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Chapter 1

Introduction

In this thesis we consider semi-infinite programming problems of the following general form:
minimize f(x)
st. zeR", Arxr=b, AcR™", beR™, (1.1)
gi(z,t) <0 forallte T (i=1,...,1),
where f is convex, eacly; is convex inz as well as continuous ihand eachl™ is a nonempty

compact set. Thus we deal with finitely many variables and infinitely many constraints. Such
problems occur in various fields, for instance we point at the following applications:

e Least-cost strategies for air pollution abatemstudied, e.g. by Gorr et al. [13] and Kortanek,
Gorr [29];

e Robot trajectory planningtudied, e.g. by Hettich, Still [18] and Haaren-Retagne [15];

e Engineering design problems likgeismic resistant design of structuredectronic circuit
designand thedesign of SISO/MIMO control systestsidied by Polak [37];

o Digital filter designstudied, e.g. by Potchinkov [40, 41] and Kortanek, Moulin [30];

e Applications in finance studied, e.g. by Tichatschke et al. [56].

Besides many problems (including some of that given above) arise in the field of Chebyshev-
approximations or optimal control problems. While Chebyshev-approximation problems are often
linear semi-infinite programming problems (cf., e.g., Hettich, Zencke [19]), the discretized optimal

control problems are mostly of a more difficult structure due to the involved differential equations

(cf., e.g., Sachs [49]). For details and more applications we refer also to the collection papers [8]
and [44] as well as to the extensive survey by Hettich, Kortanek [17].

1.1 Review of literature

As consequence of the variety of applications particular methods for solving semi-infinite problems
were developed. A survey is given by Hettich, Kortanek [17] again. Thereby it turns out that the
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4 1 Introduction

numerical methods typically generate sequences of finite optimization problems and, following Het-
tich, Kortanek [17], we can classify them into three typeechange methogddiscretization methods
andmethods based on local reductioNevertheless, particularly caused by the infinite number of
constraints each of these methods has critical points for a practical realization. So, the exchange
methods require the solution of a global optimization problem in each step, the discretization meth-
ods typically lead to finite problems with a very large amount of constraints and the local reduction
methods are based on the necessary optimality conditions and use a further knowledge of the local
behaviour of the constraints. Each of these methods may cause a (very) high computational effort
so that no standard method for solving semi-infinite problems is currently available.

Regardless the work in the field of semi-infinite programmingitherior-point approachfor
solving finite (convex) problems was developed during the last decades. This research was first
initiated by proposing théogarithmic barrier methodoy Frisch [11] in 1955. The fundamental
results of the intensive study during the following years were summarized by the monograph of
Fiacco, McCormick [9], published in 1968. A qualitatively new stage in the development of interior
point methods has been started with the paper of Gill et al. [12], where the relationship between
Karmarkar's method and the logarithmic barrier methods for linear programs was shown. This fact
brought to the light the polynomial complexity of logarithmic barrier methods for some classes of
problems so that competitive interior-point methods for solving finite convex, especially linear and
guadratic, problems could be developed. A survey of such methods for (mostly) linear problems is
given by Andersen et al. [1].

Motivated by these powerful methods for finite problems including large-scale problems it was
natural to try to transfer ideas from interior point methods to the field of semi-infinite programming
problems. So the first algorithm in this context was an extension of an affine-scaling algorithm to
linear semi-infinite problems suggested by Ferris, Philpott [6,7]. But it is not easily possible to
extend each interior-point approach to semi-infinite problems. For instance Powell [42] showed that
the application of Karmarkar’'s algorithm to linear semi-infinite problems does not have to work.
Additionally, a survey of interior-point approaches which can naturally be extended to semi-infinite
problems is given by Todd [57] and Tuncel, Todd [58]. A further approach originates from the
method of analytic centershich was introduced by Sonnevend [53] and extensively studied by
Jarre [22] for finite convex problems. In order to tackle the semi-infinite problem of the form (1.1)
directly, Sonnevend [54, 55] and Sitier [50, 51] extended this approach to convex semi-infinite
problems by introducing an integral form of the logarithmic barrier. But, unfortunately the barrier
property may be lost due to the smoothing effect of the integral (cf., e.g, Tuncel, Todd [58] and Jarre
[23]).

Usually boundedness (or in fact compactness) of the feasible set or at least of the solution set of
the given problems is assumed in all interior point approaches for semi-infinite problems mentioned
above. Dropping this restrictive assumption Kaplan, Tichatschke [26] suggested a combination of
the logarithmic barrier method with a discretization procedure for the constraint set gordxhmeal
point methodvhich was introduced by Martinet [32, 33]. Furthermore, due to the regularization, the
approach of Kaplan, Tichatschke allows to treat ill-posed semi-infinite problems with ill-posedness
in the sense of Hadamard. Especially the case where the finite auxiliary problems are not solvable is
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of interest in that field. A further advantage of the method proposed by Kaplan, Tichatschke is given
by the fact that convergence of the iterates can be established. This is not clear in each case if one
applies the pure interior-point methods for convex problems excepting linear and quadratic ones.

All methods stated above are based on the smooth problem formulation (1.1) and make use of
differentiability properties of the involved functions. In contrast to this, Polak [37] suggested a
nondifferentiable reformulation of semi-infinite problems by means of usingieefunction in the
description of the constraints. This leads in fact to optimization problems with finitely many but
nondifferentiable constraints which cause some difficulties. Nevertheless this reformulation will be
the basis of the thesis which is outlined in the sequel.

1.2 Outline of the thesis

In Chapter 2 we start with a review of the classical logarithmic barrier method for convex problems
since we intend to apply this method to convex semi-infinite programming problems. In particular
the method is briefly stated and two basic convergence results are given.

Then several approaches transferring the logarithmic barrier method to semi-infinite program-
ming problems, given in the smooth formulation (1.1), are discussed in detail. Thereby it turns out
that certain difficulties from the theoretical and/or numerical point of view occur in each of these
approaches.

In order to avoid these difficulties we apply the logarithmic barrier method directly to the nondif-
ferentiable reformulation of the semi-infinite problems. Consequently, we consider barrier problems
with nondifferentiable objective functions so that a method for minimizing nondifferentiable convex
functions under convex constraints is required. Such methods often use subgradient information,
more exact they often assume the existence of bounded subgradients or even subdifferentials on the
feasible set. Due to the logarithmic part in the objective function of the barrier problems such a
property does not hold in our case so that we enforce it by doing the following: The logarithmic bar-
rier function is minimized on successively determined nonempty compact sets which are located in
the relative interior of the feasible set. Introducing this procedure a conceptual algorithm for solving
convex semi-infinite problems is finally presented.

In Chapter 3 the minimization of a convex nondifferentiable function on a nonempty convex
compact set is in the focus of interest. Based on the assumption that the input data like objective
function and subgradient information are exactly available, several known published methods can
be used, one of which is the proximal level bundle method of Kiwiel [28]. Problematic in our case
is that the objective function at hand contains a term whose evaluation requires the exact solution
of a global maximization problem. In order to avoid this we extend Kiwiel's bundle method to the
situation of inexact given input data. In doing so an inexact determination of the global maximum is
permitted.

In Chapter 4 our conceptual algorithm is first described in detail for one semi-infinite constraint.
This also includes the required specification of the assumptions. One essential assumption is the
compactness of the solution set of the given problem. As stated above such an assumption (or the
stronger condition that the feasible setis compact) is quite usual in the field of interior point methods.
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Thus, after showing that the extended bundle method can be in fact applied, a convergence
analysis based on the results of Fiacco, McCormick [9] is presented. Since these results only ensure
the convergence of the iterates to the solution set in general, it is not surprising that we cannot prove
convergence to one certain point of this set if the given problem is not uniquely solvable. But in
each case convergence to the solution set can be established.

Finally, the straight-forward extension of the implementable algorithm to convex problems with
finitely many semi-infinite constraints is presented. Thus, without specifying detailed assumptions
at this point, we are able to solve convex problems of the form (1.1) if they possess a honempty
compact set of optimal solutions.

In Chapter 5 we drop this restrictive condition on the solution set. Then, following the ideas
of Kaplan, Tichatschke [24—-27], our method developed in Chapter 4 is coupled with the proximal
point regularization technique. This procedure leads to auxiliary problems with strongly convex ob-
jective functions so that these problems are uniquely solvable and the method suggested in Chapter
4 is applicable to them. Based on this fact a combined algorithm is stated in detail. Therein we
additionally make use of the multi-step technique introduced by Kaplan, Tichatschke [24] which
allows to do more steps of the algorithm with large barrier parameters. Since the conditioning of the
barrier problems is getting worse when the barrier parameter tends to zero, the multi-step approach
stabilizes the combined method.

A convergence analysis based on that of Chapter 4 and that of Kaplan, Tichatschke [27] is es-
tablished. Thereby it turns out that, in contrast to the method presented in Chapter 4, the regularized
algorithm generates a sequence which converges to an optimal solution of the given problem under
certain conditions.

Furthermore, a result with respect to the rate of convergence of the values of the objective func-
tion holds under more restrictive conditions than before. But, considering only the class of problems
with quadratic growth we can even show linear convergence of the values of the objective function
as well as the iterates. This reflects a well-known result in the theory of the proximal point method
(cf., e.g., Rockafellar [47]).

In Chapter 6 we perform the numerical analysis of the discussed algorithms. In particular, we
first determine the nonempty compact sets on which the minimization of the (regularized) logarith-
mic barrier function has to be done. Furthermore, based on the previously determined compact sets,
we investigate how to compute the required constants. Then we have a closer look at the inexact
maximization procedure which is required for each inexact evaluation of the logarithmic barrier
function. The inexact maximization of a function on a nonempty compact set is usually carried out
by maximizing this function on a finite grid which discretizes the given compact set. Since these
grids can be very large, a deletion rule for excluding certain grid points from the maximization
process is developed. This deletion rule should accelerate the evaluation of the logarithmic barrier
function and consequently the whole iteration process.

The previously developed logarithmic barrier algorithms require strictly feasible starting points.
Finding such points is in general a difficult task and we discuss their determination in detail.

In Chapter 7 we apply our algorithms to model examples in order to show the typical behaviour
of the considered methods. Most of the examples are previously investigated by Voetmann [61] in
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the context of the proximal interior point method of Kaplan, Tichatschke [26].

In Chapter 8 an application arising in the field of finance (cf. Tichatschke et al. [56]) is presented.
In particular we approximate the run of the curve of the German stock index DAX over a given time
interval. The approximation is based on a differential equation under uncertainty. So, by means of
some simplifications we obtain a linear Chebyshev approximation problem.

In Chapter 9 we discuss the design of digital filters. We first give an introduction into the
mathematical model of the design of perfect reconstruction filter banks. This leads to a semi-infinite
program with a single constraint which was previously investigated by Kortanek, Moulin [30].
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Chapter 2

The logarithmic barrier approach for
convex optimization problems

In this chapter we first summarize basic results of the classical logarithmic barrier method for finite
convex optimization problems. Further several trials for an extension of this method to semi-infinite
problems are reported and a conceptual algorithm for solving convex semi-infinite problems is de-
veloped.

2.1 Finite problems

In this section the classical logarithmic barrier approach for solving finite convex programming
problems is reviewed. In order to do this we consider the problem

minimize f(z) st xzeR", Ax=0b, gjx)<0(=1,...,1) (2.1)

with A € R™*", b € R™ as well as convex functiong : R* — R andg; : R" — R for
j=1,...,1. Then the classical logarithmic barrier approach can be described as follows (see, e.g.,
Wright [62], Section 3.2):

Algorithm 2.1

e Givenyuy > 0.
e Fori=1,2,...

— Compute a minimizex’ of the barrier problem

z
inimize  fi(z) := f(z) —pi Y In(—g;(z
minimize fi(z) == f(z) — p ; (—g;(2)) (2.2)

st. zeR", Az=b, gjx)<0(=1,...,10).

— Choosgu;t1 € (0, ;).
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The algorithm is practicable if problem (2.2) is solvable in each step. This ensures the following
lemma which corresponds to Lemma 12 in Fiacco, McCormick [9] and Theorem 4 in Wright [62],
although we are able to use a weaker assumption. Fiacco, McCormick [9], Wright [62] as well as
other authors assume that the feasible region of (2.1) is bounded. Instead of this restrictive condition
we only assume that the set of optimal solutions of (2.1) is bounded (which is in fact equivalent to
the compactness since we deal with continuous functions in a finite dimensional space).

Lemma22Lletf : R" — Randg; : R® — R forj = 1,...,l be convex functions and
A € R™™ b € R™ be given. Assume that the solution set(®fl) is nonempty and compact.
Moreover, assume that the Slater Constraint Qualification is fulfilled, i.e., there éxistR™ with
Az =bandg;(z) < Oforall j =1,...,l. Then the level set

Li(t):={xeR": fi(zx) <7, Az =10, gj(z) <0(j=1,...,1)} (2.3)

is compact for all- € R and fixedi € N. Especially problen{2.2)is solvable with a compact set
of optimal solutions.

Proof: Letr € R be arbitrarily given. To show the compactness(pfr) we prove that it is
bounded and closed.
We first show that it is bounded. Suppose thiatr) were unbounded, then there exists a se-
quence{zF} with z¥ € £;(7) and||z*|| > k. || - || is an arbitrary but fixed norm oR"™. Setting
y* = 2F/||2*|| we have]|y*|| = 1 for all k € N and the sequendg/*} has at least one accumula-
tion pointy with ||y|| = 1. Without loss of generality we assume tHat'} converges tg). Let z*
be an optimal solution of (2.1). Then we want to show that each pdiat sy with s > 0 is also
an optimal solution of (2.1) which contradicts our assumption of the compactness of the solution set

sincey # 0.
In order to show the feasibility of such point$ + sy for (2.1) lets > 0 be fixed. Then, taking
the convexity ofg; into account, we have forall > sandj =1,...,1:

k
s . z s B s k
i\ L= < {1———)yj —0j < 0.
o (( HZ’“\) ) +SHZ’“H> N < \Z’“!>g”(x ) HZ’“HQJ(Z )

Thusk — oo leads tog;(z* + sy) < Oforall j =1,...,l. Additionally, it holds

k

Ay = lim Ay* = li = — =
Y= eloe ™ TR R T el |2

such that* + sy is a feasible solution of (2.1). Further;(z*) < 0 and the convexity of; allow
to conclude

0> 55 2 (121 -1) 01a") +5(4) 2 1y (1 i ) o+ 5 )

forallk > 1andj = 1,...,l. Therefore, regarding the convergenceyp((l — W) x* + ﬁ)
to g;(x* 4 y) for all j, there exists a constad}, > 0 independent of (because only finitely many
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constraints occur) and with g;(2*) > —Cp||z¥||. Using this as well as the monotonicity of the
logarithm we obtain

l

T2 filz%) = f(F) = i ) In(=g;(2")) = F(*) = pal In(Coll2*]).-

J=1

Hence, regarding the convexity @f one infers

(=) o) = (- i) o=

s T ln(COszH)
< | 1= ) f(&") + 57— + spl ——7—
( rzkH) &)+ SR E

forall k > s. Thenk — oo gives usf(z* + sy) < f(z*). Consequently™ + sy is an optimal
solution of (2.1) for eack > 0. As stated above this contradicts the assumption of the compactness
of the solution set of (2.1) such thét(7) cannot be unbounded.

To show thatZ;(7) is closed, we prove that it contains all its accumulation points.{t&} be
a convergent sequence with € £;(7) for all k andz € R™ as its limit point. First, fromAdz* = b
for all £ € N follows easily thatdz = b. Further, since the convex functioffisandgy, .. ., g; are
continuous orR” (see, e.g., Rockafellar [45], Corollary 10.1.1), we have, ... f(zF) = f(2)
andlimy ., gj(2¥) = g;(z) forall j = 1,...,1. Thus one inferg;(z) < 0, g;(z*) > C; and
f(:zk) > (1 with a constand > C; > —oo independent of andk. Therefore, taking“i(:ck) <T
for all £k € N and the monotonicity of the logarithm into account, we can conclude

l
—puiln (=gu(2H)) <7 = ) + Yo (~a5(2)
et
<7t-Ci+ ,U,Z‘(l — 1) In(—C1) =: u;Csy

forallv =1,...,1 with a constant’s; < co. Then it follows
g,,(zk) <—e <o

andg,(z) < 0forall v = 1,...,l. Additionally, f; is obviously continuous on its domain
dom (f;) = {x € R" : gj(z) < 0(j = 1,...,0)} so thatf;(z) < 7 follows from the inclu-
sion{zF} c {z € R" : g;(x) < —e~©2} C dom (f;). Hence, it yields: € £;(7) such that the
level set is closed.

Finally, we have to show that (2.2) is solvable with a compact solution set. Due to the existing
Slater pointz the level setC;(7) with 7 = f;(&) is nonempty. Moreover, each optimal solution of
(2.2) must be an element gf(f;(Z)). Consequently the optimization problem

minimize fi(z) st x € Li(fi(2)) (2.4)

has the same solution set as problem (2.2). We already know that the lexg{ £€t)) is compact
and contained in the domain ¢f. In problem (2.4) we have to minimize the continuous function



12 2 The logarithmic barrier approach for convex optimization problems

fi on a nonempty compact feasible set. Thus there exists at least one optimal solution of (2.4),
resp. (2.2). Furthermore the set of optimal solutions coincides with the levé} S&t) wheref* is
the optimal value off;. Thus, the compactness of this set follows from the statements above.

The following result shows that we can compute an optimal solution of (2.1) with Algorithm
2.1. This theorem corresponds to Theorem 25 in Fiacco, McCormick [9] and Theorem 5 in Wright
[62]. Let f* denote the optimal value of (2.1).

Theorem 2.3 Letf : R® — Randg; : R" — Rforj = 1,...,[ be convex functions. Further-
more, letA € R™*", b € R™ be given. Assume that the set of optimal solutions of (2.1) is nonempty
and compact. Moreover, assume that the Slater Constraint Qualification is fulfilled.ukebe a
positive sequence witim; ., 1; = 0 and let{z*} denote a sequence of arbitrary optimal solutions
of (2.2). Then the following is true

(a) The functiongf; are convex on their domain.
(b) The sequencér’} is bounded.
(c) Itholds
0< fla') = f* < il (2.5)

forall i € N andlim; . f(z*) = f*.
(d) Each accumulation point dfz*} is an optimal solution of2.1).

(e) If {u;} is a monotonically decreasing sequence angif} converges, then
1—00

Proof: Let us first remark that the existenceadfis ensured by Lemma 2.2 for alic N. Now the
separate propositions are successively proven.

(a) Leti € N be fixed. Sincef is convex onR"™ andy; is positive it remains to prove that the
logarithmic part

l
= In(—gj(x)) (2.6)
j=1

is convex ordom (f;) = {x € R" : gj(z) < 0(j =1,...,0)}. This will be done by showing that
each addend of this sum is convex.

The logarithm is a concave increasing function. Consequently(—t) is a convex increasing
function. Taking the convexity of; into account each summand in (2.6) is the post-composition
of a convex function with an increasing convex function. Such a composition is also convex after
Proposition 1V.2.1.8 in Hiriart-Urruty, Leméchal [20].

(b) Let o € R be given such that; < o for i € N holds. Moreover, let:’ be an optimal
solution of (2.2) withi = 0. Then we have

z z
F@') = pi > I (=gj(ah) < f@°) = pi »_ I (—g;(a))
i=1 i=1
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and z z
F@%) = po Y In(=g;(a)) < f(&') = po Y In (—g;(a"))
j=1 j=1
for all i € N. Multiplying the first inequality withu.,/u; and combining the resulting estimate with
the second inequality one obtains

l
F@®) = f@') <po ) (In(—g;(a%) —In(—gj(z"))) < % (f(z%) — f(2"))
j=1 '

foralli € N. Due toug > u; for all i € N this can only be true iff (+°) < f(2°) holds for

eachi € N. Thus, regarding alsdz’ = b for all i € N, eachz’ is an element of the level set

{zr e R": f(z) < f(a0), Az = b, gj(z) <0 (j = 1,...,1)}. Due to the compactness of the
solution set of (2.1) these sets are compact which can be proven similarly to Corollary 20 in Fiacco,
McCormick [9]. Therefore the sequen¢e’} is bounded.

(c) The left inequality in (2.5) is simply true since eachis feasible for (2.1). Thus it remains
to show f(z?) — f* < y;l. In order to prove this let an optimal solutiari of (2.1) be arbitrarily
given. The point? is a minimizer off; on My := {x e R": Az = b, g;(z) < 0(j =1,...,1)}.
Thus, regarding the convexity o¥1 := {z €¢ R" : Az =, gj(z) <0(j =1,...,1)} as well as
My = ri (M), Theorem 6.1 in Rockafellar [45] allows to conclude+ t(z* — z%) € M, for all
t € [0,1). Therefore we have

fi(z" + t(a* — ")) — fi(a")

0<
- t

for all t € (0,1). Using the existence of the directional derivatjf/éz’; z* — z%) (cf., e.g., Rock-
afellar [45], Theorem 23.1) this combined with Theorem 23.4 in Rockafellar [45] leads immediately
to
10, % P\ T/, % )

0< fi(z";x x)_ze%lf?éi)z (" —2x'),
if we take into account that’ € int (dom (f;)) which enforces the compactnessaf; (z¢). So
now we have to determine a closed form for the subdifferentig) of z*. From the proof of (a) we
know that the functions- In(—g;(x)) are convex orlom (f;) for all j = 1,...,l. Thus, regarding
Theorem 23.4 in Rockafellar [45§(— In(—g;(x"))) is nonempty for ali andj. Since—In(—t) is
an increasing convex function anglis convex for allj = 1, ...,/ we can apply Theorem XI.3.6.1
in Hiriart-Urruty, Lemagéchal [21] so that we infer in combination with Proposition X1.1.3.1 in
Hiriart-Urruty, Lemagéchal [21]

d(—In (—gj(xi))) I >8gj(xi).

—g;(ai
Consequently, using Theorem 23.8 in Rockafellar [45] and Proposition XI.1.3.1 in Hiriart-Urruty,
Lemagchal [21] and regarding that the intersection

l

ri (dom (f)) N (7 i (dom (—p; In (—g;)))

Jj=1
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is nonempty (since each is an element of it), we have

l l

Ofi(z") = 0f(2") + pi Y _ O(—In(—g;(x )))z@f(xi)+piz_;wagj(xi). (2.7)

j=1 j=1 J

Hence, there exist € df(z') andv; € dg;(z*) with

T
l
fl(zbx* — 2% = (u + 1 Z gjl(a:i)vj) (z* — ).

j=1
Then, regarding the definition of the subdifferential gng:*) < 0forj =1,...,[, we infer

l

A 1 .
0< T % .0 . i T (% _ it
<u (2" —2") 4 E_ —gj(xz)vj (x* — ")

< f(z~ +uzzgj _g] xl )

<fr-fl= )"‘/M

(d) From (b) we know tha{z’} is bounded so that it has an accumulation paintThen it
follows f(z) = f* from (2.5). Furthermoreg is obviously feasible for (2.1). Hence, is an
optimal solution of (2.1).

(e) Letz* be the limit point of{z*}. If we haveg;(z*) < 0 forall j = 1,..., then one can
conclude

!
lim m;m (—g;(z") =0

such that we infer with (c)

lim f = hm flx uzzm = f*.
Thus in the sequel we assume that there exists at least onejndei, . .., [} with g;(z*) = 0

which implies
!
Zln (—g;(z")) <0
j=1

for all i sufficiently large. Then, regarding that we have a nonincreasing seq{ignceone can



2.2 Transfer to semi-infinite problems 15

conclude
f* < f( ’i+1)

’L+1 — lig1 Zln z+1 — ;;_1
— Hit1 Z In (—g;(z"))
j=1
l .
—piy I (=gi(a") = f;
j=1

for all i sufficiently large. Especially the sequencg } decreases monotonically (at least for large
i) and is bounded below which implies the convergence of it.oSet lim; ., f;. Then we have

o > f* from above. We want to show that = f* holds. For this purpose we assume> f*
and set := (a — f*)/2 > 0. Furthermore we choose € R" with Az = b andg;(z) < 0 for
allj =1,...,1 andf( ) < a — 4. Such a point has to exist due to (c). Sifge} is a positive
sequence with limit poind it yields

N S

a < fi(a') < fi(E) len —gi(Z <a—5+§: —

for all ¢ sufficiently large, which contradicts our assumption. |

2.2 Transfer to semi-infinite problems

In the sequel we want to transfer the classical logarithmic barrier method analyzed in the previous
section to convex semi-infinite problems of the form (1.1). For the sake of simplicity of the presenta-
tion we consider (1.1) with = 1 (the index will be dropped) and without linear equality constraints,
ie.

minimize f(x) st zeR", g(x,t)<0(teT). (2.8)

But, in the further course we describe the possibility of the extension to problems of the general
form (1.1).

Without specifying any assumptions at this point it turns out that the most difficult question for
the transfer of the logarithmic barrier method to semi-infinite problems is how can we choose a
suitable barrier function. This is caused by the (possibly) infinitely many constraints.

Considering (2.1) without linear equality constraints we can embed problems of this type into
the class of problems described by (2.8) by setfihg= {1,...,l} andg(z,t) := g¢(x). Thus a
natural generalization of the barrier term is given by

— Zln(—g(m t

teT
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But obviously this leads to serious problemsIlis an uncountable set the definition of this sum
is not clear and ifl" is an infinite countable set, serious numerical problems occur when evaluating
the sum. Furthermore, if is a finite but large set the barrier parametdnas to be very small to
guarantee a certain accuracy by estimate (2.5). But in practice this avoids the machine precision so
that a direct transfer of the classical logarithmic barrier in the sense above is inadvisable and we
reject this approach.

A first alternative is the method of outer approximation described for instance by Powell [43]
in the case of linear problems. Thereby we replace step by step tielgetliscretizations which
become successively finer. Consequently we have to solve finite problems of type (2.1) without
linear equality constraints in each step. These problems can be solved theoretically with the classical
logarithmic barrier approach from above, but again several difficulties occur. At first if the relaxed
problems are solvable the discretized set and consequently the number of the considered constraints
grows such that again the barrier parameter has to be very small to guarantee a good approximate
solution. Furthermore, in general the optimal solutions of the relaxed problems are not feasible
for the original problem. Consequently if we approximately compute optimal solutions by this
method they are typically not feasible for the original problem. Another serious difficulty is that the
properties of the original problem do not have to be inherited to the relaxed problems. Especially it
is possible that the relaxed problems are not solvable (for examples see, e.g. Kaplan, Tichatschke
[24]). Due to these difficulties we look for alternatives.

Sonnevend [54] and Séttler [50, 51] suggest to use the following “Integral Barrier Function”

- /ln(—g(:v,t))dt. (2.9)

T

Of course,meas (T') > 0 is assumed in this case so that especially finite $etge excluded.
Nevertheless, let us have a closer look at some important details of the arising method.

