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Abstract
Given a random elementX in the separable Banach space (E, ∥⋅∥) with law PX =
µ, the optimal quantization problem consists of �nding a set α ⊂ E minimizing

err(X,E;α) = Emin
a∈α

∥X − a∥
r
,

over all subsets α ⊂ E such that cardα ≤ n, given a natural number n ∈ N and
a constant r ∈ (0,∞).
There are many practical problems giving rise to the analysis of such problems,
beginning with the invention of Pulse Code Modulation (PCM) in the 40s of
the last century, the digitalization of data (such as in the formats JPEG or in
MPEG) and more recently also in �nancial applications.
From a theoretical point of view, the �rst questions being treated and answered
about the quantization problem concern the asymptotic behavior of the minimal
quantization error

en,r(X,E) = min
α⊂E,card(α)≤n

er(X,E;α)

as n tends to ∞, as well as the existence of optimal quantizers, i.e. subsets
α ⊂ E achieving the minimal quantization error.
While the existence of explicit formulas for optimal quantizers seems to be out
of reach for most of the interesting examples, the aim of this thesis is to identify
and estimate geometric properties of optimal quantizers. In particular those are
for a given sequence of optimal codebooks (αn)n∈N the asymptotic behaviour of
the quantization radius

ρ(αn) = max{∥a∥ ∶ a ∈ αn},

the convergences (in a useful sense) of the sequences

(
αn

ρ(αn)
)
n∈N

and (
conv(αn)

ρ(αn)
)
n∈N

,

as well as the asymptotics of the local characteristics

µ(Va(αn)), µ(Wa(αn)),

µr(Va(αn)), µr(Wa(αn)),

∫
Va(αn)

dist(x,αn)
rdµ(x), ∫

Wa(αn)
dist(x,αn)

rdµ(x),

dist(a,αn/{a}),

(1)

where for a ∈ αn the Voronoi regions Va(αn),Wa(αn) are given as

Va(αn) = {x ∈ E ∶ ∥x − a∥ = dist(x,αn)},

Wa(αn) = {x ∈ E ∶ ∥x − a∥ < dist(x,αn/{a})}.
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While chapter 1 gives an overview on some basics in quantization theory
and the theory of Gaussian measures, we will establish in chapter 2 important
fundamentals, including the estimation of the increments of quantization errors

∆n,r(X,E) = ern,r(X,E) − ern+1,r(X,E),

which is needed to make use of so-called micro-macro inequalities. Those are
inequalities, which relate asymptotics of these increments to local characteristics
of optimal quantizers.

In chapter 3, we estimate in virtue of the results from chapter 2 the asymp-

totics for the quantization radius ρ(αn) and limits of the sequences ( αn
ρ(αn)

)
n∈N

and ( conv(αn)
ρ(αn)

)
n∈N

for sequences of optimal quantizers (αn)n∈N for broad classes

of r.e.'s X in Rd, including e.g. the non-singular normal distribution, the expo-
nential distribution as well as distributions with polynomial tails, such as the
Students t-distributions.

In chapter 4, we extend the results given in chapter 3 for Gaussian r.e.'s to
the in�nite dimensional case. Here, we will particularly make use of the results
established in chapter 2 concerning the estimations for ∆n,r(X,E).

Chapter 5 is devoted to the analysis of the asymptotics of the local charac-
teristic de�ned in equation (1) for sequences of optimal quantizers (αn)n∈N for
r.e.'s X in Rd.

Another subject treated in this thesis (chapter 6) concerns the construc-
tion of asymptotically optimal quantizers for stochastic processes (Xt)t∈I , be-
ing understood as the realization of a r.e. X in a (Banach) function space
E ⊂ {f ∶ I → R}.
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Zusammenfassung
Für eine gegebenes Zufallselement X mit zugehöriger Verteilung PX = µ und
Werten in einem separablen Banachraum (E, ∥⋅∥), besteht das optimale Quan-
tisierungsproblem aus der Suche nach einer Menge α ⊂ E welche

err(X,E;α) = Emin
a∈α

∥X − a∥
r
,

über alle Teilmengen α ⊂ E minimiert, gegeben cardα ≤ n für eine gegebene
natürliche Zahl n ∈ N sowie r ∈ (0,∞).
Beginnend mit der Er�ndung der Pulse-Code-Modulation (PCM) in den 40-
er Jahren des letzten Jahrhunderts, über die Digitalisierung von Daten (wie
etwa in den Formaten JPEG oder MPEG) bis hin zur Anwendung in vielen
Bereichen der Finanzmathematik, gibt es viele praktische Probleme welche die
Untersuchung dieses Problems motivieren. Vom theoretischen Standpunkt her
wurden zunächst Fragestellungen bezüglich des asymptotischen Verhaltens des
minimalen Quantisierungsfehlers

en,r(X,E) = min
α⊂E,card(α)≤n

er(X,E;α)

für n gegen ∞, sowie die Existenz optimaler Quantisierer untersucht, sprich
Teilmengen α ⊂ E, welche den minimalen Quantisierungsfehler erreichen.
Während die explizite Berechnung optimaler Quantisierer in den meisten inter-
essanten Fällen nicht möglich erscheint, sollen in der vorliegenden Arbeit ge-
ometrische Eigenschaften optimaler Quantisierer herausgearbeitet werden. Im
Besonderen sind dies, für eine gegebene Folge optimaler Quantisierer (αn)n∈N
das asymptotische Verhalten des Quantisierungsradius

ρ(αn) = max{∥a∥ ∶ a ∈ αn},

die Konvergenz (in einem zu de�nierenden Sinne) der Folgen

(
αn

ρ(αn)
)
n∈N

und (
conv(αn)

ρ(αn)
)
n∈N

,

sowie das asymptotische Verhalten folgender "lokaler" Eigenschaften

µ(Va(αn)), µ(Wa(αn)),

µr(Va(αn)), µr(Wa(αn)),

∫
Va(αn)

dist(x,αn)
rdµ(x), ∫

Wa(αn)
dist(x,αn)

rdµ(x),

dist(a,αn/{a}),

(2)

Hierbei sind für gegebenes a ∈ αn die Voronoizellen Va(αn),Wa(αn) gegeben
durch

Va(αn) = {x ∈ E ∶ ∥x − a∥ = dist(x,αn)},

Wa(αn) = {x ∈ E ∶ ∥x − a∥ < dist(x,αn/{a})}.
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Während im ersten Kapitel Grundkenntnisse aus dem Bereich der Quan-
tisierungstheorie sowie der Theorie von Gaussmassen wiederholt werden, werden
wir im zweiten Kapitel wichtige Grundlagen für die folgenden Untersuchungen
legen, was insbesondere die Abschätzung des asymptotischen Verhaltens der
Zuwächse der Quantisierungsfehler

∆n,r(X,E) = ern,r(X,E) − ern+1,r(X,E)

beinhaltet. Diese werden benötigt um einen Nutzen aus den sogenannten Micro-
Macro Ungleichungen zu ziehen, welche diese Zuwächse mit lokalen Eigenschaften
optimaler Quantisierer in Verbindung bringen.

In Kapitel 3 werden wir vermöge der Ergebnisse aus Kapitel 2, das asymp-
totische Verhalten des Quantisierungsradius ρ(αn) und die Grenzwerte der Fol-

gen ( αn
ρ(αn)

)
n∈N

und ( conv(αn)
ρ(αn)

)
n∈N

für Folgen optimaler Quantisierer (αn)n∈N

für eine grosse Klasse von Zufallselementen X in Rd untersuchen, welches ins-
besondere die nicht-singuläre Normalverteilung, die Exponentialverteilung sowie
Verteilungen mit polynomiell fallenden Dichten beinhaltet, wie etwa die Stu-
dents t-Verteilung.

In Kapitel 4 werden die Resultate aus Kapitel 3 auf Gaussmasse auf un-
endlichdimsensionalen Banachräumen erweitert. Im Besonderen werden wir
dabei einen Nutzen aus der in Kapitel 2 ermittelten Asymptotik der Zuwächse
∆n,r(X,E) ziehen.

Kapitel 5 ist der Untersuchung der in Gleichung (2) beschriebenen lokalen
Eigenschaften von Folgen optimaler Quantisierer (αn)n∈N für Zufallsvektoren X
mit Werten in Rd gewidmet.

Ein weiteres Thema, welches in dieser Arbeit behandelt wird (Kapitel 6)
betri�t die Konstruktion von Folgen asymptotisch optimaler Quantisierer für
Stochastische Prozesse (Xt)t∈I , betrachtet als die Realisation eines Zufallsex-
perimentes X in einem (Banachschen) Funktionenraum E ⊂ {f ∶ I → R}.
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Chapter 1

Preliminaries

Prior to the analysis of the main topics of this thesis, this initial chapter shall
give the reader a su�cient background enabling to follow the discussions in the
subsequent chapters. Particularly, we will

� clarify the required notations,

� outline some mathematical basics to be able to analyze the quantization
problems as discussed later on, and

� introduce into the range of results developed so far in quantization theory
and related areas.

The Banach Space setting: Throughout this thesis, let (E, ∥⋅∥) be a real
separable Banach Space. We denote by (E′, ∥⋅∥E′) the topological dual space to
(E, ∥⋅∥), i.e.

E′ ∶= {y ∶ E → R, y continuous and linear }

equipped with the operator norm

∥y∥E′ ∶= sup{⟨x, y⟩ ∶ x ∈ E, ∥x∥ ≤ 1},

for y ∈ E′. Here
⟨⋅, ⋅⟩ ∶ E ×E′ → R, ⟨x, y⟩ ↦ y(x)

denotes the corresponding bilinear form. Furthermore, we write for ε ≥ 0 and
a ∈ E

B∥⋅∥(a, ε) = B(a, ε) = {x ∈ E ∶ ∥x − a∥ ≤ ε}.

7
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The Probability Space setting: Let (Ω,F ,P) be an abstract probability
space. To ensure the existence of the random variables studied below, we assume
that (Ω,F ,P) is always su�ciently rich. For a Borel random element (abbr. r.e.)
X ∶ (Ω,F ,P) → (E,B(E)) we set

µ(A) ∶= PX(A) ∶= P (X ∈ A)

for all A ∈ B(E), where B(E) denotes the σ-�eld induced by the open sets in
(E, ∥⋅∥). For some r ∈ (0,∞), we set the r-th moment of X

∥X∥Lr(P,E) ∶= (E ∥X∥
r
)

1
r ,

and denote by

Lr(P,E) ∶= Lr(Ω,F ,P, (E, ∥⋅∥)) ∶=
{Y ∶ (Ω,F) → (E,B(E)), ∥Y ∥Lr(P,E) < ∞}

set of r.e.'s in (E, ∥⋅∥) with �nite r-th moment.
Subsequently, the Banach space E shall always be understood as being at-

tached with its norm ∥⋅∥ and the induced Borel σ-algebra B(E).

1.1 Gaussian random elements

Gaussian random elements play a key role in many interesting applications. The
aim of this section is to present some important properties and inequalities this
class of r.e.'s admits. Let ∣⋅∣ ∶ R → R denote the absolute value in R. Given the
existence, we de�ne the mean EX and the variance VarX of a random variable
X in (R, ∣⋅∣) by

EX ∶= ∫ XdP = ∫ xdµ(x), (mean)

and

Var(X) ∶= ∫ (X −EX)
2
dP = ∫ (x −EX)2dµ(x). (variance)

De�nition 1.1.1. A Borel r.e. X ∶ (Ω,F ,P) → E is called Gaussian, if for every
y ∈ E′ the random variable ⟨X,y⟩ is either Gaussian (also called normal) or Dirac
in (R, ∣⋅∣), i.e. the corresponding distribution function admits the representation

Φν,σ2(x) ∶= P (⟨X,y⟩ ∈ (∞, x]) =
1

√
2πσ2

∫
x

−∞
exp(−

1

2
(
t − ν

σ
)

2

)dλ(t),

with constants ν ∈ R and σ > 0, or

P(⟨X,y⟩ = ν) = δν({ν}) = 1, P(⟨X,y⟩ ≠ ν) = δν({ν}c) = 0,

for a constant ν ∈ R. In both cases

EX = ν and VarX = σ2,
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where σ2 = 0 if ⟨X,y⟩ is Dirac.
We say X is centered if ν = 0 for all y ∈ E′. Accordingly, we call the law µ = PX
(centered) Gaussian if X is (centered) Gaussian.
For the Gaussian distribution P⟨X,y⟩, we will also write N(ν, σ2) = P⟨X,y⟩ with
the parameters as above.

The following famous result, which is due to Fernique, ensures the existence
of the r-th moments for Gaussian random elements.

Theorem 1.1.2. (see [Bog98, Theorem 2.8.5]) For every Gaussian r.e. X in
E there exists a constant τ > 0 such that

∫ exp (τ ∥x∥
2
)dµ(x) < ∞. (1.1)

As a consequence of

∥x∥
r
≤

1

τ ⌈
r
2
⌉

⌈ r
2
⌉!

⌈ r
2
⌉!

(τ ∥x∥
2
)
⌈ r
2
⌉

≤
1

τ ⌈
r
2
⌉
⌈
r

2
⌉! exp (τ ∥x∥

2
)

for ∥x∥ ≥ 1, Theorem 1.1.2 implies the �niteness of ∥X∥Lr(P,E) for every r > 0.
In the sequel, we will always consider centered Gaussian random elements.

Indeed, every arbitrary Gaussian random element can be transformed into a
centered one by considering X −EX instead of X, where

EX ∶= ∫ XdP = ∫ xdµ(x)

is called the mean of X and the integral is de�ned as a Bochner integral. Fur-
thermore, we will assume throughout that µ = PX ≠ δ0. In terms of quantization
theories, both limitations do not signi�cantly change the quantization problems
as we will see in the following sections.

Covariance Operator and Cameron-Martin space: We introduce some
operators and subspaces that are closely related to the centered Gaussian ran-
dom element X in E. First note, that E′ ⊂ L2(µ), where

L2(µ) ∶= {y ∶ (E,B(E)) → (R,B(R)),∫ (y(x))
2
dµ(x) < ∞},

which is due to the �niteness of the second moment for Gaussian r.e.'s in R. We
set

L2(µ) = {[y], y ∈ L2(µ)}

where [y] = {y′ ∈ L2(µ), y = y
′µ − a.s.}. Then, E′

µ ∶= E′
L2(µ)

attached with the
inner product

(y, z)L2(µ)
∶= ∫ y(x)z(x)dµ(x),

is a Hilbert space, where E′
L2(µ)

denotes the closure of E′ in L2(µ).
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De�nition 1.1.3. (covariance operator) Let X be a (centered) Gaussian r.e.
in E. Its linear and continuous covariance operator CX ∶ E′ → E is de�ned by

CX(y) ∶= ∫ ⟨X,y⟩XdP,

where the right-hand side integral exists, again due to Fernique's Theorem (The-
orem 1.1.2), as a Bochner integral. It may also be interpreted as a Pettis type
integral, which is uniquely characterized by the identity

⟨∫ ⟨X,y⟩XdP, z⟩ = ∫ ⟨X,y⟩ ⟨X,z⟩dP

for all z ∈ E′.

Its image CX(E′) is contained in the Cameron-Martin space Hµ which is
de�ned by

Hµ ∶= {x ∈ E ∶ ∥x∥Hµ < ∞},

attached with the norm

∥x∥Hµ ∶= sup{⟨x, y⟩ ∶ y ∈ E′, ∥y∥L2(µ)
≤ 1}.

We have the following characterization of Hµ:

Lemma 1.1.4. Let Sµ be the formally extended operator of CX onto E′
µ, i.e.

Sµ ∶ E
′
µ → E, f ↦ Ef(X)X. Then, Sµ is also well de�ned and establishes an

isometric isomorphism between E′
µ and Hµ.

Proof. On the one hand, we have by de�nition for each y ∈ E′
µ

∥Sµ(y)∥Hµ = sup{(y, z)L2(µ) ∶ z ∈ E
′, ∥z∥L2(µ)

≤ 1} = ∥y∥L2(µ)
< ∞ (1.2)

and thus Sµ(E
′
µ) ⊂ Hµ, and ∥Sµ(y)∥Hµ = ∥y∥L2(µ)

for all y ∈ E′
µ. Conversely,

we may de�ne for x ∈ Hµ the functional φx ∶ E
′ → R with φx(y) ∶= ⟨x, y⟩ which

can be extended to a bounded linear functional on E′
µ. Riesz's Theorem yields

the existence of a z ∈ E′
µ with

⟨x, y⟩ = φx(y) = (z, y)L2(µ) = ⟨Sµ(z), y⟩ (1.3)

for all y ∈ E′, so that Hµ ⊂ Sµ(E
′
µ). In virtue of the de�nition of E′

µ this
element z is unique, wherefore we are allowed to write z = S−1

µ (x).

This allows us now to de�ne in consistence with the de�nition of ∥⋅∥Hµ (see

equation 1.2) an inner product on Hµ by setting for hi ∈ Hµ

(h1, h2)Hµ ∶= (S−1
µ (h1), S

−1
µ (h2))L2(µ)

, (1.4)

where S−1
µ (hi), i = 1,2 are given via equation (1.3).
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Additionally, Sµ provides a factorization of CX , i.e.

CX = SµS
∗
µ,

where S∗µ ∶ E
′ → E′

µ denotes the adjoint of Sµ, which is in view of

⟨Sµz, y⟩ = (y, z)L2(µ)

for all y, z ∈ E′ the natural embedding from E′ ↪ E′
µ.

We denote by Kµ the unit ball in Hµ which is known to be compact in
(E, ∥⋅∥) (see e.g. [Bog98, Corollary 3.2.4]). The norm of the natural embedding
jµ ∶ Hµ → E we denote

σ(µ) ∶= ∥jµ∥ = sup{∥h∥ ∶ h ∈ Kµ} = ∥j∗µ∥ = sup{∥y∥L2(µ)
∶ y ∈ B∥⋅∥E′

(0,1)}.

Since µ ≠ δ0, we have σ(µ) > 0.
Finally, note that the support of the measure µ admits a representation in

form of the Cameron-Martin space Hµ, i.e.

Hµ = supp(µ),

where supp denotes the support and A the closure of a set A ⊂ E in (E, ∥⋅∥).

Basic properties and some useful formulas: Properties of Gaussian ran-
dom elements have been studied extensively. We consider a centered Gaussian
random element X in E with law µ. For sets A,B ⊂ E we will denote the
Minkowski sum

A +B = {x + y ∶ x ∈ A,y ∈ B}.

Additionally for λ ∈ R
λA = {λx ∶ x ∈ A}, λ ≥ 0,

as well as
λA = ∅, λ < 0.

Proposition 1.1.5. (Erhard's inequality, see [Bog98, Theorem 4.2.2]) Let A,B ∈
B(E) be convex and λ ∈ [0,1]. Then

Φ−1 (µ∗ (λA + (1 − λ)B)) ≥ λΦ−1 (µ(A)) + (1 − λ)Φ−1 (µ(B)) ,

where Φ(x) ∶= Φ0,1(x) and µ∗ denoting the inner measure of µ.

As a consequence, one obtains

Proposition 1.1.6. (Anderson inequality, see [Bog98, Theorem 2.8.10.]) For
every absolutely convex set A ∈ B(E), x ∈ E and every t ∈ [0,1]

µ(A + x) ≤ µ(A + tx).
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Proposition 1.1.7. ([LP09, Theorem 1]) Let (ei)i∈N be a Parseval frame for
Hµ, i.e. ∑

∞
i=1 ei(f, ei)Hµ converges in Hµ and

∞

∑
i=1

ei(f, ei)Hµ = f

for all f ∈ Hµ. Then, (ei)i∈N is admissible for X in E, i.e for every sequence
(ξi)i∈N of N(0,1)-distributed r.e.'s, ∑

∞
i=1 eiξi converges a.s. in E and

P∑
∞
i=1 eiξi = µ.

Proposition 1.1.8. (Isoperimetric inequality, see [Bog98, Theorem 4.3.3.])
For every A ∈ B(E) it holds

µ(A + tKµ) ≥ Φ(a + t)

with a ∶= Φ−1(µ(A)).

We set J(x, ε) ∶= infh∈B(x,ε) J(h) with J(h) ∶=
∥h∥2

Hµ

2
, which is �nite i� h ∈

Hµ. Note, that it follows by de�nition that

{x ∶ J(x, ε) ≤
t2

2
} = εB(0,1) + tKµ.

Proposition 1.1.9. (Cameron Martin Formula, see [Bog98, Corrolary 2.4.3.])
For all h ∈ Hµ and Borel sets A ∈ B(E)

µ(A + h) = exp(−
∥h∥

2
Hµ

2
)∫

A
exp ((S−1

µ (h))(x))dµ(x).

Remark 1.1.10. Considering A = B(0, ε) in Proposition 1.1.9, one obtains in
virtue of Jensen's inequality and the symmetry of µ

µ(B(h, ε)) ≥ exp(−
∥h∥

2
Hµ

2
)µ(B(0, ε))×

exp(
1

µ(B(0, ε))
((∫

B(0,ε)
(S−1
µ (h))(x)dµ(x))))

= exp ( −
∥h∥

2
Hµ

2
)µ(B(0, ε)),

where the last equality is a consequence of the symmetry of µ and the fact that

S−1
µ (h) ∈ E′

L2(µ)
.

Furthermore, one can show
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Proposition 1.1.11. (Estimation of shifted balls, see [LS01, Theorem 3.2]) For
ε > 0, x ∈ E and a ∈ [0,1]

µ(B(x, ε)) ≥ exp(−J(x, aε))µ (B(0, (1 − a)ε)) .

Furthermore,
µ(B(x, ε)) ≤ exp(−J(x, ε))µ (B(0, ε)) .

In addition to the existence of the r-th moments of X, which is an immediate
consequence of Theorem 1.1.2, one can prove

Proposition 1.1.12. (Equivalence of moments, see [LT91, Corollary 3.2.],
[LS01, Theorem 2.5]) For each 0 < p, q < ∞ there exist real constants Kp,q

depending on p and q solely such that for every Gaussian r.e. X in E

∥X∥Lp(P,E) ≤Kp,q ∥X∥Lq(P,E) .

As a consequence of integration by parts, one derives

Lemma 1.1.13. For every x > 0,

1
√

2π
(

1

x
−

1

x3
) exp(−

x2

2
) ≤ 1 −Φ(x) = Φ(−x) ≤

1
√

2π

1

x
exp(−

x2

2
).

The tail behavior of Gaussian r.e.'s may be estimated as follows:

Proposition 1.1.14. (Large deviations, see [LT91, Theorem 3.3., Lemma 3.4.])
One has

lim
t→∞

1

t
log (µ (B(0, t)c)) +

t

2(σ(µ))2
= 0.

Remark 1.1.15. The result slightly improves the classical large deviation result
for Gaussian random elements, which reads

lim
t→∞

1

t2
log (µ (B(0, t)c)) = −

1

2(σ(µ))2
.

This extension mainly relies on the fact that X is Radon if (E, ∥⋅∥) is separable.

Proof of Proposition 1.1.14. By [LT91, Lemma 3.4.] there exists for every ε > 0
a natural number N(ε) ∈ N and a constant K(ε) ∈ (0,∞) such that for all t ≥ ε

µ (B(0, ε + σ(µ)t)c) ≤K(ε)(1 + t)N(ε) exp(−
t2

2
),

which is the same as

µ (B(0, t)c) ≤K(ε)(1 +
t − ε

σ(µ)
)
N(ε)

exp(−
(t − ε)2

2σ2
). (1.5)
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On the other hand, we have for every t > 0 and every f ∈ E′ with ∥f∥E′ ≤ 1, by
applying Lemma 1.1.13

P (∥X∥ > t) ≥ P (∣f(X)∣ > t) ≥ 1 − 2Φ(tσ(µf))

≥
2

√
2π

(
1

tσ(µf)
−

1

(tσ(µf))3
) exp(−

t2

2σ(µf)2
) .

(1.6)

By continuity of the embedding jµ ∶ Hµ → E there exists an f ∈ E′, ∥f∥ ≤ 1 such
that σ(µf) = σ(µ) whereof we obtain the lower bound. Equations (1.5) and
(1.6) imply for every ε > 0

O(
log(t)

t
) ≤

1

t
log (µ (B(0, t)c)) +

t

2(σ(µ))2
≤

ε

(σ(µ))2
+O(

log(t)

t
) ,

which yields the assertion.

Corollary 1.1.16. Let r ≥ 0, ε > 0. There exists a real constant t(ε) < ∞ such
that

exp(−
t2

2(σ(µ))2
− εt) ≤ E ∥X∥

r
1{∥X∥>t} ≤ exp(−

t2

2(σ(µ))2
+ εt)

for all t ≥ t(ε).

Proof. Using Fubini's Theorem, we obtain for t ≥ 1

∫ ∥x∥
r
1{∥x∥≥t}dµ(x) = ∫

∞

0
µ({∥x∥ ≥ t} ∩ {∥x∥

r
≥ y})dλ(y)

= trµ(∥x∥ ≥ t) + ∫
∞

t
ryr−1µ(∥x∥ ≥ y)dλ(y)

By applying Proposition 1.1.14 we �nd for every ε > 0 a constant t(ε) such that

µ(∥x∥ ≥ t) ≤ exp(
ε

2
t −

t2

2σ(µ)2
) ,

and

max{tr, rtr−1} ≤ exp(
ε

4
t)

for t ≥ t(ε). Hence

∫ ∥x∥
r
1{∥x∥≥t}dµ(x) ≤ exp(ε

3

4
t −

t2

2σ(µ)2
)

+C(ε)∫
∞

t
(y/σ(µ) − ε

3

4
σ(µ)) exp(−

1

2
(y/σ(µ) − ε

3

4
σ(µ))

2

)dλ(y)

≤ exp(εt −
t2

2σ(µ)2
)

for all t > t(ε). The lower bound is a direct consequence of Proposition 1.1.14.
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References: A rigorous introduction into Gaussian measures is given by [Bog98]
and [LT91], see also [VTC87], a summary of the recent research and its appli-
cations can be found in [LS01].

1.2 The quantization problem

The origin: The analysis of quantization problems goes back to the early
40s of the last century, with the invention of Pulse-Code-Modulation (PCM).
Electrical engineers had to face the problem that any continuous or highly com-
plex signal (e.g. a sound signal), which had to be either transmitted or stored,
needed to be compressed, such that

1. the loss of information from the original signal would be limited, i.e. one
would be able to reconstruct the original signal up to a limited error, and

2. the storage or transmission complexity would remain below a prescribed
limit.

This problem is also known as the lossy source coding problem. Mathematically
speaking, we consider an arbitrary Borel r.e. X in (E, ∥⋅∥), also called the
original, and the compressed or quantized version X̂, which is the transmitted
or stored information and which is of lower complexity. As regards point 1),
the loss of information when compressing the signal can be measured by any
symmetric measurable mapping

ρ̃ ∶ E ×E → [0,∞)

called distortion or distortion measure. The most studied distortion measures
are di�erence distortion measures, only depending on the di�erence of the two
input variables. Hereafter, we will consider norm-based di�erence distortion
measures of the form

ρ̃(x, y) = ∥x − y∥
r

for some r ∈ (0,∞) and x, y ∈ E. Since the signals in question are represented by
random elements, we additionally have to apply a measure for the expectation,
whereby we derive error functions of the form

E ∥X − X̂∥
r
.

As regards point 2), the complexity restriction forces the compressed signal X̂
to satisfy an information constraint. Let n ∈ N. The most studied constraints
(see e.g. Kolmogorov [Kol93]) are

1. Quantization constraint, i.e.

∣supp(PX̂)∣ ≤ n.
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2. Entropy constraint, i.e. for s > 0

Hs(X̂) ≤ logs(n),

where the entropy of a discrete random variable Y admitting the repre-
sentation PY (A) = ∫A fY (x)dP(x) = ∑yi∈A yiP(Y = yi) is de�ned as

Hs(Y ) ∶= −∫ logs(fY (x))dPY (x),

with logs denoting the logarithm with basis s.

3. Mutual information constraint, i.e.

Is(X; X̂) ≤ logs(n),

where Is(X;Y ) for two random elements X,Y in E is de�ned as

Is(X;Y ) ∶= ∫ logs (
∂P(X,Y )

∂PX ⊗ PY
(x, y))dP(X,Y )(x, y),

if P(X,Y ) ≪ PX ⊗ PY and ∞ otherwise. Here, we denote for measures
P,Q by P⊗Q the product measure of P and Q as well as for a P absolute
continuous Q by ∂Q

∂P the Radon-Nikodyn density of Q.

If s equals the Euler constant e, we will omit the indexation and write I(X; X̂)
and H(X̂) instead of Is(X; X̂) and Hs(X̂).

From an intuitive point of view, the quantization constraint seems to be a
natural restriction. The entropy constraint is motivated by the fact that every
random element Y with a �nite support can be represented by a pre�x free
binary code of an average length not longer than H2(Y ) + 1 (e.g. by applying
Hu�man coding or Shannon coding). Here, one makes use of the fact that
representing more likely codes with a shorter bit sequence decreases the average
length of a signal represented by a binary code. In fact, the worst case for the
entropy, i.e. an upper bound, is given by

Hs(Y ) ≤ logs (∣supp(PY )∣) , (1.7)

where equality is attained if

PY =
1

∣supp(PY )∣
∑

yi∈supp(Y )

δyi .

Here ∣α∣ denotes the cardinality of a set α ⊂ E.
The mutual information constraint has been introduced by Shannon. It is

part of Shannon's source coding theorem, which will also play a role in the
analysis of the asymptotics of quantization errors. In general, one has for any
reconstruction X̂ of X the relationship

Is(X; X̂) ≤ Hs(X̂) ≤ logs (∣supp(PX̂)∣) , (1.8)
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i.e. the quantization constraint is the most restrictive one.
Besides its application in signal compression, quantization methods found

their way into di�erent other parts of applied mathematics. Apart from areas
which are closely related to classical PCM-techniques, such as image compres-
sion or speech coding algorithms (see [Chu03]), it found its way into other areas
of applied mathematics during the 90s of the last century, especially numerical
�nance, where quantizers are for instance being used through cubature formulas
in option pricing models or as variance reduction techniques for Monte-Carlo
simulations. The range of applications of quantization methods are treated in
more detail in the paragraph Applications to numerical �nance below.

Hereafter, we will consider for a given random variableX in E = (E, ∥⋅∥ ,B(E)),
a natural number n ∈ N and r > 0 the optimization problem

inf
X̂

∥X − X̂∥
Lr(P,E)

given the quantization constraint ∣supp(PX̂)∣ ≤ n.

All of the results shown in this section including their proofs are well known,
except for those which are explicitly mentioned as such. We present some
sketches of those proofs in order to enable the reader to get a better under-
standing of the general theory.

De�nitions and Basic facts: We consider a separable Banach space (E, ∥⋅∥)
and a Borel random variable X ∈ Lr(P,E) for some �xed r ∈ (0,∞).

De�nition 1.2.1. (codebook, quantization error, α-quantization)

1. A �nite subset α ⊂ E is called codebook or quantizer. If additionally
∣α∣ = n, we call α an n-codebook or n-quantizer.

2. The Lr(P,E)-quantization error for the r.e. X induced by the codebook
α is de�ned as

er(X,E;α) ∶= ∥min
a∈α

∥X − a∥∥
Lr(P,R)

. (1.9)

The corresponding in�mum

en,r(X,E) ∶= inf
α

{er(X,E;α) ∶ α ⊂ E, ∣α∣ ≤ n} (1.10)

we denote the optimal n-th Lr(P,E)-quantization error for X.

3. For an n-codebook α, we de�ne the nearest neighbor projection

fα ∶ E → α, x↦ ∑
a∈α

a1Ca(α)(x),

where a Voronoi partition {Ca(α), a ∈ α} is de�ned as a Borel partition of
(E,B(E)) satisfying

Ca(α) ⊂ Va(α) ∶= {x ∈ E ∶ ∥x − a∥ = min
b∈α

∥x − b∥}
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for every a ∈ α. The random variable fα(X) we will call an α-quantization
of X.

Remark 1.2.2. Strictly speaking, the nearest neighbor projection fα depends on
the Voronoi partition {Ca(α), a ∈ α}. Hereafter, if we do not specify the Voronoi
partition, the results stated shall be understood as holding for an arbitrary one.
Note that in this case, many results obtained involving a single Voronoi cell
Ca(α) equally hold for the Voronoi region Va(α) and also for

Wa(α) ∶= {x ∈ E ∶ ∥x − a∥ < min
b∈α/{a}

∥x − b∥},

since both sets can be Voronoi cells in a speci�c Voronoi partition. One may
see this by creating a Voronoi partition for the Voronoi diagram {Va(α), a ∈ α =
{a1, . . . , an}} as

Cai(α) ∶= Vai(α) ∩ ( ⋂
j≤i−1

Vaj(α))

c

, 1 ≤ i ≤ n,

or

Cai(α) ∶=Wai(α) ∪ (Vai(α) ∩ ( ⋃
j≥i+1

Vaj(α))

c

) , 1 ≤ i ≤ n,

with ⋃∅ = ∅ and ⋂∅ = E. By selecting a1 as the required code a, one obtains
the asserted.

The optimal n-th Lr(P,E)-quantization error admits several equivalent rep-
resentations.

Proposition 1.2.3. (c.f. [GL00, section 3] for the case E = Rd) LetMr(B(E))
denote the set of all probability measures on (E,B(E)) with �nite r-th moment
(i.e. ∫ ∥x∥

r
dµ(x) < ∞), and ρ∗r(Q1,Q2) denote the r-th Wasserstein distance

between Q1,Q2 ∈ Mr(E), i.e.

ρ∗r(Q1,Q2) ∶= inf {(∫ ∥x − y∥
r
dQ(x, y))

1
r

∶ Q ∈ π(Q1,Q2)} ,

where π(Q1,Q2) denotes the set of all probability measures on B(E) ⊗ B(E)
with �rst marginal Q1 and second marginal Q2. We set Fn ∶= {f ∶ (E,B(E)) →
(E,B(E)), ∣f(E)∣ ≤ n}. Then

en,r(X,E)
(1)
= inf {∥X − fα(X)∥Lr(P,E) ∶ α ⊂ E, ∣α∣ ≤ n}

(2)
= inf {∥X − f(X)∥Lr(P,E) ∶ f ∈ Fn}

(3)
= inf {∥X − Y ∥Lr(P,E) ∶ Y r.e. in E , ∣Y (Ω)∣ ≤ n}

(4)
= inf {ρ∗r(P

X ,Q) ∶ Q ∈ Mr(E), ∣supp(Q)∣ ≤ n}

(5)
= inf {ρ∗r(P

X ,Pf(X)) ∶ f ∈ Fn}
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Proof. Equality (1) follows by the de�nition of a Voronoi partition, ≥ in equa-
tions (2) and (3) is obvious. Consider a discrete r.e. Y and α ∶= supp(PY ).
Then, for every Voronoi partition {Ca(α), a ∈ α}

∥X − Y ∥
r
= ∑
a∈α

1Ca(α) ∥X − Y ∥
r
≥ ∑
a∈α

1Ca(α) ∥X − a∥
r
= ∥X − fα(X)∥

r
a.s.

and we obtain equations (2) and (3).
Let Q ∈ Mr(E), α ∶= supp(Q) with ∣α∣ = n and ν ∈ π(PX ,Q). Then

(ρ∗r(P
X ,Q))

r
= ∫

E×α
∥x − y∥

r
dν(x, y) ≥ ∫

E×α
min
a∈α

∥x − a∥
r
dν(x, y)

= ∫
E

min
a∈α

∥x − a∥
r
dPX(x) = ern,r(X,E)

(1.11)

On the other hand, we have for f ∈ Fn

E ∥X − f(X)∥
r
= ∫ ∥x − y∥

r
dPX ⊗ Pf(X) ≥ (ρ∗r(P

X ,Pf(X)))
r
,

wherefore we obtain with equations (1) and (2)

ern,r(X,E) = inf {∥X − f(X)∥Lr(P) ∶ f ∈ Fn}

≥ inf {ρ∗r(P
X ,Pf(X)) ∶ f ∈ Fn}

≥ inf {ρ∗r(P
X ,Q) ∶ Q ∈ Mr(E), ∣supp(Q)∣ ≤ n} ,

(1.12)

which completes the proof.

Remark 1.2.4. As a consequence of the latter result, the quantization error only
depends on the distribution µ = PX of X, such that it is also reasonable to write

en,r(µ,E) instead of en,r(X,E),

as well as
er(µ,E;α) instead of er(X,E;α),

whereof we will make use hereafter.

The following well known result implies that the quantization error induced
by an arbitrary Gaussian r.e. X equals the quantization error induced by the
centered Gaussian r.e. X −E(X).

Proposition 1.2.5. Let E,F be separable Banach spaces, X ∈ Lr(P,E) and
T ∶ E → F linear and bounded. Then

en,r(T (X), F ) ≤ ∥T ∥ en,r(X,E).

If furthermore T is a bijective isometry, c > 0 and f ∈ F then

en,r(cT (X) + f,F ) = cen,r(X,E).
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Proof. We prove the �rst assertion, the second follows analogously. Let α be an
n-codebook in E, then

ern,r(T (X), F ) ≤ Emin
a∈α

∥T (X − a)∥
r
≤ ∥T ∥

r Emin
a∈α

∥X − a∥
r

and we obtain the assertion by taking the in�mum over all n-codebooks α.

The quantization error features the following sub-additivity property.

Proposition 1.2.6. Let r ≥ 1. For r.e.'s Xi in Lr(P,E) and codebooks αi in
E with ∣αi∣ = ni, i = 1, . . . ,m it holds

er(X
(m),E;α(m)) ≤

m

∑
i=1

er(Xi,E;αi),

where X(m) ∶= ∑
m
i=1Xi and α

(m) ∶= ∑
m
i=1 αi as a Minkowski sum. Therefore,

e∏mi=1 ni,r(X
(m),E) ≤

m

∑
i=1

eni,r(Xi,E).

Proof. For m = 1, there is nothing to prove. Suppose that the assertion holds
for m ∈ N. Then

er(X
(m+1),E;α(m+1)) = (E min

a(m)+am+1∈α(m)+αm+1

∥X(m+1) − a(m) − am+1∥
r
)

1
r

≤ (E min
a(m)∈α(m)

∥X(m) − a(m)∥
r
)

1
r

+ (E min
am+1∈αm+1

∥Xm+1 − am+1∥
r
)

1
r

≤
m

∑
j=1

er(Xi,E;αi) + er(Xm+1,E;αm+1) =
m+1

∑
i=1

er(Xi,E;αi).

Optimality and stationarity: Any optimization problem naturally gives rise
to the question whether optimal solutions exist, which are in this case quantizers
achieving the optimal quantization error.

De�nition 1.2.7. Let E be a Banach space and X ∈ Lr(P,E) for some r > 0.

1. An n-codebook α is called an r-optimal n-codebook for the r.e. X in
(E, ∥⋅∥), i�

er(X,E;α) = en,r(X,E).

2. The set of all r-optimal n-codebooks for X in E is denoted

Cn,r(X,E) ∶= {α ⊂ E ∶ ∣α∣ ≤ n and er(X,E;α) = en,r(X,E)}.
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In the �nite dimensional setting the existence of optimal quantizers is al-
ways guaranteed (see e.g. [GL00, Theorem 4.12]). In the in�nite dimensional
setting, this is not always true. A su�cient condition for the existence of optimal
quantizers in Banach spaces is given with the following Theorem.

Theorem 1.2.8. [GLP07, Theorem 1, Proposition 2] Let F be a Banach sub-
space of E such that PX(F ) = 1. If the set

{B(x, ε), x ∈ F and ε > 0}

is a compact system in E, then

Cn,r(X,E) ≠ ∅. (1.13)

In particular, equation (1.13) holds if E is 1-complemented in its Bidual E′′,
i.e. if there is a linear projection T from E′′ onto E with ∥T ∥ ≤ 1.

Remark 1.2.9. 1. As a consequence of Theorem 1.2.8, if E = F ′ for a Banach
space F , then E is 1-complemented in E′′ = F ′′′ and therefore

Cn,r(X,E) ≠ ∅

(see [GLP07, Corollary 1]). This includes every Hilbert space, all �nite
dimensional Banach spaces and also for example the spaces

Lp(I) ∶= {f ∶ (I,B(I)) → (R,B(R)),∫
I
∣f(x)∣

p
dλd(x) < ∞}

for p ∈ [1,∞] and an interval I = ⊗dj=1Ij ⊂ Rd.

2. Considering E′′ instead of E, does not a�ect quantization errors. More
precisely, for a r.e. X in the separable Banach space E, one has

en,r(X,E) = en,r(X,E
′′)

for r > 0 and n ∈ N (see [GLP07, Theorem 2]).

3. Optimal n-quantizers may not exist in arbitrary Banach spaces (see dif-
ferent examples in [GLP07]).

4. An interesting open question is, whether Cn,r(X,E) ≠ ∅ if X is Gaussian.
As a consequence of the Anderson inequality (Proposition 1.1.6), this is
true for n = 1 with Cn,r(X,E) = {0}, since

E ∥X − a∥
r
= ∫

[0,∞]
µ ((B(a, tr))c)dt

≥ ∫
[0,∞]

µ ((B(0, tr))c)dt = E ∥X∥
r

for all a ∈ E.



CHAPTER 1. PRELIMINARIES 22

Remark 1.2.10. We use the notations of Proposition 1.2.5. Similarly to the
proof thereof, one shows for every linear, bijective isometry T

Cn,r(cT (X) + f,F ) = cCn,r(X,E) + f,

for all c > 0 and f ∈ F .

A useful criterion to analyze optimality of codebooks is the necessary con-
dition of stationarity.

Proposition 1.2.11. Let ∣supp(µ)∣ ≥ n and α ∈ Cn,r(X,E). Then ∣α∣ = n,

µ(Ca(α)) > 0 and a ∈ C1,r(PX(⋅∣Ca(α)),E)

for every a ∈ α and every Voronoi partition {Ca(α), a ∈ α}. Any quantizer α
satisfying these conditions is called r-stationary n-quantizer. The set of all these
quantizers will be denoted Sn,r(X,E).

The following observation is the starting point for the analysis of the asymp-
totic behavior of the quantization error. For a separable Banach space E and
X ∈ Lr(P,E), consider a countable dense subset {ai, i ∈ N} of E. Then, by the
dominated convergence theorem

lim
n→∞

Emin
i≤n

∥X − ai∥
r
= E lim

n→∞
min
i≤n

∥X − ai∥
r
= 0,

so that
en,r(X,E) → 0, n→∞. (1.14)

Asymptotics of the quantization error in (E, ∥⋅∥) = (Rd, ∥⋅∥): Starting
with Panter and Dite in 1951 [PD51], the asymptotic behavior of the quantiza-
tion error, also called high resolution quantization, has been studied extensively.
In the �nite dimensional setting (E, ∥⋅∥) = (Rd, ∥⋅∥) the asymptotics of the quan-
tization error for distributions with a non-vanishing Lebesgue-continuous part
is (almost) fully described by the following Theorem. It goes back to Zador
([Zad63]) (in the case d = 1 already to Panter and Dite) and Bucklew and Wise
([BW82]). A rigorous proof has been presented by Graf and Luschgy [GL00,
Theorem 6.2].
Before we present the result, we will introduce a few notations. Let f, g ∶ I → R,
with I ⊂ R+ such that I is unbounded (Typically I = N or I = [C,∞) for some
constant C ≥ 0). We write

f(x) ≲ g(x), x→∞ if lim sup
x→∞,x∈I

f(x)

g(x)
≤ 1,

f(x) ≼ g(x), x→∞ if lim sup
x→∞,x∈I

f(x)

g(x)
< ∞,

f(x) ≈ g(x), x→∞ if 0 < lim inf
x→∞,x∈I

f(x)

g(x)
< lim sup
x→∞,x∈I

f(x)

g(x)
< ∞,

f(x) ∼ g(x), x→∞ if lim
x→∞,x∈I

f(x)

g(x)
= 1.
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The symbols ≳ and ≽ are de�ned accordingly.

Theorem 1.2.12. (Zador Theorem; Panter and Dite Formula) Suppose (E, ∥⋅∥) =
(Rd, ∥⋅∥) for an arbitrary norm ∥⋅∥ and X ∈ Lr+δ(P) for some δ > 0. Let
PX = µ = µs + µa denote the Lebesgue decomposition of µ, i.e. µs�λ

d and
µa ≪ λd, and f = ∂µa

∂λd
. Then

lim
n→∞

n
r
d ern,r(X,R

d) = Qr,∥⋅∥([0,1]
d) ∥f∥ d

d+r
, (1.15)

where
Qr,∥⋅∥([0,1]

d) ∶= inf
n∈N

n
r
d ern,r(U([0,1]d),Rd) ∈ (0,∞). (1.16)

Here, U([0,1]d) denotes the uniform distribution on the hypercube [0,1]d and
∥⋅∥s denotes for s > 0 and f ∶ (Rd,B(Rd)) → (R,B(R))

∥f∥s ∶= (∫
Rd

∣f ∣
s
dλd)

1
s

.

Remark 1.2.13. 1. For a singular distribution µ = µs, Theorem 1.2.12 yields

en,r(X,Rd) = o (n−
r
d ) , n→∞.

If

lim sup
n→∞

−
log(n)

log(en,r(µ,Rd))
= lim inf

n→∞
−

log(n)

log(en,r(µ,Rd))
,

the limit denoted by Dr(µ) ≤ d is called quantization dimension of µ of
order r. For a detailed study see e.g. [GL00, chapter 3]; further results in
this area have also been investigated by several authors, see e.g. [GL05]
and [Kre06].

2. The integrability condition X ∈ Lr+δ(P,Rd) cannot be dropped in general,
see [GL00, Example 6.4]. Furthermore, due to Hölder's inequality, this
condition ensures the �niteness of the right-hand side integral in equation
(1.15), see [GL00, Remark 6.3].

