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Preface

The present work is inspired by the following question, posed by the British mathematician
G. R. Allan in 1998 (cf. [5, p. 94)):

"If z, y are stable elements of a commutative ring R, is zy necessarily stable |[...|?"

Stability is a term which is often used in different branches of science, and even in mathematics
there are many definitions of stability. The similarity between these definitions is mostly the
examination of certain solutions under small perturbations of the starting conditions.

This thesis is dealing with a form of stability that was introduced by Allan in [5]. In the sense
of Allan, an element z of a commutative ring R is stable, if for every choice of a sequence
(bn)nen in R there exists a solution (ay,)nen in R for the following infinite system of equations:

a1 = xas + by
as = xag + by

a3 = xaq4 + b3

Here the perturbation mentioned above is represented by the sequence (by,)nen-

Allan’s motivation for working with this kind of stability goes back to his paper [2] from 1972,
where he worked with the embedding of the algebra of formal power series into a Banach
algebra. There he proved that for a commutative unital Banach algebra A the following are
equivalent:

1. There exists a homomorphism 6, : C[[X]] — A with 6,(X) =« .

2. z € rad(A) and x is stable,

where C[[X]] denotes the algebra of formal power series with complex coefficients and rad(A)
denotes the radical of A, i.e. the intersection of all maximal ideals in A. Surely Allan did not
speak of stability, but he used a property of the element x, which turned out to be equivalent
to stability in the case of Banach algebras (cf. [5, Theorem 4.7]). He applied this theorem to
show the existence of a discontinuous homomorphism between Banach algebras and studied
further consequences in connection with the theory of automatic continuity in [2] and [6]. Since
he was able to show an analogous theorem for Fréchet algebras [7, Theorem 19|, his studies
also include these spaces. So this theory might also be of interest for the famous unsolved
Michael problem, whether every homomorphism from a commutative Fréchet algebra to the



complex numbers is necessarily continuous.

As mentioned in the quotation at the beginning of this introduction, one aspect of Allan’s
work with stable elements was the question whether the product of two stable elements is
stable again. Allan did not mention any motivation for this problem, however this question
is of interest in itself. He found out that the answer is affirmative in the case of commutative
Banach and Fréchet algebras, where he proved suitable characterizations for stability.

The main topic of this thesis is the extension of Allan’s work with stable elements to more
general topological algebras. For this purpose we use some methods from the theory of homo-
logical algebra that were introduced by V. P. Palamodov in the 1960s and 1970s (cf. [18] and
[19]). On the one hand these methods give an easier approach to Allan’s results about stabi-
lity in Fréchet algebras and on the other hand they are still applicable in more general settings.

Although these techniques do not lead to a final answer of Allan’s question, that would be
either a proof that in every commutative ring the product of two stable elements is stable
or a counterexample of two stable elements whose product is not stable, we will show in this
thesis that the answer is affirmative in all important situations that are usually considered in
functional analysis.

In the first chapter we will bring together Allan’s definition of stability and Palamodov’s work
with the projective limit functor Proj.A. After defining stability and considering several con-
clusions and examples, we will observe that the stability of an element z is equivalent to a
condition concerning the derived functor of the projective limit functor, usually written as
Proj' A, = 0, of a particular projective spectrum A,. This projective spectrum depends on
the multiplication M, that maps an element y to the product xy. Because of this equivalence
it is convenient to use some results about this derived functor, especially we will present a
necessary condition for Proj'A = 0 (cf. [23]). The considerations in this chapter will be
purely algebraic without any topological requirements.

After this we will characterize stability under further topological assumptions. To this end
we will deduce a sufficient condition for Proj'.A = 0 in the context of complete metrizable
groups from a Mittag-Leffler lemma due to R. Arens |9, Theorem 2.4]. This will lead us to
Allan’s results concerning Banach algebras and Fréchet algebras without using the theory of
embedding the algebra of formal power series. Furthermore we obtain as a direct consequence
that in Fréchet algebras the product of two stable elements is again stable. Additionally we
will analyze stability on some typical examples of Banach and Fréchet algebras.

Chapter 3 is devoted to the study of LB-algebras. There we will make use of a characterization
of the condition Proj'A = 0 due to V. S. Retakh [20] and V. P. Palamodov [19, Theorem
5.4] to find a suitable characterization of stability from which we can deduce that again the
product of stable elements is stable. Besides we will determine all stable elements in some



examples of LB-algebras and at the end of this chapter we will transfer a result of Allan for
Fréchet algebras to the LB-algebra case, namely that for a stable element z and the ideal
I(z) = N,en " A in an LB-algebra A we have M, (I(x)) = I(x).

In the last chapter of this thesis we will work with webbed locally convex topological algebras
that generalize both Fréchet algebras and LB-algebras and were introduced by M. de Wilde
in [12] in the context of closed graph theorems. For these spaces L. Frerick, D. Kunkle and
J. Wengenroth [13] found a characterization for Proj!.A = 0. Under a further assumption on
the webs we can state the main result of this thesis:

In every commutative locally convex Hausdorff topological algebra that has a multiplicative
web the product of two stable elements is stable.

In the end we will prove several hereditary properties of these topological algebras to show
that Allan’s result concerning the product of stable elements remains true for a large class of
topological algebras.

It is a great pleasure for me to express my gratitude to my supervisors Prof. Dr. Jochen
Wengenroth and Dr. habil. Thomas Kalmes for the great support and many helpful ideas
and advices during my work on this thesis. Further I would like to thank my colleagues at
the mathematical department of the Trier university for a very pleasant working atmosphere.
Finally I thank the Konrad-Adenauer-Stiftung for its financial and ideational support.



1 Stable elements in commutative rings

In the first part of this thesis we present two different approaches to the kind of stability
defined by G. R. Allan in [5]. So we start with the introduction of Allan’s notion.

Definition 1.1.

Let (A,)nen be a sequence of groups and for all positive integers m and n with m > n let
op, + Am — A, be a homomorphism such that o) = id and g}, o o) = pf for all natural
numbers n < m < k. Then A = (A, 0,) is called a projective spectrum (of groups and
homomorphisms) and the set

ProjA = {(an)nEN € H Ay onyq(any1) = ay, for all n}
neN

is called the projective limit of A.

It is possible to define this limit in every category where countable products can be formed.
Besides the category of groups or the category of rings these are for example the categories
of linear spaces, metric spaces or topological spaces. Then every A, in the above definition is
an object of the category and every o} is a morphism between objects A,, and A,,.

Definition 1.2.
Let A = (A, 0}',) be a projective spectrum of groups and homomorphisms. Then A is called
stable if for every sequence (bp)nen € [ [, An the set

{(an)nEN € H Aptap = QZJrl(an—&-l) + bn}
neN
is nonempty. If in addition A, = A for alln € N and T is an endomorphism on A, we say that T’
acts stably on A if the projective spectrum Ap = (A, T) is stable, where oIt = T~ = To...oT
is the (m — n)times composition of 7" with itself for all m > n.

If we set o'y (z) = oy i(@) + by, 0y = ofiyo...oom b and Ay, = (An,0},) for
b = (bn)nen € [l,en An, the spectrum A is stable if and only if for all b € [] A, the
corresponding projective limit Proj A; is nonempty.

neN

Now we come to the core notion of this thesis, the stability of an element of a ring.

Definition 1.3.

Let A be aring. An element x € A is stable if the projective spectrum A, = (A, M,) is stable,
where every A, is equal to A and every g}, is the multiplication M, : A — A defined by
y +— zy. In other words = € A is stable if M, acts stably on A.



Thus the stability of = just describes the fact that for every sequence (b, )nen in A we find a
sequence (ap)nen in A such that for all n € N we have a,, = xan4+1 + by,. Naturally we need to
distinguish between the left multiplication M, and the right multiplication defined by y — yzx.
But since we will mainly be concerned with commutative rings and commutative topological
algebras, it suffices to work with the mapping M,.

It is clear that the zero element of a ring is always stable since in this case we can choose
an = b, for every n € N. The same holds for an invertible element = € A, because in this
situation we can solve the equations a,, = xa,+1 + by, recursively. So in a field every element
is stable.

In the following examples we will determine the stable elements in the set of polynomials and
in the set of formal power series (cf. [5, Proposition 2.5 and Theorem 2.6]).

Example 1.4.
Let A = C[X] be the ring of all polynomials with complex coefficients. We will show that the
zero polynomial and the constant polynomials are the only stable elements in A: Let p € A
have degree greater than or equal to 1. If we assume that p is stable and choose b, = 1
for every natural number n, the stability of p yields a sequence of polynomials (a,)nen that
satisfies

ap = ap+1p +1

for every choice of n. For an arbitrary k > 1 there exists m > k such that a,, # 0 and so the
degree of a,, is larger than the degree of a,,+1. But then the degree of a; must be at least k
and since k was chosen arbitrarily this contradicts the fact that a; has finite degree.

Example 1.5.

Let A = CJ[[X]] be the ring of all formal power series with coefficients in C. Then every
element of A is stable: For some f € A with f(X) = >"77, f,X"” and a sequence (b"),en in
A we have to find a sequence (a™),en in A such that for all n € N

oo oo (o.9] oo
dapX? =>"f X7 art' X+ ) XY,
v=0 v=0 v=0 v=0

To show this we will consider the vth coefficients of the series in this equation for all v € Nj.
For v = 0 the stability of fy € C yields a sequence (af)nen such that

— +1
ag = f(]ag + bg.

If we now assume that we have found sequences (a?)neN for all 1 < 5 < v such that

we have to find a sequence (a; | )nen such that

v+1 v
n _ n+1 7 _ n+l n+1 7 _n+l
Ay = E Q. fot1—k + by—‘,—l = al,+1f0 =+ § ag fot1—k + by+1 = a,/+1f0 + cn
k=0 k=0



where the ¢, = > ) _, aZH fu1—k + b, are given by the induction hypothesis. Then again
the stability of fp implies the existence of a suitable sequence (a} | ;)nen. So by induction the
assertion is proved.

Remark 1.6.

The examples above represent two opposite cases that can occur: In C[X] only the zero element
and the invertible elements are stable, while in C[[X]] every element is stable. Actually every
natural example of a topological algebra considered in this thesis belongs to one of these two
cases. Nevertheless we can easily construct a ring that belongs to neither of these extremes:
Let R = C[X], S = C[[X]] and A = R x S. Then, with coordinate-wise addition and
multiplication, A is a ring and an element (f,g) € A is stable if and only if f is stable in
R and g is stable in S. The same is true if we replace "stable" by "invertible". So we can
choose f1, fo € R such that f; is invertible and f5 is not stable and thus not invertible and
also g1,g92 € S such that g; is not invertible but stable and go is invertible. Then neither
(f1,91) nor (fa,g2) are invertible, but (f1,¢g1) is stable while (fa2, g2) is not stable.

We continue with the following result of Allan [5, Lemma 2.2.] concerning stable elements
and ring homomorphisms.

Proposition 1.7.
Let R, S be commutative rings and 1" : R — S a surjective ring homomorphism.

1. If z is stable in R, then T'(x) is stable in S.

2. If T'(x) is stable in S and M, acts stably on the kernel of 7', then x is stable in R.

Proof. 1. Let (yn)nen be a sequence in S. Since T is surjective, for all n € N there exists
Zn € R such that T'(x,) = y,. The stability of x yields a sequence (ay)nen in R such that for
alln e N

Ap = TAp+y1 + Tp.

Then we have
T(an) = T(zan+1 + xn) = T(2)T (@n+1) + Yn
and thus T'(z) is stable in S.
2. We consider an arbitrary sequence (by)nen in R. Since T'(x) is stable in S and T is
surjective, there exists a sequence (ap)nen in R such that for all natural numbers n we have

T(an) = T(2)T(ans1) + T(bn) = T(ani1 + by).

Hence z, = b, + xan+1 — ay, is an element of KerT for all n € N, where KerT' denotes the
kernel of T'. Then the fact that M, acts stably on KerT" implies the existence of a sequence
(dn)nen in KerT' C R such that

dn = xdpt1 + 2n



for all n € N. Thus we have
dn +an = xdn—l—l + bn + 2apy1 —ap +an = x(dn—l—l + an—‘rl) + bn

and so the sequence (e,,)nen defined by e, = d,, + a,, yields the stability of = in R. O

Now we turn our attention from stability of elements of a commutative ring to the more
general notion of stability of projective spectra of abelian groups. To this purpose we will use
some results from homological algebra without going into the details of this theory, adopting
the notation from [23]. In this context the following remark will show the connection between
Allan’s definition of stability and a property of the derived functor of the functor Proj.

