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Zusammenfassung I

Zusammenfassung

Optimale Steuerungsprobleme treten in einer Vielzahl von praktischen Anwendungen auf,
zum Beispiel in der Robotersteuerung, Steuerung biologischer Prozesse, Simulation von
Testfahrten und in der Form- und Topologieoptimierung. Charakterisiert werden solche Pro-
bleme durch ein Zielfunktional, welches unter bestimmten Nebenbedingungen, die durch
gewöhnliche oder partielle Differentialgleichungen sowie eventuell vorhandener weiterer Be-
schränkungen gegeben sind, minimiert wird.
In der vorliegende Dissertation wird ein akademisches Modelproblem mit Tracking Ziel-
funktional und einem Regularisierungsterm sowie einer linearen, gleichmäßig elliptischen
partiellen Differentialgleichung zweiter Ordnung als Nebenbedingung betrachtet. Hierfür
kann Existenz und Eindeutigkeit einer optimalen Lösung gezeigt werden. Dem Paradigma
’First optimize, then discretize’ folgend werden zuerst die notwendigen und hinreichenden
Optimalitätsbedingung mittels Berechnung der Adjungierten hergeleitet und in Form eines
Optimalitätssystems beschrieben. In einem zweiten Schritt erfolgt die Approximation der auf-
tretenden Differentialoperatoren durch Finite Differenzen. Für die numerische Lösung des
resultierenden linearen Systems wird einerseits die Implementierbarkeit von bekannten und
hinreichend untersuchten Optimierungsalgorithmen, im Speziellen eines kollektiven Mehrgit-
terverfahrens (CSMG), auf neue Rechnerarchitekturen untersucht, andererseits werden neue
Algorithmen zur Lösung von optimalen Steuerungsprobleme konstruiert, die die effiziente Nut-
zung mehrerer paralleler Prozessoren erlauben.
Die Implementierung dieser Algorithmen erfolgt auf einer handelsüblichen Grafikkarte (GPU):
konzipiert für Grafikberechnungen, welche sich durch ein hohes Maß an Parallelisierung aus-
zeichnen besitzen sie eine Vielzahl von Kernen und erreichen eine höhere Rechenleistung
im Vergleich zu einer CPU. Die GPUs werden hier als Prototyp für zukünftige Multicore-
Architekturen mit mehreren hundert Kernen betrachtet. Es zeigt sich, dass für modera-
te Problemgrößen eine Verbesserung in der Rechenzeit im Vergleich zu einer klassischen
CPU erreichbar ist. Für größere Probleme ist der beschränkte Speicherplatz des Hauptspei-
chers der Grafikkarte der limitierende Faktor. Hierfür wird eine nichtüberlappende Gebiets-
zerlegungsstrategie konstruiert, wobei mehrere GPUs bzw. CPUs parallel genutzt werden
können. Diese Strategie basiert auf Vorarbeiten für elliptische Probleme und wird für optima-
le Steuerungsprobleme weiterentwickelt. Für eine Zerlegung in zwei Teilgebiete wird mittels
einer Schur Komplement Methode das Gleichungssystem für den inneren Rand durch ei-
ne diskrete Approximation des Steklov-Poincaré Operators hergeleitet, welches dann direkt
gelöst werden kann. Aufbauend auf dieser Zerlegung werden in dieser Dissertation zwei ver-
schiedene Algorithmen für die Gebietszerlegung in mehrere Gebiete betrachtet: auf der einen
Seite ein rekursiver Ansatz, auf der anderen Seite ein simultaner Ansatz. Numerische Tests
vergleichen die Performance des kollektiven Mehrgitterverfahrens auf der GPU mit der CPU
für verschiedene Varianten.
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1 Introduction 1

1 Introduction

1.1 Motivation

Optimal control problems are optimization problems governed by ordinary or partial differential
equations (PDEs). A general formulation is given by

min
(y,u)

J(y , u)

with subject to
e(y , u) = 0,

assuming that e−1
y exists and consists of the three main elements:

� The cost functional J that models the purpose of the control on the system.

� The definition of a control function u that represents the influence of the environment of
the systems.

� The set of differential equations e(y , u) modeling the controlled system, represented by
the state function y := y(u) which depends on u.

These kind of problems are well investigated and arise in many fields of application, for exam-
ple robot control, control of biological processes, test drive simulation and shape and topology
optimization, see for example [7] and the references given therein. In this thesis, an academic
model problem of the form

min
(y,u)

J(y , u) := min
(y,u)

1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to
− div(A grad y) + cy = f + u in Ω

y = 0 on ∂Ω

and u ∈ Uad is considered. The objective is tracking type with a given target function yd and a
regularization term with parameter α. The control function u takes effect on the whole domain
Ω. The underlying partial differential equation is assumed to be uniformly elliptic. This prob-
lem belongs to the class of linear-quadratic elliptic control problems with distributed control.
The existence and uniqueness of an optimal solution for problems of this type is well-known
and in a first step, following the paradigm ’first optimize, then discretize’, the necessary and
sufficient optimality conditions are derived by means of the adjoint equation which ends in
a characterization of the optimal solution in form of an optimality system. In a second step,
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the occurring differential operators are approximated by finite differences and the hence re-
sulting discretized optimality system is solved with a collective smoothing multigrid method
(CSMG), proposed in [6]. In general, there are several optimization methods for solving the
optimal control problem: an application of the implicit function theorem leads to so-called
black-box approaches where the PDE-constrained optimization problem is transformed into
an unconstrained optimization problem and the reduced gradient for these reduced functional
is computed via the adjoint approach. Another possibilities are Quasi-Newton methods, which
approximate the Hessian by a low-rank update based on gradient evaluations, Krylov-Newton
methods or (reduced) SQP methods, see [7]. The use of multigrid methods for optimization
purposes is motivated by its optimal computational complexity, i.e. the number of required
computer iterations scales linearly with the number of unknowns and the rate of convergence,
which is independent of the grid size. Originally multigrid methods are a class of algorithms
for solving linear systems arising from the discretization of partial differential equations.
The main part of this thesis is devoted to the investigation of the implementability and the
efficiency of the CSMG on commodity graphics cards. GPUs (graphic processing units) are
designed for highly parallelizable graphics computations and possess many cores of SIMD-
architecture, which are able to outperform the CPU regarding to computational power and
memory bandwidth. Here they are considered as prototype for prospective multi-core com-
puters with several hundred of cores. When using GPUs as streamprocessors, two major
problems arise: data have to be transferred from the CPU main memory to the GPU main
memory, which can be quite slow and the limited size of the GPU main memory. Further-
more, only when the streamprocessors are fully used to capacity, a remarkable speed-up
comparing to a CPU is achieved.
Therefore, new algorithms for the solution of optimal control problems are designed in this
thesis. To this end, a nonoverlapping domain decomposition method is introduced which al-
lows the exploitation of the computational power of many GPUs resp. CPUs in parallel. This
algorithm is based on preliminary work for elliptic problems and enhanced for the application
to optimal control problems. For the domain decomposition into two subdomains the linear
system for the unknowns on the interface is solved with a Schur complement method by using
a discrete approximation of the Steklov-Poincaré operator. For the academic optimal con-
trol problem, the arising capacitance matrix can be inverted analytically. On this basis, two
different algorithms for the nonoverlapping domain decomposition for the case of many sub-
domains are proposed in this thesis: on the one hand, a recursive approach and on the other
hand a simultaneous approach.
Numerical test compare the performance of the CSMG for the one domain case and the two
approaches for the multi-domain case on a GPU and CPU for different variants.

1.2 Outline

The present thesis is structured as follows:

In Chapter 2 the theoretical basis for optimization with partial differential equations is es-
tablished. Some functional analytic basics are recalled with the aim to introduce Sobolev
spaces, where the existence and uniqueness of weak solutions of the underlying uniformly
elliptic PDE can be proven as well as the existence and uniqueness of an optimal solution of



1 Introduction 3

the academic optimal control problem by means of the adjoint approach. This chapter finishes
with a characterization of this optimal solution in form of an optimality system.

Chapter 3 is dedicated to the collective smoothing multigrid method (CSMG). In a first step,
the optimality system for the unconstrained case is reformulated by eliminating the control
u and the differential operators are approximated with a finite difference method. For the
discretized optimality system, regularity and consistency to the continuous analogue is shown.
In a second step, general linear geometric multigrid methods for linear problems with its two
main components, in particular the smoothing iteration and the coarse grid correction scheme,
are introduced. The CSMG means solving the optimality system for the state and the adjoint
variables simultaneously in the multigrid process by using collective smoothers. Here the
damped block-Jacobi relaxation and the red-black ordered block Gauss-Seidel are considered
and investigated. The local Fourier analysis aims to obtain sharp convergence estimates by
simplifying assumptions on the boundary conditions. This chapter ends with a convergence
proof for the CSMG.

In Chapter 4 a nonoverlapping domain decomposition method for the optimality system is
introduced. Therefore, a discrete formulation of the Steklov-Poincaré operator for the two
subdomain case is derived with a Schur Complement method, resulting in a linear system for
the interface. This system can be solved exactly by setting up the inverse of the capacitance
matrix analytically. For the nonoverlapping domain decomposition into many subdomains,
this procedure is extended straightforward and two different algorithms are proposed and
compared: a recursive approach and a simultaneous approach. Extensions to more general
problems, like three-dimensional problems, and the use of the Schur complement as precon-
ditioner for the interface of more general differential operators or on more general domain
shapes finish this chapter.

Chapter 5 gives a brief presentation of the architecture and programming model of commodity
graphics cards (GPUs). It starts with a retrospection to the beginnings of GPU programming,
where the only exercise of the GPU was rendering and ends with current GPUs that can
perform general purpose computations. The special memory hierarchy and threads concept
is compared to the architecture of a traditional CPU. In the end, the implementation of the
CSMG is described and performance considerations are presented.

In Chapter 6 the numerical results of the various algorithms are exposed. Firstly the CSMG
for one domain in two and three dimensions is considered with the collective damped Jacobi
relaxation as well as the collective red-black Gauss-Seidel smoother, different cycle types (V
vs. W cycle), the influence of the total number of smoothing steps and a comparison of double
and single precision performance on both architectures, GPU and CPU. The robustness with
respect to the relaxation parameter α is investigated. This chapter finishes with a comparison
of both algorithms for the nonoverlapping domain decomposition in many subdomains, the
recursive and the simultaneous approach.

The last Chapter 7 recapitulates the thesis with conclusions and remarks and finishes with
an outlook on further investigations.
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2 Optimal Control of Uniformly Elliptic Partial
Differential Equations

In this first introductory chapter the model optimal control problem is presented. For this
purpose, this chapter is divided into five sections: In the first Section 2.1, the analytical back-
ground, in particular some basic functional analytic terms and definitions, is recapitulated.
This preliminary work is necessary to prove the existence and uniqueness of a solution of the
underlying elliptic partial differential equation (PDE) introduced in Section 2.2. The academic
tracking type optimal control problem is defined in Section 2.3, the existence and uniqueness
of a solution of this problem is shown in Section 2.4 and in a final step, the unique optimal so-
lution of this optimal control problem is characterized in form of an optimality system, derived
in Section 2.5.

2.1 Basics of Functional Analysis

For proving the existence and uniqueness of the elliptic partial differential equation in suitable
function spaces, some elementary functional analytic definitions and theorems are recalled
in this section. The primary objective is to introduce Sobolev spaces, where the existence of
weak solutions of particular PDEs can be shown. Wider and more detailed expositions can
be found in any book on linear functional analysis, e.g. [2], [23] or [33].

2.1.1 Banach and Hilbert Spaces

Firstly several basics on Banach and Hilbert spaces are recalled. The term of a linear space
(also: vector space) is considered as well-known and not defined in this thesis.

DEFINITION 2.1 (Norm, normed linear space).
Let U be a real linear space. A mapping ‖ · ‖ : U → [0,∞) with the properties

(N1) ‖u‖ ≥ 0 ∀u ∈ U, ‖u‖ = 0⇔ u = 0

(N2) ‖λu‖ = |λ|‖u‖ ∀λ ∈ R, u ∈ U

(N3) ‖u + v‖ ≤ ‖u‖+ ‖v‖ ∀u, v ∈ U

is called a norm on U. A linear space with norm is called normed linear space (U, ‖ · ‖). The
definition of | · | will be given in Definition 2.4.
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DEFINITION 2.2 (Completeness, Banach space).
1. A normed linear space (U, ‖ · ‖) is complete, if any Cauchy sequence {un}n∈N ⊂ U has

a limit u ∈ U, i.e. if

lim
m,n→∞

‖um − un‖ = 0

then there is some u ∈ U with

lim
n→∞

‖un − u‖ = 0.

2. A normed real linear space (U, ‖ · ‖) is called real Banach space if it is complete.

DEFINITION 2.3 (Scalar product, Pre-Hilbert space, Hilbert space).
Let H be a real linear space.

1. A mapping (·, ·) : H ×H → R with the properties

(H1) (u, u) ≥ 0 ∀u ∈ H, (u, u) = 0⇔ u = 0

(H2) (u, v) = (v , u) ∀u, v ∈ H

(H3) (αu + βv, w) = α(u, w) + β(v , w) ∀α, β ∈ R, u, v , w ∈ H

is called scalar product or inner product.

2. A real vector space H with the scalar product (·, ·) is called Pre-Hilbert space (H, (·, ·)).

3. A Pre-Hilbert space (H, (·, ·)) is called Hilbert space if it is complete with its associated
norm ‖u‖ :=

√
(u, u), u ∈ H.

Every Pre-Hilbert space is a normed linear space by setting

‖u‖ :=
√

(u, u), u ∈ H.

An important example for a finite-dimensional Hilbert space is the Rd with the euclidean scalar
product (·, ·)2.

DEFINITION 2.4 (Euclidean norm, euclidean scalar product, absolut value).
Let x, y ∈ Rd .

1. The euclidean scalar product (·, ·)2 of x and y is given by

(x, y)2 =

d∑
i=1

xiyi .

2. The euclidean norm ‖ · ‖2 of x is given by

‖x‖2 :=
√

(x, x)2 =

(
d∑
i=1

x2
i

)1/2

.

3. For d = 1 the absolut value of x is given by

|x | := ‖x‖2.
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In Pre-Hilbert spaces, the Cauchy-Schwarz inequality holds:

LEMMA 2.5 (Cauchy-Schwarz inequality).
Let (H, (·, ·)) be a Pre-Hilbert space. Then the Cauchy-Schwarz inequality

|(u, v)| ≤ ‖u‖‖v‖ ∀u, v ∈ H

holds.

Proof. [23, Lemma 2.21].

2.1.2 Linear Mappings

Linear partial differential operators define linear mappings between function spaces. In this
section, some of its properties are presented.

DEFINITION 2.6 (Linear operator).
Let (U, ‖ · ‖U), (V, ‖ · ‖V ) be normed real linear spaces.

1. A mapping

F : U → V,

u 7→ F (u)

is called

� continuous at u ∈ U, if for every sequence {un}n∈N ⊂ U converging to u ∈ U it
holds that

lim
n→∞

‖un − u‖U = 0⇒ lim
n→∞

‖F (un)− F (u)‖V = 0.

� continuous, if F is continuous at every u ∈ U.

� linear, if
F (λu + µv) = λF (u) + µF (v) ∀u, v ∈ U, λ, µ ∈ R.

� bounded, if F is linear and there exists a constant CF ≥ 0 such that

‖F (u)‖V ≤ CF ‖u‖U ∀u ∈ U.

2. L(U, V ) denotes the space of all linear and continuous operators F : U → V .

3. For F : U → V linear and continuous define the operator norm by

‖F‖L(U,V ) := sup
‖u‖U=1

‖F (u)‖V .

LEMMA 2.7.
Let (U, ‖ ·‖U), (V, ‖ ·‖V ) be normed real linear spaces. A linear operator F : U → V is bounded
if and only if F is continuous.

Proof. [23, Lemma 2.8].
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THEOREM 2.8.
Let (U, ‖ · ‖U), (V, ‖ · ‖V ) be normed real linear spaces. Then (L(U, V ), ‖ · ‖L(U,V )) is a normed
space. If (V, ‖ · ‖V ) is a Banach space, then (L(U, V ), ‖ · ‖L(U,V )) is a Banach space.

Proof. [23, Theorem 2.10].

A useful result for the construction of continuous linear mappings is

THEOREM 2.9.
Let (U, ‖ · ‖U), (V, ‖ · ‖V ) be Banach spaces, M ⊂ U dense and T : M → V continuous and
linear. Then there exists a unique T̃ ∈ L(U, V ) with T̃ |M = T and ‖T‖L(M,V ) = ‖T̃‖L(U,V ).

Proof. [23, Theorem 2.14].

Hence any operator is determined uniquely by its action on a dense subspace.

DEFINITION 2.10 (Linear functional, dual space).
Let (U, ‖ · ‖U) be a normed real linear space, u ∈ U.

1. A linear mapping u∗ : U → R, u 7→ u∗(u) is called linear functional.

2. The space U∗ := L(U,R) is called dual space of U and is (by Theorem 2.8) a Banach
space with the operator norm

‖u∗‖U∗ := sup
‖u‖U=1

|u∗(u)|.

3. 〈·, ·〉U∗,U := u∗(u) is called dual pairing of U∗ and U.

The Riesz representation theorem gives an important statement about the concrete repre-
sentation of linear and continuous functionals in Hilbert spaces and the structure of the dual
space.

THEOREM 2.11 (Riesz representation theorem).
Let (U, (·, ·)U) be a real Hilbert space and u∗ : U → R a linear functional. Then there exists a
unique u ∈ U with

(v , u)U = 〈u∗, v〉U∗,U ∀v ∈ U.

Furthermore ‖u∗‖U∗ = ‖u‖U .

Proof. [23, Theorem 2.25].

2.1.3 Lebesgue Spaces

The next topic are the Sobolev spaces W k,p(Ω). As the classical function spaces Ck(Ω)

are not complete with respect to the ‖ · ‖2-norm, the concept of weak partial derivatives is
introduced and these classical spaces are extended to the Sobolev spaces W k,p(Ω), where
the existence of weak solutions of certain partial differential equations can be proven. For this
purpose, the Lebesgue spaces Lp(Ω) are defined in this subsection.
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DEFINITION 2.12 (Area).
1. Ω ⊂ Rd is called area, if Ω is open and connected.

2. ∂Ω is the boundary of Ω.

3. Ω := Ω ∩ ∂Ω denotes the closure of Ω.

DEFINITION 2.13 (Multi-index, support, function spaces).
1. For Ω ⊂ Rd , define

C(Ω) := {u : Ω→ R : u continuous}.

2. Let Ω ⊂ Rd be open, u : Ω → R. For a multi-index α = (α1, ..., αn) ∈ Nn0 its order is
defined by |α| :=

∑n
i=1 αi and the |α|-th order partial derivative at x ∈ Ω is given by

Dαu(x) :=
∂|α|u

∂xα1
1 · · · ∂x

αn
n

(x).

3. Define
Ck(Ω) := {u ∈ C(Ω) : Dαu ∈ C(Ω) for |α| ≤ k}.

4. For Ω ⊂ Rd open and bounded define

Ck(Ω) := {u ∈ Ck(Ω) : Dαu has a continuous extension to Ω for |α| ≤ k}.

5. For Ω ⊂ Rd , u : Ω→ R, the set

supp u = {x ∈ Ω : u(x) 6= 0}

is called support of u.

6. Define

C∞(Ω) =

∞⋂
m=0

Cm(Ω) and

C∞0 (Ω) = {u ∈ C∞(Ω) : supp(u) ⊂ Ω compact}

LEMMA 2.14.
Let Ω ⊂ Rd , u : Ω→ R.

1. If Ω is bounded then C(Ω) is a Banach space with the supremum-norm

‖u‖C(Ω) := sup
u∈Ω

|u(x)|.

2. If Ω is open and bounded, the spaces Ck(Ω) are Banach spaces with the norm

‖u‖Ck(Ω) :=
∑
|α|≤k

‖Dαu‖C(Ω).

Proof. [2, Theorem/Definition 1.2] and [2, Theorem/Definition 1.5].
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The theory for the solvability of partial differential equations needs some assumptions regard-
ing the area Ω. The boundary ∂Ω has to be sufficiently smooth.

DEFINITION 2.15 (Lipschitz continuity, Lipschitz boundary, normal derivative).
1. Let Ω ⊂ Rd be open. A function F : Ω̄→ R is Lipschitz continuous if there is a constant
CF > 0 such that

|F (x)− F (y)| ≤ CF ‖x − y‖ ∀x, y ∈ Ω̄.

2. Let Ω ⊂ Rd be open. For k ∈ N0 let

Ck,1(Ω) = {u ∈ Ck(Ω) : Dαu Lipschitz continuous for |α| = k}.

3. Let Ω ⊂ Rd be open and bounded. Ω has a Ck,1-boundary, k ∈ N0 ∪ {∞}, if for any
x ∈ ∂Ω there exists r > 0, j ∈ {1, . . . , n}, σ ∈ {−1,+1}, and a function γ ∈ Ck,1(Rn−1)

such that

Ω ∩ B(x ; r) = {y ∈ B(x ; r) : σγj < γ(y1, . . . yj−1, yj+1, . . . , yn)},

where
B(x ; r) := {y ∈ Rd : ‖y − x‖ < r}

denotes the open ball around x with radius r .
A C0,1-boundary is called Lipschitz boundary. For short, say ∂Ω is Ck,1.

4. If ∂Ω is C0,1 then a unit outer normal field ν : ∂Ω → Rn can be defined almost every-
where, where ν(x) with ‖ν(x)‖ = 1 is the outward pointing unit normal of ∂Ω at x .

5. Let ∂Ω be C0,1, u : Ω→ R. The directional derivative

∂u

∂ν
:= ν(x) · ∇u(x), x ∈ ∂Ω

is called the normal derivative of u. ∇ denotes the gradient, later defined in Definition
2.28.

Now some standard spaces of integrable functions based on the Lebesgue integral are intro-
duced. For the definition of the Lebesgue integral see e.g. [23, Chapter 4.1].

DEFINITION 2.16 (Lp spaces).
Let Ω ⊂ Rd be bounded.

1. For 1 ≤ p <∞, define the space

Lp(Ω) :=

{
u : Ω→ R :

∫
Ω

|u(x)|p dx <∞
}

with the semi-norm

‖u‖Lp(Ω) :=

(∫
Ω

|u(x)|p dx
)1/p

.

2. Define
ess sup
x∈Ω

|u(x)| := inf{α ≥ 0 : λ({|u| > α}) = 0}

as the essential supremum of a function u. λ denotes the Lebesgue measure.
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3. For p =∞ define

L∞(Ω) :=

{
u : Ω→ R : ess sup

x∈Ω
|u(x)| <∞

}
with the semi-norm

‖u‖L∞(Ω) := ess sup
x∈Ω

|u(x)|.

Since there are measurable functions u : Ω → R, u 6= 0, with ‖u‖Lp(Ω) = 0, the equivalence
relation

u ∼ v in Lp(Ω) :⇔ ‖u − v‖Lp(Ω) = 0⇔ u = v almost everywhere

is used to define Lp(Ω) := Lp(Ω)/ ∼ as the space of equivalence classes of almost every-
where identical functions, equipped with the norm ‖ ·‖Lp(Ω) := ‖ ·‖Lp(Ω) for 1 ≤ p ≤ ∞. There-
fore the norm is well-defined for p ∈ [1,∞]. For more details see [34, Definition 1.11/Lemma
1.2] or [2, Theorem/Definition 1.13].

THEOREM 2.17.
The spaces Lp(Ω), 1 ≤ p ≤ ∞ are Banach spaces and for p = 2, the space L2(Ω) equipped
with the scalar product

(u, v)L2(Ω) :=

∫
Ω

u(x)v(x) dx

for u, v ∈ Lp(Ω) is a Hilbert space.

Proof. [23, Theorem 4.17/Corollar 4.18]

As assumed that v(x) ∈ R for all x , the complex conjugate v(x) of v(x) is v(x) itself.

2.1.4 Weak Derivatives

Using the integration by parts formula, the concept of the classical derivative can be general-
ized by introducing weak derivatives. Recall Green’s formula

THEOREM 2.18 (Green’s formula).
Let Ω ⊂ Rd be open and bounded with C0,1-boundary. Then for all u, v ∈ C1(Ω)∫

Ω

Diu(x)v(x) dx = −
∫

Ω

u(x)Div(x) dx +

∫
∂Ω

u(x)v(x)νi(x) dS,

where νi(x) is the outward pointing unit normal in x ∈ ∂Ω, Di the partial derivative in xi -
direction and dS the Lebesgue surface measure on ∂Ω.

Proof. [34, Theorem 1.9]

For v ∈ Ck(Ω) and u ∈ Ck0 (Ω) as well as for a multi-index α with |α| ≤ k with repeated
integration by parts one obtains∫

Ω

Dαu(x)v(x) dx = (−1)α
∫

Ω

u(x)Dαv(x) dx.
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This leads to the idea of the weak derivative. For the purpose of generalization, the set of
every in Ω local integrable functions L1

loc(Ω) is defined.

DEFINITION 2.19 (Local integrable function).
Let Ω ⊂ Rd be open. Define

Lploc(Ω) := {u : Ω→ R Lebesgue-measurable: u ∈ Lp(K) for all K ⊂ Ω compact} ,

and, as remarked before, set again Lploc(Ω) := Lploc(Ω)/ ∼.

DEFINITION 2.20 (Weak derivative).
Let Ω ⊂ Rd be open, u ∈ L1

loc(Ω). If there exists a function v ∈ L1
loc(Ω) such that∫

Ω

v(x)ϕ(x) dx = (−1)|α|
∫

Ω

u(x)Dαϕ(x) dx ∀ϕ ∈ C∞0 (Ω),

then Dαu := v is called α-th weak partial derivative of u.

As the classical derivative also satisfies this equation, the concept of weak derivatives is
consistent.

LEMMA 2.21.
If existent, the weak derivative is determined uniquely. If a function is differentiable in the
classical way, it is also weakly differentiable and the derivatives coincide.

Proof. [23, Lemma 5.4].

2.1.5 Sobolev Spaces

Basing on weak derivatives Dαu ∈ Lp(Ω), the Sobolev spaces W k,p(Ω) are defined. These
are subspaces of the Lebesgue spaces Lp(Ω), consisting of a linear space of functions u ∈
Lp(Ω).

DEFINITION 2.22 (Sobolev spaces).
Let Ω ⊂ Rd be open. For k ∈ N0, p ∈ [1,∞] the spaces

W k,p(Ω) = {u ∈ Lp(Ω) : u has weak derivatives Dαu ∈ Lp(Ω) for all |α| ≤ k}

are called Sobolev spaces W k,p(Ω) and are equipped with the norms

‖u‖W k,p(Ω) : =

∑
|α|≤k

‖Dαu‖p
Lp(Ω)

1/p

, p ∈ [1,∞)

and ‖u‖W k,∞(Ω) : =
∑
|α|≤k

‖Dαu‖L∞(Ω), p =∞.

As the case p = 2 is of particular interest, define Hk(Ω) := W k,2(Ω). For k = 0, define
W 0,p(Ω) := Lp(Ω) and H0(Ω) := L2(Ω).
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THEOREM 2.23.
Let Ω ⊂ Rd be open, k ∈ N0, and p ∈ [1,∞]. Then W k,p(Ω) is a Banach space. Moreover,
the space Hk(Ω) = W k,2(Ω) is a Hilbert space with inner product

(u, v)Hk(Ω) =
∑
|α|≤k

(Dαu,Dαv)L2(Ω).

Proof. [23, Theorem 5.10/Corollar 5.11].

The next theorem is the main result of this section. As for 1 ≤ p < ∞ functions in W k,p(Ω)

can be approximated by functions in C∞(Ω) ∩W k,p(Ω), most of the properties of classically
differentiable functions are maintained for Sobolev functions.

THEOREM 2.24 (Meyers and Serrin).
Let Ω ⊂ Rd be open. The set C∞(Ω) ∩W k,p(Ω), k ∈ N0, 1 ≤ p < ∞, is dense in W k,p(Ω).
Hence, W k,p(Ω) is the completion of {u ∈ C∞(Ω) : ‖u‖W k,p(Ω) <∞} with respect to the norm
‖ · ‖W k,p(Ω).

Proof. [23, Theorem 5.16]

If Ω has Lipschitz boundaries, a stronger proposition can be stated.

THEOREM 2.25.
Let Ω be bounded with C0,1-boundary. Then C∞(Ω) is dense in W k,p(Ω), k ∈ N0, 1 ≤ p <∞.

Proof. [23, Theorem 6.7].

To take account of the homogeneous boundary conditions, define

DEFINITION 2.26.
Let Ω ⊂ Rd be open. For k ∈ N0, p ∈ [1,∞] denote by W k,p

0 (Ω) the closure of C∞0 (Ω) in
W k,p(Ω).

COROLLAR 2.27.
Let Ω ⊂ Rd be open, k ∈ N0, and p ∈ [1,∞]. The space W k,p

0 (Ω) equipped with the same
norm as W k,p(Ω) is a Banach space. The space Hk0 (Ω) = W k,2

0 (Ω) is a Hilbert space.

2.2 Weak Solutions of Uniformly Elliptic Partial Differential
Equations

In this section a short sketch of the concept of weak solutions of uniformly elliptic partial
differential equations with homogeneous Dirichlet boundaries is given. For a more detailed
survey, see e.g. [2],[23],[34] and [38].
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2.2.1 Uniformly Elliptic Partial Differential Equations

Differential operators are operators defined as a function of the differentiation operator.

DEFINITION 2.28 (Differential operators).
Let Ω ⊂ Rd be open, ρ : Ω → R differentiable and u : Ω → Rd differentiable, d = 2, 3. Then
define the differential operators

1. gradient

∇ρ := grad ρ :=

(
∂ρ
∂x1
∂ρ
∂x2

)
resp.


∂ρ
∂x1
∂ρ
∂x2
∂ρ
∂x3


2. divergence

∇ · u := div u :=
∂u1

∂x1
+
∂u2

∂x2
resp.

∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

3. Laplace operator

∆ρ := ∇ · ∇ρ := div grad ρ :=
∂2ρ

∂x2
1

+
∂2ρ

∂x2
2

resp.
∂2ρ

∂x2
1

+
∂2ρ

∂x2
2

+
∂2ρ

∂x2
3

.

DEFINITION 2.29 (General second order differential operator with divergence structure).
Let Ω ⊂ Rd be open. For u : Ω→ R define the general second order differential operator with
divergence structure

Lu : = −
d∑

i ,k=1

∂

∂xi

(
aik

∂

∂xk
u

)
+ cu

= −∇ · (A∇u) + cu

(2.1)

where c ∈ L∞(Ω), c ≥ 0 and aik ∈ L∞(Ω), aik = aki for i , k = 1, . . . d .

In the special case A = Id , Id the d × d identity matrix and c ≡ 0, the operator L simplifies to
the Laplace operator −∆.

DEFINITION 2.30 (Ellipticity).
The operator

L := −
d∑

i ,k=1

aik
∂

∂xi

∂

∂xk
+ c

is said to be uniformly elliptic in Ω if there is a constant α > 0 such that it holds

ξTA(x)ξ ≥ α‖ξ‖2
2

for all ξ ∈ Rd , A(x) := [aik(x)]ik , for almost all x ∈ Ω ⊂ Rd and c(x) ≥ 0 almost everywhere .

In the following the second order differential operator (2.1) is always assumed to be uniformly
elliptic in Ω. Now a general boundary value problem with homogeneous Dirichlet data is
introduced.
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DEFINITION 2.31 (Boundary value problem with homogeneous Dirichlet data).
Let Ω ⊂ Rd be open, bounded and f ∈ L2(Ω). A general boundary value problem with
homogeneous Dirichlet data is defined by

Lu = f in Ω

u = 0 on ∂Ω.
(2.2)

DEFINITION 2.32 (Classical solution).
If u ∈ C2(Ω) ∩ C0(∂Ω) is a solution of problem (2.2), u is called classical solution.

2.2.2 Variational Formulation

As merely f ∈ L2(Ω), it is not excluded that the right-hand side in (2.2) is discontinuous. For
example, source terms can occur, where f acts only on a subset of Ω. A classical solution
exists at best for a continuous right-hand side, therefore a generalization of the concept of a
classical solution is needed. This is based on the variational formulation of the homogeneous
Dirichlet boundary problem, where a weak solution u ∈ H1

0(Ω) is wanted.

DEFINITION 2.33 (Variational formulation, weak solution).
A function u ∈ H1

0(Ω) is called weak solution of the boundary value problem (2.2) if it satisfies
the variational formulation (or also weak formulation)∫

Ω

(
d∑

i ,k=1

aik
∂u

∂xi

∂v

∂xk
+ cuv

)
dx =

∫
Ω

f v dx ∀v ∈ H1
0(Ω). (2.3)

The weak formulation can be obtained by multiplying both sides with a test function v ∈ H1
0(Ω),

integrating over Ω and applying the integration by parts formula. If a classical solution exists,
it certainly satisfies the weak formulation. For a more general treatment in a wider framework,
the following abstract notation is introduced.

NOTATION 2.34.
Let

V := H1
0(Ω),

a(u, v) :=

∫
Ω

(
d∑

i ,k=1

aik
∂u

∂xi

∂v

∂xk
+ cuv

)
dx, u, v ∈ V,

F (v) :=

∫
Ω

f v dx, v ∈ V.

Here a : V × V → R is a bilinear form, F ∈ V ∗ is a linear functional on V and a solution of the
weak formulation (2.3) can be written as

Find u ∈ V : a(u, v) = F (v) ∀v ∈ V.

As the bilinear form a(·, ·) is symmetric by the assumptions in Definition 2.29, the Lax-Milgram
Lemma is an immediate consequence of the Riesz representation theorem 2.11. It is the main
tool to prove existence and uniqueness of a solution of the variational formulation.
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LEMMA 2.35 (Lax-Milgram).
Let (V, (·, ·)V ) be a real Hilbert space and let a : V × V 7→ R be a bilinear form which has the
two properties:
There exists constants α0 and β0 > 0 with

1. |a(u, v)| ≤ α0‖u‖V ‖v‖V ∀u, v ∈ V boundedness

2. a(u, u) ≥ β0‖u‖2
V ∀u ∈ V V-coercivity.

Then for any bounded linear functional F ∈ V ∗ the variational inequality

a(u, v) = F (v) ∀v ∈ V

has a unique solution u ∈ V . Moreover, u satisfies

‖u‖V ≤
1

β0
‖F‖V ∗ .

Proof. [2, Theorem 4.2].