3. The right-hand side of equation (1.15) is called quantization coe�cient
of X (or µ). It is �nite due to the integrability condition on X and
strictly positive if µ is not purely singular. Unfortunately, the constant
Qr,∥⋅∥([0,1]

d) is generally not known explicitly, unless in some special

cases, where the unit balls in (Rd, ∥⋅∥) are space-�lling or the geometry
of the norm ∥⋅∥ is well understood. Here, space-�lling means that Rd can
be covered by translations of the unit ball that are disjoint except for a λd

null set. Particularly, those are the l∞-norm for all d ≥ 1 and r ≥ 1, where

Qr,∥⋅∥l∞
([0,1]d) =

d

(d + r)2r



CHAPTER 1. PRELIMINARIES 24

and additionally, if d = 2 also the l2-norm and the l1-norm

Qr,∥⋅∥l1
([0,1]d) =

2

(2 + r)2
r
2

,

Qr,∥⋅∥l2
([0,1]d) =

8 2
r
2

3((2+r)/4) ∫[0, 12 ]
∫
[0, 1−y√

3
]
(x2 + y2)

r
2 dλ(x)dλ(y),

see [GL00, Example 8.12, Example 8.14, Theorem 8.15].

Sketch of a proof of Theorem 1.2.12. For the readers convenience, we will give
a sketch of the proof of Theorem 1.2.12 which shall give a good understanding
for the results obtained. We follow the lines of argumentation in [GL00, section
6].
Step 1: One shows for µ = U([0,1]d) that

lim
n→∞

ern,r(µ,R
d) = inf

n∈N
ern,r(µ,R

d) = c ∈ (0,∞).

Here, the self-similarity of λd is essential.
Step 2: One considers measures of the form µ = ∑

m
i=1 siU(Ci), where Ci are

disjoint cubes of a common length l > 0, hence f ∶= ∂µa
∂λd

= ∑
m
i=1 si1Ci l

−d. The
question is then how to allocate for a �xed n ∈ N optimally ni ∶= ⌊tin⌋ codes to
each cube Ai, where ti ≥ 0,1 ≥ i ≥m with ∑

m
i=1 ti = 1, such that

n
r
d ern,r(µ,R

d) ≤ n
r
d

m

∑
i=1

sie
r
ni,r(U(Ci),Rd) = n

r
d

m

∑
i=1

sil
rerni,r(U([0,1]d),Rd)

≲ Qr,∥⋅∥([0,1]
d)

m

∑
i=1

sit
− rd
i lr = Qr,∥⋅∥([0,1]

d) ∥fh−
r
d ∥

1
, n→∞

reaches its minimum over all h of the shape h ∶= ∑
m
i=1 til1Ci . This problem has

a unique minimizer of the form

h = ∥f∥
− d
d+r
d
d+r

f
d
d+r ,

since, in virtue of Hölder's inequality with exponents p = d
d+r

and q = −d
r
,

∥fh−
r
d ∥

1
≥ ∥f∥p ∥h

− rd ∥
q
≥ ∥f∥ d

d+r
,

where equality is attained, if h has the minimizing shape.
Step 3: By using the di�erentiation of measures theorem, one extends the re-
sult to compactly supported Lebesgue-continuous measures.
Step 4: One shows that measures which are singular with respect to the
Lebesgue measure induce an asymptotic quantization error, that is of lower
order than n−

r
d . Furthermore, one shows that the quantization error induced by

a convex combination of such a measure with a Lebesgue-continuous measure
equals asymptotically the quantization error of the Lebesgue-continuous part.
Step 5: One proves a non-asymptotic upper bound for the quantization error,
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which can be deduced by the Pierce lemma reading as follows:
Let d = 1, i.e. µ = PX is a univariate distribution, then

ern,r(X,R) ≤ n−r (C1E ∣X ∣
r+δ

+C2)

for all δ > 0 and n ≥ C3, where the constants Ci, i = 1,2,3 depend on r and δ
solely.
In the generalized version for d ≥ 2, which is used in the proof, the factor n−r is
replaced by n−

r
d and the constants depend additionally on the underlying norm

∥⋅∥ and the dimension d.
Step 6: Step 4, 5 and 6 are combined to prove the �nal result.

Consider now a sequence of n-codebooks (αn)n∈N such that

er(µ,Rd;αn) → 0, n→∞.

Since the convergence in Lr(P,Rd) implies the weak convergence of measures,
we obtain that the distribution of the αn-quantization of X converges weakly
towards µ, i.e.

Pfαn(X) = ∑
a∈αn

µ(Ca(αn))δa
w
⇒ µ, n→∞,

where
w
⇒ denotes the weak convergence of measures. Replacing in the latter

formula the weights of the Voronoi cells µ(Ca(αn)) by
1
n
, the middle expression

still converges and one obtains the following empirical measure Theorem. A key
role, as in the proof of the Zador Theorem, will here be played by the point
density measure µr, which is given through

µr(A) ∶=

XXXXXXXXXXX

∂µa
∂λd

d
d+r

XXXXXXXXXXX

−1

1

∫
A

∂µa
∂λd

d
d+r

dλd

for A ∈ B(Rd).

Theorem 1.2.14. (Empirical measure theorem) Suppose that f = ∂µa
∂λd

≢ 0.
Then, for every sequence of n-codebooks (αn)n∈N satisfying

er(µ,Rd;αn) ∼ en,r(X,Rd), n→∞, (1.17)

one has
1

n
∑
a∈αn

δa
w
⇒ µr, n→∞.

Proof. The proof is a consequence of the Empirical measure Theorem for Lebesgue
continuous distributions (see [GL00, Theorem 7.5]) in combination with the fact
that sequences of asymptotically optimal quantizers (i.e. quantizers satisfying
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equation (1.17)) for distributions having a non-continuous part are also asymp-
totically optimal for the Lebesgue-continuous part solely (see [DGLP04, Lemma
4.1]).

In the in�nite dimensional case, there is much less known about asymptotics
of quantization errors. Nevertheless, many results have been obtained so far,
particularly for Gaussian r.e.'s.

Asymptotics of quantization errors in in�nite dimensional Hilbert
spaces: The most famous result in this area was �rstly mentioned in a sim-
pli�ed version by Donoho in the technical report [Don00]. Its proof goes back
to Luschgy and Pagès [LP04a]. Let (E, ∥⋅∥) = (H, (⋅, ⋅)) be a separable Hilbert
space and X be a Gaussian r.e. in H with dim(Hµ) = ∞. In this case, the
covariance operator CX of X has a speci�c representation. Since CX is a sym-
metric and compact operator, there exists in virtue of the spectral theorem a
sequence (λj)j∈N of positive non-increasing eigenvalues and a sequence (ej)j∈N
of corresponding orthonormal eigenvectors such that

CX(y) =
∞

∑
i=1

λj(ej , y) (1.18)

for all y ∈H. One may expand the orthonormal system (ej)j∈N to a basis of H,
such that (1.18) still holds and (ej)j∈N is an (at most countable) orthonormal
basis of H. Then

X =
∞

∑
j=1

ej(X,ej) a.s..

Since E(X,ei)(X,ej) = (ej ,CX(ei)) = λiδi,j we obtain that ( (X,ei)√
λj

)
j∶λj>0

is a

sequence of independent N(0,1)-distributed random elements in (R, ∣⋅∣) such
that

X
d
=

∞

∑
j=1

√
λjejξj (1.19)

for every sequence (ξj)j∈N of independent N(0,1)-distributed random elements.
The representation (1.19) is also called the Karhunen-Loève expansion for X.

For convenience, we will write for the mutual information constraint expected
distortion error

dn,r(X,H) ∶= inf {(E ∥X − X̂∥
r
)

1
r
∶ X̂ r.e. in H, I(X; X̂) ≤ log(n)} .

drn,r(X,H) is also known as the (logarithmic) distortion rate function.

Theorem 1.2.15. (c.f. [LP04a]) Suppose that the eigenvalues (λj)j∈N of the
Covariance Operator CX of X satisfy λj ∼ φ(j) for a regular varying function
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φ with index −b < −1. Then

d2
n,2(X,H) ∼ e2

n,2(X,H) ∼ (
b

2
)
b−1

b∫
∞

log(n)
φ(x)dλ(x)

∼ (
b

2
)
b−1 b

b − 1
log(n)φ(log(n)), n→∞.

Remark 1.2.16. 1. The result has also been extended to the case where φ(j)
is regular varying with index −1 (see [LP04a]). In this case, the optimal
rate for the quantization error can even be achieved by sequences of scalar
product quantizers, which are much easier to be constructed.

2. In Dereich's dissertation (see [Der03, chapter 6]) the result has been ex-
tended to arbitrary moments r > 0 instead of 2. Surprisingly, this leads
to the exact same asymptotic quantization error. Furthermore, the result
has been extended to broader classes of eigenvalue sequences.

3. Additionally, it was shown by Dereich (see [Der03, chapters 6 and 7]) that
the same asymptotics also holds for the coding error induced by random
codebooks following an optimally chosen distribution. Furthermore, there
exists an explicit relationship to the asymptotic coding error induced by
random codebooks generated by the distribution µ itself. Note, that this
asymptotics di�ers from the other asymptotic error rates.

Sketch of the proof of Theorem 1.2.15. In virtue of equation (1.8), it follows

dn,2(X,H) ≤ en,2(X,H),

such that we only need to prove the upper bound for en,2(X,H) and the lower
bound for dn,2(X,H).
Step 1: Sharp asymptotics of dn,2(X,H): (c.f. [Der09, section 4.2]) This
classical result, which has its origin in information theory, goes back to Kol-
mogorov. The proof needs the following ingredients:

1. The distortion rate function of a Gaussian r.e. ξ in (R, ∥⋅∥) with variance
σ2 is well known and reads

d2
n,2(ξ,R) =

σ2

n2
.

2. The distortion rate function allows to estimate the distortion of a mul-
tivariate (even in�nite dimensional) Gaussian r.e. through the sum of
distortions of univariate Gaussian r.e.'s, i.e.

d2
n,2 (

∞

∑
i=1

√
λiξiei,H) =

∞

∑
i=1

√
λid

2
ni,2(ξi,R) =

∞

∑
i=1

λi
n2
i

with ni ≥ 1 subject to ∏
∞
i=1 ni ≤ n.
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3. The solution of the optimization problem

min
∞

∑
i=1

λi
n2
i

c.t.
∞

∏
i=1

ni ≤ n

can be derived by applying Lagrange multipliers and is given by

ni = (
λi

λi ∧ κ∗
)

1
2

,

where the constant κ∗ is given as the unique solution of the equation

κ∗ = inf
κ>0

{
∞

∏
i=1

(
λi

κ ∧ λi
)

2

≤ n} .

This result is also known as the Kolmogorov inverse water �lling principle.

4. The �nal step is to compute the asymptotics of the distortion rate function
based on the assumption about the asymptotics of the eigenvalues and the
explicit representation of the distortion rate function.

Step 2: Asymptotic upper bound for en,2(X,H): The approach used by
Luschgy and Pagès in [LP04a] is known as a block quantization or as subband
decomposition approach. The idea of the proof is as follows:

1. First note, that every quantizer α ∈ Sn,2(X,H) is contained in the lin-
ear span of the eigenvectors corresponding to the n largest eigenvalues
of the covariance operator CX of X (see [LP02, Theorem 3.1, Theorem
3.2]). Therefore, by orthogonality of the eigenvectors we obtain for every
sequence (ξj)j∈N of independent N(0,1)-distributed r.e's

e2
n,2(X,H) ≤ e2

n,2(
d

∑
i=1

√
λiξiei,H) +

∞

∑
i=d+1

λi

for every d ∈ N, where equality is attained, if

d ≥ d∗(n) ∶= inf {d ∈ N ∶ Cn,r(X,H) ∩ (span{e1, . . . , ed})
n ≠ ∅} .

2. Let (ln)n∈N, (mn)n∈N be sequences in N. By considering mn blocks of size
ln, we obtain for natural numbers (ni)i≤mn with ∏

mn
i=1 ni ≤ n by using

orthogonality of (ei)i∈N and Proposition 1.2.5

e2
n,2(X,H) ≤

mn

∑
i=1

e2
ni,2

⎛

⎝

lni

∑
j=ln(i−1)+1

√
λjξjej ,H

⎞

⎠
+

∞

∑
i=lnmn+1

λi

≤
mn

∑
i=1

λln(i−1)+1e
2
ni,2(N(0, Iln),R

ln) +
∞

∑
i=lnmn+1

λi

≤
mn

∑
i=1

λln(i−1)+1n
− 2
ln

i C(ln) +
∞

∑
i=lnmn+1

λi,
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where Rln is equipped with the Euclidean norm and

C(l) ∶= sup
k≥1

k
2
l ek,2(N(0, Il),Rl), l ∈ N.

3. One shows that C(l)
l
→ 1 as l → ∞ see ([LPW08, Proposition 1],[LP04a,

Proposition 4.4]). Here, the lower bound is a classical quantization result,
which can be obtained by using a random quantizer upper bound and a
ball lower bound for

Q(l) ∶= lim
k→∞

k
2
l ek,2(N(0, Il),Rl),

which yields
Q(l)

l
→ 1.

4. Finally, one has to choose for each n ∈ N the constantsmn, ln and (nj)1≤j≤mn

such that

e2
n,2(X,H) ≲

mn

∑
i=1

λln(i−1)+1n
− 2
ln

i ln +
∞

∑
i=lnmn+1

λi

achieves an asymptotic minimal rate. Under the assumption of regularly
varying eigenvalues, one chooses for some θ ∈ (0,1) and n ∈ N

ln = ⌊max{1, log(n)}θ⌋ ,

mn = max{k ≥ 1 ∶ n
1
k λ

ln
2

(k−1)ln+1
(
k

∏
i=1

λ(j−1)ln+1)

− l
2k

≥ 1},

nj(n) = ⌊n
1
mn λ

ln
2

(j−1)ln+1
(λ(i−1)ln+1)

−
ln

2mn ⌋ , j ∈ {1, . . . ,mn}.

The remainder of the proof is calculus, see [LPW08] or [LP04a] and the
references therein.

Asymptotics of quantization errors in in�nite dimensional Banach
spaces: In case the separable Banach space (E, ∥⋅∥) is non-Hilbertian, only
weaker results concerning the asymptotic behavior of quantization errors have
been obtained so far. Nevertheless, many relationships to other properties of
random elements have been established, namely to

� the small ball function φµ ∶ R+ → R+ of the distribution µ = PX , which is
de�ned for ε > 0 as

φµ(ε) ∶= − log (µ(B(0, ε))) .

� the Kolmogorov n-width, that is for a random element X in the Banach
space E

kn,r(X,E) ∶= inf {∥X − Y ∥Lr(P) ∶ Y r.e. in E ,dim(span(Y (Ω))) ≤ n} .
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� the linear n-width, that is for a random element X in the Banach space E

ln,r(X,E) ∶= inf {∥X − f(X)∥Lr(P) ∶ f ∈ L(E,E),dim(span(f(E))) ≤ n} ,

where L(E,E) ∶= {f ∶ E → E, linear and continuous }.

� approximation with Parseval frames for the Gaussian r.e. X ∈ E, i.e.

ξn,r(X,E) = inf

⎧⎪⎪
⎨
⎪⎪⎩

∥X −
n

∑
i=1

ξihi∥
Lr(P)

∶ (hi)i∈N parseval frame in Hµ

⎫⎪⎪
⎬
⎪⎪⎭

.

Furthermore, considering the case of random elements (not necessarily Gaus-
sian) induced as the path of a stochastic process (Xt)t∈I for an interval I ⊂ R,
relations to

� the pathwise regularity of a stochastic process, i.e.

E ∣Xt −Xs∣
r
≤ φ(t − s)r

for some measurable function φ ∶ R→ R, and

� the covariance function of a Gaussian process, that is

Γ(s, t) = EXtXs,

have been established.

We will only formulate one result describing the relation to the small ball
function and give an idea of the proof. In chapter 6 we will treat the cases
involving stochastic processes in more detail. The Kolmogorov and linear ap-
proximation n-width are closely related to the small ball function, such that the
results look similarly in many cases (see Creutzig, [Cre02, Corollary 4.7.2]).

Note, that due to a result of Tsyrelson (see [Lif95, Theorem 11] or [Bog98,
Corollary 4.4.2]), the small ball function φµ of a centered Gaussian r.e. X in E
is strictly decreasing, such that the inverse φ−1

µ exists.

Theorem 1.2.17. (cf. [GLP03, Theorem 1.2], see also [DFMS03, Theorem
3.1] and [Der03, Theorem 3.2.3]) Let X be a Gaussian r.e. in the separable
Banach space (E, ∥⋅∥) with law µ = PX and let dimHµ = ∞. Then, for every
δ > 1

φ−1
µ (log(δn)) ≼ en,r(X,E) ≼ φ−1

µ (
log(n)

2δ
) , n→∞.

In particular, if φµ (and thus φ−1
µ ) is regularly varying at ∞ with index −a,

a ∈ (0,∞), then
φ−1
µ (log(n)) ≈ en,r(X,E), n→∞.
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As in the previous paragraphs, we want to give a deeper insight into the proof
of the Theorem. It heavily relies on the close relationship between the small
ball function φµ and the metric entropy of the unit ball Kµ in the Cameron-
Martin-space Hµ, which we will introduce now.

De�nition 1.2.18. (Metric Entropy) For a subset A ∈ B(E) and ε > 0 we set

Ne(ε,A) ∶= inf {n ∈ N ∶ ∃α ⊂ E, ∣α∣ ≤ n,A ⊂ α +B(0, ε)} .

Then, He(ε,A) ∶= log(Ne(ε,A)) is called the metric ε-entropy of A.

The starting point of the proof of Theorem 1.2.17 is a discovery of Kuelbs
and Li [KL93], who found a tight relationship between the small ball function
and the metric entropy. The results have been extended by Li and Linde in
[LL99]. A key lemma obtained in these papers, which is a consequence of the
Isoperimetric inequality (Proposition 1.1.8) and the Estimation of shifted balls
(Proposition 1.1.11), reads as follows.

Lemma 1.2.19. For ε, λ > 0 and n ∈ N, one has

He(2ε, λKµ) ≤ φµ(ε) +
λ2

2
,

as well as
He(ε, λKµ) − φµ(2ε) ≥ Φ(λ +Φ−1(µ(B(0, ε)))).

Sketch of the proof of Theorem 1.2.17:

Proof. There are two inequalities to be proven, we will start with the asymptotic
lower bound for en,r(X,E).

� Lower bound for en,r(X,E): The key argument to be used for the lower
bound is the Anderson inequality. Let n ∈ N, ε > 0 and α be an n-codebook.
Then, unimodality of µ, meaning µ(B(a, ε)) ≤ µ(B(0, ε)) for all a ∈ E and
ε > 0 (see Proposition 1.1.6), implies

ern,r(X,E) ≥ ∫
(α+B(0,ε))c

min
a∈α

∥x − a∥
r
dµ(x)

≥ εr (1 − µ (α +B(0, ε)))

≥ εr (1 − ∑
a∈α

µ (B(a, ε)))

≥ εr(1 − nµ(B(0, ε)))

Choosing ε = ε(n) ∶= φ−1
µ (log(δn)) for some δ > 1, one obtains

(1 − nµ(B(0, ε(n)))) = (1 −
1

δ
),

which yields the asserted lower bound.
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� Upper bound for en,r(X,E): The idea is to cover for a �xed n a multiple
of the unit ball Kµ in Hµ with n small balls, and to control the remain-
der with the isoperimetric inequality, such that the quantization error is
limited by the radius of the covering small balls. To be more precise, let
ε, λ > 0 and the codebook α = α(ε, λ) ⊂ E such that

∣α(ε, λ)∣ = Ne(2ε, λKµ)

and
λKµ ⊂ α +B(0,2ε).

Therefore, Aλ,ε ∶= λKµ + B(0, ε) ⊂ α + B(0,3ε) and we obtain in view of
Hölder's inequality, for all ε ≤ 1

er∣α(ε,λ)∣,r(X,E) ≤ ∫
Aλ,ε

min
a∈α

∥x − a∥
r
dµ(x) + ∫

Ac
λ,ε

min
a∈α

∥x − a∥
r
dµ(x)

≤ (3ε)r + (µ(Acλ,ε))
1
2 2r(∥X∥

2r
Lr(P) + 22r)

1
2 .

Consequently, using Acλ,ε = (λKµ +B(0, ε))
c
, the isoperimetric inequality

(Proposition 1.1.8) implies

er∣α(ε,λ)∣,r(X,E) ≤ (3ε)r + (1 −Φ(Φ−1(µ(B(0, ε))) + λ))
1
2 κr,

with κr ∶= 2r(∥X∥
2r
Lr(P) + 22r)

1
2 .

The �nal step is to choose λ = λ(ε) su�ciently large, such that

log (∣α(ε, λ(ε))∣) ≲ 2δφµ(ε), ε→ 0,

but still

(1 −Φ(Φ−1(µ(B(0, ε))) + λ(ε)))
1
2 κr = o(3ε)

r

as ε→ 0. In [GLP03] this sequence has been chosen for δ > 1 as λ(ε, δ) ∶=

(2(2δ−1)φµ(ε))
1
2 . The remainder of the upper bound of the proof consists

of calculus and the application of Lemma 1.2.19.

Random quantizer upper bounds: As an alternative approach to the proof
of the upper bound for the quantization error in general Banach spaces, one may
consider quantization with random quantizers instead, which also achieves the
true weak asymptotic upper bound.

De�nition 1.2.20. Let E be a separable Banach space and X ∈ Lr(P,E) for
some r > 0. We de�ne the optimal n-th Lr(P,E) random quantization error by

τn,r(X,E) ∶= inf {∫ ∫ min
i=1,...,n

∥x − xi∥
r
dνn(x1, . . . , xn)dµ(x)}

1
r

,

where the in�mum is taken over all ν ∈ Mr(B(E)).
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Obviously, the optimal random quantization error gives an upper bound for
the optimal quantization error since, for every n ∈ N, and ν ∈ Mr(B(E)), one
has

∫ min
i=1,...,n

∥x − yi∥
r
dµ(x) ≥ inf

α
{∫ min

a∈α
∥x − a∥

r
dµ(x) ∶ α ⊂ E, ∣α∣ = n}νn(dy)a.s..

The following upper bound has been established by Dereich et al. (see
[DFMS03, Theorem 2.1, Theorem 4.1]).

Theorem 1.2.21. Let X be a Gaussian r.e. in the separable Banach space
(E, ∥⋅∥), r > 0 and let the small ball function φµ satisfy

lim
ε→0

φµ(ε)

(log(ε))
1
a

= ∞

for some a ∈ (0,1). Then, for every r, δ > 0

τn,r(X,E) ≲ 2φ−1
µ (

log(n)

2 + δ
) , n→∞.

In particular, if the small ball function admits the representation

φµ(x) = x
−aJ (

1

x
) , x→ 0

for a slowly varying function J(⋅) and −a < 0, then

τn,r(X,E) ≲ 21+ 1
aφ−1

µ (log(n)) , n→∞.

Remark 1.2.22. In ([DFMS03]) the authors use independent copiesXi, i = 1, . . . , n
of X to prove Theorem 1.2.21. Generally, this approach does not yield the sharp
asymptotic rate for the optimal random quantization error, see [GL00, section 9]
for the �nite dimensional case and [Der03, Corollary 7.5.7] for general Gaussian
r.e.'s in (in�nite) dimensional Hilbert spaces.

Local and global behavior of optimal codebooks: So far, we have mainly
treated the asymptotic behavior of the optimal quantization error. Much less
is known about the exact shape of optimal codebooks, given those exist. Un-
fortunately, almost no explicit formulas for optimal codebooks are known so
far. Therefore, one is strongly interested to obtain at least geometric proper-
ties optimal codebooks have to ful�ll. One of these properties is, for a Voronoi
partition {Ca(αn), a ∈ αn} for an r-optimal n-codebook αn, the question of
the µ-weights of the Voronoi cells µ(Va(α)). Furthermore, questions have been
raised regarding the following characteristics of (optimal) codebooks:

De�nition 1.2.23. (Local and global characteristics) Let α be an n-codebook
for the r.e. X in the separable Banach space (E, ∥⋅∥), n ∈ N and r > 0. Then:



CHAPTER 1. PRELIMINARIES 34

1. The maximum radius for a bounded set A ⊂ E is de�ned by

ρ(A) ∶= sup{∥a∥ ∶ a ∈ A}.

If A = α a codebook, we also call ρ(α) the quantization radius of α.

2. Suppose that Cn,r(X,E) ≠ ∅. The n-th upper quantization radius for the
r.e. X in E of order r is de�ned as

ρn,r(X,E) ∶= sup{ρ(α) ∶ α ∈ Cn,r(X,E)} .

Accordingly, we de�ne the n-th lower quantization radius for the r.e. X
in E of order r as

ρ
n,r

(X,E) ∶= inf {ρ(α) ∶ α ∈ Cn,r(X,E)} .

3. We de�ne the local quantization error for X in E of order r for the code
a ∈ α with respect to the Voronoi partition {Ca(α), a ∈ α} by

er;loc(µ,E;α,Ca(α)) ∶= (∫
Ca(α)

∥x − a∥
r
dµ(x))

1
r

.

er;loc(X,E;α,Ca(α)) is also known as the local inertia.

4. We set for n ∈ N the increments of the r-th power of the quantization error

∆n,r(X,E) ∶= ern,r(X,E) − ern+1,r(X,E).

Hereafter, we will usually speak of the increments of the quantization error
and omitting the r-th power, when considering ∆n,r(X,E).

5. Let s > 0. The random variable X is said to have the r − s-property, if for
every sequence (αn)n∈N of r-optimal n-codebooks for X in E

lim sup
n→∞

es(X,E;αn)

en,r(X,E)
< ∞.

The local quantization error, the weights of the Voronoi cells, and the quan-
tization radius seem to be interesting characteristics describing the geometry of
optimal codebooks. The increments of the quantization error does not seem to
�t into this group, but, as we will see in chapter 2, there is a close relationship
to the aforementioned characteristics. Similarly, we will be able to show for spe-
ci�c r.e.'s X a close relationship between the r−s-property and the quantization
radius.

One key result obtained so far in the �nite dimensional case (E, ∥⋅∥) =
(Rd, ∥⋅∥) is the weak asymptotics of the increments of the quantization error,
which is due to Graf, Luschgy, and Pages [GLP10]. Parts of the results have
already been proven in former articles of these authors, see e.g. [PS08], [GL02],
[GLP08]. We will present here a slightly extended version of the result for
distributions having a non-vanishing Lebesgue-continuous part.
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Theorem 1.2.24. Let (E, ∥⋅∥) = (Rd, ∥⋅∥) for an arbitrary norm ∥⋅∥, r ∈ (0,∞)
and X ∈ Lr+δ(P) for some δ > 0 with f = ∂µa

∂λd
≢ 0. Then, there exists a constant

C∆(µ) ∈ [1,∞) such that

1

C∆(µ)
n−(1+

r
d ) ≤ ∆n,r(X,E) ≤ C∆(µ)n−(1+

r
d ),

for all n ∈ N.

Proof. Let µ = µa + µs denote the Lebesgue decomposition of µ, (αn)n∈N be a
sequence of r-optimal n-codebooks for X in Rd and ({Ca(αn), a ∈ αn})n∈N be a
corresponding sequence of Voronoi partitions.
Step 1: (Upper bound) We partly follow the lines of the proof in ([GLP08]).
Obviously, we have

∣{a ∈ αn+1 ∶ µ(Ca(αn+1)) >
4

n + 1
}∣ ≤

n + 1

4
,

and

∣{a ∈ αn+1 ∶ e
r
r;loc(X,E;αn+1,Ca(αn+1)) >

4ern,r(X,E)

n + 1
}∣ ≤

n + 1

4
,

which implies for

βn+1 ∶= {a ∈ αn+1 ∶ e
r
r;loc(X,E;αn+1,Ca(αn+1)) ≤

4ern,r(X,E)

n + 1
,

µ(Ca(αn+1)) ≤
4

n + 1
}

the cardinality ∣βn+1∣ ≥
n+1

2
. We choose a constant κ ∈ R su�ciently large, such

that

µr([−κ,κ]
d) = ∥f

d
d+r ∥

−1

1
∫
[−κ,κ]d

f
d
d+r dλd ≥

3

4
.

µr(∂[−κ,κ]
d) = 0 implies in view of Theorem 1.2.14 and the Portmanteau The-

orem

∣αn+1 ∩ [−κ,κ]d∣ ≳
3(n + 1)

4
, n→∞,

and therefore

∣βn+1 ∩ [−κ,κ]d∣ ≳
n + 1

4
, n→∞. (1.20)

There exists a constant C < ∞ such that for every n ≥ 7 the cube [−κ,κ]d

can be composed into ⌊n+1
8

⌋ cubes with diameter not longer than Cn−
1
d . In

combination with equation (1.20), we �nd two elements an+1, bn+1 ∈ βn+1 being
in the same cube, i.e.

∥an+1 − bn+1∥ ≤ Cn
− 1
d ,
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for all n ≥ n∗ ∈ N. Using an+1, bn+1 ∈ βn+1 we deduce for n ≥ n∗

∆n,r(X,E) ≤ err(X,E;αn+1/{an+1}) − e
r
n+1,r(X,E)

≤ ∫
Can+1(αn+1)

∥x − bn+1∥
r
− ∥x − an+1∥

r
dµ(x)

≤ (2r − 1)err;loc(X,E;αn+1,Can+1(αn+1))

+ 2r ∥an+1 − bn+1∥
r
µ(Can+1(αn+1))

≤ (2r − 1)
4

n + 1
ern+1,r(X,E) + 2rCn−

r
d

4

n + 1
,

(1.21)

which yields in virtue of Theorem 1.2.12 the asserted upper bound.
Step 2: (Lower bound) We partly follow the lines of the proof in ([GLP10]).
We set for n ∈ N and y ∈ Rd βn ∶= αn∪{y} and δn = dist(y,αn), where dist(x,A) =
infa∈A ∥x − a∥ for x ∈ Rd,A ⊂ Rd . For every b < 1

2
we obtain

∆n,r(X,E) ≥ ern,r(X,E) − err(X,E;βn)

≥ ∫
Wy(βn)

min
a∈αn

∥x − a∥
r
− ∥x − y∥

r
dµ(x)

≥ ∫
B(y,bδn)

((1 − b)r − br)δrndµ(x)

≥ µa (B(y, bδn)) ((1 − b)
r − br)δrn.

(1.22)

First note, that for every y ∈ supp(µa)

δn = dist(y,αn) → 0, n→∞,

since otherwise er(X,E;αn) ↛ 0 in contradiction to equation (1.14). We set for
n ∈ N

fn(y) ∶=
µa (B(y, bδn))

λd((B(y, bδn)))

By Lebesgue's di�erentiation Theorem, we obtain fn
n→∞
Ð→ f λd-a.s.. Let κ ∶=

sup{c > 0 ∶ µa{f > c} ≥ 3µa(Rd)
4

}. Then, Egorov's Theorem (see e.g. [Kal02,
Lemma 1.3.6]) implies

fn(y) → f(y), n→∞ uniformly on A

for a subset A ⊂ {f > κ} such that µa(A) ≥ 1
2
µa(Rd) and therefore λd(A) >

0. In combination with equation (1.22) we obtain for n su�ciently large with
C(b) ∶= ((1 − b)r − br) by integrating both sides over A with respect to dλd

∆n,r(X,E)λd(A) ≥ ∫
A
µa (B(y, bδn))C(b)δrndλ

d(y)

≥
C(b)κ

2
∫
A
λd (B(y, bδn)) δ

r
ndλ

d(y)

=
κC(b)λd (B(y, b))

2
∫
A
δr+dn dλd(y)

≥
κC(b)bdλd (B(0,1))λd(A)

2
er+dn,r+d(U(A),Rd)
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which yields in view of Theorem 1.2.12 the asserted lower bound.

Remark 1.2.25. Suppose that X is a r.e. on Rd with non-vanishing Lebesgue-
continuous part and �nite r-th moment.

1. As a direct consequence of the theory of asymptotic sequences, there is
only one possible sharp asymptotic rate the increments of the quantization
error could admit. As a general result (see A.10 or [BGT87, Proposition
1.5.10]), one has for every regularly varying function f ∶ [A,∞) → R with
index α < −1 at in�nity

xf(x)

∫
∞

x f(t)dλ(t)

x→∞
Ð→ −(α + 1). (1.23)

Assuming that ∆n,r(X,E) is regularly varying with index α < −1, we ob-
tain as immediate consequence by setting f(x) = ∆⌈x⌉,r(X,E) in equation
(1.23)

ern,r(X,E) =
∞

∑
j=n

∆j,r(X,E) ∼
1

−(α + 1)
∆n,r(X,E)n, n→ .∞

Hence, one needs to have

∆n,r(X,E) ∼ −
α + 1

n
ern,r(X,E), n→∞.

In view of the Zador theorem, we obtain for distributions with non-
vanishing Lebesgue-continuous part µa = fdλ

d

∆n,r(X,E) ∼
r

d
Qr,∥⋅∥([0,1]

d) ∥f∥ d
d+r

n−
r+d
d , n→∞

2. The general result presented in part 1) concerning the asymptotic behavior
of integrated asymptotics describes the easier direction of the relationship
between sequences and its increments. The converse direction is much
more di�cult and does not hold in general. To obtain the converse re-
sult, one needs additional conditions (also called Tauberian conditions) to
deduce from the asymptotics of a sequence the asymptotics of its incre-
ments. One famous example for such a Tauberian condition is part of the
Monotone Density Theorem (see Theorem A.11).
Suppose that ern,r(X,E) = ∑

∞
i=n∆n,r(X,E) is regularly varying at in�nity

with index ρ < −1 and ∆n,r(X,E) is monotone on [N,∞) for some N ∈ N.
Then ∆n,r(X,E) is regularly varying at in�nity and the asymptotics is
uniquely determined via equation (1.23).
Unfortunately, it is not clear whether such a monotony holds for the in-
crements of the quantization error of interesting classes of distributions.

Remark 1.2.26. The proof of Theorem 1.2.24 already uses two micro-macro
inequalities being contained in the estimates (1.22) and (1.21) which we will use
later more extensively.
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Remark 1.2.27. The radius problem has already been analyzed in the thesis of
Sagna (see [PS08]) for �nite dimensional Hilbert spaces (H, ∥⋅∥) and distribu-
tions having radial tails with respect to the Hilbert space norm ∥⋅∥. A main part
of this thesis will be to

� solve open problems raised in [PS08],

� extend the results to arbitrary �nite dimensional Banach spaces and more
general distributions,

� de�ne other characteristics of distributions giving a better understanding
of the geometry of optimal codebooks,

� extend the results and related problems to in�nite dimensional Banach
spaces and

� make use of the solutions of the radius problems to improve the results
obtained for other local quantization problems, especially the analysis of
local inertia and weights of Voronoi cells (see [GLP10]).

Construction of optimal quantizers: Given the few explicit formulas known
for optimal codebooks, one needs numerical algorithms to calculate optimal (or
at least stationary) solutions for the quantization problem.
Historically, the �rst approach that was used is the so-called Lloyd-I procedure.

Let X be a r.e. in R, n ∈ N be �xed and α0 being an n-codebook in R.
De�ne inductively for k ∈ N

αk ∶= (E (X ∣X ∈ Cai(αk−1)))1≤i≤n ,

for an arbitrary Voronoi partition {Ca(αk−1), a ∈ αk−1}. Under some reasonable
assumptions on the distribution µ, one shows that the sequence

(e2(X,R;αk))k∈N

is a non-increasing sequence and that fαk(X) converges to a random vector X̂

with α̂ ∶= supp(PX̂) satisfying ∣α̂∣ = n. Furthermore, one observes easily that
α̂ is a stationary codebook. Under some additional regularity assumption (i.e.
log-concavity of the density f ∶= ∂µ

∂λ
), one knows that ∣Sn,2(X,R)∣ = 1 which

implies Cn,2(X,R) = {α̂}.
Even if the algorithm can be generalized to an arbitrary d ∈ N, many prob-

lems arise. The calculation of the conditional expectation needs the explicit
shape of the Voronoi partition and the calculation of integrals over complex
polyhedron in Rd, which is quite di�cult. Furthermore, no condition verifying
the optimality of the limiting codebook α̂ is known.

One possible solution to tackle this problem is the so-called CLVQ-algorithm.
Let X be a r.e. in the separable Banach space (E, ∥⋅∥), n ∈ N be �xed and α0

being an n-codebook in E. Suppose that r > 1 and the underlying norm ∥⋅∥ is
smooth. A common shape of a gradient algorithm is

αk+1 = αk − γn∇e
r
n,r(X,E;αk), k ∈ N (1.24)
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with (γn)n∈N being a step-sequence and the gradient

∇ern,r(X,E;αk) = rE (1Cai(αk)/{ai}(X) ∥X − ai∥
r−1

∇∥⋅∥ (X − ai)) ∈ (E′)
n

(see [GLP07, Proposition 4]), for an Voronoi partition {Cai(αk), ai ∈ αk}. A
one-point Monte-Carlo approximation of the gradient transforms equation (1.24)
into

αk+1 = αk − γnr (1Cai(α)/{ai}(X̃k) ∥X̃k − ai∥
r−1

∇∥⋅∥ (X̃k − ai)) k ∈ N. (1.25)

Under some regularity condition on the step sequence, particularly

∑
i∈N
γi = ∞, ∑

i∈N
γ2
i < ∞

the algorithm turns out to be very robust and to reach local minima of the
optimization problem, even if no general convergence of the algorithm can be
proven.

A key issue for the performance of the algorithms is a good initialization. As
mentioned by several authors (see e.g. [PN07] , [PS08] or [Yee10]), the knowledge
of the quantization radius of optimal codebooks can signi�cantly improve the
convergence of the algorithm. Particularly, the authors propose explicit initial
codebooks α0 based on the knowledge of the quantization radius for optimal
codebooks.
In [PN07] the authors propose for speci�c exponential distributed r.e.'s X on
the real line R an initial n-codebook α0 = {a1, . . . , an} with

a1 = −ρn(X), an = ρn(X)

and the remaining ordered codes ai,2 ≤ i ≤ n − 1 such that

µr(Vai(α0)) = µr(Vaj(α0)), i, j ∈ {2, . . . , n − 1},

where ρn(X) is a reasonable approximation for the quantization radius for α ∈
Cn,r(X,E).
Sagna proposes in his dissertation to initialize the algorithm for the case d ≥ 1
(see [Sag08]) by setting

α0 = ρn

⎧⎪⎪
⎨
⎪⎪⎩

Z1

∥Z1∥Lr(P,Rd)
, . . . ,

Zn
∥Zn∥Lr(P,Rd)

⎫⎪⎪
⎬
⎪⎪⎭

with again ρn being an asymptotic approximation for the quantization radius
and PZi = N(0, Id). Hence the starting codebook is uniformly distributed over
the sphere Sd−1 in (Rd, ∥⋅∥).

Applications to numerical �nance: Plenty of problems arising in �nancial
applications can be expressed as the estimation of expectation of the form

EF (X) (1.26)
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for some r.e. X in the Banach space E and a mapping F ∶ E → R. Typically,
the r.e. X is either a multivariate r.e. in Rd or a r.e. induced by the path of a
stochastic process with value in Lp(I) or C(I) for compact interval I ⊂ Rd.
There is a variety of situations in which quantization methods can be applied to
help solving problems of such a type. For a general overview, one may consult
[PPP04] for the case of X r.e. in Rd or [PP05] for the functional quantization
case.

(Cubature formulae) The �rst idea is to use precomputed optimal quantizers
αn ∈ Cn,r(X,E) for some r.e. X and r > 0 to derive for broad classes of function-
als F good approximations in the form of cubature formulae for the expectation
1.26, i.e.

EF (X) ≊
n

∑
i=1

µ(Cai(αn))F (ai).

To estimate the approximation error, one derives for Lipschitz continuous F ∶
E → R in view of Proposition 1.2.5

∣EF (X) −EF (fαn(X))∣ ≤ LF ∥X − fαn(X)∥L1(E,P) ≤ LF en,r(X,E)

with LF denoting the Lipschitz constant to F . Given r = 2 and the Hilbertian
case (E, ∥⋅∥) = (H, (⋅, ⋅)), one obtains as a consequence of the stationarity of
optimal codebooks the following sharper version:

Lemma 1.2.28. (c.f. [PPP04, Section 2]) Suppose that F ∶ E → R is con-
tinuously di�erentiable with Lipschitz continuous di�erential DF . Then for
αn ∈ Cn,2(X,H) and n ∈ N

∣EF (X) −EF (fαn(X))∣ ≤ LDF e
2
n,2(X,E).

(Variance reduction with optimal codebooks) Another popular way to use
optimal quantizers is to use them as a control variate in a Monte-Carlo method,
i.e.

EF (X) ≊
n

∑
i=1

µ(Cai(αn)F (ai) +
1

m

m

∑
i=1

(F (Xi) − F (fαn(Xi)))

for independent copiesXi, i ≤m ofX. Then, (see [PP05, section 7]) or [CDMGR09,
Theorem 2] for

Rm,n ∶= EF (X) −
n

∑
i=1

µ(Cai(αn)F (ai) −
1

m

m

∑
i=1

(F (Xi) − F (fαn(Xi)))

one estimates

E ∣Rm,n∣
2
≤
E (F (X) − F (fαn(X)))

2

m

and in virtue of the CLT

√
mRm,n

w
⇒ N(0, ∥F (X) − F (fαn(X))∥

2
2 ), m→∞.
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Hence, for Lipschitz continuous F and αn ∈ Cn,2(X,E)

E ∣Rm,n∣
2
≤
L2
F e

2
n,2(X,E)

m
.

Additional notations: For a r.e. X in the separable Banach space (E, ∥⋅∥),
we set the survival function

FX ∶ R+ → [0,1], x↦ P(∥X∥ > x).

The generalized survival function we de�ne for s > 0 by

FXs ∶ R+ → [0,E ∥X∥
s
], x↦ E1∥X∥>x ∥X∥

s
.

References: A good introduction into Information theory is given by Cover
and Thomas [CT91]. For historical aspects, see [Gra90], for a rigorous mathe-
matical introduction one may consult [Iha93].
For aspects of �nite dimensional quantization problems, see the summary article
by Gray and Neuho� [GN98] and the monograph of Graf and Luschgy [GL00]
which contains a broad range of quantization results on absolutely continuous
and fractal measures. For further results on �nite dimensional fractal quantiza-
tion, see e.g. [GL01], [Kre06] and [GL05].
For results on the in�nite dimensional case, one may consult the dissertations
by Fehringer [Feh01], Creutzig [Cre02], Dereich [Der03] and Wilberz [Wil08],
as well as the research articles [LP02], [LP04a], [DFMS03], [GLP03], [DS06] for
the Gaussian case, [Der08b], [Der08a], [LP06] for Gaussian di�usions, [ADSV09],
[LP08], [AD09] for general Levy processes and [LGP] on fractal functional quan-
tization.
For research articles on the radius problem, see [NN01] and [PS08], the local
inertia have been treated in [GLP10], the (r − s)-problem in [GLP08]. Further
references are also given in chapters 3,4 and 5.
A good introduction into numerical algorithms can be found in [PPP04] for the
�nite dimensional case and [PP05] for the functional quantization case. Both
contain aspects for the variety of applications for optimal quantization.

For general references on quantization, see the homepage www.quantize.maths-
�.com which is devoted to quantization and its applications in numerical �nance.

http://www.quantize.maths-fi.com
http://www.quantize.maths-fi.com


Chapter 2

Increments of quantization

errors and related inequalities

This chapter is devoted to micro-macro inequalities and the estimation of the
increments of the quantization error, which are two key ingredients for the study
of the radius problems in chapters 3, 4 and 5.
In section 2.1 we will provide several micro-macro-inequalities, which will be
useful in the subsequent sections and chapters. This includes two known micro-
macro inequalities accomplished with an equivalent for the �rst micro-macro
inequality for Gaussian r.e.'s as well as an extended version of the second micro-
macro inequality. In section 2.2 we establish a general lower bound for the in-
crements of the quantization error. This bound can equally be used in case of
Lebesgue-continuous and singular distributions in Rd as well as r.e.'s in in�nite
dimensional Banach spaces. In particular, the lower bound gives an alterna-
tive proof for the lower bound in Theorem 1.2.24. Furthermore, we will show
a general upper bound for the increments of the quantization error for r.e.'s
satisfying a unimodality condition. Finally, we will show a few basic relations
between the increments of the quantization error and the quantization radius of
optimal codebooks, which is discussed in the subsequent chapters.

2.1 Micro-Macro inequalities

In this section, we will discuss optimal quantization related micro-macro in-
equalities. Those are inequalities which allow to deduce connections between
local or geometric characteristics for optimal codebooks to global characteris-
tics, such as the asymptotics of the quantization error, or its corresponding
increments. In the proof of Theorem 1.2.24 we already saw two very impor-
tant micro-macro inequalities for the �nite dimensional case. We will formulate
those micro-macro inequalities and add an in�nite dimensional equivalent for
the �rst micro-macro inequality for Gaussian random elements. We will need
the following de�nitions:

42
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De�nition 2.1.1. A r.e. X in (Rd, ∥⋅∥) satis�es the lower peakless condition
on A ∈ B(Rd) if there exists a constant c = c(A) > 0 such that

µ(B(x, s)) ≥ c
∂µa
∂λd

(x)λd(B(0, s)) = cλd(B(0,1))
∂µa
∂λd

(x)sd

for all x ∈ A and s > 0 such that B(x, s) ⊂ A.

De�nition 2.1.2. A function f ∶ [A,∞) → R, A ∈ [0,∞) is called almost
decreasing on [A,∞) if for some constant mf ∈ (0,∞)

f(y) ≥mff(x)

for all y ∈ [A,x] and x ∈ [A,∞).

