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Abstract

Recently, optimization has become an integral part of the aerodynamic design process chain. How-
ever, because of uncertainties with respect to the flight conditions and geometrical uncertainties,
a design optimized by a traditional design optimization method seeking only optimality may not
achieve its expected performance. Robust optimization deals with optimal designs, which are ro-
bust with respect to small (or even large) perturbations of the optimization setpoint conditions. The
resulting optimization tasks become much more complex than the usual single setpoint case, so that
efficient and fast algorithms need to be developed in order to identify, quantize and include the un-
certainties in the overall optimization procedure. In this thesis, a novel approach towards stochastic
distributed aleatory uncertainties for the specific application of optimal aerodynamic design under
uncertainties is presented.

In order to include the uncertainties in the optimization, robust formulations of the general aero-
dynamic design optimization problem based on probabilistic models of the uncertainties are dis-
cussed. Three classes of formulations, the worst-case, the chance-constrained and the semi-infinite
formulation, of the aerodynamic shape optimization problem are identified. Since the worst-case
formulation may lead to overly conservative designs, the focus of this thesis is on the chance-
constrained and semi-infinite formulation. A key issue is then to propagate the input uncertainties
through the systems to obtain statistics of quantities of interest, which are used as a measure
of robustness in both robust counterparts of the deterministic optimization problem. Due to the
highly nonlinear underlying design problem, uncertainty quantification methods are used in order to
approximate and consequently simplify the problem to a solvable optimization task. Computation-
ally demanding evaluations of high dimensional integrals resulting from the direct approximation of
statistics as well as from uncertainty quantification approximations arise. To overcome the curse of
dimensionality, sparse grid methods in combination with adaptive refinement strategies are applied.
The reduction of the number of discretization points is an important issue in the context of robust
design, since the computational effort of the numerical quadrature comes up in every iteration of the
optimization algorithm. In order to efficiently solve the resulting optimization problems, algorithmic
approaches based on multiple-setpoint ideas in combination with one-shot methods are presented.
A parallelization approach is provided to overcome the amount of additional computational effort
involved by multiple-setpoint optimization problems.

Finally, the developed methods are applied to 2D and 3D Euler and Navier-Stokes test cases
verifying their industrial usability and reliability. Numerical results of robust aerodynamic shape
optimization under uncertain flight conditions as well as geometrical uncertainties are presented.
Further, uncertainty quantification methods are used to investigate the influence of geometrical
uncertainties on quantities of interest in a 3D test case. The results demonstrate the significant
effect of uncertainties in the context of aerodynamic design and thus the need for robust design to
ensure a good performance in real life conditions. The thesis proposes a general framework for
robust aerodynamic design attacking the additional computational complexity of the treatment of
uncertainties, thus making robust design in this sense possible.






Zusammenfassung

Die numerische Strémungssimulation und Optimierung hat sich heutzutage als unverzichtbares
Werkzeug fir die Flugzeugentwicklung etabliert. Aufgrund von Unsicherheiten in den Flugbedingun-
gen sowie der Flugzeuggeometrie wird jedoch die Ausnutzung des Potenzials numerischer Opti-
mierungsverfahren bislang begrenzt. Um dennoch eine gute Performance der optimierten Entwirfe
zu erzielen, werden robust optimale Entw(rfe betrachtet, die auch bei kleinen Stérungen von Ein-
gangsparametern und Auslegungspunkten noch sehr gute Designs darstellen. Die resultierenden,
hoch komplexen stochastischen Fragestellungen erfordern die Entwicklung von schnellen und lei-
stungsfahigen Methoden, mit denen die auftretenden Unsicherheiten im numerischen Entwurf iden-
tifiziert, quantifiziert und in den Optimierungsalgorithmus einbezogen werden. Gegenstand dieser
Arbeit ist die Entwicklung einer neuen und effizienten Optimierungsmethodik zur Behandlung von
stochastisch verteilten, aleatorischen Unsicherheiten in der aerodynamischen Formoptimierung.

Um die inharenten Unsicherheiten in ein behandelbares Optimierungskonzept zu integrieren,
werden verschiedene robuste Modellierungskonzepte, basierend auf einer stochastischen Charak-
terisierung der unsicheren GréBen, diskutiert: die worst-case, chance-constrained und semi-infinite
Formulierung. Aufgrund der zu konservativen Robustheitsbewertung des worst-case Modells liegt
der Fokus dieser Arbeit auf der chance-constrained und semi-infiniten Formulierung. Ein zentraler
Punkt stellt die Analyse des Einflusses der Eingangsunsicherheiten auf relevante Zielgré3en zur
Berechnung von Statistiken dar, die in beiden Formulierungen zur Bewertung der Robustheit des
aerodynamischen Entwurfs dienen. Die hochgradig nichtlinearen Zusammenhange werden mittels
Methoden zur Quantifizierung von Unsicherheiten approximiert. Die direkte Berechnung von Stati-
stiken sowie die Methoden zur Quantifizierung von Unsicherheiten erfordern die rechenaufwandige
Auswertung hochdimensionaler Integrale. Hierzu werden Sparse Grid Techniken in Kombination mit
adaptiven Verfeinerungstechniken eingesetzt, die eine effiziente Diskretisierung des Wahrschein-
lichkeitsraumes gewahrleisten. Die Reduktion der bendtigten Diskretisierungspunkte stellt einen
wichtigen Aspekt dar, da der Rechenaufwand in jeder lteration der Optimierung anféllt und somit
mafgeblich die Performance des Algorithmus beeinflusst. Zur Lésung der diskretisierten, robusten
Optimierungsprobleme werden Verfahren, basierend auf Mehrzieloptimierungskonzepten und pro-
blemangepassten, parallelisierten One-shot Ansatzen, entwickelt und implementiert.

Zum Abschluss werden die industrielle Anwendbarkeit und Zuverlassigkeit der entwickelten Me-
thoden anhand von 2D und 3D Euler und Navier-Stokes Testfallen nachgewiesen. Numerische
Resultate der robusten Optimierung unter unsicheren Flugbedingungen sowie Geometrieunsicher-
heiten werden vorgestellt und hinsichtlich ihrer Performance mit deterministisch optimierten Profilen
verglichen. Desweiteren wird der Einfluss von Geometrieunsicherheiten auf relevante Strémungs-
gréBen mittels Methoden der Quantifizierung von Unsicherheiten in einem 3D Testfall untersucht.
Die Ergebnisse zeigen den signifikanten Effekt von Unsicherheiten und verdeutlichen zugleich die
Notwendigkeit der robusten Optimierung in der aerodynamischen Formoptimierung. Die Arbeit stellt
eine allgemeine, effiziente Methodik zur Behandlung von Unsicherheiten im aerodynamischen Ent-
wurf bereit, so dass die Berechnung von robust optimalen Designs ermdglicht wird.
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Chapter 1

Introduction

Recently, aerodynamic shape optimization is a very active research field facing the challenges from
highly demanding computational fluid dynamics problems, from optimization with partial differential
equations as constraints as well as from the proper treatment of uncertainties. Due to increasing
computing power and advancing algorithms, the numerical flow simulation has reached a highly
sophisticated level and is therefore established as an indispensable tool for the development of new
and for the improvement of existing airplanes. Further, the introduction of gradient computation
via adjoint approach allows to efficiently evaluate derivatives needed in gradient-based optimization
(cf. [54,160,161,1139,[149]). Besides standard optimization routines, which on average require 20-40
flow simulations, fast optimization methods based on one-shot ideas are available, too (see e.g.
[58, 163! [164), 172]). They have the potential to reduce the overall costs of the optimization to just
a few flow simulations. The one-shot method is based on approximate reduced SQP iterations
solving the necessary optimality conditions simultaneously. However, a deterministic approach
ignores the fact that there are stochastic and unknown variations in the problem. The conditions of
operation are not known exactly, i.e. variations of the macroscopic flight conditions like the Mach
number or the angle of attack may occur. The geometry itself undergoes unknown operational
changes due to wear and tear and manufacturing inaccuracies. All these deviations from assumed
setpoints of the deterministic optimization may render the supposedly optimal solution worthless,
since their conclusions are not realized in practice. The proper treatment of these uncertainties
within a numerical context is a very important challenge. This thesis is devoted to the enhancement
of highly efficient optimal design techniques by a robustness component, which tries to make the
optimal design generated a still good design, if the setting of a specific design point is varied.

In order to formulate the robust design optimization problem, the boundary conditions and input
parameters are analyzed to identify the uncertainties, which cannot be avoided at all before con-
structing an aircraft. We will focus on shape optimization problems influenced by aleatory uncertain-
ties, which arise because of natural, unpredictable variations of the boundary conditions. Definitions
and classification of errors and uncertainties in the aerodynamic framework can be found in [5},1134].
Additional knowledge cannot reduce aleatory uncertainties, but it may be useful in getting a better
characterization of the variability. In this thesis, a stochastic approach in order to include the uncer-
tainties in the optimization problem is chosen avoiding a parametrization of the uncertainties, which
would lead to a reduction of the space of realizations. A key issue is then to propagate the input
uncertainties through the systems to obtain statistics of quantities of interest, which are used as
a measure of robustness in the optimization. Uncertainty quantification in the context of computa-
tional fluid dynamics is a fast growing area of research. Due to the high complexity of the underlying
deterministic problems, efficient methods need to be developed to make the methods industrially
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usable. A detailed overview of existing methods in uncertainty quantification with applications in
CFD is given in [101]. Further details on the state of the art on uncertainty quantification in CFD
can be found in [44], 115, [116] [121]. Using these techniques in a robust optimization framework,
one should be aware that statistics are needed in every iteration of the optimization algorithm; that
means the computational effort propagating the input uncertainties through the system repeatedly
comes up in every iteration. Hence, the objective of this thesis is to provide efficient methods
reducing the additional computational complexity of the treatment of uncertainties, thus making
robust design in this sense possible. Since the resulting robust optimization tasks become much
more complex than the usual single-setpoint case, most of the techniques developed so far pertain
to problems with a low degree of nonlinearity (cf. [80, [152]). In the aerodynamic framework, the
first papers towards robust optimal design are based on a multipoint optimization approach in order
to achieve a design, which shows a good drag performance for several given realizations of the
uncertain parameter, see e.g. [187]. In more recent papers (cf. [76,[110]), stochastic information of
the input uncertainties is taken into account resulting in a stochastic optimization problem. Most of
the papers so far restrict the discussion to unconstrained shape optimization problems influenced
by scalar-valued uncertainties (e.g. [76, 109} [136]). The proper treatment of additional constraints
in the optimization problem poses a difficult task from the numerical point of view. There are two
main strategies to involve constraints with uncertain input data: the chance-constrained formula-
tion and the semi-infinite formulation. Considering chance-constrained formulations, the constraint
is required to hold with a certain probability. To check the feasibility of a chance-constraint, the
evaluation of integrals, which are analytically tractable only for some special cases, arises. On the
other hand, the semi-infinite formulation aims at maintaining the feasibility of the constraint for all
realizations of the random input data resulting in infinitely many constraints in the continuous case.
In this thesis, we will investigate both formulations and suggest approximations to overcome the
difficulties. Further, a numerical comparison of the resulting robust solutions considering a 2D in-
dustrial test case will be presented. Beside the scalar-valued uncertainties caused by operational
uncertainties, function-valued uncertainties are present in the shape optimization problem due to
geometrical uncertainties. The real shape may vary from the planned shape due to manufacturing
tolerances, temporary factors like e.g. icing or fatigue of material. Since there are so many factors
having effects on the shape, this uncertainty has to be considered in the optimization problem in or-
der to produce a design, which is robust to small perturbations of the shape itself. In literature, there
can be found only few papers on this topic investigating the influence of variations of the profile (cf.
[65 115 [116]). So far, the geometrical uncertainties are modeled by variations of characteristic
quantities describing the shape, e.g. the camber and thickness. However, the parametrization of
the geometrical uncertainties leads to a reduction of the space of realizations. This method does
not allow to properly model arbitrary input uncertainties given e.g. by measurements. To overcome
this drawback, a stochastic approach describing the uncertainties by a random field is suggested
in this thesis. The stochastic model allows to adapt the robust optimization to new information of
the uncertain parameter, e.g. if new measurements are available, so that a general framework of
robust aerodynamic design is provided. To reduce the additional computational effort resulting from
the stochastic model, efficient approximation and discretization techniques need to be elaborated.

This thesis gives insight into significant enhancements of robust gradient-based shape optimiza-
tion methods aiming at removing the deficits of state of the art methods outlined above. The inves-
tigations presented here are part of the research effort MUNA.



1.1 The MUNA project

1.1 The MUNA project

The project MUNA (2007 - 2010) was initiated as part of the current German Aeronautical Re-
search Program LuFo IV to introduce uncertainties within the computational fluid dynamics simula-
tion process. The acronym stands for Management and Minimization of Uncertainties in Numerical
Aerodynamics. It is lead-managed by the DLR Institute of Aerodynamics and Flow Technology in
Braunschweig with the participation of Airbus Germany, EADS-MAS, Eurocopter and eight univer-
sity institutes, among these the University of Trier. Within the former national initiatives MEGAFLOW
[97] and MEGADESIGN [98], the simulation tools FLOWer and TAU as well as solvers for the corre-
sponding adjoint equations were developed and introduced into the aerodynamic design process.
Building on the highly sophisticated tools and methods developed in these projects, the project
MUNA is working on management and minimization of CFD uncertainties. The main objectives of
the project are:

o Identification and quantification of uncertainty sources

e Analysis of sensitivities and computation of confidence intervals

e Development of methods and strategies to minimize the main uncertainties and errors
e Verification of the developed methods and demonstration of their reliability.

The University of Trier focuses on the proper treatment of irreducible uncertainties arising in the
formulation of aerodynamic design tasks. More precisely, the aim is to compute optimal designs,
which are robust with respect to small (or even large) perturbations of the optimization setpoint
conditions. Existing simulation and optimization methods will be improved, so that numerical un-
certainties are identified, quantized and included in the overall optimization procedure, thus making
robust design in this sense possible.

1.2 Outline of this thesis
The thesis is structured as follows:

Chapter[2: Background on Aerodynamic Design This chapter gives an introduction to fluid dy-
namics in order to derive the governing equations. Basic properties of the solvers, which
are used to solve the flow equations, are presented focusing mainly on the use within an
optimization procedure. Further, the deterministic shape optimization problem is formulated
serving as a basis for the robust formulations.

Chapter [3: The Nature of Uncertainties in Aerodynamic Design The first part of the chapter is
devoted to the identification and classification of uncertainties in the aerodynamic framework.
After a short overview of the main stochastic models in order to mathematically describe
uncertain parameters, probabilistic models of the identified uncertainties are introduced.

Chapter [4: Robust Formulations of Aerodynamic Design Problems The proper formulation of
objective functions and constraints with respect to the uncertainties is discussed in chapter 4]
Since the term robustness is not clearly defined in literature, the chapter contains a brief
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overview of research activities on robust optimization. Three classes of robust formulations,
the worst-case, the chance-constrained and the semi-infinite formulation, of the aerodynamic
shape optimization problem are identified. Since the worst-case formulation may lead to
overly conservative designs, the focus of this thesis is on the chance-constrained and semi-
infinite formulation.

Chapter B Uncertainty Quantification Uncertainty quantification methods, which determine the
effect of uncertainties in the input data on quantities of interest in the output of a simulation,
can be used to efficiently compute statistics measuring the robustness of a design within an
optimization. Several uncertainty quantification methods are discussed in this chapter and a
general framework to approximate the statistics of the quantities of interest is suggested.

Chapter 6} Discretization of the Probability Space The computation of statistics of quantities
depending on the current design vector and the uncertain parameters require the evalua-
tion of multi-dimensional integrals, which cannot be solved analytically. In chapter 6] efficient
discretization methods based on sparse grids in combination with adaptive strategies in order
to approximate the resulting integrals are discussed.

Chapter[7: Fundamentals of Optimization Optimality conditions as well as basic algorithms with
focus on methods used in the aerodynamic shape optimization framework, especially the one-
shot method, can be found in chapter[7} As the discretization of the semi-infinite formulation
results in a multiple-setpoint problem, the basic one-shot method is adapted to this multiple-
setpoint case and a generalized version of the one-shot approach is suggested. Optimizing
the chance-constrained formulation, gradients with respect to the design variables cannot be
evaluated by the use of the available adjoint solvers, so that a gradient-free algorithm has to
be considered additionally.

Chapter [8: Aerodynamic Applications and Numerical Results The first part of this chapter is
devoted to the numerical comparison of the semi-infinite and the chance-constrained formu-
lation considering the optimization of a 2D transonic profile in Euler flow under scalar-valued
uncertainties. Further, the influence of different measures of robustness of the objective
function and the interaction of two scalar-valued input uncertainties are investigated on the
basis of the 2D test case. In a 2D Euler and Navier-Stokes test case, numerical results of
robust aerodynamic shape optimization under geometrical uncertainties are presented. The
stochastic model describing the geometrical uncertainties is approximated by a goal-oriented
uncertainty quantification method to reduce the computational complexity. Two adaptive re-
finement strategies of sparse grids discretizing the underlying probability space are compared
in order to provide an efficient way of computing statistics within the optimization procedure.
At last, the influence of geometrical uncertainties in a 3D industrial test case is quantized by
expanding the quantities of interest in a series of orthogonal polynomials by a non-intrusive
polynomial chaos method. The surrogate function is then used to determine statistics of the
solution like the mean or variance.

Chapter[9: Conclusions and Outlook The thesis concludes with a review of the developed meth-
ods and gives an outlook to extensions and further work on robust aerodynamic optimization.



Chapter 2

Background on Aerodynamic Design

The first part of this chapter will give a survey of the fundamentals in optimal aerodynamic design.
We start with a short introduction to fluid mechanics in order to derive the flow equations, Euler and
Navier-Stokes. The derivation of the equations is based on conservation laws, which we will shortly
discuss. In order to solve the flow equations, the solvers FLOWer and TAU developed at the DLR
are used for the prediction of viscous and inviscous flows around complex geometries from the low
subsonic to the hypersonic flow regime. Some basic properties will be introduced, focusing mainly
on the use within an optimization procedure.

The second part is devoted to the shape optimization problem. The aim of shape optimization
in aerodynamics is to reduce the forces, which negatively affect the performance of an airplane.
Proper objective functions and constraints will be defined in order to formulate the single-setpoint
aerodynamic shape optimization problem serving as a basis for the robust formulations.

2.1 Flow equations

Fluid dynamics is a field of science, which examines the physical laws governing the flow of fluids
under various conditions. The studies go back at least to the days of ancient Greece whereas the
history of Computational Fluid dynamics (CFD) did not start until the early 1970’s with the availabil-
ity of computers combined with the development of efficient numerical methods for solving the flow
equations on such computers. CFD is concerned with the numerical solution of differential equa-
tions describing moving fluids. Today, CFD finds extensive usage in basic and applied research,
in design of engineering equipment and in calculation of environmental and geophysical phenom-
ena [34]. Several CFD applications can be found in [36]. The development of highly sophisticated
numerical software and high speed computers within the last 30 years enables the simulation of
more and more complex simulation scenarios such as 3D test cases, transonic and turbulent flows.
Nowadays, experiments performed using a wind tunnel can often be replaced by CFD simulations
due to the improvements concerning the accuracy and speed of the simulations. Further, CFD al-
lows to simulate scenarios, which cannot be realized in a wind tunnel, and provides observations
of flow properties in the whole domain, which is not the case in wind tunnel experiments. Another
important advantage of CFD in design optimization is the fact that changes in geometry can easily
be included whereas in experiments a new model is required. Hence, the application of CFD in
design processes can significantly reduce costs and time consumptions. But CFD is still an aid to
other analysis and experimental tools like wind tunnel testing and is used in conjunction with them
in design processes. An important open issue is still the real time computation, which has not yet
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been reached despite the increasing speed of computation available. An introduction to CFD can
be found e.g. in [6, 19, 34, 147, 48].

CFD is fundamentally based on the governing equations of fluid dynamics. They represent the
mathematical statements of the conservation laws of physics. We will now introduce physical basics
in order to derive the flow equations.

The dynamical behavior of a fluid is determined by the following conservations laws:
1. the conservation of mass
2. the conservation of momentum (Newton’s second law)
3. the conservation of energy.

Further, we assume that the fluid obeys the continuum hypothesis, which considers fluids to be
continuous. In other words, the discrete molecular structure of the fluid is ignored.

Remark 2.1.1 (Hypothesis of Continuum). Given a domain Q € RY, d = 2, 3, there exists a well
defined mass density p(x, t),Vx € Q,t > 0, such that the total mass m(, t) in the domain Q at
time t is given by

m(Q, t) = / p(x, 1) dV. (2.1)
Q

In the following, we denote by W a subdomain of 2, W the boundary of W, n the unit normal
vector and by dA the area element on 0f2.

Lemma 2.1.2 (Conservation of Mass). The conservation of mass implies that the mass of a closed
system will remain constant over time, which means the change of mass in a fixed subdomain W is
equal to the flow of mass over the boundary OW into W':

d pdV:—/ (pv,n) dA, (2.2)
dt Jw ow

where v is the velocity. This is equivalent to

?)[; +div (pv) =0. (2.3)
Proof. The proof can be found e.g. in [19]. O

Using Newton’s second law, which implies that the change of momentum is equal to the sum of
all active forces, we obtain the following equation.

Theorem 2.1.3 (Conservation of Momentum). Considering the volume forces
/ p(x, )g(x, t) dV
w

with g € R3 given volume forces and surface forces

/ (T%(x, t), n) dA,
ow
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where 75 € R3*3, 75 = —pP'| + o' is the stress tensor describing the internal friction o' € R3*3
and pressure p”" € R, one obtains the relation

d pvdV=/png+/diVTst (2.4)
dt Jw w w

ors
with (div 7%); = 37, 82 ,i=1,2,3.
Using the Reynolds transport theorem (cf. [19]), the conservation of momentum can be rewritten
as

%(pvi) +div (pv;v) = pg; + (divr®);, i=1,2,3. (2.5)

For the so called Newtonian fluids, to which air belongs, the viscosity o' can be expressed in the
viscosity coefficients "¢ (volume viscosity) and 11"° (shear viscosity)

o’ = \"(div v)I + 2,°D, (2.6)
where D = Dj € R¥*3, Dj = % (% + g—)‘Z) denotes the deformation tensor.
Proof. The proof can be found e.g. in [19]. O

The last conservation law concerns the conservation of energy.

Theorem 2.1.4 (Conservation of Energy). The change of energy is equal to the work performed by
external forces plus heat supply

d pEdV=/(pg, v)dV+/ (kVT,n) dA+/ (°v, n) dA (2.7)
dt Jw w ow ow

with E = % + e total energy, e internal energy per unit of mass, T temperature and k the heat

conductivity. Applying the Reynolds transport theorem and the divergence theorem [19], the con-
servation of energy in integral form can be stated as

/ Q(pE) +div (pEv)dV = / ({pg, v) —div(—kVT — 75v)) dV (2.8)
w Ot w
or in differential conservative form

gt (pE) = (pg, v) — div(pHv — kN T —a'v), (2.9)

where H = E + % is the enthalpy.

Proof. The proof can be found e.g. in [19]. O
The conservation laws give five equations for the unknowns p, v = (vy, o, v3), E, p?", T. In order

to obtain a closed system, additional assumptions have to be made eliminating the pressure p””
and the temperature T.
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Remark 2.1.5 (Ideal Gas). The remaining equations are algebraic material relations linking density,
pressure, temperature and internal energy. We assume dealing with an ideal gas

" = RpT, (2.10)

where R is the gas constant. From thermodynamics, the gas constant can be related to the
specific heats for a calorically perfect gas and a thermally perfect gas

R=c,— ¢y, (2.11)
where ¢, is the specific heat for a constant pressure and ¢, is the specific heat for a constant

volume [6].

e=c, T + const (2.12)

implies that the specific heat should be constant, if the volume is constant.

Equation (2.12) gives
R Iv?
r
=—p| E—-"—],
4 cvp ( 2

2
ppr=(7_1)p<5_ v >

which can be rewritten as

2

using the adiabatic exponent v = g—‘v’ Further, equation (2.10) eliminates the temperature from the

unknowns or
T-7.
Rp
The above additional assumptions and conservation equations give five equations for five un-

known p, v = (v1, Vo, v3), E, so that we can now introduce the Euler and Navier-Stokes equations.

2.1.1 Euler equations

If viscous effects due to internal friction are negligible, the Euler equations are used to describe the
flow.

Definition 2.1.6 (Euler Equations). The behavior of a compressible, inviscid flow on the domain €2
is described by the Euler equations:

% +div(pv) = 0 (2.13)
0 _ g .
gl +div(pvv) + o = pgi, 1=1,2,3 (2.14)
0 :
— (pE) +div (pHV) = (pg,v). (2.15)

ot

A system of five equations (in the 3D case) is obtained. The first one results from the conservation
of mass, the second to the fourth from the conservation of momentum and the last one from the
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conservation of energy neglecting the viscous terms, that means the stress tensor reduces to 75 =
—pP’l. Equations can be rewritten in conservative form as

3
oy oF;

with the vector of state variables, also referred to as conservative variables,

P
a4
y=1pov|,
pPVa
pE
the convective flux vectors

PYj
pvivi + 6 PP
Fi=|pyvo+dpp” |, =123
pV;va + 6j3p”"
pHY;
and the right hand side
0
PI1
P92
P93
(pg, v)
Equation can be reformulated using the primitive variables given by the vector

Q:
Il

p
4
Yprimitive = | V2 | »
V3
E

see e.g. [54].

Remark 2.1.7 (Boundary Conditions). In order to obtain a well posed problem, additional conditions
on the boundary of the computational domain 2 are needed. On the surface I of the considered
aircraft in our application, the so called Euler slip condition is required

(v,n) =0, onT. (2.17)

Considering inviscid flows, the fluid slips over the surface. Since there is no friction force, the
velocity vector has to be tangent to the surface, which is equivalent to equation (2.17). As the flow
around the airfoil is simulated on a bounded domain, additional boundary conditions, referred to as
farfield conditions, have to be introduced ensuring two basic requirements: The truncation of the
domain should have no notable effect on the solution compared to the infinite domain. No outgoing
disturbances of the flow should be reflected back into the flow field. In [6, [19], a survey of different
boundary conditions is given.
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2.1.2 Navier-Stokes equations

If the effects of frictions are not negligible, the flow is described by the Navier-Stokes equations.
Since we consider Newtonian fluids, the viscous stresses can be written as

; av, 0v; OV
f visc / f] visc
- L2 £ 8
7= (8)(, 8x,> d Z Oxk
as already stated in equation (2.6). Invoking the Stokes hypothesis

2 visc
3h

)\VISC - _

one obtains the following system of partial differential equations.

Definition 2.1.8 (Navier-Stokes Equations). The compressible Navier-Stokes equation describing
a compressible, viscous flow in Q2 are given by

Z’eriv (pv) = 0 (2.18)
3
av; ov; 2. , op””
visc [ YY1 YY) =5, ) = .
pV/ +z1:<(‘)x,( (8)(, B 36,/d|v v))) +div (pvjv) + O pgi, (2.19)
i=1,2,3

(pg. v)(2.20)

gt (pE) + div (pHv _RVT — pvise (vV . (VV)T> v+ %uV'SC(V div v)>

resulting from the conservation of mass, the conservation of momentum and the conservation of
energy including the viscous terms. Equations can be rewritten as

Z@x

j=t

°\ OFY
Z aix, +d (2.21)

j=1

with the vector of state variables, also referred to as conservative variables,

P
A%
y=1pv2l,
PV3
pE
the convective flux vectors
PYj
pViVi + 00"
Fj: ijV2+(5/‘2ppr , j=1,2,3
pVjvs + Oj3p™
PHY;

10
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and the right hand side of

0
P
P92
P93

(pg,v)

Q:
Il

The left hand side of equation is identical to the left hand side of equation (2.16), the only
difference are the viscous terms Fj" on the right hand side, which are neglected in the Euler equa-
tions:

0
11Vise % + %’(} — %(5]1 (div v)
P 1Y% 372' + % — 26j2(div v) ., j=1,2,8.
Iuvisc %‘g + %V; — %5j3(div V)

8 vise (0% L ovi 25 4 oT
D oiq Vi <87, +ox $0ji(div V)) + K

Remark 2.1.9 (Boundary conditions). As in the previous section, we will shortly discuss appropriate
boundary conditions. The relative velocity between the surface of the airfoil and the fluid directly at
the surface is assumed to be zero for viscous fluids

Vi=Vo=V3=0, on . (222)

As mentioned before, farfield boundary conditions have to be considered ensuring that the flow is
not affected by the finite domain. Further details can be found in [6} [19].

Turbulence models

The simulation of turbulent flows poses an extremely complicated problem, since turbulence causes
the appearance of eddies with a wide range of length and time scales that interact in a dynamically
complex way [175]. Despite the performance of modern supercomputers, the direct simulation of
turbulence solving the time dependent Navier-Stokes equation (2.21), referred to as direct numer-
ical simulation (DNS), is applicable only in a few simple flow problems, see for details e.g. [19].
Another possibility is the large eddy simulation (LES) tracking the behavior of the larger eddies.
LES involves space filtering of the unsteady Navier-Stokes equation passing the larger eddies and
rejecting the smaller ones. The demands on computing resources are smaller than using DNS, but
even large due to the fact that unsteady flow equations have to be solved.

Turbulence models for the Reynolds-averaged Navier-Stokes equations (RANS) are the most
used approach as they require considerably less effort for reasonably accurate flow computations
than the other two approaches. The RANS method, which is the oldest approach to turbulence
modeling, first introduced by Reynolds in 1895, is based on the decomposition of the flow variables
into mean and fluctuating parts followed by time or ensemble averaging [19]. Extra terms, the
so called Reynolds stress tensor, appear in the averaged flow equations due to the interactions
between various turbulent fluctuations. These extra terms are modeled with classical turbulence
models, which can be classified into first order and second order closures [175]. The second order

11
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closure models, which are the most complex but also the most flexible models, can be divided into
Reynolds stress transport models (RST) and algebraic Reynolds stress (ARS) models [19]. The
first order closures are based mostly on the eddy-viscosity hypothesis of Boussinesq assuming
that the Reynolds stress tensor is related linearly to the mean flow straining field. There are several
subcategories for the first order models depending on the number of additional equations: algebraic,
one equation and multiple equation models. An overview of existing turbulence models can be found
e.g. in [19].

2.1.3 Nondimensionalization

Solving the governing equations, it is convenient to use dimensionless quantities in order to obtain
the characteristic properties of the system. First, we introduce the Mach number, which is commonly
used to represent the speed of an object travelling at multiples of the speed of sound.

Remark 2.1.10 (Mach number). The Mach number named after the Austrian physicist Ernst Mach
is defined as the ratio of the fluid velocity to the local speed of sound

o v
c

where c is the speed of sound, given by ,/fy% (for a perfect gas). If the Mach number is less
than 1, the flow is called subsonic, if M =~ 1, the flow is called transonic and if M > 1, the flow is
supersonic.

In the software we use to solve the flow equations, a unit system is chosen such that the farfield
density poo, the pressure pi and the temperature T, in the farfield are unity. Introducing the
nondimensional quantities, an important nondimensional parameter closely related to the viscosity

is the Reynolds number

vL
Re = p

visc ’
o

where L denotes the characteristic length scale. The Reynolds number gives a measure of the ratio
of inertia forces to viscous forces in the flow. Neglecting the viscous terms as in the Euler equations
results in a Reynolds number equal to infinity, that means, the lower the Reynolds number the more
viscous is the flow.

Consequently, we obtain the following reference quantities (the subscripts oo denote the value in
the farfield)

L characteristic length scale
Poo =1 density
Rl = pressure
Too = temperature
Voo = Moo /Y velocity

12



2.1 Flow equations

pise = ge¥ viscosity
Koo = (;Yf%f;r heat conductivity

Reynolds number,

where Pr is the dimensionless Prandtl number indicating the ratio of kinematic viscosity and thermal
diffusivity. The Mach number M, Reynolds number Re, adiabatic exponent v, the Prandtl number
Pr and the reference length L are externally given as flow parameters.

