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Zusammenfassung 

In unserer heutigen globalisierten Welt sind Waldökosysteme einem wachsenden Druck 

seitens ökonomischer Einflüsse und ökologischer Veränderungen, insbesondere als Folge des 

Klimawandels, ausgesetzt. Um die nachhaltige Entwicklung von Wäldern und ihre wichtigen 

Ökosystemdienstleistungen, beispielsweise den Schutz vor Bodenerosion, auch für zukünftige 

Generationen zu gewährleisten, ist es unverzichtbar, den Zustand und Zustandsveränderungen 

von Wäldern zu beobachten sowie ihre zukünftige Entwicklung zu prognostizieren. Für 

solche Prognosen werden zumeist ökophysiologische Waldwachstumsmodelle eingesetzt, die 

pflanzenphysiologische Wachstumsprozesse in Abhängigkeit externer Umwelteinflüsse 

abstrahieren bzw. simulieren. Der Grad der Modellabstraktion, d.h. die Komplexität der 

modellierten Wachstumsprozesse und -faktoren, entscheidet über die Praxistauglichkeit eines 

Modells. Da die moderne Forstwirtschaft einen ganzheitlichen Waldmanagement-Ansatz 

verfolgt, der die vielseitigen Ökosystemfunktionen berücksichtigt, verschwimmt zunehmend 

die Grenze zwischen den forschungsorientierten ökophysiologischen Modellen und den auf 

die Holzertragsschätzung ausgerichteten empirischen Modellen. Unabhängig vom Modelltyp 

ist jedoch eine Modellkalibrierung und -validierung anhand forstlicher Referenzdaten 

erforderlich.  

Da die zentralen Parameter der forstlichen Wachstumsmodelle, die Biomassekompartimente, 

aufgrund der Anzahl und Dimension der Bäume in Wäldern nur sehr eingeschränkt direkt 

gemessen werden können, kommen in der Praxis sogenannte allometrische Beziehungen zum 

Einsatz. Diese verknüpfen die einzelnen Biomassekompartimente eines Baumes mit 

Messgrößen der Baumstruktur, die relativ einfach direkt erhoben werden können. Zu den 

wichtigsten dieser strukturellen Messgrößen zählen die Baumhöhe, der Stammdurchmesser, 

die Bestandsdichte (Bäume pro Fläche) sowie der Blattflächenindex. Die traditionell zur 

Bestimmung dieser Parameter eingesetzten Methoden sind vorwiegend manuelle Verfahren, 

die zeit- und kostenaufwendig sind. Die Datenerhebung ist somit zwangsläufig ineffizient und 

kann nur eingeschränkt die horizontale und vertikale Variabilität der strukturellen Größen und 

damit die Bestandsstruktur erfassen. Da die Bestandsstruktur das Wachstum der Bäume 

beeinflusst, ist die dreidimensionale Erfassung der Struktur jedoch erforderlich, um das 

Waldwachstum realistisch modellieren zu können. Bodengestützte Fernerkundung (FE) bietet 

die Möglichkeit, die Einschränkungen der traditionellen Messverfahren zu umgehen. Die 
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fernerkundlichen Verfahren haben den Vorteil, dass sie automatisierbar sind und folglich eine 

höhere Datenerhebungseffizienz und räumliche Abdeckung erlauben. Zudem ermöglichen 

bestimmte FE-Sensoren (terrestrische Laserscanner) eine dreidimensionale Erfassung der 

Bestandsstruktur. Die Ableitung der genannten strukturellen Forstparameter mittels 

bodengestützter Fernerkundung ist jedoch noch nicht hinreichend standardisiert. So besteht 

zum Beispiel noch erheblicher Forschungsbedarf, wie diese Methoden praktisch in 

Waldwachstumsmodelle eingebunden werden können und welche Faktoren die Ableitung der 

strukturellen Parameter beeinflussen.  

Ziel der vorliegenden Arbeit war daher, für zwei bodengestützte fernerkundliche Methoden 

(Hemisphärische Photographie und Terrestrisches Laserscanning) Einflussfaktoren zu 

analysieren, die bis dato noch nicht oder nur wenig untersucht wurden. Zudem sollte ein 

ökophysiologisch-basiertes Modell mit den erhobenen Fernerkundungsdaten kalibriert 

werden, um exemplarisch die bodengestützte Fernerkundung in Waldwachstumsmodelle zu 

integrieren. Diese Ziele wurden umfassend erreicht. Somit konnte die Arbeit erheblich zu 

einer Standardisierung der bodengestützten fernerkundlichen Methoden für die Ableitung der 

strukturellen Parameter Blattflächenindex, Stammdichte und Stammdurchmesser beitragen. 

Hinsichtlich der Kalibrierung von Waldwachstumsmodellen konnte gezeigt werden, dass die 

Verwendung dieser Methoden nur unter gewissen Einschränkungen möglich ist. Diese 

Limitationen sind jedoch teilweise auf die Erhebungsmethodik zurückzuführen, so dass mit 

deren Optimierung künftig eine verbesserte Nutzbarkeit der bodengestützten fernerkundlichen 

Methoden für die Modellkalibrierung zu erwarten ist. Zudem wurden durch die vorliegende 

Arbeit Schwachstellen des verwendeten Waldwachstumsmodells aufgezeigt. Abschließend 

wurden hierfür mögliche Lösungsansätze präsentiert, die auf einer Kombination von boden- 

und luftgestützter Fernerkundung basieren. Diese Verknüpfung unterschiedlicher fern-

erkundlicher Betrachtungsebenen wird erheblich zu einem zukunftsfähigen Waldmanagement 

beitragen, um eine nachhaltige Waldentwicklung – auch unter den wachsenden ökonomischen 

Zwängen und ökologischen Veränderungen – zu gewährleisten.                                                
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1 Forest development, structure, and growth 

In light of the increasing pressures from climatic, ecological, and economic forces, the 

monitoring and modelling of forest development is vital to provide information required for 

the alleviation of these pressures so that forests maintain their ecosystem services (Achard 

and Hansen, 2013). These services are diverse and include for example carbon storage, the 

prevention of soil erosion, or the provision of sustenance. This multi-purpose orientation of 

forest growth monitoring and modelling deviates distinctly from the management focus of 

traditional forestry, i.e. yield prediction, management planning, etc. (Burkhart and Tomé, 

2012). Today’s forestry orientation reflects not only the increase in knowledge about forest 

ecosystems and their highly complex functioning and interaction with other ecosystems but 

also the growing awareness that forests require protection to ensure a sustainable provision of 

their ecosystem services, i.e. to warrant a sustainable forest development. Forest development 

is closely linked to forest structure as it is changes in forest structure that are the most visible 

manifestation of forest development. So how is forest structure defined and how exactly does 

it relate to forest development and forest growth in particular? 

Forest structure is defined as the three-dimensional distribution and arrangement of trees, and 

their parts and properties (Pretzsch, 2009; von Gadow, 2003). Therefore, forest structure and 

its description depend on the spatial scale at which forest structure is observed. Usually it is 

observed and described at the stand level, i.e. the basic forest management entity (Burkhart 

and Tomé, 2012). Forest and in particular forest canopy structure influence the exchange of 

material and energy with the lower atmosphere and the distribution of major environmental 

factors such as precipitation, radiation, and temperature within forest stands (Parker, 1995). 

As these factors affect tree growth, and tree growth in turn affects tree and stand structure, a 

feedback loop exists between forest structure and growth (Pretzsch, 2009).  

Since individual tree growth and structural changes are steered by resource competition 

between neighbouring trees, it is important to also take these tree level interactions into 

consideration for analysing and modelling the stand level growth. Therefore, descriptors that 

explicitly account for the three-dimensionality of stand structure are crucial for modelling 

physiological processes related to growth, such as photosynthesis and transpiration (e.g. 

Pretzsch, 2009; Zheng and Moskal, 2009). The feedback loop between forest structure and 

growth stretches not only across spatial scales, though, but also over time since forests are 
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open and dynamic systems. In addition, as the lifetime of trees well exceeds that of a human 

being, modelling structural-functional growth relationships is crucial to predict forest 

development (Pretzsch, 2009), especially with regard to climate change effects (e.g. Cannell 

et al., 1995; Kirschbaum, 2000). 
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2  Forest growth modelling and remote sensing 

In traditional forestry growth modelling or, more generally, the monitoring and prediction of 

stand development were mainly driven by economic considerations, i.e. to increase yield. This 

management orientation included the study of silvicultural practices (e.g. thinning) and their 

influence on stand growth and yield (Burkhart and Tomé, 2012). For this purpose, permanent 

monitoring sites were established as early as the 19
th

 century (Pretzsch, 2009). These provided 

real time series of stand development which formed the basis for the so-called yield tables: 

empirical relationships between yield and stand height, respectively stand height and age. 

These tables can be considered as the first stand-based “growth models” (Pretzsch, 2009). 

Since then, growth research has boosted the knowledge of growth factors and processes in 

increasing detail and complexity. This was accompanied by the development of models 

accounting for this “growing” knowledge at different scales.  

To date, forest growth models have become abundant, ranging from purely empirical to 

mechanistic matter balance models (e.g. Landsberg and Sands, 2011). The latter are also 

referred to as process-based or eco-physiological models because they are based on modelling 

the physiological processes of growth and the underlying mechanisms. As forests are open 

systems and their growth is therefore influenced by the environment, the explicit integration 

of cause-effect relationships between growth and environmental factors such as soil water and 

fertility has proven to be an important part of these models (e.g. Landsberg and Sands, 2011). 

Hybrid models that feature both empirical and mechanistic characteristics have also received 

increased attention (Mäkelä et al., 2000).  

Forest growth models can also be classified according to the temporal and spatial resolution 

of the modelled processes, ranging from seconds to centuries, and from the individual tree to 

landscape level (Pretzsch, 2009). The scale has important implications for the requirement of 

the data input into these models as well as for the data output. In particular, individual tree-

based and stand-based eco-physiological models, two of the most common types of growth 

models, require a huge amount of data for model initialisation, calibration, and evaluation. As 

this kind of data is not readily available, eco-physiological models, despite their theoretical 

advantages over the empirical models, have been mainly applied as research tools to date. 

Their practical use in forest management remains limited (e.g. Mäkelä et al., 2000; Tickle et 

al., 2001). Nevertheless, the eco-physiological models are of value for testing potential effects 
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of climate change or silvicultural practices on growth (Kirschbaum, 2000). Ultimately, the 

model choice depends on the objective of the modelling. Therefore, various researchers have 

pointed out that it is not a question of good and bad but rather of finding the model that best 

suits the purpose at hand (e.g. Burkhart and Tomé, 2012; Pretzsch, 2009).             

Nevertheless, in practice, the choice of model is largely driven by data input requirements. 

The increasing detail and complexity of forest growth models has necessitated the availability 

of data matching this scale, both spatially and temporally. Long-term growth and yield 

monitoring has provided data invaluable for the calibration and validation of models and for 

revealing long-term effects of environmental factors (e.g. air pollution) and silvicultural 

practices (e.g. thinning) on growth. These monitoring sites are, however, limited in their 

coverage of data required by eco-physiological models and in their coverage of the spatial 

heterogeneity of forest productivity. Due to these limitations, alternative means to provide the 

required data have gained importance, including standard inventory data collected on a large 

scale for national forest inventories (e.g. Pretzsch, 2009; von Gadow, 2003). While the 

construction of artificial time series of forest development from this data was shown to be of 

value, traditional forest inventory is manual, labour intensive and time-consuming work and is 

therefore also limited in its spatial coverage and sampling efficiency.  

The use of remote sensing (RS) has been suggested to overcome these problems (e.g. Kangas 

and Maltamo, 2009; Zheng and Moskal, 2009). Remote sensing is the science of collecting 

information about an object based on measurements made with a device that is not in direct 

contact with the object (Lillesand and Kiefer, 2000). This definition is usually associated with 

sensors utilizing electromagnetic energy for earth observation, but in a broader context this 

definition can include devices such as sonar sensors or even photography (Cracknell and 

Hayes, 1991). RS-systems are also often classified according to their platform, e.g. satellites 

or aircrafts
1
.  

With regard to the use of RS in forestry and its applications, RS has proven to be capable of 

providing valuable information on the type and coverage of forests, their state and dynamics 

(e.g. Achard and Hansen, 2013, Wulder and Franklin, 2003). This has been achieved by the 

successful retrieval of forest structural and bio-physical parameters from RS-observations at 

                                                 
1 Since a detailed treatment of remote sensing sensors, platforms, and principles is beyond the scope of this dissertation, the 

reader is referred to the textbooks by Lillesand and Kiefer (2000) and Richards and Jia (2006). 



Chapter I  2 Forest growth modelling and remote sensing 

6 

 

multiple scales. These range from global scale studies on forest areas and their productivity 

(e.g. Nightingale et al., 2007; Turner et al., 2006) – crucial for the support of environmental 

programmes such as REDD
2
 (Reducing Emissions from Deforestation and Forest 

Degradation) – to national and regional scale studies on forest type and tree species 

distribution (e.g. Stoffels et al., 2012; Wolter et al., 1995), relevant to upscaling and 

supporting traditional forest inventories. The mentioned applications are mainly based on 

multi-spectral sensors on satellite platforms with corresponding medium to low spatial 

resolutions and global coverage such as NASA’s Landsat or TERRA MODIS.  

By contrast, airborne sensors with high spatial and/or spectral resolutions such as HyMAP, 

Hyperion, or LiDAR (Light Detection and Ranging) technology facilitate regional or local 

scale studies on structural and physiological properties of canopies (e.g. Kokaly et al., 2009; 

Le Maire et al., 2008; Schlerf et al., 2005; Solberg, 2010; Zhao and Popescu, 2009). 

Information on these properties is important to assess the eco-physiological sensitivity of tree 

species to changing environmental conditions (Hill, 2010). Yet, an aspect common to all these 

different studies and RS-sensors is the necessity for ground reference data. These can be 

obtained by manual in situ measurements or by ground-based remote sensing sensors such as 

spectroradiometers (e.g. Lillesand and Kiefer, 2000).    

With regard to the integration of remotely sensed data into forest growth models, two main 

potential links can be identified: The use of RS to (1) initialise the model, i.e. to provide 

information on factors that drive the model such as meteorological or site data, and (2) to 

calibrate the model, i.e. to assign values to model parameters. Ideally, parameters are derived 

by direct measurements but as these are often not feasible, parameterization or parameter 

estimation is usually applied (e.g. Landsberg and Sands, 2011; Sands, 2004). This process 

involves fitting the model outputs to observed data, where the set of parameters is obtained by 

minimizing the residuals of this fit. Figure 1 depicts these conceptual links using the example 

of a schematic eco-physiological model.  

                                                 
2 http://www.un-redd.org/ 



Chapter I  2 Forest growth modelling and remote sensing 

7 

 

 
Figure 1: Conceptual framework for the integration of remote sensing data into eco-physiological forest 

growth models. A schematic model structure is shown on the left, i.e. climate and site factor are the input 

data that drive the modelling of growth-related eco-physiological processes. The basic simulation output 

are measures of biomass production and growth. The potential sources of data required by these models 

are depicted in the middle and on the right side. The conceptual links of this data to main modelling tasks 

(calibration, etc.) are shown in light blue.      

The exact links, however, mainly depend on the model type and structure and the properties 

of the RS-data. For example, the high temporal resolution of sensors (i.e. the frequency with 

which a fixed spot on earth is repetitively observed by a sensor), in particular the satellite-

based sensors such as the upcoming German EnMAP
3
, will facilitate a constant update of the 

model parameterization by adjusting model simulations to continuous RS-observations of 

forest structural and bio-physical parameters.  

A third potential link is the evaluation of the model, respectively of model simulations with 

RS-observations. However, this implies that these observations yield some kind of ground 

truth which may be questioned as forest structural and bio-physical parameters derived from 

airborne and satellite RS are usually inferred from surrogate variables (e.g. vegetation 

indices). In addition, as airborne and satellite RS “senses” forests from above, the canopy 

structure influences the determination of these surrogate variables.  

By contrast, as ground-based RS senses forests from below the canopy, these sensors might 

hold the potential to obtain much more accurate in situ data to calibrate and evaluate growth 

                                                 
3 http://www.enmap.org/ 
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models (e.g. Watt and Donoghue, 2005). While the integration of airborne and satellite RS 

data into forest growth models has been a main focus in previous research (e.g. Coops et al., 

1998; Coops et al., 2009; Coops and Waring, 2001; Le Maire et al., 2005; Waring et al., 

2010), the use of ground-based RS in growth modelling has not received much attention so 

far. This is surprising as ground-based RS, in particular terrestrial laser scanning, has been 

shown to successfully retrieve a wide range of forest parameters (see e.g. the review of Dassot 

et al., 2011). In the following sections, the reasons for this disparity will be illustrated, leading 

to the formulation of the general objectives of this PhD thesis. 
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3 Forest structural parameters  

Due to the strong linkage of forest structure and growth through feedback loops (Pretzsch, 

2009), structural parameters constitute key parameters in forest growth models regardless of 

model type. However, which exact forest structural parameters are used and how these are 

implemented in a model depends largely on the model type. For example, while for empirical 

yield table models stand-based measures such as mean stem diameter at breast height (DBH) 

or mean tree height suffice, more complex structural measures such as crown shape and cover 

are required for individual tree models. Yet, all these different models have in common that 

they yield a measure of biomass production and growth.  

As the direct determination of forest biomass is destructive and practically not feasible due to 

the size and number of trees within forest stands, the principle of allometry is traditionally 

used to infer forest (i.e. tree and stand) biomass. This estimation is based on more accessible, 

non-destructive measurements of the structural parameters stocking (number of trees per 

defined area), stem diameter, and tree height for woody biomass on the one hand, and of leaf 

area
4
 for foliage biomass on the other (e.g. Sands, 2004; Van Laar and Akça, 2007). The 

measurement of these parameters is therefore of particular importance to forest growth 

modelling; hence the above-mentioned can be considered as core structural parameters.   

In the following, the methods that are traditionally applied in forestry to measure these core 

structural parameters are outlined and their main limitations are delineated. Possible solutions 

to overcome these limitations by way of ground-based RS are then presented in Section 4. 

The core parameters are grouped into standard forest inventory parameters (stocking, stem 

diameter, tree height) and into measures of canopy structure (leaf area).  

3.1 Leaf area  

Leaf biomass is traditionally inferred from an allometric relation with above-ground biomass 

or from measurements of litter fall (Pretzsch, 2009). As the construction of leaf biomass 

allometric equations is very time-consuming and laborious, it suffers from small sample sizes 

and a restricted transferability. Thus litter fall measurements are routinely used for monitoring 

of forest leaf dynamics and growth.  

                                                 
4 In the context of this study the term leaf area is used to denote both leaf and needle area. 



Chapter I  3 Forest structural parameters 

10 

 

However, as these are also labour intensive and consequently mostly used to derive annual or 

seasonal plot-based averages of a limited spatial coverage (i.e. they are not able to depict 

temporal and spatial variability), indirect measures of leaf area to estimate leaf biomass have 

gained importance. It has to be noted that due to the key role of leaf area in photosynthesis 

and related physiological processes as well as in the interaction between bio- and atmosphere 

(e.g. rainfall interception, deposition of gases and particulates), determining leaf area is not 

only important for growth modelling but indeed crucial for a wide range of scientific 

disciplines and applications such as microclimate and light regime studies (e.g. Bittner et al., 

2012; Parker, 1995) or for assessing the effects of air pollution on tree vitality (e.g. Fleck et 

al., 2012). 

Leaf area is commonly defined in relation to ground area and expressed as the leaf area index 

(LAI). Various definitions of LAI exist, accounting for differences in the shape of leaves and 

needles, and in the shape of flat and non-flat leaves (see Gonsamo, 2009, for a detailed 

discussion of the different LAI definitions). One of the most common definitions was given 

by Chen and Black (1992) who define LAI as half the total leaf area per unit ground surface 

area. Leaf area is also sometimes defined in relation to volume as foliage density, called the 

foliage area volume density (Jupp et al., 2008). Methods for determining LAI can be grouped 

into direct and indirect methods. The direct methods comprise destructive sampling and litter 

fall measurements; the indirect methods are based on direct leaf contact such as the inclined 

point quadrat (Warren-Wilson, 1960) or on indirect optical measurements of light attenuation 

within the canopy (e.g. Jonckheere et al., 2004).  

The main limitation of the direct LAI methods is their practical feasibility on a large scale. 

Therefore, the indirect optical ground-based remote sensing methods are used more routinely 

(e.g. Strahler et al., 2008). These can be further distinguished depending on their source of 

radiation, i.e. passive optical sensors utilizing the sun’s radiation and active optical sensors 

providing their own source of radiation (e.g. Zheng and Moskal, 2009). Of the passive optical 

methods, hemispherical photography has become prevalent for a number of reasons, most 

notably for the ability to capture the canopy structure, i.e. providing an image of the spatial 

distribution of leaves, branches, stems, and gaps within the canopy (e.g. Frazer et al., 2001; 

Jonckheere et al., 2004). Other passive optical methods are not able to resolve the canopy 

structure (i.e. they average the incoming radiation to yield LAI), which constitutes one of 

their main limitations. The use of hemispherical photography to determine LAI and related 
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structural parameters is treated in more detail in Section 4.1. Active optical LAI sensors (i.e. 

terrestrial laser scanning) are discussed in Section 4.2. 

3.2 Stocking, stem diameter, tree height  

Standard forest inventory includes the measurement of the core structural parameters stocking 

(tree density), stem diameter, and tree height. These are usually carried out on a sub-sample of 

all trees within the inventory plot with the sample size depending on the sampling scheme 

applied. To standardize measurements for state and national inventories, special sampling 

designs such as concentric circular plots or point sampling based on the Bitterlich method 

were developed (e.g. Kangas and Maltamo, 2009; Van Laar and Akça, 2007).  

To derive stocking, the number of trees within the inventory plot is recorded but usually 

without measuring exact tree locations. Stem diameter is measured at a standard stem height 

of 1.3 m (diameter at breast height or short DBH) using a tape or caliper; tree height is mainly 

determined using instruments based on trigonometry such as hypsometers (Van Laar and 

Akça, 2007). DBH and tree height are traditionally used to estimate tree volume and biomass 

based on species-specific allometric equations, standard volume tables or form factors (e.g. 

Pretzsch, 2009; Van Laar and Akça, 2007).  

The standard inventory measurements of the core structural parameters are manual, which 

means that their accuracy is affected by an operator bias (e.g. Köhl et al., 2006; Van Laar and 

Akça, 2007). It is, however, difficult to quantify the proportion of this operator bias to the 

total measurement uncertainty, due to the difficulty to obtain unbiased control measurements 

and due to the general interference of different systematic and random error components (e.g. 

Berger et al., 2012; Köhl et al., 2006). In addition, site and stand properties such as slope, 

stand density or canopy layering impact the magnitude of measurement errors, most notably 

for tree height measurements (e.g. Van Laar and Akça, 2007).  

As “true” forest reference measurements are hardly feasible (due to the size of trees), real 

accuracies are rarely specified for the standard inventory methods. Instead, the measurement 

uncertainty is usually expressed by the variability of repeated measurements, i.e. its precision 

(e.g. West, 2009). However, care should be exercised when comparing precision values from 

different studies because the calculation of precision is sensitive to small samples and outliers 

(Van Laar and Akça, 2007). Another drawback of the manual inventory measurements is that 
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they are time-consuming and therefore often limited in their temporal and spatial sampling. 

With regard to the use of the core structural parameters for forest growth modelling, Pretzsch 

(2009) points out that while “stand structure parameters are useful for analyzing and modeling 

forest stands dynamics”, they are usually based on stand-level inventory measurements that 

are not spatially explicit and therefore unable to capture the three-dimensionality of stand 

structure, its most important trait. 
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4 Ground-based remote sensing  

Ground-based remote sensing techniques have received increased attention in forestry and 

forest science due to the main limitations of the traditional measurements of forest structural 

parameters, namely the limited spatial and temporal coverage (resulting from the time-

consuming data collection), the lack of an explicit spatial description of stand structure and 

the potential measurement error associated with an operator bias of the manual methods (e.g. 

Kangas and Maltamo, 2009). In this work, the focus lies on exploring both a technique well 

established in canopy structural analysis (hemispherical photography) and a state-of-the-art 

technique (terrestrial laser scanning) which has shown great promise for the retrieval of the 

standard inventory parameters and for canopy structural analysis. 

4.1  Hemispherical photography 

As already mentioned in Section 3.1, the ability to resolve canopy structure is the main 

advantage of hemispherical photography over the other passive optical instruments. Since 

hemispherical cameras are also comparatively cheap, easy to use, and do not rely on above-

canopy measurements required for most other passive optical instruments, they have become 

widely used tools for canopy structural analysis.  

Hemispherical photography (HP) or digital hemispherical photography (DHP) combines the 

use of commercial cameras and specialized hemispherical lenses to derive forest canopy 

structural parameters such as LAI, gap fraction, and canopy cover. As the name implies, the 

hemispherical lenses, also called fisheye lenses, produce a hemispherical image projection. 

Fisheye lenses can differ in their angle of view (e.g. capturing the full 180° hemisphere, called 

circular fisheye lenses, or capturing less than 180°, called full-frame fisheye lenses) and in 

their image distortion. For canopy structural analysis, the camera is usually mounted onto a 

tripod, pointed upwards, oriented, and levelled. Photos are then taken based on a number of 

specific camera settings (see Walter, 2009, for a detailed treatment of the hemispherical photo 

acquisition).  

To derive canopy structural parameters, the most important step is the thematic classification 

of the hemispherical photo, i.e. the image pixels have to be separated into sky and canopy 

(foliage, wood) pixels. This separation, which is also referred to as thresholding, can be 
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carried out manually or automatically (using special image processing techniques) and can be 

based on either individual image channels or on the RGB colour image (e.g. Jonckheere et al., 

2005; Walter, 2009). The proportion of sky pixels to total image pixels is taken as the gap 

fraction which, given certain theoretical assumptions about the canopy structure such as a 

random distribution of foliage, represents the gap frequency, i.e. the probability of non-

interception of light passing through the forest canopy (e.g. Weiss et al., 2004). This gap 

probability or gap fraction is related to LAI according to the Monsi and Saeki (1953) 

formulation of the Lambert-Beer law, which is the common theoretical framework for the 

indirect optical LAI methods: 

                          (1) 

Where Pgap is gap probability, G is the foliage projection function toward a zenith angle θ, 

and the cosine of θ is used to account for different path lengths through the canopy as a 

function of zenith angle. Different solutions have been proposed to solve Equation (1) and the 

unknown G function (e.g. Lang, 1986; Miller, 1967). Particular modifications of Equation (1) 

have been proposed as in reality the distribution of canopy elements often deviates from the 

assumption of randomness (e.g. leaves are clumped around branches, tree crowns are clumped 

into tree clusters) and woody canopy elements contribute to the light interception. These 

modifications account for the deviations by including correction factors such as the clumping 

index and the wood area index (see Weiss et al., 2004, for a detailed review). Since these 

factors cannot be measured directly, they are usually inferred from hemispherical photos (e.g. 

Leblanc et al., 2005).  

Despite its establishment as a standard method for retrieval of canopy structural parameters, 

DHP is also subject to measurement uncertainties. These stem from effects of camera settings 

such as image resolution and exposure (e.g. Frazer et al., 2001; Macfarlane et al., 2000), 

camera and lens type (e.g. Greve, 2010; Inoue et al., 2004) as well as threshold type and 

algorithms (e.g. Jonckheere et al., 2005; Leblanc et al., 2005; Nobis and Hunziker, 2005). 

This variety of influences is also the main reason why the acquisition and processing of 

hemispherical photos has not been successfully standardized to yield consistent estimates of 

LAI and gap fraction so far. One major drawback that DHP shares with other passive optical 

sensors is the sensitivity to variable sky illumination conditions, i.e. a diffuse sky illumination 

is required to warrant reliable and consistent measurements (e.g. Strahler et al., 2008). Direct 

sunlight in particular distorts the passive optical measurements and these distortions cannot be 
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corrected effectively. As ideal diffuse sky illumination conditions are sometimes hard to come 

by depending on weather conditions, the application of passive optical LAI sensors can be 

severely limited (e.g. Jupp et al., 2008). The use of active optical sensors such as terrestrial 

laser scanning is the only real solution to overcome this problem as these sensors have an own 

light source and are much less sensitive to ambient light conditions (e.g. Ramirez et al., 2013; 

Zhao et al., 2011). In addition, passive optical sensors are at best 2-D (Zheng and Moskal, 

2009), hence they cannot resolve the three-dimensionality of canopy structure, an important 

characteristic of forest stand structure and key to individual tree growth conditions (Pretzsch, 

2009). This limitation is also of relevance to the retrieval of the clumping index as clumping 

is a 3-D structural characteristic; the use of 2-D hemispherical photos to estimate such a 3-D 

parameter is therefore inherently limited. 

4.2 Terrestrial laser scanning 

Terrestrial laser scanning (TLS), also referred to as terrestrial LiDAR (Light Detection and 

Ranging), is an active optical ranging sensor based on the emission of a highly collimated 

laser pulse and the detection of potential pulse returns. These can be registered by the scanner 

if the emitted laser pulse is reflected diffusely by a target. If the pulse is reflected specularly 

(i.e. mirror-like), no return signal is registered. The distance between scanner and target can 

be measured based on different range measurement principles, the most common of which are 

the phase-shift and the time-of-flight principles (Newnham et al., 2012).  

While the phase-shift is based on measuring the phase difference between the emitted and 

received continuous laser beam, the time-of-flight principle is based on measuring the time 

difference between the emission of a discrete laser pulse and the registering of a reflected 

return pulse (e.g. Van Genechten, 2008). Phase-shift scanners can only record a single range 

per emitted pulse; time-of-flight scanners can record multiple ranges per emitted pulse or 

even continuously record the pulse returns as a waveform (Newnham et al., 2012). The 

ranging principles also differ in a number of key scanner properties such as maximum range, 

range errors, and scan speed (e.g. Dassot et al., 2011).  

However, both scanner systems yield explicit spatial information, i.e. a target’s position 

relative to the scanner’s beam emission point as well as the intensity of the return pulse, 

which allows the target identification assuming known target reflectance properties. Based on 
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the rotation of the scanner head and optics around the vertical and horizontal axes, a 3-D 

model of the scanner’s surroundings can be obtained. This property constitutes one of the 

main advantages of TLS over the conventional inventory and canopy structural measurements 

(e.g. Zheng and Moskal, 2012, see also Sections 3.1 and 3.2) and potentially allows the direct 

determination of tree volume and biomass. In addition, TLS bears the potential to provide 

objective and consistent though not necessarily unbiased measurements as was shown by a 

number of studies (e.g. Lovell et al., 2011; Maas et al., 2008; Tansey et al., 2009). Another 

major advantage of TLS is that not only the scan data acquisition and processing but also the 

extraction of information from the scan data can be automated, therefore reducing the data 

workload and acquisition duration. This, in turn, enables the collection of larger samples, both 

spatially and temporally.  

With regard to the core forest structural parameters, TLS was used to successfully estimate 

stocking (e.g. Litkey et al., 2008; Strahler et al., 2008), DBH (e.g. Brolly and Király, 2009; 

Lovell et al., 2011), tree height (e.g. Antonarakis, 2011; Kankare et al., 2013; Maas et al., 

2008), and LAI (e.g. Jupp et al., 2008; Henning and Radtke, 2006; Moskal and Zheng, 2012). 

However, the measurement accuracies achieved in these studies vary strongly: RMSEs for 

DBH range from 1.48 cm (Maas et al., 2008) to 8 cm (Yao et al., 2011), RMSEs for the 

number of detected trees within the test plots range from 22 % (Thies and Spiecker, 2004) to 

100 % (Tansey et al., 2009), RMSEs for tree height range from 1.54 m (Kankare et al., 2013) 

to 4.55 m (Maas et al., 2008), and R² for TLS-derived LAI with LAI derived from other 

indirect optical sensors range from 0.3 (Zhao et al., 2011) to 0.87 (Zheng et al., 2013).  

Stem volume (e.g. Kankare et al., 2013) and biomass (e.g. Holopainen et al., 2011; Kankare et 

al., 2013; Yao et al., 2011) were also retrieved with TLS. Yao et al. (2011) estimated stand-

level above-ground biomass from TLS-derived stem diameters and stocking and achieved a 

RMSE of 21.54 t/ha. Based on harvesting of 64 trees, Kankare et al. (2013) developed tree 

species-specific linear models relating components of above-ground biomass (total, stem, and 

branch biomass) to TLS-based features such as crown height and stem volume. They found 

average RMSEs of 12.4% for total above-ground biomass, 15.7% for stem biomass, and 

30.2% for branch biomass. 

