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Zusammenfassung

Variationsungleichungen bilden eine gemeinsame Grundlage, um die Theorie und Algo-
rithmen zum Lösen verschiedener Probleme der mathematischen Physik, der Ökonomie
und der Naturwissenschaften zu untersuchen. Als Problemklasse beinhalten sie nicht
nur klassische nichtlineare Optimierungsprobleme, sondern auch Gleichgewichtspro-
bleme, Komplementaritätsprobleme, nichtlineare Gleichungssysteme und andere. Die
aus Anwendungen stammenden Variationsungleichungen sind in den meisten Fällen
schlecht gestellt. Beispielsweise führen kleine Störungen in den Eingangsdaten zu großen
Abweichungen in der Lösung, oder es liegen nicht-eindeutige Lösungen vor. In diesen
Fällen können Standard-Lösungsverfahren scheitern.

Aus diesem Grund gewinnen Regularisierungsverfahren an Bedeutung, da sie das
Ausgangsproblem in eine Folge von gut gestellten Hilfsproblemen überführen, welche
beispielsweise eine eindeutige Lösung und eine bessere Kondition besitzen. Ferner kann
durch eine geeignete Wahl des Regularisierungsterms erreicht werden, dass die Hilfs-
probleme unrestringiert sind und sogar zu Optimierungsproblemen äquivalent sind. Die
Fortentwicklung solcher Verfahren ist Gegenstand aktueller Forschung, an der wir uns
mit dieser Arbeit beteiligen.

So schlagen wir einen neuen, auf logarithmisch-quadratischer Regularisierung basieren-
den Algorithmus (LQPAP-Methode) vor, der die Vorteile des bekannten Proximal-
Punkt Verfahrens mit dem sogenannten Auxiliary Problem Principle verbindet. Seine
Untersuchung und Konvergenzanalyse ist eines der Hauptresultate der vorliegenden
Dissertation.

Die LQPAP-Methode knüpft dabei an den aktuellen Entwicklungsstand von Regulari-
sierungsverfahren zum Lösen von Variationsungleichungen an, indem sie verschiedene
in der Literatur vorgestellte Techniken zur Verbesserung der numerischen Stabilität
der Verfahren aufgreift. So entsteht durch die Verwendung einer logarithmisch-quadra-
tischen Distanzfunktion ein Innerer-Punkt-Effekt, der es erlaubt, die Hilfsprobleme als
unrestringiert zu betrachten. Ferner arbeiten wir mit äußeren Operatorapproximatio-
nen, was für die numerische Lösung von Variationsungleichungen mit mengenwertigen
Operatoren von Wichtigkeit ist. Außerdem werden inexakte Lösungen der Hilfsprob-
leme betrachtet und entsprechende Fehlerbedingungen verwendet. Als weiteren Vorteil



iv

der logarithmisch-quadratischen Distanz verifizieren wir, dass sie self-concordant ist
(im Sinne von Nesterov/Nemirovskii), was die Anwendung der Newton Methode zum
Lösen der Hilfsprobleme motiviert.

Im numerischen Teil der Arbeit wird die LQPAP-Methode auf linear restringierte,
differenzierbare und nicht differenzierbare, konvexe Optimierungsprobleme, sowie auf
nicht symmetrische Variationsungleichungen mit co-koerziven Operatoren angewen-
det. Ferner vergleichen wir die Ergebnisse mit einer entsprechenden Bregman-Distanz
basierten Methode (BrPAP-Methode). Bei beiden Methoden lässt sich eine Diskrepanz
zwischen der theoretischen Freiheit bei der Wahl der Regularisierungsparameter und
dem numerischen Verhalten der Methode beobachten. Der Erfolg der Methode hängt
wesentlich von einer passenden Wahl der Folge der Regularisierungsparameter ab.
Probleme ergeben sich vor allem, wenn die Folge der Iterierten den Rand der zulässi-
gen Menge erreicht, bevor sie in der Nähe der Optimallösung ist. Vor diesem Hinter-
grund stellen wir die Strategie der Unter-Relaxierung vor, mit deren Hilfe die LQPAP-
Methode robustifiziert wird. Ein ähnlicher Erfolg kann bei der BrPAP-Methode nicht
festgestellt werden. Ansonsten unterscheiden sich beide Methoden hinsichtlich ihrer
Effektivität kaum.

Die Hilfsprobleme, die bei Anwenden der LQPAP-Methode auf differenzierbare, kon-
vexe Optimierungsprobleme entstehen, werden mit der Newton Methode gelöst. Mit
Testbeispielen werden verschiedene Experimente durchgeführt und ausgewertet, wie
zum Beispiel eine adaptive Wahl des Start-Regularisierungsparameters und eine Kom-
bination der Armijo- und Self-Concordanz-Schrittweite.

Testbeispiele für nicht-symmetrische Variationsungleichungsprobleme sind in der Lit-
eratur kaum zu finden. Daher präsentieren wir einen geometrischen und analytischen
Zugang, um Testbeispiele mit bekannter Lösung oder sogar einer bekannten Lösungs-
menge zu generieren.

Zur Lösung der Hilfsprobleme bei nicht-differenzierbaren, konvexen Optimierungspro-
blemen wird die bekannte Bundle-Technik angewendet. Dabei beschreiben wir de-
tailliert die Vorgehensweise und gehen auf die Wahl der beteiligten Funktionen und
Parameterfolgen ein. Solche Untersuchungen wurden bisher nur in Verbindung mit
Bregman-Distanzen veröffentlicht. Die Effektivität dieses LQPAP-Bundle Verfahrens
wird wiederum an akademischen Beispielen aus der Literatur getestet.

Unsere Arbeit schlägt somit eine Brücke zwischen theoretischen und numerischen Un-
tersuchungen von Lösungsverfahren für Variationsungleichungen.
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1. Introduction

Variational inequality problems (VIs) appear in a variety of mathematical applica-
tions like convex programming, game theory and economic equilibrium problems, but
also in fluid mechanics, physics of solid bodies and others. As such, they constitute a
common basis to investigate the theory and algorithms for many problems in mathe-
matical physics, in economy as well as in natural and technical sciences. A selection of
related works is Aubin/Ekeland [1], Ekeland/Témam [30], Facchinei/Pang [33], Kinder-
lehrer/Stampacchia [57], Patriksson [75], and Zeidler [91]. A growing interest in this
field of research can be observed since VIs in infinite-dimensional spaces were intro-
duced in the 1960s in connection with free boundary value problems (Fichera [36],
Lions/Stampacchia [66]). As a parallel development, VIs in finite-dimensional space
were first investigated as generalizations of nonlinear complementarity problems (Cot-
tle [22]) and in the context of traffic equilibrium problems (Dafermos [25]).

In this thesis we will focus on VIs with maximal monotone operators in finite di-
mensional space: For a given maximal monotone and possibly multi-valued operator
T : Rn → 2R

n
and a closed, convex set K ⊂ Rn, some x∗ ∈ K and an appropriate

t∗ ∈ T (x∗) have to be found such that

〈t∗, x− x∗〉 ≥ 0 ∀x ∈ K,

where 〈·, ·〉 denotes the Euclidean inner product in Rn. Since the theory about the
existence and uniqueness of solutions of VIs is sufficiently developed (see, e.g., Rock-
afellar/Wets [83]), the current research is mainly devoted to the design and analysis of
solution methods for different classes of VIs.

Many VIs arising from applications are ill-posed. This means, for example, that the
solution is not unique, or that small deviations in the data can cause large deviations
in the solution. In such a situation, standard solution methods, like Newton based
methods or others (see Facchinei/Pang [33, 34]), converge very slowly or even fail.
Moreover, they are not applicable on VIs with multi-valued operators.

In this case, so-called regularization methods are the methods of choice. They have the
advantage that an ill-posed original problem is replaced by a sequence of well-posed
auxiliary problems, which have better properties (like, e.g., a unique solution and a



2 1. Introduction

better conditionality). Two important basic methods are the proximal point algorithm
(going back to Martinet [70]) and the auxiliary problem principle (introduced by Cohen
[17]). In Chapter 2 we present the history and current state of the existing regularization
methods. Their further development is an active field of research.

In the last years the focus of attention was mainly to improve the numerical stability of
regularization methods. As a first aspect with respect to numerical implementations it
is important to treat inexact solutions of the auxiliary problems. This implies the de-
velopment of appropriate stopping criteria (see, e.g., Eckstein [28], Kaplan/Tichatschke
[49], Rockafellar [82], Solodov/Svaiter [87]). Secondly, approximations of the oper-
ator T based on the concept of the ε-enlargement are investigated (see, e.g., Bu-
rachik/Iusem/Svaiter [9]). This allows for example the application of bundle meth-
ods to solve the auxiliary problems. Finally, much research is devoted to the usage of
generalized regularization terms in order to simplify the structure of the auxiliary prob-
lems. Especially, nonquadratic distances such as Bregman distances (Burachik/Iusem
[8], Chen/Teboulle [15], Eckstein [27], Kaplan/Tichatschke [52], Solodov/Svaiter [87]),
logarithmic-quadratic distances (Auslender/Teboulle/Ben-Tiba [6]) and φ-divergences
(Teboulle [88]) constitute an interior point effect which allows to treat the auxiliary
problems as unconstrained ones.

This thesis continues the recent developments. We suggest and investigate a logarithmic-
quadratic proximal auxiliary problem (LQPAP) method that includes a new combina-
tion of the above techniques and methods. Its exploration and convergence analysis
is one of the main results in this work. The LQPAP method uses a logarithmic-
quadratic distance function and combines the advantages of the proximal-point al-
gorithm and the auxiliary problem principle. To keep this scheme most general,
we suppose that the operator T is splitted into F + Q, where F is single-valued,
continuous and monotone, and Q is multi-valued and maximal monotone. Further-
more, we allow that the auxiliary problems are solved inexactly using a summable
error criterion, and we utilize the ε-enlargement technique to approximate Q. Re-
lated works are Auslender/Teboulle/Ben-Tiba [6] and Kaplan/Tichatschke [52]. In
Auslender/Teboulle/Ben-Tiba [6], a logarithmic-quadratic distance is used in an in-
exact proximal-point framework, but without operator approximations and with an
additional error criterion of Eckstein-type. The work of Kaplan/Tichatschke [52] is
devoted to a proximal auxiliary problem (PAP) method together with Bregman dis-
tances. Here, inexact solutions as well as ε-enlargements are considered. These two
papers gave us the main impulse to investigate the LQPAP method. As an advantage
of the logarithmic-quadratic distance, no paramonotonicity assumption on F + Q is
needed in contrast to a Bregman PAP scheme. This allows to apply the LQPAP method
on a broader class of problems. Only in special cases (e.g., for saddle point problems, or
if Q = ∂ϕ, or if Q is bounded) it is shown by Kaplan/Tichatschke [53] and Langenberg
[62] that paramonotonicity of F +Q can be replaced by other or weaker assumptions.
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As a further advantage, the logarithmic-quadratic distance is self-concordant (as men-
tioned, e.g., in Auslender/Teboulle/Ben-Tiba [5]). It is shown by Nesterov/Nemirovskii
[73] that the Newton method is especially efficient to minimize self-concordant func-
tions. With respect to the numerical realization of the LQPAP method it is therefore
of special interest to further investigate this connection.

Numerical results for the application of nonquadratic distances were hardly available
in the past (one positive example is Auslender/Haddou [2] for φ-divergences). Few
details were given how to solve the auxiliary problems numerically. Furthermore, only
sparse information was published how to check the assumed properties of the involved
operators, or how to ensure the convergence conditions for the controlling parameters.
Only in the last decade, publications have started to include specific information about
the implementation and numerical tests (see Hübner [44], Kiwiel [60], Langenberg [63],
Xu/He/Yuan [90]). Therefore, our motivation is to fill the gap between theory and
numerics by providing a deeper insight into all aspects that have to be regarded for an
implementation and evaluation of the suggested LQPAP method.

Our numerical realization of the LQPAP method exploits the fact that for many VIs the
resulting auxiliary problems are unconstrained, convex optimization problems. Three
categories of original problems are distinguished, which emerge from special choices
of the operators F and Q: For the category of differentiable, convex optimization
problems (Q = ∇ψ) we describe the implementation of the Newton method to solve
the auxiliary problems and carry out different numerical experiments. For example, it
is evaluated how the application of under-relaxation improves the results. As a second
category, nonsymmetric VIs are considered, i.e., VIs where the operator F cannot be
represented as the gradient of a convex function. Thus, it is not possible to formulate
the VI as an optimization problem. Here, the LQPAP method has the advantage that
those types of problems can yet be solved by means of optimization problems. The last
category consists of nondifferentiable, convex optimization problems (Q = ∂ϕ). We
show how the auxiliary problems can be solved using the bundle-technique. As far as
possible, our analysis is substantiated by new theoretical results. Furthermore, it will
be explained in detail how the bundle auxiliary problems are solved with a primal-dual
interior point method.

Our studies concerning the application of the bundle method differ from those in the
related works of Hübner [44] and Auslender/Teboulle [4] as follows: Much of our in-
vestigation is inspired by Hübner [44], but in that work only Bregman functions are
considered. Thus, a new convergence analysis for the logarithmic-quadratic distance
function is needed. In Auslender/Teboulle [4] the bundle-technique is applied with a
logarithmic-quadratic proximal method. But in contrast to our work, exact solutions of
the bundle auxiliary problems are required and no operator F is included. Furthermore,
no computational results are reported.
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In our work, numerical results for all categories of problems are presented. Since para-
monotonicity holds in the considered test problems, our solution method is competitive
to the Bregman function based PAP method of Kaplan/Tichatschke [52]. We there-
fore extend our implementation to Bregman functions and compare the performance
of both methods.

The present thesis is structured as follows:

Chapter 2 contains fundamental definitions and results. We introduce different notions
of monotonicity for multi-valued operators, which will frequently be used in the con-
vergence statements of the presented solution methods. The different problem classes
covered by the general problem formulation of a VI are presented and a brief overview
about existence and uniqueness results for solutions of VIs is given. Our main focus
is dedicated to the history of the basic solution methods for VIs and the numerical
methods which were recently developed. We attach particular importance to a struc-
tured presentation of the convergence conditions so that differences and similarities
in the requirements on the data can easily be recognized. The different directions of
development are clearly indicated and constitute the basis for our studies.

Chapters 3 to 8 contain own investigations and new results.

The main contribution of Chapter 3 is the convergence analysis of the LQPAP method
under standard assumptions on the problem data and parameters. Following the basic
steps of a convergence proof, we first show that the method is well-defined, which
includes a verification of the interior point effect (Theorem 3.3.1). Boundedness of
the sequence of iterates is proved in a second step (Theorem 3.4.3) and, finally, the
convergence of the iterates towards a solution of the given VI completes the analysis
(Theorem 3.4.5).

In Theorem 4.2.3 and Lemma 4.2.5 of Chapter 4 we give a proof that the logarithmic-
quadratic distance function is strongly self-concordant but not a self-concordant barrier
in the sense of Nesterov/Nemirovskii [73]. An efficient step size rule for the Newton
method and the resulting quadratic convergence of the Newton decrements will be
summarized.

The remaining chapters focus on the numerical realization of the LQPAP method.

Chapter 5 clarifies which types of LQPAP auxiliary problems are encountered when
the LQPAP method is applied on certain categories of VIs. This gives us the basis
to develop appropriate solution methods for the auxiliary problems. Furthermore, we
analyze how to ensure the co-coercivity condition that is assumed in the convergence
theorem of the LQPAP method (Lemmata 5.4.16 and 5.4.17). The standard choices for
the auxiliary operator are discussed in Examples 5.4.18–5.4.20.
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Chapter 6 describes the application of the LQPAP method to differentiable, convex
optimization problems with linear constraints. The presented test problems also include
some randomly generated examples. We will report the results of extensive numerical
tests which, for instance, evaluate a step size rule based on self-concordance. Section
6.4 contains our achievements concerning the strategy of under-relaxation.

Chapter 7 primarily describes the construction of test examples for nonsymmetric VIs.
We explain in Corollary 7.1.4 and Lemma 7.1.7 how to generate affine, nonsymmetric
and co-coercive operators. Moreover, in Section 7.2 we present our ideas to generate
test problems where the solution or even a solution set is known.

Finally, in Chapter 8 the category of nondifferentiable, convex optimization problems
is considered. We establish the LQPAP bundle method and prove its well-definedness
and convergence in Theorem 8.1.2. The method is applied on several test examples
from literature.

The Appendix contains additional material on convex functions and multi-valued oper-
ators, basic properties of logarithmic-quadratic distances, and some statements about
the convergence of sequences of numbers. Moreover, most of the specific data for the
test examples and the detailed results of our numerical tests are presented.
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2. Variational Inequalities and Selected Solution

Algorithms

Our investigation in the following chapters will focus on a new solution method for
variational inequalities that is based on two classical algorithms, the proximal point
algorithm and the auxiliary problem principle. In this chapter we describe the main
ideas and important convergence results of these classical methods and point out ad-
vantages and disadvantages. Further, the proximal auxiliary problem principle will be
presented as a method that combines the advantages of the basic algorithms. Finally,
extensions of the basic methods include the usage of nonquadratic distance functions
and enlargements of the operators. For example Bregman distances and logarithmic-
quadratic distances lead to an interior point effect. The state of the art concerning
these extensions will be summarized and relevant convergence conditions will be given.

Throughout this work we use the following notation. With 〈·, ·〉 we refer to the canonical
inner product in Rn with ‖ · ‖ as the associated Euclidean norm in Rn. The power set
of Rn is denoted with 2R

n
. Rn

++ denotes the interior of the nonnegative orthant of Rn.
For a set K ⊂ Rn we denote with int(K) the interior of K, with cl(K) the closure of
K, and with bd(K) the boundary of K. Further, I : Rn → Rn denotes the identity
operator.

2.1 Preliminaries on monotone operators

We start with the main definitions and properties of monotone operators which are
needed in our work. For more comprehensive information see [30, 57, 91].

Multi-valued/single-valued operator. A mapping T : Rn → 2R
n

is called a multi-
valued operator, i.e., T maps a point x ∈ Rn to a set T (x) ⊂ Rn. An operator T is
called single-valued if the image T (x) contains at most one element.

Effective domain, range, graph. For such operators the effective domain, the range,
and the graph are defined, respectively, as
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dom(T ) = {x ∈ Rn : T (x) 6= ∅},

rge(T ) =
⋃

x∈dom(T )

T (x),

gph(T ) = {(x, u) ∈ Rn ×Rn : u ∈ T (x), x ∈ dom(T )}.

Inverse. The inverse operator T −1 of T is the multi-valued operator defined by the
equivalence

x ∈ T −1(y)⇔ y ∈ T (x).

Obviously, it holds dom(T −1) = rge(T ).

Sum of operators. For two operators T1, T2 : Rn → 2R
n

and two scalars α, β ∈ R the
operator αT1 + βT2 is defined by

(αT1 + βT2)(x) =

{
αT1(x) + βT2(x) if x ∈ dom(T1) ∩ dom(T2)

∅ otherwise.

Monotone/maximal monotone operators. A multi-valued operator T is called
monotone if

〈u− v, x− y〉 ≥ 0 ∀x, y ∈ Rn, ∀u ∈ T (x), ∀v ∈ T (y).

If T1, T2 are monotone then T −1
1 , λT1 with λ ≥ 0, and T1 + T2 are monotone.

A monotone operator T is defined to be maximal monotone if gph(T ) is not a proper
subset of the graph of another monotone operator T ′ : Rn → 2R

n
.

If T is maximal monotone then T −1 and λT with λ > 0 are maximal monotone.
Further properties of a maximal monotone operator T are:

(a) T (x) is a convex and closed set for all x ∈ dom(T ) [91, Proposition 32.6],

(b) gph(T ) is closed [9, Proposition 1],

(c) rge(T ) = Rn if dom(T ) is bounded [91, Corollary 32.35],

(d) cl(dom(T )), ri(dom(T )), cl(rge(T )), ri(rge(T )) are convex sets [3, Proposition
6.4.1],

(e) T is locally bounded in int(dom(T )) [79, Theorem 1],

(f) T is upper semicontinuous in int(dom(T )) [3, Proposition 6.6.8]. Thus, a single-
valued, maximal monotone operator is continuous in the interior of its domain.

Continuity and boundedness properties of multi-valued operators are defined in Ap-
pendix A.2.
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Important examples of maximal monotone operators are:

(i) For a proper, lower semicontinuous, convex1 function ϕ : Rn → R ∪ {+∞} the
subdifferential ∂ϕ : Rn → 2R

n
, which is defined as

∂ϕ(x) = {s ∈ Rn : ϕ(y) ≥ ϕ(x) + 〈s, y − x〉 ∀y ∈ Rn},

is a maximal monotone operator [83, Theorem 12.17].

(ii) Single-valued operators that are monotone and continuous are maximal monotone
[91, Proposition 32.7].

(iii) An affine operator T (x) = Cx + d with C ∈ Rn×n and d ∈ Rn is maximal
monotone if 1

2
(C + CT ) is positive semidefinite [83, Example 12.2].

(iv) The normal cone operator of a nonempty, closed, convex set K ⊂ Rn, given by

NK(x) =

{
{y ∈ Rn : 〈y, u− x〉 ≤ 0 ∀u ∈ K} if x ∈ K
∅ otherwise,

is maximal monotone with dom(NK) = K [83, Corollary 12.18].

The sum of maximal monotone operators is not necessarily maximal monotone. Con-
sider for example the case dom(T1) ∩ dom(T2) = ∅, in which the graph of T1 + T2 is
empty. Additional conditions are given in the following theorems.

Theorem 2.1.1 ([81], Theorem 1). Let T1 and T2 be maximal monotone operators
on Rn such that

dom(T1) ∩ int(dom(T2)) 6= ∅.

Then T1 + T2 is maximal monotone.

Theorem 2.1.2 ([81], Theorem 3). Let K be a nonempty, closed, convex subset of
Rn and T be a single-valued monotone operator (not necessarily maximal) such that
K ⊂ dom(T ) and T is continuous along each line segment in K. Then T + NK is
maximal monotone.

We now recall some stronger notions of monotonicity for multi-valued operators be-
cause they will be frequently assumed in the analysis of solution methods for variational
inequalities.

1 Some basic definitions for convex functions are given in Appendix A.1.
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Strictly/strongly monotone. A multi-valued operator T is strictly monotone if

〈u− v, x− y〉 > 0 ∀x, y ∈ Rn, x 6= y, ∀u ∈ T (x), ∀v ∈ T (y)

and strongly monotone if there exists a scalar β > 0 such that

〈u− v, x− y〉 ≥ β ‖ x− y ‖2 ∀x, y ∈ Rn, ∀u ∈ T (x), ∀v ∈ T (y).

A strongly monotone operator is obviously strictly monotone. Two examples are:

(i) A continuously differentiable operator T : Rn → Rn is strictly monotone if the
Jacobi-matrix ∇T (x) is positive definite for all x ∈ Rn, and strongly monotone if
∇T (x) is uniformly positive definite, i.e., 〈∇T (x)y, y〉 ≥ α ‖ y ‖2 for all x, y ∈ Rn

with α > 0. In particular, an affine operator T : Rn → Rn, T (x) = Cx+ d with
a positive definite matrix C ∈ Rn×n and a vector d ∈ Rn is strongly and strictly
monotone.

(ii) The subdifferential of a proper, lower semicontinuous, strictly (strongly) convex
function is a strictly (strongly) monotone operator.

Paramonotone. A monotone operator T : Rn → 2R
n

is called paramonotone if for
every x, y ∈ Rn, u ∈ T (x), and v ∈ T (y) it holds

〈u− v, x− y〉 = 0 ⇒ u ∈ T (y), v ∈ T (x).

Strictly monotone operators are paramonotone. If T is the subdifferential of a proper,
lower semicontinuous, convex function then T is paramonotone.

Co-coercive. Co-coercivity is a concept of generalized monotonicity for single-valued
operators that lies strictly between simple and strong monotonicity. A single-valued
operator T : Rn → Rn is co-coercive on a set K ⊂ Rn with modulus γ > 0 if

〈T (x)− T (y), x− y〉 ≥ γ ‖ T (x)− T (y) ‖2 ∀x, y ∈ K.

Another name for this concept is Dunn-property [26]. The sum of co-coercive oper-
ators is co-coercive, and co-coercivity is preserved under affine transformations [93,
Proposition 2.2].

A co-coercive operator T with modulus γ is monotone and Lipschitz continuous with
constant 1/γ. Although the converse is not true in general, it is valid in R1, where
a function is co-coercive on an interval if and only if it is monotone (increasing) and
Lipschitz continuous on that interval.

Co-coercive operators are paramonotone but not necessarily strongly monotone. Con-
sider for example a constant operator, which is co-coercive with arbitrary γ > 0 but
neither strongly nor even strictly monotone.
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Further, co-coercivity of an operator T is equivalent to the strong monotonicity of the
possibly multi-valued operator T −1 [92, Proposition 3.3]. A more detailed treatment of
co-coercive operators will follow in Section 5.4.1.

Coercive/weakly coercive. Notions that describe the behavior of a monotone op-
erator at infinity are useful to get statements about the solvability of a variational
inequality. According to [91, Definition 25.2] an operator T : Rn → 2R

n
is said to be

coercive if

lim
‖x‖→∞

infu∈T (x) 〈u, x〉
‖ x ‖

= +∞,

and weakly coercive if
lim
‖x‖→∞

inf
u∈T (x)

‖ u ‖= +∞,

with inf ∅ = +∞. It is clear that coercive operators are weakly coercive, and that
a bounded effective domain of T is sufficient for T to be coercive. Further, strongly
monotone operators are weakly coercive.

2.2 Variational inequalities and related problems

A variational inequality is a problem formulation that includes several other mathemat-
ical problems like convex optimization problems, nonlinear equation systems, comple-
mentarity problems, and saddle point problems. Historically, the variational inequality
problem was introduced in the 1960s in the context of optimal control theory and in
connection with the solution of free boundary value problems in mathematical physics.
These applications in infinite-dimensional spaces are described, e.g., in [57]. The re-
search on finite-dimensional variational inequalities is motivated by discretizations of
infinite-dimensional variational inequalities. As a parallel impulse, which is not related
to the infinite-dimensional version, Dafermos [25] recognized in the 1980s that the traf-
fic equilibrium problem can be formulated as a finite-dimensional variational inequality.
For a detailed survey of the history of variational inequality problems we refer to [40]
and the corresponding books [33, 34].

Definition of a variational inequality problem. For a given multi-valued operator
T : Rn → 2R

n
and a closed, convex set K ⊂ Rn the general problem formulation of a

variational inequality is

VI(T , K) : Find x∗ ∈ K and t∗(x∗) ∈ T (x∗) with

〈t∗(x∗), x− x∗〉 ≥ 0 ∀x ∈ K.

In the case that T is a single-valued operator, t∗(x∗) is replaced with T (x∗).
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With the help of the normal cone operator NK , problem VI(T , K) can be equivalently
formulated as an inclusion problem

IP(T , K) : Find x∗ ∈ Rn with

0 ∈ T (x∗) +NK(x∗).

Many applications in mathematical physics result in variational inequality problems
with operators that can be splitted into the sum of a maximal monotone, multi-valued
operator Q : Rn → 2R

n
and a single-valued, monotone, continuous operator F : Rn →

Rn. For example the Signorini-problem, which describes a unilateral contact of an
elastic body and a rigid support, and the Bingham problem, which describes the flow of
a viscous plastic fluid in a cylindrical pipe, can be formulated as variational inequalities
where the operator in splitted into F +Q. The considered problem then has the form

VI(F ,Q, K) : Find x∗ ∈ K and q∗(x∗) ∈ Q(x∗) with

〈F(x∗) + q∗(x∗), x− x∗〉 ≥ 0 ∀ x ∈ K.

It is not intended to explain further details about the Signorini or the Bingham problem
in this work. We refer the reader to [57] for more information.

The solution method presented in our work solves problems of the form VI(F ,Q, K).
This keeps the scheme most general because with the setting F = 0 (or Q = 0) the
general case of a multi-valued (or single-valued) variational inequality is included.

The equivalent formulation of VI(F ,Q, K) as an inclusion problem is

IP(F ,Q, K) : Find x∗ ∈ Rn with

0 ∈ F(x∗) +Q(x∗) +NK(x∗).

Related problems. A large variety of problem classes is included in the problem
formulation VI(F ,Q, K). In this work, convex optimization problems are of special
interest regarding to numerical tests. Setting F = ∇ψ with ψ : Rn → R convex and
differentiable, andQ = ∂ϕ with ϕ : Rn → R convex and nondifferentiable, VI(F ,Q, K)
describes the necessary and sufficient optimality conditions for the point x∗ to be a local
minimizer of the convex nonsmooth optimization problem

OP(ψ + ϕ,K) : min {ψ(x) + ϕ(x)}
s.t. x ∈ K.

The reformulation of a monotone variational inequality as an optimization problem
enables the usage of solution methods developed for convex problems. However, the
description of an arbitrary operator F as the gradient of a convex function is not
possible in all cases. A necessary and sufficient condition contains Theorem 2.2.1.
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Theorem 2.2.1 ([33], Theorem 1.3.1). Assume that F : U → Rn is continuously
differentiable on the open, convex set U ⊂ Rn. Then the following statements are
equivalent:

(i) There exists a function ψ : Rn → R with F(x) = ∇ψ(x) for all x ∈ U .

(ii) The Jacobian ∇F(x) is symmetric for all x ∈ U .

The function ψ that fulfills (i) of Theorem 2.2.1 is given by

ψ(x) =

∫ 1

0

F(x0 + t(x− x0))T (x− x0)dt,

where x0 is an arbitrary fixed vector in Rn. Operators having the property of Theorem
2.2.1 are called symmetric operators, otherwise nonsymmetric. As a generalization, a
variational inequality problem VI(F ,Q, K) where

∃ψ, ϕ : Rn → R convex with F = ∇ψ,Q = ∂ϕ

is called symmetric. Otherwise, the variational inequality is called nonsymmetric.

Other problem classes arise from VI(F ,Q, K) if the restriction set and/or the operators
are of a special structure. If K = Rn and F = 0 the problem reduces to finding a zero
of the multi-valued operator Q because in that case NK(x) = {0} for all x. If K = Rn

and Q = 0 then VI(F ,Q, K) is equivalent to a nonlinear equation system

NEQ(F) : Find x∗ ∈ Rn with F(x∗) = 0.

A complementarity problem is included in VI(F ,Q, K) if K is a cone because then the
problem can be reformulated as

CP(F ,Q, K) : Find x∗ ∈ K and q∗(x∗) ∈ Q(x∗) with

q∗(x∗) + F(x∗) ∈ K∗ and 〈q∗(x∗) + F(x∗), x∗〉 = 0.

Here, K∗ = {d ∈ Rn : 〈d, x〉 ≥ 0 ∀x ∈ K} denotes the dual cone of K. If K = Rn
+ then

K∗ = Rn
+, and with Q = 0 we get the classical nonlinear complementarity problem

NCP(F , K) : Find x∗ ∈ Rn with x∗ ≥ 0 and F(x∗) ≥ 0 and

xi(F(x∗))i = 0 ∀i = 1, . . . , n.

If F(x) is affine, i.e., F(x) = Cx + d for a matrix C ∈ Rn×n and a vector d ∈ Rn,
problem NCP(F , K) reduces to a linear complementarity problem.

Finally, we introduce the saddle point problem as being included in VI(F ,Q, K). Let
N ⊂ Rn and M ⊂ Rm be two nonempty, closed sets and L : N ×M → R be a function
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of two arguments (called a saddle function in this context). The saddle point problem
is given as

SPP(L,N ×M) : Find (x∗, y∗) ∈ N ×M with

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) ∀(x, y) ∈ N ×M.

If L is convex in x and concave in y, and N , M are convex sets, the saddle point
problem can be formulated as a VI(F ,Q, K) with F = 0,

Q(x, y) = ∂xL(x, y)× ∂y[−L](x, y), and K = N ×M.

Existence and uniqueness of solutions. We now come to existence and uniqueness
results needed to prove the well-definedness of our solution method.

Since VI(F ,Q, K) is equivalent to an inclusion problem IP(T , K) with operator T =
F + Q + NK , existence and uniqueness results for inclusion problems can easily be
transferred to variational inequalities. It is clear that an inclusion problem IP(T , K) is
solvable if and only if

0 ∈ rge(T ).

Hence, conditions on T ensuring that rge(T ) = Rn are sufficient for the existence of a
solution. For example:

Theorem 2.2.2 ([91], Corollary 32.35). Let T : Rn → 2R
n

be a maximal monotone
and weakly coercive operator. Then rge(T ) = Rn.

Special inclusion problems with operators of the type T +∂ϕ, where T : Rn → 2R
n

is a
maximal monotone operator and ϕ : Rn → R∪{+∞} is a proper, lower semicontinuous,
convex function, will occur in our work. An important existence result in this context
is

Theorem 2.2.3 ([8], Proposition 3). Let T : Rn → 2R
n

be a monotone operator
and ϕ : Rn → R ∪ {+∞} a proper, lower semicontinuous, convex function. Suppose
further that the following conditions are satisfied:

(a) dom(T ) ∩ dom(∂ϕ) 6= ∅ and rge(∂ϕ) = Rn,

(b) T + ∂ϕ is maximal monotone.

Then rge(T + ∂ϕ) = Rn.

The last theorem does not ensure uniqueness of the solution. Uniqueness is guaranteed
if the operator T + ∂ϕ is strictly monotone as follows directly from the definition.
Strongly monotone operators are strictly monotone and weakly coercive and therefore
ensure both existence and uniqueness.
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Theorem 2.2.4 ([83], Proposition 12.54). For a maximal monotone and strongly
monotone operator T : Rn → 2R

n
the inclusion problem IP(T , K) has a unique solu-

tion.

2.3 Basic solution algorithms

A survey of the theory, algorithms, and applications for finite-dimensional variational
inequalities with single-valued operators is given in [40]. For the multi-valued case a
suitable monograph is not existent and we refer to the papers cited within this section
for more information.

The proximal point algorithm (PPA) and the auxiliary problem principle (APP) are
the main topic of this section. We explain the ideas behind these solution methods
for variational inequalities, present corresponding algorithms, and mention selected
convergence results to get familiar with standard convergence conditions. Moreover,
the proximal auxiliary problem method (PAP method) is described, which combines
the advantages of the PPA and the APP.

2.3.1 Proximal point algorithm (PPA)

The proximal point algorithm was first developed by Martinet [70] as a solution method
for inclusion problems IP(T ,Rn) with a maximal monotone, multi-valued operator T .
It is based on a fixed-point iteration for the resolvent operator

JχT =

(
I +

1

χ
T
)−1

, χ > 0,

which is single-valued and nonexpansive [81, Proposition 1]. Fixed-points of JχT are
solutions of IP(T ,Rn) [34, Proposition 12.3.5]. The inexact version of the PPA, which
allows some error in the calculation of JχT and a varying parameter χ, was investigated
by Rockafellar [82]. For a variational inequality (i.e., T = Q+NK with Q multi-valued,
maximal monotone and K ⊂ Rn closed, convex) the corresponding inexact PPA is
presented in Algorithm 2.1. For its convergence the following conditions on the data
and the parameters are needed:

Conditions (PPA): (see Rockafellar [82])

(1) Q : Rn → 2R
n

maximal monotone, K ⊂ Rn closed, convex, VI(Q, K) solvable,

(2) 0 < χk ≤ χ <∞, ∀k ∈ N0,
∑∞

k=0 δk <∞.
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Algorithm 2.1: Inexact proximal point algorithm (PPA)

1. (Initialization) Choose an initial point x0 ∈ K, a parameter χ0 > 0, and an
error parameter δ0 ≥ 0. Set k := 0.

2. (Stopping criterion) If xk solves problem VI(Q, K) then stop.
3. (Auxiliary problem) Find xk+1 ∈ K and ek+1 ∈ Rn such that

ek+1 ∈ Q(xk+1) + χk(x
k+1 − xk) +NK(xk+1)

and ‖ ek+1 ‖≤ δkχk.
4. (Update) Choose new parameters χk+1 > 0 and δk+1 ≥ 0. Set k := k + 1 and go

to step 2.

The PPA has the advantage that the auxiliary problems have better properties than
the original problem: The operator

Q(·) + χk(I(·)− xk)

is strongly monotone for each χk > 0, which leads to uniquely solvable subproblems.
This is of special importance when dealing with ill-posed problems.

Ill-posed problems. According to Hadamard [38] a problem is said to be ill-posed
if at least one of the following properties is not fulfilled: solvability of the problem,
uniqueness of the solution, continuous dependency of the solution on the input param-
eters. If a problem has multiple solutions the convergence rate of standard methods can
be poor. If the solution depends in a discontinuous way on the data then small errors
can create large deviations. Proximal point methods are regularization methods which
means that they replace an ill-posed variational inequality problem by a sequence of
well-posed problems. Furthermore, the regularization parameter χk does not have to
tend to zero which ensures numerical stability of the regularized problems.

We illustrate the regularizing effect of the PPA in the case of a minimization problem.
Take Q = ∂ϕ with a convex function ϕ : Rn → R that has multiple minima and/or
a small curvature. Then the PPA generates auxiliary problems that are equivalent to
the solution of

min
x∈K

{
ϕ(x) +

χk
2
‖ x− xk ‖2

}
,

which is a better conditioned, uniquely solvable, strongly convex optimization problem.

Remark 2.3.1 (On the schemes (P k
e ) and (P k

δ )). We close this section with a com-
ment on the types of auxiliary problems. The auxiliary problems presented in this sec-
tion will either be given in form of an inclusion problem or in form of a variational
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inequality. To point out the relationship, consider a variational inequality VI(T , K) and
the following examples of (inexact) auxiliary problems, where H(·, ·) denotes a certain
auxiliary operator (specified in the sequel):

(P k
e ) : Find xk+1 ∈ K and ek+1 ∈ Rn such that

ek+1 ∈ T (xk+1) + χkH(xk+1, xk) +NK(xk+1)

and ‖ ek+1 ‖≤ δk,

(P k
δ ) : Find xk+1 ∈ K and t(xk+1) ∈ T (xk+1) such that〈

t(xk+1) + χkH(xk+1, xk), x− xk+1
〉
≥ −δk ‖ x− xk+1 ‖ ∀x ∈ K.

It is easy to see that a solution xk+1 of the inclusion problem (P k
e ) is also a solution

of the variational inequality (P k
δ ) by the definition of the normal cone operator and the

Cauchy-Schwarz inequality. Schemes (P k
e ) and (P k

δ ) are obviously equivalent if exact
solutions are required, i.e., ek+1 = 0 and δk = 0 for all k. It can also be shown that (P k

e )
and (P k

δ ) are equivalent if the iterates {xk} belong to the interior of K (see Lemma
3.4.1).

2.3.2 Auxiliary problem principle (APP)

Cohen [17] introduced the auxiliary problem principle to unify the convergence analy-
sis of gradient and subgradient optimization algorithms as well as some decomposition
algorithms. In [19] this approach is applied to solve variational inequalities. The aux-
iliary problem principle has proved its usefulness in a variety of areas. Contributions
were not only made to the field of optimization [17, 20] but also, for example, to the
field of stochastic optimization [24], Nash equilibria [18], and variational inequalities
[35, 49].

The convergence analysis of the APP differentiates the case where the given operator
of the variational inequality is single-valued from the case where it is multi-valued.

Single-valued case. We first describe the method for variational inequality problems
VI(F ,Q, K) with Q = 0.

The idea is to introduce a sequence of single-valued, strongly monotone auxiliary op-
erators {Ωk}k∈N0 and a sequence {χk}k∈N0 of positive parameters so that F is approx-
imated in iteration k by {χkΩk}. The error made by approximating F is taken into
account by adding the error term F(xk)−χkΩk(xk). Thus, in iteration k, F is replaced
by the operator F(xk) + χk(Ω

k(·) − Ωk(xk)). Algorithm 2.2 summarizes the classical
auxiliary problem principle.
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Algorithm 2.2: Classical auxiliary problem principle (APP)

1. (Initialization) Choose an initial point x0 ∈ K, an auxiliary operator Ω0, and a
parameter χ0 > 0. Set k := 0.

2. (Stopping criterion) If xk solves problem VI(F , K) then stop.
3. (Auxiliary problem) Find xk+1 ∈ K such that〈

F(xk) + χk(Ω
k(xk+1)−Ωk(xk)), x− xk+1

〉
≥ 0 ∀x ∈ K.

4. (Update) Choose a new auxiliary operator Ωk+1 and a parameter χk+1 > 0. Set
k := k + 1 and go to step 2.

In the first version of the auxiliary problem method for variational inequalities, Cohen
takes symmetric auxiliary operators and sets

Ωk = Ω = ∇h and χk = χ ∀k ∈ N0,

where h : Rn → R is some continuously differentiable function. In this case the auxiliary
problems reduce to

Find xk+1 ∈ K such that〈
F(xk) + χ(∇h(xk+1)−∇h(xk)), x− xk+1

〉
≥ 0 ∀x ∈ K, (2.1)

which is equivalent to solving the optimization problem

min
x∈K

{
χh(x) +

〈
F(xk)− χ∇h(xk), x− xk

〉}
. (2.2)

This equivalence is one of the advantages of the auxiliary problem principle. Since the
operator F is fixed at the current iterate, even variational inequalities with nonsym-
metric operators can be reduced to solving a sequence of optimization problems.

For the convergence of the iterates {xk} towards a solution of VI(F , K), Cohen requires
in [19, Theorem 2.2] the following conditions:

Conditions (APP, case: Ωk = Ω = ∇h, F strongly monotone): (see Cohen [19])

(1) K ⊂ Rn closed, convex,

(2) F : Rn → Rn is strongly monotone with modulus β1 and Lipschitz continuous
with constant L (thus, F is co-coercive with modulus β1/L

2),

(3) h : Rn → R is convex and ∇h is strongly monotone with modulus β2, and

(4) L2

2β1β2
< χ < +∞.
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If F is not strongly monotone but only monotone, a convergence result can be given
in the case that F is symmetric. In [17, Theorem 2.1], Cohen proves that every limit
point of the sequence {xk} is a solution if

Conditions (APP, case: Ωk = Ω = ∇h, F = ∇ψ monotone): (see Cohen [17])

(1) K ⊂ Rn closed, convex,

(2) F = ∇ψ with ψ : Rn → R convex and weakly coercive, and ∇ψ Lipschitz contin-
uous with constant L,

(3) h : Rn → R is convex, and ∇h is strongly monotone with modulus β and Lipschitz
continuous with constant Lh, and

(4) L
2β
< χ < +∞.

Monotonicity of F without any additional condition is not sufficient for convergence if
F is nonsymmetric. This can be illustrated with the rotation operator

F(x1, x2) =

[
0 −1
1 0

](
x1

x2

)
∀(x1, x2)T ∈ R2,

which geometrically rotates every point in R2 by 90◦. Thus, it is clear that the scalar
product 〈F(x)−F(y), x− y〉 is zero for all x, y ∈ R2. This shows that F is monotone
but neither strongly monotone nor co-coercive. VI(F ,R2) is equivalent to finding the
unique zero x∗ = (0, 0)T of F . If Ω is chosen as the identity operator on R2, (2.1) is
equivalent to xk+1 = xk − 1

χ
F(xk), respectively

xk+1
1 = xk1 +

1

χ
xk2, xk+1

2 = xk2 −
1

χ
xk1.

Hence
‖ xk+1 ‖2= (1 + (1/χ)2) ‖ xk ‖2 .

Starting with x0 6= x∗, the norm of the iterates strictly increases with k for every χ > 0.
Thus, the iterates cannot converge towards x∗.

The strong monotonicity assumption on F for nonsymmetric variational inequalities
was weakened by Zhu/Marcotte [93, Theorem 3.2] by assuming only co-coercivity of
F , and by El Farouq [31, Theorem 4.1] who proves the convergence of the sequence
{xk} to a solution under a pseudo Dunn property.

Zhu/Marcotte also discuss the case of approximate solutions of the auxiliary problems.
They consider the scheme

Find xk+1 ∈ K with〈
F(xk) + χ(∇h(xk+1)−∇h(xk)), x− xk+1

〉
≥ −ρk ∀x ∈ K ′,
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where ρk > 0 and K ′ is a bounded set. If K itself is bounded one can set K ′ = K.
Otherwise, one defines K ′ = K ∩ {x :‖ x ‖≤ R}, where R is a suitable large constant.
In [93, Theorem 3.5] convergence is proved under the error conditions

ρk ≥ 0, ∀k ∈ N0,

∞∑
k=0

ρk <∞.

An extension to nonsymmetric auxiliary operators is presented by Zhu/Marcotte [93,
Section 4]. They consider a scheme as in Algorithm 2.2 with χk = χ and

Ωk = χ−1L+∇h ∀k ∈ N0, (2.3)

where L : Rn → Rn is a continuous, monotone operator and h : Rn → R is a continu-
ously differentiable, convex function. In [93, Theorem 4.1] they prove the convergence
of the sequence {xk} to a solution of VI(F , K) under the following assumptions:

Conditions (APP, case: Ωk = χ−1L+∇h): (see Zhu/Marcotte [93])

(1) K ⊂ Rn closed, convex, F : Rn → Rn continuous, monotone, VI(F , K) solvable

(2) F − L is co-coercive with modulus γ,

(3) L is continuous and monotone,

(4) ∇h is strongly monotone with modulus β and Lipschitz continuous with constant
Lh,

(5) 1
2βγ

< χ < +∞.

Note that for a given auxiliary operator Ω that is strongly monotone with modulus
β, a decomposition like in (2.3) can be obtained in a natural way by setting h(x) =
(β/2) ‖ x ‖2 and L(x) = χ(Ω(x)− βx).

So far only schemes with fixed auxiliary operator Ω and fixed parameter χ where de-
scribed. The possibility that the auxiliary operator can change at each iteration makes
the method more flexible with regard to special applications. Salmon/Nguyen/Strodiot
[84] introduce a variant of the auxiliary problem principle that covers the use of non-
symmetric auxiliary operators of the type

Ωk = χ−1
k L

k +∇h, (2.4)

where Lk : Rn → Rn is continuous and monotone and h : Rn → R is continuously
differentiable and convex. In most applications Lk depends explicitly on the iterate xk.
Therefore, to describe the operators Lk, one uses a family of operators Ly parameterized
by y ∈ K and defines Lk = Ly|y=xk . The proof of [84, Theorem 2.1] implies that the
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iterates of Algorithm 2.2 with Ωk as in (2.4) converge to a solution of VI(F , K) if the
following conditions are valid:

Conditions (APP, case: Ωk = χ−1
k Lk +∇h): (see Salmon/Nguyen/Strodiot [84])

(1) K ⊂ Rn closed, convex, F : Rn → Rn continuous, monotone, VI(F , K) solvable,

(2) F − Ly fulfills the weakened co-coercivity condition that there exists γ > 0 with

〈F(y)− Ly(y) + Ly(x), y − x〉 ≥ γ ‖ F(y)− Ly(y)−F(x) + Ly(x) ‖2

for all x, y ∈ Rn with 〈F(x), y − x〉 ≥ 0,

(3) {Ly} is a family of monotone and uniformly Lipschitz continuous operators,

(4) ∇h is strongly monotone with modulus β and Lipschitz continuous with constant
Lh,

(5) 1
2βγ

< χ ≤ χk ≤ χk+1 ≤ χ < +∞, ∀k ∈ N0.

Summarizing the preceding aspects one can say that the convergence results for the
auxiliary problem principle are of two types if the operator of the given variational
inequality is single-valued and nonsymmetric. On the one hand, if the auxiliary opera-
tors are symmetric then F is required to be strongly monotone or to have the (pseudo)
Dunn property. On the other hand, if the auxiliary operators are nonsymmetric then
the operator F and the sequence Ωk have to be linked by some kind of co-coercivity
condition. Further, the sequence of parameters {χk} is supposed to be bounded (or con-
stant) and strict greater than some number that depends on the strong monotonicity
and co-coercivity moduli. In each case the conditions ensure that the auxiliary opera-
tors are maximal monotone and strongly monotone such that the auxiliary problems
are uniquely solvable.

Multi-valued case. We briefly consider the case that the given operator of the vari-
ational inequality is multi-valued, i.e., VI(F ,Q, K) with F = 0. Then, the auxiliary
problems in Algorithm 2.2 have to be modified by taking one element q(xk) ∈ Q(xk)
instead of F(xk). In this case the auxiliary operators are generally taken to be symmet-
ric. In [19], Cohen assumes that Q is strongly monotone and fulfills a growth condition
to prove convergence. Concerning the sequence {χk} it is required that

χk > 0, ∀k ∈ N0,
∞∑
k=0

1

χk
= +∞,

∞∑
k=0

1

χ2
k

< +∞,

which implies that the sequence increases with k but not too fast. This is a typical
requirement for the step sizes λk = 1/χk of a subgradient method (see [76, Chapter
5]).
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Included methods. The second advantage of the APP scheme is that with special
choices of the auxiliary operators well-known descent methods are covered. As examples
we present the gradient and the Newton method for the minimization of a sufficiently
smooth, convex function ψ : Rn → R.

• Gradient method: With F = ∇ψ, Ωk = I and K = Rn the auxiliary problem in
Algorithm 2.2 is equivalent to finding xk+1 ∈ Rn with〈

∇ψ(xk) + χk(x
k+1 − xk), x− xk+1

〉
≥ 0 ∀x ∈ Rn,

which results in the calculation of xk+1 as

xk+1 = xk − 1

χk
∇ψ(xk).

Note, if K $ Rn the scheme yields the gradient projection method.

• Newton method: Choosing F = ∇ψ, Ωk(x) = ∇2ψ(xk)x, and K = Rn the auxiliary
problem〈

∇ψ(xk) + χk(∇2ψ(xk)xk+1 −∇2ψ(xk)xk), x− xk+1
〉
≥ 0 ∀x ∈ Rn

is obtained, which is equivalent to

xk+1 = xk − [∇2ψ(xk)]−1∇ψ(xk).

For the gradient method the auxiliary operator is chosen independently of F , whereas
F(x) is linearly approximated by∇F(xk)x to retrieve the Newton method. Other linear
approximation methods are given by

Ωk(x) = D(xk)x ∀k ∈ N0, ∀x ∈ Rn,

where D(xk) ∈ Rn×n is a not necessarily symmetric, positive definite matrix that
depends on xk. This establishes auxiliary problems of the form

Find xk+1 ∈ K with〈
F(xk) + χkD(xk)(xk+1 − xk), x− xk+1

〉
≥ 0 ∀x ∈ K,

and for example the following methods are included:

• Projection method: D(xk) = B, where B is a symmetric, positive definite matrix,

• Quasi Newton method: D(xk) ≈ ∇F(xk),

• Jacobi method: D(xk) = diag(∇F(xk)),
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• Successive over-relaxation (SOR): D(xk) = l(∇F(xk)) + 1
ω

diag(∇F(xk)),

where F is supposed to be continuously differentiable (if necessary), diag(B) is the
diagonal part of B, l(B) denotes the lower triangular part of B, and ω ∈ (0, 2). We
refer to [74] for more details.

Besides the mentioned descent methods, also the proximal point method for a single-
valued operator is included in the APP scheme by taking Ωk = χ−1

k L + ∇h with
h(x) = 1

2
‖ x ‖2 and L(x) = F(x). Then, the corresponding convergence conditions

reduce to requiring that F is monotone and continuous (thus maximal monotone) and
{χk} is a bounded sequence.