Lemma 2.1.3. Let X be a r.e. in (Rd, ∥⋅∥) such that

f =
∂µa
∂λd

≢ 0

admits the representation f(x) = g(∥x∥0) for x ∈ B∥⋅∥0
(0, κ)c, where ∥⋅∥0 is an

arbitrary norm on Rd and g is almost decreasing on [κ,∞) for a constant κ ≥ 0.
Then, X satis�es the lower peakless condition on B∥⋅∥0

(0, κ)c.

Proof. Let C be a positive and �nite constant such that 1
C

∥⋅∥0 ≤ ∥⋅∥ ≤ C ∥⋅∥0,
x ∈ B∥⋅∥0

(0, κ)c and s > 0 such that B(x, s) ⊂ B∥⋅∥0
(0, κ)c. First note, that

{f ≥mgf(x)} ⊃ B∥⋅∥0
(0, ∥x∥0)/B∥⋅∥0

(0, κ),

where mg denotes the almost decreasing constant of g and

B(x, s) ⊃ B∥⋅∥0
(x,

s

C
),

such that

B(x, s) ∩ {f ≥mgf(x)} ⊃ (B∥⋅∥0
(0, ∥x∥0)/B∥⋅∥0

(0, κ)) ∩B∥⋅∥0
(x,

s

C
) (2.1)

By the triangle inequality, we have for x′ ∶= x − x
∥x∥0

s
2C

B∥⋅∥0
(x′,

s

2C
) ⊂ B∥⋅∥0

(0, ∥x∥0)/B∥⋅∥0
(0, κ),

B∥⋅∥0
(x′,

s

2C
) ⊂ B∥⋅∥0

(x,
s

C
),

and thus with (2.1)

B(x, s) ∩ {f ≥mgf(x)} ⊃ B∥⋅∥0
(x′,

s

2C
) ⊃ B(x′,

s

2C2
).

Consequently, we obtain

µ(B(x, s)) ≥ µa(B(x, s) ∩ {f ≥mgf(x)}) ≥mgf(x)λ
d(B(x, s) ∩ {f ≥mgf(x)})

≥mgf(x)λ
d (B(x′,

s

2C2
)) =mgf(x) (

1

2C2
)
d

λd (B(x, s))

and thus the assertion with c =mg (
1

2C2 )
d
.
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Proposition 2.1.4. (First micro-macro inequality) Let E be a separable Ba-
nach space and X ∈ Lr(P,E) for some r > 0 and (αn)n∈N be a sequence of
r-optimal n-codebooks for X in E. Then, for every 0 < b < 1

2
, n ∈ N and y ∈ E

∆n,r(X,E) ≥ ((1 − b)r − br)µ (B(y, bdist(y,αn)))dist(y,αn)
r.

Proof. Let 0 < b < 1
2
and n ∈ N. For y ∈ E, consider the (n + 1)-codebook

βn ∶= αn ∪ {y} and δn ∶= dist(y,αn). Then, by using B(y, bδn) ⊂Wy(βn)

∆n,r(X,E) ≥ ern,r(X,E) − err(X,E;βn)

≥ ∫
Wy(βn)

min
a∈αn

∥x − a∥
r
− ∥x − y∥

r
dµ(x)

≥ ∫
B(y,bδn)

((1 − b)r − br)δrndµ(x)

= µ (B(y, bδn)) ((1 − b)
r − br)δrn.

(2.2)

As a consequence, we obtain for r.e.'s satisfying a local peakless condition
on A ∈ B(Rd)

Proposition 2.1.5. (First micro-macro inequality in Rd) Let X ∈ Lr(P,Rd)
and (αn)n∈N be a sequence of r-optimal n-codebooks for X in Rd. Suppose that
X satis�es the lower peakless condition on a set A ∈ B(Rd). Then, for every
0 < b < 1

2
, n ∈ N and y ∈ A with B(y, bdist(x,αn)) ⊂ A

∆n,r(X,E) ≥ ((1 − b)r − br) bdf(y)λd(B(0,1))c(µ,A)dist(y,αn)
r+d,

where f = ∂µa
∂λd

and c(µ,A) is a constant depending on µ and A only.

Proof. The proof is a consequence of the �rst micro-macro inequality (Proposi-
tion 2.1.4) and the de�nition of the local peakless condition.

In virtue of the Cameron-Martin formula, Gaussian random elements obey
a speci�c type of peakless condition, which reads

Proposition 2.1.6. (First micro-macro inequality for Gaussian r.e.'s) Let X
be a Gaussian r.e. in the separable Banach space (E, ∥⋅∥), r > 0 and suppose that
Cn,r(X,E) ≠ ∅ for n ∈ N. Then, for every 0 < b < 1

2
, y ∈ E and αn ∈ Cn,r(X,E)

∆n,r(X,E) ≥ ((1 − b)r − br) exp(−
∥y∥

2
Hµ

2
)dist(y,αn)

rµ(B(0, bdist(y,αn))).

Proof. As a consequence of the �rst micro-macro inequality, we have for y ∈ E
and δn ∶= dist(y,αn)

∆n,r(X,E) ≥ µ (B(y, bδn)) ((1 − b)
r − br)δrn. (2.3)
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In combination with the estimation of shifted balls (Proposition 1.1.11) with
a = 0, this impliess

∆n,r(X,E) ≥ µ (B(0, bδn)) exp(−
∥y∥

2
Hµ

2
)((1 − b)r − br)δrn.

The second micro-macro inequality is dimension-free and reads

Proposition 2.1.7. (Second micro-macro inequality) Let X be a r.e. in the
separable Banach space (E, ∥⋅∥), X ∈ Lr(P,E) for some r > 0 and Cn+1,r(X,E) ≠
∅ for a natural number n ∈ N. Then, for every αn+1 ∈ Cn+1,r(X,E)

∆n,r(X,E) ≤ ∫
Wa(αn+1)

dist(x,αn+1/{a})
r − ∥x − a∥

r
dµ(x)

for all a ∈ αn+1. Furthermore, for r ≥ 1

∆n,r(X,E) ≤ (2r − 1)err;loc(X,E;αn+1,Wa(αn+1))

+ 2rµ(Wa(αn+1))dist(a,αn+1/{a})
r,

and for 0 < r ≤ 1

∆n,r(X,E) ≤ µ(Wa(αn+1))dist(a,αn+1/{a})
r.

Proof. As a consequence of equation (1.21), we obtain for an arbitrary Voronoi
partition {Ca(αn+1), a ∈ αn+1} and every a ∈ αn+1

∆n,r(X,E) ≤ ∫
Ca(αn+1)

dist(x,αn+1/{a})
r − ∥x − a∥

r
dµ(x).

Since dist(x,αn+1/{a})
r = ∥x − a∥

r
on Va(α)/Wa(α), for all a ∈ αn+1, we obtain

the �rst assertion. The second and third assertions are consequences of the �rst
in combination with the inequalities

dist(x,αn+1/{a})
r ≤ (dist(a,αn+1/{a} + ∥x − a∥)

r

and
(a + b)r ≤ 2r(ar + br)

for all r > 0 and a, b ∈ R+, which can be sharpened to

(a + b)r ≤ ar + br

for all 0 ≤ r ≤ 1.

Proposition 2.1.8. (Extended second micro-macro inequality) Let X be a r.e.
in the separable Banach space (E, ∥⋅∥), X ∈ Lr(P,E) for some r > 0 and
Cn+1,r(X,E) ≠ ∅ for a natural number n ∈ N. Then, for every αn+1 ∈ Cn+1,r(X,E),
and a ∈ αn+1 and every C > 0

∆n,r(X,E) ≤ (2r − 1 + (
2

C
)
r
)err;loc(X,E;αn+1,Wa(αn+1))

+ 2rµ(B(a,C dist(a,αn+1/{a})))dist(a,αn+1/{a})
r.
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Proof. For convenience, we abbreviate δn(a) ∶= dist(a,αn+1/{a}). In view of the
second micro-macro inequality (Proposition 2.1.7), it is su�cient to show that

µ(Wa(αn+1)/B(a,Cδn(a)))(δn(a))
r ≤

1

Cr
err;loc(X,E;αn+1,Wa(αn+1)).

In fact, we can estimate

µ (Wa(αn+1)/B(a,Cδn(a))) (δn(a))
r =

1

Cr
∫
Wa(αn+1)/B(a,Cδn(a))

(Cδn(a))
rdµ(x)

≤
1

Cr
∫
Wa(αn+1)/B(a,Cδn(a))

∥x − a∥
r
dµ(x)

≤
1

Cr
err,loc(X,E;αn+1,Wa(αn+1)),

which yields the assertion.

Notes and References: The �rst micro-macro inequality in Rd and the
second micro-macro inequality have been introduced implicitly in [GLP08] as
part of several proofs therein. They have been explicitly mentioned initially in
[GLP10]. The �rst micro-macro inequality for Gaussian r.e.'s and the extended
second micro-macro inequality seem to be new.

2.2 Increments of the quantization error

The main purpose of this section is to develop an in�nite dimensional equivalent
for Gaussian r.e.'s similar to Theorem 1.2.24. Unfortunately, we will not be able
to obtain a result as sharp as Theorem 1.2.24, meaning a sharp estimate for the
weak asymptotics of the increments of the r-th power of the quantization error.
Still, it will be su�cient for chapter 4, where the sharp rate for the logarithmic
asymptitics of the increments of quantization errors is needed. Moreover, the
result may be used to generalize those obtained for the �nite dimensional case.

In this section, we will assume throughout that Cn,r(X,E) ≠ ∅ for all n ∈ N
and r > 0. In fact, as concerning estimations of the increments of the quantiza-
tion error, this can be done without loss of generality, since, in view of Remark
1.2.9

∆n,r(X,E) = ∆n,r(X,E
′′),

where E′′ denoting the Bidual to E, in which the existence of optimal code-
books is always guaranteed , see [GLP07, Corollary 1]. Thus, estimates for
∆n,r(X,E

′′) equally hold for ∆n,r(X,E).

Upper bound for the increments of the quantization error In a general
non necessary �nite-dimensional setting, there are several tools which might not
exist and which are used in the proof for the upper bound of the increments of
the quantization error in Theorem 1.2.24, namely
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� an empirical measure theorem equivalent to Theorem 1.2.14 in combina-
tion with

� a compact set (equivalent to a hypercube [−c, c]d) with a positive µ-
measure.

To determine similar results for general Gaussian r.e.'s, we have to make use
of speci�c properties, namely the general version of the Anderson inequality and
the Cameron-Martin formula.

Lemma 2.2.1. Let X be a Gaussian r.e. in the separable Banach space (E, ∥⋅∥).
Then

µ(B(x,κ)/B (x,
κ

4
)) ≥ µ(B (x,

κ

4
)) (2.4)

for every x ∈ (
○

B(0, 1
2
κ))

c

and κ > 0. Furthermore

µ(B(x,κ)/B (x,
κ

4
)) ≥ µ(B (x,

κ

4
)) exp(−

κ2

2σ(µ)2
) (2.5)

for all x ∈ B(0, 1
2
κ) and κ > 0.

Proof. Let κ > 0 and x ∈ (
○

B(0, 1
2
κ))

c

. We consider

x′ ∶= x −
1

2
κ
x

∥x∥
= x(1 −

κ

2 ∥x∥
).

Then, by applying the triangle inequality

µ(B(x′,
1

4
κ) ∩B(x,

1

4
κ)) ≤ µ(∂B(x′,

1

4
κ)) = 0,

where the last equality follows by continuity of the function y ↦ µ ({∥x∥ ≤ y})
on (0,∞), see e.g. [Bog98, Corollary 4.4.2]. Furthermore, we have

B(x′,
1

4
κ) ⊂ B(x,κ),

which implies

µ(B(x,κ)) ≥ µ(B (x,
κ

4
)) + µ(B (x′,

κ

4
)) .

By the Anderson inequality (Proposition 1.1.6) with A = B(0, κ
4
) and t = (1 −

κ
2∥x∥

) ∈ [0,1] we obtain

µ(B(x,κ)) ≥ 2(B (x,
κ

4
)) ,
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which implies the �rst assertion.
For x ∈ B(0, 1

2
κ), by continuity of the embedding jµ ∶ Hµ → E and compactness

of the unit ball Kµ we can select h ∈ Kµ such that

∥h∥Hµ = 1

and
∥h∥ = σ(µ).

Since x ∈ B(0, 1
2
κ) we have

c∗ ∶= sup{c ≥ 0 ∶ hc ∈ B(x,
1

2
κ)} ∈ [0,∞)

which implies

σ(µ)c∗ = ∥c∗h∥ ≤ ∥x∥ +
1

2
κ ≤

1

2
κ +

1

2
κ ≤ κ.

In particular, this yields

∥c∗h∥Hµ ≤
κ

σ(µ)
.

We obtain

B(c∗h,
κ

4
) ⊂ B(x,κ), µ(B(x,

κ

4
) ∩B(c∗h,

κ

4
)) = 0 (2.6)

and may estimate in virtue of the Anderson inequality with t = 0 (Proposition
1.1.6) and the estimation of shifted balls with a = 0 (Proposition 1.1.11)

µ(B(x,
κ

4
)) ≤ µ(B(0,

κ

4
)) ≤ exp (

∥c∗h∥
2
Hµ

2
)µ(B(c∗h,

κ

4
))

≤ exp (
κ2

2σ(µ)2
)µ(B(c∗h,

κ

4
)).

(2.7)

Combining equations (2.6) and (2.7) yields the second assertion.

Theorem 2.2.2. Let X be a Gaussian r.e. in the separable Banach space E.
Then, there exists a constant Cloc > 0 such that

∆n−1,r(X,E) ≤ Cloce
r
r,loc(X,E;αn,Wa(αn))

for all n ≥ 2, αn ∈ Cn,r(X,E) and a ∈ αn.

Proof. Let n ∈ N, n ≥ 2, C > 0, αn ∈ Cn,r(X,E) and a ∈ αn. For convenience,
we abbreviate δn(a) ∶= dist(a,αn/{a}). By the extended second micro-macro
inequality (Proposition 2.1.8), we have

∆n−1,r(X,E) ≤ (
2r

Cr
+ 2r − 1) err,loc(X,E;αn,Wa(αn))

+ 2rµ(B(a,Cδn(a)))δn(a)
r.

(2.8)
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To estimate the second term of the right-hand side of equation (2.8), we will
consider 2 cases. Let C < 1

8
.

Case 0 ∉ B(a,2Cδn(a)):
By Lemma 2.2.1 equation (2.4) with x = a and κ = 4Cδn(a) and the fact that

B(a,4Cδn(a)) ⊂Wa(αn)

we obtain

µ(B(a,Cδn(a)))δn(a)
r = ∫

B(a,κ4 )
dist(a,αn/{a})

rdµ(x)

≤
1

Cr
∫
B(a,κ)/B(a,κ4 )

(C dist(a,αn/{a}))
rdµ(x)

≤
1

Cr
∫
B(a,4Cδn(a))/B(a,Cδn(a))

∥x − a∥
r
dµ(x)

≤
1

Cr
∫
Wa(αn)

∥x − a∥
r
dµ(x)

=
1

Cr
err,loc(X,E;αn,Wa(αn)).

(2.9)

Case 0 ∈ B(a,2Cδn(a)):
Let ε > 0 and h ∈ Kµ such that ∥h∥Hµ = 1 and ∥h∥ = σ(µ). Since 0, 2ε

σ(µ)
h ∈

supp(µ), there exists in virtue of equation (3.2) an nε ∈ N independently of the
choice of αn ∈ Cn,r(X,E) such that

dist(0, αn) ≤ ε and dist (
ε2

σ(µ)
h,αn) ≤ ε

for all n ≥ nε. Since 0 ∈ Ca(αn) we estimate

dist(a,αn/{a}) ≤ ∥a∥ + ∥b∥ ≤ 2 ∥b∥

for all b ∈ αn/{a}. Therefore, for b1, b2 ∈ αn/{a} such that b1 ∈ B(0, ε) and
b2 ∈ B( ε2

σ(µ)
h, ε)

dist(a,αn/{a}) ≤ 2 max(b1, b2) = 2 ∥b2∥ ≤ 6ε. (2.10)

In view of Lemma 2.2.1 equation (2.5) with x = a and κ = 4Cδn(a) equation
(2.10) implies

µ(B(a,Cδn(a))) ≤ exp(
(4C6ε)2

2σ(µ)2
)µ(B(a,4Cδn(a))/B(a,Cδn(a))).
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Analogously to the argumentation in equation (2.9), we obtain

µ(B(a,Cδn(a)))δn(a)
r = ∫

B(a,κ4 )
dist(a,αn/{a})

rdµ(x)

≤
exp ( (4C6ε)2

2σ(µ)2
)

Cr
∫
B(a,κ)/B(a,κ4 )

(C dist(a,αn/{a}))
rdµ(x)

≤
exp ( 8(6Cε)2

σ(µ)2
)

Cr
∫
B(a,4Cδn(a))/B(a,Cδn(a))

∥x − a∥
r
dµ(x)

≤
exp ( 8(6Cε)2

σ(µ)2
)

Cr
∫
Wa(αn)

∥x − a∥
r
dµ(x)

=
exp ( 8(6Cε)2

σ(µ)2
)

Cr
err;loc(X,E;αn,Wa(αn))

(2.11)

for all n ≥ nε. In summary, we obtain in virtue of equations (2.8), (2.9) and
(2.11) for n ≥ nε and a ∈ αn

∆n−1,r(X,E) ≤
⎛
⎜
⎝

2r (1 + exp ( 8(6Cε)2

σ(µ)2
))

Cr
+ 2r − 1

⎞
⎟
⎠
er;loc(X,E;αn,Wa(αn)).

Selecting Cloc > 0 su�ciently large such that the assertion also holds for the
�nite number of a ∈ αn and n ≤ nε yields the assertion.

As an immediate consequence, we obtain

Corollary 2.2.3. Let X be a Gaussian r.e. in the separable Banach Space E.
Then, there exists a constant Cloc < ∞ such that

∆n−1,r(X,E) ≤
Cloc

n
ern,r(X,E)

for all n ≥ 2.

Proof. For every αn ∈ Cn,r(X,E) there exists an a ∈ αn such that

err(X,E;αn,Wa(αn)) ≤
1

n
ern,r(X,E).

Thus, Theorem 2.2.2 implies

∆n−1,r(X,E) ≤ Cloce
r
r;loc(X,E;αn,Wa(αn)) ≤

Cloc

n
ern,r(X,E).
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Remark 2.2.4. � Creutzig et. al. (see [CDMGR09]) establish implicitly a
relationship between the n-th quantization error of order r = 2 and the
increments of the quantization error of order r = 1. As a consequence of
Theorem 2, Proposition 1 and Theorem 3 in the reference, the authors
obtain for N ∈ N

sup
m≥4N

∆m,1(X,E) ≤
32

N
eN/2,2(X,E).

The result is a combination of the second micro-macro inequality, a result
of Bakhvalov for general lower bounds of approximation formulas and the
Monte-Carlo approximation error for Lipschitz continuous functionals by
applying variance reduction via optimal quantization. In view of Theorem
1.2.17, which implies for Gaussian r.e.'s with regularly varying small ball
function

en,2(X,E) ≈ en,1(X,E), n→∞,

one sees that the result provides the same rate for the upper bound of the
increments of the quantization error as Proposition 2.2.2 in the case r = 1.

� As a universal upper bound, the rate obtained in Corollary 2.2.3 is sharp,
i.e. it cannot be improved globally for all Gaussian r.e.'s, as it is sharp in
the �nite dimensional case (see Theorem 1.2.24). Nonetheless, it is not a
property of regularly varying sequences. Considering e.g.

f(n) =
1

n2
, for n ≠ 2k, k ∈ N

f(n) =
1

n
3
2

, elsewhere

for k,n ∈ N. Then, as the result of a simple computation

g(N) =
∞

∑
i=N

f(n) ∼
1

N
, n→∞,

but there is no constant C ∈ (0,∞) such that f(N) ≤ Cg(N)

N
, for all N ∈ N.

� The rate obtained in Corollary 2.2.3 is generally not the true weak rate for
the increments of the quantization error, particularly in the case dim(Hµ) =
∞. As a general result for asymptotic sequences (see [BGT87, Proposition
1.5.9b]), one has for slowly varying functions l ∶ [A,∞) → R

1

l(x)
∫

∞

x

l(t)

t
dλ(t)

x→∞
Ð→ ∞,

provided ∫
∞

x
l(t)
t
dλ(t) exists for all x ∈ [A,∞).

Suppose now, that en,r(X,E) is slowly varying at in�nity, then the same
holds for l(x) = er

⌊x⌋,r(X,E) x
⌊x⌋

. Assuming the rate obtained in Corollary
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2.2.3 is the true rate, then, for some constant C > 0 and by denoting ζ(n)
the counting measure on N

1 =
1

erN,r(X,E)
∫

∞

N
∆n,r(X,E)dζ(n) ≥

C

erN,r(X,E)
∫

∞

N

ern,r(X,E)

n
dζ(n)

=
C

l(N)
∫

∞

N

l(x)

x
dλ(x) → ∞, N →∞,

which is a contradiction.

� Conversely, the rate obtained for the increments of the quantization error
with Corollary 2.2.3 cannot hold for arbitrary r.e.'s. Suppose that X is
geometrically distributed with index p = q = 1

2
, i.e. for m ∈ N

µ({m}) =
1

2m+1
.

Considering the codebooks αn = {{0}, . . . ,{n − 1}}, then

e1(X,R;αn) = ∑
k≥n

(k − (n − 1))
1

2k+1

=
∞

∑
j=0

(j + 1)
1

2j+n+1

=
1

2n+1

∞

∑
j=0

∂

∂x
xj+1∣

x= 1
2

=
1

2n+1

∂

∂x

x

1 − x
∣
x= 1

2

=
1

2n+1

1

(1 − x)2
∣
x= 1

2

=
1

2n−1
.

Conversely, we have for every n-codebook βn in R

n

∑
i=0

dist({i}, βn) ≥ 1

such that

e1(X,R, βn) ≥
n

∑
i=1

dist({i}, βn)µ({i}) ≥
n

∑
i=1

dist({i}, βn)µ({n})

≥ µ({n}) =
1

2n+1
.

Hence, in summary

1

2n−1
≥ en,1(X,R) ≥

1

2n+1
.
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Suppose now that the assertion of Corollary 2.2.3 holds true. Then, for
n ≥ 2

1

2n+1
≤ en,1(X,R) =

∞

∑
j=n

∆j,r(X,E) ≤ Cloc

∞

∑
j=n

ej,1(X,E)

j

≤ 2Cloc

∞

∑
j=n

1

j2j

= 2Cloc

∞

∑
j=n
∫

1
2

0
xj−1d(x)

= 2Cloc ∫

1
2

0

∞

∑
k=0

xk+n−1d(x)

= 2Cloc ∫

1
2

0

xn−1

1 − x
d(x)

≤ 4Cloc ∫

1
2

0
xn−1d(x)

=
4Cloc

n

1

2n

as a contradiction.

� Only under the assumption that the sharpened Anderson inequality holds,
we still obtain a result similar to Corollary 2.2.3 with n replaced by n − 1
on the right-hand side. This will be useful in chapter 5, in which we will
estimate lower bounds for the local inertia err(X,E;α,Wa(αn)).

Lower bound for the increments of the quantization errors Compared
to the proof for the lower bound of the increments of the quantization error in
Theorem 1.2.24, there are several di�culties one has to cope with when con-
sidering in�nite dimensional Gaussian measures µ instead of �nite dimensional
Lebesgue-continuous ones. Particularly the fact that in general, there is no
constant Cµ > 0, such that

µ(B(0,
ε

2
)) ≥ Cµµ(B(0, ε)),

for all x ∈ E and ε > 0, complicates the derivation of sharp estimates, such as
in Proposition 2.1.6. In fact, most of the interesting cases are those, in which
the small ball function is regularly varying at in�nity which implies estimates
of the form

log (µ(B(0,
ε

2
))) ≥ Cµ log(µ(B(0, ε))),

for all x ∈ E and ε > 0, which are much weaker.
Thus, an alternative approach is needed. We will develop a monotonicity

property for the quantization error of recursively de�ned codebooks of which
we will derive lower bounds for the asymptotics for the increments of the r-th
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power of the quantization error under weak assumptions on the quantization
error itself. We set for n ∈ N, r > 0, αn ∈ Cn,r(X,E) and r.e.'s Xi, i = 1, . . . ,m in
Lr(P,E)

∆(R)
r (X,E;αn;X1, . . . ,Xm) ∶=

∫ ern,r(X,E) − err(X,E;αn ∪ {x1, . . . , xm})d⊗mi=1 P
Xi(x1, . . . , xm),

and a1, . . . , am ∈ E

∆r(X,E;αn;a1, . . . , am) ∶= ern,r(X,E) − err(X,E;αn ∪ {a1, . . . , am}).

Lemma 2.2.5. For n,m ∈ N, r > 0, i.i.d. r.e.'s Xi, i = 1, . . . ,m in Lr(P,E) and
a1, . . . , am ∈ E one has

m∆(R)
r (X,E;αn;X1) ≥ ∆(R)

r (X,E;αn;X1, . . . ,Xm), (2.12)

as well as
m sup

a∈E
∆r(X,E;αn;a) ≥ ∆r(X,E;αn;a1, . . . , am), (2.13)

for all αn ∈ Cn,r(X,E).

Proof. First note, that for n ∈ N and a ∈ αn

min
b∈αn/{a}

∥x − b∥
r
− ∥x − a∥

r
= 0

for all x ∈ Va(αn)/Wa(α).

We abbreviate α
(m)
n = αn ∪ {x1, . . . , xm}, for x1, . . . , xm ∈ E and estimate

∆(R)
r (X,E;αn;X1, . . . ,Xm) = ∫ ern,r(X,E) − err(X,E;α(m)

n )d⊗ PXi(x1, . . . , xm)

= ∫

m

∑
i=1
∫
Vxi(α

(m)
n )

min
a∈αn

∥x − a∥
r
− ∥x − xi∥

r
dµ(x)d⊗ PXi(x1, . . . , xm)

≤
m

∑
i=1
∫ ∫

Vxi(αn∪{xi})
min
a∈αn

∥x − a∥
r
− ∥x − xi∥

r
dµ(x)d⊗ PXi(x1, . . . , xm)

=
m

∑
i=1
∫ ∫

Wxi
(αn∪{xi})

min
a∈αn

∥x − a∥
r
− ∥x − xi∥

r
dµ(x)d⊗ PXi(x1, . . . , xm)

=
m

∑
i=1

∆(R)
r (X,E;αn;Xi) =m∆(R)

r (X,E;αn;X1),
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which yields equation (2.12). Similarly, we obtain for α
(m)
n = αn ∪ {a1, . . . , am}

∆r(X,E;αn;a1, . . . , am) = ern,r(X,E) − err(X,E;α(m)
n )

≤
m

∑
i=1
∫
Vai(α

(m)
n )

min
a∈αn

∥x − a∥
r
− ∥x − ai∥

r
dµ(x)

≤
m

∑
i=1
∫
Vai(αn∪{ai})

min
a∈αn

∥x − a∥
r
− ∥x − ai∥

r
dµ(x)

=
m

∑
i=1
∫
Wai

(αn∪{ai})
min
a∈αn

∥x − a∥
r
− ∥x − ai∥

r
dµ(x)

≤
m

∑
i=1

sup
a∈E

∆r(X,E;αn;a) =m sup
a∈E

∆r(X,E;αn;a),

which yields equation (2.13).

In view of Lemma 2.2.5, we are now able to estimate an asymptotic lower
bound for the increments of the r-th power of the quantization error based on
the asymptotics of the quantization error itself. The following case particularly
covers the case of �nite dimensional r.e.'s with densities having a non-vanishing
Lebesgue-continuous part.

Theorem 2.2.6. (Regular variation) Let E be a separable Banach space, r > 0
and X ∈ Lr(P,E). Suppose that

ern,r(X,E) ≈ ψ(n), n→∞

for a regular varying function ψ ∶ N → R with index −b < 0. Then, there is a
constant κ∆ > 0 such that

∆n,r(X,E) ≳
κ∆

n
ern,r(X,E), n→∞.

Proof. First note, that

∆n,r(X,E) ≥ sup
a∈E

∆r(X,E;αn;{a})

for all n ∈ N and furthermore, by the assumption on the regularity of the quan-
tization error, there is a constant 0 < C < ∞ such that

1

C
ψ(n) ≲ en,r(X,E) ≲ Cψ(n), n→∞.

Let k > C
2
b . By Lemma 2.2.5 equation (2.13), we estimate with m = ⌈kn⌉ and
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{a1, . . . , am} = αm ∈ Cm,r(X,E)

∆n,r(X,E) ≥ sup
a∈E

∆r(X,E;αn;a) ≥
1

m
∆r(X,E;αn;a1, . . . , am)

≥
1

m
(ern,r(X,E) − erm,r(X,E))

≳
1

m
(

1

C
ψ(n) −Cψ(m)) =

1

mC
ψ(n)(1 −C2ψ(m)

ψ(n)
)

∼
1

Ckn
ψ(n) (1 −C2k−b) ≳

1 −C2k−b

C2kn
ern,r(X,E), n→∞

which implies the assertion with κ∆ = 1−C2k−b

C2k
.

Remark 2.2.7. Suppose that ern,r(X,E) is regularly varying at in�nity with
index −b, then

κ∆ =
1 − k−b

k
,

which attains its maximum at κ∗ = (1 + b)
1
b , implying

κ∗∆ =
b

(1 + b)(1+
1
b )
.

Remark 2.2.8. 1. In view of the Zador Theorem, Theorem 2.2.6 gives an
alternative proof for the lower bound in Theorem 1.2.24.

2. For many other distributions on Rd, the assumption of Theorem 2.2.6 on
the regularity of the asymptotics of the quantization error is satis�ed, such
as a broad class of self-similar distributions (see e.g. [GL05] or [Kre06]).

The following Theorem particularly covers many of the interesting cases of
r.e's in in�nite dimensional Banach spaces, see also Example 2.2.11 below for
speci�c examples.

Theorem 2.2.9. (Slow variation) Suppose that there is a regular varying func-
tion ψ ∶ R+ → R with index −a < 0 such that

ψ(log(n)) ∼ ern,r(X,E), n→∞ (2.14)

for some r > 0. Then, for every ε > 0

∆n,r(X,E) ≳
1

n1+ε
, n→∞.

In particular,
log(∆n,r(X,E)) ≳ − log(n), n→∞.
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Proof. Let ε > 0 and m = ⌈n1+ε⌉. By Lemma 2.2.5 equation (2.13), we obtain
for {a1, . . . , am} = αm ∈ Cm,r(X,E) the estimate

∆n,r(X,E) ≥ sup
b∈E

∆r(X,E;αn; b) ≥
1

m
∆r(X,E;αn;a1, . . . , am)

≥
1

m
(ern,r(X,E) − erm,r(X,E))

≳
1

n1+ε
(ψ(log(n)) − ψ((1 + ε) log(n)))

∼
1

n1+ε
ψ(log(n)) (1 − (1 + ε)−a)) , n→∞,

which implies the assertion.

Remark 2.2.10. The approach used in the previous Theorem might also be
sharp enough to achieve the true weak asymptotics for the increments of the
r-th power of the quantization error. Imagine that ern,r(X,E) = 1

log(n)+cn
for a

bounded sequence cn, n ∈ N. Then for m = ⌈kn⌉ for k > 2 supn∈N{∣cn∣}

∆n,r(X,E) ≥
1

m
(ern,r(X,E) − erm,r(X,E))

≳
1

kn

log(kn) − log(n) − 2 supn∈N{∣cn∣}

log(n) log(kn)
=

1

kn

log(k) − 2 supn∈N{∣cn∣}

log(n) log(kn)

∼
log(k) − 2 supn∈N{∣cn∣}

kn log(n)2
, n→∞.

As a result of a straightforward calculation, this is the true weak rate for the
increments of ern,r(X,E).

Example 2.2.11. 1. Suppose that X is a Gaussian r.e. in the separable
Hilbert space (H, (⋅, ⋅)) such that the non-increasing eigenvalue sequence
(λj)j∈N of the covariance operator CX satis�es

λj ∼ φ(j), j →∞,

for a regularly varying function φ with index −b < −1. Then, as a conse-
quence of Theorem 1.2.15 and [Der03, chapter 6] for the case r ≠ 2, the
assumptions on the regularity of the quantization error are satis�ed and
thus, for every r > 0

log(∆n,r(X,E)) ≳ − log(n), n→∞,

as a consequence of Theorem 2.2.9.

2. Suppose that (Xt)t∈[0,1] is a fractional Brownian Motion with path in
(E, ∥⋅∥) = (C([0,1]), ∥⋅∥L∞), where ∥f∥L∞ denotes

∥f∥L∞ ∶= sup
x∈[0,1]

∣f(x)∣ .
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Then, the assumptions of Theorem 2.2.9 (see [DS06]) are satis�ed and
thus

log(∆n,r(X,E)) ≳ − log(n), n→∞.

3. Similar results as under 2) also hold when replacing the fractional Brow-
nian motion with a Brownian di�usion (see [Der08b]), the Banach space
(C([0,1]), ∥⋅∥L∞) by the Banach space (Lp([0,1]), ∥⋅∥Lp) (see [DS06]) or

even when exchanging both (see [LP06]).

If it is not known, whether the asymptotics of the quantization error satis�es
the assumption of Theorem 2.2.9, we still obtain

Proposition 2.2.12. (Slow variation, second version) Let r > 0 and 1 ≤ κ < ∞.
Suppose that there is a regular varying function ψ ∶ R+ → R with index −a < 0
such that

ψ(log(n)) ≲ ern,r(X,E) ≲ κψ(log(n)), n→∞. (2.15)

Then, for every ε > 0

∆n,r(X,E) ≳
1

nκ
1
a +ε

, n→∞.

Particularly,

log(∆n,r(X,E)) ≳ −κ
1
a log(n), n→∞.

Proof. Let ε > 0 and m = ⌈nθ⌉ for a constant θ > 1 to be speci�ed. By Lemma
2.2.5 equation (2.13), we estimate with {a1, . . . , am} = αm ∈ Cm,r(X,E)

∆n,r(X,E) ≥ sup
a∈E

∆r(X,E;αn;a) ≥
1

m
∆r(X,E;αn;a1, . . . , am)

≥
1

m
(ern,r(X,E) − erm,r(X,E))

≳
1

nθ
(ψ(log(n)) − κψ(θ log(n)))

∼
1

nθ
ψ(log(n)) (1 − κθ−a)) , n→∞.

1 − κθ−a > 0 if θ > κ
1
a yields the assertion.

A metric entropy approach: Recalling the proof for the lower bound of the
increments of the quantization error in Theorem 1.2.24, one could also try to use
the �rst micro-macro inequality (for Gaussian r.e.'s) to obtain a lower bound
for the increments in the in�nite dimensional case. Unfortunately, this seems to
be impossible, as we will try to illustrate with the proof of the following result.
We will need the following Theorems:
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Theorem 2.2.13. (See [Lif95, Section 18, Theorem 2, Example 2]) Let E be a
separable Hilbert space and X be a Gaussian r.e. in E. Suppose, that the eigen-
values λj , j ∈ N of the covariance operator CX of X admit the representation

λj ∼ κj
−β , j →∞

for constants κ > 0 and β > 1. Then

φµ(ε) ∼ Cs(κ,β)ε
− 2
β−1 , ε→ 0,

for a constant Cs(κ,β) ∈ (0,∞).

Theorem 2.2.14. (See [LP04b, Corollary 2.4]) Let E be a separable Hilbert
space and X be a Gaussian r.e. in E. Suppose, that the eigenvalues λj , j ∈ N of
the covariance operator CX of X admit the representation

λj ∼ κj
−β , j →∞

for constants κ > 0 and β > 1. Then

He(ε,Kµ) ∼ Ce(κ,β)ε
− 2
β , ε→ 0,

for a constant Ce(κ,β) ∈ (0,∞).

Proposition 2.2.15. Let E be a separable Hilbert space and X be a Gaussian
r.e. in E. Suppose, that the eigenvalues λj , j ∈ N of the covariance operator CX
of X admit the representation

λj ∼ κj
−β , j →∞

for constants κ > 0 and β > 1. Then, there exists a constant C ∈ [1,∞) such
that

− log(∆ern,r(X,E)) ≲ C log(n), n→∞. (2.16)

Remark 2.2.16. The constant C arising in equation (2.16) is, based on the proof
of the following result, in general larger than 1, which is the sharp constant as
a consequence of Theorem 2.2.9.

Proof of Proposition 2.2.15. Recall, that for A ∈ B(E)

Ne(ε,A) ∶= inf{n ∈ N ∶ ∃a1, . . . , an ∈ E,
n

⋃
i=1

B(ai, ε) ⊃ A}

and by de�nition

Ne (
ε

λ
,Kµ) = Ne(ε, λKµ), (2.17)

for every λ > 0.
Let (αn)n∈N be a sequence of r-optimal n-codebooks for X in E. Using the
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�rst micro-macro inequality for Gaussian r.e.'s (Proposition 2.1.6), we obtain
for every yn ∈ E and b ∈ (0, 1

2
) with δn = dist(yn, αn)

∆n,r(X,E) ≥ ((1 − b)r − br)δrn exp(−
∥yn∥

2
Hµ

2
)µ(B(0, bδn)).

Applying the negative logarithm yields

− log(∆n,r(X,E)) ≤ − log(((1−b)r −br))−r log(δn)+
∥yn∥

2
Hµ

2
+φµ(bδn). (2.18)

We want to estimate the upper bound of the right-hand side of equation (2.18).

So let λ ∈ (0,∞). For yn ∈ Kn ∶= λ log(n)
1
2Kµ one has

∥yn∥
2
Hµ

2
≤
λ2

2
log(n). (2.19)

Since ∣αn∣ = n, we �nd in virtue of Theorem 2.2.14 an yn ∈ Kn such that

log(n + 1) =He (
δn

λ log(n)
1
2

,Kµ) ∼ Ce(κ,β)(
δn

λ log(n)
1
2

)

− 2
β

, n→∞ (2.20)

which implies

δn ∼ C
′
e(κ,β)λ log(n)

−β+1
2 , n→∞

for a constant C ′
e(κ,β) ∈ (0,∞). Applying Theorem 2.2.13 we deduce

φµ(bδn) ∼ Cs(κ,β) (bC
′
e(κ,β)λ)

− 2
β−1 log(n), n→∞

and

r log(δn) ∼ r
−(β − 1)

2
log(log(n)), n→∞.

In summary, we obtain

− log(∆n,r(X,E)) ≲
λ2

2
log(n) +Cs(κ,β) (bC

′
e(κ,β)λ)

− 2
β−1 log(n), n→∞

Remark 2.2.17. � One may also deduce a similar result by using the tight
relationship between the small ball function and the Metric entropy in the
general Banach space setting (see e.g. [LS01, Theorem 3.3]).

� The constants Cs(κ,β) and Ce(κ,β) are also known explicitly. Consider-
ing e.g. X being a Brownian motion with path in L2([0,1]), then

Cs(κ,β) =
1

π
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(see [LP04b, Example 3.2]) and

Ce(κ,β) =
1

8

(see [LS01, Theorem 6.3]) which yields for λ ∈ (0,∞) and b < 1
2

− log(∆n,r(X,E)) ≲ (
λ2

2
+

1

π
(
bλ

8
)
−2

) log(n), n→∞.

Minimizing the constant can be achieved by selecting λ∗ = 2

π
1
4 b

and as a
consequence

− log(∆n,r(X,E)) ≲
4

π
1
2 b

log(n), n→∞.

Notes and References: The estimation of the increments of quantization
errors seems to be one key factor for the research to be done hereafter. Things
would be much easier, if one were able to show a Tauberian condition satis�ed
by the increments of quantization errors, which would directly imply the sharp
asymptotics of the increments (see Theorem A.11). Unfortunately, except for
the fact that the increments are positive as long as the quantization error does
not vanish entirely, almost nothing is known directly by de�nition of the quan-
tization problem.
The results presented in this section seem to be new throughout.

2.3 A �rst connection to the radius and dimension-

free results

In this section, we want to gather some results concerning the quantization
radius for sequences of r-optimal n-codebooks for a given r.e. X, which hold
equally in �nite and in�nite dimensional settings. Let r > 0, E be a separable
Banach space and X ∈ Lr(P,E) and suppose that Cn,r(X,E) ≠ ∅ for all n ∈ N.

The following Lemma is a slight generalization of a result of Pagès and Sagna
[PS08], where a similar result has been stated in the Euclidean case.

Lemma 2.3.1. For n ∈ N let αn ∈ Cn,r(X,E). For all δ > 0 and y ∈ supp(µ)
there exists n∗(δ, µ, y) ∈ N such that

Van(αn) ⊂ B (y,
∥an − y∥

2
− δ)

c

for all n ≥ n∗(δ, y) and an ∈ B(y,2δ)c ∩αn. If furthermore X has an unbounded

support, and ∥an∥
n→∞
Ð→ ∞, then

Van(αn) ⊂ B (y,
∥an − y∥

2 + δ
)

c

for n su�ciently large.
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Proof. By equation (3.2), there exists for every δ > 0 and y ∈ supp(µ) a natural
number n∗(δ, µ, y) such that there exists bn ∈ αn satisfying

bn ∈ B(y, δ) ∩ αn ≠ ∅

for all n ≥ n∗(δ, µ, y). Then, for an ∈ αn and x ∈ Van(αn)

∥x − y∥ = ∥x − an + an − y∥ ≥ ∥an − y∥ − ∥x − an∥ ≥ ∥an − y∥ − ∥x − bn∥

≥ ∥an − y∥ − ∥x − y∥ − ∥y − bn∥ > ∥an − y∥ − ∥x − y∥ − 2δ

and we obtain the �rst assertion. The second is a consequence of equation
(3.1).

Remark 2.3.2. Pagès and Sagna used Lemma 2.3.1 to obtain the weak asymp-
totic upper bound for the quantization radius of sequences of r-optimal n-
codebooks. Unfortunately, one needs in the most cases at least to have a sharper
version of the form

Van(αn) ⊂ B (y, ∥an − y∥ − δ)
c

to obtain the sharp asymptotic upper bound.

A straightforward adoption of the second micro-macro inequality to Lemma
2.3.1 yields

Proposition 2.3.3. Let X have an unbounded support. For every δ > 0 there
exists n∗(δ, µ) ∈ N such that

∆n−1,r(X,E) ≤ inf
αn∈Cn,r(X,E)

2r(1 + δ)FXr (
ρ(αn)

2 + δ
)

for all n ≥ n∗(δ, µ).

Proof. Let n ∈ N, n ≥ 2 and an ∈ αn with ∥an∥ = ρ(αn). By the second micro-
macro inequality (Proposition 2.1.7), we have for bn ∈ αn/{an}

∆n−1,r(X,E) ≤ ∫
Van(αn)

dist(x,αn/{an})
rdµ(x) ≤ ∫

Van(αn)
2r(∥x∥

r
+∥bn∥

r
)dµ(x).

Let y ∈ supp(µ) and δ > 0. By equation (3.2) we can chose bn, n ∈ N such that
∥bn − y∥ ≤ δ for every n ≥ n(δ, µ, y). Thus, applying Lemma 2.3.1 yields

∆n−1,r(X,E) ≤ ∫
B(y,

∥an−y∥
2 −δ)

c 2r(∥x∥
r
+ ∥bn∥

r
)dµ(x)

≤ ∫
B(0,

∥an∥
2 −δ− 3

2 ∥y∥)
c 2r(∥x∥

r
+ ∥bn∥

r
)dµ(x)

≤ ∫
B(0,

ρ(αn)
2 −δ− 3

2 ∥y∥)
c 2r(∥x∥

r
+ ∥bn∥

r
)dµ(x)

≤ ∫
B(0,

ρ(αn)
2+δ )

c 2r(1 + δ) ∥x∥
r
dµ(x)

for all n ≥ n′(δ, µ, y) ∈ N since ρ(αn)
n→∞
Ð→ ∞. Since y ∈ supp(µ) is arbitrary, and

n′(δ, µ, y) independent of the choice of αn we obtain the assertion.
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Notes and References: The results presented in this section are general-
izations of similar results given in [PS08] for the �nite dimensional Euclidean
case.



Chapter 3

Geometry of optimal

codebooks in Rd

3.1 Introduction and known results

One main motivation for the analysis of the quantization radius of optimal
codebooks is, besides the geometric interpretation, the fact that the compu-
tational cost for calculating optimal codebooks by using stochastic algorithms
(particularly the Lloyd-I algorithm) can be reduced signi�cantly by selecting an
appropriate initializing codebook.
A �rst article purely devoted to the radius problem has been written by Na
and Neuho� [NN01], which was followed up in [Na04]. Further research has
been done by Peric, Nikolic and Pokrajac ([PNP07], [PN07]) concerning the
initialization of the Lloyd-I procedure, a �rst rigorous mathematical treatment
of the topic is contained in the dissertation by Sagna [Sag08], as well as in a
publication by Pagès and Sagna [PS08]. More recently, some speci�c results in
the univariate case have been treated in the dissertation by Yee [Yee10].
Obviously, the radius problem, i.e. the estimation of the asymptotics of the
maximum radius for a sequence of optimal codebooks is of interest for distribu-
tions µ having an unbounded support. As a �rst observation, one obtains

ρ(αn) → ∞, n→∞ (3.1)

for each sequence of n-codebooks (αn)n∈N satisfying

er(µ,E;αn) → 0, n→∞.