Due to the smoothing effect of the integral, (2.9) does not have to possess the barrier property
at all. That means it is possible that (2.9) is bounded above if one approaches the boundary of the
feasible region. This fact is illustrated by the following example of Jarre [23].

Example 2.4 We consider the linearly bounded feasible set

S = {xERQ:g(x,t) =— (t—%>2$1—$2§0(t€ [0,1])}.

Now, choosingz = (1,0), we haveg(z,t) = —(t — 3)? < 0forall t € [0,1]. Thusz € S but
g(z,t) = 0fort = J impliesz ¢ int (S). Furthermore, usin@ = [0, 1], we conclude

_/ln(—g(x,t))dt:—jln((t—%)z) dt:—4/11n (t—%) dt = 21n?2 < co.
0 1/2

T
O

Finally, let us have a look at (2.9) from the numerical point of view. Here we have the task to
evaluate integrals of the form (2.9) at different poimtsif 2 is not located near the boundary of
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the feasible region this could be done with standard formulas for numerical integration. But if we
evaluate this integral for a point near the boundary of the feasible region the logarithm will have large
absolute values for certain Consequently standard formulas for numerical integration do not work
very well in this area. But, we have to be able to evaluate the barrier function (and therefore also the
integrals) near the boundary of the feasible region, because optimal solutions are typically located
on this boundary. Due to these problems&thbr [50, 51] refers to specialized integration rules like
Radau’s or Lobatto’s rule (see, e.g. Davis, Rabinowitz [4]) for evaluating the integrals. In contrast
to this Lin et al. [31] use Simpson’s method to compute similar integrals arising by transferring the
exponential barrier to semi-infinite problems. In order to achieve a suitable accuracy they have to
partition the interval0, 1] into 400000 small parts in one example case. Thus, independent of the
formulae, evaluating such integrals requires a high computational effort.

2.3 A conceptual algorithm for semi-infinite problems

Taking all considerations from the previous section into account we decided to look for a more
practical variant. In order to do that we consider the following reformulation of the semi-infinite
problem (2.8)

minimize f(x) st zeR", I?ajgcg(:c,t) <0. (2.10)
€

The theoretical properties as well as practical applications of this approach are extensively studied
by Polak [37, 38]. The main advantage of the reformulation (2.10) is that we can write it in the form
(2.1) with a single constraint by using

= t).
g1() rglea;(g(x, )

Thus we can use the results of our first section for problems of type (2.10). Consequently we deal
with the barrier function

f(z) — pln <— rl]tneajg(g(x,t)> . (2.12)

Therefore in contradiction to the approaches mentioned above we have no additional difficulties
from the theoretical point of view. But there are two remarkable numerical problems. We now deal
with a nondifferentiable barrier function due to the involwedxterm and we have to solve the
global optimization problem

maximize g(z,t) st teT (2.12)

in order to evaluate the barrier function at a given painwhich is in general a very hard task.
Thus except for special cases we cannot suppose that (2.12) is exactly solvable for amyvgiven
acceptable computational effort. Accordingly there is only an approximate maximizer of (2.12)
available such that the barrier function is only approximately evaluable. Consequently we have to
use a method for minimizing (2.11) which requires only an approximately computable objective
function. Such a method, derived from a bundle method from Kiwiel [28], is presented in the next
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chapter. This method requires the feasible sets to be compact. In contradiction to this the barrier
function (2.11) has to be minimized on open sets of the form

{zeR":g(z,t) <0(teT)}.

Nevertheless, in order to use the method proposed we will minimize the (convex) barrier function
successively on compact sets like closed boxes or balls. However, we still cannot suppose that we
are able to compute an exact minimizer of (2.11) using only approximate values of the objective
function. But as it is known from finite problems this do not have to be required (cf., e.g., den
Hertog [5]). However, the classical logarithmic barrier method from Algorithm 2.1 has to adapted in
the sense that” is from now on only an approximate minimizer of the barrier function. Altogether

we obtain the following conceptual algorithm for solving (2.10) resp. (2.8).

Algorithm 2.5

e Givenpuy > 0.
e Fori=1,2,...:

— Fork=1,2,...
+ Determine a nonempty compact $ét* C {z € R" : maxcr g(z,t) < 0}.
« Compute an approximate minimizet* of (2.11) onS%*.
« If zbF is an approximate unconstrained minimizer of a certain accuracy of (2.11)
setz’ := z* and leave the inner loop.
— Chooseui+1 € (0, ;).

In the following chapter we present a numerical method for minimizing the nondifferentiable
barrier function (2.11) or5** such that in Chapter 4 we can give all necessary details to put this
conceptual algorithm into implementable form.



Chapter 3

A bundle method usinge-subgradients

In this chapter we discuss a method for solving the nondifferentiable auxiliary problems which
appear in the conceptual algorithm at the end of the previous chapter. In general these problems
look like

minimize f(z) st z€S (3.1)

with a convex functionf and a nonempty compact convex setc R™. Moreover, let (3.1) be
solvable and the following assumptions be fulfilled.

Assumption 3.1 Lete > 0 be given. Then it is assumed that the following holds
(a) foranyx € S at least arE-approximationf(a:) of f(z) with
f@)—e < fz) < f(x) (3.2)
can be computed;
(b) for anyx € S ane-subgradieny(z) of f can be computed;

(c) f is Lipschitz continuous o8 with Lipschitz constant ; such that||g(x)|2 < Ly for all
xeS.

These assumptions on (3.1) are generalizations of those of Kiwiel [28] (there we: have).
Therefore we suggest a modification of Kiwiel's proximal level bundle method for solving problem
(3.1). In Kiwiel's Algorithm 1 we replace all computations ¢fby f and all computations of a
subgradient by aa-subgradient. Linearizing in z* € S by

fHa) = f(a®) + gp (@) (2 — a¥)

leads to the following algorithm.

N of(x) :={z € R": f(y) > f(z) + 27 (y — z) forally € R"} # 0 then (3.2) ensure8f(z) C . f(x). Thus
ane-subgradient off in « can be given by an elementéf(x). Such a situation will always be given in our applications
of the proposed bundle method.

19
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Algorithm 3.2

(S0) Givenz! € S, the final tolerance,,; > 0, a level parameted < « < 1 ande > 0. Set
xp = al, [, = 00, fib, = mingeg f1(z), J' = {1}, k :=1,1:= 0, k(0) := 1 (k(I)
denotes the iteration number of théh increase off: ).

(S1) Set i, = min{f(a"). fi; 1) A o= fi, — floy. W £, = fla¥) setar,, = ot (ol
denotes the “best” known iterate up to theh step, i.e.f;, = f(x7..))-
(S2) If A* < e, O g¢(z*) = 0 terminate; otherwise continue.
(S3) If the feasible set of
1 Ll12
minimize - Hx —
2 (3.3)

st. weS, flo)<wfl,+0—rfy G

is nonempty, go to (S5); otherwise continue.

(S4) Setff = migma)é:fj(x). Choosex® ¢ {27 : j € J*} arbitrarily. Setk(l + 1) := k,
TES jeJ

increasd by 1 and go to (S1).

(S5) Find the solutionz"*! of (3.3) and its multipliers\¥ such that/* := {j € J* : Ak > 0}
satisfied J*| < n.

(S6) Calculatef (z**+1) andg;(zF*+1) € 9. f(a**1).

(S7) Select/F ¢ J* such that/* ¢ J¥. SetJ*+! .= JF U {k + 1}, af+! = ok, g4l .= gk
Increase: by 1 and go to (S1).

Let us briefly describe this bundle method. While (S0) and (S1) are initializing steps, (S2) con-
tains the stopping criterion. Then in (S3) a feasibility check of a projection problem with constraints
given by the current bundle is done with the consequence of resetting the lower bound of the opti-
mal value of (3.1) in the case of infeasibility in (S4). In the feasible case the projection is in fact
done leading to the next iterate in (S5) and new values of the objective function as wellsas the
subgradient in (S6). Finally, in (S7) the bundle update based on the Lagrange multipliers of problem
(3.3) is made so that the next iteration step can be done.

The practicability of this method can be easily shown by investigating each step separately.
Thereby we regard in (S5) that many QP-methods automatically geméﬁatg n since there are
n variables involved. In addition let us remark that between two successive updates of the lower
bound in (S4) the step (S5) has to reached at least once because the minimeg) of fi(z)on
S is attained at a certain point which is feasible for the following projection (3.3).

Now let us continue with a convergence analysis for the stated method started with a few tech-
nical results.
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Lemma 3.3 (cf. Lemma 3.1 in [28])
For any givenk € N we have:
If k(1) < k < k(I + 1) for somel € N then

k
Bl _ ks BAT
|z | > L;
otherwisek = k(1) for somel € Ny and
Ak
k1 _ ks B
Ja*+ = aflla > 7

Proof: Taking into account that**! is feasible for (3.3) we obtain for anyc J*
P = f@?) + gp(@) (@ —a?) < kflo, + (1= w)f5, = fu, — wAF.

Regardingf(xj) > jfp, the Cauchy-Schwarz inequality and the boundedness efslubgradients
this leads to

kAR < f(:nj) — £p+/€Ak
< f(@!) = f (")
= —gf(q:j)T(xk+1 —29) (3.4)
< lgg(@)[lzf|2*+ = 272
< Lyl|lz™* = 7).

If k(1 +1) >k > k(1) it follows k € J* from step (S7) so that the choige= k in (3.4) is possible

and the proposition holds in this case. Otherwisk # k(1) we can find g € J* with 27 = z*

due to (S4) so that the proposition follows again from (3.4). O

Lemma 3.4 (cf. Lemma 3.2 in [28])
If k(14 1) > k > k(1) for somel > 0 thenz® = z%~1 and

124 — a3 > [l — 213 + [|l2*+ — 3. (3.5)

Proof: Checking (S7) the equatiarf = %! is obvious.
In order to prove the second proposition consider problem (3.3) inksted, the orthogonal
projection ofz*~! onto the set described by

zeS, fla)<wflp, +(1—r)fi,' (GG

low

Due to (S5) and (S7)* is also the projection of“~! onto the enlarged set witi*~! instead of
JF=1. The projection theorem (cf., e.g., Hiriart-Urruty, Leraahnal [20]), Theorem 111.3.1.1) in
combination withz* = z5~! gives us

low

(zF —2MT(y —2F) <0 forall yE{xGSij(l‘)SFL Pl (1—k) 5;1 (jEJffl)}
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so that particularly
({Elg o l‘k)T(:Ek_H _ {L‘k) <0

holds if we additionally regard that (S7) ensures the feasibility*df' for the projection onto the
enlarged set. Therefore we obtain
12"+ — 2|13 = |2 — 2@l + [l2* = 2|3 + 2(2F — 2)T (@ - 2F)

> f|a® — a3 + [l = 2¥[13

which completes the proof. O
At this point an upper bound for the number of steps with fikedn be presented.

Lemma 3.5 (cf. Lemma 3.3 in [28])
If k(1) <k < k(I + 1) for somel € Ng andA* > 0 then

diam (S) Ly 2
KkAF

k—k(l)+1< <
with diam (S) := max ||z — y/|2.
z,yeS

Proof: If £ = k(l) the proposition follows from Lemma 3.3.
But if £ > k(I) we havez, MO = kO = = z¥ due to Lemma 3.4. Taking this and the
successive application of (3.5) into account one obtains

(diam (5))* > [|l2* ! — g]|3

k_ k- k k
> la® — 2+ [l — 23

k

k(1 k(i j j
> [loFOT — O3+ Y [l =5

j=k(l)+1

Note thatfi, > f% forall j < k due to (S1), moreover, thgf, = ff forallk(l) < j < k due
to (S7). ThusA? > A* for all k(1) < j < k. Therefore, using Lemma 3.3, we can conclude

(diam (S))? > Ek: (“N> (LAfk>2(k:—k(l)+1)

J=k(1)

which leads to our proposition. O

Lemma 3.6 (cf. Lemma 3.4 in [28])
If A¥ > ¢,,; for somek then

b < <diam(S)Lf)2 1

Eopt k2(1 —K2)
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Proof: SetKl = {k(l),...,k(l+1) — 1} for I € Ny. The proof of Lemma 3.5 shows that
i = [ [, = [, and consequentlpd > A’ hold for all pairsi, j € K' with j < i. Now,

an estimate for combining these separate results is established. Due I,deéi)) < fip for all

j € K!. Additionally, since (3.3) is not solvable in tiké! + 1)-th iteration step of the method we
have

k(l k(1
logw—&—l) > Hflo(w) ( )fk(l-‘rl
so that altogether
AR < o (fRIHD _ pd < (fi — Y = kAT (3.6)

follows for all j € K*.
Let m € Ny be given such that € K™ holds. Furthermore sek = {1,...,k}. Then
AF > e, AT < Adforallj € K(I)N K, j < k(l+1) — 1 and (3.6) allow to conclude
Al > S gorall ie KINK,1=0,....,m
km—l

Using this and Lemma 3.5 we obtain

. 2
|Kl N K| < <dlam (S) Lf> K2(m—l)
KE€opt

fori =0,...,m. Hence,

A diam (S 2
l 2(m—1)
/{:—E | K mK\gE < - > K
1=0 1=0

and the proof is complete. |

IA

<diam(S) Lf>2 1

KE opt 1 — k2

Now we are able to prove the main result of this chapter.

Theorem 3.7 (cf. Corollary 3.6 in [28])
If eope > 0 then Algorithm 3.2 will terminate ih=1+ Eope iterations where

diam (S) Ly 2 1
ot < < ) =Y

Eopt 1-— I€2) ’
Moreover, the inequalities )
J(@fe) = min () < eop +e 3.7)
and )
f(@fec) = min f(x) < eopt + 22 (3.8)
are true.

Proof: The first proposition is a consequence of Lemma 3.6, while, using (3.2), inequality (3.8)
follows directly from (3.7). Thus it remains to prove (3.7).

If the break in (S2) is caused tyy(xk) = 0 foranyk € N, Theorem XI.1.1.5 in Hiriart-Urruty,
Lemagchal [21]) givesf () < min,cs f(x) + . Using this, the definition of,. and (3.2) we
can conclude

F(@hee) < J(a*) < f(aF) < min f(2) +e.

z€eS



24 3 A bundle method usinge-subgradients

Thus (3.7) holds in this case.
In the sequel we assume that the break is cause*oy. Eopt- Then it holds

rrok k k k k
f(xrec) = fup = flow + A" < flow +50pt-

Moreover, due to (3.2) angf(z7) € 9. f(27), we have

Py = J@)+gp@) (z —a?)

< f@)+ f(x) — f(@7) +e
= fl@)+e
forall 5 € N. Thus we inferfl’zw < mingeg f(x) + € and altogether we obtain (3.7). O

Remark 3.8 If a two-sided approximatiorf of f is given, i.e.

fx)—e < f(z) < f(z) +e

for all z € S instead of the one-sided approximation, the results stated above remain true if we add
an additionak to the right-hand sides of (3.7) and (3.8). O



Chapter 4

A logarithmic barrier method for convex
semi-infinite optimization problems

In this chapter we specify the necessary details to put Algorithm 2.5 into implementable form. For
that purpose we first consider problems of type (2.10)

minimize f(z) st zeR", I?ajgcg(:c,t) <0,
S

whereby we will denote the feasible set M and the optimal value by*. Later on, in Section
4.3, the developed algorithm as well as the convergence analysis are transferred to problems of the
general form (1.1).

4.1 Animplementable algorithm

Assumption 4.1 Assume the following:
(1) f:R™ — R is a convex function;
(2) T C RPis a compact set;
(3) g(-,t) is convex oR" for anyt € T,
(4) g(x,-)is continuous o for anyx € R"™;
(5) the setM := {z € M : maxser g(z,t) < 0} is nonempty;
(6) the set of optimal solutions
Mopt == {z € M: f(z) = f*}
of (2.10)is nonempty and compact;

(7) in caseh > 0 the setTl}, is a finiteh-grid on T (i.e. for eacht € T there exists;, € T}, with
|t — tn]l2 < h) and in caseh = 0 the setdl}, T coincides;

25
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(8) for each compact set C R" there exists a constaut}, with

g9(@,t1) — g(x, t2)] < Ls|lt1 — t2|2 (4.1)
forall z € Sandallty,ts € T}

(9) for each compact st C M a constantC's < oo with
el
maxyer g(z,t)

can be computed such théit ¢ S ¢ M, impliesCs < Cg;

(s > max

ma (4.2)

(10) for eachz € R™ and eacht € T an element of the subdifferential fin z and an element of
the subdifferential of(-, t) in = can be computed.

Regarding (1) and (3) it is ensured that we deal with convex problems of type (2.10). Furthermore,
due to (2) and (4) the maximization problems (2.12) are solvable and consequently the barrier func-
tions (2.11) are evaluable at least from the theoretical point of view. Moreover, (5) and (6) are
motivated by the theoretical results of the Chapter 2. Then Lemma 2.2 ensures the existence of a
minimizer of the barrier function (2.11) for any given> 0. Furthermore, the classical logarithmic
barrier method with exact minimizers' leads to an optimal solution of the semi-infinite problem
(2.10) in the sense of Theorem 2.3. But as stated in Section 2.3 we cannot suppose that the max-
imization problems (2.12) are exactly solvable. Therefore we admitted the next assumptions. (7)
allows to compute inexact maximizer while their accuracy can be controlled with (8). The necessity
of assumption (9) will become clear in the further course, while by (10) we want to point out that
indeed the computation of the subgradients are necessary in the implementation of the method. We
now state our method in detail.

Algorithm 4.2

e Giveny, > 0andz® € M.
e Fori:=1,2,...:

— Setz®? := 271, select; ; > 0 and definef; : My — R by

teT

e i= ) = et (~ (o))
- Fork:=1,2,...:
(a) Selectr; ;, > 0 such that
SR = {r e R": ||z — 2% oo < mip} C Mo.

(b) Selecth;; > 0 and definef; , : My — R by

fir(x) = f(x) = piIn <— max g(ﬂfi))

tGThi b

whereT),, , is a set fulfilling Assumption 4.1(7).
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(c) Selects; . > 0 and compute an approximate solutieft of
minimize fi(z) st z € S%* (4.3)

such that

F iky ' Eik
Ji(@™?) = min fi(z) < =

and f; . (z"*) < fir(z*1) are true.
(d) * If fie(@*1) = fir(@™) < ep/2 and f(a™F1) < f(20) + 2u; then set
gl = athl St = SOR =y 6 = €4k hy i= i, StOp inner loop;
s 0f fi (%1 — fir(a®*) < g;x/2 and f(zPF1) > f(20) + 24, then set
€ik+1 1= €ik/2, continue inner loop;

+ Bik (4.4)

s 0f fi (%1 — fin(2™F) > ¢,1/2 Sete; 11 := i1, cONtinue inner loop.

— SelectD < ;11 < -

The structure of Algorithm 4.2 resembles that of the conceptual Algorithm 2.5, but let us give ex-
planations for each particular step. In (a) we specify the compaétdets a linearly bounded set.

This decision is caused by the fact that linearly bounded sets are normally the simplest bounded
structures on that minimization can be done. Consequently minimizing the barrier function on the
chosen compact set is normally easier than minimizing it on more complex structures like quadrat-
ically bounded sets such as balls or ellipsoids. Additionally, having the bundle method from the
previous chapter in mind, we point out that the decision to choose linearly bounded sets is important
because in consequence of this the auxiliary problems of the bundle method are linear and quadratic
problems. Thus each of them should be efficiently solvable by standard approaches. Furthermore,
since M is an open set, step (a) is realizable.

In (b) we define the approximation of the barrier function while in (c) the approximate min-
imization of the barrier function is done with a certain solution accuracy. The condition (4.4) is
stimulated by inequality (3.7) in Theorem 3.7, when solving (4.3) with the bundle method proposed
in the previous chapter. Finally, in (d) the stopping criterion of the inner loop is given. It is di-
vided into three parts but mainly only two inequalities occur. The first one checks whether there is
achieved a sufficient improvement of the approximate solution on the current box with the selected
accuracy. The second part of the criterion is motivated by (2.5) so that it checks whether the accu-
racy parameter and the barrier parameter are in an appropriate order. If this is not the case then the
accuracy parameter is readjusted.

The critical point for a realization of the presented method is the question whether there exist
approximate solutions of (4.3) which fulfill the demanded criterions. As stated above (4.4) is initi-
ated by the bundle method presented in the previous chapter. Therefore we want to show that we
can use this bundle method for solving (4.3). We first notice that theSééts— M, are convex
and compact by construction (for any givey, > 0). Additionally, they are also nonempty, be-
causer*~! € M, holds by construction and due to the open structurdfthere exists a radius

Alternatively we can usé (z*~!) < minj—o,. .. i—1 f(z?) +2u; instead off (z*F~1) < f(z°) + 2u; but the latter
one suffices to guarantee the boundedness of the computed seduéhce
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rir > 0such thats** ¢ M, is fulfilled. Moreover, we have already remarked that the functifpns

are continuous odom (f;) = My = int (dom (f;)) (this can be proven for instance by using the
convexity property off; ondom (f;) in combination with Theorem 2.35 in Rockafellar, Wets [48]).
Consequently in (4.3) we have to minimize a continuous function on a compact set, which is obvi-
ously solvable. The further requirements contained in Assumption 3.1 are ensured by the following
lemma. To formulate this we define for alle R™ and allk > 0 the set of active constraints

T(z) = {s eT: g(x,s) = Itnea%g(x,t)}

and its approximation

Th(z) = {s €Ty : g(z,5) = maxg(a:,t)} .

teTy

Note thatT’(x) # () due to Assumption 4.1(2), (4) arfd (x) # () due to Assumption 4.1(7).

Lemma 4.3 Let Assumption 4.1 be fulfilled. L&tk be fixed and3; ;, > uiLtSi,kCSi,khi,k be valid.
Then Assumption 3.1 is fulfilled for probldh3) with fzk as an approximation fof; ande = 3; .

Proof: In order to show Assumption 3.1(a),(b) lete S** be arbitrarily given. Furthermore, let
t* € T(x) be fixed. Then, due to Assumption 4.1(7) there exigis@ Tj, , With [[t* —t5[|2 < hj 4.
Thus it holds

0< t) — t
_rtneaTxg(w, ) ténTifkg(w, )

< g(z,t*) — g(z, t})
< g(@,t") — g(z,tp)
< Ligin|[t* = tal2

< Liinhig.

(4.5)

The concavity of the logarithm givés(b) —In(a) < (b— a)/a for all positivea, b € R. Therefore,
regarding (4.5), we can conclude

fi(x) = fir(z) = pi (111 <—th§§1 9(z, t)) —In <— gleagg(fv,t)))

; a a
I max g(z, tén x g(zx,

' —maxser g(z,t) \ teT ik

(4.6)

t
< ,U,Z‘CSi,kLSi,khi,k < 51’,]@‘

Moreover, takingmax;cr g(x,t) > maxser, X g(z,t) and the monotonicity of the logarithm into
account, one infers

fir(@) < fi(x)

such that Assumption 3.1(a) is proven.
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To show Assumption 3.1(b) lef € T}, , (=) be arbitrarily given. Then, due to Assumption
4.1(10), we can computg(x) € 0 f(x) andv(x) € dg(x,t;). Thus the inequality

max g(z,1) > g(2,1,) > g(2,1;) + v(@)" (2 - )

is true for allz € R"™. If z € M one can conclude

In (— rtnea%(g(z, t)> <In(-g(z,t) —v(2)'(z — 7). (4.7)

Regarding (4.6), (4.7), the subgradient property. @fs well as the convexity of In we obtain for
all z € Mg that

fi(z) = fi(z) > fi(2) = firp(@) = Bin
> f(z) — piln (— man@vﬂ) — f(@) + piIn (-tngaX 9(90,75)> — Bik

teT Ry g

— i In (—g(x, th) — v(a:)T(z - :1:)) + piIn (—g(z,t3)) — Bik

)
> u(e)! (2 = 2) = s e(@) (2 - o) = B

T
— | w(z) — Hq ol G
- < () maxeer;,, , g(x,t) ( )> ( ) — Bik

Using f; = co onR™ \ M this inequality is also true for all ¢ M, so that

u(x) - maXtET:; @) € Dadil@) (4.8)
follows.

Finally, we show that Assumption 3.1(c) is fulfilled. The Lipschitz continuityfpfon the
compact seb** ¢ My = int (dom (f;)) follows from Rockafellar [45], Theorem 24.7. Moreover,
due to the same theorem the subdifferentials of the convex funcfiarl maxier, g(-,t) are
bounded above o8%* w.rt. the Euclidean norm by positive constanjsandc,. Furthermore,
the definition ofv(z) combined with Lemma VI.4.4.1 in Hiriart-Urruty, Len&hal [20] gives the
inclusionv(x) € a(maxteThi’k g(z,t)) for all z € S**. Thus, regarding Assumption 4.1(9), the
Euclidean norm of the; ,.-subgradients described in (4.8) can be estimated as follows

1

1
u(e) v(@) maxier, g(a,1)

maxicr,, , 9(z,0)

< Jlu(z)ly +
2

[o(2)l,

<cp+ piCgincg < 00

for all z € S“*. Therefore, using the approximate subgradients defined in (4.8) the third part of
Assumption 3.1 is also true. O

Summing up we have shown that we can use the bundle method stated in the previous chapter to

determine approximate solutions of the problems (4.3) with > uiLgikaSi,k hi i Furthermore,
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if we use this bundle method we do not have to sebegtexplicitly, because; . = ,UziLtsi,kCSi,k hi

can be used aftet; ;. is known.

Remark 4.4 If it is possible to determinenax;c7 g(x,t) exactly for each feasible solutionwe

can seth; , = 0 for all pairsi, k. Consequently3; ;, = 0 is allowed (independent of the values
Ltsm, Cgix) such thatf;k andf,, are identical. This leads to some simplifications in the algorithm
above as well as in the following convergence analysis. Furthermore, in this case we can drop the
Assumptions 4.1(7) and (8). O

At the end of this section we can summarize that the presented Algorithm 4.2 is practicable. A
convergence analysis follows in the next section.

4.2 Convergence analysis

In this section we present conditions on the parameters of Algorithm 4.2 which guarantee that we
obtain an optimal solution of (2.10). We start with a characterization of the first part of the stopping
criterion in part (d) of the inner loop of Algorithm 4.2.

Lemma 4.5 Let Assumption 4.1 be fulfilled. Moreover, idie fixed and: be an arbitrary optimal
solution of
minimize f;(z) s.t. x € M. (4.9)

f denotes the minimal value of problém9). Letz**~1 x%* be generated by Algorithm 4.2 and
Bik > pill;  Cginhi . be valid. If the inequality

fir(@h) = fir(a™) < 62’“ (4.10)
is true, then
-1 e —
0 < fi(x"") — fF < max {1, r—} (eik + 2Bik) (4.11)
ik
holds.