Decomposition. Since the operator F of the given variational inequality appears only
as a fixed value F(xk) in the auxiliary problems, it is possible to build up decompo-
sition algorithms with the APP scheme. Parallel decomposition can be achieved if the
restriction set K is the product of N sets Kj, j = 1, . . . , N , and an additive auxiliary
operator

Ωk(x) =
N∑
j=1

Ωk
j (xj), xj ∈ Kj

is chosen. Then, the auxiliary problems in step 3 of Algorithm 2.2 can be splitted up
into N independent variational inequalities. We do not intend to go further into detail
here and refer to [16] and [17], where such kinds of algorithms are studied.

2.3.3 Proximal auxiliary problem (PAP) method

The solution methods PPA and APP both have their advantages: The PPA only re-
quires monotonicity of the given operator, whereas in the APP the operator has to
possess some monotonicity reserve (e.g., be strongly monotone). On the other hand,
the auxiliary problems of the APP can be solved as optimization problems even if the
given operator is not symmetric, whereas the structure of the auxiliary problems in
the PPA is the same as in the original problem. Furthermore, with special choices of
the auxiliary operator, the APP scheme leads to well-known descent methods such as
the Newton method, and existing solution software can be used. Both methods regu-
larize the given problem by generating uniquely solvable auxiliary problems. Moreover,
there exist convergence proofs for the inexact versions under certain error summability
criteria.

It is obviously worthwhile to establish a method that combines the positive properties
of the PPA and the APP. In [48], Kaplan/Tichatschke investigate the so-called proximal
auxiliary problem method, which is especially interesting if the given operator of the
variational inequality can be splitted into F + Q as described in VI(F ,Q, K). They
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propose an iterative scheme where F is fixed in the current iterate xk like in the APP
and Q is considered in the unknown next iterate xk+1 as in the PPA. Further, auxiliary
operators of the type Lk+χk∇h are used like in (2.4). The PAP method can be seen as
an extension of the APP or a combination of PPA and APP. Its basic form is described
in Algorithm 2.3.

Algorithm 2.3: Proximal auxiliary problem method (PAP)

1. (Initialization) Choose an initial point x0 ∈ K, an auxiliary operator L0, a
parameter χ0 > 0, and an error parameter δk ≥ 0. Set k := 0.

2. (Stopping criterion) If xk solves problem VI(F ,Q, K) then stop.
3. (Auxiliary problem) Find xk+1 ∈ K and q(xk+1) ∈ Q(xk+1) such that〈

F(xk) + q(xk+1) + Lk(xk+1)− Lk(xk) + χk(∇h(xk+1)−∇h(xk)), x− xk+1
〉

≥ −δk ‖ x− xk+1 ‖ ∀x ∈ K.

4. (Update) Choose a new auxiliary operator Lk+1 and new parameters χk+1 > 0,
δk+1 ≥ 0. Set k := k + 1 and go to step 2.

The splitting in F +Q is flexible, even one of the operators can be zero. For example,
operator F can describe single-valued (nonsymmetric) operators that have a certain
monotonicity reserve. Other (multi-valued) operators without monotonicity reserve can
be included into Q. More details are presented in Chapter 5.

The PAP method includes the APP as a special case if Q = 0 and Ωk = χ−1
k Lk +∇h.

The PPA is covered as well with the choice F = 0, L = 0, and h = 1
2
‖ · ‖2.

Kaplan/Tichatschke describe in [49] and [51] different extensions of the basic form of
the PAP method in a Hilbert space, which include approximations of the operator Q
and the set K. It can be extracted from [51, Theorem 3.1] that the following conditions
are needed for the convergence of the basic form described in Algorithm 2.3:

Conditions (PAP): (see Kaplan/Tichatschke [51])

(1) General conditions on the data F ,Q, K:
K ⊂ Rn closed, convex, Q : Rn → 2R

n
maximal monotone, dom(Q)∩int(K) 6= ∅,

F : Rn → Rn single-valued, continuous, VI(F ,Q, K) solvable.

(2) Special conditions on F , Q, {Ly}, and h:

(a) The operator
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QK : y 7→

{
Q(y) if y ∈ K
∅ otherwise

is locally hemi-bounded at each point of dom(Q) ∩K,

(b) {Ly} is a family of monotone and Lipschitz continuous operators with a com-
mon Lipschitz constant L,

(c) F − Ly fulfills the condition that there exists γ > 0 with

〈F(y)− Ly(y) + Ly(x) + q(x), y − x〉
≥ γ ‖ F(y)− Ly(y)−F(x) + Ly(x) ‖2 (2.5)

forall x, y ∈ Rn and q(x) ∈ Q(x) with 〈F(x) + q(x), y − x〉 ≥ 0,

(d) h is convex and ∇h is Lipschitz continuous with constant Lh,

(e) for a given linear, continuous, and monotone operator B : Rn → Rn that has
the symmetry property 〈Bx, y〉 = 〈By, x〉 it holds

〈q(x)− q(y), x− y〉 ≥ 〈B(x− y), x− y〉

for all x, y ∈ dom(Q) ∩K, for all q(x) ∈ Q(x), q(y) ∈ Q(y),

(f) for given constants χ̃ > 0, κ > 0 the inequality

1

2
χ̃ 〈B(x− y), x− y〉+ h(x)− h(y)− 〈∇h(y), x− y〉 ≥ κ ‖ x− y ‖2

is valid for all x, y ∈ K.

(3) Conditions on the sequences {χk} and {δk}:

(a) 0 < χ ≤ χk ≤ χk+1 ≤ χ < +∞, ∀k ∈ N0,

(b) 1
4γκ

< χ, 2χ̃χ < 1,

(c)
∑∞

k=0 δk <∞.

We close this section with some comments on the Conditions (PAP).

Local hemi-boundedness of QK is needed to provide the following implication with
a fixed x̄ ∈ dom(Q) ∩ K: If for all x ∈ dom(Q) ∩ K there exists q(x) ∈ Q(x) with
〈F(x̄) + q(x), x− x̄〉 ≥ 0 then x̄ is a solution of VI(F ,Q, K). This is needed to show
that each limit point of the sequence {xk} is a solution of VI(F ,Q, K).

Condition (2.5) on the operators F−Ly is certainly fulfilled if they are co-coercive with
a common modulus γ > 0. In [51] an example is presented where (2.5) is fulfilled but
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the considered operator is not co-coercive. It is also interesting to note that condition
(2.5) does not force the operator F to be monotone. Thus, the given operator F +Q
does not necessarily have to be monotone as distinct to the PPA and the APP scheme.

Compared to the APP scheme, the standard assumption on the strong convexity of
the auxiliary function h is weakened by exploiting some monotonicity reserve of the
operator Q. If Q is strongly monotone then B can be taken as the identity operator,
which implies that h only has to be convex. The other extreme is to have B = 0 and
Q only monotone. Then h must be strongly convex.

Finally, ill-posed problems can be handled with the PAP scheme because the conver-
gence conditions allow that the solution set of VI(F ,Q, K) is unbounded. Moreover,
in comparison to the inexact scheme of the APP described by Zhu/Marcotte, the re-
striction set K does not have to be compact because the error term −δk ‖ x− xk+1 ‖
allows K to be unbounded.

2.4 Extensions of the basic solution algorithms

There are different extensions of the basic methods introduced in the last years to solve
variational inequalities or variants of this problem formulation. A selection of works
is [6, 8, 9, 14, 28, 88] for proximal-like methods, [32, 51, 52, 75] for auxiliary problem
principle based methods.

Of special interest in this work are extensions that have the aim to simplify the numer-
ical realization of the auxiliary problems. Besides the possibility of inexact solutions
of the auxiliary problems, there are two further aspects that are currently focused on
in the literature. On the one hand, nonquadratic distances are investigated that es-
tablish an interior point effect by forcing the iterates to stay strictly feasible. On the
other hand, the given multi-valued operator is approximated from outside such that
an evaluation of this operator does not have to be done exactly. This results in the
discussion of so-called enlargements of operators. Both techniques - interior point idea
and enlargements - will be presented in this section.

2.4.1 Bregman function based PPA and PAP

Motivation of Bregman functions. Algorithms based on Bregman functions were
investigated as extensions of the basic solution algorithms with the idea to get unre-
stricted auxiliary problems by means of an interior point effect. In this context, it is
generally assumed that int(K) 6= ∅.
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For a motivation we reformulate the PAP scheme of Algorithm 2.3 in a more general
setting with auxiliary problems of the form

Find xk+1 ∈ K and q(xk+1) ∈ Q(xk+1) such that〈
F(xk) + q(xk+1) + Lk(xk+1)− Lk(xk) + χk∇IDh(x

k+1, xk), x− xk+1
〉

(2.6)

≥ −δk ‖ x− xk+1 ‖ ∀x ∈ K.

Here, Dh : K × int(K)→ R is a nonquadratic function defined as

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉 (2.7)

and h : Rn → R is (at least) strictly convex and continuous on K and continuously
differentiable on int(K). Then

∇IDh(x, y) = ∇h(x)−∇h(y)

is the gradient of Dh with respect to the first vector argument. For every strictly convex
function h it is further obvious that Dh(x, y) ≥ 0, and that Dh(x, y) = 0 if and only if
x = y. The source of definition (2.7) becomes clear if h = 1

2
‖ · ‖2. Then it is easy to

see that

D 1
2
‖·‖2(x, y) =

1

2
‖ x− y ‖2,

which is the standard quadratic distance function. However, in contrast to the squared
Euclidean distance, Dh is in general not symmetric and does not obey the triangle
inequality. For that reason, it is called a generalized distance or distance-like function.
Geometrically, Dh(x, y) is the difference between h(x) and the value at x of the linear
approximation of h at y as illustrated in Figure 2.1.

x y

h

Dh(x, y)

Figure 2.1. Generalized distance Dh.

The idea is to impose additional properties on h such that the distance function Dh

acts as a barrier at the boundary of K and forces the sequence {xk} of iterates (with
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x0 ∈ int(K)) to remain in the interior of K. Further, unique solvability of the auxiliary
problems should be guaranteed. These goals can be achieved for example by Bregman
functions, a notion that goes back to Bregman [7].

Definition of Bregman functions. The following definition of a Bregman function
is given in [87] and is seen to be minimal relative to the different definitions used in
literature.

Let K ⊂ Rn be a closed, convex set with int(K) 6= ∅. A function h : K → R is a
Bregman function with zone int(K) if

(B1) h is strictly convex and continuous on K,

(B2) h is continuously differentiable on int(K),

(B3) for all x ∈ K and all constants η ∈ R the set

L(x, η) = {y ∈ int(K) : Dh(x, y) ≤ η}

is bounded,

(B4) for a sequence {xk} ⊂ int(K) converging to x it holds

lim
k→∞

Dh(x, x
k) = 0.

If h is a Bregman function then Dh is called a Bregman distance.

Solodov/Svaiter showed in [87, Theorem 2.4] that the so-called convergence consistence
property, i.e.,

(B5) if {xk} ⊂ K and {yk} ⊂ int(K) are sequences such that {xk} is bounded,
limk→∞ y

k = ȳ, and limk→∞Dh(x
k, yk) = 0 then limk→∞ x

k = ȳ,

is a consequence of (B1) and (B2).

If in addition to (B1)–(B4) h also satisfies the following condition

(B6) ∇h(int(K)) = Rn, i.e., ∀y ∈ Rn ∃x ∈ int(K) : ∇h(x) = y,

then h is a so-called zone coercive (or full-range) Bregman function. Further, a Bregman
function h is said to be boundary coercive if

(B7) for every sequence {yk} ⊂ int(K) it holds: if limk→∞ y
k = ȳ ∈ bd(K) then〈

∇h(yk), x− yk
〉
→ −∞ ∀x ∈ int(K).
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It is proved in [14, Corollary 6] that zone coerciveness implies boundary coerciveness.
Since boundary coerciveness implies divergence of ∇h on bd(K), this property links K
and h by

dom(∇h) = int(K).

This also implies that the auxiliary problems cannot have solutions on the boundary of
K – an interior point effect that leads to essentially unconstrained auxiliary problems.

Examples of Bregman functions. Examples of zone coercive Bregman functions
for different polyhedral sets can be found, e.g., in [8, 14]. A selection of examples is

(a) K = Rn, h(x) = 1
2
‖ x ‖2, Dh(x, y) = 1

2
‖ x− y ‖2,

(b) K = Rn
+, h(x) =

∑n
j=1 xj log xj with the convention that 0 log 0 = 0,

Dh(x, y) =
∑n

j=1

(
xj log

xj
yj
− xj + yj

)
, which is the so-called Kullback-Leibler

relative entropy distance functional [65].

(c) K = [a1, b1]× · · · × [an, bn] with aj < bj ∀j = 1, . . . , n,
h(x) =

∑n
j=1 [(xj − aj) log(xj − aj) + (bj − xj) log(bj − xj)],

Dh(x, y) =
∑n

j=1

[
(xj − aj) log

(
xj−aj
yj−aj

)
+ (bj − xj) log

(
bj−xj
bj−yj

)]
,

(d) K = {x ∈ Rn : Ax ≤ b} with A ∈ Rp×n, p ≥ n, rank(A) = n, b ∈ Rn,
h(x) =

∑p
i=1(bi − 〈ai, x〉) log(bi − 〈ai, x〉), where ai denotes the i-th row of A,

i = 1, . . . , p, Dh(x, y) =
∑p

i=1

(
li(x) log li(x)

li(y)
− li(x) + li(y)

)
, li(x) = bi − 〈ai, x〉,

i = 1, . . . , p.

Bregman-like functions can be defined for nonpolyhedral sets as demonstrated in Ka-
plan/Tichatschke [55], where the concept of Bregman functions is modified by using a
more general convergence sensing condition as in (B4).

Bregman-PPA. Eckstein [27] and Chen/Teboulle [15] were the first who introduced
Bregman functions to extend the PPA. Further contributions include [8, 14, 28, 45, 87].
In [28], Eckstein considers inexact solutions of the auxiliary problems and gives appro-
priate error tolerance criteria. To solve VI(Q, K) with a multi-valued, maximal mono-
tone operator Q, Algorithm 2.4 is used with h as a zone coercive Bregman function
with zone int(K). As a consequence of the interior point effect, the auxiliary prob-
lems can be written as inclusion problems omitting the normal cone operator since
NK(xk+1) = {0}.

The convergence theorem [28, Theorem 1] for BrPPA requires the following conditions:
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Algorithm 2.4: Inexact Bregman proximal point algorithm (BrPPA)

1. (Initialization) Choose an initial point x0 ∈ int(K), a parameter χ0 > 0, and an
error parameter δ0 ≥ 0. Set k := 0.

2. (Stopping criterion) If xk solves problem VI(Q, K) then stop.
3. (Auxiliary problem) Find xk+1 ∈ K and ek+1 ∈ Rn such that

ek+1 ∈ Q(xk+1) + χk(∇h(xk+1)−∇h(xk))

and ‖ ek+1 ‖≤ δk.
4. (Update) Choose new parameters χk+1 > 0 and δk+1 ≥ 0. Set k := k + 1 and go

to step 2.

Conditions (BrPPA): (see Eckstein [28])

(1) K ⊂ Rn closed, convex, Q : Rn → 2R
n

maximal monotone, dom(Q)∩int(K) 6= ∅,
VI(Q, K) solvable.

(2) One of the following situations hold:

(a) int(K) ⊇ cl(dom(Q)),

(b) Q is the subdifferential of some proper, lower semicontinuous, convex func-
tion,

(c) Q is paramonotone, and if {xk} ⊂ int(K), yk ∈ Q(xk), and {xk} is convergent
then {yk} has a limit point.

(3) h is a zone coercive Bregman function with zone int(K).

(4) For the sequences {χk}, {δk}, and {ek} it holds:

0 < χk ≤ χ <∞,∀k ∈ N0, (2.8)
∞∑
k=0

δk <∞, (2.9)

∞∑
k=1

〈
ek, xk

〉
exists and is finite. (2.10)

Paramonotonicity of Q is needed to exploit the following property (see [9, Proposition
10]): If Q is paramonotone and x∗ is a solution of VI(Q, K), then x̄ is also a solution
of VI(Q, K) if and only if there exists v ∈ Q(x̄) such that 〈v, x∗ − x̄〉 ≥ 0.
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The requirement on {
〈
ek, xk

〉
} to be summable turns out to be difficult to verify in

practice because it involves the sequence of iterates, which is not known before using
the algorithm. Only if for example K is bounded and therefore {xk} is a bounded
sequence, this condition is automatically fulfilled as a consequence of (2.9).

In [54], Kaplan/Tichatschke prove convergence of the iterates of the BrPPA without
condition (2.10) but under the assumption that the distance function fulfills a so-called
cone condition:

(B8) For arbitrary x ∈ K there exist constants α(x) > 0 and c(x) ∈ R such that

Dh(x, y) + c(x) ≥ α(x) ‖ x− y ‖ ∀y ∈ int(K).

In [54] it is shown that most of the known Bregman functions and so-called logarithmic-
quadratic distance functions (see Section 2.4.2 below) fulfill the cone condition.

Bregman-PAP. The question arises if an interior point effect can be achieved not
only in a proximal point method but also in the APP or PAP scheme by choosing
h as a Bregman function. This is not immediately possible since in both schemes h
must have a Lipschitz continuous gradient which is contradictory to the requested
boundary coercivity of the Bregman functions. Also complications emerge because of
the nondifferentiability of a Bregman function h on the boundary of K. Therefore, a
modified analysis is needed. Kaplan/Tichatschke present in [52] a convergence analysis
for Algorithm 2.5 where Dh is a Bregman distance.

Algorithm 2.5: Bregman proximal auxiliary problem (BrPAP) method

1. (Initialization) Choose an initial point x0 ∈ int(K), an auxiliary operator L0, a
parameter χ0 > 0, and an error parameter δk ≥ 0. Set k := 0.

2. (Stopping criterion) If xk solves problem VI(F ,Q, K) then stop.
3. (Auxiliary problem) Find xk+1 ∈ K and q(xk+1) ∈ Q(xk+1) such that〈

F(xk) + q(xk+1) + Lk(xk+1)− Lk(xk) + χk∇IDh(x
k+1, xk), x− xk+1

〉
≥ −δk ‖ x− xk+1 ‖ ∀x ∈ K.

4. (Update) Choose a new auxiliary operator Lk+1 and new parameters χk+1 > 0,
δk+1 ≥ 0. Set k := k + 1 and go to step 2.

Compared to the assumptions for the PAP scheme on pages 24–25 the following addi-
tional properties or modifications are needed:
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Conditions (BrPAP): (compared to Conditions (PAP), see Kaplan/Tichatschke [52])

(1) Standard conditions on the data F ,Q, K as in (PAP)(1).

(2) Special conditions on F , Q, {Ly}, and h:

• Condition (PAP)(2)(a) is extended by requiring that one of the following as-
sumptions is valid:

(a) int(K) ⊇ cl(dom(Q)), and the operator

QK : y 7→

{
Q(y) if y ∈ K
∅ otherwise

is locally hemi-bounded at each point of dom(Q) ∩K,

(b) F = ∇ψ, Q = ∂ϕ, where ψ is a convex, continuously differentiable func-
tion and ϕ : Rn → R ∪ {+∞} is a proper, lower semicontinuous, convex
function,

(c) F +Q is paramonotone, and the situation {xk} ∈ int(K)∩ dom(Q), yk ∈
Q(xk), limk→∞ x

k = x̄ implies that {yk} is a bounded sequence.

• The uniform Lipschitz continuity of {Ly} in (PAP)(2)(b) is weakened by as-
suming that for any convergent sequence {yk} ⊂ int(K) it holds

Lyk(yk+1)− Lyk(yk)→ 0 as k →∞.

• The co-coercivity like condition on F − Ly in (PAP)(2)(c) (with modulus γ)
remains the same.

• Conditions (PAP)(2)(d), (PAP)(2)(e), and (PAP)(2)(f) are replaced by re-
quiring that h is a strongly convex (with modulus κ) and zone coercive Breg-
man function with zone int(K). Note that for a strongly convex function h
property (B3) is automatically fulfilled.

(3) Conditions on the sequences {χk} and {δk}:

(a) 0 < χ ≤ χk ≤ χ <∞, ∀k ∈ N0,
∑∞

k=0 max{0, χk − χk+1} <∞,

(b) χ > 1
4κγ

,

(c)
∑∞

k=0 δk <∞.
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Paramonotonicity assumption. The assumption on F +Q to be paramonotone re-
stricts the usage of the PAP scheme with Bregman functions. Excluded are for example
variational inequalities that characterize saddle points of Lagrangians associated with
constrained convex programming problems. It is shown in [46] that the Lagrangian of
a smooth convex programming problem is paramonotone only in special cases when, in
fact, all constraints are not active. For saddle point problems Kaplan/Tichatschke [53]
prove convergence of a Bregman function based proximal scheme under an additional
strict complementarity condition, but without paramonotonicity.

Recently, Langenberg [61] established the convergence of a Bregman function based
proximal-like method without a paramonotonicity assumption but requiring the weaker
property that the operator is pseudomonotone* (see [23] for a definition). Paramono-
tone and pseudomonotone* operators are known to have the cutting plane property
(see [64] for a definition and corresponding references). As discussed in [53, Remark
1.2] this property cannot be expected in the context of saddle-point problems of the
Lagrangian of a convex optimization problem. For that reason, Langenberg [64] inves-
tigates the BrPPA without assuming the cutting plane property and shows that it is
sufficient that the restriction set has some special nonlinear structure like a ball. Also
for the PAP scheme as presented in [52], Langenberg [62] analyzes how the restrictive
assumption of paramonotonicity can be weakened. He shows that in the case Q = ∂ϕ
the assumption of paramonotonicity can be replaced by a quite natural hypothesis on
F that in view of (2.5) holds true when Ly is co-coercive (which is the case for many
commonly used symmetric Ly). For bounded Q he describes how the assumption that
F +Q is paramonotone can be replaced by paramonotonicity of Q only.

2.4.2 Logarithmic-quadratic function based PPA

Following the interior point idea established by using nonquadratic distance functions in
proximal point methods, Auslender/Teboulle/Ben-Tiba [4]–[6] investigate logarithmic-
quadratic distance functions as alternatives to Bregman distances. Their aim is to
describe an interior proximal method that is convergent to a solution of the given
variational inequality under the only assumption that the set of solutions is nonempty.
Thus, the restrictive assumption of paramonotonicity in Bregman based algorithms is
avoided. But their concept only works for polyhedral restriction sets.

For that purpose, they consider VI(Q, K) with a multi-valued, maximal monotone
operator Q and a polyhedral restriction set

K = {x ∈ Rn : Ax ≤ b}, (2.11)

whereA ∈ Rp×n, p ≥ n, rank(A) = n, b ∈ Rp, and int(K) := {x ∈ Rn : Ax < b} 6= ∅. As
a special case, the nonlinear complementarity problem is covered by choosing K = Rn

+.
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The condition on A to have full column rank is especially fulfilled if the variables have
lower or upper bounds. For brevity, the notation

li(x) = bi − 〈ai, x〉 , i = 1, . . . , p,

l(x) = (l1(x), . . . , lp(x))T = b− Ax
is used, where ai denotes the i-th row of A. Then K = {x ∈ Rn : l(x) ≥ 0}.

Logarithmic-quadratic distances. For parameters ν > µ > 0 a logarithmic-
quadratic regularization term tailored for K = R

p
+ is defined as

dν,µLQ : Rp ×Rp
++ → R ∪ {+∞},

dν,µLQ(u, v) :=

{ ∑p
i=1

ν
2
(ui − vi)2 + µ

(
v2
i log vi

ui
+ uivi − v2

i

)
if u ∈ Rp

++

+∞ otherwise.
(2.12)

It is straightforward to show that for every v ∈ Rp
++ function dν,µLQ(·, v) is a nonnegative,

proper, lower semicontinuous, convex function with dom(dν,µLQ(·, v)) = R
p
++, and that

dν,µLQ(u, v) = 0 if and only if u = v (see Appendix, Lemma A.3.1). However, no sym-
metry property and no triangle inequality are valid. Thus, dν,µLQ is called a distance-like
function. Obviously, for fixed v ∈ Rp

++, dν,µLQ(·, v) is differentiable at any u ∈ Rp
++.

To simplify the presentation we set

ν = 2, µ = 1

and calculate that dν,µLQ can be written as

dLQ(u, v) :=

{∑p
i=1 u

2
i − uivi − v2

i log ui
vi

if u ∈ Rp
++

+∞ otherwise.
(2.13)

The logarithmic-quadratic distance function for a general polyhedral set K is given by

DLQ : Rn × int(K)→ R ∪ {+∞},
DLQ(x, y) := dLQ(l(x), l(y)). (2.14)

With ∂IDLQ(·, y) we denote the subdifferential with respect to the first vector argu-
ment. For x ∈ int(K) it holds that l(x) ∈ Rp

++. Thus, for fixed y ∈ int(K), DLQ(·, y)
is differentiable at every x ∈ int(K). Therefore,

∂IDLQ(x, y) = {∇IDLQ(x, y)} ∀x ∈ int(K),

where ∇IDLQ(x, y) denotes the partial gradient with respect to the first vector argu-
ment. For x ∈ int(K) and y ∈ int(K) the latter is obtained as

∇IDLQ(x, y) = −
p∑
i=1

ai

(
2li(x)− li(y)− li(y)2

li(x)

)
. (2.15)
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Logarithmic-quadratic PPA. Logarithmic-quadratic distance functions are not
Bregman function based because the mixed term li(y)2/li(x) in (2.15) contradicts a
representation of the form ∇IDLQ(x, y) = ∇h(x)−∇h(y) with a function h. Thus, the
logarithmic-quadratic proximal point algorithm (LQPPA) presented in Algorithm 2.6
is different to the BrPPA in Algorithm 2.4.

Algorithm 2.6: Inexact logarithmic-quadratic proximal point algorithm (LQPPA)

1. (Initialization) Choose an initial point x0 ∈ int(K), a parameter χ0 > 0, and an
error parameter δ0 ≥ 0. Set k := 0.

2. (Stopping criterion) If xk solves problem VI(Q, K) then stop.
3. (Auxiliary problem) Use DLQ as defined in (2.14) and find xk+1 ∈ K and
ek+1 ∈ Rn such that

ek+1 ∈ Q(xk+1) + χk∇IDLQ(xk+1, xk)

and ‖ ek+1 ‖≤ δk.
4. (Update) Choose new parameters χk+1 > 0 and δk+1 ≥ 0. Set k := k + 1 and go

to step 2.

In [6, Proposition 1] it is proved that the sequence {xk} of iterates generated by the
LQPPA belongs to int(K). To show that {xk} converges to a solution of VI(Q, K),
Auslender/Teboulle/Ben-Tiba require in [6, Theorem 1] typical error criteria known
from the BrPPA and a typical boundedness criterion for the sequence {χk}. The overall
conditions are:

Conditions (LQPPA): (see Auslender/Teboulle/Ben-Tiba [6])

(1) K = {x ∈ Rn : Ax ≤ b}, A ∈ Rp×n, p ≥ n, rank(A) = n, b ∈ Rp, int(K) 6= ∅,
Q : Rn → 2R

n
maximal monotone, dom(Q) ∩ int(K) 6= ∅, VI(Q, K) solvable.

(2) For the sequences {χk}, {δk}, and {ek} it holds:

0 < χk ≤ χ <∞, ∀k ∈ N0, (2.16)
∞∑
k=0

1

χk
δk <∞, (2.17)

∞∑
k=1

1

χk

〈
ek, xk

〉
exists and is finite. (2.18)



36 2. Variational Inequalities and Selected Solution Algorithms

Concerning condition (2.18) it was mentioned in the previous section that logarithmic-
quadratic distance functions fulfill the cone condition (B6). This makes condition (2.18)
redundant as shown in [54].

In comparison to the BrPPA no paramonotonicity assumption is needed for the conver-
gence of the LQPPA. On the other hand, only variational inequalities with polyhedral
restriction sets K can be solved. The reason is that others than linear restrictions
l(x) would not result in a convex distance function DLQ(·, y) because of the term

li(y)2 log li(y)
li(x)

in DLQ(l(x), l(y)) (see (2.12)). An extension of the LQPPA to the case of

polyhedral sets with additional unrestricted variables is presented in [6, Section 4]. The
idea is to treat the unrestricted variables as in the usual quadratic proximal method.
This extension is of particular interest if a convex constrained optimization problem is
considered and the LQPPA is applied to the corresponding saddle point problem for
the Lagrange function. This approach is further described in [5].

φ-divergences. For the sake of completeness we briefly present φ-divergences as a
third type of nonquadratic distance functions providing an interior point effect. They
are analyzed in [88] in the context of proximal-like algorithms for convex minimization
problems or variational inequalities with restriction set K = R

p
+. A φ-divergence is

defined as

dφ(x, y) =

p∑
i=1

yiφ

(
xi
yi

)
, x, y ∈ Rp

++, (2.19)

where φ : R → R ∪ {+∞} is a proper, lower semicontinuous, convex function with
dom(φ) ⊆ [0,+∞) and with the following properties:

(i) φ is twice continuously differentiable on int(dom(φ)),

(ii) φ is strictly convex on dom(φ),

(iii) limt→0+ φ
′(t) = −∞,

(iv) φ(1) = φ′(1) = 0, and φ′′(1) > 0.

Properties (ii) and (iv) imply that φ(t) ≥ 0 for all t, and φ(t) = 0 if and only if t = 1.
Thus, dφ is a distance-like function satisfying dφ(x, y) ≥ 0, and dφ(x, y) = 0 if and only
if x = y.

Except for the case that φ(t) = t log t − t + 1, where the φ-divergence coincides with
the Kullback-Leibler relative entropy functional (see page 29), φ-divergences are not
Bregman function based. This is due to the fact that the three-point-lemma [15, Lemma
3.1], which holds for Bregman distances, does not hold in general for dφ.
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A convergence result is established in [88, Theorem 5.1] for a φ-divergence based prox-
imal method which solves VI(Q, K) with K = R

p
+, but only ergodic convergence can

be shown, i.e., every limit point of the averaged sequence of iterates is a solution.

Motivation of logarithmic-quadratic distances. In our work, φ-divergences will
not be focused on. But it is interesting to see that the definition of logarithmic-quadratic
distances can be given by a slight modification of (2.19): Defining for v ∈ Rp

++

d̃φ(u, v) =

p∑
i=1

v2
i φ

(
ui
vi

)
(2.20)

and setting

φ(t) =

{
ν
2
(t− 1)2 + µ(t− log t− 1) if t > 0

+∞ otherwise,
(2.21)

we obtain the logarithmic-quadratic distance function (2.12). The motivation of taking
in (2.20) a square in the second variable, which is the difference to (2.19), is to get
a homogeneous function of second order (i.e., d̃φ(αx, αy) = α2d̃φ(x, y) for all α > 0).
This provides better convergence properties of corresponding interior proximal methods
as presented in Auslender/Teboulle/Ben-Tiba [5]. In their work, distance functions of
type (2.20) with different kernels φ fulfilling (i)–(iv) (on page 36) are analyzed in the
context of convex optimization problems. We refer to [5, Section 7] for a source of
logarithmic-quadratic distance functions and for a detailed study of the properties of
the kernel (2.21). Rewriting (2.20) with (2.21) as

dLQ(u, v) =
ν

2
‖ u− v ‖2 +µ

p∑
i=1

v2
i

(
ui
vi
− log

ui
vi
− 1

)
(2.22)

presents the motivation behind logarithmic-quadratic distance functions: The first term
is the standard quadratic regularization term used in proximal methods. It is combined
with a logarithmic term that builds up an interior point effect and forces the iterates
to stay in the strict positive orthant Rp

++. The parameters ν and µ provide the pos-
sibility to explicitly control the balance between the interior point effect versus the
regularization effect.

2.4.3 Methods using enlargements of monotone operators

Definition and properties of the ε-enlargement. To solve the auxiliary problems
in Algorithm 2.4 and Algorithm 2.6 numerically, we have to know the explicit structure
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of the set Q(x) for every x ∈ K, since it is required to find ek+1 ∈ Rn and xk+1 ∈ K
with

ek+1 ∈ Q(xk+1) +∇ID(xk+1, xk),

where D is either the Bregman distance Dh or the logarithmic-quadratic distance DLQ.
In order to avoid an exact calculation of Q(x), which is only possible in special cases,
a concept is needed that allows us to approximate Q(x) for every x ∈ dom(Q) by a set
with manageable structure.

A motivation comes from the field of convex optimization, where the usage of the
ε-subdifferential is a well-known concept.

ε-subdifferential. Let ϕ : Rn → R ∪ {+∞} be a proper, convex function and ε ≥ 0.
The ε-subdifferential of ϕ in a point x ∈ dom(ϕ) is defined as

∂εϕ(x) = {s ∈ Rn : ϕ(y)− ϕ(x)− 〈s, y − x〉 ≥ −ε ∀y ∈ Rn}.

Obviously, the inclusion

∂ϕ(x) ⊆ ∂εϕ(x) ∀ε ≥ 0, ∀x ∈ dom(∂ϕ)

is valid. It shows that the ε-subdifferential is an outer approximation for ∂ϕ in every
point of its domain. If ∂ϕ is replaced by ∂εϕ in an algorithm, the convergence properties
of the method are preserved if ε is chosen adequately (see [58]). Further, such methods
get more robust since exact computations are not possible in numerical tests. Some
properties of the subdifferential respectively ε-subdifferential are given in Appendix
A.1.

ε-enlargement. Analogously, an outer approximation of a monotone operator can be
introduced. Recall that an operator Q is monotone if and only if 〈u− v, x− y〉 ≥ 0 for
all x, y ∈ Rn, and all u ∈ Q(x), v ∈ Q(y). For a monotone operator Q : Rn → 2R

n
and

ε ≥ 0 the ε-enlargement of Q is defined as

Qε : Rn → 2R
n

, Qε(x) = {u ∈ Rn : 〈u− v, x− y〉 ≥ −ε ∀(y, v) ∈ gph(Q)}.

The following theorem contains some of the main properties of the ε-enlargement.

Theorem 2.4.1 ([9], Propositions 1, 2, and 5). Let Q : Rn → 2R
n

be monotone.
Then the following statements are valid:

(a) Qε1(x) ⊂ Qε2(x) for all 0 ≤ ε1 ≤ ε2 and all x ∈ Rn.

(b) Qε1(x) + Gε2(x) ⊂ (Q + G)ε1+ε2(x) for all ε1, ε2 ≥ 0, x ∈ Rn, G : Rn → 2R
n

monotone.
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(c) Qε(x) is convex and closed for all ε ≥ 0 and all x ∈ Rn.

(d) If εk → ε̄, ε̄ ≥ 0, xk → x̄, uk → ū, with uk ∈ Qεk(xk) for all k ∈ N, then
ū ∈ Qε̄(x̄).

If additionally Q is maximal monotone, it holds:

(e) Q0(x) = Q(x), thus, in view of (a), Q(x) ⊂ Qε(x) for all ε ≥ 0 and all x ∈ Rn.

(f) If dom(Q) is closed then dom(Q) = dom(Qε) for all ε ≥ 0.

(g) If dom(Q) is closed then, for all ε ≥ 0, Qε is bounded on bounded sets.

In the special case Q = ∂ϕ, where ϕ : Rn → R ∪ {+∞} is a proper, lower semicon-
tinuous, convex function, ∂εϕ and (∂ϕ)ε are related as described in the following two
lemmata.

Lemma 2.4.2 ([9], Proposition 3). Let ϕ : Rn → R ∪ {+∞} be a proper, lower
semicontinuous, convex function. For all ε ≥ 0 it holds

∂εϕ(x) ⊂ (∂ϕ)ε(x) ∀x ∈ Rn.

Lemma 2.4.3 ([50], Lemma A.2). Let ϕ : Rn → R ∪ {+∞} be a proper, lower
semicontinuous, convex function. If ϕ is positive homogen, i.e., ϕ(λx) = λϕ(x) for all
λ ≥ 0, then

∂εϕ(x) = (∂ϕ)ε(x) ∀x ∈ Rn, ∀ε ≥ 0.

We give an example (see [9, Example 1]) that the equality ∂εϕ(x) = (∂ϕ)ε(x) does not
hold in general. Consider ϕ : R→ R, ϕ(x) = 1

2
x2. It holds

∂εϕ(x) = [x−
√

2ε, x+
√

2ε], (∂ϕ)ε(x) = [x− 2
√
ε, x+ 2

√
ε] ∀x ∈ Rn

and thus (∂ϕ)ε(x) = ∂2εϕ(x) for all x ∈ Rn. In Figure 2.2 the corresponding graphs of
the subdifferential, the ε-subdifferential, and the ε-enlargement are presented. On the
other hand, ϕ : R → R, ϕ(x) = |x| is positive homogen, and we get as a consequence
of Lemma 2.4.3

∂εϕ(x) = (∂ϕ)ε(x) =


[−1,−1− ε

x
] if x < − ε

2

[−1, 1] if |x| ≤ ε
2

[1− ε
x
, 1] if x > ε

2
.

Figure 2.3 illustrates the corresponding graphs.
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xxx

gph(∂ϕ) gph(∂ǫϕ) gph((∂ϕ)ǫ)

Figure 2.2. Subdifferential, ε-subdifferential, and ε-enlargement of ϕ(x) = 1
2
x2.

11

−1 −1

x x

gph(∂ǫϕ) = gph((∂ϕ)ǫ)gph(∂ϕ)

− ǫ2 ǫ
2

Figure 2.3. Subdifferential and ε-subdifferential/ε-enlargement of ϕ(x) = |x|.

BrPPA using enlargements. Enlargements of monotone operators were introduced
by Burachik/Iusem/Svaiter [9] and applied in a Bregman function based proximal point
method which is presented in Algorithm 2.7.

Algorithm 2.7: Bregman proximal point algorithm using enlargements (enl-BrPPA)

1. (Initialization) Choose an initial point x0 ∈ int(K), a parameter χ0 > 0, and an
enlargement parameter ε0 ≥ 0. Set k := 0.

2. (Stopping criterion) If xk solves problem VI(Q, K) then stop.
3. (Auxiliary problem) Find xk+1 ∈ K such that

0 ∈ Qεk(xk+1) + χk(∇h(xk+1)−∇h(xk)).

4. (Update) Choose new parameters χk+1 > 0 and εk+1 ≥ 0. Set k := k + 1 and go
to step 2.

Convergence of the sequence {xk} generated by enl-BrPPA towards a solution of
VI(Q, K) is proved in [9, Theorem 3] under the following conditions. In condition
(enl-BrPPA)(5) we point out the additional assumptions needed in comparison to the
BrPPA scheme without enlargements.
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Conditions (enl-BrPPA): (see Burachik/Iusem/Svaiter [9])

(1) General assumptions on the data Q and K: Q : Rn → 2R
n

maximal monotone,
K ⊂ Rn closed, convex with int(K) 6= ∅, VI(Q, K) solvable.

(2) h is a Bregman function with zone int(K) and either

(a) h is zone coercive, or

(b) h is boundary coercive and the gap-function

qQ,K(x) = sup {〈v, x− y〉 : y ∈ K, v ∈ Q(y)}

is finite for all x ∈ K.

(3) Q is paramonotone.

(4) For the sequence {χk} it holds: 0 < χk ≤ χ <∞, ∀k ∈ N0.

(5) Special assumptions needed for the enlargement technique:

(a) dom(Q) is closed,

(b) int(dom(Q)) ⊃ K,

(c) 0 < χ ≤ χk, ∀k ∈ N0, and

(d) {εk} ⊂ R++ with
∑∞

k=0 εk <∞.

The advantage of taking an outer operator approximation is obvious. Since Q(x) ⊂
Qε(x) for all ε ≥ 0, it can be expected that each auxiliary problem is easier to solve.

In [12] more theoretical properties of Qε, like local Lipschitz continuity, local bound-
edness, a transportation formula and a Brønsted-Rockafellar property are established.

BrPAP using enlargements. It is now interesting to see how all discussed tech-
niques, which lead to theoretical or numerical improvements in the solution methods
for variational inequalities, work together. We therefore consider in Algorithm 2.8

• the combination of PPA and APP in the PAP scheme,

• the usage of auxiliary operators Lk,

• the application of Bregman functions,

• the idea of enlargements, and

• the possibility of inexact solutions in the auxiliary problems.
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Algorithm 2.8: BrPAP method using enlargements (enl-BrPAP)

1. (Initialization) Choose an initial point x0 ∈ int(K), an auxiliary operator L0, a
parameter χ0 > 0, an enlargement parameter ε0 ≥ 0, and an error parameter
δ0 ≥ 0. Set k := 0.

2. (Stopping criterion) If xk solves problem VI(F ,Q, K) then stop.
3. (Auxiliary problem) Find xk+1 ∈ K and qk(xk+1) ∈ Qk(xk+1) such that〈

F(xk) + qk(xk+1) + Lk(xk+1)− Lk(xk) + χk(∇h(xk+1)−∇h(xk)), x− xk+1
〉

≥ −δk ‖ x− xk+1 ‖ ∀x ∈ K,

where h is a strongly convex, zone coercive Bregman function with zone int(K)
and Qk satisfies Q ⊂ Qk ⊂ Qεk .

4. (Update) Choose a new auxiliary operator Lk+1 and new parameters χk+1 > 0,
εk+1 ≥ 0, δk+1 ≥ 0. Set k := k + 1 and go to step 2.

A convergence theorem for enl-BrPAP is given in [52, Theorem 2]. We already discussed
the convergence assumptions for the BrPAP method without enlargements (see page
32). It is therefore sufficient to mention the additional assumptions needed to work
with an operator Qk which approximates Q and satisfies the chain of inclusions

Q ⊂ Qk ⊂ Qεk . (2.23)

Conditions (enl-BrPAP): (in addition to BrPAP, see Kaplan/Tichatschke [52])

(1) dom(Q) ∩K is closed.

(2) {εk} ⊂ R++ with
∑∞

k=0 εk <∞.

The enlargement technique is interesting to deal with computational errors when solv-
ing the auxiliary problems numerically. However, the question arises how to calculate
an element in Qεk(x) or how to verify if a given point belongs to Qεk(x) for a given
x ∈ Rn. The transportation formula in [12, Theorem 3.11] shows how to use convex
sums of elements from the graph of Q to describe elements in some ε̂-enlargement of
Q, where ε̂ is calculated a posteriori. So, for a given εk ≥ 0 it is unclear which elements
in the graph of Q have to be chosen to construct an element in the graph of Qεk .

In [11], Burachik/Sagastizábal/Svaiter describe how to obtain a polyhedral approxima-
tion of Qεk by using the transportation formula together with bundle-techniques. They
describe an implementable algorithm to solve an inclusion problem with a maximal
monotone operator which also involves projection ideas. But numerical results are not
reported.
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In general it is difficult or even impossible to have a full knowledge of Qεk . It therefore
seems to be important to work with operators Qk that are close to the εk-enlargement
in the sense of (2.23) and that are easier to handle with respect to a numerical solution
of the auxiliary problems.

In [52], Kaplan/Tichatschke present some ideas to construct operators Qk that inherit
the continuity properties of the εk-enlargement, but whose treatment is much simpler
than that of Qεk . For example, let Q = Q1 +Q2, where Q1 is single-valued, continuous
and monotone, and Q2 is multi-valued and maximal monotone. Then

Qk = Q1 + (Q2)εk

fulfills Q ⊂ Qk ⊂ Qεk . For the special case Q = ∂g, where g is a convex function that
can be splitted into the sum of a differentiable, convex function ψ and a nondifferen-
tiable, convex function ϕ, the setting

Qk = ∇ψ + ∂εkϕ

fulfills Q ⊂ Qk ⊂ ∂εkg ⊂ (∂g)εk . Furthermore, in the case that Q has a block-diagonal
structure, this structure can be transmitted toQk as shown in [52, Section 3.3], although
Qεk does not possess this property.

In our work, the case Q = ∂ϕ and Qk = ∂εkϕ will be of special interest because a
concrete implementation using bundle-techniques can be given (see Chapter 8) to solve
the corresponding auxiliary problems. Other numerically meaningful approximations
of multivalued operators are not known to us.
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3. Logarithmic-quadratic Proximal Auxiliary

Problem Method

The described extensions of the PPA and APP schemes given in the previous chap-
ter show that the application of logarithmic-quadratic distance functions in the PAP
scheme might as well be interesting as an alternative to the BrPAP and an extension
of the LQPPA. Until now this extension has not been investigated.

This chapter presents a full convergence analysis of the suggested logarithmic-quadratic
proximal auxiliary problem method (LQPAP method). The underlying problem formu-
lation is a variational inequality

VI(F ,Q, K) : Find x∗ ∈ K and q∗(x∗) ∈ Q(x∗) : (3.1)

〈F(x∗) + q∗(x∗), x− x∗〉 ≥ 0 ∀ x ∈ K,
where Q : Rn → 2R

n
is a maximal monotone, multi-valued operator and F : K → Rn is

a single-valued, continuous operator that has a certain monotonicity property described
below. The restriction set K is given by

K = {x ∈ Rn : Ax ≤ b}, (3.2)

where A ∈ Rp×n, p ≥ n, rank(A) = n, b ∈ Rp, and int(K) := {x ∈ Rn : Ax < b} 6= ∅.
Since A has full column rank, B := ATA is symmetric and positive definite. Hence,
〈u, v〉B := 〈Bu, v〉 =

〈
ATAu, v

〉
defines an inner product on Rn with associated norm

‖ u ‖B:=
√
〈u, u〉B =

√
〈Au,Au〉 =‖ Au ‖. For short, we use the notation

〈u, v〉A := 〈Au,Av〉
‖ u ‖A :=‖ Au ‖ .

Since all norms in Rn are equivalent, there exists a constant a > 0 such that

‖ u ‖A≥ a ‖ u ‖ ∀u ∈ Rn. (3.3)

3.1 Definition and properties of the logarithmic-quadratic
distance function

As introduced in Section 2.4.2, the logarithmic-quadratic distance function that is
tailored to the set K is defined by
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D : Rn × int(K)→ R ∪ {+∞}

D(x, y) =

{∑p
i=1 li(x)2 − li(x)li(y)− li(y)2 log li(x)

li(y)
if x ∈ int(K)

+∞ otherwise.
(3.4)

We recall that D can be expressed in terms of the distance function d (see (2.12)) as

D(x, y) = d(l(x), l(y)), with d : Rp ×Rp
++ → R ∪ {+∞},

d(u, v) =

{∑p
i=1 u

2
i − uivi − v2

i log ui
vi

if u ∈ Rp
++

+∞ otherwise.
(3.5)

The subscript LQ is omitted for better writing because only logarithmic-quadratic
distance functions are considered in the following. Note that D is only well-defined
if int(K) 6= ∅. We further recall that D(·, y) is differentiable at x ∈ int(K) for any
y ∈ int(K). Thus, ∂ID(·, y) and ∇ID(·, y) coincide on int(K). For x, y ∈ int(K) it
holds

∇ID(x, y) = −
p∑
i=1

ai

(
2li(x)− li(y)− li(y)2

li(x)

)
. (3.6)

Moreover, for fixed y ∈ int(K), the second derivative of D(·, y) at x ∈ int(K) is
obtained as

∇2
ID(x, y) = AT


2 + l1(y)2

l1(x)2
0

. . .

0 2 + lp(y)2

lp(x)2

A. (3.7)

We now show important properties of D(·, y) that will be exploited in the upcoming
convergence analysis.

Lemma 3.1.1. Let y ∈ int(K). Then D(·, y) : Rn → R ∪ {+∞} is a proper, lower
semicontinuous, convex function, and for all x1, x2 ∈ int(K)

〈∇ID(x1, y)−∇ID(x2, y), x1 − x2〉 ≥ 2 ‖ x1 − x2 ‖2
A .

Hence, D(·, y) is strongly convex on int(K) with modulus 2a, where a fulfills (3.3).

Proof. We can write D(·, y) = d(·, l(y)) ◦ l : Rn → R ∪ {+∞}. As already mentioned,
d(·, v) : Rp → R ∪ {+∞} is a proper, lower semicontinuous, convex function for all
v ∈ Rp

++. Since l is a linear function, it follows that D(·, y) is lower semicontinuous
and convex. For all x ∈ int(K), D(x, y) is obviously finite. Thus, D(·, y) is a proper
function. We rewrite (see (2.22)) d(u, v) for u, v ∈ Rp

++ as
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d(u, v) =‖ u− v ‖2 +

p∑
i=1

v2
i

(
ui
vi
− log

ui
vi
− 1

)
. (3.8)

For u, v ∈ Rp
++ it holds that

∇2
Id(u, v) =


2 +

v21
u21

0

. . .

0 2 +
v2p
u2p

 . (3.9)

It is now evident that d(·, v) is strongly convex on Rp
++ with modulus κ = 2. Thus,

for y ∈ int(K), d(·, l(y)) is strongly convex on Rp
++. Since A is of full column rank, it

follows that D(·, y) = d(·, l(y)) ◦ l is strongly convex on int(K) with modulus 2a. In
detail, it holds for every x1, x2 ∈ int(K):

〈∇ID(x1, y)−∇ID(x2, y), x1 − x2〉
= 〈∇I(d(·, l(y)) ◦ l)(x1)−∇I(d(·, l(y)) ◦ l)(x2), x1 − x2〉
=
〈
−AT∇Id(l(x1), l(y))− (−AT )∇Id(l(x2), l(y)), x1 − x2

〉
=
〈
(−AT )(∇Id(l(x1), l(y))−∇Id(l(x2), l(y))), x1 − x2

〉
= 〈(∇Id(l(x1), l(y))−∇Id(l(x2), l(y))), (b− Ax1)− (b− Ax2)〉
= 〈(∇Id(l(x1), l(y))−∇Id(l(x2), l(y))), l(x1)− l(x2)〉
≥ 2 ‖ l(x1)− l(x2) ‖2

= 2 ‖ x1 − x2 ‖2
A

≥ 2a ‖ x1 − x2 ‖2 .

ut

Corollary 3.1.2. Let y ∈ int(K). Then ∂ID(·, y) : Rn → 2R
n

is maximal monotone
and dom(∂ID(·, y)) = int(K).

Proof. Maximal monotonicity of ∂ID(·, y) follows from Lemma 3.1.1 and [83, Theorem
12.17]. The inclusion dom(∂ID(·, y)) ⊃ int(K) is obvious, because D(x, y) is differ-
entiable for all x ∈ int(K). To show that dom(∂ID(·, y)) ⊂ int(K), suppose that
∂ID(x̄, y) 6= ∅ holds for some x̄ /∈ int(K). Let s ∈ ∂ID(x̄, y). Then, according to the
definition of the subdifferential, the inequality

D(x, y) ≥ D(x̄, y) + 〈s, x− x̄〉

holds true for all x ∈ Rn. However, according to the definition of D, D(x̄, y) = +∞ and
D(x, y) < +∞ for all x ∈ int(K). This is a contradiction. Hence, ∂ID(x̄, y) = ∅. ut
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The next step is to obtain that ∇ID(·, y) : int(K)→ Rn is onto. For that purpose, the
definition of the recession function as given, e.g., in [41, Definition IV.3.2.3] is needed.