2.1.4 Aerodynamic coefficients

In this section, we will introduce the forces acting on an airplane. We will see that the aim of the
aerodynamic shape optimization will be the optimization of these forces. All the aerodynamic forces
and moments are caused by only two basic sources:

e pressure distribution over the surface
e distribution of friction forces on the surface.

The angle of attack « is defined as the angle between the freestream velocity M., and the chord
length ¢, which is the linear distance from the leading edge to the trailing edge of the airfoil. The
normal component of the local force on each point of the body is the pressure p”" and its tangential
component the shear stress ¢'. Integrating the force over the surface produces a resultant force Fg
and a moment Fy, as sketched in figure[2.1]

Figure 2.1: Resultant aerodynamic force and moment.

The resultant force Fr can be split up into two perpendicular components

e the drag Fp parallel to the freestream axes M,

13
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e the lift F; perpendicular to the freestream axes M,

see figure Since the drag force Fp acts in a direction opposite to the moving direction, an

Figure 2.2: Resultant aerodynamic force and its components Fp, F;.

optimal aerodynamic design aims at optimizing the drag, the resistance to forward motion, and,
depending on the gravity force, a given lift is required. The drag force is given by the following
surface integral

Fp = /r (Pa) 'n—(c'a)"ndA, (2.23)

where n denotes the unit vector normal to the profile I' and a is defined by a = (cos @, 0,sina) .
The lift force, which is perpendicular to the drag force, is then computed by

F, = /(ppfai)Tn —(o'at)TndA (2.24)
A

with at = (—sina,0,cosa) .

According to the previous section, we consider the dimensionless drag and lift coefficients given
as

Fi
L=t
"7 4.8

Fp
Co=—2,
?7 0uS

where S denotes the reference area and g, = %Mgofypé’g is the dynamic pressure. The moment
coefficient is defined by
T GooSL

with L reference length. For 2D bodies, the reference area S is simply the chord length and the
reference length L is the chord length as well.

Cwm

14
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Further, the pressure and shear stress distributions causing the introduced forces can also be
defined dimensionless

ro__ r
o PP
o
and the skin friction coefficient
of
Cf = T
0/
such that the drag and lift coefficients can be expressed in terms of Cp and Cy
1
Co=3 / (Cpa)'n—(Cra)"ndA (2.25)
r
and ]
CL=¢ /(cpal)Tn —(Crat) T ndA. (2.26)
r

In the Euler case, the viscous terms are neglected in (2.25) and (2.26).

2.1.5 Flow solver

The numerical results of robust aerodynamic optimization presented in the thesis are all conducted
using the flow solvers FLOWer and TAU developed primarily by the DLR within the German CFD
initiative MEGAFLOW. A detailed presentation and demonstration of their capabilities for complex
industrial applications can be found in [97].

Structured flow solver FLOWer

FLOWer calculates compressible flows either as inviscid based on the Euler equations or as viscous
flows based on the RANS equations on structured grids. The solver provides various turbulence
models, ranging from algebraic models over one- and two-equation models to algebraic stress mod-
els (cf. [97])). The numerical method is based on structured meshes, an example of a 2D structured
grid used for the aerodynamic optimization with FLOWer is shown in figure The method im-
plemented to solve the governing equations is a finite volume method using either the cell vertex
or the cell-centered approach. The convective fluxes are approximated by a central discretization
scheme combined with scalar or matrix artificial viscosity, but several upwind schemes are also
available. Time integration is carried out by an explicit hybrid Runge-Kutta scheme. In the case
of steady-state calculations, the integration is accelerated by local time stepping and implicit or
explicit residual smoothing [144]. An important feature for the optimization is the availability of ad-
joint solvers, which are needed to efficiently compute gradients with respect to the design variables
describing the shape. We will discuss the general ideas of adjoint computation and derivative com-
putation in section and refer to [54] for a detailed discussion. The adjoint solver in FLOWer
following the continuous adjoint formulation of the Euler equations can deal with the boundary con-
ditions for drag, lift and pitching moment.

In order to handle also unstructured and hybrid meshes, the development of the flow solver TAU

started about 15 years ago at the DLR. The main features will be presented in the following, a more
detailed overview of the state of the art can be found in [70] or [166].
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Figure 2.3: C-type grid for a supersonic airfoil (NACA0012): the total geometrical plane (above)
and zoom around the airfoil (below).
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Unstructured flow solver TAU

The TAU Code is a CFD software package for the prediction of viscous and inviscid flows around
complex geometries from the low subsonic to the hypersonic flow regime employing hybrid un-
structured grids. The initial unstructured or hybrid grid is input into the preprocessing module that
computes dual grids using an edge-based data structure. Coarse grids for the multigrid algorithm
are constructed recursively by agglomerating the control volumes at the finer grid level [144]. An
example of an unstructured grid for the test case NACA0012 is depicted in figure[2.4] The standard
solver module based on a finite volume scheme uses an edge based dual cell approach, where
inviscid terms are computed employing either a second order central scheme or upwind schemes
using linear reconstruction for second order accuracy. Viscous terms are computed with a second
order central scheme. Scalar or matrix artificial dissipation may be chosen by the user. Beside an
explicit Runge-Kutta multistage scheme in combination with an explicit residual smoothing and a
multigrid method based on mesh agglomeration, an approximately factored implicit scheme (LU-
SGS) has been implemented in order to improve the performance and robustness. As in the Euler
code, several turbulence models are available. Further, the TAU software provides a continuous ad-
joint solver of the Euler equations and a discrete adjoint approach for the Euler and Navier-Stokes
case, which is used in the optimization in order to compute gradients.

Both codes have been extended to allow geometry and mesh deformations for shape optimization
and simulation of aeroelastic effects. Details on the deformation of the shape during the optimization
will be discussed later on.

2.2 Optimal aerodynamic design

In the first part of this chapter, the basics of CFD were discussed in order to simulate the flow over
a given geometry. The resulting flow is quantized by the dimensionless drag and lift coefficients Cp,
Cy, which will be the primary quantities determining the optimality of a shape in our optimization
problem. Before we can now formulate the aerodynamic optimization problem, we have to think
about the representation of the shape, especially about the deformation during the optimization
algorithm. The parametrization plays a key role in aerodynamic design, since a change in the
parametrization may have a significant effect on the optimization problem.

2.2.1 Parametrization of the shape

Since parametrization of discrete surfaces is a fundamental and widely-used operation, it is an im-
portant application of geometry processing, which is a fast growing area of research. As mentioned
before, the shape optimization algorithm finds the optimum shape for a given structural layout, so
that the choice of parametrization has a strong influence on the whole optimization process. This
influence has been confirmed e.g. in [126]. In the following, a survey of the most used parametriza-
tions in CFD will be given, but since the parametrization of the airfoil and its influence on the solution
are not the focus of this thesis, we will refer to the literature for more details on this topic (see e.g.
[154], [169]).

One possible approach is the free-form deformation (FFD) originating from the computer graphics
field. Instead of manipulating the surface of the airplane directly, the idea of FFD is to define a

17
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Figure 2.4: Unstructured grid for a supersonic airfoil (NACA0012): the total geometrical plane
(above) and zoom around the airfoil (below).
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deformation field over the space in which the object is embedded. By transforming the so called FFD
control points in the space, the shape is deformed regardless of its geometrical description. One
advantage of this approach is that the grid topology stays fixed during the optimization procedure.
But on the other hand, large changes could produce unacceptable grids due to the fixed topology,
so that the FFD is only suitable for small to medium geometry changes. Since the changes of the
geometry in the aerodynamic optimization are typically small, this method becomes more and more
popular, cf. e.g. [23,[155].

The most used parametrization in the aerodynamic shape optimization is the analytical approach
introduced by Hicks and Henne [74]. The formulation is based on parametrizing the geometry using
the weighted sum of a set of smooth (analytical) functions. In contrast to the spline interpolation,
which uses piecewise polynomial approximations of the shape, the analytical approach leads to
deformations that tend to be less wavy. This advantage has been investigated e.g. in [148]. No
smoothing of the gradients is required, since the computed gradients always remain smooth, which
ensures the smoothness of the optimized profile [29]. The Hicks-Henne functions h, : [0, 1] — [0, 1]
we use to deform the shape during the optimization are given by

Aim(X) = (sin(wxmi? ))3 , (2.27)

where x, is defined as

with nq the number of functions used for the deformation. The “bump” functions hy, are then applied
to the camberline cam of the shape

CamMpew(x) = cam(x) + » _ pihi(x), (2.28)
i=1

where the design variables are the coefficients p; multiplying the various Hicks-Henne functions.
Figure [2.5]illustrates the Hicks-Henne function of 5 design variables and the RAE2822 profile with
the corresponding camberline, which will be deformed by the Hicks-Henne functions.
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Figure 2.5: Hicks-Henne functions of 5 design variables (in red), the RAE2822 profile and the
corresponding camberline (in green).

The different Hicks-Henne functions can be chosen such that only specific regions of the shape
are deformed, that means this approach allows a local control of the deformation. Further, an
important advantage concerning the optimization is the fact that constant thickness of the profile is
automatically preserved by this approach when parametrizing just the camberline. Thus, additional
geometric constraints can be avoided by this parametrization. The disadvantage of the Hicks-
Henne functions is that they are not orthogonal and therefore unable to represent the complete set
of continuous functions vanishing at x = 0 and x = 1, cf. [149]. Nevertheless, this approach has
proved to be quite effective with only a small number of design variables. Since the Hicks-Henne
deformation is well established in the optimization context at the DLR, this parametrization will be
maintained in the robust optimization procedure.

Another possibility is the direct approach, which means the surface grid points are directly used
in the deformation process. The main disadvantages of this method lie in the high number of design
points and the non-smoothness of the resulting shape, which can be overcome by the use of shape
derivatives and gradient preconditioning in the optimization, cf. [159, [160Q]. As the drawbacks of the
parametrization by splines or Hicks-Henne functions, which lie in the limitation of the search space
and the dependency of the computation of gradients on the number of design variables because
of the so-called “mesh-sensitivities”, can be remedied, this direct approach provides an effective
alternative to the common parametrizations. A combination of the robust approach proposed in this
work and shape optimization based on the shape calculus is under current research.
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2.2.2 The formulation of the aerodynamic shape optimization problem

The usual single-setpoint aerodynamic shape optimization problem can now be formulated in the
following rather abstract form

rpi,p f(y,p) (2.29)
st. c(y,p)=0 (2.30)
h(y,p) > 0. (2.31)

The variable y € R™ denotes the discrete state variable in conservative form, which means they
indicate the conservative quantities in each grid point. The design variables p € R™ describe
the shape to be optimized. As mentioned before, we use Hicks-Henne functions deforming the
camberline of the profile, so that the design variables are the multipliers of the various Hicks-Henne
functions (cf. equation (2.28)). We think of equation as the flow equation, more precisely
c: R x R"% — R, represents the Euler or Navier-Stokes equation with appropriate boundary
conditions. The objective in f:R"™ x R"™ — Ris the drag coefficient to be minimized and
the inequality constraint represents the lift requirements, that means h : R x R — R
computes the lift coefficient minus a target lift coefficient.

2.2.3 Adjoint equations and derivative computation

The efficient computation of derivatives with respect to the design variables is an important task in
the aerodynamic shape optimization framework. The approximation of the derivatives using finite
differences suffers from the high computational costs of one flow simulation, so that this approach
is not an appropriate choice in our application. There exists another more efficient way to compute
the derivatives, the so called adjoint approach, first introduced in the aerodynamic framework by
Pironneau [139] and in the aerodynamic shape optimization context by Jameson [77, [78] and by
Giles [60]. Below, we will give an introduction to the basics of the adjoint approach in the aerody-
namic optimization framework based on [54}[61]. For a more in-depth discussion, we refer to [118].
First, the adjoint theory is discussed considering linear problems serving as a basis for the discrete
adjoint CFD approach. Then, we will shortly present the extensions to operators defining PDEs as
introduced by Jameson, see e.g. [77].

Discrete adjoint approach

Consider the following problem

evaluate  o:=r'x (2.32)

with x satisfying Ax = b, (2.33)

where A€ R™™ r e R™ b e R" x € R™. The system (2.32-[2.33) is called the primal problem.
Suppose that A € R” solves
A d=r.

Then, it holds
o=r'x= (AT/\)TX =X Ax=)\"h
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proving the equivalence of the primal problem (2.32]-[2.33) and the dual problem defined as

evaluate  o:=\'b (2.34)
with )\ satisfying ~ ATA=r, (2.35)

where A € R™ is called the dual or adjoint variable. So, the quantity of interest o can either be
evaluated by solving the primal or the dual problem. If m = n, the computational effort will be
exactly the same for both systems. The costs of the vector dot product in the objective is negligible
compared to solving the linear system (m = n > 1), so that the dual approach will be much cheaper
if one evaluates the objective for k different values of r and / different values of b where k < I.
The adjoint variables are here considered as a mathematical construct reducing the computational
effort, for physical interpretation of the variables, we refer to e.g. [54} 161].

Continuous adjoint approach

The introduced concept of duality in the linear setting can be extended to the continuous approach
in the case of PDEs. Suppose that one wants to evaluate the functional

(r,x)q = / r'xdv
Q
where x : Q — R™ is the solution of the PDE
Dx=>b

on the domain 2 subject to homogeneous boundary conditions on the boundary 952. Then, the
adjoint operator D* is defined as

D*: (\Dx)a=(D*\,x)a, VY\x.
If the adjoint variable A : 2 — RR” solves the adjoint PDE
D*X=r
on the domain Q with appropriate homogeneous adjoint boundary conditions, then it holds
(r,x)a=(D*\,x)a ={\Dx)a=(\bq. (2.36)

Since the computation of the scalar product is usually much cheaper than the computation of the
solution of a PDE, the discussion concerning the numerical efficiency of the discrete adjoint can be
directly transferred to the continuous case.

Adjoints in aerodynamic shape optimization

As mentioned before, the introduced mathematical approach can be used to efficiently compute
derivatives in the field of aerodynamic shape optimization, which is an important issue to make
optimization computationally feasible even for complicated design tasks. The continuous adjoint
method requires the computation of the adjoint operator £* for the operator £ defining the Euler or
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Navier-Stokes equations. The derivation of the adjoint equations for inviscid and viscous compress-
ible flow with appropriate adjoint boundary conditions can be found in [60]. The two flow solvers
FLOWer and TAU both provide implemented continuous adjoint equations in the Euler case. The
solution of the adjoint PDE is then computed by the flow solver using the same method as for the
primal solution, so that the computational costs are nearly the same for the adjoint and primal solu-
tion. Using the continuous adjoint approach, one has to have in mind that the continuous approach
yields a discrete approximation to the gradient of the analytic objective function with respect to each
design variables. Hence, this will not exactly be equal to the gradient of the discrete approximation
of the objective function and may cause problems in the optimization process [61]. It still remains
an open question which approach of the two is the better one. If the solutions are smooth enough,
the two different approaches should be consistent and converge to the correct gradient of the ob-
jective function. The continuous adjoint for the Euler case in FLOWer and TAU shows good results
and provides gradients that agree with finite differences. In addition to the continuous one, the
discrete approach is available for the Euler and Navier-Stokes flow equations within the solver TAU.
The method consists of explicit construction of the exact Jacobians of the spatial discretization with
respect to the unknown variables, allowing the adjoint equations to be formulated and solved [166].
So, the adjoint problem is just the solution of a linear system, whereas the forward problem is still
solved using a pseudo-time integration scheme. The advantage of the discrete approach is the fact
that the exact gradient of the discrete objective function is obtained. But on the other hand, the
discrete approach requires much more memory compared to the continuous one, which could lead
to problems in highly complicated optimization tasks, e.g. 3D test cases. The discrete as well as
the continuous adjoints in FLOWer and TAU are well tested using several test cases comparing the
gradients with the gradients computed by finite differences, see e.g. [41}, 54, |166].

Derivative computation

According to the introduced shape optimization problem (2.29|-[2.31), we now consider the function
fly,p) : R x R — R, where the variables y, p fulfill the additional constraint

c(y,p)=0

representing the residuum of the discretized steady state flow equations. For each design variable
pi, i=1,...,np, it holds

do _ dedy e
doj Oy dp  Op
= Ax—0b

- 0.

Applying the chain rule to f, one obtains

dft _ ofoy of
dpi Oy opi  Op
of
N
= r X+ —
op;
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2 Background on Aerodynamic Design

From the discussion above, it follows

df
rix=—— —

“dpr Op

where )\ solves the adjoint equation

oc\
ATA—r=(=
A—r (8y> A

f
O \TheaT

.
_<g;> _0. (2.37)

An alternative description of the formulas above can be derived using the terminology of Lagrange
multipliers associated with constrained optimization (cf. chapter [7), which can be found e.g. in
[54] [61]. The final equations are exactly the same as those derived above.

The adjoint equation is independent of i/, which means independent of the number of
design variables, hence this equation has to be solved only once. The derivative df/dp is then
computed by matrix vector products, which are numerically much less expensive than solving linear
systems. Thinking again of the introduced shape optimization problem - [2.31), the adjoint
approach solves the PDE only once and then computes the derivative df /dp by matrix-vector prod-
ucts, whereas finite differences require n, additional PDE solves. Therefore, the adjoint approach
provides a very efficient way computing derivatives for problems of the form -[2.37).
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Chapter 3

The Nature of Uncertainties in
Aerodynamic Design

Uncertainties arise in all aspects of aerodynamic design. In order to identify and quantize the
uncertainties, we first need to distinguish between errors and uncertainties. The following definition
can be found in [5], which provides guidelines for the verification and validation of CFD simulations.
Uncertainty is defined as:

“A potential deficiency in any phase or activity of the modeling process that is due to the lack of
knowledge.”

Error is defined as:

“A recognizable deficiency in any phase or activity of modeling and simulation that is not due to
lack of knowledge.”

The key words in the definition of uncertainty are potential deficiency and lack of knowledge.
Since the sources of the uncertainties are mostly unknown, the characterization of uncertainties is
a difficult task. Hence, this definition of uncertainties suggests a stochastic approach. On the other
hand, the identification of errors is a more straightforward task due to the knowledge of the error
sources.

In order to identify and characterize the uncertainties in the aerodynamic framework, we now
introduce the following classification of uncertainties which is generally accepted in literature [134]:
epistemic uncertainties and aleatory uncertainties.

3.1 Epistemic vs. aleatory uncertainties

Epistemic uncertainty is an uncertainty due to lack of knowledge of quantities or processes of the
system or the environment. Examples are the lack of experimental data to characterize material or
poor understanding of coupled physics phenomena. These uncertainties are sometimes character-
ized as “state of knowledge” uncertainties, which means that the uncertainties can be reduced with
more knowledge of the physical process. Aleatory uncertainty however is an inherent variation as-
sociated with the physical system or the environment, e.g. variations in the atmospheric conditions,
also referred to as irreducible, stochastic uncertainties [133].

In the following, we will focus on aleatory uncertainties in aerodynamic design and develop a
framework in order to include the identified uncertainties in the optimization.
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3 The Nature of Uncertainties in Aerodynamic Design

3.2 Aleatory uncertainties in aerodynamic design

Aleatory uncertainties arise due to natural, unpredictable variations of parameter values, initial and
boundary conditions, geometry, etc. Additional knowledge cannot reduce aleatory uncertainties, but
it may be useful in getting a better characterization of the variability. In order to formulate the robust
design optimization problem, we analyze the boundary conditions and input parameters identifying
the uncertainties which cannot be avoided at all before constructing an aircraft [165].

In the following, we further distinguish two types of uncertainties: uncertainties with respect to
the flight conditions and geometrical uncertainties.

The main characteristics of the macroscopic flight conditions are angle of incidence, the veloc-
ity (Mach number) of the plane, the density and the Reynolds number. The uncertainty of these
parameters mostly results from atmospheric turbulences, which can occur during a flight. Gusts
causes changes of the velocity in the range of j:10%. Measurements of the changes in the angle
of attack and the density are not published so far, so they are assumed to be less than 10% of
the setpoint. The variations of the Reynolds number will only effect the simulation, if the Reynolds
number is in the range of 12 — 15 - 10°, that means this uncertain parameter has not to be taken
into account in our test cases.

On the other hand, we consider the shape itself as an uncertainty source. The real shape may
vary from the planned shape due to manufacturing tolerances, temporary factors like icing or fatigue
of material. Since there are so many factors having effects on the shape, this uncertainty has to
be considered in the optimization problem in order to produce a design, which is robust to small
perturbations of the shape itself. In literature, there can be found only a few papers on this topic
investigating the influence of variations of the profile (cf. [66 [116]).

3.3 Stochastic models of aleatory uncertainties

Since we want to avoid a parametrization of the uncertainties, which would lead to a reduction of the
space of realizations, we choose a stochastic approach in order to include the uncertainties in the
optimization problem. Furthermore, this approach allows to adapt the robust optimization to new
information of the uncertain parameter, e.g. if new measurements are available, so that a general
framework of robust aerodynamic design can be developed.

The proper treatment of the uncertainties within a numerical context is a very important challenge,
since simulation and also optimization under uncertainties is a fast growing field of research. As
uncertainties pose problems for the reliability of numerical computations and their results in all
technical contexts one can think of, there can be found various stochastic models depending on the
application in literature (cf. [33} 59, [82, [138], [156]). In the following, a short overview of the main
stochastic models is given. The background in probability theory can be found e.g. in [113] [114].

3.3.1 Random variables

Depending on the dimension of the uncertainty, the stochastic model is chosen. If the uncertain
parameter is a scalar, which does not depend on other variables, e.g. time or space, the proper
mathematical description will be a real-valued random variable. The outcomes of the random vari-
able are the possible values of the uncertain parameter. Since the uncertain parameter may have
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3.3 Stochastic models of aleatory uncertainties

an infinite number of possible realizations, the mathematical description by a random variable pro-
vides a suitable framework.
For all what follows, a given probability space (O, Y, P) is required.

Definition 3.3.1 (Measurable Space, Probability Space). A probability space is a triple (O, Y, P)
consisting of

e O is a non-empty set

e Y is a family of subsets of O such that
1.0ey
2. 0¢yY
3. ifUecY,thenO\UecY

(o9}
4. ifU,e Y, VYne N, then | U, €Y.

n=1
e P js a function on Y taking values in [0, 1] such that
1. P@)=0
2. P(O) =1

o
3. if{Un}:2, is a countable, pairwise disjoint sequence of subsets in Y, then P (U U,,> =
o n=1
> P (Un).
n=1
The pair (O, Y) is called a measurable space and Y a o-algebra.
The set O consists of elementary elements, the o-algebra Y is a collection of all events and the
probability measure P indicates the probability of an event. Further information can be found in

[39]. In order to introduce random variables, we first have to consider the concept of measurable
functions.

Definition 3.3.2 (Measurable Function and Random Variable). Given two measurable spaces
(01, Y1), (02, Ya), a function X : O1 — O is said to be a measurable function, if

X)) ={CecO: X)) eU}eYy, VYUEYa. (3.1)

If (04, Y1,P) is a probability space, then the measurable function X is called a (Os, Ys)-valued
random variable.

A real-valued random variable, which is used to describe the behavior of the uncertainty, is then
defined as follows:

Definition 3.3.3 (Real-valued Random Variable). Let (O, Y, P) be a probability space and (R, B)
a measurable space, where B denotes the Borel algebra. Then, the function X : O — R is a
real-valued random variable on O to R, if X is a measurable function, which means the inverse
images under X of all Borel sets in R are events, which is equivalent to

{C:X()<rteY, VreR.
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3 The Nature of Uncertainties in Aerodynamic Design

Remark 3.3.4 (Real-valued Random Vector). A real-valued random vector is the generalization
of random variables to the d-dimensional case. More precisely, a real-valued random vector X :
O — RY is a measurable function defined on a probability space (O, Y, P) to a measurable space
(RY, By).

The random variable modeling the uncertain parameter in the system can be described by its
distribution function and the density function, respectively. The distribution function of real-valued
random variable indicates the probability that the outcome of the random variable is less than or
equal to a specific value x.

Definition 3.3.5 (Probability Distribution Function of a Real-valued Random Variable). The distri-
bution function of a real-valued random variable X is Fx : R — [0, 1] such that

Fx(x) :==P[X < x], VxeR.

If the probability distribution function of X is continuous, X is a continuous random variable and
we can define the probability density function as follows.

Definition 3.3.6 (Probability Densitiy Function of a Continous Real-Valued Random Variable). A
probability density function of X is fx : R — R,, such that

X
Fx(x) =/ fx(f)dt, VxeR.
—0o0

An example of characterizing uncertain parameters by random variables can be found in [96,
143].

If the uncertain parameter also depends on additional deterministic variables, random fields are
an appropriate choice in order to mathematically describe the uncertainty. Uncertainties of quanti-
ties that vary in time are usually modeled as random processes (cf. [120]). Random fields can be
seen as a generalization of random processes, so that we will not discuss random processes here
in detail and refer to [113] [114].

3.3.2 Random fields

In this section, the concept of random fields, which we use to model the aerodynamic uncertainties,
will be shortly introduced. General introduction to the theory of random fields can be found in
[3,185 113, [114]. The formal definition of a random field is the following (cf. [3]).

Definition 3.3.7 (Random Field). Let (O, Y, P) be a probability space and T a topological space.
The measurable mapping v : © — R (the space of all real-valued functions on T) is called a
real-valued random field. Measurable mappings from O to (R7)?,d > 1, are called vector-valued
random fields. If T C RN, ~ is a (N, d) random field, and if d = 1, ~ is a N-dimensional random
field.

A one-dimensional random field is usually called a stochastic process. Random fields in two or
three dimensions are encountered in a wide range of sciences and especially in earth sciences
such as hydrology, agriculture and geology (cf. [69] 182, [86, 95| [112] [185]). In our application, it
holds T C R?, T C RR3, so that we denote the random field  in the following by

v:T,0—=R
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3.3 Stochastic models of aleatory uncertainties

for simplicity.
In literature, there can be found several special cases of random fields, but we will focus on
Gaussian random fields as many natural processes tend to have this Gaussian distribution.

Gaussian random fields

First of all, a survey of characteristics of Gaussian random variables is given. A real-valued random
variable X is said to be Gaussian (X ~ N'(m, ¢2)), if it has the density function

1 (e=m)?
X)=——-€ 222 |, xeR (3.2)
©(x) o
form € Rand o > 0. A R%valued random vector X is said to be multivariate Gaussian, if the
real-valued variable Zf’ﬂ aiXi, Ya = (aq,..,aq) € RY is Gaussian. Then, there exits a mean

vector m € RY with m; = E (X;) and a positive definite d x d covariance matrix Cov, Covj =
E ((X; — m;) (X; — m;)), such that the probability density function of X is given by

X) = 1 e—%(x—mﬁCovf‘(x—m) (3.3)

d ’ '

(2m)2 |Cov/|2

where |Cov| = det(Cov) is the determinant of Cov [3]. From (3.3), one can see that the Gaussian
variable is completely determined by the specification of the mean and the Covariance function.
Another important property, which we will need later on, is the fact that uncorrelated Gaussian vari-
ables are independent and linear combinations of Gaussian random variables are again Gaussian.

Definition 3.3.8 (Gaussian Random Field). A Gaussian random field is a random field v on T,
where all the finite dimensional distributions of (v (t1), ...,y (tn)) are multivariate Gaussian for all
1<N<oo, (f,..,tn) € TV

The expectation can be arbitrarily chosen, but the covariance function must be positive definite to
ensure that all the finite-dimensional distributions exist [3]164]. In order to model the uncertainties by
a random field, the second order statistics usually have to be extracted from measurements. Since
there are no statistical information about the uncertainties available in our application, we choose
a covariance model from the literature, which could be adapted or replaced in the optimization
algorithm, if more knowledge about the uncertainty is at hand. A short survey of the most common
covariance functions is given in the following.

Covariance functions

A common simplifying assumption is to impose the requirement that the random field is stationary
and isotropic, which means that the mean m(t) = m, ¥Vt € T and the covariance function cov : T x
T — R only depends on the distance between points cov (t,s) = cov(r), 7 = ||t — s||, Vs,t € T.
These properties are suitable in order to describe the identified uncertainties in the aerodynamic
framework, so that we only introduce covariance functions matching these assumptions.

Exponential Covariance

lt=s]
cov(t,s)=c?-e T , o,0>0
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3 The Nature of Uncertainties in Aerodynamic Design

The Matérn class (cf. [43]) includes as a special case the exponential covariance function.
One can show that random fields with a exponential covariance function are not differentiable
in mean square.

Squared Exponential Covariance

_lt=s)?
cov(t,s)=c®-e 2 , o,/>0

The squared exponential covariance function is the most widely used covariance function to
describe uncertainties in a physical application (cf. [22, (171, [184]). Since the covariance
function is infinitely many times differentiable, the corresponding random field is very smooth
[145]. Due to this property, the geometrical uncertainties will be also described by this covari-
ance function.

Rational Quadratic Covariance

t—s|?
1+H I

2

—
) , o,0,1>0
al

cov(t,s) =o?- (
The rational quadratic covariance function can be seen as a scale mixture of squared expo-
nential covariance functions with different length-scales [145].

Remark 3.3.9. Besides the stochastic approach, other possibilities modeling uncertainties can also
be found in literature: fuzzy sets and interval analysis are the most common ones. In the theory
of fuzzy sets, the boundaries of the sets are not precise and the membership to a fuzzy set is
a matter of degree. An overview and introduction to modeling uncertainty with fuzzy logic can
be found in [30]. The interval analysis approach characterizes the uncertain parameter by mostly
convex sets to which the parameters belong (cf. [179]). These approaches are applied to problems,
if uncertainty is recognized, but cannot be quantified in statistical terms. Typical applications are
problems including risks far into the future, e.g. radioactive waste repositories, or risks aggregated
across sectors and over the world [7].

The uncertainties in the aerodynamic framework can be quantified by measurements, so that we
choose the stochastic approach in order to develop a robust optimization algorithm, which is able
to include more knowledge about the uncertainties, if it will be available in the future.

3.4 Mathematical description of the identified uncertainties

Again, we distinguish between the uncertainties with respect to the flight conditions, the scalar-
valued uncertainties, and the geometrical uncertainties, the function-valued uncertainties.

3.4.1 Scalar-valued uncertainties

The scalar-valued uncertainties, e.g. the Mach number, are modeled as real-valued, continuous
random variables
s:0—-R, (3.4)
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3.4 Mathematical description of the identified uncertainties

defined on a given probability space (O, Y, P). They are characterized by a given probability density
function

Ptruncated - R — R, (3.5)

We assume (mainly due to the lack of statistical data) a truncated normal distribution of the per-
turbations ensuring that the realizations lie in between the given bounds. Furthermore, the mean
value of the random variable corresponds with the value of the deterministic model. These assump-
tions are widely used in order to describe uncertainties in CFD (cf. [116]). Nevertheless, the model
needs to be adapted to measurements, if available.

The following figure shows the probability density function of the Mach number in the test case
RAE2822 (Euler flow).

T T T T T T T
18- —density function| |

probability

I L
069 07 071 072 074 075 076 077

073
Mach number

Figure 3.1: Truncated normal distributed Mach number.