To verify the requirements for the Lax-Milgram Lemma, the Poincaré-Friedrichs inequality is
helpful. For this proposition, the space H1

0(Ω) is essential as the proposition does not hold in
general spaces, e.g. H1(Ω).

THEOREM 2.36 (Poincaré-Friedrichs inequality).
Let Ω ⊂ Rd be open and bounded. Then there is CΩ > 0, only depending on Ω, such that∫

Ω

u2 dx ≤ CΩ

∫
Ω

|∇u|2 dx ∀u ∈ H1
0(Ω).

Proof. [2, Theorem 4.7].

The following lemma is a preparation for the proof of existence and uniqueness of a solution
of the boundary value problem.

LEMMA 2.37.
1. The mapping

a : H1
0(Ω)×H1

0(Ω)→ R

(y , v) 7→
∫

Ω

(
d∑

i ,k=1

aik
∂y

∂xi

∂v

∂xk
+ cyv

)
dx

is bilinear and bounded:
|a(y , v)| ≤ ‖y‖H1(Ω)‖v‖H1(Ω).

2. For f ∈ L2(Ω), the mapping

m : H1
0(Ω)→ R

v 7→
∫

Ω

f v dx
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is linear and bounded:∣∣∣∣ ∫
Ω

f v dx
∣∣∣∣ = (f , v)L2(Ω) ≤ ‖f ‖L2(Ω)‖v‖L2(Ω) ≤ ‖f ‖L2(Ω)‖v‖H1

0(Ω).

Proof. [23, p.135].

2.2.3 Existence and Uniqueness of a Solution for the Boundary Value Problem

These preliminary results at hand, existence and uniqueness for solutions of boundary value
problems with homogeneous Dirichlet data can be proven.

THEOREM 2.38 (Existence, uniqueness and continuity for the general Dirichlet problem).
Let Ω ⊂ Rd be a bounded Lipschitz area, c ∈ L∞(Ω) and L be a uniformly elliptic second
order operator according to (2.1). The problem (2.2) has for all f ∈ L2(Ω) a unique weak
solution u ∈ H1

0(Ω), characterized by (2.3). This solution satisfies

‖u‖H1(Ω) ≤ CD‖f ‖L2(Ω) (2.4)

where CD depends only on ai j , c0,Ω.

Proof. Application of the Lax-Milgram Lemma 2.35 and Lemma 2.37.

With some more restrictive conditions on the smoothness of the boundary and/or the given
data, a higher regularity than u ∈ H1

0(Ω) can be achieved, see Chapter 3.1.

2.3 Optimal Control Problem

Optimal control problems are optimization problems governed by ordinary or partial differential
equations. For the formulation, the following terms are required, see [6].

� The definition of a control function u that represents the influence of the environment on
the systems.

� The set of differential equations modeling the controlled system, represented by the
state function y := y(u), depending on u.

� The cost functional J that models the purpose of the control on the system.

In this thesis, the following academic model problem is considered:

1. The control function u is distributed, i.e. it takes effect on the whole domain.

2. The underlying partial differential equation is uniformly elliptic.

3. The objective J is tracking type with a regularization term.

This problem belongs to the class of linear-quadratic elliptic control problems with distributed
control.
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DEFINITION 2.39 (Optimal control problem).
The optimal control problem is given by

min
(y,u)

J(y , u) := min
(y,u)

1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to
− div(A grad y) + cy = f + u in Ω

y = 0 on ∂Ω
(2.5)

and
ua(x) ≤ u(x) ≤ ub(x) almost everywhere in Ω

and the additional assumption:
Let Ω ⊂ Rd , d = 2, 3 be a bounded Lipschitz area, the desired state yd ∈ L2(Ω), α ∈ R, α ≥ 0

regularization parameter and ua, ub ∈ L2(Ω) with ua(x) ≤ ub(x) for almost all x ∈ Ω, c ≥ 0

and c ∈ L∞(Ω). u ∈ L2(Ω) is the control and y the state variable.

For A = Id , Id ∈ Rd×d the identity matrix and c(x) ≡ 0, (2.5) simplifies to the d-dimensional
Poisson equation −∆y = f + u.

DEFINITION 2.40 (Set of feasible controls).
The set of feasible controls is denoted by

Uad =
{
u ∈ L2(Ω) : ua(x) ≤ u(x) ≤ ub(x) almost everywhere in Ω

}
.

Uad is a nonempty, convex and closed subset of L2(Ω).

As shown in Section 2.3, for every u ∈ Uad there exists a unique weak solution y ∈ H1
0(Ω) for

the underlying partial differential equation. An optimal control is characterized by the following
condition.

DEFINITION 2.41 (Optimal control).
A control ū ∈ Uad is optimal with ȳ = y(ū) appropriate optimal state, if

J(ȳ , ū) ≤ J(y , u) ∀u ∈ Uad , y = y(u) ∈ H1
0(Ω).

2.4 Existence and Uniqueness of a Solution of the Optimal
Control Problem

In this section the existence and uniqueness of a solution of the optimal control problem will be
shown. For this purpose, the approach presented in [52] is followed. Another way to achieve
this aim in a more general functional setting is described [7] and [34]. Firstly, the problem
is reformulated into an on u reduced optimization problem. As for every u ∈ Uad there is a
unique y ∈ H1

0(Ω) and H1
0(Ω) is linear and continuously embedded in L2(Ω), see [52, Chapter

2.5.1], it is convenient to define

S : L2(Ω)→ L2(Ω),

u 7→ y
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as the control-state operator. With this definition, the optimal control problem (2.5) can be
reformulated as quadratic optimization problem in the Hilbert space L2(Ω)

min
u∈Uad

f (u) := min
u∈Uad

1

2
‖Su − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω).

The function f is called reduced objective. Working with this reduced problem is called black-
box method, which means exploiting the implicit function theorem and consider the state
variable y as a function depending on the control u, i.e. y = y(u). For this reduced problem,
existence of an optimal solution can be proven.

THEOREM 2.42 (Existence and uniqueness).
Let (U, (·, ·)U) and (V, (·, ·)V ) be real Hilbert spaces, Uad ⊂ U a nonempty, closed and convex
set, yd ∈ V and α ≥ 0. Furthermore let S : U → V be a linear and continuous operator. Then
the quadratic optimization problems

min
u∈Uad

f (u) :=
1

2
‖Su − yd‖2

V +
α

2
‖u‖2

U

has an optimal solution ū. For α > 0, this solution is unique.

Proof. [52, Theorem 2.14]

An application of the Theorem 2.42 to the optimal control problem in Definition 2.39 estab-
lishes the following lemma.

LEMMA 2.43.
Under the assumptions made in Definition 2.39, the optimal control problem (2.5) has an
optimal solution ū. For α > 0, this solution is unique.

Proof. Set U = H = L2(Ω) and S = EY G, where EY G : H1(Ω) → L2(Ω) denotes the
embedding operator assigning a certain function in L2(Ω) to every y ∈ H1(Ω), as introduced
in [52, Chapter 2.5.1]. The set Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub} is bounded, convex and
closed. An application of Theorem 2.42 yields the assertion.

For the case α = 0, the solution is still unique because of the strict convexity of the functional
‖Su‖2 and Uad being a convex set, see [7, Theorem 2.4]. One or both of the restrictions in
Uad can be omitted.

LEMMA 2.44.
If α > 0, the optimal control problem in Definition 2.39 has an optimal solution if Uad is only
convex and closed. This covers, in particular, the cases ua = −∞ and/or ub = +∞.

Proof. [52, Theorem 2.16].
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2.5 Characterization of an Optimal Solution

To characterize the optimal solution of the optimal control problem, some preliminary work is
required. Starting with a generalization of the well-known derivative for operators in function
spaces, in particular in Banach spaces, followed by the introduction of the adjoint operator,
the optimality system is derived.

DEFINITION 2.45 (Derivatives).
Let F : U → V be an operator mapping between real Banach spaces (U, ‖ · ‖U), (V, ‖ · ‖V ),
t ∈ R.

1. F is called directionally differentiable at u ∈ U if the limit

dF (u, h) = lim
t↓0

F (u + th)− F (u)

t
∈ V

exists for all h ∈ U. In this case, dF (u, h) is called directional derivative of F in the
direction h.

2. F is called Gâteaux differentiable at u ∈ U if F is directional differentiable at u and
the directional derivative F ′ : U → V, F ′(u) : h 7→ dF (u, h), is bounded and linear, i.e.
F ′(u) ∈ L(U, V ).

3. F is called Fréchet differentiable at u ∈ U if F is Gâteaux differentiable at u and if the
following approximation condition holds:

‖F (u + h)− F (u)− F ′(u)h‖V
‖h‖U

→ 0 for ‖h‖U → 0.

4. If F is Fréchet/Gâteaux differentiable in a neighborhood Uε of u ∈ U and F ′ : Uε →
L(U, V ) is itself Fréchet/Gâteaux differentiable at u, the mapping operator F is called
twice Fréchet/Gâteaux differentiable at u, written F ′′(x) ∈ L(U, L(U, V )) for the second
derivative of F in u. Analogously, higher derivatives can be defined.

Every Fréchet differentiable function F is Gâteaux differentiable (by definition) and these
derivatives can be computed as directional derivatives, i.e. F ′(u) is the linear operator

F ′(u) : h 7→
d

dt

∣∣∣∣
t=0

F (u + th) ∀h ∈ U.

For Fréchet differentiable operators, the so called chain rule holds.

LEMMA 2.46 (Chain rule).
Let (U, ‖ · ‖U), (V, ‖ · ‖V ), (W, ‖ · ‖W ) be real Banach spaces and F : U → V , G : V → W be
Fréchet differentiable at u ∈ U resp. at F (u) ∈ V . Then the operator

E(u) := G(F (u))

is Fréchet differentiable at u and

E′(u) = G′(F (u)) · F ′(u).
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This holds also for Gâteaux differentiable functions and, as a direct consequence of the chain
rule, also the sum rule holds. To obtain a concrete representation of the concept ’derivative’,
the representation of the gradient is given by

DEFINITION 2.47 (Gradient).
Let (U, (·, ·)U) be a real Hilbert space and F : U → R a Fréchet differentiable function. Then
the gradient ∇ is defined as the Riesz representation of the derivative F ′, such that

(∇F, u)U = F ′(u) ∀u ∈ U.

With this definition, the representation of the derivative depends on the specific scalar product
in U. Analogously to the definition of the gradient, the Hessian operator is defined.

DEFINITION 2.48 (Hessian).
Let (U, (·, ·)U) be a real Hilbert space and F : U → R be a function which is twice Fréchet
differentiable function in u ∈ U. Let the second derivative as a symmetric bilinear form be
denoted by

D2F (u)[h1, h2] :=
d

dt1

∣∣∣∣
t1=0

d

dt2

∣∣∣∣
t2=0

F (u + t1h1 + t2h2) ∀h1, h2 ∈ U.

Then for each h1 ∈ U there exists a vector v(h1) ∈ U which is the Riesz representation of the
linear form D2F (u)[h1, ·] such that

D2F (u)[h1, h2] = (v(h1), h2) ∀h2 ∈ U.

The linear mapping

HessF (u) : U → U

h1 7→ v(h1)

is called Hessian operator at u.

The aim of this section is to derive an optimality system characterizing the optimal solution of
the optimal control problem. For this purpose, the adjoint operator is defined.

DEFINITION 2.49 (Adjoint operator).
Let (U, (·, ·)U) and (V, (·, ·)V ) be real Hilbert spaces and A : U → V a linear and continuous
operator. Then A∗ is called adjoint operator of A, if

(v , Au)V = (A∗v , u)U ∀v ∈ V, u ∈ U

holds. A operator A is called self-adjoint if A∗ = A.

The following proposition is the key for the derivation of first order necessary optimality con-
ditions for optimal control problems with control constraints. To this end, several approaches
exist, like the formal Lagrange approach in [7],[34] and [52] and the subsequent variational
approach. Both methods involve the gradient of the reduced functional. There are two main
possibilities to compute the derivative: the sensitivity approach [34, Chapter 1.6.1] and the
adjoint approach, which is applied here.
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LEMMA 2.50 (Necessary first order conditions).
Let (U, ‖ · ‖U) be a real Banach space, C ⊂ U convex and f : C → R Gâteaux differentiable
on C. Let ū ∈ C be a solution of

min
u∈C

f (u).

Then the following variational inequality holds

f ′(ū)(u − ū) ≥ 0 ∀u ∈ C. (2.6)

Proof. [52, Lemma 2.20]

In case that f is convex, this first order necessary condition is also sufficient.

LEMMA 2.51 (Sufficient and necessary first order condition).
Let (U, ‖ · ‖U) be a real Banach space, C ⊂ U convex and f : C → R Gâteaux differentiable on
C and convex. If ū is a solution of the variational inequality (2.6), then ū also is a solution of

min
u∈C

f (u).

Proof. [52, Lemma 2.21]

To apply the previous Lemma 2.51 for deriving the optimality conditions, the gradient of the
reduced functional is needed. For

min
u∈Uad

f (u) :=
1

2
‖Su − yd‖2

U +
α

2
‖u‖2

U

the Gâteaux derivative can be determined:

1. Consider f1(u) := 1
2‖Su − yd‖

2
U . Then f1 is a composed function, f1(u) = G(F (u)) with

G(v) = ‖v‖2
U and F (u) = Su − yd . Application of the chain rule

f ′1(u)h = (v , F ′(u)h)U

= (Su − yd , Sh)U

= (S∗(Su − yd), h)U

and thus

f ′1(u)h = (S∗(Su − yd), h)U .

Here S∗ ∈ L(U,U) is the adjoint operator of S.

2. Consider f2(u) := α
2 ‖u‖

2
U . Then

lim
t→∞

1

t
(f2(u + th)− f2(u)) = lim

t→∞

1

t
(
α

2
‖u + th‖2

U −
α

2
‖u‖2

U)

= lim
t→∞

1

t
(αt(u, h)U + αt2‖h‖2

U)

= (αu, h)U

and thus

f ′2(u)h = (αu, h)U .
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3. Consider f (u) = f1(u) + f2(u) and apply the sum rule, this proves that the gradient has
the form

f ′(u) = f ′1(u) + f ′2(u) = S∗(Su − yd) + αu. (2.7)

Altogether this leads to the quantification of an optimal solution of the optimal control problem.

THEOREM 2.52.
Let (U, (·, ·)U), (V, (·, ·)V ) be real Hilbert spaces, Uad ⊂ U nonempty, closed and convex,
yd ∈ V , α ≥ 0 and S : U → V be a linear and continuous operator. Then ū ∈ Uad is solution of
(2.4) if and only if ū satisfies the variational inequality

(S∗(Sū − yd) + αū, u − ū)U ≥ 0 ∀u ∈ Uad

Proof. Application of the previous Lemma 2.51 and the calculation of the gradient (2.7).

Now the last step is to determine the adjoint operator S∗.

LEMMA 2.53.
The adjoint operator S∗ : L2(Ω) → L2(Ω) for the general second order elliptic operator with
Dirichlet boundaries defined in (2.5) is given by

S∗z = p

where p ∈ H1
0(Ω) is the weak solution of

Lp = z in Ω

p = 0 on ∂Ω.

Proof. [52, Lemmata 2.23, 2.24]

The variational inequality in Lemma (2.6) is now reformulated.

DEFINITION 2.54 (Adjoint equation).
The weak solution p ∈ H1

0(Ω) of the adjoint equation

Lp = ȳ − yd in Ω

p = 0 on ∂Ω
(2.8)

is called the adjoint state of y .

The adjoint equation is uniquely solvable, as yd ∈ L2(Ω) and y ∈ H1
0(Ω), and H1

0(Ω) can
continuously be embedded in L2(Ω). Hence due to Theorem 2.38, the adjoint equation (2.8)
has a unique solution. For z = ȳ − yd in the previous lemma, one obtains

S∗(Sū − yd) = S∗(ȳ − yd) = p

and
(p + αū, u − ū)L2(Ω) ≥ 0 ∀u ∈ Uad .

Altogether, the optimal solution of the optimal control problem can be characterized in the
following theorem.
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THEOREM 2.55.
Let ū be the optimal control of (2.5) and ȳ the appropriate state. There exists a weak solution
p of the adjoint equation, which fulfills the variational inequality∫

Ω

(p(x) + αū(x))(u(x)− ū(x)) dx ≥ 0 ∀u ∈ Uad .

Vice versa, every ū ∈ Uad which satisfies the variational inequality with its appropriate state ȳ
and solution p of the adjoint equation is optimal.

Proof. [52, Theorem 2.25]

Thus a control u is optimal, if and only if the tripple (y , u, p) fulfills the optimality system:

state equation
Ly = f + u in Ω

y = 0 on ∂Ω
(2.9)

adjoint equation
Lp = y − yd in Ω

p = 0 on ∂Ω
(2.10)

design equation
(p + αu, v − u)L2(Ω) ≥ 0 ∀v ∈ Uad . (2.11)

For Uad = L2(Ω), the design equation simplifies to

p + αu = 0.

This proves the existence and uniqueness of an optimal solution of the model problem and
characterizes this optimal solution and finishes the first chapter.

REMARK 2.56.
The reduced Hessian, i.e. the Hessian of the reduced operator in the L2(Ω) scalar product is

Hess f (u) = L−2 + αI.

L−2 is a compact operator and in general not coercive, so that a system solution with this
operator will be ill-posed. The reduced Hessian is a compact perturbation of the operator
αI and the complete reduced Hessian is coercive. This structure of the reduced Hessian
operator is typical in PDE-constrained optimization problems and shows that in general regu-
larization (α > 0) is needed to have a well-posed problem formulation. For more details, see
[7, Example 2.16(c)]. In [54], the eigenvalues of Hess f (u) are given by

λmn = α+
1

π4(m2 + n2)2
, m, n ∈ N

and as λmn > 0, Hess f (u) is strictly positive definite.
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3 Finite Difference Multigrid Solver

The generic setting of PDE-based optimization and in particular optimal control problems is
naturally a infinite-dimensional Hilbert space. Solving these optimization problems numeri-
cally requires approximating these functional spaces by finite-dimensional spaces. In gen-
eral, there are two different approaches for this approximation: ’first discretize, then optimize’
and ’first optimize, then discretize’. On the one side, first discretize, then optimize means
a discretization of the underlying PDE and the objective. Afterwards the optimality condi-
tion, resulting in a finite-dimensional optimization problem, is derived. On the other side, first
optimize, then discretize means that the optimality system is derived first, i.e. in function
spaces. In this approach, the discretization takes place in the second step. For more details
about these two different approaches see [7, Chapter 3.1] and [34, Chapter 3]. This thesis
deals with the second approach. In Section 3.1 the optimality system is reformulated for the
case that there are no restrictions to the control. Section 3.2 gives an analysis of regular-
ity and consistency for the second order finite difference discretization of the PDE and the
resulting optimality system, which characterizes the optimal solution of the optimal control
problem. There are several optimization methods for solving the optimal control problem: an
application of the implicit function theorem leads to so-called black box approaches where
the PDE-constrained optimization problem is transformed into an unconstrained optimization
problem and the reduced gradient for these reduced functional is computed via the adjoint ap-
proach. Gradient-based optimization schemes like steepest descent, Quasi-Newton methods
which approximate the Hessian by low-rank updates based on gradient evaluations or Krylov-
Newton methods can be applied. Semi-smooth Newton methods for the control-constrained
formulation and (reduced) SQP methods are proposed in [7, Chapter 4]. These methods
are called one-shot methods, representing a solution method for optimization problems which
solves the optimization problem during the solution of the state equation. Another important
approach for solving optimal control problems are multigrid methods. Originally these are
a class of algorithms for solving systems arising from the discretization of partial differential
equations. A general introduction into linear geometric multigrid methods is given in Section
3.3. For optimization purposes, one can distinguish between a direct multigrid approach on
the one hand, where the optimization problem is implemented within the grid hierarchy and
on the other hand, there is an approach using a multigrid scheme as inner solver within an
outer optimization loop. As representative of the first kind, the collective smoothing multigrid
(CSMG), proposed in [7], is considered in Section 3.4 for solving the discretized optimality
system.
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3.1 Reformulation of the Optimality System

Recalling the academic elliptic optimal control problem in Definition 2.39

min
(y,u)

J(y , u) := min
(y,u)

1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

Ly = f + u in Ω

y = 0 on ∂Ω

and the characterization of an optimal solution by the optimality system (2.9)-(2.11)

Ly = f + u in Ω

y = 0 on ∂Ω

Lp̃ = y − yd in Ω

p̃ = 0 on ∂Ω

αu + p̃ = 0 in Ω.

Assuming α > 0, the control u can be eliminated by reformulating the design equation

αu + p̃ = 0⇔ u = −
p̃

α
(3.1)

and by substituting p := −p̃, the optimality system can be written as coupled system of two
infinite-dimensional operators [

αL −I
I L

](
y

p

)
=

(
αf

yd

)
(3.2)

where L is understood with homogeneous Dirichlet boundary conditions. To simplify notation,
the following abbreviation is used for the optimality system

A :=

[
αL −I
I L

]
, w :=

(
y

p

)
and φ :=

(
αf

yd

)
(3.3)

and the problem formulation is given by

Aw = φ.

To give some statements about accuracy and convergence properties, stronger assumptions
with regard to the regularity of the solution of the adjoint and design equation are needed, see
[30, Chapter 9.1]. For the case of the academic model problem, this regularity is at hand. Let
L be the uniformly elliptic and symmetric operator defined in Definition 2.29.

LEMMA 3.1.
If yd , f ∈ L2(Ω), Ω ∈ C1,1 bounded and ai j ∈ C0,1(Ω), then the solution of the optimality
system fulfills (ȳ∗, ū∗, p̄∗) ∈ (H1

0(Ω) ∩H2(Ω))3.

Proof. [26, Theorem 2.2.2.3]
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Even weaker assumption to the area Ω are possible:

LEMMA 3.2.
Let Ω be bounded and convex, yd , f ∈ L2(Ω) and ai j ∈ C0,1(Ω). Then (ȳ∗, ū∗, p̄∗) ∈ (H1

0(Ω) ∩
H2(Ω))3.

Proof. [26, Theorem 3.2.1.2, Theorem 3.2.1.3]

3.2 Discretization of the Optimality System

In this section the discretization of the optimality system with the finite differences method is
investigated and regularity as well as consistency of the solution of this discretized system to
the solution of the continuous coupled system Aw = φ is proven.

3.2.1 Finite Difference Discretization

The second order elliptic differential operator and the optimality system are discretized by
means of a finite difference approximation of second order. To apply this method, the domain
Ω, where the PDE takes effect on, is covered with a finite number of grid points and the
derivatives at these grid points are replaced by approximate finite differences. In the following
the notation and terminology of [30] is used.

DEFINITION 3.3 (Grid).
For Ω ⊂ Rd and a grid size h > 0 define a infinite grid

Qh := {x ∈ Rd : xi = sih, si ∈ Zd}

and
Ωh := Ω ∩Qh.

Ωh is called uniform grid on Ω.

On a grid so-called grid functions are defined.

DEFINITION 3.4 (Grid function).
Let Ωh be a grid on Ω ⊂ Rd .

1. A function uh : Ωh → R is called grid function.

2. Uh := {uh : Ωh → R} is the linear space of grid functions.

3. A grid function uh ∈ Uh is extended on Qh by setting uh(x) = 0 for x ∈ Qh\Ωh.

The derivatives emerging in the differential operator are replaced by approximative finite dif-
ferences at each grid point.
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DEFINITION 3.5 (Difference quotient).
Let uh ∈ Uh, h > 0 be the grid size, ei be the i -th unit vector and x ∈ Rd .

1. First order forward space difference quotient of uh in the xi direction:

D+
xi
uh(x) =

uh(x + hei)− uh(x)

h
.

2. First order backward space difference quotient of uh in the xi direction:

D−xi uh(x) =
uh(x)− uh(x − hei)

h
.

3. First order central space difference quotient of uh in the xi direction:

D0
xi
uh(x) =

1

2
(D+

xi
uh(x) +D−xi uh(x)).

4. Second order derivatives are approximated by:

D−xiD
+
xi
uh(x) =

1

h2
[uh(x + hei)− 2uh(x) + uh(x − hei)] .

In analogy to the infinite-dimensional spaces L2(Ω) and H1(Ω), the discrete spaces L2
h and

H1
h of grid functions are introduced. The suitable norms are given in the following definitions.

DEFINITION 3.6 (Discrete L2-norm).
Let Ω ⊂ Rd and uh, vh ∈ Uh. The discrete L2-scalar product is defined by

(uh, vh)0 := (uh, vh)L2
h

:= hd
∑
x∈Qh

uh(x)vh(x)

and the associated discrete L2-norm is given by

|uh|0 := ‖uh‖L2
h

:=

hd ∑
x∈Qh

(uh(x))2

1/2

.

Also define
|uh|∞ := max

x∈Qh
|uh(x)|.

DEFINITION 3.7 (Discrete H1-norm).
Let uh, vh ∈ Uh. The discrete H1-norm is given by

|uh|1 := ‖uh‖H1
h

:=

(
|uh|20 +

n∑
i=1

|D−j uh|
2
0

)1/2

.

The dual norm of | · |1 is defined by

|uh|−1 := ‖uh‖H−1
h

:= sup

{
|(uh, vh)0|
|vh|1

: vh(x) 6= 0, vh(x) = 0 for x ∈ Qh\Ωh

}
.
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DEFINITION 3.8 (Matrix norm).
Let Uh, Vh be discrete linear spaces with vector norms ‖ · ‖Uh , ‖ · ‖Vh as well as uh ∈ Uh and
Lh : Uh → Vh. Then

‖Lh‖Lh(Uh,Vh) := sup

{
‖Lhuh‖Vh
‖uh‖Uh

: uh(x) 6= 0, uh(x) = 0 for x ∈ Qh\Ωh

}
is called the matrix norm associated to the vector norms ‖ · ‖Uh and ‖ · ‖Vh .

The discrete H2-norm ‖ · ‖H2
h

is defined in [30, Chapter 9.2.4].

DEFINITION 3.9.
For uh, vh ∈ Uh define

Vh := {uh ∈ Uh : uh = 0 on ∂Ωh}

and for the system of nodal functions (uh, vh) ∈ Vh × Vh set V 2
h := Vh × Vh.

A discrete version of the Poincaré-Friedrichs inequality holds.

LEMMA 3.10 (Discrete Poincaré-Friedrichs inequality).
Let Ω ⊂ Rd . For any grid function vh ∈ Vh there exists a constant c̄ > 0 such that

|vh|20 ≤ c̄
d∑
i=1

|D−i vh|
2
0,

where c̄ is independent of vh and h.

Proof. [27, Lemma 2.8]

The constant only depends on the area Ω. For a particular Ω = (a, b) × (c, d), c̄ can be
determined, see [31] or [28], by

c̄ =

(
2

(b − a)2
+

2

(d − c)2

)−1

and thus for Ω = (0, 1)× (0, 1), c̄ = 1
4 .

DEFINITION 3.11 (Restriction operators).
1. For u ∈ L2(Ω) and v ∈ H2(Ω) define a restriction operator

R̃h : L2(Ω)→ L2
h

u 7→ uh

and

Rh : H1
0(Ω) ∩H2(Ω)→ H2

h

v 7→ vh,

where u, v are approximated by the grid functions uh, vh through the mean values with
respect to elementary cells depending on the dimension, given by
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(1D) [x − h
2 , x + h

2 ]:

uh(x) = h

∫ x+ h
2

x− h
2

u(x) dx

(2D) [x1 − h
2 , x1 + h

2 ]× [x2 − h
2 , x2 + h

2 ]:

uh(x1, x2) = h2

∫ x1+ h
2

x1− h
2

∫ x2+ h
2

x2− h
2

u(x1, x2) dx1dx2

(3D) [x1 − h
2 , x1 + h

2 ]× [x2 − h
2 , x2 + h

2 ]× [x3 − h
2 , x3 + h

2 ]:

uh(x1, x2, x3) = h3

∫ x1+ h
2

x1− h
2

∫ x2+ h
2

x2− h
2

∫ x3+ h
2

x3− h
2

u(x1, x2, x3) dx1dx2dx3.

2. Define

R̃2
h : L2(Ω)× L2(Ω)→ L2

h × L2
h and

R2
h : (H1

0(Ω) ∩H2(Ω))× (H1
0(Ω) ∩H2(Ω))→ H2

h ×H2
h

by

R̃2
h = (R̃h, R̃h) resp. R2

h = (Rh, Rh).

3. Continuous functions are represented by their grid values:
For u ∈ Ck(Ω̄), k = 0, 1, . . . , the restriction operator R̄ on Ω̄h is denoted by

(R̄hu)(x) = u(x).

For the purpose of simplification and to avoid technical difficulties, the domain Ω ⊂ R2 is
assumed to be rectangular and the grid size h chosen such that the boundaries of Ω coincide
with grid lines. Furthermore, let aik = aki = 0 for i 6= k , i , k = 1, 2, i.e. the differential operator

L =− div(A grad) + c

applied to u states

Lu =−
∂

∂x1

(
a11(x1, x2)

∂

∂x1
u(x1, x2)

)
−

∂

∂x2

(
a22(x1, x2)

∂

∂x2
u(x1, x2)

)
+ c(x1, x2)u(x1, x2).

The second order finite difference approximation of L (with an additional treatment of the
homogenous Dirichlet boundaries) is given by the five-point scheme

Lhuh(x1, x2) =−D−x1
(a11(x1, x2)D+

x1
uh(x1, x2))−D−x2

(a22(x1, x2)D+
x2
uh(x1, x2))

+ c(x1, x2)uh(x1, x2)

in (x1, x2) ∈ Ωh. As Lh is assumed to be uniformly elliptic, Lh is H1
h-regular and consistent with

L from H2(Ω) to H−1
h . For the definitions of H1

h-regularity, consistency and the proof of these
statements see [30, Example 9.2.5, Theorem 9.2.14].
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REMARK 3.12.
1. The discretization of L is a second order consistency scheme, i.e.

|LhR̄hu − R̄hLu|∞ ≤ ch2‖u‖C4(Ω̄),

see [30, Remark 5.1.13].

2. In case of more general convex domains Ω or if the boundary does not coincide with
grid lines, special attention must be paid to the discretization along the boundaries,
Shortley-Weller discretization, see [30, Lemma 9.2.7].

3. For more general differential operators, in particular the case aik 6= 0 for i 6= k , compare
to the nine-point discretization in [30, Chapter 5.1.4].

With these definitions and simplifications the discrete optimal control problem is specified by

min
(yh,uh)

J(yh, uh) := min
(yh,uh)

1

2
|yh − R̃hyd |20 +

α

2
|uh|20

Lhyh = uh + R̃hf , uh ∈ L2
h

and the discretized optimality system after eliminating the control u has the form

αLhyh − ph = αR̃hf

Lhph + yh = R̃hyd .
(3.4)

The infinite-dimensional operator A in (3.3) is well-defined on

H1
0(Ω)×H1

0(Ω)→ H−1(Ω)×H−1(Ω)

as well as on

(H2(Ω) ∩H1
0(Ω))× (H2(Ω) ∩H1

0(Ω))→ L2(Ω)× L2(Ω).

Now the family of operators

Ah =

[
αLh −Ih
Ih Lh

]
, (3.5)

where Ih is the identity operator on grid functions vh ∈ Vh is defined. The aim is to show the
convergence of a solution of the discretized system (3.4) to the solution ofAw = φ for h → 0+.
The operators Ah are defined between product spaces of grid functions

Ah : H1
h ×H1

h → H−1
h ×H

−1
h and

Ah : H2
h ×H2

h → L2
h × L2

h.

3.2.2 Regularity and Consistency

For proving optimal error estimates, regularity of the discretization as well as consistency of
the discretized operators to the continuous analogon have to be shown.
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DEFINITION 3.13.
A family {Ah}h>0 is called

1. H1
h-regular, if Ah is invertible and there exists a constant C1 independent of h such that

‖A−1
h ‖L(H−1

h ×H
−1
h ,H1

h×H
1
h) ≤ C1.

2. H2
h-regular, if Ah is invertible and there exists a constant C2 independent of h such that

‖A−1
h ‖L(L2

h×L
2
h,H

2
h×H

2
h) ≤ C2.

The following lemma shows H1
h-regularity, including the existence of A−1

h , by applying the
Lax-Milgram Lemma.

LEMMA 3.14 (Regularity).
The family of operators {Ah}h>0 with h such that the boundaries of Ω are grid lines is H1

h-
regular.

Proof. Straightforward extension of [5, Lemma 3.2] for more general second order differential
operators.

The following consistency result holds.

LEMMA 3.15 (Consistency).
There exists a constant CK independent of h such that

‖AhR2
h − R̃2

hA‖L((H2∩H1
0)2,(H−1

h ×H
−1
h )) ≤ CKh.

Proof. [5, Lemma 3.3]

As Ah is H1
h-regular and consistent with A from (H2(Ω)∩H1

0(Ω))× (H2(Ω)∩H1
0(Ω)) to H−1

h ×
H−1
h shown in the preceding lemma, the following two convergence statements count.

THEOREM 3.16 (H1
h-convergence).

There exists a constant K1, depending on Ω, f , yd , but independent of h, such that

|yh − Rhy |1 + |uh − Rhu|1 + |ph − Rhp|1 ≤ K1h.

Proof. [5, Lemma 3.4]

THEOREM 3.17 (L2
h-convergence).

Let the boundaries of Ω be grid lines. There exists a constant K2, depending on Ω, f , yd but
independent of h, such that

|yh − Rhy |0 + |uh − Rhu|0 + |ph − Rhp|0 ≤ K2h
2.

Proof. [5, Theorem 3.5]

REMARK 3.18.
For higher-order finite difference approximations of the elliptic optimality system, see e.g. [7,
Chapter 3.2] and the literature given therein.
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3.3 Multigrid Methods

In general, geometric multigrid methods (GMG) are a class of algorithms for solving systems
of linear equations arising from the discretization of partial differential equations. In contrast,
algebraic multigrid methods (AMG) do not require a given problem to be defined on a grid
but rather operates directly on algebraic equations [53, Appendix A]. The main advantages
of the linear multigrid method are the optimal computational complexity, i.e. the number of
required computer iterations scales linearly with the number of unknowns and the rate of
convergence, which is independent of the grid size h. The convergence speed does not dete-
riorate when the discretization is refined and for that reason, an acceptable approximation of
the infinite-dimensional problem can be achieved. Therefore, in many cases multigrid meth-
ods are amongst the fastest solution techniques. They can also directly be applied to more
sophisticated non-symmetric problems or in the absence of positive definiteness. For solving
non-linear problems, the full approximation scheme (FAS) is the most popular approach [6],
[53, Chapter 5.2], [29, Chapter 9].

