
Sebastian Mader

Vom Fachbereich VI

(Geographie/Geowissenschaften)

der Universität Trier

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

A Framework for the Phenological Analysis of Hypertemporal

Remote Sensing Data Based on Polynomial Spline Models

Betreuender:

Prof. Dr. Joachim Hill

Berichterstattende:

Prof. Dr. Joachim Hill

Prof. Dr. Thomas Udelhoven

Datum der wissenschaftlichen Aussprache:

8. November 2012

Trier, 2012



Zusammenfassung

Zeitreihen-Archive von Fernerkundungssatelliten zur Umweltbeobachtung bieten viel-

fältige Möglichkeiten, um die an der Erdoberfläche ablaufenden Prozesse in ihrer räum-

lichen und zeitlichen Dynamik zu erfassen. Am häufigsten beinhalten solche Archive

Vegetationsindizes, die das charakteristische spektrale Reflexionsverhalten grüner Veg-

etation im roten und nah-infraroten Bereich des elektromagnetischen Spektrums aus-

nutzen, um ein Beobachtungsmerkmal zur Verfügung zu stellen, welches den Bedeck-

ungsgrad und die Dichte der Vegetation an der Erdoberfläche in direkter Weise wider-

spiegelt. Die Aufnahmen hypertemporaler Erdbeobachtungssatelliten, zu kontinuier-

lichen Zeitreihen mit einer ein- bis zweiwöchigen Wiederholrate zusammengestellt, bi-

eten einen guten Überblick über die verschiedenen Wachstumsphasen der Vegetation

während einer Vegetationsperiode. Durch die Analyse solcher Zeitreihen können phänol-

ogische Parameter oder Metriken abgeleitet werden, wie zum Beispiel der Beginn und

das Ende einer jährlichen Wachstumsperiode, sowie deren Länge. Obwohl diese phänolo-

gischen Parameter nicht genau den konventionell beobachteten phänologischen Ereignis-

sen entsprechen, so bieten sie doch Anhaltspunkte für die in der Biosphäre ablaufenden

dynamischen Prozesse. Für jedes Jahr eines längeren Zeitreihen-Archivs berechnet,

bilden solche Metriken eine flächendeckende Basis für eine Vielzahl von Anwendungen,

wie etwa Untersuchungen zum Klimawandel, oder zur Vegetationsüberwachung für die

Ernährungssicherung einer rasch wachsenden Weltbevölkerung. Eine Herausforderung

in Bezug auf phänologische Metriken ist die Entwicklung robuster Algorithmen zu deren

Ableitung, denn Störungen durch Wolken, Absorption und Streuung in der Atmosphäre,

sowie Sensorrauschen oder Sensorausfälle können dazu führen, dass Zeitreihen von Veg-

etationsindizes fehlerhafte Beobachtungen oder Datenlücken aufweisen. Daher werden

für die Bestimmung der phänologischen Parameter aus Zeitreihen häufig mathematis-

che Modelle und Verfahren verwendet, um Beobachtungslücken aufzufüllen oder den

Einfluss fehlerhafter Beobachtungen auf das Endergebnis zu verringern. Die hierbei

am häufigsten eingesetzten Verfahren sind digitale Filter und die Fourieranalyse von

Zeitreihen. Polynomische Spline-Modelle sind Verfahren zur Kurvenanpassung, die eine

beliebige Datenreihe in kontinuierlicher Art und Weise durch stückweise Polynome ab-

bilden. Solche Spline-Modelle bieten eine vielversprechende Alternative zu bereits beste-

henden Verfahren, da sie durch ihre spezifischen mathematischen Eigenschaften einer-

seits dazu beitragen können, bereits bekannte Probleme bei anderen Verfahren zu ver-

meiden, und andererseits vielfältige Möglichkeiten zur analytischen Auswertung einer

Zeitreihe bieten, um phänologische Metriken abzuleiten. Zudem sind Spline-Modelle



sehr flexibel und können auf eine Vielzahl verschiedener Datensätze mit unterschie-

dlichen Charakteristika angewendet werden, ohne das dafür eine umfangreiche Vorver-

arbeitung der Datensätze erforderlich ist. Im Rahmen der vorliegenden Arbeit wurde

auf Basis verschiedener Spline-Modelle, die für die Analyse fernerkundlich erhobener

Zeitreihen geeignet sind, ein Ansatz entwickelt und implementiert, der es erlaubt, diese

Modelle für die Berechnung phänologischer Metriken zu nutzen. Anhand eines Beispiel-

datensatzes eines intensiv landwirtschaftlich genutzten Gebietes mit hoher Vegetations-

dynamik wurde der neu entwickelte Ansatz verifiziert, indem ein Vergleich mit zwei al-

ternativen, bereits etablierten Verfahren zur Berechnung phänologischer Parameter aus

Fernerkundungsdaten durchgeführt wurde.
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1 Introduction

Time series of remotely sensed imagery have proven to be a valuable tool to study the dy-

namics of the Earth’s surface. Semiautomatic data processing and compositing schemes

allow the generation of continuous time series of vegetation indices and other vegetation

related parameters such as the fraction of absorbed photosynthetically active radiation

(FAPAR), with good quality and reliability (Justice et al., 1998; Yang et al., 2006). The

data acquired by Earth observation satellite systems with high rates of repetitive cover-

age, or hypertemporal satellite systems, are compiled into consistent data archives with

global coverage at weekly to bi-weekly intervals. Most of these global data fields produced

from sensors such as AVHRR (Sellers et al., 1994; Tucker et al., 2005), MODIS (Huete

et al., 2002; Yang et al., 2006) or SPOT VEGETATION are now available at no charge

and provide an efficient and economic means to observe the environment. Typically, these

data fields have a spatial resolution of 250 m to 1 km. In contrast to hypertemporal sen-

sors, satellite systems designed for applications at a regional level such as the Landsat

series provide a higher spatial resolution, but are not capable of realising the high repeti-

tive coverage rates of hypertemporal systems (Jones and Vaughan, 2010; Vinciková et al.,

2010).

Time series in hypertemporal satellite archives allow the spatially distributed assess-

ment of the vegetation at the Earth’s surface through the physical link of vegetation in-

dices to vegetation density and abundance. The detailed information in the time domain

provides a summary of the various stages and transitions of vegetation during a growing

period. Thus, time series of vegetation indices can be analysed to extract phenological

parameters (descriptors, metrics) for consecutive growing periods. Such phenological pa-

rameters are, for example, the start and end of a growing period, its length, and the

location and value of a peak within a vegetation period. Although these phenological de-

scriptors do not correspond directly to phenological events that are observed in situ, such

as bud burst or leaf out, they are still indicators for vegetation and ecosystem dynam-

ics. Phenological information derived from satellite imagery has been used in land cover

classification to distinguish vegetation types (Peters et al., 1997; DeFries et al., 1995), in

the assessment of land degradation dynamics (Hill et al., 2008), as well as to estimate

phenological variables for ecological (Archibald and Scholes, 2007) and climate change

(White et al., 1997, 2009) assessments.

The light reflected from the Earth’s surface that is detected by satellite sensors is affected

by various sources of error, including aerosols and clouds in the atmosphere, changes in

the sun and sensor viewing angles, as well as data dropouts due to sensor failure. All

these phenomena give raise to noise in the time series of satellite archives. A challenge

in the phenological analysis of remotely sensed time series is to develop robust algorithms

for the derivation of phenological parameters from real, noisy data.
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1.1 Optical spectral properties of vegetation

The spectral reflectance of a vegetation canopy is primarily determined by the reflective

and transmissive properties of its leaves (Curran, 1980). The controlling factors of leaf

reflectance and transmittance are leaf pigments, cell structure and water content. Fig-

ure 1.1 shows the spectral reflectance of a vigorous and a senescent vegetation canopy

in comparison to the spectrum of a soil. The data are taken from the ASTER spectral

library (Balridge et al., 2009). The low reflectance of vegetation in the visible region of

the electromagnetic spectrum from 0.4 to 0.7 µm is a consequence of the absorption of

the leaf pigments. Higher plants contain four primary pigments, chlorophyll a, chloro-

phyll b, β carotene and xanthophyll, all of which absorb visible light for photosynthesis

(Curran, 1980). Vegetation reflectance is lowest in the blue and red regions of the visible

spectrum. These regions correspond to the absorption bands of the two most important

leaf pigments, chlorophyll a (0.43 to 0.66 µm) and b (0.45 to 0.65 µm) (Curran, 1980;

Jensen, 1983). The relative lack of absorption in the green visible wavelengths between

the two chlorophyll absorption bands produces the green peak at approximately 0.54 µm.

In the near infrared (NIR) spectral region between 0.75 and 1.1 µm, the cell structure

of the leaves becomes the major controlling factor of canopy reflectance. In this wave-

length range, healthy green vegetation is generally characterised by high reflectances

and transmittances of 45 to 50 percent (Jensen, 1983). The sharp increase in vegetation

reflectance at the end of the visible part of the electromagnetic spectrum (about 0.7 µm)

is called red edge and is a result of the scattering of light at the interfaces of the cell walls

of the leaves (Jensen, 1983). In the NIR region, a part of the electromagnetic radiation

is transmitted through a leaf onto underlying leaves, and the reflected radiation in this

spectral region becomes enriched as the number of reflections at leaf surfaces inside the

canopy increases (Jones and Vaughan, 2010). As a result, the reflected energy in the NIR

spectral region is correlated with plant biomass (Jensen, 1983). As can be seen from the

dry grass spectral response in figure 1.1, the breakdown of plant pigments in senescent

vegetation causes the reflectance in the visible wavelengths to rise, while the reflectance

in the NIR does not significantly decrease (Curran, 1980).

1.2 Vegetation indices

Vegetation indices exploit the characteristically high reflectance difference between the

red and near infrared spectral regions to summarise the amount and condition of vegeta-

tion present within a scene (Curran, 1980; Jackson and Huete, 1991). The most common

vegetation index used in remote sensing data archives is the normalised difference vege-

tation index (NDVI). The NDVI is calculated as (e.g. Jones and Vaughan, 2010):

NDVI= ρNIR −ρred

ρNIR +ρred
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Figure 1.1: Spectra of vigorous
and senescent vegetation in the
visible and near infrared in com-
parison to a dark soil spectrum.
Green vegetation is uniquely
characterised by a sharp increase
in reflectance around 0.7 µm.
The data are from the ASTER
spectral library (Balridge et al.,
2009).

where ρNIR is a reflectance or radiance value in a near infrared band, and ρred is a re-

flectance or radiance value in a spectral band corresponding to red visible light. The

range of values of the NDVI is between -1 and 1. Higher NDVI values indicate a higher

level of green vegetation density and coverage. Negative NDVI values indicate nonveg-

etated areas such as water, ice, snow and barren surfaces. However, any surface with

a reflectance spectrum that exhibits a relatively higher reflectance in the near infrared

than in the red spectral region, such as a typical soil spectrum (see figure 1.1), will yield

a positive NDVI value. Price (1993) showed that bare soils could produce NDVI values as

large as 0.3. This fact makes the NDVI sensitive to background reflectance at low vegeta-

tion cover. At high vegetation cover, saturation of the index may occur so that increasing

vegetation densities do not cause a proportional increase in NDVI (Huete and Jackson,

1987; Jasinski, 1990). Therefore, alternative vegetation indices have been proposed such

as the perpendicular vegetation index (PVI) of Richardson and Wiegand (1977) or the soil

adjusted vegetation index (SAVI, Huete, 1988) or the tasseled cap transform (Crist and

Kauth, 1986). The enhanced vegetation index (EVI) is routinely derived from MODIS

imagery besides the NDVI. The EVI was developed to provide improved sensitivity in

regions of high vegetation density (Huete et al., 2002). The equation of the EVI takes the

form

EVI=G
ρNIR −ρred

ρNIR +C1ρred −C2ρblue +L

where ρNIR and ρred are the surface reflectances in the near infrared and red spectral

bands, L is a canopy background adjustment term, and C1 and C2 are the coefficients of

an aerosol resistance term, which uses a spectral band in the visible blue region to correct

for aerosol influences in the red spectral band (Huete et al., 2002). The data range of the

EVI corresponds to that of the NDVI.
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1.3 Phenological descriptors derived from time series

Vegetation phenology, the study of recurring vegetation cycles and their connection to

environmental driving forces is an important subject in a wide variety of Earth science

applications. The assessment of phenological parameters such as the seasonal timing

of the onset of vegetation development and dormancy, the length of the growing season

and the strength of annual or semi-annual vegetation cycles is crucial for understanding

the structure and function of ecosystems, as well as their interaction with climate and

human activities. (White et al., 1997, 2009; Zhang et al., 2001). Phenological parameters

derived from remotely sensed time series of vegetation indices can be used as a substi-

tute to biophysical phenological variables (Tucker et al., 1981; DeFries et al., 1995; White

et al., 2009). Figure 1.3 schematically shows a typical vegetation index profile of a single

growing period, illustrating the various key phenological transition points and phases, as

well as the most important phenological parameters associated with them. The parame-

ters describe the on- and offset of vegetation greenness, the details of vegetation greenup,

maturity and senescence, e.g. the length of the growing period or the period of maturity.

Figure 1.3 also illustrates intensity parameters associated with individual phenological

phases, such as the maximum value of a vegetation index reached at the maturity stage,

termed maximum greenness. The integral under the vegetation index curve from the on-

set of greenness to the onset of maturity may be used to estimate biomass (Tucker et al.,

1981). Table 1.1 gives an overview over selected phenological descriptors that can be

obtained from vegetation index time series and their biophysical equivalents. There are

various approaches to derive the timing for the start of the season from vegetation index

time series (de Jong et al., 2011). The simplest methods are based on a constant vege-

tation index threshold. However, according to White et al. (2009), these methods should

be abandoned because they are not consistent across ecosystems. Jönsson and Eklundh

(2002) used a variable threshold based on the amplitude of the vegetation cycle in a given

year. They defined the start of season as the point along the time series where the vege-

tation index exceeds a value equivalent to ten percent of the annual amplitude. A special

case of a variable threshold is the half-maximum method (White et al., 1997), where the

threshold is set at half the maximum greenness value. It was argued by (Bradley et al.,
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Metric Biophysical interpretation

Maximum VI in year Greenness of vegetation at peak of growing sea-
son

VI amplitude Range in greenness of vegetation in year
VI threshold Greenness of vegetation at beginning or end of

growing season
Rate of VI increase during greenup Rate of increase in photosynthetic activity per

month of greenup
Rate of VI decrease during senescence Rate of decrease in photosynthetic activity per

month of senescence
Integrated VI over growing season Total greenness of vegetation in growing season,

biomass

Table 1.1: Overview over a selection of phenological metrics based on vegetation indices (VI) and
their biophyscial equivalents (after DeFries et al., 1995).

2007) that the half-maximum method is stable and consistent across ecosystems. Other

researchers used derivative information such as inflection points (Moulin et al., 1997) or

maximum curvature (Zhang et al., 2003) to determine the start of the season, while Reed

et al. (2003) used delayed and forward-looking moving averages.

Not all of the phenological parameters presented in figure 1.3 and table 1.1 are equally

well suited for different ecosystems or vegetation types. The profile in figure 1.3, for

example, has a plateau-like shape during the stage of maturity, while other curves may

exhibit a distinct phenological peak (see figure 1.4).

1.4 An example: the Aksu oasis

Remote sensing vegetation dynamics and phenology is particularly useful to monitor the

effects of human interaction with the environment. An example of an area that has been

strongly affected by human activities in the past decade is the Aksu oasis located in the

Tarim river basin in the northwestern part of the People’s Republic of China. (Jiang

et al., 2005; Xu et al., 2005; Hao et al., 2008; Wang et al., 2010). The Aksu river basin is

located at the northwestern edge of the Tarim basin, between 75◦35’–82◦00’ E and 40◦17’–

42◦27’ N (Wang et al., 2010). The oasis region is characterised by a warm, continental arid

climate. The annual mean temperature is about 10◦C, and there are large temperature

differences among days and years (Wang et al., 2010). There is only a sparse annual

precipitation of about 60 mm, and the main water supply for the intensive agriculture in

the region is through the Aksu and Tarim rivers, which are nourished by melting snow

and glaciers from the mountains surroundig the Tarim basin (Xu et al., 2005; Wang et al.,

2010).

Population growth and the improvement of socioeconomic conditions in modern times

have led to the rapid expansion and intensification of cultivated land in the region (Hao

et al., 2008). Most of the cultivators of land in the Tarim river basin are engaged in cotton
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Figure 1.3: Three summer composites
(2001, 2005 and 2010) taken from the
MODIS EVI data set of the Aksu area.
There is a considerable increase in the
farmed area during the ten years. Map
projection: UTM Zone 44N, WGS 1984 el-
lipsoid. Map scale 1:2,000,000.

production, and a large part of formerly unused land was converted into irrigated cotton

fields (Xu et al., 2005; Jiang et al., 2005; Hao et al., 2008). The concomitant high demand

for irrigation water in combination with the high evapotranspiration rates (Wang et al.,

2010) lead to a number of environmental problems in the area, such as water shortage,

salinisation of soils, and decrease of water quality in the Aksu river, e.g. through the

discharge of water used in irrigation or to flush off the salt content of newly claimed

agricultural land (Jiang et al., 2005).

The increase in area of cultivated land is evident from a time series of MODIS EVI im-

ages of ten years from 2001 to 2010 for a section of the Aksu river basin. In figure 1.3,

three individual composites are shown from the years 2001, 2005 and 2010. The spatial
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Figure 1.4: Two example EVI time series trajectories from the Aksu area. The spatial locations
of the trajectories are marked in the lower left panel of figure 1.3

resolution of the MODIS EVI product is 250 m. From the comparison of the three im-

ages it can already be seen that the area of surfaces with high EVI values is constantly

increasing over the period of ten years. This is most obvious in the eastern part of the

images, where there is an area with initially low EVI values from which patches of higher

EVI values emerge (marked “B” in the lower left panel of figure 1.3. In the course of time,

the patches connect to form a contiguous area of high EVI values in 2010. The increase

in EVI values indicates that agricultural fields were newly created in these areas from

what was formerly a part of the desert surrounding the Aksu river. The dynamics of

this development becomes fully apparent by looking at the entire time series trajectories

from individual locations in the image. Figure 1.4 shows two example EVI trajectories

from two selected locations in the MODIS EVI data set. The location marked “A” in the

lower left panel of figure 1.3 is an example of a relatively stable location in the direct

vicinity of the Aksu river that shows a strong annually recurring vegetation cycle with

an amplitude that is approximately constant over the ten year period covered by the data

set. In contrast, the location at “B” in figure 1.3 lies within an area that was newly cul-

tivated from scratch. The corresponding time series record is shown in the lower part of

figure 1.4. The time axis is labelled in terms of observation indices, where the zero index

corresponds to the observation at the first day of year in 2001. The MODIS EVI product

provides observations at a rate of 16 days, so that there are 23 observations in every year.

The flat EVI profile at the beginning of the time series record in the lower part of figure
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1.4 indicates that the area depicted by the corresponding MODIS pixel was not vegetated

until 2004, when a weak annual vegetation cycle starts to emerge. Over the seven years

from 2004 to 2010, the amplitude of the annual cycles continuously increases, indicating

an intensification of the cultivation. By 2010, the amplitude of the annual vegetation

cycle has reached a level similar to that of the permanently cultivated area “A” in the

upper panel of figure 1.4.

By summarising the vegetation information contained in the EVI time series imagery on

a per-year basis using phenological parameters, the dynamics of such land use changes

can be studied in a spatial context. For example, a trend analysis of the amplitudes

or seasonal integrals of the vegetation cycles of consecutive years may reveal the spatial

extent of areas that are subject to change, as well as the rate of change in these areas. The

results of such studies could have implications for management decisions to avoid or ease

the serious environmental problems caused by the uncontrolled extension of agricultural

areas by irrational human activities.

1.5 Objectives

Phenological descriptors can be derived from remotely sensed data in various ways using

methods of time series analysis such as digital filtering, Fourier analysis and curve fitting

methods. The ability to retrieve estimates of phenological parameters varies considerably

between different methods and is generally ecosystem dependent (White et al., 2009).

From a review of existing methods, which is presented in chapter 2, it may be concluded

that polynomial splines have the potential to provide general, entirely data driven models

that can be used to extract phenological descriptors from remotely sensed time series

across different ecosystems. This potential stems from the versatility and flexibility of

polynomial spline models, as well as their favourable mathematical properties which

allow e.g. the analytical determination of derivatives to locate extreme values along a

modelled time series. Informations about extreme values and derivatives can serve as

an orientation to define the key phenological transition points and phases present in a

given time series record. These advantages should improve the estimates of phenological

parameters derived from splines as compared to other methods.

The objective of this work is to establish a framework for the use of spline models in

the analysis of remotely sensed time series, with a focus on the use of these models

to determine the vegetation cycles in the time series and estimate their phenological

parameters. To this end, different spline models must be implemented in a way that they

can be efficiently used with remotely sensed imagery.

Due to the coarse resolution of remotely sensed time series products, it is generally dif-

ficult to verify the results obtained from such products directly using ground truth data

because of the scale gap between in situ and remotely sensed measurements (Liang et al.,
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2002; Liang, 2004). Nevertheless, the capability of the spline models to determine pheno-

logical parameters can be tested by comparing the results to other existing methods for

the determination of phenological descriptors.

Two well known alternative methods to derive phenological parameters are based on

moving average filtering and fitting of Gaussian curves. To assess the validity of spline

models in the determination of phenological metrics relative to the two alternative ap-

proaches, all three methods will be applied to determine the phenological parameters of

the MODIS EVI time series of the Aksu oasis presented in chapter 1.4. The Aksu re-

gion provides an ideal test bed to compare the three methods, since it exhibits clear and

strong phenological signals from agricultural areas, where some signals are steady and

approximately constant (such as the example in the top panel of figure 1.4), while others

exhibit strong temporal dynamics (such as the example in the bottom panel of figure 1.4).

Because of these strong and distinct phenological signals, it is expected that the results

of the three methods be consistent.