3.4.2 Function-valued uncertainties

The geometrical uncertainties also depend on the geometry itself, so they are modeled as a Gaus-
sian random field

W:T,0 =R, (3.6)

defined on a probability space (O, Y,P) and on the shape of the airfoil . In each point x of the
shape I', the uncertainty is described by a normally distributed random variable ¥ (x,-) : O — R.
Additionally, the second order statistics, the mean value and the covariance function, are given to
fully describe the random field. According to the scalar-valued uncertainties, the mean value of
the random field ) is equal to 0, since we expect no perturbations and the squared exponential
covariance function describes the interaction between the random variables on the shape:

E (46 (x, C)) = o (x) = 0, vxer (3.7)
cov (x,y) = 02 - exp <—H’(772y”2> , Vx,y €Tl (3.8)
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3 The Nature of Uncertainties in Aerodynamic Design

The parameter / determines how quickly the covariance falls off and o controls the magnitude of

the bumps. A squared exponential covariance function is chosen, since the resulting perturbed

geometry is smooth due to the smoothness of the random field as mentioned in section3.3.2
Then, a perturbed geometry is given as

vix,{)=x+v(x,()-n(x), Vxel, (€O, (3.9)

where n is the unit vector in x normal to the profile I'. Figure [3.2/shows a realization of the random

field ¢y and the corresponding, resulting perturbed shape of the RAE2822 profile is depicted in
figure[3.3

‘—perturbations (uppet side) ‘

Figure 3.2: One realization of the random field v: perturbations on the upper side of the profile
(above) and on the lower side (below).

008 T

—original shape (RAE2822)
— perturbed shape

Figure 3.3: Resulting perturbed geometry (in red) compared with the original shape (in black).

As we need to compute statistics of the flow depending on the uncertainty in our optimization
algorithm, we have to approximate and discretize the probability spaces. In the following, we will in-
troduce the Karhunen-Loéve expansion, which provides an approximation of the random field v for

the numerical evaluation of such statistics and efficient discretization techniques of the probability
space.
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Chapter 4

Robust Formulations of Aerodynamic
Design Problems

There is a variety of ways how optimization problems under uncertainties can be formulated. We
will discuss several robust formulations of the general aerodynamic design optimization problem
(2.29]-[2.31) based on probabilistic models of the uncertainties introduced in chapter 3|

In a first naive approach, we consider the general deterministic problem formulation (2.29]-[2.31)
influenced by stochastic perturbations. For the sake of simplicity, the discussion below is restricted
to random variables. The generalization of the formulations to random vectors and random fields
is straightforward. We assume that the dependence of the uncertain parameter can arise in all
aspects, i.e. a naive stochastic variant might be rewritten as

min f(y, p, $(¢)) (4.1)

y
st ¢y, p,s(C)) (4.2)
4.3

=0
h(y,p,s(()) > 0,

where s : O — R s a real-valued, continuous random variable defined on a given probability space
(O, Y, P) and characterized by a given probability density function ¢ : R — R. This formulation still
treats the uncertain parameter as an additional fixed parameter. As the flow solution and conse-
quently the lift and drag are dependent of the random input variable, these quantities itself become
random vectors and random variables, respectively. Further, the state vector y also depends on the
uncertain quantity s, so that there is a different y, for each realization of the random variable s:

min f(y(s(¢)), p, s(¢)) (4.4)
y(s(Q)).p
st c(y(s(¢).p,s(¢) =0 (4.5)
h(y(s(¢)), p, s(¢)) = 0 (4.6)
Assuming that the Jacobian
oc
Cy = 87y
is invertible, the implicit function theorem leads to
min f(©(p, s(C). p. s(C)) (4.7)
st h(©(p,s(C)).p,s(C)) =0, (4.8)
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4 Robust Formulations of Aerodynamic Design Problems

where © : R™ x O — R such that y = ©(p, s(¢)) and ¢(©(p, s(¢)), p, s(¢)) = 0.

The goal of robust optimization is now to find an optimal solution of problem (4.1]-[4.3), which is
stable with respect to stochastic variations in s. Hence, the main task is to define an appropriate
measure of robustness to reformulate problem (4.1]-[4.3) and make it mathematically tractable. In
literature, there can be found various definitions of robustness. We will first give a short overview
of the main results concerning robust optimization and then introduce three reformulations of (4.1]-

4.3).

4.1 A brief overview of literature on robust optimization

Recently, robust optimization has become a very active area of research. Concepts of robustness
and robust design optimization have been developed independently in different scientific disciplines,
such that the term robust optimization is not clearly defined. One interpretation of robustness is to
require that the solution stays optimal under any realization. The main contributors of this worst-
case philosophy are Soyster [170], Ben-Tal, Nemirovski et al. [11], 12 [13], El Ghaoui et al. [26], 142,
57] and Bertsimas and Sim [15][16]. Since the worst-case counterparts will usually turn underlying
linear or quadratic problems into nonlinear ones, the major challenge of recent research is to identify
conditions, so that the robust counterpart is computationally tractable. The main results can be
summarized as follows. The robust counterpart of linear programs (LP) are second-order cone
programs (SOCP) and of SOCP are semi-definite programs (SDP) [186]. Nonlinear optimization
problems are considered so far only in a few papers. In [37], a linearization of the uncertainty
set reducing the dependence of the constraints on the uncertain parameters is proposed in order
to compute robust solutions of nonlinear problems. [186] provides a general robust optimization
approach for a nonlinear programming setting with parameter uncertainties involving equality and
inequality constraints leading to solutions, which are robust to the first order.

An alternative approach to address optimization under uncertainty is stochastic optimization. A
good overview and introduction to stochastic programming can be found e.g. in [18] or in [152]. In
contrast to the worst-case approach, stochastic optimization involves additional probabilistic infor-
mation of the uncertain parameters. Whereas the previous approach seeks for an optimal design
with the best worst-case performance, the stochastic optimization allows to define further measures
of robustness. This flexibility is able to overcome the conservatism of the worst-case philosophy,
which might be in some applications a disadvantage. Various risk measures depending on the
application can be found in literature, see [17, 119} [153]. Beside the flexibility in the choice of the
objective function, the stochastic approach also offers the possibility to relax the requirements in
the constraints by so called chance-constrained formulations, cf. [31]. The chance-constrained
optimization problems were extensively studied by Prékopa [142].

A comprehensive survey of existing methods in robust optimization can be found in [11], [17] and
the papers provided by the Committee on Stochastic Programming (COSP), see e.g. [38, [127].

In the aerodynamic framework, the first papers towards robust aerodynamic design consider a
multipoint optimization in order to achieve a design, which shows a good drag performance for
several given realization of the uncertain parameter, see e.g. [187]. Based on this, recent papers
include stochastic information of the uncertain parameter leading to a stochastic optimization prob-
lem [76l, [110]. The worst-case approach is only discussed in very few papers due to the resulting
overly conservative designs and the required high computational effort to solve the robust coun-
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4.2 Worst-case formulation

terparts, see e.g. [40, [109]. Most of the papers on robust aerodynamic design treat the angle of
attack as a variable parameter, which is adjusted to reach the required lift. Since we model the lift
requirements as an additional constraint in the optimization problem (cf. (4.3)), the corresponding
robust counterpart of the constraint has to be formulated. Chance-constrained approaches are so
far only considered in the field of structural design, e.g. [1].

4.2 Worst-case formulation

The following worst-case formulation is the most common one in literature:

min max f(y(s), p, S) (4.9)

y(s).p s€S
s.t. c(y(s),p,s)=0, VseS (4.10)
h(y(s),p,s) > 0, VseS, (4.11)

where & denotes the set of all possible realizations of the uncertain parameter s. This kind of
accounting for uncertainties is also referred to as robust regularization [17]. The formulation (4.9]-
requires no stochastic description of the uncertain parameter, which can be of advantage, if no
knowledge on the stochastic behavior of the parameter is at hand. If the probability density function
of the uncertain parameter is not available, this approach could potentially be an attractive strategy.
Otherwise, this formulation will ignore problem specific information, if it is at hand. Furthermore,
this approach can also handle problems with uncertain parameters, which are not of a stochastic
nature. This is the case, if we think of epistemic uncertainties, e.9g. measurement or estimation
errors [11]. The constraints of the optimization problem - are hard, that means no
violations of the constraints are tolerated. This strict formulation of the constraints is typical in the
context of robust optimization. We will later discuss a model which leaves more flexibility to the
constraints by requiring the feasibility only with a given probability.

The concept of worst-case optimization leads to conservative designs, since the solution of
- is optimal with respect to the worst-case. Hence, an always feasible solution is obtained,
which shows an optimal objective value in the worst realizations of the uncertain parameter with
regard to the objective function. A typical application of the introduced measure of robustness
is structural design. When designing a bridge e.g., the engineers are interested in conservative
designs with regard to safety related quantities. In this kind of problems, the design should show
still a good performance even in the worst possible scenario.

In the context of robust aerodynamic optimization, this approach will lead to overly conserva-
tive designs. If one considers e.g. the optimization under Mach number uncertainties caused
by turbulences, the worst-case formulation will ignore the additional information, how probable the
worst-case realization is. So, the optimization could lead to a design which is optimal with respect to
a Mach number, which occur only during extreme turbulences. Hence, the optimized design results
in higher drag in much more frequent flight conditions leading to a higher fuel consumption over the
whole flight. Due to this property, the worst-case formulation is not an appropriate approach in the
aerodynamic framework and we will not treat this formulation.
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4 Robust Formulations of Aerodynamic Design Problems

4.3 Semi-infinite formulation

Here, the robust version of the nonlinear programming problem is written in the form of a semi-
infinite optimization problem

,min E(Hy(s(C). p. () (4.12)
st cly(s(Q),ps(C) =0, VCeO (4.13)
h(y(s(C)). p.s(C)) = 0, V(e O. (4.14)

The semi-infinite reformulation - aims at optimizing the average objective function but
maintaining the feasibility with respect to the constraints everywhere. Thus, it aims at an average
optimal and always feasible robust solution. This definition of robustness in the aerodynamic frame-
work can also be found e.g. in [76, [710]. Compared to the worst-case formulation (4.9]-[4.11), the
semi-infinite formulation -[4.14) minimizes the expected value of the objective function f as a
measure of robustness. This approach leads to less conservative designs, which fulfill again the
constraints for all realizations of the uncertain parameter as in the worst-case formulation (cf.
and (4.14)). The computation of the mean value in depends on the given probability distri-
bution of the uncertain parameter, so this formulation allows to include additional information in the
optimization problem. In the context of robust optimization, it is often proposed to add an additional
term to the objective function associated with variability of f in order to compute designs, which are
more conservative (cf. [76l [152] [180]). A compromise between the average and a risk associated
with variability of the drag f can be reached by adding the variance Var(f) to the objective (4.12),
see [152]. Such choice of the variability measure was first suggested by Markowitz [119]. Hence,
we obtain the following problem

min B(f(y(s(O), p, S(C)) + 0 Var(fy(s(), p, SO) (4.15)
st c(y(s(¢). p.s(Q) = 0, V(e (4.16)
h(y(s(¢)), p, s(¢)) = 0, V¢ e O. (4.17)

The coefficient 8 indicates the risk aversion, that means a large coefficient # results in a more con-
servative design of the underlying optimization problem. The mean-variance approach is popular
e.g. in financial planning [127]. Higher moments of f are usually ignored.

The evaluation of the objective function requires calculation of the corresponding integrals

E(f(y(s(0)), p: s(C))) = / Fy(s(C)), p, s(C)) dP(C)

1)
and

Var(f(y(s(C)), p, s(C))) = /O (F(y(s(C)), o, S(C)) — E(F(y(s(C)), p, S(0))? dP(C).
The integrals can be written in a closed form only in rather simple cases, so that we have to evaluate
it numerically. The generalization of quadrature formulas to the high dimensional case is not an
appropriate technique to evaluate the integrals due to the so called curse of dimensionality. In
the aerodynamic setting, there are mainly two efficient approaches, the use of surrogate models
of f(y(s(()), p, s(¢)) and the sparse grid techniques, which can circumvent the high computational
costs of the direct integration by tensor grids. In the following chapters, we will introduce and discuss
the techniques to efficiently evaluate these statistics.
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4.4 Chance-constrained formulation

4.4 Chance-constrained formulation

Chance constraints leave some flexibility with respect to the inequality restrictions (cf. [142]). In
the context of structural optimization (which is typically a bilinear problem), this formulation is also
called reliability-based design optimization [17]. The inequality constraints are only required to hold
with a certain probability Pg

min [ f(y(s(C)), p, s(¢)) dP(() (4.18)

y(s(O)p o
s.t. c(y(s(Q)), b, s(C)) = 0, V(e O (4.19)
PHC T Ay (s(Q)), p, s(€)) > 0}) > Po. (4.20)

Historically, the first paper introducing chance-constrained formulations was written by Charnes et
al. [31]. The general chance-constrained formulation, where the probabilistic constraints are taken
jointly for the stochastic constraints and the input random variables can be stochastically dependent,
was initiated by Prékopa [142].

So far, chance constraints are used mainly for weakly nonlinear optimization problems (cf. [71
80]). There are two primary reasons for the difficulties of chance-constrained problems [4]:

e The check for feasibility for a given design vector p € R™ involves the evaluation of the
integral f{c | A(S(O),p,5(C) >0} dP. The computation of this integral is analytically tractable only
for some special cases.

e The feasible set defined by the chance constraint (4.20) is generally not convex, which can
lead to problems concerning the optimization procedure.

Solution methods for problems, where one of the two difficulties are absent, can be found e.g. in
[142] 151, [152]. In more recent papers [28, (108|130, [143], several approaches dealing with both
difficulties have been proposed.

We will discuss an approximation of the function h(y(s(()), p, s(¢)) in the following chapter, which
is based on a Taylor series approximation. Due to this simplification, the distribution of the lift
constraint h(y(s(€)), p, s(¢)) will be known, so that the probability P({¢ | h(y(s(¢)), p, s(¢)) > 0})
can be evaluated and thus the feasibility for a given design p € R" can be checked.

Remark 4.1. Robust Optimization in Practice

The introduced robust counterparts of - are so far computationally not tractable due to
the high nonlinearity of the underlying shape optimization problem. The next chapters will give a sur-
vey of methods simplifying and approximating the robust optimization problems in order to reduce
or transform the problem to a solvable optimization task. In chapter[5] the focus is on uncertainty
quantification methods providing approaches in order to efficiently determine statistical information
of quantities of interest depending on the uncertain parameter. Further, efficient discretization tech-
niques of the probability space will be discussed. Since we will see that the evaluation of such
statistics is required in each iteration of the optimization algorithm, the main difficulty lies in the
compromise between the approximation or simplification of the robust optimization problems and
the preservation of accuracy.
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Chapter 5

Uncertainty Quantification

The purpose of uncertainty quantification methods is the determination of the effect of uncertainties
in the input data on quantities of interest in the output of a simulation. Uncertainty quantification
methods are employed if statistical information like the density function of the solution, the mean
or the variance are needed to completely describe the random field resulting from the solution of
a equation with random input data. In the following, a general framework in order to determine
all statistical quantities of interest of the solution will be discussed. Uncertainty quantification in
CFD computations is a fast growing field of research in the last years, since classical methods are
often inadequate for application to CFD problems due to their high amount of computational effort.
Beside the CFD simulations, uncertainty quantification techniques are widely applied to large scale
problems (e.g. deformation processes [2], chemical processes [32,/105]). The proposed methods
in literature can be classified into two classes: the first one directly applies statistical methods to
the simulation (e.g. Monte Carlo methods, response surface methods,...), whereas the second one
solves the stochastic equation (e.g. polynomial chaos, stochastic operator expansion,...). The first
class of methods performs a large number of random realizations of the uncertainty in order to
determine statistics of the solution. The main advantage of these methods is the straightforward
implementation, they belong to the so called non-intrusive methods, that means the CFD code
to solve the deterministic PDE does not have to be changed. However, its main disadvantage
is the requirement of large computational efforts, especially for large scale problems, so that we
will concentrate on the second class of uncertainty quantification methods which represent the
uncertainties by a spectral approximation that allows high order representations [56]. The most
common non sampling technique is the perturbation or moment methods [121], which expand the
random field in a Taylor series approximation around their mean. Typically, the series is truncated
at second order due to the computational complexity of higher order terms. We apply the moment
method to the chance-constrained optimization problem (4.18|-[4.20) in order to perform a numerical
comparison of the introduced robust formulations. So, this method will be shortly introduced and
discussed in section Another possibility is the Karhunen-Loeve expansion, which is the most
effective approach concerning the convergence rate. The Karhunen-Loéve expansion is based on
a spectral decomposition of the covariance kernel, hence the covariance function of the output has
to be known which is not the case in most of the applications. Due to this fact, the Karhunen-
Loéve expansion is not a suitable choice in order to compute the statistics of the solution in our
application. But this approach can be used to approximate the input random field describing the
geometrical uncertainties in a finite number of random variables.

Polynomial chaos and stochastic collocation techniques are the most used methods to propagate
uncertainties in numerical simulations due to their computational efficiency and strong mathematical
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5 Uncertainty Quantification

basis [44]. Both methods represent the stochastic output in a finite series of polynomials in the
stochastic variable

fo, X(Q) ~ > Hp) PiX())

Il
(]
]
S
/~
&)
&
&
R
N—
>
O

where Np denotes the truncation order of the expansion, P are the multivariate polynomials. The
dependency of the objective function f on the state variables y is disregarded for simplicity reasons,
assuming that the implicit function theorem can be applied (cf. formulation (4.7]-[4.8)). Polynomial
chaos and stochastic collocation methods split the deterministic part f and the stochastic part P
and differ in the choice of the polynomial basis and the computation of the deterministic coefficients
f. Stochastic collocation expansion is formed as a sum of multi-dimensional Lagrange interpolation
polynomials and the coefficients are determined by a collocation method. The polynomial chaos
method uses polynomials, which are orthogonal with respect to the probability density function of
the uncertain parameters. Stochastic Collocation and (non-intrusive) polynomial chaos allow to use
the flow solver as a black box, which is an important feature concerning our application. We will
focus on polynomial chaos methods in the following, since this approach shows satisfactory results
in the numerical examples. A detailed discussion with application of the Stochastic Collocation
approach in the CFD framework can be found e.g. in [116].

Remark 5.0.1. The uncertainty quantification methods will be exemplarily discussed considering
the scalar-valued objective function f in this chapter. The generalization to the lift constraints h and
to spatially distributed quantities, e.g. the pressure coefficient Cp over the profile I is straightfor-
ward. Furthermore, we restrict the discussion to one scalar-valued uncertain parameter in most of
the cases for ease of notation. The methods can be naturally extended to the multi-dimensional
case.

5.1 Moment methods

Moment methods estimate moments of the output from the moments of the uncertain input param-
eters. The moments of the output are calculated from truncated Taylor series expansions at the
mean value of the input [46]. Considering multiple random input variables, the generalization of the
moment methods, which is then often referred to as perturbation method, is straightforward.
Given the input random variable X with mean value myx = E(X) and standard deviation ox =
Var(X) and variance Var(X) = E(X?) — (E(X))?, first- and second-order Taylor series approxima-
tions are given by

f
f(X) = f(mx) + g—x . (X — my) (5.1)
and )
of 1 0°f
f(X) = f(my) + X (X — my) + > 9x2 (X — mx)(X — mx). (5.2)
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5.1 Moment methods

For simplicity reasons, the dependency of the objective function on additional deterministic variables
is disregarded, since there is no effect on the Taylor series approximation.
A survey of the most popular moment methods will be discussed in the next section.

5.1.1 First order first moment method (FOFM)

The first order first moment method (FOFM) estimates the mean of the output f evaluating the
function using the first moment my of the input random variable X, that means

(X — mx)> = f(mx). (5.3)

In special cases, e.g. if the random variable X is Gaussian distributed and the function f is linear,
this approximation of the mean value computes the exact value. But in most of the applications, the
FOFM method only provides a poor approximation of the exact value.

5.1.2 First order second moment method (FOSM)

According to the FOFM method, the FOSM method approximate the second moment, the variance,
using the first order Taylor series expansion of f in (5.1). Hence, the approximation of the variance
leads to

Var(f(X)) = Var (f(mx) + g—)f( (X — mx)> (5.4)
of ’ of ?
= E ((f(mx) * ox . (X — mx))2> - (E(f(mx) * ox . (X — mx))) (5.5)

2
of
(ax mx) Var(X). (5.6)

Therefore, the variance of f is equal to the variance of the random variable X multiplied by the
square of the sensitivity derivative evaluated at the mean of the input variable [46].
5.1.3 Second order first moment method (SOFM)

The second order first moment method (SOFM) approximates the mean value of the output f by
adding the second order terms to the Taylor series expansion. This approach gives

f 2f
E((X) = E (f(mx) c e mg el SE o moex - mx>> 67)
2
= f(my) +% gx); Var(X). (5.8)

The additional terms may result in a large improvement of the approximation of the mean value,
especially in nonlinear applications.
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5 Uncertainty Quantification

5.1.4 Second order second moment method (SOSM)

Compared to the FOSM method, the second order second moment method (SOSM) adds a higher
order correction term involving the square of the second order derivative evaluated at the mean
value of the input

Var(f(X)) = E|(f an f 1—82fvx2
ar(f(X)) = ((mx)+a—xmx( —mx) — ( (mx)+§ x|, ar(X))) (5.9)
of ? 1 ( 0°f 2
- (ax mX) Var(X)+4<aX2 mXVar(X)) ) (5.10)

The SOSM method usually relies on a linear approximation of the objective function and the second
order approximation of the mean (cf. equation (5.8)).

The moment method is used for the numerical comparison of the introduced robust shape opti-
mization problems. The main disadvantage of perturbation methods is the fact that they can only
be used to capture the local behavior of the solution under small variations of the random input data
that means the variance of the uncertainty has to be small. As we will see later on in the numerical
results, even the second order approach cannot capture the (nonlinear) behavior of the objective
function, so that we will discuss in the following methods, which one will have the potential of higher
approximation quality.

First, we are looking for an approximation of the input random field describing the geometrical
uncertainties (cf. section leading to representation in a Fourier-type form of

¥ (x,0) =Y cri(x)X(C),
i=1

where «; is an orthonormal set of deterministic functions, ¢; are constants and X; are random vari-
ables. Hence, the deterministic part is separated from the stochastic part. Two of the best-known
representations in the context of uncertainty quantification are polynomial chaos methods and the
Karhunen-Loéve expansion. We will now concentrate on the Karhunen-Loéve expansion due to its
favorable properties. Further, we introduce an improvement of this approach to additionally reduce
the number of random variables, which means to reduce the complexity of the robust optimization
problem.

5.2 Karhunen-Loéve expansion

The Karhunen-Loéve expansion, also known as Proper Orthogonal Decomposition, represents the
random field as a infinite linear combination of orthogonal functions chosen as the eigenfunctions
of the covariance function. There are also other possibilities approximating the random field in a
finite number of random variable, e.g. polynomial chaos methods which are discussed in detail in
section but the Karhunen-Loéve expansion is the most used approximation due to its favorable
features [82] [157]:

e The approximation of the random field using a truncated Karhunen-Loéve expansion is in the
mean-square sense optimal, that means the special choice of the random variables minimizes
the mean-square error resulting from the truncation.
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5.2 Karhunen-Loéve expansion

e |f one considers a Gaussian random field as in our case, the random variables approximating
the random field are independent, which is an assumption of the discretization approach we
will discuss in section

The Karhunen-Loéve expansion of a stationary and isotropic Gaussian random field ) : I x O —

R is given as:
o (x, )+ > /o2 ()X () (5.11)
i=1

where ¢kt > &t > . > K > > 0 and z are the eigenvalues and eigenfunctions of
the covariance function cov which is symmetric and positive definite by definition, X; are random
variables and 1) is the mean value of the random field. Since we expect no perturbations (cf.
section [3.4), the Karhunen-Loéve expansion can be reduced to:

)= Y X)), xel ¢eo.
i=1

The deterministic eigenfunctions z L are obtained from the spectral decomposition of the covari-
ance function via solution of

/ cov (%, 9) 2! (y) = 2% (x) (5.12)
:

Having the eigenpairs, the uncorrelated Gaussian random variables X; in equation (5.11) can be
expressed as

1 KL .
= 5 i d 5 = y Ly aen .
Xi (€) :KL/rw(X () z*" (x)dx j=1,2 (5.13)

with zero mean and unit variance, i.e. E(Xj) = 0and E (X,-Xj) = gjforj=1,2,... (cf. [22]). In the
special case of a Gaussian random field, uncorrelated implies independent, which is an important
property that we will need for the sparse grid as mentioned before.

In [56], it is shown that the eigenfunction basis {zKL} is optimal in the sense that the mean-square
error resulting from the truncation after the d-th term is minimized.

Lemma 5.2.1 (Optimality of the Eigenfunction Basis). The basis defined by the eigenfunctions of
the covariance kernel is optimal in the sense that the mean-square error resulting from the finite
representation of the random field 1)(x, () is minimized.

Proof. Given a complete orthonormal set of functions «;(x), the random field v)(x, {) can be repre-
sented in a convergent series of the form

X,0) = ciri(x)Xi(C). (5.14)
i=0

The error of the truncation of (5.14) at the N-th term is then given as

en=Y Cri(x)Xi(C)

i=N+1
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5 Uncertainty Quantification

Multiplying equation by xm(X) and intregating throughout gives
1
Xm(C) = /UJ(X, Q)km(x) dx (5.15)
Cm Jr

due to the orthonormality of x;(X). The mean-square error ef\, using 1) can be written as

N 2
E (w(x, 0= q-m(x)x,-(o)
_ i=0 ,
- E (Z c,-mx)x,-(o)
i=N+1

00 2
- E (Z i) [ b G dx)

e (x)

i=N+1
CY Y mbomx / / 61, ©) - (e, ) it )1y p) it
i= N+1] N+1
= Z Z Ki(X)kj(x //Cov X1, X2)Kj(X1)kj(X2) dxydxo.
i=N+1 j=N+1

Due to the orthonormality, it holds
/e,\, X)dx = Z //Cov X1, X2)Ki(X1)ki(X2) dxqdxs .
i=N+1

The solution of min - €4 (x) dx subject to [- ki(x) - 5;(x) dx = &; also minimizes

Z//Covx1,x2 i(x1)ki(x2) dxqdxo — ¢ (/ i(X)K ()dx—1> (5.16)

i=N+1

Differentiating (5.16) with respect to x,(x), we obtain

/ </ Cov(xy, X2)km(Xy) dxq — Cmﬂm(X2)> dxz,
r\Jr

which equals to zero, if

/ Cov(x1, X2)km(x2) dX2 = Cmkm(X1) -
.

O
Further, one can show the uniqueness of the expansion, that means the random variables in

(5.14) are orthonormal if and only if the orthonormal functions x;(x) and the constants ¢; are the
eigenfunctions and the eigenvalues of the covariance kernel. The proof can be found in [56].
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5.2 Karhunen-Loéve expansion

Truncating now the Karhunen-Loéve expansion after a finite number of terms, we obtain the
approximation of the random field v

d
-2, xel ceo. (5.17)

i=1

The corresponding covariance function is given by
covy (X, y) = Z KLZKL (x) zI (y) .

If cov is continuous, covy (X, y) = 3. ¢KLZKL (x) ZKL (y) converges uniformly and absolutely to cov
on [ x I by Mercer’s theorem [123]. Then, it follows that /4 converges to ¢ in variance uniformly,
i.e.in L°(I) x L2(O)

dli_)moo{sgp/(w—lﬁd)zdp@)} = I|m {sup Z }

%) Jj=d+1

1]
o

(5.18)

So, g may provide a suitable approximation of v, if the eigenvalues decay sufficiently fast and d
is large enough, see [22].

If one assumes a Gaussian covariance function (cf. (3.8)), the eigenvalues will subexponentially
decay towards zero, i.e.

1
(l)mdim(r) 42
KL< 2 \T
~ 1 H

[+(0.5 manm)

0<k vm > 1, (5.19)

where I¢ is the gamma function, /2 = 42 - A2, 4 > 0 and A is the diameter of the domain I and / the
parameter of the covariance function (cf. (3.8)). The proof of this behavior of the eigenvalues can
be found e.g. in [49].

5.2.1 Discrete Karhunen-Loéve expansion

Analytic solutions of the eigenvalue problem exist only in a few special cases, so that equation
(5.12) needs to be solved numerically. Detailed closed form solutions for exponential covariance
functions for one-dimensional random fields can be found in [56]. The majority of existing numerical
methods for solving transform the integral eigenvalue problem into an algebraic eigenvalue
problem, hence an additional approximation error, which has to be taken into account, arises [157].
A Galerkin-type procedure is the most common discretization technique of the operator in (5.12))
(cf. e.g. [56, 184, [162])), which leads to the following eigenvalue problem

WGa/erk/n KL KL MGalerk/n KL

where the matrix W™ " and mass matrix MG2€n resuylts from the Galerkin approach. More
details can be found in [56, |84].
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5 Uncertainty Quantification

In our application, the surface grid of the test case describes the shape I', on which the random
field v of perturbations is defined. As there is no parametrization of the shape I at hand, the
discretization given by the grid is used to solve the eigenvalue problem (5.12), which thus simplifies
to

Cov'zft = KL (5.20)

_ llxi—xll?

where Cov)! = o2 - exp( T) V< <0 < < Nen With T7 = {xq,.., xye} the
discretized surface.

5.2.2 Solving the large eigenvalue problem

The resulting eigenvalue problem depends on the size of the surface grid in our application.
In the two-dimensional test cases, the number of surface grid points is less than 200 points, so that
a direct eigensolver can compute the eigenvalues and eigenfunctions in an acceptable cpu time.
So, the eigensolver provided by MATLAB is used to determine the Karhunen-Loéve expansion in
the RAE2822 test case.

In the three-dimensional test case, the number of grid points is in the range of 80.000 points, so
that an iterative eigensolver needs to be used due to the problem size. Since the Karhunen-Loéve
expansion is a common approach in the field of uncertainty quantification and robust optimization,
several methods solving the large eigenvalue problem are proposed in literature. In [49], a fast
algorithm based on a kernel independent fast multipole method to compute the Karhunen-Loéve
approximation is introduced. Another approach to solve the large eigenvalue problem arising from
the Karhunen-Loéve expansion can be found in [84]. They propose a Krylov subspace method with
a sparse matrix approximation using sparse hierarchical matrix techniques to solve it. Further, [92]
suggests an algorithm of the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCGQG)
method for symmetric eigenvalue problems based on a local optimization of a three-term recur-
rence, which we employ in order to compute the Karhunen-Loéve expansion due to its speed of
convergence and memory requirements. In the following, a short introduction to this method is
given. More details can be found in [92].

Locally optimal block preconditioned conjugate gradient method (LOBPCG)
In this section, we consider a generalized symmetric definite eigenvalue problem of the form
(A—¢B)z=0 (5.21)

with real symmetric n x n matrices A, B, A positive definite, following closely [92]. The generalized
eigenvalue problem (5.21) has all real eigenvalues ¢; with orthogonal eigenvectors z; satisfying
(A—¢B)z; = 0, and (z;, Az;) = (z;, Bz;), i # j. The algorithm provides the smallest m eigenvalues

of (5.21).
The discrete Karhunen-Loeve expansion (5.20) leads to the eigenvalue problem of the form

(Cov —Ktpzt = 0. (5.22)
Since we need to compute the largest eigenvalues, the problem (5.22) can be transformed to

(—I+9CovMzKt =0, (5.23)
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5.2 Karhunen-Loéve expansion

where ¥; = ;ﬂ so that the method gives the largest eigenvalues of (5.22).

First, a preconditioner P for the eigenvalue problem (5.21), (B — 9A)z = 0 respectively, to accel-
erate the convergence is discussed. Similarly to the preconditioning of linear systems, symmetric
positive definite preconditioners P with P ~ A" are constructed, such that positive constants
52 > 51 > 0 exist with

51{P"x,x) < (Ax,x) < 52(P7'x, x) .

The ratio of the constants d1, J, indicates the approximation quality of P to A~'. In the software
package BLOPEX [92] including the eigensolver LOBPCG, one has to provide the preconditioner
in the form of a matrix vector product Pz as input. In our tests, the preconditioner is simply set to
/, but in literature, there are proposed several preconditioners showing good results (cf. [91} 193] or
[125]).