Definition 3.1.3. Let f : Rp → R∪{+∞} be a proper, lower semicontinuous, convex
function. The recession function f∞ is defined by

s 7→ f∞(s) := lim
t→+∞

f(x0 + ts)− f(x0)

t
,

where x0 is arbitrary in dom(f).

The value of f∞ at s is independent of x0 [41, Theorem I.2.3.1] and can be interpreted
as something like a “slope at infinity” in the direction s. It is well-known that the
epigraph of f∞ is equal to the asymptotic cone of epi(f), i.e., epi(f∞) = (epif)∞ [41,
Proposition IV.3.2.2].

The next proposition presents a class of functions whose gradient maps are onto.

Proposition 3.1.4 ([6], Proposition 2). Let f : Rp → R∪{+∞} be a function with
the following properties:

(i) f is proper, lower semicontinuous, convex with dom(f) open,

(ii) f is differentiable on dom(f), and

(iii) f∞(s) = +∞ for all s 6= 0.

Then

(1) the gradient map ∇f is onto, i.e., ∇f(dom(f)) = Rp.

(2) Let A ∈ Rp×n be a matrix with p ≥ n and rank(A) = n, b ∈ Rp, l : Rn → Rp

with l(x) = b − Ax and (b − A(Rn)) ∩ dom(f) 6= ∅. Then ∇(f ◦ l) is onto, i.e.,
∇(f ◦ l)((b− A(Rn)) ∩ dom(f)) = Rn.

Now, we take a fixed y ∈ int(K) and define for u ∈ Rp

fy(u) =

{∑p
i=1 u

2
i − uili(y)− li(y)2 log ui

li(y)
if u ∈ Rp

++

+∞ otherwise.
(3.10)

Then fy(u) = d(u, l(y)). We aim to apply Proposition 3.1.4 to fy and therefore prove
the following statement.

Lemma 3.1.5. Function fy as defined in (3.10) fulfills properties (i)–(iii) of Proposi-
tion 3.1.4.
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Proof. It is clear that fy is a proper, lower semicontinuous, convex function (see Ap-
pendix, Lemma A.3.1) with dom(f) = R

p
++ open, and that fy is differentiable on Rp

++.
Thus, for arbitrary u ∈ Rp

++ it holds

(fy)∞(s) = lim
t→+∞

fy(u+ ts)− fy(u)

t

≥ lim
t→+∞

fy(u) + t 〈∇fy(u), s〉 − fy(u)

t

= 〈∇fy(u), s〉 ,

where

∇fy(u) =

p∑
i=1

(
2ui − li(y)− li(y)2

ui

)
.

For every s 6= 0 it is possible to define a sequence {uk} ⊂ Rp
++ such that the behavior

of the sequence {uki } depends on the sign of the entry si in the following way: If si < 0
then let uki → 0 for k →∞, if si > 0 then let uki → +∞ for k →∞, and if si = 0 then
set uki = 1 for all k. Since at least one entry of s is not equal to zero it is clear that

lim
k→∞

〈
∇fy(uk), s

〉
= +∞,

which shows that (fy)∞(s) = +∞. ut

With this result we can now establish that ∇ID(·, y) is onto.

Corollary 3.1.6. Let y ∈ int(K). Then, for all z ∈ Rn there exists x ∈ int(K) with

∇ID(x, y) = z.

In other words, the operator ∇ID(·, y) : int(K)→ Rn is onto.

Proof. In view of Lemma 3.1.5 the assertion follows directly from Proposition 3.1.4(2)
applied to D(·, y) = d(·, l(y)) ◦ l = fy ◦ l. ut

A crucial step in the upcoming convergence analysis is to estimate the scalar product
〈∇ID(x, y), z − y〉 for x, y ∈ int(K), z ∈ K from above. In this context the following
lemma concerning positive/nonnegative numbers is helpful.

Lemma 3.1.7 ([6], Lemma 2). For any s > 0, t > 0, and u ≥ 0 it holds

(t− u)

(
2t− s− s2

t

)
≥ 3

2
((u− t)2 − (u− s)2) +

1

2
(t− s)2 (3.11)

≥ 3

2
((u− t)2 − (u− s)2) (3.12)
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and

(t− u)

(
2t− s− s2

t

)
≥ (s− t)(3u− 2t− s). (3.13)

Now, the key property of the logarithmic-quadratic distance function reads as follows
(see also [5, Lemma 3.4]).

Lemma 3.1.8. For any x, y ∈ int(K) and z ∈ K it holds

〈∇ID(x, y), z − x〉 ≤ 3

2
(‖ z − y ‖2

A − ‖ z − x ‖2
A). (3.14)

Proof. For any x, y ∈ int(K) and z ∈ K we get

〈−∇ID(x, y), z − x〉 =

〈
p∑
i=1

ai

(
2li(x)− li(y)− li(y)2

li(x)

)
, z − x

〉

=

p∑
i=1

(
2li(x)− li(y)− li(y)2

li(x)

)
〈ai, z − x〉

=

p∑
i=1

(
2li(x)− li(y)− li(y)2

li(x)

)
(li(x)− li(z)).

Application of (3.12) with t = li(x), s = li(y), and u = li(z) results in

〈−∇ID(x, y), z − x〉 ≥
p∑
i=1

3

2
((li(z)− li(x))2 − (li(z)− li(y))2)

=
3

2

p∑
i=1

(〈ai, x− z〉2 − 〈ai, y − z〉2)

=
3

2
(‖ A(x− z) ‖2 − ‖ A(y − z) ‖2)

=
3

2
(‖ z − x ‖2

A − ‖ z − y ‖2
A).

ut

3.2 LQPAP iteration scheme and convergence assumptions

We are now ready to present the LQPAP scheme for solving VI(F ,Q, K). The scheme
includes the following techniques and methods:
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• PAP scheme with auxiliary operators Lk,

• the application of logarithmic-quadratic distance functions,

• the idea of enlargements, and

• the possibility of inexact solutions in the auxiliary problems.

This combination has so far not been investigated.

First, we introduce some preliminary requirements for the involved operators and con-
trolling parameters. As usual, a family of monotone operators {Ly} parameterized by
y ∈ K is used and Lk is defined by setting Lk = Ly|y=xk . Following the technique of
ε-enlargements, the operators Qk represent an outer approximation of the multi-valued
operator Q satisfying

Q ⊂ Qk ⊂ Qεk ∀k ∈ N0, (3.15)

where {εk} is a sequence with

εk ≥ 0 ∀k ∈ N0 and lim
k→∞

εk = 0, (3.16)

and Qεk denotes the εk-enlargement of the operator Q. Ideas for the construction of
Qk were presented on page 43. The sequence {χk} of regularization parameters and
the sequence {δk} of error tolerance parameters are supposed to satisfy

0 < χ ≤ χk ≤ χ <∞ ∀k ∈ N0, (3.17)

and

δk ≥ 0 ∀k ∈ N0 and lim
k→∞

δk = 0. (3.18)

Now, the LQPAP scheme can be described as follows.

LQPAP iteration scheme (S): Given a current iterate xk (x0 ∈ int(K) arbitrarily
chosen), at step (k + 1) iterate xk+1 is calculated by solving the problem

(P k
δ ) : Find xk+1 ∈ K, qk(xk+1) ∈ Qk(xk+1) :

〈F(xk) + qk(xk+1) + Lk(xk+1)− Lk(xk) + χk∇ID(xk+1, xk), x− xk+1〉
≥ −δk ‖ x− xk+1 ‖ ∀ x ∈ K.

The LQPAP method will be studied under the following general assumptions.
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Conditions (LQPAP):

(A1) The solution set SOL(F ,Q, K) of VI(F ,Q, K) is nonempty.

(A2) K = {x ∈ Rn : Ax ≤ b} with A ∈ Rp×n, p ≥ n, rank(A) = n, b ∈ Rp, and
int(K) 6= ∅.

(A3) Q : Rn → 2R
n

is maximal monotone and dom(Q) ∩ int(K) 6= ∅.

(A4) F : K → Rn is continuous on K.

(A5) dom(Q) ∩K is a nonempty and closed set.

(A6) {Ly}, with Ly : K → Rn, is a family of monotone and continuous opera-
tors.

(A7) There exists γ > 0 (independent of x, y) such that for x, y ∈ K the in-
equality

〈F(y)− Ly(y)−F(x) + Ly(x), y − x〉 ≥ γ ‖ F(y)− Ly(y)−F(x) + Ly(x) ‖2

is valid.

(A8) For any convergent sequence {yk} ⊂ dom(Q) ∩K it holds

Lyk(yk+1)− Lyk(yk)→ 0 as k →∞.

Let us comment on some assumptions. With the aim to present an interior point method
it is obvious to require int(K) 6= ∅ in (A2). Condition dom(Q) ∩ int(K) 6= ∅ in (A3)
ensures that Q + NK maximal monotone. The closedness of dom(Q) ∩ K in (A5) is
needed to exploit properties of the ε-enlargement of Q. Assumption (A7) is certainly
fulfilled if for all y ∈ K the operators F − Ly are co-coercive on K with a common
modulus γ > 0:

〈F(v)− Ly(v)−F(x) + Ly(x), v − x〉
≥ γ ‖ F(v)− Ly(v)−F(x) + Ly(x) ‖2 ∀x, v ∈ K.

The weakening in (A7) is to require the above inequality only for v = y. A consequence
of condition (A7) is

〈F(y)− Ly(y) + Ly(x∗) + q∗(x∗), y − x∗〉
≥ γ ‖ F(y)− Ly(y)−F(x∗) + Ly(x∗) ‖2,

where x∗ ∈ SOL(F ,Q, K), y ∈ K, and the element q∗(x∗) ∈ Q(x∗) is chosen such that
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〈F(x∗) + q∗(x∗), x− x∗〉 ≥ 0 ∀x ∈ K.

Since the operators Ly are monotone, it follows from (A7) that F is monotone and thus
F+Q is monotone due to (A3). (A8) is surely fulfilled if we have the uniform Lipschitz
continuity of the operators Ly in y ∈ K. None of the present assumptions is new in
the context of the solution methods described in Chapter 2. (A1), (A2), and (A3) are
familiar from the Conditions (LQPPA) (see page 35), whereas the other assumptions
already occurred in the Conditions (enl-BrPAP) (see pages 32 and 42).

3.3 Solvability of the auxiliary problems and interior point
effect

The scope of this section is to verify that the LQPAP iteration scheme (S) is well-
defined. This includes two aspects. First, we prove that for each k the auxiliary problem
(P k

δ ) is solvable. Second, it has to be shown that the iterates {xk} belong to dom(Q)∩
int(K).

Let us explain the background of the second aspect. Surely, if (P k
δ ) is solvable, iterate

xk+1 belongs to dom(Qk). However, it is important to have xk+1 ∈ dom(Q) in order to
stop the iteration process at an approximate solution of the original problem. Further,
it is necessary that the iterates belong int(K) because D(x, ·) is only defined on int(K).
Moreover, only if xk+1 ∈ int(K) one can write ∇ID(xk+1, xk) instead of ∂ID(xk+1, xk).
Finally, the second aspect constitutes the interior point effect of our method. As a
consequence, the restriction set K can be omitted and the auxiliary problems can be
considered as unconstrained ones.

Now, turn to the first aspect. To prove the existence of a solution of problem (P k
δ ), we

consider the case of exact solutions. Let (P k
0 ) denote problem (P k

δ ) with δk = 0 and
Qk = Q, i.e.,

(P k
0 ) : Find xk+1 ∈ K, q(xk+1) ∈ Q(xk+1) such that for all x ∈ K :

〈F(xk) + q(xk+1) + Lk(xk+1)− Lk(xk) + χk∇ID(xk+1, xk), x− xk+1〉 ≥ 0.

Using the normal cone operator this can equivalently be written as

Find xk+1 ∈ K :

0 ∈ F(xk) +Q(xk+1) + Lk(xk+1)− Lk(xk) +NK(xk+1) + χk∇ID(xk+1, xk). (3.19)

If problem (P k
0 ) has an exact solution, this solution obviously solves the inexact problem

(P k
δ ), where δk ≥ 0 and Q ⊂ Qk. Of course, other solutions of (P k

δ ) may exist since
some error is admitted and some outer approximation of Q is used.
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Theorem 3.3.1. Let Assumptions (A2), (A3), (A5), (A6) and relations (3.15)–(3.18)
be valid. Then

(i) problem (P k
0 ) has a unique solution for each k, and

(ii) the sequence {xk} generated by the LQPAP iteration scheme (S) belongs to
dom(Q) ∩ int(K).

In other words, the LQPAP iteration scheme (S) is well-defined.

Proof. To prove the existence of a solution xk+1 of problem (P k
0 ), we use Theorem 2.2.3.

Let xk ∈ int(K). We define the operator Gk : K → 2R
n

by

Gk(y) = F(xk) +Q(y) + Lk(y)− Lk(xk) +NK(y).

The values F(xk) and Lk(xk) are constant in this context. Because of (A6), operator
Lk is finite, single-valued, monotone, and continuous on dom(Lk) = K. In view of
(A2), it follows from Theorem 2.1.2 that Lk + NK : K → Rn is maximal monotone
with dom(Lk + NK) = K. Due to Theorem 2.1.1 and Assumption (A3), maximal
monotonicity of Q + Lk + NK on K is obtained. Hence, Gk is maximal monotone on
K with dom(Gk) = dom(Q) ∩K. As shown in Corollary 3.1.2, ∂ID(·, xk) is maximal
monotone and dom(∂ID(·, xk)) = int(K). By Assumption (A3) and relation (3.17), it
follows that

Gk + χk∂ID(·, xk) is maximal monotone.

According to Corollary 3.1.6, rge(χk∂ID(·, xk)) = Rn. Therefore, Theorem 2.2.3 implies

rge(Gk + χk∂ID(·, xk)) = Rn.

Consequently, there exists a solution xk+1 ∈ dom(Gk+χk∂ID(·, xk)) = dom(Q)∩int(K)
for problem (P k

0 ). Since ∂ID(·, xk) and ∇ID(·, xk) coincide on int(K), we will speak of
the operator ∇ID(·, xk) instead of ∂ID(·, xk) in the sequel. In view of the monotonicity
of Gk and the strict monotonicity of χk∇ID(·, xk) on int(K), we conclude that the
solution xk+1 is unique.

Now, let us turn to the inexact scheme (P k
δ ). From dom(∇ID(·, xk)) = int(K) it follows

for a solution xk+1 of (P k
δ ) that

xk+1 ∈ dom(Qk) ∩ int(K).

In order to prove xk+1 ∈ dom(Q) ∩ int(K), it suffices to show that

dom(Qk) ∩K = dom(Q) ∩K.

Because of the inclusion Q ⊂ Qk, one immediately gets
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dom(Q) ∩K ⊂ dom(Qk) ∩K.

To establish the reverse inclusion, we consider the choice of Qk in (3.15) and make use
of some properties of the ε-enlargement. Theorem 2.4.1(b) yields

Qεk +NK ⊂ (Q+NK)εk ,

which implies

dom(Qεk +NK) ⊂ dom((Q+NK)εk).

Because of Assumption (A5), dom(Q+NK) is closed. Hence, Theorem 2.4.1(f) can be
applied to get

dom((Q+NK)εk) = dom(Q+NK).

Together with (3.15) this yields

dom(Qk) ∩K ⊂ dom(Qεk) ∩K
= dom(Qεk +NK)

⊂ dom((Q+NK)εk)

= dom(Q+NK)

= dom(Q) ∩K.

Choosing x0 ∈ int(K) it now follows that the entire sequence {xk} generated by the
LQPAP iteration scheme (S) belongs to dom(Q) ∩ int(K). ut

3.4 Convergence analysis of the LQPAP method

We start with a reformulation of the auxiliary problems as nonlinear equation systems.

The interior point effect proved in Theorem 3.3.1 ensures that the solution of (P k
0 )

belongs to int(K). Since NK(x) = {0} for all x ∈ int(K), we can formulate problem
(3.19) as a nonlinear equation system of the form

Find xk+1 ∈ K, q(xk+1) ∈ Q(xk+1) :

0 = F(xk) + q(xk+1) + Lk(xk+1)− Lk(xk) + χk∇ID(xk+1, xk).

Furthermore, the interior point effect can be exploited to analogously reformulate the
inexact auxiliary problems (P k

δ ) as nonlinear equation systems of the form

(P k
e ) : Find xk+1 ∈ K, qk(xk+1) ∈ Qk(xk+1), and ek+1 ∈ Rn :

ek+1 = F(xk) + qk(xk+1) + Lk(xk+1)− Lk(xk) + χk∇ID(xk+1, xk)

and ‖ ek+1 ‖≤ δk.

Equivalence of the two schemes (P k
δ ) and (P k

e ) is proved in the following lemma.
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Lemma 3.4.1. Let xk ∈ int(K) be a current iterate. Then the schemes (P k
e ) and (P k

δ )
are equivalent, i.e., a solution xk+1 of (P k

e ) is also a solution of (P k
δ ) and vice versa.

Proof. For abbreviation we set T k(x) := F(xk) +Qk(x) + Lk(x)−Lk(xk). Let xk+1 ∈
int(K) be a solution of (P k

e ). Then 0 = tk(xk+1) + χk∇ID(xk+1, xk) − ek+1 with a
suitable tk(xk+1) ∈ T k(xk+1). This is equivalent to〈

tk(xk+1) + χk∇ID(xk+1, xk)− ek+1, x− xk+1
〉
≥ 0 ∀x ∈ Rn.

Rearranging terms and applying the Cauchy-Schwarz inequality yields〈
tk(xk+1) + χk∇ID(xk+1, xk), x− xk+1

〉
≥ − ‖ ek+1 ‖‖ x− xk+1 ‖ ∀x ∈ Rn.

Due to ‖ ek+1 ‖≤ δk, it follows that〈
tk(xk+1) + χk∇ID(xk+1, xk), x− xk+1

〉
≥ −δk ‖ x− xk+1 ‖ ∀x ∈ Rn.

Thus, xk+1 is a solution of (P k
δ ).

Now, let xk+1 ∈ int(K) and tk(xk+1) ∈ T k(xk+1) fulfill scheme (P k
δ ). Define

ek+1 := tk(xk+1) + χk∇ID(xk+1, xk).

Since xk+1 ∈ int(K), there exists τ > 0 such that

x̄ := xk+1 − τek+1 ∈ K.

The inequality of scheme (P k
δ ) reduces for x = x̄ to〈
ek+1,−τek+1

〉
≥ −δk ‖ −τek+1 ‖ .

The case ek+1 = 0 is trivial. For ek+1 6= 0 we can conclude that ‖ ek+1 ‖≤ δk. Hence,
xk+1 is a solution of scheme (P k

e ). ut

Now, the complete LQPAP algorithm, which uses scheme (P k
e ), is formulated in Algo-

rithm 3.1.

The convergence of Algorithm 3.1 is proved under the following conditions on the
nonnegative controlling parameters:

0 < χ ≤ χk ≤ χ <∞, ∀k ∈ N0, (3.20)

χ >
1

2a2γ
, with a as in (3.3), γ as in (A7), (3.21)

∞∑
k=0

δk < +∞, (3.22)

∞∑
k=0

εk < +∞. (3.23)
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Algorithm 3.1: Inexact logarithmic-quadratic proximal auxiliary problem method
(LQPAP)

1. Let x0 ∈ int(K). Choose scalars δ0 ≥ 0, χ0 > 0, ε0 ≥ 0, an auxiliary operator
L0, and an operator Q0 with Q ⊂ Q0 ⊂ Qε0 . Set k := 0.

2. If xk solves the problem VI(F ,Q, K) then stop.
3. Calculate xk+1 ∈ K, qk(xk+1) ∈ Qk(xk+1), and ek+1 ∈ Rn such that

ek+1 = F(xk) + qk(xk+1) + Lk(xk+1)− Lk(xk) + χk∇ID(xk+1, xk)

with ‖ ek+1 ‖≤ δk.
4. Choose δk+1 ≥ 0, χk+1 > 0, εk+1 ≥ 0, Lk+1, and Qk+1. Set k := k + 1 and go to

step 2.

Due to ‖ ek+1 ‖≤ δk, condition (3.22) implies

∞∑
k=0

‖ ek+1 ‖< +∞. (3.24)

All conditions are standard in the context of (interior) proximal auxiliary problem
methods (see Conditions (PAP) (page 24) and Conditions (enl-BrPAP) (page 42)).
The special requirement (3.21) for the lower bound of the sequence of regularization
parameters results from the estimates needed in the convergence proof.

We start with a preliminary result that exploits the weakened co-coercivity condition
(A7). The gained estimate is crucial for the subsequent theorem. A similar idea can be
found in the proof of [93, Theorem 3.2].

Lemma 3.4.2. Let Assumption (A7) be fulfilled. For x, y, v ∈ K it holds

〈(F − Ly)(y)− (F − Ly)(v), x− v〉 ≥ − 1

4γ
‖ y − x ‖2,

where γ > 0 is the modulus of weakened co-coercivity of F − Ly.

Proof. In view of Assumption (A7), we get
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〈(F − Ly)(y)− (F − Ly)(v), x− v〉
= 〈(F − Ly)(y)− (F − Ly)(v), x− y〉+ 〈(F − Ly)(y)− (F − Ly)(v), y − v〉
≥ − 〈(F − Ly)(y)− (F − Ly)(v), y − x〉+ γ ‖ (F − Ly)(y)− (F − Ly)(v) ‖2

≥ −γ ‖ (F − Ly)(y)− (F − Ly)(v) ‖2 − 1

4γ
‖ y − x ‖2

+ γ ‖ (F − Ly)(y)− (F − Ly)(v) ‖2

= − 1

4γ
‖ y − x ‖2,

where for the last inequality estimate (A.2) from Appendix A.4 is used with ξ := 1
2γ

.
ut

We proceed with the convergence analysis and prove boundedness of the sequence {xk}
of iterates in the next theorem.

Theorem 3.4.3. Let {xk} be a sequence generated by Algorithm 3.1. Suppose that the
Assumptions (A1), (A2), (A3), (A5), (A6), (A7), relation (3.15) for the choice of Qk,
and the conditions (3.20)–(3.23) on the controlling parameters are fulfilled. Then,

(i) {xk} is bounded,

(ii) limk→∞ ‖ xk+1 − xk ‖= 0.

Proof. According to Theorem 3.3.1, Algorithm 3.1 is well-defined and {xk} belongs
to dom(Q) ∩ int(K). Let {qk(xk+1)} and {ek+1} be the corresponding sequences of
iteration scheme (P k

e ). Because of Assumption (A3) and Theorem 2.1.1, the operator

Q̃ := Q+NK

is maximal monotone with dom(Q̃) = dom(Q) ∩ K. Relation (3.15) and Theorem
2.4.1(b) imply

Q+NK ⊂ Qk +NK ⊂ Qεk +NK ⊂ (Q+NK)εk ,

which in terms of the operator Q̃ means that

Q̃ ⊂ Qk +NK ⊂ Q̃εk .

Recalling that NK(xk+1) = {0} for xk+1 ∈ int(K) provides

qk(xk+1) ∈ Qk(xk+1) = (Qk +NK)(xk+1),
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and hence

qk(xk+1) ∈ Q̃εk(xk+1).

The definition of the ε-enlargement yields〈
x− xk+1, q − qk(xk+1)

〉
≥ −εk ∀x ∈ dom(Q̃), ∀q ∈ Q̃(x).

We divide this inequality by χk > 0, insert −ek+1 + ek+1 and get for an arbitrary
x ∈ dom(Q̃) and q ∈ Q̃(x)

1

χk

〈
x− xk+1, q − ek+1 + ek+1 − qk(xk+1)

〉
≥ − εk

χk
,

which can be rearranged to

1

χk

〈
x− xk+1, q − ek+1

〉
≥ 1

χk

〈
x− xk+1, qk(xk+1)− ek+1

〉
− εk
χk
. (3.25)

From iteration scheme (P k
e ) we have

qk(xk+1)− ek+1 = −F(xk)− Lk(xk+1) + Lk(xk)− χk∇ID(xk+1, xk). (3.26)

Inserting (3.26) into (3.25) results in

1

χk

〈
x− xk+1, q − ek+1

〉
≥ 1

χk

〈
x− xk+1,−F(xk)− Lk(xk+1) + Lk(xk)− χk∇ID(xk+1, xk)

〉
− εk
χk

=
〈
x− xk+1,−∇ID(xk+1, xk)

〉
+

1

χk

〈
x− xk+1,−F(xk)− Lk(xk+1) + Lk(xk)

〉
− εk
χk
. (3.27)

Let x∗ be an element of SOL(F ,Q, K). Then, clearly, x∗ ∈ dom(Q) ∩ K = dom(Q̃).
Further, recalling the equivalence of VI(F ,Q, K) and IP(F ,Q, K), it holds that
−F(x∗) ∈ Q̃(x∗). Thus, x = x∗ and q = −F(x∗) can be inserted into (3.27) which
gives
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1

χk

〈
x∗ − xk+1,−ek+1

〉
≥
〈
x∗ − xk+1,−∇ID(xk+1, xk)

〉
+

1

χk

〈
x∗ − xk+1,F(x∗)−F(xk)− Lk(xk+1) + Lk(xk)

〉
− εk
χk

=
〈
x∗ − xk+1,−∇ID(xk+1, xk)

〉
+

1

χk

〈
x∗ − xk+1,Lk(x∗)− Lk(xk+1)

〉
+

1

χk

〈
x∗ − xk+1, (F − Lk)(x∗)− (F − Lk)(xk)

〉
− εk
χk

≥
〈
x∗ − xk+1,−∇ID(xk+1, xk)

〉
+

1

χk

〈
x∗ − xk+1, (F − Lk)(x∗)− (F − Lk)(xk)

〉
− εk
χk
, (3.28)

where for the last inequality the monotonicity of Lk (see (A6)) was used. Consider now
the term

〈
x∗ − xk+1,−∇ID(xk+1, xk)

〉
and write ∇ID(xk+1, xk) explicitly as

∇ID(xk+1, xk) = −
p∑
i=1

ai

(
2li(x

k+1)− li(xk)−
li(x

k)2

li(xk+1)

)
(3.29)

in order to get 〈
x∗ − xk+1,−∇ID(xk+1, xk)

〉
=

〈
x∗ − xk+1,

p∑
i=1

ai

(
2li(x

k+1)− li(xk)−
li(x

k)2

li(xk+1)

)〉

=

p∑
i=1

(
2li(x

k+1)− li(xk)−
li(x

k)2

li(xk+1)

)〈
x∗ − xk+1, ai

〉
=

p∑
i=1

(
2li(x

k+1)− li(xk)−
li(x

k)2

li(xk+1)

)
(li(x

k+1)− li(x∗)). (3.30)

Applying relation (3.11) with s = li(x
k), t = li(x

k+1), and u = li(x
∗) and recalling the

definition of li, it follows that
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x∗ − xk+1,−∇ID(xk+1, xk)

〉
≥

p∑
i=1

3

2

[
(li(x

∗)− li(xk+1))2 − (li(x
∗)− li(xk))2

]
+

1

2
(li(x

k+1)− li(xk))2

=

p∑
i=1

3

2

[
(bi − 〈ai, x∗〉 − bi +

〈
ai, x

k+1
〉
)2 − (bi − 〈ai, x∗〉 − bi +

〈
ai, x

k
〉
)2
]

+
1

2
(bi −

〈
ai, x

k+1
〉
− bi +

〈
ai, x

k
〉
)2

=

p∑
i=1

3

2

[〈
ai, x

k+1 − x∗
〉2 −

〈
ai, x

k − x∗
〉2
]

+
1

2

〈
ai, x

k − xk+1
〉2

=
3

2
(‖ A(x∗ − xk+1) ‖2 − ‖ A(x∗ − xk) ‖2) +

1

2
‖ A(xk+1 − xk) ‖2 . (3.31)

Combining (3.28) and (3.31) and applying Lemma 3.4.2 with x = xk+1, y = xk and
v = x∗, one gets

1

χk

〈
x∗ − xk+1,−ek+1

〉
≥ 3

2
(‖ A(x∗ − xk+1) ‖2 − ‖ A(x∗ − xk) ‖2) +

1

2
‖ A(xk+1 − xk) ‖2

− 1

χk

1

4γ
‖ xk+1 − xk ‖2 − εk

χk
. (3.32)

In view of the norm equivalence (3.3) with constant a > 0 and condition (3.20) for the
regularization parameter χk, it can be concluded that

1

χk

〈
x∗ − xk+1,−ek+1

〉
≥ 3

2
‖ A(x∗ − xk+1) ‖2 −3

2
‖ A(x∗ − xk) ‖2 +

a2

2
‖ xk+1 − xk ‖2

− 1

χk

1

4γ
‖ xk+1 − xk ‖2 − εk

χk

≥ 3

2
‖ A(x∗ − xk+1) ‖2 −3

2
‖ A(x∗ − xk) ‖2

+

(
a2

2
− 1

χ

1

4γ

)
‖ xk+1 − xk ‖2 −εk

χ
. (3.33)

The idea for the following transformations is taken from [54, Section 2.3].

To estimate the term ‖ x∗ − xk+1 ‖‖ ek+1 ‖ in the case ek+1 6= 0, we apply the
one-dimensional form of relation (A.2) (see Appendix A.4) with x =‖ ek+1 ‖, y =
‖ x∗ − xk+1 ‖ and ξ =‖ ek+1 ‖ and obtain
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1

χk

〈
x∗ − xk+1,−ek+1

〉
≤ 1

χk
‖ x∗ − xk+1 ‖‖ ek+1 ‖

≤ 1

χk

(
1

2 ‖ ek+1 ‖
‖ ek+1 ‖2 +

‖ ek+1 ‖
2

‖ x∗ − xk+1 ‖2

)
≤ 1

χ

(
1

2
‖ ek+1 ‖ +

1

2
‖ x∗ − xk+1 ‖2‖ ek+1 ‖

)
≤ 1

χ

(
1

2
‖ ek+1 ‖ +

1

2a2
‖ x∗ − xk+1 ‖2

A‖ ek+1 ‖
)
, (3.34)

where (3.3) and (3.20) are used. If ek+1 = 0, relation (3.34) is obvious.

Estimates (3.33) and (3.34) now yield

1

χ

(
1

2
‖ ek+1 ‖ +

1

2a2
‖ x∗ − xk+1 ‖2

A‖ ek+1 ‖
)

≥ 3

2
‖ A(x∗ − xk+1) ‖2 −3

2
‖ A(x∗ − xk) ‖2 +

(
a2

2
− 1

χ

1

4γ

)
‖ xk+1 − xk ‖2 −εk

χ
,

which can be rearranged to(
3

2
− 1

χ

1

2a2
‖ ek+1 ‖

)
‖ x∗ − xk+1 ‖2

A

≤ 3

2
‖ x∗ − xk ‖2

A −
(
a2

2
− 1

χ

1

4γ

)
‖ xk+1 − xk ‖2 +

1

χ

1

2
‖ ek+1 ‖ +

εk
χ

and (
1− 1

3χa2
‖ ek+1 ‖

)
‖ x∗ − xk+1 ‖2

A

≤‖ x∗ − xk ‖2
A −

(
a2

3
− 1

6χγ

)
‖ xk+1 − xk ‖2 +

1

3χ
‖ ek+1 ‖ +

2

3

εk
χ
. (3.35)

Because of (3.24), limk→∞ ‖ ek+1 ‖= 0. Due to χ > 0 and a > 0, there exists k0 ∈ N
such that ‖e

k+1‖
3χa2

≤ 1
2

holds for all k ≥ k0. Then, simple calculus (see (A.3) in Appendix

A.4) yields

1 ≤
(

1− 1

3χa2
‖ ek+1 ‖

)−1

≤ 1 +
2

3χa2
‖ ek+1 ‖≤ 2 ∀k ≥ k0.
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For (3.35) this implies

‖ x∗ − xk+1 ‖2
A

≤
(

1− 1

3χa2
‖ ek+1 ‖

)−1

‖ x∗ − xk ‖2
A

−
(

1− 1

3χa2
‖ ek+1 ‖

)−1(
a2

3
− 1

6χγ

)
‖ xk+1 − xk ‖2

+

(
1− 1

3χa2
‖ ek+1 ‖

)−1
1

3χ
‖ ek+1 ‖

+

(
1− 1

3χa2
‖ ek+1 ‖

)−1
2

3

εk
χ

≤
(

1 +
2

3χa2
‖ ek+1 ‖

)
‖ x∗ − xk ‖2

A −
(
a2

3
− 1

6χγ

)
‖ xk+1 − xk ‖2

+
2

3χ
‖ ek+1 ‖ +

4

3

εk
χ

(3.36)

≤
(

1 +
2

3χa2
‖ ek+1 ‖

)
‖ x∗ − xk ‖2

A +
2

3χ
‖ ek+1 ‖ +

4

3

εk
χ
∀k ≥ k0, (3.37)

where for the last inequality condition (3.21) was used, which guarantees that(
a2

3
− 1

6χγ

)
> 0. Now, in view of (3.23) and (3.24), Polyak’s lemma (see Appendix,

Lemma A.4.2) provides that

{‖ x∗ − xk ‖A} is convergent. (3.38)

Owing to the norm equivalence (3.3), it follows that

{‖ x∗ − xk ‖} is bounded, (3.39)

which gives us the desired result that the sequence

{xk} is bounded.

Finally, returning to (3.36) we have

0 ≤
(
a2

3
− 1

6χγ

)
‖ xk+1 − xk ‖2

≤
(

1 +
2

3χa2
‖ ek+1 ‖

)
‖ x∗ − xk ‖2

A − ‖ x∗ − xk+1 ‖2
A +

2

3χ
‖ ek+1 ‖ +

4

3

εk
χ
.
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Remembering (3.23), (3.24), (3.38), and
(
a2

3
− 1

6χγ

)
> 0 we obtain

lim
k→∞

‖ xk+1 − xk ‖= 0.

ut

Remark 3.4.4. As a side product of Theorem 3.4.3 the following result can be proved,
which appears, e.g., in the analysis of Bregman function based proximal methods (see
[54, Proposition 1]):

lim
k→∞

〈
v − xk+1, ek+1

〉
= 0 ∀v ∈ Rn.

Indeed, {xk} is bounded due to Theorem 3.4.3(i), and limk→∞ ‖ ek ‖= 0 in view of
(3.24). With

0 ≤ |
〈
v − xk+1, ek+1

〉
| ≤‖ v − xk+1 ‖‖ ek+1 ‖ ∀v ∈ Rn

the stated result is proved.

We also like to remark that the stronger result

∞∑
k=0

‖ xk+1 − xk ‖<∞

can be obtained from (3.36) and a generalization of Polyak’s lemma as given in the
Appendix, Lemma A.4.3.

We are ready to present the main convergence result.

Theorem 3.4.5. Let the assumptions of Theorem 3.4.3 be valid. Suppose further that
Assumptions (A4) and (A8) hold. Then the sequence {xk}, generated by Algorithm 3.1,
converges to a solution of VI(F ,Q, K).

Proof. Combining relations (3.27) and (3.30) from the proof of Theorem 3.4.3, we get
for Q̃ := Q+NK and arbitrary x ∈ dom(Q̃) and q ∈ Q̃(x)〈

x− xk+1, q − ek+1
〉

≥ χk
〈
x− xk+1,−∇ID(xk+1, xk)

〉
+
〈
x− xk+1,−F(xk)− Lk(xk+1) + Lk(xk)

〉
− εk

= χk

p∑
i=1

(li(x
k+1)− li(x))

(
2li(x

k+1)− li(xk)−
li(x

k)2

li(xk+1)

)
+
〈
x− xk+1,−F(xk)− Lk(xk+1) + Lk(xk)

〉
− εk. (3.40)
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Note that (3.30) is not only valid for x = x∗ but for all x ∈ dom(Q̃). Now, let us
estimate the first summand on the right hand side of (3.40). Applying (3.13) with
t = li(x

k+1), u = li(x), s = li(x
k) and incorporating the boundedness of {χk} as in

(3.20), we get the relation

χk

p∑
i=1

(li(x
k+1)− li(x))

(
2li(x

k+1)− li(xk)−
li(x

k)2

li(xk+1)

)

≥ χ̄min{0,
p∑
i=1

(li(x
k)− li(xk+1))(3li(x)− (li(x

k) + 2li(x
k+1)))}

=: χ̄ck(x). (3.41)

Theorem 3.4.3 provides that limk→∞ ‖ xk+1 − xk ‖= 0. Therefore, it follows for all
i = 1, . . . , p

0 ≤ lim
k→∞
|li(xk)− li(xk+1)| = lim

k→∞
|
〈
ai, x

k+1 − xk
〉
| ≤ lim

k→∞
‖ ai ‖‖ xk+1 − xk ‖= 0

and thus

lim
k→∞

li(x
k)− li(xk+1) = 0.

Further, Theorem 3.4.3 establishes that {xk} is a bounded sequence, which implies that

{li(xk) + 2li(x
k+1)} = {3bi −

〈
ai, x

k
〉
− 2

〈
ai, x

k+1
〉
} is bounded.

As a consequence, for all x ∈ dom(Q) ∩K,

lim
k→∞

χ̄ck(x) = 0. (3.42)

Because of the boundedness of {xk}, there exists a subsequence {xkj} such that

lim
j→∞

xkj = x∞. (3.43)

With the relation

0 ≤‖ xkj+1 − x∞ ‖=‖ xkj+1 − xkj + xkj − x∞ ‖≤‖ xkj+1 − xkj ‖ + ‖ xkj − x∞ ‖

and Theorem 3.4.3(ii) it follows that

lim
j→∞

xkj+1 = x∞. (3.44)

Now, we pass to the subsequence {xkj} in (3.40) and (3.41) and obtain
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x− xkj+1, q − ekj+1

〉
≥ χ̄ckj(x) +

〈
x− xkj+1,−F(xkj)− Lkj(xkj+1) + Lkj(xkj)

〉
− εkj . (3.45)

Consider the limit for j →∞ in (3.45). Recall that F is continuous as assumed in (A4)
and that Lkj fulfills the convergence condition (A8). Further, (3.23) and (3.24) ensure
that limj→∞ e

kj+1 = 0 and limj→∞ εkj = 0. Together with (3.42), (3.43), and (3.44) this
results in

〈x− x∞, q − (−F(x∞))〉 ≥ 0. (3.46)

Since Q̃ is maximal monotone and x ∈ dom(Q)∩K and q ∈ Q̃(x) are arbitrary, we get

−F(x∞) ∈ Q̃(x∞). (3.47)

Hence, x∞ ∈ dom(Q) ∩K and

x∞ ∈ SOL(F ,Q, K). (3.48)

Now, repeating the argumentation in the proof of Theorem 3.4.3 for x∞ instead of x∗,
we have (see (3.38)) that

{‖ x∞ − xk ‖A} is convergent.

Since limj→∞ x
kj = x∞, it follows that limj→∞ ‖ x∞ − xkj ‖A= 0 and therefore

lim
k→∞

‖ x∞ − xk ‖A= 0.

In view of the norm equivalence (3.3), relation

0 ≤‖ x∞ − xk ‖≤ 1

a
‖ x∞ − xk ‖A

leads to the conclusion that the entire sequence {xk} converges to the solution x∞. ut



4. Self-concordance of the Logarithmic-quadratic

Distance

In the papers of Auslender/Teboulle/Ben-Tiba [4, 5, 6] it is mentioned without proof
that the logarithmic-quadratic distance function satisfies a self-concordance property,
which allows to solve the auxiliary problems by an efficient Newton method. We will
have a closer look at that relation because in Chapter 6 the Newton method will be used
to solve the LQPAP auxiliary problems. We recall the basic definition and properties
of (strongly) self-concordant functions and then give a proof that the logarithmic-
quadratic distance function D(·, y) is a strongly self-concordant function on int(K).
Moreover, we explain why D(·, y) is not a self-concordant barrier.

The notation used in this chapter is adopted from Nesterov/Nemirovskii [73]. Let F :
Rn → R∪ {+∞} be a three times continuously differentiable, proper, convex function
with dom(F ) open. The first, second, and third derivative of F at x ∈ dom(F ) are
denoted by F ′(x), F ′′(x), and F ′′′(x), respectively. Further, denote

F ′′′(x)[h] = lim
t→0

1

t
[F ′′(x+ th)− F ′′(x)].

Note that on the right hand side we have (n × n)-matrices. We define for a point
x ∈ dom(F ) and a vector h ∈ Rn

DF (x)[h] = 〈F ′(x), h〉 ,
D2F (x)[h, h] = 〈F ′′(x)h, h〉 ,

D3F (x)[h, h, h] = 〈F ′′′(x)[h]h, h〉 .

In general, DkF (x)[h1, . . . , hk] denotes the value of the k-th differential of F taken at
x along the collection of directions h1, . . . , hk.

4.1 Self-concordant functions and self-concordant barriers

Motivation of self-concordant functions. Nesterov/Nemirovskii [73] introduced
the notion of self-concordance to develop a general theory of interior point polynomial-
time methods for convex programming. The motivation for this notion comes from a
closer study of the Newton method for minimizing F .
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The Newton scheme
xk+1 = xk − (F ′′(xk))−1F ′(xk)

locally converges quadratically if F is strongly convex with constant κ and F
′′

is Lip-
schitz continuous with constant L, i.e.,

‖ (F ′′(x)− F ′′(y))v ‖≤ L ‖ x− y ‖‖ v ‖ ∀ x, y, v ∈ Rn

(see [76, Theorem 1]). Locally quadratic convergence means that if a start point x0

fulfills

q :=
L

2κ2
‖ F ′(x0) ‖< 1,

it holds

‖ xk − x∗ ‖≤ 2κ

L
q2k .

The above Lipschitz condition implies for a point x ∈ Rn that

‖ F ′′′(x)[h]v ‖≤ L ‖ h ‖‖ v ‖ ∀ h, v ∈ Rn.

This means that at any point x ∈ Rn we have

〈F ′′′(x)[h]v, v〉 ≤ L ‖ h ‖‖ v ‖2 ∀ h, v ∈ Rn.

Nesterov/Nemirovskii replace the Euclidean norm in the definition of Lipschitz conti-
nuity by a local seminorm induced by the second-order differential of F , i.e.,

‖ h ‖F ′′(x)= 〈F ′′(x)h, h〉1/2 .

Then the property
〈F ′′′(x)[h]h, h〉 ≤ ϑ ‖ h ‖3

F ′′(x)

with ϑ ≥ 0 leads to the class of self-concordant functions. Nesterov/Nemirovskii show
that this property implies interesting results on the behavior of the Newton method as
applied to F (see Section 4.3).

Definition of self-concordant functions. Now we give a precise definition of a
self-concordant function.

Definition 4.1.1 ([73], Definition 2.1.1, [72], Definition 4.1.1). Let S ⊂ Rn be
an open, nonempty, convex set, F : S → R ∪ {+∞} a three times continuously dif-
ferentiable function, ϑ ≥ 0. F is called self-concordant on S with parameter ϑ (ϑ-self-
concordant) if F is a convex function on S and

|D3F (x)[h, h, h]| ≤ ϑ(D2F (x)[h, h])3/2 ∀x ∈ S, ∀h ∈ Rn. (4.1)

A function F that is ϑ-self-concordant on S is called strongly ϑ-self-concordant if the
sets

{x ∈ Rn : F (x) ≤ t} ∩ S
are closed in Rn for each t ∈ R.
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Note that this definition does not exactly match the definition of a ϑ-self-concordant
function as given in [73]. The above definition is adopted from [72], and a ϑ-self-
concordant function in our definition is in fact a 4

ϑ2
-self-concordant function in [73].

It is easy to see that condition (4.1) is equivalent to

|D3F (x)[h, h, h]| ≤ ϑ ‖ h ‖3
F ′′(x) ∀x ∈ S, ∀h ∈ Rn,

and that in the case n = 1 condition (4.1) reduces to

|F ′′′(x)| ≤ ϑ(F ′′(x))3/2 ∀x ∈ S.

Closedness of the level sets {x ∈ Rn : F (x) ≤ t} of a function F : Rn → R ∪ {+∞}
is equivalent to F being lower semicontinuous on Rn. Since F ∈ C3(Rn) is required
in Definition 4.1.1, F is continuous on Rn. It follows that every function F that is
ϑ-self-concordant on Rn is strongly ϑ-self-concordant. This is no longer true if F is
self-concordant on a proper subset S ⊂ Rn. In the case {x ∈ Rn : F (x) ≤ t} ⊃ S
for some t ∈ R the set {x ∈ S : F (x) ≤ t} is not closed. We have the following
characterization of a strongly self-concordant function.

Lemma 4.1.2 ([73], Remark 2.1.1). A function F that is self-concordant on S is
strongly self-concordant if and only if S is the “natural domain”, i.e., if and only if

F (xi)→ +∞ if S 3 xi → bd(S).

Examples and properties of self-concordant functions. Some examples of self-
concordant functions are:

1. Constant functions, linear functions and convex quadratic functions are (strongly)
0-self-concordant on Rn.

2. The logarithmic barrier function for R++, i.e., F : R++ → R, F (x) = − log(x),
is 2-self-concordant on R++.

3. The logarithmic barrier function for S := {x ∈ Rn : 〈a, x〉 < β}, defined by
F : Rn → R ∪ {+∞},

F (x) =

{
− log(β − 〈a, x〉) if 〈a, x〉 < β

+∞ otherwise,

is 2-self-concordant on S.

On the other hand, it is easy to verify that the following functions of one variable are
not self-concordant:
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F (x) = ex, F (x) =
1

xp
, x > 0, p > 0, F (x) = |x|p, p > 2.

Self-concordance is an affine-invariant property and stable under scaling, summation,
and with respect to direct products.

Lemma 4.1.3 ([72], Theorem 4.1.2). Let F : S → R ∪ {+∞} be (strongly) ϑ-self-
concordant on S. Let further A : Rn → Rm, A(x) = Ax + b be given such that S ′ :=
{x ∈ Rn : A(x) ∈ S} 6= ∅. Then the function F ′ : S ′ → R ∪ {+∞}, F ′(x) = F (A(x))
is also (strongly) ϑ-self-concordant.

Lemma 4.1.4 ([72], Theorem 4.1.1). Let Fi : Si → R∪{+∞} be ϑi-self-concordant
on Si, pi > 0, i = 1, 2, and S1 ∩ S2 6= ∅. Consider the function

F : S1 ∩ S2 → R ∪ {+∞}, F (x) = p1F1(x) + p2F2(x).

Then F is ϑ-self-concordant on S1 ∩ S2 with

ϑ = max
{
p
−1/2
1 ϑ1, p

−1/2
2 ϑ2

}
.

If under the above assumptions either Fi is strongly ϑi-self-concordant on Si, i = 1, 2,
or F1 is strongly ϑ1-self-concordant on S1 and S1 ⊆ S2, then F is strongly ϑ-self-
concordant on S1 ∩ S2.

Corollary 4.1.5 ([72], Corollary 4.1.2). Let F : S → R∪{+∞} be ϑ-self-concordant
on S and p > 0. Then

F̃ : S → R ∪ {+∞}, F̃ (x) = pF (x)

is self-concordant on S with parameter p−1/2ϑ.

In view of the above corollary it is possible to scale every ϑ-self-concordant function F
by p = ϑ2/4 to get a 2-self-concordant function.

Lemma 4.1.6 ( [73], Proposition 2.1.1 (iii)). Let F1 : S1 → R ∪ {+∞} be ϑ-self-
concordant on S1, and F2 : S2 → R ∪ {+∞} be ϑ-self-concordant on S2. Then F :
S1 × S2 → R ∪ {+∞}, F (x, y) = F1(x) + F2(y) is ϑ-self-concordant.

Self-concordant barriers. We now consider the definition of self-concordant barri-
ers. These functions play a central role in the interior point algorithms investigated by
Nesterov/Nemirovskii [73]. As demonstrated above, a self-concordant function can be
described as a smooth convex function with the second-order differential being Lipschitz
continuous with respect to the local seminorm induced by this second-order differen-
tial. Self-concordant barriers are functions that, in addition, are themselves Lipschitz
continuous with respect to the above local seminorm.
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Definition 4.1.7 ([71], Definition 2.1). Let S be an open, nonempty, convex subset
of Rn, F : S → R ∪ {+∞} a three times continuously differentiable function. F is
called a self-concordant barrier for cl(S) if F is a convex function on S and there exist
constants c1, c2 ≥ 0 such that

|D3F (x)[h, h, h]| ≤ c1(D2F (x)[h, h])3/2, (4.2)

|DF (x)[h]| ≤ c2(D2F (x)[h, h])1/2 (4.3)

hold for all x ∈ S and h ∈ Rn.

Constant functions are self-concordant barriers for Rn with c1 = c2 = 0. A self-
concordant barrier for R+ is, for example, F (x) = − log(x) with c1 = 2 and c2 = 1.

It is shown in [73, Proposition 2.3.1] that analogous statements as in Lemmata 4.1.3,
4.1.4, and 4.1.6 hold for self-concordant barriers, i.e., this property is stable under affine
substitutions, with respect to summation, and with respect to direct products.

4.2 Strongly self-concordance of the logarithmic-quadratic
distance function

We are now ready to prove that the logarithmic-quadratic distance function (see (3.4))
with fixed second argument is a strongly self-concordant function on its domain. Let
y ∈ int(K) be arbitrary, but fixed. We recall the first and second differential of D(·, y)
using the notation within this chapter and give the values of D2D(x, y)[h, h] and
D3D(x, y)[h, h, h]. For x ∈ int(K) and h ∈ Rn it holds

D′(x, y) = −
p∑
i=1

ai

(
2li(x)− li(y)− li(y)2

li(x)

)
,

D′′(x, y) =

p∑
i=1

(
2 +

li(y)2

li(x)2

)
aia

T
i ,

D2D(x, y)[h, h] = 〈D′′(x, y)h, h〉

=

〈
p∑
i=1

(
2 +

li(y)2

li(x)2

)
aia

T
i · h, h

〉

=
n∑
k=1

n∑
j=1

hkhj

p∑
i=1

(
2 +

li(y)2

li(x)2

)
aikaij,

D3D(x, y)[h, h, h] =
n∑
k=1

n∑
j=1

n∑
r=1

hkhjhr

p∑
i=1

2li(y)2

li(x)3
aikaijair.
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We first show that d(·, v) (see (3.5)) is ϑ-self-concordant on Rp
++ for all v ∈ Rp

++. For
that purpose, we define

δ : R×R++ → R, δ(µ, ν) =

{
µ2 − µν − ν2 log µ

ν
if µ ∈ R++

+∞ otherwise
(4.4)

to get for u = (u1, . . . , up)
T ∈ Rp

+ and v = (v1, . . . , vp)
T ∈ Rp

++ that

d(u, v) =

p∑
i=1

δ(ui, vi).

Lemma 4.2.1. For all fixed ν > 0, function δ(·, ν) is self-concordant on R++ with
parameter 2ν−1.

Proof. Function δ(·, ν) is a convex function on the open, convex set R++. We analyze
each summand of δ(µ, ν) (µ, ν > 0) separately. δ1(µ, ν) = µ2 is a convex-quadratic
function and thus 0-self-concordant on R++. δ2(µ, ν) = −µν is linear in µ and therefore
0-self-concordant on R++. Now, consider δ3(µ, ν) = −ν2 log µ

ν
. By Example 2 (page 69)

and Lemma 4.1.3, we conclude that µ 7→ − log µ
ν

is 2-self-concordant on R++. Corollary
4.1.5 implies that δ3(·, ν) is self-concordant on R++ with parameter 2ν−1. With Lemma
4.1.4 we can conclude that δ(·, v) is self-concordant on R++ with parameter 2ν−1. ut

If a function is self-concordant with parameter ϑ then it is also self-concordant with
any parameter ϑ′ ≥ ϑ. We use this property and Lemma 4.1.6 to show that d(·, v) is
strongly self-concordant for all fixed v ∈ Rp

++.

