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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit inexakten Newton Verfahren, die auf

algebraische Riccati Gleichungen angewendet werden. In diesem speziellen Fall

liefert das Newton Verfahren monotone Iterierte und konvergiert in einer glob-

aleren Weise als erwartet. Ein zentrales Ziel der Arbeit besteht darin, Vorraus-

setzungen an die inexakte Methode zu entwickeln, um ein äquivalentes Konver-

genzverhalten zu gewährleisten. Zudem werden inexakte Verfahren mit einer lin-

earen, superlinearen und quadratischen Rate der lokalen Konvergenz präsentiert.

Dadurch, dass man bei dem inexakten Newton Verfahren die einzelnen Newton

Schritte häufig früher abbrechen kann, gewinnt man einen großen Vorteil in der

benötigten Rechenzeit. Dies wird an verschiedenen Beispielen verdeutlicht.

Ein weiterer Schwerpunkt der Arbeit liegt in der Untersuchung einer alterna-

tiven Implementierung der Newton Methode für algebraische Riccati Gleichun-

gen. Diese weist in der Praxis häufig Instabiliäten auf, die mit Hilfe von inexakten

Newton Verfahren erklärt werden können.

Die Erkenntnisse, welche aus der Arbeit mit Riccati Gleichungen gewonnen wer-

den, führen zu einer Erweiterung der allgemeinen Konvergenztheorie für das in-

exakte Newton Verfahren. Unter bestimmten Bedingungen an die betrachtete

Funktion und den zugrunde liegenden Raum, sichert diese Erweiterung die mono-

tone Konvergenz der Iterierten und als Konsequenz den größeren Konvergenzra-

dius. Zahlreiche Beispiele erfüllen die Anforderungen der Theorie und werden als

Anwendungen aufgeführt. Darunter fallen unter anderem nicht symmetische Ric-

cati Gleichungen, Riccati Gleichungen aus der stochastischen Optimierung und

Anwendungen aus der Quasilinearisierungstechnik.
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Chapter 1

Introduction

1.1 Motivation and review of the literature

The solution of algebraic Riccati equations is still an ambitious task, especially

for equations arising in large scale control systems. These equations are often

solved within the framework of so-called Kleinman-Newton methods [45]. In or-

der to reduce computing time in this context, the implementation of iterative

solvers for the solution of the linear systems occurring at each Newton step is un-

avoidable. In such a numerical approach, it is important to control the accuracy

of the solution of the linear systems at each Newton iteration in order to gain

efficiency, but not to lose the fast convergence properties of Newton’s method.

Here inexact Newton’s methods would provide a stringent guideline for the termi-

nation of the inner iteration, resulting in different rates of local convergence. In

addition, the early termination of the iterations bears a striking effect in saving

computing time as long as the iterates are still far away from the solution. An

interesting discussion on inexact Newton’s method can be found in a book from

Kelley [44].

In his classical paper, Kleinman [45] applied Newton’s method to the algebraic

Riccati equation (ARE), a quadratic equation for matrices of the type

AT X + XA − XBBT X + CT C = 0 (1.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n. At each Newton step, a Lyapunov

equation

Xk+1(A − BBT Xk) + (A − BBT Xk)
T Xk+1 = −XkBBT Xk − CT C (1.2)

needs to be solved to obtain the next iterate Xk+1.

Algebraic Riccati equations play an important role in the solution of time-

6



CHAPTER 1. INTRODUCTION 7

invariant linear quadratic regulator (LQR) problems over an infinite time horizon

min
u∈L2

m(0,∞)
J(u, x0) =

1

2

∫ ∞

0

(
y(t)TQy(t) + u(t)T Ru(t)

)
dt

s.t. ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0

y(t) = Cx(t), t > 0,

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, Q ∈ Rl×l and R ∈ Rm×m. The solution

of LQR problems is a fundamental field in control theory, see e.g. [46, 2, 54, 48].

Under suitable conditions on the system matrices, the optimal control u∗(t) is

given by a feedback law, namely

u∗(t) = −R−1BT X∞x(t), t > 0, (1.3)

where X∞ is defined as the stabilizing solution of an algebraic Riccati equation

AT X + XA − XBR−1BT X + CT QC = 0.

Kleinman [45] introduced his well-known convergence results in 1968, nevertheless

the numerical solution of Riccati equation is still a vivid field of research.

Banks and Ito [3] developed a second implementation of the Kleinman-Newton

method, where the Newton step is computed by a Lyapunov equation for the

increment Xk+1 − Xk in the following way

(Xk+1 − Xk)(A − BBT Xk) + (A − BBT Xk)
T (Xk+1 − Xk)

= (Xk − Xk−1)BBT (Xk − Xk−1).
(1.4)

They utilize Chandrasekhar’s method for the computation of a stable initial iter-

ate and introduced the first feedback gain algorithm. [55] presents a comparison

of both Kleinman-Newton versions. Against one’s expectations, the Banks and

Ito method does not represent the matrix formulation of a standard Newton step

F ′(Xk)(Xk+1 − Xk) = −F(Xk).

Here the right side −F(Xk) has been modified due to Taylor expansion and the

quadratic nature of the algebraic Riccati equation, see [41] for details. In addi-

tion, this paper stated a kind of instability of the modified version, which can be

explained and analyzed with help of inexact Newton’s method.

Inexact variants of the Kleinman-Newton method have been published in [22].

Benner and Byers [6] followed by Guo and Laub [36] incorporated line searches in

a Newton procedure. Both modifications of Newton’s method lead to a reduction

in the number of inner iterations.

Multilevel techniques for the solution of the Riccati equation have been proposed
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by Rosen and Wang [64]. The case of a singular Jacobian at the solution has

been analyzed by Guo and Lancaster [35].

Burns, Sachs, and Zietsman [16] give conditions under which the Kleinman-

Newton method is mesh independent. Here the number of iterates remains virtu-

ally constant when the discretization of the underlying optimal control problem

is refined.

Since each step of the Kleinman-Newton method is equivalent to the solution of

a corresponding Lyapunov equation, a matrix equation for S of the type

AS + SAT + W = 0,

where A ∈ Cn×n and W ∈ Cn×n are given matrices, all contributions for itera-

tive Lyapunov solvers are also important in case of Kleinman-Newton methods.

There is a sizeable amount of literature on how to solve Lyapunov equations with

direct solvers and iterative methods. Direct Lyapunov solvers are presented e.g.

in Laub [49], Roberts [62] or Grasedyck [29]. Various iterative solvers can be

found in [70, 74, 59, 60, 50, 51, 31, 75, 69], where parameter selection procedures

play a crucial role, see e.g. [8, 67] and the references therein. [7] provides an

interesting discussion on one state-of-the-art Lyapunov solver, namely the low-

rank Cholesky factor ADI method. An efficient implementation of this method

is provided in the M.E.S.S. (Matrix Equation Sparse Solver) package [9], the suc-

cessor of the LyaPack Matlab Toolbox [58].

In case of linear quadratic regulator (LQR) problems [46, 2, 54, 48] one is not

mainly interested in a solution X∞ of equation (1.1) only the low-dimensional

matrix BT X∞ is of practical importance. Feedback gain algorithms, see e.g.

[3, 7], take advantage of this fact and improve the performance of the existing

algorithms. Until now it has not been considered how those feedback gain algo-

rithms can be applied in an inexact Newton context.

All Newton iterates, defined in (1.2), show a monotone convergence property, i.e.

Xk ≥ Xk+1 for k ≥ 1, which is not common for Newton’s method. A more global

convergence can be stated due to this monotonicity of the iterates. As a result,

the initial iterate does not have to lie in a neighborhood of the solution.

In several other applications Newton’s method shows a similar convergence prop-

erty. Here one could mention nonsymmetric Riccati equation [25], Riccati equa-

tion in stochastic control [76] and a general matrix equation introduced by Damm

and Hinrichsen [19, 18].

These phenomena have been analyzed for Newton’s method e.g. in [56]. In case of

inexact Newton’s methods, the question of monotonicity has not been considered

before.
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1.2 Summary of the thesis

In this thesis we discuss inexact Newton methods in several areas of application

and place special emphasis on a monotone convergence property. Our work is

initiated with an analysis of the applicability of inexact Newton methods in the

context of algebraic Riccati equations [41, 22] and is concluded in a general mono-

tonicity preserving convergence theory for inexact Newton methods. Due to the

monotonicity of the inexact Newton iterates, we are able to state a more global

convergence result.

Kleinman [45] applied Newton’s method to the solution of algebraic Riccati equa-

tions (AREs), already mentioned in (1.1). The goal is to find a symmetric matrix

X ∈ Rn×n with F(X) = 0, where the nonlinear map F : Rn×n → Rn×n is defined

by

F(X) = AT X + XA − XBBT X + CT C.

Kleinman stated a remarkable convergence result in this case. Here the initial

iterate X0 is not required to lie in a neighborhood of the solution, only the

stability of A − BBT X0 is necessary. In addition, a monotone convergence of

the Newton iterates, i.e. Xk ≤ Xk+1 for all k ≥ 1, can be observed and proven.

These characteristics are not common for Newton’s method and depend on the

special structure of the ARE.

For large scale systems, the occurring Newton steps can be solved only with the

help of iterative solvers. We introduce inexact Kleinman-Newton methods, where

an error of size Rk is allowed in the k-th inexact Newton step

F ′(Xk)(Xk+1 − Xk) + F(Xk) = Rk

⇐⇒
Xk+1(A − BBT Xk) + (A − BBT Xk)

T Xk+1 = −XkBBT Xk − CT C + Rk.

Our theory provides stringent guidelines for the termination of the inner itera-

tion, resulting in different rates of local convergence. Depending on the stopping

criterion, restricting the size of ‖Rk‖ in dependence on the actual iterate, the

inexact versions show a linear, superlinear or even quadratic rate of local conver-

gence.

In Figure 1.1 we present some exemplary numerical results to indicate the bene-

fits of the newly developed inexact Kleinman-Newton methods. Here we compare

the number of inner iterations for exact and inexact Kleinman-Newton methods,

required for the solution of an ARE arising in optimal control problems. The

inexact version, providing a superlinear rate of local convergence, computes the

solution with significantly fewer steps within the iterative solver. The possibility

to terminate the inner iteration early as long as the iterates are far away from

the solution leads to a substantial reduction of the numerical effort. We discuss
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Figure 1.1

the convergence properties of the inexact Kleinman-Newton methods for several

examples, taken from linear quadratic regulator (LQR) problems [46].

So-called feedback gain algorithms play an important role in the solution of LQR

problems. Those algorithms calculate the iterates BT Xk, without knowledge of

the original Newton iterates Xk, k ∈ N. The computation of the Newton iterates

can be omitted because the optimal control u∗ of a LQR problem, already defined

in (1.3), can be calculated as long as the matrix BT X∞ is known. Therefore it is

possible to work on the low rank iterates BT Xk, which results in a reduction of

the numerical effort.

In combination with inexact Newton methods, some difficulties are encountered.

In the inexact context, the stopping criteria always require the computation of

F(Xk) and Rk in each Newton step. Both quantities depend on Xk, which is not

known in a feedback gain algorithm and can therefore not be evaluated directly.

We present alternative representation of F(Xk) and Rk, which can be computed

without knowledge of Xk, only information about BT Xk is necessary.

An important feature of the Kleinman-Newton method is a global convergence

result. The initial iterate X0 is chosen, such that A −BBT X0 describes a stable

matrix but the closeness of X0 to the solution is of no importance. In order

to retain Kleinman’s convergence results, including monotonicity and a global

convergence property, also for inexact Kleinman-Newton methods, we have to

impose several conditions on the residual Rk of the k-th inexact Newton step.

There exists two different types of conditions.

One key assumption is the non-negative definiteness of the residuals Rk, k ∈ N.

Since our iterates are computed with an iterative solver, we analyze the most

popular iterative Lyapunov solver with respect to their capability to provide

non-negative definite residuals.

We stated an important result for the ADI (Alternating Implicit Direction)
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method [57, 52], which is also valid for Smith’s method [70] and the low-rank

Cholesky factor ADI method [7]. The choice of the zero matrix as an initial it-

erate for these iterative solver is common practice. In addition, the zero matrix

leads to a non-negative definite residual and if the initial iterate of the inner it-

eration provides a non-negative definite residual then all subsequent iterates will

also contribute non-negative definite residuals.

The other requirements, e.g. Rk ≤ CT C, involve matrix inequalities, which can

be tested during the iteration with an additional numerical effort.

As a result, we are able to state a global convergence property under suitable con-

ditions also for the inexact case. This conclusion is important for many Riccati

solvers. LyaPack [58] and M.E.S.S. [9] utilize among others some inexact stopping

criteria, based an relative changes of the residuals or stagnation techniques. Our

theory indicates, that these algorithms calculate the maximal stabilizing solution

of the ARE, which is the solution of practical interest.

Furthermore, we analyze an alternative implementation of the Kleinman-Newton

method (1.4), introduced by Banks and Ito [3]. Both versions of Newton’s method

for ARE differ quite substantially, e.g. the right side of (1.4) is independent of C

and usually of low numerical rank.

We demonstrate, that inexact Newton methods

(Xk+1 − Xk)(A − BBT Xk) + (A − BBT Xk)
T (Xk+1 − Xk)

= (Xk − Xk−1)BBT (Xk − Xk−1) + Rk.

not can be applied successfully in this case. Nevertheless, our considerations ex-

plain instabilities, which occured in practice [41]. Newton’s method is no longer

self-correcting for this modification of the Kleinman-Newton method and this

version of an implementation should be handled carefully.

Many equations are closely related to the algebraic Riccati equation (1.1), e.g.

nonsymmetric Riccati equation [25], Riccati equation in stochastic control [76]

and a general matrix equation introduced by Damm and Hinrichsen [19, 18].

All these examples show similar convergence properties for Newton’s method

and therefore the application of inexact Newton methods seems very promising.

Instead of introducing inexact Newton methods for each single application, we

develop a general monotonicity preserving convergence theory, which covers all

mentioned examples as special cases.

We establish a sufficient theoretical background to provide conditions on a map-

ping F and the residuals Rk, k ∈ N to secure a monotone convergence of the

inexact Newton iterates. As a result we can state a more global convergence

property as usual.

In a general framework, an inexact Newton step is defined by

F ′(Xk)(Xk+1 − Xk) = −F(Xk) + Rk, (1.5)
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where F : D ⊂ E → F , E and F are Banach spaces, D is an open convex subset

of E.

All convergence results are based on a specific quality of the Banach space E. It

is required, that the monotonicity and boundedness of a sequence {xk}k∈N ∈ EN
induce its convergence. For some spaces this is a trivial fact but not for general

Banach spaces. Here the concept of a regular proper convex cone [73] secures

relation between monotonicity, boundedness and convergence mentioned above.

Of course, the monotonicity of the inexact Newton iterates is also dependent on

the structure of the mapping F . On the one hand, we assume F to be a convex

or concave mapping. On the other hand we require a property of its derivative,

which can be described within the theory of inverse negativity (positivity).

These requirements are restrictive but many important applications fit to this

theory. We show in detail, that nonsymmetric Riccati equation [25] and a general

matrix equation, introduced in [19, 18], can be applied in the newly developed

monotonicity preserving convergence theory. Since this general matrix equation

covers several important equations, e.g. discrete algebraic Riccati equations [48]

and Riccati equation occuring in stochastic control [76], the practical benefits of

our theory is obvious.

In addition, we analyze the Quasilinearization technique, introduced in [4], with

respect to our theory. This method can be interpreted as Newton’s method for

a nonlinear differential operator equation [63]. We apply this idea to parabolic

partial differential equations (PDEs) of the type

ut = uxx + ϕ(u) − f(t, x) ∀(t, x) ∈ QT := (0, T ] × (a, b)

with initial and boundary conditions

u(0, x) = ũ(x) ∀x ∈ Ω := (a, b)

u(t, x) = g(t, x) ∀(t, x) ∈ ΣT := {(t, x)| t ∈ (0, T ], x ∈ {a, b}}.
Here one defines a function

F(u) :=





uxx − ut + ϕ(u) − f(t, x) ∀(t, x) ∈ QT

ũ(x) − u(0, x) ∀x ∈ Ω

g(t, x) − u(t, x) ∀(t, x) ∈ ΣT



 (1.6)

and calculates a solution of F(u) = 0 with Newton’s method, which is also a

solution of the corresponding PDE.

Utilizing the maximum principle and some restrictions on the occuring mappings

ϕ, f, ũ and g, we show that the function F satisfies all requirements of the new

convergence theory for inexact Newton methods. Since Newton’s method can be

rarely realized in infinite dimensional function spaces, see e.g. [21], we restrict

ourselves to the discretized version of the PDE. Nevertheless our considerations

of the infinite dimensional function space indicate the applicability of our theory

and therefore we expect the discretized version to behave likewise.
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1.3 Outline

The contents of the thesis are organized as follows. Chapter 2 analyzes the

applicability of inexact Newton’s methods in the context of algebraic Riccati

equations. Depending on the stopping criteria, we introduce inexact Kleinman-

Newton methods, which provide different rates of local convergence. Kleinman’s

[45] well-known convergence results, including monotonicity and global conver-

gence property, are extended to inexact Newton’s methods. We also study a

second implementation of Newton’s method for algebraic Riccati equations [3]

and explain occurring instabilities.

In chapter 3 we present a review of the most common iterative Lyapunov solvers.

We consider whether those iterative solvers fit the monotonicity preserving con-

vergence theory.

Chapter 4 indicates the benefits of the inexact Kleinman-Newton methods. We

utilize several numerical examples to compare the convergence properties of the

exact Kleinman-Newton method and different inexact versions, with a linear, su-

perlinear or quadratic rate of local convergence. All test examples arise in the

context of optimal control problems, especially in linear quadratic regulator prob-

lems.

In chapter 5 we briefly discuss feedback gain algorithms. In order to introduce

inexact Newton’s methods in this context several difficulties are encountered. We

outline these problems and initiate some ideas to circumvent them.

Chapter 6 introduces a general convergence theory for inexact Newton’s methods.

We outline conditions on the mapping and the residuals of an inexact Newton’s

methods, which secure a monotone and hence more global convergence property.

In addition, in chapter 7 we present several important areas of application of the

new developed theory.

Finally, chapter 8 summarizes the statements of the thesis and gives some closing

remarks.



Chapter 2

Numerical solution of Riccati

equations

A major part of this thesis analyzes the applicability of inexact Newton’s methods

in the context of Riccati equations. In his classical paper, Kleinman [45] applied

Newton’s method to the algebraic Riccati equation

AT X + XA − XBBT X + CT C = 0.

Chapter 2.1 reviews his well known convergence results, including monotonicity

and global convergence.

We introduce inexact Kleinman-Newton methods in section 2.2. Utilizing stan-

dard theorems about inexact Newton’s methods, we are able to state local conver-

gence results. Our theory provides stopping criteria resulting in inexact versions

with a linear, superlinear or even quadratic rate of convergence.

Under suitable conditions on the initial iterate Newton’s method shows a mono-

tone convergence property, which secures a more global convergence as usual. In

the inexact case we have to impose several restrictions on the residuals to re-

store the monotonicity of the iterates and therefore the more global convergence.

These convergence results are summarized in section 2.3.

A second formulation of Newton’s method for the solution of the ARE has been

introduced in the literature, e.g. [3]. In practice, this implementation shows some

unexplainable instabilities [41]. Interpreting this version as an inexact Newton’s

method enables us to understand and analyze the instability. A detailed discus-

sion on this topic is presented in section 2.4.

14
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2.1 Kleinman-Newton method

Several versions of Riccati equations are of practical interest and analyzed in the

literature [48, 54, 76, 19]. We focus at first on algebraic Riccati equations (ARE)

of the type

AT X + XA − XBBT X + CT C = 0 (2.1)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rl×n. Other classes of Riccati equations

are discussed in section 7.1 and section 7.2.

Above algebraic Riccati equation can be written as a nonlinear system of equa-

tions. The goal is to find a symmetric matrix X ∈ Rn×n with F(X) = 0, where

the map F : Rn×n → Rn×n is defined by

F(X) = AT X + XA − XBBT X + CT C. (2.2)

If one applies Newton’s method to this system, one has to compute the derivative

at X, symmetric, given by

F ′(X)(Y ) = AT Y + Y A − Y BBT X − XBBT Y

= (A − BBT X)TY + Y (A − BBT X) ∀ Y ∈ Rn×n.

In Newton’s method, the next iterate is obtained by solving the Newton system

F ′(Xk)(Xk+1 − Xk) = −F(Xk) (2.3)

which can be also written in an alternative version

F ′(Xk)Xk+1 = F ′(Xk)Xk −F(Xk). (2.4)

For the Riccati equation the computation of a Newton step requires the solution

of a Lyapunov equation. Corresponding to (2.4) we obtain

Xk+1(A − BBT Xk) + (A − BBT Xk)
T Xk+1 = −XkBBT Xk − CT C, (2.5)

which is a Lyapunov equation for Xk+1.

This method is well understood and analyzed. It does not only exhibit locally a

quadratic rate of convergence, but shows also a monotone convergence property,

which is not so common for Newton’s method and which is due to the quadratic

form of F and the monotonicity of F ′. For this to hold, we impose the following

definition and assumptions:

Definition 2.1.1. Let A ∈ Rn×n, B ∈ Rn×m and C ∈ Rl×n. A pair (A, BBT ) is

called stabilizable if there is a feedback matrix K ∈ Rn×n such that A − BBT K

is stable, which means that A − BBT K has only eigenvalues in the open left

half-plane. (CT C, A) is called detectable if and only if (AT , CTC) is stabilizable.
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In the following sections we need the assumption:

Assumption 2.1.2. (A, BBT ) is stabilizable and (CT C, A) is detectable.

Note that by [48, Lemma 4.5.4] the first assumption implies the existence of a

matrix X0 such that A − BBT X0 is stable.

As a common abbreviation we set

Ak := (A − BBT Xk), k ∈ N0. (2.6)

In addition, we introduce a partial ordering on Rn×n and A ≤ B means that the

matrix A − B is negative semidefinite.

The next theorem is well known, see e.g. Kleinman [45], Mehrmann [54] or

Lancaster and Rodman [48].

Theorem 2.1.3. Let X0 ∈ Rn×n be symmetric and non-negative definite such

that A − BBT X0 is stable and let Assumption 2.1.2 hold. Then the Newton

iterates Xk defined by

Xk+1Ak + AT
k Xk+1 = −XkBBT Xk − CT C

converge to some X∞ such that A − BBT X∞ is stable and it solves the Riccati

equation F(X∞) = 0. Furthermore the iterates have a monotone convergence

behavior

0 ≤ X∞ ≤ ... ≤ Xk+1 ≤ Xk ≤ ... ≤ X1

and quadratic convergence.

Kleinman was the first who applied Newton’s method in the context of Riccati

equation, utilizing equation (2.5) for the solution of each Newton step. There-

fore we call this version Kleinman-Newton algorithm, which can be presented as

follows:

Algorithm 1 Kleinman-Newton method

Require: X0 ∈ Rn×n symmetric and non-negative definite with A − BBT X0

stable

for k=0,1,2,... do

Determine a solution Xk+1 of

Xk+1(A − BBT Xk) + (A − BBT Xk)
TXk+1 = −XkBBT Xk − CT C

end for
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2.2 Inexact Kleinman-Newton methods

In the past decade, a variant of Newton’s method has become quite popular in

several areas of applications, the so called inexact Newton’s method. In this

variant, it is no longer necessary to solve the Newton equation exactly for the

Newton step, but it is possible to allow for errors in the residual. In particular,

this is useful if iterative solvers are used for the solution of the linear Newton

equation. We cite a theorem in Kelley [44, p. 99].

Theorem 2.2.1. Let F : RN → RN have a Lipschitz-continuous derivative in

a neighborhood of some x∞ ∈ RN with F (x∞) = 0 and F ′(x∞) invertible. Then

there exist δ > 0 and η̄ such that for all x0 ∈ B(x∞, δ) the inexact Newton iterates

xk+1 = xk + sk

where sk satisfies

‖F ′(xk)sk + F (xk)‖ ≤ ηk‖F (xk)‖, ηk ∈ [0, η̄]

converge to x∞. Furthermore we have the following rate estimates:

The rate of convergence is at least linear. If, in addition, ηk → 0, then we obtain

a superlinear rate and if ηk ≤ Kη‖F (xk)‖ for some Kη > 0, then we have a

quadratic rate of convergence.

Our goal is to analyze, how we can apply the last theorem to the Riccati equation

and extend the convergence Theorem 2.1.3 to an inexact Newton’s method. This

seems to be promising, especially for this application, since in many cases the re-

sulting linear Newton equations are Lyapunov equations which are usually solved

iteratively by Smith method or different variants of the ADI method. Some of

the results in this section have been already published in [22].