Proof: We first remark that Lemma 2.2 ensures the existendeasf optimal solution of (4.9).
The inequalityd < f;(x**~1) — f* obviously holds, since’*~! is feasible for (4.9) by con-
struction as well as

g iky ‘ €i,k
Fir(@") — min fi(z) < =

by construction. Together with (4.10) this yields

+ Bik

fir(a™F1) — Iélénk fi(z) < ek + Bik
x s

Using (4.6) we get

filaF ) — min fi(@) < i + 2Bik- (4.12)
rxesSh

At this point we distinguish two cases with regard to the locatiof. Ve first consider the case
& € 8%*. Thenz is also an optimal solution of (4.9) so that

Fil@ Y = fF = fi@™ ) = fi(@) < eip + 2Bk
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follows from (4.12). Therefore the proposition (4.11) is true in this case.
Now, let us consider the case¢ S** and define the line throughi-*~! andz by

S

ik—1
27T = 2 oo )-

v(s) i= Pl 4 (z—=x
Due toz ¢ S“* we have||z®F~1 — 2| o > 7,1 > 0. Thereforey(r; ;) lies between:**~! and# on
that line. Sincef; is convex onM, with minimizerz, one getsf;(y(r; 1)) < fi(z%%~1). Moreover,
the equation|z®*~1 — y(r; x)|loc = 7ix IS true so that(r; ) € S“*. Thus, using (4.12), we obtain

Fi@™ ) = fi(v(rig)) < ik + 2B g (4.13)

Besides we have

Ty,
; k) <
RO < i =5

N Tik i k—1
. 1 _ _ ) . 1,
fild) + ( ||tk — 53”00> il )

A

sincef; is convex onMg and0 < r;, /||#%*~! — &l < 1. This leads to

in . xi,kfl —% o i
it — i) < Bt () — i)
Tik
such that with (4.13) the estimate
) xi,k—l — % o
flatty - g < | o (0, + 26,1

Tik
follows. Thus the proposition is also true in the second dageS** and the proof is complete 0

Now a sufficient termination condition for the inner loop of Algorithm 4.2 can be presented.

Proposition 4.6 Let Assumption 4.1 be fulfilled. Moreover, tebe fixed,q; € (0,1), §; > 0 be
given andr; ,, > r; > 0 be valid for allk. If

Ll Cginhig < Big < qFo (4.14)
is true for all k, then the inner loop of Algorithm 4.2 terminates after a finite number of steps.
Proof: The inner loop terminates after a finite number of steps if the inequalities (4.10) and

f(xi’k_l) < f(2%) 4+ 2 (4.15)

are both true.
In the main part of the proof we assume that both inequalities never hold together. In order to
bring this to a contradiction we first exclude that (4.10) never holds.

a) Suppose that the inequality (4.10) never holds.
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Then the algorithm generates an infinite seque[méé}k ande; , = ¢;1 for all k € N. Addi-
tionally, the estimatg; . (z*) < f; x(2**~1) holds by construction so that we infer with (4.6)
0 < fir(z™* 1) = fia™®) + B
< fir(@™ Y — fippr (2F) + g5

= | fix(@™ ) Zq — | firta(z Zq

for all £ € N and hence

il 1) Z ql9; (4.16)
k
is a monotonically nonincreasing sequence. Furthermore, this sequence is bounded below because

we have

1
L —q

Figpla™ 1) Zq35>f ) = Bk — > qloi > f -

J=0

0i

for all £ with f given as in Lemma 4.5. Thus the sequence given in (4.16) converges. Combining
this andql’.“él- — 0 for kK — oo we can find an indek, such that

~ - ~ . ~ - ~ . 5
Fieo @07y — fi o1 (2770) < fig (@7F07Y) — fi o1 (290) + gfo8; < ==

and

k 511
szo<q105 < — 4

Then another use of (4.6) leads to

Fiko (@ F071) — f o (2F0) < f o (R0 1) — Fi(@"70) + B 4
< fiko (@07 — fi g1 (2550) + By g,
51 1 €1 51_,1
0Ty T

This contradicts our assumption and we have an irkdexch that (4.10) is fulfilled.

b) Suppose that the inequalities (4.10) and (4.15) never hold together.
As in a) one can show that (4.16) defines a monotonically nonincreasing sequence. Therefore,
taking (4.6), (4.14) ang; <€ (0, 1) into account, we infer

k—1
k= 1 Z%é <fz zk—1)+ﬁi7k_quj§i
=0
< fin(a™®) +qfs; — o;
< fi(z"?)

forall ¥ € N. Thus
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for all £ € N implies

F e N; = {x e My : fi(z) < fi(xi’o) + 7 _1 q-(si}
forall k € Ny. The setV; is compact since it is a nonempty level setfpfcf. Lemma 2.2). Hence,
the sequencf||z** — || }» is bounded above by a constd@nt> r;, wheres is an arbitrary optimal
solution of (4.9).

From the first part of the proof we know that there exists an indlesuch that (4.10) holds
for k = k; for the first time. Using the same arguments for all indices greaterihave find an
indexky > k1 such that (4.10) holds fot = k, again. Repeating this procedure we get a strictly
monotonically increasing sequengk;} such that (4.10) holds for af = k;. Then, we deduce
from Lemma 4.5

0< fila™™=) — fr

xi,k}j—l — 3
< max {1, | oo } (&ik; + 205 k;)
Tik;
i,kjfl __ 4 .
< max {1, u} (Ez‘,kj + 2qu51<>
Ti,k;

for j € N. Itis simple to verify thatk; > j ande;;, = (1/2)7~1e; ; are true. Thus, regarding
|z#*i =1 — 3| < C as well ag;x > r; > 0 for all k, we have

' Jj—1 )
0< fi(z™hil)y — fr < ¢ ((%) €0+ 25@“1?)

T

forall j € N. Hence,
tim f; (a457) = 7.

J—00
Since{x%*i}, belongs to the compact sAt there exists an accumulation poirit € N;. From the
last equation we obtain that solves (4.9). Due to the continuity gfthere exists an indexe N
with f(z*%1) < f(2*) + ;. Combiningf* < f(2°) and (2.5) leads to
FE T = @) < f@") + = f7 < 20

This contradicts our assumption, both inequalities (4.10) and (4.15) are trkle:fd% and the proof
is complete. |

Remark 4.7 The assumptiom; ;, > r, > 0 is not used to prove that all iterates belong to the
nonempty compact sé¥;. Therefore there exists afi > 0 such that the inclusion

R" : mi - <rf
{ze ;1615\]111||z xHoo_rl}CMo

is valid sinceM is an open set. Thus, theoreticatly, > r, > 0 is no restriction for the algorithm.
It still restricts the practical computation of the radij, of course. O
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Remark 4.8 In (4.14) the right-hand sidﬁ“éi can be replaced by an arbitrary summable sequence
d; 1, to remain true Proposition 4.6. O

With Proposition 4.6 we are able to control Algorithm 4.2 in order to make sure that each inner
loop terminates and a well-defined sequeficg is generated. Before we proceed with the main
convergence result let us recall the notatior 0&s final accuracy value at theh iteration and of
r; as radius of the finally considered compact st this iteration.

Theorem 4.9 Let Assumption 4.1 be fulfilled. Moreover, fet }, {0;} be positive sequences. Ad-
ditionally, letR > 0, {¢;} C (0,1) be given and assume th@.14)holds for alli € N and all k
appearing in the outer step Furthermore, assume that

() lim g =0;
11— 00
(i) r; <mip < Rforalli,k;

(i) lim g;/r; = 0;

71— 00

Then Algorithm 4.2 generates a sequeficg, which has at least one accumulation point and each
accumulation point is an optimal solution ¢2.10)

Proof: It is easy to see that the assumptions of Proposition 4.6 are satisfied foi eadN.
Therefore each inner loop terminates after a finite number of steps and the algorithm generates a
sequencéz’} which belongs to the level s¢t € R" : f(z) < f(2°) +2u1} by construction. Due
to Assumption 4.1(6) and Corollary 20 in Fiacco, McCormick [9] this level set is compact. Thus the
sequencgx’} has an accumulation point and we have to show that each accumulation ppif} of
is an optimal solution of (2.10).

Let z* be such an accumulation point pf‘} and let{z% } be a convergent subsequence of}
with lim; .o 2% = x*. By z; we denote an optimal solution of problem (4.9) witk- 7;. Using
Lemma 4.5, (4.14) as well ag, < (0, 1) we obtain

0< fi;(z) = f}
mij — ¥
< max {17 w} (gij + 2/82])

Tij

Tl — ot
< max {1, w} (€4; + 20;;).

(4.17)

Tij

Furthermore, applying Theorem 2.3, we know that the sequé:ﬁ}:]ahas an accumulation point.
Without loss of generality we assume that } is already convergent to the limit point*. Applying
Theorem 2.3 again we conclude thét is an optimal solution of (2.10) and

lim f = f* (4.18)

J—00
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IS true.
Obviously itis||lz" — 27|l < [|2% —2**|| oo + ]2} — 2™ . Since alls* belong to the compact
level set{z € R"™ : f(z) < f(z°) + 2u1} the first term of the right-hand side is bounded above.
The second term is also bounded above due to the convergence of the sequences involved. For this
reason there exists a constanhtvith ||z — 2% |leo < C forall j. Together with (4.17) we have

0< fiy(a™) = fi; < max{l’ rO} (G +205).

Y5
In view of Assumptions (ii), (i) and (iv) we obtain
0< lim fi (z"7) = f;, <0
j—o0
and from (4.18) it follows
lim f; (z") = f*. (4.19)
j—oo

In the sequel we show th&t:/ } is not only a minimizing sequence but converges to a solution
of problem (2.10).

The continuity off giveslim; ... f(z%) = f(z*). This combined with (4.19) allows to con-
clude that the limit point ofi;, In(— max,cr g(+', t)) exists and

lim 41, In <— maxg(:vij,t)> = lim f(2%) — lim fi; (%) = f(a*) — f*. (4.20)
j—00 teT Jj—00 Jj—00
Now we distinguish the two casesax;cr g(z*,t) < 0 andmaxycr g(z*,t) = 0. One of them
must be valid sinceé\ is the closure of\, andz* is an accumulation point of the sequer{aé}
with ¢ € M, holds for alli.

In the first case we assumeax;cr g(z*,t) < 0. Then the sequendgn(— maxer g(x%, 1))}
is bounded and

Bim p;; In (— fgleagg(m”,t)) =0.

Together with (4.20) we obtaifi(x*) = f*. Asz* is feasible for (2.10) it is an optimal solution as
well.

Now, in the second case, we assumex;cr g(z*,t) = 0. Therefore there exists a constapt
so thatmax;er g(z%) > —1 is true for allj > jo. Thus the inequalitiek(— max;e7 g(z%)) < 0
andy;; In(— max,er g(+%)) < 0 hold for all j > jo. Hence,

Jimpri; In (— rgleagg(wzj,t)) <0

is true and (4.20) yieldg(z*) — f* < 0, proving thatz* solves (2.10) in this case, too. a

Remark 4.10 The Assumptions (iii), (iv) in Theorem 4.9 are a posteriori criteria since we do not
know ¢; andr; before the inner loop in stepterminates. Relation (iii) can be satisfied, e.qg., if we
change it into

(ii)" lim e;1/r; = 0.
71— 00
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But, of course this requires an a priori computationof

If this is not possible we have to run stepf the algorithm with an arbitrary; o. When the
inner loop terminates, we check whethefr; andd; /r; satisfy decrease conditions, e.g. geometric
decrease. If at least one of them does not do so, we repeat the step with smaller valygaridfor
0; until the decrease conditions are satisfied. This procedure is finite forfifede control the
computation of the radii because the values;gfcan be bounded below (see Remark 4.7). O

4.3 Extension to general convex problems

Up to now we only considered convex semi-infinite problems with a single constraint. As already
mentioned before in this section our algorithm as well as the analysis will be transferred to general
convex problems of the form (1.1)

minimize f(z)
st. zeR", Arxr=b, AcR™", beR™,
gi(z,t) <0 forallte T (i=1,...,10).

We again denote the set of feasible solutions by
M= {x e R": Az =b, m%xgi(m,t) <0(i= 1,...,1)}.
teT™

The required assumptions are:
Assumption 4.11
(1) f:R™ — R is a convex function;
(2) T* c RPi is a compact set for eache {1,...,1};
() gi(-,t) is convex orR" for anyt € T% and eachi € {1,...,1};
(4) gi(x,-) is continuous ofT; for anyz € R™ and each € {1,...,1};
(5) thesetM :={z € R" : Az =b, maxscrigi(z,t) <0(i=1,...,1)}is nonempty;
(6) the set of optimal solutions1,,; of (1.1)is nonempty and compact,

(7) incaseh > 0,i € {1,...,1} the setT} is a finiteh-grid on 7" (i.e. for eacht € T" there
existst, € T} with|[t—t,]|2 < h)andincasér = 0,4 € {1,...,1} the setd}, T" coincides;

(8) for eachi € {1,...,1} and each compact sét C R" there exists a constat; ¢ with
’97«(1"7t1) - gl(l‘,tg)’ < L;SHZLJ — t2||2

forall x € S and allty,t, € T,
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(9) for eachi € {1,...,1} and each compact set

teT™

S c M= {x € R" : maxg;(z,t) <0(i = 1,...,l)}
a constanC; ¢ < oo with

1
Ci,s > max | —————
zeS |max g;(x,t)
teT!

can be computed such thét ¢ S ¢ M, impliesC; s» < C; s;

(10) for eachi € {1,...,1}, eachr € R™ and eacht € T% an element o f () and an element of
the subdifferential of; (-, ¢) in x can be computed.

These are direct generalizations of those in Assumption 4.1. The modified algorithm now reads:
Algorithm 4.12

e Givenyu, > 0andz® € M,.
e Fori:=1,2,...:

- Setz®0 := 271, select; ; > 0 and definef; : My — R by

fi(z) u121n< max gy (& t)>

- Fork:=1,2,...:

(a) Selectr; ;, > 0 such that

k= {z e R" : ||z — $i’k*1HOO <rikt C M.

(b) Selecth?, > 0forv =1,...,land definef; ;, : Mo — R by

Furla) = f mzm—mwmﬂ)

whereT,‘lf_yk fulfilling Assumption 4.11(7).

(c) Selects; ;. > 0 and computer* as approximate solution of
minimize fi(z) st ze S, Az =10

such that

for(@®™) = min_ fi(x) < “2E 416,

x€SHE

andf; . (z"*) < fir(z"*1) are true.




38 4 A logarithmic barrier method for convex semi-infinite optimization problems

(@) x If fir(a™ ) = fin(@™*) < gx/2 and f(a™F1) < f(2°) + 2p; then set

U= bkl Gl = SOR =g, e = g, BY = hi (v=1,...,1), stop
inner loop;

s if fip(@P 1) — fir(@®*) < eix/2 and f(zPF1) > f(20) + 24, then set
€ik+1 = €i /2, continue inner loop;

X

s if fip(z9F 1) = fip(z9F) > ;1./2 Sete; k41 = &, cONtinue inner loop.

- Select) < pir1 < p;.

The practicability of this method can be shown analogously to the corresponding part in Section
4.1. There are only some changes based on the different structuvg of.e. we cannot assume
anymore thai\ is open. But it is still a relatively open set and that suffices to prove the most used
results while in that cases where an open set is required we can régiabg M. Further changes

are caused by the fact that we now deal with more than one inequality constraint, for instance we
assume nows; j, > ML;Si,kC,,,Si,khzk foreachv = 1,...,1. Then a convergence analysis can be
done analogously to Section 4.2 and we obtain the following main result (cf. Theorem 4.9).

Theorem 4.13 Let Assumption 4.11 be fulfilled. Moreover, fet}, {J;} be positive sequences.
Additionally, letR > 0, {¢;} C (0,1) be given and assume that

1Ly, i Cyginhiy, < Big < a;bi
holds for alli € N, all k¥ appearing in the outer stepandv = 1,...,[. Furthermore, assume that
(1) lm p; =0;
11— 00
(i)) 7, <rx < Rforalli,k;
(iii) lim g;/r; = 0;
71— 00
11— 00

Then Algorithm 4.12 generates a sequefieé}, which has at least one accumulation point and
each accumulation point is an optimal solution(Gf1).



Chapter 5

Regularization of the logarithmic
barrier approach

In the previous chapter we mainly considered semi-infinite problems of type (2.10)
minimize f(x) st ze M= {z e R": I{l&g{g(z,t} < O}
€

under Assumption 4.1. Particularly we assumed in Assumption 4.1(6) that the solution set of the
given problem is compact. But this assumption excludes a lot of problems from being solved with
the presented method. Thus the goal of this chapter is to discuss a numerical method even for
such problems. This can be combined with an improvement of the convergence quality (e.g. rate of
convergence) for problems fulfilling Assumption 4.1.

Let us remark that we consider again problems of type (2.10) for describing and analyzing the
method in detail. But, of course, as stated in the final section, it is possible to transfer the approach
to general problems of type (1.1).

In the first section the method is introduced, while the following sections contain several con-
vergence results including results on the rate of convergence for the values of the objective function
as well as the computed iterates.

5.1 Aregularized logarithmic barrier method for convex semi-infinite
problems

As stated above we want to drop the assumption of the compactness of the solution set of (2.10). But
this compactness (in particular the boundedness) is directly used in the proofs of the basic results
Lemma 2.2 and Theorem 2.3 as well as Theorem 4.9. Obviously this assumption is essential for the
results of the previous chapter and it turns out that in fact we cannot use the presented Algorithm 4.2
for solving problems of the form (2.10) without the assumption of the compactness. For instance,
considering the trivial problem

minimize f(z)=0 st zeR, zt<0(t€][0,1])

39
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we will obtain a fast decreasing sequerfaé} by Algorithm 4.2 where convergence of any sub-
sequence is not detectable. Therefore we have to look for another method to treat semi-infinite
problems under the following weaker assumptions.

Assumption 5.1 The Assumptions 4.1(1)-(5) and (7)-(10) are assumed to be Viokeover, it is
assumed that

(6) the set of optimal solution$A,,; of (2.10)is nonempty.

One approach to attack problems with an unbounded set of optimal solutions is to use regularization
techniques on the original problem. That means the given problem is transformed into a sequence
of problems with a bounded set of optimal solutions (or ideally with unique optimal solutions).
Several approaches exist for this transformation and are discussed in detail in a couple of papers
and monographs mainly in the context of ill-posed problems (see, e.g. Bakushinsky, Goncharsky
[3] and Kaplan, Tichatschke [24]). Some promising approaches like the Tichonov-regularization
and the Proximal Point method are based on the well-known fact that a strongly convex, continuous
function has a unique minimizer on a closed set. Thus the idea is to transform the convex objective
function f into a strongly convex function.

As it is already stated, one approach in this context is the Tichonov-regularization, where we
consider auxiliary problems of the form

minimize f(:E)Jr%Hng st reM

with positive parametes.. To obtain an optimal solution of the original problem we have to solve

a sequence of such auxiliary problems whereby the paramédtas to converge to zero (see, e.g.
Theorem 6.4 in Poljak [39]). Thus the regularization effect by means of the added quadratic term is
getting smaller and smaller. In fact it vanishes from the numerical point of viewfalls below a
certain value depending on the machine precision.

Therefore, in the sequel we consider the proximal point technique which was introduced by
Martinet [32, 33] and extensively studied by Rockafellar [46,47]. In this approach the attempt is
made to keep the positive properties (like unique solvability) and remove the described negative
properties of the Tichonov-regularization. Both is achieved by applying a different quadratic term
in the auxiliary problems such that we now consider the problems

minimize  f(z) + ng —a|} st zeM (5.1)

with prox-parametes and so-called proximal point. In order to obtain an optimal solution of the
original problem one has to solve a sequence of auxiliary problems of this kind with the proximal
point in each step given by the solution of the previous step. Furthermore, it turns out that the
regularization parameteris not required to converge to zero (see, e.g., Rockafellar [46, 47]).

In the case of convex semi-infinite problems Kaplan, Tichatschke [26] suggest to combine the
proximal point technique with the method of outer approximation which is a discretization strategy

1In the sequel we assume the assumptions to be enumerated as in Assumption 4.1.



5.1 A regularized logarithmic barrier method for convex semi-infinite problems 41

of the compact sef’. But we want to avoid such an outer approximation and the key for it is the
observation that each auxiliary problem of type (5.1) is also a convex semi-infinite problem. These
auxiliary problems fulfill slightly differing assumptions as the given problem, namely they fulfill
Assumption 4.1 if Assumption 5.1 is valid for the original problem. The Assumptions 4.1(1)-(5)
and (7)-(10) can be simply derived from the corresponding parts in Assumption 5.1 keeping in mind
that an element of the subdifferential of the objective function in (5.1) in a fixedR" is given by

the vectors(x — a) added to an arbitrary element of the subdifferentiaf af . Moreover, (6) is
enforced by the additional quadratic term in the objective function of (5.1).

Consequently we could solve each auxiliary problem of type (5.1) with Algorithm 4.2 if As-
sumption 5.1 holds for the given semi-infinite problem. But as Algorithm 4.2 typically terminates
with only an approximate solution anyway there is little sense in solving each auxiliary problem of
the sequence with an accuracy as high as possible. In particular we suggest to realize only the inner
loop of Algorithm 4.2 for each problem of type (5.1) to compute an approximate solution of it with
fixed barrier parameter, which is then used as the new proximal point.

A practical realization of such a step requires the predetermination of the barrier and the prox
parameter. From the classical logarithmic barrier approach it is known that the barrier parameter has
to converge to zero, e.g. by reducing it from step to step. But, due to the fact that the conditioning of
the barrier problems is getting worse with decreasing the barrier parameter, it makes sense to keep
this parameter fixed for a couple of steps. In order to permit a dynamical control the choice of the
barrier parameter is made dependent on the progress of the iterates in the last step. To avoid side
effects which can influence this choice we keep the prox-parametarstant as long as the barrier
parameter is not changed. Merely the proximal point is updated more frequently. Altogether we
obtain a so-called multi-step-regularization approach (cf., e.g., Kaplan, Tichatschke [24-27]).
Algorithm 5.2

e Givenuy > 0,2° € Mg, 01 > 0ands; with 0 < s < 51 < 5.
e Fori:=1,2,...:
— Setz?0 := pi— 1,
—Forj:=1,2,...:
x Setz™V .= z"~1 select; ; > 0 and define;; ; : My — R by

» . . _ Siy o q—12
F; i(z) :== f(x) ,ulln< 1;1&3{9(&:,75))—# 2Hx T II5- (5.2)

x Fork:=1,2,...:
(a) Selectr; j > 0 such that

ik — {reR": |z — «’L’i’j’kfluoo < Tijk} C Mo.

(b) Selecth; ;> 0 and define; ;5 : Mo — R by

S; .
Fijr(x) = f(z) —p;In | — max g(z,t) | + - atd 1”%
teThi,j,k 2
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whereTy, .. fulfills Assumption 5.1(7).
(c) Selects; ;, > 0 and compute an approximate solutighi* of

minimize  F;j(z) st x € Sk (5.3)
such that
3 N ' o
Fyjp(a™®) — min Fj(z) < =L + 85 (5.4)
re Sk 2

andF; j x(2"7F) < F 5 (x%9+-1) are true.
d) If

Fz’,j,k(l’i’j’kil) - Fzgk(x”k) < EZTJ (5.5)

then setw®’ = p®k=1 Gii .= Wik p, .= r; ;) and stop the loop it
otherwise continue with the loop
% If ||z — 2897 Y|y < oy then setw? := 289 r; == 1, ;, j(i) := j and stop the loop
in 7, otherwise continue with the loop jn

— Select) < piyr1 < pi, 0 < s < 8541 < sando;4q > 0.

Except for the stopping criteriofi(z**~1) < f(x°) + 2u; the inner loops irk of Algorithms
4.2 and 5.2 compare to each other. The additional rule is needed in Algorithm 4.2 as it does not
generate a bounded sequence per se. We will prove later that this behaviour is avoided automatically
in Algorithm 5.2 above. To ensure the practicability we have to transfer Lemma 4.3 explicitly to the
new situation.

Lemma 5.3 Let Assumption 5.1 be fulfilled. L&tj, £ be fixed ang3; ; , > uiLgi,j,kCSi,j,khi,j,k be
valid. Then Assumption 3.1 is fulfilled for problé&m3) with Fm,k as an approximation of; ; and

€ = Bijk-

Proof: Due to the fact that Assumption 4.1(6) is not used in the proof of Lemma 4.3 we can apply
these results. For that purpose we repl&t€ by S%/F andh; i, by h; ; x. Then we obtain

0< T{le%z(g(%t) - terirfl;iik g(x,t) < Lgisuhijn (5.6)
0< Fj(x) — By jr(x) < wiCgiinLiisnhijie < Bijn (5.7)
and
Hi
u(z) — v(z) € 8ﬁkafl(‘r)

msien, 9@ )

analogously to (4.5), (4.6) and (4.8) if we user) € 0f(x), v(z) € 0 (maxteTh”k g(:c,t)) and
the notationf; as in Section 4.1. Consequently Assumption 3.1(a) is already shown.
In order to show part (b) we regard

Si i
Fij(x) = filz) + 5 llz —a® 3
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so that for allz € M,

Si Goi—
050 Fig(@) D 05, Ji(@) +0 (S llx = 2*97|3) (5.8)

follows from Theorem XI.3.1.1 in Hiriart-Urruty, Lemachal[21]. Furthermore,

s iji—112) _ ij—1
0 (Sllz ="t 3) = {si(e — 2"} (5.9)
since this quadratic function is differentiablesin Therefore we obtain

Hi
maxier, 9(,1)

u(zx) — v(z) 4 si(x — 1) € 0, ;. Fij(x) (5.10)

for all z € M,, particularly for allz € S*7** ¢ M, and Assumption 3.1(b) is fulfilled too.

Finally, Assumption 3.1(c) remains to show. The Lipschitz continuity’of on S5k can be
established in the same manner as it is done in the proof of Lemma 4.3. From there we also know
that the first term of the subgradient (5.10), coming frims bounded above of~/**. Additionally
the second term;(z — x*7~!) is simply bounded above by the definition $f/*. Therefore all
subgradients given by (5.10) are bounded abov&'dirf which completes the proof. a

In consequence of this lemma we know that the bundle method presented in Chapter 3 can also
be used to solve the auxiliary problems arising in Algorithm 5.2. As in the previous chapter we
can uses; ;= piCgisk L ;. hijx With predefined; ;. as error level when applying the bundle
method.

Remark 5.4 If max;er g(x,t) can be determined exactly for eachve can seh; ;;, = 0. Then, as

stated in Remark 4.4 for the unregularized algorithm, some simplifications in Algorithm 5.2 as well
as in the analysis of it are possible. Particularly, the Assumptions 5.1(7) and (8) are not necessary in
that case. O

5.2 Convergence analysis

In this section we want to show that Algorithm 5.2 leads to an optimal solution of problem (2.10)
under appropriate assumptions. We start with a closer look at the IdapAnalogous to the result
for the finiteness of the loop ik of Algorithm 4.2 the following result holds.