Lemma 4.2.2. Let v ∈ Rp
++. Then function d(·, v) is strongly self-concordant on Rp

++

with parameter ϑ = max{2v−1
i : i = 1, . . . , p}.

Proof. Let v = (v1, . . . , vp)
T ∈ Rp

++ be fixed. For all i = 1, . . . , p, Lemma 4.2.1 states
that δ(·, vi) is self-concordant with parameter 2v−1

i . Therefore, the collection of func-
tions {δ(·, vi)}pi=1 is self-concordant with parameter ϑ = max{2v−1

i : i = 1, . . . , p}.
Lemma 4.1.6 leads to the conclusion that d(·, v) is ϑ-self-concordant. To prove strong
self-concordance, let {uj} be a sequence in Rp

++ that converges to the boundary of
R
p
++, i.e.,

J1 := {l ∈ {1, . . . , p} : ujl → 0 for j →∞} 6= ∅.

Define further

J2 := {l ∈ {1, . . . , p} : ujl → ūl ∈ R++ for j →∞},
J3 := {l ∈ {1, . . . , p} : ujl → +∞ for j →∞}.
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J2 = ∅ and/or J3 = ∅ is possible. For j →∞ we have

(ujl )
2 − ujl vl − v

2
l log

ujl
vl
→ +∞ for l ∈ J1,

(ujl )
2 − ujl vl − v

2
l log

ujl
vl
→ (ūl)

2 − ūlvl − v2
l log

ūl
vl

for l ∈ J2.

For l ∈ J3 it holds

(ujl )
2 − ujl vl − v

2
l log

ujl
vl
≥ (ujl )

2 − ujl vl + v2
l (1−

ujl
vl

)

= (ujl )
2 − 2ujl vl + v2

l

= (ujl − vl)
2 → +∞ for j →∞.

So,

(ujl )
2 − ujl vl − v

2
l log

ujl
vl
→ +∞ for l ∈ J3.

Since J1 6= ∅ it follows that

d(uj, v) =

p∑
l=1

(ujl )
2 − ujl vl − v

2
l log

ujl
vl
→ +∞ for j →∞.

Now, Lemma 4.1.2 completes the proof. ut

Now, we are ready to present the main result.

Theorem 4.2.3. Let y ∈ int(K). Then function D(·, y) is strongly self-concordant on
int(K) with parameter

ϑy = max

{
2

li(y)
: i = 1, . . . , p

}
. (4.5)

Proof. Let y ∈ int(K). Having D(·, y) = d(·, l(y)) ◦ l with l(x) = b − Ax, it follows
from Lemma 4.1.3 and Lemma 4.2.2 that D(·, y) is ϑy-self-concordant on int(K). Let
{xj} be a sequence in int(K) converging to the boundary of K. Then l(xj) converges
to the boundary of Rp

++. Hence, D(xj, y) = d(l(xi), l(y))→ +∞ for j →∞, and with
Lemma 4.1.2 strong self-concordance is established. ut

Remark 4.2.4. It is common to call a continuous function F : K → R a barrier
function for K if F (x) → +∞ when x approaches the boundary of K (see, e.g., [72,
Definition 1.3.2]). Thus, we have just proved that for all fixed y ∈ int(K), D(·, y) is a
barrier function for K. Note that this notion is different to that of a self-concordant
barrier.
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In the following lemma we finally show that δ(·, ν) is not a self-concordant barrier for
R+, which implies that D(·, y) is not a self-concordant barrier for K. We can state in
view of (4.3) :

Lemma 4.2.5. For the function δ(·, ν), ν ∈ R++, there is no constant c ≥ 0 such that

|δ′µ(µ, ν)| ≤ c(δ′′µ(µ, ν))1/2 ∀µ > 0.

Proof. Suppose that a constant c with the desired property exists. Fix ν > 0. For µ > 0
it holds

|δ′µ(µ, ν)| ≤ c(δ′′µ(µ, ν))1/2

⇔ |2µ− ν − ν2

µ
| ≤ c(2 +

ν2

µ2
)1/2

⇔ (2µ− ν − ν2

µ
)2 ≤ c2(2 +

ν2

µ2
)

⇔
(2µ− ν − ν2

µ
)2

(2 + ν2

µ2
)

≤ c2

⇔ 4µ2 − 4µν + 2ν3µ−1 + ν4µ−2 − 3ν2

2 + ν2

µ2

≤ c2.

However, for µ→ +∞ the left hand side tends to infinity. This is a contradiction. ut

4.3 Effect on the Newton method

On the use of self-concordant barriers. The aim of Nesterov/Nemirovskii [73] is
to present a general approach to the design of polynomial-time interior point methods
for nonlinear convex problems. Their approach originates in the following observa-
tion about interior point methods for linear programs: It is shown by Gonzaga [37]
that the logarithmic barrier method for a linear program results in a polynomial-
time algorithm if a Newton method is used to solve the auxiliary problems. A closer
look at the properties of the logarithmic barrier shows that only two of them are re-
sponsible for this efficiency. These are exactly the properties described by the notion
of a self-concordant barrier. Thus, Nesterov/Nemirovskii investigate in the extension
to use some self-concordant barrier for a general closed, convex feasible set to get a
polynomial-time barrier method for a linear, convex constrained program. They show
that the accuracy of a given approximate solution can be improved by a constant factor
if a certain amount of Newton steps is performed, where this amount only depends on
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the parameters c1 and c2 of the self-concordant barrier. This gives a theoretical reason
to use the Newton method for the solution of the auxiliary problems occurring in such
a barrier method.

Consequences of the strong self-concordance of D(·, y). Now, return to the
logarithmic-quadratic distance function. Lemma 4.2.5 shows that D(·, y) is not a self-
concordant barrier for K. Thus, D(·, y) cannot be used within the above described
approach to construct an efficient barrier method. But the fact that D(·, y) is a strongly
ϑy-self-concordant function, with ϑy as in (4.5), has some interesting consequences.

To explain these consequences, we first describe the properties of the (damped) Newton
method as applied to a function F : Rn → R∪{+∞} that is strongly ϑ-self-concordant
on S (see [73], Chapter 2.2). For that purpose, the notion of the Newton decrement will
be needed which is defined as follows. Let F : Rn → R ∪ {+∞} be ϑ-self-concordant
on S. Let further F be nondegenerate on S, i.e., F ′′(x) is nonsingular for every x ∈ S.
Then the quantity

λ(F, x) =
ϑ

2

√
(F ′(x))T [F ′′(x)]−1F ′(x) (4.6)

is called the Newton decrement of F at x ∈ S. In other words, the Newton decrement
λ(F, x) is, up to a constant factor, the (local) norm of the gradient F ′(x) measured by
‖ · ‖F ′′(x)−1 . Another interpretation of the Newton decrement is as follows. Consider
the quadratic approximation of F in x:

Φ(y) = F (x) + 〈F ′(x), y − x〉+
1

2
〈F ′′(x)(y − x), y − x〉 .

Its minimum is attained at y = x−F ′′(x)−1F ′(x). The corresponding minimal value is
equal to F (x) − 1

2
〈F ′(x), F ′′(x)−1F ′(x)〉. Thus, λ(F, x) is an accuracy measure in the

following sense:

F (x)−min{Φ(y) : y ∈ Rn} =
1

2

〈
F ′(x), F ′′(x)−1F ′(x)

〉
=

2

ϑ2
(λ(F, x))2.

One important property of the Newton decrement is that it provides information about
the existence of a unique minimizer of F .

Theorem 4.3.1 ([73], Theorem 2.2.2 ). Let F : Rn → R∪{+∞} be a function that
is strongly ϑ-self-concordant on S and nondegenerate on S. Suppose that λ(F, x) < 1
for some x ∈ S. Then F attains its unique minimum over S.

Now, consider the (damped) Newton iteration applied on F starting at x0 ∈ S and
given by
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xk+1 = xk − s(λ(F, xk))[F ′′(xk)]−1F ′(xk). (4.7)

The step size s is chosen in a special way depending on the Newton decrement λk :=
λ(F, xk). Let λ∗ = 2−

√
3 ≈ 0.2679 and λ′ ∈ [λ∗, 1). Then

s(λk) =


1

1+λk
if λk > λ′

1−λk
λk(3−λk)

if λ′ ≥ λk ≥ λ∗

1 if λk < λ∗.

(4.8)

The following theorem contains the main result concerning the method (4.7)–(4.8):

Theorem 4.3.2 ([73], Theorem 2.2.3). Let F : Rn → R∪{+∞} be a function that
is strongly ϑ-self-concordant on S and nondegenerate on S. Then

(i) F is bounded from below on S if and only if it attains its minimum over S.

(ii) The following relations hold for the method (4.7)–(4.8):

(a) {λk > λ′} ⇒
{F (xk+1) ≤ F (xk)− 4

ϑ2
(λk − log(1 + λk)) ≤ F (xk)− 4

ϑ2
(λ′ − log(1 + λ′))},

(b) {λ′ ≥ λk ≥ λ∗} ⇒{
λk+1 ≤

6λk−λ2k−1

4
< λk

}
and

{
1− λk+1 ≥ 5−λk

4
(1− λk) ≥ 5−λ′

4
(1− λk)

}
,

(c) {λk < λ∗} ⇒{
λk+1 ≤

(
λk

1−λk

)2

< λk
2

}
.

Moreover, if λk <
1
3

then

F (xk)−min
x∈S

F (x) ≤ 2

ϑ2

(ω(λk))
2(1 + ω(λk))

1− ω(λk)
,

where ω(λk) = 1− (1− 3λk)
1/3.

In other words, if F is a function that is strongly ϑ-self-concordant on S then the
objective values of the Newton iterates converge to the minimal value of F over S.
Further, λk → 0 as k →∞, and the Newton process can be divided into three sequential
stages depending on the value of λk. At the first stage, the Newton method decreases
the function values in each iteration at least by a constant that is not smaller than
4
ϑ2

(λ′ − log(1 + λ′)) > 0. The number N1 of steps at this stage is bounded by

N1 ≤
ϑ2

4
(λ′ − log(1 + λ′))−1(F (x0)−min

x∈S
F (x)).
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In the second stage, the values λk decrease and the values (1 − λk) increase with
geometric progression. The number N2 of iterations at this stage is bounded by

N2 ≤ 1 + (log((5− λ′)/4))
−1

log

(
1− λ∗
1− λ′

)
.

In the third stage, the standard Newton method with step size one is applied. Here,
the efficiency of the method becomes obvious because the Newton decrement converges
quadratically from any point where it is less than the constant λ∗ = 2−

√
3.

Consider now the problem of minimizing a convex function f : Rn → R over the
polyhedral set K = {x ∈ Rn : Ax ≤ b}. If f is ϑf -self-concordant then the function

f + χD(·, y)

with χ > 0 and y ∈ int(K) is strongly ϑ-self-concordant with ϑ = max{ϑf , χ−1/2ϑy}
(see Lemma 4.1.4).

This is an interesting information if the LQPAP method is applied to a variational
inequality VI(F ,Q, K) where the auxiliary problems (P k

e ) are equivalent to the inexact
solution of

min
x∈Rn

{
f(x) + χkD(x, xk)

}
. (4.9)

If f is ϑf -self-concordant, the (damped) Newton method (4.7)–(4.8) applied to (4.9)
has the described properties of the Newton decrements and the function values.
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5. Categories of Problems and Analysis of the

Assumptions on Lk

In the preceding chapters, the LQPAP method and the logarithmic-quadratic distance
function were theoretically analyzed. In this chapter, we start to work towards numer-
ical implementations.

We first describe the categories of problems that will be considered for implementation.
Then we discuss the possible choices of the operators Qk and the auxiliary operators
Lk and the resulting LQPAP auxiliary problems.

Finally, we take a closer look at the assumptions on the auxiliary operator Lk, because
for its usage in concrete test examples it is important to know how to verify these
assumptions. Our focus will lie on Assumption (A7), which describes the interrelation
of F and Lk. To this end, a more intensive study of the notion of co-coercivity is
needed.

In the following, {xk} denotes a generated sequence of LQPAP iterates in dom(Q) ∩
int(K).

Recall that for a matrix C ∈ Rn×n the Euclidean matrix norm can be calculated as

‖C‖2 =
√
µ

where µ is the largest eigenvalue of CTC. Positive semidefiniteness (resp. positive def-
initeness) of a matrix C ∈ Rn×n is defined without supposing symmetry of C, i.e., C
is said to be positive semidefinite (resp. positive definite) if

〈Cx, x〉 ≥ 0 ∀x ∈ Rn (resp. 〈Cx, x〉 > 0 ∀x ∈ Rn \ {0}).
A nonsymmetric matrix C is positive (semi)definite if and only if the same is valid for
its symmetric part

Ĉ =
1

2

(
C + CT

)
.

5.1 Categories of problems under consideration

Let VI(T , K) be a variational inequality problem with a maximal monotone operator
T and a polyhedral restriction set K. The LQPAP method is based on an appropriate
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splitting of T into F + Q, where F is a continuous, monotone, and single-valued
operator, and Q is a maximal monotone, multi-valued operator. We will now consider
some possibilities of such splittings.

In general, the splitting of T into F +Q is rather flexible. However, for an implemen-
tation we intend to exploit the advantage of the LQPAP scheme that even problems
with a nonsymmetric operator T can be solved by means of optimization problems.
The only restriction is that T must not contain a nonsymmetric multi-valued part.
Then the nonsymmetric single-valued parts of T can be included into F . In the LQ-
PAP scheme, F is fixed at the current iterate which enables the transformation of the
LQPAP auxiliary problems into optimization problems.

Of course, other choices of F can be considered if there is no nonsymmetric part.
Altogether, one has the following possibilities:

• F single-valued, continuous, monotone, nonsymmetric,

• F = ∇ψ, with ψ : Rn → R convex, twice continuously differentiable,

• F = 0.

In view of Assumption (A7), F should be chosen such that it possesses some mono-
tonicity reserve because F must be co-coercive if Lk = 0.

Components of T with no monotonicity reserve and which are symmetric and possibly
multi-valued should be represented by the operator Q. The following choices can be
distinguished:

• Q = ∂ϕ with ϕ : Rn → R convex, nondifferentiable,

• Q = ∇ψ with ψ : Rn → R convex, differentiable,

• Q = 0.

Among all possible types of problems we will focus on the following three categories in
the sequel:

• Category 1: VI(F ,Q, K) with F = 0, Q = ∇ψ, or with F = ∇ψ, Q = 0, i.e.,

Find x∗ ∈ K : 〈∇ψ(x∗), x− x∗〉 ≥ 0 ∀x ∈ K,

which is equivalent to x∗ being a solution of

min ψ(x), s.t. x ∈ K.
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• Category 2: VI(F ,Q, K) with F nonsymmetric, Q = 0, i.e.,

Find x∗ ∈ K : 〈F(x∗), x− x∗〉 ≥ 0 ∀x ∈ K.

• Category 3: VI(F ,Q, K) with F = ∇ψ, Q = ∂ϕ, i.e.,

Find x∗ ∈ K, q∗(x∗) ∈ ∂ϕ(x∗) : 〈∇ψ(x∗) + q∗(x∗), x− x∗〉 ≥ 0 ∀x ∈ K,

which is equivalent to x∗ being a solution of

min {ψ(x) + ϕ(x)} , s.t. x ∈ K.

5.2 Choice of Lk and Qk and types of auxiliary problems

The original idea to introduce auxiliary operators Lk in the APP scheme was to unify
the analysis of different types of descent methods and decomposition methods. A fur-
ther motivation is to approximate the operator F by Lk such that the solution of the
auxiliary problems becomes easier. Especially with symmetric auxiliary operators we
can write the auxiliary problems as optimization problems. Among others, the following
linear approximations of F can be considered:

Lk(x) = B(xk)x,

where B(xk) ∈ Rn×n is a symmetric matrix like, for example,

• B(xk) = ∇F(xk) if ∇F(xk) is symmetric,

• B(xk) ≈ ∇F(xk), e.g., like in quasi-Newton schemes,

• B(xk) = 1
2
(∇F(xk) +∇F(xk)T ) if ∇F(xk) is nonsymmetric,

• B(xk) = diag(∇F(xk)), where diag(∇F(xk)) is the matrix consisting of the diago-
nal elements of ∇F(xk).

The general symmetric setting can be represented as

• Lk(x) = ∇Sk(x) with Sk : Rn → R convex and continuously differentiable.

Although a general nonsymmetric setting for Lk is theoretically possible, it prohibits a
transformation of the LQPAP auxiliary problems into optimization problems and will
therefore not be considered in the sequel1. Apart from the above choices for Lk, one
can omit Lk completely by setting

1 Nonsymmetric settings lead to other classes of numerical methods, like merit function based algorithms,
gap function based algorithms or equation based methods.
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• Lk = 0 for all k,

which is the only reasonable choice if F = 0.

Let us now consider the choice ofQk. It was discussed in Section 2.4.3 (page 43) that the
only known numerically meaningful outer approximation Qk of a symmetric operator
Q = ∂ϕ fulfilling

Q ⊂ Qk ⊂ Qεk
is the εk-subdifferential of ϕ. Thus, we restrict ourselves to the two choices

• Qk = ∂εkϕ, or

• Qk = Q for all k.

Depending on the concrete choices for F ,Q,Qk, and Lk, one can differentiate between
different types of LQPAP auxiliary problems. Let us first consider the general situation

F nonsymmetric,Q = ∂ϕ, ϕ : Rn → R convex,

Qk = ∂εkϕ,Lk(x) = ∇Sk(x), Sk : Rn → R convex, continuously differentiable.

Then the corresponding LQPAP auxiliary problem (P k
e ) is of the form

Find xk+1 ∈ K and ek+1 ∈ Rn with

ek+1 ∈ F(xk) + ∂εkϕ(xk+1) +∇Sk(xk+1)−∇Sk(xk) + χk∇ID(xk+1, xk) (5.1)

and ‖ ek+1 ‖≤ δk.

For δk = εk = 0, (5.1) is equivalent to the optimization problem

min
x∈Rn

{〈
F(xk)−∇Sk(xk), x− xk

〉
+ Sk(x) + ϕ(x) + χkD(x, xk)

}
(5.2)

and one can use a suitable minimization method to find an approximate (in the sense
of (5.1)) solution xk+1.

Table 5.1 considers the LQPAP auxiliary problems corresponding to the three cate-
gories of main problems and presents them as optimization problems. Actually, Cate-
gory 1a is a reduction of the LQPAP scheme to a PPA-like scheme, whereas Category
1b corresponds to an APP-like scheme. In Category 2 the possibility to solve nonsym-
metric variational inequality problems by means of optimization problems is realized.
Finally, Category 3 includes a splitting of the given main operator into F = ∇ψ and
Q = ∂ϕ and realizes the PAP idea.
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Setting of F ,Q,Qk,Lk Type of LQPAP auxiliary problem

Category 1a:

Q = ∇ψ, F = 0,
Qk = Q, Lk(x) = 0

Strongly convex, differentiable optimization problem:

minx∈Rn

{
ψ(x) + χkD(x, xk)

}
Category 1b:

Q = 0, F = ∇ψ,
Qk = 0, Lk(x) = B(xk)x

Strongly convex, differentiable optimization problem:

minx∈Rn

{〈
∇ψ(xk)−B(xk)xk, x− xk

〉
+ 1

2

〈
B(xk)x, x

〉
+ χkD(x, xk)

}
Category 2:

Q = 0, F nonsymmetric,
Qk = 0, Lk(x) = 0

Strongly convex, differentiable optimization problem:

minx∈Rn

{〈
F(xk), x− xk

〉
+ χkD(x, xk)

}
Category 3:

Q = ∂ϕ, F = ∇ψ,
Qk = ∂εkϕ, Lk(x) = 0

Strongly convex, nondifferentiable optimization problem:

minx∈Rn

{〈
∇ψ(xk), x− xk

〉
+ ϕ(x) + χkD(x, xk)

}

Table 5.1. Types of LQPAP auxiliary problems

5.3 Monotonicity and continuity assumptions on Lk

Assumptions (A6) and (A8) require that each operator Lk is monotone and continuous
on K and that for any convergent sequence {xk} ⊂ dom(Q) ∩K it holds

Lk(xk+1)− Lk(xk)→ 0 for k →∞. (5.3)

A sufficient condition for (5.3) is the uniform Lipschitz continuity of {Lk} on K, i.e.,
there exists L > 0 independent of k such that

‖ Lk(x)− Lk(y) ‖≤ L ‖ x− y ‖ ∀x, y ∈ K, ∀k ∈ N.

For a linear approximation scheme with Lk(x) = B(xk)x, conditions (A6) and (A8)
are fulfilled if for each xk ∈ K

B(xk) ∈ Rn×n is symmetric and positive semidefinite (5.4)

and ∃L > 0 with ‖ B(xk) ‖2≤ L for all k ∈ N, (5.5)

where (5.5) is surely true if B(xk) continuously depends on xk. In the case that F = ∇ψ
and B(xk) = ∇F(xk) = ∇2ψ(xk), (A6) and (A8) are fulfilled if ψ : Rn → R is convex
and twice continuously differentiable. Clearly, (A6) and (A8) also admit the choice
Lk = 0 for all k ∈ N.
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5.4 Analysis of the weakened co-coercivity assumption on
F − Lk

Assumption (A7) on the operators F − Lk is surely fulfilled if the operators F − Lk
are co-coercive on K with a common modulus γ > 0. We first examine how to verify
co-coercivity for a general operator T and in the case of an affine operator T (x) =
Cx + d. In the latter case, easy criteria can be given which are based on positive
(semi)definiteness arguments. Then, the question is discussed how to find for a given
operator F a suitable choice of the operators Lk such that F − Lk is co-coercive. Our
systematic analysis shows that under the given assumptions an a priori setting for Lk is
hard to find (apart from a very special case). For that reason, we suggest to set Lk = 0
in the end. However, this is not a drawback because the presented numerical solution
methods in Chapters 6 and 8 are independent of Lk.

5.4.1 Verification of co-coercivity for a general operator T

Remember that an operator T : Rn → Rn is called co-coercive on the set K ⊂ Rn if
there exists γ > 0 with

〈T (x)− T (y), x− y〉 ≥ γ ‖ T (x)− T (y) ‖2 ∀x, y,∈ K.

Some basic information about co-coercive operators was already given in Section 2.1.
In the symmetric, monotone case, i.e., T = ∇ψ for a convex function ψ : Rn → R,
co-coercivity of T is equivalent to Lipschitz continuity of T :

Lemma 5.4.1 ([92],Proposition 3.5). Let ψ : Rn → R be a convex and differen-
tiable function. Then ∇ψ is Lipschitz continuous with constant L if and only if ∇ψ is
co-coercive with modulus L−1.

The above equivalence is not true in the general nonsymmetric case. Consider for
example T : Rn → R, T (x1, x2) = (−x2, x1). Then T is Lipschitz continuous and
monotone on R2 but not co-coercive.

The next lemma provides two sufficient conditions for co-coercivity.

Lemma 5.4.2. For T : Rn → Rn and K ⊂ Rn the following statements hold:

(1) If T is strongly monotone on K with modulus β and Lipschitz continuous on K
with constant L then T is co-coercive on K with modulus γ = β

L2 [92, Proposition
3.1].
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(2) Let T be twice continuously differentiable and Lipschitz continuous with constant
L. If ∇T (x) and ∇T (x)2 are positive semidefinite for all x ∈ K, then T is
co-coercive on K with modulus 1

4L
[69, Proposition 2.1].

We now present a necessary and sufficient condition for a differentiable operator T to
be co-coercive. For that purpose, the concept of a psd-plus (positive semidefinite-plus)
matrix is needed.

Definition 5.4.3. A matrix C ∈ Rn×n is psd-plus if it is positive semidefinite and for
all x ∈ Rn the inclusion

〈Cx, x〉 = 0 ⇒ Cx = 0

holds.

It is clear that every positive definite matrix is a psd-plus matrix. We have the following
characterization of a psd-plus matrix.

Lemma 5.4.4 ([68], Proposition 1). A matrix C ∈ Rn×n is psd-plus if and only if
C can be written as

C = ETME

for some matrix E ∈ Rr×n and some positive definite matrix M ∈ Rr×r, where r is the
rank of C. Especially, M can be chosen as M = I +B with BT = −B.

In the following theorem, a matrix C is called psd-plus with modulus γ if the operator
x 7→ Cx is co-coercive with the same modulus γ.

Theorem 5.4.5 ([92], Theorem 3.2). Let T : Rn → Rn be continuously differen-
tiable on K ⊂ Rn. Then T is co-coercive on K if and only if, for every x ∈ K, ∇T (x)
is psd-plus with uniform modulus.

Remark 5.4.6. The modulus of co-coercivity in Theorem 5.4.5 is determined as fol-
lows. Let ∇T (x) be psd-plus for every x ∈ K with uniform constant γ > 0. This means
that for all x ∈ K

〈∇T (x)(y − z), y − z〉 ≥ γ ‖ ∇T (x)(y − z) ‖2 ∀y, z ∈ Rn.

Then T is co-coercive with modulus γ.
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5.4.2 Co-coercivity in the affine case and calculation of the modulus γ

For our purpose, it is not only important to verify co-coercivity of an operator, but also
to know the particular value of the modulus γ of co-coercivity. For a general operator
T this value can be hard to determine. Thus, for simplicity, we concentrate on affine
operators

T (x) = Cx+ d,

where C ∈ Rn×n and d ∈ Rn.

If C is symmetric the modulus of co-coercivity can be calculated using Lemma 5.4.1.

Lemma 5.4.7. Let C ∈ Rn×n \ {0} be symmetric, positive semidefinite and d ∈ Rn.
Then the operator T : Rn → Rn, T (x) = Cx+ d is co-coercive with modulus

γ =
1

‖ C ‖2

.

The operator T ′ : Rn → Rn, T ′(x) = d is co-coercive with arbitrary γ > 0.

For the case that C is not symmetric, the following lemmata describe situations in
which the modulus of co-coercivity can be calculated.

With Lemma 5.4.2(1) the following statement can be proved.

Lemma 5.4.8. Let C ∈ Rn×n be positive definite and d ∈ Rn. Then the operator
T : Rn → Rn, T (x) = Cx+ d is co-coercive with modulus

γ =
λmin(Ĉ)

‖ C ‖2
2

,

where λmin(Ĉ) is the smallest eigenvalue of Ĉ = 1
2
(C + CT ).

Proof. Because 〈Ĉx, x〉 = 〈Cx, x〉 and C is positive definite, also Ĉ is positive definite.

Further, Ĉ is symmetric per definition. Thus, λmin(Ĉ) is positive. With the well-known
Rayleigh-principle it follows

〈Cx, x〉 = 〈Ĉx, x〉 ≥ λmin(Ĉ) ‖ x ‖2 ∀x ∈ Rn.

This establishes the strong monotonicity of T with modulus λmin(Ĉ). It is further clear
that T is Lipschitz continuous with L =‖ C ‖2. Lemma 5.4.2(1) completes the proof.

ut
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If C is a psd-plus matrix, the modulus of co-coercivity can also be specified. In the
affine case, Theorem 5.4.5 reduces to:

Lemma 5.4.9 ([92], Proposition 3.4). Let C ∈ Rn×n, d ∈ Rn. Then the operator
T (x) = Cx + d is co-coercive if and only if the matrix C is psd-plus. The modulus of
co-coercivity is

γ =
λmin(M̂)

‖ ETM ‖2
2

,

where C = ETME is a decomposition according to Lemma 5.4.4.

We will now focus on Lemma 5.4.2(2) in the special case of an affine operator.

Lemma 5.4.10. Let C ∈ Rn×n \ {0}, d ∈ Rn. If C and C2 are positive semidefinite
then T (x) = Cx+ d is co-coercive with modulus

γ =
1

4 ‖ C ‖2

.

Proof. Since T is Lipschitz continuous with constant L =‖ C ‖2, the statement follows
from Lemma 5.4.2(2). ut

Let us give some interesting remarks on the condition that C and C2 be positive
semidefinite. If C is symmetric then C2 is positive semidefinite since C2 = CTC. If C
is not symmetric, this is not necessarily the case (see Remark 5.4.13 further down).

A necessary and sufficient condition for C2 to be positive semidefinite is

Lemma 5.4.11 ([39], Proposition 1). Let C ∈ Rn×n be a matrix. Then C2 is posi-
tive semidefinite if and only if∥∥(C − CT )x

∥∥ ≤ ∥∥(C + CT )x
∥∥ ∀x ∈ Rn.

In other words, the condition of Lemma 5.4.10 is fulfilled if C is positive semidefinite
and not too asymmetric.

A necessary but not sufficient condition for C2 to be positive semidefinite is

Lemma 5.4.12 ([39], page 685). Let C ∈ Rn×n. If C2 is positive semidefinite then

‖ C − CT ‖2 ≤ ‖ C + CT ‖2 .
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Remark 5.4.13. The converse of the preceding lemma is not true. As a counterexam-

ple take C =

(
4 −9
7 8

)
. Then ‖ C − CT ‖2= 16 < 16.4721 ≈‖ C + CT ‖2. But for

x = (−1.5, 0.5)T we get ‖ (C − CT )x ‖2≈ 25.2982 > 17.0294 ≈‖ (C + CT )x ‖2. Thus,
using Lemma 5.4.11, C2 is not positive semidefinite.

5.4.3 Co-coercivity of F − Lk and the choice Lk = 0

The affine case. To explain the difficulties concerning the choice of Lk we exemplarily
examine the case

F(x) = Cx+ d, Lk(x) = Bx.

The minimal requirements on the matrices B,C ∈ Rn×n are

• C positive semidefinite (⇒ F monotone),

• B symmetric, positive semidefinite (⇒ Lk symmetric, monotone)

Table 5.2 specifies different criteria for x 7→ (F−Lk)(x) = (C−B)x+d to be co-coercive.
The case that C is symmetric is separated from the case that C is nonsymmetric.

Case 1: C symmetric, positive
semidefinite,
B symmetric, positive semidefinite.

If C−B is positive semidefinite then x 7→ (C − B)x + d is
monotone and Lipschitz continuous with L =‖ C−B ‖2 (if C 6= B)
or L > 0 arbitrary (if C = B). Thus, x 7→ (C−B)x+d is co-coercive
with γ = 1

L
(see Lemma 5.4.7).

Case 2: C nonsymmetric, positive
semidefinite,
B symmetric, positive semidefinite.

• If C−B is positive definite then x 7→ (C − B)x + d is co-

coercive with γ = λmin(Ĉ−B)

‖C−B‖22
(see Lemma 5.4.8).

• If C−B and (C−B)2 are positive semidefinite then x 7→
(C − B)x + d is co-coercive with γ = 1

4‖C−B‖2
(see Lemma

5.4.10).

Table 5.2. Sufficient conditions for co-coercivity of x 7→ (F −Lk)(x) = (C−B)x+d .

Settings for B in Lk(x) = Bx in the case of diagonal dominance. In gen-
eral, the difference of two positive (semi)definite matrices does not have to be positive
(semi)definite. Thus, without more information about C it is difficult to choose B ap-
propriately. A sufficient information about C that allows us to choose B as a special
diagonal matrix is related to the notion of diagonal dominance [43, Definition 6.1.9].

A matrix C = (cij) ∈ Rn×n is called diagonally dominant if
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|cii| ≥
n∑
j=1
j 6=i

|cij| ∀i = 1, . . . , n.

It is said to be strictly diagonally dominant if

|cii| >
n∑
j=1
j 6=i

|cij| ∀i = 1, . . . , n.

The following statement describes the relation between positive (semi)definiteness and
(strictly) diagonal dominance of a symmetric matrix.

Lemma 5.4.14 ([43], Theorem 6.1.10, Theorem 7.2.1). Let C ∈ Rn×n be a sym-
metric matrix. If C is diagonally dominant (resp. strictly diagonally dominant) and
cii ≥ 0 (resp. cii > 0) for all i = 1, . . . , n, then C is positive semidefinite (resp. positive
definite).

In the nonsymmetric case, Lemma 5.4.14 is no longer valid. As a counterexample

regard, e.g., C =

(
1 −1
0 0

)
. Nevertheless, since positive (semi)definiteness of a non-

symmetric matrix C is equivalent to positive (semi)definiteness of its symmetric part

Ĉ = 1
2

(
C + CT

)
, we have the following characterization.

Lemma 5.4.15. Let C ∈ Rn×n be a nonsymmetric matrix. If Ĉ = 1
2

(
C + CT

)
is

strictly diagonally dominant, i.e.,

|cii| >
1

2

n∑
j=1
j 6=i

|cij + cji| ∀i = 1, . . . , n

and cii > 0 for all i = 1, . . . , n, then C is positive definite.

An analogous statement holds for diagonal dominance and positive semidefiniteness.

Note that double-diagonal dominance of C, i.e.

|cii| ≥
n∑
j=1
j 6=i

|cij| ∀i = 1, . . . , n, and |cii| ≥
n∑
j=1
j 6=i

|cji| ∀i = 1, . . . , n,

is a sufficient criterion for Ĉ to be diagonally dominant.
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Now, return to co-coercivity of x 7→ (C−B)x+d. For a (strictly) diagonally dominant
matrix C the following two lemmata present how the choice of B as a special diagonal
matrix ensures co-coercivity of x 7→ (C − B)x + d, while B itself is symmetric and
positive semidefinite.

Lemma 5.4.16. Let C ∈ Rn×n be a symmetric matrix. Let further C be diagonally
dominant and cii ≥ 0 for all i = 1, . . . , n. Define B ∈ Rn×n as a diagonal matrix with
diagonal entries

bii = cii −
n∑
j=1
j 6=i

|cij|, i = 1, . . . , n.

Then B is symmetric and positive semidefinite, and x 7→ (C −B)x+ d is co-coercive.

Proof. According to Lemma 5.4.14, C is positive semidefinite. From the definition of
B it is clear that B is diagonally dominant with nonnegative diagonal entries. Thus,
B is positive semidefinite. For all i = 1, . . . , n it holds

|(C −B)ii| =
n∑
j=1
j 6=i

|cij| =
n∑
j=1
j 6=i

|(C −B)ij|

and (C − B)ii ≥ 0. Hence, in view of Lemma 5.4.14, C − B is positive semidefinite.
Now, co-coercivity of x 7→ (C −B)x+ d follows from Lemma 5.4.7. ut

Lemma 5.4.17. Let C ∈ Rn×n be a nonsymmetric matrix. Let further Ĉ = 1
2

(
C + CT

)
be strictly diagonally dominant and cii > 0 for all i = 1, . . . , n. Choose values τi > 0,
i = 1, . . . , n such that

cii ≥
1

2

n∑
j=1
j 6=i

|cij + cji|+ τi, i = 1, . . . , n.

Define B ∈ Rn×n as a diagonal matrix with diagonal entries

bii = cii −
1

2

n∑
j=1
j 6=i

|cij + cji| − τi, i = 1, . . . , n.

Then B is symmetric and positive semidefinite, and x 7→ (C −B)x+ d is co-coercive.

Proof. In view of Lemma 5.4.15, C is positive definite. From the definition of B it is
clear that B is diagonally dominant with bii ≥ 0 for all i = 1, . . . , n. Thus, according to
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Lemma 5.4.14, B is positive semidefinite. Consider now Ĉ−B, which is the symmetric
part of C −B. For all i = 1, . . . , n it holds

(Ĉ −B)ii = cii − bii =
1

2

n∑
j=1
j 6=i

|cij + cji|+ τi.

This implies that (Ĉ −B)ii > 0. Further, for j 6= i it holds

(Ĉ −B)ij + (Ĉ −B)ji = cij + cji.

Now,

(Ĉ −B)ii =
1

2

n∑
j=1
j 6=i

|cij + cji|+ τi >
1

2

n∑
j=1
j 6=i

|cij + cji| =
1

2

n∑
j=1
j 6=i

|(Ĉ −B)ij + (Ĉ −B)ji|,

which shows strictly diagonal dominance of Ĉ − B. Thus, in view of Lemma 5.4.15,
C −B is positive definite and, therefore, x 7→ (C −B)x+ d is co-coercive according to
Lemma 5.4.8. ut

Consider now the k-th LQPAP auxiliary problem for the setting F(x) = Cx + d,
Lk(x) = Bx, Q(x) = ∂ϕ(x), Qk = Q. The equivalent formulation of this auxiliary
problem as an optimization problem is

min
x∈Rn

{〈
(C −B)xk + d, x− xk

〉
+

1

2
〈Bx, x〉+ ϕ(x) + χkD(x, xk)

}
.

Setting Lk(x) = Bx (with B as a diagonal matrix as described in Lemma 5.4.16 or
Lemma 5.4.17) has the effect that a convex quadratic term, which includes some diag-
onal information of C, appears in the objective function. If B additionally is positive
definite then a regularizing effect is given. It will be examined in Chapter 6 if this is
numerically advantageous compared to the choice B = 0.

Other settings for B in Lk(x) = Bx. Let us now discuss other settings for B that
correspond to the suggestions for Lk on page 81, i.e.,

B = C, B =
1

2

(
C + CT

)
, B = diag(C). (5.6)

The following three examples demonstrate that all these settings are not interesting in
our context.



92 5. Categories of Problems and Analysis of the Assumptions on Lk

Example 5.4.18 (B = C). Take Q(x) = ∂ϕ(x) and Qk = Q. Let C ∈ Rn×n be sym-
metric, positive semidefinite and d ∈ Rn. Define F(x) = Cx + d and Lk(x) = Cx.
Then

x 7→ (F − Lk)(x) = d

is co-coercive with arbitrary γ > 0. The corresponding k-th LQPAP auxiliary problem
can be transformed into the following optimization problem

min
x∈Rn

{
1

2
〈Cx, x〉+ 〈d, x〉+ ϕ(x) + χkD(x, xk)

}
.

However, this scheme is covered by the choice Q = ∇ψ + ∂ϕ, where ψ = 1
2
〈Cx, x〉 +

〈d, x〉. Thus, the above setting of F and Lk is not an interesting case.

Example 5.4.19 (B = 1
2

(
C + CT

)
). Let C ∈ Rn×n be nonsymmetric and positive

semidefinite and d ∈ Rn. Define F(x) = Cx + d and Lk(x) = 1
2

(
C + CT

)
x. We

demonstrate that

x 7→ (F − Lk)(x) =
1

2

(
C − CT

)
+ d

is co-coercive if and only if C = CT .

If C = CT then (F − Lk)(x) = d, which is co-coercive with arbitrary γ > 0. Now,
suppose that (F−Lk)(x) = 1

2

(
C − CT

)
+d is co-coercive. With Lemma 5.4.9 it follows

that E := 1
2

(
C − CT

)
is psd-plus. Since E is the skew-symmetric part of C it holds that

E = −ET . Therefore, it is clear that 〈Ex, x〉 = 0 for all x ∈ Rn. Now, the definition
of a psd-plus matrix requires that Ex = 0 must hold for all x ∈ Rn. This is only true if
E = 0 and, therefore, C = CT . Hence, we are back to the symmetric case of Example
5.4.18.

Example 5.4.20 (B = diag(C)). Let C ∈ Rn×n be positive semidefinite and d ∈ Rn.
Define F(x) = Cx+ d and Lk(x) = diag(C)x.

We will show that
x 7→ (F − Lk)(x) = (C − diag(C))x+ d

is co-coercive if and only if C is a diagonal matrix. So, the choice B = diag(C) is
covered by Example 5.4.18 and thus not interesting.

The if-case is clear. Thus, suppose that (F−Lk)(x) = (C−diag(C))x+d is co-coercive.
It follows from Lemma 5.4.9 that E := (C−diag(C)) is psd-plus. For every unit vector
ei ∈ Rn, i = 1, . . . , n, it holds 〈Eei, ei〉 = 0. In view of the definition of a psd-plus
matrix, this implies that Eei = 0 for all i = 1, . . . , n. Hence, E = 0, which is only true
if C is a diagonal matrix.
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The nonaffine case. The discussion of the affine case shows that apart from the
situation of diagonal dominance (Lemmata 5.4.16 and 5.4.17) the standard choices for
Lk (see (5.6)) are not of any interest. Therefore, turning to the general case of nonaffine,
monotone operators F , it is clear that an appropriate choice of Lk becomes even more
difficult.

Let F be a monotone operator and consider a linear approximation scheme with

Lk(x) = B(xk)x

where B(xk) is a symmetric and positive semidefinite matrix which continuously de-
pends on xk. In the case that F is nonsymmetric, some sufficient criteria for co-
coercivity of

x 7→ (F − Lk)(x) = F(x)−B(xk)x

are (see Lemma 5.4.2):

• F − Lk is strongly monotone and Lipschitz continuous.

• F − Lk is Lipschitz continuous, and ∇F(x) − B(xk) and (∇F(x) − B(xk))2 are
positive semidefinite for all x.

In the case that F is symmetric, i.e., F = ∇ψ with ψ : Rn → R convex and differen-
tiable, co-coercivity of F − Lk is equivalent to (see Lemma 5.4.1)

• ∇2ψ(x)−B(xk) is positive semidefinite and∇ψ(x)−B(xk)x is Lipschitz continuous.

In practice these criteria are hard to verify for nonaffine operators F . Note, for example,
that the conditions based on positive (semi)definiteness have to hold for all x ∈ Rn

at an element xk of the unknown sequence of iterates. Moreover, the difference of a
positive (semi)definite and a positive semidefinite matrix does not have to be positive
semidefinite.

The following example even shows that the choice Lk(x) = ∇F(xk)x is not of interest
in the symmetric case.

Example 5.4.21. Let F be symmetric, i.e., F = ∇ψ with ψ : Rn → R convex and
twice continuously differentiable. Let Lk(x) = ∇F(xk)x = ∇2ψ(xk)x. Then F − Lk is
co-coercive if and only if

(i) ∇2ψ(x)−∇2ψ(xk) is positive semidefinite, and

(ii) x 7→ ∇ψ(x)−∇2ψ(xk)x is Lipschitz continuous.
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Positive semidefiniteness has to hold for all x ∈ Rn at a fixed xk. Since the sequence
of iterates is a priori unknown, one has to require that ∇2ψ(x) − ∇2ψ(y) is positive
semidefinite for all x, y ∈ Rn to ensure monotonicity of F−Lk for all k. Thus, ∇2ψ(x)
has to be independent of x. This restricts the choice of ψ to the class of convex, quadratic
functions. However, this class, i.e., F(x) = Cx+d, Lk(x) = Cx, was already discussed
in Example 5.4.18 leading to the conclusion that this case is not interesting in our
context.

Summary: Choose Lk = 0. The initial aim of introducing auxiliary operators in the
APP scheme was to cover different descent methods like gradient or Newton methods
(see page 22). Thus, the APP scheme itself includes the method with which the auxiliary
problems are solved. In order to keep this idea alive in the extensions of the APP scheme
it is often mentioned in the corresponding papers that “the choice of Lk depends on the
method under consideration”. However, the preceding discussion shows that this idea
is hardly realizable in our context of the LQPAP scheme since, in general, a suitable
choice of Lk is impossible. Apart from the possibility to use Lk as an approximation of F
to facilitate the solution of the auxiliary problems (see the case of diagonal dominance)
we, therefore, propose to set Lk = 0. Thus, the LQPAP scheme does not suggest
(via Lk) a solution method for the auxiliary problems. Special methods to solve the
LQPAP auxiliary problems will be described in the next chapters: the damped Newton
method for differentiable auxiliary problems and a bundle method for nondifferentiable
auxiliary problems.



6. LQPAP Method and Differentiable Convex

Optimization Problems

This chapter is devoted to the numerical realization of the LQPAP method for main
problems of Category 1. Given is a variational inequality VI(F ,Q, K) with Q = ∇ψ,
F = 0, or with Q = 0, F = ∇ψ, where ψ : Rn → R is a convex and twice continuously
differentiable function (which is additionally co-coercive in the second case). The fea-
sible set is given as K = {x ∈ Rn : Ax ≤ b} with a matrix A ∈ Rp×n of full column
rank and a vector b ∈ Rp, and it is further supposed that int(K) 6= ∅. This type of
variational inequality problem can equivalently be formulated as a differentiable convex
optimization problem with linear constraints:

min ψ(x) (6.1)

s.t. Ax ≤ b.

Depending on the modeling with Q and F we focus on two types of auxiliary problems.

Category 1a: Q = ∇ψ, F = 0, Qk = Q, Lk = 0.
At step (k + 1) we have a current iterate xk and calculate the iterate xk+1 by solving
the problem

Find xk+1 ∈ K and ek+1 ∈ Rn :

ek+1 = ∇ψ(xk+1) + χk∇ID(xk+1, xk) (6.2)

with ‖ ek+1 ‖≤ δk.

Due to the interior point effect, this auxiliary problem can be considered as uncon-
strained, and xk+1 can be calculated as an inexact solution (i.e., with ‖ ek+1 ‖≤ δk) of
the strongly convex, differentiable optimization problem

min
x∈Rn

{
ψ(x) + χkD(x, xk)

}
. (6.3)

Category 1b: Q = 0, F = ∇ψ, Qk = 0, Lk(x) = B(xk)x.
At step (k + 1) we have a current iterate xk and calculate the iterate xk+1 by solving
the problem
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Find xk+1 ∈ K and ek+1 ∈ Rn :

ek+1 = ∇ψ(xk) +B(xk)xk+1 −B(xk)xk + χk∇ID(xk+1, xk) (6.4)

with ‖ ek+1 ‖≤ δk.

Thus, xk+1 is an inexact solution (with ‖ ek+1 ‖≤ δk) of the unconstrained, strongly
convex, differentiable optimization problem

min
x∈Rn

{〈
∇ψ(xk)−B(xk)xk, x− xk

〉
+

1

2

〈
B(xk)x, x

〉
+ χkD(x, xk)

}
. (6.5)

For the solution of (6.3) and (6.5) we apply the damped Newton method and describe
two rules for the calculation of the step size: an Armijo rule and a rule based on the
self-concordance property. Furthermore, we describe how the sequence {χk} of regular-
ization parameters is determined. Moreover, it is interesting to compare the LQPAP
method and the BrPAP method. For problems where both methods are applicable we
intend to answer the question which method is preferable. For that purpose, we describe
how to adapt the implementation of the LQPAP method to Bregman-distances.

Afterwards, a set of test examples is described with which the behavior of the methods is
analyzed. A summary is given for different numerical experiments concerning different
step size rules, different ways of modeling, and an adaptive initialization of χ0. Finally,
based on the gained experience, the idea of under-relaxation is described as a possibility
to improve the numerical performance of the LQPAP algorithm.

The algorithm is implemented in MATLAB R© R2008b.

6.1 Numerical realization of the LQPAP method

6.1.1 Newton method for solving the auxiliary problems

The conceptual algorithmic formulation of the damped Newton method for solving the
convex, differentiable auxiliary problems (6.3) and (6.5) is presented in Algorithm 6.1.
To unify the description for Category 1a and 1b let fk denote the objective function
of (6.3) respectively (6.5) without the term χkD(x, xk), i.e., for Category 1a we have

fk = ψ, (6.6)

and for Category 1b we have

fk : x 7→
〈
∇ψ(xk)−B(xk)xk, x− xk

〉
+

1

2

〈
B(xk)x, x

〉
. (6.7)
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Thus, for given xk and χk we consider the problem

min
x∈Rn

{
fk(x) + χkD(x, xk)

}
. (6.8)

With yj we denote the iterates of the Newton method. For a current iterate yj a Newton
step for the solution of (6.8) consists in the calculation of the Newton direction

pj = −(∇2fk(yj) + χk∇2
ID(yj, xk))−1(∇fk(yj) + χk∇ID(yj, xk)) (6.9)

and a step size αj to set
yj+1 = yj + αjp

j.

The computation of the inverse in formula (6.9) is done with an intern MATLAB R©

routine which solves the corresponding system of linear equations. Although the ex-
actness of the solution depends on the condition of the involved matrix, the occurring
errors will not be included in our consideration.

Algorithm 6.1: Newton method for solving min{fk(x) + χkD(x, xk)}
Input: xk, δk, and χk.
1. (Initialization) Set y0 = xk, j := 0.
2. (Stopping criterion) If ‖ ∇fk(yj) + χk∇ID(yj, xk) ‖≤ δk then stop

and set xk+1 := yj.
3. (Calculate Newton direction)

pj = −(∇2fk(yj) + χk∇2
ID(yj, xk))−1(∇fk(yj) + χk∇ID(yj, xk)).

4. (Calculate step size)
Find αj ≥ 0 according to the Armijo rule. (If fk is self-concordant, αj can be
determined with the self-concordance rule.)

5. (Update) Set yj+1 = yj + αjp
j, j := j + 1 and go to step 2.

We present two rules for the calculation of the step size αj.

Armijo step size. Let yj be the current iterate of the Newton method and pj the
calculated Newton direction. We use an Armijo rule for the determination of a step
size αj that works as follows. For an initial step size α > 0 and factors ζ, ρ ∈ (0, 1) let
m be the smallest natural number with

fk(yj + αζmpj) + χkD(yj + αζmpj, xk)− (fk(yj) + χkD(yj, xk))

≤ αζmρ(∇fk(yj) + χk∇ID(yj, xk))Tpj. (6.10)

Then set αj = αζm. In our implementation we choose α = 1, ζ = 0.5, and ρ = 0.1.
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Self-concordance step size. In Theorem 4.2.3 it is shown that D(·, xk) is strongly

self-concordant with parameter ϑ(xk) = max
{

2
li(xk)

: i = 1, . . . , p
}

. If fk is ϑkf self-

concordant then fk + χkD(·, xk) is ϑk self-concordant with

ϑk = max{ϑkf , χ
−1/2
k ϑ(xk)}.

As presented in Section 4.3, the following step size rule leads to an efficient Newton
method.

Let λ∗ = 2−
√

3 ≈ 0.2679 and λ′ ∈ [λ∗, 1). The Newton decrement is calculated by

λj =
ϑk
2

√
−(∇fk(yj) + χk∇ID(yj, xk))Tpj,

where yj is the current Newton iterate and pj the calculated Newton direction. Then
the step size is set to

αj =


1

1+λj
if λj > λ′

1−λj
λj(3−λj) if λ′ ≥ λj ≥ λ∗

1 if λj < λ∗.

In our implementation we set λ′ = 0.9.

Distance value outside int(K). At the beginning of the determination of an Armijo
step size it is possible that the test points yj + αζmpj lie outside int(K). In this case
the value of the logarithmic-quadratic distance function is +∞ per definition. In the
implementation we set D(x, y) = 1012 if x /∈ int(K).

Stopping criterion. The Newton iteration has to be stopped if

‖ ∇fk(yj) + χk∇ID(yj, xk) ‖≤ δk.

Then xk+1 := yj is a solution of schemes (6.2) respectively (6.4) with ek+1 =
∇fk(xk+1) + χk∇ID(xk+1, xk). However, we observed that this stopping rule may not
take effect near the boundary of the feasible set since the admitted step sizes are too
small. For that reason, we additionally stop the Newton method if min{(b−Ayj)i : i =
1, . . . , p} ≤ 10−16. Furthermore, to avoid a step size that is beyond machine precision,
the calculation is terminated if a value smaller than 10−10 is reached. Such a value is
interpreted as being zero and therefore the Newton iteration is stopped with xk+1 := yj.

