and errors ¢;;. The Battese-Harter-Fuller

10
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model is a particular case of a general model, known as general linear mixed model. This

model is quite flexible and allows for unit and area-level specification. It is defined below.

Definition 2.6: The general linear mixed model is defined as (cf. HOBERT and

CASELLA, 1996):
Y = XpB+Zu—+e
e ~ N(0,X%) (2.7)
u ~ N(0,%,),

where Y isn x 1, X isn x p, Bis p x 1, € is n x 1. Further, ¥, = [,02, Z is n X q,

w = (ur, -+ ,u,) is ¢ x 1, where u; is ¢; x 1 and > _,_, ¢; = ¢. Finally, ¥, = @gzllqiaﬁ’i,
0

0 B

where the direct sum @ of two matrices A, B is defined as A & B =

Notes 2.7:

1. JIANG and LAHIRI, 2006, pp. 8, present a specification of model (2.7), where the
Fay-Herriot model (2.5) is included. In this work (Chapter 3), a theorem of HOBERT

and CASELLA (1996) is extended and their specification of model (2.7) is followed.

2. In Chapter 3 the existence of the posterior distribution for a spatial adaption of
model (2.7) is proved. In the spatial model, only one random effect is considered,

and thus, the dimension of u is equal to the number of areas k.

The theory and applications of mixed models is explained in DEMIDENKO (2004) and

FARAWAY (2006) in more detail.

Example 2.8: The Battese-Harter-Fuller model (2.6) may be written in the form (2.7):

Y11
Iz - 2pn I
U1 €1
Yiny L zpe o0 Tpio Do k _
=|. . [T ®ede | 2|
Y21 . . . .
. Uk €n
1 Tikn, - Tpkng ﬂp
Ykn,y,

11
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In this section, we have introduced the ideas behind small area estimation as well as
the standard small area models. A comprehensive introduction can be found in RAO
(2003). Other books explaining the concepts and ideas of small area estimation are writ-
ten by MUKHOPADHYAY (1998) (Small Area Estimation in Survey Sampling) and LONG-
FORD (2005) (Missing Data and Small-Area Estimation). Some review papers involving
small area estimation include RAo (1986), RAo (1999), RAo (2001), GHOSH and RAO
(1994), MARKER (1999), PFEFFERMANN (2002), LAHIRI and MEzA (2002), and JIANG
and LAHIRI (2006). Finally, the EURAREA (2004) project report describes various small

area estimation methods.

12
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2.2 The Posterior Distribution and Improper Priors in Bayesian

Analysis

The idea of the basic small area models of Section 2.1.2 is to specify a distribution for
the data, as well as for the unknown variables of interest 6;. The distribution on 6; repre-
sents the idea that there exists extra information about the parameter. Other parameters
are included in the Fay-Herriot model (2.3) due to its hierarchical structure such as the
regression coefficient 3 and the variance component 2. If prior information on these pa-
rameters is available we can include this in the model by specifying distributions on the
unknown parameters. In a Bayesian framework these beliefs can be represented by a prior
distribution, which is placed on the unknown parameter. For the Fay-Herriot model (2.3)

such priors are given in the next example.

Example 2.9: The Fay-Herriot model (2.3) may be extended to a hierarchical Fay-

Herriot model, by assuming prior distributions for 3 and o?2.

Following HOBERT and CASELLA (1996) this might be:

m(8) o< 1 (2.8)

2)—(b+1)

moa(oy [ B) o< (o,

?

where b is a constant. Another option for o2 is an inverse gamma distribution (cf. SUN
et al., 1999):
1/02 ~ T(0.5,0.0005). (2.9)

Figure 2 shows the prior distribution (2.9). This distribution takes positive values and
states the belief that the random effects standard deviation is centered around 0.05 with a
1% prior probability of being smaller than 0.01 or larger than 2.5 (c¢f. GEOBUGS USER
MANUAL, 2004).

13
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Density
6e-04 8e-04 1e-03

4e-04

2e-04

Oe+00
|

I I I I I I
0 2000 4000 6000 8000 10000

1/62
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Figure 2: Gamma Prior Distribution for (¢2)~! with Parameters 0.5 and 0.0005.

It is not easy to select appropriate prior distributions (cf. KAss and WASSERMANN, 1996).
Throughout the present work standard priors distributions are taken and the question of

how to choose prior distributions is not considered.