Remark 1.8.
The stability of projective spectra can also be characterized in a category-theoretical sense: If
we have two projective spectra A = (A4,, op,) and B = (B, 7,,) in a suitable category K and

a morphism f = (fn)nen : A — B, i.e. morphisms f, : A, — By, such that f, 0 ol', =7 o fim
for all m > n, let Projf : Proj,A — ProjB be defined by

(Zn)nen = (fn(Tn))nen-

Then Proj can be considered as a functor acting on the category of projective spectra with
values in the category K. To avoid more category-theoretical details we now make the fol-
lowing ad hoc definition: If A = (4,,o},) is a projective spectrum of abelian groups and
homomorphisms, let ¢ = ¥4 : [[,eny An = [[,en An be defined by

(T )nen — (Tn — QZ+1(xn+1))neN-

Then we set

ProjtA = (H An)/Imw ,

neN

where Im ) denotes the image of 1. In category-theoretical sense Proj' is the derived functor
of the functor Proj.

One immediately notices that the stability of a projective spectrum A is just the same as the
surjectivity of the mapping 1 and hence also the same as the condition Proj'A = 0.

Having this characterization of stability, we can make use of several results about the derived
functor. The first one will be the following theorem due to Palamodov [19, Theorem 5.1|, that
will be applied later to prove a necessary condition for stability. The proof presented here is
much more elementary than that of Palamodov.



Theorem 1.9.
Let A = (Ay, 0)',) be a projective spectrum of groups and homomorphisms. If we equip the
product ],y An with the group topology F whose basis of zero neighborhoods is given by
the sets

U, = {(Q}.an, e 0 g T T, L) sy € Ay for all k> n},

then Proj'A = 0 if and only if ([],cx An, F) is complete.

Proof. First of all we consider the topology G = [],cxDPn on [[,eny An, where D, is the
discrete topology on A, for all n € N, and

v (][] A F) = (] An 9)

neN neN

defined by
(T )nen = (Tn — QZ+1($n+1))neN‘

Obviously, v is a group homomorphism. As a first step we will show that v is continuous,
open onto its image, and has dense image. The sets

Vi=0x---x0x Ay

form a basis of zero neighborhoods in G and
Vo nm() = {(0,.., 0,2 = g1 (@ns1), 2t — 053 (@), ) s € Ak =) |
= {(@h @) = b(@2 @a)). s i (wa) = 57 (wa) = 01 @aa), )k € Ag(h = m) |
= ¢(Un).
Since for every zero neighborhood V' in G there exists n € N such that V,, C V' we have
P(Un) = Vo NIm(y) CV

which implies the continuity of ¢). Furthermore, for each zero neighborhood U in F we find
some n € N such that U,, C U and so the fact that

Y(U) 2¢(Un) =V, N Im(y))

implies that v is open onto its image. Moreover Im(v)) is dense:
If we choose some = = (T )neN € [],,cr An, then for

n n
k=1 k=2

we have
V(yn) = (X1,...,2pn,0,...)
so that ¥(y,) —z € V,, for all n € N. Additionally we can state that
ProjA = Ker(y) = m U, = m}—.

neN



If we assume that Proj A = 0, then 9 is surjective and thus a quotient mapping. This implies

that _
(IT 4w H)/0} =(]] 40,9

neN neN
is complete. We want to conclude that (], .y An, F) is complete. To this end let (2,,)nen be a
Cauchy sequence in ([[,cy An, F) and q : ([],,en Ans F) = (I nen An,}")/m}— the quotient

mapping. Then (q(,))nen is a Cauchy sequence in (J],,cx An,]:)/{()}]E that converges to
some ¢(z). Thus for an arbitrary U € F and n sufficiently large we have

q(zn) — q(x) = q(v, — ) € q(U)

and therefore (z, —z) —u € m}— for some w € U. So, using the continuity of addition, for
all V' € F there exists U € F such that for sufficiently large n

(@n—2)€U+{0) CU+UCV.

Hence (2, )nen converges to = and the assertion is proved.

Now let (I],,cn An, F) be complete. Since 1 is continuous and open onto its image,

(Im(+)), GNIm(1))) is complete. But then the fact that Im(¢)) is dense in (], A, G) implies
that Im(v)) = [[,,ey An. Hence 9 is surjective and Proj lA=o. O

As a direct consequence we obtain the following interesting result:

Corollary 1.10.

Let A and (J],cn An, F) be as in 1.9. Then the condition Proj 1A = 0 implies that every
A, equipped with the topology F,, whose basis of zero neighborhoods is given by the sets
Unm = 0p(Ap,) for m > n is complete for all n € N.

Proof. Since every JF,, is the final group topology on A, with respect to the projection

ot (] Ans F) = A,
neN

which can be checked by the definition of the F,,, the assertion follows directly from 1.9. O

We want to finish this chapter with a necessary condition for Proj!.A = 0 (cf. [23, Proposition
3.2.6]). Using 1.9 we obtain this condition in a more general case, namely for projective spectra
of groups. Nevertheless the proof will be similar to the one in [23| and we will present the
original result as a corollary.
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Proposition 1.11.

Let A = (A,, o)) be a projective spectrum of groups and homomorphisms with

Ay = Ujen Any for all n € N. If Proj' A = 0, then there exists a sequence (N(n)),en of
natural numbers such that

VneNdIm>nVk>m:on(An) C or(Ax) + ﬂ )_Aj7N(j)).

Jj=1

Proof. With the notation of 1.9 Proj' A = 0 implies that (], .y
a Baire space . For all n € N we have A, = (J;cyy An, and thus

HAn:UALlXHAk.

neN IeN k>2

Ay, F) is complete and hence

So there exists a natural number N (1) such that A; y(1) X [[z>o Ak is of second category.
Inductively we find a sequence (N (n))pen in N such that

By = Ay ya) X Aon) X 0 X Ap Nn) X H Ag
k>n+1

is of second category, hence there exists some x in the interior of EF. Thus we find a zero
neighborhood U such that x + U C Ef and we can conclude that

0eUCB, —2=B,—2 CB,-B, .

Hence for all n € N there exists some m € N such that for k > n

Un € Bp— By = ()(Ba— By) + Ui C (Bn — By) + Us.

I>n

Now let @, € Ay,. Then x = (ok (zm), -, 07 H(@m), m, 0,...) is an element of U,,. Thus
the inclusion above implies that we can write x as

x:(a1—dl,...,anfdn,*,...)+(Q,lc(yk),...,Qﬁfl(yk),yk,*,...)

with aj,a; € Aj N for j < n, yr € Ay and the elements * chosen suitably. Thus, for all
7 < n, we have

01 (an — @n) = 0} (00 (zm) — O (k) = 0h,(xm) — 0k (yk) = a; — @j € A n(j) — AjnG)-

So we have shown that for all j <n

n

o (xm) — b (ur) € [ (2, () — AinG)

Jj=1

which completes the proof. O
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Corollary 1.12.

If the projective spectrum A = (4,, o)) in 1.11 consists of linear spaces and linear mappings
and every A, is the countable union of absolutely convex sets A, ;, then Proj LA = 0 implies
that

YneNIm>nVk>m:oh(An) C op(Ar) + () (h) ™ (Ajng))-
j=1

Proof. Each Ay, is absolutely convex and thus A; ¢y — A;j n(j) = 24, n(j)- Then multiplying
the inclusion in 1.11 by % yields the conclusion. O
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2 Banach and Fréchet algebras

In the case of commutative Fréchet algebras Allan used a characterization of stability to show
that the product of two stable elements is again stable. The proof of this characterization was
very involved and it turns out that dealing with Proj'.A leads to a much easier proof.

As we have seen in the last chapter, stability corresponds to the condition Proj'.A = 0. After
showing a necessary condition for this property in 1.11 we now want to deduce a sufficient
one. To this end we will use a Mittag-Leffler lemma due to R. Arens |9, Theorem 2.4| and
thus we need some topological requirements for the projective spectrum. The proof of Arens’
theorem will follow the one in |22, Proposition 1].

Theorem 2.1.
Let A= (A,, o) be a projective spectrum of complete metric spaces (A, d,) with 4, # 0
and continuous mappings oy, : A, — A, for all n,m € N such that

VneNe>03mn) 2nVk=mn): onq (Anm) € [0k (Ar)le, (1)

where [M]. ={x € A, :Jy e M d,(x,y) < e} for any M C A,,. Then Proj.A is nonempty.

Proof. Let A =[], cn(An,dy) and for a,b € A let
doo(a,b) = sup{min{d, (an,b,),27 "} : n € N}.
Then (A, ds) is a complete metric space.
If §: A— Ais defined by (an)nen — (0514 1(@n+1))nen, then
ProjA = Fix(5) = {(an)neN : S((an)nen) = (an)neN}

is the set of all fixed points of S. We define for € > 0

Fie(S) = { (an)nen : doo(S((an)uen), (an)ncr) < e}

Our aim is to build a Cauchy sequence in A such that its limit belongs to Fix(.S). To this end
we start with an arbitrary x,,(;) in A,,) and choose bt € A to be

bl = (97171(1) ('xm(l))a P ROPII )a

where * can be any element of the corresponding space A,,. Since the condition (1) holds and
the mapping Q}n(z) is continuous, we can choose some x,,,(2) € A,(2) such that

Then we set

bQ = (97177,(2) ('rm(Q))v Q%@@) (:Um(Q)); 0k, o )
Using condition (1) and the continuity of the mappings an (n)> We can inductively choose for
every n € N an element x,,(,) € A;,(,) such that

1

k k
dk(Qm(n) (l”n)a Qm(n_l)(l‘nfl)) < on
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for all K <n — 1. Now we define

0" i= (O (m) (@m(m))s ) () -+ > Oy (Tmm) ) 3%, )

Obviously every b" is an element of Fixy—» (). In addition, the definition of the z,,,) ensures
that

n n+1
oo (0", DY) < oy

holds for all n € N and therefore (b"),cn is a Cauchy sequence in A and converges to an
element b € A. Evidently this limit b belongs to Fix(S) = ProjA and thus the assertion is
proved. O

Corollary 2.2.
Let A = (A,,o}}) be a projective spectrum of complete metric spaces (4,,d,) with A4,, # (
and continuous mappings such that o} | (A,41) is dense in A, for all n € N. Then ProjA # 0.

In the following proposition we will show that under the assumptions of 2.1 the preceding
corollary already implies that the projections

0" : ProjA — Ay, (k)ken — Tn

have dense image. Actually, as mentioned in [22|, this was the original statement in Arens’
theorem.

Proposition 2.3.
Let A= (A, 0}) be a projective spectrum of complete metric spaces (A, d,) and continuous
mappings that satisfies condition (1). Then o™ : ProjA — A,, has dense image for every n € N.

Proof. For some n € Nlet ¢ > 0 and a € A,. Then with B =U(a) = {zx € A, : dy(x,a) < €}
we set X, = (0%,) "1 (B) for all m > n and consider the projective spectrum

X = (Xma Q%+1|Xm+1)

for the sequence (X,;)m>n. Since every X,, is open, the theorem of Alexandroff (cf. [17,
Theorem 12.1]) yields that X, is completely metrizable and that we can assume without loss
of generality that the restriction of d,, to X,, is complete. Thus to apply 2.2 we will verify
that o1 @ X;mt1 — Xy, has dense image for all m > n. So let z,, € X,, C A,,,, hence

Q= dn(gﬁn(xm)a a/) <EéE.
Then the continuity of o}, yields a § > 0 such that d,,(z,y) < § implies that
dn(@%(l‘)a Qlf@(y)) <e—a«

for all z,y € Xp,. Since o), 1 : A1 — Ay, has dense image, for every 0 < 8 < d there exists
Gm+1 € Apg1 such that
dm(@%-&-l(am-&-l)afvm) < B.
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Because dp (054 1(am41),a) = dn(op, (0,1 (a@m+1)),a) we can conclude that

dn(QTan-H(aerl)v a) < dn(@%(@%ﬂ (am+1)), Om(Tm)) + dn(0m (Tm), a)
<e—a+a==¢c.

Thus am41 € Xy41 and we have shown that o 1 X ir has dense image. Hence 2.2 applies
and we have ProjX’ # (). This means that there exists a sequence (T )m>n € [[,,5, Xm such
that z,, = o), 1 (Tmy1) for all m > n. If we set

T = (Q}L(azn), el QZ_I(xn),a:n,an, on)

it is clear that 2 € ProjA and ¢"(z) = x,, € U-(a). Since we have chosen a and e arbitrarily,
0" (ProjA) is dense in A,. O

Corollary 2.4.
Let A = (Ay, 0}) be a projective spectrum of complete metric spaces (A, d,) and continuous
mappings. Then the condition (1) is equivalent to

VneNe>03Im(n) =n: o) (Anm) € 0" (Projd)]..