Here we introduce for Riccati equations the inexact Kleinman-Newton method

in the context presented in chapter 2.1. Formally, the new iterate is determined

by solving

F ′(Xk)(Xk+1 − Xk) + F(Xk) = Rk (2.7)

for Xk+1. This can be written more explicitly as a solution of Xk+1

Xk+1Ak + AT
k Xk+1 = −XkBBT Xk − CT C + Rk. (2.8)

Hence a residual of size Rk is allowed in the k-th Newton step. We summarize

the algorithm proposed:
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Algorithm 2 Inexact Kleinman-Newton method

Choose X0 ∈ Rn×n

for k=0,1,2,... do

Determine a solution Xk+1 of

Xk+1(A − BBT Xk) + (A − BBT Xk)
TXk+1 = −XkBBT Xk − CT C + Rk

end for

Before we come to several convergence properties, we recall an existence and

uniqueness theorem for Lyapunov equations, which need to be solved at each

step of the algorithm.

Theorem 2.2.2. If A ∈ Rn×n is stable, then for each Z ∈ Rn×n the Lyapunov

equation

AT Y + Y A − Z = 0

is uniquely solvable and its solution is given by

Y = −
∫ ∞

0

eAT tZeAtdt.

Proof. For a proof see [48, Theorem 8.5.1].

We can formulate local convergence properties for Algorithm 2 by applying a

standard theorem about inexact Newton’s methods, e.g. Theorem 2.2.1.

Theorem 2.2.3. Let X∞ ∈ Rn×n be a symmetric solution of (1.1) such that

A − BBT X∞ is stable. Then there exist δ > 0 and η̄ > 0 such that for all

starting values X0 ∈ Rn×n with ‖X0 − X∞‖ ≤ δ the iterates Xk of the inexact

Kleinman-Newton Algorithm converge to X∞, if the residuals Rk satisfy

‖Rk‖ ≤ ηk‖F(Xk)‖ = ηk‖AT Xk + XkA − XkBBT Xk + CT C‖. (2.9)

The rate of convergence is linear if ηk ∈ (0, η̄], it is superlinear if ηk → 0 and

quadratic, if ηk ≤ Kη‖F(Xk)‖ for some Kη > 0.

Proof. We apply Theorem 2.2.1 to the equation F(X) = AT X+XA−XBBT X+

CT C = 0. This map is differentiable and has a Lipschitz continuous derivative.

Since A−BBT X∞ is assumed to be stable, F ′(X∞)Y = 0 implies Y = 0 by The-

orem 2.2.2, and hence F ′(X∞) is an invertible linear map. Since all assumptions

in Theorem 2.2.1 hold, the conclusions can be applied and yield the statements

in the theorem.

Above theorem provides stopping criteria for the inexact Kleinman-Newton

method (Algorithm 2). The solution of the inner iteration, computed by an iter-

ative Lyapunov solver (chapter 3), can be terminated early, resulting in inexact

versions with a linear, superlinear or quadratic rate of convergence.
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2.3 Monotonicity results

An interesting fact about the Kleinman-Newton method is that the iterates ex-

hibit monotonicity and a global convergence property, once the initial iterate is

such that A0 is stable. Theorem 1 testifies the monotonicity Xk+1 ≤ Xk for all

k ≥ 1 but the relation between the initial iterate X0 and X1 can not be stated

beforehand.

These properties are not common for Newton methods and depend on applica-

tions of the convexity and monotonicity results. For the inexact version, these

identities are perturbed and those results are much harder to obtain. In order to

retain the monotonicity of the iterates, we have to impose certain conditions on

the residuals.

Let us summarize at first a few monotonicity properties for the Lyapunov oper-

ators.

Theorem 2.3.1. The map F is concave in following sense:

F ′(X)(Y − X) ≥ F(Y ) −F(X) for all symmetric X, Y ∈ Rn×n (2.10)

Proof. The proof follows directly with the Taylor expansion of the quadratic

Riccati equation

F(Y ) = F(X) + F ′(X)(Y − X) +
1

2
F ′′(X)(Y − X, Y − X) (2.11)

where the quadratic term

1

2
F ′′(Z)(W, W ) = −WBBT W ≤ 0 (2.12)

is independent of Z and negative semidefinite.

Theorem 2.3.2. Let A − BBT X be stable. Then

Z = F ′(X)(Y ) ⇐⇒ Y = −
∫ ∞

0

e(A−BBT X)T tZe(A−BBT X)tdt (2.13)

and hence F ′(X)(Y ) ≥ 0 implies Y ≤ 0.

Proof. We have

Z = F ′(X)(Y ) = (A − BBT X)T Y + Y (A − BBT X).

Since (A − BBT X) is stable, Theorem 2.2.2 yields the result.

The next theorem shows that we can weaken the condition on the starting point

and that the inexact Kleinman-Newton iteration is still well defined.
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Theorem 2.3.3. Let Xk be symmetric and non-negative definite such that A −
BBT Xk is stable and

Rk ≤ CT C (2.14)

hold. Then

i) the iterate Xk+1 of the inexact Kleinman-Newton method is well defined,

symmetric and non-negative definite,

ii) and the matrix A − BBT Xk+1 is stable.

Proof. The inexact Newton step (2.7) is given by the solution of a Lyapunov

equation

Xk+1Ak + AT
k Xk+1 = −XkBBT Xk − CT C + Rk.

Since Ak is stable the unique solution Xk+1 exists and is symmetric by Theorem

2.2.2. Furthermore requirement (2.14) leads to

Xk+1A
T
k + AkXk+1 ≤ 0

and Theorem 2.3.2 implies Xk+1 ≥ 0. Equation (2.8) is equivalent to

AT
k+1Xk+1 + Xk+1Ak+1 = − CT C − Xk+1BBT Xk+1 (2.15)

− (Xk+1 − Xk)BBT (Xk+1 − Xk) + Rk =: W.

We define W as the right side of (2.15).

Let us assume Ak+1x = λx for λ with Re(λ) ≥ 0 and x 6= 0. Then (2.15) implies

(λ̄ + λ)x̄T Xk+1x = x̄T AT
k+1Xk+1x + x̄T Xk+1Ak+1x = x̄T Wx.

On the one hand, the definition of W combined with requirement (2.14) leads to

W ≤ 0. On the other hand, Xk+1 ≥ 0 implies x̄T Wx = 0. Using the definition

of W and a similar argument as before again, we obtain

x̄T (Xk+1 − Xk)BBT (Xk+1 − Xk)x = 0. (2.16)

But BBT ≥ 0, so BBT (Xk+1 − Xk)x = 0 and hence

Ak+1x = Akx = λx,

contradicting the stability of Ak. Hence Ak+1 is also stable.
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The requirements on the residuals can be weakened, e.g.

Rk ≤ CT C + XjBBT Xj j = k, k + 1 ∀k ∈ N (2.17)

will also admit the previous proof.

In the following theorem we show under which requirements on the residuals

Rk, k ∈ N the monotonicity of the iterates Xk can be preserved also for the

inexact Kleinman-Newton method.

Theorem 2.3.4. Let Assumption 2.1.2 be satisfied and let X0, symmetric and

positive semi-definite, be such that A0 is stable. Assume that (2.14) and

0 ≤ Rk ≤ (Xk+1 − Xk)BBT (Xk+1 − Xk) (2.18)

hold for all k ∈ N. Then the iterates (2.8) satisfy

i) lim
k→∞

Xk = X∞ and 0 ≤ X∞ ≤ ... ≤ Xk+1 ≤ Xk ≤ ... ≤ X1,

ii) (A − BBT X∞) is stable and X∞ is the maximal solution of F(X∞) = 0,

iii) ‖Xk+1 − X∞‖ ≤ c‖Xk − X∞‖2, k ∈ N.

Proof. Using the definition of an inexact Newton step and (2.11)

Rk = F ′(Xk)(Xk+1 − Xk) + F(Xk)

= F(Xk+1) + (Xk+1 − Xk)BBT (Xk+1 − Xk).

This can be inserted into the next Newton step

F ′(Xk+1)(Xk+2 − Xk+1) = −F(Xk+1) + Rk+1

= Rk+1 − Rk + (Xk+1 − Xk)BBT (Xk+1 − Xk) ≥ Rk+1 ≥ 0

by assumption (2.18). Then from Theorem 2.3.2 we can infer

Xk+2 − Xk+1 ≤ 0, k = 0, 1, 2, ...

Therefore (Xk)k∈N is a monotone sequence of symmetric and non-negative definite

matrices and Xk ≥ 0 due to Theorem 2.3.3. Hence it is convergent to some

symmetric and non-negative definite limit matrix

lim
k→∞

Xk = X∞.

Passing to the limit in (2.7) and (2.18) we deduce that X∞ satisfies the Riccati

equation, X∞ ≤ Xk and F(X∞) = 0.

We show that X∞ is the maximal symmetric solution of the Riccati equation
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(1.1), which means X∞ ≥ X for every symmetric solution X of (1.1). For this

to hold we assume that X is a symmetric solution of the Riccati equation. Then

Theorem 2.3.1 and (2.11) imply

F ′(Xk)(X − Xk) ≥ −F(Xk) = −F(Xk−1) −F ′(Xk−1)(Xk − Xk−1)−

− 1

2
F ′′(Xk−1)(Xk − Xk−1, Xk − Xk−1) ≥ −Rk−1.

Therefore, there exists Qk ≥ 0 with

F ′(Xk)(X − Xk) = Qk − Rk−1

and since Ak is stable Theorem 2.2.2 implies

X − Xk = −
∫ ∞

0

eAT
k

t(Qk − Rk−1)e
Aktdt ≤

∫ ∞

0

eAT
k

tRk−1e
Aktdt. (2.19)

Passing to the limits leads to the desired result

X − X∞ ≤ 0

and X∞ is the maximal solution. We can deduce from [48, Theorem 9.1.2] that

the matrix A − BBT X∞ is stable.

To prove the quadratic rate of convergence we use the inexact Newton step

F ′(Xk)(Xk+1 − Xk) + F(Xk) − Rk = 0

and rewrite it using (2.11)

F ′(X∞)(Xk+1 − X∞) = F ′(X∞)(Xk+1 − X∞) − F(Xk+1) + F(X∞)

−( F ′(Xk)(Xk+1 − Xk) − F(Xk+1) + F(Xk)) + Rk

= (Xk+1 − X∞)BBT (Xk+1 − X∞)

−(Xk+1 − Xk)BBT (Xk+1 − Xk) + Rk.

Since A∞ := (A − BBT X∞) is stable, Theorem 2.3.2 shows

Xk+1 − X∞ =
∫ ∞
0

eAT
∞

t{−(Xk+1 − X∞)BBT (Xk+1 − X∞)

+(Xk+1 − Xk)BBT (Xk+1 − Xk) − Rk}eA∞t dt

≤
∫ ∞
0

eAT
∞

t((Xk+1 − Xk)BBT (Xk+1 − Xk))e
A∞t dt.

(2.20)

Note, that for all symmetric and non-negative matrices A, B ∈ Rn×n, A ≤ B

implies ‖A‖2 ≤ ‖B‖2, due to

λmax(A) = max
‖x‖2=1

x̄T Ax

x̄T x
=

x̄T
∗ Ax∗
x̄T
∗ x∗

≤ x̄T
∗ Bx∗
x̄T
∗ x∗

≤ max
‖x‖2=1

x̄T Bx

x̄T x
= λmax(B).
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Taking norms in (2.20) we obtain due to the stability of A∞

‖Xk+1 − X∞‖2 ≤ ‖Xk+1 − Xk‖2
2‖BBT‖

∫ ∞
0

‖eA∞t‖‖eAT
∞

t‖ dt

≤ c‖Xk+1 − Xk‖2
2

(2.21)

and using the monotonicity of the iterates

0 ≤ Xk − Xk+1 ≤ Xk − X∞ ⇒ ‖Xk − Xk+1‖2 ≤ ‖Xk − X∞‖2 (2.22)

and therefore

‖Xk+1 − X∞‖2 ≤ c‖Xk − X∞‖2
2

which implies quadratic convergence in any matrix norm.

Theorem 2.3.4 together with Theorem 2.3.3 provides a sufficient theoretical back-

ground to obtain monotone iterates Xk ≥ Xk+1, k ≥ 1 also for inexact Kleinman-

Newton methods. In addition, the initial iterate X0 does not have to be close to

the solution, only the stability of the matrix A−BBT X0 plays a crucial role. In

summary, we were able to extend the well-known convergence results of Kleinman

(Theorem 2.1.3) by introducing additional requirements on the residuals of the

Newton steps.

We impose several requirements on the residuals in Theorem 2.3.3 and Theorem

2.3.4. Some of them restrict the size of Rk in dependence on the step, see (2.18)

and (2.14), others assume the non-negative definiteness, i.e. Rk ≥ 0, k ∈ N.

The latter assumption is a condition, which the iterative Lyapunov solver has to

satisfy, like Smith method or variants of the ADI method. Since this condition is

an essential part of our theory, we consider the question whether these iterative

solvers provide non-negative definite residuals in section 3.5.

The other assumption on the size of the residuals e.g. in (2.18) depends on the

quantity Xk+1, which has to be computed by the iterative procedure. However,

the inequality involved can be tested as the iteration for Xk+1 progresses. Of

course, the verification of a requirement such as Rk ≤ CT C involves a significant

numerical effort.

2.4 Robustness

Let us note that a second implementation of Newton’s method for the solution of

the algebraic Riccati equation (1.1) is presented in the literature, e.g. [3], [55]. In

practice, this version shows some instabilities which have not been yet explained

in a satisfactory theoretical manners. The convergence theory for inexact New-

ton’s methods enables us to understand and analyze these phenomena, see also
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[41] for a discussion on this topic.

Banks and Ito [3] introduced an alternative implementation, where the Newton

step is computed by a Lyapunov equation for the increment Xk+1 − Xk in the

following way

(Xk+1 − Xk)(A − BBT Xk) + (A − BBT Xk)
T (Xk+1 − Xk)

= (Xk − Xk−1)BBT (Xk − Xk−1).
(2.23)

Against one espectations this Lyapunov equation does not represent the matrix

notation of the Newton step

F ′(Xk)(Xk+1 − Xk) = −F(Xk). (2.24)

In order to establish the iteration (2.23) one significant modification is necessary.

This variation is based on an identity due to the quadratic nature of the algebraic

Riccati equation:

F(Y ) = F(X) + F ′(X)(Y − X) +
1

2
F ′′(X)(Y − X, Y − X) (2.25)

with the quadratic term

1

2
F ′′(Z)(W, W ) = −WBBT W.

If we use (2.25) for Newton’s method, we obtain

F ′(Xk)(Xk+1 − Xk) = −F(Xk)

= −F(Xk−1) − F ′(Xk−1)(Xk − Xk−1) − 1
2
F ′′(Xk−1)(Xk − Xk−1, Xk − Xk−1)

= −1
2
F ′′(Xk−1)(Xk − Xk−1, Xk − Xk−1)

(2.26)

where the Newton step for the previous iterate Xk was exploited for the last

equality. Now we can identify the right hand side of the alternative version

(2.23) with the matrix notation of

−1

2
F ′′(Xk−1)(Xk − Xk−1, Xk − Xk−1).

Hence the Newton step can be alternatively computed by a Lyapunov equation

for its increment Xk+1 − Xk in the following way

(Xk+1 − Xk)(A − BBT Xk) + (A − BBT Xk)
T (Xk+1 − Xk)

= (Xk − Xk−1)BBT (Xk − Xk−1),
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in contrast to the Newton step (2.5) of the standard Kleinman-Newton method

(Algorithm 1)

Xk+1(A − BBT Xk) + (A − BBT Xk)
T Xk+1 = −XkBBT Xk − CT C.

Note that the inhomogeneous terms in the Lyapunov equations for both variants

of Newton’s method differ quite substantially. In (2.5) the right hand side is

−(XkBBT Xk + CT C)

whereas in (2.23) we have

(Xk − Xk−1)BBT (Xk − Xk−1),

which e.g. does not depend on C.

The authors of [3] pointed out that the second version exhibit some advantages

compared to the standard implementation. Since B is often a low rank matrix,

the right side

(Xk − Xk−1)BBT (Xk − Xk−1),

is of low numerical rank, independent of the matrix C. Therefore an efficient

low-rank Cholesky ADI method (Algorithm 14) can always be applied to these

Lyapunov equations. Another advantage is the possibility to develop a feedback

gain algorithm with the help of this second implementation, see chapter 5 for

details.

This second implementation can be outlined as follows:

Algorithm 3 Kleinman-Newton method (Version 2)

Require: X0, X1 ∈ Rn×n

for k=1,2,... do

Determine a solution 4Xk of

4Xk(A−BBT Xk) + (A−BBT Xk)
T 4Xk = (Xk −Xk−1)BBT (Xk −Xk−1)

Set Xk+1 = Xk + 4Xk

end for

Note, for the initialization of Algorithm 3 two stable initial iterates X0 and X1

are necessary, whereas the standard implementation only requires X0. Usually

the second initial iterate X1 is determined via one step of the classical Kleinman-

Newton algorithm (Algorithm 2).

We can show the precise statement for the equivalence of both versions in case

of exact Newton’s method with the following Lemma:
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Lemma 2.4.1. If a sequence Xk satisfies (2.5), then it also fulfills (2.23). If,

conversely, a sequence Xk satisfies (2.23), then it also fulfills (2.5), provided the

starting points X0, X1 satisfy (2.5) for k = 0.

Proof. The first conclusion was shown in (2.26) since the iterates Xk of the stan-

dard implementation, defined in (2.5), obviously satisfy the Newton equation.

For the reverse to hold we use (2.26) and (2.25) and obtain

F ′(Xk+1)(Xk+2 − Xk+1) = −1
2
F ′′(Xk)(Xk+1 − Xk, Xk+1 − Xk)

= −F(Xk+1) + F(Xk) + F ′(Xk)(Xk+1 − Xk)

and hence

F(Xk+1) + F ′(Xk+1)(Xk+2 − Xk+1) = F(Xk) + F ′(Xk)(Xk+1 − Xk)

for all k ≥ 0. Since it is assumed that for the starting iterates

F(X0) + F ′(X0)(X1 − X0) = 0, (2.27)

the Xk also satisfy the Newton equation and therefore (2.5) holds.

While Lemma 2.4.1 proves that both methods are identical for the exact case

if the first iterates are chosen appropriately, this does not hold anymore in the

inexact case.

Let us first state the inexact variant:

Algorithm 4 Inexact Kleinman-Newton method (Version 2)

Choose X0, X1 satisfying (2.27)

for k=1,2,... do

Determine a solution 4Xk

which solves the Lyapunov equation up to a residual R̃k

4Xk(A−BBT Xk)+(A−BBT Xk)
T4Xk = (Xk−Xk−1)BBT (Xk−Xk−1)+R̃k

Set Xk+1 = Xk + 4Xk

end for

In order to state a convergence result for this implementation, we have to refor-

mulate the steps in Algorithm 4.

Using the formulation with F and (2.26), the Newton step can be rewritten as:

F ′(Xk)(Xk+1 − Xk) = −1
2
F ′′(Xk−1)(Xk − Xk−1, Xk − Xk−1) + R̃k

= F(Xk−1) + F ′(Xk−1)(Xk − Xk−1) − F(Xk) + R̃k
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or equivalently

F ′(Xk)(Xk+1 − Xk) + F(Xk) = F ′(Xk−1)(Xk − Xk−1) + F(Xk−1) + R̃k.

Using this recursively yields

F ′(Xk)(Xk+1 − Xk) + F(Xk) =

k∑

i=1

R̃i.

According to the convergence theory of inexact Newton’s methods (e.g. Theorem

2.2.1) one would have to bound Rk =
k∑

i=1

R̃i (if X1 is computed by an exact

Newton step), which seems to be a rather strong assumption.

It is important to notice that the residuals are accumulatory. The second version

therefore exhibits a kind of instability and is no longer self-correcting. This

implies that it is nearly impossible to develop an inexact version based on the

second implementation.

The inapplicability of the second implementation raises some difficulties in the

context of feedback gain algorithms because several feedback gain algorithms are

built with this formulation, e.g. [3], [55]. We present some ideas to circumvent

these problems in chapter 5.



Chapter 3

Iterative methods for Lyapunov

equations

As shown in chapter 2, each step of the Kleinman-Newton method is equivalent

to the solution of a corresponding Lyapunov equation. Recall that at Newton

iteration step k the following equation needs to be solved for X = Xk+1

XAk + AT
k X + Sk = 0 (3.1)

with a stable matrix Ak

Ak = A − BBT Xk ∈ Rn×n, Sk = XkBBT Xk + CT C.

There is a sizeable amount of literature on how to solve Lyapunov equations with

direct solvers and iterative methods.

In the inexact context we do not address direct Lyapunov solvers as presented

e.g. in Laub [49], Roberts [62] or Grasedyck [29].

We concentrate on several iterative methods, which are especially important for

large scale Lyapunov equations. The inexact Newton’s method allows for early

termination of these iterations, because the convergence criterion is not so strin-

gent far away from the solution.

In the next section we review Smith method. Chapter 3.2 summarizes the ADI

method for Riccati equations. Different modifications of Smith method are pre-

sented in the literature and outlined in section 3.3. Smith method and the ADI

method are the basis of so called low-rank algorithms, which are nowadays state-

of-the-art and are presented in chapter 3.4.

For the monotonicity preserving convergence theory, presented in section 2.3, the

non-negative definiteness of the residuals, provided by an iterate of the Lyapunov

solver, is essential. The question, whether the above mentioned iterative solvers

fit to this assumption, is answered in the main section 3.5 of this chapter.

28
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3.1 Smith method

One of the first iterative methods to solve Lyapunov equations was developed by

Smith [70]. It is based on the fact that the solution of a Lyapunov equation is

equivalent to the solution of a corresponding Stein’s equation. Several modifi-

cations and generalizations of Smith method are presented in the literature and

reviewed in chapter 3.3.

We slightly modify the Lyapunov equation of the Newton step (3.1) by intro-

ducing a factorization of the right side Sk using a matrix Dk :=

[
BT Xk

C

]

∈R(l+m)×n. Now we are able to rewrite Sk = DT
k Dk, which will be useful in the

next sections.

In the following we motivate Smith method [70] to solve

XAk + AT
k X + DT

k Dk = 0 (3.2)

for X = Xk+1. Note that this equation is equivalent to a Stein’s equation:

Lemma 3.1.1. Given any µ ∈ R− := {x ∈ R| x < 0}, then a solution X of

the Lyapunov equation (3.2) is also a solution of Stein’s equation and vice versa.

Stein’s equation is given by

X = AT
k,µXAk,µ + Sk,µ (3.3)

with

Ak,µ = (Ak − µI)(Ak + µI)−1, Sk,µ = −2µ(AT
k + µI)−1DT

k Dk(Ak + µI)−1.

Proof. Note that (3.2) is equivalent to

(AT
k + µI)X(Ak + µI) − (AT

k − µI)X(Ak − µI) = −2µDT
k Dk

and from this (3.3) follows. Since Ak is assumed to be stable, all eigenvalues of

Ak + µI have negative real parts for any µ ∈ R−, which secures the existence of

(Ak + µI)−1.

The resulting algorithm to solve equation (3.3) and therefore (3.2) is a fixpoint

iteration for (3.3) and can be presented as follows:

Algorithm 5 Smith method

Require: Xk+1,0 = 0 ∈ Rn×n, shift parameter µ ∈ R−

Define: Ak,µ = (Ak−µI)(Ak+µI)−1,Sk,µ = −2µ(AT
k +µI)−1DT

k Dk(Ak+µI)−1

for i=1,2,... do

Xk+1,i = AT
k,µXk+1,i−1Ak,µ + Sk,µ

end for
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Note, that the iterates to determine Xk+1 are called Xk+1,i, i ∈ N0.

The convergence of this method is stated in the next theorem.

Theorem 3.1.2. Let µ ∈ R− then Stein’s equation X = AT
k,µXAk,µ + Sk,µ has a

solution

X =
∞∑

j=0

(AT
k,µ)

jSk,µA
j
k,µ = lim

i→∞
Xk+1,i. (3.4)

If Sk,µ is symmetric, X is also symmetric. If Sk,µ ≥ 0, then X ≥ Sk,µ.

Proof. This can be proved by showing that there exists X such that iterates

Xk+1,i :=
i−1∑

j=0

(AT
k,µ)

jSk,µA
j
k,µ −→

i→∞
X (3.5)

due to ρ(Ak,µ) = max
λ∈σ(Ak)

|λ−µ

λ+µ
| < 1 for every µ ∈ R−. X solves Stein’s equation

because

AT
k,µXk+1,iAk,µ =

i−1∑

j=0

AT
k,µ(A

T
k,µ)

jSk,µA
j
k,µAk,µ (3.6)

=

i∑

j=1

(AT
k,µ)

jSk,µA
j
k,µ = Xk+1,i+1 − Sk,µ.

Taking the limit for i → ∞ yields the result. The definition of Xk+1,i together

with the non-negative definiteness of Sk,µ leads to the conclusion X ≥ Sk,µ.

The convergence behavior of the algorithm proposed depends on the choice of the

underlying shift parameter. There exits a huge amount of parameter selection

methods because this problem is also important for the ADI method presented

in chapter 3.2. An extensive overview of existing parameter selection methods

can be found in [8] or [67] and the references therein.