The representation of information, as well as the uncertainty about parameters as prob-
abilities is central to Bayesian inference, and this concept is explained in more detail in
various texts. For instance, introductions in Bayesian methodology and computation in-
clude GHOSH et al. (2006) and ALBERT (2007). Classical Bayesian books to consider are
Box and Ti1ao (1973) and BERGER (1985). CONGDON (2003), CONGDON (2005), and
CONGDON (2007) deal with various topics in Bayesian statistics, like Bayesian modeling

and Bayesian categorical data analysis. CARLIN and Louis (2000) cover Bayes and Em-

14
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pirical Bayes methods for data analysis. BERNARDO and SMITH (1994) explain Bayesian
theory from a mathematical perspective. Finally, the books GELMAN et al. (1995) and

GELMAN and HiLL (2007) are about Bayesian data analysis and multilevel models.

In the next section, we show how to utilize Bayesian methods for inference, via the posterior

distribution.

2.2.1 The Posterior Distribution

If all the uncertainty is included in the model it is possible to combine prior and sample
information and thus, perform an update via the posterior distribution. The complete
inference is then based on this distribution. This concept is introduced more formally in

WITTING, 1985, pp. 128.

Definition 2.10: Let X and Y be real-valued random variables defined on an abstract

probability space (€2, S, P) with joint density:

fX7y : R2 — R.
The posterior density (conditional density function) of the posterior distribution
of X given Y = y is defined by:

_ fxv(y)
fR fX,Y(gay)d§7

for all y as long as the denominator is defined.

z €R

Fxpyr=y(2)

Theorem 2.11: Let X and Y be random variables as those in Definition 2.10, and
furthermore, let f denote the probability function of X. The conditional density function
of the distribution of X given Y = y is given by:

Frix=e®)f(z)
_f fyix=s(y) f(x)dx

fxy=y(z) = (2.10)

The proof can be found in WITTING, 1985, pp. 128.

15
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The posterior density in the form (2.10) states the principle that updated knowledge com-
bines prior knowledge with the data at hand:

likelihood X prior density
([ likelihood x prior density)’

posterior density =

where the denominator is a fixed normalizing factor which ensures that the posterior

probabilities sum to 1 (cf. CONGDON, 2007, p. 3). We can then show:
posterior density o likelihood X prior density.

Example 2.12: The posterior distribution of 6; of the standard Fay-Herriot model (2.3)

is given by (see for example Voar, 2007, p. 52):

6V, ~ N( x5+ (1 & (Y; — X.B) 0iC =1,k
7 ) ) 0',3"‘0'62@ 7 1 70_62’i+0_3 9 1= ’ ) Ve

The posterior mean is a weighted average of the prior mean X;8 and the data Y;. Note

that the posterior mean is an extension of the shrinkage estimator derived in Example 2.1.

The following hierarchical version of the general linear mixed model (2.7) is given by

HOBERT and CASELLA, 1996, p. 1463:

Y | u,af,ﬁ ~ N, (XB+ Zu,]af) (2.11)

7'('5(6) x 1

u|0371,---,02 ~ N,(0,%,)

u,r

2 2\ —(b+1
7TE<05 | b) X (ge) (+ )
Woﬁ’i(aiﬂ- | a;) o (Uﬁ}i)_(a"ﬂ), i=1,---,16,
where y is n x 1, B is a p X 1 vector of fixed effects, u = (u’l, u;, e ,u;)/ is a ¢ x 1 vector,
u; is ¢ x 1,5, = @j_I,00,, > 14 = ¢, X and Z are known design matrices whose

dimensions are n X p and n X ¢. Also, a; and b are constants.

In this model the posterior density is given by (cf. HOBERT and CASELLA, 1996, p. 1463):

f(o-i,lf" 70-12147T70-627u7/8|y) X f(y|U,062, )f<u|0-12L,17"' 7012;,7')' (212)

T

(B)maz(0f [0) | | oz (o0 ] i) -
i=1

16
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It is often difficult, or even not possible, to integrate posterior densities analytically. For
the simple Fay-Herriot model (2.3) the posterior distribution is given in Example 2.12.
Unfortunately, the posterior density (2.12) for model (2.11) is not analytically tractable
and may even not be proper (cf. HOBERT and CASELLA, 1996). The propriety will be

further discussed in the next section.

2.2.2 Improper Priors

In the previous section the general linear mixed model (2.7) has been extended to a hier-
archical version (2.11) by specifying prior distributions on all parameters. If there is neat
information about a parameter the prior distribution may be quite specific. Consider for
example the unemployment data of Example 2.2 and the Fay-Herriot model (2.3). Assume
that for a specific covariate, for example education, there might be some knowledge about
the connection to unemployment, and thus, for the regression component S perhaps a
normal distribution with a small variance might be specified. The small variance repre-
sents strong confidence in the prior information. In many other settings prior information
on parameters are quite vague. When prior information is unknown improper priors are
chosen (cf. GELMAN et al., 1995, p. 52 or GHOSH et al., 2006, p. 40), which are defined

below.

