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Kurzfassung

Wir leben in einer zunehmend vernetzten Welt, umgeben von einer Vielzahl immer

größerer, miteinander verflochtener, technischer Systeme. Da diese immer mehr Bere-

iche unseres täglichen Lebens durchdringen, gewinnt ein genaues Verständnis ihrer

Struktur und Dynamik einen immer größeren Stellenwert. Gleichzeitig entstehen viele

der heute größten technischen Infrastrukturen wie zum Beispiel das globale Router-

Netzwerk des Internets, das World Wide Web, große Peer-to-Peer Systeme oder globale

Stromnetze nicht “am Reißbrett” sondern entwickeln sich - von vielerlei Bedingungen

und Wechselwirkungen beeinflusst - verteilt und oftmals außerhalb des Einflussbere-

ichs einer zentralen Kontrollinstanz. Für heutige und zukünftige, immer größer wer-

dende, vernetzte Rechnersysteme wird es aufgrund dieser zunehmenden Komplexität

immer schwieriger belastbare Aussagen über deren Struktur und Verhalten zu treffen.

Eine Reihe von Ausfällen und Störungen hat hierbei insbesondere gezeigt, dass

in großen, vernetzten Systemen ungewollt komplexe Strukturen entstehen können,

welche jenen die zum Beispiel in physikalischen, biologischen und sozialen Syste-

men auftreten nicht unähnlich sind. In dieser Dissertation gehen wir der Frage nach,

wie solche, in großen vernetzten Rechnersystemen auftretende komplexe Phänomene

beschrieben, beherrscht und aktiv genutzt werden können. Hierzu betrachten wir

zunächst methodische Ansätze aus der Erforschung zufälliger und komplexer Netzw-

erke, welche seit ungefähr einem Jahrzehnt verstärkt zur empirischen Untersuchung

natürlicher, sozialer und technischer Systeme verwendet werden und wertvolle Ein-

blicke in deren Struktur und Dynamik geliefert haben. Einen besonderen Stellen-

wert nimmt hier die Beobachtung ein, dass die oftmals bemerkenswerte Effizienz, Zu-

verlässigkeit und Anpassungsfähigkeit vieler natürlicher Systeme auf verhältnismäßig

einfache, lokale und oftmals randomisierte Interaktionen zwischen einer großen Zahl

von Elementen zurückgeführt werden kann. Wir fassen zunächst einige interessante

Ergebnisse über die Entstehung komplexer Netzstrukturen und kollektiver Dynamik

zusammen und untersuchen, inwiefern diese in konstruktiver Weise beim Entwurf und

Betrieb großer vernetzter Rechnersysteme nutzbar sind.

Ein besonderes Augenmerk dieser Dissertation richtet sich auf die Anwendung von

Prinzipien, Methoden und Resultaten aus dem Umfeld komplexer Netzwerke im Kon-

text verteilter Systeme, welche auf sogenannten Overlay-Netzwerken beruhen. Die Tat-

sache, dass die (virtuelle) Konnektivität in solchen Systemen weitgehend unabhängig

von physikalischen Beschränkungen dynamisch angepasst werden kann, ermöglicht
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beispielsweise eine Konstruktion auf der Grundlage von Analogien zwischen kom-

plexen Netzstrukturen und Phänomenen der statistischen Physik.

Aufbauend auf theoretischen Erkenntnissen über die Eigenschaften sogenan-

nter skalenfreier Netze, stellen wir ein einfaches und effizientes Verbindungspro-

tokoll vor, mit dessen Hilfe randomisierte, skalenfreie Overlaynetze mit anpass-

barem Knotengradexponenten auf verteilte Art und Weise erzeugt werden können.

In diesem Zusammenhang demonstrieren wir, dass auf Grundlage des vorgestellten

Protokolls Phasenübergangsphänomene, wie sie häufig im Umfeld der statistischen

Physik auftreten, aktiv zur Anpassung makroskopischer, statistischer Netzparame-

ter genutzt werden können, welche die Stabilität und Leistung vernetzter Systeme

massiv beeinflussen. Im konkreten Fall erlaubt die Anpassung des Exponenten der

Knotengradverteilung zufälliger skalenfreier Overlays in bestimmten kritischen Bere-

ichen eine schnelle Veränderung relevanter struktureller sowie dynamischer Eigen-

schaften. Insofern ermöglicht es das untersuchte Protokoll, belastbare Aussagen über

die Beziehung zwı́schen dem mikroskopischen, lokalen Verhalten einzelner Netzknoten

sowie den makroskopischen Eigenschaften resultierender, komplexer Netzstrukturen

zu treffen. Für Systeme in denen der Knotengradexponent nicht auf einfache Art und

Weise auf Grundlage lokaler Protokollparameter ableitbar ist wird zudem ein verteiltes,

probabilistisches Verfahren vorgestellt, welches eine Überwachung des Exponenten

und damit die Ableitung wichtiger Netzeigenschaften erlaubt.

Schließlich wendet sich die Dissertation der Untersuchung komplexer, nicht-

linearer Dynamik in vernetzten Rechnersystemen zu. Wir betrachten ein einfaches,

nachrichtenbasiertes Protokoll, welches auf Basis des Kuramoto-Modells für gekop-

pelte Oszillatoren eine stabile, globale Synchronisation periodischer Ereignisse in

verteilter, selbstorganisierter Art und Weise erreicht. Die Effizienz und Stabilität

des vorgestellten Verfahrens wird in einer Reihe von Netztopologien untersucht.

Darüberhinaus deuten wir an, dass das vorgestellte Verfahren - basierend auf theoretis-

chen und empirischen Erkenntnissen über die Wechselwirkungen zwischen spektralen

Eigenschafter komplexer Netze und der Synchronisationsdynamik gekoppelter Oszil-

latoren - eine verteilte Überwachung topologischer Eigenschaften vernetzter Rechner-

systeme erlaubt.

Ein wichtiger Aspekt der vorliegenden Dissertation ist die Betrachtung eines in-

terdisziplinären Ansatzes zur Schaffung eines bewussten und konstruktiven Umgangs

mit komplexen Strukturen und kollektiver Dynamik in großen, vernetzten Rechnersys-

temen. Die damit verknüpfte Untersuchung verteilter Systeme aus der Perspektive der

nicht-linearen Dynamik, der statistischen Mechanik sowie der theoretischen Biologie

zeigt interessante Parallelen zu physikalischen, biologischen und sozialen Systemen

auf. Dies verspricht die Schaffung selbstorganisierender, vernetzter Rechnersysteme,

die wachsen und reagieren statt konstruiert und gesteuert zu werden und deren Struktur

und Verhalten mittels Methoden der komplexen Systeme und der statistischen Physik

modelliert, analysiert und verstanden werden kann.
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Abstract

We are living in an increasingly connected world, surrounded by a multitude of inter-

woven technical systems constantly growing in size. Since they pervade more and more

aspects of our everyday lives, a thorough understanding of the structure and dynam-

ics of these systems is becoming increasingly important. However - rather than being

blueprinted and constructed at the drawing board - many of today’s largest technical

infrastructures like for example the Internet’s global router network, the World Wide

Web, large scale Peer-to-Peer systems or the power grid - evolve in a distributed fash-

ion, often beyond the control of a central controlling instance and influenced by various

surrounding conditions and interdependencies. Hence, due to this increase in com-

plexity, making substantiated statements about the structure and behavior of today’s

and tomorrow’s networked systems is becoming increasingly complicated.

A number of failures and disruptions has furthermore shown that in a number of

large networked systems complex structures can emerge unintentionally that resemble

those which can be observed for example in in biological, physical and social systems.

In this dissertation, we investigate the question how such complex phenomena arising in

large networked computing systems can be modeled, controlled and actively used. For

this, we first review methodologies stemming from the field of random and complex

networks, which are since roughly a decade increasingly being used for the empiri-

cal study of natural, social and technical systems, thus delivering valuable insights into

their structure and dynamics. A particularly interesting finding is the fact that the some-

times remarkable efficiency, dependability and adaptivity of many natural systems can

be related to rather simple local interactions between a large number of elements. We

review a number of interesting findings about the formation of complex structures and

collective dynamics and investigate how these are applicable in a constructive way in

the design and operation of large scale networked computing systems.

A particular focus of this dissertation will be laid upon potential applications of

principles, methods and results stemming from the study of complex networks in dis-

tributed computing systems that are based on so-called overlay networks. Here we ar-

gue how the fact that the (virtual) connectivity in such systems is alterable and widely

independent from physical limitations facilitates a design that is based for example on
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analogies between complex network structures and phenomena studied in statistical

physics.

Based on theoretical results about the properties of so-called scale-free networks,

we present a simple and efficient membership protocol by which randomized, scale-

free overlay networks with adjustable degree distribution exponent can be created in

a distributed fashion. With this protocol we further exemplify how phase transition

phenomena - as occurring frequently in the domain of statistical physics - can actively

be used to quickly adapt macroscopic statistical network parameters which are known

to massively influence the stability and performance of networked systems. In the case

considered in this dissertation, the adaptation of the degree distribution exponent of a

random, scale-free overlay allows - within certain critical regions - a change of relevant

structural and dynamical properties. As such, the proposed scheme allows to make

sound statements about the relation between the local behavior of individual nodes

and large scale properties of the resulting complex network structures. For systems in

which the degree distribution exponent cannot easily be derived for example from local

protocol parameters, we further present a distributed, probabilistic mechanism which

allows the monitoring of a network’s degree distribution exponent and thus a reasoning

about important structural qualities.

Finally, the dissertation shifts its focus from the investigation of network structures

towards the study of complex, non-linear dynamics in networked computing systems.

We consider a simple, message-based protocol which - based on the Kuramoto model

for coupled oscillators - achieves a stable, global synchronization of periodic heartbeat

events in a distributed fashion. The protocol’s performance and stability is then evalu-

ated in different network topologies. We further argue that - based on existing theoret-

ical and empirical findings about the interrelation between network structures and the

synchronization dynamics of coupled oscillators - the proposed protocol allows a dis-

tributed monitoring of the structural and modular properties of networked computing

systems.

An important aspect of this dissertation is the consideration of an interdisciplinary

approach towards a sensible and constructive handling of complex structures and col-

lective dynamics in large scale networked computing systems. The associated inves-

tigation of distributed systems from the perspective of non-linear dynamics, statistical

physics and theoretical biology highlights interesting parallels both to biological and

physical systems. This promises the construction of self-organizing networked systems

which grow and react rather than being constructed and controlled and whose structures

and dynamics can be modeled, analyzed and understood in the conceptual frameworks

of statistical physics and complex systems.
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Chapter1
Motivation

... and as far as it is possible to do so, these two wonderful vessels

are designed to be unsinkable.

Publicity Brochure of White Star Line on the Olympic and the Titanic,
1910

History of Distributed
Systems

Since the development of the packet-switched Arpanet in the late 1960s, a

triumphal course of distributed computing technologies has taken place. The

Arpanet starting in 1969 with no more than four nodes, 40 years later its suc-

cessor, the Internet, currently interconnects an estimated number of 1.5 billion

computing devices and creates the basis for distributed computing systems of

unprecedented scale. Today most people naturally possess and use a multiplic-

ity of interconnected devices like desktop, laptop or tablet computers, smart

phones, mobile music players, video game consoles, electronic readers, digital

picture frames or network-connected television equipment. Given the popu-

larity and ubiquity of applications like the World Wide Web (WWW), online

communities, distributed virtual environments, electronic commerce, Internet

video telephony and electronic mail, one can hardly imagine a modern society

without these technological achievements.
Scale of Current

Systems
Many distributed systems that we are using routinely today rely on thou-

sands or even millions of communicating machines. The routing infrastruc-

ture of the Internet is comprised of several hundred thousand routers, the Do-

main Name System of the Internet is based on tens of millions of servers, each

of the data centers behind popular web-based services like Google, Amazon,

YouTube, eBay or Facebook contains tens of thousands of machines and Peer-

to-Peer-based services like SKYPE interconnect the machines of tens of millions

of active users.
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TheChallenges in
Massive-Scale
Distributed Systems

design, operation and management of networked computing systems

at such massive scales is a challenging task. Due to the large number of de-

vices, errors and failures of individual components are rather ubiquitous than

exceptional and must be dealt with in an efficient manner that does not influ-

ence the functioning of the system as a whole. Explicit algorithmic interactions

as well as implicit interdependencies between individual machines can result

in correlated failures that threaten a system’s dependability. As these systems

run continuously over long periods of time, the occurrence of exceptional sit-

uations - which are unlikely to occur on short time scales - are becoming more

probable. The operation conditions often depend on human, social or environ-

mental factors that are hardly predictable and cannot be tested exhaustively

in advance. At the same time, short-term modifications to adapt to unfore-

seen situations are rendered impossible by laborious and expensive deploy-

ment routines. Finally - due to complex and possibly subtle interactions - even

carefully designed systems can be prone to complex emergent phenomena that

are hardly predictable. Experiences with today’s largest distributed systems

underpin these concerns as some of them have exhibited systemic failures that

can be attributed to one or more of the aforementioned aspects. Prominent

examples for such failures can increasingly be found in networked computing

but also in other systems consisting of a sufficiently large number of interact-

ing components like e.g. power grids, ecological and - being a recent issue -

economic systems.

AllFuture of Distributed
Systems

these problems are likely to worsen in future, as distributed comput-

ing systems are becoming larger, more dynamic and complex. Among the

main driving forces fueling this development are the ongoing miniaturiza-

tion and price decline of networked devices as well as the increasing incor-

poration of Internet connectivity into “smart” everyday objects. In addition

to this trend towards the so-called “Internet of things”, the increasing spread

of Internet-connected devices in emerging and developing countries is likely

to further the scale of prevalent and future networked computing systems.

Besides their mere size, the dynamics and degrees of freedom in connectiv-

ity are constantly increasing. While early distributed systems were typically

comprised of few, rather statically connected components, the development of

flexible, light-weight and universally applicable protocols and associated mid-

dleware support foreshadows a world in which billions of heterogeneous de-

vices can potentially interact with each other across the Internet [Scholtes and

Sturm, 2006].
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The Challenges in Future
Systems

increase in scale and dynamics of these systems gives rise to unprece-

dented complexities. At the same time, the relevance of massively distributed

systems for everyday’s life is continuously increasing. Even today, the Internet

and the WWW have become critical infrastructures whose reliability is cru-

cial for the functioning of many aspects of our society. A precondition for the

use of massively distributed systems in practice is the ability to make credi-

ble statements about their performance, behavior and reliability. Considering

the challenges and problems motivated above and their importance for current

and future networked systems, the question arises how these goals can be met

at a very large, possibly global scale.
Decentralized

Systems in Nature
In the history of engineering, nature has been a frequent source of inspira-

tion for the design and improvement of a variety of systems. Large distributed

computing systems with their elaborate protocols and intricate technical de-

tails do not seem like a domain predestined for applying concepts from natural

systems. For individual computing devices this may be true but things seem-

ingly change when addressing large numbers of interacting machines. Looking

at nature, we can identify a variety of systems whose functioning as a whole is

based on large numbers of interacting, possibly error-prone elements. A single

human body is composed of an estimated number of 10 trillion cells of more

than 200 different types. Flocks and colonies of birds or insects can grow to

millions of individual animals and yet they show signs of globally coherent,

organized behavior despite lacking central coordination. Constituting an ex-

ample from the inanimate world, a magnet consists of an intractable number

of atoms and yet the spins of their electrons can order spontaneously and thus

lead to effects that are observable on a macroscopic scale.

During Complex Structures
and Dynamics in
Natural Systems

the last decades, the mechanisms underlying such large scale sys-

tems in nature have received a lot of attention. Research in disciplines like

mathematics, physics, biology and sociology have unveiled principles under-

lying their evolution as well as their sometimes surprising robustness and

adaptiveness. Related strands of research of these different scientific disci-

plines are commonly summarized by the terms complex systems science, com-

plexity theory1 and - as such complex systems are increasingly being viewed

in the conceptual framework of networks - complex network science. The inter-

disciplinary character of this emerging field has contributed significantly to a

cross-pollination of research. In this study it has been uncovered that some of

the phenomena originally studied in models for natural systems can also occur

inadvertently in sufficiently large technical systems, in some cases leading to

1This is not to be confused with the field of computational complexity theory in computer science.
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detrimental effects or even catastrophic failures. Prior to formulating the the-

ses underlying this dissertation, in the following we review some prominent

examples for the occurrence of such problems in practice.

1.1 Complex Phenomena in Distributed Systems

SKYPE’s “Perfect
Storm”

The morning of August 16th, 2007 gave an unpleasant surprise to millions

of people across the globe. The Internet’s most popular voice and video com-

munication service SKYPE fell silent as any login attempt of the majority of its

then 220 million users remained unsuccessful. Due to its massive popularity

and importance for the business world, the incident arouse immediate inter-

est in media across the world, casting a damning light on a service that by so

many had been viewed as essential infrastructure. In its issue of August 17th,

the New York Times wrote:

“The online telephone service SKYPE was not working for much of the

day on Thursday, leaving its 220 million users, some of them small busi-

nesses that had given up their landlines, without a way to call colleagues,

customers and friends. [...] “There is a chance this could go on beyond

tomorrow, but it’s our hope that it’s going to be resolved,” Kurt Sauer,

SKYPE’s chief security officer, said. “What happened today was caused by

a unique set of events, the genesis of which is not entirely understood.”2

AlthoughReaction to SKYPE

Outage
the SKYPE engineers did take immediate action, the until then so

reliable service could not be fully restored until August 18th. To many users

and computer science professionals, the magnitude of this outage was all the

more surprising as the SKYPE service is based on a Peer-to-Peer technology,

whose decentralized architecture had so far been seen as a warrant for reli-

ability and scalability. On August 20th, two days after the service had been

restored, the problem was identified and communicated to the public in the

following statement that was published by Villu Arak on the SKYPE Blog:

“On Thursday, 16th August 2007, the SKYPE peer-to-peer network

became unstable and suffered a critical disruption. The disruption was

triggered by a massive restart of our users’ computers across the globe

within a very short time frame as they re-booted after receiving a routine

set of patches through Windows Update. The high number of restarts

2see http://www.nytimes.com/2007/08/17/business/17ebay.html, accessed on October

5th, 2010

http://www.nytimes.com/2007/08/17/business/17ebay.html
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affected SKYPE’s network resources. This caused a flood of log-in requests,

which, combined with the lack of peer-to-peer network resources, prompted

a chain reaction that had a critical impact.”3

Since Aftermath of SKYPE

Disruption
no further technical details on the incident were disclosed, one can

only speculate about the actual reasons behind the outage. Updates to Win-

dows operating systems are routinely applied on a fixed day and no similar

problems had been observed on prior occasions. Disclaiming any responsibil-

ity, Microsoft engineers immediately affirmed that there was nothing special

about either amount, type or timing of the updates applied on the day in ques-

tion. Due to this and the fact that the outage occurred almost two days after

updates had been distributed, speculations were running wild with alternative

explanations. At least those conjecturing that the massive reboots were not the

exclusive reason for the capital crash were later affirmed by a statement pub-

lished by SKYPE. Comparing the situation to a “perfect storm”, it was stated

that the outage occurred because a

“[...] combination of factors created a situation where the self-healing

needed outside intervention and assistance by our engineers.”4

Recent Evidence of
the SKYPE Outage

Based on recently published external measurements of SKYPE traffic that

were performed during the downtime [Rossi et al., 2009], there is some evi-

dence that dynamic interactions of SKYPE’s adaptation scheme, network traffic

as well as the removal and overload of machines caused a cascading effect

which eventually brought down the whole system. In the aftermath of the

SKYPE outage, commentaries were dealing with the consequences for the trust

in a service that had been viewed by many as essential and reliable infrastruc-

ture. On August 20th, 2007 “Business Week” writer Stephen Baker commented:

“Time was, our phones in the United States were nearly as reliable

as AAA bonds. They were engineered to be mission critical — and long

distance calls cost an arm and a leg. Now we have nearly free long distance

calling on SKYPE. But it’s nowhere near mission critical.”5

Although the reference to the reliability of AAA-rated financial products

seems rather grotesque in the light of the then imminent meltdown of the fi-

nancial markets, the comment shows that a crucial question is entering public
3see http://heartbeat.skype.com/2007/08/what_happened_on_august_16.html, accessed

on October 5th, 2010
4see http://heartbeat.skype.com/2007/08/the_microsoft_connection_explained.html,

accessed on October 5th, 2010
5see http://www.businessweek.com/the_thread/blogspotting/archives/2007/08/

skype_aftermath.html, accessed on October 5th, 2010

http://heartbeat.skype.com/2007/08/what_happened_on_august_16.html
http://heartbeat.skype.com/2007/08/the_microsoft_connection_explained.html
http://www.businessweek.com/the_thread/blogspotting/archives/2007/08/skype_aftermath.html
http://www.businessweek.com/the_thread/blogspotting/archives/2007/08/skype_aftermath.html
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awareness: HowDependability of
Distributed
Infrastructures

dependable are massively distributed Internet-based services

and how much do we depend on them? The consequences of an outage of a

few popular services have proven to be grave today and are likely to worsen

in future. Since then, SKYPE has further strengthened its position, becoming

one of the most popular Internet services. As of April 2010, SKYPE reportedly

had more than 560 million registered users across the globe6, with at times

more than 23 million of them being online concurrently7. A small but increas-

ing fraction of users is even dropping landlines and relying on SKYPE as pri-

mary telephony service. The events of August 2007 have demonstrated that

a thorough understanding of network dynamics is crucial, shall massively-

distributed Internet-based services one day replace vital infrastructures like

for example the telephone system. The current trend towards using Internet

services like SKYPE on smartphones and other mobile devices with inherently

unreliable connectivity is likely to pose additional challenges to the provision

of dependable Peer-to-Peer based services.
GMail Outage of
2009

Roughly 18 months after SKYPE’s “perfect storm”, the provider of some

of the today most popular Internet services experienced a similar glitch. On

February 24th, 2009, Google’s E-Mail service GMail was globally unavailable

for roughly two and a half hours, leaving a majority of its then 100 million

users without access to their mailboxes. The potential impact of such a fail-

ure becomes apparent when considering that GMail’s corporate mail service

provides the basis for the electronic communication of numerous companies.

According to an entry that was published on the day of the incident on the

GMail Blog, the reason for the outage was the introduction of a new load bal-

ancing scheme in one of the company’s data centers.

“This morning, there was a routine maintenance event in one of our

European data centers. This typically causes no disruption because ac-

counts are simply served out of another data center. Unexpected side ef-

fects of some new code that tries to keep data geographically close to its

owner caused another data center in Europe to become overloaded, and

that caused cascading problems from one data center to another. It took us

about an hour to get it all back under control.”8

6see http://gigaom.com/2010/04/20/skype-q4-2009-number/, accessed on October 5th,

2010
7According to own observation on October 5th, 2010
8see http://gmailblog.blogspot.com/2009/02/update-on-todays-gmail-outage.html,

accessed on October 5th, 2010

http://gigaom.com/2010/04/20/skype-q4-2009-number/
http://gmailblog.blogspot.com/2009/02/update-on-todays-gmail-outage.html
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The Internet Services vs.
Public Utility

Infrastructures

“cascading problems” in this statement resemble - though informally

- the “chain reaction” that had previously caused the disruption of the SKYPE

service. In contrast to SKYPE’s decentralized Peer-to-Peer-based infrastructure,

GMail is provided by a cluster of data centers that are centrally managed by

Google. The incident thus demonstrates that this kind of issue is not a spe-

cialty of Peer-to-Peer-based services like SKYPE that inherently suffer from un-

reliable resources and constant topology changes. Based on these incidents,

one might argue that - as their importance for society is steadily increasing -

future Internet-based services need to be engineered and controlled in a way

that makes them as reliable as today’s public utility infrastructures. Unfortu-

nately, as their complexity is steadily increasing, a closer inspection of these

critical infrastructures reveals examples for very similar systemic failures.
Power Failure in

North-Eastern
America

On August 14th, 2003, public life in most of northeastern America came

to a sudden rest as one of the largest blackouts in history hit the region. The

shutdown of a single nuclear power station in Eastlake, Ohio had triggered

a series of events that eventually left more than 55 million people across the

northeastern US and Canada without electricity for an average of 18 hours.

The loss of this power station initially resulted in a slow but progressive fail-

ure of numerous high voltage transmission lines in north-eastern Ohio. When

two and a half hours later the line trips had reached southeastern Michigan,

a high-speed cascade of failures and power plant shutdowns was set off that

propagated throughout the neighboring states and the Canadian province of

Ontario within less than 60 seconds. The resulting largest power outage in the

history of the United States eventually led to the shutdown of generating units

in a total of 265 power plants, brought both land and air traffic to a temporary

halt and caused the death of at least 11 people. The scale of this incident was so

massive that it could even be observed from space. Figure 1.1 shows the illumi-

nation of north-eastern America on a normal night as opposed to the night of

the power failure, as photographed by a satellite of the National Oceanic and

Atmospheric Administration (NOAA).
Power Failure in

Central Europe
Immediately after the events in the United States and Canada, a number of

German electricity suppliers reassured the public that the occurrence of a sim-

ilar power failure in Europe or Germany would be extremely unlikely9. They

were proven wrong roughly three years later when on November 4th, 2006

an incident of similar magnitude hit Europe. A rapid cascade of power line

9see http://www.strom-magazin.de/strommarkt/stromausfall-chaos-in-amerika-

zusammenbruch-der-hochspannungsnetze-in-deutschland-unwahrscheinlich_9792.html,

accessed on October 5th, 2010

http://www.strom-magazin.de/strommarkt/stromausfall-chaos-in-amerika-zusammenbruch-der-hochspannungsnetze- in-deutschland-unwahrscheinlich_9792.html
http://www.strom-magazin.de/strommarkt/stromausfall-chaos-in-amerika-zusammenbruch-der-hochspannungsnetze- in-deutschland-unwahrscheinlich_9792.html
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Figure 1.1: Northeastern America before (left) and during (right) the Blackout

of 2003, Image Courtesy of National Oceanic and Atmospheric Administration

failures and power plant shutdowns spread across Europe, eventually leaving

an estimated number of 10 million households in Germany, France, Belgium,

Austria, Spain, Portugal, Italy and Morocco without electricity. On November

5th, 2006, the online news portal Bloomberg reported:

“Power failure in a German electricity grid operated by E.ON AG

caused blackouts across western Europe last night, depriving millions of

homes of electricity, disrupting trains and risking outages to hospitals and

airports. About 5 million households in France went without power for as

much as an hour in the nation’s biggest outage since 1978, Andre Mer-

lin, the director of Reseau de Transport d’Electricité, France’s power-grid

operator, told the press today. Overall, some 10 million households across

Belgium, Germany, Italy, Portugal, Spain, and Eastern Europe may have

been affected, Merlin said. The grid failure in Germany led to the biggest

pan-European power collapse in at least 30 years through a domino effect

that swept through Western and Eastern Europe, he said.”10

Aftermath of
European Blackout

Roughly two hours after the incident, power could be restored and the in-

vestigations for the cause of the failure were initiated. The result of these in-

vestigations discovered that - in contrast to the events in North America - the

blackout was caused by a planned disconnection rather than an unforeseen

failure. Upon request of a dockyard, a power transmission line across the river

Ems in northern Germany had been disconnected in order to let pass a ship.

Although this had been done routinely on several prior occasions, the final re-

port on the incident discovered that - due to the nonobservance of regulations -

the disconnection of this single line had driven the system into a critical state in

10see http://www.bloomberg.com/apps/news?pid=20601085&sid=a4J9_1zeDuEo, accessed on

October 5th, 2010

http://www.bloomberg.com/apps/news?pid=20601085&sid=a4J9_1zeDuEo
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which even small power deviations could set off cascading failures that propa-

gated far through the system [UCTE, 2007]. Smart Grid InitiativesSince then it has been argued that

the increasing importance of renewable energy sources like wind, sun or wa-

ter, whose output is inherently harder to predict than that of traditional power

plants, necessitates new adaptive infrastructures in order to forestall similar

failures in future. Consequently, the development of such adaptive power util-

ity infrastructures - so-called smart grids - is currently a highly active area of

research.

In The Swaying
Millennium Bridge

all the examples considered so far, an explicit network topology was

involved that interconnected power stations, data centers or computing de-

vices. However even problems occurring in traditional construction engineer-

ing, where an explicit network topology is absent, can be related to the net-

worked computing domain. When on June 10th, 2000 the Millennium bridge

in London was officially opened, thousands of pedestrians were eager to use

the new construction in order to cross the river Thames. As the number of

people simultaneously crossing the bridge increased, the newly-opened bridge

suddenly started to swing horizontally so intensely that people cramped to the

handrails. Two days later, the bridge had become the city’s swaying attrac-

tion and it had to be closed for further investigation. In an interview with the

German radio station D-Radio that was broadcasted on July 1st, 2008, bridge

engineer Pat Dallard remembered the opening day:

“We had to witness that the bridge was behaving totally different than

planned. We had invested much time in the construction and we were

sure that we have everything under control. But then something hap-

pened which we never ever had expected. [...] Apart from this we observed

something very bizarre. The swaying depended in a strange way on the

number of people currently on the bridge. Up to a certain number it was

stable. Only ten people more and the swaying suddenly appeared.”11

Millennium
Footbridge

Investigations

Needless to say, that a gloating media coverage befell the engineers of

the prestigious project even though they had seemingly followed all existing

guidelines and regulations. An analysis of video footage of the opening day

revealed that the swaying was apparently caused by 2000 pedestrians crossing

the bridge in lockstep. The fact that 2000 people marching in lockstep caused

the bridge to swing is not at all surprising. That all these pedestrians walked

in perfect synchrony was however all the more remarkable. As done routinely,

11Translation from German text available at http://www.dradio.de/dlf/sendungen/

forschak/809985/, accessed on October 5th, 2010

http://www.dradio.de/dlf/sendungen/forschak/809985/
http://www.dradio.de/dlf/sendungen/forschak/809985/
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the engineers had assumed that the small random horizontal displacements

caused by the steps of a large number of pedestrians would average out to

zero. Apparently, this was not the case.

Figure 1.2: Millennium Bridge in London, Image Courtesy of Wikimedia Com-

mons

AAnalysis of the
Millennium Bridge
Problem

full explanation for the phenomenon was found no earlier than five years

later in the complex and subtle mutual interactions between the pedestrians

and the bridge [Strogatz et al., 2005]. Here one is tempted to ask why this has

not been a frequent problem in the engineering of footbridges. The first im-

portant reason was the fact that the Millennium footbridge has a resonance

frequency that is in the range of the human step rate and thus a sufficient num-

ber of people walking in lockstep could cause an increasing swaying of the

bridge by means of mechanical resonance. However the force needed to over-

come the damping of the bridge was so large that a significant swaying could

only be generated by a massive number of people walking in lockstep at or

near the resonance frequency of the bridge. If however a certain critical num-

ber of people hit the resonance frequency by chance, this could cause a small

horizontal displacement that was large enough to force more people to fall into

lockstep as they - possibly unconsciously - tried to keep balance. The result of

this self-energizing dynamical process was a perfect synchronization of pedes-
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trians’ steps, possibly more precise than one could have achieved when trying

to synchronize the steps of 2000 people on purpose. Although possible effects

of pedestrians on the bridge were routinely considered during the design of

the bridge, the complex mutual interaction between the bridge’s hardly notice-

able swinging and people’s reaction had been omitted. In the end, the problem

could be resolved by installing additional dampers that increased the critical

number of people required to hit the resonance frequency by chance to a value

that made it sufficiently improbable. Following this event, the guidelines for

structural engineering were updated to incorporate the observed phenomenon

and a number of bridges around the world were identified that have compara-

ble resonance frequencies and might thus suffer from the same problem [Dal-

lard et al., 2001].
Inadvertent

Synchronization in
Computing Systems

Referring to the problem with the Millennium Bridge, the computer sci-

entist Jeffrey C. Mogul argued that the fact that such phenomena occur in a

“well-regulated engineering profession with decades or centuries of experi-

ence [. . . ] and with regular use of computer modeling” should “keep us hum-

ble” [Mogul, 2006]. At this point one might be tempted to ask what - if anything

- the Millennium Footbridge example has to do with the domain of computer

science. In fact, very similar phenomena have occurred in networked comput-

ing systems. In order to build and maintain information on shortest routes in

the Internet, routers need to periodically exchange protocol messages. As the

majority of routers are operated and set up independently, one would expect

the traffic induced by these periodic messages to be scattered uniformly across

time. The intuition that the independence of individual routers would result

in an uncorrelated traffic pattern was proven wrong in the early 1990s, when

traffic studies exhibited periodic traffic peaks that resulted from a highly syn-

chronized exchange of routing table updates. It was subsequently argued that

these periodic peaks were the reason for earlier observations of periodic packet

losses and periodic changes in round trip times.

Shortly Investigation of
Synchronized Traffic

after these observations, the phenomenon had been studied and in
[Floyd and Jacobson, 1994], implicit interactions between routers were identi-

fied as cause of the problem: It was conjectured that the processing of incoming

routing updates can subtly affect the timing of future routing table updates sent

by a router. Based on this it was shown that - even when considering a fairly

large amount of random fluctuations - these subtle interactions eventually lead

to a synchronized exchange of protocol messages. Similar to the Millennium

bridge example, this can cause more and more routers to fall into lockstep by
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means of a self-energizing process. Based on these findings, in [Floyd and Ja-

cobson, 1994] it has been argued that

“[...] the architect’s intuition that independent sources give rise to

uncorrelated aggregate traffic is simply wrong.”

Since then, the prevention of inadvertent synchronization phenomena has

been studied intensively and in today’s Internet, Active Queue Management

techniques like Random Early Detection [Braden et al., 1998] are used to allevi-

ate related synchronization problems.

1.2 Implications for Networked Computing

Systems

Characteristics of
Complex Phenomena

Above we have considered some prominent examples for detrimental phe-

nomena that occur in sufficiently large and complex distributed systems both

within and outside the domain of computing. In fact, one could instance many

more which showcase similar effects (see for example the reviews of [Gribble,

2001; Mogul, 2006]). Clearly, once the causes for detrimental phenomena have

been investigated, it is usually possible to adjust or redesign systems in a way

that alleviates the resulting problems. Nevertheless the fact that the possibility

of such problems has not been foreseen during their design must worry any

engineer. What are the implications of this for the engineering of networked

computing systems? To answer this question, we first take a closer look at the

mechanisms and characteristics underlying the emergence of the phenomena

above.
Self-Organized
Formation of
Structures and
Patterns

The examples of the Millennium Footbridge and the Internet’s router in-

frastructure illustrate a remarkable feature that can arise from complex inter-

actions, namely globally coherent patterns emerging without central coordina-

tion. In the above examples, simple temporal oscillatory patterns (in terms of

a synchronization of seemingly independent, periodic processes) were formed

due to the subtle interactions between a large number of pedestrians or routers.

In other types of systems much more complex, spatial, topological or temporal

structures can emerge. These structures are neither blueprinted nor coordinated

centrally which is why they are often said to emerge in a self-organized fashion. The

phenomenon of self-organization typically occurs in non-linear dynamical systems and

an analytical prediction of the structures and patterns resulting from such non-linear

interactions is rarely possible.



CHAPTER 1. MOTIVATION 13

Order from NoiseA nice example for the self-organized and unexpected formation of a tem-

poral pattern is the synchronization of routing messages in the early Inter-

net. An interesting finding of the subsequent study of the phenomenon that

has been performed in [Floyd and Jacobson, 1994] is that a surprisingly large

amount of randomness in the router’s intrinsic update periods is required to

break the synchrony. Contrariwise the application of moderate amounts of

random fluctuations has even been shown to result in synchronization to oc-

cur more quickly and to be more robust. The seemingly paradoxal principle that

random fluctuations can facilitate the self-organized formation of ordered states has

been dubbed “order-from-noise” [von Foerster, 1985] and it has since been argued that

this principle is abundant in natural self-organization processes like for example the

organization of coherent patterns in swarms of particles, animals or people [Vicsek et

al., 1995; Helbing and Vicsek, 1999; Yates et al., 2009].

Another Hidden Threshold
Phenomena

interesting aspect of many complex phenomena is the fact that

they do not develop gradually but occur rather spontaneously. For the syn-

chronization of routing messages it was found that a certain critical number

of routers is required for synchrony to emerge. Systems whose size is below

this critical number will show no signs of synchronization while synchrony

emerges spontaneously as soon as a certain critical number is exceeded [Floyd

and Jacobson, 1994]. The same has been found for the Millennium Bridge: The

swaying occurred abruptly when the number of people crossing it exceeded a

critical number [Strogatz et al., 2005]. Such “hidden thresholds” are typical for

complex phenomena. The fact that it is often hard if not impossible to derive

them analytically poses a threat to the engineering of systems with predictable

performance. For distributed computing systems being deployed at massive -

possibly global - scale, full scale tests are not a feasible option. At the same time

small scale test bed deployments may show no signs of detrimental behavior

as long as a certain critical size is not exceeded. Furthermore, simulations may

not capture implicit, non-linear interactions that lead to detrimental patterns

and a formal analysis is often out of reach due to the non-linear, dynamical

nature of the processes involved.

A number of the examples for systemic failures that have been considered

above Self-Organized
Criticality

can be related to the occurrence of cascading failures. Here one observes

that - although for entirely different reasons - systems were driven to a state

with insufficient over-provisioning of resources. This took away the “damp-

ing” necessary to prevent the spreading of cascading effects. If taken alone this

is not a surprising phenomenon: Once the domino stones are set it clearly is not

astonishing that the toppling of the first stone causes the other stones to top-
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ple as well. In this picture, the question what is setting up the stones is much

more interesting. Why do many technological and natural systems seemingly

self-organize into critical states in which even infinitesimal perturbations can

trigger cascades that affect the whole system? In physics, systems with this

property are said to exhibit the property of self-organized criticality [Bak et al.,

1987] and the mechanisms underlying it have been investigated extensively.

For power transmission grids, a combination of technological requirements,

engineering guidelines and economic incentives has been identified to be re-

sponsible [Motter, 2002; Carreras et al., 2002]. More recently, in [Buldyrev et

al., 2010] it has been argued that the interdependence of communication net-

works and power grids can further cascading failures and thus set off large

scale power outages.