3.2 ADI method

Peaceman and Rachford [57] introduced the ADI (Alternating Direction Implicit)

method to solve a special kind of linear systems arising from the discretization

of elliptic boundary value problems. It is also possible to apply this method to

the solution of Lyapunov equations, which has been shown by Wachspress [52].

There exist two versions of the ADI method. At first we review a formulation
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which is build with two steps. In order to compare the ADI method with Smith

method, we reformulate the ADI method into an one step version.

The ADI algorithm to solve Lyapunov equation (3.2), as presented in [59], can

be outlined:

Algorithm 6 ADI method (two steps)

Choose Xk+1,0 ∈ Rn×n, set of shift parameter µi ∈ R−, i ∈ N
for i=1,2,... do

(AT
k + µiI)Xk+1,i− 1

2

= −DT
k Dk − Xk+1,i−1(Ak − µiI)

(AT
k + µiI)XT

k+1,i = −DT
k Dk − XT

k+1,i− 1

2

(Ak − µiI)

end for

This method is closely related to Smith method, because it is possible to combine

both steps of Algorithm 6.

Lemma 3.2.1. The two step iteration loop of the ADI method (Algorithm 6)

(AT
k + µiI)Xk+1,i− 1

2

= −DT
k Dk − Xk+1,i−1(Ak − µiI)

(AT
k + µiI)XT

k+1,i = −DT
k Dk − XT

k+1,i− 1

2

(Ak − µiI)

can be restated in an equivalent one step version

Xk+1,i = AT
k,µi

Xk+1,i−1Ak,µi
+ Sk,µi

.

Proof. In order to develop an one step version, we have to reformulate the first

step of Algorithm 6

Xk+1,i− 1

2

= (AT
k + µiI)−1(−DT

k Dk − Xk+1,i−1(Ak − µiI))

and insert Xk+1,i− 1

2

into the next step:

=⇒ XT
k+1,i = −(AT

k + µiI)−1DT
k Dk+

(AT
k + µiI)−1DT

k Dk(Ak + µiI)−1(Ak − µiI)+

(AT
k + µiI)−1(AT

k − µiI)XT
k+1,i−1(Ak + µiI)−1(Ak − µiI)

⇐⇒ XT
k+1,i = (AT

k + µiI)−1DT
k Dk(−I + (Ak + µiI)−1(Ak − µiI))+

(AT
k + µiI)−1(AT

k − µiI)XT
k+1,i−1(Ak + µiI)−1(Ak − µiI).

Transposing and substituting I = (Ak + µiI)−1(Ak + µiI) leads to

⇐⇒ Xk+1,i = −2µi(A
T
k + µiI)−1DT

k Dk(Ak + µiI)−1+

(AT
k − µiI)(AT

k + µiI)−1Xk+1,i−1 (Ak − µiI)(Ak + µiI)−1

︸ ︷︷ ︸

=:Ak,µi

.
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Finally we have to realize that

(AT
k − µiI)(AT

k + µiI)−1 !
= AT

k,µi

which can be verified due to

(AT
k − µiI)(AT

k + µiI)−1 !
= AT

k,µi
= (AT

k + µiI)−1(AT
k − µiI)

⇐⇒ (AT
k + µiI)(AT

k − µiI) = (AT
k − µiI)(AT

k + µiI)

⇐⇒ 0 = 0.

Now we are able to rewrite the ADI method in a one step version

Xk+1,i = AT
k,µi

Xk+1,i−1Ak,µi
−2µi(A

T
k + µiI)−1DT

k Dk(Ak + µiI)−1

⇐⇒
Xk+1,i = AT

k,µi
Xk+1,i−1Ak,µi

+ Sk,µi

with

Ak,µi
= (Ak − µiI)(Ak + µiI)−1, Sk,µi

= −2µi(A
T
k + µiI)−1DT

k Dk(Ak + µiI)−1.

This one step version can be stated:

Algorithm 7 ADI method (one step)

Choose Xk+1,0 ∈ Rn×n, set of shift parameter µi ∈ R−, i ∈ N
for i=1,2,... do

Ak,µi
= (Ak−µiI)(Ak+µiI)−1, Sk,µi

= −2µi(A
T
k +µiI)−1DT

k Dk(Ak+µiI)−1

Xk+1,i = AT
k,µi

Xk+1,i−1Ak,µi
+ Sk,µi

end for

The relation to Smith method, presented in Algorithm 5, becomes now clear.

Both iteration loops are identical except of the used shift parameters. ADI

method utilizes different shift parameters µi, i ∈ N for each step in contrast to

Smith method where the same parameter µ is used for all iterations.

Obviously, the convergence of the proposed algorithm is crucially dependent on

the applied set of shift parameters. If the parameter are chosen appropriately

the convergence rate of the ADI method will be superlinear. The authors of [8]

and [67] present an interesting discussion on parameter selection methods.

These parameter selection procedures have an enormous numerical effort in

common. Here one should always consider the relation to the computing time
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of the needed ADI iterations and the improvements gained due to better shift

parameters.

In order to reduce this effort it is often common practice to determine only a

finite set of shift parameter µ̃1, ..., µ̃s, which are used in a cyclic manner, i.e.

µi+b j

s
cs = µ̃i for i = j mod s and j ∈ N, µ̃0 := µ̃s. This version of the ADI

method is called cyclic ADI method:

Algorithm 8 Cyclic ADI method

Choose Xk+1,0 ∈ Rn×n, finite set of shift parameter µ̃1, ..., µ̃s ∈ R−

Define µi+js = µ̃i for i = 1, ..., s and j = 0, 1, ....

for i=1,2,... do

Ak,µi
= (Ak−µiI)(Ak+µiI)−1, Sk,µi

= −2µi(A
T
k +µiI)−1DT

k Dk(Ak+µiI)−1

Xk+1,i = AT
k,µi

Xk+1,i−1Ak,µi
+ Sk,µi

end for

An implementation of the cyclic ADI method based on two steps can be easily

obtained analogous to the one step variant, mentioned above.

3.3 Modifications of Smith method

Several modifications of Smith method have been introduced. We present briefly

two established methods, the squared Smith method [70] and the cyclic Smith

method [59]. A third modification [3], which is not well known, will be discussed

in detail.

One Algorithm, the squared Smith method, has been developed by Smith himself,

for details see [70], [60]. In this method only a subsequence {Xk+1,2i}∞i=0 of the

original Smith iterates Xk+1,i, i ∈ N is determined:

Algorithm 9 Squared Smith method

Require: Xk+1,0 = 0 ∈ Rn×n, shift parameter µ ∈ R−

Define: Ak,µ = (Ak−µI)(Ak+µI)−1,Sk,µ = −2µ(AT
k +µI)−1DT

k Dk(Ak+µI)−1

Xk+1,20 = Sk,µ

for i=0,1,... do

Xk+1,2i+1 = Xk+1,2i + (A2i

k,µ)
T Xk+1,2iA2i

k,µ

end for

The iteration loop of the squared version is based on the structure of the iter-

ates of Smith method (3.5). For an efficient implementation an economic update



CHAPTER 3. ITERATIVE METHODS FOR LYAPUNOV EQUATIONS 34

scheme for the matrices A2i

k,µ is needed, e.g. [1]. Remarks on the computational

costs and convergence results for this method can be found in [70] and [60].

Another generalization of the Smith method is presented in [60]. Penzl compared

the performance of cyclic ADI methods utilizing sets of shift parameter with

varying number of shift parameter. The performance of the cyclic ADI method

improves as the number of shift parameters increases. However, the improvement

of an additional shift parameter diminishes with increasing number of shift pa-

rameter. In order to take benefit of this observation Penzl developed the cyclic

Smith method, which is closely related to the cyclic case of the ADI method,

presented in chapter 3.2, where a finite set of shift parameter µ1, ..., µs is used in

a cyclic manner. To initialize the cyclic Smith method, it is necessary to compute

the s-th iterate XADI
k+1,s of the ADI method with the given set of shift parameters

µ1, ..., µs. The proposed algorithm computes only a subsequence of the cyclic

ADI iterates and can be outlined:

Algorithm 10 Cyclic Smith method

Require: Xk+1,0 = 0 ∈ Rn×n, set of shift parameter µ1, ..., µs ∈ R−

Require: XADI
k+1,s according to Algorithm 6 with above parameter

Define: Sk,µ1,...,µs
=

s∏

j=1

(Ak − µjI)(Ak + µjI)−1

for i=0,1,... do

Xk+1,(i+1)s = XADI
k+1,s + ST

k,µ1,...,µs
Xk+1,isSk,µ1,...,µs

end for

The sequence {Xk+1,is}∞i=0 is a subsequence of the original cyclic ADI iterates,

assuming the use of cyclic shift parameter µ̃1, ..., µ̃s, for a proof see [59].

The third method has not been introduced as a modification of Smith method

and is therefore not well known. In order to develop a feedback gain algorithm,

Banks and Ito [3] rewrote Smith method as an equivalent algorithm, but this new

algorithm exhibit some numerical benefits compared to the original version.

In the following we review their modification of Smith method, which result in a

factored form of the Smith method.

Remember that at Newton iteration step k the Lyapunov equation

F ′(Xk)(Xk+1 − Xk) + F(Xk) = 0,

needs to be solved, or as in (2.8) we solve for X = Xk+1

XAk + AT
k X + DT

k Dk = 0 (3.7)

with a stable Ak

Ak = A − BBT Xk, Dk := [BT Xk C] ∈ R(l+m)×n. (3.8)
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We now follow the ideas given by [3] to develop a modification of the Smith

method:

Subtracting two iterates of the original Smith algorithm (Algorithm 5) leads to

Xk+1,i+1 − Xk+1,i = AT
k,µ(Xk+1,i − Xk+1,i−1)Ak,µ ∀ i ≥ 1. (3.9)

If we can find a factorization of the increment Xk+1,i − Xk+1,i−1 = MT
k+1,iMk+1,i,

then we will be able to rewrite above equation

Xk+1,i+1 − Xk+1,i = AT
k,µM

T
k+1,iMk+1,iAk,µ = (Mk+1,iAk,µ)

T Mk+1,iAk,µ. (3.10)

The choice of the zero matrix as a starting point Xk+1,0 = 0 ∈ Rn×n guarantees,

in combination with the definition of Sk,µ in Algorithm 5, the existence of such a

factorization for the first step :

Xk+1,1 − Xk+1,0 = −2µMT
k+1,1Mk+1,1 (3.11)

with Mk+1,1 := Dk(Ak + µI)−1 ∈ R(l+m)×n

Now it is possible to update the factorization Mk+1,iAk,µ, i ∈ N of the difference

Xk+1,i+1 − Xk+1,i instead of working with the original iterates Xk+1,i, i ∈ N. We

develop a new iteration loop for Algorithm 5 based on (3.9) and (3.10)

Mk+1,i+1 = Mk+1,iAk,µ ∈ R(l+m)×n (3.12)

Xk+1,i+1 = Xk+1,i − 2µMT
k+1,i+1Mk+1,i+1, (3.13)

which is only a reformulation of the original Smith method:

Algorithm 11 Factored Smith method

Require: stable matrix Ak, Dk according to (3.8) and shift parameter µ ∈ R−

Define: Ak,µ = (Ak − µI)(Ak + µI)−1 , Mk+1,1 = Dk(Ak + µI)−1

Ensure: Xk+1,0 = 0, Xk+1,1 = −2µMT
k+1,1Mk+1,1

for i=1,2,... do

Mk+1,i+1 = Mk+1,iAk,µ

Xk+1,i+1 = Xk+1,i − 2µMT
k+1,i+1Mk+1,i+1

end for

But this factored version of Smith method exhibit some numerical benefits, e.g.

is the number of flops with O(n2(l + m)) usually better than the flop count O(n3)

of the original Smith method. Remember that m and l are usually much smaller

than n.
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Comparing this algorithm with the low-rank Smith method (Algorithm 12), pre-

sented in chapter 3.4, leads to a surprising conclusion. Banks and Ito’s modifica-

tion [3] can be seen as an intermediate step in developing the low-rank algorithms.

Introducing a factorization of the iterates Xk+1,i = LT
k+1,iLk+1,i would yield a low-

rank version of Smith method, related to Algorithm 12.

Due to above modification it is possible to develop a feedback gain algorithm.

This has been also considered by Banks and Ito [3]. But their approach was

based on the second implementation of the Kleinman-Newton method and is

therefore not suitable in the inexact context, as shown in chapter 2.4. Neverthe-

less the modified Smith method developed there can be adapted for the standard

implementation too, which is presented in section 5.

3.4 Low rank algorithms

Especially for large scale systems it is necessary to take storage requirements into

account. Note that Smith method and the ADI method need storage requirement

of size O(n2) to save the dense actual iterate Xk+1,i. This can be seen as a

disadvantage of both methods, which also hold for their modifications, presented

in chapter 3.3.

In order to reduce this drawback, several so-called low-rank algorithms have been

considered. Penzl [59] introduced low-rank versions of Smith method, cyclic

Smith and ADI method. Independently the low-rank ADI method has been

developed by Li, Wang and White [50] and improved by Li and White [51]. An

interesting discussion on these algorithms can be found in [7] and an extension

of the low-rank Smith Method is given in [31].

In this section we present the key idea of low-rank algorithms. Additionally

we introduce two versions of low-rank ADI methods because of their practical

importance.

In order to reduce the storage requirements one does no longer work with the

original iterates Xk+1,i, i ∈ N0. Instead of updating Xk+1,i ∈ Rn×n it is possible

to update a factorization of the type

Xk+1,i = Lk+1,iL
T
k+1,i

with a matrix Lk+1,i, which dimension is usually small compared to the dimension

of Xk+1,i. Note, that is no longer necessary to store the iterate Xk+1,i, i ∈ N0

only the low-rank factors are needed for further computations. Since all iterates

are non-negative definite, assuming a non-negative definite initial iterate Xk+1,0,

the existence of such a factorization is guaranteed. The structure of the factor-

ization is dependent on the considered algorithm.
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At first we derive a low-rank version of Smith method (Algorithm 5), as presented

in section 3.1. The initial iterate is set Lk+1,0 = 0 ∈ Rn×0, such that Lk+1,0L
T
k+1,0

theoretically represents the initial iterate of Smith method Xk+1,0 = 0 ∈ Rn×n.

Note, that the definition of Sk,µ enables us to rewrite the Smith iteration (Algo-

rithm 5) in a factored form:

Xk+1,i = AT
k,µXk+1,i−1Ak,µ + Sk,µ ⇐⇒

Lk+1,iL
T
k+1,i = AT

k,µLk+1,i−1L
T
k+1,i−1Ak,µ −2µ(AT

k + µI)−1DT
k Dk(Ak + µI)−1

︸ ︷︷ ︸

Sk,µ

Choosing Lk+1,0 = 0 ∈ Rn×0 leads to Lk+1,1 =
√−2µ(AT

k + µI)−1DT
k and the

factors Lk+1,i, i > 1 can now be easily derived from

Algorithm 12 Low-rank Smith method

Require: shift parameter µ ∈ R−

Define: Ak,µ = (Ak − µI)(Ak + µI)−1 , Dk := [CT XkB]T ∈ R(l+m)×n

Lk+1,1 =
√−2µ(AT

k + µI)−1DT
k

for i=2,3... do

Lk+1,i = [AT
k,µLk+1,i−1 , Lk+1,1]

end for

Note, that the dimension of the iterates increase as the iteration for Lk+1,i pro-

gresses. Lk+1,i is of dimension n × i(l + m). Recall that m << n and l << n,

and therefore such kind of algorithms are called low-rank algorithms.

Gugercin et al [31] utilize singular value decomposition to store the factored

iterates and update the singular value decomposition for each step, instead of

recomputing it. In contrast to the original low-rank Smith algorithm, the dimen-

sion of the iterates does no longer necessary increase with each step.

An analogous ansatz as in the Smith case leads to a low-rank version of the ADI

method. Corresponding to Xk+1,0 = 0 ∈ Rn×n we denote Lk+1,0 = 0 ∈ Rn×0.

Remember the one step ADI iteration loop (Algorithm 7), as presented in section

3.2, written in a factored form:

Xk+1,i = AT
k,µi

Xk+1,i−1Ak,µi
+ Sk,µi

=⇒
Lk+1,iL

T
k+1,i = AT

k,µi
Lk+1,i−1L

T
k+1,i−1Ak,µi

−2µi(A
T
k + µiI)−1DT

k Dk(Ak + µiI)−1

︸ ︷︷ ︸

Sk,µi

Due to the choice of the initial iterate, we obtain Lk+1,1 =
√−2µ1(A

T
k +µ1I)−1DT

k

and an algorithm can be developed:
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Algorithm 13 Low-rank ADI

Require: set of shift parameter µi ∈ R−, i ∈ N
Define: Dk := [CT XkB]T

Lk+1,1 =
√−2µ1(A

T
k + µ1I)−1DT

k

for i=2,3... do

Define: Ak,µi
= (Ak − µiI)(Ak + µiI)−1 ,

Lk+1,i = [AT
k,µi

Lk+1,i−1 ,
√−2µi(A

T
k + µiI)−1DT

k ]

end for

Comparing the low-rank ADI method and the low-rank Smith method shows that

both method are identical except for the used shift parameter. This relation is

not surprising due to the similar structure of the ADI and Smith method. There-

fore the dimension of the iterates Lk+1,i ∈ Rn×i(l+m) is increasing, analogous to

the low-rank Smith method.

Since the original algorithms and the low-rank versions always compute the same

iterates Xk+1,i = Lk+1,iL
T
k+1,i, they are mathematically equivalent. Therefore the

convergence results of the original algorithms are also valid for the low-rank ver-

sions and the same shift parameter selection methods are applicable.

One drawback of this low-rank ADI method can be seen in the increasing compu-

tational costs during the iteration. Remember Lk+1,i ∈ Rn×i(l+m) and therefore

the numerical effort for the computation of Lk+1,i increases linearly. In case of a

high number of iterations the advantages of the low-rank versions diminish. This

problem has been solved in [51].

Li and White utilize the commutativity of the matrix pairs belonging to Ak,µi
to

improve the low-rank ADI method. In this version only the last few columns of

Lk+1,i are calculated in each inner iteration step. We shortly review the construc-

tion of the low-rank Cholesky factor ADI iteration (LRCF-ADI) as presented in

[51],[7]:

We repeat the definition of Ak,µi
= (Ak − µiI)(Ak + µiI)−1, the low-rank ADI

step

Lk+1,i = [(AT
k + µiI)−1(AT

k − µiI)Lk+1,i−1 ,
√

−2µi(A
T
k + µiI)−1DT

k ]

and we denote the matrices belonging to AT
k,µv

, v ∈ N0 with

Sk,v := (AT
k + µvI)−1 , Tk,v := (AT

k − µvI).

The commutativity of the matrix pairs belonging to Ak,µv

Sk,vSk,w = Sk,wSk,v, Tk,vTk,w = Tk,wTk,v, Sk,vTk,w = Tk,wSk,v ∀ v, w
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is obvious. With this notation we are able to rewrite the columns of the i-th

low-rank ADI iterate

Lk+1,i = [Sk,iTk,iLk+1,i−1 ,
√

−2µiSk,iD
T
k ] =⇒

Lk+1,i = [Sk,iTk,i(Sk,i−1Tk,i−1Lk+1,i−2 ,
√

−2µi−1Sk,i−1D
T
k ) ,

√

−2µiSk,iD
T
k ]

=⇒ ... =⇒
Lk+1,i = [Sk,iTk,i...Sk,2Tk,2Sk,1

√

−2µ1D
T
k , ..., Sk,iTk,iSk,i−1

√

−2µi−1D
T
k ,

√

−2µiSk,iD
T
k ].

Since all matrix pairs commute, the iterate can be written as

Lk+1,i = [Pk,1...Pk,i−1zk,i , ... , Pk,i−2Pk,i−1zk,i , Pk,i−1zk,i , zk,i]

(3.14)

with

zk,i :=
√

−2µiSk,iD
T
k =

√

−2µi(A
T
k + µiI)−1DT

k

Pk,l :=

( √−2µl√−2µl+1

)

Sk,lTk,l+1 ∀l

=

( √−2µl√−2µl+1

)

(AT
k + µlI)−1(AT

k − µl+1I)

=

( √−2µl√−2µl+1

)

(I − (µl+1 + µl))(A
T
k + µlI)−1.

The order of appearance of the shift parameter has no impact on the actual

iterate Lk+1,i therefore it is possible to reverse the index 1, ..., i in (3.14) resulting

in

Lk+1,i = [Pk,i...Pk,2zk,1 , ... , Pk,3Pk,2zk,1 , Pk,2zk,1 , zk,1]. (3.15)

This sequence leads to following algorithm:

Algorithm 14 Low-rank Cholesky factor ADI (LRCF-ADI)

Require: set of shift parameter µi ∈ R−, i ∈ N
Define: Dk := [CT XkB]T

zk+1,1 =
√−2µ1(A

T
k + µ1I)−1DT

k

Lk+1,1 = zk+1,1

for i=2,3... do

Define: Pk,i =

( √−2µi√
−2µi+1

)

(I − (µi+1 − µi))(A
T
k + µiI)−1

zk+1,i = Pk,izk+1,i−1

Lk+1,i = [zk+1,i , Lk+1,i−1]

end for
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Many iterative solver for Lyapunov equations have been discussed in the previ-

ous sections. Some of them are no longer state-of-the-art but key elements for

the higher developed algorithms. Up to now the low-rank Cholesky factor ADI

method is the most efficient method for the solution of Lyapunov equation, in

which a low-rank right side is provided. A professional implementation of the

LRCF- ADI method can be found e.g. in the M.E.S.S. package [9].

3.5 Properties of ADI and Smith method

In the context of inexact Kleinman-Newton methods, we impose several require-

ments on the residuals Rk, k ∈ N of each Newton step (2.8). These additional

requirements secure the monotonicity of the iterates Xk, k ∈ N and therefore a

more global convergence property, as demonstrated in chapter 2.3. See Theorem

2.3.3 and Theorem 2.3.4 for details on the restrictions corresponding to Rk.

One key assumptions of the monotonicity preserving convergence theory is the

non-negative definiteness of the residuals, i.e. Rk ≥ 0 for all k. In this section

we show, how this requirement can be addressed for different iterative Lyapunov

solvers, namely Smith method, ADI method or low-rank ADI methods.

In addition, we analyze the applicability of so-called ”hot-starts” in the context

of inexact Riccati equation. Here one utilizes the solution Xk of the previous

Newton step as an initial iterate Xk+1,0 for the next Newton step.

Recall that at Newton iteration step k the following Lyapunov equation needs to

be solved:

F ′(Xk)(Xk+1 − Xk) + F(Xk) = 0,

or as in (2.8) we solve for X = Xk+1

XAk + AT
k X + Sk = 0 (3.16)

with a stable matrix Ak

Ak = A − BBT Xk and Sk = XkBBT Xk + CT C.

This equation is equivalent to a Stein’s equation,

X = AT
k,µXAk,µ + Sk,µ (3.17)

with

Ak,µ = (Ak−µI)(Ak +µI)−1, Sk,µ = −2µ(Ak +µI)−T Sk(Ak +µI)−1, µ ∈ R−,

as shown in Lemma 3.1.1.

We shortly review Smith method and the ADI method, already introduced in
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chapter 3.1 respectively chapter 3.2.

Smith method (Algorithm 5)- here we consider a simple version with one shift

- is a fixed point iteration for equation (3.17) for given starting value Xk+1,0

Xk+1,i = AT
k,µXk+1,i−1Ak,µ + Sk,µ, i = 1, 2, ... and µ < 0 fixed.

ADI method (Algorithm 7) is a fixed point iteration for equation (3.17) for

given starting value Xk+1,0

Xk+1,i = AT
k,µi

Xk+1,i−1Ak,µi
+ Sk,µi

, i = 1, 2, ... and µi < 0 varies. (3.18)

Note, that the iterates to determine Xk+1 are called Xk+1,i, i ∈ N0.

In practice, cyclic versions of both methods, where a finite set of shift parameter

µ1, ..., µs is used in a cyclic manner, became quite popular, see e.g. [60] and

[31]. Since the Smith method and the cyclic versions are special cases of the ADI

method, we consider the ADI method in the following statements.

Lemma 3.5.1. Let Zk be the solution of the Lyapunov equation (3.16) and let

Xk+1,i be an iterate of the ADI method. Then

Xk+1,i − Zk = AT
k,µi

...AT
k,µ1

(Xk+1,0 − Zk)Ak,µ1
...Ak,µi

. (3.19)

Proof. Recall that by Lemma 3.1.1 Zk satisfies a Stein’s equation for any µ ∈ R−

- hence for all µi ∈ R− in the ADI method

Zk = AT
k,µi

ZkAk,µi
+ Sk,µi

i = 0, 1, ...

Therefore we have for any iteration i with above identity

Xk+1,i − Zk = AT
k,µi

Xk+1,i−1Ak,µi
+ Sk,µi

− (AT
k,µi

ZkAk,µi
+ Sk,µi

)

= AT
k,µi

(Xk+1,i−1 − Zk)Ak,µi
.