Proof. Since o"(Proj.A) is contained in o} (Ay) for every k > n, the necessity of (1) is trivial.
If we assume that the condition (1) holds, 2.3 yields that for every ¢ > 0 and a € A,,(,,) we
can find an element x € ProjA such that

dn () (@), 0" (2)) <€

and thus the assertion is proved. O

Now we present the following theorem due to Palamodov [18], from which we can deduce a
sufficient condition for stability. In the proof we use the fact that in a metrizable topological
group we can assume without loss of generality that the corresponding metric is invariant
under translation (cf. [21, Proposition 7.4]).

Theorem 2.5.
Let A = (A,,0l,) be a projective spectrum of complete metrizable topological groups and
continuous homomorphisms that satisfies the condition (1). Then Proj!A = 0.

Proof. Again we set A := [] cn(An,dn). Let (Yn)nen be a sequence in A. Then we define
Op 1 = Opi1 + yn for every natural number n. If (1) holds for the spectrum A = (A, o},),
the same is true for the perturbed spectrum A, = (4,,0;},) since the metric on every A, is
invariant. Hence 2.2 implies that Proj.A is nonempty and thus there exists a sequence (a,)nen
in A such that for every n € N

an = 0y y1(ant1) = 0p11(ant1) + Yo
Therefore we have shown the surjectivity of the mapping 14 defined in 1.8, consequently
ProjlA =0.
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The sufficient condition in the above theorem can again be replaced by a condition about the
projections o™:

Proposition 2.6.
Let A= (A, 0}}) be a projective spectrum of complete metrizable abelian topological groups
and continuous homomorphisms. Then the following are equivalent:

1.VneN, UecUy(An) Im>nVk>m: o} (An) C of(Ay) +U .
2.¥neN, UeUy(An,) Im>n: o (An) C 0" (ProjA) + U .

Proof. Obviously the second condition implies the first one. The proof of 2.5 shows that the
first condition implies (1) and so 2.3 yields that every o™ has dense range. This obviously
implies the second condition. O

From now on we will consider stability in topological algebras. A topological algebra is an
algebra A endowed with a topology 7 such that (A, 7) is a topological vector space and the
multiplication (z,y) + xy is jointly continuous. Recalling that an element z of a topological
algebra A is stable if the corresponding projective spectrum A = (A, M,,) satisfies Proj'A = 0
and observing that the inclusion

is equivalent to 2™A C zFA + U for all k > m > n, we immediately obtain the following
corollary:

Corollary 2.7.
Assume that for an element x of a complete metrizable commutative topological algebra A we
have

VU e Uy(A) ImeNVEk>m:2mACzFA+U

or, equivalently,
VU€eUy(A), ne NImeN:a™AC " (ProjA) + U.

Then x is stable.

Allan studied stability in Banach and Fréchet algebras and so we will apply the previous results
to these special cases of complete metrizable topological groups. We start with some notation:
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A Banach algebra is a topological algebra whose topology is induced by a complete submul-
tiplicative norm, while a Fréchet algebra is a complete metrizable topological algebra whose
topology can be defined by an increasing sequence (py,),en of submultiplicative seminorms.
We should also mention that every Fréchet algebra can be represented as the projective limit
of a projective spectrum of Banach algebras and continuous mappings: Let A, be the com-
pletion of A/kerp, and d,, : Ani1 — A, the extensions of the mappings d,, defined by
Jm(z + kerpm41) = x + ker pp,. If we set g}, =d, 0...0dp_1, then A is the projective limit
of the projective spectrum (A,,, o',) and this spectrum is called the Arens-Michael represen-
tation of the Fréchet algebra A. The details are shown for example in [4].

Furthermore a topological algebra is called locally m-convex if there exist a basis of zero neigh-
borhoods that consists of absolutely convex and multiplicative sets.

For Allan’s characterization of stable elements in Banach and Fréchet algebras we need the
following definitions introduced in his papers [3] and [4].

Definition 2.8.
Let A be a locally m-convex topological algebra. Then z € A has

1. finite closed descent (FCD) if there is a positive integer m such that 21 A is dense in
2™ A (and the the least of this integers is called the closed descent §(z) of x),

2. locally finite closed descent (LFCD) if for each continuous submultiplicative seminorm p
on A the element x has FCD relative to the p-topology.

Remark 2.9.

If A is a Fréchet algebra and its topology is defined by seminorms (py, )nen, we can easily show
that x € A has LFCD if and only if z has FCD relative to every p,. The sufficiency is trivial
since LFCD just means FCD relative to every continuous seminorm on A. If otherwise x has
FCD relative to every p, and p is an arbitrary continuous seminorm on A, there exist [ € N
and C > 0 such that p < Cp;. Hence there exists m € N such that

2MA C gmTI A" € gmFT AP,

So « has FCD relative to p and therefore x has LFCD.
Analogously it is clear that in normed algebras FCD and LFCD are equivalent properties.

For the proof that these properties characterize stability in the corresponding spaces Allan
used some theory of embedding the algebra of formal power series into Banach and Fréchet
algebras. In contrast we will make use of the following result due to Palamodov [19, Theorem
5.2|, which is a direct consequence of 1.12, 2.5 and 2.6.
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Theorem 2.10.
Let A = (A, 0',) be a projective spectrum of Fréchet spaces and continuous linear mappings.
Then the following conditions are equivalent:

1. ProjlA=0.
2.VneNUeUy(An) Im>nVEk>m: o} (An) C o (Ar) +U .
3. VneNUe€Uy(A,) Im>n: ol (An) C 0"(ProjA) + U .
Proof. The equivalence of 2. and 3. is given by 2.6. If 2. holds, 2.5 yields Proj'A = 0. To

prove the other implication, let Proj'A = 0 and n € N. For an arbitrary U € Uy(A,) we have
Ap = Upmen Anm with A, = mU, hence 1.12 applies and therefore

Im>n¥k>m:on(An) C of(Ar) + [ (2)) " (4jn() € 0k (Ar) + N(n)U.
j=1

Since gy, (Ap,) and g} (Ay) are linear spaces, we obtain 2. by multiplying the inclusion above

: 1

Theorem 2.11.
Let A be a commutative topological algebra and z € A.

1. If A is a Banach algebra, then x is stable if and only if x has FCD.
2. If A is a Fréchet algebra, then z is stable if and only if x has LFCD.
Proof. In the case of Banach algebras FCD and LFCD are equivalent, hence it suffices to verify

the second statement. So let © € A be stable. Then the projective spectrum A, = (A, M)
satisfies Proj A, = 0 and from 2.10 we obtain that

YU cUy(A)3ImeNYEk>m:a2mACa"A+U. (2)

Just like in the proof of the previous theorem we multiply both sides of this relation with some
€ > 0 and obtain

YU €eUy(A)3meNVYEk>m:azmAC zFA +eU.
For k = m + 1 this implies
VU EUN(A)ImeENYe>0:2mAC ™A+ el. (3)

Since A is a Fréchet algebra, its topology is induced by an increasing sequence of seminorms
(pn)nen and thus a basis of zero neighborhoods is given by the sets U, = {y € A : p,(y) < 1}.
Thus (3) implies that « has FCD in every p,-topology, hence 2.9 yields that « has LFCD. If
on the other hand x has LFCD, z has FCD relative to every p,-topology. This implies (3)
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and since the multiplication M, : A — A,y — xy is continuous in the p,-topology, we can
conclude that

Agm 2P o AgmAPr g o5 gt

and therefore we have

Agm 2P o Agm TP o Ag™,

A simple induction shows that Az™1* is p,-dense in Az™ for all natural numbers k, and since

the sets U, defined above form a basis of zero neighborhoods, (2) is fulfilled and 2.10 implies
that z is stable. O

Now we can deduce Allan’s main result |5, Proposition 6.5] about the product of stable ele-
ments:

Corollary 2.12.
Let A be a commutative Fréchet algebra and z,y € A. If x and y are stable, then zy is stable.

Proof. Since z and y are stable, for an arbitrary submultiplicative seminorm p there is a
positive integer m such that 2™t A is p-dense in ™A and y™*! A is p-dense in y™A. Thus,
using the commutativity of A, we have

(zy) 1A = gmATym+T AP o gmtlymFT AP 5 gmtlym 4

and thus

(aj‘y)erlAp > ;L'erlymAp _ ymmerlAp ) ymmp D yg™A = (;I;y)mA,

i.e. xy has LFCD and is therefore stable. O

Remark 2.13.

Since we claimed that the seminorms that define a Fréchet algebra must be submultiplicative,
it is clear that every Fréchet algebra is locally m-convex. Actually the assertion in 2.12 remains
true if we omit this requirement:

If we consider some U € Uy(A), the continuity of the multiplication yields some V' € Uy(A)
such that V2 C %U . Since x and y are stable there exists a natural number m such that

tmAC A+ V and ymAC yFA+V

for all k > m. For every k we find some ¢ > 0 such that both ey* and ez™ are elements of V.
Thus we have

(2y)™A = e((zy)"A) C e(2™(y* A+ V) C e((xy)* A + y*V + 2™V)
= (xy)" A+ ey*V +ea™V C (ay) A+ V2 + V2 C (ay) A+ U

which yields the stability of the product zy.
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In [5] Allan posed another question in the context of the stability of an element z in a topo-
logical algebra A. He asked if for a stable element x the two ideals I(z) and Ip(z) coincide,
where I(z) = (), cy 2" A and

Iy(z) = {a € A:3 (an)nen : a1 = a and a, = ap4qz for all n > O}.

Equivalently one may ask if M, (I(x)) = I(z). We also note that obviously Ip(z) = ¢"(Proj.A)
for all n € N.

Allan answered this question for commutative Banach algebras [2, Lemma 1] and commutative
Fréchet algebras [4, Corollary 4]. We will omit the proof here and present an analogous proof
of this result in the case of LB-algebras in the next chapter.

Proposition 2.14.
Let A be a commutative Fréchet algebra and let z € A be stable. Then I(z) = Ip(z).

We close this chapter with some examples of Banach and Fréchet algebras.

Example 2.15.

For a compact Hausdorff space X we consider C(X), the space of all continuous functions on
X with values in C. Equipped with the uniform norm and pointwise multiplication, C'(X) is
a Banach algebra. To find out which elements are stable in this algebra, we will make use of
the following characterization of the closed ideals in C'(X) (cf. [11, Theorem 4.2.1]). On the
one hand, for a compact subset K C X

I(K)={g€C(X):g|xk=0}

is a closed ideal in C'(X). On the other hand, for a given closed ideal I and K defined by

K ={)g"({0})

g€l

we have I = I(K). Hence the closed ideals in C'(X) correspond to the compact subsets of X.
It is obvious that for every f € C(X) both f and f? have the same zero set. Thus we have

N g 'dop =1 =H""dop = () g '({oh-

gefC(X) g€ f20(X)

So the above characterization of the closed ideals yields that fC(X) = f2C(X) and we have
shown that every f € C'(X) has FCD and is therefore stable.

The following two interesting examples will show that the stability of an element depends
strongly on the corresponding multiplication.
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Example 2.16.

For d € N and a connected open set @ C C? let A = H(Q) be the space of functions
holomorphic in Q. If an exhaustion by compact sets of € is given by the sequence (Kp)nen,
the seminorms p,, defined by

pa(f) = sup |f(z)]

zeKn,

are submultiplicative seminorms that define a complete metrizable topology known as the
topology of uniform convergence on compact sets or as the compact open topology. Then
equipped with pointwise multiplication A is a Fréchet algebra. We now claim that the zero
function and the invertible holomorphic functions on €2 are the only stable elements of A.

To show this we assume that f € A\ {0} is stable but not invertible. That means that f has
at least one zero. If we assume that I(f) =(,,cy f" A is nontrivial, there exists a g € A\ {0}
such that for all n € N we can find some h,, € A with g = f"h,,. But then ¢ has a zero with
multiplicity at least n, which contradicts the fact that g € A\ {0}. Thus we have shown that
I(f) = {0} and using 2.14 and the continuity of f we can conclude that

{0} = I(f) = Io(f) = ¢" (ProjAy)
where Ay = (A, My). Hence 2.10 implies that
VneNUeUy(A)ImeN:a2™AC o"(ProjAs) + U.

This contradicts o™ (ProjAy) = {0}, hence the assertion is proved.
Note that we obtain the same result for any closed subalgebra A C H (), the proof is just
analogous to the one above.

On the contrary, in the space of functions holomorphic in the complex unit disc equipped with
the Hadamard product every function is stable. To show this we will adopt some definitions
and results shown in [10].

Example 2.17.
Let D C C be the unit disc and A = H (D) the set of functions holomorphic in D. Furthermore

we consider the Hadamard product of two functions f =77 f,2¥ and g = > 7 g,2" in A
defined by

(f *g)(z) = Zfl/guzy-
v=0

This power series converges locally uniformly and so with * as multiplication and the topology
of locally uniform convergence A is a Fréchet algebra. Thus 2.11 shows that every element of
A that has LFCD is already stable. We now prove that every element of A indeed has FCD.
For this purpose we need the following characterization of the closed ideals in A due to Briick
and Miiller [10, Theorem 1]:

An ideal I C A is closed if and only if I = I with B={n € Ny : f, =0 for all f € I} and
Ip={feA: f,=0forall n € B}.