3.3.1 Geometric Multigrid Method for Linear Problems

In this section, a brief introduction into the general multigrid methodology and terminology is
given. A more detailed survey can be found in [7, Chapter 5], [12], [29], [16] or [53]. To keep
this more general, consider the discretization of a general scalar linear differential operator
Au = f . As errors are affected with a large spectrum of frequencies, the multigrid method is
based on two complementary schemes:

� The high-frequency components of the error are reduced and smoothed by applying
iterative methods.

� The low-frequency error components are reduced by the coarse grid correction scheme.

To introduce the linear multigrid method, define a sequence of grid sizes {hk}∞k=0 generating
a grid hierarchy Ωk := Ωhk on Ω. The operators and variables on a grid Ωk are indexed with
the level number k , k = 0, . . . , L where L denotes the finest level. On each level k , a problem

Akuk = fk (3.6)

has to be solved, where Ak arises from the discretization of the boundary value problem.
Introducing the error grid function ek := u∗− uk , where u∗ is the exact solution, and the defect
dk := fk − Akuk , solving (3.6) is equivalent to solving

Akek = dk .

As it is assumed that uk is affected with a large spectrum of errors, the aim of the multigrid
strategy is to solve for all frequencies using multiple grids. To reduce the high-frequent errors,
on every grid k a smoothing procedure is applied. A smoother is an iterative scheme applied
ν1-times denoted by

Sν1
k (uk , fk)

and one step of this smoothing iteration is written in the form

uν1
k = u

(ν1−1)
k + Rk

(
fk − Aku(ν1−1)

k

)
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where the operator Rk applies to the residual. Different choices of smoothers are discussed
in the next section. The (low-frequency) smooth components of the error are reduced by the
coarse grid correction (CGC). For this purpose, a coarse grid problem is constructed on the
coarser grid Ωk−1. Define a restriction operator Ik−1

k mapping from the fine grid Ωk to the
coarser one Ωk−1 and maintain the coarse grid problem

Ak−1ek−1 = Ik−1
k dk .

After solving for the error on the coarse grid, a prolongation operator Ikk−1 transfers the error
from the coarse to the finer grid. Here, the current approximation at level k obtained by the
smoothing process and before coarsening uk is updated by

unewk = uk + Ikk−1ek−1.

If the high-frequency components of the error on the finer grid k are well-damped, i.e. the error
is sufficiently smooth, then the solution at level k − 1 should provide a good approximation of
the error ek by Ikk−1ek−1.
The coarse grid correction is followed by ν2 post-smoothing steps.

Figure 3.1: Two-grid iteration

In Figure 3.1 Sνi denotes νi smoothing steps on grid Ωk , R the restriction operator Ik−1
k , P

the prolongation operator Ikk−1 and E the exact solution for the error on the coarser grid Ωk−1.
This two-grid scheme is a linear iterative method.

LEMMA 3.19 (Two-grid iteration).
The two-grid iteration matrix is given by

M
TGM(ν1,ν2)
k = Sν2

k

(
Ik − Ikk−1A

−1
k−1I

k−1
k Ak

)
Sν1
k ,

where Ik is the identity matrix and Sk is the smoothing iteration matrix.

Proof. [40, Lemma 4.44]

In the two-grid scheme the size of the coarse grid may still be too large to be solved ex-
actly. The idea of transferring to a coarser grid can be applied along a set of nested meshes.
Starting on level k with a given initial approximation and applying ν1 smoothing steps, the
residual is computed and transferred to the next coarser grid. This procedure is repeated
until the coarsest grid is reached. Here the problem should be acceptably small and can be
solved sufficiently exact by using a direct or iterative method. The result is used to improve uk
and followed by ν2 post-smoothing steps at level k and the CGC procedure is repeated until
the finest level is reached. The whole process represents one multigrid cycle, formulated in
Algorithm 3.1.
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Algorithm 3.1 Multigrid scheme
1: If k = 0: solve A0u0 = f0 exactly
2: Pre-smoothing:

u
(l)
k = Sk

(
u

(l−1)
k , fk

)
, l = 1, . . . ν1.

3: Compute the residual:
dk = fk − Aku(ν1)

k .

4: Restriction:
dk−1 = Ik−1

k dk .

5: Set uk−1 = 0.
6: Call γ times the multigrid cycle to solve Ak−1uk−1 = dk−1.
7: Coarse grid correction:

u
(ν1+1)
k = u

(ν1)
k + Ikk−1uk−1.

8: Post-smoothing:

u
(l)
k = Sk

(
u

(l−1)
k , fk

)
, l = ν1 + 1, . . . , ν1 + ν2 + 1.

The parameter γ is called the cycle index. For γ = 1, the multigrid cycle is called V-cycle and
for γ = 2 W-cycle.

Both variants are illustrated in Figure 3.2.

(a) Multigrid V-cycle (b) Multigrid W-cycle

Figure 3.2: Multigrid iteration

The multigrid iteration matrix is given in recursive form.

LEMMA 3.20 (Multigrid iteration).
For k = 0, let M0 = 0. For k = 1, . . . , L,

Mk = Sν2
k

(
Ik − Ikk−1

(
Ik−1 −Mγ

k−1A
−1
k−1I

k−1
k Ak

))
Sν1
k .

where Ik is the identity matrix, Sk the smoothing iteration matrix and Mk is the multigrid itera-
tion matrix for level k .

Proof. [7, Lemma 5.6]

As there is no general multigrid algorithm working for all boundary value problems, various
components have to be adapted to the special character of a particular problem.
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3.3.2 Smoothing Procedure

Let Ak be a symmetric and positive definite matrix arising from the discretization of a boundary
value problem on Ωk , and fk be the appropriate right-hand side. Most of the facts listed are
also valid for more general matrices and not restricted to the discretization of a differential
operator. The most common choice for solving the system Akuk = fk are linear iterative
methods of the form

u
(l+1)
k = Sk

(
u

(l)
k , fk

)
,

where Sk can be represented as

Sk

(
u

(l)
k , fk

)
= Mku

(l)
k + Nk fk . (3.7)

Mk is called iteration matrix. This iteration matrix is the amplification matrix of the error, as
for e(l)

k := u∗ − u(l)
k , with u∗ = A−1

k fk the exact solution, the iteration (3.7) is equivalent to
e

(l+1)
k = Mke

(l)
k , see [29]. To ensure convergence, an additional assumption regarding to the

eigenvalues of the matrix Mk is needed.

DEFINITION 3.21 (Eigenvector, eigenvalue, spectrum, spectral radius).
1. A vector x ∈ Cn\{0} is an eigenvector of the matrix A ∈ Cn×n with eigenvalue λ ∈ C if

the following equation holds:
Ax = λx.

2. The spectrum of A ∈ Cn×n is defined by

σ(A) = {λ ∈ C : λ eigenvalue of A} .

3. The spectral radius of A ∈ Cn×n is defined by

ρ(A) = max {|λ| : λ ∈ σ(A)} .

THEOREM 3.22.
A linear iterative method u(l+1)

k = Mku
(l)
k +Nk fk converges for all initial values u(0)

k to a optimal
solution u∗ if and only if the spectral radius of Mk fulfills

ρ(Mk) < 1.

Proof. [40, Theorem 4.5]

However, in the multigrid context the smoothing properties are much more important than the
convergence properties.
The main approach for constructing linear iterative schemes is the idea of splitting the matrix
Ak into

Ak = Bk + (Ak − Bk).

For a regular matrix Bk , the system Akuk = fk can be reformulated as

uk = B−1
k (Bk − Ak)uk + B−1

k fk
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and thus a linear iterative method

u
(l+1)
k = Mku

(l)
k + Nk fk

can be defined, where Mk = B−1
k (Bk − Ak) and Nk = B−1

k . The two most convenient and
often very effective representatives for smoothing techniques are the Jacobi iteration and the
Gauss Seidel iteration with several variations. For a matrix Ak ∈ Rn×n let (omitting the index
k if clear)

Dk = [di j ]i ,j=1,...,n, di j =

{
ai j , i = j

0, else

be the diagonal part of the matrix Ak , Dk is assumed to be invertible,

Lk = [li j ]i ,j=1,...,n, li j =

{
ai j , i > j

0, else

be the strictly lower triangular part of Ak and

Rk = [ri j ]i ,j=1,...,n, ri j =

{
ai j , i < j

0, else

be the strictly upper triangular part of Ak .

3.3.2.1 Jacobi Iteration

The idea of the Jacobi iteration (JAC) is to split Ak = Dk + Ak −Dk and to define

u
(l+1)
k = D−1

k (Dk − Ak)u
(l)
k +D−1

k fk

⇔ u
(l+1)
k = u

(l)
k +D−1

k

(
fk − Aku(l)

k

)
respectively written in component notation (and again omitting k)

u
(l+1)
i =

1

ai i

fi − n∑
j=1,j 6=i

ai ju
(l)
j

 for i = 1, . . . , n.

A variation is the damped Jacobi iteration (ω-JAC) with a relaxation parameter 0 < ω ≤ 1 and

u
(l+1)
k = u

(l)
k + ωD−1

k

(
fk − Aku(l)

k

)
.

For convergence properties see [40, Theorem 4.11, Theorem 4.13]. The (JAC) and (ω-JAC)
are independent of the ordering of the grid points in Ωk . For a particular problem, the optimal
ω can be determined by an analytical eigenvalue decomposition, if available, or by numerical
tests.
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3.3.2.2 Gauss-Seidel Iteration

For the Gauss-Seidel iteration (GS), the matrix Ak is splitted into Ak = Dk +Lk +Rk and thus
a linear iteration scheme is defined by

u
(l+1)
k = −(Dk + Lk)−1Rku

(l)
k + (Dk + Lk)−1fk .

In componentwise notation, dropping k and assuming that um+1
j for j = 1, . . . , i − 1 is already

computed, this reads

u
(l+1)
i =

1

ai i

fi − i−1∑
j=1

ai ju
(l+1)
j −

n∑
j=i+1

ai ju
(l)
j

 for i = 1, . . . , n.

Convergence of this scheme is e.g. studied in [40, Theorem 4.16, Corollar 4.18].
The splitting Ak = Dk +Lk +Rk is unique, but the representation of a discrete boundary value
problems by a system of equations Akuk = fk is by no means unique. The construction of Ak
depends on the numbering of the unknowns. In the two-dimensional case there are several
possibilities to enumerate the grid points in Ωk [29, p. 51]. Assume

Ωk ⊂ Qk = {(ihk , jhk), i , j ∈ Z}.

1. Lexicographical ordering:
A grid point (ihk , jhk) ∈ Ωk precedes another point (khk , lhk) ∈ Ωk , if and only if

j < l or (j = l and i < k).

2. Red-black ordering (checkerboard ordering):
The grid points in Ωk are separated into red points

Ωred
k = {(ihk , jhk) ∈ Ωk : i + j even}

and black points
Ωblack
k = {(ihk , jhk) ∈ Ωk : i + j odd}.

The red points are enumerated in their lexicographical ordering first, then the black
points are ordered in a similar way.

3. Four-color ordering:
Divide Ωk into four subsets

Ω1
k = {(ihk , jhk) ∈ Ωk : i , j even},

Ω2
k = {(ihk , jhk) ∈ Ωk : i , j odd},

Ω3
k = {(ihk , jhk) ∈ Ωk : i even, j odd},

Ω4
k = {(ihk , jhk) ∈ Ωk : i odd, j even}.

The grid points are numbered in turn Ω1
k , Ω2

k , Ω3
k , Ω4

k and in each subset Ωi
k the points

are ordered lexicographically.
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(a) lexicographic ordering (b) red-black ordering

Figure 3.3: Ordering

The checkerboard ordering is well-suited for five-point discretizations, whereas the four-color
ordering can be used for general nine-point schemes. If the red-black ordering is used, an-
other variation of the Gauss-Seidel iteration is motivated: the red-black Gauss-Seidel (GS-
RB). Every iteration consists of two half-steps. In the first half-step, all black points are treated
simultaneously and independently and in the second half-step, all red points are treated, using
the already updated values in the black points. Each half-step is effectively a (JAC) iteration
for the black resp. red grid points. This considerations result in the following iteration scheme:

First half-step

u
(l+ 1

2
)

k =

{
−(Dk + Lk)−1Rku

(l)
k + (Dk + Lk)−1fk if uk ∈ Ωred

k

u
(l)
k else

and the second half-step

u
(l+1)
k =

−(Dk + Lk)−1Rku
(l+ 1

2
)

k + (Dk + Lk)−1fk if uk ∈ Ωblack
k

u
(l+ 1

2
)

k else.

3.3.2.3 Blockwise Iterations

An extension of the (pointwise) iteration schemes is to solve the linear system with respect
to blocks of unknowns. Let (uk,1, uk,2, . . . ) be an ordering of the unknowns and the index set
Ik = {1, . . . , nk} be partitioned into p = pk subsets

I jk =
{
ij−1 + 1, ij−1 + 2, . . . , ij

}
for 1 ≤ j ≤ p

with 0 = i0 < i1 < · · · < ip = nk . The unknowns ujk := (uk,i)i∈I jk
form the j-th block of uk .

The matrix Ak = Dk + Lk + Rk is splitted, where Dk is blockdiagonal and Lk and Rk are
strictly lower respectively upper block-triangular. A matrix Lk is strictly lower block-triangular
if Lk,νµ = 0 whenever ν ∈ I jk , µ ∈ I

j ′

k with j ′ ≥ j and analogously a matrix Rk is strictly upper
block-triangular if Lk,νµ = 0 whenever ν ∈ I jk , µ ∈ I

j ′

k with j ′ ≤ j .
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� Block Jacobi iteration:
The Block Jacobi iteration is given by

u
(l+1)
k = D−1

k (Dk − Ak)u
(l)
k +D−1

k fk

⇔ u
(l+1)
k = u

(l)
k +D−1

k

(
fk − Aku(l)

k

)
.

This iteration is independent of the ordering of the blocks and the ordering of the un-
knowns within the blocks.

� Block Gauss-Seidel iteration:

u
(l+1)
k = −(Dk + Lk)−1Rku

(l)
k + (Dk + Lk)−1fk

and written in componentwise notation omitting the level index k

u
(l+1)
i = A−1

i i

(
fi −

i−1∑
j=1

Ai ju
(l+1)
j −

n∑
j=i+1

Ai ju
(l)
j

)
for i = 1, . . . , p.

The blockwise Gauss-Seidel iteration depends on the ordering of the blocks, the num-
bering within the blocks is of no account.

Analogously to the scalar red-black ordering, the blocks can be separated into red and black
blocks and then treated analogously to the pointwise GS-RB variation.

3.3.2.4 Parallel Properties of Smoothers

Comparing the parallelization capability of the smoothers, the (damped) Jacobi-iteration is
fully parallelizable as the operation can be applied to all grid points Ωh simultaneously. The
new values do not depend on each other. The degree of parallelism defined by [53, Chap-
ter 2.1.4] as the number of grid points that can be treated simultaneously by the smoothing
operator, is

par-deg(ω-JAC) = #Ωk .

Within the Gauss-Seidel iteration there are dependencies between the grid point as one wants
to use the most recent values of uk wherever possible for the update. The grid points on
the diagonals in Ωk are independent of each other for the five-point discretization and can
be treated in parallel. As the number of grid points on the diagonal varies, the degree of
parallelism is bounded by

par-deg(GS-LEX) ≤
√

#Ωk .

The red-black Gauss-Seidel iteration consists of two half-steps, which are both fully paralleliz-
able. Here the degree of parallelism is

par-deg(GS-RB) =
1

2
#Ωk .
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3.3.3 Coarse Grid Correction

To solve the defect equation approximately, the idea is to use an appropriate approximation
Ak−1 of Ak on a coarser grid Ωk−1. Therefore a hierarchy of grids Ωk has to be determined,
as illustrated in Figure 3.4. The most convenient choice, called standard coarsening, defines
a sequence of grid sizes {hk}∞k=0, where h0 = 1

2 and hk = h0

2k
for k > 0. The grid Ω0 consists

of only one interior grid point. The choice of the grid hierarchy Ωk defines a family of linear
systems Akuk = fk .

Figure 3.4: Standard coarsening

The coarse grid correction consists of:

Algorithm 3.2 Coarse grid correction

1: Compute the defect: d (l)
k = fk − Aku(l)

k .
2: Restriction: d (l)

k−1 = Ik−1
k d

(l)
k .

3: Solve on Ωk−1: Ak−1e
(l)
k−1 = d

(l)
k−1.

4: Prolongation: e(l)
k = Ikk−1e

(l)
k−1.

5: Update approximation: u(l+1)
k = u

(l)
k + e

(l)
k .

REMARK 3.23.
Taken on its own, the coarse grid correction procedure is not convergent as

ρ
(
Ik − Ikk−1

(
A−1
k−1I

k−1
k Ak

))
> 1,

see [40, Lemma 4.41].

In this section, the miscellaneous components of the CGC are considered.

3.3.3.1 Coarse Grid Operator

Once reached a predetermined coarsest grid Ωp, 0 ≤ p ≤ L there are basically two possibil-
ities for solving the defect equation Apep = dp: On the one hand, a direct solver and on the
other hand an iterative solver. A direct solver can be applied if the coarsest grid is sufficiently
small - in the extreme case p = 0 there is only one scalar equation left and can be solved ana-
lytically. If the coarsest grid is finer, an iterative solver, as the smoothing iterations introduced
in the last section or Krylov-subspace methods, can be applied to solve the defect equation
up to a desired accuracy.
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3.3.3.2 Transfer Operator: Prolongation

The prolongation (interpolation) operator Ikk−1 is a linear and injective mapping which maps a
grid function uk−1 ∈ Uk−1 to a grid function uk ∈ Uk . In two dimensions, for a given grid point
(x1, x2) = (ihk , jhk) ∈ Ωk a piecewise bilinear interpolation

uk(x1, x2) = Ikk−1uk−1(x1, x2)

=



uk−1(x1, x2) x1
hk
, x2
hk

even
1
2 [uk−1(x1, x2 + hk) + uk−1(x1, x2 − hk)] x1

hk
even, x2

hk
odd

1
2 [uk−1(x1 + hk , x2) + uk−1(x1 − hk , x2)] x1

hk
odd, x2

hk
even

1
4 [uk−1(x1 + hk , x2 + hk) + uk−1(x1 + hk , x2 − hk)

+uk−1(x1 − hk , x2 + hk) + uk−1(x1 − hk , x2 − hk)] x1
hk
, x2
hk

odd

is applied, see Figure 3.5. As abbreviation, the stencil notation is used:

Ikk−1 =
1

4

1 2 1

2 4 2

1 2 1

hk
2hk

.

Figure 3.5: Prolongation in two dimensions

This interpolation is also called nine-point prolongation. There are even more other possibili-
ties [29, Chapter 3.4].
For three dimensions, the trilinear interpolation in stencil notation is given by

Ikk−1 =
1

8

1 2 1

2 4 2

1 2 1

2 4 2

4 8 4

2 4 2

1 2 1

2 4 2

1 2 1

hk
2hk

,
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defined by

uk(x1, x2, x3) = Ikk−1uk(x1, x2, x3)

=
1

8

1 2 1

2 4 2

1 2 1

hk
2hk

uk−1(x1, x2, x3 − hk)

+
1

8

2 4 2

4 8 4

2 4 2

hk
2hk

uk−1(x1, x2, x3)

+
1

8

1 2 1

2 4 2

1 2 1

hk
2hk

uk−1(x1, x2, x3 + hk).

3.3.3.3 Transfer Operator: Restriction

The restriction operator Ik−1
k is a linear and surjective mapping that maps a grid function

uk ∈ Uk to a grid function uk−1 ∈ Uk−1. The easiest way is the trivial restriction defined by

uk(x1, x2) = uk−1(x1, x2) for (x1, x2) ∈ Ωk−1.

There are several disadvantages, in the first place the loss of information [29, Chapter 3.5].
A common choice and frequently used is the full weighting operator, a nine-point weighted
average (nine-point restriction) of uk , in stencil notation for the two-dimensional case

Ik−1
k =

1

16

1 2 1

2 4 2

1 2 1

2hk

hk

and in the three-dimensional case a 27 point weighted average

Ik−1
k =

1

64

1 2 1

2 4 2

1 2 1

2 4 2

4 8 4

2 4 2

1 2 1

2 4 2

1 2 1

2hk

hk

,

Applying this operator to a grid function uk(x1, x2) at a coarse grid point (x1, x2) ∈ Ωk−1 is
illustrated in Figure 3.6 and formulated by

uk−1(x1, x2) =Ik−1
k uk(x1, x2)

=
1

16
[4uk(x1, x2) + 2uk(x1 + hk , x2) + 2uk(x1 − hk , x2) + 2uk(x1, x2 + hk)

+ 2uk(x1, x2 − hk) + uk(x1 + hk , x2 + hk) + uk(x1 + hk , x2 − hk)

+ uk(x1 − hk , x2 + hk) + uk(x1 − hk , x2 − hk)].
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Figure 3.6: Restriction in two dimensions

For the three-dimensional case, it holds

uk−1(x1, x2, x3) = Ik−1
k uk(x1, x2, x3)

=
1

64
[8uk(x1, x2, x3) + 4uk(x1 + hk , x2, x3) + 4uk(x1 − hk , x2, x3)

+ 4uk(x1, x2 + hk , x3) + 4uk(x1, x2 − hk , x3) + 4uk(x1, x2, x3 + hk)

+ 4uk(x1, x2, x3 − hk) + 2uk(x1 + hk , x2 + hk , x3) + 2uk(x1 + hk , x2, x3 + hk)

+ 2uk(x1, x2 + hk , x3 + hk) + 2uk(x1 + hk , x2 − hk , x3) + 2uk(x1 + hk , x2, x3 − hk)

+ 2uk(x1, x2 + hk , x3 − hk) + 2uk(x1 − hk , x2 + hk , x3) + 2uk(x1 − hk , x2, x3 + hk)

+ 2uk(x1, x2 − hk , x3 + hk) + 2uk(x1 − hk , x2 − hk , x3) + 2uk(x1 − hk , x2, x3 − hk)

+ 2uk(x1, x2 − hk , x3 − hk) + uk(x1 + hk , x2 + hk , x3 + hk) + uk(x1 + hk , x2 + hk , x3 − hk)

+ uk(x1 + hk , x2 − hk , x3 + hk) + uk(x1 + hk , x2 − hk , x3 − hk)

+ uk(x1 − hk , x2 + hk , x3 + hk) + uk(x1 − hk , x2 + hk , x3 − hk)

+ uk(x1 − hk , x2 − hk , x3 + hk) + uk(x1 − hk , x2 − hk , x3 − hk)].

There are many other possibilities for choosing the restriction operator, see e.g. [53, Chapter
2.3.3].

REMARK 3.24.
The nine-point restriction Ik−1

k is the adjoint to the nine-point prolongation Ikk−1 in the following
sense (

Ik−1
k uk , vk−1

)
k−1

=
(
uk , I

k
k−1vk−1

)
k
∀uk ∈ Uk , vk−1 ∈ Uk−1,

see Section 3.4.3.2.

3.4 Multigrid Solver for the Optimality System

In this section the collective smoothing multigrid approach (CSMG) proposed by Borzı̀ [7,
Chapter 5.7], [5] and [6] is introduced and investigated. Originally multigrid methods are used
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for solving linear systems arising from the discretization of partial differential equations. For
the special case of the optimal control problem with tracking-type objective and self-adjoint
PDE-constraint, a solution of the optimality system within the multigrid framework is possible.
For investigating the convergence properties of the multigrid method applied to the optimality
system, two complementary analytic frameworks are used. On the one hand, the two-grid lo-
cal Fourier analysis in Section 3.4.2 and on the other hand the general multigrid convergence
theory for the special case of nonsymmetric systems in Section 3.4.3.

3.4.1 Collective Smoothing Multigrid Approach

For generalizing the multigrid method and in particular the scalar smoothing scheme to sys-
tems of equations, like the optimality system, the most natural extension is to replace the
relaxation smoothers by collective relaxation smoothers. In this thesis the CSMG approach is
considered, which means to solve the optimality system arising from optimal control problems
for the state, the adjoint and the control variables simultaneously in the multigrid process by
using collective smoothers for the optimizations variables. A survey of the development and
the field of application of this approach can be found in [7, Chapter 5.7] and the references
given therein. In this section, the CSMG scheme for the academic elliptic distributed control
problem introduced in Section 2.5

min
(y,u)

J(y , u) := min
(y,u)

1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

Ly = f + u in Ω

y = 0 on ∂Ω

and the resulting optimality system after eliminating the control u for α > 0

αLy − p = αf in Ω

y = 0 on ∂Ω

y + Lp = yd in Ω

p = 0 on ∂Ω

is presented. For the treatment of control constraints see [5].
To avoid technical difficulties consider the constant coefficient case in two dimensions, i.e.
a11(x1, x2) ≡ a11, a22(x1, x2) ≡ a22, c(x1, x2) ≡ c and Ω = (0, 1)2 the unit square. The
resulting five-point discretization of the differential operator L is given by

Lh = −a11D
−
x1
D+
x1
− a22D

−
x2
D+
x2

+ c

and written in stencil notation

1

h2

 0 −a22 0

−a11 2(a11 + a22) −a11

0 −a22 0


h

+

0 0 0

0 c 0

0 0 0


h

.

The resulting discrete operator

Ah =

[
αLh −Ih
Ih Lh

]
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was investigated in Section 3.2.1. Let Ωh be a uniform cartesian grid on Ω, i.e. for i , j =

1, . . . , n, denoting n the number of internal grid points in x1-direction, the grid points (xi , xj) ∈
Ωh are defined by xi = ih, xj = jh and h = 1

n+1 . Both of the differential operators L resp. αL
are discretized with same finite difference approximation. The idea of the CSMG is to consider
one grid for both differential operators and treat the variables at each grid point collectively.
For a given grid point, the discrete optimality system with a lexicographic ordering is given by

α

h2
[(2(a11 + a22) + h2c)y(x1, x2)− a11y(x1 − h, x2)− a11y(x1 + h, x2)

−a22y(x1, x2 − h)− a22y(x1, x2 + h)]− p(x1, x2) = αf (x1, x2)

1

h2
[(2(a11 + a22) + h2c)p(x1, x2)− a11p(x1 − h, x2)− a11p(x1 + h, x2)

−a22p(x1, x2 − h)− a22p(x1, x2 + h)] + y(x1, x2) = yd(x1, x2)

and collectively in point-block notation[
α
h2 (2(a11 + a22) + h2c) −1

1 1
h2 (2(a11 + a22) + h2c)

](
y(x1, x2)

p(x1, x2)

)
−
[
α
h2 a11 0

0 1
h2 a11

](
y(x1 − h, x2)

p(x1 − h, x2)

)
−
[
α
h2 a11 0

0 1
h2 a11

](
y(x1 + h, x2)

p(x1 + h, x2)

)
−
[
α
h2 a22 0

0 1
h2 a22

](
y(x1, x2 + h)

p(x1, x2 + h)

)
−
[
α
h2 a22 0

0 1
h2 a22

](
y(x1, x2 − h)

p(x1, x2 − h)

)
=

(
αf (x1, x2)

yd(x1, x2)

)
.

Smoothing
A general collective smoothing step at (x1, x2) ∈ Ωk consists of updating the values y(x1, x2)

and p(x1, x2) such that the resulting residuals of the two equations at that point are zero. The
neighboring variables are considered as constant ones. This method is originally developed
for the control constrained case in [7, Chapter 5.7].

(
y(x1, x2)

p(x1, x2)

)
=

[
α
h2 (2(a11 + a22) + h2c) −1

1 1
h2 (2(a11 + a22) + h2c)

]−1
[(

αf (x1, x2)

yd(x1, x2)

)
(3.8)

+

[
α
h2 a11 0

0 1
h2 a11

](
y(x1 + h, x2)

p(x1 + h, x2)

)
+

[
α
h2 a11 0

0 1
h2 a11

](
y(x1 − h, x2)

p(x1 − h, x2)

)
(3.9)

+

[
α
h2 a22 0

0 1
h2 a22

](
y(x1, x2 + h)

p(x1, x2 + h)

)
+

[
α
h2 a22 0

0 1
h2 a22

](
y(x1, x2 − h)

p(x1, x2 − h)

)]
. (3.10)

Treating the linear system in this point-block structure, it is obvious to consider block iterations
as smoother, like the block Jacobi or the red-black ordered block Gauss-Seidel iteration where
the blocks are separated in red and black blocks. For this iteration, one smoothing step is
defined by two half-steps.
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First half-step: red blocks

u(l+ 1
2

)(x1, x2) =

(
y(x1, x2)

p(x1, x2)

)(l+ 1
2

)

= D−1

[(
αf (x1, x2)

yd(x1, x2)

)
−
([

α
h2 a11 0

0 1
h2 a11

](
y(x1 − h, x2)

p(x1 − h, x2)

)(l)

+

[
α
h2 a11 0

0 1
h2 a11

](
y(x1 + h, x2)

p(x1 + h, x2)

)(l)

+

[
α
h2 a22 0

0 1
h2 a22

](
y(x1, x2 − h)

p(x1, x2 − h)

)(l)

+

[
α
h2 a22 0

0 1
h2 a22

](
y(x1, x2 + h)

p(x1, x2 + h)

)(l))]

and the second half step: black blocks

u(l+1)(x1, x2) =

(
y(x1, x2)

p(x1, x2)

)(l+1)

= D−1

[(
αf (x1, x2)

yd(x1, x2)

)
−
([

α
h2 a11 0

0 1
h2 a11

](
y(x1 − h, x2)

p(x1 − h, x2)

)(l+ 1
2

)

+

[
α
h2 a11 0

0 1
h2 a11

](
y(x1 + h, x2)

p(x1 + h, x2)

)(l+ 1
2

)

+

[
α
h2 a22 0

0 1
h2 a22

](
y(x1, x2 − h)

p(x1, x2 − h)

)(l+ 1
2

)

+

[
α
h2 a22 0

0 1
h2 a22

](
y(x1, x2 + h)

p(x1, x2 + h)

)(l+ 1
2

))]
.

The inverse D−1 of

D =

[
α
h2 (2(a11 + a22) + h2c) −1

1 1
h2 (2(a11 + a22) + h2c)

]

can be determined analytically

D−1 =
1

α
h4 (2(a11 + a22) + h2c)2 + 1

[
1
h2 (2(a11 + a22 + h2c)) 1

−1 α
h2 (2(a11 + a22) + h2c)

]
.

Solver coarsest grid
On the coarsest grid Ω0, i.e. h0 = 1

2 , the 2× 2 system can be solved exactly by

(
y( 1

2
, 1

2
)

p( 1
2
, 1

2
)

)
= 1

16α(2(a11+a22)+ c
4 )2+1

[
4(2(a11 + a22) + c

4
) 1

−1 4α(2(a11 + a22) + c
4

)

](
αf ( 1

2
, 1

2
)

yd( 1
2
, 1

2
)

)
.

For the special case L = −∆, this simplifies to(
y( 1

2 ,
1
2 )

p( 1
2 ,

1
2 )

)
=

1

256α+ 1

[
16 1

−1 16α

](
αf ( 1

2 ,
1
2 )

yd( 1
2 ,

1
2 )

)
.
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3.4.2 Local Fourier Analysis

The local Fourier analysis was introduced by Brandt [14] and extended and refined in several
papers, e.g. [15]. The purpose of this analysis is to obtain sharp convergence estimates by
simplifying assumptions on the boundary conditions. Following the formalism of [53, Chapter
4], the main idea is the local nature of the local Fourier analysis:
Under general assumptions, any general discrete operator, possibly nonlinear, possibly with
nonconstant coefficients, can be linearized locally and can be replaced locally by an operator
with constant coefficients. With this simplification, general linear discrete operators with con-
stant coefficients are considered in local Fourier analysis. Formally, they are defined on an
infinite grid. This fact seems to be deficient as the influence of the boundaries and boundary
conditions are neglected, but the objective of the local Fourier analysis is to determine the
quantitative convergence behavior and efficiency of an appropriate multigrid algorithm can
attain if a proper boundary treatment is included.

3.4.2.1 Theoretical Background

Firstly a brief introduction in terminology and notation is given. To avoid technical complica-
tions, considering the discretization of the constant case uniformly elliptic operator

L = −
∂2

∂x2
1

−
∂2

∂x2
2

= −∆ (3.11)

in two dimensions. Later, this is generalized for the coupled system of PDEs. For the multigrid
solver, standard coarsening, full-weighting and bilinear interpolation are assumed. The local
Fourier analysis is of local nature: the aim is to determine quantities for the smoothing itera-
tion µloc(Sh) and two-grid convergence factors ρloc(TGHh ) for the insight into the asymptotic
convergence behavior. For the local Fourier analysis define an infinite grid Gh on R2 and a
special type of grid functions.

DEFINITION 3.25 (Grid, grid function).
For a fixed mesh size h = (h1, h2) define

1. infinite grid
Gh = {x ∈ R2 : x = jh := (j1h1, j2h2), j = (j1, j2) ∈ Z2}

2. grid function
ϕh(θ, x) = e iθ·x/h := e iθ1x1/h1e iθ2x2/h2 for x ∈ Gh.

REMARK 3.26.
For continuously varying θ in R2, it is sufficient to consider

ϕ(θ, x) with θ ∈ [−π, π)2

as
ϕ(θ, x) ≡ ϕ(θ′, x) for x ∈ Gh

if and only if
θ1 = θ′1(mod 2π) and θ2 = θ′2(mod 2π).

These grid functions are linearly independent on Gh.
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On an infinite grid Gh, discrete differential operators Lh are considered corresponding to a
difference stencil.

DEFINITION 3.27 (Difference stencil).
Let uh be a grid function on Gh, h = (h1, h2). A general difference stencil

[sκ1κ2 ]h =



...
...

...
· · · s−1,1 s0,1 s1,1 · · ·
· · · s−1,0 s0,0 s1,0 · · ·
· · · s−1,−1 s0,−1 s1,−1 · · ·

...
...

...


h

defines an operator on the set of grid functions by

[sκ1κ2 ]huh(x1, x2) =
∑

(κ1,κ2)

sκ1κ2uh(x1 + κ1h1, x2 + κ2h2).

Assume that only a finite number of coefficients sκ1κ2 are nonzero. A typical example for a
stencil is the already mentioned five point stencil s0,1

s−1,0 s0,0 s1,0

s0,−1


h

and for the constant coefficient operator (3.11) −∆h

−
1

h2

 1

1 −4 1

1


h

.