The variability in estimation accuracy of structural parameters observed through these studies 

is to a large degree due to differences in methodology (e.g. scan mode, scan data processing 
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and algorithms, reference data), in stand characteristics (e.g. tree species, stand density and 

development phase, canopy layering), in laser scanner properties (e.g. ranging principle and 

errors, laser wavelengths, beam divergence) and laser scan properties (e.g. scan resolution, 

integration time). These fundamental differences make it difficult to compare the findings of 

previously published studies and impede a comprehensive analysis of the potential of TLS for 

estimating forest structural parameters. Above all, this necessitates a systematic assessment of 

the above-mentioned factors. To date, only few studies have contributed to such an approach 

and they also rather focus on single isolated factors. These include the influence of scan mode 

(Maas et al., 2008; Thies and Spiecker, 2004), of circle fitting for DBH estimation (Brolly and 

Király, 2009; Tansey et al., 2009), of scanner properties (Danson et al., 2008; Newnham et 

al., 2012), and of LAI model parameters (Béland et al., 2014).  

In addition, most of the previously published studies were only experimental, i.e. they focused 

on investigating the general potential of TLS to estimate forest structural parameters instead 

of on the potential of its practical use in forest inventory and other applications. Nevertheless, 

the majority of these studies have contributed to the bigger picture by demonstrating the 

advantages, limitations, and challenges of TLS for the retrieval of forest structural parameters. 

Establishing such a framework is crucial for defining future research directions. Above all, 

assessing the limitations is an important part in the evaluation of a method as they usually 

define its practical application. For TLS, the effect of occlusion was shown to be the major 

limitation in its application for forest structural analysis (e.g. Béland et al., 2014; Watt and 

Donoghue, 2005; Yang et al., 2013).  

Occlusion refers to the shadowing of background objects by foreground objects that both lie 

in the same path of a laser beam. The magnitude of this effect mainly depends on stand 

structure, laser scanner properties, and the number of scans and their positions relative to 

surrounding objects. Occlusion can be so severe as to impede the retrieval of certain structural 

parameters. As TLS scans from below the canopy, this particularly affects measurements of 

the upper canopy structure such as tree height. For example, retrieving tree height proved to 

be impossible due to the dense canopy of a Corsican pine stand (Tansey et al., 2009) or only 

possible with gross error margins of up to 10 m as reported by Antonarakis (2011). Occlusion 

also strongly impacts canopy structural analyses such as gap probability and LAI, especially 

those based on 3-D TLS point clouds (e.g. Hilker et al., 2010)  
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5 Research objectives and outline of the PhD thesis 

Sections 1 and 2 illustrated the importance of the core forest structural parameters stocking, 

DBH, tree height, and LAI to forest growth modelling as these are routinely used to infer 

above-ground biomass components. The manual methods traditionally used to measure these 

parameters were addressed along with their main limitations in Section 3. In Section 4, two 

ground-based remote sensing techniques, one well established (DHP), the other state-of-the-

art (TLS), were presented. Their potential to overcome the limitations of the manual methods, 

and issues that necessitate further research were described. Despite the distinct advantages of 

TLS over DHP for canopy structural analysis (see Section 4), DHP was deliberately included 

in the overall research concept. This is because, at present, TLS is far from being as cost-

effective as DHP. Therefore, it is foreseen that DHP will remain the standard method of LAI 

retrieval for some time, which in turn necessitates the standardization of the hemispherical 

photo acquisition and processing.  

The issues that demand further research are similar for digital hemispherical photography and 

terrestrial laser scanning insofar as they deal with factors influencing the retrieval of the core 

structural parameters from these methods. As a comprehensive and systematic assessment of 

the various influences and their interrelations is still lacking, the main general research 

objective of this PhD thesis was to investigate factors that were not or only scarcely the focus 

of previous research. This included optimizing the retrieval of the core structural parameters 

stocking, DBH, and LAI (i.e. standardizing the data processing and parameter extraction) in 

order to provide unbiased and consistent in situ measurements that could be used to calibrate 

and evaluate forest growth models. Due to the unreliability of TLS tree height measurements, 

which results from the effect of occlusion (see Section 4.2), the estimation of tree height was 

not attempted in this thesis. Instead the extraction of stem diameter height profiles to infer 

stem volume was tested.  

In the context of forest growth modelling, the second main research objective of this thesis 

was to investigate whether estimates of the above-mentioned structural parameters including 

stem volume derived from ground-based passive and active optical remote sensing sensors 

can, in practice, be used to calibrate an eco-physiological forest growth model. Thereby, it is 

intended to exemplify the possible integration of RS-data into growth modelling (see Section 



Chapter I  5 Research objectives and outline of the PhD thesis 

19 

 

2). As part of these two general objectives, the following specific research objectives were 

formulated:               

(1) To assess the influence of external (exposure) and camera internal factors (radiometric 

image resolution, file format, and image band), and choice of threshold algorithm on the 

retrieval of gap fraction, LAI, and clumping index from hemispherical photography. 

Based on these evaluations, the focus then was to develop a standardized processing of 

hemispherical photos to warrant consistent and reproducible estimates of gap fraction 

and LAI (Chapter II).  

(2) To explore the potential of phase-shift terrestrial laser scanning to derive consistent 

estimates of gap fraction and LAI by assessing the effects of the main scan properties 

scan resolution (angular step size) and scan speed (pulses per second) as well as a 

scanner-specific noise compression and firmware based data filtering on the retrieval of 

these structural parameters. The comparison with the direct LAI method of litter fall 

measurement was also a primary aim of this investigation (Chapter III).    

(3) To explore the potential of phase-shift terrestrial laser scanning to retrieve stocking, 

stem diameter and volume by assessing the effects of circle fitting and TLS scan mode 

(Chapter IV) as well as the effects of scan resolution, scan speed, scanner-specific noise 

compression and firmware based data filtering (Chapter V) on the parameter retrieval. 

(4) To investigate the potential use of measurements of the core structural parameters 

stocking, DBH, and LAI derived from hemispherical photography and terrestrial laser 

scanning to calibrate an eco-physiological forest growth model. The comparison with 

model calibrations based on long-term growth data and conventional forest inventory 

data was also part of this study (Chapter VI).  

Figure 2 depicts how these specific research objectives are embedded in the structure of the 

dissertation. The Chapters II–V each constitutes a peer-reviewed journal publication. Chapter 

VI ties the research objectives of these publications together in a final study on forest growth 

modelling. In Chapter VII a summary of the achieved specific objectives and how they relate 

to the general research objectives of the dissertation is presented. The implications of these 

findings for future research directions are also discussed.        
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Figure 2: Structure of the cumulative dissertation. Chapters I, VI, and VII constitute the framework for 

the main research part of the thesis made up of 4 peer-reviewed journal publications. Chapter II covers 

the research objective 1, Chapter III covers objective 2, and Chapters IV and V cover objective 3. Chapter 

VI ties these research objectives together in a final study on forest growth modelling (objective 4). 
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a  b  s  t  r  a  c  t

Digital  hemispherical  photography  (DHP)  has  become  a widely  used  tool  for  the  estimation  of  forest
structural  attributes,  such  as  gap  fraction,  Leaf  Area  Index  (LAI),  effective  Plant  Area  Index  (PAIe),  and
clumping.  This  development  was  boosted  not  only  by  a rapid  technical  advance  in the field  of  digital
photography  but  also  by  the  inherent  advantages  of  DHP for  in  situ measurements  of  forest  structural
attributes.  However  the  major  drawback  of using  DHP  for the estimation  of  forest  structural  attributes  is
the lack  of standardization  which  impedes  a consistent  compatibility  with  other  indirect  methods.  This
lack of standardization  is mainly  due  to uncertainties  introduced  at the  stage  of  image  acquisition  and
processing.  Of  these,  the  determination  of  optimum  exposure  and  thresholding  in the  image processing
chain  are  two  major  influences.  In this  work  influences  on the estimation  of forest  structural  attributes,
namely  the  radiometric  image  resolution,  the file  format  and  the  image  band  selection,  were  studied,  in
particular  with  regard  to the  inter-dependence  with  exposure  and  the threshold  algorithm  applied.  For
this purpose  four  different  automatic  threshold  algorithms  (Ridler,  Otsu,  Minimum,  Isodata)  were  tested.
Results show  that  the  file  format  and the image  band  selection  influence  the estimation  of  gap  fraction,
PAIe and  clumping  indices.  The  magnitude  of  this  effect  however  varies  with  the threshold  algorithm
applied,  i.e.  with  a strong  effect  for the  Minimum  and  Isodata  algorithms  and  little  effect  for the Ridler
and  Otsu  algorithms.  The  radiometric  image  resolution  was  found  to cause  only  a  marginal  effect.  Based
on a comparison  with  LAI-2000  measurements  it could  also  be demonstrated  that  the  file format  and
the image  band  selection  affect  the determination  of  the  optimum  exposure.  To resolve  these  issues  an
efficient  approach  to standardizing  the  processing  of  hemispherical  images  is proposed.  This  approach
constitutes  the  stacking  of  five  differently  exposed  hemispherical  images  and  passing  them  to  an  auto-
mated  clustering  algorithm  (Isodata)  with  the  subsequent  generation  of gap  fraction  images.  The resulting
PAIe estimation  performs  better  than  or comparably  to  the  estimation  based  on  optimally  exposed  single
images.  In  addition  to being  robust  and  objective,  our  approach  provides  consistent  compatibility  with
the LAI-2000.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Ground-based measurements of Leaf Area Index

Ground truth or ground lies? The importance of ground ref-
erence data for the validation of remotely sensed parameters is
out of question. However, as remote and ground measurements
both suffer from various degrees of measurement uncertainties the
prime challenge is to minimize their magnitude. This is no triv-
ial task especially when considering forest structural attributes
which practically only allow for indirect measurements. One of
these parameters is the Leaf Area Index (LAI), commonly defined
as half the total leaf surface area per unit ground surface area

∗ Corresponding author. Tel.: +49 651 2014593; fax: +49 651 201 3815.
E-mail address: p.pueschel@uni-trier.de (P. Pueschel).

(Chen and Black, 1992). Since these parameters are routinely used
to drive ecophysiological models, the accuracy of their estimation
is of particular interest. While absolute accuracy may  be difficult
to achieve due to limitations of indirect measurement concepts, at
least relative accuracy (i.e. comparability) between different indi-
rect methods is a minimum requirement.

Ground-based methods for the estimation of LAI can be grouped
into direct and indirect methods (Jonckheere et al., 2004; Zheng and
Moskal, 2009). While the former are assumed to provide values
closest to the true LAI (Chen et al., 1997), they are time-consuming
and therefore only applicable on a small scale – especially in forest
environments. By contrast the indirect methods which are mostly
based on optical measurement of light transmission or attenuation
within vegetation canopies allow for quick and easy LAI estimation,
but rely on a number of theoretical assumptions (e.g. random dis-
tribution of foliage elements) that are not always fulfilled. Since the
clumping of plant parts at various scales or the attenuation of light

0168-1923/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.agrformet.2012.02.007
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by stems and branches need to be considered, the optical meth-
ods do not represent exact measurements of LAI (Jonckheere et al.,
2004). To account for this, terms like Plant Area Index (PAI) and
effective Plant Area Index (PAIe) or effective Leaf Area Index (LAIe)
were coined (Weiss et al., 2004). Among the optical methods, dig-
ital hemispherical photography (DHP) has become a widely used
tool for the ground-based estimation of LAI and related attributes.
While there are clear advantages of using DHP (e.g. ease of mea-
surement, flexibility and low costs, permanent record of canopy
structure, ability to determine clumping), one major drawback of
DHP is the lack of standardization, preventing consistent compa-
rability with other indirect methods (e.g. the Licor LAI-2000 Plant
Canopy Analyzer, hereafter referred to as LAI-2000). Since neither
the Licor LAI-2000 measurements nor the hemispherical images
acquired for this study allow the separation of the incoming radi-
ation that is intercepted by woody elements from that intercepted
by green tissue, the acronyms PAI and PAIe (PAI not corrected for
clumping) rather than LAI and LAIe are used in this paper, except
when referring to the basic LAI methodology and theory.

1.2. Hemispherical photography

This lack of standardization is due to many influences, which
can be roughly grouped into uncertainties introduced at the stage
of image acquisition and uncertainties introduced at the stage of
processing the acquired images. During image acquisition factors
like exposure (Chen et al., 1991; Macfarlane et al., 2000; Zhang
et al., 2005), camera type, image format and size (Frazer et al.,
2001; Inoue et al., 2004) as well as variable sky brightness (Clark,
2009; Zhang et al., 2005) all affect the calculation of gap fraction
and hence the estimation of PAIe. At the processing stage fac-
tors like gamma  correction (Thimonier et al., 2010; Macfarlane
et al., 2007), image sharpening (Walter, 2009; Macfarlane et al.,
2000), image band selection for thresholding, type of thresholding
(manual/automatic) and threshold algorithm (Nobis and Hunziker,
2005; Leblanc et al., 2005; Jonckheere et al., 2004, 2005) influence
the determination of gap fraction and related attributes.

Of all the uncertainties associated with hemispherical photog-
raphy, thresholding and exposure are two, if not the two, major
influences for the estimation of forest structural attributes (Chen
et al., 1991; Jonckheere et al., 2005). Both affect the discrimination
of canopy elements from sky. However any threshold algorithm can
only be as good as the ability of the hemispherical image to repre-
sent the true canopy structure. This ability is mainly controlled by
exposure. Determining the correct exposure is however a difficult
issue, particularly because hemispherical images tend to exhibit
overexposure close to vertical directions and underexposure close
to horizontal directions (Zhang et al., 2005). Another issue is the
influence of exposure on the discrimination of gaps of different
sizes. While large inter-crown gaps are relatively insensitive to
changes in exposure, small intra-crown gaps are extremely sen-
sitive to changes in exposure, i.e. getting over-proportionally lost
upon underexposing. For this reason dense forest stands are much
more affected by changing exposure than open stands. This issue
of correct exposure was investigated by Zhang et al. (2005) who
developed a protocol for determining the optimum exposure irre-
spective of forest stand density. They propose determining the sky
exposure in a very large opening, acting as reference from which
the in-stand exposure is attained by increasing the shutter speed
by two stops with the aperture unchanged at F5.3 (or similar).

While the approach by Zhang et al. (2005) is theoretically sound,
the most important drawback of the proposed protocol is the lim-
ited availability of very large openings for the determination of
sky exposure in many forested areas. This is acknowledged by the
authors who suggest (alternatively) measuring sky reference expo-
sure through a large canopy gap using a tele-lens. However even

large canopy gaps can be difficult to find sometimes, especially for
very dense forest patches. The remaining problem condenses to the
basic difficulty of all LAI-methods which require reference mea-
surements (LAI-2000, approach of Cescatti, 2007): Spatially and
temporally variable sky brightness conditions can severely limit
their application. Based upon the approach by Cescatti (2007),  Lang
et al. (2010) propose a promising method to overcome the lack of an
above-canopy reference by combining a sky radiance model with
radiance values obtained from gaps of the below-canopy image.
Another constraint with regard to the approach by Zhang et al.
(2005) is the fact that they based their analysis on specific cam-
era and image processing settings, i.e. images were saved as 8-bit
JPEGs and the blue band was selected for further processing. As
pointed out by Jonckheere et al. (2005), high-dynamic range dig-
ital imagery has the potential to improve the discrimination of
canopy elements from sky, thus yielding gap fractions potentially
different from those resulting from low-dynamic range hemispher-
ical images. Besides images saved in different file formats undergo
a camera- and format-specific processing (compression, chroma
subsampling, image sharpening, etc.) which potentially alters the
distribution of DNs and hence influences any histogram-related
analysis (i.e. thresholding). This raises the question whether, and if
so how, the radiometric image resolution, file format and thresh-
old algorithm affect the determination of the optimum in-stand
exposure as suggested by Zhang et al. (2005).  More generally the
influence of exposure on forest structural attributes, namely gap
fraction, PAIe and clumping indices, as a function of the combined
effects of the radiometric image resolution, file format and thresh-
old algorithm should be investigated.

Thresholding of hemispherical images to derive gap fraction
constitutes another issue of debate, in particular with regard to the
choice of threshold type and algorithm. Even though the increased
variability (i.e. uncertainty) which results from manual thresh-
olding is widely acknowledged (Englund et al., 2000; Jonckheere
et al., 2005; Leblanc et al., 2005; Korhonen et al., 2011; Zhao and
Popescu, 2009), manual thresholding is nevertheless applied in
many studies. This is due to the lack of an automatic algorithm
that works satisfactorily for variable sky illumination conditions
and for hemispherical images of forest stands of different structure.
Jonckheere et al. (2005) extensively tested existing and easy-to-
implement algorithms and were able to identify a few candidates.
They were able to show that by applying a combination of global
and local thresholds classification results can be improved, par-
ticularly in the case of variable sky brightness. Considering the
liability of hemispherical photography to variations in hemispher-
ical sky brightness, this approach constitutes a promising avenue
for further research. Despite having been tested based on visual and
quantitative analyses, the gap fraction and PAIe values produced by
the different automatic algorithms (Jonckheere et al., 2005) were
not validated with independent data, such as LAI-2000 measure-
ments. Another crucial issue which is to be considered is the fact
that since a hemispherical image and its histogram are the outcome
of a delicate interplay between a number of factors (exposure, sky
brightness, canopy structure, camera settings, etc.), the choice of
the threshold algorithm naturally affects the estimation of forest
structural attributes. Conversely since threshold algorithms differ
in their sensitivity to changes in the histogram, the effects of those
factors on the estimation of canopy parameters should also vary.
This is to be considered when assessing potential influences (such
as the radiometric resolution or the file format) and determining
the optimum exposure.

An additional problem is related to the appropriate image band
selection for thresholding. Most research concerning hemispher-
ical photography makes use of the blue band for producing the
necessary binary images, since it is in the blue part of the visible
spectrum that leaves exhibit maximum absorption and lowest
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scattering, hence theoretically offering maximal contrast between
sky and canopy (Jonckheere et al., 2005). Besides, using the blue
band ensures compatibility with measurements made with the
LAI-2000 which operates below 490 nm.  However it is well known
that the blue band usually suffers more from the effect of blooming
near the zenith and in large openings than the red and green
bands (Leblanc et al., 2005). Some studies have used more than
one band to improve the discrimination between sky and canopy
elements (Chapman, 2007; Kucharik et al., 1997). However this
approach suffers from the drawback of the limited capability
of most threshold algorithms and hemispherical image analysis
software to handle multi-channel images. To our knowledge no
systematic analysis of the influence of the image band selection on
the estimation of forest structural attributes has been published
so far. As in the case of the radiometric image resolution and file
format this raises the questions how the image band selection
in combination with different threshold algorithms affects the
estimation of forest structural attributes and the determination of
the optimum in-stand exposure.

Based on these unresolved research issues the following objec-
tives for improving the standardized processing of hemispherical
images emerged:

• Assess the influences of the radiometric image resolution, file
format and image band selection on the estimation of forest struc-
tural attributes (gap fraction, PAIe, clumping indices) and how
these influences interact with the different threshold algorithms
and the determination of optimum exposure.

• Develop a flexible approach to determine the optimum exposure
independent of any reference exposure measurements.

• Further explore the potentials of multi-channel thresholding and
develop a robust and objective approach to automatic image
thresholding.

2. Materials and methods

2.1. Study site description

This study was carried out as part of a comprehensive data col-
lection campaign which aims at estimating forest bio-physical and
structural attributes from airborne hyperspectral and laser scan-
ning data. This campaign serves as preparation for the German
Hyperspectral satellite mission EnMAP and was located in the Pfälz-
erwald forest near Kaiserslautern, Germany, where the EnMAP Core
Science Team forest research group at the University of Trier estab-
lished one of its main research sites (Merzalben, 49◦16′N, 7◦48′E).

During an extensive field validation at the EnMAP core site
Merzalben in August 2010 a total of 24 plots (30 m × 30 m)  in mostly
mixed beech-oak stands were sampled for key inventory param-
eters and PAIe reference data, collected with the LAI-2000. Test
plots were established across stands of different canopy structure
in order to cover a wide range of PAIe values (Table 1).

2.2. Experimental methods

At 16 of the 24 plots digital hemispherical images were acquired
simultaneously to study the effects of the radiometric image res-
olution, file format and image band selection on the estimation of
forest structural attributes.

Hemispherical images were taken with a Nikon D300 digital
camera in combination with a Circular Fisheye lens (Sigma 4.5 mm
F2.8 EX DC HSM). The camera was set to exposure-priority mode
(metering method: matrix) with the aperture fixed at F6.3 and in
order to re-evaluate the influence of exposure we adopted the fol-
lowing exposure scheme, utilizing the bracketing function of digital

cameras: Images were consecutively taken from automatic expo-
sure to four stops of underexposure. Images were saved both as
16-bit RAW and as 8-bit JPEG (basic quality). Noise reduction was
turned off and in order to minimize camera motion, automatic
release was applied.

As far as the sampling scheme is concerned, 5 simultaneous
measurements were obtained per plot, – one at the center of the
plot and the other four located at the corners. To ensure maximum
comparability between the simultaneous PAIe measurements, both
the digital camera and the LAI-2000 were mounted on tripods, hor-
izontally leveled and measurements were taken at the same height
(approx. 1.3 m)  and sampling positions. The LAI-2000 was operated
in remote mode without view restriction.

Since sky illumination is one of the most critical aspects of
the indirect optical LAI methods, all measurements were taken
under uniform sky conditions (i.e. either overcast sky or around
sunset/sunrise). Due to technical problems with the LAI-2000
instrument data from 8 plots had to be excluded from the compara-
tive analysis with the hemispherical images, leaving a total number
of 40 simultaneous measurements, which still cover the full PAIe
range observed.

2.3. Threshold algorithms

One of the main goals of this study was to compare the influence
of the file format (JPEG, RAW/TIFF) and the radiometric resolution
(8-bit, 16-bit) on the estimation of forest structural attributes and
how these effects relate to the threshold algorithm applied. The
choice of threshold algorithms was, however, limited by the avail-
ability of software packages able to handle both 8-bit and 16-bit
images. Due to the large amount of hemispherical images, another
requirement for the software packages was to provide batch pro-
cessing. The freeware ImageJ – Image Processing and Analysis
in Java (http://rsbweb.nih.gov/ij/)  along with the plugins Multi-
Thresholder (Baler et al., 2009) and Auto Threshold (Landini, 2011)
meets both requirements.

After pre-analysis on a subset of the hemispherical images (i.e.
comparing the resulting values with LAI-2000 measurements), the
three global threshold algorithms Isodata (Ridler), Minimum and
Otsu were selected as candidates for further analysis. The Isodata
algorithm by Ridler and Calvard (1978) constitutes an iterative
clustering which increments the threshold (as the average of the
background and foreground) until the thresholds of the itera-
tions converge. The Minimum algorithm (Prewitt and Mendelsohn,
1966) is a histogram shape-based algorithm which assumes a
bimodal distribution of digital numbers (DNs). The threshold is
found at the minimum between the two  local maxima which are
searched for by smoothing the histogram with a running average
of size 3. The Otsu algorithm (Otsu, 1979) is a clustering algorithm
which searches for the threshold that minimizes the intra-class
variance. For a more detailed treatment of threshold algorithms see
the overview by Sezgin and Sankur (2004) and/or the assessment
by Jonckheere et al. (2005).

Furthermore we  tested the Isodata algorithm by Ball and Hall
(1965) as it allows for multi-layer clustering. Based on iterative
optimization Isodata represents a clustering approach for finding
optimal data partitions. The main user input for the algorithm is
the number of clusters. The algorithm starts by distributing cluster
means evenly in the (multi-dimensional) data space. The remain-
ing pixels are then iteratively clustered around these means using
minimum distance techniques. In each iteration updated means are
calculated and the clustering is repeated. The algorithm converges
either when the maximum number of iterations is reached or when
less than a specified fraction of pixels changes clusters between
iterations. This clustering approach guarantees local but not nec-
essarily global optimization as different starting points can lead
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Table 1
Description of the subset of test stands used in this study.

Plot Dominant species Development stage Storey descriptiona Layers DBH mean
[cm]

DBH StDev
[cm]

Height
mean [m]

Height
StDev [m]

Stem Density [n ha−1]

1 Beech/oak Maturing Single main storey Main 38.6 10.6 25.8 6.0 300

2
Oak  Maturing Second storey Main 33.6 17.6 27.7 2.6

1278Beech Dimensioning 2nd 13.2 10.4 15.5 4.9

3
Oak  Maturing Second storey Main 44.2 10.4 29.3 5.2

933Beech Dimensioning 2nd 13.2 4.8 16.0 5.3

4
Oak  Maturing Second storey Main 43.0 9.0 30.7 2.0

967Beech Dimensioning 2nd 13.2 5.3 14.7 5.7

5
Oak Maturing Second storey Main 42.4 10.2 28.2 6.5

1100Beech Dimensioning 2nd 13.4 8.1 15.3 5.3
6  Beech Maturing Single main storey Main 41.1 10.9 32.0 3.7 300

7
Oak  Maturing Second storey Main 39.2 18.6 25.1 9.2

1011Beech Dimensioning 2nd 13.4 6.1 14.4 5.4
8 Oak Qualification Single main storey Main 6.9 3.5 13.0 – 7644

a Storey description according to FutMon (2009).  Mean site elevations range from 540 m to 560 m,  mean site slopes from 2◦ to 8◦ .

to different solutions. Despite this limitation, the fact that compu-
tational requirements are bearable makes the approach attractive
(Duda et al., 2001), in particular for our case where the objective
solely aims at the identification of the cluster with the maximum
brightness characteristics (i.e. sky). Besides its efficiency, another
advantage of the Isodata algorithm is the fact that it is implemented
in many standard spatial data analysis software packages. Since the
threshold algorithm by Ridler and Calvard basically constitutes the
Isodata algorithm run with two clusters, the former is hereafter
referred to as the Ridler algorithm.

To allow for a fully automatic and objective processing of hemi-
spherical images based on the Isodata algorithm, the selection of
the cluster number as well as the allocation of clusters to the binary
classes “sky” and “canopy” were dealt with as follows. Based on a
sensitivity analysis, ten clusters were chosen for clustering (cf. Sec-
tion 3.5). Binary images were then generated based on a simple
decision rule where the cluster associated with the highest mean
DN was assigned the value “1” (sky) while the remaining clusters
were assigned the value “0” (canopy). In case that more than one
cluster was associated with the class “sky”, the respective clus-
ters were manually assigned the value “1”. This, however, solely
occurred for images with a considerable variation of sky bright-
ness, e.g. blue sky partly covered with clouds, conditions which are
to be avoided for the acquisition of hemispherical images anyways.
The procedure was implemented in a standard image processing
environment (IDL/ENVI) which allows for batch processing.

2.4. Image processing and estimated canopy parameters

The images captured in Nikon’s proprietary raw format (NEF)
were saved as uncompressed 16-bit TIFFs using Nikon’s software
Capture NX 2.2.4. In order to isolate the effects of the radiometric
resolution from the effects caused by the different file formats, the
16-bit TIFFs were rescaled to 8-bit TIFFs. To assess the differences
in the estimation of forest structural attributes based on differ-
ent image layers, the red and blue bands were selected for further
image processing. As already pointed out the blue band is usu-
ally chosen for analysis even though it exhibits stronger blooming
effects in the near-zenith and in large canopy gaps than the red and
green bands (Leblanc et al., 2005). It is noteworthy that a large num-
ber of the hemispherical images acquired for this study exhibited a
stronger blooming in the blue band over the full zenith angle range.
The different aims of our comparative study resulted in the follow-
ing combinations as input into the image processing chain: Blue
band (8-bit JPEG), blue band (8-bit TIFF), blue band (16-bit TIFF), red
band (8-bit JPEG), red band (8-bit TIFF) and red band (16-bit TIFF).
For each of these combinations the five exposure levels (cf. Sec-
tion 2.2) were processed with the previously mentioned threshold

algorithms. Furthermore a new approach to multi-channel thresh-
olding was tested by stacking the differently exposed images and
subjecting these stacks to the Isodata clustering algorithm by Ball
and Hall (1965).  The binary images derived from the threshold-
ing were analyzed with the software WinScanopy to derive gap
fraction, PAIe and clumping indices. To assess the differences in
the estimates of these parameters based on different image layers,
radiometric image resolutions and file formats, differences were
tested for statistical significance with the Wilcoxon matched pairs
signed rank test (as the differences are not normally distributed, a
non-parametric test was  chosen).

Since the number of mixed pixels as well as underexposure
increase with higher zenith angle (Jonckheere et al., 2004; Leblanc
et al., 2005), analysis of the hemispherical images was restricted to
a zenith range of 0◦–60◦. For optimal comparability the fifth ring
(61◦–74◦) of the LAI-2000 was excluded from further analysis and
the same LAI calculation method (LAI-2000 method) was  used. This
method is based on the work of Miller (1967) who  proposes an exact
solution for the calculation of LAI (LI-COR, 1992):

LAI = 2

∫ �
2

0

−In(T(�)) cos � sin �d� (1)

LAI = 2
5∑

i=1

− In(T(�i)) cos �i sin �id�i (2)

With the LAI-2000 method, equation 1 is integrated numerically
by summing the weighted logarithms of the five individual zenith
rings’ average gap fractions (equation 2). This method is hereafter
referred to as the linear LAI-2000 method (or linear averaging). In
contrast to the LAI-2000, hemispherical images are able to capture
gap fraction in zenithal and azimuthal direction and with a much
higher resolution. This bi-directional resolving results in so-called
gap fraction (sky grid) segments and enables applying a different
approach to the calculation of LAI. Instead of taking the logarithm
of the zenith rings’ average gap fraction, the logarithms of the seg-
ments are taken first and then averaged over the respective zenith
ring. This method is hereafter referred to as the logarithmic LAI-
2000 method (or logarithmic averaging) and is commonly used for
the determination of leaf clumping by relating the LAI derived from
the linear averaging to the LAI derived from the logarithmic averag-
ing (Lang and Xiang, 1986). The clumping index based on Lang and
Xiang (1986) is hereafter referred to as CI-2000. Since a number of
methods for the estimation of clumping exist, we  included another
widely used method (Chen and Cihlar, 1995) in the present study
to test whether the potential influences (threshold algorithm, etc.)
affect the estimation of clumping differently for the two methods.
The Chen and Cihlar method compares the measured distribution of
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gap lengths (or gap sizes) to the distribution that would be attained
in case of randomly distributed foliage. In the present study the gap
fraction distribution was determined based on gap size, an adap-
tion of the Chen and Cihlar method implemented in WinScanopy.
By manually selecting a threshold value, gaps are split into within-
crown gaps and between-crown gaps, with the former assumed
to being randomly distributed. Clumping is then found by relating
the distribution of total gap sizes to the distribution of within-
crown gaps. The clumping index based on the gap size distribution
is hereafter referred to as CI-GSD.

3. Results and discussion

3.1. The influence of the radiometric image resolution and file
format

In order to assess the influence of the radiometric image reso-
lution on the estimation of forest structural attributes as a function
of exposure and threshold algorithm and in order to isolate it
from the effects caused by the file format, 200 hemispherical
images (8 plots × 5 hemispherical images per plot × 5 exposure lev-
els) were analyzed separately for each combination of file format
and radiometric resolution. The median differences between these
combinations are shown in Tables 2a and 2b.  As can be seen the
radiometric resolution has little effect on the estimated forest struc-
tural attributes – regardless of the selected image band and the
threshold algorithm applied. By contrast the different file formats
influence the estimation, however only with a significant magni-
tude for the images thresholded with the Isodata and Minimum
algorithms – the reason for which will be discussed in connection
with the comparison of the PAIe estimates from the hemispherical
images and the LAI-2000 (cf. Section 3.4). For these two algorithms
the TIFFs yield higher gap fractions and as a consequence lower
PAIe values than the JPEGs (Tables 2a and 2b).

This is contrary to the study of Inoue et al. (2004) who  found no
significant differences in the gap fraction estimates between basic-
quality JPEGs and high-quality TIFFs taken with a Nikon Coolpix
990. However, since the authors also showed that the camera type
affects the estimation, the deviating findings can be attributed to
the use of different cameras (Coolpix 990 vs. D300) in the two
studies. The reason is most likely the use of different quantization
tables in the quantization step of the JPEG compression. Since cam-
era manufacturers choose an arbitrary “image quality” name for
the different scale factors of the internal quantization, these names
cannot be compared between makes or models by the same manu-
facturer (Hass, 2008). Frazer et al. (2001) compared fine-quality
JPEGs and uncompressed TIFFs taken with a Nikon Coolpix 950
and found no significant differences in mean stand estimations of
canopy openness, LAIe and transmitted global PAR. However, the
authors observed strong differences for a number of images and
concluded that it is best not to use JPEG-compression ratios smaller
than 1:4. The significant differences found in this study are most
likely caused by the strong compression effects associated with the
basic quality JPEG-compression of the D300.