6.1.2 Initialization and update of the regularization parameter χk

According to conditions (3.20) and (3.21), the sequence {χk} of regularization parame-
ters has to be bounded with a lower bound being strictly greater than a special constant
χ:
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0 ≤ χ ≤ χk ≤ χ <∞ ∀k ∈ N0, (6.11)

χ >
1

2a2γ
. (6.12)

Determination of χ and χ. Possibilities to calculate the modulus γ of the (weak-
ened) co-coercivity condition (A7) were mentioned in Section 5.4. In order to determine
a lower bound χ, it remains to investigate the calculation of a constant a > 0 that fulfills

‖ Au ‖≥ a ‖ u ‖ ∀u ∈ Rn.

To this end, we make use of the Rayleigh-principle for a symmetric matrix B ∈ Rn×n,
which states that the smallest eigenvalue of B can be determined as

λmin(B) = min
u6=0

〈Bu, u〉
‖ u ‖2

(see [43, Theorem 4.2.2]). An immediate consequence is

Lemma 6.1.1. Let A ∈ Rp×n be a matrix with rank(A) = n. Define

a =
√
λmin(ATA).

Then a > 0 and ‖ Au ‖≥ a ‖ u ‖ for all u ∈ Rn.

Having calculated γ and a we set, according to (6.12),

χ =
1

2a2γ
+ 10−3. (6.13)

However, if F = 0 and Lk = 0 for all k (as in Category 1a), condition (A7) is fulfilled
with an arbitrary γ > 0. This allows to choose any lower bound χ > 0. In this case it
is empirically reasonable to set χ = 10−3. The value of χ is chosen sufficiently large,
for example, χ = χ0 · 103.

Initialization and update of χk. The parameter χk controls the regularizing effect
of the distance function. A large value of χk implies a strong regularizing effect and
keeps the next iterate xk+1 close to the current iterate xk. On the other hand, the
smaller the value of χk, the less influence has the distance function. This results in a
larger step from xk to xk+1.

Conditions (6.11)–(6.12) are rather general and allow multiple possibilities for the se-
quence {χk}. However, for an implementation of the method we are interested in an
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explicit and hopefully “efficient” specification. Efficient means that the method will
find a good approximation of the solution within a number of iterations that will be
small compared to other settings. It is an open question how to find such an appropri-
ate choice for the sequence {χk}. In literature, helpful information is scarcely available.
Mostly, the settings are based on heuristics or experienced data. Theoretically, it is
allowed to take a constant sequence

χk = χ0 ∀k ∈ N.

But it is known from implementations of the PPA and the BrPAP (see [47], [63])
that an iteratively decrease in the sense of χk+1 = χ0r

k+1 with r ∈ (0, 1) leads to an
acceleration of the method. To respect the lower bound χ the precise choice should be

χk+1 = max{χ0r
k+1, χ}, r ∈ (0, 1). (6.14)

6.1.3 Choice of the tolerance parameter δk and the stopping criterion

The nonnegative sequence of error tolerance parameters {δk} must be chosen a priori
such that it is summable according to condition (3.22). This is realized in our imple-
mentation by setting

δk+1 = cδk, δ0 ≥ 0, c ∈ (0, 1).

Then we have
∑∞

k=0 δk = δ0

∑∞
k=0 c

k and summability of the error tolerance parameters
is established since c ∈ (0, 1). The concrete values taken in the implementation are
δ0 = 10−3, c = 0.999.

A commonly used stopping criterion for numerical methods is to test if

‖ xk − xk+1 ‖< θ.

Because the resulting optimization problems (6.3) respectively (6.5) are at least strictly
convex, this indicates that the iterates are close to an optimum since the algorithm does
not make any substantial progress. In our implementation we set θ = 10−5. Neverthe-
less, we have to pay attention if the iterates reach the boundary of the feasible set
before being close to an optimal solution. The resulting small step sizes may lead to
a stop of the algorithm. This situation will further be discussed within the coming
sections.

6.1.4 The overall LQPAP algorithm

The preceding considerations about the implementation of the LQPAP method for
convex optimization problems are summarized in Algorithm 6.2.
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Algorithm 6.2: LQPAP algorithm for convex, differentiable optimization problems

1. (Initialization) Choose a start iterate x0 ∈ int(K), an initial tolerance parameter
δ0, a changing factor c ∈ (0, 1) for δk, a stopping parameter θ > 0, a lower and
upper bound χ resp. χ, an initial regularization parameter χ0, and a changing

factor r ∈ (0, 1) for χk. Define fk according to (6.6) resp.
(6.7). Set k := 0.

2. (Solution of the auxiliary problem with the Newton method)
Calculate xk+1 with Algorithm 6.1.

3. (Stopping criterion) If ‖ xk − xk+1 ‖< θ then stop: xk+1 is an approximate
solution of (6.1).

4. (Update of parameters) χk+1 = max{χ, rχk}, δk+1 = cδk.
5. Set k := k + 1 and go to step 2.

6.1.5 Adaptations for the BrPAP method

To adapt our implementation of the LQPAP method to the BrPAP method introduced
in Section 2.4.1, we only need to exchange the logarithmic-quadratic distance with a
Bregman-distance and to appropriately choose the lower bound χ for the regularization
parameters.

Category 1a. In the context of Category 1a the BrPAP scheme is reduced to a
proximal-like scheme. In this case, a strictly convex and zone coercive Bregman-function
with zone int(K) is sufficient, e.g.,

h(x) =

p∑
i=1

li(x) log(li(x)) (0 log(0) := 0) (6.15)

with Bregman-distance

Dh(x, y) =

p∑
i=1

li(x) log
li(x)

li(y)
− li(x) + li(y).

For fixed y ∈ int(K) the gradient and Hesse matrix of Dh(·, y) at x ∈ int(K) are

∇IDh(x, y) = −
p∑
i=1

ai

(
log

li(x)

li(y)

)
,

∇2
IDh(x, y) =

p∑
i=i

(
1

li(x)

)
aia

T
i .

Furthermore, the lower bound is set to χ = 10−3.
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Category 1b. For Category 1b the Bregman-distance has to be based on a strongly
convex and zone coercive Bregman function with zone int(K). With a simple modifi-
cation of h a strongly convex Bregman function (with modulus κ) is obtained as

h̃(x) = h(x) +
κ

2
‖ x ‖2, κ > 0. (6.16)

The corresponding Bregman distance is

Dh̃(x, y) = Dh(x, y) +
κ

2
‖ x− y ‖2 .

Dh̃(x, y) can be seen as a double regularization by Dh(x, y) and the standard quadratic
distance function. To avoid too much influence of the latter, it is reasonable to set
κ = 1. According to the Condition (BrPAP)(3)(b) (see page 32), the lower bound χ is
set to

χ =
1

4γ
+ 10−3. (6.17)

A final remark is devoted to the value of the Bregman-distance for arguments out-
side int(K). In contrast to the logarithmic-quadratic distance function, the Bregman
distance is finite for arguments x belonging to bd(K). This is due to the convention
0 log(0) = 0. For points x /∈ K we set Dh(x, y) respectively Dh̃(x, y) to 1012.

6.2 Academic test examples

This section presents some academic test problems which can be found in literature or
which are randomly generated. The problems are of the type

min ψ(x)

s.t. Ax ≤ b,

where ψ : Rn → R is a convex, twice continuously differentiable function. For each
example we give the data ψ, A, and b, the dimension n, the number of constraints p,
the solution set X∗ or the (exact or approximate) unique solution x∗, the optimal value
ψ∗, and one or more considered initial points x0.

6.2.1 Two-dimensional examples

With the following two-dimensional ill-posed examples we intend to analyze the geo-
metric behavior of the LQPAP and the BrPAP method by plotting graphics with the
sequences of iterates.
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The first example consists of a quadratic objective function that is convex but not
strictly convex. More precisely, the objective function is convex with respect to the
first variable and linear with respect to the second variable. Furthermore, the solution
set is not a singleton.

The second example represents an ill-conditioned convex-quadratic problem, i.e., the
contour lines are flat ellipses. Here, the solution is unique. With cond(C) we denote
the condition number of the matrix C.

Example 6.2.1 (First 2-dim example).

ψ(x) = (x1 − 2)2,

A =



1 0
−1 0
0 1
0 −1
−1 1
1 1
1 −1


, b =



1
1
1
1

1.25
1.25
1.25


,

n = 2, p = 7, x0
1 = (−0.25, 0.9)T , ψ(x0

1) = 5.0625, x0
2 = (−0.75, 0.4)T , ψ(x0

2) = 7.5625,
x0

3 = (−0.9, 0)T , ψ(x0
3) = 8.41, x0

4 = (−0.9,−0.9)T , ψ(x0
4) = 8.41,

X∗ =
{
x = (x1, x2)T : x1 = 1, x2 ∈ [−0.25, 0.25]

}
, ψ∗ = −1.

Example 6.2.2 (Second 2-dim example).

ψ(x) =
1

2
〈Cx, x〉+ 〈d, x〉 ,

C =

(
0.4 0.01
0.01 10000

)
, d =

(
0.03

5

)
,

A =

−1 0
0 1

0.2 −1

 , b =

−1
3.5
0.5

 ,

n = 2, p = 3, x0
1 = (2.5, 3.4)T , ψ(x0

1) = 57818.41, x0
2 = (30, 3.4)T , ψ(x0

2) =
57998.92, x0

3 = (38, 0)T , ψ(x0
3) = 289.94, x0

4 = (37,−0.8)T , ψ(x0
4) = 3470.614,

x∗ = (1,−0.0501)T , ψ∗ = 0.228744995, cond(C) ≈ 2.5 · 104.
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Figure 6.1. Path of the iterates for different initial points in Example 6.2.1.
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Figure 6.2. Path of the iterates for different initial points in Example 6.2.2.

To get a first impression of how the methods work we model the above examples
according to Category 1a, adjust the choice of {χk} towards a good performance and
plot some sequences of iterates for different initial points using the Newton method
with Armijo step sizes for the solution of the auxiliary problems.

Figures 6.1–6.2 present the results. The iterates in the graphics are marked by a point
and connected by lines. In both examples, only 3–5 iterations are needed to reach an
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optimal solution. Often, the first iterate is close to a solution, such that subsequent
iterates can hardly be seen in the graphics. In the case of multiple solutions it can be
observed for both methods that the calculated solutions can be different for different
initial points. Furthermore, Example 6.2.2 shows the different behavior of the two
methods in the case of a unique solution. The iterates follow different paths to the
optimal solution: Whereas the paths of the iterates of the LQPAP method meet at a
horizontal line before reaching the optimal point, the iterates of the BrPAP method
are already close to the optimal point after one iteration.

6.2.2 Higher-dimensional examples

The first two higher-dimensional examples are taken from [85] and [42]. Examples 6.2.5
and 6.2.6 represent a class of linear constrained, convex quadratic problems that are
randomly generated. In view of Lemma 5.4.16, the examples are generated such that the
matrix C in the objective function is symmetric and diagonally dominant. In Example
6.2.5 the feasible set K is an arbitrary polyhedron defined by a matrix A of full column
rank and a vector b whose components are greater than zero. Thus, x = 0 belongs to
int(K) and can be taken as an initial point. In Example 6.2.6 we consider the special
case K = Rn

+. All matrices and vectors of the test examples are given in the Appendix
A.5 (except for the problems of dimension 100).

Example 6.2.3 (Schittkowski no. 268, [85]).

ψ(x) =
〈
DTDx, x

〉
− 2 〈Dx, d〉+ ‖ d ‖2,

see Appendix A.5.1 for the setting of D, d, A, and b,
n = 5, p = 5, x0 = (−1.5, 3.5, 0.5, 4.0,−2.0)T , ψ(x0) = 182799.25, x∗ = (1, 2,−1, 3,−4)T ,
ψ∗ = 0, cond(DTD) = 1.1769 · 106.

Example 6.2.4 (Modified Colville, [42]).

ψ(x) = xTCx+ dTx+ eTx,

see Appendix A.5.2 for the setting of C, d, e, A, and b,
n = 5, p = 15, x0 = (0.1, 0.1, 0.1, 0.1, 1)T , ψ(x0) = 11.96,
x∗ ≈ (0.3, 0.322547, 0.4, 0.4017501, 0.2495811)T , ψ∗ = −23.0448869, λmin(C) = 0.
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Example 6.2.5 (Random convex quadratic example with polyhedral K).

ψ(x) =
1

2
〈Cx, x〉+ 〈d, x〉 , x ∈ Rn,

n ∈ N, p ≥ n, C ∈ Rn×n randomly generated, symmetric, diagonally dominant matrix
with integer entries cij ∈ [−100, 100] (for i 6= j) and cii such that diagonal domi-
nance holds, d ∈ Rn randomly generated vector with integer entries di ∈ [−100, 100],
A ∈ Rp×n randomly generated matrix with full column rank and integer entries
aij ∈ [−100, 100], b ∈ Rp randomly generated vector with integer entries bj ∈ [1, 100],
x0 = (0, . . . , 0)T ∈ Rn, ψ∗ calculated with the MATLAB R© routine fmincon. For our
tests we generated

• Example 6.2.5.a: n = 10, p = 20, ψ(x0) = 0, ψ∗ ≈ −43.14856, C strictly diagonally
dominant, cond(C) = 4.6428, see Appendix A.5.3 for the specific data,

• Example 6.2.5.b: n = 100, p = 150, ψ(x0) = 0, ψ∗ ≈ −37.02374, C diagonally
dominant, cond(C) = 1.6465.

Example 6.2.6 (Random convex quadratic example with K = Rn
+).

ψ(x) =
1

2
〈Cx, x〉+ 〈d, x〉 , x ∈ Rn,

n ∈ N, p ≥ n, C ∈ Rn×n randomly generated, symmetric, diagonally dominant matrix
with integer entries cij ∈ [−100, 100] (for i 6= j) and cii such that diagonal dominance
holds, d ∈ Rn randomly generated vector with integer entries di ∈ [−100, 100], A =
−I ∈ Rn×n, b = 0 ∈ Rn, x0 = (10, . . . , 10)T ∈ Rn, ψ∗ calculated with the MATLAB R©

routine fmincon. For our tests we generated

• Example 6.2.6.a: n = 10, ψ(x0) = 263110, ψ∗ ≈ −19.78359, C strictly diagonally
dominant, cond(C) = 6.4193, see Appendix A.5.4 for the specific data,

• Example 6.2.6.b: n = 100, ψ(x0) = 24123620, ψ∗ ≈ −19.68023, C diagonally
dominant, cond(C) = 1.7686.

6.2.3 Numerical results for differentiable examples

The numerical results for the two- and higher-dimensional examples are collected in
Table 6.1 for the LQPAP method and Table 6.2 for the BrPAP method. All problems
are modeled according to Category 1a, and the Newton method with Armijo step sizes
is used for the solution of the auxiliary problems. In Examples 6.2.1 and 6.2.2 the last
listed initial point is chosen. The following information is given in the tables:
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χ0: initial value of the regularization parameter,
r: decreasing factor to update χk+1 = χ0r

k+1,
#iter: number of iterations,
#New: total number of Newton iterations,
#ψ: number of objective function evaluations,
ψcalc: calculated optimal value,
|ψcalc − ψ∗|: distance between calculated and known optimal value.

The number #ψ of objective function evaluations depends on the frequency of de-
creasing steps to find an Armijo step size fulfilling (6.10). The number of gradient
evaluations of ψ coincides with the total number of Newton iterations because in each
Newton iteration the gradient of ψ is evaluated once in the stopping criterion.

Example {χk} LQPAP method
No. Name χ0 r #iter #New #ψ ψcalc |ψcalc − ψ∗|

6.2.1 First 2-dim example 0.01 0.1 3 34 383 1.00000 0.00e+00
6.2.2 Second 2-dim example 0.01 0.7 5 51 490 0.22874 1.39e-16

6.2.3 Schittkowski no. 268 0.01 0.1 40 83 86 0.00000 2.40e-06
6.2.4 Modified Colville 0.01 0.1 3 51 567 -23.04489 6.81e-07
6.2.5.a Random n = 10, p = 20 0.01 0.3 6 55 363 -43.12260 2.60e-02
6.2.5.b Random n = 100, p = 150 0.01 0.1 5 49 355 -36.98940 3.43e-02
6.2.6.a Random n = 10 0.10 0.5 4 67 728 -19.78359 3.95e-11
6.2.6.b Random n = 100 10.00 0.5 5 203 2385 -19.68023 5.56e-08

Table 6.1. Results for the LQPAP method applied to differentiable convex problems.

Example {χk} BrPAP method
No. Name χ0 r #iter #New #ψ ψcalc |ψcalc − ψ∗|

6.2.1 First 2-dim example 0.01 0.1 2 36 315 1.00000 0.00e+00
6.2.2 Second 2-dim example 0.10 0.5 4 38 162 0.22874 2.78e-16

6.2.3 Schittkowski no. 268 0.01 0.1 12 29 34 0.00000 3.21e-06
6.2.4 Modified Colville 100.00 0.9 36 178 448 -22.98871 5.62e-02
6.2.5.a Random n = 10, p = 20 1.00 0.7 14 79 218 -43.14853 3.15e-05
6.2.5.b Random n = 100, p = 150 10.00 0.3 9 57 208 -37.02426 5.26e-04
6.2.6.a Random n = 10 100.00 0.9 14 82 180 -19.73598 4.76e-02
6.2.6.b Random n = 100 100.00 0.9 17 93 189 -19.67130 8.93e-03

Table 6.2. Results for the BrPAP method applied to differentiable convex problems.

For a suitable comparison of the LQPAP and the BrPAP method the values for
χ0 ∈ {0.01, 0.1, 1, 10, 100} and r ∈ {0.1, 0.3, 0.5, 0.7, 0.9} are adapted towards a best
performance. The performance is measured by the reached accuracy of the calculated
optimal value. This can result in different sequences {χk} for the LQPAP and the
BrPAP method because the type of distance function is different and, therefore, a dif-
ferent type of parameter choice is possibly needed. In most cases the LQPAP method
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is used with a small initial regularization of χ0 = 0.01 with a fast reduction by r = 0.1
or r = 0.3. For the BrPAP method such a general statement cannot be given since all
ranges of initial values χ0 and different reduction factors r occur.

For a comparison of the iteration numbers of the LQPAP and the BrPAP method it is
important to know that the setting of {χk} has an influence on the iteration numbers. A
large initial value χ0 together with a slow reduction implies a strong regularizing effect
of the used distance function and results in a larger number of iterations than a small
initial value with a fast reduction. This can be seen in Examples 6.2.4–6.2.6.b where
the BrPAP method is used with larger initial values χ0 and larger decreasing factors
r than the LQPAP method. Consequently, the BrPAP method needs more iterations.
However, in Examples 6.2.5.a and 6.2.5.b the accuracy of the calculated solution has
to be taken into account, which is higher in the BrPAP method than in the LQPAP
method. In the other examples the LQPAP method calculates optimal values whose
accuracy is similar or better than that reached by the BrPAP method.

The number of total inner (Newton) iterations is correlated to the number of outer
(LQPAP/BrPAP) iterations. Thus, in the cases where the LQPAP method needs fewer
outer iterations than the BrPAP method, the number of total inner iterations in the
LQPAP method is similar as or less than that of the BrPAP method (with an exception
in Example 6.2.6.b).

In all examples the number #ψ of function evaluations performed by the LQPAP
method is higher than in the BrPAP method. Thus, in the BrPAP method the number
of decreasing steps to find an appropriate Armijo step size is less than in the LQPAP
method. This indicates that the Newton directions determined in the BrPAP method
are “qualitatively better”. A more detailed analysis of this situation is given in Section
6.3, where we describe a general observation on the Hesse matrices of the logarithmic-
quadratic distance and the Bregman distance.

Let us finally comment on the effectiveness of the methods. In 6 of 8 (LQPAP) respec-
tively 4 of 8 (BrPAP) examples the methods reach an accuracy of 10−5 or better in the
calculated optimal value. In the examples where the methods have problems to find
an accurate solution it can be observed that the iterates reach the boundary of the
feasible set before being close to an optimal solution. In this situation, the calculated
directions mostly point outside the feasible set. This leads to small step sizes and finally
to the termination of the algorithm. It cannot be excluded that a different choice of the
regularization parameters (apart from the tested choices) would lead to better results.

In view of the above observations it is difficult to say which method is preferable. To
achieve a high accuracy, a “good” choice of the regularization parameters is crucial
in both methods. Since the best performance of the LQPAP method is often achieved
with smaller values of the regularization parameters than in the BrPAP method, the
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iteration numbers in the LQPAP method are less than in the BrPAP method. On the
other hand, the BrPAP method should be favored to get small numbers of function
evaluations. To obtain more information about the characteristics of the two methods,
more experiments and observations are given in the next section.

6.3 Observations and summary of numerical tests

6.3.1 Comparison of the Hesse matrices

The different behavior of the LQPAP algorithm and the BrPAP algorithm can partly
be explained with the characteristics of the Hesse matrices of the distance functions.

First, consider the Hesse matrix of the logarithmic-quadratic distance function with
respect to x:

∇2
ID(x, y) =

p∑
i=1

(
2 +

li(y)2

li(x)2

)
aia

T
i .

The factors ri(x, y) :=
(

2 + li(y)2

li(x)2

)
in front of the dyadic products aia

T
i depend on the

distance of the points x and y to the boundary of K. If x lies close to the boundary of
K then li(x) ≈ 0 for some i ∈ {1, . . . , p}. Thus, for fixed y, if x tends to the boundary
of K then ri(x, y) tends to infinity for some i. This situation implies a bad condition
of the Hesse matrix and simultaneously constitutes the barrier effect of D.

However, in Algorithm 6.1 the distance function is evaluated at x = yj and y = xk

where yj are the iterates of the Newton method (with y0 = xk). So, in the first Newton
iteration we have ri(y

0, xk) = 3 for all i. Moreover, if the Armijo step sizes are small,
which often occurs near the boundary of K, then yj and xk lie close to each other.
Consequently, l(yj) ≈ l(xk) and therefore ri(y

j, xk) ≈ 3 for all i. Thus, a bad condition
of the Hesse matrix near the boundary of K cannot be observed and a barrier effect
of D is hardly given, so that the calculated Newton directions may be insufficiently
influenced by the distance function. An inappropriate Newton direction results in step
sizes that are almost zero, which leads to a termination of the Newton iteration. To
improve the barrier effect of D, an appropriate choice of the regularization parameters
is needed, but is eventually hard to find. The experiments show that a fast reduction of
χk by r = 0.1 often leads to the best performance of the algorithm. This is against the
classical rules of regularization, which recommend to work with a slow reduction like
r = 0.9 to allow that the auxiliary problems get well adapted during the first iterations.
In view of the above described background the following explanation is possible: With a
fast reduction of the influence of D, two consecutive iterates can have a greater distance
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to each other than with a slow reduction. So, the effect of having ri(y
j, xk) ≈ 3 for all

i is avoided.

Now, recall the Hesse matrix of the Bregman distance function Dh:

∇2
IDh(x, y) =

p∑
i=1

1

li(x)
aia

T
i .

Here, the factors rhi (x) := 1
li(x)

in front of the dyadic products aia
T
i only depend on

the distance of x to the boundary of K. If x approaches the boundary of K then
rhi (x) tends to infinity for some i. This results in a bad condition of the Hesse matrix.
So, in contrast to the logarithmic-quadratic distance function, the barrier effect of the
Bregman distance near the boundary is better indicated in its Hesse matrix.

6.3.2 Armijo versus self-concordance rule

In all test examples the objective function is linear or convex-quadratic. Such func-
tions are 0-self-concordant. Thus, in the LQPAP method it is possible to use the self-
concordance rule instead of the Armijo rule to determine the step sizes.

Table 6.3 presents the corresponding results when using the self-concordance step size.
For the sequence {χk} the best performance choice as in Table 6.1 is used.

Example {χk} LQPAP method
No. name χ0 r #iter #New #ψ ψcalc |ψcalc − ψ∗|

6.2.1 First 2-dim example 0.01 0.1 3 42 0 1.00000 5.33e-15
6.2.2 Second 2-dim example 0.01 0.7 5 76 0 0.22874 2.14e-15
6.2.3 Schittkowski no. 268 0.01 0.1 40 303 0 0.00000 2.40e-06
6.2.4 Modified Colville 0.01 0.1 3 57 0 -23.04489 6.80e-07
6.2.5.a Random n = 10, p = 20 0.01 0.3 6 52 0 -43.07208 7.65e-02
6.2.5.b Random n = 100, p = 150 0.01 0.1 5 53 0 -36.98940 3.43e-02
6.2.6.a Random n = 10 0.10 0.5 4 371 0 -19.78344 1.52e-04
6.2.6.b Random n = 100 10.00 0.5 5 809 0 -19.68023 5.56e-08

Table 6.3. Results for the LQPAP method using the self-concordance step size in the
Newton method.

The promised efficiency of the Newton method is not reflected in the number of Newton
iterations since in most cases this number is higher than with the Armijo rule. However,
since the calculation of the self-concordance step size can be done without any function
evaluation of ψ, this advantage compared to the Armijo step size is obvious.

In Examples 6.2.3, 6.2.6.a, and 6.2.6.b we observed that the Newton decrements λj
can have values in the range of 200–700, especially in the first (about 100) Newton
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iterations. As a result, the step sizes are in the range of 10−3. This is the reason why
in those examples the number of total Newton iterations is high.

The efficiency of the self-concordance rule (i.e., the quadratic convergence of the Newton
decrements) is not given until the Newton decrements have a value smaller than λ∗ ≈
0.2679. Thus, it might be interesting to use the Armijo rule at the beginning and to
switch to the self-concordance rule if λj < λ∗ holds true. The corresponding results for
this strategy are given in Appendix A.6.1. It can be seen that the combination of the
step size rules helps to reduce the number of (possibly expensive) function evaluations,
while the number of outer and inner iterations (roughly) stays the same as in Table
6.1.

The properties of the sequence {λj} of Newton decrements as presented in Theorem
4.3.2(ii) are exemplarily examined in Appendix A.6.2. The presented results verify the
fulfillment of these properties in all cases.

6.3.3 Modeling according to Category 1b

The preceding experiments are all based on a modeling of the given problems as in
Category 1a. If ∇ψ is co-coercive, which is the case in all given test examples, it is
also possible to model the problem according to Category 1b. Appendix A.6.3 presents
the corresponding results. Due to the only linear approximation of ψ in Category 1b
and often high values for χ, both methods do not perform well in most test examples.

Furthermore, an advantage of using a nonzero auxiliary operator Lk (in examples where
Lemma 5.4.16 is applicable) cannot be observed. Therefore, we do not continue to
analyze Category 1b any further.

6.3.4 Adaptive choice of χ0

A possibility for an adaptive determination of the initial value χ0 is described in [44,
Section 6.2.4.]. We intend to test this strategy and transfer it to our situation. The
idea is to calculate at step k = 0 an approximation ỹ1 of the solution x1 of (6.8) and to
determine χ0 such that ỹ1 stays feasible and lies in the unit ball around x0. For more
information we refer to Appendix A.6.4.

Detailed experiments that compare for both methods the adaptive initialization with
the best performance choice are also presented in Appendix A.6.4. The result for both
methods is: The adaptive initialization procedure for χ0 leads – under an appropriate
choice of the decreasing factor r – to results whose accuracies are comparable to those
of a best performance choice (although the iteration numbers are in general higher).
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6.4 Idea of under-relaxation

Proximity to the boundary. The best performance values for {χk} were found after
numerous experiments with different settings for χ0 and r. Doing so, we observed in
many examples that the performance of the LQPAP algorithm is quite sensitive with
regard to the choice of the regularization parameter. It may happen that with a given
sequence {χk} a solution of good accuracy is computed, but that for another choice
the optimal solution is not reached. Furthermore, such experiments are of course not
realizable with examples where the solution is unknown. The adaptive initialization
rule for χ0 proved to be effective in many examples. But, an appropriate choice of r is
crucial because the decreasing factors may not all work well.

The reason for a failure of the methods is that the iterates reach the boundary of the
feasible set before being close to an optimal solution.

This is demonstrated in Figure 6.3 for Example 6.2.1. The optimal solution is not
reached when starting at x0

1 = (−0.9,−0.9)T or x0
2 = (−0.24,−0.999)T and using

χ0 = 10, r = 0.9.

x
1

x 2

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1
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0

0.5

1

1.5

optimal set

x
1
0

x
2
0

Figure 6.3. Example 6.2.1 with LQPAP method and an inappropriate choice of {χk}.

Of course, if a situation like with x0
2 occurs, where the initial point is already close to

the boundary and the search direction points outside the feasible set, it can be difficult
for the method to proceed.

But also with an initial iterate like x0
1 = (−0.9,−0.9)T , where the first 18 iterates lie

well in the interior of the feasible set, an appropriate shift of the search directions is
not realized early enough and the method stops at a suboptimal point.
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In some examples we additionally observed that the distance between two consecutive
iterates can be quite large in the beginning. For example, iterate xk lies well in the
interior whereas iterate xk+1 is already very close to the boundary but not as well close
to an optimal solution.

In general, the influence of the distance function D is not important if the iterates lie
well in the interior of the feasible set. The barrier effect of D has to start working when
the iterates approach the boundary. However, the examples show that an appropriate
influence of D may not occur until the iterates are already close to the boundary.

Therefore, we will now propose a strategy that robustifies the LQPAP algorithm with
respect to different choices of {χk}.

Results using under-relaxation. Instead of making full steps in the outer (LQPAP)
iteration we suggest to take an iterate lying between the old and the proposed new
iterate. This strategy is called under-relaxation in literature (see, e.g., [29]).

Let zk+1 be the iterate calculated by the Newton-method in step k of the algorithm.
Then we set

xk+1 = xk + t(zk+1 − xk), (6.18)

where t ∈ (0, 1) is the relaxation parameter. Thus, the iterate xk+1 lies on the connect-
ing line between xk and zk+1. In our implementation we set t = 0.5.

The desired effect of using under-relaxation is that the model given by the auxiliary
problems can adjust itself earlier to the constraints. As a consequence, the iterates are
prevented from tending towards the “wrong” part of the boundary.

Figure 6.4 shows for Example 6.2.1 the path of the iterates when using under-relaxation.
For both initial points the results are improved.

In Appendix A.6.5 the effect of under-relaxation is evaluated with detailed graphics
for each test example. The reached accuracies over all tested parameter settings for χ0

and r are almost constant in the range of 10−3 or better (with few exceptions), whereas
with the standard LQPAP algorithm there are often outliers where the accuracy is in
the range of 10−2 or worse. Only in Examples 6.2.2 and 6.2.6.b the under-relaxation
strategy is constantly worse than the standard LQPAP algorithm. Thus, we can state
that under-relaxation robustifies the LQPAP method such that an adequate choice of
{χk} is not as crucial as without this strategy.

As a drawback of under-relaxation one has to mention that the iteration numbers are
higher (about factor 2–3 compared to the best performance choice).
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Figure 6.4. Under-relaxation improves the LQPAP method in Example 6.2.1.

The strategy was also tested with the BrPAP method, but similar improvements as
with the LQPAP algorithm could not be observed. This is possibly due to the different
behavior of the Bregman distance near the boundary as described in Section 6.3.1.

An interesting aspect for further research is to adaptively choose the relaxation param-
eter t. Some promising results are presented as an outlook in Appendix A.6.5.

6.5 Summary

We considered variational inequalities arising from convex optimization problems with
a differentiable objective function ψ. They were solved with the LQPAP method using
the operator setting Q = Qk = ∇ψ, F = Lk = 0. The Newton algorithm with Armijo
step sizes turned out to be a suitable method for the solution of the LQPAP auxiliary
problems. A combination of the Armijo step size rule with the self-concordance rule can
improve the results with respect to the number of function evaluations. We also solved
the test examples with the BrPAP method, but a comparison with the LQPAP method
is difficult because the performance of both algorithms can essentially depend on the
choice of the regularization parameters {χk}. Nevertheless, with an appropriate choice
of {χk}, most tested examples could be solved satisfactorily with both methods. A
failure of the method can occur if the iterates tend quicker towards the boundary than
towards optimality. In this context, we could present the under-relaxation strategy as
a means to robustify the LQPAP method, such that the problems can be constantly
solved well with nearly every (tested) choice of {χk}.



7. Application to Nonsymmetric Variational

Inequalities

An advantage of the LQPAP method is that even variational inequalities VI(F ,Q, K)
with a nonsymmetric operator F can be solved with the help of optimization problems.
In this chapter we concentrate on such types of problems. More precisely, we consider
problems of Category 2, i.e.,

Find x∗ ∈ K : 〈F(x∗), x− x∗〉 ≥ 0 ∀x ∈ K,

where F is nonsymmetric and co-coercive, Q = 0, and K = {x ∈ Rn : Ax ≤ b} with
the usual structure. The corresponding LQPAP auxiliary problems are unconstrained,
strongly convex, differentiable optimization problems of the form

min
x∈Rn

{〈
F(xk), x− xk

〉
+ χkD(x, xk)

}
, (7.1)

i.e., they follow essentially the auxiliary problem principle idea. The Newton method
as given in Algorithm 6.1 can be applied to solve (7.1) (with fk(x) =

〈
F(xk), x− xk

〉
).

To our knowledge, appropriate benchmark examples with nonsymmetric variational
inequalities are not available in the literature. Therefore, our motivation in this chapter
is

1. to construct operators F : Rn → Rn which are nonsymmetric and co-coercive
with a known modulus γ,

2. to, additionally, construct F and the restriction set K such that the solution of
VI(F , K) is known, and

3. to test the LQPAP algorithm on some constructed examples and compare the
calculated solutions with the known solutions.

In this chapter In denotes the n×n identity matrix. Remember further that Â denotes
the symmetric part of a quadratic matrix A.
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7.1 Construction of nonsymmetric, co-coercive operators

As before, we restrict our considerations to affine operators

F(x) = Cx+ d, C ∈ Rn×n nonsymmetric, d ∈ Rn, (7.2)

such that the modulus of co-coercivity can be calculated as described in Section 5.4.2.
In view of Lemma 5.4.8, we begin with a collection of ideas to generate positive definite,
nonsymmetric matrices. We will make use of two estimates which hold for every matrix
C ∈ Rn×n and every vector x ∈ Rn:

λmin(Ĉ) ‖ x ‖2 ≤ 〈Cx, x〉 , (7.3)

− ‖ C ‖2‖ x ‖2 ≤ 〈Cx, x〉 . (7.4)

The first one is a result of the Rayleigh-principle, and the second one is proved with
the Cauchy-Schwarz inequality and the compatibility property of the matrix norm.

Lemma 7.1.1. Let D = diag(d1, . . . , dn) ∈ Rn×n be a diagonal matrix with di ≥ 0 for
all i = 1, . . . , n, and B ∈ Rn×n be a nonsymmetric matrix with

−λmin(B̂) < min{di : i = 1, . . . , n}. (7.5)

Then C := B +D is a nonsymmetric and positive definite matrix.

Proof. Let x ∈ Rn \ {0}. Applying (7.3) and (7.5) yields

〈Cx, x〉 = 〈Bx, x〉+
n∑
i=1

dix
2
i

≥ λmin(B̂) ‖ x ‖2 + min{di : i = 1, . . . , n} ‖ x ‖2

> 0.

ut

Remark 7.1.2. An analogous proof as in Lemma 7.1.1, which uses (7.4) instead of
(7.3), shows that condition (7.5) can be replaced by

‖ B ‖2< min{di : i = 1, . . . , n}.

Corollary 7.1.3. Let B ∈ Rn×n \ {0} be a skew-symmetric matrix, i.e., BT = −B,
and ε > 0. Then C := B + εIn is a nonsymmetric and positive definite matrix.

Proof. The assertion follows from Lemma 7.1.1 because λmin(B̂) = 0. ut
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Another consequence of Lemma 7.1.1 is:

Corollary 7.1.4 (Construction of nonsymmetric, positive definite matrices).
Let B ∈ Rn×n be an arbitrary nonsymmetric matrix and ε > 0. Set

D := (−λmin(B̂) + ε)In. (7.6)

Then C := B +D is nonsymmetric and positive definite.

Remark 7.1.5. If λmin(B̂) > 0 in Corollary 7.1.4 then D = 0 fulfills condition (7.5).

Remark 7.1.6. In view of Remark 7.1.2, it is also possible to take D := (‖ B ‖2 +ε)In
with ε > 0 in Corollary 7.1.4. However, since we want to construct a nonsymmetric,
positive definite matrix, this causes an unnecessary manipulation of B in the case that
λmin(B̂) > 0.

A further possibility to ensure positive definiteness of a nonsymmetric matrix C is to
make Ĉ strictly diagonally dominant by manipulating the diagonal entries such that

|cii| >
1

2

n∑
j=1
j 6=i

|cij + cji|, and cii > 0 ∀i = 1, . . . , n

(compare Lemma 5.4.15).

Finally, Lemma 5.4.4 can be exploited to generate a psd-plus matrix.

Lemma 7.1.7 (Construction of psd-plus matrices). Let B ∈ Rr×r be a skew-
symmetric matrix and E ∈ Rr×n. Then C := ET (Ir +B)E is psd-plus.

Proof. Let 〈Cx, x〉 = 0 hold for some x ∈ Rn. This is equivalent to 〈Ex, (Ir +B)Ex〉 =
0, which implies that Ex = 0 because B+ Ir is positive definite due to Corollary 7.1.3.
Hence, Cx = 0, which proves that C is psd-plus. ut

Remark 7.1.8 (Construction of an affine, nonsymmetric, co-coercive F). In
view of the preceding statements, an affine, nonsymmetric, and co-coercive operator
F : Rn → Rn can be constructed by generating a nonsymmetric matrix C with Corollary
7.1.4 or Lemma 7.1.7 and defining F(x) = Cx + d with an arbitrary d ∈ Rn. The
modulus of co-coercivity can be determined by Lemmata 5.4.8 and 5.4.9, respectively.
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7.2 Construction of VI(F ,K) with known solution(s)

We present two approaches to construct a nonsymmetric, co-coercive operator F and a
polyhedral restriction set K such that the solution set of VI(F , K) is known: a geomet-
ric and an analytic approach. The first one only works for small dimensions, whereas
the second one is applicable for arbitrary dimensions. The case of multiple solutions is
of special interest because it constitutes the situation of an ill-posed problem.

7.2.1 Geometric approach

Unique solution. Let F(x) = Cx+d be given with C ∈ Rn×n nonsymmetric, positive
definite and d ∈ Rn. The idea is to exploit the geometric interpretation of a variational
inequality

〈F(x∗), x− x∗〉 ≥ 0 ∀x ∈ K

to construct a set K such that the solution x∗ is known.

For that purpose, we choose an arbitrary x∗ ∈ Rn such that c := F(x∗) 6= 0. Then, a
polyhedron K is constructed such that x∗ belongs to a facet of K and c is orthogonal
to this facet. In other words, the restriction

〈−c, x〉 ≤ 〈−c, x∗〉

has to appear in K. Then it is clear that 〈c, x− x∗〉 ≥ 0 for all x ∈ K, which implies
that x∗ is a solution of VI(F , K). For the application of the LQPAP method it is further
important to ensure that the interior of K is nonempty and that the matrix A that
defines K has full column rank.

As a simple two-dimensional example we present:

Example 7.2.1. It is easy to see that

C =

(
4 −1
0 1

)
is positive definite. With d = (0, 1)T it follows that F(x) = Cx+ d is a co-coercive and
nonsymmetric operator. Take x∗ = (1, 1)T with value c = F(x∗) = (3, 2)T . Thus, the
equation

−3x1 − 2x2 = −5

defines a straight line which is orthogonal to c and includes x∗. By geometric illustra-
tion, we construct the set K = {x ∈ R2 : Ax ≤ b} with
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A =


−3 −2
−2 3
3 2
1 0
0 −1

 , b =


−5
7.5
18
4
0


and x0 = (3, 4)T ∈ int(K). Figure 7.1 illustrates the situation.
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.

Figure 7.1. Geometric construction of a restriction set K with x∗ as a unique solution
and −c = −F(x∗) ∈ NK(x∗).

For higher dimensions it is difficult to find an appropriate randomly generated re-
striction set K. A deterministic way of constructing K would need a deeper study
on analytic geometry, which is beyond the purpose of our work. Only simple higher-
dimensional examples with solution x∗ = 0 are available for the special case K = Rn

+

by choosing d ≥ 0 and C nonsymmetric, positive definite. Indeed, in such a case it
holds 〈d, x〉 ≥ 0 for all x ≥ 0, which implies that x∗ = 0 is a solution of the variational
inequality.

Multiple solutions. Let F(x) = Cx + d be given with a nonsymmetric, psd-plus
matrix C ∈ Rn×n such that rank(C) = r < n. Then there exists x̄ ∈ Rn \ {0} with

Cx̄ = 0. (7.7)

We determine y, z ∈ Rn \ {0} with

F(z)− y = 0, (7.8)

〈x̄, y〉 = 0. (7.9)
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This is a linear equation system with n+1 equations and 2n variables. Define for ᾱ > 0
the set

S = {x ∈ Rn : x = z + αx̄, α ∈ [−ᾱ, ᾱ]}.

Now, K has to be constructed such that S is included in a facet of K. Furthermore, y
has to be orthogonal to this facet. Thus, the restriction

〈−y, x〉 ≤ 〈−y, z〉 (7.10)

must be included into K. Moreover, int(K) 6= ∅ and rank(A) = n have to hold. Then
every x∗ ∈ S solves VI(F , K). Indeed, let x∗ = z + αx̄ hold for some α ∈ [−ᾱ, ᾱ].
Feasibility of x∗ is given by construction. Moreover, for all x ∈ K,

〈F(x∗), x− x∗〉 = 〈Cz + αCx̄+ d, x− z − αx̄〉
= 〈y, x− z〉 − α 〈y, x̄〉
= 〈y, x− z〉
≥ 0,

where the last inequality is established by (7.10).

With this construction we are not able to know the entire solution set and, therefore,
cannot verify a calculated solution. Furthermore, the idea is not suitable for the con-
struction of high-dimensional examples. Thus, we will not go into more detail here.
Instead, we will now focus on an analytic approach that is based on the Lagrange
function for a convex optimization problem.

7.2.2 Lagrange function approach

The starting point of this approach is a strongly convex quadratic optimization problem
with linear constraints:

min
{
ψ(x̃) : Ãx̃ ≤ b̃

}
(7.11)

with ψ(x̃) =
1

2

〈
C̃x̃, x̃

〉
+
〈
d̃, x̃
〉
,

where C̃ ∈ Rr×r is symmetric and positive definite, d̃ ∈ Rr, Ã ∈ Rp×r, p > r, b̃ ∈ Rp.
We assume that the feasible set has nonempty interior and that Ã has full column
rank. Let x̃∗ ∈ Rr denote the known solution of (7.11) and ũ∗ ∈ Rp denote a vector of
corresponding Lagrange multipliers.

The idea is to split the constraints of problem (7.11) into two nonempty sets and to
include one of them into the Lagrange function. Let
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Ã =

(
Aκ
Aλ

)
, b̃ =

(
bκ
bλ

)
, ũ =

(
uκ
uλ

)
with Aκ ∈ Rpκ×r, Aλ ∈ Rpλ×r, bκ, uκ ∈ Rpκ , bλ, uλ ∈ Rpλ , pκ + pλ = p, pκ > 0,
pλ > 0 be the corresponding splitting of Ã, b̃, and the Lagrange multiplier ũ (where
rows are rearranged if necessary). We further assume that Aκ has full column rank.
Thus, necessarily, r ≤ pκ has to hold.

We define the Lagrange function L : Rr ×Rpλ
+ → R as

L(x̃, uλ) =
1

2

〈
C̃x̃, x̃

〉
+
〈
d̃, x̃
〉

+ 〈uλ, Aλx̃− bλ〉 .

Now, the saddle point problem with L is equivalent to VI(F , K) with

F(x̃, uλ) =

(
∂L
∂x̃

(x̃, uλ)

− ∂L
∂uλ

(x̃, uλ)

)
=: Cx+ d,

K = {(x̃, uλ) ∈ Rr+pλ : Aκx̃ ≤ bκ, uλ ≥ 0} =: {x ∈ Rn : Ax ≤ b},

where

C =

(
C̃ ATλ
−Aλ 0

)
∈ Rn×n, d =

(
d̃
bλ

)
∈ Rn, x =

(
x̃
uλ

)
∈ Rn,

A =

(
Aκ 0
0 −Ipλ

)
∈ Rp×n, b =

(
bκ
0

)
∈ Rp, n = r + pλ.

Matrix C is nonsymmetric (since pλ > 0), A has full column rank, and int(K) 6= ∅.
Furthermore, it is clear that x∗ = (x̃∗, u∗λ)

T solves VI(F , K).

Unfortunately, C is not psd-plus. Indeed, take uλ ∈ Rpλ \ {0} with ATλuλ 6= 0. For
x = (0, uλ) it holds that 〈Cx, x〉 = 0 and Cx 6= 0. Therefore, F is not co-coercive. To
obtain a positive definite matrix C, we manipulate the Lagrange function by adding a
nonlinear concave function Λ that attains its unconstrained maximum in u∗λ and in an
arbitrary x̃, for example,

Λ(x̃, uλ) = −s
2
‖ uλ − u∗λ ‖2

with s > 0. Let

L(x̃, uλ) = L(x̃, uλ) + Λ(x̃, uλ) (7.12)

be the modified Lagrange function. This changes C and d to

C =

(
C̃ ATλ
−Aλ sIpλ

)
, d =

(
d̃

bλ − su∗λ

)
,
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while the solution of VI(F , K) stays the same. It can easily be verified that C is positive
definite.

We illustrate the Lagrange function approach by an example:

Example 7.2.2. Consider problem (7.11) with the data

C̃ =

(
3 0.2

0.2 8

)
, d̃ =

(
1
2

)
,

Ã =


−1 1
−0.2 5
−4 −0.3
0 −1

0.2 −0.1

 , b̃ =


−6
4
−3
8
2

 .

The unique solution is x̃∗ = (77/19,−37/19)T . A dual solution ũ∗ can be calculated
from the KKT system by solving 〈

ũ∗, Ãx̃∗ − b̃
〉

= 0

C̃x̃∗ + d̃+ ÃT ũ∗ = 0

ũ∗ ≥ 0.

The result is ũ∗ = (1213/95, 0, 0, 0, 0)T . Now, we partition as follows:

Aκ =


−1 1
−0.2 5
−4 −0.3
0 −1

 , bκ =


−6
4
−3
8

 , u∗κ =


1213/95

0
0
0

 ,

Aλ =
(
0.2 −0.1

)
, bλ = 2, u∗λ = 0.

Determining a saddle point of the modified Lagrange function (7.12) (with s = 5) is
equivalent to solving the variational inequality VI(F , K) with

F(x) =

 3 0.2 0.2
0.2 8 −0.1
−0.2 0.1 5

x+

1
2
2

 ,

K = {x ∈ R3 : Ax ≤ b}, where

A =


−1 1 0
−0.2 5 0
−4 −0.3 0
0 −1 0
0 0 −1

 , b =


−6
4
−3
8
0

 .
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The unique solution of VI(F , K) is x∗ = (77/19,−37/19, 0)T and we have x0 =
(10, 0.3, 20)T ∈ int(K).

With a higher-dimensional problem of type (7.11) it is easy to generate a higher-
dimensional nonsymmetric variational inequality with a co-coercive operator F and a
known solution (see Appendix A.7).

7.2.3 Multiple solutions via linear transformations

Now, we turn to an analytic approach to generate nonsymmetric variational inequalities
with known multiple solutions.

In the preceding section we have constructed a nonsymmetric, co-coercive operator
F : Rn → Rn, F(x) = Cx + d and a suitable restriction set K = {x ∈ Rn : Ax ≤ b}
such that the solution x∗ of VI(F , K) is unique and known. To obtain a variational

inequality VI(F̃ , K̃) with multiple solutions, we consider a linear transformation of the
solution of VI(F , K) with the following matrix

E =
(
In −e1

)
∈ Rn×(n+1), (7.13)

where e1 = (1, 0, . . . , 0)T ∈ Rn. When substituting variable x by variable v according
to the transformation

Ev = x, v ∈ Rn+1,

the inequality 〈Cx∗ + d, x− x∗〉 ≥ 0 gets the form 〈CEv∗ + d,Ev − Ev∗〉 ≥ 0, which
is equivalent to 〈

ETCEv∗ + ETd, v − v∗
〉
≥ 0.

Thus, we obtain the operator

F̃ : Rn+1 → Rn+1, F̃(v) = ETCEv + ETd.

The restriction set K is described in the new variable by

K ′ = {v ∈ Rn+1 : A′v ≤ b}, where A′ = AE ∈ Rp×(n+1).

However, since rank(A′) = n holds by construction, A′ does not have full column rank.
To achieve this, we add the restriction vn+1 ≥ 0 to K ′ and obtain the set

K̃ = {v ∈ Rn+1 : Ãv ≤ b̃}, where Ã =

(
AE
−eTn+1

)
, b̃ =

(
b
0

)
and en+1 = (0, . . . , 0, 1)T ∈ Rn+1.

As a first result we state that for all x ∈ K there exist (multiple) v ∈ K̃ with Ev = x.
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Lemma 7.2.3. Let x = (x1, . . . , xn)T ∈ K be given. Define

V (x) = {(x1 + t, x2, . . . , xn, t)
T ∈ Rn+1 : t ≥ 0}.

Then V (x) ⊂ K̃, and Ev = x if and only if v ∈ V (x).

Proof. The assertion is clear by definition of E and construction of K̃. ut

The following relation between VI(F , K) and VI(F̃ , K̃) is valid.

Lemma 7.2.4. (a) Let v∗ be a solution of VI(F̃ , K̃). Then x∗ := Ev∗ is the unique
solution of VI(F , K).

(b) Let x∗ be the unique solution of VI(F , K). Then v∗ solves VI(F̃ , K̃) if and only
if v∗ ∈ V (x∗).

Proof. (a) By construction of K̃ we have x∗ ∈ K. Let x ∈ K be arbitrary. Then, by

Lemma 7.2.3, there exists v ∈ K̃ with Ev = x. It follows that

〈Cx∗ + d, x− x∗〉 = 〈CEv∗ + d,Ev − Ev∗〉 =
〈
ETCEv∗ + ETd, v − v∗

〉
≥ 0

since v∗ solves VI(F̃ , K̃). Thus, x∗ solves VI(F , K).

(b) Let v∗ solve VI(F̃ , K̃). With (a) it follows that x∗ = Ev∗, which implies that v∗ ∈
V (x∗) by Lemma 7.2.3. For the reverse implication, let v∗ ∈ V (x∗) respectively

Ev∗ = x∗ hold. Let v ∈ K̃ be arbitrary. Then x := Ev ∈ K per definition of K̃,
and〈

ETCEv∗ + ETd, v − v∗
〉

= 〈CEv∗ + d,Ev − Ev∗〉 = 〈Cx∗ + d, x− x∗〉 ≥ 0

since x∗ solves VI(F , K). Thus, v∗ solves VI(F̃ , K̃). ut

The preceding lemma shows that the solution set of VI(F̃ , K̃) is equal to V (x∗) if x∗

solves VI(F , K). Furthermore, it is clear that if K has nonempty interior, this is also

the case for K̃. Indeed, let x0 ∈ int(K). Then each point v0 ∈ V (x0) with v0
n+1 > 0

is an interior point of K̃. Note that if v0 serves as an initial point for the LQPAP
algorithm, its last component will determine a representant of the solution set since
v0
n+1 is already optimal.