2 Models for remotely sensed time series

The variation in remotely sensed time series, such as vegetation index records from su-

cessive overpasses of earth observation satellites over a given area, may be assumed

to originate from three different sources, namely cyclic variations, a general trend, and

irregular fluctuations. Time series of vegetation observations typically exhibit cyclic vari-

ation that is annual in period. Apart from the annual fluctuations, additional cyclic vari-

ation may occur at other periods, e.g. in the tropics or in irrigated agricultural systems,

where there may be a semiannual cyclic pattern. Trend may be broadly defined as a sys-

tematic long-term change in the mean level of the time series data. It is most important

to have a clear understanding what “long-term” means in a given context. In the case of

high temporal resolution earth observing satellites, the records go back until 1978, when

the first AVHRR instrument on board the TIROS-N spacecraft became operational and

started to provide imagery of the earth’s surface. Thus, the longest continuous time series

of satellite observations span about 30 years. Having only three decades of data, a cyclic

variation with a very long period of hundreds of years, for example caused by climatic in-

fluence factors, would appear as a trend. Although the true nature of cyclic components

with periods longer than the record length cannot be assessed, it may still be meaningful

to treat such long-term cycles as trend components in models tailored for shorter time

series. The phrase “long-term” is always a subjective notion, depending on the number of

observations available in a time series. Trend estimates from satellite observations are

limited by a short record length and may be incompatible with analyses on longer time

scales (Lambin, 1996; Myneni et al., 1997; White et al., 2009). When the variations due

to the cyclic and trend components have been removed, there remains a time series of

residuals that may be treated as random. It is common that the residual errors of time

series models are autocorrelated (Bowman and Azzalini, 1997). When there is no system-

atic change in mean level with time (no trend) and no systematic change in variance in a

time series, the time series is called stationary (Chatfield, 2004). Stationarity means that

the statistical properties of the data in any one segment of the time series are comparable

with those of any other segment. The concept of stationarity may be extended to higher

order moments. Sometimes the term weakly stationary is used for time series that are

stationary in mean and variance only1.

There are three major tasks associated with time series analysis: prediction (also known

as forecasting2), modelling and characterisation (Gershenfeld, 1999; Chatfield, 2004).

Prediction deals with the estimation of future values of the time series based on past

observations. A special case of prediction is noise reduction and the filling in of missing

1The term stationary is used here to mean weakly stationary.
2Sometimes, the two terms “prediciton” and “forecasting” are meant to distinguish between subjective

and objective statistical methods, respectively (see e.g. Chatfield 2004). Here, both terms are used inter-
changeably.
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values, where an underlying true series has to be estimated from a given erroneous time

series, possibly with an incomplete record. Modelling involves the determination of a set

of governing equations (the model) that describe a time series. A time series may be char-

acterised by somehow specifying the kind of system that produced an observed signal. In

the case of remotely sensed time series of vegetation indices, this may include the type of

vegetation, the length of the growing period, estimating the amount of biomass, etc. The

three tasks are closely related, but not identical: the most efficient way to characterise

a time series may be by using a model, and a model may not work properly with data

that is not noise reduced. The many methods of analysis of vegetation characteristics

using time series comprise digital filters (Chen et al., 2004), exploratory methods such as

principal components analysis (Eastman and Fulk, 1993; Lobo and Maisongrande, 2006),

curve fitting methods (Fischer, 1994a,b; Jönsson and Eklundh, 2002; Zhang et al., 2003)

as well as methods of harmonic analysis and wavelet analysis (Li and Kafatos, 2000;

Sakamoto et al., 2005).

Models for the analysis of time series of remotely sensed vegetation indices may be con-

structed for various reasons, stressing different aspects of a given problem. The objectives

for fitting models may be (Dierckx, 1993):

Parametric representation: If the model function y= f (t) is meant to directly represent a

certain physical process, part or all of the function’s parameters have a specific physical

meaning. The objective of modelling then is to estimate these parameters as accurately

and precisely as possible from a given set of data.

Functional representation: A model may represent a discrete set of data points (ti, yi) by

a function y = f (t) that can be evaluated at any suitable value of t within the domain of

representation. Functional representation is important if a model is to be used for further

analysis and characterisation of a data set. A good functional representation should

provide not only the possibility to evaluate the model at arbitrary values of t, but also to

calculate derivatives, definite integrals, and to solve the inverse problem t = f −1(y).

Noise reduction: In a given dataset {(ti, yi)}n
i=1, the measured values yi may be accurate

enough to define f (t) as an interpolating function such that yi = f (ti), i = 1, . . . ,n. Most

typically however, the values yi will be subject to measurement errors εi that are not

negligible in a certain context. In this case, f (t) should be defined as an approximating

function yielding conditional mean values of y that depend on t in order to reduce the

noise in the observations. If f (t) is a suitable model for a given set of data, the modelled

values f (ti) will be more accurate than the original data yi most of the time.

Data compression: The purpose of a model may be to reconstruct a given data set from a

number of parameters, where the set of fitted model parameters is considerably smaller

than the original data set. An efficient model for data compression should represent a

given data set as well as possible in as few parameters as possible.
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The different aspects are generally related. While in a parametric representation the pa-

rameters themselves are the important part, in a functional representation the parame-

ters are considered immaterial and the abstract mathematical properties of the function

become important. Noise reduction is a common concern in all modelling applications.

Physical parameters are less accurate if they are estimated from a set of noisy data, and

if a functional representation of a data set is desired, it is expected to represent the true

features of the data apart from noise. The same is true for a compressed version of a data

set. In some models, noise reduction may be a part of the optimisation problem solved

to obtain the model’s parameters or coefficients, while other models do not include the

capability of reducing noise in a data set. In the latter case, it is likely that the data will

have to be preprocessed by a dedicated noise reduction method before they can be used

for modelling.

2.1 Digital filtering

Many models for noise reduction of time dependent signals such as remotely sensed time

series are based on the concept of digital filters. Filtering converts a given discrete time

series {xi} into another discrete time series {yi} by an operation defined by the type and

size of the filter. A linear digital filter, for example, is defined as a linear function of its

input (Hamming, 1989). Fundamentally, there are two different types of digital filters,

addressed by different nomenclature in different scientific disciplines.

The simplest filters are nonrecursive filters (Hamming, 1989); they are of the general

form:

yi =
n∑

k=−n
ckxi−k (2.1)

The sequence of values from a usually short segment of a discrete signal that gives the

current input of a filter is called the filter’s window, n is called the half-width of the

window. The filtered signal is generated by replacing the value yi at the current position

by a linear combination of the data points inside the filter window and the 2n+1 filter

coefficients. The total width 2n+1 of the coefficent or filter window corresponds to the

number of data points considered by the filter at any one time and is termed the span or

size of the filter. A simple unweighted averaging filter would have constant coefficients

ck = 1/(2n+1), k = 1, . . . , (2n+1). The process of running the filter window over a discrete

signal one sample at a time to compute a filtered output signal is termed convolution
(Smith, 2003). Nonrecursive filters are called moving-average (MA) filters by statisti-

cians, since the output yi is a (2n+1)-point moving average of the input. Alternatively,

they may be called finite impulse response (FIR) filters, because the output of the filter

stops when the input stops. The moving average filter defined by (2.1) uses a symmetric

filter window, where the anchor point, the data point that is replaced by the filter’s out-

put, is the central point of the filter window. In principle, any point inside the current
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filter window may be used as the anchor point. In this general case, the left half width nL

of the filter is different from its right half width nR , and the size of the filter is nL+nR+1.

For example, a time delay moving average filter has nR = 0 and replaces the outmost

sample to the end of the filter window by a weighted average of past signal values. Filters

with nR = 0 are termed causal filters. By comparing a raw signal with its time delayed

moving average, Reed et al. (1994) and Archibald and Scholes (2007) were able to identify

points along the time series where the signal values showed a rapid, steady increase.

These points were then used to determine the time of onset of vegetation development.

While nonrecursive filters depend only on their current input signal, a recursive filter
uses not only its input data x to compute its output y, but also previous values of its

output. Its general form is:

yi =
n∑

k=0
ckxi−k +

m∑
k=1

dk yn−k (2.2)

The first sum in equation 2.2 is a moving average, the second sum is an auto-regressive
(AR) filter in statistical terms, since the output is some regression of its m past values.

Together, the two parts of equation 2.2 form an auto-regressive moving-average (ARMA)

model. Autoregressive models alternatively are called infinite impulse response (IIR) fil-

ters in the literature, as their output can continue after the input has stopped. Although

the filter may continue to respond indefinitely even when the input has ceased, the qual-

ity of its response is usually decaying rather quickly. If a time series is nonstationary,

its trend can be removed by differencing the input to some order before using the model

(2.2). Using first order differences will remove a linear trend, second order differences

remove a quadratic polynomial trend, and so forth (Gershenfeld, 1999; Warner, 1998).

Using such a differenced time series as input x to (2.2) gives an auto-regressive integrated
moving-average (ARIMA) model. The regression methods provided by ARMA and ARIMA

recursive filters are used in the statistical analysis of time series when the emphasis is

on predicting future values for stationary and nonstationary stochastic processes over

short terms (Shumway and Stoffer, 2011).

Nonrecursive filters are very commonly used to smooth out noise in time series generated

from satellite observations. Moving window averaging with constant filter coefficients

ck = 1/(2n+1) is unbiased only up to and including the first moment (Press et al., 1992).

For any signal with a nonzero second derivative, a bias is introduced by applying a mov-

ing average filter with constant coefficients to it. The Savitzky-Golay filter (Savitzky and

Golay, 1964) is a linear filter designed to preserve higher moments. It approximates a

given signal inside its window by a higher order polynomial. Applying a Savitzky-Golay

filter of half with n and degree r is equivalent to least squares fitting an rth degree

polynomial to the 2n+ 1 data points inside the filter window. Since a polynomial is a

linear function in its coefficients, this operation can be expressed as a linear filter whose
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coefficients are determined from a least squares fit of a polynomial to a dummy signal,

usually a sequence 0, . . . ,0,1,0, . . . ,0 of 2n zeros and a single 1. All other polynomials of

the same degree can then be formed from linear combinations of these coefficients. Chen

et al. (2004) used Savitzky-Golay filtering in an iterative procedure to smooth out noise in

NDVI time series, following the upper envelope of the input NDVI signal. Their iterative

use of the Savitzky-Golay filter is motivated by the assumption that higher NDVI val-

ues are generally more reliable than low values, since most of the relevant error sources

tend to decrease NDVI values. Maximum value composites of NDVI observations (Hol-

ben, 1986) take advantage of the same concept. Chen et al. (2004) concluded that their

method could outperform a nonlinear filter by Viovy et al. (1992) and a Fourier-based

fitting method.

Among the nonlinear filters are the best index slope extraction (BISE) filter of Viovy et al.

(1992) and smoothers that are based on running medians rather than running means as

proposed by Tukey (1977) and Velleman (1980). Running median filters are motivated

by the need for robust smoothing methods for data exhibiting occasional spikes or noise

generated from long-tailed distributions. Nonlinear filters based on running medians

may be more resistant if noise is characterised by extreme observations, whithout at the

same time losing their ability to respond to rapid changes in the signal that are part

of a true pattern. However, while removing extremely low observations that arise from

a contamination of the signal e.g. by clouds, running median filtering may have the

undesired effect of also lowering high NDVI values which may be presumed to be valid.

Viovy et al.’s (1992) BISE filter was designed to retain high values and eliminate only

extremely low observations.

Van Dijk (1987) concluded from a comparison of different running median filters that

the “4253H, twice” filter of Velleman (1980) was the best smoother in two study cases

dealing with ratio vegetation index data from agricultural areas. More recently, Hird and

McDermid (2009) confirmed the good performance of this filter for normalised difference

vegetation index data. From their comparison of different smoothing techniques, Hird

and McDermid (2009) found that the ability of the Savitzky-Golay filter to reduce overall

noise in an NDVI time series was greater in comparison to the “4253H, twice” filter. The

“4253H, twice” filter, on the other hand, proved better able to maintain the integrity of

the time series in terms of phenological features, a result that is consistent with the

motivation and design considerations for running median filters.

Smoothing filters provide efficient means to mitigate the effect of residual noise in time

series of vegetation indices, but at a cost of eventually blurring significant phenological

features. The type and size of a filter along with the strength and character of the residual

noise must be taken into account carefully if one intends to use the filtered time series to

extract phenological metrics (Hird and McDermid, 2009).
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2.2 Frequency domain methods

Instead of analysing the signal provided by a time series in the time domain, it can be

represented by a number of frequency components to focus on the analysis of its cyclic be-

haviour. As phenologies typically exhibit strong seasonal cycles, frequency domain meth-

ods are used extensively and have long been established as a standard approach. Fourier

analysis provides a consistent and replicable procedure to decompose a time-dependent

signal into its frequency components by using the Fourier transform. The parameters cal-

culated in Fourier analysis have a clearly defined mathematical and physical meaning,

which facilitates further interpretation and analysis (Menenti et al., 1993). The useful-

ness of these methods in assessing vegetation dynamics has been pointed out by many

researchers (Menenti et al., 1993; Olsson and Eklundh, 1994; Azzali and Menenti, 2000;

Jakubauskas et al., 2001, 2002; Moody and Johnson, 2001). Parameters derived from

frequency domain analysis of remotely sensed time series have been used in land cover

classification (Andres et al., 1994; Moody and Johnson, 2001; Wagenseil and Samimi,

2006) as well as to describe extreme points and rates of change in phenological cycles us-

ing the derivative of the Fourier series (Olsson and Eklundh, 1994). Roerink et al. (2000)

used interpolated NDVI values from a harmonic model to fill data gaps in a time series

caused by cloud affected AVHRR observations over Europe. Jakubauskas et al. (2002)

developed an index for landscape variability based on harmonic analysis of NDVI time

series. Using a set of elaborate measures derived from a Fourier analysis of an NDVI

time series, Evans and Geerken (2006) were able to infer the dominant vegetation type

and its fractional coverage in an arid rangeland from remotely sensed observations. De

Jong et al (2011) used harmonic models to detect trends in phenological parameters on

a global scale. Analysis methods in the frequency domain can be roughly organised into

harmonic analysis, Fourier or periodogram analysis, and spectral analysis (Warner, 1998;

Bloomfield, 2000).

Harmonic analysis (Warner, 1998) is used if the true lenghts of the cycles present in a

time series are known or can be inferred from appropriate information. For example,

there may be an obvious cycle length that can be seen by visual examination of a given

time series, or the cycles and their lengths may be prescribed by the properties of certain

types of vegetation under observation. A stationary time series with a single cycle of

length τ can be represented by the following equation:

yt = A+Bcos
(
2πt
τ

)
+C sin

(
2πt
τ

)
+εt (2.3)

where the parameter A describes the mean level of the values yt in the time series. The

frequency of the sinusoid in radians ω is related to the cycle length, or period, by the

relation ω = (2π/τ). The modelled signal is obtained by evaluating the sine and cosine

functions of period τ at suitable values of t. At any value of t, the harmonic model re-
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produces the original signal with a residual error of εt. A sine and cosine function of the

same frequency are orthogonal to each other and form a basis that can represent any

sinusoidal waveform of a given frequency or period. Any sinusoidal waveform with a par-

ticular amplitude and phase can be generated by varying the coefficients B and C. The

amplitude r of the generated waveform is a function of its coefficients:

r =
√

B2 +C2 (2.4)

The waveform’s phase φ depends on the relative size of the coefficient C with respect to

B:

tan(φ)= −C
B

Thus, an alternative way of formulating (2.3) is by characterising a sinusoid through its

amplitude and phase

yt = A+ r cos(ωt+φ)+εt

The latter formulation is commonly used in the interpretation of waveforms, while (2.3) is

used in most computations, since it explicitly contains the coefficients B and C associated

with the orthogonal sine and cosine parts of the waveform. In (2.3), the resulting sinu-

soidal waveform is created as the sum of two components: a sine of period τ, and a cosine

of period τ. Harmonic analysis can be seen as a type of regression analysis where the

predictor variables are sines and cosines of varying frequencies, and the predictive coeffi-

cients are the linear coefficients Bk and Ck associated with each sinusoid (Warner, 1998).

Harmonic analyis can be used to accomodate a number of m different cyclic components

in a time series by using so called Fourier polynomials:

yt = fm(t)= A+
m∑

k=1
[Bk cos(ωkt)+Ck sin(ωkt)]+εt (2.5)

where the frequency of the kth sinusoid in radians is ωk = (2πxk)/τ. Typically, the k
frequencies are chosen as multiples of the fundamental frequency (2π)/τ prescribed by

the number of observations in the time series. This means that any of the m sinusoids

completes a number of xk cycles over a period τ, where the k are integers, k = 1, . . . ,m.

Likewise, the period of each sinusoid is a fraction of the signal’s fundamental period τ.

Sinusoids at frequencies that are integer multiples of a fundamental frequency are re-

ferred to as harmonics of the waveform at the fundamental frequency. Despite its name,

harmonic analysis does not generally require the use of harmonics in a Fourier polyno-

mial, one may also employ frequencies that are not integer multiples of the fundamental

frequency (Hermance, 2007).

Since frequency domain methods deal only with cyclic components of a given signal, it

is usually necessary to identify and remove any trends from a time series before it can

be examined in the frequency domain. Trend removal may be done by differencing the
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time series or by applying a suitable regression model (Warner, 1998). Frequency domain

analysis is then carried out on the differenced time series or the residuals obtained from

the regression model. It is also possible to simply incorporate harmonic components

into a combined regression model that accounts for an overall trend as well as the cyclic

components that characterise a signal (Jönsson and Eklundh, 2002; Hermance, 2007;

Neuenschwander and Crews, 2008).

Whenever the number of cycles and corresponding lenghts is not known in advance, these

informations have to be inferred from a periodogram or power spectrum of a time series

(Roerink et al., 2000). A periodogram is obtained by computing the Discrete Fourier

transform (DFT) of a signal. The DFT of any digital signal can be calculated efficiently

by an algorithm called the fast Fourier transform, or FFT (Cooley and Tukey, 1965). The

discrete Fourier transform of a time series of n observations, where n is even, is given by

yi =
n/2∑
k=0

[
Bk cos

(
2πki

n

)
+Ck sin

(
2πki

n

)]
(2.6)

and it decomposes the time series into a constant term plus (n/2) harmonic frequency

components. For example, a sinusoid composed of a sine and cosine of frequency (2πk)/n
may be called the kth harmonic, or harmonic of kth order. The Fourier coefficients Bk

and Ck, for the individual components can be computed explicitly (Smith, 2003). Thus,

the DFT is a lossless transform: the time domain signal can be restored exactly from

its Fourier coefficients by taking the inverse of the DFT. This is different from harmonic

analysis, where the regression coefficients associated with each sinusoid have to be com-

puted by solving a system of linear equations in the least squares sense, and the signal

is represented by the regression model only up to a residual error (Roerink et al., 2000;

Hermance, 2007). The periodogram is a plot of the amplitudes (2.4) of all the harmonic

frequency components that make up a given signal. Since a periodogram has only a

discrete number of (n/2) ordinates or frequency bins, periodogram analysis implies that

a time series sampled at equal intervals in time is composed of a number of frequency

components with periods that are integer fractions of the fundamental period n. In a sta-

tistical sense, periodogram analysis is similar to an analysis of variance that partitions

the total variance present in a signal among a set of sinusoids of different frequencies.

It can be used as a means of investigating if a time series has frequency components

that explain a large proportion of its variance, and if so, obtain estimates of the phase

and amplitude of the sinusoids at these frequencies (Warner, 1998). However, there is

the implication that the frequency content of the signal under investigation is strictly

harmonic. If a signal is created from an underlying waveform that is not a harmonic

with respect to the fundamental period of observation, leakage may occur. Since peri-

odogram analysis can only describe the cyclic components of a signal in terms of integer

multiples of a fundamental frequency, it is unable to accomodate cycles with frequencies
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that are fractions of the fundamental frequency. Thus, the variance due to a fractional

cycle that cannot be accounted for spills over, or leaks into adjacent frequency bins that

correspond to harmonic frequencies. Leakage need not be considered a serious issue if a

problem at hand allows for fairly wide frequency bands (Warner, 1998). If leakage poses

a problem, the trick of zero padding (Smith, 2003) used to narrow the frequency bins by

increasing the record length may mitigate this problem, but does not generally solve it.

In zero padding, the length of a signal is increased artificially by appending a number

of zero observations at its ends in order to modify the set of frequency bands to obtain a

more favourable partitioning. Zero padding is a valid trick since the record length n of

a time series that determines the fundamental period is arbitrary and does not reflect a

property of the signal itself. Therefore, it may be altered without changing the nature

of the signal. Modification of the Fourier frequencies by altering the fundamental period

does not, however, alter the amount of information contained in each frequency band.

Although the number of periodogram ordinates (n/2) increases with the record length n,

the estimate of variance associated with each frequency band is still based on only two

degrees of freedom (Warner, 1998).

Spectral analysis techniques represent an alternative approach to improve periodogram

estimates, as opposed to merely increasing the record length artificially. A periodogram

enhanced by spectral analyis techniques is called a power spectrum and is essentially a

continuous version of a periodogram. Instead of partitioning the variance among a dis-

crete number of frequency bins, it provides a statistical estimate of the power, or variance

accounted for, across the entire frequency domain of a given signal. Under certain cir-

cumstances, a power spectrum gives a better accurate and more reliable impression of

the distribution of power among the frequency components of a signal (Warner, 1998). A

power spectrum can be obtained in one of many possible ways. Power spectrum estima-

tors are usually expressed in the form of digital filters operating on a raw periodogram.

One of the simplest estimators is the Daniell or boxcar spectral window, which is the

integral average of the periodogram over a number of frequency bins corresponding to

the window width (Bloomfield, 2000). Each estimator has its specific favourable and un-

favourable properties that must be considered in its application to a given dataset. Most

estimators are smoothing filters that form weighted averages of adjacent periodogram

ordinates. In general, when the smoothing that is applied to the raw periodogram gets

heavier and heavier, it becomes more and more difficult to distinguish the contributions

of neighboring frequency bands to the overall signal and the spectrum does no longer cor-

respond to a fair partition of the total variance present in a time series (Warner, 1998).

Usually, the aim of periodogram or power spectral analysis is to identify a range or set

of frequencies that reflect some of the properties of the physical processes effective in the

creation of a given time series. Subsequently, a harmonic model is formulated for the

time series according to (2.5) for further analysis. For obvious reasons, harmonic models



2 Models for remotely sensed time series 22

are most suitable for signals with a strong cyclic behaviour, where most of the variance

is concentrated in only a few frequency bands visible as distinct peaks in the signal’s

power spectrum. Time series with a flat power spectrum approaching that of white noise,

where the variance is partitioned equally among all frequencies, do not lend themselves

well to spectral analysis. To differentiate the frequency components that contribute a

significant amount of variance to a signal from those that can be considered noise, sta-

tistical significance tests have been developed for periodogram ordinates (Fisher, 1929;

Warner, 1998; Bloomfield, 2000). The individual frequencies or frequency bands to be

incorporated into a harmonic model can be chosen specifically according to the amount of

explained variance of the overall signal (e.g. Roerink et al., 2000).