Definition 2.13: A density f(0) is called improper, if f(-) is non-negative for all
0 € O #0 and:

/e F(9)d(8) = .

One example is the improper prior (2.8) used in the hierarchical extension of the Fay-

Herriot model, where m3(8) o 1.

If an improper prior is taken, the posterior density of the corresponding model might also
not integrate to a finite number and thus might fail to be a proper probability distribution.
Since all the inference is based on the posterior distribution, this is problematic in Bayesian
inference. Another possible danger is that frequently Markov chain Monte Carlo methods

like the Gibbs sampler (presented in the next Section 2.3) are used to obtain estimates using

17
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the posterior distribution. These methods may not detect impropriety (DATTA and SMITH,
2003, p. 176) and lead to wrong conclusions, as will be shown in Example 2.16. Therefore, it
is vital to check the propriety of the posterior distribution in advance. In Chapters 3, 4, and
5 we introduce existence theorems regarding the propriety of the posterior distribution for
extensions of three model classes widely used in small area estimation. The model classes
considered are the general linear mixed model, the Bernoulli model, and the hierarchical

Fay-Herriot model.

Propriety for similar model classes is discussed by IBRAHIM and LAUD (1991), who proved
a sufficient condition for the existence of the posterior for the general linear model. GHOSH
et al. (1998) considered generalized linear models for small area estimation and showed
the propriety for spatial and non-spatial models under this framework. The theorem is
generalized in GHOSH et al. (1999). DATTA and SMITH (2003) showed the propriety for

(non-spatial) small area models, like the Fay-Herriot model under a bounded prior.

In this section the idea of Bayesian modeling has been explained, where all the variation
is included in the model by specifying prior distributions on all unknown parameters. The
inference is then based on an update of the sample and the prior information, yielding the
posterior distribution. However, the derivation of posterior densities (2.10) is not easy and
involves (multi-dimensional) integration. Therefore, in most applications the density is
not derived, but a sample out of the distribution is drawn via Markov chain Monte Carlo

methods. These methods are introduced in the next section.
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2.3 The Impact of Impropriety on Markov Chain Monte Carlo
Methods

When using hierarchical Bayes methods (Section 2.2) there is a need to calculate the pos-
terior distribution (2.10), and thus, to compute multi-dimensional integrals. One method
used to compute posterior quantities is exact numerical integration. However, the numer-
ical integration is not applicable in high dimensions, making MCMC procedures a natural
choice for approximating posterior densities. The idea behind these methods is to construct
a Markov chain which eventually converges to the posterior distribution. Instead of cal-
culating the posterior distribution directly, a sample from the posterior is obtained. Then

the mean, variance, and other statistics of the posterior distribution may be estimated.

The most popular MCMC procedure is the Gibbs sampler, which will be introduced in the
next section. In addition, it is shown that the Gibbs sampler may lead to misleading results

if the posterior distribution is improper. We also introduce software for implementing

MCMC methods.

2.3.1 The Effect of Impropriety on the Gibbs Sampler

The Gibbs sampler was derived by GEMAN and GEMAN (1984). An explanation is given
by CASELLA and GEORGE (1992). The Gibbs sampler is a technique for generating ran-
dom variables from a distribution with density, say f(z). But rather than to compute or
approximate the distribution directly; the Gibbs sampler generates the sample by gener-
ating the conditional distributions of the model of interest.

In a two random variable case, say (X,Y) the Gibbs sampler constructs a sample of
fx(z) by sampling instead from the conditional densities (Gibbs conditionals) fx|y—,(z)
and fy|x=z(y), that are more likely to be known in statistical models (cf. CASELLA and

GEORGE, 1992, p. 168). Then the basic scheme of the Gibbs sampler is as follows:

1. Choose an arbitrary starting point, say (o, 4o)-
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2. Suppose we have generated some arbitrary point in the chain (z;,y;),

Generate ;.1 ~ in+1|Y:yi (z)

Generate y;.11 ~ fy+1|x x1+1(y)

3. Now that (z;41,vi+1) has been generated update and repeat the cycle.

It can be shown that the Gibbs sampler converges under certain regularity conditions to a
stationary distribution (cf. GELFAND and SMITH, 1990). Thus, after some finite number
of steps the generated values from the Gibbs sampler represent values from the stationary
distribution. But why do the stationary and the posterior distribution coincide? The
following theorem shall clarify the ties between the posterior distribution and the Gibbs
conditionals (cf. CRESSIE, 1993, pp. 412 and BESAG, 1974, pp. 195). The same theorem is
frequently used to prove an important result in spatial modeling (Theorem 2.22 in Section

2.4).