Lemma 5.5 Let Assumption 5.1 be fulfilled. Furthermore, et be fixedg; ; > 0 andg; ; € (0,1)
be given. If

1L 1 Ciiwhign < Bijn < a0 (5.11)

is true for all k, then the loop irk of Algorithm 5.2 terminates after a finite number of steps.

Proof: The proof is analogous to part a) of the proof of Proposition 4.6. a

At this point we want to analyze the consequences of the stopping criterion of the lbop in
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Lemma 5.6 Let Assumption 5.1 be fulfilled. Furthermore, fej be fixed and: be the unique
optimal solution of
minimize F;;(z) s.t. x € M. (5.12)

Moreover, letz/k~1 3:3% pe generated by Algorithm 5.2 ang ;, > il ;1 Csigichiji, be
valid. If inequality(5.5)is true, then

i,7,k—1

.. 27 — 7
Oéfﬁﬂﬁ*kl%—ﬂdﬁ)ﬁnmx{L”m ”””}<QJ+2@¢Q (5.13)
Ti7j7k
and
‘ B NN [ ’ k=1 _ w” < max \/ 2(eiy + 25@;‘,@, 2(ei,j + 2Bijk) (5.14)
> 2 Si SiTijk
hold.

Proof: First, let us remark that Lemma 2.2 ensures the solvability of (5.12). This theorem can be
applied because (5.12) is a barrier problem for a minimization problem of type (5.1). Additionally
(5.12) is uniquely solvable sindg ; is strongly convex ooM,.

Inequality (5.13) can be shown analogously as (4.11) in the proof of Lemma 4.5 so only the
second inequality needs to be proven.

Due to the strong convexity of; ; with moduluss;/2 (in the sense of Definition A1.20 in
Kaplan, Tichatschke [24]) we have

Si
Fi(Or+ (1= Ny) SAF (@) + (1= MF5(y) = 5A0 = Ve =yl
forall A € [0, 1] and allz, y € M,. Taking into account that

Fij(2) = zé&lﬁo Fij(2) < Fij(Az + (1 - N\)y)

forall A € [0,1] and allz, y € M, it follows that
Fij(%) < AFij(@) + (1= N Fy(2"* 1) - %A(l = NE =2

and
(1= NFij(@) < (1= N F (2™ - %A(l =N — a3
are true for all\ € [0, 1]. Hence,

Fj(#) < Fij(a™*71) = %

Al — ™43
forall A € [0, 1) so that

Si R iike— iik— R

S8 =2 < By (@) — (@) (5.15)
follows with A 1. Using (5.13) one obtains

%Hi" — xi’j’k_lﬂg < max {1,

—Z
I } (€ij + 2Bijk)-

711'7j7k
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At this point we distinguish two cases. We first suppose that ||z59%~1 — (/oo /7 ;5. Then it
holds

Si i a C g

Sl = @S < (ei + 26150)

and
y y e, 4+ 28; .
‘ k=1 _ ;i" < |z - xw,k—lH2 < \/ (5m + ﬁumk)_ (5.16)
o0 S
In the second case the inequalityc [|z#9+~1 — #||o /7. x is Supposed to be true. Then
% - gtk < | loe (i 2100 < | b2 (i 4+ 2650
ri?j7k TZ7J7k

is valid. We conclude that

R S R - 2 €; _|_2 L.
||$ _ mw?k 1”00 < ||x _ :v”’k 1”2 < ( %] ﬁm,k)' (5_17)

Combining (5.16) and (5.17) completes the proof. O

In the following we denote the Euclidean ball with radius> 0 aroundz. € R" by K, (z.),
i.e.
K- (xz.):={x e R": ||lx — z.|]2 < 7}.
Theorem 5.7 Let Assumption 5.1 be fulfilled. Furthermore,tet 1 andz. € R"™ be chosen such
that Mo N K js(zc) # 0. Letx* € Mopt VK- jg(2e), & € MoNK7(zc) andz' € MoNK, 4(zc)
be fixed and; ; > 0, ¢;; € (0,1), ; > 0, € T(Z), v € dg(Z,t) as well as

c>|lz—2%||2 and c3:=f(Z)—f_+co+
with

f— S:?eli\r/lif(.x)’ Co =

, c:=In (— max g(Z,¢) + 2||’L7H2>

be given. Moreover, assume th&t11)is true for alli € N, 1 < j < j(i) and all & occurring
in the outer loop(i, ) and that the controlling parameters of Algorithm 5.2 satisfy the following
conditions:

2(e4,5 +20;5) 2(eij + 20i)

max , < a4, (5.18)
Si 73,554
0<piv1 <pi<1 forall ieN, pu <e @, (5.19)
> [( g (2] In g4 —l—ln7)> + 2ep; + oy <% (5.20)
i=1 v

and )

2 2
o; > . (2| Inpi| + In7) + 47 |+ . (5.21)

%

Then it holds
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(1) the loop ink is finite for each(i, j);
(2) the loop inj is finite for eachi, i.e. j(i) < oo;
) ||lz% — z¢|l2 < 7 for all pairs (4, 7) with 0 < j < 5(i);

(4) the sequencézr™} = {10, ... M) 220 223() 230 1 converges to an element
.’L'** G Mopt m KT(J)C).

Proof: Our first proposition follows immediately from Lemma 5.5. The other propositions will be
proven similarly to the proof of Theorem 1 in Kaplan, Tichatschke [27].

We first definez’ = ;7 + (1 — p;)x*. Dueto0 < p; < 1,2 € Mg = int (M), z* € M
and the fact thatf is convex one can infer’ € M, with Theorem 6.1 in Rockafellar [45]. Then it
follows

—p; In <— maxg(zi,t)> = —p;In <— max g(u; T + (1 — uﬁx*,t))
teT teT

< —q: 1 7 _ s *
< mln< pimax g(z,t) — (1 uz)rtngg(w,t)>

~ 5.22)
< — s — (s (
Wi In < 7% I&&xg(m,lﬁ))

= — <lnui +In <— max g(Z, t)))
teT

< g (| Inpag| + co)

because themax —function is convex and the logarithm increases monotonically. Furthermore, the
estimates

128 = *[|2 = pl|Z — 2*||2 < eps (5.23)
and
F2) < paf () + (1= pa) f(2*) < f(a*) + pa(f(E) — f-) (5.24)
are obviously true. Additionally, this yields
man(l‘at) > g(l'vf) > g(i'vf) + @T(x - j) = max.g(i‘7t) + IN}T(:‘C - j)

teT teT

for all z € R"™ sincetv € dg(z,t), t € T(x). Consequently, using the Cauchy-Schwarz inequality
andz € K, (z.), we obtain
0 < —maxg(z,t) < _T%{g(‘%a t) +27|9]l2
€

teT

forall z € K, (z.) N Mj. Regarding the monotonicity of the logarithm and 1, this leads to

i M - : T\Ze > - z, v
mf{ ulln< I}lé)%(g(l‘,t)) xGK(w)ﬂMo} ,uln< I?e%gcg(a: t)—l—2HvH27>

> —pi(er +In7). (5.25)
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As in the previous chapter we introduce

i) = 1)~ st (= mac(o.))

for all x € M. The inequalities (5.22), (5.24), (5.25) and the optimality65how that

fi(z") < f(@) — piln (— max g(, t)> + pi(er +In7) + pi(f (@) — f=) + pi ([ In | + <o)
= fi(@) + piles + In7 + | In pag)) (5.26)
forall z € My N K;(x.). Combining this with (5.19) leads to
fil#') < fi@) + pa (2] 10 | + In7) (5.27)

forallz € My N K- (x.).
Using the results above we can prove the second and third proposition of our theorem by induc-
tion. For that we assume:

(i) o, jo are kept fixed withd < jo < j(ip),
(i) j(i) < ooif i < io,
(iii) if we denote

. o s, .
5 i arg min Fiy(x) and 79 = arg min { £(o) + 2| - 2993,
T arg min 55 (2) T arg min | f(z) + 5 llo — 2™
the relations
=ij . S5 i,j—1 2}
T Y =ar min )+ —|lr—=z , 5.28
g, min  {f@)+ 3 1 (5.28)

|2 — x|y < 7, |75 — 2|2 < 7 and|[T — z.||2 < 7 hold for all pairs of indices
(i,4) € Qo == {(#', ) : {i <iin,0 < j' < j(i")} v{i' =i0,0 <5 < jo}}-

Let us remark that®/ € M, as minimizing point off; ; exists due to Lemma 2.2. The existence of
z7/ € M as minimizer off (z) + %z — 27713 is ensured by the strong convexity and continuity
of this function on the nonempty and closed A4t

At this point we have to check (i)-(iii) for the starting valugs= 1, jo = 0, but this is easy: By
constructionj(1) > 0 so thatip = 1, jo = 0 fulfill the first assumption. The other two assumptions
are obvious by construction.

Using the stopping criterion of the loop inof Algorithm 5.2, (5.11), (5.14), (5.18) as well as
the definition ofz’” we deduce

|77 — 27|, < ou. (5.29)

Furthermore, taking the definitions of’ andz"”’, (2.5) into account we can conclude

) - 1 () -

=J _  4j—1 2 )
5 |7 x < Hi- (5.30)

2
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Additionally one can establish

Sillmij  =i|? iy L Simig 1|2 —ij Sill=ig  ij—1|?
2 TV -z 2§f(x ])+§ij_$] HQ—f<x )—5 R H2 (5.31)
in the same manner as (5.15). Combining (5.30) and (5.31) we see
Si||zig =i ‘2 <
T 7, < His
so that
i =ij 244
‘E” z ‘ < 2 (5.32)
2 S;
Using this and (5.29) we obtain
=ij i 2
‘x’—x’]LSai—i- . (5.33)
Si

Due toz?/ € Mo N K, (x.) estimate (5.27) implies
fi(2") < £i(@7) + pi (2 In ;| + In7) (5.34)
forall (7, 7) € Qp. In the sequel we distinguish the following cases
a)i<in0<j<j(i)—1ori=r1y0<j< jo,
b) i <ig,j=j(i) —1and
C) i=1p,j = jo+ 1.
ad a) In this case we obtain

o+t 2 e — < 2 (5 i)
2;} (5.35)
. “(2|In ;| +1In7)

%

< [l ot

by using Proposition 8.3 in Kaplan, Tichatschke [24] and (5.34). Taking (5.21), (5.29) and the
stopping criterion of the loop ini of Algorithm 5.2 into account we conclude

[79+ — 2

o = |la =2, — ||z = 2], > 0 — i > 0. (5.36)
and we have
[Z91 = 2|3 — [ — 2|3 < &2 445 < 0 (5.37)

with &; = 0; — a; and~y; = 2 (2| In ;| + In7) /55

Moreover, regardingz® — .|| < 7 and||z* — .|| < 7, the estimate

- . o N 1,

[ = 2, = o™ = 2|, < (22" = Z]) 7 (< 4 y) < o (<) (B.38)

holds. Together with (5.21) and (5.29) we obtain

o4 =2, = =, < g (2470 s <0 (5:39)
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ad b) Now we assume< ig, j = j(i) — 1.
In this case we can combine (5.27), (5.29) and the implications of Proposition 8.3 in Kaplan,
Tichatschke [24] to see that

xlvj(l) — Z’L xZ,](l)_l — ZZ xlvj(l)_l — ZZ

<]
2

< <3 (i) - fi(xi:ﬂi))))% +a

203 (0) _ xm(i)—lH _ ‘
2

_‘ + oy
2 2

(5.40)

(A
=i+

holds. Summing the inequalities (5.39) w.lit= 0,1,...,5(i) — 2 for a fixedi < ip and adding
(5.40) leads to

20 2
< < 5 (2|lnui|—i—ln7‘)> +

’ g0 _ , Hxi’o — zZH2 <Vt s, (5.41)
and together with (5.23) one has
‘ L3 G) - Hxi,o _ 5’3*H2 < i+ o + 26 (5.42)

ad c) Now we assume= iy, j = jo + 1.
In this case we consider

. S .9
glodotl .— gp min { z) + 2 ||x — growo } .
gze/\mm(xc) f(@) 2 H H2

The non-expansivity of the prox-mapping (see, e.g. Rockafellar [45]) yields

ok |, < a0 5. .43

Using this, (5.23) and (5.39) far= iy, 0 < j < jo we obtain

ot — 7|, < [laiodn — 50|, + ey,
S
< [l — o], + 20m,.
If ip > 1 this leads to

l,’b()—l,j(’b()—l) — ¥

:%imjo-i-l _ x*HQ < ‘

9 + 2C14i .-

Now the successive application of (5.42) gives

ip—1
oAt — ||, < |2t — 2*||, + Y (VA + an + 2emk) + 2. (5.44)
k=1

As we assumed thditr* — .2 < 7/8 and||z!? — z.||2 < 7/4 we can now assemble (5.19), (5.20)
and (5.44) to get

glodotl _ SL‘cH2 < T — Qg — Vip < T — Qi — 2%. (5.45)
io
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We see thafj#/0-90+! — z.||, < 7 and due to the strong convexity $f+ =2 ||- — a0-d0 H; we can
deduce thag?o7o+! must actually be identical @°°**. But then the estimates (5.32) and (5.33)
imply ||zio-dot! — z.||, < T as well.

So far we have proven that Assumption (iii) is also trueifes ig, j = jo + 1. It still remains
to prove thatj(ip) < oo holds. In order to do so we sum up the inequalities (5.39) to an arbitrary

7 < j(io) — 1 and obtain

|

Dividing by ;- (—&% + ;,) + a;, We get an upper bound fgr

2% J_ 4o

. . - 1 B
2<meu—%w2+3<zﬂ—ﬁf+%ﬁ+am>.

- , , 1 -1
j<—Hﬂw—sz<Lﬂ—%;wm)+%Q < oc. (5.46)

Thus we have shown the induction statements to holdfoiy + 1 if jo < j(ip). But the case
Jjo = j(io) is equivalent to the casg, + 1,0) and so the induction holds for all possible indices
(i0, jo). As a consequence of this the second and third proposition of the theorem are proven.

It remains to prove the convergence of the generated seqdeh¢eto an optimal solution of
the given semi-infinite problem (2.10). Let an arbitrary elementf,: N K (x.) be given byz.
Defining

Z =1+ (1)@ - 1),

we can show|z! — Z||o < 27u; similar to (5.23) and analogous results to (5.41) and (5.42) With
instead of:* andz instead ofz*. Additionally, we obtain from (5.20)

(o) o0 oo
Z\/%<OO, Z“i<oo and Zai<oo
i=1 i=1 i—1

and the convergence df|+"* —Z||, } is ensured by Lemma 2.2.2 in Poljak [39]. Moreover, the
results (5.26), (5.35), (5.39) and (5.40) remain true if wedisastead of:’ and

|27 = 2|, < [l = =]

R e P RVATR R Bt P
foralli and0 < j < j(). Sincez’, 7 € K, (x.) this leads to
10~ ], = v/ 0~ < a9 7], < [} 7] +

hence the sequendg|="/ — Z||,} converges. Furthermore, regarding (5.29) &#ng_.. a; = 0
which is enforced by (5.20), it is clear thfliz*/ — ||, } converges to the same limit point.
Due toz,7 € K,(z.) and0 < u; < 1 foralli € N we havez® € K, (z.) forall i € N as well
as
277 =2y <[] = |, + 2w

for all pairs(z, 7) with 1 < j < j(¢) and

177 =2, = |} - 7|, — 27
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for all pairs(z, j) with 0 < j < j(i). Consequently we obtain
70 =2y < o7 =+ 872+ 407
for all pairs(z, j) with 1 < j < j(i) and
9 2, = (|77 — 3|, — 877 — 4r0?
for all pairs(z, j) with 0 < j < j(7). Additionally the modified estimates (5.26)
fi(Z) < fix) + piles +n7 + [ In )
forall z € My N K,(x.) and (5.35)
29 — 2~ la = 1} < (5 - £@9)
allow to infer
a1 — || - ||z —z); > S% (fi(@) = filz) = pi(es + In7 + | In ) — 1677 — 872

forall 2 € Mo N K, (z.). Then, regarding®’ € My N K,(x.) and estimate (5.25), we obtain

- . 9 .
[ER— EHZ — ||z - TH; > - (f@") = fi(x) — pi(er +1nT))
- 2£i (c3+InT + |Inp|) — 872 (2 4 i)

(2

(5.47)

Furthermore, we haviém;_,, fi(z) = f(z) for each fixedr € M sopu; — 0 ands; < s give

limsup< max _(f(Z") — f(a:))> <0 (5.48)

i—oo  \1<j<i(9)
for each fixedr € Mo N K (z.).

Now letz** be an accumulation point of the sequegé’ }. Such an accumulation point exists
sincex™ € K, (x.) N M for all pairs(i, j). Regarding (5.29) antim; ... o; = 0 it follows that
x** is also an accumulation point of the sequefizé’}. Further we obtain** € M N K, (x.)
since the setd\f and K (z.) are closed. For each € M, N K, (z.) estimate (5.48) establishes
f(x) as an upper bound fgf(xz**) so that we deduce

f(@™) <inf{f(x):x € MoN K(z.)}. (5.49)

ObviouslyMNK;(x.) is the closure oM oNK(z.). Furtherz* € M,,,NK-(z.) such that (5.49)
implies f(z**) < f(z*) resp.z*™ € Moy N K (x.). Consequently, regarding thaf«"/ — ||, }
converges for each € M, N K- (z.), the sequencg||«™/ — 2**||, } converges to zero. Thus the
sequencgz’} converges ta** € M,y. O

Remark 5.8 If max.cr g(+,t) is bounded below on the feasible get of (2.10), i.e. there exists a
(nonpositive) constant > —oo with d < maxer g(x, t) for all z € M, one obtains

inf {_m In <_ 1;neaTxg(x,t)> ze KT(xc)} > i In(—d).
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Consequently, using this estimate instead of (5.25) in the proof above, the conditions on the pa-
rameter of Algorithm 5.2 in Theorem 5.7 can be simplified in the considered case. In partigular,
can be changed intgg = f(Z) — f— + ¢o — In(—d) and in (5.20) and (5.21) the term 7 can be
dropped. Thus the left-hand side of the modified estimate (5.20) does not depend on (the unknown)
7. Therefore one could choose the valuerddfter determining{x; }, {«;} and{s;}. Finally, the

value ofg; can be fixed such that (5.21) holds. Altogether the described procedure is much easier
than the simultaneous determination of all parameters in the general case. O

Remark 5.9 The conditions on the parameters of the method require their separate adjustment to
each example, which can be a very fragile task when applying the multi-step procedure. In case
of using the one-step procedure parameters according to Theorem 5.7 are easily chosen. The one-
step procedure is given jf(i) = 1 for eachi, which can be ensured by choosiagsufficiently

large?. Then (5.21) is automatically satisfied for each fixed 1. Furthermore, (5.20) holds for all
sufficiently large values of if one guarantees that

- Mi’lnﬂi’% d =
—_— < an P < .
S (M) <o and Yoo <o

=1 i=1
Consequently, (5.20) and (5.21) can be replaced by the given conditions aboveraméed not to
be specified explicitly. |

At the end of this section an estimate of the difference between the current value of the objective
function f at the end of an outer step and its minimal vafifeon M is established (cf. Kaplan,
Tichatschke [25, 27]).

Lemma 5.10 Let the assumptions of Theorem 5.7 be satisfied anddetLipschitz continuous with
modulusL on K, (z.).2 Then

: 201
fla)—f < <§T$’z‘+L> ( a +Oéi> +§Tsmi

Si

holds for all € N.

Proof: Leti be fixed and) < j < j(i) be arbitrarily given. In the proof of Theorem 5.7 we defined
—i,j+1 : 5 ig2
T :argéreuf\r/ll{f(x)—i—ng—x]HQ}.

The affiliationz/*' € K, (z.) has already been shown. Sinté¢ N K, (z.) is obviously convex
(1= N7 + \z* € M K, (z.) forall A € [0, 1]. The optimality ofz"”/ ™" gives

2 oy 5
> —z,J+1) Si
’2 > f (:c + 2

L ) L . L 2
f ((1 _ )\)EZJ+1+ )\x*) + % (1— /\)T%JJrl_’_ g™ — gl f%J+1 _ ghd

2
so that, regarding the convexity ¢f for all A € (0, 1]

0 < Af(x*) = Af (%MH) + Siy2 ‘ g* — It ’ + \s; (ac* — Ei’jJrl)T <fi’j+l — m”)
— 2 9 7
20f course, when one actually applies the multi-step approach large valaesnfst be avoided.

Due to f(x) € R for eachz € K. (z.), the existence of a Lipschitz constahtis ensured by Theorem 24.7 in

Rockafellar [45].
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and

=, +].
R H )

. L T , .. o .
f (E%]‘H) N f(l'*) < s <$* . EZJ—H) (fld-i-l _ xz,j) + %)\’ ,

Taking the limitA \, 0 combined with the Cauchy-Schwarz inequality leads to
f (%%J+1) _ f(l'*) < s (.7}* . %17]+1) (iLJJrl N xZ,j)
ot %JHH (‘ =ij+l _ xi,jJrlH I Hl,i,jJrl _ x””z) '
2 2
and using the Lipschitz continuity ¢f
f (xi,j+1) _ f(x*) < ’

+8i

<s;

Sl i
7" —x”“” (L—i—si
2

Tt — %ﬁj-‘rl“ )
2

o %m‘HHQ a9+t — xi,jH2‘

In view of (5.33) and

=1, i+1
T T/ — <

2

Te

ool

we obtain

f (299 — f(a*) < (%Tsi +L) (ai N 2Mz‘> n gTSi |2+t — 2|

Sq

2 )

so that our proposition follows w.r.fla"/() — i1 < o, 2 = 279 and f(z*) = f*. O

5.3 Rate of convergence

In the following sections we analyze further convergence properties of Algorithm 5.2 with regard to
the rate of convergence based on results of Kaplan, Tichatschke [25, 27]. For that we consider the
sequencdz’’} instead of the generated sequeficé’ } whereby
T arg min Fi ()

is defined as in the proof of Theorem 5.7. That means we consider the sequence of the exact minima
of F; ; instead of the computed approximate minima. However, based on results for the exact minima
we can also achieve results for the approximate minima, e.g. by using (5.29).

First the value ofnax;c7 g(Z*7, t) is estimated.

Lemma 5.11 Let the assumptions of Theorem 5.7 be satisfied. Then forieawhl < j < j(i)

max g(T"') > cap

holds with

et = — (w1 + f(@) — f* +2r%) " max (2, )

andz defined in Theorem 5.7.
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Proof: Leti,j be arbitrarily given withl < j < j(i). Due toz"J € M, = dom (F; ;) Theorem
23.1 in Rockafellar [45] ensures the existence of the directional denvﬁl{y&w d) for each

d € R™. SinceF; ; attains its minimal value at’/ and sinceM, is open we obtaitf ; (T Lsd) >0
for eachd € R" so thatd € 9F; j (z"7) follows from Theorem 23.2 in Rockafellar [45]. From (5.8)
and (5.9) we already know

OF,; (77) 2 0fi (77) + {s: (@7 —2™"1) }.
Regarding ‘
79 € Mg = ri(dom (f;)) Nri (dom (% H - az”_lﬂz)> ,
Theorem 23.8 in Rockafellar [45] even leads to

OF,; (29) = 0f; (+9) + {o (@ — "71)}.

Moreover, analogous to (2.7) in the proof of Theorem 2.3, one obtains

. . 1
05,0) =05 () w0 (notat0 )
hence
=i,] =i,] i i =i =
OFi; () = of () + _maXteTgw,t)a(I?ea%g( 71 ) o @ =)

i.e. there existy € 0f(z"/) anduy € 9 (maxer g(T™, 1)) with

Hi —i,j ij—1\ _
Up — Ug + 8; (T — x> =0
maXteTg( b t) I l( )

and multiplication with(z*/ — 7) leads to

uF (@ — &) + H WL @ — &) + si(@ — 2 (@~ F) = 0.
—maxyer g(T g 1)

Using the properties of the subgradienisandu, as well as the convexity of the norm we obtain

0> f (@) - f(2)+ A (maxg( 43 t) — max g(Z, t))

—maxger g(TH, 1) \ teT teT
5 (I =297 = e 7).
so that we can conclude

b (@0 < maa@n)) < 1) - 54 - o

—maxser g(TH, t) \ teT teT

and usingz, 77 ~! € K. (z.) gives

Hi — <maxg( “J t) — max g(Z, t)) < f(&) — f* +27%.

— maxyer g(TW,t) \ teT teT
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Now, regardingu; < u1, itis obvious that
— ,J > 7)Y — f* 2% -1
max g(, 1) 2 pi(—max (&, 1)) (1 + f(Z) = f* +27°5)
holds and the proof is complete. O

We introduce

Aij = @) - f*

for eachi and1 < j < j(i). In order to complete this definition fgr= 0 we setz't1.0 := 7

for eachi € N as well ast™? := 210 = 2% such thath; , can be defined a4, ; above.

Theorem 5.12 Let the assumptions of Theorem 5.7 be satisfied. Moreover, assume that

1
< —— 0
H1 C4 I%léijz(g(x )

with ¢4 given as in Lemma 5.11. Additionally let a positive constantith

a < (16572 71, asupA;; <
( ) i 7] 32

be given and assume that for eacthe constant

]. Si 2 7
Ki:=pi(c1 +1In7) — p;ln §C4Mz‘ + 5 + 75T

satisfies

with j1(k) := max{1, 2j(k) — 2}.
Then the estimate

i1 -1
Aij <A <1 +a <2j + Z]l(k)> A1,0)
k=1
is true foralli € N,0 < j < (i) if Ay > 00rz® & Mop.

Proof: Let us denote

_izj py— 3 _Z'vj_
Y i

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

for eachi and0 < j < ji(i). Thenz®I(\) := A\z%7 + (1 — \)Z" € Mo N K. (x.) forall A € [0,1)
andi, 0 < j < j(i) and we haver; ;1 (T 1) < F, ;11(2%9(N)) for A € [0,1) if j < j(i). Taking
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the convexity off as well as (5.29) into account we obtain

Fyjr (@7 = f (@) — ln< maxg( A t)) n [z — ”Hg

teT
< Fi i (Z7 (V)

N N (5.56)
<A () (1= 205 (3) = o (— s g0, 0) )
+ 2 (A =)l + i),
Using the convexity ofnax;cr g(-, t) and the inclusiort’”’ € M, we have
< _ 7.7
rgleagg( T(A), 1) < (1= max g(z", 1)
such that we infer
— _ ~i7j < — _ _ 7]
i ln( max g(2 (A),t)> < — ln< (1—A)maxg(z t))
for all pairs(z, 7) with 1 < j < j(z) andX € [0,1). Applying Lemma 5.11 the inequality
—mm< mac g (2" (»ﬁ)s—mm«l—m@m> (5.57)
€

follows for all pairs(i, 7) with 1 < j < j(i). Butz*® = z~10-1) and;(i — 1) > 0 for eachi > 1
so that

“etn (00,0 ) < gt (1= M)

follows w.r.t. Lemma 5.11. The monotonic decrease pf} leads to (5.57) again and regarding
(5.50) the estimate now holds for alhnd0 < 5 < j(7).