FromLimits to
Predictability

the perspective of a computer system engineer, the main problem

with all these phenomena is that they pose a threat to the predictability of

the behavior of systems: Hidden threshold effects complicate their design as

they prohibit to extrapolate the behavior observed in small scale tests to larger

settings. Furthermore self-organized critical states and non-linear interactions

can give rise to situations in which infinitesimal fluctuations can have arbitrar-

ily large effects that lie far away both in space and time and that are hardly

predictable. By means of subtle interactions and self-organizing processes, ap-

parently independent events can exhibit surprising correlations and they may

benefit from noise and random fluctuations that are usually thought to prevent

them. Since at sufficiently large scale, even systems comprised of simple ele-

ments with rather simple interactions can exhibit surprisingly complex behav-

ior, all these aspects are likely to become increasingly important as distributed

systems grow in size. Increasing interconnectedness, heterogeneity and dynamics

in future distributed systems are thus likely to facilitate the inadvertent occurrence of

complex detrimental phenomena.

SinceComplexity is taking
over

roughly ten years, the exuberant complexities involved in the design

and operation of large scale computing systems are increasingly acknowledged

in both industry and science. Fueled by the rise of the World Wide Web, in the

early 2000s complexities involved with the operation of high performance data

centers had become one of the prime challenges in the computing industry. In

order to address these issues, in 2001 IBM launched the Autonomic Computing

initiative, soon being joined by similar projects of major companies like Sun,

Microsoft and Hewlett Packard. In IBM’s manifest from 2001, the problem

being tackled by Autonomic Computing is summarized as follows:
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“In fact, the growing complexity of the I/T infrastructure threatens to

undermine the very benefits information technology aims to provide. Up

until now, we’ve relied mainly on human intervention and administration

to manage this complexity. Unfortunately, we are starting to gunk up the

works.” [IBM, 2001]

As The Autonomic
Computing Vision

suggested by this quote as well as the name of the initiative, the main

objective of the Autonomic Computing vision was to repel the need for human

intervention and thus simplify the practical management of large scale data

centers. Technically, this can sometimes be achieved by an integration of mon-

itoring and control capabilities as well as closed control loops into computing

infrastructures. By this, operational parameters (like resource utilization or

quality of service) can be kept in a range specified by corporate policies ide-

ally without requiring outside intervention. Since then, most major companies

have incorporated similar technologies into their products. In recent years the

wide-spread adoption of virtualization techniques has further facilitated the

use of related mechanisms.
Global Scale

Networked
Computing Systems

While the complexities arising in the operation of data centers may be se-

vere, the situation is even worse when considering networked computing sys-

tems being deployed at a global scale. In many of these systems, structures

emerging at a large scale are not subject to centralized control and detailed

planning. Instead, in systems like for instance the Internet’s routing infrastruc-

ture (a picture of which is shown in Figure 1.3) or large-scale Peer-to-Peer sys-

tems, network topologies rather result from distributed processes being influ-

enced by economic incentives, dynamic user behavior and technological con-

straints. What are the large-scale properties of such networked systems? Is

there a bound on the Internet’s diameter? To what extent can a Peer-to-Peer

system compensate node and link failures without being fragmented in differ-

ent subsystems? And how are such properties related to the local mechanisms

building the global network topology? In [Gkantsidis et al., 2003], the com-

plexities emerging in such networked computing systems are summarized as

follows:

“The network paradigm is shifting. Today’s open, distributed and dy-

namic networks are no longer artifacts that we construct, but phenomena

that we study.” [Gkantsidis et al., 2003]
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Figure 1.3: Partial Map of IP Routes based on data from http://www.opte.org

obtained in January 2005. Image courtesy of Matt Britt.

BasedLarge Dynamic
Networked Systems -
Reclaiming Control

on these observations, the question arises how large scale networked

systems can be managed in the face of these complexities. In the examples

considered above, we have so far only considered detrimental complex phe-

nomena. This is however only one side of the coin since the last decade’s

research has shown that the principles underlying these problems are in fact

the very same that underlie the efficiency, robustness and adaptiveness of a

variety of natural systems. Apart from giving rise to detrimental patterns, self-

organization processes can actively be used to produce advantageous spatial,

temporal or topological structures. By means of the “order-from-noise” prin-

ciple, these structures can be robust despite random fluctuations and their ro-

bustness can in fact benefit from a certain amount of randomness. Similarly,

a controlled use of critical states and “hidden thresholds” could be used to

intentionally change a system’s properties and thus make it more adaptive.

http://www.opte.org
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The main question being studied in this dissertation is how such aspects can

be actively used Emergent
Organization

Principles

in the design and operation of current and future networked

computing systems. In particular, we investigate how a targeted application

of the last decade’s findings about the formation of complex network struc-

tures and the collective dynamics emerging in such networked systems can

contribute to enhance their scalability, reliability and predictability. Related

issues are increasingly being acknowledged by the research community and

have recently been addressed for example in the “Organic Computing” priority

program of the German Research Foundation DFG [Müller-Schloer et al., 2004;

Schmeck, 2005]. In the following chapters, we will study both theoretical and

practical aspects that are related to this question, by this proposing what one

may call emergent organization principles for future networked computing sys-

tems.

1.3 Overlay Networks and Peer-to-Peer Systems

Overlay NetworksA class of distributed computing systems for which this approach is partic-

ularly promising are those being built upon so-called overlay networks or short

overlays. In these systems, a virtual network topology - the overlay - is used

in which links represent the graph of communication across a set of nodes

representing network devices, applications or users. Actual communication

between two nodes connected by a link in the overlay is realized over connec-

tions that exist in one or more underlying network layers. This so-called un-

derlay provides the basic transport, addressing and routing mechanisms that

are used by higher level services. At the level of the overlay network, custom

addressing or routing schemes can possibly be realized. An example for a sim-

ple overlay topology can be seen in Figure 1.4. Here, nodes in the overlay are

virtually connected to a ring topology, each node representing for example the

machine of a user of a distributed application or service. Using the routing and

addressing scheme provided by the underlying network infrastructure, in this

example a message exchange between two overlay nodes across a virtual link

e involves sending the message across four links e1, . . . , e4 in the corresponding

underlay. The actual overlay topology being used to provide a particular ser-

vice is typically chosen such that it facilitates the efficient operation of certain

distributed algorithms for example for distributed search, data distribution or

decentralized routing.
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Overlay Network

e

e1 e2
e3e4

Underlay Network

Figure 1.4: Example Overlay Network built on top of an Internet-style Under-

lay

Overlay networks,Internet-based
Overlays

whether being named so explicitly or not, are used reg-

ularly in the design of networked computing systems since several decades.

In fact, the Internet can be viewed as a virtual overlay spanning vastly differ-

ent organizational domains, network technologies and transport mechanisms,

thus providing a homogeneous communication space in which all devices can

potentially communicate with each other by means of addressing and routing

schemes provided by the IP protocol suite. Higher level overlays can then be

used to introduce novel services and applications without requiring to deploy

new devices or protocols in the underlay. Examples for widely used Internet

services that are provided by means of overlay topologies can be found in the

Domain Name System, content distribution networks like AKAMAI as well as

multicast protocol extensions. It has been argued for example in [Waldhorst

et al., 2010], that overlay networks constitute a crucial abstraction for the large

scale deployment of novel services and applications in future iterations of the

Internet.

AOverlay Networks
and Peer-to-Peer
Systems

special class of distributed systems typically employing overlay topolo-

gies at the application-layer are Peer-to-Peer based services and applications.

Blurring the traditional distinction between resource provider and consumer,

Peer-to-Peer systems typically use application-specific overlays to leverage the

processing power, bandwidth and storage capacity of user machines. By har-

nessing the resources of users, Peer-to-Peer systems can achieve a remarkable
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scalability at low cost. Since novel services and applications can be deployed

without the need to set up, maintain and control costly centralized infrastruc-

tures, Peer-to-Peer systems have raised significant interest both in research and

business. Decentralized
Peer-to-Peer Systems

For services and applications being deployed at very large, possi-

bly global scale, the decentralized approach underlying Peer-to-Peer systems

is particularly interesting because it can avoid scalability bottlenecks, mitigate

single points of failures and circumvent censorship. Having grown popular

mostly in illegal file-sharing systems in the 1990s, today large scale decen-

tralized Peer-to-Peer systems like the video-telephony service SKYPE or the

content distribution protocol BITTORRENT [Cohen, 2003] are among the most

widely used services in the Internet. It has since been argued that the decen-

tralized paradigm underlying these services is emerging as a leading pattern

in the design of scalable and reliable distributed systems [Wehrle et al., 2005].

The The Event
Monitoring Service

personal motivation for the research underlying much of this thesis

is - amongst others - based on experiences obtained during the practical de-

velopment of such a Peer-to-Peer system, namely the Event Monitoring ser-

vice EMON. It is currently being used for the distribution of particle colli-

sion data from the read-out systems of CERN’s ATLAS detector to the ma-

chines of physicists participating in the Large Hadron Collider (LHC) exper-

iment [Scholtes, 2005; Kolos and Scholtes, 2005; The community of testers

and developers in ATLAS DAQ/HLT, 2005]. In a nutshell, EMON is a dis-

tributed service allowing users to sample collision event data from different

points of the data flow chain of the ATLAS detector. A scalable dissemina-

tion of these data to possibly a few thousand subscribers is achieved by em-

ploying a Peer-to-Peer based content distribution scheme. For this, the ma-

chines of those users wanting to sample event data are interconnected in a

multicast overlay topology, thus harnessing the bandwidth of user machines

for redistributing events to other users. Based on event selection criteria and

different sampling points in the ATLAS detector’s data acquisition infrastruc-

ture, several k-nary tree overlays are used for this purpose. A schematic

view of this overlay for two sampling points in the data flow chain is de-

picted in Figure 1.5. Here, each tree node represents a machine of a user -

a so-called Monitoring Task - subscribing to events from a particular sam-

pling point, edges in the overlay are virtual connections used to redistribute

incoming events to machines of other users. In each of these distribution trees,

the most capable machines are moved towards the root of the tree while the

less capable constitute the leaves. Further details on algorithmic and imple-
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Figure 1.5: Event Monitoring Data Distribution Overlay

mentation aspects of the EMON service can be found in [Scholtes et al., 2006;

Scholtes et al., 2008c].

Clearly,Managing the EMON

Overlay
the overlay topology being used in EMON is extremely simple and

with at most a few thousand users the number of involved machines is com-

parably moderate. Furthermore, a rather tightly controlled scientific setting is

addressed in which malicious user behavior can be disregarded for the most

part. Nevertheless, practical experiences obtained during the design, testing

and maintenance of this system have demonstrated that the efficient and re-

liable management of overlay networks in the face of unreliable and hetero-

geneous machines is non-trivial. The algorithmic aspects of highly structured

overlays like EMON’s tree topology may appear simple. However the actual

implementation of such systems is complicated significantly by error-prone

links and machines, heterogeneous resources and the unpredictable dynam-

ics of users. In such highly dynamic distributed systems, maintaining a par-

ticular overlay structure required by deterministic distributed algorithms is

non-trivial. Furthermore, in the practical implementation of sophisticated dis-

tributed maintenance algorithms, preventing deadlocks, race conditions and

overlay inconsistencies has proven to be a considerable challenge due to the

massive concurrency involved.
Harnessing Complex
Phenomena in
Peer-to-Peer Systems

These problems are in no way unique to the Event Monitoring service but

rather showcase the complexities involved with the management of overlay

networks in general. In fact, these difficulties are aggravated considerably

when designing systems that are deployed at a very large, possible global scale.

In Peer-to-Peer systems, overlays typically interconnect user-contributed ma-
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chines that are not managed professionally. They may crash frequently and

can join or leave the system at any time, thus resulting in a highly dynamic

topology with continuously and concurrently fluctuating nodes and links. In

such systems, efficiently maintaining highly structured overlay topologies is

a considerable challenge. The continuous fluctuation of participants, an effect

commonly called churn, requires the use of distributed algorithms which repair

and maintain network structures being required for distributed algorithms to

operate correctly and/or efficiently. However, at the same time one can argue

that the virtual and alterable character of connections in systems built upon overlays

facilitates the use of phenomena in which favorable complex structures emerge in a

self-organized fashion based on simple local, possibly randomized connection schemes.

Furthermore, we will see that the emergence of globally coherent patterns from local

stochastic interactions suggests and active use of complex collective behavior in large

dynamic Peer-to-Peer systems.

1.4 Contributions and Outline of this Dissertation

In the remainder of this dissertation, different facets will be considered that

are related to the question how complex phenomena can be used in a targeted

fashion in large scale networked computing systems. Based on their relevance

for the deployment of services in the future Internet, a particular focus has been

laid upon systems being built upon overlay networks. Coarsely resembling the

structure of this thesis, in the following paragraphs those aspects that consti-

tute the main contributions of this work are briefly summarized. As will be

argued in more detail later, an important aspect of this dissertation is to take

an interdisciplinary perspective on the management of very large, dynamic

and networked computing networks. In particular, we seek to incorporate the

views of random graph theory, complex network science and statistical me-

chanics on the management of overlay networks whose characteristics are fa-

vorable for an application in distributed computing systems. In chapter 2 we

thus introduce some necessary concepts and review a number of findings from

these disciplines that seem relevant for the engineering of networked comput-

ing systems.
Overlay Networks - A

Thermodynamic
Perspective

Having introduced the necessary conceptual framework of random graphs

and complex networks, in chapter 3 we briefly review the strengths and weak-

nesses of structured and unstructured approaches to the management of large

dynamic overlay topologies. We then consider a thermodynamic perspective on

the management of overlay networks which is based on analogies between com-
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plex networks and statistical mechanics that has been introduced in chapter

2. We further discuss how a study of models from complex network science

and an application of analogies to particle systems gives rise to what one

may call thermodynamically structured overlays, actively making use of strong

stochastic guarantees stemming from simple, randomized protocols and em-

ploying phase transition phenomena to adapt macroscopic network qualities.

Being aware that an application of theoretical results from the study of ran-

dom graphs and complex networks in engineered networked systems requires

caution, we argue that the virtual character of connections in overlay networks

facilitates a well-grounded, deliberate and constructive use of these findings.

Parts of the concepts that will be discussed in chapter 3 have originally been

published in [Scholtes et al., 2008a; Scholtes et al., 2010].

BasedCreating and
Adapting Scale-Free
Overlays

on the ideas put forth in chapter 3, in chapter 4 we first critically

appraise the use of findings about random scale-free graphs in computer net-

works. In particular, we argue that the use of randomization techniques facil-

itates the application of analytical results summarized in chapter 2. We then

turn to some practical aspects that arise when wanting to create random scale-

free overlays with freely adjustable degree distribution exponent in practice. In

section 4.2, we introduce a distributed, probabilistic rewiring scheme that can

be used for this purpose. The scheme has recently been presented in [Scholtes,

2010] and experimental as well as analytical results suggest that it constitutes a

practicable approach to efficiently create randomized overlay topologies with

scale-free characteristics and variably pronounced hubs. We further suggest

that the scheme can be used to actively trigger phase transitions in order to

adapt structural properties of scale-free networks that are relevant for the per-

formance of networked computing systems.

BasedMonitoring
Scale-Free Overlays

on the notion of thermodynamic guarantees that has been introduced

in chapter 3, in section 4.3 we introduce a distributed monitoring scheme by

which the degree distribution exponent of power law networks can be derived

in a distributed and probabilistic fashion. This scheme has first been proposed

in [Scholtes et al., 2008a], where we have argued that it can be used for a macro-

level reasoning about the topological properties of power law networks as well

as about the performance of dynamical processes and distributed algorithms

operating upon them.
Self-Organized
Synchronization in
Peer-to-Peer Systems

In chapter 5 we somewhat shift the focus away from the formation, adap-

tation and monitoring of overlay networks with complex, probabilistic struc-

tures. Here, we rather consider the use of complex collective phenomena

emerging by means of non-linear dynamical processes operating - for example
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- on such networks. We present a probabilistic, message-based variation of the

Kuramoto model for coupled oscillators that has been introduced in [Scholtes

et al., 2009; Scholtes et al., 2010] We argue that a limit cycle attractor of this dy-

namical system can be used to efficiently synchronize a set of oscillating signals

in overlay networks with good mixing properties. The proposed scheme can

thus be used for example to provide synchronous heartbeats in decentralized

Peer-to-Peer systems. Compared to existing schemes that rely on pulse coupled

models, the proposed algorithm provides the benefit that associated message

exchanges are randomly distributed randomly across time, rather than occur-

ring synchronously.
Monitoring Networks

by Synchronization
In section 5.2.3 we further consider the question whether this self-organized

synchronization scheme can be used to monitor spectral properties of overlay

networks. We particularly present experimental results suggesting that a time

series analysis of local oscillations and incoming coupling offsets can facilitate

a distributed reasoning about a network’s algebraic connectivity. While this

idea has originally been put forth in [Scholtes et al., 2010], we further present

initial experimental evidence that the synchronization scheme allows nodes to

locally assess community structures in their neighborhood.

Having An Interdisciplinary
Perspective on

Network Engineering

considered the use of both complex structures and complex collec-

tive phenomena in networked computing systems, we conclude this disserta-

tion in chapter 6. Here we reflect on the potential of applying recent findings

from the field of complex networks and complex systems science in the engi-

neering of networked computing systems that actively use emergent organiza-

tional principles. Furthermore we critically appraise the contributions of this

dissertations towards achieving this goal. Finally, we present some perspec-

tives of an interdisciplinary approach to the engineering of networked com-

puting systems and give an outlook to future work.
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Chapter2
Introduction to Random

Graphs and Complex

Networks

Smooth shapes are very rare in the wild but extremely important

in the ivory tower and the factory.

BENOÎT MANDELBROT

Random GraphsWhen wanting to reason about the structures and dynamics unfolding in

very large networked computing systems, details of the processes shaping

these networks are often either unknown or uncontrollable for example be-

cause they are influenced by environmental conditions or user behavior. Apart

from the well-established study of networks with highly regular structures like

trees, rings or regular lattices, it is thus often helpful to consider networks that

are generated by stochastic processes. Related questions are being studied in

the field of random graph theory, which was pioneered in 1959 by Pál Erdös

and Alfréd Rényi [Erdös and Rényi, 1959]. Even though the models that un-

derly these so-called Erdös/Rényi random graphs are extremely simple, they

have been an active area of research for more than five decades. An exhaus-

tive and authoritative review of the findings of this research can be found for

example in [Bollobás, 2001]. In this section we briefly introduce some basic

notions and findings of classical random graph theory only in so far as they

relate to the topic of this thesis and demonstrate the reasoning about networks

with more complex, probabilistic structures. As we shall see in subsequent

sections and chapters, some of the results stemming from this study can have



26

important implications for the design and operation of networked computing

systems and large scale overlay networks. At this point however, we first need

to precisely state our notion of the terms graph and network, both of which will

be used interchangeably throughout this thesis.

Definition (Network, Graph). Let V be a set and E ⊆ V ×V. We call the ordered

pair G = (V, E) a graph or network with distinguishable vertices (or nodes) V. An

element (v, w) ∈ E is called an edge (or link) from v to w. In this case, w is said to be

adjacent to v and the edge (v, w) is said to be incident to v. An edge (v, v) is called a

self-loop. A network or graph is said to be undirected if ∀(v, w) ∈ E → (w, v) ∈ E,

otherwise it is said to be directed.

In the remainder of this dissertation we consider labeled graphs and net-

works, that is we explicitly distinguish also between those networks that are

identical up to a relabeling of nodes. We further restrict our consideration to

undirected networks, notwithstanding the fact that similar findings on directed

networks are equally well applicable in the engineering of networked comput-

ing systems.

2.1 Basics of Random Graph Theory

The G(n, m) model The prime abstraction of random graph theory is that of a graph ensemble,

that is a probability space consisting of a set Ω of graphs and a measure P as-

signing each graph G ∈ Ω a probability P(G). A simple graph ensemble con-

sidered in classical random graph theory is given by the the so-called G(n, m)

model. Here, the set of all possible undirected, labeled graphs with n vertices,

m edges and no self-loops is considered, each of them being ascribed equal

probability. The number of such graphs is given by the binomial coefficient

(n
m). Thus the associated probability measure P assigns each possible graph

realization G a probability

P(G) =

(
n
m

)−1
. (2.1)

The G(n, p) model A slightly different model that is frequently considered in the study of ran-

dom graphs is the G(n, p) model. The basic idea underlying this model is a

stochastic process that generates edges in an initially empty graph with n ver-

tices. In this process, edges between all (n
2) pairs of vertices are added to the

graph with uniform probability p, thus eventually defining a probability space

that contains all graphs with n vertices and any number of edges. In the G(n, p)
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model, the expected number of edges for a randomly chosen graph is p(n
2) and

the probability P(G) that a graph G with exactly m edges is created is given by

P(G) = pm · (1− p)(
n
2)−m. (2.2)

In particular, this measure implies that - in general - graphs with different

numbers of edges are assigned different probabilities. However, for p = 1
2

one obtains an ensemble in which all graphs - independent from the number

of edges m - are equally probable. Figure 2.1 shows a random realization of a

graph generated according to the G(n, p) model with n = 200 and p = 0.03.

Figure 2.1: A random G(n = 200, p = 0.03) graph

Arguing about
Structural Properties

Defining the G(n, m) and G(n, p) ensembles allows to ask interesting ques-

tions about the properties of randomly chosen (or if you will randomly gen-

erated) networks. Technically, those graphs that exhibit a certain structural

property like for example connectedness define a subset ω ⊂ Ω of all possible

graph realizations Ω. By means of the probability measure P that is defined

in both models, one can argue about the probability of these subsets and thus
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about the probability that a randomly chosen or generated graph exhibits a

certain property. For the G(n, p) and the G(n, m) model, the probability of a

certain graph property ω can then be expressed in terms of the parameters n,

p and m respectively.

AProperties Holding
Almost Surely

particularly interesting class of properties are those that hold asymptoti-

cally almost surely in a given graph ensemble. For an arbitrary graph property

x and with ωx ⊆ Ω(n) denoting the subset of all graphs that exhibit property

x in the probability space Ω(n) which consists of all possible networks with n

nodes, we can say that property x holds asymptotically almost surely if and only

if limn→∞P(ωx) = 1. In other words, the probability that a randomly drawn

graph exhibits a property that holds asymptotically almost surely converges to

1 as the size of the graph goes to infinity. Such properties are interesting for

a number of reasons. First of all - given that this convergence is fast enough

- strong guarantees for their occurrence can be obtained if the size of a graph

is sufficiently large and if the graph has been chosen at random. Furthermore,

such arguments can be used to explain the occurrence of common character-

istics in a variety of networks that emerge in natural and technical systems.

Speaking informally, the fact that a certain property is common across differ-

ent networks is not surprising if it is almost impossible to find a graph without

this property.
Connectedness in
Erdös/Rényi Graphs

For the graph ensembles defined by the classical models, a number of prop-

erties and the dependence of their probability on model parameters have been

analyzed. Since connectedness is among the most fundamental properties of

a graph, it was one of the first being studied for random graphs [Erdös and

Rényi, 1959]. We say that a graph is connected if a path p exists between each

possible pair of its nodes. Here, a path p between two nodes v and w is a

sequence of edges (v1, v2), (v2, v3), . . . , (vl−1, vl) with v1 = v and vl = w. Nat-

urally, the number of edges m required to ensure connectedness increases as

the size of the graph n is increased. Considering m(n) as a function depending

on the graph size, for the G(n, m(n)) model the number of edges

m(n) =
n · ln(n)

2
has been found to be a critical threshold. Below this threshold almost no

graph in G(n, m(n)) is connected, while almost every graph is connected above

the threshold. Analogously a size-dependent threshold function

p(n) =
log(n)

n
(2.3)
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could Phase Transition
Phenomena in

Random Graphs

be identified for the connectedness of graphs in the G(n, p(n)) model.

The most interesting aspect of these findings is the fact that the (large graph

limit for the) probability that a randomly chosen graph is connected changes

abruptly from 0 to 1 as p(n) and and m(n) are varied. In [Cohen, 1988], it is

argued that this behavior is closely related to phase transition phenomena oc-

curring in statistical physics. Another connectivity-related property for which

such a threshold behavior could be identified is the size of a graph’s largest

connected component. For a vertex v, the connected component Cv contains

all nodes w for which a path between v and w exists. In the G(n, m(n)) model,

the size of the largest connected components is proportional to n for almost

every graph if m(n) is chosen such that

limn→∞
m(n)

n
>

1
2

.

In this case, Diameter of Random
Graphs

a path between all but a constant fraction of nodes exists and

the associated connected component is called giant connected component. Be-

yond connectedness, a property that is important for the design of commu-

nication networks is a graph’s diameter. Defining l(v, w) as the length of the

shortest path between two nodes v and w, the diameter is given by the maxi-

mum of l(v, w) for any two vertices v and w. For the G(n, p) model, it has been

found that the diameter of almost every graph in G(n, p) is d if p is chosen such

that

p · nd−1

n
→ ∞ for n→ ∞.

It has further been shown that the diameter of almost all graphs in the

G(n, p) models is virtually identical for a large range of p, which translates to

the fact that adding connections beyond a certain point will most likely leave a

graph’s diameter unchanged.
The Small World

Phenomenon
Despite the simplicity of the underlying models, findings about diameter

or connectedness of random graphs have in fact been used to reason about the

properties of real-world networks. A famous example is the small diameter of

social networks that was observed in the late 1960s by Stanley Milgram in his

now famous small-world experiment [Milgram, 1967]. Random graph theory

informs us that the mere existence of such short paths is not at all surprising

since almost every randomly chosen graph with a sufficiently large number

of edges will exhibit a small diameter. Hence, the fact that a network has a

small diameter - if taken alone - does not qualify as a sign for a sophisticated

structure.
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2.2 The Study of Complex Networks

Limitations of
Classical Models

While first steps in studying the social graph of the United States had been

taken by Stanley Milgram in the 1960s, roughly 30 years later the increasing

availability of network data sets and computing resources opened unprece-

dented opportunities to study further properties and statistical features of net-

works occurring in real-world systems. Since then, the characteristics of net-

works stemming from data as diverse as protein-protein interactions, scientific

co-authorships, movie databases, technological systems or social interactions

have been investigated. Here, a number of statistical features like clustering

substructures or characteristic connectivity distributions have been found to

be common across largely different systems. The structures in these networks

are neither completely random - in the sense that they could be explained in

the framework of the classical G(n, m) and G(n, p) models - nor regular, which

is why they are commonly called complex networks.
Simple Models for
Complex Networks

Clearly, the fact that classical random graph models fail to reproduce com-

plex structures that can be observed in natural or technological systems is not

surprising. Links in biological, technological and social networks like those

mentioned above are hardly created independently at random. The probabil-

ity that a link between two particular nodes is created is rather influenced by a

variety of factors like the capacity and popularity of nodes, their spatial embed-

ding, the costs or benefits entailed by creating and maintaining links and many

further aspects. Furthermore, in systems that evolve gradually, existing nodes

and links are likely to influence those edges being created by subsequently en-

tering nodes. During the last decade, a number of network models have been

proposed which aim at better capturing such properties and which are able to

reproduce the complex structures that can be observed in social, natural and

technological networks.
Clustering Coefficient An example for a characteristic that is common in real networks but which

is unlikely to emerge in the classical random graph models is the existence of

clustering substructures which can be assessed by a network’s clustering coef-

ficient as defined for example in [Watts and Strogatz, 1998]. The local clustering

coefficient Cv of a node v in an undirected network is given as

Cv :=
2 · | {(x, y) ∈ E : (x, v) ∈ E or (y, v) ∈ E} |

dv(dv − 1)
(2.4)

which tells what percentage of all connections that could possibly exist be-

tween the neighbors of a node v are present in the network in question. With
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this, the global average clustering coefficient of a network G = (V, E) with

|V| = n can be defined as:

C(G) := ∑
v∈V

Cv

n
(2.5)

The Watts/Strogatz
Model

In [Watts and Strogatz, 1998] the average clustering coefficients and the di-

ameter of networks representing movie actor relationships, the connectivity of

a power grid and a neuronal network have been compared to that of random

graphs. It was found that - while the small diameter of these networks can

be explained by classical random graph models - the clustering coefficient of

actual networks is sufficiently higher than that of random graphs. In order to

capture both high clustering and small diameter, in [Watts and Strogatz, 1998]

a model has been proposed that starts with a regular ring topology, each node

being connected to the k closest nodes in the ring. A parameter p is then intro-

duced which gives the probability that one endpoint of each edge is rewired

to a node that is chosen uniformly at random. The parameter p can be tuned

to produce graphs of increasing randomness that range between a regular ring

lattice for p = 0 and a random graph for p = 1. Figure 2.2 shows a random

realization of such a Watts/Strogatz network for n = 200 and p = 0.1. The

main contribution of this model is the fact that - within a certain range of p

- the resulting networks exhibit a small diameter while the initial clustering

structure is partially retained. As such, in the probability space created by the

Watts/Strogatz model two characteristics that can be found in a variety of net-

works encountered in reality are highly probable. It has since been found that

the combination of small diameter and high clustering - the so-called “small-

world” property - is typical for networks mapping for example social interac-

tions.

Another Degree Distributionsimple statistical feature that can easily be measured for actual

networks - at least if one has access to their global topology - is the distribution

of vertex degrees. With dv denoting the number of links incident to node v, the

observed degree distribution PG of a particular network realization G = (V, E)

is given as

PG(k) :=
| {v ∈ V : dv = k} |

|V| for k ∈N. (2.6)

For Degree Distribution
of Classical Random

Graphs

both the G(n, p) and the G(n, m) model, the degree distribution of ran-

domly generated networks converges with high probability to a Poissonian
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Figure 2.2: A random network with 200 nodes and 600 edges generated by the

Watts/Strogatz model with parameter p = 0.1

distribution. For the G(n, p) model, this can for example be easily understood

when considering the generation of a graph as a random process consisting of

(n
2) steps, in each step rolling a dice whether to add an edge for a single pair

of vertices. A randomly chosen vertex v participates in n− 1 of these Bernoulli

trials, meaning that v’s probability to obtain exactly k edges is given by the

Binomial distribution as

(
n− 1

k

)
pk · (1− p)n−1−k

Thus, in the limit of large graphs the degree distribution PG of a random

G(n, p) graph converges to a Poissonian distribution λk

k! e−λ with the mean de-

gree given as λ = p · (n
2). In particular, this means that the connectivity of

graphs generated using the classical random graph models is - with high prob-

ability - homogeneous in the sense that nodes with significantly more or less

links than the average are extremely unlikely. Since edges are rewired indepen-

dently at random starting from a homogeneous ring topology, the same is true

for networks generated by the Watts/Strogatz model. The fact that the connec-
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tivity of nodes in both classical random graphs and Watts/Strogatz networks

are rather homogeneous can easily be seen in in Figure 2.2 and Figure 2.1.
Networks with Power

Law Degree
Distributions

In recent years it has been observed that this homogeneity is uncommon for

most examples of real-world networks. Instead, in many on these networks

there exists a small number of nodes that has a significantly higher number

of links than others. An example for a naturally emerging network where

this heterogeneity is obvious is shown in Figure 2.3, where extremely well-

connected nodes exist at the center of the network. It has been obtained by

mapping the transcriptional regulatory interactions between 1333 genes of the

Escherichia Coli bacterium [Gama-Castro et al., 2008]. Since roughly a decade

ago, the topologies of a number of heterogeneous networks in social, biologi-

cal and technological systems have been studied. In these empirical studies, it

has been shown that degree distributions of many of these networks - among

them the World Wide Web, social networks, power grids, the Internet’s router

network, Peer-to-Peer overlays, co-authorship graphs, linguistic, neural and

metabolic networks - seemingly follow a power law, that is

PG(k) ∝ k−γ (2.7)

for some real-valued exponent γ (see for example [Albert et al., 1999;

Broder et al., 2000; Faloutsos et al., 1999; Amaral et al., 2000; Jeong et al., 2000;

Govindan and Tangmunarunkit, 2000; Liljeros et al., 2001; Newman, 2001;

Ripeanu et al., 2002]). Again a number of simple stochastic network models

have been proposed that aim at capturing this particular statistical feature.

While we will review and classify some of these in section 2.3.5, in the fol-

lowing we first consider some of the interesting properties that have been at-

tributed to power law degree distributions. Random Graphs with
a Fixed Degree

Distribution

Reconsidering for example the

classical G(n, m) model for random graphs, here we recall that - based on two

fixed quantities n and m - a probability space is created which is “maximally

random” in the sense that all graph realizations are equiprobable and in which

Poissonian degree distributions emerge naturally. Although even this simple

approach has yielded interesting results, their applicability to real-world net-

works with different statistical features (like for example power law degree dis-

tributions) is rather limited. Consequently suitable extensions to classical ran-

dom graph theory have been studied [Molloy and Reed, 1995; Aiello et al., 2000;

Newman et al., 2001; Chung and Lu, 2002]. Here probability spaces are consid-

ered which - rather than containing all networks with a certain, fixed number

of links - consist of all possible networks that are consistent with a given pre-

determined sequence of degrees or expected degrees and in which all of these
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“feasible” realizations are again equiprobable. Just like the classical models,

this approach allows to study the probability that a randomly chosen network

with a given degree distribution has certain properties. Based on their abun-

dance in real-world systems, much of the work on random networks with fixed

degree distributions has been focused on the complex structures and character-

istics emerging in random power law networks.

Figure 2.3: The gene regulatory network of Escherichia Coli with 1333 nodes

and 2736 edges (network created using data from [Gama-Castro et al., 2008])



CHAPTER 2. RANDOM GRAPHS AND COMPLEX NETWORKS 35

2.3 Characteristics of Scale-Free Networks

Power Law vs.
Exponential

Distributions

Since in chapter 4 we will be involved with the construction, adaptation and

monitoring of overlay networks whose degree distribution follows a power

law, in the following section we lay the foundation for this work by reviewing

a number of characteristics of so-called scale-free networks which are relevant

in the design and operation of networked computing systems. Many of these

characteristics can be understood intuitively when considering the properties

of power law distributed quantities as opposed to - for example - quantities

being distributed exponentially, that is the probability of a quantity k being

proportional to e−λk for some λ ∈ R1. For a given quantity k and for some c > 1

we can then consider the frequency of a quantity c · k for both distributions. For

a power law distribution as given in equation 2.7 one obtains

(c · k)−γ = c−γ · k−γ

while for exponentially distributed quantities one comes to

e−λ(c·k) =
(

e−λk
)c

.

Thus, Power Law
Distributions and

Rare Events

while the frequency of a c times larger quantity becomes quickly neg-

ligible in the case of exponentially distributed quantities, for power law dis-

tributed quantities it only decreases proportionally at a rate depending on the

exponent γ. The implications of this difference become apparent when look-

ing for example at natural phenomena. Assuming for instance γ = 2.5 and

some quantity k with frequency 0.1, with c = 100 one obtains a frequency of

10−100 for the exponential as opposed to 10−6 for a power law distribution. We

may take for instance as quantity k the magnitude of those earthquakes that

occur on average once every 10 years within a certain region. If the magni-

tude of earthquakes were exponentially distributed, then an earthquake that is

100 times stronger will occur virtually never. It will however occur on aver-

age once every one million years if the magnitudes of earthquakes were power

law distributed2. In short, one can say that power law distributions have no

natural “scale” in the sense that the frequency of quantities away from a cer-

tain average value does not become quickly negligible. Their general shape

being invariant under constant scaling they are said to be scale-invariant and in

1Please note the similarity to the tail of the Poissonian degree distribution of classical random

graphs.
2Which seemingly they are according to the Gutenberg-Richter law [Gutenberg and Richter,

1949].
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statistics they are routinely applied in the modeling of extraordinary events or

catastrophes that are unlikely yet not impossible.
Power Laws in Finite,
Discrete Systems. The
Zipf Distribution

The reader may have noticed that we have so far used the phrase “power

law distribution” in a rather intuitive and careless manner. Prior to discussing

further properties of networks whose connectivity follows such a distribution,

we shall thus consider a more formal definition. For this we assume a random

variable X that can take discrete values from the set {1, . . . , n}. A correspond-

ing power law probability mass function P can then be given by the so-called

Zipf distribution as follows.

P(X = k) = P(k) = k−γ ·
(

n

∑
i=1

i−γ

)−1

(2.8)

Here the first term determines the power law behavior with exponent γ >

1 and the latter term is the generalized, n-th harmonic number of γ which

ensures the proper normalization of the probability mass function.
The Infinite Case: The
Zeta Distribution

Many of the more subtle properties of power law distributions come into

light as one considers very large systems. Being interested in the properties of

networks at very large scales, it is justified to study the case where the max-

imum quantity n goes to infinity. Considering the random variable X as the

degree of a node being chosen uniformly at random, for a network this means

that the maximum possible degree approaches infinity. In this case, the prob-

ability mass function in equation 2.8 becomes the so-called Zeta distribution,

which for γ > 1 is given as

P(X = k) =
k−γ

ζ(γ)
(2.9)

with ζ : R→ R being the real-valued Riemann zeta function

ζ(γ) =
∞

∑
i=1

i−γ. (2.10)
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2.3.1 Explanatory Power of the Power Law Exponent

Moments of Power
Law Distributions

In order to understand the influence of the exponent γ on some basic prop-

erties of the Zeta distribution one can study its (central) moments, the mth mo-

ment Mm over x0 being defined as:

Mm =
n

∑
x=1

(x− x0)
m · P(X = x) (2.11)

Thus, the first moment over x0 = 0 yields the expected value k̄ of the quan-

tities in question, while their variance is given by the second (central) moment

over x0 = k̄. Further interesting statistical properties like skewness and kurto-

sis are given by a distribution’s third and fourth central moments.
Moments and

Network Properties
When considering essential properties of networks with Zeta degree dis-

tribution (like for example connectedness, diameter, the resilience against ran-

dom node removals or the behavior of dynamical processes like the spreading

of information) one intuitively expects them to be influenced by the average

degree or the degree distribution’s variance and skewness. In fact, this intu-

ition explains why the degree distribution exponent γ, although being a mere

statistical parameter agnostic of any microscopic network details, significantly

influences many of a network’s large scale characteristics. Considering the mth

moment Mm over zero of the probability distribution P(X = k), from equation

2.11 one obtains for the Zeta distribution:

Mm =
∞

∑
k=1

km · P(k) =
∞

∑
k=1

km−γ

ζ(γ)
=

ζ(γ−m)

ζ(γ)
(2.12)

Hence, Moments of the Zeta
Distribution

for a network with Zeta degree distribution, the expected degree of

a node chosen uniformly at random is

M1 = E(X) =
ζ(γ− 1)

ζ(γ)
(2.13)

which, in the corresponding p-series’ convergence interval γ ∈ (2, ∞), eval-

uates to:

M1 = ζ(γ− 1) · ζ(γ)−1 (2.14)

Networks with
diverging first

Moment

For γ ≤ 2 the first first moment is divergent which translates to the fact

that - for an n-node power law network with exponent γ ≤ 2 - the mean vertex
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degree grows infinitely as n→ ∞. In particular, this means that the number of

links necessarily grows asymptotically faster than the number of nodes, which

is - considering the intended domain of overlay topologies for large networked

computing systems - clearly not a desirable property. In contrast, for any γ > 2

the mean vertex degree converges to the constant ζ(γ− 1) · ζ(γ)−1, resulting in

sparse networks in which the number of edges scales linearly with the number

of nodes. Looking at the general case of the mth moment Mm over zero, one

finds that it converges for γ > m + 1, in this case evaluating to

Mm = ζ(γ−m) · ζ(γ)−1 < ∞. (2.15)

Scale-Free Networks Considering the second central moment M2 of a network’s degree distribu-

tion, one thus finds that it is divergent for power law networks with an expo-

nent γ ≤ 3. Since the variance of a distribution can be given in terms of the sec-

ond moment M2 over zero3, it’s divergence translates to the fact that the mag-

nitude of deviations from the expected degree increases infinitely as the size

of the network grows. This formally underpins the notion of “scale-freedom”

in the sense that in networks with diverging second moment the mean or ex-

pected degree does not represent a characteristic “scale” of connectivity. In the

remainder of this dissertation we thus call networks with a Zeta degree distri-

bution with finite first and infinite second moment scale-free4. From the above

arguments we particularly find that - as opposed to classical random graphs

- in scale-free networks nodes with hundreds or even thousands of links are

likely to exist given that the network is sufficiently large.