Then, the preconditioned conjugate gradient method can be described by the following three-
term recurrence formula:

z = w4 04 Z'+ célz"_1 (5.24)
w = P(BZ —9'AZ) (5.25)
¥ = 92 (5.26)

with properly chosen scalar iteration parameters cy, ;. The approximation ¥ in (5.26) to an eigen-
value of (B — 1A)z = 0 is computed by the Rayleigh quotient

(Z/, BZ')

"z

(5.27)

for a given eigenvector approximation z'. In [90], the scalar iteration parameters are chosen using
an idea of local optimality, that means, the parameters, which maximize the Rayleigh quotient
by using the Rayleigh-Ritz method, are used. In order to increase the stability of the algorithm,
an orthogonalization step before the Rayleigh-Ritz procedure is introduced, which leads to the
mathematically equivalent algorithm:

z = w+clZ +chpr!
w = PBZ —9'AZ)
9 = 9(2)
prtt = w4 cépr’, pr’=0.

The block version of the preconditioned conjugate gradient method is the straightforward general-
ization of the introduced single-vector method.
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5 Uncertainty Quantification

Algorithm 5.1 Locally optimal block preconditioned conjugate gradient method (LOBPCG)
1: function LOBPCG
Input:  matrix vector products Az, Bz and Pz and the vector inner product (-, -)
Output: the approximations of the m largest eigenvalues m; and eigenvectors x;

2:  select starting vectors z/Q, j=1,..,m

3: pr/.°<—0,j=1,...,m

4: for i =0, ..., until convergence do

5: 19_jfi<_ <z;'_, Bz;>/<;;,Az;>, j=1,..,m

6: r]."<— Bz — Az, j=1,..,m

7: VI/I!HPI’/',j=1,...,m

8: use the Rayleigh-Ritz method for B — ¥A on the trial subspace
span{w!,...,wl,zl, ...,z prl, ..., pri}, such that the column-vector
(@, ab, (€)oo (0], (C2)), -y (C2)1) T
is the j-th eigenvector corresponding to the j-th eigenvalue of the
3m x 3m eigenvalue problem of the Rayleigh-Ritz method

o: Zi* = Y gy + (C1)j 2k + (C)kpri, =1, ., m

10: pritt — YTy W + (C2)pry

11: end for

12: end function

The main advantage of the algorithm [5.1|is the so called matrix free property, which means that
the multiplication of a vector by the matrices of the eigenproblem and the application of the precon-
ditioner to a vector are needed only as functions. In our application, this feature is indispensable
due to the problem size of the eigensystem.

5.3 Goal-oriented Karhunen-Loéve expansion

The evaluation of the objective function in the robust optimization problem requires the com-
putation of the mean, i.e. the computation of the integral of the random field with respect to its
probability measure. Applying the introduced Karhunen-Loéve approximation, the objective func-
tion can be written as the following d-dimensional integral

E(f(p,wx,o»e/R-'-/Rf(p,wdm,...,xd))sm (1) - - 1 (xa) dx; - -~ dxg

where 4 is the one-dimensional Gaussian measure. So, one term more in the truncated Karhunen-
Loéve expansion to increase the approximation accuracy results in an integral of one dimension
higher. In order to reduce the computational effort, the orthogonal basis functions {zX} will be
chosen goal-oriented, i.e. the individual impact of the eigenvectors on the target functional will be
taken into account. This method is well established in the model reduction methods of dynamic
systems and the adaptive mesh refinement (cf. [10]). Motivating this approach, figure shows
the influence of the first ten eigenvectors on the target functional in the 2D test case RAE2822
(Euler flow). The third eigenvector has no impact on the objective function, hence it can be rejected
from the Karhunen-Loéve basis and the dimension of the probability space can be reduced.
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Figure 5.1: Influence of the first ten eigenvectors of the given random field v on the target functional
(RAE2822 Euler flow).

Thus, the idea is to develop an error indicator for the individual eigenvectors reflecting the in-
fluence on the drag, following closely [124]. The introduced error analysis of the Karhunen-Loéve
expansion in section only gives the approximation error of the random field 1, but not of the
function of interest . We propose to use sensitivity information to capture the local behavior of the
drag with respect to the eigenvectors

df .t dc  of

=g =N 2kt AR
dz/t ozt~ ozt

Vi=1,..,d, (5.28)

where ) solves the adjoint equation. The adjoint equation is independent of /i, hence it has to be
solved only once and the indicator 7; is numerically cheap to evaluate. Now, the reduced basis
2KL can be automatically selected, the eigenvector zX- with a large value 7; has to be kept in the
reduced basis, whereas a small value indicates that the basis vector can be rejected from the basis.

5.4 Polynomial chaos

Polynomial chaos expands the solution nonlinearly depending on the random vector X in a series
of orthogonal polynomials with respect to the distribution of the random input vector X

o0

f(p, X(C) = > fi(p) - ®; (X(() (5.29)
i=1
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5 Uncertainty Quantification

with ®; orthogonal polynomials, f(p) deterministic coefficient functions. Again, the dependency of
the objective function f on the state variables y is disregarded for simplicity reasons (cf. formulation
-[4.8)). As equation indicates, the method allows a separation of the deterministic and
stochastic part of the solution. In practice, one truncates the infinite expansion at a finite number of
random variables and computes the statistics approximately by

Npc

f(p, X(C) ~ > Ti(p) - & (X()) - (5.30)

i=1

First, we will shortly discuss the theory and computation of the orthogonal polynomials ®, since
they serve as a basis to approximate the stochastic outcome depending on the random input.

5.4.1 Orthogonal Polynomials in the Askey scheme

The Askey scheme classifies the hypergeometrical orthogonal polynomials, which satisfy some
type of differential or difference equation. The optimality of these basis in the context of polynomial
chaos derives from the orthogonality with respect to density functions of the random variables. First,
we will discuss some basic properties of orthogonal polynomials.

Definition 5.4.1 (Orthogonal System of Polynomials). A system of polynomials {®, : n € I}, where
&, is a polynomial of exact degree n and | = N or | = {0,1,2,..., N}, is an orthogonal system of
polynomials with respect to some real positive weighting function w, if it holds

_ =0, ifn#m
(®, Dpm) = /S B (X)® m(X)(X) dx{ o itnome  Tmnel (5.31)

where S denotes the support of the weighting function w. The system {®, : n € I} is called
orthonormal, if (¥, ®,) =1, Vn € I.

Given a probability space (O, Y, P), a real-valued random variable on X : © — R with probability
density function fx : R — R,, then a system of polynomials is orthogonal with respect to fy, if

(®n, Prm)

/chn(X(C))‘Dm(X(C)) dP(C)

=0, ifn#m
/RCD,,(X)CD,,,(X)fX(x) dx {7’0, e m’ VYm,n € I.

All orthogonal polynomials {®,} fulfill the three term recurrence relation

—X¢n(X) = bn¢n+1 (X) + dnq)n(x) + qu)n_‘](x), n Z 1,

where bp, ¢, # 0 and ¢,/bs—1 > 0 (cf. [161]).

In the generalized polynomial chaos theory, the basis of orthonormal polynomials, in which the
solution of the stochastic PDE is expanded, is constructed with respect to the probability density
function as weighting function. The Askey scheme provides a classification of orthogonal polyno-
mials with respect to different weighting functions, some of them identical to standard probability
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5.4 Polynomial chaos

density functions, and indicates the limit relations between them. The polynomials are classified
according to the generalized hypergeometric series defined by

0 PR k
(Fo(@, e @by, o b5 2) = Y (@) (@2 (5.32)

where b; #0,—1,—-2,..., Vi = 1, ..., s ensuring the non-negativity of the denominator factors, (-),
is the Pochhammer symbol given by

1, ifn=0
(@n = {

a@+1)..(a+n—1), ifn=1,23, ..

The hypergeometric series becomes finite and hence a hypergeometric polynomial, if one of the
numerator parameter a; is a negative integer. The Askey scheme which is presented in figure [5.2
classifies the polynomials according to the classes ,Fs, where the number in parentheses is the
number of free parameters. The lines connecting different polynomials denote the limit transition

( Continuous ) ( Continuous )
F>(3
3F2(3) dual Hahn Hahn Hahn Dual Hahn

- J . J . J
2F1(2) exner Jacobi Meixner Krawtchouk

Ploaczek
N\ J N\ J . J

1F1(1)/2Fo(1) { Laguerre } { Charlier }

2Fo(0) Hermite

Figure 5.2: Askey scheme.

relationship between them, that means the polynomials at the end of a line can be computed by
taking the limit of the polynomials on the upper part. The following table shows for some
standard probability functions the corresponding hypergeometric polynomials of the Askey scheme
[44]. More details can be found in [94,173].
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distribution density function hypergeometric polynomial weight function
GauB \/% exp(=X) Hermite exp(=%)
Exponential exp(—x) Laguerre exp(—x)
Beta B LR i Jacobi (1= x)2(1 +x)7°

JJ ue=1(1—u)f—"au

Table 5.1: Standard probability functions and the corresponding hypergeometric polynomials.

Considering d independent random variables, the generalization from the one-dimensional to
the multi-dimensional case of orthogonal polynomials is straightforward. Given probability density
functions fx, of d independent real-valued random variables Xi, ..., Xq, the joint probability density
function of X = (Xj, ..., Xg) can thus be written as

d
fe(xt, . xa) = [ ] (%)
Jj=1

Using multi-indices i = (ij, ..., [q) € 19 an orthogonal system of multi-dimensional polynomials
{®; :i € /19 is defined as

d

®i(X(0)) = [ #%(0,

j=1

where {¢L : n € I} is an orthogonal system of one-dimensional polynomials of X;. It holds

d d
(@, @) = /R KU § EACOEACON] | PACRIC IR
k=1 k=1
d er e
_ k k = 0, |f 1 7/1
) g<¢’k’¢’*>{#o, ifizj’

Since the geometrical uncertainties are modeled as a Gaussian random field (cf. section[3.4.2), the
finite number of random variables resulting from the Karhunen-Loéve expansion are independent
Gaussian random variables. Hence, the stochastic outcome is expanded in a series of Hermite
polynomials. The first few multi-dimensional Hermite polynomials for a two-dimensional case are
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5.4 Polynomial chaos

given as
Ho,0(X1, X2) = Ho(Xq1)Ho(X2) = 1
Hi0)(X1, Xo) = Hi(X1)Ho(X2) = Xq
Hoo,1)(X1, X2) = Ho(X1)Hi(X2) = X2
Ha (X5, X2) = Hi(X1)Hi(X2) = X1 Xz
Heo) (X1, Xo) = Ha(Xi)Ho(Xe) = X — 1
Hoa (X1, Xa) = Ho(Xi)Ha(Xp) = X5 — 1

The theory of polynomial chaos was first developed for the analysis of stochastic functions depend-
ing on Gaussian random variables and later generalized to arbitrary distribution functions. In the
following, we will concentrate on the so called homogeneous polynomial chaos and refer to the
literature concerning the generalized polynomial chaos theory [105, /176, 183].

5.4.2 Homogeneous polynomial chaos

Homogeneous polynomial chaos expanding a nonlinear function depending on Gaussian random
variables in a series of Hermite polynomials was originally introduced by Wiener [178]. As shown in
the last section, the multi-dimensional Hermite polynomials, also referred to as Wick-polynomials,
defined as

d
Hi(Xi. ... Xa) = [ ] Hi(X0) (5.33)
k=1
provide an orthogonal system.

The following theorem by Cameron and Martin [27] ensures the convergence of the Hermite

expansion in the L? sense.

Lemma 5.4.2 (Cameron/Martin). Given a functional R : R? — R in L? with respect to the Gaussian
density function @y, that means

/ R(x)?px(x) dx < 00. (5.34)
Rd
Then it holds
M 2
lim / R(X) =D ) FHi(x) | ex(x)dx =0, (5.35)
M=oo Jrd k=0 |il=k

where

) 1

fi = fRd )2 x()dx /R ) R(x)Hi(x)px(x) dx. (5.36)

The proof can be found in [27].
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It directly follows that the Hermite polynomials form an orthogonal basis of L2. Considering a
random variable Y := R(X), it holds in the L? sense

o0

Y(X(©) =D > R H(X(). (5.37)
k=0 |i|=k
The truncation of the polynomial chaos expansion (5.37)
YX(O) =D ) R HI(X() (5.38)

k=0 i|=k

is then called a stochastic discretization.
If the polynomial chaos coefficients F are known, the mean of Y can be approximated by

M
/R 303 Hieex() x

k=0 |il=k

E(Y)

= fo

using the orthogonality H;. The variance can be approximated by

Var(Y) = E(Y?)— (E(Y)?

[
5 —
]
i\
P 14
X
S
S
X,
x
o
>
e

M M
S A3 [ M) b 7

k=0 lij=k  1=0 |j|=/

M
S50 [ Hopx o7

k=0 |i|=k

M
D> R(H).

k=1 |i|=k

Higher moments and the covariance can also efficiently be determined using the truncated polyno-
mial chaos expansion. The main advantage of the polynomial chaos approach in contrast to direct
integration methods, like Monte-Carlo or sparse grid techniques, is due to the fact that the compu-
tation of statistics of the solution are very cheap and results are highly accurate.

As mentioned before, we deal with Gaussian random fields in our application, hence the focus of
this chapter is on polynomial chaos expansion using Hermite polynomials. Nevertheless, a short
survey of further developments of the homogeneous polynomial chaos will be given in the next
section in order to emphasize the wide applicability and well-founded theory of polynomial chaos in
uncertainty quantification tasks.
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5.5 Polynomial chaos solving SDEs

5.4.3 Further developments of the Homogeneous Chaos

Xiu and Karniadakis [182] introduce the generalized polynomial chaos, also called Askey Chaos,
proposing a more general framework of polynomial chaos employing the classes of orthogonal
polynomials of the Askey scheme (cf. figure. [5.2), including the Hermite chaos as a subset. Due to
the closed connection between the orthogonal polynomials in the Askey scheme to the probability
density function of certain random distributions (cf. table [5.1), the generalized polynomial chaos
allows to represent many non-Gaussian stochastic processes, including some discrete processes.
The convergence in the L? sense can be proved by a generalization of the theorem (further
details can be found in [27 (135, [183]).

Furthermore, Wan and Karniadakis propose a multi-element generalized polynomial chaos rep-
resentation, which is able to deal with arbitrary probability measures [176]. The approach is based
on a decomposition of the probability space and a locally constructed generalized polynomial chaos
expansion in each subdomain.

In order to overcome discontinuities, Maitre et al. suggest a combination of the polynomial chaos
approach with wavelets [104] [103]. The proposed method relies on an orthogonal projection of the
uncertain data and solution variables onto a multi-wavelet basis. Due to the high amount of com-
putational effort, the approach is combined with an adaptive refinement strategy of multi-wavelet
basis.

5.4.4 Polynomial chaos efficiency

The convergence of the polynomial chaos expansion is ensured by the theorem of Cameron and
Martin, cf. section [5.4.2] and the generalized version respectively. In several papers, the conver-
gence rate depending on the order of the polynomials used in the polynomial chaos expansion is
numerically examined. [8] and [182] numerically show exponential convergence of the expansion,
but one can also show applications, where an adaptivity strategy or problem-dependent improve-
ments of the expansion are needed to achieve a good performance of the polynomial chaos expan-
sion (cf. [50]). The total number of expansion terms increases fast for large dimensional problems,
thus even with exponential convergence, the polynomial chaos method is computationally effective,
only if the number of input random variables is not too large. Techniques reducing the number of
random variables can circumvent this limitation. As discussed in section[5.3] methods investigating
the influence of the individual random variables on the output have the potential of reducing the
dimension of the probability space, cf. [122] [124].

In the last section, a general framework using polynomial chaos expansion was discussed. We

will now concentrate on the polynomial chaos approach solving stochastic PDEs, which we will use
later on to determine statistics of the flow under uncertain conditions.

5.5 Polynomial chaos solving SDEs
The basic idea of polynomial chaos representing the stochastic output of a differential equation

with random input data is to reformulate the SDE replacing the solution and the right hand side of
the PDE by a polynomial chaos expansion. The deterministic polynomial chaos coefficients can
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then be computed using different approaches which we will introduce later on. Given a stochastic
differential equation of the form

Dix, 1, X(();y) = g(x, t, X(()), x€G, te[0,T], (€O, (5.39)

where y = y(x, t, X(()) is the solution and g(x, t, X(()) is the right hand side. The operator D can
be nonlinear and appropriate initial and boundary conditions are assumed. Replacing pointwise the
solution y = y(x, t, X(()) of equation (5.39) by the polynomial chaos expansion leads to

y(x, t, X(C ZykxtCDk «)n,

where yi(x, t) are the deterministic polynomial chaos coefficients, which need to be determined.
Furthermore, the right hand side g(x, t, X({)) will also be expanded by a polynomial chaos expan-

sion
M

906, 6, X(0)) = D Gk(x, HPk(X())

k=1
and the deterministic coefficients are given by

gk(X, t) =

according to section[5.4.2

In literature, two different classes of methods determining the unknown coefficients y(x, f) are
proposed: non-intrusive and intrusive polynomial chaos, see reviews [81] [128] [181]. An intrusive
approach calculates the coefficients by projecting the resulting equations onto basis functions for
different modes. As the name indicates, the intrusive methods require a modification of the existing
code solving the deterministic PDE (if the Operator D is nonlinear) [75]. Non-intrusive methods
overcome this drawback and are therefore investigated by many researchers.

5.5.1 Intrusive polynomial chaos solving SDEs

A common approach evaluating the deterministic polynomial chaos coefficients y(x, t) is a stochas-
tic Galerkin method [82] 89| [122]. First, the polynomial chaos variables y, g are replaced by their
polynomial chaos expansion in the stochastic differential equation (5.39)

M
D(x, t, X(¢ Zykd)k > &Pk, Xx€G telo, T (€O. (5.40)
Then, a Galerkin projection of equation (5.40) onto each orthogonal polynomial ®; leads to
D(x, t, X(¢ Zykcbk = ngcbk, Ny J=0, M (5.41)

ensuring the orthogonality of the error to the functional space spanned by {d)j}}‘i’o. Using the
orthogonality of the polynomial system {CD,'}]’ZO, the resulting equations are a set of coupled de-
terministic differential equations which can be solved by standard methods. In most cases (if D
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5.5 Polynomial chaos solving SDEs

is nonlinear), the resulting deterministic differential equations differ from the original deterministic
differential equation, so that existing solvers cannot be applied. In [82], a convergence proof of
the Galerkin approximation using the usual theory (of the deterministic Galerkin method) is given.
Results concerning the convergence rate of the stochastic Galerkin method can be found in [8]
and [14]. In [89], a general overview of intrusive polynomial chaos applications in CFD is provided,
especially the coupled deterministic PDEs resulting from the stochastic Navier-Stokes equation are
derived. Further applications of intrusive polynomial chaos are discussed e.qg. in [102, 106, [121].

Several papers show the efficiency of intrusive methods in CFD, but the application of stochas-
tic Galerkin methods to the Navier-Stokes equations requires the modification of the existing flow
solver. Since we use a highly sophisticated solver developed at the DLR within several years, this
drawback of the method forces us to consider non-intrusive polynomial chaos methods, which allow
to use the flow solver as a black-box.

5.5.2 Non-intrusive polynomial chaos solving SDEs

The main objective of non-intrusive polynomial chaos methods is to obtain approximations of the
deterministic coefficients yx(x, t, -) without making any modifications to the existing solver of the
deterministic differential equation. All non-intrusive approaches are based on the definition of the
deterministic coefficients in the theorem of Cameron and Martin
3 (y(x, t,-), ®k)
WXty = —— 05— (5.42)
(®%)

= 1/ y(x, t, )k (v)fx(v) dv, xe@G tel0,T], k=1,...,M. (5.43)
Rd

(%)

The unknown coefficients can now be approximated by numerically evaluating the integral of equa-
tion (5.43). In the following chapter [6] several methods discretizing the probability space will be
discussed.
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Chapter 6

Discretization of the Probability Space

Statistics of quantities depending on the current design vector and the uncertain parameters are
required in each iteration of the robust optimization. Since the multi-dimensional integrals (cf.
and (5.43)) cannot be solved analytically, we have to approximate them in an appropriate, efficient
way. In literature, several possibilities in order to numerically compute the required integrals are
proposed. The most common are: Monte Carlo simulation, respectively general Sampling meth-
ods, full tensor grid interpolation and sparse grid interpolation. Their efficiency depends on the
dimension d of the probability space O and on the properties of the integrand. Exemplarily, we will
consider the numerical computation of the mean value of the drag E(f) depending on geometrical
uncertainties approximated by d random variables, which is the objective as e.g. in the semi-infinite
formulation -[4.14). The introduced methods can further be used to determine the variance
or higher moments and the deterministic coefficients of the PC representation (cf. (5.43)).

Each of the discretization methods provides an approximation Ey of the mean value E(f) by
evaluating the function f in N integration points w:,, e ,wg’ and summing up the results f(y;, p, z/Jg,)
multiplied with weights w1, - - - , wn;

N

EN=Zwi'f(y/!p1wéi)'

i=1

In this chapter, a survey of existing discretization methods will be given and afterwards, we will
focus on sparse grid methods as an efficient discretization of the probability space for the fast
numerical evaluation of the statistics.

6.1 Sampling methods

The Sampling methods randomly select realizations of the uncertainties in the given probability
space and take some kind of average of the function values at these points, which converges to the
exact value of the integral due to the law of large numbers. The advantage of this approach consists
of the straightforward implementation, the algorithm only needs the underlying integration space as
input and function evalugtions at the randomly selected points. But on the other hand, the expected
convergence rate O(N™2) requires a large number of function evaluations to ensure a given error
tolerance. For this reason, several improvements of this method have been developed, which can
be classified into the following two classes: variance reduction techniques and quasi-random or
low-discrepancy sampling [107].
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6 Discretization of the Probability Space

The main techniques for variance reduction are importance sampling and conditional Monte
Carlo. The idea behind the variance reduction methods is to use additional information in order
to generate more accurate estimators reducing the variance of the integrand. The key is to find
another function, whose integrand is equal to the integrand of f, but whose variance is smaller than
the one of f. In addition to the smaller variance, the methods often lead to an improvement in the
efficiency, that means the variance and the computation time will be reduced. Details can be found
in [68] (107}, [150].

On the other hand, the quasi Monte Carlo methods seek to construct nodes that perform sig-
nificantly better than the average [131], which means that the nodes are deterministically cho-
sen, such that a small error is guaranteed. The error bound of the method can be improved to
O(N~'(log N)?—1), if the nodes are properly chosen [131]. The main difference between Monte
Carlo methods and quasi Monte Carlo methods is that quasi Monte Carlo methods are completely
deterministic, thus the error bounds are also deterministic. Moreover, the quasi Monte Carlo method
can significantly reduce the computational effort. Detailed information about these methods can be
found in [62, 68, [131] or [111].

In our application, one function evaluation is very expensive, since the solution of the flow equa-
tion, Euler or Navier-Stokes equation, is needed. The Sampling methods, even the improved meth-
ods, are not an appropriate choice in our case to compute statistics of the flow, since they do not
offer the possibility to improve the approximation quality by additional knowledge of the underlying
function, e.g. smoothness information.

6.2 Full tensor grids

Another possibility to obtain the objective value is the full tensor grid quadrature derived from the full
tensor product of the one-dimensional interpolation formulas. Constructing the multi-dimensional
interpolation, we first consider the following one-dimensional interpolation formula in order to ap-
proximate a function g : [—-1,1] — R:

Tg)=) a(Y))-a
j=1

with the set of interpolation points G' = {Y/|Y/ € [-1,1], j = 1,2,...,m;}, m; is the number
interpolation points and aj’: = a,-(Yf) are the interpolation functions. The full tensor grid interpolation
of a d-dimensional function is then given by

m4 mq
T @ @I =) Y [V, V) (@@ @ap). 6.1)
jr=1 Ja=1

This generalization of the one-dimensional formula to the full tensor interpolation (6.1) provides an
approximation of f : [—1,1]9 — R by evaluating the function f on the regular mesh G" x --- x G@.
Considering the difference formulas defined by

Ai - Ii+1 . Ii
7° 0
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with GA' = G*' \ G/, (6.1) can be reformulated as

('@ - @I¥fH= > (A"e---@A%)(. (6.2)

The mean value is then derived from the following equation:

m my
En(f) =33 Ve ¥ [ (@ee e amay.
ji=t et [-1.1)

Directly using quadrature formulas leads to

En(f) = (Q"®@---® Q9)(f)
Yo (A0 AR (),

where A’ := Q"' — @/, Q° := 0. The approximation error for functions with bounded derivatives
k

up to order k has a behavior of O(N~4), cf. [35]. The resulting full tensor grids using linear,

Clenshaw-Curtis and GauB-Hermite abscissas are shown in the figure [6.1]

1D abscissas (linear) full tensor grid (linear)
1 T T T 3
0.5
i} . . . 4
-05
4 . ‘ ‘
-1 -0.5 0 05 1
1D abscissas (Clenshaw-Curtis)
1 T T T
0.5
I} . . * -
-0.5
4 . ‘ ‘
-1 -0.5 0 05 1
1D abscissas (GauB-Hermite, nested)
1
0.5 .
*
0 - - - * * * - :
*
*
-0.5 .
1 - ¢
3 > 1 o 1 2 3

Figure 6.1: 1D abscissas of the linear, Clenshaw-Curtis and Gauf3-Hermite formulas and the cor-
responding full tensor grids in 3D.
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Due to the exponential growth of the effort with increasing dimension, this method is not suitable
for high stochastic dimensions, which is the case in our application. To circumvent this curse of
dimensionality, we introduce a sparse grid method in order to preserve the accuracy of the tensor
grid quadrature, but avoiding the exponential growth of interpolation nodes.

6.3 Sparse grids

The idea of sparse grids is to combine quadrature formulas of high order in some dimensions with
quadrature formulas of lower order in the other dimensions in such a way that the interpolation error
is nearly the same as for full tensor products. The method was originally developed for the solution
of partial differential equations and is now successfully used for integral equations, interpolation
and approximation problems [52]. The underlying idea of sparse grids was originally found by the
Russian mathematician Smolyak [168]. The sparse integrand is given as [137]:

& (d—1 . ,
= _qyk=lil, o LI - lay(f )
S(k, d)(f) Z_ (1) <k_ |il> (Q"® - ® QY)(f) (6.3)
k—d+1<]i|<k
with k > d, i € N? multi-index and |i| = Zl‘; j. The index j; indicates the order in the j-th

dimension, so the algorithm combines only those one-dimensional quadrature formulas, whose
indices fulfill the constraint that the total sum across all dimensions is greater or equal k —d +1 and
smaller or equal k. Using incremental interpolation formulas Al, (6.3) can be transformed to

Stk () = Y (AM@---® A7) () (6.4)
li|<k
= Skk—1,d)(H+) (A" -0 A¥)(f) (6.5)

lil=k
with A’ = Q1 — 9, Q% = 0 and S(d — 1, d) = 0. The collection of all the interpolation points

Hkd)= |J (G"x-- xG¥ (6.6)
k—d+1<|i|<k

is called a sparse grid of level k. If we compare the two incremental formulas and (6.5), the
difference between the full tensor grid and the sparse grid interpolation becomes clearer. Whereas
the full tensor interpolation combines the one-dimensional interpolation function in each dimension
up to order k, the Smolyak algorithm constructs the sparse grid using only those functions which
sum up to order k in all dimensions. The derivation of the sparse grid suggests the use of nested
interpolation functions due to the recursive construction. To compute the sparse grid S(k, d), one
only needs to add to the old sparse grid S(k — 1, d) the function evaluations at the new points
AH(k,d) = Ui (G"A X e X G’g), where G, = G/\G'" are the differential points of the one-
dimensional interpolation functions. Therefore, the Smolyak approximation, which employs nested
points, requires less function evaluations than the corresponding formula with non-nested points. In
literature, the most popular choice of the collocation points is the Clenshaw-Curtis grid at the non-
equidistant extrema of the Chebyshev polynomials. The corresponding underlying interpolation
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formula is the Chebyshev-Gauf3-Lobatto formula. These knots are given by

)G’:—cos(%), j=1,...,mj if mj > 1
Y] =0, if mj = 1

with my =1and m; =2~" + 1, for i > 1. The corresponding basis functions are given by:

1, fori=1
, o ,
a = T Y=vi . . .
i — = i
E Vv fori>1andj=1,..,m;

A comparison of the full tensor grid and the sparse grid using Clenshaw-Curtis formulas is shown

in figure [6.2]

sparse grid, order 1, # grid points 1 tensor grid, order 1, # grid points 1

0

0
0.5 e -0.5

-1

sparse grid, order 2, # grid points 7 tensor grid, order 2, # grid points 27

0

1y oo . et

Figure 6.2: Comparison of the full tensor grid and sparse grid using Clenshaw-Curtis formulas up
to order 3.

To exhibit the efficiency of the isotropic sparse grid derived from equation (6.3), we briefly discuss
the convergence rate compared to the full tensor grid below.

63



6 Discretization of the Probability Space

6.3.1 Error bounds

In order to derive error bounds for sparse grids of dimension d > 1, the known results for the one-
dimensional case serve as a basis. The proofs of the following results and further error analysis
can be found in [9, [55] and [100].

The error bound for one-dimensional interpolatory quadrature formulas with positive weights in-
tegrating a function f € CX ([—1, 1]) is given by

e(Ny=0(N¥), (6.7)

where N is the number of quadrature nodes (cf. [35]).
For d > 1, function classes W¥ with bounded mixed derivatives up to order k

olslf
K ) d
Wy =A{f:[-1,1] HR,HW||00<OO, si < k}

with |s| = 27:1 s; are considered. Using one-dimensional interpolatory quadrature formulas with
positive weights as basis for the Smolyak algorithm, the approximation quality of the resulting sparse
grid is of order

e(N) = O (N7 (log N)k+1id=1)) (6.8)

with N number of sparse grid points (cf. [177]). The sparse grid approach outperforms the con-
ventional full tensor grids, which achieve an approximation quality of O(Nfg). Hence, the sparse
grid approach overcomes the curse of dimensionality and is an appropriate choice for higher di-
mensional problems. Especially in combination with adaptive refinement strategies, the sparse grid
method has the potential to reach a high approximation quality with less grid points than the other
discussed sampling methods.

6.4 Adaptive sparse grids

Since the function evaluations are very expensive in our application, we introduce in this section an
adaptive sparse grid strategy in order to further reduce the number of grid points but conserving the
approximation quality. The presented isotropic Smolyak algorithm is effective for problems whose
input data uniformly depend on all dimensions. But the convergence rate deteriorates for highly
anisotropic problems, such as those appearing, when the input random variables come from a
Karhunen-Loéve expansion as in our application [45]. The reduction of computational effort can be
achieved by using spatially adaptive or dimension adaptive refinement [55,117]. In order to develop
adaptive schemes during the cubature process, the interpolation error can be used as an adaptivity
indicator. Therefore, nested cubature formulas are useful, since they allow the error evaluation
based on the difference of two subsequent formulas. Due to the fact that in our application the mean
value is computed by the sparse grid interpolation, this target value is also used as an error indicator
for the adaptivity. The dimension adaptive quadrature method tries to find important dimensions
and adaptively refines those dimensions with respect to given error estimators. This leads to an
approach, which is based on generalized sparse grid index sets [55]. This strategy allows to employ
arbitrary interpolation formulas, so they can be chosen problem dependent, e.g. in our application
depending on the distribution of the random variables. On the other hand, the locally refined sparse
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grid gives more flexibility in the adaptive procedure, but requires equidistant support nodes. In the
following, we will discuss both strategies and compare the resulting sparse grids in the numerical
results later on.

6.4.1 Dimension adaptive sparse grids

The main advantage of the dimension adaptive refinement strategy is the fact that one can use
problem dependent quadrature formulas in order to construct the adaptive sparse grid. In our
application, the objective function, the drag, is multiplied by the Gaussian density function, so that
Gaussian Hermite polynomials are optimal with respect to the weighting function.