If we apply this identity to Xk+1,i−1−Zk consecutively, then we obtain the state-

ment of the Lemma.

The error structure in (3.19) enables us also to understand the shift parame-

ter selection problem for ADI methods. In order to reduce the error one has

to minimize the spectral radius of the matrix Ak,µ1
...Ak,µi

, in case of i applied

parameters. This minimization problem for the shift parameter is called ADI

minimax problem and an optimal set of shift parameter is given by

{µ1, ..., µs} = min
{µ1,...,µs}∈(−∞,0)

max
λ∈σ(Ak)

|
s∏

j=1

λ − µj

λ + µj

|. (3.20)
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This problem has been intensively studied and contributions to the parameter

selection problem can be found in [8, 67] and the references therein.

To estimate the residual of the Lyapunov equation using some iterate from the

ADI method, we introduce the following Lemma.

Lemma 3.5.2. Let Xk+1,i be an iterate of the ADI method, then for the residuals

of the Lyapunov equation we obtain

R
(i)
k := Xk+1,iAk + AT

k Xk+1,i + Sk

= AT
k,µi

...AT
k,µ1

(Xk+1,0Ak + AT
k Xk+1,0 + Sk)Ak,µ1

...Ak,µi
. (3.21)

If, in particular, the initial residual R
(0)
k is positive (semi)definite, then all resid-

uals R
(i)
k are also positive (semi)definite.

Proof. Note that

Xk+1,iAk + AT
k Xk+1,i + Sk = Xk+1,iAk + AT

k Xk+1,i − ZkAk − AT
k Zk

= (Xk+1,i − Zk)Ak + AT
k (Xk+1,i − Zk).

Next we insert (3.19) to obtain

Xk+1,iAk + AT
k Xk+1,i + Sk = AT

k,µi
...AT

k,µ1
(Xk+1,0 − Zk)Ak,µ1

...Ak,µi
Ak

+AT
k AT

k,µi
...AT

k,µ1
(Xk+1,0 − Zk)Ak,µ1

...Ak,µi
.

Since Ak and Ak,µ commute for any µ ∈ R− and the definition of Sk, we have

Xk+1,iAk + AT
k Xk+1,i + Sk = AT

k,µi
...AT

k,µ1
((Xk+1,0 − Zk)Ak

+ AT
k (Xk+1,0 − Zk))Ak,µ1

...Ak,µi

from which (3.21) follows. From this equation we obtain the result, that if the

initial residual is non-negative definite or positive definite, then this also holds

for all residuals in the Lyapunov equation using any ADI iterate.

In particular with the zero starting matrix we get:

Lemma 3.5.3. Let Xk+1,0 = 0. Then the residuals of (3.2) for the ADI iterates

satisfy

R
(i)
k ≥ 0 ∀ i ∈ N.

Proof. The residuals of equation (3.2) for the iterates Xk+1,i of the ADI method

are given by Lemma (3.5.2)

R
(i)
k = Xk+1,iAk + AT

k Xk+1,i + Sk = AT
k,µi

...AT
k,µ1

SkAk,µ1
...Ak,µi

≥ 0

since Sk = XkBBT Xk + CT C ≥ 0.
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In summary, the key assumption of the monotonicity preserving convergence

theory, that is the non-negative definiteness of the residuals, can be obtained

with help of Lemma 3.5.2 and Lemma 3.5.3. As long as our initial iterate for the

Lyapunov solver provides a non-negative definite residual all subsequent iterates

will also lead to non-negative definite iterates. The choice of the zero matrix as

initial iterate is common practice and due to Lemma 3.5.3 no further verification

is necessary in this case.

The other requirements of the monotonicity preserving theory are difficult to

fulfill, e.g. R
(i)
k ≤ CT C. We introduce a Lemma for this case:

Lemma 3.5.4. Let us consider a cyclic ADI method with a finite set of shift

parameter µ1, ..., µs ∈ R−. If CT C is positive definite and Xk+1,0 = 0 ∈ Rn,n,

there is ik ∈ N such that for all i ≥ ik

0 ≤ R
(i)
k ≤ CT C

holds.

Proof. R
(i)
k ≥ 0 is proved in the previous Lemma. Furthermore, if CT C > 0,

there exists ζ > 0 such that for all x ∈ Cn

x̄T CT Cx ≥ ζ‖x‖2
2.

We have ρ(Ak,µ) = max
λ∈σ(Ak)

|λ−µ

λ+µ
| < 1 for every µ ∈ R−. Due to the special

structure of the matrices Ak,µ, µ ∈ R− it follows that

ρ(Ak,µ1
...Ak,µs

) = max
λ∈σ(Ak)

|
s∏

j=1

λ − µj

λ + µj

| ≤
s∏

j=1

max
λ∈σ(Ak)

|λ − µj

λ + µj

| < 1.

Therefore a consistent matrix norm ‖ · ‖∗ exists with ‖Ak,µ1
...Ak,µs

‖∗ < 1.

For i large enough (depending on k) we obtain with m := i mod (s + 1)

‖R(i)
k ‖2 = ‖AT

k,µm
...AT

k,µ1
AT

k,µs
...AT

k,µ1
...AT

k,µs
...AT

k,µ1
︸ ︷︷ ︸

b i
s+1

c times

Sk

Ak,µ1
...Ak,µs

...Ak,µ1
...Ak,µs

︸ ︷︷ ︸

b i
s+1

c times

Ak,µ1
...Ak,µm

‖2

≤ c‖Ak,µ1
...Ak,µs

‖2b i
s+1

c
2 ‖Sk‖2

≤ c∗‖Ak,µ1
...Ak,µs

‖2b i
s+1

c
∗ ≤ ζ.

Hence for all x ∈ Cn

x̄T R
(i)
k x ≤ ‖x‖2

2‖R(i)
k ‖2 ≤ ζ‖x‖2

2 ≤ x̄T CT Cx

which is to be shown.
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According to remark (2.17) it might be possible to introduce a weaker requirement

compared to the positive definiteness of the matrix CT C to achieve the same

results.

Another popular choice for the initial iterate is a so-called ”hot start”. Here one

utilizes Xk, the solution of the previous Newton step, as initial iterate for the

Lyapunov equation

Xk+1(A − BBT Xk) + (A − BBT Xk)
T Xk+1 = −XkBBT Xk − CT C.

Since the Newton iterates Xk, k ∈ N are convergent to some limit matrix,

Xk+1,0 = Xk should be close to Xk+1 and therefore a better initial guess compared

to the zero matrix.

In the monotonicity preserving convergence theory, also the ”hot start” initial

iterate Xk+1,0 = Xk should provide non-negative definite residuals.

Lemma 3.5.5. Let Xk+1,0 = Xk, where Xk is the solution of the previous Newton

step. Then the residuals of (3.2) for the ADI iterates satisfy

R
(i)
k ≤ ( ≥)0 ∀ i ∈ N

if and only if F(Xk) ≤ ( ≥)0.

Proof. The residuals of equation (3.2) for the iterates Xk+1,i of the ADI method

are given by Lemma (3.5.2)

R
(i)
k = Xk+1,iAk + AT

k Xk+1,i + Sk

= AT
k,µi

...AT
k,µ1

(XkAk + AT
k Xk + Sk)Ak,µ1

...Ak,µi
. (3.22)

Substituting the abbreviation (2.6) of Ak respectively (3.2) of Sk , we get

XkAk + AT
k Xk + Sk = AT X + XA − XBBT X + CT C = F(Xk).

Together with (3.22), we conclude the statement of the Lemma.

As a result, the positive (negative) semidefiniteness of the residuals is always

dependent on F(Xk) and not can be stated beforehand. Only the concavity of

the mapping F provides some information.

Lemma 3.5.6. Let F describe the algebraic Riccati equation and assume that

Xk+1 has been determined via a step of the inexact Newton’s method (2.7) with

Rk. Then F(Xk+1) ≤ Rk.
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Proof. We outlined a statement about the concavity of F in Theorem 2.3.1

F(Xk+1) −F(Xk) ≤ F ′(Xk)(Xk+1 − Xk).

Together with the inexact Newton step (2.7) we obtain

F(Xk+1) ≤ Rk. (3.23)

”Hot starts” usually lead to an improved performance of the Newton method

but its applicability in the monotonicity preserving convergence theory can not

be guaranteed in theory. In order to obtain non-negative definite residuals, as

required e.g. in Theorem 2.3.4, one has to postulate the non-negative definiteness

of F(Xk), k ∈ N, which is a non-trivial condition.



Chapter 4

Numerical Results

In this chapter we analyze the practical benefits of the inexact Kleinman-Newton

methods, introduced in chapter 2. Our goal is to compare the exact Kleinman-

Newton method (Algorithm 1) with different inexact versions, which show a

linear, superlinear or even quadratic rate of local convergence, corresponding to

Theorem 2.2.1.

Since all examples are connected with linear quadratic control (LQR) problems,

we briefly introduce those kind of optimal control problems in section 4.1.

Of course, the performance of the exact and inexact Kleinman-Newton methods

is strongly dependent on the applied Lyapunov solver. In order to show the

applicability of the main iterative solvers, we present their behavior for one

example, taken from [55]. Here we consider a two-dimensional optimal control

problem with parabolic partial differential equation including convection. All

convergence results are summarized in section 4.2.

Our second example is part of the LyaPack Users Guide [58] and describes

a two dimensional heating problem. In contrast to the first example, here

no convection is taken into account. Convergence properties of the inexact

Kleinman-Newton methods are presented in section 4.3.

A third example is also taken from the LyaPack Users Guide [58] and is often

discussed in the literature [72, 58, 66, 5, 10]. Here an algebraic Riccati equation

arises in the context of an optimal control problem for the cooling process of

steel profiles in a rolling mill.

Note that we concentrate on the local convergence properties and not on the

monotonicity of the iterates. Further research should focus on the development

of applicable numerical test for non-negative definiteness, which is required in

the monotonicity preserving convergence theory (Theorem 2.3.4).

46
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4.1 Linear quadratic regulator problems

A major field of application for algebraic Riccati equations are time-invariant

linear quadratic regulator (LQR) problems. These optimal control problems play

a crucial role in control theory and are therefore analyzed in detail, see [46, 2, 54,

48], to mention only a few. Since all our numerical examples arise in the context

of LQR problems, we briefly introduce some relevant theory.

We consider time-invariant systems of the form

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0 (4.1)

y(t) = Cx(t), t > 0,

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rl×n describe the system matrices. Here

x(t) ∈ Rn denotes the states, u(t) ∈ Rm the control (or input) and y(t) ∈ Rl the

output of the system 4.1 for a given time t.

In addition, in order to design an optimal control problem the introduction of a

performance index is necessary. Within the LQR case, one utilizes quadratic cost

functionals of the form

J(u) =
1

2

∫ ∞

0

(
y(t)TQy(t) + u(t)TRu(t)

)
dt (4.2)

with a non-negative definite matrix Q ∈ Rl×l and a positive definite matrix

R ∈ Rm×m, which can be both interpreted as weighting matrices.

With these introductory remarks the LQR problem reads as follows.

Definition 4.1.1. The linear quadratic regulator (LQR) problem over an infinite

time horizon is defined as

min
u∈L2

m(0,∞)
J(u, x0) =

1

2

∫ ∞

0

(
y(t)T Qy(t) + u(t)T Ru(t)

)
dt

s.t. ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0

y(t) = Cx(t), t > 0,

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n. Q ∈ Rl×l is assumed to be non-negative

definite and R ∈ Rm×m is a positive definite matrix.

Under suitable conditions on the system matrices, related to Assumption 2.1.2,

the existence and uniqueness of an optimal control is guaranteed. Moreover the

optimal control u∗(t) is given by a feedback law, namely

u∗(t) = −R−1BT X∞x(t), t > 0, (4.3)
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where X∞ is defined as the stabilizing solution of the algebraic Riccati equation

AT X + XA − XBR−1BT X + CT QC = 0. (4.4)

In practice, the weighting matrices are often predefined as identity matrix or are

provided in a factored form Q = Q̃T Q̃ respectively R = R̃R̃T . Therefore one can

reformulate equation (4.4) into the standard formulation (1.1), which has been

analyzed in the previous chapters.

In summary, for the solution of the LQR problem over an infinite time horizon an

algebraic Riccati equation of type (1.1) needs to be solved. Since many optimal

control problems including partial differential equations can be simplified due to

linearization to LQR problems, this field has gained a lot of attention.

We utilize several examples of LQR problems, to demonstrate the numerical ben-

efits of the inexact Kleinman-Newton methods, developed in chapter 2. These in-

exact methods provide an alternative to the standard Kleinman-Newton method

(Algorithm 1), which is often used for the solution of LQR problems.

4.2 Two dimensional heating problem including

convection

We consider an example arising from optimal control problems. The example has

been considered by Morris and Navasca [55] and is described as an optimal control

problem with a 2-dimensional parabolic partial differential equations including

convection:

min
u

J(u) =
1

2

∫ ∞

0

(
‖ Cz(t) ‖2

2 + ‖ u(t) ‖2
2

)
dt

s. t.

∂z

∂t
=

∂z

∂x2
+

∂z

∂y2
+ 20

∂z

∂y
+ 100z = f(x, y)u(t) (x, y) ∈ Ω

z(x, y, t) = 0 (x, y) ∈ ∂Ω ∀t

with Ω = (0, 1) × (0, 1) and

f(x, y) :=

{

100 0.1 < x < 0.3 & 0.4 < y < 0.6,

0 else.

The discretization is carried out on a 23 × 23 grid and central differences are

used for the approximation, which results in 279 841 unknown. We choose C =
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(0.1, ..., 0.1) and X0 = 0. For a detailed discussion on different values of C, see

also section 4.2.4. The optimal matrix X∞ has been computed beforehand with

a higher accuracy.

In the following subsections we want to test the performance of inexact Kleinman-

Newton methods utilizing different iterative Lyapunov solver. Remember that

each Newton step is equivalent to the solution of a corresponding Lyapunov

equation

Xk+1(A − BBT Xk) + (A − BBT Xk)
T Xk+1 = −XkBBT Xk − CT C. (4.5)

According to Theorem 2.2.1 we test three inexact Kleinman-Newton versions with

an expected linear, superlinear or quadratic rate of local convergence.

Many iterative solvers for Lyapunov equations are presented in the literature,

e.g. Smith method [70], ADI method [52] and low-rank ADI methods [59],[51].

Other iterative methods can be found in [31], [69], [75] or [60]. In order to give

an extensive overview of the benefits of the inexact Kleinman-Newton method,

we implemented the most important iterative solver, namely Smith method, the

ADI method and a low-rank Cholesky factor ADI version to solve the Newton

steps.

The shift parameter for the iterative methods are determined with a heuristic

introduced by Penzl [60], which has been extended to a real valued version in [67].

Both shift parameter selection methods have been implemented in the M.E.S.S.

package [9]. All computations were done within MATLAB.

We compare the exact Kleinman-Newton method and the inexact versions with

respect to multiple goals. Our comparison includes the number of the Newton

steps (outer) and the number of inner iterations (inner), which are needed to

solve each Newton step. In addition, the cumulative number of all inner iterations

(cumul) is also of interest. Of course, the required CPU times play a crucial role

in contrasting the exact and the inexact versions.

In table 4.1 we present in advance comparative CPU times for all mentioned

methods.

Lyapunov Stopping criteria

solver Exact K-N Linear Superlinear Superlinear/quadratic

‖ F(X∞) ‖ Time ‖ F(X∞) ‖ Time ‖ F(X∞) ‖ Time ‖ F(X∞) ‖ Time

Smith 3.133e-008 135.55 3.345e-008 49.91 8.946e-008 36.55 1.246e-013 46.95

ADI 3.222e-008 101.05 5.560e-008 60.80 1.860e-010 53.47 3.509e-011 50.52

LRCF-ADI 3.222e-008 7.49 5.560e-008 6.55 1.859e-010 5.54 3.509e-011 5.56

Table 4.1: Comparison of computing time

The low-rank ADI method utilizes programs of the highly developed M.E.S.S.

[9] package. Detailed results on the convergence properties for the alternative

iterative solver can be found in the next subsections.
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4.2.1 Smith method

Here we implement Smith method (Algorithm 5) for the solution of all Lyapunov

equations, occurring in the (inexact) Newton steps. Table 4.2 presents the results

of the standard Kleinman-Newton method (Algorithm 1), where an accuracy of

1e− 08 for the inner iteration was predefined, i.e. the inner iteration for the k-th

Newton step will be stopped if ‖Rk‖ ≤ 1e − 08 is satisfied. Rk, already defined

e.g. in (2.8), defines the residuals of the k- inexact Newton step.

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 90 90 7.639e+005 3.495e+001 1.056e+003 3.190e+004

2 212 302 1.911e+005 2.333e+001 6.677e-001 1.910e-002

3 131 433 4.794e+004 1.755e+001 7.521e-001 3.223e-002

4 91 524 1.213e+004 1.453e+001 8.279e-001 4.718e-002

5 63 587 3.172e+003 1.245e+001 8.571e-001 5.900e-002

6 59 646 8.973e+002 9.594e+000 7.704e-001 6.186e-002

7 56 702 2.357e+002 4.481e+000 4.671e-001 4.869e-002

8 50 752 1.801e+001 5.031e-001 1.123e-001 2.505e-002

9 45 797 8.544e-002 4.162e-003 8.272e-003 1.644e-002

10 45 842 8.230e-004 1.263e-005 3.036e-003 7.295e-001

11 45 887 3.133e-008 5.500e-010 4.353e-005 3.445e+000

Table 4.2: Smith method: Exact Kleinman-Newton method

An exact Kleinman-Newton method with Smith method as Lyapunov solver re-

quires 11 Newton steps and 887 steps of Smith method to find a solution of the

algebraic Riccati equation with ‖ F(X∞) ‖= 3.133e − 008.

The fraction ‖Xk−X∞‖
‖Xk−1−X∞‖ respectively ‖Xk−X∞‖

‖Xk−1−X∞‖2 can be utilized to estimate the

local rate of convergence. In case of the exact Kleinman-Newton methods a

quadratic rate of convergence is indicated.

According to Theorem 2.2.1 we develop a first inexact variant. We choose

‖Rk‖ ≤ 0.1 ∗ ‖F(Xk)‖ as stopping criterion for the k- Newton step and ex-

pect a linear rate of convergence. All convergence properties for this version are

presented in Table 4.3, which confirm our assumption.

On the one hand, the total number of Smith iteration is 281 and therefore no-

ticeable smaller as in the exact case. On the other hand, the linear convergent

inexact version requires more Newton steps, compared with the exact method,

which results in an additional numerical effort.

The total effect of these two contrary components can not be estimated before-

hand. Therefore it is essential to take comparable CPU times into account. Table

4.1 presents CPU times for all discussed stopping criteria.

By selecting the stopping criterion ‖Rk‖ ≤ ‖F(Xk)‖ ∗ k−3, we obtain an inexact
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outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 35 35 7.637e+005 3.494e+001 1.056e+003 3.189e+004

2 15 50 1.565e+005 1.536e+001 4.395e-001 1.258e-002

3 9 59 3.202e+004 7.822e+000 5.094e-001 3.317e-002

4 7 66 6.895e+003 6.143e+000 7.854e-001 1.004e-001

5 6 72 1.554e+003 6.341e+000 1.032e+000 1.680e-001

6 9 81 4.563e+002 6.874e+000 1.084e+000 1.710e-001

7 1 82 2.839e+001 1.035e-001 1.506e-002 2.190e-003

8 10 92 2.054e+001 5.267e-001 5.089e+000 4.918e+001

9 1 93 1.404e+000 2.007e-002 3.811e-002 7.236e-002

10 11 104 9.173e-002 4.105e-004 2.045e-002 1.019e+000

11 17 121 6.622e-003 5.227e-005 1.273e-001 3.102e+002

12 22 143 5.338e-004 4.948e-006 9.467e-002 1.811e+003

13 27 170 4.642e-005 4.150e-007 8.387e-002 1.695e+004

14 32 202 4.398e-006 3.825e-008 9.216e-002 2.221e+005

15 37 239 3.694e-007 3.348e-009 8.753e-002 2.288e+006

16 42 281 3.345e-008 2.955e-010 8.827e-002 2.637e+007

Table 4.3: Smith method: Inexact K-N method with linear convergence ηk = 0.1

Kleinman-Newton method with a superlinear rate of convergence. Its conver-

gence properties are illustrated in Table 4.4.

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 28 28 7.621e+005 3.486e+001 1.053e+003 3.182e+004

2 14 42 1.505e+005 1.457e+001 4.178e-001 1.199e-002

3 13 55 3.527e+004 1.099e+001 7.547e-001 5.182e-002

4 13 68 8.756e+003 1.187e+001 1.080e+000 9.820e-002

5 12 80 2.313e+003 1.141e+001 9.616e-001 8.102e-002

6 15 95 6.714e+002 8.563e+000 7.503e-001 6.574e-002

7 16 111 1.559e+002 3.222e+000 3.762e-001 4.394e-002

8 14 125 6.525e+000 2.160e-001 6.703e-002 2.080e-002

9 17 142 3.560e-002 1.029e-003 4.763e-003 2.206e-002

10 28 170 1.332e-004 2.143e-006 2.083e-003 2.025e+000

11 40 210 8.946e-008 7.722e-010 3.603e-004 1.682e+002

Table 4.4: Smith method: Inexact K-N method with superlinear convergence ηk = k−3

As in the exact case, 11 Newton steps are necessary to compute a solution of the

algebraic Riccati equation. In contrast to the exact Kleinman-Newton method

only 210 steps of Smith method are needed.

Finally we develop a stopping criterion resulting in an inexact Kleinman-Newton

method with a quadratic rate of local convergence. We obtain the new inexact

version due to a combination of two alternative stopping criteria. As long as

‖F(Xk)‖ ≥ 1 we use the criterion ‖Rk‖ ≤ ‖F(Xk)‖ ∗ k−3, for ‖F(Xk)‖ < 1 we

implement ‖Rk‖ ≤ ‖F(Xk)‖2 to stop the inner iteration in the k- th Newton step.
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For ‖F(Xk)‖ >> 1 the second stopping criterion would be useless and therefore

above distinction is meaningful. The convergence results of this combination can

be found in Table 4.5.

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 28 28 7.621e+005 3.486e+001 1.053e+003 3.182e+004

2 14 42 1.505e+005 1.457e+001 4.178e-001 1.199e-002

3 13 55 3.527e+004 1.099e+001 7.547e-001 5.182e-002

4 13 68 8.756e+003 1.187e+001 1.080e+000 9.820e-002

5 12 80 2.313e+003 1.141e+001 9.616e-001 8.102e-002

6 15 95 6.714e+002 8.563e+000 7.503e-001 6.574e-002

7 16 111 1.559e+002 3.222e+000 3.762e-001 4.394e-002

8 14 125 6.525e+000 2.160e-001 6.703e-002 2.080e-002

9 17 142 3.560e-002 1.029e-003 4.763e-003 2.206e-002

10 21 163 7.426e-004 5.850e-006 5.686e-003 5.528e+000

11 37 200 3.694e-007 3.334e-009 5.700e-004 9.744e+001

12 69 269 1.246e-013 3.862e-016 1.158e-007 3.474e+001

Table 4.5: Smith method: Inexact K-N method with superlinear/quadratic convergence

The inexact Kleinman-Newton method shows a quadratic rate of local con-

vergence. In addition, this version requires 12 Newton steps and 269 Smith

iteration for the solution of the ARE. Here one computes a solution with

‖ F(X∞) ‖= 1.246e − 013.

As a result, all inexact variants have a notable reduction of the total number

of inner iterations in common. Standard Kleinman-Newton requires 887 steps

of Smith methods, whereas the inexact versions need only 281, 210 respectively

269 steps. This is accompanied with a clear reduction of the numerical effort.

Contrary to this result, some inexact variants need more Newton steps for the

solution of the algebraic Riccati equation. Of course, the computation of addi-

tional Newton steps requires also CPU time. Therefore the total effect can not

be estimated beforehand and we should take comparable CPU times (Table 4.1)

into account.

Here all inexact versions show a clear reduction on the required CPU time and

all inexact Kleinman-Newton method are superior to the exact version.

4.2.2 ADI method

In this section we utilize the ADI method (Algorithm 6) for the solution of the

Newton steps. We implement the same stopping criteria, which have been intro-

duced in chapter 4.2.1. Again, we compare the convergence results of the exact

Kleinman-Newton method (Table 4.6) with three inexact versions, providing a

linear (Table 4.7), superlinear (Table 4.8) or quadratic (Table 4.9) rate of local



CHAPTER 4. NUMERICAL RESULTS 53

convergence.