It remains to explain that the operator F̃ is co-coercive. This follows directly from the
next lemma which is based on Lemmata 5.4.4 and 5.4.9.
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Lemma 7.2.5. Let C ∈ Rn×n be psd-plus and E as in (7.13). Then ETCE is psd-plus.

Proof. Take v ∈ Rn+1 with
〈
ETCEv, v

〉
= 〈CEv,Ev〉 = 0. Since C is psd-plus, we

obtain CEv = 0, which implies ETCEv = 0 and proves the assertion. ut

Corollary 7.2.6. The operator F̃(v) = ETCEv + ETd is co-coercive with modulus

γ̃ = λmin(Ĉ)

‖ETC‖22
.

7.3 Numerical results for nonsymmetric examples

We give a brief characterization of the considered test examples in Table 7.1.

Example description
7.2.1 2-dimensional, unique solution, p = 5, constructed with geometric approach
7.2.2 3-dimensional, unique solution, p = 5, constructed with Lagrange approach
D.1.1 15-dimensional, unique solution, p = 20, constructed with Lagrange approach
D.1.2 130-dimensional, unique solution, p = 150, constructed with Lagrange approach
7.2.1∼ Example 7.2.1 with multiple solutions via linear transformations
7.2.2∼ Example 7.2.2 with multiple solutions via linear transformations
D.1.1∼ Example D.1.1 with multiple solutions via linear transformations
D.1.2∼ Example D.1.2 with multiple solutions via linear transformations

Table 7.1. Description of the nonsymmetric test examples.

In Table 7.2 we present the numerical results for the LQPAP method applied on the
test examples. For a comparison we also solve the problems with the BrPAP method
and show the results in Table 7.3. As before, we experimentally adapt the choice for
χ0 and r towards a best performance of the methods. Also, under-relaxation is used if
the results can be improved. The calculated solutions vcalc of the transformed examples
with multiple solutions are verified by comparing their transformation xcalc = Evcalc
with the unique solution of the original example.

The values listed in the table are

χ: lower bound for the regularization parameters,
χ0: initial value of the regularization parameter,
r: decreasing factor to update χk+1 = χ0r

k+1,
t: parameter of under-relaxation,
#iter: number of iterations,
#New: total number of Newton iterations,
‖ x0 − x∗ ‖: distance of the initial point to the solution,
‖ xcalc − x∗ ‖: distance of the calculated solution to the known solution.
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For the LQPAP method, the reached accuracies are not satisfying and out of the
question. The results for the BrPAP method are better but only for the low-dimensional
examples. We can explain this bad performance as follows. In the LQPAP auxiliary
problems, operator F is fixed at the current iterate. On the one hand, this allows to
formulate the auxiliary problems as optimization problems. On the other hand, this
implies a loss of information about F . Thus, when determining the Newton direction
as

pj = −(χk∇2
ID(yj, xk))−1(F(xk) + χk∇ID(yj, xk))

operator F does not occur in the Hesse matrix. Hence, an appropriate search direction
may highly depend on a suitable choice of the regularization parameter. Additionally,
a flexible choice of the regularization parameters is made difficult in view of the (often
large) value of χ. This problem was already discussed in Section 6.3.3.

Example {χk} u.relax. LQPAP method
No. χ χ0 r t #iter #New ‖ x0 − x∗ ‖ ‖ xcalc − x∗ ‖

7.2.1 0.148 10.00 0.3 0.5 49 6093 3.61e+000 1.18e-003
7.2.2 4.005 10.00 0.9 0.5 63 433 2.10e+001 3.14e+000
D.1.1 215.173 215.17 1.0 0.5 193 1542 2.23e+001 2.52e+000
D.1.2 842.801 842.80 1.0 0.5 491 6546 5.46e+001 2.45e+001
7.2.1∼ 8.225 8.22 1.0 0.5 889 3893 3.61e+000 3.33e-001
7.2.2∼ 8.160 100.00 0.7 0.5 91 536 2.10e+001 3.78e+000
D.1.1∼ 623.227 623.23 1.0 0.5 82 1625 2.21e+000 5.91e-001
D.1.2∼ 2029.393 2029.39 1.0 0.5 150 1363 5.50e+000 2.94e+000

Table 7.2. Results for the LQPAP method applied to nonsymmetric VIs.

Example {χk} u.relax. BrPAP method
No. χ χ0 r t #iter #New ‖ x0 − x∗ ‖ ‖ xcalc − x∗ ‖

7.2.1 1.033 10.00 0.7 1.0 21 104 3.61e+000 3.27e-006
7.2.2 2.003 2.00 1.0 0.5 44 365 2.10e+001 3.43e-005
D.1.1 107.587 107.59 1.0 0.5 127 1105 2.23e+001 5.47e-001
D.1.2 421.401 421.40 1.0 1.0 144 853 5.46e+001 1.26e+000
7.2.1∼ 2.032 10.00 0.5 1.0 34 152 3.61e+000 1.09e-005
7.2.2∼ 2.010 100.00 0.5 1.0 44 5399 2.10e+001 3.04e-006
D.1.1∼ 155.806 155.81 1.0 0.5 198 1157 2.21e+000 5.25e-001
D.1.2∼ 507.348 507.35 1.0 0.5 377 1719 5.50e+000 1.23e+000

Table 7.3. Results for the BrPAP method applied to nonsymmetric VIs.

We conclude that the auxiliary problem principle idea has the advantage that it al-
lows to solve nonsymmetric variational inequalities by means of optimization problems.
However, this theoretical device does not prove to be effective in our tests because we
encounter quite inaccurately calculated solutions.



8. LQPAP Method and Nondifferentiable

Optimization Problems

In this chapter we are interested in the application of the LQPAP scheme to problems
of Category 3, i.e, convex optimization problems of the form

min {ψ(x) + ϕ(x)} (8.1)

s.t. x ∈ K,

where the objective function is splitted into a differentiable, convex function ψ : Rn →
R and a nondifferentiable, convex function ϕ : Rn → R. The set K is supposed to have
the usual polyhedral structure.

The above optimization problem can equivalently be formulated as a variational in-
equality with

F = ∇ψ, Q = ∂ϕ.

As motivated in Chapter 5 we take Lk = 0 for all k and set

Qk = ∂εkϕ,

where the sequence {εk} has to fulfill (3.23). The resulting k-th LQPAP auxiliary
problem gets the form

Find xk+1 ∈ K and ek+1 ∈ Rn such that

ek+1 ∈ ∇ψ(xk) + ∂εkϕ(xk+1) + χk∇ID(xk+1, xk) (8.2)

and ‖ ek+1 ‖≤ δk.

With the choice δk = εk = 0, (8.2) is equivalent to the nondifferentiable minimization
problem

min
x∈Rn

{〈
∇ψ(xk), x− xk

〉
+ ϕ(x) + χkD(x, xk)

}
. (8.3)

It was shown in Theorem 3.3.1 that the solution of (8.3) is unique and belongs to the
interior of K.

We intend to apply the bundle technique (see, e.g., [58, 86]) to approximately solve
(8.3) such that its solution fulfills (8.2) with appropriate nonzero values for δk and εk.
We call the resulting method the LQPAP bundle method.
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8.1 Concept of the LQPAP bundle method

8.1.1 The bundle auxiliary problem

Following the concept of bundle methods, the nonsmooth function ϕ in (8.3) is sub-
stituted by a lower, piecewise linear, convex approximation ϕk+1 that is defined with
the help of a bundle described in Section 8.1.2. Then the resulting bundle auxiliary
problem is of the form

min
y∈Rn

{〈
∇ψ(xk), y − xk

〉
+ ϕk+1(y) + χkD(y, xk)

}
. (8.4)

Let zk+1 denote an inexact solution of (8.4). Thus, it fulfills with an appropriate error
vector ẽk+1 ∈ Rn the relation

ẽk+1 ∈ ∇ψ(xk) + ∂ϕk+1(zk+1) + χk∇ID(zk+1, xk). (8.5)

Using the definition of the subdifferential and the fact that ϕk+1 is a lower approxima-
tion of ϕ, (8.5) can be transformed as follows

ẽk+1 −∇ψ(xk)− χk∇ID(zk+1, xk) ∈ ∂ϕk+1(zk+1)

⇒ ϕk+1(y) ≥ ϕk+1(zk+1) +
〈
ẽk+1 −∇ψ(xk)− χk∇ID(zk+1, xk), y − zk+1

〉
⇒ ϕ(y) ≥ ϕ(zk+1) +

〈
ẽk+1 −∇ψ(xk)− χk∇ID(zk+1, xk), y − zk+1

〉
− (ϕ(zk+1)− ϕk+1(zk+1)),

with an arbitrary y ∈ Rn. Setting

ε̃k+1 = ϕ(zk+1)− ϕk+1(zk+1),

we can use the definition of the ε-subdifferential to obtain

ẽk+1 ∈ ∇ψ(xk) + ∂ε̃k+1
ϕ(zk+1) + χk∇ID(zk+1, xk). (8.6)

Note that ε̃k+1 ≥ 0 since ϕk+1 is a lower approximation of ϕ.

We like to remark that we use a “tilde” for the errors occurring in the LQPAP bun-
dle method to distinguish them from the error terms used in the description of the
basic LQPAP method. Moreover, superscripts are used to denote (error) vectors and
subscripts to refer to a real number.

In view of the relation ∂ε1ϕ ⊂ ∂ε2ϕ for ε1 ≤ ε2, a comparison of (8.6) and (8.2) shows
that a solution zk+1 of (8.6) is also a solution of (8.2) if

‖ ẽk+1 ‖ ≤ δk and (8.7)

ε̃k+1 ≤ εk. (8.8)

Condition (8.7) can be achieved by solving problem (8.6) exact enough. To fulfill (8.8),
the approximation of ϕ by ϕk+1 must be good enough.



8.1 Concept of the LQPAP bundle method 129

8.1.2 Conditions on the lower approximation of ϕ

In the context of bundle methods there are in general three conditions the lower approx-
imation ϕk+1 has to fulfill (see (H1)–(H3) in [4], (4.7)–(4.9) in [21], and (CP1’)–(CP3’)
in [44]). We adapt the conditions in [44] to our framework and require:

For k ≥ 1 let ϕk be given. Then ϕk+1 has to fulfill the conditions

(C1) ϕk+1(y) ≤ ϕ(y) ∀y ∈ Rn,

(C2) ϕk+1(y) ≥ ϕk(zk) +
〈
ẽk −∇ψ(xk−1)− χk−1∇ID(zk, xk−1), y − zk

〉
∀y ∈ Rn,

(C3) ϕk+1(y) ≥ ϕ(zk) +
〈
sk, y − zk

〉
∀y ∈ Rn,

where ẽk is the error vector belonging to zk, and sk ∈ ∂ϕ(zk). For k = 0 we define

ϕ1(y) = ϕ(z0) +
〈
s0, y − z0

〉
, (8.9)

where z0 = x0, s0 ∈ ∂ϕ(z0).

For example, the following two choices satisfy (C1)–(C3):

• ϕk+1(y) = max{ϕ(zj) + 〈sj, y − zj〉 : j = 1, . . . , k}, where sj ∈ ∂ϕ(zj),

• ϕk+1(y) = max{lk(y), ϕ(zk) +
〈
sk, y − zk

〉
},

where

lk(y) = ϕk(zk) +
〈
ẽk −∇ψ(xk−1)− χk−1∇ID(zk, xk−1), y − zk

〉
(8.10)

is the so-called aggregate affine function with

ẽk −∇ψ(xk−1)− χk−1∇ID(zk, xk−1) ∈ ∂ϕk(zk) (8.11)

as the aggregate subgradient (see (8.5)).

We prefer to define ϕk+1 by

ϕk+1(y) = max
{
lk(y), ϕ(zj) +

〈
sj, y − zj

〉
: j ∈ Jk

}
(8.12)

where Jk ⊂ {1, . . . , k} and k ∈ Jk. We call {(zj, sj) : j ∈ Jk} the current bundle, where
zj ∈ int(K) and sj ∈ ∂ϕ(zj) for all j ∈ Jk. This is a kind of intermediate choice that
allows to keep the bundle indexset at a reasonable size and perform an appropriate
approximation of ϕ at the same time. We briefly show that conditions (C1)–(C3) are
fulfilled.
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With (8.10) and (8.11) we obtain

lk(y) ≤ ϕk(y) ∀y ∈ Rn.

For iteration k it holds ϕk(y) ≤ ϕ(y) for all y ∈ Rn. It is further clear that for every
j ∈ Jk

ϕ(zj) +
〈
sj, y − zj

〉
≤ ϕ(y)

because ϕ is a convex function. This establishes (C1). (C2) is clear, and (C3) holds
since k ∈ Jk is required.

The bundle method tries to find an appropriate lower approximation iteratively. It
works with so-called serious steps and null steps : If ϕk+1 is suitable, which means
that ε̃k+1 = ϕ(zk+1) − ϕk+1(zk+1) ≤ εk, then zk+1 is also a solution of (8.2). Then
we can take xk+1 = zk+1 as the next iterate. This is called a serious step. Otherwise,
the approximation ϕk+1 has to be improved. This is done by using (zk+1, sk+1) with
sk+1 ∈ ∂ϕ(zk+1) as a further bundle element. Then a null step is performed by setting
xk+1 = xk.

8.1.3 Error conditions and conceptual algorithm

For the well-definedness of the algorithm the following conditions on the error sequence
{ẽk} are needed (see Theorem 8.1.2 below):

lim
k→∞

〈
ẽk, zk

〉
= 0, (8.13)

∞∑
k=1

−
〈
ẽk, zk+1 − zk

〉−
<∞, (8.14)

where
〈
ẽk, zk+1 − zk

〉−
:= min

{〈
ẽk, zk+1 − zk

〉
, 0
}

.

Remark 8.1.1. (8.14) is implied by the condition
∑∞

k=1 |
〈
ẽk, zk+1 − zk

〉
| <∞. From

the convergence analysis of the LQPAP method in Chapter 3 we have the condition∑∞
k=0 δk < +∞ on the controlling parameter δk. Hence, the requirement ‖ ẽk+1 ‖≤ δk

implies that

∞∑
k=1

‖ ẽk ‖<∞ (8.15)

and therefore also

lim
k→∞

‖ ẽk ‖= 0. (8.16)
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In view of this, (8.13) and (8.14) will be automatically fulfilled if K is compact since
then {‖ zk ‖} and {‖ zk+1 − zk ‖} are bounded. In the case that K is not compact, the
error conditions (8.13) and (8.14) have to be ensured during the algorithm. Conditions
of this type have already been presented in literature, e.g., in [28].

The conception of the LQPAP bundle method is summarized in Algorithm 8.1.

Algorithm 8.1: Conception of the LQPAP bundle method

1. (Initialization) Choose an initial iterate x0 ∈ int(K), the parameters χ0 ≥ χ,
ε0 > 0, δ0 ≥ 0, and set z0 := x0, k := 0.

2. (Convergence test) If xk solves problem (8.1) then stop.
3. (Solve auxiliary problem) For a lower approximation ϕk+1 find

zk+1 ∈ int(K) and ẽk+1 ∈ Rn with

ẽk+1 ∈ ∇ψ(xk) + ∂ϕk+1(zk+1) + χk∇ID(zk+1, xk) (8.17)

and

‖ ẽk+1 ‖≤ δk (8.18)

such that (8.13) and (8.14) hold. Calculate ε̃k+1 = ϕ(zk+1)− ϕk+1(zk+1).
if ε̃k+1 ≤ εk then (serious step)

Set xk+1 = zk+1, build function ϕk+2 with bundle indexset Jk+1,
and update χk+1, εk+1, δk+1.

else (null step)
Set xk+1 = xk, build function ϕk+2 with bundle indexset Jk+1,
set χk+1 = χk, εk+1 = εk, and update δk+1.

end
4. (Update) Set k := k + 1 and go to step 2.

In this context the iteration index k gets a new meaning. Previously, we used index k to
denote the k-th auxiliary problem where the current iterate xk and the regularization
parameter χk are given and the next iterate xk+1 is searched. In the LQPAP bundle
method, the nonsmooth function ϕ is substituted by a lower approximation ϕk+1 which
must be good enough to fulfill the conditions of the LQPAP scheme. Finding such
an appropriate lower approximation needs an additional subroutine and, therefore, a
different iteration index should be used to symbolize this, and only the final lower
approximation should be called ϕk+1. However, for better writing we avoid a further
index and use the concept of null steps/serious steps. During null steps the lower
approximation is improved, the iterate xk remains the same by setting xk+1 = xk,
and we stay within the same auxiliary problem. Each serious step leads to a new
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auxiliary problem and updates the iteration point by setting xk+1 = zk+1. Note that
the controlling parameter δk is updated both in serious and in null steps, such that
even in a sequence of null steps the error ‖ ẽk ‖ is forced to get smaller. This will
become important in Theorem 8.1.2. So, actually, only a subsequence of {δk} is used
in the outer LQPAP scheme.

8.1.4 Well-definedness and convergence theorem

We are going to show that for every iteration point xk there exists a lower approximation
ϕk+1 which fulfills conditions (C1)–(C3) and ensures that the solution zk+1 of the bundle
auxiliary problem (8.4) fulfills

ε̃k+1 = ϕ(zk+1)− ϕk+1(zk+1) ≤ εk.

This means, we prove that after finitely many null steps always a serious step will
follow.

In the next theorem we work with the following notation: Having xk as the current
iterate, the next iterations are numbered by index n ≥ k. Then {Jn}n≥k are the
corresponding bundle indexsets and {ϕn+1}n≥k the lower approximations of ϕ fulfilling
(C1)–(C3). For all n ≥ k the pairs (zl, ẽl), l ∈ Jn, are chosen such that condition
(8.5) is fulfilled. Let {zn}n≥k, {sn}n≥k (with sn ∈ ∂ϕ(zn)), and {ẽn}n≥k denote the
corresponding sequences.

Theorem 8.1.2. Suppose that the LQPAP bundle method is used to solve problem
(8.1) and let xk be the current iterate. Assume that a sequence of null steps is carried
out, i.e., ε̃n+1 > εn for all n ≥ k. Then, under the error conditions (8.13),(8.14), and
(8.16) it holds

(a) limk≤n→∞ ‖ zn+1 − zn ‖= 0,

(b) limk≤n→∞ ε̃n+1 = limk≤n→∞(ϕ(zn+1)− ϕn+1(zn+1)) = 0,

(c) with dn+1 := ẽn+1 −∇ψ(xk)− χk∇ID(zn+1, xk) it holds dn+1 ∈ ∂ε̃n+1ϕ(zn+1),

(d) {zn+1}n≥k converges to the unique solution z̄k of the auxiliary problem (8.3).

Proof. Within a sequence of null steps we have xn−1 = xk and χn−1 = χk for all
n ≥ k + 1. For all y ∈ int(K) we define



8.1 Concept of the LQPAP bundle method 133

dn := ẽn −∇ψ(xn−1)− χn−1∇ID(zn, xn−1)

= ẽn −∇ψ(xk)− χk∇ID(zn, xk),

l̂n(y) := ln(y) +
〈
∇ψ(xn−1), y − xn−1

〉
+ χn−1D(y, xn−1)

= ln(y) +
〈
∇ψ(xk), y − xk

〉
+ χkD(y, xk),

ϕ̂n(y) := ϕn(y) +
〈
∇ψ(xn−1), y − xn−1

〉
+ χn−1D(y, xn−1)

= ϕn(y) +
〈
∇ψ(xk), y − xk

〉
+ χkD(y, xk).

Our first aim is to prove convergence of the sequence {l̂n(zn)}n≥k by applying an
extension of Polyak’s lemma as given in Appendix A.4. For that purpose, we establish
three estimates.

First, it holds that

ϕ(xk) ≥ ϕn+1(xk) = ϕ̂n+1(xk) ≥ ϕ̂n+1(zn+1) +
〈
ẽn+1, xk − zn+1

〉
. (8.19)

Indeed, for all n ≥ k the pairs (zn, ẽn) are chosen according to (8.5). This means that

ẽn ∈ ∂ϕ̂n(zn) ∀n ≥ k,

which by definition of the subdifferential gives

ϕ̂n(z) ≥ ϕ̂n(zn) + 〈ẽn, z − zn〉 ∀z ∈ Rn.

This observation together with (C1) and the fact that D(xk, xk) = 0 establishes (8.19).

Second, we have

l̂n(zn+1) ≤ ϕ̂n+1(zn+1) = l̂n+1(zn+1). (8.20)

Indeed, from the definition of ln and l̂n we obtain

l̂n+1(zn+1) = ln+1(zn+1) +
〈
∇ψ(xk), zn+1 − xk

〉
+ χkD(zn+1, xk)

= ϕn+1(zn+1) +
〈
ẽn+1 −∇ψ(xn)− χn∇ID(zn+1, xn), zn+1 − zn+1

〉
+
〈
∇ψ(xk), zn+1 − xk

〉
+ χkD(zn+1, xk)

= ϕn+1(zn+1) +
〈
∇ψ(xk), zn+1 − xk

〉
+ χkD(zn+1, xk)

= ϕ̂n+1(zn+1).

Condition (C2) gives ϕn+1(zn+1) ≥ ln(zn+1) and therefore

ϕ̂n+1(zn+1) ≥ l̂n(zn+1).

The last two relations result in (8.20).
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To obtain the third estimate, namely

l̂n(y)− l̂n(zn) ≥ 〈ẽn, y − zn〉+ χk ‖ y − zn ‖2
A, (8.21)

some preparations are needed. For all y ∈ int(K) the expression l̂n(y)− l̂n(zn) can be
transformed to

l̂n(y)− l̂n(zn) = ln(y) +
〈
∇ψ(xk), y − xk

〉
+ χkD(y, xk)

− ln(zn)−
〈
∇ψ(xk), zn − xk

〉
− χkD(zn, xk)

= ϕn(zn) +
〈
ẽn −∇ψ(xn−1)− χn−1∇ID(zn, xn−1), y − zn

〉
+
〈
∇ψ(xk), y − xk

〉
+ χkD(y, xk)

− ϕn(zn)−
〈
ẽn −∇ψ(xn−1)− χn−1∇ID(zn, xn−1), zn − zn

〉
−
〈
∇ψ(xk), zn − xk

〉
− χkD(zn, xk)

=
〈
ẽn −∇ψ(xn−1)− χn−1∇ID(zn, xn−1), y − zn

〉
+
〈
∇ψ(xk), y − zn

〉
+ χk(D(y, xk)−D(zn, xk))

= 〈dn, y − zn〉+
〈
∇ψ(xk), y − zn

〉
+ χk(D(y, xk)−D(zn, xk)). (8.22)

By an appropriate splitting of D it is possible to further estimate (8.22). We define for
x, y ∈ int(K)

D1(x, y) :=

p∑
j=1

lj(x)lj(y)− (lj(y))2 log
lj(x)

lj(y)
− (lj(y))2,

D2(x, y) :=

p∑
j=1

(lj(x))2 − 2lj(x)lj(y) + (lj(y))2

=‖ l(x)− l(y) ‖2=‖ A(x− y) ‖2=‖ x− y ‖2
A,

where l (without superscript) denotes the function l(x) = (l1(x), . . . , lp(x)) = b − Ax.
It is easy to see that

D(x, y) = D1(x, y) +D2(x, y)

and
∇ID2(x, y) = 2ATA(x− y),

and that
D1(·, y) is convex

(see Appendix, Lemma A.3.1 for more information). In continuation of (8.22) we get
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l̂n(y)− l̂n(zn) = χk(D(y, xk)−D(zn, xk)) + 〈dn, y − zn〉+
〈
∇ψ(xk), y − zn

〉
= χk(D(y, xk)−D(zn, xk))

+
〈
ẽn −∇ψ(xk)− χk∇ID(zn, xk), y − zn

〉
+
〈
∇ψ(xk), y − zn

〉
= χk(D(y, xk)−D(zn, xk))

+
〈
ẽn − χk(∇ID1(zn, xk) +∇ID2(zn, xk)), y − zn

〉
= χk(D(y, xk)−D(zn, xk))

+
〈
ẽn − χk∇ID1(zn, xk), y − zn

〉
+
〈
−χk∇ID2(zn, xk), y − zn

〉
= χk(D(y, xk)−D(zn, xk))

+
〈
ẽn − χk∇ID1(zn, xk), y − zn

〉
+ χk(−

〈
2ATA(zn − xk), y − zn

〉
)

= χk(D(y, xk)−D(zn, xk))

+
〈
ẽn − χk∇ID1(zn, xk), y − zn

〉
+ χk(

〈
2ATA(xk − zn), y − zn

〉
)

= χk(D1(y, xk)−D1(zn, xk) +D2(y, xk)−D2(zn, xk))

+ χk(
〈
ẽn/χk −∇ID1(zn, xk), y − zn

〉
) + χk(2

〈
xk − zn, y − zn

〉
A

)

= χk(D1(y, xk)−D1(zn, xk)) + χk(‖ y − xk ‖2
A − ‖ zn − xk ‖2

A)

+ χk(
〈
ẽn/χk −∇ID1(zn, xk), y − zn

〉
) + χk(2

〈
xk − zn, y − zn

〉
A

)

=: a+ b

with

a := χk
(〈
ẽn/χk −∇ID1(zn, xk), y − zn

〉
+D1(y, xk)−D1(zn, xk)

)
,

b := χk
(
2
〈
xk − zn, y − zn

〉
A

+ ‖ y − xk ‖2
A − ‖ zn − xk ‖2

A

)
.

Since D1(·, xk) is a convex function, we can deduce for term a that

a = χk(
〈
−∇ID1(zn, xk), y − zn

〉
+D1(y, xk)−D1(zn, xk)) + 〈ẽn, y − zn〉

≥ 〈ẽn, y − zn〉 .

Term b can be transformed to

b = χk(2
〈
xk − zn, y − zn

〉
A

+ ‖ y − xk ‖2
A − ‖ zn − xk ‖2

A)

= χk(2
〈
xk − zn, y − xk + xk − zn

〉
A

+ ‖ y − xk ‖2
A − ‖ zn − xk ‖2

A)

= χk(2
〈
xk − zn, y − xk

〉
A

+ 2
〈
xk − zn, xk − zn

〉
A

+ ‖ y − xk ‖2
A − ‖ zn − xk ‖2

A)

= χk(2
〈
xk − zn, y − xk

〉
A

+ ‖ y − xk ‖2
A + ‖ zn − xk ‖2

A)

= χk ‖ y − zn ‖2
A .

Altogether, we obtain
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a+ b = l̂n(y)− l̂n(zn) ≥ 〈ẽn, y − zn〉+ χk ‖ y − zn ‖2
A

and estimate (8.21) is established.

Now, a combination of the estimates (8.19), (8.20), and (8.21) with y = zn+1 leads to

ϕ(xk) ≥ ϕ̂n+1(zn+1) +
〈
ẽn+1, xk − zn+1

〉
= l̂n+1(zn+1) +

〈
ẽn+1, xk − zn+1

〉
≥ l̂n(zn+1) +

〈
ẽn+1, xk − zn+1

〉
≥ l̂n(zn) +

〈
ẽn, zn+1 − zn

〉
+ χk ‖ zn+1 − zn ‖2

A +
〈
ẽn+1, xk − zn+1

〉
≥ l̂n(zn) +

〈
ẽn, zn+1 − zn

〉
+
〈
ẽn+1, xk − zn+1

〉
. (8.23)

Omitting all error terms in the above inequality chain would directly show that
{l̂n(zn)}n≥k is monotone increasing and bounded from above, thus convergent. In our
situation, conditions (8.13), (8.14), and (8.16) on the error terms ensure the conver-
gence of {l̂n(zn)}n≥k in (8.23). Indeed, if we apply Lemma A.4.4 to the inequalities

ϕ(xk) ≥ l̂n+1(zn+1) +
〈
ẽn+1, xk − zn+1

〉
≥ l̂n(zn) +

〈
ẽn, zn+1 − zn

〉
+
〈
ẽn+1, xk − zn+1

〉
with ā = ϕ(xk), an = l̂n(zn), bn = 〈ẽn, zn+1 − zn〉, and cn =

〈
ẽn+1, xk − zn+1

〉
, we

obtain that

{l̂n(zn)}n≥k is convergent

to some l∗ ∈ R. A further consequence is limk≤n→∞ bn = 0 (see Remark A.4.5). In view

of the inequality chain (8.23) we also obtain the convergence of {l̂n(zn+1)}n≥k to l∗.

With these preparations we are ready to prove statement (a). Consider again relation
(8.21) and choose y = zn+1. Then

l̂n(zn+1)− l̂n(zn) ≥
〈
ẽn, zn+1 − zn

〉
+ χk ‖ zn+1 − zn ‖2

A . (8.24)

Thus, limk≤n→∞ ‖ zn+1 − zn ‖A= 0. In view of (3.3), this implies the convergence in
Euclidean norm:

lim
k≤n→∞

‖ zn+1 − zn ‖= 0. (8.25)

So, statement (a) is proved.

Now, we turn to the proof of statement (b). The idea is to write

0 ≤ ϕ(zn+1)− ϕn+1(zn+1) = ϕ(zn+1)− ϕ(zn) + ϕ(zn)− ϕn+1(zn+1) (8.26)
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and to show that the right hand side converges to zero. This is done in three steps.

In the first step, we obtain from (C1), (C3), and the Cauchy-Schwarz inequality that

ϕ(zn+1)− ϕ(zn) ≥ ϕn+1(zn+1)− ϕ(zn) ≥
〈
sn, zn+1 − zn

〉
≥ − ‖ sn ‖‖ zn+1 − zn ‖ .

(8.27)

By (C1) and (C2) one has ln(xk) ≤ ϕn+1(xk) ≤ ϕ(xk). This implies l̂n(xk) ≤ ϕ(xk).
Involving relation (8.21) with y = xk we see that

ϕ(xk)− l̂n(zn) ≥ l̂n(xk)− l̂n(zn) ≥
〈
ẽn, xk − zn

〉
+ χk ‖ xk − zn ‖2

A .

Together with the fact that {l̂n(zn)}n≥k converges to l∗ and
{〈
ẽn, xk − zn

〉}
n≥k con-

verges to zero, it follows that the sequence

{zn}n≥k is bounded.

Since ∂ϕ is maximal monotone and dom(ϕ) = dom(∂ϕ) = Rn we can deduce from
Lemma A.2.2 and Theorem A.2.4 that ∂ϕ is bounded on bounded subsets of Rn. Since
sn ∈ ∂ϕ(zn) for all n ≥ k, boundedness of {zn}n≥k implies that

{sn}n≥k is bounded.

In the second step, we extend (8.27) by an estimate of ϕ(zn+1) − ϕ(zn) from above.
According to the mean value theorem there exists yn in the open line segment ]zn, zn+1[
and there exists cn ∈ ∂ϕ(yn) such that

ϕ(zn+1)− ϕ(zn) =
〈
cn, zn+1 − zn

〉
.

Since {zn}n≥k is bounded, also
⋃
n≥k]z

n, zn+1[ is bounded. So ∂ϕ is bounded on the
bounded set

⋃
n≥k]z

n, zn+1[, which implies that

{cn}n≥k is bounded.

With the Cauchy-Schwarz inequality we get the estimate

‖ cn ‖‖ zn+1 − zn ‖≥
〈
cn, zn+1 − zn

〉
= ϕ(zn+1)− ϕ(zn). (8.28)

In the third step, we can now combine (8.27) and (8.28) to obtain

‖ cn ‖‖ zn+1 − zn ‖ ≥ ϕ(zn+1)− ϕ(zn)

≥ ϕn+1(zn+1)− ϕ(zn)

≥ − ‖ sn ‖‖ zn+1 − zn ‖ .
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Boundedness of {cn}n≥k and {sn}n≥k and the convergence of {‖ zn+1 − zn ‖}n≥k to
zero imply

lim
k≤n→∞

(ϕ(zn+1)− ϕ(zn)) = 0 and lim
k≤n→∞

(ϕn+1(zn+1)− ϕ(zn)) = 0. (8.29)

In view of (8.26), we now get

lim
k≤n→∞

ϕ(zn+1)− ϕn+1(zn+1) = 0

and statement (b) is established.

Statement (c) has already been prepared in (8.6) where we derived

ẽn+1 ∈ ∇ψ(xk) + ∂ε̃n+1ϕ(zn+1) + χk∇ID(zn+1, xk).

With the setting dn+1 = ẽn+1−∇ψ(xk)−χk∇ID(zn+1, xk) it immediately follows that
dn+1 ∈ ∂ε̃n+1ϕ(zn+1).

It remains to prove statement (d), i.e., the convergence of {zn}n≥k to the solution of
the auxiliary problem (8.3). Since dn+1 ∈ ∂ε̃n+1ϕ(zn+1), it follows for all y ∈ Rn that

ϕ(y) ≥ ϕ(zn+1) +
〈
dn+1, y − zn+1

〉
− ε̃n+1. (8.30)

For the solution z̄k of (8.3) it holds that 0 ∈ ∇ψ(xk) + ∂ϕ(z̄k) +χk∇ID(z̄k, xk), which
is equivalent to

ϕ(y) ≥ ϕ(z̄k) +
〈
−∇ψ(xk)− χk∇ID(z̄k, xk), y − z̄k

〉
. (8.31)

Setting y = z̄k in (8.30) and y = zn+1 in (8.31) and adding the two inequalities, we
obtain

0 ≥
〈
dn+1, z̄k − zn+1

〉
− ε̃n+1 +

〈
−∇ψ(xk)− χk∇ID(z̄k, xk), zn+1 − z̄k

〉
,

which can be equivalently transformed to

ε̃n+1 ≥
〈
dn+1 +∇ψ(xk) + χk∇ID(z̄k, xk), z̄k − zn+1

〉
.

With the definition of dn+1 this can be rewritten as

1

χk
ε̃n+1 ≥

〈
1

χk
ẽn+1, z̄k − zn+1

〉
+
〈
∇ID(z̄k, xk)−∇ID(zn+1, xk), z̄k − zn+1

〉
.

Since D(·, xk) is strongly convex, there exists m > 0 with

1

χk
ε̃n+1 ≥

1

χk

〈
ẽn+1, z̄k − zn+1

〉
+m ‖ z̄k − zn+1 ‖2

A .
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With regard to the assumptions on the error sequence {ẽn} we have

lim
k≤n→∞

1

χk

〈
ẽn+1, z̄k − zn+1

〉
= 0

since χk is fixed. Together with part (b) it now follows that

lim
k≤n→∞

‖ z̄k − zn+1 ‖A= 0.

Thus, {zn+1}n≥k converges to z̄k and part (d) is proved. ut

8.2 Numerical realization of the LQPAP bundle method

To realize the LQPAP bundle method numerically, we have to take a closer look at
some details. The following aspects need to be concretized:

• Choice of a method to solve the auxiliary problem (8.17).

• Choice of the sequence {εk}.

• Choice and update of the lower approximation ϕk+1.

• Initialization and update of the regularization parameter χk.

• Realization of a stopping criterion.

First, we restrict our considerations to the case

ψ = 0,

where we can give a theoretical justification of certain implementations. The necessary
extensions for the case ψ 6= 0 are discussed in Section 8.2.7.

Furthermore, also empirical aspects are taken into account, e.g., when choosing the
parameter settings or when differing from theory. The considerations are based on
works from Auslender/Teboulle [4], Hübner [44], Kiwiel [59], and Wright [89], and
corresponding results are transferred to our situation or extended by new conclusions.

8.2.1 Primal-dual interior point method to solve the auxiliary problem

Transformation of the auxiliary problem. We summarize the ideas in [44, Section
6.2.1] to solve the auxiliary problem (8.17), which is equivalent to zk+1 being an inexact
solution of the problem
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min
y∈Rn

{
ϕk+1(y) + χkD(y, xk)

}
. (8.32)

Let Jk be the set of bundle indices used to define ϕk+1 as described in (8.12). Although
Jk is a selection of indices from the set {1, . . . , k}, for simplicity and better writing we
assume that Jk = {1, . . . ,m}. The corresponding bundle is {(zj, sj) : j = 1, . . . ,m}.

Because of the special structure of ϕk+1 we can transform (8.32) to

min
(y,w)∈Rn×R

{
w + χkD(y, xk)

}
s.t. ϕ(zj) +

〈
sj, y − zj

〉
≤ w ∀j ∈ Jk (8.33)

ϕk(zk) +
〈
−χk−1∇ID(zk, xk−1), y − zk

〉
≤ w.

With the variable v = w − ϕ(xk) we transform (8.33) to

min
(y,v)∈Rn×R

{
v + χkD(y, xk)

}
(8.34)

s.t. Sy − ev ≤ d,

with e = (1, . . . , 1)T ∈ Rm+1 and

S =


(s1)T

. . .
(sm)T

(s̃k)T

 ∈ R(m+1)×n, d = Sxk +


αk,1
. . .
αk,m
α̃k

 ∈ Rm+1. (8.35)

Here, we use the notation

s̃k = −χk−1∇ID(zk, xk−1),

αk,j = ϕ(xk)− ϕ(zj)−
〈
sj, xk − zj

〉
∀j ∈ Jk,

α̃k = ϕ(xk)− ϕk(zk)−
〈
s̃k, xk − zk

〉
.

Namely, s̃k is the aggregate subgradient and α̃k the corresponding linearization error
in xk between ϕ and the linearization of ϕk in (zk, s̃k). The values αk,j (j = 1, . . . ,m)
are the linearization errors in xk between ϕ and the linearization of ϕ in (zj, sj).

Remark 8.2.1. Like in [44, Section 6.2.1], we leave out the error vector ẽk in the
aggregate subgradient. From a theoretical point of view it would be no problem to work
with the error vector ẽk as before. We would just have to adapt the definition of the
matrix S coming further down. This would not have any consequences on the following
argumentation. From an implementational point of view we would have to determine a
vector ẽk in the set ∂ϕk(zk) + χk−1∇ID(zk, xk−1). Since ϕk is the maximum of affine
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functions, its subdifferential is the convex hull of the gradients of the active functions. In
view of the condition ‖ ẽk ‖≤ δk−1 in (see (8.7)) an element ŝkmin ∈ ∂ϕk(zk) of minimal
norm is preferable to set ẽk = ŝkmin + χk−1∇ID(zk, xk−1). Nevertheless, the calculation
of ŝkmin can only be done inexactly. This would bring up another error term. So, in order
to avoid too much work in estimating all errors that occur in a real computation, we
omit the error vector in the aggregate subgradient for simplicity.

Karush-Kuhn-Tucker (KKT) conditions. Problem (8.34) is a convex optimization
problem. The objective function is continuously differentiable on int(K)×R, and the
feasible set is polyhedral. For its solution we aim to apply a primal-dual interior point
method. The corresponding necessary optimality conditions (Karush-Kuhn-Tucker con-
ditions) are:

χk∇ID(y, xk) + STν = 0, (8.36)

1− 〈e, ν〉 = 0, (8.37)

Sy − ev − d ≤ 0, (8.38)

〈Sy − ev − d, ν〉 = 0, (8.39)

ν ≥ 0. (8.40)

The vector ν ∈ Rm+1
+ corresponds to the Lagrange multipliers for the inequality con-

ditions in (8.34). Note that no additional constraint qualification is needed because of
the linearity of the constraints, and that the KKT conditions are also sufficient since
the objective function is convex.

We define

t = −Sy + ev + d,

T = diag(t1, . . . , tm+1),

V = diag(ν1, . . . , νm+1)

and get the following conditions, which are equivalent to (8.36)–(8.40):

χk∇ID(y, xk) + STν = 0, (8.41)

1− 〈e, ν〉 = 0, (8.42)

Sy − ev + t− d = 0, (8.43)

TVe = 0, (8.44)

ν ≥ 0, t ≥ 0. (8.45)

The primal-dual method generates iterates (xi, vi, νi, ti) that satisfy the bounds in
(8.45) strictly, which is the interior point idea. Furthermore, the complementarity con-
dition (8.44) will be disturbed using a parameter µ. This leads to the central path idea
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of the primal-dual method. For more background we refer to Wright [89]. The KKT
conditions with disturbed complementarity condition are:

χk∇ID(y, xk) + STν = 0, (8.46)

1− 〈e, ν〉 = 0, (8.47)

Sy − ev + t− d = 0, (8.48)

TVe− µe = 0, (8.49)

ν ≥ 0, t ≥ 0. (8.50)

Because of (8.49), it holds that

µ =
〈ν, t〉
m+ 1

,

and µ is considered as the duality measure.

Newton method. The primal-dual interior point method is based on a step of the
Newton method to solve system (8.46)–(8.49) for a given µ. Then µ is scaled down
and the next iterate is calculated with the Newton method. The perturbation with µ
ensures that t and ν stay strictly positive.

To compute the Newton direction in a given iterate (y, v, ν, t) ∈ int(K)×R×Rm+1
++ ×

Rm+1
++ , we have to solve the Newton equation

χk∇2
ID(y, xk) 0 ST 0

0 0 −eT 0
S −e 0 I
0 0 T V



∆y
∆v
∆ν
∆t

 = −


χk∇ID(y, xk) + STν

1− 〈ν, e〉
Sy − ev + t− d
TVe− σµe

 . (8.51)

Here, the parameter σ ∈ (0, 1] is the so-called centering parameter. For abbreviation
we set

rD(y, ν) = χk∇ID(y, xk) + STν,

re(ν) = 1− 〈ν, e〉 ,
rd(y, v, t) = Sy − ev + t− d.

It is possible to eliminate ∆t in (8.51) and solve the transformed systemχk∇2
ID(y, xk) 0 ST

0 0 −eT
S −e −V−1T

∆y∆v
∆ν

 = −

 rD(y, v)
re(ν)

rd(y, v, t)− V−1rtν

 . (8.52)

Then ∆t is calculated by
∆t = −V−1(rtν + T∆ν)
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with
rtν = TVe− σµe.

System (8.52) is uniquely solvable. This can be seen after an equivalent transformation
to χk∇2

ID(y, xk) 0 −ST
0 0 eT

S −e V−1T

 ∆y
∆v
−∆ν

 = −

 rD(y, ν)
re(ν)

rd(y, v, t)− V−1rtν

 . (8.53)

For (∆1, ∆2, ∆3)T ∈ Rn ×R×Rm+1 it holds

[
∆T

1 ∆T
2 ∆T

3

] χk∇2
ID(y, xk) 0 −ST

0 0 eT

S −e V−1T

∆1

∆2

∆3


= χk∆

T
1∇2

ID(y, xk)∆1 +∆T
3 V−1T∆3.

Since the iteration process will ensure νj > 0 and tj > 0 for all j, the diagonal entries
of the diagonal matrix V−1T will be positive and, therefore, ∆T

3 V−1T∆3 > 0 holds for
any ∆3 ∈ Rm+1. For each x ∈ int(K) the distance function D(·, x) is strictly convex.
So, ∇2

ID(y, xk) is positive semidefinite. Altogether, the matrix in the system (8.53) is
positive definite and thus regular.

Update of the iterates – calculation of the step length. Having calculated the
Newton direction (∆y,∆v,∆ν,∆t) with system (8.52), the next iterate of the primal-
dual method is given by

(y+, v+, ν+, t+) = (y, v, ν, t) + τ(∆y,∆v,∆ν,∆t),

µ+ =
〈ν+, t+〉
m+ 1

, τ > 0.

According to the path-following idea, the iterates shall be restricted to a neighborhood
of the central path. The neighborhood excludes points (ν, t) that are too close to the
boundary of the nonnegative orthant. This helps to ensure that the search directions
make at least minimal progress towards the solution.

It further has to be considered that the KKT conditions include the nonlinear equation
(8.46). So, even if we start with a feasible point, i.e., an iterate satisfying equations
(8.46)–(8.48), a step along the Newton direction (∆x,∆v,∆ν,∆t) may not preserve
feasibility. Therefore, the infeasible interior point framework is used, which allows in-
feasible iterates and works simultaneously towards feasibility and optimality. Thus, the
neighborhood used in the path-following idea is extended and defined as

N−∞(ξ, η) = {(y, v, ν, t) : ‖ rD(y, ν) ‖≤ ηµ, ‖ re(ν) ‖≤ ηµ,

‖ rd(y, v, t) ‖≤ ηµ, νjtj ≥ ξµ, ∀j ∈ {1, . . . ,m+ 1}, y ∈ int(K)}
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with ξ ∈ (0, 1) and η > 0. The first three conditions ensure that the amount by which
the equations (8.46)–(8.48) are violated decreases at least as rapidly as the duality
measure µ. The fourth condition realizes the path-following idea. It keeps the pairwise
products νiti roughly in balance and prevents the search directions from being distorted
by components of (ν, t) that approach zero too quickly. The last condition (y ∈ int(K))
is added to ensure that the objective function in (8.34) is welldefined.

Moreover, an Armijo-like condition on µ is added demanding that µ decreases by
at least some small fraction of the predicted decrease at every step. Altogether, the
conditions on the step length τ are:

(y+, v+, ν+, t+) ∈ N−∞(ξ, η)

µ+ ≤ (1− sτ)µ

with s ∈ (0, 1).

For more information about infeasible primal-dual interior point algorithms and their
application to convex programs see [89, Chapter 6, Chapter 8].

Determining an initial iterate. The expressions re(ν) and rd(y, v, t) are affine linear.
So, if an iterate (y, v, ν, t) is chosen with re(ν) = 0 and rd(y, v, t) = 0, the next iterate
(y+, v+, ν+, t+) will fulfill re(ν

+) = 0 and rd(y
+, v+, t+) = 0 as well. Indeed, in view of

the second and third equation in (8.51) it holds for arbitrary τ > 0

re(ν
+) = re(ν + τ∆ν) = 1− 〈ν + τ∆ν, e〉 = re(ν)− τ 〈∆ν, e〉 = 0

and

rd(y
+, v+, t+) = S(y + τ∆y)− e(ν + τ∆ν) + (t+ τ∆t)− d

= rd(y, v, t) + τ(S∆y − e∆ν +∆t)

= 0.

A possible choice of (y, v, ν, t) ∈ N−∞(ξ, η) with re(ν) = rd(y, v, t) = 0 is the following.
Given xk ∈ int(K), set, for instance,
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y = xk,

v = 0.1,

tj = αk,j + v > 0, j = 1, . . . ,m+ 1,

νj =
1

tj
/
m+1∑
i=1

1

ti
> 0, j = 1, . . . ,m+ 1,

ξ ∈ (0, 1) arbitrary (e.g. 10−3),

η = 10
‖ rD(y, ν) ‖

µ
> 0 with

µ =
〈ν, t〉
m+ 1

= 1/
m+1∑
j=1

1

tj
.

Indeed, 〈ν, e〉 = 1, so that re(ν) = 0. With (8.35) it holds

(Sy − ev + t− d)j = (Sxk)j − 0.1 + αk,j + 0.1− (Sxk)j − αk,j = 0

for all j = 1, . . . ,m + 1, so that rd(y, v, t) = 0. For arbitrary ξ ∈ (0, 1) it holds
νjtj = µ ≥ ξµ. Finally, ηµ = 10 ‖ rD(y, ν) ‖≥‖ rD(y, ν) ‖ is valid due to the choice of
η.

Pseudocode and comments on convergence. The primal-dual interior point
method to solve auxiliary problem (8.17) is summarized in Algorithm 8.2.

We close this section with a comment on the convergence of the primal-dual method
and the overall LQPAP bundle method.

We do not aim at giving a stringent convergence analysis for the described primal-dual
method. A convergence proof of a similar method – without the requirement y ∈ int(K)
– can be found in [78].

Concerning the overall LQPAP bundle method remember condition (8.7), i.e.,

‖ ẽk+1 ‖≤ δk,

which describes the desired accuracy of zk+1. If the primal-dual method stops at iterate
(ȳ, v̄, ν̄, t̄), we assign

zk+1 = ȳ and vk+1 = v̄.

Theoretically it is possible to calculate zk+1 as accurate as it is required by iteratively
decreasing the accuracy parameters θµ and θr in the primal-dual method. However,
numerical tests have shown that the influence of θµ and θr is insignificant. Thus, we
can omit an adaptation of the parameters in our implementation.
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Algorithm 8.2: Primal-dual interior point method

1. (Initialization) Choose scalars ξ ∈ (0, 1), η > 0, 0 < σ < σ ≤ 1/2, s ∈ (0, 1),
θµ > 0, θr > 0, and an initial iterate (y, v, ν, t) ∈ N−∞(ξ, η) with re(ν) = 0
and rd(y, v, t) = 0. Set µ = 〈t, ν〉 /(m+ 1).

2. (Stopping criterion) If µ ≤ θµ and ‖ rD(y, ν) ‖≤ θr then stop: (y, v) is an
approximate solution of (8.34).

3. (Calculate search direction) Choose σ ∈ [σ, σ] and calculate
(∆y,∆v,∆ν,∆t) by solvingχk∇2

ID(y, xk) 0 ST

0 0 −eT
S −e −V−1T

∆y∆v
∆ν

 = −

rD(y, v)
0

−V−1rtν


and setting

∆t = −V−1(rtν + T∆ν)

with
rtν = TVe− σµe.

4. (Calculate step length) Let τ0 ∈ (0, 1] and ω ∈ (0, 1). Choose the step length
τ as the first element in the sequence τ0, ωτ0, ω

2τ0, . . ., such that

ν+
i t

+
i ≥ ξµ+,

‖ rD(y+, ν+) ‖ ≤ ηµ+,

µ+ ≤ (1− sτ)µ,

y+ ∈ int(K).

5. (Update) Set

(y, v, ν, t)← (y, v, ν, t) + τ(∆y,∆v,∆ν,∆t),

µ = 〈ν, t〉 /(m+ 1).

6. Go to step 2.
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Alternative calculation of ε̃k+1. With the knowledge about the primal-dual method,
an alternative way to calculate ε̃k+1 can be derived. With ε̃k+1 it is checked, whether a
null or a serious step will be performed. According to the definition we have to calculate

ε̃k+1 = ϕ(zk+1)− ϕk+1(zk+1). (8.54)

An evaluation of function ϕk+1 needs |Jk| + 1 function evaluations of ϕ because the
maximum of |Jk|+1 affine functions has to be determined. In view of the optimization
problem (8.33) one obtains

w̄ = ϕk+1(ȳ)

as the value of w in the objective function if (ȳ, v̄, ν̄, t̄) is the result of the primal-dual
method. Furthermore, by the substitution v = w − ϕ(xk) one has

v̄ = ϕk+1(ȳ)− ϕ(xk) (8.55)

as the value of v. So, with zk+1 = ȳ and vk+1 = v̄ the value of ε̃k+1 can be computed as

ε̃k+1 = ϕ(zk+1)− vk+1 − ϕ(xk) (8.56)

alternatively to (8.54).

