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Preface

The main topic of this thesis is the examination of the Hadamard product of two
holomorphic functions which can be interpreted as some kind of convolution. There
has been a long line of research devoted to this topic which goes back to Jacques
Hadamard. In his paper “Théorème sur les séries entières” (see [Ha]) he considered
the following question: Given two power series

∑∞
ν=0 aνz

ν and
∑∞

ν=0 bνz
ν , what in-

formation concerning the singularities of the Hadamard product series
∑∞

ν=0 aνbνz
ν

can be obtained from the information about the singularities of the original series?
In the subsequent decades, various famous mathematicians dedicated theirselves
to the improvement and development of this theory (see for example [Bo], [Fa],
[Pol33], for a summary see [Scho]). It turned out to be highly complicated to
formulate sufficient conditions for a point α ∈ C to be a singular point of the
Hadamard product series.

In course of history, the following question moved to the center of the research:
given two functions ϕ and f holomorphic in open sets Ω and U containing the
origin with ϕ(z) =

∑∞
ν=0 ϕνz

ν and f(z) =
∑∞

ν=0 fνz
ν near zero, what is a domain

of holomorphy of the function ϕ ∗ f which is in a neighbourhood of the origin
defined by (ϕ ∗ f)(z) :=

∑∞
ν=0 ϕνfνz

ν and what properties do the function ϕ ∗ f
and the operation “∗” have? The original result of Hadamard can be interpreted
as a first step in this direction for the case that both Ω and U are subsets of the
complex plane and starlike with respect to the origin. In case that the closed
unit disc is contained in Ω ∩ U , the Taylor coefficients ϕν and fν coincide with
the Fourier coefficients of the mappings t 7→ ϕ(eit) and t 7→ f(eit) (t ∈ [0, 2π])
respectively. Therefore the idea is to define the function ϕ ∗ f , under suitable
assumptions, by a certain convolution integral. Müller and in a subsequent paper
Grosse-Erdmann showed that the Hadamard product

(ϕ ∗ f)(z) := (ϕ ∗Ω,U f)(z) :=
1

2πi

∫
Γ

f(ζ)ϕ(
z

ζ
)
dζ

ζ
(z ∈ Ω ∗ U) (1)

(where Γ = Γz is a suitable integration cycle) is an analytic continuation of∑∞
ν=0 ϕνfνz

ν into the set C \
(
(C \ Ω) · (C \ U)

)
(see [Mue92] and [GE]). This
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PREFACE 2

assertion is called the Hadamard multiplication theorem. However, Müller and
Pohlen have shown that under quite general assumptions on the sets Ω and U
being subsets of the Riemann sphere C∞ := C ∪ {∞} (holomorphic functions are
assumed to vanish at ∞ if this point belongs to their domain of holomorphy), the
function ϕ ∗ f defined via the convolution integral (1) is holomorphic in

Ω ∗ U := C∞ \
(
(C∞ \ Ω) · (C∞ \ U)

)
and, if 0 ∈ Ω∩U , the Hadamard multiplication theorem also holds in this context
(see [MP]). It turns out that the sticking point for the transition from plane sets
Ω, U containing the origin to subsets of C∞ not necessarily containing the origin
is to find a concept for a suitable generalization of the integration cycle Γz.

From an alternative point of view, the Hadamard product of two holomorphic
functions can be regarded as a generalization of the well-known Cauchy integral
formula. Indeed, the function Θ(z) := 1/(1 − z) is holomorphic in C∞ \ {1} and
the Cauchy integral formula yields for an arbitrary open set U ⊂ C and for all
functions f holomorphic in U

f(z) =
1

2πi

∫
Γz

f(ζ)

ζ − z
dζ = (Θ ∗ f)(z) (z ∈ U) .

Hence, the Hadamard product can be interpreted as a generalization of this formula
to more general sets Ω ⊂ C∞ and more general functions ϕ ∈ H(Ω).

After a few preliminary remarks, we are going to repeat some properties of the
Hadamard product in Chapter 2. In addition, it will be shown that, under suitable
conditions, the Hadamard product is associative, which is a desirable property but
nevertheless, its proof requires some technical difficulties to be resolved. Based on
the classical Köthe duality, we prove that the dual space H ′(D) (where D ⊂ C is
open) is topologically isomorphic to the space of germs of holomorphic functions on
1/DC in such a way that to every functional u ∈ H ′(D) there exists a unique germ
[(g, U)]1/DC ∈ H(1/DC) such that u(f) = (f ∗D,U g)(1) holds for all f ∈ H(D).

The main part of this thesis is devoted to the examination of the Hadamard con-
volution operator (or Hadamard operator)

Tϕ = Tϕ,U : H(U)→ H(Ω ∗ U), f 7→ ϕ ∗ f

for different sets Ω, U ⊂ C∞ and different functions ϕ ∈ H(Ω). Müller and Pohlen
have shown that this is a linear and continuous operator (where the Fréchet spaces
H(U) and H(Ω ∗ U) are equipped with the topology of locally uniform conver-
gence; see [MP]). We are going to introduce that operator in Chapter 3 and the
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following eigenvalue property will be shown: If K is a compact and convex subset
of the strip {z ∈ C : |Im z| < π} and if ϕ is a non-vanishing function which is
holomorphic in Ω := C∞ \ e−K and if the open set U ⊂ C \ {0} has connected
complement, then the generalized monomials z 7→ exp(α logU z) are eigenfunctions
of the Hadamard operator Tϕ,U . Furthermore, the transposed operator T ′ϕ,U will
be computed for rather general sets Ω and U . It will turn out that T ′ϕ,U is basi-
cally again a Hadamard operator induced by the same function ϕ but, of course,
mapping between the spaces of germs of holomorphic functions on 1/(Ω∗U)C and
1/UC .

This gives rise to the idea to examine the kernel and the range of Hadamard
operators simultaneously because some classical functional analysis yields that
the operator Tϕ,U has dense range if and only if its transpose is injective (see
Chapter 4). Results in this direction have been obtained by Frerick who examined
Hadamard operators for the case ϕ ∈ H(C∞ \ {1}) and gave characterizations
for the surjectivity of Tϕ,U for the case that U ⊂ C is a domain containing the
origin (see [Fre]). Throughout the whole examination of the range of Hadamard
operators, we are going to concentrate on the case that U neither contains the
origin nor the point at infinity. For example, we are going to show that for a
non-vanishing function ϕ which is holomorphic in Ω := C∞ \ e−K , the induced
Hadamard operator Tϕ,U : H(U) → H(Ω ∗ U) has dense range for all open sets
U ⊂ C\{0} having connected complement (if Ω∗U is non-empty). If, more general,
Ω is a domain containing the origin and the point at infinity, then Tϕ,U has dense
range if both U ⊂ C \ {0} is a domain and Ω ∗ U is “small enough”. “Small”
will be specified by a criterion which is based on the maximal density of the non-
vanishing coefficients in the power series expansion of ϕ about zero and infinity.
Finally, Section 4.4 contains sufficient conditions for Tϕ,U to be surjective which
read for the special case 0 6≡ ϕ ∈ H(C∞ \ {1}) as follows: Tϕ,U : H(U)→ H(U) is
surjective for all open sets U ⊂ {z ∈ C : Im z 6= 0 if Re z ≤ 0} such that logU is
convex.

In Chapter 5 we are going to elaborate on the connection of Hadamard opera-
tors and operators defined via the convolution with analytic functionals. If Ω is
again of the form C∞ \ e−K , then those two types of operators coincide modulo a
composition with the exponential function. If the convex support of the analytic
functional is {0}, then the convolution operator coincides with a corresponding
infinite order differential operator with constant coefficients. We are going to put
the surjectivity result for Hadamard operators mentioned above into the research
context of those convolution operators and we are going to give a new proof of
the following result which goes back to Korobĕınik (see [Kor69]): If 0 6≡ Φ is an
entire function of exponential type zero and if G ⊂ C is a convex domain, then
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firstly, the kernel of the infinite order differential operator Φ(D) acting on H(G)
is the closure (in H(G)) of the linear span of the functions z 7→ zkeαz where α is
an m−fold zero of Φ and k ≤ m− 1 and secondly, Φ(D) is surjective. This result,
in turn, allows to improve the surjectivity criterion for Hadamard operators men-
tioned above for the special case ϕ ∈ H(C∞ \ {1}): If 0 6≡ ϕ ∈ H(C∞ \ {1}), then
Tϕ,U : H(U)→ H(U) is surjective for all simply connected sets U ⊂ C \ {0} such
that logU U is convex.

In Chapter 6 we consider a second application for the Hadamard product: the
locally uniform approximation of holomorphic functions on an open set D ⊂ C
by polynomials. The celebrated approximation theorem of Runge states that it is
possible to approximate every function which is holomorphic in D by polynomials
if and only if C∞ \D is connected.

We are going to consider the following question: Given a set Λ ⊂ N0, under which
conditions on the open set D ⊂ C are we able to locally uniformly approximate
every function g ∈ H(D) by polynomials whose powers belong to the set Λ, i. e.
by lacunary polynomials? Results of this kind can be regarded as a generalization
of the approximation theorem of Runge. The well-known theorem of Müntz for
real intervals can be considered as a starting point for lacunary approximation. In
the literature, one can find several results concerning this question, see for example
[An], [AM], [DK], [GLM], [LMM98], [LMM02] and [MR] (for further references see
[GLM]). The proofs of these results are typically based on duality, that is, on the
theorem of Hahn-Banach, which is without any doubt an elegant method of proof
but is intrinsincly non-constructive.

The approach pursued in Chapter 6 relying on a suitable application of the infor-
mation about the range of Hadamard operators yields new proofs of results of this
kind. For example, we give a short proof of a result of Arakelian and Martirosian
(see [AM]) stating that for Λ ⊂ N0 having unit density, it is possible to approx-
imate every function holomorphic in D by polynomials with powers belonging to
Λ for every set D ⊂ C \ {0} with connected complement.

In addition, the approach presented here bears the advantage of establishing the
possibility of obtaining some information about the (geometric) rate of approxima-
tion of a holomorphic function on compact subsets of D by lacunary polynomials.
It will turn out that the definition of the Hadamard product via the convolution
integral (1) allows to derive some information about the rate of approximation by
lacunary polynomials from the rate of approximation by arbitrary polynomials.
The latter quantity has been examined in the literature (see for example [Gai]).
We are going to obtain an upper bound for the geometric rate of approximation
by lacunary polynomials which, in general, can not be improved.



Chapter 1

Notations and preliminaries

In this chapter we want to collect some notations and repeat some well-known
facts. The complex plane C shall be equipped with the euclidian metric and
the extended complex plane (or the Riemann sphere) shall be denoted by C∞ :=
C ∪ {∞} and shall be equipped with the chordal metric. For a set A ⊂ C∞, the
complement with respect to the extended complex plane shall be denoted by AC
and the complement with respect to the complex numbers by C \ A. A∗ shall
denote the set 1/AC := {1/a : a ∈ AC} (where as usual 1/0 :=∞ and 1/∞ := 0).
If ξ ∈ {0,∞} and ξ ∈ A, we denote by Aξ the component of A that contains the
point ξ.

For a point z ∈ C let Re z and Im z denote the real and imaginary part of z.
Furthermore, if z 6= 0, there exist unique numbers r > 0 and t ∈ [−π, π) such that
z = reit. We write arg z := t.

A set Ω ⊂ C∞ is open if and only if either Ω is open in C or ∞ ∈ Ω and ΩC is
compact in C. If the point at infinity belongs to an open set Ω ⊂ C∞, then there
exists a number R ≥ 0 such that {z ∈ C : |z| > R} ⊂ Ω.

A non-empty, open and connected set G ⊂ C∞ is called a domain. We note that
G ⊂ C∞ is a domain if and only if G ∩C is connected in C. Furthermore, we call
a set A ⊂ C∞ simply connected, if both A and AC are connected.

For the sake of abbreviation we introduce some notations for special sets. We set

5
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for 0 ≤ r < R ≤ ∞ and z0 ∈ C

Dr := {z ∈ C : |z| < r} ,
Tr := {z ∈ C : |z| = r} ,

Ur(z0) := {z ∈ C : |z − z0| < r} ,
Ur(∞) := {z ∈ C : |z| > r} ∪ {∞} ,
Vr,R := {z ∈ C : r < |z| < R}

and especially D := D1 and T := T1.

Finally we set for a continuous function f on a compact set K ⊂ C

‖f‖K := ‖f‖K,∞ := max
z∈K
|f(z)| .

This is a norm on the space C(K) := {f : K → C : f continuous} and C(K) is a
Banach space with respect to this norm.

In the following, we will often use enumerations Λ = {zn : n ∈ N} of countable
sets Λ ⊂ C without finite accumulation point (for example the set of zeros of
an entire function). If not stated otherwise, we assume that the elements zn are
numbered in order of increasing modulus (if there are finitely many elements of
the same modulus, the numbering among them is of no relevance). The same shall
be assumed while considering sequences (zn)n∈N ∈ CN without finite accumulation
point.

1.1 Cauchy cycles and the Cauchy integral formula

In this section we introduce the concept of integration over cycles and formulate
a version of the Cauchy integral formula. We follow the presentation in [Ru].

Definition 1.1 :

1. Let a, b ∈ R with a < b. A piecewise continuously differentiable map γ :
[a, b] → C is called path. Its range γ([a, b]) will be denoted by |γ| and is
called trace. γ is called closed, if γ(a) = γ(b). Finally we set γ−(t) :=
γ(a+ b− t) (t ∈ [a, b]).

Let n ∈ N and aj, bj ∈ R with aj < bj, γj : [aj, bj] → C be closed paths (j ∈
{1, . . . , n}) and Γ := (γ1, . . . , γn).
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2. The tuple Γ is called a cycle and the trace of Γ is the union of all traces |γj|,
that means |Γ| :=

n⋃
j=1

|γj|. The cycle (γ−1 , . . . , γ
−
n ) is denoted by Γ−.

3. For a continuous function f : |Γ| → C, the integral of f over Γ is defined by∫
Γ

f(ζ) dζ :=
n∑
j=1

∫
γj

f(ζ) dζ .

4. The number

L(Γ) :=
n∑
j=1

∫ bj

aj

|γ′j(t)| dt

is called the length of Γ.

5. The number
indΓ(z) :=

1

2πi

∫
Γ

1

ζ − z
dζ (z ∈ C \ |Γ|)

is called index of z with respect to Γ. Furthermore, we define

indΓ(∞) := 0 .

Remark 1.2 :
Let Γ = (γ1, . . . , γn) be a cycle.

1. For every f ∈ C(|Γ|) we have∫
Γ−
f(ζ) dζ = −

∫
Γ

f(ζ) dζ .

2. (a) For all z ∈ C∞ \ |Γ| we have indΓ(z) ∈ Z.
(b) If G is a component of C∞ \ |Γ|, then indΓ is constant on G.

3. If 0 6∈ |Γ|, then 1/Γ := (1/γ1, . . . , 1/γn) is also a cycle with (1/Γ)− = 1/(Γ−)
and |1/Γ| = 1/|Γ|.
Furthermore we obtain for all z ∈ C \

(
(1/|Γ|) ∪ {0}

)
ind1/Γ(z) = − 1

2πi

∫
Γ

1

1/ζ − z
1

ζ2
dζ

=
1

2πi

∫
Γ

z

ζz − 1
dζ − 1

2πi

∫
Γ

dζ

ζ

= indΓ(1/z)− indΓ(0)
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and
ind1/Γ(0) = −indΓ(0) .1

4. The fact that |Γ| ⊂ U for some set U ⊂ C∞ shall briefly be referred to as Γ
is a cycle in U .

In the following, we will sometimes be concerned with integrals over circles and
introduce the following notation: for z0 ∈ C and r > 0 we define

τr(z0) : [0, 2π]→ C, t 7→ z0 + reit

and especially τr := τr(0).

The following result is a general version of Cauchy’s integral formula (see [Ru, Th.
10.35]).

Theorem 1.3 :
Let U ⊂ C be open and let f be holomorphic in U . If Γ is a cycle in U such that

indΓ(z) = 0 (z ∈ C \ U) ,

then the following version of Cauchy’s integral formula is valid:

f(z) · indΓ(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ (z ∈ U \ |Γ|)

and ∫
Γ

f(ζ) dζ = 0 .

If Γ1 and Γ2 are cycles in U such that

indΓ1(z) = indΓ2(z) (z ∈ C \ U) ,

then ∫
Γ1

f(ζ) dζ =

∫
Γ2

f(ζ) dζ .

In the following definition, we introduce a special kind of cycles which will be of
high relevance in the following (see [MP, Def. 2.2]). The concept of Cauchy cycles
is suitable to assure concise formulation in various occasions.

1See also [Po, L. 2.2.2].
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Definition 1.4 :
Let U ⊂ C∞ be open and let K ⊂ U be compact with ∞ 6∈ K. A cycle Γ in
U \ (K ∪ {0,∞}) with

indΓ(z) =

{
1 , for all z ∈ K
0 , for all z ∈ C∞ \ U

,

is called a Cauchy cycle for K in U .

The following result ensures the existence of Cauchy cycles (see [Ru, Th. 13.5]2).

Proposition 1.5 :
Let U ⊂ C∞ be open and let K ⊂ U be compact with ∞ 6∈ K. Then there exists
a Cauchy cycle Γ for K in U and Cauchy’s integral formula

f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ

holds for all f ∈ H(U) and for all z ∈ K.

1.2 The space H(Ω) and its dual space

The purpose of this section is to get familiar with the spaceH(Ω) of functions which
are holomorphic in an open set Ω ⊂ C∞ and its dual space (H(Ω))′ =: H ′(Ω).
Since we are interested in the representation of H ′(Ω) established by Köthe, we
also introduce the concept of germs of holomorphic functions (see [Koe, Ch. 27],
[Mori, Ch. 1.5]).

Definition 1.6 :
Let Ω ⊂ C∞ be open.

1. We denote byH(Ω) the space of all functions holomorphic in Ω and vanishing
at∞ (if∞ ∈ Ω), endowed with the topology of locally uniform convergence.
In doing so, a function f(z) is called holomorphic at the point at infinity if
f(z−1) is holomorphic at the origin. H(Ω) is a Fréchet space.

2In the textbook of Rudin, this result is shown for sets U ⊂ C. However, it can easily be
generalized to the case U ⊂ C∞.
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2. We denote by H∞(Ω) the space of all functions f ∈ H(Ω) which are bounded
on Ω, endowed with the norm ‖f‖Ω := sup

z∈Ω
|f(z)|. (H∞(Ω), ‖·‖Ω) is a Banach

space.

3. Let K ⊂ C be compact. We denote by H(K) the space of all functions
f ∈ C(K) such that there exists an open setO ⊃ K and a function F ∈ H(O)
such that F |K = f .

4. Let B ⊂ C∞. We consider the set

MB := {(f, U) : U ⊃ B open, f ∈ H(U)}

and define the following relation on it: (f, U) ∼B (f̃ , Ũ) if and only if f = f̃
on an open set W with B ⊂ W ⊂ U ∩ Ũ . This relation is clearly an
equivalence relation and the corresponding quotient space H(B) := MB/ ∼B
is called the space of germs of holomorphic functions on B. The notation
for an element of this space is [(f, U)]∼B =: [(f, U)]B.3

Remark 1.7 :
Let Ω ⊂ C∞ be open. If 0 ∈ Ω, then it is well-known that ϕ ∈ H(Ω) can for all z
of small modulus be represented by the power series expansion ϕ(z) =

∑∞
ν=0 ϕνz

ν

where

ϕν :=
ϕ(ν)(0)

ν!
=

1

2πi

∫
τr

ϕ(ζ)

ζν+1
dζ (ν ∈ N0)

with an arbitrary 0 < r < sup{t > 0 : Dt ⊂ Ω}. We set

Λ+
ϕ := {ν ∈ N0 : ϕν 6= 0}

and for a given set Λ ⊂ N0

HΛ(Ω) := {f ∈ H(Ω) : Λ+
f ⊂ Λ} .

If ∞ ∈ Ω, we already stated that there is an R ≥ 0 such that UR(∞) ⊂ Ω. Then
the Laurent series expansion of ϕ ∈ H(Ω) in UR(∞) implies that for all z of large
modulus ϕ can be represented by the series expansion ϕ(z) =

∑∞
ν=1 ϕ−νz

−ν where

ϕ−ν :=
1

2πi

∫
τr

ϕ(ζ) · ζν−1 dζ (ν ∈ N)

with an arbitrary R < r <∞. We call the above series expansion the power series
expansion of ϕ about infinity. We set

Λ−ϕ := {ν ∈ N : ϕ−ν 6= 0}
3We will adress the issue of the topology on H(B) in Remark 1.11.
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and for a given set Λ′ ⊂ N

H∞,Λ′(Ω) := {f ∈ H(Ω) : Λ−f ⊂ Λ′} .

If both 0 and ∞ belong to Ω, then we set Λϕ := Λ+
ϕ ∪ (−Λ−ϕ ) (⊂ Z).

Before we examine spaces of germs of holomorphic functions in some more detail,
we introduce the notion of the hull of a set with respect to another set and some
simple properties according to [LR, p. 84]:

Definition 1.8 :
Let Ω ⊂ C∞ and M ⊂ Ω. The set hΩ(M) which is defined as the union of M with
all those components of MC which lie entirely in Ω is called the hull of M with
respect to Ω.

Remark 1.9 :
Let Ω ⊂ C∞ and M ⊂ Ω.

1. It is clear that hΩ(M) is a subset of Ω.

2. If ΩC is connected, then hΩ(M) is the smallest superset ofM with connected
complement.

3. If M is closed, then hΩ(M) is closed (and hence compact in C∞) because it
is the complement in C∞ of the open set consisting of all those components
of MC which intersect ΩC . It is clear that if M ⊂ Ω ⊂ C and M is compact
in C, then hΩ(M) is also compact in C.

Definition 1.10 :
Let Ω ⊂ C∞ be open. We call a sequence (Kn)n∈N of compact subsets of Ω a
standard exhaustion, if the following conditions are satisfied:

1. K◦1 6= ∅ and ξ ∈ K◦1 if ξ ∈ Ω (ξ ∈ {0,∞}).

2. Kn ⊂ K◦n+1 (n ∈ N) and Ω =
⋃
n∈N

Kn.

3. hΩ(Kn) = Kn (n ∈ N).

Such a standard exhaustion always exists and can be constructed using [Ru, Th.
13.3].
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Remark 1.11 :
Let Ω ⊂ C∞ be open and let (Kn)n∈N be a standard exhaustion of Ω. We now
turn towards the space H(ΩC) of germs of holomorphic functions on ΩC .

For n ∈ N, the map rn : H∞(KC
n ) → H(ΩC), f 7→ [(f,KC

n )]ΩC is injective. To
see this, let f, g ∈ H∞(KC

n ) such that [(f,KC
n )]ΩC = [(g,KC

n )]ΩC . This means that
(f,KC

n ) ∼ΩC (g,KC
n ) and there exists an open set W with ΩC ⊂ W ⊂ KC

n and
f = g on W . According to condition 3 for standard exhaustions, every component
D of KC

n contains at least one point of ΩC so that W ∩ D 6= ∅ (and open). By
the identity theorem (applied to each component D of KC

n separately), we obtain
f = g.

Hence, we can identify each f ∈ H∞(KC
n ) with the corresponding germ

[(f,KC
n )]ΩC ∈ H(ΩC) and consider the Banach space H∞(KC

n ) as a subspace of
H(ΩC). Together with condition 2 for standard exhaustions we obtain

H(ΩC) =
⋃
n∈N

H∞(KC
n ) .4

Since (1/Kn)n∈N is a standard exhaustion of 1/Ω, by the same arguments as above
we obtain

H(Ω∗) =
⋃
n∈N

H∞(K∗n) .5

By means of a certain space of germs of holomorphic functions, one can give a
useful representation for the dual of the space of holomorphic functions in an open
set which goes back to Köthe (see [Koe, Ch. 27]). We recall the general definition
of dual spaces and subsequently, we formulate a version of the Köthe duality which
can be found in [GE, p. 107].

Definition 1.12 :
Let E and F be locally convex spaces over K ∈ {R,C}. We define

L(E,F ) := {T : E → F : T is linear and continuous} ,
E ′ := L(E,K) .

4This equality does not only hold in an algebraical sense. From a topological point of view,
the union of the Banach spaces H∞(KC

n ) shall be interpreted as an abbreviation for the inductive
limit of the Banach spaces H∞(KC

n ). Therefore H(ΩC) is considered to be equipped with the
resulting inductive limit topology. This topology is independent of the choice of the standard
exhaustion Kn (see [Koe, Ch. 27.4]).

5Again, H(Ω∗) is considered to carry the inductive limit topology of the Banach spaces
H∞(K∗n).
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E ′ is called the dual space of E and shall be equipped with the strong topology.6

Theorem 1.13 :
Let D ⊂ C be open. The dual of the space H(D) is topologically isomorphic to
the space H(DC) in such a way that to every functional u ∈ H ′(D) there exists a
unique germ [(g, V )]DC ∈ H(DC) such that

u(f) =
1

2πi

∫
Γ

f(ζ)g(ζ) dζ (f ∈ H(D)) , (1.1)

where Γ is a Cauchy cycle for V C in D.

Remark 1.14 :
The Cauchy integral formula (see Theorem 1.3) assures that the value of the inte-
gral in (1.1) does not change while using another representative (g̃, Ṽ ) of [(g, V )]DC
or integrating over another Cauchy cycle Γ̃ for V C in D.

6The strong topology is the topology of uniform convergence on bounded subsets of E, i. e.
x′n → x′ (n→∞) in E′ with respect to the strong topology if and only if supx∈B |x′n(x)−x′(x)| →
0 (n → ∞) for all bounded sets B ⊂ E. The strong topology is thus induced by the system of
seminorms {pB : B ⊂ E bounded} where pB(x′) = sup

x∈B
|x′(x)| (x′ ∈ E′) (see [Yos, p. 110 f.]).



Chapter 2

The Hadamard product of
holomorphic functions

In this chapter we introduce the Hadamard product of holomorphic functions
whose examination is the main purpose of this thesis. In Section 2.1 we are going
to deal with the star product of sets which is important for the definition of the
Hadamard product in Section 2.2. The main result formulated in Section 2.3 is an
associative law which is not only of interest by itself but which will also be required
in the following. We conclude the chapter by giving an alternative representation
of the dual space of H(D) (where D ⊂ C is open) by means of the Hadamard
product.

However, we start this chapter by introducing some further notations. In the
following we will often be concerned with the multiplication of numbers in C∞.
Therefore, we agree upon some arithmetic operations with the point at infinity by
setting

z · ∞ :=∞ · z :=∞ (z ∈ C∞ \ {0}) ,
z/∞ := 0 (z ∈ C) ,

z/0 :=∞ (z ∈ C∞ \ {0}) .

All other arithmetic operations remain undefined (especially the term 0 ·∞ which
is why we have to pay special attention to this term).

For non-empty sets A,B ⊂ C∞ we consider the algebraic product A · B := {a ·
b : a ∈ A, b ∈ B}. According to the conventions concerning the point at infinity
mentioned above, the algebraic product is defined if (0,∞), (∞, 0) 6∈ A × B. For

14
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the empty set we define A · ∅ := ∅ · A := ∅ · ∅ := ∅. Finally we set 1/A := A−1 :=
{1/a : a ∈ A} and 1/∅ := ∅. If A ·B is defined, it is compact if both A and B are
compact.

For −1 ≤ γ < δ ≤ 1 we define the set

Sγ,δ := {z ∈ C \ {0} : γπ < arg z < δπ}

and for 0 < α ≤ 1 we define Sα := S−α,α. Finally, we set S := S1 and V := log S =
{z ∈ C : |Im z| < π}. Then S is the standard cut plane C \ (−∞, 0] and if not
stated otherwise, throughout this thesis, log shall denote the principal branch of
the logarithm in S.

A sector of opening α ∈ (0, 1] shall be a set which can be transformed via rotation
into the sector Sα. A cone of opening α ∈ (0, 1] shall be a set which can be
transformed via rotation into the set Sα.

Finally, for K ⊂ C we set DK := C∞ \ e−K and for δ ≥ 0 we set Kδ := iπ[−δ, δ].

2.1 The star product of sets

As already mentioned above, the investigation of the Hadamard product of holo-
morphic functions is one of the key subjects examined in this thesis. First of all,
we are going to define the star product of sets A1, A2 ⊂ C∞ which will occur
throughout the whole framework (see [MP, p. 259]).

Definition 2.1 :
The star product of two sets A1, A2 ⊂ C∞ is given by

A1 ∗ A2 :=
(
AC1 · AC2

)C
.

The sets A1, A2 are called star-eligible if A1∗A2 is defined (that means 0 ·∞ should
not appear) and non-empty. Furthermore, for A ⊂ C∞ we set A∗ := 1/AC .

Remark 2.2 :
It is clear that as long as both the origin and the point at infinity belong to one of
the sets A1 or A2, the star product is at least defined. Star-eligibility then means
that A1 ∗ A2 is not the empty set.
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Example 2.3 :

1. Let A1, A2 ⊂ C∞ be star-eligible. If 1 6∈ A1, then we have

A1 ∗ A2 ⊂ A2

and especially
(C∞ \ {1}) ∗ A = A

for an arbitrary set A ⊂ C∞.

2. Let A1, A2, A3 ⊂ C∞. Then

A1 ∗ (A2 ∗ A3) = (A1 ∗ A2) ∗ A3 =: A1 ∗ A2 ∗ A3

(if all occuring sets are defined).

3. For −1 < γ ≤ δ < 1 we consider the set Bγ,δ := {z ∈ T : γπ ≤ arg z ≤ δπ}.
Let now 0 < α ≤ 1 and −1 < γ ≤ 0 ≤ δ < 1 be given. Firstly we note that
the star product (C∞ \ Bγ,δ) ∗ Sα is defined and the assumption 0 ∈ [γ, δ]
implies that 1 ∈ Bγ,δ so that part 1. yields that (C∞ \ Bγ,δ) ∗ Sα is a subset
of Sα.

Furthermore, the set C∞ \Bγ,δ and the sector Sα are star-eligible if and only
if 2α > δ − γ and in this case we have

(C∞ \Bγ,δ) ∗ Sα = Sδ−α,α+γ .

Hence, (C∞ \Bγ,δ) ∗ Sα is a sector of opening α + (γ − δ)/2 > 0.

If in particular, γ = −δ, then C∞ \B−δ,δ = DKδ and therefore

DKδ ∗ Sα = Sδ−α,α−δ = Sα−δ .

If 0 6∈ [γ, δ], then the geometry remains the same except for some rotation and
it is clear that still, C∞\Bγ,δ and Sα are star-eligible if and only if 2α > δ−γ
and in this case the star product is a sector of opening α + (γ − δ)/2 > 0.

4. More general, we consider a compact and connected set K ⊂ V intersecting
the real axis and set

γ := ( min
z∈−K

Im z)/π and δ := (max
z∈−K

Im z)/π .

Then we have −1 < γ ≤ 0 ≤ δ < 1 and for a given number 0 < α ≤ 1 with
2α > δ − γ we obtain

DK ∗ Sα = (C∞ \Bγ,δ) ∗ Sα = Sδ−α,α+γ



CHAPTER 2. THE HADAMARD PRODUCT 17

and especially
DK ∗ S = Sδ−1,1+γ .

If in particular, K = I × iπ[−1 + η, 1 − η] for some compact real interval I
(which may reduce to a point) and 0 < η ≤ 1, i. e. γ = −1 + η, δ = 1− η,
we have

DK ∗ S = Sη .

Again, if K does not intersect the real axis, the geometry remains the same
except for some rotation and it is clear that still, DK ∗ Sα is a sector of
opening α + (γ − δ)/2 > 0.

5. For K,L ⊂ C we obtain

DK = (eK)∗, DK ∗DL = DK+L .

6. Let Ω ( C∞ be open with {0,∞} ⊂ Ω. Let furthermore 0 ≤ r < R ≤ ∞.
Then

DR ∗ Ω = DR·min{|w|: w∈ΩC} ,

Ur(∞) ∗ Ω = Ur·max{|w|: w∈ΩC}(∞) .