In fact, one �nds for each y ∈ suppPX codes an ∈ αn, n ∈ N such that

an → y, n→∞, (3.2)

which particularly implies (3.1).
Na and Neuho� presented several heuristic approaches and formulated a conjec-
ture on the true rate for the asymptotics of the maximum radius of a sequence of

64
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2-optimal n-quantizers for several types of hyper-exponential distributed r.e.'s
in (R, ∣⋅∣). Fort and Pagès established in [FP02] semi-closed formulas for op-
timal codebooks for the Exponential and the Pareto distributions on the real
line, which particularly imply the sharp asymptotics of the maximum radius for
sequences of r-optimal n-quantizers (see [PS08]). In [Na04], this sharp asymp-
totics has been proven for a Laplacian source in R. The �rst general results
are due to Pagès and Sagna, who established the sharp asymptotics of the
quantization radius for hyper-exponential distributed r.e.'s (de�ned as below)
in (R, ∣⋅∣). Furthermore, their approach also yielded in the Euclidean Rd the
weak asymptotics or the logarithmic asymptotics for several classes of distri-
butions admitting polynomial or exponential decreasing tails. The main result
obtained by Pagès and Sagna reads as follows:

Proposition 3.1.1. [PS08, Theorem 1.2] Let (E, ∥⋅∥) = (Rd, ∥⋅∥) such that
(Rd, ∥⋅∥) is a Hilbert space. Let X be a r.e. in Rd with µ = PX = fdλd, r > 0
and (αn)n∈N denote a sequence of r-optimal n-quantizers for X in Rd.

1. Polynomial tails: Suppose for constants β ∈ R, c > r + d and K,A > 0

f(x) =K
log(x)β

∥x∥
c ∀ x ∈ B(0,A)c, (3.3)

then

log(ρ(αn)) ∼
r + d

d

1

c − r − d
log(n), n→∞.

2. Hyper-exponential tails: Suppose for constants κ, θ > 0, c ∈ R and A,K > 0

f(x) =K ∥x∥
c
exp(−θ ∥x∥

κ
) ∀ x ∈ B(0,A)c, (3.4)

then

(
r + d

θd
log(n))

1
κ

≲ ρ(αn) ≲ 2(
r + d

θd
log(n))

1
κ

, n→∞.

If furthermore d = 1 and r ≥ 1, then

ρ(αn) ∼ (
r + 1

θ
log(n))

1
κ

, n→∞.

Remark 3.1.2. � One key tool used in the proofs by the authors is the r−s-
property for the two types of distributions for s < r + d.

� The results obtained above also imply the same asymptotic bounds for
the maximum radius for distributions having only one-sided tails.

� The method used to prove the result does not allow the norm used in
the de�nition of the distributions tails (equations (3.4) and (3.3)) to di�er
from the norm equipping Rd. Furthermore, Hilbert space arguments have
been used in the proof such that no results have been deduced for the
non-Hilbertian case.
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� Pagès and Sagna conjectured that the true rate of the maximum radius
of optimal codebooks for hyper-exponential tails in the Euclidean Rd co-
incides with the proven lower bound, for all r > 0 and d ∈ N.

The starting points for this dissertation have been the questions raised but
which have remained unsolved by the above results. Namely

1. the question, whether the conjecture about the true rate for the maximum
radius for a sequence of optimal codebooks formulated by Pagès and Sagna
holds true,

2. the question, whether the conjecture can be extended in a reasonable way
to (Rd, ∥⋅∥) attached with an arbitrary norm ∥⋅∥,

3. the question, in which way the results could be generalized in case the
quantizing norm and the norm describing the shape of the distribution
tail do not coincide,

4. the question, how the results can be generalized, not depending anymore
on a speci�c sequence of optimal codebooks (αn)n∈N,

5. the question, whether similar results could be obtained in case of r.e.'s in
in�nite dimensional Hilbert (Banach) spaces,

6. the question, whether more speci�c geometric properties could be esti-
mated in a similar way, particularly in the case d > 1 and �nally

7. the question, whether the results could help to obtain further results in
the area of geometric (local) quantization problems.

In the present chapter and the subsequent chapter 4 we will present the
results obtained for the �nite dimensional and in�nite dimensional case.

In the �nite dimensional case, we will prove the conjecture of Pagès and
Sagna and extend the results to a broader range of distributions as well as
a general Banach space setting (section 3.2). Furthermore, we will introduce
quantization balls (section 3.3), which admit a deeper understanding of the ge-
ometry of optimal codebooks. Finally, we will estimate the discrepancy between
the quantization radius for sequences of optimal and sequences of asymptotically
optimal codebooks and give some illustrations for the obtained results.

3.2 The quantization radius

Throughout this section, let r > 0, X ∈ Lr+δ(P,Rd) for some δ > 0, where Rd
is equipped with an arbitrary norm ∥⋅∥. Furthermore, let ∥⋅∥0 be an additional
arbitrary norm on Rd. We denote by

C∥⋅∥,∥⋅∥0
∶= max{∥j∥⋅∥,∥⋅∥0∥ , ∥j∥⋅∥0,∥⋅∥∥},
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where j∥⋅∥,∥⋅∥0 and j∥⋅∥0,∥⋅∥ denote the continuous embeddings from (Rd, ∥⋅∥) ↪
(Rd, ∥⋅∥0) and vice versa, as well as for x ∈ Rd and ε > 0

B0(x, ε) ∶= {y ∈ Rd ∶ ∥x − y∥0 ≤ ε},

and for a set a ⊂ Rd

dist0(x,A) ∶= inf{∥x − y∥0 , y ∈ A}.

The main purpose of of this section is to prove

Theorem 3.2.1. Let X ∈ Lr+δ(P,Rd), δ,A ∈ (0,∞) such that

µ( (B0(0,A))
c
) = µa( (B0(0,A))

c
) > 0

and

f(x) =
∂µa
∂λd

(x) = g(∥x∥0), x ∈ (B0(0,A))
c

(3.5)

for a function g ∶ [A,∞) → R+ almost decreasing on [A,∞). Let (αn)n∈N be a
sequence of r-optimal n-quantizers for X in Rd.

1. (Type I) Suppose that − log(g(x)) is regularly varying at in�nity with index
θ > 0, then

ρ(αn) ∼ ρn,r(X,E) ∼ ρ
n,r

(X,E)

∼ ∥j∥⋅∥0,∥⋅∥∥ (− log(g))− (
r + d

d
log(n))

∼ ∥j∥⋅∥0,∥⋅∥∥ (− log(g))− (− log(∆n,r(X,E))) , n→∞

(3.6)

with (− log(g))− denoting an arbitrary asymptotic inverse to (− log(g)).

2. (Type II) Suppose that g(x) is regularly varying at in�nity with index
−a < −(r + d), then

ρ(αn) ≈ ρn,r(X,E) ≈ ρ
n,r

(X,E) ≈ h−(n−
r+d
d )

≈ h−(∆n,r(X,E)), n→∞
(3.7)

with h− denoting an asymptotic inverse to h, where h(x) ∶= g(x)xr+d, x ∈
[A,∞).

Moreover, we have for speci�c hyper-exponential distributions the following
sharpened version of Theorem 3.2.1:

Theorem 3.2.2. (Type I') Using the notations of Theorem 3.2.1 case 1), and
additionally assuming that

� g is strictly decreasing on [A,∞),

� g ∈ C2([A,∞)),
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� ((− log(g))−1)
(i)

are regularly varying for i = 1,2, with (⋅)(i) denoting the
i-fold derivative.

Then, there exists γ1 ∈ R, γ1(x) ≈ ((− log(g))−1)
′
(x), x→∞ with

γ1(x) ∼ (r + d) ∥j∥⋅∥,∥⋅∥0∥ (( − log(g))−1)
′
(x), x→∞

if log (((− log(g))−1)
′
(x)) does not converge as x→∞, and γ2 ∈ R such that

∥j∥⋅∥0,∥⋅∥∥( (− log(g))
−1

(
r + d

d
log(n))

+ log(γ1(
r + d

d
log(n))) ((− log(g))

−1
)
′

(
r + d

d
log(n)))

≤ ρ
n,r

(X,E) ≤ ρn,r(X,E)

≤ ∥j∥⋅∥0,∥⋅∥∥ ( (− log(g))
−1

(
r + d

d
log(n))+

log(γ2(
r + d

d
log(n))) ((− log(g))

−1
)
′

(
r + d

d
log(n)))

(3.8)

for all n ∈ N. In particular, there exists γ ∈ R 1
θ−1, γ(x) ≈ log(x) ((− log(g))−1)

′
(x), x→

∞ such that

−γ( log(n)) ≤ ρ
n,r

(X,E) − ∥j∥⋅∥0,∥⋅∥∥ (− log(g))
−1

(
r + d

d
log(n))

≤ ρn,r(X,E) − ∥j∥⋅∥0,∥⋅∥∥ (− log(g))
−1

(
r + d

d
log(n)) ≤ γ( log(n))

(3.9)

for all n ∈ N. All equations hold analogously with − log(∆n,r(X,E)) instead of
r+d
d

log(n), n ∈ N.

Remark 3.2.3. 1. The conditions assumed in Theorem 3.2.2 are satis�ed by
several interesting classes of distributions, including the standard Gaussian
(normal) distribution on (Rd, ∥⋅∥2). In this case, Theorem 3.2.2 yields

ρ(αn) = (
2(r + d)

d
log(n))

1
2

+O(
log(log(n))

(log(n))
1
2

)

for every sequence (αn)n∈N of r-optimal n-codebooks in Rd.

2. The third additional condition on the density in Theorem 3.2.2 seems to
be the critical one. As a consequence of the monotone density Theorem

(see A.11), this condition is in particular satis�ed if ((− log(g))−1)
(i)

are
monotone on [A,∞), for i = 1,2 .

Remark 3.2.4. Concerning the questions raised in the beginning of this chapter,
we were able to

1. prove the conjecture formulated by Pagès and Sagna,
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2. generalize the results to arbitrary norms on Rd,

3. sharpen the results obtained for densities of (Type II),

4. allow the shape of the distribution to be central symmetric with respect
to a di�erent norm,

5. generalize the density type for the exponential case to regularly varying
densities allowing a closed formula solution for the asymptotics of the
quantization radius,

6. generalize all the results in order to be independent of choosing the speci�c
codebook, and also to remain true for the in�mum and the supremum,

7. sharpen the results for densities of the (Type I') and to give bounds for
the second order asymptotics, which particularly holds for normal distri-
butions on (Rd, ∥⋅∥).

Remark 3.2.5. Similarly to the approaches presented above, the results may also
be extended to other (more exotic) distribution classes, such as the log-normal
distribution or the Gumbel distribution, which are not covered by the two cases
presented above. Unfortunately, there does not seem to be a general approach
without speci�c assumptions on the density that yields a generally sharp result.
With an equivalent argumentation to case (Type I) one estimates the following:
(Log-normal distribution type) Suppose that

g(x) = exp ( − φ(log(x))), x ∈ [A,∞)

for some regularly varying φ ∈ Rθ and θ > 1 then

ρ(αn) ∼ exp(φ−) (
r + d

d
log(n)) , n→∞,

with φ− denoting an asymptotic inverse to φ and αn ∈ Cn,r(X,E), n ∈ N.
(Gumbel distribution Type) Suppose that log ( − log(g)) is regularly varying at
in�nity with index θ > 0, then

ρ(αn) ∼ (log ( − log(g)))
−
(log ( log(n))) , n→∞,

for αn ∈ Cn,r(X,E), n ∈ N.

Comments on the proofs. The proofs are analogously to the proof for density
(Type I). One has to use

(− log(g))−(exp(x)) ∼ − log (FX
r,∥⋅∥0

)
−1

(exp(x)), x→∞

for the log-normal type, as well as

log((− log(g)))−(x) ∼ log (− log (FX
r,∥⋅∥0

))
−1

(x), x→∞

for the Gumbel type, both as consequences of Proposition A.8.



CHAPTER 3. GEOMETRY OF OPTIMAL CODEBOOKS IN RD 70

Throughout this section, if not explicitly di�erently de�ned, we will use the
notations of Theorem 3.2.1.

Now, we come to the proofs.

Lower bound for the quantization radius

Lemma 3.2.6. 1. (Type I) For every ε > 0 there exists a constant C(µ, ε) ∈ R
and a sequence (cn)n∈N with cn = O(n−

1
d ) such that

B0(0, (− log(g))←(
r + d

d
log(n) −C(µ, ε)))/B0(0,A + cn)

⊂ ⋂
αn∈Cn,r(X,E)

(αn +B(0, ε))

for all n ∈ N.

2. (Type I') We use the notations from Theorem 3.2.2. Then, there exist

sequences (cn)n∈N, (ηn)n∈N in R with ηn
n→∞
Ð→ 1, (cn)n∈N with cn = O(n−

1
d )

and a constant C ′ ∈ R such that

B0(0,1)((− log(g))−1(
r + d

d
log(n))+

ηn (( log(C ′) + (r + d) log(⋅))(⋅)) ((− log(g))−1)
′
(
r + d

d
log(n)))

/B0(0,A + cn) ⊂ ⋂
αn∈Cn,r(X,E)

(αn +B(0, εn), )

for n ∈ N, with

εn ∶= ∥j∥⋅∥0,∥⋅∥∥ (r + d)((− log(g))−1)
′
(
r + d

d
log(n))

for all n ∈ N.

3. (Type II) For every 1 > ε > 0 there exists a constant C(ε) > 0 such that

h←(C(ε)n−
r+d
d )B0(0,1)

⊂ ⋂
αn∈Cn,r(X,E)

(αn +C∥⋅∥,∥⋅∥0
B(0, (A +C(ε)) + εh←(C(ε)n−

r+d
d )))

for all n ∈ N.

Proof. Step 1: (Firewall) By Lemma 2.1.3 it follows that µ satis�es the lower
peakless property on B0(0,A)c. Therefore, by Proposition 2.1.5 there exists a
constant C = C(b, r, ∥⋅∥ , ∥⋅∥0) ∈ (0,∞) such that for (yn)n∈N in B0(0,A)c with
B(yn,

1
2
δn) ⊂ B0(0,A)c

∆n,r(X,E) ≥ Cf(yn)δ
r+d
n = Cg(∥yn∥0)δ

r+d
n (3.10)
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where δn = supαn∈Cn,r(X,E) dist(yn, αn) for n ∈ N. Then

cn ∶= 2C∥⋅∥,∥⋅∥0
sup

αn∈Cn,r(X,E)

sup
x∈∂B0(0,A)

dist(x,αn) = O(n−
1
d ). (3.11)

In fact, if equation (3.11) would not hold, there exists for every κ > 0 a strictly
increasing sequence (nk)k∈N in N and codebooks αnk ∈ Cnk,r(X,E) and xnk ∈
∂B0(0,A) such that

dist(xnk , αnk) ≥ κn
− 1
d

k , k ∈ N,

which implies with the �rst micro-macro inequality (Proposition 2.1.5) for any
b ∈ (0, 1

2
) and some constant C(b, r) > 0

∆nk,r(X,E) ≥ C(b, r)µ(B(xnk , bκn
− 1
d

k ))κrn
− rd
k

≥ C(b, r)
1

2
mgg(A +C∥⋅∥,∥⋅∥0

κn
− 1
d

k )λd(B(xnk ,1))b
dκdκrn

−(1+ rd )

k

for all k ∈ N as a contradiction to Theorem 1.2.24. Therefore, we obtain that
equation (3.10) holds for all yn ∈ B0 (0,A + cn)

c
, since for every x ∈ ∂B0(0,A)

sup
αn∈Cn,r(X,E)

dist(αn, x) ≤
cn

2C∥⋅∥,∥⋅∥0

<
cn

C∥⋅∥,∥⋅∥0

≤ dist(yn, x)

for all n ∈ N, which implies

B (yn,
1

2
δn) ⊂ B0(0,A)c.

Step 2: The idea is now to derive from equation (3.10) an estimate of the
form

inf
αn∈Cn,r(X,E)

ρ(αn) ≥ ∥yn∥ − sup
αn∈Cn,r(X,E)

dist(yn, αn) ≥ φ(δn) − δn (3.12)

for some function φ, and to maximize it by an (asymptotically) optimal choice of
δn. Note, that the approaches presented yielding the choice of δn are heuristics,
which only give a hint on how to choose δn optimally. We have to consider
di�erent cases:

1. (Type I) Equation (3.10) implies in virtue of Lemma A.5

∥yn∥0 ≥ (− log g)←(( − log g)(∥yn∥0)) ≥ (− log(g))←( − log(∆n,r(X,E))

+ (r + d) log(C
1
r+d δn))

(3.13)

for all n ∈ N. Suppose that δn ≥ ε for some ε > 0 and every n ∈ N. Then

∥yn∥0 ≥ (− log(g))←( − log(∆n,r(X,E)) +C1(µ, ε)), (3.14)
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where C1(µ, ε) = log(C)+(r+d) log(ε). By Theorem 1.2.24, we know that
there is a constant C∆(µ) ∈ [1,∞) such that

(C∆(µ))−1n−
r+d
d ≤ ∆n,r(X,E) ≤ C∆(µ)n−

r+d
d (3.15)

for all n ∈ N. Hence, we obtain

∥yn∥0 ≥ (− log(g))←( − log(n−
r+d
d ) −C(µ, ε))

with C(µ, ε) = log(C∆(µ)) −C1(µ, ε). By contraposition, we obtain

(− log(g))← (
r + d

d
log(n) −C(µ, ε))

○

B0(0,1) /B0(0,A + cn)

⊂ ⋂
αn∈Cn,r(X,E)

(αn +B(0, ε))

for all n ∈ N. The assertion follows by the closedness of the right-hand
side.

2. (Type I') We use the notations from Theorem 3.2.2 and set ε = εn, n ∈ N in
the proof for (Type I). In virtue of the fact that there exists e ∈ B0(0,1)
such that

∥j∥⋅∥0,∥⋅∥∥ = ∥e∥

and the fact that (− log(g))
←
= (− log(g))

−1
, the optimization problem for

the optimal choice of εn under these speci�c assumptions reads

∥e ∥yn∥0∥ − εn ≥ ∥j∥⋅∥0,∥⋅∥∥ (− log(g))
−1

(
r + d

d
log(n) −C(µ, εn))

− εn ≥ ∥j∥⋅∥0,∥⋅∥∥ (− log(g))
−1

(
r + d

d
log(n))

+ ∥j∥⋅∥0,∥⋅∥∥ ((− log(g))
−1

)
′

(ξn) ∣C(µ, εn)∣ − εn →max
εn

(3.16)

for some ξn ∈ B∣⋅∣(
r+d
d

log(n), ∣C(µ, εn)∣). In view of C(µ, εn) = − log(C) +
log(C∆(µ)) − (r + d) log(εn) and disregarding ξn = ξn(εn) we obtain the
almost optimal choice for εn

εn ∶= (r + d) ∥j∥⋅∥0,∥⋅∥∥ ((− log(g))
−1

)
′

(
r + d

d
log(n))

∼ (r + d) ∥j∥⋅∥0,∥⋅∥∥ ((− log(g))
−1

)
′

(ξn), n→∞,

where the asymptotic equivalence is a consequence of

∣C(µ, εn)∣ = o(log(n)), n→∞.

Thus, arguing as in equation (3.16), we obtain

∥yn∥0 ≥ (− log(g))
−1

(
r + d

d
log(n))+

ηn (( log(C ′) + (r + d) log(⋅))(⋅)) ((− log(g))−1)
′
(
r + d

d
log(n))
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for some constant C ′ ∈ R and a sequence ηn → 1, n → ∞, which implies
the assertion by contraposition.

3. (Type II) Suppose that δn = εn ∥yn∥0 for some 1 > εn > 0, n ∈ N. Then,
equation (3.10) implies

g(∥yn∥0) ∥yn∥
r+d
0 = f(yn) ≤

1

C
∆n,r(X,E)ε−(r+d)n (3.17)

Let h(x) ∶= g(x)xr+d, x ∈ [A,∞). Then h is regularly varying at in�nity
with index −a + r + d (see Proposition A.2), and we obtain in virtue of
Lemma A.6

∥yn∥0 ≥ h
←(h(∥yn∥0)) ≥ h

←(
1

C
∆n,r(X,E) (εn)

−(r+d)
), (3.18)

for n ∈ N, and furthermore in view of Theorem 1.2.24 for some constant
C∆(µ) ∈ [1,∞)

∥yn∥0 ≥ h
←(

C∆(µ)

C
n−

r+d
d ε−(r+d)n ), (3.19)

for n ∈ N. Similarly to the heuristics for (Type I'), we now want to
maximize

∥∥yn∥0 e∥ − εn ∥yn∥0 ≥ (∥e∥ − εn)×

h←(
C∆(µ)

C
n−

r+d
d ε−(r+d)n ) →max

εn
.

Using the fact that h← ∈ R− 1
a−r−d

we derive (asymptotic) equivalently

(∥e∥ − εn)h
←(
C∆(µ)

C
n−

r+d
d )ε

−(r+d)
−(a−r−d)
n →max .

Optimization yields the unique solution εn = ε
∗ given as

ε∗ =
∥e∥

1 + r+d
a−r−d

,

such that a choice of εn ≡ const seems to yield an optimal choice, given
this approach. Thus, we set for εn = ε ∈ (0,1), n ∈ N

C(ε) = max{
C∆(µ)

C
(ε)

−(r+d)
, c∗} ,

where c∗ = maxi∈N{ci} and ci, i ∈ N as in Step 1. By contraposition,
equation (3.18) implies for n ∈ N

h←(C(ε)n−
r+d
d )

○

B0(0,1)

⊂ ⋂
αn∈Cn,r(X,E)

(αn +C∥⋅∥,∥⋅∥0
B(0, (A + c∗) + εh←(C(ε)n−

r+d
d )))

which yields the asserted.
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Remark 3.2.7. There are alternative approaches for the derivation of lower
bounds for the quantization radius for αn ∈ Cn,r(X,E). Those are based on
the (r, r + ν)-property for distributions having the shape of Theorem 3.2.1. In
general, one may replace the �rst micro-macro inequality (Proposition 2.1.5)
and the knowledge about the asymptotics of the increments of the quantization
error (Theorem 1.2.24) by an argument based on

� the asymptotics of the quantization error itself, and

� the (r, r + ν)-property for ν < d.

Unfortunately, it does not seem possible to derive results as sharp as given in the
previous Lemma. More precisely, one obtains based on the presented approach

� similar results on the asymptotics for densities of the form (Type I) (see
[Jun11]),

� but only weaker results for regularly varying densities (only the sharp rate
for log(ρn) can be derived), and no result of the type of Theorem 3.2.2.

As for the veri�cation of the latter statement, one replaces Cn−
r+d
d by Cn−

r+ν
d

in the proofs of the Theorems, for ν < d arbitrary.

Upper bound for the quantization radius: Since g is almost decreasing
on [A,∞) and g and − log(g) respectively are regularly varying, we obtain that
{g > 0} ⊃ [A,∞). As a consequence, we get

FX
r,∥⋅∥0

(x) ∶= ∫
B0(0,x)c

∥y∥
r
0 dµ(y)

is strictly decreasing on [A,∞) and therefore, its inverse FX
r,∥⋅∥0

−1
exists. Fur-

thermore, by strict monotonicity of log(x), − log (CFX
r,∥⋅∥0

) is strictly increasing

for every C ∈ (0,∞), and thus its inverse exists.

Lemma 3.2.8. (Type I) There exists an asymptotic inverse ( − log(g))
∗
for

− log(g) such that

⋃
αn∈Cn,r(X,E)

αn ⊂ ( − log(g))
∗
(
r + d

d
log(n))B0(0,1)

for all n ∈ N.

Proof. Let ε > 0 and assume that the assertion does not hold. For

FX
r,∥⋅∥0

(x) = ∫
B0(0,x)c

∥y∥
r
0 dµ(y)
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we de�ne

(− log(g))∗(x) ∶= 2C2
∥⋅∥,∥⋅∥0

G(x)

− (2C2
∥⋅∥,∥⋅∥0

− 1)(− log(g))←(x −C(µ, ε)) + 2εC∥⋅∥,∥⋅∥0
,

where

G(x) ∶= max{( − log (CFX
r,∥⋅∥0

))
−1

(x), (− log(g))←(x −C(µ, ε))} ,

the constant C(µ, ε) ∈ R is given as in Lemma 3.2.6 and the constant C =
2r+2C∥⋅∥,∥⋅∥0

C∆(µ), where C∆(µ) is from Theorem 1.2.24.

Step 1: We show that (− log (CFX
r,∥⋅∥0

))
−1

is an asymptotic inverse to − log(g).

In fact, we have for x ∈ [A,∞)

FX
r,∥⋅∥0

(x) = ∫
B0(0,x)c

∥y∥
r
0 dµ(y)

= ∫
∞

x
(∫ d∂B0(0, t)) t

rg(t)dλ(t)

= Sd,∥⋅∥0 ∫
∞

x
exp(log(g(t)) + log(tr+d−1))dλ(t).

(3.20)

By [BGT87, Theorem 4.12.10 i)] with f(t) = − log(g(t)) − log(tr+d−1) we obtain

− log (FX
r,∥⋅∥0

(x)) ∼ − log(g(x)) − log(xr+d−1), x→∞.

Since − log(g) is regularly varying at in�nity with index θ > 0 and log(xr+d−1)
is slowly varying at in�nity this implies

− log (CFX
r,∥⋅∥0

)(x) ∼ − log(g(x)), x→∞.

Step 2: We show that (− log(g))∗ is an asymptotic inverse to − log(g). In fact,
as a general property of functions h,h1, . . . , hm satisfying

hi(x) ∼ hj(x) ∼ h(x), x→∞

for all i, j ∈ {1, . . . ,m} and h(x)
x→∞
Ð→ ∞, one has

m

∑
i=1

tihi(x) + κ ∼ h(x), x→∞

for every constant κ ∈ R and ti ∈ R, i ∈ {1, . . . ,m} with ∑
m
i=1 ti = 1. Furthermore,

we have

max{hi(x), hj(x)}

h(x)
= max{

hi(x)

h(x)
,
hj(x)

h(x)
} → 1, x→∞

as well as
h(x + κ) ∼ h(x), x→∞
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for h regularly varying, which implies the assertion.
Step 3: By the assumption, there exists a strictly increasing sequence

(nk)k∈N in N and codebooks αnk ∈ Cnk,r(X,E) such that

ank ∉ (− log(g))∗ (
r + d

d
log(nk))B0(0,1)

for codes ank ∈ αnk and all k ∈ N. We will show that

Vank (αnk) ⊂ G((
r + d

d
log(nk)))B0(0,1)

c (3.21)

for all k ∈ N.
We denote for n ∈ N

An = (− log(g))← (
r + d

d
log(n) −C(µ, ε))B0(0,1),

Bn = G((
r + d

d
log(n)))B0(0,1),

Cn = (− log(g))∗ (
r + d

d
log(n))B0(0,1).

First note, that An ⊂ Bn ⊂ Cn, n ∈ N. By Lemma 3.2.6, we have

sup
αn∈Cn,r(X,E)

sup
x∈An

dist(αn, x) ≤ ε

for n su�ciently large. We abbreviate for a function f, f+ ∶= max{f,0}. Then,
by de�nition of An,Bn, n ∈ N and for xn ∈ Bn

dist(An, xn) ≤ C∥⋅∥,∥⋅∥0
dist0(An, xn)

≤ C∥⋅∥,∥⋅∥0
(( − log (CFX

r,∥⋅∥0
))

−1

− (− log(g))←(⋅ −C(µ, ε)))
+

(
r + d

d
log(n)),

which implies

dist(αn, xn) ≤ dist(xn,An) + sup
y∈∂An

dist(y,αn) ≤ ε

+C∥⋅∥,∥⋅∥0
(( − log (CFX

r,∥⋅∥0
))

−1

− (− log(g))←(⋅ −C(µ, ε)))
+

(
r + d

d
log(n)).

Conversely, we have for xn ∈ C
c
n

dist(Bn, xn) ≥
1

C∥⋅∥,∥⋅∥0

dist0(Bn, xn) ≥ 2ε +
(2C2

∥⋅∥,∥⋅∥0
− 1)

C∥⋅∥,∥⋅∥0

×

(( − log (CFX
r,∥⋅∥0

))
−1

− (− log(g))←(⋅ −C(µ, ε)))
+

(
r + d

d
log(n))

≥ 2ε +C∥⋅∥,∥⋅∥0
×

(( − log (CFX
r,∥⋅∥0

))
−1

− (− log(g))←(⋅ −C(µ, ε)))
+

(
r + d

d
log(n)),
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which implies that Bnk ⊂ (Vank (αnk))
c
, k ∈ N.

Step 4: In view of equation (3.2) there exists a sequence of codes cn ∈ αn, n ∈
N, such that ∥cn∥0 → A. We estimate in virtue of Theorem 1.2.24, the second

micro-macro inequality (Proposition 2.1.7) and the fact that FX
r,∥⋅∥0

is decreasing

n
− r+dd
k ≤ (nk − 1)−

r+d
d ≤ C∆(µ)∆nk−1,r(X,E)

≤ C∆(µ)∫
Vank

(αnk )
∥x − cnk∥

r
dµ(x)

≤ C∆(µ)C∥⋅∥,∥⋅∥0 ∫Vank (αnk )
∥x − cnk∥

r
0 dµ(x)

≤ C∆(µ)C∥⋅∥,∥⋅∥0 ∫Vank (αnk )
2r (∥x∥

r
0 + ∥cnk∥

r
0)dµ(x)

≤ C∆(µ)C∥⋅∥,∥⋅∥0
2r+1

∫
Vank

(αnk )
∥x∥

r
0 dµ(x)

≤ C∆(µ)C∥⋅∥,∥⋅∥0
2r+1FX

r,∥⋅∥0
(G(

r + d

d
log(nk)))

=
1

2
CFX

r,∥⋅∥0
(G(

r + d

d
log(nk)))

≤
1

2
CFX

r,∥⋅∥0
(( − log (CFX

r,∥⋅∥0
))

−1

(
r + d

d
log(nk)))

for all k ∈ N with ∥cnk∥0 ≤ ( − log (CFX
r,∥⋅∥0

))
−1

( r+d
d

log(nk)). Applying the

negative logarithm yields the contradiction

r + d

d
log(nk) ≥ − log(

1

2
) − log (CFX

r,∥⋅∥0
(( − log (CFX

r,∥⋅∥0
))

−1

(
r + d

d
log(nk))))

≥ − log(
1

2
) +

r + d

d
log(nk)

for all k ≥ 2 with ∥cnk∥0 ≤ ( − log (CFX
r,∥⋅∥0

))
−1

( r+d
d

log(nk)). Thus, the assump-

tion is wrong and we obtain

⋃
αn∈Cn,r(X,E)

αn ⊂ Cn

for all n su�ciently large. Adding a function γ(x) → 0 to (− log(g))∗(x) → ∞
does not change its asymptotics, such that the assertion also holds for all n ∈
N.

Lemma 3.2.9. (Type II) We use the notations of Theorem 3.2.1, part 2). We
have

sup
αn∈Cn,r(X,E)

ρ(αn) ≼ h
− (n−

r+d
d ) , n→∞

with h− denoting an asymptotic inverse to h, where h(x) = xr+dg(x), x ∈ [A,∞).
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Proof. We abbreviate C = C∥⋅∥,∥⋅∥0
. By Proposition A.10 on integrated asymp-

totics of regularly varying functions, we have for x ∈ [A,∞)

FXr (x) ≤ C ∫
B∥⋅∥(0,x)c

∥y∥
r
0 dµ(y)

≤ C ∫
B0(0,

1
C x)

c
∥y∥

r
0 g(∥y∥0)dλ

d(y)

= C ∫
∞

x
C

(∫
∂B0(0,t)

) g(t)trdλ(t)

= C ∫
∞

x
C

Sd−1,∥⋅∥0
g(t)tr+d−1dλ(t)

∼ CSd−1,∥⋅∥0

1

a − (d + r)
g(
x

C
)(

x

C
)
r+d

∼ Ca−(r+d)+1Sd−1,∥⋅∥0

1

a − (d + r)
h(x), x→∞.

Hence FXr (x) is asymptotically bounded from above by the function

H(x) = Ca−(r+d)+1Sd−1,∥⋅∥0

1

a − (d + r)
h(x)

= Ca−(r+d)+1Sd−1,∥⋅∥0

1

a − (d + r)
g(x)xr+d

regularly varying at in�nity with index −a+r+d. By Proposition 2.3.3, we have
for δ > 0

∆n−1,r(X,E) ≤ inf
αn∈Cn,r(X,E)

2r(1 + δ)FXr (
ρ(αn)

2 + δ
)

for all n ≥ n(δ, µ). In virtue of Theorem 1.2.24 this implies for some C ′ ∈ R
su�ciently large

(
1

C ′
)
− 1
a−r−d

H→(n−
r+d
d ) ∼H→(

1

C ′
(n − 1)−

r+d
d )

≥H→(∆n−1,r(X,E))

≥ sup
αn∈Cn,r(X,E)

H→(2r(1 + δ)FXr (
ρ(αn)

2 + δ
))

≳ sup
αn∈Cn,r(X,E)

(2r(1 + δ))
− 1
a−r−dH→(H(

ρ(αn)

2 + δ
))

≳ sup
αn∈Cn,r(X,E)

(2r(1 + δ))
− 1
a−r−d

ρ(αn)

2 + δ

≽ sup
αn∈Cn,r(X,E)

ρ(αn), n→∞

which yields the assertion, since h− ≈H→ for all asymptotic inverses h− to h.
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As we have seen in the proof of Lemma 3.2.8, the critical part for the de-
termination of a more precise rate of convergence for the quantization radius is
the discrepancy between the generalized inverse of (− log(g)) and the inverse of

the logarithmic survival function (− logFX
r,∥⋅∥0

).

We will need the following Lemma.

Lemma 3.2.10. Let f1 ∈ Rα for some α > 0, f1 > 0 and strictly increasing,
f2 ∈ Rβ for β ∈ R and f2 > 0. Let f1 and

f0(x) ∶= f1(x) + log(f2(x))

be invertible on [A,∞) for some constant A ∈ R. Then,

f−1
0 (y) = f−1

1 (y − η(y) − log (f2(f
−1
1 (y))))

for some function η(y) → 0, y →∞.

Proof. Let y = f0(x). Then

x = f−1
1 (y − log(f2(x))

= f−1
1 (y − log(f2(f

−1
1 (y − log(f2(x)))).

By proposition A.2, f2 ○ f
−1
1 ∈ R and furthermore

y = f1(x) + log(f2(f
−1
0 (y))) ∼ y + log(f2(x)), y →∞.

Hence, by regular variation of f2(f
−1
1 ) we obtain

x = f−1
1 (y − log(f2(f

−1
1 (y − log(f2(x))))

= f−1
1 (y − log ( exp(η(y))f2(f

−1
1 (y))))

= f−1
1 (y − η(y) − log (f2(f

−1
1 (y)))),

for a function η(y) as required.

Lemma 3.2.11. (Type I') There exists a bounded sequence (ηn)n∈N in R such
that for all n ∈ N

(− log(g))∗(
r + d

d
log(n)) ≤ (− log(g))−1(

r + d

d
log(n))+

ηn ((− log(g))−1)
′
(
r + d

d
log(n)) log(log(n)),

where (− log(g))∗ is de�ned as in Lemma 3.2.8 and ε = εn as in Lemma 3.2.6.

Proof. We have to estimate more precisely the rate of increase for (− log(g))∗

as de�ned in Lemma 3.2.8 as a function of y and now additionally depending
on ε = εn.
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Step 1: A precise estimate for the asymptotic of (− logCFX
r,∥⋅∥

)
−1
:

In virtue of Lemma A.9 and equation (3.20) one has for g(x) = xr+d−1g(x)

FX
r,∥⋅∥

(x) = Sd,∥⋅∥ ∫
∞

x
tr+d−1g(t)dλ(t)

= Sd,∥⋅∥ ∫
∞

x
exp ( − (− log(g(t))) − log(tr+d−1))dλ(t)

= Sd,∥⋅∥g(x)x
r+d−1 1

(− log(g))′(x)
η1(x)

= Sd,∥⋅∥g(x)x
r+d−1 1

(− log(g))′(x)
η2(x),

for functions η1(x), η2(x) → 1, x →∞. Here, the last equality is a consequence
of (− log(g))′ ∈ Rθ−1 for θ > 0 and the fact that 1

x
= log(x)′ ∈ R−1 = o(Rθ−1).

Multiplying with a constant C > 0 and applying the negative logarithm yields

− logCFX
r,∥⋅∥

(x) = − log(g(x)) − log(CSd,∥⋅∥x
r+d−1 1

(− log(g))′(x)
η2(x))

= f1(x) + log (f2(x)),

where f1(x) = − log(g(x)), f2(x) = C
′ (− log(g))(x)

xr+d
η3(x) for a constant C

′ ∈ R and
a function η3(x) → 1, x→∞. Here, we rely on the fact that

(− log(g))′(x) ∼
θ(− log(g))(x)

x
, x→∞,

see [BGT87, Proposition 1.5.8]. In view of Lemma 3.2.10, we obtain for some
function η4(y) → 0

( − logCFX
r,∥⋅∥

)
−1

(y) = f−1
1 (y − η4(y) − log (f2(f

−1
1 (y))))

= (− log(g))−1(y − η4(y) − log(C ′) − log(y) + (r + d) log((− log(g))−1(y))).

As a consequence, we derive in view of the mean value theorem

(− logCFX
r,∥⋅∥

)
−1

(y) = (− log(g))−1(y)

+ ((− log(g))−1)
′
(ξ)( − η4(y) − log(C ′) − log(y) + (r + d) log((− log(g))−1(y)))

for some ξ = ξ(y) ∈ B∣⋅∣(y, ∣−η4(y) − log(C ′) − log(y) + (r + d) log((− log(g))−1(y))∣ ).

By Proposition A.2 −η4(y) − log(C ′) − log(y) + (r + d) log((− log(g))−1(y)) ∈ R0

which implies
y ∼ ξ(y), y →∞.

By using the assumption on the regularity of ((− log(g))−1)
′
this implies

( − logCFX
r,∥⋅∥

)
−1

(y) = (− log(g))−1(y)

+ η5(y) ((− log(g))−1)
′
(y)×

( − η4(y) − log(C ′) − log(y) + (r + d) log((− log(g))−1(y)))
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for some function η5(y) → 1, y →∞.
Step 2: A precise estimate for (− log(g))−1(x −C(µ, ε))

Let ε = εn be as de�ned in the proof of Lemma 3.2.6, i.e.

εn ∶= ∥j∥⋅∥0,∥⋅∥∥ (r + d)((− log g)−1)
′
(
r + d

d
log(n)).

We obtain with C(µ, ε) = C ′′ + (r + d) log(ε) for some constant C ′′ ∈ R, by using

the facts that ξ(y) ∼ y and ((− log(g))−1)
′
∈ R

(− log(g))−1(y −C(µ, εn)) = (− log(g))−1(y) −C(µ, εn)((− log(g))−1)
′
(ξ(y))

= −(C ′′ + η6(n) + (r + d) log (((− log g)−1)
′
(
r + d

d
log(n))))×

η6(y)((− log(g))−1)
′
(y) + (− log(g))−1(y)

for a function η6(n) → 1, n→∞.
Step 3: We set yn =

r+d
d

log(n), n ∈ N. Let G = G(yn, εn) = G( r+d
d

log(n), εn)
be as in Lemma 3.2.8 with G now depending on ε = εn additionally. We estimate
in virtue of Step 1 and Step 2

G(
r + d

d
log(n), εn) ≤ (− log(g))−1(yn) + ((− log(g))−1)

′
(yn)η

∗(yn) log(log(n)),

n ∈ N, for a bounded sequence −∞ < lim infn→∞ η∗(yn) ≤ lim supn→∞ η∗(yn) <
∞. Furthermore, we select η∗(yn) such that

εn ≤ ((− log(g))−1)
′
(yn)η

∗(yn) log(log(n)), n ∈ N.

Thus, we can estimate

(− log(g))∗(yn) = 2C2
∥⋅∥,∥⋅∥0

G(yn)

− (2C2
∥⋅∥,∥⋅∥0

− 1)(− log(g))−1(yn −C(µ, εn)) + 2εnC∥⋅∥,∥⋅∥0

≤ ((− log(g))−1) (yn) + η
∗(yn)2C

2
∥⋅∥,∥⋅∥0

((− log(g))−1)
′
(yn) log(log(n))

+ (2C2
∥⋅∥,∥⋅∥0

− 1)η∗(yn)((− log(g))−1)
′

(yn) log(log(n)) + 2εnC∥⋅∥,∥⋅∥0

≤ (− log(g))−1(yn) + 4C2
∥⋅∥,∥⋅∥0

η∗(yn)((− log(g))−1)′(yn)(log(log(n))).

Lemma 3.2.12. (Type I') We use the notations of Theorem 3.2.2. There exists
a bounded sequence (ηn)n∈N in R such that

⋃
αn∈Cn,r(X,E)

αn ⊂ ( − log(g))
−1

(
r + d

d
log(n))B0(0,1) +B(0, εn)

+ ηn log(log(n)) ((− log(g))
−1

)
′

(
r + d

d
log(n))B0(0,1),
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with εn as in Lemma 3.2.6, i.e.

εn ∶= ∥j∥⋅∥0,∥⋅∥∥ (r + d)((− log g)−1)
′
(
r + d

d
log(n)).

Proof. The proof is a consequence of the proof of Lemma 3.2.8 and Lemma
3.2.11.

Proof of the Theorems Recall, that

∥j∥⋅∥0,∥⋅∥∥ ∶= sup
x∈B0(0,1)

∥x∥ . (3.22)

Proof of Theorem 3.2.1. 1. (Type I) The lower bound is a consequence of
equation (3.22) in combination with Lemma 3.2.6 (Type I). As for the
upper bound, one combines equation (3.22) with Lemma 3.2.8.

2. (Type II) Again, in virtue of equation 3.22, the lower bound is a conse-
quence of Lemma 3.2.6 (Type II), the upper bound follows with Lemma
3.2.9.

Proof of Theorem 3.2.2. Equation (3.8) is a consequence of Lemma 3.2.6 for-
mulation (Type I') for the lower bound and Lemma 3.2.12 for the upper bound,
both in combination with equation 3.22. Equation (3.9) is a consequence of the
fact that for u ∈ R and v ∈ Rθ, log(u)v ∈ Rθ.

3.3 Quantization balls

Given that one knows (at least asymptotically) the quantization radius for a
sequence of r-optimal n-codebooks (αn)n∈N for the r.e. X in Rd, it is natural
to ask for the "remaining" geometry of the codebook, i.e. for the shape of

αn
ρ(αn)

, n ∈ N.

By de�nition, we have for all n ∈ N

αn
ρ(αn)

⊂ B(0,1).

Conversely, it would be interesting to know in which sense a converse result of
the type

A ⊂
αn

ρ(αn)
, (3.23)

for a set A ⊂ B(0,1) holds as well. For a �xed n ∈ N, we cannot expect to
�nd large sets A ⊂ Rd such that equation (3.23) holds in general. Thus, we will
consider speci�c types of limits for αn

ρ(αn)
as n tends to in�nity.
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We will use di�erent types of convergences for sequences of sets in a Banach
space E, as introduced in Appendix B. In addition to the common set-theoretic
lim inf and lim sup we de�ne lim inf∥⋅∥An as the set of limit point of the sequence
(An)n∈N, i.e.

lim inf
n→∞

∥⋅∥An ∶= ⋂
H∈T

⋃
m∈H

Am,

where T ∶= {H ⊂ N ∶ card(H) = ∞}, and lim sup∥⋅∥An as the set of all cluster
points of (An)n∈N, i.e.

lim sup
n→∞

∥⋅∥An ∶= ⋂
n∈N

⋃
m≥n

Am.

If both limits coincide, we call lim∥⋅∥An the ∥⋅∥-based limit. Furthermore, we
denote by

δ(A,B) ∶= inf{ε > 0 ∶ A ⊂ B +B(0, ε),B ⊂ A +B(0, ε)}

the Hausdor� distance between two arbitrary sets A,B ⊂ E, with inf∅ ∶= ∞.

De�nition 3.3.1. Let r > 0 and (αn)n∈N be a sequence of r-optimal n-quantizers
for the random variable X in the Banach space (E, ∥⋅∥).

1. We call a subset C = Cr(X,E; (αn)n∈N)) ⊂ E a quantization hull for X in
(E, ∥⋅∥) of order r i�

C = lim inf
n→∞

conv(αn)

ρ(αn)
= lim sup

n→∞

conv(αn)

ρ(αn)
.

If C is independent of (αn)n∈N we call C the quantization hull for X of
order r.

2. We call a subset B = Br(X,E; (αn)n∈N) ⊂ E a quantization ball for X in
(E, ∥⋅∥) of order r i�

B = lim inf
n→∞

∥⋅∥ αn
ρ(αn)

= lim sup
n→∞

∥⋅∥ αn
ρ(αn)

.

If B is independent of (αn)n∈N we call B the quantization ball for X of
order r.

Hereafter, we will use the notation of the previous section, in particular those
from Theorems 3.2.1 and 3.2.2. The aim of this section is to prove

Theorem 3.3.2. (quantization ball, quantization hull) Let r > 0 and αn ∈
Cn,r(X,Rd), n ∈ N.

1. (Type I) The quantization ball B = Br(X,E, (αn)n∈N) exists, is indepen-
dent of the choice of (αn)n∈N as well as r > 0 and reads

B = lim
n→∞

∥⋅∥ αn
ρ(αn)

=
1

∥j∥⋅∥0,∥⋅∥∥
B0(0,1),
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which is equivalent to

δ (
αn

ρ(αn)
,B) → 0,

with δ(⋅, ⋅) denoting the Hausdor� distance. Furthermore, the quantization
hull C = Cr(X,E, (αn)n∈N) exists, and

C = B.

The results still hold when replacing ρ(αn) by its asymptotic equivalents
from Theorem 3.2.1.

2. (Type II) There exists a constant κ ∈ (0,1] such that

κB(0,1) ⊂ lim inf
n→∞

conv(αn)

ρ(αn)
⊂ lim sup

n→∞

conv(αn)

ρ(αn)
⊂ B(0,1).