Even though the conversion from the raw image data to a JPEG
file includes a number of processing steps (color space conversion,
chroma subsampling, block segmentation, discrete cosine trans-
formation, quantization, etc.), quantization is the major source of
error induced by the JPEG-compression (Hass, 2008). Quantiza-
tion works such that the different frequency image components,
resulting from the discrete cosine transformation, are ordered with
ascending frequency and many of the high-frequency components,
which are more likely to represent noise, are discarded by the algo-
rithm. For the D300 and the basic quality JPEG setting, this results
in lower gap fraction and thus higher PAIe estimates for the JPEG
than the TIFF images (Tables 2a and 2b).

The file format (i.e. the JPEG-compression) also affects the
other canopy parameters, namely the number of zero gap frac-
tion segments and the clumping indices. Even though the median
differences for the clumping index values seem rather small
(Tables 2a and 2b), their effect on the PAI values corrected for
clumping is noticeable, especially for the PAI values corrected with
the CI-2000. Based on the Isodata algorithm correcting the PAIe
with the CI-2000 increases the median differences by 68% (blue
band) and 71% (red band). Using the CI-GSD, differences increase
by 32% for the blue band and 35% for the red band. A similar trend
can be observed for the Minimum algorithm – median differences
increase by 63% (CI-2000/blue band), 66% (CI-2000/red band), 54%
(CI-GSD/blue band) and 46% (CI-GSD/red band). Also noteworthy
is the fact that the differences in the estimated canopy parameters
between the TIFFs and JPEGs increase with decreasing exposure
(data not shown) and that they are stronger for the red than the
blue band images (Tables 2a and 2b). This is true for both the Iso-
data and the Minimum threshold algorithm, a fact which hints to
a systematic influence of the image band selection (for a detailed
analysis see Section 3.3).

3.2. The influence of exposure

Table 3 lists the mean values of the estimated canopy parame-
ters as a function of exposure. Since the influence of exposure on
the estimation behaves similar for both the blue and the red band
images, the latter are omitted. Likewise since their median differ-
ences are marginal (cf. Tables 2a and 2b), the file formats TIFF 8-bit
and JPEG 8-bit (Ridler and Otsu) as well as TIFF 8-bit (Isodata and
Minimum) are omitted.

Since the acquisition and processing of hemispherical images
is a delicate interplay between a number of factors (exposure,
canopy structure, camera settings, threshold algorithm, etc.), this
interdependency needs to be explicitly considered when assess-
ing their influence on the estimation of forest structural attributes.
Most noticeable, (1) the Ridler and Otsu algorithms yield the same
mean values and (2) they differ strongly from the gap fraction and
PAIe/PAI estimates based on the Isodata and Minimum algorithms
(30–65% difference depending on exposure level and parameter).
Common to all four algorithms is the strong influence of exposure
on the retrieval of the gap fraction and PAIe (Table 3), corrobo-
rating the need to determine the optimum exposure regardless
of the threshold algorithm applied. Fig. 1a and b highlights the
impact of exposure and its interplay with the file format (Fig. 1a
and b is intended to serve as a representative selection for the dif-
ferent threshold algorithms). They also highlight the variability in
the estimates caused by the different canopy structure of the test
stands.

Contrary to the gap fraction and PAIe, the clumping indices do
not follow a general trend as far as the influence of exposure is
concerned. Based on the 16-bit TIFFs, the Lang and Xiang clump-
ing index (CI-2000) is only weakly affected by exposure, however
exhibiting a slight decline with exposure for all threshold algo-
rithms (Table 3). This decline also causes only a small additional
increase in the PAI values with decreasing exposure – small com-
pared to the effect caused by exposure itself (the additional increase
caused by the decreasing clumping index values makes up 8–28%
of the PAI increase caused by exposure). By contrast to the 16-bit
TIFFs, the Lang and Xiang clumping index calculated from the 8-bit
JPEGs exhibits a stronger decrease with exposure (Table 3). This is
due to the increase of zero gap fraction segments with decreasing
exposure. Zero gap fraction segments strongly affect the calcula-
tion of PAI based on the logarithmic averaging and hence the Lang
and Xiang clumping index, because the logarithm of zero cannot
be computed and near-zero values result in unrealistically high
PAI-values. This effect results in a stronger additional PAI increase
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Table 2a
Median differences in the estimated canopy parameters based on different file format and radiometric resolution combinations (FF/RR) of the blue band images.

Algorithm FF/RR GF PAIe ZGF CI-2000 CI-GSD PAI (2000) PAI (GSD)

Ridler TIFF 16bit–TIFF 8bit −0.18*** 0.02*** 0 0.00 0.00*** 0.02*** 0.02***

TIFF 16bit–JPEG 8bit −0.38*** 0.03*** 0*** 0.01*** 0.03*** 0.01 −0.07***

Otsu TIFF 16bit–TIFF 8bit −0.18*** 0.02*** 0 0.00 0.00*** 0.02*** 0.02***

TIFF 16bit–JPEG 8bit −0.36*** 0.03*** 0*** 0.01*** 0.03*** 0.01 −0.07***

Isodata TIFF 16bit–TIFF 8bit −0.03*** 0.01*** 0 0.00 0.00*** 0.01*** 0.01***

TIFF 16bit–JPEG 8bit 1.03*** −0.37*** −4*** 0.02* 0.01* −0.62*** −0.49***

Minimum TIFF 16bit–TIFF 8bit 0.01*** 0.00** 0 0.00 0.00 0.00* 0.00**

TIFF 16bit–JPEG 8bit 0.86*** −0.31*** −4*** 0.02*** 0.02*** −0.51*** −0.48***

GF = gap fraction, PAIe = effective Plant Area Index, ZGF = zero gap fraction sky grid segments, CI-2000 = Lang and Xiang (1986) clumping index, CI-GSD = clumping index based
on  gap size distribution analysis. PAI (2000) = Plant Area Index corrected for clumping with the CI-2000 index, PAI (GSD) = Plant Area Index corrected for clumping with the
CI-GSD  index.

* Wilcoxon-Test: p < 0.05.
** Wilcoxon-Test: p < 0.01.

*** Wilcoxon-Test: p < 0.001.
Wilcoxon-Test: no asterisk indicates p > 0.05.

Table 2b
Median differences in the estimated canopy parameters based on different file format and radiometric resolution combinations (FF/RR) of the red band images.

Algorithm FF/RR GF PAIe ZGF CI (2000) CI (GSD) PAI (2000) PAI (GSD)

Ridler TIFF 16bit–TIFF 8bit 0.00*** 0.00*** 0 0.00 0.00 0.00 0.00
TIFF  16bit–JPEG 8bit −0.49*** 0.06*** 0*** 0.01*** 0.02*** 0.03** −0.02***

Otsu TIFF 16bit–TIFF 8bit 0.00*** 0.00*** 0 0.00 0.00 0.00 0.00
TIFF  16bit–JPEG 8bit −0.48*** 0.05*** 0*** 0.01*** 0.02*** 0.02** −0.03***

Isodata TIFF 16bit–TIFF 8bit −0.01 0.00 0 0.00 0.00 0.01 0.00
TIFF  16bit–JPEG 8bit 1.19*** −0.54*** −9*** 0.04*** 0.01*** −0.93*** −0.73***

Minimum TIFF 16bit–TIFF 8bit 0.02*** −0.01*** 0 0.00 0.00 −0.01 0.00
TIFF  16bit–JPEG 8bit 1.02*** −0.44*** −6*** 0.03*** 0.02*** −0.73*** −0.64***

GF = gap fraction, PAIe = effective Plant Area Index, ZGF = zero gap fraction sky grid segments, CI-2000 = Lang and Xiang (1986) clumping index, CI-GSD = clumping index based
on  gap size distribution analysis. PAI (2000) = Plant Area Index corrected for clumping with the CI-2000 index, PAI (GSD) = Plant Area Index corrected for clumping with the
CI-GSD  index. For further annotations see Table 2a.

Table 3
Mean values of the estimated canopy parameters as a function of exposure based on the blue band images. FF/RR = file format-radiometric resolution combination,
AE  = automatic exposure, UE (1S)–UE (4S) = 1–4 stops of underexposure. For further annotations see Table 2a.

Algorithm FF/RR Exposure GF PAIe ZGF CI-2000 CI-GSD PAI (2000) PAI (GSD)

Ridler TIFF 16bit AE 27.9 2.0 1 0.90 0.74 2.2 2.6
UE  (1S) 20.4 2.5 1 0.90 0.81 2.7 3.0
UE  (2S) 15.3 2.9 1 0.90 0.85 3.2 3.4
UE  (3S) 11.2 3.4 2 0.89 0.88 3.8 3.9
UE  (4S) 8.2 3.9 3 0.88 0.89 4.5 4.4

Otsu  TIFF 16bit AE 27.9 2.0 1 0.90 0.74 2.2 2.6
UE  (1S) 20.4 2.5 1 0.90 0.81 2.7 3.0
UE  (2S) 15.3 2.9 1 0.90 0.85 3.2 3.4
UE  (3S) 11.3 3.4 2 0.89 0.88 3.8 3.9
UE  (4S) 8.2 3.9 3 0.88 0.89 4.5 4.4

Isodata JPEG 8bit AE 10.9 3.5 4 0.88 0.92 3.9 3.8
UE  (1S) 7.7 4.1 6 0.88 0.93 4.6 4.4
UE  (2S) 5.3 4.7 9 0.86 0.92 5.5 5.1
UE  (3S) 3.6 5.4 14 0.83 0.91 6.5 6.0
UE  (4S) 1.8 6.6 28 0.81 0.91 8.3 7.4

TIFF  16bit AE 12.3 3.2 2 0.90 0.88 3.6 3.7
UE  (1S) 9.2 3.7 2 0.90 0.91 4.1 4.1
UE  (2S) 6.7 4.2 3 0.89 0.91 4.8 4.7
UE  (3S) 4.9 4.8 5 0.88 0.91 5.5 5.3
UE  (4S) 3.9 5.5 8 0.86 0.91 6.4 6.0

Minimum JPEG 8bit AE 13.7 3.1 3 0.89 0.84 3.5 3.7
UE  (1S) 9.4 3.7 5 0.88 0.87 4.2 4.3
UE  (2S) 6.3 4.4 7 0.87 0.89 5.1 5.0
UE  (3S) 4.2 5.3 12 0.84 0.89 6.3 5.9
UE  (4S) 3.2 6.2 22 0.82 0.90 7.6 6.9

TIFF  16bit AE 13.9 3.1 2 0.90 0.87 3.4 3.5
UE  (1S) 10.2 3.6 2 0.90 0.90 4.0 4.0
UE  (2S) 7.4 4.1 3 0.89 0.91 4.6 4.5
UE  (3S) 6.1 4.6 4 0.88 0.91 5.2 5.1
UE  (4S) 4.5 5.4 7 0.87 0.91 6.2 5.9
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Fig. 1. a and b: Influence of the file format on the estimation of forest structural
attributes as a function of exposure. Data based on the red band 16-bit TIFFs thresh-
olded with the Isodata algorithm. AE = automatic exposure, UE (1S)–UE (4S) = 1–4
stops of underexposure. Circles indicate outliers greater than 1.5 × standard devia-
tion, stars indicate outliers greater than 3 × standard deviation. Differences between
TIFF- and JPEG-based estimates were tested with the Wilcoxon matched pairs signed
rank  test for each exposure level separately. All differences are statistically signifi-
cant  (p < 0.001).

(20–43% of the PAI increase caused by exposure) for the 8-bit JPEGs
than for the 16-bit TIFFs.

To deal with the “zero gap fraction segment”-effect, different
approaches have been proposed, most of which comprise substitut-
ing segments with zero gap fraction either by adding one sky pixel
to the empty segments (van Gardingen et al., 1999) or by assign-
ing a theoretical maximum PAI value (e.g. the default setting in the
software WinScanopy is to assign a PAI of 10). Gonsamo et al. (2010)
demonstrated that by using either one of these approaches, a sys-
tematic bias is introduced into the estimation of clumping and PAI.
This bias is expressed in the above mentioned stronger additional
PAI increase, however to isolate its exact proportion, a comparison
with the values derived from the application of a less biased method

would be required. Nevertheless these findings carry important
consequences for estimating clumping following the approach of
Lang and Xiang (1986).  Due to the bias introduced by the “zero gap
fraction segment”-effect we  recommend not to use JPEGs with a
basic compression for the retrieval of the Lang and Xiang clumping
index based on the Isodata and Minimum algorithms.

As far as the clumping index based on the gap size distribution
(CI-GSD) is concerned, it reveals a completely different behavior
toward the influence of exposure. This is to be expected since expo-
sure in combination with the threshold algorithm may  strongly
alter the gap size distribution. By contrast to the CI-2000, the CI-
GSD values increase with decreasing exposure, however with the
magnitude differing for the different threshold algorithms and file
formats (Table 3).

More interestingly than the general trend, however, is how the
differences between the values of the two  clumping index methods
translate into PAI-differences. For the Ridler and Otsu algorithms
the PAI-differences are greatest for automatic exposure (0.4) and
decline with decreasing exposure (0.3, 0.2 and 0.1). For the Iso-
data and Minimum algorithms and based on the 16-bit TIFFs, the
reverse is true: Differences are greatest for the 4-stops underexpo-
sure (0.4, 0.3, respectively) and decrease with increasing exposure
(0.2, 0.1). As with the Lang and Xiang clumping index, the CI-GSD
values based on the 8-bit JPEGs reveal a completely different behav-
ior, both for the Isodata and for the Minimum algorithm (Table 3):
Here differences in the PAI values caused by differences between
the clumping methods strongly increase with decreasing exposure,
particularly for the Isodata algorithm (0.1–0.9 PAI).

3.3. The influence of the image band selection

As far as the influence of the image band selection is concerned,
the gap fractions retrieved from the blue band images are higher
than the gap fractions based on the red band. This is true for all
four threshold algorithms, file formats and exposure levels with
the exception of the Ridler and Otsu algorithms applied to the
automatically exposed 16-bit TIFFs (Table 4). The higher gap frac-
tions are caused by a stronger blooming in the blue than the red
band (Leblanc et al., 2005), which is supported by the general trend
observed in the data (Table 4) that the differences decrease with
a reduction in exposure (as it is known that decreasing exposure
reduces blooming). The gap fraction differences translate into small
PAIe differences (ranging from −0.29 to 0.12) for all four algorithms
applied to the 16-bit TIFFs (Table 4). The 8-bit JPEGs thresholded
with the Isodata and Minimum algorithms, however, reveal con-
siderable PAIe differences between the blue and red bands (range:
−0.27 to −0.91). Furthermore a higher number of zero gap fraction
segments are observed for the red than for the blue band images
(Table 4). As already explained this directly affects the determina-
tion of the Lang and Xiang clumping index and thus the PAI-2000
values. By contrast the differences in the clumping index values for
the algorithms applied to the 16-bit TIFFs as well as their effect on
the PAI estimations are marginal (Table 4).

Concluding the first part of this study, it was demonstrated that
depending on the threshold algorithm applied, both the file format
and the image band selection can have a strong impact on the esti-
mated forest structural attributes. More precisely the 8-bit JPEGs
(basic compression) that were thresholded with the Isodata and
Minimum algorithms yielded canopy parameters significantly dif-
ferent from their 16-bit TIFF counterparts. Furthermore it could be
shown that the choice of the threshold algorithm has a strong effect
on the estimation, too. As a consequence, the threshold algorithm,
file format and image band selection (as well as their interactions)
should also affect the determination of optimum exposure as pro-
posed by Zhang et al. (2005).
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Table 4
Median differences between the estimated canopy parameters based on the blue and the red band images. FF/RR = file format-radiometric resolution combination,
AE  = automatic exposure, UE (1S)–UE (4S) = 1–4 stops of underexposure. For further annotations see Table 2a.  Since the median differences for the file formats TIFF 8-bit and
JPEG  8-bit (Ridler and Otsu) as well as TIFF 8-bit (Isodata and Minimum) deviate only marginally from the 16-bit TIFFs, the former are omitted.

Alg. FF/RR Exp. GF PAIe ZGF CI (2000) CI (GSD) PAI (2000) PAI (GSD)

Ridler TIFF 16bit AE −2.42 0.12 0 0.00 −0.01 0.12 0.19
UE  (1S) 0.42 −0.02* 0 0.00 −0.02*** −0.04* 0.04
UE  (2S) 0.94*** −0.08*** 0 0.00** −0.02*** −0.10*** −0.03*
UE  (3S) 0.73*** −0.12*** 0 0.00*** −0.02*** −0.11*** −0.05***
UE  (4S) 0.55*** −0.13*** 0* 0.00*** −0.02*** −0.11*** −0.06***

Otsu TIFF 16bit AE −2.42 0.12 0 0.00 −0.01 0.12 0.19
UE  (1S) 0.42 −0.02* 0 0.00 −0.02*** −0.04* 0.04
UE  (2S) 0.89*** −0.09*** 0 0.00** −0.02*** −0.10*** −0.03*
UE  (3S) 0.73*** −0.12*** 0 0.00*** −0.02*** −0.11*** −0.05***
UE  (4S) 0.55*** −0.13*** 0* 0.00*** −0.01*** −0.11*** −0.06***

Isodata TIFF 16bit AE 1.83*** −0.19*** 0 0.00*** −0.01*** −0.31*** −0.21***
UE  (1S) 1.78*** −0.29*** 0 0.00*** −0.01*** −0.40*** −0.33***
UE  (2S) 0.77*** −0.27*** 0 0.00** −0.01** −0.29*** −0.27***
UE  (3S) 0.55 −0.29 0 0.00 −0.01 −0.31 −0.27*
UE  (4S) 0.16 −0.09 0*** 0.00*** 0.00 −0.09 −0.05

JPEG  8bit AE 2.05*** −0.37*** −1*** 0.01*** 0.03*** −0.48*** −0.65***
UE  (1S) 1.88*** −0.38*** −2*** 0.02*** 0.03*** −0.55*** −0.64***
UE  (2S) 1.08*** −0.53*** −6*** 0.03*** 0.01* −0.91*** −0.87***
UE  (3S) 0.77** −0.62*** −8*** 0.01* 0.00 −0.86*** −0.74***
UE  (4S) 0.30 −0.44* −4* 0.01 −0.01* −0.73* −0.35

Minimum TIFF 16bit AE 1.67*** −0.16*** 0* 0.00** −0.01** −0.27*** −0.15***
UE  (1S) 1.64*** −0.27*** 0* 0.00*** −0.01*** −0.36*** −0.24***
UE  (2S) 0.82*** −0.24*** 0** 0.00** −0.01** −0.25*** −0.21***
UE  (3S) 0.96*** −0.28*** 0 0.00* −0.01** −0.31*** −0.26***
UE  (4S) 0.22 −0.14* 0* 0.00 −0.01** −0.14 −0.06

JPEG  8bit AE 2.10*** −0.27*** 0** 0.01*** −0.02*** −0.38*** −0.26***
UE  (1S) 2.17*** −0.40*** −1*** 0.01*** −0.01*** −0.61*** −0.46***
UE  (2S) 1.15*** −0.57*** −2*** 0.02*** −0.01* −0.65*** −0.58***
UE  (3S) 0.92* −0.91*** −9*** 0.02*** 0.00 −1.43*** −0.98***
UE  (4S) 0.30 −0.40*** −5** 0.01 −0.01 −0.77*** −0.30**

3.4. Comparison of the PAIe estimates derived from DHP and the
LAI-2000

In order to better assess the differences in the estimates
of gap fraction and PAIe, the PAIe derived from digital hemi-
spherical photography were compared to simultaneous LAI-2000
measurements. The assessment is based upon the root mean
squared error (RMSE) between the PAIe estimates of the two
methods and upon the slope of the linear regression (without an
intercept). As already mentioned, the Ridler and Otsu algorithms
yielded – in most cases – the same threshold values and thus same
canopy parameter values. Consequently they are listed together in
Table 5. Most noticeable, the PAIe estimates based on the Ridler
and Otsu algorithms underestimate the LAI-2000 measurements,
independent of exposure, revealing the inadequacy of these algo-
rithms for the PAIe estimation (Table 5). By contrast, the Isodata
and Minimum algorithms show a higher sensitivity and thus bet-
ter agreement with the LAI-2000. One aspect which is also evident
from Table 5 is that, regardless of the threshold algorithm applied,
hemispherical images taken with automatic exposure underes-
timate the LAI-2000 measurements significantly. The degree of
under-estimation is particularly pronounced for dense canopies
and high PAIe. With a decrease in exposure the underestimation
declines, for medium to high PAIe more so than for low PAIe (Fig. 2),
until the underestimation turns into an overestimation, revealing
the sensitivity of the PAIe estimation to exposure for dense canopies
(Table 5). By contrast the PAIe estimates derived from the open for-
est stands are much less affected by changing exposure and show
a constantly good agreement with the LAI-2000 values.

These general trends apply to the PAIe estimates based on
both the Minimum and the Isodata algorithms and are indepen-
dent of the selected image band and file format (Table 5, Fig. 2).
The main difference between the image band and file format

Table 5
Comparison of the PAIe estimates derived from DHP  and the LAI-2000. Slope = slope
of  the regression of the form y = ax,  AE = automatic exposure, UE (1S)–UE (4S) = 1–4
stops of underexposure.

Algorithm File format Exposure Blue band Red band

Slope RMSE Slope RMSE

Minimum TIFF AE 0.61 2.01 0.68 1.66
UE (1S) 0.71 1.51 0.81 1.06
UE (2S) 0.82 0.97 0.94 0.67
UE (3S) 0.93 0.54 1.06 0.94
UE (4S) 1.09 0.75 1.15 1.29

JPEG AE 0.62 1.95 0.71 1.51
UE (1S) 0.74 1.37 0.88 0.80
UE (2S) 0.88 0.71 1.06 0.70
UE (3S) 1.05 0.52 1.37 2.59
UE (4S) 1.27 1.51 1.53 3.40

Isodata TIFF AE 0.64 1.85 0.72 1.48
UE (1S) 0.73 1.37 0.84 0.95
UE (2S) 0.84 0.86 0.95 0.57
UE (3S) 0.96 0.44 1.05 0.53
UE (4S) 1.11 0.71 1.16 1.00

JPEG AE 0.69 1.63 0.80 1.10
UE (1S) 0.81 1.08 0.93 0.58
UE (2S) 0.93 0.57 1.07 0.66
UE (3S) 1.06 0.58 1.17 1.08
UE (4S) 1.20 1.14 1.27 1.58

Ridler/Otsu TIFF AE 0.39 3.11 0.38 3.16
UE (1S) 0.49 2.61 0.51 2.48
UE (2S) 0.58 2.16 0.62 1.94
UE (3S) 0.67 1.68 0.72 1.44
UE (4S) 0.78 1.14 0.83 0.92

JPEG AE 0.38 3.14 0.37 3.27
UE (1S) 0.48 2.66 0.50 2.55
UE (2S) 0.57 2.20 0.61 2.00
UE (3S) 0.67 1.71 0.71 1.51
UE (4S) 0.78 1.15 0.82 0.98
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Fig. 2. Regression of the PAIe derived from the single red band images thresh-
olded with the Isodata algorithm against the PAIe derived from Licor measurements.
Auto = automatic exposure, UE (1S)–(4S) = 1–4 stops of underexposure.

combination is a shift in magnitude as can be seen from the slope
values (Table 5, Fig. 2). This shift is easily explained by the gap frac-
tion and PAIe differences observed for the four combinations. What
is more interesting, however, is how these differences pertain to
the determination of optimum exposure. In terms of overall RMSE
and unbiasedness of the regression, 3 stops of underexposure is
the optimum exposure for the blue band TIFFs (Isodata/Minimum)
and JPEGs (Minimum), respectively, 2 stops of underexposure for
the blue band JPEGs based on the Isodata algorithm. For the red
band images the optimum exposure is found at one lower stop of
underexposure than compared to the blue band images. This trend
is observed for both the Isodata and the Minimum algorithm and
shows the influence of the image band selection on the determina-
tion of the optimum exposure. Furthermore the determination can
also be affected by the file format as obvious from the Isodata val-
ues (Table 5, Fig. 2). By contrast, the influence of the file format and
image band selection on the determination of the optimum expo-
sure for the images thresholded with the Ridler and Otsu algorithms
is marginal (Table 5). Comparing the two better performing algo-
rithms, Isodata and Minimum, the former generally yields lower
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Fig. 3. Regression of the PAIe derived from the exposure-stacks against the PAIe

derived from LAI-2000 measurements.

RMSE values, corroborating the suitability of the Isodata algorithm
for thresholding hemispherical images to derive LAI.

The other main finding of the comparison between the PAIe esti-
mates derived from the hemispherical images and the LAI-2000
measurements is that the determination of optimum exposure is
dependent on the file format, the selected image band as well as
the threshold algorithm applied. Hence these need to be implicitly
accounted for when determining the exposure for hemispheri-
cal images. This affects the general applicability of the protocol
proposed by Zhang et al. (2005).  The main goal therefore is to
develop an approach to the processing of hemispherical images
independent of exposure and desirably less affected by the above
mentioned influences.

3.5. A concept for the standardized processing of hemispherical
images

Jonckheere et al. (2005) stressed the need for further research
into the potentials of multi-channel thresholding. Considering the
liability of hemispherical photography to a multitude of influ-
ences, incorporating as much valid information as possible into
the segmentation process to constrain the variability induced by
those influences, appears only a logical consequence. One method
of enhancing the information basis which is for example rou-
tinely used for remote sensing applications is data or image fusion
(Richards and Jia, 2006; Simone et al., 2002). Considering the
strong influence of exposure on the estimation of forest structural
attributes, we tested the potential of including the full exposure
information by stacking the five differently exposed images taken
at each sampling point (cf. Section 2.2). These image- or layer-stacks
provide the basis for the Isodata algorithm which is at the heart of
the proposed standardized image processing chain. As mentioned
before the Isodata algorithm enables an efficient multi-layer clus-
tering (Duda et al., 2001) and is therefore particularly attractive for
the purpose of testing multi-channel or multi-layer thresholding.
It has to be noted that the other algorithms tested in this study
are basically capable of multi-layer thresholding, too. However, as
these are not readily implemented in image processing software,
the present assessment is limited to the Isodata algorithm.

Results show that the RMSEs of the image stacks either con-
siderably decrease or match the RMSEs of the optimum exposure
level for the different file format and image band combinations
(Figs. 2 and 3), except for the blue band TIFF stacks which exhibit
a slight RMSE increase. This is due to the systematic higher gap
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Fig. 4. Influence of the number of Isodata clusters on the regression of the PAIe

derived from the stacks (both of the blue and of the red band images) against the
PAIe from LAI-2000 measurements and the respective RMSEs.

fractions of the blue band TIFFs which result in an underestimation
of PAIe particularly for dense canopies. This underestimation is wit-
nessed for both the single images and the image stacks (Table 5 and
Fig. 3), which is why – in our case – the red band image stacks were
used for the PAIe estimation.

These findings implicate two distinct advantages of the Isodata
multi-layer clustering:

• The choice of the file format for the estimation of PAIe is less crit-
ical with the layer-stack approach. Nevertheless we recommend
using the raw image data (saved as TIFFs) as basis for the stack-
ing, particularly considering the influence of the file format on
the estimation of clumping and PAI (as could be shown in this
study).

• The selection of optimum exposure as a function of the file format
and image band selection is no longer required which simplifies
standardization of the acquisition and processing of hemispher-
ical images based on the Isodata algorithm.

To allow for a fully automatic and standardized processing of
hemispherical images based on the Isodata algorithm, the main
user input (i.e. the selection of the cluster number) has to be
replaced by some kind of automation rule. We  therefore imple-
mented a simple decision rule where the cluster with the highest
mean DNs is assigned to the class “sky” and the remaining clusters
are assigned to the class “canopy”. Since the clustering of image
pixels (in particular mixed pixels) depends on the number of clus-
ters specified, its influence on the PAIe estimation was assessed
(Fig. 4). As the use of raw image data as the basis for the stacking is
recommended, the following analysis was based on the (exposure)
stacks of the red and blue bands of the 16-bit TIFFs. These were
successively clustered with 2–15 clusters, the resulting classifica-
tions were then binarised with the above mentioned decision rule,
PAIe was calculated and compared to LAI-2000 measurements. The
RMSE between the two methods as well as the regression slope
served as quality criteria for the assessment.

Fig. 4 shows that with increasing the cluster number, the under-
estimation of LAI-2000 measurements decreases (i.e. increasing
slope values). Simultaneously the RMSE declines until it stabilizes
on a low level. This saturation effect occurs around the cluster num-
bers 9 and 10, both for the red and for the blue band stacks of the
16-bit TIFFs. Due to the blooming-induced higher gap fractions of
the blue band stacks, the respective RMSEs are constantly higher
than the RMSEs of the red band stacks (Fig. 4). More importantly,

however, is the stabilizing effect of the RMSEs, observed for both
image bands, which enables a fully automatic and standardized
processing of hemispherical images based on the Isodata algorithm.

Last but not least, potential weaknesses of the proposed stan-
dardized processing have to be addressed. One of the difficulties is
the assignment of the clusters generated by the Isodata algorithm
to the binary classes, “canopy” or “sky”. If done manually an uncer-
tainty similar to manual thresholding is introduced. To avoid this
problem and allow for an automatic and objective assignment, we
implemented a simple decision rule which worked well except in
the case of extremely variable sky brightness (cf. Section 2.3). Alter-
natively the implementation of more complex decision criteria for
cluster assignment or the implementation of a stratified Isodata
clustering (local threshold approach) could solve the problem of
variable sky brightness conditions (which however affect all global
threshold algorithms).

Another difficulty which may  be encountered is the possible
motion of canopy elements while shooting the series of hemispher-
ical images. This can result in blurring around the edges of leaves in
the image stack thus increasing the number of mixed pixels. Com-
pared to the single images taken with different exposure, however,
one of the strengths of the multi-layer clustering based on the expo-
sure stacks is the reduced influence of mixed pixels, i.e. a more
certain assignment of pixels to the class “sky”, a fact which shows
in the lower RMSE values. As far as mixed pixels are generally con-
cerned, their amount is clearly influenced by exposure, which is
why the definition and assignment of mixed pixels is not straight-
forward. Leblanc et al. (2005) propose an interesting way  of dealing
with mixed pixels by linear interpolation – their approach however
suffers from the drawback of having to determine two thresholds.

These influences show that it is crucial to take external fac-
tors such as sky brightness conditions or wind-driven motion
of canopy elements into account when acquiring hemispherical
images.

4. Summary and conclusions

The main goals of this study were to investigate the influences of
the radiometric image resolution, file format and image band selec-
tion as well as their interaction with the threshold algorithm on the
estimation of forest structural attributes (gap fraction, PAIe, clump-
ing indices) and to develop a more objective and robust approach
to the processing of hemispherical images. Threshold algorithms
tested in this study are the Ridler, Otsu and Minimum algorithms
as well as a proposed new standardized processing based on the
Isodata clustering algorithm.

With regard to the first goal, this study was  able to demonstrate
that, depending on the threshold algorithm applied, the file format
and the image band selection can have a significant impact on the
estimation of forest structural attributes. By contrast the radiomet-
ric resolution was  found to affect the estimation only marginally.
Raw images (saved as TIFFs) exhibited higher gap fractions than
basic-compressed JPEG images due to the different steps that raw
image data goes through when being compressed to the JPEG file
format. Since any further analysis departs from the gap fraction, the
determination of PAIe/PAI and clumping are directly affected. One
such effect is a systematic bias in the log-averaged PAIe values of
the JPEG images which results from an increase in zero gap fraction
segments (with decreasing exposure) combined with the method of
substituting empty sky segments with a PAIe of 10 (cf. Section 3.2).
Since the log-averaged PAIe are used to determine leaf clumping
(Lang and Xiang method), this bias causes clumping index differ-
ences between JPEG and TIFF which, more significantly, translate
into increasing differences in PAI corrected with the two different
clumping index methods presented in this paper. For these reasons
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Fig. 5. Proposed standardized batch processing of hemispherical images for the estimation of forest structural attributes based on the Isodata algorithm. * = depending on
the  degree of blooming either the red or blue band. Auto = automatic exposure, UE (1S) to UE (4S) = one to four stops of underexposure.

we recommend to use the raw instead of JPEG-compressed image
data for the estimation of forest structural attributes.

With regard to the influence of the image band selection, spe-
cial attention has to be paid to the effect of blooming, since it could
be demonstrated that it causes significant differences in the esti-
mates of canopy parameters, particularly for gap fraction and PAIe.
As far as clumping is concerned, its calculation is less affected by
the image band selection than by the file format. It was  shown that
even though the blue band theoretically offers the best contrast for
thresholding, due to better absorption, blooming can easily com-
pensate this potential advantage. Hence the degree of blooming in
the different bands, particularly the blue band, should always be
examined. If blooming in the blue band is noticeably stronger than
in the red band, we recommend using the latter.