Consequently, Vr,R and Ω are star-eligible if and only if

r

R
<

min{|w| : w ∈ ΩC}
max{|w| : w ∈ ΩC}

and in this case we obtain

Vr,R ∗ Ω = Vr·max{|w|: w∈ΩC},R·min{|w|: w∈ΩC} .

Remark 2.4 :
It is obvious that for sets A,A1, A2 ⊂ C∞ the following is valid:

0 ∈ A∗ if and only if ∞ 6∈ A and ∞ ∈ A∗ if and only if 0 6∈ A. Additionally, we
have A1 ⊂ A∗2 if and only if A∗1 ⊃ A2.

Furthermore, A1 and A2 are star-eligible if and only if 1/A1 and 1/A2 are star-
eligible and

1

A1

∗ 1

A2

=
1

A1 ∗ A2

.

In the next proposition, we note some further properties of the star product (see
[MP, Th. 2.1], [Po, Prop. 1.3.15]).
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Proposition 2.5 :
Let Ω, U ⊂ C∞ be star-eligible, ξ ∈ {0,∞} and S ⊂ C∞ such that S ·Ω∗ is defined.
Then the following are valid:

1. Ω ∗ U = U ∗ Ω.

2. ξ ∈ Ω ∗ U if and only if ξ ∈ Ω ∩ U .

3. S ⊂ Ω ∗ U if and only if S · Ω∗ ⊂ U .

4. If in addition Ω and U are open, then so is Ω ∗ U .

5. If in addition Ω is open and S ⊂ Ω ∗ U is compact, then S ·Ω∗ is a compact
subset of U .

6. If ξ 6∈ U and UC is connected, then (Ω ∗ U)C is connected, too.

Remark 2.6 :
We have a closer look at parts 3 and 6 of Proposition 2.5.

1. By setting

Ω := DK1/4
, S := S1/4 \ {1}, , U := S · Ω∗ = S1/2

we obtain Ω ∗ U = S1/4. This shows, with regard to Proposition 2.5.3, that
in general, S is a proper subset of Ω ∗ U even if S · Ω∗ equals U .
However, there are cases in which Ω ∗ U = S as Proposition 4.32 will show.

2. By setting
Ω := C∞ \ [1, 2], U := S ∪ (−2,−1)

we obtain Ω ∗ U = S1. This shows that the inversion of Proposition 2.5.6 is
in general false.

Remark 2.7 :

1. The star product of two connected sets does not need to be connected again:

By setting
Ω := U := DK1/2

we obtain with Example 2.3.5 that Ω ∗ U = DK1 = C∞ \ T which is not
connected (see also [Po, Ex. 1.3.14]).
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2. Let Ω, U ⊂ C∞ be open and star-eligible and ξ ∈ {0,∞}. If ξ ∈ Ω∩U , then
(Ω ∗ U)ξ = (Ωξ ∗ Uξ)ξ.1

To show this, we note that the set

(Ω ∗ U)ξ · Ω∗ =
⋃
ω∈Ω∗

(Ω ∗ U)ξ · ω

is as a union over connected sets which contain ξ itself connected and contai-
ning ξ. Furthermore, it is a subset of U (see Proposition 2.5.3) and therefore
also of Uξ. Applying again Proposition 2.5.3, we obtain (Ω ∗ U)ξ ⊂ Ω ∗ Uξ
and hence (Ω ∗ U)ξ ⊂ (Ω ∗ Uξ)ξ. The opposite inclusion is clear so that
(Ω ∗ U)ξ = (Ω ∗ Uξ)ξ. By interchanging the roles of Ω and U we obtain
(Ω ∗ U)ξ = (Ωξ ∗ Uξ)ξ.
A first consequence is that if ξ ∈ Ω∩U and we assume Ω∗U to be connected,
then we can without loss of generality also assume Ω and U to be connected,
since Ω ∗ U = (Ω ∗ U)ξ = (Ωξ ∗ Uξ)ξ.
A second consequence is that if {0,∞} ⊂ Ω∩U and if we assume that 0 and
∞ belong to different components of one of the sets Ω or U , then they belong
to different components of Ω ∗ U . This is clear since (note that ∞ ∈ ΩC

0 or
UC

0 respectively)

∞ ∈
((

(ΩC
0 · UC

0 )C
)

0

)C
= (
(
(Ω0 ∗ U0)0

)C
=
(
(Ω ∗ U)0

)C
.

2.2 Definition and basic properties of the Hadamard
product

Before we can define the Hadamard product of holomorphic functions, we return
again to cycles and introduce new types of cycles that serve, besides Cauchy cycles,
as paths of integration in the definition of the Hadamard product (see [MP, Def.
2.2]).

Definition 2.8 :
Let U ⊂ C∞ be open with ∞ ∈ U and let K ⊂ U be compact. A cycle Γ in
U \ (K ∪ {0,∞}) with

indΓ(z) =

{
0 , for all z ∈ K
−1 , for all z ∈ C∞ \ U

,

1See also [GE, p. 104] for the case Ω, U ⊂ C and ξ = 0.



CHAPTER 2. THE HADAMARD PRODUCT 20

is called an anti-Cauchy cycle for K in U .

The concept of Hadamard cycles constitutes a synthesis of Cauchy and anti-Cauchy
cycles (see [MP, Def. 2.3]).

Definition 2.9 :
Let Ω, U ⊂ C∞ be open and star-eligible, and let z ∈ Ω ∗ U . Furthermore, let Γ
be a cycle in U \ ((z · Ω∗) ∪ {0,∞}) with the following property:

1. If 0 ∈ Ω ∩ U and z = 0, let Γ be a Cauchy cycle for {0} in U .

2. If ∞ ∈ Ω ∩ U and z =∞, let Γ be an anti-Cauchy cycle for {∞} in U .

3. If z 6= 0 and z 6=∞, let Γ be

(a) a Cauchy cycle for z · Ω∗ in U with indΓ(0) = 1 if 0 ∈ Ω ∩ U and
∞ 6∈ Ω ∩ U ,

(b) an anti-Cauchy cycle for z ·Ω∗ in U with indΓ(0) = −1 if 0 6∈ Ω∩U and
∞ ∈ Ω ∩ U ,

(c) a Cauchy cycle for z ·Ω∗ in U with indΓ(0) = 1 or an anti-Cauchy cycle
for z · Ω∗ in U with indΓ(0) = −1 if {0,∞} ⊂ Ω ∩ U ,

(d) a Cauchy cycle for z · Ω∗ in U if {0,∞} ⊂ Ω \ U ,
(e) an anti-Cauchy cycle for z · Ω∗ in U if {0,∞} ⊂ U \ Ω.

Then Γ is called a Hadamard cycle for z · Ω∗ in U . If this holds for all z ∈ K,
where K is a compact subset of Ω∗U , then Γ is called a Hadamard cycle for K ·Ω∗
in U .

Analogously to the case of Cauchy cycles, we have to ensure the existence of anti-
Cauchy and Hadamard cycles (see [MP, L. 3.1.2, Th. 2.4]).

Proposition 2.10 :
Let Ω, U ⊂ C∞ be open and star-eligible and let K ⊂ Ω ∗ U be compact. Then
the following are valid:

1. If ∞ ∈ U , then there exists an anti-Cauchy cycle for K · Ω∗ in U .

2. If K ∩{0,∞} 6= {0,∞}, then there exists a Hadamard cycle for K ·Ω∗ in U .
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The following definition introduces the notion of the Hadamard product of two
holomorphic functions as in [MP, Def. 2.6].

Definition 2.11 :
Let Ω, U ⊂ C∞ be open and star-eligible, ϕ ∈ H(Ω) and f ∈ H(U). The function
ϕ ∗ f : Ω ∗ U → C defined by

(ϕ ∗ f)(z) :=
1

2πi

∫
Γ

f(ζ)ϕ(
z

ζ
)
dζ

ζ
(z ∈ Ω ∗ U)

where Γ = Γz is a Hadamard cycle for z ·Ω∗ in U , is called the Hadamard product
of ϕ and f .

Remark 2.12 :

1. Concerning the choice of the integration cycle Γ in Definition 2.11, it is
important to note two things: even if it is suppressed in the notation, Γ
depends on z and the value of the integral does not change when choosing
another Hadamard cycle Γ̃ for z · Ω∗ in U (see [MP, Th. 2.5]). Hence, the
function ϕ ∗ f is well defined.

2. The Hadamard product is some kind of convolution of the functions ϕ and f .
Later it will become clear why the name Hadamard product is appropriate
for this convolution (see Remark 2.15).

3. Müller and Pohlen use in [MP] the notation ϕ ∗Ω,U f in order to specify
the underlying sets. Because we don not want to overload the notation, we
only use this notation if we want to stress the sets. The following so-called
compatibility theorem from [MP, Th. 2.7] admits this procedure.

Theorem 2.13 :
Let Ω, U ⊂ C∞ as well as D1 ⊂ Ω, D2 ⊂ U be open and star-eligible, ϕ ∈ H(Ω)
and f ∈ H(U). Then

(ϕ ∗Ω,U f)|D1∗D2 = (ϕ|D1) ∗D1,D2 (f |D2) .

In the next theorem, we list some further properties of the Hadamard product (see
[MP, Th. 2.9, Th. 2.10]).

Theorem 2.14 :
Let Ω, U ⊂ C∞ be open and star-eligible, ϕ ∈ H(Ω) and f ∈ H(U). Then the
following assertions hold:



CHAPTER 2. THE HADAMARD PRODUCT 22

1. ϕ ∗ f ∈ H(Ω ∗ U).

2. ϕ ∗ f = f ∗ ϕ.

3. (Hadamard multiplication theorem, I)

If 0 ∈ Ω ∩ U and ϕ(z) =
∞∑
ν=0

ϕνz
ν , f(z) =

∞∑
ν=0

fνz
ν near the origin, then we

have

(ϕ ∗ f)(z) =
∞∑
ν=0

ϕνfνz
ν (2.1)

for all z ∈ Dr with r := sup{t > 0 : Dt ⊂ Ω ∗ U}.

4. (Hadamard multiplication theorem, II)

If ∞ ∈ Ω ∩ U and ϕ(z) =
∞∑
ν=1

ϕ−νz
−ν , f(z) =

∞∑
ν=1

f−νz
−ν near the point at

infinity, then we have

(ϕ ∗ f)(z) = −
∞∑
ν=1

ϕ−νf−νz
−ν

for all z ∈ Ud(∞) with d := inf{t > 0 : Ut(∞) ⊂ Ω ∗ U}.

Remark 2.15 :
As we already stated in the introduction, the right-hand side of Equation (2.1)
is called the Hadamard product of the power series expansions of ϕ and f . The
Hadamard multiplication theorem then states that the power series expansion
of ϕ ∗ f about zero coincides with the Hadamard product of the power series
expansions of ϕ and f about zero. This means that ϕ∗f is the analytic continuation
of
∑∞

ν=0 ϕνfνz
ν to the set Ω∗U . Therefore the convolution ϕ∗f is called Hadamard

product.

In the following example we reveal the relation between the Hadamard product
and the Cauchy integral formula.

Example 2.16 :
Let Θ(z) := 1/(1−z) (z ∈ C∞ \{1}) and let U ⊂ C be open and f ∈ H(U). Then
we have for all z ∈ U \ {0}

Θ ∗ f(z) =
1

2πi

∫
Γ

1

1− z/ζ
f(ζ)

dζ

ζ

= f(z)
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where according to Definition 2.9 the cycle Γz can be chosen as

Γz =

{
τr(z) , if 0 6∈ U
(τr(z), τr′) , if 0 ∈ U ,

with 0 < r, r′ sufficiently small. The last identity above follows from the Cauchy
integral formula noting that in case 0 ∈ U , the cycle τr′ does not change the value
of the integral because the integrand in holomorphic in a neighbourhood of the
origin and τr′ is a closed path. Obviously, the above identity also holds for z = 0
(if 0 ∈ U).

Hence, the Hadamard product can be regarded as a generalization of the Cauchy
integral formula from Θ ∈ H(C∞ \ {1}) to ϕ ∈ H(Ω).

In the next example we show what the Hadamard product of an arbitrary func-
tion with some very specific kind of function looks like (see [Po, Ex. 3.4.6, Ex.
3.4.7]). This example will be crucial for the application of the Hadamard product
in approximation theory.

Example 2.17 :
Let Ω ⊂ C∞ be open with {0,∞} ⊂ Ω and let ϕ ∈ H(Ω). Let furthermore ν ∈ Z
and U ⊂ C∞ be open and star-eligible to Ω with ∞ 6∈ U in case ν ≥ 0 and 0 6∈ U
in case ν < 0. Then the functions pν,U(z) := zν (z ∈ U) are holomorphic in U and

ϕ ∗ pν,U = sign(ν)ϕν · pν,Ω∗U .

In Theorem 3.7 we are going to transfer this property on the one hand to a more
specific class of sets Ω and U but on the other hand to more general monomials
pα,U .

Remark 2.18 :
The assertion of Example 2.17 could, at first glance, seem as a triviality. That is,
if ν ≥ 0 and U ⊂ C is a domain containing the origin, then the assertion is indeed
clear by means of the respective power series expansions about 0 and Theorem
2.14.3. However, this statement is also true if 0 6∈ U or, if U is not connected, for
those components of U that do not contain the origin even though we do not have
a power series expansion about zero of the function pν,U in that case.

A similar remark applies to the case ν < 0 and U ⊂ C∞ \ {0}.
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2.3 Further properties of the Hadamard product

In the following, we list some further properties of the Hadamard product which
will be useful in the rest of the thesis.

Remark 2.19 :
Let Ω, U ⊂ C∞ be open and star-eligible. Then for every a ∈ C\{0} the following
is valid:

Ω ∗ (a · U) = (a · Ω) ∗ U = a · (Ω ∗ U), (a · Ω)∗ = a−1 · Ω∗ .

This follows immediately from Definition 2.1 and the fact that (a ·B)C = a · (BC)
for an arbitrary subset B of C∞.

Furthermore, for an open set D ⊂ C∞, the transformation

H(D) 3 h 7→ h̃ ∈ H(a ·D) with h̃(w) = h(w/a) (w ∈ a ·D)

is an isomorphism (and h(z) = h̃(az) (z ∈ D)).

If we are given functions ϕ ∈ H(Ω) and f ∈ H(U) we obtain for all w ∈ a · Ω ∗ U

ϕ ∗Ω,U f(w/a) = ϕ̃ ∗a·Ω,U f(w) = ϕ ∗Ω,a·U f̃(w) . (2.2)

Furthermore, for fn ∈ H(U) (n ∈ N) and g ∈ H(Ω ∗ U) the following is valid:

If ϕ ∗Ω,a·U f̃n → g̃ (n → ∞) or ϕ̃ ∗a·Ω,U fn → g̃ (n → ∞) locally uniformly on
a · Ω ∗ U , then ϕ ∗Ω,U fn → g (n→∞) locally uniformly on Ω ∗ U .

Proposition 2.20 :
Let Ω, U ⊂ C∞ be open and star-eligible, ϕ ∈ H(Ω) and f ∈ H(U). If Ω = −Ω,
then Ω ∗ U = −Ω ∗ U and if ϕ is an even (odd) function, then so is ϕ ∗ f .

Proof: Remark 2.19 yields −Ω ∗ U = Ω ∗ U .

Furthermore, we obtain with Equation (2.2) (a = −1) in the case that ϕ is even
ϕ ∗ f(−z) = ϕ ∗ f(z) (z ∈ Ω ∗ U). In the case that ϕ is odd we also use Equation
(2.2) (a = −1) and the obvious fact that (α · ϕ) ∗ f = α · (ϕ ∗ f) for all α ∈ C to
obtain that ϕ ∗ f(−z) = −ϕ ∗ f(z) (z ∈ Ω ∗ U). �
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Remark 2.21 :

1. Let Ω ⊂ C∞ be open. We consider the map

U : H(Ω)→ H(1/Ω), Uϕ(z) :=

{
−1

z
ϕ(

1

z
) , z ∈ (1/Ω) \ {0}

−ϕ−1 , z = 0 (if 0 ∈ 1/Ω)
.

Then one easily verifies that this map is well defined and even a topological
isomorphism.

If ∞ ∈ Ω, then 0 ∈ 1/Ω and for all z with small modulus we obtain

Uϕ(z) = −
∞∑
ν=0

ϕ−ν−1z
ν

and therefore (Uϕ)ν = −ϕ−ν−1 (ν ∈ N0) and Λ+
Uϕ = Λ−ϕ − 1.

If 0 ∈ Ω, then ∞ ∈ 1/Ω and for all z with large modulus we obtain

Uϕ(z) = −
∞∑
ν=1

ϕν−1z
−ν

and therefore (Uϕ)−ν = −ϕν−1 (ν ∈ N) and Λ−Uϕ = Λ+
ϕ + 1.

2. Let U ⊂ C be open. Then the map

[U ] : H(UC)→ H(U∗), [(ϕ, V )]UC 7→ [(Uϕ, 1/V )]U∗

is a topological isomorphism, too.

Proposition 2.22 :
Let Ω, U ⊂ C∞ be open and star-eligible with {0,∞} ⊂ Ω, ϕ ∈ H(Ω) and f ∈
H(U). Then

(Uϕ) ∗ (Uf) = U(ϕ ∗ f) .

Proof: First of all we note that according to Remark 2.4 the sets 1/Ω and 1/U are
star-eligible and on both sides of the asserted identity occur functions belonging
to the space H(1/(Ω ∗ U)).

Let now z ∈ 1/(Ω ∗ U). Without loss of generality we can assume that z 6=∞. If
z = 0 we observe with Remark 2.21.1 and Theorem 2.14.3 that(

(Uϕ) ∗ (Uf)
)
(0) = ϕ−1 · f−1 = −(ϕ ∗ f)−1 =

(
U(ϕ ∗ f)

)
(0) .
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For z 6= 0,∞ we obtain(
(Uϕ) ∗ (Uf)

)
(z) =

1

2πi

∫
Γ

Uϕ(
z

ζ
)Uf(ζ)

dζ

ζ

=
1

2πi

∫
Γ

ζ

z
ϕ(
ζ

z
)f(

1

ζ
)
dζ

ζ2

= −1

z

1

2πi

∫
1/Γ

ϕ(
1

zζ
)f(ζ)

dζ

ζ

= −1

z
· (ϕ ∗ f)(

1

z
) = U(ϕ ∗ f)(z) ,

where Γ is a Hadamard cycle for z · ΩC in 1/U (using Remark 1.2.3 one verifies
that 1/Γ is a Hadamard cycle for (1/z) · Ω∗ in U). �

As a next step, we want to formulate an associative law for the Hadamard product
which will be of high relevance in the following.

Theorem 2.23 :
Let Ω ⊂ C∞ as well as U ⊂ C be open and star-eligible with {0,∞} ⊂ Ω and let
V ⊂ C∞ be open, star-eligible to Ω ∗ U and such that

1. {0,∞} ⊂ V in case 0 6∈ U ,

2. 0 ∈ V,∞ 6∈ V in case 0 ∈ U .

For g ∈ H(V ), ϕ ∈ H(Ω) and f ∈ H(U) we have

g ∗ (ϕ ∗ f) = (g ∗ ϕ) ∗ f .

Proof: By assumption, all occuring star products are defined and non-empty and
according to Example 2.3.2 we obtain V ∗ (Ω ∗ U) = (V ∗ Ω) ∗ U .

Let w ∈ V ∗ Ω ∗ U . If w = 0, Theorem 2.14.3 implies that

g ∗ (ϕ ∗ f)(0) = g0 · ϕ0 · f0 = (g ∗ ϕ) ∗ f(0) .



CHAPTER 2. THE HADAMARD PRODUCT 27

For w 6= 0 we obtain with Theorem 2.14.2

(g ∗V,Ω∗U (ϕ ∗Ω,U f))(w) = ((ϕ ∗Ω,U f) ∗Ω∗U,V g)(w)

=
1

2πi

∫
Γ1

(ϕ ∗Ω,U f)(
w

t
)g(t)

dt

t
(2.3)

=
1

2πi

∫
Γ1

g(t)

t

1

2πi

∫
Γ2

ϕ(
w

tζ
)f(ζ)

dζ

ζ
dt (2.4)

=
1

2πi

∫
Γ2

f(ζ)

ζ

1

2πi

∫
Γ1

g(t)ϕ(
w

ζt
)
dt

t
dζ

=
1

2πi

∫
Γ2

f(ζ)

ζ

1

2πi

∫
Γ̃

g(t)ϕ(
w

ζt
)
dt

t
dζ (2.5)

=
1

2πi

∫
Γ2

(ϕ ∗Ω,V g)(
w

ζ
)f(ζ)

dζ

ζ
(2.6)

= ((ϕ ∗Ω,V g) ∗Ω∗V,U f)(w) (2.7)
= ((g ∗V,Ω ϕ) ∗V ∗Ω,U f)(w) .

To (2.3):

Γ1 is chosen as a Hadamard cycle for w · (Ω ∗U)∗ in V . We note that by definition
of the hull it is clear that |Γ1| ∩ (h(Ω∗U)/w(1/|Γ1|))∗ = ∅.

Hence, according to Definition 2.9 we choose Γ1 to be

1. an anti-Cauchy cycle for w · (Ω ∗ U)∗ in V and therefore

indΓ1(z) = 0 (z ∈ w · (Ω ∗ U)∗), indΓ1(z) = −1 (z ∈ V C) . (2.8)

Then we obtain additionally

indΓ1(z) = 0
(
z ∈ (h(Ω∗U)/w(1/|Γ1|))∗

)
. (2.9)

Indeed, by definition of the hull, each component of (h(Ω∗U)/w(1/|Γ1|))∗ meets
a component of w · (Ω ∗U)∗. Therefore (2.9) is a direct consequence of (2.8)
and Remark 1.2.2.

2. a Cauchy cycle for w · (Ω ∗ U)∗ in V and therefore

indΓ1(z) = 1 (z ∈ w · (Ω ∗ U)∗), indΓ1(z) = 0 (z ∈ V C) . (2.10)

(note that the supplementary index condition indΓ1(0) = 1 is automatically
fulfilled since 0 ∈ (Ω ∗ U)∗). Then we obtain additionally

indΓ1(z) = 1
(
z ∈ (h(Ω∗U)/w(1/|Γ1|))∗

)
. (2.11)
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We remark that in both cases, the respective two index properties imply

V ∗ ⊂ h(Ω∗U)/w(1/|Γ1|)

and we conclude

(w · (1/|Γ1|) · Ω∗) ∪ (w · V ∗ · Ω∗) ⊂ w · h(Ω∗U)/w(1/|Γ1|) · Ω∗ . (2.12)

To (2.4):

Γ2 has to be chosen as a Hadamard cycle for (w/|Γ1|) ·Ω∗ in U . We impose a some-
what stronger condition and require Γ2 to be a Hadamard cycle for
w · h(Ω∗U)/w(1/|Γ1|) · Ω∗ in U . This is possible since the choice of Γ1 ensures
that the relation |Γ1| ∩ w · (Ω ∗ U)∗ = ∅ holds. Hence, (1/|Γ1|) and consequently
h(Ω∗U)/w(1/|Γ1|) is a compact subset of (Ω ∗ U)/w (see Remark 1.9.3). This, in
turn, implies that w ·h(Ω∗U)/w(1/|Γ1|) ·Ω∗ is a compact subset of U (see Proposition
2.5.5) with ∞ 6∈ w · h(Ω∗U)/w(1/|Γ1|). Proposition 2.10.2 ensures the existence of a
Hadamard cycle for w · h(Ω∗U)/w(1/|Γ1|) · Ω∗ in U . Relation (2.12) yields that the
so chosen cycle is suitable.

Hence, according to Definition 2.9 we choose Γ2 to be

1. a Cauchy cycle for w · h(Ω∗U)/w(1/|Γ1|) · Ω∗ in U .

2. a Cauchy cycle for w ·h(Ω∗U)/w(1/|Γ1|) ·Ω∗ in U (note that (2.12) implies that
the supplementary index condition indΓ2(0) = 1 is automatically fulfilled
since 0 ∈ V ∗).

To (2.5):

The cycle Γ̃ is chosen as

1. Γ̃ := (Γ1, τ
−
r ) with 0 < r < min{dist(0, V C), dist(0, (w/|Γ2|) · Ω∗)}. Note

that the addition of τ−r does not change the value of the integral because the
inner integrand is holomorphic in a neighbourhood of the origin and τ−r is a
closed curve.

2. Γ̃ := Γ1.

To (2.6):

Γ̃ should be a Hadamard cycle for (w/|Γ2|) · Ω∗ in V . We are going to check that
now:
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1. (a) |Γ1| ⊂ V according to the choice of Γ1 and |τ−r | ⊂ V according to the
choice of r.

(b) We have
w · h(Ω∗U)/w(1/|Γ1|) ∩ (|Γ2| · ΩC) = ∅ . (2.13)

Otherwise, this would contradict the fact that |Γ2|∩w ·h(Ω∗U)/w(1/|Γ1|)·
Ω∗ = ∅. A first consequence is that |Γ1|∩(w/|Γ2|)·Ω∗ = ∅ and obviously,
|τ−r | ∩ (w/|Γ2|) · Ω∗ = ∅ according to the choice of r.

(c) A second consequence of (2.13) is that (w/|Γ2|)·Ω∗ ⊂ (h(Ω∗U)/w(1/|Γ1|))∗
and therefore (see (2.9) and (2.8))

indΓ1(z) = indΓ̃(z) = 0 (z ∈ (w/|Γ2|) · Ω∗),
indΓ1(z) = indΓ̃(z) = −1 (z ∈ V C) .

Furthermore it is exactly the addition of τ−r to the integration cycle
which ensures

indΓ̃(0) = −1

(note that 0 ∈ (Ω ∗ U)∗ and therefore indΓ1(0) = 0). Hence, Γ̃ is as an
anti-Cauchy cycle for (w/|Γ2|) · Ω∗ in V with indΓ̃(0) = −1 a suitable
Hadamard cycle.

2. It can be checked analogously to above that |Γ1| ⊂ V and that (2.13)
holds. Again, we obtain |Γ1| ∩ (w/|Γ2|) · Ω∗ = ∅ and (w/|Γ2|) · Ω∗ ⊂
(h(Ω∗U)/w(1/|Γ1|))∗ and therefore (see (2.11), (2.10))

indΓ1(z) = indΓ̃(z) = 1 (z ∈ (w/|Γ2|) · Ω∗) ,
indΓ1(z) = indΓ̃(z) = 0 (z ∈ V C) ,

indΓ1(0) = indΓ̃(0) = 1 .

Hence, Γ̃ is as a Cauchy cycle for (w/|Γ2|) · Ω∗ in V with indΓ̃(0) = 1 a
suitable Hadamard cycle.

To (2.7):

Γ2 should be a Hadamard cycle for w · (Ω ∗ V )∗ in U . We are going to check that
now:

1. (a) |Γ2| ⊂ U according to the choice of Γ2.

(b) |Γ2| ∩ w · (Ω ∗ V )∗ = |Γ2| ∩ w · Ω∗ · V ∗ = ∅ due to (2.12) and the choice
of Γ2.
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(c) The second consequence of (2.12) and the choice of Γ2 is

indΓ2(z) = 1 (z ∈ w · Ω∗ · V ∗) ,
indΓ2(z) = 0 (z ∈ UC) .

Hence, Γ2 is as a Cauchy cycle for w · (Ω ∗ V )∗ in U a suitable Hadamard
cycle.

2. Analogously we obtain

(a) |Γ2| ⊂ U according to the choice of Γ2.

(b) |Γ2| ∩ w · (Ω ∗ V )∗ = |Γ2| ∩ w · Ω∗ · V ∗ = ∅ due to (2.12) and the choice
of Γ2.

(c) The second consequence of (2.12) and the choice of Γ2 is

indΓ2(z) = 1 (z ∈ w · Ω∗ · V ∗) ,
indΓ2(z) = 0 (z ∈ UC) ,

indΓ2(0) = 1 .

Hence, Γ2 is as a Cauchy cycle for w · (Ω ∗ V )∗ in U with indΓ2(0) = 1
a suitable Hadamard cycle. �

We conclude this chapter by giving an alternative representation of the dual space
H ′(D) (for D ⊂ C open) by means of the Hadamard product. The theorem is an
extension of a result obtained by Grosse-Erdmann for the case 0 ∈ D (see [GE,
Th. 3.6]).

Theorem 2.24 :
Let D ⊂ C be open. The dual of the space H(D) is topologically isomorphic to
the space H(D∗) in such a way that to every functional u ∈ H ′(D) there exists a
unique germ [(g, U)]D∗ ∈ H(D∗) such that

u(f) = (f ∗D,U g)(1) (f ∈ H(D)) .

Proof: Theorem 1.13 and Remark 2.21.2 yield that H ′(D) and H(D∗) are topo-
logically isomorphic. Let u ∈ H ′(D) and let [(g̃, V )]DC ∈ H(DC) be the unique
germ such that

u(f) =
1

2πi

∫
Γ

f(ζ)g̃(ζ) dζ

holds for all f ∈ H(D), where Γ is a Cauchy cycle for V C in D.
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Then a representative of −[U ][(g̃, V )]DC ∈ H(D∗) is given by −U g̃ =: g being
holomorphic in 1/V =: U (see Remark 2.21.2). Then the identity

u(f) =
1

2πi

∫
Γ

f(ζ)g̃(ζ) dζ

=
1

2πi

∫
Γ

f(ζ)g(
1

ζ
)
1

ζ
dζ

holds for all f ∈ H(D). In order that the latter integral is equal to (g ∗U,D f)(1)
(and hence to (f ∗D,U g)(1), note that D ∗ U is defined and 1 ∈ D ∗ U is always
ensured) we have to check that Γ is a Hadamard cycle for 1 · U∗ = V C in D. We
consider the cases 0 6∈ D and 0 ∈ D separately.

1. If 0 6∈ D, Definition 2.9.(d) requires Γ to be a Cauchy cycle for V C in D
which is just what Γ is.

2. If 0 ∈ D, Definition 2.9.(a) requires Γ to be a Cauchy cycle for V C in D with
indΓ(0) = 1. Since we can without loss of generality choose V so small that
0 6∈ V and hence 0 ∈ V C , this additional condition does not pose a problem.

Hence, in both cases we obtain that [(g, U)]D∗ is a germ of holomorphic functions
on D∗ with

u(f) = (f ∗D,U g)(1) (f ∈ H(D)) .

Furthermore, it is clear that [(g, U)]D∗ is the only element in H(D∗) such that
u(f) = (f ∗D,U g)(1) holds for all f ∈ H(D).

Finally, we show that every element [(g, U)]D∗ ∈ H(D∗) defines a functional u ∈
H ′(D) in this way. We have to show that the mapping H(D) 3 f 7→ (f ∗D,U g)(1) is
linear and continuous. The linearity is an immediate consequence of the linearity
of the Hadamard product and we obtain

|(f ∗D,U g)(1)| ≤M · ‖f‖|Γ|

with M := L(Γ) · ‖g̃‖|Γ|/2π which implies the continuity of the mapping. �

Remark 2.25 :
The independence of the Hadamard product from the choice of the specific
Hadamard cycle (see [MP, Th. 2.5]) assures that the value of (f ∗D,U g)(1) in The-
orem 2.24 does not change while using another representative (g̃, V ) of [(g, U)]D∗ .



Chapter 3

The Hadamard operator Tϕ as a
convolution operator on spaces of
holomorphic functions

In the following, we will mainly consider the Hadamard product of holomorphic
functions as an operator between Fréchet spaces of the type H(Ω), i. e. for open
and star-eligible sets Ω, U ⊂ C∞ we consider the operator

T : H(Ω)×H(U)→ H(Ω ∗ U), (ϕ, f) 7→ ϕ ∗ f

or with a fixed set Ω and a fixed function ϕ ∈ H(Ω) the Hadamard operator

Tϕ,Ω,U : H(U)→ H(Ω ∗ U), f 7→ ϕ ∗ f .

Since the Hadamard multiplication of ϕ and f means convolving ϕ and f in an
appropriate way, Hadamard operators can be considered as convolution operators
on H(U).

It is important to keep in mind that while speaking of the Hadamard operator
Tϕ,Ω,U , it is crucial to consider the underlying sets Ω and U , i. e. the operator
is only well specified by naming both the function ϕ and the sets Ω, U . However,
in order to keep the notation as short as possible, depending on what degree of
exactness the context requires we also use the notations Tϕ := Tϕ,U := Tϕ,Ω,U .