Based, among others, on the convergence behavior of the m-th moments of

the Zeta distributions, in the last couple of years a number of properties have

been derived for scale-free networks. In the following we recall some of the

results that have been obtained for uncorrelated random scale-free networks. In

the language of random graph theory, these results thus hold asymptotically

almost surely for a network being drawn at random from the set of all net-

works consistent with a particular degree distribution. Stochastic models that

are suitable to generate networks with a scale-free degree distribution will be

considered in section 2.3.5 and - in the context of a practical distributed con-

struction procedure for random scale-free overlay topologies - in chapter 4.

3In the case of a finite expected value M1, the variance simply evaluates to M2 − (M1)
2

4We will use this definition throughout this dissertation although being aware that there exist

alternative and more sophisticated notions like for instance those introduced in [Li et al., 2005]
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2.3.2 Structural Properties

The Molloy-Reed
Criterion

A number of important results about the influence of a degree distribu-

tion’s moments on basic network properties are due to a result stemming from

the study of random graphs with fixed degree distributions that has been pre-

sented in [Molloy and Reed, 1995]. In simple terms, the so-called Molloy-Reed

criterion states that a random network whose degree distribution is such that

M2

M1
> 2 (2.16)

has almost surely a giant connected component, while there is almost surely

none if equation 2.16 does not hold. For networks with Giant Connected
Component in

Scale-Free Networks

Zeta degree distribution

with exponent γ, and in the limit of large networks, the Molloy-Reed criterion

evaluates (with equation 2.15) to

Q(γ) :=
ζ(γ− 2)
ζ(γ− 1)

> 2. (2.17)

As has been argued for example in [Aiello et al., 2000] and as indicated by

the plot of Q(γ) that is shown in Figure 2.4 this is the case for exponents below

a critical point γc ≈ 3.4787. More generally, the Molloy-Reed criterion nec-

essarily holds if the second moment diverges and the first moment converges

and thus for any exponent γ in the scale-free range between two and three
[Dorogovtsev and Mendes, 2003].

3.5 4.0 4.5 5.0
Γ

1.0

1.5

2.5

3.0
QHΓL

Figure 2.4: Q(γ) from equation 2.17 in random scale-free networks
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BeyondScale-Free Networks
are super-resilient

connectedness, an important property of a random network that

can be analyzed by means of equation 2.17 is a network’s resilience against

random faults. For this one can consider a simple model in which a number

of nodes and all incident edges are removed from a network uniformly at ran-

dom. One can then study the number of nodes that need to be removed until

the network loses connectedness or - tolerating a constant fraction of isolated

nodes - at which the giant connected component disappears. Intuitively, the

first moment of a network’s degree distribution plays a crucial role for the re-

silience against random node removals since it determines the expected num-

ber of stale links that are left after a single node is removed from the network

at random. By quantifying the effect of random node removals on a network’s

degree distribution and using the Molloy-Reed criterion, in [Cohen et al., 2000]

it has been shown analytically that, in random networks with a Zeta degree

distribution, at least a fraction

r := 1− (Q(γ)− 1)−1 (2.18)

of all nodes needs to be removed in order to destroy the giant connected

component. In particular, for scale-free networks with diverging second mo-

ment, it follows that r → 1 since Q(γ) → ∞. Hence for random power law

networks with γ ∈ (2, 3), asymptotically a number of nodes of the order of

the network’s size must be removed at random to destroy the giant connected

component. Contrariwise for random Erdös/Rényi graphs, removing a frac-

tion r � 1 suffices to let the network fall apart, the exact value of r depending

on the parameters n, m and p of the G(n, m) and the G(n, p) model.

ConsideringSuper-Resilient
Overlay Networks

an application for example in large, dynamic networked com-

puting systems, this so-called super-resilience of random scale-free networks

against random node removals is clearly interesting. As long as the machines

in such a system fail at random, the exponent γ of the Zeta degree distribu-

tion lies between two and three and the network is sufficiently large, almost

all nodes will remain connected almost surely. This favorable behavior of ran-

dom scale-free overlays is actually even more pronounced when considering

non-uniform failure models in which nodes with higher degrees are less likely

to fail than those with small degrees. By means of appropriate construction

procedures (considering e.g. an element’s past behavior) or a selective protec-

tion or replication of most connected nodes, network topologies can actually

be built in a way that this condition holds.
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In Scale-Free Networks
with γ ≈ 2 are

super-susceptible

short, the remarkable robustness of scale-free networks against random

failures is based on the fact that - with high probability - a failure will not af-

fect one of the few most connected nodes. Clearly the opposite is true when

considering failure models in which the most connected nodes are removed

preferentially. Such models can be used to evaluate a network’s susceptibility

against sabotage, that means scenarios in which an informed individual in-

tentionally brings down the most connected and thus must important nodes.

Again by quantifying the effect of such an attack on a network’s degree dis-

tribution, in [Cohen et al., 2001] the fraction r of most connected nodes that

can be removed until the giant connected component is destroyed has been

derived for random scale-free networks. Here it has been argued that, as a

network’s exponent γ approaches two, the fraction r of most connected nodes

that needs to be removed to disintegrate the network goes to zero in the limit

of infinite networks. One may thus call such networks super-susceptible against

targeted attacks. In contrast, for γ > 2 a critical fraction rc � 0 can be derived

that grows gradually as γ is increased. This is illustrated in Figure 2.5, which

shows randomly chosen scale-free networks with exponents 3.5 and 2.001 after

random nodes (a-b) and most connected nodes (c-d) have been removed.

Apart from Scale-Free Networks
are ultra-small

resilience against faulty constituents and their susceptibility

against attacks, a number of further characteristics of random scale-free net-

works can be attributed to the moments - and thus the exponent - of their Zeta

degree distribution. Being particularly interesting for the design of large scale

overlay topologies for networked computing systems, in [Cohen and Havlin,

2003] it has been argued that with high probability the diameter of random

scale-free networks with exponents γ ∈ (2, 3) is proportional to ln(ln(n)) and

thus ultra-small. In practical terms this translates to the appealing fact that the

length of a path between any two nodes in a random scale-free network may be

considered virtually constant at least for any network size that can practically

occur in real-world networked computing systems.

2.3.3 Routing, Search and Diffusion Phenomena

Distributed Search in
Scale-Free Networks

Above we have seen that ultra-short paths exist between nodes in random

scale-free networks. For practical distributed computing systems that are in-

terconnected via network topologies that exhibit scale-free characteristics, the

mere existence of such paths is rather uninteresting if there are no efficient

means by which these can be found and used. Related questions have thus

been studied in the context of scalable distributed search and decentralized
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(a) γ = 2.001 (b) γ = 3.5

(c) γ = 2.001 (d) γ = 3.5

Figure 2.5: Effect of removing 30 random (top row) and 30 most connected (bot-

tom row) nodes in 300 node random networks with a Zeta degree distribution

with exponent γ = 2.001 (left column) and γ = 3.5 (right column). Networks

have been layouted using the Kamadai-Kawai algorithm.

routing schemes. In order to locate content in an ad-hoc fashion without re-

quiring the explicit construction of indexing structures, early Peer-to-Peer file-

sharing services like GNUTELLA, whose overlay topology reportedly shared

some of the features of scale-free networks [Ripeanu et al., 2002], used sim-

ple flooding mechanisms by which search requests were propagated through

the network until they eventually arrived at a node with access to the object

in question. While the time taken by this strategy to locate a certain piece of

content benefits from the existence of ultra-short paths in scale-free networks,
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flooding the network with requests is clearly not a scalable solution. More

efficient probabilistic search strategies for scale-free networks have been inves-

tigated throughout the last couple of years.
Efficient Distributed

Search Strategies
A simple improvement over flooding strategies is the use of local schemes

by which requests are forwarded only to a single neighbor that is either cho-

sen randomly or based on some node characteristic like for example its degree.

Different strategies of forwarding requests have been considered in [Adamic

et al., 2001], where it is assumed that each node has knowledge about the lo-

cally stored objects, its one-hop neighbors as well as the objects stored at these

neighbors. If none of the current neighbors has stored the searched object,

a search strategy has been evaluated in which the request is forwarded to the

(unvisited) neighbor with highest degree. In scale-free networks with exponent

γ ∈ (2, 2.3) it has been shown in [Adamic et al., 2001] that - once the random

walk has reached the node with maximum degree - this simple distributed

scheme approximately visits nodes in a decreasing order of their degrees. For

a scale-free network with n nodes and exponent γ ∈ (2, 2.3), in [Adamic et al.,

2001] it is further argued that with high probability the search time - that is the

number of steps taken until an object is found - scales as n2− 4
γ .

Making use of HubsThis implies that distributed search strategies which are biased towards

high-degree nodes are most efficient in scale-free networks with exponents

close to two. In fact this is not surprising since in these networks hubs are

most pronounced and the existence of nodes with massive numbers of neigh-

bors also results in large portions of the network being searched in a single

step. Since this inevitably results in a vast majority of requests being handled

by a small fraction of most connected nodes, this can however also question

the scheme’s usability in a number of practical systems. A number of similar

search strategies have thus been suggested that try to mitigate this problem for

example by a replication of biased or unbiased random walkers and objects [Lv

et al., 2002] or the use of parallel probabilistic broadcasts [Boykin et al., 2004] of

search requests. For the latter scheme, the search time in scale-free networks

has been shown to scale as log2(n), while the number of required messages

scales asymptotically as n
1
γ where n denotes the number of nodes and γ is the

exponent of the degree distribution.
Greedy Routing in

Scale-Free Networks
Closely related to the question considered above, the provision of scalable

distributed routing schemes in large, dynamic networks is a further problem

of prime importance for practical networked computing systems. Here, an im-

portant question with a large number of potential practical applications is how

short paths between arbitrary node pairs can reliably be found in an ad-hoc
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fashion based on the local view of nodes. In [Papadopoulos et al., 2010] it has

recently been argued that scale-free network structures can emerge naturally

as simple geometric graphs evolving between nodes embedded in hidden hy-

perbolic spaces. Based on earlier work on the performance of greedy routing

in hyperbolic spaces that has been presented in [Kleinberg, 2007], it has further

been argued in [Papadopoulos et al., 2010] that, in large and dynamic scale-free

networks that are suitably embedded in hyperbolic spaces, a simple greedy

heuristic can be used to provide efficient distributed routing with almost sure

delivery and small routing stretch5.
Spectral Properties of
Scale-Free Networks

Above we have briefly mentioned the usability of random walk strategies

for the provision of distributed search in large scale networks. Whether the

use of such random walk schemes is feasible in a particular network critically

depends on the topology’s so-called mixing properties which determine the

number of steps the random walk needs to take in order to converge to its

stationary distribution. While we will address this issue in more detail both

analytically and empirically in chapter 4, for the moment it is sufficient to say

that these properties of a network basically rely on how “well-connected” it

is, that is whether there exist long shortest paths and small cuts that could

prevent a fast convergence of random walks. While a general analytical treat-

ment of these properties for example in terms of algebraic connectivity, conduc-

tance, graph expansion and spectral properties of Laplacian and stochastic matri-

ces [Lovász, 1993; Chung, 1997; Bollobás, 1998; Hoory et al., 2006] is generally

complicated for large random networks, there exists a large body of evidence

demonstrating that random scale-free networks are in fact with high proba-

bility “well-connected”. This property of scale-free networks allows the use

of random walks not only for distributed search but also for the sampling of

random nodes [Zhang et al., 2008] or the construction and adaptation of ran-

domized network topologies [Scholtes, 2010]. Details of the latter scheme will

be presented in chapter 4 of this dissertation.

ApartDiffusion and
Consensus
Phenomena in
Networks with
Scale-Free Features

from the convergence time of random walks, the good mixing prop-

erties of scale-free networks also influence the performance of a number of

other dynamical processes which are - just like random walk schemes - es-

sentially based on the diffusion of information and which are of prime im-

portance for networked computing systems. One example are gossip-based

algorithms which - along with random walk mechanisms - constitute an im-

portant building block for the design of dynamic, decentralized and self-

5Routing stretch being defined as the ratio between the length of the path discovered by the

routing algorithm and the shortest path in the network.
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organized computing systems. During the last years, gossiping strategies

have been proposed for the provision of scalable multicast [Gupta et al., 2006],

the maintenance of database replicas [Demers et al., 1987], the efficient com-

putation of network-wide aggregate functions [Kempe and McSherry, 2004;

Jelasity and Montresor, 2004], the sampling of random nodes [Jelasity et al.,

2007], the distributed collaborative filtering of information [Bakker et al., 2009]

or the management of overlay topologies [Jelasity et al., 2009]. Another

class of dynamical processes which critically depends on network topologies

with good mixing properties are those resulting in self-organized consensus

phenomena like flocking, synchronization, opinion formation and collective

decision-making schemes frequently used in systems with distributed control.

Such phenomena can again be viewed as essentially being based on the dif-

fusion of information through the network as well as a feedback mechanism

by which the diffusing information and the behavior of individual elements

interact. It has been argued that the structures of scale-free networks facilitate

the emergence of consensus in a number of different contexts (see [Barrat et

al., 2008] for a review). An example for an algorithmic scheme which is based

on a self-organized synchronization mechanism and the good mixing found

for example in scale-free networks has been presented in [Scholtes et al., 2009;

Scholtes et al., 2010] and will be discussed in more detail in chapter 5 of this

dissertation.

Apart Detrimental
Spreading Phenomena

from using the good connectedness or expansion of random scale-

free networks for distributed schemes being based on gossiping, random walk

or consensus mechanisms, there also exist a number of detrimental phenom-

ena that benefit from these properties. Examples include the proliferation of

worms, viruses and malicious content in computer networks, the pollution of

Peer-to-Peer file-sharing systems with corrupted data [Thommes and Coates,

2005] or the propagation of failures. Such phenomena can again be viewed as

particular types of diffusion processes and relations to structural properties of

the network topology upon which they operate can be studied. The fact that

many technical networks are affected by these processes and the finding that

many technical systems seemingly exhibit scale-free network structures un-

derpin the importance of a sound understanding of topological features that

influence the dynamics of spreading processes. Some of these issues can be

addressed by means of rather simple epidemiological models like for example

the SIS and the SIR models that have been introduced in [Kermack and McK-

endrick, 1927; Britton and Adler, 2004]. To evaluate their efficiency, one can

define the epidemic threshold λ as the minimum proportion i
c of newly in-
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fected nodes i and cured nodes c per time above which an epidemic remains in

the population without requiring external infections. In [Pastor-Satorras and

Vespignani, 2001; Blanchard et al., 2002] it has been shown for the SIS model

that, in random scale-free networks, the epidemic threshold λ depends on the

first and second moments of the network’s degree distribution and thus the

degree distribution’s exponent γ in the following way:

λ =
M1

M2
=

ζ(γ− 1)
ζ(γ− 2)

(2.19)

Again using the convergence and divergence of moments, for scale-free net-

works with γ ∈ (2, 3) and thus a finite first and a divergent second moment

one obtains λ → 0 in the limit. This can be reformulated to random scale-free

networks with exponent γ ∈ (2, 3) becoming infinitely susceptible to epidemic

processes in the limit of large networks. However, positively spoken it also re-

sults in an asymptotically infinite growth of the efficiency of probabilistic infor-

mation spreading schemes. While many more aspects of dynamical processes

in scale-free networks could be covered, here we end our summary and refer

the interested reader to the excellent reviews given for example in [Boccaletti

et al., 2006; Barrat et al., 2008].

2.3.4 Finite-Size Effects and Correlations

Applicability to
Engineered and
Natural Networks

Having reviewed a number of interesting findings that facilitate a substan-

tiated reasoning about the properties of random scale-free networks and the

dynamics unfolding within them, it is clearly tempting to apply these results

to the large body of real-world networks for which scale-free characteristics

have been identified. In fact, during the last decade a number of strong claims

have been made about the properties of technical systems (like for example the

Internet’s alleged fragility against sabotage [Cohen et al., 2001]) which are es-

sentially based on theoretical results about random scale-free networks. How-

ever, at this point we take the opportunity to speak a word of caution regarding

the applicability of these results to natural and engineered systems.

FirstFinite-Size Effects in
Scale-Free Networks

of all we have seen that many of the findings discussed above are

based on arguments about the convergence or divergence of moments of the

Zeta distribution and thus hold in the limit of infinitely large scale-free net-

works. Naturally, such limit behavior is rather of theoretical interest since

networks occurring in reality - although possibly being very large - are nec-

essarily finite. If one wants to apply arguments that hold in the infinite
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limit to practical, finite systems, it is important to consider the rates of con-

vergence or divergence which determine possible deviations from the lim-

iting behavior. An exact evaluation of these deviations with respect to a

particular property or finding must be carefully considered when design-

ing a particular system. Nevertheless, in [Dorogovtsev and Mendes, 2000;

Dorogovtsev and Mendes, 2003] it has been argued that some general state-

ments about the magnitude of these deviations in finite, random scale-free net-

works can be made. For the proportion

M1

M2

between the first and second moment of the degree distribution which oc-

curs both in the epidemic threshold in equation 2.19 as well as (inversely) in the

Molloy-Reed criterion leading to equations 2.17 and 2.18, it has been argued in
[Dorogovtsev and Mendes, 2003] that in a finite random scale-free network the

deviation from the infinite limit behavior depends on the network’s degree dis-

tribution exponent. In particular, for random scale-free networks with γ close

to two, finite-size effects quickly decrease as the network size increases while

for networks with exponents close to three the deviations from the limiting

case are much more pronounced and persist even for large networks.
Correlations in

Networks
When wanting to apply the findings above to practical systems, apart from

finite-size effects, another pitfall that must be avoided is the possible effect of

correlations that can be introduced by construction processes by which real-

world scale-free networks emerge. At this point its is important to remind the

reader of the fact that - strictly speaking - all of the findings summarized above

only hold for networks which are drawn from a probability space of networks

in which all networks with a fixed Zeta degree distribution are assigned equal

probability regardless of any further topological features. It is clearly only in

this case that the probability of a network exhibiting certain qualities is com-

pletely determined by its degree distribution. Contrariwise, actual construc-

tion procedures - although being probabilistic - may preferentially produce a

particular kind of network with a certain degree distribution while other net-

works with the same degree distribution are less likely or even occur virtually

never. In real-world network topologies this can be studied by considering -

apart from node degrees - further statistical properties and testing for correla-

tions between them. Examples for correlations that are frequently considered

in the study of complex networks are the clustering coefficient or the distri-

bution of degrees of nearest-neighbor nodes. While in the infinite limit, such

correlations are naturally absent for random scale-free networks, when want-
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ing to reason about the properties of real-world networks it is crucially impor-

tant to explicitly regard the potential effects of any correlations that may be

due to the construction processes by which they emerge. Alternatively, when

wanting to rely on the rich body of theoretical results on random and thus

uncorrelated scale-free networks in the engineering of networked computing

systems, it is necessary to explicitly consider randomized construction proce-

dures that eliminate correlations. Practical aspects of such an approach which

explicitly employs randomness to form scale-free overlay topologies in which

construction-dependent correlations are absent will be considered in more de-

tail in chapter 4.

2.3.5 Evolution of Scale-Free Structures

Emergence of Power
Law Distributions

The properties of scale-free networks and their apparent abundance in nat-

ural, technical and social systems have resulted in significant interest in possi-

ble mechanism by which they emerge. Referring to the scale-invariant prop-

erties of Zeta distributions that have been discussed above, certain aspects of

this question can be related to earlier studies of mechanisms by which scale-

invariant, fractal features in physics and biology emerge. In particular, simi-

larities between the evolution of scale-free networks and non-equilibrium pro-

cesses resulting in fractal tempo-spatial structures [Mandelbrot, 1982; Bak et

al., 1987; Vicsek, 1992] point to surprising relations between non-equilibrium

statistical physics and the study of random networks. While in the remain-

der of this section we focus on models for scale-free networks, excellent in-

terdisciplinary reviews on the question how scale-invariant distributions arise

in more general contexts can be found for example in [Mitzenmacher, 2002;

Caldarelli, 2007]. Due to the vast number of different models that have been

proposed during the last couple of years, here we can only review a small se-

lection of models that are relevant to questions being considered later in this

dissertation.
Growth-Based
Models: Preferential
Attachment

A rather natural way to model the emergence of networks in practical sys-

tems is by considering their temporal evolution. An important class of such

models are those that incorporate a growth process in terms of nodes or links

being added to the network one by one. A simple growth mechanism by which

scale-free networks emerge is the preferential attachment scheme that has been

studied in [Barabási and Albert, 1999]. In this model, nodes enter the network

one at a time, each new node drawing k links to existing nodes. The probability

p that one of these k new links is drawn to an existing node with degree d is

given as
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Figure 2.6: A network with 200 nodes and 384 edges generated by the

Barabási/Albert model

p =
d

2m

where m is the current number of edges in the network. An example net-

work resulting from this construction procedure is shown in Figure 2.6.

As shown by a mean-field approximation in [Barabási and Albert, 1999] and

more rigorously later in [Bollobás et al., 2001], this model generates networks

with a power law degree distribution with an exponent γ = 3. General Linear
Preferences

In [Dorogovtsev

et al., 2000b], a more general model has been considered in which the proba-

bility that a new node draws a link to an existing node with degree k is given

by

p =
d + A

∑k (k + A)

where A is some positive constant which influences the strength of the pref-

erence. For this it has been shown that the resulting networks have power law

degree distributions with the exponent γ depending on the particular choice

of A. While preference functions are rather theoretic constructions, different
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mechanisms have been considered that may underlie this preference in prac-

tical systems. A simple explanation for the emergence of degree-based pref-

erences are random walk schemes, inCopying, Random
Walk and
Deterministic Models

which joining nodes follow a random

path starting from an arbitrary initial node. Depending on the random walk

strategy and length, as well as the exact mechanism by which links are created,

it has been argued that such schemes can give rise to networks with power

law degree distributions [Vazquez, 2000; Saramaeki and Kaski, 2004]. Another

class of models that can be viewed as producing degree-based linking prefer-

ences are those incorporations copying mechanisms. Here, joining nodes copy

a fraction of links of existing nodes that are chosen at random. Depending on

the exact type of copying mechanism as well as parameters like the fraction

of links to copy, such models have been shown to be able to produce power

law networks with exponents in the scale-free range [Dorogovtsev et al., 2000a;

Vazquez et al., 2001]. All the models mentioned so far are based on some kind

of stochastic process. Contrariwise, in [Barabási et al., 2001], a simple deter-

ministic procedure has been considered which resembles iterative construc-

tion procedures of fractal geometric structures. With γ = 1 + ln(3)
ln(2) ≈ 2.585, the

degree distribution exponent of the networks resulting from this scheme has

again been found to be in the scale-free range.
Non-Equilibrium
Models for Scale-Free
Networks

All of the models considered above - stochastic or deterministic - involve

a growth process in which the different age of nodes drives the heterogene-

ity of the resulting degree distributions. In simple words, “older” nodes have

more chances to receive links from joining nodes and are thus more likely to

become hubs. If the preference of linking to old and well-connected nodes is

large enough to compensate for the increase in options that results from the

network’s growth, hubs can experience virtually unlimited growth in connec-

tivity by means of a self-energizing process that is frequently paraphrased as

a “rich-get-richer” or Matthew effect. In the language of physics, the growth

mechanism that drives the evolution of scale-free structures in such models can

in fact be viewed in terms of a non-equilibrium process by which the system self-

organizes into a state with scale-invariant characteristics and complex structural

features. Such non-equilibrium processes can intuitively be related to the self-

organized formation of different kinds of complex features in natural systems,

which is why it seems rather natural to study network models that explicitly

incorporate growth. At the same time,Benefits of
Equilibrium Models

there exist a number of situations where

such growth-based mechanism appear to be inadequate. First of all, as argued

for example in [Dorogovtsev and Mendes, 2003] growth processes inevitably

introduce correlations. To give a simple example, in the preferential attach-
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ment model mentioned above it is clearly impossible that a node vlast that joins

the network in the last step of the iterative construction process could possibly

be a highly connected hub since - apart from the k links it has drawn by it-

self - it had no chance to acquire any further connections. Contrariwise, in the

probability spaces that underlie the results about random scale-free networks,

realizations in which vlast is a hub are just as likely as any other configura-

tion which is why one needs to take care when wanting to apply theoretical

findings on networks resulting from non-equilibrium growth processes. Apart

from these rather subtle and technical difficulties, we can further clearly imag-

ine systems in which a correlation between a node’s age and its likelihood of

becoming highly connected is not desirable. We may further want to consider

the evolution or adaptation of scale-free structures in steady-state regimes in

which growth is absent. In the language of physics such conditions can be

viewed as equilibrium situations.

During Equilibrium Models
for Scale-Free

Networks

the last couple of years, different kinds of equilibrium models have

been considered which are able to produce scale-free networks. Since there

is no growth in these models, one needs to come up with alternative mecha-

nisms by which the nodes’ heterogeneous connectivity is introduced. A natural

way to accomplish this is by explicitly ascribing (numeric) node characteristics

that represent fitness, capacity, popularity or other heterogeneously proper-

ties. In [Caldarelli et al., 2002a] it has been shown that when nodes vi are

assigned characteristics p(vi) according to a sufficiently skewed distribution

p and when links are created between pairs of vertices vi, vj with probability

p(vi) · p(vj) the resulting networks will have power law degree distributions.
[Baiesi and Manna, 2003] introduced a model where a local rewiring of links fa-

vored connections between nodes whose degrees differ as much as possible. In

a certain parameter range, this dynamics eventually resulted in networks with

power law degree distributions. In [Goh et al., 2001] and similarly in [Chung

and Lu, 2002] a model has been considered in which nodes are assigned Zipf-

distributed node weights and links are being created with probabilities pro-

portional to the product of these weights. In this model random, uncorrelated

power law networks evolve with the degree distribution exponent depend-

ing on the Zipf distribution assigning initial node weights. Since it provides

the basis for the distributed adaptation scheme introduced in chapter 4, this

model will be considered in more detail later. Many more equilibrium and non-

equilibrium models producing scale-free networks exists and for a more ex-

haustive presentation we refere the reader to [Dorogovtsev and Mendes, 2003;

Boccaletti et al., 2006; Caldarelli, 2007].
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2.4 Complex Networks - An Equilibrium Statistical

Mechanics Perspective

Statistical Mechanics
and Complex
Networks

Considering networks as an (admittedly gross) abstraction for arbitrary sys-

tems consisting of interacting elements, it is not surprising that their study has

raised significant interest in a number of scientific disciplines. In particular, in

the study of the characteristics of complex networks a number of surprising

analogies to systems being considered in statistical physics have been uncov-

ered. We have already briefly mentioned that some properties of networks

resulting from the simple growth-based model considered in [Barabási and Al-

bert, 1999] resemble scale-invariant, fractal geometrical features that can be

found in a variety of natural systems. The observation of mere statistical sim-

ilarities may result in these analogies to be considered rather superficial and

sketchy. However it has since been argued for example in [Albert and Barabási,

2002; Berg and Lassig, 2002; Dorogovtsev et al., 2003; Farkas et al., 2004;

Garlaschelli et al., 2006] that there exist surprisingly substantial analogies be-

tween both equilibrium and non-equilibrium statistical mechanics and com-

plex networks. These and related works have facilitated to study the emer-

gence of complex structures in networks in the well-established framework of

statistical mechanics, thus allowing to argue in terms of particle ensembles and

macroscopic thermodynamic quantities like energy, volume, chemical potential

or temperature. In the following, we introduce some of the most basic notions

of equilibrium statistical mechanics only in so far as required to motivate some

of the relations between overlay topologies and thermodynamic systems that

will be pointed out in more detail in the subsequent chapters 3 and 4.
Isolated Equilibrium
Systems

Prior to establishing these analogies we first introduce some key abstrac-

tions being used in the study of many-particle systems in the field of statistical

mechanics. For this we start by considering a system S that consists of N par-

ticles and that is completely isolated from its environment. In Figure 2.7 such

a system S is shown along with its surrounding. Although being impossible in

practice, in a thought experiment one can precisely define the state of the sys-

tem S at a certain point in time by specifying a vector containing positions and

velocities of all N particles. Such a precise, microscopic description is called a

microstate of the corresponding particle system. Clearly, for any practical pur-

pose a microstate description is neither possible nor informative since one is

rather interested in a system’s bulk properties than in precise particle positions

and velocities.
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S

Figure 2.7: Microcanonical ensemble

Macrostates of
Particle Systems

These complexities can be reduced when limiting oneself to a description in

terms of aggregate, macroscopic parameters like volume, energy, particle num-

ber or temperature. Such a description of a thermodynamic system is called a

macrostate and can be thought of as a set that subsumes all possible microstate

realizations of a particle system that are consistent with certain fixed macro-

scopic parameters. For the completely isolated system S shown in 2.7, the pos-

sible microstates are determined by the number of particles N, the volume V

of the system (determining the number of possible particle positions) and the

total energy E (influencing the possible assignments of particle velocities).
Probability MeasureTechnically, a macrostate defined in terms of the macroscopic parameters N,

V and E subsumes a set of possible microstates that are consistent with these

fixed quantities. In order to reason about particle systems in terms of statistics,

such a macrostate can be turned into a probability space by defining a measure

which assigns each possible microstate r a probability Pr. To understand what

this means, one can view a particle system as a dynamical system. In general

particles will move and collide, hence changing positions, velocities and trans-

ferring energy between each other. The probability Pr can then be interpreted

as the probability to find the system - in any given moment - in microstate r.
Equilibrium PostulateHere the notion of a thermodynamic equilibrium comes into play. While one

could imagine many different ways of assigning a microstate r a probability Pr,

here we restrict ourselves to equilibrium systems in which all microstates with

identical energy are ascribed equal probability. In physical systems, the second

law of thermodynamics ensures that any isolated system will eventually reach

such a state. Due to all microstates being equally likely, this state maximizes

entropy and minimizes the amount of knowledge we have about the system’s
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detailed internals. In this equilibrium situation, for a macrostate consisting of

Ω(N, V, E) possible microstates, the probability to find the system in a partic-

ular microstate r is given by:

Pr(N, V, E) =
1

Ω(N, V, E)
(2.20)

Statistical Ensembles
and Random
Networks

In statistical mechanics, the probability space defined by a macrostate and

an associated probability measure is called a statistical ensemble. In particular,

above we have considered the situation of a completely isolated system in ther-

modynamic equilibrium for which the resulting statistical ensemble is called

the micro-canonical ensemble. At this point a first analogy between particle sys-

tems and the study of classical random graphs can be identified. Just like the

G(n, m) model defines a set of all possible networks with a fixed number n of

nodes and a fixed number m of edges in which all networks have probability

(n
m)
−1, the above ensemble is a collection of all possible configurations of par-

ticle positions and velocities with fixed aggregate quantities N, V and E, each

of the feasible configurations being assigned equal probability.
Equilibrium Systems
with Energy
Exchange

Real-world particle systems are hardly ever perfectly isolated. Usually sys-

tems can exchange energy or even particles with their surrounding. In a first

step, one can relax the condition of a perfectly isolated system by allowing an

exchange of energy with its environment. Such a situation is shown in Figure

2.8. For this, one assumes an impermeable border at which particles can ex-

change energy for example due to particle collisions. For the moment, we do

however assume that no particle can enter or leave the system. When particles

of the environment and the interior system S collide at the border (as depicted

in Figure 2.8), momentum can be transferred between particles in- and outside

the system and thus energy is allowed to leave or enter the particle system S.

We thus further assume that the system is in a thermal equilibrium with is en-

vironment in the sense that the inflow of energy is balanced with the outflow.
Canonical Ensemble Just like for the micro-canonical ensemble one can now again consider ther-

modynamic parameters that determine the macrostate of such a particle sys-

tem. In the situation depicted above, both particle number N and volume V

are - just like in the case of a completely isolated systems - fixed. In contrast,

the total energy E of the system can now vary over time. However since a

balanced in- and outflow of energy is assumed, one can reasonably define a

time-invariant average energy around which the total energy fluctuates. In

physical systems, both the average energy as well as the degree of fluctuation
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S

Figure 2.8: Canonical ensemble

around the average value are given by the temperature T, thus completing the

definition of a macrostate of what is called the canonical ensemble.

What Boltzmann
Distribution

is left for the definition of a probability space is to assign a probability

Pr(N, V, T) to each microstate r. Different from the case of the micro-canonical

ensemble, such a macrostate contains microstates with all possible energies.

We have argued above that, in a state of equilibrium, all microstates with a

certain total energy are equiprobable. We have further argued that we assume

a time-invariant average energy. By mere combinatorial arguments about the

number of possible microstate realizations with a certain total energy, it is pos-

sible to derive the Boltzmann distribution. It gives the probability Pr(N, V, T)

to find the system in a microstate r with energy Er as6

Pr(N, V, T) =
1

Z(N, V, T)
· e−

Er
T (2.21)

Here, Z(N, V, T) is a so-called partition function which normalizes the

probability distribution to 1, that is:

Z(N, V, T) = ∑
r

e
−Er

T (2.22)

Equilibrium Systems
with Energy and

Particle Exchange

We finally consider a situation in which a system is allowed to exchange

both energy and particles with its environment. Such a situation is depicted

in Figure 2.9. Just like in the canonical ensemble, we again assume an equi-

librium situation in which the in- and outflows of both energy and particles
6Usually, equation 2.21 also involves the Boltzmann constant kB which gives a unit-dependent

proportionality of temperature and energy. Here we are not interested in any particular units.

Assuming for example Planck natural units allows us to omit this constant.
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S

Figure 2.9: Grand canonical ensemble

are balanced. In addition to the fixed temperature T we further assume that

the average number of particles in the system remains constant by fixing the

so-called chemical potential µ.
Grand Canonical
Ensemble

A macrostate of this so-called grand canonical ensemble suitable to describe

the physical situation depicted above is determined by the volume V of the

considered system and its temperature T. Since particles are allowed to enter

or leave the system, a macrostate now consists of all possible microstates with

arbitrary particle numbers and with arbitrary energies. Similar like above, the

probability Pr of a particular microstate r depends on its energy Er and its num-

ber of particles Nr. It can again be derived analytically and is given by

Pr(V, T, µ) =
1

Z(V, T, µ)
· e−

Er−µ·Nr
T (2.23)

where Z(V, T, µ) is again a partition function that normalizes the probabil-

ity distribution to 1, that is:

Z(V, T, µ) = ∑
r

e−
Er−µ·Nr

T (2.24)

Following arguments put forth in [Dorogovtsev et al., 2003; Dorogovtsev

and Mendes, 2003; Farkas et al., 2004; Garlaschelli et al., 2006; Waclaw, 2007], in

the following we demonstrate how this equilibrium statistical mechanics per-

spective can be applied to random networks and thus - as we will argue in

chapter 3 - to probabilistically structured overlay topologies. For this, we recall

that the G(n, p) model defines a probability space that contains all networks
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with n nodes and any number of edges, the number of possible graphs de-

pending on its size n. Grand Canonical
Ensemble of Random

Graphs

This reminds us of the grand canonical ensemble where

a macrostate contains all microstates with a fixed volume V and an arbitrary

number of particles, the number of possible microstates and with it their prob-

abilities depending on the volume of the system. We further observe that aver-

age numbers of both particles (in the statistical ensemble) and edges (in the ran-

dom graph model) are determined by the chemical potential µ respective the

edge probability p. For a full analogy between statistical mechanics and ran-

dom networks we merely lack definitions of a network’s energy and temper-

ature. This can easily be resolved by defining a trivial energy function which

assigns a constant energy α to each edge, thus assigning energy EG = m · α to

a graph G with m edges. Referring to equation 2.2 and assuming a network G

with exactly m edges, this definition allows to reformulate the probability

PG(n, p) = pm · (1− p)(
n
2)−m

that is given by the G(n, p) model, in terms of the probability PG(n, µ, T) of

the grand canonical ensemble. As a first step, we can substitute the thermody-

namic quantities in equation 2.23 by their respective network analogies.

PG(n, µ, T) :=
1

Z(n, µ, T)
· e−

EG−µ·mG
T =

1
Z(n, µ, T)

· e
mG(µ−α)

T

Based on equation 2.24, for the normalizing partition function Z(n, µ, T) we

then obtain:

Z(n, µ, T) := ∑
G′∈G(n,p)

e−
EG′ −µ·mG′

T = ∑
G′∈G(n,p)

e
mG′ (µ−α)

T

In the latter equation, the summation goes over all possible networks with

n nodes. Alternatively, we may consider the partition function as summing

over all possible edge numbers. The maximum number of edges in a loop-free,

labeled n-node network is (n
2). When changing the summation from running

over all networks to running over all possible edge numbers, for each number

of edges k we further need to multiply the number of networks with n nodes

that have exactly k edges which is given by (
(n

2)
k ). This allows us to write for the

partition function

Z(n, µ, T) =
(n

2)

∑
k=0

e
k(µ−α)

T ·
(
(n

2)

k

)
=

(n
2)

∑
k=0

(
e

µ−α
T

)k
·
(
(n

2)

k

)
=
(

1 + e
µ−α

T

)(n
2)

where the latter equality simply results from the binomial theorem. For a

graph G with mG =: m edges we can then calculate PG(n, µ, T) as
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PG(n, µ, T) =
e

m(µ−α)
T(

1 + e
µ−α

T

)(n
2)

=

(
e
(µ−α)

T

)m

(
1 + e

µ−α
T

)(n
2)

.