Regarding Earth observation time series, an appropriate harmonic, periodogram or spec-

tral analysis responds to the systematic changes in the temporal profile that are caused

by changes in vegetation cover and vigour, while being relatively insensitive to random

fluctuations of signal noise (Moody and Johnson, 2001). Since high frequency components

of signals typically produced by noise are restricted to higher order terms in a Fourier se-

ries, a harmonic model with reduced sensitivity to noise may be built by dropping higher

order harmonics from the series. In some applications, as much as two harmonics of an

annual time series may contain sufficient phenological information (Olsson and Eklundh,

1994; Azzali and Menenti, 2000), while in other cases discarding even higher order terms

might blur significant features present in the original data. Geerken et al. (2005) re-

port that at least five harmonics of an NDVI time series of one year observed by a SPOT

VEGETATION instrument are needed to account for the subtle phenological differences

in semiarid rangeland vegetation. Generally, the inclusion of higher order terms is prob-

lematic, as fitting higher order Fourier coefficients tends to generate spurious oscillations

in the modelled time series (Chen et al., 2004). As an alternative to simply truncating

a Fourier series, the terms including noisy frequencies can be down-weighted or their

amplitudes tapered to ameliorate erroneous contributions of individual harmonics to the

overall signal (Hermance, 2007). Geerken et al. (2005) used frequency domain filtering of

individual Fourier components to remove noise before the complete signal model was gen-

erated by summing the terms for the individual components. In either case, the ability

of the modelled time series to resolve phenological features such as beginning, end and

duration of multiple green cycles diminishes (Jönsson and Eklundh, 2002; Chen et al.,

2004).

Artifactal frequency components may also be found in lower harmonics, where they are

triggered by different values at both ends of a recorded time series. An assumption im-

plicit in Fourier analysis is that an observed time series record of finite length is only a

part of a strictly periodic, ever repeating infinite signal. Any violation of the assumption

of periodicity by different data values at the beginning an end of a finite observational

record is compensated by the introduction of erroneous frequency components. In the
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worst case, a significant trend in the time series that has not been eliminated prior to

Fourier analysis is subsumed in a number of low order harmonics. Jönsson and Eklundh

(2002) and Chen et al. (2004) argued that the dependence of Fourier analysis on symmet-

ric sine and cosine functions may lead to large displacements between the original and

modelled time series when the original data are dominated by asymmetric features, such

as a steep incline followed by a distinct phenological peak and a slowly decaying shoulder.

To improve regression estimates of higher order Fourier coefficients, Sellers et al. (1994)

proposed a weighted least squares approach to fit a harmonic model. Their approach

focuses on the usually negative bias of NDVI data and is similar to the iterative scheme

Chen et al. (2004) later used to improve Savitzky-Golay filtering of NDVI time series.

Sellers et al. (1994) showed that a more robust fit of a Fourier series in the presence of

erroneous or missing data values can be achieved when the contribution of individual

data points to the fit is weighted in favour of higher NDVI values.

Notwithstanding the many hindrances one may encounter, Fourier polynomials are very

flexible and can provide good parametric and functional representations for remotely

sensed time series of vegetation indices. The clearly defined meaning of harmonic model

parameters in terms of amplitudes and phases of sinusoidal waveforms at different fre-

quencies establishes a strong physical basis and facilitates the assessment and compari-

son of models of this kind. The coefficients of harmonic models are obtained in a straight-

forward way by linear least squares procedures or can even be calculated explicitly using

the discrete Fourier transform. In addition, sinusoids are functional representations that

are extremely useful in the further analysis of a signal, since, for example, the deriva-

tives of sines and cosines are easily calculated (Olsson and Eklundh, 1994; Evans and

Geerken, 2006).

2.3 Fitting of exponential and logistic functions

Not least to overcome the various difficulties encountered in modelling remotely sensed

time series based on spectral analysis, it has been proposed to locally fit sigmoidal or

asymmetric Gaussian functions to a time series as an alternative to using the Fourier

transform. Sigmoidal forms have been used to describe simple phenologies with single

maxima during the growing period and single minima during the dormant phase (Fis-

cher, 1994a,b; Fisher et al., 2006) as well as phenologies with two annual maxima and

minima (Zhang et al., 2003). Jönsson and Eklundh (2002) used piecewise asymmetric

Gaussian functions that are combined to a global function able to follow a complex time

series curve with multiple maxima and minima. Both classes of functions may reproduce

asymmetric features more accurately than a low order Fourier series and can also be

applied in the case of non-uniform sampling in time.

However, to assess complicated phenologies that possibly exhibit multiple peaks and min-
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ima in photosynthethic activity during a single year, multiple sets of such local forms

have to be assembled using nonlinear least squares fits with a large number of free pa-

rameters. Fitting of a model with a large number of degrees of freedom can easily become

unstable when the quality of the data to be fitted is limited. Sophisticated nonlinear op-

timisation techniques such as the quasi-Newton method used by Jönsson and Eklundh

(2002) are computationally involved (Nocedal and Wright, 2006). The number of costly

nonlinear fits increases with the number of years, i.e. annual or semiannual seasons,

covered by the data. Furthermore, the convergence properties of an iterative nonlinear

optimiser depend on the initial parameters supplied to the method as a starting point for

optimisation. If the set of start parameters is not reasonable, it may take a long time for

the method to converge, or even worse, it does not converge at all. Jönsson and Eklundh

(2002) address this problem by selecting parameters from a set of allowable combinations

using a grid search procedure. To determine the center locations for the local Gaussian

functions, a low order detrended Fourier series is fitted to the raw data to identify the

approximate locations of the annual and possibly semiannual peaks. These locations are

then used as the centers in a sequence of adjacent local Gaussian models. In a final

step, the local models are merged into a global function to provide a smooth and con-

tinuous representation of the overall time series (Jönsson and Eklundh, 2002). Because

a frequency domain model is used in the determination of local reference points for the

Gaussians, a time series of at least three years is needed to properly fit a model composed

of local Gaussian functions (Jönsson and Eklundh, 2004). Like Sellers et al. (1994) and

Chen et al. (2004), Jönsson and Eklundh (2002) concentrate on the analysis of NDVI time

series and propose an iterative scheme for the determination of the parameters to have

the global model track the upper envelope of the time series data.

Why all this mathematically involved and computationally expensive nonlinear optimi-

sation? Models based on logistic or Gaussian functions anticipate a certain shape for the

signal present in a time series. Whenever this anticipated shape is well suited to rep-

resent the biophysical realities of a given phenological signal, then it is certainly worth

every effort to find a set of coefficients that fit such a function to a set of data. It has been

shown that, under certain assumptions, part of the parameters and properties of logis-

tic functions can be assigned a specific physical meaning. The general form of a logistic

function is

f (t)= a
1+be−ct

where the parameter a sets the function’s asymptotic maximum, b is related to the

asymptotic minimum and c affects the slope of the logistic curve. Using results from

the theory of crop reflectance modelling, Badhwar (1984) argued that a single logistic

function can be constructed with three parameters related to the date of crop emergence,

rate of growth, and carrying capacity. Badhwar (1984) then fitted his model to a tasseled

cap-like greenness index obtained from a number of Landsat MSS observations over the
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midwestern United States during the early part of a growing season. In the course of

this, the growth rate was replaced by the rate of change in greenness, and the asymptotic

maximum of greenness became a substitute for the carrying capacity. Based on these two

variables, Badhwar (1984) was able to construct a linear classifier to discrimiate corn and

soybean fields.

Fischer (1994a; 1994b) successfully employed double logistic functions to describe the

temporal profiles of NDVI computed from one year of ground based radiometric mea-

surements over homogeneous crop canopies in a mid-latitude agricultural area (Beauce,

France). Based on the fitted curve, advances or delays in crop growth were determined

by the dates of the inflection points of the ascending and descending legs of the double

logistic function. The length of the growing period was defined by the width of the curve,

which is the time difference between the two inflection points. Fischer’s (1994a) double

logistic model of five parameters is essentially a generalisation of Badhwar’s (1984) ap-

proach to accomodate a full growth cycle. Since a single logistic curve can only represent

a single growth profile between asymptotic levels of sustained biomass and crop maturity,

two three-parameter logistic functions are used to model the ascending and descending

profiles of a full growing period separately, where one of the six parameters is eliminated

by the requirement that the levels of maturity of both functions must match to yield a

continuous overall profile.

Zhang et al. (2003) used double logistic functions to model an annual phenological sig-

nal with four anticipated key phenological transitions of greenup, maturity, senescence

and dormancy. They found that the dates for these transitions corresponded well to the

points on the time axis where the double logistic function showed its maximum rates of

curvature. These results were then used to describe the annual vegetation dynamics over

New England from a timeseries of one year of EVI derived from MODIS reflectance data

at a spatial resolution of 1 km.

A favourable property of such parametric or semi-parametric (Fischer, 1994a) models

is that, whenever some a priori knowledge is available, it is easily incorporated. If a

clear physical meaning can be attributed to a number of variables involved in a curve fit,

it is always possible to assign fixed values to specific parameters according to ancilliary

information, e.g. sowing dates (Fischer, 1994a), thereby reducing the number of variables

to optimise and the uncertainty in the fitted model. When a priori knowledge is exploited

in a given problem, it can increase the accuracy of the remaining parameters that are

determined by curve fitting (Fischer, 1994a).

The employment of a priori information to narrow down the choice of parameters in an

optimisation problem is a common feature of all methods using logistic or Gaussian basis

functions. In fact, such information is absolutely required to achieve a meaningful curve

fit. If such knowledge cannot be obtained beforehand from an independent source as in
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Fischer’s (1994a) work, it has to be inferred from a structural description of the time

series itself. Zhang et al. (2003) used a moving window average filter to divide the signal

into level parts between segments of increasing or decreasing EVI values. The segments

were taken to identify the number of growth cycles in a given annual time series. Only

then could they assemble a model for the entire time series from single logistic functions

fitted to each segment of EVI increase or decrease, subject to the constraint of continuity

of the curve between adjacent segments. Similarly, Jönsson and Eklundh (2002) used a

Fourier-based decomposition to identify the number of growth cycles and associated local

maxima present in a time series. The approximate local maxima associated with each

growing period then marked the points along the curve where the individual Gaussian

functions were blended together in order to obtain a smooth and continuous overall curve.

Except for the Gaussian and logistic curve fitting methods implemented in the computer

program TIMESAT (Jönsson and Eklundh, 2004), which is intended for the analysis

longer time series, logistic functions have been used mainly to analyse short time se-

ries covering only one or two growing periods of specific types of vegetation. Jönsson

and Eklundh’s (2004) TIMESAT software is intended for general use on remotely sensed

time series of vegetation indices. However, TIMESAT does not use its model parame-

ters directly to obtain phenological descriptors such as start, end and length of growing

seasons. Instead, Jönsson and Eklundh (2004) apply moving window averaging to the

modelled curve to obtain a consistent set of maxima and minima that represent cycles of

vegetation growth and senescence. The fitted model is merely used to provide a smooth

continuous curve that can be sampled at arbitrary positions, and the samples analysed

by different methods of signal processing and time series analysis. As a consequence, the

Gaussian and logistic functions employed in TIMESAT lose their significance as physi-

cally based parametric representations of remotely sensed time series, which is the very

motivation for using these types of functions in the first place (Badhwar, 1984; Fischer,

1994a,b; Zhang et al., 2003).

2.4 Polynomial functions and splines

Polynomials are widely used to interpolate or approximate functions because of their

favourable functional properties. A polynomial of order k in one variable is defined by k
polynomial coefficients as follows:

yt = fk(t,c)= c1 + c2t+ c3t2 +·· ·+ cktk−1 (2.7)

where c = (c1, c2, c3, . . . , ck) is a vector of polynomial coefficients. Alternatively, a polyno-

mial may be specified by its degree (k−1) which is the exponent of the largest term in the

polynomial. The coefficient ck associated with the largest term is called the leading coeffi-
cient. Among other things, polynomial models allow the general calculation of derivatives
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and integrals of a modelled curve directly from the model itself. In addition, a polynomial

is a linear function in its coefficients and can be fitted to a set of data straightforwardly

by solving a system of linear equations, applying least squares methods when necessary.

Savitzky and Golay (1964) used these properties in order to express smoothing based on

local polynomials as a linear filtering operation, as discussed in chapter 2.1. Although a

polynomial of a high enough order can in principle accomodate any curve shape, single

polynomial functions are not suited for modelling time series of arbitrary length, since

they tend to oscillate (Epperson, 2007), which leads to unacceptably large displacements

between the modelled curve and the actual data. Nevertheless, polynomial functions of

low order, or more generally, regression models including polynomial terms, may be used

to describe nonlinear trends in time series (Wood, 2006; Hermance, 2007).

The idea of polynomial splines is to avoid displacements in polynomial models by fit-

ting single polynomials to smaller pieces of a set of data, and join the polynomial pieces

to a continuous curve at certain locations called knots. In general, some of the models

discussed in chapter 2.3 may be understood as Gaussian or logistic splines, since they

consist of pieces of Gaussian or logistic functions that are combined under certain conti-

nuity conditions to form an overall curve. In a narrower sense, the term spline refers to

piecewise curves composed of polynomials, where the continuity conditions at the knots

require not only the continuity of the curve itself, but also the continuity of a number of

its derivatives (Wold, 1974; Dierckx, 1993; de Boor, 2001).

A (polynomial) spline is characterised by the degree of its polynomial pieces and the num-

ber of its knots. The number of polynomial pieces in a spline is one less than the number

of its knots. Splines can be defined as interpolating splines or approximating splines. An

interpolating spline is a “join the dots” type of model (Faraway, 2006) where the knots

of the spline correspond to the data points in a given dataset, so that the spline’s coeffi-

cients can be determined in order to interpolate the given values at all points. Regression
splines and smoothing splines, in contrast, are approximating spline models that are not

required to reproduce all given values in a dataset. Regression splines differ from smooth-

ing splines in the number of knots used. For regression splines, the number of knots is

usually much smaller than the number of data points. The level of detail captured by a

regression spline is controlled by the number of piecewise fits to the data. A lower num-

ber of knots means less piecewise fits and thus less detail in the fitted curve. Varying the

grid of knots, i.e. the number of knots and their placement, is an essential concept to gain

control over the fit of a regression spline to a given dataset. One may start, for example,

with a fine grid of knots and then drop knots sequentially until the resulting curve pro-

vides an acceptable model for the data. In a smoothing spline, the number of knots is

roughly of the same order as the number of data points, and the number of degrees of

freedom of the spline model is controlled by a regularisation term that penalises large

values for the spline coefficients (Yandell, 1993; Faraway, 2006; Takezawa, 2006; Hastie
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et al., 2009). The degrees of freedom in a given spline model may also be controlled by

varying the number of knots and applying a smoothing penalty at the same time, e.g. by

choosing the number of knots slightly larger than needed and use regularisation to exert

fine control on the level of detail in the fitted spline (Eilers and Marx, 1996). A spline

model where both the number of knots and a penalty term are used to adjust the degrees

of freedom may be called a penalised regression spline (Ruppert, 2002). All these spline

models may be employed in the analysis of remotely sensed time series.

Hermance et al. (2007) together with Bradley et al. (2007) used spline models to assess

the phenology of prairie vegetation in the Great Basin on the basis of NDVI time series

derived from AVHRR data. They used splines of an order of 11-14 with knots placed at

the junctions of annual subintervals in a time series of multiple years. Using very high

order polynomials over the annual subintervals, Bradley et al. (2007) had to use an itera-

tive weighting scheme that resembles those of Sellers et al. (1994), Chen et al. (2004) and

Jönsson and Eklundh (2002) to achieve stability of fit. Intitial weights were computed

using an exponential weighing function with respect to an average annual curve deter-

mined by a polynomial regression model including harmonic components (Hermance,

2007; Hermance et al., 2007). By adjusting the initial weights in a number of recur-

sive least squares fits, detailed high order spline models could be fitted to accomodate

the upper envelope of multiyear NDVI time series (Hermance et al., 2007; Bradley et al.,

2007). Typically, splines of order 4-6 are used in most applications and the number of

knots is used to control the level of fit (Wold, 1974; Stone, 1986; Dierckx, 1993; Ruppert,

2002; Ruppert et al., 2003; Takezawa, 2006; Keele, 2008). Instead of using lower order

splines and varying the number of knots to control the level of detail, Hermance et al.

(2007) and Bradley et al. (2007) decided to cope with the numerical difficulties inher-

ent in high order polynomials (Epperson, 2007) and increased the spline order to attain

greater levels of detail while keeping the number of knots constant. Despite the fact that

the behaviour of regression spline models tends to depend strongly on the locations cho-

sen for the knots (Wood, 2006), knots are an abstract concept and the knot locations have

no physical significance whatsoever. There is no point in insisting on knot locations at

the splits of annual subintervals.

An advantage of the spline is that it is a entirely data driven curve. Unlike the logistic

and Gaussian functions in chapter 2.3, splines are nonparametric3 models and their fit

is not limited by any constraints imposed by the shape of a certain model function. A

spline model can be designed specifically to meet the requirements associated with the

characteristics, amount and quality of the observations in a given dataset. If a time se-

ries originates from a system with a simple phenology and contains a strong signal, for

3That is to say, the parameters of a spline have no physical interpretation. But strictly, spline models are
defined by parameters, and once a certain number of knots is chosen, the shape of the curve is constrained
from the set of all possible splines to a subset of splines with a given number of knots at the specified
positions. Nevertheless, knots are immaterial and their number and positions may be chosen freely.
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example a homogeneous agricultural area, a regression spline with only a few knots may

be sufficient. In contrast, the intimate mixture of vegetation types in savanna ecosystems

and their very different response to the variable rainfall creates subtle phenological sig-

nals that call for more complicated spline models with a rich set of knots and a smoothing

penalty to regulate the sensitivity of the model. Likewise, an interpolating spline may

capture every detail in a small, high quality dataset. For a larger dataset with erroneous

observations on the other hand, a regression or smoothing spline to estimate conditional

mean values may be more appropriate. Whatever the appropriate spline model may be,

once its parameters are determined, the representations for all these splines can be ar-

ranged to be the same (de Boor, 2001), although their individual properties may be quite

differerent. Spline models are good functional representations for a wide range of data

analysis problems. Derivatives and integrals of polynomials are easily calculated, and

any algorithm for their differentiation and integration immediately applies to all spline

models, since any spline may be represented in a piecewise polynomial form (de Boor,

2001). Thus, algorithms for phenological analysis can use a spline representation of a

time series as a universal data structure to identify phenological cycles and assess their

properties using extreme values and curvature obtained by direct evaluation of the spline

model. A class of spline models termed interpolating B-splines even have representa-

tions as linear digital filters, in much the same way as interpolating polynomials can be

expressed as Savitzky-Golay filters (Unser et al., 1993b; Unser, 1999).

A disadvantage of splines may be their susceptibility to overfitting a given dataset, since

a spline with a large number of parameters can, in principle, accommodate any given

shape. The spline-like models in chapter 2.3 composed of Gaussian and logistic functions,

for example, use a fixed number of model parameters per phenological cycle. For a spline,

the number of knots in a given segment of a time series may be chosen arbitrarily large,

within certain limits set by the amount of data available. The number of knots covering

a phenological cycle may even be different between individual inter-annual cycles. In

order to avoid overfitting, care must be taken when choosing the number of knots, their

positions, and the order of the polynomial pieces in a spline model.

2.5 Wavelets

The Fourier models presented in chapter 2.2 often suffer from the disadvantage that the

sine and cosine functions used to describe the signal do not provide compact support.

This means that the fit of each sine and cosine function that is a part of a harmonic

model depends on the whole data set. The lack of compact support is one reason why

spurious oscillations may be introduced into Fourier models when the recorded time se-

ries is not strictly periodic. Contrary to sinusoids, which are local in frequency only,

wavelets (Strang, 1994; Aboufadel and Schlicker, 1999; Fugal, 2009) are functions that

are localised in frequency and in time. Sinusoids are regular and particularly suited to
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describe constant-frequency (stationary) signals (Fugal, 2009). Wavelets are irregular

functions with compact support, i.e. of limited duration, and are better suited to analyse

signals containing breaks and other nonstationary phenomena. There are many differ-

ent kinds of wavelets designed for different purposes. Among the simplest wavelets is

the Haar wavelet, which is good for detecting breaks in a signal (Fugal, 2009), while the

Morlet wavelet is better suitable for analysing a signal’s cyclic behaviour (Fligge et al.,

1999). Another family of wavelets called Coiflets are adequate for fractal time series with

a high degree of self-similarity (Fugal, 2009). An additional advantage of wavelets is their

ability to look at time series, at multiple resolutions, which allows to focus on grosser fea-

tures of the data without neglecting finer details when they are important (Percival and

Walden, 2000). Wavelet transform methods have been used in remote sensing time series

analysis for example to separate cyclic components of signals (Li and Kafatos, 2000), or

to remove noise in time series (Sakamoto et al., 2005; Galford et al., 2008).

2.6 Linear decomposition

There exist a number of methods for the decomposition of a time series into a trend,

cyclic components and a remainder that may be treated as residual error. In the analy-

sis of remotely sensed time series of vegetation indices, such methods have been used to

analyse phenology in ecosystems where the vegetation can be categorised into perennial

and annual types associated with the trend and cyclic components, respectively. Roderick

et al. (1999) and Lu et al. (2003) used linear decompositions of NDVI time series to as-

sess Australian woody and herbaceous vegetation cover on a continental scale. Lu et al.’s

(2003) method is based on a linear decomposition procedure called STL (Clevland et al.,

1990), where the trend is determined using a method of locally weighted regression, of-

ten shortened to lowess, or loess (Cleveland, 1994). Verbesselt et al. (2010) developed

a similar method that uses a piecewise linear approximation of the trend component to

accomodate certain breaks and points of change in trend. The trend and cyclic compo-

nents present in remotely sensed time series may be described in a number of different

ways, and any of the modelling approaches discussed above may be used as a part of a

linear decomposition procedure. Thus, linear decompositions may be seen as a general

framework for linear time series analysis rather than a group of models by themselves.

Generalised additive models (Wood, 2006) may provide another framework for analysis

of trend, seasonal and random components of time series. The expected value of the re-

sponse of a generalised addtitive model is some monotonic function of a linear predictor

specified as a sum of functions of a number of predictor variables. The (detrended) har-

monic models discussed in chapter 2.2 as well as the spline models of chapter 2.4 may be

placed in this category of models.
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2.7 Summary: why splines?