So let f € A. Since f,, = 0 is equivalent to f(™(0) = 0 we have

fA=1Ip
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for B = {n € Ny : ¢ (0) =0 for all g € fA}. We claim that for C = {n € Ny : f("(0) = 0}
we have B = C. It is obvious that B is contained in C. So let n € C' and g € fA be arbitrary.
Then there exists some h € A such that g = f x h and hence

g™ (0) = (f * h)"(0) = n! fuhy = 0.

If now g € fA, then g = limg_,o f * hy, for a sequence (hy)ren in A and since this limit implies
uniform convergence in a neighborhood of 0 we can conclude that

g™ (0) = lim (f « )™ (0) = 0.

So we have shown that B = C and since f(™(0) = 0 if and only if (™)™ (0) = 0 for every
m € N we can conclude that

FA=1Ip=Ic= A
Thus f has FCD and is therefore stable.

In the last example of this chapter we consider the Fréchet algebra of smooth functions on an
open subset of R.

Example 2.18.
For an open set 2 C R let C*°(Q) be the space of all smooth functions on Q. Furthermore let

o
(Ky)nen be an exhaustion by compact sets of © such that for every n € N we have K, C K, 41.
Then the seminorms

pu(f) = 2" sup {|D°f ()] :|a| < n}
xeK,
define a topology on C'*°(£2) which, together with the pointwise multiplication, turns C'*°(2)
into a commutative Fréchet algebra. The factor 2" ensures that every seminorm p,, is submul-
tiplicative. We now show that in this algebra all elements are stable. Of course 0 € C*°(Q) is
stable and the same holds for all invertible elements. So let f € C°°(2)\ {0} be non-invertible,
that means f has at least one zero in Q. If we denote by N,(g) the zero set of a function
g € C() on K,, we obtain the following result: For all n,m € Ny

Fre= ()" D {h € 0®(Q) : Nu(f) C No(Dh) for |a] < n} (4)

To prove this, choose arbitrary n,m € Ny. For an element h of the right-hand side of (4)
Taylor’s theorem yields that for some xy € ©, for all |a| < n and all x € Q such that the line
segment [z, x| is contained in ) there exists z € [x, 2] such that

B Do B NHa
Dah(x) — Z D.D/B'h(l‘o)($ _ 370)5 + Z .DDB'}L(Z)(x _ xO)B-
|B|<n—|al ' |Bl=n—|a|+1 :
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So for xy € N, (f) the first part of the sum vanishes. If we set
K5 = {93 €Q: |z —y| <0 for some y € Nn(f)},

then for a sufficiently small § > 0 and every = € Kj there exist g € N, (f) and z € [z, z0]
such that

DPDh(z DPDh(z
|D*h(z)| = ‘ Z ﬁ'()(x _ xo)ﬁ‘ < 5181 Z I@l()‘

|Bl=n—|al+1 |Bl=n—|al+1

B Do
Since 3\ 512p—ja|+1 \%!h(z)\ is bounded on K5 we can conclude that there exists M, > 0

such that for every = € Ky

|D%h(z)| < g™l + 1,

This inequality will be applied later. We now want to approximate h with respect to p, by
elements of f™C°(Q). For that purpose we need an appropriate function in C°*°(2), which
we can obtain from Theorem 1.4.1 and the subsequent remark in [14]: For every ¢ > 0 there
exists @5 € C*°(Q2) such that

1. ps=0o0n K;
3

2. cp(;zloanc

3. for all |a|] < n there exists C, > 0 such that [D%ps(x)| < CQ(I;)M < C(Lél)m\
3 3

with C' = lm&x C,. If we iterate this procedure for n + 1 instead of n, we obtain a smooth
al<n

function @5 and we can assume without loss of generality that @s|x, = s for sufficiently
small §. We now want to define an appropriate function g5 € C*°(Q2). On K, 1 we set

h(z)@s(x)
g5(x) = { o g Nun()

0 7$6Nn+1(f)

Since K,, C IO(nH there exists a smooth function 1 on IO(nH with compact support such that
¥ =1on K. Thus gs = 9gs can be extended smoothly on 2 and for all x € K,, we have

oy MR o g N(f)
Qa(x)—{of() e No(f)

To show that we can approximate h by means of §s, let € > 0. Then we find § > 0 such that
for all |af < n, for all 3 < a and for all z € K5
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1. |Dh(z)| < 557 -

<n—lal+1
2. Y520 37(4)8 M50 < i

Now we will verify that p,(h — f"g5) <e. For z € Kgc we have

(h = f"g5)(x) = h(x) = h(z)pz(z) = 0

and since KXC is open we can conclude that D%(h — f™gz)(z) = 0 for all a.. If on the other
hand z € K3 N K, then

[D*(h = f™g5)(x)] = |D*h(z) = ) <g> D h(z)D%p5(2))|

< IDh@) + Y (g)mDaﬁhwarDﬁwgwﬂ

€ o\ cn—|al+|B|+1 1
J M, =
R 5) g
<«
€ (0 B*n—|o¢|+1
~ ontl + Z <5>3| s Ma—pC
BLa
€ e €
< 9ntl T gnt1 T o

Thus p,(h — f"gs) < e and h € fmC=(Q)"".
To show the stability of f, we observe that for m > n we also have

FmCo(Q)™ C {h € C®(Q) : No(f) € Nu(Dh) for all |a| < n}, (5)

since in this case every element of f™C*°(2) is an element of the set on the right-hand side
and the latter is closed with respect to every seminorm p,. In particular we obtain for every
n € N some m > n such that

rEIC(Q)" = fro @)™,

Thus f has FCD relative to every p,, so according to 2.9 f has LFCD, i.e. f is stable.
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3 LB-algebras

As we have mentioned in the last chapter, every Fréchet algebra is a projective limit of Banach
algebras. Besides projective limits, the most common concept of building limits of linear spaces
is that of inductive limits. So it would be consequential to study stability on inductive limits
of Banach algebras. Thus we consider a sequence (A;,),en of Banach spaces such that A, is a
subspace of A,,11 for all n € N and the inclusion mapping i, : A, < A,41 is continuous. Then
A = U,en An is the inductive limit of the spaces A,. If we equip this inductive limit with
the finest locally convex topology on A such that each embedding j, : A, — A is continuous,
A is called an LB-space. If every A, is a Banach algebra and also a subalgebra of A, 1, A
is called an LB-algebra. Note that Akkar and Nacir have shown in [1] that in this case A is
locally m-convex. This property obviously implies the joint continuity of the multiplication
and thus A is indeed a topological algebra.

We want to present a characterization of stable elements of LB-algebras. To this end we will
show a general result for projective spectra of Hausdorff LB-spaces due to Retakh [20] and
Palamodov [19, Theorem 5.2| and afterwards we consider the special case A = A, = (A, My),
where A is a commutative Hausdorff LB-algebra. In this context we need to work with Banach
discs and so we start with the following remark:

Remark 3.1.

In alocally convex space a Banach disc B is a bounded and absolutely convex set whose linear
span [B], equipped with the Minkowski functional pp of B, is a Banach space. If A = (J, oy An
is an LB-algebra and D,, denotes the unit ball of A,,, we can assume without loss of generality
that the sequence (Dy,)nen is increasing. Then Grothendieck’s factorization theorem (cf. [16,
Theorem 24.33|) implies that the sequence (By,)nen defined by

B, =nD,

for every n € N is an increasing fundamental sequence of Banach discs in A, which means
that every Banach disc in A is contained in some B,.

Now we can state the theorem of Retakh and Palamodov:

Theorem 3.2.

Let A = (A,, o) be a projective spectrum of Hausdorff LB-spaces and continuous linear
mappings. Then Proj'A = 0 if and only if there is a sequence (Bj)nen of Banach discs
B,, C A,, such that

1.Vm>n:o!(Bn) C B, .

2.VneNIm>nVEk>m:on(An) C o} (Ax) + By .
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Analogously to the case of Fréchet spaces considered in the last chapter we can replace property
2. by

3.VneNIm>n : o (An) C 0" (ProjA) + B,.

Proof. Let (Bp)nen be a sequence of Banach discs that satisfies 1. and 2. For all n € N and
B, C A, let T, be the group topology on A, whose basis of zero neighborhoods is given by
the sets {eB,, : € > 0}. Then each (A4,,7,) is a complete metrizable group. Thus 2.6 implies
the equivalence of 2. and 3. Further we obtain from 2.5 that Proj!A = 0.

To show the other implication suppose that Proj'A = 0. For all n € N let (B} )ken be the
fundamental sequence of Banach discs in A,, defined in 3.1. Since

A, = B,
keN

1.12 yields a sequence (N (k))gen of natural numbers such that

VneNIm>nVk>m: o' (An) C of(4Ar) + Q(Q;)—l(B{W)).
]:

We set .
By = ((eh) " (Bly;):
j=1

Then every B,, is a Banach disc, which can be shown with the following result that can be
found for example in [23, Lemma 3.2.10]:

Let X,Y be Hausdorff locally convex spaces, f : X — Y linear and continuous and A C X,
B C Y Banach discs. Then AN f~1(B) is a Banach disc.

To show this we consider the linear map g : [AN f~1(B)] — [A] x [B] defined by

g(z) = (z, = f(x)).

An easy computation shows that
PA < Panf-1(B)
and
peo(—f) <Panf1(B)
Hence for the projections pry, pro we can conclude that pri o g and pre o g are continuous,

which implies the continuity of g. By definition g is injective, hence it is bijective onto its
image and one can easily show that for all z € AN f~1(B) we have

PANf-1(B) (z) = paxp(g(z)).

Thus we can conclude that ¢g~! is continuous and ¢ is an isomorphism onto its image. Now it

remains to show that the image of ¢ is closed in [A] x [B] because in this case it is a Banach
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space as a closed subspace of the Banach space [A] x [B] and then [AN f~1(B)] is also a Banach
space. So let (z,, —f(zn))nen be a convergent sequence in [A] x [B]. Then for n — oo we
have x,, — z in [A] and also in X, since the embedding of [A] into X is continuous. Hence the
continuity of f implies f(z,,) — f(z) in Y. In addition f(z,) — —y in [B] and analogously
in Y for n — co. But then the fact that Y is Hausdorff implies that y = — f(z) and therefore
the image of ¢ is closed.

So inductively we obtain that B, is a Banach disc and obviously the sequence (B,,)nen satisfies
2. Furthermore, if 2 € (g‘fn)*l(va(j)) for some j < n, then

o () € (e2) "' (B

and thus (B, )nen also satisfies the condition in 1. O

We consider again the projective spectrum A = A, = (A, M;). 3.2 yields the following
characterization of stable elements:

Theorem 3.3.
Let A = J,cry An be a commutative, Hausdorff LB-algebra and let 2 € A. Then the following
are equivalent:

1. z is stable .

2. There exists a Banach disc B and a natural number m such that for all £k > m

™A C 2*A + B.

3. For all n € N there exists a Banach disc B and a natural number m such that

™A C ¢"(ProjA) + B.

Proof. In condition 2. and 3. we can assume without loss of generality that B = [.D;, where D;
is the unit ball in A;, and z € B for some [ € N. Then obviously B C [B, which yields the
continuity of the multiplication M, in the topology whose basis of neighborhoods of zero is
given by the sets {eB : e > 0}. Thus the equivalence of 2. and 3. is again a direct consequence
of 2.6.

It remains to show that 1. and 2. are equivalent. Without loss of generality we can assume
that = is contained in every Banach algebra A, of the inductive limit A. If = is stable, the
projective spectrum A satisfies Proj’ A = 0 and condition 2. of 3.2 holds for a sequence
(Cn)nen of Banach discs. This implies that for every n € N there exists m € N such that for
all k > m

A C 2P A+ O,

hence we have shown that 2. holds for every Banach disc C,,.
If on the other hand there exists a Banach disc B that satisfies 2. for some m € N and all
k > m, 3.1 implies that there exists a positive integer [ such that B is contained in a multiple
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of the unit ball D; of the Banach algebra A;. Then obviously 2. implies that there exists a
natural number m such that for all K > m and all € > 0

™A C 2FA+eDy.

We denote the norm on A; by || - ||; and define

1
Cp=——Dy

-1
[

for all n € N. By the above, the sequence of Banach discs (Cp)nen satisfies condition 2.
of 3.2, but this sequence also satisfies 1. because if z € C),, there exists some y € D; with
=T ”m ———y and we can conclude that

la™ "2y = e ™

1 1

and thus ™ "z € C,,. Hence for all m > n we have
(M)™ ™(Cp) = 2™ "Cyy, C Chy.