Theorem 2.14: Let Xy,---, Xy be a finite collection of random variables with joint

probability mass function f(-) whose support satisfies the positivity condition. That is, if

f(z;) > 0 for each i, then f(x) > 0. That means if xy,--- ,xy can individually occur at
sites 1,--+ , k, then they can occur together. Let x = (x1, -+ ,xx) and y = (y1,--- ,yx) be
two realizations of Xy, --- , X}. Then:

I’ H fX | X4 Iz|x17 oy Ti—1, Yit 1, 0 7?Jk) (2 13)

?J fX X, yz|$17 C oy Ti—1 Yit1, 7yk).
The proof may be drawn from (CRESSIE, 1993, pp. 412) and (BESAG, 1974, pp. 195).

Theorem 2.14 shows that under certain assumptions the posterior density is essentially
proportional to the Gibbs conditionals. But this does not mean that the posterior distri-
bution exists every time the Gibbs conditionals exist, as the following example shows (cf.

ROBERT and CASELLA, 2010, pp. 232).

Example 2.15: Let the Gibbs conditionals be given by:

Xi1|Xo =29 ~ Exp(as)

XQ‘Xl =T EXp(i[fl),
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where Exp denotes the Exponential distribution. Using Theorem 2.14 it follows that:

Ixi1%, (1Y) - fxo)x, (2] 21)

fX1|X2 (yl,yQ) : fX2|X1 (y2|.1'1)
x  exp(—z123).

//exp(—mlxg)dxldmg = 00,

there exists no joint density with the above Gibbs conditionals.

f(flfl,fﬂz) (08

Since:

In Example 2.15 it can be seen, that the existence of Gibbs conditionals does not ensure
the propriety of the joint distribution. This is a potentially perilous situation, since the
Gibbs conditionals allow implementing the Gibbs sampler, but there is no joint distribution
to which the Gibbs sampler may converge. What happens in this case? The dangerous
effects are illustrated in the next example, where an example from CASELLA and GEORGE

(1992) is implemented in R and analyzed. The code is given in Appendix A.

Example 2.16: Consider the conditional densities given by:

fxjy=y(z) o yexp(—yzx),0 <z < o0 (2.14)

frix=2(y) o zexp(—zy),0 <y < occ.

For these densities, CASELLA and GEORGE, 1992, p. 171 showed that the marginal density
for which the Gibbs sampler should converge is given by:

1

fla)=—.

However, f(x) is not a proper density. This may have serious implications for the con-
vergence of the Gibbs sampler as will be shown. Convergence is typically assessed by
the scale reduction factor (R) developed by GELMAN and RUBIN (1992). To accomplish
this different Markov chains from overdispersed starting points are run parallel and the
within-chain and between-chain variances are compared. Convergence is diagnosed if the
output from all chains is indistinguishable (independent of the initial values). The scale

reduction factor points to 1 in this case. Table 2 shows the maximum value of the scale

reduction factor for varying number of iterations. Some of the values are near 1 and point
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to convergence. This is a dangerous situation. Despite the fact that R indicates conver-
gence, the Gibbs sampler did not converge. One indication of this is that starting with
iteration number 6000 and contributing on, all the R values increase. From Figure 3, we
can see that we are clearly not reaching the stationary distribution of the chain. In the

case of convergence, we should see that the two chains are eventually mixing.

If the conditionals (2.15) are restricted to the interval (0, &), where K is a positive constant,
the marginal distribution is proper. Table 3 and Figure 4 give the values of the scale
reduction factor and the trace plot for the proper model (K = 20). In this case both

measures indicate the model has not failed to converge.

Note the difference that trace plots are able to detect, which is not detected by R. This is
dangerous in simulation studies, where typically many repetitions are made. In this case, it
is difficult to check convergence by means of plots and R is much more convenient since it
allows to check for convergence automatically. In addition, ROBERT and CASELLA, 2010,

p. 233 mention that graphical monitoring may sometimes lead to misleading results.

500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 5000
1.04 | 1.28 | 1.16 | 1.06 | 1.13 | 1.31 | 1.22 | 1.07 | 1.17 | 1.28
5500 | 6000 | 6500 | 7000 | 7500 | 8000 | 8500 | 9000 | 9500 | 10000
1.00 | 1.21 | 1.76 | 2.13 | 2.46 | 2.81 | 3.08 | 3.41 | 3.87 | 3.85

Table 2: Number of Iterations and Values of the Scale Reduction Factor for the Improper
Model.
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Figure 3: Trace Plot of the Simulated Values of x (Chain 1 : Red, Chain 2 : Blue) of the
Gibbs Sampler for the Improper Model.