The discrete operators can be defined by its difference stencil

Lh=̂[sκ]h (κ = (κ1, κ2) ∈ Z2)

and applied to a grid function uh

Lhuh(x) =
∑
κ∈V

sκuh(x + κh)

with constant coefficients sκ ∈ R and V being a finite index set.

LEMMA 3.28.
For θ ∈ [−π, π)2, all grid functions ϕ(θ, x) are (formal) eigenfunctions of any discrete operator
which can be described by a difference stencil [sκ]h. The relation

Lhϕ(θ, x) = L̃h(θ)ϕ(θ, x) (x ∈ Gh)

holds with
L̃h(θ) =

∑
κ

sκe
iθ·κ.

L̃h(θ) is called formal eigenvalue or the symbol of Lh.
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Proof. [53, Lemma 4.2.1].

EXAMPLE 3.29 (Laplace operator).
The symbol for the discrete Laplace operator Lh = −∆h is

L̃h(θ) =
1

h2

(
4−

(
e iθ1 + e iθ2 + e−iθ1 + e−iθ2

))
=

2

h2
(2− (cos θ1 + cos θ2)) .

For the investigation of convergence estimates for the coarse grid correction, a coarse grid is
defined.

DEFINITION 3.30 (Coarse grid).
Let Gh an infinite grid. A coarse grid

GH = {x = κH : κ ∈ Z2}

is obtained by standard coarsening of Gh, i.e. H = (2h1, 2h2).

Only those frequency components

ϕ(θ, ·) with −
π

2
≤ θ <

π

2

are distinguishable on GH, i.e.

ϕ(θ, x) = ϕ(θ′, x) for x ∈ GH ⇔ θ = θ′(mod π).

This leads to the distinction of high and low frequencies.

DEFINITION 3.31 (High and low frequency components).

ϕ low frequency component ⇔ θ ∈ T low :=
[
−
π

2
,
π

2

)2

ϕ high frequency component ⇔ θ ∈ T high := [−π, π)2\
[
−
π

2
,
π

2

)2

3.4.2.2 Smoothing Analysis

One goal of the local Fourier analysis is to determine smoothing factors for Sh. Consider the
optimality system [

−α∆h −Ih
Ih −∆h

](
yh
ph

)
=

(
αfh
yd

)
(⇔: Ahwh = φh)

and assume that the smoothing iteration can locally be written as

A+
h w̄h +A−h wh = φh

where wh corresponds to the ’old’ approximation (before the smoothing step) of wh. In this
sense, the relaxation is characterized by a splitting of the form

Ah = A+
h +A−h .
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For the analysis of different smoothers, the notation of [5] is recapitulated: define

B+
h =

[
α
∑+
h 0

0
∑+
h

]
,B−h =

[
α
∑−
h 0

0
∑−
h

]
,D+

h =

[
4α
h2 Ih −Ih
Ih

4
h2 Ih

]
,

where
∑−
h ,
∑+
h are given in stencil form:

∑+
h = 1

h2

0 0 0

1 0 0

0 1 0

 ,∑−h = 1
h2

0 1 0

0 0 1

0 0 0

.

For GS-LEX, Ah is splitted into

A+
h = Dh − B+

h

A−h = −B−h .

Let Ã+
h and Ã−h be the symbols of A+

h and A−h .

LEMMA 3.32.
Under the splitting assumption, all ϕ(θ, ·) with Ã+

h (θ) 6= 0 are eigenfunctions of Sh:

Shϕ(θ, x) = S̃h(θ)ϕ(θ, x) (−π ≤ θ ≤ π)

with the amplification factor
S̃h(θ) := −Ã+

h (θ)−1Ã−h (θ).

Proof. Straightforward extension of [53, Lemma 4.3.1] for general systems of PDEs.

For GS-LEX, the symbols are given by

Ã+
h (θ) = −

1

h2

[
α(e−iθ1 + e−iθ2 − 4) h2

−h2 (e−iθ1 + e−iθ2 − 4)

]
and

Ã−h (θ) = −
1

h2

[
α(e iθ1 + e iθ2 ) 0

0 (e iθ1 + e iθ2 )

]
.

Therefore, the amplification factor is

S̃h(θ) = −Ã+
h (θ)−1Ã−h (θ)

= −

[
−α(e−iθ1 +e−iθ2−4)

h2 −1

1 − (e−iθ1 +e−iθ2−4)
h2

]−1 [
−α(e iθ1 +e iθ2 )

h2 0

0 − (e iθ1 +e iθ2 )
h2

]
.

DEFINITION 3.33 (Local smoothing factor).
The local smoothing factor is defined by

µloc = µloc(Sh) := sup{|ρ(S̃h(θ))| : θ ∈ T high}

where ρ denotes the spectral radius.
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To quantify the smoothing factor, the eigenvalues of a 2× 2 system can be determined by any
symbolic package.

REMARK 3.34.
1. In [5], the following upper bound for the smoothing factor is given for the high frequencies

for h ∈ [0.01, 0.25] and α ∈ [10−6, 1] for GS-LEX

µloc(Sh) ≤ 0.5.

2. The derivation of local smoothing factors for the ω-JAC can be derived in an analogous
way.

3. The smoothing factor for GS-RB cannot be determined in that way as the smoothing op-
erator cannot be splitted and therefore the assumptions of Lemma 3.32 are not fulfilled.

3.4.2.3 Two-grid Analysis

Another goal of the local Fourier analysis is to determine asymptotic two-grid convergence
factors for the whole iteration TGHh . To this end, some preliminary work has to be done. As
shown in the previous section, quadruples of ϕ(θ, ·) coincide on GH. For any θ = (θ1, θ2) ∈
T low consider the frequencies

θ(0,0) := (θ1, θ2), θ(0,1) := (θ1, θ̄2)

θ(1,0) := (θ̄1, θ2), θ(1,1) := (θ̄1, θ̄2)

where

θ̄i :=

{
θi + π, θi < 0

θi − π, θi ≥ 0.

This leads to

LEMMA 3.35.
1. For any frequency θ(0,0) ∈ T low it holds

ϕ(θ(0,0), x) ≡ ϕ(θ(1,1), x) ≡ ϕ(θ(1,0), x) ≡ ϕ(θ(0,1), x), x ∈ GH.

2. Each of these four Fourier components ϕ(θβ, ·) = ϕh(θβ, ·) with β ∈ {(0, 0), (1, 1),

(1, 0), (0, 1)} coincide on GH with the respective grid function ϕH(2θ(0,0), ·):

ϕh(θβ, x) ≡ ϕH(2θ(0,0), x), x ∈ GH.

Proof. [53, Lemma 4.4.1].

DEFINITION 3.36 (Harmonics for standard coarsening).
1. The corresponding four ϕ(θβ, ·) are called harmonics.

2. For a given θ = θ(0,0) ∈ T low , define the four-dimensional space of harmonics by

Eθh := span
{
ϕ(θβ, ·) : β = (β1, β2) ∈ {(0, 0), (1, 1), (1, 0), (0, 1)}

}
.
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The spaces Eθh are invariant under the two-grid operator TGHh under general assumptions. An
arbitrary ψ ∈ Eθh can be represented by

ψ = A(0,0)ϕ(θ(0,0), ·) + A(1,1)ϕ(θ(1,1), ·) + A(1,0)ϕ(θ(1,0), ·) + A(0,1)ϕ(θ(0,1), ·).

with uniquely determined coefficients Aβ. For the case of the discretization of scalar differen-
tial equations Lhuh = fh the following theorem holds.

THEOREM 3.37.
1. Let Lh, IHh , LH and IhH be represented by stencils on Gh and GH. Further let L−1

H exist.
Then the coarse grid correction operator CGCHh is represented on Eθh by the (4 × 4)-
matrix

ĈGC
H

h (θ) = Îh − ÎhH(θ)(L̂H(2θ))−1ÎHh (θ)L̂h(θ) (3.12)

for each θ ∈ T low . Here, Îh, L̂h(θ) are (4 × 4)-matrices, ÎHh (θ) is a (4 × 1)-matrix,
L̂H(2θ))−1 is a (1× 1)-matrix and ÎhH(θ) is a (1× 4)-matrix.

2. If the spaces Eθh are invariant under the smoothing operation Sh, i.e.

Sh : Eθh → Eθh ∀θ ∈ T low ,

a representation of TGHh on Eθh by a (4 × 4)-matrix T̂G
H

h (θ) with respect to Eθh can be
obtained by

T̂G
H

h (θ) = Ŝh(θ)ν2ĈGC
H

h (θ)Ŝh(θ)ν1

with ĈGC
H

h (θ) from (3.12) and the (4× 4)-matrix Ŝh(θ) which represents Sh.

Proof. [53, Theorem 4.4.1]

By applying CGCHh to any ψ ∈ Eθh, the coefficients Aβ are transformed in the following way
A(0,0)

A(1,1)

A(1,0)

A(0,1)

⇐ ĈGC
H

h (θ)


A(0,0)

A(1,1)

A(1,0)

A(0,1)


and TGHh ψ can be written as

TGHh ψ = B(0,0)ϕ(θ(0,0), ·) + B(1,1)ϕ(θ(1,1), ·) + B(1,0)ϕ(θ(1,0), ·) + B(0,1)ϕ(θ(0,1), ·)

with 
B(0,0)

B(1,1)

B(1,0)

B(0,1)

 = T̂G
H

h (θ)


A(0,0)

A(1,1)

A(1,0)

A(0,1)

 .
Now the local Fourier analysis is applied to estimate rates of convergence for the multigrid
method solving the optimality system Ahwh = φw . The two-grid operator is given by

TGHh = Sν2
h [Ih − IhH(AH)−1IHh Ah]Sν1

h
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and the coarse grid corrector by

CGHh = [Ih − IhH(AH)−1IHh Ah].

For studying the action of TGHh on an arbitrary couple (εy , εp) ∈ Eθh × Eθh, define

εy =
∑
β

Y βϕ(θβ, ·) and εp =
∑
β

P βϕ(θβ, ·)

where (εy , εp) represents the error functions for yh and ph.
For each θ, the spaces Eθh × Eθh are invariant, as shown above. The next theorem is a result
by Borzı̀, Kunisch and Kwak [5, Theorem 5.1], an extension of the Theorem 3.37 applied to
the optimality system.

THEOREM 3.38.
1. Under the assumptions that all multigrid components in TGHh are linear and that (AH)−1

exists, the coarse grid operator CGHh is represented on Eθh × Eθh by the (8 × 8)-matrix

ĈG
H

h (θ),

ĈG
H

h (θ) = [Îh − ÎhH(θ)(ÂH(2θ))−1ÎHh (θ)Âh(θ)],

for each θ ∈
[
−π2 ,

π
2

)2. Here, Îh and Âh(θ) are (8×8)-matrices, ÎHh (θ) is a (2×8)-matrix,
ÎhH(θ) is a (8× 2)-matrix and ÂH(2θ) is a (2× 2)-matrix.

2. If the spaces Eθh × Eθh are invariant under the smoothing operator Sh, i.e. Ŝh(θ) : Eθh ×
Eθh → Eθh × Eθh for all θ ∈

[
−π2 ,

π
2

)2, then Ŝh(θ) is a (8 × 8)-matrix and a representation
of TGHh on Eθh × Eθh by a (8× 8)-matrix is given by

T̂G
H

h (θ) = Ŝh(θ)ν2ĈG
H

h (θ)Ŝh(θ)ν1 .

In explicit form, the symbols of the operators are

� for the coarse grid operator AH:

ÂH(2θ) =

[
α

4−2 cos(2θ1)+cos(2θ2)
H2 −1

1 4−2 cos(2θ1)+cos(2θ2)
H2

]

� for the fine grid operator Ah:

Âh(θ) =



αξ(θ(0,0)) 0 0 0 −1 0 0 0

0 αξ(θ(1,1)) 0 0 0 −1 0 0

0 0 αξ(θ(1,0)) 0 0 0 −1 0

0 0 0 αξ(θ(0,1)) 0 0 0 −1

1 0 0 0 ξ(θ(0,0)) 0 0 0

0 1 0 0 0 ξ(θ(1,1)) 0 0

0 0 1 0 0 0 ξ(θ(1,0)) 0

0 0 0 1 0 0 0 ξ(θ(0,1))


where

ξ(θβ) =
4− 2(cos(θβ1

1 ) + cos(θβ2
2 ))

h2



3 Finite Difference Multigrid Solver 55

� for the restriction operator IHh :

ÎHh (θ) =

[
I(θ(0,0)) I(θ(1,1)) I(θ(1,0)) I(θ(0,1)) 0 0 0 0

0 0 0 0 I(θ(0,0)) I(θ(1,1)) I(θ(1,0)) I(θ(0,1))

]

where
I(θβ) = IHh (θβ) =

1

4
(1 + cos(θβ1

1 ))(1 + cos(θβ2
2 )).

� prolongation operator IhH:
ÎhH(θ) = ÎHh (θ)T .

DEFINITION 3.39 (Asymptotic convergence factor).
The asymptotic convergence factor is defined by

ρloc = ρloc(T̂G
H

h ) = sup
{
ρ(T̂G

H

h (θ)) : θ ∈ T low
}

where ρ(T̂G
H

h (θ)) is the spectral radius of T̂G
H

h (θ).

The 8× 8 matrix T̂G
H

h (θ) corresponds to the error function and its components (Y β, P β) and
expresses the action of one TGHh step by

(Y β, P β)(1) = T̂G
H

h (θ)(Y β, P β)(0).

In Theorem 3.38, a more general requirement on the smoothing operator instead of the split-
ting property was proven. The invariance property

Sh : Eθh × Eθh → Eθh × Eθh for all θ ∈ T low

has to hold. This assumption is fulfilled for the GS-RB. For smoother satisfying the invariance
property, high and low frequency may be intermixed. Therefore an ideal coarse grid operator
QHh is defined, which annihilates the low frequency components and leaves the high frequency
components unchanged. Define on Eθh

QHh ϕ(θ, ·) :=

{
0 if θ = θ(0,0) ∈ T low

ϕ(θ, ·) if θ ∈ {θ(1,0), θ(0,1), θ(1,1)}

and on the space Eθh × Eθh

Q̂Hh (θ) :=

[
QHh 0

0 QHh

]
for θ ∈ T low .

DEFINITION 3.40.
Under the assumption that Sh has the invariance property, the smoothing factor µ̄loc(Sh, ν) of
Sh is defined by

µ̄loc(Sh, ν) := sup

{
ν

√
ρ(Q̂Hh Ŝh(θ)ν), θ ∈ T low

}
.
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LFA Exp.

(ν1 + ν2) µ̄loc(Sh, ν1 + ν2) ρloc(T̂G
H

h ) V(ν1, ν2)
(1+1) 0.25 0.25 0.30
(2+1) 0.125 0.12 0.12
(2+2) 0.06 0.08 0.08
(3+2) 0.03 0.06 0.06
(3+3) 0.01 0.05 0.05

Table 3.1: Convergence Factors

Here, µ̄ depends on ν. This is another definition of the smoothing operator, assuming that an
ideal CGC operator is defined.
Borzı̀ et al. reported in [5] the values µ̄(Sk , ν) and ρloc for the two-grid multigrid algorithm
with the GS-LEX smoothing iteration for h ∈ [0.01, 0.25] and α ∈ [10−6, 1], compared with
experimental values, where the convergence factor was measured as the ratio of the discrete
L2-norm of residuals resulting of two successive multigrid cycles.

These values are typical for the standard scalar Poisson problem.

REMARK 3.41.
A generalization of the local Fourier analysis for scalar equations and systems of PDEs with
nonconstant coefficients or nonlinear systems can be applied by linearizing and freezing of
coefficients.

3.4.3 CSMG Convergence Theory

Whereas the local Fourier analysis was used to derive sharp convergence estimates, in this
section the multigrid convergence to weak solutions of the optimality system is proven. Start-
ing first with the multigrid convergence framework by Hackbusch [29] for the scalar uniformly
elliptic partial differential equations with the finite differences discretization on a grid Ωk , as
defined in Section 3.3.1 by

Akuk = fk .

In the second part, a slight variation of these proofs is used to show multigrid convergence of
the optimality system. A proof for the collective smoothing multigrid method with the Jacobi
smoother can be found in [51].

3.4.3.1 Smoothing and Approximation Property

In this section, sufficient conditions for the convergence of the linear multigrid method are
discussed: the smoothing property and the approximation property.

DEFINITION 3.42 (Smoothing property).
An iteration Sνk is said to possess the smoothing property if there exist functions η(ν) and ν̄(h)

and a scalar α > 0 such that
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1.
∥∥AkSνk∥∥ ≤ η(ν)h−αk for all 1 ≤ ν < ν̄(hk), k ≥ 1,

2. limν→∞ η(ν) = 0,

3. limh→∞ ν̄(h) =∞ or ν̄(h) =∞.

The functions η and ν̄ are required to be independent of k or hk .

Hackbusch [29, Chapter 6.2] proved that the smoothing property holds for the Richardson
iteration, the damped Jacobi iteration, the two-cyclic Gauss-Seidel iteration (and here in par-
ticular the Gauss-Seidel iteration with chequer-board ordering for the five-point stencil) and
the Kaczmarz-iteration.

DEFINITION 3.43 (Approximation property).
The approximation property holds if there is some constant CA such that∥∥A−1

k − I
k
k−1A

−1
k−1I

k−1
k

∥∥ ≤ CAhαk for all k ≥ 1.

Whilst the smoothing property is an algebraic one, the smoothing property depends on the
properties of the boundary value problem, see [29, Chapter 6.3]. With these two assumptions,
the general convergence of the two-grid multigrid can be shown.

THEOREM 3.44 (General two-grid convergence).
Let the smoothing property and the approximation property hold and let 0 < ζ < 1 be a fixed
number.

1. In the case ν̄(h) = ∞ there is a lower bound ν such that the the two-grid contraction
number satisfies ∥∥∥MTGM(ν,0)

k

∥∥∥ ≤ CAη(ν) ≤ ζ (3.13)

for ν ≥ ν and k ≥ 1.

2. If ν̄(h) → ∞ there are bounds h̄ > 0 and ν such that the inequality (3.13) holds for all
ν ∈ [ν, ν̄(h)) and all k with hk ≤ h̄. For such k , the interval [ν, ν̄(hk)) is not empty.

Proof. [29, Theorem 6.1.7].

For proving the convergence of the multigrid iteration, two further propositions have to be
made:

1. ‖Sνk ‖ ≤ CS for all k ≥ 1, 0 < ν < ν̄ := min
k≥1

ν̄(hk)

2. C−1
P ‖uk−1‖ ≤

∥∥Ik−1
k uk−1

∥∥ ≤ C̄P ‖uk−1‖ for all uk−1 ∈ Uk−1, k ≥ 1
(3.14)

THEOREM 3.45 (Multigrid convergence).
Suppose the cycle-index γ ≥ 2, let the smoothing property and the approximation property
hold just as well as the two assumptions (3.14). Let ζ′ ∈ (0, 1) be a fixed number.

1. In the case ν̄(h) =∞ there is a lower bound ν such that the multigrid contraction number
satisfies ∥∥∥MMGM(ν,0)

k

∥∥∥ ≤ ζ′ < 1,
∥∥∥MMGM(ν,0)

k

∥∥∥ ≤ γ

γ − 1
CAη(ν),

whenever ν ≥ ν, independently of k ≥ 1.
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2. If ν̄ → ∞ there exist h̄ > 0 and ν such that (1) holds for all ν ∈ [ν, ν̄(hk)) and all k ≥ 1,
provided that hk ≤ h̄. For such hk the interval [ν, ν̄(hk)) is not empty.

Proof. [29, Theorem 7.1.2].

3.4.3.2 Multigrid Convergence

Now the multigrid convergence for the optimality system is presented. Following [7] and [5],
the proof is split into three parts. In a first step, convergence is shown for

−∆y = f in Ω

y = 0 on ∂Ω.

In the second step, the decoupled symmetric system

−α∆y = αf in Ω

y = 0 on ∂Ω

−∆p = yd in Ω

p = 0 on ∂Ω

is considered. In the final step, the multigrid convergence for the nonsymmetric optimality
system is proven. This multigrid convergence theory goes back to [12]. For this purpose, the
Algorithm 3.1 is reformulated in the form of a classical iteration scheme as

Mk = Ik − BkAk ,

where Ik denotes the identity on Vk . Let Rk : Vk → Vk be an iteration operator such that
Sk = Ik − RkAk for k > 1. Let

Akuk = fk in Vk

be the matrix form of the discretization of

−∆y = f in Ω

y = 0 on ∂Ω.

Introduce for variables u on Vk the inner product (·, ·)k with associated norm ‖u‖k = (u, u)
1/2
k

and define Ik−1
k : Vk → Vk−1 as the L2

k -projection described by

(Ik−1
k u, v)k−1 = (u, Ikk−1v)k ∀u ∈ Vk , v ∈ Vk−1

and Pk−1 : Vk → Vk−1 as the Ak -projection by

(Ak−1Pk−1u, v)k−1 = (Aku, I
k
k−1v)k ∀u ∈ Vk , v ∈ Vk−1.

With these definitions, the V -cycle multigrid algorithm is given in the recursive form as in [7].
The equivalence of the recursive form to the Algorithm 3.1 is shown in [7]. According to [12],
the following multigrid convergence theorem is proven.
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Algorithm 3.3 Multigrid scheme: recursive form

Set B1 = A−1
1 . For k ≥ 2 define Bk : Vk → Vk in terms of Bk−1 as follows. Let fk ∈

Vk .
1: Define u(l) for l = 1, . . . , ν1 by

u(l) = u(l−1) + Rk(fk − Aku(l−1)).

2: Set u(ν1+1) = u(ν1) + Ikk−1q, where

q = Bk−1I
k−1
k (fk − Aku(ν1)).

3: Set Bk fk = u(µ1+µ2+1), where u(l) for l = ν1 + 2, . . . , ν1 + ν2 + 1 is given by Step 2 (with
RTk instead of Rk for a symmetric multigrid scheme).

THEOREM 3.46 (Multigrid convergence for scalar equations).
Let Rk satisfy the assumptions

1. Smoothing operator Rk :
There exist constants CR > 0 and c > 0 independent of u and k such that

CR
‖u‖2

k

λk
≤ (Ru, u)k ≤ c(A−1

k u, u)k ∀u ∈ Vk ,

where λk denotes the largest eigenvalue of Ak .

2. Regularity and approximation assumption:
There exist 0 < α ≤ 1 and a constant Cα independent of k such that

(
Ak
(
Ik − Ikk−1Pk−1

)
u, u

)
k
≤ Cα

(
‖Aku‖2

k

λk

)α
(Aku, u)1−α

k ∀u ∈ Vk

for k > 1.

Then there exists a positive constant δk < 1 such that

(AkMku, u)k ≤ δk(Aku, u)k ∀u ∈ Vk ,

where Mk = Ik − BkAk and δk = δ = C1
C1+2νCR

with 0 < δ < 1 and ν = ν1 + ν2 ≥ 1.

Proof. [7, Theorem 5.7].

In a second step, consider the decoupled symmetric system

−α∆y = αf in Ω

y = 0 on ∂Ω

−∆p = yd in Ω

p = 0 on ∂Ω.
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As these are exactly two copies of the Poisson equation, the multigrid convergence theory
preserves the properties of the first case. Define

Âk =

[
αAk 0

0 Ak

]
and analogously B̂k and M̂k . Let wk = (yk , pk) ∈ Vk × Vk =: V 2

k .

THEOREM 3.47 (Multigrid convergence for decoupled system).
Under the assumptions of Theorem 3.46 there exists a positive constant δ < 1 such that

(ÂkM̂kw,w)k ≤ δ(Âkw,w)k ,

with the same δ as in Theorem 3.46.

The last step is to define
Ak = Âk + dk ,

where

dk =

[
0 −Ik
Ik 0

]
.

The multigrid algorithm corresponding to this nonsymmetric problem has exactly the same
structure as in Algorithm 3.3 with Bk , Ak , Mk replaced by Bk ,Ak ,Mk and thus

Mk = Ik − BkAk =
[
Ik − Ikk−1Pk−1 + Ikk−1 (Ik−1 − Bk−1Ak−1)Pk−1

]
Sk ,

where Ik denotes the identity operator on Vk .

THEOREM 3.48 (Multigrid convergence for coupled system).
There exist positive constants h0 and δ̃ < 1 such that for all h1 < h0

(AkMkw,w)k ≤ δ̃(Akw,w)k ∀w ∈ V 2
k ,

where δ̃ = δ + Ch1 and δ as in Theorem 3.46.

Proof. [7, Theorem 5.19].

The constant δ depends on the features of the optimality system, such as for example non-
symmetry. For a sufficiently small h1, there holds δ̃ ≈ δ and the convergence factor of the
multigrid scheme applied to the optimality system is close to the convergence factor of the
multigrid scheme applied to the scalar Poisson problem.
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4 Domain Decomposition

In this chapter a nonoverlapping domain decomposition method for the solution of the opti-
mality system is introduced. In Section 4.1 a brief overview of the idea and the theory of
domain decompositions, followed by a two subdomain formulation with the definition of the
Steklov-Poincaré operator on the interface as well as a discrete approximation with the Schur
complement method is given in Section 4.2. The exact decomposition of the Schur comple-
ment for the two-dimensional case is derived in Section 4.3 and its inverse is determined in
Section 4.4. Some straightforward extensions for the multi-domain case and for the case of
three dimensions are proposed in Section 4.5 and in Section 4.6, respectively. At last, the
use as a preconditioner of the Schur complement for more general differential operators on
irregular domains is suggested.

4.1 Domain Decomposition Methods

The key idea of domain decompositions for the numerical solution of partial differential equa-
tions is to split the entire spatial domain Ω into several smaller subdomains Ωi , i = 1, . . . , N,
N ≥ 2. Upon every subdomain Ωi , the original problem is reformulated. This yields to a
family of subproblems of reduced size that are interconnected through the values of the un-
known solution at the subdomain interfaces and possibly in a set of cross-points. The interface
coupling is removed by introducing an iterative process among subdomains, which leads to
independent subproblems upon subdomains at each step. These techniques can often be
applied directly to the partial differential equations, but they are of most interest when applied
to discretizations of the differential equations, as realized in this thesis.
There are two main approaches, illustrated in Figure 4.1: on the one hand, overlapping do-
main decomposition methods are proposed, where the subdomains overlap by more than
the interface, and on the other hand, nonoverlapping domain decomposition methods exist,
where the subdomains only intersect on their interfaces.

(a) nonoverlapping (b) overlapping

Figure 4.1: Domain Decomposition
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For the nonoverlapping domain decomposition, the continuity of the solution across subdo-
main interfaces is enforced by representing the value of the solution on all neighboring sub-
domains by the same unknown. These methods are also called iterative substructuring. After
determining the interface unknowns, the solution at the interior of the subdomains can be
computed by solving independent problems with the computed interface values as boundary
conditions. The pioneering work stems from Schwarz in the end of the 19th century [50]. A
detailed survey can be found in [19].
For general domain decomposition methods, the rate of convergence depends on the amount
of overlapping: greater overlapping implies faster convergence, but more effort per iteration
since the work is duplicated on the overlapping domain.
Domain decomposition methods are applied in many situations: as communication is limited
to the interfaces of the subdomains, the problem can be decoupled into independent sub-
problems and therefore allows the processing in parallel on multiprocessor systems. Even in
sequential computer environments, it can be adapted for irregular domains, where a natural
partition into regular subdomains is given (and a fast solver exists), or for dividing a problem
with discontinuous coefficients into subregions with constant coefficients. For computers with
limited memory, domain decomposition methods are often the only possibility to deal with very
large problems.

4.2 Two-Subdomain Formulation

To begin with, a formulation for the case of a decomposition into two nonoverlapping sub-
domains is given. For the continuous formulation of the optimality system, the Steklov-
Poincaré operator is defined in Section 4.2.1 to derive transmission conditions to ensure
continuity of the solution and the fluxes across the interface. A discrete approximation of this
operator is determined in Section 4.2.2 with the Schur complement method.

4.2.1 Steklov-Poincaré Operator

The partition of Ω into two nonoverlapping subdomains Ω1,Ω2 with the interface B = ∂Ω1 ∩
Ω(= ∂Ω2 ∩Ω) is considered, as illustrated in Figure 4.2.

Figure 4.2: Two subdomains

The problem on the entire domain is given by the coupled system of elliptic PDEs written in
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operator-matrix form [
αL −I
I L

](
y

p

)
=

(
αf

yd

)
in Ω(

y

p

)
=

(
0

0

)
on ∂Ω

(4.1)

as introduced in Chapter 3. With the notation

A :=

[
αL −I
I L

]
, w :=

(
y

p

)
and φ :=

(
αf

yd

)
, (4.2)

the problem formulation is given by

Aw = φ in Ω

w = 0 on ∂Ω.

Let w = (w1, w2, wB) and φ = (φ1, φ2, φB) denote the restriction of w and φ to Ω1,Ω2 and B,
respectively. Then the overall problem can be reformulated as the two local problems

Aw1 = φ1 in Ω1

w1 = 0 on ∂Ω1 \ B
w1 = wB on B

(4.3)

and
Aw2 = φ2 in Ω2

w2 = 0 on ∂Ω2 \ B
w2 = wB on B

(4.4)

with the transmission boundary conditions on the continuity of the flux across B

∂y1

∂n1
= −

∂y2

∂n2

∂p1

∂n1
= −

∂p2

∂n2
,

where ni denotes the outward pointing normal vector to B from Ωi .
The transmission conditions are derived by the equivalence of the weak formulations of the
problem formulation on the two subspaces and the entire problem.

REMARK 4.1.
The weak formulation of (4.2) is given by∫

Ω

αLyv − pw dV =

∫
Ω

αf v dV ∀v , w ∈ H1
0(Ω)∫

Ω

yv + Lpw dV =

∫
Ω

ydw dV.
(4.5)

Integrating by parts, this is equivalent to

−α
∫

Ω

∇y∇v dV−
∫

Ω

pw dV =

∫
Ω

αf v dV ∀v , w ∈ H1
0(Ω)∫

Ω

yv dV−
∫

Ω

∇p∇w dV =

∫
Ω

ydw dV.
(4.6)
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Conversely, splitting the integrals in (4.6) proves that this is equivalent to

−α
∫

Ω1

∇y1∇v dV− α
∫

Ω2

∇y2∇v dV−
∫

Ω1

p1w dV−
∫

Ω2

p2w dV

=

∫
Ω1

αf1v dV+

∫
Ω2

αf2 dV ∀v , w ∈ H1
0(Ω)∫

Ω1

y1v dV +

∫
Ω2

y2v dV−
∫

Ω1

∇p1∇w dV−
∫

Ω2

∇p2∇w dV

=

∫
Ω1

yd1w dV+

∫
Ω2

yd2w dV.

(4.7)

The weak formulation of (4.3) is given by∫
Ω1

αLy1v − p1w dV =

∫
Ω1

αf1v dV ∀v , w ∈ H1
0(Ω)∫

Ω1

y1v + Lp1w dV =

∫
Ω

yd1w dV
(4.8)

and again integrating by parts, this is equivalent to

α

∫
Ω1

∇y1∇v dV−
∫

Ω1

p1w dV +

∫
B

v
∂y1

∂n1
dA =

∫
Ω1

αf1v dV ∀v , w ∈ H1
0(Ω)∫

Ω1

y1v dV−
∫

Ω1

∇p1∇w dV +

∫
B

w
∂p1

∂n1
dA =

∫
Ω1

yd1w dV.
(4.9)

Analogously for (4.4), it holds

−α
∫

Ω2

∇y2∇v dV−
∫

Ω2

p2w dV +

∫
B

v
∂y2

∂n2
dA =

∫
Ω2

αf2 dV ∀v , w ∈ H1
0(Ω)∫

Ω2

y2v dV−
∫

Ω2

∇p2∇w dV +

∫
B

w
∂p2

∂n2
dA =

∫
Ω2

yd2w dV.
(4.10)

Comparing (4.7) with (4.9) and (4.10), the conditions∫
B

v

(
∂y1

∂n1
+
∂y2

∂n2

)
dA = 0 and

∫
B

w

(
∂p1

∂n1
+
∂p2

∂n2

)
dA = 0 ∀v , w ∈ H1

0(Ω)

have to be fulfilled. Therefore,

∂y1

∂n1
= −

∂y2

∂n2
and

∂p1

∂n1
= −

∂p2

∂n2
.

For the treatment of more general boundary conditions see [4].
The main task is to determine the unknown values wB on the interface. If the solution wB on B
is known, then the local solutions on Ω1 and Ω2 can be obtained by solving the two subprob-
lems with Dirichlet boundary conditions, (4.3) and (4.4). This can be processed in parallel. For
this purpose, an equation to identify wB can be obtained by using the transmission boundary
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conditions. According to [19], let g denote arbitrary Dirichlet boundary data on B and define
E1g and E2g as solutions of the local problems

A(E1g) = φ1 in Ω1

E1g = 0 on ∂Ω1 \ B
E1g = g on B

and
A(E2g) = φ2 in Ω2

E2g = 0 on ∂Ω2 \ B
E2g = g on B.

The boundary values of E1g and E2g match on B (by construction), but the flux of the two
local solutions will only match on B if

∂y1

∂n1
= −

∂y2

∂n2
on B

∂p1

∂n1
= −

∂p2

∂n2
on B,

i.e. if g = wB.
Next, an operator T is defined which maps the boundary data g on B to the jump in the flux
across B.

DEFINITION 4.2 (Steklov-Poincaŕe operator).
The Steklov-Poincaré operator T is given by

T : g →

(
∂y1

∂n1
+ ∂y2

∂n2
∂p1

∂n1
+ ∂p2

∂n2

)
.

The Steklov-Poincaré operator T is a pseudo-differential operator which is an affine linear
mapping T and positive definite but not symmetric as A is not symmetric.
The equation TwB = 0 is satisfied for the boundary value wB of the true solution w . For
further reading, see [1] and [45].