First, a generalization of sparse grids will be introduced, which allows to weight the dimensions
according to their importance on the target functional. The idea of generalized sparse grids and
especially dimension adaptive sparse grid can be found in [25, 53] 55] and [87]. The original sparse
grid of order k combines all the incremental functions, which sum up to order k, that means only
those indices are considered, which are contained in the unit simplex |i| < k. [51] and [55] suggest
to allow a more general index set, which can be adaptively chosen with respect to the importance
of each dimension.

An index set | is called admissible if Vi € |

i—gecl, Vi<j<d i>1,

where g; € RY is the j-th unit vector. The generalized index set | contains for an index i all indices,
which have smaller entries in one or more dimensions. Due to this fact, the incremental sparse grid
formula (6.5) is still well defined for the new index sets and is given as

S (k,d)(f) = Z (A" @ - @ AR)(f) . (6.9)

icl

The generalized definition of sparse grids includes the original sparse grid and the full tensor grid
definition (cf. (6.5), (6.2)). Further, equation particularly leaves more flexibility to the choice
of the grids and therefore allows to handle anisotropic problems, which the following example of an
admissible index set in R? illustrates:

{0-60-0-0-0-@)

This example of an admissible index set | shows the feasibility of a refinement in only one dimension
(here in the first dimension), which is the required feature for the adaptivity.

If a priori knowledge of the underlying function is available, an admissible index set with respect to
the additional information can be chosen. Since this is not the case in our application, an algorithm
is introduced in the following, which automatically computes an admissible index set in a dimension
adaptive way (cf. [51, B5]). Therefore, we start with the coarsest sparse grid, that means | =
{(0, ...,0) "'}, and then successively add new indices, such that

e the new index set remains admissible

e the approximation error is reduced.
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6 Discretization of the Probability Space

For the second point, an error indicator is needed. Taking a look at the difference formula (6.9), the
term
Ai(f) = (A" ® - @ A) (f) (6.10)

indicates the reduction in the approximated integral for each new added index. [55] suggests to fur-
ther involve the number of function evaluations to avoid a too early stopping. Since equation (6.10)
shows good results in our application, we directly use A; as an error indicator for the adaptivity.
Therefore, the algorithm starts with the coarse grid, computes new admissible indices and adds
the index with the largest error to the grid. In order to compute admissible indices, one has to
consider two index sets I,y and laqive. The old index set lyy contains all indices added to the
grid during the procedure. If an index k is added to |y, its forward neighborhood defined as
{o:0=k+e, 1 <j<d}ischecked for admissible indices and added to the active index set
laciive- That means, an index k can only be added to lagive, if all its backward neighbors {0 : o0 =
k — ¢, 1 <j < d} areinthe old index set and whose forward neighbors are not considered yet.
In the next iteration, the index k € l e With the largest error indicator is added to the old index
set Iy and the admissible forward neighbors are added to l.qie. This procedure is repeated until
a given error tolerance is reached. The concept of dimension adaptive refinement is outlined in

algorithm[6.1]

Algorithm 6.1 Dimension adaptive sparse grid
1: function DIMASG
2 i—(0,..,0)

3 loig < 0

4: Lactive < {'}
5w |[Ai(f)
6
7
8

w — |Ai(f)|
E«0
: while w > to/ do
9: Lactive < laciive \ {i} With i : wi > wj, V) € laciive, j # i
10: loig < log U {I}
11: E «— E + Ai(f)
12: W «— W — W
13: forj=1,...,ddo
14: 0«—i+eg
15: ifo—en €lyy, V1 < m< dthen
16: Lactive < laciive U {0}
17: Wo < |Ao(f)]
18: W — W+ |Ag(f)]
19: end if
20: end for
21: end while

22: end function

The introduced algorithm differs from [51] in the return value. During the optimization loop, the
grid induced by the old index set l,4 is used, such that the approximated integral is also computed
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6.4 Adaptive sparse grids

on the grid defined by the old index set I,y during the generation of the dimension adaptive sparse
grid. The algorithm stops, if the sum of the error indicators of the new index set lgive is less than
a given error tolerance. The mean value is then computed during the optimization by the following

algorithm

Algorithm 6.2 Computation of the mean using the dimension adaptive sparse grid defined by Iy

1: function MEANDIMASG

Input: I,y

2 int — 0
3 forall o € 1,4 do
4: Wo — |Ao(f)|
5
6
7

int «— int + wo
end for
: end function

As mentioned before, the main advantage of the dimension adaptive refinement is the fact that
the quadrature formulas can be chosen problem dependent. Considering geometrical uncertainties
in the robust optimization, the Karhunen-Loéve expansion leads to the following objective function

E (f(p, ¢ (x, O)) = /R /R Dy (X1 ey X))t (1) - 1 (Xq) X -~ g

so that the GauB-Hermite formulas are an appropriate choice for the quadrature.

The one-dimensional Hermite polynomials are orthogonal polynomials over (—oo, 0o) with the
weighting function w(x) = exp(—x?). The GauB-Hermite quadrature belongs to the class of GauR3
formulas, which are constructed by choosing both, the points and the weights, with the goal to
exactly integrate as many polynomials as possible. The GauB3 formulas achieve the polynomial
exactness of 2n — 1, where n is the number of abscissas of the quadrature rule. In GauB3-Hermite
quadrature, the integral of the form [ _f(x) exp(—x?) dx is approximated by

/ - F(x) exp(—x?) dx = > wif(x),
i=1

— 00

where the abscissas x; are zeros of the m-th Hermite polynomial and the w; are the corresponding
weights. The one-dimensional Hermite polynomials are defined as

n

2 2
Hn(x) = (—1)" exp(x )dx" exp(—x°) (6.11)
and the weights
2" nly/7
= . 12
“ n?Hp_1(x;)? 6.12)

The GauB-Hermite quadrature formulas are weakly nested, that means the rules of odd order all
include the abscissa 0. Since the nesting is a favorable feature constructing the sparse grid, this
property will be taken into account. Figure shows the abscissas of the GauB3-Hermite quadra-
ture of order 1, 3,7, 15, which we will use to construct the dimension adaptive sparse grid. As an
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6 Discretization of the Probability Space

1o B
101 B
.
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© . . . . . . .
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Figure 6.3: Abscissas of Gaul3-Hermite polynomials of order 1, 3,7, 15.

example, we consider the integration of the following function
1
/ / —(exp(x1) + x2) exp(—x12) exp(—x22) dxidxs . (6.13)
(—00,00) V (—00,00) 2

Figure[6.4]shows that the algorithm detects the nonlinearity in the first dimension and automatically

* adaptive sparse grid based on GauB-Hermite quadrature

o
=

2. 2,
2)exp(x2)

°
N
X,

o

S

O.5(exp(x1 ) +x2)exp(-x

Figure 6.4: Demonstration of the dimension adaptive refinement strategy evaluating
Ji—oosep 2(EXP(X1) + X2) €XP(—xF) €XPp(—xZ) dx1dxz.

refines until the given error tolerance 102 is reached.
Next, we will discuss the second refinement approach based on linear interpolation functions and
compare the two algorithms in section [8 considering 2D Euler and Navier-Stokes test cases.

6.4.2 Locally refined sparse grids

Below, we introduce a locally adaptive hierarchical sparse grid approach using piecewise multilinear
hierarchical basis functions following closely [88],117]. Due to the straightforward implementation of
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6.4 Adaptive sparse grids

the refinement, we choose the linear hat functions as interpolation basis functions, which are also
well established in the adaptive mesh refinement. The support nodes of the one-dimensional basis

function are given by
yi forj=1,m; =1

—_ 0’
I~ 2.

I 4, forj=1,..,m;, m; > 1

1, fori=1
m; = . .
27141, fori>1

Hence, the interpolation formulas are defined by

with

. 1—1(m,-—1)~‘Y—Y.", if‘Y—Y!’(< 2
a(Y)= 2 / I m=t (6.14)
0, otherwise
Figure [6.5] shows the defined linear ansatz functions.
p 1 . p 2\\ 1 \ /r“‘ ".".“ "’,-_‘\ }
06| 06| 0.6 ‘,:)“:‘
0.4 0.4f 0.4 ‘/ \‘
-1 -0.5 01 0.5 1 91,’2 -0.5 \012 05 \1 2 -1 ,(;; 3 ;3 0”5 3 ‘1 3
Y1 Y1 Y2 Y3 Y? Y2 YS Y4 Y5

Figure 6.5: 1D linear ansatz functions.

The discussed univariate nodal basis functions (6.14) are now transformed into multivariate hier-
archical basis functions, which are fundamental for the adaptive sparse grid. Considering once
again the one-dimensional difference formula

Al(g) =T"(g) - T'(g) (6.15)

with ‘ _ '
=7 4-9(Y),

inEGi

we obtain due to the fact that the support nodes are nested (e.g. G' C G™*') and accordingly
™" (g) =T' ("' (9)) the following representation of (6.15)

Ag) = > d-g(v)-> a7 ()
Y/GG’ y/ieGi
= > a-(g(Y) -7 (Y))
YIIGGI
= > g (o) - (Y)
Y/€G)
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6 Discretization of the Probability Space

since g(Y/) — 2" '(g)(¥/) =0, VY/ € G". Renumbering the elements in G), = G'\ G"', with
mA = #G)\ = m; — m;_4, leads to

Alg) =) a-(g(¥) -7 (Y . (6.16)

We define w/ = g(Y/) — Z'-" (g) (Y}) as the 1D hierarchical surplus [24], which is the difference
between the current and previous interpolation level. If the 1D grid of level k interpolates the
function g exactly, ij is equal to zero for all j. So, this value can be used as an error indicator
for each inserted grid point, since the hierarchical surpluses tend to zero as the level k tends to
infinity (for continuous functions). Considering now again the multi-dimensional case, we obtain the
sparse grid in hierarchical form applying the derived formula of A,

Stk.o)() = Sk—1,0(N+> (A" ®-- @ Al)(H
= S(k—1,d)(f)+1=§(k,d)(f)
with
AS (k,d) (f) = CERCED

(6.17)

where I}"-e, ={j € N? : Yj;’ € G’g for ji = 1,...,m”A,k = 1,...,d} is a new set of multi-indices
consistent with the multivariate hierarchical basis {a} 1 j € B, o < i}. Figure shows the
resulting 1D hierarchical ansatz functions.

! 52 al 2 AN al
08 4 ogr N8y 1 a, 08 2 //‘ 1
Vs a2a
0.6| 0.6| \ yd o6 1 AN
0.4 0.4 \‘\ 0.4
02| 02 AN 02| /
1

Figure 6.6: 1D hierarchical linear ansatz functions.

Thus, the objective function in our application can be approximated by the following rather ab-
stract expression:

Fo.va@) =D > w(p)-a() .

lil<kjel,

ier
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6.4 Adaptive sparse grids

The mean value of the objective function can be then computed as:

En(f(p, 100N =Y > w(p)- /O a (¥a () dP(C)

lil<kjef

hier

where

1 10, ifi=1
| _ 1 g s

/ g (Y)dY =43 : ifi =2 ,

2=, otherwise

where | denotes the length of the given 1D interval, that means in our example / = 2. Instead of
using the hierarchical surplus Wji as an error indicator for the adaptivity (cf. [88, [117]), we suggest
to adapt the grid checking the following expression:

i /O & (13 ()P () . 6.18)

Since it is not necessary to exactly interpolate the drag depending on the uncertainty in the opti-
mization loop in our application, the introduced adaptivity indicator |7|/ji (cf. (6.18)) only measures
the difference between the value of the mean inserting a new point in of the current level of inter-
polation and the corresponding value of the mean at the previous interpolation level. The resulting
algorithm in order to construct the sparse grid, which is then used for the optimization, slightly
differs from [88, [117] due to the modification in the adaptivity indicator.

The algorithm starts with the sparse grid at level k = 0 and tests the introduced adaptivity criterion
for all grid points in the old index set. If the test fails, the region around this point will locally be
refined, which means the 2d neighbor points will be added to the active set l 6. Therefore, the
algorithm successively adds those points to the Grid H aqaptive, Which are generated by the local
refinement procedure. The output of the algorithm is the computed adaptive grid H zqzprive and an
index vector indicating the number of points in each sparse grid level. In order to approximate
the mean value in each optimization step, an additional function |6.4]is needed. It computes the
hierarchical surpluses of equation (6.17), because the weights are not explicitly given as in the
non-adaptive case (6.3).
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6 Discretization of the Probability Space

Algorithm 6.3 Locally refined sparse grid

1:
2
3
4
5:
6:
7
8
9
10:
11

12:

13:
14:
15:
16:
17:
18:

function LASG
Initialize the sparse grid at level k = 0:

Calculate the function value at (0, ...,0)" € R?

Sadaptive(k, d) = 1((0, ..., 0) ), Hadaptive (k, d) — {(0,...,0)"}
Add the 2d neighbor points to the active index set l give
Initialize the old index set Iy «— ()

K+— Kk+1

While k § kmax and Iacﬁve _T’/@ dO

log < |o{d U lactives lactive < 0
for all Yi' € lyg do

Calculate
i = (f (ij,..., Y/:j) — Sadaptive (k — 1, d) (F) (Y/.f,... , Y/j)) :
Jod W ()P (), VY€ g
if then Wj“ > €

Add the 2d neighbor points of the current point Yji to the active index set lgive
end if
end for
Hadaptive (k,d) Hadapt/ve (k —1,d) Uloig, log 0
k+— k+1

end while

19: end function

Algorithm 6.4 Computation of the mean value using the locally refined adaptive sparse grid

7_(adaptive

1: function MEANLASG

SANEE -

@ © ® N

1

Input: Hagaptive, index vector Vingex(1, ..., maxleveh,q, ..)s Vindex(k) = #Yi', li| = k,

Y]I € Hadaptives

5(0,d) 0
for k = 1 to maxleveh,,,,,, do

for | = 110 Vingex (k) do
Compute w| = (f (Yj:‘ : YE) — Sadaptive (k — 1, d) (f) (YJ? Yﬁ)) ’
VYi', li| = k, Yj' € Hadaptive
end for
Sadaptive (ks d) (f) = Zm:k ZYiiGHadaptiVe Vvil ’ a;(\/ll) * Sadaptive (k - ’ d) (f)

end for

E — Z|i\§max/eve/ ZyjieHadaptive Wji () - f(r) a} (Vg (C)) dp (C)
: end function

Now, we shortly consider the following sample function
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6.4 Adaptive sparse grids

in order to demonstrate the adaptive refinement procedure. We are looking for the value of the
integral

1
/[ . E(exp(x1) + Xo) dx
—1,1

for the given error tolerance € = 10~3. The resulting adaptive sparse grid is shown in figure

08- * adaptive sparse grid based on linear ansatz functions‘

.

Figure 6.7: Demonstration of the adaptive refinement strategy evaluating fH 1P %(exp(x1)+x2) dx.

It shows that the algorithm is able to recognize the linearity in the second dimension, since the
refinement only takes place in the first dimension, especially for values x; > 0. So, this example
reflects the capability of reducing the number of grid points using the local refinement approach
for anisotropic problems. The reduction of grid points due to the antisymmetric behavior of the
objective function can also be observed in our application (cf. chapter ).
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Chapter 7

Fundamentals of Optimization

The following chapter will give a brief introduction to constrained optimization and basic algorithms.
The main focus lies on methods used in the aerodynamic shape optimization framework, especially
the one-shot method, which we will use in the robust optimization. First, we introduce a general
formulation of a constrained nonlinear optimization problem of the form

min f(x) (7.1)
st. c¢(x)=0 (7.2)
h(x) >0, (7.3)

where f : R” — R is a scalar-valued function and ¢ : R" — R™es, h: R” — R™n_ All functions are
assumed to be sufficiently smooth, which means twice continuously differentiable in this context.
We denote by F the feasible set of points x satisfying the constraints, i.e.

F ={x € R"|c(x) =0, h(x) > 0}. (7.4)
Therefore, the problem (7.1]-[7.3) can then be rewritten as

)r(r;ijrg f(x). (7.5)

Considering the aerodynamic shape optimization problem (2.29| - [2.31), the variable x can be di-

vided into two parts,
y\ € R
X = ) e R ny+np,=n,

where y denotes the state vector and p are the design variables. We will discuss the special
framework of separable problems later on in this chapter, and first concentrate on conditions to
characterize solutions of constrained optimization problems of the form (7.1]-[7.3).

7.1 Theory of constrained optimization

The following definitions distinguish two types of solutions of (7.1]-[7.3).

Definition 7.1.1 (Global Solution). A vector x* is a global solution of the problem -[7.9), if x*
is feasible, i.e. x* € F, and f(x*) < f(x) forall x € F.
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7 Fundamentals of Optimization

Definition 7.1.2 (Local Solution). A vector x* is a local solution of the problem -[7.3), ifx* € F
and there is a neighborhood U of x* such that f(x*) < f(x) forallx e U N F.

Except in some special cases, only a local solution instead of a global one of the optimization
problem can be found by the algorithms, which we will discuss below. In the application of interest,
one is interested in a design which leads to better drag performance than the initial one, which
means a design minimizing the objective function. But on the other hand, the difference of the initial
and optimized design should be small due to manufacturing reasons, so that the local behavior of
the algorithms can be of advantage in the aerodynamic design task.

Necessary and sufficient optimality conditions are now introduced in order to characterize the
solutions of the constrained optimization problem -[7.3). The definitions and theorems follow
essentially those in [132].

7.1.1 Necessary and sufficient optimality conditions
The Lagrangian for the constrained optimization problem (7.1]-[7.3) is defined as

L\, ) = Fx)+ A e(x) + 1" hx). (7.6)
The active set AS(x) of inequality constraints at any feasible x is defined as

AS(x) = {i e {1, ..., mp}|hi(x) = 0}. (7.7)

Definition 7.1.3 (LICQ). Given a feasible point x* € F and the corresponding active set AS(x*)
defined by (7.7), the linear independence constraint qualification (LICQ) holds, if the set

{Vei(x¥), ..., Vemg (X*), Vi (x¥), ..., Vhi (x*)}
of active constraint gradients is linearly independent, with {i1, ..., is} = AS(x*).

Theorem 7.1.4 (First Order Necessary Conditions). Suppose x* is a local solution of -[7.3
and that the LICQ holds at x*. Then, there exist Lagrange multipliers \* € R™ea, y,* € R™n, such
that the following conditions are satisfied

VLN 0%) = 0 (7.8)
c(x*) = 0 (7.9)

h(x*) > 0 (7.10)

pi <0, Vie{1,..,npn} (7.11)

W) hix*) = o. (7.12)

The conditions -[7.13) are known as Karush-Kuhn-Tucker conditions (KKT conditions).

Remark 7.1.5. The aerodynamic shape optimization problem (2.29|-[2.31) can be transformed to
an equality constrained problem due to physical reasons. So, the KKT conditions can be simplified
to:

V. L(xX", )
VAL(X*, X*) = ¢(x™)

Il |
o O
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7.2 Optimization algorithms

In order to formulate second order conditions, the following set of directions needs to be defined.

Definition 7.1.6. Given a point x* and the active constraint set AS(x*) defined by (7.7), the set F;
is defined by

Fi(x*) = {ad la >0, 0. vie{t, .., meq}} . (7.13)

dTVhi(x*) >0, Vi e AS(x*)

Ifthe LICQ holds at x*, F;(x*) is the tangent cone to the feasible set at x*.
Given the Lagrange multipliers \*, p/*, such that x*, \*, * satisfy the KKT conditions (7.8-[7.12),
we define a subset Fo(x*, \*, u*) of F1(x*) by

Fo(x*, X\, 1) = {w € F{|Vhi(x*)"w =0, Vi e AS(x*) with p* <0} . (7.14)
Equivalently,
Vei(x*)Tw =0, 1<i< Mg
w e fZ(X*7 )‘*! M*) ~ Vhi(X*)TW = 0! Vi e AS(X*) with MT <0.
Vhi(x*)Tw >0, Vi€ AS(x*) with i = 0

Theorem 7.1.7 (Second Order Necessary Conditions). Suppose that x* is a local solution of
- and that the LICQ condition holds at x*. Given the Lagrange multipliers \*, i* such that
X*, \*, u* satisfy the KKT conditions -[7.129) and F»(x*, X\*, i*) is defined by (7.14). Then,

WV LN 1w >0, Yw € Fo(x™, A%, 1). (7.15)

Theorem 7.1.8 (Second Order Sufficient Conditions). Suppose that for some feasible point x*,
there exist Lagrange multipliers \* € R™ and p* € R™n such that the KKT conditions (7.8 -[7.12)
are satisfied. Suppose further that

WV LXK, N, 11 )w > 0, Yw € Fo(x*, \*, 1), w #0. (7.16)

Then, x* is a local solution for (7.1]-[7.3).

7.2 Optimization algorithms

7.2.1 Sequential quadratic programming (SQP)

Sequential Quadratic Programming (SQP) is one of the most popular and effective methods for
nonlinear constrained optimization. We will shortly discuss the basic approach and extensions in
order to introduce the optimization strategy in the aerodynamic framework as in [58].
For simplicity reasons, we will begin by considering the following equality constrained problem
min f(x) (7.17)
X
st c(x)=0. (7.18)
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From 1) the Lagrangian function of the problem < - ) is £(x,\) = f(x) + AT ¢(x). By

applying the first order KKT conditions, we obtain the system

{vxax, A)} _ [vax) + C(x)TA] _o, (7.19)

VAL(x, A) c(x)

where C(x)T = [Vci(x), Ves(C), ..., Vem(x)]. The system of nonlinear equations (7.19) can be
solved by using Newton’s method. The Jacobian of (7.19) is given by

Hx,\) C(x)"
C(x) 0 ’

where H(x, \) denotes the Hessian of the Lagrangian,
H(x,\) = V2, L(x, ). (7.20)

Thus, we obtain the full Newton step

Xiwt | | Xk Axk
Mat] = M T AN

where Axx and A\, solve the KKT system

[H(X, A) C(x)T] [Axk} _ {—Vf(xk) - C(xk)T)\k]

C(x) 0 JAD.Y —c(xk) (7.21)

Remark 7.2.1.

1. Ensuring the nonsingularity of the KKT matrix, the following assumptions have to be made:

e The Jacobian C(xk) has full rank, which is equivalent to LICQ.

e The matrix H(xx, \x) is positive definite on the tangent space of the constraints. If (x, \)
is close to the solution (x*, A*) of problem (7.17]-[7.18) and the second order sufficient
condition holds at the solution, this second assumption will be fulfilled.

2. The Newton iteration can be shown to be quadratically convergent under the above-mentioned
assumptions, see [132] for more details.

3. Obviously, the linear system (7.21) is equivalent to the quadratic problem

min  (Axe) T HeAxi + (Vi) T Axk (7.22)
Ax RN
s.t. CkAxc+cx=0. (7.23)

The Langrange (adjoint) variable i of the quadratic problem -[7.23) can be identified
as the new estimate for \x,1. The quadratic program can be interpreted as a quadratic
approximation of the Lagrangian function and a linear approximation of the constraints. The
advantage of this alternative point of view is the straightforward extension of the method to
the inequality constrained case.
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4. As the exact computation of the Hessian of the Lagrangian is mostly not practicable, a quasi-
Newton approximation By is applied. The idea of quasi-Newton methods is to compute Bk, 1
from By by using update formulas. Here, we will concentrate on BFGS update formulas and
refer to [132] for more details. Defining the vectors

BFGS
Sk = Xk+1 — Xk Vi - = Vi — Vi,

the BFGS update is given by

Bisk(sk) ' Bx  vPFES(nPras)T

+
(sk) " BkSk (vBFES) T sy

In order to ensure the applicability of the introduced update formulas in large optimization
problems, we will briefly discuss a modification of the BFGS approach, the limited-memory
BFGS method, which reduces memory and computational requirements. The main idea of
this method is to use curvature information from only the most recent iterations to compute
the approximation of the Hessian. Instead of storing the fully dense n x n approximation
from the previous iteration, which is required as input in (7.24), the limited-memory BFGS
updates construct the Hessian approximation using information contained in the most recent
N vectors s;, v2FCS for a given N.

Byi1 = B —

(7.24)

Beside the computational aspects, the BFGS updates further show some favorable proper-
ties:

e The BFGS updates generate a sequence of positive definite matrices, if By is positive
definite and (72F@%)Ts, > 0 for all k. Since the Hessian of the Lagrangian is only
positive definite on the tangent space of the constraints, a Powell-relaxation can be
applied guaranteeing the positive definite updates.

e The update formulas can be directly formulated for the update of the inverse matrix of
Hi1.

e The high amount of memory can be overcome by storing only a certain number of the
most recent gradient information s;, v2FGS.

e |f the Hessian of the Lagrangian is positive definite, superlinear convergence can be
shown, otherwise linear convergence of the method.

5. If the Hessian is approximated by the identity, the linearized gradient projection method, out-
lined in algorithm is obtained, which is originally based on the gradient method for uncon-
strained optimization.

Algorithm 7.1 Linearized gradient projection method

1: function GPM

2 Choose an initial iterate x°

3 k<0

4 repeat

5: Choose step length 7y

6 XK+ xK — e VH(xX) — C(CCl) ek — Ckrk V(X))
7 k+— k+1

8 until convergence

9: end function
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There are several possibilities for the choice of the step length 74, we refer to [132] for more
details.

The SQP method in its basic form is stated in algorithm[7.2]

Algorithm 7.2 Basic SQP algorithm
1: function SQP

2 Choose an initial iterate x°
3: k0

4: repeat
5
6

Evaluate Vf(xx) and H(xk, Ax) (or approximation of Hy)
Solve

- 1 T T
(A Hi A f) ' A
Amin., 5(Axg)  HiAxic + (Vi) Axk
s.t. CkAxx+cxk=0

to obtain Ax, and pk

7: Xks1 < Xk + AXK
8: Ak+1 < [k

9: k— k+1
10: until convergence

11: end function

Reduced SQP method

We consider the separable case now again, that means

n
x=<g>§§n: with ny, + np = n

as in the aerodynamic shape optimization framework, cf. (7.1]-[7.3), and the optimization problem

min f(y, p) (7.25)
y.p
st c(y,p)=0. (7.26)
The Jacobian 9
c
C, = —
y ay

is assumed to be invertible. Applying the implicit function theorem, problem (7.25| - [7.26) can be
transformed to

mpin f(p), (7.27)

where f(p) = f(©(p), p) and © : R™ — R™ such that y = ©(p) and ¢(©(p), p) = 0. The derivatives
of f are given as
Vyt(y, p)

n : T
Vip) = T(y,p) <vpf(y, P)

) = Vpf(y. D) + Coly. )T A (7.28)
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and
52 fly, p +,\T cly.p)) 6)2(f(y,;(>9)+3T oly.p))
. 5705
8,02 f(y.p) +/\T ) Py eyoy | TP (7.29)
opdy Op?
where

T,p) = ( (550 p) A2 p)) A= —Rly,p)" <VV;(§:Z)> ,(7.30)

—1
Rly.p) = ((gﬁ(y’p)) ) (7.31)

0

and y satisfies c(y, p) = 0. The proof can be found in [163]. The derivatives (7.28) and of
the function f are referred to as reduced derivatives. The variable \ defined in (7.30) is exactly the
adjoint variable of problem - with the Lagrangian L(y, p, \) = f(y,p) + A c(y, p) at the
solution V, L(y, p, \) = V,f(y, p) + g—;TA =0.

Using the implicit function theorem, the reduced SQP methods correspond to a Newton/quasi-
Newton method for the unconstrained problem

min f(©(p), p)
o

with only one Newton step solving the nonlinear equation c¢(y, px) = 0 in each iteration. Further, the
rSQP method can be interpreted as a SQP method of the form

0 0 CZTr Ay ~V,f

0 TTHT C, | |Ap| = |-V,f]|. (7.32)
The rSQP approach is outlined in algorithm

Algorithm 7.3 rSQP algorithm
1: function RSQP
2: Choose an initial iterate yg, po

3: k20
4:  repeat

fy
S Compute the reduced gradient /¢ = T,/ (Vy k)

and some approximation By of Tk Hi Ty

6: Solve By Apy = —

7 Ay — —Cy_1 CpA,Dk — Cy_1Ck
8: Vst < Yk + Ay

o: Pk+1 < Pk + Apk

10: Aot — —R/ <§;yn;:>

11: k— k+1

12: until convergence

13: end function

More details on the algorithm and theoretical background can be found in [163].
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Partially reduced SQP method

The partially reduced SQP approach combines the advantages of SQP and rSQP methods. On the
one hand, the SQP framework allows a convenient treatment of inequality constraints and additional
equality constraints and on the other hand, the rSQP method can reduce the complexity of the
problem by exploiting the null space structure of some equality constraints. We now consider the
following constrained optimization problem:

min f(y, p)
y.p
st cly,p)=0, g; nonsingular
h(y.p) =2 0.

The derivatives of the additional constraint are denoted by
in._ [8n oh
Hin = [87 a—p} .

So, the concept of prSQP methods is formulated in algorithm

Algorithm 7.4 prSQP algorithm
1: function PRSQP
2: Choose an initial iterate yg, po

3: k0
4:  repeat

fi
5: Compute the reduced gradient v/2? = T,” <Vy k)

and some approximation By of T, H Tk
6: Solve the quadratic problem
min Ap, BxApx + (v1°) T Apk
Apy
s.t. H' T Apx + he — HI"Rck > 0

in order to get Apy and the adjoint variable pix,1

7 Ay — —Cy_1 CpApk — Cy_1Ck
: Ykt < Yk + Ayk
o: Pkt < Pk + Apk
100 At — —ATIHD) e + (Wk>1
\1
11: k— k+1
12 until convergence

13: end function

A detailed discussion of prSQP methods can be found in [163].
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One-shot method for aerodynamic shape optimization

We will now again consider the aerodynamic shape optimization problem (2.29|- [2.31)

min f(y, p)
y!p

st. c(y,p)=0
h(y,p) > 0.

and introduce a one-shot method based on the above-mentioned methods following closely [58].
The scalar-valued constraint h(y, p) > 0 ensures that the optimized profile produces a given lift CE
in order to obtain aerodynamically meaningful solutions. Due to the fact that loosing lift results in a
better objective function value (drag), this constraint will be active. Thus, the constraint is a priori
formulated as an equality constraint:

Ti;? f(y, p) (7.33)
st. c(y,p)=0 (7.34)
h(y,p) =0. (7.35)

The Lagrangian of problem (7.33]-[7.35) is given as
L(y,p, A, 1) = fly, p) + AT cly, p) + " Ay, p).
Further, we assume that g—; = Cy is nonsingular and the LICQ condition holds, i.e.
{Vypct - ViynCreg Viy.nh}

is linear independent. The necessary optimality conditions (7.8]-[7.12) are given by

V,L = 0
VoL = 0
cy;p)=VaL = 0
hly,p)=V,L = 0.

The SQP approach (cf. (7.21)) leads to the following KKT system

Hy, Hyp CZ (H}’,’:”)I Ay -V, L

Hoy Hop Cp  (Hp) Ap | _ [ Vel (7.36)
c, C O 0 AN - | '
lift lif

Ht HYt 0 0 Ap —h

where the matrix [Hyy Hyp} denotes the Hessian of the Lagrangian £. Applying the partially

oy oo
reduced SQP approach (cf. algorithm[7.4), the system (7.36) reduces to
B ,yfr)ed Ap *’Y;ed
oy 6 ) () = (e ve) (7:37)
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where the consistent reduced gradient of the drag coefficient is given as
v = Vpf + CpTaf

and the consistent reduced gradient of the lift coefficient as
e = Vph + CpTah.