The fact that the file format and the image band selection did
not affect strongly the canopy parameter estimates derived from

the images thresholded with the Ridler and Otsu algorithms does
not imply that these are better suited for thresholding hemispher-
ical images. On the contrary, by comparing results with LAI-2000
measurements this study revealed that, independent of exposure,
these algorithms yield significantly higher gap fractions and thus
lower PAIe. As a consequence the Ridler and Otsu algorithms are
not suitable for the estimation of gap fraction and PAIe.

Since the file format and the image band selection significantly
influence the estimation of forest structural attributes based on
the Isodata and Minimum algorithms, an effect on the determi-
nation of the optimum exposure is also to be expected. This is a
crucial point because regardless of the threshold algorithm applied,
exposure constitutes the strongest influence on the estimation of
forest structural attributes. As could be shown in the present study
the optimum exposure is dependent on the file format as well as
the image band selection, suggesting the need for an approach
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which reduces this inter-dependence. We  therefore propose a new
approach to the standardized processing of hemispherical images.
This approach represents a multi-layer clustering where the layers
comprise of five differently exposed hemispherical images. These
images are taken with automatic (below-canopy) exposure and 1–4
stops of underexposure. They are then stacked and passed to the
Isodata clustering algorithm, which has proven to be an efficient
and flexible method. Based on an assessment of the influence of the
cluster number on the estimation of PAIe, it could be shown that
with the selection of 9–10 clusters the RMSEs between the LAI-2000
measurements and the PAIe derived from the image stacks reach a
quasi-constant level. Increasing the number of clusters above this
value does not significantly improve the correlation. This behav-
ior is observed for both the red and the blue band image stacks,
which gives us confidence in the use of a fixed cluster number. In
the present study a value of 10 was chosen. Binary images are cre-
ated from these 10 clusters based on a simple decision rule where
the cluster with the highest mean DNs is assigned to the class “sky”
while the remaining clusters are assigned to the class “canopy”. Pro-
vided that hemispherical images are taken under homogenous sky
brightness conditions, this automation rule performs consistently
(Fig. 5).

The proposed approach provides a standardized and fully auto-
matic processing of hemispherical images. Applying this processing
scheme, excellent agreement with the LAI-2000 was achieved.
Since the comparison was based on hemispherical images of decid-
uous forests of variable stand structure (cf. Table 1), we  are
confident that our approach is robust. To further assess its appli-
cability the proposed standardized processing will be tested for
coniferous forests, too. The standardization not only allows better
comparability between research studies and field campaigns but
also eliminates major uncertainties associated with using DHP for
estimation of forest structural attributes. It has to be noted though
that matching different indirect optical methods is not per se an
indication of improved accuracy, rather it provides consistency
between methods, which in the absence of a real LAI reference is
a minimum requirement. The proposed approach to the process-
ing of hemispherical images provides such consistency, which in
turn provides the potential for DHP to replace the LAI-2000. DHP
offers the advantage to calculate clumping and to provide a per-
manent record of the canopy structure. Besides being practical,
easy-to-implement and comparatively cheap, DHP still bears a lot
of potential, in particular considering the fast technical advances
in the field of digital photography. We  therefore believe that – if
sufficiently standardized – hemispherical photography is the most
efficient tool for estimating forest structural attributes.
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Abstract: The characterization of canopy structure is crucial for modeling eco-physiological 

processes. Two commonly used metrics for characterizing canopy structure are the gap 

fraction and the effective Plant Area Index (PAIe). Both have been successfully retrieved 

with terrestrial laser scanning. However, a systematic assessment of the influence of the 

laser scan properties on the retrieval of these metrics is still lacking. This study investigated 

the effects of resolution, measurement speed, and noise compression on the retrieval of gap 

fraction and PAIe from phase-shift FARO Photon 120 laser scans. We demonstrate that 

FARO’s noise compression yields gap fractions and PAIe that deviate significantly from 

those based on scans without noise compression and strongly overestimate Leaf Area Index 

(LAI) estimates based on litter trap measurements. Scan resolution and measurement speed 

were also shown to impact gap fraction and PAIe, but this depended on leaf development 

phase, stand structure, and LAI calculation method. Nevertheless, PAIe estimates based on 

various scan parameter combinations without noise compression proved to be quite stable. 

Keywords: forestry; LAI; LiDAR; laser scanning; phase-shift 
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1. Introduction 

Information about forest canopy structure is crucial for understanding the significant role forest 

canopies play in global processes such as water and carbon cycling. Parker [1] gives a general 

definition of canopy structure as ―the organization in space and time, including the position, extent, 

quantity, type and connectivity, of the above-ground components of vegetation‖. In addition to simple 

forest stand-based descriptors, such as stem density or mean tree height, descriptors related to the 

amount, distribution, and orientation of foliage within the canopy are vitally important for 

understanding plant physiology and growth [1]. These foliage metrics include the Leaf Area Index 

(LAI), commonly defined for flat leaves as half the total leaf area per unit ground surface area [2], and 

the foliage area volume density (FAVD), defined as the volume density function of foliage area [3]. 

Ground-based methods for the estimation of LAI are usually grouped into two categories; direct and 

indirect methods [4]. The direct methods include destructive sampling and litterfall collection [4]. The 

indirect methods include methods based on leaf contact, such as the inclined point quadrat [5], and 

passive optical methods, such as hemispherical photography or LI-COR’s Plant Canopy Analyzer 

(PCA) [4]. As the direct methods are costly, labor intensive and time-consuming [4,6], indirect LAI 

methods are more commonly applied. 

Indirect optical estimates of LAI are all based on a common theoretical framework that uses  

the probability of non-interception of light passing through the forest canopy to infer structural 

characteristics. They also rely on a number of theoretical assumptions about the canopy structure, 

specifically that the foliage elements are planar and distributed randomly within the canopy volume 

(according to a Poisson point process) [4,7]. In reality, the structure of forest canopies deviates from 

these assumptions. Forest canopies are a collection of foliage, twigs, and branches that are often 

clumped around branches and into discrete crown. Various researchers have proposed modifications of 

the Monsi and Saeki equations relating gap probability to LAI using correction factors that account for 

leaf and needle clumping or the contribution of woody vegetation components (see [8] for a detailed 

review). As these correction factors are difficult to measure directly, they are usually inferred from the 

indirect passive optical measurements. Additionally, passive optical methods are susceptible to specific 

hemispherical sky illumination conditions, in particular direct sunlight, that can impact apparent gap 

probability for a given canopy structure (e.g., [9–12]). 

Light Detection and Ranging (LiDAR), sometimes referred to as laser scanning, has received 

increased attention in forestry in recent years as a means of overcoming the limitations of conventional 

indirect structural measurements. Depending on the platform that the scanner operates from, laser 

scanning is commonly categorized into airborne laser scanning (ALS), and terrestrial laser scanning 

(TLS) or terrestrial LiDAR (TLiDAR). LiDAR is based on the emission of a highly collimated laser 

pulse and registering its reflected signal from objects. This yields not only explicit 3-D information 

(range and location relative to the scanner position) but also information about the magnitude of the 

reflected signal in relation to the magnitude of the emitted pulse (i.e., its apparent reflectance [3]). 

Two common range measurement methods are used in commercial TLS instruments, phase-shift 

and time-of-flight [13]. Phase-shift scanners use the difference in phase between the emitted and 

received continuous laser beam with its power modulated at a series of frequencies. Time-of-flight 

scanners are based on a measurement of the time difference between the emission of a laser pulse and 
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the registering of a reflected return pulse. While phase-shift scanners record only a single range per 

measurement direction, time-of-flight scanners may record more than one range or even continuously 

record the return intensities as a waveform [14]. Range measurement methods can influence the 

resulting data properties (e.g., maximum range, ranging error and noise, measurement speed). In turn, 

these may influence the retrieval of vegetation structural metrics. 

While phase-shift scanners are characterized by extremely high measurement speeds, their 

maximum range tends to be more restrictive than time-of-flight scanners [15]. Both, phase-shift and 

time-of-flight scanners, have been successfully used for the retrieval of structural and biophysical 

forest metrics. These include tree positions (e.g., [16,17]), tree height (e.g., [18,19]), diameter at breast 

height (e.g., [20,21]), stem volume (e.g., [22,23]), biomass (e.g., [24–26]). 

Terrestrial laser scanning has been shown to be particularly useful in the retrieval of gap fraction 

and LAI. This is due to the low sensitivity to variable sky illumination conditions, and the enhanced 

information content captured within the 3-D data [27]. In particular the possibility of explicitly 

characterizing three-dimensional canopy structure is widely acknowledged as the major benefit of TLS 

(e.g., [3,7,28,29]). This is fundamental in the characterization of the orientation and 3-D distribution  

of vegetative elements (leaves, branches, stems) within the forest canopy (as defined by [1]), but also 

allows detailed analysis of the size and 3-D distribution of canopy gaps, leading to increased 

understanding of radiative transfer through the canopy [30,31]. The ability to measure the 3-D 

distributions of canopy gaps and vegetative elements also allows explicit analysis of clumping,  

which can only be indirectly inferred from passive-optical measurements, such as hemispherical 

photography [3,7,32]. 

Another advantage of the 3-D data provided by TLS is the possibility to more accurately measure 

leaf area [28,33,34]. Two general methods of estimating LAI using TLS have been identified [11]:  

gap fraction and voxel based methods. The voxel approach [27,29–31,35,36] divides the 3-D scanner 

environment into cubic volume elements (voxels), which are populated by canopy elements based  

upon ray-tracing of the scan data. Leaf area can then be estimated based on the number and location of 

voxels, which are shown to contain vegetation. More sophisticated 3-D approaches have also been 

demonstrated, such as the tree reconstruction by Côté et al. [37], or the geometrical crown depth 

method of Huang and Pretzsch [38]. 

By comparison, the gap fraction approach uses the numbers of laser returns in given zenith angle 

ranges to an estimate of gap probability. These gap probability measurements are subsequently used to 

determine LAI, in a similar manner to methods well known in hemispherical photography [6,10,11,39–42]. 

However, the 3-D information from the scanner can be further utilized to determine the vertical 

distribution of this LAI in the form of vertical foliage profiles [3,9,12,32]. 

The gap fraction methods that solely rely on the angular gap fraction information (2D methods) 

have two main disadvantages: (1) they lose the 3-D information [10] and (2) they are limited in their 

application to single scans. This is in contrast to the 3-D methods, which are mostly based upon 

merged scan point clouds from multiple scans acquired at different locations. Although the merging of 

scans from different viewpoints is associated with higher computational demands, as well as a  

time-consuming scan data acquisition and registration, it is, thus far, the most effective method for 

reducing the effect of occlusion. 
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Both 3-D and 2-D based LAI estimation methods are influenced by the so-called edge effect [28], 

where partial interception of the beam occurs at the edge of objects, and the remaining pulse travels 

further to hit other objects or travel through canopy gaps. While the intensity information recorded by 

full waveform scanners allows an accurate assessment of the proportion of the beam intercepted, and 

thus the true within beam gap fraction [12], complete interception or gap must be assumed with the 

discrete return time-of-flight and phase-shift scanners. Partial interceptions in phase-shift scanner data 

may also produce artifacts caused by range averaging which can confuse gap filtering and result in the 

total disregard of partial interceptions in gap probability calculations [39]. 

Of significant concern in vegetation structure assessment is also the inability of phase-shift scanners 

to unambiguously record non-interception of the beam. This results in randomly distributed points 

within canopy gaps that need to be addressed through firmware filtering or post processing. Both the 

artifacts caused by range averaging and the beam non-interceptions need to be filtered. Traditionally in 

TLS, filtering is applied to reduce noise, which usually refers to the ranging noise defined as the 

standard deviation of the distances about the best-fit plane of the points on a planar target [43]. This 

type of noise depends on a number of factors including the targets’ reflectivity and can be minimized 

by noise compression (i.e., increase the signal-to-noise ratio usually achieved by averaging of multiple 

returns within a pulse window) [43]. In vegetation structure assessment noise is important as it 

contains information about the size and distribution of gaps within the canopy. In many cases, filtering 

is based on both the inferred location and intensity of laser returns. As return intensities are the result 

of complex interactions of a number of factors including scanner properties such as beam divergence, 

beam spot size, range, return response threshold [29], and target properties such as orientation, surface 

texture, and bidirectional reflectance characteristics [27,37,40], the estimation of gap fraction and LAI 

from phase-shift scanner data is heavily influenced by the filtering methods applied. 

This paper investigates the effects of scanner and scan properties on the retrieval of gap fraction  

and PAIe derived from phase-shift scanner data. The application of phase-shift scanners for the 

retrieval of gap fraction and related metrics has not been investigated when compared to discrete return 

time-of-flight scanners (e.g., [10,11,28,29–31,33,37–42]) and time-of-flight full waveform scanners 

(e.g., [3,9,12,33,34,44]). This study tries to bridge this gap by investigating the effects of the main 

phase-shift scan properties of scan resolution (angular step size) and measurement speed (pulses per 

second), as well as a scanner-specific noise compression and firmware based data filtering using a 

phase-shift FARO Photon 120 terrestrial laser scans. 

2. Materials and Methods 

2.1. Study Site 

The study site (49°16′N, 7°48′E) is located in the Pfälzerwald forest near Kaiserslautern, Germany. 

The study was carried out at two test plots within stands where permanent forest monitoring is carried 

out. This monitoring has produced a large pool of in situ biophysical and structural measurements 

including litterfall. One test plot was established at a pure beech (Fagus sylvatica) stand, which is 

characterized by a distinct overstorey of dominant trees around 50 years old and a layer of emerging 

trees younger than 50 years. The other test plot was established at a mixed stand of 200-year-old oak 
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(Quercus petraea) trees in the overstorey and young beech (Fagus sylvatica) trees in the understorey. 

Mean diameter at breast height (DBH) and mean tree height for the beech stand were 16.4 cm (σ = 7.3) 

and 18.5 m (σ = 5.7). The stem density of the beech stand was 1032 trees per ha. Mean DBH and mean 

tree height for the oak-beech stand were 34 cm (σ = 17.1) and 30.7 m (too few height measurements 

available for reliable standard deviation for tree height). The stem density of the oak-beech stand was 

283 trees per ha. Both stands were characterized by consistent slopes (~3°) and mean elevations of 

around 522 m. 

2.2. Data Acquisition and Scanner Characteristics 

Terrestrial Laser Scanning was carried out with a FARO Photon 120 phase shift instrument [43]. 

This scanner operates at a wavelength of 785 nm, with measurement speeds of up to 976,000 points 

per second, and with variable angular step sizes. The beam diameter (at exit) is 3.3 mm and beam 

divergence is 0.16 mrad [43]. The height above ground of the instruments beam emission point was set 

to 1.75 m and scans were performed at single locations with a field-of-view of 360° horizontal and 

310° vertical, providing an almost complete spherical capture of the scanner’s surroundings.  

Table 1. FARO Photon 120 scanner parameter sets used at each of the two study plots 

(modified from table in [43]). Resolution refers to the ratio of the maximum resolution of 

40,000 pts/360° for each rotation of the scan head. Noise compression factors 2× and 4× 

refer to the averaging of ranges within two by two and four by four laser pulse windows 

respectively. Durations of the hardware filtering are approximate. 

Resolution 
Angular Step  

Size (°) 

Point Spacing 

(cm/10 m) 

Scan Speed 

(kpt/s) 

Noise 

Compression 

Scanning 

Time (min) 

Filtering 

Time (min) 

   976 - 03:24 03:25 

1/2 0.018 0.3 488 - 06:49 03:15 

   244 - 13:39 02:30 

   488 - 01:42 01:06 

1/4 0.036 0.6 
244 - 03:24 01:01 

122 - 06:49 01:01 

   244 2× 13:39 16:02 

   244 - 00:51 00:30 

   122 - 01:42 00:26 

1/8 0.072 1.3 244 2× 03:24 04:16 

   122 2× 06:49 04:18 

   244 4× 13:39 14:20 

   244 2× 00:51 01:15 

1/16 0.144 2.5 122 2× 01:42 01:10 

   244 4× 03:24 03:45 

To assess the effects on gap fraction and PAIe retrieval, scans were performed with different 

angular step size, measurement speed, and noise compression (Table 1). Scan parameters were chosen 

to provide comparable datasets at each plot while not exceeding scanning times of 15 min. Each scan 

setting was tested at the centre points of the two test plots and on four different dates (24 April 2013,  
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2 May 2013, 10 May 2013, 7 June 2013). Dates were chosen to cover the phenology of leaf 

development. Leaf development took place predominantly between the second and third measurement 

dates. As such, the first two dates can be characterized as leaf-off, while the latter two dates can be 

characterized as leaf-on. 

All scans were performed with the FARO Photon 120 hardware filters, ―clear sky‖ and ―clear 

contour‖, activated. The ―clear sky‖ filter removes scan points with low intensity, which result from 

intercepting no object, i.e., mainly when the scanner views open sky. The ―clear contour‖ filter 

removes scan points with large separation to surrounding points, which can be the result of 

intercepting multiple objects, mainly at the edges of foreground objects [43]. In addition to these 

hardware filters, three different levels of noise compression can be set prior to scanning with the 

FARO Photon 120: no compression, noise compression by averaging neighboring scan points in a  

two by two window, and noise compression by averaging scan points in a four by four window [43]. 

LAI measurements obtained by collection of leaf litter were used as reference. As litterfall LAI for the 

year laser scans were recorded (2013) were not yet available, long-term averages for the test sites [45] 

were used in this study. As the beech stand was thinned shortly before the last scan date, the long-term 

average for the beech stand was not included. 

2.3. Scan Data Pre-Processing 

The scan data was collected in the proprietary FARO format and exported to PTX, an ASCII-based 

format that orders the scan points (Cartesian coordinates relative to the instrument optical center  

and laser return intensities) according to measurement time while recording non-returns as zero for  

all Cartesian axes. Spherical coordinates (zenith, azimuth, and range) are then computed from the 

Cartesian coordinates. In cases where a zero range was recorded (i.e., sky points) zenith and azimuth 

angles were interpolated from valid (non-zero) neighboring returns. The coordinate system conversion 

allows projecting the scan data as 2D raster images with azimuth and zenith representing x and y. The 

original Cartesian coordinates, as well as the range and intensity information, were stored as separate 

image bands. Figure 1 shows a subset of range images for the different scan parameter sets applied in 

this study. The difference in the visual appearance of these subsets demonstrates the influence of the 

scan parameters, particularly apparent in the level of noise within the canopy gaps. 

2.4. Scan Data Filtering 

Phase shift scanners, such as the FARO Photon 120 are known to suffer from noise (see Section 1). 

While for traditional applications of terrestrial laser scanning noise is mostly treated as unwanted data 

and simply removed from the point cloud, noise is important in vegetation structural analysis as it 

contains information about the size and distribution of gaps within the canopy. 

To develop a data processing scheme for a consistent and accurate detection of canopy gaps, the 

effects of FARO’s hardware filtering were studied in detail based on two sets of test scans: The first set 

included scans performed with and without the ―clear sky‖ filter and with ―clear contour‖ activated in 

both cases. The second set includes scans performed with and without the ―clear contour‖ filter  

and with ―clear sky‖ activated in both cases. Constant intensity thresholds were used to separate  
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sky returns from the ―clear sky‖ and ―clear contour‖ filtered scan returns. In addition, the sensitivity of 

the gap fraction and PAIe estimates to threshold changes was assessed by varying the threshold by ±5%. 

Figure 1. Scan range images based on the different scan parameter sets applied in  

this study. Legend: Scan resolution is displayed as the fraction of the full resolution 

(40,000 points per 360°). Scan speed is displayed in kilo-points per second. The single 

asterisk denotes scans performed with 2× noise compression and the double asterisk 

denotes scans performed with 4× noise compression. 

 

To deal with the noise that results from beam non-interceptions (see Section 1 and Figure 1), we 

applied a kernel-based majority filter (kernel of 3 × 3 pixels) to the 2D scan images, i.e., each image 

pixel which is not classified as sky is checked for its 8 surrounding pixels. If the majority of these are 

classified as sky, the centre pixel is assumed to be noise and consequently reclassified as sky. 

To assess the effect of this type of noise on the retrieval of gap fraction and PAIe, the scan data was 

analyzed both with and without applying the majority filtering. 

2.5. Gap Fraction and PAIe Calculation 

The indirect optical methods of estimating gap fraction and Leaf Area Index are mainly based on 

modeling the radiation transmission through the canopy (see [46]). Assuming a random azimuthal 

foliage distribution and using Beer’s Law, this gap probability is modeled as a function of foliage 

projection function G toward a zenith angle θ, LAI, and path length through the canopy (the cosine of θ) 

such that: 
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                          (1) 

The clumping of canopy elements, particularly into individual tree crows can lead to an increase  

in the gap probability for a given LAI. In this case, the term effective LAI is often used in the above 

equation [47]. In addition, since the distinction between foliage and woody material can often not be 

made with the passive-optical instruments, the estimated leaf area is truly a Plant Area Index (PAI). 

Hence in this study the term effective Plant Area Index (PAIe) is used. For active-optical instruments 

such as TLS, various approaches to the estimation of gap fraction and LAI exist (see Section 1). In this 

study the gap fraction based approach was followed. In this approach gap fraction is inferred from the 

number of laser pulses with no returns from the canopy within some zenith angle range dθ (Ngap) as a 

proportion of the total number of pulses emitted by the instrument within dθ (Npulses). Note that this is 

the complement to fractional cover based on canopy hits Ncanopy: 

                                                            (2) 

Miller [48] proposed the following solution for Equation (1): 

                             

   

 

 (3) 

Based on gap fractions averaged over zenith angle ranges dθi, e.g., LI-COR PCA measurements [49], 

Equation (3) can be integrated numerically by summing the weighted logarithms of the individual 

zenith angle ranges’ gap fractions (Equation (4)). 

                                   

 

   

 (4) 

With the LI-COR PCA, five zenith angle ranges (0–13°, 16–28°, 32–43°, 47–58°, 61–74°) are used. 

The weights          are based on the centre angles of these ranges. The weights are then normalized 

to sum to one [49]. Sometimes only ranges 1–4 with a stronger weighting of the fourth range are used 

in the calculation of LAI to reduce the effects of multiple scattering which is strongest in the higher 

zenith angles resulting in a frequent underestimation of LAI [50]. Leblanc and Chen [51] also showed 

that while the fifth range is least sensitive to changes in canopy LAI, the third and fourth ranges are 

most stable in case of variable sky radiation. The strong weighting of the fourth range is based on the 

theory that for an idealized random foliage distribution and a view angle of 57.5°, the projection 

coefficient G (~0.5) is independent of the mean leaf angle [52]. This is used to determine LAI directly 

from gap fraction measurements at this angle [3]: 

                        (5) 

In this study, in order to assess the effects of resolution, measurement speed, and noise compression 

on the retrieval of gap fraction, and hence their influence on the calculation of PAIe, the numerical 

integration of Equation (4) based on ranges 1–4 and based on ranges 1–5 was used. These are, 

hereafter, referred to as PAIe (0–58°) and PAIe (0–74°). In addition, the gap fraction retrieved from a 

small zenith range (±2.5°) centered on 57.5° was used in accordance with Equation (5) to calculate 

PAIe, hereafter referred to as the PAIe (57.5°). 
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3. Results and Discussion 

3.1. Data Filtering 

One of the key challenges in the use of phase-shift laser scanners for vegetation structural 

assessment is the correct and unambiguous identification of canopy gaps. This requires different 

filtering methods to those employed for application in built structures such as engineering and mining. 

Figure 2 depicts the intensity and range images of the set of test scans filtered (hereafter referred to as 

the filtered scan) and unfiltered (hereafter referred to as the raw scan) with the FARO ―clear sky‖ 

filter. To analyze the range and intensity distribution of sky points, scan regions visually identified as 

sky were subset and statistics calculated. The corresponding histograms are depicted in Figure 3. 

While the range values of the sky points from the raw scan show a uniform random distribution, the 

intensity distribution shows a distinct bimodal pattern which spans almost the full value range. From 

these observations it is obvious that for raw scans, sky points cannot be separated from non-sky points 

based on the range and intensity distributions alone (i.e., a simple thresholding is not applicable). 

Figure 2. Range and intensity images of the test scans without ―clear sky‖ filtering (Left) 

and with ―clear sky‖ filtering (Right). Intensity images are displayed above their  

respective range image. The images’ grayscales were stretched to maximize the contrast 

between sky and canopy, with black and white corresponding to minimum and maximum 

values respectively. 

 

As mentioned, scan points identified by the ―clear sky‖ filter are assigned zero range (Figure 3b). 

The presence of a number of non-zero values in Figure 3b reveals that the ―clear sky‖ filter does not 

detect all sky points. These also show in Figure 3d as the small number of high intensities protruding 

from an otherwise normal distribution. As the histograms are based on sky points retrieved from the 
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same image regions of the raw and the filtered scan, another interesting observation to note is that the 

―clear sky‖ algorithm obviously rescales the intensity values of sky points to achieve this normal 

distribution (see Figure 3b,d). 

Figure 3. Range and intensity histograms of sky points retrieved from the images’ canopy 

gaps displayed in Figure 2. (a) Range histogram of the unfiltered scan, (b) Range 

histogram of the filtered scan, (c) Intensity histogram of the unfiltered scan, (d) Intensity 

histogram of the filtered scan. 

 

To further analyze hardware filter interactions, the second test set was used to plot the intensity 

distribution of all scan points which were assigned zero range by the hardware filters (Figure 4). As 

higher intensity values are assumed to be not sky, the bimodal shape of the histogram from the scan 

without the ―clear contour‖ filter reveals that the ―clear sky‖ algorithm erroneously filters non-sky 

points (Figure 4a). Their occurrence increases strongly in case of additionally applying the ―clear 

contour‖ filter (Figure 4b). These erroneously filtered non-sky points can also be visually identified in 

the range images as the random black pixels spreading over the foliage (Figure 2). 

While the peak centered on the intensity value of 0.6 in Figure 4b can be explained by beam 

interceptions of multiple targets with high intensities such as stems or branches, the increase in the 

peak centered at 0.15 may be explained by partial interceptions of the beam. Clearly, the removal of 

these non-sky points by the hardware filtering will result in an overestimation of gap fraction. 
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Figure 4. Intensity histograms of all filtered scan points retrieved from the second set of 

test scans. (a) Scan filtered only with ―clear sky‖. (b) Scan filtered with ―clear sky‖ and 

―clear contour‖. 

 

To deal with errors of omission in the detection of sky points we applied a three by three pulse 

window kernel-based majority filter. This was run and resulted in complete removal of unfiltered 

points from the sky region of the test scan. To deal with errors of commission, where true and partial 

vegetation returns were considered sky, a simple intensity threshold was applied, such that all points 

with an intensity value greater than a threshold were considered true vegetation returns. However, 

since histograms represent scene-dependent statistics, the histogram-based intensity thresholding is not 

straightforward. This is obvious from Figure 5 which shows the intensity histograms of sky points for 

scans of different scan resolution and measurement speed. Based on these observations from the test 

scan regions we applied a constant intensity threshold of 0.3. 

Figure 5. Intensity histograms of sky points retrieved from test scan regions with different 

scan parameters (scan resolution and measurement speed). 

 

3.2. Gap Fraction 

To investigate whether the effects of the scan parameters on the retrieval of gap fraction exhibit a 

dependency on zenith angle, leaf development phase, and stand structure, the retrieved gap fractions 
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were plotted separately for zenith rings of 10° width, for leaf-off and leaf-on development phases,  

and for the two test plots of different stand structure (Figures 6 and 7). The most striking feature of 

Figures 6 and 7 are the strong differences in the gap fractions retrieved from scans, with and without 

noise compression. Gap fractions from noise-compressed scans are much lower than those from  

non-compressed scans. This effect is independent of zenith, leaf development phase, stand structure, 

and the other parameters (i.e., scan resolution and measurement speed) investigated. The differences 

are less pronounced for high to medium zenith angles (0–55°) than low zenith angles (>55°), in 

particular for leaf-on scans (Figures 6 and 7). 

Figure 6. Average gap fractions of the scans collected at the Beech plot with different scan 

parameters. Legend (scan parameters): Scan resolution is displayed as the fraction of the 

maximum scan resolution. Scan speed is displayed in kpts/s. The single and double 

asterisks denote scans performed with the 2-factor and 4-factor noise compression. 

 

This can be explained by the combined effects of stand structure, laser beam divergence, scan 

resolution (point density), range, and the noise compression algorithm (see Section 2.2). Due to the 

increasing laser beam spot size and point spacing with range (spot sizes of 0.45 cm, 0.97 cm, and  

1.85 cm for ranges of 10 m, 30 m, and 60 m; for a list of point densities achieved see Table 1), and the 

larger canopy path lengths for low zenith angles, the probability of hitting only gaps is reduced 

strongly for low zenith angles and in case of a general decrease of gaps with canopy closing. 
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Figure 7. Average gap fractions of the scans collected at the Oak-beech plot with different 

scan parameters. Legend (scan parameters): Scan resolution is displayed as the fraction of 

the maximum scan resolution. Scan speed is displayed in kpts/s. The single and double 

asterisks denote scans performed with the 2-factor and 4-factor noise compression. 

 

With regard to the level of noise compression, the 4-factor noise compression results in smaller gap 

fractions compared to the 2-factor noise compression, due to the stronger spatial averaging. However, 

absolute gap fraction differences between the two noise compression factors are smaller for leaf-on 

scans and for low zenith angles (Figures 6 and 7). While for leaf-on scans this is caused by the general 

decrease of large gaps with canopy closing, the smaller differences for low zenith angles is the result 

of stand structure, laser beam divergence, scan resolution, and range. Based on these results it is clear 

that stand structure is a key factor in determining the magnitude of the noise compression effect. For 

low-density stands with a large proportion of between-canopy gaps, the spatial averaging of scan 

points should influence the gap fraction estimation a lot less compared to dense stands with a large 

proportion of smaller within-canopy gaps. 

With regard to the effects of the scan resolutions and measurement speeds applied in combination 

with the noise compression, the different measurement speeds result in marginal differences, which 

however seem to be larger for high zenith angles and for leaf-off scans. This is observed for both test 

plots and both the 1/8 and 1/16 scan resolutions (Figures 6 and 7). By contrast, the scan resolutions 

have a stronger effect on the gap fraction estimates, yielding larger gap fractions for high zenith angles 

with increasing scan resolution. This effect is less pronounced for leaf-on scans. For low zenith angles 
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(>55°) this pattern is reversed, i.e., gap fraction increase with decreasing resolution. This can be 

observed for the different leaf development phases and for both plots (Figures 6 and 7). Given the 

decreasing probability of hitting only gap within the low zenith angle range for scans with decreasing 

resolution due the spatial averaging of larger scan point spacing, this reversal is difficult to explain.  

A possible explanation might be that with decreasing resolution an increasing proportion of low zenith 

scan points is erroneously filtered and removed by the hardware filters. 

With regard to the effect of the scan parameters on the gap fractions derived from the scans without 

noise compression, a similar dependency on zenith angle can be observed for the scan resolution.  

For angles greater than 55°, gap fractions increase with decreasing resolution, an effect which is 

independent of leaf development phase and stand structure (Figures 6 and 7). Again, this might be 

attributed to the fact that scan points are disproportionally filtered out from lower resolution scans. 

Gap fractions retrieved from zenith angles smaller than 55° exhibit no systematic pattern as a function 

of scan resolution. Scans performed with the resolutions 1/4 and 1/8 also show gap fraction differences 

between the two measurement speeds 244 and 122 kpts/s which appear to be random, rather than 

systematic. By contrast, a distinct effect of measurement speed can be observed for the scans with 

resolution 1/2, i.e., an increase in gap fraction with decreasing scan speed. This effect is independent of 

leaf development phase and stand structure, and it is more pronounced for high to medium zenith 

angles (0–55°) and for leaf-off scans (Figures 6 and 7). The reason for this effect is the higher noise 

level (i.e., larger number of undetected sky points) present within canopy gaps with increasing 

measurement speed (see Figure 1). Since there is, (a) a larger number of gaps within the high to 

medium zenith canopy regions compared to the low zenith angles; and (b) a general larger number of 

gaps during the leaf-off phase, the magnitude of this noise is more pronounced for high to medium 

zenith angles and for leaf-off scans. 

3.3. PAIe 

To investigate how the differences in the retrieved gap fractions resulting from the different scan 

parameters translate into differences in PAIe, in particular accounting for the effects of using different 

LAI calculation methods, PAIe was calculated with three methods (see Section 2.5) for the two plots 

and the four different acquisition dates (Figures 8 and 9). As was to be expected from the gap fraction 

results, the strong effect of the noise compression is clearly reflected in the PAIe results. For the scans 

with parameter combinations 1/4-244, 1/8-244, and 1/8-122, which allow a direct comparison of the 

magnitude of this effect (see Table 1), PAIe increases by 54%, 73%, and 76% (mean of the three LAI 

methods and in the order of the above-mentioned parameter combinations) for the leaf-off beech scans, 

by 27%, 30%, and 28% for the leaf-on beech scans, by 64%, 84%, and 83% for the leaf-off oak-beech 

scans, and by 44%, 42%, and 41% for the leaf-on oak-beech scans. 