In virtue of the results developed in the previous section, it is not surprising
that we are able to sharpen the results for densities of (Type I') in the following
way:

Theorem 3.3.3. (Type I') There exists γ(x) ≈ log(x)((− log(g))−1)
′
(x), x→

∞ such that

δ
⎛

⎝
αn,

⎛

⎝

ρ(αn)

∥j∥⋅∥0,∥⋅∥∥
B0(0,1)

⎞

⎠
/B0(0,A)

⎞

⎠
≤ γ(log(n))

for all n ∈ N, with δ(⋅, ⋅) denoting the Hausdor� distance. The result still holds
when replacing ρ(αn) by its asymptotic equivalents

∥j∥⋅∥0,∥⋅∥∥ (− log(g))−1( − log(∆n,r(X,E))),

∥j∥⋅∥0,∥⋅∥∥ (− log(g))−1(
r + d

d
log(n)),

ρn,r(X,E) or ρ
n,r

(X,E).

Remark 3.3.4. 1. In ([Jun11]), the quantization ball is de�ned di�erently,
namely as a set B ∈ Rd satisfying

B = lim inf
n→∞

conv(αn)

ρ(αn)
= lim sup

n→∞

conv(αn)

ρ(αn)
,

which we call here the quantization hull forX. However, the new de�nition
seems to be more natural, since it concerns the (scaled) codebooks itself
and neither the convex hull nor a closure needs to be considered.

2. Concerning the estimates for the Hausdor� distances, the results of Theo-
rem 3.3.2 and Theorem 3.3.3 may also be formulated involving additionally
supαn∈Cn,r(X,E).
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For the case of regularly varying g (i.e. Type II), there cannot be an equiv-
alent version of Theorem 3.3.2 concerning the quantization ball B. In fact, this
is due to a result from chapter 5 which is a consequence of the �rst micro-macro
inequality.

Proposition 3.3.5. (Type II) For every ε > 0

inf
αn∈Cn,r(X,E)

inf
a∈αn∩(ερ(αn)B(0,1))c

dist(a,αn/{a}) ≽ h
−(n−

r+d
d ),

where h(x) = xr+dg(x). Hence, for all sequences (αn)n∈N of r-optimal n-
quantizers for X in Rd

λd(lim inf
n→∞

∥⋅∥ αn
ρ(αn)

) = 0.

Proofs of the results Taking advantage of the Lemmas proven in the previ-
ous section, we only need a few simple Lemmas in order to prove the Theorems.
We will formulate those in a generality such that they may equally been used
in chapter 4.

Lemma 3.3.6. Let (E, ∥⋅∥) be a separable Banach space, B ⊂ E bounded, An ⊂
E, n ∈ N such that

δ (
An
ψ1(n)

,B) → 0, n→∞ (3.24)

for some sequence ψ1(n) → ∞, n → ∞. Then, for every sequence (ψ2(n))n∈N
such that

ψ1(n) ∼ ψ2(n), n→∞ (3.25)

one has

δ (
An
ψ2(n)

,B) → 0, n→∞

Proof. Let ε > 0. By equation (3.25) there exists nε ∈ N such that for all n ≥ nε

ψ1(n) ≤ ψ2(n)(1 + ε) ≤ ψ1(n)(1 + ε)
2.

By using metric properties of δ(⋅, ⋅) we estimate for all n ≥ nε

δ (
An
ψ2(n)

,B) = δ (
An
ψ1(n)

ψ1(n)

ψ2(n)
,B) =

ψ1(n)

ψ2(n)
δ (

An
ψ1(n)

,
ψ2(n)

ψ1(n)
B)

≤ (1 + ε)(δ (
An
ψ1(n)

,B) + δ (B,
ψ2(n)

ψ1(n)
B)) .

Since B is bounded, there exists κ > 0 such that B ⊂ κB(0,1). Hence B ⊂
ψ2(n)
ψ1(n)

B +B(0, κε) and B ψ2(n)
ψ1(n)

⊂ B +B(0, κε), which yields in virtue of equation

(3.24) the asserted.

With a similar argument, we obtain
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Lemma 3.3.7. Let (E, ∥⋅∥) be a separable Banach space, B ⊂ E bounded, An ⊂
E, n ∈ N such that

δ (An,Bψ1(n)) ≤ γ(n) (3.26)

for sequences ψ1(n) → ∞, n →∞ and γ(n)n∈N in R. Then, for every sequence
(ψ2(n))n∈N such that

∣ψ1(n) − ψ2(n)∣ ≤ γ(n), n ∈ N (3.27)

one has
δ (An, ψ2(n)B) = O (γ(n)) , n→∞.

Proof. Again, since B is bounded, there exists κ > 0 such that B ⊂ κB(0,1).
We estimate

An ⊂ Bψ1(n) +B(0, γ(n)) ⊂ ψ2(n)B + γ(n)B(0, κ) +B(0, γ(n))

⊂ ψ2(n)B +B(0, (1 + κ)γ(n))

and

ψ2(n)B ⊂ ψ1(n)B + γ(n)B(0, κ) ⊂ An +B(0, (1 + κ)γ(n))

for all n ∈ N, which yields the assertion.

Proof of Theorem 3.3.2. The Theorem is a consequences of the Lemmas in the
previous section, in combination with the Lemmas 3.3.6 as well as some ingredi-
ents given by the general theory of convergence of sets. Let αn ∈ Cn,r(X,E), n ∈
N.

1. Let δ > 0. As a consequence of Lemma 3.2.6 (Type I), and by using the
same notations, there exists for every ε > 0 a constant C(µ, ε) such that

B0(0, (− log(g))←(
r + d

d
log(n) +C(µ, ε)))/B0(0,A + cn)

⊂ αn +B(0, ε)

for all n ∈ N. Let ε su�ciently large such that C(µ, ε) ≥ 0 and n′ ∈ N
su�ciently large such that (− log(g))←( r+d

d
log(n)) ≥ A + cn for all n ≥

n′. Adding to the right hand side B0(0,A + cn), and using the fact that
B0(0,1) ⊂ C∥⋅∥,∥⋅∥0

B(0,1) we obtain

B0(0,1) ⊂
αn +B(0, ε + (A + cn)C∥⋅∥,∥⋅∥0

)

(− log(g))←( r+d
d

log(n))

⊂
αn

(− log(g))←( r+d
d

log(n))
+B(0, δ)

(3.28)

for all n ≥ max{n(δ, ε), n′} ∈ N satisfying

ε + (A + cn)C∥⋅∥,∥⋅∥0

(− log(g))←( r+d
d

log(n))
≤ δ.



CHAPTER 3. GEOMETRY OF OPTIMAL CODEBOOKS IN RD 87

Conversely, by Lemma 3.2.8 and by using the notations therein, we have
for n ∈ N

αn ⊂ ( − log(g))
∗
(
r + d

d
log(n))B0(0,1),

which implies

αn

( − log(g))
←
( r+d
d

log(n))
⊂ B0(0,1)

( − log(g))
∗
( r+d
d

log(n))

( − log(g))
←
( r+d
d

log(n))

⊂ B0(0,1) +B(0, δ)

(3.29)

for all n ≥ n′(δ) ∈ N satisfying

RRRRRRRRRRRR

1 −
( − log(g))

∗
( r+d
d

log(n))

( − log(g))
←
( r+d
d

log(n))

RRRRRRRRRRRR

≤
δ

C∥⋅∥,∥⋅∥0

.

Hence, equations (3.28) and (3.29) imply by the de�nition of the Hauss-
dor� distance

δ
⎛

⎝

αn

(− log(g))
←
( r+d
d

log(n))
,B0(0,1)

⎞

⎠
→ 0, n→∞,

and also the same when scaling both sets with 1
∥j∥⋅∥0,∥⋅∥∥

. By Lemma 3.3.6,

we obtain the same result with replacing (− log(g))←( log( r+d
d

log(n)))
with (− log(g))←(− log(∆n,r(X,E))), ρ(αn), ρn,r(X,E) or ρ

n,r
(X,E).

The convergence in the ∥⋅∥-sense is a consequence of the general theory
of convergences of sets, see Corollary B.7.

As for upper bound of the quantization hull, equation (3.29) implies by
convexity of the unit Balls B(0,1) and B0(0,1)

⋂
δ>0

lim sup
n→∞

conv(αn)

(− log(g))← ( r+d
d

log(n))
⊂ ⋂
δ>0

B0(0,1) +B(0, δ) = B0(0,1),

which yields with the independence of the left hand side from δ the asserted
upper bound for the assertion with (− log(g))← ( r+d

d
log(n)). As for the

lower bound, we derive form equation (3.28)

○

B0(0,1)= ⋃
δ>0

B0(0,1) −B(0, δ) ⊂ lim inf
n→∞

conv(αn)

(− log(g))←( r+d
d

log(n))
.

By the closedness of the right-hand side, we obtain the upper bound for
the formulation with (− log(g))←( r+d

d
log(n)). In view of Lemma 3.3.6 we

can replace (− log(g))←( r+d
d

log(n)) by an asymptotic equivalent and the
assertion follows.
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2. (Type II) As a consequence of Lemma 3.2.6 (Type II), by using the nota-
tions therein, there exists for every ε > 0 a constant C(ε) such that

h←(C(ε)n−
r+d
d )B0(0,1)

⊂ αn +C∥⋅∥,∥⋅∥0
B(0, (A +C(ε)) + εh←(C(ε)n−

r+d
d ))

for all n ∈ N, where h(x) ∶= g(x)xr+d, x ∈ [A,∞). Thus, by using the fact

that h←(C(ε)n−
r+d
d )

n→∞
Ð→ ∞ we obtain

B0(0,1) ⊂
conv(αn)

h←(C(ε)∆n,r(X,E))
+B(0,2C∥⋅∥,∥⋅∥0

ε)

for all n ≥ n(ε) with
h←(C(ε)n−

r+d
d )

(A+C(ε))
≥ ε. The asserted lower bound follows

by equivalence of the norms and the fact that ρ(αn) ≈ h
←(C(ε)n−

r+d
d ), n→

∞, see Theorem 3.2.1 (Type II). The upper bound follows by de�nition of
the quantization radius.

Proof of Theorem 3.3.3. We use the notations from Theorem 3.2.2. As in the
previous proof, we will make use of the Lemmas from the previous section,
particularly the Lemmas 3.2.6 (Type I') and 3.2.12. Let αn ∈ Cn,r(X,E), n ∈ N.
By Lemma 3.2.6 there exist sequences (ηn)n∈N, (cn)n∈N with max{cn, ∣ηn − 1∣} →

0, n→∞, cn = O(n−
1
d ) and a constant C ′ ∈ R such that

B0(0,1)((− log(g))−1(
r + d

d
log(n))+

ηn (( log(C ′) + (r + d) log(⋅))(⋅)) ((− log(g))−1)
′
(
r + d

d
log(n)))

/B0(0,A + cn) ⊂ αn +B(0, εn)

for all n ∈ N, where

εn ∶= ∥j∥⋅∥0,∥⋅∥∥ (r + d)((− log(g))−1)
′
(
r + d

d
log(n))

for n ∈ N. With

γ(log(n)) ∶= ηn(( log(C ′) + (r + d) log(((− log(g))−1)
′
(
r + d

d
log(n))))×

(((− log(g))−1)
′
(
r + d

d
log(n)))) = O( log(log(n))((− log(g))−1)

′
(log(n))),

we obtain, by adding ∣γ(log(n))∣B0(0,1) and the fact that cn = O(γ(log(n))),

B0(0,1)((− log(g))−1(
r + d

d
log(n)))

/B0(0,A) ⊂ αn +B(0, εn) +B0(0, ∣γ(log(n))∣).
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With equivalence of the norms and the fact that εn = O(γ(log(n))) as well, we
obtain the asserted lower bound for the formulation with ((− log(g))−1( r+d

d
log(n))).

By Lemma 3.2.12 and using the notations therein, there exists a bounded se-
quence (ηn)n∈N

αn ⊂ ( − log(g))
−1

(
r + d

d
log(n))B0(0,1)

+ ηn log log(n) ((− log(g))
−1

)
′

(
r + d

d
log(n))B0(0,1) +B(0, εn),

with εn as de�ned above, which yields the asserted upper bound for the for-

mulation with ( − log(g))
−1

( r+d
d

log(n)). Lemma 3.3.7 implies the alternative
formulations with the asymptotic equivalents.

Proof of Proposition 3.3.5. Let ε > 0. Applying Theorem 5.3.1 (Type II) yields
in view of Theorem 3.2.1 (Type II)

inf
αn∈Cn,r(X,E)

inf
a∈αn∩(ερ(αn)B(0,1))c

dist(a,αn/{a})

≽ n−
1
d inf
αn∈Cn,r(X,E)

inf
a∈αn∩(ερ(αn)B(0,1))c

f−
1
r+d (a)

≽ n−
1
d g−

1
r+d (ερ

n,r
(X,E))

≽ n−
1
d g−

1
r+d (h−(n−

r+d
d ))

≽ n−
1
dh−(n−

r+d
d )h−

1
r+d (h−(n−

r+d
d ))

≽ n−
1
dh−(n−

r+d
d )n

1
d = h−(n−

r+d
d ), n→∞.

(3.30)

Suppose now, that y ∈ B(0, ε)c and

y ∈ lim inf
n→∞

∥⋅∥ αn
ρ(αn)

.

Then, by equation (3.30) there exists an ε′ > 0 such that

dist(y, lim inf
n→∞

∥⋅∥ αn
ρ(αn)

/{y}) ≥ ε′.

Hence,

∣{lim inf
n→∞

∥⋅∥ αn
ρ(αn)

} ∩B(0, ε)c∣ < ∞,

and we derive

λd (lim inf
n→∞

∥⋅∥ αn
ρ(αn)

) ≤ λd(B(0, ε))

+ λd (lim inf
n→∞

∥⋅∥ αn
ρ(αn)

/B(0, ε)) ≤ λd(B(0,1))εd, n→∞

for every ε > 0. Letting ε→ 0 yields the asserted.
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3.4 Comparison to asymptotic optimal quantiz-

ers

In this section, we want to show that there is a wide range of sequences of
asymptotically optimal codebooks compared to the small amount of sequences
of optimal codebooks, in terms of their geometric properties. In particular, we
show that for sequences of asymptotically optimal codebooks there is a lower
bound for the quantization radius, which di�ers from the rate obtained in the
previous sections derived for optimal codebooks (Theorem 3.4.3), and which
is sharp in the sense that there exists a sequence of asymptotically optimal
codebooks achieving that bound asymptotically. On the contrary, we will show
under mild assumptions on the quantization error itself, that the quantization
radius for such sequences is unbounded from above (Proposition 3.4.1). We
start with the proof of the latter assertion.

Proposition 3.4.1. Let X be a r.e. in the separable Banach space E, r > 0
and

en,r(X,E) ∼ en+1,r(X,E), n→∞.

Then, for every sequence of real numbers (ψ(n))n∈N there exists a sequence of
asymptotically r-optimal n-codebooks (αn)n∈N for X in E such that

ρ(αn) ≥ ψ(n), n ∈ N. (3.31)

Proof. Consider a sequence of asymptotically r-optimal n-codebooks (βn)n∈N
and xn ∈ E such that ∥xn∥ = ψ(n), n ∈ N. Then, the sequence of n-codebooks
(αn)n∈N with α1 ∶= {0} and αn ∶= βn−1∪{xn} for n ≥ 2 is asymptotically optimal
and satis�es equation (3.31), since

ρ(αn) ≳ ∥xn∥ = ψ(n), n→∞

and

er(X,E;αn) ≤ er(X,E;βn−1) ∼ en−1,r(X,E) ∼ en,r(X,E), n→∞.

Remark 3.4.2. The latter proposition contains the most relevant cases, such
as g or log(g) regularly varying at in�nity (with g satisfying ∂µ

∂λd
(x) = f(x) =

g(∥x∥0)), as well as the cases treated in chapter 4 for the in�nite dimensional
case.

Much more interesting is the question about derivation of lower bounds for
the quantization radius for asymptotically optimal quantizers. Throughout this
section, let r > 0, X be a r.e. in Rd whose non-vanishing Lebesgue continuous
part admits the representation from the previous section, i.e. Type I, or Type II
respectively; let furthermore αn ∈ Cn,r(X,Rd), n ∈ N and (βn)n∈N be a sequence
of n-codebooks satisfying

en,r(X,Rd) ∼ er(X,Rd;βn), n→∞.
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Hereafter, such sequences (βn)n∈N will be called sequences of asymptotically
optimal codebooks.

Theorem 3.4.3. Let (βn)n∈N be a sequence of asymptotically optimal codebooks
for X in (Rd, ∥⋅∥).

1. (Type I) There exists a sequence of n-codebooks (γn)n∈N and a sequence
(cn)n∈N in R such that

� en,r(X,Rd) ∼ er(X,Rd;γn), n→∞,

� cn ∼ (− log(g))−( − log(ern,r(X,Rd))), n→∞ and

� γn ⊂ cnB0(0,1), n ∈ N,

where (− log(g))− denotes an arbitrary asymptotic inverse to (− log(g)).
Additionally, there exists a constant C ∈ R independent of (βn)n∈N such
that

ρ(βn) ≥ (− log(g))←( − log(err(X,R
d;βn))) −C,

and furthermore

δl(B0(0,1),
βn
cn

) → 0, n→∞.

2. (Type II) There exists a sequence of n-codebooks (γn)n∈N and a sequence
(cn)n∈N in R such that

� en,r(X,Rd) ≈ er(X,Rd;γn), n→∞,

� cn ≈ h
−(ern,r(X,Rd)), n→∞ and

� γn ⊂ cnB0(0,1), n ∈ N,

where h− denotes an arbitrary asymptotic inverse to h(x) ∶= xr+dg(x).
Additionally, there exists a constant C ∈ (0,∞) such that

ρ(βn) ≳ h
−(Cern,r(X,R

d)), n→∞.

Remark 3.4.4. 1. (Type I) Compared to the results obtained for the quan-
tization radius for a sequence of r-optimal n-codebooks (αn)n∈N for X in
Rd, there is a signi�cant discrepancy to the rates obtained in Theorem
3.4.3. We have

ρ(αn)

ρ(γn)
∼

(− log(g))−( r+d
d

log(n))

(− log(g))−(− log(ern,r(X,Rd)))
→ (

r + d

r
)
θ

, n→∞

with (γn)n∈N as in Theorem 3.4.3 Type I.

2. (Type II) For densities of Type II we have

ρ(αn)

ρ(γn)
≈

h−(n−
r+d
d )

h−(ern,r(X,Rd))
, n→∞
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with (γn)n∈N as in Theorem 3.4.3 Type II. Assuming g(x) ≈ x−a, x →∞,
we have

ρ(αn)

ρ(γn)
≈

h−(n−
r+d
d )

h−(ern,r(X,Rd))
≈ n

1
a−r−d , n→∞.

Proofs of the results The proofs follow partially the arguments for the esti-
mation for the quantization radius for optimal codebooks. The idea is to replace
the �rst micro-macro inequality with an equivalent version for asymptotic op-
timal codebooks involving ern,r(X,Rd) instead of ∆n,r(X,Rd). The following
Lemma is a mirror of Lemma 3.2.6, which is the corresponding version for op-
timal codebooks.

Lemma 3.4.5. 1. (Type I) There exists a constant C > 0 such that

(− log(g))←( − log(err(X,R
d;βn)))B0(0,1) ⊂ βn +B(0,C)

for all n ∈ N.

2. (Type II) For every ε > 0 there exists a constant C(ε) ∈ R such that

h←(C(ε)err(X,R
d;βn))B0(0,1) ⊂ βn +B (0, εh←(C(ε)err(X,R

d;βn)))

for all n ≥ n′((err(X,Rd;βn))n∈N) ∈ N.

Proof. 1. (Type I) Let C ∈ (0,∞) be speci�ed below and (xn)n∈N be a
sequence in E such that dist(xn, βn) ≥ C and B(xn,

1
2

dist(xn, βn)) ⊂
B0(0,A)c. Then, by using the lower peakless condition for X, there exists
a constant C su�ciently large such that

err(X,E;βn) ≥ ∫
B(xn,

C
2 )

dist(x,βn)
rdµ(x)

≥ (
C

2
)
r

µ(B(xn,
C

2
))

≥ κ(
C

2
)
r+d

g(∥xn∥0),

for some κ > 0 and all n ∈ N. Applying the negative logarithm and selecting
C su�ciently large yields for all n ∈ N

− log(err(X,R
d;βn)) ≤ − log(κ)−(r+d) log(

C

2
)−log(g(∥xn∥0)) ≤ − log(g(∥xn∥0)).

By using an equivalent �rewall argument as in Lemma 3.2.6, the same also
for sequences (xn)n∈N with xn ∈ B0(0,2A)c instead ofB(xn,

1
2

dist(xn, βn)) ⊂

B0(0,A)c for all n ≥ n′ = n′((err(X,Rd;βn))n∈N). By applying (− log(g))←

we obtain for n ∈ N

(− log(g))← (− log(err(X,R
d;βn))) ≤ ∥xn∥0 ,
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what implies by de�nition of xn, n ∈ N

(− log(g))← (− log(err(X,R
d;βn)))B0(0,1) ⊂ βn +B(0,C) +B0(0,2A),

(3.32)
for all n ≥ n′. The equivalence of the norms and by selecting C su�ciently
large such that equation (3.32) also holds for all n ≤ n′ yields the assertion.

2. (Type II) Let ε > 0 and (xn)n∈N be a sequence in E such that dist(xn, βn) ≥
ε ∥xn∥0 and B(xn,

1
2

dist(xn, βn)) ⊂ B0(0,A)c. Then, for n ∈ N by using
the lower peakless condition

err(X,R
d;βn) ≥ ∫

B(xn,
ε∥xn∥0

2 )
dist(x,βn)

rdµ(x)

≥ (
ε ∥xn∥0

2
)

r

µ(B(xn,
ε ∥xn∥0

2
))

≥ κεr+d ∥xn∥
r+d
0 g(∥xn∥0) = κε

r+dh(∥xn∥0)

for some constant κ > 0. By using an equivalent �rewall argument as in
Lemma 3.2.6, the same also for sequences (xn)n∈N with xn ∈ B0(0,2A)c in-
stead ofB(xn,

1
2

dist(xn, βn)) ⊂ B0(0,A)c for all n ≥ n′ = n′((err(X,Rd;βn))n∈N).
Hence, by applying h←, there exists a constant C(ε) ∈ (0,∞) such that

h← (C(ε)err(X,E;βn)) ≤ ∥xn∥0

for all n ≥ n′((err(X,E;βn))n∈N). By contraposition and the de�nition of
xn, n ∈ N this implies

h← (C(ε)err(X,E;βn))B0(0,1) ⊂ βn +B(0, ε ∥xn∥0)

⊂ βn +B(0, εh← (C(ε)err(X,E;βn)))

for all n ≥ n′.

For the existence of speci�c sequences of codebooks as asserted in Theorem
3.4.3, we need an equivalent version to Lemmas 3.2.8 and 3.2.9 for sequences of
asymptotically optimal codebooks.

Lemma 3.4.6. 1. (Type I) There exists an asymptotic inverse (− log(g))−

to (− log(g)) and a sequence of n-codebooks (γn)n∈N such that

� γn ⊂ (− log(g))−) (− log(ern,r(X,Rd)))B0(0,1) and

� ern,r(X,Rd) ∼ err(X,Rd;γn), n→∞.

2. (Type II) There exists a constant C ∈ (0,∞) and a sequence of n-codebooks
(γn)n∈N such that

� γn ⊂ Ch
← (ern,r(X,Rd))B0(0,1) and

� ern,r(X,Rd) ≈ err(X,Rd;γn), n→∞,
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where h(x) ∶= xr+dg(x), x > A.

Proof. Let (βn)n∈N be a sequence of asymptotically optimal codebooks for X in
(Rd, ∥⋅∥).

1. (Type I) Let δn → 0, n→∞ such that

− log(δn) = o( − log(ern,r(X,R
d;βn))), n→∞ (3.33)

Step 1: We set

G(x) ∶= max{(− log(g))←(x), ( − log(FX
r,∥⋅∥

))
−1

}

and

(− log(g))∗(x) ∶= 2C2
∥⋅∥,∥⋅∥0

G(x)

− (2C2
∥⋅∥,∥⋅∥0

− 1)(− log(g))←(x) + 2C2
∥⋅∥,∥⋅∥0

C

where the constant C is from Lemma 3.4.5. As in the proof of Lemma
3.2.8, one shows that (− log(g))∗(x) is an asymptotic inverse to (− log(g)).
Step 2: If βn ⊂ (− log(g))∗(− log(δne

r
r(X,Rd;βn)))B0(0,1) for all n ≥ n′ ∈

N there is nothing to prove, since

(− log(g))∗(− log(δne
r
r(X,R

d;βn)))

∼ (− log(g))∗(− log(err(X,R
d;βn))), n→∞

as a consequence of equation (3.33).
Step 3: Suppose now, that

βnk ∩ (− log(g))∗(− log(δne
r
r(X,R

d;βnk)))B
c
0(0,1) ≠ ∅

for an increasing subsequence (nk)k∈N of N. We set

γnk ∶= βnk ∩ (− log(g))∗ (− log(δne
r
r(X,R

d;βnk)))B0(0,1) ∪ {0}

and γn = βn, n ≠ nk, k, n ∈ N. Then ∣γnk ∣ ≤ nk, k ∈ N and

err(X,E;γnk) ≤ e
r
r(X,R

d;βnk) + ∫
⋃a∈βnk /γnk

Va(βnk )
∥x∥

r
dµ(x).

Step 4: Analogously to the argumentation in the proof of Lemma 3.2.8,
one shows that

⋃
a∈βnk /γnk

Va(βnk) ⊂ (G( − log(δnke
r
r(X,R

d;βnk)))B0(0,1))
c
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for all k ∈ N.
Step 5: In virtue of the monotony of FX

r,∥⋅∥0
, the previous steps imply

∫
⋃a∈βnk /γnk

Va(βnk )
∥x∥

r
dµ(x) ≤ C∥⋅∥,∥⋅∥0

FX
r,∥⋅∥0

(G( − log(δnke
r
r(X,R

d;βnk))))

≤ C∥⋅∥,∥⋅∥0
FX
r,∥⋅∥0

(( − log(FX
r,∥⋅∥

))
−1

( − log(δnke
r
r(X,R

d;βnk))))

= C∥⋅∥,∥⋅∥0
FX
r,∥⋅∥0

((FX
r,∥⋅∥

)
−1

(δnke
r
r(X,R

d;βnk)))

= C∥⋅∥,∥⋅∥0
δnke

r
r(X,R

d;βnk),

for all k ∈ N. Hence,

∫
⋃a∈βnk /γnk

Va(βnk )
∥x∥

r
dµ(x) = o(err(X,R

d;βnk)), k →∞.

Selecting (− log(g))− such that ern,r(X,E;βn) can be replaced with e
r
n,r(X,E)

yields the assertion.

2. (Type II) The proof for the density Type II is, similar the proofs in the
previous section, much easier compared to the proof for Type I. If it exists
a constant C ∈ (0,∞) such that

βn ⊂ Ch
← (err(X,R

d;βn)))B(0,1), n ∈ N,

we set γn = βn, n ∈ N and there is nothing to prove. Let now C ∈ (0,∞)
arbitrary and suppose that βnk ∩ Ch

← (err(X,Rd;βnk)))B(0,1)c ≠ ∅ for
an increasing subsequence (nk)k∈N of N. We set

γnk ∶= βnk ∩Ch
← (err(X,R

d;βn)))B(0,1) ∪ {0}.

Then ∣γnk ∣ ≤ nk, k ∈ N and

err(X,E;γnk) ≤ e
r
r(X,R

d;βnk) + ∫
⋃a∈βnk /γnk

Va(βnk )
∥x∥

r
dµ(x).

Lemma 2.3.1 implies that

⋃
a∈βnk /γnk

Va(βnk) ⊂
C

3
h← (err(X,R

d;βn)))B(0,1)c

for all k ∈ N su�ciently large. Hence

∫
⋃a∈βnk /γnk

Va(βnk )
∥x∥

r
dµ(x) ≤ FXr (h

← (err(X,R
d;βnk)))

≲ (
C

3
)
r+d−a

κ(FXr)e
r
r(X,R

d;βnk), k →∞,

with κ = κ(FXr) independent of C.
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Proof of Theorem 3.4.3. The proof is a consequence of the previous Lemmas.
Lemma 4.3.5 yields the lower bound of the quantization radius for an asymp-
totically optimal sequence (βn)n∈N.
Lemma 4.3.6 ensures the existence of a sequence of asymptotically optimal code-
books (γn)n∈N having the required shape. The additional formulation for δl and
Type I follows by Lemma 3.4.5.

3.5 Examples and numerical illustration

Examples:

Example 3.5.1. (Hyper-exponential tails, c.f. Type I, Type I') An interesting
class of distribution on Rd being of the shape (Type I') is the class of hyper-
exponential distributions. Let X be a random variable in (Rd, ∥⋅∥) with PX =
fλd and f having the shape

f(x) = g(∥x∥0) ∶=K
−1 ∥x∥

c
0 exp(−θ ∥x∥

k
0), x ∈ R

d, (3.34)

for constants θ, k > 0, c > −d, an arbitrary norm ∥⋅∥0 and a norming constant K.
In this case, the requirements of Theorem 3.2.2 are satis�ed and we estimate in
virtue of Lemma 3.2.10

φr,d,θ,k(n) ∶= (− log(g))−1(
r + d

d
log(n))

= (
r + d

θd
log(n))

1
k

+
c

k2θ
log(log(n)) (

r + d

dθ
log(n))

1
k−1

+ o (log(log(n)) (log(n))
1
k−1

) .

Thus, with Theorem 3.2.2 for every sequence (αn)n∈N with αn ∈ Cn,r(X,E), n ∈
N

ρ(αn) = ∥j∥⋅∥0,∥⋅∥∥ (
r + d

θd
log(n))

1
k

+O (log(log(n))) (log(n))
1
k−1

.

Furthermore, by Theorem 3.3.3

δ(αn, ρ(αn)
1

∥j∥⋅∥0,∥⋅∥∥
B0(0,1)) = O (log(log(n)) (log(n))

− 1
k ) , n→∞,

which particularly implies

B =
1

∥j∥⋅∥0,∥⋅∥∥
B0(0,1).
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1. (Normal distribution) Let µ be a centered d-dimensional normal distribu-
tion with regular covariance matrix Σ and corresponding non-increasing
ordered eigenvalues λ1 ≥ ⋅ ⋅ ⋅ ≥ λd > 0. Its density is given by

f(x) =
1

√
((2π)d det Σ)

exp(−
1

2
∥Σ− 1

2x∥
2

2
),

where ∥⋅∥2 denotes the Euclidean norm in Rd. Thus, it has the shape

(3.34) with c = 0, θ = 1
2
, k = 2 and ∥⋅∥0 = ∥Σ− 1

2 ⋅∥
2
. The operator norm of

the natural embedding j ∶ (Rd, ∥⋅∥0) → (Rd, ∥⋅∥2) is given as the root of
the biggest eigenvalue λ1 of the covariance matrix. Using Theorem 3.2.2
we obtain the asymptotics of the quantization radius for every sequence
of r-optimal n-quantizers (αn)n∈N for X as

ρ(αn) =
√
λ1 (

2(r + d)

d
log(n))

1
2

+O(log(log(n)) (log(n))
− 1

2 ) , n→∞.

Furthermore, by Theorem 3.3.3

δ(αn,
ρ(αn)
√
λ1

B
∥Σ− 1

2 ⋅∥
2

(0,1)) = O (log(log(n)) (log(n))
− 1

2 ) , n→∞,

which particularly implies

B =
1

√
λ1

B
∥Σ− 1

2 ⋅∥
2

(0,1).

2. (Multivariate exponential distribution) Those are distributions of the type
(3.34) with c = 0, θ = λ > 0, k = 1 and an arbitrary norm ∥⋅∥0. Then

ρ(αn) = ∥j∥⋅∥,∥⋅∥0∥ (
r + d

λd
log(n)) +O (log(log(n))) , n→∞.

The lower bound can actually be sharpened to

ρ(αn) ≥ ∥j∥⋅∥,∥⋅∥0∥ (
r + d

λd
log(n)) +C

for some constant C ∈ R and n ∈ N.

Example 3.5.2. (Polynomial tails, Type II)

� (Multivariate Students t-distribution) Let X be a random variable in
(Rd, ∥⋅∥) with PX = fλd and f having the shape

f(x) = g(∥x∥0) ∶=
Γ(ν+d

2
)

Γ(ν
2
)(πν)

d
2

det (Σ)
1
2

⎛
⎜
⎜
⎝

1 +
∥Σ− 1

2x∥
2

2

ν

⎞
⎟
⎟
⎠

− ν+d2

, x ∈ Rd,

(3.35)
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for some positive de�nite Matrix Σ and ν > 0. Then X is said to be
t-distributed with ν degrees of freedom and (if ν > 2) covariance matrix
ν
ν−2

Σ. By Theorem 3.2.1 Type II

ρ(αn) ≈ h
−(n−

r+d
d ) ≈ n

r+d
d

1
ν−r , n→∞,

for every sequence (αn)n∈N with αn ∈ Cn,r(X,E), n ∈ N and ν > r. Fur-
thermore, by Theorem 3.3.2, there exists a constant κ ∈ (0,1] such that

κB(0,1) ⊂ lim inf
n→∞

αn
ρ(αn)

⊂ lim sup
n→∞

αn
ρ(αn)

⊂ B(0,1).

� (Cauchy distribution) Selecting ν = 1 in equation (3.35) yields a multivari-
ate Cauchy distribution. Then, for r < 1

ρ(αn) ≈ h
−(n−

r+d
d ) ≈ n

r+d
d

1
1−r , n→∞.

Illustration: Finally, we want to illustrate some of our results. For the
computation of the optimal codebooks presented below, we used the CLVQ-

Algorithm, see [Pag98]. We consider the Euclidean R2, r = 2 and X
d
= N(0,Σ)

with eigenvalues λ1 = 1 and λ2 =
1
4
. The �gures show the 2-optimal n-quantizers

for n = 50,250,1000. The two ellipses in the �gures are the scaled quantization
balls Bρ(αn) and Bφr,d,θ,k(n) with φr,d,θ,k(n) as in the previous example.
As already mentioned in [PS08] for the unit-covariance case, we see that also
in this case the quantization radius ρ(αn) seems to be for �nite n smaller than
its asymptotic equivalent φr,d,θ,k(n).
Furthermore, we observe that for small n the convex hull of αn does not com-
pletely �ll the ellipse Bρ(αn), whereas for growing n almost the whole ellipse
seems to be �lled by conv(αn). As a consequence of the previous Lemma, we
know that the inner ellipse will tend to the outer one for n growing with a rate
not slower than

O(
log(log(n))

log(n)
1
2

) ,

and that the whole ellipse (and not more) will be �lled with codes.



CHAPTER 3. GEOMETRY OF OPTIMAL CODEBOOKS IN RD 99

Figure 3.1: 2-optimal 50-quantizer for X
d
= N(0,Σ), eigenvalues λ1 = 1 and λ2 =

1
4
, ∥⋅∥ = ∥⋅∥2 with the scaled ellipses Bρ(αn) (the inner one) and Bφ2,2, 12 ,2

(50)

(the outer one)

Figure 3.2: 2-optimal 250-quantizer forX
d
= N(0,Σ), eigenvalues λ1 = 1 and λ2 =

1
4
, ∥⋅∥ = ∥⋅∥2 with the scaled ellipses Bρ(αn) (the inner one) and Bφ2,2, 12 ,2

(250)

(the outer one)
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Figure 3.3: 2-optimal 1000-quantizer for X
d
= N(0,Σ), eigenvalues λ1 = 1

and λ2 = 1
4
, ∥⋅∥ = ∥⋅∥2 with the scaled ellipses Bρ(αn) (the inner one) and

Bφ2,2, 12 ,2
(1000) (the outer one)



Chapter 4

Geometry of optimal

codebooks for Gaussian

random elements

In this chapter, we want to analyze and estimate geometric properties for se-
quences of optimal codebooks (αn)n∈N for Gaussian r.e.'s in in�nite dimensional
Banach spaces, namely the quantization radius and the quantization ball. For

a Gaussian r.e. X in Rd and a sequence of optimal codebooks (α
(d)
n )n∈N, the

results have been established in the previous chapter, and imply

ρ(α(d)
n ) ∼

√
λ1 (

2(r + d)

d
log(n))

1
2

, n→∞,

with λ1 being the largest eigenvalue of the covariance Matrix Σ(d) of µ = PX as
well as

B(d) =
1

√
λ1

B0,d(0,1),

with B0,d(0,1) denoting the unit ball induced by the norm ∥⋅∥0,d = ∥(Σ(d))
− 1

2 ⋅∥
2
,

provided the Banach space norm ∥⋅∥ = ∥⋅∥2. Trying to conjecture the natural
expansion for an in�nite dimensional case, we "derive" by exchanging thresholds

ρ(αn) = lim
d→∞

ρ(α(d)
n ) = lim

d→∞

√
λ1 (

2(r + d)

d
log(n))

1
2

= σ(µ) (2 log(n))
1
2

as well as

B = lim
d→∞
B(d) = lim

d→∞

1
√
λ1

B0,d(0,1) =
1

σ(µ)
Kµ,

with σ(µ) denoting the norm of the natural embedding from Hµ in E (which
equals the root of the largest eigenvalue of the covariance operator CX of X)

101
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and Kµ denoting the Strassen ball, i.e. the unit ball in the Cameron-Martin
space Hµ.

In Theorems 4.1.1 and 4.2.1 we will prove, under some regularity require-
ments on the quantization error (equation (4.1)), that this conjectures hold true.
As for the proofs, we will try to follow the approaches from the previous chapter.
We will

� establish a tight relationship between the quantization radius and the
increments of the quantization error ∆n,r(X,E) , in order to

� make use of the estimates for the increments of the quantization error
derived for Gaussian r.e.'s in chapter 2 (see Theorem 4.1.3).

Throughout this chapter, let X be a Gaussian r.e. in the separable Banach
space (E, ∥⋅∥), dim(Hµ) = ∞ and r ∈ (0,∞). We suppose that

αn ∈ Cn,r(X,E) ≠ ∅

for all n ∈ N. Furthermore, we denote

φr,∆(n) ∶= (−2 log(∆n,r(X,E)))
1
2 , n ∈ N

4.1 Quantization radius

The main result of this section is

Theorem 4.1.1. Suppose that

en,r(X,E) ∼ φ(log(n)), n→∞, (4.1)

for some φ ∈ R−a, a ∈ (0,∞). Then, for every sequence of r-optimal n-codebooks
(αn)n∈N for X in E

ρ(αn) ∼ ρn,r(X,E) ∼ ρn,r(X,E)

∼ σ(µ) (2 log(n))
1
2 ∼ σ(µ)φr,∆(n), n→∞.

One may note, that (4.1) implies dim(Hµ) = ∞.

Example 4.1.2. Condition (4.1) is satis�ed by essentially all cases of inter-
est for Gaussian r.e.'s in �nite dimensional Banach spaces. In particular, it
holds for plenty of Gaussian r.e.'s in in�nite dimensional Hilbert spaces as
well as for the (fractional) Brownian motions with path in Lp([0, T ], ∥⋅∥Lp) and

C([0, T ], ∥⋅∥L∞), p ∈ [1,∞) and T ∈ (0,∞), see Example 2.2.11.

One key ingredient for this result is the following sharp asymptotics for
∆n,r(X,E) on a log-scale as derived in chapter 2.
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Theorem 4.1.3. Suppose that

ern,r(X,E) ∼ φ(log(n)), n→∞

for some φ ∈ R−a, a ∈ (0,∞), then

− log (∆n,r(X,E)) ∼ log(n), n→∞.

Proof. The Theorem is an immediate consequence of Corollary 2.2.3 for the
upper bound and Theorem 2.2.9 for the lower bound.

Remark 4.1.4. The latter results still holds in case Cn,r(X,E) = ∅, by an argu-
mentation using quantization in the Bidual E′′ of E.

Remark 4.1.5. For Gaussian r.e.'s in Rd, we were able to derive estimates for
the quantization radius of a sequence of optimal codebooks (αn)n∈N including
a second order asymptotics (see Theorems 3.2.2 and 3.3.3). We are not able to
extend this result to this in�nite dimensional case. There are several reasons
for that, in particular

� The estimates for the increments of the quantization error in Theorem
4.1.3 are not as sharp as in Theorem 1.2.24.

� In contrast to the equivalence of ∥⋅∥ and ∥⋅∥0, there is no equivalence of
the norms ∥⋅∥ and ∥⋅∥Hµ .

Still, we will be able to sharpen the lower bound for the quantization radius as
well as to estimate a sharper upper bound for the lim inf of the quantization ra-
dius in terms of the (unknown) increments of the quantization error (Proposition
4.1.13, Corollary 4.1.15).

In the general Banach space setting, it is not known whether condition (4.1)
is satis�ed or not. Still, given the weak asymptotics of the quantization error is
known and of such a form, we have

Theorem 4.1.6. Suppose that dim(Hµ) = ∞, which implies

ern,r(X,E) ≳ n−
r
d , n→∞

for all d > 0. Then
− log (∆n,r(X,E)) ≳ log(n),

and for every sequence of n-codebooks (αn)n∈N such that αn ∈ Cn,r(X,E), n ∈ N

ρ(αn) ≳ σ(µ) (2 log(n))
1
2 , n→∞.

If furthermore
en,r(X,E) ≈ φ(log(n)), n→∞ (4.2)

for some φ ∈ R−a, a ∈ (0,∞), then there exists a constant C ∈ [1,∞) such that

C log(n) ≳ − log (∆n,r(X,E)), n→∞,

and for every sequence of optimal codebooks (αn)n∈N

ρ(αn) ≲ 2σ(µ) (C log(n))
1
2 , n→∞.
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Remark 4.1.7. In particular, condition (4.2) holds in case the small ball function
φµ is regularly varying at in�nity with index −a , a ∈ (0,∞), see Theorem 1.2.17.

We come to the proofs.

Lower bounds for the quantization radius The basis for the lower bound
is the following Lemma.

Lemma 4.1.8. For every δ > 0 there exists a �nite positive constant C(δ, µ, r)
such that for all n ∈ N with log(C(δ, µ, r)) + φ2

r,∆(n) ≥ 0

(log(C(δ, µ, r)) + φ2
r,∆(n))

1
2 Kµ ⊂ ⋂

αn∈Cn,r(X,E)

(αn +B(0, δ)) . (4.3)

Hence, there exists a sequence (εn)n∈N, εn → 0, n→∞ such that

φr,∆(n)Kµ ⊂ ⋂
αn∈Cn,r(X,E)

(αn +B(0, εn)) (4.4)

Proof. For an arbitrary b ∈ (0, 1
2
) let

C(δ, µ, r) ∶= (((1 − b)r − br)δrµ(B(0, bδ)))
−2

∈ (0,∞).

Then, the �rst micro-macro inequality for Gaussian r.e.'s (Proposition 2.1.6)
yields for all n ∈ N, αn ∈ Cn,r(X,E) and y ∈ (αn +B(0, δ))

c

∆n,r(X,E) > C− 1
2 (δ, µ, r) exp

⎛

⎝
−
∥y∥

2
Hµ

2

⎞

⎠
,

whereof we deduce by applying the negative logarithm

log ((C(δ, µ, r))
1
2 ) − log(∆n,r(X,E)) <

∥y∥
2
Hµ

2
.

By contraposition, we obtain

(log(C(δ, µ, r)) + φ2
r,∆(n))

1
2 Kµ ⊂ αn +B(0, δ),

for all n such that log(C(δ, µ, r)) + φ2
r,∆(n) ≥ 0, which yields in view of the

independence of the left hand side from αn the �rst assertion.
A �rst order Taylor expansion for f(x) = (1+x)

1
2 around x = 0 implies for every

ε ∈ (0,∞)

(log(C(δ, µ, r)) + φ2
r,∆(n))

1
2 = φr,∆(n)

⎛

⎝
1 +

log(C(δ, µ, r))

φ2
r,∆(n)

⎞

⎠

1
2

= φr,∆(n) +O(
log(C(δ, µ, r))

φr,∆(n)
) ≥ φr,∆(n) − ε
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for all n ≥ n′(φr,∆, δ, ε). In view of Kµ ⊂ σ(µ)B(0,1) we obtain

φr,∆(n)Kµ ⊂ αn +B(0, δ) +B(0, εσ(µ))

for all n ≥ n′(φr,∆, δ, ε), which yields the second assertion as a consequence of
the �rst.

As an immediate consequence, we obtain with Lemma 4.1.8

Corollary 4.1.9. For every δ > 0 there exists a �nite and positive constant
C(δ, µ, r) such that

σ(µ) (log(C(δ, µ, r)) + φ2
r,∆(n))

1
2 ≤ ρ

n,r
(X,E) + δ

for all n ∈ N with log(C(δ, µ, r)) + φ2
r,∆(n) ≥ 0, which implies

σ(µ)φr,∆(n) ≤ ρ
n,r

(X,E) + εn

for a sequence εn → 0.

Proof. By de�nition, one has

σ(µ) ∶= sup
x∈Kµ

{∥x∥},

where the supremum is attained since Kµ is compact. Therefore, Lemma 4.1.8
and the fact that

∥x∥ ≤ inf
αn∈Cn,r(X,E)

ρ(αn) + δ

for all x ∈ ⋂αn∈Cn,r(X,E) αn + B(0, δ) imply the �rst assertion. The second
assertion follows analogously from the second assertion of Lemma 4.1.8.

Upper bounds for the quantization radius Combining a general dimension-
free result with the tail behavior of Gaussian r.e.'s yields a �rst upper bound.

Remark 4.1.10. For every sequence of r-optimal n-codebooks (αn)n∈N for X in
E one has

ρ(αn) ≲ 2σ(µ) (−2 log ∆n−1,r(X,E))
1
2 , n→∞.

Proof. By Proposition 2.3.3 one has for every δ > 0

− log(∆n−1,r(X,E)) ≳ sup
αn∈Cn,r(X,E)

− log(FXr(
ρ(αn)

2 + δ
)) , n→∞.