4.2.2 Schur Complement Method

A discrete approximation of the Steklov-Poincaré operator T can be obtained by the Schur
complement method. In this method, the discretized system of partial differential equations
is factorized and a system for the unknowns on the interface between these subregions is
derived. This interface system is also called capacitance system. Consider the coupled
system of partial differential equations

Aw = φ

on the rectangular domain Ω, partitioned into two subdomains Ω1 and Ω2 with the common
interface B. The discretized system

Ahwh = φh
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is modified analogously to the continuous case: let Ω be partitioned in Ω = Ω1 ∪ Ω2 ∪ B and
I = I1 ∪ I2 ∪ IB be the partition of the indices in the linear system. I1, I2 are the indices of the
nodes in Ω1 and Ω2, respectively. IB consists of the nodes on the interface B. The notation
wh = [w1, w2, wB]T and φh = [φ1, φ2, φB]T is understood accordingly. After a rearrangement
of the unknowns, the linear system is given in the formulation A1 A12 A1B

A21 A2 A2B

AT1B AT2B AB

w1

w2

wB

 =

φ1

φ2

φB

 .
When using a low-order finite difference discretization for the uniformly elliptic operator L
where only one neighbored grid point in each direction is taken into account, the only relation
between the nodes in Ω1 and Ω2 is through the interface. Therefore, the blocks A12 and A21

are zero matrices and thus

Ah =

 A1 0 A1B

0 A2 A2B

AT1B AT2B AB

 .
The matrix Ah is factorized in the following manner

Ah =

 A1 0 0

0 A2 0

AT1B AT2B S

I 0 A−1
1 A1B

0 I A−1
2 A2B

0 0 I


where S is the Schur complement of AB in Ah, i.e.,

S = AB −AT1BA−1
1 A1B −AT2BA−1

2 A2B.

The problem to find the unknowns on the interface B is formulated by

SwB = φ̃B,

where φ̃B = φB − AT1BA
−1
1 φ1 − AT2BA

−1
2 φ2. The equation SwB − φ̃B = 0 is the discrete

approximation of the Steklov-Poincaré equation TwB = 0, which enforces the transmission
boundary conditions. The Schur complement algorithm to determine the interface grid points
is formulated in Algorithm 4.1.

Algorithm 4.1 Schur complement algorithm for two subdomains
Let Ω be decomposed into two subdomains Ω1 and Ω2.

1: Compute −AT1BA
−1
1 φ1 and −AT2BA

−1
2 φ2.

2: Set φ̃B = φB −AT1BA
−1
1 φ1 −AT2BA

−1
2 φ2.

3: Solve SwB = φ̃B.
4: Compute w1 = A−1

1 (φ1 −A1BwB) and w2 = A−1
2 (φ2 −A2BwB).

5: Set w = [w1, wB, w2]T .

The right-hand side setup in Step 1 can be evaluated by solving two subdomain problems, one
on Ω1 and one on Ω2. This can be performed in parallel, as well as the computation of the
subdomain solutions in Step 4. This step can be considered as a correction of the right-hand
sides φi , i = 1, 2, taking the interface solution into account.
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4.3 Exact Decomposition

The main work is to solve the linear system SwB = φ̃B in Step 3 in Algorithm 4.1. The
capacitance matrix S is dense and maintains the properties of the matrix Ah. Therefore S
is positive definite, but not symmetric. There are several approaches for solving this system.
The application of direct methods can be expensive. When using Krylov subspace methods,
like GMRES or BiCGSTAB, each matrix vector product with S needs two subdomain solvers
(A−1

1 and A−1
2 ), which can be performed in parallel, but this is still a lot of effort. One can

show that the condition number of S is better than that one of Ah, but still large with an
order of O(h−1) (instead of O(h−2)) and therefore a good preconditioner is useful, see [19,
Section 1.2]. Another approach is a direct setup of the capacitance matrix. In [18], an exact
eigendecomposition of the interface operator S is derived for the constant coefficient two-
dimensional elliptic problem. In what follows, this procedure is generalized for the case of a
coupled system of elliptic partial differential equations to be solved on a rectangle. An exact
decomposition of the capacitance matrix S is presented, which can be efficiently computed
and easily inverted.
Let Ωh be a uniform mesh grid on Ω with grid size h in x1-direction, i.e.

h =
1

n + 1
,

where n is the number of grid points in x1-direction. Further assume that l1 and l2 are integral
multiples of h with m1 internal grid points in Ω1 in x2-direction and m2 internal grid points in
Ω2, i.e.,

l1 = (m1 + 1)h and l2 = (m2 + 1)h

and that the interface B parallel to the x1-axis, see Figure 4.3.

Figure 4.3: Two subdomains

Consider a finite difference discretization for the constant coefficient case where the uniformly
elliptic operator L is approximated as described in Chapter 3 in a more general form

Lu = au(x1 − h, x2) + bu(x1, x2) + cu(x1 + h, x2) + du(x1, x2 − h) + eu(x1, x2 + h). (4.11)
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In stencil notation one has  d

a b c

e


h

where it is assumed that a, c, d, e are nonzero.

THEOREM 4.3 (Exact decomposition of S).
The Schur complement matrix S can be decomposed into

S = F̄ΛF̄−1

where

F̄ =

[
F̃ 0

0 F̃

]
, F̃ = DF

with

Fi j =
√

2h sin (i jπh) , i , j = 1, . . . , n

and D a diagonal matrix, given by

Di i =

(√
a

c

)i
, i = 1, . . . , n.

The decomposition of S given in Theorem 4.3 will be derived in the sequel. F is an orthogonal
matrix with the property F T = F−1 = F and Λ ∈ R2n×2n is a tri-blockdiagonal matrix of the
form

Λ =

[
Λ11 Λ12

Λ21 Λ22

]
where Λi j ∈ Rn×n, i , j = 1, 2 are diagonal matrices. Further define for j = 1, . . . , n

wj :=
√

2h (sin (jπh) , sin (2jπh) , . . . , sin (njπh))T (4.12)

and

w̃j :=
√

2h

((√
a

c

)1

sin (jπh) ,

(√
a

c

)2

sin (2jπh) , . . . ,

(√
a

c

)n
sin (njπh)

)T
(4.13)

as the columns of F and F̃ , respectively.
The entries of the diagonal matrices Λi j , i , j = 1, 2, have to be determined. Therefore consider
the products

S

(
w̃j
0

)
= AB

(
w̃j
0

)
−AT1BA−1

1 A1B

(
w̃j
0

)
−AT2BA−1

2 A2B

(
w̃j
0

)
and

S

(
0

w̃j

)
= AB

(
0

w̃j

)
−AT1BA−1

1 A1B

(
0

w̃j

)
−AT2BA−1

2 A2B

(
0

w̃j

)
.
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The derivation is splitted into three parts:

(1) AB = F̄ΛBF̄−1

(2) −AT1BA
−1
1 A1B = F̄Λ1F̄−1

(3) −AT2BA
−1
2 A2B = F̄Λ2F̄−1.

Each of these parts has a contribution to the Schur complement which has to be quantified
and then concatenated, i.e.

S = AB −AT1BA−1
1 A1B −AT2BA−1

2 A2B

= F̄ΛBF̄−1 + F̄Λ1F̄−1 + F̄Λ2F̄−1

= F̄ (ΛB + Λ1 + Λ2)F̄−1

= F̄ΛF̄ .

For simplifying some terms within the derivation the following preliminary lemma holds.

LEMMA 4.4.
Let σj = 4 sin2

(
jπh

2

)
and sin(i jπh) 6= 0. Then

sin((i − 1)jπh) + sin((i + 1)jπh)

sin(i jπh)
= 2− σj .

Proof. It holds that

(1) sin x + sin y = 2 sin

(
x + y

2

)
cos

(
x − y

2

)
(2) 2 cos x = 2− 4 sin2

(x
2

)
.

Then
sin((i − 1)jπh) + sin((i + 1)jπh)

sin(i jπh)

(1)
=

2

sin(i jπh)
sin

(
((i − 1)− (i + 1))jπh

2

)
cos

(
((i − 1) + (i + 1))jπh

2

)
=

2

sin(i jπh)
sin(i jπh) cos(jπh)

= 2 cos(jπh)

(2)
= 2− 4 sin2

(
jπh

2

)
= 2− σj .

4.3.1 Contribution of AB

Firstly, the contribution of AB to the Schur complement is analyzed. Therefore, the terms

AB
(
w̃j
0

)
and AB

(
0

w̃j

)
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are considered. With the definition of the tridiagonal matrix

L̃h := tridiag{a, b, c} ∈ Rn×n,

where a, b, c are determined by the discretization (4.11), it holds for j = 1, . . . , n

AB
(
w̃j
0

)
= ΛB,j

(
w̃j
0

)
⇔

[
αL̃h −In
In L̃h

](
w̃j
0

)
=

[
λB,j11 λB,j12

λB,j21 λB,j22

](
w̃j
0

)

⇔
(
αL̃hw̃j
w̃j

)
=

(
λB,j11 w̃

j

λB,j21 w̃
j

)

and

AB
(

0

w̃j

)
= ΛB,j

(
0

w̃j

)
⇔

[
αL̃h −In
In L̃h

](
0

w̃j

)
=

[
λB,j11 λB,j12

λB,j21 λB,j22

](
0

w̃j

)

⇔
(
−w̃j
L̃hw̃j

)
=

(
λB,j12 w̃

j

λB,j22 w̃
j

)
.

Now L̃hw̃j has to be determined:

(L̃hw̃j)i

=
√

2h

(
a

(√
a

c

)i−1

sin((i − 1)jπh) + b

(√
a

c

)i
sin(i jπh) + c

(√
a

c

)i+1

sin((i + 1)jπh)

)

=
√

2h

(√
a

c

)i
sin(i jπh)

(
a
(√

a
c

)−1
sin((i − 1)jπh) + c

√
a
c sin((i + 1)jπh)

sin(i jπh)
+ b

)

=
√

2h

(√
a

c

)i
sin(i jπh)

(√
ac

(
sin((i − 1)jπh) + sin((i + 1)jπh)

sin(i jπh)

)
+ b

)
, i = 1, . . . , n.

Applying Lemma 4.4 for σj = 4 sin2( jπh2 ) and take (4.12) into account, this is equal to

= (b +
√
ac(2− σj))w̃j .

Therefore

λB,j11 = α(b +
√
ac(2− σj)),

λB,j12 = −1,

λB,j21 = 1,

λB,j22 = (b +
√
ac(2− σj)),
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and the decomposition of AB is given by

AB = F̄ΛBF̄−1,

where

ΛB =

[
ΛB11 ΛB12

ΛB21 ΛB22

]
=

[
α diag(b +

√
ac(2− σj)) −In

In diag(b +
√
ac(2− σj))

]
.

4.3.2 Contribution of −AT1BA−1
1 A1B

Consider the second terms

−AT1BA−1
1 A1B

(
w̃j
0

)
and −AT1BA−1

1 A1B

(
0

w̃j

)
.

This can be computed by first solving the discrete equation on Ω1 with homogeneous right-
hand side and the boundary condition

w =

(
w̃j
0

)
resp. w =

(
0

w̃j

)
on B and homogeneous Dirichlet boundary conditions elsewhere and then taking the solution
on the first row of grid points above B multiplied by αe for y resp. e for p. Solve[

αLh −Ih
Ih Lh

](
y

p

)
=

(
0

0

)
in Ω1,(

y

p

)
=

(
0

0

)
on ∂Ω1 \ B(

y

p

)
=

(
w̃j
0

)
on B

(4.14)

resp. [
αLh −Ih
Ih Lh

](
y

p

)
=

(
0

0

)
in Ω2,(

y

p

)
=

(
0

0

)
on ∂Ω1 \ B(

y

p

)
=

(
0

w̃j

)
on B.

(4.15)

Consider the solution vectors y(x1, x2), p(x1, x2) of the form

y(ih, kh) = dk(w̃j)i = dk
√

2h

(√
a

c

)i
sin(i jπh)

p(ih, kh) = ek(w̃j)i = ek
√

2h

(√
a

c

)i
sin(i jπh),
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where 0 ≤ i ≤ n + 1 and 0 ≤ k ≤ m1 + 1, and substitute y into (4.14) with Lh discretized
according to (4.11):

0 =α

[
adk
√

2h

(√
a

c

)i−1

sin((i − 1)jπh) + bdk
√

2h

(√
a

c

)i
sin(i jπh)

+ cdk
√

2h

(√
a

c

)i+1

sin((i + 1)jπh) + ddk−1

√
2h

(√
a

c

)i
sin(i jπh)

+ edk+1

√
2h

(√
a

c

)i
sin(i jπh)

]
− ek
√

2h

(√
a

c

)i
sin(i jπh)

=

[
α
(adk (√ a

c

)−1
sin((i − 1)jπh)

sin(i jπh)
+ bdk +

cdk
√

a
c sin((i + 1)jπh)

sin(i jπh)

+ ddk−1 + edk+1

)
− ek

]√
2h

(√
a

c

)i
sin(i jπh)

=α

[
b +
√
ac(

sin((i − 1)jπh) + sin((i + 1)jπh)

sin(i jπh)
)dk + ddk−1 + edk+1

]
− ek

Owing to Lemma 4.4 it holds

α
[
(b +

√
ac(2− σj))dk + ddk−1 + edk+1

]
− ek = 0.

An analogue analysis for p proves[
eek+1 + (b +

√
ac(2− σj))ek + dek−1

]
+ dk = 0.

This is a system of second order linear difference equations. To fulfill the boundary condition
in (4.14) and (4.15), the conditions

d0 = 1, e0 = 0, dm1+1 = 0, em1+1 = 0 for (4.14)
resp. d0 = 0, e0 = 1, dm1+1 = 0, em1+1 = 0 for (4.15)

have to be enforced. Summarized, the determination of

Λ1 =

[
Λ1

11 Λ1
12

Λ1
22 Λ1

22

]
is reduced to solving the systems

α
[
(b +

√
ac(2− σj))d̄k + dd̄k−1 + ed̄k+1

]
− ēk = 0[

eēk+1 + (b +
√
ac(2− σj))ēk + dēk−1

]
+ d̄k = 0

(4.16)

with the boundary conditions

d̄0 = 1, ē0 = 0, d̄m1+1 = 0, ēm1+1 = 0

and
α
[
(b +

√
ac(2− σj))d̃k + dd̃k−1 + ed̃k+1

]
− ẽk = 0[

eẽk+1 + (b +
√
ac(2− σj))ẽk + dẽk−1

]
+ d̃k = 0

(4.17)
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with the boundary conditions

d̃0 = 0, ẽ0 = 1, d̃m1+1 = 0, ẽm1+1 = 0

for j = 1, . . . , n and taking the solution of the first row of grid points above B, i.e. d̄1, d̃1 and
ē1, ẽ1 multiplied by αe resp. e. Let d̄ j , d̃ j and ē j , ẽ j denote the solution of the j-th problem.
This results in

Λ1 =

[
αe diag(d̄ j1) αe diag(d̃ j1)

e diag(ē j1) e diag(ẽ j1)

]
.

To save some efforts a similarity between the structure and the solution of the two systems
(4.16) and (4.17) can be exploited. Written as a linear system with the boundary conditions
on the right-hand side, omit the index j and define

D : = tridiag{e, b +
√
ac(2− σj), d} ∈ Rm1×m1 ,

Im1 ∈ Rm1×m1 identity matrix , 0 ∈ Rm1

and g : = [d, 0, . . . , 0]T ∈ Rm1 .

Hence the linear systems in (4.16) take the form[
αD −Im1

Im1 D

](
d̄

ē

)
=

(
αg

0

)
.

A reformulation of the system leads to[
αD −Im1

Im1 D

](
d̄

ē

)
=

(
αg

0

)
⇔
[
D Im1

−Im1 αD

](
ē

d̄

)
=

(
0

αg

)
and setting ē := −αd̃ and d̄ := ẽ, this is equivalent to[

αD −Im1

Im1 D

](
d̃

ẽ

)
=

(
0

g

)
which is the linear system for the problem (4.17). So d̄ = ẽ and ē = −αd̃ , and in particular
d̄1 = ẽ1 and ē1 = −αd̃1. Therefore it is sufficient to solve (4.16) and the resulting decomposi-
tion is given by

−A1BA−1
1 A1B = F̄Λ1F̄−1

where

Λ1 =

[
Λ1

11 Λ1
12

Λ1
21 Λ1

22

]
=

[
αe diag(d̄ j1) −e diag(ē j1)

e diag(ē j1) e diag(d̄ j1)

]
.

REMARK 4.5 (Solution of the linear systems).
The main approach for solving systems of homogeneous second order difference equations
(also: recurrence equations) is given in Algorithm 4.2.
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Algorithm 4.2 General approach for solving second order linear difference equation
For j = 1, . . . , n do

1: Reformulate the system as a first order system y(k + 1) = My(k):
y1(k + 1)

y2(k + 1)

y3(k + 1)

y4(k + 1)

 =


0 1 0 0

−de
−η
e 0 1

αe

0 0 0 1

0 −1
e −de −ηe



y1(k)

y2(k)

y3(k)

y4(k)


where η = b +

√
ac(2− σj).

2: Compute eigenvalues λi , i = 1, . . . , 4, and the corresponding eigenvectors ξi to get a
general solution of this system

y(k) = c1λ
k
1ξ1 + · · ·+ c4λ

k
4ξ4.

3: To obtain the special solution of the difference equations, the boundaries are imposed:

y2(0) = 1, y2(m1 + 1) = 0

y4(0) = 0, y4(m1 + 1) = 0 for (4.16)

and

y2(0) = 0, y2(m1 + 1) = 0

y4(0) = 1, y4(m1 + 1) = 0 for (4.17)

and the resulting linear system
ξ21 ξ22 ξ23 ξ24

λm1+1
1 ξ21 λm1+1

2 ξ22 λm1+1
3 ξ23 λm1+1

4 ξ24

ξ41 ξ42 ξ43 ξ44

λm1+1
1 ξ41 λm1+1

2 ξ42 λm1+1
3 ξ43 λm1+1

4 ξ44



c1

c2

c3

c4

 =


1

0

0

0

 resp.


0

0

1

0

 (4.18)

is solved for the desired values

d1 = c1λ1ξ21 + c2λ2ξ22 + c3λ3ξ23 + c4λ4ξ24

e1 = c1λ1ξ41 + c2λ2ξ42 + c3λ3ξ43 + c4λ4ξ44.
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A problem arises when solving the linear system (4.18): if m1 is very large, i.e. the case of
large domains or for very fine discretizations, the entries λm1+1

i for the eigenvalues λi in the
range (−1, 1) are numerically treated as zero and the eigenvalues beyond these as INF. For
that reason this algorithm is not applied in this thesis.
As the resulting system of second order difference equation has a similar structure to a dis-
cretized one-dimensional general differential operator, this system can be solved efficiently
using a multigrid method.

4.3.3 Contribution of −AT2BA−1
2 A2B

Consider the third terms

−AT2BA−1
2 A2B

(
w̃j
0

)
and −AT2BA−1

2 A2B

(
0

w̃j

)
.

As for the second term, this can be computed analogously by first solving the discrete equation
on Ω2 with homogeneous right-hand side and the boundary condition

w =

(
w̃j
0

)
resp. w =

(
0

w̃j

)
on B and homogeneous boundary conditions elsewhere, and then taking the solution in the
first row of the grid points below B multiplied by αd for y resp. d for p. Let d̂ j , d̊ j and ê j , e̊ j

denote the solution of the j-th problem. As in the proceeding section, the following systems
has to be solved

α
[
(b +

√
ac(2− σj))d̊k + dd̊k−1 + ed̊k+1

]
− e̊k = 0[

ee̊k+1 + (b +
√
ac(2− σj))e̊k + de̊k−1

]
+ d̊k = 0

(4.19)

with the boundary conditions

d̊0 = 1, e̊0 = 0, d̊m2+1 = 0, e̊m2+1 = 0

and
α
[
(b +

√
ac(2− σj))d̂k + dd̂k−1 + ed̂k+1

]
− êk = 0[

eêk+1 + (b +
√
ac(2− σj))êk + dêk−1

]
+ d̂k = 0

(4.20)

with the boundary conditions

d̂0 = 0, ê0 = 1, d̂m2+1 = 0, êm2+1 = 0

for j = 1, . . . , n and taking the solution of the first row of grid points above B, i.e. d̊1, d̂1 and
e̊1, ê1 multiplied by αd resp. d . Let d̊ j1 = ê j1 and e̊ j1 = −αd̂ j1 denote the solution of the j-th
problem this ends in the resulting decomposition

−A2BA−1
2 A2B = F̄Λ2F̄−1

where

Λ2 =

[
Λ2

11 Λ2
12

Λ2
21 Λ2

22

]
=

[
αd diag(d̊ j1) −d diag(e̊ j1)

d diag(e̊ j1) d diag(d̊ j1)

]
.
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4.3.4 Summary and Remarks

Summarized it holds
S = F̄ΛF̄−1

with

Λ = ΛB + Λ1 + Λ2

=

[
Λ11 Λ12

Λ21 Λ22

]
=

[
ΛB11 + Λ1

11 + Λ2
11 ΛB12 + Λ1

12 + Λ2
12

ΛB21 + Λ1
21 + Λ2

21 ΛB22 + Λ1
22 + Λ2

22

]
=

[
α diag(b +

√
ac(2− σj) + ed̄ j1 + dd̊ j1) − diag(1 + eē j1 + de̊ j1)

diag(1 + eē j1 + de̊ j1) diag(b +
√
ac(2− σj) + ed̄ j1 + dd̊ j1)

]

and with the obvious fact that Λ11 = αΛ22 and Λ12 = −Λ21 the matrix Λ has the representation

Λ =

[
Λ11 Λ12

−Λ12
1
αΛ11

]
.

REMARK 4.6.
1. The Schur complement only depends on the number n of grid points on the interface and

the numbers m1 and m2 of internal grid points in y -direction (and, of course, on the dis-
cretization of the differential operators). With tribute to this fact, write S = S(n,m1, m2)

if necessary to point out this dependency.

2. It is worth mentioning to be careful with the nomenclature: whereas e and d stems from
the discretization of the differential operator in (4.11), ē1 and d̄1 denotes the solution of
a coupled difference equation and taking the value of the first grid point.

It is suitable to clarify the computation by means of an example.

EXAMPLE 4.7.
Consider the optimality system A for the academic optimal control problem with the Laplace
operator L = −∆. Let Ω = (0, 1)2 be decomposed into Ω1 = (0, 1) × (0, 0.5), Ω2 = (0, 1) ×
(0.5, 1) and B = (0, 1)× 0.5. The difference stencil is given by

−
1

h2

 1

1 −4 1

1


h

.

As Ω1 = Ω2, m1 = m2 and as the Schur complement only depends on the size of the sub-
domains, d̄ j1 = d̊ j1(:= d j1) and ē j1 = e̊ j1(:= e j1), the matrix Λ has the form

Λ =

[
− α
h2 diag(2d j1 − (2 + σj)) − 1

h2 diag(2e j1 − h2)
1
h2 diag(2e j1 − h2) − 1

h2 diag(2d j1 − (2 + σj))

]
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and D = diag
((√

a
c

)i)
, i = 1, . . . , n simplifies to the identity matrix In. The resulting Schur

complement matrix is given by

S =

[
F 0

0 F

] [
− α
h2 diag(2d j1 − (2 + σj)) − 1

h2 diag(2e j1 − h2)
1
h2 diag(2e j1 − h2) − 1

h2 diag(2d j1 − (2 + σj))

][
F 0

0 F

]
.

The algorithm for computing the Schur complement for the optimality system is given below
in Algorithm 4.3.

Algorithm 4.3 Schur complement algorithm
Let Lu = au(x1 − h, x2) + bu(x1, x2) + cu(x1 + h, x2) + du(x1, x2 − h) + eu(x1, x2 + h)

and Ω decomposed in two strips Ω1 and Ω2, where m1 resp. m2 are the number of
internal grid points in x2-direction and n is the numbers of internal grid points in x1-
direction.

1: For j = 1, . . . , n solve:

α
[
(b +

√
ac(2− σj))d̄k + dd̄k−1 + ed̄k+1

]
− ēk = 0[

eēk+1 + (b +
√
ac(2− σj))ēk + dēk−1

]
+ d̄k = 0

with the boundary conditions

d̄0 = 1, ē0 = 0, d̄m1+1 = 0, ēm1+1 = 0

and take the values of the first grid point d̄1 and ē1.
2: For j = 1, . . . , n solve:

α
[
(b +

√
ac(2− σj))d̊k + dd̊k−1 + ed̊k+1

]
− e̊k = 0[

ee̊k+1 + (b +
√
ac(2− σj))e̊k + de̊k−1

]
+ d̊k = 0

with the boundary conditions

d̊0 = 1, e̊0 = 0, d̊m2+1 = 0, e̊m2+1 = 0

and take the values of the first grid point d̊1 and e̊1.
3: Set up Λ:

Λ = Λ1 + Λ2 + Λ3 =

=

[
α diag(b +

√
ac(2− σj) + ed̄ j1 + dd̊ j1) diag(1− eē j1 − de̊

j
1)

− diag(1− eē j1 − de̊
j
1) diag(b +

√
ac(2− σj) + ed̄ j1 + dd̊ j1)

]
.

4: Compute:
S = FΛF−1.
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4.4 Computing the Inverse of S

For solving the linear system SwB = φ̃B for the unknowns on the interface B, the inverse
S−1 of S is required. The following preliminary remark states that the inversion of a general
tri-blockdiagonal matrix can efficiently be done by block elimination.

REMARK 4.8 (Inverting a tri-blockdiagonal matrix).
The inverse of a tri-blockdiagonal matrix M ∈ R2n×2n of the form

M :=

[
A B

C D

]
=

[
diag(aj) diag(bj)

diag(cj) diag(dj)

]
, j = 1, . . . , n,

(where AD − BC is assumed to be invertible) can be computed by

M−1 =

[
A B

C D

]−1

=

[
(AD − BC)−1D −(AD − BC)−1B

−(AD − BC)−1C (AD − BC)−1A

]
=

[
diag(

dj
ajdj−cjbj ) − diag(

bj
ajdj−cjbj )

− diag(
cj

ajdj−cjbj ) diag(
aj

ajdj−cjbj )

]
.

With this remark, the inverse S−1 of S = F̄ΛF̄−1 is determined by

S−1 = (F̄ΛF̄−1)−1

= F̄Λ−1F̄−1

=

[
F̃ 0

0 F̃

] [
Λ11 Λ12

Λ21 Λ22

]−1 [
F̃ 0

0 F̃

]−1

=

[
DF 0

0 DF

] [
Λ11 Λ12

Λ21 Λ22

]−1 [
FD−1 0

0 FD−1

]
,

and applying Remark 4.8, this is equal to[
DF 0

0 DF

] [
(Λ11Λ22 − Λ21Λ12)−1Λ22 −(Λ11Λ22 − Λ21Λ12)−1Λ12

−(Λ11Λ22 − Λ21Λ12)−1Λ21 (Λ11Λ22 − Λ21Λ12)−1Λ11

] [
FD−1 0

0 FD−1

]

=

[
DF (Λ11Λ22 − Λ21Λ12)−1Λ22FD

−1 −DF (Λ11Λ22 − Λ21Λ12)−1Λ12FD
−1

−DF (Λ11Λ22 − Λ21Λ12)−1Λ21FD
−1 DF (Λ11Λ22 − Λ21Λ12)−1Λ11FD

−1

]
and as stated in the preceding section, inserting Λ11 = αΛ22 and Λ12 = −Λ21 leads to

=

[
1
αDF ( 1

αΛ2
11 + Λ2

12)−1Λ11FD
−1 −DF ( 1

αΛ2
11 + Λ2

12)−1Λ12FD
−1

DF ( 1
αΛ2

11 + Λ2
12)−1Λ12FD

−1 DF ( 1
αΛ2

11 + Λ2
12)−1Λ11FD

−1

]
=

[
S̄11 S̄12

S̄21 S̄22

]
.

As αS̄11 = S̄22 and S̄12 = −S̄21, it is sufficient to compute

S̄22 = DF (
1

α
Λ2

11 + Λ2
12)−1Λ11FD

−1 and S̄21 = DF (
1

α
Λ2

11 + Λ2
12)−1Λ12FD

−1.
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If the explicit setup of the matrix S−1 is not wanted and only the action on a particular vector
wB is of interest, the entries of S̄21 and S̄22 can be computed by the following formulas. The
entries of the matrices S̄22 and S̄21 are given by

(S̄22)i j =
2h

α

(√
a

c

)i−j n∑
k=1

(λ11)k
1
α(λ11)2

k + (λ12)2
k

sin(ikπh) sin(jkπh)

and

(S̄21)i j =
2h

α

(√
a

c

)i−j n∑
k=1

(λ12)k
1
α(λ12)2

k + (λ12)2
k

sin(ikπh) sin(jkπh)

for i , j = 1, . . . , n.

Therewith the solution wB of the linear system SwB = φ̃B can be computed by

S−1φ̃B = wB

⇔
[
S̄11 S̄12

S̄21 S̄22

](
φ̃y
φ̃p

)
=

(
yB
pB

)
⇔
[
S̄11φ̃y + S̄12φ̃p
S̄21φ̃y + S̄22φ̃p

]
=

(
yB
pB

)
⇔
[

1
α S̄22φ̃y − S̄21φ̃p
S̄21φ̃y + S̄22φ̃p

]
=

(
yB
pB

)
and given in a procedural formulation

(wB)i =

(
yB
pB

)
i

=

(∑n
k=1

1
α(S̄22)ik(φ̃y )k − (S̄21)ik(φ̃p)k∑n

k=1(S̄21)ik(φ̃y )k + (S̄22)ik(φ̃p)k

)
for i = 1, . . . , n.

4.5 Multi-Subdomain Decomposition

In this section the nonoverlapping domain decomposition for the case of a partition into many
subdomains is considered. Here the interface solver needs to allow for more complex ge-
ometries of the interface and to take account of the stronger global coupling between various
subdomains. As there are more subdomains, the interfaces lie closer together. Local infor-
mation between adjacent subdomains is shared by the Schur complement, global coupling
between distant subdomains is provided by the two proposed algorithms, the recursive solver
or the simultaneous solver. There are two straightforward possibilities to divide a rectangular
domain into more than two regions: horizontal strips or boxes, see Figure 4.4.
When dividing in boxes, the problem of so-called cross-points arise, which are more difficult
to handle, see [10]. By dividing into strips, the ratio of the amount of communication and
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(a) horizontal strips (b) boxes

Figure 4.4: Multi-domain decomposition

the amount of computation required grows as the strips become narrower. In this thesis, the
decomposition into horizontal strips is considered.
The nonoverlapping domain decomposition into two regions can be extended to the case of
many subdomains upright. Let Ω be partitioned into k nonoverlapping subregions with inter-
face B,

Ω = Ω1 ∪Ω2 ∪ · · · ∪Ωk ∪ B where Ωi ∩Ωj = ∅ for i 6= j.

The interface B is given by

B =

{
k⋃
i=1

∂Ωi

}
∩Ω,

and let Bi ,i+1, i = 1, . . . , k − 1 be the part of the interface shared by the subdomains Ωi and
Ωi+1. Let I =

⋃k
i=1 Ii denote the indices of the nodes lying in the interior of the subdomains

and let IB consist of the nodes on the interfaces B. According to this, the linear system
Ahwh = φh can be reordered and written in block form[

AI AIB
ATIB AB

](
wI
wB

)
=

(
φI
φB

)
.

Since a five point finite difference discretization is used, AI is block-diagonal

AI = blockdiag(Ai) =

A1 0
. . .

0 Ak

 .
and as there is no coupling between points on two different interfaces, AB is block-diagonal
and the submatrix AIB has the following form

AIB =


A1B12

A2B12
A2B23

. . . . . .
Ak−1Bk−2,k−1

Ak−1Bk−1,k

AkBk−1,k


where AiBj,j+1

corresponds to the coupling between the unknowns inside the subdomain Ωi

with the unknowns on the interface Bj,j+1. As in the case of the two subdomains, the Schur
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complement S is defined by
S = AB −ATIBA−1

I AIB
and φ̃B = φB − ATIBA

−1
I φI . The Schur complement for the multiple subdomain case has

similar properties to the two subdomain case, see [19, Section 3.2]. There are at least two
different possibilities to solve the Schur complement system: a recursive approach and an
simultaneous approach, introduced in the subsequent Sections 4.5.1 and 4.5.2.

4.5.1 Recursive Solver

The idea of the recursive approach, also called nested dissection is as follows: The domain Ω

is divided into two strips Ω1 and Ω2. This partition is called P1 and for a given partition Pi , Pi+1

is obtained by subdividing each subdomain of Pi into two horizontal strips. This subdivision
can also be done in two vertical strips, which allows to handle cross points.
The partition P1 and the resulting linear system A1 0 A1B1,2

0 A2 A2B1,2

AT1B1,2
AT2B1,2

AB1,2

w1

w2

wB

 =

φ1

φ2

φB


is further decomposed into A11 0 A1B11,12

0 A12 A2B11,12

AT1B11,12
AT2B11,12

AB11,12

 w11

w12

wB11,12

 =

 φ11

φ12

φB11,12


and  A21 0 A1B21,22

0 A22 A2B21,22

AT1B21,22
AT2B21,22

AB21,22

 w21

w22

wB21,22

 =

 φ21

φ22

φB21,22

 ,
where Ω1 is subdivided in Ω11 and Ω12 and Ω2 is subdivided in Ω21 and Ω22. This decompo-
sition can be applied until the desired number of subdomains is reached, see Figure 4.5.

(a) 2 subdomains (b) 4 subdomains

Figure 4.5: Recursive domain decomposition

This procedure is showcase formulated for the case of four nonoverlapping subdomains in
Algorithm 4.4. An application for even more subdomains is straightforward.
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Algorithm 4.4 Recursive multi-subdomain algorithm, 4 subdomains
Let Ω be decomposed into Ω1 ∪ B1,2 ∪ Ω2, where Ω1 and Ω2 are further decomposed into
Ω1 = Ω11∪B11,12∪Ω12 and Ω2 = Ω21∪B21,22∪Ω22. Let n×mi j , i , j = 1, 2 denote the number
of internal grid points of Ωi j .

1: Compute φ̃B1,2
= φB1,2

−AT1B1,2
A−1

1 φ1 −AT2B1,2
A−1

2 φ2

where w1 = A−1
1 φ1 and w2 = A−1

2 φ2 are computed recursively by domain decomposition:

a) Compute
−AT11B11,12

A−1
11 φ11, −AT12B11,12

A−1
12 φ12, −AT21B21,22

A−1
21 φ21, −AT22B21,22

A−1
22 φ22

and set

φ̃B11,12
= φB11,12

−AT11B11,12
A−1

11 φ11 −AT12B11,12
A−1

12 φ12

φ̃B21,22
= φB21,22

−AT21B21,22
A−1

21 φ21 −AT22B21,22
A−1

22 φ22.

b) Solve SwB11,12
= φ̃B11,12

with S = S(n,m11, m12)

and SwB21,22
= φ̃B21,22

with S = S(n,m21, m22).

c) Compute

w11 = A−1
11 (φ11 −A1B11,12

wB11,12
), w12 = A−1

12 (φ12 −A2B11,12
wB11,12

)

and w21 = A−1
21 (φ21 −A1B21,22

wB21,22
), w22 = A−1

22 (φ22 −A2B21,22
wB21,22

).

d) Set w1 = [w11, wB11,12
, w12]T , w2 = [w21, wB21,22

, w22]T

and φ̃B1,2
= φB1,2

−AT1,B1,2
w1 −AT2,B1,2

w2.