The main purpose of this thesis is the examination of the class of Hadamard
operators with respect to their kernel and their range. For the application of the
Hadamard product in approximation theory (see Chapter 6) it is in particular

32
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interesting under which conditions we can expect Hadamard operators to have
dense range or even to be surjective. In other words, we shall try to find conditions
on the sets Ω and U and on the function ϕ ∈ H(Ω) such that we can deduce some
information about the induced operator Tϕ : H(U)→ H(Ω ∗ U).

Müller and Pohlen showed a first essential property of Hadamard operators (see
[MP, Th. 2.9]).

Theorem 3.1 :
Let Ω, U ⊂ C∞ be open and star-eligible. The operator T : H(Ω) × H(U) →
H(Ω ∗ U), (ϕ, f) 7→ ϕ ∗ f is bilinear and continuous (where H(Ω)×H(U) carries
the product topology).

Theorem 3.1 especially implies that Hadamard operators Tϕ : H(U)→ H(Ω ∗ U)
are linear and continuous.

We begin the more detailed examination of Hadamard operators by a simple and
illustrative example.

Example 3.2 :
We consider the Koebe function

κ(z) :=
z

(1− z)2
(z ∈ C∞ \ {1}) .

The function κ is obviously holomorphic in C∞\{1} and its power series expansion
about zero is given by

κ(z) =
∞∑
ν=1

νzν (z ∈ D)

and hence Λ+
κ = N. For a given open set U ⊂ C we easily compute what the

operator Tκ : H(U)→ H(U) looks like. Indeed, for f ∈ H(U) and z ∈ U \ {0} we
have

Tκf(z) =
1

2πi

∫
Γz

f(ζ)
z/ζ

(1− z/ζ)2

dζ

ζ

= z · 1

2πi

∫
Γz

f(ζ)

(ζ − z)2
dζ

= z · f ′(z)

where according to Definition 2.9 the cycle Γz can be chosen as

Γz =

{
τr(z) , if 0 6∈ U
(τr(z), τr′) , if 0 ∈ U ,
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with 0 < r, r′ sufficiently small. The last identity above follows from the Cauchy
integral formula noting that in case 0 ∈ U , the cycle τr′ does not change the value
of the integral because the integrand in holomorphic in a neighbourhood of the
origin and τr′ is a closed path. Obviously, the above identity also holds for z = 0
(if 0 ∈ U).

It is clear that the functions being constant on each component of U belong to the
kernel of Tκ. To reveal some information concerning its range, we assume that U
is a simply connected domain not containing the origin. We shall prove that for
such sets U , the operator Tκ : H(U)→ H(U) is surjective.

Let g ∈ H(U) be given. We are supposed to find a function f ∈ H(U) such that

f ′(z) =
g(z)

z
(z ∈ U) .

The right-hand side of this equation is holomorphic in U and since holomorphic
functions on simply connected domains have a primitive, we obtain the existence
of a function f ∈ H(U) with Tκf = g.

In Proposition 4.30 we are going to generalize this result.

Remark 3.3 :
In Example 3.2, the considered function κ and the underlying sets C∞ \ {1} and
U have been comparatively easy or rather exhibited some geometric structure
which allowed to obtain results concerning the kernel and the range of the induced
Hadamard operator (for example U was simply connected and we were able to
use the well-known fact that holomorphic functions on simply connected domains
have a primitive). In a more general context this will of course not be possible and
it is not surprising that the less restrictive the assumptions are, for example the
more general the sets Ω and U are chosen, the less properties the corresponding
Hadamard operator will have or at least, the more difficult it will be to prove
them. If, on the contrary, we restrict ourselves to more specific sets, we can hope
to profit from the geometric structure and prove stronger results. It will turn out
that one possible shape of the set Ω which is both of high relevance and allows to
exploit the geometric structure is Ω = DK = (eK)∗ for some compact and convex
set K ⊂ V. Indeed, it is the existence of a one-to-one correspondence between the
space H(DK) and a space of certain entire functions which makes the examination
of the Hadamard operator Tϕ,DK ,U more easily accessible. The required concepts
are introduced in Appendix B.

In order that the Hadamard operator Tϕ : H(U) → H(Ω ∗ U) is meaningful, we
first of all have to impose the conditions that Ω, U ⊂ C∞ are open and star-eligible
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(i. e. Ω ∗ U is defined and non-empty) and that the function ϕ ∈ H(Ω) does not
vanish identically. However, in the following we are mostly going to assume that
Ω is a domain containing both the origin and the point at infinity. This procedure
is motivated by the following observations:

1. While examining the Hadamard product it already turned out that the inte-
gration cycle Γ in Definition 2.11 is of essential significance. In the definition
of Hadamard cycles (see Definition 2.9) we had to distinguish multiple cases
with respect to the respective position of the origin and the point at infinity.
Requiring Ω to contain both the origin and the point at infinity bears two
advantages: Firstly, the condition of star-eligibility is reduced to the condi-
tion Ω ∗ U 6= ∅ so that U may contain the origin or the point at infinity or
not and secondly, the amount of different cases that have to be considered
concerning the Hadamard cycles is reduced considerably.

2. While examining the kernel of Hadamard operators, we will often encounter
the assumption that Ω∗U shall be connected. Furthermore we will pay most
of our attention to the case {0,∞} ⊂ U . As we have seen in Remark 2.7.2,
if the origin or the point at infinity belongs to both sets Ω and U , then it is
meaningful to assume that Ω and U are connected, too.

3. While examining the range of Hadamard operators, we will often be faced
with the assumption that (Ω ∗ U)∗ (or equivalently (Ω ∗ U)C) is connected.
In addition, we will mostly be concerned with the case U ⊂ C \ {0}. A
typical situation would be that U ⊂ C \ {0} has connected complement
(see Proposition 2.5.6). If we take the star product of an open set Ω with
Ω0 6= Ω∞ with a set U ⊂ C \ {0} having connected complement, then a
consequence of the definition of the star product is that Ω ∗ U will typically
be the empty set. Hence, the condition of star-eligibility will at least require
Ω to contain zero and infinity in the same component.

4. As already mentioned above, we will often be concerned with the case that
Ω is of the form DK for some compact and convex set K ⊂ V. Since DK is
obviously a domain containing zero and infinity and since this is the most
important case for practical applications, it does not seem like being too
much of a loss of generality to require a more general set Ω to be connected
and to contain zero and infinity, too.

If Ω is a domain containing the origin and the point at infinity, then the identity
theorem yields that all the information about a function ϕ ∈ H(Ω) is already
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contained in its power series expansions about zero or infinity introduced in Re-
mark 1.7. Especially the sets Λ+

ϕ and Λ−ϕ of non-vanishing coefficients will play
an important role in the following. There is a close interplay between the set Ω
and the “size” of the sets Λ+

ϕ and Λ−ϕ . As we already stated above, it is desirable
that the function ϕ does not vanish identically, otherwise we would obtain a tri-
vial operator. This requirement already imposes necessary conditions on Λ+

ϕ and
Λ−ϕ , that means those sets may not be “too small”. We are going to state that
interdependency more precisely in Section 3.1. In order to measure this size ac-
curately, different notions of density for subsets of the non-negative real numbers
are introduced in Appendix A.

In Section 3.2, we are going to present some kind of “eigenvalue” property for
Hadamard operators which will be of high relevance in the examination of their
range.

We shall continue the examination of Hadamard operators by computing the trans-
posed operator of Tϕ : H(U)→ H(Ω∗U) for rather general sets Ω, U and functions
ϕ ∈ H(Ω). This is not only of interest by itself but will be particularly useful for
the investigation of the kernel and the range of Tϕ.

3.1 Preliminary information about the operator Tϕ

First of all the question should be answered under what assumptions on the sets Λ+
ϕ

or Λ−ϕ the function ϕ being holomorphic in a domain Ω containing zero and infinity
can be expected not to vanish identically and if so, what further information can
be obtained concerning the geometry of Ω (we recall that we assumed holomorphic
functions to vanish at infinity). This information is needed to know under which
circumstances we obtain a meaningful and non-trivial operator Tϕ : H(U) →
H(Ω ∗ U).

Proposition 3.4 :
Let Ω ⊂ C∞ be a domain with {0,∞} ⊂ Ω. In order that ϕ ∈ H(Ω) does not
vanish identically, it is necessary that d(Λ+

ϕ ) > 0 and d(Λ−ϕ ) > 0.

Proof: A result of Pólya states that the domain of existence of a power series
whose non-vanishing coefficients have lower density zero is a simply connected
part of the plane (see [Pol33, p. 737]). The assumption that ϕ is holomorphic in
the domain Ω which contains the origin and the point at infinity implies that the
power series expansion of ϕ about zero can be analytically continued up to infinity.
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If d(Λ+
ϕ ) = 0, then the above mentioned result of Pólya only leaves the possibility

that ϕ vanishes identically.

Since Uϕ is holomorphic in the domain 1/Ω which contains the origin and the point
at infinity, too, the power series expansion of Uϕ about zero can be analytically
continued up to infinity. If d(Λ−ϕ ) = 0, then Remark 2.21.1 implies that d(Λ+

Uϕ) = 0
and Pólya’s result only leaves the possibility that Uϕ vanishes identically. Since
U is an isomorphism, we obtain ϕ ≡ 0. �

Remark 3.5 :
In Proposition 3.4 we stated some necessary conditions on the density of Λ+

ϕ and
Λ−ϕ for the function ϕ being holomorphic in a domain containing zero and infinity
not to vanish identically. The question arises whether such a density condition is
also sufficient to obtain a domain Ω with {0,∞} ⊂ Ω and a non-vanishing function
ϕ ∈ H(Ω) with the desired gaps in its power series expansion about zero. The
answer is yes as the following result of Pólya shows (see [Pol42]). We only give a
short idea of the proof:

Let Λ ⊂ N0 with d(Λ) > 0. Then there exists a domain Ω with {0,∞} ⊂ Ω and a
non-vanishing function ϕ ∈ H(Ω) with Λ+

ϕ = Λ.

Indeed, assuming without loss of generality 0 6∈ Λ =: {λn : n ∈ N}, the function

G(z) =
∞∏
n=1

(
1− z2

λ2
n

)
(z ∈ C)

is an entire function with simple zeros at each point in ±Λ and we set

Φ(z) :=


sin πz

G(z)
, z ∈ C \ {±Λ}

π(−1)z

G′(z)
, z ∈ ±Λ

.

Then we obtain Φ(n) = 0 (n ∈ N0 \Λ) and Φ(n) 6= 0 (n ∈ Λ). Furthermore it can
be shown that Φ is an entire function of exponential type with K(Φ) ⊂ V so that
Theorem B.16 yields that ϕ := M−1Φ ∈ H(DK(Φ)) fulfills all the requirements
(where K(Φ) denotes the conjugate indicator diagram of Φ and M denotes the
Mellin transformation, see Appendix B).

Remark 3.6 :
After examining under which conditions on the set Λ+

ϕ we can expect the func-
tion ϕ ∈ H(Ω) not to vanish identically, we give further results which reveal a
connection between the size of the set Λ+

ϕ and the geometry of the set Ω:
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1. Let Λ ⊂ N0 with d(N0 \ Λ) = δ ∈ [0, 1). Then there exists a non-vanishing
function ϕ ∈ H(DKδ) with Λ+

ϕ = Λ.1

2. Let Λ ⊂ N0 with dL(N0 \Λ) < b ∈ (0, 1). Then there exists a domain Ω with
{0,∞} ⊂ Ω and containing a sector of opening (1− b) and a non-vanishing
function ϕ ∈ H(Ω) with Λ+

ϕ = Λ.2

3.2 An eigenvalue property of the operator Tϕ

In Example 2.17 we have seen that for Ω, U ⊂ C∞ open and star-eligible with
{0,∞} ⊂ Ω \ U and ϕ ∈ H(Ω) we have

Tϕpν,U = sign(ν)ϕν · pν,Ω∗U (ν ∈ Z) .

This identity can be interpreted in such a way that the monomials pν,U are eigen-
functions of the operator Tϕ : H(U)→ H(Ω ∗ U) with eigenvalue sign(ν)ϕν .3

In case that Ω is of the form DK for some compact and convex set K ⊂ V (so that
we can dispose of the Mellin transform of the function ϕ ∈ H(Ω)) and U ⊂ C\{0}
has connected complement (so that we can define a logarithm on U), we can extend
this eigenvalue property to generalized monomials. Therefore, we introduce the
following notation: for a set A ⊂ C and a (subset of an) open set B ⊂ C \ {0}
with connected complement, k ∈ N0, α ∈ C we set

hk,α,A(z) := zkeαz (z ∈ A)
qk,α,B := hk,α,logB B ◦ logB
pα,B := q0,α,B

where logB is a branch of the logarithm on every component of B. Since pα,B(z) =
exp(α logB z) =: zα, we call pα,B a generalized monomial and the definition of pα,B
coincides for the case α = ν ∈ Z with the definition of pν,B in Example 2.17. Even
if it is suppressed in the notation, the function qk,α,B depends on the choice of the
branch of the underlying logarithm on B.

Finally we define for non-empty sets A,B ⊂ C the Minkowski sum A + B :=
{a+ b : a ∈ A, b ∈ B} and A+ ∅ := ∅+ A := ∅+ ∅ := ∅.

1This is a consequence of Example B.19 and Theorem B.16.
2See [MR, L. 3.3, Th. 9.2].
3Strictly speaking, Tϕ is in general not a self-mapping and does therefore not have eigenfunc-

tions and eigenvalues in a narrow sense. However, speaking of these terms in this context should
not provoke notional confusion.
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Theorem 3.7 :
Let K ⊂ V be compact and convex and let U ⊂ C \ {0} be open and star-eligible to
DK with connected complement. Let furthermore ϕ ∈ H(DK) and Φ = Mϕ. For
every branch of the logarithm on U exists a branch of the logarithm on DK ∗ U
such that

Tϕqk,α,U = pα,DK∗U

k∑
l=0

(
k

l

)
(logDK∗U)k−lΦ(l)(α) (3.1)

holds for all k ∈ N0 and α ∈ C and especially

Tϕpα,U = Φ(α) · pα,DK∗U (α ∈ C) . (3.2)

Proof: The assumption that UC is connected implies that U itself has simply
connected components and Proposition 2.5.6 ensures that the same is true for
DK ∗U . We fix a branch of the logarithm on each component of U denoting it by
logU and show what branch of the logarithm on DK ∗U shall be chosen such that
the asserted identity holds.

It is clear that there exists a number a ∈ K such that the set K − a := K + (−a)
contains the origin (if K itself contains the origin choose a = 0). This implies that
1 6∈ DK−a = ea · DK and therefore DK−a ∗ U = ea · (DK ∗ U) ⊂ U . Especially,
every component of ea · (DK ∗ U) is a subset of a component of U . Therefore it is
meaningful to set logea·(DK∗U)(e

az) := logU(eaz) (z ∈ DK ∗ U).

Obviously, every branch of the logarithm on DK ∗U fulfills the following equation
for all z ∈ DK ∗ U :

logDK∗U(z) = logU(eaz)− a+ 2πik(z)

for some k(z) ∈ Z. The map

DK ∗ U → C, z 7→ logDK∗U(z)− (logU(eaz)− a)

is continuous and its range is a discrete subset of C. Therefore it must be constant
on every component of DK ∗ U . Hence, the branch of the logarithm on every
component of DK ∗ U shall be chosen such that

logDK∗U(z) = logU(eaz)− a (z ∈ DK ∗ U) . (3.3)

Let now z ∈ DK ∗ U be given. The set z · U∗ is a compact subset of the open set
DK (see Proposition 2.5.5) and therefore we can find a number δ1 = δ1(z) > 0 such
that (e−K +Uδ1(0))∩z ·U∗ = ∅. On the other hand, e−K is a compact subset of the



CHAPTER 3. THE HADAMARD OPERATOR Tϕ 40

open set S and therefore we can find a number δ2 > 0 such that e−K +Uδ2(0) ⊂ S.
We set δ := min{δ1, δ2} and Vδ := e−K + Uδ(0).

The following functional equation is essential for the rest of the proof: For all
ζ ∈ Vδ we have

logU(
z

ζ
) = logDK∗U(z)− log(ζ) (3.4)

where log denotes the principal branch of the logarithm on S.

In order to prove (3.4) we first of all note that the left-hand side of (3.4) is defined
since z/ζ ∈ U for all ζ ∈ Vδ. Indeed, assuming the existence of a number w ∈ UC

with z/ζ = w would imply z · U∗ 3 z/w = ζ ∈ Vδ which contradicts the choice of
δ.

Obviously we have

gz(ζ) := logU(
z

ζ
)− (logDK∗U(z)− log(ζ)) = 2kz(ζ)πi (ζ ∈ Vδ)

for some kz(ζ) ∈ Z. The same argument as above yields that gz is constant on
Vδ (note that Vδ is connected) and inserting ζ0 = e−a ∈ Vδ yields (with Equation
(3.3) and noting that a ∈ K and therefore log(e−a) = −a)

gz(ζ) = gz(ζ0) = logU(eaz)− (logU(eaz)− a− log(e−a)) = 0 (ζ ∈ Vδ)

which completes the proof of the asserted functional equation.

Since e−K is a compact subset of the open set Vδ there exists a Cauchy cycle Γ̃ for
e−K in Vδ (see Proposition 1.5). The choice of δ ensures that

1. Γ̃ is a Cauchy cycle for e−K in S,

2. Γ := Γ̃− is an anti-Cauchy cycle for z · U∗ in DK .

Finally we obtain with Equation (3.4)

Tϕqk,α,U(z) = qk,α,U ∗ ϕ(z)

=
1

2πi

∫
Γ

ϕ(ζ)
(

logU(
z

ζ
)
)k

exp(α logU(
z

ζ
))
dζ

ζ
(3.5)

= pα,DK∗U(z)
k∑
l=0

(
k

l

)
(logDK∗U z)k−l

(−1)l+1

2πi

∫
Γ̃

ϕ(ζ)(log ζ)l

exp((α + 1) log ζ)
dζ

= pα,DK∗U(z)
k∑
l=0

(
k

l

)
(logDK∗U z)k−lΦ(l)(α) . (3.6)
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To (3.5): As an anti-Cauchy cycle for z · U∗ in DK , the cycle Γ is a suitable
integration cycle (see Definition 2.9.(e)).

To (3.6): Γ̃ is a Cauchy cycle for e−K in S so that (3.6) follows from Remark
B.17.2. �

3.3 The transpose of the operator Tϕ

First of all, we shortly recall the notion of the transpose of linear operators and
introduce some further notation.

Definition 3.8 :
Let E,F be locally convex spaces and T ∈ L(E,F ). The map

T ′ : F ′ → E ′, u 7→ u ◦ T

is called the dual map or transpose of T .

Theorem 3.9 :
Let Ω ⊂ C∞ with {0,∞} ⊂ Ω as well as U ⊂ C be open and star-eligible. Let
furthermore ϕ ∈ H(Ω).

Then the transpose of the Hadamard operator Tϕ : H(U)→ H(Ω ∗U), f 7→ ϕ ∗ f ,
i. e. the operator T ′ϕ : H ′(Ω ∗ U) → H ′(U), u 7→ T ′ϕu can be represented by the
operator

[T ]ϕ : H((Ω ∗ U)∗)→ H(U∗), [(g, V )](Ω∗U)∗ 7→ [(ϕ ∗ g,Ω ∗ V )]U∗ .

Proof: Let u ∈ H ′(Ω ∗ U) and [(g, V )](Ω∗U)∗ ∈ H((Ω ∗ U)∗) be the unique corres-
ponding germ according to the dual space representation presented in Theorem
2.24. We note that for an open superset D of (Ω ∗ U)∗, Remark 2.4 implies that
D∗ ⊂ Ω ∗ U and Proposition 2.5 yields (Ω ∗ D)∗ = Ω∗ · D∗ ⊂ U and therefore
Ω ∗ D ⊃ U∗. Hence we have shown that [(ϕ ∗ g,Ω ∗ V )]U∗ belongs to the space
H(U∗).

To show that the operator [T ]ϕ is well defined it is important to know that the
value of [T ]ϕ[(g, V )](Ω∗U)∗ is independent of the choice of the representative of the
equivalence class [(g, V )](Ω∗U)∗ : To see this, let (g, V ) ∼(Ω∗U)∗ (g̃, Ṽ ). Then we
have to show that (ϕ ∗Ω,V g,Ω ∗ V ) ∼U∗ (ϕ ∗Ω,Ṽ g̃,Ω ∗ Ṽ ). Hence, we have to find
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an open set W with U∗ ⊂ W ⊂ Ω ∗ V ∩ Ω ∗ Ṽ and such that ϕ ∗Ω,V g = ϕ ∗Ω,Ṽ g̃

on W . By assumption there exists an open set D with (Ω ∗U)∗ ⊂ D ⊂ V ∩ Ṽ and
such that g = g̃ on D. We set W := Ω∗D. Then we have U∗ ⊂ W ⊂ Ω∗V ∩Ω∗ Ṽ
and obtain with Theorem 2.13

(ϕ ∗Ω,V g)|W = ϕ ∗Ω,D g|D = ϕ ∗Ω,D g̃|D = (ϕ ∗Ω,Ṽ g̃)|W .

Hence, the operator [T ]ϕ is well defined.

Now we have to check that the unique germ corresponding to T ′ϕu ∈ H ′(U) is given
by [(ϕ ∗ g,Ω ∗ V )]U∗ ∈ H(U∗). The idea of this proof is to apply the associative
law for the Hadamard product formulated in Theorem 2.23. There it has been
important to know whether the origin and the point at infinity belong to the
respective sets Ω, U, V or not. The set V depends as a superset of (Ω ∗ U)∗ on
the set U . Indeed, if 0 6∈ U we obtain {0,∞} ⊂ V and in case 0 ∈ U we obtain
0 ∈ V and choose without loss of generality V so small that ∞ 6∈ V . Then the set
V ∗ (Ω ∗ U) is defined and 1 ∈ V ∗ (Ω ∗ U). Hence, V and Ω ∗ U are star-eligible.

We obtain with Theorems 2.24, 2.14.2 and 2.23 for all f ∈ H(U)

T ′ϕu(f) = u(Tϕf)

= ((Tϕf) ∗Ω∗U,V g)(1)

= (g ∗V,Ω∗U (ϕ ∗Ω,U f))(1)

= ((g ∗V,Ω ϕ) ∗V ∗Ω,U f)(1)

= (f ∗U,Ω∗V (ϕ ∗Ω,V g))(1) .

Applying again Theorem 2.24 finishes the proof. �

Remark 3.10 :
Using Remark 2.21.2 and Proposition 2.22, one can give another representation of
the transposed operator. Setting g̃ := Ug and Ṽ := 1/V we can summarize the
situation in the following diagram

T ′ϕ : H ′(Ω ∗ U) //
OO

��

H ′(U),
OO

��

uOO

��

� // T ′ϕuOO

��
[T ]ϕ : H((Ω ∗ U)∗) //

OO

��

H(U∗),
OO

��

[(g, V )](Ω∗U)∗OO

��

� // [(ϕ ∗ g,Ω ∗ V )]U∗OO

��

[T ]Uϕ : H((Ω ∗ U)C) // H(UC), [(g̃, Ṽ )](Ω∗U)C
� // [((Uϕ) ∗ g̃, (1/Ω) ∗ Ṽ )]UC
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We remarked earlier that a more accurate notation for the operator Tϕ is Tϕ,U or
Tϕ,Ω,U . By using an analogue notation for [T ]ϕ and [T ]Uϕ we roughly summarize

(Tϕ,U)′ = [T ]ϕ,(Ω∗U)∗ = [T ]Uϕ,(Ω∗U)C

or even more precise

(Tϕ,Ω,U)′ = [T ]ϕ,Ω,(Ω∗U)∗ = [T ]Uϕ,1/Ω,(Ω∗U)C .

The bottom line of Theorem 3.9 is that the transpose of Tϕ,U is -in simple terms-
again a Hadamard operator which is induced by the same function ϕ but by the
“dual” set (Ω ∗ U)∗. This insight will be important for the examination of the
kernel and the range of Hadamard operators in the following chapter.

Furthermore we note that according to [MV, Prop. 23.30], the maps [T ]ϕ : H((Ω∗
U)∗)→ H(U∗) and [T ]Uϕ : H((Ω ∗ U)C)→ H(UC) are continuous.



Chapter 4

The kernel and the range of the
operator Tϕ

The main purpose of this chapter is the examination of the kernel and the range
of Hadamard operators

Tϕ,U : H(U)→ H(Ω ∗ U)

for different sets Ω and U and functions ϕ ∈ H(Ω). For the examination of the
range of Tϕ,U we refer the reader to the criteria for linear and continuous operators
to have dense range or to be surjective which are formulated in Appendix C. For
an operator T : E → F between vector spaces we denote by N(T ) and R(T ) the
kernel and the range of T respectively.

In Section 4.1 we describe the kernel of Hadamard operators. Subsequently we for-
mulate conditions under which Hadamard operators can be expected to be injective
or to have dense range (see Section 4.2). In Section 4.3 the different approaches
which are used in Section 4.2 are compared. We are going to formulate a variety
of clarifying and distinguishing examples. Section 4.4 tackles the question when
Tϕ,U can even expected to be surjective.

For the examination of the kernel and the range of Hadamard operators, we assume
once and for all that the inducing function ϕ ∈ H(Ω) does not vanish identically.

4.1 Description of the kernel of Tϕ

Theorem 4.1 :
Let Ω ⊂ C∞ be a domain with {0,∞} ⊂ Ω and let ϕ ∈ H(Ω). Let furthermore

44
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U ⊂ C∞ be open and star-eligible to Ω. Then the following are valid for the
operator Tϕ : H(U)→ H(Ω ∗ U):

1. (a) If 0 6∈ U , then clspan{p−ν,U : ν ∈ N \ Λ−ϕ} ⊂ N(Tϕ).1

If ∞ 6∈ U , then clspan{pν,U : ν ∈ N0 \ Λ+
ϕ} ⊂ N(Tϕ).

(b) If U is a ring domain Vr,R with 0 ≤ r < R ≤ ∞, then clspan{pν,U : ν ∈
Z \ Λϕ} = N(Tϕ).

2. If 0 ∈ U , then we have:

(a) Each function f ∈ H(U) such that Tϕf vanishes in a neighbourhood of
the origin belongs to the space HN0\Λ+

ϕ
(U) and N(Tϕ) ⊂ HN0\Λ+

ϕ
(U).

(b) If, in addition, Ω ∗ U is connected, then N(Tϕ) = HN0\Λ+
ϕ

(U).

3. If ∞ ∈ U , then we have:

(a) Each function f ∈ H(U) such that Tϕf vanishes in a neighbourhood
of the point at infinity belongs to the space H∞,N\Λ−ϕ (U) and N(Tϕ) ⊂
H∞,N\Λ−ϕ (U).

(b) If, in addition, Ω ∗ U is connected, then N(Tϕ) = H∞,N\Λ−ϕ (U).

Proof:

1. (a) These assertions are a direct consequence of Example 2.17 and the line-
arity and continuity of Tϕ.

(b) Part (a) implies that clspan{pν,U : ν ∈ Z \ Λϕ} ⊂ N(Tϕ).
If U = Vr,R, then every function f ∈ H(U) allows a Laurent se-
ries expansion f =

∑∞
ν=−∞ fνpν,U and therefore belongs to the space

clspan{pν,U : ν ∈ Z}. However, for f ∈ N(Tϕ), the continuity and
linearity of the operator Tϕ together with Example 2.17 yield

0 = Tϕf = Tϕ(
∞∑

ν=−∞

fνpν,U) = lim
n→∞

( n∑
ν=−n

fνTϕpν,U
)

=
∞∑

ν=−∞

sign(ν)fνϕνpν,Ω∗U =
∑
ν∈Λϕ

sign(ν)fνϕνpν,Ω∗U

1For D ⊂ C∞ open and ∅ 6= A ⊂ H(D), clspan(A) means the closure in H(D) of the linear
span of A and clspan ∅ := {0}.



CHAPTER 4. THE KERNEL AND THE RANGE OF Tϕ 46

and therefore fν = 0 for all ν ∈ Λϕ. Hence, f ∈ clspan{pν,U : ν ∈
Z \ Λϕ}.

2. (a) According to the Hadamard multiplication theorem 2.14.3 we obtain for
all f ∈ H(U) such that Tϕf vanishes in a neighbourhood of the origin
and all z with small modulus

0 = Tϕf(z) =
∞∑
ν=0

ϕνfνz
ν =

∑
ν∈Λ+

ϕ

ϕνfνz
ν (4.1)

and therefore fν = 0 for all ν ∈ Λ+
ϕ . Hence f ∈ HN0\Λ+

ϕ
(U).

(b) Let f ∈ HN0\Λ+
ϕ

(U). Then the Hadamard multiplication theorem 2.14.3
yields that Tϕf vanishes in a neighbourhood of the origin. Since Ω ∗ U
is connected, f belongs to the kernel of Tϕ.

3. (a) According to the Hadamard multiplication theorem 2.14.4 we obtain for
all f ∈ H(U) such that Tϕf vanishes in a neighbourhood of the point
at infinity and all z with large modulus

0 = Tϕf(z) = −
∞∑
ν=1

ϕ−νf−νz
−ν = −

∑
ν∈Λ−ϕ

ϕ−νf−νz
−ν (4.2)

and therefore f−ν = 0 for all ν ∈ Λ−ϕ . Hence f ∈ H∞,N\Λ−ϕ (U).

(b) Let f ∈ H∞,N\Λ−ϕ (U). Then the Hadamard multiplication theorem
2.14.4 yields that Tϕf vanishes in a neighbourhood of the point at
infinity. Since (Ω ∗ U) ∩ C is connected, f belongs to the kernel of
Tϕ.

�

Remark 4.2 :
Let Ω ⊂ C∞ be a domain and U ⊂ C∞ be open with {0,∞} ⊂ Ω ∩ U and such
that Ω ∗ U is connected and let ϕ ∈ H(Ω). Theorem 4.1 especially implies

N(Tϕ) = HN0\Λ+
ϕ

(U) = H∞,N\Λ−ϕ (U) . (4.3)

This observation will be important to examine under which conditions Tϕ can be
expected to be injective.

We want to formulate an interpretation of the second equality in (4.3) and have a
closer look at the assumption that Ω ∗ U shall be connected:
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1. For the following interpretation of the second equality in (4.3) we note that
the assumption that Ω ∗ U shall be connected implies that 0 and ∞ belong
to the same component of U (see Remark 2.7.2).

For f ∈ H(U) we have Λ+
f ⊂ N0 \ Λ+

ϕ if and only if Λ−f ⊂ N \ Λ−ϕ . That
means that whenever the gaps of the power series expansion of a function
f ∈ H(U) about 0 are influenced by those of the function ϕ ∈ H(Ω), then
the same is true for the gaps of the power series expansion of f about∞ and
vice versa.

2. It may happen that the assumption of the connectedness of Ω∗U has influence
on the set of non-vanishing coefficients Λ+

ϕ and Λ−ϕ : if the set UC contains
a closed arc of angular length 2πδ for some δ ≥ 0 (for example U = DKδ),
then the definition of the star product implies that the following condition
is necessary for Ω ∗ U to be connected:

For all R > 0 the set TR∩Ω contains an open arc of length larger than 2πRδ.
This, in turn, implies according to the Pólya gap theorem that d∗(Λ+

ϕ ) > δ
(see Remark A.8). Applying this argument to the function Uϕ ∈ H(1/Ω) we
obtain that also d∗(Λ−ϕ ) > δ.

Remark 4.3 :
Without the assumption of the connectedness of Ω ∗ U in Theorem 4.1.2/3, the
kernel of Tϕ is in general a proper subset of HN0\Λ+

ϕ
(U) or H∞,N\Λ−ϕ (U) respectively.

The following example illustrates this:

The functions

Φ(z) := z ·
∞∏
λ=2
λ even

(
1− z2

λ2

)
, F (z) := (z− 1) ·

∞∏
λ=3
λ odd

(
1− z2

λ2

)
, F̃ (z) := F (−z) (z ∈ C)

belong to the space Exp(K1/2) (see Example B.19.2 and Corollary B.13.2).