Hence, by using the tail behavior for Gaussian r.e.'s (see Corollary 1.1.16) one
obtains

− log(∆n−1,r(X,E)) ≳ sup
αn∈Cn,r(X,E)

ρ(αn)
2

2(σ(µ)(2 + δ))2
, n→∞,

which yields the assertion, since δ > 0 arbitrary.
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In order to improve the upper bound (i.e. to delete the additional factor
2 outside of the square root), we have to follow an approach similar to that
applied in chapter 3. We will need the following lemma.

Lemma 4.1.11. Let A ∈ B(E) and s ≥ 0 such that µ(A) ≤ µ(B) with B ∶=
B(0, s)c. Then

∫
A
∥x∥

r
dµ(x) ≤ ∫

B
∥x∥

r
dµ(x),

for every r ≥ 0.

Proof. For every y ∈ A∩Bc we have ∥y∥ ≤ s = inf{∥x∥ ∶ x ∈ B}. Furthermore, by

µ(A ∩B) + µ(A ∩Bc) = µ(A) ≤ µ(B) = µ(B ∩A) + µ(B ∩Ac)

one obtains
µ(A ∩Bc) ≤ µ(B ∩Ac).

Therefore

∫
A
∥x∥

r
dµ(x) = ∫

A∩B
∥x∥

r
dµ(x) + ∫

A∩Bc
∥x∥

r
dµ(x)

≤ ∫
A∩B

∥x∥
r
dµ(x) + ∫

A∩Bc
srdµ(x)

≤ ∫
A∩B

∥x∥
r
dµ(x) + ∫

B∩Ac
srdµ(x)

≤ ∫
A∩B

∥x∥
r
dµ(x) + ∫

B∩Ac
∥x∥

r
dµ(x) = ∫

B
∥x∥

r
dµ(x)

Lemma 4.1.12. Suppose that

log(∆n,r(X,E)) ∼ log(∆n+1,r(X,E)), n→∞. (4.5)

Then, for every ε > 0 there exists n(ε) ∈ N such that

⋃
αn∈Cn,r(X,E)

αn ⊂ φr,∆(n) (Kµ +B(0, ε))

for all n ≥ n(ε).

Proof. Let ε > 0 and suppose that the assertion does not hold.
Step 1: There exists a sequence (nk)k∈N in N and codebooks αnk ∈ Cnk,r(X,E)
such that

ank ∈ (φr,∆(nk) (Kµ +B(0, ε)))
c

for codes ank ∈ αnk and k ∈ N. We have for k ∈ N

dist(ank , φr,∆(nk) (Kµ +B (0,
ε

4
))) ≥

3

4
εφr,∆(nk).



CHAPTER 4. GEOMETRY OF OPTIMAL CODEBOOKS FOR

GAUSSIAN RANDOM ELEMENTS
107

Conversely, for every

xnk + ynk ∈ φr,∆(nk) (Kµ +B (0,
ε

4
))

one has in view of Lemma 4.1.8

dist (αnk , xnk + ynk) ≤ dist (αnk , xnk) +
ε

4
φr,∆(nk)

≤
ε

4
+
ε

4
φr,∆(nk) =

ε

2
φr,∆(nk),

for k ≥ k(ε), which implies

Vank (αnk) ⊂ (φr,∆(nk) (Kµ +B (0,
ε

4
)))

c

(4.6)

for all k ≥ k(ε).

Step 2: We set An = φr,∆(n) (Kµ +B (0, ε
4
)) for all n ∈ N. Let (ψ(n))n∈N be

a sequence in R such that µ(Ank) = µ(Bnk) for k ∈ N, where Bnk = ψ(nk)B(0,1).
We follow now a few steps of the upper bound in the �nite dimensional case.
By equation (3.2), there exist cnk ∈ αnk , k ∈ N with ∥cnk∥ → 0, k →∞.
In virtue of Lemma 4.1.11 and equation (4.6) we obtain with βnk−1 ∶= αnk/{ank}
and nk ≥ 2

∆nk−1,r(X,E) ≤ E min
a∈βnk−1

∥X − a∥
r
−E min

a∈αnk

∥X − a∥
r

≤ ∫
Vank

(αnk )
∥x − cnk∥

r
dµ(x) ≤ ∫

Acnk

∥x − cnk∥
r
dµ(x)

≤ 2r (∫
Acnk

∥x∥
r
dµ(x) + ∥cnk∥

r
µ(Acnk))

≤ 22r (∫
Bcnk

∥x∥
r
dµ(x)) = 22r (FXr(ψ(nk)))

for all k ∈ N with ψ(nk) ≥ ∥cnk∥. As a consequence of Corollary 1.1.16 we obtain

log ( (FXr(ψ(nk))) ) ∼ log((FX(ψ(nk))) ), k →∞,

which implies in virtue of equation (4.5)

− log(∆nk,r(X,E)) ∼ − log(∆nk−1,r(X,E)) ≳ − log (µ(Bcnk)) , k →∞. (4.7)

Step 3: Since

An ⊃ φr,∆(n)(Kµ(1 +
ε

8σ(µ)
) +B (0,

ε

8
))
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we obtain in virtue of the isoperimetric inequality (Proposition 1.1.8)

µ(Bnk) = µ(Ank) ≥ Φ(φr,∆(nk)(1 +
ε

8σ(µ)
) +Φ−1 (µ(B(0, φr,∆(nk)

ε

8
))))

(4.8)
for k ∈ N, which implies in virtue of Lemma 1.1.13 for k su�ciently large

µ(Bcnk) = 1 − µ(Bnk) ≤ 1 −Φ(φr,∆(nk)(1 +
ε

8σ(µ)
) +Φ−1 (µ(B (0, φr,∆(nk)

ε

8
))))

≤ exp

⎛
⎜
⎜
⎝

−
(φr,∆(nk)(1 +

ε
8σ(µ)

) +Φ−1 (µ (B (0, φr,∆(nk)
ε
8
))))

2

2

⎞
⎟
⎟
⎠

.

Since Φ−1 (µ (B (0, φr,∆(nk)
ε
8
))) ≥ 0 for k su�ciently large, we obtain

− log (∆nk,r(X,E)) ≳
(φr,∆(nk)(1 +

ε
8σ(µ)

))
2

2
), k →∞

as a contradiction.

As already mentioned above, we can sharpen the result obtained for the
lim inf of the radius in the following sense.

Proposition 4.1.13. For every constant Cµ ≥ 1 there exists a constant κµ < ∞
such that

⋃
αn∈Cn,r(X,E)

αn ⊂ φr,∆(n)Kµ +B(0, κµ)

for all n ∈ NCµ , where

NCµ ∶= {n ∈ N ∶ ∆n,r(X,E) ≤ Cµ∆n−1,r(X,E)}.

Proof. Let Cµ ≥ 1, (εn)n∈N be a sequence in R ful�lling equation (4.4) and C > 0.
We assume that the assertion does not hold.
Step 1: There exists a strictly increasing sequence (nk)k∈N ∈ (NCµ)

N
and code-

books αnk ∈ Cnk,r(X,E) such that

ank ∈ (φr,∆(n)Kµ +B(0,C))
c

for codes ank ∈ αnk and k ∈ N. For C ≥ 4 max{εnk , k ∈ N} and

ank ∈ (φr,∆(nk)Kµ +B(0,C))
c

for k ∈ N we have

dist(ank , φr,∆(nk)Kµ +B(0,
C

4
)) ≥

3

4
C.
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Conversely, in view of Lemma 4.1.8 we obtain for xnk + ynk ∈ φr,∆(nk)Kµ +
B (0, C

4
)

dist (αnk , xnk + ynk) ≤ dist (αnk , xnk) +
C

4

≤
C

4
+
C

4
=
C

2
,

which implies

Vank (αnk) ⊂ (φr,∆(nk)Kµ +B(0,
C

4
))
c

(4.9)

for all k ∈ N.

Step 2: We set An = φr,∆(n)Kµ +B (0, C
4
) for n ∈ N. Let (ψ(n))n∈N be a

sequence in R such that µ(An) = µ(Bn) for n ∈ N, where Bn = ψ(n)B(0,1). We
follow now a few steps of the upper bound in the �nite dimensional case. By
equation (3.2), there exist cnk ∈ αnk , k ∈ N with ∥cnk∥ → 0, k →∞.
In virtue of Lemma 4.1.11 and equation (4.9) we obtain for βnk−1 ∶= αnk/{ank}, k ≥
2

∆nk−1,r(X,E) ≤ E min
a∈βnk−1

∥X − a∥
r
−E min

a∈αnk

∥X − a∥
r

≤ ∫
Vank

(αnk )
∥x − cnk∥

r
dµ(x) ≤ ∫

Acnk

∥x − cnk∥
r
dµ(x)

≤ 2r (∫
Acnk

∥x∥
r
dµ(x) + ∥cnk∥

r
µ(Acnk))

≤ 22r (∫
Bcnk

∥x∥
r
dµ(x)) = 22r (FXr(ψ(nk)), )

(4.10)

for all k ∈ N such that ψ(nk) ≥ ∥cnk∥. As a consequence of Corollary 1.1.16 with
r = 0 and r = r there exists, for every ε > 0, a natural number n(ε) such that
equation (4.10) implies

∆nk−1,r(X,E) ≤ 22r (FXr(ψ(nk))) ≤ (FX(ψ(nk))) exp(εψ(nk)) (4.11)

for every k ∈ N with nk ≥ n(ε).
Step 3: As a consequence of the Isoperimetric inequality (Proposition 1.1.8)

µ(Bnk) = µ(Ank) ≥ Φ(φr,∆(nk) +Φ−1 (µ(B (0,
C

4
)))) (4.12)

for k ∈ N. Equations (4.11) and (4.12) imply in virtue of Lemma 1.1.13

∆nk−1,r(X,E) ≤ (FX(ψ(nk))) exp(εψ(nk)) = µ(B
c
nk

) exp(εψ(nk))

≤ (1 −Φ(φr,∆(nk) +Φ−1 (µ(B (0,
C

4
))))) exp(εψ(nk))

≤ exp
⎛

⎝
−
(φr,∆(nk) +Φ−1 (µ (B (0, C

4
))))

2

2

⎞

⎠
exp(εψ(nk))
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for all k ∈ N such that nk ≥ n(ε). This implies for all C > 0 with Φ−1 (µ (B (0, C
4
))) ≥

σ(µ)ε in virtue of the fact that ψ(nk) ≲ σ(µ)φr,∆(nk), k →∞

∆nk−1,r(X,E) ≤ κ exp(−
φr,∆(nk)

2

2
)×

exp(−2εσ(µ)φr,∆(nk)) exp(εσ(µ)φr,∆(nk))

for some constant κ ∈ (0,∞) and all k ∈ N such that nk ≥ n(ε). Finally, since
nk ∈ NCµ , k ∈ N

1

Cµ
∆nk,r(X,E) ≤ ∆nk−1,r(X,E) ≤ κ exp(−

φr,∆(nk)
2

2
) exp(−εσ(µ)φr,∆(nk))

= κ∆nk,r(X,E) exp(−εσ(µ)φr,∆(nk))

yields a contradiction, since φr,∆(nk) → ∞, k →∞.

Remark 4.1.14. � For r > 0, it holds

∆n,r(X,E) ≤ ern,r(X,E) → 0, n→∞,

which implies for every Cµ ≥ 1

∣NCµ ∣ = ∞.

� One could naturally conjecture that ∆n,r(X,E) ≤ ∆n−1,r(X,E) for ar-
bitrary r.e.'s X, all n ≥ 2 and r > 0. This is false. In fact, there exists
a counterexample to this conjecture for speci�c discrete r.e.'s X in the
Euclidean R2 for r < 1 and n = 3 (see [Kre06, Bemerkung 5.6]).

The sharpened version for the limes inferior reads as follows:

Corollary 4.1.15.

0 ≤ lim inf
n→∞

(ρ
n,r

(X,E) − σ(µ)φr,∆(n)) ≤ lim inf
n→∞

(ρn,r(X,E) − σ(µ)φr,∆(n)) < ∞.

Proof. The proof is a consequence of the Remark 4.1.14 and Propositions 4.1.13
for the upper bound and Corollary 4.1.9 for the lower bound.

Proof of the Theorems Firstly note, that Theorem 4.1.3 implies

−log(∆n−1,r(X,E)) ∼ log(n−1) ∼ log(n) ∼ − log(∆n,r(X,E)), n→∞. (4.13)

Furthermore, recall that
σ(µ) ∶= sup

x∈Kµ

∥x∥ .

Proof of Theorem 4.1.1. The lower bound is a consequence of Corollary 4.1.9.
By equation (4.13), the requirements of Lemma 4.1.12 are satis�ed. Hence, the
upper bounds follows in view of the de�nition of σ(µ).

Proof of Theorem 4.1.6. The Theorem follows with Corollary 4.1.9 for the lower
bound, and Remark 4.1.10 in combination with Proposition 2.2.12 for the upper
bound.
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4.2 Quantization balls

Throughout this section, suppose that the regularity condition

en,r(X,E) ∼ φ(log(n)), n→∞,

holds for some φ ∈ R−a, a ∈ (0,∞) (see (4.1)). As indicated at the beginning of
this chapter, the quantization ball admits a precise description in terms of the
Strassen ball Kµ.

Theorem 4.2.1. (quantization ball) For every sequence of r-optimal n-quantizers
(αn)n∈N for X in E the quantization ball B = Br(X,E, (αn)n∈N) exists, is inde-
pendent of the choice of r and (αn)n∈N and reads

B = lim
n→∞

∥⋅∥ αn
ρ(αn)

=
1

σ(µ)
Kµ. (4.14)

Even more,

δ (
αn

ρ(αn)
,

1

σ(µ)
Kµ) → 0, n→∞. (4.15)

The result still holds when replacing ρ(αn) by its asymptotic equivalents from

Theorem 4.1.1 ρn,r(X,E), ρn,r(X,E), σ(µ)φr,∆(n) and σ(µ)(2 log(n))
1
2 .

Note, that contrary to the �nite dimensional case, the convergences in equa-
tions (4.14) and (4.15) are generally not equivalent, see [AB06, Example 3.83]
or Example B.9.

Remark 4.2.2. Given the weaker result on the asymptotics of the increments
of the quantization error, we were not able to obtain a sharp result similar
to Theorem 3.3.3. Still, it is reasonable to conjecture that the result can be
extended accordingly to the in�nite dimensional case, i.e.

δ (αn, ρ(αn)
1

σ(µ)
Kµ) → 0, n→∞.

Example 4.2.3. � Suppose that (Wt)t∈[0,1] is a Brownian motion with path
in C([0,1], ∥⋅∥L∞). As a well known fact, one has

Hµ = {f ∈W 1,2([0,1]) ∶ f ′ ∈ L2([0,1])}

equipped with the Cameron Martin space norm

∥f∥Hµ = ∥f ′∥L2([0,1])
.

Hence, the Strassen ball Kµ admits the representation

Kµ = {f ∈W 1,2([0,1]) ∶ ∥f ′∥L2([0,1])
≤ 1} .
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� (See [vdVvZ08, p. 218, �.]) Let (Wt)t∈[0,1] be a Brownian motion with
path in C([0,1], ∥⋅∥L∞) and

X
(α)
t ∶= ∫

t

0
(t − s)α−

1
2 dWs,

for some α > 0 and t ∈ [0,1]. Then (Xt)t∈[0,1] is a Riemann-Liouville
process with Hurst parameter α whose Cameron-Martin space Hµ admits
the representation

Hµ = {f ∶ [0,1] → R ∶ f = Iα+
1
2 (g), g ∈ L2([0,1])}

where Iα denotes the Riemann-Liouville operator

(Iα(f))(t) ∶=
1

Γ(α)
∫

t

0
(t − s)α−1f(s)ds.

The Strassen ball Kµ is given as

Kµ = {g ∈ Hµ ∶ ∥I
α+ 1

2 (g)∥
Hµ

=
∥g∥L2([0,1])

Γ(α + 1
2
)

≤ 1} .

For the proof of the main result of this section, we will be able to make use
of the Lemmas from the previous chapter and the previous section.

Proof of Theorem 4.2.1. We show the convergence in the Hausdor� sense. Let
ε > 0. By Lemma 4.1.8 there exists an n(ε) ∈ N such that for all n ≥ n(ε) and
all αn ∈ Cn,r(X,E)

1

σ(µ)
Kµ ⊂

αn
φr,∆(n)σ(µ)

+B(0,
ε

φr,∆(n)σ(µ)
). (4.16)

Conversely, by Lemma 4.1.12, there exists an n′(ε) ∈ N such that

αn
σ(µ)φr,∆(n)

⊂
1

σ(µ)
Kµ +B(0, ε) (4.17)

for all n ≥ n′(ε), which implies

δ (
1

σ(µ)
Kµ,

αn
φr,∆(n)σ(µ)

) → 0, n→∞.

By Lemma 3.3.6 the same holds when replacing σ(µ)φr,∆(n) by its asymptotic
equivalents from Theorem 4.1.1. The convergence in the ∥⋅∥-sense is as a gen-
eral result a consequence of the convergence in the Hausdor� sense, see [AB06,
Theorem 3.82] or B.8.
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4.3 Comparison to asymptotic optimal quantiz-

ers

In this section, we want to study the discrepancy between the quantization
radius (and the quantization balls) for sequences of optimal and asymptotically
optimal codebooks, i.e. sequences of n-codebooks (βn)n∈N satisfying

en,r(X,E) ∼ er(X,E;βn), n→∞. (4.18)

By Corollary 2.2.3, there exists a constant C ∈ (0,∞) such that

ern+1,r(X,E) ≤ ern,r(X,E) = ern+1,r(X,E) +∆n,r(X,E)

≤ (1 +
C

n
)ern+1,r(X,E) ∼ ern+1,r(X,E), n→∞.

such that the requirements of Proposition 3.4.1 are satis�ed. Hence for Gaussian
r.e.'s, there exists no asymptotic upper bound for the quantization radius for
sequences of asymptotic optimal codebooks.

As for the lower bound, this question has (partly) already been treated in
the dissertation of Dereich, [Der03, Lemmas 5.1.1 and 5.1.3]. More precisely,
the results obtained therein imply

Proposition 4.3.1. Let (βn)n∈N be a sequence of n-codebooks in E such that

en,r(X,E) ∼ er(X,E;βn), n→∞.

for some r > 0.

1. There exists a sequence of n-codebooks (γn)n∈N and a sequence (cn)n∈N in
R such that

� en,r(X,E) ∼ er(X,E;γn), n→∞,

� cn ∼ σ(µ) (−2 log(ern,r(X,E)))
1
2 , n→∞ and

� γn ⊂ B(0,2cn), for all n ∈ N.

2. Furthermore, one has

ρ(βn) ≳ σ(µ) (−2 log(ern,r(X,E)))
1
2 , n→∞. (4.19)

Remark 4.3.2. There is a discrepancy of the factor 2 between the two rates
obtained in Proposition 4.3.1, i.e. the lower bound

ρ(βn) ≳ σ(µ) (−2 log(ern,r(X,E)))
1
2 , n→∞.

and the "lowest attained" upper bound

ρ(γn) ∼ 2σ(µ) (−2 log(ern,r(X,E)))
1
2 , n→∞.



CHAPTER 4. GEOMETRY OF OPTIMAL CODEBOOKS FOR

GAUSSIAN RANDOM ELEMENTS
114

Having a look at the proof of the result, one observes that this is due to the fact
that the "lowest attained" upper bound has been constructed without using a
sharp version of a lower bound. Comparing this with other results obtained so
far, the additional factor 2 between those two rates seems to correspond to the
additional factor 2 in Corollary 2.3.3, which is due to the same lack of argument
in the proof. In fact, to be able to manage this problem, one needs a more
precise lower bound involving the geometry of the Strassen ball Kµ.

Throughout this section, let αn ∈ Cn,r(X,E), n ∈ N and (βn)n∈N be a se-
quence of n-codebooks satisfying equation (4.18). We will prove that

� the lower bound given by equation (4.19) is sharp, and

� this bound can be extended to an asymptotically lower bound for ( αn
ρ(αn)

)
n∈N

involving the Strassen ball Kµ, which asymptotically coincides with the
"lowest attained" lower bound.

Furthermore, in comparison to the results obtained for sequences of asymp-
totically optimal quantizers for �nite dimensional r.e.'s, we will prove that the
discrepancy to the radius for sequences of optimal quantizers is now much big-
ger.

New results

Theorem 4.3.3.

There exists a sequence of n-codebooks (γn)n∈N and a sequence (cn)n∈N in R
such that

� en,r(X,E) ∼ er(X,E;γn), n→∞,

� cn ∼ σ(µ) (−2 log(ern,r(X,E)))
1
2 , n→∞ and

� γn ⊂ cn
1

σ(µ))
Kµ +B(0,C) for a constant C ∈ (0,∞) and n ∈ N.

In particular

ρ(γn) ≲ σ(µ) (−2 log(ern,r(X,E)))
1
2 , n→∞.

In addition, we have for any sequence of asymptotically r-optimal n-quantizers
(βn)n∈N

ρ(βn) ≳ σ(µ) (−2 log(ern,r(X,E)))
1
2 ,

and furthermore

δl (
1

σ(µ)
Kµ,

βn
cn

) → 0, n→∞.

Remark 4.3.4. 1. The estimate presented above sharpens the rate given in
4.3.1 by the factor 2 and gives additionally a geometric limitation in terms
of the Strassen ball Kµ.
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2. Comparing the quantization radius of the sequence of asymptotically op-
timal codebooks (γn)n∈N as constructed in the previous Theorem to the
radius of a sequence of optimal codebooks (αn)n∈N, there is a signi�cant
discrepancy to be observed. Assuming that

en,r(X,E) ∼ φ(log(n)), n→∞

for some φ ∈ R−a and a > 0, we obtain

ρ(αn)

ρ(γn)
∼ (

2 log(n)

−r log(φ(log(n)))
)

1
2

, n→∞.

Proof of the result Even if the lower bound given by Proposition 4.3.1 is
sharp, we have to develop a generalization for this bound in order to improve
the upper bound. The idea is as simple as in the �nite dimensional case. We re-
place the �rst micro-macro inequality with an equivalent for asymptotic optimal
codebooks involving ern,r(X,E) instead of ∆n,r(X,E). The following Lemma is
an "equivalent" to Lemma 4.1.8 which is the corresponding version for optimal
codebooks.

Lemma 4.3.5. For any sequence of asymptotically r-optimal n-quantizers (βn)n∈N
for X in E there exists a sequence (εn)n∈N, εn → 0 such that

(−2 log(err(X,E;βn)))
1
2 Kµ ⊂ βn +B(0, εn)

for all n ∈ N.

Proof. Let ε > 0 and (xn)n∈N be a sequence in E such that dist(xn, βn) ≥ ε.
Then, for n ∈ N by using the estimation of shifted balls (Proposition 1.1.11)

err(X,E;βn) ≥ ∫
B(xn,

ε
2 )

dist(x,βn)
rdµ(x)

≥ (
ε

2
)
r

µ(B(xn,
ε

2
))

≥ (
ε

2
)
r

µ(B(0,
ε

2
)) exp

⎛

⎝
−
∥xn∥

2
Hµ

2

⎞

⎠
.

Applying the negative logarithm yields

− log(err(X,E;βn)) ≤ C(ε) +
∥xn∥

2
Hµ

2
,

for n ∈ N and some constant C(ε) ∈ R. Hence

Kµ (2 (− log(err(X,E;βn)) −C(ε)))
1
2 ⊂ βn +B(0, ε)
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for all n ∈ N such that − log(err(X,E;βn)) − C(ε) > 0. By a �rst order Taylor

expansion for f(x) = (1+x)
1
2 around x = 0 and compactness of Kµ, there exists

a constant C ′(ε) < ∞ such that

(−2 log(err(X,E;βn)))
1
2 Kµ ⊂ βn +B(0, ε) +B (0,

C ′(ε)

− log(err(X,E;βn))
) ,

for all n ≥ n(C ′(ε)). Since ε > 0 arbitrary, the assertion follows.

For the upper bound, we need an equivalent version to Lemma 4.1.12

Lemma 4.3.6. For any sequence of asymptotically r-optimal n-quantizers (βn)n∈N
for X in E, there exists a constant κ ∈ (0,∞) and a sequence of n-codebooks
(γn)n∈N such that

� γn ⊂ (−2 log(err(X,E;βn)))
1
2 Kµ +B(0, κ) and

� err(X,E;βn) ∼ e
r
r(X,E;γn), n→∞.

Proof. Let (εn)n∈N be as in Lemma 4.3.5. We set

cn ∶= (−2 log(err(X,E;βn)))
1
2 , n ∈ N

and
δn = δn(C, εn) ∶= max{4εn;C}

for come constant C > 0 speci�ed below.
If βn ⊂ cnKµ + B(0, δn) for all n ≥ n′ ∈ N, we set γn = βn for all n ∈ N and κ
su�ciently large such that the assertion also holds for all n < n′. Otherwise, we
set for an unbounded sequence (nk)k∈N in N

γnk ∶= βnk ∩ (cnKµ +B(0, δnk)) ∪ {0}

Then ∣γnk ∣ ≤ nk, k ∈ N and

err(X,E;γnk) ≤ e
r
r(X,E;βnk) + ∫

⋃a∈βnk /γnk
Va(βnk )

∥x∥
r
dµ(x).

Step 1: We show that

⋃
a∈βnk /γnk

Va(βnk) ⊂ (cnkKµ +B (0,
δnk
4

))
c

.

For xnk = ynk + znk ∈ cnkKµ +B(0,
δnk
4

), Lemma 4.3.5 implies

dist (xnk , βnk) ≤ dist(xnk , ynk) + dist(ynk , βnk)

≤
1

4
δnk + εnk ≤

1

2
δnk .
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Conversely, for ank ∈ βnk/γnk

dist(xnk , ank) ≥
3

4
δnk >

1

2
δnk .

which implies

⋃
a∈βnk /γnk

Va(βnk) ⊂ (cnkKµ +B (0,
δnk
4

))
c

(4.20)

for all k ∈ N.
Step 2: We set An = cnKµ+B (0, δn

4
) for n ∈ N. Let (ψn)n∈N be a sequence in

R such that µ(An) = µ(Bn) for n ∈ N, where Bn = ψnB(0,1). As a consequence
of Corollary 1.1.16 with r = 0 and r = r there exists for every ε > 0 a natural
number n(ε) such that

(FXr(ψn)) ≤ (FX(ψn)) exp(
ε

σ(µ)
ψn)

for every n ≥ n(ε).
Step 3: As a consequence of the Isoperimetric inequality (Proposition 1.1.8)

µ(Bn) = µ(An) ≥ Φ(cn +Φ−1 (µ(B (0,
δn
4

))))

for n ∈ N. Step 1 and Step 2 imply in virtue of Lemma 1.1.13 for every ε > 0

∫
⋃a∈βnk /γnk

Va(βnk )
∥x∥

r
dµ(x) ≤ ∫

Acnk

∥x∥
r
dµ(x)

≤ (FXr (ψnk)) ≤ (FX(ψnk)) exp(
ε

σ(µ)ψnk
) = µ(Bcnk) exp(

ε

σ(µ)
ψnk),

≤ (1 −Φ(cnk +Φ−1 (µ(B (0,
δnk
4

))))) exp(
ε

σ(µ)
ψnk)

≤ exp

⎛
⎜
⎜
⎝

−
(cnk +Φ−1 (µ (B (0,

δnk
4

))))
2

2

⎞
⎟
⎟
⎠

exp(
ε

σ(µ)
ψnk)

for all k ≥ k(ε). Kµ ⊂ σ(µ)B(0,1) implies ψn ≲ σ(µ)cn, n → ∞. Hence, we

obtain for all C ∈ (0,∞) with Φ−1 (µ (B (0,
δnk
4

))) ≥ ε

∫
⋃a∈βnk /γnk

Va(βnk )
∥x∥

r
dµ(x) ≤ κ exp(−

c2nk
2

) exp(−2εcnk) exp(εcnk) exp(−
ε2

2
)

for all k ≥ k(ε) and some constant κ ∈ (0,∞). Since cn → ∞, the assertion
follows.

Proof of Theorem 4.3.3. The Theorem is a consequence of Lemmas 4.3.5 for
the lower bound of the quantization radius and quantization ball for (βn)n∈N as
well as Lemma 4.3.6 for the construction of a sequence of asymptotic optimal
codebooks (γn)n∈N achieving the required shape.



Chapter 5

Local quantization problems

This chapter shall be devoted to the study of the asymptotic behavior of

� the weights of the cells µ(Ca(αn)) and

� the local inertia er(X,E;αn,Ca(αn))

of Voronoi partitions {Ca(αn), a ∈ αn} for sequences of r-optimal n-codebooks
(αn)n∈N for r.e.`s X in Rd. Furthermore, as indicated by the results obtained
hereafter, the behavior of

� the µr-weights of the Cells Ca(αn) : µr(Ca(αn))

seem to admit a speci�c regularity.
Given some regularity assumptions on the underlying probability µ, the natural
conjecture for the asymptotics of the local quantization error reads

inf
a∈αn

err,loc(X,R
d;αn,Wa(αn)) ∼ sup

a∈αn

err,loc(X,R
d;αn, Va(αn))

∼
1

n
ern,r(X,R

d), n→∞,

which goes back to Gersho (see [Ger79]); for the one-dimensional case, it is
even older (see e.g. [PD51]). As for a reasonable conjecture on the asymptotics
of the weights of the Voronoi cells, one derives in view of the empirical mea-
sure Theorem (Theorem 1.2.14) for measures µ with continuous and bounded
Lebesgue-density f and a bounded continuous function F ∶ Rd → R

1

n
∑
a∈αn

∥f
d
r+d ∥

1
f

r
r+d (a)F (a)

n→∞
→ ∥f

d
r+d ∥

1
∫ f

r
r+d (x)F (x)dµr(x)

= ∫ F (x)dµ(x)

(see [GLP10, chapter 1]), so that

1

n
∑
a∈αn

∥f
d
r+d ∥

1
f

r
r+d (a)δa

w
⇒ µ,

118
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where
w
⇒ denotes the weak convergence of measures. Since also

∑
a∈αn

µ(Ca(αn))δa
w
⇒ µ, n→∞

for every sequence of Voronoi partitions {Ca(αn), a ∈ αn}n∈N, it is reasonable to
conjecture that

µ(Wan(αn)) ∼ µ(Van(αn)) ∼
1

n
∥f

d
r+d ∥

1
f

r
r+d (an), n→∞,

for every sequence (an)n∈N such that an ∈ αn, n ∈ N.
As for a conjecture on the µr-weights for the Voronoi cells, one has in virtue

of empirical measure Theorem (Theorem 1.2.14)

∑
a∈αn

1

n
δa

w
⇒ µr.

Since also

∑
a∈αn

µr(Ca(αn))δa
w
⇒ µr,

one expects

inf
a∈αn

µr(Wa(αn)) ∼ sup
a∈αn

µr(Va(αn)) ∼
1

n
, n→∞.

While the question about those asymptotics is very old, no rigorous treat-
ment of this problem has been done until the publication of the research article
of Graf, Luschgy and Pagès [GLP10]. The main results achieved in the article
are presented in the following section.

Throughout this chapter, let X be a r.e. in (E, ∥⋅∥) = (Rd, ∥⋅∥) for an ar-
bitrary norm ∥⋅∥, ∥⋅∥0 be an additional arbitrary norm on Rd, r ∈ (0,∞) and
X ∈ Lr+δ(Rd,P) for some δ > 0. We denote

C∥⋅∥,∥⋅∥0
∶= max{j∥⋅∥0,∥⋅∥, j∥⋅∥,∥⋅∥0},

where j∥⋅∥0,∥⋅∥ and j∥⋅∥,∥⋅∥0 denote the natural embeddings from (Rd, ∥⋅∥0) ↪

(Rd, ∥⋅∥) and vice versa.

5.1 Known results

For n ∈ N, αn ∈ Cn,r(X,Rd) and a ∈ αn we denote

sn,r(µ,Rd;a) ∶= inf
s>0

{Va(αn) ∩ supp(µ) ⊂ B(x, s)},

sn,r(µ,R
d;a) ∶= sup

s>0
{Va(αn) ⊃ B(x, s)}.
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One easily sees that

sn,r(µ,R
d;a) =

1

2
dist(a,αn/{a}).

Furthermore, for K ⊂ Rd, we set

αn(K) ∶= {a ∈ αn ∶ Va(αn) ∩K ≠ ∅},

as well as
αn(K) ∶= {a ∈ αn ∶ Va(αn) ⊂K}.

Theorem 5.1.1. (see [GLP10, Theorem 3.1, Theorem 4.1])

1. Suppose that µ = µa ∈ Mr(B(Rd)) such that f = ∂µ
∂λd

is essentially bounded,
has a connected and compact support and satis�es the following local peak-
less condition:

∃c, s0 > 0 such that ∀s < s0, x ∈ supp(µ) ∶ µ(B(x, s)) ≥ csd

Then

n−(1+
r
d ) ≈

1

n
ern,r(X,R

d) ≈ inf
a∈αn

err,loc(X,R
d;αn,Wa(αn))

≈ sup
a∈αn

err,loc(X,R
d;αn, Va(αn)), n→∞,

1

n
≈ inf
a∈αn

µ (Wa(αn)) ≈ sup
a∈αn

µ (Va(αn)) , n→∞,

as well as

sn,r(µ,Rd;a) ≈ sn,r(µ,R
d;a) ≈ n−

1
d , n→∞. (5.1)

2. Suppose that f = ∂µ
∂λd

satis�es the �rst micro-macro inequality on Rd in

the following form: There exists a constant c > 0 such that for all K ⊂ Rd
compact there exists nK ∈ N such that for all x ∈K and n ≥ nK

cn−
1
d f(x)−

1
r+d ≥ dist(x,αn).

Then, there exist constants ci ∈ (0,∞), i ∈ {1, . . . ,4} such that for every
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compact K ⊂ Rd

max
a∈αn(K)

µ(Va(αn)) ≲ c1
(infε>0 ess supK+B(0,ε) f)

r
r+d

n
, n→∞,

max
a∈αn(K)

err;loc(X,R
d;αn, Va(αn))

≲ c2 (1 + log(inf
ε>0

ess supK+B(0,ε) f

ess infK+B(0,ε) f
))n−

r+d
d , n→∞,

min
a∈αn(K)

µ(Wa(αn)) ≳ c3
supε>0 (ess infK+B(0,ε) f)

r
r+d

n
, n→∞,

min
a∈αn(K)

err;loc(X,R
d;αn,Wa(αn))

≳ c4 sup
ε>0

(
ess infK+B(0,ε) f

ess supK+B(0,ε) f
)

max{1,r}

n−
r+d
d , n→∞.

Remark 5.1.2. � Assuming for example continuity of the density f , Theo-
rem 5.1.1 part 2) implies the weak asymptotics for the local inertia and
the weights of the Voronoi cells Can(αn) for sequences of codes (an)n∈N
converging towards some x ∈ Rd, see [GLP10, Theorem 4.1 and Corollary
4.1].

� As concerning part 2) of Theorem 5.1.1, the authors indicate that, given
a regularity condition on the tail of the distribution, some of the bounds
for the weights and the local inertia for sequences of Voronoi cells leaving
each compact set K could hold analogously.

Remark 5.1.3. Theorem 5.1.1 Part 1) does not cover probabilities µ with un-
bounded Lebesgue densities. In fact, given this case, the result does not hold
in general. Suppose that there is x ∈ supp(µ) such that for every κ ∈ (0,∞)
there exists an ε > 0 such that ∣f ∣ ≥ κ for all y ∈ B(x, ε). For optimal codebooks
αn, let δn = dist(x,αn), n ∈ N. Then, as a consequence of the �rst micro-
macro inequality (Proposition 2.1.4) there exists for every b ∈ (0, 1

2
) a constant

C(b, r) ∈ (0,∞) such that

∆n,r(X,Rd) ≥ C(b, r)µ(B(x, bδn))δ
r+d
n

for all n ∈ N. Thus, for every n ∈ N such that bδn < ε one has

∆n,r(X,Rd) ≥ C(b, r)κδr+dn .

Hence, in contrary to (5.1)

δn = o(n
− 1
d ), n→∞.

By assuming a non-local peakless condition, we will be able to improve the
results obtained in [GLP10] for speci�c distributions µ having an unbounded
support. In particular, we will establish a complementary result covering se-
quences of codes leaving every compact set K ⊂ Rd.
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5.2 General lower bounds

In chapter 2, we used the extended second micro-macro inequality to derive a
general upper bound for the increments of the quantization error for Gaussian
r.e.'s. Conversely, given that we know the asymptotics of those increments for
a probability µ on B(Rd), one may use the same inequality and an analogous
argumentation to derive a lower bound for the local quantization error and the
µr-weights of the Voronoi regions Va(αn) and Wa(αn).

Throughout the remainder of this chapter, let X ∈ Lr+δ(P,Rd) for some
constant r ∈ (0,∞) and δ > 0. Furthermore, suppose that

µ = µa,

µ(B0(0,A)c) > 0 and

f(x) =
∂µ

∂λd
(x) = g(∥x∥0), x ∈ B0(0,A)c,

for a function g almost decreasing on [A,∞) for some constant A ≥ 0. Note, that
µ satis�es under these assumptions the local peakless property on B0(0,A)c (see
Lemma 2.1.3). Concerning the generalization of Theorem 5.1.1, since

αn = αn(B0(0,A)) ∪ αn(B0(0,A)c)

= {a ∈ αn ∶ Va(αn) ∩B0(0,A) ≠ ∅} ∪ {a ∈ αn ∶ Va(αn) ⊂ B0(0,A)c},

we only need to consider sequences of codes (an)n∈N with an ∈ αn(B0(0,A)c), n ∈
N, since the remaining cells are, given an appropriate regularity assumption on
µa on B0(0,A), covered by Theorem 5.1.1.

At �rst, we will establish a close relationship between the local inertia and
the µr-weights of the Voronoi cells.

Lemma 5.2.1. We have

inf
αn∈Cn,r(X,Rd)

inf
a∈αn(B0(0,A)c)

err;loc(X,R
d;αn,Wa(αn))

≼ n−
r
d inf
αn∈Cn,r(X,Rd)

inf
a∈αn(B0(0,A)c)

µr (Wa(αn)) , n→∞.

The same result holds when replacing Wa(αn) by Va(αn), n ∈ N or all inf by
sup.

Proof. In view of the lower peakless property of µ on B0(0,A)c (Lemma 2.1.3),
the �rst micro-macro inequality (Proposition 2.1.5) and the estimate for the
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increments of the quantization error (Theorem 1.2.24) we calculate

inf
αn∈Cn,r(X,Rd)

inf
a∈αn(B0(0,A)c)

err;loc(X,R
d;αn,Wa(αn))

= inf
αn∈Cn,r(X,Rd)

inf
a∈αn(B0(0,A)c)

∫
Wa(αn)

dist(x,αn)
rdµ(x)

≼ n−
r
d inf
αn∈Cn,r(X,Rd)

inf
a∈αn(B0(0,A)c)

∫
Wa(αn)

f(x)−
r
r+d f(x)dλd(x)

≈ n−
r
d inf
αn∈Cn,r(X,Rd)

inf
a∈αn(B0(0,A)c)

µr (Wa(αn)) , n→∞,

(5.2)

which yields the assertion. Replacing Wa(αn) by Va(αn) or inf by sup in equa-
tion (5.2) yields the second assertion.

The previous Lemma implies that any lower bound for the local inertia yields
a lower bound for the µr-weights of the Voronoi cells. Conversely, any upper
bound for the µr-weights yields an upper bound for the local inertia. We come
now to lower bounds for the local inertia.

Theorem 5.2.2. We have

inf
αn∈Cn,r(X,Rd)

inf
a∈αn(B0(0,A)c)

err;loc(X,R
d;αn,Wa(αn)) ≽ n

− r+dd , n→∞.

Proof. Note, that for e, x ∈ Rd and t ∈ [0,1] such that ∥e∥0 ≤
1
2
∥x∥0 one has

∥tx + e∥0 ≤ t ∥x + e∥0 + (1 − t) ∥e∥0

≤ ∥x + e∥0 − (1 − t)(∥x∥0 − ∥e∥0) + (1 − t) ∥e∥0

≤ ∥x + e∥0 .

(5.3)

Step 1: We abbreviate for a ∈ αn ∈ Cn,r(X,Rd) the distance δn(a) ∶= dist(a,αn/{a}),
n ∈ N. Let n ∈ N and a ∈ αn(B0(0,A)c) for some αn ∈ Cn,r(X,Rd). Then, for

t = (1 − 1
4
δn(a)
∥a∥

) we have

B(ta,
δn(a)

8
) ⊂ B(a,

3δn(a)

8
) ⊂Wa(αn)

as well as

µ(B (ta,
δn(a)

8
) ∩B (a,

δn(a)

8
)) = 0.

Since a ∈ αn(B0(0,A)c) one has 0 ∉ B(a, 1
2
δn(a)), which also implies 1

2
∥a∥0 ≥

δn(a)
4C∥⋅∥,∥⋅∥0

. Hence, we obtain in view of equation (5.3) and the fact that g is almost
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decreasing

µ
⎛

⎝
B

⎛

⎝
a,

δn(a)

8C2
∥⋅∥,∥⋅∥0

⎞

⎠

⎞

⎠
≤ µ(B0 (a,

δn(a)

8C∥⋅∥,∥⋅∥0

))

= ∫
B0(a,

δn(a)
8C∥⋅∥,∥⋅∥0

)
g(∥x∥0)dλ

d(x)

≤
1

mg
∫
B0(ta,

δn(a)
8C∥⋅∥,∥⋅∥0

)
g(∥x∥0)dλ

d(x)

≤
1

mg
µ(B (ta,

δn(a)

8
)) ,

such that

µ
⎛

⎝
B(a,

3

8
δn(a))/B(a,

δn(a)

8C2
∥⋅∥,∥⋅∥0

)
⎞

⎠
≥mgµ

⎛

⎝
B(a,

δn(a)

8C2
∥⋅∥,∥⋅∥0

)
⎞

⎠
.

Step 2: In virtue of the extended second micro-macro inequality (Propo-
sition 2.1.8), there exists for every C ∈ (0,∞) a constant κ(C, r) ∈ (0,∞) such
that for all n ≥ 2

∆n−1,r(X,Rd) ≤ κ(C, r) (err;loc(X,R
d;αn,Wa(αn)) + δn(a)

rµ (B(a,Cδn(a))))

(5.4)

independent of the choice of αn. As a consequence of Step 1, we derive for
C = 1

8C2
∥⋅∥,∥⋅∥0

δn(a)
rµ (B (a,Cδn(a))) ≤

1

Cr
∫
B(a,Cδn(a))

(Cδn(a))
rdµ(x)

≤
1

mgCr
∫
B(a, 38 δn(a))/B(a,

δn(a)

8C2
∥⋅∥,∥⋅∥0

)
(Cδn(a))

rdµ(x)

≤
1

mgCr
err;loc(X,R

d;αn,Wa(αn)),

whereof we estimate from above the second term of equation (5.4). The assertion
follows with Theorem 1.2.24.

As an immediate consequence, we derive with Lemma 5.2.1 lower bounds for
the µr-weights of the cells Wa(αn).

Theorem 5.2.3. We have

inf
αn∈Cn,r(X,Rd)

inf
a∈αn(B0(0,A)c)

µr(Wa(αn)) ≽
1

n
, n→∞.

Proof. The result follows from Theorem 5.2.2 in combination with Lemma 5.2.1.
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Another general bound we are able to derive concerns the distance between
two neighbouring codes a and b in a codebook α:

Proposition 5.2.4. There exists a constant C(µ, r) ∈ (0,∞) such that

dist(an, αn/{an}) ≲ C(mg)n
− 1
d f−

1
r+d (an), n→∞,

for all sequences (an)n∈N such that an ∈ αn(B0(0,A)c) for codebooks αn ∈
Cn,r(X,Rd), n ∈ N.

Proof. Let n ∈ N, an ∈ αn(B0(0,A)c), αn ∈ Cn,r(X,Rd) and

yn ∈ {x ∶ x ∈ Van(αn), ∥x∥0 ≤ inf
z∈Van(αn)

∥z∥0},

where the right-hand side side set is non-empty by continuity of ∥⋅∥0 and com-
pactness of Van(αn) ∩B0(0, ∥an∥0). Then ∥yn∥0 ≤ ∥an∥0 and furthermore yn ∈
∂Van(αn), which implies dist(an, αn/{a}) ≤ 2 dist(yn, αn). Thus, as a conse-
quence of the �rst micro-macro inequality (Proposition 2.1.5), Theorem 1.2.24
and the fact that g(⋅) = f(∥⋅∥0) is almost decreasing we obtain for some constant
C(r, µ) ∈ (0,∞) and n ∈ N

dist(an, αn/{an}) ≤ 2 dist(yn, αn)

≤ 2C(r, µ)n−
1
d f−

1
r+d (yn)

≤ 2C(r, µ)m
− 1
r+d

g n−
1
d f−

1
r+d (an),

with mg denoting the almost decreasing constant to g.

We will close this section with a very useful Lemma admitting a criterion to
derive the (true) weak asymptotics for the local inertia and the µ and µr-weights
for the cells Va(α) and Wa(α).