From the proof of Theorem 5.7 we know thet +! € Mo N K, () for all i and0 < j < j(i).
Using (5.25) we therefore conclude

—p; In <— rglezixgcg(fi’jﬂ, t)) > —pi(er +In7).

This together with (5.56), (5.57) and’ € M, yields
A1 = f@7T) — f*
SAfEY) = £+ 1= N @EY) - )
oy ,J 4,J+1
1 In ( max g(2 ) + piIn ( max g(z' t))
n % (AIZ7 — )5 +az)2 _ meﬂ ”H;

<(1=NA;; —piln((1— )\)04;“) + pi(er +1n7)

+ SN =T + siid|[E — 7 + Saf — 5 [0 -2t

(5.58)
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foralli and0 < j < j(4). In view of 29 % € K, (z.) as well as the definition of; we obtain
0< A <A =MAg; + ki + %A2\|5i’j S A % [ fU”H;, (5.59)
if A € [0,7/8] which can be enforced by setting

A
A= Ai,j = min { ] 7} . (560)

silz7 — 23’8
If \;; equals7/8 (5.60) immediately leads to
. .9 8
sl -7 < 2

and we can infer

Ajji1 < 810 + Ki + 1_6Aij — % wa-l-l _ wai
9 s , (5.61)
B i (1l
= 10 +ri — 5 [[FT =
from (5.59). Due to the second part of (5.51) this allows to conclude
St ||—i. 5 P2
Ajjr1 <Ay — 204A127j + K — 51 [zt — 15 - (5.62)
Butif \; ; < 7/8 holds we obtain
2. 5 9
.. .. %] . v _‘7 +1 ‘7‘

and now using the first part of (5.51) inequality (5.62) follows again. Consequently this estimate
holds for all pairgi, j) with 0 < j < j(¢) making it the basis of the following induction proof.

Let us assume that (5.55) holds for a fixed pajrwith j < j(¢). This is obvious for the starting
indicesi = 1, j = 0. Now we distinguish three cases.

a) We first consided < j < j(i) — 1. Thenj + 1 < j(z) and due to (5.21) as well as (5.36) we
have

% [zt = a5 > %(Ui —a;)? (5.64)

such that (5.54) leads to

ki — % |79+ — 2|2 < 0.
Consequently, with (5.62) we obtain
Ai,j—}—l S Ai,j — QOJAZZ’]-.

Moreover, the trivial inequality

(5.65)
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is true for ally > 0 with fixed¥ > 0 and the functioqf—% increases monotonically for nonnegative
y such that one can sét= 2,y = A; ;. Then, with regard to the induction assumption, we infer

A
Lot 1+ 205Ai,j

A1
» A
(10 (2 + 2 0) o) (1 + 20t
A1
1+« <2j +2+Zk 1j (k)) A

and the induction statement holds.
b) In casej = 0, j(i) = 1 we havej!(i) = 1 and (5.62) leads to

<

2
Air10 = A1 < Ao — 27 + K-

Furthermore, regarding the second part of (5.51), it holds
Ao 7 1

< AI,O < < .
1+Oézk 1j ( )AI,O 32« 4o

Since the functio —2ay? increases monotonicallyif < 1/(4«), the induction assumption allows
to conclude

2
A A
Ait10 < Z-_ll’o_l — 2« i_ll’O.I + K
L+a) 25 (k)A L+a) it (k)AL

such that

2
Aip10 < e Am_ (5.66)
L+aXi b ilk)A  \1+aXi i (k)AL

A1
- the
I+ay;_ i1 (k) Ao

follows from (5.53). Using (5.65) again - this time with = o, y =
combination with (5.66) ang' (i) = 1 leads to

A
Ai1p0 < a A
(1+aXiZh i (A (1 i “1+azz:1ffl<k>m,o>
_ A1
L+ a2 i1 (k)AL + el

A1
L+adT it (k)AL
such that the induction statement holds.
c) Finally let us consider the cage= j(i) — 1 with j(i) > 1. Then we have the inequalities

Si || zig()-1 _ yigt)-2|?
Ajji-1 < Aijy—2 — 2047 -2t ri— 5|7 =1 g#i0) H

)
2

Aiy10 = Aij) < Dyjiiy—1 — 2087 ;0 + K
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from (5.62). Coupling these we infer

2

)

Ai+1,0 < Ai,j(i)72 — QCEA?’]-(Z-)72 — QQA?’]-( ) — + 2:“\71 )

Fhi(-1 _ meH

so that together with (5.54), (5.64) aadxfj(i)_l > 0 the estimate
2
Aijay < Aiji)-2 = 2047 ) o
holds. Thus we can conclude in analogy to case a) that

A10 _ A1,0
Lt (260) =2+ Sih ' 0)) Ag - 1 a i (k)M

Ait1p0 <

since2j(i) — 2 > 1 and the induction is complete. O

5.4 Linear convergence

Theorem 5.12 establishes the important estimate (5.55) which holds for any problem keeping on to
Assumption 5.1. If we consider problems adhering to tighter assumptions it is possible to prove
linear convergence for the iterates as well as the values of the objective function. The condition to
use in our case is the following growth condition

flz) =1~

inf >d>0 (5.67)
ce P2(x, Mopt)
with
M= (Mo N K7 (ze)) \ Mopt,  p(z, Mopt) := ZeMOE?%I;(T(xC) |z — 2]|2.

This growth condition generalizes that of Rockafellar [47] which occurs in the context of proving
linear convergence of the iterates of an inexact proximal point method.

If 4 < Iistrue, (5.60) admits;; = 7/8 as well as\; ; < 7/8 for all j with 0 < j < j(i).
If \;; = 7/8 the inequality (5.61) is true, while in the casg; < 7/8 the estimate (5.63) follows.
Then we have A

silz7 — 7|3

Aij =

and one can conclude

d -
Ajjr1 < <1 - %> ij T Ri — H_wﬂ ZJH;

with regard to (5 67) and; <s.

But if d > 1 5 istrue (5.60) only admits; ; = 7/8 for all j with 0 < j < j(i) which immediately
leads to (5 61)

ThusA; j, A; j+1 always fulfill

0< A1 <(1—di)Aj+ ki — H_Z’]H 2, (5.68)
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if j < j(i) whered; = min{%,%}.
Using these preliminary remarks the linear convergence of the seqfiéncé can be estab-
lished under the given growth condition.

Theorem 5.13 Let the assumptions of Theorem 5.7 be satisfied. Moreovdl5.l&80) as well as
(5.67)be satisfied. Additionally assume that

Si(l — dl) 2 d1 .
(0 — i), K < 5 Aqe™ :
22— dy) (0i —y)”, ki< 5 81,0 (5.69)
i—1
withp; = S j(k), q [1_— ).Then
k=1
A < Aqoght (5.70)

holds.

Proof: The proof is by induction again. The proposition is obviously true fer1, j = 0.
Thus we suppose that a fixednd;j < j(i) are given such that

Apjr < Aqoghety (5.71)

holds for allk < 4,0 < 5 < j(k) andk = i,0 < j' < j. The conditionj < j(7) is not a restriction
because in casg= j(i) we consider the equivalent pair- 1, j = 0 < j(i + 1).
We distinguish three cases.

a) Supposg + 1 < j(7).
Combining|[z-*! — 27 ||, > o; — , the first inequality in (5.69) and (5.68) we obtain
A1 < (1 —di)A

and along (5.71) this implies
A1 < AqoghitiTt,

b) Supposg > 0,;j + 1 = j(4).
Then the inequalities

Aisir < Dig(L—d) +ms = o |79 -

— P12
ANy <A 1(1—d1)+lil——H.’L‘Z’j "/ 1H2
and||z"/ — 71|, > o; — o, hold. Substituting the second in the first gives
s
Aijer < Aija(l=d)® +ri(2 = di) = (1= di) 5 (00 — i),

leading to
Ajj1 < (L—d1)*Agj

if we consider the first inequality in (5.69). Hence,
Ajji1 < A pgPititt

and the induction statement holds.
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c) Supposg = 0,j(i) = 1.
Taking (5.71) and the second inequality in (5.69) into account we obtain
v d . _
Aj1 < ArogP (1 —dy) + ?1A1,oqu < AqpgPitt

from (5.68) and the proof is complete. |

If the considered problem fulfills the growth condition (5.67) we can additionally prove the
linear convergence of the sequedaé’} to an element of\1,,;.
For this purpose we defingi) = 1672(o; — «;) "2 + 1 and

G=> (VI +a+4dr), (5.72)
k=i

for all ¢ where~,, is given byy, = %(2[ In x| + In7) as in the proof of Theorem 5.7.

Theorem 5.14 Let the assumptions of Theorem 5.13 be satisfied. Moreover, assume that

1 1
17 i +o; < S—T(Uz‘ - i), (5.73)
1
G < (%) ’ q%(piﬁ(i)) (5.74)

hold for eachi. Then the inequality

1

Iy <3 (S2) et 79

is true for eachi and0 < j < j(i), wherez** := lim;_, 2*" is an optimal solution 0{2.10)

Proof: Letz" = argmin,c, .k, () |Z — z||, be given as in the proof of Theorem 5.12.

The inequality

1

IV Aii\2
|77 =z, < ( d]> (5.76)

is obviously true ift*/ € M., otherwise (5.76) holds due to (5.67).
In the sequel lety, jo be fixed with0 < jo < j(igp). From the proof of Theorem 5.7 inequality
(5.37) is known, i.e.

[+ — 25— [l — 2|3 < (03 — @i +

holds for alli, 0 < j < j(i)—1with 2! = 34+ (1—pu;)(x* — 7). If we usez’ = 7+ (1— ;) (z09° —7)
instead ofz* we can conclude

75 = s = [ = 2y < (o = ) 3
analogously for alf and0 < j < j(i) — 1. Furthermore it yields (cf. (5.39))

1

|77 =2, = [l7 = 2], < £ (

—(O‘i — Oél')Q + 'Yi) +a; <0 (5.77)
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and (cf. (5.40))

]W(i) = (fivﬂ'@*l -7 <vAm+a (5.78)

for all < and0 < j < j(i) — 1. Summing up these inequalities we obtain

and together with| 2 — z'00 ||, < 2p;7 andz 10 = 70 the estimate

EZ»J(Z) — 21

N

7410 = el = 70— 0, < i+

follows. Summing these inequalities fore= ig + 1,...,7 — 1 with ¢/ > iy + 1 we get

i'—1
’ 70 _ Fiodo|| < Hjio-&-l,o _ i0.jo H2 + Z (Vi + i + 4pr) .
2 1=t0+1
In combination with (5.77) and (5.78) this leads to
’ EZ 0 _ EZOJO , S HEZOJO _ EZOJOHQ + Z (ﬁ+ o + 4,“’17—) .
i=iQ

Moreover, lim; ... 0 = lim;_., Z°° follows from (5.29) andim;_.., a; = 0 is enforced by
(5.20). Thus, taking the limif — oo allows to conclude
Hx** _ zlo»]oHQ < HEZOJO _ zlo,JOHQ + Z (Vi + i +4T) = HEZOJO _ Zi0.jo H2 + G-
=10
Yielding
Hfioyjo _ x**HZ < Hfimso _ glo:do

Iy + [z = @™l < 2l = Z0 %], + Gy

and we obtain )
—10,70 *k <9 AiO»jO 2 . 5.79
[For —a, <2{ =) +G (5.79)
in combination with (5.76). We remember that estimate (5.46) gives

» 1 -
itin) <27 (o~ 0P =)~ )1

so thatj(ig) < j(ig) follows in view of (5.73). Then relation (5.74) gives

1
A1o\2 L1epaii
Ci() S ( 7 ) qg(pz+]( 0))
and along with (5.70) and (5.79) we can deduce

1
Hfio,jo _ x**HQ <3 (%) : q%(PiJrjO)_

Becausé, andjj, were chosen arbitrarily the proposition is proven. O
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Corollary 5.15 Let the assumptions of Theorem 5.14 be satisfied. Then

1

Hx”—:): H2 §4<7> g2 Pt
holds for alli and1 < j < j(i), wherez** = lim; ., % is an optimal solution 0{2.10)

Proof: Regarding (5.29) and (5.75) we see that

|2 — ), <3 (%) : Pt 1 o
holds for alli and1 < j < j(i). Moreover, using the definition @f, (5.74) and) < ¢ < 1, we
infer )
a; < <ﬂ> 2 q%(p¢+j)
d
for all  and0 < 5 < j(i). Combining both estimates our proposition follows. O

5.5 Extension to general convex problems

The regularized method presented can be easily extended to problems of the more general form (1.1)
under Assumption 4.11 - but again without the compactness postulate on the solution set. The same
generalizations used in Algorithm 4.12 can be integrated into Algorithm 5.2 and the results of the
Sections 5.1 and 5.2 remain true with analogous changes to those of Section 4.3.

In order to extend the results of the Sections 5.3 and 5.4 the basic result of Lemma 5.11 must
be transferred. And in the first part of that proof a modification is required which cannot be de-
scribed by the facts stated in Section 4.3. In particular, we cannot con6lugdedF; ;(z"/)
if linear equality constraints occur but we dedutes 9,L; ;(z"/,y"/) with Lagrange function
L;j(z,y) = F; j(z) + y* (Az — b) and a certain/®/ € R™. Thus we have

0 € 0, L; j(@,y") = OF, j(@7) + ATy.

Using this we can analogously proceed as in the proof of Lemma 5.11 in order to obtain a result like
in Lemma 5.11. Now, the further results of the Sections 5.3 and 5.4 can be moved to the general
situation of problems of type (1.1) with regard to the remarks in Section 4.3.
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Chapter 6

Numerical analysis

In this chapter we discuss several numerical difficulties which occur by the practical application of
the Algorithms 4.2 and 5.2 or their extensions. We start with the analysis of the inner loops of the
algorithms in the first section while in the second section the determination of a starting point is the
point of interest. We choose this order because the inner loop has often to be done while for some
problems it can be simple to present a feasible starting point.

Let us remark that we mainly consider the problem (2.10) in detail and therefore we suppose
that Assumption 5.1 is fulfilled. Nevertheless the extensions to general problems of type (1.1) are
always stated.

6.1 Numerical aspects of the inner loops

The first question which raises in the loops#nof the Algorithms 4.2 and 5.2 is how can we
determine the positive radiusy, resp.r; ; . such that the bo$®* or S%7* is completely contained

in My. The simplest way to find such a radius is a trial-and-error strategy, whereby only the edges
of the considered box have to be checked for their feasibility. In particular this fact requires that we
can decide whether a given poinfulfills g(x,t) < 0 for all t € T'. Such a decision procedure can

be very costly, especially if the exact evaluation of the constraint values is not possible. Therefore
we offer another method in the following lemma. In order to formulate thigfedlenote a constant

for a given nonempty sef C R™ with

supsup sup |jv||1 < LG (6.1)
2€8 teT vedg(z,t)

and the additional property that C S impliesLE, < L. Furthermore, let us define
B, (V) := {z €R" :min||z — v[|e < 7“}
veV
for » > 0 and nonempty compact sétscC R".
Lemma 6.1 Letz € My and# > 0 be given. Moreover, i > 0 be given such that

— 7 — tA
?é%fg(x,t) Lizh >0

65
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holds withLii,} fulfilling (4.1), i.e. |g(2,t1) — g(Z,t2)] < Lt{i}Htl — 19| for all ¢1,t2 € T. Then
the inclusionB, ({z}) C M, is valid if

(6.2)

‘ { _ —maxer, 9(%,t) — Lgi}h}
0<r<ming 7, .

L. ap)
Proof: Letz ¢ M, be given. Then one has to shd\w — || > r. If |z — Z||« > 7 this follows

immediately. Thus in the sequel we assume that z||., < 7 holds. Lett* € T'(z) be given, i.e.
g(z,t*) = maxeer g(2,t) > 0. Then we conclude

~ t ~ N * T (A
0> gré%i{g(x,t)+L{ﬁ}h2 Itne%“Xg(x’t) >g(z,t") —g(z,t") > v (T — 2)

with v € dg(z,t*). Due to||z — ||~ < 7 the estimate

- i) — Lt h < [0l —2)| < L% rin & — 2]|loo
?%sﬁcg(:r,) {a:}h—|v (@ —2)| < Bﬁ({x})HfU z|

follows. Hence, we obtaifiz — Z||. >  and the proof is complete. O

Remark 6.21n case of more than one inequality constraint (i.2.1 in (1.1)) or in case of occurring

linear equality constraints one has to replde by {z € R" : g,(z,t) < 0(t € T")} for each
inequality constraint in the proposition of the lemma. In this way a feasible radius for each inequality
constraint can be separately determined by Lemma 6.1. Then the smallest value of these radii can
be used for fixing the box. O

Lemma 6.1 determines the required boxes in our algorithms if the condtgnasmd L% are
computable. Of course we cannot present a general way for computing these values but they are
stated explicitly for each numerical example in the following chapters.

A corollary of Lemma 6.1 establishes admissible values-foin Remark 4.7 which could be
used as lower bounds for all radi;, in step:.

Corollary 6.3 LetT € R, > 0 and+ > 0 be given. Moreovet, define

N@z{xeﬂhzﬂ@—um<—%¥d%ﬂ><T}

and letf;,,, be alower bound of on N,. Then the inclusioB, (N.) C M, is true for all » with

e%(flow_T)
r <min{ 7, ———— (6.3)

LV

if N, # 0.

Proof: Letx € N, be given. Then a short calculation shows that

—man(ZL‘,t) > e%(f(l’)—’r) > e%(flmu—’r).

teT

Using this our proposition follows with Lemma 6.1 (settilig= 0). O
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After the determination the boxes we have to select values fprresp.h; ;. Normally they
influence directly the costs of the maximization processes such that we want to choose them as large
as possible. Upper bounds fby, resp.h; ;. are given by (4.14) resp. (5.11). But in order to use
these upper bounds the constaitfulfilling part (9) of the Assumptions 4.1 or 5.1 is needed.

Lemma 6.4 Let the assumptions of Lemma 6.1 be fulfilled. Furthermore; let0 be given such
that (6.2)is valid. Then

1
= 6.4
CUs =2 maxer, 9(Z,t) — L’f{i}h — Lgr (6-4)

fulfills (4.2)with S == B, ({#}).

Proof: From Lemma 6.1 it follows tha$ C M. Letz € S, t* € T'(z) andv(z,t*) € dg(x,t*)
be arbitrarily given. Then we infer with (4.5)

— t) = —g(z, t*
I?Eajzcg(%) g(x,t")

> —g(&,t*) + v(z, t) (& — )

> 1) — L%
> —maxg(#,t) — Lgr
> —maxg(Z,t) — L?{i}h — Lgr.

teTy,

Moreover, using (6.2), we deduce

- Itgzqaicg(i”7 t) — Lt{i,}h —Lér >0
so that we have
e 7|~ e
maXgeT g(x, t) — MaX¢eT g(x, t)
1

~ —maxer, 9(2, 1) — L’%j}h — Lgr

= Cs.

Consequently (4.2) holds sineec S was chosen arbitrarily. |

Remark 6.5 The monotonicity property of’s is automatically given if.g possess such a property
(as demanded above) and one computedy (6.4). O

Remark 6.6 In case of more than one constraint one can separately compute the co@istafbs
each constraint analogous to Lemma 6.4. |

With constantCg the valuesh; ;. or h; ;. can be determined as large as possible by (4.14)
resp. (5.11). Consequently, regarding the statements after the algorithms, thefyalaesl3; ; ;.
are already fixed and the minimization problems (4.3) resp. (5.3) can be solved with the bundle
method stated in Chapter 3.

Finally, let us have a closer look at the inexact maximizatiop.dbuch a maximization proce-
dure can be very costly depending on the grid width and has to be done for each evalualipn of
andFi,j,k. Thus we want to look for an acceleration of this procedure. For that purpose a typical
situation is considered in the following lemma.
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Lemma6.7 Letz € Mo, r > 0,h > 0,7, CTandS :={z € R" : ||z — Z||sc < 7} C M be
given. Moreover, assume thatax;cr, g(Z,t) is known for a certairh > 0. Then

U Th(z) C Tp = {f €Ty :g9(x,t) > Itrel%xg(i,t) = (L + Lg)r — Ltsh} (6.5)
zeS h

holds.

Proof: Lett € T;(z) andd € dg(z,t) be given. Then we have for alle S

t) > g(z,0) > g(@, 1)+ 07 (2 — &) > L,t) — Lz
max g(z,) > g(2,1) 2 g(&,1) + 7 (2 w)—?é%fffg(x’) (7

This combined with (4.5) leads to

> —LYh > i.t) — L% r — Lk :
gé%fg(z,t) 2 maxg(z,t) — Lgh > grel%gg(w,t) Ligyr — Lsh (6.6)
forall z € S.
Additionally, g(#,t) > g(z,t) +v(z,t)T (& — 2) forall z € S, t € T with v(z,t) € dg(z,1).
Thus one infers
9(2,1) < g(@,1) + Lir 6.7)

forall z € S,t € T. Combining (6.6) and (6.7), for all€ T},(z), z € S the inequality

9(Z, tA) > ?é%;(g(ja t) — (L?:E} + Lg)r - Lgh

follows and the proof is complete. |

Remark 6.81n the same way one can determine a (mostly infinite) subSet 7" with

U TG c15. (6.8)

z€eS

Then, by investigating the use 6, in the analysis of the chapters before, we observe that it is only
used to estimate the error of the inexact maximization. Therefore the assumptions on this constant
can be weaken. Namely, since ale 7'\ T° cannot be maxima points @fon S, it suffices to
demand that (4.1) holds for all, ¢, € T° and allz € S. Thus in fact one considers the constraint
max, s g(z,t) < 0onS. In many cases this will lead to a smaller value[@f.

Furthermore, the results of this section remain true with

LE >sup sup  sup v
z€S5 teTS vedg(2,t)
which especially makes larger radii values possible.
However, the described changes are only applicable after the determinafioh of 7. And
this requires previously computed constahts L fulfilling the whole conditions. Nevertheless,
if the determination of a subsé@t® ¢ T is successful one could use the new (possibly smaller)
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constants to repeat the deletion process with the constants. Particularly one @&hasskasis for
determiningl . O

Remark 6.9 In the case of considering general problems of type (1.1) we can use a deletion rule as
given in the previous lemma for each inequality constraint. But then we have to replads the
set{z € R" : max;erv g, (2) < 0} in order to determine a subsetbf. O

6.2 Feasible starting points

In this section we discuss the determination of a feasible starting point for the Algorithms 4.2 and
5.2 or their extensions. For some examples such a point can be easily given. If this is not the case
we first consider semi-infinite problems of type (2.10)

minimize f(z) s.t. ze€R", r{la%g(a;,t) <0
€
under Assumption 5.1. Then the simplest way to find a feasible starting point is to consider the
problem

minimize maxg(z,t) st zeR"
teT

which can be formulated as convex semi-infinite problem as follows
minimize ¢ st (z,c) e R" xR, g(z,t)—c<0(teT). (6.9)

Consequently we can solve it with Algorithm 5.2 if Assumption 5.1 holds for this problem. But it
turns out that the solvability does not have to hold in each case. Caused by this fact we change the
objective function intqc — ¢)? and consider

minimize (c —¢p)? st (z,¢) eR" xR, g(z,t)—c<0(teT) (6.10)
with any fixedcy € R. Then the solvability is enforced by the quadratic objective function and the
continuity of g. The further assumptions demanded by Assumption 5.1 can be simply transferred
from the properties of the given problem (2.10). Thus Algorithm 5.2 is possible to use for solving
this problem, whereby we remark that a feasible starting point for problem (6.10) can be given
by fixing anyz® € R"™ and choosing: > max;cr g(2°,t). Furthermore, in case ef, < 0 and
M, # (), a solution of (6.10) must be a point @f(, because the optimal value otas to be as
close as possible tg. Of course, itMg is nonempty we do not have to solve (6.10) exactly because
we can stop the used method when the current iterate is locatethin

Now let us consider the general case where we have given problems of type (1.1)

minimize f(z)
st. z€R", Ax=b AcR™", beR™,
gi(z,t) <0 forallt e T (i=1,...,1).
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We assume that the generalization of Assumption 5.1 holds. Then we obtain analogously to (6.10)
the optimization problem

minimize (¢ — ¢g)?
st. (z,c) e R" xR, Ax=hb, (6.11)
gi(x,t) —c<0 forallteT'(i=1,...,1)

which fulfills the generalization of Assumption 5.1 for each fixgde R". Consequently the
extension of Algorithm 5.2 can be used to solve this problem. Thereby we can state again that in
the caseyy < 0 and M, # () each exact solution of (6.11) is locatedArl so that it is a feasible
starting point for computing a solution of (1.1) by Algorithm 4.12 or the extension of Algorithm 5.2.



Chapter 7

Application to model examples

In the following chapters we present numerical results computed by the proposed methods. For that
purpose the algorithms were implemented in the programming language C by using version 2.7.2.3
of the gcc-compiler on a Pentium 111/800-computer with the operating system Suse Linux 6.2. The
included linear programs are solved by the Simplex-method while the quadratic problems are solved
by a finite algorithm of Fletcher [10].

Before we have a closer look at the examples some general settings are given. ThesEts
are always determined as equidistant discretizatioris with step size2h. Furthermore, the radii
of the considered boxes are always computed/a8 of the maximal value allowed by Lemma
6.1. But the values of in the formula for this maximal value have to be adapted to each example.
Particularly they are adapted to each step of the chosen algorithm. Finally, the valiiesaoé
always computed as suggested in (6.4).

Let us finish our general statements with a remark on the application of the several convergence
results stated before. Each of them says that the algorithms generate sequences which converge to
an optimal solution (in case of Algorithm 5.2 or its generalization) or which have at least an accu-
mulation point as optimal solution (in case of Algorithm 4.2 or 4.12). Moreover, in each presented
convergence theorem it is required that some positive sequences converge to zero. But, caused by
the fact that we cannot generate complete sequences, in practice it is impossible to check these as-
sumptions. Nevertheless, they are the basis of the practical parameter setting in the following sense:
We choose the occurring finite values of each sequence which has to converge in such a way that
they fulfill a geometric decrease condition.