Hence, ϕ := M−1Φ, f := M−1F and f̃ := M−1F̃ are holomorphic in Ω := U :=
DK1/2

. Obviously,

Λ+
f = 2N0 = N0 \ Λ+

ϕ , Λ−
f̃

= 2N = N \ Λ−ϕ .

Hence, f ∈ HN0\Λ+
ϕ

(U) and f̃ ∈ H∞,N\Λ−ϕ (U) while Ω∗U = D∪DC is not connected.

However, Theorems 2.14 and B.16 yield for all z ∈ D

Tϕf̃(z) =
∞∑
ν=0

Φ(ν)F̃ (ν)zν = F̃ (1)z 6= 0
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and for all z ∈ DC

Tϕf(z) = −
∞∑
ν=1

Φ(−ν)F (−ν)z−ν = −F (−1)z−1 6= 0 .

Therefore, f and f̃ do not belong to the kernel of Tϕ.

If the geometry of the set Ω allows a Mellin transform of the function ϕ ∈ H(Ω)
and if the set U ⊂ C \ {0} has connected complement so that we can dispose
of the generalized monomials, we obtain the following theorem which is a direct
consequence of Theorem 3.7 and the linearity and continuity of Tϕ.

Theorem 4.4 :
Let K ⊂ V be compact and convex and let U ⊂ C \ {0} be open and star-eligible to
DK with connected complement. Let furthermore ϕ ∈ H(DK), Φ = Mϕ, α ∈ C
and k ∈ N0.

Then the function qk,α,U belongs to kernel of the operator Tϕ : H(U)→ H(DK ∗U)
if and only if α is an m−fold zero of Φ and k ≤ m− 1. Especially

clspan{qk,α,U : α m−fold zero of Φ, k ≤ m− 1} ⊂ N(Tϕ) .2 (4.4)

4.2 Criteria for Tϕ to be injective or to have dense
range

The aim of this section is to disclose under which conditions the Hadamard ope-
rator Tϕ,U is injective or has dense range. The main idea pursued here is the
following: Combining Theorem C.5.1 and Theorem 3.9 it follows that Tϕ : H(U)→
H(Ω ∗ U) has dense range if and only if

[T ]ϕ : H((Ω ∗ U)∗)→ H(U∗), [(g, V )](Ω∗U)∗ 7→ [(ϕ ∗ g,Ω ∗ V )]U∗

is injective. As we already pointed out in Remark 3.10, the transposed operator is
basically again a Hadamard operator induced by the same function ϕ but by the

2The functions qk,α,U depend on the branch of the logarithm which is chosen on every com-
ponent of U . Theorem 3.7 implies that (4.4) holds for any of these branches. However, one
easily verifies that the set clspan{qk,α,U : α m−fold zero of Φ, k ≤ m − 1} does not change
while altering the underlying branch of the logarithm. Therefore it is legitimate not to go into
any detail on what branch of the logarithm is chosen if it is not, for some reason, convenient to
choose a special one.
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“dual” set (Ω ∗ U)∗. Neglecting the fact that the transposed operator [T ]ϕ maps
between spaces of germs of holomorphic functions it is not surprising that given
that we know under which conditions a Hadamard operator Tϕ,U is injective, we
can hope to obtain a result concerning the range of a corresponding operator using
duality and vice versa.

We want to highlight two things: Firstly we note that 0 or ∞ belong to the set
(Ω ∗ U)∗ if and only if ∞ or 0 do not belong to the set U . Hence, the respective
position of the origin and the point at infinity for the “dual” operator is in some
sense contrary to the situation for the “primal” operator. For example, if we know
that Tϕ,U has dense range for some U ⊂ C \ {0}, we can hope to derive some
information about the injectivity of a Hadamard operator Tϕ,Ũ where Ũ ⊃ {0,∞}
is suitable. Secondly, assumptions about the connectedness of U and Ω ∗ U are
going to be transferred to assumptions about the connectedness of (Ω ∗ U)∗ and
U∗(i. e. of (Ω ∗ U)C and UC).

To put it in a nutshell, the results concerning the injectivity and the range of Tϕ,U
listed in this section can be interpreted as the “dual version” of each other.

We will see that sometimes it will be convenient to prove some results concerning
the injectivity of a Hadamard operator and transfer them to the respective “dual”
operator while sometimes it is more appropriate to prove a result for the range of
Tϕ,U in a first step. The structure of this section is chosen in such a way that we
will always present the “primal” results first even if that means hopping a little bit
between properties of the kernel and the range of Tϕ,U .

Theorem 4.5 :
Let Ω ⊂ C∞ be a domain with {0,∞} ⊂ Ω and ϕ ∈ H(Ω). Let furthermore
U ⊂ C∞ be open and star-eligible to Ω. Then the following are valid for the
operator Tϕ : H(U)→ H(Ω ∗ U):

1. Let 0,∞ 6∈ U . If Tϕ is injective, then Λϕ = Z. If, in addition, U is
connected and contains a ring domain Vr,R with 0 ≤ r < R ≤ ∞ and
r

R
<

min{|w| : w ∈ ΩC}
max{|w| : w ∈ ΩC}

, then this condition is also sufficient.

2. Let 0 ∈ U and ∞ 6∈ U . If Tϕ is injective, then Λ+
ϕ = N0. If, in addition, U

is connected, then this condition is also sufficient.

3. Let 0 6∈ U and ∞ ∈ U . If Tϕ is injective, then Λ−ϕ = N. If, in addition, U is
connected, then this condition is also sufficient.
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Proof:

1. The first part of the assertion is a consequence of Theorem 4.1.1.(a). To
show the second part let Λϕ = Z and f ∈ N(Tϕ,U). Since U contains
a ring domain Vr,R and f |Vr,R ∈ N(Tϕ,Vr,R) (see Theorem 2.13), Theorem
4.1.1.(b) yields that f |Vr,R vanishes (note that Example 2.3.6 ensures that
Ω ∗ Vr,R 6= ∅). Since U is connected, f vanishes on the whole set U and
therefore, Tϕ is injective.

2. The first part of the assertion is a consequence of Theorem 4.1.1.(a) and the
second one is a consequence of Theorem 4.1.2.(a) noting that the connec-
tedness of U implies H∅(U) = {0}.

3. The first part of the assertion is a consequence of Theorem 4.1.1.(a) and the
second one is a consequence of Theorem 4.1.3.(a) noting that the connec-
tedness of U implies H∞,∅(U) = {0}. �

Having a look at Theorem 4.5.1 it is important to remark that the condition
Λϕ = Z is in general not sufficient for the injectivity of Tϕ. Indeed, if the geometry
of Ω allows a Mellin transform of the function ϕ ∈ H(Ω) and U ⊂ C\{0} is simply
connected, which is in some sense the “opposite” of containing a ring domain, the
following theorem holds.

Theorem 4.6 :
Let K ⊂ V be compact and convex and let U ⊂ C \ {0} be a simply connected
domain and star-eligible to DK. Let furthermore ϕ ∈ H(DK) and Φ = Mϕ. Then
the following are equivalent:

1. Tϕ : H(U)→ H(DK ∗ U) is injective.

2. Φ has no zeros.

3. ϕ(z) = λ/(1− βz) (z ∈ DK) for some λ 6= 0 and some β ∈ eK.

Proof: Theorem 4.4 yields that 1. implies 2.

In order to show that 2. implies 3. we assume that Φ ∈ Exp(K) has no zeros. Then
according to the Hadamard factorization theorem (see [Boa, Th. 2.7.1]), there are
numbers α1, α2 ∈ C such that Φ(z) = exp(α1z + α2) (z ∈ C). In order that the



CHAPTER 4. THE KERNEL AND THE RANGE OF Tϕ 51

condition Φ ∈ Exp(K) is satisfied, α1 must belong to the set K (see Example
B.11). Then the power series expansion of ϕ about zero yields that

ϕ(z) =
eα2

1− eα1z
(z ∈ DK) .

Setting λ := eα2 6= 0 and β := eα1 ∈ eK completes this part of the proof.

To prove that 3. implies 1. we examine how Tϕ acts on a function f ∈ H(U). For
all z ∈ DK ∗ U we obtain

Tϕf(z) =
1

2πi

∫
Γ

ϕ(
z

ζ
)f(ζ)

dζ

ζ

=
1

2πi

∫
Γ

λ

1− βz/ζ
f(ζ)

dζ

ζ

= λf(βz)

where Γ is a Cauchy cycle for z · eK in U and the last identity follows from the
Cauchy integral formula noting that z · β ∈ z · eK .

Since U is connected, this operator Tϕ is injective. �

The “dual version” of Theorem 4.5 reads as follows:

Theorem 4.7 :
Let Ω ⊂ C∞ be a domain with {0,∞} ⊂ Ω and ϕ ∈ H(Ω). Let furthermore
U ⊂ C∞ be open and star-eligible to Ω. Then the following are valid for the
operator Tϕ : H(U)→ H(Ω ∗ U):

1. Let {0,∞} ⊂ U . If Tϕ has dense range, then Λϕ = Z.

2. Let 0 ∈ U and ∞ 6∈ U . If Tϕ has dense range, then Λ+
ϕ = N0. If, in addition,

(Ω ∗ U)∗ is connected, then this condition is also sufficient.

3. Let 0 6∈ U and ∞ ∈ U . If Tϕ has dense range, then Λ−ϕ = N. If, in addition,
(Ω ∗ U)∗ is connected, then this condition is also sufficient.

Proof:

1. Since 0 ∈ U the Hadamard multiplication theorem 2.14.3 yields that
Tϕ(H(U)) ⊂ HΛ+

ϕ
(Ω ∗ U) where the right-hand side is a closed subspace
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of H(Ω∗U). If Tϕ has dense range, then this implies HΛ+
ϕ

(Ω∗U) = H(Ω∗U)

which obviously requires Λ+
ϕ to equal N0.

Since ∞ ∈ U the Hadamard multiplication theorem 2.14.4 yields that
Tϕ(H(U)) ⊂ H∞,Λ−ϕ (Ω ∗ U) where the right-hand side is again a closed sub-
space of H(Ω ∗U). If Tϕ has dense range, then this implies H∞,Λ−ϕ (Ω ∗U) =

H(Ω ∗ U) which requires Λ−ϕ to equal N.
Hence, we obtain Λϕ = Z.

2. The first part of the assertion follows analogously to part 1.

To prove the second part, Theorems C.5.1 and 3.9 yield that it is enough to
show that

[T ]ϕ : H((Ω ∗ U)∗)→ H(U∗), [(g, V )](Ω∗U)∗ 7→ [(ϕ ∗ g,Ω ∗ V )]U∗

is injective.

Let [(g, V )](Ω∗U)∗ ∈ H((Ω∗U)∗) with [(ϕ∗g,Ω∗V )]U∗ = [0]U∗ . Since (Ω∗U)∗

is connected, without loss of generality we can choose V to be connected.
Furthermore, V contains the origin and V shall without loss of generality be
chosen so small that ∞ 6∈ V .

The fact that 0 ∈ U∗ implies that ϕ ∗ g vanishes in an open neighbourhood
of the origin and Theorem 4.1.2.(a) yields

g ∈ HN0\Λ+
ϕ

(V ) = H∅(V ) = {0} .

Hence, [(g, V )](Ω∗U)∗ = [0](Ω∗U)∗ .

3. The first part of the assertion follows analogously to part 1.

To prove the second part, let g ∈ H(Ω ∗ U). By part 2 of this theorem,
the operator TUϕ : H(1/U) → H(1/(Ω ∗ U)) has dense range (note that
Uϕ ∈ H(1/Ω) where {0,∞} ⊂ 1/Ω and 0 ∈ 1/U, ∞ 6∈ 1/U). Therefore
there exists a sequence (f̃n) in H(1/U) with TUϕf̃n → Ug in H(1/(Ω ∗ U)).
Because U : H(U) → H(1/U) is bijective (see Remark 2.21.1) there are
functions fn ∈ H(U) with Ufn = f̃n (n ∈ N). Proposition 2.22 yields
U(Tϕfn)→ Ug in H(1/(Ω ∗U)) and since U is a topological isomorphism we
obtain Tϕfn → g in H(Ω ∗ U). �

Remark 4.8 :
No assumptions on the connectedness of U (or (Ω∗U)∗ respectively) are needed in
order to obtain necessary conditions for Tϕ to be injective or to have dense range.
This is not surprising because connectedness assumptions are mostly needed to
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retrieve global information from local one. However, the necessary conditions
formulated above work the other way around: Knowing that Tϕ is injective or has
dense range is some kind of global information whereas the deduced properties of
Λ+
ϕ and Λ−ϕ are some kind of local information because they concern the power

series expansions of ϕ about zero or infinity.

We want to continue the examination of the range of Tϕ,U in case that neither the
origin nor the point at infinity belong to the set U . If the geometry of the set Ω
allows a Mellin transform of the function ϕ ∈ H(Ω), we get the following sufficient
condition for the resulting Hadamard operator to have dense:

Theorem 4.9 (Approach (R.I)) :
Let K ⊂ V be compact and convex and let U ⊂ C \ {0} be open and star-eligible to
DK with connected complement. Let furthermore ϕ ∈ H(DK). Then Tϕ : H(U)→
H(DK ∗ U) has dense range.

Proof: As usual, we write Φ = Mϕ ∈ Exp(K). Then we obtain with Theorem 3.7

Tϕpα,U = Φ(α) · pα,DK∗U (α ∈ C) .3

Denoting the set of zeros of Φ by Z(Φ), this identity implies that for all α 6∈ Z(Φ)
the monomials pα,DK∗U belong to the range of Tϕ. Since Z(Φ) is countable, there
exists a number c ∈ [0, 1) such that (N0 + c) ∩ Z(Φ) = ∅.

Let now g ∈ H(DK ∗U). Then the function p−c,DK∗U ·g is also holomorphic in DK ∗
U . Since (DK ∗ U)C is connected (see Proposition 2.5.6), Runge’s approximation
theorem implies that there exists a sequence of polynomials (Pn)n∈N converging
locally uniformly to p−c,DK∗U · g on DK ∗ U . Hence, (pc,DK∗U · Pn)n∈N converges
locally uniformly on DK ∗ U to the function g. This shows that the linear span
of {pα,DK∗U : α ∈ C \ Z(Φ)} is dense in H(DK ∗ U) and therefore Tϕ : H(U) →
H(DK ∗ U) has dense range. �

Example 4.10 :
Let Λ = {λn : n ∈ N} ⊂ N with d(Λ) = δ < 1 and

Φ(z) :=
∞∏
n=1

(
1− z2

λ2
n

)
(z ∈ C) .

3The functions pα,U are assumed to be induced by an arbitrary branch of the logarithm on
each component of U .
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Example B.19.2 implies that ϕ = M−1Φ is holomorphic in DKδ and Theorem
4.9 yields that the operator Tϕ : H(S) → H(S1−δ) has dense range (note that
DKδ ∗ S = S1−δ according to Example 2.3.4).

It is obvious that the larger δ, i. e. the largerKδ, the smaller the setDKδ ∗S = S1−δ
gets. Applying this concept to questions of approximation theory in Chapter 6 of
this thesis, this phenomenon becomes quite natural.

Remark 4.11 :
As we will see in Proposition 4.22.2, the assertion of Theorem 4.9 is in general
false if UC is not connected.

Theorem 4.12 (Approach (K.I)) :
Let K ⊂ V be compact and convex and let U ⊂ C∞ be a domain with {0,∞} ⊂ U
and such that DK ∗ U is connected. Let furthermore ϕ ∈ H(DK). Then Tϕ :
H(U)→ H(DK ∗ U) is injective.

Proof: If U = C∞ the assertion is trivial. Therefore we assume U ( C∞ and note
that sinceDK∗U is connected there exists a compact and connected set L ⊂ DK∗U
with {0,∞} ⊂ L◦. We set W := L∗ and obtain an open set containing neither the
origin nor the point at infinity and having connected complement. Furthermore,
we haveW ∗ = L ⊂ DK ∗U and Proposition 2.5.5 yields that (DK ∗W )∗ = W ∗ ·D∗K
is a compact subset of U (because U 6= C∞, this implies also that DK ∗W 6= ∅, i.
e. DK and W are star-eligible).

Theorem 4.9 yields that the operator Tϕ,W : H(W )→ H(DK ∗W ) has dense range.
Hence, Theorem C.5.1 implies that

[T ]ϕ,(DK∗W )∗ : H((DK ∗W )∗)→ H(W ∗), [(g, V )](DK∗W )∗ 7→ [(ϕ ∗ g,DK ∗ V )]W ∗

is injective.

Let now f ∈ N(Tϕ,U) be given. Then [(f, U)](DK∗W )∗ ∈ H((DK ∗ W )∗) and
[T ]ϕ,(DK∗W )∗ [(f, U)](DK∗W )∗ = [(ϕ∗f,DK∗U)]W ∗ = [0]W ∗ . Hence, [(f, U)](DK∗W )∗ =
[0](DK∗W )∗ which means that f vanishes in an open neighbourhood O of (DK ∗W )∗.
Since O ∩ U 6= ∅ and since U is connected, f vanishes on U which completes the
proof. �

Remark 4.13 :
The assertion of Theorem 4.12 is in general false if U or DK ∗U is not connected:
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1. Let K := K1/2 and let U := C∞ \ e−∂L where L = I× iπ[−1/4, 1/4] for some
compact real interval I with I◦ 6= ∅.
Then U is not connected, but DK ∗ U = DK1/2+L is connected. Setting

f(z) =

{
0 , z ∈ DL

1 , z ∈ e−L◦

we obtain a function 0 6≡ f ∈ H(U) with fν = 0 (ν ∈ N0) and the Hadamard
multiplication theorem 2.14.3 yields for all z with small modulus

Tϕf(z) =
∞∑
ν=0

ϕνfνz
ν = 0 .

Since DK ∗ U is connected, we obtain f ∈ N(Tϕ), i. e. Tϕ is not injective.

2. According to Example B.19.2 the function

Φ(z) =
∞∏
λ=1
λ odd

(
1− z2

λ2

)
(z ∈ C)

belongs to the space Exp(K1/2) and ϕ := M−1Φ is holomorphic in DK1/2

with Λ+
ϕ = 2N0 and Λ−ϕ = 2N. We set U := Dr ∪ UR(∞) ∪ S1/4 ∪ (−S1/4)

(where 0 < r < R <∞). Then U is connected but DK1/2
∗U = Dr ∪UR(∞)

is not connected.
Let f ∈ H(U) be a non-even function, i. e. f̃(z) := f(−z) ∈ H(U) is not
equal to f . The Hadamard multiplication theorem 2.14.3 and Equation (2.2)
yield for all z ∈ Dr

Tϕf̃(z) = Tϕf(−z) =
∑
ν∈2N0

ϕνfν(−z)ν =
∑
ν∈2N0

ϕνfνz
ν = Tϕf(z)

and for all z ∈ UR(∞)

Tϕf̃(z) = −
∑
ν∈2N

ϕ−νf−ν(−z)−ν = Tϕf(z) .

Hence, Tϕ is not injective.

Remark 4.14 :
At first glance, it might seem asymmetric that Theorem 4.12 requires a connec-
tedness assumption for both U and DK ∗U whereas in Theorem 4.9 we only need a
connectedness assumption for U (or to be more precise for UC). The corresponding
second assumption that would have to be made is that (DK ∗ U)C is connected,
too. However, this is already guaranteed by Proposition 2.5.6 and does not have
to be expressed specifically.
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We want to formulate a second condition under which Hadamard operators Tϕ,Ω,U
are injective in case that both the origin and the point at infinity belong to the
set U . So far we only considered the case that Ω is of the form DK . If we want to
generalize this result to a domain Ω containing 0 and∞, it is natural that we have
to impose other assumptions. It will turn out that the “number” of non-vanishing
coefficients in the power series expansions of ϕ measured by means of the densities
introduced in Appendix A provides an appropriate concept to do that. However,
the idea of the proof of this theorem will be inspired by the proof of Theorem
4.5. The main idea was to make use of Theorem 4.1 and to exploit the obvious
identity H∅(U) = {0} for the connected set U . Also in case {0,∞} ⊂ U Theorem
4.1 will play an important role but in addition, we need the following consequence
of Theorem 4.12.

Proposition 4.15 :
Let M1 ⊂ N0 and M2 ⊂ N with d∗(M1) = d∗(M2) =: δ ∈ [0, 1). Let U ⊂ C∞ be a
domain with {0,∞} ⊂ U and such that

DKδ ∗W is connected for some domain W ⊂ U with {0,∞} ⊂ W . (4.5)

Then we have HM1(U) = {0} and H∞,M2(U) = {0}.

Proof: For the time being, we assume that 0 6∈ M1. Remark A.2 implies the
existence of a (countable) set M̃ with M1 ⊂ M̃ ⊂ (0,∞) and d(M̃) = δ. We write
M̃ = M1 ∪ D̃ where M1 and D̃ are assumed to be disjoint. Since D̃ is countable,
there exists a number σ ∈ (0, 1) such that the set D := D̃+σ does not intersect the
non-negative integers. Then M := {µn : n ∈ N} := M1 ∪D is still a measurable
superset of M1 with d(M) = δ and M ∩ N0 = M1.

We set

Ψ(z) :=
∞∏
n=1

(
1− z2

µ2
n

)
(z ∈ C)

and obtain according to Example B.19.2 an entire function of exponential type
belonging to the space Exp(Kδ) with Z(Ψ) = ±M . Hence, ψ := M−1Ψ is holo-
morphic in DKδ with N0 \ Λ+

ψ = M1.

If 0 ∈M1, we consider the function Ψ̃(z) := z·Ψ(z) (z ∈ C) (where Ψ is constructed
as above based on the set M1 \ {0}). Then Ψ̃ ∈ Exp(Kδ) (see Corollary B.13) and
ψ := M−1Ψ̃ is also holomorphic in H(DKδ) with N0 \ Λ+

ψ = M1.

By assumption, there exists a domain W ⊂ U with {0,∞} ⊂ W and such that
DKδ ∗W is connected. We obtain with Remark 4.2 and Theorem 4.12

HM1(W ) = HN0\Λ+
ψ

(W ) = N(Tψ,DKδ ,W ) = {0} .
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Because U is a domain, the restriction map ρ : H(U) → H(W ), f 7→ f |W
is injective. Hence we can consider H(U) as a subspace of H(W ) and obtain
HM1(U) ⊂ HM1(W ) = {0}.

The second assertion follows analogously. �

Remark 4.16 :
1. If d∗(Mj) = d(Mj) = 0 (j = 1, 2), then Condition (4.5) is superfluous because
U itself is assumed to be connected.

2. Condition (4.5) is fulfilled if U contains a sector of opening larger than δ:
Indeed, in this case we can without loss of generality assume the existence
of numbers 0 < r < R <∞ and δ < α ≤ 1 such that

W := Ur(0) ∪ UR(∞) ∪ Sα ⊂ U

(otherwise take a rotated set W ). Then Example 2.3.3 implies that

DKδ ∗W = Ur(0) ∪ UR(∞) ∪ Sα−δ
which is a connected set because α− δ > 0.

3. The first assertion of Proposition 4.15 can be interpreted in the following
way:
Whenever a power series about zero whose non-vanishing coefficients have
density zero can be analytically continued up to infinity, then the function
represented by that power series expansion must vanish identically.
Whenever a power series about zero whose non-vanishing coefficients have
maximal density larger than zero can be analytically continued into a so-
called “keyhole domain” where the actual “keyhole” is large enough in the
sense formulated in Condition (4.5), then the function represented by that
power series must vanish identically.
Interpreted this way, these assertions are special cases of the Fabry and Pólya
gap theorems (see Appendix A).

Proposition 4.15 allows to formulate the following sufficient condition for Tϕ to be
injective.

Theorem 4.17 (Approach (K.II)) :
Let Ω ⊂ C∞ be a domain and let U ⊂ C∞ be open with {0,∞} ⊂ Ω∩U , ϕ ∈ H(Ω)
and

∆ϕ := min{d∗(N0 \ Λ+
ϕ ), d∗(N \ Λ−ϕ )} .

Then Tϕ : H(U)→ H(Ω ∗ U) is injective if the following two conditions hold:



CHAPTER 4. THE KERNEL AND THE RANGE OF Tϕ 58

(K.a) U is connected.

(K.b) DK∆ϕ
∗W is connected for some domain W ⊂ U with {0,∞} ⊂ W .

Proof: In case ∆ϕ = d∗(N0\Λ+
ϕ ) we obtain with Theorem 4.1.2.(a) and Proposition

4.15
N(Tϕ) ⊂ HN0\Λ+

ϕ
(U) = {0} ,

and in case ∆ϕ = d∗(N \ Λ−ϕ ) we obtain with Theorem 4.1.3.(a) and Proposition
4.15

N(Tϕ) ⊂ H∞,N\Λ−ϕ (U) = {0} .

�

Theorem 4.18 (Approach (R.II)) :
Let Ω ⊂ C∞ be a domain and let U ⊂ C∞ be open and star-eligible to Ω with
{0,∞} ⊂ Ω \ U , ϕ ∈ H(Ω) and

∆ϕ := min{d∗(N0 \ Λ+
ϕ ), d∗(N \ Λ−ϕ )} .

Then Tϕ : H(U)→ H(Ω ∗U) has dense range if the following two conditions hold:

(R.a) (Ω ∗ U)∗ is connected.

(R.b) Every open set V ⊃ (Ω ∗ U)∗ contains a domain W ⊃ {0,∞} such that
DK∆ϕ

∗W is connected.

Proof: We show again that the transposed operator is injective.

Let [(g, V )](Ω∗U)∗ ∈ H((Ω ∗ U)∗) with [(ϕ ∗ g,Ω ∗ V )]U∗ = [0]U∗ . Since (Ω ∗ U)∗

is connected, without loss of generality we can choose V to be connected, too.
Furthermore we have {0,∞} ⊂ (Ω ∗ U)∗ ∩ U∗. Therefore, the function ϕ ∗ g
vanishes in an open neighbourhood of the origin and in an open neighbourhood
of the point at infinity. Condition (R.b) implies that DK∆ϕ

∗W is connected for
some domain W with {0,∞} ⊂ W ⊂ V . Theorem 2.13 implies that ϕ ∗Ω,W (g|W )
vanishes in an open neighbourhood of the origin and in an open neighbourhood of
the point at infinity.

In case ∆ϕ = d∗(N0 \ Λ+
ϕ ) we obtain with Theorem 4.1.2.(a) and Proposition 4.15

(noting that W is connected)

g|W∈ HN0\Λ+
ϕ

(W ) = {0} .
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Since V is connected, g vanishes in the open superset V of (Ω ∗U)∗ and therefore,
[(g, V )](Ω∗U)∗ = [0](Ω∗U)∗ .

In case ∆ϕ = d∗(N \ Λ−ϕ ), we obtain with Theorem 4.1.3.(a) and Proposition 4.15

g|W∈ H∞,N\Λ−ϕ (W ) = {0} .

Since V is connected, g vanishes in the open superset V of (Ω ∗U)∗ and therefore,
[(g, V )](Ω∗U)∗ = [0](Ω∗U)∗ . �

Putting the results of this section together we obtain the following corollary.

Corollary 4.19 :
Let Ω ⊂ C∞ be a domain with {0,∞} ⊂ Ω and let U ⊂ C∞ be open and star-
eligible to Ω. Let furthermore ϕ ∈ H(Ω). Then the following are valid for the
operator Tϕ : H(U)→ H(Ω ∗ U):

1. If U is connected and if U ∩{0,∞} 6= ∅, then Tϕ having dense range implies
the injectivity.

2. If (Ω ∗ U)∗ is connected and if U ∩ {0,∞} 6= {0,∞}, then the injectivity of
Tϕ implies that it has dense range.

Proof: Everything is a consequence of Theorems 4.5/4.17 and 4.7/4.18. �

Remark 4.20 :
Corollary 4.19 together with Proposition 2.5.6 implies that for all simply connected
domains U ⊂ C containing the origin, the operator Tϕ,U is injective if and only if
it has dense range. Going back to the Koebe function presented in Example 3.2 we
observe that as soon as the origin does not belong to U this is no longer true: Tκ,U
is even surjective for each simply connected domain U ⊂ C\{0} but not injective.

This shows how severely the situation changes depending on whether the origin or
the point at infinity belong to the set U or not.

Remark 4.21 :

1. Obviously, Conditions (K.b) and (R.b) rely on an interplay between ∆ϕ and
the geometry of the set U or Ω ∗ U respectively. In Section 4.3 we are going
to elaborate on that interplay and in addition, we are going to show that in
general, only one of the conditions (K.a), (K.b) or (R.a), (R.b) is not enough
for Tϕ,U to be injective or to have dense range. This shows in particular that
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Tϕ,U is by no means injective for every domain U containing 0 and ∞ and
Tϕ,U does by no means have dense range for every open set U ⊂ C\{0} with
(Ω ∗ U)∗ connected.

2. In order to show that Tϕ has dense range (see Theorems 4.9/4.18) or that
Tϕ is injective (see Theorems 4.12/4.17) we used in each case two different
approaches. We are going to compare these approaches in Section 4.3.

At the end of this section, we formulate the following necessary and sufficient
conditions for Tϕ to be injective or to have dense range in case that ϕ is holomorphic
in C∞ \ {1}.

Proposition 4.22 :
Let ϕ ∈ H(C∞\{1}), Φ = Mϕ and let U1 ⊂ C∞ with {0,∞} ⊂ U1 and U2 ⊂ C\{0}
be open.

1. (a) If U1 is connected, then Tϕ,U1 is injective.
If UC

2 is connected, then Tϕ,U2 has dense range.

(b) If Z(Φ) = ∅, then Tϕ,U1 is injective and Tϕ,U2 is surjective.

2. (a) If Z(Φ) ∩ Z 6= ∅, then it is necessary

• for Tϕ,U1 to be injective that U1 is connected,
• for Tϕ,U2 to have dense range that UC

2 is connected.

(b) If Z(Φ) 6= ∅ but Z(Φ) ∩ Z = ∅, it is necessary
• for Tϕ,U1 to be injective that U1 does not have a simply connected

component containing neither 0 nor ∞,
• for Tϕ,U2 to have dense range that UC

2 does not have a simply con-
nected component containing neither 0 nor ∞.

Proof:

1. (a) These assertion are a direct consequence of Theorem 4.12 and Theorem
4.9.

(b) The proof of Theorem 4.6 shows that the conditions Φ ∈ Exp({0}) and
Z(Φ) = ∅ require that Φ ≡ λ for some λ ∈ C \ {0}. Furthermore, it
can be shown analogously that Tϕ,Ujf(z) = λf(z) (z ∈ Uj, j = 1, 2).
Clearly, this operator exhibits the desired properties.
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2. We just show the assertions concerning the injectivity of Tϕ,U1 . The corres-
ponding assertions concerning the range of Tϕ,U2 follow, as usual, using the
transposed operator.

(a) Let U1 be non-connected and ν ∈ Z(Φ) ∩ Z. If ν ≥ 0 we set

g(z) =

{
0 , z ∈ (U1)∞
zν , z ∈ U1 \ (U1)∞

,

and if ν < 0 we set

g(z) =

{
0 , z ∈ (U1)0

zν , z ∈ U1 \ (U1)0
.

We noted in Example 2.17 that Tϕ,U1pν,U1 = 0 and hence, Tϕ,U1 is not
injective.

(b) If U1 has a simply connected component V ⊂ C \ {0}, then Theorem
4.6 shows that Tϕ,V is not injective which clearly implies that Tϕ,U1 is
not injective. �

Remark 4.23 :
We consider again the situation in Proposition 4.22. If Z(Φ) 6= ∅ but Z(Φ) ∩
Z = ∅, then it is not necessary for Tϕ,U1 to be injective that U1 is connected.
For example, if U1 consists of two components, one of them containing zero and
the other containing the point at infinity, then Tϕ,U1 is injective if and only if
both Tϕ,(U1)0 and Tϕ,(U1)∞ are injective. However, Theorem 4.5 ensures this latter
condition.

A similar remark applies to the range of Tϕ,U2 .

4.3 Remarks and distinguishing examples

In Section 4.2 we gathered several conditions for Tϕ,U to be injective or to have
dense range. We always had to pay attention to the fact whether the origin and
the point at infinity belong to the set U or not. It turned out that the respective
properties of the resulting operator Tϕ,U changed heavily.