Thus 3.2 yields the stability of x. O

Now we come back to Allan’s question whether the product of two stable elements is stable:

Corollary 3.4.
Let x and y be two stable elements of a commutative Hausdorff LB-algebra A. Then zy is
stable.

Proof. Since x and y are stable, 3.3 implies the existence of two Banach discs B, and B, and
natural numbers m, and m, such that for k, > m, and k, > m, we have the inclusions

2™ A C ake A+ B,

and
y"™WACytv A+ By.

B, and B, are Banach discs, hence there exist [ € N and A > 0 such that B, and B, are both
contained in D = AD;, where again D, is the unit ball of the Banach algebra A;. Since we can
assume without loss of generality that x,y € A;, the mappings M, and M, are continuous in
the topology whose basis of neighborhoods of zero is given by the sets {¢D : ¢ > 0}. Hence
the same computation as in the proof of 2.12 yields that there exists m € N such that for all
k>m

(xy)™A C (xy)kA + D.

Since D is a Banach disc the assertion follows from 3.3. O
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We will continue with some examples of LB-algebras. In the first one we determine the stable
elements of an inductive limit of Banach algebras of weighted continuous functions.

Example 3.5.
Let (vy,)nen be a decreasing sequence of continuous functions

vt R — [1,00).
Further let A,, be the space of all continuous functions f : R — R such that

sup | f|v, < o0.
R

Then the space A,, endowed with the norm || - ||,, defined by
[ flln = sup|flvn
R

is a Banach algebra since v, > 1 and thus the norm is submultiplicative. Obviously every A,
is a subalgebra of A,;1 and every inclusion mapping is continuous. We set

A= U An,
neN

equipped with the inductive limit topology described in the introduction of this chapter. Note
that this topology is Hausdorff since the embedding of A into C'(R), the space of all continuous
functions on R, equipped with the topology of pointwise convergence, is continuous. We claim
that every f € A is stable. To prove this, let f € A be arbitrary. As we have shown in 3.3 it
suffices to verify that there exist a Banach disc B and a positive integer m such that for all
k>m

fmAC f*A+ B.

We can assume without loss of generality that f € A;. Let m = 2 and
B=Di={ne A :|n <1}
For an arbitrary g € A we have to show that there exists some h € A such that for all k > 2
f?9— ffhe B.
So let g € A, for some n € N. To construct a suitable function h, we set
U= {zeR:|2@)g@)vi(2) < 1},

If U =R, then f?¢g € B and the assertion is true. Otherwise U is the disjoint union of open
intervals (o, 8;) with ¢ € I for some index set I. For each such interval we define

Bi — i B
3 3

U:UUi.

Ui = (0, 0 + ) U (Bi

7/31)

and
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Now we can define the desired function h: R — R by

A wd U
h(IE) = T/J(l') xelU 0
0 zeU\U

where 1 shall be a continuous continuation of h on U such that for = € (ay, oy + %)

|h(es)
Un ()

Un(ai)a

A5

(note that a; ¢ U so that h(cq;) is defined) and analogously for z € (5; — @, Bi) the same
inequality with «; replaced by f;, and such that sign() = sign( fkg_Q) on U. First we will
verify that h € A, C A: If x € U® we have

|f2(2)g(x)|vi () > 1

th(a)] < min {

and thus )
Ty < @@l ).
Taking the (k — 2)th power of this inequality we get
ha)lon(o) = | 250 ) < 172l @Ik (o)

= /52 (@) oy 2 (@)lg" (@) |oa(z) < 1T 29Il

since f € Ay, g € A, and v, < vF~1. Forz € U we can assume without loss of generality that
x € (ay, ap + @) and then we have

(@) |vn(2) < vn(@i)on (@) = |h(e)|vn (i)

and thus
sup |h|v, = sup |h|v, < oo.
R Uc

It remains to prove that ¢ = f2g — f*h € B. Since ¢ vanishes on U, |h(z)| < yf,j’_(ii()@\ and

sign(h) = sign(%) on U, we can conclude that
sup |p|vy = sup |p|vy < sup |f2glvy < 1.
R U U
Hence 3.3 yields the stability of f.

In the next example we will consider what happens if the weight functions v,, can have any
positive value.
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Example 3.6.
Let again (v )nen be a decreasing sequence of continuous functions, but now

vyt R — (0,00).

In this case the spaces A,, defined in 3.5 may fail to be Banach algebras, since it may happen
that fg ¢ A, for two elements f,g € A, . Then (A,)nen is just an increasing sequence of
Banach spaces and the inductive limit A = (J, .y An with the corresponding topology is an
LB-space. Nevertheless it is possible that A is an algebra, we just need an additional require-
ment for the sequence (vy,)nen. In this context we show the following assertion:

For natural numbers n,m and k we have A,A,, C A if and only if there exists some C > 0
such that vy < Cv,vp,.

So let A, A,, be contained in Aj. Since

1 1
— €A, —€cA,,
Un Um
we can conclude that
1
€ A;.
UnUm
Then
sup | | < 00
R nUm

and hence there exists C > 0 such that

v < C.

UnUm
If we assume that vy, < Cv,vy, for some C > 0 and f € A, and g € A,, are arbitrary, we can
conclude that

Sup |fglur < C'S%P | fglvnvm, < Cs%p | flon Sup |glvm < o0,

Hence, if for all n,m € N there exists some k£ € N and C > 0 such that vy < Cvpvp,,
A =, en An is an algebra and we will show that it remains true that every f € A is stable.
If f € A, we can assume without loss of generality that f € A;. As the hypothesis of 3.3 is
not fulfilled, we will make use of 3.2 to verify the stability of f. For this purpose we define for
alln e N

n
B, = ((M;™)""(D1) ={g€ A: f*Ige Dy forall 1 <j<n},
j=1

where D; is again the unit ball of the Banach space A;. Then every B, is a Banach disc and
obviously for all m > n
"By, C By



31

We will prove that for an arbitrary n € N and all £ > 2 we have
fPAC fFA+ B,.
Let g € A and for 1 < j < n we set
Uj =A{z € R: |7 (x)llg(x)[v1(2) < 1}
and

U= ﬂ U;.

1<j<n

Then again U is the disjoint union of open intervals and analogously to 3.5 we define the set
U and the functions h and v, the only difference is that 1 has to fulfill

(o) < min {800 (0. | 255 .

where m is any sufficiently large natural number such that for all j < n we have

flE=2n=g)gk=1 c 4 .

Then for € U® there exists some j < n such that z € ch and thus

| (@) |g (@) |vr () > 1.
Hence

@)on(2) = | 250 o) < £y g ok )

= /72 @) oy 2 (@) [ fED0 ) (@)1 g5 @) o () < LFIF 2SO G .

This yields once again that h € A and as in 3.5 we can conclude that f2g — f*h € B,.
Therefore 3.2 implies the stability of f.

Analogous to the last example the characterization of Palamodov and Retakh in 3.2 yields
an abstract characterization of stability for another type of algebras. We call a topological
algebra A a graded LB-algebra if it is an inductive limit of Banach spaces A, such that
AnAn C Api, for every n,m € N. Although we cannot apply 3.3 and 3.4 to analyze stability
on this algebras, the first condition of 3.2 implies that for a stable element x € A there has to
be a sequence of Banach disc (B),)nen with B, C A, such that particularly

2" Bpt1 C Bu.

This condition can be very restrictive, as we will see in the following example.
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Example 3.7.

Let A = C.(R) be the convolution algebra of all complex-valued continuous function with
compact support. Then we have A = (J,,c C([-n,n]), where A, = C([-n,n]) is the Banach
space of complex-valued continuous functions with support in the interval [—n,n] equipped
with the maximum norm. We assume that f € A\ {0} is stable. The theorem of support (cf.
[14, Theorem 4.3.3]) yields that

Conv (supp f * g) = Conv (supp f) + Conv (supp g),

where Conv M denotes the convex hull of a set M C R and supp f = {z € R: f(x) # 0}
denotes the support of f € A. Thus there exists some N € N such that for all n > N
the length of the interval Conv (supp f") is larger than 2. But then for all g € A\ {0} the
convolution f™ *x g cannot be an element of Ay, so that the condition

f"Bui1 C f" By C "B, C--- C By

implies that for all n > N we have B,, = {0}. Hence the second condition of 3.2 implies that
there exists some m € N such that for all £ > m

SmAC frA, (6)

If we set h = f™*t!1 € fmA then h € A; for some [ € N and (6) implies that there exists a
sequence (gn)nen such that h = fM™"g, for all n € N. But this contradicts the theorem of
support, since supp f"*"g, is not a subset of the interval [, ] for sufficiently large natural
numbers n. Thus f = 0 is the only stable element in A.

We now turn our attention back to the question considered in 2.14, whether for a stable
element = we have I(x) = Iy(z). In the following theorem we will show that the assertion
remains true in the case of LB-algebras and after a short remark we will present an appli-
cation of this result. The proof complies with Allan’s proof of the Banach algebra case in
[2, Lemma 1].

Theorem 3.8.
Let A= J,,cny An be a commutative LB-algebra and let € A be stable. Then

My (I(x)) = I(z).

Proof. Since I(x) is an ideal, it is clear that M,;(I(x)) is contained in I(x). So if z is an
element of I(x) we have to show that there exists an element Z € I(z) such that z = zZ. Let
z€I(x) and S; = {y € A: ya’ = z} for j € N. By definition of I(z) the set S; is nonempty
and an easy computation shows that M;(S;41) is contained in S;. As we have shown in the
proof of 3.3 the stability of x yields a Banach disc D = AD; and an integer m such that for
all K > m and for all € > 0 we have

™A C A+ eD. (7)
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For y,§ € S; we have (y — §)z/ A = {0}. Thus for k > m, ¢ > 0 and y,J € Sk41
(y=9)a"AC (y - 92" A+ (y—§)eD = (y — §)=D.

Hence <
(y—§amAC (y—5) (D = (y— {0} 7,
e>0
where ¥p denotes the topology whose basis of zero neighborhoods is given by the sets
{eD : e > 0}. Since D = AD; for some [ € N, T is the topology of the Banach space A,
and obviously

01 =D = {o}.

e>0

Thus we have shown that (y — §)2™A = {0} for y,§ € Spy1. Especially ya™*! = ga™*! and
therefore M m+1(Sk11) is a singleton for all £ > m. This defines a sequence (z,)nen such that

{zn} = Mym+1(Sngmt1)

for all n € N. Thus we have z, = yz™*! for some y with ya"*"*! = 2. This implies

ann — ymerlxn — yxm+n+1 =z,

which results in z, € S,,. Moreover, since z,41 = yx™ ! with y € Snt+m—+2, we have

Tzpy = ayx™ T = 2™ gy

and

n+m+1 __ n+m—+2 __
TYT =y =2z,

which means that zy € S,im+1 and thus My (zp41) € Mym+1(Spim+1). Particularly for

2 = 2™y with y € S,,12 we have

My(z1) = x21 = za™tly = 2™y = 2.

Furthermore, if we combine the two facts M,(S;+1) being contained in S; for all j € N and
{zn} = Mym+1(Sptm+1) for every n € N | we can conclude that

21222$223ZE2:"'

and thus z; belongs to I(z). O
Remark 3.9.
Actually the proof of 3.8 shows that for every topological vector space A and every z € A

that is stable we have I(z) = Ip(xz) whenever there exists a submultiplicative norm p on A.
In this case (7) remains true for

D={zxeA:px) <1}

due to 1.12 and the rest of the proof is identical.
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In the last example of this chapter we will show that in the algebra of germs of holomor-
phic functions in 0 there are no stable elements besides the zero function and the invertible
functions.

Example 3.10.
For all n € Nlet Q, = {z € C: || < 2}. Then H>((2,), the space of all holomorphic and
bounded functions on 2,, equipped with the supremum norm and pointwise multiplication,
is a Banach algebra. The inductive limit A = | J,, oy H*°(£2), where the inclusion mappings
in : Ap — Apq1 are defined by f — flq,.,, can be identified with the algebra of germs of
holomorphic functions on 0 denoted by H({0}) (cf. [8, Example 2.6]).
Obviously an element f € A = H({0}) is invertible if and only if f(0) # 0. So let f € A be
not invertible. We claim that

I(x)= () f"A={0}.

neN

If we consider some g € f" A, the vanishing of f in 0 implies that g has a zero of multiplicity
larger or equal to n in 0 and thus we have

g™ D (0) =0.
So for some h € (), oy f"A we can conclude that for all n € N
A (0) = 0.

Since h is holomorphic in a neighborhood of 0, h must be identically zero there, thus h = 0 € A.
Hence (), /™A = {0} and if we now assume that f is stable, 3.8 implies that for all n € N
we have

{0} = I(z) = Io(x) = ¢" (ProjA).

Together with 3.3 we can conclude that there exists a Banach disc B and a positive integer
m such that for all ¢ > 0
fmMAC {0} +eB.