As discussed at the begining of this chapter, the four general objectives of curve fitting

are the parametric or functional representation of discrete data sets, noise reduction and

data compression. The nonrecursive filters discussed in chapter 2.1 are methods designed

for reducing noise. A running mean or median filter simply replaces each and every value

in a data set by a smoothed, noise reduced equivalent, without changing the general rep-

resentation of the data as a set of points. A data set functionally represented by a spline

may or may not be noise reduced, depending on whether the spline is an interpolating or

an approximating spline. An interpolating spline evaluated at its knots yields the origi-

nal data values, while an approximating spline smoothes a data set. Most uses of logistic

functions to assess short vegetation index time series over one or two growth cycles (Bad-

hwar, 1984; Fischer, 1994a,b; Zhang et al., 2003; Fisher et al., 2006) are examples of the

use of models as parametric representations of a data set, where all or part of the model

parameters have a direct physical interpretation. Fisher et al. (2006) for example used

the two inflection points of a double logistic function to determine the timing of the onset

of greenness in the spring caused by leaf expansion and grass greenup, and the the offset

of greenness in the fall due to leaf abscisson and grass brown-off. Fourier based models

and polynomial splines are examples of functional representations of remotely sensed

time series. These models allow an arbitrary resampling of the original data set based

on the model functions, as well as the analysis of the dynamics of the data based on the

derivatives of the model functions. Because of their multiresolution properties, wavelets

are efficient models when the problem involves compression of the data (Aboufadel and

Schlicker, 1999).

Broadly speaking, parametric representations take a problem-specific perspective, while

the perspective of functional representations is data-centred. Using a problem specific

parametric model that anticipates a certain shape of the phenological curve makes most

sense if the phenological behaviour can be assumed as known, e.g. for applications in

monocultural farming, where the measured signal originates mostly from one crop, with

only negligible other contributions (Fischer, 1994a,b). Double logistic functions seem

particularly suited to model phenologies with long growing seasons where there is no

distinct maximum in the observed phenological curve, but a plateau-like shape instead,

enclosed by a relatively steep incline and decline at the beginning and end of the growing

season, as well as a distinct dormant phase where the curve is flat and low. If a recorded

satellite signal has significant contributions from multiple crop, seminatural or natural

vegetation types, the shape of the phenological curve cannot generally be determined,

since it depends on the strength of the contributions from the individual components. In

such cases it may be more appropriate to adopt a data centred approach to curve fitting

where the degrees of freedom of the fit can be adjusted according to the level of detail

present in the signal.
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In Fourier based models, where the signal is represented as a sum of sinusoids of differ-

ent frequencies, both perspectives are amalgamated. Depending on the context, a Fourier

series may be regarded as a data-centred functional representation as well as a problem-

specific parametric representation of a time series. Provided the number of harmonics is

large enough, a Fourier series can represent any given curve without restrictions on its

shape (Smith, 2003). Furthermore, the amplitudes and phases of the sinusoids may also

be interpreted as physical parameters, for example if the frequency of a waveform corre-

sponds to a recurring vegetation cycle. Wagenseil and Samimi (2006) found from their

analysis of NDVI time series of two consecutive growing periods in an area with high

rainfall variability (Etosha National Park, Namibia), that Fourier analysis was useful,

but did not quantify all relevant aspects of plant phenology and that the parameters of

the Fourier series were altered considerably by the different rainfall situation in the two

years. They concluded that amplitude and phase could well be interpreted in their physi-

cal relation to vegetation phenology, but the spatial and temporal variation caused by the

differences in precipitation between the two years exceeded the intra-annual variability.

This leads to limitations in the separability of vegetation entities based on Fourier coeffi-

cients, since information on intra-annual variability is used to discriminate the different

vegetation types. Rather than using the absolute values of parameters derived from a

time series, Geerken et al. (2005) and Evans and Geerken (2006) proposed methods for

vegetation discrimination based on Fourier analysis that quantify the similarity between

the annual cycle of an individual signal with a reference cycle, i.e. the average annual cy-

cle of a signal known to originate from a specific vegetation type. The similarity measure

of Evans and Geerken (2006), which is based solely on a number of Fourier coefficients, is

explicitly designed to consider the various dynamics in a time series that could be caused

by altered growing conditions between different years or growing periods, most important

amplitude scaling, which would be the case if an identical vegetation type was growing

with greater vigor or a more complete coverage, e.g. due to more favorable rainfall condi-

tions, and amplitude translation, which would occur e.g. due to an earlier or later onset of

a rainy season. Moreover, the algorithm allows the estimation of the fractional coverage

for the vegetation type identified by the similarity measure on the basis of the derivative

of the Fourier series. This allows Evans and Geerken (2006) to deal with the mixed pixel

problem that typically arises from the low spatial resolution of satellite observations that

otherwise provide the high temporal coverage required to discriminate vegetation types

based on their phenology. The work of Evans and Geerken (2006) shows that a data cen-

tred perspective does not mean that problem specific methods cannot be developed. It is

by virtue of the functional representation properties of Fourier models that Evans and

Geerken (2006) were able to develop a problem oriented approach to semiquantitative

land cover mapping.

Jönsson and Eklundh’s (2002) motivation for using logistic and Gaussian functions is
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not parametric representation, but providing alternative representations for phenological

curves that are not well represented by Fourier based methods. Fourier based represen-

tations are less suitable for phenological curves that approach a rectangular shape, like

the plateau-shaped phenologies encountered by Fischer (1994b) in the Beauce agricul-

tural area, as well as asymmetric growth profiles, where the ascending and descending

parts of the growth curve differ in shape (Fischer, 1994a; Jönsson and Eklundh, 2002;

Chen et al., 2004). Box shaped or asymmetric features in a signal correspond to high

frequency information in terms of a Fourier transform, and are generally accommodated

by higher order harmonics that are susceptible to noise. If high frequencies contribute

significantly to a signal, it is not possible to simply remove noise by truncating its Fourier

series representation and it becomes difficult to separate the true frequency content from

the frequencies that constitute noise. This renders the Fourier transform inefficient for

these kinds of signals and they may be better represented by locally fitting logistic or

Gaussian functions (Jönsson and Eklundh, 2002). However, logistic or Gaussian func-

tions cannot be fitted to a time series without ancilliary information on its structure. To

determine approximate annual or semiannual maxima as the points of continuity where

the local logistic or Gaussian fits are blended together, Jönsson and Eklundh (2002) still

use a low order Fourier based model. Since Fourier models are regular in frequency, this

implies that the middle of a growing period, represented by an individual local function,

occurs at the same time every year. This is not always a realistic assumption, as for ex-

ample in semi-arid regions, where plant growth may be driven spontaneously by rainfall

(Tan et al., 2011). In addition, the assemblies of logistic or Gaussian-type models are

not easily analysed, and yet other signal processing techniques such as moving window

averaging have to be used to find a consistent set of minima and maxima as a basis for

the determination of the phenological metrics (Jönsson and Eklundh, 2002, 2004).

Many of the reviewed methods for noise reduction and subsequent extraction of pheno-

logical parameters focus on normalised difference vegetation index time series and try

to maintain the upper envelope of values to account for the negatively-biased noise in

NDVI observations (Sellers et al., 1994; Chen et al., 2004; Jönsson and Eklundh, 2004;

Hermance, 2007; Hermance et al., 2007). However, several alternatives to the NDVI

have emerged over the years, such as the enhanced vegetation index (EVI, Huete et al.,

2002) or the sensor independent fraction of absorbed photosynthetically active radiation

(FAPAR, Fensholt et al., 2004). Both products are routinely derived e.g. from MODIS

observations. EVI and FAPAR are less influenced by atmospheric and background effects

than the NDVI, and may have less negatively-biased noise and more erroneous spikes

compared to NDVI data, in which case denoising techniques maintaining the upper en-

velope of values may not be the most effective choice (Hird and McDermid, 2009).

A method for noise reduction, curve fitting and phenological characterisation of remotely

sensed time series that is generally applicable across different ecosystems and to differ-
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ent observed vegetation parameters (NDVI, EVI, FAPAR, etc.) must adopt a data-centred

perspective. Polynomial splines are entirely data driven functional representations of or-

dered data sets such as time series. Splines avoid some of the troubles with other meth-

ods. Compared with methods based on fitting logistic or Gaussian functions, the knots

of a spline may be positioned without ancilliary information about curve structure. The

spline adjusts to the data just by a linear least squares fit, no positioning of local func-

tions and no nonlinear search for parameters is required. Furthermore, in a spline model

rapid changes in the curve may not be confused with noise as in a Fourier series, since

a spline model is aware of the time domain only. Nevertheless, the Fourier coefficients

of a modelled signal may be recovered from its spline representation (Dierckx, 1993), so

if an analysis of the cyclic behaviour of a signal needs to be done, it can be done using

the spline model rather than the signal itself to save preprocessing of the signal e.g. by

filtering. Splines can be defined so as to posess the desirable property of compact support

in the time domain, which means they have good smoothing and noise reduction capa-

bilities and their use does not generally require preprocessing of the data. In addition

to their noise reducing properties, splines are also excellent models for functional rep-

resentation. Since the derivatives and integrals of spline curves are splines themselves,

a spline curve can be analysed completely by computing higher derivatives or integrals

recursively. This makes it straightforward to determine crucial points such as minima

and maxima of phenological cycles, or to calculate definite integrals over growing periods

directly from the model and independently of the sampling resolution of a data set. All

these features render the spline a robust, general, self-contained and yet flexible model

that can be used for noise reduction as well as characterisation of all kinds of remotely

sensed time series (Hermance et al., 2007; Bradley et al., 2007).
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Polynomial splines (Wahba, 1990; Dierckx, 1993; de Boor, 2001) have been used to in-

terpolate or approximate functions in one or more variables in computer graphics and

computer aided geometric design (Foley et al., 1997; Rogers, 2001; Farin, 2002; Lengyel,

2004; Mosier, 2009), signal and image processing (Unser et al., 1993a,b) as well as in

statistics and data mining (Ruppert et al., 2003; Takezawa, 2006; Wood, 2006; Keele,

2008). Splines are named after a tool used for drawing and fabricating smooth shapes

and surfaces. The actual drawing tool called a spline is shown schematically in figure 3.1.

It consists of a set of weights or ducks that are placed in order to force a flexible beam

into a prescribed smooth shape. An abstract mathematical spline is a construct that im-

itates the workings of the tool that is called a spline by craftsmen. A confusing aspect of

mathematical splines is that there exist many different types, such as regression splines,

smoothing splines, B-splines, P-splines. The different types stem from different optimi-

sation criteria, end point constraints and representations for spline models of curves and

surfaces. A spline as a functional representation of a time series may be defined as a func-

tion in one variable, y = f (t), where y is the value of a remotely sensed parameter, e.g.

NDVI, at time t. An intuitive representation of splines is through piecewise polynomial

functions.

3.1 Piecewise polynomials

A spline is a piecewise polynomial function defined on a finite interval from a to b. The

abscissae along the curve where two polynomial pieces join are called knots. There always

are at least two knots at a and b called exterior or end knots. The remaining knots are the

interior knots of the spline. If there are only exterior and no interior knots, the spline is

just a single polynomial. A spline of order k is assembled out of a number of polynomial

P1(t1, y1)

P j P j+1 Pn

f j(t)

Figure 3.1: A craftsman’s spline and its abstract equivalent, the natural cubic spline. The tool
used to craft smooth continuous shapes consists of a flexible plasic strip and a number of massive
weights, the ducks. The flexible beam is forced to pass along the points marked by the ducks. An
abstract spline that closely imitates the tool’s mechanics is called a natural spline.
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pieces of degree k − 1. The individual pieces are blended together so as to make the

resulting spline curve continuous. A spline of order k is continuous up to and including

its (k−2) derivative. Let the knots of a spline be given by

a = x1 ≤ x2 ≤ . . .≤ xn = b

then the piecewise polynomial spline function defined for this set of knots may be written

as

f (t)=



f1(t) if x1 ≤ t ≤ x2

f2(t) if x2 ≤ t ≤ x3
...

...

fn−1(t) if xn−1 ≤ t ≤ xn

(3.1)

where the f j, j = 1, . . . , (n−1), are single polynomials of equal degree. In principle, the

first and last polynomial pieces of f (t) can be extended when f (t) is to be defined for the

entire set of real numbers (de Boor, 2001):

f (t)=


f1(t) if t < x1
...

...

fn−1(t) if t > xn−1

Extending a piecewise polynomial in this way amounts to extrapolation. As with any

extrapolation technique, spline extrapolation may reflect a modelled function only badly

away from the original interval [a,b] on which it was defined.

To construct a piecewise polynomial that interpolates a set of data points {(x j, yj)}n
j=1, n

knots are needed at locations x j, j = 1, . . . ,n, where x1 = a and xn = b are the exterior

knots; with corresponding ordinates at the knots of

y1 = f (a), y2, . . . , yn = f (b)

In general, for an interpolating spline of order k with n knots, k(n−1) polynomial coeffi-

cients have to be found. If for example, the individual polynomials are of degree 3 (order

4), the piecewise polynomial is a cubic spline and is determined by a total of 4n−4 poly-

nomial coefficients, since every single fourth-order polynomial has four coefficients, and

the spline is composed of n−1 single polynomial pieces. The individual pieces are given

by

f j(t)= A∗
j (t− x j)3 +B∗

j (t− x j)2 +C∗
j (t− x j)+D∗

j (3.2)

where x j ≤ t ≤ x j+1 and j = 1,2, . . . ,n−1. An interpolating spline must match the values

of the abscissae at each interior knot. This is enforced by k−2 interpolation equations of
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the form

D∗
j = yj for j = 2, . . . ,n−1 (3.3)

In order for the cubic spline curve to be continuous up to the second derivative, another

set of 3n−6 equations is required to enforce continuity across the interior knots. Let

h j = x j+1 − x j for j = 1, . . . ,n−1

then the equations ensuring continuity across the interior knots are

A∗
j h3

j +B∗
j h2

j +C∗
j h j +D∗

j = D∗
j+1 (3.4a)

3A∗
j h2

j +2B∗
j h j +C∗

j = C∗
j+1 (3.4b)

3A∗
j h j +B∗

j = B∗
j+1 (3.4c)

Every interior knot of the spline curve must satisfy these three equations. An additional

four equations (k in general) are needed to solve for all the unknowns. These equations

specify the boundary conditions at the two exterior knots. To interpolate not only the data

values at the interior knots, but also the values at both ends, the following two boundary

conditions are required:

D∗
1 = f (a) (3.5a)

A∗
n−1h3

n−1 +B∗
n−1h2

n−1 +C∗
n−1hn−1 +D∗

n−1 = f (b) (3.5b)

To be able to solve for all the 4k−4 unknowns, two more constraints must be put on both

end knots by specifying two more equations. To be natural spline, a piecewise polynomial

of order k, where k is even, must have polynomial pieces at the beginning and end with

derivatives that are zero up to the rth derivative, where k = 2r (Mosier, 2009). To define

a natural cubic spline, the two additional constraints are specified to have the second

derivatives at the end knots equal zero:

f ′′(a)= f ′′(b)= 0

This means that a natural spline is forced to behave linearly beyond its end knots. The

spline is called natural because its behaviour at the ends most closely mimics the me-

chanics of a craftsman’s spline (figure 3.1). If the straight plastic beam of an actual

spline is relieved from the strain put to it by the ducks, it flexes back to a straight shape.

Beyond the first and last duck, the beam would thus prescribe a linear shape just like its

abstract counterpart, the natural spline does. Thus, the additional two constraints for a
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natural cubic spline are given by the equations

B∗
1 = 0 (3.6a)

3A∗
n−1hn−1 +B∗

n−1 = 0 (3.6b)

A natural spline is always a spline of even order (Dierckx, 1993; Mosier, 2009). As dis-

cussed above, a cubic spline with n knots is defined by 4n−4 polynomial coefficients. If

the spline is quadratic, i.e. of order three, then the number of unknowns is 3n−3. As

with the cubic spline, the number of conditions needed for the interpolation of the values

at the interior knots is n−2, leaving 2n−1 unknowns to determine. In addition, there

are 2n−4 conditions ensuring continuity of the spline function and its first derivative

at the interior knots, leaving only (2n−1)− (2n−4) = 3 equations to specify the spline’s

behaviour at the end knots and beyond. Since the number of equations for the boundary

conditions is odd, one of the ends inevitably has to go short by one condition. Since a

natural spline requires to have an appropriate number of zero derivatives at both ends,

it cannot be of even order. In regard of the fact that the end knots of an even order spline

obey different boundary conditions, some authors recommend using only splines of even

order (odd degree) in curve fitting applications (Dierckx, 1993; Mosier, 2009).

There are other possible formulations for the end point constraints of an interpolating

cubic spline. Another common end constraint besides the natural spline condition is to

specify the slope of the spline curve at the ends. If the slope of the curve to be modelled by

a spline is known at both ends or can reasonably be estimated, then a cubic spline can be

constructed whose first derivatives f ′(t) at the end points match the prescribed values. A

boundary constraint that may be of particular interest in the analysis of remotely sensed

time series is the constraint of a periodic spline. Time series of vegetation indices most

often have a seasonal component that makes the underlying signal periodic in nature,

so it may be desirable to make the spline used to model the signal periodic too. For

a periodic cubic spline, the spline’s values have to agree at both end knots up to their

second derivative: f (a)= f (b), f ′(a)= f ′(b), f ′′(a)= f ′′(b). A cubic piecewise polynomial as

described above can be made periodic by substituting equations (3.6) with the following:

3A∗
1 h2

1 +2B∗
1 +C∗

1 = 3A∗
n−1h2

n−1 +2B∗
n−1 +C∗

n−1 (3.7a)

3A∗
1 h+B∗

1 = 3A∗
n−1hn−1 +B∗

n−1 (3.7b)

Note that y1 = yn must be given in order for an interpolating piecewise polynomial to be

periodic If the data values y1 and yn at both ends do not match (3.5) cannot be satisfied

and the interpolating spline cannot be periodic. If y1 6= yn, the problem can only be solved

in a mean sense by using an approximating spline that is not required to pass through

all its knots.
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3.2 Spline representations and basis functions

The three major decisions to ponder on when choosing a spline model are concerned with

the degree of the spline’s polynomial pieces, the locations of the knots where the indi-

vidual polynomials are blended together, and what constraints to impose at the exterior

knots. Along with these primary options, the secondary choice of a suitable representa-

tion for the spline curve must be considered as well. The form of representation does

not generally influence the shape of the resulting spline curve. Representing splines in

their piecewise polynomial form as a set {(A∗
j ,B∗

j ,C∗
j ,D∗

j )}n−1
j=1 of n−1 tuples of polynomial

coefficients is only one of a number of possible representations for splines. It is a use-

ful representation since its coefficients can be directly interpreted as the coefficients of

the n−1 single polynomial pieces. Nevertheless, it is inconvenient for the formulation of

curve fitting problems that do not have an exact solution and can only be solved in a mean

sense. Another possibility is to use a set of basis functions. The motivation behind basis

functions is to imitate single polynomials for the sake of easier curve fitting. Instead of

using a set of coefficients associated with a number of monomials as in (2.7) to define a

single polynomial, each coefficient is associated with a particular basis function:

f (t)= c1B1(t)+ c2B2(t)+·· ·+ cmBm(t)

In this way, a piecewise polynomial can be assembled as a linear combination of ba-

sis functions just like a single polynomial is a linear combination of monomials. Basis

functions also avoid the need to specify the continuity conditions at the interior knots

explicitly. The basis functions themselves are defined so as to ensure continuity of the

spline function across the set of interior knots. Other constraints, such as the spline’s

behaviour at the end points, are fundamentally part of the spline model, but are sub-

sumed as a characteristic of one or more members of a specific set of basis functions used

to construct the spline model (Ruppert et al., 2003).

The type of representation for the spline used in computing the spline’s coefficients and

the representation used for working with the fitted spline model may be chosen indepen-

dently of each other. The best representations for fitting, interpreting and evaluating a

given spline model are not necessarily identical. In the piecewise polynomial represen-

tation, the interpretation of the model’s coefficients is particulary clear and easy, but the

model is fitted more efficiently using a different form of representation. The flexibility of

spline models is partly a consequence of the fact that it is possible to convert between the

different representations as necessary (de Boor, 2001).

When choosing a representation to be used in computing the spline’s coefficients, the

main concern is numerical stability – the basis functions should be chosen so as to reduce

numerical errors as much as possible. Unlike, for example, the sine and cosine func-

tions that form the basis functions in a Fourier transform, spline bases are not orthogo-
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nal, which means that there are correlations among the different basis functions. These

correlations can make it difficult to estimate the coefficients associated with each basis

functions, as the contributions of the individual basis functions to the overall signal are

blurred by the collinearity effects. There exist basis functions for spline models known

as B-spline basis functions that are especially designed to reduce collinearity among the

individual functions that form the basis (de Boor, 2001; Keele, 2008). Spline models re-

sulting from this kind of basis are more numerically stable than, for example, models

that use truncated power functions as basis functions. This is of importance especially

if a spline model has a large number of knots and the least squares principle is used to

solve for a set of spline coefficients in a mean sense. Both is true in modelling remotely

sensed time series: to reduce noise present in the observed data, a model is usually fitted

in a mean sense using least squares, and a considerable number of knots is required to

obtain a good fit if the time series record is long. Moreover, unlike truncated power func-

tion representations, B-splines possess the desirable property of compact support. The

influence of a single B-spline basis function extends only over a part of the entire spline

curve. This allows to take into account specifically the local properties of the data when

fitting a model. B-splines are thus the basis functions of choice for fitting spline models

to remotely sensed time series. Once the coefficients for the model are obtained, it may

be converted to whatever representation is most useful to tackle a given problem.

3.3 B-splines

Using B-splines, a spline function is defined as a continuous function that is a linear

combination of basis functions B j,k, where B j,k is the jth B-spline basis function of order

k:

f (t)=
m∑

j=1
c jB j,k(t) (3.8)

where a ≤ t ≤ b is the supported domain and 2 ≤ k ≤ m. The basis functions are defined

by the following recursion formulas (de Boor, 1972). The recursion starts with the first

order basis function which is either 1 if its argument is inside the jth knot interval, or 0

otherwise:

B j,1(t)=
1 if x j ≤ t < x j+1

0 otherwise
(3.9)

Higher order basis functions are computed as

B j,k(t)= (t− x j)B j,k−1(t)
x j+k−1 − x j

+ (x j+k − t)B j+1,k−1(t)
x j+k − x j+1

(3.10)

The x j are elements of a knot vector. The sequence of knot vector elements must be

nondecreasing, i.e. x j ≤ x j+1. The recurrence relation in (3.10) allows computing higher

order basis functions from the lower order ones. To compute a B-spline of order k, two
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Figure 3.2: Illustration of a B-spline curve (thick solid line) and its basis functions fitted to a
four-year time series of MODIS EVI values from a location in the Aksu dataset. The dots show
the original values of the time series. The basis functions shown in the lower part of the figure
are weighted by their appropriate coefficients. Knot locations correspond to the peak values of the
basis functions.