Lemma 5.2.5. For every sequence (an)n∈N with an ∈ αn(B0(0,A)c) for optimal
codebooks αn ∈ Cn,r(X,Rd), n ∈ N such that

f(an) ≈ ess sup
x∈Van(αn)

f(x) ≈ ess inf
x∈Van(αn)

f(x), n→∞, (5.5)

one has

µ(Van(αn)) ≈ µ(Wan(αn)) ≈
(f(an))

r
r+d

n
, n→∞

err;loc(X,R
d;αn, Van(αn)) ≈ e

r
r;loc(X,R

d;αn,Wan(αn)) ≈ n
− r+dd , n→∞

µr(Van(αn)) ≈ µr(Wan(αn)) ≈
1

n
, n→∞

sn,r(µ,Rd;an) ≈ sn,r(µ,R
d;an) ≈ n

− 1
d f−

1
r+d (an), n→∞.
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Proof. We will prove the asymptotic upper bound for µr(Van(α)) and deduce
the weak asymptotics for µ(Va(αn)) from that of µr(Van(αn)). In virtue of the
�rst micro-macro inequality (Proposition 2.1.5) we have

µr(Van(αn)) ≤ ∥f
d
d+r ∥

−1

1
ess sup
x∈Van(αn)

f
d
r+d (x)λd(Van(αn))

≤ ∥f
d
d+r ∥

−1

1
ess sup
x∈Van(αn)

f
d
r+d (x) ess sup

y∈Van(αn)

λd(B(0,dist(y,αn)))

≤ ∥f
d
d+r ∥

−1

1
ess sup
x∈Van(αn)

f
d
r+d (x) ess sup

y∈Van(αn)

dist(y,αn)
dλd(B(0,1))

≼ ess sup
x∈Van(αn)

f
d
r+d (x)

1

n
ess sup
y∈Van(αn)

f(y)−
d
r+d

≼
1

n
, n→∞.

Hence, with Lemma 5.2.1, Theorem 5.2.2 and Theorem 5.2.3 we obtain the
weak asymptotics for the local inertia and the µr-weights of the cells Wa(αn)
and Va(αn). By condition (5.5), it follows that

µr(Van(αn)) ≈ µr(Wan(αn)) ≈
1

n
, n→∞

implies

µ(Van(αn)) ≈ µ(Wan(αn)) ≈
(f(an))

r
r+d

n
, n→∞.

As for the distances sn,r(µ,Rd;an) and sn,r(µ,Rd;an), the upper bound is an
immediate consequence of the �rst micro-macro inequality (Proposition 2.1.5)
in combination with condition (5.5).
As for the lower bound, the second micro-macro inequality (Proposition 2.1.7)
implies in virtue of the mean value Theorem

n−(1+
r
d ) ≼ r dist(a,αn/{an})×

∫
Wan(αn)

(dist(a,αn/{an}) + ∥x − a∥)r−1dµ(x), n→∞.

By applying the �rst micro-macro inequality (Proposition 2.1.5) we estimate
from above the right side of the integrand, which yields

n−(1+
r
d ) ≼ dist(a,αn/{an})×

µ(Wan(αn))n
− r−1d ess sup

x∈Wan(αn)

f−
r−1
r+d (x), n→∞,

which implies the lower bound for dist(an, αn/{an}), i.e.

n−
1
d f−

1
r+d (an) ≼ dist(an, αn/{an}), n→∞. (5.6)
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Remark 5.2.6. � Note, that some of the arguments being used in the previ-
ous Lemma are already contained in various results in [GLP10].

� The upper bound for the weights µ(Van(αn)) only needs the equivalence

f(an) ≈ ess sup
x∈Van(αn)

f(x), n→∞,

as one easily deduces from the proof of Proposition 4.3. in [GLP10].

5.3 Speci�c results

To estimate the weak asymptotics for the local inertia and the weights of
the Voronoi cells µ(Va(α)) and µr(Va(α)) for sequences of optimal codebooks
(αn)n∈N of Lebesgue-continuous r.e's X with an unbounded support, we have
to set some additional restrictions on the density f . In addition to assumptions
on µ formulated at beginning of the previous section, suppose that either

1. (Type I) − log(g(x)) is regularly varying at in�nity with index θ > 0,

− log(g(x)) ∈ C2([A,∞)) strictly monotone and ( − log(g(x)))
(i)

∈ R,
i = 1,2, or

2. (Type II) g is regularly varying at in�nity with index −a < −(r + d).

Note, that in both cases, given the regularity assumption on g or log(g)
imply supp(µ∥⋅∥0) ⊃ [A,∞). The main goal of this section is to prove

Theorem 5.3.1. In addition to the previous assumptions, suppose that f is
essentially bounded on B0(0,A) and satis�es the following local peakless condi-
tion:

∃c, s0 > 0 such that ∀s < s0, x ∈ B0(0,A) ∶ µ(B(x, s)) ≥ csd.

Let (αn)n∈N be a sequence of r-optimal n-codebooks for X in Rd.

1. (Type I) Let (ηn)n∈N be a bounded sequence in R and (ζn)n∈N de�ned as

ζn ∶= (− log(g))
−1

(
r + d

d
log(n) + ηn

+ (r + d) log ((((− log(g))−1)
′
)(
r + d

d
log(n)))).

Then, for every sequence (an)n∈N with an ∈ αn(B0(0, ζn)), n ∈ N

µ(Van(αn)) ≈ µ(Wan(αn)) ≈
(f(an))

r
r+d

n
, n→∞,

err;loc(X,R
d;αn, Van(αn)) ≈ e

r
r;loc(X,R

d;αn,Wan(αn)) ≈ n
− r+dd , n→∞,

µr(Van(αn)) ≈ µr(Wan(αn)) ≈
1

n
, n→∞,

sn,r(µ,Rd;an) ≈ sn,r(µ,R
d;an) ≈ n

− 1
d f−

1
r+d (an), n→∞.
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If additionally d = 1, then

err;loc(X,R;αn, Van(αn)) ≈ e
r
r;loc(X,R;αn,Wan(αn)) ≈ n

−(r+1), n→∞,

µr(Van(αn)) ≈ µr(Wan(αn)) ≈
1

n
, n→∞,

for every sequence (an)n∈N with an ∈ αn, n ∈ N.

2. (Type II) For every sequence (an)n∈N with an ∈ αn, n ∈ N

µ(Van(αn)) ≈ µ(Wan(αn)) ≈
(f(an))

r
r+d

n
, n→∞,

err;loc(X,R
d;αn, Van(αn)) ≈ e

r
r;loc(X,R

d;αn,Wan(αn)) ≈ n
− r+dd , n→∞,

µr(Van(αn)) ≈ µr(Wan(αn)) ≈
1

n
, n→∞,

sn,r(µ,R
d;an) ≈ n

− 1
d f−

1
r+d (an), n→∞.

Remark 5.3.2. As a consequence of the general results developed in the previous
section, the results concerning the asymptotic lower bounds for the local inertia
and the µr-weights of the Voronoi cells hold without any restriction on the
sequence (an)n∈N.

Example 5.3.3. As examples one may consider those from section 3, Examples
3.5.1 and 3.5.2.

1. (Type I) This type contains the class of hyper-exponential distributions,
including the non-singular normal distribution or the multivariate expo-
nential distributions.

2. (Type II) This type contains for example the multivariate Students t-
distribution, including also the Cauchy distribution.

We come to the proof of Theorem 5.3.1.

Proof of the result We will need a few Lemmas characterizing the growth
behavior of the densities f , given the di�erent regularity assumptions (Type I)
and (Type II).

Lemma 5.3.4. Let xn, xn +∆n ∈ B0(0,A)c for all n ∈ N.

1. (Type I) If

∥∆n∥ = O ((∣(log(g))′( ∥xn∥0 )∣)
−1

) , n→∞,

then
f(xn) ≈ f(xn +∆n), n→∞,

and
f

r
r+d (xn) ≈ f

r
r+d (xn +∆n), n→∞.
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2. (Type II) If

C ∥xn∥0 ≳ ∥xn +∆n∥0 ≳
1

C
∥xn∥0 , n→∞

for some constant C ∈ (0,∞), then

f(xn) ≈ f(xn +∆n), n→∞,

and
f

r
r+d (xn) ≈ f

r
r+d (xn +∆n), n→∞.

Proof. 1. (Type I) By triangle inequality one has for n ∈ N

∥xn∥0 − ∥∆n∥0 ≤ ∥xn +∆n∥0 ≤ ∥xn∥0 + ∥∆n∥0 .

Furthermore, for every n ∈ N

f(xn)

f(xn +∆n)
=

exp ( log(f(xn)))

exp ( log(f(xn +∆n)))

= exp ( log(g(∥xn∥0)) − log(g(∥xn +∆n∥0)))

= exp ((log(g))′(ξn)ζn),

for some sequence (ξn)n∈N in B∣⋅∣(∥xn∥0 , ∥∆n∥0) and ∣ζn∣ ≤ ∥∆n∥0 , n ∈ N.
By the assumptions on (∆n)n∈N and the fact that (− log(g))′ is regularly
varying, we obtain

ξn ≈ ∥xn∥0 , n→∞,

and thus

∣( log(g)′(ξn)ζn)∣ ≼ ∣( log(g)′(∥xn∥0))∣ ∥∆n∥0 = O(1), n→∞,

which yields the assertion.

2. (Type II) Since g ∈ R−a, we estimate

C−a
∼

g(∥xn∥0)

g( 1
C

∥xn∥0)
≲

f(xn)

f(xn +∆n)

≲
g(∥xn∥0)

g(C ∥xn∥0)
∼ Ca, n→∞,

which yields the assertion.
The second formulation is obvious.

Proposition 5.3.5. Let xn, xn +∆n ∈ B0(0,A)c for all n ∈ N.



CHAPTER 5. LOCAL QUANTIZATION PROBLEMS 130

1. (Type I) For every bounded sequence (κn)n∈N in R and (xn)n∈N in B0(0,A)c

satisfying

∥xn∥0 ≤ (− log(g))
−1

(κn +
r + d

d
log(n)

− (r + d) log (∣((− log(g))′)(∥xn∥0)∣) ),

and codebooks αn ∈ Cn,r(X,Rd), n ∈ N, one has

dist(xn, αn) = O ((∣(log(g))′( ∥xn∥0 )∣)
−1

) , n→∞. (5.7)

In particular, for every bounded sequence (ηn)n∈N in R, equation (5.7)
holds for (xn)n∈N satisfying

∥xn∥0 ≤ ζn ∶= (− log(g))
−1

(
r + d

d
log(n) + ηn

− (r + d) log (∣((− log(g))′)((− log(g))
−1

(
r + d

d
log(n)))∣) )

= (− log(g))
−1

(
r + d

d
log(n) + ηn

+ (r + d) log ((((− log(g))−1)
′
)(
r + d

d
log(n)))).

(5.8)

2. (Type II) Let (xn)n∈N be a sequence in B0(0,A)c such that

∥xn∥0 ≤ κρ(αn), n ∈ N

for some κ ∈ (0,∞) and optimal codebooks αn ∈ Cn,r(X,Rd), n ∈ N. Then,
there exists a constant ε(κ) ∈ (0,1) such that

dist0(xn, αn) ≤ (1 − ε(κ)) ∥xn∥0 ,

which also implies for some constant C ′ ∈ (0,∞)

C ′ ∥xn∥0 ≥ ∥an∥0 ≥
1

C ′
∥xn∥0

for all n ∈ N and every an ∈ αn such that xn ∈ Van(αn).

Proof. 1. In view of the �rst micro-macro inequality (Proposition 2.1.5) and
Theorem 1.2.24, we estimate for some constant C ∈ (0,∞) and all n ∈ N

dist(xn, αn) ≤ C (
n−(1+

r
d )

f(xn)
)

1
r+d

= Cn−
1
d exp(−

1

r + d
log(g)(∥xn∥0))

≤ Cn−
1
d exp (

1

r + d
(κn +

r + d

d
log(n)

− (r + d) log (∣((− log(g))′)(∥xn∥0)∣) ))

= C exp (
κn
r + d

) (∣((− log(g))′)(∥xn∥0)∣)
−1
,
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which implies the �rst assertion.
Suppose now, that ∥xn∥0 ≤ ζn, n ∈ N as de�ned in equation (5.8) for some
bounded sequence (ηn)n∈N. Let ε ∈ (0,1) and

Nε ∶= {n ∈ N ∶ ∥xn∥0 ≤ ε((− log(g)))−1( log(n))}.

Then

∥xn∥0 ≤ (− log(g))−1(
r + d

d
log(n)) − (1 − ε)(− log(g))−1(

r + d

d
log(n))

≤ (− log(g))−1(
r + d

d
log(n)) − ((− log(g))−1)

′
(ξn)×

(ηn − (r + d) log (∣((− log(g))′)(∥xn∥0)∣) )

= (− log(g))
−1

(ηn +
r + d

d
log(n)

− (r + d) log (∣((− log(g))′)(∥xn∥0)∣) )

for some sequence ξn ∼
r+d
d

log(n) and n ∈ Nε, n ≥ N1(ε) ∈ N.
For n ∈ N/Nε with n ≥ N2(ε) ∈ N one has

ε(− log(g))−1( log(n)) ≤ ∥xn∥0 ≤
1

ε
(− log(g))−1( log(n)).

Hence,

∥xn∥0 ≤ ζn ≤ (− log(g))
−1

(
r + d

d
log(n) + ηn

− η′n + ∣θ − 1∣ log(
1

ε
) − (r + d) log (∣((− log(g))′) (∥xn∥0)∣) )

,

for some sequence η′n → 0. ηn−η
′
n+∣θ − 1∣ log( 1

ε
) is bounded and we obtain

the assertion.

2. We show that the assertion holds for two types of subsequences (xnk)k∈N,
which will be for convenience also denoted (xn)n∈N.

Step 1: Let ε ∈ (0,1). Let (xn)n∈N satisfy ∥xn∥0 ≤ h
←(C(ε)n−

r+d
d ), n ∈ N

where h(x) ∶= g(x)xr+d and a constant C(ε) ∈ R speci�ed later. Then, by
the �rst micro-macro inequality (Proposition 2.1.5), there exists a constant
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C ∈ (0,∞) such that

dist(xn, αn) ≤ C (
n−(1+

r
d )

f(xn)
)

1
r+d

= Cn−
1
d
∥xn∥0

∥xn∥0

(g(∥xn∥0))
− 1
r+d

= Cn−
1
d ∥xn∥0 (h(∥xn∥0))

− 1
r+d

≤ Cn−
1
d ∥xn∥0 (C(ε)n−

r+d
d )

− 1
r+d

= C ∥xn∥0C(ε)−
1
r+d

for all n ∈ N. Since

dist0(xn, αn) ≤ C∥⋅∥,∥⋅∥0
dist(xn, αn)

for n ∈ N, we obtain the assertion by selecting C(ε) su�ciently large such

that CC∥⋅∥,∥⋅∥0
C(ε)−

1
r+d < 1.

Step 2: Suppose now that the sequence (xn)n∈N satis�es

∥xn∥0 ≥ h
←(C(ε)n−

r+d
d ), n ∈ N,

with C(ε) ∈ R such that CC∥⋅∥,∥⋅∥0
C(ε)−

1
r+d = 1

2
. Then, by Step 1, there

exist codes bn ∈ αn such that

∥bn − x
′
n∥0 ≤

1

2
∥x′n∥0 ,

where
x′n =

xn
∥xn∥0

h←(C(ε)n−
r+d
d ).

Therefore

dist0(xn, αn) ≤ dist0(xn, bn) ≤ ∥xn − x
′
n∥0 + ∥bn − x

′
n∥0

≤ ∥xn∥0 (1 −
1

∥xn∥0

h←(C(ε)n−
r+d
d )) +

1

2
∥x′n∥0

= ∥xn∥0 (1 −
1

2 ∥xn∥0

h←(C(ε)n−
r+d
d )) ,

which yields the assertion since, by the assumption for some κ < ∞

∥xn∥0 ≲ κρ(αn) ≈ h
←(C(ε)n−

r+d
d ), n→∞.
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Unfortunately, at least for sequences of codes (an)n∈N with unbounded Voronoi
cells Van(αn), it seems to be impossible to satisfy condition (5.5), independently
of the shape of the density f .
For densities of Type II, as a consequence of the following Proposition, we will
be able to cope, for every constant C > 0, with sequences of cells (Van(αn))n∈N
satisfying Van(αn) ⊂ Cρ(αn)B(0,1), n ∈ N. This will be su�cient to cover the
outer cells of the codebook αn. As for the densities of Type I, a similar result
can only be achieved under some additional restrictions.

Lemma 5.3.6. Let (αn)n∈N be a sequence of r-optimal n-quantizers for X in
Rd.

1. (Type I) One has

µr(B0(0, yn)
c) ≼

1

n
, n→∞

for every sequence (yn)n∈N such that

yn ≥ (− log(g))−1(
r + d

d
log(n) + κn

+ (r + d) log(yn) −
r + d

d
log((− log(g))(yn)))

for some arbitrary bounded sequence (κn)n∈N in R. In particular, this is
true for

yn ≥ ζ
′
n ∶= (− log(g))−1(

r + d

d
log(n) + κn

+ (r + d) log((− log(g))−1(
r + d

d
log(n)))−

r + d

d
log((

r + d

d
log(n))))).

2. (Type II) For every C > 0 there exists a constant C ′ < ∞ such that for
every sequence (an)n∈N satisfying an ∈ αn, n ∈ N

µ(B0(0,Cρ(αn))
c) ≲

C ′

n
f(an)

r
r+d , n→∞,

as well as

µr(B0(0,Cρ(αn))
c) ≲ C ′ 1

n
, n→∞.

Conversely, for every C ′ < ∞ there exists a constant C > 0 such that

µ(B0(0,Cρ(αn))
c) ≲

C ′

n
f(an)

r
r+d , n→∞,

and

µr(B0(0,Cρ(αn))
c) ≲ C ′ 1

n
, n→∞.
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Proof. 1. (Type I) In virtue of Proposition A.9 we estimate for x ≥ A

µr(B0(0, x)
c) = ∥f

d
r+d ∥

−1

1
∫
B0(0,x)c

f
d
r+d (t)dλd(t)

= ∥f
d
r+d ∥

−1

1
C ∫

∞

x
td−1g

d
r+d (t)dλ(t)

≈ xd−1g
d
r+d (x)

1

(− log(g))′(x)

≈ xdg
d
r+d (x)

1

(− log(g))(x)
, x→∞,

for some constant C ∈ (0,∞). Hence

µr(B0(0, yn)
c) ≼

1

n
, n→∞

⇐⇒− d log(yn) −
d

r + d
log(g(yn)) + log ((− log(g))(yn))

≥ log(n) +O(1)

⇐⇒yn ≥ (− log(g))−1(
r + d

d
log(n) +O(1)

+ (r + d) log(yn) −
r + d

d
log ((− log(g))(yn))).

By an argumentation as in the proof of Proposition 5.3.5 (Type I), the
result holds true for yn ≥ ζ

′
n, n ∈ N.

2. (Type II) Let C > 0. For every sequence (an)n∈N such that an ∈ αn ∩
B0(0,Cρ(αn))

c, n ∈ N one has

f
r
r+d (an) ≥ g

r
r+d (∥an∥0) ≳ (CC∥⋅∥,∥⋅∥0

)
−ar
r+d g

r
r+d (ρ(αn))

≈
ρ(αn)

r

ρ(αn)r
g

r
r+d (ρ(αn))

≈
1

ρ(αn)r
h

r
r+d (ρ(αn)), n→∞,

where h(x) ∶= xr+dg(x). Thus, by Theorem 3.2.1 (Type II)

f
r
r+d (an) ≳ κn

− rd
1

ρ(αn)r
, n→∞,

for some κ ∈ (0,1). Moreover, we have

∫
B0(0,Cρ(αn))c

f(x)dλd(x) = ∫
∞

Cρ(αn)
∫
∂B0(0,y)

g(y)dλ(y)

≈ ∫
∞

Cρ(αn)
∫
∂B0(0,1)

yd−1g(y)dλ(y)

≈
1

ρ(αn)r
n−

r+d
d , n→∞.

(5.9)
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Thus

∫
B0(0,Cρ(αn))c

f(x)dλd(x) ≼ f
r
r+d (an)

1

n
, n→∞,

which yields the upper bound for the weights of the outer region. As for
the µr-weights, one estimates

µr(Van(αn)) ≼ κ∫
B0(0,Cρ(αn))c

f
d
r+d (x)dλd(x)

≼ ∫
∞

Cρ(αn)
xd−1g

d
r+d (x)dλ(x)

≈ h
d
r+d (ρ(αn))

≈
1

n
, n→∞.

The converse result for µ(B0(0,Cρ(αn))
c) and µr(B0(0,Cρ(αn))

c) fol-
lows analogously.

Proof of Theorem 5.3.1. The idea of the proof is as follows: The inner cells are
covered by Theorem 5.1.1. As for the outer cells, each one is divided into an
inner region and an outer region. The inner region will be covered by Lemma
5.2.5 in combination with Lemmas 5.3.4 and 5.3.5, the outer area will be covered,
as far as possible, by Lemma 5.3.6.
Let (αn)n∈N be a sequence of r-optimal n-quantizers for X in Rd and an ∈
αn, n ∈ N. By Theorem 5.1.1, the results hold true for (sub)-sequences (ank)k∈N
in B0(0,A). Hence, we have to prove the results for subsequence (ank)k∈N such
that Vank (αnk) ⊂ B0(0,A)c. For convenience, we will denote this subsequence
also (an)n∈N.

1. (Type I) The general results independent of the dimension d ∈ N are a con-
sequence of Lemma 5.2.5 and Proposition 5.3.5 (Type I). For the speci�c
result in case d = 1, we have to prove the upper bound for the µr-weights
of the Voronoi cells. In fact, in this case there exist bounded sequences
(ηn)n∈N and (κn)n∈N such that

ζ ′n ≤ ζn, n ∈ N,

where (ζn)n∈N as in Proposition 5.3.5, (Type I) and (ζ ′n)n∈N as in Lemma
5.3.6 (Type I). To observe this, one estimates in virtue of the regularity
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assumption on (− log(g))′

ζ ′n = (− log(g))−1(
r + d

d
log(n) + κn

+ (r + d) log((− log(g))−1(
r + d

d
log(n)))−

r + d

d
log((

r + d

d
log(n)))))

≤ (− log(g))
−1

(
r + d

d
log(n) + ηn

+ (r + d) log ((((− log(g))−1)
′
)(
r + d

d
log(n)))) = ζn

⇐⇒

κn + (r + d) log((− log(g))−1(
r + d

d
log(n))) −

r + d

d
log((

r + d

d
log(n))))

≤ ηn + (r + d) log ((((− log(g))−1)
′
)(
r + d

d
log(n)))

⇐⇒

κn −
r + d

d
log ((

r + d

d
log(n)))

≲ ηn − (r + d) log (
r + d

d
log(n)), n→∞,

which is true for some bounded sequences (κn)n∈N and (ηn)n∈N in case d =
1. We denote V ian(αn) ∶= Van(αn)∩B0(0, ζn) and V

o
an(αn) ∶= Van(αn)/V

i
an(αn).

From Proposition 5.3.5 and Lemma 5.3.4 we deduce

ess inf
x∈V ian(αn)

f(x) ≈ f(an) ≈ ess sup
x∈V ian(αn)

f(x), n→∞

for all sequences (an)n∈N in (αn)n∈N. By the �rst micro-macro inequality
(Proposition 2.1.5), Lemma 5.3.6 (Type I) and the fact that ζ ′n ≤ ζn, n ∈ N
we derive

µr(Van(αn)) ≼ ess sup
x∈V ian(αn)

f
d
r+d (x)λd(V ian(αn)) +

1

n

≤ ess sup
x∈V ian(αn)

f
d
r+d (x) ess sup

y∈V ian(αn)

λd(B(0,dist(y,αn))) +
1

n

≤ ess sup
x∈V ian(αn)

f
d
r+d (x) ess sup

y∈V ian(αn)

dist(y,αn)
dλd(B(0,1)) +

1

n

≲ ess sup
x∈V ian(αn)

f
d
r+d (x)

1

n
ess sup
y∈V ian(αn)

f(y)−
d
r+dλd(B(0,1)) +

1

n

≼
1

n
, n→∞.
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The upper bound for the local inertia we deduce with Lemma 5.2.1, the
lower bounds we deduce from Theorems 5.2.2 and 5.2.3.

2. (Type II) Let C ∈ (0,∞). We denote V ian(αn) ∶= Van(αn) ∩ B0(0,Cρn)
and V oan(αn) ∶= Van(αn)/V

i
an(αn) for all n ∈ N. From Proposition 5.3.5

and Lemma 5.3.4 we deduce

ess inf
x∈V ian(αn)

f(x) ≈ f(an) ≈ ess sup
x∈V ian(αn)

f(x), n→∞

for all sequences (an)n∈N such that an ∈ αn, n ∈ N. We obtain by using the
�rst micro-macro inequality (Proposition 2.1.5) and Lemma 5.3.6 (Type
II)

µ(Van(αn)) ≼ ess sup
x∈V ian(αn)

f(x)λd(V ian(αn)) + f
r
r+d (an)

1

n

≤ ess sup
x∈V ian(αn)

f(x) ess sup
y∈V ian(αn)

λd(B(0,dist(y,αn))) + f
r
r+d (an)

1

n

≼ ess sup
x∈V ian(αn)

f(x) ess sup
y∈V ian(αn)

dist(y,αn)
dλd(B(0,1)) + f

r
r+d (an)

1

n

≼ ess sup
x∈V ian(αn)

f(x)
1

n
ess sup
y∈V ian(αn)

f(y)−
d
r+dλd(B(0,1)) + f

r
r+d (an)

1

n

≼ C2f
r
r+d (an)

1

n
, n→∞.

Analogously, one shows

µr(Van(αn)) ≼ ess sup
x∈V ian(αn)

f
d
r+d (x)λd(V ian(αn)) +

1

n

≤ ess sup
x∈V ian(αn)

f
d
r+d (x) ess sup

y∈V ian(αn)

λd(B(0,dist(y,αn))) +
1

n

≤ ess sup
x∈V ian(αn)

f
d
r+d (x) ess sup

y∈V ian(αn)

dist(y,αn)
dλd(B(0,1)) +

1

n

≼ ess sup
x∈V ian(αn)

f
d
r+d (x)

1

n
ess sup
y∈V ian(αn)

f(y)−
d
r+dλd(B(0,1)) +

1

n

≼
1

n
, n→∞.

The upper bound for the local inertia we deduce with Lemma 5.2.1.
We come to the lower bound for the µ-weights of the Voronoi cells. Ap-
plying the �rst and the second micro-macro-inequality (Propositions 2.1.5
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and 2.1.7), we obtain for some constant κ ∈ (0,∞)

κn−(1+
r
d ) ≤ ∫

Van(αn)
dist(x,αn/{an})

rdµ(x)

≤ ∫
V 0
an

(αn)
dist(x,αn/{an})

rdµ(x) + ∫
V ian(αn)

dist(x,αn/{an})
rdµ(x)

≤ n−
r
d ∫

V 0
an

(αn)
f1− r

r+d (x)dλd(x) + ∫
V ian(αn)

dist(x,αn/{an})
rdµ(x)

≤ κ1n
−(1+ rd ) + ∫

V ian(αn)
dist(x,αn/{an})

rdPX(x), n→∞,

(5.10)

for some constant κ1 < κ given that C ∈ (0,∞) su�ciently large. Thus,
there exists κ2 ∈ (0,∞) such that

κ2n
−(1+ rd ) ≤ ∫

V ian(αn)
dist(x,αn/{an})

rdPX(x), n→∞.

By de�nition of a Voronoi cell, and by selecting C su�ciently large such
that αn ⊂ CρnB0(0,1), n ∈ N, we derive for x ∈ V ian(αn)

dist(x,αn/{an}) ≤ ∥x − an∥ + dist(an, αn/{an})

≤ 3 sup
z∈V ian(αn)

dist(z,αn).

Combining this with the �rst micro-macro inequality (Proposition 2.1.5),
we obtain

κn−(1+
r
d ) ≤ 3Cµ(V ian(αn)) ess sup

x∈V ian(αn)

f−
r
r+d (x)

≼ µ(V ian(αn))f
− r
r+d (an), n→∞,

which implies the lower bound for the weight of the Voronoi cell. The
lower bound for the quantization error and the µr-weight is an immediate
consequence of Theorems 5.2.2 and 5.2.3. The asymptotic lower bound
for dist(a,αn/{a}) is a consequence of Lemma 5.2.4. The upper bound
follows with Lemma 5.2.5 for (sub)sequences (an)n∈N in B0(0, ερ(αn)) and
ε ∈ (0,1) su�ciently small, for (sub)sequences (an)n∈N in B0(0, ερ(αn))

c

the result is obvious.



Chapter 6

Constructive quantization of

stochastic processes

In this chapter, we want to discuss practical approaches for the construction of
optimal quantizers for r.e.'s in in�nite dimensional Banach spaces. Here, one
is strongly interested in a constructive approach that allows to implement an
explicit coding strategy and to compute (at least numerically) good codebooks.

In the �nite dimensional setting, the algorithms and procedures presented
in section 1.2, paragraph "construction of optimal quantizers" allow reason-
able approaches to calculate optimal quantizers with a limited amount of e�ort.
Without further ado, the methods become intractable when considering r.e.'s
in in�nite dimensional Banach spaces. One famous and fruitful method to over-
come this problem is to reduce the complexity of the r.e. X Banach space E,
in order to

� use the algorithms developed for the �nite dimensional setting to calcu-
late optimal quantizers for simpli�ed r.e's φn(X) ∈ Fn ⊂ E a.s., where
dim(Fn) < ∞, and additionally

� to control the approximation error E ∥X − φn(X)∥
r
.

Considering e.g. Gaussian r.e.'s in a Hilbert space setting, the proof of The-
orem 1.2.12 shows us how to construct asymptotically r-optimal n-quantizers
for these processes, which means sequences of n-quantizers αn, n ∈ N satisfying

er(X,E,αn) ∼ en,r(X,E), n→∞. (6.1)

These quantizers can be constructed by reducing the quantization problem to
a quantization problem of a �nite dimensional normal distributed random vari-
able. Even if there are almost no explicit formulas known for optimal codebooks
in �nite dimensions, the existence is guaranteed and there exist a lot of deter-
ministic and stochastic numerical algorithms to compute optimal codebooks, as

139
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the CLVQ- algorithms or the Lloyd-I procedures described in section 1.2. Un-
fortunately, one needs to know explicitly the eigenvalues and eigenvectors of the
covariance operator CX to pursue this approach.

If we consider other non-Hilbertian function spaces (E, ∥⋅∥) or non-Gaussian
random variables in an in�nite dimensional Hilbert space, there is much less
known on how to construct asymptotically optimal quantizers. Most approaches
to calculate the asymptotics of the quantization error are either non-constructive
(e.g. [Cre02], [GLP03]), are tailored to one speci�c process type (e.g. [Der08b],
[Der08a] and [DS06]) or the constructed quantizers do not achieve the sharp
rate in the sense of (6.1) (e.g. [LP08] or [Wil08]) but just the weak rate

er(X,E,αn) ≈ en,r(X,E), n→∞. (6.2)

In this chapter, we develop a constructive approach to calculate sequences of
asymptotically r-optimal n-quantizers (in the sense of (6.1)) for a broad class of
random variables in in�nite dimensional Banach spaces. Constructive means in
this case that we reduce the quantization problem to the quantization problem
of a Rd-valued random variable, that can be solved numerically. This approach
can either be used in Hilbert spaces in case the eigenvalues and eigenvectors of
the covariance operator of a Gaussian random variable are unknown, or for quan-
tization problems in di�erent Banach spaces. Furthermore, we discuss Gaussian
random variables in (C(0,1), ∥⋅∥L∞). This part is related to Wilbertz's PhD
thesis ([Wil08]). More precisely, we sharpen his constructive results by showing
that the quantizers constructed in the thesis also achieve the sharp rate for the
asymptotic quantization error (in the sense of (6.1)). Moreover, we can show
that the dimensions of the subspaces wherein these quantizers are contained
can be lessened without loosing the sharp asymptotics property. Additionally,
we use some ideas by Luschgy and Pagès ([LP08]) and develop for Gaussian
random variables and for a broad class of Lévy processes asymptotically optimal

quantizers in the Banach space (Lp([0,1]), ∥⋅∥Lp).

It is worth mentioning that all these quantizers can be constructed with-
out knowing the true rate of the quantization error. This means precisely: If
we know a (rough) lower bound for the quantization error, i.e. en,r(X,E) ≳
C1 log(n)−b1 and the true but unknown rate is en,r(X,E) ∼ C2 log(n)−b2 for
constants C1,C2, b1, b2 ∈ (0,∞), then, we are able to construct a sequence of
n-quantizers αn, n ∈ N that satis�es

er(X,E,αn) ∼ en,r(X,E) ∼ C2 log(n)−b2 , n→∞ (6.3)

for the optimal, but still unknown constants C2, b2.
The crucial factors for the numerical implementation are the dimensions of

the subspaces, wherein the asymptotically optimal quantizers are contained. We
will calculate the dimensions of the subspaces obtained through our approach
and we will see that for all analyzed Gaussian processes, and also for many Lévy
processes, we are very close to the known asymptotics of the optimal dimension
in the case of Gaussian processes in in�nite dimensional Hilbert spaces.
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Finally, we will present some important examples of Gaussian and Lévy
processes and illustrate some of our results.

Notes and references: The results presented in this chapter have already
been published, see [JL10].

6.1 The main Theorem

We assume throughout that ∣supp(PX)∣ = ∞. To formulate the main result, we
need for an in�nite subset J ⊂ N the following:

1. There exist linear operators Vm ∶ E → Fm ⊂ E for m ∈ J with ∥Vm∥ ≤ 1, for
�nite dimensional subspaces Fm with dim(Fm) = m, where the operator
norm ∥⋅∥ is de�ned as

∥Vm∥ ∶= sup
x∈E,∥x∥≤1

∥Vm(x)∥ .

2. There exist linear isometric and onto operators φm ∶ (Fm, ∥⋅∥) → (Rm, ∣⋅∣m)
with suitable norms ∣⋅∣m in Rm for all m ∈ J .

3. There exist random variables Zm for m ∈ J in E with Zm
d
= X, such that

for the approximation error ∥∥X − Vm(Zm)∥∥Lr(P,E) holds

∥∥X − Vm(Zm)∥∥Lr(P,E) Ð→ 0,

as m→∞ along J .

Remark 6.1.1. The crucial point in condition (1) is the norm one restriction
for the operators Vm. Condition (2) becomes important when constructing the
quantizers in Rm equipped with some well known norm. As we will see in the
proof of the subsequent Theorem, in order to show asymptotic optimality of a
constructed sequence of quantizers one needs to know only a rough lower bound
for the asymptotic quantization error. In fact, this lower bound allows us in
combination with condition (3) to choose explicitly a sequence m(n) ∈ J,n ∈ N
such that

∥∥X − Vm(n)(Zm(n))∥∥Lr(P,E)
= o(en,r(X,E)) , n→∞. (6.4)

Theorem 6.1.2. Assume that the conditions (1) − (3) hold for some in�nite
subset J ⊂ N. We choose a sequence (m(n))n∈N ∈ JN such that (6.4) is satis�ed.
For n ∈ N, let αn be an r-optimal n-quantizer for ξn ∶= φm(n)(Vm(n)(Zm(n))) in

(Rm(n), ∣⋅∣m(n)).

Then, (φ−1
m(n)(αn))n∈N

is an asymptotically r-optimal sequence of n-quantizers

for X in E and

en,r(X,E) ∼ (E ∥X − fφ−1
m(n)

(αn)(Vm(n)(Zm(n)))∥
r
)

1
r

∼ er(X,E,φ
−1
m(n)(αn)),

as n→∞.
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Remark 6.1.3. Note, that for n ∈ N there always exist r-optimal n-quantizers
for ξn ([GL00, Theorem 4.12]).

Proof. Using condition (3), and the fact that en,r(X,E) > 0 for all n ∈ N since
∣supp(PX)∣ = ∞, we can choose a sequence (m(n))n∈N ∈ NN ful�lling (6.4).

Using Lemma 1.2.5 and condition(2), we see that φ−1
m(n)(αn) is an r-optimal

n-quantizer for Vm(n)(Zm(n)) in Fm(n). Then, by using condition(1), (6.4) and
Lemma 1.2.5 we obtain

en,r(X,E) ≤ (E ∥X − fφ−1
m(n)

(αn)(Vm(n)(Zm(n)))∥
r
)

1
r

≤ (E ∥X − Vm(n)(Zm(n))∥
r
)

1
r

+ (E ∥Vm(n)(Zm(n)) − fφ−1
m(n)

(αn)(Vm(n)(Zm(n)))∥
r
)

1
r

= (E ∥X − Vm(n)(Zm(n))∥
r
)

1
r + en,r(Vm(n)(Zm(n)), (Fm(n), ∥⋅∥))

≤ (E ∥X − Vm(n)(Zm(n))∥
r
)

1
r + en,r(Zm(n),E)

= (E ∥X − Vm(n)(Zm(n))∥
r
)

1
r + en,r(X,E)

∼ en,r(X,E), n→∞.

Remark 6.1.4. We will usually choose Zm =X for all m ∈ N, with one exception
in the following section and J = N.
Remark 6.1.5. The crucial factor for the numerical implementation of the pro-
cedure are the dimensions (m(n))n∈N of the subspaces (Fm(n))n∈N. For the well
known case of the Brownian motion in the Hilbert space H = L2([0,1]) it is
known that this dimension sequence can be chosen as m(n) ≈ log(n), n → ∞.
In the following examples we will see that we can often obtain similar orders
like log(n)c for constants c just slightly higher than one.

We point out that there is a non-asymptotic version of Theorem 6.1.2 for
nearly optimal n-quantizers, that is for n-quantizers which are optimal up to
ε > 0. Its proof is analogously to the proof of Theorem 6.1.2.

Proposition 6.1.6. Assume that conditions (1)−(3) hold. Let m(ε) ∶= inf{m ∈
N ∶ ∥X − Vm(Zm)∥Lr(P) < ε} and ξn ∶= φm(ε) (Vm(ε)(Zm(ε))) for n ∈ N. Then

er(X,E, fφ−1
m(ε)

(αn)(Vm(ε)(Zm(ε)))) ≤ en,r(X,E) + ε,

for every n ∈ N and for every r-optimal n-quantizer αn for ξn in (Rm(ε), ∣⋅∣m(ε)).

6.2 Applications

The key criterion for the usability of the results of the previous section is the
question of the existence of speci�c triples (Fm, Vm, φm) admitting the required
assumptions of Theorem 6.1.2. As we will observe hereafter, there are several
interesting cases, in which we will be able to pursue this approach.
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Hilbertian path spaces Let X be a centered Gaussian random variable in
the separable Hilbert space (H, ⟨⋅, ⋅⟩). Following the approach used in the proof
of Theorem 1.2.15, we have for every sequence (ξi)i∈N of independent N(0,1)-
distributed random variables

X
d
=

∞

∑
i=1

√
λifiξi, (6.5)

where λi denote the eigenvalues and fi denote the corresponding orthonormal
eigenvectors of the covariance operator CX of X. If these parameters are known,
we can choose a sequence (dn)n∈N such that a sequence of optimal quantizer αn
for Xn = ∑

dn
i=1

√
λifiξi is asymptotically optimal for X in E.

In order to construct asymptotically optimal quantizers for Gaussian random
variables with unknown eigenvalues or eigenvectors of the covariance operator,
we start with more general expansions. In fact, we just need one of the two
orthogonalities, either in L2(P,E) or in H.

1. Let (hi)i∈N be an orthonormal basis of H. Then

X =
∞

∑
i=1

hi ⟨hi,X⟩ a.s. .

Compared to (6.5) we see that ⟨hi,X⟩ are still Gaussian, but generally
not independent.

2. Let (gj)j∈N be an admissible sequence for X in H such that

X
d
=

∞

∑
i=1

ξigi.

Compared to (6.5) the sequence (gi)i∈N is generally not orthogonal.

Before we will use these representations forX to �nd suitable triples (Vm, Fm, φm)
as in Theorem 6.1.2, note that for Gaussian random variables inH ful�lling suit-
able assumptions we know that

en,2(X,H) ≈ en,s(X,H), n→∞ (6.6)

for all s ≥ 1, see [GLP03]. Thus, we will focus on the case s = 2 to search for
lower bounds for the quantization errors.

Orthonormal basis Let (hm)m∈N be an orthonormal basis of H.

1. We set Fm = span{h1, . . . , hm}.

2. We set Vm ∶= prFm ∶ E → Fm, the orthogonal projection on Fm. It is well
known that ∥Vm∥ = 1.
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3. De�ne the linear, surjective and isometric operators φm by

φm ∶ (Fm, ∥⋅∥) → (Rm, ∥⋅∥2), hi ↦ ei,

where ei denotes the i-th unit vector in Rm, 1 ≤ i ≤m.

Theorem 6.2.1. Assume that the eigenvalue sequence (λj)j∈N of the covariance
operator CX satis�es λj ≈ j

−b for −b < −1 and let ε > 0 be arbitrary. Assume fur-
ther that (hj)j∈N is a rate optimal ONS for X in H. We set m(n) = ⌈log(n)1+ε⌉
for n ∈ N. Then, for every sequence (αn)n∈N with
αn ∈ Cn,r(φm(n)(Vm(n)(X)), (Rm(n), ∥⋅∥2)) one has

en,r(X,H) ∼ er(X,H,φ
−1
m(n)(αn)) ∼ (E ∥X − fφ−1

m(n)
(αn)(Vm(n)(X))∥

r
)

1
r

,

as n→∞.

Proof. See [JL10, Theorem 3.1].

Admissible sequences Let (gi)i∈N be an admissible sequence for X, and
assume that ∑

∞
i=1 ξigi =Xa.s. . We use the following notations:

1. We set Fm ∶= span{g1, . . . , gm}.

2. We de�ne Vm ∶H → Fm ⊂H by

Vm(fj) ∶= f
(m)

j

¿
Á
Á
ÁÀ

λ
(m)

j

λj
,

for j ≤m and Vm(fj) ∶= 0 for j >m, where λj and fj denote the eigenvalues

and the corresponding eigenvectors of CX and λ
(m)

j , f
(m)

j the eigenvalues
and the corresponding eigenvectors of CXm , with Xm de�ned as

Xm ∶=
m

∑
i=1

giξi.

Note that Vm maps H onto Fm, since

span{g1, . . . , gm} = span{f
(m)

1 , . . . , f (m)
m }.

Furthermore, it is important to mention that one does not need to know λj
and fj explicitly to construct the subsequent quantizers, since we can �nd

for any m ∈ N a random variable Zm
d
= X such that Vm(Zm) = ∑

m
i=1 ξigi

(see the proof of Theorem 6.2.2), which is explicitly known and su�cient
to know for the construction.

3. De�ne the linear, surjective and isometric operators φm by

φm ∶ (Fm, ∥⋅∥) → (Rm, ∥⋅∥2), f
(m)

i → ei,

where ei denotes the i-th unit vector of Rm for 1 ≤ i ≤m.
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Theorem 6.2.2. Assume that the eigenvalue sequence (λj)j∈N of the covariance
operator CX satis�es λj ≈ j

−b for −b < −1 and let ε > 0 arbitrary. Assume that
(gj)j∈N is a rate optimal admissible sequence for X in H. We set m(n) =
⌈log(n)1+ε⌉ for n ∈ N. Then, there exist random variables Zm, m ∈ N with

Zm
d
= X such that for every sequence (αn)n∈N of r-optimal n-quantizers for

φm(n)(Vm(n)(Zm(n))) in (Rm(n), ∥⋅∥2)

en,r(X,H) ∼ er(X,H,φ
−1
m(n)(αn)) ∼ (E ∥X − fφ−1

m(n)
(αn)(Vm(n)(Zm(n)))∥

r
)

1
r

,

as n→∞.

Proof. See [JL10, Theorem 3.3].

Gaussian processes with path in (C([0,1]), ∥⋅∥L∞) In the previous para-
graph, where we worked with Gaussian random variables in Hilbert spaces, we
saw that special Hilbertian subspaces, projections and other operators linked to
the Gaussian random variable were good tools to develop asymptotically optimal
quantizers based on Theorem 6.1.2. Since we now consider the non-Hilbertian
separable Banach space (C([0,1]), ∥⋅∥L∞), we have to �nd di�erent tools that
are suitable for Theorem 6.1.2.

The tool used in [Wil08] are B-splines of order s ∈ N. In the case s = 2, that we
will consider hereafter, these splines span the same subspace of C([0,1], ∥⋅∥L∞)
as the classical Schauder basis. We set for x ∈ [0,1], m ≥ 2 and 1 ≤ i ≤ m the

knots t
(m)

i ∶= i−1
m−1

and the hat functions

f
(m)

i (x) ∶= 1
[t
(m)
i ,t

(m)
i+1 ]

(x)(1−(x− t
(m)

i )(m−1))+1
[t
(m)
i−1 ,t

(m)
i )

(x)(x− t
(m)

i−1 )(m−1).

We use the following notations:

1. As subspaces Fm we set Fm ∶= span{f
(m)

j ,1 ≤ j ≤m}.

2. As linear and continuous operators Vm ∶ C([0,1]) → Fm we set the quasi-
interpolant

Vm(f) ∶=
m

∑
i=1

f
(m)

i β
(m)

i (f),

where β
(m)

i (f) ∶= f(t
(m)

i ).

3. The linear and surjective isometric mappings φm we de�ne as

φm ∶ (Fm, ∥⋅∥L∞) → (Rm, ∥⋅∥∞),
m

∑
i=1

aif
(m)

i → (a1, . . . , am) .

It is easy to see that ∥∑
m
i=1 aif

(m)

i ∥
L∞

= ∥(a1, . . . , am)∥∞ holds for every

a ∈ Rm.
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For the application of Theorem 6.1.2, we need to know the error bounds for the
approximation of X with the quasi-interpolant Vm(X). For Gaussian random
variables, we can provide the following result based on the smoothness of an
admissible sequence for X in E.

By estimating the approximation power of the B-splines of order 2 for Gaus-
sian processes (see [JL10, Proposition 4.1]), one is able to deduce

Theorem 6.2.3. (see [JL10, Theorem 4.2]) Let X be a centered Gaussian ran-
dom variable and (gj)j∈N be an admissible sequence for X in C([0,1]) ful�lling

1. ∥gj∥L∞ ≤ C1j
−θ for every j ≥ 1, θ > 1

2
and C1 < ∞.