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 25 25 7.639e+005 3.495e+001 1.056e+003 3.190e+004

2 22 47 1.911e+005 2.333e+001 6.677e-001 1.910e-002

3 24 71 4.794e+004 1.755e+001 7.521e-001 3.223e-002

4 25 96 1.213e+004 1.453e+001 8.279e-001 4.718e-002

5 24 120 3.172e+003 1.245e+001 8.571e-001 5.900e-002

6 24 144 8.973e+002 9.594e+000 7.704e-001 6.186e-002

7 22 166 2.357e+002 4.481e+000 4.671e-001 4.869e-002

8 28 194 1.801e+001 5.031e-001 1.123e-001 2.505e-002

9 35 229 8.544e-002 4.162e-003 8.272e-003 1.644e-002

10 41 270 8.230e-004 1.263e-005 3.036e-003 7.295e-001

11 42 312 3.222e-008 5.686e-010 4.500e-005 3.562e+000

Table 4.6: ADI method: Exact Kleinman-Newton method

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 13 13 7.639e+005 3.495e+001 1.056e+003 3.190e+004

2 2 15 1.908e+005 1.178e+001 3.371e-001 9.646e-003

3 4 19 4.767e+004 1.317e+001 1.118e+000 9.486e-002

4 3 22 1.180e+004 9.809e+000 7.449e-001 5.656e-002

5 3 25 2.934e+003 9.905e+000 1.010e+000 1.030e-001

6 4 29 8.046e+002 9.328e+000 9.418e-001 9.508e-002

7 4 33 1.962e+002 4.194e+000 4.496e-001 4.819e-002

8 1 34 3.580e+000 1.240e-002 2.956e-003 7.049e-004

9 6 40 1.183e+000 5.133e-002 4.140e+000 3.340e+002

10 7 47 4.075e-002 4.338e-004 8.453e-003 1.647e-001

11 15 62 1.551e-003 1.054e-005 2.429e-002 5.598e+001

12 22 84 1.008e-004 4.702e-007 4.462e-002 4.235e+003

13 26 110 9.144e-006 5.892e-008 1.253e-001 2.666e+005

14 32 142 8.452e-007 3.691e-009 6.264e-002 1.063e+006

15 37 179 5.560e-008 3.437e-010 9.310e-002 2.522e+007

Table 4.7: ADI method: Inexact K-N method with linear convergence ηk = 0.1

As in the Smith case, all inexact versions compute the solution of the algebraic

Riccati equation with a notable smaller number of ADI iterations. The exact

Kleinman-Newton method requires 312 ADI steps, the three inexact versions

need only 179, 157 respectively 143 steps. Again, the number of Newton steps

varies for the different stopping criteria. Especially the linearly convergent ver-

sion needs more Newton steps compared to all other methods. The computation

of the additional Newton steps involves an additional numerical effort.

The total outcome of this two contrary effects can not be stated beforehand.

CPU times are presented in Table 4.1 and indicate the benefits of the inexact

Kleinman-Newton methods.
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outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 9 9 7.639e+005 3.492e+001 1.055e+003 3.188e+004

2 2 11 1.908e+005 1.178e+001 3.374e-001 9.662e-003

3 4 15 4.767e+004 1.317e+001 1.118e+000 9.486e-002

4 3 18 1.180e+004 9.809e+000 7.449e-001 5.656e-002

5 4 22 3.119e+003 1.218e+001 1.242e+000 1.266e-001

6 6 28 8.920e+002 9.564e+000 7.850e-001 6.443e-002

7 6 34 2.334e+002 4.441e+000 4.644e-001 4.856e-002

8 7 41 1.742e+001 4.921e-001 1.108e-001 2.495e-002

9 9 50 8.525e-002 3.902e-003 7.929e-003 1.611e-002

10 23 73 8.673e-004 1.206e-005 3.090e-003 7.919e-001

11 34 107 3.936e-007 1.616e-009 1.340e-004 1.111e+001

12 50 157 1.860e-010 8.110e-013 5.020e-004 3.107e+005

Table 4.8: ADI method: Inexact K-N method with superlinear convergence ηk = k−3

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 9 9 7.639e+005 3.492e+001 1.055e+003 3.188e+004

2 2 11 1.908e+005 1.178e+001 3.374e-001 9.662e-003

3 4 15 4.767e+004 1.317e+001 1.118e+000 9.486e-002

4 3 18 1.180e+004 9.809e+000 7.449e-001 5.656e-002

5 4 22 3.119e+003 1.218e+001 1.242e+000 1.266e-001

6 6 28 8.920e+002 9.564e+000 7.850e-001 6.443e-002

7 6 34 2.334e+002 4.441e+000 4.644e-001 4.856e-002

8 7 41 1.742e+001 4.921e-001 1.108e-001 2.495e-002

9 9 50 8.525e-002 3.902e-003 7.929e-003 1.611e-002

10 13 63 5.636e-003 2.071e-005 5.306e-003 1.360e+000

11 26 89 8.033e-006 5.394e-008 2.605e-003 1.258e+002

12 54 143 3.509e-011 1.980e-013 3.671e-006 6.805e+001

Table 4.9: ADI method: Inexact K-N method with superlinear/quadratic convergence

Again, all inexact version exhibit some benefits compared to the exact version,

considered with respect to the required CPU time.

4.2.3 Low-rank Cholesky factor ADI method

Finally we implement one ”state-of-the-art” solver, namely the low-rank Cholesky

factor ADI method (Algorithm 14) for the solution of the Newton steps. In case

of LRCF-ADI methods we are able to use the lp lradi .m routine of the M.E.S.S.

package [9] for the solution of the Lyapunov equations.

Note, the lp lradi .m routine utilizes stopping criterion based on relative residuals,

i.e. ‖Rk‖/‖Yk‖, where Yk describes the right side of the Lyapunov equation (4.5)

in the k- th Newton step. In our context we have to compute the residual Rk,

e.g. defined in (2.8), and therefore a slightly modification of the lp lradi .m was
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necessary.

We utilize all stopping criteria, which have been introduced in section 4.2.1.

Therefore we compare three inexact versions with the exact Kleinman-Newton

method (Table 4.10). Corresponding to Theorem 2.2.1 we consider inexact

Kleinman-Newton methods with a linear (Table 4.11), superlinear (Table 4.12)

or quadratic (Table 4.13) rate of local convergence.

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 25 25 7.639e+005 3.495e+001 1.056e+003 3.190e+004

2 22 47 1.911e+005 2.333e+001 6.677e-001 1.910e-002

3 24 71 4.794e+004 1.755e+001 7.521e-001 3.223e-002

4 25 96 1.213e+004 1.453e+001 8.279e-001 4.718e-002

5 24 120 3.172e+003 1.245e+001 8.571e-001 5.900e-002

6 24 144 8.973e+002 9.594e+000 7.704e-001 6.186e-002

7 22 166 2.357e+002 4.481e+000 4.671e-001 4.869e-002

8 28 194 1.801e+001 5.031e-001 1.123e-001 2.505e-002

9 35 229 8.544e-002 4.162e-003 8.272e-003 1.644e-002

10 41 270 8.230e-004 1.263e-005 3.036e-003 7.295e-001

11 42 312 3.222e-008 5.686e-010 4.500e-005 3.562e+000

Table 4.10: LRCF-ADI: Exact Kleinman-Newton method

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 13 13 7.639e+005 3.495e+001 1.056e+003 3.190e+004

2 2 15 1.908e+005 1.178e+001 3.371e-001 9.646e-003

3 4 19 4.767e+004 1.317e+001 1.118e+000 9.486e-002

4 3 22 1.180e+004 9.809e+000 7.449e-001 5.656e-002

5 3 25 2.934e+003 9.905e+000 1.010e+000 1.030e-001

6 4 29 8.046e+002 9.328e+000 9.418e-001 9.508e-002

7 4 33 1.962e+002 4.194e+000 4.496e-001 4.819e-002

8 1 34 3.580e+000 1.240e-002 2.956e-003 7.049e-004

9 6 40 1.183e+000 5.133e-002 4.140e+000 3.340e+002

10 7 47 4.075e-002 4.338e-004 8.453e-003 1.647e-001

11 15 62 1.551e-003 1.054e-005 2.429e-002 5.598e+001

12 22 84 1.008e-004 4.702e-007 4.462e-002 4.235e+003

13 26 110 9.144e-006 5.892e-008 1.253e-001 2.666e+005

14 32 142 8.452e-007 3.691e-009 6.264e-002 1.063e+006

15 37 179 5.560e-008 3.437e-010 9.310e-002 2.522e+007

Table 4.11: LRCF-ADI: Inexact K-N method with linear convergence ηk = 0.1

Since the low-rank Cholesky factor ADI method produces the same iterates as

the ADI method, both show similar convergence properties. Therefore all con-

clusions of the previous chapter 4.2.2 are also valid in the low-rank case.

In addition, the low-rank formulation and the efficient implementation in the
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outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 9 9 7.639e+005 3.492e+001 1.055e+003 3.188e+004

2 2 11 1.908e+005 1.178e+001 3.374e-001 9.662e-003

3 4 15 4.767e+004 1.317e+001 1.118e+000 9.486e-002

4 3 18 1.180e+004 9.809e+000 7.449e-001 5.656e-002

5 4 22 3.119e+003 1.218e+001 1.242e+000 1.266e-001

6 6 28 8.920e+002 9.564e+000 7.850e-001 6.443e-002

7 6 34 2.334e+002 4.441e+000 4.644e-001 4.856e-002

8 7 41 1.742e+001 4.921e-001 1.108e-001 2.495e-002

9 9 50 8.525e-002 3.902e-003 7.929e-003 1.611e-002

10 23 73 8.673e-004 1.206e-005 3.090e-003 7.919e-001

11 34 107 3.936e-007 1.616e-009 1.340e-004 1.111e+001

12 50 157 1.859e-010 8.111e-013 5.020e-004 3.107e+005

Table 4.12: LRCF-ADI: Inexact K-N method with superlinear convergence ηk = k−3

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 9 9 7.639e+005 3.492e+001 1.055e+003 3.188e+004

2 2 11 1.908e+005 1.178e+001 3.374e-001 9.662e-003

3 4 15 4.767e+004 1.317e+001 1.118e+000 9.486e-002

4 3 18 1.180e+004 9.809e+000 7.449e-001 5.656e-002

5 4 22 3.119e+003 1.218e+001 1.242e+000 1.266e-001

6 6 28 8.920e+002 9.564e+000 7.850e-001 6.443e-002

7 6 34 2.334e+002 4.441e+000 4.644e-001 4.856e-002

8 7 41 1.742e+001 4.921e-001 1.108e-001 2.495e-002

9 9 50 8.525e-002 3.902e-003 7.929e-003 1.611e-002

10 13 63 5.636e-003 2.071e-005 5.306e-003 1.360e+000

11 26 89 8.033e-006 5.394e-008 2.605e-003 1.258e+002

12 54 143 3.509e-011 1.980e-013 3.671e-006 6.805e+001

Table 4.13: LRCF-ADI: Inexact K-N method with superlinear/quadratic convergence

M.E.S.S. package [9] lead to a clear reduction of the CPU times (Table 4.1),

compared to the standard ADI method.

4.2.4 Observation

An interesting characteristic of the inexact Kleinman-Newton methods can be

observed in this example, taken from the Morris and Navasca paper [55].

Depending on the structure of C the first Newton step with X0 = 0 leads away

from the solution of the algebraic Riccati equation. By varying the size of C, we

are able to influence the quality ‖F(X1)‖ of the first Newton step.

We define C = c ∗ (1, ..., 1) for different c ∈ R and consider the resulting values

of ‖F(X0)‖ and ‖F(X1)‖ in Table 4.14.

For C = (1, ..., 1) the exact Kleinman-Newton algorithm produces a first iterate
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c ‖F(X0)‖ ‖F(X1)‖
0.01 5.290e-002 7.639e+001

0.05 1.322e+000 4.775e+004

0.1 5.290e+000 7.639e+005

0.5 1.323e+002 4.775e+008

1 5.290e+002 7.639e+009

Table 4.14

X1 with ‖F(X1)‖ = 7.639e + 009. But in this situation the exact method (Table

4.15) fails to compute a second iterate X2 satisfying the exact inner stopping

criterion, here ‖Rk‖ ≤ 1e − 08.

outer inner cumul ‖ F(Xk) ‖
0 0 0 5.290e+002

1 28 28 7.639e+009

2 *** *** ***

Table 4.15: LRCF-ADI: Exact Kleinman-Newton method

But it is important to notice, that this problem does not occur in case of

inexact Newton’s methods. We present the convergence properties of the linear

(Table 4.16) and superlinear (Table 4.17) convergent inexact Kleinman-Newton

method for the example with C = (1, ..., 1). As Lyapunov solver we utilize the

LCRF-ADI methods, the inexact stopping criteria are similar to those in section

4.2.3.

outer inner cumul ‖ F(Xk) ‖
1 13 13 7.639e+009

2 2 15 1.910e+009

3 2 17 4.775e+008

4 2 19 1.194e+008

5 2 21 2.984e+007

6 3 24 7.452e+006

... ... ... ...

17 13 78 1.261e-002

18 17 95 1.211e-003

19 24 119 1.162e-004

20 29 148 1.099e-005

21 35 183 9.785e-007

22 42 225 4.891e-008

Table 4.16: LRCF-ADI: Inexact K-N method with linear convergence ηk = 0.1

An alternative possibility to avoid this problem would be the implementation
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outer inner cumul ‖ F(Xk) ‖
1 9 9 7.640e+009

2 2 11 1.910e+009

3 2 13 4.775e+008

4 2 15 1.194e+008

5 2 17 2.984e+007

6 3 20 7.453e+006

7 6 26 1.888e+006

8 7 33 4.863e+005

9 7 40 1.336e+005

10 9 49 3.829e+004

11 8 57 5.419e+003

12 7 64 6.536e+001

13 14 78 3.389e+000

14 17 95 2.175e-002

15 31 126 4.483e-006

16 51 177 1.030e-009

Table 4.17: LRCF-ADI: Inexact K-N method with superlinear convergence ηk = k−3

of line search methods, as introduced and analyzed in [6].

Another option would be the use of different stopping criteria depending e.g. on

stagnation detection techniques or relative change based criteria. An extensive

overview on these methods can be found in [67] and the references therein. Both

stopping criteria are implemented in the M.E.S.S. package [9].

4.3 Two dimensional heating problem

Our second example is taken from the LyaPack User Guide [58]. We solve the

algebraic Riccati equation, where the matrices A, B and C are determined with

help of the demo r1 .m file. In contrast to the Morris and Navasca paper [55],

here a two dimensional heat equation without convection is considered

∂z

∂t
=

∂z

∂x2
+

∂z

∂y2
+ f(x, y)u(t) (x, y) ∈ Ω = (0, 1) × (0, 1).

For details on this example see [58].

The discretization is carried out on a 30× 30 grid, resulting in 810000 unknown.

We select X0 = 0 as initial iterate and use the LRCF-ADI method (Algorithm

14) for the solution of each Newton step. The low-rank Cholesky-factor ADI

method (Algorithm 14) has been efficiently implemented in the M.E.S.S. (Matrix

Equation Sparse Solver) package [9], the successor of the LyaPack Matlab Tool-

box [58].
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The stopping criteria are chosen such that three inexact Kleinman-Newton meth-

ods, with a expected linear, superlinear respectively quadratic rate of conver-

gence, can be analyzed.

Table 4.18 presents the results of the exact Kleinman-Newton method, where

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 22 22 2.524e+006 9.892e+002 1.181e+001 1.411e-001

2 24 46 6.186e+005 5.303e+002 5.361e-001 5.420e-004

3 22 68 1.427e+005 2.717e+002 5.122e-001 9.659e-004

4 24 92 2.584e+004 1.011e+002 3.720e-001 1.369e-003

5 24 116 1.952e+003 1.280e+001 1.267e-001 1.254e-003

6 21 137 1.332e+001 1.206e-001 9.418e-003 7.357e-004

7 21 158 5.144e-004 5.690e-006 4.719e-005 3.914e-004

8 21 179 1.241e-009 3.461e-012 6.083e-007 1.069e-001

Table 4.18: LRCF-ADI: Exact Kleinman-Newton method

an accuracy of 1e − 08 was set for the inner iteration. A total number of 179

LRCF-ADI iteration and 8 Newton steps were necessary to compute a solution.

The linear convergent inexact method (Table 4.19) requires 12 Newton steps

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 2 2 2.496e+006 9.881e+002 1.180e+001 1.409e-001

2 4 6 6.082e+005 5.485e+002 5.550e-001 5.617e-004

3 4 10 1.391e+005 2.829e+002 5.157e-001 9.403e-004

4 4 14 2.359e+004 1.032e+002 3.649e-001 1.290e-003

5 4 18 1.371e+003 1.169e+001 1.133e-001 1.098e-003

6 6 24 5.957e+000 7.925e-002 6.778e-003 5.796e-004

7 8 32 4.574e-001 6.703e-004 8.458e-003 1.067e-001

8 10 42 2.255e-002 3.375e-005 5.035e-002 7.512e+001

9 12 54 1.075e-003 4.077e-007 1.208e-002 3.579e+002

10 15 69 4.861e-006 8.433e-009 2.068e-002 5.072e+004

11 18 87 2.401e-007 4.351e-010 5.160e-002 6.118e+006

12 20 107 1.308e-008 1.113e-011 2.559e-002 5.881e+007

Table 4.19: LRCF-ADI: Inexact K-N method with linear convergence ηk = 0.1

and only 107 steps of the LRCF-ADI methods.

As in the exact case, the inexact Kleinman-Newton method, with the super-

linear rate of convergence (Table 4.20), need 8 Newton steps. In contrast to the

exact methods the inexact only requires only 70 inner iterations, which is a clear

reduction.

In order to obtain a local quadratic rate of convergence for an inexact Kleinman-

Newton method, we have to combine two stopping criteria. For the first Newton

steps we utilize the stopping criterion of the inexact method with a superlinear

rate of convergence. According to Theorem 2.2.1 we stop the subsequent Newton
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outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 1 1 3.321e+005 1.452e+002 1.734e+000 2.071e-002

2 4 5 7.016e+004 6.055e+001 4.171e-001 2.873e-003

3 4 9 8.978e+003 1.344e+001 2.219e-001 3.664e-003

4 6 15 2.984e+002 7.896e-001 5.877e-002 4.374e-003

5 6 21 2.258e+000 3.824e-003 4.843e-003 6.134e-003

6 12 33 1.075e-003 4.062e-007 1.062e-004 2.777e-002

7 16 49 7.601e-007 2.020e-009 4.972e-003 1.224e+004

8 21 70 1.220e-009 3.441e-012 1.704e-003 8.435e+005

Table 4.20: LRCF-ADI: Inexact K-N method with superlinear convergence ηk = k−3

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 1 1 3.321e+005 1.452e+002 1.734e+000 2.071e-002

2 4 5 7.016e+004 6.055e+001 4.171e-001 2.873e-003

3 4 9 8.978e+003 1.344e+001 2.219e-001 3.664e-003

4 6 15 2.984e+002 7.896e-001 5.877e-002 4.374e-003

5 6 21 2.258e+000 3.824e-003 4.843e-003 6.134e-003

6 12 33 1.075e-003 4.062e-007 1.062e-004 2.777e-002

7 22 55 6.450e-010 6.516e-013 1.604e-006 3.949e+000

Table 4.21: LRCF-ADI: Inexact K-N method with superlinear/quadratic convergence

steps (k > 3) with a accuracy of 0.001 ∗ ‖F(Xk)‖2 in the k- th Newton step.

Convergence results for this combination can be found in Table 4.21.

In summary, all inexact variants show a clear reduction in the total number of

inner iterations. Nevertheless the CPU times, as presented in Table 4.22, indicate

that not every inexact version is superior to the exact implementation. In the

particular case of the inexact version with the linear rate of convergence, the ad-

ditional effort to compute more Newton steps and evaluate the stopping criterion

annihilates all advantages of the reduced number of inner iterations. The other

inexact methods are still very effective and show advantages compared with the

exact implementation.

Lyapunov Stopping criteria

solver Exact K-N Linear Superlinear Superlinear/quadratic

‖ F(X∞) ‖ Time ‖ F(X∞) ‖ Time ‖ F(X∞) ‖ Time ‖ F(X∞) ‖ Time

LRCF-ADI 1.241e-009 16.83 1.308e-008 17.85 1.220e-009 11.46 6.450e-010 10.33

Table 4.22: Comparison of computing time
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4.4 Optimal cooling of steel profiles

Here we consider a practical example, which has been often discussed in the

literature [72, 58, 66, 5, 10]. The goal is to optimize the cooling process of steel

profiles in a rolling mill. On the one hand one wants to reduce to the temperature

of the steel profiles as fast as possible. On the other hand it is necessary to take

quality standards of the steel into account. A detailed description of the model

equations and boundary conditions can be found e.g. in [66].

We obtain the system matrices A ∈ R821×821, B ∈ R821×6 and C ∈ R6×821

with help of rail821.mat, provided by the LyaPack Users Guide [58]. Note,

rail821.mat generates the data of a generalized dynamical system, see e.g. [67]

for details on generalized systems. Penzl [58] indicates a simple technique to

transfer the generalized system into a standard formulation (4.1) with help of

matrix factorizations. Due to this reformulation, an algebraic Riccati equation

of type (1.1) needs to be solved. We choose the weighting factor R = R̃R̃T with

R̃ = 0.01I for our computations.

Again, we compare the convergence of the exact Kleinman-Newton method

(Algorithm 1) with different inexact versions. According to Theorem 2.2.1 we

choose stopping criteria resulting in a linear, superlinear and quadratic rate of

convergence. We utilize the zero matrix as an initial iterate X0 = 0 ∈ R821×821

and the low-rank Cholesky factor ADI method (Algorithm 14) as iterative solver

for the Lyapunov equations under consideration. The optimal solution X∞ has

been computed beforehand with a slightly higher accuracy.

Table 4.23 presents the convergence properties of the exact Kleinman-Newton

method with an accuracy of ‖Rk‖ ≤ 1e − 08 for all Newton steps.

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 50 50 9.446e+004 1.890e+000 2.673e+000 3.780e+000

2 30 80 2.360e+004 9.121e-001 4.826e-001 2.554e-001

3 29 109 5.888e+003 4.283e-001 4.695e-001 5.148e-001

4 34 143 1.460e+003 1.916e-001 4.474e-001 1.045e+000

5 30 173 3.537e+002 7.875e-002 4.109e-001 2.145e+000

6 33 206 7.903e+001 2.840e-002 3.607e-001 4.580e+000

7 31 237 1.368e+001 8.292e-003 2.920e-001 1.028e+001

8 31 268 1.164e+000 1.192e-003 1.437e-001 1.733e+001

9 32 300 1.640e-002 2.394e-005 2.009e-002 1.686e+001

10 32 332 4.691e-006 9.479e-009 3.960e-004 1.654e+001

11 32 364 9.445e-009 8.955e-013 9.447e-005 9.966e+003

Table 4.23: LRCF-ADI: Exact Kleinman-Newton method

The exact version fails to compute the first Newton step with the required

accuracy. We therefore stopped the iteration after 50 steps of the LRCF-ADI
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method. A total amount of 364 steps of the iterative solver and 11 Newton steps

are necessary to compute a solution of the algebraic Riccati equation.

The inexact Newton’s method with a linear rate of convergence (Table 4.24)

utilizes 17 Newtons steps with 251 inner iteration for the solution of the equation.

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 3 3 8.897e+004 1.820e+000 2.574e+000 3.641e+000

2 2 5 1.576e+004 6.948e-001 3.817e-001 2.097e-001

3 2 7 5.916e+003 2.948e-001 4.243e-001 6.106e-001

4 5 12 6.604e+002 1.397e-001 4.740e-001 1.608e+000

5 6 18 2.566e+002 4.511e-002 3.229e-001 2.310e+000

... ... ... ... ... ... ...

13 24 140 1.111e-005 6.403e-010 3.336e-001 1.738e+008

14 25 165 1.594e-006 2.576e-010 4.024e-001 6.284e+008

15 27 192 6.943e-007 1.754e-011 6.807e-002 2.642e+008

16 29 221 1.096e-007 4.344e-012 2.477e-001 1.413e+010

17 30 251 2.040e-008 3.110e-012 7.158e-001 1.648e+011

Table 4.24: LRCF-ADI: Inexact K-N method with linear convergence ηk = 0.5

Here we choose ‖Rk‖ ≤ ‖F(Xk)‖ ∗ 0.5 as stopping criterion. This version needs

more Newton steps but fewer iteration of the LCRF ADI method compared to

the exact Kleinman-Newton method. Therefore it is not possible to evaluate

the numerical benefit of the inexact version beforehand and we have to take

comparable CPU times (Table 4.27) into account.

Our second inexact method stops the inner iteration at an accuracy of

‖Rk‖ ≤ ‖F(Xk)‖ ∗ k−2.2 for the k-th Newton step. According to Theorem 2.2.1

we expect a superlinear rate of convergence. Details on the convergence of this

version can be found in Table 4.25.