Doing some further calculations

PG(n, µ, T) =

(
e
(µ−α)

T

)m
·
(

1 + e
µ−α

T

)−(n
2)

=

(
e
(µ−α)

T

)m
·
(

1 + e
µ−α

T

)−(n
2)+m

·
(

1 + e
µ−α

T

)−m

=

(
1

1 + e
α−µ

T

)m

·
(

1− 1

1 + e
α−µ

T

)(n
2)−m

yields the probability in the form PG(n, p) of the G(n, p) model. From this

one can immediately extract the relation

p =
1

1 + e
α−µ

T
(2.25)

between the per-edge probability p in the G(n, p) model and the per-edge

energy α and temperature T in the grand canonical ensemble of the corre-

sponding equilibrium particle system.
Thermodynamics of
the Classical G(n, p)
Model

With this reformulation of the classical G(n, p) model in terms of the mi-

crostate probability of the grand canonical ensemble, interesting analogies be-

tween random graphs and equilibrium particle systems become apparent. For

any fixed, constant edge energy α and chemical potential µ, temperature plays

the role of the edge probability p in the G(n, p) model. Here, two different cases

can be identified: As the temperature T tends to infinity, the per-edge probabil-

ity p tends to 1
2 , thus assigning equal probability to all possible networks, inde-

pendent of their edge number and thus energy. This corresponds to the ther-

modynamic situation of infinite temperature, in which a system can equally

well occupy states with arbitrary energy levels. A further interesting case is

T → 0. Here, depending on whether α > µ or α ≤ µ, the probability p con-

verges to zero or one respectively. This corresponds to the zero-temperature

limit in thermodynamics. When µ (which can be associated with the energy

available per potential edge) is greater or equal than the energy α “required”

per edge, only the fully connected graph is accessible while for µ < α only the

empty graph is accessible. Any finite temperature results in a random graph

ensemble with a particular value for p /∈ {0, 1
2 , 1}.
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Edge Energies in
Networks

Clearly, reformulating the G(n, p) model in terms of the grand canonical en-

semble is merely a demonstration of the analogies between random networks

and thermodynamic systems. Thus, rather than providing deeper insight this

analogy merely yields a different perspective on the structure of networks. The

more interesting aspects of these analogies come into light when assigning

edges (v, w) non-constant energies according for example to an energy func-

tion e : V × V → R. A network’s energy EG can then again be given as the

sum of edge energies which are in this case however not necessarily identical

for all edges. From an argumentation analogous to the one yielding equation

2.25, one can then express the probability that an edge between two vertices v

and w occurs as follows:

p(v,w) =
1

1 + e
e(v,w)−µ

T

(2.26)

A Thermodynamic
Perspective on

Network Structures

In this equilibrium perspective, classical Erdös/Rényi random graphs in

the G(n, p) ensemble can be seen as merely one particular class of networks

that is generated by assigning identical energies to all edges. By assigning edge

energies that capture for example node characteristics, the synergetic potential

existing between two nodes or the “stress” created by a connection, probabil-

ity spaces can be created in which probabilities are assigned to graphs in much

more sophisticated ways. Furthermore, critical points in the energy or temper-

ature parameter space at which the properties of the resulting networks sud-

denly change can naturally be related to phase transition phenomena occurring

in physical systems. In chapter 4 we will demonstrate how this equilibrium

statistical mechanics perspective can be practically applied in the management

and adaptation of probabilistic, scale-free overlay topologies. Here, based on

the results put forth in this chapter, changes in the energy landscape and lo-

cal, randomized edge rewirings will be used in order to adapt macroscopic

network qualities in a distributed fashion. Prior to presenting this scheme in

more detail, in the following chapter 3 we will discuss the potential of apply-

ing a “thermodynamic” perspective on random networks in the management

of large scale overlay topologies in a more general fashion.
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Chapter3
Overlay Networks - A

Thermodynamic Perspective

A theory is the more impressive the greater the simplicity of its

premises is, the more different kinds of things it relates, and the

more extended is its area of applicability. Therefore the deep im-

pression that classical thermodynamics made upon me. It is the

only physical theory of universal content concerning which I am

convinced that, within the framework of applicability of its basic

concepts, it will never be overthrown.

ALBERT EINSTEIN, “AUTOBIOGRAPHICAL NOTES”, 1949

A Thermodynamic
Perspective on Large

Scale Overlays

In the last chapter we have introduced some fundamentals of random

graph theory and the study of complex networks. While this excursus may

appear rather theoretical, in this chapter we discuss how a reasoning in terms

of random graphs and complex networks can facilitate the practical design

and operation of large dynamic networked computing systems making use

of overlay topologies. For this, we briefly introduce and illustrate the com-

monly employed taxonomy of highly structured, unstructured and probabilisti-

cally or loosely structured overlays and summarize their advantages and dis-

advantages. We then discuss the potential benefits of taking a thermodynamic

perspective on the management of overlay topologies which is inspired by the analo-

gies between complex networks and systems considered in statistical mechan-

ics that have been discussed in the previous chapter. In short, the key motiva-

tion for this approach is the finding that - in the face of highly dynamic par-

ticipants - maintaining overlay networks with simple deterministic structures

can be complicated and costly while the formation of topologies with complex,
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probabilistic structures is often simpler, more efficient and, in fact, natural. While

some related arguments have been put forth earlier in [Scholtes et al., 2008a;

Scholtes, 2010], here we present them in a broader context and in the light of

the findings that have been summarized in the previous chapter.

3.1 Structured and Unstructured Overlays

Overlay Topologies -
Highly Structured
Approaches

In section 1.3 we have introduced the basic motivation for the use of over-

lay networks and have commented on their importance for the deployment of

novel services and Peer-to-Peer systems on top of existing network infrastruc-

tures like the Internet. During the last couple of years, the design and analysis

of scalable overlay topologies and distributed algorithms operating upon them

has received significant attention. Different approaches have been considered

to efficiently provide a set of base services like distributed search, the key-

based retrieval of decentrally stored data, efficient application-layer routing or

scalable content distribution. In many of the commonly deployed distributed

services, highly structured overlay networks are being used in which virtual con-

nections between the participating machines or applications are created in a

globally consistent and controlled fashion to form a predetermined and deter-

ministic topology. This allows to optimize both the structure of the overlay

as well as the distributed algorithms operating upon them with respect to the

particular algorithmic task being addressed.
The Lookup Problem To exemplify this approach along with its advantages and disadvantages,

in the following we give a brief (and thus necessarily rough and incomplete)

overview of the highly structured overlay CHORD [Stoica et al., 2001], which

addresses the scalable lookup of data items that are stored decentrally on the

participating machines. Solving this so-called lookup problem efficiently, is a

problem of prime importance for a variety of distributed applications [Balakr-

ishnan et al., 2003]. While CHORD is one of the most prominent highly struc-

tured overlays that address this issue, a number of other approaches have been

proposed [Rowstron and Druschel, 2001; Ratnasamy et al., 2001; Aberer, 2001;

Hildrum et al., 2002; Maymounkov and Mazieres, 2002]. The main issue in

looking up data in large distributed systems is to efficiently locate a machine

that is responsible for a certain data item under the restriction that each of the

participants has only a limited view of the network. This view is usually re-

stricted to a small, ideally constant, number of nodes to which it maintains

virtual connections in the overlay.
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Figure 3.1: Example for a highly structured overlay topology created by the

CHORD Protocol

Looking up Data in
Highly Structured

Systems: CHORD in
a Nutshell

Figure 3.1 shows an overlay network built by the CHORD protocol to ef-

ficiently solve this problem. Black nodes represent machines participating in

the distributed storage and retrieval of data items. By means of a consistent

hashing scheme [Karger et al., 1997], unique identifiers in the range [0, 2m − 1]

for some suitably large m are assigned to each of these nodes based on the

machines’ IP addresses. A participant with ID i creates and maintains virtual

connections to all machines whose IDs are closest to the positions i + 2j mod-

ulo 2m in the identifier space (for j = 0, 1, . . . , m− 1). Data items that shall be

stored are then mapped onto the participating machines by means of the same

hashing scheme. In particular, each participating node is responsible for the

storage of all keys that fall in the range between its own ID and the next small-

est node ID in the system. In Figure 3.1 the keys of data items are depicted as

boxes and are arranged next to the nodes that are responsible for their storage.

When a data item with a certain key needs to be retrieved or stored, a node

uses a simple greedy mechanism, sending the request to the neighbor whose

identifier is closest but smaller than the key in question. By means of this sim-
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ple scheme and the structure of the overlay, a lookup in CHORD takes O(logn)

steps where n is the number of participating machines.

A key feature of protocols like CHORD is that they give rise to ordered,

highly structured overlay topologies that are in part inspired by linked data

structures, like for instance search trees, that are commonly used to address

related problems in non-distributed computing.Drawbacks of
Structured Overlays

While distributed algorithms

operating on such highly regular structures can achieve good and predictable

performance, their application in a distributed context is complicated signifi-

cantly by the dynamics present in real-world computing systems. Considering

for example Peer-to-Peer systems, nodes in the overlay topology can represent

highly heterogeneous and unreliable machines that are contributed by partic-

ipating users. Joining and exiting participants, crashing or misbehaving ma-

chines and communication errors result in a continuous fluctuation of nodes

and links in the topology, an effect that is commonly called churn. To coun-

tervail the loss of structure and the uncertainties that are due to these fluc-

tuations, maintenance mechanisms need to be employed which continuously

repair the deterministic structure of the topology. In CHORD, a stabilization

protocol continuously checks neighbors, removes broken links and reorganizes

the topology accordingly, thus maintaining the distributed indexing structure

that facilitates efficient lookups. As has been argued for example in [Balakr-

ishnan et al., 2003], the overhead entailed by such maintenance routines can

dominate the overall performance in real-world deployments, that is the cost of

maintaining a highly structured topology potentially exceeds the cost entailed by ac-

tual data queries. Apart from these operational costs, a further drawback is that

correctly implementing maintenance protocols is non-trivial due to the pos-

sibility of multiple concurrent node joins and failures. Besides the costs and

complexities of structure maintenance, there are further aspects that question

the use of highly structured topologies in a number of real-world scenarios.

Their efficiency often comes at the price of imposing a tight coupling between the

network structure and distributed algorithms. Its topology being tailored to facili-

tate fast key-based requests, CHORD cannot efficiently support complex query

types like range, partial match or fuzzy queries. Furthermore, the rigidness

of highly structured systems makes it hard to adapt their network topology to

the heterogeneous and possibly dynamic resources of machines. In particular,

due to the homogeneous distribution of keys and connectivity, CHORD implic-

itly assumes that the characteristics of participating machines are more or less

equal and time-invariant, which is hardly the case in reality.
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A Overlay Topologies -
Unstructured

Approaches

simple idea that allows to circumvent many of the above problems is

to dismiss the tight control over the overlay topology that is being applied in

highly structured systems. Simple protocols can be used instead which nei-

ther construct nor maintain a particular topology, but rather form links in an

uncontrolled, ad hoc fashion. The interest in such systems has largely been

triggered by a first generation of unstructured overlays used for example in the

GNUTELLA file-sharing application. Being used mainly for the illegal exchange

of copyrighted content, GNUTELLA can be seen as one of the first truly decen-

tralized Peer-to-Peer systems that has been deployed at a global scale in the

Internet. In order to simplify its implementation and circumvent the complex-

ities entailed by dynamic and heterogeneous participants, a maximally simple

protocol has been used. Machines of users that enter the system create links to

existing participants in a rather random and uncontrolled fashion, thus creat-

ing an overlay topology whose structure is largely influenced by the behavior

of users, the spreading of information about existing nodes with popular con-

tent, the reliability of machines or the distribution and dynamics of resources.

Apart from being connected - that is allowing each pair of participating ma-

chines to communicate with each other - no further assumptions about the

detailed structure of the network or the placement of content were made. An

example for such an unstructured overlay, as it could possible have emerged

for example from the protocol underlying early versions of GNUTELLA, can be

seen in Figure 3.2.

The Advantages and
Disadvantages of

Unstructured
Overlays

use of such an unstructured topology clearly circumvents the complex

and costly maintenance algorithms of highly structured systems. In an un-

structured system, the fluctuation that is due to joining and exiting partici-

pants cannot destroy any sophisticated structure and thus very simple mainte-

nance mechanisms that sustain or restore connectedness are usually sufficient.

Furthermore, the flexible structure of the overlay facilitates adaptation mech-

anism by which for example the number of virtual connections maintained

by a particular node can be matched to its resources or reliability. However,

apart from simplifying matters, dismissing control about the overlay’s struc-

ture also results in the fact that there are no cues that could be utilized by dis-

tributed search schemes. Knowing nothing whatsoever about the structure of

the topology and the placement of data items leaves exhaustive search as the

only option. In early versions of GNUTELLA a simple flooding strategy was

thus used by which search requests were propagated through the network up
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Figure 3.2: Example for an unstructured overlay topology as created for exam-

ple by the GNUTELLA protocol

to a maximum depth of seven hops1. The small diameter of the overlay re-

sulting from GNUTELLA’s connection scheme (as predicted for example even

by the maximally simple classical random graph models) and its deployment

at a global scale quickly resulted in significant scalability issues. The mere

signaling traffic resulting from the propagation of search requests at times re-

portedly amounted to a significant fraction of global Internet traffic [Ripeanu

et al., 2002].

1See http://rfc-gnutella.sourceforge.net/developer/stable/index.html#t3-2-7, ac-

cessed on October 18th, 2010.

http://rfc-gnutella.sourceforge.net/developer/stable/index.html#t3-2-7
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3.2 Thermodynamically Structured Overlays

The Middle-Ground:
Loosely Structured

Overlays

Summarizing the above arguments, one can conclude that highly and

rigidly structured overlays can achieve optimal and predictable performance

at the price of potentially complex and costly construction and maintenance

protocols and a lack of adaptiveness. On the contrary, unstructured overlays

sacrifice this optimum performance in favor of a simplified management of

the overlay, a decoupling of the topology’s structure and algorithmic schemes

and the facilitation of adaptive mechanisms. Since each of the two approaches

provides advantageous aspects, in recent years a middle ground of so-called

loosely or probabilistically structured overlay topologies is increasingly being ex-

plored. It is largely inspired by the observation that even the simple, explicitly

or implicitly stochastic topology construction mechanisms used by unstruc-

tured systems can give rise to topologies which - although not being deter-

ministic - exhibit non-random, complex characteristics that facilitate the devel-

opment of efficient distributed algorithms. An example for this can be found

in the GNUTELLA system, where the observation of complex characteristics

in the emerging overlay has resulted in vastly improved distributed strate-

gies which have since replaced flooding-based search [Adamic et al., 2001;

Ripeanu et al., 2002; Chawathe et al., 2003]. In the last couple of years, the ap-

proach of employing simple, probabilistic protocols by which overlay topolo-

gies with advantageous, complex characteristics emerge is increasingly being

acknowledged in research and a number systems have been proposed that

make use of probabilistic, loosely structured overlays [Ganesh et al., 2003;

Sarshar and Roychowdhury, 2004; Voulgaris et al., 2005; Sarshar and Roy-

chowdhury, 2005; Lua et al., 2005; Shahabi and Banaei-Kashani, 2005; Tian et

al., 2005; Sandberg, 2006; Vishnumurthy and Francis, 2006; Terpstra et al., 2007;

Bustamante and Qiao, 2008; Halim et al., 2008].

One Harnessing Complex
Structures in Overlay

Topologies

of the most interesting aspects of both unstructured and loosely struc-

tured systems is that the emerging overlay topologies are often neither completely

random nor deterministic. As such, they constitute a promising middle ground be-

tween highly structured and unstructured overlays that seems to be best suited for

the design of large, dynamic and adaptive distributed systems. The structural

properties of such network topologies, their influence on dynamical processes

and the question how they emerge from simple, local and stochastic construc-

tion procedures can furthermore be analyzed in the conceptual framework of

random graphs and complex networks. It has thus been acknowledged that

the tools and findings that have been accumulated in complex network science
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during the last decade play a crucial role in the engineering of simple proto-

cols that create robust overlay networks with predictable characteristics [van

Steen, 2004; van Steen, 2010]. InTowards
Thermodynamically
Structured Overlays

the remainder of this chapter we further argue

that the analogies between complex networks and equilibrium as well as non-

equilibrium particle systems that have been put forth in the previous chapter

facilitate a thermodynamic perspective on the self-organized formation of structures

in overlay networks, the macroscopic reasoning about their properties, the relation be-

tween the stochastic dynamics of individual nodes and aggregate network qualities,

as well as on the adaptation of their qualities to dynamically changing conditions.

The resulting idea of using thermodynamic analogies in the design of networked

systems resembles - though rather in spirit than in terms of the underlying

theoretic foundation - the thermodynamic system design that has earlier been ad-

vocated in [Kubiatowicz, 2003] for the engineering of reliable distributed sys-

tems. Here, the relation between the resulting, inherently probabilistic state-

ments and systems designed in a more traditional, deterministic fashion has

been summarized as follows:

“Those uncomfortable with probabilistic arguments should consider

that traditional systems fail under many circumstances. Thermodynamic,

self-organized systems can provide strong guarantees.” [Kubiatowicz,

2003]

Thermodynamically
Structured Overlays

An important objective of this dissertation is to further an interdisciplinary

perspective on large dynamic networked systems that is based on recent results

of complex networks science and the statistical mechanics’ view on networks.

A particular focus will be laid upon the question how findings from the com-

plex networks community and analogies to thermodynamic systems can be

applied in a constructive fashion in the engineering of what one may call ther-

modynamically structured overlays. In the remainder of this chapter, a number of

promising aspects and arguments that justify this notion are presented.

3.2.1 The Structuredness of Overlays: An Entropy Perspective

Entropy of Network
Ensembles

When studying the formation and maintenance of structures in overlay

networks, applying the concept of entropy as introduced in classical thermo-

dynamics [Clausius, 1864], statistical mechanics [Boltzmann, 1896] and infor-

mation theory [Shannon, 1948] can actually be insightful. In the context of

networks, a number of different notions of graph or network entropy have been

considered (see for example [Simonyi, 1995; Ji et al., 2008; Bianconi, 2009]). For
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a statistical ensemble Ω of networks and a probability measure P, it seems nat-

ural to consider the following definition of structural entropy H(Ω, P)

H(Ω, P) := ∑
G∈Ω

P(G) · log
(

1
P(G)

)
(3.1)

as Entropy of Highly
Structured and

Unstructured
Overlays

it directly relates to the entropy of a statistical ensemble in statistical

mechanics. The structural entropy can be viewed as capturing the degree of

information which one has about the detailed structure of a network drawn

from a statistical ensemble or - in other terms - the degree of uncertainty intro-

duced by the stochastic processes constructing a topology. The structural en-

tropy is maximized for a process or ensemble which constructs every possible

network with equal probability P ≡ 1
|Ω| , thus yielding H(Ω, P) = log(|Ω|).2

In this case, no statements about the detailed structure of a network stemming

from the corresponding construction process can be made. This situation of

maximum ignorance can intuitively mapped to completely unstructured overlays

which make no assumptions about the network topology emerging from a to-

tally uncontrolled construction process. The opposite is true for systems that

use highly structured overlays and thus tightly control the topology construction

process. The probability measure of the statistical ensemble corresponding to

this situation tends to a delta function, meaning that only one particular net-

work topology can occur. The entropy of such a statistical ensemble tends to

a minimum of H(Ω, P) = 0 which means that we have complete information

about the detailed structure of network resulting from such a process.
The Middle-Ground:

Overlay Networks
with Complex

Structures

The structural entropy of networks with complex, probabilistic structures

ranges between the two extremes of minimum and maximum structural en-

tropy. In the framework of statistical ensembles, this means that - while not

being completely deterministic - networks with certain features are much more

likely to emerge than other realizations. As such, the structural entropy gives

an intuitive measure for the structuredness or orderliness of an overlay resulting

from a particular topology construction or maintenance scheme or. It may fur-

ther be seen as a measure for the amount of ignorance or information one has about

the emerging structures. In this perspective one may further view machine

crashes, communication errors or churn as processes that decrease the orderli-

ness of an overlay and thus increase the structural entropy of the underlying

network ensemble. The fact that such effects inevitably occur in real-world

computing systems resembles - though informally - the increase of entropy in

2One easily sees that this corresponds to the entropy of the micro canonical ensemble of equi-

librium statistical mechanics and the G(n, m) model of classical random graphs.
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physical systems that is due to the second law of thermodynamics. Similarly,

protocols and algorithms that maintain or restore ordered structures in over-

lay networks can be viewed as decreasing the structural entropy of a network

ensemble at the expense of requiring communication and computation. In this

view, one may argue that low entropy systems facilitate the use of efficient dis-

tributed algorithms while high entropy systems are usually easier to maintain.

Network topologies with complex structures apparently offer a compromise

between these conflicting goals.

3.2.2 Macro-Level Arguments: Thermodynamic Guarantees

Thermodynamic
Guarantees in
Probabilistically
Structured Overlays

When using distributed protocols that create loosely or probabilistically

structured overlays, one is typically interested in creating topologies with cer-

tain qualities like for instance being connected, having small diameter and av-

erage shortest path lengths, facilitating gossiping and information spreading

schemes or being robust against failing nodes. We have seen in chapter 2 that a

reasoning in terms of statistical ensembles allows to assess the probability that

networks being created by a certain statistical model exhibit such properties.

We have also seen that strong probabilistic guarantees can be derived for prop-

erties that hold asymptotically almost surely, given that the system in question

is sufficiently large and the convergence sufficiently fast. Furthermore, the pa-

rameters which define the statistical ensemble from which a network is drawn

and upon which these probabilistic arguments depend are often rather sim-

ple aggregate quantities like for instance a number of edges being added to a

network at random or the distribution of node degrees in the network.Thermodynamic
Guarantees

In a

sense, this macroscopic reasoning about the collective properties of random net-

works resembles the study of relations between measurable and observable

bulk material properties like for instance volume, pressure, temperature, heat

capacity or compressibility in classical thermodynamics. A more formal justifi-

cation for this analogy can actually be found when considering the relations

between the parameters of the classical G(n, p) random graph model and the

macroscopic quantities defining the grand canonical ensemble of equilibrium

systems that have been discussed in section 2.4. As such it appears justified

to call probabilistic guarantees about network properties that can be related to

mere aggregate quantities of a statistical ensemble thermodynamic guarantees.
Macroscopic
Arguments in Large
Scale Computing
Systems

In the engineering of overlay topologies for large and dynamic computing

systems, an active and meaningful use of such thermodynamic guarantees can

provide a number of benefits. First of all it allows to employ a macro-level rea-

soning about the properties of very large network structures that is agnostic of the
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exact, microscopic details of the connectivity structure and rather considers ag-

gregate or average quantities of statistical ensembles. Given that the system is

sufficiently large, de facto guarantees about properties that are relevant to the ro-

bustness, functioning and performance of a distributed system can thus be made even

though allowing a certain degree of uncertainty and thus flexibility at the level

of individual nodes or connections. In order to be able to employ these argu-

ments, one needs to ensure that the parameters of the statistical ensemble from

which a topology is drawn fall within a certain range. However this is often

much simpler than correctly implementing highly sophisticated construction

procedures. Furthermore, based on the statistical nature of the underlying

arguments and again resembling arguments about thermodynamic systems,

thermodynamic guarantees tend to become stronger as the size of the system in-

creases. This is opposed to many deterministically structured systems in which

a sound reasoning about their properties often becomes increasingly compli-

cated as they grow larger.

3.2.3 From Micro- to Macro-Level: A Statistical Mechanics
Perspective

Statistical Mechanics
of Overlay Networks

The arguments put forth above suggest that a macro-level perspective on

probabilistically structured overlay topologies possibly allows to derive strong,

thermodynamic guarantees about their collective properties. While this can

clearly simplify the design and analysis of large networked computing sys-

tems, an important question is how a suitable macroscopic description can

be derived from the actual protocols, algorithms or behavioral patterns which

govern the dynamics of individual machines, users or applications. Seeking

again analogies in the domain of physics, this task is closely related to the field

of statistical mechanics which is involved with relating macroscopic, bulk mate-

rial properties to the statistics of microscopic - mainly mechanical - interactions

between individual atoms and molecules. As has been presented in section 2.4,

the crucial idea which allows to cope with systems consisting of an intractable

number of interacting elements is to suitably subsume all possible microstates

of a system in a macrostate with reasonably assigned statistical weights.
Large Scale

Networked Systems:
Relating the Micro-

and Macro-Level

In the context of overlay networks, this translates to the question how a

graph ensemble with suitably assigned probabilities can be derived from the

dynamics of the underlying topology construction process. During the last

couple of years, in the study of complex networks a number of methods origi-

nating from the field of statistical mechanics have been used for this purpose.
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In some simple cases, probabilities of individual network realizations can di-

rectly be inferred from equilibrium arguments about the (stochastic) dynamical

process by which the topology evolves. A simpler approach which is often ap-

plied when dealing with more complex situations is to directly calculate aggre-

gate or average quantities of interest like average degree, degree distribution or

clustering coefficient for the resulting statistical ensemble based on a stochas-

tic model of the dynamics of individual elements. For this purpose, statisti-

cal mechanics tools like mean field theory or master equations are frequently

being used (see for example [Barabási and Albert, 1999; Barabási et al., 1999;

Newman et al., 2000; Dorogovtsev et al., 2000b; Albert and Barabási, 2002;

Dorogovtsev and Mendes, 2003; Farkas et al., 2004; Palla et al., 2004]). An appli-

cation of such methods to overlay networks allows to relate a stochastic model

of the local behavior that governs the topology construction process and the

dynamics of participating machines to a macroscopic description in terms of

a statistical ensemble which can then be used to reasonably argue about the

collective properties of the resulting network topologies.

WhetherLimitations of
Macroscopic
Arguments

or not it is possible to apply such arguments in a particular setting

clearly depends on how well a description in terms of the resulting statistical

ensemble captures the processes that construct a network topology. In partic-

ular, all arguments from section 2.3.4 about the potential influence of correla-

tions apply and the imprudent use of overly simple stochastic models in the

description of networks resulting from highly sophisticated processes can lead

to erroneous results and wrong statements. This is a common critique from

the engineering community and it will be addressed in somewhat more detail

in the context of scale-free networks in chapter 4. In fact, this critique mainly

applies when trying to model highly sophisticated and optimized engineered

systems by means of maximally simple models giving rise to complex struc-

tures or behavior as they are frequently considered in the natural sciences3.
Designing Predictable
Systems by
Randomization

However, rather than using the findings that have been summarized in chap-

ter 2 in the modeling of systems which are given a priori, one may also con-

sider the alternative approach of explicitly designing networked computing systems

along simple stochastic models that give rise to networks with interesting, com-

plex characteristics. This approach is particularly facilitated in the domain of

Peer-to-Peer systems and overlay networks, where the formation and deletion

of (virtual) connections can be controlled by applications and are freed from

3Differences in the reasoning about highly organized, engineered systems on the one hand and

large systems consisting of randomly behaving elements on the other hand may be viewed in

terms of what has been called in [Weaver, 1948] disorganized vs. organized complexity. Some further

arguments can be found in the recent article [Alderson and Doyle, 2010] as well as in chapter 4.
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many of the tight constraints that exist at lower network layers. Here, explic-

itly and targetedly randomized protocols, message exchanges or connection

strategies can be used to enforce particular, well studied statistical ensembles

of complex networks for which thermodynamic guarantees on relevant prop-

erties are known to hold and for which correlations are absent or minimal.

In such systems, a sensible introduction of randomness can actually result in

systems that allow to make reliable statements about global, emergent properties as

well as about their relations to the dynamics of individual elements. In chapter

4 we will consider some practical aspects of this approach, thus proposing a

distributed protocol which creates random network topologies that are drawn

from an equilibrium statistical ensemble of scale-free networks with a tunable

degree distribution exponent.

3.2.4 Structure Formation in Equilibrium and
Non-Equilibrium Overlays

Equilibrium and
Non-Equilibrium

Regimes in
Networked Systems

The arguments presented above suggest that methods and findings from

random graph theory and complex networks science can have rather practi-

cal implications on the design and analysis of protocols that give rise to over-

lays with probabilistic structures. Apart from this, an interesting aspect of the

analogies between complex networks and physical systems is that they allow

to view the formation of network structures both from an equilibrium and a

non-equilibrium perspective. When dealing with networked computing sys-

tems, one easily finds situations in which - depending on the dynamics that

governs the system - either the one or the other perspective is required.
Structure Formation
in Non-Equilibrium

Overlays

In most real-world computing systems phases can be identified in which

the number of connected devices or users grows or decays. One obvious rea-

son for systems that grow over time is the addition of resources due to a grow-

ing demand of computational power or bandwidth or a growing user base. In

the context of Peer-to-Peer systems, where the dynamics of resources is closely

coupled to user behavior, periodic phases of growth and decay may further

occur based on the circadian rhythm of the participants. In such phases, net-

worked systems can naturally be related to non-equilibrium physical systems

which are characterized by an in- or outflow of energy or particles. Taking a

non-equilibrium statistical mechanics perspective on the formation of structures or

- based on the notions discussed above - the decrease of structural entropy in

overlay networks points at interesting relations to self-organization phenom-

ena occurring in physical and biological systems. As such, the non-equilibrium
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statistical mechanics perspective on the emergence of complex network structures con-

stitutes an important foundation for the meaningful application of biologically inspired

self-organization and self-adaptation schemes in overlay networks.
Crystallization of
Overlays in
Equilibrium Systems

Although taking this non-equilibrium perspective is appealing, one can

clearly think of a number of situations in which networked computing systems

rather reside in a state of equilibrium. One can for example imagine a Peer-to-

Peer system whose participants randomly join and leave at constant and bal-

anced rates and in which the protocol being applied by the nodes maintains

a certain average number of randomly created connections. Similarly, even in

systems without any dynamics in terms of joining or leaving participants, link

fluctuations can be introduced deliberately for example by a sporadic random

rewiring of overlay connections. Such situations naturally correspond to par-

ticle systems residing in thermodynamic equilibrium and the random link or

node fluctuations which are due to the dynamics of the system may be viewed

in analogy to temperature-dependent fluctuations in equilibrium particle sys-

tems. In such equilibrium systems the formation of network structures can be viewed

as a stochastic optimization process by which - based on a reasonably assigned en-

ergy landscape and temperature-dependent random fluctuations - optimal or

near-optimal topologies can emerge in a self-organized fashion. This perspec-

tive closely resembles well known simulated annealing strategies [Kirkpatrick

et al., 1983] which are used routinely for heuristic optimization in large combi-

natorial problems.

3.2.5 Adaptation in Thermodynamically Structured Overlays

Statistical Mechanics
- A Constructive
Approach

Above we have pointed out some promising aspects of employing a statis-

tical mechanics and thermodynamic perspective in the management of large

scale overlay networks. These perspectives are in part motivated by analo-

gies between particle systems and overlay topologies. In some respects,

these analogies are necessarily incomplete. While the behavior of atoms and

molecules is ruled by the laws of physics, computing devices can actively in-

fluence their behavior for example in response to a change in internal or envi-

ronmental conditions. In equilibrium systems, energy landscapes can often be

adjusted at will in order to give rise to overlay topologies with certain qualities.

Likewise, connection protocols and linking preferences can often be tuned to

change the structures formed in growing non-equilibrium systems. In the un-

derlying theoretical framework of statistical ensembles, such systems can be

viewed as intentionally switching between topologies drawn from different

statistical ensembles defined by different aggregate parameters.
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Reconsidering Harnessing Critical
Points: Adaptation by

Phase Transitions

for example the influence of such parameters on thermody-

namic guarantees, an interesting aspect is the existence of critical points in the

parameter space of statistical ensembles above or below which certain of a

network’s structural properties quickly fade while others quickly emerge. In

chapter 2, we have encountered a number of examples for this kind of thresh-

old behavior, most of which can be related to the critical point that has been

derived in [Molloy and Reed, 1995]. When wanting to adapt the characteristics

of an overlay, such critical points are particularly interesting since here even

a slight change of parameters can entail a drastic change of a network’s col-

lective properties. Referring to earlier arguments that suggest a close relation

of such threshold phenomena to phase transitions in thermodynamic systems,

one can argue that phase transitions can be harnessed to quickly adapt the qualities

of thermodynamically structured overlays. Such Adaptation at the
Micro- and

Macro-Level

an approach can, for example, be

used if one wishes to reach a state in which thermodynamic guarantees on the

performance of certain dynamical processes can be derived, thus possibly for-

feiting guarantees on other properties that may momentarily seem less impor-

tant. In order to achieve such an adaptation at the macro-level of an overlay

network, individual participants are in general required to adapt their local,

micro-level behavior, protocols or linking preferences in a particular way. The

question which micro-level changes are necessary to achieve a certain change

of aggregate or statistical parameters at the macro-level can again be answered

by means of the principles that have been put forth in section 3.2.3. In chapter

4, we will demonstrate this by presenting a practical scheme that can be used

to trigger phase transitions in probabilistically structured, scale-free overlays

based on the change of a random walk bias that is being used by nodes to

sample endpoints of overlay connections.

All Complex Adaptive
Overlay Topologies

these possibilities are opened up mainly by the fact that - in contrast

to many other networked systems - connections in overlay networks are virtual

rather than physical constructs and thus easily alterable. This flexibility facilitates a

constructive approach to the findings that have been obtained in the complex

networks and statistical physics community. Their targeted use constitutes an

important cornerstone in the engineering of overlay topologies with complex adap-

tive structures. Since the mechanisms by which the formation and adaptation

of these structures is achieved can directly be related to corresponding self-

organization principles in equilibrium and non-equilibrium systems in nature,

they can further be seen as a step towards organic computing systems as envi-

sioned for example in [Müller-Schloer et al., 2004; Schmeck, 2005].
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Chapter4
Managing Scale-Free Overlay

Networks

In nature, nothing is perfect and everything is perfect. Trees can

be contorted, bent in weird ways, and they’re still beautiful.

ALICE WALKER

Creating and
Adapting Random

Scale-Free Overlays

In section 3.2.3 we have mentioned that one possible approach towards a

thermodynamic management of large scale overlays involves the application of ex-

plicitly randomized schemes which actively enforce well studied statistical en-

sembles of complex networks with advantageous properties. Existing findings

about the networks being drawn from such statistical ensembles can then be

applied, possibly resulting in strong macroscopic, thermodynamic guarantees for

the qualities of overlay networks emerging from distributed stochastic con-

struction procedures. Based on the findings presented in section 2.3, one may

further argue that the characteristics of random scale-free networks appear in-

teresting for a targeted use in large scale overlay networks. In this chapter we

turn to some practical questions that occur when wanting to implement such

systems. First and foremost we introduce a distributed, stochastic protocol that

is able to transform arbitrary overlay networks into random scale-free topolo-

gies with an adjustable degree distribution exponent. This distributed scheme

has originally been published in [Scholtes, 2010] and will be presented in more

detail in section 4.2. Here we further argue that the proposed protocol is a prac-

ticable approach towards the idea of actively using phase transition phenomena for

a targeted adaptation of macroscopic network qualities. In particular, the targeted

change of the degree distribution exponent of scale-free network topologies
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facilitates the adaptation of properties which influence the performance of dy-

namical processes like distributed search, information dissemination as well as

the resilience against faults and attacks.

ApartMonitoring
Macroscopic
Properties of
Scale-Free Overlays

from considering systems in which the participating machines have

complete control over the topology construction process, one may further

study the question how a macroscopic reasoning as laid out in section 3.2 can

be applied to systems where the processes by which the overlay emerges can-

not easily be assessed or influenced. Examples include systems in which the

structure of the overlay is due to the dynamics of users, collaborative or social

aspects as well as technological constraints. Although the network topologies

emerging in such systems are clearly not random, the measurement of aggre-

gate statistical parameters can still - at least to a certain extent - facilitate a

macroscopic reasoning about the properties of the network in question. Again

considering the management of overlay topologies with scale-free structures,

in section 4.3 of this chapter we propose a simple monitoring protocol by which

each node can obtain knowledge about the network’s degree distribution in a

fully distributed, decentralized and probabilistic fashion. As such, the proto-

col - which has originally been published in [Scholtes et al., 2008a] - allows to

reliably measure aggregate statistical information about the network without

requiring a central instance to collect a complete histogram of node degrees.

4.1 Scale-Free Structures in Computer Networks -

A Critical Appraisal

Scale-Free Networks
and Computing
Systems

Prior to discussing these rather practical aspects of managing overlay

topologies with complex characteristics, it deems appropriate to make some

remarks about both the enthusiasm and the criticism that has accompanied the

application of findings about scale-free structures in the domain of networked

computing systems. Following the observation of power law degree distribu-

tions in a number of social, biological but also technological systems in the

late 1990s, a number of theoretic findings have been obtained about the prop-

erties of scale-free networks (some of them being reviewed in section 2.3.2).

While it seems alluring to apply these results to networked computing sys-

tems with power law degree distributions, such a reasoning bears a number

of pitfalls. Some of these pitfalls are actually due to methodical errors that

can occur when mapping the topologies of very large, dynamic networked

computing systems. As has been argued for example in [Lakhina et al., 2003;
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Stutzbach et al., 2006] imprudently Problems Associated
with Data Acquisition

and Analysis

sampling a subset of nodes in large net-

works can introduce significant biases with respect to the observed degree

distributions. When using tools like for instance traceroute1 to map Internet

topologies, it has been argued that the choice of source points from which

traceroute measurements are being started are crucial for the sampling quality
[Achlioptas et al., 2005]. In [Stutzbach et al., 2008; Stutzbach et al., 2009] it has

further been laid out that the use of slow crawlers which progressively map

Peer-to-Peer overlays while they continue to evolve can lead to wrong conclu-

sions about their connectivity distribution. In particular, in [Achlioptas et al.,

2005; Stutzbach et al., 2008] it has been suggested that biases stemming from

mere sampling processes question the validity of earlier observations of power

law degree distributions in the GNUTELLA overlay network and the Internet’s

router topology. Apart from problems that are due to the complex data acqui-

sition process in very large networked systems like the Internet or Peer-to-Peer

systems, a further potential error source is associated with fitting procedures

commonly used both to identify power laws in empirical data and to infer

the exponent of the distribution. As laid out in [Willinger and Doyle, 2002;

Clauset et al., 2007] and as will be summarized in more detail in the corre-

sponding section 4.3 of this chapter, the mere statistical properties of highly

skewed distributions complicate a reliable fitting and thus require caution and

experience in the data analysis process.