The two adjoint variables of and o, are computed by the adjoint flow solver, where the right hand
side is the gradient of the drag coefficient

C)or=—V,f

and the lift coefficient
C,on=—V,h.
Finally, a block elimination leads to the following iteration:

h+ opC — ((,yged)kﬂ )TBk—1 (")/,fed)k”

[ikat = — (7.38)
: ((y/ed)k+1) T By T (yjed) ke
and
Ap = — B (7P — B (1) pageas - (7.39)

If the state equation is solved sufficiently, i.e. ¢ ~ 0, the term oxc, which corresponds to an
additional Newton step to solve y = ©(p), can be neglected. In [58], the two systems and
(7.37) are shown to be asymptotically equivalent and to converge to the same solution. So, the
one-shot method in the context of aerodynamic shape optimization is summarized in algorithm

Algorithm 7.5 One-shot algorithm
1: function ONE-SHOT
2. Choose an initial iterate y°, p°, o2, o9
3 k—0
4: repeat
5 k+1
6
7

Starting in aﬁ‘, perform n, steps in the adjoint solver (Vf as r.h.s) — o
Starting in o, perform n, steps in the adjoint solver (V,h as r.h.s) — ok*!
Compute the reduced gradients

(N = Vpf(yk, pk) + Cy (v, pF)of !
(VT = Vph(y¥, pF) + Cy (v¥, Pk

8: Approximate the consistent 1reduced Hessian of the Lagrangian — By
k pk red\k+1\T p— red\k+1
9: kst < i ’Z,Y)Iged()(!l’:)')er—)1(5£ed)(l:/+f1 )
10: Pt pf — B ()R — B (K g4, T € (0, 1] damping factor
11: Compute the corresponding geometry and adjust the computational mesh
12: Starting in y*, perform ny steps in the forward solver — yk*
13: k—k+1
14: until convergence

15: end function
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Generalized one-shot method for multiple-setpoint aerodynamic shape optimization

In the robust optimization framework, the special structure of multiple-setpoint problems often arises
as a result of the discretization of the probability space. A generalization of the one-shot approach
described in algorithm|[7.5]to the multiple-setpoint problems exploiting the structure of the underlying
problem will be introduced in this section. Numerical approaches to this problem class have already
been proposed in [20, 21]. For the sake of simplicity, we restrict the discussion to a problem of the
form

min wy - f(y1, P, 81) + w2 - f(y2, P, S2) (7.40)
Y1.y2,p

s.t. cyi,p,si) =0, i=0,1,2 (7.41)

h(yo, P, s0) = 0, (7.42)

where s; denotes the i-th setpoint. We can think of s; as a realization of a random parameter, i.e.
of the Mach number. The two setpoints in the objective function (7.40) are coupled via a weighted

sum and the design variables p, which are the same for all set-points. In addition, the lift constraint
is required at a third setpoint s5. The generalization to more setpoints is then obvious.

The corresponding Lagrangian of problem (7.40|-|7.42) is given by
ﬁ(yO! Y1 3 y2! p, A05 )\1 3 )\2! M) =Wt - f(y1 3 p, S1) + W2 f(y21 p; 32)
+Ag (Yo, . 50) + A{ C(y1, P, $1) + A3 €Yz, p. S2)
+ 1" h(¥o, P So0) -

Resulting from the necessary optimality conditions (7.8}{7.12)

Vil =0
VL =0
Vel = 0
Vol =0
cyo,p) =V L = 0
cy1,p) = VyL = 0
cly2,p)=VxyL = 0
h(yo,p)=V,L = 0,
we obtain the following KKT system
[Hope Moy Hyoye Hyp (Cp)T 0 0 (HMT] /Ay —VyL
Hyyo Hyyr Hyye Hyup 0 (C))T 0 0 Ay —Vy, L
Hyyo  Hysyr Hyoyo Hpp 0 0 (C3)" 0 Ay -V,L
HP}’O Hp}/1 HPYz HPP (Cg)T (C;)T (C.g)—r (H.gﬂ)T Ap — _VP[’ (7.43)
c, 0O o C 0 0 0 0 Al —c |
o ¢ 0 C 0 0 0 0 A —c
0 0 ¢ G 0 0 0 0 AN —C2
| Hpt 0 0 Ht o0 0 0 0 | \Au —h
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where C' denotes the Jacobian of the flow equation of the i-th setpoint.
Approximating the Hessian of the Lagrangian in (7.43) by

H}’o}’o H}/o}’1 H,Vo}’2 H}’op 0 00O
H,V1 Yo H}’1 ¥ HY1 )] H)h P ~ 0000O
H}’2YU H.V2}’1 H.V2.V2 H.Vzp 000 0|’
HP,VO HP}’1 HP}’z HPP 0 00 B

(cf. partially reduced SQP approach in section|7.2.1), the following linear system has to be solved

o o o o0 ()" o 0 (HMHT] /Ay ~VyL
0 0 0 © o ()" o 0 Ay -V, L
0 0 0 © 0 0 (C3)' 0 Ay -V,,L
0 0 0 B (C)" (€hH" ()T (HMHT| | Ap _| Vet (7.44)
cj, 0 0 Cy 0 0 0 0 AN —Co
0 ¢ 0 C 0 0 0 0 AN —c
0 0 C, C 0 0 0 0 AXz —C
lift lift
Hyt 0 0 Hft 0 0 0 0 | \Au —h
Applying a block elimination to (7.44), we obtain
lift\ T O\ T (A0 \—T (pylifty T
, B , (Hy)" = (Cp) " (Cp)~ " (Hy) Ap
(HHT —(Cp)T(Co)~ T (Hm ™) T 0 Ap

_(CTCR) TV L+(C)T(C)) TV, L+(C))T(CS) TV, L — VL
—h = Hg(Ch) e |

Replacing Ap by pigs1 = pk + Ap leads to
B ,yered Ap _ _',Yfred
(et o pet)  \—h— H%t(c;(/)o)_TCo ’

v = (HIMT —(cp)T(el) T HmT
Y = wi v we gl

wi - (Vpf' —(CHT(C)) TV 1)+ wa - (Vpf? — (CB)T(CE) ™V, ).

with

We notice that the adjoint solution of
Cjom=—Vyf, =12

and the lift coefficient
C,on=—Vyh
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are to be solved independently, and then collected in the reduced gradients.

Therefore, the iterations in the adjoint solvers can be done in parallel for each setpoint s;. Then,
the update in the design variables is computed and distributed to all forward problems, which can
again be performed in parallel. The generalization to more setpoints, which is the case in robust
optimization problems, is then obvious.

Figure [7 1]illustrates the optimization strategy for N setpoints.

perform n; steps in perform n¢ steps in perform n; steps in
the forward solver the forward solver the forward solver
(setpoint sp) (setpoint sq) (setpoint sy)

s . s . s .
perform n, steps in perform n, steps in perform n, steps in
the adjoint solver the adjoint solver the adjoint solver
(Vyihasrhs) | L (Y f! as r.h.s) ) | (VN as r.h.s)
compute the re- ) ( compute the re- ) ( compute the re-
duced gradient /5% duced gradient /¢ duced gradient /5
. _J . J o J

compute the update Ap

Figure 7.1: Optimization strategy of the generalized one-shot approach.

The amount of additional computational effort considering a multiple-setpoint optimization prob-
lem can be efficiently overcome by a parallelization of function evaluations and gradient computa-
tions of the different setpoints. We will see later on in the numerical results (see chapter [8) that
discretized semi-infinite formulations of the aerodynamic shape optimization problem belong to the
class of multiple-setpoint problems and can therefore be efficiently solved by the generalized one-
shot algorithm.

The generalized version of the one-shot approach is stated in algorithm
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Algorithm 7.6 Generalized one-shot algorithm
function GENERALIZED ONE-SHOT

Choose an initial iterate yg, ..., y§, P% 0% .., 0%, 0f

1:

2

3 k—0

4: repeat

5 compute in parallel

6 Starting in ajlk, perform n, steps in the adjoint solver (Vy,f’ as r.h.s)

— af,”, Vi=1,..,N
7: Starting in o—,’§, perform n, steps in the adjoint solver (V, h as r.h.s)
_ O,k+1
h
8: Compute the reduced gradients
(et = Vpf (v, p) + (Cp) T (v, p)of, Vi= 1, N
(T = Vph(yg, p) +(Co) T (v5. P!
9: end parallel
10: Compute the weighted sum of the reduced gradients
N
(P =D wi- ()
i=1
11: Approximate the consistent reduced Hessian of the Lagrangian — By
) h(y(l)(!pk)_((,yfryed)kﬂ )T 5;1 (,y;’ed)kﬂ
12: Mkt < ((,y’r]ed)k+1)TBk—1(,y’rled)k+1
13: P! pf — B ()R — B (/K g1, i € (0, 1] damping factor
14: Compute the corresponding geometry and adjust the computational mesh
15: compute in parallel
16: Starting in yX, perform ny steps in the forward solver — y/*!, Vi =0,...,N
17: end parallel
18: k+— k+1
19: until convergence

20: end function

7.2.2 Nelder-Mead algorithm

The Nelder-Mead (Simplex) algorithm proposed by John Nelder and Roger Mead [129] is a gradient-
free optimization method for unconstrained nonlinear problems, which is very popular among en-
gineers for aerodynamic shape optimization. The method belongs to the direct search class of
methods, which do not require derivatives and are therefore often claimed to be robust for problems
with discontinuities or problems where the function values are affected by noise. Convergence re-
sults exist only for a restricted class of problems in one or two dimensions (see e.g. [99]). Several
variants of the Nelder-Mead algorithm partly with provable convergence can be found in literature
(cf. e.g. [141]).
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The basic method solving the nonlinear problem

in f
g 0

with f : R” — R can be stated as follows:
Starting with a simplex in the domain of the function to be minimized, where a simplex Sin R" is
defined as the convex hull

n n
S={ZL/XI'1L/ZO,i=O,...,n,ZL,-=1}
i=0 i=0

of n+1 affinely independent points X, ..., x, € R". The algorithm transforms the working simplex in
each iteration by attempting to replace the vertex with the highest function value with a better one.
If this attempt fails, the simplex is shrinked towards the best vertex. So, one iteration consists of the
following steps:

1. Determine the worst f,, = max; f(x;), second worst fs, = max;, f(x;) and best f, = min; f(x;)
vertex

2. Compute the centroid centroid = 15 > Jw Xi with respect to x,,.

3. Transform the current simplex into the new working simplex by using the operations described
below.

There are four basic operations in order to transform the simplex:

Reflection Compute the reflect point
X, = centroid + o (centroid — x,)

scaled by a positive constant 0 < «, < 1 called the reflection coefficient.

Expansion By extending the search in direction (x, — centroid), compute the expand point
Xe = centroid + ye(X; — centroid) ,
where v, > 1 denotes the expansion coefficient.

Contraction

outside The contract-outside point is given by

Xc = centroid + B.(x, — centroid)

inside The contract-inside point is given by

Xc = centroid + B¢(x, — centroid)

with 0 < G, < 1.
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Algorithm 7.7 Nelder-Mead algorithm

1: function NELDER-MEAD

2 Choose an initial simplex S°

3 k—0

4: Evaluate the objective function at each of the n + 1 vertices.

5: repeat

6 Ky, &, = maxi f(xK), £ = min; f(xK).
7 Calculate the reflect point x¥

8 if f(xK) < f(x¥) < f(x£,) then

Determine & = max; f(x¥

9: lef/ — Xf
10: else
11 if f(xX) < f(xf) then
12; Calculate the expansion point xg
13: if f(xX) < f(x¥) then
14: xK « xk
15: else
16: xK — xk
17: end if
18: else
19: if f(xX,) < f(x¥) < f(xk) then
20: Compute the contract outside point Xé‘o.
21: if f(xX) < f(xF) then
22: xK — xk
23: else
24: Shrink the simplex
25: end if
26: else
27: Compute the contract inside point xé‘,-.
28: if f(xX) < f(xX) then
29: xK — xk
30: else
31: Shrink the simplex
32: end if
33: end if
34: end if
35: end if
36: k—k+1
37: until convergence

38: end function
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7.3 Semi-infinite programming

Shrinking Compute n new vertices

1
)"(,-=xb+§(X,-—Xb), i=0,...,n, i#b.

The basic Nelder-Mead algorithm is summarized in algorithm

Further details on termination criteria and typical choices of the parameters «;, 3¢, ve can be
found in [83]. If the variables are well scaled, the method will show a stable behavior in practice
even for mildly discontinuous problems. The main disadvantage of the Nelder-Mead algorithm is
the high number of function evaluations needed during the optimization. In order to use the Nelder-
Mead algorithm for constrained optimization problems also, penalty function approaches can be
applied, see e.g. [132] for more details.

7.3 Semi-infinite programming

The robust formulation (4.12]-[4.14) of the aerodynamic shape optimization problem leads to opti-
mization problems of semi-infinite type. Therefore, we will briefly discuss methods for semi-infinite
problems of the general form

min £(x) (7.45)

X

st. h(x,u)>0, VYuel, (7.46)

where U C R™ is a compact set. The functions f and h are assumed to be real-valued and twice
continuously differentiable functions in their respective domains. Problem - is called a
semi-infinite programming problem, if |U| = oo and x denotes finitely many variables. A survey of
theory, applications and methods for more general semi-infinite problems with weaker assumptions
on the set U, the so called generalized semi-infinite optimization problems, can be found in [174]. In
the application of interest, the set U corresponds to the realizations of the uncertain input parameter.

Obviously, problem (7.45|-7.46) is equivalent to

min £(x) (7.47)
st. ¢(x) >0 (7.48)

with ¢(x) := minyecy h(x, u). The function ¢ is the optimal value function of the so called lower level
problem

min h(x, u) . (7.49)
ueU

In the lower level problem, u is the decision variable and x plays the role of an n-dimensional
parameter, whereas the upper level problem consists of minimizing f over the feasible set F =
{x € R"| ¢(x) > 0}. The main challenge in semi-infinite programming is to solve the lower
level problem to global optimality [174]. The reformulation - of the semi-infinite
problem - suggests the use of nondifferentiable optimization approaches, especially
descent methods [72], which are robust, but expensive with respect to the computing time. In order
to improve the convergence rate, the numerical methods for semi-infinite programming replace the
standard problem - by a sequence of finite problems, which means problems with only
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a finite number of constraints [72]. Generating the finite problems, we will examine the structure of
the feasible set 7 = {x € R" | ¢(x) > 0} and especially the active set Uy at a point x

Us(x) = {u € U| h(x,u) = 0}. (7.50)

For special analysis of first and second order optimality conditions of semi-infinite programming
problems, we refer to literature, see e.g. [167,[174], and concentrate in the following on the basics,
which are used to construct numerical methods to solve problems of the form (7.45]- [7.46).

If U is a finite set, it is well known that the following inclusion Up(x) C Uy(X) holds for all x in a
neighborhood of a given point X due to continuity of h. Whereas in the semi-infinite case, one can
show that the active set Uy(x) changes from point to point along the boundary of the feasible set F,
see [79] for more details. So, the control of the active set Uy(x) is one of the main features in semi-
infinite optimization. Let X € F and Uy (%) # (). It is obvious that & € Uy(X), iff & is a global minimum
of the lower level problem (7.49). Further, suppose that every i € Up(X) is a nondegenerate local
minimum of h(X, ~)|U, which means LICQ, strict complementarity and the second order sufficiency
condition are satisfied. Then, it follows that each & € Uy(X) is an isolated point [79]. Hence, the set
U (X) is a closed subset of U without accumulation points. Consequently, Uy(X) only contains finitely
many points, Up(X) = {i,-- - , Un, }. This special structure of the active set Uy can be exploited in
order to replace the semi-infinite problem (7.45] - by a sequence of finite ones. According to
the way finite problems are generated, three types of methods can be distinguished: discretization
methods, methods based on local reduction and semi-continuous methods. Since semi-continuous
methods work continuously with respect to the variable u and therefore require the knowledge of
all minimizers u € U of the lower level problem for a given x, these methods are hardly
applicable in the nonlinear framework, so that we will not treat this approach here and refer to [147]
for more details.

7.3.1 Discretization

The most obvious approach solving semi-infinite problems of the form -[7.46) by a sequence
of finite subproblems is the discretization method. The set U is replaced by a finite subset UX c U
and the resulting finite problem is solved using standard optimization algorithms. This procedure
is possibly repeated for an enlarged or improved set U**' in order to achieve a higher approxima-
tion quality of the underlying semi-infinite problem. The choice of the discretization of U and the
sequence U* are a crucial point of this method in order to achieve convergence of the solutions of
the finite subproblems to the solution of (7.45]-[7.46). The grids U* can be described either a priori
or adaptively during the optimization, which means information obtained by the k-th discretization
level is utilized to define U**'. The general discretization algorithm is stated in algorithm

In order to show convergence, it has to be ensured that each accumulation point of the sequence
of solutions of the finite subproblems is a solution of the underlying semi-infinite problem -
. Considering a sequence of finite subsets UX fulfilling the following two assumptions, two
stability results can be shown [147].

e UXis a sequence of compact subsets U ¢ U*' C U and klim dist(UX, U) = 0.
—00

e There exists x* € {x € R" | h(x,u) > 0,u € U°} such that the level set A(x*, U°) = {x €
R™ | f(x) > f(x*)} N {x € R" | h(x, u) > 0,u € U} is bounded.
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Algorithm 7.8 Conceptual discretization algorithm
1: function CONCEPTUAL DISCRETIZATION ALGORITHM
2 Choose an initial grid U°

3 k<20

4: repeat
5
6
7

Select a (finer) discretization U c U
k+— k+1
Compute a solution x* of the finite subproblem

mXin f(x)

st. h(x,u)>0, Yue U

8: until x* is feasible within a given accuracy € > 0, i.e. h(x*, u) > —¢, Yu e U
9: end function

The first one states convergence, if global minimizers of the finite subproblems can be computed,
which is usually only possible for linear or convex problems. The proof can be found e.g. in [146].
In [140], convergence results are presented, where x* does not need to be a global solution of
the finite subproblem. Many modifications and improvements of discretization methods for non-
linear semi-infinite programming problems are suggested in literature, see e.g. [147] providing a
comprehensive survey.

7.3.2 Local reduction

The principle of local reduction proposed by Hettich and Jongen [73] locally reduces the semi-
infinite problem (7.45] - to a finite program keeping track of the elements of Uy(x) for varying
x. As discussed before, the feasible set of a semi-infinite problem cannot be locally represented
only by the active constraints (in contrast to finite optimization problems). However, under additional
assumptions, there exists a finite number of constraints such that the feasible set defined by these
constraints coincides with the feasible set of the semi-infinite problem in a neighborhood. Then, a
local reduction of the semi-infinite to a finite parametric optimization problem can be performed. The
reduction ansatz is said to hold at X € F if all u € Uy(%) are nondegenerate minima of h(%, -)|. It
can be shown that the set Up(X) is a finite set Up(X) = {{n, - - -, Un, }, X € F under this assumption
as discussed above. As each point ux € Up(X) is an isolated point, the local variation with x can be
described by the implicit function theorem [174]. Then, there exist open neighborhoods U/ (%) of X
and U(uk) of ux, k =1, ..., ny and implicit functions u4(x), ..., un,(x) such that

1. e UR) = UW)N U, k=1,...,ny
2. Uk()A()=Uk, k = 1,...,I7U

3. for all x € U(X), uk(x) is a nondegenerate and isolated local minimizer of the lower level

problem (7.49).

Therefore, it follows that

{x eU(X) | h(x,u) >0, Yu € U} & {x e U(X) | h(X) = h(x, ux(x)) >0, k=1,...,ny}.
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So, it is possible to replace the infinite constraints of the semi-infinite problem (7.45|-[7.46) by finite
constraints which are locally sufficient to define the feasible region. The finite reduced problem is
then defined by

in f 7.51
xg]lxll?)?) ) (7.51)
st. m(x)>0, k=1,..,nu. (7.52)

For all x € U(X), hk is a twice continuously differentiable function with respect to x and x € U(X)
is a feasible point of the semi-infinite problem -[7.46) if and only if hx(x) > 0, k = 1,...,ny
[79]. It can be further proven that x* € U(X) is a strict, isolated local minimizer of -
iff x* is a strict, isolated local minimizer of the reduced problem -[7.52), (cf. [147]). The
drawbacks of reduction based algorithms lie in the fact that the neighborhood ¢/ (%) and the function
hx are not known explicitly. However the function values hi(x) can be computed by h(x, uk(x)),
where the uk(x) are the local minimizers of h(x,-). For the numerical treatment of semi-infinite
problems - by methods based on the reduction ansatz, the assumption on the global
minimizers ux € Up(X) are not sufficient, in fact, this assumption has to be made also on the local
minimizer of the lower level problem (7.49). Further, it has to be assumed that the cardinality of
the set of local minimizers of the lower level problem has to be finite. In literature, there can
be found regularity conditions which imply the additional assumptions on the local minimizers, see
e.g. [79]. In the following, we will give a conceptual description of methods based on the reduction
ansatz and refer to literature for more details on the reduction based methods, e.g. [72, (147, [174].
In order to solve the inner reduced problem, SQP methods are often used providing an efficient

Algorithm 7.9 Conceptual reduction algorithm

1: function CONCEPTUAL REDUCTION ALGORITHM
2 Choose a starting point xp
3: k0
4 repeat
5 Determine all local minimizers u;(xx), j = 1, ..., ny, of the lower level problem
min h(x, u) .
ueU
6: Apply nk steps of a finite programming algorithm to the reduced problem
min f(x)
XEU (Xk)

st. h(x) >0, k=1,.., ny,

with Ak (x) = h(x, uk(x)). Let xi, i = 1,..., n be the iterates.

7: XKl x )k
8: k— k+1
9: until convergence

10: end function

way. Methods based on the reduction ansatz were successively applied to even highly nonlinear
semi-infinite programming problems, cf. e.g. [67].
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7.3 Semi-infinite programming

Remark 7.3.1. Semi-infinite Optimization in the Robust Aerodynamic Framework

In the numerical results in section |8 we will see that the lift constraints show an almost linear
behavior with respect to the uncertainties, even in the case of geometrical uncertainties. So, the
reduction of the robust formulation - of the aerodynamic shape optimization problem
to a finite optimization problem is straightforward. More precisely, the determination of all local
minimizers of the lower level problem can be efficiently performed. In the case of scalar-valued
uncertainties, a reduction based ansatz is chosen ensuring the feasibility of the optimized shape
over the whole range of variations of the uncertain parameter. Further, the discretization method is
applied in the high dimensional case of geometrical uncertainties, since discretization methods pro-
vide an efficient and straightforward way to obtain at least a sufficiently good approximate solution
of the problem. Due to the monotone behavior of the lift constraints with respect to the geometri-
cal uncertainties, the feasible set of the discretized problem coincides with the feasible set of the
semi-infinite problem even for coarse discretization.
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Chapter 8

Aerodynamic Applications and
Numerical Results

The first part of this chapter is devoted to the numerical comparison of the semi-infinite formula-
tion (4.12]- [4.14) and the chance-constrained formulation (4.18|- [4.20). Uncertainty quantification
methods, introduced in chapter [5] are applied in order to transform the robust formulations into
numerically tractable optimization problems. The comparison between the two robust formulations
is performed considering the optimization of a 2D transonic RAE2822 profile in Euler flow under
scalar-valued uncertainties. Further, the influence of adding higher order terms to the mean value
in the objective function is investigated considering the robust optimization of the 2D RAE2822 pro-
file under uncertainties in the angle of attack. Afterwards, numerical results of robust optimization
considering the combination of two scalar-valued uncertainties in the 2D RAE2822 test case will be
presented.

Furthermore, the optimal aerodynamic shape under geometrical uncertainties is computed in a
2D Euler and Navier-Stokes test case. The uncertainties of the shape are modeled as a Gaussian
random field of perturbations, which is approximated by a Karhunen-Loéve expansion in order to
obtain a finite dimensional representation. Additionally, we will investigate the influence of the geo-
metrical uncertainties on the shape to reduce the problem size. The discretization of the probability
space then leads to a finite, approximating optimization problem, which will be solved by a parallel
version of the one-shot method (cf. chapter [7). Since the same profile in the two test cases is
considered, the numerical results allow conclusions regarding the influence of the perturbations on
the physics. We will see that even small deviations from the planned shape may cause significant
changes in the flow statistics. So, this test case illustrates the need of robust optimization in order
to compute a shape, which shows still a good performance under (unavoidable) variations of the
assumed setpoints.

In the next section, we will investigate the influence of geometrical uncertainties in a 3D industrial
test case by uncertainty quantification methods. Quantities of interests will be expanded in a series
of orthogonal polynomials by a non-intrusive polynomial chaos method. The surrogate function is
then used to determine statistics of the solution like the mean or variance. We will see that the
introduced methods provide an efficient way of quantifying the impact of input uncertainties on the
output, even in highly sophisticated 3D test cases. This additional information can then be used
e.g. during the preprocessing of a design process to decide whether an uncertainty has to be taken
into account in the robust optimization or whether it can be disregarded.

One of the main tasks within the project MUNA was the applicability of the developed methods for

97



8 Aerodynamic Applications and Numerical Results

industrial purposes. The introduced methods exploit the structure of the underlying problem, which
arises from the PDE constrained optimization problem and also from the stochasticity involved. The
numerical results will show that the proposed approach leads to numerically tractable optimization
tasks and so makes robust design available for the aerodynamic framework.

8.1 Numerical comparison of the introduced robust formulations
(test case RAE2822)

We investigate in the following the robust shape optimization of a RAE2822 profile in transonic
Euler flow by the use of the structured flow solver FLOWer. In our example, the space is discretized
by a 193 x 33 grid, see figure For parametrization, the airfoil is decomposed into thickness
and camber distribution. Then, only the camber of the airfoil is parametrized by 21 Hicks-Henne
functions and the thickness is not changed during the optimization process.

The deterministic optimization problem is defined by

rpig f(y, p) (8.1)
st. cly,p)=0 (8.2)
h(y,p) > 0 (8.3)

with p € R?!, y € R385, The objective function f denotes the drag coefficient Cp, c is the steady
state Euler equation with appropriate boundary conditions and the inequality constraint is defined
by

h(y.p) = Cu(y.p) — C} (8.4)

with CE = 0.8263. The shape of the RAE2822 airfoil is to be optimized for transonic flight conditions,
i.e.
M =0.73, a=2°. (8.5)

The initial values of the drag and lift coefficients are
Cp=86.88-10"*, (. =0.8263.

A single-setpoint optimization using the one-shot method introduced in algorithm [7.5| leads to the
coefficients
Cp=387.35-10"*,  C,=0.8261,

which show a significant reduction of the drag coefficient. In order to compare the introduced robust
formulations of the deterministic problem (8.1]-[8.3), we consider in the following the Mach number
as an uncertain parameter. To include the uncertainty in the optimization problem, the Mach number
is described by a real-valued random variable s : O — R, with (O, Y, P) given probability space,
with the assumptions

e The realizations of s are in the range of [0.7,0.76], i.e. s({) € [0.7,0.76],V( € O.

e The expected value corresponds with the setpoint of the deterministic problem, [£(s) = 0.73.
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Figure 8.1: C-type grid for the RAE2822 airfoil (Euler flow): the total geometrical plane (above) and
zoom around the airfoil (below).
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e The random variable s is truncated normally distributed,

1
s ~ ——N(0.73,0.001) - 1 8.6
ons ( ) - 110.7,0.76] (8.6)
: 018 1 (x—0.73)2
with const = oj; Tcaas ©XP (— 50,001 ) dx.

The resulting density function ¢uncated Was already depicted in chapter 3] cf. figure [3.1]

Motivating the robust optimization considering the Mach number as an uncertain parameter in
the test case, we first investigate the influence of the Mach number on the target functional f and
the inequality constraint h.
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Figure 8.2: Drag and lift performance of the single-setpoint optimization with respect to variations
of the Mach number.

As figure [8.2] shows, the drag is very sensitive to changes in the Mach number, especially in the
region above the setpoint M = 0.73. Even small perturbations of the deterministic setpoint result
in a large amount of the drag coefficient. Furthermore, the required target lift is not reached for
realizations of the random variable, which are below the nominal point. Summarizing, the sensitivity
analysis shows that the optimized shape is not robust against small variations of the Mach number
and hence will not reach the expected performance in real world conditions. The task of robust
optimization is now to compute a shape, which can improve the performance over the whole range
of perturbations.

Another important observation of this study is the fact that the inequality constraint h shows a
monotone and almost linear behavior with respect to the Mach number. This property can be used
to efficiently approximate the lift coefficient with respect to the input random variable s by uncertainty
quantification methods.

In order to numerically compare the robust formulations introduced in chapter [4] we first derive
computationally tractable optimization problems using the uncertainty quantification techniques and
discretization methods discussed in chapter [5|and 6|
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8.1 Numerical comparison of the introduced robust formulations (test case RAE2822)

8.1.1 Semi-infinite formulation

The semi-infinite formulation of problem (8.1]-[8.3) is of the form

min E(f(y(s(¢)), p, s(¢))) (8.7)

y(s(Q).p
st e(y(s(Q), p, s(C)) v¢e O (8.8)

-0,
hy(s(C)),p.s(C)) = 0, V(e O,

where s denotes the random variable modeling the variations of the Mach number. The computation
of the mean value in the objective function (8.7) requires the evaluation of the integral

E(f(y(s(C)), p, s(Q))) = /O f(y(s(C)), p, s(C)) dP(C) (8.10)
= /]R f(y(x), p, X) - Vtruncatea AX (8.11)
B 1 076 (x — 0.73)
= —const 50001 /0.70 f(y(x), p, X) exp (—2 0,001 ) dx. (8.12)

Since there exists no closed form solution of (8.12), the integral has to be numerically approxi-
mated. As we consider a one-dimensional random variable, the numerical evaluation of can
be efficiently done by a GauB-Hermite quadrature, where the quadrature points {s;} are the roots
of the Hermite polynomials, cf. (6.11). Due to the exponential growth of the effort with increasing
dimension, the full tensor product Gaussian quadrature rule should be replaced in the higher di-
mensional case by Smolyak type algorithms, as discussed in chapter[6] Figure illustrates the
density function vyuncated @nd the corresponding Gaussian points used to approximate the mean
value (8.10).

T T T T T T T
—density function

18
* Gaussian points

probability

069 07 071 072 74 075 076 077

078
Mach number

Figure 8.3: Density function of the random variables M ~ COLst./\/'(O.73,O.OO1) - Ij0.7,0.76) and the
corresponding Gaussian points.

Therefore, we can reformulate the objective function (8.7) and the appropriate flow equation (8.8)
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in an approximative fashion in the form of a multiple-setpoint problem for the setpoints {s;},:

N
min » f(yi, p, Sj)wj
y,',p; (vi» p, Si)wi

s.t. clyi,p,si)=0, Vie{1,..,N},

where w; denotes the quadrature weights determined by (6.12). Another numerically difficult task
is to ensure the feasibility over the whole range of variations, which means to consider infinitely
many inequality constraints given by (8.9). A local reduction ansatz as introduced in section[7.3.2]
is applied. We assume that the initial shape given by pg is a feasible geometry of problem -
[B.9), i.e.

h(y(s(¢)), po, s(¢)) = 0, V¢ € O.

Using the reduction approach, all local minimizers of the lower level problem

in h .
se[g_y,g_m] (¥(s), po, S) (8.13)

have to be determined first, cf. algorithm In general, the computation of all local minimizers
is a difficult task , but due to the monotonicity and almost linearity of the lift constraint with respect
to the Mach number, the set of local minimizers contains only the global minimum, which can be
easily determined:

So = 0.70 = argmin h(y(s), po, S) . (8.14)

€[0.7,0.76]

Since the changes in the geometry are very small during the optimization, the linearity of the con-
straint can be conserved and the set of local minimizers of the lower level problem remains
constant over the whole optimization procedure, i.e.