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 1 1 2.835e+004 3.700e-001 5.233e-001 7.401e-001

2 2 3 6.137e+003 2.328e-001 6.293e-001 1.701e+000

3 7 10 2.299e+003 3.440e-001 1.478e+000 6.347e+000

4 7 17 5.578e+002 1.402e-001 4.075e-001 1.185e+000

5 8 25 1.257e+002 4.952e-002 3.533e-001 2.520e+000

6 9 34 2.383e+001 1.485e-002 2.998e-001 6.054e+000

7 12 46 2.675e+000 2.896e-003 1.951e-001 1.314e+001

8 15 61 7.309e-002 1.158e-004 4.000e-002 1.381e+001

9 21 82 1.096e-004 9.535e-008 8.231e-004 7.105e+000

10 28 110 6.437e-007 8.083e-012 8.477e-005 8.890e+002

11 34 144 2.162e-009 3.541e-014 4.381e-003 5.420e+008

Table 4.25: LRCF-ADI: Inexact K-N method with superlinear convergence ηk = k−2.2

11 Newton steps are required to solve the ARE but only 144 inner iteration are
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computed, which is a clear reduction.

Finally we present an inexact version, which is a combination of two stopping

criteria. For the first five Newton steps we utilize the same criterion as in the

superlinear case. We switch to a different accuracy of ‖Rk‖ ≤ 0.001 ∗ ‖F(Xk)‖2

for all subsequent Newton steps. The convergence properties of this method is

outlined in Table 4.26 and a local quadratic rate of convergence can be achieved.

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 1 1 2.835e+004 3.700e-001 5.233e-001 7.401e-001

2 2 3 6.137e+003 2.328e-001 6.293e-001 1.701e+000

3 7 10 2.299e+003 3.440e-001 1.478e+000 6.347e+000

4 7 17 5.578e+002 1.402e-001 4.075e-001 1.185e+000

5 8 25 1.257e+002 4.952e-002 3.533e-001 2.520e+000

6 8 33 2.279e+001 1.416e-002 2.859e-001 5.773e+000

7 12 45 2.465e+000 2.757e-003 1.947e-001 1.375e+001

8 18 63 6.180e-002 1.017e-004 3.690e-002 1.338e+001

9 25 88 3.759e-005 7.029e-008 6.909e-004 6.791e+000

10 50 138 9.402e-010 2.880e-014 4.097e-007 5.830e+000

Table 4.26: LRCF-ADI: Inexact K-N method with superlinear/quadratic convergence

In summary, like in all other discussed examples a notable reduction in total

number of inner iterations is obtained for all inexact versions. Again, the

total numerical benefit can not be estimated beforehand because the number

of needed Newton steps varies for the different stopping criteria. Note, the

inexact version with a superlinear rate of convergence is easily comparable to

the exact Kleinman-Newton method and shows a superior behaviour, which is

also confirmed by the CPU times in Table 4.27.

Lyapunov Stopping criteria

solver Exact K-N Linear Superlinear Superlinear/quadratic

‖ F(X∞) ‖ Time ‖ F(X∞) ‖ Time ‖ F(X∞) ‖ Time ‖ F(X∞) ‖ Time

LRCF-ADI 9.445e-009 412.08 1.068e-008 229.36 2.162e-009 183.87 9.402e-010 202.03

Table 4.27: Comparison of computing time



Chapter 5

Feedback gain algorithms

For linear quadratic regulator (LQR) problems, namely

min
u

J(u) =
1

2

∫ ∞

0

(
‖ Cx(t) ‖2

2 + ‖ u(t) ‖2
2

)
dt (5.1)

s.t. ẋ(t) = Ax(t) + Bu(t) x(0) = x0,

the optimal control is known and defined as u∗(t) = (A − BBT X∞)x(t), where

X∞ describes a stabilizing solution of the algebraic Riccati equation

F(X) = AT X + XA − XBBT X + CT C = 0. (5.2)

LQR problems are a major area of application for Riccati equation and are well

analyzed, see e.g. [48, 46, 2].

In the special case of LQR problems one is not mainly interested in the solution

X∞ of the Riccati equation (5.2), the knowledge of the so-called feedback gain

matrix BT X∞ is sufficient to compute the optimal control u∗.

The dimension of BT X∞ is usually much smaller than the dimension of X∞.

Feedback gain algorithms take advantage of this fact and compute the matrix

BT X∞ directly without information about X∞. These algorithms exhibit several

practical benefits compared to the standard Kleinman-Newton (Algorithm 1).

The first feedback gain algorithm has been introduced by Banks and Ito [3]. Also

in the feedback gain context, Newton’s method is utilized for the solution of (5.2)

but here BT Xk is computed, where Xk, k ∈ N are the Newton iterates. This

method is based on the factored version of the Smith method (Algorithm 11),

which has been stated in chapter 3.3. We outline the development of this feed-

back gain algorithm in section 5.1.

In order to apply inexact Newton’s methods in the feedback framework, sev-

eral difficulties are encountered. We summarize them in section 5.2 and present

possible solutions.

64
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5.1 Derivation

The goal of a feedback gain algorithm is the computation of BT X∞, in which

X∞ describes the stabilizing solution of (5.2). An obvious but unprofitable way

to achieve the feedback gain matrix would be the simple computation of

Kk = BT Xk k ∈ N,

where Xk describes the k-th Newton iterate of the Kleinman-Newton method

(Algorithm 1), i.e. the solution X of

X(A − BBT Xk−1) + (A − BBT Xk−1)
T X = −Xk−1BBT Xk−1 − CT C.

This slight modification of the Kleinman-Newton method enables the calculation

of the feedback gain matrix BT X∞ = lim
k→∞

Kk. Nevertheless, the same Lyapunov

equation as in the Kleinman-Newton method have to be solved and no numerical

benefit can be obtained within this modification. The calculation of the n × n

Newton iterates Xk, k ∈ N is still necessary.

Banks and Ito [3] implemented the first meaningful feedback gain algorithm. In-

stead of the solution X∞ of equation (5.2) their method allows the computation of

the feedback gain matrix BT X∞. This version is still based on Newton’s method

even though the original Newton iterates Xk, k ∈ N will no longer be taken into

account.

In the original paper [3], the authors utilized a modified incremental version of

Newton’s method. We analyzed this formulation in section 2.4 and demonstrated

its inapplicability in case of inexact Newton’s methods. Nevertheless the deriva-

tion of a feedback gain algorithm can be easily transferred from the modified

version to the standard Kleinman-Newton method (Algorithm 1).

The development of the feedback gain algorithm is closely related to the factored

version of Smith method, presented in section 3.3. Remember the main iteration

loop of Algorithm 11:

Xk+1,i+1 = Xk+1,i − 2µMT
k+1,i+1Mk+1,i+1 (5.3)

Only one further step is needed to deduce a new algorithm.

This iteration sequence can be used to implement a feedback gain algorithm,

because multiplying (5.3) with BT leads to

Jk+1,i+1 =Jk+1,i − 2µBT MT
k+1,i+1Mk+1,i+1 (5.4)

with Jk+1,i := BT Xk+1,i ∀ i ∈ N.

For a definition of the appearing matrices see section 3.3 or Algorithm 11.

Above iteration loop can be used as iterative solver for each Newton step in
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the Kleinman-Newton method (Algorithm 1). But here we calculate the matrix

BT Xk, k ∈ N instead of the actual Newton iterates Xk, k ∈ N. In addition, the

Newton iterates Xk, k ∈ N are not required for above computations and their

calculation and storage can be omitted. Only information about BT Xk, k ∈ N
are utilized.

We outline the feedback version of Algorithm 11 for a better understanding.

Algorithm 15 Feedback gain oriented Lyapunov solver

Require: stable matrix Ak, Dk according to (3.8) and shift parameter µ ∈ R−

Define: Ak,µ = (Ak − µI)(Ak + µI)−1 , Mk+1,1 = Dk(Ak + µI)−1

Ensure: Jk+1,0 = 0, Jk+1,1 = Jk+1,0 − 2µBTMT
k+1,1Mk+1,1

for i=1,2,... do

Mk+1,i+1 = Mk+1,iAk,µ

Jk+1,i+1 = Jk+1,i − 2µBT MT
k+1,i+1Mk+1,i+1

end for

Algorithm 15 ensures lim
i→∞

Jk+1,i = BT Xk+1. Note, the Newton iterates Xk, k ∈ N
do never occur in the computations above, only the matrices BT Xk, k ∈ N are

required and calculated. Since the Newton iterates Xk converge to a solution X∞
of the algebraic Riccati equation (5.2), we obtain lim

k→∞
BT Xk = BT X∞.

The factored Smith version is only a reformulation of the original Smith method.

An obvious connection of the Smith iterates and the feedback gain iterates can

be stated.

Lemma 5.1.1. There is a relation between the iterates Xk+1,i ∈ Rn×n of Smith

method (Algorithm 5) and the iterates Jk+1,i ∈ Rm×n of Algorithm 15, namely

BT Xk+1,i = Jk+1,i ∀i ∈ N. (5.5)

Proof. The proof follows easily from the derivation of the modified Smith method,

specified in section 3.3. Comparing (3.13) and (5.4) provides the desired result.

One advantage of the feedback gain algorithms can be seen in the dimension of

the iterates. We no longer work on the n × n matrices of the standard methods,

only computations with the m × n matrices with m << n are necessary, which

results in a clear reduction of the numerical effort. Additional numerical benefits

can be found in the decreased storage requirements because the storage of the

n × n iterates Xk, k ∈ N are omitted.

Of course, Smith Method and its factored form are no longer state-of-the-art.

Penzl already implemented an implicit low-rank Cholesky factor Newton method,
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a highly developed algorithm for computation of the feedback gain matrix in his

LyaPack Users guide [58]. Here the occurring Newton steps are solved with the

low-rank Cholesky factor ADI method (Algorithm 14), which has been modified

for the computation of the feedback gain matrices, see [58] or [67] for details.

5.2 Challenges of an inexact version

In order to introduce feedback gain algorithms utilizing an inexact Newton’s

method, several difficulties are encountered. It is impossible to apply the stopping

criteria, provided by the theory about inexact Newton’s methods (e.g. Theorem

2.2.1), directly.

All stopping criteria, resulting in a linear, superlinear or quadratic rate of con-

vergence, require the computation of F(Xk) and the residuals Rk of the k-th

Newton step. Both quantities are dependent on Xk and therefore not known in

case of feedback gain algorithm because the calculation of the Newton iterates

Xk, k ∈ N are omitted. We present some tools to circumvent these difficulties.

5.2.1 Computation of the residuals

Let us consider the k-th step of the Kleinman-Newton method (3.2) utilizing the

ADI method as iterative solver. For each ADI iterate Xk+1,i the resulting residual

is defined as

R
(i)
k = Xk+1,iAk + AT

k Xk+1,i + Sk, (5.6)

which can not be computed without Xk+1,i. Since the feedback algorithms only

provide BT Xk+1,i, we need a reformulation of the residual equation.

Banks and Ito [3] give an explicit formula for the residual for the factored Smith

method. We already presented an equivalent formula for the ADI method in

Lemma 3.5.2, namely

R
(i)
k = AT

k,µi
...AT

k,µ1
(Xk+1,0Ak + AT

k Xk+1,0 + Sk)Ak,µ1
...Ak,µi

.

If we choose Xk+1,0 as zero matrix we will obtain an equation for the residual of

the i-th ADI iterate in the k-th Newton step. The computation of Ak, Ak,µi
, i ∈ N

and Sk does not require the knowledge of Xk+1,i only BT Xk+1,i is necessary, since

Ak = A − BBT Xk

Ak,µi
= (Ak − µiI)(Ak + µiI)−1

Sk = XkBBT Xk + CT C.
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As a result we obtain a representation of the residuals, which can be computed

within a feedback framework.

Note, low-rank ADI methods are mathematically equivalent to the ADI method.

Therefore the same representation of the residuals can be utilized if any variant

of the low-rank ADI methods, presented in chapter 3.4, is applied for the solution

of the occurring Newton steps.

5.2.2 Calculation of F(Xk)

In addition, the computation of F(Xk) is not a serious problem as long the initial

iterate X0 = 0 and therefore BT X0 = 0 is chosen. We obtain F(X0) = CT C with

the definition of the algebraic Riccati equation (5.2).

The calculation of F(Xk+1) is possible for all k ≥ 0 due to the quadratic nature

of the mapping

F(Xk+1) = F(Xk) + F ′(Xk)(Xk+1 − Xk) +
1

2
F ′′(Xk)(Xk+1 − Xk, Xk+1 − Xk)

= Rk − (Xk+1 − Xk)
T BBT (Xk+1 − Xk) (5.7)

where the inexact Newton step (2.7) was exploited. Remember that BT Xk is

known for all k ∈ N.

After these two remarks we are able to compute F(Xk) and Rk without knowl-

edge of the Newton iterates Xk as long as we define Xk,0 = 0 for all k ≥ 0. The

choice of the zero matrix as initial iterate for the iterative solver is a considerable

restriction but it is often common practice.

Now Theorem 2.2.1 gives a stringent guidelines to terminate the inner iteration

of an inexact feedback gain algorithm. By varying the accuracy of the Newton

steps, we obtain inexact methods with a linear, superlinear or even quadratic rate

of convergence.

Of course, the additional numerical effort to compute the residuals is signifi-

cant. Alternatively one could use heuristic stopping criteria depending on relative

changes of the feedback matrices as presented and implemented in the LyaPack

package [58].



Chapter 6

General convergence theory

Newton’s method is regarded as one of the most powerful tools in solving nonlin-

ear equations. Hence it is very well analyzed and various extensions are presented

in the literature, e.g. quasi Newton methods including DFP, BFGS, SR1 updates

[20, 24, 15, 23, 28, 68, 17], globalizations techniques via line search [30] and many

more.

Sometimes an interesting characteristic about Newton’s method can be observed

in a monotone convergence behavior. Both types of monotonicity, increasing and

decreasing, can be found in several applications [45, 19, 25]. A theoretical back-

ground to explain these phenomena have been already stated e.g. in [56, 61].

But in case of inexact Newton’s methods these results are no longer valid. The

possibility to extend similar monotonicity results to inexact Newton’s methods

is indicated by Theorem 2.3.4. Here we were able to restore the monotone con-

vergence property of Newton’s method applied to the algebraic Riccati equation

(1.1) also for an inexact Newton version. Our goal is now to introduce a new

theory to describe this behavior in a more general framework.

In the next section, we introduce some relevant theoretical aspects including reg-

ular proper convex cones [73] and inverse positive [negative] mappings. Chapter

6.2 presents a convergence theory for concave mappings, which secures a mono-

tone convergence of the inexact Newton method. Of course, this theory can be

also extended to convex mappings. The main results are stated for the convex

case in the final section of this chapter.

69
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6.1 Theoretical background

Throughout this section, we tackle the question under which requirements on the

mapping F and the residuals Rk an inexact version of Newton’s method

F ′(Xk)(Xk+1 − Xk) = −F(Xk) + Rk (6.1)

exhibits a monotone decreasing [or increasing] convergence property, i.e. Xk ≥
Xk+1 [Xk ≤ Xk+1]. Here we always consider F : D ⊂ E → F , where E and F

are Banach spaces, D is an open convex subset of E.

Since we are interested in the monotonicity of the inexact Newton iterates, we

have to introduce at first on both Banach spaces a partial ordering. This can be

done with help of a proper convex cone KE respectively KF .

Definition 6.1.1. A proper convex cone is a subset K of a Banach space such

that K + K ⊂ K, αK ⊂ K for all α > 0, and K ∩ −K = {0}.

Remark 6.1.2. With help of a proper convex cone K, we are able to introduce

a partial ordering on the Banach space and call x ≤ y if and only if y − x ∈ K.

All convergence results, presented in section 6.2 and section 6.3, are based on

a specific quality of the Banach space E. It is required, that the monotonicity

and boundedness of a sequence {xk}k∈N ∈ EN induce its convergence. For some

spaces this is trivial fact but not for general Banach spaces.

Therefore we assume the cone KE to be regular [73, 38], which secures the con-

vergence of a monotone and bounded sequence.

Definition 6.1.3. Let K be a proper convex cone on a Banach space E. The cone

K is called regular if every increasing (or decreasing) sequence {xk}k∈N ∈ EN,

which is order-bounded from above (below), is convergent.

The concept of regular cones seems very plausible. Nevertheless, it is not a trivial

task to equip a Banach space with a regular cone, especially in the case of function

spaces. We present some examples and extensions of regular cones for a better

understanding.

Regular cones can be easily introduced on the n-dimensional Euclidian space Rn

and on Lp([0, 1]) spaces for 0 < p < ∞.

Example 6.1.4. The subset K1 := {x = (x1, ..., xn) ∈ Rn| xi ≥ 0, 1 ≤ i ≤ n}
defines a regular cone on the n-dimensional Euclidian space.

This subset K1 is the obvious choice of a cone on the n-dimensional Euclidian

space and satisfies all characteristics of a proper convex cone (Definition 6.1.1).
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The Bolzano-Weierstrass theorem together with the monotonicity of the iterates

secure the convergence of every increasing (or decreasing) and order-bounded

sequence, which defines the regularity of the cone K1.

For some function spaces there also exists a natural choice of a proper convex

cone.

Example 6.1.5. On Lp([0, 1]) spaces, where 0 < p < ∞, the subset K2 = {f ∈
Lp([0, 1])| f(t) ≥ 0 a.e.} defines a proper convex cone, which is regular.

For a definition of Lp([0, 1]) spaces see e.g. [65]. K2 obviously satisfies all char-

acteristics of a proper convex cone. Example 2.2.1 in [38] demonstrates the

regularity of K2 in case of Lp([0, 1]) spaces with 0 < p < ∞.

On both spaces the most obvious choice of a proper convex convex cone leads to

a regular cone. But on other function spaces it is much harder to obtain a regular

cone.

Example 6.1.6. Consider C[0, 1], the space of real-valued continuous functions,

defined on [0, 1]. Here the subset K3 = {f ∈ C[0, 1]| f(t) ≥ 0, t ∈ [0, 1]} is a

proper convex cone, which is not regular.

In order to prove the non-regularity of the cone K3, we present an example taken

from [73]: xn(t) = −tn defines a sequence in C[0, 1]. This sequence shows a

monotone behavior, i.e. x1 ≤ x2 ≤ ... ≤ x̂ and is bounded from above with

x̂(t) ≡ 0. It is well known that {xn}n∈N converges point-wise but not uniformly

against

lim
n→∞

xn(t) =

{

0, t ∈ [0, 1)

−1, t = 1.

However, in C[0, 1] exists no limit of the sequence {xn}n∈N.

Remark 6.1.7. The same example can be used to show that K4 = {f ∈
Cn[0, 1]| f(t) ≥ 0, t ∈ [0, 1]} is not a regular cone in Cn[0, 1], which describes

the space of n- times differentiable real-valued functions, defined on [0, 1].

All above-mentioned examples of proper convex cones describe the natural choice

of a cone. Regular cones, which are not trivial, can be introduced for example

on Rn×n, the space of real quadratic n × n matrices.

Example 6.1.8. The subset K5 = {A ∈ Rn×n| A is non-negative definite} de-

fines a regular proper convex cone on Rn×n.
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Obviously, all requirements of a proper convex cone (Definition 6.1.1) are satisfied.

Without loss of generality, we restrict ourselves to the case of monotone increasing

and bounded sequences {Xn}n∈N to testify the regularity of K5, i.e. X1 ≤ ... ≤
Xk ≤ Xk+1 ≤ ... ≤ X̂, where Xk = (xk

ij). Since every monotone and bounded

sequence of real numbers is convergent, we obtain the existence of lim
k→∞

aT Xka

for every a ∈ Rn. If we choose a = ei, the i- th unit vector, we will achieve the

convergence of the diagonal entries {xk
ii}k∈N for i = 1, .., n. Due to the choice a =

ei+ej and the symmetry of Xk, we get the convergence of aT Xka = xk
ii+2xk

ij+xk
jj.

Given the convergence of the diagonal entries, we obtain the convergence of all

other entries. Therefore the existence of lim
k→∞

Xk is guaranteed, which states the

regularity of K5.

In some cases there exists no possibility to establish a regular cone in a space, even

though one requires to infer convergence of a sequence from its monotonicity and

boundedness. Burns, Sachs and Zietsman [16] were able to avoid this problem in

case of infinite dimensional Riccati equation in Hilbert spaces, where a sequence

of self-adjoint operators occurred.

Example 6.1.9. L(H) denotes the Banach space of linear bounded operators

from one Hilbert space H into H and Σ(H) := {Π ∈ L(H)| Π is self-adjoint}.
We call a self-adjoint operator A positive, A > 0, if

〈Ax, x〉 ≥ 0

holds for all x ∈ H.

Here L(H) defines a proper convex cone and a partial ordering can be introduced

and we call A ≥ B if and only if A − B is positive. Instead of discussing the

regularity of L(H), we present an interesting Theorem, taken from [53, p. 282].

Theorem 6.1.10. If {An} is a sequence of self-adjoint mutually commutative

operators, if AnB = BAn for all n and if

A1 ≤ ... ≤ An ≤ An+1 ≤ ... ≤ B,

then An converge to A, and A ≤ B. (An analogous statement holds for monotone

decreasing sequences).

Under additional requirements on the sequence An, Theorem 6.1.10 enables us

to conclude convergence from monotonicity and boundedness. This can be seen

as an extension of the concept of regular cones in case of self-adjoint operators.

However, in the context of this thesis, following assumption generates a sufficient

theoretical background.
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Assumption 6.1.11. KE and KF are assumed to be proper convex cones. In

addition, the cone KE is needed to be regular.

Only for certain classes of mappings F , we are able to state a monotonicity

preserving convergence theory for the inexact Newton’s methods.

On the one hand we require that F has a Fréchet derivative for all X in D and

a concept of inverse positivity (negativity) plays an important role.

Definition 6.1.12. Let E and F be Banach spaces and F : D ⊂ E → F , where

D is a open subset of E. The mapping F is called Fréchet differentiable at x ∈ D

if there exists a bounded linear operator Ax : E → F such that

lim
h→0

‖F(x + h) −F(x) − Ax(h)‖F

‖h‖E

= 0.

See e.g. [65] for details on Fréchet derivatives.

Definition 6.1.13. Let L : D ⊂ E → F be a linear mapping and Z ∈ D. L is

called inverse positive [negative] if L−1 exists and L(Z) ≥ 0 implies Z ≥ 0 [Z ≤
0].

On the other hand we need a special structure of the mapping, i.e. F is required

to be a concave or convex mapping.

In the next section, we will introduce in detail a monotonicity preserving conver-

gence theory for inexact Newton’s methods in case of concave mappings. These

results can be easily transferred into the convex context. For sake of completeness

the main results are presented in chapter 6.3 also for the convex case.

6.2 Concave theory

Throughout this section we consider a concave mapping F .

Definition 6.2.1. Let E and F be Banach spaces and assume that D is an open

convex subset of E. We call a Fréchet differentiable mapping F : D ⊂ E → F

concave on D if and only if

F ′(X)(Y − X) ≥ F(Y ) − F(X) (6.2)

holds for all X, Y ∈ D.

In order to design a convergence theory, we establish several statements:

By introducing a solution of the inequality F(X) ≥ 0 we are able to prove the

boundedness of the iterates.
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Corollary 6.2.2. Let X̂ ∈ D satisfy F(X̂) ≥ 0, F(·) be concave on D, F ′(Xk)

be inverse negative [positive] and Rk ≤ F(X̂). Under these requirements the next

inexact Newton iterate Xk+1, defined by (6.1), satisfies Xk+1 ≥ X̂ [Xk+1 ≤ X̂].

Proof. The inexact Newton step (6.1) is equivalent to

F ′(Xk)(X̂ − Xk+1) = F ′(Xk)(X̂ − Xk) + F(Xk) − Rk (6.3)

and due to the concavity of F and the requirements on Rk, we can state

F ′(Xk)(X̂ − Xk+1) ≥ F(X̂) − Rk ≥ 0. (6.4)

The inverse negativity [positivity] of F ′(Xk) secures X̂ ≤ Xk+1 [X̂ ≥ Xk+1].

In addition, the concavity of the mapping provides an upper bound for the func-

tion value.

Corollary 6.2.3. Let F(·) be concave on D and assume that Xk+1 has been

determined via a step of the inexact Newton’s method (6.1) with residual Rk.

Then F(Xk+1) ≤ Rk.

Proof. Consider the concavity condition of F

F(Xk+1) −F(Xk) ≤ F ′(Xk)(Xk+1 − Xk).

Together with the inexact Newton step (6.1) we obtain

F(Xk+1) ≤ Rk. (6.5)

The following Corollary secures the monotonicity of the inexact Newton iterates.

Corollary 6.2.4. Assume that F ′(Xk) is inverse negative [positive] and F(Xk) ≤
Rk. Under these requirements the next inexact Newton iterate Xk+1 fulfills Xk ≥
Xk+1 [Xk ≤ Xk+1].

Proof. The inexact Newton step is

F ′(Xk)(Xk+1 − Xk) = −F(Xk) + Rk ≥ 0 (6.6)

which implies Xk ≥ Xk+1 [Xk ≤ Xk+1] due to the inverse negativity [positivity]

of F ′(Xk).
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We can combine the statements of Corollary 6.2.2 and Corollary 6.2.4 to prove a

first convergence Theorem.