500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 5000

1.01 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
5500 | 6000 | 6500 | 7000 | 7500 | 8000 | 8500 | 9000 | 9500 | 10000
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

Table 3: Number of Iterations and Values of the Scale Reduction Factor for the Proper
Model.
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Figure 4: Trace Plot of the Simulated Values of x (Chain 1 : Red, Chain 2 : Blue) of the
Gibbs Sampler for the Proper Model.

The situation of Example 2.16 may arise when the Gibbs sampler is applied to a model
with improper priors (see Section 2.2.2). Then, as in Example 2.15, the Gibbs conditionals
may be of standard forms, but the posterior distribution for which the Gibbs conditionals
correspond may be improper. Example 2.16 showed that this is a dangerous situation
because the Gibbs sampler may lead to seemingly reasonable inferences about an improper
posterior distribution (HOBERT and CASELLA, 1996, p. 1462). ROBERT and CASELLA,
2010, p. 233 mention that the only way to make sure the Gibbs sampler is valid is to
check that the joint density has a finite integral. Thus, it is absolutely vital to apply only
models with proper posterior distributions. Therefore, in Chapters 3, 4, and 5 theorems
are proved, which ensure the existence of the posterior distribution for different models of

interest.
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Besides the Gibbs sampler there are numerous other MCMC methods, like the Metropolis-
Hastings algorithm. Since the Gibbs sampler is the only explicitly used MCMC method in

this work, the reader is referred to the literature for other methods (for example FISHMAN,

2006 or GILKS et al., 1996).

2.3.2 Markov Chain Monte Carlo in R and WinBUGS

In the last section, the Gibbs sampler and general MCMC methods were introduced.
Several R packages to implement these methods in R are described in the CRAN Task
View: Bayesian Inference (cran.r-project.org/web/ views/Bayesian.html). For example
the R package UMACS (Universal Markov chain sampler) allows implementation of some
MCMC methods, such as the Gibbs sampler. However, the problem is that the Gibbs
conditionals are needed, which are often hard to derive. Therefore, in this section, we
introduce another software package, called WinBUGS. WinBUGS allows for an easier
implementation of Bayesian models (NTZOUFRAS, 2009 covers Bayesian modeling using

WinBUGS) at the cost of flexibility.

The following example provides the Gibbs conditionals for the Fay-Herriot model. In
addition the corresponding Gibbs sampler is implemented in UMACS.

Example 2.17: The Gibbs conditionals for the Fay-Herriot model (2.4) with known

2 and o2 are given by (cf. HOBERT and CASELLA, 1996, p.

homoscedastic variances o .

1464):

flulo? y,00.8) = N((IkJrZ—glk)_l(y—Xﬁ),af(Ik+Z—glk)‘1> (2.15)
fBloly,o0,u) = N((X'X)'X'(y —u),d2(X'X)™).

Those functions may be used to implement the Gibbs sampler for example via UMACS. The
UMACS code consists of initial values of u, 3, and #, update functions containing the Gibbs
conditionals (2.15), and the sampler. The sampler contains the needed variables and data.
One cycle of the Gibbs sampler is completed when all parameters are updated once. Each

update step ends with random numbers drawn out of the corresponding Gibbs conditional.

25



BASICS AND FUNDAMENTAL CONCEPTS

As soon as convergence is reached, we can sample from the posterior distribution. For

model (2.15) the update functions are:

u.update <— function () {
theta.hat <— solve(diag(k)+sigmau/sigmaexdiag(k))%%y—(X%+%t (beta))
V.theta <— (sigmauxsolve(diag(k)+sigmau/sigmaexdiag(k)))
rmnorm (1, theta.hat, V.theta)

beta.update <— function () {
u<—as.vector (u)
V.beta <— sigmaux*solve (t (X)%+%(X) )
beta.hat <—1/sigmau*V.beta%+%t (X)%+%%(y—u)
rmnorm( 1, beta.hat , (V.beta))

theta.update <— function() {
u<—as.vector (u)
theta <—X%+%t (beta)+u
theta <— as.vector (theta)
theta # There are no Gibbs conditionals for theta. theta is X%%t (beta)4u,
# but formally a Gibbs update has to be defined.