7.1 The unregularized case

We start with considering two examples which can be solved with Algorithm 4.2.
Example 7.1For fixedn € N we consider the problem (cf. Example 3 in Voetmann [61])

minimize f(x) =z,
n—1

O(t) = Y wpt™

m=0

(7.1)

st g(z,t) == -z, <0 forallteT :=[-1,2]

71
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with

e if t € [—1,1]
o(t) = { max{1l,t" — P,(t)} ift e (1,2]

and the normalized Chebyshev polynomial (cf., e.g., Hackbusch [16])

Po(t) = 217" cos(narccos(t))  if t € [-1,1]
T 28" cosh(narcosh(t)) if [t > 1

of degreen. That means we want to approximaten the compact interval-1, 2] by a polynomial
based on the functionis ¢, . .., "~ 1. Voetmann [61] shows that this problem is uniquely solvable
with optimal solutionz* characterized by

n—1
> aptm =t"—P,(t) forallte R and 2}, =2'"".
m=0

Consequently Assumption 4.1(6) is fulfilled. Furthermore, since part (3) of this assumption holds
due to Theorem 5.7 in Rockafellar [45] the validity of the parts (1)-(4) for the considered problem is
obvious. Then, setting, = ... = x,_1 = 0 andx,, sufficiently large, we find an interior point of

the feasible set so that the fifth part holds as well. Regarding the introductory remarks of the chapter
part (7) is simply fulfilled with equidistant gridg, with grid widths2h. Furthermore, the constants

C's should be computed by (6.4) which requires computable valuesddor nonempty compact

setsS ¢ R™*!. They can be given by

n—1

LE = tm 1=2"
S I?E%XN;)| | +

which is an upper bound of all possible slopesgjof.r.t. z. But since2” increases very fast with
parameten this constant is chosen by

n—1

L% :maxz [t™ +1

IS
teTs “—

if Remark 6.8 is regarded and a sub%et ¢ T with (6.8) is known. Further the constant$ for
nonempty compact boxes ¢ R™*! have to be known in order to fulfill (8). But the computation
of these constants is much more difficult than thal.gf Therefore we divide the intervil-1, 2]
into the parts—1,1] and(1,2] as it is done by the definition af. On [—1,1] one can use the
differentiability of t — """\ x,,t™ w.r.t. t as well as the linear structure into find an upper
bound of
n—1 = m—1

S 2 e
which is used ag’; on[—1, 1]. Considering the intervdl, 2] instead of —1, 2] one has to determine
two constants, one for each possible constraint function. In the firsteasél, " — P,(t)} = 1
the constraint is obviously polynomial insuch that it can be treated as it is done[en, 1]. In
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casemax{1l,t" — P,(t)} > 1 one can use the well-known recurrence scheme of the Chebyshev
polynomials (cf., e.g., Hackbusch [16]) so that in fact we deal with a (more complicated) polynomial
again. Altogether, the larger of the both computed constants is ugédas(1, 2] and then the sum
of the constants of both interval parts is usedgson [—1, 2]. Pointing to Remark 6.8 again this
constant can also be getting smallefif ¢ 7" with (6.8) is known. Then the described procedure
above must be adapted in an easy way.

Finally, part (10) of Assumption 4.1 requires the computation of a subgradiefiantig(-, t)
in « for eacht. But due to the linear structure gf andg in x this can be easily done so that
Assumption 4.1 is completely fulfilled and we can use Algorithm 4.2 for solving (7.1). For that the
standard parameter setting is given in Table 7.1. Additionally it must be remarked that the values

parameter| start value| decreasing factor lower bound
i 1 0.2 1079
€i,0 0.001 0.15 —
0; 10 0.15 —
i 0.999 — —

Table 7.1: Example 7.1 - standard parameter

of €;,0 andd; were automatically adapted in the sense of Remark 4.10. That means, in accordance
to our introductory convention, i;/r; > 0.99¢;_1/r;—1 was detected we halved, (andd;) and
restarted the-th step.

Furthermore, the starting vector was chosen@s- ... = 2,1 = 0, z,, = [P,(2) + 1] while,
regarding Lemma 6.1 as well as the introductory remarks of the chapter, the radii were computed by

- maXtETh g(l.i’kilv t) - L?{xtk—l}h }
Ly

rikr = 0.9 min {f, (7.2)

P({zhk 1))

with 7 = min{1,2r; 1}, h = hj,—1 if & > 1 and? = 1, h = 0.003 if £ = 1. Thereby the
improvement of the constanf%xi,k.,l} andLgf({wi,k,l}) in the sense of Remark 6.8 was regarded.
Additionally, all valuesh; , were computed as minimum 06f003 and the maximal value fulfilling
(4.14). With these settings we obtained foe= 1, ..., 9 the results stated in Appendix A.

Let us pick out the case = 5 for a detailed discussion. The starting vector &9, 0, 0, 0, 24)
and we obtained the iteration process presented in the Table 7.2. From this table we observe that
our computed solution approximates the exact optimal solutioa (0, —0.3125,0, 1.25, 0, 0.625)
very well.

Furthermore, Table 7.3 contains information which allow an analysis of the iteration process.
But for reading this table a short explanation of the columns is needed. While the first columns
should be clear the column titled “restarts” gives the number of restarts during the several steps
which are caused by insufficient accuracy valags The column h,;,” contains the minimal
computed value of alt; ;. for fixed  and the next column gives the average offall for the fixed
1. Both columns show that these values decrease during the iteration process which is not surprising
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i i ) 7] % 74 7 5

1 || 1.00E+00 | —0.000054 | —0.311187 | 0.001868 | 1.247626 | —0.003320 | 1.061415
2 || 2.00E-01 | —0.000261 | —0.311517 | 0.002854 | 1.248081 | —0.003753 | 0.260689
3 || 4.00E-02 | —0.000030 | —0.312379 | 0.000362 | 1.249759 | —0.000482 | 0.102581
4 || 8.00E-03 | —0.000035 | —0.312358 | 0.000425 | 1.249717 | —0.000566 | 0.070454
5 || 1.60E-03 | —0.000001 | —0.312497 | 0.000008 | 1.249995 | —0.000011 | 0.064105
6 || 3.20E-04 | —0.000001 | —0.312497 | 0.000009 | 1.249994 | —0.000013 | 0.062819
7 || 6.40E-05 | —0.000000 | —0.312500 | 0.000001 | 1.250000 | —0.000001 | 0.062564
8 || 1.28E-05 | —0.000000 | —0.312500 | 0.000000 | 1.250000 | —0.000000 | 0.062513

Table 7.2: Example 7.1 - iteration process o= 5

since the computational accuracy is improved from step to step. Then the com%ﬁ"“contains

the average ratio of the valugs,, , |/|T}, .| which shows that our deletion rule, stated in Lemma

6.7, works very effective. The next column contains the average mightiness of the grids and we
observe that the number of elements of these sets increases in spite of the deletion rule. Finally, the
last four columns contain information about the computational effort of the method. While in the
#LP-column the number of considered linear problems is stated, the #QP-column gives the number
of considered quadratic problems which equals the number of inexact maximizations. The linear
and quadratic problems originates from the used bundle method for solving the successive box-
constrained minimizations, whereby the number of investigated boxes is stated in the #BP-column.
The last column “Time” contains the total time in seconds from starting the algorithm until finishing
stepi. Thus the last value of this column is the total running time in seconds of the algorithm for
generating the presented approximate solution.

As stated above we regarded Remark 6.8 for the computation of the constaatsi LY. To
demonstrate the effect of the improved constants we also computed results-fomwith the same
parameter values but without using the (possibly) smaller value&foand L%,. First of all we
remark that the computed approximate solution differs only slightly from that given in Table 7.2.
Thus we proceed without showing a table containing these iterates. However, the parameter values
are much more interesting and they are given in Table 7.4. Now, comparing the Tables 7.3 and
7.4 we recognize that for smaller barrier parameter the radii values well as the averages-; ;.
are larger in the case where Remark 6.8 is regarded. This is especially caused by smaller values for
L%f({ﬂ,k,l}) which are possible since the deletion process for generatirig the sense of Remark
6.8 detects that there cannot exist a maximung(af,-) neart = 2 for anyxz € B;({z"*1}).
Consequently.?, ( is much less tha@™. For instance, in the last inner step of the fifth outer

»({ztF1})
iteration we can previously detect

T% = [~1.000, —0.100] U [0.110, 1.022]

SO0 thatLBf({miyk,l}) = 6.224893 instead ofLBi({xi,k,l}) = 32 is chosen.

A further consequence of the larger radii is the faster decreasggf Also directly influenced
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by the radii values is the number of considered boxes in each step. Here we realize that this number
is much less if the improved constants are used and this leads also to a smaller number of solved
linear and quadratic problems. Moreover, since the consfaptsiso profit from detecting™® we
obtain larger grid constants ;, (at least in the average) if the deletion process successfully works.
Additionally in these cases we have a better deletion so that, combining both, there occur much
smaller grids.

Altogether the use of improved constaits, L’ in the sense of Remark 6.8 often leads to much
less effort and thus to a faster algorithm. For the considered example this effect is intensified when
the dimension grows up. a

Example 7.2We consider for > 3 the problem (cf. Example 6 in Voetmann [61])

minimize f(x Zml
(7.3)

st g(z,t) := p1(t)x1 + palt) 2?2 —-1<0 forallteT:=]0,1]

with
1—£t—@ ift<£
NG 2 2 2
Pl(t)izl—t—j, pa(t) ==
1—x/§t——‘ |ft>§
\

In order to decide whether the unregularized or the regularized algorithm has to be taken into account
the solution set of (7.3) is first stated (which can be found by investigating the possibly restrictive
constraints). We have

e forn =3,4,5

n
1 \/5
r1+aa=1-> il x1—|—m1n{\f:n2 —x2}>0
Mopr = 2 € R": = T2 b,

z; =4 (i > 3)

e for6 <n <13

+ 1
Mopt: xeR”:xlzmQ:O,xi:L(z’Zi{)
> k=3
e and forn > 14
V2 4422 1 i+1
Mopt:{azeanxlz—?cn,m:Tcn,xi:/\+K 5 (i >3)
with
2 242 i+l
)\:§7 K = 3 and Cn—l A+ 22
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Thus the solution set is nonempty and compact in each case but its structure depends on the dimen-
sion. Consequently Assumption 4.1(6) is fulfilled. Furthermore the parts (1)-(4) of this assumption
and, regarding € M, also (5) hold. The Assumptions 4.1(7) and (9) are fulfilled by the standard
procedures of choosing finite grids for the first one and proceeding as suggested in (6.4) for the
second one. The needed subgradients in Assumption 4.1(10) are simply calculable as derivatives
such that it remains to determine the constdii{®enforced by Assumption 4.1(8) atd; required

for the computation of’s and the radii of the boxes. These constants can be given by

2
Lts = maxmax{ T + gl‘g , ‘:cl + \/5332‘}

€S

and

L% .= t t)+2 i =242 —|T;
5 1m0 e palt) & 2ma ) ool =2+ 2max ) ol
1= 1=

by estimating all possible slopes. The formulalgf allows the improvement of this constant in the
sense of Remark 6.8, while such a consideration is not possible.foHowever, Assumption 4.1
is completely fulfilled so that we can use Algorithm 4.2 for solving (7.3).

The standard parameters were chosen as in Example 7.1 (cf. Table 7.1) and the starting vector
¥ = 0 € R™ was used in each case. Moreover, the radii were computed by (7.2) with the setting
7 = min{l,2r, 5,1}, h = hjp—1 if & > 1l and7 = 1, h = 0.0005 if £ = 1. Of course, the
improvement of_% in the sense of Remark 6.8 was regarded by this computation. The grid constants
hi 1. were given as minimum df.0005 and the maximal value fulfilling (4.14). With these settings
we obtained forn = 3, ..., 15 the results stated in Appendix A.

Let us now investigate the influence of the starting point in detail. For that we consider the case
n = 5. Due to the structure of the constraint it is simple to choose different feasible starting points
by choosing arbitrary negative values for the first two components’ @nd settinge? := 0 for
i = 3,4,5. In that case we observed the results contained in Table 7.5 and, looking at the column

start vector 5 5 effort
20 9 restarts| do(z°, Mopt) f(z®) 2P #OP | #Box
0 0 0 1.80E-04 —1.945821 | 104 214 40
—100 0 0 1.69E-04 —1.945821 | 837 6130 749
—1000 0 0 1.08E-04 —1.945822 | 6754 | 58068 | 6769
0 —100 0 1.50E-04 —1.945821 | 495 4725 672
0 | —1000 0 1.17E-04 —1.945821 | 3716 | 40156 | 6192
—100 —100 0 8.01E-05 —1.945821 | 643 3305 453
—1000 —100 2 1.05E-04 —1.945821 | 6415 | 54529 | 6463

Table 7.5: Example 7.2 - The influence of the starting point

titled “ f(2®)” (note that there aré outer steps), it turns out that the obtained approximate solutions
are of the same accuracy w.r.t. the value of the objective function (as predicted by (2.5) for the exact
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logarithmic barrier method - the optimal value-i4.945833). Within these bounds differences in

the final distance to the solution set are allowed and occur. However, it is not surprising that there
are big differences in the computational effort caused by the chosen starting points. We can roughly
state that a larger distance gt to the solution set leads to a higher computational effort. In some
examples it may be possible to adjust the computational effort by a larger maximal value for the radii
(here we used = 1), but in the considered example such larger values will have no performance
effect since the radii are bounded above by the restrictive bounds for the iterate com@otamis

o. O

7.2 The regularized case

Now let us consider examples where we have unbounded solution sets. We start with a small ex-
ample with two variables. It is presented in order to show that the unregularized algorithm does not
have to work in the case of an unbounded solution set.

Example 7.3We consider the problem

minimize f(z) := (z; — x2)*

s.t. g(x,t) :=x1cost +xasint —1<0 forallteT:=]0,1]

The feasible (the grayed area) and the solution set (the dotted line) of this problem are illustrated in

Figure 7.1: Example 7.3 - The feasible and the solution set
Figure 7.1 (both sets are shrunk to the presented clipped area). The solution set is easily given by
1
Mopt_{$€]R2:a}1_x2§§\/§}.

Thus we deal with an unbounded feasible and an unbounded solution set so that Algorithm 4.2
cannot be used to solve the problem in the sense that we cannot expect convergence as specified in
Theorem 4.9. Therefore we want to show that Assumption 5.1 is fulfilled but excepting for (8) this
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is obvious if we regard our introductory remarks for (7) and (9). Part (8) is fulfilled with constants
L% defined by

maXx max

z€S te0,1] | Ot z€S te[0,1]

—(x,t)' = max max | — xy sint + xy cost|
< max ||z||oo max |cost — sint]|
z€S te[0,1]

= =: LL.
max [lz]loo =: L

Furthermore, for computing the valué€s; and the radii, the constanfs; are needed and can be
= V2.

given by
( cost )
sint
1

Thus both constants are given in a form so that they cannot be improved in the sense of Remark 6.8.
But for this small example it is not essential. However, Assumption 5.1 is completely fulfilled and
we can use the regularized method for solving the problem.

Before we do this it is shown that the assumption of the boundedness of the solution set is
essential for a meaningful use of Algorithm 4.2. Since Assumption 4.1 is fulfilled except for the part
concerning the boundedness of the solution set we started Algorithm 4.2 anyhow with the standard
parameters given in Table 7.6. Furthermare,= (—5,0) while the radii were computed by (7.2)

L% := max
te(0,1]

parameter| start value| decreasing factor lower bound
€i,0 0.001 0.06 —
0; 0.001 0.06 —
i 0.999 — —

Table 7.6: Example 7.3 - standard parameter

with 7 = min{1,2r;,_1}, h = h;p—1 if £ > 1l and? = 1, h = 0.001 if & = 1. The grid
constantsy; ,, were given as minimum df.001 and the maximal value fulfilling (4.14) and, finally,

Cs was computed by (6.4) as already stated above. With these values the method was started with
11 = 1 and we obtained the iterates given in Table 7.7. From there we observe that no convergence
behaviour of the iterates is cognizable which already shows that the assumption of the boundedness
of the solution set is essential for a meaningful use of Algorithm 4.2. However, the values of the
objective function at the iterates converge to the minimal possible value zero.

After this experiment we now use Algorithm 5.2 for solving the given problem. More precisely
we intend to use all features of this method including the multi-step technique. Having in mind
Theorem 5.7 we have to specify a few more constants than in the case of using the unregularized
method. Nevertheless, we can first state that the standard parameters contained in Table 7.6 as
well as the given computations of the radii and the grid constants were used again. Furthermore,
we sets; := 1, s;+1 = max{0.01,0.2s;}, 7 := 12, z. := (=3.3,—1.7), z* := (—2.5,2.5),

Z := (0,0) andz® := (=5, 0) in order to fulfill z* € Mgy N K, 5(xc), & € Mo N K () and
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i 7] h f(@")

1| —1271.73 | —1271.73 | 1.72E-07
2 || —1817.85 | —1817.85 | 7.98E-09
3 || —2596.74 | —2596.74 | 1.41E-10
4 || =3710.59 | —3710.59 | 1.56E-11
5 || —5299.64 | —5299.64 | 1.85E-12
6 || —7572.42 | —7572.42 | 1.85E-14

Table 7.7: Example 7.3 - Iterates computed by Algorithm 4.2

20 € Mo N K, y(xc). This led toc = || — 2*|]y = V125, f(Z) =0, f- =0, o = |In(1)| = 0,
t=0,9 = (1,0) andc; = In(1 + 2) = In(3) so that we had; = In(3) andpu; = 0.1 < e

could be used. Setting the lower bound of the barrier parametértbando; as small as possible

by (5.21) all assumptions of Theorem 5.7 are fulfilled and we obtained the iteration process given
in Table 7.8. We must remark that there was not required any restart procedure for adapting the

1,7 T 'l do(x%, Moyt) | #LP | #QP | #BP | Time
1,1 || —3.013535 | —2.008399 7.11E-01 15 31 4 0.01
1,2 || —2.622698 | —2.414308 1.47E-01 11 33 2 0.02
2,1 || —2.531565 | —2.519300 8.67E-03 13 36 2 0.03
3,1 || —2.529324 | —2.528754 4.03E-04 12 24 2 0.04
4,1 || —2.529324 | —2.528754 4.03E-04 6 10 2 0.06
5,1 || —2.525245 | —2.524960 2.01E-04 10 33 2 0.12
6,1 || —2.525539 | —2.525535 2.69E-06 14 40 2 0.22

Table 7.8: Example 7.3 - Iterates computed by Algorithm 5.2 with multi-step

accuracy parameter since it turned out that the radius was always equal the maximal possible value
0.9. In contrast to Algorithm 4.2 we observe a convergence-like behaviour of the iterates from Table
7.8. Furthermore, the multi-step technique was in fact used in the first outer step. O

Example 7.4Now we consider for fixech € N andk € {1,...,n — 2} the following perturbed
version of Example 7.1

minimize f(x) := zp4+1

n—1

st og(a,t) = |p(t) = Y axpmt™ — 2t + )| — 20 <0 forallt € T:=[-1,2]

m=0
with the same functiorp as in Example 7.1. The perturbation reflects a typical situation in the
numerical approximation where we have to approximate a given function by linearly dependent
basis functions. In the given situation we have to approximaba [—1, 2] by linearly dependent
polynomials. In consequence of this the solution set is unbounded so that Assumption 4.1 cannot
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hold and Algorithm 4.2 is outside the further considerations. Particularly the complete solution set
is given by

(Yo, - - -, yn) SOIVes (7.1) withy,,, = z, If m # k, k + 1,n and
Mopt = (xo,...,$n+1) . .
Y = Tk — Ty Yk+1 = Th41 — Ty Yn = Tntl

Then the weaker Assumption 5.1 is fulfilled if we taking into account that the parts (1)-(5), (7)-(10)
can transferred from the analysis of Example 7.1. But of course the calculation of the congtants
and L%, requires some changes caused by the additional summgfd+ t“*1). In the case of.%

this leads to

n—1
T __ m k k+1
Lgirelgsczolt \+§2%>S<\t + k41
while in the case of.}; one can summarize; andz,, to one variable as well as;;; andz,, to
another variable. Then the same procedure as for Example 7.1 is usable with the additional fact that
the combined variables have a ranget@f- instead oftr.
Altogether Algorithm 5.2 can be used to solve the given problem. The standard parameter
setting is given in Table 7.9 while the choice of a starting point and a barrier parameter fulfilling

parameter| start value| decreasing factor lower bound
S 0.01 0.8 107°
€i,0 0.01 0.15 —
0; 10 0.15 —
G 0.999 — —

Table 7.9: Example 7.4 - standard parameter

(5.19) is much more complicated than in the unregularized case. In the given situation we can easily
determine feasible starting points by using information of Example 7.1. But then, using the starting
point also ast, the constants defined as in Theorem 5.7 is typically large which implies that the
starting barrier parameter has to be very small. Having in mind the notice on avoiding too small
barrier parameters for Example 7.1 we should find a better véciioithe sense that the resulting
cs is less than before. For that purpose Algorithm 5.2 can be also applied since Lemma 5.5 ensures
the finiteness of each inner loop under much weaker conditions. Consequently we started Algorithm
5.2 with fixed barrier parameter = 1 while all other parameters were set to the starting values
given above. Then we ran exactly one outer step of Algorithm 5.2 and calculated new values for
c3 resp.uq based on the computed iterate. ylf is too small again we repeated the step with the
previously computed iterate as starting point and a slightly lower accuracy parameter. Of course,
this procedure can be repeated more often and in the example cases it was stoppgd wiiedb
was possible as starting barrier parameter. For that there were a23rsisps needed, but excepting
the first step they considered only a few boxes.

Then we used the final iterate of these pre-steps as starting poipt.ane- 0.2u; as standard
update as in Example 7.1. Furthermore, the algorithm was stopped when the barrier parameter fell
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below10~°. The values of; ; r andh; ; , were computed analogously to the values.gf, h; ;. in

Example 7.1 and the deletion rule as well as the improvement of the conbtgnit§ in the sense of
Remark 6.8 were regarded again. Moreover a restart procedure similar to that of the unregularized
algorithm was used. But, now the prox parameter was reset in addition to the accuracy values. The
effect of the restart procedure should be that we achieve a geometric decrease of the vajues of
since these values have to be summable. Nevertheless, in order to avoid too many restarts at the
beginning of the iteration process the restart condition is not directly correlated to the wgjues

it only depends again on the ratig/r;. If there is a geometric decrease then the definition;of

implies also a geometric decrease of these values (at least from a certain index) in combination with
the boundedness of andr;.

Then we obtained the results summarized in the appendix far6 andk = 1,2, 3. At this
point we want to investigate the influence of the choice of the prox parameter. For that we have
a closer look at the case = 5, k = 3 where we successively set the starting prox parameter
to 10, 1, 0.01 and0.0001. The other settings are given as above. Furthermore, since the pre-
steps to generate the starting point depends on the prox parameter we excluded this phase from
the investigation and used the standard parameters for it. Thus Algorithm 5.2 was always started
with 20 = (—0.000605, —0.312555, 0.002830, 0.832642, —0.419964, 0.416176, 1.199804). Then
the detailed results contained in Table 7.10 were obtained. Therein the given time values include
0.72 seconds in each case which was needed for the computation of the pre-steps.

First of all we remark that all final approximate solutions have nearly the same distance to the
solution set. But, of course there are some differences in the iteration process. So the results of the
first steps document the several starting prox parameters by the value of the distance to the solution
set: large prox parameter allow a short step and small prox parameter allow a long step. This is
also made clear by the number of considered boxes during each first step, whereby this number
increases if the starting prox parameter decreases. Additionally it can be observed that in each case
an insufficient accuracy value is detected in a certain step. It is remarkable that this detection occurs
earlier if the prox parameter is lower. The reason for this behaviour is that lower prox parameters
allow larger steps inside the given boxes so that we faster go to the solution set on the boundary of
the feasible set. But this leads to smaller radii and consequently to largeragtipso that this
ratio can increase at this point. Thus, if the starting prox parameter is chosen too large the restarts
occur for very small barrier parameters with bad conditioning so that one typically observes a slow
walk along the boundary of the feasible region documented by many considered boxes as in case
s1 = 10 in the example. On the other hand we have to avoid too small (starting) prox parameters in
order to guarantee the regularization effect. But this is supported by our method since the step sizes
are automatically restricted by the radii of the boxes so that the iteration processes approach to each
other if the starting prox parameters are sufficiently small. This can be observed by looking at the
casess; = 0.01 ands; = 0.0001. O
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Example 7.5We consider for fixesh € N and1 < x < n the problem
minimize f(z) :=— Y
l=k+1

st gu(x,t):=—|t —

V2
v+1

T, + Zn: cos? <7Tl <t— V{_i)) le—l <0 (7.4)

I=k+1
forallt e TV := (0,1, v =1,...,Kk.

For an extensive investigation of this problem we refer to Voetmann [61], where the problem above
is considered as Example 2. In comparison to the previously considered problems we are now con-
fronted with an additional difficulty, namely there can occur more than one constraint by choosing
k > 1. Consequently we have to take Algorithm 4.12 and the analogous extension of Algorithm 5.2
into account.

First of all the solution set of (7.4) is given by

1
j\/lopt:{xeR”:miZO(izl,...,/{), x; = (i:kﬁ—l,...,n)}.

n—~kK

which is unbounded so that Assumption 4.1 resp. 4.11 cannot be fulfilled. Neverthelessykjnce

is nonempty the parts (1)-(5), (6@nd (7) of Assumption 5.1 or their generalizations are obviously
fulfilled. Additionally, the subgradients of and g, (-,t) required by part (10) of these assump-
tions are in fact gradients sincg g, (-,t) are differentiable w.r.tz. Consequently the needed
(sub)gradients are easily calculable. The consmﬁgscan be computed by

n

2 2
L ¢ :==max|x,| + max |27lsin [ 7wl [ ¢ — V2 cos | ml|t— V2 max x;
’ zes teT” v+1 v+1 zes
l=rk+1

n

2
=max |z, |+ E mlmax |sin | 27l [ ¢ — V2 max z7
zes teT v+1 zes

I=k+1
n

< 2
Smaxlod+ 2, mlmaa

l=k+1
which estimates all possible slopesg@fw.r.t. t. This description oﬂis allows the improvement
of these constants in the sense of Remark 6.8. Fir@lly, is separately calculated by (6.4) for each
v. For that we also require the constanfs, which can be given by

V2 cos? (7Tl <t — ﬁ))
v+1

v+1
Summing up Assumption 5.1 or its generalization for more than one constraint is fulfilled. Thus
Algorithm 5.2 or its extension in the sense of Remark 5.5 can be used to solve (7.4). This was
done with the standard parameters given in Table 7.11. For the determination of the starting barrier
parameter we used again the procedure described in Example 7.4, with: and the origin as
feasible starting point now. But it was not possible to give a standard starting barrier parameter

n

+ 2 max
teTv
I=k+1

t —

max |x;].

L? ¢ := max
v,5 €S

teTv
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parameter| start value| decreasing factof lower bound
Y 0.01 0.5 107°
€0 0.01 0.15 —
0; 1 0.15 —
¢ 0.999 — —

Table 7.11: Example 7.5 - standard parameter

like 0.05 in the example before. Instead of this we stopped the determination of a starting barrier
parameter after exactly one step. Then the maximal possible barrier parameter, determined by (5.19),
was used as starting value, whereby it turned out that the starting barrier parameter decreased if
the number of variables and constraints increase. Nevertheless, the standard update for the barrier
parameter wag,; 1 = 0.2u; while the algorithm stopped when the barrier parameter fell below
10~°. In addition there was also used a restart procedure as described for Example 7.4 and for each
v € {1,...,1} aradius was computed by applying (7.2) with= min{1,2r; x—1}, h = by, _, if
k> 1and? =1, h = 0.001 if £ = 1. Then the minimal of these radii was used as radius of the box
which had to be determined.