While examining the injectivity, the case {0,∞} ⊂ U ⊂ C∞ turned out to be
most delicate (throughout this section, U1 shall denote an open subset of C∞
containing zero and infinity) whereas while studying the range we paid most of
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our attention to the case that U does neither contain the origin nor the point at
infinity (throughout this section, U2 shall denote an open subset of C \ {0}). This
is not surprising because the Hadamard operators Tϕ,U1 and Tϕ,U2 are linked with
each other via duality.

In this section we want to shed more light on the situations mentioned above.

It is obvious that while examining the kernel as well as the range of Tϕ,U we were
engaged with two different approaches (K.I)/(R.I) and (K.II)/(R.II). They have in
common that they rely on an interplay between density conditions on the sets Λ+

ϕ

or Λ−ϕ on the one hand and the geometry of the sets Ω and U on the other hand.
It is a question of some kind of tradeoff: The more restrictive the sets Ω and U
are chosen, the less assumptions on the sets Λ+

ϕ or Λ−ϕ are needed and vice versa.

The first approach (K.I)/(R.I) required the domain of holomorphy of the function
ϕ (that means the set Ω) to be of the specific form DK and imposed a geometrical
condition on the set U which was independent of the “size” of the gaps of ϕ. It
is the geometric context of the Mellin transformation which allows to renounce
all kind of density conditions. We managed to transfer the argumentation to the
level of the Mellin transform, which is an entire function. On this level, we were
able to exploit the eigenvalue property formulated in Theorem 3.7 and Runge’s
approximation theorem. To put it in a nutshell, the first approach requires rather
specific geometric situations and imposes connectedness assumptions on the sets
U or Ω ∗ U but does not have to impose conditions on the density of Λ+

ϕ or Λ−ϕ .

The respective second approaches (K.II)/(R.II) arose from a result which could be
interpreted as a special case of the Fabry and Pólya gap theorems (see Proposition
4.15). This theorem in turn was a consequence of Approach (K.I). Pursueing this
idea, Ω is not required to be of the form DK but we also deal with connectedness
assumptions. However, there are two kinds of them: Conditions (K.a) and (R.a)
are independent of the function ϕ ∈ H(Ω) whereas Conditions (K.b) and (R.b)
depend on the “size” of the gaps in the power series expansions of ϕ about zero or
infinity measured by the quantity ∆ϕ. We can observe a direct correlation between
the “size” of those gaps and the size of the set U (or Ω ∗ U): The more gaps are
allowed (i. e. the larger ∆ϕ), the more restrictive Condition (K.b)/(R.b) becomes
and hence, the less general the set U can be chosen.

This section shall serve the purpose to have a closer look at the theorems men-
tioned above: In a first step we are going to scrutinize Approach (K.II)/(R.II) and
examine the correlation between ∆ϕ and the geometry of the set U (or Ω∗U) formu-
lated in Condition (K.b)/(R.b) (see Remark 4.24). In a second step we are going to
show that in general, only one of the conditions (K.a)/(R.a) or (K.b)/(R.b) is not
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enough to get the desired result of injectivity or dense range of Tϕ,U (see Remarks
4.25 and 4.26). In a third step we compare the different approaches (K.I)/(R.I)
and (K.II)/(R.II) among one another and are going to point out examples in which
one of the approaches is superior to the other (see Remaks 4.28 and 4.29).

Because we want to discuss the results concerning the kernel and the range of the
considered operators Tϕ,U simultaneously, we agree upon the following notation: in
the bullet points (α) we collect the remarks concerning the injectivity of Tϕ,U1 (i.
e. concerning (K.I) or (K.II)) and in the bullet points (β) we collect the remarks
concerning the range of Tϕ,U2 (i. e. concerning (R.I) or (R.II)).

Remark 4.24 :
Let Ω ⊂ C∞ be a domain with {0,∞} ⊂ Ω, ϕ ∈ H(Ω) and

∆ϕ = min{d∗(N0 \ Λ+
ϕ ), d∗(N \ Λ−ϕ )} .

Let furthermore U1 ⊂ C∞ be open with {0,∞} ⊂ U1 and let U2 ⊂ C\{0} be open
and star-eligible to Ω.

1. ∆ϕ vanishes if and only if d(Λ+
ϕ ) = 1 or d(Λ−ϕ ) = 1.

2. (α) If Condition (K.b) is valid, then the origin and the point at infinity
belong to the same component of U1.

(β) If Condition (R.b) is valid, then the origin and the point at infinity
belong to the same component of (Ω ∗ U2)∗.
(Indeed, if this is not the case, it is clear that there are open supersets
V of (Ω ∗ U2)∗ which contain the origin and the point at infinity in
different components. Hence, these sets V can not contain a domain
W ⊃ {0,∞}).

3. If ∆ϕ = 0, then the following holds:

(α) Condition (K.b) is valid if and only if the origin and the point at infinity
belong to the same component of U1 (Indeed, since DK0 = C∞ \ {1} we
can take W as the component of U1 containing zero and infinity).

(β) Condition (R.b) is valid if and only if the origin and the point at infinity
belong to the same component of (Ω ∗ U2)∗.
(Indeed, if the origin and the point at infinity belong to the same com-
ponent of (Ω ∗ U)∗, then the same applies to every open superset V
of (Ω ∗ U)∗. Hence we can choose W as being the component of V
containing zero and infinity).
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Especially, if Condition (K.a)/(R.a) holds, then Condition (K.b)/(R.b) holds,
too (for ∆ϕ > 0, this is not at all true (see Remark 4.26)!).

4. If 0 < ∆ϕ < 1, then the following holds:

(α) Condition (K.b) is valid if U1 contains a sector of opening larger than
∆ϕ (see Remark 4.16.2).

(β) Condition (R.b) is valid if (Ω ∗U2)∗ contains a cone of opening at least
∆ϕ.
(Indeed, in this case every open superset V of (Ω ∗ U2)∗ contains zero
and infinity and therefore also a sector of opening larger than ∆ϕ. Then
the assertion follows with Remark 4.16.2).

5. If ∆ϕ = 1, then Conditions (K.b) and (R.b) can not be met (at least in the
non-trivial case U1 6= C∞). That means in case that d∗(Λ+

ϕ ) = d∗(Λ
−
ϕ ) = 0,

Approaches (K.II) and (R.II) do not make an assertion about the injectivity
or the range of Tϕ.

In Proposition 3.4 we have shown that in case d(Λ+
ϕ ) = 0 or d(Λ−ϕ ) = 0,

the induced operator Tϕ,U is trivial for all star-eligible sets U and hence of
course neither injective nor having dense range. Hence, the only case where
Approaches (K.II) and (R.II) do not yield a result is when d∗(Λ+

ϕ ) and d∗(Λ−ϕ )
vanish but d(Λ+

ϕ ) and d(Λ−ϕ ) are positive.

Remark 4.25 :
We consider the Koebe function κ ∈ H(C∞ \ {1}) introduced in Example 3.2.
Since Mκ = idC, Proposition 4.22 yields:

(α) If U1 contains the origin and the point at infinity in the same component (i.
e. Condition (K.b) is fulfilled, see Remark 4.24.3) but U1 is not connected
(i. e. Condition (K.a) is not fulfilled) then Tκ,U1 is not injective.

(β) If U2 contains the origin and the point at infinity in the same component of
its complement (i. e. Condition (R.b) is fulfilled, see Remark 4.24.3) but UC

2

is not connected (i. e. Condition (R.a) is not fulfilled) then Tκ,U2 does not
have dense range.

These observations show that in general, Condition (K.b) or (R.b) alone is not
sufficient for Tϕ to be injective or to have dense range.
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Remark 4.26 :
If ∆ϕ = 0, then we have seen in Remark 4.24 that Condition (K.b)/(R.b) is fulfilled
whenever Condition (K.a)/(R.a) holds. However, we are going to show that this
is not true if ∆ϕ > 0 and that in this case, Condition (K.a)/(R.a) alone is not
sufficient to obtain that the corresponding Hadamard operator is injective or has
dense range. That means, we can not weaken the assumptions on the density of
the non-vanishing coefficients in the power series expansions of ϕ (i. e. enlarging
∆ϕ) without imposing stronger geometrical conditions on the set U (or Ω∗U) such
as (K.b)/(R.b).

We consider the function

ϕ(z) :=
1

1− z2
(z ∈ C∞ \ {±1}) .

Then ϕ is an even function and holomorphic in Ω := C∞ \ {±1} (i. e. ϕ̃(z) :=
ϕ(−z) = ϕ(z) (z ∈ Ω)). The power series expansions of ϕ read as follows

ϕ(z) =
∞∑
ν=0

z2ν (z ∈ D) ,

ϕ(z) = −
∞∑
ν=1

z−2ν (z ∈ DC
) .

Consequently, we have d(Λ+
ϕ ) = d(Λ−ϕ ) = ∆ϕ = 1/2. We consider the domain

D := Dr ∪ UR(∞) ∪ S1/4 ∪ (−S1/4)

(where 0 < r < R < ∞). Then for every domain W ⊂ D with {0,∞} ⊂ W we
obtain

{0,∞} ⊂ DK1/2
∗W ⊂ DK1/2

∗D = Dr ∪ UR(∞) (4.6)

and therefore, the set DK1/2
∗W is not connected.

(α) We set U1 := D. Then U1 is clearly connected (i. e. Condition (K.a) is
fulfilled) but (4.6) shows that Condition (K.b) is not fulfilled. As a matter
of fact, Tϕ : H(U1) → H(U1) is not injective, because for every non-even
function f ∈ H(U1), the function f̃(z) := f(−z) (z ∈ U1) is holomorphic in
U1 and not equal to f but Equation (2.2) implies

Tϕf̃ = Tϕ̃f = Tϕf .
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(β) We set U2 := S and obtain Ω ∗ U2 = C \ R and (Ω ∗ U2)∗ = R ∪ {∞} (i.
e. Condition (R.a) is fulfilled). (4.6) implies that Condition (R.b) is not
fulfilled (choose V = D). As a matter of fact, Tϕ : H(U2)→ H(C \ R) does
not have dense range because Proposition 2.20 yields that Tϕf is an even
function for all f ∈ H(U2).

These observations show that in general, Condition (K.a) or (R.a) alone is not
sufficient for Tϕ to be injective or to have dense range.

Now we turn towards a comparison of the Approaches (K.I)/(R.I) and (K.II)/(R.II).

Remark 4.27 :
Of course there are situations in which Ω is not of the form DK and therefore we
only have a chance to apply Approach (K.II)/(R.II). For example, the function

ϕ(z) :=
1

1− z
+

1

2 + z
(z ∈ C∞ \ {−2, 1})

is holomorphic in Ω := C∞ \ {−2, 1} and Λ+
ϕ = N0 and therefore ∆ϕ = 0.

(α) By setting U1 := C∞ \ {1}, Approach (K.II) yields that

Tϕ : H(C∞ \ {1})→ H(Ω)

is injective while Approach (K.I) can not be applied.

(β) By setting U2 := S, we obtain (Ω ∗ U2)∗ = R ∪ {∞} and Approach (R.II)
yields that

Tϕ : H(S)→ H(C \ R)

has dense range while Approach (R.I) can not be applied.

Now we want to have a look at what happens if Ω is indeed of the form DK . Which
approach should then be preferred? There is no clear-cut answer to this question.
The proofs of Approaches (K.II) and (R.II) both rely on an application of Propo-
sition 4.15. This proposition in turn is a consequence of Approach (K.I)/(R.I).
This observation could give the impression that Approach (K.I)/(R.I) is superior
to the second approach. However, this is not at all true. As we will show in the
following remarks, there are sets Ω = DK and functions ϕ ∈ H(Ω) such that it is
not difficult to specify sets U1, U2 for which Approach (K.I)/(R.I) can be applied
while Approach (K.II)/(R.II) can not and vice versa.
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Remark 4.28 :
We consider the set

Λ33 :=
⋃
k∈N0

{n ∈ N : 33k < n ≤ 2 · 33k} .

We show in Lemma A.4 that

d(Λ33) = 33/64 > 1/2, dL(Λ33) = ln 2/ ln 33 < 1/5 .

According to Remark 3.6.2 there exist real numbers a ≤ b and a function 0 6≡ ψ ∈
H(DM) (where M = [a, b] × iπ[−1/5, 1/5]) with Λ+

ψ = N0 \ Λ33. Then Ψ := Mψ
belongs to the space Exp(M) and we set

Φ(z) := Ψ(z) ·Ψ(−z) (z ∈ C), ϕ := M−1Φ .

Then Corollary B.13.2 and Proposition B.10.2 imply that Φ belongs to the space
Exp(K) (with K := [a − b, b − a] × iπ[−2/5, 2/5]) and therefore ϕ ∈ H(DK).
Furthermore we have

∆ϕ = min(d∗(N0 \ Λ+
ϕ ), d∗(N \ Λ−ϕ )) ≥ d∗(Λ33) ≥ d(Λ33) > 1/2 .

(α) We set U1 := DK1/2
and observe that for every domain W ⊂ U1 with

{0,∞} ⊂ W we have

{0,∞} ⊂ DK∆ϕ
∗W ⊂ DK∆ϕ

∗ U1 = C∞ \ T

and therefore the set DK∆ϕ
∗W is not connected. Hence, Condition (K.b)

is not fulfilled and Approach (K.II) can not be applied. However, Approach
(K.I) yields that Tϕ,U1 has dense range (note that DK ∗ U1 = DK+K1/2

is
connected).

(β) We set U2 := S. Example 2.3.4 implies that DK ∗ U2 = S3/5 and therefore,
the set

V := Dr ∪ UR(∞) ∪ (−S1/2)

(where 0 < r < R < ∞) is an open superset of (DK ∗ U2)∗ but for every
domain W ⊂ V with {0,∞} ⊂ W we obtain

{0,∞} ⊂ DK∆ϕ
∗W ⊂ DK∆ϕ

∗ V = Dr ∪ UR(∞)

and therefore the set DK∆ϕ
∗W is not connected. Hence, Condition (R.b)

is not fulfilled and therefore, Approach (R.II) can not be applied. However,
Approach (R.I) yields that Tϕ,U2 has dense range.
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Remark 4.29 :
Let K ⊂ V be compact and convex and ϕ ∈ H(DK). If d(Λ+

ϕ ) exists and if
{z ∈ K : Re z = maxw∈K Rew} is a singleton, then Remark A.8 implies that
d(Λ+

ϕ ) = 1 and therefore ∆ϕ = 0.

(α) Approach (K.I) yields that

Tϕ,U1 is injective for all connected sets U1 such that DK ∗ U1 is connected

whereas Approach (K.II) implies that

Tϕ,U1 is injective for all connected sets U1 .

Obviously, Approach (K.II) can be applied to a broader class of sets U1.

(β) Approach (R.I) yields that

Tϕ,U2 has dense range for all sets U2 such that UC
2 is connected

whereas Approach (R.II) implies that

Tϕ,U2 has dense range for all sets U2 such that (DK ∗ U2)C is connected .

Having a look at Proposition 2.5.6 and Example 2.6.2 we observe that Ap-
proach (R.II) can be applied to a broader class of sets U2.

4.4 Surjectivity of Tϕ

We now turn towards the question under which conditions the operator Tϕ,U is even
surjective. In Example 3.2 we showed that the operator Tκ,U : H(U) → H(U) is
surjective for every simply connected domain U ⊂ C \ {0} (where κ is the Koebe
function). Since Mκ = idC, the following proposition constitutes a generalization
of this simple example.

Proposition 4.30 :
Let Φ be a non-vanishing polynomial and ϕ = M−1Φ. Then Tϕ : H(U) → H(U)
is surjective for every set U ⊂ C \ {0} with connected complement.
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Proof: Without loss of generality we can assume U to be simply connected (other-
wise apply the subsequent argumentation to every component of U separately).

If Φ is constant, then the assertion follows from Proposition 4.22.1.

If Φ is of degree n ∈ N and α ∈ C \ {0} is the leading coefficient, we set Z(Φ) =:
{λj : j = 1, . . . , n}, Φj(z) := (z − λj) (z ∈ C, j ∈ {1, . . . , n}) and we obtain

Φ(z) = α

n∏
j=1

Φj(z) (z ∈ C) .

Then for every j ∈ {1, . . . , n} we have ϕj := M−1Φj = κ − λjΘ, where κ is the
Koebe function and Θ(z) = 1/(1− z) (z ∈ C∞ \ {1}).

In a first step we show that every operator Tϕj : H(U) → H(U), Tϕjf(z) =
z · f ′(z)− λjf(z) is surjective.

Let g ∈ H(U) be given. We have to find a function f ∈ H(U) with f ′(z) =
λjf(z)/z + g(z)/z (z ∈ U). We fix a number z0 ∈ U and set

f(z) := exp(λj logU z) ·
( ∫

γz0,z

exp(−λj logU ζ)
g(ζ)

ζ
dζ
)

where γz0,z is a path in U joining z0 and z. Since U is simply connected, this
function is well defined (i. e. independent of the choice of γz0,z), holomorphic in
U and solves the differential equation formulated above.

In a second step we show that the surjectivity of each Tϕj implies the surjectivity
of Tϕ:

Remark B.17.3 yields that ϕ = α ·
(
. . .
(
(ϕ1 ∗ ϕ2) ∗ ϕ3

)
· · · ∗ ϕn−1

)
∗ ϕn. The

associative law formulated in Theorem 2.23 ensures that Tϕ = α · Tϕ1 ◦ · · · ◦ Tϕn
and hence, Tϕ is surjective as a composition of surjective operators. �

Remark 4.31 :
The assertion of Proposition 4.30 can be considered as a consequence of a cor-
responding result for a certain (finite order) differential operator with constant
coefficients (see Remark 5.10). In Chapter 5 we are going to elaborate on the
relation between Hadamard operators and certain differential operators.

Before we come to a more general surjectivity criterion we need the following result
for the star product:
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Proposition 4.32 :
Let M,W ⊂ V be convex, where M is compact and W is open. Let furthermore
W +M ⊂ V and U := eW+M . Then DM ∗ U = eW .4

Proof: Since U = eW+M = eW · D∗M , Proposition 2.5.3 implies that DM ∗ U is a
superset of eW .

To obtain the reverse inclusion, we show (eW )C ⊂ (DM ∗ U)C . We have

(DM ∗ U)C = DC
M · UC = e−M · (eW+M)C

= e−M · {e(OC) ∪ {0}}

where O :=
⋃
k∈Z

(W+M+2kπi) and e∞ :=∞ (note that the setsW+M+2kπi (k ∈

Z) are pairwise disjoint).

Now let z ∈ (eW )C (since {0,∞} ⊂ (DM ∗ U)C we assume z 6= 0,∞). Then there
is a point v ∈ N1 \W such that for all m ∈M we have

z = ev = e−m · ev+m .

If m ∈M can be chosen in such a way that v +m belongs to OC we are done.

Assume that this is not the case, i. e. v + M ⊂ O. Since v + M is connected, it
has to lie entirely in one component of O and that component shall without loss of
generality be the set W + M itself. Since W is convex, without loss of generality
we can require a standard exhaustion (Ln)n∈N ofW to consist of convex sets. Then
Ln+M is a standard exhaustion ofW+M consisting of convex sets. Since v+M is
compact, the definition of standard exhaustions implies the existence of an integer
n0 such that v +M ⊂ Ln0 +M . Since in the latter inclusion, all occuring sets are
compact and convex, we can deduce v ∈ Ln0 ⊂ W (see Proposition B.7) which
contradicts the choice of v. �

Remark 4.33 :
In the situation of Proposition 4.32, the assumption W +M ⊂ V is crucial:

Let M = K1/2 and

W1 = (0, 1)× iπ(−1/4, 1/4) ,

W2 = (0, 1)× iπ(−3/4, 3/4) .

Then W1 +M ⊂ V but W2 +M 6⊂ V. As a matter of fact, DM ∗ eW1+M = eW1 but
DM ∗ eW2+M = eW2+M ) eW2 .

4This result may be compared to Remark 2.6.1.
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We obtain the following sufficient criterion for a Hadamard operator Tϕ to be
surjective.

Theorem 4.34 :
Let Φ be an entire function of exponential type with K(Φ) =: M ⊂ V. Let further-
more W ⊂ V be open and convex and such that W +M ⊂ V. Let U := eW+M and
ϕ := M−1Φ.

If Φ is of completely regular growth, then the following are valid for the operator
Tϕ : H(U)→ H(DM ∗ U):

N(Tϕ) = clspan{qk,α,U : α m−fold zero of Φ, k ≤ m− 1} (4.7)

and
R(Tϕ) = H(DM ∗ U) . (4.8)

Proof: First of all we note that according to Proposition 4.32 we haveDM∗U = eW .

In order to prove (4.7) we set QΦ,U := span{qk,α,U : α m−fold zero of Φ, k ≤
m − 1} and without loss of generality we assume that the functions qk,α,U are
induced by the principal branch of the logarithm on S.

Theorem 4.4 states that the left-hand side is a superset of the right-hand side (note
that U is simply connected).

In order to show the opposite inclusion, according to the theorem of Hahn-Banach
it is enough to prove that for all f ∈ N(Tϕ) the following holds: For all u ∈
Q⊥Φ,U := {u ∈ H ′(U) : u(q) = 0 for all q ∈ QΦ,U} we have u(f) = 0.

Let now u ∈ Q⊥Φ,U be given. According to Theorem 2.24 there exists a unique germ
[(g, V )]U∗ such that

u(f) = (f ∗U,V g)(1) (f ∈ H(U)) .

Since U∗ = C∞ \ e−(W+M) and W +M is convex, without loss of generality we can
choose V to be of the form V = DL+M for some convex and compact set L ⊂ W .
Therefore we can consider the Mellin transform G := Mg ∈ Exp(L+M) of g.

If α ∈ C is an m−fold zero of Φ and k ≤ m− 1, we obtain with Theorem 2.24 and
Theorem 3.7

0 = u(qk,α,U) = (g ∗DL+M ,U qk,α,U)(1)

= pα,DL+M∗U(1)
k∑
l=0

(
k

l

)
(logDL+M∗U 1)k−lG(l)(α)

= G(k)(α)
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because logDL+M∗U 1 = 0 (note that the proof of Theorem 3.7 reveals that the
branch of the logarithm on DL+M ∗ U that fits to the principal branch of the
logarithm on S fulfills logDL+M∗U 1 = 0).

Hence, α is a zero of G with multiplicity at least m which implies that the function
Ψ := G/Φ is an entire function (or to be more precise: can be continued to an
entire function) and Theorem B.20.2 yields that Ψ is of exponential type. Together
with Theorem B.12 and Proposition B.7 we obtain for all t ∈ [−π, π)

HK(Ψ)(e
it) = hΨ(t) = hG(t)− hΦ(t)

= HK(G)(e
it)−HK(Φ)(e

it)

≤ HL+M(eit)−HM(eit)

= HL(eit) .

Applying again Proposition B.7.2 we obtain K(Ψ) ⊂ L which results in Ψ ∈
Exp(L) and ψ := M−1Ψ ∈ H(DL). Remark B.17.3 yields the identity M(ϕ ∗ψ) =
Φ ·Ψ = G and since M is bijective it follows that ϕ ∗ ψ = g.

For a given f ∈ N(Tϕ) we obtain with Theorem 2.23

u(f) = (g ∗DM+L,U f)(1) = ((ϕ ∗DM ,DL ψ) ∗DM+L,U f)(1)

= (ψ ∗DL,DM∗U (ϕ ∗DM ,U f))(1)

= (ψ ∗DL,DM∗U 0)(1) = 0 .

This completes the proof of (4.7).

In order to prove (4.8) we note that Theorem 4.9 yields that R(Tϕ) is dense in
H(DM ∗ U). If we manage to show that R(Tϕ) is closed in H(DM ∗ U), the proof
will be complete. In order to do that, the Closed Range Theorem C.4 ensures that
it is enough to show that R(T ′ϕ) = Q⊥Φ,U .5

Since QΦ,U ⊂ N(Tϕ) it is clear that the left-hand side is a subset of the right-hand
side.

If, on the other hand, u ∈ Q⊥Φ,U , then we have shown above that the corresponding
germ [(g, V )]U∗ can be written as

[(g, V )]U∗ = [(ϕ ∗DM ,DL ψ,DM+L)]U∗

for some suitable [(ψ,DL)](DM∗U)∗ ∈ H((DM ∗ U)∗). Hence, Theorem 3.9 yields
that the corresponding functional v ∈ H ′(DM ∗ U) fulfills T ′ϕv = u and we obtain
u ∈ R(T ′ϕ). �

5Note that Q⊥Φ,U = N(Tϕ)⊥.
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Corollary 4.35 :
Let ϕ ∈ H(C∞ \ {1}), Φ = Mϕ and let U ⊂ S be a simply connected domain with
logU convex. Then the following are valid for the operator Tϕ : H(U)→ H(U):

N(Tϕ) = clspan{qk,α,U : α m−fold zero of Φ, k ≤ m− 1}

and
R(Tϕ) = H(U) .

Proof: Example B.19.1 yields that Φ ∈ Exp({0}) is of completely regular growth
and Remark B.9.1 implies K(Φ) = {0} (note that we excluded the case ϕ ≡ 0).
The assertions are a direct consequence of Theorem 4.34. �

Remark 4.36 :

1. The assertion of Theorem 4.34 can be considered as a special case of results
concerning the surjectivity of operators which are defined via a convolution
of an analytic functional with a holomorphic function formulated in [BG,
Prop. 1.5.12]. The exact relation between Hadamard operators and those
convolution operators will be revealed in Chapter 5. The idea of the proof of
Theorem 4.34 is motivated by the proof of [BG, Prop. 1.5.12] but we were
able to express everything by means of the Hadamard product and we were
able to use the related results of the preceding chapters.

The surjectivity result formulated in Theorem 4.34 can also be shown using
a different approach not needing the representation of the kernel. However,
the main idea of exploiting the complete regular growth of Φ still remains
the same:

Let Ln be a standard exhaustion of W consisting of convex sets. Then
Cn := Ln +M is a standard exhaustion of W +M consisting of convex sets
and eLn and eCn are standard exhaustions of DM ∗ U and U respectively.
Therefore we obtain with Remark 1.11

H((DM ∗ U)∗) =
⋃
n∈N

H∞(DLn) ,

H(U∗) =
⋃
n∈N

H∞(DCn) .

To prove the surjectivity of Tϕ we apply Theorem C.6. Tϕ : H(U) →
H(DM ∗ U) is a linear and continuous operator (see Theorem 3.1) having
dense range (see Theorem 4.9) and as an FS-space, H(DM ∗ U) is a bar-
relled Schwartz space (see Remark C.2), so that all the conditions of The-
orem C.6 are fulfilled. We therefore have to show that for each bounded
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subset B ⊂ H ′(U) there is a bounded subset A ⊂ H ′(DM ∗ U) such that
(T ′ϕ)−1(B) ⊂ [A] (where [A] denotes the linear span of [A]).

Let B ⊂ H ′(U) ∼= H(U∗) be bounded. According to Remark C.2, B is
equicontinuous and there is an integer n ∈ N such that B is bounded in the
Banach space H∞(DCn). At this point we identify a functional u ∈ B ⊂
H ′(U) with the corresponding germ [(h, Y )]U∗ ∈ B ⊂ H(U∗) and this in turn
with the representative h ∈ B ⊂ H∞(DCn). In the rest of the proof, we use
this identification tacitly.

Let A be the unit ball of H∞(DLn+1). Then A is bounded in H((DM ∗ U)∗)
with [A] = H∞(DLn+1) and applying Theorem 3.9 we have to make sure that

([T ]ϕ)−1(B) = {[(g, V )](DM∗U)∗ ∈ H((DM ∗U)∗) : ϕ ∗ g ∈ B} ⊂ H∞(DLn+1) .

We will show that each [(g, V )](DM∗U)∗ ∈ H((DM∗U)∗) with ϕ∗g ∈ H∞(DCn)
belongs to H∞(DLn+1) which will complete the proof.

Let [(g, V )](DM∗U)∗ ∈ H((DM ∗ U)∗) be given. Without loss of generality V
can be chosen to be of the form V = DLj for some j ∈ N. Therefore we can
consider the Mellin transform G := Mg of g.

If ϕ ∗ g ∈ H∞(DCn), then on the one hand we obtain

K(M(ϕ ∗ g)) ⊂ Cn = Ln +M (4.9)

and on the other hand, applying Remark B.17.3 and Remark B.21 we obtain

K(M(ϕ ∗ g)) = K(Φ ·G) = K(Φ) +K(G) = M +K(G) . (4.10)

Since all occuring sets on the respective right-hand sides of (4.9) and (4.10)
are compact and convex, Proposition B.7 yields K(G) ⊂ Ln and hence G ∈
Exp(Ln). This yields g ∈ H(DLn) and especially g ∈ H∞(DLn+1).

2. Proposition 4.30 shows that the assumption that the set W shall be convex
is in general not necessary.

Example 4.37 :
We consider again the situation in Example 4.10. There we stated that Tϕ :
H(S)→ H(S1−δ) has dense range. However, Example B.19.2 ensures that Φ is of
completely regular growth with K(Φ) = Kδ. Hence, Theorem 4.34 yields that this
operator is even surjective.

Remark 4.38 :
Let ϕ ∈ H(C∞ \ {1}). After collecting some information about the range of the
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operator Tϕ,U in case that U does neither contain the origin nor the point at infinity,
we shall point out that in [Fre, Th. 10, Th. 11], Frerick gives a characterization
of the surjectivity of Tϕ : H(U)→ H(U) for certain sets U containing the origin:

Tϕ : H(U) → H(U) is surjective for all simply connected domains U ⊂ C with
0 ∈ U , if and only if on the one hand Λ+

ϕ = N0 and on the other hand Mϕ is a
polynomial or limz→∞, Mϕ(z)=0 z/|z| = −1.

Tϕ : H(U)→ H(U) is surjective for all domains which are starlike with respect to
the origin, if and only if on the one hand Λ+

ϕ = N0 and on the other hand Mϕ is
a polynomial or lim supz→∞, Mϕ(z)=0 Re(z/|z|) ≤ 0.



Chapter 5

The relationship between Hadamard
operators, other convolution
operators and infinite order
differential operators

In this chapter we want to have a closer look at the case where Ω is of the form
DM = C∞ \ e−M for some compact and convex set M ⊂ V. We are going to see
that if ϕ ∈ H(DM) and if the set U (which is assumed to be star-eligible to DM)
exhibits an appropriate structure, the induced Hadamard operator

Tϕ : H(U)→ H(DM ∗ U)

reveals an intimate connection to another type of convolution operators and to
certain infinite order differential operators.

The latter operators have been examined during the last decades (see for example
[Kor69], [Kor1969], [Ep1974] and [MM]) and we are going to give an alternative
proof of a well-known surjectivity result for infinite order differential operators.
This proof is based on the corresponding result for Hadamard operators formulated
in Corollary 4.35. At the same time, we are going to improve (for the special case
Ω = C∞ \ {1}) the assertions concerning the kernel and the range of Hadamard
operators obtained in the preceding chapter.

Remark and Definition 5.1 :
Let U,G ⊂ C be open and Φ ∈ Exp({0}) with Φ(z) =

∞∑
ν=0

Φνz
ν (z ∈ C).

76
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1. ϑ := ϑU : H(U) → H(U), (ϑf) (z) := z · f ′(z) (z ∈ U) and D := DG :
H(G) → H(G), (Df)(w) := f ′(w) (w ∈ G) define linear and continuous
operators.

The iterates are as usual defined by

ϑ0 := idH(U), ϑν := ϑ ◦ ϑν−1 (ν ≥ 2) ,

D0 := idH(G), Dν := D ◦Dν−1 (ν ≥ 2) .

2. In [Hi, Th. 11.2.3] it is shown that the operator

Φ(ϑ) := ΦU(ϑ) : H(U)→ H(U), Φ(ϑ)f :=
∞∑
ν=0

Φνϑ
νf

is well defined, linear and continuous.1

3. In [BG, Prop. 6.4.2] it is shown that the operator

Φ(D) := ΦG(D) : H(G)→ H(G), Φ(D)f :=
∞∑
ν=0

ΦνD
νf

is well defined, linear and continuous.

If V ⊂ W ⊂ C are open sets, it is clear that for f ∈ H(W ) the following is
valid:

ΦV (D)(f |V ) = (ΦW (D)f)|V . (5.1)

Let M ⊂ C be compact and convex and let W ⊂ C be open and convex.