Even Criticism of Simple
Models for Complex
Engineered Systems

if the alleged power laws for the connectivity of engineered com-

puting systems like those mentioned above hold, one needs to be cautious

when applying arguments about random networks to highly optimized, technologi-

cal systems like the Internet. The evolution of such systems is often subject to

detailed and sophisticated planning and optimization and thus far from be-

ing random. As a result, properties that hold asymptotically almost surely

for a network drawn from a statistical ensemble of random scale-free net-

works can very well not hold for the router topology of the Internet or a

particular Peer-to-Peer overlay, even though their degree distribution follows

a power law. This is because sophisticated construction processes may se-

lectively produce network topologies that are unlikely to occur at random.

In the past, a hasty transfer of findings about random scale-free networks

to technological systems with alleged power law connectivity has raised the

concerns of network engineers. For instance [Willinger and Doyle, 2002;

Alderson et al., 2005; Doyle et al., 2005] argue that earlier claims about the

1traceroute is a simple program which makes use of the Time-to-live header in IP packets to

discover all routers on a route between the source and an arbitrary destination machine.
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Internet’s alleged susceptibility against targeted attacks [Albert et al., 2000;

Cohen et al., 2001] - even though correct for random scale-free networks - are

wrong for the actual topology of Internet routers. This can easily be understood

when considering that in a random scale-free network, the most connected hub

nodes lie - with high probability - in the network’s center. Consequently, they

play a crucial role for the network’s connectedness and selectively removing

them can rapidly disintegrate a system (as shown in Figure 2.5). Contrariwise,

the purpose of the most connected routers in the Internet is to aggregate large

numbers of low bandwidth links at the network’s edge and connect them to a

high speed core of routers with few, high bandwidth connections.

Recently,Reconciling
Engineered and
Complex Networks

the potential problems which occur when imprudently trans-

ferring results for random scale-free networks to the Internet topology have

evolved into a more general critique of using complex networks methods in

the modeling of engineered networked computing systems [Alderson, 2008].

As argued for instance in a recent critical review article [Alderson and Doyle,

2010], much of this criticism boils down to the difference between, what has

been termed by [Weaver, 1948], organized and disorganized complexity. Here, dis-

organized complexity is viewed as emerging from simple, random interactions

between a sufficiently large number of elements whereas organized complex-

ity is the result of engineering principles, architectural decisions, multi-layered

organization, compromises between conflicting goals and sophisticated, non-

random interactions. Reconsidering the modeling of the structure and the

evolution of the Internet, in [Carlson and Doyle, 1999; Fabrikant et al., 2002;

Li et al., 2005] first steps have been taken towards blending the views of sta-

tistical physics and complex networks (as summarized for instance in [Pastor-

Satorras and Vespignani, 2004]) with those of engineering. Nevertheless, it

is an important yet unresolved question exactly which aspects of sophisti-

cated, engineered systems that exhibit organized complexity can be tackled in the

framework of simple stochastic models. For this, domain-specific information

like technological and economical constraints as well as geographic, political

and social aspects probably need to be incorporated.

Having warnedComplex Networks
and Peer-to-Peer
Systems

the reader about these pitfalls, it is important to note that

nevertheless a number of aspects (like growth, preferential attachment, copy-

ing mechanisms, recursive construction schemes or highly heterogeneous node

fitness) of simple stochastic models that produce scale-free networks2 can be

found in a number of technological networked systems. There clearly is growth

in the World Wide Web and linking strategies are likely to resemble preferen-

2See for example the corresponding models that have been summarized in section 2.3.5.
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tial attachment or random walk schemes. Ranging from simple mobile phones,

notebooks, workstations to high performance servers, the capabilities of de-

vices that are connected to Internet-based systems are clearly highly hetero-

geneous, thus resembling fitness based models. Furthermore, protocols un-

derlying Peer-to-Peer systems like GNUTELLA can be related rather directly to

copying and random walk schemes known to give rise to power law degree

distributions.

Picking Scale-Free Overlay
Networks: A
Constructive

Approach

up on arguments put forth in chapter 3, here we further argue that,

in addition to the modeling of technological systems, the large body of liter-

ature on complex networks facilitates a constructive approach towards overlay

networks with interesting, complex features. This approach is rendered possi-

ble by the fact that overlays are mere virtual, application-level constructs, being

built on top of lower network layers which allow connections to be established

between arbitrary machines irrespective of the underlying physical topology.

In such a setting, where links between nodes can be created and deleted at

will based on application needs, explicitly and targetedly randomized proto-

cols can be used to create overlays for which a reasoning in terms of random scale-free

networks is valid and which facilitate the application of the thermodynamic per-

spective that has been presented in chapter 33. In the following section we

introduce such a randomized membership protocol which gives rise to uncor-

related, random scale-free overlays with tunable degree distribution exponent.

Based on the notion of actively using phase transition phenomena, we further

discuss the possibility to actively adjust the degree distribution exponent and

thus adapt the collective properties of the overlay network. While maintain-

ing the overall power law structure of the overlay, in critical situations such

a scheme allows for example to attenuate the heterogeneity of nodes, by this

sacrificing properties like ultra-small diameter or extreme robustness against

random node failures in favor of better attack resilience.
Application ScenariosPossible application scenarios involve probabilistically structured Peer-to-

Peer systems making use of gossip-based protocols, epidemic algorithms, in-

formation spreading schemes, self-organized synchronization protocols (see

for instance chapter 5) or other types of probabilistic distributed algorithms

that are known to operate efficiently in scale-free networks. Based on the prop-

erties reviewed in section 2.3, the structure of the overlay is particularly suit-

able for systems being comprised of highly heterogeneous participants or re-

quiring extreme robustness against random node failures for instance in situ-

3In the terminology of [Weaver, 1948] this may be viewed as deliberately constructing overlays
with disorganized complexity.
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ations of massive churn. The existence of massively connected hub nodes in a

random scale-free topology could further be used in the development of con-

trol strategies for information spreading, synchronization, distributed consen-

sus or collective decision-making processes. Due to these promising aspects,

during the last couple of years the use of overlay topologies with scale-free

structures has beenRelated Work advocated in a number of contexts [Lu and Fang, 2005;

Fraigniaud et al., 2005; Qi and Yu, 2008; Ktari et al., 2009; Ferretti and D’Angelo,

2010]. Closest to the scenarios addressed in the following section, [Sarshar

and Roychowdhury, 2004] consider the creation of scale-free overlay structures

in dynamic Peer-to-Peer systems by means of a protocol which compensates

link losses that are due to nodes dropping out of the system uniformly at ran-

dom. Here, joining nodes as well as nodes that have lost a link due to a failing

neighbor establish connections according to a preferential attachment rule. For

this protocol and nodes leaving the network uniformly at random, it has been

shown that a power law overlay emerges with the degree distribution expo-

nent depending on the number of links being created as compensation for a

lost connection. However, it has not been considered how preferential attach-

ment can be implemented in practice efficiently in a way that it gives rise to

uncorrelated networks. Furthermore, the proposed compensation mechanism

is not suitable to adapt the degree distribution exponent of an existing scale-

free overlay with a static set of participants or a fixed number of connections.

Referring to a general lack of practicable local algorithmic schemes for the cre-

ation of scale-free overlays, in the recent article [Guclu and Yuksel, 2009] a

distributed algorithm has been considered. The proposed scheme is again a

variation of the preferential attachment model and differs from the original

scheme insofar as hard limits on the maximum degree of nodes are imposed.

Furthermore, a distributed protocol for the construction process has been pre-

sented. For this, connection targets are chosen from a restricted horizon that is

obtained by sampling the subgraph starting at a bootstrap node up to a pre-

determined depth. For this scheme, the effects of different connectivity limits

and horizon sizes on the performance of flooding based search and the distri-

bution of node degrees have been studied. It remains unclear, to what extend

results about uncorrelated random scale-free networks can be applied to the

topologies emerging from this scheme and how the degree distribution expo-

nent can be tuned. In some ways similar to the work presented in this chapter,

in [Keyani et al., 2002] a distributed scheme has been proposed which allows

to monitor the rate of attacks on the most connected nodes in an overlay topol-

ogy with scale-free features. In the same article, a node recovery strategy has
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been proposed which drives the connectivity distribution of an overlay topol-

ogy from a Zipf to an exponential distribution and which thus reduces the risk

of the network being disintegrated. However, a mechanism to recreate a scale-

free overlay topology has not been considered. As such, the protocol discussed

in the following section can be seen as complementary to the work presented in
[Keyani et al., 2002]. In particular, the distributed attack detection mechanism

could be used in the context of our scheme in order to decide when to make a

transition to a topological phase with reduced attack susceptibility.

4.2 Distributed Creation and Adaptation of

Random Scale-Free Overlays

AssumptionsIn what follows, we discuss a probabilistic and fully distributed rewiring

protocol that gives rise to random, uncorrelated scale-free overlays. Prior to

giving an in-depth description of the protocol, we first summarize some pre-

liminaries and restrictions which will simplify its analysis. Some of these re-

strictions will be weakened in later sections, for others we will discuss how

they can be met in practical systems. First and foremost, the protocol is tar-

geted at transforming an existing overlay topology into a network whose de-

gree distribution follows a power law with tunable exponent. As initial sit-

uation, we assume an arbitrary connected network topology which may have

evolved from some arbitrary bootstrap process. For the mere functioning of the

proposed scheme, apart from being connected no further qualities of the initial

topology are required. However, as we shall see later, spectral properties of

the initial overlay influence the efficiency of the rewiring scheme in terms of

how many message exchanges are required to create a scale-free overlay with

sufficiently random structures. We further assume that each of the n nodes in

this initial overlay is identified by some numeric identifier i ∈ {1, . . . , n}. For

the sake of simplicity, in the following we assume that each of the n nodes is

assigned a unique identifier. However in sufficiently large systems, per-node

quantities i that are chosen uniformly at random - and which are thus not nec-

essarily unique - can be used instead and in the practical evaluation of the

protocol such a random assignment has been applied.
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Although we have argued in section 3.2.4Equilibrium
Scale-Free Overlays

that both equilibrium and non-

equilibrium situations are likely to occur in distributed systems making use of

overlay topologies, in this section we focus on equilibrium situations for a num-

ber of reasons. First of all, suitable equilibrium models are naturally capable of

producing uncorrelated, random networks that facilitate a reasoning in terms

of the literature on random (equilibrium) scale-free network ensembles defined

by a given degree sequence or degree distribution. Apart from the mere con-

struction of scale-free structures, we further intend to particularly address the

adaptation of scale-free overlays in situations where the set of participating ma-

chines is either static or resides in a dynamic equilibrium state, that is nodes

randomly joining and leaving the system at roughly balanced rates. While we

will consider extensions for such dynamic situations later in this section, for

the sake of simplifying the analytical derivation of the proposed protocol in

the following presentation we will restrict ourselves to a static situation with-

out node fluctuations.

PriorEquilibrium Model
for Random
Scale-Free Networks

to considering a practical protocol, we first need a suitable equilib-

rium model that is capable of generating random power law networks with

tunable degree distribution exponent. For this, the simple model which has

been discussed for instance in [Goh et al., 2001; Lee et al., 2005], and with

slightly different assumptions in [Chung and Lu, 2002], can be used. Here

it is assumed that each node with ID i ∈ {1, . . . , n} is assigned a weight

wi = i−α (4.1)

for some parameter α in the range (0, 1). Then, m edges are created between

pairs of nodes (i, j) which are chosen at random with probabilities pi and pj

respectively. These probabilities are given by the normalized weights

pi =
wi

∑n
k=1 wk

. (4.2)

It is easy to see that such a construction procedure gives rise to a random

network ensemble in which the expected degree of each node i is fixed and

determined by the weights wi and the number of generated edges m. For the

case where the creation of multiple edges between a single pair of nodes as well

as the construction of self-loops are being prevented - for example by simply

skipping their creation - it has been argued in [Lee et al., 2005] that the weight

defined above produces a random statistical ensemble of power law networks

with degree distribution
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PG(k) ∝ k−(1+
1
α )

Hence, for α → 0, the model yields a power law network with degree dis-

tribution exponent γ → ∞, while for α → 1 the exponent γ converges to two.

It thus provides a simple numeric parameter that can be adjusted to effectuate

(scale-free) power law networks with arbitrary degree distribution exponent γ

in the range (2, ∞).
Rewiring SchemeIn order to apply this model in a practical overlay network, a distributed

mechanism is required which creates edges between nodes i and j which are

chosen according to the probability given in equation 4.2. For this, we assume

that we start with a random, connected overlay topology consisting of n nodes

and m edges. In practice, this initial topology may emerge by means of an

arbitrary bootstrapping method that connects joining nodes to existing partic-

ipants either deterministically or at random. In order to transform this initial

topology into a random power law network, one can view the above model as a

rewiring scheme in which edges are gradually replaced rather than being created. The

rewiring scheme must then ensure that edges between node pairs emerge with

the desired node-dependent probabilities.

For Sampling Nodes in
Peer-to-Peer Systems

this, a node initiating the rewiring of an edge must be able to sam-

ple two new endpoints for the edge being rewired according to the probabil-

ity measure given in equation 4.2. Here we are interested only in fully dis-

tributed mechanisms. In the context of large dynamic Peer-to-Peer systems,

different mechanisms have been proposed. In [Jelasity et al., 2007], a gossip-

based mechanism has been presented which can be used to provide nodes

with a fixed-size list of random node samples. In [Gkantsidis et al., 2006;

Zhong et al., 2008], the use of random walks for non-uniform random sampling

in Peer-to-Peer systems is studied and analytical arguments for their conver-

gence behavior are given. Sampling by Random
Walks

Here, we intend to apply the same approach to our

rewiring scheme, assuming that nodes initiating the rewiring of an edge sam-

ple two new endpoints by means of two random walks through the current

network topology. For a simple unbiased random walk, the probability πi(l)

to find the walker after l random walk steps at node i converges to

πi(l)→
di

N · d̄
(l → ∞)

Metropolis-Hastings
Algorithm

where d̄ is the average node degree of the network. However here we rather

wish to sample nodes according to the probabilities given in equation 4.2. For

this it is necessary to introduce a bias in the selection of a random walk’s next
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random target that influences the transition probabilities accordingly. Consid-

ering a random walk in a connected overlay topology G(V, E) as Markov chain

with state space V and stationary distribution π, this bias can be configured by

means of a Metropolis-Hastings chain [Metropolis et al., 1953; Hastings, 1970;

Azar et al., 1992] in such a way that a desired stationary distribution π holds.

In general, this can be achieved by introducing a bias as shown in the following

transition matrix T:

Tij =


1
di

min
{

πj
πi

di
dj

, 1
}

(i, j) ∈ E, i 6= j

1− 1
di

∑(k,i)∈E Pik i = j

0 (i, j) /∈ E

(4.3)

Here di denotes the current degree of node i ∈ V and an entry Tij gives the

probability that a random walk residing at node i moves to node j.Existence of
Stationary
Distribution

The fact that

this transition matrix has stationary distribution π follows from the reversibil-

ity of the underlying Markov chain, as well as from its irreducibility (assuming

a connected network topology) and aperiodicity (self-loops are possible). Un-

der these restrictions, the Markov chain convergence theorem ensures that the

probability πi(l) to find a random walker that has been started in an arbitrary

node resides at node i after l steps converges to π as l goes to infinity.
Desired Stationary
Distribution

From this, one can easily configure a random walk bias that results in a sta-

tionary distribution suitable to sample nodes in a way that - after all edges of

the initial topology have been rewired - a random scale-free network with de-

gree distribution exponent γ emerges. From the probability pi in equation 4.2

and the fact that it gives rise to a power law network with degree distribution

exponent 1 + 1
α , we obtain the following required stationary distribution:

π
γ
i =

i
−1

γ−1

∑n
k=1 k

−1
γ−1

(4.4)

Random Walk Bias Equation 4.3 and
πj
πi

=
(

i
j

) 1
γ−1 yields the following transition matrix P:

Pij =


1
di

min
{(

i
j

) 1
γ−1 di

dj
, 1
}

(i, j) ∈ E, i 6= j

1− 1
di

∑(k,i)∈E Pik i = j

0 (i, j) /∈ E

(4.5)
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Thus, a random walk with the above bias can be used to sample endpoints

of edges and thus perform rewiring operations that effectuate a random power

law network with a particular degree distribution exponent.

4.2.1 Bounding the Random Walk Length

Convergence of
Random Walk

Schemes

Since our goal is to practically apply the above sampling strategy in a dis-

tributed rewiring scheme, an important question that needs to be answered

is how many steps a random walk with the above bias needs to take before

the probability πi(l) to find it in a node i after l steps is sufficiently close to

the desired stationary limit πi. In the rewiring protocol that will be presented

in section 4.2.2, this translates to the number of messages that need to be ex-

changed for a single rewiring operation. Total Variation
Distance

To assess the convergence behavior

of the random walk, one first needs to give a formal definition of when two

probability distributions π and π′ shall be considered sufficiently close. For this

we use the usual definition of the total variation distance D which - for two prob-

ability measures π and π′ and a finite state space V - can be defined as follows:

D(π′, π) =
1
2 ∑

v∈V
|π′(v)− π(v)|

Bounding the Walk
Length

The configuration of the random walk bias according to equation 4.5 and

the Markov convergence theorem ensure that D(π(l), π) → 0 for l → ∞. For

an arbitrarily chosen total variation distance ε > 0 we can then assess the num-

ber of steps l our random walk needs to take until D(π(l), π) ≤ ε. In order to

bound the minimally required number of steps l, arguments put forth in [Sin-

clair, 1992] can be used. Here it is argued that an upper bound for l is given

by

l ≤
ln
(

1
πsε

)
1− |λ2(P)|

Bounding the
Eigengap of

Stochastic Matrices

where π is the stationary distribution of the Markov chain, s is the node

in which the random walk is started and λmax(P) = max{λ2, |λ|V|−1|} is the

eigenvalue with the second largest absolute value in the descending sequence

of scalar eigenvalues 1 = λ1(P) ≥ λ2(P) ≥ . . . ≥ λ|V|(P) ≥ −1 which satisfy

P · xi = λi(P) · xi (4.6)

for a corresponding eigenvector xi. Thus, finding an upper bound for the

number of random walk steps involves to find a lower bound for the second
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largest eigenvalue λ2(P) of the transition matrix. Unfortunately, obtaining

good bounds for the eigenvalues of stochastic matrices is a non-trivial task.

Nevertheless, based on the canonical path approach introduced in [Diaconis

and Stroock, 1991; Sinclair, 1992], analytical arguments concerning the conver-

gence behavior of random walks with Zipf stationary distributions have been

put forth in [Zhong et al., 2005; Zhong et al., 2008]. In the following we ap-

ply these arguments to the particular random walk strategy considered in this

section. In [Zhong et al., 2008] it has been argued that, if the stationary distri-

bution π is a Zipf-like distribution, a lower bound for the so-called eigenvalue

gap 1− |λ2(P)| can be given as

1− |λ2(P)| ≥ πmin
D · dmax

.

Bound for Zipf
Stationary
Distributions

Here D denotes the diameter of the network topology upon which the ran-

dom walk operates, πmin is the minimum probability ascribed to any vertex

by the stationary distribution and dmax is the maximum degree of any ver-

tex in the network. Thus, for the special case of Zipf stationary distribu-

tions, an asymptotic upper bound for the random walk length l required to

achieve a total variation distance smaller than ε is given as [Sinclair, 1992;

Zhong et al., 2008]:

l ≤ ln
(

1
πsε

)
· D · dmax

πmin
(4.7)

For a random walk strategy configured to eventually effectuate a degree

distribution exponent γ and thus stationary distribution πγ, for the inverse

stationary probability of the starting node s, the following bound holds:

1
π

γ
s
= s

1
γ−1 ·

n

∑
k=1

k
−1

γ−1 ≤ s
1

γ−1 ·
n

∑
k=1

1 = n · s
1

γ−1

Bounding πmin While this holds for arbitrary γ ∈ [2, ∞) and starting nodes s, for the spe-

cial case of node n we can give a better bound by observing that - due to the

increasing skewness - node n is ascribed minimal probability for γ = 2, that is

for γ ∈ [2, ∞)

π
γ
min ≥ π

γ=2
min

holds. With this, we can bound the inverse minimal probability by consid-

ering the logarithmic growth of the harmonic series, so that
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1
π

γ
min
≤ 1

π
γ=2
min

= n ·
n

∑
k=1

1
k
= n · Hn = n · (ln(n) + τ + rn) (4.8)

Bounds for Power
Law Networks

where τ ≈ 0.5772 denotes the Euler-Mascheroni constant and rn → 0 in

the limit of large n. We can now consider a bound for the case where the initial

topology is an n node power law network with initial exponent γi, the rewiring

protocol being applied to change the exponent to γ. In this case, diameter

and maximum degree of the initial topology can - with high probability - be

bounded as O(ln(n)) and O(n
1
γi ) respectively [Zhong et al., 2008]. Combining

these arguments with the bounds given in equation 4.8 and 4.7, an asymptotic

upper bound for the minimal length l of a random walk started in node s that

is required to achieve total variation distance smaller than ε can then be given

as follows:

l = O

(
ln

(
n · s

1
γ−1

ε

)
· ln(n)2 · n1+ 1

γi

)
(4.9)

Tightness of
Bounding Techniques

This theoretic bound scales worse than linear with the network size n.

However the underlying bounding technique is not necessarily tight, that is

the actual convergence behavior of a random walk can be considerably bet-

ter. Since at present, obtaining tight upper bounds for the convergence of

Markov chains in complex network topologies is an open research issue, in

section 4.2.3 we present simulations that have been performed to derive prac-

ticable random walk lengths empirically. As will be argued later, the results

of these simulations suggest that the proposed adaptation scheme can be prac-

tically implemented with reasonable random walk lengths. Although these

results suggest that the analytical bound derived above are not tight and thus

uninformative with respect to the actual performance in practice, they can nev-

ertheless be helpful when studying in how far the parameters being associated

with the random walk bias, the initial network topology or the targeted topol-

ogy influence the number of steps required for the sampling of random edges.

From equation 4.9 one can for example infer that the upper bound for the min-

imal random walk length will generally be higher when wanting to effectuate

highly skewed scale-free networks with exponents close to two.
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4.2.2 Protocol Definition

Protocol Overview The equilibrium model and the sampling strategy laid out above suggest a

rewiring protocol that consists of the following three basic operations: (1) In pe-

riodic intervals, a node a selects an edge to a random neighbor b that has not yet

been rewired. (2) A random walk with the bias given in the transition matrix

shown in equation 4.5 is started to sample two nodes x and y with probabilities

proportional to πx and πy respectively. (3) The edge (v, w) is replaced by the

edge (x, y) and the latter is marked as having resulted from a rewiring opera-

tion. After all m edges of the overlay have been rewired, a power law overlay

is eventually obtained whose exponent depends on the particular choice of the

random walk bias defined in equation 4.5. In the algorithms 1 - 4, we give a de-

tailed algorithmic description of the protocol. In these algorithms, dv denotes

the degree of node v, iv is the ID of node v and self denotes the node at which

the code is being executed. We further assume that nodes have information

about the IDs and the degrees of their nearest neighbors.

Rewiring Procedure

Protocol Main Loop The detailed algorithm of the main program loop that is responsible for

initiating random walks is shown in algorithm 1. Rewiring operations are

initiated by nodes in regular intervals only for those edges that have not yet

been rewired. By this means, at most m rewirings are performed where m is

the number of edges in the initial random network topology. The number of

rewiring operations and thus message transfers taking place within a certain

time interval can be adjusted by choosing an appropriate (network-size depen-

dent) delay time during which a node is inactive. When a node with an un-

marked edge wakes up, a rewiring operation is initiated. In order to prevent

both endpoints of an edge to initiate rewiring operations for the same edge,

rewirings are only started by the node with higher degree or - if the degrees

are equal - by the node with the smaller ID. As we shall see later in section

4.2.3, the choice of letting a rewiring be initiated by the better connected end-

point can improve the performance of the scheme. To find the endpoints of a

new edge by which the previously unmarked edge shall be replaced, a node

initiates a biased random walk through the overlay (lines 6 − 11). In order

to prevent nodes from disconnecting themselves from the network we further

assume that only edges from nodes with at least two neighbors are rewired.
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Algorithm 1: Main Loop of Adaptation Protocol
1: loop

2: Sleep(delay)

3: if neighbors.Count > marked.Count then

4: n = RandomUnmarkedNeighbor()

5: if dn > 1 && dsel f > 1 &&

(dsel f > dn‖(dsel f = dn && isel f < in)) then

6: {Initiate random walk}
7: msg.Hops← 0

8: msg.a← sel f

9: msg.b← n

10: msg.target← null

11: Send({walk, msg}, n)

12: end if

13: end if

14: end loop

Biased Random Walk
Strategy

When a node v receives a random walk message, it needs to ensure that the

message is forwarded with the bias given in equation 4.5. In algorithm 2, this

is done in lines 14− 21. Comparing the algorithm with the stochastic matrix

P defined in equation 4.5, here we select a neighbor uniformly at random and

draw a random value uniformly in the interval [0, 1] that indicates whether

a transition along this edge occurs or whether the random walk stays in the

current node. Considering that the probability of a neighbor j to be chosen

(uniformly at random) from the list of neighbors of node i is 1
di

, the fact that

this strategy yields the same transition probabilities as given in equation 4.5

can be seen by simple multiplication. It is however significantly easier to im-

plement in practice than directly drawing the next random walk step with the

probabilities given in equation 4.5.
Sampling EdgesDifferent schemes can be imagined by which the two endpoints v and w of a

new edge (v, w) are being sampled. The node initiating the rewiring could for

example start one random walk for each endpoint of the new edge, collect the

target nodes of both walks and connect them to each other. In order to simplify

the implementation, in algorithms 1 and 2 we consider that both endpoints of

the new edge are being sampled in a single random walk of length 2 · l. For

this we assume that after l steps, the node at which the random walk currently

resides is stored in a field target of the message being forwarded. By this, all
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Algorithm 2: Node receives {walk, msg}
1: msg.Hops← msg.Hops + 1

2: if msg.Hops = l then

3: {Store Endpoint}
4: msg.target← sel f

5: else if msg.Hops = 2l then

6: {Rewire}
7: if !neighbors.Contains(msg.target) && msg.target 6= sel f then

8: Send({disconnect, msg.a}, msg.b)

9: Send({disconnect, msg.b}, msg.a)

10: Send({connect, sel f }, msg.target)

11: Send({connect, msg.target}, sel f )

12: end if

13: else

14: n← sel f .RandomNeighbor

15: if random.Next() ≤ dsel f
dn

( isel f
in

) 1
γa−1

then

16: {Forward Random Walk}
17: Send({walk, msg}, n)

18: else

19: {Self-Loop}
20: Send({walk, msg}, sel f )

21: end if

22: end if

information related to a rewiring operation is stored in the random walk mes-

sage and the node at which the random walk arrives after 2 · l steps can initiate

the rewiring.
Rewiring Operation

The node at which the random walk eventually resides creates a connection

to the target node stored in the message while initiating the deletion of the edge

between node a that has started the random walk and its neighbor b. As can

be seen in algorithm 4 a disconnection requires - apart from removing the edge

- no further action at the side of the node from which the edge is removed.

As shown in algorithm 3, both endpoints of the newly created edge mutually

mark each other in order to prevent the edge from being rewired in future

invocations of the protocol. We emphasize that this is to prevent unnecessary
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Algorithm 3: Node receives {connect, y}
1: neighbors.Add(y)

2: marked.Add(y)

Algorithm 4: Node receives {disconnect, b}
1: neighbors.Remove(b)

rewiring operations and thus message exchanges rather than being required

for the functioning of the protocol. A schematic illustration of a single rewiring

operation is shown in Figure 4.1. Here, the node labeled with 0 initiates a

random walk of length l = 3, thus eventually replacing edge e by e′.

Concluding Number and Size of
Message Transfers

the description of the proposed protocol, we consider the size

and number of messages that need to be sent across the network. Sampling the

two endpoints of the new edge requires at most 2 · l messages 4, where l is the

number of steps taken by a single random walk to sample a node with a proba-

bility sufficiently close to the stationary distribution π. Once both endpoints of

the new edge have been sampled, the rewiring requires two messages to dis-

connect nodes a and b and one message to connect to the node target that has

been stored in the random walk message. Communication Cost
of Protocol

Since the IDs of the initial node, its

neighbors and the intermediate target, as well as the current hop count need to

be stored in the random walk message, the required number of bits for a mes-

sage is logarithmic in the number n of nodes in the system. Hence, the num-

ber of bits that need to be transferred per rewiring operation is O(l · log(n)).

Since one rewiring operation is performed for each of the m edges in the initial

overlay topology, the total number of bits that needs to be transferred in or-

der to transform it into a random scale-free network with the desired exponent

is O(m · l · log(n)). We further assume that each node stores one additional bit

per neighbor, indicating whether the edge to this neighbor has previously been

rewired or not.
4At most 2 · l since self-loops are allowed to ensure aperiodicity of the underlying Markov chain.

While a self-loop is considered as one step of the random walk, it does not entail a message ex-

change.
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Figure 4.1: Example sequence of random sampling and rewiring of edge e

initiated by node 0 by means of a random walk with length 2 · l = 6

Join and Leave Procedure

Dynamic Equilibrium
States So far, we have considered a protocol which is suitable for the gradual

rewiring of existing edges in a static topology while neglecting the impact of

nodes which dynamically join or leave the system. However, it is rather sim-

ple to extend this protocol in a way that it handles node fluctuations in dynamic

equilibrium states where the size of the network remains roughly constant with

nodes joining and leaving the system randomly at roughly balanced rates. In

this case, a simple join procedure as shown in algorithms 5 and 6 is sufficient.

The node wishing to join the overlay chooses its own ID for instance by draw-

ing it uniformly at random from the range [1, n] with n being a fixed maximum

size of the network. It then creates connections to k existing nodes in the over-

lay, which are obtained by an arbitrary bootstrapping process5. We further

assume that newly created edges are labeled as unmarked, thus being subject to

future rewiring operations according to the protocol presented above. Nodes

leaving the system do not require any particular handling, except for the re-

moval of stale links as shown in algorithm 7.
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Algorithm 5: Node joins the system
1: {Draw random ID}
2: isel f ← Random(1, n)
3: for i← 0; i < k; i← i + 1 do
4: x ← ArbitraryBootstrapNode()
5: {Create link to bootstrap node}
6: Send({join, sel f }, x)
7: neighbors.Add(x)
8: end for

Algorithm 6: Node receives {join, w}
1: neighbors.Add(w)

Algorithm 7: Node finds that neighbor w left the system
1: neighbors.Remove(w)

2: if marked.Contains(w) then
3: marked.Remove(w)

4: end if

4.2.3 Experimental Results

Overview of
Evaluation

Having given a description of the rewiring protocol as well as some ana-

lytical arguments about its convergence behavior, in this section we present

simulation results that have been obtained using a prototypical implementa-

tion of the proposed scheme in the simulation environment TOPGEN [Scholtes

et al., 2008b]. The evaluation is split up in two parts. In a first step we seek to

establish, by simulation, a practicable lower bound for the minimally required

random walk length l. We further study the influence of the initiating node’s

degree on the convergence time of a random walk. Based on these results, in a

second step we then simulate the rewiring protocol and study its influence on

a network’s degree distribution.

5Commonly used bootstrapping mechanisms include for instance the maintenance of a web

accessible resource which contains an updated list of randomly chosen nodes that are currently

online or the use of a hard-coded list of explicitly managed bootstrap nodes.
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Random Walk Length

Random Walk
Convergence
Experiments

In section 4.2.1, we have considered theoretic asymptotic upper bounds for

the required number of steps l in an n node power law network. In the fol-

lowing, these theoretic results will be complemented by an experimental study

of the random walk’s convergence behavior. With this we intend to derive a

random walk length that provides a reasonable trade-off between the imposed

number of messages and the resulting total variation distance. Since it is cru-

cial for the scalability of the proposed rewiring scheme, we further investigate

how the minimally required random walk length changes as the network size

is varied. The results presented in the following have been obtained as follows.

In each simulation run a number R of random walks was started from a ran-

domly chosen node in a randomly generated scale-free network6. In each of

these R simulated random walks, a hit counter was increased in the node at

which the random walk resided in the l-th step. After R random walks had

been simulated, the total variation distance was computed based on the ob-

served hit frequencies and the stationary distribution expected for the chosen

random walk bias. Depending on the network size and the minimum prob-

ability πmin of the expected stationary distribution, the number of simulated

random walks R was chosen in a range between 106 and 108. In particular, it

was chosen such that nodes with minimum stationary probability πmin were

expected to be hit sufficiently often to reasonably argue about the total varia-

tion distance. The above procedure was then repeated for ten randomly gen-

erated scale-free networks and different starting nodes and the average total

variation distance was computed.

Figure 4.2Random Walk
Convergence Results

shows the random walk length l minimally required for the av-

erage total variation distance to fall below ε = 0.05. Results are shown for

different network sizes and for random walks configured to effectuate - when

used in the rewiring protocol - random scale-free topologies with degree dis-

tribution exponents 2.1, 2.5 and 3.5. Rather than the linear scaling behavior

suggested by the theoretical upper bound presented in section 4.2.1, the ob-

served required length l rather scales in a sub-linear fashion. The observation

that the actual convergence behavior is significantly better than the theoretical

upper bound is consistent with observations made in [Zhang et al., 2008] and

indicates that the rewiring scheme can be implemented efficiently in practice.

Informally, this observed fast convergence can be attributed to the small diam-

6For the sake of simplicity, here we have used networks generated by the preferential attach-

ment scheme presented in [Barabási and Albert, 1999] and described in section 2.3.5
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Figure 4.2: Minimum random walk length l required to achieve D(π(l), π) ≤
0.05 in Barabási-Albert networks with random walk biases configured to effec-

tuate exponents 2.1, 2.5 and 3.5 (Lines are drawn to guide the eye)

eter of scale-free networks and the absence of network cuts with small capac-

ity7. While no experimental results are presented for further network topolo-

gies, these arguments suggest that a similar scaling behavior of the minimally

required random walk length is likely to hold for other network topologies that

are known to have good expansion characteristics.

In Dependence of
Convergence on Node

Degree

networks with highly heterogeneous connectivity, a further interesting

question is how the choice of the starting node of a random walk influences

the total variation distance that can be achieved by a fixed random walk length.

To investigate this, a number of scale-free networks with 1000 nodes and 5000

edges were created using a preferential attachment scheme and a large num-

ber of random walks configured for a targeted exponent γ = 3 were started

from each node of the network8. The frequency with which nodes were the fi-

nal target of a random walk was recorded and the total variation distance to

the expected stationary distribution was computed for each series of random

walks starting at a particular node. Figure 4.3 shows the correlation between

the degree of the node at which a random walk started and the total varia-

7A network cut being defined as a partition of the node set, its capacity being the number of

edges connecting both partitions.
8Here large again means sufficiently large to reasonably compute the total variation distance.
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Figure 4.3: Correlation between degree of starting node and average

D(π(l), π) in 1000 node Barabási-Albert networks with γ = 3 and l = 5

tion distance that was achieved9. This result underpins the intuition that ran-

dom walk sampling schemes being started at highly connected nodes converge

faster. This is because a random walk starting at a node with high degree can

potentially reach a large number of nodes even in the first step. In the extremal

case where the starting node has connections to all other nodes, even a single

step is sufficient. In the protocol presented in 4.2.2, this justifies the choice that

rewiring operations for an edge (i, j) are initiated by the node with higher de-

gree. In fact, in network topologies with highly skewed degree distributions

this results in a large number of rewiring operations being initiated by high

degree nodes, thus facilitating the use of short random walk lengths.

9Please note that in these experiments there was no correlation between the (random) assign-

ment of node IDs and the degree in the initial topology.
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Transformation of Degree Distribution

We Description of
Experiments

now turn to the question of how the proposed rewiring protocol influences

the degree distribution of a network topology. All results presented in the fol-

lowing figures have been obtained for networks consisting of 5000 nodes and

roughly 25000 edges. Initial topologies upon which the protocol was started

were created by means of the Barabási-Albert preferential attachment model

as well as the Erdös/Rényi model for classical random graphs. Based on the

results presented in the previous section, a random walk length l = 20 was

chosen for the following experiments. In each simulation run, the protocol pre-

sented in algorithm 4.2.2 was applied by all nodes in a network topology with

initially unmarked edges until all edges had been rewired (and thus marked).

The delay interval between individual rewiring iterations was chosen such that

- on average - a single rewiring took place per time unit. However, this choice

has been made merely for illustration purposes since it allows to trace the evo-

lution of a network topology as links are being rewired progressively. Clearly,

performing more than one per rewiring at a time would be more appropriate

in actual applications of the protocol. When using a delay value so that one

rewiring is expected to take place per unit of simulated time, for the chosen

network size an adaptation cycle is expected to be completed after roughly

25000 time steps.
Measuring and

Fitting Methodology
The degree distribution of the network topology was computed each 200

time units and a fit to the current degree distribution exponent was performed.