Since B is bounded this is a contradiction and thus f is not stable.



35
4 Topological algebras with multiplicative webs

The theory of webbed locally convex spaces was introduced by M. De Wilde in [12] for the
purpose of a generalization of the classical closed graph theorem. Further studies in this
context can be found for example in [15] or [16]. Since Fréchet spaces and LB-spaces are both
examples for webbed locally convex spaces, this theory is also of interest for our work with
stability. We start with the definition of a web in the way it was introduced by Meise and
Vogt in [16].

Definition 4.1.
Let A be a locally convex space. A family C = {Cy, .k, : k1,...,ks,v € N} of absolutely
convex subsets of A is called a web, if the following properties are satisfied:

(1> UnGN Cn =A.
(2) Unen G n = Chreh -
(3) For every sequence (k,) ey in N there exists a sequence (\,)yen in 0, 1] such that for

every (z,)ven € [ en Ch,... .k, the series > 7 | A\, x, converges in A.

If such a web exists, A is called a webbed space. Furthermore, a web is called ordered, if for
two sequences of natural numbers (k,)nen and (I, )nen with k, <1, for all n € N we have

Crr,ky €City

for all v € N.

Remark 4.2.

With this definition it is possible to show the following versions of the closed graph theorem
and the open mapping theorem (cf. [12, Chapter 4]). We recall that a locally convex space A
is called ultra-bornological if every linear mapping T" from A into any locally convex space A
such that T(B) is bounded in A for all Banach discs B C A is already continuous.

Let E be a webbed locally convex space and F' an ultra-bornological locally convex space.
Then the following are valid:

1. Every T : F' — FE that is linear and has a closed graph is continuous.

2. Every T : E — F that is linear, continuous and surjective is open.

The following result of Frerick, Kunkle and Wengenroth [13, Lemma 2.4] shows that we can
always choose a special sequence (\,),en in the third condition of 4.1:
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Proposition 4.3.
Let A be a locally convex space and C be a web on A. Then for all (k,),en in N and all
(z)ven € [, en Cha,....k, the series > 07, ﬁxu converges in A.

Proof. Let (Ay)ven be a sequence in ]0,1[ such that > 7, A\,z, converges for all
(zv)ven € [l,enChi,.k,- Then we can find a strictly increasing sequence (a,)yen of
natural numbers such that for all v € N

o0

Z 2% < )\V+1'

Jj=ay

For (z,)ven € [[,en Cha,... k,, We set y1 = 0 and for all v > 2

1l %1
Y = )\7” A Z ng-
J=oy_1+1

Every Cy, ..k, 1s absolutely convex and for j > a,—1 > v—1we have z; € Ck, _x; C Ck,, k-
Since Z;’ia L < )\, we can conclude that y, € Ch, ..k, for all v € N. Hence > 07 Ay

v—1 27
converges and thus also the sequence

ay 1 1 a1 1 v
D g = 5 5%+ D Aw)
j=1 j=1 j=1

converges. For a given m € N let n(m) be the largest natural number such that a,,) < m.
Then we define for all m € N

m

1
Tm = Z 1% € An(m) 41 Ot oy 1

j:an(m)+1

If (m(k))ken is a subsequence of the natural numbers, there exists a further subsequence
(m(k(1))ien such that n(m(k(l))) is strictly increasing. So for I — oo we have rp, )y — 0,
which implies that ry, — 0 for m — co. Thus > 7, Q,,%x,, converges in A. O

As mentioned above we will now show that Fréchet spaces and LB-spaces are webbed spaces.

Remark 4.4.
If A is a Fréchet space and (Up,)nen a basis of zero neighborhoods, we set

Then we have
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and , .
U Ckl,...,k,,,n = U (m kU N nU,,H) = (ﬂ k‘lUl) N (U nUy+1) = Ck1,.-.,ku'
neN neN [=1 =1 neN

To show that the sets (),_; kU form a web in A it remains to verify the third condition of
4.1. To this end let (k,),en be an arbitrary sequence of natural numbers and for all v € N we
set A\, = 2,,% The topology of A is induced by an increasing family of seminorms (py)nen,
thus we can again assume that U, = {y € A : py(y) < %} If we choose an arbitrary sequence

(@, )ven € [T (Ui

veNI[=1

and fix some n € N, then for all m > n we have

m € () kilr C EnUn.
=1

Thus pp () < %” for all m > n and therefore Y 02 | p(Ay2,) converges. Since n was chosen
arbitrarily, we can conclude that ">, A\ z, is Cauchy, hence the completeness of A implies
the convergence of the series. So the sets (),_; kU; form a web in A which is also ordered,
since for two sequences (k,),en and (IEV)VGN of natural numbers with k, < k, for all v € N it

is clear that , ,
(kUi € ()Rl
=1 =1

If on the other hand A is an LB-space, let (B),),en be an increasing fundamental sequence of
Banach discs. Then we define

Ckl,...,kl, = min{kl, ey ku}Bkl-

It is clear that

UC’ :Uan:A

neN neN
and that

U Chrobon = | min{ky, ... ky,n} By, = min{ky,..., b} By, = Ch,y...p, -
neN neN

Again let (k,),en be a sequence of natural numbers and A\, = 2,,% for all v € N. If we choose
an arbitrary sequence
(@)ven € [[ min{ky,..., %y} By,
veN
every z, lies in a multiple of the Banach disc By,, hence in the Banach space Ag,. So it is
obvious that >~ >7 | A, 2, converges in Ay, . Since the topology on A is the finest locally convex
topology on A such that the embeddings A, — A are continuous, it is clear that the series

> 1 Ay converges also in the inductive limit A. The web

C= {min{k‘l,...,ky}Bkl cki, oo kv EN}
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is also ordered, due to the fact that for two sequences (k,),en and (IEV)VGN in N with k, < k,
we have . .
min{ki, ..., ky} By, C min{ki, ...,k } By,

since the sequence (By,)nen can without loss of generality be chosen increasingly as shown in
3.1.

We now come back to the theory of stability. In this context we need, as in the chapters
before, a characterization of the condition ProjlA, = 0 for A, = (A, M,). For webbed spaces
the following result was established by Frerick, Kunkle and Wengenroth in [13].

Theorem 4.5.
Let A = (Ay, o) be a projective spectrum of Hausdorff locally convex spaces that have
ordered webs C" = { [ 3 PR 7 ZBS N} and continuous linear mappings. Then

Proj A = 0 if and only if there exists a sequence (k, ), ey in N such that

VneNIm>nVk>m:h(An) C op(A) + [)(eh)(C] ). (8)

Jj=1

j’“-ykn

Proof. The fact that Proj’A = 0 implies (8) can be proved as 1.11. Since the webs are
ordered, we have for example

(Gl x C2) =}, x As.
neN
Thus we can conclude analogously that the closure of
n .
J
H ij:m:kn X H AJ
j=1 j>n

contains interior points and in the same way as in the proof of 1.11 we obtain the second
condition.

If (8) is true, we can assume without loss of generality that the condition holds with
m = n + 1, otherwise we may go over to a subsequence of the projective spectrum. To
show that Proj!.A = 0 we have to verify that ¢ =14 : [L.en An = I1,en An defined by

(Zn)nen = (T — QZ+1(xn+1))neN

is surjective, i.e. for a given (yn)nen € [[, ey An We need to find a sequence (,)nen such that
V(X )nen) = (Yn)nen- To this end we set wi; = wy = 0 and choose inductively w,, € A,, and

L A, it
vn € gy (V@B THCL k)
j=1

such that for allm € N

QZ-H (wn—i-l - yn—i—l) = QZ+2(wn+2) + vp.
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Since o)}, (vm) € W%(C};n i) for all m > n, we can conclude with 4.3 that the series

yhvm

o
_ T
Zn = E Qm(vm)
m=n
converges. Furthermore we have

Zn — QZ-H(an) = Un

and we define the desired sequence (z,)nen as

Tp = QZ-H (wn—l—l) — Zn + Yn-
Then for all n € N we obtain
QZH(:UTLH) = QZ+2(wn+2) - Qerl(Z?’H‘l) + QZH(ynH)
= QZ+1(wn+1) — Un — QZJrl (Zn-i-l)

= QZ-&-l(wn—&-l) — Zn

= ZTn — Yn-
Thus 1 is surjective and therefore Proj' A = 0. O
Remark 4.6.
4.5 implies that for a commutative locally convex Hausdorff topological algebra A that has an

ordered web C = {Cy, .k, : k1,...,k,,v € N} an element 2 € A is stable if and only if there
is a sequence (k,),en of natural numbers such that

VneNIm>nVk>m:asmACa"A+ ﬂ(M;Lij)fl(ij,wkn).
j=1

To apply this characterization of stable elements we need a further requirement for the web.

Definition 4.7.
A web on a topological algebra A is called multiplicative if for every sequence k = (k,),en of
natural numbers and every v € N there exists a A = A(k,v) > 0 such that

Cky,oky * Chy by © AChky ke, -

This definition is reasonable since Fréchet algebras and LB-algebras have multiplicative webs:
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Remark 4.8.
If A is a commutative Fréchet algebra, the sets Cy,  , = ﬂ;’zl k;U; defined in 4.4 form a
web in A. This web is also multiplicative: The topology of A is induced by an increasing
sequence of submultiplicative seminorms (py)nen and as in the proof of 2.11 we assume that
the basis of zero neighborhoods consists of the sets U, = {z € A : p,(z) < 1}. Since every p,
is submultiplicative, for two elements x,y € U, we have

1

Pu( - y) < pa(2)  Paly) < —

hence zy is again an element of U,. Thus it is easy to see that

: -
lﬂlszz lﬂlszz C 1II<11&<Xszﬂszz,

hence the web is multiplicative.

If A is a commutative LB-algebra and (B, )nen defined as in 3.1, the web defined by the sets
Ch,...., = min{ky, ..., k,} By, is multiplicative: Every By, is a subset of the Banach algebra
Ay, and so for two elements z,y € By, we have

e ylley < Nl - Myl < K-

Thus
min{ky, ..., k,} By, -min{ky, ..., k,} By, C k¥ min{ky,..., k,}B,.

Now we present the main result of this chapter that generalizes Allans work from the 1990s.

Theorem 4.9.

Let A be a commutative locally convex Hausdorff topological algebra with an ordered mul-
tiplicative web C = {C,.. k, : k1,...,kv,v € N} and let z,y € A be stable. Then zy is
stable.

Proof. Since x and y are stable, 4.6 yields that there are sequences (k,),en and (I,),en of
natural numbers such that for all n € N there exist m,,m, > n such that for all natural
numbers k; > m, and ky, > m,

2™ A Caft A+ (Y (M) (Cryoo )

o
j=1

and n
y™AC Y A+ (M) (Cy)-
j=1

We now need to find a sequence of natural numbers that satisfies the condition in 4.6 for the
product zy. To this end we choose a sequence (r,,),en such that r; > max{k;,l;} for all j € N
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and z,y € Cy, . ,, for allm € N. As we will see later in this proof, the required sequence shall
be increasing, so we consider the sequence (7, ),¢cn defined by

7j = max{ry,...rj} >r;

for all 7 € N. Since the web is ordered and z,y € Cp, ., C ij’m’fn, the inclusions above
remain true if we replace the sets Cy; . x, and Cy; i, by C7, 7. If we fix n € N and set
m = max{m,, my,} > n, we obtain for an arbitrary k > m

2mAC 2P A+ (\(MF) NG, )
j=1
and "
YA CYFA+ (M) TN Csy )
j=1

Thus we have

(zy)" A =2y A Ca™ (P A+ (M) (Cry, i)
7j=1

n
:ykxmA+ ﬂ MTL ] 7’3’ ,n)
n_

Cyfah Aty ﬂ (M=) (G o) + 2™ () (M) 7Oy ).

j=1 j=1

We set I, = () (M2 ™) "(Cy,,.5,) and I, = () (My 7)Y (Cr,.. 7.

j=1 7j=1
I, we obtain for 1 < j <n

)). If z is an element of

"Iz € Gy, .5,
Hence
k+j—nz — yk.%'n_]Z c ka~

Tjsee WTn

(xy)" 7y
and A
(l,y)n—]ykz c yk-i-n jcv~

Tjse- Tt

Since (7)yen is increasing we have

Cr,..in © CF

'm = ij"?f’n
for 1 < j < n. So we can conclude that
ycfj,..-,?’n - Crl, T ij,.. T - th o ij,-..fn
CC?Z]» 7n.ij»~-7 )\ Crga Tno

where the last inclusion holds for some A; > 0 since the web is multiplicative. Inductively we
see that for 1 < j <n
yk+n iC- . )\kJrn JC«

TjyeeesT Ty T
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So we have shown that for A = max A7
1<j<n

(zy)"Ty* 2 € \C;

TJ? 7n

for all 1 < j < n, which means that

n

yhz € ﬂ M2 Y AC, i) = A (M2 ) HCr, ).
j=1

Analogously we can show that for z € I, and all 1 < j < n there exists > 0 such that
n
"z € m M" 3 /1,07:]7 P ﬂ M" ] Cij..iin)-
7=1

With these computations we can now state that

(xy)"A C (zy)" A+ A ﬂ (M) Cry) + 1 (VM) TN (Cy )
Jj=1 j=1
The set ij,...,Fn is convex, hence
>\ij7”,,7»” Cfm P = ()\ + M)C;J, e

Thus for some z = Aa+ ub € A (ng_j)*l(C;j,m,;:n) +u N (M;Ly_j)*l(Cq:j,,,,in) it is easy to

j=1 j=1
check that A

(@y)" 7z € (A )G,
So we have .
(2y)™ A C (xy)" A+ A+ p) (M) (C, i)
7j=1
Multiplying this inclusion with 1+— we obtain
(zy)™ A C (zy)* A+ ﬂ M) THC ),
7=1

hence 4.6 implies the stability of xy. O

Remark 4.10.
With 4.8 we can conclude that 4.9 generalizes 2.12 and 3.4.