B-splines of order k−1 will have to be computed, and to calculate these two B-splines of

order k−1 again, three B-splines of order k−2 must be computed and so forth. Whenever

a number of k consecutive knots in a knot vector have the same value, at least one of the

denominators in (3.10) will be zero. In this case, convention 0/0 = 0 is adopted to define

the basis functions.

The resulting curve f (t) in (3.8) is a polynomial spline function of order k, its degree is

k−1. This means that f (t) is a polynomial of degree k−1 on each knot interval x j ≤ t <
x j+1. For example, a B-spline curve of order four is a piecewise cubic curve and consists

of intervals of cubic polynomials. The order of a B-spline curve can be no larger than

the number of basis functions. With each basis function B j,k is associated a B-spline

coefficient c j. B-spline basis functions are polynomial bases with compact support: they

are nonzero only over a relatively small interval. Any point on a B-spline curve is created

as a linear combination of only k nonzero basis functions. All curve points that fall in

a given interval between two consecutive knots use the same k basis functions. Every

piecewise polynomial can be represented as a weighted sum of B-splines in a similar way.

The line string formed by the set of points {P1,P2, . . . ,Pm}, where P j = (g j, c j) and

g j = 1
k

k∑
r=1

x j+r

is called the control polyline of the B-spline. The values g j are referred to as Greville
abscissae and are the averages over all the knot values for which a given B-spline basis

function is nonzero. There are as many Greville abscissae as there are B-spline basis
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Figure 3.3: A B-spline curve (thick line) and its control polyline (thin line). The cross symbols
mark the breakpoints P j(g j, c j) between consecutive legs of the line string.

functions. The control polyline is the line that connects the points defined by each Gre-

ville abscissa and the coefficient associated with the corresponding basis function. The

spline curve generally follows the shape of its control polyline. The control polyline con-

verges to the graph of a B-spline curve if more and more knots are used to define the curve

(Dierckx, 1993; Mosier, 2009). Furthermore, the curve does not cross any straight line

more often than the curve’s control polygon does (Dierckx, 1993; Rogers, 2001; Mosier,

2009). This fact is useful in determining the maximum number of roots of a given B-

spline by counting the oscillations of its control polygon about the horizontal line y= 0.

Knot vectors

To compute a basis function of order k by the recursion formula (3.10), an interval of k+1

consecutive knots is needed. At the ends of the knot vector, where k+1 consecutive knots

do not exist, the knot vector has to be extended by a certain number of entries to be able

to calculate all the m basis functions of order k over a given interval [a,b]. An extended

knot vector that provides support on an interval [a,b] must have m+k knots, where xk = a
and xm+1 = b are the two exterior or end knots of the (unextended) knot sequence. The

extension knots beyond the exterior knots at both ends of the knot vector may be thought

of as virtual constructs that are not actually a part of the knot sequence of the spline,

but are needed in order to calculate the B-spline basis functions. The extension knots of

a knot vector are determining factors for the behaviour of the spline at the boundaries of

the interval [a,b].

Knot vectors for B-splines exist in different categories. The most fundamental difference

is between open and closed or periodic knot vectors. Closed knot vectors are used to

obtain boundary conditions suitable to produce closed, ring shaped curves with matching

function values and derivatives at both ends, while open knot vectors are used to define

open curves with boundary conditions that allow the function values at both ends to be

different.
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Open and closed knot vectors come in two varieties, they are either uniform or nonuni-
form, depending on whether the interior knots are positioned at equal distances or not.

For a nonuniform knot vector, the positions of the interior knots may be chosen arbitrarily

as long as they form a sequence that is nondecreasing. The positioning of the knots has a

major influence on the shape of the resulting spline curve. This is especially true for knot

vectors with multiple knots at the same position, since knot multiplicities change the

smoothness conditions of the spline curve at that position (Rogers, 2001; Mosier, 2009).

Open knot vectors

Most commonly, open knot vectors are defined by repeating the values of the exterior

knots k−1 times at both ends (Dierckx, 1993; Rogers, 2001; Farin, 2002),

x1 = x2 = . . .= xk = a

b = xm+k−1 = xm+k = . . .= xm+2(k−1)
(3.11)

so that a total number of k knots including the exterior knots are coincident at either end

of the knot vector. When all knots are at different positions, the derivatives of a B-spline

of order k are continuous up to and including the k−2 derivative. If two knots are at

equal positions, then the B-spline will only be continuous up to the k−3 derivative at

that position (Rogers, 2001; Mosier, 2009). By placing knots at the end to make the knot

multiplicity k-fold, all smoothness conditions imposed by the B-spline basis functions are

dropped for the exterior knots, and the behaviour of the spline at the ends is dictated

solely by the boundary conditions. This leads to a so called clamped B-spline curve that

passes through the two end points of the control polyline P1 and Pm. In these points,

the slope of the spline curve is equal to the slope of the first and last leg of the control

polyline, respectively. Figure 3.4 shows a set of eight open B-spline basis functions of

order four for a knot sequence x = (x4, . . . , x9) of six knots. The corresponding open knot

vector has six (2k− 1) more entries corresponding to the multiple knots at both ends.

Rather than actually appending the additional knots at both ends to the knot vector, a

different convention is to define a corresponding multiplicity vector to a given knot vector

that specifies the multiplicity of every knot in the knot vector (Farin, 2002). Following

this convention, the knot vector x= (x4, x5, . . . , x8, x9) has multiplicity (4,1, . . . ,1,4).

Closed knot vectors for periodic splines

Closed knot vectors are used to model closed curves, or in the case of time series, periodic

signals. The knot vector of a periodic B-spline of order k defined on an interval [a,b] is of



3 A spline framework for remote sensing time series analysis 44

B5,4

x4 x5 x6 x7 x8 x9
x3
x2
x1

x10
x11
x12

Figure 3.4: B-spline basis functions of order k = 4 for an open uniform knot sequence x =
(x4, x5, x6, x7, x8, x9). The end knots x4 and x9 have 4-fold multiplicity. The thick solid line high-
lights the 5th B-spline basis function of order four. Each basis function is only nonzero over four
(k) intervals between knots.
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Figure 3.5: Uniform periodic B-spline basis functions of order k = 4 for a knot vector x =
(x1, x2, . . . , x12). Periodic basis functions are merely translates of each other. There are no dis-
tinct end knots, as periodic B-spline bases describe closed curves whitout a distinct starting or
ending point.

the form

xk− j = xm+k−1− j −τ
x j+m+k−1 = x j+k +τ

(3.12)

where τ = b− a is the period of the curve. The number of basis functions is denoted by

m, and j = 1, . . . ,k−1. Like in the case of an open knot vector, the closed knot vector

x = (x1, . . . , x12) supports a B-spline basis of dimension eight on an interval [a,b], where

a = x4 and b = x9. Each periodic B-spline basis function is a translate of its predecessor,

there are no distinct end knots and no knot multiplicities, since a periodic curve has no

ends. A periodic knot vector merely creates the prerequisites for imposing periodicity

conditions, but does not actually impose them. The values at both ends of a periodic

spline are equal up to the (k−1) derivative. Thus, in order for a B-spline to be periodic,

its coefficients must be determined so that the first and last k−1 B-spline coefficients are

equal:

c j = cm−k+1+ j j = 1, . . . ,k−1

Figure 3.6 shows an illustration how a closed elliptic curve is modelled from a set of erro-
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Figure 3.6: Illustration of the concept of a periodic basis and end conditions. A closed spline
curve of period 2π is fitted to an elliptical cloud of points in the least squares sense. The cloud
is generated by adding white noise to a perfect ellipse. The cubic spline curve in the top left
panel with four knots at {0,π/2,π,3/2π,2π} is appropriate to reconstruct the underlying ellipse.
The cubic spline curve in the top right panel uses 16 uniformly distributed knots in the range
[0,2π] to produce a more complex shape but slightly overfits the data. The bottom panel contains
a representation of the curves and data in the polar coordinate system used in fitting the models.

neous point data using a periodic B-spline basis defined in polar coordinates. The dataset

was used in unit-testing the basic B-spline implementation for the time series analysis

framework. Figure 3.7 shows a periodic spline model fitted to a small dataset of NDVI

values obtained from raw Landsat TM imagery over the Aksu region representative for

a single year (To increase the number of data, imagery from three years, 2009, 2010 and

2011 has been combined under the assumption that there may be only negligible change

within a short three year period). Periodic splines may be useful in processing datasets

with incomplete coverage of only a single growing period, where they may be able to

provide more realistic estimates of the length of the growing season.

3.4 Fitting B-splines to observational data

The shape of a B-spline curve is controlled by its control polyline. In computer graphics

applications (e.g. Rogers, 2001; Farin, 2002) a user most typically modifies the control

polygon directly to gain control over the shape of a spline curve. Fitting a curve to ob-

servational data is the same problem in reverse: given a set of possibly error prone data
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Figure 3.7: Three periods of a periodic spline model fitted to NDVI observations calculated from
Landsat TM data. The model is used here to construct a continuous signal with a period of one
year sampled according to the schedule of a MODIS 8-day product. The dots connected by the
thin line shows the original data.
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Figure 3.8: Four years of a MODIS EVI time series from the Aksu dataset, and three regression
splines fitted to the data using different numbers of knots. The knot vectors used are all uniform.
The number of records in the time series is n = 92.

with a certain shape, estimate the vertices of a control polygon that gives rise to a spline

curve with a close fit to the data. The number of unknowns involved in determining a

B-spline curve is thus equal to the number of control points. The B-spline representation

is chosen because it is easy to manipulate and numerically stable, not because it is the

solution to an optimisation problem. There are a number of different ways to put an op-

timisation problem to obtain the B-spline coefficients of a spline curve that fits a given

data set. By putting the optimisation problem in different ways, spline curves of different

properties may be obtained. Cubic spline interpolation, probably one of the most popular

uses for splines, has been described in chapter 3.1 for splines in piecewise polynomial

form. The equations for an interpolating cubic B-spline can be set up in a similar way

using B-spline basis functions (3.10) instead of piecewise polynomials (e.g. Farin, 2002;

Epperson, 2007). A remotely sensed time series typically is an error prone data set and

a meaningful spline model for the data can only be fitted in a mean sense by using least

squares procedures.
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Least squares approximation

Whenever there are fewer knots than data points the curve fitting problem can only be

solved in a mean sense by minimising the sum of squares of the data points yt and the

values of the regression spline f (t):

∑
[yt − f (t)]2 (3.13)

More precisely, given a data set {(ti, yi)}n
i=1, the m coefficients c1, . . . , cm of a regression

B-spline of order k with (m− k+2) knots is found by minimising the following objective

function:

(c1, . . . , cm)= argmin
c j

n∑
i=1

[
yi −

m∑
j=1

c jB j(ti)

]2

(3.14)

Let B be an n× m matrix of B-spline basis functions of order k, where the jth basis

function is in column j of B, j = 1, . . . ,m, and the entries (rows) of the column vector b j

are the values for the jth basis function of order k, evaluated at locations ti, i = 1, . . . ,n:

B=


B1(t1) B2(t1) · · · Bm(t1)

B1(t2) B2(t2) · · · Bm(t2)
...

... . . . ...

B1(tn) B2(t2) · · · Bm(tn)

 (3.15)

The basis function values B j(ti) are calculated according to (3.10). In equivalence to (3.8),

a B-spline representation of a discrete data set {(ti, yi)}n
i=1 may then be written in matrix

form as

y=Bc+e (3.16)

where y is a vector of data records yi at times ti according to the data set, B is the basis

matrix and c is a vector of B-spline coefficients. The n-vector e= (e i) is a vector of residual

errors of the spline model. To fit a spline model to a set of observational data {(ti, yi)},

equation 3.16 has to be solved for the coefficient vector c in the least squares sense by

using the normal equations (e.g. Golub and van Loan, 1996),

(BTB)c=BTy (3.17)

to yield the coefficient vector c as

c= (BTB)−1BTy

which is equivalent to minimising (3.14). How close a spline curve may be to a given set

of data mostly depends on the number of basis functions m employed in the fit, and to a

lesser extent on the degree of the spline’s polynomial pieces.
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Weighted least squares

Equation (3.17) describes an ordinary least squares fit. It has been proposed by Chen

et al. (2004) that the quality information available in a number of long term archives of

remotely sensed data should be used to improve the robustness of analysis methods. If

such quality information is to be incorporated in a least squares procedure to make the

fit less dependent on erroneous data, a weighted least squares procedure may be used,

which requires only a slight modification of the normal equations (3.17) for an ordinary

least squares fit. For a weighted least squares fit, a weight matrix W enters (3.17):

(BTWB)c= (BTW)y (3.18)

and the coefficient vector becomes

c= (BTWB)−1(BTW)y,

If weighted least squares is used to adjust the relevance of the individual data points in

the fit, W= diag(w) is a diagonal matrix and w= (wi)n
i=1 is a vector of weights associated

with the data points yi in y. For example, Jönsson and Eklundh (2004) propose to use

weights around 1, 0.5 and 0 for data points acquired under clear sky, cloudy, and heavily

clouded conditions, respectively. Weighted least squares may also be used as a part of an

iterative procedure to accomodate the upper envelope of an NDVI time series by adjusting

the weights between iterations according to the distance of a data point from the modelled

curve (Sellers et al., 1994; Jönsson and Eklundh, 2002; Hermance et al., 2007). If, for

example, a data point lies below the modelled curve in one iteration, it may be considered

less important and its associated weight in the next iteration step may be lowered by a

certain factor. This iterative procedure leads to a model function that is adopted to the

upper envelope of the data (Jönsson and Eklundh, 2002).

3.5 Smoothing splines

In principle, if there is a record of observational data available with n samples, it is

possible to fit a spline f (t) to these data that consists of n−1 polynomial pieces, i.e. one

piece between every two data points. If such a model yt = f (t)+εt is fit in the least squares

sense to approximate f (t), a very rough curve is obtained that is likely to overfit the data.

Regression splines approach this problem by reducing the number of knots in the spline

model. In this way, the curve is represented by fewer polynomial pieces and a smoother,

more average fit is obtained.

Smoothing splines follow a different approach: in a smoothing spline, the number of

knots is equal to or at least of the order of the number of data points in a sample that is

used to approximate a spline curve, but instead of merely minimising the sum of squared
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errors (3.13), a different least squares criterion is employed that imposes a penalty on

the roughness of the resulting spline curve. The most common of such penalised least

squares criterions involves the second derivative of the spline function f ′′(t),

∑
[yt − f (t)]2 +λ

∫
[ f ′′(t)]2dt (3.19)

where the squared second derivative is integrated over the domain of the fit and λ is a

proportionality constant that determines an appropriate trade off between the closeness

of fit to a given data set and the smoothness of the curve. The extra penalty term can

be represented in matrix form by a penalty matrix (Hastie et al., 2009). For a B-spline,

let the matrix D be the m×m matrix of inner products of second derivatives of B-spline

basis functions with entries

d jr =< B′′
j (ti),B′′

r (ti)>

where < B′′
j (ti),B′′

r (ti) > denotes the inner product, or dot product, of the second deriva-

tives of the jth and rth basis functions of a B-spline basis of dimension m, evaluated at

the locations of the data points ti, i = 1, . . . ,n

< B j(ti),Br(ti)>=
n∑

i=1
B′′

j (ti) ·B′′
r (ti)

The matrix D may be calculated as

D= (B′′)TB′′

where B′′ is an n× m matrix of second derivatives of basis functions similar to (3.15).

The elements of B′′ are calculated recursively according to (3.21). The matrix D is used

as a penalty matrix to obtain a smooth B-spline curve by solving the following normal

equations:

(BTB+λD)c=BTy (3.20)

A major concern with smoothing splines is the choice of the smoothing parameter λ. The

degree of smoothing has a major influence on regression estimates from spline models. If

λ is too low, the spline will pick up too much detail and the data will be overfitted, if it

is too high, the data will be over smoothed. In both cases the spline model will not be a

good estimate of the conditional mean values of the data. One possibility for estimating

an optimal smoothing parameter is by cross validation (Wahba, 1990; Takezawa, 2006;

Wood, 2006). By leaving out each data point in turn and fitting the model to the remain-

ing data, a cross validation score can be determined by calculating the squared difference

between the missing data point and its modelled value. Subsequently, the squared differ-

ences are averaged over the entire data set to yield an overall score. Figure 3.10 shows

a cubic smoothing spline fitted to an EVI time series of one year from a location in the
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Figure 3.9: Three different smoothing splines fitted to a four year time series of the Aksu dataset
with a smoothing factor λ of different orders of magnitude (λ= 0.5,5,50). All spline models have
a number of knots equal to the number of datapoints.

Aksu dataset. The cross validation score of candidate values for λ on a logarithmic grid is

evaluated to determine the best λ with the minimum score. The minimum for λ may be

determined by setting up an objective function for cross validation and subsequent min-

imisation of this function using a method for function minimisation in one dimension,

e.g. a golden section search (Press et al., 1992). However, cross validation assumes that

mean and variance Var(εt) of the residual errors are constant across the entire curve. If

time series modelling is understood as a means to estimate an underlying unknown func-

tion m(·) that gives raise to an observed signal, this may be a problem. The appropriate

degree of smoothing should depend on the true smoothness of m(·), as expressed in the

second derivative m′′(·). In the case of time series the errors may be autocorrelated. If

the properties of m′′(·) are unknown, it is impossible to determine how much of the irreg-

ularity in the observed data is due to m(·), and how much is due to the irregularity in the

residual errors Var(εt). If the variance in the observed data is low, this may be because

m(·) is smooth, or it may be the result of highly autocorrelated residual errors. (Bowman

and Azzalini, 1997). If the properties of m′′(·) cannot be determined from an independent

source of information, an estimate of the autocorrelation function is needed to assess the

proportions of true variance in the signal and variance due to erroneous observations.

Cross validation should only be used to determine λ in the case of uncorrelated residual

errors.

P-splines

A different type of regularised spline models called P-splines was proposed by Eilers

and Marx (1996). P-splines are smoothing splines that define roughness based on the

shape of the spline’s control polygon rather than penalising the roughness of the spline

curve itself using its second derivative. Roughness is measured according to the second

differences in the B-spline coefficients c j that form the curve’s control polygon. If all the
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Figure 3.10: Estimation of an optimal smoothing parameter λ using cross validation. The left
panel shows the cross validation score for different values of λ. Candidate values are computed
on a logarithmic grid. The right panel shows the cubic smoothing spline with the optimal λ= 7.5×
10−5 at the minimum of the curve on the left side. The positions of the spline’s knots correspond
to the data points. The data is from one year of an EVI time series from a location in Aksu.

second differences ∆2c j are small, then the control polygon does not oscillate much and

prescribes a smooth curve shape. Thus, in addition to minimising the sum of squares of

the differences between measured and fitted values (3.13), Eilers and Marx (1996) aim

at minimising the second differences of the coefficients of a B-spline basis with a uniform

set of knots

c1 −2c2 + c3 = 0
...

...

cm−2 −2cm−1 + cm = 0

which leads to the following expression for minimisation:

n∑
i=1

[yi −
m∑

j=1
c jB j(ti)]2 +λ

m∑
j=p+1

(∆pc j)2

The operator ∆p is the pth difference operator, for example, using second differences as

proposed by Eilers and Marx (1996), ∆2c j = c j−2c j+1+c j+2. As with the second derivative

penalty, the tradeoff parameter λ controls the balance between the smoothness of the

resulting spline curve and the closeness of its fit to a given set of data. Setting λ > 0

leads to the fact that the absolute differences in the coefficients of adjacent B-spline basis

functions are constrained. As a consequence, the curve composed of these basis functions

and corresponding coefficients does not exhibit steep or rapidly changing slopes. Because

of the use of differencing, the intervals between adjacent knots along the curve must all

be equal, which means that the P-spline penalty can only be used with B-splines having

uniform knot vectors. To obtain the coefficients for a smooth B-spline curve, the linear
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Figure 3.11: Examples of P-spline models using second difference penalties with different pro-
portionality parameters λ= 0.5,5,50 fitted to the four-year Aksu timeseries.

system of equations to solve is

(BTB+λDT
pDp)c=BTy

where Dp is the pth order difference matrix, obtained from differencing the identity ma-

trix p times. The elements of a single row of Dp are the pth differences of the correspond-

ing elements of the identity matrix. For a B-spline basis of dimension m, differencing the

identity matrix with m rows and columns p times yields a matrix Dp of m rows and m−p
columns. The parameter λ is a smoothing parameter similar to that of a smoothing spline

with a second derivative penalty.

P-splines conserve moments (means, variances) of data (Eilers and Marx, 1996, 2010) and

are a valuable option when dealing with time series of regularly spaced observations.

P-splines have the advantage that, compared to the smoothing splines with a second

derivative penalty, the calculations of second differences of the coefficients are simpler

and faster. Furthermore, if the second derivative of a spline curve is used in evaluating

the spline model, for example to locate extreme points, it may be more appropriate to

use a penalty that is not directly related to the second derivative of the curve. However,

there is a close relation between the P-spline penalty and the penalty term based on the

second derivative of the curve. Figure 3.11 shows three different P-splines fitted to a

four-year time series of the Aksu dataset. The P-spline penalty has an effect very similar

to the smoothing spline (figure 3.9), but is computationally less involved. P-splines are

therefore a good alternative to smoothing splines if a uniform knot vector is used.

Special penalties

The fact that B-splines are compactly supported and have local control can be useful in

defining special penalties, where only a part of the spline curve is subject to smoothing.

Since the parameters of a B-spline affect only a small part of the entire spline, the linear
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system of equations (3.20) can be modified to switch smoothing on and off for different

parts of the spline curve. When smoothing is not desired on a given knot interval, the

penalty terms in the penalty matrix D for the basis functions that are nonzero on that

interval are eliminated. This may be useful if the vegetation signal in a remotely sensed

time series is faint and driven by erratic precipitation events, such as in observations of

drylands. Greenup in dry environments often follows immediately after rainfall events

(Archibald and Scholes, 2007). Smoothing is appropriate in dry periods when there is no

discernible vegetation signal and the data is mostly noise. In wet periods, however, it

may prevent the detection of faint, but rapidly changing phenological signals. By locally

switching on and off the smoothing in dry and wet periods, a better overall model for a

time series may be built.