8.2.2 Adaptive choice of the sequence {εk}

The sequence {εk} influences the choice of the outer approximation Qk of the operator
Q. The inclusion Q ⊂ Qk ⊂ Qεk has to be fulfilled (see (3.15) in Chapter 3). In
the situation of a nondifferentiable, convex optimization problem we have Qk = ∂εkϕ.
According to the convergence conditions for the LQPAP algorithm, the sequence {εk}
has to fulfill

εk ≥ 0 ∀k ∈ N0, and
∞∑
k=0

εk < +∞. (8.57)

In step 3 of Algorithm 8.1 it became clear that the value of εk influences whether a
null or a serious step will follow. In the sense of the LQPAP scheme the sequence {εk}
is determined a priori, i.e., before the algorithm starts. In the framework of the bundle
method this sequence is used as follows: In the case of a serious step, the next element
of the given sequence is taken for the next iteration. But in the case of a null step, the
current element of the sequence is taken again for the next iteration.

Nevertheless, we prefer an adaptive choice of the sequence {εk}. This makes sense since,
if the current iteration point is far away from the solution or the algorithm makes good
progress, it is not necessary that the approximation ϕk+1 is improved within several null
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steps. And, vice versa, if the algorithm does not make enough progress or if the iterates
are close to the optimal point, a small εk is desired. The value of v can be taken as a
measure for the progress of the algorithm because it represents the predicted descent,
i.e., the difference between ϕk+1(ȳ) and ϕ(xk) (see (8.55)). Therefore, like in [44, Section
6.1.2] we propose to perform a serious step if

ε̃k+1 ≤ −γ1v
k+1

with γ1 ∈ (0, 1). With (8.56) this is equivalent to

ϕ(zk+1) ≤ ϕ(xk) + (1− γ1)vk+1. (8.58)

In many papers on bundle methods a similar criterion is used for the determination of
a serious step (see, e.g, [59, 86]).

For a current iterate xk we denote i(k) ∈ N0 with i(k) ≥ k as the first index such that
inequality (8.58) holds. It is then possible to define the sequence {εk} a posteriori as

{εk}k∈N0 = {−γ1v
i(k)+1}k∈N0 . (8.59)

The next lemma will show that for each current iterate xk there indeed exists an index
i(k). Afterwards, we demonstrate that {εk}k∈N0 fulfills the conditions in (8.57). This
will provide a theoretical justification of such a choice.

Lemma 8.2.2. Let xk be the current iterate of the LQPAP bundle method and no
solution of problem (8.1). Then there exists an index i(k) ∈ N0 with i(k) ≥ k such that
inequality (8.58) holds.

Proof. Suppose that for all subsequent iterations inequality (8.58) is violated, i.e.,

ϕ(zn+1) > ϕ(xn) + (1− γ1)vn+1 ∀n ≥ k.

Thus, only null steps will follow and xn = xk for all n ≥ k. With regard to (8.56) this
implies

ϕ(zn+1) > ϕ(xk) + (1− γ1)(ϕ(zn+1)− ϕ(xk)− ε̃n+1)

respectively

ε̃n+1 > −γ1(ϕ(zn+1)− ϕ(xk)− ε̃n+1). (8.60)

For a sequence of null steps Theorem 8.1.2 states that limk≤n→∞ ε̃n+1 = 0 and
limk≤n→∞ z

n+1 = z̄k. Since ϕ is continuous on int(K) as a finite, convex function
on Rn, for n→∞ we obtain from (8.60) that 0 ≥ −γ1(ϕ(z̄k)−ϕ(xk)). With γ1 ∈ (0, 1)
the relation



8.2 Numerical realization of the LQPAP bundle method 149

ϕ(xk) ≤ ϕ(z̄k)

follows. On the other hand, due to the optimality of z̄k for problem (8.3), we have

ϕ(xk) ≥ ϕ(z̄k) + χkD(z̄k, xk) ≥ ϕ(z̄k).

This establishes
ϕ(xk) = ϕ(z̄k),

which implies xk = z̄k since z̄k is a unique solution. The necessary optimality condition
for problem (8.3) together with D(xk, xk) = 0 now results in

0 ∈ ∂ϕ(xk),

i.e., xk is an optimal solution of (8.1). This is a contradiction. ut

For the next proposition we assume that we have an exact solution (y∗, v∗, ν∗, t∗) of
the KKT system (8.46)–(8.50) with µ = 0.

Proposition 8.2.3. For the sequence {εk} defined by (8.59) it holds that

εk ≥ 0 ∀k ∈ N0.

Proof. Let xk be the current iterate. We assign for the next iteration of the algorithm

zk+1 = y∗, vk+1 = v∗, and νk+1 = ν∗.

Multiplying equation (8.48) with vector νk+1 results in〈
νk+1, Szk+1 − evk+1 + t∗ − d

〉
= 0. (8.61)

We set αk = (αk,1, . . . , αk,m, α̃k)
T and apply (8.46), (8.47), and (8.49) with µ = 0 to

equivalently transform (8.61) to

0 =
〈
STνk+1, zk+1

〉
+
〈
νk+1,−evk+1 + t∗ − d

〉
=
〈
−χk∇ID(zk+1, xk), zk+1

〉
+ vk+1

〈
νk+1,−e

〉
+
〈
νk+1, t∗ − d

〉
=
〈
−χk∇ID(zk+1, xk), zk+1

〉
− vk+1 −

〈
νk+1, d

〉
=
〈
−χk∇ID(zk+1, xk), zk+1

〉
− vk+1 −

〈
νk+1, Sxk + αk

〉
=
〈
−χk∇ID(zk+1, xk), zk+1

〉
− vk+1 −

〈
STνk+1, xk

〉
−
〈
νk+1, αk

〉
=
〈
−χk∇ID(zk+1, xk), zk+1

〉
− vk+1 −

〈
−χk∇ID(zk+1, xk), xk

〉
−
〈
νk+1, αk

〉
=
〈
−χk∇ID(zk+1, xk), zk+1 − xk

〉
− vk+1 −

〈
νk+1, αk

〉
.

We obtain the following formula for the value of vk+1:
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vk+1 =
〈
χk∇ID(zk+1, xk), xk − zk+1

〉
−
〈
νk+1, αk

〉
. (8.62)

To further estimate the scalar product
〈
χk∇ID(zk+1, xk), xk − zk+1

〉
, key property

(3.14) is applied with x = zk+1, y = xk, and z = xk. This results in

vk+1 ≤ 3

2
(‖ xk − xk ‖2

A − ‖ xk − zk+1 ‖2
A)−

〈
νk+1, αk

〉
= −3

2
‖ xk − zk+1 ‖2

A −
〈
νk+1, αk

〉
(8.63)

≤ 0

because νk+1 ≥ 0 and αk ≥ 0. With γ1 ∈ (0, 1) it is evident that εk = −γ1v
i(k)+1 ≥ 0

for all k ∈ N0. ut

Remark 8.2.4 (Case of inexact solutions). We briefly discuss the case of an in-
exact solution of the KKT system (8.46)–(8.50). As explained before, the primal-dual
interior point method is implemented without an adaptation of the accuracy parame-
ters θµ and θr. Consequently, the calculated solution (ȳ, v̄, ν̄, t̄) does not solve the KKT
system exactly, but it fulfills the following relations

χk∇ID(ȳ, xk) + ST ν̄ = rD(ȳ, ν̄),

‖ rD(ȳ, ν̄) ‖ ≤ θr,

1− 〈e, ν̄〉 = 0,

Sȳ − eν̄ + t̄− d = 0,

T̄ V̄e− µe = 0,

µ ≤ θµ,

ν̄ ≥ 0, t̄ ≥ 0.

Using these relations to get a formula for vk+1, we arrive at

vk+1 ≤
〈
rD(ȳ, ν̄), zk+1 − xk

〉
+ θµ −

3

2
‖ xk − zk+1 ‖2

A −
〈
νk+1, αk

〉
.

Applying (3.3) and (A.2) with ξ = 3a2 (see Appendix A.4), this can further be estimated
as

vk+1 ≤ 1

6a2
θ2
r +

3a2

2
‖ zk+1 − xk ‖2 +θµ −

3a2

2
‖ xk − zk+1 ‖2 −

〈
νk+1, αk

〉
≤ 1

6a2
θ2
r + θµ.

So, in the inexact case we can only state that vk+1 is less than or equal to some error
term depending on θr and θµ . This is one source of numerical difficulties. They become
apparent if test examples with known solutions are solved by the method.
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Proposition 8.2.5. The sequence {εk} defined by (8.59) is summable.

Proof. With the definition of the sequence {i(k)}k∈N0 it holds for all k ∈ N0 that

ϕ(zi(k)+1) ≤ ϕ(xi(k)) + (1− γ1)vi(k)+1.

In the case of a serious step, iterate xk+1 is set to zi(k)+1, whereas for all k ≤ l ≤ i(k)
one has xl = xk. Thus, for all k ∈ N0,

−vi(k)+1 ≤ ϕ(xk)− ϕ(xk+1)

1− γ1

.

For arbitrary N ∈ N it holds

N∑
k=0

εk = −γ1

N∑
k=0

vi(k)+1

≤ γ1

N∑
k=0

ϕ(xk)− ϕ(xk+1)

1− γ1

= γ1
ϕ(x0)− ϕ(xN)

1− γ1

≤ γ1
ϕ(x0)− ϕ(x∗)

1− γ1

,

where x∗ denotes a solution of problem (8.1). For N →∞ it follows immediately that

∞∑
k=0

εk <∞.

ut

We summarize that the choice of the sequence {εk} according to (8.59) makes sense
not only from a numerical point of view, but it is also theoretically justified. Thus, the
decision rule for a serious step respectively null step is implemented as follows:

If ϕ(zk+1) ≤ ϕ(xk) + (1−γ1)vk+1 then perform a serious step, otherwise perform a null
step.

8.2.3 Choice and update of the lower approximation ϕk+1

The general considerations in this section are not specific for the LQPAP bundle
method. The main aspects about the choice and update of ϕk+1 are summarized from
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the literature about bundle methods (see, e.g., [59, 86]) and special settings concerning
the LQPAP bundle method are pointed out.

As mentioned in Section 8.1.2, we define the lower approximation ϕk+1 as

ϕk+1(y) = max{lk(y), ϕ(zj) +
〈
sj, y − zj

〉
: j ∈ Jk},

where Jk ⊂ {1, . . . , k} and k ∈ Jk. The size of the index set Jk plays a crucial rule
concerning the numerical performance of the method. The larger the number of indices
in Jk, i.e., the more testpoints and subgradients are in the current bundle, the better
the approximation of ϕ by ϕk+1 and the less null steps are necessary to find a tolerable
approximation. However, if m = |Jk| is large, the dimension of the KKT matrix (see
(8.52)) is large as well. This implies a huge numerical effort to calculate a Newton step.
Therefore, it makes sense to keep the size of Jk bounded:

|Jk| ≤M, M ≥ 1.

For that purpose, it is common to clear the bundle in each iteration by removing all
elements j ∈ Jk with

νk+1
j = 0.

This has the following background: The values νk+1
1 , . . . , νk+1

m are the Lagrange mul-
tipliers for the first m inequality conditions in (8.34). The complementarity condition
(8.39) implies that

(Szk+1 − evk+1 − d)j < 0

is possible if νk+1
j = 0. This is equivalent to

ϕ(zj) +
〈
sj, zk+1 − zj

〉
< wk+1

with wk+1 = vk+1 +ϕ(xk) and means that the linear function ϕ(zj)+ 〈sj, · − zj〉 has no
impact on the approximation of ϕ in a neighborhood of xk. So it can be discarded for
the next iteration. Note that also the situation (Szk+1 − evk+1 − d)j = 0 and νk+1

j = 0
is possible, but even in this case it is conform to theory to remove the corresponding
index.

To guarantee condition (C3), the element (zk+1, sk+1) is added to the bundle after
each null or serious step. If the bundle is at its maximum size, we have to remove one
element to give space for the new element (zk+1, sk+1). For that purpose, we look at
the bundle elements (zj, sj) and the corresponding linearization errors αkj . The smaller
αkj , the better the linear function ϕ(zj) + 〈sj, · − zj〉 describes the behavior of ϕ in a
neighborhood of xk. Thus, it makes sense to remove a bundle element with the largest
linearization error.

In some descriptions of bundle methods the bundle is completely cleared after a serious
step by setting Jk+1 = {0} (see, e.g., [4]). This is not necessary in view of the conditions
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(C1)–(C3) and it even makes sense to use the information from earlier iterations,
especially if the evaluation of the function values and the subgradients is expensive.
Thus, we keep the bundle after a serious step.

The aggregate subgradient s̃k and its corresponding linearization error α̃k play a special
role. In iteration k = 0, s̃0 and α̃0 are not existent. For k = 1 it holds

s̃1 = −χ0∇ID(z1, x0) = ν1s0 = s0

since ν1 has only one component that must therefore be equal to one. The corresponding
linearization error α̃1 is equal to α1,0. Thus, in iteration k = 1 the aggregate subgradient
can be omitted since it would lead to a redundant inequality condition in problem
(8.34). For that reason, s̃k and α̃k are first determined for k = 2 and then updated
after each iteration, i.e., (s̃k, α̃k) is substituted by (s̃k+1, α̃k+1). By the definition of the
aggregate subgradient and the KKT condition (8.46), we get

s̃k+1 = −χk∇ID(zk+1, xk) =
∑
j∈Jk

νk+1
j sj + νk+1

m+1s̃
k.

We point out that in contrast to other implementations of bundle methods, where the
aggregate subgradient is removed after each serious step, we keep it in each iteration.
This is also conform to the conditions (C1)–(C3).

Finally, we take a closer look at the linearization errors and describe how they are
updated from iteration k to k + 1. We distinguish between null and serious steps. In
iteration k we have

αk,j = ϕ(xk)− ϕ(zj)−
〈
sj, xk − zj

〉
∀j ∈ Jk,

α̃k = ϕ(xk)− ϕk(zk)−
〈
s̃k, xk − zk

〉
.

In the case of a null step one has xk+1 = xk and therefore

αk+1,j = αk,j ∀j ∈ Jk.

For the new bundle element (zk+1, sk+1) we get

αk+1,k+1 = ϕ(xk)− ϕ(zk+1)−
〈
sk+1, xk − zk+1

〉
.

Furthermore, with equations (8.55) and (8.62) for vk+1 and the definition of s̃k+1 it
holds

α̃k+1 = ϕ(xk)− ϕk+1(zk+1)−
〈
s̃k+1, xk − zk+1

〉
= −vk+1 +

〈
χk∇ID(zk+1, xk), xk − zk+1

〉
=
〈
νk+1, αk

〉
=
∑
j∈Jk

νk+1
j αk,j + νk+1

m+1α̃k.
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In the case of a serious step the following update rules can be deduced:

αk+1,j = ϕ(xk+1)− ϕ(zj)−
〈
sj, xk+1 − zj

〉
= αk,j + ϕ(xk+1)− ϕ(xk)−

〈
sj, xk+1 − xk

〉
∀j ∈ Jk,

α̃k+1 = ϕ(xk+1)− ϕk+1(zk+1)−
〈
s̃k+1, xk+1 − zk+1

〉
= ϕ(xk+1)− ϕ(xk)− vk+1 −

〈
s̃k+1, xk − zk+1

〉
+
〈
s̃k+1, xk − zk+1

〉
−
〈
s̃k+1, xk+1 − zk+1

〉
=
∑
j∈Jk

νk+1
j αk,j + νk+1

m+1α̃k + ϕ(xk+1)− ϕ(xk)−
〈
s̃k+1, xk+1 − xk

〉
αk+1,k+1 = 0.

8.2.4 Initialization and update of the regularization parameter χk

Concerning the lower and upper bound for the sequence {χk}, we refer to the general
statements in Section 6.1.2.

An idea to adaptively calculate the initial value χ0 is presented in Appendix A.6.4 for
problems of Category 1. It can easily be transferred to the situation in this chapter by
writing ϕ instead of ψ and s0 ∈ ∂ϕ(x0) instead of ∇ψ(x0).

Of course, we can use the simple update rule

χk+1 = max{χ0r
k+1, χ}, χ0 ≥ χ, r ∈ (0, 1)

to change χk after each serious step. However, in the context of bundle methods (see,
e.g., [59]) or trust region methods (see, e.g., [77]) it is common to take the quality of
the lower approximation ϕk+1 into account.

If ϕk+1 is a bad model for ϕ, we intend to keep the solution zk+1 of (8.32) close to the
current iterate xk. This is achieved with an appropriate large regularization parameter.
On the other hand, a small regularizing effect of D is preferable if ϕk+1 is a good
approximation of ϕ. Thus, an adaptive update strategy for χk is searched such that
the solution zk+1 is kept in a region where ϕk+1 is close to ϕ.

It is standard to use the ratio between the actual descent and the predicted descent,
i.e.,

ρk :=
ϕ(zk+1)− ϕ(xk)

ϕk+1(zk+1)− ϕ(xk)

as a value to decide whether ϕk+1 is a good approximation or not. In Section 8.2.2 (see
(8.58)) the test

ρk ≥ (1− γ1)
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is used as a criterion for a serious step. The following refinement of this test will give
an update rule for the regularization parameter:

Let 0 < γ2 < γ1 < 1 and 0 < τ3 < τ2 < 1 < τ1 be given. The situation ρk ≥ (1 − γ2)
implies that the model function ϕk+1 is close to ϕ, such that χk can be scaled down
(using τ3). If (1 − γ1) ≤ ρk < (1 − γ2), a serious step is performed but the stronger
condition ρk ≥ (1− γ2) is violated. In this case, one can reduce χk slightly (using τ2).
In the case of a null step, i.e., ρk < (1−γ1), ϕk+1 is a bad model for ϕ and therefore χk
should be enlarged (using τ1). Following the description in [59], we further use a counter
cSS to remember the number of consecutive serious steps (cSS positive) or consecutive
null steps (cSS negative). This introduces some inertia that smooths out the updating
procedure. More precisely this means:

• If ρk ≥ (1 − γ2) and more than two consecutive serious steps have occurred then
reduce χk with factor τ3.

• If there were more than four consecutive serious steps but the stronger condition
ρk ≥ (1− γ2) is violated then reduce χk with factor τ2.

• If more than four consecutive null steps occurred then increase χk with factor τ1.

Algorithm 8.3 describes the updating procedure in detail.

Algorithm 8.3: Updating procedure for the sequence {χk}
if (serious step) then

if ϕ(zk+1) ≤ ϕ(xk) + (1− γ2)vk+1 and cSS ≥ 2 then
χk+1 = τ3χk;

else if cSS ≥ 4 then
χk+1 = τ2χk;

end
if χk+1 < χ then χk+1 = χ;

cSS = max{1, cSS + 1};
if χk+1 6= χk then cSS = 1;

else (null step)
if cSS ≤ −4 then

χk+1 = τ1χk;
if χk+1 > χ̄ then χk+1 = χ̄;
cSS = min{cSS − 1,−1};
if χk+1 6= χk then cSS = −1;

end
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8.2.5 Realization of a stopping criterion

We now turn to the question of how to decide if the current iterate xk is an approximate
solution of the given problem (8.1). Consider the case that

vk+1 = 0.

Then the estimate in (8.63) implies that xk = zk+1. In view of (8.56), this leads to
ε̃k+1 = 0. Since zk+1 is an inexact solution of problem (8.17), it follows immediately
with (8.6) that

ẽk+1 ∈ ∂ϕ(xk),

i.e., xk is an approximate solution of (8.1). Taking into account that vk+1 ≤ 0 for all
k, it is reasonable to terminate the LQPAP bundle method if

−vk+1 ≤ θ

with a small θ > 0.

8.2.6 The overall LQPAP bundle algorithm

We summarize the considerations concerning the numerical realization of the LQPAP
bundle method in Algorithm 8.4.

8.2.7 Extensions for the case ψ 6= 0

The argumentation in Sections 8.2.1, 8.2.3, and 8.2.4 can easily be extended to the case
ψ 6= 0. However, an adaptation of the proofs of Lemma 8.2.2 and Proposition 8.2.3 is
not possible, because this would require an estimation of an inner product of the type
〈ψ(x), x− y〉 which cannot be given in this generality. Nevertheless, if one considers
the settings in Sections 8.2.2 and 8.2.5 as heuristics, the algorithm can still be used if
the changes described in this section are taken into account.

The primal-dual interior point method (see Section 8.2.1) has to be extended such that
it solves auxiliary problems of the type

min
y∈Rn

{〈
∇ψ(xk), y − xk

〉
+ ϕk+1(y) + χkD(y, xk)

}
.

For that purpose, we change the definition of s̃k to

s̃k = −∇ψ(xk)− χk−1∇ID(zk, xk−1)
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Algorithm 8.4: LQPAP bundle algorithm

1. (Initialization) Choose an initial iterate x0 ∈ int(K), a stopping parameter
θ > 0, a tolerance parameter γ1 ∈ (0, 1), an initial regularization parameter
χ0 ≥ χ, a subgradient s0 ∈ ∂ϕ(x0), and a maximal number M ≥ 1 of
bundle elements. Set z0 = x0, α0,0 = 0, J0 = {0}, m = |J0|, k := 0.

2. (Solution of the bundle auxiliary problem)
Compute (zk+1, vk+1, νk+1, tk+1) ∈ int(K)×R×Rm+1

+ ×Rm+1
+ with the

primal-dual interior point method of Section 8.2.1. Then (zk+1, vk+1) is
the solution of the k-th bundle auxiliary problem (8.34).

3. (Clear set of bundle indices) Remove from Jk all indices j with νk+1
j = 0,

set m = |Jk|.
4. (Update aggregate subgradient)

if k = 1 then
s̃k+1 =

∑
j∈Jk ν

k+1
j sj, α̃k+1 =

∑
j∈Jk ν

k+1
j αk,j.

if k ≥ 2 then
s̃k+1 =

∑
j∈Jk ν

k+1
j sj + νk+1

m+1s̃
k, α̃k+1 =

∑
j∈Jk ν

k+1
j αk,j + νk+1

m+1α̃k.

5. (Stopping criterion) if −vk+1 ≤ θ then stop: xk is an approximate
solution of (8.1).

6. (Decision serious step/null step)
if ϕ(zk+1) ≤ ϕ(xk) + (1− γ1)vk+1 then

Set xk+1 = zk+1. Choose sk+1 ∈ ∂ϕ(xk+1).
Update the linearization errors:
αk+1,j = αk,j + ϕ(xk+1)− ϕ(xk)−

〈
sj, xk+1 − xk

〉
∀j ∈ Jk,

αk+1,k+1 = 0.
if k ≥ 1 then

α̃k+1 ← α̃k+1 + ϕ(xk+1)− ϕ(xk)−
〈
s̃k+1, xk+1 − xk

〉
.

else
Set xk+1 = xk. Choose sk+1 ∈ ∂ϕ(zk+1).
Update the linearization errors:
αk+1,j = αk,j ∀j ∈ Jk,
αk+1,k+1 = ϕ(xk)− ϕ(zk+1)−

〈
sk+1, xk − zk+1

〉
.

end
7. (Update χk) Choose a new regularization parameter χk+1 according to

Algorithm 8.3.
8. (Update Jk) If |Jk| = M , remove one element from Jk with the largest

linearization error. Set Jk+1 = Jk ∪ {k + 1}.
9. Set k := k + 1 and go to step 2.
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and write the KKT conditions with disturbed complementarity condition as

∇ψ(xk) + χk∇ID(y, xk) + STν = 0, (8.64)

1− 〈e, ν〉 = 0, (8.65)

Sy − ev + t− d = 0, (8.66)

TVe− µe = 0, (8.67)

ν ≥ 0, t ≥ 0. (8.68)

Thus, in Algorithm 8.2 the Newton equation has to be solved with

rD(y, v) = ∇ψ(xk) + χk∇ID(y, xk) + STν.

Concerning the choice and update of ϕk+1 (see Section 8.2.3) no changes are necessary.

If ψ 6= 0 it is important to set

χ =
1

2a2γ
+ 10−3

as discussed in Section 6.1.2. The idea for the calculation of χ0 (see Appendix A.6.4) can
be adapted by taking s0+∇ψ(x0) instead of∇ψ(x0). The adaptive update procedure for
{χk} described in Section 8.2.4 is independent of ψ and therefore requires no changes.

8.3 Academic test examples

The numerical performance of the LQPAP bundle method is tested with examples of
the type

min ϕ(x)

s.t. Ax ≤ b,

where ϕ : Rn → R is a nondifferentiable, convex function. In most cases, ϕ is of the
form

ϕ(x) = max{fk(x) : k = 1, . . . , nϕ}, (8.69)

where fk : Rn → R, k = 1, . . . , nϕ, are differentiable, convex functions. As a conse-
quence, an element of ∂ϕ(x) is easy to calculate because for each given x, any active
index j ≤ nϕ (i.e., an index where the maximum in (8.69) is attained) yields a subgra-
dient ∇fj(x) ∈ ∂ϕ(x).

The examples are taken from the collections in [44, 56, 59, 67] and one example is
constructed to have multiple solutions. If the restriction matrix of the examples from
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literature does not have full column rank, we add some upper or lower bounds on the
variables. For each example we list the objective function ϕ, A and b or the correspond-
ing constraint functions ci(x) = (Ax− b)i, the dimension n, the number of constraints
p, the solution set X∗ or the unique solution x∗ (if known), the optimal value ϕ∗, and
one or more strict feasible initial points x0 with their objective values. In all exam-
ples, except Example 8.3.8, the objective function is nondifferentiable at the optimal
solution.

Furthermore, a comparison to the BrPAP bundle method (see BrεRPPA in [44]) will
be given. For that purpose, our implementation was extended to Bregman distances
analogously to Section 6.1.5.

The two-dimensional examples are chosen only to get an impression of the geometrical
behavior of the algorithm. For these examples we plot the level sets of the objective
function, the feasible set, and the paths of the iterates for both methods.

8.3.1 Two-dimensional examples

Example 8.3.1 (Constrained Demyanov, [44]).

ϕ(x) = max{f1(x), f2(x), f3(x)}, x ∈ R2,

f1(x) = 5x1 + x2,

f2(x) = x2
1 + x2

2 + 4x2,

f3(x) = −5x1 + x2,

A =


1 −1
1 1
−1 1
−1 0

 , b =


3
3
3
3

 ,

n = 2, p = 4, x0
1 = (−2, 0)T , ϕ(x0

1) = 10, x0
2 = (0, 2.5)T , ϕ(x0

2) = 16.25, x0
3 = (1, 1)T ,

ϕ(x0
3) = 6, x∗ = (0,−3)T , ϕ∗ = −3.

Example 8.3.2 (Constrained Mifflin, [44]).

ϕ(x) = −x1 + 3 max{x2
1 + x2

2 − 1, 0}, x ∈ R2,

A =

(
−1 −1
1 0

)
, b =

(
−1
1

)
,
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n = 2, p = 2, x0
1 = (0.9, 1.7)T , ϕ(x0

1) = 7.2, x0
2 = (0, 1.8)T , ϕ(x0

2) = 6.72,
x0

3 = (0.2,
√

1− 0.22)T , ϕ(x0
3) = −0.2, x∗ = (1, 0)T , ϕ∗ = −1.

Example 8.3.3 (Multiple solutions).

ϕ(x) = max{−4x1 − x2 − 5, x2
1 + x2 + 3}, x ∈ R2,

A =

 4 1
−1

6
1

3
5
−1

 , b =

−5
−5

6

5

 ,

n = 2, p = 3, x0
1 = (−5,−7.8)T , ϕ(x0

1) = 22.8, x0
2 = (−5,−6.5)T , ϕ(x0

2) = 21.5,
x0

3 = (−5,−1.7)T , ϕ(x0
3) = 26.3, X∗ = {(x1, x2) ∈ R2 : x1 ∈ [2−

√
6, 0], x2 = −4x1−5},

ϕ∗ = 0.

Figures 8.1–8.3 show that both methods succeed to reach an optimal point indepen-
dently of the chosen initial point (with one exception in Figure 8.3 with the LQPAP
method). We like to note that only exemplary paths of the iterates are shown where the
sequence of regularization parameters might not be adapted towards best performance.
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(a) LQPAP method
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(b) BrPAP method

Figure 8.1. Example 8.3.1: Exemplary paths of the iterates for different initial points.

We comment on two observations. The first one is about the proximity of the initial
point to the boundary. If the initial point lies close to the boundary (like x0

1 in Figures
8.2 and 8.3) the LQPAP bundle method can fail to keep the iterates away from the
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Figure 8.2. Example 8.3.2: Exemplary paths of the iterates for different initial points.
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Figure 8.3. Example 8.3.3: Exemplary paths of the iterates for different initial points.

boundary. A better behavior can be observed with the BrPAP method. This effect was
already discussed in Sections 6.3.1 and 6.4. The second observation concerns nondif-
ferentiability. The different paths of the iterates for initial point x0

3 in Figure 8.3 are
interesting. Whereas the iterates generated by the LQPAP bundle method tend towards
the interior of the feasible set and pass the line of nondifferentiability after few itera-
tions, the iterates of the BrPAP bundle method lie close to the boundary and pass this
line much later. It is an interesting and open question if the line of nondifferentiability
has an influence in this context.
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8.3.2 Higher-dimensional examples

Example 8.3.4 (Constrained MaxQuad, [59]).

ϕ(x) = max
{〈
Akx, x

〉
−
〈
bk, x

〉
: k = 1, . . . , 5

}
, x ∈ R10,

(Ak)ij = ei/j cos(ij) sin(k) = (Ak)ji,

(Ak)ii =
i

10
| sin(k)|+

∑
j 6=i

|(Ak)ij|,

(bk)i = ei/k sin(ik),

cj(x) = −xj − 0.05, j = 1, . . . , 10,

c10+j(x) = xj − 0.05, j = 1, . . . , 10,

c21(x) =
10∑
i=1

xi − 0.05,

n = 10, p = 21, x0 = (0, . . . , 0)T ∈ R10, ϕ(x0) = 0, ϕ∗ = −0.36816644175.

Example 8.3.5 (Constrained Wong2, [67]).

ϕ(x) = max {fk(x) : k = 1, . . . , 6} , x ∈ R10,

f1(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2+

+ 2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

f2(x) = f1(x) + 10(3x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120),

f3(x) = f1(x) + 10(5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40),

f4(x) = f1(x) + 10(0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30),

f5(x) = f1(x) + 10(x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6),

f6(x) = f1(x) + 10(−3x1 + 6x2 + 12(x9 − 8)2 − 7x10),

c1(x) = 4x1 + 5x2 − 3x7 + 9x8 − 105,

c2(x) = 10x1 − 8x2 − 17x7 + 2x8,

c3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12,

cj(x) = xj−1 − 100, j = 4, . . . , 10,

n = 10, p = 10, x0 = (2, 3, 5, 5, 1, 2, 7, 3, 6, 10)T , ϕ(x0) = 753,
x∗ ≈ (2.17, 2.36, 8.77, 5.09, 0.99, 1.43, 1.32, 9.82, 8.27, 8.36)T , ϕ∗ ≈ 24.306209.
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Example 8.3.6 (Constrained MAD8 n = 20, [67]).

ϕ(x) = max{fk(x) : k = 1, . . . , 2n− 2}, x ∈ Rn,

f1(x) = x2
1 + x2 + x3 + . . .+ xn − 1,

f2(x) = x1 + x2
2 + x3 + . . .+ xn − 1,

f3(x) = x1 + 2x2
2 + x3 + . . .+ xn − 1,

· · ·
fk(x) = x1 + x2 + x3 + . . .+ x2

(k+2)/2 + . . .+ xn − 1, k even

fk+1(x) = x1 + x2 + x3 + . . .+ 2x2
(k+2)/2 + . . .+ xn − 1, k even

· · ·
f2n−2(x) = x1 + x2 + x3 + . . .+ x2

n − 1,

cj(x) = −xj + 0.5, j = 1 . . . , n/2,

cj(x) = −xj − 1, j = n/2 + 1, . . . , n,

n ∈ N even (here n = 20), p = n, x0 = (100, . . . , 100)T ∈ Rn, ϕ(x0) = 21899,
x∗i = 0.5 (i = 1, . . . , n/2), x∗i = −1 (i = n/2 + 1, . . . , n), ϕ∗ = −3.

Example 8.3.7 (Constrained MAXQ n = 20, [56]).

ϕ(x) = max{x2
i : i = 1, . . . , n}, x ∈ Rn,

cj(x) = −xj + 0.1, j = 1, . . . , n, j even,

cj(x) = xj −
n

2
, j = 1, . . . , n, j odd,

cn+ j
2
(x) = xj − 1.1, j = 1, . . . , n, j even,

x0
i = 1.0999, i = 1, . . . , n/2, i even,

x0
i = i, i = 1, . . . , n/2, i odd,

x0
i = 0.1001, i = n/2 + 1, . . . , n, i even,

x0
i = −i, i = n/2 + 1, . . . , n, i odd,

x∗i = 0.1, i = 1, . . . , n, i even,

x∗i = 0, i = 1, . . . , n, i odd,

n ∈ N even (here n = 20), p = n+ n/2, ϕ(x0) = 361, ϕ∗ = 0.01.
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Example 8.3.8 (Constrained MXHILB, [56]).

ϕ(x) = max

{∣∣∣∣∣
n∑
i=1

xi
k + i− 1

∣∣∣∣∣ : k = 1, . . . , n

}
,

cj(x) = −xj + 0.1, j = 1, . . . , n, j even,

cj(x) = −xj, j = 1, . . . , n, j odd,

cn+ j
2
(x) = xj − 1.1, j = 1, . . . , n, j even,

x∗i = 0.1, i = 1, . . . , n, i even,

x∗i = 0, i = 1, . . . , n, i odd,

n ∈ N (here n = 50), p = n + n/2, x0 = (1, . . . , 1)T ∈ Rn, ϕ(x0) ≈ 4.4992053,
ϕ∗ ≈ 0.1907979.

Example 8.3.9 (Constrained MAD8, n = 100). Like Example 8.3.6, but with n =
100, ϕ(x0) = 29899, ϕ∗ = −23.

Example 8.3.10 (Constrained MAXQ, n = 100). Like Example 8.3.7, but with
n = 100, ϕ(x0) = 9801, ϕ∗ = 0.01.

8.3.3 Numerical results for nondifferentiable examples

The following parameter settings were used in the implementation: In the (outer) LQ-
PAP/BrPAP bundle method we choose γ1 = 0.9, θ = 10−5, and M = n + 2 (M = 2n
in Example 8.3.5). For the adaptive update of χk we use the parameters as in [44], i.e.,
γ2 = 0.5, τ1 = 2, τ2 = 10

11
, τ3 = 2

3
. In the (inner) primal-dual method we set ξ = 10−3,

σ = 0.5, θµ = 10−8, θr = 10−6. The numerical experience shows that it is reasonable
to set the maximal number of inner iterations to 100. Additionally, the strategy of
under-relaxation (see Section 6.4) is taken into account as a possibility to improve the
results.

In the tables we denote

χ0: initial value of the regularization parameter,
r: decreasing factor to update χk+1 = χ0r

k+1,
t: parameter of under-relaxation,
#iter: number of iterations (i.e., serious steps plus null steps),
#ss: number of serious steps,
#pdipm: total number of iterations of the primal-dual interior point method,
#ϕ: number of objective function evaluations,
ϕcalc: calculated optimal value,
|ϕcalc − ϕ∗|: distance between calculated and known optimal value.
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The number of subgradient evaluations is equal to #iter since one subgradient is cal-
culated and added to the bundle in every null or serious step. For the two-dimensional
examples the last listed initial point is chosen for the computation.

For a comparison of the methods we measure their efficiency in terms of the ac-
curacies of the calculated optimal values. For Tables 8.1 and 8.2, the values for
χ0 ∈ {0.01, 0.1, 1, 10, 100}, r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and t ∈ {0.5, 1} were experi-
mentally adapted towards best accuracy. This is possible because for all examples the
optimal values are known.

Example {χk} u.relax. LQPAP bundle method
No. Name χ0 r t #iter #ss #pdipm #ϕ ϕcalc |ϕcalc − ϕ∗|

8.3.1 Demyanov 0.01 0.7 1.0 6 4 162 16 -3.00000 1.08e-09
8.3.2 Mifflin 0.01 0.7 1.0 3 3 161 9 -1.00000 1.11e-16
8.3.3 Mult. sol. 0.01 0.3 1.0 4 4 183 12 0.00000 8.88e-16

8.3.4 MaxQuad 10.00 0.9 0.5 26 19 766 71 -0.36816 3.08e-06
8.3.5 Wong2 100.00 0.1 0.5 212 26 9729 450 24.30644 2.26e-04
8.3.6 MAD8 1.00 0.9 0.5 75 49 2716 199 -2.99996 3.54e-05
8.3.7 MAXQ 10.00 0.9 1.0 70 45 2278 185 0.01000 5.89e-13
8.3.8 MXHILB 0.01 0.1 1.0 4 4 115 12 0.19080 2.09e-06
8.3.9 MAD8 0.01 0.5 0.5 30 30 1719 90 -22.99993 7.23e-05
8.3.10 MAXQ 0.10 0.1 0.5 254 50 10249 558 0.01000 4.55e-06

Table 8.1. Results for the LQPAP bundle method applied to nondifferentiable convex
problems.

Example {χk} u.relax. BrPAP bundle method
No. Name χ0 r t #iter #ss #pdipm #ϕ ϕcalc |ϕcalc − ϕ∗|

8.3.1 Demyanov 10.00 0.7 1.0 14 13 320 41 -3.00000 5.44e-09
8.3.2 Mifflin 0.01 0.9 1.0 2 2 47 6 -1.00000 1.11e-16
8.3.3 Mult. sol. 0.10 0.1 1.0 2 2 152 6 0.00000 8.88e-16

8.3.4 MaxQuad 1.00 0.9 0.5 26 19 938 71 -0.36809 7.24e-05
8.3.5 Wong2 100.00 0.9 0.5 252 65 7748 569 24.30634 1.34e-04
8.3.6 MAD8 100.00 0.9 1.0 98 57 2855 253 -3.00000 1.02e-06
8.3.7 MAXQ 100.00 0.9 1.0 102 76 2943 280 0.01000 2.12e-06
8.3.8 MXHILB 0.10 0.3 1.0 5 5 365 15 0.19494 4.14e-03
8.3.9 MAD8 100.00 0.9 1.0 158 55 6852 371 -23.00000 1.55e-06
8.3.10 MAXQ 10.00 0.9 1.0 337 67 11529 741 0.01002 2.28e-05

Table 8.2. Results for the BrPAP bundle method applied to nondifferentiable convex
problems.
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For problems with unknown solution it is of course reasonable to apply the adaptive
initialization and update strategies for the sequence {χk} together with a robustifica-
tion via under-relaxation. The performance of the methods when using this setting is
presented in Tables 8.3 and 8.4.

Example {χk} u.relax. LQPAP bundle method
No. Name t #iter #ss #pdipm #ϕ ϕcalc |ϕcalc − ϕ∗|

8.3.1 Demyanov adap. 0.5 44 36 1143 124 -3.00000 3.35e-06
8.3.2 Mifflin adap. 0.5 48 33 2104 129 -0.99998 1.94e-05
8.3.3 Mult. sol. adap. 0.5 34 34 869 102 0.00000 3.91e-06

8.3.4 MaxQuad adap. 0.5 26 19 877 71 -0.36816 7.43e-06
8.3.5 Wong2 adap. 0.5 101 68 2916 270 142.53131 1.18e+02
8.3.6 MAD8 adap. 0.5 129 104 4179 362 -2.99991 8.54e-05
8.3.7 MAXQ adap. 0.5 125 96 4113 346 0.01001 5.01e-06
8.3.8 MXHILB adap. 0.5 32 32 1090 96 0.19473 3.94e-03
8.3.9 MAD8 adap. 0.5 241 141 5858 623 -22.96178 3.82e-02
8.3.10 MAXQ adap. 0.5 972 645 24520 2589 0.01000 4.33e-06

Table 8.3. Results for the LQPAP bundle method when using adaptive initialization
and update of χk.

Example {χk} u.relax. BrPAP bundle method
No. Name t #iter #ss #pdipm #ϕ ϕcalc |ϕcalc − ϕ∗|

8.3.1 Demyanov adap. 0.5 36 28 870 100 -2.99999 6.42e-06
8.3.2 Mifflin adap. 0.5 48 44 1045 140 -0.99999 8.96e-06
8.3.3 Mult. sol. adap. 0.5 34 34 842 102 0.00000 2.68e-06

8.3.4 MaxQuad adap. 0.5 44 39 1129 127 -0.36813 3.37e-05
8.3.5 Wong2 adap. 0.5 566 310 14457 1442 24.30652 3.11e-04
8.3.6 MAD8 adap. 0.5 196 171 6277 563 -2.99999 5.57e-06
8.3.7 MAXQ adap. 0.5 53 44 1315 150 1.20978 1.20e+00
8.3.8 MXHILB adap. 0.5 47 47 1473 141 0.19290 2.10e-03
8.3.9 MAD8 adap. 0.5 278 165 8574 721 -23.00000 4.11e-06
8.3.10 MAXQ adap. 0.5 467 309 12125 1243 1.20978 1.20e+00

Table 8.4. Results for the BrPAP method when using adaptive initialization and
update of χk.

Before we summarize the results we like to note that (like in the previous numerical
tests) the practical efficiency of both methods strongly depends on an appropriate man-
agement of the regularization parameter, especially in examples of higher-dimension.
The results of our experiments with different choices of χ0 and r are very inhomo-
geneous and often only few parameter settings lead to satisfactory results. Again, the
reason is that the iterates approach the boundary too quickly. As in Section 6.4, under-
relaxation can improve the situation.
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Now, we compare the reached accuracies in Tables 8.1 and 8.2. For each example,
the LQPAP and the BrPAP bundle method compute similarly accurate solutions, but
there is a tendency towards slightly better results with the LQPAP bundle method (see
Examples 8.3.7, 8.3.8). The range of accuracy is mostly 10−5 or better with exceptions
in Example 8.3.5 (LQPAP) and Examples 8.3.5, 8.3.8 (BrPAP). In examples, where
both methods reach the same range of accuracy, a significant difference in the number
of needed iterations cannot be observed.

The adaptive initialization and update strategy for χk proves to work well in most
examples. A failure (with an accuracy of less than 10−2) occurs in Examples 8.3.5,
8.3.9 with the LQPAP bundle method and in Examples 8.3.7, 8.3.10 with the BrPAP
bundle method. The other examples can be solved with an accuracy of at least 10−3,
but which is mostly lower than with a best choice of the parameters.

8.4 Summary

In this chapter we considered linearly constrained variational inequalities VI(F ,Q, K)
with F = ∇ψ and Q = ∂ϕ, where ψ is a convex, differentiable function and ϕ is a con-
vex, nondifferentiable function. For the solution of the corresponding LQPAP auxiliary
problems we developed the LQPAP bundle method, which exploits the possibility to
approximate ∂ϕ by ∂εϕ by working with piecewise linear, lower approximations of the
nonsmooth function ϕ. Well-definedness and convergence of this method was proved
under certain error conditions. Details for the numerical realization were presented for
the case ψ = 0, especially a primal-dual interior point method for the solution of the
bundle auxiliary problems was described and concrete proposals for the choice of cer-
tain parameters were given. The method was tested with different nonsmooth academic
test examples and compared to the BrPAP bundle method. A significant difference be-
tween both methods could not be observed in the numerical performance. In most
examples, the methods succeeded to compute an optimal value with an accuracy of at
least 10−5. Also the described adaptive update strategies for the parameters proved to
work well. Nevertheless, the effectiveness of both methods highly depends on a suitable
choice of the regularization parameter. As in Chapter 6, under-relaxation can improve
the results of the LQPAP method.
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9. Summary and Outlook

This thesis contributes to theoretical as well as numerical investigations of solution
methods for monotone variational inequalities (VIs). A structured analysis of existing
regularization methods provides the basis for the development of a new solution method
– the logarithmic-quadratic proximal auxiliary problem method (LQPAP method).

Our theoretical analysis of the LQPAP method leads to a convergence proof under
common assumptions. The logarithmic-quadratic distance establishes an interior point
effect that simplifies the structure of the LQPAP auxiliary problems because they can
be considered as unconstrained ones. Thus, this function not only has a regulariza-
tion but also a penalization effect. By combining the proximal point algorithm (PPA)
with the auxiliary problem principle (APP), the advantages of both methods can be
exploited. The APP offers the possibility to solve nonsymmetric VIs by a sequence of
optimization problems, while the PPA requires weaker monotonicity assumptions on
the given operator. With respect to the numerical practicability, inexact solutions of
the auxiliary problems are allowed using a summable-error criterion that is easy to
implement. Furthermore, outer operator approximations based on the ε-enlargement
are considered. This simplifies the numerical solution of VIs with multi-valued op-
erators since, for example, bundle-techniques can be applied. Our verification that
the logarithmic-quadratic distance is self-concordant motivates to apply the Newton
method for the solution of the auxiliary problems.

The auxiliary operator Lk, originally introduced to unify the convergence analysis of
descent and decomposition algorithms, can be easily included into the LQPAP scheme
under a co-coercivity condition on F − Lk. From a numerical point of view, however,
it is difficult to find auxiliary operators which ensure this condition. For the special
case of an affine operator F with a diagonally dominant matrix, a suitable proposition
is given. For other standard choices of the auxiliary operator there proves to be no
particular benefit in our context.

The LQPAP method is applied to linearly constrained, differentiable and nondiffer-
entiable convex optimization problems, as well as to nonsymmetric VIs. Doing so, we
encounter a discrepancy between the theoretical freedom in the choice of the sequence
of regularization parameters and the numerical behavior of the method. Our general ob-
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servation is that the performance of the LQPAP method as well as the BrPAP method
highly depends on an suitable choice of the sequence of regularization parameters. Tests
with different sequences of regularization parameters show that there can be choices
which are not able to prevent the iterates from tending too early towards the boundary
of the feasible set, so that a further progress of the algorithm is difficult or even impos-
sible. A comparison of the Hesse matrices of the logarithmic-quadratic distance and the
Bregman distance illustrate their different characteristics when a sequence of iterates
approaches the boundary. Against this background, the under-relaxation strategy is
presented as a possibility to robustify the LQPAP method. Similar improvements with
the BrPAP method cannot be observed.

For differentiable, convex optimization problems it is evaluated that a combination of
the Armijo step size rule with the self-concordance step size rule can reduce the number
of function evaluations in the Newton method. A further advantage of self-concordance
cannot be recognized, since the efficiency of the Newton method is only realized in some
few iterations before the algorithm terminates. The adaptive choice of an initial value
for the regularization parameter proves to work well.

For nonsymmetric VIs, test problems with known solutions are generated with a ge-
ometric and an analytic approach. To this aim, the Lagrange function of a convex
optimization problem is build and modified such that the corresponding saddle-point
problem includes a co-coercive operator. With appropriate linear transformations we
are able to construct problems with known multiple solutions. Such ideas have so far
not been presented in literature. For this class of problems as well as for symmetric
VIs that are solved by an auxiliary problem principle approach, it turns out that the
computed solutions can be quite inaccurate. A reason for this behavior is that in the
auxiliary problems the operator F is fixed at the current iterate, which implies a loss
of information. This drawback can hardly be compensated by a careful choice of the
regularization parameters, and possible improvements have to be found and analyzed
in the future.

The solution of nondifferentiable, convex optimization problems with the LQPAP
method succeeds with the help of the bundle-technique. A structured procedure to
compute the solutions of the LQPAP auxiliary problems is given, which was so far
only done for a Bregman-function based proximal method. The main result in this
context is Theorem 8.1.2, which shows that after a finite number of null steps a seri-
ous step will follow. Also, adaptive update strategies for the sequence of regularization
parameters are taken into account and prove to work in most cases.

The numerical comparison of the LQPAP and the BrPAP method is based on the
solution of several test problems. It turns out that none of the methods is superior to
the other.
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As an outlook we point out some directions for further investigation.

For the solution of the LQPAP auxiliary problems we proposed and established certain
methods (Newton method, resp. bundle method in combination with a primal-dual in-
terior point method). It is not clear if other solution methods are more suitable, e.g., to
cope with iterates lying close to the boundary. In view of the presented adaptive strate-
gies for the regularization parameters and the introduced under-relaxation strategy, it
would be of interest to extend these ideas to develop a more sophisticated control of
the regularization parameters.

For the special case of K = Rn
+ the ideas in Auslender/Teboulle [4] and Hübner [44]

could be used to solve the LQPAP bundle auxiliary problems with a dual approach.
This can exploit the advantage that the Fenchel conjugate of the logarithmic-quadratic
distance function can explicitly be calculated.

A further interesting investigation would be the usage of a relative error criterion as
introduced in Burachik/Svaiter [13] for generalized proximal point methods. It is also
an open task to analyze the convergence rate of the LQPAP method (e.g., similar to
Auslender/Teboulle/Ben-Tiba [5]). Additionally, it would be interesting to include the
ideas of Burachik/Lopes/da Silva [10] who recently proposed an infeasible logarithmic-
quadratic function based proximal method allowing that int(K) = ∅ by introducing a
perturbation of K.
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A. Appendix

The Appendix contains additional information to some sections of the thesis. We recall
basic definitions for (convex) functions and some properties of multi-valued operators.
Further, basic properties of logarithmic-quadratic distance functions are proved. Also
some auxiliary results about the convergence of sequences of numbers are given. The
largest part of the Appendix consists of supplementaries to the test examples of Chap-
ters 6 and 7 and to the numerical experiments mentioned in Chapter 6. Especially,
detailed explanations about the setup of the experiments will be given as well as all
tables and graphics on which our summarizing remarks in Chapter 6 are based on.

A.1 Elements of convex analysis

An important example of a maximal monotone operator is the subdifferential of a
convex function. For that reason, basic definitions and some concepts of convexity are
recalled.

Let ϕ : Rn → R ∪ {+∞} be a function. The effective domain of ϕ is the set

dom(ϕ) = {x ∈ Rn : ϕ(x) < +∞}.

The function ϕ is said to be proper if its effective domain is nonempty. We say that ϕ
is lower semicontinuous at some x ∈ Rn if for any sequence {xk} → x it holds that

lim inf
k→∞

ϕ(xk) ≥ ϕ(x).

The function ϕ is called upper semicontinuous at x ∈ Rn if −ϕ is lower semicontinuous
at x.

Definition A.1.1 (Notions of convexity). Let ϕ : Rn → R ∪ {+∞} be a function
and K ⊂ Rn a convex set.

(a) ϕ is convex on K if for all x, y ∈ K and λ ∈ [0, 1] it holds

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y).
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(b) ϕ is strictly convex on K if for all x, y ∈ K, x 6= y, and λ ∈ (0, 1) it holds

ϕ(λx+ (1− λ)y) < λϕ(x) + (1− λ)ϕ(y).

(c) ϕ is strongly convex with modulus κ > 0 on K, if for all x, y ∈ K, λ ∈ [0, 1] it
holds

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)− κ

2
λ(1− λ) ‖ x− y ‖2 .

(d) ϕ is called (strictly, strongly) concave if −ϕ is (strictly, strongly) convex.

A convex function ϕ is continuous on int(dom(ϕ)) but not necessarily differentiable.
Convex functions are subdifferentiable in the following sense:

Definition A.1.2 (subdifferential, ε-subdifferential).

For a proper, convex function ϕ : Rn → R ∪ {+∞} the subdifferential at x ∈ dom(ϕ)
is defined as

∂ϕ(x) = {s ∈ Rn : ϕ(y)− ϕ(x)− 〈s, y − x〉 ≥ 0 ∀y ∈ Rn}.