2. gj ∈ C
2([0,1]) with ∥g

′′

j ∥
L∞

≤ C2j
−θ+2 for every j ≥ 1 and C2 < ∞.

with θ = b
2
, where the constant b > 1 satis�es λj ≳ Kj

−b with λj , j ∈ N denoting
the monotone decreasing eigenvalues of the covariance operator CX of X in

H = L2([0,1]) and K > 0. We set m(n) ∶= ⌈log(n)
5
4+ε⌉ for some ε > 0. Then,

for every sequence (αn)n∈N of r-optimal n-quantizers for φm(n)(Vm(n)(X)) in

(Rm(n), ∥⋅∥∞) it holds

en,r(X, (C([0,1]), ∥⋅∥L∞)) ∼ er(X,C([0,1]), φ−1
m(n)(αn))

∼ (E ∥X − fφ−1
m(n)

(αn)(Vm(n)(X))∥
r

L∞
)

1
r

,

as n→∞.

Stochastic processes with path in Lp([0,1], ∥⋅∥Lp) Another useful tool for

our purposes is the Haar basis in Lp([0,1]) for 1 ≤ p < ∞, which is de�ned by

e0 ∶= 1[0,1] e1 ∶= 1[0, 12 ) − 1[
1
2 ,1]

e2n+k ∶= 2
n
2 e1(2

n ⋅ −k) , n ∈ N, k ∈ {0, . . . ,2n − 1}.

This is an orthonormal basis of L2([0,1]) and a Schauder basis of Lp([0,1]) for

p ∈ [1,∞), that is ⟨f, e0⟩+∑
∞
n=0∑

2n−1
k=1 ⟨f, e2n+k⟩ e2n+k converges to f in Lp([0,1])

for every f ∈ Lp([0,1]), see [Sin70].
The Haar basis is used in [LP08] to construct rate optimal sequences of quan-
tizers for mean-regular processes. These processes are speci�ed through the
property that for all 0 ≤ s ≤ t ≤ 1

E ∣Xt −Xs∣
p
≤ (ρ(t − s))p, (6.7)

where ρ ∶ R+ → [0,∞) is regularly varying with index b > 0 at 0, which means
that

lim
x→0

ρ(cx)

ρ(x)
= cb,

for all c > 0. Condition (6.7) also guarantees that the paths t → Xt lie in
Lp([0,1]).
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For our approach, it will be convenient to de�ne for m ∈ N and 1 ≤ i ≤m+ 1 the

knots t
(m)

i ∶= i−1
m
, for 1 ≤ i ≤m − 1 the functions

f
(m)

i (x) ∶= 1
[t
(m)
i ,t

(m)
i+1 )

(x)
√
m, f (m)

m (x) ∶= 1
[t
(m)
m ,1]

(x)
√
m,

and the operators

Vm(f) ∶=
m

∑
i=1

f
(m)

i ⟨f
(m)

i , f⟩ .

Note, that for f ∈ L1([0,1]), m = 2n+1 and n ∈ N0

⟨e0, f⟩ e0 +
n

∑
i=0

2i−1

∑
k=0

⟨e2i+k, f⟩ e2i+k =
m

∑
i=1

f
(m)

i ⟨f
(m)

i , f⟩ .

We set the following notations:

1. We set for m ∈ N the subspaces Fm ∶= span{f
(m)

1 , . . . , f
(m)
m }.

2. Set the linear and continuous operator Vm to

Vm ∶ Lp([0,1]) Ð→ Fm

f Ð→
m

∑
i=1

⟨f
(m)

i , f⟩ f
(m)

i .

3. For p ∈ [1,∞) we set the isometric isomorphisms φm,p ∶ (Fm, ∥⋅∥Lp) →

(Rm, ∥⋅∥p) as

φm,p(
m

∑
i=1

aif
(m)

i ) ∶=m( 1
2−

1
p )(a1, . . . , am).

Theorem 6.2.4. Let X be a random variable in the Banach space (E, ∥⋅∥) =
(Lp([0,1]), ∥⋅∥Lp) for some p ∈ [1,∞) ful�lling the mean pathwise regularity
property

∥Xt −Xs∥Lr∨p ≤ C(t − s)a,

for constants C,a > 0 and t > s ∈ [0,1]. Moreover, assume that K log(n)−b ≲
en,r(X,E) for constants K,b > 0. Then, for an arbitrary ε > 0 and m(n) ∶=

⌈(log(n))
b
a+ε⌉ holds that every sequence of r-optimal n-quantizers (αn)n∈N for

φm(n),p(Vm(n)(X)) in (Rm(n), ∥⋅∥p) satis�es

en,r(X,Lp([0,1])) ∼ er(X,Lp([0,1]), φ
−1
m(n),p(αn))

∼ (E ∥X − fφ−1
m(n),p

(αn)(Vm(n)(X))∥
r

Lp
)

1
r

,

as n→∞.

Proof. See [JL10, Theorem 5.1].
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6.3 Examples

In this section, we want to present some processes that ful�ll the requirements
of Theorems 6.2.1,6.2.2,6.2.3 and 6.2.4. Firstly, we give some examples for
Gaussian processes that can be applied to all of the four Theorems, and secondly
we describe how our approach can be applied to Lévy processes in view of
Theorem 6.2.4.

Example 6.3.1. Gaussian processes and Brownian di�usions:

� Brownian motion and fractional Brownian motion:

Let (X
(H)

t )t∈[0,1] be a fractional Brownian motion with Hurst parameter

H ∈ (0,1) (in the case H = 1
2
we have an ordinary Brownian motion). Its

covariance function is given by

EX(H)
s X

(H)

t =
1

2
(s2H + t2H − ∣s − t∣

2H
) .

Note, that except from the case of an ordinary Brownian motion the eigen-
values and eigenvectors of the fractional Brownian motion are not known
explicitly. Nevertheless, the sharp asymptotics of the eigenvalues has been
determined (see e.g. [LP04a]).

In [DvZ04] the authors construct an admissible sequence (gj)j∈N in C([0,1])
that satis�es the requirements of Theorem 6.2.3 with θ = 1

2
+H. Further-

more, the eigenvalues λj of CX(H) in L2([0,1]) satisfy λj ≈ j
−(1+2H), see

e.g.[LP04a] such that the requirements for Theorem 6.2.3 are satis�ed.
Additionally, this sequence is a rate optimal admissible sequence for X(H)

in L2([0,1]), such that the requirements for Theorem 6.2.2 are also met.
Constructing recursively an orthonormal sequence (hj)j∈N by applying
the Gram-Schmidt procedure to the sequence (gj)j∈N yields a rate opti-
mal ONS for X(H) in L2([0,1]) that can be used in the application of
Theorem 6.2.1. In section 7 we will illustrate the quantizers constructed
for X(H) with this ONS for several Hurst parameters H. Note, that there
are several other admissible sequences for the fractional Brownian motion,
which can be applied similarly as described above, see e.g. [DvZ05b] or
[DvZ05a]. Moreover, we have for s, t ∈ [0,1] the mean regularity property

E ∥XH
t −XH

s ∥
p
= CH,p ∣t − s∣

pH
,

and the asymptotics of the quantization error is given as

en,r(X
H , Lp([0,1])) ≈ en,2(X

H , L2([0,1])) ≈ (log(n))
−H

, n→∞

∀r, p ≥ 1 (see [GLP03]), such that the requirements of Theorem 6.2.4 are
met with a = b = H. Note, that in [DS06] the authors show the existence
of constants k(H,E) for E = C([0,1]) and E = Lp([0,1]) independent of
r such that

en,r(X
H ,E) ∼ k(H,E) (log(n))

−H
, n→∞.
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Therefore, the quantization errors of the sequences of quantizers con-
structed via Theorems 6.2.1,6.2.2,6.2.3 and 6.2.4 also ful�ll this sharp
asymptotics.

� Brownian bridge:
Let (Bt)t∈[0,1] be a Brownian bridge with covariance function

EBsBt = min(s, t) − st.

Since the eigenvalues and eigenvectors of the Brownian bridge are explic-
itly known, we do not have to search for any other admissible sequence or
ONS for (Bt)t∈[0,1] to be applied in H = L2([0,1]). This (the eigenvalue-
eigenvector) admissible sequence also satis�es the requirements of Theo-
rem 6.2.3. The mean pathwise regularity for the Brownian bridge can be
deduced by

(E ∣Bt −Bs∣
p
)

1
p ≤ Cp,2 (E ∣Bt −Bs∣

2
)

1
2
= Cp,2 (∣t − s∣ − ∣t − s∣

2
)

1
2

≤ C ∣t − s∣
1
2 ,

for any p ≥ 1. Combining [LS01, Theorem 3.7] and [GLP03, Corollary 1.3]
yields

en,r(B,Lp([0,1])) ≈ (log(n))−
1
2 , n→∞,

for all r, p ≥ 1, such that Theorem 6.2.4 can be applied with a = b = 1
2
.

� Brownian di�usions:
We consider a 1-dimensional Brownian di�usion (Xt)t∈[0,1] ful�lling the
SDE

Xt = ∫
t

0
b(s,Xs)ds + ∫

t

0
σ(s,Xs)dWs,

where the deterministic functions b, σ ∶ [0,1] × R → R satisfy the growth
assumption

∣b(t, x)∣ + ∣σ(t, x)∣ ≤ C (1 + ∣x∣) .

Under some additional ellipticity assumption on σ, the asymptotics of the
quantization error in (Lp([0,1], ∥⋅∥p) is then given by

en,r(X,Lp([0,1])) ≈ (log(n))−
1
2 ,

as n → ∞ (see [Der08a] and also [LP06]). Furthermore, one shows for
0 ≤ s ≤ t ≤ 1

(E ∥Xt −Xs∥
p
)

1
p ≤ C(t − s)

1
2

(see [LP08, Example 3.1]) such that Theorem 6.2.4 can be applied with
a = b = 1

2
.
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Example 6.3.2. Lévy processes
Let (Xt)t∈[0,1] be a real Lévy process, that is X is a cádlàg process with P(X0 =
0) = 1 and stationary and independent increments. The characteristic exponent
ψ(u) given through the equation

∫
R

exp(iux)PX1(dx) = exp(−ψ(u)), u ∈ R

is characterized by the Lévy-Khintchine formula

ψ(u) = iau +
1

2
σ2u2 + ∫

R
(1 − eiux + iuxχ(∣x∣<1))Π(dx),

where the characteristic triple (a, σ,Π) contains constants a ∈ R, σ ≥ 0 and a
measure Π on R/{0} satisfying ∫R(1 ∧ x

2)Π(dx) < ∞. By de�nition, we know
that

E ∣Xt −Xs∣
p
= E ∣Xt−s∣

p
, (6.8)

and it is further known that the latter moment is �nite if and only if

∫
(∣x∣≥1)

∣x∣
p

Π(dx) < ∞.

Furthermore, by the Lévy-Ito decomposition, X can be written as the sum of
independent Lévy processes

X =X(1) +X(2) +X(3),

where X(3) is a Brownian motion with drift, X(2) is a Compound Poisson pro-
cess and X(1) is a Lévy process with bounded jumps and without Brownian
component.
Firstly, we will analyze the mean pathwise regularity of these three types of
Lévy processes to combine these results with lower bounds for the asymptotical
quantization error.

1. Mean pathwise regularity of the 3 components of the Lévy-Ito decomposi-
tion:

� According to an extended Millar's Lemma [LP08, Lemma 5], for all
Lévy processes with bounded jumps and without Brownian compo-
nent, there exists for every p ≥ 2 a constant C < ∞ such that for every
t ∈ [0,1]

E ∣Xt∣
p
≤ Ct = C (t

1
p )
p
. (6.9)

Combining (6.8) and (6.9), we can choose ρ in (6.7) as ρ1,p(x) = x
1
p .

For p ∈ [1,2) we have by using (6.9) with p = 2

E ∣Xt∣
p
≤ (E ∣Xt∣

2
)
p
2
≤ (Ct)

p
2 = (C

1
2 t

1
2 )
p

and thus we can choose ρ1,p(x) = Cx
1
2 . Combining these facts we get

ρ1,p(x) = Cx
1

2∨p for p ≥ 1 .
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� We consider the Compound Poisson process

Xt =
Kt

∑
k=1

Zk,

where K denotes a standard Poisson process with intensity λ = 1 and
(Uk)k∈N is an i.i.d. sequence of random variables with ∥Z1∥Lp(P) < ∞.
Then, one shows that

E ∣
Kt

∑
k=1

Zk∣

p

≤ t ∥Z1∥
p
Lp(P) exp(−t)

∞

∑
k=1

tk−1kp

k!
≤ C (t

1
p )
p
,

so that (6.7) is satis�ed with φ2,p(x) = x
1
p .

� We consider a Brownian Motion with drift. Using example 6.3.1 and
Lemma 1.2.5 we can choose ρ in (6.7) as ρ3,p(x) = ρ3(x) = x

1
2 for all

p ≥ 1.

2. Lévy processes with non-vanishing Brownian component:
LetX be a Lévy process with a non-vanishing Brownian component, which
means that σ in the characteristic triple satis�es σ > 0. By Proposition 4
in [LP08] for r, p ≥ 1, it holds that

(log(n))−
1
2 ≈ Cen,r(W,Lp) ≲ en,r(X,Lp), n→∞ (6.10)

for some constant C ∈ (0,∞) and W denotes a Brownian Motion. We
consider the Lévy-Ito decomposition X =X(1) +X(2) +X(3), and assume

that for X
(2)
t = ∑

Kt
k=1Zk holds ∥Z1∥Lp∨r(P) < ∞. Therefore, we receive the

mean pathwise regularity for X, all p, r ≥ 1 and some constant C < ∞

ρp(x) ∶= Cx
1

2∨r∨p . (6.11)

Thus, we can apply Theorem 6.2.4 with a = 1
2∨p∨r

and b = 1
2
.

3. Compound Poisson processes:
For a Compound Poisson process X we know that the rate for the asymp-
totic quantization error under suitable assumptions is given by

en,r(X,Lp) ≈ exp(−κ
√
log(n)log(log(n))), n→∞,

see [ADSV09, Theorems 13,14] and [LP08, Proposition 3] for a constant
κ ∈ (0,∞). Thus, the sequence (m(n))n∈N has to grow faster than in the
examples above. To ful�ll

∥∥X − Vm(X)∥Lp([0,1])∥Lr(P)
= o (exp(−κ

√
log(n) log(log(n)))) ,

as n→∞, (see the proof of Theorem 6.2.4) we need to choose

m(n) = ⌈(p ∨ r) exp(κ
√

log(n) log(log(n))(1 + ε))⌉ for an arbitrary ε > 0.
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4. α-stable Lévy processes with α ∈ (0,2):
These are Lévy processes satisfying the self similarity property

Xt
d
= t

1
αX1,

and furthermore

E ∣X1∣
α
= ∞ and sup

r
{E ∣X1∣

r
< ∞} = α.

Thus, we can choose ρ(x) = Cx
1
α for any p ≥ 1 and constants Cp < ∞. The

asymptotics of the quantization error for X is given by

en,r(X,Lp) ≈ log(n)
− 1
α , n→∞

for r, p ≥ 1 ([AD09]), such that we meet the requirements of Theorem 6.2.4
by setting a = b = α.

6.4 Numerical illustrations

In this section, we want to highlight the steps needed for a numerical implemen-
tation of our approach, and also give some illustrating results.

For illustration purposes, we will concentrate on the case described in section
3.1 for r = 2. Examples for quantizers as constructed in section 4 can be found
in [Wil08]. The quantizers shown hereafter were calculated numerically, by
using the widely used CLVQ-algorithm as described in [Pag98]. To achieve a
better accuracy, we �nally performed a few steps of a gradient algorithm by
approximating the gradient with a Monte-Carlo simulation.

Let X(H) be a Fractional Brownian motion with Hurst parameter H. We
used the admissible sequence as described in [DvZ04]

X
(H)

t
d
=

∞

∑
n=1

√
2cH

∣J1−H(xn)∣

sin(xnt)

x1+H
n

ξ1
n +

∞

∑
n=1

√
2cH

∣J−H(yn)∣

1 − cos(ynt)

y1+H
n

ξ2
n,

where cH is given as

c2H ∶=
sin (πH)Γ (1 + 2H)

π
,

J1−H and J−H are Bessel functions with corresponding parameters and xn and
yn are the ordered roots of the Bessel functions with parameters −H and 1−H.
After ordering the elements of the two parts of the expansion in an alternat-
ing manner, and applying Gram-Schmidt's procedure for orthogonalization to
construct a rate optimal ONS, we used the method as described in section 3.1.
We show the results we obtained for n = 10, m = 4 and the Hurst param-
eters H = 0.3,0.5 and 0.7. To show the e�ects of changing parameters, we
also present the quantizers obtained after increasing the size of the contain-
ing subspace (m = 8) and in addition the e�ect of increasing the quantizer-size
(n = 30). Since X(H) is for H = 0.5 an ordinary Brownian motion, one can
compare the results with the results obtained for the Brownian motion by using
the Karhunen-Loève-Expansion. (see e.g. [LPW08])
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Figure 6.1: 10-quantizer for the Fractional Brownian Motion with Hurst Pa-
rameter H = 0.3 in a 4-dimensional subspace

Figure 6.2: 10-quantizer for the Fractional Brownian Motion with Hurst Pa-
rameter H = 0.5 in a 4-dimensional subspace

Figure 6.3: 10-quantizer for the Fractional Brownian Motion with Hurst Pa-
rameter H = 0.7 in a 4-dimensional subspace



CHAPTER 6. CONSTRUCTIVE QUANTIZATION OF STOCHASTIC

PROCESSES
154

Figure 6.4: 10-quantizer for the Fractional Brownian Motion with Hurst Pa-
rameter H = 0.3 in an 8-dimensional subspace

Figure 6.5: 10-quantizer for the Fractional Brownian Motion with Hurst Pa-
rameter H = 0.5 in an 8-dimensional subspace

Figure 6.6: 10-quantizer for the Fractional Brownian Motion with Hurst Pa-
rameter H = 0.7 in an 8-dimensional subspace
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Figure 6.7: 30-quantizer for the Fractional Brownian Motion with Hurst Pa-
rameter H = 0.3 in an 8-dimensional subspace

Figure 6.8: 30-quantizer for the Fractional Brownian Motion with Hurst Pa-
rameter H = 0.5 in an 8-dimensional subspace

Figure 6.9: 30-quantizer for the Fractional Brownian Motion with Hurst Pa-
rameter H = 0.7 in an 8-dimensional subspace



Chapter 7

Open problems

Chapter 2 In chapter 2, we concentrated on the estimations of the increments
of the quantization error

∆n,r(X,E) = ern,r(X,E) − ern+1,r(X,E),

and its relations to local characteristics of optimal codebooks.

Problem 7.1. Is it possible to estimate sharper versions for ∆n,r(X,E) given
X is Gaussian in (E, ∥⋅∥), and dim(Hµ) = ∞ of the form

∆n,r(X,E) ≈ φ(n), n→∞?

As indicated in section 2 of chapter 2, it seems to be di�cult to achieve a
result as sharp as in Problem (7.1) by using arguments relating ∆n,r(X,E) to
the local quantization error er;loc(X,E;α,Ca(αn)). This gives rise to a di�erent
approach for the estimation of those increments, and leads to

Problem 7.2. Does a condition exist on the probability µ such that ∆n,r(X,E)
is monotone in n? In this case, the monotone density theorem directly implies
an even sharper version for the asymptotics of the increments.

Chapter 3 Chapter 3 concerns the analysis of the geometry of sequences of
(asymptotically) optimal codebooks for probabilities µ on Rd, in particular, the
asymptotics of the quantization radius and the quantization ball.

Problem 7.3. In view of the results derived in chapter 3 section 2, it remains
unclear whether under some weak assumptions on the shape function g satisfying
f = g(∥⋅∥0), there exists a function φg such that

ρ(αn) ∼ φg(n), n→∞.

It seems reasonable to conjecture that

ρ(αn) ∼ (Fr,∥⋅∥0)
−1

(Cn−
r+d
d ), n→∞,
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for a constant C ∈ (0,∞). In particular, this is true for the cases of Type I,
similar cases like the Gumbel or log-normal types, and might also hold for distri-
butions of Type II, given one assumes that ρ(αn) is regularly varying at in�nity.

Problem 7.4. As concerning quantization balls and quantization hulls for den-
sities of the Type II, it remains open whether

lim inf
n→∞

conv(αn)

ρ(αn)
= lim sup

n→∞

conv(αn)

ρ(αn)
= B

for a subset B ⊂ B(0,1). In particular, it remains uncertain whether the quan-
tizing norm ∥⋅∥ is also "dominated" by the distributional norm ∥⋅∥0.

Chapter 4 Chapter 4 concerns the analysis of the geometry of (asymptoti-
cally) optimal codebooks for Gaussian measures µ on a separable Banach space
(E, ∥⋅∥), in particular its quantization radius and quantization balls.

Problem 7.5. Given a sharper version for the estimation of the asymptotics of
the increments ∆n,r(X,E), it would be interesting to know if the quantization
radius of sequences of optimal codebooks also admits a sharper estimate of the
form

ρ(αn) = σ(µ) (2 log(n))
1
2 + o(1).

Problem 7.6. It would be interesting to know, if the results can be extended to
other measures, such as Lévy measures or Gaussian di�usions. To follow the
approach presented above, one would need equivalents for

� the Anderson inequality (needed for the estimation of the increments of
quantization errors),

� the estimation of shifted balls and

� the isoperimetric inequality.

Chapter 5 In chapter 5, we use the estimations done in chapter 2 to derive
estimates for local characteristics of optimal codebooks, i.e.

µ(Ca(αn)), µr(Ca(αn)),

er;loc(X,E;αn,Ca(αn)) and dist(a,αn/{a}).

Problem 7.7. Is it possible to give a useful criterion on the density µ (similar
to the almost monotonicity on g) to achieve a universal upper bound for the µr-
weights of the Voronoi cells Va(αn). As a consequence of the results developed
in chapter 5, this implies

1

n
ern,r(X,E) ≈ err;loc(X,E;αn, Va(αn)) ≈ e

r
r;loc(X,E;αn,Wa(αn)), n→∞,

µr(Va(αn)) ≈ µr(Wa(αn)) ≈
1

n
, n→∞.
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Problem 7.8. Under which condition on the measure µ the asymptotics ≈ in
the previous problem may be replaced by ∼?

As for the latter problem, it does not seem to be possible to achieve such
a result by using the techniques used in this thesis, in particular by using the
micro-macro inequalities.

Chapter 6 Chapter 6 concerns the construction of asymptotically optimal
codebooks (αn)n∈N for stochastic processes (Xt)t∈I achieving

en,r(X,E) ∼ er(X,E;αn), n→∞.

Problem 7.9. Concerning the case of quantization in (C([0,1], ∥⋅∥L∞)), is it

possible to decrease the dimension for the sequence of spaces Fm(n) to log(n)1+ε,
for an arbitrary ε ∈ (0,1)?



Appendix A

Regular variation

De�nition A.1. Let I ⊂ R+ be unbounded. A function h ∶ I → R is called
regularly varying at in�nity with index b ∈ R, if

lim
x→∞,x∈I

sup{
h(y)

h(x)
∶ y ≤ cx} = lim

x→∞,x∈I
inf {

h(y)

h(x)
∶ y ≥ cx} = cb

for all c > 0. The set of all those functions is denoted Rb(I) = Rb. If b = 0, we
also call h slowly varying. Furthermore, we set

R ∶= ⋃
b∈R
Rb.

Regularly varying functions admit a broad range of closure properties. The
proofs are straightforward.

Proposition A.2. (closure properties for regular variation, see [BGT87, Propo-
sition 1.5.7]) Let a, ai ∈ R and fi ∈ Rai , i = 1,2.

1. f1f2 ∈ Ra1+an .

2. If f2(x) → ∞, x→∞ then f1 ○ f2 ∈ Ra1a2 .

3. f1 + f2 ∈ Rmax{a1,a2}.

4. fa1 ∈ Raa1 .

5. Suppose that f2 → ∞, x → ∞. As a consequence of the �rst points, we
derive log(f2) ∈ R0 and log(f2)f1 ∈ Ra1 .

Remark A.3. Every regularly varying function h ∈ Rα can be written as a
product of a function g ∈ R0 and a monomial x ↦ xα, α ∈ R, by considering
g ∶ I → R, x↦ h(x)x−α.

We will assume throughout that I = R+. Regularly varying functions admit
a speci�c type of inversion.

159
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Theorem A.4. (See [BGT87, Theorem 1.5.12]) For α ≠ 0 and f ∈ Rα there
exists an asymptotic inverse g ∈ R 1

α
such that

g(f(x)) ∼ f(g(x)) ∼ x, x→∞.

Furthermore, g is unique up to asymptotic equivalence.

Proof. The result is shown in the reference for indexes α > 0. For f ∈ Rα, α < 0,
consider an asymptotic inverse g− to g ∶= 1

f
∈ R−α. Then the function h with

x↦ g−( 1
x
) is an asymptotic inverse to f , since

f(h(x)) = f(g−(
1

x
)) =

1

g(g−( 1
x
))
∼

1
1
x

= x, x→∞

and

h(f(x)) = g−(
1

f(x)
) = g−(g(x)) ∼ x, x→∞.

There are some speci�c asymptotic inverse functions to f ∈ Rα for α ≠ 0.

Lemma A.5. Let f ∶ [A,∞) → R+ be regularly varying at in�nity with index
θ > 0. Then

f←(y) ∶= inf{x ∈ [A,∞) ∶ f(x) ≥ y}

is non-decreasing and regularly varying at in�nity with index 1
θ
. Furthermore,

f← is an asymptotic inverse to f and

f←(f(x)) ≤ x

for all x ∈ [A,∞).

Proof. The property
f←(f(x)) ≤ x

and the non-decreasing property follow by de�nition. To see that f← is an
asymptotic inverse to f , see the second part of the proof in [BGT87, Theorem
1.5.12]. Let λ,κ > 1, and δ ∈ (0,∞). As a consequence of Potter's Theorem (see
[BGT87, Theorem 1.5.6]), there exists an u0 > 0 such that

1

κλθ+δ
f(v) ≤ f(u)

for all v ∈ [ 1
λ(a)

u,u] and u > u0. Since f →∞, we can choose y su�ciently large

such that f←(y) ≥ u0. Then, by de�nition of f
←, there exists x ∈ [f←(y), λf←(y)]

such that f(x) ≥ y. Selecting u = f←(y) and v = x, we obtain

1

κλθ+δ
y

1

κλθ+δ
f(x) ≤ f(f←(y)).
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Since κ,λ > 1 arbitrary, we obtain

y ≲ f(f←(y)), y →∞.

The lim inf as well as the converse direction f←(f(x)) ∼ x, x → ∞ can be
shown analogously.

Lemma A.6. Let f ∶ [A,∞) → R+ be regularly varying at in�nity with index
−a < 0. Then

f←(y) ∶= inf{x ∈ [A,∞) ∶ f(x) ≤ y}

is non-increasing and regularly varying at in�nity with index − 1
a
. Furthermore,

f← is an asymptotic inverse to f and

f←(f(x)) ≤ x

for all x ∈ [A,∞).

Proof. The property
f←(f(x)) ≤ x

and the non-increasing property follow by de�nition. To see that f← is an
asymptotic inverse to f , see the second part of the proof of [BGT87, Theorem
1.5.12]. The proof is analogously to the proof of Lemma A.5.

Lemma A.7. Let f ∶ [A,∞) → R+ be regularly varying at in�nity with index
−a < 0. Then

f→(y) ∶= sup{x ∈ [A,∞) ∶ f(x) ≥ y}

is non-increasing and regularly varying at in�nity with index − 1
a
. Furthermore,

f→ is an asymptotic inverse to f and

f→(f(x)) ≥ x

for all x ∈ [A,∞).

Proof. The property
f→(f(x)) ≥ x

and the non-increasing property follow by de�nition. To see that f→ is an
asymptotic inverse to f , see the second part of the proof in [BGT87, Theorem
1.5.12]. The proof is analogously to the proof of Lemma A.5.
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Abelian Theorems A Theorem is called Abelian, if it describes the relation-
ship between the regularity of a function to integrals involving that function.
Converse results are called Tauberian, which are much more di�cult to be ob-
tained. Those are treated in the next paragraph.

A broad class of Lebesgue-densities h in B(Rd) admit the shape

h(x) = exp(−f(∥x∥0)), x ∈ Rd,

for some f ∈ Rα and a norm ∥⋅∥0 on Rd. A helpful tool for the analysis of those
densities is

Lemma A.8. (See [BGT87, Theorem 4.12.10]) Let f ∈ Rα for some α > 0.
Then

− log (∫
∞

x
exp(−f(y))d(y)) ∼ f(x), x→∞.

A careful reading of the proof of Lemma A.8 reveals the following sharpened
version of the result.

Lemma A.9. Let f ∈ Rα for some α > 0, strictly increasing and f ∈ C2([A,∞))
and

(f−1)(i)(x) ∈ R, i = 1,2.

Then

∫
∞

x
exp(−f(y))dy = exp(−f(x)) (f ′(x))

−1
(1 +O(

1

f(x)
)), x→∞

Proof. The proof is based on the argumentation in the proof in [BGT87, The-
orem 4.12.10]. By substitution formula with t = f(y) and di�erentiation of the
inverse function, we obtain for x ∈ f−1[A,∞)

∫
∞

f(x)
exp(−t) (f−1)

′
(t)dλ(t) = ∫

∞

y
exp(−f(y)) (f−1)

′
(f(y))f ′(y)dλ(y)

= ∫
∞

x
exp(−f(y))dλ(y).

Integration by party yields

∫
∞

f(x)
exp(−t) (f−1)

′
(t)dλ(t) = exp(−f(x)) (f−1)

′
(f(x))

+ ∫
∞

f(x)
exp(−t)(f−1)′′(t)dλ(t).

Since f ∈ Rα, we have f−1 ∈ R 1
α
, which implies (f−1)

(i)
∈ R 1

α−i
, for i = 1,2.

Hence,

∫
∞

f(x)
exp(−t)(f−1)′′(t)dλ(t) = O

⎛
⎜
⎝

∫
∞

f(x) exp(−t) (f−1)
′
(t)dλ(t)

f(x)

⎞
⎟
⎠
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and we obtain again in virtue of the di�erentiation formula for the inverse func-
tion

∫
∞

x
exp(−f(y))dy = exp(−f(x)) (f ′(x))

−1
(1 +O(

1

f(x)
)), x→∞.

The equivalent tool for regularly varying densities is

Proposition A.10. (See [BGT87, Proposition 1.5.10]) Let l ∈ R0 and α < −1.
Then ∫

∞

x tαl(t)dλ(t) converges and

∫
∞

x
tαl(t)dλ(t) ∼ l(x)∫

∞

x
tαdλ(t) = l(x)

tα+1

−(α + 1)
, x→∞.

Tauberian Theorems Much more powerful results are those of the Taube-
rian type, where asymptotics of terms involving a function give under speci�c
conditions asymptotic results on the function itself.

Theorem A.11. (Monotone density Theorem) Let F ∈ Rα for some α ∈ R such
that F (x) = ∫

∞

x f(x)dλ(x). If f is monotone on [A,∞) for some A ∈ R+, then

f(x) ∼ −α
F (x)

x
, x→∞.

Proof. The proof is almost identical to the proof in [BGT87, Theorem 1.7.2],
where F (x) = ∫

x
0 f(x)dλ(x). Let f be non-increasing. Let 0 < a < b < ∞. Then

F (ax) − F (bx) = ∫
bx

ax
f(y)dλ(y),

which implies

f(ax)(b − a)x

F (x)
≲
F (ax) − F (bx)

F (x)
≲
f(bx)(b − a)x

F (x)
, x→∞

. The middle term converges to aα − bα, which implies with a = 1

lim sup
x→∞

f(x)x

F (x)
≤ −

bα − 1

b − 1
.

Letting b→ 1 yields the asserted asymptotic upper bound for f

f(x)x

F (x)
≲ −α, x→∞.

The lower bound as well as the proof for f non-decreasing is analogously.

References: The standard monograph containing almost all key results
concerning regularly varying functions is [BGT87].



Appendix B

Convergence of sets

Our motivation for considering the concepts for convergences of sets is the fol-
lowing observation: By de�nition of the maximum radius ρ, we have for any
sequence of bounded sets (An)n∈N in E

An
ρ(An)

⊂ B(0,1), n ∈ N

and furthermore, by convexity of the unit ball B(0,1), also

conv(An)

ρ(An)
⊂ B(0,1), n ∈ N.

Here conv denotes the convex hull, i.e. for a subset A ⊂ E

conv(A) ∶= {x ∈ E ∶ ∃λ ∈ [0,1], a, b ∈ A such that x = λa + (1 − λb)}.

Considering An = αn, n ∈ N for a sequence of r-optimal n-codebooks αn for
a r.e. X in (E, ∥⋅∥), one may be interested in the behavior of these scaled
codebooks when n tends to in�nity. In fact, given a convergence of αn

ρ(αn)
or

conv(αn)
ρ(αn)

in a reasonable way towards some set A ⊂ B(0,1), we would get a

better understanding of the (asymptotic) geometry of optimal codebooks.
We will consider three types of convergence, where one is topology-free, i.e.

it does not depend on the Banach space norm ∥⋅∥.

De�nition B.1. (Set-theoretic convergence) Let (An)n∈N be a sequence of sub-
sets in E.

1. The classical set-theoretic limes inferior is de�ned as

lim inf
n→∞

An = ⋃
n∈N

⋂
m≥n

Am.

2. The classical set-theoretic limes superior is de�ned as

lim sup
n→∞

An = ⋂
n∈N

⋃
m≥n

Am. (B.1)

164
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3. If both limits coincide, i.e. there exists a subset A ⊂ E such that

A = lim inf
n→∞

An = lim sup
n→∞

An

we call A the set-theoretic limit of the sequence (An)n∈N and we write
A = limn→∞An.

De�nition B.2. (Convergence in the ∥⋅∥-sense). Let (An)n∈N be a sequence of
subsets in E.

1. An element x ∈ E is called limit point of (An)n∈N if, for every ε > 0 there
exists an n(ε) ∈ N such that

x +B(0, ε) ∩An ≠ ∅,

for all n ≥ n(ε).

2. An element x ∈ E is called cluster point of (An)n∈N if, for every n ∈ N and
every ε > 0 there exists an m(ε, n) ∈ N such that

x +B(0, ε) ∩Am(ε,n) ≠ ∅.

3. liminf∥⋅∥ is de�ned as the set of all limit points of (An)n∈N.

4. limsup∥⋅∥ is de�ned as the set of all cluster points of (An)n∈N.

5. If both limits coincide, i.e. there exists a subset A ⊂ E such that

A = liminf∥⋅∥
n→∞

An = limsup∥⋅∥

n→∞
An

we call A the ∥⋅∥-based limit of the sequence (An)n∈N and we write A =
lim∥⋅∥

n→∞An.

We have the following characterizations for the ∥⋅∥-based limes inferior and
superior.

Proposition B.3. (see [KT84, Propositions 3.2.11, 3.2.12]) Let (An)n∈N be a
sequence of subsets in E.

1. The ∥⋅∥-based lim sup admits the characterization

lim sup
n∈N

∥⋅∥An ∶= ⋂
n∈N

⋃
m≥n

Am.

2. The ∥⋅∥-based lim inf admits the characterization

lim inf
n∈N

∥⋅∥An ∶= ⋂
H∈T

⋃
m∈H

Am,

where T ∶= {H ⊂ N ∶ card(H) = ∞}.
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The ∥⋅∥-based convergence is closely related to the Hausdor� extended pseu-
dometric δ(⋅, ⋅).

De�nition B.4. For non-empty subsets A,B ⊂ E we de�ne the Hausdor�
extended pseudomertic δ(A,B) by

δ(A,B) = max{δl(A,B), δu(A,B)},

with δl(A,B) ∶= inf{λ ≥ 0 ∶ A ⊂ B +B(0, λ)} and δu(A,B) = δl(B,A).

We set PE ∶= {A ∶ A ⊂ E}. Considering speci�c subsets of M ⊂ PE , the
tuple (M, δ) even becomes a metric space.

Lemma B.5. The Hausdor� extended pseudometric δ is a metric on the family
of sets

Fb,0(E) ∶= {A ⊂ E ∶ A ≠ ∅, bounded and closed}.

In particular, for every bounded subset F ⊂ E, δ is a metric on

F0(F ) ∶= {A ⊂ F ∶ A ≠ ∅ and closed}.

Proof. By de�nition, δ is symmetric and δ(A,A) = 0. Let A,B,C ∈ Fb,0.
Since A and B are bounded and non-empty, we have δ(A,B) ∈ [0,∞). Let
λ1 = δ(A,C) and λ2 = δ(C,B). Then we have for ε > 0 arbitrary

A ⊂ C +B(0, λ1 + ε) ⊂ B +B(0, λ1 + ε)+B(0, λ2 + ε) = B +B(0, λ1 +λ2 +2ε)

and thus δl(A,B) ≤ λ1 + λ2. The argumentation for δu is analogous.
Finally, suppose δ(A,B) = 0 and x ∈ A/B. Then (since x compact and B
is closed) we have dist(x,B) = ε > 0. Therefore

x ∉ B +B(0,
ε

2
),

which is a contradiction. The second part of the assertion follows analo-
gously.

We will brie�y discuss whether or not there is a topology such that the
∥⋅∥-based convergence corresponds to the convergence in that topology. In our
cases, it will be the question whether such a topology (a metric) exists on F0(F )
for a bounded subset F ⊂ E. Considering the criteria for a convergence to be
topological, which are well known (see e.g. [KT84, Criteria 3.3.1]), we obtain
three di�erent answers. We will formulate the results for metric spaces, even
if most of the following results hold in a more general framework (see [KT84,
chapters 3 and 4]).

Theorem B.6. (See [KT84, Theorem 4.3.8, Theorem 3.3.10, Theorem 3.3.11,
Corollary 4.2.4, Theorem 4.2.4, Corollary 4.5.6]) Let F ⊂ E such that (F, d) is
a complete metric space, where d(x, y) = ∥x − y∥ , x, y ∈ E.
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1. (F0(F ), δ) is complete.

2. If (F, d) is not a locally compact metric space, then there is no metric on
F0(F ) which generates the ∥⋅∥-based convergence.

3. If (F, d) is a compact metric space, and (An)n∈N is a sequence of subsets
in F , then

lim∥⋅∥

n→∞
An = A

if and only if
An → A, n→∞ in (F0(F ), δ(⋅, ⋅)) .

4. Let (An)n∈N be a sequence of closed subset in the locally compact Banach
space (E, ∥⋅∥), then

lim∥⋅∥

n→∞
An = A

if and only if An converges to A in the topology of closed convergence on
F(E) ∶= {A ⊂ E ∶ A closed}. Moreover, this topology is metrizable.

Therefore, we can deduce for our problem in the �nite dimensional case the
following results.

Corollary B.7. Suppose that the Banach space (E, ∥⋅∥) is �nite dimensional.
Then, for any sequence of closed subset (An)n∈N in B(0,1)

lim∥⋅∥

n→∞
An = A,

if and only if
δ(An,A) → 0 , n→∞.

Furthermore, A is a closed subset of B(0,1).

In the general case, we still have the following.

Theorem B.8. (see [AB06, Theorem 3.82]) Let Fn be a sequence of closed sets
in (E, ∥⋅∥) such that

δ(Fn, F ) → 0, n→∞,

for a closed subset F ⊂ E. Then

lim
n→∞

∥⋅∥Fn → F, n→∞.

The converse direction is false unless E is compact.

Example B.9. (see [AB06, Example 3.83]) Let X = N and

dist(A,B) = 0, if A = B and dist(A,B) = 1, if A ≠ B.

Then, for Fn = {1, . . . , n}, n ∈ N one has

lim
n→∞

∥⋅∥Fn → N, n→∞,

but
δ(Fn, F ) = 1, ∀ n ∈ N.

References: Chapters 3 and 4 of [KT84] and Chapter 3 in [AB06].
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i.e. id est, that is. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.

i.i.d. independent and identically distributed. . . . . . . . . . . . . . . . . . 32.
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ρn,r(X,E) Upper quantization radius sup{ρ(α) ∶ α ∈ Cn,r(X,E)} . . . 34.

sn,r(µ,Rd;a) infs>0{Va(αn) ∩ supp(µ) ⊂ B(a, s)} . . . . . . . . . . . . . . . . . . . . . 119.

ρ(A) Maximum radius sup{∥a∥ ∶ a ∈ A} . . . . . . . . . . . . . . . . . . . . . . . . 34.

τn,r(X,E) optimal n-th Lr(P,E) random quantization error. . . . . . . . 32.

αn(K) {a ∈ αn ∶ Va(αn) ⊂K} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120.

ρ
n,r

(X,E) Lower quantization radius inf {ρ(α) ∶ α ∈ Cn,r(X,E)} . . . . 34.

sn,r(µ,Rd;a) sups>0{Va(αn) ⊃ B(a, s)} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119.

{Ca(α), a ∈ α} Voronoi partition with respect to α . . . . . . . . . . . . . . . . . . . . . . 17.



APPENDIX B. CONVERGENCE OF SETS 171

{Va(α), a ∈ α} Voronoi diagram with respect to α . . . . . . . . . . . . . . . . . . . . . . 17.

er(µ,E;α) Lr(P)-quantization error for the distribution µ in E induced
by the codebook α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.

er(X,E;α) Lr(P)-quantization error for the r.e. X in E induced by the
codebook α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.

en,r(µ,E) optimal n-th Lr(P)-quantization error for the distribution µ
in E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.

en,r(X,E) optimal n-th Lr(P,E)-quantization error for the r.e. X . . 17.

er;loc(µ,E;α,Ca(α)) Local quantization error (∫Ca(α) ∥x − a∥
r
dµ(x))

1
r
. . . 34.

fα(X) α-quantization of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.

fα Nearest neighbor projection on α . . . . . . . . . . . . . . . . . . . . . . . . 17.

r-s-property lim supn→∞
es(X,E;αn)
en,r(X,E)

< ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.

Real numbers

∣x∣ absolute value of x ∈ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.

⌊x⌋ largest integer lower or equal to x . . . . . . . . . . . . . . . . . . . . . . . 24.

R ⋃b∈RRb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159.

Rα The set of all functions f regularly varying at in�nity with
index α ∈ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159.

φr,∆(n) (−2 log(∆n,r(X,E)))
1
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.

f(x) ≳ g(x) lim infx→∞,x∈I
f(x)
g(x)

≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.

f(x) ≲ g(x) lim supx→∞,x∈I
f(x)
g(x)

≤ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.

f(x) ≼ g(x) lim supx→∞,x∈I
f(x)
g(x)

< ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.

f(x) ≽ g(x) lim infx→∞,x∈I
f(x)
g(x)

< ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.

f(x) ≈ g(x) 0 < lim infx→∞,x∈I
f(x)
g(x)

< lim supx→∞,x∈I
f(x)
g(x)

< ∞ . . . . . . . . . 22.

f(x) ∼ g(x) limx→∞,x∈I
f(x)
g(x)

= 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.

f← Asymptotic left inverse to f . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160.
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f→ Asymptotic right inverse to f . . . . . . . . . . . . . . . . . . . . . . . . . . 161.

mf almost decreasing constant of f . . . . . . . . . . . . . . . . . . . . . . . . . 43.

Set Theories

δ(A,B) max{δl(A,B), δu(A,B)}, Hausdor� distance between the sets
A and B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166.

δl(A,B) inf{λ ≥ 0 ∶ A ⊂ B +B(0, λ)}, A,B ⊂ E. . . . . . . . . . . . . . . . . . . 166.

δu(A,B) δl(B,A), A,B ⊂ E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166.

limn→∞An set-theoretic limit of (An)n∈N . . . . . . . . . . . . . . . . . . . . . . . . . . 165.

lim infn→∞An ⋃n∈N⋂m≥nAm, set-theoretic limes inferior of (An)n∈N . . 164.

lim supn→∞An ⋂n∈N⋃m≥nAm, set-theoretic limes superior of (An)n∈N . 164.

F0(F ) Set non-empty and closed subsets of F ⊂ E . . . . . . . . . . . . . 166.

Fb,0(E) Set of bounded, non-empty and closed subsets of (E, ∥⋅∥) 166.

lim∥⋅∥
n→∞An ∥⋅∥-based limit of (An)n∈N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165.

liminf∥⋅∥n→∞An ∥⋅∥-based limes inferior of (An)n∈N . . . . . . . . . . . . . . . . . . . . . . 165.

limsup∥⋅∥
n→∞An ∥⋅∥-based limes superior of (An)n∈N . . . . . . . . . . . . . . . . . . . . . 165.

Norms and Spaces

(C([0,1]), ∥⋅∥L∞) {f ∶ [0,1] → R, continuous } . . . . . . . . . . . . . . . . . . . . . . . . . . . 140.

(Lp([0,1]), ∥⋅∥Lp) {f ∶ [0,1] → R, ∥f∥Lp < ∞} . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140.

∥f∥s (∫Rd ∣f ∣
s
dλd)

1
s for f ∶ Rd → R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.

∥f∥L∞ ess supx∈I ∣f ∣ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140.

∥f∥Lp (∫I ∣f(x)∣
p
)

1
p dλ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140.

∥x∥l∞ maxi=1,...,d ∣xi∣, l∞-norm on Rd . . . . . . . . . . . . . . . . . . . . . . . . . . 23.

∥x∥lp (∑
d
i=1 ∣xi∣

p
)

1
p , lp-norm for p ≥ 1 on Rd . . . . . . . . . . . . . . . . . . . . 23.
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Information Theories

Hs(Y ) Entropy of order s of the discrete r.e. Y . . . . . . . . . . . . . . . . . 16.

I(X;Y ) Mutual information between X and Y . . . . . . . . . . . . . . . . . . . 16.

ρ̃ A distortion measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.

dn,r(X,H) inf {(E ∥X − X̂∥
r
)

1
r
∶ X̂ r.e. in H, I(X; X̂) ≤ log(n)} . . . . 26.
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