Listing 1: UMACS Update Functions for the Fay-Herriot Model with Known

Homoscedastic Variances

UMACS allows implementation of various MCMC methods, and thus, specially tailored
algorithms may be programmed. The drawback of this flexibility is that it may not be
easy to obtain the update functions. In Section 3.4 the needed Gibbs conditionals for an

implementation, for example in UMACS, of a spatial extension of model (2.7) are derived.

An alternative to programming in R is WinBUGS. Like UMACS, WinBUGS uses MCMC
methods to calculate samples out of the posterior distribution. But statisticians just have
to specify the model, there is no need to worry about Gibbs conditionals or to program
the MCMC methods explicitly. The following example provides the WinBUGS code for
the Fay-Herriot model.
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Example 2.18: The WinBUGS model specification for the Fay-Herriot model (2.4) with

known homoscedastic variances o2 and o2 is as follows:

model {

for (i in 1:k) {
Y[i]~dnorm(theta[i] ,sigmae)
theta[i] <— alphat+betaxX[i]4+u[i]
}

alpha~dflat ()
beta~dflat ()

for (i in 1:k){
u[i]~dnorm(0,sigmau)
}
}

Listing 2: WinBUGS Specification of the Fay-Herriot Model with Known Homoscedastic

Variances

The code reflects the notation of the Fay-Herriot model (2.4). Thus, the main advantage
of WinBUGS is that models can be directly written down and WinBUGS does all the
work. This is especially useful if different models are tested against each other. However,
the user still has to be cautious about issues like convergence, the number of chains, the
length of burn-in, or the propriety of the posterior distribution. In Chapters 3, 4, and 5
the last of these issues, propriety of the posterior, is tackled by providing theorems for

different model classes, which ensure the propriety.

The results of the applications in the thesis are obtained via WinBUGS controlled by
R (package R2WinBUGS). The R code and the WinBUGS models are provided in the
appendix.

Until now the idea of small area estimation as well as standard models have been introduced
and the models were extended to hierarchical models by specifying prior distributions on

all parameters. Example 2.16 underlined that one has to be careful with certain priors
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(improper priors) since this may lead to misleading results. This topic will be further
discussed in Chapters 3, 4, and 5. Before doing so, in the next section, the independence
assumption of the random effects of the standard and hierarchical models will be dropped

and spatial correlations will be included in the models.
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2.4 Spatial Modeling in Small Area Estimation

In Example 2.2 we explain how to use the Fay-Herriot model to estimate the unemployment
rates for the federal states in Germany. One assumption of model (2.11) is independence of
the random effects u;. Thus, the variation in addition to the regression component between
the areas is assumed to be independent. This assumption is not always appropriate, since
people tend to cluster. Clustering can occur geographically such as in towns, villages or
socially. Spatial interactions may be included into a model by means of spatial modeling.
Introductions can be found in the landmark work by CRESSIE (1993) and the Practical
Handbook of Spatial Statistics by GRIFFITH (1996), in HAINING (2003), and RIPLEY
(2004). The book by BANERJEE et al. (2004) combines hierarchical modeling and analysis
for spatial data and RAO (2003) includes a section on spatial modeling in small area

estimation. BIVAND et al. (2008) explain how to use R for spatial modeling.

2.4.1 Spatial Data

Standard statistical data consists of a data vector Y, and possibly auxiliary variables X.
So questions like ”Why?”, "How?” and ”When?” can be tackled. But sometimes it is
interesting to know ”Where?”. Therefore spatial data consists of X, Y, and the location.

CRESSIE, 1993, p. 8 defines spatial data in a very general form.

Definition 2.19: Let s € R? be a generic data location in d-dimensional Euclidean space
and suppose that the potential datum Z(s) is a random quantity. Now let s vary over index

set D C R? so as to generate the random process:

{Z(s):s€ D} . (2.16)
Then a realization of (2.16), denoted by {z(s) : s € D} , is called spatial data.
Where can spatial data be observed? Probably BIVAND et al., 2008, p. 1 puts it best
by saying "spatial data are everywhere”. Examples of spatial data include the weather

forecast, route planners, or plain maps showing the temperature or unemployment rate in

a certain region.
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Since there are many kinds of spatial data, we define three types of spatial data below (cf.

CRESSIE, 1993, pp. 8-13 or BANERJEE et al., 2004, p. 2).

Definition 2.20:

1. Spatial data is called geostatistical or point-referenced data if D is a fixed subset
of R? that contains a d-dimensional rectangle of positive volume and Y(s) is a random
vector at a location s € R , where s varies continuously over D.

This means that the data can be theoretically measured everywhere (continuously).

One example of this occurrence is temperature in a certain region.

2. The data is referred to as point pattern data if the location, D, is random.
This data type arises if the location is the important variable to analyze, such as the

location of a certain tree type.