The effect of the noise compression level itself can be observed from the scans with parameter 

combinations 1/8-244 and 1/16-244 (see Table 1). Compared to the 2-factor compression, applying the 

4-factor noise compression increases the PAIe by 32% and 55% (mean of the three LAI methods and  

in the order of the above-mentioned parameter combinations) for the leaf-off beech scans, by 9%  

and 17% for the leaf-on beech scans, by 42% and 76% for the leaf-off oak-beech scans, and by 17% 

and 28% for the leaf-on oak-beech scans. 
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Figure 8. Effective PAI based on the scans collected at the Beech plot with different  

scan parameters. Leaf-off dates: (a) 24 April 2013. (b) 2 May 2013. Leaf-on dates:  

(c) 10 May 2013. (d) 7 June 2013. Scan parameters: Scan resolution is displayed as the 

fraction of the maximum scan resolution. Scan speed is displayed in kpts/s. The single and 

double asterisks denote scans performed with the 2-factor and 4-factor noise compression. 

 

The stronger effect for the leaf-off scans can be attributed to the larger number of gaps with noise 

(i.e., undetected sky points) present. Since noise compression particularly affects the gap fraction 

retrieved from low zenith angles (see Section 3.2), the LAI calculation methods with a stronger 

weighting of gap fractions from these zenith regions, PAIe (0–58°) and PAIe (57.5°), are affected by 

noise compression more strongly than the PAIe (0–74°): PAIe increase by 69% and 81% compared  

to 52% (leaf-off beech), by 76% and 88% compared to 68% (leaf-off oak-beech), by 41% and 33% 

compared to 12% (leaf-on beech), and by 42% and 55% compared to 30% (leaf-on oak-beech). These 

averages are based on the percentage deviations in PAIe of all scan pairs with comparable parameter 

combinations and the 2-factor noise compression. The 4-factor noise compressed scans confirm this 

trend. By contrast, the resolutions and measurement speeds applied in combination with the noise 

compression only have a marginal influence on the PAIe (Figures 8 and 9). 
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Figure 9. Effective PAI based on the scans collected at the Oak-Beech plot with different 

scan parameters. Leaf-off dates: (a) 24 April 2013. (b) 2 May 2013. Leaf-on dates:  

(c) 10 May 2013. (d) 7 June 2013. Scan parameters: Scan resolution is displayed as the 

fraction of the maximum scan resolution. Scan speed is displayed in kpts/s. The single and 

double asterisks denote scans performed with the 2-factor and 4-factor noise compression. 

The lines in 9 (d) depict the mean (solid line) and standard deviations (dashed lines) of the 

litterfall LAI for the period 2004–2008. 

 

With regard to the effect of the scan parameters applied without noise compression, a pattern of 

decreasing PAIe with decreasing measurement speed and with decreasing scan resolution can be 

observed, in particular for the leaf-off scans. This effect is also more pronounced for the 1/2 resolution 

than resolutions 1/4 and 1/8, as a consequence of the observed gap fraction pattern (see Section 3.2). 

Concerning the different LAI calculation methods applied, the PAIe derived from the uncompressed 

scans decrease in the order of methods, PAIe (0–58°), PAIe (57.5°), and PAIe (0–74°). This effect is 

enhanced with gradual canopy closing (Figures 8 and 9). In spite of the various scan resolutions and 

measurement speeds applied, the PAIe estimates based on the scan parameter combinations without 

noise compression are quite stable, in particular taking into account the variability induced by the use 

of different LAI calculation methods: The mean PAIe standard deviations (standard deviations of the 

PAIe values from all parameter combinations without noise compression averaged for the three LAI 
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methods) are 0.22, 0.15, 0.13, 0.16 for the beech scans, and 0.20, 0.19., 0.13, 0.19 for the oak-beech 

scans (in ascending order of dates). By comparison, the mean PAIe range of the LAI methods (range of 

the PAIe calculated with the three LAI methods averaged for all parameter combinations without noise 

compression) are 0.24, 0.29, 0.77, and 1.11 for the beech scans, and 0.39, 0.39, 1.05, and 1.72 for the 

oak-beech scans (again in ascending order of dates). 

To assess whether the PAIe based on the scans with our without noise compression are closer to  

the ―true‖ LAI, the mean and standard deviations of litterfall LAI for the oak-beech plot was included 

in the analysis (Figure 9d). As actual 2013 litterfall LAI are not yet available, and litterfall can  

vary considerably from year to year, the comparison with litterfall LAI is supposed to allow for  

an indication of trend rather than a rigorous validation. In addition, whereas litterfall actually yields a 

measure of foliage mass and area, the LAI derived from terrestrial laser scanning in this study 

represents an effective Plant Area Index (i.e., not accounting for clumping and the proportion of 

woody components). Based on a study of estimating LAI, clumping, and woody area index from 

digital hemispherical photography [45], which was carried out at a number of permanent forest 

monitoring sites including the two where the present study was carried out, we used an average 

clumping index of 0.84 along with an average woody area index of 0.2 to derive an approximate 

multiplication factor of 0.95 for the conversion from PAIe to LAI. Hence, LAI derived from TLS in 

this study are only slightly smaller than their corresponding PAIe. Despite the approximate nature of 

this comparison, the litterfall LAI indicate that the ―true‖ LAI is overestimated strongly by applying 

noise compression, in particular considering the unrealistically high PAIe for the scans acquired during 

the leaf-off period (see Figures 8 and 9). 

3.4. Majority Filtering 

To assess the magnitude of the error of omission caused by the ―clear sky‖ filter, an image-based 

majority kernel filtering was applied to all scans (see Sections 2.4 and 3.1). PAIe derived from this 

filtering were then compared to PAIe derived without applying the majority filtering (Table 2). 

The results reflect the visual impression of the different scans’ range images in Figure 1 with respect 

to the major trend: The higher the measurement speed the greater the amount of undetected sky points. 

Hence, PAIe differences increase with increasing speed. This can be observed for the scans performed 

without noise compression during both the leaf-off and the leaf-on phase. Differences are, however, 

more pronounced during leaf-off due to the higher amount of gaps and therefore a higher amount of 

undetected sky points. The fact that the uncompressed scans with scan resolution 1/8 yield the highest 

PAIe differences are noteworthy, in particular considering their visual appearance (Figure 1). This might 

be explained by a potential erroneous removal of valid scan points at the border regions of branches and 

sky by the applied majority filter. This effect might be particularly enhanced for leaf-off scans with low 

scan resolution where a large number of coarsely depicted border regions are present. 

Another trend, which can be observed in the results, is that PAIe differences are smaller for the 

scans with FARO’s noise compression compared to those without noise compression (Table 2). This is  

an indication of the efficiency of the noise compression to reduce the error of omission. With regard  

to the different LAI methods used, PAIe differences based on the PAIe (0–58°) and PAIe (0–74°) 

methods were shown to be larger than those based on the PAIe (57.5°) method (Table 2). This is easily 
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explained by the fact that the former also include gap fractions from high zenith angles in their 

calculation. As these have a larger proportion of gaps compared to the zenith range around 57.5°, the 

PAIe (0–58°) and PAIe (0–74°) are affected more strongly by the ―clear sky‖ filter’s error of omission. 

Table 2. Percentage deviation in Plant Area Index (PAIe) caused by the majority filtering 

(―filtered‖) in relation to the PAIe derived from the unfiltered scans (―raw‖). Percentage 

deviation = (PAIe (filtered)—PAIe (raw))/PAIe (raw). 

 
Leaf-Off Leaf-On 

Percentage Deviation (%) Percentage Deviation (%) 

Site Parameters PAIe (0–58°) PAIe (0–74°) PAIe (57.5°) PAIe (0–58°) PAIe (0–74°) PAIe (57.5°) 

Beech 

1/2—976 −5.8 −4.9 −3.0 −3.4 −2.7 −1.4 

1/2—488 −4.2 −3.8 −2.7 −2.0 −1.6 −0.9 

1/2—244 −1.5 −1.8 −1.7 −0.4 −0.4 −0.3 

1/4—488 −5.5 −5.1 −4.1 −2.1 −1.8 −1.1 

1/4—244 −3.7 −3.6 −3.6 −0.7 −0.7 −0.6 

1/4—122 −3.4 −3.4 −3.6 −0.5 −0.6 −0.6 

1/8—244 −7.8 −7.2 −7.1 −1.4 −1.6 −1.5 

1/8—122 −8.0 −7.6 −7.7 −1.1 −1.3 −1.4 

1/4—244—2× −1.4 −1.1 −0.8 −0.8 −0.5 −0.6 

1/8—244—2× −1.4 −1.1 −0.9 −0.8 −0.5 −0.5 

1/8—244—4× −2.6 −1.7 −1.2 −2.1 −1.3 −1.1 

1/8—122—2× −1.0 −0.8 −0.7 −0.2 −0.1 −0.2 

1/16—244—2× −1.8 −1.5 −0.7 −0.8 −0.5 −0.7 

1/16—244—4× −2.3 −1.5 −1.1 −1.8 −1.0 −0.8 

1/16—122—2× −1.6 −1.4 −0.8 −0.3 −0.2 −0.5 

Oak-beech 

1/2—976 −4.3 −4.2 −2.5 −1.6 −1.6 −0.6 

1/2—488 −3.6 −3.5 −2.6 −1.0 −1.0 −0.4 

1/2—244 −2.0 −2.1 −2.3 −0.4 −0.4 −0.3 

1/4—488 −5.1 −4.9 −4.0 −1.4 −1.4 −0.9 

1/4—244 −4.8 −4.7 −4.2 −0.8 −0.8 −0.7 

1/4—122 −3.9 −3.9 −4.0 −0.8 −0.7 −0.7 

1/8—244 −7.7 −7.5 −6.8 −2.1 −1.9 −1.9 

1/8—122 −7.8 −7.6 −7.1 −2.0 −1.9 −2.0 

1/4—244—2× −1.0 −0.8 −0.7 −0.4 −0.3 −0.2 

1/8—244—2× −0.9 −0.8 −0.5 −0.3 −0.3 −0.1 

1/8—244—4× −1.0 −0.8 −0.4 −0.6 −0.7 0.0 

1/8—122—2× −0.9 −0.7 −0.6 −0.1 −0.2 −0.1 

1/16—244—2× −1.0 −1.0 −0.5 −0.2 −0.2 0.0 

1/16—244—4× −0.6 −0.7 −0.2 −0.3 −0.3 0.0 

1/16—122—2× −1.3 −1.2 −0.7 −0.1 −0.1 0.0 

Overall, PAIe differences between the majority filtered and unfiltered scans are relatively small  

(on average less than 5%), which hints at a rather marginal effect of the omission error on the PAIe 

estimates. However, the small differences may very well be partly due to an inefficient removal of the 

undetected sky points by the applied majority filter, in particular considering the dense occurrence of 
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these points within canopy gaps of scans with very high measurement speeds (see Figure 1). An 

iterative filtering might help to solve this problem, however, this may also increase the potential 

erroneous removal of valid scan points at the border regions of branches and sky by the majority filter. 

Alternative approaches to deal with the ―clear sky‖ filter’s error of omission might be devised, e.g., 

based on the additional color information from a simultaneous acquisition of canopy photos. 

3.5. Threshold Variation 

To assess the sensitivity of the PAIe estimates to changes in the intensity threshold used to separate 

correctly filtered sky points from falsely filtered scan points (see Sections 2.4 and 3.1), the default 

threshold used in this study was varied by ±5%. Results are presented separately for the leaf-off and 

leaf-on scans (Table 3a,b). In general, decreasing the threshold has a stronger effect on PAIe than 

increasing the threshold, regardless of scan parameters, LAI method, and stand structure (Table 3a,b). 

This is due to the characteristic low intensity distribution of sky points (see Figures 4b and 5). 

However, this effect seems to be dependent on the leaf development phase with much larger PAIe 

differences for leaf-off scans than for leaf-on scans, which indicates that for open canopies with higher 

ambient noise the intensity distribution of sky points tends to shift to a higher value range. 

Furthermore noise compressed scans tend to be less sensitive to threshold changes than uncompressed 

scans. This is most likely due to the strong general reduction in ―clear contour‖ filtered scan points and 

erroneously ―clear sky‖ filtered scan points as a result of the noise compression algorithm, and which 

results in unimodal rather than bimodal intensity histograms that are typical for the uncompressed 

scans (see Figure 4a,b in Section 3.1). 

Another trend, which can be observed is that for the leaf-off scans the applied resolutions influence 

the sensitivity to threshold changes, i.e., PAIe differences increase with decreasing resolution. For the 

leaf-on scans this trend is less pronounced and influenced by stand structure, too. This observation 

hints at a combined effect of scan resolution and ambient noise on the intensity distribution of filtered 

scan points and therefore a different sensitivity to threshold changes. By contrast, the measurement 

speed exhibited no systematic sensitivity to threshold changes. 

With regard to the different LAI calculation methods applied, the PAIe estimates based on the  

PAIe (57.5°) method and the leaf-on scans without noise compression are more sensitive to threshold 

variations compared to PAIe (0–58°) and PAIe (0–74°) methods (Table 3a,b). This pattern, however, 

could not be observed for the compressed leaf-on scans and the leaf-off scans in general. This might be 

explained by the fact that during the leaf-off phase, gap fractions of the lower zenith angles are 

generally larger compared to the leaf-on phase, and therefore less influenced by threshold changes. In 

addition, applying noise compression might disproportionately reduce ―clear sky‖ and ―clear contour‖ 

filtered scan points for low zenith angles, resulting in such small gap fractions that relatively small 

threshold variations have little effect. 

Including the gap fractions of higher zenith angles into the LAI calculation seems to have a 

stabilizing effect with regard to the sensitivity of the PAIe estimates to threshold changes: On average 

(mean of the different scan parameter combinations), PAIe based on the PAIe (0–58°) and PAIe (0–74°) 

methods vary from −4.8% to 6.5% for the leaf-on beech scans, and from −6.1% to 7.7% for the leaf-on 

oak-beech scans (Table 3b). By comparison, PAIe based on the PAIe (57.5°) method vary from −11.1% 
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to 11.2% for the leaf-on beech scans, and from −8.9% to 11.5% for the leaf-on oak-beech scans  

(Table 3b). This variability in the PAIe estimation induced by threshold changes shows that the 

threshold selection is a critical part of the proposed approach of extracting gap fraction and PAIe from 

phase shift FARO laser scans. 

Table 3. (a) The effect of threshold variation on the PAIe calculated from the leaf-off scans 

and with different LAI calculation methods. (b) The effect of threshold variation on the 

PAIe calculated from the leaf-on scans and with different LAI calculation methods. 

 
% Deviation  

(Decrease of Threshold by 5%) 

% Deviation  

(Increase of Threshold by 5%) 

Site Parameters PAIe (0–58°) PAIe (0–74°) PAIe (57.5°) PAIe (0–58°) PAIe (0–74°) PAIe (57.5°) 

Beech 

1/2—976 7.0 6.8 8.0 −3.0 −2.6 −3.5 

1/2—488 6.2 5.8 7.2 −2.4 −1.9 −2.8 

1/2—244 8.5 6.9 7.3 −3.0 −2.0 −2.6 

1/4—488 13.2 13.1 14.3 −6.6 −5.4 −6.9 

1/4—244 11.8 10.3 12.7 −5.6 −4.3 −6.1 

1/4—122 10.7 10.0 11.4 −5.8 −4.9 −5.8 

1/8—244 16.1 15.6 22.1 −10.8 −9.1 −12.2 

1/8—122 19.7 18.7 26.3 −11.7 −9.9 −13.8 

1/4—244—2× 4.0 2.4 2.9 −0.9 −0.5 −0.4 

1/8—244—2× 5.7 4.3 5.3 −1.2 −0.9 −1.3 

1/8—244—4× 2.6 1.9 1.6 −0.5 −0.2 −0.2 

1/8—122—2× 4.4 4.1 3.4 −1.7 −1.3 −0.8 

1/16—244—2× 10.7 10.9 11.0 −4.2 −3.5 −4.0 

1/16—244—4× 1.5 1.7 0.8 −0.4 −0.2 −0.2 

1/16—122—2× 7.5 7.8 9.6 −4.6 −3.3 −4.2 

Oak-beech 

1/2—976 10.8 9.5 9.1 −4.3 −3.7 −3.9 

1/2—488 10.3 8.6 8.9 −3.7 −3.1 −3.3 

1/2—244 9.5 7.8 8.7 −3.4 −2.7 −2.4 

1/4—488 14.4 12.0 13.2 −6.6 −5.5 −6.0 

1/4—244 14.4 12.1 13.9 −6.3 −5.4 −6.0 

1/4—122 10.8 9.1 11.4 −5.4 −4.8 −5.2 

1/8—244 16.4 15.1 16.9 −9.9 −8.9 −9.6 

1/8—122 18.4 16.9 18.7 −10.5 −9.5 −10.1 

1/4—244—2× 5.5 3.2 4.2 −0.9 −0.7 −0.3 

1/8—244—2× 3.9 3.2 3.6 −1.3 −1.2 −1.1 

1/8—244—4× 0.5 0.3 0.5 −0.2 −0.1 0.0 

1/8—122—2× 3.1 2.4 3.4 −1.0 −0.9 −1.0 

1/16—244—2× 10.1 9.0 10.7 −4.6 −4.0 −4.1 

1/16—244—4× 1.4 0.6 1.8 −0.2 −0.1 −0.2 

1/16—122—2× 12.8 11.3 10.3 −4.9 −4.4 −3.9 

(a) 
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Table 3. Cont. 

 
% Deviation  

(Decrease of Threshold by 5%) 

% Deviation  

(Increase of Threshold by 5%) 

Site Parameters PAIe (0–58°) PAIe (0–74°) PAIe (57.5°) PAIe (0–58°) PAIe (0–74°) PAIe (57.5°) 

Beech 

1/2—976 6.2 6.8 9.6 −4.3 −3.9 −7.1 

1/2—488 4.9 5.8 9.9 −3.9 −3.4 −6.9 

1/2—244 5.7 6.2 10.4 −4.0 −3.2 −7.0 

1/4—488 4.6 6.6 10.8 −4.8 −4.8 −11.4 

1/4—244 5.2 7.9 12.1 −5.1 −5.1 −12.4 

1/4—122 5.5 7.8 11.4 −4.8 −4.8 −12.2 

1/8—244 6.8 11.5 12.8 −6.0 −6.9 −16.1 

1/8—122 4.3 8.6 12.4 −5.1 −6.2 −15.8 

1/4—244—2× 0.6 1.0 0.4 −0.2 −0.4 −0.4 

1/8—244—2× 2.6 2.7 0.5 −0.4 −1.3 −0.9 

1/8—244—4× 0.7 0.8 3.0 0.0 0.0 −0.1 

1/8—122—2× 0.5 2.6 0.4 −0.3 −1.4 −1.1 

1/16—244—2× 3.5 6.7 1.2 −1.3 −2.8 −1.7 

1/16—244—4× 0.8 0.7 1.2 0.0 0.0 0.0 

1/16—122—2× 0.8 5.4 1.2 −0.5 −2.5 −2.1 

Oak-beech 

1/2—976 6.9 6.3 8.5 −4.8 −4.1 −6.3 

1/2—488 5.4 4.8 7.9 −4.3 −3.6 −6.0 

1/2—244 5.9 5.2 8.4 −4.4 −3.6 −6.0 

1/4—488 7.9 7.6 11.4 −6.8 −6.1 −9.3 

1/4—244 7.8 7.7 11.5 −6.8 −6.1 −9.4 

1/4—122 7.6 7.5 12.1 −6.7 −6.0 −9.5 

1/8—244 10.1 10.3 15.4 −8.8 −8.4 −12.5 

1/8—122 10.7 11.0 16.6 −9.1 −8.6 −12.5 

1/4—244—2× 0.8 1.3 1.3 −0.5 −0.7 −1.3 

1/8—244—2× 1.5 2.6 3.5 −1.1 −1.7 −3.3 

1/8—244—4× 2.6 2.6 1.5 0.0 0.0 0.0 

1/8—122—2× 1.6 2.8 3.7 −1.3 −1.7 −3.0 

1/16—244—2× 2.5 4.6 3.1 −2.4 −3.2 −6.1 

1/16—244—4× 0.4 0.2 0.0 0.0 0.0 0.0 

1/16—122—2× 2.4 4.6 4.3 −2.5 −3.3 −6.3 

(b) 

The results indicate that applying a constant threshold value for scans with different scan 

parameters and collected for stands with different structure and leaf development phase is not the 

optimal solution, as histograms represent scene-dependent scan statistics. The implementation of an 

automated threshold selection based on the intensity distribution of filtered scan points retrieved for 

each scan separately might be a potential solution. However, due to the lack of true reference data this 

approach cannot be validated in the present study. Besides such a validation would have to be based on 

the retrieved gap fraction instead of PAIe, and reference data for the size and distribution of gaps in the 

canopy is generally hard to obtain [3,37]. 
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Approaches for the identification of scan pulses from canopy gaps based on the variance of 

neighboring scan points (with regard to range, intensity, and color information) from phase shift scans 

without the use of hardware filtering could be an alternative [53]. Yet again, the rigorous assessment of 

any such approach is hardly possible without the availability of true gap fraction reference data.  

When comparing the above-mentioned PAIe variability induced by changing the threshold to the 

variability induced by using different LAI calculation methods (see Section 3.3), threshold changes 

have a smaller effect than the LAI calculation itself. If, in addition the low variability induced by the 

different scan parameters applied without noise compression is considered, PAIe estimates based on 

using a constant intensity threshold of 0.3 yield reasonable values when compared to the mean  

long-term litterfall LAI (see Section 3.3). 

4. Conclusions 

This study investigated the effects of scan resolution, measurement speed, and noise compression 

on the retrieval of gap fraction and effective Plant Area Index from phase-shift FARO Photon  

120 terrestrial laser scans. It could be demonstrated that FARO’s noise compression algorithm yields 

gap fractions and PAIe which deviate significantly from those based on scans without noise compression. 

Mean litterfall LAI were also strongly overestimated by the scans performed with noise compression. 

We, therefore, conclude that while noise compression might generally help to reduce the noise in 

phase-shift terrestrial laser scans without affecting the retrieval of structural forest metrics such as stem 

diameter [54], FARO’s noise compression should not be applied for retrieving gap fraction and related 

structural metrics such as the PAIe. The parameters, scan resolution and measurement speed, were 

shown to influence the retrieval of these metrics, too. However, the magnitudes of these effects proved 

to be smaller than the effect of noise compression, and proved to depend on zenith, leaf development 

phase, stand structure, and LAI calculation method. 

Nevertheless, the overall PAIe estimates based on the scan parameter combinations without noise 

compression exhibited a relative stability, in spite of the various scan parameter combinations applied. 

This conclusion was drawn from the fact that the variation in the PAIe estimation induced by the scan 

resolutions and measurement speeds applied without noise compression was significantly lower than 

the variation induced by applying different LAI calculation methods. This gives confidence in using 

phase-shift TLS for a reliable and consistent retrieval of gap fraction as the base for estimating PAIe. 

It could also be demonstrated that scans performed with high measurement speeds (978 and  

488 kpt/s) are especially prone to noise when FARO’s ―clear sky‖ and ―clear contour‖ filters are applied. 

The post-processing filtering approach applied in this study could reduce this noise to some effect, but, 

due to the lack of a true gap fraction reference, it could not be properly assessed. Unless any such  

post-processing approach is proven to be effective and working, we suggest performing phase-shift 

FARO scans with lower measurement speeds (244 and 122 kpt/s) to reduce this type of noise. 

While the proposed approach of identifying sky points from hardware filtered FARO scans by  

using a constant intensity threshold yielded reasonable PAIe when compared to the mean long-term 

litterfall LAI, the implementation of a variable threshold selection based on each scan’s specific 

intensity distribution might be a better solution. Considering that the hardware filters are mostly 

company secret and were not developed for specialized applications, such as vegetation structural 
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analysis, developing specialized filters for raw scan data would probably be most appropriate. 

However, the availability of gap fraction reference data is crucial for the rigorous assessment of any 

such approach, including 3-D based approaches. 

Above all, more research is required to investigate the effects of scan parameters for different 

phase-shift laser scanners as well as the effects of different scanner properties, most notably the 

ranging principle, on the retrieval of gap fraction and LAI. Compared to the passive-optical instruments 

such as the LI-COR PCA or digital hemispherical photography, TLS offers a number of advantages, 

e.g., the improved characterization of clumping due to the 3D information, or the lower sensitivity to 

variable sky illumination. 

Due to the technical progress in the field of terrestrial and mobile laser scanning, the information 

content provided by the laser scanners is steadily increasing (e.g., multi-spectral lasers, UAV-based 

applications), which will greatly enhance the retrieval of structural forest metrics, such as the 

separation of woody from non-woody vegetation components. With decreasing costs, increasing 

scanner operability (reduction in size and weight, longer battery lives, etc.), and with increasing 

research corroborating the reliable and consistent retrieval of structural forest metrics, there is a good 

chance that TLS will be routinely applied in forest inventory and as a tool for collecting reference data 

to, e.g., validate airborne and satellite based remote sensing data. 
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a b s t r a c t

Terrestrial laser scanning (TLS) has been used to estimate a number of biophysical and structural vege-
tation parameters. Of these stem diameter is a primary input to traditional forest inventory. While many
experimental studies have confirmed the potential for TLS to successfully extract stem diameter, the esti-
mation accuracies differ strongly for these studies – due to differences in experimental design, data pro-
cessing and test plot characteristics. In order to provide consistency and maximize estimation accuracy, a
systematic study into the impact of these variables is required. To contribute to such an approach, 12
scans were acquired with a FARO photon 120 at two test plots (Beech, Douglas fir) to assess the effects
of scan mode and circle fitting on the extraction of stem diameter and volume. An automated tree stem
detection algorithm based on the range images of single scans was developed and applied to the data.
Extraction of stem diameter was achieved by slicing the point cloud and fitting circles to the slices using
three different algorithms (Lemen, Pratt and Taubin), resulting in diameter profiles for each detected tree.
Diameter at breast height (DBH) was determined using both the single value for the diameter fitted at the
nominal breast height and by a linear fit of the stem diameter vertical profile. The latter is intended to
reduce the influence of outliers and errors in the ground level determination. TLS-extracted DBH was
compared to tape-measured DBH. Results show that tree stems with an unobstructed view to the scanner
can be successfully extracted automatically from range images of the TLS data with detection rates of 94%
for Beech and 96% for Douglas fir. If occlusion of trees is accounted for stem detection rates decrease to
85% (Beech) and 84% (Douglas fir). As far as the DBH estimation is concerned, both DBH extraction meth-
ods yield estimates which agree with reference measurements, however, the linear fit based approach
proved to be more robust for the single scan DBH extraction (RMSE range 1.39–1.74 cm compared to
1.47–2.43 cm). With regard to the different circle fit algorithms applied, the algorithm by Lemen showed
the best overall performance (RMSE range 1.39–1.65 cm compared to 1.49–2.43 cm). The Lemen algo-
rithm was also found to be more robust in case of noisy data. Compared to the single scans, the DBH
extraction from the merged scan data proved to be superior with significant lower RMSE’s (0.66–
1.21 cm). The influence of scan mode and circle fitting is reflected in the stem volume estimates, too.
Stem volumes extracted from the single scans exhibit a large variability with deviations from the refer-
ence volumes ranging from �34% to 44%. By contrast volumes extracted from the merged scans only vary
weakly (�2% to 6%) and show a marginal influence of circle fitting.
� 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.

1. Introduction

Even though terrestrial laser scanning (TLS) is not a new tech-
nology, its application for forest inventory and research is still rel-
atively new, mainly because of high scanner costs and hardware
limitations to the data processing. However with the rapid techni-
cal progress in this field, terrestrial laser scanners and associated

hardware have become affordable which – also encouraged by
the promising results of pilot studies (e.g. Simonse et al., 2003;
Thies and Spiecker, 2004, Hopkinson et al., 2004) – boosted re-
search and their use in forestry. Moreover, due to considerable
reductions in size and weight, scanners and their equipment have
become manageable in terms of their practical use in the field. TLS
has been used to estimate a number of biophysical and structural
vegetation parameters including tree location (e.g. Simonse et al.,
2003; Aschoff and Spiecker, 2004), tree height (e.g. Maas et al.,
2008, Tansey et al., 2009), diameter at breast height (e.g. Bienert
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et al., 2006; Lovell et al., 2011), stem volume (Tansey et al., 2009),
biomass (Yao et al., 2011; Holopainen et al., 2011), chlorophyll (Ei-
tel et al., 2010), Leaf Area Index and gap fraction (e.g. Henning and
Radtke, 2006; Clawges et al., 2007; Danson et al., 2007; Jupp et al.,
2009; Strahler et al., 2008). A large number of these experimental
studies have confirmed the potential for TLS to successfully extract
these parameters; however a systematic study of the factors which
influence the information extraction from TLS data is still lacking,
even though the need for such analyses was already formulated
at quite an early stage (cf. Thies and Spiecker, 2004). The following
potentially influence the accuracy of the information extraction
from TLS data:

� Ranging method: Time-of-flight discrete return, time-of-flight
waveform, continuous wave phase-shift.
� Scanner characteristics: Ranging errors, laser wavelength and

beam divergence.
� Scan settings: Angular resolution (scan geometry), integration

time.
� Scan mode: Single or multiple (merged) scans.
� Data processing: Filtering, higher level algorithms for deriving

tree metrics.

These attributes also exhibit interdependencies which affect
structural metrics derived from TLS data. For forest applications
these interdependencies are further complicated by the influence
of stand and plot characteristics (e.g. tree species composition
and age, canopy layering, degree of undergrowth, stem density
and slope). As a consequence of the combined effects of these influ-
ences, the existing studies yield widely different results, even for
such seemingly simple tasks as stem detection and diameter
extraction (see Table 1). Note that Table 1 is not intended to pro-
vide a complete overview; rather it is to highlight the differences
in the studies which contribute to the wide range of results found
and which make it difficult to objectively compare the proposed
methodologies and algorithms. Above all, this calls for a more sys-
tematic study into the TLS-related influences. The present study is
intended to contribute to such an approach by assessing the influ-
ences of circle fitting and scan mode on stem diameter and volume
extraction from TLS data. To date, both have received relatively lit-
tle attention in the TLS literature. To our knowledge only Thies and
Spiecker (2004) and Maas et al. (2008) specifically address the
influence of scan mode and Tansey et al. (2009) as well as Brolly
and Király (2009) specifically address the influence of circle fitting.
However, except for Brolly and Király (2009), all studies are based
on relative small sample sets (see Table 1), reported results and
drawn conclusions should therefore be cautiously judged and need
to be supported by further research. While studies on the influence
of scan mode on stem diameter and volume extraction are scarce,
the effects on stem detection are well documented (e.g. Watt and
Donoghue, 2005; Bienert et al., 2007; Litkey et al., 2008; Liang
et al., 2009; Lovell et al., 2011). The main disadvantage of using sin-
gle scans for stem detection is the shadowing of background ob-
jects by foreground objects, i.e. the shadowing of stems by
branches, leaves, and other stems. By contrast multiple (merged)
scans have the advantage of providing a better 3D tree coverage
(Thies and Spiecker, 2004; Bienert et al., 2006). While it is widely
acknowledged that the use of merged scans for stem detection is
the most effective means to reduce the effect of shadowing, single
scan mode is often preferred due to its higher sampling efficiency.
Therefore, one of the aims of this study was to develop a stem
detection algorithm based on single scan mode which minimizes
the effects of shadowing.

As far as the stem diameter and volume extraction is concerned,
particular consideration has to be given to the issue of noise in TLS
data. In this context, noise refers both to laser scan returns without

physical meaning and to returns with physical meaning but which,
depending on the purpose of the data analysis, represent unwanted
data. The separation of unwanted from wanted data is considered
to be one of the most important steps in successfully extracting
meaningful information from TLS data, and which may be achieved
either by filtering of the raw data or by applying more robust mod-
eling techniques (cf. Maas et al., 2008; Litkey et al., 2008). For
example Aschoff et al. (2004) use linear regression to check the
validity of diameter measurements and Bienert et al. (2007) intro-
duce a so-called reliability factor to prevent over- or underesti-
mated diameters from circle fitting to noisy data. To account for
the influence of noise on the extraction of stem diameter and vol-
ume from TLS data, we implemented a robust stem diameter
extraction algorithm and compared three different circle fit algo-
rithms and two different methods of determining diameter at
breast height (DBH).