For this, an R implementation of the maximum likelihood power law fit pro-

cedure described in [Clauset et al., 2007] was used. This procedure yields the

fitted degree distribution exponent γ f that holds with maximum likelihood,

the minimum network degree dmin above which the fit holds, as well as the

Kolmogorov-Smirnov (KS) statistic D. In general, better fits result in smaller

values of D, thus allowing to evaluate whether the “power law nature” of the

degree distribution is strengthened or fades away under the application of the

rewiring scheme. All results are averages of at least five independent appli-

cations of the protocol on randomly chosen network realizations of identical

size. For more details on the maximum likelihood fitting procedure, we refer

the reader to the description in the following section 4.3.1.
Static TopologiesIn the following, we first consider a simple static situation in which

no nodes enter or leave the initial network topology. Figures 4.4(a) and

4.5(a) show the effect of the proposed protocol on the degree distribution

of a network that was initially created by the Barabási/Albert (BA) and the

Erdös/Rényi (ER) model respectively. For BA networks, the average fitted ex-
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ponent γ f of the initial topology was on average 2.9. For ER networks the used

fitting procedure yielded 3.5 with an at least 10-fold value of the KS-statistic

which reflects the fact that the initial degree distribution does not follow a

power law. Figures 4.4(a) and 4.5(a) confirm that the protocol does lead to

an adaptation of the degree distribution exponent of the overlay. In particular,

the evolution of the Kolmogorov-Smirnov statistic D that is shown in Figure

4.4(b) demonstrates that the scale-free characteristic of Barabási-Albert scale-

free networks is preserved. In Figure 4.6, log-log plots of log-binned degree

distributions are shown for networks before and after the adaptation targeting

at different exponents.
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Figure 4.4: Time Evolution of 5000 node Barabási/Albert networks during

adaptation runs with γ ∈ [2.1, 3.5] and l = 20
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Figure 4.5: Time Evolution of 5000 node Erdös/Rényi networks during adap-

tation runs with γ ∈ [2.1, 3.5] and l = 20

For Erdös/Rényi networks, the roughly 10-fold decrease of the KS-statistic

D that can be seen in Figure 4.5(b) indicates the emergence of scale-free char-

acteristics, that is the power law fit to the degree distribution becomes more

reliable. Plots of the degree distribution before and after the rewiring that are

shown in Figure 4.7 underpin this assumption. In Figures 4.4(d) and 4.5(d), the

evolution of the average maximum degree is shown for BA and ER networks.

The results are consistent with the maximum degree expected in networks of

the given size and with different degree distribution exponents. In Figure 4.8,

the average fit parameters for the network topology eventually reached after

the adaptation are shown. The results demonstrate that - as expected from the

underlying theoretical model - the protocol can be applied to transform arbi-
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trary initial topologies into random scale-free networks whose degree distri-

bution follows a power law with an exponent reasonably close to the intended

value.
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Figure 4.6: Log-Log plots of Log-binned degree distributions of 10000 node

Barabási/Albert network before (a) and after adaptation with different target

exponents (b-d)
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Figure 4.7: Log-binned degree distributions of 10000 node Erdös/Rényi net-

work before (a) and after (b) adaptation with target exponent γ = 2.1

γt 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5

γ f 2.24 2.40 2.60 2.82 2.99 3.24 3.44 3.5

BA D 0.012 0.01 0.01 0.01 0.01 0.01 0.012 0.02

dmin 6.6 8.4 8.6 10 10 11.6 13.2 11.6

γ f 2.252 2.41 2.61 2.80 3.03 3.25 3.45 3.5

ER D 0.013 0.01 0.01 0.009 0.009 0.01 0.012 0.02

dmin 7.6 8.8 9.2 9.6 11.4 12.6 12.2 12.4

Figure 4.8: Average fitted exponent γ f , Kolmogorov-Smirnov statistic D and

minimum degree dmin above which the fit holds after adaptation with targeted

exponents γt ∈ [2.1, 3.5] for 5000 node Erdös/Rényi (ER) and Barabási/Albert

(BA) networks with roughly 25000 edges
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AboveMultiple Subsequent
Adaptations

we have presented results for one construction or adaptation cycle, that

means each connection being rewired once in order to perform a single trans-

formation of the topology. Here we consider a situation where three subse-

quent adaptation cycles were initiated targeting at different degree distribu-

tion exponents. In Figure 4.9, results are shown for an initial Barabási/Albert

network topology with 10000 nodes and roughly 50000 edges. The chosen ran-

dom walk length of l = 22 was again consistent with the values found above.

In Figure 4.9, time steps in which adaption cycles were initiated are indicated

by vertical lines. The target degree distribution exponents were 2.9, 2.1 and 3.5

respectively. Again the results indicate that the proposed scheme is suitable

to achieve the desired adaptation. Furthermore, Figure 4.9(b) shows how the

Kolmogorov-Smirnov statistic and thus the reliability of the power law fit tem-

porarily fades during the adaptation while it is being restored near the ends of

a cycle. To illustrate the effect of the adaptation protocol on the heterogeneity

of the network structure, in Figures 4.11(a) and 4.11(b) a 200 node network is

shown after completion of two adaptation cycle targeting at γ = 4 and γ = 2.1.
Dynamic Equilibrium
Topologies

So far, only static topologies with a fixed set of nodes have been consid-

ered, that is no nodes were entering or leaving the topology. In the following,

we present some preliminary results for dynamic topologies in which nodes

join and leave the overlay uniformly at random at balanced rates, thus con-

stituting a dynamic equilibrium state for a system with roughly fixed size. In

the following experiments, a Barabási/Albert network with 5000 nodes and

roughly 25000 edges has been used as initial topology. Results for Erdös/Rényi

networks have shown to be identical which is why we have not included them

here. In each simulated time step, a single node was removed uniformly at ran-

dom while a single other node joined the network. Nodes joining the network

were connected to k = 5 random bootstrap nodes according to the algorithm

depicted in algorithm 5. Stale links left by failing nodes were removed imme-

diately from the network. The delay parameter has been set to a value that was

sufficiently small to compensate for the constant creation of unmarked links by

joining nodes. Hence, the average number of links being rewired (and thus be-

ing marked) within a certain time interval was roughly equal to the average

number of random (unmarked) edges created in that same time interval by

joining nodes. Figure 4.10 shows the averaged results of simulations targeting

degree distribution exponents γt ∈ [2.1, 3.5]. In particular, Figure 4.10(a) sug-

gests that the degree distribution exponent approaches the targeted value as

node fluctuations drive the gradual rewiring of links.
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Figure 4.9: Time Evolution of 10000 node Barabási/Albert networks during

multiple adaptation cycles with γ0 = 2.9, γ54000 = 2.1 and γ108000 = 3.5. Start

times of adaptation cycles are indicated by vertical lines.



106

(a) Average fitted exponent γ f (b) Average Kolmogorov-Smirnov statistic D

(c) Average minimum degree dmin (d) Average maximum degree

Figure 4.10: Time evolution of dynamic 5000 node Barabási/Albert networks

with random, uniform churn, γt ∈ [2.1, 3.5] and l = 20
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(a) γ = 4

(b) γ = 2.1

Figure 4.11: Network with 200 nodes and 1000 edges after adaptation targeting

at different exponents γ
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4.2.4 Summary and Perspectives

Equilibrium
Statistical Mechanics
Perspective of
Rewiring Protocol

Prior to summarizing some contributions, open issues and threats to valid-

ity, we intend to relate the proposed protocol to the thermodynamic and statistical

mechanics perspective that has been laid out in section 3.2. Assuming an overlay

with a fixed set of participants, the rewiring protocol can actually be viewed

as giving rise to a canonical ensemble of random scale-free overlay networks which

is defined by three fixed, aggregate quantities n (number of nodes), k · n (num-

ber of edges) and γ (distribution of node degrees). The rewiring of all edges

results in drawing a new realization from the associated statistical ensemble.

In the physical view, this corresponds to a random rearrangement of particles

within a given volume. Here, energy landscape and temperature determine

the probability with which each possible particle arrangement occurs. Simi-

larly, in the equilibrium overlay the rewiring of connections results in a random

reconfiguration of edges within the space of all n·(n−1)
2 pairs of vertices. Here,

the degree distribution exponent γ determines which of the configurations are

accessible and how statistical weights are assigned to particular realizations of

the overlay. A more general way of looking at the probabilistic approach un-

derlying the proposed protocol is that, instead of statically fixing a particular

network structure, by means of a random rewiring scheme a huge number of

different network topologies are allowed to emerge. By setting a particular bias

in the random walk sampling scheme, probabilities in the resulting statistical

ensemble can then be reallocated sensibly such that overlay topologies with

advantageous characteristics emerge almost surely.
Macro-Level
Guarantees,
Micro-Macro
Reasoning and Phase
Transitions

Based on the existing literature on random networks with a given power

law distribution, collective properties of the randomized overlay topology re-

sulting from the rewiring protocol can further be related to aggregate, thermo-

dynamic parameters, namely the number of nodes, the number of edges as well

as the degree distribution exponent. In this sense, the proposed protocol facil-

itates the distributed construction of probabilistically structured overlays for

which thermodynamic guarantees can be given. Based on the equilibrium model

presented in [Lee et al., 2005] as well as the configuration of stochastic matrices

according to the Metropolis-Hastings method [Metropolis et al., 1953], it is pos-

sible to analytically relate the bias used by individual nodes in the forwarding

of random walk messages to the macroscopic degree distribution exponent.

Furthermore, the protocol allows to specifically influence this forwarding bias

in a meaningful way. At certain critical points in this parameter space, phase

transitions occur and the collective properties of the overlay change abruptly.
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A Application Scenariosparticular point at which such a transition occurs in power law over-

lays is when the degree distribution exponent leaves the scale-free phase be-

tween two and three. As the exponent increases beyond the critical point of

three, the variance of the distribution becomes finite and super-hubs with un-

bounded connectivity are quickly becoming unlikely. In practice, the decision

for a power law overlay topology with a particular skewness entails a balanc-

ing of possibly contradicting objectives. Scale-free overlays in which extremely

powerful machines take the role of super-hubs facilitate efficient, probabilistic

distributed search, a fast spreading of information or the fast formation of con-

sensus. However, this comes at the price of imposing significant load on these

machines as well as an increased susceptibility against attacks or failures of a

small set of super-hubs. Changing the degree distribution exponent thus al-

lows to rebalance load to a broader basis of less pronounced hubs. In critical

situations, for instance when super-hubs are found to be under attack, rewiring

operations that lead to a less skewed degree distribution can mitigate the risk

that the structure of the overlay is destroyed while decreasing the performance

of probabilistic search or content dissemination schemes. In this sense, the

proposed protocol allows to fine-tune the heterogeneity in connectivity while

retaining the overall power law structure of a network. Furthermore, we have

argued that the proposed protocol is suitable to transform arbitrary connected

topologies into random scale-free networks given that the expansion proper-

ties of the initial topology provide sufficiently fast convergence of the random

walk sampling strategy. In Barabási-Albert and Erdös/Rényi networks, the

random walk length required to provide sampling probabilities that are accept-

ably close to the stationary limit are found to be significantly smaller than the

theoretical upper bounds. Based on the observed superior convergence behav-

ior of random walks being started in hub nodes, the performance of the pro-

tocol benefits from the fact that rewiring operations are preferentially started

by high degree nodes. Based on the results presented in this article, we thus

argue that the proposed protocol is a simple and practicable approach to create

and adapt thermodynamically structured overlays for large scale Peer-to-Peer

systems.

We Correlations and
Random Walk Length

conclude this section by summarizing some open issues that have not

been considered so far. An important aspect in any practical application of

the proposed rewiring scheme is the fact that any reasonably efficient imple-

mentation requires to accept moderate total variation distances. While this

allows to keep the random walk length and thus the message overhead in an

acceptable range, it poses a limit to the randomness of the resulting network
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topology. Although small total variation distances suggest that the resulting

correlations and thus the deviation of properties from those of truly random

networks are rather moderate, a further investigation of these effects is an open

issue. Regarding the minimally required random walk length, we have argued

that the protocol seems to benefit from the fact that rewiring operations are

preferentially started by high degree nodes. This is due to the observed corre-

lation between the degree of the initiating node and the total variation distance

achieved by a random walk. It thus seems to be reasonable to choose the length

l for each random walk individually based on the degree of the node initiating

it. This promises to further reduce the message overhead. A further poten-

tial improvement is the use of two-stage random walks which - in a first stage -

move to highly connected nodes, and then - in a second stage - switch their bias

to sample nodes according to the desired stationary distribution. However,

none of these possible extensions has been considered in detail in this disserta-

tion. Furthermore, although we have argued that simulations are a reasonable

approach to establish empirical bounds on the required random walk length,

the range of network sizes and topologies considered so far is fairly limited. A

study of the protocol’s performance in further network topologies must thus

be considered future work.

TheControlling and
Initiating Rewirings

reader may further observe that a rather grossly simplified abstraction

of practical computing systems has been used. We thus need to comment on

some issues that necessarily arise in practical systems. First, when wanting

to create a power law topology with a particular exponent, all nodes must be

aware of this value and forward random walk rewiring requests accordingly.

So far we have not considered how the formation or adaptation of the overlay

topology is initiated and how a value for the desired exponent can be found

consistently by all participating nodes. Apart from using a centralized control

instance, for this purpose the use of (probabilistic) distributed consensus pro-

tocols may be considered. However this issue is not addressed in this disser-

tation.Application in
Systems with
Dynamic
Constituents

While some preliminary results on network topologies with dynamic

participants have been presented, a major open issue of this work is the fact

that simulations have only been performed for the rather special situation of

dynamic equilibrium states with nodes failing uniformly at random. An evalu-

ation of the impact of further realistic (non-uniform) churn models and rates is

thus crucial. Considering an application in practical systems, a further poten-

tial problem that could not be considered so far is the impact of message losses

and how to properly handle them in the protocol. However, in [Zhong et al.,

2008], some ideas on handling message losses in random walk sampling have
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been presented which may also be applicable in the context of the rewiring

protocol considered in this section.

Finally, Respecting Peer
Capacities

in the rather simple scheme described in this section, we have con-

sidered nodes being assigned (random) identifiers that influence rewiring op-

erations and hence their connectivity in the resulting overlay topology. As a

result, the number of links that any given node will eventually acquire is de-

termined by mere chance. However, in most practical systems, capacities of

participating machines (like for instance communication bandwidth or pro-

cessing power) are non-homogeneous and thus should be taken into account

in the construction of the overlay. Several approaches may be considered to re-

solve this issue. While the simplest possibility would be an assignment of IDs

to nodes in which highest capacity nodes are assigned smallest IDs, such a

strategy may not be feasible in large dynamic systems. One possible approach

to introduce a correlation between connectivity and node capacities may be

to combine a initial random assignment with a distributed probabilistic mech-

anism by which nodes are allowed to reasonably swap their IDs according

to capacity differences. When considering systems with a sufficiently skewed

distribution of capacities, another adjustment of the protocol may be consid-

ered based on the models that have been presented in [Caldarelli et al., 2002b;

Servedio and Caldarelli, 2004]. Here an equilibrium model with hidden vertex

intrinsic variables has been studied which is similar to the simple one used in

this section. Apart from a trivial assignment of Zipf-distributed weights, the

emergence of power law and scale-free networks has been observed for a num-

ber of further sufficiently skewed distribution of vertex variables. Based on

the observation of highly skewed node characteristics in practical Peer-to-Peer

systems (see for example [Stutzbach and Rejaie, 2006]), this proposes a simple

extension of the sampling scheme underlying the rewiring protocol studied in

this section. For this, one can use as weights wi in equation 4.1 a simple nu-

merical value that resembles a node’s local characteristic like for example its

bandwidth or expected uptime. The transition matrix must then be adjusted

accordingly, replacing
(

i
j

) 1
γ−1 in equation 4.5 by

wj
wi

. The overlay resulting

from the proposed rewiring and link sampling scheme will then be a power

law topology whose exponent depends on the initial distribution of capacities

and in which nodes with the highest capacities have the most connections. In

particular, this means that one loses the ability to effectuate an overlay with a

particular degree distribution exponent. Nevertheless, an adaptation may still

be possible when considering particular capacity distributions and a suitable

transformation of the local capacity value in the assignment of local weights.
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Clearly, the creation and adaptation of random scale-free structuresFurther Perspectives is

merely one possible scenario in the thermodynamic management of large,

dynamic overlays. In fact, rather than being limited to the construction of

scale-free structures, a combination of the proposed rewiring and random

walk sampling scheme with the equilibrium statistical mechanics and com-

plex networks perspective on overlays opens up a number of further perspec-

tives. A simple extension would be to use the rewiring mechanism not only

to switch between different statistical ensembles for scale-free networks but

between completely different statistical ensembles. A transformation between

random Erdös/Rényi overlays and scale-free topologies can for example sim-

ply be achieved by switching between highly skewed and uniform statistical

weights in the sampling process. Furthermore, apart from these rather sim-

ple networks, more complex overlay topologies with particular clustering or

community substructures may be desirable. For this, it appears promising to

consider further, possibly non purely local, energy concepts like for instance

those summarized in [Farkas et al., 2004]. In the light of these limitations and

open issues, the scheme proposed in this section may thus be seen as a mere

demonstration of the thermodynamic perspective on the management of large,

dynamic overlay topologies whose self-organization and self-adaptation capa-

bilities can be analyzed exactly in the framework of complex networks and

random graph theory.
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4.3 Monitoring Scale-Free Overlays

Distributed
Monitoring of

Aggregate Quantities

The rewiring protocol that has been considered in the previous section con-

stitutes one possible building block for an equilibrium statistical mechanics ap-

proach to the management of large, dynamic overlay networks. In chapter 3

we have argued that a meaningful, randomized construction of overlays with

particular statistical parameters can facilitate macroscopic statements about a

number of aggregate qualities which are - although rather basic - nevertheless

important for the design of reliable and scalable distributed systems. In this

section we consider a different yet related question. Assuming a given network

topology, we study how aggregate quantities that facilitate such a macro-level

reasoning in terms of statistical ensembles can be derived efficiently and in a

distributed fashion. Constituting a complementary aspect for the distributed

management of network topologies with scale-free characteristics, we partic-

ularly address the question how individual nodes can infer knowledge about

power law nature and exponent of a network’s degree distribution by means

of a probabilistic and fully decentralized monitoring protocol.
Monitoring the

Degree Distribution
Clearly, when wanting to use such a distributed monitoring scheme to

make statements about networked systems resulting from sophisticated con-

struction procedures, all the cautionary remarks that have been put forth in

section 4.1 need to be taken into account. Nevertheless, one can imagine a

number of scenarios where measurable aggregate quantities can be be viewed

as parameters of a statistical ensemble that represents the actual network con-

struction process reasonably well. One example are networked systems whose

evolution is known to follow well-studied stochastic models like growth and

preferential attachment schemes, link duplication or random walk mechanisms

(see for instance the models mentioned in section 2.3.5). Still details of these

models (like for instance the preferences of added participants) which deter-

mine the exact shape of the connectivity distribution and influence network

qualities relevant to networked computing systems and distributed algorithms

may not be easily assessable. Another example can be found in the extension

to the rewiring protocol that has briefly been mentioned in section 4.2.4. Based

on the equilibrium model for scale-free networks that has been discussed in
[Caldarelli et al., 2002b], node capacity depending fitness values can be used as

statistical weights in the rewiring protocol. Different from the simpler scheme

considered in section 4.2, here the degree distribution of the resulting overlay

network cannot easily be derived from a simple tunable protocol parameter.

The exact shape of the distribution rather depends on possibly time-variant
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characteristics of participating machines. Finally, even in global scale network

infrastructures like the Internet, a measurement of the degree distribution can

be meaningful if suitably combined with measurements of further characteris-

tics which are adequate to assess basic network qualities. On the other hand,

commonly used approaches like the (near-)complete mapping of large net-

work topologies or the sampling of a small subset of nodes can be problematic.

Moreover, due to the statistical properties of highly skewed distributions, one

needs to take care with respect to the used fitting procedures. In the following,

we address the question how nodes in power law networks can reason about

the shape of the degree distribution in a fully decentralized and statistically

sound way.

4.3.1 Fitting to Power Law Distributions

Fitting to Skewed
Distributions

A first step towards a distributed measuring of the degree distribution

shape in power law networks is to find an objective and automatable procedure

to fit a power law function to a set of empirical data. For highly skewed distribu-

tions like power laws, the provision of reliable fitting procedures is an active

area of research in statistics. A frequent source of errors when using graphical

or least squares fitting procedures is that log-normal distributed data can eas-

ily be mistaken for power laws when plotting them on a double logarithmic

axis. This can be seen in Figure 4.12, showing double logarithmic plots of three

log-normal cumulative distribution functions for three different standard devi-

ations as opposed to three power law functions with different exponents. This

is aggravated by the fact that, many power law distributions in real-world sys-

tems exhibit exponential cutoffs due to finite-size effects, thus making power

law and log-normal distributed data hardly distinguishable visually.
Maximum Likelihood
Estimation of
Exponents

Notwithstanding the fact that a trained eye and the proper use of sample

binning and plotting can often identify power laws and rule out alternative

distributions, here we are interested in an objective and automatable approach

that is suitable to be used in a distributed algorithm. Currently, one of the

most reliable fitting methods for power law distributed data is based on the

well-known Maximum Likelihood Estimation (MLE) technique and has been

presented [Clauset et al., 2007; Bauke, 2007]. Given a sample of data to which a

power law function shall be fitted, it can be used to obtain the most likely value

for the exponent γ as well as a measure for the goodness of this estimation.

Referring to [Clauset et al., 2007] for a full motivation and description of the

procedure, here we briefly summarize those aspects of the approach that are
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Figure 4.12: Comparison of log-normal and power law CDFs in double loga-

rithmic plots

essential for the application in a decentralized fitting scheme. The application

of the MLE method to networks with power law degree distributions results in

the equation [Clauset et al., 2007]

∂γξ(γ, dmin)

ξ(γ, dmin)
= − 1
|V| ∑

v∈V
ln(dv) (4.10)

A Simplified
Estimation

where ξ(γ, a) is the Hurwitz-Zeta function, ∂γ is the partial derivative with

respect to γ and dv denotes the degree of a vertex v in the network. For a

known lower bound dmin above which the power law holds, a numerical solu-

tion of this equation for γ then yields the maximally likely degree distribution

exponent. For the scenarios we address, a numerical solution of this equa-

tion can be too costly especially when considering light-weight network nodes
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with restricted computational power. Fortunately, the authors of [Clauset et al.,

2007] give a much simpler yet less accurate estimate for the exponent γ which

does not involve the Hurwitz-Zeta function. For the degree distribution of a

network G = (V, E) it is given by

γ = 1 + |V| ·
[

∑
v∈V

ln

(
dv

dmin − 1
2

)]−1

which can be reformulated by application of basic log rules as follows:

γ = 1 +
|V|

∑
v∈V

ln(dv)− |V| · ln
(

dmin − 1
2

) (4.11)

Estimating the
Minimum Degree

In [Clauset et al., 2007] it has been argued that for dmin > 6 the accuracy

loss of this simpler estimation of the exponent is less than 1 %. All these equa-

tions contain a parameter dmin which represents the minimum degree above

which the degree distribution exhibits power law behavior. Most real networks

exhibit such a lower bound (for example due to minimum connectivity con-

straints) and estimating it is often non-trivial. Underestimating dmin will result

in a large number of non power law samples being included in the fit while

an overestimation can result in a significant fraction of valid data not being

considered in the fit. Both significantly reduces the fit reliability.The
Kolmogorov-Smirnov
Distance

In [Clauset et

al., 2007], a simple method to estimate the minimum degree above which the

power law fit holds is given based on the Kolmogorov-Smirnov distance. For a

random variable taking discrete, finite values - the Kolmogorov-Smirnov dis-

tance D between two cumulative distribution functions F and F′ can be defined

as follows:

D := maxx
∣∣F′(x)− F(x)

∣∣
If we assume that Fy denotes the cumulative distribution function (CDF) of

a fitted power law with an estimated dmin = y, then the Kolmogorov-Smirnov

distance between the observed and the fitted CDF Fy can be given as follows:

D(y) := maxx≥y

∣∣∣∣ |{v ∈ V : dv ≥ x}|
|{v ∈ V : dv ≥ y}| − Fy(X ≥ x)

∣∣∣∣ (4.12)

The optimum value of dmin can then be obtained by minimizing the func-

tion D(y), thus yielding the value dmin for which the Kolmogorov-Smirnov

distance between the empirical and the fitted cumulative distribution function
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is minimal. In summary, these equations can be used to derive the parame-

ters γ and dmin for which a power law distribution has maximum likelihood to

produce the observed node degrees dv.

4.3.2 Gossip-based Fitting

Distributed
Maximum Likelihood

Estimation

In their current form, an application of the fitting method summarized

above requires a histogram of the degree of all nodes in the network. Clearly

collecting such a histogram is not desirable in large scale networked comput-

ing systems. Here, we thus study how one can, in a distributed and proba-

bilistic fashion, progressively calculate estimates for the exponent γ, the min-

imum degree dmin above which an assumed power law holds and the result-

ing Kolmogorov-Smirnov distance D. For this, we recall that in equation 4.11

merely aggregate values are required, namely the number of nodes |V| in the

system as well as a sum of logarithmized node degrees. Hence, obtaining these

aggregate information in a scalable and distributed fashion is sufficient to per-

form a Maximum Likelihood Estimation of the degree distribution exponent.
Gossip-based
Aggregation

One particularly appealing possibility to obtain such aggregate quantities

in large dynamic network topologies is by means of the probabilistic, gossip-

based aggregation scheme that has been presented in [Jelasity et al., 2005].

Here, it has been shown that aggregate functions min, max, sum, product,

average as well as higher moments of per-node numerical attributes can be

calculated efficiently by means of a simple probabilistic protocol. While refer-

ring the reader to [Jelasity et al., 2005] for a more detailed presentation, for this

nodes need to periodically exchange a local approximation of aggregate values

with a neighbor chosen uniformly at random. These local approximations are

then updated according to a function which depends on the aggregate function

that shall be computed. With a Convergence of
Gossip-based
Aggregation

suitably chosen update function, local approxi-

mations will converge towards the actual global aggregates and the variance of

the set of approximate values will decrease upon each update. However, just

like for the random walk sampling scheme that has been considered in section

4.2, the interesting question here is how fast this convergence is in a particu-

lar network topology. In [Jelasity et al., 2005], both analytical and empirical

arguments for the convergence behavior of the protocol have been presented.

For random G(n, m) and Barabási/Albert networks, the convergence has been

found to be close to the optimum of a random graphs, requiring no more than

20 per-node information exchanges to achieve a variance < 10−9 in network

topologies with one million nodes. These results are consistent with the find-

ings about diameter, average path lengths, expansion and random walk con-
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Algorithm 8: Main Loop of Monitoring Protocol

1: S← ln(dsel f )

2: M← {dsel f , ∞, . . . , ∞}
3: C ← {1, 0, . . . , 0}
4: loop

5: Sleep(delay)

6: r ← RandomNeighbor()

7: {Send local vector}
8: rqMsg.S← S

9: rqMsg.M← M

10: rqMsg.C ← C

11: Send({RQ, rqMsg}, r)

12: end loop

vergence that have been mentioned in sections 2.1, 2.3.3 and 4.2.1. In particular,

this suggests that the gossip-based aggregation scheme can be applied in prob-

abilistically structured overlay topologies with sufficient algebraic connectiv-

ity10.

WeGossip-based
Maximum Likelihood
Estimation

now show how the gossip-based aggregation scheme can be applied

to perform a distributed Maximum Likelihood estimation of the degree distri-

bution exponent γ and the minimum degree dmin above which the fit holds.

While an algorithmic description can be found in algorithms 8 - 11, we first

comment on some preliminaries. First, we assume that each node v in the

network initializes a local value S with the logarithm of its own degree. Fur-

thermore, two vectors M (list of minimum degrees) and C (number of nodes

with minimum degrees) of some fixed length k need to be initialized with the

values ∞ and 0 respectively. The first entries of the vectors M and C are set to

the own degree dv and 1 respectively. We will later see how these vectors M

and C can be used to obtain an estimation of the minimum degree dmin above

which a power law holds with maximum likelihood.
Protocol Overview In algorithm 8, the initialization and the main loop of the monitoring

scheme is shown. Following the original epidemic aggregation scheme pre-

sented in more detail in [Jelasity et al., 2005], here we assume that in periodic in-

tervals (determined by a delay time during which nodes are assumed to sleep)

nodes chose a neighbor in the network or overlay topology uniformly at ran-

10See for example [Boyd et al., 2006] for a further investigation of the influence of spectral prop-

erties on the convergence of gossip-based averaging algorithms
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Algorithm 9: Node receives {RQ, rqMsg} from node x
1: rspMsg.S← S

2: rspMsg.M← M

3: rspMsg.C ← C

4: Send({RSP, rspMsg}, x)

5: Update(rqMsg)

Algorithm 10: Node receives {RSP, rspMsg}
1: Update(rspMsg)

dom. A request message which contains the local values of the node is then

sent to the chosen neighbor. As shown in algorithm 9, a node receiving such

a request responds with its local values and updates them according to the re-

ceived values and an update function. Similarly, when a response is received

from a node the values of the responding node are used to update the local

values (see algorithm 10).

When Update Rulesvalues of a neighbor are received, updates of the current local ap-

proximations are performed according to algorithm 11. Here, S is simply up-

dated by averaging the local and the received value. In the vector M, a set of

the k smallest unique node degrees is collected. In an entry C[j] of vector C,

values of a per-node indicator function

δv(i) :=

1 if dv ≥ M[i]

0 else
(4.13)

are averaged. When a vector M with a list of k smallest degrees is received

from a neighbor, it is merged with the local vector, meaning that a union of both

vectors is created while keeping only the k smallest unique degrees. Whenever

the i-th entry of a node’s local vector C is changed, the value C[i] is reinitial-

ized with the value of the indicator function shown in equation 4.13. If this

procedure is applied repeatedly, due to the averaging update rule in line one

of algorithm 11, a node i’s local value S will converge to:

S→ 1
|V| ∑

v∈V
ln(dv)
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Algorithm 11: Update of local values S, M and C after receiving message

msg

1: S← 1
2 · (S + msg.S)

2: M′ ← Merge(M, msg.M)

3: for i = 0 to k do

4: if M[i] 6= M′[i] then

5: C[i]← δsel f (i)

6: else

7: C[i]← 1
2 (C[i] + msg.C[i])

8: end if

9: i← i + 1

10: end for

11: M← M′

Using the local approximation S and equation 4.10,Distributed
Estimation of γ

a node v can then obtain

a local Maximum Likelihood Estimation of the degree distribution exponent γ

by solving the following equation:

∂γξ(γ, dmin)

ξ(γ, dmin)
= −S (4.14)

In cases where a numerical solution or the computation of the Hurwitz-Zeta

function is too complex, a simple yet less accurate estimate can alternatively be

derived from equation 4.11 as follows:

γ = 1 +
(

S− ln
(

dmin −
1
2

))−1
(4.15)

InBounding the possible
range of dmin

both equations, the lower bound dmin for which the power law fit holds

is required. An estimation for this value can be obtained based on the above

aggregation scheme and the local vectors M and C. We first observe, that

the Kolmogorov-Smirnov distance from equation 4.12 cannot be directly cal-

culated based on a node’s local view since it requires a histogram of vertex

degree frequencies. We can however presume that the searched degree dmin

is among a fixed size subset of the network’s smallest vertex degrees. In fact,

power law distributions are well-suited for this restriction. Due to their pos-

itive skewness, a large fraction of the distribution’s dynamic range is concen-

trated at the lower end of the degree distribution. Thus, small values for dmin

are likely. In fact high values for dmin result in a large portion of data not being
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considered for the fit, thus making the fit less reliable and actually uninterest-

ing. This is the rationale behind using the size constrained vectors M and C.

In M, the k smallest unique degrees in the network are collected by means of

a simple minimum aggregation. In each entry C[j], a per-node indicator func-

tion telling whether the local degree is greater or equal than the corresponding

entry M[j] is averaged. Thus, once an entry M[j] has stabilized, the entries C[j]

will converge to:

C[j]→ 1
|V| · |{v ∈ V : dv ≥ M[j]}|

We Distributed
Estimation of dmin

may further assume, that each node has a local estimation of the

network size n ≈ |V|. Various methods exist by which such an estima-

tion can be obtained in a distributed fashion [Horowitz and Malkhi, 2003;

Kostoulas et al., 2005; Massoulié et al., 2006; Merrer et al., 2006], among them an

application of gossip-based averaging [Jelasity et al., 2005]. Multiplying, after

a number of gossip iterations, the estimated network size n with an entry C[j]

yields:

n · C[j] ≈ |{v ∈ V : dv ≥ M[j]}|

With this, equation 4.12 can be applied to those vertex degrees stored in

the local vectors M. Each of the nodes participating in the scheme can then

estimate the lower bound dmin by selecting the value y ∈ M that minimizes the

following equation:

D̄(y) = maxx∈M:x≥y

∣∣∣∣n · C[ix]

n · C[iy]
− Py(X ≥ x)

∣∣∣∣ (4.16)

where ix and iy are the indices of x and y respectively in M and Fy is the

fitted CDF obtained from equation 4.14 or equation 4.15 when setting dmin = y.



122

Local Estimates i = 5 i = 10 i = 50

γ-Avg 2.839 2.833 2.833

γ-Var 1.84 · 10−2 2.22 · 10−4 4.72 · 10−17

D-Avg 0.05 0.05 0.05

D-Var 4.1 · 10−4 7.31 · 10−6 1.56 · 10−18

dmin-Avg 5.010 5 5

dmin-Var 6.850 · 10−2 0 0

Figure 4.13: Average and variance of local power law parameter estimations

for i iterations of the proposed gossip scheme using a vector size of k = 10 en-

tries in a 10000 node Barabási/Albert network. A global Maximum Likelihood

Estimation yields γ = 2.833, dmin = 5 and D = 0.0497.

4.3.3 Experimental Evaluation

Experimental Results We finally evaluate the performance of the scheme by comparing the fit pa-

rameters obtained by a global Maximum Likelihood Estimation with the local

values obtained in a simulation of the proposed protocol. In this simulation,

we have created a power law network with 10000 nodes and roughly 50000

edges according to the Barabási/Albert preferential attachment model. For the

local vectors M and C, a size constraint of k = 10 was used. A global MLE

power law fit of the degree distribution obtained by an R implementation11 of

the method discussed in [Clauset et al., 2007] yields γ = 2.833, dmin = 5 and

D = 0.0497. For both the global and the distributed estimation of power law

fit parameters, the simplified fitting methods given in equations 4.11 and 4.15

have been used. In Figure 4.13, average and variance of the node’s local es-

timates of the degree distribution exponent γ, the minimum degree dmin and

the Kolmogorov-Smirnov distance D are shown. The results show, that the av-

erage local estimations quickly converge towards the actual values computed

globally. After only five iterations of the gossip-based protocol, the average

estimated value of nodes differs by less than 0.25 % from the actual value, af-

ter ten iterations this difference falls below 0.02 %. Similar results hold for the

local estimations of D and the lower bound dmin.
11In particular, the R implementation by Laurent Dubroca available at http://tuvalu.

santafe.edu/~aaronc/powerlaws/ has been used.

http://tuvalu.santafe.edu/~aaronc/powerlaws/
http://tuvalu.santafe.edu/~aaronc/powerlaws/
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4.3.4 Summary and Perspectives

Summary and
Contributions

In this section, we have shown that it is possible to obtain a statistically

sound Maximum Likelihood Estimation of power law fit parameters in a dis-

tributed and probabilistic fashion. The proposed monitoring scheme is a direct

application of recent efforts in providing reliable and automatable power law

fitting methods and makes use of a gossip-based aggregation scheme which is

known to work efficiently in large dynamic network topologies with good al-

gebraic connectivity. Based on the findings summarized in section 2.3 and the

arguments put forth at beginning of this section 4.3, the resulting knowledge

about a network’s degree distribution exponent can - at least in a number of

cases - be used to make statements about network properties like diameter, av-

erage path lengths, fault and attack resilience or the performance of dynamical

processes. In slowly evolving, very large network infrastructures like the Inter-

net’s router network, a measurement of such statistical properties can further

be useful for the validation of network models. While a complete mapping of

such networks is typically costly and laborious, the proposed protocol could

be used in periods of low traffic to exchange and aggregate statistical informa-

tion in a simple and distributed fashion. Referring to a vision put forth in the

context of the distributed mapping project DIMES [Shavitt and Shir, 2005], at

least for simple aggregate parameters, the proposed protocol can be seen as a

step towards networked systems that “measure themselves”.
Open IssuesWe conclude this section by summarizing some open issues that have not

yet been considered in more detail. First and foremost, in its current form the

proposed monitoring scheme can only be used to estimate parameters of degree distri-

butions that are known to obey a power law. However an important question that

frequently arises in practice is whether or not a distribution obeys a power law

in the first place. Unfortunately the value D of the Kolmogorov-Smirnov dis-

tance cannot be used directly to evaluate the absolute goodness of a power law

fit since another probability distribution may still produce smaller distances12.

To address this issue, in [Clauset et al., 2007] a method is presented which yields

a single scalar value telling whether the deviation of the observed data from

the best possible power law fit is likely to result from statistical fluctuations.

This method involves the creation of a large number of synthetic data sets ac-

cording to the fitted power law distribution. For these synthetic data sets, the

Kolmogorov-Smirnov distance is then computed and compared with that ob-

tained for the observed data. A similar method may be applicable when using

12Please note that a monitoring of the relative change of the Kolmogorov-Smirnov distance over

time still allows to assess whether the goodness of a fit becomes stronger or weaker.
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several subsequent rounds of the distributed monitoring scheme. While the

first of these rounds works as described above, in further rounds nodes may

initialize their local values according to a synthetic degree d being randomly

drawn according to the statistical parameters obtained in the first round. While

a comparison of the resulting Kolmogorov-Smirnov distance for synthetically

generated and actual node degrees may give clues about the goodness of the

power law fit, a further study of the feasibility of such an extension remains an

open issue. Another aspect that has been neglected so far is the impact of node

dynamics on the quality of the fitting procedure. In [Jelasity et al., 2005], the ef-

fect of failing nodes and links on the aggregation performance of the gossiping

scheme underlying the protocol proposed in this section has been considered

and it has been found to be rather tolerant against network dynamics while still

providing reasonably good estimates. However, the impact of dynamic nodes

and the resulting node degree fluctuations on the local estimation of distribu-

tion parameters has not yet been studied. We have further not yet studied the

relation between network size and convergence behavior.
Further Perspectives Clearly, the mere measurement of the network’s degree distribution is inter-

esting only in rather special cases. An important related question is therefore

whether other performance-relevant, aggregate network metrics like for in-

stance average clustering coefficient, assortativity [Newman, 2002] or degree-

degree correlations can be derived in a similar fashion. In the management

of probabilistically structured or unstructured overlay networks, the protocol

considered here should thus rather be viewed as a particular and admittedly

simplistic example for a distributed, runtime measurement of aggregate statistical

quantities. Reconsidering the perspective that has been taken in section 3.2.2,

the ability to efficiently derive such aggregate quantities and the use of results

about corresponding statistical ensembles facilitates conclusions about the col-

lective properties of large scale overlay networks. The resulting knowledge

can then be used for example in the development of distributed algorithms

which better adapt to the qualities of dynamically evolving network topolo-

gies. In a sense, probabilistic aggregation protocols like the one considered in

this section may thus be viewed as the thermometers and barometers of ther-

modynamically structured overlay networks.
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Chapter5
Self-Organized

Synchronization in Networked

Computing Systems

When I meet God, I am going to ask him two questions: Why

relativity? And why turbulence? I really believe he will have an

answer for the first.