Sp = 0.70 = argmin h(y(s), p, S) (8.15)
5€[0.7,0.76]

is the only local (global) minimum. Therefore, the semi-infinite optimization problem -[8.9) can
be simplified to

N
min > f(yi, p, Si)wi (8.16)
YisP =1
s.t. clyi,p,si)=0, Vi € {0,...,N} (8.17)
h(yo,p, s0) = 0. (8.18)

The reformulation (8.76]- [8.18) leads to a finite multiple-setpoint problem, which can be efficiently
solved by the generalized one-shot algorithm described in algorithm[7.6] One advantage of problem
formulation (8.16]-[8.18) lies in the reusability of the methods developed for the deterministic single-
setpoint aerodynamic optimization. The gradients of the objective function and the constraint
can be efficiently computed by the use of the available adjoint solvers. Furthermore, the
generalized one-shot method supports a parallel implementation very well, so that the additional
flow simulations for each realization of the random variable s;, i = 0, ..., N can be performed in
parallel.
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8.1 Numerical comparison of the introduced robust formulations (test case RAE2822)

8.1.2 Chance-constrained formulation

The chance-constrained formulation of problem (8.1]-[8.3) is given by

y(ggcigyplE(f(y(s(C ), P, 8(C))) (8.19)
s.t. c(y(s(¢)), p, s(¢)) = 0, V(e O (8.20)
PHC | hy(s(C)), p,s(C)) > 0}) > Po (8.21)

with given P, indicating the probability for which the lift constraint h is fullfilled. We reformulate
problem - to a computationally tractable problem following the ideas of [143]. The
simplification is performed by applying a Taylor series expansion about the nominal setpoint s, =
0.73 = [E(s), which corresponds to the moment methods discussed in section Suppressing
further arguments (y, p) for the moment, the second order Taylor approximation of f in gives

. Of(Sno) 1 T 02f(Sno)
f(s) = f(sno) + Os (58— Sno) + E(S — Sno) 052 (5 — Sno) -
Integrating this, we obtain
. 1 02f(Sno)
E(f) = £(Sno) + 852" Var(s),

which corresponds to the SOFM method introduced in (5.8). Obviously, a first order Taylor se-
ries approximation estimates the mean of the output using the first moment of the input, which
corresponds to the deterministic solution in our application. The FOFM method will only lead to
good approximations of the mean value, if the underlying function shows an almost linear behavior,
which is not the case in the considered application. In order to deal with the probabilistic chance
constraint (8.21), we also have to approximate the probability distribution of the output random
variable h. Since the random variable s is assumed to be truncated Gaussian, a first order Taylor
approximation of the inequality constraint h is applied, so that the approximation of the lift constraint
his again truncated Gaussian distributed (unlike the second order approximation) (cf. [66]).

Oh(Sno) 1

s—8§ ~
0s ( o) const

Oh(sno) \?
O approx = Js g%,

where o denotes the standard deviation of s, i.e o = +/0.001, The normalizing constant const of the
output density is equal to the constant of the input density due to the linearity of the transformation.
The support of the resulting density function is given by

h(S) = h(SnO) + N (h(sn0)7 O-gpprox) ’ ILH.azp,orox

with

Rapprox = M -(0.70 — Spo) + h(Sno), Oh(Sno)

83 TS * (0.76 - Sno) + h(Sno)

Furthermore, we use the following equivalent representation of the chance constraint (8.21)

PHC | hy(s(©), p.s(C)) = 0}) = Po <= PHC|hly(s(Q), p,s(Q) <0} <1-"Po
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in order to reformulate problem (8.19]-[8.21) applying the discussed simplifications:

min f( (P Sro). . Sno) + 5 LV ar(s) (8.22)
s.t. m R[exp (_(X—h(yég,i:;l;ﬁ,sna))z) g, () dx < 1— P, (8.23)
where
Rapprox = {R;ﬁf:”) ’ if0 > ) . (0.76 — spo) + h(Spo) _
|21 (070 — 530) + hlsno), 0], else

Using the implicit function theorem, the flow vector y can be written as a function of the design
variables p and the uncertain parameters. Since the flow model depends on the uncertainties
s, we should be aware that the derivatives with respect to s are total derivatives. As in the semi-
infinite formulation, the integral is approximated by a numerical quadrature formula. Due to
the variable bounds of the intergal, a Newton-Cotes formula of order 6 is applied.

In contrast to the semi-infinite formulation, gradients of the objective function and the
chance constraint with respect to the design variables p cannot be evaluated by the use of
the available adjoint solvers. Due to this fact, the Nelder-Mead method, which is a gradient-free
algorithm, is chosen, cf. section The derivatives with respect to the uncertain parameter s
are computed by finite differences.

8.1.3 Numerical results

In the following, the results of a numerical comparison between the semi-infinite (8.16]-[8.18) and
the chance-constrained formulation (8.22] - [8.23) considering the shape optimization of the intro-
duced RAE2822 test case will be presented. In particular, we compare four formulations:

1. Non-robust single-setpoint optimization at the nominal point M = 0.73 (one-shot algorithm)
2. Semi-infinite formulation (8.16|-8.18) (generalized one-shot algorithm)
3. Chance-constrained formulation (8.22-(8.23) (Nelder-Mead algorithm)

4. Non-robust single-setpoint optimization at the nominal point M = 0.73 but maintaining feasi-
bility over the whole range of perturbations (one-shot algorithm).

The following figures show evaluations of the objective (drag), figure[8.4] as well as the constraint
(lift), figure [8.5] comparing the four formulations introduced above.

Comparing the drag performance of the two robust formulations, we can observe that the semi-
infinite optimization leads in the region above the nominal point to a better drag coefficient than
the chance-constrained optimization. Table [8.1]indicates the mean value of the drag, which is the
chosen measure of robustness of the objective function for the four considered cases. The mean
value of the semi-infinite formulation is a little bit higher than the mean value of the single-setpoint
optimization, as expected due to the lift requirements. But the semi-infinite formulation as well as
the chance-constrained formulation show a better drag performance in the mean than the single-
setpoint profile, which fulfills the lift requirements over the whole range of variations of the Mach
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Figure 8.4: Drag performance of optimized airfoils.
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Figure 8.5: Lift performance of optimized airfoils.
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single-setpoint, feasible over

single-setpoint  semi-infinite  chance-constrained o
the whole range of variations

E(f) 7.496-107% 8.774-1073 9.887-1072 9.739-1072

Table 8.1: Comparison of the mean value resulting from the introduced robust formulations.

number. So, the robust formulation of the objective function leads to profiles showing a little bit
higher drag at the nominal point than the single-setpoint optimization, but which are more robust
to variations of the uncertain parameter and are therefore superior to the single-setpoint optimized
shapes. In figure the distributions of the pressure coefficient over the airfoil at three different
Mach numbers considering the four different optimization strategies are depicted. We can observe

M=0.7 M =0.73 M=0.76

—single-setpoint optimization
| —semi-infinite formulation J
—chance-constrained formulation
__single-setpoint optimization,
s ) ‘ ‘ ) " ) ) ) feasible for all realzations of s

0

1.2
0.2 04 0.6 0.8 1 0 0.2 04 08 08 1 0 02 04 08 08 1
X X X

Figure 8.6: Comparison of the distribution of the pressure coefficient over the airfoil.

that the semi-infinite formulation still shows a little shock wave in the nominal point M = 0.73
producing a higher drag than the other solutions, whereas the single-setpoint optimization results
in a shock free profile. The following four figures show the distribution of the pressure coefficient Cp
in space around the airfoil for M = 0.70, M = 0.73 and M = 0.76 of the single-setpoint optimization
(cf. figure [8.7), the semi-infinite formulation (cf. figure [8.8), the chance-constrained formulation
(cf. figure and the single-setpoint optimization maintaining feasibility over the whole range of
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variations (cf. figure [8.10).

M=0.7

Figure 8.7: Pressure distribution around the airfoil, M = 0.70, M = 0.73 and M = 0.76 (single-
setpoint optimization).

M=0.73 M =0.76

Figure 8.8: Pressure distribution around the airfoil, M = 0.70, M = 0.73 and M = 0.76 (semi-infinite
formulation).

Figure 8.9: Pressure distribution around the airfoil, M = 0.70, M = 0.73 and M = 0.76 (chance-
constrained formulation).
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M=0.7 M=0.73 M=0.76

Figure 8.10: Pressure distribution around the airfoil, M = 0.70, M = 0.73 and M = 0.76 (single-
setpoint optimization, feasible Vs(¢), ¢ € O).

In the contour plots [8.7] and the two shock waves of the semi-infinite formulation and the
smoothed out pressure distribution of the single-setpoint optimization at the nominal point M = 0.73
are clearly visible.

Last, the resulting shapes are compared in figure [8.11]
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Figure 8.11: Comparison of the resulting shapes.

Comparing the chance-constrained formulation and the semi-infinite formulation, we can state the
following observations: The chance-constrained is feasible with a probability Py of 90%, whereas
the semi-infinite optimization fulfills the lift requirements over the whole range of variations, as
required. Further, table indicates the better drag performance of the semi-infinite formulation
compared to the chance-constrained formulation.
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In summary, it can be said that the semi-infinite formulation has a better lift to drag ratio than
the chance-constrained formulation, in particular in the region above the setpoint 0.73, due to the
fact that the semi-infinite formulation shows a higher lift over the whole range of variations (cf.
figure [8.5) and for the greater part a better drag performance than the chance-constrained (cf. fig-
ure[8.4). Further, the semi-infinite formulation allows to apply the generalized one-shot method and
the adjoint approach to calculate gradients, which is much more computationally efficient than the
gradient-free optimization method used to solve the chance-constrained problem. For this reason,
the semi-infinite approach is more suitable for high dimensional design tasks.

Due to the better performance over the whole range of perturbations and the more efficient
optimization strategy, the semi-infinite formulation seems to be favorable in our application. The
following numerical results are therefore based on this formulation.

8.2 Variance reduction under Mach number uncertainties (test case
RAE2822)

In this section, we will investigate the influence of adding higher order terms to the mean value in the
objective function. This approach is often discussed in the context of robust optimization in order to
compute more conservative designs. The different measures of robustness are compared consid-
ering the optimization of the RAE2822 profile in transonic Euler flow. In the underlying deterministic
shape optimization problem defined by -[8.3), the angle of attack is assumed to be uncertain
and modeled as a real-valued random variable s : O — R, with (O, Y, P) given probability space.
The following assumptions are made:

e 5(¢)€[1.8,22], V( € O.

e [E(s) =2.0.
1 22 1 (x—2.0)2
® S~ ConstN(Z.O, 0.1) - ]l[1_8,2_2], const = {]; Tan0T exp (— 501 ) dx.

Using the combination of mean value and variance as a measure of robustness, the semi-infinite
formulation of the deterministic problem (8.1]-[8.3) is then given by

y(L'ZS} pE(f(y(s(C)), p, s(C))) + 0 - Var(f(y(s(¢)), p, s(¢))) (8.24)
s.t. c(y(s(C)), p, s(¢)) = 0, V(e O (8.25)
h(y(s(¢)), p, s(¢)) = 0, V¢ € O, (8.26)

where the coefficient 6 indicates the risk aversion, cf. section

Since the lift constraint also shows a monotone behavior with respect to the angle of attack in the
considered range of variations, the infinitely many inequality constraints can be replaced by only
one constraint using the reduction ansatz.
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Due to the low dimension of the probability space, the integrals in the objective function (8.24)
are approximated by a Gaussian quadrature formula. The truncated normal density function of s
and the corresponding quadrature points are shown in figure (8.12

T T T T T
—density function
/_\*Gaussmn points
25

probability

2
angle of attack

Figure 8.12: Density function of the random variables a: ~
responding Gaussian points.

N(2.0,0.1) - 11 822 and the cor-

const

The discretization of (8.24]-[8.26) leads to

N N
r;f/“;;] Zf(yiypl Sf) Cd,'+ 9 <nylspl SI nylsps sl WI) ) (827)
& i=1 i=1 i=1
s.t. cly,p,si) =0, Vi e {0,...,N} (8.28)
h(yo,p, s0) > 0, (8.29)

which is solved by the generalized one-shot method described in algorithm [7.6] During the opti-
mization, the required iterations in the flow and adjoint solver are performed in parallel for each
discretization point.

The numerical results presented below compare the robust solutions of problem (8.27]-[8.29) for
four different values of the parameter 6, which controls the risk aversion of the designs. The highest
considered value of the risk aversion parameter is chosen such that the mean and the variance are
of the same magnitude.

First, we can observe that the lift constraint is not influenced by the different risk measures in
the objective function. As figure [8.14]indicates, the lift performance of the four optimized airfoils is
almost the same and the required lift is reached over the whole range of variations. However, the
drag performances of the optimized shapes shown in figure [8.13| clearly demonstrate the influence
of the parameter # on the conservatism of the resulting airfoils. A high value of the risk aversion
parameter 6 strongly penalizes a high value of the variance. Hence, the drag functions of the
formulations with higher values of 6 get closer to the variance optimal case, that means a variance
equals zero resulting in a constant drag over the whole range of variations.

Further, we can state that the variance reduction leads to a higher drag than the optimization
of the mean value. The tradeoff between mean value and variance minimization is illustrated in

table
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8.2 Variance reduction under Mach number uncertainties (test case RAE2822)

K
x 10

—mean value
—mean value + 10° variance
sl ——mean value + 5 - 10% variance _

~— mean value + 10* variance

drag (objective function)

18 1385 19 195 2 2.05 21 2.15 22
angle of attack

Figure 8.13: Comparison of drag performance for different risk aversion values.

~—mean value
—mean value + 10° variance

0111~ mean value + 5- 10° variance

~—mean value + 10 variance

— 008

0.06

0.04

lift (inequality constraint

0.02

1 I I I I I I
18 185 18 195 2 2.05 21 215 22

angle of attack

Figure 8.14: Comparison of lift performance for different risk aversion values.
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objective function E E+10%-Var E+5-103Var E+10*- Var
E(f) 4.430-1072 4564 -107°2 5.000- 1072 5.204 - 1072
Var(f) 3.106- 1077 1.740 - 10~/ 6.420- 1078 3.268-1078

Table 8.2: Comparison of the mean value and variance resulting from the different risk measures.

Figure compares the four different Cp distributions around the airfoil at the nominal point
a = 2.0°. The pressure distributions of the first two optimized airfoils with § = 0 and § = 10° are

E E+10%-Var

E+5-10%Var E +10*-Var

Figure 8.15: Pressure distribution around the airfoil resulting from the different risk measures at the
nominal point o = 2°.

almost the same. If we take a look at the results in table [8.2] both lead to almost the same mean
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8.2 Variance reduction under Mach number uncertainties (test case RAE2822)

and variance of the drag. Thus, the risk aversion parameter § seems to be too small to effect the
results. On the other hand, the other two formulations with # = 5-10% and 6 = 10* show a reduction
of the variance, an amount in the mean value and pressure distributions, which differs quite strongly
from the mean value optimization. Comparing the resulting optimized shapes (cf. figure [8.16), the
same effect can be observed.

0.04

-0.04

——mean value
— mean value + 10° variance

~—mean value + 5 - 10% variance

 |—_mean value + 10% variance
0 04 0.2 0.3 04 0.5 0.8 0.7 0.8 0.8 1

=)
=
=3

Figure 8.16: Comparison of the resulting shapes optimized for different risk aversion values.

This example points out how important the choice of the risk aversion parameter 6 is. A too
small value of the parameter 6 will not affect the results and a too large value may lead to overly
conservative designs. In order to properly determine the value of the risk aversion parameter,
additional knowledge on the magnitude of the variance and the mean as well as on the desired
grade of robustness needs to be at hand. Another possibility to formulate a variance reducing
optimization problem is to define an additional constraint leading to the following problem

y(rsrgg;!plE(f(y(s(C )), P, 8(€))) (8.30)

s.t. c(y(s(€)), p, s(C)) = 0, V(e O (8.31)
h(y(s(¢)), p, s(¢)) = 0, V(e O (8.32)
Var(f(y(s(C)), p, s(C))) < bvar- (8.33)

The variance of the objective function is required to be less or equal than a given bound by,,. Then,
the risk aversion parameter is related to the Lagrangian multiplier resulting from the corresponding
Lagrangian function of problem (8.30]-[8.33). Considering the variance as an additional constraint,
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8 Aerodynamic Applications and Numerical Results

the bound by, has to be given. This bound can be determined i.e. by policies, which are required,
or by design requirements. Therefore, formulation (8.30]- may offer a practical alternative to
problem - from a modeling point of view. The application of the discussed methods to
the optimization problem (8.30] - [8.33) is straightforward.

8.3 Numerical results of optimization under uncertain Mach number
and angle of attack (test case RAE2822)

Beside the Mach number, the angle of attack is considered as an additional uncertainty. Again,
the robust optimization of the RAE2822 profile in transonic Euler as in the previous sections is
investigated. The same space discretization and parametrization of the shape is chosen, so that
the deterministic optimization problem coincides with (8.1]-[8.3). The Mach number and the angle
of attack are modeled as real-valued random variables sy, s, and the following assumptions on
the uncertain parameter are made:

® Sy, S, are independent.

0.76
! i 1 (x—0.73)?
® Sy~ s N(0.73,0.001) - Lg7,0.76) With consty = Of7 e exp <_ x-079) ) dx.

2.2 ,
e S, ~ mN(Z.O, 0.1) - 11 82.2) with const,, = 1f8 \/ﬁ exp (_(ng_'?) ) dx.

Sm

Considering the random vector s = <s > , the joint distribution of s is given by

(0}

1 0.73 0.001 0
%N <( 2.0 ) ’ ( 0 0_1>> “110.7,0.761x[1.8,2.2]

with const = consty, - const,,.

The joint probability density function is depicted in figure Since the semi-infinite formulation
outperforms the chance-constrained formulation in the numerical comparison, the semi-infinite for-
mulation is used to include the uncertainties in the deterministic shape optimization problem (8.1] -

8.3):

y(rsrgéihg;’p E(f(y(s(C)), p, s(C))) (8.34)
s.t. c(y(s¢),p,s(¢) =0, VCeO (8.35)
h(y(s(¢)),p,s(¢)) > 0, V(e€O. (8.36)

The evaluation of the mean value is performed by a 2D tensor grid based on 1D Gaus-
sian quadrature formulas, which is in the low dimensional case an efficient way to approximate the
integral. In the higher dimensional case, we refer to sparse grids to circumvent the curse of dimen-
sionality. The resulting quadrature points are illustrated in figure [8.18]
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Figure 8.17: Joint probability density function of Mach number and angle of attack.
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Figure 8.18: Gaussian quadrature points in order to approximate statistics.
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8 Aerodynamic Applications and Numerical Results

Due to the monotonicity and almost linearity of the lift constraint with respect to the Mach number
and angle of attack, the reduction ansatz (cf. section|7.3.2) to reduce the infinitely many inequalities
to a finite number of constraints can be applied. Hence, (8:34]-[8-36) can be simplified to

N
min > f(yi, p, Si)wi (8.37)

YisP =1
s.t. cly;, p,si) =0, Vie {0,...,N} (8.38)
h(YOs oR SO) Z 0. (839)

. 0 . . . .
with §¢ = ) Altogether, iterations in the flow solver and the adjoint solvers have to be per-

1.8
formed for 17 realizations of the Mach number and angle of attack in each iteration of the optimiza-
tion algorithm. Using the generalized one-shot method (cf. algorithm [7.6), the required iterations
can be done in parallel, so that the additional computational time resulting from the robust opti-
mization can be significantly reduced. Figure[8-79and figure [8.20]illustrate the results of the robust
optimization of (8.37]-[8.39) compared to the single-setpoint optimization.

-single—setpoim optimization| .
B semi-infinite formulation

0,035

<
=3
@

0,025

<
=
>

0015

0.01

drag (objective function)

angle of attack

Mach number

Figure 8.19: Drag performance under Mach number and angle of attack uncertainties.

The semi-infinite formulation gives a higher drag over the whole range of variations than the usual
single-setpoint case. The mean value of the single-setpoint optimization is equal to

IEsing/e—setpoinl‘ =7.565 - 1073,
whereas the robust optimization gives
IEsemi—l’nﬁnite =9.806 - 1073.

But the solution of the semi-infinite formulation is always feasible, as required, whereas the single-
setpoint optimization achieves the given lift only in a small region of the variations (cf. figure [8.20).
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8.3 Numerical results of optimization under uncertain Mach number and angle of attack

-single—setpoint optimization
Ilscnmi-infinite formulation

lift (inequality constraint)

angle of attack

Mach number

Figure 8.20: Lift performance under Mach number and angle of attack uncertainties.

In summary, the semi-infinite formulation leads once again to a better lift to drag ratio just as in the
one-dimensional stochastic case. In figure [8.21] the comparison between the pressure distribution
around the airfoil of the semi-infinite and single-setpoint optimization at the nominal point M = 0.73
is depicted. We can observe that the semi-infinite formulation leads to two small shock waves on
the upper surface, inducing the higher drag at the nominal point than the single-setpoint profile,
which is a shock free profile at this setpoint.

Figure 8.21: Pressure distribution around the airfoil at M = 0.73 of the semi-infinite (left) and the
single-setpoint (right) optimization.
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8 Aerodynamic Applications and Numerical Results

Last, the resulting shape of the semi-infinite formulation compared to the single-setpoint opti-
mization is depicted in figure

0.06

002

-0.021

—single-setpoint optimization
___semi-infinite formulation
(Mach number, angle of attack)

-0.06

0,08 1 I I I I I I I I

Figure 8.22: Comparison of the resulting shapes under Mach number and angle of attack uncer-
tainties.

Considering the Mach number and the angle of attack as uncertain parameters, the resulting
robust shape differs quite strongly from the single-setpoint optimized shape, which can be partly
attributed to the higher lift requirements resulting from the semi-infinite formulation.

8.4 Numerical results considering geometrical uncertainties (test
case RAE2822)

In this section, we present the numerical results of robust optimization under shape uncertainties
of a RAE2822 profile in Euler and Navier-Stokes flow. Since the robust optimization problem is
solved within a one-shot framework, we use the flow solver TAU provided by DLR, which allows the
computation of gradients by the adjoint approach in the Euler as well as in the Navier-Stokes test
case. The grid used in the Euler case is the structured FLOWer grid depicted in figure [8.1]converted
to the TAU format, which describes the profile by 129 surface grid points. In the Navier-Stokes case,
an unstructured grid with 192 surface grid points is considered (cf. figure [8.23). Again, the airfoil is
parametrized by 21 Hicks-Henne functions in both test cases.

The geometrical uncertainties are characterized by a Gaussian random field defined on the shape
I" and on a given probability space (O, Y, P)

v:T,0—R. (8.40)

In each point x € I, a normally distributed random variable )(x, -) models the uncertainty of the
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8 Aerodynamic Applications and Numerical Results

geometry. To properly describe the random field v) of perturbations, the following second order
statistics are assumed:

e Since no perturbations are expected, the mean value of the random field %/ is equal to 0 for
allx erl,ie.
E@(x,{) =0, Vx er. (8.41)

e The interaction of the normally distributed random variables on the shape is described by a
squared exponential covariance function

_ 2 Clx=yl?
Cov (x, y) = (0.005)° - exp 01)2 , Vx,y €T. (8.42)
Then, a perturbed geometry is given by
vix,)=x+y(x,Q)-n(x), Vxel, (€O, (8.43)

where n is the unit vector in x normal to the profile I'. In order to compute a flow simulation and
adjoint solution considering the perturbed geometry, the TAU deformation tool is used to adjust the
mesh accordingly to the realization of the random field v of perturbations. Since the convergence
behavior of the solver is very sensitive to changes of the trailing edge, this part of the profile cannot
be deformed. Figure [8.24] shows the part of the wing, where perturbations of the shape may occur.
Hence, the Gaussian random field ¢ is defined on a smaller domain 'yeq = {(x,y) € I'| y < 0.8}

008 T

—original shape (RAE2822)
008 —domain of perturbations

Figure 8.24: Domain of perturbations (test case RAE2822).

w:rred,o_)R.

ensuring the applicability of the deformation tool. A realization of the random field on the reduced
domain is depicted in figure The resulting perturbed shape is shown in figure Using
the semi-infinite formulation to include the geometrical uncertainties in the deterministic shape op-
timization problem, we obtain the following robust optimization problem

min  E(f(y(¥(-, 0)), p, ¥(+, ))) (8.44)
y(h(-.Q)).p
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8.4 Numerical results considering geometrical uncertainties (test case RAE2822)

—perturbations (upper side) ‘

Figure 8.25: One realization of the random field ) on the reduced domain [ y: perturbations on
the upper side of the profile (above) and on the lower side (below).

—original shape (RAE2822)

— perturbed shape

Figure 8.26: Resulting perturbed geometry (in red) on the reduced domain [ ,.g compared with the
original shape (in black).
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8 Aerodynamic Applications and Numerical Results

Representing the random field for the numerical treatment ¢ in a finite number of independent
random variables using the Karhunen-Loéve expansion (cf. section [5.2), one has to solve the
eigenvalue problem
| eovixnztt; =zt
I red

In the underlying two-dimensional test case, the discretization of the profile leads to a matrix of size
(129 x 129) and (192 x 192) in the Navier-Stokes case, so the eigenvalues and eigenvectors can
be computed by common methods. The distribution of the eigenvalues of the given random field 1
is shown in the next figure [8.27] As stated before, the eigenvalues exponentially converge towards

r
¢ 1. eigenvalue
¢ 2. eigenvalue
¢ 3. eigenvalue
¢ 4. eigenvalue
+ remaining eigenvalues

eigenvalues

» °<>

Figure 8.27: Distribution of the eigenvalues of the given random field v of perturbations.

zero. For the numerical results presented below, we have considered only the first four eigenvalues
and eigenvectors to represent the random field v of perturbations. The corresponding eigenvectors

are shown in figure
Using the truncated Karhunen-Loéve representation, the Gaussian random field is approximated

by
4
Ya(x, Q) = > \/sl 2" Xi(0) .
i=1

The random variables X; are uncorrelated normally distributed, i.e. X; ~ AN(0, 1), and therefore
independent.

Applying the Karhunen-Loéve representation, problem (8.44]-8.46) can be approximated by

ng?hiz))‘p E(f(y(a(-, Q)), p, Ya(-, Q) (8.47)
s.t. C(y(q/)4(-, C))! ps ¢4(’! C)) =0 ’ VC €O (848)

In each iteration of the optimization procedure, the evaluation of the four-dimensional integral
(8.47) is required. In order to reduce the computational effort, we investigate the influence of the
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8.4 Numerical results considering geometrical uncertainties (test case RAE2822)

— 1. eigenvector
—2. eigenvector
— 3. eigenvector
—4, eigenvector

0.2 T

0.05

eigenvector

-02

20 40 60 80 100 120

Figure 8.28: First four eigenvectors of the given random field .

individual eigenvectors to reject those eigenvectors from the reduced basis, which have no impact
on the target functional. Since the following results are problem dependent, we will now distinguish
between the Euler and Navier-Stokes case.

8.4.1 Euler flow

Following the ideas of a goal-oriented choice of the Karhunen-Loéve basis discussed in section|5.3]
the influence of the first four eigenvectors of the Karhunen-Loéve basis on the target functional f is
investigated. As figure [8.29| shows, the third eigenvector has no impact on the objective function,
hence it can be rejected from the Karhunen-Loéve basis. If we take a look at the sensitivity of the
drag performance with respect to changes of the shape depicted in figure [8.30, we can observe that
changes of the front part of the profile, which corresponds to the middle part of the figure due to the
numbering of the surface points, have a large impact on the drag. Further, perturbations of the back
part except for the trailing edge hardly effect the drag performance. Since the third eigenvector of
the Karhunen-Loéve basis shown in figure induces large perturbations of the back part and
only very small perturbations of the leading edge, the sensitivity analysis approves the discussed
observations. The introduced indicator, which measures the influence of the individual eigenvectors
on the target functional, also captures this behavior, cf. table 8.3
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Figure 8.29: Influence of the first four eigenvectors on the target functional (Euler flow).

—sensitivity of the drag with respect to changes of the shape
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Figure 8.30: Sensitivity of the drag with respect to the shape (Euler flow).
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8.4 Numerical results considering geometrical uncertainties (test case RAE2822)

1. eigenvector 2. eigenvector 3. eigenvector 4. eigenvector

indicator 2.256-10~* —1.421.1073 7.722 .10 —4.745-1074

Table 8.3: Indicator of the first four eigenvectors measuring the influence on the target functional
(Euler flow).

Consequently, the mean value is given by

4
E (f(p, 977 (-, () = /O /O /O (f(p, Y /K2 X (€)) dP (Q)dP ()dP(() . (8.50)

If one approximates the expected value using a full tensor grid interpolation (6.1), 729 grid
points will be needed to reach the error tolerance of 3 - 10~#, which is approximately the accuracy
of the drag coefficient given by the flow solver. The resulting full grid is shown in figure [8.31] Since
we want to compare the efficiency of the different introduced methods, we have chosen multilinear
hierarchical basis functions as ansatz functions for the sparse and full tensor grid.

* full grid based on linear ansatz functions
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Figure 8.31: Full tensor grid based on linear ansatz functions with 729 grid points (Euler flow).

The sparse grid method can reduce the computational effort by a factor of 10 maintaining the
same approximation quality. The corresponding grid is depicted in figure [8.32]
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* sparse grid based on linear ansatz functions
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Figure 8.32: Sparse grid based on linear ansatz functions with 69 grid points (Euler flow).

* adaptive sparse grid based on linear ansatz functions
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Figure 8.33: Adaptive sparse grid based on linear ansatz functions with 52 grid points (Euler flow).

As figure shows, the number of grid points can be further reduced from 69 grid points to
52 grid points, i.e. a reduction of 17 flow simulations in each iteration is reached using a local
refinement strategy as described in algorithm[6.3] Since the optimization requires the evaluation of
the mean value in each iteration, this reduction by factor 15 compared to the full grid takes place
in each step of the optimization algorithm and hence significantly speeds up the whole algorithm.
The construction of the adaptive sparse grid although needs some additional function evaluations
in order to compute the adaptivity indicator, but this amount of computational effort occurs outside
the optimization loop, i.e. these costs are negligible.

Beside the local refinement strategy, a dimension adaptive sparse grid was introduced in sec-
tion The main advantage of this approach lies in the possibility to choose the underlying
quadrature formulas problem dependent. As discussed before, GauB3-Hermite formulas are used,
since the weighting function of the polynomials corresponds to the density function of the random

126



8.4 Numerical results considering geometrical uncertainties (test case RAE2822)

variables Xi, X2, X4. Due to the higher accuracy of Gau3-Hermite quadrature formulas, an error
tolerance of 1075 is required in the following. The computed full tensor grid depicted in figure m
consists of 343 grid points.

* full tensor grid based on GauB-Hermite quadrature
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Figure 8.34: Full tensor grid based on Gauf3-Hermite quadrature with 343 grid points (Euler flow).

A usual sparse grid based on equation (6.5) can reduce the number of grid points from 343 to
37, again almost a factor of 10 is achieved, cf. figure
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Figure 8.35: Sparse grid based on Gauf3-Hermite quadrature with 37 grid points (Euler flow).

The dimension adaptive strategy results in a grid consisting of 21 points shown in figure [8.36]
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* adaptive sparse grid based on GauB-Hermite quadrature
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Figure 8.36: Adaptive sparse grid based on GauB3-Hermite quadrature with 21 grid points (Euler
flow).

The comparison of the two refinement strategies shows that the use of problem dependent
quadrature formulas can significantly reduce the size of the grid and increases the approximation
quality at the same time. Hence, the objective function in the semi-infinite formulation (8.47]-
is approximated by the dimension adaptive grid consisting of 21 grid points shown in figure

Remark 8.4.1. The construction of full tensor grids and sparse grids is problem independent, i.e.
the discretization is based on the approximation of the input parameters. In our application, the
domain of the input random variables and their distribution determine the resulting grids. Since
these input quantities remain constant during the optimization, the grids used for the approximation
of the mean value need not be modified in each iteration. On the other hand, adaptive strategies
try to use additional information of the underlying function to reduce the number of discretization
points. Hence, the adaptive grids are problem dependent and may change during the optimization,
since the underlying function differs from the original function due to changes of the optimization
variables. In general, a trust region approach has to be considered to update the grids during the
optimization. In the aerodynamic shape optimization framework, the changes of the geometry are
very small, so that the main characteristics with respect to the input uncertainties are not affected
by the optimization. Numerical tests have shown that the initial sparse grids constructed by an
adaptive strategy need not be updated and the approximation quality can be conserved over the
whole optimization procedure. But one should be aware of the dependency of adaptive approaches
on the underlying function and check the approximation quality e.g. by trust region methods.