2. Materials and methods

2.1. Study site

This study was carried out as part of a comprehensive campaign
for calibration of forest biophysical and structural parameters de-
rived from airborne hyperspectral and laser scanning data. This
campaign serves as preparation for the German hyperspectral sa-
tellite mission EnMAP (http://www.enmap.org/) and was located
in the Pfälzerwald forest near Kaiserslautern, Germany, where our
research group established one of its main research sites (Merzal-
ben, 49�160N, 7�480E). This research site consists of a number of
permanent forest monitoring plots providing a large pool of
in situ biophysical and structural measurements, which makes
the site ideal for validating remote sensing derived parameters
and calibrating remote sensing driven models. The present study
was carried out at the main forest monitoring plot, a mixed Beech
Douglas fir stand, which is characterized by two zones of pure
Beech and pure Douglas fir and one zone where these species are
evenly mixed. During a field campaign in August 2011 representa-
tive areas of the pure zones were scanned with a total of 12 terres-
trial laser scans. The pure zones differ not only in tree species but
also in stand structure and topology (Figs. 1a and 1b and Table 2).

2.2. Data acquisition

The TLS scans were acquired in August 2011 with a FARO Pho-
ton 120, a phase-shift laser scanner with 360� � 320� field of view
and a minimum horizontal and vertical step size of 0.009� (approx-
imately 40,000 laser pulses for a full hemispherical scan). The scan-
ner settings used for this study were an angular resolution of
0.036� (point spacing of 6.28 mm/10 m) and a measurement speed
of 122 kpt/s. In addition hardware filters were set to remove ghost
points. These settings resulted in a scan time of 6:49 min and
yielded compressed scan sizes of approximately 185 MB. Reference
objects (highly reflecting targets) were placed in positions where
they could be viewed from multiple scan locations in order to
post-process the single scans into one merged scan with a common
coordinate system. Tree locations and diameter at breast height
(DBH) tape measurements were extracted from an existing data-
base. DBH is measured annually on a sub-sample of trees (464
trees) and every 4 years on all 922 trees of the plot. Reference data
for the DBH measurements were recorded in April 2012, which
potentially introduces a systematic bias due to the time lag be-
tween the scan acquisition and DBH collection. Additionally six
Beech stem diameter profiles with a step size of 20 cm and a max-
imum height of 10 m were recorded in Mai 2012 with a mobile lift
in order to validate the stem volume estimates. Due to inaccessibil-
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ity, stem profiles could not be collected for the Douglas fir zone. As
far as the data pre-processing is concerned, the individual scan
data were first registered to produce merged point clouds for each
of the zones scanned. The registration had to be carried out manu-
ally using FARO Scene and is therefore more time-consuming than
the automated processing of the single scan data which converts
the point clouds to raster images containing the x, y, z range, inten-
sity, azimuth and zenith information for each scan point.

2.3. Stem detection

Our approach to automated tree stem detection or tree location
mapping is similar to the approach of Forsman and Halme (2005).
It utilizes range differences between neighboring pixel of the single
scan range image as the basis for stem detection. While the Fors-
man and Halme approach aims at object segmentation of the
whole range image based on consecutive pixel of similar range,
our approach is based on range differences between neighboring
pixels of a 2D-slice taken from the range image. To minimize the
shadowing of stems by branches and leaves, our approach utilizes
multiple slices extracted from different heights:

Scanner returns are assessed in multiple slices Li(h) each of ze-
nithal thickness 0.36� and azimuthal coverage of 360�. Slices are
separated by a zenithal offset of 0.9�. Within each slice and for each
vertical scan line Li(u) at azimuth u the range variance r2

r ði;uÞ and
mean lr(i, u) are computed. If lr(i, u) falls below the mean range
threshold srange and r2

r ði;uÞ falls below the range variance thresh-
old sr2 then Li(u) is considered to be a possible stem return. Con-
secutive (possible) stem returns with range differences below the
range difference threshold sdiff and which cover a minimum azi-
muthal span d(u) provide the primary evidence of a tree stem.
The locations of stem centers as specified by their central azimuth
detected in each slice Li(h) are then compared to determine if they
correspond to a single tree stem or to different stems.

The parameter set used in the present study is: sdiff = 10 cm,
srange = 30 m, sr2 = 0.0002, d(u) = 0.18�. sdiff and sr2were chosen
based on a sensitivity analysis (Fig. 2). srange is an optional param-
eter. The number of slices Li(h) used is nine for the Beech scans and
five for the Douglas fir scans. These slices are centered at zenithal
heights i = {�3.6�, �2.7�, �1.8�, �0.9�, 0�, 0.9�, 1.8�, 2.7�, 3.6�} and
i = {�3.6�, �2.7�, �1.8�, �0.9�, 0�} with i = 0� representing the scan-
ner height. The reason for using different slice numbers is the low-
er stem density of the Douglas fir zone compared to the Beech zone

Table 1
Experimental design, scanner settings and methodologies of selected studies on automatic stem detection and DBH extraction from TLS data. Man. = managed, nat. = natural,
SD = stem detection, DBH = diameter at breast height, PS = phase-shift, TF = time-of-flight, WF = waveform, S = single scan mode, M = multiple (merged) scan mode.

Study Tree species Stem
density
(n/ha)

Plot
size
(ha)

Sample
Size (n)

Scanner
type

Scan
mode

Scan
resolution
(�)

Stem
detection

Detection
rate (%)

DBH
extraction

Algorithm DBH RMSE
(cm)

DBH bias
(cm)

Simonse
et al.
(2003)

Douglas and silver
fir

– 28 Z + F
Imager
5003 (PS)

M – 2D-Slice
Hough-
transform

93a Circle
fitting

Algebraic – 1.7

Thies and
Spiecker
(2004)

Beech, oak, silver-
fir

556a 0.09 50 (SD)
11
(DBH)

Z + F
Imager
5003 (PS)

S, M – 2D-Slice
Hough-
transform

22 (S), 52
(M)

Circle
fitting

Algebraic 3.48 (S)a,
3.22 (M)a

0.75 (S)a,
�0.32 (M)a

Litkey et al.
(2008)

Pine – 0.07
(DBH)

10
(DBH),
52 (SD)

Faro 880
HE80 (PS)

S 0.034 Range image
clustering

85 Circle
fitting

Least
squares
(Nelder-
Mead)

3 –

Maas et al.
(2008)

Spruce, beech,
larch, fir

212–
410a

0.05–
0.07

14–29 Riegl LMS-
Z420i (TF),
Faro LS 800
HE80 (PS)

S, M – 2D-Slice
clustering

97.5 Circle
fitting

Similar to
Henning
and Radtke
(2006)

1.80–3.25
(S), 1.48
(M)

�0.67–1.58
(S), 0.93
(M)

Brolly and
Király
(2009)

Oak, hornbeam,
beech, larch,
spruce, birch

761a 0.28 213 Riegl LMS-
Z420i (TF)

S 0.055 2D-Slice
clustering

72
(circle),
63
(cylinder)

Circle &
cylinder
fitting

Least
squares

3.4–4.2
(circle), 7
(cylinder)

�0.8, �1.6
(circle), 0.5
(cylinder)

Liang et al.
(2009)

Scots pine, Norway
spruce

533–
1500a

0.03 16–45 Leica
HDS6000
(PS)

S 0.18 Classification/
clustering

53–89 Circle
fitting

Least
squares
(Nelder-
Mead)

– –

Tansey et al.
(2009)

Corsican pine 1000 0.05 66 (SD)
8 (DBH)

Riegl LMS-
Z420i (TF)

M 0.12 2D-Slice
Hough-
transform

100 Circle &
cylinder
fitting,
Hough
transform

Least
squares
(Gauss–
Newton)

3.7
(cylinder),
1.9
(circle),
2.3
(Hough)

3.6
(cylinder)a,
1.7
(circle)a,
1.6
(Hough)a

Antonarakis
(2011)

Black poplar,
hybrid poplar

255
(man.),
950
(nat.)

0.5
(man.),
0.1
(nat.)

166
(man.),
95
(nat.)

Leica HDS
3000 (TF)

M – Semi-
automated

100
(man.), 60
(nat.)

Cylinder
fitting

Similar to
Hopkinson
et al.
(2004)

– 0.3 (nat.),
0.4 (man.)

Lovell et al.
(2011)

Ponderosa pine,
Monterey pine

123–
477

0.13–
0.79

60–97 Echidna�

(WF)
S 0.29 Reflectance-

based
54–68 Angular

stem
width

Intensity-
based
angular-
diameter
relation

– 4.3–9.1

Yao et al.
(2011)

Hemlock, white
pine, red oak, red
maple, red spruce,
yellow birch, beech

1017–
3281

0.13–
0.20

– Echidna�

(WF)
S 0.23 Reflectance-

based
42 Angular

stem
width

Intensity-
based
angular-
diameter
relation

7
(conifers),
8
(broadleaf)

–

a Values calculated based on data provided in the publication.
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Fig. 1a. Research site Merzalben. Digital elevation model (DEM) derived from airborne laser scanning. Tree locations were determined using a tachymeter and dGPS.

Fig. 1b. Research site Merzalben. Normalized height model (nDEM) derived from airborne laser scanning.
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(see Section 2.1). Based on the scan resolution applied in this study,
the azimuthal span d(u) = 0.18� corresponds to stem diameters of
3.14 cm, 6.28 cm, and 9.24 cm for ranges of 10 m, 20 m, and
30 m respectively. d(u) was determined based on the DBH distri-
bution of our research site where less than 5% of the trees within
the range used in this study (30 m) have DBH below 10 cm.

2.4. Stem diameter and volume extraction

2.4.1. Circle fit algorithms
In order to assess the effects of the circle fit algorithm on the ex-

tracted stem diameters and volumes, three different circle fit algo-
rithms were tested: A geometric algorithm implemented by Lemen
(1991) and two algebraic algorithms (Pratt, 1987, and Taubin,
1991) as implemented by Chernov (2009a,b). Geometric and alge-
braic fits are the two general approaches to fitting a circle to a set
of given points. The geometric fit aims at minimizing the sum of
the squares (SS) of a set of points (x1, y1), (x2, y2), . . ., (xn, yn) that a
circle, represented by the equation (x � a)2 + (y � b)2 = r, is fitted
to (Umbach and Jones, 2003):

SSða; b;RÞ ¼
Xn

i¼1

ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � aÞ2 þ ðyi � bÞ2

q
Þ2 ð1Þ

where a and b denote the center of the circle and R its radius. There
exist various numerical algorithms to minimize SS over a, b and R
(Gander et al., 1996). These approaches are considered to be accu-
rate, as the geometric fit corresponds to the Maximum Likelihood
estimate of a, b and R (Al-Sharadqah and Chernov, 2009). However,
a major concern in geometric fits is that the respective minimiza-
tion algorithms have no closed solution and, thus, they usually re-
quire iterative and computationally intensive numeric schemes
such as a general Gauss–Newton or Levenberg–Marquardt. Their
performance among others strongly depends on the choice of the
initial guess (Al-Sharadqah and Chernov, 2009). Algebraic fits on
the other hand use an algebraic equation to represent a circle (Pratt,
1987):

Aðx2 þ y2Þ þ Bxþ Cyþ D ¼ 0 ð2Þ

Constrained by B2 þ C2 � 4AD ¼ 1 ð3Þ

This equation describes all circles and with A = 0 also lines. Cor-
responding fits are non-iterative and thus faster than Geometric
fits. One of the most popular algebraic fits is the Kåsa algorithm
(Kåsa, 1976) which aims at finding the circle that minimizes the
function.

FK ¼
X

f 2
i ¼

Xn

i¼1

ðr2
i � R2Þ2

¼
Xn

i¼1

ðx2
i þ y2

i � 2axi � 2ayi þ a2 þ b2 � R2Þ2 ð4Þ

where fi ¼ r2
i � R2 denotes the algebraic distance from the point

(xi, yi) to the circle.
However, it has been found that the accuracy of the Kåsa fit suf-

fers in cases when the observed points do not represent complete
circular arcs (Al-Sharadqah and Chernov, 2009). Thus, several mod-
ifications of the FK-function were developed to overcome this lim-
itation, e.g. by Pratt (1987) and by Taubin (1991). To account for
the incomplete circular representation of tree stems in single scan
mode we tested the circle fit algorithms by Pratt and Taubin and in
order to compare between the performances of the general ap-
proaches, algebraic and geometric, we included a geometric fit
(Lemen, 1991).

2.4.2. Methodology
Our approach to automated stem diameter extraction is based

upon a step-wise vertical slicing of the point cloud and circle fitting
to extracted stem points, similar to Bienert et al. (2006). Our ap-
proach applies equally to single and merged scan data. First, points
which fall within the boundaries of a bounding box of size
60 cm � 60 cm, centered at the stem centroid derived from the
stem detection, are extracted and define a set of stem points. The
height minimum of this set is then searched for which represents
the ground level, provided that there is no occlusion. Since it has
been found that the phase-shift FARO scans suffer from so-called
ghost points below ground level which affect the determination
of the exact ground level (Bienert et al., 2006; Maas et al., 2008),
we implemented a histogram-based outlier detection and removal.
The height maximum is implemented as a user-definable parame-
ter which is constrained by the height maximum found by the

Table 2
Structural attributes and stand characteristics of the research site Merzalben. DBH and height statistics are based on the full sample (No. of trees = 922). Stem density (SD), total
area and slope relate to the zones of pure Beech and pure Douglas fir.

DBH (cm) Height (m) SD (No./ha) Area (ha) Slope (�)

Species Min Max Mean Std Min Max Mean Std Total Total Total
Beech 1.4 34.7 16.4 7.3 3.4 28 18.5 5.7 1032 0.5 3.1
Douglas fir 3.7 51.2 28.7 7.5 8 36.1 27.1 4 579 0.5 6.5
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Fig. 2. Sensitivity analysis of the stem detection algorithm parameters range difference threshold and range variance threshold. Mean stem detection rates based on the 6
single scans for each of the pure zones. Squares = Douglas fir, circles = Beech. Remaining parameters according to Section 2.3
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algorithm. Starting from the stem centroid, stem points which fall
within the boundaries of a slice of 5 cm vertical thickness are ex-
tracted and circle fitting is applied. Since the set of stem points also
includes points which represent branches and leaves and which af-
fect the circle fitting, an exclusion of these outliers is mandatory.
We therefore implemented a range-based outlier test based on a
fixed buffer added to the radius of the circle fitted for the previous
slice (buffer = 1=4 of the previous circle’s radius). To prevent further
errors in the circle fitting (e.g. fitting too large of a circle due to
point clouds with circle arcs smaller than semi circles) an upper ra-
dius threshold of 0.3 m is set in our algorithm. If this value is ex-
ceeded, the radius of the circle fitted for the previous slice is
used instead. The basic steps of the algorithm are performed for
all slices from the starting point to the local minimum and maxi-
mum. In a final step DBH is extracted both directly as the stem
diameter at the nominal height of 1.3 m and indirectly based on
a robust linear fit of the stem diameter profile.

2.4.3. Volume extraction
Stem volume was extracted based on the stem diameter pro-

files. In order to achieve the same vertical slice width of the TLS de-
rived stem profiles (5 cm), the reference stem profiles were
interpolated with a cubic spline. Stem volume was then calculated
for both TLS derived and reference stem profiles by summing the
volumes calculated for each slice approximated as a conical
frustum:

Vstem ¼
X10m

z¼0

tslice �
p
3
� ðr2

1 þ r1 � r2 þ r2
2Þ ð5Þ

with tslice is the slice thickness and r1 and r2 are the top and base
radii.

Due to uncertainties in the exact determination of the local tree
minima (e.g. due to ghost points and/or occlusion effects) and
uncertainties in the exact height determination of the single refer-
ence stem profile measurements (e.g. due to buckled stems), which
result in an offset between the TLS derived and reference stem pro-
files, volumes were compared rather than stem diameter
measurements.

3. Results

3.1. Stem detection

Depending on the number of slices used for stem detection,
mean detection rates vary from 56% to 94% for Beech and from
68% to 96% for Douglas fir. This demonstrates that shadowing
strongly affects the single scan based stem detection if only a small
part of the data is used. Raising the number of slices and therefore
enhancing the visibility, mean detection rates also increase
(Table 3). However, fewer slices are required for the Douglas fir
compared to the Beech scans to achieve similar mean detection
rates, which shows the influence of stem density. Based on one
slice the algorithm detects 12% more of the trees in the lower den-
sity Douglas fir zone than in the higher density Beech zone. Based
on five slices the algorithm detects 96% of the trees in the lower
density zone, whereas for the higher density zone only 81% are de-
tected. However, overall detection rates are above 90% for both
zones and – equally important – false detection rates are low
(Table 3). It has to be noted though that the high detection rates
achieved relate to trees which are visible to the scanner and thus
potentially detectable (i.e. non-occluded and partially occluded
trees). If occluded trees are accounted for, mean detection rates re-
duce to 85% for Beech and 84% for Douglas fir. These effective
detection rates are mainly determined by the shadowing effect
which constitutes an inherent limitation of the single scan based

stem detection (see Section 1). Since the magnitude of this effect
depends on stand structure and site characteristics, it is important
to report detection rates based on potentially detectable trees in-
stead of effective detection rates in order to provide for an objec-
tive comparison with other single scan based methods.

3.2. DBH extraction

3.2.1. Single scans
In order to test the influence of the scan mode and circle fitting

on the stem diameter extraction, diameter at breast height (DBH)
was extracted from both single and merged TLS scan data and
based on three different circle fit algorithms and two different
extraction methods (see Section 2.4). DBH extracted from the sin-
gle scans generally show a good agreement with reference DBH
with RMSE’s ranging from 1.39 to 2.43 cm (Fig. 3 and Table 4).
However, results reveal that DBH extracted at the nominal breast
height differ significantly from those estimated based on a linear
fit of the diameter profile (Table 4). This observation is backed by
the error histograms (Fig. 4). The slight overestimation for the di-
rect extraction DBH and the underestimation for the linear fit
DBH compared to reference DBH are found for both Beech and
Douglas fir and for all three circle fit algorithms. Due to the time
lag between the TLS scan acquisition and the DBH reference collec-
tion (August 2011–April 2012), a slight underestimation of in situ
DBH is to be expected which indicates that the linear fit DBH yield
values closer to the true values; a fact which is supported by the
lower RMSE values (Table 4). This can be attributed to the fact that
the linear fit extraction method is less prone to errors in the deter-
mination of the ground level and thus the exact breast height. The
overestimation observed for the DBH directly extracted at breast
height may therefore be caused by a negative bias in the determi-
nation of the ground level, possibly as a result of remaining ghost
points below ground level (see Section 2.4.2).

As far as the influence of the circle fitting is concerned, mean
differences between the three algorithms do only differ marginally,
which is reflected in the error histograms (Fig. 4). Nevertheless,
RMSE’s are higher for the algebraic-based algorithms Pratt and
Taubin than for the parametric-based Lemen algorithm (Table 4).
This can be observed for both Beech and Douglas fir and to a lesser
degree for both DBH extraction methods, which consolidates the
better performance of the Lemen algorithm. The lower RMSE’s ob-
served for the linear fit DBH estimates suggest that a robust mod-
eling and/or removal of outliers (e.g. ghost points) is more
important than the choice of the circle fit algorithm. In addition
the DBH estimation errors show no dependence on range (Fig. 5)
for the range and scan settings used in this study. However, a range
effect (i.e. increasing estimation errors with increasing range)
might be expected for longer ranges and/or lower scan resolutions.

3.2.2. Merged scans
DBH extracted from the merged scans generally show a very

good agreement with reference DBH with RMSE’s ranging from
0.66 to 1.21 cm (Fig. 6 and Table 5). Similar to the single scan
DBH, linear fit DBH underestimate and direct extraction DBH over-
estimate reference measurements (Table 5). However, contrary to
the single scans, differences in RMSE between the two methods
are smaller (Tables 4 and 5), which suggests a reduced influence
of outliers for the merged scan data. Based on the RMSE’s, the Le-
men algorithm performs slightly better than the Pratt and Taubin
algorithms for the direct extraction DBH. This effect is negligible
for the linear fit DBH (Table 5). The biggest difference compared
to the single scan DBH, however, is an improved accuracy which
is reflected in the considerably lower RMSE’s irrespective of the
DBH extraction method, tree species and circle fit algorithms
(Tables 4 and 5 and Figs. 3 and 6).
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Table 3
Mean stem detection rates. Reported values are mean values of the six single scans for each of the pure zones.
Li = horizontal slices at different zenithal offsets from the scanner height (0�). Visible trees relate to non-
occluded and partially occluded trees.

No. of slices used for stem detection Beech (%) Douglas fir (%)

1: Li (0�) 56 68
2: Li (0�, �0.9�) 68 83
3: Li (0�, �0.9�, �1.8�) 75 89
4: Li (0�, �0.9�, �1.8�, �2.7�) 78 92
5: Li (0�, �0.9�, �1.8�, �2.7�, �3.6�) 81 96
6: Li (0�, �0.9�, �1.8�, �2.7�, �3.6�,+0.9�) 84
7: Li (0�, �0.9�, �1.8�, �2.7�, �3.6�,+0.9�,+1.8�) 87
8: Li (0�, �0.9�, �1.8�, �2.7�, �3.6�,+0.9�,+1.8�,+2.7�) 90
9: Li (0�, �0.9�, �1.8�, �2.7�, �3.6�, +0.9�, +1.8�, +2.7�, +3.6�) 94
False detection rate 2 1
Detection rate visible trees 94 96
Detection rate visible and occluded treesa 85 84

a Since the initial stem detection range of 30 m exceeded for some of the scans the test site boundaries
where no tree location information was available, a radius of approximately 21 m was used to calculate this
statistic.
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Fig. 3. Comparison of reference DBH and DBH derived from the single TLS scans. Comparison is exemplified by TLS-DBH based on the Lemen circle fitting and two DBH
extraction methods: DBH extracted at the nominal breast height (BH) and DBH estimated based on fitting a line to the diameter profile (Lfit).

Table 4
Statistics for the automated stem diameter extraction from the single scans. n (Trees) = unique number of trees detected in all six single scans. n (Total) = multiple detections are
accounted for, i.e. individual trees are scanned from different angles and hence detected in more than one single scan. Mean difference = Mean (Reference DBH � TLS derived
DBH). DBH (BH) = DBH extracted at the nominal breast height, DBH (Lfit) = DBH estimated based on fitting a line to the diameter profile.

Plot n (Trees) n (Total) Algorithm Mean difference (cm) RMSE (cm)

DBH (BH) DBH (Lfit) DBH (BH) DBH (Lfit)

Beech 289 820 Lemen �0.07 0.14 1.58 1.39
Pratt �0.18 0.16 2.20 1.49
Taubin �0.21 0.22 2.43 1.57

Douglas fir 213 536 Lemen �0.13 0.47 1.47 1.65
Pratt �0.19 0.46 2.04 1.68
Taubin �0.18 0.51 2.02 1.74
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The improved accuracy can be attributed to a more stable and
accurate circle fit which results from the full coverage of stem
cross-sections and the reduced influence of outliers due to this im-
proved coverage. This is demonstrated by the reduced influence of
the DBH extraction methods and circle fit algorithms on the model
performance (Tables 4 and 5). Since sampling efficiency is an
important consideration in forest inventory, estimation errors
were analyzed as a function of the number of scans contributing
to the stem diameter modeling. Results show that for the Beech
zone at least three scans contributed to the stem diameter model-
ing of each of the 82 trees within the overlap of the six scans
(Fig. 7). Also, roughly equal number of trees were observed from
four, five, and six scan locations. By contrast, most Douglas fir trees
within the scan overlap could only be observed from two or three
scan locations (Fig. 7). This is due to the positioning of the scans in
combination with the steeper slope of the Douglas fir zone (see
Fig. 1a). Therefore only Douglas fir trees observed from two or
three scan locations were taken into account for this analysis.
While estimation errors for Beech show no distinct dependence
on the number of scans, estimation errors for Douglas fir trees ob-
served from two locations yield a slightly higher mean error com-
pared to trees observed from three locations. However, their
relative error ranges are similar. We therefore conclude that two
respectively three merged scans are sufficient to achieve good esti-
mation accuracies.

Another aspect which so far has received little attention in the
TLS literature is to relate stem diameter estimation errors to the
magnitude of radial growth (increment). For TLS to become an
effective and reliable inventory tool for determining increment
and consequently growth, the estimation error has to be lower
than the increment. At our research site DBH has been measured

annually since 2008 which allows the calculation of radial growth
for a four year period and the comparison with the DBH estimation
errors based on the single and merged scans (Fig. 8). Results show
that RMSE’s for Beech and Douglas fir are on a similar level and are
also relatively constant over the DBH range observed, except for a
slight increase of Douglas fir RMSE’s for the DBH classes 0.3–0.4 m
and 0.4–0.5 m. As already mentioned merged scan RMSE’s are sig-
nificantly lower than single scan RMSE’s. While increment of both
Beech and Douglas fir exceeds the merged scan RMSE’s already for
DBH greater 0.1–0.2 m, radial growth exceeds the single scan
RMSE’s not until DBH greater than 0.2–0.3 m.

3.3. Stem form and volume extraction

The automated stem diameter extraction proposed in the pres-
ent study yields stem diameter vertical profiles (taper curves)
which are then used to determine stem volume and form (see Sec-
tion 2.4). Both metrics are of particular interest in forestry. TLS de-
rived stem diameter profiles show good agreement with in situ
measured profiles for mean single scan and merged scan profiles
(Figs. 9 and 10). By contrast single scan profiles can exhibit both
a strong systematic under- or overestimation of stem diameters,
depending on scan location (Fig. 9). Merged scan profiles are less
prone to such biases and show that the stem form, which can vary
strongly between trees of different species as well as trees of the
same species, can be determined quite well allowing the extraction
of information such as the height of the crown base (Fig. 10).

The results for the stem profile extraction are reflected in the
stem volume estimates, too. Volumes extracted from the merged
scan data show an excellent agreement with reference volumes
with deviations ranging from �2% to 6% (Table 6). By contrast stem
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Fig. 4. Distribution of the DBH estimation errors for the different DBH extraction methods and circle fit algorithms. Dotted lines = Circle fit errors based on the linear fit DBH
extraction. Solid lines = Circle fit errors based on the direct DBH extraction.

Beech

0 10 20 30

range [m]

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

D
B

H
 e

rr
o
r 

[m
]

Douglas fir

0 10 20 30

range [m]

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

D
B

H
 e

rr
o
r 

[m
]

Fig. 5. DBH estimation errors as a function of range. Range independence is exemplified by TLS-DBH based on the Lemen circle fitting and the direct DBH extraction. Error-
range patterns are similar for the different circle fit algorithms and DBH extraction methods.
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volumes extracted from the single scan data vary from �34% to
44%. This large variability mainly results from the inferior single
scan stem diameter extraction (see Section 3.2). However, the re-
sults also show that depending on scan location and visibility it

is possible to achieve good stem volume estimates for single scans
with errors as low as �2% to 4% (Table 6). Also, quite a large vari-
ability can be observed for the single scan volume estimates based
on different circle fit algorithms despite the fact that only a
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Fig. 6. Comparison of reference DBH and DBH derived from the merged TLS scans. TLS-DBH is based on the Lemen circle fitting and two DBH extraction methods: DBH
extracted at the nominal breast height (BH) and DBH estimated based on fitting a line to the diameter profile (Lfit).

Table 5
Statistics for the automatic stem diameter extraction from the merged scans. Mean difference = Mean (Reference DBH � TLS derived DBH). DBH (BH) = DBH extracted at the
nominal breast height, DBH (Lfit) = DBH estimated based on fitting a line to the diameter profile.

Plot n (Trees) Algorithm Mean difference (cm) RMSE (cm)

DBH (BH) DBH (Lfit) DBH (BH) DBH (Lfit)

Beech 82 Lemen 0.00 0.23 0.66 0.67
Pratt �0.18 0.24 0.90 0.64
Taubin �0.09 0.24 0.79 0.66

Douglas fir 67 Lemen �0.16 0.25 0.97 1.06
Pratt �0.32 0.21 1.21 1.15
Taubin �0.29 0.25 1.20 1.14
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Fig. 7. DBH estimation errors as a function of the number of scans in merged scan mode. DBH error = DBH (Reference) � DBH (TLS). Analysis based on the DBH resulting from
the Lemen circle fitting and the linear fit extraction method.
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marginal effect of circle fitting could be observed for the extracted
DBH (see Section 3.2). This might be explained by the step-wise
vertical slicing and diameter modeling of the stem point clouds
(see Section 2.4.2). Random errors in the circle fitting for the differ-
ent algorithms potentially propagate from slice to slice which is
then strongly reflected in the volume estimates. Another important
consideration for a TLS-based estimation of stem volume which is
reflected in the results is the fact that due to complete or partial
shadowing by stems and branches only 1/3–2/3 of the single scans
could effectively be used to extract stem form and volume
(Table 6).

4. Discussion

4.1. Stem detection

For TLS to be routinely applied in forest inventory, an auto-
mated, efficient and accurate extraction of forest metrics from
TLS data is required. In this context, the detection of trees is of par-
ticular importance as it provides for basic inventory variables such
as stem density and stem locations, which constitute the base for
higher level algorithms for deriving tree metrics (stem diameter,
volume, etc.). An efficient and effective stem detection algorithm
is therefore mandatory. A number of different approaches have

been proposed (e.g. Aschoff and Spiecker, 2004; Forsman and
Halme, 2005; van Leeuwen et al., 2011), most of which are based
on single scans as their collection and processing is less time-con-
suming compared to multiple (merged) scans. By contrast merged
scans provide for a much better 3D coverage of trees which reduces
shadowing effects most effectively (see Section 1). While the shad-
owing of background objects by foreground objects is an inherent
limitation of the use of single scans for stem detection, partial
occlusion of stems by branches and leaves is something that can
be minimized by utilizing either the whole point cloud information
or significant parts of it. The approach to stem detection proposed
in the present study is based on the latter by running the stem
detection algorithm for multiple slices extracted from the range
image of a single TLS scan (see Section 2.3). To test its robustness
we conducted a sensitivity analysis of parameters and applied
the approach to scans collected at two zones of our study site
which significantly differ in stem density (see Sections 2.1 and
2.3). The results demonstrate that our approach yields high detec-
tion rates – the number of range image slices required to achieve
these rates however depends on the stem density and degree of
branching of the area scanned, i.e. nine slices were required for
the higher density Beech zone compared to five slices for the lower
density Douglas fir zone (see Section 3.1). Currently the number of
slices used in our algorithm is set to a fixed number as determined
by the number of slices required to achieve mean detection rates of
around 95% in this study. Since this kind of information is normally
difficult to obtain a priori, the choice of slice numbers could be
implemented as an iterative process with the iteration terminating
if the change in detection rate falls below a user-defined threshold.
Alternatively, since the algorithm is fast and efficient (computing
time is in the range of seconds), the initial slice numbers could
be set relatively high to guarantee good results. Also, it would be
worth considering the relation between the overlaying circles of
the multiple slices, which are for now only used to avoid output
of multiple stem detections. There is potential in including this
relation for minimizing false detections and/or assessing the de-
gree of branching (occlusion effects). Differences in the circles’
coordinates could also be used to yield improved tree locations
and/or rough estimates of the stem form, which could then be used
as input to more complex single-tree based models.

4.2. DBH extraction

With regard to the extraction of stem diameters, this study
demonstrated that estimation accuracies for merged scan data
are significantly higher than compared to single scan data, corrob-
orating earlier studies (Thies and Spiecker, 2004; Maas et al., 2008).
By contrast to these studies, however, the present analysis is based
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Fig. 9. Comparison of reference and stem profiles derived from the single and merged TLS scans. Example: Tree No. 543. Red line = reference profile, dotted lines = min. and
max. of single scan profiles, solid line = stem diameter profiles derived from the single (mean) and merged scans.
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on large sample sets of two different tree species, Beech and Doug-
las fir, which gives more robust results. This study could also show
that properly dealing with noise in TLS data (see also Section 1) is
crucial for improving the estimation accuracies. This was demon-
strated by the lower RMSE’s based on a robust linear fit of the stem
diameter profile compared to the direct extraction of stem diame-
ter at breast height. The linear fit method has the advantage of
being more robust against errors in the determination of the
ground level and therefore the exact breast height and/or against
errors in the circle fitting at breast height as a result of unwanted
data (i.e. scanner returns from branches and leaves). However,
RMSE differences between the two DBH extraction methods are
smaller for the merged scan data, which suggests a reduced influ-
ence of noise as a result of a more stable and accurate circle fit from
the full coverage of stem cross-sections for the merged scan data.
Alternatively, filtering of the raw data can be used to minimize
noise and therefore estimation errors, e.g. by assessing the RMSE
of the circle fit. However, care should be taken in using this mea-
sure, because the goodness-of-fit is not necessarily an indication
of the accuracy of the model (Litkey et al., 2008) and is influenced
by a number of factors such as the circularity of the stem cross-sec-
tion (Brolly and Király, 2009). Non-circularity is certainly a major
factor contributing to the estimation errors from circle fitting, with
varying magnitude depending on tree species. As far as the influ-
ence of circle fitting in general is concerned, this study demon-
strated that a robust modeling and/or filtering of noise has a

stronger influence on estimation accuracies than the choice of
the circle fit algorithm. Litkey et al. (2008) suggest that a proper re-
moval of outliers even allows for applying different models includ-
ing circle and cylinder fitting. This is in contradiction to the study
of Tansey et al. (2009) which found circle fitting to be more accu-
rate and efficient than cylinder fitting even though the latter per-
formed better in case of leaning stems. With regard to the
different modeling of stem diameters, the modeling success in
terms of agreement with true diameters is less dependent on range
than on stem visibility from the scanner’s viewpoint and on the
presence of outliers (Litkey et al., 2008). From our experience
and based on the analysis of measurement error as a function of
range (see Section 3.2.1), this hypothesis can be confirmed; at least
for the scan settings applied in these studies.