In the following propositions we want to show that topological algebras with multiplicative
webs have some notable hereditary properties. The following considerations are inspired by
the work of Meise and Vogt in [16] and in most of the cases we will adopt the construction of
the webs on the corresponding spaces.
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Proposition 4.11.
Let A be a commutative locally convex topological algebra with an ordered multiplicative web
C={Ck, k ki,...,k,,v € N} and let F' C A be a closed subalgebra of A. Then

é = {C’kh...,kzl, =FnN Ck17~~~7ku cki,..., kv E N}

is an ordered and multiplicative web on F'.

Proof. 1t is clear that the sets F'N CY, ., are absolutely convex and that

Ué.=UFnCu=rn|JC.=FnA=F.

neN neN neN

Furthermore we have for all v € N

U Creion = U FNCripion = FO | Craoboin = F 0 Cyy = Ciab
neN neN neN

If we consider a sequence (k,),en of natural numbers and a sequence (z,),eN € HueN é’kl,...,kl,

and if we observe that
H Chiyohy = H FNCy,..k C H Chr, by
veN veN veN

the fact that C is a web implies that Z;fo:l Az, converges in A for A\, = ﬁ Since F'is a
closed subalgebra, > >, A\, x, also converges in F. Thus C is a web that is obviously ordered
because C is ordered. Hence it remains to prove that C is multiplicative. To this end let
ékl,...,k,, € C~ For ~

2, Yy €Chy, = FNCly ok

we have xy € F since F' C A is a subalgebra and the fact that C is multiplicative implies that
xy € ACy, ..k, for some A > 0. So zy belongs to F'NACY, . 1, and therefore we can conclude

v

v

Chypy " Cryky CSF N AChy oy = MF N Chy i) = AChy ok

Proposition 4.12.
Let A be a commutative locally convex topological algebra with an ordered multiplicative web
C={Ck .k, *ki,....,k,,v € N} and let I C A be a closed ideal. Then for the quotient
algebra A/I equipped with the quotient topology an ordered and multiplicative web is defined
by

C = {Ckl,...,kzl, = q(0k17---7k1/) : k‘l, S ,k‘,,, Ve N},

where ¢ : A — A/I is the quotient mapping.

Proof. Since q is linear, every C’klk is absolutely convex. Moreover it is clear that

v

UC’ = Uq(Cn): U{x+[:xGCn}:{:L"—i—I::L“EA}:A/I

neN neN neN
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and that for all k1,...,k,,v €N

U Chy ooy = U q(Chy,...kyn) = U {e+T:2€Ch pynf={v+1:2€Ch 1}
neN neN neN

= 4(Chy,) = Chyo -

To show the last condition of 4.1 let (ky)ven be a sequence of natural numbers and (x,),eN
an element of [],  Ck,,...x,- We have

Gk k=1 aCr) = [[{z+T:2€Chy 1}

veN veN veN

and therefore we obtain for all v € N
Ty =1y, +1

for some vy, € Cj,.. k,, which means that ¢(y,) = z,. Since C is a web on A, the series
> 02 1 Ay converges to some y € A. Thus, using the linearity and the continuity of ¢, we

have
Z ATy, = Z q(Moyy) = Q(Z Av) = q(y).
v=1

v=1 v=1

The fact that C is ordered implies that the same holds for C and since the quotient mapping
q and the web C are both multiplicative we have

Crrvkw Crarok = 4 Chy ) - 0(Chy 1)

for some A > 0 that only depends on the set Cy, . &

v

In the following case of a countable product of topological algebras the definition of the web
on the product differs from the one of Meise and Vogt. Using 4.3 we can give a slightly more
accessible definition that will preserve the multiplicativity.

Proposition 4.13.
For all j € N let A; be a commutative locally convex topological algebra with an ordered

multiplicative web C7 = {C}, . k1, ky,v €N} Then

R4

¢ = {Cklk = Ol X Ch X x O X [[ A vk € N}

j>v

defines an ordered and multiplicative web on the product algebra []
pointwise multiplication and the product topology.

jeN Aj equipped with
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Proof. Obviously every éklk is absolutely convex and we have

Uc. =@ <[40 = <[4 =14
neN neN j>1 neN i>1 jEN

Furthermore we have for all v € N

5 _ 1 2 vl
U Chyyo oy = U (Ckl,...,kl,,n X Clyokym X X O X H Aj)

neN neN j>v+1
g Clilwwku x 01327"'7]{51/ X X C’IZII X H Aj
j>v
= Ckl,...,k,,'

To show the other inclusion let x = () en € C'k17~--,ku' Then z; € C,Zj g, forall j <vand

thus there exists a natural number n; such that x; € C,Zj . So for n = max n; we have

:--~7k1/7nj 1<j<v
. J :
xj € ij,.“,kl,,n for all j < v and hence

Cryoks € | Crrrin:
neN

If (ku)ven is a sequence of natural numbers and (2, ),en € [ [, en C’kh---,kw then
z1 € Cr, = Cy, x [ 4
7>1
To € Ckl,kg = C;ith X 0132 X HAj

§>2

We now want to show that for (\,),en defined by A\, = 21,% the series > | A\, x, converges
in A or, equivalently, that its projection onto A; converges in A; for every j € N. Thus we
consider an arbitrary 5 € N. Then we have

[e's] Jj—1 fo's)
g Al = g A, + g Avxd,
v=1 v=1 v=j

Jj—1 00

_ E ' J § C o)

= AI/;EV + )\V)\]72$V+]_1.
v=1 v=1

The first part of the sum is an element of A; and $ju i1 belongs ‘to the absolutely convex set

J

[ for all v € N. Hence it is clear that \j_ox,1;_1 € Cli and we have

GyeesRugi—1
) J J
(V2w )ven € [T G sy
veN
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Thus the series > 7, /\l,/\j_gxf,ﬂf
for the series > o7, A, Since j € N was chosen arbitrarily this yields the convergence of
the series Y 02 Az, in A. So we have shown that C is a web on HjeN A; that is obviously
ordered since every C7 is ordered and it remains to show that C is also multiplicative. To this
end let ékl,-'.,ku be an element of C. Every web C7 is multiplicative, hence for every positive
integer j there exists some A; > 0 such that

, converges in A; because C’ is a web, hence the same holds

j g -
vk " Oy © N0k

So with A = max A; we can conclude that
1<i<v

Chrvoky Chroy, = (Chy gy ¥ x CE < [ A3) - (Chyiy < x Crox [T A5)

j>v j>v
CMCE g X x NCE < ] A
j>v
CACh, g, % x ACE x [ 45
j>v

= Ay

v

As a direct consequence of 4.11 and 4.13 we obtain:

Corollary 4.14.

For all n € N let A,, be a commutative locally convex topological algebra with an ordered
multiplicative web and let o', : A,, — A, be linear and continuous for all m,n € N. Then
the projective limit Proj.A of the projective spectrum (A,, gj,) has an ordered multiplicative
web.

Remark 4.15.
After presenting a result concerning projective limits of topological algebras with multiplica-
tive webs it would be consequential again to analyze inductive limits of these topological
algebras. The matter with this situation is that the inductive limit of topological algebras
may fail to be a topological algebra again. For this reason it is not possible to present an
analogous result to 4.14 for inductive limits. Nevertheless Jarchow showed in [15] that the
Hausdorff inductive limit of webbed topological vector spaces is webbed again and we can
transfer the previous hereditary property to the case of inductive limits of Fréchet algebras:
If (Ap)nen is a sequence of Fréchet algebras with ordered multiplicative webs
cr = ok RL Ry v € N} such that every A, is a subalgebra of A, 1 and every
inclusion mapping i, : A, < A,41 is continuous, let A = |J,,cy An be equipped with the
finest locally convex topology such that each embedding j, : A, < A is continuous. Then A
is called an LF-algebra and it is easy to verify that C = {C, ., : k1,...,ky,v € N} defined
by

Ck17-~.7ku = Cl’:gl,,k

v
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is a multiplicative web on A. But in general this web is not ordered since it may occur that
oy g ot

for some n,m € N. Thus we have to modify the bases of zero neighborhoods of the Fréchet
algebras Aj:

If th = {Uir : k € N} is a decreasing basis of zero neighborhoods of in A; and
Uy = {Usy, : k € N} a corresponding basis in Ag, we set

Z/N{Q = {UZ,k : kGN}: {XQ,...,XQ,UQJ...U2’1,U272...},

where the length of the blocks have to be chosen in a way that for all K € N we have Uy , C Ug,k.
Inductively we can form a basis of zero neighborhoods on every A, such that ﬁnk - f]n+1,k
for all n, k € N and as a direct consequence we obtain that the web C is ordered. Hence every
LF-algebra has an ordered multiplicative web.

Proposition 4.16.
For all j € N let A; be a commutative locally convex topological algebra with an ordered

multiplicative web C7 = {C’i1 ok, R Ry v E N}. Then the direct sum @jeN Aj equipped
with the pointwise multiplication and the topology defined by the basis of zero neighborhoods

ug = { P =TTvn@4;: U € Up(4y) }
jEN jEN jEN

is a locally convex topological algebra and an ordered and multiplicative web

C= {Ckl, kDR kv €N} on Py Aj is defined by the sets
Y = @A fHA x T {0}
J>k1
for v =1,
C’kl’ = 0227__7ky X C’,i;’_._?k - X C” L H Aj x H {0}

J>k1
for 1 <v <k and

D _ 1 2 . kl
Crpvby = Chigry X Clig g, X - X C Ky 150k H {0}
J>k1

for v > k.

Proof. Since every A; is a topological algebra it is easy to check that for every
V=B,V € Uy there exists some U = P,y U;j € UF such that U - U C V. Thus
the multiplication is jointly continuous in this topology and EB ien Aj is a topological algebra.

Again it is clear that the sets C’EB K, are absolutely convex and that

Jci-UDa-Da

neN neN j=1 jeN
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Moreover, analogously to the considerations in the proof of 4.13, we can conclude that

— %
U Ck17 ,k,,, C 17 7k

neN

we only have to note that for j > k; the j-th component of the sets C’,?i ik and C’,?i ik, 18
equal to {0}. If (z,),en is an element of [] o C’,?i ..k, for asequence (ky)yen in N, we have

k
x1€C®1:1_1[Aj>< H{O}
j=1

j>k1

k1
T2 60}2,1@ =C}, x HA]- X H{O}

Jj=2 >k

® e Cox O
TS Ck1,...,kk1 = CkQ,m,kkl X X Ckk1 X Ap, X H {0}
J>k1

k
x, €CF o =Chy gy XX O

E.y kky+1,..., X H{O}

To show the convergence of >~ | \,x,, we consider again the projections (:cZ,L)meN of (Tym)men
for j € N. If j > ki, every zd, is equal to zero, hence the convergence is trivial. For j < k;
we can use the same method as in the proof of 4.13 to conclude that the series > 07, A\,
converges in A; and thus the series ZV 1 AvT, converges in D It is clear that C is
ordered and for all n € N we have

jGN

k k k
ce-cp=114-1[4 <[4 =c

J=1 J=1 J=1

If we choose some C ok € C the multiplicativity of every web C’ yields again analogously
to the proof of 4.13 some A > 0 such that

Ck1, ky Ck kv )‘CEB ky>

Lyeeey 17 )

the only difference to 4.13 is that for j > ky in the j-th component of this implication we use
the trivial fact that {0} - {0} = {0}. O
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Remark 4.17.