Theorem 6.2.5. Let X̂ ∈ D satisfy F(X̂) ≥ 0, F(·) be concave on D, F ′(Xk)

be inverse negative [positive] for all iterates Xk, k ∈ N0 and R0 ≤ F(X̂). Under

following requirements on the residuals

F(Xk) ≤ Rk ≤ F(X̂) k = 1, ... (6.7)

lim
k→∞

Rk = 0 (6.8)

we obtain monotone iterates X1 ≥ ... ≥ Xk ≥ Xk+1 ≥ ... ≥ X̂ [X1 ≤ ... ≤
Xk ≤ Xk+1 ≤ ... ≤ X̂] for the inexact Newton’s method (6.1), which converge to

a solution of the equation F(X) = 0.

Proof. Corollary 6.2.2 states the boundedness of the sequence (Xk)k∈N and Corol-

lary 6.2.4 proves the monotonicity of the iterates. Since KE is assumed to be a

regular cone, the inexact Newton iterates are convergent to some limiting matrix

X∞. Equation (6.1) and lim
k→∞

Rk = 0 prove F(X∞) = 0.

Remark 6.2.6. i) Compared to standard inexact Newton statements, e.g. The-

orem 2.2.1, Theorem 6.2.5 provides a more global convergence result. The initial

iterate does not have to be close to a solution.

ii) If, in addition, F (X0) ≤ R0 is satisfied, the monotonicity will include the

initial iterate X0 as well, i.e. X0 ≥ X1 ≥ ...[X0 ≤ X1 ≤ ...]. This is a direct

result of Corollary 6.2.4.

iii) The requirements on Rk are obviously satisfied for exact Newton methods due

to Corollary 6.2.3 with Rk = 0.

We can also state an alternative version of the developped convergence theory

utilizing Corollary 6.2.3.

Theorem 6.2.7. Let X̂ ∈ D satisfy F(X̂) ≥ 0, F(·) be concave on D, F ′(Xk) be

inverse negative [positive] for all iterates Xk, k ∈ N0. Under following require-

ments on the residuals

Rk ≤ F(X̂) k = 0, ... (6.9)

Rk ≤ Rk+1 k = 0, ... (6.10)

lim
k→∞

Rk = 0 (6.11)

we obtain monotone iterates X1 ≥ ... ≥ Xk ≥ Xk+1 ≥ ... ≥ X̂ [X1 ≤ ... ≤
Xk ≤ Xk+1 ≤ ... ≤ X̂] for the inexact Newton’s method (6.1), which converge to

a solution X∞ of the equation F(X) = 0.
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Proof. Accordingly to Corollary 6.2.2, the requirements Rk ≤ F(X̂) for all k ∈N0 secure the boundedness of the inexact Newton iterates. Corollary 6.2.3 proves

F(Xk) ≤ Rk−1 for every k ∈ N and requirement (6.10) leads to F(Xk) ≤ Rk−1 ≤
Rk. With help of Corollary 6.2.4, we see that the iterates are monotone and as a

result, we obtain the convergence of the sequence {Xk} to a solution similar to

Theorem 6.2.5.

Remark 6.2.8. i) The requirement Rk ≤ Rk+1 of latter theorem looks unusual

but the residuals are allowed to be negative.

ii) Requirements of Theorem 6.2.7 are more restrictive compared to those intro-

duced in Theorem 6.2.5. In Theorem 6.2.5 the residuals are allowed to be positive

but (6.10) together with (6.11) can be only fulfilled for negative Rk.

In summary, convergence theorems for inexact Newton’s methods have been pre-

sented, which provide a monotone convergence behavior for inexact Newton iter-

ates. The theory is applicable as long as three main requirements on the mapping

F are satisfied:

Concave systems show a monotone convergence behavior. But we do not need

the concavity condition (6.2) for all X, Y ∈ D. As long as (6.2) is fulfilled for all

points needed in Corollary 6.2.2 and Corollary 6.2.3, all proofs can be completed.

An extension to convex mappings will be presented in section 6.3.

In order to prove the boundedness of the iterates, a solution of the inequality

F(X) ≥ 0 is necessary.

Finally the derivative F ′(Xk) has to provide inverse negativity [positivity] in all

inexact Newton iterates Xk, k ∈ N0.

These three conditions are restrictive, but several important and well known

problems match this theory and will be presented in chapter 7.

Convergence rates can not be stated within the above mentioned theory. Addi-

tional knowledge on the considered mappings is necessary to provide rate esti-

mates. We will show some rate estimates for the examples in section 7.

6.3 Convex theory

In chapter 6.2 we introduced a monotonicity preserving inexact Newton’s method

for concave systems. Of course all results and statements of the this chapter can

be adjusted also for convex mappings.

Definition 6.3.1. Let E and F be Banach spaces and assume that D is a open

convex subset of E. We call a Fréchet differentiable mapping F : D ⊂ E → F

convex on D if and only if

F ′(X)(Y − X) ≤ F(Y ) − F(X) (6.12)
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holds for all X, Y ∈ D.

Remark 6.3.2. It is obvious that the convexity of a mapping F implies the

concavity of −F .

For a convex mapping F we can apply an inexact Newton’s method to the con-

cave system −F(X) = 0 and utilize all theory of section 6.2 and state similar

convergence results for the convex case.

We do not want to repeat every Corollary, only the equivalences of the two main

convergence results are mentioned.

Theorem 6.3.3. Let F(·) be convex on D, X̂ ∈ D satisfy F(X̂) ≤ 0, F ′(Xk) be

inverse positive [negative] for all iterates Xk, k ∈ N0 and R0 ≤ −F(X̂). Under

following requirements on the residuals

−F(Xk) ≤ Rk ≤ −F(X̂) k = 1, ... (6.13)

lim
k→∞

Rk = 0 (6.14)

we obtain monotone iterates X1 ≥ ... ≥ Xk ≥ Xk+1 ≥ ... ≥ X̂ [X1 ≤ ... ≤
Xk ≤ Xk+1 ≤ ... ≤ X̂] for the inexact Newton’s method (6.1) which converge to

a solution of the equation F(X) = 0.

Proof. The proof follows directly with Theorem 6.2.5, applied to the concave

mapping −F .

Analogous to Theorem 6.2.7 we can state a second convergence result, utilizing

the monotonicity of the residuals.

Theorem 6.3.4. Let X̂ ∈ D satisfy F(X̂) ≤ 0, F(·) be convex on D, F ′(Xk) be

inverse positive [negative] for all iterates Xk, k ∈ N0. Under following require-

ments on the residuals

Rk ≤ −F(X̂) k = 0, ...

Rk ≤ Rk+1 k = 0, ...

lim
k→∞

Rk = 0

we obtain monotone iterates X1 ≥ ... ≥ Xk ≥ Xk+1 ≥ ... ≥ X̂ [X1 ≤ ... ≤
Xk ≤ Xk+1 ≤ ... ≤ X̂] for the inexact Newton’s method (6.1) which converge to

a solution X∞ of the equation F(X) = 0.

Proof. Again, the concavity of −F together with Theorem 6.2.7 secures the state-

ments of the Theorem.

As a result, we easily transferred all results of the concave case to the convex

situation.



Chapter 7

Applications

In the previous chapter we introduced a convergence theory for inexact Newton

methods including monotonicity of the iterates. Our restrictions on the con-

sidered mappings and spaces are restrictive, e.g. we require inverse negativity

[positivity] or concavity [convexity] of the mappings. Nevertheless we find many

examples from various applications which fit to our assumptions and show the

benefits of our theory.

A first example can be found in the algebraic Riccati equation (1.1). We al-

ready discussed inexact Kleinman-Newton methods and convergence results for

this case in chapter 2.

In section 7.1 we analyse the nonsymmetric algebraic Riccati equation (NARE)

which plays an important role in transport theory [42, 43]. Newton‘s method is

usually used to solve this equation [34, 12], an inexact version utilizing a dou-

bling iteration scheme has been recently presented in [27]. This equation is closely

related the symmetric case but a different theoretical background is relevant, nev-

ertheless is our theory applicable.

Damm and Hinrichsen [19] applied Newton’s method for an abstract rational

matrix equation, which is discussed in section 7.2. This equation is not only of

theoretical interest, it covers the continuous algebraic Riccati equation (CARE)

[48], the discrete algebraic Riccati equation (DARE) [48], matrix equations occur-

ring in stochastic control [76] and disturbance attenuation problems [40, 14, 13] as

special cases. We established an inexact variant of Newton’s method and proved

convergence rates.

In a last step, we analyzed the quasilinearization technique, introduced by Bell-

man and Kalaba [4]. Here one tries to write a parabolic PDE as a solution of a

corresponding equation [63]. We analyze the PDE and a discretized version of

the PDE in chapter 7.3
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7.1 Nonsymmetric algebraic Riccati equation

Our first example plays an important role in applications of transport theory

[42, 43] and has been intensively studied in recent years, see e.g. [34, 12, 27].

Definition 7.1.1. The nonsymmetric algebraic Riccati equation (NARE) is de-

fined as

F(X) = XCX − XD − AX + B = 0, (7.1)

where F : Rm×n → Rm×n and A, B, C, D are real matrices of sizes m×m, m×n,

n × m respectively n × n.

Even though above nonsymmetric algebraic Riccati equation bears a striking sim-

ilarity to the algebraic Riccati equation (1.1), discussed in chapter 2, a different

theoretical background is relevant. On the one hand in the NARE context we

are only interested in the minimal non-negative solutions of F(X) = 0, where a

different partial ordering is introduced on Rm×n. On the other hand the NARE

is a convex mapping, whereas the ARE is concave..

We shortly review some relevant definitions and statements, which are impor-

tant for the NARE case. On Rm×n we introduce a partial ordering with help of

following proper convex cone.

Definition 7.1.2. K = {A ∈ Rm×n| aij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n} defines a

proper convex cone on Rm×n, which is obviously regular.

Remark 7.1.3. The cone, introduced in Definition 7.1.2, is closely related to

the regular cone introduced on the n- dimensional Euclidian space, see Example

6.1.4.

For A, B ∈ Rm×n we therefore call A < B [A ≤ B] if and only if aij < bij

[aij ≤ bij ] and A non-negative [non-positive] if aij ≥ 0 [aij ≤ 0] for all i, j.

In order the secure the existence of a non-negative solution of (7.1), we introduce

and utilize the concept of M- matrices.

Definition 7.1.4. A real square matrix A is called a Z-matrix if all its off-

diagonal elements are non-positive and we can write A = sI − B with B ≥ 0. A

Z-matrix is called an M- matrix if s ≥ ρ(B), where ρ(·) is the spectral radius.

Together with the system matrix M , defined below, we are able to state a exis-

tence theory for a minimal non-negative solution of the NARE.
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Assumption 7.1.5. We assume throughout this section that

M :=

[
D −C

−B A

]

∈ Rm+n,m+n (7.2)

is a nonsingular M-matrix.

Remark 7.1.6. i) Theorem 3.1 in [32] proves that Assumption 7.1.5 secures the

existence of a minimal non-negative solution of (7.1).

ii) In addition, the M-matrix property leads to B, C ≥ 0 and we know that A and

D are as well nonsingular M-Matrices. Therefore the matrix I ⊗ A + DT ⊗ I is

also a nonsingular M-matrix, where ⊗ is the Kronecker product. See Remark 1.1

in [37] for details.

iii) Let S be the minimal non-negative solution of (7.1). Theorem 2.5 in [33]

proves the M-matrix properties of MS := I ⊗ (A − SC) + (D − CS)T ⊗ I.

Newton’s method has been successfully applied for the solution of the NARE, i.e.

F(X) = 0, where a monotone convergence of the resulting Newton iterates was

observed [37, 34]. Comparing these results to the general convergence theory of

section 6.3, we hope to identify the NARE as an interesting application of our

theory. As a result we will be able to establish convergence results, including

monotonicity, also in the case of inexact Newton’s methods for the solution of

the NARE.

Corresponding to chapter 6.3, we analyze the structure of the NARE F and test

the applicability of our main convergence theorems. At first we state a result

concerning the convexity of F .

Theorem 7.1.7. The map F is convex in following sense:

F ′(X)(Y − X) ≤ F(Y ) −F(X) ∀ X, Y ∈ Rm×n with Y − X ≥ 0 (7.3)

Proof. The proof follows directly with the Taylor expansion of the nonsymmetric

algebraic Riccati equation

F(Y ) = F(X) + F ′(X)(Y − X) +
1

2
F ′′(X)(Y − X, Y − X) (7.4)

where the quadratic term

1

2
F ′′(Z)(W, W ) = WCW T ≥ 0 for all W ≥ 0 (7.5)

due to the non-negativity of C.
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With Assumption 7.1.5 we can state another result, namely the existence of a

solution of the inequality F(X) ≤ 0. Let S be the minimal non-negative solution

of (7.1), i.e. F(S) = 0 and of course S is also a solution of F(X) ≤ 0.

Finally, we have to consider the derivative of the mapping F and analyze the

inverse negativity of F ′(Xk). In this case two alternative presentations of the

derivate can be developed.

Corollary 7.1.8. The Fréchet derivative of F at a given matrix X is a linear

map F ′(X) : Rm×n → Rm×n and is defined as

F ′(X)(Z) = −((A − XC)Z + Z(D − CX)). (7.6)

Corollary 7.1.9. With help of the Kronecker product we are able to rewrite

F ′(X)Z as matrix-vector product

−(I ⊗ (A − XC) + (D − CX)T ⊗ I)vec(Z) =: −MXvec(Z) (7.7)

where vec stacks the columns of the matrix Z into a long vector.

Remark 7.1.10. Therefore we can identify F ′(X) with the matrix −MX .

The inverse negativity can now be proved with help of (7.7) and a characteristic

of M-matrices.

Theorem 7.1.11. For a Z-matrix A ∈ Rn×n, the following are equivalent:

i) A is a nonsingular M-matrix

ii) the linear map defined by A is inverse positive, i.e. A−1 ≥ 0

iii) Aν > 0 for some vector ν ∈ Rn with ν > 0

Proof. For a proof see e.g. [11].

This Theorem in combination with Corollary 7.1.9 states the inverse negativity

of F ′(Xk) as long as the matrix I⊗ (A−XkC)+(D−CXk)
T ⊗I is a nonsingular

M-matrix.

For the zero matrix as the initial iterate for our inexact Newton’s method, i.e.

X0 = 0 ∈ Rm×n we can prove an easy result.

Corollary 7.1.12. If X0 = 0 ∈ Rm×n then F ′(X0) is inverse negative.
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Proof. Instead of showing F ′(X0)Z ≥ 0 ⇒ Z ≤ 0 we utilize the matrix-vector

product (7.7) with X0 = 0 ∈ Rm×n:

MX0
vec(Z) = −(I ⊗ A + DT ⊗ I)vec(Z) (7.8)

With Assumption 7.1.5 and Remark 7.1.6 ii) we obtain the M- matrix property

of I ⊗A+DT ⊗ I and with Theorem 7.1.11 the inverse negativity of F ′(X0).

To prove the inverse negativity in all inexact Newton iterates, another result on

M-matrices is necessary.

Lemma 7.1.13. Let A be a nonsingular M-matrix. If B ≥ A is a Z-matrix,

then B is also a nonsingular M-matrix.

Proof. The equivalence of i) and iii) in Theorem 7.1.11 yields the proof.

Lemma 7.1.13 enables us to testify the inverse negativity of F ′(Xk) for all inexact

Newton iterates Xk via induction.

Theorem 7.1.14. Let X0 = 0 ∈ Rm×n, S be the minimal non-negative solution

of (7.1) and −F(Xk) ≤ Rk ≤ −F(S) = 0 for all k ∈ N0. The inexact Newton

iterates Xk, defined in (6.1), lead to inverse negative F ′(Xk).

Proof. The proof is via induction. Corollary 7.1.12 states the result for k = 0,

which is the induction hypothesis. Now we assume that F ′(Xk) is inverse negative

for k = 0, ..., i. On the one hand Ri ≤ 0 and F ′(Xi) is inverse negative, as a result

we achieve Xi+1 ≤ S, due to Corollary 6.2.2, applied to the concave mapping −F .

On the other hand −F(Xi) ≤ Ri and Corollary 6.2.4 secures 0 ≤ Xi ≤ Xi+1. We

consider the matrix representation MXi+1
of −F ′(Xi+1) in Remark 7.1.6 iii)

MXi+1
= I ⊗ (A − Xi+1C) + (D − CXi+1)

T ⊗ I

respectively MS of −F ′(S) in (7.7)

MS = I ⊗ (A − SC) + (D − CS)T ⊗ I.

With respect to Definition 7.1.4 we can state the Z- matrix property of MXi+1

because A, D are M-matrices and Xi+1C, CXi+1 are both non-negative. Since

Xi+1 ≤ S, we can utilize Lemma 7.1.13 to obtain the M-matrix property of

MXi+1
and as a result the inverse negativity of F ′(Xi+1), which concludes the

induction.

All requirements of the monotonicity preserving theory for inexact Newton’s

methods can be satisfied and we can state a convergence result for the non-

symmetric algebraic Riccati equation:
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Theorem 7.1.15. Let X0 = 0 ∈ Rm×n, and S be the minimal non-negative

solution of (7.1). Under following requirements on the residuals

−F(Xk) ≤ Rk ≤ 0 k = 0, ... (7.9)

lim
k→∞

Rk = 0 (7.10)

we obtain monotone iterates X0 ≤ X1 ≤ ... ≤ Xk ≤ Xk+1 ≤ ... ≤ S for the

inexact Newton’s method (6.1), which converge to the minimal solution of the

equation F(X) = 0.

Proof. Theorem 7.1.7 states the convexity of F in all relevant points. Due to

Assumption 7.1.5 the existence of a minimal non-negative solution S of (7.1) is

guaranteed and we can also see S as a solution of the corresponding inequality

F(X) ≤ 0. Theorem 7.1.14 testifies that F ′(Xk) is inverse negative for all inexact

Newton iterates Xk, assumed the zero matrix as initial iterate. Since all require-

ments of Theorem 6.3.3 are satisfied, we can transfer all convergence results with

help of Theorem 6.3.3. Therefore the convergence of the sequence {Xk} to a

solution of F(X) = 0 is proven and since Xk ≤ S we achieve the convergence to

the minimal solution S.

As a result we proved the applicability of inexact Newton methods to nonsymmet-

ric Riccati equations corresponding to our theoretical background. The mono-

tonicity of the iterates can be also restored for the inexact case as shown in

Theorem 7.1.15.

An inexact variant of Newton’s method for NARE has been developed in a recent

paper [27]. The authors utilize a doubling iteration scheme to solve their inner

iteration.

7.2 General rational matrix equation

Damm and Hinrichsen [19] applied Newton’s method for an abstract rational ma-

trix equation, which includes the continuous algebraic Riccati equation (CARE)

[48], the discrete algebraic Riccati equation (DARE) [48], matrix equations occur-

ring in stochastic control [76] and disturbance attenuation problems [40, 14, 13]

as special cases. More details on rational matrix equations in stochastic control

can be found in [18].

This equation can be seen as an extension of the algebraic Riccati equation (1.1),

already discussed in chapter 2. For this reason, we hope to establish a monotonic-

ity preserving convergence theory also for inexact Newton’s method, applied to
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this complicated rational matrix equation. As a result we achieve convergence

results for all special cases, mentioned above.

At first some introductory definitions and remarks are necessary.

Definition 7.2.1. In this section we call Hn ⊂ Kn×n the real space of n × n

Hermitian matrices with entries in K and Hn
+ the convex set of non-negative

definite matrices.

Remark 7.2.2. Hn is endowed with the Frobenius inner product 〈X, Y 〉 =

trace(XY ) and with the corresponding norm ‖X‖ = 〈X, X〉 1

2 .

A partial ordering is introduced with help of a proper convex cone K = {A ∈
Hn| A is non-negative definite}, see Example 6.1.8, and we call A ≥ B if and

only if A − B is non-negative definite. In addition, we call A > 0 for positive

definite. For a matrix A we call A∗ the conjugate transpose of A.

Now all necessary definitions have been introduced and we are able to introduce

the rational matrix equation, defined and analyzed by Damm and Hinrichsen

[19].

Example 7.2.3. The equation F(X) : dom F := {X ∈ Hn : Q(X) > 0} → Hn

is defined as

F(X) = P(X) − S(X)Q(X)−1S(X)∗, (7.11)

with the affine linear mappings P : Hn → Hn, Q : Hn → Hl and S : Hn →Kn×l

P(X) = A∗X + XA + Π1(X) + P0

S(X) = XB + Σ(X) + S0

Q(X) = Π2(X) + Q0

where A ∈Kn×n, P0 ∈ Hn, B, S0 ∈Kn×l, and Q0 ∈ Hl. Additionally Π1 : Hn →
Hn, Π2 : Hn → Hl and Σ : Hn →Kn×l are linear mappings and dom F 6= ∅ is

assumed.

Remark 7.2.4. For theoretical purpose, we need

Π : Hn → Hn+l, Π(X) :=

[
Π1(X) Σ(X)

Σ(X)∗ Π2(X)

]

to be a positive mapping, i.e. Π maps Hn
+ to Hn+l

+ .

Damm and Hinrichsen proved a monotone convergence behavior of Newton’s

method, applied to equation F(X) = 0, see Theorem 6.1 in [19]. We follow closely

the notation and theory developed in this paper and therefore we recommend an
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extensive study of the original paper.

In order to apply an inexact version of Newton’s method which maintains the

monotonicity, we check whether above system of equations (7.11) fits to the

theory, presented in section 6.2.

The concavity of F was the first requirement of the monotonicity preserving

theory. For this goal we consider a Taylor expansion for F .

Corollary 7.2.5. Let X, Y ∈ dom F then following identity holds

F(Y ) = F(X) + F ′(X)(Y − X) − ΦX(Y ) (7.12)

where −ΦX(Y ) is the remainder term of the first-order Taylor expansion and

ΦX(Y ) ≥ 0 holds for all X, Y ∈ dom F .

Proof. For a proof and the definition of ΦX(Y ), see Proposition 5.5 in [19].

As a consequence we can state a first result on the concavity of F .

Corollary 7.2.6. F is a concave map on dom F , i.e. for all X, Y ∈ dom F :

F ′(X)(Y − X) ≥ F(Y ) − F(X).

Proof. The proof follows directly from Corollary 7.2.5 and the positivity of ΦX(Y )

for all X, Y ∈ dom F

A second condition of our theory was the existence of a solution to inequality

F(X) ≥ 0, which can be secured under additional requirements for our example.

Assumption 7.2.7. Let Q0 > 0 and P0 ≥ S0Q
−1
0 S∗

0 . As a result we achieve

F(0) = P0 − S0Q
−1
0 S∗

0 ≥ 0.

In order to prove the last requirement, namely the inverse negativity of the deriva-

tive in the inexact Newton iterates, we have to impose some theoretical results.

Definition 7.2.8. Let X ∈ dom F . F ′(X) is called stable if σ(F ′(X)) ⊂ C :=

{c ∈ C|Re c < 0}, where σ(F ′(X)) denotes the spectrum of F ′(X).

Next we realize that the inverse negativity of the derivative is equivalent to the

stability of the derivative.

Corollary 7.2.9. Let F ′(X) be the derivative of F at X ∈ dom F , then following

statements are equivalent:

i) F ′(X) is stable
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ii) F ′(X) is inverse negative.

Proof. Proposition 5.2 and Corollary 3.8 in [19] guarantee that −F ′(X) is inverse

positive, which leads to the inverse negativity as introduced in Definition 6.1.13.

Remark 7.2.10. Above Corollary can be seen as the generalization of Theorem

2.3.2, which was important in case of algebraic Riccati equation.

With this result, we can apply the theory, developed in section 6.2, under the

condition that F ′(Xk) is stable for all inexact Newton iterates. We will introduce

a requirement on the residual Rk of the k- th inexact Newton step

F ′(Xk)(Xk+1 − Xk) = −F(Xk) + Rk (7.13)

to secure the stability of F ′(Xk) for all k ∈ N.

Corollary 7.2.11. Let X̂ ∈ dom F be a solution of F(X) ≥ 0, F ′(Xk) be

stable. Every Xk+1, determined via a step of the inexact Newton’s method (6.1)

with 0 ≤ Rk ≤ ΦXk
(Xk+1) and Rk ≤ F(X̂), secures the stability of F ′(Xk+1).

Proof. The concavity of F , as stated in Corollary 7.2.6, implies

−F(Xk+1) ≤ F(X̂) − F(Xk+1) ≤ F ′(Xk+1)(X̂ − Xk+1). (7.14)

Corollary 7.2.5 shows

F(Xk+1) = F(Xk) + F ′(Xk)(Xk+1 − Xk) − ΦXk
(Xk+1)

= Rk − ΦXk
(Xk+1) ≤ 0 (7.15)

where the inexact Newton step was exploited. Combining these two results we

obtain

F ′(Xk+1)(X̂ − Xk+1) ≥ −F(Xk+1)

= −Rk + ΦXk
(Xk+1)

≥ ΦXk
(Xk+1) ≥ 0 (7.16)

as a first result.

Corollary 6.2.2 proves another result, namely Xk+1 ≥ X̂.