Regarding the use of merged scan data, Maas et al. (2008) re-
ported lower RMSE’s for merged time-of-flight scan data compared
to phase-shift single scan data and concluded that the number of
scans has a larger influence on DBH accuracy than scanner type.
Our study showed that the number of merged scans which contrib-
ute to the stem diameter modeling does not influence the estima-
tion accuracies significantly (see Section 3.2.2). This is due to the
fact that the stems in the overlap of the scans were well covered
from multiple angles which resulted in a complete coverage of
the stems’ cross-sections in most cases. Thus we conclude that
the coverage of a tree stem’s circumference is the key issue for a
reliable and successful modeling of stem diameters, rather than
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Fig. 10. Comparison of reference and stem diameter profiles derived from the merged TLS scans. Example: Red line = reference profile, black line = TLS derived profile, dotted
line = crown base height.

Table 6
Stem volume deviations in % of the reference volume (m3). The plus indicates an incomplete stem profile due to partial occlusion, the dash indicates non-visibility to the scanner.

Tree Algorithm Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Scan 6 Merged scans Reference

542 Lemen � 16 + 13 + �9 0 0.44
Pratt � 16 + 12 + �18 1
Taubin � 15 + 12 + �15 1

543 Lemen �5 4 17 9 � � �2 0.36
Pratt �7 5 17 11 � � 0
Taubin �7 5 17 9 � � �1

544 Lemen + + 19 20 + + 3 0.66
Pratt + + 28 14 + + 3
Taubin + + 27 25 + + 3

546 Lemen + + �9 6 14 � 0 0.39
Pratt + + �9 5 18 � 1
Taubin + + �9 5 14 � 1

810 Lemen + + 18 �2 21 �34 1 0.41
Pratt + + 17 �22 17 �13 3
Taubin + + 15 �16 17 �7 2

823 Lemen 20 � � + + 5 5 0.30
Pratt 44 � � + + 20 6
Taubin 4 � � + + 20 6
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the exact number of scans that contribute to its coverage (cf. also
Bienert et al., 2007, and Litkey et al., 2008). Besides providing more
accurate DBH estimates, merged scan data also allows for the
application of advanced modeling techniques such as ellipse fitting
(Aschoff and Spiecker, 2004) or B-splines (Pfeifer and Winterhal-
der, 2004). This would help to reduce the error which results from
fitting circles to non-circular stem cross sections observed for
many tree species.

However, the use of merged scan data also has its drawbacks,
the main ones being the time-consuming collection and registra-
tion of multiple scans (Bienert et al., 2006) as well as the reduced
efficiency in terms of sampling number (cf. Tables 4 and 5). The lat-
ter is an important consideration if TLS is to be routinely used in
forest inventory, since forest inventory aims at maximizing its
sampling while minimizing costs (Lovell et al., 2011). In the con-
text of a TLS-based forest inventory, the benefit of obtaining objec-
tive and repeatable measurements of vegetation structure for
growth (or more general for biomass change) monitoring is
emphasized by a number of studies (e.g. Watt & Donoghue, 2005,
Tansey et al., 2009). TLS clearly has the potential to provide such
information, however in order to establish TLS for this purpose
one key aspect, which so far has received little attention in the
TLS literature is to relate stem diameter estimation errors to the
magnitude of radial growth (increment). For TLS to become an
effective and reliable inventory tool for determining increment
and consequently growth, the estimation error has to be lower
than the increment. Our study demonstrated that if TLS is to be
used for determining stem growth, tree species specific growth
rates, the growth period and the estimation errors, which may sig-
nificantly differ between scan settings, have to be taken into ac-
count for properly assessing the reliability of such measurements
(see Section 3.2.2).

4.3. Stem form and volume extraction

As far the extraction of stem volume from TLS data is concerned,
the estimation of stem volume is a main objective in forest inven-
tory, in particular from a commercial point of view (Bienert et al.,
2007). Another variable of interest is the stem form (Gaffrey et al.,
1998; Holopainen et al., 2011). Both stem volume and form cannot
be measured efficiently with traditional methods, hence allometric
equations with DBH and tree height as input variables are mainly
used. By contrast, TLS potentially allows for a direct measurement
of stem form and volume and therefore could be a valuable tool for
forest inventory. Our study could show that stem form and volume
can be successfully extracted from TLS data for stem parts which
are not too heavily occluded by branches and leaves. As stem form
and volume are based on the extraction of stem diameters, the re-
sults reflect the findings from the stem diameter extraction that
merged scan data provide for a more stable and accurate estima-
tion. It could also be shown that information such as the height
of the crown base can be extracted from TLS data. However the ma-
jor challenge of determining whole stem volumes remains. This is
due to the shadowing of background objects by foreground objects
which particularly affects stem parts within the canopy. For exam-
ple Watt and Donoghue (2005) stated that tree taper can be mea-
sured reliably below the canopy but not within the canopy due to
dense branching. Tansey et al. (2009) tried to extract stem volume
with no success, a fact which they attributed to the uncertain stem
height estimation from TLS data. The shadow effect strongly de-
pends on stand structure and may be minimized by the use of mul-
tiple scans (Lovell et al., 2011). However even the improved 3D-
coverage of merged scan data may be negligible in very dense for-
est stands (Antonarakis, 2011) and in case of dense branching.
Maas et al. (2008) observed an overall RMSE of 4.7 cm for a single
tree profile, however with larger errors in the lower and upper

stem parts. The latter were attributed mainly to branching. For
the same reason Bienert et al. (2007) were not able to retrieve reli-
able diameter measurements above a height of 7.8 m. Based on the
comparison of 22 trees with harvester data they achieved reliable
diameters with a standard deviation of 2.48 cm. We conclude that
shadowing constitutes an inherent limitation for the use of TLS to
derive stem form and volume for complete stems. However, the
findings in this study show that both metrics can be extracted with
good accuracy for stem parts which are not too heavily occluded by
branches and leaves. Depending on tree species and their degree of
branching this might coincide with the merchantable volume and
therefore very well be of value in forest inventory.

5. Conclusions

Research in recent years has proven that terrestrial laser scan-
ning (TLS) is a valuable tool to assess vegetation structure, in par-
ticular with regard to traditional forest inventory parameters (e.g.
Maas et al., 2008; Litkey et al., 2008). However, while most studies
focused on assessing the general potential of TLS for a successful
retrieval of vegetation parameters, less attention was paid to assess
the factors which influence the scan data and hence the parameter
retrieval. The fact that potential influences are numerous and
interconnected necessitates a more systematic approach to further
research in this field, in particular if TLS is to be routinely used in
forest inventory (cf. Thies and Spiecker, 2004). While the present
study could show that scan mode has a considerable influence on
the accuracy of an automated extraction of stem diameter, form,
and volume from TLS data, a number of potential influences remain
to be assessed, including scan resolution (point cloud density) and
integration time. These will be addressed in a follow-up study.
Also, for TLS to be routinely and effectively used in forest inven-
tory, the sampling design (number and positioning of scans) has
to be optimized with respect to the basic inventory parameters
and with respect to the variability in stand structure. This may in-
clude the design of parameter-specific and data integration sam-
pling schemes. The latter is required to deal with the limitations
of TLS, most notably the uncertain tree height estimation (cf. Maas
et al., 2008; Tansey et al., 2009), and to scale the sampling from the
plot to stand scale. Another key issue for successfully integrating
TLS in forest inventory is the automatization of the scan data pro-
cessing (Thies and Spiecker, 2004). Despite the rapid development
in computer hardware and scanner technology in recent years, the
automated processing of TLS data is still a challenge, in particular
with regard to the efficient storage and analysis of voluminous
merged scan data, the filtering of noise and unwanted data, and
methods to deal with partial and complete occlusion. It is to be ex-
pected that these issues will be resolved in due time. In the advent
of multi-wavelength laser scanners, the potential of TLS to improve
the assessment of vegetation structure is immense. In order to fully
exploit this potential the scan data influences have to be properly
dealt with in such a way as to lay a sound basis for an automated
information extraction from TLS data.
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a b s t r a c t

In the present study the influence of the scanner parameters, scan resolution (angular step size), scan
speed (number of laser pulses per second), and pulse duration, on tree stem detection, stem diameter
and volume extraction from phase-shift FARO Photon 120 TLS data was assessed. Additionally the effects
of a data post processing (filtering of raw scan data) were investigated. All analyses were carried out
based on single and merged scan data. It could be shown that scan speed, pulse duration and data filter-
ing only marginally affect stem detection rates and stem diameter and volume estimation accuracies. By
contrast scan resolution was found to have an effect, the magnitude of which, however, is range-depen-
dent. For example mean stem detection rates for the three different scan resolutions tested were found to
be equal in near range, but decreased more strongly for the lower scan resolutions in far range. With
regard to the stem diameter extraction, scan resolution did not affect stem diameter at breast height
(DBH) estimation accuracy, but limited the range within which DBH could be reliably extracted. The root
mean squared error (RMSE) for DBH extracted from the single scan data was found to be significantly lar-
ger compared to the RMSE for DBH extracted from the merged scan data. Single scan data yielded stem
volume estimates with lower accuracies, too. This study demonstrated that it is possible to maximize
sampling efficiency by using scanner parameter sets with low scanning times (i.e., low scan resolution,
high scan speed) without significantly losing estimation accuracy. If maximum accuracy is desired for
both DBH and stem volume, the acquisition of multiple scans with a subsequent data merging is required.
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.

1. Introduction

Terrestrial laser scanning (TLS) has become a valuable tool for
assessing vegetation structure due to its capability to provide
objective and consistent, though not necessarily unbiased, mea-
surements. Additionally, TLS offers the benefit of extracting struc-
tural metrics which cannot be measured cost-efficiently by
traditional methods such as caliper or tape. Examples are the stem
form and merchantable volume which are both of particular inter-
est in forest inventory (Holopainen et al., 2011). While a number of
studies have shown that some of the basic inventory metrics can
be extracted from TLS data with sufficient accuracy, e.g., tree loca-
tion and stem density (e.g., Simonse et al., 2003; Aschoff and Spiec-
ker, 2004; Hopkinson et al., 2004), diameter at breast height (e.g.,
Bienert et al., 2006; Maas et al., 2008), other important metrics
such as tree height (e.g., Maas et al., 2008) or stem volume (e.g.,
Tansey et al., 2009) have so far not been retrieved with sufficient
accuracy. This is mainly due to shadowing, i.e., the occlusion of

background objects by foreground objects, which currently consti-
tutes one of the major obstacles to an effective and accurate
extraction of structural tree metrics from TLS data. Shadowing de-
pends on scan location and on factors which control the stand
structure, e.g., stem density, stem size, (spatial) stem distribution,
canopy layering, degree of undergrowth, and forest management
practices. While statistical methods have been proposed to deal
with partial occlusion of objects (Lovell et al., 2011), complete
shadowing can only be dealt with by scanning objects from differ-
ent locations. Even then a complete coverage may not be possible,
in particular for complex structures such as forest canopies. The
use of multiple (merged) TLS scans for improving the retrieval of
structural metrics implies another important consideration in for-
est inventory: Sampling efficiency, i.e., minimizing costs while
maximizing sampling and preserving parameter estimation accu-
racy. While TLS has proven to provide good estimation accuracy,
its efficiency in terms of scan acquisition (scanner positioning,
set-up and scan duration), in particular in case of scanning from
multiple locations, has so far not been the focus of interest. Of
the factors contributing to the scan acquisition efficiency, scan
duration has the strongest influence. Scan duration is controlled
by the basic scanner parameters, scan resolution (angular step
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size), scan speed (number of laser pulses per second), pulse dura-
tion, and scan field-of-view. It has to be noted that these factors
influence each other, hence they do not per se increase the scan
duration. For example, scanning with a small field of-view and high
scan resolution may yield a similar scan time compared to scan-
ning with a large field-of-view and low scan resolution. Also, the
ranging method (phase-shift vs. time-of-flight) has some effect,
e.g., phase-shift scanners allow for higher scan speeds, but exhibit
smaller effective scan ranges compared to time-of-flight scanners.
Since it is desirable to increase the scan acquisition efficiency while
preserving the estimation accuracy, the present study focused on
assessing the influence of scan resolution, scan speed, and pulse
duration (i.e., signal-to-noise ratio) on the accuracies of stem
detection, stem diameter and volume extraction from phase-shift
TLS data (a FARO Photon 120 was chosen as an exemplary phase-
shift scanner in this study). Since phase-shift scanning of vegeta-
tion structure suffers from noise, particular consideration has to
be given to the issue of noise removal. In this context, noise refers
both to laser scan returns without physical meaning and to returns
with physical meaning but which, depending on the purpose of the
data analysis, represent unwanted data. The separation of un-
wanted from wanted data is considered to be one of the most
important steps in successfully extracting structural metrics from
TLS data, usually achieved by data filtering and/or robust data
modeling (e.g., Aschoff et al., 2004; Maas et al., 2008; Litkey
et al., 2008). The data filtering and robust modeling which were ap-
plied in this study are described in Section 2 along with the mate-
rial of this study. Results are presented in Section 3 and discussed
in detail in Section 4. Last but not least, conclusions are given
(Section 5).

2. Materials and methods

2.1. Study area

The study area is located in the Pfälzerwald forest near Kaisers-
lautern, Germany, where a number of permanent forest monitoring
plots lie in close vicinity, providing a large pool of in situ biophys-
ical and structural measurements. The study was carried out at a
pure Beech (Fagus sylvatica) stand (Fig. 1). The stand is character-
ized by a main storey of Beech trees around the age of 50 yrs and a
second storey (understorey) of Beech trees, which may be younger
than or the same age as the main storey trees (Werner, personal
communication). Stem density is 1032 stems/ha, mean and stan-
dard deviation are 16.4 cm and 7.3 cm for diameter at breast
height (DBH) and 18.5 m and 5.7 m for tree height. Stand area is
roughly 0.5 ha, mean slope is 3.1�, and mean elevation is 522 m.

2.2. Data collection

During a field campaign in May 2012, three terrestrial laser
scans were performed within the Beech stand. For these measure-
ments a FARO Photon 120 phase-shift scanner was used (FARO,
2009b). The height above ground of the instruments beam emis-
sion point was 1.75 m and scans were performed with a field-of-
view of 360� (Hz) by 310� (V). In order to assess the influence of
the basic scanner parameters, scan resolution, scan speed, and
pulse duration, scans were performed with different parameter
sets at each of the three viewpoints (Fig. 1, Table 1). Since sampling
efficiency (i.e., scan duration) is crucial in forest inventory, scanner
parameters were chosen such as not to exceed a scan time of

Fig. 1. Study area. Left: aerial imagery of the study area depicting the scan locations and the boundaries of the test site. Projected coordinate system: UTM. Upper right: image
of the Beech stand at the test site. The mobile lift aiding the measurement of upper stem diameters is visible in the image center. Lower right: Experimental set-up of this
study showing locations of scans, registration targets, and stem profile trees.
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30 min. In order to register the single scans, resulting in merged
scan data with a common coordinate system, registration reference
targets were placed in positions visible from all three scan loca-
tions (Fig. 1). Targets included four spherical targets (FARO laser
scanner reference sphere set) and one planar target (Table 2). Ref-
erence DBH measurements (measured with tape at 1.3 m height
above ground) were recorded in April 2012 and tree locations were
extracted from an existing database in order to validate the TLS de-
rived stem locations. Additionally six stem diameter profiles with a
step size of 20 cm and a maximum height of 10 m were recorded
during the field campaign with the purpose of validating the TLS
derived stem volume estimates. Profile diameters were measured
with tape; upper stem parts could be accessed using a mobile lift
(upper right picture in Fig. 1). However, due to the size of the lift
the sampling of trees was restricted to trees along the track of
the test site (lower right picture in Fig. 1). For the same reason
(and due to heavy branching), stem parts could only be accessed
up to a height of 10 m. The sampling area is also limited by the size
of the available registration targets. This is because these targets
have to be visually identified in the 2D-projected images of the
scans for the registration process; depending on target size and
scan resolution there is a maximum distance which can be set be-
tween target and scanner for the target to be still clearly identified
in the image. According to FARO (2010), the maximum distance is
18 m when scanning with a resolution of 1=4. Based on the scan res-
olutions tested in this study (Table 1), the scanner and target loca-
tions had to be subjectively chosen (Lower right picture in Fig. 1,
Table 2). Due to these restrictions in the experimental set-up, the
sampling of stem profile trees for the estimation of stem volume
is not random; results reported in this study may therefore not
necessarily be achieved by sampling schemes such as those tradi-
tionally applied in forest inventory. It has to be noted, though, that

the present study is intended not only to assess the effects of dif-
ferent scanner parameters, but also to identify potential limitations
to the application of TLS for forest inventory, including the sam-
pling design.

2.3. Data pre-processing

The individual scans were first registered manually to produce
merged point clouds for each of the different scanner parameter
sets applied in this study. Mean registration errors are listed in Ta-
ble 3. In order to assess the effects of noise on the stem detection,
stem diameter and volume extraction, scans were performed with
different pulse durations which affect the signal-to-noise ratio (see
noise compression in Table 1). In addition a post-filtering of the
raw (single and merged) scan data was applied. For this purpose,
the default FARO Scene 4.8 software filtering was used (FARO,
2010). This filtering comprises of a kernel-based stray point filter-
ing and a reflectance filtering. For each scan point, the range differ-
ences between the neighboring scan points of the kernel and the
scan point currently in the center of the kernel are checked. If a cer-
tain percentage of kernel scan points (specified by the allocation
threshold) exhibit range differences below the range threshold,
the central kernel scan point remains in the scan, otherwise it is re-
moved (FARO, 2010). By contrast the reflectance threshold simply
removes scan points with 11-bit scaled reflectance values below
the default threshold of 300 (also scaled). Default parameter values
for the stray point filtering are a square kernel of size 3 by 3 pixels,
a range threshold of 2 cm, and an allocation threshold of 50% (i.e.,
half the number of kernel pixels minus the kernel center). The
unfiltered and filtered (i.e., above-mentioned software filtering)
single scan data was then converted from a Cartesian to a spherical
coordinate representation, yielding 2D-projected raster images
(Fig. 2), where the x- and y-axes represent the azimuth and zenith
values (range determined by the user selected field-of-view). These
raster images contain the x, y, z, range, intensity, azimuth and ze-
nith information for each scan point (=raster pixel) as separate
bands of the same image. The range band is required as input to
the automated stem detection.

Table 1
FARO Photon 120 scanner parameter sets applied in the present study (modified from
Tables 1 and 2 in FARO (2009a). Noise compression reduces raw data noise by a factor
of two. Resolution refers to ratios of the maximum angular resolution (40,000 3D
points/360� = step size 0.009�). The vertical step size equals the horizontal step size.
Additionally the FARO Photon 120 specific hardware filters, clear sky and clear
contour, were set.

Resolution Scan
speed
(kpt/s)

Repetition
rate (Hz)

Pulse
duration
(ms)

Noise
compression

Scan
time
(min)

Scan
size
(MB)

1/4 244 24 0.93 – 03:24 185
122 12 1.87 – 06:49 183
244 12 1.87 2� 13:39 670
122 6 3.74 2� 27:18 662

1/8 244 49 0.47 – 00:51 56
122 24 0.93 – 01:42 56
244 24 0.93 2� 03:24 185
122 12 1.87 2� 06:49 183

1/10 244 61 0.37 – 00:32 38
122 31 0.75 – 01:05 38
244 31 0.75 2� 02:11 121
122 15 1.50 2� 04:22 120

Table 2
Reference targets used for the registration of the single scans.

Target Distance (m) from scan location

Nr. Type Size (m2) Scan 1 Scan 2 Scan 3

T1 Plane 1 14.3 24.8 31.4
T2 Sphere 0.07 5.7 10.8 17.6
T3 Sphere 0.07 17.4 8.1
T4 Sphere 0.07 11.6 5.1 10.9
T5 Sphere 0.07 2.8 15.4 15.1

Table 3
Mean registration errors of the single scan registration fits. The different numbers of
registration targets is due to the non-detection of these targets in the 2D-projected
scan images as a result of the combined effects of scan resolution, target size and
distance scanner-target.

Scan
res.

Scan
speed
(kpt/s)

Noise
comp.

Point
distancea

(mm)

Point
driftb

(mm)

Long.
mismatchc

(mm)

Orth.
mismatchd

(mm)

No. of
targets

1/4 244 – 2.16 0.34 �0.50 1.67 6
122 – 1.75 0.30 �0.50 1.27 6
244 2� 1.61 0.15 0.15 1.17 6
122 2� 1.53 0.23 0.28 1.00 6

1/8 244 – 0.83 0.10 �0.32 0.51 4
122 – 0.26 0.03 �0.01 0.17 4
244 2� 2.09 0.13 0.04 1.77 4
122 2� 1.72 0.29 0.28 1.31 5

1/10 244 – 2.20 0.00 �0.05 2.16 3
122 – 0.05 0.02 0.01 0.03 3
244 2� 0.69 0.10 �0.03 0.38 4
122 2� 1.62 0.16 0.15 1.22 4

a The standard deviation of the distance between the local reference points and
their corresponding references.

b The mean value of the deviations between the local reference points and their
corresponding references.

c The standard deviation of the longitudinal distance between the local reference
points and their corresponding references. The longitudinal distance is the differ-
ence between the distance values to the scanner.

d The standard deviation of the orthogonal distance between the local reference
points and the corresponding references (FARO, 2010).
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2.4. Stem detection

Automated tree stem detection is based on the approach by
Pueschel et al. (2012) which utilizes range differences between
neighboring pixels of a 2D-horizontal slice from the single scan
range image to separate tree stems from other image components.
To minimize occlusion of stems by branches and leaves the algo-
rithm is iterated for multiple slices:

Scanner returns are assessed in multiple slices Li(h) each of ze-
nithal thickness 0.36� and azimuthal coverage of 360�. Slices are
separated by a vertical offset of 0.9�. Within each slice and for each
vertical scan line Li(u) at azimuth u the range variance r2

r ði;uÞ is
computed. If r2

r ði;uÞ falls below the range variance threshold sr2

then Li(u) is considered to be a possible stem return. Consecutive
(possible) stem returns with range differences below the range dif-
ference threshold sdiff and which cover a minimum azimuthal span
d(u); provide the primary evidence of a tree stem. The locations of
stem centers as specified by their central azimuth detected in each
slice Li(h) are then compared to determine if they correspond to a
single tree stem or to different stems.

The parameter set used in the present study is: sdiff = 10 cm,
sr2 = 0.0002, d(u) = 0.18�, Li(h) = 9. sdiff and sr2 were chosen based
on a parameter sensitivity analysis. d(u) and Li(h) were chosen
based on the results of a previous study (Pueschel et al., 2012).
Slices Li(h) are centered at vertical heights i = {�3.6�, �2.7�,
�1.8�, �0.9�, 0�, 0.9�, 1.8�, 2.7�, 3.6�} with i = 0� representing the
scanner height (see horizontal line in Fig. 2). The azimuth span
d(u) = 0.18� corresponds to theoretical stem diameters of 3.1 cm,
6.3 cm, and 9.2 cm for ranges of 10 m, 20 m, and 30 m respectively.

2.5. Stem diameter and volume extraction

Automated stem diameter extraction is based on the approach
by Pueschel et al. (2012) which can be applied to rasterized single
scan data as well as point clouds acquired by merged scans. Cen-
tered at the locations of stem centroids derived from the TLS-based
stem detection (the centroids themselves are located at the stem
fronts which face the scanner and do not correspond to stem cen-
ters), 3D-sets of potential stem points are extracted for each tree
using a horizontal bounding box of size 60 cm by 60 cm. The main
purpose of this step is to reduce the data volume; hence these
dimensions were set arbitrarily. To avoid the omission of tree stem

parts in case of leaning stems, the size of the bounding box may
need to be increased (which was not the case in the present study).
However, this affects only the processing time and not the process
of extracting stem diameter itself. The height minimum of this set
is then searched for which represents the ground level, provided
that there is no occlusion. Since it has been found that the
phase-shift FARO scans suffer from so-called ghost points below
ground level which affect the determination of the exact ground le-
vel (Bienert et al., 2006; Maas et al., 2008), we implemented a his-
togram-based outlier detection and removal. The height maximum
is implemented as a user-definable parameter (set to 10 m in this
study) which is constrained by the height maximum found by the
algorithm. Starting from the stem centroid, stem points which fall
within the boundaries of a slice of 5 cm vertical thickness are ex-
tracted and circle fitting is applied. A geometric-based circle fit
algorithm (Lemen, 1991) was used, which proved to be superior
to two other algorithms tested in a previous study (Pueschel
et al., 2012). Since the set of stem points also includes points which
represent branches and leaves and which affect the circle fitting, an
exclusion of these outliers is mandatory. We therefore imple-
mented a range-based outlier test based on a fixed buffer added
to the radius of the circle fitted for the previous slice (buffer = 1=4

of the previous circle’s radius). To prevent further errors in the cir-
cle fitting (e.g., fitting too large of a circle due to point clouds with
circle arcs smaller than semi-circles) an upper stem diameter
threshold is set (based on the stem size distribution at the test site,
the threshold was set to 0.6 m). If this value is exceeded, the radius
of the circle fitted for the previous slice is used instead. The basic
steps of the algorithm are performed for all slices from the starting
point to the local minimum and maximum. In case a tree stem
splits up in two separate stems, the algorithm usually continues
along the thicker stem. The algorithm produces stem diameter ver-
tical profiles which are used to estimate DBH by applying a robust
linear fit to the profile. Compared to extracting DBH directly at the
nominal breast height, this method proved to be more stable
against errors as a result of an uncertain ground level determina-
tion and of outliers (Pueschel et al., 2012). Based on the extracted
diameter profiles, stem volume is calculated by approximating the
stem point slices as conical frustums and summing up their vol-
umes (Eq. (1)). Reference volumes were calculated equivalently
for the in situ measured stem profiles. Due to heavy branching,
stem diameter reference measurements could only be carried out

Fig. 2. Panoramic range image (2D-projection of single scan data). The yellow horizontal dash indicates the height above ground of the scanners’ beam emission point. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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for stem heights up to 10 m, hence both the reference and TLS-ex-
tracted volume calculation were restricted accordingly
(Section 2.2):

Vstem ¼
X10m

z¼0

tslice �
p
3
� r2

1 þ r1 � r2 þ r2
2

� �
ð1Þ

with tslice = slice thickness, r1 and r2 = top and base radii.

3. Results

3.1. Stem detection

Results for the automated stem detection show that stem detec-
tion is dependent on range, i.e., detection rates decrease with
increasing distance from the scanner (Table 4, Fig. 3). The decrease
results from the combined effects of an increasing shadowing and a
systematic bias in the stem detection algorithm which omits trees
with diameter spans smaller than 0.18� (cf. Section 2.4). While the
effect of shadowing mainly depends on stem density, stem diame-
ter distribution, and scanner location, the systematic bias solely
depends on the stem diameter distribution within the effective
scan range. Based on the spatial DBH distribution at the study site,
1%, 9%, and 18% of all trees within 10 m, 30 m, and 60 m range from
the single scan locations are potentially omitted by the stem detec-
tion algorithm. If shadowing of these stems is accounted for (e.g.,
based on multiple scan locations combined with a spatial analysis
of the distribution of stem sizes), the omission rates reduce to 1%,
3%, and 4%. Since the focus of our study was to assess the overall
(i.e., effective) performance of the stem detection approach, detec-
tion rates reported are the results of the combined effects men-
tioned above. By contrast to the stem detection rates, false
detection rates only slightly decrease with range (Fig. 3). False
detection rates mainly depend on the degree of branching and dis-
tribution of leaves, the main source for errors, within the zenith
range used for stem detection. Scan speed and pulse duration
(i.e., noise compression), has a marginal effect on both stem detec-
tion and false detection rates (Fig. 3). The same applies to the effect
of raw data filtering which yielded detection rates differing by a
mean of 0.6% (standard deviation: 0.6%) and false detection rates
differing by a mean of 0.2% (standard deviation: 0.8%). By contrast
the scan resolution significantly affects the stem detection, the
magnitude of which however is dependent on range (Fig. 3). This
effect is easily explained if converting the scan resolution into
point spacing: A scan resolution of 1/4 (10 kpt/360�) translates to

a point spacing of 0.6 cm, 1.9 cm, and 3.8 cm for ranges of 10 m,
30 m, and 60 m. These values increase to 1.3 cm, 3.8 cm, and
7.5 cm for a resolution of 1/8 (5 kpt/360�), respectively to 1.6 cm,
4.7 cm, and 9.4 cm for a resolution of 1/10 (4 kpt/360�). For ranges
up to 10 m, scan resolutions 1/8 and 1/10 yield stem detection
rates which only differ marginally from the scan resolution 1/4
(0.5% and 0.9%). For ranges up to 20 m, the differences increase
to 6.4% and 10.3% and from 30 m on they reach near constant levels
(mean differences 8.8% and 16.4%). The latter reflects the increas-
ing shadowing of stems with increasing distance from the scanner
which equally affects the different parameter sets applied in this
study.

3.2. DBH extraction

3.2.1. Single scans
In order to test the influence of the scanner parameters on the

stem diameter extraction, DBH was extracted from the single scans
for each of the parameter sets. Analysis is based on the sum of all
detected trees from all three single scans, yielding 387, 198, and
144 trees for the scan resolutions 1/4, 1/8, and 1/10. This consti-
tutes a 49% difference between the resolutions 1/4 and 1/8, and a
63% difference between the resolutions 1/4 and 1/10 (percentages
are the same for filtered and unfiltered data). These apparent dis-
parities cannot be solely explained by the reduced stem detection
rates of scan resolutions 1/8 and 1/10 which only account for mean
differences of 8.8% and 16.4% (cf. Section 3.1). Rather they can be
explained by the fact that not every tree detected by the algorithm
provides stem point clouds with a sufficient representation of the
stem form required for a successful modeling of stem diameters.
This is mainly the result of shadowing. The scan resolutions 1/8
and 1/10 obviously yield a smaller number of such whole stem
point clouds. This is also clearly range dependent (Fig. 4). While
DBH was successfully extracted for ranges up to 45 m from the
scans with 1/4 resolution, DBH could only be extracted for ranges
up to 30 m for scans with resolution 1/8 and up to 25 m for scans
with resolution 1/10. The reason might be that the corresponding
scan point densities provide a coverage of the stem semi-circles
(i.e., tree stems observed in single scan mode represent semi-cir-
cles when their scan points are projected on a horizontal plane)
which is insufficient for a stable circle fitting, in particular consid-
ering that it is more likely to yield stem point clouds which repre-
sent circle arcs smaller than semi-circles with increasing range due
to the shadow effect. The reduced scan point densities may also
result in a circle fitting more prone to the influence of outliers

Table 4
Statistics for the stem detection based on rasterized single TLS scans. No. of reference and detected trees are mean numbers of the three single scan viewpoints. TLS-detected trees
are based on the raw scan data (i.e., no software filtering applied).

Scan res. Scan speed (kpt/s) Noise comp. Mean no. of trees detected within range

10 m 20 m 30 m 40 m 50 m 60 m

1/4 244 – 27 93 150 171 178 179
122 – 28 92 149 171 177 179
244 2� 28 91 146 165 171 171
122 2� 28 92 147 170 176 177

1/8 244 – 28 87 136 152 153 153
122 – 27 88 137 150 153 153
244 2� 28 84 129 144 147 147
122 2� 28 84 130 144 146 146

1/10 244 – 28 84 124 133 135 135
122 – 27 84 123 131 133 133
244 2� 28 79 118 128 128 128
122 2� 28 79 117 126 127 127

Mean reference no. of trees within range
28 104 203 276 316 328
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(i.e., noise). While the scan resolutions applied in this study af-
fected the range within which DBH could be successfully extracted,
DBH estimation errors are neither dependent on scan resolution
nor on range (Fig. 4). Similar to the stem detection, scan speed,
noise compression, and data filtering do not influence the observed
DBH extraction capabilities and the range function of estimation
errors (Fig. 4). DBH estimation errors are also normally distributed
irrespective of scan resolution, scan speed, noise compression, and
data filtering (Fig. 5), however with slight variations in mean bias
of the different scanner parameter sets (Table 5). The RMSE (root
mean squared error) values resulting from the scans with noise
compression are slightly higher than for the scans without noise
compression both for the raw and to a lesser degree for the filtered
scan data (Table 5). This effect, however, seems to diminish for
scan resolution 1/10, as can be seen from the estimation error dis-
tribution (Fig. 5). Scans recorded with a measurement speed of
244 kpt/s yield RMSE’s slightly higher than the scans with a speed
of 122 kpt/s (Table 5), possibly due to the higher signal-to-noise ra-
tio of the latter. This is supported by the fact that this observation
does not apply to the noise-compressed scans. RMSE’s based on the
raw data are slightly higher than those based on the filtered data,
and RMSE’s tend to increase with decreasing scan resolution (Ta-
ble 5). However, the estimation error distributions suggest that
RMSE differences may be random rather than systematic, in partic-
ular considering that the RMSE is not a robust statistical measure.
This leads to the conclusion that the DBH estimation accuracy is
not significantly affected by scan resolution, scan speed, noise
compression, and data filtering.