2: Solve SwB1,2
= φ̃B1,2

with S = S(n,m11 +m12 + 1, m21 +m22 + 1).
3: Compute w1 = A−1

1 (φ1 −A1B1,2
wB1,2

) and w2 = A−1
2 (φ2 −A2B1,2

wB1,2
) recursively.

Set φ1 = φ1 −A1B1,2
wB1,2

and φ2 = φ2 −A2B1,2
wB1,2

and proceed as in Step 1:

a) Compute
−AT11B11,12

A−1
11 φ11, −AT12B11,12

A−1
12 φ12, −AT21B21,22

A−1
21 φ21, −AT22B21,22

A−1
22 φ22

and set

φ̃B11,12
= φB11,12

−AT11B11,12
A−1

11 φ11 −AT12B11,12
A−1

12 φ12

φ̃B21,22
= φB21,22

−AT21B21,22
A−1

21 φ21 −AT22B21,22
A−1

22 φ22.

b) Solve SwB11,12
= φ̃B11,12

with S = S(n,m11, m12)

and SwB21,22
= φ̃B21,22

with S = S(n,m21, m22).

c) Compute

w11 = A−1
11 (φ11 −A1B11,12

wB11,12
), w12 = A−1

12 (φ12 −A2B11,12
wB11,12

)

and w21 = A−1
21 (φ21 −A1B21,22

wB21,22
), w22 = A−1

22 (φ22 −A2B21,22
wB21,22

).

d) Set w1 = [w11, wB11,12
, w12]T , w2 = [w21, wB21,22

, w22]T

and φ̃1,2 = φB1,2
−AT1,B1,2

w1 −AT2,B1,2
w2 .

4: Set w = [w1, wB1,2
, w2]T .
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The four subdomain solution procedures in Step 1a can be done in parallel as well as the two
solutions of the Schur complements in Step 1b and the four solutions in Step 1c. The same
holds for the computations in Step 3a-3c. A more detailed performance consideration will be
given in Section 4.5.3.

4.5.2 Simultaneous Solver

The second possibility considered is solving the complete Schur Complement system with an
iterative or direct method. Let the size of the grid on Ω be n × m. After decomposition into
strips, let there be n ×mi grids on each subdomain Ωi . The Schur complement

S = AB −ATIBA−1
I AIB

of [
AI AIB
ATIB AB

](
wI
wB

)
=

(
φI
φB

)
has the specific form

S =


H1 Q2

Q2 H2
. . .

. . . . . . Qk−1

Qk−1 Hk−1


where

Hi = ABi ,i+1
−ATiBi ,i+1

A−1
i AiBi ,i+1

−ATi+1Bi ,i+1
A−1
i+1Ai+1Bi ,i+1

and
Qi = −ATi−1Bi−1,i

A−1
i AiBi ,i+1

.

For each of the blocks Hi and Qi an exact decomposition is available similar to the two sub-
domains case. Hi is the Schur complement matrix for the two subdomain case of the sub-
domains Ωi ,Ωi+1 with the interface Bi ,i+1 and Qi takes account of the coupling of the inter-
faces Bi−1,1, and Bi ,i+1. The exact decomposition of Qi can be computed as in the preceding
section. The formal description of the algorithm is given below.

Algorithm 4.5 Simultaneous multi-domain algorithm
Let Ω be decomposed into k strips as described above.

1: Compute φ̃B = φB −ATIBA
−1
I φI .

2: Set up the Schur complement S and solve SwB = φ̃B.
3: Compute wI = A−1

I (φI −AIBwB).

For a comparison with the recursive approach, the simultaneous algorithm is formulated in
Algorithm 4.6 for the case of four subdomains and with the decomposition in strips, illustrated
in Figure 4.6.

The main work is the solution of the linear system in Step 2 of Algorithm 4.6. For every
block Hi , i = 1, . . . , k − 1, and Qj , j = 2, . . . , k − 1, an exact decomposition is available and
the corresponding matrices are easily to invert. Each block is tri-blockdiagonal and positive
definite, but not symmetric. A fast solver is needed for this simultaneous approach. In this
thesis this linear system is solved with a BLOCKLU decomposition [35, Chapter 2.3.3].
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Algorithm 4.6 Simultaneous multi-domain algorithm, 4 subdomains
Let Ω be decomposed into four strips Ωi each with n×mi , i = 1, . . . , 4 internal grid points and
the interfaces B1,2, B2,3, B3,4.

1: Compute

−AT1B1,2
A−1

1 φ1,−AT2B1,2
A−1

2 φ2,−AT2B2,3
A−1

2 φ2,

−AT3B2,3
A−1

3 φ3,−AT3B3,4
A−1

3 φ3 −AT4B3,4
A−1

4 φ4

and set

φ̃B1,2
= φB1,2

−AT1B1,2
A−1

1 φ1 −AT2B1,2
A−1

2 φ2,

φ̃B2,3
= φB2,3

−AT2B2,3
A−1

2 φ2 −AT3B2,3
A−1

3 φ3,

φ̃B3,4
= φB3,4

−AT3B3,4
A−1

3 φ3 −AT4B3,4
A−1

4 φ4.

2: Compute

H1 = AB1,2
−AT1B1,2

A−1
1 A1B1,2

−AT2B1,2
A−1

2 A2B1,2
,

H2 = AB2,3
−AT2B2,3

A−1
2 A2B2,3

−AT3B2,3
A−1

3 A3B2,3
,

H3 = AB3,4
−AT3B3,4

A−1
3 A3B3,4

−AT4B3,4
A−1

4 A4B3,4
,

and

Q2 = −AT1B1,2
A−1

2 A2B2,3
,

Q3 = −AT2B2,3
A−1

3 A3B3,4
.

Set up the Schur complement

S =

H1 Q2 0

Q2 H2 Q3

0 Q3 H3

 .
Solve H1 Q2 0

Q2 H2 Q3

0 Q3 H3

wB1,2

wB2,3

wB3,4

 =

φ̃B1,2

φ̃B2,3

φ̃B3,4

 .
3: Compute

w1 = A−1
1 (φ1 −A1,B1,2

wB1,2
),

w2 = A−1
2 (φ2 −A1,B1,2

wB1,2
−A2,B2,3

wB2,3
),

w3 = A−1
3 (φ3 −A2,B2,3

wB2,3
−A3,B3,4

wB3,4
),

w4 = A−1
4 (φ4 −A3,B3,4

wB3,4
).

4: Set w = [w1, wB1,2
, w2, wB2,3

, w3, wB3,4
, w4]T .
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Figure 4.6: Simultaneous domain decomposition

4.5.3 Performance Consideration

In this section, a survey of the amount of computational work, the demand of memory as well
as the degree of parallelization is given. In the first place one has to distinguish between offline
and online costs. Offline costs is the work that can be computed in the preprocessing stage
as these results can be reused several times for various problems and e.g. do not depend on
the right-hand side. In the case of the recursive approach, the setup of the Schur complement
matriced are considered as offline costs and for the simultaneous approach, the setup of the
BLOCKLU decomposition is done in the preprocessing. The remaining work, like subdomain
solves and the matrix-vector products for with the capacitance matrix for determining the
unknowns on the interfaces, are online costs. Firstly the offline costs of both approaches are
considered for the constant coefficent case with a uniform decomposition, i.e. all subdomains
have the same size in x2-direction and a non-uniform decomposition. In the uniform case,
a lot of efforts can be saved as the Schur complement depends only on the sizes of the
subdomains, and once assembled, it can be reused for similar decompositions. For every
Schur complement setup three steps are necessary:

1. Compute the diagonals of Λ.

2. Determine the inverse of Λ.

3. Compute F̄Λ−1F̄ .

For the example of the four subdomain algorithm, the following considerations for the com-
putational complexity and the demand of memory hold. Let the domain Ω be decomposed
into four subdomains with a n × mi j grid with

∑2
i ,j=1mi j = m resp. on an n × mi grid with∑4

i=1mi = m.

recursive simultaneous
non-uniform uniform non-uniform uniform

# Schur complements 3 1 7 2
Memory usage 3(2n × 2n) 2n × 2n 7(2n × 2n) 2(2n × 2n)

Table 4.1: Offline costs recursive vs. simultaneous, 4 Subdomains

The Table 4.2 compares the online costs of the two approaches. Here only the subdomain
solves (SD) and the matrix-vector products (MV) to determine the interface unknowns are
considered.
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recursive simultaneous
step non-uniform uniform non-uniform uniform
1a 4 SD, n ×mi j 4 SD, n × m

4 4 SD, n ×mi 4 SD, n ×mi
1b 2 MV 6 MV
1c 4 SD, n ×mi j 4 SD, n × m

4

2 1 MV 1 MV 5 SC 2 SC
solve linear system (LS) solve linear system (LS)

3a 4 SD, n ×mi j 4 SD, n × m
4 4 SD, n ×mi 4 SD, n ×mi

3b
3c 4 SD, n ×mi j 4 SD, n × m

4∑
16 SD, 3 SC 16 SD, 2 SC 8 SD, 5 SC + LS 8 SD, 2 SC + LS

Table 4.2: Online costs recursive vs. simultaneous, 4 Subdomains

Table 4.3 compares the amount of work for increasing numbers of subdomains.

recursive simultaneous
non-uniform uniform non-uniform uniform

# SD SC SD SC SD SC SD SC
1 1 0 1 0 1 0 1 0
2 4 1 4 1 4 1 4 1
4 16 3 10 2 8 5 8 2
8 64 7 64 3 16 13 16 2
k k2 k − 1 k2 log2(k) 2k 2k − 3 2k 2

Table 4.3: Amount of work for increasing numbers of subdomains

Disregarding the Schur complement effort and considering the uniform decomposition, for the
recursive approach it holds that

� for k subdomains, k2 solutions on a grid sized n× m
k have to be performed with a amount

of work roughly calculated by k solves on n ×m

and for the simultaneous approach it holds that

� for k subdomains, 2k solutions on a grid sized n×m
k have to be performed with a amount

of work roughly calculated by 2 solves on n ×m.

Because of the design of the algorithm, these k solves can be done in parallel. Assumed that
the Schur complement setup part is neglected, it turns out that a performance analysis for the
simultaneous approach depends on the efficiency of the solution of the linear system.
Another point to consider is the increase of the number of processors and the use of the
parallel possibilities. The following performance considerations hold for the online costs:
For the recursive domain decomposition the theoretical calculation

effort(nproc · V0)

nproc
= nproc · const,

and for the simultaneous approach

effort(nproc · V0)

nproc
= const.
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is valid, where V0 denotes the size of the entire domain and nproc the number of processors.
As a result, the elapsed time should stay constant if using k processors for k subdomains
when setting up the Schur complement matrices in the preprocessing stage. This is a calcu-
lation for an ideal algorithm, which scales perfectly and neglecting costs for communication,
data transfer and technical characteristics.

4.6 Extensions to more General Problems

In this section possible extensions of the exact decomposition of the domain decomposition
interface operators for constant coefficient systems of elliptic operators are considered. Firstly,
a straightforward three-dimensional version is presented in Section 4.6.1. Another possible
use of the Schur complement is as a direct preconditioner for variable coefficient problems on
more general domains, considered in Chapter 4.6.2 and Chapter 4.6.3.

4.6.1 Three-dimensional Problems

Let Ωh be a uniform mesh grid on a regular three-dimensional domain Ω with grid size h in
x1-direction, i.e.

h =
1

n1 + 1
,

where n1 is the number of grid points in x1-direction. Let n2 be the number of grid points in
x2-direction and m the number of grid points in x3-direction. The domain is divided into two
three-dimensional ’slices’, with m1 resp. m2 internal grid points in Ω1 and Ω2, where m1 and
m2 are assumed as integral multiples of h and the interface B parallel to the (x1, x2)-axis, see
Figure 4.7.

Figure 4.7: Domain decomposition in three dimensions

Let the uniformly elliptic operator L with constant coefficients be approximated by the finite
difference discretization in a general form:

Lu = a(x1 − h, x2, x3) + bu(x1, x2, x3) + cu(x1 + h, x2, x3) + du(x1, x2 − h, x3)

+ eu(x1, x2 + h, x3) + f u(x1, x2, x3 − h) + gu(x1, x2, x3 + h).

In stencil notation one has  f


h

 d

a b c

e


h

 g


h

,
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where the coefficients are assumed to be nonzero. Analogously to the two-dimensional case,
an exact decomposition can be derived.

THEOREM 4.9 (Exact decomposition of S in three dimensions).
The Schur complement matrix S can be decomposed into

S = F̄ΛF̄−1

where

F̄ =

(
F̃ 0

0 F̃

)
, F̃ = Dn2Fn2 ⊗Dn1Fn1

with
(Fnk )i j =

√
2h sin(i jπh), i , j = 1, . . . , nk .

D1, D2 are diagonal matrices, where

(Dn1 )i i =

√
a

c

i

, i = 1, . . . , n1

and

(Dn2 )i i =

√
d

e

i

, i = 1, . . . , n2.

X ⊗ Y is defined as a direct (or tensor ) product with the following two properties

1. (X ⊗ Y )T = XT ⊗ Y T

2. (X1 ⊗ Y1)(X2 ⊗ Y2) = (X1X2)⊗ (Y1Y2).

The matrix F̄ can easily be inverted:

(Dn2Fn2 ⊗Dn1Fn1 )−1 = ((Dn2 ⊗Dn1 )(Fn2 ⊗ Fn1 ))−1

= (Fn2 ⊗ Fn1 )−1(Dn2 ⊗Dn1 )−1

= (F−1
n2
⊗ F−1

n1
)(D−1

n2
⊗D−1

n1
)

= (Fn2D
−1
n2

)⊗ (Fn1D
−1
n1

).

The derivation of the tri-blockdiagonal matrix Λ is analogous to the two-dimensional case.
Simple calculation shows that

AB = F̄ΛBF̄
−1

=

[
α diag(b +

√
ac(2− σi) +

√
de(2− σj)) In1n2

−In1n2 diag(b +
√
ac(2− σi) +

√
de(2− σj))

]
for i = 1, . . . , n1 and j = 1, . . . , n2.

REMARK 4.10.
A diagonal matrix diag(ai j), i = 1, . . . , n1 and j = 1, . . . , n2, depending on two indices is
enumerated as

diag(ai j) := diag(bk), where bk = a(i−1)+(j−1)n1+1, k = 1, . . . , n1n2.
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The contribution of the term −AT1BA
−1
1 A1B can be determined by solving the systems

α[(b +
√
ac(2− σi) +

√
de(2− σj))d̄k + f d̄k−1 + gd̄k+1]− ēk = 0

[(b +
√
ac(2− σi) +

√
de(2− σj))ēk + f ēk−1 + gēk+1] + d̄k = 0

with boundary conditions

d̄0 = 1, ē0 = 0, d̄m1+1 = 0, ēm1+1 = 0

which have to be solved for i = 1, . . . , n1 and j = 1, . . . , n2.
Similarly for −AT2BA

−1
2 A2B one has to solve

α[(b +
√
ac(2− σi) +

√
de(2− σj))d̊k + f d̊k−1 + gd̊k+1]− e̊k = 0

[(b +
√
ac(2− σi) +

√
de(2− σj))e̊k + f e̊k−1 + ge̊k+1] + d̊k = 0

with boundary conditions

d̊0 = 1, e̊0 = 0, d̊m1+1 = 0, e̊m1+1 = 0

for i = 1, . . . , n1 and j = 1, . . . , n2.
Summarized, this leads to

Λ =

[
α diag(ηi j) diag(1− f ē i j1 + ge̊ i j1 )

− diag(1− f ē i j1 + ge̊ i j1 ) diag(ηi j)

]
where ηi j = b +

√
ac(2− σi) +

√
de(2− σj) + f d̄ i j1 + gd̊ i j1 .

EXAMPLE 4.11 (Laplace 3D).
Consider the optimality system A of the academic optimal control problem with the Laplace
operator L = −∆ and Ω = (0, 1)3 divided into Ω1 = (0, 1) × (0, 1) × (0, 0.5), Ω2 = (0, 1) ×
(0, 1)× (0.5, 1) and B = (0, 1)× (0, 1)× (0.5). The difference stencil is given by

−
1

h2

 1


h

 1

1 −6 1

1


h

 1


h

.

As Ω1 = Ω2 and as the Schur complement only depends on the size of the subdomains
d̄ i j1 = d̊ i j1 (:= d i j1 ) and ē i j1 = e̊ i j1 (:= e i j1 ), the Schur complement has the form

S = FΛF

where

Λ =

[
− α
h2 diag(2d i j1 − (2 + σi + σj)) − 1

h2 diag(2e i j1 − h2)
1
h2 diag(2e i j1 − h2) − 1

h2 diag(2d i j1 − (2 + σi + σj)

]
.

REMARK 4.12.
1. This procedure can be extended straightforward to the case of many subdomains as in

the previous section by using the recursive or the simultaneous approach.

2. For every grid point on the 2D-interface, the solution of two problems is required and
the whole Schur complement matrix has to be stored with a size of 2n1n2 × 2n1n2. For
the case of many subdomains, where several capacitance matrices for the purpose of
reuse are set up, this is hard to handle because of limited memory.
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4.6.2 More General Problems

For the derivation of the capacitance matrix the case of a uniformly elliptic operator L with
constant coefficient on the whole domain was considered. This proposition still holds for op-
erators with jumps on horizontal or vertical interfaces and the coefficients being constant on
each subdomain Ωi . The five-point discretization formula can be applied to these discontinu-
ities as long as the coefficients on the interface are defined by arithmetic averages. Let Lu be
given by

Lu = −a(x1, x2)
∂2

∂x2
1

u(x1, x2)− b(x1, x2)
∂2

∂x2
2

u(x1, x2) + c(x1, x2)u(x1, x2).

Continuity conditions require the continuity of the solution u(x1, x2) in Ω, b(x1, x2)uy (x1, x2)

to be continuous along horizontal interfaces and a(x1, x2)ux(x1, x2) to be continuous along
vertical interfaces. For a point (x1, x2) at a horizontal interface redefine

a(x1, x2) =
1

2
( lim
x2→x−2

a(x1, x2) + lim
x2→x+

2

a(x1, x2))

and similarly for a point (x1, x2) on vertical interfaces

b(x1, x2) =
1

2
( lim
x1→x−1

b(x1, x2) + lim
x1→x+

1

b(x1, x2))

and for (x1, x2) being a cross point

c(x1, x2) =
1

4
( lim
x1→x−1
x2→x−2

c(x1, x2) + lim
x1→x−1
x2→x+

2

c(x1, x2) + lim
x1→x+

1

x2→x−2

c(x1, x2) + lim
x1→x+

1

x2→x+
2

c(x1, x2)),

see [47, Chapter 2.3] or [55, p. 169ff].
More general differential operators with variable coefficients can be approximated by constant
operators, for example by averaging the coefficients over the subdomains. In this case, the
Schur complement matrix of a constant differential operator can be used as a direct precondi-
tioner for variable coefficient problems, see [47, Chapter 7], [21], where the Schur complement
method is applied for the solution of the Laplace problem. Preconditioning is useful, as the
rate of convergence depends on the variations in the coefficients and in general, when solv-
ing the capacitance system by an iterative method, every iteration needs the solution of a
problem on each subdomain. For efficiency reasons, it is essential to keep the number of iter-
ations low by using good preconditioners. Another straightforward extension is the treatment
of more general boundary conditions. For a derivation of the capacitance system within the
finite element context, see [24].

4.6.3 Irregular Domains

For general irregular domains, the exact decomposition cannot be computed analytically using
the techniques within the presented framework. Therefore, for solving the equation SwB = φB,
iterative methods like preconditioned Krylov-subspace methods have to be applied. The appli-
cation of such methods requires only products of matrices and vectors. Nevertheless domain
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decompositions can also be applied to more general (irregular) domains. In the first place,
one can consider an irregular mesh, where the mesh width in the horizontal direction differs
from the mesh width in vertical direction. Therefore an exact decomposition can still be de-
rived, see [47]. Furthermore, if an irregular domain can be decomposed in regular domains,

(a) L-shaped (b) T-shaped

Figure 4.8: Irregular domains

like L- or T-shaped domains, see Figure 4.8, which are decomposed in rectangulars, a pre-
conditioner can be derived. An L-shaped domain is the simplest one that can be decomposed
into rectangular subdomains. There are two possibilities to divide the domain into two rectan-
gles: Ω1 ∪ Ω2 and Ω3 with the interface B2,3 or Ω1 and Ω2 ∪ Ω3 with the interface B1,2. The
idea is to take the two-subdomain Schur complement MB1,2

resp. MB2,3
, given by the exact

decomposition for the case that the subdomain Ω3 resp. Ω1 was absent, as preconditioner for
the resulting systems

SB1,2
wB1,2

= φB1,2
and SB2,3

wB2,3
= φB2,3

,

in particular
S̃B1,2

= M−1
B1,2

SB1,2
and S̃B2,3

= M−1
B2,3

SB2,3
.

Chan and Resasco showed in [47], [21] that in the general case there is a priori no reason why
to prefer one way of decomposition to the other one as both systems are equivalent from the
convergence point of view for the case that a domain decomposition for the Poisson equation
is done. The rate of convergence depends on the aspect ratios of the subdomains. This result
should stay valid for the case of the optimality system.
For more irregular domains, the idea is to approximate the irregular domains by domains
with regular geometries that share the same interface. Chan [17] suggested a procedure for
extending the exact preconditioner for rectangular regions to construct preconditioners for the
Schur complement of irregular domains. The idea is to define a preconditioner for the interface
that uses the exact capacitance matrix corresponding to the best rectangular approximations
to the irregular domain sharing the same interface.
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5 GPU Programming

Due to the well-known Moore’s law the number of transistors that can be placed on an inte-
grated circuit doubles approximately every 18-24 month. This rule of thumb was an obser-
vation by Gordon E. Moore, one of the Intel Corporation co-founders, and proposed in 1965
[41]. This prediction has become a benchmark in the research and development of semicon-
ductors. Doubling the number of transistors leads, beyond growth in other hardware aspects
like more on-chip memory, more memory management units or more specialized hardware, to
higher clock frequencies. Increasing the speed of operation of a processor clock is operating
has been the most important method for the last 30 years. It turned out to be a reliable source
for improving the performance of a single central processing unit (CPU). For example, a CPU
ran at the beginning of the 1980’s with a clock frequency of 1 MHz, growing up to 4 GHz on
a recent INTEL XEON processor in 2012. But because of miscellaneous fundamental limi-
tations in the production of these integrated circuits, like power and heat restrictions as well
as the approaching physical limit to transistor size, a further increase of the clock rate and
the amount of work that can be performed in each cycle clock period within a single CPU is
limited. To achieve another performance improvement, the recent idea is to place more than
one single processing core on a chip. Another approach is to use co-processors like FPGAs
or graphics cards to enhance the functions of the CPU by offloading processor-intensive tasks
from the main processors and therefore accelerating the system performance.
For designing microprocessors, two main trajectories have been followed according to [37]:

� the multi-core trajectory, which maintains the execution speed of sequential programs
while moving into multiple cores, each of which is an out-of-order, multiple instruction is-
sue processor implementing the full x86 instructions set, hyper-threading and designed
to maximize the execution speed of sequential programs.

� the many-core trajectory, which focuses more on the execution throughput of parallel
applications with a large number of much smaller cores. Every core is a heavily mul-
tithreaded, in-order, single-instruction issue processor that shares its control and its
instruction cache with several other cores.

In this chapter, the concept of performing general purpose computations on a many-core
graphics processing unit (GPU) is considered. A brief historical retrospection of the evolution
of graphics cards to general purpose processing units just as a comparison of the different
(parallel) programming paradigms of a CPU and a GPU is given in Section 5.1, followed by
the architecture of a modern graphics card presented in Section 5.2, which deals with the spe-
cific NVIDIA CUDA architecture, the CUDA API and the programming language CUDA C. In
Section 5.3, performance considerations are presented and the implementation of the CSMG
is described. For further reading, a comprehensive introduction into GPU programming can
be found in [37], [48] or the current CUDA Programming Guide 4.2 [43].
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5.1 GPUs as Streamprocessors

GPUs can be considered as streamprocessors. In general, a streamprocessor is a co-
processor, working on streams, where a stream is simply a set of data that requires similar
computation and this processing can be done in a highly parallel way. The task of the GPU is
to work on independent vertices and fragments, but many of them in parallel, which is effec-
tive, when many vertices or fragments are processed in the same way. In this sense, GPUs
are streamprocessors.
In this section, a brief retrospective of the history of the GPU as well as a comparison of a
GPU in contrast to a CPU is given. For more details see [37].

5.1.1 History of GPUs

From the beginning 1980’s to the early 1990’s, 2D display accelerators offered hardware-
assisted bitmap operations to support in the display and usability of graphical operating sys-
tem and accelerate the memory-intensive work of texture mapping and rendering polygons.
The fixed-function pipelines were configurable, but not programmable. In professional comput-
ing, the enterprise Silicon Graphics used 3D graphics for scientific and technical visualization,
like CAD, and in 1992 the OpenGL library as programming interface to its hardware was re-
leased. OpenGL is a standardized specification, defining a platform-independent application
programming interface (API) for writing 3D applications.
In the mid-1990s, the request for 3D graphics for PC gaming raised. The main vendors
NVIDIA, ATI and 3dfx launched graphics accelerators to satisfy this demand. As transform
and lighting were already integral parts of the OpenGL graphics pipeline, increasingly more
of the graphics pipeline moved away from the CPU and was implemented directly on the
graphics processor. For example, the NVIDIA GeForce 256 pushed capabilities of consumer
graphics hardware and performed transforming and lighting directly on the GPU. The func-
tionality of the graphics pipeline can be found in [37, Chapter 2.1.1.].
In 2001, the new DirectX 8.0 standard required that concordant hardware contains both pro-
grammable vertex and programmable pixel shading stages. With this DirectX API, the devel-
opers had for the first time some control of the exact computations that would be performed
on their GPUs. As the shader pipeline of these modern graphics accelerators offers massive
floating point computational power, researchers and programmers tried to use this for general
purpose programming. The standard high-level shading languages, such as DirectX, OpenGL
or Cg were the only way to interact with the GPU, so performing arbitrary computations were
still subject to the constraints of programming within a graphics API. GPUs were designed to
produce a color for every pixel on the screen using programmable arithmetic units called pixel
shader. In general, a pixel shader uses its (x1, x2) position on the screen as well as some
additional information, like input color, texture coordinates or other attributes, to combine var-
ious inputs in computing a final color. For general purpose computing, researchers tried to
make their problems appear to the GPU to be traditional rendering. These efforts that used
graphic APIs for general purpose computing were known as GPGPU programs. But there
were several drawbacks:

� the programmer needs to have close knowledge of the graphic APIs and the GPU ar-
chitecture
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� problems had to be expressed in terms of vertex coordinates, textures and shader pro-
grams, which leads to increasing program complexity

� basic programming features such as random reads and writes to memory were not
supported, which restricts the programming model

� double precision was not supported (until recently), so some scientific applications could
not run on a GPU.

In 2006/2007, NVIDIA developed the compute unified device architecture (CUDA). The previ-
ous generations partitioned their computing resources into separate vertex and pixel shaders,
whereas CUDA installed a unified shader pipeline replacing these vertex and pixel pipelines,
which allowed each arithmetic logic unit (ALU) on the chip being able to execute vertex, pixel
and geometry and to perform general purpose computations. These unified shaders were uti-
lized as a scalar thread processor becoming fully programmable with large instruction mem-
ory, instruction cache and instruction sequencing logic. The costs of these additional hard-
ware added on the chip were reduced by having multiple shader processors to share their
resources, like instruction cache and instruction sequency logic. As processing on a massive
number of vertices or pixels in parallel, this design works well. The disadvantages mentioned
above were remedied:

� A new general purpose parallel programming interface on the silicon chip serves the
requests of CUDA programs and a programming language CUDA C, based on standard
ANSI C with a relatively small number of keyword for labeling data-parallel functions
and their associated data structures was introduced. Instead of programming dedicated
graphics units with graphics APIs, the programmer can write C programs with CUDA
extensions and target a general purpose, massively parallel processor without having to
learn a new programming language. Programmers no longer need to use the graphics
API to access the GPU parallel computing capabilities.

� Arbitrary read and write access to the memory, i.e. load and store instructions with
random byte addressing capability to support the C requirements, as well as a software
managed cache called shared memory and a barrier synchronization for inter-thread
communication, were integrated. The need for programmers to manually manage vector
registers was eliminated. The single-instruction multiple-thread (SIMT) execution model
was introduced, where multiple independent threads execute concurrently using single
instructions.

� The ALUs were conform to the IEEE requirements for single-precision floating point
arithmetic and designed to use an instruction set adapted for general computation rather
than specifically for graphics. The latest GPUs provide full IEEE double-precision sup-
port.

5.1.2 GPU vs. CPU

There is a huge gap between many-core GPUs and multi-core CPUs comparing the floating-
point performance. In 2009, the ratio for this peak floating-point calculation throughput was
about 10 to 1. [37, Figure 1.1]. This gap can be explained by the different design philosophies:
The design of a CPU is optimized for sequential code performance. On a chip, about 90% of
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the area is devoted to a sophisticated control logic that allows the reordering of instructions
to extract best performance, out-of-order CPU execution to avoid delays waiting for read/write
or earlier operations, branch predictions to minimize delays due to conditional branches and
memory hierarchy with large cache to deliver data to register fast enough to feed the processor
and reduce the instruction and data access latencies. The memory hierarchy consists of the
slow, cheap and large main memory, L3, L1/L2 caches and registers, which are fast, but more
expensive and small. The execution speed relies on exploiting data locality:

� temporal locality: data just accessed are kept in cache for later reuse

� spatial locality: neighboring data load in cache using a wide bus.

This is all handled automatically, the programmer does not need to mind about these caches,
so it is simple but it is clear that in some cases, this does not extract the best performance.
Multi-core CPUs follow the MIMD (multiple instruction, multiple data) parallel programming
paradigm, that means that at any time, different processors may be executing different instruc-
tions on different pieces of data. Each core operates independently and each can be working
with a different code, performing operations with completely different data. The INTEL CORE
2 processor has 4-8 MIMD cores, few registers, a big multi-level cache and a 10-30 GB/s
bandwidth to the main memory.

(a) CPU (b) GPU

Figure 5.1: Different architectures according to [37]

The GPU has a different design philosophy. The chip area and power budget is maximized
to perform floating-point calculations and optimized for execution throughput of massive num-
bers of threads minimizing control logic by having many threads available while waiting for
long-latency memory accesses. A simplified logic compared to the CPU, for example there
is no out-of-order execution and no branch prediction, allows that much more of the chip is
devoted to floating-point computation. Small cache memories are provided to help to control
the bandwidth requirements of these applications. Hence, multiple threads that can access
the same memory data do not all need to go to the slow graphics memory (DRAM). The
streamprocessors are arranged as multiple units, called stream multi-processors (SM) with
each unit being effectively a vector unit. All cores of a SM are doing the same thing at the
same time, so only one instruction decoder is needed to control all cores of a SM. Many-core
GPUs follow the SIMD (single instructions, multiple data) parallel programming paradigm, that
means all processors perform the same operation on multiple data simultaneously. All cores
execute the same instruction at the same time, but they may be working on different data. The
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most recent NVIDIA GTX 470 has 448 cores, arranged as 14 units each with 32 SIMD cores,
lots of registers (16-48kB), almost no cache, 5GB/s bandwidth to host processor via the PCIe
connection and 140GB/s bandwidth to the graphics memory. The different architectures are
schematically described in Figure 5.1.
Both of GPU and CPU provide strengths and weaknesses for a particular scope of duties,
so heterogeneous computing promises to achieve the best performance: sequential parts of
the program that exhibit little or no data parallelism are implemented on the CPU, numerically
intensive parts with a rich amount of data parallelism are implemented on the GPU.

5.2 GPU Computing

In contrast to the term GPGPU, general purpose computing in the CUDA architecture refers
to the term GPU computing. The CUDA framework presented in this section is limited to
NVIDIA GPUs. A more general model for writing programs that execute across heteroge-
neous platform consisting of CPUs and GPUs is the standard programming model OpenCL,
defining language extensions for writing functions and a runtime API enabling programmers
to manage parallelism and data delivery on massively parallel processors. OpenCL is a stan-
dardized programming model in which applications developed in OpenCL can run without any
modification on all processors that support the OpenCL language extension, including hetero-
geneous CPU/GPU programming. Comparing CUDA with OpenCL on NVIDIA graphics card,
a loss of performance of 5% to 50% is reported in [36].
The G80 chip was the first CUDA capable processor, integrated in the TESLA graphics cards.
With it, NVIDIA introduced two key technologies: the unified graphics and compute archi-
tecture and CUDA, a software and hardware architecture that enabled the GPU to be pro-
grammed with a high level programming language. To non-graphics application programmers,
the TESLA GPU introduced a more generic parallel programming model with a hierarchy of
parallel threads, barrier synchronization and atomic operations to dispatch and manage highly
parallel computing work. NVIDIA also released the CUDA C/C++ compiler (NVCC), libraries
and runtime software to enable programmers to access the new data-parallel computation
model and to develop applications.