4. An element T ∈ H ′(M) is called analytic functional carried by M . We call
the smallest compact and convex set L such that T ∈ H ′(L) (which exists
according to [BG, Ch. 1.3]) the convex support of T . There exists a bijective
map F : H ′(M)→ Exp(M) where for a given T ∈ H ′(M) the entire function
FT is given by

FT (z) := T
(
[(exp(z·),C)]M

)
(z ∈ C) .2

1As Pohlen already remarks in [Po], the result in [Hi] is only shown for domains instead of
open sets. But a closer look into the proof reveals that only local arguments are used so that
one can generalize the theorem for open sets.

2See [BG, Ch. 1.3], [Mori, Th. 2.5.2].
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5. For T ∈ H ′(M) we consider the operator T ~ = T ~W defined by

T ~ : H(W +M)→ H(W ), (T ~ f)(z) = T
(
[(f(z + ·), Vz)]M

)
(z ∈ W )

with Vz = M +Uδ(z)(0) where δ(z) > 0 is chosen such that z+Uδ(z)(0) ⊂ W .

In [BG, Ch. 1.5] it is shown that the operator T ~W is well defined, linear
and continuous.

If, in particular, M = {0}, then the operators T ~ : H(W ) → H(W ) and
(FT )(D) : H(W )→ H(W ) coincide (see [BG, p. 90]).

Hence, the differential operators introduced in 3. can be considered as a
special case of these convolution operators.

6. If M ⊂ V is compact and convex, it is shown in [BG, Ch. 4.1] that there
exists a bijective map G : H(DM)→ H ′(M) and for a given ϕ ∈ H(DM) the
analytic functional Tϕ := Gϕ ∈ H ′(M) is given by

Tϕ
(
[(h, V )]M

)
= − 1

2πi

∫
Γ

ϕ(ζ)h(− log ζ)
dζ

ζ
([(h, V )]M ∈ H(M))

where without loss of generality V is required to be a subset of V and Γ is a
Cauchy cycle for e−M in e−V .

Furthermore, it is shown that the following diagram commutes:

H(DM)

Exp(M)H ′(M)

MG

F

As a consequence, in caseM = {0} (and if we denoteMϕ by Φ) the operators
Tϕ~ : H(W )→ H(W ) and Φ(D) : H(W )→ H(W ) coincide.

Remark 5.2 :
There is a close relation between the Hadamard product and the convolution ope-
rators introduced above:

Let M ⊂ V be compact and convex and let W ⊂ C be open and convex. If
ϕ ∈ H(DM) we obtain for all f ∈ H(eW+M)

(Tϕ,eW+Mf) ◦ exp|W = Tϕ ~W (f ◦ exp|W+M) . (5.2)
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In order to prove (5.2), let z ∈ W . Since DM ∗ eW+M ⊃ eW we obtain that
ez · (eW+M)∗ is a compact subset of DM (see Proposition 2.5.5). Hence, there
exists a number δ1(z) > 0 such that e−(M+Uδ1(z)(0)) ∩ ez · (eW+M)∗ = ∅. Since e−M
is a compact subset of S there exists a number δ2 > 0 such that e−(M+Uδ2 (0)) ⊂ S.
Since W is open, there exists a number δ3(z) > 0 such that z+Uδ3(z)(0) ⊂ W . We
set δ(z) := min{δ1(z), δ2, δ3(z)}, Vz := M +Uδ(z)(0) and choose Γz to be a Cauchy
cycle for e−M in e−Vz .

The choice of δ(z) ensures that Γ− is an anti-Cauchy cycle for ez · (eW+M)∗ in DM

and we obtain

(Tϕ,eW+Mf) ◦ exp|W (z) = (f ∗eW+M ,DM ϕ)(ez)

=
1

2πi

∫
Γ−
ϕ(ζ)f(

ez

ζ
)
dζ

ζ

= − 1

2πi

∫
Γ

ϕ(ζ)f ◦ exp(z − log ζ)
dζ

ζ

= Tϕ
(
[(f ◦ exp|W+M(z + ·), Vz)]M

)
= Tϕ ~W (f ◦ exp|W+M)(z) .

This means that the following diagram commutes:

H(W +M)
Tϕ~W // H(W )

H(eW+M)
T
ϕ,eW+M

//

◦ exp|W+M

OO

H(DM ∗ eW+M)

◦ exp|W

OO

where Proposition 2.5 and Remark 4.33 show that in general, DM ∗ eW+M is a
proper superset of eW .

If W ⊂ V and M + W ⊂ V, then Proposition 4.32 yields DM ∗ eW+M = eW and
in this case we have logeW+M ◦ exp|W+M = idW+M and logeW ◦ exp|W = idW which
implies that the following diagram commutes:

H(W +M)
Tϕ~W //

◦ log
eW+M

��

H(W )

◦ log
eW

��
H(eW+M)

T
ϕ,eW+M

//

◦ exp|W+M

OO

H(eW )

◦ exp|W

OO
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Remark 5.3 :
Let W ⊂ C be open and convex, ϕ ∈ H(C∞ \ {1}) and Φ := Mϕ. Remark and
Definition 5.1 yields that Equation (5.2) reads

ΦW (D)(f ◦ exp|W ) = (Tϕ,eW f) ◦ exp|W (f ∈ H(eW )) . (5.3)

Considering a result of Müller and Pohlen stating that for an arbitrary open set
U ⊂ C, the operators Tϕ : H(U)→ H(U) and Φ(ϑ) : H(U)→ H(U) coincide (see
[MP, Th. 2.12]) and taking into account that ΦG(D)(f ◦ exp|G) = (Φ(ϑ)f) ◦ exp|G
for an arbitrary open set G ⊂ C, we obtain that Equation (5.3) also holds for
non-convex open sets G ⊂ C.

Hence, if G ⊂ C is open and U := eG, the following diagram commutes:

H(G)
ΦG(D) // H(G)

H(U)
Tϕ,U

//

◦ exp|G

OO

H(U)

◦ exp|G

OO

If

• G ⊂ V and U := eG (⊂ S) (and logU is induced by the principal branch of
the logarithm on S) or if

• U ⊂ C \ {0} is a simply connected domain and G := logU U ,

then we have logU ◦ exp|G = idG and (5.3) is equivalent to

(ΦG(D)h) ◦ logU = Tϕ,U(h ◦ logU) (h ∈ H(G)) (5.4)

which means that the following diagram commutes:

H(G)
ΦG(D) //

◦ logU
��

H(G)

◦ logU
��

H(U)
Tϕ,U

//

◦ exp|G

OO

H(U)

◦ exp|G

OO

Remarks 5.2 and 5.3 show that the Hadamard product is closely linked to operators
of the kind Φ(D) or T ~. As far as the latter operators are concerned, several
surjectivity results are known. In Remark 5.10 we are going to further elaborate
on that. For the time being, we cite the following two results which can for example
be found in [BG, Prop. 1.5.12, Th. 6.4.4].
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Remark 5.4 :
Let W ⊂ C be open and convex.

1. Let M ⊂ C be compact and convex and let 0 6≡ T ∈ H ′(M) have convex
support M . If FT has completely regular growth, then the following are
valid for the operator T ~ : H(W +M)→ H(W ):

(a) N(T ~) = clspan{hk,α,W+M : α m−fold zero of FT , k ≤ m− 1}.
(b) T ~ is surjective.

2. If 0 6≡ Φ ∈ Exp({0}), then the following are valid for the operator Φ(D) :
H(W )→ H(W ):

(a) N(Φ(D)) = clspan{hk,α,W : α m−fold zero of Φ, k ≤ m− 1}.
(b) Φ(D) is surjective.3

Remark 5.5 :
Remark 5.2 shows that there is a close interplay between surjectivity results for
Hadamard operators and for the convolution operators T ~. In this context, the
surjectivity criterion for Hadamard operators formulated in Theorem 4.34 can
be obtained as a consequence of the result for the corresponding operator Tϕ~
formulated in Remark 5.4.1. However, an unproblematic mutual transfer of the
results is only possible if M,W,W + M ⊂ V (see Remark 5.2, Proposition 4.32
and Remark 4.33): If, for example, Φ is an entire function of completely regular
growth with K(Φ) =: M = K1/2, ϕ = M−1Φ, Tϕ = F−1Φ and

W1 = (0, 1)× iπ(−1/4, 1/4) ,

W2 = (0, 1)× iπ(−3/4, 3/4) ,

then Tϕ~W1 and Tϕ~W2 are surjective (the sets W1 +M and W2 +M do not differ
essentially). However, a direct transfer to the corresponding Hadamard operators
is not possible. This is because the sets eW1+M (which is simply connected) and
eW2+M (which is not simply connected) do differ essentially. This shows that a
direct transfer of results requires caution and may require some additional tech-
niques.

However, it is also possible to prove the results formulated in Remark 5.4 in their
full generality using Theorem 4.34. The required methods are of rather technical
nature and can in full be illustrated in the special case M = {0}. This is why we
give an alternative proof of the result formulated in Remark 5.4.2.

3These assertions are a direct consequence of 1. (M = {0}) paying attention to Remark and
Definition 5.1 and observing that functions belonging to Exp({0}) are of completely regular
growth (see Example B.19.1).
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For the sake of abbreviation we set for a non-vanishing entire function of exponen-
tial type Φ

HΦ,G := span{hk,α,G : α m−fold zero of Φ, k ≤ m− 1} ,
QΦ,U := span{qk,α,U : α m−fold zero of Φ, k ≤ m− 1} .

where G ⊂ C is open, U ⊂ C\{0} is a simply connected domain and the functions
qk,α,U are induced by an arbitrary branch of the logarithm on U .4

Theorem 5.6 :
Let 0 6≡ Φ ∈ Exp({0}) and let W ⊂ C be open and convex. Then

N(ΦW (D)) = HΦ,W and R(ΦW (D)) = H(W ) .

Proof: One easily verifies that for all k ∈ N0, α ∈ C we have

ΦW (D)(hk,α,W ) = h0,α,W

k∑
l=0

(
k

l

)
idk−lW Φ(l)(α) .

The linearity and continuity of ΦW (D) imply that

N(ΦW (D)) ⊃ HΦ,W .

The proof of the opposite inclusion and of the surjectivity is divided into several
steps.

1. Let W ⊂ V be open and convex and f ∈ N(ΦW (D)). We set ϕ := M−1Φ ∈
H(C∞ \ {1}) and U := eW (⊂ S).

We define f̃ := f ◦ log|U using the principal branch of the logarithm on S.
Then f̃ ∈ H(U) and Equation (5.4) implies

Tϕ,U f̃ = (ΦW (D)f) ◦ logU = 0

and therefore f̃ ∈ N(Tϕ,U). According to Corollary 4.35 there exists a
sequence (f̃n)n∈N in QΦ,U converging locally uniformly on U to f̃ . Since
qk,α,U ◦ exp|W= hk,α,W , by defining fn := f̃n ◦ exp|W (n ∈ N) we obtain a
sequence in HΦ,W converging locally uniformly on W to f̃ ◦ exp|W= f .

Hence, f ∈ HΦ,W .

The assertion about the surjectivity is a direct consequence of Corollary 4.35
and Remark 5.3.

4We already noted earlier that the branch of the logarithm on U which is chosen to induce
the functions qk,α,U has no influence on the set QΦ,U anyway.
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2. Let W ⊂ C be open, convex and bounded.

There exists a number a ∈ C \ {0} such that aW ⊂ V. The assertion follows
by applying 1. to the operator ΨaW (D) where Ψ(z) := Φ(az) (z ∈ C) belongs
to the space Exp({0}) (see Corollary B.13.2).

3. Let W ⊂ C be open and convex.

Let f ∈ N(ΦW (D)) be given. For K ⊂ W compact and convex and 0 <
ε < dist(K, ∂W ), the set Gε := K + Uε(0) is an open, convex and bounded
subset of W and f |Gε∈ N(ΦGε(D)) (see (5.1)). According to 2., there exists
a sequence (f̃n)n∈N in HΦ,Gε with ‖f̃n − f |Gε‖K → 0 (n→∞). Since hk,α,W
is an analytic continuation of hk,α,Gε to the set W , we can consider the
corresponding continuation of f̃n to W denoting the resulting function by
fn. Hence (fn)n∈N is a sequence in HΦ,W and

‖fn − f‖K = ‖f̃n − f |Gε‖K → 0 (n→∞) .

This completes the proof of the assertion concerning the kernel of ΦW (D).

By the same argument as above we obtain that if V ⊂ W is convex, the
linear and continuous operator

ρVW : N(ΦW (D))→ N(ΦV (D)), f 7→ f |V

has dense range.

It remains to show that ΦW (D) is surjective. Let g ∈ H(W ) be given.

We consider a standard exhaustion (Kn)n∈N of W consisting of convex sets.
Then the sets Wn := K◦n (n ∈ N) are open, non-empty, convex and bounded.
We set gn := g|Wn , Φn(D) := ΦWn(D) and Xn := N(Φn(D)) (n ∈ N).

According to 2., for all n ∈ N a function fn ∈ H(Wn) exists with Φn(D)fn =
gn. Then we obtain with Equation (5.1) and the linearity of Φn(D)

Φn(D)(fn+1|Wn−fn) = (Φn+1(D)fn+1)|Wn−Φn(D)fn = gn+1|Wn−gn = 0

and hence fn+1|Wn−fn ∈ Xn.

We set x1 := 0. Since for all n ∈ N the map ρnn+1 : Xn+1 → Xn, µ 7→ µ|Wn

has dense range, we can inductively choose functions xn+1 ∈ Xn+1 with

‖fn+1|Wn−fn + xn − xn+1|Wn‖Kn−1 <
1

2n
.

We set hn := (fn+1 − xn+1)|Wn−(fn − xn) and observe that hn ∈ Xn.
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Let now ν ∈ N be fixed. The series
∞∑

l=ν+1

hl|Wν converges locally uniformly

on Wν . Indeed, if M ⊂ Wν is compact, then

∞∑
l=ν+1

‖hl|Wν‖M ≤
∞∑

l=ν+1

‖hl‖Kν <
∞∑

l=ν+1

1

2l
.

According to the Weierstrass comparison test, the series
∞∑

l=ν+1

hl|Wν converges

uniformly on M .

Furthermore, we obtain for n ≥ ν + 1

(fn+1 − xn+1)|Wν=
( n∑
l=ν+1

hl|Wν

)
+ (fν+1 − xν+1)|Wν .

Hence, for all ν ∈ N the following limit exists

rν := lim
n→∞

(fn − xn)|Wν∈ H(Wν) .

In the remaining part of the proof we are going to show that the function
f : W → C, f(z) := rν(z) in case z ∈ Wν is well defined, holomorphic in W
and satisfies ΦW (D)f = g.

(a) f is well defined because we obtain with the continuity of the restriction
map for all ν ∈ N

rν+1|Wν−rν = ( lim
n→∞

(fn − xn)|Wν+1)|Wν− lim
n→∞

(fn − xn)|Wν= 0 .

(b) f is holomorphic in W since rν is holomorphic in Wν for all ν ∈ N.
(c) We obtain for all z ∈ W and ν ∈ N such that z ∈ Wν with equation

(5.1) and the continuity of Φν(D) observing that xn ∈ Xn (n ∈ N)

(ΦW (D)f)(z) = (Φν(D)rν)(z)

=
(

lim
n→∞

(
Φν(D)(fn|Wν )

))
(z)

=
(

lim
n→∞

(
(Φn(D)fn)|Wν

))
(z)

=
(

lim
n→∞

(gn|Wν )
)
(z)

= gν(z) = g(z) .

�
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Remark 5.7 :
In the third part of the proof of Theorem 5.6 we have implicitly shown via the
Mittag-Leffler procedure (see for example [Bour, Ch. 2 §3]) that the first right-
derivative of the projective limit functor in the sense of Palamodov vanishes for
the projective spectrum (Xn, ρ

n
n+1). Showing this is enough to make surjectivity

on the steps sufficient for surjectivity on the limits (see for example [Weng, Prop.
3.1.8]). However, in order to remain self-contained, we did not use this abstract
theory and carried out this procedure using only arguments from function theory.

Corollary 5.8 :
Let 0 6≡ ϕ ∈ H(C∞ \ {1}), Φ = Mϕ and let U ⊂ C \ {0} be a simply connected
domain with logU U convex. Then the following are valid for the operator Tϕ :
H(U)→ H(U):

N(Tϕ,U) = QΦ,U and R(Tϕ,U) = H(U) .

Proof: Theorem 4.4 states that N(Tϕ,U) ⊃ QΦ,U .

In order to prove the opposite inclusion we set W := logU U and take a function
f ∈ N(Tϕ,U).

Due to Equation (5.3), the function f̃ := f ◦exp|W belongs to N(ΦW (D)). SinceW
is convex, Theorem 5.6 implies the existence of a sequence f̃n in HΦ,W converging
locally uniformly on W to f̃ . Since qk,α,U = hk,α,W ◦ logU , by defining fn :=
f̃n ◦ logU (n ∈ N) we obtain a sequence in QΦ,U converging locally uniformly on
U to the function f̃ ◦ logU = f . Hence, f ∈ QΦ,U .

The second assertion is a direct consequence of Theorem 5.6 and Remark 5.3. �

Example 5.9 :
Let U ⊂ C \ {0} be a simply connected domain with logU U convex and let Λ ⊂ N
with

∑
λ∈Λ

1/λ <∞. Then [Boa, L. 2.10.13] implies that the function

Φ(z) =
∏
λ∈Λ

(
1− z

λ

)
(z ∈ C)

belongs to the space Exp({0}). We consider the operator Tϕ : H(U) → H(U)
(where ϕ := M−1Φ). Corollary 5.8 together with the fact that Φ has only simple
zeros at the points in Λ and no other zeros implies that the kernel of Tϕ is given
by

N(Tϕ) = clspan{pλ,U : λ ∈ Λ} .
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Hence, the kernel of Tϕ consists of all functions f ∈ H(U) which can be locally
uniformly approximated by polynomials having powers only in the set Λ.

Using a result of Müller about convergence properties of lacunary polynomials (see
[Mue90, S. 2.4.4]) we obtain

N(Tϕ) = {f |U : f ∈ HΛ(Dsup
z∈U
|z|)} .

As already mentioned earlier, there are several results known concerning the sur-
jectivity of operators of the type Φ(D) or T ~. Before we come to the end of this
chapter, we summarize some of these results in the next Remark.

Remark 5.10 :
In [Kor69], Korobĕınik gave a proof of the result already formulated in Remark
5.4.2. Furthermore the following are valid (whereW ⊂ C is open and Φ ∈ Exp({0})
is non-constant):

• If WC is connected, then R(ΦW (D)) = H(W ) if Φ is a polynomial.

• If WC is not connected, then R(ΦW (D)) ( H(W ) for all Φ ∈ Exp({0}), to
be more precise, there exists a function f ∈ H(W ) such that f 6∈ R(ΦW (D))
for all Φ ∈ Exp({0}) (see [Kor69, Th. 1.3]).

• If W is not convex, then there exists a function Φ ∈ Exp({0}) such that
R(ΦW (D)) ( H(W ) (see [Kor69, Th. 4.1]). However, in general we do not
have R(ΦW (D)) ( H(W ) for all Φ ∈ Exp({0}) (for further references see
[Kor69, p. 64]).

• In Chapter 5 and 6 of his paper, Korobĕınik gives necessary and sufficient
conditions for a function f ∈ H(W ) to belong to the range of ΦW (D) or for
ΦW (D) to be surjective for certain non-convex domains W .

With an additional result due to Znamenskĭı (see [Zna]) one can give a characte-
rization of the surjectivity of ΦW (D) for non-convex domains W depending on the
zeros of Φ and the shape of the setW . In addition, there are also several necessary
and sufficient conditions for the existence of a continuous linear right inverse of
the operator ΦW (D) (see [Schwe] and [Tay] for the case W = C, [Mo90] for the
case of open discs and [Mo92] for arbitrary convex domains W ( C).

Korobĕınik gave also a proof of the result already formulated in Remark 5.4.1 (see
[Kor68] and [Kor1969]) : Let M ⊂ C be compact and convex and let 0 6≡ T ∈
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H ′(M) with convex support M . Then the operator T ~W : H(W + M)→ H(W )
is surjective for all convex sets W ⊂ C if FT is of completely regular growth. If
FT is not of completely regular growth but W is convex, Epifanov formulated a
characterization for the surjectivity of T ~W depending on an interplay between
the rays on which FT does have completely regular growth and the geometry of the
set W (see [Ep74] and [Ep1974]; for a definition of completely regular growth on
single rays we refer to [Le62, p. 137 ff.]). Taking these results together one can note
that T ~W is surjective for all convex domainsW if and only if FT is of completely
regular growth (in the whole complex plane). If W is neither convex nor FT of
completely regular growth, Epifanov gave a characterization of the surjectivity of
a closely related operator in [Ep82, p. 355]. Also for the operator T ~W there are
several results known concerning the existence of a continuous linear right inverse
(see [KM, Ch. 5] for bounded convex sets W and [MM, Ch. 4]).

Both operators Φ(D) and T ~ have been studied as operators between spaces of
analytic functions on subsets of Cd (for some d ∈ N, d > 1) (see [Mar] for a
surjectivity result of Φ(D) and [MM] for the existence of a continuous linear right
inverse; see [Morz], [Kri] and [MM] for the operator T ~).



Chapter 6

Lacunary approximation by means
of the Hadamard product

In this chapter we are going to apply the concept of the Hadamard product to the
approximation of holomorphic functions by polynomials, especially by polynomials
with gaps. While doing so we are in particular going to benefit from the results
concerning the range of the operator Tϕ obtained in Section 4.2.

In Section 6.1 we consider the first problem which can be tackled using the
Hadamard product: Under which conditions on the set Λ ⊂ N0 and the open
set D ⊂ C is it possible to approximate every function which is holomorphic in D
by polynomials whose exponents belong to the set Λ?

Section 6.2 is concerned with the second main question which can be examined by
means of the Hadamard product: Given a compact set K ⊂ D, how “fast” can a
function which is holomorphic in D be approximated on K by those polynomials?

6.1 Locally uniform approximation by lacunary poly-
nomials: Runge type results

Definition 6.1 :
Let Λ ⊂ N0 and n ∈ N0. We call a function

p ∈ PΛ,n := span{pν,C : ν ∈ Λ, ν ≤ n}

88
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a lacunary polynomial of degree less or equal to n with respect to Λ. We denote
the set of all lacunary polynomials with respect to Λ by

PΛ :=
⋃
n∈N0

PΛ,n .

In the special case Λ = N0, we denote by Pn := PN0,n the space of all polynomials
of degree less or equal to n.

Finally, for an open set D ⊂ C we set

PΛ(D) := clspan{pν,D : ν ∈ Λ} .

The first problem that shall be considered here reads as follows: For a given set
Λ ⊂ N0 and an open set D ⊂ C we are interested in the question whether a given
function g ∈ H(D) can be locally uniformly approximated on D by polynomials
whose powers belong to Λ, i. e. by polynomials in PΛ. In particular, if we are given
a set Λ ⊂ N0, we want to know under which conditions on the open set D ⊂ C
we are able to approximate every function g ∈ H(D) by lacunary polynomials
with respect to Λ, i. e. under which conditions on D we have PΛ(D) = H(D).
In the literature we can find several results of this kind, for example in [An],
[AM], [LMM98], [LMM02], [MR] and [GLM]. They all have in common that their
proofs rely on an application of the theorem of Hahn-Banach. This is an elegant
method of proof but is intrinsincly non-constructive. We are going to present a
new approach to prove results of this kind which relies on a suitable application
of the Hadamard product. However, in the following remark we list two obvious
necessary conditions.

Remark 6.2 :
Let Λ ⊂ N0 and D ⊂ C be open.

1. The maximum principle implies that it is necessary for PΛ(D) to equal H(D)
thatDC is connected. If Λ = N0, then Runge’s approximation theorem yields
that this is also sufficient.

2. If Λ ( N0 it is necessary for PΛ(D) to equal H(D) that 0 6∈ D: Indeed, if
0 ∈ D then the locally uniform convergence of all derivatives at 0 implies
that PΛ(D) ⊂ HΛ(D) ( H(D). Under certain additional conditions on D
(with 0 ∈ D) and Λ, it can be shown that PΛ(D) = HΛ(D) (see for example
[DK]).
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If the origin does not belong to the set D, we can hope that PΛ(D) equals H(D)
also for sets Λ ( N0. In the following remark we repeat some properties of the
Hadamard operator Tϕ which will be crucial to prove results of this kind.

Remark 6.3 :
Let Ω ⊂ C∞ be a domain with {0,∞} ⊂ Ω, ϕ ∈ H(Ω) and let U ⊂ C be open and
star-eligible to Ω.

1. Theorem 3.1 implies that the operator Tϕ : H(U) → H(Ω ∗ U), f 7→ ϕ ∗ f
is linear and continuous. Therefore, if there is a sequence of polynomials
(pn)n∈N0 converging to f in H(U), then (ϕ ∗ pn)n∈N0 converges to ϕ ∗ f in
H(Ω ∗ U).

2. Example 2.17 implies that for p ∈ Pn (n ∈ N0) we have

ϕ ∗ p ∈ PΛ+
ϕ ,n

.

Thus, the operator Tϕ, i. e. the Hadamard multiplication by ϕ, converts
arbitrary polynomials into lacunary polynomials with respect to Λ+

ϕ of no
higher degree. Therefore, if Λ+

ϕ ( N0, the function ϕ ∈ H(Ω) can be called
gap producing function.

These observations together with Runge’s theorem show that in case that UC is
connected, every function g ∈ R(Tϕ) can be locally uniformly approximated on
Ω ∗ U by lacunary polynomials with respect to Λ+

ϕ , i. e. Tϕ(H(U)) ⊂ PΛ+
ϕ

(Ω ∗ U).

The following proposition states the connection between properties of a certain
Hadamard operator Tϕ,U and the possible approximation of every function g ∈
H(Ω ∗ U) by lacunary polynomials.

Proposition 6.4 :
Let Λ ⊂ N0 and let Ω ⊂ C∞ be a domain with {0,∞} ⊂ Ω and ϕ ∈ H(Ω) with
Λ+
ϕ ⊂ Λ. Let furthermore U ⊂ C be open and star-eligible to Ω with connected

complement. If Tϕ : H(U)→ H(Ω∗U) has dense range, then PΛ(Ω∗U) = H(Ω∗U).

Proof: If Tϕ : H(U)→ H(Ω ∗ U) has dense range, we obtain with Remark 6.3

H(Ω ∗ U) = Tϕ(H(U)) ⊂ PΛ+
ϕ

(Ω ∗ U) ⊂ PΛ(Ω ∗ U) ⊂ H(Ω ∗ U) .

�
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Theorem 6.5 :
Let Λ ⊂ N0 have unit density. Then PΛ(D) = H(D) for all open sets D ⊂ C \ {0}
with connected complement.

Proof: We write N0 \ (Λ ∪ {0}) =: {µn : n ∈ N}. Example B.19.2 yields that

Φ(z) := z ·
∞∏
n=1

(
1− z2

µ2
n

)
(z ∈ C)

is an entire function of exponential type with K(Φ) = {0} and Z(Φ) = ±(N0 \
Λ) ∪ {0}.

Theorem B.16 implies that the function ϕ := M−1Φ is holomorphic in C∞ \ {1}
with Λ+

ϕ = Λ \ {0} ⊂ Λ. Hence, Proposition 4.22 yields that the operator Tϕ :
H(D)→ H(D) has dense range so that the assertion follows from Proposition 6.4.

�

Remark 6.6 :

1. Remark 6.2 shows that Theorem 6.5 is false for every set D ⊂ C which
contains the origin (if Λ ( N0) or which does not have connected complement.

2. The assertion of Theorem 6.5 already follows from a result of Arakelian and
Martirosian (see [AM]) on uniform approximation on compact sets which is
proved using the classical approach via the Riesz Representation Theorem
and the theorem of Hahn-Banach. Based on a result of Pólya (which we used
in the proof of Proposition 3.4), in [LMM02] it is shown that the same is
true even with d̄(Λ) = 1 instead of d(Λ) = 1.

Theorem 6.7 :
Let Λ ⊂ N0. Then PΛ(D) = H(D) for all simply connected domains D ⊂ C \ {0}
which are contained in a sector of opening α ≤ 1− dL(N0 \ Λ).

Proof: Let α ≤ 1− dL(N0 \ Λ).

1. Let D = Sα.

Since the sector Sα is exhausted by the sectors Sα′ (α′ < α) and since we are
dealing with locally uniform convergence, we can assume that dL(N0 \ Λ) <
1 − α, without loss of generality. According to Remark 3.6.2 there exist
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numbers a ≤ b and a non-vanishing function ϕ ∈ H(DK) with Λ+
ϕ = Λ

(where K = [a, b]× iπ[α−1, 1−α]). Example 2.3.4 implies that DK ∗S = Sα
and Theorem 4.9 yields that the operator Tϕ : H(S) → H(Sα) has dense
range so that the assertion follows from Proposition 6.4.

2. Let D ⊂ Sα be a simply connected domain.

According to Runge’s theorem, every function g ∈ H(D) can be locally uni-
formly on D approximated by polynomials. These polynomials are in par-
ticular holomorphic in Sα so that they can, according to 1., in turn locally
uniformly on Sα and hence on D be approximated by lacunary polynomials
with respect to Λ. Hence, g itself can be approximated by lacunary polyno-
mials.

3. In case that D ⊂ C \ {0} is simply connected and contained in a sector of
opening α the assertion follows from part 2. by rotation.

�

Remark 6.8 :
Let Λ ⊂ N0.

1. According to Remark A.3 we have d(Λ) = 1 − d(N0 \ Λ) ≤ 1 − dL(N0 \ Λ)
and therefore, Theorem 6.7 especially holds for all α ≤ d(Λ).

2. From [MR, Th. 9.1] follows that PΛ(D) = H(D) for all simply connected
domains D ⊂ C \ {0} which are contained in a sector of opening α ≤ dL(Λ).
While the density condition in Theorem 6.7 is on the set N0 \Λ of gaps, the
condition in [MR] in on the set Λ itself.

Remark 6.9 :

1. Obviously it is desirable to be able to carry out approximation on a set D
which is as large as possible. Proposition 6.4 reveals that the inherent shape
of the set D using the approach via the Hadamard product is Ω ∗ U . From
the definition of the star product it is clear that the larger the sets Ω and U
are chosen, the larger the set Ω ∗ U is. Therefore, the “best case” is that the
complement of the set Ω consists only of one point, for example Ω = C∞\{1}.
In the proof of Theorem 6.5 we discovered that for Λ ⊂ N0 the condition
d(Λ) = 1 is sufficient to obtain a non-vanishing function ϕ ∈ H(C∞ \ {1})
with Λ+

ϕ ⊂ Λ. However, this condition is also necessary: Indeed, if we
are given a non-vanishing function ϕ ∈ H(C∞ \ {1}) with Λ+

ϕ ⊂ Λ, then
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Z(Φ) := {z ∈ C : Φ(z) = 0} ⊃ N0 \ Λ (where Φ := Mϕ). Hence, if
d(Λ) < 1, then

lim sup
r→∞

nΦ(r)

r
≥ d(N0 \ Λ) > 0 .

Since Φ ∈ Exp({0}), Theorem B.3 together with Remark B.9.4 implies that
Φ and hence ϕ vanish identically which is a contradiction.

2. In general, it is not a loss of generality to consider only sets of the form
D = Ω ∗ U , i. e. we can in general not expect to be able to approximate on
larger sets as the following example shows:

For Λ = 2N0, Theorem 6.7 yields especially P2N0(D) = H(D) for every half-
plane D with 0 ∈ ∂D. That means every function which is holomorphic in
this half-plane can be locally uniformly approximated by even polynomials.
However, we can not expect the set D to exceed a half-plane since then there
would be points z ∈ D with −z ∈ D and we could obviously not approximate
every holomorphic function by even polynomials.