The discretization of the probability space to approximate the mean value is further applied to the
semi-infinite inequality constraint (8.49) leading to

min S 2 Hyi, p, ) (8.51)
s.t. c(yi, p, ) = 0, Vi=1,..,21 (8.52)
hyi, p, @) >0,  Vi=1,..,21, (8.53)
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8.4 Numerical results considering geometrical uncertainties (test case RAE2822)

where 1@¢ denotes the i-th realization of the random field 1;2%°®9 defined by the adaptive sparse
grid based on GauB-Hermite quadrature. Since the treatment of the inequality constraint is
much more complicated than in the scalar-valued test cases, a discretization approach (cf. sec-
tion|7.3.1) is chosen to solve by a sequence of finite subproblems. The infinite support of the
random variables describing the random field of perturbations is approximated by a finite one re-
sulting from the sparse grid, i.e. using the adaptive sparse grid depicted in figure [8.36] realizations
of the normally distributed random variables Xi, Xz, X4 lying in [—1.225, 1.225] x [—1.225, 1.225] X
[—2.652,2.652] will be considered. The probability of this event is equal to 80%, approximately.
This relatively small region of perturbations is assumed, as the deformation tool of the flow solver
does not allow arbitrary large modifications of the grid. Further, large variations of the shape due
to uncertainties in the manufacturing process or due to fatigue of material are not reasonable from
the physical point of view. However, this assumption may be replaced by measurements, if at hand.
Applying the discretization approach to semi-infinite problems, the convergence of the finite sub-
problems to the original semi-infinite problem is a crucial task, cf. section As a first step, the
influence of the individual eigenvectors on the lift constraints is investigated, shown in figure[8.37]

—1. eigenvector
—2. eigenvector
—4. eigenvector

lift (inequality constraint)

perturbations

Figure 8.37: Influence of the eigenvectors of the reduced KL-basis on the lift constraint (Euler flow).

We can observe that the lift coefficient is strictly monotone and almost linear with respect to
the perturbations. This property of the lift coefficient greatly simplifies the proper treatment of the
semi-infinite constraint. The solution of the lower level problem

4
min _ h(y(Xi, Xo, Xa), p, \/EZKLX,
(X1,X2,X4)€D (X1, X2, Xa), p ; Si 4 i)
i3

with D = [—1.225,1.225] x [—1.225, 1.225] x [—2.652,2.652] can be therefore determined by
checking the function values of the vertices. Hence, a discretization including the vertices of the
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domain [—1.225, 1.225] x [—1.225, 1.225] x [—2.652, 2.652] leads to a finite subproblem, which is
equivalent to the semi-infinite formulation. In more general cases considering arbitrary nonlinear
constraints, the approximation of the semi-infinite constraint may require much more effort. Using
the introduced sparse grid techniques, an adaption criterion specifically tailored to the approxima-
tion of the objective function and the lift constraint needs to be developed. A further possibility to
achieve convergence of the finite subproblems to the semi-infinite problem is to additionally apply a
multigrid method, which successively refines the discretization during the optimization.

In the following, the results of the robust optimization is compared to the single-setpoint opti-
mization. The robust optimization problem (8.51]-[8.53) is solved by the generalized version of the
one-shot method, cf. algorithm and the adaptive sparse grid based on Gauf3-Hermite polyno-
mials shown in figure is used for the discretization of the probability space. The drag and lift
performance of the 21 perturbed geometries is shown in figure [8.38| and The dashed line in
figure [8.38]indicates the mean value of the drag.

T * single-setpoint optimization

* robust optimization

=="E(f) single-setpoint optimization
~~"E(f) robust optimization

drag (objective function)
*

3 I I I 1 I I
0 2 4 6 8 10 12 14 18 18 20 22

perturbed shapes

Figure 8.38: Drag performance of the 21 perturbed shapes (Euler flow).

The robust optimization gives a little bit higher drag at the nominal point, which is the first dis-
cretization point, than the single-setpoint optimization. But over the whole range of variations, the
robust optimization shows a similar drag performance and improves the mean value of the target
functional by 0.5 drag counts compared to the single-setpoint optimization. At the same time, the
robust shape leads to a better lift performance over the whole range of perturbations, whereas
the single-setpoint optimization is infeasible in more than half of the considered grid points. Sum-
marizing, it can be said that the robust optimization leads to a better lift to drag ratio than the
single-setpoint optimization and the resulting profile is more robust against small perturbations of
the shape itself.
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0.86 T T
* single-setpoint optimization
* robust optimization
085 .
~~farget lift
08k * * * * B
* * * * * % ¥
= * *
= * ok x *
'© L x * ¥ N
Loss x x %
2 o T Bt FoITITTIT T mem = *‘""""""‘X """""""
S x
(5] x * x x
. X -
gosz x
[
x
2 % * *
D x X
S 08t -
E x
08 |
079 =
078 L 1 L L 1 L L 1 L L
o 2 4 [ 3 10 12 14 16 18 20 22

perturbed shapes

Figure 8.39: Lift performance of the 21 perturbed shapes (Euler flow).

In figure |8.40, the pressure distribution of the robust and single-setpoint optimized shape at the
nominal point (without considering any perturbations of the shape) is compared.

Figure 8.40: Pressure distribution around the airfoil at the nominal point of the semi-infinite (left)
and the single-setpoint (right) optimization (Euler flow).

The shock of the single-setpoint optimized shape at the nominal point is smoothed out resulting
in a drag coefficient Cp = 3.531 - 1073, The stronger shock of the robust shape on the upper
surface (cf. leads to a little bit higher drag coefficient Cp = 3.754 - 102 than the single-
setpoint optimization. The next figure [8.41] compares the pressure distribution around the airfoil at
discretization point 9. Here, the single-setpoint optimized shape cannot reach the target lift, cf. fig-
ure [8:39] whereas the semi-infinite formulation is feasible. Further, the single-setpoint optimization
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Figure 8.41: Pressure distribution around the airfoil at discretization point 9 of the semi-infinite (left)
and the single-setpoint (right) optimization (Euler flow).

leads to a drag coefficient Cp = 5.612 - 10~3, which can be reduced by the robust optimization to
Cp =4.896-1073.
Last, we will compare the different resulting shapes in figure

-0.04

—robust shape
—single-setpoint optimized shape
0 0.4 02 0.3 04 05 0.8 0.7 0.8 09 1

Figure 8.42: Comparison of the single-setpoint optimized shape and the robust shape with respect
to geometrical uncertainties (Euler flow).

Although we have assumed only small perturbations of the shape itself (cf. figure [8.26), the dif-
ference between the robust shape and the single-setpoint is well recognizable.

The test case demonstrates how important robust design in the aerodynamic framework is. The
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8.4 Numerical results considering geometrical uncertainties (test case RAE2822)

numerical results show that even small deviations from the planned geometry have a significant
effect on the drag and lift coefficient. Since variations of the planned shape due to manufacturing
tolerances or fatigue of material cannot be avoided, geometrical uncertainties have to be taken into
account in the aerodynamic design optimization problem to ensure a robust solution. The results
of the semi-infinite optimization show a better lift to drag ratio over the whole range of considered
perturbations than the single-setpoint optimization.

8.4.2 Navier-Stokes flow

In order to determine the goal-oriented Karhunen-Loéve basis, we first investigate the influence of
the individual eigenvector on the target functional shown in figure The sensitivity analysis

—1. eigenvector
—2. eigenvector
—3. eigenvector
—4, eigenvector
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Figure 8.43: Influence of the first four eigenvectors on the target functional (Navier-Stokes flow).

depicted in figure [8.44] shows a similar result to the Euler case. Perturbations of the leading edge
have a large impact on the drag, whereas changes of the back part of the profile do not effect the
drag performance. Due to this reason, the third eigenvector of the Karhunen-Loéve basis can be
rejected from the reduced basis. As table [8.4] shows, the introduced indicator properly reflects the
influence of the individual eigenvectors on the target functional, so that the reduced basis can be
chosen automatically.
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Figure 8.44: Sensitivity of the drag with respect to the shape (Navier-Stokes flow).

1. eigenvector 2. eigenvector 3. eigenvector 4. eigenvector

indicator 15181074 1.176-10~4 —1.313-107° —4.009-10~*

Table 8.4: Indicator of the first four eigenvectors measuring the influence on the target functional
(Navier-Stokes flow).

Hence, the mean value is approximated using the first, second and fourth basis vector

4
E (F(p, 9229 (-, ) = /O /O /O (P > \/sf 24X () 8P () 4P () 4P ()
"

If the same error tolerance 3 - 10~* as in the previous test case is required, a full grid of 4913
grid points based on multilinear ansatz functions has to be used in order to compute the objective
function, cf. figure A reduction factor of 28 can be achieved by a sparse grid approach, which
is further improved by a local refinement strategy. The resulting adaptive grid consists of 99 grid
points, which leads to a reduction factor of 50. The computed grids are illustrated in figure
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Figure 8.45: Full tensor grid based on linear ansatz functions with 4913 grid points (Navier-Stokes
flow).
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Figure 8.46: Sparse grid based on linear ansatz functions with 177 grid points and locally refined
sparse grid with 99 grid points (Navier-Stokes flow).

Since the computational effort in the Navier-Stokes case is much higher than in the Euler test
case, the number of grid points need to be further reduced in order to make a robust optimization
possible. The use of GauB-Hermite quadrature formulas results in the same full grid and sparse
grid as in the Euler test case fulfilling the error tolerance 3 - 107%, cf. figure and figure m
Applying the dimension adaptive approach, an adaptive sparse grid consisting of 15 grid points
shown in figure [8.48)is obtained.
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* adaptive sparse grid based on GauB-Hermite quadrature

2e
N .
% N . .
.
2o S :
g .
= .
(D' -1 . . -
< . .
2
.
\27\\ B
- —
> - 3
—_ o
0 \\ /// !
0
1 \x\ T
™ - -2
. 3 -8
2. eigenvector 1. eigenvector

Figure 8.47: Dimension adaptive sparse grid with 15 grid points (Navier-Stokes flow).

The linearity of the drag depending on the first eigenvector (cf. figure [8.43) is recognized by the
dimension adaptive algorithm, so that this dimension is not refined further. Since the linear behavior
might change during the optimization, we add two points ensuring that the first eigenvector is taken
into account during the optimization, see figure Using the adaptive sparse grid consisting of
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Figure 8.48: Dimension adaptive sparse grid with 17 grid points (Navier-Stokes flow).

17 grid points, the robust optimization problem is given by

min 3174 £y, o, ) (8.54)
s.t. cyi, p, %) = 0, Vi=1,..,17 (8.55)
hyi, p, %) >0,  Vi=1,..,17. (8.56)

The semi-infinite constraint is again solved by a discretization method, which exactly solves the
original problem due to the monotonicity of the lift constraint with respect to the reduced basis.
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8.4 Numerical results considering geometrical uncertainties (test case RAE2822)

Further, problem (8.54] - [8.56) is solved by the generalized one-shot algorithm The results of
the robust optimization compared to the single-setpoint solution are illustrated in figure and
figure8.50
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Figure 8.49: Drag performance of the 17 perturbed geometries (Navier-Stokes flow).
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Figure 8.50: Lift performance of the 17 perturbed geometries (Navier-Stokes flow).
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The mean value of the drag in the robust case is a little bit higher than the mean value of the
single-setpoint optimization (1.3 drag counts), which can be attributed to the lift constraints. The ro-
bust optimization is feasible over the whole range of perturbations as required, whereas the single-
setpoint optimization cannot reach the target lift in more than 60% of the realizations. Hence, we
can state that the semi-infinite optimization again leads to a better lift to drag ratio as in the Euler
case.

Figure [8.57] compares the pressure distribution around the airfoil of the semi-infinite and single-
setpoint solution at the nominal point. The semi-infinite formulation leads to two small shocks on the

Figure 8.51: Pressure distribution around the airfoil at the nominal point of the semi-infinite (left)
and the single-setpoint (right) optimization (Navier-Stokes flow).

upper surface of the airfoil inducing the higher drag than the single-setpoint optimized shape. More-
over, we will compare the pressure distribution at grid point 12, where the single-setpoint solution
cannot reach the target lift and at the same time shows a higher drag than the robust optimization.
The position of the first shock wave of the semi-infinite optimized profile differs from the single-

-

Figure 8.52: Pressure distribution around the airfoil at discretization point 12 of the semi-infinite
(left) and the single-setpoint (right) optimization (Navier-Stokes flow).
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setpoint optimization leading to a reduction of the drag coefficient, cf. figure

The resulting shapes are depicted in figure

—single-setpoint optimization
— robust optimization
] 01 02 03 04 05 06 07 08 09 1

Figure 8.53: Comparison of the single-setpoint optimized shape and the robust shape with respect
to geometrical uncertainties (Navier-Stokes flow)

The difference between the robust shape and the single-setpoint optimized shape is smaller than
in the Euler case, indicating that the profile is more sensitive to changes of the shape.

8.5 Numerical study of the influence of geometrical uncertainties
(test case SFB-401)

A non-intrusive polynomial chaos method is applied to a 3D test case in order to determine the
influence of geometrical uncertainties on flow parameters. The unstructured grid of the 3D wing
and a close-up are shown in figure The space is discretized by 2506637 grid points, where
the surface is described by 80903 points. The grid generated by Centaur consists of 1636589
tetraeders, 4363281 prisms and 170706 surface triangles, 5427 surface quadrilaterals.

Here, the transonic flow at Mach number M = 0.8 is modeled using the Reynolds-averaged
Navier-Stokes equations. The geometrical uncertainties are assumed to occur only on the upper
part of the wing, the perturbed region is depicted in figure [8.55] The perturbations are modeled as
a Gaussian random field defined by the following second order statistics

E(@(x,()=0, vx e, (8.57)

cov (x, y) = (0.0016)2 - exp (—”(ggg)‘f) . Wxyel. (8.58)
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Figure 8.54: Grid for the SFB-401 test case: cut of the grid at y=0.5 (above) and surface of the
wing (below).
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SFB-401 wing
© region of perturhations

Figure 8.55: Perturbed region of the SFB-401 wing.

In order to take the curvature of the wing into account computing the norm in (8.58), the selected
area is transformed into 2D approximating the distance by a polygon path on the surface. The
projection is depicted in figure Due to the problem size, the block version of the iterative
eigensolver LOPEX (cf. algorithm[5.7) is used in order to solve the eigenvalue problem arising from
the Karhunen-Loéve expansion. The resulting eigenvalue distribution of the first 50 eigenvalues is
shown in figure[8.57]

We consider the first 15 eigenvalues and eigenvectors to represent the random field, as an exam-
ple the first, 8-th and 15-th eigenvectors and resulting perturbed shapes are depicted in figure
In order to approximate statistics of the flow solution depending on the considered perturbations,
the drag, the lift and the pressure coefficient Cp are expanded into the first 16 multi-dimensional
Hermite polynomials using a non-intrusive polynomial chaos method, cf. section The scalar-
valued coefficients Cp and C; are approximated by

15

Colp. X1, ... Xi5) = ) _ (Col(p) - Hk (Xt ... Xis) (8.59)
k=0
and
15
Culp, X1, ..., X1s) = > (COi(p) - He (X1, ..., Xis) - (8.60)
k=0

Due to the complexity of the 3D test case, one flow simulation takes about 30 days performed on
our computing server (8 cores AMD Opteron with 8 GB memory). The computational effort can be
reduced to 15 days by a restart strategy, but the computational costs restrict the number of flow
simulations to determine the polynomial chaos representation. Therefore, a sparse grid consisting
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SFB-401 wing
* region of perturbations
* projected region

Figure 8.56: Projection in 2D of the region of perturbations (SFB-401 wing).
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Figure 8.57: Distribution of the first 50 eigenvalues of the given random field .
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Figure 8.58: First, 8-th and 15-th eigenvectors and resulting perturbed shapes.

of 31 grid points is chosen in order to approximate the integrals

(Co)k(p) = )
- Co(p, Y)Hk(y)p(y) d k=1,...,M
- <Hi>/R15 D{P, Y)Fk(Y)ply) ay, =1,...,
and
(Coklp) = )
’
- i) L GO YRI Oy, k=

respectively. In the next two figures and the drag and the lift of each perturbed shape
and the corresponding mean values are illustrated.

As figure indicates, the geometrical uncertainties have a large impact on the target func-
tional. The standard deviation from the mean value is equal to 1.65 drag counts, and the mean
value is 6.55 drag counts higher than the nominal, unperturbed geometry, which corresponds to the
first grid point in figure The mean value of the lift E(C,) = (C1)o = 0.2625 is about 7 lift counts
smaller than the lift at the nominal point. The standard deviation from the mean value is equal to 3.5
lift counts. The uncertainty quantification demonstrates that even small perturbations of the shape
result in large variations of the lift to drag ratio.
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Figure 8.59: Drag performance and mean value of the perturbed 3D shapes (SFB-401 Navier-
Stokes flow).
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Figure 8.60: Lift performance and mean value of the perturbed 3D shapes (SFB-401 Navier-
Stokes flow).
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Beside the scalar-valued flow coefficients, the influence of the geometrical uncertainties on the
pressure distribution Cp is quantized by a non-intrusive polynomial chaos method. The determinis-
tic coefficients of the polynomial chaos approximation Cp also depend on the surface points

o _ <CP(p!X!')!Hk>
(CP)k(p, x) = B T IR
1

= (H_i)/Rw Cp(p, X, Y)Hk(Y)o(y)dy, k=1,....M, xeT.

The comparison between the Cp distribution of the unperturbed geometry (cf. figure [8:61) and the
Cp distribution of the mean value (cf. figure [8.62) shows that an additional shock on the upper side
of the shape occurs due to the uncertainties of the geometry.

cp
I] 1750
0.60625
0.03750
-0.53125

-1.1000

Figure 8.61: Cp distribution of the unperturbed geometry (SFB-401 Navier-Stokes flow).
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Figure 8.62: Cp distribution of the mean value (SFB-401 Navier-Stokes flow).
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Figure 8.63: Variance of the Cp distribution (SFB-401 Navier-Stokes flow).
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Figure [8.63| emphasizes the influence of the perturbations showing the variance of the Cp distri-
bution. The variance and higher order statistics as well as probability distribution functions of the
quantities of interest with respect to geometrical uncertainties can be efficiently approximated using
the polynomial chaos model. After determination of the deterministic coefficients, the moments of
the flow parameters can be directly computed from the polynomial chaos representation and no
further flow simulations are required. Summarizing the results of the study, it can be stated that
polynomial chaos methods have the potential to efficiently quantize uncertainties even in highly
sophisticated test cases. As already observed in the 2D studies, geometrical uncertainties have
a significant effect on the performance of the profile. In order to ensure a robust performance in
real life conditions, the consideration of uncertainties in the aerodynamic design process chain is
absolutely essential.
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Chapter 9

Conclusions and Outlook

The aim of this work was to provide a general framework for robust optimization in aerodynamics
with the focus on industrial applicability. Based on the existing simulation and optimization tools,
efficient methods were developed in order to identify, quantize and include uncertainties in the
overall optimization procedure, thus making robust design in this sense possible.

9.1 Conclusions

First of all, a classification of uncertainties arising in aerodynamic optimization problems was dis-
cussed. We concentrated on aleatory uncertainties caused by natural, unpredictable variations of
parameter values, initial and boundary conditions and of the geometry itself. Due to the stochastic
nature of the considered uncertainties, a stochastic approach modeling the behavior of the un-
certain quantities was chosen. The proposed model allows to include arbitrary input uncertainties
avoiding a parametrization of the input uncertainties and hence a reduction of the space of real-
izations. Furthermore, this approach gives the flexibility to adapt the robust optimization to new
information of the input uncertainties, e.g. if new measurements are available. The additional infor-
mation of the uncertain parameters given by the stochastic model can be used to reduce the com-
putational effort arising by the computation of statistics of the quantities of interest. The numerical
results demonstrate the potential of exploiting the stochastic information of the input uncertainties.
Considering geometrical uncertainties, the use of problem dependent discretization techniques with
respect to the density function of the random variables is essential in order to obtain a numerically
tractable robust optimization problem.

In the next step, we discussed several formulations of the deterministic aerodynamic shape opti-
mization problem to include the identified uncertainties in the optimization procedure. We concen-
trated on the chance-constrained and the semi-infinite formulation, both belonging to the class of
stochastic optimization methods. The semi-infinite as well as the chance-constrained formulation
minimize the expected value of the objective function as a measure of robustness. The difference
between these two robust formulations lies in the treatment of the additional lift constraint. The
semi-infinite approach aims at maintaining the lift constraint for all realizations of the uncertain pa-
rameter, whereas the chance-constrained formulation requires to fulfill the lift constraint only with a
certain probability.

Both robust counterparts of the deterministic aerodynamic shape optimization problem involve
the evaluation of statistics of quantities of interest depending on the uncertain parameter. In order
to efficiently quantize the influence of uncertainties in the input data on quantities in the output of
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a simulation, several uncertainty quantification methods were proposed. The moment methods,
which are based on a Taylor series approximation, were applied to the chance-constrained formu-
lation to approximate the objective as well as the lift constraint with respect to the uncertain input
data. However, the numerical results indicate that even a second order approach cannot capture
the nonlinear behavior of the objective function. As an alternative to the moment methods, we con-
sidered the non-intrusive polynomial chaos approach expanding the quantities of interest in a series
of orthogonal polynomials with respect to the distribution of the random input data. The polynomial
chaos representation can then be used to efficiently compute statistics of the solution, which was
demonstrated in a highly sophisticated 3D test case. For the special case of input random fields
modeling geometrical uncertainties, another well known uncertainty quantification technique, the
Karhunen-Loéve expansion, which is based on the spectral decomposition of the covariance ker-
nel, was introduced. This approach is not the appropriate choice in order to compute statistics of
the solution, as the covariance function of the random output of a simulation is not known. However,
if the covariance function is at hand, the Karhunen-Loéve expansion will be the preferred choice,
since the approximation is optimal in the mean-square sense. An enhancement of the approach
using a goal-oriented choice of the Karhunen-Loéve basis was proposed, which has the potential
to significantly reduce the computational effort as demonstrated in the numerical results.

Evaluation of statistics and uncertainty quantification representations usually requires the compu-
tation of high dimensional integrals, which cannot be solved analytically. To circumvent the curse of
dimensionality, sparse grid methods in combination with dimension adaptive and local refinement
strategies were discussed. The reduction of the number of discretization points is an important
issue in the context of robust design, since the computational effort of the numerical quadrature
arises in every iteration of the optimization algorithm. Both adaptive refinement strategies have
the potential to achieve an enormous improvement compared to the tensor grid and usual sparse
grid quadrature methods, as shown in the numerical results. Due to the possibility to use prob-
lem dependent quadrature formulas, the dimension adaptive refinement method shows a better
performance in the considered test cases than the local refinement strategy.

In order to optimize the discretized semi-infinite formulation, we generalized the one-shot method
to the multiple-setpoint case. For each realization of the uncertain input data, the inner iterations
in the flow and adjoint solvers can be done in parallel, so that the computational time evaluating
the flow equation and gradients in the multiple-setpoint case is comparable to the deterministic
optimization. The semi-infinite lift constraint can be efficiently handled by a reduction ansatz con-
sidering scalar-valued uncertainties and by a discretization approach in the case of geometrical
uncertainties. In general, the treatment of semi-infinite problems is a difficult task. However, in the
application of interest, we could observe a monotone behavior of the lift constraint with respect to
the uncertain input data, which simplifies the optimization of the lower level problem. In contrast
to the semi-infinite formulation, gradients of the chance-constrained formulation with respect to the
design variables cannot be evaluated by the use of the available adjoint solvers. Due to this fact, the
Nelder-Mead method was chosen to solve the optimization problem. As this optimization method is
designed for unconstrained problems, the chance-constraint was included by a penalty approach.

The first application presented in this thesis consists of a numerical comparison between the
chance-constrained and the semi-infinite formulation considering a 2D transonic Euler test case un-
der uncertain Mach number. It can be observed that the semi-infinite optimization leads to the better
drag to lift ratio over the whole range of variations than the chance-constrained formulation. The
moment method, which was applied to the chance-constrained formulation, is not able to capture
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the nonlinear behavior of the objective function. Further, the proposed method to solve the semi-
infinite optimization problem based on the generalized one-shot method and the adjoint approach
to calculate gradients is much more computationally efficient than the gradient-free optimization
method used to solve the chance-constrained problem. Therefore, the semi-infinite approach is
the preferable method, especially in high dimensional robust design tasks, due to the better perfor-
mance over the whole range of perturbations and the more efficient optimization strategy.

In the second application, the influence of adding higher order terms to the mean value of the
objective function was investigated in a 2D transonic Euler optimization under uncertain angle of
attack. The results of the robust optimization with different weights of the variance point out how
important the proper choice of the risk aversion parameter is. Additional knowledge in order to
reach the desired grade of conservatism with respect to the input uncertainty needs to be at hand.
To circumvent this difficulty, we proposed to add an additional inequality constraint, so that the
risk aversion parameter is related to the Lagrangian multiplier resulting from the corresponding
Lagrangian function of the robust optimization problem.

Further, the robust optimization of the 2D transonic profile under uncertain Mach number and
angle of attack was investigated. In the two-dimensional case, a tensor grid based on Gaussian
quadrature formulas adapted to the truncated normal distribution of the uncertain parameters was
used in order to discretize the semi-infinite formulation. The resulting multiple-setpoint problem was
efficiently solved by the generalized one-shot method and by a reduction ansatz. The optimized
robust shape differs quite strongly from the single-setpoint optimized shape, which can be partly
attributed to the higher lift requirements of the semi-infinite formulation. The numerical results show
that the drag to lift ratio could be essentially improved over the whole range of variations by the
robust approach. So, the robust optimization enables the computation of designs, which still show
a good performance under variations of the uncertain input data.

Summarizing the results of the robust optimization under scalar-valued uncertainties, we can
state that even small perturbations of the nominal points of the uncertain input data may cause
a serious deterioration of performance of the deterministic optimized profile. As variations of the
Mach number and angle of attack are inherently present in real life conditions due to atmospheric
turbulences, they have to be considered in the design process chain. The amount of computational
effort resulting from the robust optimization can be efficiently reduced by exploiting the structure of
the underlying problem. The use of a parallel version of the generalized one-shot method, problem
dependent choice of the quadrature points in order to compute the statistics of the solution and the
reduction ansatz to solve the semi-infinite constraint can significantly reduce the costs of the robust
optimization, so that robust design becomes numerically tractable in the aerodynamic framework.

In the special case of geometrical uncertainties, the computational complexity increases addition-
ally due to the stochastic model of the random geometry. In this thesis, we proposed methods to
handle this high dimensional optimization tasks and presented results of optimization under shape
uncertainties in a 2D transonic Euler and Navier-Stokes test case. The random field describing
the geometrical perturbations could be efficiently approximated by a finite number of random vari-
ables using a Karhunen-Loéve expansion. In the Euler as well as in the Navier-Stokes case, it was
shown that a goal-oriented choice of the Karhunen-Loéve basis, which was automatically deter-
mined by the introduced indicator measuring the influence of the random variables on the target
functional, further decreased the dimension of the probability space. In order to compute statistics
of quantities of interest, sparse grids combined with two different adaptive refinement strategies
were considered. The numerical comparison between the local and dimension adaptive refinement
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indicates that the dimension adaptive approach seems to be of advantage in our application due
to the possibility to choose the underlying quadrature formulas with respect to the distributions of
the input uncertainties. The number of discretization points could be reduced by a factor of 16 in
the Euler case and by a factor of 20 in the Navier-Stokes test case using the dimension adaptive
sparse grids. Since the evaluation of statistics is required in each iteration of the optimization pro-
cedure, this reduction of costs is also achieved in each iteration. Furthermore, the solution of the
semi-infinite constraint was approximated by a discretization method. The studies of the influence
of the geometrical uncertainties on the lift indicated a monotone behavior guaranteeing the conver-
gence of the finite subproblems to the original semi-infinite problem. The numerical results of the
robust optimization show that even small deviations from the planned geometry have a significant
effect on the drag and lift coefficient, so that geometrical uncertainties have to be taken into ac-
count in the aerodynamic design optimization problem to ensure a robust solution. The amount of
computational effort compared to optimization under scalar-valued uncertainties can be overcome
by adaptive uncertainty quantification and sparse grid techniques.

The last application presented in this work is on uncertainty quantification in a 3D test case in
order to determine the influence of geometrical uncertainties on flow parameters. A non-intrusive
polynomial chaos method was applied to compute statistics of the scalar-valued coefficients, drag
and lift, and of the pressure distribution on the surface. Due to the complexity of the test case, a
linear approximation with respect to the shape uncertainties was chosen. The results demonstrate
that non-intrusive polynomial chaos methods in combination with a Karhunen-Loéve approximation
of the input random field and sparse grid methods are able to efficiently quantize the influence of
geometrical uncertainties on quantities of interest. As already observed in the 2D test cases, shape
uncertainties have a significant impact on the performance of the airfoil and therefore have to be
included in the design process chain. A general framework for robust aerodynamic design attacking
the additional computational complexity of the treatment of uncertainties was proposed in this work,
so that the identified uncertainties can be taken into account.

9.2 Future Work

The methods developed in this thesis provide a great contribution to the treatment of uncertainties
in the context of aerodynamic design and proved their efficiency in several industrial test cases.
Being able to consider uncertainties in aerodynamic optimization tasks, new challenges and open
questions arise. The main task is to further reduce the additional computational complexity of the
robust approach in order to enable the application of the methods to highly sophisticated 3D test
cases, especially to complete aircraft models. The evaluation of high dimensional integrals resulting
from the direct approximation of statistics as well as from uncertainty quantification approximations
is a crucial part of robust optimization with regard to the computational costs. Adaptive sparse grid
methods, which have the potential to significantly reduce the flow simulations required to approx-
imate the integrals, were proposed in this work. It can be expected that gradient information can
further enhance the approximation quality and should therefore be included in the discretization
method. Additionally, due to the active research in the area of uncertainty quantification methods
in the context of computational fluid dynamics, there are now several enhancements and further
developments of non-intrusive polynomial chaos and stochastic collocation methods improving the
approximation behavior available. So, the new uncertainty quantification methods should be taken
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into account within the robust optimization approach.

Another open question is the proper treatment of additional constraints in the optimization prob-
lem. Two robust formulations of constraints with uncertain input data were discussed, the chance-
constrained and semi-infinite formulation. In the case of lift requirements, the considered uncer-
tainties showed a monotone behavior simplifying the approach to solve the robust constraints. To
handle arbitrary input uncertainties, additional effort is needed to properly model the stochastic out-
put of the constraint with respect to uncertain input data, e.g. by the use of uncertainty quantification
techniques in combination with adaptive discretization methods.

Furthermore, the coupling of robust optimization with novel developments in highly efficient de-
terministic numerical optimization methods based on shape calculus are under current research,
cf. [158]. Parametric design optimization suffers from unavoidable construction of mesh sensitiv-
ities, which becomes a major bottleneck, when the level of detail of the geometrical resolution is
increased beyond some handfuls of geometrical parameters. The use of the shape calculus ap-
proach is able to overcome this drawback. It is to be expected that a combination of shape calculus
and robust optimization methodologies leads to novel efficient, robust and accurate methods for
aerodynamic design. Moreover, the coupling of robust aerodynamic and aerostructure methods
leading to multidisciplinary aerodynamic shape and structural design optimization of airplane wings
can be envisioned.
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