5.2.1 CUDA Architecture

The architecture of a typical CUDA capable NVIDIA GPU is presented in this section. The
GPU is organized into an array of highly threaded streaming multi-processors (SM). Each SM
has a number of streaming processors (SP) that share control logic and instructions cache.
Each GPU has up to 4GB of graphics double data rate (GDDR) RAM, referred as global mem-
ory which is essentially the frame buffer memory. Normally, this involves video images and
texture information for 3D rendering but for computing purposes it is a very high-bandwidth,
off-chip memory but with more latency than typical system memory. But for massively parallel
applications, the higher bandwidth counterbalances for the longer latency.
The G80 has 86.4GB/s of memory bandwidth plus an 8GB/s communication bandwidth with
the CPU, 4GB/s in each direction. The GPU is connected via the PCIe whose bandwidth is
comparable to the CPU front-side bus bandwidth to the system memory. The G80 chip has
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128 SP (16 SMs with 8 SPs each) and each SP has a multiply add (MAD) unit and an addi-
tional multiply unit. Summarized, this is a theoretical total of over 500 gigaflops. In addition,
each SM has special function units that perform special floating-point functions like SQRT as
well as transcendental functions. With the subsequent next generation GT200, the number
of streaming processor cores increases (240 SPs), the processor register size was doubled,
hardware memory access coalescing was added to improve memory access efficiency and
double precision floating point were supported to address the need of scientific and HPC ap-
plications. The GT200 has a peak performance of more than 1 teraflop. The most recent
GPU is the GF100, called FERMI and implemented in the NVIDIA GeForce 400 series. With
it, the double precision performance was improved, the memory ECC supported, a true L1/L2
cache hierarchy was implemented with a additional 384kB L2 cache, more shared memory
was available by a 64kB splitted shared memory/L1 cache, faster context switching and faster
atomic operations. The graphics cards are equipped with up to 16 SMs, each SM with 32
cores, each with 1024 registers and up to 48 threads per core. For more technical details see
[44].

5.2.2 CUDA Programming Model

In the first place, the CUDA programming model distinguishes between host and device. The
host is the CPU with the system memory, the device is the GPU with its associated mem-
ory. A CUDA program is a unified source code encompassing both host and device code.
The NVIDIA C compiler (NVCC) separates them during the compilation process. The host
code is straight C code, compiled with the standard C compiler and runs as an ordinary CPU
process. The device code is written using ANSI C extended with keywords for labeling data-
parallel functions, called kernels and their associated data structures. The device code is
further compiled by the NVCC and executed on a GPU device. CUDA C is a language inte-
gration making it possible to call device code from host code. The execution starts with host
execution. When a kernel function is launched, the execution is moved to the device where
a large number of threads is generated to take advantage of enormous data parallelism. All
the threads that are generated by a kernel during an invocation are collectively called a grid.
CUDA C provides library routines for memory allocation on graphics card, data transfer (for
example constants, texture arrays, ordinary data) from host memory to device memory and
back, for error-checking and timing. For launching multiple copies of the kernel process on the
GPU a special syntax is defined. These kernel functions generate a large number of threads
to exploit data parallelism. A typical GPU program with explicit movement of data across the
PCIe connection by the master process running on the CPU performs the steps, given in
Algorithm 5.1.

5.2.2.1 Threads

Kernel functions specify the code to be executed by all threads during a parallel phase. When
launching a kernel, it is executed as a grid of parallel threads. Each CUDA grid typically
contains of thousands to million of lightweight GPU threads per kernel invocation. One way to
hide latency is to create many threads to fully utilize the hardware. This often requires a large
amount of data parallelism. Threads in a grid are organized into a two-level hierarchy: in the
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Algorithm 5.1 Typical GPU program
1: initialize graphics card
2: allocate memory in host and on devices
3: copy data from host to device memory
4: launch multiple copies of execution kernel on devices
5: copy data from device memory to host
6: repeat 3-5 as needed
7: de-allocate all memory and terminate.

first level, grids consist of one or more 2D blocks and in the second level, every block covers
a 3D array of threads, see Figure 5.2. Every thread has unique coordinates distinguishing it
from the others and to identify the appropriate portion of the data to process. The syntax for
launching a kernel is

invoke kerne l<<<gridDim , blockDim>>>(args ) ;

gridDim denotes the number of copies of the kernel, blockDim is the number of threads within
each copy and args is a limited number of arguments, mainly pointers to arrays in graphics
memory and some constants which get copied by value.

(a) Grid (b) Block

Figure 5.2: Kernel launch according to [37]

Threads within the same block are allowed to synchronize by the use of a barrier synchro-
nization function, which must be executed by all threads in a block. No thread is allowed to
proceed beyond this barrier until the rest has reached it. Applied improperly, this can end up
in a deadlock. All threads within a block should execute in close time proximity with each other
to avoid excessively long waiting times. The CUDA runtime systems satisfy this constraint
by assigning execution resources to all threads in a block as unit. CUDA programmers can
assume that these threads take very few cycles to generate and schedule due to efficient
hardware support. When a thread of a block is assigned to an execution resource, all other
threads in the same block are also assigned to the same resource. All threads within one
copy can access local shared memory but cannot see what the other copies are doing, even
if they are on the same SM. This leads to a trade off: by not allowing threads in different
blocks to perform barrier synchronization with each other, the CUDA runtime can execute
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blocks in any order relative to each other because none of them must wait for each other.
This is called transparent scalability. There are no guarantees on the order in which the
copies will be executed. When a copy of the kernel is started on a SM it is executed by a
number of threads, each of which has the following information: some variables passed as
arguments, pointers to arrays in device memory, global constants in device memory, shared
memory and private registers/local variables and some special variables. Up to 8 blocks
can be assigned to each SM in the GT200 design as long as there are enough resources to
satisfy the demand of all the blocks.
The blocks on each SM are further divided and executed in groups of 32 so-called warps.
Execution alternates between active warps and with warps becoming temporarily inactive
when waiting for data. For each thread, one operation completes before the next starts.
This avoids the complexity of pipeline overlaps which can limit the performance of modern
processors.
The kernel code is written from the point of view of a single thread and the knowledge of the
range of each variable. The CUDA SM warp scheduler decides in each clock cycle which
warp to execute next, choosing from those neither waiting for data from the device memory
(memory latency ) nor for completion of earlier instructions (pipeline delay ). The key to high
performance is to keep a lot of active threads and warps around to hide latency. On the other
side, because there is no context switch as each thread has its own register, the number
of active threads is limited. But the selection of ready warps waiting for execution does not
introduce any idle time into the execution timeline which is referred to as zero-overhead
thread scheduling. Warps will be padded if they are not a multiple of the warpsize. For
multiple dimensions of threads, dimensions will be projected into a linear order before
partitioning into warps, see Figure 5.3.

Figure 5.3: Linear order

The treatment of if-then-else branches is very special: threads are executed in warps of 32,
with all threads in the warp executing the same instruction at the same time. If different
threads in a warp need to do different things, the so-called warp divergence occurs. Then all
the threads execute both (or even more) conditional branches, so the cost execution is the
sum of both branches, which is a potentially large loss of performance. If a particular warp
goes one way, then that is all that is executed. As each warp is treated separately, it is not
of interest what is happening with other warps. If each warp only goes one way it is very
efficient. In the worst case, one effectively loses factor 32 in performance if one thread needs
an expensive branch, while the rest is idling. Warp divergence can have a very big impact on
performance, see the NVIDIA Best Practice Guide [42].
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5.2.2.2 Memories

The key challenge in modern computer architecture is the following: fast computation does
not bring impact if data cannot be moved in and out fast enough. For big applications, there
is a need for lots of memory. Very fast memory is also very expensive, so modern computers
provide a hierarchical memory design. In Figure 5.4 the different memories on a TESLA
GPUs beside the global memory which is implemented with dynamic random access memory
(DRAM) having long access latencies (hundreds of clock cycles) are presented. Global arrays
are held in the large device memory (DRAM), allocated by the host. The pointers are held by
the host and passed into kernels and continue to exist until freed by host code. Since blocks
are executed in arbitrary order, if one block modifies an array element, no other block should
read or write the same element. A global array can also be created by declarations with global
scope within kernel code.

Figure 5.4: Memory hierarchy according to [37]

The constant memory is a global memory only to be addressed by the host, supporting long
latency, high-bandwidth and read-only access by the device when all threads simultaneously
access the same location. Constant variables cannot be modified by kernels. There is 64kB
of constant memory and up to 48kB of cache for every SM. Registers and shared memory are
on-chip memory, the variables residing in these types of memory can be accessed at a very
high speed in a highly parallel manner. Registers are allocated to individual threads: each
thread can only access its own registers. FERMI exemplary provides 32K 32bit registers per
SM. If an application needs more registers, they spill over in device memory, so the application
suffers from the latency and bandwidth implications of using device memory. Shared memory
is allocated to thread blocks: all threads in a block can access variables in the shared memory
location allocated to the block. This is an efficient method for threads to cooperate by sharing
their input data and the intermediate results of their work. Accessing shared memory is ex-
tremely fast and highly parallel. Beside this, there are several further benefits: it is essential
for operations requiring communication between threads, the improvement of data re-use, an
alternative to local arrays in the device memory and to reduces the use of registers when a
variable has the same value for all threads. But if a thread block has more than one warp, it is
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not predetermined when each warp will execute its instructions. Consequently, almost always
thread synchronization is needed to ensure the correct use of shared memory.
A wide bus, as mentioned above, is the only way to get a high bandwidth to the slower main
memory. The cache line is the basic unit of data transfer with a typical size of 128 bytes. For
FERMI, a cache line contains of a number of 32 floats or 16 doubles. There exist a 384bit
memory bus from the device memory to the L2 cache with a bandwidth up to 160GB/s and a
unified 384kB L2 cache for all SMs. Each SM has 16kB or 48kB L1 cache (64kB is split 16/48
or 48/16 between L1 cache and shared memory). As there is no global cache coherency as
in CPUs, one almost never has different blocks updating the same global array elements.
A memory coalescing technique is implemented: as the access to DRAM is a very slow pro-
cess, modern DRAMs use a parallel process to increase their rate of data access. Each time,
a location is accessed, many consecutive locations that include the requested location are
accessed. If an application can make use of data from multiple, consecutive locations be-
fore moving on to other locations, the DRAM can supply the data at a much higher rate than
if a truly random sequence of locations was accessed. By organizing memory accesses of
threads in favorable patterns, high global memory access efficiency is achieved. The most
favorable access pattern is achieved when the same instructions for all threads in a warp
accesses consecutive global memory locations. In this case, the hardware coalesces all of
these access into a consolidated access to consecutive DRAM locations.

5.3 Implementation of the CSMG - Details and Remarks

In this section, some of the implementation details of the CSMG on the GPU is described. In
the Best Practice Guides [42], NVIDIA helps the programmer to obtain the best performance
by giving specific recommendations with different priorities:

� find ways to parallelize sequential code

� minimize data transfer between host and device, even if it means to run some kernels
on the device that do not show performance gains when compared with running on the
host CPU

� adjust the kernel launch configuration to maximize device utilization

� ensure that global memory accesses are coalesced

� replace global memory accesses with shared memory accesses whenever possible

� avoid different execution paths within the same warp.

5.3.1 Global Memory Utilization on the GPU

For minimizing the data transfer between host and device, the level of discretization is chosen
in a way that the entire problem fits in the DRAM of the GPU. In the beginning, all data is
transferred to the GPU, all computation is done there and in the end, the results are copied
back. The multigrid method is a recursive algorithm and temporary data structures are cre-
ated on each level. On coarser levels, it is impossible to fully utilize the GPU and the CPU
would show better performance. But as data transfer from host to device is expensive, all
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computations are performed on the GPU. For the use of the already mentioned cache line,
the memory is allocated on the GPU with the routine cudaMallocPitch, where the data are
padded in x1-direction to a multiple of 64, so each row starts at the beginning of a cache line,
see Figure 5.5(a).

(a) cudaMallocPitch (b) Partitioning in tiles

Figure 5.5: Padding and Partitioning

5.3.2 Threads and Memories

For the two-dimensional implementation of the CSMG, the entire data is partitioned into sub-
sets called tiles which can be treated independently of each other, see Figure 5.5(b). The
size of each tile is determined by its memory demand - the data required for computing each
tile should fit in the 48kB shared memory. Each block of threads is responsible for a tile, and
each thread inside these blocks is responsible for one grid point. As the global memory is
large but slow, whereas the shared memory is small but fast, the use of the shared memory
is favorable if data are requested multiple times, for example when computing a matrix-vector
product. In Figure 5.6, the dark-colored area is the corresponding tile and the light-colored
cells are the halos (or ghost cells).

Figure 5.6: Shared memory

Therefore, each thread block copies the data from the global memory into the shared memory,
using coalesced transfer as much as possible, synchronizes to ensure that previous steps are
completed, computes new values and writes them back into the global memory. A typical
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GPU programming code for a two-dimensional problem partitioned in tiles is given below in
Code 5.1. Each tile has the size BLOCKX×BLOCKY.
CODE 5.1.

g l o b a l void f u n c t i o n ( double ∗ indata , i n t NX, i n t NY,
i n t p i t ch , double ∗outdata )

{
i n t i , j ;
/ / load data i n shared memory
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / a l l o c a t e shared memory

sha red double data [ (BLOCKX+2)∗ (BLOCKY+ 2 ) ] ;

/ / load halos
i n t k= th read Idx . x+ th read Idx . y∗BLOCKX;
i n t halo= k< 2∗(BLOCKX+BLOCKY+2) ; / / threads to load halos
i f ( halo )
{

i f ( th read Idx . y<2) / / load y−halos coalesced
{

i = th read Idx . x ;
j = th read Idx . y ∗ (BLOCKY+1)−1;

}
else / / load x−halos uncoalesced
{

i =( k%2)∗(BLOCKX+1)−1;
j =k/2−BLOCKX−1;

}
/ / l o c a l index halo i n shared memory
i n t indh =( i +1)+(BLOCKX+2)∗ ( j +1 ) ;

i = i +b lock Idx . x∗BLOCKX;
j = j +b lock Idx . y∗BLOCKY;
i n t indh g= i + j ∗ p i t c h ; / / g l oba l index halo i n g loba l memory

halo= ( i >=0) && ( i<NX) && ( j >=0) && ( j<NY) ;
}

/ / load main block i n shared memory
i = th read Idx . x ;
j = th read Idx . y ;
i n t ind =( i +1)+( j +1)∗ (BLOCKX+2) ; / / l o c a l index i n shared memory

i = i +b lock Idx . x∗BLOCKX;
j = j +b lock Idx . y∗BLOCKY;
i n t g = i + j ∗ p i t c h ; / / g l oba l index i n g loba l memory

i n t a c t i v e =( i<NX) && ( j<NY)

/ / load main block and halos i n shared memory
i f ( a c t i v e ) data [ ind ]= inda ta [ ind g ] ;
i f ( halo ) data [ indh ]= inda ta [ indh g ] ;

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / do computat ions
i f ( a c t i v e }
{
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i f ( i ==0 | | i ==NX−1 | | j ==0 | | j ==NY−1) / / boundaries
{

/ / do something
}
else
{

/ / do something
double res = . . .

}
outdata [ indg ]= res ; / / back to g loba l memory

}
sync threads ( ) ; / / b a r r i e r sync ron i za t i on w i t h i n the block

}

As the GPU grid is allocated with cudaMallocPitch and the computational grid, i.e. the dis-
cretized domains may differ, the request if(active) is necessary. For loading the halos into
the shared memory, it is assumed that each tile has more interior grid points than halos. Co-
alesced transfer is guaranteed if the grid size is a multiple of 64 in x1-direction and every
block starts at a multiple of 64. The first condition is fulfilled by allocating memory with the
cudaMallocPitch routine, the second by choosing a block size of a multiple of 64. The interior
point of each tile correspond to a set of complete cache lines, the halo points above and below
are complete cache lines, too. The remaining problem are the halo points on the left and right
side: each one requires the loading of an entire cache line. These procedure is serialized.
For the implementation of the three-dimensional version of the CSMG, certain problems arise:
the shared memory is limited to 48kB for each SM, therefore the implementation has to work
with sliding windows with 3 planes of data being held at each instant, see Figure 5.7.

(a) sliding windows (b) sliding windows (c) sliding windows

Figure 5.7: Sliding windows

The (x1, x2) plane is cut up into tiles in the same way as the 2D application and each thread
does an entire line in x3-direction. Three planes are sufficient because of the 7-point stencil
where only one neighboring grid point in x3-direction is needed. The key steps in this code
are given in Algorithm 5.2.
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Algorithm 5.2 Sliding windows
1: load in k = 0 x3-plane, including x1 and x2 halos
2: loop over all x3-planes

a) load k + 1 x3-plane (overwriting k − 2 plane)

b) process k x3-plane

c) store new k x3-plane.

and exemplary given as code

CODE 5.2.
sha red double data [ 3∗ (BLOCKX+2)∗ (BLOCKY+ 2 ) ] ;

for ( i n t k =0;k<NZ; k++)
{

i f ( a c t i v e )
{

indg0=indg ; / / s to re cu r ren t g loba l index
indg=indg+NY∗ p i t c h ; / / move down one k−plane i n g loba l i ds
data [ ind−(BLOCKX+2)∗ (BLOCKY+2)]= data [ ind ] ;
data [ ind ]= data [ ind +(BLOCKX+2)∗ (BLOCKY+ 2 ) ] ;
i f ( k<NZ−1)
{

data [ ind +(BLOCKX+2)∗ (BLOCKY+2)]= inda ta [ ind g ] ;
}

}
i f ( halo )
{

. . . same procedure
}

}
sync threads ( ) ;

Each block requires certain resources: a number of threads, registers and the total amount of
shared memory. This restrictions decides how many blocks can run simultaneously on each
SM - up to a maximum of 8 blocks. According to compute capability 2.0, 1536 threads (i.e.
48 warps with 32 threads) can run at once on a SM - if the other limitations (32768 registers
per SM, 48kB shared memory) are not reached. For the CSMG it turned out to achieve best
performance with a block size of 32x4. By numerical tests, other thread block sizes cannot
remarkably improve the performance.

5.3.3 Reduction

For computing the discrete L2-norm of a vector as the termination condition for the multigrid
method, in every cycle the sum of entries of a large array of values has to be determined.
This occurs in many other cases, for example the vector dot product and is called reduction.
Key requirements for a reduction operation are commutativity and associativity: the elements
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can be rearranged and combined in any arbitrary order. The standard summation approach
is sequential, see Code 5.3, adding one value at a time.

CODE 5.3.
double reduc t ion ( double ∗array , i n t N)
{
double sum=0.0 ;
for ( i n t =0; i<N; i ++)
{

sum+=ar ray [ i ] ;
}

return sum;
}

To parallelize this, a two-stage procedure is implemented: local and global reduction. Local
reduction assumes each thread starts with one value, first adds the values within each thread
block to form a partial sum together and then in the global reduction step it adds the partial
sums from all the blocks. A detailed description of the algorithm can be found in [48, Chapter
5.3] . The parallel summation of N values works as follows: first sum them in pairs to get N/2
values and repeat the procedure until only one value remains. But on the GPU, the problem of
warp divergence occurs as not all threads can be busy all of the time: in first phase N/2, in the
second N/4, then N/8 and so on, see Figure 5.8(a). For efficiency reasons, one wants to make
sure that each warp is either fully active or fully inactive, as far as possible, displayed in Figure
5.8(b). Another problem is that the threads need to access results produced by other threads.
Hence access to global device memory would be very slow. To avoid this, shared memory
is used, and synchronizing the data after each step to make sure that all previous operations
have been completed. The memory is dynamically allocated when launching the kernel. The
first thread outputs the final partial sum into a specific place for that block. When only one warp
is working, synchronization is not needed anymore. It is guaranteed that previous operations
by other threads in the same warp will have been completed because they are processed at
the same time.

(a) bad kernel (b) good kernel

Figure 5.8: Warp divergence
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The optimized code is given by

CODE 5.4.
g l o b a l void reduc t ion ( double ∗array , double ∗outdata )

{
extern sha red f l o a t temp [ ] ; / / dynamica l ly a l l o c a t e d memory ,

/ / s i ze s p e c i f i e d a t kerne l launch
i n t i = th read Idx . x ;

temp [ i ]= ar ray [ i +b lock Idx . x∗blockDim . x ] ;

for ( i n t d=blockDim . x>>1; d>warpSize ; d>>=1)
{ / />> i s equ iva len t to d i v i d i n g by 2

sync threads ( ) ;
i f ( i<d ) temp [ i ]+= temp [ i +d ] ;

}
sync threads ( ) ;

i f ( i<warpsize ) / / on ly one warp
{

for ( i n t w=warpSize ; d>0;d>>1)
{

i f ( i<d ) temp [ i ] += [ tempi+d ] ;
}

}
/ / sum of l o c a l b lock reduc t ion i n t o g loba l a r ray
i f ( i d ==0) outdata [ b lock Idx . x ]= temp [ 0 ] ;
}

This version puts the partial sum for each block in a different entry in a global array. Now there
are at least two possibilities for global reduction: these partial sums can be transferred back
to the host for the final summation or the local reduction kernel can be further applied.

5.3.4 Implementation of the Domain Decomposition Methods - Remarks

For the implementation of the domain decomposition methods, every subdomain is assigned
to a single GPU. Each GPU is managed by a separate host thread by using pthreads for
creating multiple threads and specifying with CudaSetDevice which GPU is used.
Beside the multigrid solves on the subdomains, setting up of the Schur complement matrix is
processed on the GPU

S−1 = F̄Λ−1F̄ .

Since Λ−1 is a tri-blockdiagonal matrix, this results in a matrix-vector-matrix product. The
entries of F are given explicitly and for this reason less memory transfer from CPU to GPU
main memory is required. Otherwise a large amount of computations are processed, so the
GPU is expected to use its full computational power and show a good performance. The
matrix S−1 is stored in the CPU main memory and the matrix-vector products for determining
the unknowns on the interfaces are performed on the CPU.
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6 Numerical Results

This chapter is dedicated to the numerical results of the implementation of the collective
smoothing multigrid method (CSMG) on a single domain in Section 6.1 as well as in Section
6.2 a comparison of the two proposed algorithms for the domain decomposition of the entire
domain in many nonoverlapping subdomains, referred to as the recursive and the simultane-
ous approach. This chapter finishes in Section 6.3 with a proof of concept by the use of an
example for large-scale optimization with more than 268 Mio. unknowns on 8 GPUs resp.
CPUs in parallel.

6.1 Collective Smoothing Multigrid Method

In this section the implementation of the CSMG for the two- and three-dimensional test set-
tings on one domain is considered. More precisely, the behavior of different choices of miscel-
laneous smoothers and the total number of smoothing steps on each grid for different problem
sizes as well as the influence of the relaxation parameter α to the rate of convergence and
the elapsed time on a GPU resp. CPU are investigated. The numerical results are presented
for the in Chapter 2 introduced and analyzed academic optimal control problem with uniformly
elliptic PDE-constraint

min
(y,u)

J(y , u) := min
(y,u)

1

2
‖y − yd‖L2(Ω) +

α

2
‖u‖L2(Ω)

subject to
−∆y = f + u in Ω

y = 0 on ∂Ω
(6.1)

on the domain Ω = (0, 1)2 in two and Ω = (0, 1)3 in three dimensions. The mesh on the
coarsest grid level (k = 0) consists of only one interior grid point where the resulting 2 × 2

system for the state and the adjoint variable is solved analytically. As target yd , i.e. the state
that is going to be tracked, without loss of generalization

yd(x) = 1.0, x ∈ Ω ∪ ∂Ω,

is chosen, as displayed in Figure 6.1. This desired state can not be attained by any con-
trol since the zero boundary conditions can not fulfill the desired state on the boundaries.
Nevertheless, the algorithms provide an optimal solution for the optimal control problem.
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Figure 6.1: Target

The right-hand side f is given by

f (x) = 1.0, x ∈ Ω.

The relaxation parameter α varies in the range [10−8, 10−2]. Numerical tests have been done
for two different smoothing iterations: the collective Jacobi relaxation with damping parameter
ω (ω-JAC) and the collective red-black Gauss-Seidel (GS-RB). Several choices of the param-
eters, as the number of smoothing steps and different cycle schemes (V vs. W-cycle) as well
as a comparison of single and double precision computation is presented. For the purpose
of abbreviation let V (ν1, ν2) denote a V-cycle with ν1 pre-smoothing and ν2 post-smoothing
steps, analogously for W (ν1, ν2). In the tables in the subsequent section, the convergence
rate q, defined by

q := n

√
dn
d0

:= n

√
‖Ahwnh − φh‖0

‖Ahw0
h − φh‖0

where ‖·‖0 denotes the previously in Chapter 3 defined discrete L2-norm and n the number of
iteration required to reduce the initial defect d0 by a factor of ε = 10−8 for different grid sizes,
given by the number N of grid points in x1− and x2− (x3−)direction is presented. The starting
value for all settings

w0
h (x) = 0.0, x ∈ Ω̄

was chosen.
Main purpose of the investigations in the successive sections is the elapsed time needed on a
CPU compared to the time used on a GPU. CPUt(s) denotes the computation time in seconds
on one CPU core, GPUt(s) the time required on the GPU in seconds, where the data transfer
time between GPU and CPU global memory is included. The speed-up X is measured by the
quotient

X := speed-up(CPU,GPU) :=
CPUt(s)

GPUt(s)
.

The computations are performed on a desktop computer equipped with four INTEL XEON
E5620@2.40 GHz CPU cores with hyper-threading, 12GB of RAM and a peak power re-
quirement of 80 Watt. The 64bit operating system is LINUX Opensuse 11.3. All programs
are compiled with the 4.4.1 version of the g++ compiler and the -03 option. The GPU is a
NVIDIA GeForce GTX 470 graphics cards, providing 448 CUDA cores with a graphics clock
frequency of 607MHz and a processor clock of 1215MHz. The standard memory configura-
tion offers 1280MB GDDR5 memory and a memory interface width of 320-bit. This leads to
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a theoretical memory bandwidth of 133.9 GB/sec. The minimum system power requirement
is 550W and the GPU is connected to the motherboard via the PCI-E 2.0 x16 bus. The GPU
uses the CUDA Driver CUDART with the driver version 4.2, the runtime 4.1 and exhibits com-
pute capability 2.0. The NVCC compiler is of version 4.1.
In Table 6.1 and Table 6.2 information of the total number of unknowns is given, depending on
the grid size h = 1/N in each direction. For two dimensions, with (N − 1) interior grid points
in x1- and x2-direction, it holds

N #unknowns
16 450
32 1.922
64 7.938

128 32.258
256 130.050
512 522.242
1024 2.093.058
2048 8.380.418
4096 33.538.050

Table 6.1: #unknowns in 2D

and in three dimensions with (N − 1) interior grid points in x1-, x2- and x3-direction the data

N #unknowns
16 6.750
32 59.582
64 500.094

128 4.096.766
256 33.162.750

Table 6.2: #unknowns in 3D

are valid.
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6.1.1 Two-dimensional Case: Collective Damped Jacobi Relaxation (ω-JAC)

The first numerical tests deal with the collective damped Jacobi relaxation in two space di-
mensions. Table 6.3 and Table 6.4 show the influence of the damping parameter ω for V(1,1)
and V(2,2) with a fixed grid size N = 4096, resulting in a linear system with ∼33.5 Mio. un-
knowns, where the values of the relaxation parameter α vary. Purpose of these tests is to
to quantify a range for the damping parameter where the best rate of convergence and the
fastest elapsed time on both architectures, CPU and GPU, is achieved.

0.6-JAC 0.7-JAC
α n q CPUt(s) GPUt(s) n q CPUt(s) GPUt(s)

10−2 28 0.5145 73.44 4.81 23 0.4473 60.44 4.02
10−4 27 0.5009 70.89 4.66 23 0.4340 61.17 4.03
10−6 26 0.4847 68.38 4.50 22 0.4179 56.64 3.87
10−8 25 0.4662 64.88 4.28 20 0.3975 52.10 3.49

0.8-JAC 0.9-JAC
α n q CPUt(s) GPUt(s) n q CPUt(s) GPUt(s)

10−2 20 0.3832 53.05 3.67 18 0.3492 48.35 3.23
10−4 19 0.3706 49.87 3.40 17 0.3377 45.83 3.09
10−6 18 0.3549 47.56 3.23 17 0.3372 44.89 3.07
10−8 17 0.3359 44.35 3.01 17 0.3367 44.22 3.01

Table 6.3: ω-JAC, V(1,1)

0.6-JAC 0.7-JAC
α n q CPUt(s) GPUt(s) n q CPUt(s) GPUt(s)

10−2 15 0.2766 51.19 3.61 13 0.2212 44.51 3.17
10−4 14 0.2641 47.87 3.39 12 0.2073 40.91 2.95
10−6 14 0.2497 47.69 3.39 12 0.1953 41.15 2.95
10−8 13 0.2323 44.43 3.17 11 0.1796 37.78 2.73

0.8-JAC 0.9-JAC
α n q CPUt(s) GPUt(s) n q CPUt(s) GPUt(s)

10−2 12 0.1899 40.94 2.95 11 0.1702 37.69 2.73
10−4 11 0.1659 37.57 2.73 10 0.1449 34.44 2.51
10−6 10 0.1598 34.20 2.51 10 0.1422 34.29 2.53
10−8 10 0.1425 34.19 2.51 9 0.1273 30.68 2.29

Table 6.4: ω-JAC, V(2,2)

For ω = 1.0, no convergence was observed. It turns out that the best value for the damping
parameter ω for all choices of α is achieved when chosen in the range of [0.8, 0.9].

6.1.2 Two-dimensional Case: Collective GS-RB vs. ω-JAC

In this subsection two different smoothing iterations for the two-dimensional test setting are
compared: the collective damped 0.8-Jacobi relaxation and the collective red-black Gauss-
Seidel iteration. For both of the smoothers the influence of the relaxation parameter α for
various grid sizes is investigated. For the 0.8-JAC, V-cycles with 1 and 2 pre- and post-
smoothing steps and for the GS-RB the V(1,1)-cycle is considered.
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α = 10−2 α = 10−4

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 17 0.3248 0.0023 0.0079 0.29 15 0.2864 0.0019 0.0070 0.27
32 18 0.3473 0.0057 0.0137 0.42 16 0.3089 0.0051 0.0122 0.42
64 18 0.3592 0.0138 0.0192 0.72 17 0.3302 0.0141 0.0185 0.76

128 19 0.3667 0.0459 0.0310 1.48 18 0.3453 0.0436 0.0296 1.47
256 19 0.3716 0.1658 0.0604 2.75 18 0.3543 0.1571 0.0561 2.80
512 19 0.3752 0.6967 0.1222 5.70 19 0.3608 0.6951 0.1227 5.67
1024 19 0.3781 3.0305 0.3002 10.09 19 0.3649 3.0125 0.2978 10.12
2048 20 0.3808 12.9276 0.9611 13.45 19 0.3680 12.2885 0.9119 13.48
4096 20 0.3823 51.3348 3.4838 14.74 19 0.3706 48.6316 3.3294 14.61

α = 10−6 α = 10−8

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 11 0.1629 0.0015 0.0052 0.29 6 0.0297 0.0008 0.0030 0.27
32 14 0.2639 0.0044 0.0107 0.41 7 0.0586 0.0022 0.0059 0.37
64 16 0.3132 0.0132 0.0171 0.77 11 0.1867 0.0101 0.0121 0.83

128 17 0.3221 0.0410 0.0279 1.47 15 0.2866 0.0361 0.0247 1.46
256 17 0.3291 0.1493 0.0544 2.74 15 0.2906 0.1323 0.0472 2.80
512 18 0.3397 0.0676 0.1164 5.65 16 0.3029 0.5861 0.1044 5.61
1024 18 0.3467 2.8423 0.2850 9.97 17 0.3203 2.6990 0.2697 10.01
2048 18 0.3515 11.6369 0.8695 13.38 17 0.3299 10.9972 0.8263 13.31
4096 18 0.3549 46.1659 3.1705 14.56 17 0.3359 43.4050 3.0127 14.41

Table 6.5: 0.8-JAC, V(1,1)

α = 10−2 α = 10−4

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 11 0.1847 0.0017 0.0060 0.28 9 0.1142 0.0015 0.0049 0.31
32 11 0.1861 0.0045 0.0094 0.48 10 0.1406 0.0040 0.0086 0.47
64 11 0.1867 0.0114 0.0135 0.84 10 0.1512 0.0109 0.0121 0.90

128 11 0.1871 0.0350 0.0203 1.72 10 0.1568 0.0314 0.0187 1.68
256 11 0.1873 0.1245 0.0397 3.14 11 0.1610 0.1250 0.0412 3.03
512 12 0.1895 0.5651 0.0950 5.95 11 0.1631 0.5200 0.0866 6.00
1024 12 0.1896 2.4639 0.2441 10.09 11 0.1644 2.2726 0.2260 10.06
2048 12 0.1898 10.1657 0.7921 12.83 11 0.1653 9.2432 0.7311 12.64
4096 12 0.1899 40.2919 2.9440 13.69 11 0.1659 37.2237 2.7261 13.65

α = 10−6 α = 10−8

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 6 0.0414 0.0010 0.0036 0.28 3 0.0009 0.0005 0.0019 0.26
32 9 0.1078 0.0036 0.0078 0.46 4 0.0044 0.0017 0.0039 0.44
64 10 0.1378 0.0076 0.0121 0.63 7 0.0663 0.0053 0.0086 0.62

128 10 0.1445 0.0322 0.0186 1.73 8 0.0998 0.0234 0.0152 1.54
256 10 0.1475 0.1177 0.0363 3.24 9 0.1179 0.1028 0.0331 3.11
512 10 0.1504 0.4727 0.0798 5.92 9 0.1269 0.4240 0.0724 5.86
1024 10 0.1526 2.0720 0.2074 9.99 10 0.1357 20.687 0.2097 9.87
2048 10 0.1540 8.4805 0.6686 12.68 10 0.1340 8.4086 0.6690 12.57
4096 10 0.1550 33.6477 2.5094 13.41 10 0.1425 33.7951 2.5068 13.48

Table 6.6: 0.8-JAC, V(2,2)
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α = 10−2 α = 10−4

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 9 0.1198 0.0008 0.0068 0.12 9 0.0933 0.0014 0.0044 0.32
32 9 0.1239 0.0030 0.0099 0.30 9 0.1183 0.0038 0.0071 0.54
64 9 0.1250 0.0059 0.0130 0.45 9 0.1211 0.0094 0.0132 0.71

128 9 0.1254 0.0253 0.0189 1.34 9 0.1218 0.0245 0.0188 1.30
256 9 0.1256 0.0878 0.0341 2.57 9 0.1219 0.0884 0.0340 2.60
512 9 0.1257 0.3689 0.0630 5.35 9 0.1220 0.3699 0.0691 5.35

1024 9 0.1258 1.5864 0.1706 9.30 9 0.1221 1.5819 0.1698 9.32
2048 9 0.1259 6.5701 0.5510 11.92 9 0.1222 6.5583 0.5519 11.88
4096 9 0.1259 26.3974 2.0908 12.63 9 0.1222 26.3559 2.0931 12.59

α = 10−6 α = 10−8

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 8 0.0930 0.0011 0.0060 0.18 3 0.0006 0.0003 0.0018 0.17
32 7 0.0666 0.0015 0.0057 0.26 6 0.0256 0.0020 0.0068 0.29
64 8 0.0868 0.0053 0.0090 0.59 9 0.1786 0.0062 0.0100 0.62

128 8 0.0941 0.0225 0.0168 1.34 10 0.1482 0.0277 0.0208 1.33
256 8 0.0961 0.0780 0.0304 2.57 9 0.1279 0.0877 0.0340 2.58
512 8 0.0969 0.3287 0.0620 5.30 9 0.1211 0.3684 0.0692 5.32
1024 9 0.0976 1.4103 0.1530 9.22 9 0.1200 1.5827 0.1699 9.32
2048 8 0.0983 5.8517 0.4996 11.71 9 0.1198 6.5635 0.5477 11.98
4096 8 0.0980 23.4719 1.7778 13.20 9 0.1198 26.2260 1.9663 13.34

Table 6.7: GS-RB, V(1,1)

The tables 6.5, 6.6 and 6.7 show the results of the numerical experiments. They state a faster
convergence for the red-black Gauss-Seidel compared to the Jacobi relaxation relating to the
rate of convergence q and the computing time. The GPU version performs better for large
problems (N ≥ 128), the CPU version is faster for smaller grid sizes (N < 128). One reason is
that on smaller grids the GPU cannot exploit its full computational resources (and power) and
some of the streamprocessors idle. Furthermore, the number of iterations does not depend
on the grid size which confirms optimal complexity. Comparing the values in Table 6.5 and in
Table 6.6, the number of iterations decay if the number of smoothing steps is increased for
the ω−JAC. Moreover the number of iterations is robust in the regularization parameter α.
In the subsequent Figure 6.2, the elapsed time t for the CPU and the GPU implementation
are displayed in blue color in a double logarithmic plot. The red scale gives information about
the resulting speed-up factor.
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(a) 0.8-JAC, V(1,1) (b) 0.8-JAC, V(2,2)

(c) GS-RB, V(1,1)

Figure 6.2: Elapsed time and speed-up for α = 10−4

6.1.3 Two-dimensional Case: V- vs. W-cycle

In this subsection numerical tests for the W-cycle for both smoothing iterations are performed
for different grid sizes N × N and constant relaxation parameter α = 10−4. The results for
both smoothers are compared to the performance for the V-cycle tests.