WERNER HEISENBERG

Complex Collective
Phenomena

Having studied the formation of overlay networks with complex proba-

bilistic structures, here we slightly shift our focus and examine potential appli-

cations of what is commonly called collective phenomena. Depending on the con-

text, we consider as collective phenomenon, collective dynamics or collective behavior,

the formation of macroscopically coherent temporal or spatial patterns based on the in-

teractions of a large number of dynamical elements. Prominent examples being the

seemingly coordinated, collective motion of flocks, shoals and swarms of ani-

mals, bacterial colonies and human crowds as well as the synchronous flash-

ing of huge populations of fireflies, such collective phenomena are abundant

in nature. Similar collective dynamics can also be observed in the inanimate

world. Here, frequently studied occurrences are the formation of domains with

aligned electron spins in ferromagnetic materials or the emergence of convec-

tion patterns in fluid dynamics. In the context of social systems, the formation

of consensus, the dissemination of languages and cultural traits as well as the
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dynamics of opinion formation processes represent further instances of collec-

tive behavior.
Understanding
Collective Behavior in
Networked Systems

The emergence of collective behavior - be it in a social, biological or phys-

ical context - is one particular facet of the complex dynamics which can occur

in high-dimensional nonlinear dynamical systems. A rigorous analytical treat-

ment of such systems is possible only under very special conditions. In recent

years, methods and models originally developed in statistical physics to study

the collective dynamics for example of spin models have proven to be use-

ful also to tackle phenomena like collective motion in biology [Vicsek et al.,

1999] or collective behavior in society [Castellano et al., 2009]. While in tradi-

tional physical models interactions are typically assumed to take place in regu-

lar lattices or fields, complex networks are now increasingly being considered

as interaction topologies, thus furthering an application of the corresponding

results in other domains. This development opens up interesting perspectives

for an application in networked computing systems. In fact, some of the exam-

ples that have been reviewed in section 1.1 highlight the relevance of the study

of collective phenomena in the context of technical systems. The inadvertent

synchronization of router messages in the Internet shows that a thorough un-

derstanding of the principles underlying collective dynamics is crucial for the

design of networked systems. Moreover, the example of the Millennium foot-

bridge has shown that subtle nonlinear interactions, which can occur between

pedestrians and a construction, may result in significant problems. Similarly,

mutual interactions between networked computing systems and their human

users can possibly give rise to collective user behavior that significantly im-

pacts performance. With technical and social systems becoming increasingly

intertwined, the study of collective phenomena is likely to gain importance for the

design of robust and manageable technical infrastructures.
Harnessing Collective
Phenomena in
Distributed
Computing Systems

Reconsidering collective phenomena in natural systems, their emergence

usually entails some form of “benefit” for the participating elements. Collec-

tive motion in animal populations can, for example, reduce the probability of

an individual falling prey to predators or optimize the energy consumption of

long-distance migrations. Although not representing a “benefit” in the usual

sense, in spin models for ferromagnetism collective dynamics arises as a result

of a minimization of free energy. Similarly, apart from predicting and preventing

unwanted collective phenomena, in decentralized computing systems required to

operate without a central control instance, the formation of coherent and ordered

macroscopic patterns can be desirable. Here, explicitly designing distributed pro-

tocols along suitable physical and mathematical models giving rise to benefi-
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cial collective behavior is a valid approach. In the remainder of this chapter

we try to implement it by considering a distributed scheme for the synchro-

nization of periodic processes in Peer-to-Peer systems. We particularly address

scenarios in which complex, probabilistic overlay topologies like for example

those studied in the preceding chapter are being used. In the following section

we first review some models and results about self-synchronization phenomena

in networks. Since it will serve as the basis for the gossip-based synchronization

protocol studied in section 5.2, here we particularly introduce the Kuramoto

model for populations of nonlinearly coupled oscillators.

5.1 Self-Organized Synchronization in Networks

Models for
Self-Organized

Synchronization

An interesting type of collective dynamics frequently observed and stud-

ied in biology, chemistry, mathematics and non-equilibrium statistical physics

can arise in systems being comprised of periodic processes. By means of inter-

actions between these processes, synchronized, coherent patterns can emerge

in a seemingly self-organized fashion, possibly resulting in the formation of

globally coherent states or complex spatio-temporal patterns. In some respects

resembling previously mentioned instances of distributed consensus, flocking

and swarm behavior, self-synchronization phenomena have been studied ex-

tensively especially in the field of biology where they appear to be almost per-

vasive. Its occurrences range from the temporal behavior of neuronal activa-

tion patterns over the synchronized contraction of cardiac muscle cells, the cir-

cadian cycle in humans to the synchronized flashing of fireflies. Since roughly

50 years, a number of different models have been studied that can explain

such examples of collective behavior. A beautiful introduction to synchroniza-

tion phenomena as well as to some mechanisms underlying their emergence

is given in the popular science book “Sync” [Strogatz, 2003]. While exhaus-

tive surveys can be found for example in [Strogatz, 2000; Pikovsky et al., 2003;

Boccaletti et al., 2002; Boccaletti et al., 2006; Barrat et al., 2008], in this section

we summarize some aspects of synchronization models in networks insofar as

they relate to the questions studied in the remainder of this chapter.

Resembling Models with Pulse
Couplings

interactions taking place between the elements in a number of

biological systems, a frequently studied class of synchronization models are

so-called Integrate-and-Fire models which assume a sporadic, pulse-based cou-

pling between dynamical elements. In each of these elements a state variable

- which in practice can be interpreted for example as tension, pressure or volt-

age - builds up at some intrinsic phase advance rate until a threshold value
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is exceeded, thus resulting in a sudden relaxation. Depending on the exact

model being studied, this relaxation is assumed to generate a pulse which in-

fluences the advance of the state variables of neighboring elements. To explain

the synchrony in cardiac pacemaker cells, in [Peskin, 1975] an Integrate-and-

Fire model has been proposed in which a pulse advances the state variables of

all other nodes by a constant amount. This model has later been generalized in
[Mirollo and Strogatz, 1990], showing that any monotonic and concave down

intrinsic advance of state variables eventually results in globally synchronized

states except for a set of pathologic initial conditions that have a probability

measure of zero.
Coupled Oscillator
Models

Different from the sporadic, pulse-like coupling considered in Integrate-

and-Fire models, in coupled oscillator models a continuous coupling between os-

cillatory dynamical elements is usually assumed. One of the earliest models

studies a population of oscillators continuously “pulling” on each other’s in-

trinsic frequencies [Wiener, 1958]. Considering oscillator interactions as phase-

dependent influence and sensitivity functions, the generalized relaxation oscil-

lator model introduced in [Winfree, 1967] has opened the problem to formal

analysis. Building on this work, one of the most frequently studied coupled

oscillator models has been introduced in [Kuramoto, 1975]. Since it constitutes

the basis for the distributed synchronization scheme proposed in section 5.2, in

the following we consider this Kuramoto model in a bit more detail and summa-

rize some results that are relevant to the aspects addressed in the remainder of

this chapter1.The Kuramoto Model In its most common form, the Kuramoto model assumes n all-to-

all coupled oscillators running at intrinsic frequencies ωi which are distributed

according to some arbitrary probability distribution. A constant K giving the

strength of sinusoidal couplings between oscillators, the advance of an oscilla-

tor i’s phase Θi is given in terms of the following differential equation:

∂Θi
∂t

= ωi +
K
N
·

N

∑
j=1

sin(Θj −Θi) (5.1)

Hence, for K = 0 a node i’s phase Θi advances with constant speed at its in-

trinsic frequency ωi. Assuming Θk ∈ [0, 2π) and interpreting Θk as a node k’s

position on a unit circle, for K > 0 the advance of an oscillator’s phase at any

given time t is influenced by the angles between its local phase and the phases

of all other nodes. Positive angles speed up, negative values slow down an

1More detailed surveys of analytical and experimental results on the Kuramoto model along

with several dependent variations can be found for example in [Strogatz, 2000; Acebrón et al.,
2005]
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oscillator’s phase advance. Mean-Field Results
for Kuramoto Model

From equation 5.1, one sees that the mathemati-

cal description of a population of n coupled Kuramoto oscillators involves a

nonlinear system of n differential equations which complicates an analytical

evaluation of the system’s behavior. Despite this fact, in [Kuramoto, 1975] ana-

lytical results have been presented for the case n→ ∞. Here it was shown that

for certain, sufficiently narrow distributions of intrinsic oscillator frequencies,

increasingly large groups of oscillators eventually synchronize as the coupling

strength K is increased above a critical coupling strength Kc that depends on

the distribution of intrinsic frequencies ωi. These analytical results have been

obtained by a mean-field approach, which is facilitated by the assumption of

an all-to-all coupling and the fact that in this case each oscillator can be viewed

as being effectively influenced by the average couplings to all other oscillators.

While Synchronization in
Random and Complex

Networks

an all-to-all coupling possibly reduces the dimensionality of the

problem in an analytical treatment, for many natural systems it is more rea-

sonable to study sparse networks as interaction topologies, oscillators residing

at the nodes of a network and edges representing couplings between them.

The topology of the network in which couplings take place clearly influences

the emergence of synchronized states as well as the dynamics of the syn-

chronization process. For regular chain, ring and lattice topologies, it has

been shown that the emergence of stable synchronized states in populations

of sinusoidally coupled oscillators becomes increasingly unlikely as the size

of the network increases [Ermentrout and Kopell, 1984; Ermentrout, 1985;

Strogatz and Mirollo, 1988]. Contrariwise, stable synchronized states appar-

ently emerge when using a random Erdös/Rényi as coupling topology [Satoh,

1989]. Apart from regular and completely random networks, in recent years

complex coupling topologies are increasingly being considered. In [Watts,

1999], the dynamics of coupled Kuramoto oscillators in networks resulting

from the random rewiring of links in an initially regular ring lattice has been

studied. It was found that the random rewiring of a small fraction of links is

sufficient for synchrony to emerge almost as quickly as in fully connected or

completely random networks. For Synchronization in
Scale-Free Networks

random networks with a given degree dis-

tribution, in [Ichinomiya, 2004] it is argued that the critical coupling required

for synchrony to emerge in a variation of the Kuramoto model is proportional

to the ratio M1
M2

of the degree distribution’s first two moments. Referring to ar-

guments presented in 2.3.1, this suggests that scale-free networks with a degree

distribution in the range between two and three tend to synchronize for very
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small coupling strengths, the critical coupling strength required for synchrony

to emerge vanishing as the size of the network increases2.

ReconsideringSpectral Network
Properties and
Synchronization

the relation between network structures and the emergence

of synchronized regimes, it seems rather intuitive that the synchronization dy-

namics is influenced by how “well-connected” a network is and, in particu-

lar, by the network’s average path lengths and the existence of small-cut node

partitions. As such, the question if and how synchronization occurs in a par-

ticular network topology is closely related to the performance of dynamical

processes like information diffusion, the spreading of epidemics and the con-

vergence behavior of gossiping strategies and random walks. This immedi-

ately reminds us of chapter 4, where we have used the “good connectedness”

of random scale-free networks to efficiently sample random edges and to prob-

abilistically derive the degree distribution exponent. Moreover, in section 4.2.1

we have mentioned that a theoretical upper bound for the convergence time

of a random walk can be given in terms of the second largest eigenvalue of

the random walk’s stochastic transition matrix. Similarly, the relation between

the emergence of stable synchronized states and the spectral properties of its

Laplacian matrix have been studied. The Laplacian matrix is tightly coupled

to a network’s adjacency matrix and can be seen as a discrete and finite vari-

ation of the continuous Laplacian operator3. For a network G = (V, E) with

V = {1, . . . , n}, an entry
(

Lij
)

i,j=1,...,n of the Laplacian matrix L(G) is defined

as follows:

Lij :=


di i = j

−1 i 6= j and (i, j) ∈ E

0 else

The spectrum of eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λmax of the Laplacian

matrix L(G) captures important properties of the underlying network topology

and plays an important role in the stability analysis of oscillatory patterns for

coupled oscillator models. In particular, the magnitude of the second small-

est eigenvalue λ2 - the so-called algebraic connectivity - captures how “well-

connected” a network topology is. It can be related to a network’s expansion

and congestion properties, the existence of small cuts, the performance of gos-

sip algorithms, the average shortest path length or its diameter [Mohar, 1991;
2Note that this closely resembles the vanishing epidemic threshold mentioned in section 2.3.3.
3The continuous Laplacian is a differential operator which is given by the sum of a function’s

second-order unmixed partial derivatives with respect to cartesian coordinates. It occurs for ex-

ample in the description of electromagnetic and gravitational fields, diffusion dynamics and wave

propagation.
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Chung, 1997]. Important for the question considered in this chapter, it has

been shown for example in [Barahona and Pecora, 2002; Jadbabaie et al., 2004;

Pecora and Barahona, 2005] that aspects of a network’s tendency to synchro-

nize, like for instance the minimally required coupling strength in the Ku-

ramoto model or the stability of synchronized states in oscillator models with

linear couplings, can be related to its Laplacian spectrum. In particular, it has

been argued that networks with smaller eigenratios

λmax

λ2

generally favor the emergence of stable synchronized states. This re-

sult formally underpins the intuition that synchronization emerges in “well-

connected” network topologies with a large algebraic connectivity λ2. Simi-

larly, networks with a large algebraic connectivity have been found to be cru-

cial for a number of consensus, control and cooperation mechanisms that are

relevant in the context of distributed computing systems [Olfati-Saber et al.,

2007]. In fact, with the random walk sampling and the gossip-based aggrega-

tion scheme used in chapter 4, we have considered two particular examples for

distributed algorithms whose performance benefits from large algebraic con-

nectivity.

When Synchronization in
Networks with

Modular Structures

considering the impact of a network’s topology on synchronization,

apart from studying if stable synchronized states emerge, a further interest-

ing aspect is how local structural features influence the dynamics of the synchro-

nization process. Recursively applying above arguments about the influence

of algebraic connectivity to the substructures of a network, one would intu-

itively expect that synchronized regimes preferentially emerge in well-connected sub-

graphs of a network. Results presented in [Moreno et al., 2004; Oh et al., 2005;

Park et al., 2006] underpin this intuition. Here, it was found that nodes within

the same community - that is a well-connected subset of nodes for which links to

nodes within the subset are more likely than to nodes outside - tend to synchro-

nize quickly. Long-range links that interconnect different (synchronized) com-

munities have further been found to be crucial for the subsequent formation of

increasingly large synchronized clusters and eventually for the emergence of

globally coherent states.

Similar Assessing Spectral
and Topological

Properties

like the findings about the emergence of stable synchronization, the

dynamics of synchronization processes in network with modular structures

can again be related to the distribution of eigenvalues and eigenvectors of the

Laplacian matrix that governs the geometry of oscillator couplings [Arenas et

al., 2006a; Arenas et al., 2006b]. The resulting connections between spectral
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graph properties, topological features of complex networks and the dynam-

ics of synchronization processes open up a number of interesting perspectives.

Algorithms that compute spectral properties of a network’s Laplacian matrix

have for example been proposed to address the problem of assessing commu-

nity structures in the analysis of large scale networks [Donetti and Munoz,

2004; Capocci et al., 2005]. Alternatively, it has been suggested that knowledge

about a network’s modular and hierarchical organization can be inferred by

monitoring the progressive evolution of synchronized regimes in complex net-

works [Arenas and Dı́az-Guilera, 2007].

5.2 Gossip-Based Synchronization in Complex

Networks

Self-Organized
Synchronization in
Networked
Computing Systems

The results about self-organized synchronization in networks summarized

above have paved the way for a targeted application in engineered networked

systems. Since they map well to a message-based communication paradigm, in

the past Integrate-and-Fire models have primarily been considered for this pur-

pose. Targeting the problem of time synchronization in base-station free wire-

less ad hoc networks, in [Hong and Scaglione, 2003] the use of the Integrate-

and-Fire model presented in [Peskin, 1975] has been considered. Similarly, in
[Lucarelli and Wang, 2004] the same scheme has been considered for a synchro-

nization of small-scale, time-varying sensor network topologies based on near-

est neighbor communication. Addressing the same scenario, in [Werner-Allen

et al., 2005] a synchronization protocol has been considered which is based

on the firefly-inspired pulse coupling model studied in [Mirollo and Strogatz,

1990]. Apart from sensor networks, the use of self-synchronization models

has been proposed for large scale Peer-to-Peer systems. Here, a synchronized

notion of “time epochs” or “heartbeats” is for instance required by a number

of turn-based distributed algorithms. For such a scenario, in [Babaoglu et al.,

2007] a synchronization protocol has been proposed that is based on pulse-

based, nearest neighbor couplings according to the adaptive model presented

in [Ermentrout, 1991]. Closest to the scheme presented in this section, in [Bal-

doni et al., 2009] a synchronization protocol for large dynamic Peer-to-Peer sys-

tems has been proposed that is based on a model of linearly coupled oscillators.
Pulse-Couplings in
Computer Networks

In the remainder of this chapter, we investigate how findings on the self-

organized synchronization in complex networks can be incorporated in a dis-

tributed protocol for large scale Peer-to-Peer systems. A particular focus will be
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laid upon the use of the protocol in overlays with probabilistic, complex struc-

tures as proposed in chapter 3. For this, similar like in the Integrate-and-Fire

models we assume a sporadic coupling that maps well to the message-based,

non-continuous communication between computing devices. However, for

this we do not make use of an Integrate-and-Fire model since we argue that the simul-

taneous exchange of coupling messages resulting from the synchronization of pulses

threatens their applicability in large scale computing systems. In fact, as we have

seen in chapter 1.1, highly synchronized traffic peaks in the Internet can result

in massive problems and countermeasures are usually taken to prevent them.

To overcome this problem in situations where a synchronization of periodic

processes is required without a central instance and without imposing the bur-

den of synchronized message exchanges, in the following section we describe

a synchronization protocol that makes use of gossip-like message exchanges.

The scheme is inspired by the Kuramoto model and - similar like the protocol

considered in [Baldoni et al., 2009] - assumes that continuous couplings in the

underlying coupled oscillator model are replaced by a sporadic exchange of

messages. It has originally been presented in [Scholtes et al., 2009] as well as -

in an extended version - in [Scholtes et al., 2010].

5.2.1 Coupling Protocol

A Message-based
Kuramoto Model

In the following, we give a detailed description of the proposed scheme

along with two different coupling models. We assume that oscillators reside at

the nodes of an arbitrary undirected network G = (V, E). Let each node v ∈ V

possess a randomly skewed, discrete clock tv, a Gaussian distributed intrinsic

frequency ωv as well as an oscillating signal γv. Defining the period Tv of an

oscillator v as Tv = 1
ωv

, a node v’s phase within its period can then be given as

Θv = Θv(tv) = 2π
tv mod Tv

Tv
.

Θv ∈ [0, 2π) representing a node v’s current phase in its oscillator cycle, its

oscillating signal γv(tv) is then given as

γv = γv(tv) = sin (Θv) .

Message-based
Coupling

For the sake of making the original Kuramoto model applicable in practical

distributed systems, rather than a continuous coupling to all nodes, we con-

sider a message-based local coupling, that is we assume that nodes are cou-

pled to their nearest neighbors via sporadic, probabilistic message exchanges.

In a time-discrete manner, this sporadic coupling can for example be modeled
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as a per-node vector of Bernoulli processes, that is in each time step a node v

performs dv independent Bernoulli trials Xi (i = 1, . . . , dv) with dv being the

degree of node v. Upon success of Xi, v is coupled to its i-th neighbor. Let

p ∈ [0, 1] be the uniform success probability of these Bernoulli trials. Clearly,

for p = 1 one obtains a time discrete version of the Kuramoto model with near-

est neighbor couplings. For p = 0 there is no coupling at all, that is the model

is identical to the case of K = 0. Based on the first moment of the binomial

distribution and the fact that each node can either choose to couple to a neigh-

bor or be chosen as coupling partner, for the total expected number of message

exchanges during n time steps in a node v one obtains

2 · n · p · dv.

Coupling Functions So far, instead of defining the actual coupling we have rather considered

whether a coupling occurs in a given time step. Different from the symmetric

coupling constant K in the original Kuramoto model, for our simulations we

assume that the coupling strength is given as a function of the degrees of both coupling

partners. Hence we consider an asymmetric coupling strength that may differ

for couplings between different nodes. If - based on the stochastic process de-

scribed above - a coupling between two nodes v and w occurs, we assume that

both nodes exchange their current phases Θv and Θw in their oscillator cycles.

It is then assumed that both nodes v and w update their periods - and thus the

speed of their phase advance - in the following way:

Tv = Tv + f (dv, dw) · sin(Θv −Θw)

Tw = Tw + f (dw, dv) · sin(Θw −Θv) (5.2)

With this, the cumulative effect of all couplings occurring during one time

step n at a node v can be reformulated in terms of the change of the instanta-

neous phase advance speed ω
(n)
v by the following recurrence relation:

ω
(n+1)
v =

 1

ω
(n)
v

+ ∑
w∈V:(v,w)∈E

B(n)
v [w] · f (dv, dw) · sin

(
Θ(n)

v −Θ(n)
w

)−1

Degree-Weighted
Coupling

For this we assume that in a time step n, the success of a Bernoulli trial of

a node v for its neighbor w is indicated by a one-entry in a vector B(n)
v , while a

failure is indicated by a zero-entry at the corresponding position B(n)
v [w]. In the
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above definitions f denotes a coupling strength function whose value may de-

pend on the degrees of both coupling partners. Speaking informally, the inten-

tion behind the coupling in the original Kuramoto model shown in equation

5.1 was to adjust local oscillator frequencies by K times the average angular

phase difference to all other coupling partners. Applying this argument to the

case of nearest neighbor couplings results in the following degree-weighted

coupling function f1:

f1(dv, dw) :=
K
dv

(5.3)

Here K again denotes a coupling strength constant. Own experiments (pre-

sented in [Scholtes et al., 2009]) as well as arguments presented for example

in [Motter et al., 2005b; Li, 2008] suggest that a degree-weighted, asymmetric

coupling strength as proposed in f1 is required for stable synchronized states

to emerge in networks with heterogeneous degree distributions and nearest

neighbor couplings. In fact, it has been found in [Nishikawa et al., 2003] that

heterogeneous degree distributions can actually hinder the formation of syn-

chronization when using constant and symmetric coupling strength. Justify-

ing our choice of f1, it has been shown in [Motter et al., 2005b] that for a given

network topology and a weighting of coupling strengths by d−β
v a maximum

eigenratio and thus synchronizability is obtained for β = 1.

With Harnessing
Heterogeneity

the coupling function f1, one observes that, in terms of coupling

strength, a node v does not differentiate between different neighbors w. When

wanting to provide fast and stable synchronization, one is tempted to think

about the credibility of a node’s oscillator state in the sense of how “represen-

tative” it is for the macroscopic state of synchronization. While for many net-

works one may assume equal credibility, this assumption is not justified in net-

works with highly heterogeneous nodes like for example the case in random

scale-free networks. Speaking informally, the synchronization state of highly

connected hub nodes is likely to be more “reliable” since their oscillators are

coupled (though weakly due to the degree weighting in f1) to a larger num-

ber of nodes. In fact, it has been argued for example in [Moreno and Pacheco,

2004], that in in scale-free networks stable synchronized states are likely to first

emerge around hub nodes and the resilience of the synchronization against

perturbations is higher for nodes with large degrees. The fact that the at-

tractiveness of hubs in real-world networks often stems from higher stability,

longer uptime or better capabilities can be seen as another argument speaking

in favor of a degree-based differentiation of a neighbor’s credibility.
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ItTarget-Degree
Weighted Coupling

thus seems justified to consider a coupling model in which hubs are se-

lectively privileged by amplifying the coupling strength to nodes with higher

degrees4. While maintaining the degree-based weighting of f1, one can define

an alternative coupling function f2 which incorporates this aspect as follows:

f2(dv, dw) :=
K · dw · d̄−1

dv
(5.4)

In this definition d̄ denotes the average vertex degree and K is again a con-

stant adjusting the strength of couplings. For networks, in which all nodes

have the same degree (for example in regular lattices), due to d̄ = dw the

coupling f2 is identical to f1. Furthermore one observes that for fully con-

nected network topologies, both coupling functions f1 and f2 are identical to

the coupling in the original Kuramoto model. For other networks, the coupling

strength to nodes with degrees above the global average is amplified while the

coupling to nodes with degrees below the average is weakened proportionally.

Moreover, the magnitude of the coupling strength fluctuations is coupled to

the heterogeneity of the degree distribution.

5.2.2 Experimental Evaluation

UsingSynchronization in
Complex Network
Topologies

the simple model presented above, we now study the emergence of syn-

chronized oscillator states in complex network topologies. Following the work

that has been presented in the previous chapter 4, we will consider the perfor-

mance of the proposed scheme in scale-free network topologies. Moreover, we

study the collective dynamics arising in networks generated according to the

Watts/Strogatz model which has earlier been presented in 2.2. In the following

section we present simulation results for both coupling functions f1 and f2 as

well as for different coupling probabilities p. Particular emphasis is placed on

whether coherent oscillator states emerge as well as on the minimally required

message exchange frequency. In further experiments we will investigate the

resilience of synchrony against perturbations. In order to assess the achieved

level of oscillator coherence and the dynamics of the synchronization process,

we will use the common time-dependent order parameter r, which for

4Similar ideas have been considered in [Hwang et al., 2005; Motter et al., 2005a].
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Figure 5.1: Example of order parameters S(t), C(t) and r(t) for snapshot of 10

oscillator states

S(t) = ∑v∈V sin(Θv)

|V| , C(t) = ∑v∈V cos(Θv)

|V|
is defined as

r(t) =
√

S(t)2 + C(t)2.

Here, Interpretation of
Order Parameter

S(t) can be viewed as a macroscopic “sound” generated by the su-

perposition of individual oscillatory ”tones” γv = sin(Θv). When interpreting

an oscillator’s phase Θv ∈ [0, 2π) as position eiΘv on the unit circle, r(t) cor-

responds to the distance of the center of mass of all oscillator positions from

the circle’s center at time t. Values of r(t) close to 0 represent unsynchronized

states in which oscillator positions are equally distributed across the circle. In

states of coherent oscillations, r(t) is close to 1 since all oscillators are concen-

trated at a particular position and the center of mass approaches the unit circle.

An example for a snapshot of oscillator states can be seen in Figure 5.1.

Another Power Spectra of
Oscillator

Populations

way of analyzing both the time-variant global “sound” S as well

as the individual node’s local signals γv, is to study the dynamics and power

spectra of these signals. In a perfectly coherent state, S and γv are pure-

sinusoidal signals with a peak-to-peak amplitude of two and the power spec-
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trum is a delta function with a single peak at the (global) oscillator frequency.

For S, the power spectrum can reveal intermediate states in which certain

clusters oscillate at different frequencies. For γv, the power spectrum re-

veals the level of noise in the signal that is due to signal perturbations re-

sulting from couplings with oscillators running at different frequencies. Later

in this chapter, we will use a discrete Fourier transform in order to analyze

power spectra of a discrete-time signal obtained by a numerical simulation of

the synchronization scheme. In order to reduce spectral leakage, the signal

was multiplied with a Hamming window function [Oppenheim et al., 1999]

prior to performing a Fast Fourier transform. Figure 5.2 illustrates above met-

rics in two reference scenarios: In the first case a population of 10000 oscil-

lators has been artificially synchronized, in the second case no synchroniza-

tion was used and the intrinsic periods of individual oscillators were nor-

mally distributed with mean µ = 100 and standard deviation σ = 25. In

the remainder of this article we will abbreviate such an initial normal distri-

bution of oscillator periods as N(µ, σ). All simulations in the remainder of

this chapter using the simulation environment TOPGEN [Scholtes et al., 2008b;

Botev et al., 2009]. Fast Fourier Transforms have been computed using the open

source statistical computing environment R.

Coupling Functions

Preliminaries In the following we present simulation results for different complex net-

work topologies and coupling functions f1 and f2. Unless explicitly stated

otherwise, all results are mean values of at last five independent simulation

runs on connected, random network topologies with 10000 nodes and roughly

50000 edges. For the experiments in this section, the intrinsic periods of oscil-

lating nodes were N(100, 25)-distributed. Initially, phase skews of individual

nodes were uniformly distributed within a node’s intrinsic period. For the re-

sults in this section, no message latencies or perturbations were considered and

a coupling probability p = 1 was used. Furthermore, results are shown for a

coupling strength constant K = 0.1 which was checked (experimentally) to lie

above the critical value Kc required for synchrony to emerge.

WeDegree-Weighted
Coupling in
Watts/Strogatz
Networks

begin our evaluation by considering networks generated according to

the Watts/Strogatz model [Watts and Strogatz, 1998]. The main advantage of

this model is that it allows to study the interrelation between a network’s small-

world characteristics and the emergence of self-synchronization. For this, two

model parameters k (the number of nearest neighbors in an initial ring lattice)
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(c) Order parameter r(t)

Figure 5.2: Metric exemplification in a 10000 node reference graph of artificially

synchronized (left) and unsynchronized (right) oscillators
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and pr (the probability to reconnect one endpoint of an edge to a chosen uni-

formly at random) can be adjusted to produce graphs with tunable average

path lengths, randomness and clustering. The resulting graph can range be-

tween a regular ring lattice (pr = 0) and a completely random Erdös/Rényi

graph (pr = 1). It has been argued for example in [Barrat and Weigt, 2000] that

Watts/Strogatz networks with N nodes exhibit small average path lengths if

pr � 1
N . Throughout this chapter we denote Watts/Strogatz networks with

reconnection probability pr and k connections to nearest neighbors in the ini-

tial lattice as WS(pr, k). Because a WS(pr, k) network with N nodes has N·k
2

edges and we intended to perform all simulations on equally-sized graphs

with 10000 nodes and roughly 50000 edges, a parameter k = 10 was used in

all subsequent experiments. Figure 5.3 shows the evolution of the order pa-

rameter r(t) for different Watts/Strogatz networks when using the coupling

function f1. Since an averaging over several simulation runs would impair the

significance of r(t) as an illustration of the evolution of synchrony, results for

a single representative simulation run are shown instead in Figure 5.3. These

results suggest that for the degree-weighted coupling, synchronizability of a

WS(pr, 10) network increases with higher reconnection probabilities pr. For

completely random WS(1, 10) networks consisting of 10000 nodes and 50000

edges, synchrony emerges quickly within roughly 500 simulated time steps.

This finding has been substantiated by additional experiments in which some

more points in the Watts/Strogatz model’s parameter space were explored. For

this, the order parameter r(t) eventually reached during 10000 simulated time

steps has been recorded. The averaged results for different reconnection prob-

abilities pr are shown in Figure 5.4 on a log-scale x-axis. These results for our

Kuramoto-inspired synchronization scheme with asymmetric coupling func-

tion f1 are consistent with the findings presented in [Watts, 1999] and men-

tioned in [Watts and Strogatz, 1998].

Based onDegree-Weighted
Coupling in
Scale-Free Networks

the results presented in chapter 4, one can imagine situations

in which one wants to use the synchronization scheme in Peer-to-Peer sys-

tems with scale-free overlay topologies. In the following, we thus present

simulation results for the synchronization behavior in such networks. Being

a simple and convenient non-equilibrium model for the emergence of scale-

free networks, in the following we have used network topologies generated by

the Barabási/Albert preferential attachment model [Barabási and Albert, 1999]

which has already been mentioned in 2.3.5. For the following simulations, the

number of links l that each newly added node established to preferentially
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Figure 5.3: Order parameter r(t) in Watts/Strogatz topology with coupling f1

chosen existing nodes has been set to l = 5. This resulted in network topolo-

gies with roughly the same number of nodes and edges as the Watts/Strogatz

topologies considered above and allows to factor out differences in synchro-

nizability that are due to different network sizes. The fitted degree distribution

exponent of the generated 10000 node scale-free networks was slightly smaller

than three. Figure 5.5 shows the evolution of the order parameter r(t) for a

representative simulation run in a 10000 node Barabási/Albert network using

coupling strength function f1. Similar to the results for 10000 node WS(pr, 10)

graphs with pr � 1
N , one observes fast convergence towards a synchronized

state within roughly 500 simulated time steps.
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Figure 5.4: Average maximum order in WS(pr, 10) graph for coupling f1 (Lines

are drawn to guide the eye)

WeTarget-Degree-
Weighted Coupling in
Watts/Strogatz
Networks

now study the emergence of synchrony when using the coupling func-

tion f2, that is the coupling strength to high degree nodes is amplified while the

coupling strength to small degree nodes is decreased proportionally. Since the

node degree distribution of Watts/Strogatz topologies is rather homogeneous

and all node degrees are likely to be close to the global average, one expects no

significant deviation from the behavior using the f1 coupling. The evolution

of the order parameter r(t) during the first 1500 iterations of two representa-

tive simulation runs with coupling functions f1 and f2 can be seen in Figures

5.6(a) and 5.6(b). The dynamics of the order parameter is nearly identical in

both cases. TheTarget-Degree-
Weighted Coupling in
Scale-Free Networks

situation is different when looking at Barabási/Albert net-

works with a highly heterogeneous node degree distribution. Figures 5.6(c)

and 5.6(d) show the order parameter r(t) during the first 500 iterations of two

representative simulation runs using coupling functions f2 and f1. Here one

observes a roughly three times faster evolution of oscillator coherence. These

rather illustrative results have been substantiated by further experiments in

which the average number of iterations required to achieve an order parame-

ter r(t) > 0.95 were recorded. The table in Figure 5.7 suggests that the number

of couplings required to achieve synchrony in scale-free networks is smaller

than in small-world Watts/Strogatz networks when using degree-weighted

couplings. Moreover, selectively amplifying coupling strength for high degree nodes

further reduces the number of required couplings. As such, for an application of the
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Figure 5.5: Order parameter r(t) in Barabási/Albert topology with coupling f1

proposed synchronization scheme in scale-free network topologies, the use of

the coupling function f2 seems to be desirable.

Coupling Probability

Sporadic CouplingSo far, results have been presented only for the case of a coupling probabil-

ity p = 1, that is nodes were coupled to all nearest neighbors in each time step

of the simulation. While this corresponds to a time-discrete version of the Ku-

ramoto model, for a synchronization protocol usable in practical systems this is

clearly not feasible. Hence, it is interesting to study how a decrease in coupling

probability affects the onset of synchronization. In practical terms, assuming

a low probability per-node coupling has obvious advantages: The number of

messages exchanged per time unit and thus the bandwidth requirements of the

synchronization protocol are reduced. Furthermore - at least up to a certain ex-

tent - sporadic communication errors are hidden in the underlying stochastic

process and do not require special treatment.

When Synchronization Timereducing the probability and thus the number of couplings per time

unit, one may assume that the level of synchronization eventually reached re-

mains unchanged while the time required for synchronization increases pro-

portionately. Intuitively, one expects that halving the coupling probability and

doubling the simulation duration results in the same level of synchrony since

the overall number of couplings remains unchanged. The results presented in
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Figure 5.6: Evolution of order in Watts/Strogatz and Barabási/Albert networks

with couplings f1 and f2

Coupling WS(0.1, 10) Barabási/Albert

f1 1175 279

f2 1142.4 122.6

Figure 5.7: Average iterations to 95 % coherence in 10000 node networks
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ence (right) for different coupling probabilities in a WS(0.1, 10) network using

coupling function f1 (Lines are drawn to guide the eye)

Figure 5.8 show that this intuition seems to be correct. In these experiments,

the average maximum value of the order parameter r(t) has been obtained for

several simulations lasting for 20000 discrete time steps. In order to compare

the time at which synchronization emerges, the number of steps required on

average to reach r(t) > 0.95 has again been recorded for WS(0.1, 10) graphs

with 1000 nodes and 5000 edges.
Bandwidth Demand
vs. Synchronization

Time

From a practical point of view, the result that halving coupling probability

(and thus the frequency of coupling message exchanges) results in a doubling

of the time required for oscillators to become coherent is not very interesting.

This is because the overall number of messages that need to be exchanged to

achieve a fully synchronized state remains roughly the same for any coupling

probability. As such, the decrease of bandwidth for synchronization comes at

the prize of requiring significantly more time. For an application in practice, it

is an important question whether schemes with more sporadic couplings and

thus smaller bandwidth demand can be used without exhibiting this draw-

back. One idea that comes into one’s mind is whether more sporadic couplings

can be compensated by a proportionate increase in coupling strength.
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ACompensating
Coupling Frequency
by Coupling Strength

simple way to incorporate such a compensation of sporadic couplings is

to use the following coupling function

f3(dv, dw) :=
K

dv · p
(5.5)

with p being the nodes’ uniform coupling probability and K being again

a coupling strength constant. For p = 1 we obtain the coupling function f1

which means that simulation results for the coupling function f1 can actually

be reinterpreted in terms of the coupling f3 with p = 1. More sporadic cou-

plings p < 1 result in a proportional increase of coupling strength. In the limit

of p → 0 we obtain a model of infinitely rare and infinitely strong couplings.