Remark 6.10 :
In the theorems formulated above we were able to specify sets D on which we can
approximate every holomorphic function by lacunary polynomials with respect to
a given set Λ ⊂ N0 up to the case dL(N0 \ Λ) < 1. If dL(N0 \ Λ) = 1 (i. e.
d(N0 \ Λ) = 1 and d(Λ) = 0, see Remark A.3.4), Theorem 6.7 can not be applied.
However, it is not possible to pursue the approach described in this section to
obtain some information for which sets D we have PΛ(D) = H(D): As we have
shown in Proposition 3.4 it is not possible to specify a domain Ω ⊂ C∞ with
{0,∞} ⊂ Ω and a function 0 6≡ ϕ ∈ H(Ω) with d(Λ+

ϕ ) = 0.

If Λ is measurable and d(Λ) = 0, then PΛ(D) is indeed a proper subspace of
H(D) for every open set D ⊂ C: If the origin belongs to D, then this is an
obvious consequence of Remark 6.2. If the origin does not belong to D we apply a
result of Müller about convergence properties of lacunary polynomials which states
PΛ(D) = {f |D: f ∈ HΛ(D sup

z∈D
|z|)} (see [Mue90, S 2.4.4]). Obviously, the function

f(z) = 1/z (z ∈ D) is holomorphic in D but does not belong to PΛ(D).

Hence, the only case where the approach described here does not yield a result is
when d(N0 \ Λ) = 1 but d(N0 \ Λ) < 1.
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6.2 The rate of approximation by lacunary poly-
nomials

In particular, the Hadamard product can be useful to obtain results concerning
the rate of approximation of a holomorphic function by lacunary polynomials. We
want to concretize how this rate shall be measured and introduce the required
notation in the following definition.

Remark and Definition 6.11 :
Let K ⊂ C be compact, f ∈ H(K), Λ ⊂ N0 and n ∈ N0.

Then there exists a polynomial p∗Λ,n ∈ PΛ,n with

‖f − p∗Λ,n‖K = min
p∈PΛ,n

‖f − p‖K =: En(f,K,Λ) .1

In particular, we set En(f,K) := En(f,K,N0).

To measure how fast the function f can be uniformly approximated on K by
(lacunary) polynomials we apply the geometric rate (lim sup

n→∞
En(f,K,Λ)1/n or)

lim sup
n→∞

En(f,K)1/n. In the following, we will call this geometric rate the rate of

approximation.

Remark and Definition 6.12 :
Let K ⊂ C be compact and such that both K and KC are connected and
K contains more than one point. According to the Riemann mapping theo-
rem, there exists a unique conformal mapping (normed at the point at infinity)
α : C∞ \K → C∞ \ D such that we get for all z with sufficiently large modulus

α(z) =
1

cK
z + c0 +

∞∑
ν=1

cνz
−ν ,

where cK > 0 is the logarithmic capacity of K. The inverse mapping (which is also
conformal) shall be denoted by β := α−1 : C∞ \ D→ C∞ \K and is given by

β(w) = cKw + d0 +
∞∑
ν=1

dνw
−ν (|w| > 1) .

For R > 1 we set γR := β ◦ τR. Hence |γR| is a closed Jordan curve and according
to the Jordan curve theorem, we obtain

C \ |γR| = Int(|γR|) ∪ Ext(|γR|)
1See [Schoe, S. 1.1].
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where Int(|γR|) is a bounded domain with indγR(z) = 1 (z ∈ Int(|γR|)) and
Ext(|γR|) is an unbounded domain with indγR(z) = 0 (z ∈ Ext(|γR|)). The traces
|γR| will be called level curves and the sets Int(|γR|) will be called contour domains
(see for example [Gai, p. 64 f.]).

For f ∈ H(K) we set

Rf,K := sup{R > 1 : ∃F ∈ H(Int(|γR|)), F |K = f} ∈ (1,∞] .

Remark 6.13 :
Let K ⊂ C be compact and such that both K and KC are connected and K
contains more than one point and let f ∈ H(K).

Using the Bernstein Lemma which enables to estimate the growth of a polynomial
on the level curves |γR| by the growth of the polynomial on the compact set K,
one can show that a sufficiently fast convergence of a sequence of polynomials on
the set K to f implies the locally uniform convergence of this sequence in the
corresponding contour domain (see [Gai, p. 33 f.]). This, in turn, implies that f
can be analytically continued into this domain. To be more precise:

For Λ ⊂ N0 and R > 1 let pΛ,n ∈ PΛ,n (n ∈ N0) such that

lim sup
n→∞

‖f − pΛ,n‖1/n
K = 1/R .

Then pΛ,n converges locally uniformly on Int(|γR|) to a function F ∈ H(Int(|γR|))
with F |K = f .

This result and the definition of Rf,K immediately imply

lim sup
n→∞

(En(f,K))1/n ≥ 1/Rf,K .

However, in [Gai, p. 67] it is shown that there exists always a sequence of polyno-
mials which realizes the fastest possible rate of approximation so that we obtain

lim sup
n→∞

(En(f,K))1/n =
1

Rf,K

.

That means, the further the function f can be analytically continued over K, the
faster it can be approximated by polynomials.

Remark 6.14 :
We want to consider the following question: For Λ ⊂ N0 and an open set D ⊂ C,
a given function g ∈ H(D) and a compact subset M ⊂ D, one is interested in
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the behaviour of the sequence of errors En(g,M,Λ). As already mentioned above,
while applying the concept of the Hadamard product, the sets D that can be
considered are always of the form Ω ∗ U and we are going to see now that it is
natural to consider sets M of the form Ω ∗K (where K is a compact subset of U ;
note that in this case the set Ω ∗K is a compact subset of Ω ∗U). If we know that
PΛ(Ω ∗ U) = H(Ω ∗ U) we obtain

En(g,Ω ∗K,Λ)→ 0 (n→∞)

for all g ∈ H(Ω ∗ U). However, we are interested in the speed of this decreasing.

Again, according to the given set Λ ⊂ N0, we assume to have found a domain
Ω ⊂ C∞ with {0,∞} ⊂ Ω and a function ϕ ∈ H(Ω) with Λ+

ϕ ⊂ Λ. Let U ⊂ C be
open and star-eligible to Ω and K ⊂ U be compact and such that both K and KC

are connected and K contains more than one point. Then there exists a compact
set L with K ⊂ L◦ ⊂ U with the same properties. Proposition 2.10.2 ensures the
existence of a Hadamard cycle Γ for (Ω ∗ K) · Ω∗ in L◦ (note that ∞ 6∈ Ω ∗ K).
Then Γ is obviously also a Hadamard cycle for (Ω∗K) ·Ω∗ in U and for a function
f ∈ H(U) Definition 2.11 yields

(ϕ ∗Ω,U f)(z) =
1

2πi

∫
Γ

f(ζ)ϕ(
z

ζ
)
dζ

ζ
(z ∈ Ω ∗K) .

Hence, for all z ∈ Ω ∗K we obtain

|(ϕ ∗Ω,U f)(z)| ≤ 1

2π

∫
Γ

|f(ζ)|
|ζ|
|ϕ(

z

ζ
)| |dζ| ≤ c · ‖f‖|Γ|

where c :=
1

2π
L(Γ) ·max

ζ∈|Γ|

1

|ζ|
· max
ω∈(Ω∗K)/|Γ|

|ϕ(ω)| (note that (Ω∗K)/|Γ| := {a/b : a ∈

Ω ∗K, b ∈ |Γ|} is a compact subset of Ω). Since Γ is a cycle in L we finally get

‖ϕ ∗Ω,U f‖Ω∗K ≤ c · ‖f‖L .

If the function g ∈ H(Ω ∗U) belongs to the range of the operator Tϕ,U , i. e. there
is a function f ∈ H(U) with ϕ ∗Ω,U f = g, then for each polynomial p ∈ Pn we
have

‖g − ϕ ∗Ω,U p|U‖Ω∗K ≤ c · ‖f − p|U‖L
and especially (note that ϕ ∗Ω,C p ∈ PΛ+

ϕ ,n
⊂ PΛ,n)

lim sup
n→∞

En(g,Ω ∗K,Λ)1/n ≤ lim sup
n→∞

En(f, L)1/n =
1

Rf,L

.
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Since we can choose L arbitrarily close to K, the definition of Rf,L yields that the
inequality remains true for K instead of L on the right-hand side and we obtain

lim sup
n→∞

En(g,Ω ∗K,Λ)1/n ≤ 1

Rf,K

.

This inequality means that we can give an upper bound for the rate of approxi-
mation of g by lacunary polynomials by the rate of approximation of a preimage
of g under the operator Tϕ,U , namely f ∈ H(U), by arbitrary polynomials. Fur-
thermore, we observe that the domain into which f can be analytically continued
is relevant for the rate of approximation of g by lacunary polynomials.

We summarize the situation in the following theorem.

Theorem 6.15 :
Let Λ ⊂ N0 and Ω ⊂ C∞ be a domain with {0,∞} ⊂ Ω and let ϕ ∈ H(Ω) with
Λ+
ϕ ⊂ Λ. Let furthermore U ⊂ C be open and star-eligible to Ω and let K ⊂ U be

compact and such that both K and KC are connected and K contains more than
one point. Let g ∈ H(Ω∗U) be given and let f ∈ H(U) such that Tϕ,Uf = g. Then
we have

lim sup
n→∞

En(g,Ω ∗K,Λ)1/n ≤ 1

Rf,K

. (6.1)

Remark 6.16 :
In order to obtain inequality (6.1) we assumed the function g ∈ H(Ω∗U) to belong
to the range of a suitable Hadamard operator Tϕ,U . Hence, in order to apply the
approach described in Remark 6.14 it is desirable to know that the Hadamard
operator Tϕ,U is surjective (see Section 4.4 and Corollary 5.8).

If Λ ⊂ N0 has unit density, then the proof of Theorem 6.5 shows that there exists a
function 0 6≡ ϕ ∈ H(C∞ \{1}) with Λ+

ϕ ⊂ Λ. If D ⊂ C \{0} is a simply connected
domain with logDD convex, then Corollary 5.8 states that Tϕ,D : H(D)→ H(D)
is surjective. Hence, in order to exploit inequality (6.1), we have to find for a given
function g ∈ H(D) a function f ∈ H(D) with Tϕ,Df = g and determine Rf,K (for
a suitable compact set K ⊂ D). This is what we are going to do in the following
example.

Example 6.17 :
Let Λ = N, i. e. we require the approximating polynomials to vanish at the origin.

Then obviously the Koebe function κ introduced in Example 3.2 is a suitable gap
producing function becasue κ ∈ H(C∞ \ {1}) and Λ+

κ = N (and Mκ = idC).
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In Example 3.2 it has been shown that Tκ,U is surjective for every simply connected
domain U ⊂ C \ {0} (we did not require logU U to be convex; see also Proposition
4.30) so that we can hope to get quantitative results for the approximation of a
function g ∈ H(U) by polynomials which vanish at the origin.

Let U := S and g ≡ 1. Then Example 3.2 reveals that f(z) := log z (z ∈ S) fulfills
Tκ,Sf = g. We want to compute Rlog,K for different compact sets K ⊂ S. In order
to do so, let x0 ∈ (0,∞) and 0 < δ < x0.

1. For K1 = Uδ(x0) it can easily be seen that the conformal mapping β1 men-
tioned in Remark and Definition 6.12 is given by

β1(w) = δw + x0 (w ∈ C \ D) .

Hence, the conformal mapping β1 transforms a circle around the origin with
radius R into a circle around x0 with radius δR.

2. For K2 := [x0 − δ, x0 + δ] one can (based on the standard case K = [−1, 1]
and the Joukowski mapping) easily verify that the conformal mapping β2 is
given by

β2(w) =
δ

2
(w +

1

w
) + x0 (w ∈ C \ D) .

Hence, the conformal mapping β2 transforms a circle around the origin with

radius R into an ellipse around x0 with semiaxis
δ

2
(R +

1

R
) and

δ

2
(R− 1

R
).

By means of the mappings β1 and β2 we can calculate Rlog,K1 and Rlog,K2 . Since
the logarithm can not be continued into a domain that contains the origin, the
numbers Rlog,K1 and Rlog,K2 obviously coincide with the parameter of the respective
level curves |γR| that touch the origin. A short calculation shows that

Rlog,K1 =
x0

δ
and Rlog,K2 =

x0

δ
+

√
x2

0

δ2
− 1 .

Hence, inequality (6.1) reads

lim sup
n→∞

En(1, Uδ(x0),N)1/n ≤ δ/x0

or

lim sup
n→∞

En(1, [x0 − δ, x0 + δ],N)1/n ≤
(x0

δ
+

√
x2

0

δ2
− 1
)−1
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respectively.

The question may arise if these upper bounds for the rate of approximation can
be improved. However, in general they can not. Indeed, if we assume that

lim sup
n→∞

En(1, Uδ(x0),N)1/n = 1/R̃

with R̃ > x0/δ, then Remark 6.13 implies that a sequence of best approximating
polynomials (p∗Λ,n)n∈N0 converges to a function F ∈ H(Int(|γR̃|)). By construction,
p∗Λ,n converges to 1 on K so that F |K = 1 and the identity theorem implies that
F ≡ 1 on Int(|γR̃|). However, since R̃ > x0/δ, the origin belongs to Int(|γR̃|) and
0 = p∗Λ.n(0)→ F (0) (n→∞) which is a contradiction.

A similar consideration with the same result can be performed for the set K2.

At the end of this example, we want to examine the results obtained above with re-
spect to geometric considerations. The approximating polynomials are determined
to approximate the function g ≡ 1 on Kj (j = 1, 2) and are restricted to vanish
at the origin. Therefore it is natural that the rate of approximation is better, the
farther Kj is away from the origin, i. e. the greater x0 and/or the smaller δ and
vice versa. This relation is accurately reflected through the fraction δ/x0 or the

number
(x0

δ
+

√
x2

0

δ2
− 1
)−1

.

Example 6.18 :
Let Λ = 2N0 + 1, i. e. we want to approximate by odd polynomials.

Then the function
ϕ(z) =

z

1 + z2
(z ∈ C \ {±i})

is holomorphic in Ω := C∞ \ {±i} with Λ+
ϕ = Λ and therefore a suitable gap

producing function.

Let U ⊂ C \ {0} be open with U ∩ (−U) 6= ∅. Then U is star-eligible to Ω and we
obtain for a function f ∈ H(U) and z ∈ Ω ∗ U = iU ∩ (−iU)

Tϕ,Ω,Uf(z) =
1

2πi

∫
Γ

z/ζ

1 + z2/ζ2
f(ζ)

dζ

ζ

=
1

2i

( 1

2πi

∫
Γ

f(ζ)

ζ − iz
dζ − 1

2πi

∫
Γ

f(ζ)

ζ + iz
dζ
)

=
1

2i
(f(iz)− f(−iz))
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where Γ = (τr(iz), τr(−iz)) for some sufficiently small r and the last identity
follows with Cauchy’s integral theorem and Cauchy’s integral formula.

Let in the following U = S which implies Ω ∗ U = C \ iR. We show that

R(Tϕ,Ω,S) = {g ∈ H(C \ iR) : g odd} .

Proposition 2.20 yields that the left-hand side is a subset of the right-hand side.
In order to show the other inclusion, we set N := {z ∈ C : Re z > 0} and prove
in a first step that

Tϕ̃,DK1/2
,S : H(S)→ H(N)

(where ϕ̃ := ϕ|DK1/2
) is surjective. The power series expansion of ϕ̃ about zero

reads as follows

ϕ̃(z) =
∞∑
ν=0

(−1)νz2ν+1 =
∞∑
n=0

anz
n (z ∈ D)

with
an =

{
0 , n ∈ 2N0

(−1)(n−1)/2 , n ∈ 2N0 + 1
.

The function
Φ(z) = sin(

π

2
z) (z ∈ C)

is an entire function of exponential type with K(Φ) = K1/2 and Φ(n) = an (n ∈
N0). Carlson’s Theorem (see Theorem B.14) yields that Mϕ̃ = Φ. Since Φ is of
completely regular growth, Theorem 4.34 implies that Tϕ̃,DK1/2

,S : H(S) → H(N)

is surjective.

Let now an odd function g ∈ H(C \ iR) be given. Then there exists a function
f ∈ H(S) such that Tϕ̃,DK1/2

,Sf = g|N . Theorem 2.13 yields for all z ∈ N

Tϕ̃,DK1/2
,Sf(z) = g(z) = Tϕ,Ω,Sf(z) .

Since Tϕ,Ω,Sf is an odd function we obtain for all z ∈ −N

Tϕ,Ω,Sf(z) = −Tϕ,Ω,Sf(−z) = −g(−z) = g(z)

which completes the proof.

Especially the function

g(z) =

{
1 , z ∈ N
−1 , z ∈ −N
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belongs to the range of Tϕ,Ω,S.

The principal branch of the logarithm on S fulfills

log(iz)− log(−iz) = iπ, z ∈ N ,

log(iz)− log(−iz) = −iπ, z ∈ −N .

Therefore, by setting f(z) := 2 log z/π (z ∈ S) we obtain a function f ∈ H(S)
with Tϕ,Ω,Sf = g.

If we want to get some information about the rate of approximation of g by odd
polynomials on a set of the form Ω∗K using the approach described in this section,
we would have to find a suitable compact set K ⊂ S and compute Rf,K = Rlog,K .
However, Ω ∗ K = iK ∩ (−iK) is empty if K is a disc or an interval. The next
type of sets which could be considered are annular sectors of the form

Kr,α = {z ∈ C : r ≤ |z| ≤ 1, |arg z| ≤ α}

for some 0 < r < 1 and 0 ≤ α < π. If α is large enough, then Ω ∗ Kr,α is a
non-empty, symmetric set and we can ask for the rate of approximation of g on
the set Ω ∗Kr,α by odd polynomials. Since Ω ∗Kr,α is symmetric and we want to
approximate the odd function g by odd polynomials, it is enough to ask how fast
the function 1 can be approximated on the set (Ω ∗Kr,α)∩N by odd polynomials.

As already mentioned, to give a satisfactory answer we would have to know
Rlog,Kr,α . A first step is to know the conformal mapping β : C\D→ C\Kr,α. This
map is given by Coleman and Myers (see [CM, Th. 1]) but it is highly compli-
cated and we can not expect to compute the level curves |γR| and hence Rlog,Kr,α

manually.

If we choose α = 1/2, then Ω∗Kr,1/2 = [−1,−r]∪[r, 1]. We end up with the question
about the rate of approximation of sign(x) on the union of intervals [−1,−r] ∪
[r, 1] by odd polynomials. This question has been investigated by Eremenko and
Yuditskii in [EY07] (see also [EY11]).

Remark 6.19 :
There are very few types of sets K for which the conformal mapping β : C \ D→
C\K is known. Besides the case of discs, intervals and annular sectors it is known
for circular sectors of the form K = {z ∈ C : |z| ≤ 1, |arg z| ≤ α} for some α < π
(see [CS, Th. 1]). However, even in these cases of relatively simple compact sets
K the conformal mapping β is rather complicated and Rf,K can not be expected
to be computed easily. In addition, it is very challanging to compute a sequence
of polynomials which realizes the fastest possible rate of approximation (see for
example [GHO]).
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Remark 6.20 :
We come back to two important tasks in estimating the rate of approximation
of a function g ∈ H(Ω ∗ U) by lacunary polynomials by means of the Hadamard
product (see Remark 6.14): We have to know that g belongs to the range of
the corresponding Hadamard operator Tϕ,U and if so, we have to find a function
f ∈ H(U) with Tϕ,Uf = g. In the preceding examples we were able to answer both
questions by computing what impact the operator Tϕ,U has on the function f .
This is far from being possible in a general situation. Therefore, in general, some
information about the range of the Hadamard operator is needed and additionally,
it would be useful to know a right-inverse of the operator Tϕ,U . This may be
subject to future research.

Open Problem 6.21 :

1. Given that the operator Tϕ,U is not (known to be) surjective. What functions
g ∈ H(Ω ∗ U) belong to its range?

2. Given that we know that a function g ∈ H(Ω∗U) belongs to the range of the
operator Tϕ,U , how can we determine a function f ∈ H(U) with Tϕ,Uf = g?



Appendix A

Notions of density for subsets of the
non-negative real numbers

In this part of the appendix we introduce different notions of density for subsets
of the non-negative real numbers which are needed troughout this thesis (see for
example [Pol29] and [MR]). In the following, the logarithm on the positive real
axis shall be denoted by ln : (0,∞)→ R, x 7→ lnx (and ln 0 := −∞).

Definition A.1 :
Let for Λ ⊂ [0,∞) without finite accumulation point n(r) = nΛ(r) be the number
of λ ∈ Λ with λ ≤ r (r ≥ 0).

1. The upper and lower density of Λ are defined by

d(Λ) := lim sup
r→∞

n(r)

r
, d(Λ) := lim inf

r→∞

n(r)

r
.

In case of equality, the common value d(Λ) is the density of Λ and Λ is called
measurable.

2. According to [Pol29, p. 559], the limits

d∗(Λ) := lim
ξ→1−

lim sup
r→∞

n(r)− n(rξ)

r − rξ
,

d∗(Λ) := lim
ξ→1−

lim inf
r→∞

n(r)− n(rξ)

r − rξ

exist and are called the maximal and minimal density of Λ.
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3. The logarithmic block density of Λ is defined by

dL(Λ) := inf
a>1

1

ln a
lim sup
t→∞

∑
λ∈Λ∩(t,at]

1

λ
.

Remark A.2 :
Let Λ ⊂ [0,∞) without finite accumulation point. In [Pol29, p. 562 f.] it is shown
that

d∗(Λ) = min{d(Λ) : Λ measurable and Λ ⊂ Λ} ,
d∗(Λ) = max{d(Λ) : Λ measurable and Λ ⊃ Λ} .

Remark A.3 :
Let Λ = {λk : k ∈ N} ⊂ [0,∞) without finite accumulation point (in this notation
we assume λk+1 ≥ λk (k ∈ N)).

1. Even if Λ is not measurable, the minimal and maximal, the upper and lower
and the logarithmic block density exist (and may be infinity) and the follow-
ing inequalities hold (see [Pol29, p. 559] and [Rub, Th. 6])

0 ≤ d∗(Λ) ≤ d(Λ) ≤ d(Λ) ≤ d∗(Λ) ,

dL(Λ) ≤ d(Λ) .

If Λ is measurable, then all occuring densities coincide with d(Λ).

2. Assuming that Λ is infinite, we can express the density (if existing) and the
upper and lower density by (see [Pol29, p. 557])

lim
k→∞

k/λk, lim sup
k→∞

k/λk, lim inf
k→∞

k/λk .

3. If d(Λ) <∞, then
∞∑
k=2

1/λαk converges for all α > 1.

Indeed, according to 2., given a number ε > 0 there exists a natural number
N such that for all k ≥ N we have k/λk < d(Λ) + ε.

4. In the special case Λ ⊂ N0, it is clear that 0 ≤ d∗(Λ) ≤ d∗(Λ) ≤ 1 and

d(Λ) + d(N0 \ Λ) = 1 ,

d∗(Λ) + d∗(N0 \ Λ) = 1

and d(Λ) exists if and only if d(N0 \ Λ) exists.

Furthermore, dL(Λ) = 1 if and only if d(Λ) = 1 (see [Rub, Th. 4]).
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The following lemma gives an example of a set of non-negative integers for which
the various densities introduced above do not coincide.

Lemma A.4 :
Let q ∈ N, q ≥ 3 and

Λq :=
⋃
k∈N0

{n ∈ N : qk < n ≤ 2 · qk} .

Then
d(Λq) =

q

2(q − 1)
, dL(Λq) =

ln 2

ln q
, d(Λq) =

1

q − 1
.1

Proof: Obviously, the set Λq is composed of “blocks” consisting of qk numbers.
Hence, counting the elements of Λq we observe that up to the end of the (l+ 1)-th
block,

∑l
ν=0 q

ν elements belong to the set Λq. Given an enumeration {λq,j : j ∈ N}
of Λq we obtain with Remark A.3.2

d(Λq) = lim sup
j→∞

j

λq,j
= lim

l→∞

l∑
ν=0

qν

2ql
= lim

l→∞

1

2

l∑
ν=0

(1

q

)ν
=

q

2(q − 1)

and

d(Λq) = lim inf
j→∞

j

λq,j
= lim

l→∞

l−1∑
ν=0

qν + 1

ql + 1
= lim

l→∞

l∑
ν=1

(1

q

)ν
=

1

q − 1
.

Now we are going to compute the logarithmic block density of Λq.

For a > 1 we set k0 := max{ν ∈ N0 : a ≥ qν}, i. e. aq−k0 ∈ [1, q). We set
ã := min{aq−k0 , 2} and obtain

1

ln a

∑
λ∈Λq∩(qk,aqk]

1

λ
=

1

ln a

(( k0−1∑
µ=0

∑
λ∈N∩(qk+µ,2·qk+µ]

1

λ

)
+

∑
λ∈N∩(qk+k0 ,ãqk+k0 ]

1

λ

)
=

1

ln a

(
k0 ln 2 + ln ã+ o(1)

)
→ k0 ln 2 + ln ã

k0 ln q + ln(aq−k0)
≥ ln 2

ln q
(k →∞)

1See [Rub, p. 421 ff.] for the case q=4.
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where the latter inequality can easily be verified separately for the case ã = aq−k0

and ã = 2 and also holds for the case k0 = 0.

An immediate consequence is that dL(Λq) ≥ ln 2/ ln q.

To show the opposite inequality, we consider the case a = q.

(i) For every t > 1 such that there exists a number k(t) ∈ N0 such that t ∈
(2qk(t), qk(t)+1] we have∑

λ∈Λq∩(t,qt]

1

λ
=

∑
λ∈N∩(qk(t)+1,2qk(t)+1]

1

λ
= ln 2 + o(1)

which results in ∑
λ∈Λq∩(t,qt]

1

λ
−→ ln 2

as t tends to infinity in
⋃
n∈N0

(2qn, qn+1].

(ii) For every t > 1 such that there exists a number k(t) ∈ N0 such that t ∈
(qk(t), 2qk(t)] we have

∑
λ∈Λq∩(t,qt]

1

λ
=

∑
λ∈N∩(t,2qk(t)]

1

λ
+

∑
λ∈N∩(qk(t)+1,qt]

1

λ

= ln(2qk(t)/t) + ln(qt/qk(t)+1) + o(1)

= ln 2 + o(1)

which results in ∑
λ∈Λq∩(t,qt]

1

λ
−→ ln 2

as t tends to infinity in
⋃
n∈N0

(qn, 2qn].

Hence, ∑
λ∈Λq∩(t,qt]

1

λ
−→ ln 2 (t→∞)

and therefore
dL(Λq) ≤ lim sup

t→∞

1

ln q

∑
λ∈Λq∩(t,qt]

1

λ
=

ln 2

ln q
.
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In the following we state two gap theorems which reveal a connection between the
density of the non-vanishing coefficients in the power series expansion of a function
f about zero and the analytic continuability of f (see for example [Hi, p. 89] and
[Pol29, p. 626]).

Theorem A.5 (Fabry gap theorem) :
Let Λ ⊂ N0 with d(Λ) = 0, aλ ∈ C (λ ∈ Λ). Either the series∑

λ∈Λ

aλz
λ

represents an entire function or it can not be continued beyond its (finite) circle of
convergence.

Remark A.6 :
The above cited (negative) version of Fabry’s gap theorem is equivalent to the
following (positive) formulation:

Let G ⊂ C be a domain with 0 ∈ G and f ∈ H(G) with d(Λ+
f ) = 0. Then the

series
∑
ν∈Λ+

f

fνz
ν converges in D sup

u∈G
|u|.

Theorem A.7 (Pólya gap theorem) :
Let Λ ⊂ N0 with d∗(Λ) = δ, aλ ∈ C (λ ∈ Λ). Let the power series

f(z) =
∑
λ∈Λ

aλz
λ (A.1)

have radius of convergence R <∞. Then on every open subarc of TR with length
larger than 2πRδ, f has at least one singularity.

Remark A.8 :
The Pólya gap theorem yields the following density condition for the set Λ+

ϕ of a
function ϕ ∈ H(Ω):

Let Ω ⊂ C∞ be open with 0 ∈ Ω and let R < ∞ be the radius of convergence of
the power series expansion of ϕ ∈ H(Ω) about zero. If TR ∩ Ω contains an open
arc of length 2πRδ, then the Pólya gap theorem implies that d∗(Λ+

ϕ ) ≥ δ.

If, in particular, Λ+
ϕ is measurable, then d(Λ+

ϕ ) ≥ δ.



Appendix B

Entire functions of exponential type

B.1 Definition and basic properties

Since in this thesis we make repeatedly use of properties of certain entire functions,
this section introduces the required concepts according to [Boa]. We agree upon
the following notation: for an entire function Φ the set of zeros shall be denoted by
Z(Φ) := {z ∈ C : Φ(z) = 0}. If Φ does not vanish identically, then we denote by
nΦ(r) the number of zeros (counted according to multiplicity) of Φ in Dr (r ≥ 0).

Definition B.1 :
Let Φ be an entire function.

1. We denote by MΦ(r) := max{|Φ(z)| : |z| = r} (r ≥ 0) the maximum
modulus of Φ. The maximum principle implies that this function increases
monotonically.

2. Φ is called an entire function of exponential type if

τ(Φ) := lim sup
r→∞

lnMΦ(r)

r
<∞ . (B.1)

Remark B.2 :
Let Φ be an entire function of exponential type. Then τ(Φ) ≥ 0 if and only if
Φ 6≡ 0 and τ(0) = −∞.
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Theorem B.3 :
Let Φ 6≡ 0 be an entire function of exponential type. Then

lim sup
r−→∞

nΦ(r)

r
≤ e · τ(Φ) and lim inf

r−→∞

nΦ(r)

r
≤ τ(Φ) .1

In order to describe the growth of entire functions on different rays, we introduce
the Phragmén-Lindelöf indicator function:

Definition B.4 :
Let Φ be an entire function of exponential type. Then the function

hΦ : [−π, π)→ [−∞,∞), hΦ(t) = lim sup
r→∞

ln |Φ(reit)|
r

is called the Phragmén-Lindelöf indicator function of f .

Proposition B.5 :
Let Φ,Ψ be entire functions of exponential type.

1. If Φ 6≡ 0, then hΦ can be continued to a real valued, 2π-periodic, continuous
function on R with values in [−τ(Φ), τ(Φ)]. If Φ ≡ 0, then hΦ ≡ −∞.

2. hΦΨ ≤ hΦ + hΨ and hΦ+Ψ ≤ max{hΦ, hΨ}.

There is a class of entire functions of exponential type for which equality holds in
the first inequality in Proposition B.5.2 (see Theorem B.20.1).

Definition B.6 :
Let K ⊂ C be non-empty, compact and convex. Then the function

HK : C −→ C, HK(z) := sup
u∈K

Re(zu)

is called the support function of K.2

We list some properties of the support function (see [BG, Prop. 1.3.14] and [Mori,
Cor. 1.8.2]).

1See [Boa, Th. 2.5.13].
2See [BG, p. 64].
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Proposition B.7 :
Let K,L ⊂ C be non-empty, compact and convex. Then the following assertions
hold:

1. HK+L = HK +HL.

2. K is a subset of L if and only if HK ≤ HL.

3. If K = i[−a, a] for some a > 0, then HK(z) = a|z|| sin(arg z)|.

In the following, we want to associate a certain convex set with an entire function
of exponential type which reflects in some sense its growth properties.

Let Φ be an entire function of exponential type and for ζ ∈ T we setW (ζ) := {z ∈
C : Re(zζ) > hΦ(arg ζ)}. We consider the Laplace transform

BΦ(z; ζ) := ζ

∫ ∞
0

Φ(tζ)e−ztζ dt (z ∈ W (ζ))

and list the properties of BΦ(·; ζ) according to [Mori, p. 36 f.]:

1. The function z 7→ BΦ(z; ζ) is holomorphic in the open half-plane W (ζ).

2. For ζ, ζ ′ ∈ T we have

BΦ(z; ζ) = BΦ(z; ζ ′) (z ∈ W (ζ) ∩W (ζ ′)) .

3. The above mentioned property allows to paste the functions BΦ(·; ζ) (ζ ∈ T)
together ending up with a function BΦ being holomorphic in

⋃
ζ∈TW (ζ) and

vanishing at infinity.

Definition B.8 :
For a given entire function of exponential type Φ, the function BΦ :

⋃
ζ∈TW (ζ)→

C constructed as above is called the Borel transform of Φ. The set C \
⋃
ζ∈TW (ζ)

is compact and convex and is called the conjugate indicator diagram of Φ. We will
denote it by K(Φ).