0.8-JAC W(2,2) GS-RB W(1,1)
N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 9 0.1047 0.0021 0.0099 0.21 7 0.0643 0.0014 0.0069 0.20
32 9 0.1052 0.0061 0.0215 0.28 7 0.0514 0.0040 0.0149 0.27
64 8 0.0996 0.0148 0.0398 0.37 7 0.0495 0.0076 0.0312 0.24

128 8 0.0955 0.0383 0.0884 0.43 6 0.0452 0.0229 0.0556 0.41
256 8 0.0915 0.1394 0.1805 0.77 6 0.0425 0.0888 0.1188 0.75
512 8 0.0876 0.5357 0.3720 1.44 6 0.0401 0.3471 0.2508 1.38

1024 8 0.0839 2.2264 0.8644 2.58 6 0.0378 1.4620 0.5683 2.57
2048 8 0.0803 9.1468 2.1442 4.27 6 0.0357 5.9291 1.4228 4.17
4096 7 0.0718 32.3972 4.9802 6.51 6 0.0369 23.9425 3.7880 6.32

Table 6.8: W - cycle 0.8-JAC and GS-RB, α = 10−4



116 6.1 Collective Smoothing Multigrid Method

Comparing the W(2,2)-cycle for the 0.8-JAC and the W(1,1)-cycle for GS-RB, the collective
Gauss-Seidel provides a faster convergence relating the rate of convergence and the elapsed
time. Similar behavior to the results for the the V-cycles occur. On smaller grids, the CPU
performs better, on larger grids the GPU is faster. A small difference with regard to the the
break-even point, where the GPU outperforms the CPU, occurs: this point is reached later
(here: 512 instead of 128). One reason is that because of the design of the W-cycle more
operations are performed on smaller grids compared to the V-cycle, so again some of the
computational resources idle. Optimal complexity can be seen, as illustrated in Figure 6.3. A
comparison of the V- vs. the W-cycle shows that for the W-cycle a better rate of convergence
q is achieved resulting in less iterations n to attain the exit condition but with regard to the
elpased time, both variants perform better with the V-cycle.

(a) 0.8-JAC, W(2,2) (b) GS-RB, W(1,1)

Figure 6.3: V vs. W cycle, α = 10−4

6.1.4 Two-dimensional Case: Smoothing Steps

In this subsection the focus is on the influence of the number of smoothing steps for both
smoothing iterations onto the elapsed time when performing on CPU resp. GPU and the rate
of convergence for a constant relaxation parameter α = 10−4, large numbers of grid points
and both of V- and W-cycle.

Increasing the number of smoothing steps on each grid leads to a faster convergence as the
rate of convergence q goes down, but more amount of work that has to be done in each
iteration step. The results for both cycle schemes are shown in Table 6.9 and Table 6.10. With
respect to the elapsed time it turns out that for the 0.8-JAC 2 smoothing steps performs best,
for the GS-RB a fast solution is achieved for only one step in the V-cycle and 1-2 steps for the
W-cycle. Figure 6.4 shows the performance for both smoothing iterations and different cycle
schemes for N = 2048, α = 10−4 and the resulting speed-up.
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0.8-JAC V(ν1, ν2) 0.8-JAC W(ν1, ν2)
N (ν1, ν2) n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X

2048 (1,1) 19 0.3680 12.2900 0.9136 13.45 14 0.2621 12.1183 3.0477 3.98
(2,2) 11 0.1653 9.2928 0.7297 12.74 8 0.0803 9.1947 2.1195 4.34
(3,3) 9 0.1090 9.3467 0.7459 12.53 6 0.0391 8.5569 1.8814 4.55
(4,4) 8 0.0853 9.9914 0.7914 12.63 6 0.0391 10.5265 2.1465 4.90
(5,5) 7 0.0707 9.9943 0.8071 12.38 5 0.0214 9.9029 2.0118 4.92

(10,10) 6 0.0337 14.4860 1.1526 12.55 4 0.0097 13.6123 2.5061 5.43
4096 (1,1) 19 0.3706 48.6781 3.3525 14.52 16 0.2557 48.5073 7.8291 6.19

(2,2) 11 0.1659 37.1634 2.7260 13.63 7 0.0718 32.4445 4.9975 6.49
(3,3) 9 0.1090 37.6711 2.8338 13.29 6 0.0368 34.5971 5.1410 6.73
(4,4) 8 0.0853 39.8808 3.0379 13.13 5 0.0244 34.5821 4.9933 6.93
(5,5) 7 0.0707 40.5014 3.1228 12.97 5 0.0199 40.4574 5.6535 7.16

(10,10) 6 0.0337 58.7324 4.5334 12.96 4 0.0087 55.1732 7.2518 7.61

Table 6.9: Smoothing steps, V-cycle vs. W-cycle, 0.8-JAC, α = 10−4

GS-RB V(ν1, ν2) GS-RB W(ν1, ν2)
N (ν1, ν2) n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X

2048 (1,1) 9 0.1222 6.5889 0.5345 12.33 6 0.0357 5.9797 1.4348 4.17
(2,2) 7 0.0489 7.1197 0.5786 12.31 5 0.0119 6.9696 1.4728 4.73
(3,3) 7 0.0461 9.0309 0.7248 12.46 4 0.0074 7.1565 1.4062 5.09
(4,4) 7 0.0433 10.9706 0.8737 12.56 4 0.0054 8.7561 1.6193 5.41
(5,5) 6 0.0281 11.1368 0.8856 12.58 4 0.0045 10.2955 1.8409 5.60

(10,10) 5 0.0133 16.1799 1.2783 12.66 3 0.0019 13.6538 2.2261 6.13
4096 (1,1) 9 0.1222 26.3625 2.0090 13.12 6 0.0369 23.8388 3.8129 6.25

(2,2) 7 0.0489 28.4877 2.2598 12.61 4 0.0092 22.5575 3.3639 6.71
(3,3) 7 0.0461 36.6046 2.8843 12.69 4 0.0064 29.0756 4.0634 7.16
(4,4) 7 0.0434 44.5760 3.5080 12.70 4 0.0049 35.6096 4.7802 7.45
(5,5) 6 0.0282 44.8907 3.5945 12.49 4 0.0040 42.1396 5.4699 7.70

(10,10) 5 0.0133 65.9557 5.2859 12.48 3 0.0017 56.2195 6.8444 8.21

Table 6.10: Smoothing steps, V-cycle vs. W-cycle, GS-RB, α = 10−4

(a) 0.8-JAC, V and W-cycle (b) GS-RB, V and W-cycle

Figure 6.4: Smoothing steps for N = 2048, α = 10−4
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6.1.5 Two-dimensional Case: Double vs. Single Precision

In this subsection the performance for single (SP) and double (DP) precision computation
are compared for the red-black Gauss-Seidel smoothing iteration with V (1, 1). The relaxation
parameter is set constant α = 10−9 and a reduction of the initial defect d0 of a factor 10−5 is
measured as for larger reduction factors no convergence was achieved due to the computa-
tional accuracy. These results were attained in part with the support of the HLRS in Stuttgart.

GS-RB V(1,1) SP GS-RB V(1,1) DP
N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X

512 6 0.1390 0.2253 0.0479 4.70 6 0.1389 0.2530 0.0562 4.50
1024 6 0.1370 0.9362 0.1096 8.54 6 0.1371 1.0828 0.1337 8.10
2048 6 0.1373 3.7456 0.3244 11.55 6 0.1366 4.4679 0.4009 11.14
4096 6 0.1425 15.0029 1.4375 10.44 6 0.1365 17.9305 1.4655 12.24

Table 6.11: Single vs. double precision, α = 10−9

For single precision the GPU and the CPU performs slightly better comparing to double pre-
cision.
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6.1.6 Influence of the Relaxation parameter

In this subsection the numerical results are visualized for relaxation parameters α varying in
the range [100, 10−12] and a grid size of 4096 × 4096 Figure 6.5 show the resulting optimal
control, the target is given in Figure 6.1. For decreasing α the target function is tracked
better, as expected. One can see the ’overhangs’ near the boundary when the algorithm
takes account of the discrepancy of the given target function with a constant value 1 on the
boundary and the zero boundary conditions for the state, given by PDE-constraint in (6.1).

(a) α = 10−0 (b) α = 10−2 (c) α = 10−4

(d) α = 10−6 (e) α = 10−8 (f) α = 10−10

(g) α = 10−12

Figure 6.5: Optimal state depending on the relaxation parameter
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6.1.7 Three-dimensional Case: ω-JAC vs. GS-RB

In this subsection the numerical results for the three-dimensional test setting are presented.
In Table 6.12 and Table 6.13, the collective Jacobi relaxation with damping parameter ω = 0.8

for the V- and W-cycle with 2 smoothing steps at each grid are compared.

α = 10−2 α = 10−4

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 15 0.2717 0.0262 0.0232 1.13 13 0.2400 0.0185 0.0203 0.91
32 15 0.2874 0.1393 0.0656 2.12 14 0.2466 0.1239 0.0628 1.97
64 16 0.2986 1.0590 0.1766 6.00 15 0.2705 0.9893 0.1671 5.92
128 16 0.3058 9.0564 0.7328 12.36 15 0.2864 8.4568 0.6928 12.21
256 16 0.3108 71.0136 4.3696 16.25 16 0.2957 71.1761 4.6401 15.34

α = 10−6 α = 10−8

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 9 0.1118 0.0145 0.0144 1.01 3 0.0013 0.0044 0.0052 0.85
32 13 0.2293 0.1148 0.0571 2.01 5 0.0207 0.0481 0.0235 2.05
64 14 0.2486 0.9292 0.1570 5.92 10 0.1415 0.6807 0.1159 5.87
128 14 0.2596 7.9441 0.6473 12.27 13 0.2284 7.3751 0.6069 12.15
256 15 0.2696 66.8092 4.3801 15.25 13 0.2416 57.8037 3.8674 14.95

Table 6.12: 0.8-JAC, V(2,2)

α = 10−2 α = 10−4

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 13 0.2370 0.0214 0.0355 0.60 13 0.2299 0.0250 0.0357 0.70
32 13 0.2410 0.1396 0.1102 1.27 13 0.2358 0.1376 0.1079 1.28
64 13 0.2382 1.0001 0.2915 3.43 13 0.2374 0.9919 0.2916 3.40
128 13 0.2333 8.2531 1.0264 8.04 13 0.2332 8.2795 1.0201 8.12
256 13 0.2279 65.6664 5.1859 12.66 13 0.2278 65.6017 5.1752 12.68

α = 10−6 α = 10−8

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 9 0.1115 0.0154 0.0249 0.62 3 0.0013 0.0079 0.0091 0.87
32 13 0.2288 0.1392 0.1088 1.28 5 0.0207 0.0548 0.0437 1.25
64 12 0.1989 0.9164 0.2692 3.40 10 0.1406 0.7624 0.2268 3.36
128 13 0.2305 8.2882 1.0194 8.13 13 0.2238 8.3058 1.0221 8.13
256 13 0.2273 66.2453 5.2021 12.73 12 0.2129 61.7776 4.8507 12.74

Table 6.13: 0.8-JAC, W(2,2)

The insight is similar to the two-dimensional tests: the W-cycle provides a better rate of con-
vergence than the V-cycle. Comparing the elapsed time, the CPU works better with W-cycle,
the GPU with the V-cycle. The break-even point, where the GPU outperforms the CPU is for
the V-cycle at a grid size 16, for the W-cycle at a grid size of 32. The CSMG provides optimal
complexity and robustness with respect to the relaxation parameter α. Figure 6.6 shows the
performance for the 3D case.
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(a) 0.8-JAC, V(2,2), 3D (b) 0.8-JAC, W(2,2), 3D

Figure 6.6: 3D, 0.8-JAC, V vs. W cycle, α = 10−4

α = 10−2 α = 10−4

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 13 0.2161 0.0168 0.0197 0.85 11 0.1722 0.0126 0.0168 0.75
32 13 0.2256 0.1046 0.0602 1.74 12 0.1899 0.0867 0.0538 1.61
64 13 0.2378 0.6995 0.1475 4.74 12 0.2032 0.6645 0.1360 4.89

128 14 0.2466 6.4941 0.6456 10.06 13 0.2226 5.9638 0.5987 9.96
256 14 0.2540 49.8577 4.0358 12.35 13 0.2356 45.7286 3.7773 12.11

α = 10−6 α = 10−8

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 9 0.0968 0.0134 0.0149 0.90 3 0.0008 0.0051 0.0052 0.98
32 10 0.1580 0.0708 0.0442 1.60 6 0.0049 0.0443 0.0276 1.61
64 11 0.1762 0.5976 0.1239 4.82 9 0.1155 0.4937 0.1050 4.70

128 12 0.2009 5.5688 0.5592 9.96 11 0.1509 4.6276 0.4792 9.66
256 12 0.2090 42.4642 3.5228 12.05 11 0.1870 39.0655 3.2701 11.95

Table 6.14: GS-RB, V(1,1)

α = 10−2 α = 10−4

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 11 0.1632 0.0180 0.0285 0.63 10 0.1580 0.0164 0.0262 0.63
32 11 0.1676 0.0908 0.0918 0.99 11 0.1622 0.0981 0.0881 1.11
64 11 0.1653 0.6630 0.2410 2.75 11 0.1648 0.6843 0.2387 2.87
128 11 0.1614 5.5358 0.8543 6.48 11 0.1613 5.5178 0.8524 6.47
256 10 0.1539 39.8232 3.9948 9.97 10 0.1539 39.4707 3.9979 9.87

α = 10−6 α = 10−8

N n q CPUt(s) GPUt(s) X n q CPUt(s) GPUt(s) X
16 9 0.1269 0.0146 0.0235 0.62 3 0.0008 0.0048 0.0083 0.58
32 11 0.1571 0.0952 0.0881 1.08 6 0.0462 0.0530 0.0490 1.08
64 9 0.1272 0.5439 0.1988 2.74 10 0.1466 0.6042 0.2199 2.75

128 10 0.1564 5.0151 0.7839 6.40 10 0.1498 5.0279 0.7834 6.42
256 10 0.1536 40.1878 4.0057 10.03 10 0.1428 39.5527 3.9906 9.91

Table 6.15: GS-RB, W(1,1)

In Table 6.14 and Table 6.15, the collective Gauss-Seidel smoothing iteration for the V- and
W-cycle with one smoothing steps at each grid are compared. The W-cycle provides a better
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rate of convergence compared to the V-cycle. Relating the elapsed time, the CPU works
better with the W-cycle, the GPU better with the V-cycle. Again the CSMG provides optimal
complexity and robustness with respect to the relaxation parameter α, displayed in Figure
6.7. Comparing both smoothing iterations, the GS-RB performs better than the 0.8-JAC. A
visualization of the numerical results is presented in Figure 6.8.

(a) GS-RB, V(1,1), 3D (b) GS-RB, W(1,1), 3D

Figure 6.7: 3D, GS-RB, V vs. W cycle, α = 10−4

(a) target (b) state

(c) control (d) adjoint

Figure 6.8: Optimal control in 3D, α = 10−6
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6.2 Nonoverlapping Domain Decomposition: Many Subdomains

In this section the numerical results for the nonoverlapping domain decomposition are pre-
sented. The computations are processed on a compute server endowed with four INTEL
XEON E5620@2.4GHz CPU cores with hyper-threading and 48GB of RAM. The operating
system is LINUX Ubuntu 12.04 LTS. All programs are compiled with the 4.6.3 version of the
g++-compiler and the -03 option. The GPU server is a TESLA M2050 rack equipped with 8
GPUs with a peak performance of 515 gigaflop double precision and 1030 single precision,
448 cores, 3 GB GDDR5 RAM, a theoretical memory bandwidth of 148 GB/sec. and the
NVCC version 4.2.
The two in Chapter 4.5 proposed algorithms are matched: on the one side the recursive ap-
proach, on the other side the simultaneous approach. When comparing, in the first place one
has to distinguish between offline and online costs. Offline costs is the work that can be com-
puted in the preprocessing stage as these results can be reused several times within in the
algorithm or for similar problems and e.g. do not depend on the right-hand side. In the case of
the recursive approach, the setup of the Schur complements are considered as offline costs
and for the simultaneous approach, the preliminary work for the BLOCKLU decomposition,
in particular setting up the single blocks, is done in the preprocessing stage. The remaining
work, like subdomain solves and matrix-vector products to determine the unknowns on the
interfaces, are online costs. The algorithm for the BLOCKLU decomposition is given in [35].

6.2.1 Setup of the Schur Complement Matrix

Firstly the setup of the Schur complement matrix is considered. It consists of determining the
diagonals of Λ resp. Λ−1 by solving a 1D-multigrid method for each grid point on the interface
and computing the product

S−1 = F̄Λ−1F̄ . (6.2)

The resulting Schur complement matrix has the size 2(N−1)×2(N−1). The computations of
the entries of the diagonals of Λ are processed on the CPU. In Table 6.16 the times for setting
up the Schur complement matrix by computing (6.2) on a CPU resp. GPU are given.

N CPUt(s) GPUt(s) X
16 0.0005 0.0005 1.00
32 0.0047 0.0007 6.71
64 0.0396 0.0012 33.00
128 0.2974 0.0038 78.26
256 2.3611 0.0246 95.98
512 18.9842 0.1862 101.96

1024 151.4813 1.4586 103.85
2048 1210.2064 11.5949 104.37
4096 9643.7520 92.4783 104.28

Table 6.16: Setup time Schur Complement Matrix

The entries of the matrix F are given explicitly and do not have to be stored. As there is a lot of
computation and less data transfer, the problem is ideally for the GPU and a large speed-up
compared to a CPU is achieved.
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6.2.2 Recursive vs. Simultaneous Solver

Numerical tests are performed for the nonoverlapping domain decomposition for the CSMG
with the collective Gauss-Seidel smoother, V-cycle with one pre- and post-smoothing step.
The relaxation parameter is chosen by α = 10−4 for all test settings and the solver on each
subdomain terminates when the defect falls below a threshold of 10−12. The domain is de-
composed into uniform domains, i.e. all subdomains have the same size. According to the
considerations in Section 4.5.3, a lot of effort can be saved as the Schur complement de-
pends only on the sizes of the subdomains and once assembled, it can be reused for similar
decompositions.

N n q CPUt(s) GPUt(s) X
1024 10 0.1260 1.9982 0.3241 6.17
2048 10 0.1260 8.2183 0.8087 10.16
4096 10 0.1260 32.9251 2.6960 12.21
8192 9 0.1253 126.9764 nn nn

Table 6.17: 1 SD, GS-RB V(1,1)

The results for the one subdomain case in Table 6.17 are already known by the preceding
section. For N = 8192 the global memory of the GPU is too small and provides no result.

offline online
N getdiags setup CAP CPUt(s) GPUt(s) X

1024 19.1646 0.8766 2.7098 0.8006 3.38
2048 85.5034 6.9112 10.6614 1.9320 5.52
4096 396.0675 54.9281 57.7363 4.3695 13.21
8192 1749.8502 438.0821 200.8512 nn nn

Table 6.18: 2 SD, GS-RB V(1,1)

For the two subdomain case both of the algorithms are equivalent due to the fact that only
one Schur complement matrix is required. The computation are processed on two GPUs resp.
two CPUs in parallel. For N = 8192 the GPU memory is still insufficient as both subdomains
still have a grid size of 4096 × 8192. Comparing the online costs, the GPU is up to 13 times
faster than the CPU. The offline costs are further splitted into determining the diagonals of Λ−1

and computing the matrix product FΛ−1F . Figure 6.9 shows the optimal state for a domain
decomposition into two subdomains on a domain with grid size 4096× 2048.

Figure 6.9: Domain decomposition into two subdomains
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The next two tables present the numerical results for the recursive and simultaneous ap-
proach. Table 6.19 gives information about the online and offline for the recursive approach
for a non-overlapping domain decomposition in four subdomains, parallelized on four GPUs
resp. CPUs and Table 6.20 gives information for the simultaneous approach.

offline online
N getdiags setup CAP CPUt(s) GPUt(s) X

1024 27.4766 1.7556 3.5854 3.6798 0.97
2048 135.9447 13.8268 15.1114 5.5789 2.71
4096 612.3126 109.9152 92.1337 13.8628 6.65
8192 2590.4520 876.4320 292.0167 22.6234 12.91

Table 6.19: 4 SD, GS-RB V(1,1), recursive approach

offline online
N getdiags setup BLOCKLU CPUt(s) GPUt(s) X

1024 8.8496 4.5236 1.7289 2.7407 0.63
2048 44.5075 80.3123 6.4247 4.5055 1.43
4096 208.7681 280.6874 37.4732 6.6819 5.61
8192 914.7330 2225.9949 143.6827 14.3912 10.03

Table 6.20: 4 SD, GS-RB V(1,1), simultaneous approach

Firstly comparing the offline costs of both approaches: here the computation of the diag-
onals for the Schur complement matrices and the setup of the Schur complement for the
recursive approach as well as the setup of the BLOCKLU decomposition for the simultane-
ous approach are considered. Computing the diagonals happens faster for the simultaneous
approach. Even if more Schur complement matrices have to be determined, the diagonals
for the matrices on the offdiagonals in the interface system can be received during the pro-
cess of computing the diagonals of Schur complement matrices on the main diagonal, see
Chapter 4.5.2., and therefore some work can be saved. The setup of the BLOCKLU decom-
position lasts longer than setting up the CAP matrices in the recursive approach. Summed
both times up, the simultaneous approach is faster regarding to the offline costs for the con-
sidered problem sizes. Comparing the online costs, the simultaneous approach also leads
to better results because of the less subdomain solves compared to the recursive approach.
The main advantage of the recursive approach is the adaptivity to many subdomains. The
extension is straightforward and for the the simultaneous approach, the solution of the Schur
complement system with the BLOCKLU solver needs more work in the implementation and
for computations. Comparing GPU to a CPU, a speed-up of 10x is attained.
An example for the decomposition into four subdomains is given in Figure 6.10. The two-
dimensional target function is defined on Ω = [0, 1]2 by

yd(x1, x2) = sin (4πx1) cos (4πx2)

and the relaxation parameter α = 10−6 was chosen. The grid has the size of 4096× 4096.
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(a) target (b) state

(c) control (d) adjoint

Figure 6.10: Domain decomposition into four subdomains

The following Table 6.21 gives information about the domain decomposition into eight sub-
domains for the recursive approach.

offline online
N getdiags setup CAP CPUt(s) GPUt(s) X

1024 32.2111 2.6261 7.5314 10.8579 0.69
2048 157.6899 20.7374 31.0829 21.0677 1.48
4096 729.2517 164.8501 241.7598 49.7219 4.86
8192 3103.5762 1314.9322 737.4715 77.8745 9.47

Table 6.21: 8 SD, GS-RB V(1,1), recursive approach

For scalability considerations recall in the considerations for the online costs in Section 4.5.3:
For the recursive domain decomposition it holds

effort(nproc · V0)

nproc
= nproc · const,

and for the simultaneous approach

effort(nproc · V0)

nproc
= const.

These are theoretical values for an ideal scalable algorithm and not confirmed by the numer-
ical results presented in Table 6.22 and Table 6.23. The label ’n SD, n GPU/CPU’ means a
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1 SD, 1 GPU/CPU 2 SD, 2 GPU/CPU 4 SD, 4 GPU/CPU 8 SD, 8 GPU/CPU
N CPUt(s) GPUt(s) CPUt(s) GPUt(s) CPUt(s) GPUt(s) CPUt(s) GPUt(s)

1024 1.9982 0.3241 2.7098 0.8006 3.5853 3.6798 7.5314 10.8579
2048 8.2183 0.8087 10.6614 1.9320 15.1114 5.5789 31.0829 21.0677
4096 32.9251 2.6960 57.7363 4.3695 92.1337 13.8628 241.7598 49.7219
8192 126.9764 nn 438.0821 nn 292.0167 22.6234 1314.9322 77.8745

Table 6.22: Scalability recursive approach

1 SD, 1 GPU/CPU 2 SD, 2 GPU/CPU 4 SD, 4 GPU/CPU
N CPUt(s) GPUt(s) CPUt(s) GPUt(s) CPUt(s) GPUt(s)

1024 1.9982 0.3241 2.7098 0.8006 1.7289 2.7407
2048 8.2183 0.8087 10.6614 1.9320 6.4247 4.5055
4096 32.9251 2.6960 57.7363 4.3695 37.4732 6.6819
8192 126.9764 nn 438.0821 nn 143.6827 14.3912

Table 6.23: Scalability simultaneous approach

nonoverlapping domain decomposition in n subdomains, performed on n GPUs resp. CPUs
in parallel. There are several reasons: one point are problems arising of the design of these
algorithms. Additional computation are processed in these algorithm, as matrix-vector prod-
uct for solving the Schur complement system for the unknowns on the interfaces, which is not
covered by the offline costs and included in the online cost. Data have to be copied from the
device to the host and transferred back. Another point are technical difficulties. When using
multiple processors communication overhead occurs. In particular, each GPU needs up to
few second to get initialized as the driver has to be loaded every time when the first GPU
kernel is launched.

6.3 Large-Scale Optimization

In this last section an example for large-scale optimization is presented. It is considered as
a proof of concept. The domain Ω is decomposed into eight subdomains, each with 4096 ×
4096 grid points, resulting in a linear system with ≈ 268 Mio. unknowns and solved with
the recursive nonoverlapping domain decomposition method on eight GPUs resp. eight CPU
parallel.

NX× NY # offline CPUt(s) GPUt(s) X
4096×32768 268.3Mio 5775.55 1499.66 118.21 12.7

Table 6.24: 8 SD, GS-RB V(1,1), recursive approach

Table 6.24 shows the numerical result, which ends in a achieved speed-up of ≈ 13×, com-
paring a GPU to a CPU.
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7 Summary, Conclusions and Outlook

7.1 Summary

The aim of this work was the investigation of implementability and efficiency of an algorithm
for solving optimal control problems on a new hardware architecture. For an academic test
problem the collective smoothing multigrid method (CSMG) was realized on a commodity
graphics card (GPU) and the performance in term of elapsed time compared to those on a
recent CPU. For dealing with large problem size, new algorithms were designed and two dif-
ferent approaches considered: on the one hand, a recursive approach and on the other hand,
a simultaneous approach. Both are based on a nonoverlapping domain decomposition of the
entire domain into two subdomains, where a discrete approximation of the Steklov-Poincaré
operator is derived by a Schur complement method. This so-called capacitance matrix is
computed efficiently and inverted analytically. Numerical results show the performance of
the CSMG for the one domain case and for both of the developed domain decomposition
methods, comparing GPU and CPU. For large-scale optimization, an optimal control problem
with ≈248 Mio. unknowns was solved by dividing the entire domain into 8 subdomains and
processed on 8 GPUs/CPUs in parallel as a proof on concept.

7.2 Conclusions

Finally the conclusions are drawn, on the one side confirming well-known facts and on the
other side giving new insights.

� The CSMG shows optimal convergence for the one domain case and robustness with
respect to the relaxation parameter α.

� Regarding to the elapsed time on a GPU and a CPU, the CSMG with red-black Gauss-
Seidel smoother works best with one smoothing step and the V-cycle. The CSMG with
the damped Jacobi relaxation shows best performance with 2 smoothing steps and the
V-cycle even though for W-cycles a better rate of convergence is achieved. Comparing
both smoothing iterations, the CSMG with the red-black Gauss-Seidel as smoothing
relaxation with one pre- and post-smoothing step is fastet.

� The GPU main memory size is limited. For large-scale problems, a domain decomposi-
tion is necessary to handle this problems.

� When using single precision, the algorithms do not provide a good solution (or even no
solution at all) due to the computational accuracy. The most recent GPUs provide full
IEEE support and the differences in term of the elapsed time do not show any noticeable
difference when comparing double and single precision performance.
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� Comparing GPU and CPU for the one domain case, the GPU is up to 13× faster than
the CPU, regarding the elapsed time. For smaller grid sizes the CPU shows better
performance. It turns out that the GPU performs best when the streamprocessors are
fully utilized. This is the case when long latency access to data is minimized by using
shared memory and having many threads ready to compute available. Transferring data
from the CPU memory to the GPU memory is expensive. Even if some kernel on the
device show no performance gain, they run on the GPU to avoid data transfer. Problems
where there is a lot of computation and almost no data transfer are ideally for the GPU.
This is, e.g., the case for the setup of the Schur complement matrix, where the GPU
shows a speed-up of more than 100×.

� Comparing the both approaches for the nonoverlapping domain decomposition, the si-
multaneous approach performs better in both, online and offline costs. The BLOCKLU
solver works well for the solution of the Schur complement system and needs less online
costs as there are less subdomain solves. The advantage of the recursive approach is
the simpler implementation and the adaptivity for partitions into more subdomains.

� Technical problems arise when using the GPU cluster: each GPU has a setup time
where the driver has to be loaded - this could last up to a few seconds and takes some-
times longer than the invoked kernel.

7.3 Future work

The proposed algorithms and the implementation on a GPU cluster are considered as pre-
liminary works for prospective multicore processors with several hundred cores. It will be
challenging and interesting how the CSMG and the nonoverlapping domain decomposition
methods perform on these architectures. Further investigations can test the performance on
bigger GPU clusters and give more significant statements of the scalability of the proposed
algorithms.
Every new generation of the GPUs and in particular the NVIDIA graphics cards needs slightly
modification in the program code to achieve best performance. Recent NVIDIA GPUs provide
new memory access possibilities. Therefore, auto tuning or preprocessor directives would be
helpful to support the programmer.
CUDA programs only run on NVIDIA GPUs. An implementation in OpenCL to use graphics
cards from other vendors or heterogenous computing can be tested in term of performance
and develop programs that are platform-independent.
Some analytical work has to be done: various multigrid components can be tested numeri-
cally and analyzed by means of the local Fourier analysis. In the first place, the derivation of
smoothing factors and error reduction factors for the collective damped Jacobi and the collec-
tive red-black Gauss Seidel iteration, which is not covered by this thesis. These factors have
to be validated by numerical tests.
Another possible field of research is the analysis of the use of the Schur complement as
preconditioner for more general differential operators on more general domain shapes.
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tizitätstheorie. Springer, 1997.

[10] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for
elliptic problems by substructuring I. Mathematics of Computation, 47(175):103–134,
1986.

[11] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. An iterative method for elliptic problems on
regions partitioned into substructures. Mathematics of Computation, 46(173):361–369,
1986.

[12] J.H. Bramble. Multigrid methods. Pitman research notes in mathematics series. Long-
man Scientific & Technical, 1993.

[13] J.H. Bramble, J.E. Pasciak, and J. Xu. The analysis of multigrid algorithms with
non-nested spaces or non-inherited quadratic forms. Mathematics of Computation,



136 Bibliography

56(193):1–34, 1991.

[14] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of
Computation, 31(138):333–390, 1977.

[15] A. Brandt. Rigorous Quantitative Analysis of Multigrid, I: Constant Coefficients Two-Level
Cycle with L2-Norm. SIAM Journal on Numerical Analysis, 31(6):1695–1730, 1994.

[16] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial (2nd ed.). SIAM,
Philadelphia, PA, 2000.

[17] T. F. Chan. Analysis of preconditioners for domain decomposition. SIAM Journal on
Numerical Analysis, 24(2):382–390, 1987.

[18] T. F. Chan and T. Y. Hou. Eigendecomposition of Domain Decomposition Interface Oper-
ators for Constant Coefficient Elliptic Problems. SIAM Journal on Scientific and Statistical
Computing, 12:1471–1479, 1991.

[19] T. F. Chan and T. P. Mathew. Domain Decomposition Algorithms. In Acta Numerica,
pages 61–143. Cambridge University Press, 1994.

[20] T. F. Chan and D. C. Resasco. A domain-decomposed fast Poisson solver on a rectangle.
Technical Report /DCS/RR-409, Yale University, 1985.

[21] T. F. Chan and D. C. Resasco. An analysis of domain decomposition preconditioners on
L-shaped and C-shaped regions. Technical Report /DCS/RR-534, Yale University, 1988.

[22] T. F. Chan and D. C. Resasco. A Framework for the Analysis and Construction of Do-
main Decomposition Preconditioners. In R. Glowinski, G. H. Golub, G. Meurant, and
J. Périaux, editors, Domain Decomposition Methods for Partial Differential Equations,
Philadelphia, PA, 1988. SIAM.

[23] M. Dobrowolski. Angewandte Funktionalanalysis: Funktionalanalysis, Sobolev-Räume
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