Regarding all the stated facts we obtained the results presented in the appendix for several values
of n andk. At this point we want to have a detailed look at the influence of the starting accuracy
value. For that purpose we consider the case 12, x = 1 with results given in Table 7.12. Thereby

€10 restarts €6 do (28, Mopt) f (%)
10 4 2.40E-08 1.44E-04 —3.3166088
1 3 3.20E-08 1.47E-04 —3.3166094
0.01 2 4.27E-09 1.46E-04 —3.3166088
0.001 1 5.69E-09 1.55E-04 —3.3166088
0.0001 0 7.59E-09 1.41E-04 —3.3166087

Table 7.12: Example 7.5 - The influence of the accuracy parameter

all parameters except fef o were given as described above. In particular we ran the algorithm with
the same starting point and the same starting barrier paramete0.05 in each case. Thus we had
6 outer steps and the final barrier paramétéE-05.

From Table 7.12 we observe the remarkable fact that the final distances to the solution set and the
final values of the objective function at the approximate solutions are comparable to each other. This
and the fact that the accuracy parametegproach each other are caused by the restart procedure.
Of course each restart causes an additional computational effort so that the starting accuracy value
should not be chosen too large in order to avoid too many restarts.

Furthermore, investigating the values of the objective function at the approximate solutions we
notice that they are all in a range near the optimal valu€ll ~ —3.3166248 - as predicted by
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(2.5) for the classical logarithmic barrier methods with exact minimizers. This fact is especially
remarkable since the iterates were computed as approximate minimizers of the regularized function
whereas (2.5) holds in the unregularized case. Nevertheless, the values of the objective function at
the approximate solutions of the previous examples are also mostly in the range around the optimal
value predicted by (2.5). This can be especially observed very well by reinvestigating the approx-
imation problems before where the last component of the final iterates equals the final objective
values and approves again the prognose by (2.5).

Additionally we want to have a look at the influence of the number of considered barrier prob-
lems which can be controlled by the barrier parameter update. For that we also observed results with
non-standard updates for the barrier parameter. In order to ensure the same conditions in each case
it was necessary to adapt the updates for the accuracy and the prox parameter. They were chosen
in such way that the predicted final values (without regarding of possible restarts) were nearly the
same. Considering the case= 12, x = 1 again we obtained the results summarized in Table 7.13
with chosen starting values as in the standard case. Reading this table we can first state that the final

decreasing factors || outer effort

i | oo | s | steps| "St1S| da(@ Mop) 7@ P [ 40P | #Box
0.2 |0.15] 0.5 6 2 1.46E-04 | —3.3166088 | 93 | 118 | 37
0.41 | 0.34 | 0.68 10 3 1.15E-04 —3.3166083 | 120 | 156 54
0.605 | 0.52 | 0.805 17 4 4.11E-05 | —3.3166087 | 186 | 260 | 69

Table 7.13: Example 7.5 - The influence of the barrier update

values of the objective function are nearly the same in all cases. Consequently from that point of
view there is no remarkable influence of the number of outer steps on the final result. Of course
the distance of the final iterate to the solution set differs from case to case and it decreases if the
number of outer steps increases. Additionally, the computational effort increases with the number of
outer steps since we solve more barrier problems. This effect is intensified by the increasing number
of restarts (more planned outer steps lead to more checks of the restart condition). Nevertheless,
the computational effort for each separate outer step decreases if we use larger decreasing factors.
Especially this second observation is typical for our methods and can lead to the possibly surprising
fact that the total computational effort can decrease if more outer steps are done.

Such a behaviour was observed for Example 7.2 wite= 14,15. If we use the standard
updatesi; 1 = 0.2u; for the barrier parameter and, o = 0.15¢; for the accuracy parameter
the computational effort is much higher than using the updates = 0.4y, ande;;1,0 = 0.33¢;
(which leads to a similar final accuracy). For instance the computation of the approximate solution
in the casen = 15 with the standard parameters tooks abbiit seconds against abolg seconds
with the changed update. But unfortunately we have no general rule to obtain an “optimal” update
strategy in order to minimize the computational effort. O



Chapter 8

An application to the financial market

8.1 The mathematical model

In this chapter we present the application of our algorithms to a problem occurring in the field of

finance. Our goal is to approximate the yield curve of an underlying asset. For that purpose we

follow the considerations by Tichatschke et al. [56] which are based on the model of Vasicek [60].
Lety(¢) be a given yield curve fulfilling the stochastic differential equation

dy = (o + By)dt + 0dZ

with a Brownian motiornZ and parameters, 5, o. Now this yield curvey should be approximated

on an intervall’ = [0, ¢] by a functionr. Thenr has to fulfill the initial value problem
r=pr+a+ow(t), r0)=ryel|r,T7|,
8 (1), r(0) =ro € [r.7] 61
w<w(t)<w, teT

which can be derived from the stochastic differential equation stated above. Therein the Brownian
motion Z is modeled by a piecewise continuous functiorwith boundsw, w. Additionally the
initial valuerg is variable so far. The solution of (8.1) is given by
t
r(t) = —g(l — P+ roel! +- O’/eﬁ(tT)w(T)dT (8.2)
5 0
so that the approximation error can be minimized by solving the problem

minimize max |y(t) — r(¢)]
teT
s.t. rg€r,7, (8.3)
w<w(t) <w, forallteT.

Since the feasible set is mainly described by the function spacew < w(t) < w,t € T} we
deal with an infinite problem. In order to simplify this the available functions afre restricted to
piecewise constant functions, i.e. we set

w(t) :=w; forallteT;, i=1,....,N

87
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with 0 =: tg < t1 < ... < ty_1 < ty :=t, T := [t;_1,t;) fori € {1,...,N — 1} and
TN := [ty_1,ty]. Then the integral term in (8.2) becomes

t

i1
a/eﬁ(t_T)w(T)dT =— Z BjePlw; — % <1 — eﬁ(t_ti*1)> w;

0 J=1

for all t € T* with

Byim & (et — )

forallj =1,..., N — 1. Consequently, using

i—1
filro,w,t) = =% (1 — %) +roe — > Bjeltw; — % (1 - eﬁ(tfti’l)) w;
=1

=)

forallt € T7, (8.3) can be rewritten as

minimize  f(ro, w, ) := ¢
st gi(ro,w,9,t) == |(t) — fi(ro,w,t)| =9 <0 forallteT'(i=1,...,N) (8.4)

gN+1(ro, w,9) := max{ maXN{wi —w,W— wi},rog—1r,T — ro} <0

i=1,...,

with an approximationy of y constructed by observable values. Thus we now deal with a linear
semi-infinite problem withV + 1 constraints. The number of constraints in (8.4) is much smaller
than in the formulation by Tichatschke et al. [56] which is caused by the fact that we can treat
nondifferentiable constraint functions. Consequently, motivated by (2.5), we can use larger barrier
parameter in order to expect similar accuracies.

8.2 Numerical results

We want to show that Algorithm 4.12 can be used for solving (8.4) approximately. For that purpose
we have to check Assumption 4.11. We first notice that some parts of this assumptions does not
have to hold for the last constraigt;; since it does not depend enHowever, in practicg 1
is treated as constraint of typéx, ) < 0, ¢t € T with single-valuedl". Additionally we have to
know something more abogtif we want to show some parts of Assumption 4.11. Therefore we
only consider the special cage= y; is constant on each interval' as it was done by Voetmann
[61].

We observe that the assumptions of the convexityf @nd all g; are fulfilled sincerg, w, ¢
occur at most linearly in each constraint and the absolute values of linear functions as well as the
maxima of finitely many linear functions are convex. Part (2) of Assumption 4.11 is not fulfilled
sinceT?,...,TN~! are not closed. But it is possible to consider the closures of alllZetsd the
continuous extensions of gj} in (8.4) without changing the feasible set. Then the continuity of all
constraints w.r.t¢ is obvious. Furthermore, part (5) of Assumption 4.11 is fulfilledvii< w and
r < T are true. Moreover, we observe that lower level sets of our considered semi-infinite problem
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are bounded since, ro are bounded by th@V + 1)-th constraint and is bounded below bg and
bounded above by the given level. Consequently, since we only deal with continuous functions, these
level sets are compact. Thus, regarding that the given problem is feasible, the solufidp,sétis

to be nonempty and compact. Part (7) is simply fulfilled if we choose equidistant finite grids for each
constraint as it is done in the chapter before. Regarding Lemma 6.4 part (9) of Assumption 4.11 can
be fulfilled while subgradients of andg;(-, t) can be easily given if one regards that, excluding the
absolute value or the maxima, the functions therein are differentiable. Thus it remains to determine
the constantig’s enforced by part (8) of our assumption abfl for determiningC; ¢ and the radii.
Regarding the differentiability of the function inside the absolute valug we can set

i—1

._ Bt Bt 38t Bt—ti—1),,,.
(= max sup |ae”" + rgfe”t — B;Be’tw; + oe w
(ro,w,9)eS tejEZ o Z it ! ’

t
0.8
j=1

foralli =1,..., N. In addition to this

i—1
Lis = ?éz%)f Pt 4 ; | Bj Pt 4 ‘% (1 — eﬁ(t_t”‘l)>‘ +1
foralli =1,...,N and LY s = 1are used. Consequently Assumption 4.11 is completely
fulfilled so that Algorithm 4.12 can be used for solving (8.4).

Demonstrating this we want to approximate the German stock index DAX in two time periods of
each 30 days. The required data, consisting of the daily opening DAX prices, are given in Table 8.1.
The first period represents a quite stable but slowly growing DAX while the second period covers a
big fluctuation in a short time interval. In addition there are needed values fbando. Voetmann
[61] uses the setting

a=0.0154, (6=-0.1779 and o =0.02

which is derived from the observation of US interests for government bonds within the years 1964
to 1989. Since there was not made a similar investigation of the German stock exchange we use
the values stated above too. Moreover, the German stock exchange tends to follow the US stock
exchange so that this choice is not a bad choice.

Due to the fact that we only consider two different scenarios we do not give a standard pa-
rameter setting. Rather we have a separate look at both situations. Nevertheless, there were some
common settings. So in both situations the considered time period was uniformly mapped to the
interval [0, 1] which implies that each trading day was represented by a subinterval of [efgfth
of [0,1]. Additionally we setg; = 0.999 in each case and, regarding Remark 6.2, the radii were
computed by Lemma 6.1. In fact we used (7.2) to determine a radius for each constraint with
7 = min{1000, 2r; ;1 } if £ > 1 andr = 1000 if £ = 1 for all constraints and = h'f,kq if £ >1,

h =0.001if k=1forv =1,...,30. In consequence of this it was possible to comi}. » by
Lemma 6.4 for each constraint.
Now considering only the first example data DAX1 the starting point

ro:= 1600, w;=...=ws:=0, ¢:=3000
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Example DAX1

Example DAX2

Bounds Traditnlg Day P;ife Bounds Traditnzg Day P;izce
04.01.1993 1533.06 05.03.1998  4642.79

05.01.1993 1547.99 06.03.1998  4686.24

06.01.1993 1560.27 09.03.1998  4775.83

07.01.1993 1546.33 10.03.1998  4807.92

08.01.1993 1540.56 11.03.1998 4855.22

11.01.1993 1526.66 12.03.1998 4822.78

12.01.1993 1527.33 13.03.1998 4863.44

13.01.1993 1529.61 16.03.1998 4891.85

14.01.1993 1521.03 17.03.1998 4932.42

15.01.1993 1542.91 18.03.1998 4936.17

w=—10° 18.01.1993 1559.83 || w = —106 19.03.1998 4923.51
19.01.1993 1576.13 20.03.1998 4993.53

W= 10° 20.01.1993 1586.94 || w = 106 23.03.1998 5017.48
21.01.1993 1577.62 24.03.1998 5014.62

r = 1000 22.01.1993 1587.95 || r = 4000 25.03.1998  5058.54
25.01.1993 1582.21 26.03.1998  5093.52

7 = 2000 26.01.1993 1566.83 || 7 = 6000 27.03.1998  5041.84
27.01.1993 1570.96 30.03.1998 5069.98

28.01.1993 1561.02 31.03.1998 5070.81

29.01.1993 1571.28 01.04.1998 5093.52

01.02.1993 1582.35 02.04.1998 5163.11

02.02.1993 1587.20 03.04.1998 5203.58

03.02.1993 1595.08 06.04.1998 5256.69

04.02.1993 1605.07 07.04.1998 5276.79

05.02.1993 1635.67 08.04.1998 5282.94

08.02.1993 1643.83 09.04.1998 5270.35

09.02.1993 1642.32 14.04.1998 5378.91

10.02.1993 1649.79 15.04.1998  5379.99

11.02.1993 1651.22 16.04.1998 5362.26

12.02.1993 1655.13 17.04.1998  5266.34

Table 8.1: DAX data
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was used and we set
€1,0 := 0.001, €i+1,0 = 0.761', 51 = 10, 5z'+1 = 0.752‘, M1 = 10, i1 = O.S,ui.

But as in all examples before the restart procedure proposed by Remark 4.10 was applied to adapt
automatically the accuracy parameter. Then the algorithm was stopped when the barrier parameter
fell below 0.1. Although this stopping criterion seems to be very bad, Figure 8.1 shows that the
tendency of the DAX curve is correctly reconstructed by our final approximate solution which can
be found in the appendix. Furthermore the final approximation err@b.6b is better thar6.78
achieved by Voetmann [61] and close to the correct minimal vafug0 given by the half of the
maximal gap between two successive observed DAX values.

For the second example data DAX2 we used

ro := 5000, wi =...= w3 := 30000, ¢ := 5000
as starting point,
€1,0 := 0.005, Ei+1,0 := 0.661‘, 51 = 50, 5i+1 = 0.65i, H1 = 100, Hi+1 = 0.7[%

and, again, the restart procedure. The stopping criterion was now fulfilled if the barrier parameter
reached0.01. The resulting approximate solution is stated in the appendix too, while our final
approximation error given by4.30 is comparable with the result achieved by Voetmann [61]. The
optimal value is54.28 so that the more accurate stopping criterion leads also to a more accurate
final solution in comparison to the first situation. Figure 8.2 shows again that the complete curve
is correctly reconstructed, but it can be observed as in the first case that there is not detected each
particular fluctuation.
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Figure 8.1: Example DAX1 - trajectory of the solution
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Figure 8.2: Example DAX2 - trajectory of the solution



Chapter 9

Perfect reconstruction filter bank design

9.1 The mathematical model

In this chapter we want to analyze the design of so-called perfect reconstruction filter banks. Let us
first give a short introduction into the filter theory from the mathematical point of view (we follow
Kortanek, Moulin [30]). We refer to Antoniou [2], Meyer [34] or generally to the references in
Kortanek, Moulin [30] for much more details than here are presented.

A discrete input signat is given by an arbitrary infinite sequen€e(n)},cz which is square
summable, i.ex € [?(Z). Generally &filter is a linear operator that acts on an input signal
through convolution. Thus, identifying the filter witth(n)},cz, the output vectoy of alinear
time-invariantsystem (LTI) is given by

y(n) = Y h(i)z(n —i). (9.1)

i=—00

Moreover, we assume that the filter coefficielts) are real-valued since data converters work with
real-valued signals only (cf., e.g., Potchinkov [41]).

A very simple filter is described by the decimation operdtmwhich picks out only the terms
of z(n) with even index and corresponds to down-sampling. The adjoint opgtatarresponds to
up-sampling and fills in zeros at the odd indices.

For filter h thetransfer functiorin the complex domain is

H(z):= Z h(n)z"".

Then (9.1) is equivalent to multiplying the corresponding transfer functiond; {8.= H(z) X (z).
Similarly, thefrequency response given by

H(w):= > h(n)e ™

n=—oo

with 5 as imaginary unit.

93
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When the filter has only finitely many nonzero components, it is cdileg: impulse response
(FIR-)filter. Such FIR-filters with lengtB/V will be only considered in the sequel.

The combination of at least two filters is callfiier bank As stated above we intend to design
perfect reconstruction filter banks. Thus let us describe the simplest case of such a filter bank, a two-
band PR filter bank. Generally, it is divided into two sections, the analysis section and the synthesis
section. The analysis section consists hapassand ahighpasdilter which decomposes the input

O )y A R (O g A0 PPN )
TN D pp EAC AT ot {0 PN AC)
Analysis section Synthesis section

Figure 9.1: Two-band perfect reconstruction filter bank

signalz(n) into two components;(n) andzy,(n). The lowpass filter takes averages to smooth out
variations while the highpass picks out the high frequencies in the signal. After these filters there
is a down-sampling part to shorten the signal. The synthesis section also consists of a lowpass and
a highpass filter. Furthermore, there is an up-sampling part. The task of the synthesis section is to
reconstruct (thus reconstruction filter bank) a signélom the two signals:;, andz;. Our design
goal is to construct the filters in such a way that the output siga) is identical with the input
signalz(n).

For the mathematical description let the transfer functions of the lowpass filigts; be
given by L,,,(2) = Zip”gj]v YAl (k)z=% with m = 0,1 andpy,p; € Z. For simplicity we
setpy := 0 (otherwise we only have a delayed version of the resulting signal). Furthermore,
Hyp(2) = Y30t 2N ph (k)2~% with g9, q1 € Z are the transfer functions of the highpass fil-
ters. Then one has

2N—1
z]/(2n) = xj(n Z hy(k)z(2n — k) and z/(2n+1) =0 (9.2)

after a short calculation so that we obtain
1
X/'(2) = 5 (Lo(2)X(2) + Lo(—2) X (=2))

as transfer function of the lowpass band up to the second lowpass filter. Hence,

Yi(2) = Li(2) X/ (2) = % (Lo(2)L1(2) X (2) + Lo(—2)L1(2) X (=2))
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is the complete transfer function of the lowpass band. Analogously we get

Yi(z) = % (Ho(2)H1(2) X (2) + Ho(—2)H1(2)X(=2))

as transfer function of the highpass band. Adding both we have

Y (2) = 5 (Lo(2)a(2) + Ho(2) Ha(2)) X (2) + 5 (Lo(~2)La(2) + Ho(—2) Ha(2)) X (~2)

as transfer function for the complete output signal. The first term of this expression is called the
distortiontransfer function, while the second term is @d@&sing transfer function. The perfect re-
construction condition requires the(z) = X (z)z~" with some odd integer. (cf., e.g., Goswami,

Chan [14]), i.e. the output signal can only be a delayed version of the input signal. Consequently the
filters have to be chosen such that the aliasing part is eliminated. This can be achieved by

Li(z) = £Ho(—2z) and Hi(z) = FLo(—2).
Choosing the upper sign and defining product filters for each band we have

Py(z) := Lo(2)L1(2) = Lo(2)Ho(—%)
Ph(z) = H()(Z)Hl(z) = —Lg(—Z)H()(Z) = —Pl(—z).

Then the perfect reconstruction condition becomes
Pi(z) — Pi(~2) = 227™.

At this point there exist two basic approaches for determining the filtgré/, (cf., e.g., Goswami,
Chan [14]). The first one is the quadrature mirror approachHegz) = Lo(—z) while the sec-
ond one is the half-band filter approach. In the sequel we asglyte) = —z ™ Lo(—z"1) in
correspondence to the second approach. Then we have

Pi(2) = =(=2) " Lo(2)Lo(—(=2)"") = 27" Lo(2) Lo(z ).
SettingP(z) = 2™ P(z) = Lo(z)Lo(2~1) the perfect reconstruction condition is transformed into
P(z)+ P(—z) =2. (9.3)

Our goal will be the design of this product filtét. Then the underlying lowpass filtdr, comes
from the spectral factorization d@? (cf., e.g., Smith, Barnwell [52]).
To analyze the structure @f we simply expand.o(z)Lo(z~1):

1 N—-12N—-1-21%

N—
P(z) = Z (Rb(8)* + > Z W (k) Rh (k + 2i) (2% 4 2=%)
1=0 k=0

+) R (k)R (k 4 20 4+ 1) (22! + 27271,
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Taking (9.3) into account this leads to the following conditions

2N—-1-2k
> hh(i)ho(i+ 2k) =p, 0<k<N. (9.4)
1=0
Thus, setting
2N —2i—
Z hl E)hb(k+2i+1), 0<i<N, (9.5)

we have

N-1
14 Z ap, (221 4 2k,
k=0

Moreover, under the change of variablez e?™* 0 < w < 0.5, we obtain

N-1
Plw)=1+2 Z a, cos(2(2k + 1)mw)
k=0

as well asP(w) = |Lo(w)|?. ThereforeP(w) > 0 has to hold such that the feasible product filters

are described by
N-1

142 apcos(2(2k + 1)mw) >0, 0<w< 0.5, (9.6)
k=0
Now let us look for a design goal or an objective function. This will come from the application
of subband coding which is illustrated in Figure 9.2.

i’ = ~ | 4/ "
| Lg(z) fBl(n) 12 xz(n) § L ] g l‘l(n) 192 T (n Ll(z) yl(n)
’ < < |5/ "
_H0(2> xh(n 12 xh(n ;g) B a g xh(n 12 xh(n Hl(z) yh(n)
Analysis section Synthesis section

Figure 9.2: Two-band coding system

Our digital input signale has lengtt2 P which is split correctly intar; and ), (alternatively
we can consider an analog input signal which is split correctly into two analog signals). But now
these signals are transmitted and for this transmission they are shorten (or digitalized) by the coder
to additional lengtf2p. Decoding these coded signals it leads to input sigfials, of the synthesis
section which are typically different from;, z},. Consequently the output signalof the whole
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coding system is different from the input signalThe signal(n) — xz(n) is termed the reconstruc-
tion error and is due to the subband quantization ett{rs) — x;(n) andz}, (n) — ;,(n). For the
mathematical model these quantization errors are modeled as random processes as follows:
Leta signab be given in the binary representation, ve= ZL}OO v,2F. Then the quantization
Q(v) is theb—bit representation of (b is called thetransmission ratg i.e. Q(v) can be given by
Qv) = Yk p1 02", Thus, settingh = 2-(-D2!, we have
A A
*gﬁqu(U)*UEE»
where the division by 2 occurs from the action of round off. Now, assuming that the quantization
errorg has a uniform probability overA /2, A /2] we obtain

A/2 2 2bo21
1 A 27492
2 2
% = / TRU= 15 =3
—A)2

Moreover, we assume that the quantization errors are statistically independent and statistically inde-
pendent of the signal. These assumptions are valid in the limitAagends to zero i is itself a
random variable with varianae?. But for a given bit budget and hencerg are related to the input
variances? in a special way that depends only on the statistical properties of the input signal, i.e.

2 _ 9—2b_2
o, =2 "oy,

(9.7)

wherec is a constant which includes the informations on the statistical properties of the input signal.
Now, let us come back to the two-band case. We assume that the input signas a ran-

dom variable for each which isWide Sense Stationaryrhis means thatr, = Fx(n) and the

autocorrelationgR,, (k) = E[z(n)xz(n — k)| are independent af. These assumptions are stan-

dard for noise analysis in LTI systems. Then the sign@ls) andz),(n) are also random variables

which are independent of in the sense above. Thus they have varianges?, independent of.

Consequently, using (9.7) we obtain the variances

o} =c27%g and oF = 27 % hol,

in the lowpass and the highpass band with the same constanboth bands (because both signals
x;, z}, coming from the input signat), but possibly different transmission rates in each band. Due
to the independence assumption the variance of the whole system is

2 —2p; 2 —2pp, 2
ospc(pi, pn) = 27 oj + 27 oy,

Now, the design goal is to minimize this variance under the additional consgyaiim;, = 2p. This
leads directly to

2 2
7 1 '
% and pp =2p+ - log, Th
2 2 2

1
pL=2p+ 3 log, > 5
v O 010,
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such that the minimal variance of the whole system is

O'%BC = 26272p\ / O.l2’0'727/'

Comparing this result with Rulse Code Modulatiofequals a one-band coding system) with trans-
mission ratep we have
opay = 2770}

which leads to theoding gain

8N

2
G ._ 9%pcMm _ g
SBC -— 0_2 — .
SBC  24/oko?,

Moreover, due to our assumptions of the independence and the perfect reconstruction, we have
02 = o7 + o2, and the coding gain becomes

TN

2=
Gane = 0+ 04)/2
SBC — )

oz

which has to maximized for the best filter. Due to the fixed stint o7, this maximization is
equivalent to the maximization of’ if we assume, > pj, in accordance with the lowpass/highpass
interpretation.

Now there is only the question how can we calculate the varianges;,. For this we as-
sume without loss of generality that all inputs are zero-mean random processes (cf., e.g., Use-
vitch, Orchard [59]) so that we have, = E(x(n)) = 0 for all n. Furthermoreg? is given
by o7 = E((z}(n))?) — (E(z}(n)))?. Determining both components we recall the definition

(9.8)

zi(n) = Y ho(k)z(2n — k)

from (9.2) and, regardingr, = E(x(n)) = 0, we infer

2N—-1
E(x(n)) =my Y hy(k) =0

k=0
such that? = E((x}(n))?). Additionally
2N—-12N-1

(@i(n)® = > > ho(k)ho(m)z(2n — k)z(2n — m)
k=0 m=0
and consequently

2N—-12N-1
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Due to the independence 8f(x(n)z(n —m)) of n as well ast'(z(k)) = 0 for all £ we can set
Tm = Rgz(m) = E(x(n)x(n —m)) = Cov(z(n),x(n —m))

so that we obtain

2N—-12N-1

op = > > ho(k)hh(m)ri )
k=0 m=0
2N—-1 —12N—-1-k

— ( 7‘0—}—22 Z hé hlm—f—k)

bl
o

Using (9.4) and (9.5) we conclude

N-1
op =19+ 2 Z akT2k+1 9.9
k=0
and, regardingdo(z) = —2 "™ Lo(—271),
N-1
a,%/ =7r9g—2 Z AkT2%+1-
k=0

Then, summing up the statements above and combining the objective function (9.9) with the feasible
set described by (9.6), our design problem is

N-1
maximize rq + 2 Z T2k

k=0
N-1

st 142> apcos(22k+ Drw) 20, 0<w <05
k=0

or, written as convex minimization problem,

N—1
minimize f(a) :== —ro —2 Y axropi
k=0 (9.10)
st gla,w):=-1-2 Z ag cos(2(2k + 1)mw) <0, we T :=][0,0.5].
k=0

9.2 Numerical results

Before we consider several numerical examples let us check Assumption 4.1. The parts (1)-(4) are
obviously fulfilled. Furthermore, the origin @®&" is an interior point of the feasible region since
9(0,w) = —1forallw € T. Thus (5) is fulfilled. In order to show that (6) holds we first prove that

the feasible region is bounded. For that let a feasible RV be fixed and consider the function
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go : R — R defined byg,(w) := g(a,w). Theng, is a periodic even function with periodand
ga(w) < 0 forall w € R which follows from the feasibility of: for (9.10). Therefore the identity

N-1
9a(0.5 —w)=—-1+42 Z ar cos(2(2k + 1)rw) = —2 — gq(w)
k=0

leads immediately tg,(w) > —2 for all w € R such thaig,(w)| < 2 holds for allw € R. Now,
considering thé2 N — 1)-th partial sum

o 2N 2N-1
50 + Z:l ¢y cos(2mvw) + Z:l b, sin(2mvw)

of the Fourier series af, we have particularly (cf., e.g., Pinkus, Zafrany [36])
1
cy = Q/ga(w) cos(2mvw)dw
0
forv =0,...,2N — 1. Thus, using the orthogonality property of the Cosinus-function, we obtain
1
Coky1 = —4/% cos?(2(2k + 1)mw)dw = —2ay,
0

forall k € {0,..., N —1}. Hence,

1
Jax] < / 9(w)]dw < 2
0

forall k € {0,..., N — 1} such that|a||~ < 2 follows. Consequently the feasible set of (9.10) is
bounded. Further this set is closed since the involved functions are continuous. Therefore, in (9.10),
we deal with a continuous objective function on a nonempty compact set so that the solution set is
also nonempty and compact, i.e. part (6) holds. Moreover, due to the differentiabiity.of), we

can set
N

LL =4 2 1 >
s ﬂggg;( m + 1)|am| > sup sup

dg
_(aa w)
a€S weT | OW

for each given compact sét c R so that (8) holds. Then the constantg can be computed by
(6.4) if the constant$/¢ are given too. But these constants are simply given by

N-1

S = 2N > sup sup Z
zeSwel |~

Ly

Tm

s

Let us remark that both constanit and L% can be improved in the sense of Remark 6.8. For that
we make use of the fact that each summand of the respective gradient can be estimated more exact
on subsets of” by estimating the appropriate Sinus- or Cosinus-term more exact. Additionally,



9.2 Numerical results 101

(10) holds since the involved functiorfsg are differentiable and the required subgradients can be
computed by differentiation. Altogether, regarding also the general remarks in the beginning of
the chapter, Assumption 4.1 holds such that Algorithm 4.2 can be used for the design of a perfect
reconstruction two-band filter bank.