For a given compact and convex set K ⊂ C we denote by Exp(K) the space
of all entire functions of exponential type whose conjugate indicator diagram is
contained in K.
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Remark B.9 :
Let Φ be an entire function of exponential type.

1. An immediate consequence of the definition of the Borel transform is that
K(Φ) = ∅ if and only if Φ ≡ 0.

2. According to [Boa, p. 74], the conjugate indicator diagram of Φ if the smallest
closed convex set outside which BΦ is holomorphic.

3. According to [BG, p. 64] the following condition is necessary and sufficient
for Φ to belong to the space Exp(K): For each ε > 0 there is a constant Cε
such that

sup
z∈C
|Φ(z)|e−HK(z)−ε|z| ≤ Cε .

4. The space Exp({0}) consists of all entire functions of exponential type Φ
with τ(Φ) ≤ 0.

We list some properties of the conjugate indicator diagram in the following propo-
sition (see [Boa, p. 75-77]).

Proposition B.10 :
Let Φ,Ψ be entire functions of exponential type. Then the following are valid:

1. τ(Φ) = max{hΦ(t) : t ∈ [−π, π)} = max{|u| : u ∈ K(Φ)}.3

2. K(Φ + Ψ) ⊂ conv(K(Φ)∪K(Ψ)) and K(ΦΨ) ⊂ K(Φ) +K(Ψ).4 If K(Φ) or
K(Ψ) is a singleton, then K(ΦΨ) = K(Φ) +K(Ψ).

Example B.11 :
The conjugate indicator diagram of the function eα : C → C, z 7→ eαz is the set
K(eα) = {α} (α ∈ C).

The following theorem establishes an important relation between the indicator
function and the support function of the conjugate indicator diagram (see [BG,
Th. 1.3.21]).

3We set max∅ := −∞.
4For A ⊂ C, the smallest convex superset of A is denoted by conv(A).
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Theorem B.12 :
Let Φ 6≡ 0 be an entire function of exponential type. Then we have

hΦ(t) = HK(Φ)(e
it) (t ∈ [−π, π)) .

Combining Proposition B.7.2 and Theorem B.12 we obtain the following corollary:

Corollary B.13 :
Let Φ be an entire function of exponential type.

1. If Ψ is an entire function of exponential type, then K(Φ) = K(Ψ) if and only
if hΦ(t) = hΨ(t) (t ∈ [−π, π)).

2. If c ∈ C \ {0} and Φ̃(z) := Φ(cz) (z ∈ C), then K(Φ̃) = c ·K(Φ).

Theorem B.14 (Carlson’s theorem5) :
Let Φ be an entire function of exponential type with

max
z∈K(Φ)

Im z − min
z∈K(Φ)

Im z < 2π .6

If Z(Φ) ⊃ N0, then Φ ≡ 0.

B.2 The Mellin transformation

In this section we introduce the Mellin transformation according to [BG, Ch. 4.1].

Definition B.15 :
Let K ⊂ V be compact and convex and DK := C∞ \ e−K . For ϕ ∈ H(DK), the
Mellin transform Mϕ of ϕ is given by

Mϕ(z) := − 1

2πi

∫
Γ

ϕ(ζ)

ζz+1
dζ (z ∈ C) ,

where Γ is a Cauchy cycle for e−K in S and ζc := exp(c log ζ). The map M :
H(DK)→ Exp(K) is called Mellin transformation.

5See [Boa, Th. 9.2.1].
6We set −∞+ (−∞) := −∞.
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Theorem B.16 :
Let K ⊂ V be compact and convex. The Mellin transformation M : H(DK) →
Exp(K) is a linear and bijective operator. Furthermore, for a given function Φ ∈
Exp(K) we obtain for all z with small modulus

M−1Φ(z) =
∞∑
ν=0

Φ(ν)zν (B.2)

and for all z with large modulus

M−1Φ(z) = −
∞∑
ν=1

Φ(−ν)z−ν . (B.3)

Remark B.17 :
Let K ⊂ V be compact and convex, ϕ ∈ H(DK) and Φ = Mϕ.

1. The situation of Theorem B.16 in the special case K = {0} is known as the
Wigert-Leau Theorem (see for example [Le96, p. 72]).

In this case, Theorem B.3 yields for a non-vanishing function ϕ ∈ H(C∞ \
{1}) that Λ+

ϕ and Λ−ϕ are measurable and d(Λ+
ϕ ) = d(Λ−ϕ ) = 1.

2. By differentiation of the defining parameter integral one can verify that the
derivatives of Φ are given by

Φ(k)(z) := − 1

2πi

∫
Γ

ϕ(ζ)

ζz+1
(−1)(k)(log ζ)k dζ (z ∈ C, k ∈ N0) .

3. Let K,L ⊂ V be compact and convex and such that K + L ⊂ V. For
ϕ ∈ H(DK) and f ∈ H(DL) the following is valid:

M(ϕ ∗ f) = Mϕ ·Mf . (B.4)

Indeed, according to Example 2.3.5, we obtain DK ∗DL = DK+L and there-
fore we can consider the Mellin transform M(ϕ ∗ f) ∈ Exp(K + L) of ϕ ∗ f .
Furthermore, the Hadamard multiplication theorem 2.14.3 together with
Theorem B.16 implies that for all z with small modulus we obtain

ϕ ∗ f(z) =
∞∑
ν=0

ϕν · fν · zν =
∞∑
ν=0

Mϕ(ν) ·Mf(ν) · zν .

According to Proposition B.10.2, Mϕ ·Mf belongs to the space Exp(K+L)
and the assertion follows from Carlson’s Theorem.
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B.3 Functions of completely regular growth

In this section we introduce a class of entire functions of exponential type which
fulfill stronger conditions on their growth (see [BG, D. 1.5.9] and [Le62, Ch. 3]).

Definition B.18 :

1. Let E ⊂ [0,∞) be a Lebesgue-measurable set. Then E is of relative zero
measure if

lim
r→∞

λ(E ∩ [0, r])

r
= 0 ,

where λ denotes the Lebesgue measure on R.

2. Let Φ be an entire function of exponential type. Then Φ is of completely
regular growth if there exists a set E of relative zero measure such that

hΦ(t) = lim
r→∞
r 6∈E

ln |Φ(reit)|
r

holds for all t ∈ [−π, π) and these limits are uniform in t.7

Example B.19 :

1. Every function belonging to the space Exp({0}) is of completely regular
growth.

2. Let Λ = {λn : n ∈ N} ⊂ (0,∞) without finite accumulation point and
d(Λ) = δ. Then [Le62, p. 205] yields that

Φ(z) :=
∞∏
n=1

(
1− z2

λ2
n

)
is of completely regular growth with Z(Φ) = ±Λ and conjugate indicator
diagram being the line segment Kδ.

Theorem B.12 together with Proposition B.7.3 yields

hΦ(t) = πδ| sin t| (t ∈ [−π, π)) .

The following theorem contains an important property of functions of completely
regular growth concerning their indicator functions.

7Note that the set E is independent of t.



APPENDIX B. ENTIRE FUNCTIONS OF EXPONENTIAL TYPE 115

Theorem B.20 :

1. Let Ψ be a function of completely regular growth and let Φ be an arbitrary
entire function of exponential type. Then

hΦΨ = hΦ + hΨ .

2. Let Ψ be a function of completely regular growth and let Φ be an entire func-
tion of exponential type such that Φ/Ψ is entire.8 Then Φ/Ψ is of exponential
type and

hΦ/Ψ = hΦ − hΨ .

Remark B.21 :
Combining Theorem B.20, Proposition B.7 and Theorem B.12 we obtain:

Let Ψ be a function of completely regular growth and Φ be an arbitrary entire
function of exponential type. Then

K(ΦΨ) = K(Φ) +K(Ψ) .

8Or to be more precise, Φ/Ψ can be continued to an entire function.



Appendix C

Density and surjectivity criteria

In this chapter we present some criteria for a linear and continuous operator to
have dense range or to be surjective. They are used for the examination of the
range of Hadamard operators in Chapter 4. We begin by summarizing some in-
formation about various types of locally convex spaces and their interdependence.
The presentation in this chapter follows [MV].

Definition C.1 :
Let E be a locally convex space.

1. A set M ⊂ E is called a barrel, if M is absolutely convex, closed and absor-
bing (i. e. E =

⋃
n∈N nM).

2. E is called barrelled, if each barrel in E is a zero neighbourhood.

3. E is called a Schwartz space, if for each absolutely convex zero neighbourhood
U in E there exists a zero neighbourhood V so that for each ε > 0, there
exist x1, . . . , xn ∈ V such that V ⊂

⋃n
j=1(xj + εU).

4. E is called an FS-space, if it is at the same time a Fréchet and a Schwartz
space.

5. A set B ⊂ E ′ is called (pointwise) bounded, if it is bounded with respect to
the weak∗-topology, i. e. sup{|x′(x)| : x′ ∈ B} <∞ for all x ∈ E.

Remark C.2 :

1. A locally convex space E is barrelled, if every bounded set B ⊂ E ′ is equicon-
tinuous.
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2. If E is a Fréchet space, then a set B ⊂ E ′ is bounded if and only if it is
equicontinuous (see [Koe, p. 169]). Hence, every Fréchet space is barrelled.

3. For an open set Ω ⊂ C∞, the space H(Ω) is an FS-space (see [Mori, Th.
1.4.1, Th. A.4.5]). With the notation of Remark 1.11, we note that every
equicontinuous set B ⊂ H ′(Ω) is bounded in some of the Banach spaces
H∞(K∗n) (see [Koe, Ch. 27.4]).1

Definition C.3 :
Let E be a locally convex space. For a set M ⊂ E the annihilator of M is defined
by

M⊥ := {x′ ∈ E ′ : x′(x) = 0 for all x ∈M} .

Theorem C.4 (Closed range theorem) :
Let E,F be Fréchet spaces and T ∈ L(E,F ). Then the following are equivalent:

1. R(T ) is closed.

2. R(T ′) is closed.

3. R(T ) = N(T ′)⊥.

4. R(T ′) = N(T )⊥.

Now we turn towards surjectivity criteria.

Theorem C.5 :
Let E,F be locally convex spaces and T ∈ L(E,F ). Then the following assertions
hold:

1. T has dense range if and only if T ′ is injective.

2. T is surjective if and only if T ′ is injective and R(T ) is closed.

3. If, in addition, E and F are Fréchet spaces, then the condition in 2. is
equivalent to the condition: T ′ is injective and R(T ′) is closed.

We conclude this chapter by citing the following surjectivity criterion of Frerick,
Müller and Wengenroth presented in [FMW, Th. 3]:

1Here, we identify a functional u with the representative g of the corresponding germ
[(g, V )]Ω∗ .
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Theorem C.6 :
Let E be a Fréchet space, F be a barrelled Schwartz space and let T ∈ L(E,F )
have dense range. Suppose that for each bounded subset B of E ′ there is a bounded
subset A of F ′ such that (T ′)−1(B) is contained in the linear span [A] of A. Then
T is surjective and open.



List of symbols

C∞ the Riemann sphere, see p. 5
AC C∞ \ A, see p. 5

1/A {1/a : a ∈ A}, see p. 5
A∗ 1/AC , see p. 5
Aξ the component of A containing ξ ∈ {0,∞}, see p. 5

arg z the argument of z, see p. 5
Dr {z ∈ C : |z| < r}, see p. 6
D {z ∈ C : |z| < 1}, see p. 6
Tr {z ∈ C : |z| = r}, see p. 6
T {z ∈ C : |z| = 1}, see p. 6

Ur(z0) {z ∈ C : |z − z0| < r}, see p. 6
Ur(∞) {z ∈ C : |z| > r} ∪ {∞}, see p. 6
Vr,R {z ∈ C : r < |z| < R}, see p. 6
‖f‖K maxz∈K |f(z)|, see p. 6
C(K) {f : K → C : f continuous}, see p. 6

γ− γ−(t) := γ(a+ b− t) (t ∈ [a, b]), see p. 6
|Γ| the trace of Γ, see p. 7
Γ− (γ−1 , . . . , γ

−
n ), see p. 7

L(Γ) the length of Γ, see p. 7
indΓ(z) the index of z with respect to Γ, see p. 7
τr(z0) τr(z0) : [0, 2π]→ C, t 7→ z0 + reit, see p. 8
H(Ω) space of all functions holomorphic in Ω and vanishing at ∞

(if ∞ ∈ Ω), see p. 9
H∞(Ω) space of all functions f ∈ H(Ω) which are bounded on Ω, see p. 10
H(K) space of all functions f ∈ C(K) such that there exists an open set

O ⊃ K and a function F ∈ H(O) such that F |K = f , see p. 10
H(B) space of germs of holomorphic functions on B, see p. 10

[(f, U)]B germ of holomorphic functions on B, see p. 10
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ϕν ν-th coefficient in the power series expansion of ϕ about zero,
see p. 10

ϕ−ν ν-th coefficient in the power series expansion of ϕ about infinity,
see p. 10

Λ+
ϕ {ν ∈ N0 : ϕν 6= 0}, see p. 10

Λ−ϕ {ν ∈ N : ϕ−ν 6= 0}, see p. 10
Λϕ Λ+

ϕ ∪ (−Λ−ϕ ), see p. 11
HΛ(Ω) {f ∈ H(Ω) : Λ+

f ⊂ Λ}, see p. 10
H∞,Λ′(Ω) {f ∈ H(Ω) : Λ−f ⊂ Λ′}, see p. 11
hΩ(M) hull of M with respect to Ω, see p. 11

K R or C, see p. 12
L(E,F ) {T : E → F : T is linear and continuous}, see p. 12

E ′ L(E,K), see p. 12
A ·B {a · b : a ∈ A, b ∈ B}, see p. 14
Sγ,δ {z ∈ C \ {0} : γπ < arg z < δπ}, see p. 15
Sα S−α,α, see p. 15
S S := S1 = C \ (−∞, 0], see p. 15
V log S = {z ∈ C : |Im z| < π}, see p. 15

log principal branch of the logarithm on S, see p. 15
DK C∞ \ e−K , see p. 15
Kδ iπ[−δ, δ], see p. 15

A ∗B the star product of A and B, see p. 15
Θ Θ(z) := 1/(1− z) (z ∈ C∞ \ {1}), see p. 22

pν,U pν,U(z) := zν (z ∈ U), see p. 23
U see p. 25

[U ] see p. 25
Tϕ also Tϕ,U , Tϕ,Ω,U : Hadamard operator, see p. 32
κ Koebe function (κ(z) = z/(1− z2) (z ∈ C∞ \ {1})), see p. 33

logB branch of the logarithm on B, see p. 38
A+B {a+ b : a ∈ A, b ∈ B}, see p. 38
hk,α,A hk,α,A(z) := zkeαz(z ∈ A), see p. 38
qk,α,B qk,α,B := hk,α,logB B ◦ logB, see p. 38
pα,B pα,B := q0,α,B, see p. 38
N(T ) the kernel of T , see p. 44
R(T ) the range of T , see p. 44

clspan the closure of the linear span, see p. 45
Z(Φ) the set of zeros of Φ, see p. 53

∆ϕ ∆ϕ := min{d∗(N0 \ Λ+
ϕ ), d∗(N \ Λ−ϕ )}, see p. 57

ϑU (ϑUf) (z) := z · f ′(z) (z ∈ U), see p. 77
DG (DGf)(w) := f ′(w) (w ∈ G), see p. 77

ΦU(ϑ) ΦU(ϑ)f :=
∑∞

ν=0 Φνϑ
νf , see p. 77

ΦG(D) ΦG(D)f :=
∑∞

ν=0 ΦνD
νf , see p. 77
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F bijective map from H ′(M) to Exp(M), see p. 77
T ~ convolution operator from H(W +M) to H(W ), see p. 78
G bijective map from H(DM) to H ′(M), see p. 78

HΦ,G span{hk,α,G : α m−fold zero of Φ, k ≤ m− 1}, see p. 82
QΦ,U span{qk,α,U : α m−fold zero of Φ, k ≤ m− 1}, see p. 82
PΛ,n span{pν,C : ν ∈ Λ, ν ≤ n}, see p. 88
PΛ

⋃
n∈N0

PΛ,n, see p. 89
Pn PN0,n, see p. 89

PΛ(D) clspan{pν,D : ν ∈ Λ}, see p. 89
p∗Λ,n(f) a best approximating lacunary polynomial of degree less or

equal to n, see p. 94
En(f,K,Λ) minp∈PΛ,n

‖f − p‖K , see p. 94
En(f,K) En(f,K,N0), see p. 94

α(z) conformal mapping from C \K to C \ D, see p. 94
cK logarithmic capacity of K, see p. 94

β(w) inverse mapping of α, see p. 94
Int(|γR|) interior of |γR|, see p. 95

Ext(|γR|) exterior of |γR|, see p. 95
Rf,K Rf,K := sup{R > 1 : ∃F ∈ H(Int(|γR|)), F |K = f}, see p. 95

ln logarithm on the positive real axis, see p. 103
d(Λ) upper density of Λ, see p. 103
d(Λ) lower density of Λ, see p. 103
d∗(Λ) maximal density of Λ, see p. 103
d∗(Λ) minimal density of Λ, see p. 103
dL(Λ) logarithmic block density of Λ, see p. 104

Λq

⋃
k∈N0
{n ∈ N : qk < n ≤ 2 · qk}, see p. 105

nΦ(r) the number of zeros of Φ in Dr (r ≥ 0), see p. 108
MΦ(r) the maximum modulus of Φ, see p. 108
τ(Φ) τ(Φ) := lim supr→∞ (lnMΦ(r))/r, see p. 108
hΦ the Phragmén-Lindelöf indicator function of Φ, see p. 109
HK the support function of K, see p. 109
B the Borel transformation, see p. 110

K(Φ) the conjugate indicator diagram of Φ, see p. 110
Exp(K) the space of all entire functions of exponential type whose

conjugate indicator diagram is contained in K, see p. 110
M the Mellin transformation, see p. 112
M⊥ the annihilator of M , see p. 117
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Zusammenfassung

Der Hauptgegenstand der vorliegenden Arbeit ist die Untersuchung des Hadamard-
produktes zweier holomorpher Funktionen, welches als eine gewisse Faltung dieser
Funktionen interpretiert werden kann. Die lange Forschungsgeschichte zu diesem
Thema geht zurück auf Jacques Hadamard. In seinem Artikel “Théorème sur les
séries entières” (vgl. [Ha]) betrachtete er die folgende Frage: Gegeben sind zwei
Potenzreihen

∑∞
ν=0 aνz

ν und
∑∞

ν=0 bνz
ν . Welche Informationen über die Singulari-

täten der Hadamardschen Produktreihe
∑∞

ν=0 aνbνz
ν kann man aus der Kenntnis

der Singularitäten der Ausgangsreihen ableiten? In den darauffolgenden Jahrzehn-
ten trugen namhafte Mathematiker zur Weiterentwicklung dieser Theorie bei (vgl.
beispielsweise [Bo], [Fa], [Pol33], eine Zusammenfassung bietet [Scho]). Es stellte
sich als hoch kompliziert heraus, hinreichende Bedingungen dafür anzugeben, dass
ein Punkt α ∈ C tatsächlich singulärer Punkt der Hadamardschen Produktreihe
ist.

Im geschichtlichen Verlauf rückte die folgende Frage in den Mittelpunkt der ein-
schlägigen Forschung: Gegeben seien zwei Funktionen ϕ und f , die holomorph
sind in offenen Mengen Ω und U , welche den Ursprung enthalten. Die Potenzrei-
henentwicklungen um den Nullpunkt seien gegeben durch ϕ(z) =

∑∞
ν=0 ϕνz

ν und
f(z) =

∑∞
ν=0 fνz

ν . Was ist ein mögliches Holomorphiegebiet für die Funktion ϕ∗f ,
die in der Nähe des Ursprungs definiert ist durch (ϕ ∗ f)(z) :=

∑∞
ν=0 ϕνfνz

ν? Die
originalen Arbeiten von Hadamard können als erste Ergebnisse in dieser Richtung
angesehen werden für den Fall, dass sowohl Ω als auch U bezüglich des Ursprungs
sternförmige Teilmengen der komplexen Ebene sind. Ist die abgeschlossene Ein-
heitskreisscheibe in beiden Mengen enthalten, so stimmen die Taylorkoeffizienten
ϕν und fν mit den Fourierkoeffizienten der Abbildungen t 7→ ϕ(eit) und t 7→
f(eit) (t ∈ [0, 2π]) überein. Daher ist die Idee, die Funktion ϕ ∗ f unter geeigneten
Voraussetzungen als ein gewisses Faltungsintegral zu definieren. Müller und in
einem darauf folgenden Artikel Grosse-Erdmann zeigten, dass das Hadamardpro-
dukt

(ϕ ∗ f)(z) := (ϕ ∗Ω,U f)(z) :=
1

2πi

∫
Γ

f(ζ)ϕ(
z

ζ
)
dζ

ζ
(z ∈ Ω ∗ U)

127
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(wobei Γ = Γz ein geeigneter Integrationszyklus ist) die analytische Fortsetzung
der Reihe

∑∞
ν=0 ϕνfνz

ν in die Menge C \
(
(C \ Ω) · (C \ U)

)
ist (vgl. [Mue92]

und [GE]). Diese Aussage wird auch Hadamardscher Multiplikationssatz genannt.
Müller und Pohlen zeigten, dass unter recht allgemeinen Voraussetzungen an die
Mengen Ω und U als Teilmengen der Riemannschen Sphäre C∞ := C∪{∞} (wobei
wir stets annehmen, dass holomorphe Funktionen im Punkt∞ verschwinden, falls
dieser zum Holomorphiegebiet gehört) die Funktion ϕ ∗ f definiert über obiges
Faltungsintegral holomorph ist in der Menge

Ω ∗ U := C∞ \
(
(C∞ \ Ω) · (C∞ \ U)

)
und, falls 0 ∈ Ω ∩ U , der Hadamardsche Multiplikationssatz auch in diesem Kon-
text gültig bleibt (vgl. [MP]). Es stellt sich heraus, dass der springende Punkt für
den Übergang von ebenen Mengen Ω, U , die den Ursprung enthalten, zu Teilmen-
gen von C∞, die nicht notwendigerweise den Ursprung enthalten, eine geeignete
Verallgemeinerung des Integrationszyklus Γz ist.

Alternativ kann das Hadamardprodukt zweier holomorpher Funktionen auch als
Verallgemeinerung der Cauchyschen Integralformel aufgefasst werden. Die Funk-
tion Θ(z) := 1/(1−z) ist holomorph in C∞\{1} und die Cauchysche Integralformel
besagt, dass für eine beliebige offene Menge U ⊂ C und für alle in U holomorphen
Funktionen f gilt

f(z) =
1

2πi

∫
Γz

f(ζ)

ζ − z
dζ = (Θ ∗ f)(z) (z ∈ U) .

Also kann das Hadamardprodukt als eine Verallgemeinerung dieser Formel im
Hinblick auf die zugrunde liegende Menge Ω und die dort definierte Funktion ϕ
angesehen werden.

Nach einigen einführenden Bemerkungen werden in Kapitel 2 gewisse bereits be-
kannte Eigenschaften des Hadamardproduktes aufgelistet. Darüber hinaus wird
gezeigt, dass das Hadamardprodukt unter geeigneten Voraussetzungen assoziativ
ist. Dies ist eine wünschenswerte Eigenschaft, jedoch müssen für ihren Beweis
eine Reihe technischer Schwierigkeiten überwunden werden. Ausgehend von der
klassischen Köthedualität wird gezeigt, dass der Dualraum H ′(D) (wobei D ⊂ C
offen ist) topologisch isomorph ist zum Raum der Keime holomorpher Funktionen
auf 1/DC , das heißt zu jedem Funktional u ∈ H ′(D) existiert genau ein Keim
[(g, U)]1/DC ∈ H(1/DC) so, dass für alle f ∈ H(D) gilt u(f) = (f ∗D,U g)(1).

Der Hauptteil dieser Arbeit ist der Untersuchung des Hadamardschen Faltungs-
operators (oder kurz: des Hadamardoperators)

Tϕ = Tϕ,U : H(U)→ H(Ω ∗ U), f 7→ ϕ ∗ f
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für unterschiedliche Mengen Ω, U ⊂ C∞ und unterschiedliche Funktionen ϕ ∈
H(Ω) gewidmet. Müller und Pohlen haben bewiesen, dass dies ein linearer und
stetiger Operator ist (wobei die Frécheträume H(U) und H(Ω∗U) mit der Topolo-
gie der lokal gleichmäßigen Konvergenz versehen sind; vgl. [MP]). In Kapitel 3
wird die folgende Eigenwerteigenschaft gezeigt: Ist K eine kompakte und konvexe
Teilmenge des Streifens {z ∈ C : |Im z| < π} und ist ϕ eine nichtverschwindende
Funktion, die holomorph ist in Ω := C∞\e−K und ist U ⊂ C\{0} eine offene Menge
mit zusammenhängendem Komplement, dann sind die verallgemeinerten Monome
z 7→ exp(α logU z) Eigenfunktionen des Operators Tϕ,U (falls Ω ∗ U nichtleer ist).
Darüber hinaus wird der transponierte Operator T ′ϕ,U für relativ allgemeine Men-
gen Ω und U berechnet. Es stellt sich heraus, dass T ′ϕ,U im Wesentlichen wieder
ein Hadamardoperator ist, der von derselben Funktion ϕ induziert wird, aber zwi-
schen den Räumen der Keime holomorpher Funktionen auf 1/(Ω ∗ U)C und 1/UC

abbildet.

Dies motiviert die Idee, den Kern und das Bild von Hadamardoperatoren
gleichzeitig zu untersuchen (vgl. Kapitel 4), denn ein klassisches Ergebnis aus
der Funktionalanalysis besagt, dass Tϕ,U dichtes Bild hat genau dann, wenn der
transponierte Operator injektiv ist. Ergebnisse in dieser Richtung wurden bereits
von Frerick erzielt, der Hadamardoperatoren im Fall ϕ ∈ H(C∞ \{1}) untersuchte
und Charakterisierungen für die Surjektivität von Tϕ,U formulierte für den Fall,
dass U ⊂ C den Ursprung enthält (vgl. [Fre]). Während der Untersuchungen des
Bildes von Hadamardoperatoren konzentrieren wir uns auf den Fall, dass U weder
den Ursprung noch den Punkt∞ enthält. Beispielsweise wird gezeigt, dass für eine
nichtverschwindende Funktion ϕ, die in Ω := C∞ \ e−K holomorph ist, der zuge-
hörige Hadamardoperator Tϕ,U : H(U)→ H(Ω∗U) dichtes Bild hat für alle offenen
Mengen U ⊂ C\{0}, die zusammenhängendes Komplement haben und für die Ω∗U
nichtleer ist. Ist allgemeiner Ω ein Gebiet, welches 0 und∞ enthält, dann hat Tϕ,U
dichtes Bild, falls sowohl U ⊂ C\{0} ein Gebiet ist als auch Ω∗U “klein genug“ ist.
”Klein“ wird dabei durch eine Bedingung, die auf der Maximaldichte der nichtver-
schwindenden Koeffizienten in den Potenzreihenentwicklungen von ϕ um 0 und
∞ beruht, ausgedrückt. Schließlich beinhaltet Abschnitt 4.4 ein Surjektivitäts-
kriterium für Tϕ,U , welches im Spezialfall 0 6≡ ϕ ∈ H(C∞ \ {1}) wie folgt lautet:
Tϕ,U ist surjektiv für alle offenen Mengen U ⊂ {z ∈ C : Im z 6= 0 falls Re z ≤ 0},
für die logU konvex ist.

In Kapitel 5 wird der Zusammenhang zwischen Hadamardoperatoren und Faltungs-
operatoren mit analytischen Funktionalen erläutert. Ist Ω von der Form C∞\e−K ,
dann stimmen diese beiden Typen von Operatoren modulo einer Verknüpfung mit
der Exponentialfunktion überein. Ist der konvexe Träger des analytischen Funk-
tionals die Menge {0}, so entspricht der zugehörige Faltungsoperator wiederum
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einem Differenzialoperator unendlicher Ordnung mit konstanten Koeffizienten. Das
oben erwähnte Surjektivitätsergebnis für Hadamardoperatoren wird in den For-
schungshintergrund der Faltungsoperatoren eingeordnet und es wird ein neuer
Beweis zu dem folgenden Resultat gegeben, welches auf Korobĕınik zurückgeht
(vgl. [Kor69]): Ist 0 6≡ Φ eine ganze Funktion vom Exponentialtyp null und
G ⊂ C ein konvexes Gebiet, dann ist erstens der Kern des Differentialoperators
unendlicher Ordnung Φ(D) definiert auf H(G) gegeben durch den Abschluss (in
H(G)) des linearen Spanns der Funktionen z 7→ zkeαz, wobei α eine m−fache
Nullstelle von Φ ist und k ≤ m − 1 und zweitens ist Φ(D) surjektiv. Dieses
Ergebnis wiederum erlaubt es, das Surjektivitätsresultat für Hadamardoperatoren
für den Spezialfall ϕ ∈ H(C∞ \ {1}) zu verbessern: Ist 0 6≡ ϕ ∈ H(C∞ \ {1}),
dann ist Tϕ,U : H(U) → H(U) surjektiv für alle einfach zusammenhängenden
Gebiete U ⊂ C \ {0}, für die logU U konvex ist.

In Kapitel 6 wird eine zweite Anwendung des Hadamardproduktes besprochen:
die lokal gleichmäßige Approximation von holomorphen Funktionen auf offenen
Mengen D ⊂ C durch Polynome. Der bekannte Rungesche Approximationssatz
besagt, dass es genau dann möglich ist, jede in D holomorphe Funktion durch
Polynome zu approximieren, wenn C∞ \D zusammenhängend ist.

Wir betrachten die folgende Frage: Gegeben sei eine Menge Λ ⊂ N0; unter welchen
Voraussetzungen an die offene Menge D ⊂ C kann jede Funktion g ∈ H(D)
lokal gleichmäßig durch Polynome approximiert werden, deren Exponenten aus-
schließlich der Menge Λ angehören, das heißt durch Lückenpolynome? Ergebnisse
dieser Art können als Verallgemeinerung des Rungeschen Approximationssatzes
angesehen werden. Der bekannte Satz von Müntz für reelle Intervalle kann als
Ausgangspunkt für die Lückenapproximation angesehen werden. In der Literatur
findet sich eine Reihe von Ergebnissen zur oben gestellten Frage, vgl. beispiels-
weise [An], [AM], [DK], [GLM], [LMM98], [LMM02] und [MR] (für weitere Litera-
turangaben siehe [GLM]). Die Beweise stützen sich typischerweise auf Dualität,
genauer gesagt auf den Satz von Hahn-Banach. Dies ist zweifeslsfrei eine elegante
Beweismethode, jedoch hat sie einen eher nicht-konstruktiven Charakter.

Der Ansatz, der in Kapitel 6 vorgestellt wird, beruht auf einer geeigneten Anwen-
dung der erzielten Ergebnisse über das Bild von Hadamardoperatoren und liefert
neue Beweise zu Sätzen über Lückenapproximation. So wird beispielsweise ein
kurzer Beweis des folgenden Resultates von Arakelian und Martirosian gegeben
(vgl. [AM]): Hat Λ ⊂ N0 Dichte eins und hat D ⊂ C \ {0} zusammenhängendes
Komplement, dann kann jede in D holomorphe Funktion lokal gleichmäßig auf D
durch Polynome approximiert werden, deren Exponenten der Menge Λ angehören.

Darüber hinaus erlaubt der hier vorgestellte Ansatz, auch Aussagen über die
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Approximationsgüte auf kompakten Teilmengen von D bei der Approximation
mit Lückenpolynomen zu erzielen. Es stellt sich heraus, dass die Definition des
Hadamardproduktes als Faltungsintegral erlaubt, Informationen über die
geometrische Approximationsrate bei Lückenapproximation aus derjenigen bei der
Verwendung beliebiger Polynome abzuleiten. Letztere Größe wurde eingehend
untersucht (so z. B. in [Gai]). Wir erhalten eine obere Schranke für die ge-
ometrische Approximationsrate durch Lückenpolynome, welche im Allgemeinen
nicht verbessert werden kann.