In Figure 5.9, the maximum order parameter r(t) reached on average as well

as the average number of time steps after which this maximum was reached is

shown for different coupling probabilities and the coupling function f3 in 1000

node Barabási/Albert and Watts/Strogatz WS(0.1, 10) networks with roughly

5000 edges. As constant coupling strength factor, a value of K = 0.1 has again

been used. The results suggest that the coupling probability p can in fact be

largely reduced (by a factor of at least 50) without having significant effects on

either the maximum coherence or the synchronization time, if the strength of

the coupling is increased proportionally. Interestingly, a reduction of coupling

probability below p = 0.01 results in a sudden drop of maximum coherence

as well as a sudden increase of the time required to achieve this lower level of

coherence.
Limits of
Compensating
Coupling Frequency

Clearly, more sporadic couplings can only be compensated up to a certain

extent as for p → 0 the number of couplings approaches zero. In the follow-

ing we examine how the minimally required coupling frequency in our syn-

chronization model is influenced by other parameters. Experiments have been

performed for further values of the average oscillator period µ and 1000 node

Barabási/Albert and Watts/Strogatz networks. However, results are presented

only for Barabási/Albert topologies since those for WS(pr, k) graphs with pr

above the small-world threshold have shown to be identical. The plots in Fig-

ure 5.10 suggest that the minimally required coupling probability depends on

the initial distribution of oscillator frequencies. In a plot for an experiment

with a mean oscillator frequency f = 1
µ , a dashed line indicates f on the axis

corresponding to the coupling probability. When using coupling probabilities

smaller than the average frequency, a node will initiate on average less than

one coupling per mean oscillator period and neighbor. In our experiments, for

coupling probabilities p � f , oscillator coherence did not emerge even after
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a very long time. For practical applications, this suggests that the bandwidth

demand of Kuramoto-based synchronization decreases proportionally with a

reduction of the mean frequency of the oscillator population if more sporadic

couplings are compensated for by a proportional increase in coupling strength.

Thus, at least in Watts/Strogatz and Barabási/Albert network topologies, a

minimum coupling intensity of (on average) one coupling per oscillator period and

neighbor seems to be sufficient for synchronized states to quickly emerge.
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(a) Watts/Strogatz networks with pr = 0.1
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(b) Barabási/Albert networks

Figure 5.9: Average maximum r(t) and sync time with strength-compensated

sporadic coupling f3 and N(100, 25)-distributed intrinsic oscillator periods

(Lines are drawn to guide the eye)
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(a) µ = 50, σ = 12.5
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(b) µ = 100, σ = 25
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(c) µ = 200, σ = 50
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(d) µ = 500, σ = 125
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(e) µ = 1000, σ = 250
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(f) µ = 2000, σ = 500

Figure 5.10: Average maximum order r(t) with strength-compensated sporadic

coupling f3 in Barabási/Albert networks using different intrinsic oscillator pe-

riod distributions (Lines are drawn to guide the eye)



CHAPTER 5. SELF-ORGANIZED SYNCHRONIZATION 149

Synchronization Resilience

Fluctuations in
Real-World Systems

A major hurdle that complicates the application of distributed algorithms

in real-world settings like for example large scale Peer-to-Peer systems is the

impact of the dynamics induced by leaving or joining participants as well as

failing devices and network connections. An important task when designing

distributed algorithms for such systems is to assess their susceptibility to this

kind of perturbations. In the following, the effect of random node replacements

on oscillator coherence is investigated. In order to measure the effect of node

dynamics rather than that of the associated topology changes, it is assumed

that failing nodes are immediately replaced in a way that does not change the

vertex degree distribution or other network characteristics. In the following

simulations, this has been modeled by reinitializing oscillator states for a cer-

tain fraction of randomly chosen nodes to frequencies and phases drawn from

the initial distribution.

In Random Failuresa first series of experiments, the effect of oscillators being reinitialized

uniformly at random has been investigated, that is in each simulated time

step all nodes had a uniform probability of being replaced. Three per-node

replacement probabilities p = 0.02, p = 0.01 and p = 0.001 have been simu-

lated for Barabási/Albert and Watts/Strogatz network topologies consisting of

10000 nodes. The resulting average maximum order parameter r(t) is shown

in Figure 5.11(a). While a uniform replacement probability of p = 0.001 per

node and iteration did result in only a moderate decrease of coherence for

both, Watts/Strogatz and Barabási/Albert networks, a significant difference

can be seen for replacement probabilities p = 0.01 and p = 0.02. For both

coupling functions f1 and f2, the average maximum order parameter r(t) is

significantly higher in Barabási/Albert topologies: For f1 and a failure rate of

p = 0.01 the retained coherence is increased by approximately 150 % compared

to Watts/Strogatz networks. For f2 and a failure rate of p = 0.02, oscillator

coherence in Barabási/Albert networks is roughly nine times higher than in

Watts/Strogatz topologies. This can be attributed to the stabilizing effect ex-

erted by the small number of highly connected hubs. The use of the coupling

function f2, which selectively increases the coupling strength to stable hubs,

seems to be suitable to further this effect. When comparing the average maxi-

mum order in Barabási/Albert topologies using couplings f1 and f2, for f2 one

observes a roughly 28% increase in coherence for a failure probability p = 0.01

and a 137% increase for p = 0.02. In contrast, no significant increase can be

observed for Watts/Strogatz networks.
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(b) Degree-Coupled Churn

Figure 5.11: Average maximum order r(t) under different types of perturbation

AsDegree-Based Failures stated in the considerations leading to the introduction of the coupling

strength function f2, for many real-world network topologies with highly di-

verse vertex degrees it is justified to relate a node’s degree to its reliability.

Highly connected Internet routers are probably - or at least hopefully - bet-

ter secured against failures and attacks, websites with many incoming links

would probably not have become popular if they were not well-maintained,

and hubs in Peer-to-Peer overlay topologies often emerge because they have

been reliable in the past. It thus seems reasonable to consider a model in which

a node’s probability to fail is reciprocally proportional to its degree. Figure

5.11(b) shows results of a series of simulations based on such a degree-based

perturbation model. The total number of nodes being replaced in each itera-

tion was the same as in the previous experiments with uniform replacement

probabilities, that is in each simulated time step a total of 0.1%, 1% respec-

tively 2% of all oscillators were reinitialized with a random intrinsic period

and phase. Results of these experiments are shown in Figure 5.11(b). The level

of coherence maintained in Barabási/Albert networks is again higher than that

in Watts/Strogatz topologies. For a failure rate of p = 0.1, the results for the

degree-coupled perturbations are identical to those for the uniform model for

a failure rate of p = 0.001. For higher levels of perturbation, one observes

that the retained level of coherence in Barabási/Albert topologies is higher for

degree-coupled failures. For a failure rate of p = 0.01, a roughly 10% increase

can be observed for the coupling f1 and a 4% increase for the coupling f2. For
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a failure rate of p = 0.02, the degree-based model results in a 73% ( f1) re-

spectively 8% ( f2) increase over the uniform random model. In summary, the

results suggest that in scale-free networks the impact of perturbations on the level of

oscillator coherence is rather mild if the failure rate is reciprocally proportional to node

degrees and if coupling strengths to high degree nodes are selectively amplified.

5.2.3 Monitoring Networks by Synchronization

Message-based
Kuramoto

Synchronization as
Monitoring Protocol

The simulation results presented above as well as the findings summarized

in section 5.1 indicate that the proposed synchronization scheme can be applied

practically in network topologies with a sufficiently large algebraic connectiv-

ity. While the resulting coherence of per-node oscillating signals per se can be

useful in certain scenarios, in this section we comment on a possibly more in-

teresting, further application of the proposed scheme. For this, we recall that

both the emergence as well as the dynamics of synchronization is crucially

influenced by spectral properties of a network’s Laplacian matrix. Based on re-

lations between spectral properties and a network’s structural organization, it

has been proposed for example in [Arenas et al., 2006a] that the global dynam-

ics of the order parameter can actually be used to detect modular structures

and argue about the hierarchical organization of large scale networks. In this

section we address a similar question, however we focus on the issue whether

the dynamics of local, microscopic oscillatory signals and coupling exchanges

allows to infer knowledge about the macroscopic and mesoscopic organization

of the network. Hinting at a related problem studied in general spectral theory
[Kac, 1966], one is tempted to reformulate this in terms of the question whether

a node can “hear” the topology of the network into which it is embedded.

Assessing Algebraic Connectivity

Assessing Algebraic
Connectivity

We have seen in section 5.1 that whether a network topology facilitates self-

organized synchronization depends on its algebraic connectivity. It has fur-

ther been mentioned that this property has massive implications on the perfor-

mance of other dynamical processes including information diffusion, network

flows, distributed consensus and control schemes or the convergence behav-

ior of random walks and gossip-based algorithms. The performance of such

dynamical processes can be of great importance for the design of networked

computing systems. Apart from monitoring the evolution of global order by

means of the order parameter r(t) as done in section 5.2.2, here we argue that

the proposed synchronization protocol provides a very simple method to as-
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sess the algebraic connectivity of the network locally. For this, a node merely

needs to study its local oscillatory pattern as it is being influenced by couplings

to neighboring nodes. In network topologies with large algebraic connectivity,

oscillators will quickly synchronize and the angle between neighboring oscil-

lators quickly ceases. As a result, deviations of the local oscillatory dynamics

from a pure sinusoidal signal that are due to the period adjustments given in

equations 5.2 will disappear. Contrariwise, the oscillatory signal of nodes will

continue to be perturbed if no stable synchronized state emerges.

InExperimental Results Figure 5.12, some experimental evidence for this intuition is presented.

For this, simulations have been performed using 1000 node Watts/Strogatz

network topologies with rewiring probabilities below and above the critical

value required to obtain synchronizable networks. The left column shows the

local oscillator signal γv(t) of a node v chosen uniformly at random from a

Watts/Strogatz network without random rewiring (pr = 0) as well as a close-

up view of the power spectrum of γv(t) which has been obtained using a 1024

sample Fast Fourier Transform. The right column of Figure 5.12 shows the cor-

responding values for a randomly chosen node v in a Watts/Strogatz topology

with rewiring probability pr = 0.1 in the same time frame. Oscillator peri-

ods were N(100, 25)-distributed. A coupling with probability p = 0.02 and

compensated coupling strengths according to equation 5.5 were used. When

comparing the local signals in WS(0, 10) and WS(0.1, 10) topologies, one ob-

serves a significantly higher degree of noise in the local oscillations of nodes

in the regular ring lattice WS(0, 10). This noise is due to period adjustments

driven by the prolonged incoherence of oscillators. A clear difference can also

be seen in the level of noise in the nodes’ power spectra shown in Figures

5.12(c) and 5.12(d). For illustration purposes, close-ups on frequencies near

the center frequency are shown. While these are results of randomly chosen,

individual nodes in a single simulation run, in Figures 5.12(e) and 5.12(f) local

power spectra have been averaged over several simulation runs for different

randomly chosen nodes. These results suggest that perturbations of a node’s

local oscillator can be used to reason about the synchronizability and thus the

algebraic connectivity of a network topology. In the frequency domain, candi-

date single-valued metrics that allow a local discrimination of network topolo-

gies with large algebraic connectivity from others are average or variance of

spectral power. Alternatively, a node can monitor the distribution of period

offsets that are due to incoming coupling messages. Arguing that one can infer

additional information from this dynamics, in the following we will study the

evolution of couplings to a node’s individual neighbors.
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(c) Local power spectrum
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(d) Local power spectrum
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(e) Averaged local power spectrum

●
●●

●
●●●

●

●

●

●

●●
●●●●

●

●

●●
●

●●

●●
●●●●●

●●●●●
●
●
●
●

●
●

●●●●

●
●
●
●
●●●●●●

●
●●

●●
●●●

●●
●
●●●

●●●
●●

●
●

●●●
●
●
●
●●●

●●●

●
●●

●●●●●

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.00 0.02 0.04 0.06 0.08 0.10

Frequency

P
ow

er

(f) Averaged local power spectrum

Figure 5.12: Local signal evolution and noise power spectra for WS(0, 10) (left

column) and WS(0.1, 10) (right column) network topologies (Lines are drawn

to guide the eye)
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Assessing Community Substructures

ApartAssessing
Community
Substructures

from algebraic connectivity, we have already mentioned that the emer-

gence of synchrony in networks of coupled oscillators is influenced by the net-

work’s modular organization. Here, it has been shown that well-connected

subgraphs, or communities, tend to synchronize quickly while connections be-

tween these communities result in increasingly large synchronized clusters and

possibly global coherence. While it has already been argued that a global pic-

ture of synchronization dynamics can reveal modular and hierarchical struc-

tures, in the context of the proposed synchronization scheme an interesting

related question is whether nodes can argue about such structural features by

measuring quantities that are locally available. To address this issue we first

need to be able to generate networks with pronounced modular substructures.

Here we consider a maximally simple random graph model which can actu-

ally be seen as a two-stage version of the classical Erdös/Rényi model.Modular Graph
Model

In a

first step, k communities C1, . . . , Ck are created, each community Ci being a

G(s, m) Erdös/Rényi network with s nodes and m edges created uniformly at

random. In a second step, m′ additional edges are assigned to node pairs cho-

sen uniformly at random irrespective of community memberships. Eventually,

a network consisting of k · s nodes and k ·m + m′ edges is created. An example

for a network generated by this model is shown in Figure 5.13. Here k = 20

communities were created with m = 100 links being assigned to each commu-

nity consisting of s = 20 nodes and m′ = 100 additional links being added

randomly to the global network. This process eventually yielded a network

consisting of 20 interconnected clusters, 400 nodes and 2100 edges. Due to the

choice of parameters m and m′, nodes within a community Ci are much more

likely to be connected than nodes in different communities.
Global
Synchronization
Dynamics in the
Cluster Model

In the following, we study the dynamics of the proposed synchroniza-

tion protocol in the particular network depicted in 5.13. In this experiment,

N(100, 25) distributed oscillator frequencies, a coupling probability of p = 0.05

and a degree-weighted coupling strength function f1 as defined in equation 5.5

has been used. The evolution of the global order parameter r(t) in a represen-

tative simulation run in the network depicted in Figure 5.13 is shown in Figure

5.14. Here, different phases can easily be identified. A first level of coher-

ence with r(t) ≈ 0.2 is quickly reached after roughly 250 time units. This can

be attributed to communities Ci being quickly synchronized individually. In a

subsequent phase, the exchange of coupling messages across different commu-

nities results in the formation of increasingly large synchronized clusters until,

after roughly 3000 time steps, a globally coherent state emerges. This global
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Figure 5.13: Example network with 20 communities, 400 nodes and 2100 edges

perspective is in accordance with earlier findings on the evolution of coherent

states in modular networks of coupled oscillators.

We now turn Local Synchronization
Dynamics

to a local picture of synchronization dynamics, taking the

perspective of a node whose neighbors are members of different communities.

For this, we will study the evolution of the angle

δ(v, w) := sin(Θv −Θw)

between two oscillators residing in nodes v and w. Here we assume that

both nodes v and w compute δ(v, w) whenever a coupling between them oc-

curs based on the used coupling probability. Since synchronized regimes are

likely to appear first in a network’s most densely connected subgraphs, δ(v, w)
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Figure 5.14: Evolution of order parameter in example network depicted in 5.13

is expected to decrease quickly if the nodes v and w are members of the same,

quickly synchronizing community. ThisEvolution of
Oscillator Angles

suggests that - by monitoring the dy-

namics of incoming coupling offsets - a node can reason about the community

memberships of its neighbors. To underpin this intuition, a particular node x

has been chosen from the network depicted in Figure 5.13. In this network, x

is member of a community C7, maintaining links to nodes in the same commu-

nity as well as to nodes that are members of three other communities C9, C10

and C15. Using the same coupling probability and coupling strength function

f1 as in the previously described experiment, δ(x, w) has then been recorded for

each coupling event occurring in a simulation of the proposed synchronization

scheme lasting for 4000 time steps. In Figure 5.15, the evolution of δ(x, wi) is

shown for node x and six neighbor nodes w1, . . . , w6. A clear difference can be

seen in the dynamics of couplings to different communities. In Figures 5.15(a)

- 5.15(c), it can be seen that for nodes w1, w2 and w3, which reside in the same

community C7 as node x, δ(x, wi) quickly ceases, eventually fluctuating around

zero. For nodes in other communities, the evolution of δ(x, wi) shown in Fig-

ures 5.15(d) - 5.15(f) is significantly different, ceasing only after 3000 simulated

time steps when global coherence is approached.
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(c) w3 in C7
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(d) w4 in C9
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(e) w5 in C10
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(f) w6 in C15

Figure 5.15: Evolution of exchanged coupling offsets δ(x, wi) for six neighbors

wi of node x in community C7
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TheEvolution of Mean
and Variance of
Oscillator Angles

results shown in Figure 5.15 have been obtained for one particular node

chosen from the particular network realization depicted in Figure 5.13. Further

experiments have thus been performed using ten different 1000 node networks

generated according to the model presented above. In the network generation

process, the parameters k = 50, s = 20, m = 100 and m′ = 100 have been used.

Based on the community memberships assigned to nodes during the construc-

tion of these networks, all edges were classified depending on whether they

connect nodes in different communities or within the same community. For

each edge (v, w), the evolution of δ(v, w) was recorded for all couplings tak-

ing place during a simulation of the synchronization scheme with coupling f1

lasting for 7000 time steps. In Figure 5.16, the evolution of mean and variance

of the absolute oscillator angle |δ(v, w)| is shown for edges connecting nodes

in the same and in different communities. In Figure 5.16(a) and 5.16(b) one

observes that for intra-community edges, both mean and variance of |δ(v, w)|
quickly decays. Contrariwise, in Figures 5.16(c) and 5.16(d) mean and variance

of |δ(v, w)| decrease slowly for edges connecting nodes in different communi-

ties. These results suggest, that nodes in a network running the proposed syn-

chronization scheme can locally classify links by monitoring the evolution of

angles to neighboring oscillators.
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(a) Mean |δ(v, w)| for intra-community links

0 1000 3000 5000 7000

0.
00

0.
05

0.
10

0.
15

0 1000 3000 5000 7000

Time

O
sc

ill
at

or
 A

ng
le

 V
ar

ia
nc

e

(b) Variance of |δ(v, w)| for intra-community

links
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(c) Mean |δ(v, w)| for inter-community links
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(d) Variance of |δ(v, w)| for inter-community

links

Figure 5.16: Evolution of mean and variance of absolute oscillator angles

|δ(v, w)| in 1000 node networks with modular structure
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5.2.4 Summary and Perspectives

InSelf-Organized
Synchronization in
Distributed Systems

this chapter, we have studied a scheme for the self-organized synchroniza-

tion of periodic processes that is inspired by the Kuramoto model for non-

linearly coupled oscillators. Assuming a sporadic, probabilistic exchange of

the oscillator’s phase between nearest neighbors in networks, it can easily be

implemented in terms of a distributed protocol. Compared to synchroniza-

tion schemes that are based on pulse-coupled models, the randomized timing

of the gossip-like coupling message exchanges can mitigate problems result-

ing from highly synchronous traffic. We have considered the impact of dif-

ferent coupling functions on the emergence of synchrony in networks with

complex probabilistic structures. When using a degree-weighted coupling

strength, simulations suggest that coherent oscillator states quickly emerge

in networks with sufficiently large algebraic connectivity. The finding that

a degree-weighted coupling strength quickly gives rise to coherent oscillator

states in scale-free networks is in accordance with earlier studies of the Ku-

ramoto model for networks with highly heterogeneous degree distributions.

Considering the minimally required message exchange frequency, we observe

a fast emergence of coherent states for coupling frequencies above the mean

intrinsic oscillator frequency if the coupling strength is amplified proportion-

ally. Below this coupling frequency, global coherence did not emerge even af-

ter very long times. We have further argued that the resilience of synchronized

states against perturbations is particularly large in scale-free networks. More-

over, in scale-free networks both the synchronization time and the resilience

against perturbations can be improved if the strength of couplings to high de-

gree nodes are selectively amplified.

WhileOpen Issues and
Threats to Validity

these results suggest that the proposed synchronization scheme can

be useful in a number of practical settings, there exist a number of open issues

and threats to validity that have not yet been considered. An important issue

that has not been addressed so far is how the functioning and performance of

the scheme is influenced by inevitable communication latencies. Intuitively,

one would expect the impact of latencies to be interrelated with the frequency

of individual oscillators. In fact, analytical results presented for example in
[Izhikevich, 1998; Papachristodoulou and Jadbabaie, 2005] suggest that trans-

mission delays in the exchange of coupling message are likely to not affect the

emergence of synchronization if the magnitude of delays is smaller than oscil-

lator periods. However, further studies need to be done in order to evaluate

the effect of realistic latency distributions on the proposed scheme. Apart from
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disregarding message latencies, in this chapter a rather limited choice of net-

work topologies, network sizes and intrinsic oscillator frequency distributions

has been considered. In particular, a more substantial study of the interrela-

tion between between a network’s spectral properties and the dynamics and

stability of stable synchronized states is needed before applying the proposed

scheme in practical networked computing systems. Such a study is likely to

benefit from the rapidly growing literature on the interplay between collective

phenomena and complex network structures.

Apart Monitoring Networks
by Synchronization

from being useful in the analytical study of synchronization pro-

cesses, we have also argued that findings about the relation between the dy-

namics and stability of synchronization, spectral properties of Laplacian ma-

trices and structural features of complex networks foreshadow promising fur-

ther application scenarios. We have seen for example that a node’s local oscilla-

tory signal can give clues about a network’s algebraic connectivity. Crucially influ-

encing the functioning and performance of various dynamical processes and

distributed algorithms, the ability to assess a network’s algebraic connectivity

in a distributed fashion can be valuable in a number of practical settings. It

thus appears to be an interesting potential application of the scheme consid-

ered in this chapter. Apart from studying the aggregate effect of couplings on

local oscillatory signals, we have further provided - admittedly preliminary

and rough - experimental evidence that further spectral properties of a network’s

Laplacian matrix leave their marks in the evolution of oscillator angles between a node

and its neighbors. Here, we have argued that the monitoring of local coupling

dynamics can be used by nodes to extract valuable information about the com-

munity structure in its neighborhood. In particular, simulation results suggest

that the time evolution of angles to neighboring oscillators can be used to classify links

into intra- and inter-community connections.

A Open Issues and
Perspectives

number of open issues and perspectives are associated with the proposi-

tion of using synchronization-based, distributed monitoring schemes. In this

chapter, we have merely touched on the question to what extent the monitoring

of a node’s local oscillatory signal and the coupling dynamics to neighbors fa-

cilitates a distributed reasoning about a topology’s spectral properties. In par-

ticular, results about the observed correlation between algebraic connectivity

and noise in an oscillator’s local spectrum are rather illustrative and more ex-

haustive empirical and/or analytical studies are required to substantiate them.

Regarding the local detection of modular structures, it must be mentioned that

the communities in the modular networks used in this chapter were rather

pronounced, presumably resulting in easily distinguishable coupling dynam-



162

ics for intra- and inter-community links. A study of how well the scheme works

in networks with less pronounced or overlapping communities is thus another

open issue. It is also not yet clear, to what extent the time evolution of oscilla-

tor angles can serve as a fingerprint for particular communities, which would

facilitate not only the discrimination of intra- and inter-community links but

also a reasoning about community memberships of individual neighbors. A re-

lated question that has not yet been addressed is whether knowledge about the

topology of network modules or their hierarchical organization can be derived

from a node’s local perspective on synchronization dynamics. Here, it would

be interesting to investigate whether locally computable per-link metrics, like

for instance the variance in the time evolution of oscillator angles or the time at

which these angles start to cease, can be related to characteristics of the topol-

ogy of inter-community connections. OneApplications of
Synchronization-
based
Monitoring

may imagine a number of scenarios

where the knowledge resulting from such a distributed synchronization-based

monitoring could be useful. Referring to the importance of spectral proper-

ties for gossiping algorithms, information diffusion, distributed consensus and

collective decision-making schemes, the performance of such schemes could

possibly be improved if nodes knew about the community structure in their

immediate neighborhood. Resembling phenomena apparently arising natu-

rally in social systems [Granovetter, 1973], possible strategies may for example

involve an adjustment of gossip-frequencies, coupling strengths or a suitable

weighting of received information depending on the community to which a

connection links. A further possible scenario where the scheme could be used

is in the construction or adaptation of overlay networks. A reasonable rewiring

of connections based on the synchronization dynamics could for instance be

used to adapt a network’s mixing properties or its modular substructures. A

related idea of evolving network topologies based on their global synchroniza-

tion dynamics has recently been considered in [Gorochowski et al., 2010].

Having consideredFurther Perspectives some aspects of using a model for self-synchronization

in the context of networked computing systems, we conclude by stressing that

self-synchronization is merely one, particularly well-studied example for the

kind of collective dynamics that can occur in systems of interconnected dynam-

ical elements. Consequently, the aspects discussed here should be considered

as a demonstration that foreshadows how recent findings about the interplay

between the emergence of collective behavior and the topologies of complex

networks can be applied in a computing context. Incorporating these findings

in the development of network topologies and protocols is likely to facilitate

the design of robust, adaptive and scalable distributed systems.
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Chapter6
Conclusion

I don’t know where my expertise is; my expertise is no disci-

plines. I would recommend to drop disciplinarity wherever one

can.

HEINZ VON FOERSTER

There The Complexity Crisisis no doubt about the fact that we are living in a connected world,

surrounded by increasingly large, dynamic and interwoven technical systems

that pervade more and more aspects of our daily lives. But what can we say

about the large scale properties of the Internet, global scale Peer-to-Peer sys-

tems or other large networked computing systems that are more and more be-

coming critical - in some cases even vital - technical infrastructures? How can

we obtain sound and reliable statements about the structure and behavior of

technical systems that are not controlled by a central organization, government

or institution and that evolve in a distributed fashion, embedded into political,

economic and social realities? How do favorable macroscopic network prop-

erties emerge and how do these relate to the behavior of individual machines,

users and organizations? And how does a change of regulations, incentives or

individual behavior affect the utility or performance of a system as a whole?

Are we still in full control of our largest and most complex technical systems

or are they taking on a life of their own, thus dooming us to study how they

evolve and behave?

Triggered Mastering
Complexity in

Distributed Systems

by the availability of appropriate data sets, the study of complex

structures and collective dynamics unfolding in distributed systems like the

World Wide Web, Peer-to-Peer networks, power grids, social networks or the

Internet has begun only recently. While the resulting findings are clearly im-

portant for the modeling and evaluation of existing systems, in the future we
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will likely be required to go one step further and design systems that system-

atically monitor, control and manage complex structures and collective dynamics. In

this dissertation, we have investigated different facets of the question how ab-

stractions and results stemming from the field of complex sciences can help to

reach this goal and in the following we summarize our main contributions and

highlight some challenges and opportunities lying ahead.

6.1 Summary

AComplexity in
Engineered Systems -
An Interdisciplinary
Perspective

major point of this dissertation being an interdisciplinary perspective on large

scale distributed systems, we have reviewed findings and abstractions from

complex systems science and pointed at possible applications in the context of

distributed computing systems. This perspective is for the most part due to

the last decade’s surge of interest in the interaction topologies of complex so-

cial, biological, economic, physical and technical systems. Here, the simple yet

powerful network abstraction has proven its value as a kind of lingua franca that

has massively pollinated the interdisciplinary study of complex systems. How-

ever, considering the fields of complex sciences on the one hand and computer

science on the other hand, differences in scientific culture as well as differences

in the problems being addressed constitute a potential hurdle on the road to-

wards a combined perspective on the engineering of networked systems. The

study of complex systems - mostly from the perspective of statistical physics

- typically aims at understanding the behavior of existing systems. For this,

maximally simple models are usually employed that abstract away as many of

a system’s specifics as possible in order to investigate universal macroscopic

phenomena that are independent of microscopic details. In contrast, practical

computer science is a design science involved with the engineering of systems

that are optimized with respect to a particular utility and that are subject to a

multitude of technological, geographic and economic constraints. As has been

argued in chapter 4 of this dissertation, these different perspectives have occa-

sionally resulted in mutual misunderstanding although both are justified and

necessary as our technical infrastructures grow larger. Connecting both per-

spectives to a complementary view on engineered networked systems is im-

portant and requires both research communities to tune in to each other more

than hitherto. In particular, for the findings of the complex sciences community

to be applicable to existing and highly optimized engineered systems, models

need to be enriched with domain-specific information that is crucial for a sys-

tem’s functioning and performance. At the same time, engineers can benefit
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from results about simple models for complex structures and behavior, for ex-

ample by explicitly designing systems along such models.

Becoming Distributed Stochastic
Management of

Overlay Networks

increasingly important for the deployment of novel distributed

services on top of existing infrastructures, we have argued that virtual over-

lay networks constitute a particularly promising domain for the application

of findings from complex sciences. Here, the field of complex networks can

help to establish distributed, stochastic mechanisms by which favorable, com-

plex network structures emerge that are neither completely random in the sense

of classical random graphs nor completely deterministic in the sense of highly

structured overlays. Ranging between the commonly employed classification

in structured and unstructured overlays, we have argued in chapter 3 that a

design along abstractions stemming from the study of complex and random

networks and statistical mechanics provides a number of interesting opportu-

nities. In particular, the fact that network properties emerging at a macroscopic

level can be related to local dynamical, stochastic processes like for example a

certain random rewiring scheme or the behavior of users facilitates a distributed

stochastic management of overlay topologies and a bottom-up design of networked com-

puting systems with distributed control. Resembling the reasoning about equilib-

rium and non-equilibrium thermodynamic systems, a particularly appealing

aspect of this approach is the possibility to derive reliable statements about

large populations of dynamical, inherently stochastic elements. Rather than

factoring out uncertainty by means of sophisticated corrective measures, sen-

sibly incorporating noise and randomness as a first class citizen is essential for the

design of scalable, robust and predictable networked computing systems.

In Managing Random
Scale-Free Overlays

chapter 4, we have demonstrated some aspects of this approach in the

context of random scale-free overlay networks. We have presented a dis-

tributed overlay construction and maintenance protocol that generates topolo-

gies which are drawn from a parameterizable statistical ensemble of random

scale-free networks. Furthermore, here we have used the fact that - other than

in systems being usually studied in natural sciences - the stochastic behav-

ior of machines in distributed computing systems can often be influenced in

a targeted fashion. In the proposed rewiring scheme, by a meaningful change

of a random walk bias it is possible to actively trigger a transition between

phases with bounded and unbounded node degree fluctuations. The abrupt

change of macroscopic properties taking place at this critical point in the pro-

tocol’s parameter space can be seen in analogy to phase transition phenomena

occurring in thermodynamic systems. Finally, we have presented a scheme

suitable for a distributed measurement of the degree distribution exponent in
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networks with power law degree distributions. Here, we have argued that the

real-time measurement of such statistical ensemble parameters by means of

probabilistic aggregation schemes can help to derive reliable statements about

macroscopic network properties. In general, a shift towards simple, stochastic

mechanisms that give rise to network topologies with favorable and predictable emer-

gent properties seems to be an important cornerstone of mastering complexity in a

number of sufficiently large distributed systems.
Collective Dynamics
in Distributed
Computing Systems

Apart from the formation of complex network structures, a further and

more general class of self-organization phenomena being studied in complex

sciences and statistical physics is the formation of coherent spatio-temporal

patterns from local, possibly noisy interactions between dynamical elements.

In distributed computing systems, the occurrence of such coherent patterns

can be both threat and opportunity. Since roughly a decade, mathematical,

physical and biological models for such collective phenomena are increasingly

being studied in the framework of complex networks, thus significantly fur-

thering their relevance for distributed computing systems. We have seen that

models for collective behavior in networks can serve as an inspirational frame-

work for the design of distributed algorithms giving rise to particular types of

macroscopically coherent behavior like distributed consensus, synchronization

or decentralized decision-making. Complementing the interdisciplinary per-

spective on the stochastic, distributed management of networks with complex

structures, results about the relation between the topology and the dynamics

of a network are particularly interesting. A knowledge about these relations

is crucial both in the network construction process and in the design of dis-

tributed schemes making use of collective phenomena.

InSelf-Organized
Synchronization in
Networks

chapter 5 we have considered a distributed scheme for the self-organized

synchronization of periodic processes in large scale networks that has been in-

spired by the Kuramoto model for non-linearly coupled oscillators. We have

shown that a single message exchange on average per neighbor and oscilla-

tor period is seemingly sufficient to give rise to coherent oscillator states. For

scale-free networks, we have provided evidence that a weighting of coupling

strength proportional to the degree of the coupling partner can increase both

the speed and the stability of the synchronization process. We have finally com-

mented on the potential application of the scheme for a distributed monitoring

of certain spectral properties of a network’s Laplacian.
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6.2 Perspectives

Broader PerspectivesWe have argued that the study of complex systems bears a number of in-

teresting aspects that can be useful in the design of resilient, predictable and

efficient distributed computing systems. However, the choice of topics that

have been discussed in more detail in this dissertation is necessarily rather

limited. In the following, we thus highlight some broader perspectives which -

at least from the author’s point of view - deserve to become the subject of more

in-depth future studies.

• We have seen that for a number of basic network qualities like for in-

stance algebraic connectivity, relations to aggregate parameters of sta-

tistical ensembles of networks can be established. In systems where one

wants to employ dynamical processes whose functioning or performance

relies on such basic properties, the use of simple, stochastic connection

rules giving rise to overlay topologies drawn from statistical ensembles

with suitable parameters is a reasonable approach. In this dissertation we

have commented on the use of probabilistic distributed search, random

walk and synchronization schemes as well as gossip-based algorithms

in probabilistically structured networks. In order to broaden the range of

applicability for such a stochastic topology management, network classes

and distributed schemes need to be investigated that facilitate the effi-

cient completion of further algorithmic tasks.

• An interesting aspect that is a direct result of the statistical mechan-

ics’ perspective on complex networks is the possibility to obtain strong

stochastic guarantees about a system’s large scale properties from a

model that incorporates randomness and uncertainty at the level of its

constituents. With resilience and dependability becoming an increas-

ingly important focus of distributed systems research, the use of statis-

tical methods to make sound statements about the qualities of networks

emerging from stochastic processes is likely to gain importance. The

methods being used in the study of complex networks seem to be well-

suited for this task.

• In this dissertation, models for collective behavior in networks and dis-

tributed schemes by which these networks emerge have been considered

as rather separate issues. However both can actually complement each

other. A combination of distributed, stochastic topology construction and

adaptation protocols like the one presented in chapter 4 with models for
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collective consensus or decision-making being studied in complex sci-

ences constitutes a promising approach for the design of systems with

decentralized control.

• It further seems rather natural that network structures and collective be-

havior mutually influence each other. In social systems, the network of

contacts clearly influences an individual’s views and opinions. At the

same time, these views and opinions are likely to influence to whom

connections are being created or maintained. Obtaining a better under-

standing of the co-evolution of collective behavior and complex networks

in real-world systems is thus an important and current research theme.

The results of this research are likely to have influence also on the de-

sign of computing systems with distributed control and variable network

topologies.

• In the context of distributed systems with decentralized governance, a

further interesting question is how control strategies can be derived that

neither are completely egalitarian nor make use of designated leaders.

In most practical networked computing systems, the reliability, trustwor-

thiness or the degree of knowledge of participating machines or users is

rather heterogeneous. At the same time, the use of designated leaders or

fixed control hierarchies is usually not desirable. Here, the growing liter-

ature on the interplay between collective behavior, heterogeneous node

characteristics and the structure of interaction topologies promises to fa-

cilitate the development of robust decentralized control schemes for dis-

tributed computing systems.

• A particularly promising aspect of the interdisciplinary field of complex

sciences is the fact that the abstraction of technical, social, economic and

biological systems in terms of complex networks opens up the possibil-

ity to study facets of all these systems within a unified theoretical frame-

work. Considering the importance of the interplay between economic,

social, political and technological aspects for large, evolving infrastruc-

tures like the Internet, this combined perspective can play an important

role for the derivation of policies, regulation and incentives which even-

tually lead to systems with favorable properties. For this, existing sim-

ple models giving rise to networks whose statistical properties resemble

those of technical infrastructures need to be adjusted and enriched with

domain-specific aspects.
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• A promising perspective of studying both biological and technical sys-

tems in the same conceptual framework is that it potentially furthers

the design of bio-inspired computing systems. Here, models that cap-

ture the characteristics of self-organizing and adaptive biological systems

can serve as inspiration for the design of distributed systems that inherit

some of the favorable properties of natural systems. As such, the study

of complex networks and complex systems constitutes an important cor-

nerstone for the engineering of organic computing systems.

• The possibility to model the structure and behavior of social systems can

further be important for the operation of technical systems whose func-

tioning and performance critically depends on human behavior. Peer-to-

Peer systems, content distribution networks or online games may for in-

stance benefit from knowledge about the topology of collaborations and

communication as well as about the dynamics of opinion formation and

information spreading processes. As computing systems are becoming

increasingly aware of the social networks into which their users are em-

bedded, the use of such information in the management of distributed

computing systems is likely to gain importance.

Final NoteIn the light of these perspectives, the results presented in this dissertation

must necessarily appear preliminary. However, our intention was to point out

that augmenting the views of distributed systems engineers with those of the

complex systems community bears promising prospects for the design of net-

worked computing systems. The field of complex systems is disclosing some

of the principles that govern the structure and dynamics of biological, physical

and social systems. As engineers we should embrace the simplicity and ele-

gance of these principles. Harnessing them bears the potential to transfer some

of the remarkable characteristics of natural systems to our largest networked

infrastructures, thus making them more manageable, resilient and adaptive.
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Tusnády. The degree sequence of a scale-free random graph process. Random

Struct. Algorithms, 18(3):279–290, 2001.
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Math. Debrecen., 6:290–297, 1959.



190

[Ermentrout and Kopell, 1984] George Bard Ermentrout and Nancy Kopell.

Frequency plateaus in a chain of weakly coupled oscillators. SIAM Journal

on Mathematical Analysis, 15(2):215–237, 1984.

[Ermentrout, 1985] Bard Ermentrout. Synchronization in a pool of mutually

coupled oscillators with random frequencies. Journal of Mathematical Biology,

22(1):1–9, June 1985.

[Ermentrout, 1991] Bard Ermentrout. An adaptive model for synchrony in the

firefly pteroptyx malaccae. Journal of Mathematical Biology, 29(6):571–585,

June 1991.

[Fabrikant et al., 2002] Alex Fabrikant, Elias Koutsoupias, and Christos H. Pa-

padimitriou. Heuristically optimized trade-offs: A new paradigm for power

laws in the internet. In ICALP ’02: Proceedings of the 29th International Col-

loquium on Automata, Languages and Programming, pages 110–122, London,

UK, 2002. Springer-Verlag.

[Faloutsos et al., 1999] Michalis Faloutsos, Petros Faloutsos, and Christos

Faloutsos. On power-law relationships of the internet topology. In SIG-

COMM ’99: Proceedings of the conference on Applications, technologies, architec-

tures, and protocols for computer communication, pages 251–262, New York, NY,

USA, 1999. ACM Press.

[Farkas et al., 2004] Illés Farkas, Imre Derényi, Gergely Palla, and Tamás Vic-
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