3.6 Fitting periodic spline models

Periodic splines are useful in building models with similar properties as a Fourier series,

where a time series is treated as a finite record of an infinitely repeating, periodic signal.

With a suitable periodic basis, a spline can be constructed where the ends join smoothly

to accomodate annual or semiannual cycles in remotely sensed time series. As already

mentioned in chapter 3.3, the first and last (k−1) coefficients of a B-spline of order k must

be equal to ensure periodic continuity at the ends of the spline. To set up a basis matrix

P similar to (3.15) for a periodic spline, the last (k−1) spline coefficients are eliminated

by dropping the last (k−1) columns of the basis matrix B in (3.15) after adding their

elements to the first (k−1) columns of B. Thus, if a periodic B-spline basis has m = r+k−1

basis functions, P is an n× r matrix, where n is a number of locations where the spline

is to be evaluated (Dierckx, 1993; Eilers and Marx, 2010). In this way, a basis is formed

where the basis functions are “wrapped around” to support a periodic curve.

3.7 Knot number and knot placement

For a regression spline model, one must select the number of knots and where to place

them along the time axis. The number of knots has an important effect on the spline fit.

Using a high number of knots in a regression spline yields a spline with little bias but

increased variability and may result in overfitting a given data set. On the other hand, if

the number of knots is too low, the resulting spline will be overly smooth, with little vari-

ability but possibly largely biased. Usually, the number of knots in a regression spline is

chosen much smaller than the number of data points. In principle, the number of knots

and their positions are free parameters of a spline model occurring in a nonlinear way

(Wold, 1974). There exist strategies for automatic spline fitting that try to select an op-

timal number of knots and positions. Such strategies commonly work by systematically

varying the positions of the knots until an acceptable minimum is found for the sum of

squared residuals. In an iterative process, knots are added in intervals where the resid-
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uals are inacceptably large (Wold, 1974; Dierckx, 1993). However, the choice of a number

of knots and positions is not a complicated matter. The knots should be chosen so as to

reflect the specific properties of a given data set, such as the number of available data

points, the positions of extreme points. There should be a reasonable number of points

per knot interval, and the number of extreme points per interval should be chosen in ac-

cordance with the degree of the spline model. For a cubic spline, there should be no more

than one extreme point and one inflexion point per interval, since a cubic polynomial is

not capable of approximating more variations (Wold, 1974). The common practice of plac-

ing knots at evenly spaced intervals within the range of the data makes sense if the data

itself is given at uniform intervals, as is the case with most remotely sensed time series.

Equally spaced knot intervals make sure that there are enough data points in each inter-

val to obtain a reliable estimate of the underlying curve. Nonuniform knot vectors may be

more appropriate if the data has obvious features. When noise and structure in the data

are not equally distributed, it may be reasonable to reduce the number of knots in less

structured parts of the spline curve, similar to the special penalties discussed in chapter

3.5. For example, in an NDVI time series, the number of knots in an interval outside

the growing period, where the NDVI values are low and noisy, may be less than within

a growing period, where more variability is needed in the fitted model to accomodate the

shape of the phenological cycle. To honour the general scientific precept of Occam’s razor

(MacKay, 2003), there should be as few knots as possible in order to keep the number of

model parameters small. Stone (1986) found that the positions of the knots in a spline

model are less important than the number of knots used.

3.8 Derivatives of B-splines

The ability of a spline model to continuously represent derivatives of the modelled curve

is very useful in developing algorithms to extract phenological parameters from remotely

sensed time series, e.g. to indentify the local minima and maxima along the curve. Many

methods to determine key phenological transition dates such as the beginning of greenup

and senescence rely on derivative information (e.g. Tan et al., 2011) or curvature and its

rate of change (e.g. Zhang et al., 2003). For a B-spline defined as in equation (3.8), the

derivatve of the curve f (t) may be found by computing the derivative of each of the basis

functions:

B′
j,k(t)= k−1

x j+k−1 − x j
B j,k−1(t)− k−1

x j+k − x j+1
B j+1,k−1(t) (3.21)

It follows (Dierckx, 1993; Rogers, 2001) that the derivative of a B-spline curve is another

B-spline curve defined on the original knot sequence and of order one less than the origi-

nal curve

f ′(t)=
m−1∑
j=1

d jB j+1,k−1(t) (3.22)



3 A spline framework for remote sensing time series analysis 55

where {d1, . . . ,dm−1} is a new set of basis function coefficients given by

d j = k−1
x j+k − x j+1

(c j+1 − c j)

The fact that a first derivative of a B-spline is another B-spline allows that higher order

derivatives may be computed recursively. Based on the derivatives, the curvature of a

polynomial is given by the expression (Edwards and Gordon, 2004):

κ= f ′′

(1+ f ′2)3/2

When f is a polynomial curve of degree greater than one, the rate of change of its curva-

ture is given by

κ′ = (1+ f ′2) f ′′′−3 f ′ f ′′2

(1+ f ′2)5/2

Thus, a spline curve can be efficiently analysed to estimate crucial phenological dates

from time series of vegetation indices.

3.9 Finding zeroes and inverse values

The continuous derivatives of a spline curve, which are splines themselves, may be used

to determine the minima and maxima of a phenological cycle by analysing the extreme

points along the time series. To this end, the zeroes, or roots, of the first derivative have

to be found and the second derivative must be evaluated at these points to determine

whether a given extreme point is a minimum or a maximum. Since the curve and its first

and second derivatives are functional representations, this happens independently of the

sampling resolution of the original time series. The problem of finding the roots of poly-

nomials is well studied (Hamming, 1973; Acton, 1990) and several elaborate algorithms

are available to solve it. The method of Jenkins and Traub (1970) for real and complex

polynomial root finding is common and has established as a standard (Press et al., 1992).

There is a variation of the algorithm which is faster if the polynomial’s coefficients are

real (Jenkins, 1975). It is straightforward to apply this algorithm to a spline curve, since

the zeroes of a spline function f (t) may be determined by finding the real zeroes of its

polynomial pieces (Dierckx, 1993).

If the spline is in its B-form (3.8), it must be converted first to its piecewise polynomial

form to apply the method. It has been shown by de Boor (2001) how this conversion may

be done in a numerically stable and efficient manner by evaluating the B-spline and its

(k−1) derivatives at the knots,

C j,r = dr−1

dtr−1 f (x j)

where C is a (m− 3)× k matrix of derivatives, where (m− 2) is the number of knots.

The rth entry in the jth row of C is the (r−1) derivative of the spline curve at knot x j,
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r = 1, . . . ,k and j = 1, . . . , (m−3). The method of Jenkins and Traub (1970) requires the

usual polynomial coefficients rather than the derivatives, which may be obtained from

the derivatives in C by the relation c jr =C j,r/( j−1)! (de Boor, 2001), where c jr is the rth

polynomial coefficient of the jth polynomial piece of the spline. This yields a polynomial

representation such as (2.7), where the leading coefficient is the last of k coefficients for a

polynomial of degree (k−1). The jth polynomial piece in the spline’s piecewise polynomial

representation (3.1) may thus be written as

f j(t)=
k∑

r=1
c jr(t− x j)(r−1) for x j ≤ t < x j+1 (3.23)

A root of the polynomial f j(t) within the open knot interval J = [x j, x j+1) is also a root

of the spline f (t), provided that t ∈ J. Root finding using the procedure of Jenkins and

Traub (1970) may fail if the leading coefficient (the coefficient associated with the largest

power) is close to zero. However, if this is the case, it also indicates that the curve fitting

problem is not well posed and a spline model of a lower degree should be used for a given

data set.

By using the Jenkins-Traub algorithm, the spline curve is evaluated at suitable locations

to get good estimates of its zeroes. This can be computationally demanding, and the

computational cost increases with the number of polynomial pieces in a spline. Two

important properties of B-splines can be exploited to calculate zeroes more efficiently

(Dierckx, 1993). First, the B-spline basis functions are always positive or zero

B j,k(t)≥ 0 for all t

second, the basis functions have compact support, i.e.

B j,k(t)= 0 if t ∉ [x j, x j+k]

It follows that a B-spline f (t) cannot have a zero in the knot interval [x j, x j+1] if all

nonzero B-spline coefficients for that interval cr, r = j, . . . , ( j+ k−1) have the same sign.

Thus, the effort of converting a part of a B-spline to its polynomial representation and

calculating the zeroes of the resulting polynomial may be considerably reduced if only

those intervals of the spline are considered that actually contain zeroes.

Another convenient property of a B-spline is its affine invariance. Affine invariance

means that any affine transformation can be applied to a B-spline curve by applying

it to the vertices of its control polyline, that is, the spline’s coefficients. This helps in solv-

ing inverse problems. A common inverse problem in the determination of phenological

descriptors is the determination of the point in time when a time series signal increases

over, or falls below a certain threshold y (White et al., 2009). A problem equivalent to

finding t = f −1(y) is to find the roots of a function g(t) = f (t)+ y. The translation of a
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curve by a certain amount parallel to the time axis can be seen as a simple affine trans-

formation. Given a B-spline with a basis of dimension m with coefficients c j, the problem

of finding the times t at which the spline function f (t) has a prescribed value y is equiv-

alent to finding the roots of the B-spline with g(t) = f (t)+ y with coefficients d j = c j − y,

j = 1, . . . ,m. Thus, the same algorithm that is used in the determination of the zeroes of a

spline can also be used to determine the times where a spline curve equals any arbitrary

threshold.



4 Estimation of phenological parameters

In chapter 3, it was shown how polynomial splines, especially B-splines, can provide a

framework for analysing remotely sensed time series to determine phenological descrip-

tors. B-splines provide robust, data centred functional representations that are, unlike

most other methods considered here, complete, self-contained structural models. They

not only serve to estimate a phenological curve from a set of data, but also provide the

means for analysing the structure of the curve and its phenological cycles. The fact that

minima, maxima, inverse values and definite integrals of a B-spline can be obtained in a

straigthforward, analytical way renders it a very efficient data structure to define pheno-

logical descriptors and determine their values from a given time series.

There exist a number of implementations for different kinds of B-splines, e.g. in the FOR-

TRAN language (de Boor, 1977, 2001; Dierckx, 1993), but these implementations often

have the character of examples with implicit limitations on, for example, the number of

knots that can be used. For a longer time series with hundreds of observations, a limit of

typically 30-50 knots is too restrictive, and the restrictions are not easily removed from

the code. Thus, the open and periodic regression B-spline, smoothing spline and P-spline

models discussed in chapter 3 were implemented as C++ software components to allow

the efficient processing of even large sets of remotely sensed data. The matrix operations

required to solve the optimisation problems were implemented based on the armadillo1

linear algebra library (Sanderson, 2010). All spline models are derived from a single

B-spline base component that provides the facilities to compute derivatives, definite in-

tegrals, roots and inverse values of a fitted spline model. Based on the spline software

components, a number of application programs were written for the exploration, fitting

and exploitation of spline models in the analysis of remotely sensed time series provided

as imagery data sets. Besides the spline module, the applications required two additional

key components: a graphical user interface and the facility to read and write imagery

datasets. The former component was realised on the basis of the FLTK2 library. For the

latter component the geospatial data abstraction library GDAL3 was used. An applica-

tion program to explore and test spline models on remotely sensed data sets is shown in

figure 4.1. The programs give the user full control over the type of spline model to use,

its degree, and the number and position of the knots.

4.1 Choosing an appropriate spline

The first step in deriving phenological descriptors from a remotely sensed time series is

to find an appropriate spline model as a functional representation for it. In chapter 3,

1http://arma.sourceforge.net
2http://www.fltk.org
3http://www.gdal.org
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Figure 4.1: Example of an application to explore the use of different spline models with remotely
sensed time series. The image viewer shows the Aksu EVI data set.

the properties of different spline models were discussed along with their specific assets

and drawbacks. Along with the degree of the spline’s polynomial pieces, the complexity

of a regression spline is controlled chiefly by the number of knots, while the number of

degrees of freedom of a smoothing spline or P-spline is adjusted through the smooth-

ing or regularisation parameter λ. When appropriate, the techniques of regression and

smoothing splines may be combined to exert even finer control on the degrees of freedom

of the resulting curve. How close a fit is obtained is largely a question of the number of

knots. Due to the restrictive effect of the knots on the spline’s behaviour, the degree of

the polynomial pieces is only a subordinate influence factor. By regularisation, the spline

model is biased toward a smoother, less wiggly shape of the overall curve, as opposed to a

close fit. Finding an appropriate spline model is often a balancing act between selecting

an appropriate number of knots and the amount of regularisation.

Because of the difficulties in fitting higher order polynomials, the degree of a spline curve

is not commonly used as a major adjusting parameter to determine the degrees of free-

dom of a spline fit. Least squares fitted higher order polynomials tend to oscillate and

produce large discrepancies near the ends of a modelled curve. Polynomial splines were

invented to solve polynomial curve fitting problems by subdividing a curve into a number

of pieces that are less complex and easier to fit. But this implies that the degree of the

individual polynomial pieces can be expected to be considerably lower than the degree of

a single polynomial flexible enough to accomodate the whole data set. If high polynomial

degrees are used in least squares fitting clamped B-spline curves, oscillation may still

occur near the ends of the spline, where the continuity constraints imposed by the basis
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Figure 4.2: A regression spline of order 14 fitted to a three-year section of an EVI time series
from a location near Aksu. Each year is subdivided into two polynomial pieces. The knots are
indicated by the asterisk symbols along the horizontal axis. In its interior, the spline fits the data
well. The oscillations at the left end of the curve are a result of the high polynomial degree.
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Figure 4.3: Regression splines of different order with 10 knots fitted to a two year time series
from the Aksu dataset. A year is covered by 5 polynomial pieces. The grid of knots is indicated by
the star symbols at the bottom, the dots represent the original data points. There is not much to
choose from a spline of order 4 (dashed curve) compared to a spline of order 6 (solid curve).

functions are dropped (figure 4.2). From the ends inwards, the continuity conditions at

the interior knots prevent uncontrolled oscillations of the high degree polynomial pieces.

As a consequence of the restrictive conditions in the interior of a spline, the shape of a

spline curve does not change much if the degree of the spline is increased (figure 4.3).

The extent of the shape differences between splines of different order depends on the

number of knots in the two splines. The more knots in a spline, the greater the number

of interior constraints and the lesser the extent of the shape differences with increasing

spline order.

Basically, two regression splines may have a similar number of degrees of freedom if

one of them has only few knots, but is of a large order, while the other has many knots

and a low order. An equivalent smoothing spline would have an even higher number of

knots in combination with an appropriate smoothing factor. In any case, the goodness
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of fit for the model depends on how well the linear optimistation problem to determine

the model’s coefficients may be solved for a given real-world data set. In order to fit a

regression spline model of a high polynomial degree to a typical real-world time series

with erroneous or missing observations, an iterative weighted least squares procedure is

required to achieve an acceptable fit (Hermance et al., 2007; Bradley et al., 2007). More-

over, the evaluation of a high order B-spline curve is computationally intensive because

of the recursive definition of the B-spline basis functions. Splines of lower order are

less computationally demanding and numerically more stable. If only the shape of the

modelled curve itself is of interest, no more than a cubic spline may be needed to model

remotely sensed time series. A cubic is the lowest degree that can support an inflection,

which allows to create curves with shapes such as asymmetries or shoulders commonly

found in time series of vegetation indices (Chen et al., 2004; Jönsson and Eklundh, 2002).

Splines of high degree (> 5) only make sense if an appropriate number of smooth deriva-

tives is required for any purpose. The first derivative of a cubic spline, for example, is

a second degree piecewise polynomial, its second derivative is a piecewise linear curve,

and its third derivative is a piecewise constant step function. The cubic spline itself and

its first derivative are continuous and smooth, while the second derivative is still con-

tinuous, but not smooth. The third derivative is not even continuous. A vivid example

for when cubic splines are no longer appropriate is in computer aided manufacturing,

where the second derivative of a spline stands for an acceleration profile: if a robot arm

is to handle a grinding tool to grind off some material along a path prescribed by a spline

curve, that curve’s second derivative should be a smooth continuous curve. Otherwise,

the robot would not accelerate and direct the tool steadily following the curve (Mosier,

2009). This is why third degree splines are seldomly seen in computer aided manufactur-

ing applications. Because of the demand for smooth second derivatives, robot engineers

typically use splines of fifth degree (Mosier, 2009). In applying splines to time series

analysis problems in remote sensing, one of the most important things is to find extreme

points. In the process of assessing extrema, the second derivative is only evaluated to

determine whether a given extreme point is a minimum or a maximum, and need not be

smooth. The piecewise linear second derivative of a cubic spline serves fine for the pur-

pose of distinguishing minima and maxima. Some methods for determining phenological

parameters rely on third derivative information (Zhang et al., 2003; Tan et al., 2011).

In such a case, it may be appropriate to use a quintic spline, whose third derivative is

a smooth, quadratic spline curve. Splines of higher degree than five are not generally

needed in the analysis of remotely sensed time series. Thus, instead of fitting a high

order spline with only a few knots to a remote sensing time series, it is more efficient to

use lower order splines and increase the number of polynomial pieces appropriately. In

addition, the number of polynomial pieces in a spline is a parameter that is more intu-

ititvely adjusted by an analyst than the rather incomprehensible weights in an iterative

least squares fit of a high order spline model.
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4.2 Deriving phenological descriptors from splines

Even if an optimal spline model of a time series has been established and is ready to be

exploited in order to determine phenological descriptors, the challenge remains to iden-

tify and quantify vegetation cover by relating the model parameters to principal pheno-

logical attributes. In order to derive a set of phenological descriptors from a time series,

the foremost thing is to identify a consistent set of minima and maxima that enclose the

individual vegetation periods or cycles. The top panel of figure 4.4 shows all the extreme

points identified from a detailed regression B-spline model of a 10-year time series from

a location near Aksu. The extrema were determined by using the Jenkins-Traub algo-

rithm to find the roots of the spline’s first derivative, as discussed in chapters 3.8 and

3.9. An advantage of this method is that the extreme points may occur in any arbitrary

pattern along the time axis, since the spline model contains no implicit assumptions of

regularity, unlike, for example, the low order Fourier model used by Jönsson and Eklundh

(2002). In addition, the accuracy of the resulting extreme points does not depend directly

on the dynamics and sampling resolution of original data, since the root-finding algo-

rithm evaluates the spline model at appropriate positions to localise zeroes in the first

derivative whithin a prespecified tolerance. However, the more detailed a given spline

model, the more extrema it will generally show, and not all of them will be relevant in

the determination of successive vegetation periods. The challenge is now to distinguish

the extreme points that bracket a phenological cycle from those that emerge from minor

features within a cycle.

The method proposed here to determine consistent extrema that bracket the vegetation

periods starts with the largest maximum in a time series and places a grid along the time

axis, centered around the location of the global maximum (figure 4.5). The grid size is

determined by the expected period length of a vegetation cycle. In the case of the Aksu

EVI data, which exhibit annual growth cycles, the expected period length is one year or

23 composites. The grid is used to determine a set of consecutive maxima that mark the

middle of a number of growing periods. Subsequently, each maximum is visited in turn

by the algorithm to determine the lowest minima to the left and to the right of a given

maximum, called the early and late minima, respectively. If no reasonable local mini-

mum can be identified as the early or late minimum, e.g. at the ends of a time series

record, the algorithm bails out and leaves the early and/or late minimum associated with

the given maximum value undefined. Any incomplete growth cycles with one or two un-

defined minima, as well as cycles where the time difference between the early and late

minimum is no longer than half the expected period length, are eliminated. In this way,

each growing cycle is bracketed by two local minima enclosing the largest local maximum

between them. The algorithm works entirely without value-based thresholds, just by as-

sessing the time pattern underlying the occurrence of the extreme points. Optionally, a

value-based threshold may be applied to eliminate candidate growing cycles where the
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Figure 4.4: Top panel: Extreme values computed from a spline model of a MODIS EVI time
series of ten years (230 observations). The model uses a rich B-spline basis with 80 knots. Bottom
panel: Consistent set of minima and maxima used to define the 10 seasons.

difference in values between the local maximum and the larger of the two minimums is

below a fixed threshold. The threshold setting is useful in the processing of time series of

dryland environments, where there is not always a noticeable vegetation response every

year during longer dry periods. The result of the overall procedure is a segmentation of

a given time series into a number of growth cycles, excluding annual segments where

no clear vegetation signal is observed. The consistent set of minima and maxima brack-

eting the growth cycles of the Aksu EVI example is shown in the bottom part of figure

4.4. The method of season identification is appropriate for time series with one growing

period per year. If a semiannual cycle is present, the annual bracketed segments must

be scanned for secondary maxima and minima in a similar way. Unlike other modelling

techniques, e.g. piecewise logistic or Gaussian functions, where a model can only be fit-

ted after assessing the structure of a time series (e.g. Zhang et al., 2003; Jönsson and

Eklundh, 2004), a spline model is by itself able to represent curve structure. If, for any

purpose, a different scheme for growth cycle identification is more appropriate, it can be

built on top of a spline representation of a time series without substantially changing the

implementation of the spline model as a whole.

Once the time series is structured into a number of annual growing periods, a set of

phenological descriptors can be calculated for each year. After revision of the various

phenological parameters presented in chapter 1.3, a set of 20 descriptors was selected
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Figure 4.5: Algorithm to identify a consis-
tent set of local minima and maxima that
bracket a phenological cycle. The grid with
size ∆ centered on the global maximum
pmax is used to determine a set of annual
maxima. The lowest minimum between two
successive maxima pi and pi+1 is at the
same time the late minimum of the ith year
l i and the early minimum of the (i+1) year
e i+1.