For a proper, convex function ϕ : Rn → R ∪ {+∞} and ε ≥ 0 the ε-subdifferential at
x ∈ dom(ϕ) is defined as

∂εϕ(x) = {s ∈ Rn : ϕ(y)− ϕ(x)− 〈s, y − x〉 ≥ −ε ∀y ∈ Rn}.

Lemma A.1.3 ([41], Remark 4.1.7, [80], Section 23, Theorem 25.1). Let ϕ :
Rn → R ∪ {+∞} be a proper, convex function and x ∈ dom(ϕ). Then the follow-
ing statements hold:

(a) dom(ϕ) ⊃ dom(∂ϕ) ⊃ int(dom(ϕ)).

(b) ∂ϕ(x) = ∂0ϕ(x) and ∂ε1ϕ(x) ⊆ ∂ε2ϕ(x) for 0 ≤ ε1 ≤ ε2.

(c) The set ∂ϕ(x) is closed and convex.

(d) The set ∂ϕ(x) is compact if and only if x ∈ int(dom(ϕ)).

(e) ∂ϕ(x) = {∇ϕ(x)} if ϕ is finite and differentiable at x.

(f) Let ϕ1, . . . , ϕm be proper, convex functions on Rn. Then,

m∑
i=1

∂ϕi(x) ⊂ ∂

(
m∑
i=1

ϕi

)
(x).

Equality holds if, e.g.,
⋂m
i=1 ri(dom(ϕi)) 6= ∅.
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A.2 Properties of multi-valued (maximal monotone) operators

A multi-valued (also called set-valued) operator T : Rn → 2R
n

maps a point x ∈ Rn

to a set T (x) ⊂ Rn. Some continuity and boundedness properties of a multi-valued
operator are defined as follows:

Definition A.2.1 ([33], Definition 2.1.16, and [9]). An operator T : Rn → 2R
n

is
said to be

(a) closed at a point x ∈ dom(T ) if the situation {xk} → x, {yk} → y, yk ∈ T (xk)
for all k, implies y ∈ T (x).

(b) lower semicontinuous at a point x ∈ dom(T ) if for every open set U such that
T (x) ∩ U 6= ∅ there exists an open neighborhood N of x such that T (y) ∩ U 6= ∅
for each y ∈ N .

(c) upper semicontinuous at a point x ∈ dom(T ) if for every open set V containing
T (x) there exists an open neighborhood N of x such that T (y) ⊂ V for each
y ∈ N .

(d) continuous at a point x ∈ dom(T ) if T is both lower and upper semicontinuous
at x.

(e) locally bounded at a point x ∈ dom(T ) if there exists an open neighborhood N of
x such that the set

⋃
y∈N∩dom(T ) T (y) is bounded.

(f) bounded on bounded sets if for all bounded set Q ⊂ Rn with cl(Q) ⊂ int(dom(T ))
it holds that

⋃
y∈Q T (y) is bounded.

(g) locally hemi-bounded at a point ȳ ∈ dom(T ) if for each y ∈ dom(T ), y 6= ȳ
there exists a number t̄(ȳ, y) > 0 such that ȳ + t(y − ȳ) ∈ dom(T ) holds for
0 ≤ t ≤ t̄(ȳ, y) and the set⋃

0<t≤t̄(ȳ,y)

T (ȳ + t(y − ȳ)) is bounded.

Some statements on the above properties are:

Lemma A.2.2 ([33], [9]). Let T : Rn → 2R
n

and x ∈ dom(T ).

(a) If T is closed at x then T (x) is a closed set. Conversely, if T (x) is a closed set
and T is upper semicontinuous at x then T is closed at x.

(b) T is closed at every x ∈ Rn if and only if gph(T ) is a closed set.
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(c) If T is lower semicontinuous at x then x ∈ int(dom(T )).

(d) If T is upper semicontinuous at x then for every ε > 0 there exists an open
neighborhood N of x such that T (y) ⊆ T (x) + Bε(0) for all y ∈ N (where
Bε(0) = {x ∈ Rn :‖ x ‖< ε}).

(e) If T is locally bounded then it is also bounded on bounded sets.

The next statements hold for maximal monotone, multi-valued operators.

Lemma A.2.3 ([91], p. 852). An operator T : Rn → 2R
n

is maximal monotone,
if T is monotone and it follows from (x, u) ∈ Rn × Rn and 〈u− v, x− y〉 ≥ 0 for
all (y, v) ∈ gph(T ), that (x, u) ∈ gph(T ). In other words, for a maximal monotone
operator T it holds

T (x) = {u ∈ Rn : 〈u− v, x− y〉 ≥ 0 ∀(y, v) ∈ gph(T )}.

Theorem A.2.4 ([79], Theorem 1). If T : Rn → 2R
n

is maximal monotone then T
is locally bounded at each x ∈ int(dom(T )), whereas T is not locally bounded at any
boundary point of dom(T ).

Theorem A.2.5 ([34], Theorem 12.3.3). Let T : Rn → 2R
n
. The following state-

ments are equivalent.

(a) T is maximal monotone.

(b) T is monotone and rge(I + T ) = Rn.

(c) For each λ > 0 the resolvent operator (I + λT )−1 is nonexpansive and further
dom((I + λT )−1) = Rn.

A.3 Basic properties of logarithmic quadratic distance
functions

Lemma A.3.1. Consider for parameters ν > µ > 0 the logarithmic-quadratic distance
function

dν,µLQ : Rp ×Rp
++ → R ∪ {+∞},

dν,µLQ(u, v) :=

{ ∑p
i=1

ν
2
(ui − vi)2 + µ

(
v2
i log vi

ui
+ uivi − v2

i

)
if u ∈ Rp

++

+∞ otherwise.
(A.1)
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Then, for every v ∈ Rp
++, function dν,µLQ(·, v) is a nonnegative, proper, lower semicon-

tinuous, convex function with dom(dν,µLQ(·, v)) = R
p
++, and it holds dν,µLQ(u, v) = 0 if and

only if u = v.

Proof. Nonnegative: For every i = 1, . . . , p and u, v ∈ Rp
++ it is clear that ν

2
(ui−vi)2 ≥ 0.

Since µ > 0, it remains to show that
(
v2
i log vi

ui
+ uivi − v2

i

)
is nonnegative. The last

term is equivalent to

v2
i

(
ui
vi
− log

ui
vi
− 1

)
.

Substituting t := ui
vi

, it suffices to show that

t− log(t)− 1

is nonnegative for t > 0. In view of the analytical properties of the logarithm function,
this is directly clear since log(t) ≤ t− 1 for all t > 0.
Proper: For all u, v ∈ Rp

++ one has dν,µLQ(u, v) < +∞. Thus, {u ∈ Rp : dν,µLQ(u, v) <
+∞} 6= ∅ for all fixed v ∈ Rp

++. Clearly, dom(dν,µLQ(·, v)) = R
p
++.

Lower semicontinuous: Function dν,µLQ(·, v) is obviously continuous at every u ∈ Rp
++.

Further, dν,µLQ(·, v) has constant value +∞ for every u /∈ Rp
+. Now, let u ∈ bd(Rp

+) and

{uk} be a sequence in Rp converging to u. Then there exists j ∈ {1, . . . , p} with uj = 0.
Thus, in view of the logarithm term in dν,µLQ(uk, v), the summand for i = j tends to
infinity for k →∞. Hence,

lim inf
uk→u

dν,µLQ(uk, v) = +∞ ≥ +∞ = dν,µLQ(u, v).

Convex: Fix v ∈ Rp
++. It suffices to show that dν,µLQ(·, v) is convex on Rp

++. For every
u ∈ Rp

++ the quadratic term in dν,µLQ(u, v) is obviously convex. For the second term one
has

µ︸︷︷︸
>0

 v2
i︸︷︷︸

const

(log(vi)︸ ︷︷ ︸
const

− log(ui)︸ ︷︷ ︸
convex

) + uivi︸︷︷︸
linear

−v2
i︸︷︷︸

const

 ,

which shows that it is convex.
Distance property: It is clear that u = v implies dν,µLQ(u, v) = 0. On the other hand, if
dν,µLQ(u, v) = 0 then every summand has to be zero because all summands are nonnega-
tive. Hence, the quadratic term implies that ui = vi for all i = 1, . . . , p. ut
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A.4 Convergence of sequences of numbers and elementary
calculus

An auxiliary result from elementary calculus used in Chapter 3 is

Lemma A.4.1. The following inequalities are valid:

〈x, y〉 ≤ 1

2ξ
‖ x ‖2 +

ξ

2
‖ y ‖2 ∀x, y ∈ Rn, ξ > 0. (A.2)

1 ≤ (1− r)−1 ≤ 1 + 2r ≤ 2 ∀0 ≤ r ≤ 1

2
. (A.3)

Proof. (A.2) is a consequence of Fenchel’s inequality for the function f(y) = ξ
2
‖ y ‖2

and its conjugate function f ∗(x) = 1
2ξ
‖ x ‖2. (A.3) is simple calculus.

Polyak’s statement about the convergence of sequences of numbers is applied in The-
orem 3.4.3. It reads as follows.

Lemma A.4.2 ([76], Lemma 2.2.2). Let {vk} be a nonnegative sequence of numbers
satisfying

vk+1 ≤ (1 + αk)vk + βk,

with αk ≥ 0, βk ≥ 0,
∑∞

k=1 αk <∞,
∑∞

k=1 βk <∞. Then {vk} is convergent.

An extension of the above result is

Lemma A.4.3 ([61], Lemma 7). Assume that {ak}, {bk}, {ck}, {dk} are sequences
of nonnegative numbers. If the relation

ak+1 ≤ (1 + bk)ak + ck − dk

is valid and
∑∞

k=0 max{bk, ck} < ∞, then the sequence {ak} is convergent and further∑∞
k=0 d

k <∞ also holds true.

In Theorem 8.1.2 we apply the following lemma which is based on Lemma A.4.3.

The notation r+ := max{r, 0} and r− := min{r, 0} is used to denote the positive
respectively negative part of some r ∈ R. Then r+ ≥ 0, r− ≤ 0, and r = r+ + r−.
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Lemma A.4.4. Given are the sequences {an}, {bn}, {cn} ∈ RN and a constant ā ∈ R.
Suppose that for all n ∈ N the following relation holds

ā ≥ an+1 + cn ≥ an + bn + cn. (A.4)

Then, under the conditions

lim
n→∞

cn = 0 and
∞∑
n=1

−b−n < +∞,

the sequence {an} is convergent.

Proof. In view of the second inequality in (A.4) one has −(an+1 +cn) ≤ −(an+bn+cn)
and thus

ā− (an+1 + cn) ≤ ā− (an + bn + cn).

With un := ā− an this can be transformed to

un+1 − cn ≤ un − bn − cn.
It is also obvious that

0 ≤ ā− an+1 − cn = un+1 − cn.
Consequently,

c+
n + c−n = cn ≤ un+1 ≤ un − bn

and therefore

c−n ≤ c+
n + c−n ≤ un+1 ≤ un − (b+

n + b−n ).

Since limn→∞ cn = 0, also limn→∞ c
−
n = 0. Thus, {c−n } is bounded and there exists c ≤ 0

with c−n ≥ c for all n. It follows that

0 ≤ un+1 − c ≤ un − c− b+
n − b−n .

With gn := un − c we have

0 ≤ gn+1 ≤ gn − b+
n − b−n .

Now, the convergence of the sequence {gn} follows with Lemma A.4.3. This is equivalent
to the convergence of {an}. ut

Remark A.4.5. (a) A further consequence of the situation in Lemma A.4.4 is that∑∞
n=0 b

+
n < +∞, which implies that

∑∞
n=0 |bn| =

∑∞
n=0 b

+
n + b−n < +∞. Thus, the

assumption on the sequence {bn} in Lemma A.4.4 is stronger than requiring that∑∞
n=0 bn exists and is finite.

(b) Instead of requiring limn→∞ cn = 0 one could use the weaker assumption that
there exists c ≤ 0 with c−n ≥ c for all n.
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A.5 Data of high-dimensional test examples in Chapter 6

This section contains additional information to the high-dimensional test examples
which are mentioned in Chapter 6.

A.5.1 Data for Example 6.2.3

ψ(x) =
〈
DTDx, x

〉
− 2 〈Dx, d〉+ ‖ d ‖2,

D =


−74 80 18 −11 −4
14 −69 21 28 0
66 −72 −5 7 1
−12 66 −30 −23 3

3 8 −7 −4 1
4 −12 4 4 0

 , d =


51
−61
−56
69
10
−12

 ,

A =


1 1 1 1 1
−10 −10 3 −5 −4

8 −1 2 5 −3
−8 1 −2 −5 3
4 2 −3 5 −1

 , b =


5
−20
40
−1
30

 ,

n = 5, p = 5, x0 = (−1.5, 3.5, 0.5, 4.0,−2.0)T , ψ(x0) = 182799.25, x∗ = (1, 2,−1, 3,−4)T ,
ψ∗ = 0, cond(DTD) = 1.1769 · 106.
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A.5.2 Data for Example 6.2.4

ψ(x) = xTCx+ dTx+ eTx,

C =


30 −20 −10 32 −10
−20 39 −6 −31 32
−10 −6 10 −6 −10
32 −31 −6 39 −20
−10 32 −10 −20 30

 , d =


4
8
10
6
2

 , e =


−15
−27
−36
−18
−12

 ,

A =



16 −2 0 −1 0
0 2 0 −4 −2

3.5 0 −2 0 0
0 2 0 4 1
0 9 2 −1 2.8
−2 0 4 0 0
1 1 1 1 1
1 2 3 2 1
−1 −2 −3 −4 −5
−1 −1 −1 −1 −1
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1



, b =



40
2

0.25
4
4
1
40
60
−5
−1
0
0
0
0
0



,

n = 5, p = 15, x0 = (0.1, 0.1, 0.1, 0.1, 1)T , ψ(x0) = 11.96,
x∗ ≈ (0.3, 0.322547, 0.4, 0.4017501, 0.2495811)T , ψ∗ = −23.0448869, λmin(C) = 0.
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A.5.3 Data for Example 6.2.5.a

ψ(x) =
1

2
〈Cx, x〉+ 〈d, x〉 , x ∈ Rn,

C =



440 59 62 −60 −81 21 22 92 −20 −19
59 409 22 21 30 43 41 50 99 −40
62 22 491 65 −57 −20 −23 96 −48 90
−60 21 65 418 −51 72 46 −53 33 −8
−81 30 −57 −51 600 84 77 −81 93 −42
21 43 −20 72 84 479 −89 −23 34 −83
22 41 −23 46 77 −89 364 0 −40 16
92 50 96 −53 −81 −23 0 473 6 −69
−20 99 −48 33 93 34 −40 6 466 −85
−19 −40 90 −8 −42 −83 16 −69 −85 459


,

d = (84, 21, 40, 49,−23,−50,−93,−6, 29,−44)T ,

A =



4 27 53 38 35 9 10 −70 −42 40
−51 97 −90 76 20 27 −67 −24 −62 −21
−40 −59 45 85 −31 14 −1 64 −95 −83
30 51 40 −84 −27 85 7 −66 −10 −57
78 77 −8 −3 −66 73 −60 −34 −51 −50
72 −6 16 −74 59 −66 25 93 74 −55
−58 −68 −32 −49 −1 −64 −95 61 6 41
−20 62 −66 77 −29 −51 −36 −56 83 51
78 −5 −20 −61 55 50 7 100 95 9
−49 −77 84 −76 −53 −60 −35 −87 17 11
93 75 −55 9 69 97 20 −15 −76 26
24 27 −28 −37 63 42 −28 −19 85 97
−67 −81 −35 −24 69 −65 −73 −20 19 27
65 82 −83 58 −26 72 83 −78 77 20
31 −93 3 68 −23 82 28 −15 −15 82
9 −92 67 36 72 92 32 23 21 14
−50 98 81 −17 −7 14 35 98 −86 −33
−92 37 45 29 14 13 49 −56 85 91
−53 −25 −23 −57 39 −65 68 −29 28 −12
−28 1 −40 23 92 3 3 −47 −79 20



,

b = (72, 68, 22, 9, 28, 87, 56, 47, 44, 78, 66, 66, 17, 44, 51, 38, 49, 35, 78, 39)T ,
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n = 10, p = 20, x0 = (0, . . . , 0)T , ψ(x0) = 0, x∗ ≈ (−0.24696,−0.07834,−0.06959,
−0.17925,−0.05713, 0.22185, 0.34456, 0.11154,−0.01301, 0.13069)T , ψ∗ ≈ −43.14856,
cond(C) = 4.6428.

A.5.4 Data for Example 6.2.6.a

ψ(x) =
1

2
〈Cx, x〉+ 〈d, x〉 , x ∈ Rn,

C =



388 79 −20 87 −43 29 −20 6 60 −43
79 579 −75 72 23 99 97 31 75 24
−20 −75 536 60 89 −49 −80 −59 −25 −74
87 72 60 427 44 14 5 80 −16 43
−43 23 89 44 468 −26 7 −96 55 −77
29 99 −49 14 −26 365 −54 11 4 −77
−20 97 −80 5 7 −54 390 −50 37 −38

6 31 −59 80 −96 11 −50 514 82 −96
60 75 −25 −16 55 4 37 82 454 97
−43 24 −74 43 −77 −77 −38 −96 97 577


,

d = (−27, 94,−19,−14, 10, 21,−93,−6,−15,−50)T

A = −In,
b = 0 ∈ Rn.

n = 10, p = 10, x0 = (10, . . . , 10)T , ψ(x0) = 263110, x∗ ≈ (0.10422, 0, 0.11335, 0,
0.00354, 0.02135, 0.29423, 0.07935, 0, 0.14486)T , ψ∗ ≈ −19.78359, cond(C) = 6.4193.

A.6 Numerical experiments with differentiable, convex test
problems

In this section detailed numerical experiments with the LQPAP and the BrPAP method
applied to the test examples of Chapter 6 are presented. They are concerned with the
combination of the Armijo- and the self-concordance step size rules, the properties of
the Newton decrements, the modeling according to Category 1b, and the adaptive ini-
tialization of χ0. Finally, several graphics demonstrate the influence of under-relaxation
on the LQPAP method.
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A.6.1 Combination of Armijo- and self-concordance rule reduces number
of function evaluations

Table A.1 presents the results for the strategy to use the Armijo rule for the Newton
step sizes until λj < λ∗ holds for some Newton decrement λj, and to switch to the
self-concordance rule afterwards.

Example {χk} LQPAP method
No. Name χ0 r #iter #New #ψ ψcalc |ψcalc − ψ∗|

6.2.1 First 2-dim example 0.01 0.1 3 33 224 1.00000 0.00e+00
6.2.2 Second 2-dim example 0.01 0.7 5 47 260 0.22874 2.78e-17

6.2.3 Schittkowski no. 268 0.01 0.1 40 83 6 0.00000 2.40e-06
6.2.4 Modified Colville 0.01 0.1 3 49 451 -23.04489 6.81e-07
6.2.5.a Random n = 10, p = 20 0.01 0.3 6 52 167 -43.12260 2.60e-02
6.2.5.b Random n = 100, p = 150 0.01 0.1 5 49 89 -36.98940 3.43e-02
6.2.6.a Random n = 10 0.10 0.5 4 66 671 -19.78359 3.95e-11
6.2.6.b Random n = 100 10.00 0.5 5 203 2363 -19.68023 5.56e-08

Table A.1. Results for the LQPAP method using a switch from Armijo to self-
concordance step sizes in the Newton method.

It can be seen that the number of outer (LQPAP) iterations is the same as in Table 6.1
and that the number of inner (Newton) iterations is mostly the same (in Examples 6.2.1,
6.2.2, 6.2.4, 6.2.5.a, 6.2.6.a one has 1-4 iterations less than in Table 6.1). Concerning the
number #ψ of function evaluations the combination of the step size strategies results
in less evaluations than the sole use of the Armijo step size rule. This indicates that a
switch to the self-concordance step sizes saves possibly expensive function evaluations.

A.6.2 Verification of the properties of the Newton decrement

Let x0 be the initial iterate and χ0 be the initial regularization parameter of the LQPAP
method. Consider the first auxiliary problem

min
y∈Rn

{
ψ(y) + χ0D(y, x0)

}
. (A.5)

Denote F (y) = ψ(y) + χ0D(y, x0) and let ϑ0 be the self-concordance parameter of F .
Iteration index j is used to number the Newton iterates. Let λj denote the correspond-
ing Newton decrements. The properties of the Newton method with self-concordance
step size to solve (A.5) are (see Theorem 4.3.2)

(a) {λj > λ′} ⇒
{F (yj+1) ≤ F (yj)− 4

ϑ20
(λj − log(1 + λj)) ≤ F (yj)− 4

ϑ20
(λ′ − log(1 + λ′))},
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(b) {λ′ ≥ λj ≥ λ∗} ⇒{
λj+1 ≤

6λj−λ2j−1

4
< λj

}
and

{
1− λj+1 ≥ 5−λj

4
(1− λj) ≥ 5−λ′

4
(1− λk)

}
,

(c) {λj < λ∗} ⇒{
λj+1 ≤

(
λj

1−λj

)2

<
λj
2

}
.

For Example 6.2.3, Table A.2 presents a verification of the above relations. To shorten
the table we only list the Newton iterations for j ≥ 200. For the different cases (a)–(c)
the values occurring in the corresponding inequalities are given. The last column shows
if the relation is true (1) or false (0). Tables A.3 and A.4 correspond to Examples 6.2.6.a
and 6.2.6.b, respectively.

In all cases the properties of the Newton method prove to be true.

j Case λj F (yj+1) F (yj) F (yj) Relation
− 4
ϑ2
k

(λj − log(1 + λj)) − 4
ϑ2
k

(λ′ − log(1 + λ′))

200 a) 14.79 780.45 791.69 887.31 1
201 a) 13.853 679.03 689.84 778.35 1
202 a) 12.92 585.13 595.48 676.94 1
203 a) 11.992 498.68 508.55 583.03 1
204 a) 11.069 419.63 429 496.58 1
205 a) 10.152 347.93 356.76 417.54 1
206 a) 9.2417 283.5 291.76 345.84 1
207 a) 8.3394 226.26 233.91 281.41 1
208 a) 7.4464 176.09 183.11 224.16 1
209 a) 6.5648 132.88 139.21 174 1
210 a) 5.697 96.451 102.05 130.78 1
211 a) 4.8463 66.61 71.429 94.354 1
212 a) 4.0174 43.087 47.08 64.514 1
213 a) 3.2167 25.519 28.648 40.99 1
214 a) 2.4538 13.408 15.655 23.422 1
215 a) 1.7434 6.0493 7.4446 11.311 1
216 a) 1.1079 2.4415 3.1073 3.9525 1

j Case λj λj+1 (6λj − λ2
j − 1)/4 λj Relation

217 b) 0.5823 0.40953 0.53868 0.5823 1
218 b) 0.40953 0.18159 0.32237 0.40953 1

j Case λj λj+1 λj/(1− λj) λj/2 Relation
219 c) 0.18159 1.5312e-08 0.049232 0.090796 1

Table A.2. Properties of the Newton decrement for Example 6.2.3, iteration k = 0.
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j Case λj F (yj+1) F (yj) F (yj) Relation
− 4
ϑ2
k

(λj − log(1 + λj)) − 4
ϑ2
k

(λ′ − log(1 + λ′))

200 a) 31.076 4825.3 4845.6 5119.1 1
201 a) 30.098 4538.7 4558.7 4822.7 1
202 a) 29.12 4261.8 4281.5 4536.1 1
203 a) 28.144 3994.7 4014.1 4259.2 1
204 a) 27.167 3737.3 3756.4 3992.1 1
205 a) 26.191 3489.7 3508.4 3734.7 1
206 a) 25.215 3251.8 3270.2 3487.1 1
207 a) 24.24 3023.6 3041.7 3249.2 1
208 a) 23.265 2805.1 2822.8 3021 1
209 a) 22.291 2596.4 2613.7 2802.6 1
210 a) 21.316 2397.3 2414.3 2593.8 1
211 a) 20.343 2208 2224.5 2394.8 1
212 a) 19.369 2028.3 2044.4 2205.4 1
213 a) 18.395 1858.4 1874 2025.7 1
214 a) 17.422 1698.1 1713.3 1855.8 1
215 a) 16.448 1547.5 1562.2 1695.5 1
216 a) 15.474 1406.5 1420.8 1544.9 1
217 a) 14.499 1275.3 1289 1404 1
218 a) 13.522 1153.7 1166.8 1272.7 1
219 a) 12.545 1041.8 1054.3 1151.2 1
220 a) 11.565 939.65 951.51 1039.3 1
221 a) 10.582 847.16 858.33 937.07 1
222 a) 9.5974 764.36 774.79 844.58 1
223 a) 8.6105 691.26 700.89 761.78 1
224 a) 7.6239 627.8 636.57 688.68 1
225 a) 6.6414 573.89 581.72 625.22 1
226 a) 5.669 529.36 536.18 571.31 1
227 a) 4.7141 493.92 499.65 526.78 1
228 a) 3.7857 467.16 471.72 491.34 1
229 a) 2.8964 448.44 451.79 464.57 1
230 a) 2.065 436.85 438.99 445.86 1
231 a) 1.3205 430.99 432.06 434.27 1

j Case λj λj+1 (6λj − λ2
j − 1)/4 λj Relation

232 b) 0.70487 0.56992 0.68309 0.70487 1
233 b) 0.56992 0.3855 0.52368 0.56992 1
234 b) 0.3855 0.14334 0.29109 0.3855 1

j Case λj λj+1 λj/(1− λj) λj/2 Relation
235 c) 0.14334 0.0017828 0.027996 0.071669 1
236 c) 0.0017828 3.7493e-07 3.1899e-06 0.00089142 1

Table A.3. Properties of the Newton decrement for Example 6.2.6.a, iteration k = 0.
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j Case λj F (yj+1) F (yj) F (yj) Relation
− 4
ϑ2
k

(λj − log(1 + λj)) − 4
ϑ2
k

(λ′ − log(1 + λ′))

200 a) 18.213 4.8662e+05 4.8817e+05 5.0317e+05 1
201 a) 17.166 4.7084e+05 4.7235e+05 4.8636e+05 1
202 a) 16.119 4.5611e+05 4.5756e+05 4.7058e+05 1
203 a) 15.071 4.4242e+05 4.4382e+05 4.5585e+05 1
204 a) 14.025 4.2977e+05 4.311e+05 4.4216e+05 1
205 a) 12.981 4.1815e+05 4.1942e+05 4.2951e+05 1
206 a) 11.939 4.0756e+05 4.0877e+05 4.1789e+05 1
207 a) 10.902 3.98e+05 3.9913e+05 4.073e+05 1
208 a) 9.8712 3.8945e+05 3.9051e+05 3.9774e+05 1
209 a) 8.8489 3.819e+05 3.8289e+05 3.8919e+05 1
210 a) 7.838 3.7535e+05 3.7625e+05 3.8165e+05 1
211 a) 6.8421 3.6976e+05 3.7057e+05 3.7509e+05 1
212 a) 5.8659 3.6512e+05 3.6583e+05 3.6951e+05 1
213 a) 4.9152 3.6139e+05 3.6198e+05 3.6486e+05 1
214 a) 3.9976 3.5851e+05 3.59e+05 3.6113e+05 1
215 a) 3.1232 3.5644e+05 3.5681e+05 3.5825e+05 1
216 a) 2.3053 3.5508e+05 3.5533e+05 3.5618e+05 1
217 a) 1.5633 3.5431e+05 3.5445e+05 3.5482e+05 1
218 a) 0.92492 3.5398e+05 3.5404e+05 3.5405e+05 1

j Case λj λj+1 (6λj − λ2
j − 1)/4 λj Relation

219 b) 0.43033 0.20548 0.34919 0.43033 1
j Case λj λj+1 λj/(1− λj) λj/2 Relation

220 c) 0.20548 0.0014287 0.066887 0.10274 1
221 c) 0.0014287 7.1819e-08 2.0471e-06 0.00071437 1

Table A.4. Properties of the Newton decrement for Example 6.2.6.b, iteration k = 0.
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A.6.3 Modeling according to Category 1b is unfavorable

To model the test examples of Section 6.2 according to Category 1b, we begin with
the determination of χ according to (6.13) and (6.17), respectively. Since all objective
functions ψ are convex-quadratic, we can write their gradients in the form ∇ψ(x) =
Cx+d and determine the modulus of co-coercivity as γ = 1/ ‖ C ‖2 (see Lemma 5.4.7).
Parameter a is calculated with Lemma 6.1.1 as a = (λmin(ATA))−1. Table A.5 specifies
the (approximate) values for γ, a, and χ. Since the values for γ are in most cases very
small (and the values for a do not compensate this by being sufficiently large), the
values for χ are rather large. For that reason, is is not reasonable to start with χ0 � χ

and decrease it with some r ∈ (0, 1) because this would lead to steps from xk to xk+1

that are too small. Thus, we set χk = χ for all k in all examples.

Example γ a χ (LQPAP) χ (BrPAP)

6.2.1 5.00e-01 2.00e+00 0.251 0.501
6.2.2 1.00e-04 1.00e+00 5000.001 2500.001
6.2.3 1.66e-05 8.17e-08 4.51e+18 1.50e+04
6.2.4 4.58e-03 2.57e+00 16.469 54.561

6.2.5.a 1.22e-03 1.02e+02 0.039 203.587
6.2.5.b 1.59e-04 1.36e+02 0.169 1567.094
6.2.6.a 1.25e-03 1.00e+00 396.974 198.487
6.2.6.b 1.58e-04 1.00e+00 3152.639 1576.320

Table A.5. Values for χ when modeling with Category 1b.

First, we set Lk = 0 and present the results in Tables A.6 and A.7. In the examples
marked by (∗) the methods fail to calculate an approximately good optimal solution
because the accuracies are worse than 10−2. On the one hand, this can be due to the
large values for χ, which imply a strong regularization by the distance function. This
can cause step sizes near zero, and the algorithm makes no advance and stops. On the
other hand, also examples with rather small values for χ do not show the performance
as in Tables 6.1 and 6.2. An obvious reason is that ψ is only linear approximated in
Category 1b, which can hardly be compensated by the regularization term.

Now, it is interesting to see if the usage of a nonzero auxiliary operator Lk can improve
the above results. In view of Section 5.4.3, we will only consider those examples where
∇ψ(x) = Cx+ d is given with a diagonally dominant matrix C. Then, Lk is defined as
Lk(x) = Bx with B according to Lemma 5.4.16. Examples where B results to be the
zero matrix or where B = C will also not be considered. The remaining examples are
Examples 6.2.2, 6.2.5.a, and 6.2.6.a with values for γ, a, and χ as given in Table A.8.

The results of the LQPAP and the BrPAP method as given in Tables A.9 and A.10
show that there is no significant improvement compared to Tables A.6 and A.7. So, an
advantage of using a nonzero auxiliary operator Lk cannot be observed in the tested
examples.
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Example {χk} LQPAP method
No. Name χ0 r #iter #New #ψ ψcalc |ψcalc − ψ∗|

6.2.1 First 2-dim example 0.251 1.0 5 51 355 1.00000 9.28e-14
6.2.2 Second 2-dim example 5000.001 1.0 132784 872130 1.18e+07 0.22874 3.26e-08

6.2.3 Schittkowski no. 268 4.51e+18 1.0 27 338 3971 9625.01039 9625.01(∗)

6.2.4 Modified Colville 16.469 1.0 10 68 486 -19.47036 3.57(∗)

6.2.5.a Rand n = 10, p = 20 0.039 1.0 18 116 711 -39.68351 3.46(∗)

6.2.5.b Rand n = 100, p = 150 0.169 1.0 43 184 831 -30.47879 6.54(∗)

6.2.6.a Random n = 10 396.974 1.0 8 81 418 2785.64974 2805.43(∗)

6.2.6.b Random n = 100 3152.639 1.0 19 122 465 47.02924 66.71(∗)

Table A.6. Results for the LQPAP method when modeling the problems according to
Category 1b.

Example {χk} BrPAP method
No. Name χ0 r #iter #New #ψ ψcalc |ψcalc − ψ∗|

6.2.1 First 2-dim example 0.501 1.0 5 30 59 1.00000 1.90e-07

6.2.2 Second 2-dim example 2500.001 1.0 38872 147815 1327572 0.25452 2.58e-02(∗)

6.2.3 Schittkowski no. 268 1.5e+04 1.0 31874 162560 2245870 0.85338 8.53e-01(∗)

6.2.4 Modified Colville 54.561 1.0 172 793 4742 -22.98408 6.08e-02(∗)

6.2.5.a Random n = 10, p = 20 203.587 1.0 4244 13114 25921 -42.87079 2.78e-01(∗)

6.2.5.b Random n = 100, p = 150 1567.094 1.0 3023 49551 1240367 -28.43274 8.59(∗)

6.2.6.a Random n = 10 198.487 1.0 2 30 182 39.01280 58.80(∗)

6.2.6.b Random n = 100 1576.320 1.0 311 1336 4814 -19.63622 4.40e-02(∗)

Table A.7. Results for the BrPAP method when modeling the problems according to
Category 1b.

Example γ a χ (LQPAP) χ (BrPAP)

6.2.2 50.00e+00 1.00e+00 0.011 0.006
6.2.5.a 1.24e-03 1.02e+02 0.039 202.139
6.2.6.a 1.27e-03 1.00e+00 394.937 197.469

Table A.8. Values for χ when modeling with Category 1b and Lk = Bx.

Example {χk} LQPAP method
No. Name χ0 r #iter #New #ψ ψcalc |ψcalc − ψ∗|

6.2.2 Second 2-dim example 0.011 1.0 5 43 291 0.22874 1.39e-14
6.2.5.a Random n = 10, p = 20 0.039 1.0 18 101 529 -39.74002 3.41
6.2.6.a Random n = 10 394.937 1.0 8 71 472 2768.98425 2788.76

Table A.9. Results for the LQPAP method when modeling the problems according to
Category 1b with Lk = Bx.
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Example {χk} BrPAP method
No. Name χ0 r #iter #New #ψ ψcalc |ψcalc − ψ∗|

6.2.2 Second 2-dim example 0.006 1.0 2 38 281 2.74972 2.52
6.2.5.a Random n = 10, p = 20 202.139 1.0 4227 13035 24618 -42.87291 2.76e-01
6.2.6.a Random n = 10 197.469 1.0 2 31 190 44.04312 6.38

Table A.10. Results for the BrPAP method when modeling the problems according
to Category 1b with Lk = Bx.

A.6.4 Adaptive χ0 as an alternative

In [44, Section 6.2.4.] an adaptive initialization strategy for χ0 is presented in the
context of a bundle method for the BrPPA. To transfer this idea to our situation we
linearize function f 0 in x0 and consider

min
x∈Rn

{〈
∇f 0(x0), x− x0

〉
+ χ0D(x, x0)

}
. (A.6)

Note that ∇f 0(x0) = ∇ψ(x0) for both Categories 1a and 1b. The first Newton iterate
of this problem, i.e.,

ỹ1 = x0 − 1

χ0

[∇2
ID(x0, x0)]−1∇ψ(x0)

is taken as an approximation for the solution x1 of (A.6). Now, χ0 is determined such
that ỹ1 stays feasible. Condition Aỹ1 ≤ b is equivalent to

χ0(Ax0 − b) ≤ A[∇2
ID(x0, x0)]−1∇ψ(x0),

which, in view of Ax0 < b, can be transformed to

χ0 ≥ max

{
(A[∇2

ID(x0, x0)]−1∇ψ(x0))j
(Ax0 − b)j

: j = 1, . . . , p

}
=: χ

1
.

This may result in a too small value for χ0, especially if the start iterate is far away
from the boundary such that Ax0 � b. Thus, it is further required that ‖ ỹ1−x0 ‖≤ 1.
This is equivalent to the condition

χ0 ≥‖ ∇2
ID(x0, x0)]−1∇ψ(x0) ‖=: χ

2
. (A.7)

Finally, the bounds χ and χ have to be respected. Altogether, we propose the following
adaptive initial value for the regularization parameter:

χ0 = min{max{χ
1
, χ

2
, χ}, χ}

with χ = 10−3 and χ = 106.
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It remains to choose a decreasing factor r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. It is determined such
that the performance of the LQPAP respectively BrPAP method is best. The results
are presented in Tables A.11 and A.12. A comparison with Tables 6.1 and 6.2 shows
that the accuracies of the calculated solutions are comparable, whereas the iteration
numbers are mostly higher. In some examples the determined values of χ0 are quite
large (in the range of 103− 106). This indicates that condition (A.7) is very restrictive.

Example {χk} LQPAP method
No. Name χ0 r #iter #New #ψ ψcalc |ψcalc − ψ∗|

6.2.1 First 2-dim example 0.4107543 0.1 4 39 326 1.00000 1.59e-14
6.2.2 Second 2-dim example 1332.6548156 0.1 5 45 421 0.22874 1.38e-16

6.2.3 Schittkowski no. 268 1e+6 0.1 48 113 130 0.00000 2.42e-06
6.2.4 Modified Colville 4.2214806 0.1 5 333 2764 -23.04488 3.10e-07
6.2.5.a Random n = 10, p = 20 0.0077806 0.1 5 43 318 -43.10092 4.76e-02
6.2.5.b Random n = 100, p = 150 0.0193623 0.1 5 65 903 -36.94648 7.72e-02
6.2.6.a Random n = 10 6141.8760525 0.1 7 79 597 -19.78358 3.92e-07
6.2.6.b Random n = 100 162133.8106565 0.1 8 232 2395 -19.68023 4.06e-07

Table A.11. Results for the LQPAP method with adaptive χ0.

Example {χk} BrPAP method
No. Name χ0 r #iter #New #ψ ψcalc |ψcalc − ψ∗|

6.2.1 First 2-dim example 0.4730659 0.1 3 31 155 1.00000 0
6.2.2 Second 2-dim example 3413.0774882 0.1 7 47 180 0.22874 1.37e-11

6.2.3 Schittkowski no. 268 1e+6 0.9 199 631 1435 0.00000 2.31e-06
6.2.4 Modified Colville 11.8079047 0.7 10 62 215 -22.98991 5.49e-02
6.2.5.a Random n = 10, p = 20 0.6927731 0.7 13 73 220 -43.14853 3.15e-05
6.2.5.b Random n = 100, p = 150 0.3766576 0.1 5 48 282 -37.02359 1.41e-04
6.2.6.a Random n = 10 184256.2815754 0.9 82 364 586 -19.74961 3.39e-02
6.2.6.b Random n = 100 1e+6 0.9 102 439 698 -19.67286 7.36e-03

Table A.12. Results for the BrPAP method with adaptive χ0.

A.6.5 Under-relaxation robustifies the LQPAP method

Performance graphics. The figures presented in this section show that the under-
relaxation strategy introduced in Section 6.4 improves the performance of the LQPAP
method. The method becomes more robust with respect to different choices of {χk}.

Figures A.1–A.8 compare the reached accuracies of the LQPAP algorithm with and
without under-relaxation for different parameter sets {χ0, r}. These parameter sets are
numbered in Table A.13. There are five groups of parameter sets, each one correspond-
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ing to a different value of χ0 ∈ {0.01, 0.1, 1, 10, 100}. Within a group, the values for
r ∈ {0.9, 0.7, 0.5, 0.3, 0.1} are distinguished.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
χ0 0.01 0.01 0.01 0.01 0.01 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1
r 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

No. 16 17 18 19 20 21 22 23 24 25
χ0 10 10 10 10 10 100 100 100 100 100
r 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Table A.13. Numbering of parameter sets.

The values of the ordinate correspond to the range of the deviation |ψcalc − ψ∗|. The
lower a point in the graph, the more accurate is the calculated solution. The value
10−17 represents all deviations where MATLAB R© outputs the value 0. Values in the
range of 10−16 to 10−14 possibly lie beyond machine precision. Blue lines correspond to
the standard LQPAP algorithm (i.e., without under-relaxation, t = 1.0) and red lines
correspond to the LQPAP algorithm with under-relaxation (t = 0.5). As an additional
information the number of iterations (#iter) corresponding to a parameter set is listed.
The average value of iterations (Avg.) over all parameter settings is also given.

In Examples 6.2.2 and 6.2.6.b the under-relaxation strategy always results in a worse
accuracy compared to the standard LQPAP algorithm. In Example 6.2.3 the accuracies
for t = 1.0 and t = 0.5 are similar. All other examples show the desired robustification:
Using the standard LQPAP algorithm there are outliers where the accuracy of the
calculated solution is in the range of 10−2 to 101, whereas the accuracies reached with
the under-relaxation strategy mostly stay at the same range over all parameter settings.
For example, in Examples 6.2.4 and 6.2.6.a the accuracies reached with the under-
relaxation strategy are about 10−4 over all parameter settings. On the other hand,
there are 13 situations in Example 6.2.4 and 5 situations in Example 6.2.6.a where the
standard LQPAP algorithms reaches a worse accuracy.

Concerning the iteration numbers it is clear that consistently more iterations are needed
when using under-relaxation. The iteration numbers are about factor two or three
(sometimes five) higher than in the standard LQPAP algorithm.
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Figure A.1. Example 6.2.1: LQPAP method with and without under-relaxation.
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Figure A.2. Example 6.2.2: LQPAP method with and without under-relaxation.
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Figure A.3. Example 6.2.3: LQPAP method with and without under-relaxation.
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Figure A.4. Example 6.2.4: LQPAP method with and without under-relaxation.
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Figure A.5. Example 6.2.5.a: LQPAP method with and without under-relaxation.
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Figure A.6. Example 6.2.5.b: LQPAP method with and without under-relaxation.
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Figure A.7. Example 6.2.6.a: LQPAP method with and without under-relaxation.
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Figure A.8. Example 6.2.6.b: LQPAP method with and without under-relaxation.
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Influence of the proximity to the boundary and to optimality. To explain the
different situations observed in the performance graphics, it is helpful to analyze the
behavior of the iterates with respect to their proximity to the boundary in relation to
their proximity to optimality. We present three characteristic figures. In each figure a
specific example and a specific parameter set is fixed. For a sequences {xk} of LQPAP
iterates the points(

‖ xk − x∗ ‖,min{(b− Axk)i : i = 1, . . . , p}
)
k=1,2,...

are plotted as a graph. The blue lines correspond to the case t = 1.0, and the red lines
correspond to the case t = 0.5.

Figure A.9 belongs to a situation where the standard LQPAP algorithm calculates a
solution of higher accuracy than the LQPAP algorithm using under-relaxation. Here,
both sequences of iterates approach the optimal point and the boundary in the same
manner. But with under-relaxation, the stopping criterion takes effect earlier and pre-
vents a higher accuracy of the calculated solution.

This is not always the case as can be seen in Figure A.10. Both sequences of iterates
behave similar with respect to their proximity to the boundary and to optimality. The
same accuracies are reached. In Example 6.2.3 this is the case for all parameter sets
and explains the appearance of the corresponding performance graphic in Figure A.3.

Finally, Figure A.11 represents the desired effect of under-relaxation. It prevents the
iterates from tending to early towards the boundary and, thus, a higher accuracy of
the calculated solution can be reached.

Switching strategy as an outlook. It would be interesting to analyze the influence
of the relaxation parameter t ∈ (0, 1) on the performance of the LQPAP method and
to find an optimal choice. Furthermore, one can think of a switching strategy where
under-relaxation is only used until a certain proximity to the boundary is reached.
This positively influences the path of the iterates in the first iterations, while using the
standard LQPAP algorithm in the last iterations can help to reach a higher accuracy.
Figure A.12 shows that this is a promising strategy in comparison to the usage of a fixed
under-relaxation parameter. The violet line presents the accuracies when switching
from t = 0.5 to t = 1.0 if min{(b − Axk)i : i = 1, . . . , p} < 10−3. A more detailed
analysis is left for further investigation.
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Example 6.2.2, Parameter Set: 3 
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Figure A.9. Under-relaxation reaches less accuracy.
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Figure A.10. Under-relaxation reaches similar accuracy.
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Example 6.2.5.a, Parameter Set: 5 

LQPAP t=1.0 LQPAP t=0.5

Figure A.11. Under-relaxation improves the relation between the proximity to the
boundary and to optimality.
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Figure A.12. Example 6.2.2: Influence of t and switching idea.
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A.7 Generation of high-dimensional examples with the
Lagrange approach

We describe the general process for generating an example with the Lagrange approach
presented in Section 7.2.2.

We start with a randomly generated matrix C1 ∈ Rr×r which has integer entries in
the interval [−100, 100]. We continue with its symmetric part C2 = 0.5(C1 + CT

1 ) and
make it positive definite by adding B = (−λmin(C2) + 0.1)Ir. Set C̃ = C2 + B. Vector
d̃ ∈ Rr is randomly generated with integer entries in [−100, 100]. Matrix Ã ∈ Rp×r

(with p > r) is randomly generated with entries in [−100, 100] such that it has full
column rank. Vector b̃ ∈ Rp is randomly generated with entries in [1, 100]. Thus, the
zero vector is a strict feasible point. The resulting optimization problem is solved by
the MATLAB R© routine fmincon and the dual solution is determined with the KKT
system. If the primal solution lies in the interior of the feasible set we restart the
generation process until we obtain a problem where the solution lies at the boundary
of the feasible set. Now, the values for pκ ≥ r and pλ > 0, with pκ + pλ = p, are chosen
to define a splitting of the constraints. Doing so, it has to be ensured that Aκ has full
column rank. Finally, s > 0 is chosen to define the modified Lagrange function.

Example A.7.1. For r = 10 and p = 20 the following data was generated:

C̃ = C2 +B,

C2 =



63.0 6.5 −22.0 62.0 7.0 −62.5 3.0 38.5 31.0 4.0
6.5 94.0 −1.0 −48.5 18.0 −18.0 −32.5 17.0 62.0 1.5
−22.0 −1.0 70.0 21.0 44.5 41.5 25.0 20.5 24.0 −30.0
62.0 −48.5 21.0 −91.0 −11.0 −1.0 39.5 −44.0 50.0 −18.5
7.0 18.0 44.5 −11.0 −63.0 −39.0 33.5 57.5 62.5 69.0
−62.5 −18.0 41.5 −1.0 −39.0 −0.0 92.0 −31.0 −13.0 −64.5

3.0 −32.5 25.0 39.5 33.5 92.0 9.0 −66.5 −9.5 −17.0
38.5 17.0 20.5 −44.0 57.5 −31.0 −66.5 −50.0 37.0 −5.5
31.0 62.0 24.0 50.0 62.5 −13.0 −9.5 37.0 −24.0 −42.0
4.0 1.5 −30.0 −18.5 69.0 −64.5 −17.0 −5.5 −42.0 −33.0


,

B = diag(192.36867461, . . . , 192.36867461),

d̃ = (−68, 59,−38, 6,−67, 20,−47, 31, 38, 50)T ,
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Ã =



−10 −14 −17 −53 86 −58 19 93 −79 −63
−83 82 −90 −29 55 −40 −48 9 31 −52
−54 −64 81 64 −3 −6 21 4 −1 77
83 −47 89 −97 −13 −54 42 −54 56 −94
−70 −71 −2 −91 −11 69 −56 −2 43 −2
65 −73 −2 −66 −39 −61 −77 25 81 −66
8 74 −32 30 2 −55 −41 36 78 96
99 16 80 46 2 −66 −36 −21 −33 43
−84 10 −26 30 64 −54 −15 −27 40 0
−11 −71 −78 −10 59 −13 2 98 −60 −6
−79 71 56 9 29 −38 −83 −92 −94 −88
92 24 −22 −41 −24 85 −48 77 49 36
−99 −30 −52 49 62 −14 60 83 0 −92
55 3 −19 −62 7 −63 −94 59 −4 −86
63 −20 −81 37 −30 81 86 −80 81 4
74 −85 −74 −63 88 96 46 −48 22 −81
−83 −52 88 −26 75 −12 −2 −33 24 64
−20 −75 91 25 10 −78 16 36 72 64
−48 −63 15 56 24 −48 −53 −73 61 44
60 −52 −88 −84 17 −18 −8 44 15 −70



,

b̃ = (66, 52, 97, 65, 80, 46, 44, 83, 9, 14, 18, 40, 83, 81, 7, 41, 53, 42, 66, 63)T .

The primal and dual solutions are (approximately) determined as

x̃ = (0.25081810,−0.09485588, 0.15541982,−0.02615318, 0.25295678,−0.20253054,

0.23047599,−0.09638734,−0.20858479,−0.13300297)T ,

ỹ = (0, 0, 0, 0.15620580, 0, 0, 0, 0, 0, 0.19429457, 0.29623410, 0, 0, 0, 0, 0.24015519, 0, 0, 0, 0)T .

To split the constraints we set pκ = 15, pλ = 5, choose s = 2, and obtain a variational
inequality with dimension n = 15, and p = 20 restrictions. The optimal solution is

x∗ = (0.25081810,−0.09485588, 0.15541982,−0.02615318, 0.25295678,−0.20253054,

0.23047599,−0.09638734,−0.20858479,−0.13300297, 0.24013181, 0, 0, 0, 0)T .

An initial point in the interior of the feasible set is, e.g.,

x0 = (x0
1, x

0
2) with x0

1 = (0, . . . , 0) ∈ R10, x0
2 = (10, . . . , 10) ∈ R5.

Example A.7.2. Another test example was randomly generated with r = 100, p = 150,
pκ = 120, and pλ = 30. As an initial point we take

x0 = (x0
1, x

0
2) with x0

1 = (0, . . . , 0) ∈ R100, x0
2 = (10, . . . , 10) ∈ R30.

This example is mentioned here such that it can be refered to in the tables of results.
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[11] R. S. Burachik, C. Sagastizábal, and B. F. Svaiter. Bundle methods for maximal
monotone operators. In Ill-posed variational problems and regularization techniques



204 REFERENCES

(Trier, 1998), volume 477 of Lecture Notes in Econom. and Math. Systems, pages
49–64. Springer, Berlin, 1999.

[12] R. S. Burachik and B. F. Svaiter. ε-enlargements of maximal monotone operators
in Banach spaces. Set-Valued Analysis, 7(2):117–132, 1999.

[13] R. S. Burachik and B. F. Svaiter. A relative error tolerance for a family of general-
ized proximal point methods. Mathematics of Operations Research, 26(4):816–831,
2001.

[14] Y. Censor, A. N. Iusem, and S. A. Zenios. An interior point method with Bregman
functions for the variational inequality problem with paramonotone operators.
Mathematical Programming, 81(3, Ser. A):373–400, 1998.

[15] G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization
algorithm using Bregman functions. SIAM Journal on Optimization, 3(3):538–543,
1993.

[16] G. Cohen. Optimization by decomposition and coordination: a unified approach.
Institute of Electrical and Electronics Engineers. Transactions on Automatic Con-
trol, AC-23(2):222–232, 1978.

[17] G. Cohen. Auxiliary problem principle and decomposition of optimization prob-
lems. Journal of Optimization Theory and Applications, 32(3):277–305, 1980.

[18] G. Cohen. Nash equilibria: gradient and decomposition algorithms. Large Scale
Systems, 12(2):173–184, 1987.

[19] G. Cohen. Auxiliary problem principle extended to variational inequalities. Jour-
nal of Optimization Theory and Applications, 59(2):325–333, 1988.

[20] G. Cohen and D. L. Zhu. Decomposition coordination methods in large scale
optimization problems: the nondifferentiable case and the use of augmented La-
grangians. In Advances in large scale systems, Vol. 1, pages 203–266. JAI, Green-
wich, CT, 1984.
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