3. Spatial data is called lattice or areal data if D is a fixed subset partitioned into a
finite number of areal units with well-defined boundaries.
Unemployment data on federal state, county, or municipality level in Germany is
an example of areal data. The data arising from the German Census 2011 will be
partitioned into well-defined areas, such as municipalities or cities. Thus, the data
is areal. Because the focus of our work is using small area estimation techniques in

the context of the German Census 2011, we will only consider areal data.

2.4.2 Spatial Modeling: Conditional Autoregressive Model

In the last section three types of spatial data were introduced. Shortly, we will show how
to include spatial information in a model, like the Fay-Herriot (2.4) or hierarchical linear
mixed model (2.11). There are several options to do this. In our work the focus will be on
the conditional autoregressive (CAR) spatial model, which allows us to incorporate spatial

information into a model of interest.

Consider the hierarchical linear mixed model (2.11) and assume that the data of interest

is areal (Definition 2.20) with an observed spatial trend, such as the unemployment rate
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example in Figure 1. The random effects u; in the models (2.4) and (2.11) shall handle the
differences between the areas which are not captured by the standard regression model. In
both models the random effects u; are assumed to be independent and thus the covariance

matrix ¥, in the following distribution:
u | 0-12L,17 T 70-12L,k ~ Nk(07 Eu) (217)

is diagonal. One way to incorporate spatial effects is done by allowing for dependence
between the random effects. This may be achieved via the conditional autoregressive

model (cf. RAo, 2003, pp. 412 or BANERJEE et al., 2004, p. 79).

Definition 2.21: Let v = (uy,--- ,u;) be a k dimensional vector of random variables.
Then, the conditional autoregressive (CAR) spatial model assumes that the condi-

tional distribution of w; given {u; : | # i} is given by:
wil{w : 1 #i} ~ N (pz Qilul,aii) , (2.18)
leA;

where A; denotes a set of neighboring areas of the i*" area, {Q;;} are known constants

satisfying Q; = @Qy; and p, agﬂ- is the unknown parameter vector.

In the CAR model the random effect u; of area i depends on the effect of the other
areas. For better theoretical handling of Formula (2.18), it will be shown that the joint

distribution of u = (uy,--- ,uy) is given by:
u ~ Ni(0, (I = pQ)~"' M), (2.19)

where ) = (Q;,) is a k x k matrix with @;; = 0 whenever | ¢ A; (including @);; = 0) and
M = diag(o ;). Assumption (2.19) is similar to the independence structure (2.17) with
a non-diagonal covariance matrix >,. Using Theorem 2.14 the following theorem may be

proved (cf. CRESSIE, 1993, pp. 412).

Theorem 2.22: The conditional autoregressive specification (2.18) is given by:

wil{w : 1 #i} ~ N (pZQi,zuz,Ui,z') )

leA;
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which implies that:
U~ N(Ov (I - pQ)_lM)7

provided that (I — pQ) is invertible and (I — pQ)~! is symmetric and positive-definite.

The proof is given in CRESSIE, 1993, pp. 412.

BANERJEE et al., 2004, p. 79 ensure that the covariance matrix in Theorem 2.22 is sym-

metric and positive-definite by choosing:

. Qi 03
wil{w 1 £}~ N [p)  ——u, — . (2.20)

A Y Qiy D Qi
j=1 j=1

The CAR structure in the form (2.20) will be used throughout the work.

Remark 2.23:

1. The CAR structures (2.18) and (2.20) are convenient for the implementation of the
Gibbs sampler, since the conditional specification reflects the form of the Gibbs

conditionals (cf. BANERJEE et al., 2004, p. 86).

2. In applications, the neighborhood matrix @) is symmetric if the neighbors of an area

have the area as a neighbor.

3. Another popular spatial model is the simultaneous autoregressive (SAR) model,

defined as (cf. BANERJEE et al., 2004, p. 84) the following:

u~ N (0, o2 [(1 Q)1 )| ) .

In this work, the focus will be on the CAR structure, since the conditional specifi-
cation is more convenient in the Bayesian framework (cf. BANERJEE et al., 2004, p.

86).

Theorem 2.22 demonstrates the fact that the conditional autoregressive model imposes
a dependence structure on the random effects. We need to decide how to choose this
structure in a concrete setting, since the results depend on the chosen neighborhood set

A, in equation (2.20). This topic is discussed next.
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2.4.3 Specifying the Geographic Weights Matrix

In Sections 2.4.1 and 2.4.2, we introduced spatial data and the conditional autoregressive
structure. The CAR approach (2.18) and (2.20) allows us to incorporate neighborhood
information into the model. However, the CAR structure depends on the neighborhood

matrix (). In this matrix the correlation structure between the areas is defined.