(b)

(c)(a)

(d)

(e)
(f)

(g)

(h)

(i)
(k)

(m)

(o)

Figure 4.6: Three years of a MODIS EVI time series (thin line) from a selected location in the
Aksu oasis illustrating various phenological parameters. The thick line shows the fitted smooth
B-spline. The solid dots show location (day of year) and modelled value of the early minimum,
peak and late minimum of a season (parameters (a), (b) and (c), respectively). Parameter (d)
gives the duration in days between successive minima. The open dots at (i) and (k) mark the
beginning and end of greenness, with (m), the duration of greenness, defined as the time span in
days between (i) and (k). The parameters (e) and (f) give amplitude and base level (latent) EVI
value, with amplitude defined as the difference between peak and latent EVI. Latent EVI is given
by the average of the early and late minimum values. There are four integral parameters, the
integral between two successive minima (g), the latent integral (h) and the greenness integral (o).
The total integral is defined by the sum of (g) and (h). There are two additional parameters not
shown above: the rate of greenup, which is defined as the slope of a line connecting the point of the
onset of greenness and the annual peak value; and the rate of senescence, which is the (positive)
slope of the line connecting the annual peak and the point of end of greenness.

and routines for their derivation were implemented in C++ on top of the B-spline base

component. The individual parameters are illustrated in figure 4.6. The first six param-

eters are given by the structuring into annual growing periods: they are defined as the

days of year where the early minimum, local maximum and late minimum of a growing

period occurs, and the corresponding vegetation index values at these days. The dura-
tion of a growing period in days is determined by the time difference between the early

and late minima. With each growing period is associated a latent value determined by

the average values at the two minima. Amplitude is defined as the difference between
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the maximum value and the latent value of a growing period. In addition, three integral

quantities are determined called the total integral, latent integral and the min.-min. in-
tegral. The total integral is given by the total area under the spline curve between two

successive minima of a growth cycle and may be taken to represent total biomass. The

total integral is split into a latent and a min.-min. integral. The latent integral is de-

scribed by a “box” whose width and height correspond to the duration and latent value of

a growing period, respectively (figure 4.6). The total integral may be taken to represent

the biomass permanently sustained at a given site (Tucker et al., 1981). The min.-min.

integral is obtained by subtraction of the total and latent integrals. The beginning and

end of the period of active vegetation development, or greenness, within an annual growth

cycle were determined using a method of adaptive thresholds. Beginning (end) of greene-

ness were defined as the day of year where the time series reaches a value equivalent

to the early (late) minimum plus a threshold expressed as a percentage of the difference

between the annual peak value and the early (late) minimum value. For the Aksu EVI

data, this thresold was set at 20 percent. Parameters related to greenness are the time

series values at the beginning and end of greenness, the duration of greenness, defined

as the number of days between the beginning and end of grenness, and the greenness

integral, which is the area of the spline curve over a horizontal line that intersects the

curve at the average of the values at the start and end of greenness (marked (o) in figure

4.6).

4.3 Comparison to other methods and algorithms

To examine and verify the results of the spline based strategy for deriving phenolog-

ical descriptors, two other available methods for calculating phenological parameters

were selected to compare the results. The first method, implemented in the software

ts_phen_ind4, follows the method of Reed et al. (1994) to determine the onset and offset

of the growing period, which is based on digital filtering. To determine the start and

end of the vegetation growing season, backwards and forwards lagged moving average

(MA) curves are calculated from a time series (figure 4.3), where the time lag is chosen

as one standard deviation (1SD) from the barycentre of a season. The beginning and end

of a growing period is then determined by the points where the backwards and forwards

lagged moving averages intersect the original time series (Ivits et al., 2008). The method

of piecewise Gaussian function fitting implemented in the TIMESAT software (Jönsson

and Eklundh, 2004) is chosen as the second method. Jönsson and Eklundh (2004) use

a variable threshold method to determine the onset and offset of the vegetation growing

season, where the beginning of a season is defined as the point on the fitted piecewise

Gaussian curve where the value has increased by a certain percentage of the distance

4The software was written and kindly provided by Wolfgang Mehl, European Commission Joint Re-
search Centre (JRC), Ispra, Italy.
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Figure 4.7: Schematic explanation of pheno-
logical parameters calculated from a time series
curve (solid line) using moving averaging (MA).
Start (SOS) and end (EOS) of season are deter-
mined by the points of intersection of the curve
and the time delayed MA’s. The early and late
minima are denoted by eMIN and lMIN, respec-
tively (after Ivits et al., 2008).

between the early minimum level and the seasonal maximum. The end of the season is

defined in a similar way by using the same percentage of the distance between the late

minimum level and the maximum (Jönsson and Eklundh, 2004).

The digital filtering, piecewise Gaussian and spline based models for the derivation of

phenological parameters were parameterised independently of each other by visual in-

spection of a number of curve fits. In the case of the digital filtering based method, the

model was parameterised by the author of the ts_phen_ind software, Wolfgang Mehl at

JRC in Ispra. The Gaussian curves were fitted in order to track the upper envelope of

the data (Jönsson and Eklundh, 2002). For the spline based approach a regression spline

with 80 polynomial pieces and a uniform open knot vector was fitted to the original data

set. The models were then used to calculate phenological parameters for the Aksu EVI

data set. Unlike the moving average based method, both the piecewise Gaussian method

and the spline based approach use variable thresholds (see chapter 1.3) to determine the

on- and offset of greenness. In order to compare the individual approaches, the percent-

age thresholds for both the piecewise Gaussian and the spline based method were set at

20 percent.

4.4 Comparison sampling design

Due to the characteristics of the imaging process, remotely sensed imagery typically ex-

hibits dependencies among neighbouring pixels, a phenomenon known as spatial auto-

correlation (Craig, 1979). When using analysis methods on image data with a statistical

basis, this spatial autocorrelation must be taken into consideration, since statistical anal-

ysis typically requires a set of data that comprise independent samples. It was shown

that spatial autocorrelation influences the results and accuracy assessment of land cover

classifications obtained from remotely sensed data (Labovitz and Masuoka, 1984; Con-

galton, 1988; Dobbertin and Biging, 1996; Hammond and Verbyla, 1996). If the distance

between a number of sampled pixels is lower than a specific autocorrelation distance in-

herent in a data set, e.g. when sampling homogeneous blocks of pixels (Hammond and

Verbyla, 1996), a sample is more likely to contain similar features due to the autocor-

relations among the sample elements. As a consequence, the variability in the data is

underestimated based on the sample. In assessments of land cover classification accu-
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Figure 4.8: Three types of spatial sampling. The horizontal and vertical coordinates of the sam-
ple points in the left panel have been chosen randomly within the width and height of the area.
The central panel shows a jittered grid: the area is divided into a grid, and one or more points are
randomly selected from every grid cell. Poisson disk sampling is shown in the right panel.

racy, this may lead to overly optimistic accuracy reports (Hammond and Verbyla, 1996).

In the same way, the assessment and comparison of the phenological features may be

affected by an optimistic bias if spatial autocorrelation is not taken into account. A good

sampling design should thus fulfil the following three criteria:

∗ To get a fair sample where no parts of an area are over- or underrepresented, the

sample points should be uniformly distributed over the entire sampling area, no

clumping or gaps should occur.

∗ Some minimum distance should be maintained between the sample points to avoid

contamination of the sample by autocorrelation.

∗ Within the limits set by the former two criteria, a sample should be random.

A common strategy is to use uniform random sampling, where the horizontal and vertical

coordinates of the points in a sample are chosen randomly from a given coordinate range,

with the result that the number of sample points per unit area follows a Poisson distribu-

tion (O’Sullivan and Unwin, 2010), as in the leftmost panel of figure 4.8. Uniform random

sampling leads to an irregular spatial pattern, and there may be considerable gaps where

no sampling points are placed. Then again, there are clumpy spots where two or more

sample points are at close distance, which means that a uniform random sample is sus-

ceptible to autocorrelation bias. Besides, if the gaps become too extensive, a sample may

no longer be representative for a given area as a whole. Stoffels et al. (2011) used a reg-

ular sampling grid to obtain training samples for the parameterisation of a maximum

likelihood classifer. In Gaussian maximum likelihood classification, per-class variance-

covariance matrices are used as parameters, so Stoffels et al. (2011) set the size of the

sampling grid well in excess of the autocorrelation distance to avoid the underestima-

tion of the per-class variances and covariances based on the training samples. Sampling

on a regularly spaced grid, where the distance between sample points in the horizontal

and vertical directions is set constant to avoid autocorrelated samples, is diametrically
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Figure 4.9: Generation of a new sample point
in Poisson disk sampling. The new point Q is
selected from the annulus (the disk, shown in
grey) surrounding an already existing point
P. A point on the disk is addressed by polar
coordinates (φ, r), r ∈ [rmin, rmax]. The process
is repeated by iterating over a set of existing
points until a prescribed sampling density is
reached (after Tulleken, 2008).

opposite to uniform random sampling and contradicts the above requirement of random-

ness. The former technique is too regular, the latter is too messy. An alternative method

that, contrary to a regular grid, retains a somewhat random sampling pattern while at

the same time mitigating autocorrelation bias is the jittered grid method, also known as

jittered sampling (Suffern, 2007). In jittered sampling, the total area to be sampled is

divided into a number of grid cells by subdividing the horizontal and vertical axes into

regular intervals. Subsequently, a random sample is placed within each cell of the grid.

The sampling density of a jittered grid is controlled by the number of grid cells and the

number of uniform random samples to place in each cell. The jittered grid sample shown

in the middle panel of figure 4.8 was created using 16 divisions along the horizontal and

vertical axes to partition the entire sampling area into 256 grid cells, placing one random

sample per cell. While jittered sampling leads to a more uniform random arrangement of

the sampling points, it does not completely avoid autocorrelated sample elements, since

the positions of the samples within the cells are completely arbitrary and there is no

hard limit on the minimum distance between individual sample points. A method that

fulfils all three of the above criteria for a good sampling design is the Poisson disk sam-
pling method (Tulleken, 2008). It is used in computer graphics to generate textures or

randomly place objects whenever the objects have to be tightly packed together; but no

closer to each other than a specified minimum distance. As shown in the rightmost panel

of figure 4.8, Poisson disk sampling leads to a well spaced, random set of points.

The basic idea of Poisson disk sampling is to generate new points around existing points,

so as not to disturb the minimum distance requirement. To this end, a new random

point is selected from an annulus surrounding an already existing point using a polar

coordinate system with its origin at the existing point (figure 4.4). The extent of the

annulus is defined by the minimum distance rmin and a maximum distance rmax. The

algorithm for Poisson disk sampling proposed by Tulleken (2008) starts by creating a

grid similar to a jittered grid whith a cell size of (rmin/2), where rmin is the minimum

distance between the sample points. In the next step, a first point is randomly chosen
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and a number of k new points are generated from its annulus. For every newly generated

point, the grid is used to check for other points that are too close to the new point, in

which case the point is rejected. The algorithm now iterates over the set of existing points

by picking points from the set at random, trying to add at most k points to its annulus

until there are no more points that can be added without violating the minimum distance

requirement. The parameter k is used in addition to the minimum point distance rmin to

control the sampling density. The larger k, the more sample points are generated within

limits of rmin.

In order to compare the digital filtering, piecewise Gaussian and spline based approaches

for deriving phenological descriptors, Poisson disk sampling was implemented in Python

following (Tulleken, 2008), and used to obtain well spaced paired samples of picture ele-

ments from the phenological parameter images. The minimum allowed distance between

sample points rmin was set to 10 pixels to avoid autocorrelation bias (Craig, 1979). The

outer diameter of the annulus rmax was set at twice the minimum distance (Tulleken,

2008). For the parameter k, a value of 5 was used.



5 Results and discussion

To verify the spline based approach for the derivation of phenological parameters, the

resulting phenological parameters from the uniform regression spline model discussed

in chapter 4.2 were compared to the results obtained from the two alternative methods

(chapter 4.3). Figure 5.1 shows three examples of phenological descriptors derived from

the regression spline model for the year 2005 based on the Aksu data set. The descriptors

shown are the start of the growing season (parameter (i) in figure 4.6), the season length

(parameter (m) in figure 4.6) and the integral of EVI over the growing season (parameter

(o) in figure 4.6). To check the plausibility of the phenological descriptors derived from

the regression spline model, a subset of modelled phenological parameters was compared

to the results from the other two models (moving average filtering and Gaussian curve

fitting). In regard of the temporal variability present in the Aksu EVI data, comparisons

were done for three individual years within the period covered by the data: 2002, 2005

and 2009. The first and last year of the entire period were ignored to avoid disturbances

due to edge effects in the determination of the phenological parameters. The subset of

descriptors shown in figure 5.1 comprises three most important phenological descriptors

that are derived equivalently by all three phenological assessment methods. The tim-

ing of the growing season and its length are important features e.g. in global change

research (White et al., 2009), while the seasonal integral can be used as a proxy to as-

sess the amount of biomass produced in a given year (Tucker et al., 1981). To include

only picture elements from vegetated areas for which the determination of phenologi-

cal descriptors is meaningful, pixels with an amplitude in a given year determined by

the regression spline model (parameter (e) in figure 4.6) below 0.2 EVI units were ex-

cluded from the analysis. The constant EVI threshold of 0.2 was chosen by inspecting the

parameter images of the seasonal amplitude. The agricultural areas in the Aksu area

could well be delineated from the surrounding desert areas by using the aforementioned

threshold. Under the restriction of the amplitude threshold, the Poisson disk sampling

yielded a set of 512 sample points for the year 2002, for the 2005 data, 547 samples were

obtained, and for 2009, sampling at the prespecified point density yielded a sample size

of 577. Since the sampling density in Poisson disk sampling is constant, this indicates

an approximate increase in the vegetated area of 13 percent between 2002 and 2009.

The three equivalent phenological parameters derived from the three time series anal-

ysis methods were compared on a point to point basis by paired random samples from

the imagery containing the phenological descriptors for 2002, 2005 and 2009. Table 5.1

shows summary statistics for the individual samples and parameters. In the mean, the

start of season dates were predicted within a window of six days by all three methods.

The greatest discrepancy of six days occured between the spline and the moving average

based model in 2009. The most consistent estimates for the start of the growing seasons

occurred in 2005, where the difference in means for the starting times was only two days.
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Figure 5.1: Examples of phenological de-
scriptors in the Aksu area for the year 2005.
Top left: day of year (DOY) of the start of the
growing season, top right: length of growing
season, bottom left: seasonal integral. Only
areas with a seasonal amplitude of at least 0.2
EVI units are shown. Map projection: UTM
Zone 44N, WGS 1984 ellipsoid. Map scale
1:1,800,000.

Despite the large sample sizes, a Kruskal-Wallis rank sum test (Spiegel and Stephens,

2008) performed on the estimates of the start of the growing season in 2005 was not sig-

nificant (p-value 0.3729). The null hypothesis of the test states that the estimates for

the start of the growing season are equal in their central tendency. The differences be-

tween the methods in 2002 and 2009 were significant according to the Kruskal-Wallis

statistics. For the other two parameters, growing season length and the seasonal inte-

gral, Kruskal-Wallis statistics indicated significant differences in all years. Differences

in the mean growing season lengths for the three models ranged from about one week

in 2002 to as much as two weeks in 2009, but the differences were always below, or at

least of the order of the standard deviations for the estimates of a given method in a

given year. Of all three methods, the moving average based method showed the least

intra-annual variability of season length estimates. Intra-annual variability of season
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2002 2005 2009
MA Gauss. Spline MA Gauss. Spline MA Gauss. Spline

Start
ȳ 123 121 119 121 121 119 130 125 124
σ̂ 14.66 25.42 24.97 14.65 20.70 20.41 15.67 21.08 17.22
ĉv 0.119 0.210 0.209 0.121 0.171 0.171 0.121 0.169 0.139

Length
ȳ 183 179 190 189 182 195 187 194 202
σ̂ 16.73 35.70 38.41 15.36 31.79 38.98 14.87 30.07 31.31
ĉv 0.091 0.199 0.202 0.081 0.175 0.199 0.080 0.155 0.155

Integral
ȳ 34.82 40.58 31.91 36.42 43.54 32.80 35.54 44.45 33.01
σ̂ 7.45 11.83 7.78 7.92 12.01 8.00 6.59 9.98 7.75
ĉv 0.214 0.292 0.244 0.218 0.276 0.244 0.185 0.225 0.235

Table 5.1: Summary statistics of the samples obtained from the three phenological data sets de-
rived from digital filtering (MA), Gaussian curve fitting (Gauss.) and spline curve fitting (Spline).
Samples are taken for three years at the beginning, middle and end of the time series. The
summary statistics for the start of the growing season (Start), the length of the growing season
(Length) and the seasonal integral (Integral) are the sample mean ( ȳ), the standard deviation (σ̂)
and the coefficient of variation (ĉv). Season start and length are given in days, integrals are given
in units of (EVI×day).

lengths for the piecewise Gaussian and spline approaches was of the same order. For the

seasonal integrals, the spline based approach provided the lowest estimates on average,

consistently over all three years that were considered. The mean seasonal integral values

of the moving average model were always in between the results of the spline model and

the piecewise Gaussian model, which constantly yielded the highest average seasonal

integrals.

5.1 Start of season

Figure 5.2 shows three scatterplots of the start of season estimates for the moving aver-

age (MA) based model for the years 2002, 2005 and 2009. The estimates of both models

do not scatter much around the 1:1-line, however, when the growing season of a sample

begins relatively early, the MA model has a tendency to provide slightly later estimates

compared to the spline based model. As can be seen in figure 5.3, the start of season

estimates for the piecewise Gaussian curve fitting method in comparison to the spline

model line up more consistently along the 1:1-line. There is a slight scatter around the

line, but no indication of a general bias. The fact that the spline model agrees better

with the piecewise Gaussian method than with the moving average based approach is in

accordance with the structure of the three approaches. In the piecewise Gaussian and

spline models, the start of season is determined in a similar way by a variable threshold

method. In both methods, the start of the season is determined as the point where the

EVI increases over a threshold that amounts to 20 percent of the annual amplitude. Since

the threshold parameter was set equivalently in both models, it can be expected that the
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Figure 5.2: Comparison of the start of sea-
son (start of vegetation development) deter-
mined by the spline and moving average (MA)
filtering approaches. The line indicates a 1:1-
relationship.

estimates of these two models are more in agreement as compared with the moving av-

erage method, which uses a completely different approach to determine the start of the

season. However, the scatterplots of figures 5.2 and 5.3 indicate that the start of season

estimates of all three modelling approaches are consistent.

5.2 Length of season

A less consistent picture is shown by the comparison of the estimates for the length of the

growing season between the moving average, piecewise Gaussian and spline based ap-

proaches to phenological analysis. The point clouds in the scatterplots of season lengths

derived from moving averaging (MA) vs. season lengths obtained from the spline model

are considerably tilted against the 1:1-line (figure 5.4). As already noticed from the sum-

mary statistics, the moving average estimates of season length are less variable than the

spline estimates. For some sample elements, the spline estimates indicate a longer sea-
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Figure 5.3: Comparison of the start of sea-
son (start of vegetation development) deter-
mined by the spline and Gaussian curve fit-
ting approaches. The line indicates a 1:1-
relationship

son than the MA estimates, but there is no evident relationship. Also, the scattering in

the point cloud is noticeably less in 2009 than in 2002 and 2005. The season lengths from

the piecewise Gaussian model, again, are more in alignment with the 1:1-line (figure 5.5).

The point cloud is not tilted as with the MA estimates, but there is a certain amount of

scattering that affects both approaches. Again, the tighter packing of points along the

1:1-line for the piecewise Gaussian model as opposed to the moving average model indi-

cates that the two curve fitting methods are more akin to each other as opposed to the

moving average method, concerning the way of timing the key phenological transitions.

While the curve fitting methods use adaptive thresholds, the MA method uses backwards

and forwards lagged moving averages. However, the length of season estimates of the

three methods differ considerably more between the methods than the start of season

estimates discussed in chapter 5.1. The season length is defined as the number of days

between the start and end of the season. Since the start of season estimates are well in
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Figure 5.4: Comparison of the length of
the growing season in days derived from
the spline and moving average (MA) fil-
tering methods. The line indicates a 1:1-
relationship.

agreement between the three tested methods, the discrepancies in the length of season

estimates can only be attributed to differences in the determination of the end of the

season. Figure 5.6 shows a section of two years of the original EVI time series for a se-

lected location in the Aksu area in combination with the start and end of growing season

estimates for all three methods for the two years. The profiles typically show a distinct,

sharp increase in EVI values at the beginning of the growing period. Accordingly, there

is not much difference in the timing of the start of season between the three methods.

All three approaches are able to detect the edge in the profile equally well. At the end

of the growing period, the profiles show more variability in shape. There is a rapid drop

in the EVI values followed by a slowly decaying shoulder that may be more or less pro-

nounced in individual years. The end of season estimates for the three methods are more

in agreement in years when the shoulder is less pronounced, as for example in the first of

the two years in figure 5.6. In the second year, where the shoulder is more pronounced,
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Figure 5.5: Comparison of the length of
the growing season in days derived from the
spline and Gaussian curve fitting methods.
The line indicates a 1:1-relationship.

the results of the end of season estimates differ. Under the assumption that the key phe-

nological transition at the end of the season is indicated by the sharp drop in EVI, the

spline and Gaussian methods provide better estimates of the end of the season, and thus,

of the season length, compared to the moving average method. However, the scattering

in the season length estimates between the methods indicates that the determination of

the end of season in the case of subtle profiles as in figure 5.6 is difficult for all three

models.

5.3 Seasonal integrals

As can be already seen from the summary statistics in table 5.1, the spline estimates of

the seasonal integrals were lower than the estimates of the moving average and piece-

wise Gaussian approaches. Figure 5.7 shows scatterplots of the seasonal integral derived

from the moving average method versus the seasonal integrals computed from the spline
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Figure 5.6: Comparison between the start and end of season estimates of the three methods for a
section of the time series of two years from a selected location. The curve shows the original time
series, the symbols denote the timings of the start and end of season estimates as determined by
the three methods. The slowly decaying shoulder at the end of the season is responsible for the
scattering in the length of season estimates. The horizontal axis is labelled in terms of days after
the first day of year in 2008.

model. The difference in the means of the estimates apparent in table 5.1 turns out to

be due to a consistent bias. The point clouds for all three years are tightly packed and

stretched along the 1:1-line, but are shifted slightly upwards parallel to the line. This

indicates a relationship between the moving average estimates and the spline estimates

of the seasonal integrals that can be described by an additive constant. The seasonal

integrals computed from the moving average method are, on average, slightly higher by

a certain amount than the integrals calculated from the spline model. Thus, regarding

seasonal integrals, the results from the moving average and the spline model may be con-

sidered as equivalent up to a constant. Since there is such a clear relationship, it is not

likely that the differences in the moving average and spline based integrals can be ex-

plained by the rather irregular differences in season length between the two approaches.

The fact that the variability present in the end of season estimates obviously does not

spread to the estimates of the seasonal integrals indicates that a typical EVI curve of

the investigated Aksu data set is rather flat and low at the end of the growing season,

so that an increased interval of integration due to a longer season does not influence the

values of the integrals much. The seasonal integrals of the spline model compared to

those computed from the piecewise Gaussian curve fit are shown in figure 5.8. As is the

case with the seasonal integrals obtained from moving averaging, the piecewise Gaussian

integrals are almost always higher than the integrals computed from the spline model,

but the discrepancy is greater compared to the moving average method. Furthermore,

the discrepancies are not approximately constant, but tend to increase with increasing

integral values.