Now we assume that F ′(Xk+1) is not stable, which is equivalent to

∃V ∈ Hn
+ \ {0}, β ≥ 0 : F ′(Xk+1)

∗(V ) = βV (7.17)
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due to Theorem 3.7 in [19]. Since Xk+1 ≥ X̂ we can state

〈V,F ′(Xk+1)(X̂ − Xk+1)〉 = 〈βV, X̂ − Xk+1〉 ≤ 0 (7.18)

and with (7.16) follows

〈V,F ′(Xk+1)(X̂ − Xk+1)〉 ≥ 〈V, ΦXk
(Xk+1)〉 ≥ 0 (7.19)

which results in 〈V, ΦXk
(Xk+1)〉 = 0. This can be rewritten in following way

〈V,F(Xk+1) − F(Xk)〉 = 〈V,F ′(Xk)(Xk+1 − Xk)〉 (7.20)

due to Taylor expansion.

Lemma 4.3 in [19] proves F ′(Xk)
∗V = F ′(Xk+1)

∗V = βV which is a contradiction

to the stability of F ′(Xk). Therefore our assumption was wrong and F ′(Xk+1) is

also stable.

Corollary 7.2.11 introduces a condition on Rk, which secures the inverse nega-

tivity in the inexact Newton iterates. Now all requirements of the monotonicity

preserving inexact Newton’s method can be satisfied, and we can state following

convergence result for equation (7.11).

Theorem 7.2.12. Let X̂ ∈ D satisfy F(X) ≥ 0, F ′(X0) be stable and R0 ≤
F(X̂). Under following requirements on the residuals

F(Xk) ≤ Rk ≤ F(X̂) k = 1, ... (7.21)

0 ≤ Rk ≤ ΦXk
(Xk+1) k = 0, ... (7.22)

lim
k→∞

Rk = 0 (7.23)

we obtain monotone iterates X1 ≥ ... ≥ Xk ≥ Xk+1 ≥ ... ≥ X̂ for the inexact

Newton’s method (6.1) which converge to a solution X∞ of the equation F(X) =

0.

Proof. Condition (7.22) and (7.21) secures the applicability of Corollary 7.2.11,

which provides the stability of F ′(Xk) for all inexact Newton iterates Xk, k ∈ N.

Corollary 7.2.9 states the equivalence of the stability of F ′(Xk) and the inverse

negativity of F ′(Xk). In addition, F is a concave mapping as shown in Corollary

7.2.6. Therefore, Theorem 6.2.5 can be applied and yields the statements of the

Theorem.

The rational matrix equation, introduced by Damm and Hinrichsen, can be seen

as an application of our theory. As a result all special cases, like CARE, DARE

and many other, fit to our theory and a monotonicity preserving inexact Newton
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method can be established for all this cases.

In addition, we are able to introduce convergence rates in this case. In or-

der to prove a quadratic rate of convergence, we have to claim the stability of

(F ′(X∞))−1.

Theorem 7.2.13. Let all requirements of Theorem 7.2.12 hold. Additionally the

existence of (F ′(X∞))−1 and the stability of F ′(X∞) is assumed. If the residuals

satisfy

‖Rk‖ ≤ κ1‖Xk+1 − Xk‖2 ∀k ∈ N, κ1 ≥ 0. (7.24)

then the iterates of method (6.1) will provide a quadratic rate of convergence, i.e.

there exists κ ≥ 0 with

‖Xk+1 − X∞‖ ≤ κ‖Xk − X∞‖2.

Proof. We obtain due to the concavity of F , F(X∞) = 0 and (7.15)

F ′(X∞)(X∞ − Xk+1) ≤ F(X∞) − F(Xk+1) = ΦXk
(Xk+1) − Rk

⇐⇒ −F ′(X∞)(Xk+1 − X∞) ≤ F(X∞) − F(Xk+1) = ΦXk
(Xk+1) − Rk

Since F ′(X∞) is assumed to be stable, which is equivalent to the inverse positivity

of −F ′(X∞), see Corollary 7.2.9, we achieve

Xk+1 − X∞ ≤ −F ′(X∞)−1(ΦXk
(Xk+1) − Rk).

Taking norms we obtain

‖Xk+1 − X∞‖ ≤ ‖F ′(X∞)−1‖‖ΦXk
(Xk+1) − Rk‖

where ‖ · ‖ describes the Hn norm or the induced operator norm. By utilizing

the triangle inequality we get

‖Xk+1 − X∞‖ ≤ ‖F ′(X∞)−1‖(‖ΦXk
(Xk+1)‖ + ‖Rk‖). (7.25)

We can use a result of the Damm and Hinrichsen paper, see proof of Theorem

7.3 in [19], and state

‖ΦXk
(Xk+1)‖ ≤ κ2‖Xk+1 − Xk‖2 k ≥ 1 (7.26)

with κ2 ≥ 0. Combined with requirement (7.24) and (7.25) we obtain

‖Xk+1 − X∞‖ ≤ κ‖Xk+1 − Xk‖2 k ≥ 1, κ ≥ 0 (7.27)

as a result. Therefore the quadratic rate of convergence is proved.

Under additional requirements on the residuals and the considered mapping, we

were able to state an important convergence result for the rational matrix equa-

tion also in case of inexact Newton methods. Of course, this result is also valid

for all considered special cases.
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7.3 Quasilinearization

The method of quasilinearization has been introduced by Bellman and Kalaba [4]

and can be interpreted as Newton’s method for a nonlinear differential operator

equation [63]. Many generalizations and applications of the quasilinearization

technique have been presented in the literature, e.g. in [47].

We try to adapt this idea for the solution of a parabolic partial differential equa-

tions (PDE) of the type

ut = uxx + ϕ(u) − f(t, x) ∀(t, x) ∈ QT := (0, T ] × (a, b) (7.28)

with initial-

u(0, x) = ũ(x) ∀x ∈ Ω := (a, b) (7.29)

and boundary conditions

u(t, x) = g(t, x) ∀(t, x) ∈ ΣT := {(t, x)| t ∈ (0, T ], x ∈ {a, b}}. (7.30)

Here u = u(t, x) is a mapping depending on two variables, in which x describes

the space variable in an interval [a, b] and t a time variable in [0, T ]. In addition,

the mappings ϕ, f , ũ and g are given. A solution of this PDE is a mapping u :

QT → Rn satisfying the dynamics of (7.28) and the conditions (7.29) respectively

(7.30).

The quasilinearization approach defines a mapping

F(u) :=





uxx − ut + ϕ(u) − f(t, x) ∀(t, x) ∈ QT

ũ(x) − u(0, x) ∀x ∈ Ω

g(t, x) − u(t, x) ∀(t, x) ∈ ΣT



 (7.31)

and calculates a solution of F(u) = 0 with help of Newton’s method, which is

obviously also a solution of the parabolic PDE (7.28) - (7.30). Given an initial

iterate u0(t, x) the k- th Newton step reads as follows

F ′(uk)(uk+1 − uk) = −F(uk) k ∈ N.

Here the question arise whether above system of equations can be solved within

an inexact Newton framework. In order to retain monotone iterates, we have

to analyze the requirements of the monotonicity preserving convergence theory,

already presented in Chapter 6.3.

At first we analyze the convexity of the mapping F , depending on the structure

of ϕ.

Lemma 7.3.1. The nonlinear mapping F , defined in (7.31), is convex as long

as ϕ is convex.
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Proof. A comparison of

F ′(v)(w − v) :=





wxx − vxx − wt + vt + ϕ′(v)(w − v) ∀(t, x) ∈ QT

−w(0, x) + v(0, x) ∀x ∈ Ω

−w(t, x) + v(t, x) ∀(t, x) ∈ ΣT





and

F(w) −F(v) =





wxx − wt + ϕ(w) − f(t, x) ∀(t, x) ∈ QT

ũ(x) − w(0, x) ∀x ∈ Ω

g(t, x) − w(t, x) ∀(t, x) ∈ ΣT



−





vxx − vt + ϕ(v) − f(t, x) ∀(t, x) ∈ QT

ũ(x) − v(0, x) ∀x ∈ Ω

g(t, x) − v(t, x) ∀(t, x) ∈ ΣT





leads to

F ′(v)(w − v) ≤ F(w) −F(v)

⇐⇒
ϕ′(v)(w − v) ≤ ϕ(w) − ϕ(v).

As a result, the convexity of ϕ induces the convexity of F .

In a second step we consider the inverse negativity of F ′(uk), see Definition 6.1.13.

Our goal is to state conditions on F , such that F ′(uk)w ≥ 0 implies w ≤ 0 for

all Newton iterates uk(t, x), k ∈ N0.

We assume

F ′(uk)w =





wxx − wt + ϕ′(uk)w ∀(t, x) ∈ QT

−w(0, x) ∀x ∈ Ω

−w(t, x) ∀(t, x) ∈ ΣT



 =





ã

b̃

c̃



 ≥ 0, (7.32)

which describes a parabolic PDE for w.

Here we are able to apply the maximum principle. We present a formulation of the

maximum principle taken from [39, p.96], applied to (7.32). A more generalized

version can be found e.g. in [26].

Theorem 7.3.2. Assume ϕ′(uk) < 0. If ã ≥ 0 [ã ≤ 0] then all non-constant

solutions w of (7.32) will attain their positive maximum [negative minimum], if

existent, on the extended boundary ΣT ∪ {(0, x)| x ∈ Ω} of QT .

The maximum principle and the structure of (7.32) enables us to state following

Lemma concerning the inverse negativity of F ′(uk).
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Lemma 7.3.3. Let ϕ be strictly monotone decreasing. The linear mapping F ′(uk)

is inverse negative for all Newton iterates uk, k ∈ N.

Proof. We consider F ′(uk)w ≥ 0, as defined in (7.32). If ϕ is strictly monotone

decreasing we will obtain ϕ′(uk) < 0. Now (7.32) defines a parabolic PDE, whose

characteristics fit to the maximum principle. Theorem 7.3.2 ensures that the

positive maximum, if existent, lies on the boundary {(0, x)| x ∈ Ω} ∪ ΣT of QT .

In addition, the function value on the boundary is known due to (7.32). We

obtain w(t, x) = −b̃ for all (t, x) ∈ {(0, x)| x ∈ Ω} respectively w(t, x) = −c̃ for

all (t, x) ∈ ΣT , which are both negative. As a result, there exists no positive value

of the solution of the parabolic PDE (7.32) and hence w ≤ 0 for all solutions of

the parabolic PDE (7.32). Therefore F ′(uk)w ≥ 0 always implies w ≤ 0, which

is the definition of the inverse negativity of F ′(uk).

An additional requirement of the monotonicity preserving convergence theory,

presented in chapter 6, is the existence of a solution w of the corresponding

inequality F(w) ≤ 0.

Lemma 7.3.4. Let ũ(x) ≤ 0 ∀x ∈ [a, b], g(t, x) ≤ 0 ∀(t, x) ∈ ΣT and ϕ(0) ≤
f(t, x) ∀(t, x) ∈ QT . For w defined as the zero function w ≡ 0, we obtain

F(w) ≤ 0.

Proof. Due to

F(0) =





ϕ(0) − f(t, x) ∀(t, x) ∈ QT

ũ(x) ∀x ∈ [a, b]

g(t, x) ∀(t, x) ∈ ΣT



 (7.33)

and the restrictions defined in the Lemma, we achieve F(0) ≤ 0.

The conditions, listed in Lemma 7.3.1, Lemma 7.3.3 and Lemma 7.3.4, guaran-

tee that F , defined in (7.31), satisfies all requirements of our theory. Lemma

7.3.1 secures the convexity of F , Lemma 7.3.3 the inverse negativity of F ′(uk) for

all Newton iterates uk. Finally Lemma 7.3.4 states a solution of the inequality

F(w) ≤ 0. Therefore all requirements of Theorem 6.3.3 are met and an inexact

version of Newton’s method can be applied, which shows a monotone convergence

behaviour. In addition, the initial iterate does not have to lie in a neighborhood

of a solution.

Unfortunately Newton’s method can be rarely realized in infinite dimensional

function spaces, apart from toy problems see e.g. [21]. Therefore we concentrate

on the discretized problem for (7.31) in a finite dimensional space. Since our

considerations indicate that the mapping F in the infinite dimensional function
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space fits to our theory, we expect the discretized version to behave likewise.

We discretize Q̄T of the parabolic PDE (7.28) - (7.30) with step size 4x = h =
b−a
n+1

in space direction, i.e x0 = a, xi = a + ih for i = 1, ..., n and xn+1 = b. The

time dimension is discretized with step size 4t = k = T
m+1

into t0 = 0, ti = ik

for k = 1, ..., m and tm+1 = T .

With ui,j we now denote the function value u(ti, xj), evaluated in one discretiza-

tion point (ti, xj).

The second derivative uxx(ti, xj) is approximated with standard finite differences

for a fixed time

uxx(ti, xj) ≈
1

h2
(ui,j−1 − 2ui,j + ui,j+1)

and ut(ti, xj) is estimated by

ut(ti, xj) ≈
1

k
(ui+1,j − ui,j).

Now a step of the implicit Euler scheme, see e.g. [71], for the solution of the

occuring PDE (7.28) reads as follows

1

k
(ui+1,j − ui,j) =

1

h2
(ui+1,j−1 − 2ui+1,j + ui+1,j+1) + ϕ(ui+1,j) − f(ti+1, xj),

which can be rewritten in

ui+1,j = ui,j +
k

h2
(ui+1,j−1 − 2ui+1,j + ui+1,j+1) + kϕ(ui+1,j) − kf(ti+1, xj).

(7.34)

Since the boundary conditions are given in a Dirichlet representation, the function

values on the boundary can be easily substituted.

Some abbreviation are necessary for an easier understanding, we therefore define

r := k/h2,

~u0 :=






ũ(x1)
...

ũ(xn)




 ∈ Rn, ~uj :=






uj,1
...

uj,n




 ∈ Rn, j = 1, ..., m, ~u :=






~u1
...

~um




 ∈ Rmn

and

D :=









−2 1 0

1
. . .

. . .
. . .

. . . 1

0 1 −2









∈ Rn×n.
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In addition, we need Φ : Rn → Rn, defined by

Φ






u1
...

un




 :=






ϕ(u1)
...

ϕ(un)




 and ~fj :=










f(tj , x1) − 1
h2 g(tj, a)

f(tj , x2)
...

f(tj , xn−1)

f(tj , xn) − 1
h2 g(tj, b)










.

Utilizing (7.34) and above abbreviations, we state the complete time step for the

j-th step of the implicit Euler scheme

~uj+1 = ~uj + rD~uj+1 + kΦ(~uj+1) − k ~fj+1. (7.35)

This single step can be also presented as solution of a corresponding equation

Fj(~uj+1) = ~uj − ~uj+1 + rD~uj+1 + kΦ(~uj+1) − k ~fj+1 = 0. (7.36)

Our goal is to define a mapping F such that a solution u∗ of F(u) = 0 is also

a solution of the discretized problem, i.e. it should cover all time steps of the

implicit scheme.

We use the the definition of the j- th time step of the implicit Euler scheme (7.35)

and the initial condition to obtain

F











~u1
...

~uj

...

~um











=











~u0 − ~u1 + rD~u1 + kΦ(~u1) − k ~f1
...

~uj−1 − ~uj + rD~uj + kΦ(~uj) − k ~fj

...

~um−1 − ~um + rD~um + kΦ(~um) − k ~fm











= 0. (7.37)

This mapping F(·) : Rmn → Rmn is almost affine-linear, only the parts involving

kΦ(~uj), j = 1, ..., m are nonlinear. We introduce a partial ordering on Rmn and

call x ≤ y if and only of xi ≤ yi for all i = 1, ..., mn.

Again we use Newton’s method for the solution of F(u) = 0. The Newton iterates

~u k, k ∈ N are now elements of Rmn and a Newton step is defined as follows

F ′(~u k)(~u k+1 − ~u k) = −F(~u k) k ∈ N,

assumed a given initial iterate ~u 0 ∈ Rmn.

Now we focus on the question whether above system of equation fit to our theory,

developed in chapter 6. In this case an inexact version of Newton’s method would

provide a monotone convergence property and a more global convergence.

In a first step we show that F ′(~u k) is inverse negative for all Newton iterates

~u k, k ∈ N.
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Lemma 7.3.5. Assume that ϕ is strictly monotone decreasing. Then F ′(~u k) is

inverse negative for all Newton iterates ~u k, k ∈ N.

Proof. We consider F ′(~u k), defined by

F ′(~u k) := −









I − rD − kMk
1 0

−I
. . .

. . .
. . .

0 −I I − rD − kMk
m









∈ Rmn×mn,

(7.38)

where

Mk
j :=






ϕ′(uk
j,1) 0

. . .

0 ϕ′(uk
j,n)




 ∈ Rn×n, j = 1, ..., m.

Since ϕ is assumed to be strictly monotone decreasing, we obtain ϕ′(uk
i,j) < 0

for every discretization point (ti, xj) and each Newton iterate ~u k. Furthermore,

F ′(~u k) is of the form F ′(~u k) = −Jk, where Jk is a M-matrix, see definition 7.1.4.

The M-matrix property can be shown with help of the diagonal dominance of Jk.

The diagonal elements Jk are always of the type 1 + 2r − kϕ(uk
i,i) and positive.

In the corresponding column, the non-zero elements sum up to −1 − r − r in

the worst case. Due to the positivity of −kϕ(uk
i,i), the absolute value of the

diagonal elements is always greater than the sum of the absolute values of the

non-diagonal entries in the corresponding column. As a result, we obtain the

M- matrix property of Jk with help of Theorem 2.4.14 in [56]. Theorem 7.1.11

states the existence of J−1
k and J−1

k ≥ 0. Now F ′(~u k)w = −Jkw ≥ 0 always

implies w ≤ 0 due to J−1
k ≥ 0, which states the inverse negativity of F ′(~u k) for

all Newton iterates ~u k.

Remark 7.3.6. Lemma 7.3.5 is the analogon of Lemma 7.3.3 in the finite di-

mensional space.

The convexity of F is dependent on the structure of ϕ.

Lemma 7.3.7. Assume that ϕ is convex, then the mapping F is also convex.

Proof. Again, we compare

F ′(v)(w − v) = −









I − rD − kM1 0

−I
. . .

. . .
. . .

0 −I I − rD − kMm









(w − v),
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where

Mj :=






ϕ′(vj,1) 0
. . .

0 ϕ′(vj,n)






with

F(w) − F(v) =











~u0 − ~w1 + rD~w1 + kΦ(~w1) − k ~f1
...

~wj−1 − ~wj + rD~wj + kΦ(~wj) − k ~fj

...

~wm−1 − ~wm + rD~wm + kΦ(~wm) − k ~fm











−











~u0 − ~v1 + rD~v1 + kΦ(~v1) − k ~f1
...

~vj−1 − ~vj + rD~vj + kΦ(~vj) − k ~fj

...

~vm−1 − ~vm + rD~vm + kΦ(~vm) − k ~fm











.

We obtain

F ′(v)(w − v) ≤ F(w) −F(v)

if and only if

Mj(~wj − ~vj) ≤ Φ(~wj) − Φ(~vj)

⇐⇒





ϕ′(vj,1) 0
. . .

0 ϕ′(vj,n)











wj,1 − vj,1
...

wj,n − vj,n




 ≤






ϕ(wj,1)
...

ϕ(wj,n)




 −






ϕ(vj,1)
...

ϕ(vj,n)




 .

holds for j = 1, ..., m. Since ϕ is assumed to be convex, above relation is always

satisfied. Therefore the convexity of ϕ implies the convexity of F .

Remark 7.3.8. Lemma 7.3.7 is the analogon of Lemma 7.3.1 in the finite di-

mensional space.

A solution of the inequality F(u) ≤ 0 can be found under additional requirements

on the structure of F .
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Lemma 7.3.9. Let ~u0 + kΦ(0) − k ~f1 ≤ 0 and Φ(0) − ~fj ≤ 0 for all j = 2, ..., m.

Now u ≡ 0 ∈ Rmn is a solution of F(u) ≤ 0.

Proof. Consider

F(0) =











~u0 + kΦ(0) − k ~f1
...

kΦ(0) − k ~fj

...

kΦ(0) − k ~fm











, (7.39)

together with the assumptions of the Lemma, we obtain F(0) ≤ 0.

Remark 7.3.10. Lemma 7.3.9 is the equivalence of Lemma 7.3.4 in the finite

dimensional space.

Note, above requirements are less restrictive as those introduced in Lemma 7.3.4.

Lemma 7.3.11. If the mappings ϕ, f, ũ and g satisfy the conditions of Lemma

7.3.4 then the corresponding discretized values will meet all requirements of

Lemma 7.3.9.

Proof. Let ϕ, f, ũ and g satisfy the conditions of Lemma 7.3.4. Since u(0, x) :=

ũ(x) ≤ 0 ∀x ∈ Ω, the vector ~u0 of the discretized initial values is negative. In

addition, ϕ(0) ≤ f(t, x) ∀(t, x) ∈ QT and g(t, x) ≤ 0 ∀(t, x) ∈ ΣT , together with

the definition and abbreviation of the discretized vectors, we obtain kΦ(0)−k ~fj ≤
0.

Now all requirements of the monotonicity preserving convergence theory for in-

exact Newton methods

F ′(~u k)(~u k+1 − ~u k) = −F(~u k) + Rk k ∈ N, (7.40)

are met and we are able to apply Theorem 6.3.3 for the solution of F(u) = 0.

Theorem 7.3.12. Let F(·) : Rmn → Rmn be defined as in (7.37). Assume that ϕ

is convex and strictly monotone decreasing. In addition, assume ũ(x) ≤ 0 ∀x ∈
[a, b], g(t, x) ≤ 0 ∀(t, x) ∈ ΣT and ϕ(0) ≤ f(t, x) ∀(t, x) ∈ QT and R0 ≤ 0.

Under following requirements on the residuals

−F(~u k) ≤ Rk ≤ 0 k = 1, ... (7.41)

lim
k→∞

Rk = 0 (7.42)

we obtain monotone iterates ~u 1 ≤ ... ≤ ~u k ≤ ~u k+1 ≤ ... ≤ 0 for the inexact

Newton’s method (7.40) which converge to a solution of the equation F(u) = 0.
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Proof. Since ϕ is strictly monotone decreasing, we obtain the inverse negativity

of F ′(~u k) for all inexact Newton iterates ~u k with help of Lemma 7.3.5. Further-

more, the convexity of ϕ implies the convexity of F due to Lemma 7.3.7. Lemma

7.3.9, together with the requirements on the mappings ϕ, f, ũ and g, states

F(0) ≤ 0. Now we are able to apply Theorem 6.3.3 to conclude the proof.

As in the infinite dimensional case, we are able to extend Newton’s method to

an inexact version. Under additional requirements we are able to restore the

monotonicity of the iterates and therefore a different convergence radius also for

the inexact case. We demonstrated another application of our theory.



Chapter 8

Conclusions and outlook

Our work is initiated with an analysis of algebraic Riccati equations, alike (1.1).

Those equations play an important role e.g. in control theory and are therefore

of practical interest and well studied. Kleinman [45] already discussed Newton’s

method for this kind of equation in 1968. His monotonicity and convergence re-

sults were unusual and depend on the special structure of the algebraic Riccati

equation.

We extended Kleinman’s monotonicity and convergence results to alternative ver-

sions of inexact Newton methods. Depending on the choice of the applied residu-

als we achieve a linear, a superlinear or even a quadratic rate of local convergence.

A local convergent inexact method can always be developed. Additional require-

ments on the residuals are necessary to extend the famous convergence results

introduced by Kleinman, including monotonicity of the iterates and a global

convergence property. Numerical examples demonstrate the benefits of the new

developed methods.

Some requirements on the residuals involve matrix inequalities and up to now

there is no way to test them efficiently. This is still an open field of research.

A second version of the Kleinman-Newton method has been developed by Banks

and Ito [3] and exhibit several advantages compared to the original method, e.g.

a low-hand rightside. Unfortunately, we showed that this version is incompatible

with inexact Newton methods because it is no longer self-correcting. We there-

fore recommend the use of the original Kleinman-Newton method in combination

with inexact Newton methods.

For linear quadratic regulator problems, one of the major areas of control prob-

lems, we are not interested in the solution of an algebraic Riccati equation, only

the so-called feedback gain matrix is of importance. Due to modification on the

stopping criteria we were able to extend feedback gain algorithms to inexact ver-

sions.

98
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Since our results were very promising for algebraic Riccati equation, we analysed

similar areas of application. Instead of introducing new theories for every ex-

ample, we developed a new theoretical background covering all applications as

special cases.

We analysed inexact Newton methods with respect to their capability to pro-

vide monotone iterates and an alternative convergence radius. To this goal, we

introduced several requirements on a function and on the residuals of an inex-

act Newton method. In order to demonstrate the benefits of the new developed

theory we showed the applicability for different applications, e.g. non-symmetric

Riccati equation, rational matrix equation occuring in stochastic control and ex-

amples taken from the quasilinearization area. As a result, we introduced a new

theory and demonstrated its practical importance by several applications.

Finally there should be more applications matching to our theory, which a further

analysis will show.
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