In general the spatial neighborhood (weight) matrix is defined as follows (cf. BAVAUD,
1998, p. 154).

Definition 2.24: Let S ={1,---,k} be a set of places. A spatial weight matrix is a

k x k matrix @) of components @);; satisfying:

1. ngZ(), i:]-a"'7k7j:17"')k

k
QZQﬂzl, j:].,,]{?
i=1

In addition, frequently @Q;; is assumed to be 0 for ¢ = 1,--- , k, indicating that an area

cannot be its neighbor.

We still must resolve how to specify the set of neighbors, and the literature on this is
quite sparse. In many texts on spatial statistics the need to specify the geographic weights

matrix is noted and some ideas are mentioned briefly.

1. CRESSIE, 1993, pp. 384 mentions the following:
(a) Call any area j, which is within a certain distance from area i a neighbor of
that area.
(b) Define areas as neighbors who share a common boundary.

(c) Consider different distance metrics: At times a site may be close as the crow
flies to another site, but a spatial analysis based on this distance may be strictly
for our feathered friends. The closeness of two areas might be a function of both

distance and, say, percent urbanization.
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2. BANERJEE et al., 2004, p. 4 notes using an irregular lattice that physical adjacency

is the most obvious (but not the only) way to define a region’s neighbor.

3. HURN et al., 2003, p. 90 mentions that in image analysis problems, typical structures
are nearest neighbor with either 4, 8 or 12 neighbors (see Figure 5 for a nearest

neighbor setting).

4. In MOURA and MIGON, 2002, p. 6, they consider Bayesian spatial models for small
area estimation of proportions and define two areas to be neighbors if they are con-

tiguous.

5. HAINING, 2003, pp. 80, notes that rather than defining linkages between objects in

purely geometrical or spatial terms, ancillary data may be used.

6. BIVvAND et al., 2008, pp. 239 show how to construct contiguity, graph and distance
based, higher order, and grid neighbors with R.

Example 2.25: Figure 5 shows different neighborhood structures at the federal state
level in Germany. In each plot, non-neighbor states are plotted in yellow, neighbor states
in orange, and the actual state in red. The first three plots show the nearest neighbor
structure for states Thuringia, Rhineland-Palatinate, and Berlin. Thuringia and Berlin
are surrounded by neighbors. Rhineland-Palatinate is situated at the border to Belgium,
France, and Luxembourg and thus is not completely surrounded by federal states. Even
though Berlin is recognized as a state, it is contained within the state Brandenburg as
shown in southwest quadrant of Figure 5. Thus, even though a nearest neighbor structure

is assumed for every state the actual structure differs from state to state.

The nearest neighbor structure is taken for example in the Application 4.5. It can be
also observed there (Figure 10) that an increase in the number of neighbors leads to an
improvement of the quality of the estimates. The last plot in Figure 5 shows a different
neighborhood structure. Neighbors of the city state Berlin are the following German city
states: Bremen, Hamburg, and the small state Saarland. This structure is tested in the

simulation study of Section 6.4.3.
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Nearest Neighbor: Thuringia Nearest Neighbor: Rhineland-Palatinate

Figure 5: Different Neighborhood Structures for Federal States in Germany.

Example 2.26: For a situation with 3 areas ordered according to Figure 6 the nearest
neigbor matrix () is given by:
010
Q=110 1
010

- -

Area 1 Area 2 Area 3

Figure 6: Nearest Neighbor Structure of 3 Areas in a Row.

Although there are many possibilities in choosing the neighborhood structure, only

GRIFFITH, 1996 points out some rules of thumb how to choose the neighborhood matrix.
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1. It is better to posit some reasonable geographic weights matrix specification than to

assume independence.

2. It is best to use a surface partitioning that falls somewhere between a regular square

and a regular hexagonal tessellation.
3. Relative large numbers of areal units should be employed.

4. In general, it is better to employ a somewhat under-specified than a somewhat over-

specified geographic weights matrix, as long as dependence is assumed.

In the applications of this work the nearest neighbor approach is employed and it is not
discussed how to choose the neighborhood structure. The purpose of this section has been
to show that many different neighborhood structures are possible. Further research on
how to choose the neighborhood in special problems is ongoing and extends the goal of

this work.
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3 Propriety of the Posterior Distribution for Spatial

Hierarchical Linear Mixed Models

In Chapter 2, the concept of Bayesian analysis was introduced, where prior distributions are
imposed on all unknown paramet