5 Results and discussion 78

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●
●

●

● ●
●

●

●

● ●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Seasonal integral (spline)

Se
as

on
al

 in
te

gr
al

 (M
A

)
2002

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Seasonal integral (spline)

Se
as

on
al

 in
te

gr
al

 (M
A

)

2005

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Seasonal integral (spline)

Se
as

on
al

 in
te

gr
al

 (M
A

)

2009

Figure 5.7: Seasonal integrals derived from
the spline model compared to the seasonal
integrals obtained from the moving averag-
ing (MA) approach. Integrals are in units
of (EVI × day). The line indicates a 1:1-
relationship.

5.4 Trends

So far, it was established that, with the exception of the season length, the selected phe-

nologcial parameters obtained from the three models agree well for instantaneous data

sets of individual years. Since phenological parameters are typically used to assess veg-

etation dynamics, the phenological markers should also agree in their trends before the

models may be regarded as fully consistent. In chapter 1.4 it was mentioned that the

dynamics of land use in the Aksu area can be studied in a spatial context by analysing

the trends in phenological parameters over the course of time. Figure 5.9 shows the re-

gression coefficients of linear trends over 8 years from 2002 to 2009. The trends were

computed based on the phenological parameters of the spline model using the TimeStats

software (Udelhoven, 2011). The regression coefficients give the annual rates of change

for the individual phenological parameters. For the start and length of the growing sea-

son, the regression coefficients are in units of (days/year). The regression coefficients for
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Figure 5.8: Seasonal integrals derived from
the spline model compared to the seasonal in-
tegrals obtained from Gaussian curve fitting.
Integrals are in units of (EVI×day). The line
indicates a 1:1-relationship.

the seasonal integral are in units of [(EVI×day)/year]×103. As can be seen in the bottom

left panel of figure 5.9, the areas with the newly created agricultural fields mentioned in

chapter 1.4 (marked “B”) show relatively large positive regression coefficients for the sea-

sonal integral, indicating that the vegetation amount over time is increasing. In contrast,

the regression coefficients for the apparently stable areas marked “A” in figures 1.3 and

5.9 are moderately negative. In an actual trend analysis, statistical significance testing

would have to be done to establish the validity of the trends indicated by the regression

coefficients. It is, however, not within the scope of this thesis to analsyse and interpret

the trends in the phenological parameters in their environmental context. The regres-

sion coefficients are merely used to assess whether the results of the three modelling

approaches agree in their trends.

Figure 5.10 shows a series of scatterplots to compare the regression coefficients obtained

from TimeStats (Udelhoven, 2011) between the moving average (MA), piecewise Gaus-



5 Results and discussion 80

−40 −30 −20 −10 0 10 20

Reg. coeff.

Start of Season

−60 −50 −40 −30 −20 −10 0 10 20 30

Reg. coeff.

Length of Season

−4000 −2000 0 2000 4000 6000

Reg. coeff.

Seasonal Integral

A

B

Figure 5.9: Estimates of regression coeffi-
cients based on the spline model for a linear
trend for the years 2002-2009. Only areas
with a seasonal amplitude of at least 0.2 EVI
units are shown (see text for further explana-
tion). Map projection: UTM Zone 44N, WGS
1984 ellipsoid. Map scale 1:1,800,000.

sian, and spline based models. The sample points were taken from the random Poisson

disk samples for the year 2009 discussed earlier in this chapter. The scatterplots show

pairwise comparisons of the spline based model with the two alternative methods. The

regression coefficients for the start of season trend are shown in the top row of figure

5.10, the middle row shows the two scattergrams for the trends in season length. Trends

for the seasonal integral are shown in the bottom row.

The scatterplots show that, with the exception of the season length, the linear trends

of the selected phenological parameters are consistent between the three methods, too.

The regression coefficient estimates generally agree well for the start of season. The

point cloud formed by the moving average vs. the spline based start of season regression

coefficient estimates is slightly tilted against the 1:1-line, suggesting that the moving

average based approach provides marginally lower positive or negative trend estimates
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Figure 5.10: Comparison between regression coefficients of the 8-year trends. Top row: start of
season, middle row: season length, bottom row: seasonal integral.
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in comparison to the spline based method. The directions of the trend estimates of the

seasonal integral are also in good agreement, but the scattering between the piecewise

Gaussian and spline estimates is larger compared to the relationship formed by the spline

estimates with those of the moving average based method. In contrast, the directions of

the trend in season length do not agree well between the methods, which is a result of

the difficulties encountered by the models in timing the end of the growing season.

In summary, the spline based approach to determine phenological descriptors is consis-

tent with the two alternative methods for the test data set. Consistency exists in both

the descriptors themselves and the directions of their linear trends. The variations in the

length of season estimates present in all three models are a consequence of the shape of

the phenological profiles recorded in the test data set.



6 Conclusions and outlook

In this thesis, a general framework for the analysis of remotely sensed time series based

on polynomial spline models was developed, with a focus on the use of these models to

derive phenological descriptors from remotely sensed data. Spline models provide the

advantage of a data driven, locally controlled fit that does not anticipate a certain shape

of a phenological profile. Furthermore, splines have favourable mathematical properties

that can be exploited to efficiently analyse a modelled curve, e.g. to obtain its minimum

and maximum values. Most important, the derivatives and integrals of spline curves are

themselves splines and can be analytically derived from the coefficients of a fitted spline

model. Thus, splines are self contained analytical models for remotely sensed time series

that can be used with raw time series data and do not generally require preprocessing of

the data, e.g. for noise reduction.

The utility of the implemented spline models in deriving phenological descriptors from re-

motely sensed time series was tested and verified by applying a particular spline model

to MODIS EVI time series at a spatial resolution of 250 m from the Aksu agricultural

area in northwestern China. From a visual inspection of the curve fits of different re-

gression and smoothing spline models to a number of time series samples from the data

set, it was concluded that a simple regression spline provided a good model for the data.

To assess the plausibility of the spline method to derive phenological parameters, the

results of the spline model were tested against the results of two other well established

models to derive phenological descriptors. The comparisons showed that all three models

were consistent in the prediction of the phenological metrics considered. Thus, the spline

based method to derive phenological parameters performed equally well compared to the

other two methods. An advantage of the spline model is that its parameters, such as the

number of polynomial pieces that comprise a curve, are intuitive and can be easily ma-

nipulated by an analyst in a trial-and-error technique to find a well fitting spline model

for a given data set.

A validation of the results derived from the phenological analysis of remotely sensed

time series imagery by ground truthing is generally difficult. Time series imagery prod-

ucts such as the MODIS collections and the SPOT VEGETATION archive typically have

a coarse spatial resolution between 250 m and 1 km. It is thus prohibitive to compare

ground point measuremets directly to pixel values of remotely sensed data products be-

cause of the scale difference (Liang et al., 2002; Liang, 2004). Such comparisons could

only be made if an observed surface was large and homogeneous. In a spatially heteroge-

neous environment, such as the agricultural plots in the Aksu oasis, a direct comparison

between point measurements and 250 m MODIS pixels is not appropriate. The same is

true for the collection of reference information, e.g. if a set of phenological descriptors

is to be used for land cover classification. The more inhomogeneous an observed area in
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relation to the ground resolution of a remote sensing instrument, the less likely it will be

that a scene observed by that instrument will contain pure pixels that are occupied by

a single land cover type. Instead, the remotely sensed time series as well as any pheno-

logical descriptors derived from it will be the product of a mixture of different land cover

types.

The problem of synergy effects (Cracknell, 1998) due to mixed pixels may be adressed

by semiquantitative classification methods for remotely sensed time series such as the

approach developed by Evans and Geerken (2006), which not only identifies the dominant

land cover type for a given picture element, but also gives an estimate of its relative

fractional coverage. This allows, for example, to collect reference pixels that are not

exclusively covered by a single land cover type (Evans and Geerken, 2006). The approach

of Evans and Geerken (2006) is based on analytical derivatives of a Fourier series of

NDVI time series observations. Splines share similar properties with a Fourier series

regarding the form of the derivatives. A derivative of a spline is another spline in the

same way that a derivative of a sinusoid is another sinusoid (Smith, 2003). Thus, spline

models may be used to develop similar classification models. In trying to discriminate

subtle differences between vegetation types in an arid environment, Evans and Geerken

(2006) encountered problems such as spurious noise in higher harmonics that stem from

the global fit of a Fourier series. As opposed to a Fourier series, splines can provide

compact support, and it may well turn out that spline based semiquantitative classifiers

are more robust than their Fourier based counterparts.

Other researchers proposed to try to bridge the scale gap between ground observations

and coarse level satellite observations by scaling up the ground observations using a cas-

cade of imagery products at different spatial resolutions (Liang, 2004; Fisher et al., 2006).

Fisher et al. (2006) used logistic functions to scale up field measurements of phenological

parameters to higher resolution satellite records (Landsat). These scaled up data could

be used in turn to calibrate or validate coarse resolution imagery products. A framework

for time series analysis should therefore be able to cope with not only vegetation index

products obtained on a regular schedule by globally observing platforms, but also with

shorter, possibly discontinuous time series of vegetation parameters produced from ob-

servations at a regional scale that provide higher spatial resolution but less temporal

coverage. The flexible properties of spline models may allow in the future to compute

phenological parameters from short discontinuous time series like Landsat observations

in a way that is consistent with other spline models for hypertemporal observations at a

coarser spatial scale.

An entirely different strategy to enhance spatial resolution is to use image fusion tech-

niques in the spatial domain to augment the spatial resolution of coarse level imagery by

merging it with imagery products of higher spatial resolution. Gao et al. (2006) devel-

oped a spatially and temporally adaptive reflectance fusion model (STARFM) to combine
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spectral reflectances of Landsat and MODIS sensors. The model is based on a weighting

function to fuse the MODIS and Landsat data by using information from spectrally sim-

ilar neighbouring pixels. The STARFM algorithm may be valuable for applications that

require high resolution in both time and space. Since splines are general, data driven

models, they may also be applied to these data sets.

It was not possible within the frame of this work to examine all aspects of spline mod-

els relevant to remote sensing phenology in detail. However, the application programs

described in appendix A, developed to fit spline models to time series of remotely sensed

data and derive phenological parameters, are useful and perform equally well compared

to other methods for the Aksu test data set. The programs are written in such a way as to

provide convenient user interfaces to calculate phenological parameters from time series

imagery. Thus, these software products already provide valuable tools in the analysis

of Earth observation data that complement existing implementations. Whether splines

are superior to other methods in the determination of phenological descriptors across dif-

ferent ecosystems and data archives may turn out in the future, when the operational

software tools provided through this work will be used on more and more data sets with

different characteristics. In addition, the implementation of the spline framework for

time series analysis that forms the basis for the application programs in appendix A may

just as well serve as a basis for other analysis methods of Earth observation time series

such as semiquantitative classifiers.



A Description of Computer Programs

Based on the C++ implementations of the various spline models discussed in chapter 3,

a number of application programs have been written in the course of this work to fit and

evaluate spline models. There are four different programs: The splfit application is in-

tended for the exploration of remotely sensed time series imagery using spline models. If

an acceptable model is found, the splfit program can be used to perform the actual fitting

of the model for an entire image data set. A spline model fitted by splfit can be evaluated

using the splcal and phencal programs. The splcal program can be used to evaluate

the spline model or its derivatives, e.g. to obtain a resampled data set based on the

spline model’s predicitons, while the phencal program calculates various phenological

parameters from the B-spline representation of a time series.

A.1 splview

The program splview provides a graphical user interface to explore different spline mod-

els for the analysis of remotely sensed time series. The interface consists of a grayscale

image viewer combined with a time series plot. Time series vectors from different loca-

tions of an image containing a time series may be analysed using various spline models.

Roots, extreme points and seasonal information (beginning/end of a season) may be dis-

played. Most of the options are available via context menus (right mouse button). The

following display operations are available: ’SHIFT’ key and left mouse button (region se-

lection); ’STRG’ key and left mouse button (pan); mouse wheel (zoom). The middle mouse

button resets the zoom window to display the full extent of the loaded image.

Command line synopsis

splview [-a name] [-A name] [-b band] [-c length] [-k number|-K name] [-l offset/gain]

[-m] [-p] [-t threshold] image-file

Command line options

-a name -A name The -a option may be used to specify the name of a file containing

the abscissae values for the observations in the input image. The number of entries

must match the number of bands in the image. Default abscissae values are defined

as (0,1,...,n-1) where n is the number of bands, so this option must be used in case

of irregularly spaced observations. The option -A specifies the name of a file that

stores the abscissae values where the spline is to be evaluated. The files must be

text files with numbers separated by white space.

-b band The index (1-based) of the band to open in the image viewer (defaults to the

first band)
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Figure A.1: Graphical user interface of the splfit program. Processing may be stopped at any
time to examine the model fit to the current time series record in detail.

-c length The cycle length, i.e. the length of a compositing period in days. For example,

the cycle length for standard MODIS vegetation index products is 16. Must be given

if display of seasonal information is desired.

-k number -K name Options to control the number of spans/knots of the spline. Per

default, the number of knots is equal to the number of data points and the knot

positions are distributed uniformly across the data range. Option -k is used to

specify the number of spans. The number of knots is then number + 1, and the

knots are positioned uniformly along the horizontal axis. Option -K gives the name

of a text file containing the positions of the knots separated by white space. It can

be used to define nonuniform knot vectors. Only one of -k or -K should be given,

capital -K overrides lowercase -k if both options are present. The configuration of

the knot vector cannot be changed using the graphical interface if -K is used.

-l offset/gain A set of linear coefficients to transform the input data values

-m Flag indicating that compositing is month bounded (e.g. SPOT VEGETATION)

rather than bounded by year (e.g. MODIS)

-p Indicates that a periodic spline model is to be used.

-t threshold A threshold value applied when computing seasonal information. A sea-

sonal pattern is detected only if the difference between minimum and maximumm

value in a given year is in excess of the given threshold. A seasonal pattern is

always matched by default (i.e. the default threshold is zero).

A.2 splfit

The program splfit is used to fit spline models of a given form to remotely sensed time

series in an image. The output of splfit is another image containing the coefficients of

the spline in B-form. The output is in the format of a standard ENVI1 BIL file. Special

1ENVI is a trademark of EXELIS Visual Information Solutions (http://www.exelisvis.com)
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header tags are used to indicate the spline model used in the fit. By default splfit dis-

plays a plot window with a context menu (right mouse button) that allows to analyse the

observational data and the resulting spline curves while the image is processed. The type

of spline model that is fitted depends on the presence or absence of specific command line

options related to the spline (see below).

Command line synopsis

splfit [-a name] -d degree [-f factor] [-i number] [-k number|-K name] [-l offset/gain] [-n
value] [-o value] [-p] [-r xmin/xmax/ymin/ymax] [-s value] [-u number] [-w time] [-q|-Q]

input-image output-image

Command line options

The only mandatory spline related command line parameter is the degree (-d). If a degree

is given as the only parameter, a B-spline is fitted in the least squares sense. If, in

addition, -s is specified, a smooth B-spline model is fitted by imposing a penalty term

on the integral of the second derivative of the fitted spline model. The value of -s is a

proportionality constant that adjusts the smooothness of the spline, greater values of -s
lead to smoother curves. If both -s and -o are specified, a P-spline is used as the model

function, where the value of the -s argument is a proportionality constant as explained

before and the value of -o is the order of the penalty.

-a name The name of a text file containing the abscissae values for the observations in

the input image. Values must be separated by white space. The number of entries

must match the number of bands in the image. Default abscissae values are defined

as (0,1,...,n-1) where n is the number of bands, so this option must be used in case

of irregularly spaced observations.

-l offset/gain A set of linear coefficients to transform the input data values

-n value Input nodata value. Defaults to zero.

-d degree The polynomial degree of the spline curve.

-k number -K name Options to control the number of spans/knots of the spline. Per

default, the number of knots is equal to the number of data points and the knot

positions are distributed uniformly across the data range. Option -k is used to

specify the number of spans. The number of knots is then number + 1, and the

knots are positioned uniformly along the horizontal axis. Option -K gives the name

of a text file containing the positions of the knots separated by white space. It can

be used to define nonuniform knot vectors. Only one of -k or -K should be given,

capital -K overrides lowercase -k if both options are present.
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-s value Smoothness of the spline: value is a proportionality constant that defines the

amount of smoothing applied when fitting a spline model. The larger the real num-

ber given by value, the smoother the fitted curve (i.e. the larger the penalty imposed

on the integral of the curve’s second derivative.

-o value Order of the penalty for a P-spline model (usually 2.0).

-p Indicates that a periodic spline model is to be used.

-u number The number of iterations in fitting the upper envelope of the observational

data.

-f factor The multiplication factor when fitting the upper envelope (see -u). Between two

successive iterations, the weights of data points above the curve are multiplied by

factor.

-i number Plot interval: when an image is processed, a new plot is displayed every num-
ber samples. Defaults to 1 (every sample in the image is plotted).

-r xmin/xmax/ymin/ymax A tuple of four real values indicating the ranges of the hori-

zontal and vertical axis of the plot.

-w time Wait time: Time delay in (seconds*10) between the display of two successive

plots. Defaults to zero.

-q -Q Quiet: -q will suppress plotting of time series and show only a progress bar, -Q
(scripting mode) will suppress all graphical output.

-y Yes, plot the spline’s control polygon and knots when displaying the spline curve.

When using many knots, this may result in a confusingly packed display.

A.3 splcal

The splcal application program takes as input an image produced by its sibling, the

splfit program. It outputs an image file containing time series as modeled by the spline

defined by the B-coefficients from the output of splfit.

Command line synopsis

splfit [-A name] [-D derivative] [-e] [-L offset/gain] [-N value] [-p number] [-t name] input-
file output-file
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Command line options

-A name The name of a text file containing a set of abscissae values as real numbers

separated by blank space (blanks, tab or newline characters). If the argument is

present and the file exists, the spline model specified in the input file is evaluated

at these abscissae values. If the argument is omitted or the file cannot be opened,

the spline model is evaluated at the default locations indicated in the header of the

input file.

-D derivative The derivative to evaluate. Defaults to 0, i.e. the spline curve itself.

-e When outputting periodic data, include the points at both ends of the signal. Default

is to generate a strictly periodic signal by omitting the last point (which is equal to

the first).

-L offset/gain A set of linear coefficients to transform the modeled data before writing

the results to the output file. Default is to directly write the modeled data without

transforming them.

-N value Output nodata value. Defaults to zero.

-p number The number of periods to output for a periodic spline. Defaults to one. This

option is ignored if the spline model defined in the input is not a periodic one.

-t name Output data type name. One of ’Byte’, ’Integer’ or ’Real’ to produce output data

as unsigned 8-bit, signed 16-bit or single precision (32-bit) float. Default is single

precision float. If any other type is used, it is likely that the output data must be

transformed to match the range of the selected output type (see -L).

A.4 phencal

The phencal software computes phenological parameters from a spline model obtained

using splfit. The output is the format of a standard ENVI BIL file with a set of metafiles

to access the individual phenological parameters. The various phenological parameters

are explained under output below.

Command line synopsis

[-a] [-A] -b mm/dd/yyyy -c length [-g fraction] [-m] [-t threshold] input-file output-file

Command line options

-a -A Augment: flag indicating that incomplete seasons at the beginning or end of the

time series record should be completed (augmented) using the first or last recorded

value. The default is to ignore incomplete seasons and clip the time series. The
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option -a causes season augmenting at the beginning of the time series record, a

capital -A indicates that augmenting should be done at the end of the time series. If

both options are present, incomplete seasons are augmented at both the beginning

and the end of the record.

-b mm/dd/yyyy The date of the first observation (begin) of the time series.

-c length The cycle length, i.e. the length of a compositing period in days. For example,

the cycle length for standard MODIS vegetation index products is 16.

-g fraction Greenness parameter: determines how onset and cease of vegetation growth

in a season are determined. At present, fraction is a fraction of the seasonal ampli-

tude. The onset (end) of greenenss is defined as the point where the measurements

in the time series reach a value equivalent to the early minimum (late minimum)

plus fraction times the amplitude (i.e. the difference between the seasonal peak

value and the latent value). If -g is omitted, only a reduced set of phenological

parameters is computed (see below).

-m Flag indicating that compositing is month bounded (e.g. SPOT VEGETATION)

rather than bounded by year (e.g. MODIS)

-t threshold A threshold value applied when computing seasonal information. A sea-

sonal pattern is detected only if the difference between minimum and maximumm

value in a given year is in excess of the given threshold. A seasonal pattern is

always matched by default (i.e. the default threshold is zero).

Output

This section describes the various phenological parameters output by phencal. In ad-

dition to the default parameters, an extended parameter set is available by specifying a

value for the greenness (-g) option. A seasonal cycle is defined by looking at the sequence

of minima and maxima present in a modelled time series. A cycle is bounded by the

lowest minima to the left (early minimum) and right (late minimum) of an annual peak.

In general, the late minimum of a given year coincides with the early minimum of the

following year.

DOY_Early_Min The day of year of the early minimum.

DOY_Peak The day of year of the annual peak value.

DOY_Late_Min The day of year of the late minimum.

Early_Min_Val The modelled value at the time of the early minimum.

Peak_Val The modelled annual peak value.
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Late_Min_Val The modelled value at the time of the late minimum.

Min_Min_Duration The number of days between the early and late minima of a given

year.

Amplitude The difference between the modelled peak value and the latent value (see

Latent_Val below).

Latent_Val The average of the modelled values at the early and late minima.

Min_Min_Integral The time integrated modelled value from the early to the late mimi-

mum of a given year.

Latent_Integral The time integrated latent value from the early to the late minimum of

a given year (a "box" of width Duration and height Latent_Val).

Total_Integral The sum of Min_Min_Integral and Latent_Integral.

The following parameters are controlled by the -g option (see above):

DOY_Start_Green The day of year of the onset of vegetation growth (greenness).

DOY_End_Green The day of year when vegetation ceases to develop, i.e is completely

senescencent.

Green_Duration The number of days between the start and end of greenness, a proxy

for the duration of active vegetation development.

Green_Integral The time integrated modelled value over the duration of greenness (see

above).

Greenup_Rate The slope of a line connecting the point of onset of greenness and the

annual peak value. Describes the approximate rate of vegetation growth.

Senescence_Rate The (positive) slope of a line connecting the annual peak value and

the point of end of greenness. Describes the approximate rate of advancement of

vegetation senescence.
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