With 4.9 and the subsequent results we have shown that in all common locally convex
topological algebras that occur in standard analysis the product of two stable elements is
again stable. This includes for example projective limits of LB-algebras, the so-called PLB-
algebras. One important PLB-algebra is the algebra of real analytic functions A(R), which

can be written as
1 1

AR) = () U B®(—n,n) x i(——,—)),
m’ m
neNmeN

where H*°(U) is the Banach space of bounded holomorphic functions on an open set U.
Although the webs in A(R) look quite complicated, the resulting phenomena concerning stabil-
ity are the same as for the algebra of holomorphic functions in 2.16, namely, only the invertible
elements are stable. This can be shown as in 2.16 by means of the order of a zero of every
non-invertible function.



50

References

1]

2l

3]

4]

[5]

(6]

17l

8]

9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Akkar and C. Nacir. Structure m-convexe d’une algébre limite inductive localement
convexe d’algébres de Banach. Rend. Sem. Mat. Univ. Padova, 95:107-126, 1996.

G. R. Allan. Embedding the algebra of formal power series in a Banach algebra. Proc.
London Math. Soc. (3), 25:329-340, 1972.

G. R. Allan. Elements of finite closed descent in a Banach algebra. J. London Math. Soc.
(2), 7:462-466, 1974.

G. R. Allan. Fréchet algebras and formal power series. Studia Math., 119(3):271-288,
1996.

G. R. Allan. Stable elements of Banach and Fréchet algebras. Studia Math., 129(1):67-96,
1998.

G. R. Allan. Stable inverse-limit sequences and automatic continuity. Studia Math.,
141(2):99-107, 2000.

G. R. Allan. Elements of finite closed descent in Banach and Fréchet algebras. In
Topological algebras, their applications, and related topics, volume 67 of Banach Center
Publ., pages 73-81. Polish Acad. Sci. Inst. Math., Warsaw, 2005.

G. R. Allan, H. G. Dales, and J. P. McClure. Pseudo-Banach algebras. Studia Math.,
40:55-69, 1971.

R. Arens. Dense inverse limit rings. Michigan Math. J, 5:169-182, 1958.

R. Briick and J. Miiller. Closed ideals in a convolution algebra of holomorphic functions.
Canad. J. Math., 47(5):915-928, 1995.

H. G. Dales. Banach algebras and automatic continuity, volume 24 of London Mathemat-
ical Society Monographs. New Series. The Clarendon Press Oxford University Press, New
York, 2000. Oxford Science Publications.

M. De Wilde. Closed graph theorems and webbed spaces, volume 19 of Research Notes in
Mathematics. Pitman (Advanced Publishing Program), Boston, Mass., 1978.

L. Frerick, D. Kunkle, and J. Wengenroth. The projective limit functor for spectra of
webbed spaces. Studia Math., 158(2):117-129, 2003.

L. Hérmander. The analysis of linear partial differential operators. I. Springer Study
Edition. Springer-Verlag, Berlin, second edition, 1990. Distribution theory and Fourier
analysis.

H. Jarchow. Locally convexr spaces. B. G. Teubner, Stuttgart, 1981. Mathematische
Leitfdden. [Mathematical Textbooks].

R. Meise and D. Vogt. Introduction to functional analysis, volume 2 of Ozford Graduate
Texts in Mathematics. The Clarendon Press Oxford University Press, New York, 1997.
Translated from the German by M. S. Ramanujan and revised by the authors.



o1

[17] J. C. Oxtoby. Measure and category, volume 2 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1980. A survey of the analogies between
topological and measure spaces.

[18] V. P. Palamodov. The projective limit functor in the category of topological linear spaces.

Mat. Sb. (N.S.), 75 (117):567-603, 1968.

[19] V. P. Palamodov. Homological methods in the theory of locally convex spaces. Uspehi
Mat. Nauk, 26(1(157)):3-65, 1971.

[20] V. S. Retah. The subspaces of a countable inductive limit. Dokl. Akad. Nauk SSSR,
194:1277-1279, 1970.

[21] W. Roelcke and S. Dierolf. Uniform structures on topological groups and their quotients.
McGraw-Hill International Book Co., New York, 1981. Advanced Book Program.

[22] L. Theate and J. Wengenroth. Right-invertibility for Fréchet algebras. Math. Proc. R.
Ir. Acad., 109(1):67-77, 2009.

[23] J. Wengenroth. Derived functors in functional analysis, volume 1810 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 2003.



52
Zusammenfassung

Diese Arbeit ist von folgender Frage inspiriert worden, die der britische Mathematiker G. R.
Allan in einem Artikel aus dem Jahre 1998 (vgl. [5, S. 94]) gestellt hat:

"Ist fiir zwei stabile Elemente z, y eines kommutativen Ringes R stets das Produkt zy
wieder stabil [...]?"

Die Stabilitat ist ein Begriff, der in vielen Bereichen in der Naturwissenschaft benutzt wird,
und sogar in der Mathematik gibt es viele unterschiedliche Definitionen der Stabilitét. Diese
Definitionen haben {iblicherweise gemeinsam, dass man die Losungen eines Prozesses unter
kleinen Verdnderungen der Anfangsbedingungen untersucht.

In dieser Dissertation wird eine Form der Stabilitdt behandelt, die Allan in [5] eingefiihrt
hat. Im Sinne von Allan ist ein Element x eines kommutativen Ringes R genau dann stabil,
wenn man fir jede Folge (by,)nen aus R eine Losung (a,)nen fiir das folgende unendliche
Gleichungssystem findet:

a1 = xas + by
as = xag + by

a3 = xag4 + b3

Hierbei beschreibt die Folge (by,)nen die oben erwéhnte Storung.

Allans Motivation, sich mit dieser Art der Stabilitdt zu beschéftigen, hat seinen Ursprung in
einem seiner Artikel [2] aus dem Jahre 1972. Dort untersuchte er die Moglichkeit, die Algebra
der formalen Potenzreihen in eine Banachalgebra einzubetten. Dabei konnte er beweisen, dass
fiir eine kommutative Banachalgebra mit Einselement die folgenden Aussagen dquivalent sind:

1. Es gibt einen Homomorphismus 6, : C[[X]] — A, so dass 0,(X) =z .

2. z € rad(A) und zx ist stabil,

wobei C[[X]] die Algebra der formalen Potenzreihen mit komplexen Koeffizienten ist und
rad(A) das Radikal von A, d.h. der Schnitt aller maximalen Ideale in A. Natiirlich hat Allan
damals noch nicht den Begriff der Stabilitit verwendet, allerdings beschrieb er eine Eigen-
schaft des Elementes x, die im Falle einer Banachalgebra dquivalent zur Stabilitét ist (vgl. [5,
Theorem 4.7]). Er konnte das obige Theorem nutzen, um die Existenz eines unstetigen Homo-
morphismus zwischen zwei Banachalgebren nachzuweisen. Auferdem untersuchte er weitere
Konsequenzen daraus im Zusammenhang mit der Theorie der automatischen Stetigkeit in
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[2] und [6]. Da er zudem ein analoges Resultat fiir Fréchet-Algebren beweisen konnte (vgl.
|7, Theorem 19]), beinhalteten seine Untersuchungen ebenfalls jene Algebren. Somit konnte
dieses Thema auch im Zusammenhang mit dem bekannten ungeldsten Problem von Michael
von Interesse sein. Dieses Problem behandelt die Frage, ob jeder Homomorphismus von einer
Fréchet-Algebra in die Menge der komplexen Zahlen stetig ist.

Wie bereits im Zitat zu Beginn erwéhnt wurde, war ein Aspekt der Arbeit Allans mit stabilen
Elementen die Frage, ob das Produkt zweier stabiler Elemente wieder stabil ist. Der Urprung
dieser Fragestellung wurde von Allan nicht beschrieben, wenngleich diese Frage an sich bereits
interessant ist. Er konnte zeigen, dass sich im Falle kommutativer Banachalgebren und kom-
mutativer Fréchet-Algebren die Stabilitét tatsichlich auf das Produkt iibertragt. Dies gelang
ihm durch geeignete Charakterisierungen dieser Eigenschaft in den entsprechenden Algebren.

Das Hauptthema dieser Dissertation ist die Erweiterung der Ergebnisse Allans iiber stabile
Elemente auf allgemeinere topologische Algebren. Dazu werden Methoden aus dem Gebiet
der homologischen Algebra verwendet, welche von V. P. Palamodov in den 1960er und 1970er
Jahren eingefithrt wurden (vgl. [18] and [19]). Auf der einen Seite ermdglichen diese Metho-
den einen leichteren Zugang zu Allans Ergebnissen iiber stabile Elemente in Fréchet-Algebren,
andererseits sind sie auch noch unter allgemeineren Voraussetzungen anwendbar.

Zwar fiihrt auch dieser Ansatz nicht zu einer endgiiltigen Antwort auf die Ausgangsfrage der
Stabilitdt von Produkten, d.h. entweder zu einem Beweis, dass das Produkt von stabilen
Elementen stests stabil ist oder zu einem Gegenbeispiel eines kommutativen Ringes, indem es
zwei stabile Elemente gibt, deren Produkt nicht stabil ist. Allerdings wird in der vorliegenden
Arbeit gezeigt, dass in allen wichtigen Situationen, die man tiblicherweise in der Funktional-
analysis betrachtet, die Antwort positiv ist.

Im ersten Kapitel der Dissertation werden Allans Definition der Stabilitdt und Palamodovs
Arbeiten mit dem projektiven Limes Funktor ProjA zusammengefithrt. Dazu werden nach
der Definition der Stabilitdt einige Folgerungen und Beispiele betrachtet und schlieflich wird
gezeigt, dass die Stabilitdt eines Elementes = dquivalent zu einer Bedingung an den abgelei-
teten Funktor des projektiven Limes Funktors eines speziellen projektiven Spektrums A, ist.
Diese Bedingung bezeichnet man iiblicherweise mit Proj! A = 0. Dabei hingt das projek-
tive Spektrum A, von der Multiplikation M, ab, die ein Element y auf das Produkt zy ab-
bildet. Aufgrund der Aquivalenz ist es zweckdienlich, Resultate {iber den abgeleiteten Funktor
anzuwenden, insbesondere wird eine notwendige Bedingung fiir Proj!A = 0 gezeigt. Dabei
werden die Betrachtungen in diesem Abschnitt der Arbeit rein algebraisch bleiben, d.h. ohne
jede topologische Voraussetzung.

Danach wird die Stabilitét unter weiteren topologischen Annahmen charakterisiert. Zu diesem
Zweck wird aus einem sogenannten Mittag-Leffler-Lemma von R. Arens [9, Theorem 2.4] eine
hinreichende Bedingung fiir Proj!.A = 0 im Kontext vollstindiger metrisierbarer Gruppen
abgeleitet. Dies fiihrt dann zu den Ergbnissen Allans ohne die Anwendung der Theorie der
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Einbettung der formalen Potenzreihen. Ferner erhélt man als unmittelbare Konsequenz, dass
in Fréchet-Algebren das Produkt stabiler Elemente stabil ist. Abschliefsend wird noch die
Stabilitéat in einigen typischen Beispielen von Banach- und Fréchet-Algebren untersucht.

Das dritte Kapitel beinhaltet dann die Untersuchung von LB-Algebren. Dabei wird eine
Charakterisierung der Bedingung Proj!A = 0 von V. S. Retakh [20] und V. P. Palamodov
[19, Theorem 5.4] verwendet, um eine geeignete Charakterisierung der Stabilitit zu finden, von
der man ableiten kann, dass wieder das Produkt zweier stabiler Elemente stabil ist. Zusétz-
lich werden die stabilen Elemente in einigen Beispielen von LB-Algebren bestimmt und zum
Abschluss des Abschnittes wird ein weiteres Ergebnis von Allan fiir Fréchet-Algebren auf LB-
Algebren iibertragen. Dieses Ergebnis besagt, dass in einer LB-Algebra A fiir ein stabiles x
aus A das Ideal I(x) =,y 2" A die Bedingung M, (I(z)) = I(x) erfiillt.

Im letzten Kapitel der Arbeit werden dann lokalkonvexe topologische Algebren mit Geweben
betrachtet, die Verallgemeinerungen von Fréchet-Algebren und LB-Algebren darstellen. Diese
topologischen Algebren wurden von M. de Wilde in [12] im Zusammenhang mit dem Satz vom
abgeschlossenen Graphen eingefiithrt. Fiir solche Rdume konnten L. Frerick, D. Kunkle und
J. Wengenroth in [13] eine Charakterisierung der Bedingung Proj' A = 0 beweisen. Unter
einer weiteren Voraussetzung an die Gewebe wird dann das Hauptresultat der Dissertation
formuliert:

In jeder kommutativen lokalkonvexen Hausdorffschen topologischen Algebra, die ein multi-
plikatives Gewebe besitzt, ist das Produkt stabiler Elemente stabil.

Zum Abschlufs werden dann einige Vererbungseigenschaften dieser topologischen Algebren
bewiesen, was zeigt, dass sich das Ergebnis von Allan auf eine grofe Klasse topologischer
Algebren iibertragt.