Thus let us have a look at numerical examples. We consider the examples given in Kortanek,
Moulin [30] and Moulin et al. [35] so that we deal with the following three cases:

1. AR(1)-process withr,, = p", p = 0.95;

2. AR(2)-processr, = 2pcosOrn_1 — pPrp_o With rg = 1, 7 = 22°5% 5 — 0.975 and
0=m/3;

3. lowpass process with box spectrum with= Smﬁ;{ﬁ“ fs = 0.225.

For the purpose of comparing the results with those of Kortanek, Moulin [30] and Moulin et al. [35]
we also consider the cas@ = 4 and N = 10. Additionally we considertN = 14 and the
standard parameters are contained in Table 9.1. But, the restart proceduyrgdodd; described

parameter| start value| decreasing factor lower bound
i 1 0.2 107°
€i,0 0.001 0.15 —
0; 100 0.15 —
i 0.999 — —

Table 9.1: filter design - standard parameter

for Example 7.1 was used again if insufficient accuracy values were detected. Furthermore we set
0:.=0 e R" and the radii were computed by (7.2) with= hir—11f k> 1andh = 0.0005 if

k = 1. Additionally all valuesh; ;. were given as minimum df.0005 and the maximal value which

fulfills (4.14).

Then we obtained folN = 4 the approximate solutions given in Table 9.2 which also includes
the results of Kortanek, Moulin [30] (in the lower row of each process).

Thus we obtained similar results as presented by Kortanek, Moulin [30]. For the purpose of
evaluating these results the last column of Table 9.2, containing the values of the coding gain, is
of special interest since these values represent the improvement achieved by the application of the
constructed two-band filter banks instead of transferring a single signal. The given values in the table
are different from those calculated by (9.8) since they are now given in a logarithmic deailed)
as usual in the field of filter design, i.e. there is written dolrog,, Gspc. Nevertheless, the
values computed by our algorithm are comparable with the results of Kortanek, Moulin [30] and
Moulin et al. [35], whereby we should state that the slight difference is only caused by the fact
that we stopped the algorithm with the barrier paramét28E-5. If one computes approximate
solutions for smaller barriers better results are the consequence. For instance, in the AR(2)-case
we also computed a coding gain@f70 with barrier paramete2.56E-6, but the additional step of
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Process Algorithm agp ai as as Cijlng gain
(in dB)
AR(D) 4.2 0.612048 | —0.149279 | 0.045733 | —0.008533 5.860
cf. [30,35] || 0.612104 | —0.149404 | 0.045859 | —0.008577 5.862
AR(2) 4.2 0.594990 | —0.193611 | 0.059889 | —0.042127 6.069
cf. [30,35] || 0.595198 | —0.193416 | 0.060023 | —0.042055 6.070
lowpass with 4.2 0.613735 | —0.169685 | 0.072194 | —0.026933 4.884
box-spectrum| cf. [30,35] || 0.613755 | —0.169685 | 0.072184 | —0.026923 4.885

Table 9.2: approximate solutions fof = 4

Algorithm 4.2 was disproportional costly due to too large gfiijsand small radii. Thus we did not
compute results for this parameter in general.

In caseN = 10 we obtained the coding gairis942 (instead o0f5.945 by Kortanek, Moulin
[30] and Moulin et al. [35]) for the AR(1)-process.833 (6.835) for the AR(2)-process anel869
(9.879) for the lowpass process with box spectrum. Thus we can state that the quality of the filter
designed by our algorithm fa¥ = 10 is comparable to those of Kortanek, Moulin [30] and Moulin
et al. [35].

In caseN = 14 we obtained the coding gaif®51 for the AR(1)-process;.920 for the AR(2)-
process and2.868 for the lowpass process with box spectrum so that the values of the coding gain
increase when the number of variables or equivalently the signal length increases.

More details of all iteration processess are given in the appendix. But, finally, the frequency
response in dB of the computed filters is plotted in the Figures 9.3, 9.4 and \5#o4 (left-hand
side) andV = 10 (right-hand side).
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10 log,, (P(®)/2)

Figure 9.3: AR(1)-process

10 log,, (P(®)/2)

L L L L ,
0 0.1 0.2 0.3 0.4 05

Figure 9.4: AR(2)-process

10l0g, ; (P()2)
10109, (P()/2)

Figure 9.5: lowpass with box spectrum
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Appendix A

Numerical results

In this appendix we state numerical results of the examples considered in the Chapters 7, 8 and 9
in tabularized form. In order to make the understanding of the tables easier they have of a certain
structure. So the first column contains the dimension of the problem in the sense of its occurrence in
the previous chapters. Then in the second column the used feasible starting vector is given followed
by the exact optimal solution and the optimal value as far as they known. The next column contains
the computed final approximate solution including its value of the objective function and in the case

of a known solution set the distance to this set measured by the Euclidean norm is given in the
“accuracy”-column. Apart from the column containing non-standard parameter values (emanated
from the parameter settings given in the Chapters 7, 8 or 9) there occur two columns titled “effort”

and “final values” which have to be specified in a more detailed way. So the “effort”-column has the

general structure

#RES : number of restarts of inner loops
#LP : number of solved linear programs

restarts: #RES #QP : number of solved quadratic programs
#LP/#QP/#Box with #Box : number of considered boxes
trp/top/tmax trp : time in seconds for solving all LP
tTotal top : time in seconds for solving all QP

taax - time in seconds for all maximizations
trotal - total time in seconds for the complete iteration process

while the “final values”-column contains the final barrier paramgtahe final radius- (which is
mostly an indication for the smallest radius), the final prox-paramefiéithe regularized method
was used), the averadg,, of the grid constants of the final outer step, the minimal grid constant
hmin @nd the average ratio of the the vaI¢@7§i7k|/\Thi’k| or \Thi’j’k |/|Th, ;.| during the final outer
step as measure for the final effectivity of the deletion rule.

105
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start vector exact solution mnuqox._ mate accuracy effort final values
solution

1 = 1.28E-05

_ 70=0.000000 | zp= —0.000000 Hmm@m\wmmwm\m ) r = 4.99E-06
ao s 1 =1.000000 r1= 1000013 | 1.28E-05 | 10.015/0.185 haw = 1.67E-06
' flz)=1 f(z) = 1.000013 e Pnin = 7.36E-07
. |Th|/|Th| = 0.88

— 1.28E-
_ 2o=0.500000 | wo= 0.500000 restartsy) r, %m WM
0 x1 =0.000000 x1 = —0.000000 214/673/76 -

21 =0 1.28E-05 haw = 1.76E-06
s 9 = 0.500000 zo=0.500013 0.055/0.035/10.30s | S oRET
9= min — (- A

z) =05 z) = 0.500013 12.41s ,
f(z) f(z) \Th|/|Th| = 0.81
=0. = 0. — 1.28E-
o0 0= 0.000000 zo= 0.000000 estartss [ 8E-05
o 21 = 0.750000 2= 0.750000 200/1054/106 r = 2.54E-06
L 5 =0.000000 zo= —0.000000 | 1.28E-05 haw = 1.42E-06
29 =0 0.135/0.025/0.52 s
X x5 =0.250000 z3=0.250013 0.85 < Panin = 5.89E-07
XT3 = . ~
8 f(x)=0.25 f(z) = 0.250013 |Th|/|Th] = 0.08
——0.125000 — —0.125000
z0= 0 o0 0 11 = 1.28E-05
= 0 z1 = 0.000000 z1 = 0.000000 restarts - — 9 04E-06
T xy=1.000000 ry= 1.000000 445/1834/188 -
za= 0 1.27E-05 haw = 1.85E-06
0 z3= 0.000000 | z3= —0.000000 0.585/0.14 5/0.81 s W orEr
Ty | wa= 0225000 | m= 0125013 1.82s T, = 0.06
T f(z)=0.125 f(z) = 0.125013 ISR

Table A.1: Example 7.1n = 1,2, 3,4
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approximate

non-standard

start vector exact solution . accuracy effort final values
solution _um_.mgmﬂm_\
e 0 xo= —0.007813 xo= —0.007812
0~ 0 x1 = 0.000000 z1 = 0.000000
Tr1 =
= .M == .M
S To 0.250000 Zo 0.250000 = 1.97E05
sz 0 zz3= 0.000000 3= —0.000001 restarts:1 = 1.70E-06
57 0 xs= —1.250000 xg= —1.249999 L OTE-05 3764/31661/5205 piv1 = 0.3 n a .m%m o7
Ty = . - av = 0. -
%| 0 xs=  0.000000 zs=  0.000002 27.88 5/8.45 $/164.68 s giy1.1 = 0.27¢ e 1007
Mu B 0 6= 2.000000 re= 1.999999 309.69 s | %_5 \mﬁ _.| 0.06
%H 0 z7= 0.000000 x7= —0.000001 hIZ 2R =2
( zs= 0.007813 zg= 0.007832
zg =149
f(x) =0.007813 f(x) =0.007832
o zo= 0.000000 zo= —0.000000
aou 0 z1= —0.035156 x1= —0.035156
M B 0 xo = 0.000000 zo = 0.000000
2T x3= 0.468750 x3= 0.468750 p = 1.68E-05
z3= 0 za= 0000000 | 4= —0.000000 restarts:l r = 1.30E-06
z4= 0 T T 3753/44836,/11466 fis1 = 044 T
e 0 x5 = —1.687500 x5 = —1.687500 | 1.67E-05 30,32 5/11.81 5/642.86 5 N 038 haw = 2.24E-07
> 0 z6=  0.000000 z6=  0.000000 : aw.w 03 s . L = Ponin = 8.64E-08
g — . ~
a@| 0 z7= 2.250000 zx7= 2.250000 |Tw|/|Tw| = 0.07
aT 0 zg=  0.000000 xg = —0.000000
m pr—
= 0.003906 = 0.003923
2o = 276 o o

f(z) = 0.003906

f(z) = 0.003923

Table A.3: Example 7.1n = 8,9
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start . . . .
n vector exact solution approximate solution accuracy effort final values
x1 =0.000000 22 =0.000000 z1 =0.000000 x5 =0.000000 restarts \M H HHMM__M.WM
6 20— 0 r3=0.599289 x4, =0.561833 x3=0.599307 x4 =0.561800 5.30E-05 138/419/45 b 1.00E-03
x5 =0.539360 x¢=0.524378 x5 =0.539335 x4=0.524405 0.13s/0.01s/0.11 s FHW — 1.00E-03
f* = —2.224860 fx) = —2.224847 0.29s _mni\_ﬂw_ 100
x1 =0.000000 x2=0.000000 x1 =0.000000 x2=0.000000 restarts0 w = 1.28E-05
r3=0.496289 x4 =0.465271 r3=0.496274 x4 =0.465293 130/414/44 r = 1.33E-06
8 || 29=0 25 =0.446660 z¢=0.434253 z5=0.446681 1x5=0.434272 | 6.04E-05 0,10 /0.045/0.18 5 haw = 1.00E-03
x7=0.425391 xg3=0.418744 x7=0.425348 1x5=0.418726 0.38 S bma: = 1.00E-03
f* = —2.686607 f(z) = —2.686594 |Th|/|Th| = 1.00
x1 =0.000000 x5 =0.000000 x1 =0.000000 x5 =0.000000
x3=0.434217 x4 =0.407078 x3="0.434155 x4 =0.407066 restarts) p = 128805
0 x5 =0.390795 x¢ =0.379940 r5=0.390782 xg =0.379961 176/634/72 r = L.O4EA6
10 z° =0 7.77TE-05 hao = 1.00E-03
x7=0.372186 xg =0.366370 x7=0.372187 xg =0.366369 0.47 s/0.05s/0.19 s b 1.00E-03
19 =0.361847 x19=0.358229 19 =0.361875 x19=0.358255 0.83s o
|Th|/|Th| = 1.00
f*=-3.070663 f(x) =—=3.070650
x1 =0.000000 x5 =0.000000 21 =0.000000 z2 =0.000000
r3 =0.391426 x4 =0.366962 r3 =0.391268 x4 =0.366976 restartsn w = 1.28E-05
x5 =0.352283  xg =0.342498 x5 =0.352305 x¢ =0.342520 298/989/120 r = 8.64E-07
12 29 =0 xr7 =0.335508 x5 =0.330266 x7 =0.335527 xg =0.330283 1.65E-04 0.88.5/0.21 5/0.28 5 hay = 1.00E-03
rg9g =0.326188 x19=0.322926 r9g =0.326204 2x19=0.322940 153 FI:E = 1.00E-03
217 =0.320258 215 =0.318034 | x1;=0.320269 x5 =0.318043 |Th|/|Th| = 1.00

£* = —3.406349

f(x) = —3.406336

Table A.5: Example 7.2r = 6, 8,10, 12
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approximate

start vector exact solution . accuracy effort final values
solution
zo=0 zo = 0.000000 xo= 0.000000
z1=0 xz1 = 0.492192 © = 1.60E-05
z1 + x3 =0.750000 r1 +x3= 0.750000 restarts2 r = 1.65E-06
o =0 xo = —0.257808 L61E-05 435/978/217 s; = 3.13E-04
xo 4+ x3 =0.000000 zo + x3= 0.000000 0.23'5/0.08 s/0.59 s hao = 1.71E-06
z3=0 r3 € R x3= 0.257808 1.17s Amin = 6.79E-07
r4=38 x4 =0.250000 z4= 0.250016 |Th|/|Th| = 0.08
f(z) =0.25 f(z) = 0.250016
xo= 0 xo=—0.125000 xo=—0.125000
1= 0 - T H Io.wwmwﬁw 11 = 1.60E-05
2a— 0 1tz = 0.000000 Tt MMM mmmwwmm restarts2 r = 1.43E-06
Zo+z4= 1.000000 Zo+z4= 1.000000 | 1.59E-05 712/1660/384 si = 3.13E04
0.695/0.198/1.72 s gy = 1.61E-06
x3= 0 x3 = 0.000000 x3 = —0.000000 316 B = 6.ATE-0T
zs= 0 s € R xy= 0.338275 _mﬂ /| T = 0.07
z5=14 z5=0.125000 z5= 0.125016 ISR
f(z) =0.125 f(z) =0.125016

Table A.7: Example 7.4rn = 3,4,k =1
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approximate

start vector exact solution ) accuracy effort final values
solution
zo= 0 zo= 0.000000 xo = —0.000000
1= 0 x1 = —0.312500 x1 =—0.312500
zo= 0 xo=—0.421595 = 1.60E-05
z9 + x5 = 0.000000 T2 + x5 = 0.000000 restarts2 r = 1.27TE-06
z3= 0 3= 0.828405 1. 60E-05 1400/3502/919 s; = 3.13E-04
T3+ x5= 1.250000 r3+x5= 1.250000 1.545/0.425/4.83 s hao = 1.28E-06
zy= 0 x4 = 0.000000 x4 = —0.000000 8.50s Amin = 4.77TE-07
z5= 0 5 €R 5= 0.421595 |Th|/|Th| = 0.05
re =24 zeg= 0.062500 ze= 0.062516
f(z) = 0.0625 f(z) = 0.062516
zo= 0 o= 0.031250 o= 0.031250
z1= 0 z1 = 0.000000 z1 =—0.000000
zo= 0 - , To H \o.wﬂwo; )1 = 1.60E-05
I T2 + 76 = ~0.562500 T2t MM B |mwmgwmm restarts2 r = 1.20E-06
23 +z6=0.000000 23+ z6= 0.000001 | 1.61E-05 4383/12708/3156 si = 3.13E-04
8.805/1.91 5/40.96 s hao = 1.34E-06
z4= 0 4= 1.500000 zqe= 1.499999 86.20 S ho = 3.58E-07
5= 0 z5=0.000000 x5 = —0.000001 Fol/ITh] = 0.04
z6= 0 26 € R 26 =—0.184487 IR
r7 =49 z7= 0.031250 z7= 0.031266

f(z) = 0.03125

f(x) = 0.031266

Table A.9: Example 7.4rn = 5,6,k = 2
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start . . . non-standard .
n exact solution approximate solution accuracy effort final values
vector parameters
>0 x1 =0.056616 u = 1.60E-05
mWooooo o = 0.499969 restarts:3 r = 3.34E-06
T; = U.
=04 2/114/34 i = 3.13E-04
51 2°=0 | (i=2,...,5) 23 =0.499985 4.38E-05 82/114/3 i = 0.05 si = 3130
x4 =0.500003 0.03s/0.01 s/0.03 s hay = 1.48E-05
Fro 9 x5 =0.500027 0.20s hmin = 6.88E-06
- f(z) = —1.999984 |Th|/|Th| = 0.05
=0.000516 =0.301456
o w2 11 = 1.60E-05
z1 >0 z3 =0.301461 x4 =0.301468
restarts2 r = 1.13E-06
z; = 0.301511 x5 =0.301477 x¢ =0.301488 03/118/37 s — 3.13E-04
12 || 2°=0 (i=2,...,12) z7 =0.301500 x5 =0.301515 | 1.46E-04 w1 = 0.05 T
0.19 5/0.00 5/0.04 s hay = 5.49E-06
g =0.301531 219=0.301550 0.55 S b — 9 14E-06
f*=-3.316625 | x1;=0.301570 x5 =0.301593 . _%_ﬁ_\ﬂﬂ _.| 0.03
f(z) = —3.316609 PSR
z1 =0.004671 x5 =0.229202
x5 =0.229209 x4 =0.229220
=0.2292 =0.22924
zs =0.229233 ¢ =0.229248 11 = 1.28E-05
1 >0 r7 =0.229267 xg =0.229289
restarts2 r = 3.05E-07
x; = 0.229416 rg =0.229314 x19=0.229341 83/107/41 s — 3 13E-04
20 || 2=0 (i=2,...,20) 211 =0.229371  2,,=0.229405 | 7.79E-04 i1 = 0.04 v
0.46 5/0.00 $/0.10 s haw = 2.37E-05
r13=0.229441 214 =0.229480 132s L _ R.88E-05
* = —4.358899 =0.229522 =0.229567 ’ min = O )
.\. Z15 Z16 _NJE_\GS_ =0.00

217 =0.229615

f(x)

r18 = 0.229666
To20 = 0.229776
= —4.358885

Table A.11: Example 7.5m = 5,12,20, k =1
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start . . . non-standard .
n exact solution approximate solution accuracy effort final values
vector ﬁm_.mgmﬁm_.m
z; >0 1 = 1.60E-05
=0.104093 =0.080503
(i=1,2,3) o 2 restarts2 r = 9.71E-06
;= 0500000 | 370000378 e =0.499970 82/115/36 s; = 6.25E-04
7 0= e =0.499983 =0.499992 | 3.02E-05 =0.01 e
v (i=4,...,7) Mm 0500002 e 0.055/0.005/0.07s | hay = 2.12E-05
T p (&) — —1.990953 0.40 s Rumin = 7.12E-06
fr=-2 o |Th|/|Th| = 0.06
—=0.049793 =0.043036
220 MH =0.032277 MM =0.333305 # = 40005
(i=1,2,3) 8 Lo restarts2 r = 9.03E-06
r5 =0.333307 26 =0.333310
o z; = 0.333333 75/107/36 s; = 1.25E-03
12| 2°=0 . r7 =0.333314 25 =0.333318 | 5.32E-05 p1 = 0.005
(i=4,...,12) 0.135/0.00 5/0.13 s haw = 3.15E-05
z9 =0.333323 210 =0.333328 0,88 < L e
Fr=—3 211 =0.333334 21, =0.333341 ’ _ﬂwa_z\_w _.| 0.08
- f(z) = —2.999880 PR
z1 =0.026088 x5 =0.024121
z3 =0.018091 x4 = 0.242529
=0.24252 =0.24252
2 >0 w5 =0.242529  @g =0.242529 1 = 1.60E-05
. z7 =0.242530 x5 = 0.242530
(1=1,2,3) restarts:3 r = 1.70E-06
= 0242536 | U0 0242030 o =0.242031 102/169/68 si = 1.25E-03
2 || 2°=0 e 211 =0.242531 215 =0.242532 | 1.79E-05 p1 = 0.001 e
(i=4,...,20) 0.69 5/0.02 5/0.56 S haw = 3.49E-06
213 =0.242533 214 = 0.242534 076 < PR
=0.242534 =0.242535 . min = LS9
Fr=—4.123106 | 16 Tl /|T3| = 0.04

17 =0.242536
T19 = 0.242538

flz) =

18 = 0.242537
20 =0.242539

—4.123058

Table A.13: Example 7.5n =7,12,20,k = 3
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n start vector approximate solution effort final values
ro = 1525.52  wy = 36242.75
we = 32815.99 w3 = 13815.77
wy = 4020.24 ws; =—6069.15
we = 4758.85 wy = 14737.18
wg = 14112.17  wg = 18346.01
wio= 46544.21 w11= 33868.20 )= 1.15E01
wio= 40881.96 wi3= 14098.55 restarts®8
ro = 1600 r = 1.59E-01
39 Wy = ... = w5 = 0 wy4= 14098.55 wy5= 15506.86 946/39337/7508 hw = 3.20E-05
5 — 3000 w16=—3195.49 wi7= 7344.09 633.58 s/137.58 5/395.34 s B — 2.13E-05
wig= 7793.20 wi9= 13793.60 1429.63 s (o l/|Tn| = 0.90

Wwap= 30348.69
Was= 19024.95
Was= 46345.79
wag= 14621.09
was= 20163.07
w30= 14764.52

wa1= 30674.80
waz= 26004.27
was= 49706.85
war= 17968.50
wag= 19863.05

9 = 15.65

Table A.15: Example DAX1
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non-standard

n || startvector approximate solution effort final values
parameters
ap= 0.612048 restarts? w = 1.28E-05
a1=—0.149279 614/1816/258 r = 2.26E-06
4 20=0 as= 0.045733 - haw = 1.12E-06
0.34s/0.10 8/12.64 s
a3=—0.008533 1791 s ans = 6.53E-09
Coding gain:5.860 |T%|/|Th| = 0.06
ap=0.631895 a,;=—0.198906 i = 1.28E-05
a2=0.107007 a3=-0.065041 restarts2 = 9.17E-07
10 20— 0 a4=0.040580 a5=-—0.024743 1897/8420/923 i b 9 0TE-07
a6=0.014092  a;=-0.007013 8.13'5/3.80 5/286.47 s ; 0 _ 707
ag=0.002653 a9=—0.000539 360.29 s _um:_u\_ﬂ =014
Coding gain:5.943 RIZIER
ap =0.634045 a1 =—0.204803
as =0.115607 a3 =—0.075458 1 68E
ay =0.052038 a5 =—0.036541 restarts:3 "= @.mmm.mw
14 00 ag =0.025579 a7 =—0.017563 2260/13069/911 tiv1 = 0.4p; :ﬁ IH .w.mm_.m-oq
ag =0.011636 a9 =—0.007286 35.335/14.91 5/380.55 s €i+1,1 = 0.38¢; B g.e _ 9.63E-07
a10=0.004175 a;;=-0.002063 509.43 s | Mﬂ_s\_ﬁ_ 020

a12=0.000770

a13=-—0.000154

Coding gain:5.951

Table A.17: Design of perfect reconstruction filter banks - AR(1)-process
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start . . non-standard )
n approximate solution effort final values
vector parameters
= 0.613735 = 1.28E-05
o restarts:1 H
a1=-0.169685 500/1307 /223 r = 1.85E-06
4 || 2°=0 as= 0.072194 0.24'5/0.05 5/0.68 5 - hay = 1.04E-06
az=—0.026933 . Em s . Pmin = 7.28E-07
Coding gain4.884 . |Th|/|Th| = 0.01
=0.632184 =-0.201212
o= “= ju = 1.28E-05
a2=0.110762 a3=-—0.069688 restarts2 - — 8.86E-07
10l w0 —0 a4=0.045660 a5=—0.029877 1581/7906/376 ] @ o w SE07
N a6=0.018947 a;=-0.011254 8.59 5/3.27 5/54.26 S L “wo H SSE-07
as=0.005893  ag=—0.002283 75.95 s | %Sw _.| 0.04
Coding gain:9.869 ISR
ap =0.634205  a; =—0.205603
=0.116862 =-0.077002
2= - . p = 1.9TE-05
a, =0.053742 a5 =—0.038311 restarts:3
Hi+1 = Owts r = 8.74E-07
ull w0—o ag =0.027350 a7 =—0.019287 2022/16278 /473 L 3 1RE07
ag =0.013277 a9 =—0.008806 45.76 $/20.03 5/264.72 S . 097 ! ©o H 6E07
=0.005531 =—0.003198 360.55 s LT e min = ST
@10 g: Tl /|Th| = 0.09

a12=0.001605 a;3=—0.000586
Coding gain:12.868

Table A.19: Design of perfect reconstruction filter banks - lowpass process with box spectrum
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