3.2.2. Merged scans
DBH was extracted from the merged scans for trees which

yielded stem point clouds covering at least 3=4 of the stems’ circum-
ference. This resulted in a total of 27 trees for the analysis. DBH
estimation errors are range-independent, which based on the re-
sults from the single scans and the fact that the effective range
for merged scans is smaller compared to single scans (approxi-
mately 20 m in our case) was to be expected. Another similarity
between the two scan modes is that scans without noise compres-
sion yield smaller RMSE’s compared to the scans with noise com-
pression (Table 6). Overall, however, RMSE’s do not seem to
follow any systematic trend or to be a distinct function of the scan
resolution, scan speed, and data filtering (Table 3). Also, there is no

apparent correlation between the mean errors of the single scan
registration and the DBH estimation errors (Tables 3 and 6). As
for the single scans, this leads to the conclusion that the scan res-
olution, scan speed, noise compression, and data filtering do not
significantly influence the DBH estimation accuracy from merged
scan data. However, they yield significantly lower RMSE’s com-
pared to the single scans, irrespective of the scanner parameters
tested (Tables 5 and 6), which confirms the findings of a previous
study (Pueschel et al., 2012). The improved DBH estimation accu-
racy is attributed to a more stable circle fitting as a result of an en-
hanced coverage of the tree stems’ circumference.

3.3. Stem volume extraction

Stem volume was extracted for the four stem profile trees
which lay within the triangle spanned by the three scan locations
(Fig. 1). Stem volumes (for 0–10 m stem height) are 0.44 m3,
0.36 m3, 0.66 m3, and 0.39 m3 for trees with ID 542, 543, 544,
and 546. These trees had to be chosen in close range to the scan
locations due to restrictions in the experimental set-up (cf. Sec-
tion 2.2). Results show that the TLS-derived stem volumes are
independent of scan resolution, scan speed and pulse duration
for the merged scan data (Fig. 6). By contrast single scan derived
stem volumes can exhibit quite some variation from the reference
volumes (e.g., Tree 544 in Fig. 6). Data filtering has only a marginal
effect: Stem deviations from the reference volumes based on the
raw and filtered data differ with a mean of 0.5% and a standard
deviation of 4.4% for the single scans and with a mean of 0.7%
and a standard deviation of 1.2% for the merged scans. These
results reflect the findings of the DBH extraction, not only with
regard to the influence of the scanner parameters, but also with
regard to the superior performance of the tree metric extraction
based on the merged scans. Stem volumes extracted from the
merged scans deviate from the reference volumes by 1–9%, while
mean stem volumes extracted from the single scans deviate by
�1% to 35%. Additionally the single scan derived volumes exhibit
a high variability as a result of scanner location and thus differing
stem coverage (Fig. 6). This is in line with the observations by Bien-
ert et al. (2007) and Litkey et al. (2008) that the coverage of stem
cross-sections is crucial for a reliable and successful modeling of
stem diameters. Since the extraction of stem volume is based on
the modeling of stem diameters, model errors directly affect the
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Fig. 3. Stem detection and false detection rates as a function of range, scan resolution, scan speed, and pulse duration (NC = noise compression according to Table 1). Analysis
based on the raw scan data (i.e., no software filtering applied) of all three single scans.
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Fig. 4. DBH estimation errors as a function of range. Extracted DBH are based on all single scans performed with a scan speed of 244 kpt/s and without noise compression.
Scans with a speed of 122 kpt/s and scans with noise compression yielded results which closely resemble the plots shown above. Solid lines represent the best fit of a simple
linear regression.
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Fig. 5. Distribution of the DBH estimation errors as a function of scan resolution, scan speed, pulse duration (noise compression), and software filtering.
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volume calculation. It is therefore important to quality-check TLS-
derived volumes, e.g., by visual inspection of the stem diameter
vertical profile, in particular as under- and overestimated diame-
ters may cancel each other and result in pseudo-accurate measure-
ments. Corroborating the findings of a previous study (Pueschel
et al., 2012), the results also demonstrate that, depending on stem
visibility, it is possible to achieve stem volume estimates from sin-
gle scans with similar accuracy as those from the merged scans,
provided trees are in close range to the scanner (in this study:
max. 12 m). For trees observed further away from the scanner,
the single scan based estimation may yield stem volumes with
lower accuracy compared to the merged scans.

4. Discussion

The aims of this study were to assess the effects of the scanner
parameters, scan resolution, scan speed and pulse duration (i.e.,
signal-to-noise ration), and a raw data filtering on stem detection,
stem diameter and volume extraction from phase-shift TLS data.
The scan resolution, scan speed, and pulse duration control the
scan time, which is an important consideration for the application
of TLS in forest inventory because of the demand to minimize costs
while maximizing the sampling (cf. Lovell et al., 2011). Ideally
increasing the efficiency should not decrease the parameter esti-
mation accuracy. Since the use of TLS for deriving structural forest

metrics has the disadvantage of a time-consuming scanner set-up,
in particular in case of multiple scan acquisition with the purpose
of data merging, the reduction of scan time while preserving esti-
mation accuracy is crucial. In the present study scanner parame-
ters were chosen such as not to exceed a scan time of 30 min
(Table 1). Besides the scan time another important consideration
for the extraction of structural forest metrics from terrestrial laser
scans is the specific scan file size (Table 1). The scan data which is
usually saved in the scanner manufacturers’ proprietary file format
have to be exported to more accessible file formats for input into
an automated data processing. This procedure roughly tripled the
specific scan sizes in this study. In case of merging single scans,
resulting scan sizes can easily exceed 5 GB. The feature extraction
from such large point clouds can be quite tedious and time-con-
suming. Taking the requirement of forest inventory to maximize
sample sizes into consideration, it is evident that the TLS data pro-
cessing has to be automated, in particular for the merging (i.e., reg-
istration) of multiple single scans. It has to be noted though that
the approach of using reference targets for the registration is quite
time-consuming and tedious itself. Therefore new approaches to
an effective and efficient scan registration are required. Since the
raw scan data does not contain thematic information, the first step
in such a processing need to be a scan point classification of sorts. A
number of parametric and non-parametric methods have been
proposed for this purpose (e.g., Liang et al., 2008; Park et al.,
2010; Newnham et al., 2012). With regard to forest applications
the major aim of these methods is the separation of vegetation
from non-vegetation (ground, sky) scanner returns and the separa-
tion of woody from non-woody vegetations components. With re-
gard to forest inventory, the identification of tree stems from the
woody components forms the basis for any subsequent extraction
of structural metrics from TLS data. An efficient and effective stem
detection is therefore crucial. A number of different approaches
have been proposed for stem detection (e.g., van Leeuwen and Nie-
uwenhuis, 2010). Most of the underlying studies focused on dem-
onstrating the general applicability of the respective approaches,
and paid less attention to assessing the influence of external fac-
tors such as scanner parameters or stem density. However, such
an assessment is required both to warrant the robustness of the
approach and to optimize the TLS scan data acquisition and pro-
cessing for forest inventory.

In the present study, stem detection was achieved by applying
the approach of Pueschel et al. (2012). Scan resolution was found
to have a range-dependent effect on detection rates: For 10 m
range the unfiltered single scan data with resolutions 1/4, 1/8,
and 1/10 yielded same mean detection rates of 98%. For 30 m
and 60 m range these dropped to 73%, 65%, 59%, and to 54%, 46%,
40% (in the order of decreasing resolution). The differences were
attributed to an increase in the point density differences between
the scan resolutions with increasing range (cf. Section 3.1). Scan
speed, pulse duration (i.e., noise compression), and data filtering
was found to have only a marginal effect on detection as well as
false detection rates. By contrast to stem detection rates, false
detection rates only slightly decrease with range: For 10 m range
the scan resolutions yielded mean rates of 9%, 10%, and 8%. For
30 m and 60 m range these reduced to 9%, 8%, 6%, and to 7%, 5%,
4% respectively (again in the order of decreasing resolution). As
for the stem detection rates, the differences between the scan res-
olutions are caused by increasing point density differences with
range. Since clumped leaves are the main source of false detec-
tions, the observed rates could be reduced by scanning during
the leaf-off phase. In case of coniferous trees, alternative checks
for false detections, e.g., based on texture and/or simultaneously
acquired color pictures, could be used. Pueschel et al. (2012) re-
ported similar false detection rates for both Beech and Douglas
fir, but rates may deviate for tree species with dense branching

Table 5
Statistics for the DBH extracted from the single scans. Bias = Mean difference
(Reference DBH – TLS derived DBH). NC = noise compression.

Scanner parameters Raw scan data Filtered scan data

Resolution Scan
Speed

NC Bias
(cm)

RMSE
(cm)

Bias
(cm)

RMSE
(cm)

1/4 244 – �0.1 1.1 0.0 1.0
1/4 122 – 0.0 1.0 0.0 1.0
1/4 244 2� �0.2 1.4 �0.1 1.2
1/4 122 2� �0.2 1.3 �0.1 1.2

1/8 244 – �0.2 1.2 �0.1 1.2
1/8 122 – �0.1 1.1 �0.1 1.1
1/8 244 2� 0.1 1.7 0.0 1.3
1/8 122 2� 0.1 1.5 0.1 1.4

1/10 244 – �0.1 1.4 �0.1 1.3
1/10 122 – �0.2 1.2 �0.1 1.2
1/10 244 2� �0.1 1.3 �0.1 1.3
1/10 122 2� �0.0 1.5 0.0 1.3

Table 6
Statistics for the DBH extracted from the merged scans. Bias = Mean difference
(Reference DBH – TLS derived DBH). NC = noise compression.

Scanner parameters Raw scan data Filtered scan data

Resolution Scan
speed

NC Bias
(cm)

RMSE
(cm)

Bias
(cm)

RMSE
(cm)

1/4 244 – 0.2 0.5 0.1 0.6
1/4 122 – 0.3 0.6 0.1 0.6
1/4 244 2� 0.0 0.8 0.0 0.7
1/4 122 2� �0.1 0.8 �0.1 0.8

1/8 244 – 0.1 0.5 0.1 0.5
1/8 122 – 0.2 0.5 0.2 0.6
1/8 244 2� 0.0 0.8 0.0 0.9
1/8 122 2� �0.2 0.7 0.0 0.7

1/10 244 – 0.0 0.6 0.0 0.6
1/10 122 – 0.2 0.8 0.2 0.9
1/10 244 2� �0.1 0.8 0.0 0.9
1/10 122 2� 0.2 0.7 0.1 0.6
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down to the lower stem parts. The strong decrease in stem detec-
tion rates with range resulted mainly from a combination of the ef-
fects stand density, scan geometry, shadowing, and systematic
stem detection bias (cf. Section 3.1). Lovell et al. (2011) also
observed a distinct range dependency of stem detection due to
shadowing. Shadowing is caused by trees, in particular in close
range, and constitutes a major and inherent drawback of using single
scans for stem detection (e.g., Watt and Donoghue, 2005; Liang
et al., 2009). The use of merged scans for stem detection has the
advantage of a multi-angular coverage (Thies and Spiecker, 2004;
Bienert et al., 2006), potentially increasing stem detection rates,
but suffers from a much more time-consuming scanner set-up
and data processing (i.e., positioning and registration of multiple
scans) as well as from a smaller range which can be effectively
used for stem detection. A hybrid single and merged scan based
method might help to overcome this drawback, e.g., stem detection
might be improved by assessing multiple stem detections in single
scans based on a rough scan registration without the use of regis-
tration targets.

As far as the effects of scanner parameters on the DBH extracted
from the single scans are concerned, it could be shown that the
scanner parameter settings applied in this study did not signifi-
cantly affect DBH estimation accuracies. Errors are normally dis-
tributed with slight variations in mean bias of the different
scanner parameter sets. RMSE’s range from 1 cm to 1.7 cm (raw
scan data) and from 1 cm to 1.4 cm (filtered scan data). Estimation
errors also proved to be independent on range. The most striking
effect which could be observed is a reduced capability of the scans
with resolutions 1/8 and 1/10 to model stem diameters with
increasing range. This was attributed to the decreasing coverage
of tree stems due to decreasing scan point densities resulting in
an unstable circle fitting. DBH extracted from the merged scans

also proved to be independent of the scanner parameters applied
in this study. Compared to the single scans, however, the enhanced
coverage of stem cross-sections by merged scans resulted in a
more stable and accurate circle fitting which yielded significantly
lower RMSE’s (ranging from 0.5 cm to 0.8 cm for the raw scan data
and from 0.5 cm to 0.9 cm for the filtered scan data). This is in line
with the observations by Bienert et al. (2007) and Litkey et al.
(2008) that the coverage of stem cross-sections is crucial for a reli-
able and successful modeling of stem diameters. Another advan-
tage of using merged scan data is that techniques can be applied
which might be able to model tree stem forms more realistically,
e.g., ellipse fitting (Aschoff and Spiecker, 2004) or B-splines (Pfeifer
and Winterhalder, 2004). The influence of non-circularity on model
fitting has been pointed out by a number of studies (e.g., Maas
et al., 2008; Litkey et al., 2008; Brolly and Király, 2009).

Stem volumes extracted from the single and merged scans re-
flect the findings of the stem diameter extraction, i.e., the improved
estimation accuracy for the merged scans, which is a logical conse-
quence as stem volume is calculated based on the extracted stem
diameter profile (cf. Section 2.5). This means that errors in the stem
diameter modeling directly affect the volume determination. Neg-
ative and positive errors (under- and overestimation of diameter)
may even cancel each other yielding pseudo-accurate volumes. It
is therefore important to carefully check the derived volumes.
Stem volumes deviations from the reference volumes range from
�1% to 35% for the single scans and from 1% to 9% for the merged
scans. While for trees with unobstructed view to the scanner stem
volumes could be extracted from the single scans with similar
accuracy compared to the merged scans, stem volumes of trees
with partial occlusion vary strongly for the single scans, due to dif-
ferent stem coverage from the single scan locations. These results
suggest that shadowing and therefore scan location are critical is-
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sues for the extraction of stem volume from TLS data. By contrast
the scanner parameters (scan resolution, scan speed, and pulse
duration) were found to have only a marginal influence. However,
it has to be noted that the sampling of trees for the stem volume
analysis had to be restricted to the near range (�12 m); drawn con-
clusions are therefore only valid for these ranges. The reason for
this restriction is that the reference targets used for the single scan
registration had to be placed within a maximum range from all
three scan locations, otherwise the low scan resolutions applied
in this study would have caused these targets to be unrecognizable
in the panoramic scan images (cf. Section 2.2). This aspect of the
reference target based scan registration is a major drawback to
the stem diameter and volume estimation from merged scans with
low scan resolutions. A solution might be to increase the size of the
reference targets, however at the expense of manageability. An
alternative might be to develop scan registration approaches
which do not require external reference targets.

5. Conclusion

Terrestrial laser scanning offers a number of advantages over
traditional, manual measurements in forest inventory. Besides
being objective and reproducible, TLS allows access to the mea-
surement of forest metrics, e.g., stem volume, which are not feasi-
ble with traditional methods. While the general potential to
retrieve forest metrics with high accuracy has been demonstrated,
the effects of different scanner parameters on the estimation accu-
racy and sampling efficiency has received relatively little attention.
Both are important considerations if TLS is to be routinely applied
in forest inventory. For this reason the present study focused on
assessing the effects of scanner parameters and data filtering on
stem detection, stem diameter and volume extraction from
phase-shift TLS data. Scanner parameter sets were chosen such
as not to exceed a scan time of 30 min. This study could demon-
strate that scan speed, pulse duration (i.e., noise compression),
and data filtering only have a marginal influence on stem detection
rates as well as on DBH and stem volume accuracies, which means
that scans can be acquired with low scan quality and correspond-
ing short scan times without significantly losing parameter estima-
tion accuracy. For example based on a scan resolution of 1/4,
choosing the lower scan quality setting, the scan time can be re-
duced from 27 min to 3½ min. A further reduction in scan time
can be achieved by decreasing the scan resolution. While the scan
resolutions tested in this study did not affect the DBH and stem
volume estimation accuracies, they affected stem detection rates
and more importantly the range within which stem diameter could
be reliably extracted. For ranges up to 25–30 m scan resolutions 1/8
and 1/10 proved to be sufficient which would further reduce scan
times from 3½ min to 1 min, respectively ½ min. For greater ranges
a scan resolution of at least 1/4 is required. With regard to the scan
mode, the results confirmed the findings of a previous study (Pue-
schel et al., 2012) that using merged instead of single scans signif-
icantly improves the DBH and stem volume estimation accuracies.
However, depending on stem density the acquisition of multiple
scans with the purpose of data merging is much more time-con-
suming compared to the single scan acquisition, mainly due to
positioning scanner and reference targets with unobstructed line-
of-sights to each other. Consequently the scan mode can be consid-
ered the bottleneck to increasing the sampling efficiency. While
the lower estimation accuracy based on the single scans may be
acceptable in case of DBH, the present study demonstrated that
the variability in the stem volumes extracted from the single scans
is too large for reliably estimating stem volume. Since the biggest
potential of TLS for forest inventory lies exactly in retrieving forest
metrics such as stem volume, the sampling design of a TLS-based

inventory has to be optimized to warrant sampling efficiency, i.e.,
the variability in stand structure has to be taken into account.
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1 Introduction 

1.1 Forest growth modelling 

The prediction of forest development and growth in particular has a long history in forestry 

dating back to the 19
th

 century (Pretzsch, 2009). While early attempts at growth prediction 

were focused primarily on establishing empirical relationships between total volume yield and 

stand height-age development, forming the basis for the so-called yield tables, forest growth 

research has rapidly developed over the past few decades to include complex matter balance 

models. They simulate the physiological processes of growth and the underlying cause-effect 

relationships with environmental factors and are therefore also referred to as mechanistic or 

process-based eco-physiological growth models. Lately, a third class of growth models has 

received increased attention (Mäkelä et al., 2000); so-called hybrid models that incorporate 

both empirical and mechanistic relationships of forest growth. In addition to this broad model 

type classification, growth models can be classified according to the temporal and spatial 

resolution of the modelled processes, ranging from seconds to centuries, and from the 

individual tree to landscape level (Pretzsch, 2009). The most common spatial scales of the 

eco-physiological models are the individual tree-based and the stand-based scales. Both can 

be spatially explicit or position-independent, i.e. trees and stands are described by statistical 

averages and/or statistical distributions of structural parameters without explicitly accounting 

for their spatial distribution.  

While eco-physiological models have become important tools for research and decision 

support in forest management, the importance of long-term forest growth monitoring has not 

diminished; due to the valuable information that this data provides about the fundamental 

interactions between forest structure, growth and yield, and environmental factors. Long-term 

growth data is also crucial for the calibration and validation of growth models. However, the 

availability of such reference data is limited and sites are often assumed to be representative 

for broad regions. As a consequence, this data cannot reflect small scale growth variability. 

Artificial time series of forest growth are therefore often used instead. These are based on the 

inventory of forest stands with similar site growing conditions and representing different 

stand development phases. Alternatively, inventory data collected from sites encompassing 

the full range of site growing conditions observed within a certain spatial extent (e.g. a 
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region) can provide lower and upper growth limits. These are especially useful for model 

calibration and validation (Pretzsch, 2009).  

Remote sensing, airborne and satellite remote sensing in particular, has received an increased 

attention for assessing forest structure and growth on a large scale since traditional forest 

inventory is laborious, time-consuming and spatially limited. By comparison, the potential of 

ground-based remote sensing to evaluate forest growth has not been investigated so far. The 

present study is therefore intended to investigate the use of ground-based remote sensing by 

comparing model simulations calibrated with (a) long-term growth data, (b) artificial time 

series constructed from traditional forest inventory, and (c) artificial time series constructed 

from ground-based remote sensing measurements. The growth model 3-PG (Landsberg and 

Waring, 1997) is used for this purpose because of its flexible spatial scale and the possibility 

to incorporate remote sensing data.                                                                 

1.2 The growth model 3-PG 

3-PG (acronym stands for Physiological Processes Predicting Growth) can be applied both on 

a point-based scale (3-PG) and on a spatial scale (3-PG-Spatial). The spatial version can also 

be used in combination with remote sensing data (Coops et al., 1998). 3-PG is based on 

modelling the physiological processes of tree growth. As it includes empirical relationships to 

infer some of its model parameters it can be considered a hybrid model. It is also generic, i.e. 

3-PG can be applied to various tree species provided that it is parameterized for these tree 

species. 3-PG assumes forest stands to be homogeneous with regard to tree species and age 

(Sands, 2004).  

3-PG is built on five core modules: Biomass production, biomass partitioning, soil water 

balance, stocking and tree mortality, and stand inventory data (Landsberg & Sands, 2011). 

The model is driven by monthly meteorological observations of precipitation, temperature, 

frost days, and solar insolation. In addition to being tree species-specific, 3-PG is also site-

specific. The required site data is site latitude, initial stocking, soil class, maximum plant-

available soil water, site fertility, and initial values for the three biomass pools foliage, stem 

and roots. Based on its climatic and site input 3-PG calculates monthly values of gross and net 

primary productivity (GPP/NPP).  
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A key property of 3-PG is that it accounts for environmental factors that affect tree growth. 

The simulated NPP is partitioned into the three biomass pools according to specific allocation 

rules. The monthly increment in growth is linked to the volume growth and the stem mortality 

modules, and allows the calculation of common forest inventory parameters such as stocking, 

basal area, and diameter at breast height (DBH). In the following, the five modules of 3-PG 

and their main processes are shortly described. As a detailed description of 3-PG is beyond 

the scope of this study, the reader is referred to the publications of Landsberg and Waring 

(1997), and Landsberg and Sands (2011).            

1.2.1 Soil water balance 

The module water balance is based on a simple one-layered soil water model, i.e. the soil is 

assumed to be made up of one single homogenous layer. The soil water input is calculated 

from the precipitation reduced by interception and evapotranspiration. Potential irrigation can 

also be accounted for. The soil water pool is filled up by the input water up to a defined 

maximum water storage capacity. If this threshold is exceeded, the excessive input water is 

drained out of the system. Interception is modelled as a tree species-specific maximum loss 

rate that is regulated by LAI. Evapotranspiration is modelled by using a modified version of 

the Penman-Monteith equation, which takes into account environmental constraints (e.g. soil 

water stress, vapour pressure deficit) on canopy conductance. This bulk canopy conductance 

is calculated by reducing a species-specific maximum canopy conductance using the more 

limiting factor and using the proportion of simulated to maximum LAI. The maximum LAI is 

assumed to correspond to the maximum canopy conductance.    

1.2.2 Biomass production 

The biomass production is the core module of 3-PG and is based on the light use efficiency 

concept, i.e. primary productivity is proportional to the intercepted solar radiation with the 

light use efficiency (gDryMatter MJ
-1

) as the slope of this linear relationship. The potential of 

plants to convert absorbed photosynthetically active solar radiation (APAR) into biomass is 

also commonly expressed by the term quantum efficiency (molDM mol
-1

). Photosynthetically 

active radiation (PAR) is inferred from the model input of solar radiation by using a constant 

factor of 2.3 mol MJ
-1

. The fraction of PAR that is absorbed (fAPAR) is calculated based on a 

modified Lambert-Beer law modelling light interception within the canopy as an exponential 
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function of LAI, a light extinction coefficient, and fractional canopy cover. LAI is calculated 

from the simulated foliage biomass and a species-specific leaf area (SLA).  

One of the key properties of 3-PG is explicitly accounting for the effects of environmental 

factors on growth. In 3-PG these factors include temperature, water vapour pressure deficit, 

soil water, soil salinity, frost, site fertility, stand age, and atmospheric CO2. These factors or 

modifiers are implemented in the model as dose-effect curves normalized between 0 

(maximum constraining effects) and 1 (no constraints). For a detailed description see 

Landsberg and Waring (1997), and Landsberg and Sands (2011). The combined effect of 

modifiers on the canopy quantum efficiency is modelled as multiplicative with the exception 

of soil water and water vapour pressure deficit where only the more limiting factor of the two 

is included. GPP is calculated from APAR and the modified (i.e. reduced) canopy quantum 

efficiency. NPP is calculated from GPP assuming a constant respiration factor of 0.47. 

1.2.3 Biomass partitioning 

The simulated NPP is partitioned into the above-ground biomass pools, stem and foliage, and 

the below-ground root biomass pool according to user-defined allocation ratios. These ratios 

sum to one and are implemented based on linking root allocation primarily to available soil 

water and site fertility (within the range given by user-defined minimum and maximum root 

allocation ratios). The rationale is that trees react to environmental constraints by investing in 

growth such as to counteract these constraints, e.g. if soil water is the limiting factor, root 

growth is boosted to increase the trees’ rooting zone and hence the potential uptake of water. 

The above-ground allocation ratio is derived from 1 minus the below-ground allocation ratio.  

As the allocation into the above-ground biomass pools depends on tree development, the 

above-ground allocation is modelled as a function of stem diameter, i.e. it is expressed as the 

ratio of the foliage allocation ratio and the stem allocation ratio, arbitrarily specified for DBH 

2 cm and 20 cm. DBH itself is derived from an allometric relationship with tree stem biomass. 

The monthly increments in growth of the three biomass pools are calculated from multiplying 

NPP with the allocation ratios minus a monthly loss rate (e.g. litterfall, root turnover) and 

minus the fractions lost from the biomass pools in case of tree mortality.    



Chapter VI  1 Introduction 

5 

 

1.2.4 Stocking and tree mortality 

Stocking is determined from the modelled stand development by explicitly accounting for tree 

mortality, either as the result of stress-related events (e.g. windbreak, insect calamity) or as 

the result of within-stand resource competition (i.e. self-thinning). In both cases the fractions 

lost from the biomass pools per dead tree needs to be specified. These fractions are assumed 

equal for both types of stem mortality. Self-thinning is implemented as a continuous process 

(i.e. mathematically expressed as a negative exponential function) during stand development 

using a species-specific maximum stand basal area.  

1.2.5 Stand inventory data 

3-PG provides the calculation of common forest inventory parameters including DBH, basal 

area, stem and stand volume, and volume increment. DBH is derived from an allometric 

relationship to stem mass. Basal area is calculated from stocking and DBH. Stem volume is 

modelled primarily using a wood density and a branch and bark ratio, which are both species-

specific. Alternatively, stem volume can be calculated using an allometric relationship with 

DBH. Likewise mean stand height can be calculated. As the key model parameter DBH is 

itself derived from an allometric relationship and tree allometry is generally species- and site-

specific, hence of limited spatial transferability, choosing an appropriate allometric equation 

is crucial for the calibration and application of 3-PG. 
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2 Materials and methods 

2.1 Study area  

The study area was the Hoch- und Idarwald forest, which is part of the Hunsrück, a low 

mountain range located south-west of the German Federal State of Rhineland-Palatinate. 

Predominant tree species in the Hoch- und Idarwald are Beech (Fagus sylvatica) and Norway 

spruce (Picea Abies). Large areas of the Hoch- und Idarwald forest will be converted into a 

national park, therefore, assessing the transition from managed to natural forest will be of 

particular interest to forest monitoring and growth modelling.  

 
Figure 1: Study area Hoch- und Idarwald forest. Test plot locations of the field campaigns 2000 and 2013 

and locations of the monitoring sites within the study area are shown in the large map. The location of the 

study area within the German federal state of Rhineland-Palatinate is shown in the small map. Projection 

coordinate system: Universal Transverse Mercator (UTM) based on WGS-84. 

The main data collection was carried out at 21 Norway spruce test plots within the study area 

during a field campaign in August 2013. In addition, LAI data of an earlier field campaign 

within the area (Schlerf et al., 2004) was included in this study. Long-term forest growth data 

was available for two monitoring sites located within the Hoch- und Idarwald and for one 
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monitoring site located on the western border of the study area. Long-term meteorological 

observations were available from two weather stations (see Figure 1 for a detailed map of the 

study area).   

2.2 Data collection and processing  

2.2.1 Ground-based reference data  

During the campaign in August 2013 test plots were established at pure Norway spruce stands 

of various stand ages and densities (Table 1). The stands were chosen to cover the forest stand 

development phases qualification (thickets), dimensioning (crop tree definition and selective 

thinning), and maturing (timber stage).  

Table 1: Description of the Norway spruce test plots sampled in this study. Phase refers to the 

development phases qualification (Qua.), dimensioning (Dim.), and maturing (Mat.).  

ID X Y Phase 
Stand  
age 

Stand  
density 

DBH  
mean 

DBH 
std. 

Height 
mean 

Height 
std. 

  UTM UTM   yrs trees/ha [cm] [cm] [m] [m] 

4 364659.5 5509208.6 Mat. 65 962 28.4 9.6 21.3 5.4 

15a 361192.8 5509133.9 Mat. 110 311 59.6 7.1 41.6 4.7 

15b 361154.5 5509102.7 Mat. 110 269 63.2 8.5 39.6 9 

16 361040.8 5508522.7 Dim. 65 523 35.4 5.9 23.8 2.4 

20 364787.5 5509106.4 Mat. 65 665 34.2 8.9 23.7 5.2 

21 364941.3 5508997.9 Mat. 65 764 29.1 6.6 21.6 3.8 

32 361428.9 5509171.3 Dim. 65 580 34.8 5 31.4 5.1 

67 361571.8 5510387.9 Dim. 65 509 29.2 6.9 21.3 3.2 

68 361496.6 5510520.0 Dim. 65 477 32.5 9.6 23 5.8 

69 361302.6 5510520.0 Dim. 48 1878 20.8 8.6 18.3 3.1 

70 361241.5 5510610.0 Qua. 48 1655 20.6 7.4 19.2 1.7 

79 361516.7 5510739.8 Dim. 67 509 39.4 4.9 27.2 1.8 

80 361573.9 5510778.4 Dim. 67 509 37.6 5 26.3 1.6 

107 364823.5 5508094.3 Qua. 35 1966 19.6 5.7 15.4 2.3 

112 358553.5 5510947.7 Mat. 78 668 38.8 7.9 27.1 3.1 

114 358538.9 5510830.2 Mat. 89 700 40.9 7.6 27.8 2.4 

115 358612.7 5510757.1 Dim. 49 828 22.8 7.1 19.3 4.4 

116 358690.6 5510728.3 Dim. 51 859 20 5.6 17.4 2.5 

518 361561.9 5511323.8 Mat. 67 477 43.1 12.2 26.6 5.8 

519 361491.4 5511301.1 Qua. 38 2069 17.5 5.2 16.3 3.3 

520 361425.5 5511290.5 Qua. 38 3056 13.1 6.8 14.6 2.9 

 

The test plots were circular with radii of 10–15 m. All trees (living and dead) within the plot 

radii were subjected to measurements of stem diameter at breast height (DBH), crown base 
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and tree height. DBH was measured with tape and tree height was measured with a Haglöf 

Vertex clinometer. Tree positions relative to the plot centre were also recorded. Stand ages 

and development phases were extracted from the forestry management database Wöfis. With 

regard to the ground-based remote sensing, terrestrial laser scans (TLS) and hemispherical 

photos were acquired at the plot centres. The single TLS scan mode was chosen to simulate 

the radial sampling design commonly applied in German forest inventory (Winkelzählprobe). 

2.2.2 Ground-based remote sensing data  

Terrestrial laser scanning was carried out with a FARO Photon 120 phase shift instrument 

(FARO, 2010). This scanner operates at a wavelength of 785 nm, with measurement speeds of 

up to 976,000 pulses per second and with variable angular step sizes. The beam diameter (at 

exit) is 3.3 mm and beam divergence is 0.16 mrad (FARO, 2010). The height above ground of 

the scanner’s optical centre was set to approximately 1.75 m. Scans were performed with an 

angular step size of 0.036° (this corresponds to a scan point spacing of 0.6 cm at 10 m 

distance from the scanner) and a measurement speed of 244,000 pulses per second. In 

addition, the FARO hardware filters “clear sky” and “clear contour” were activated (FARO, 

2010). The terrestrial laser scans were processed according to Pueschel et al. (2013a) and 

Pueschel et al. (2014) to derive the forest structural parameters stem density (stocking), DBH, 

and LAI. Tree heights could not be extracted reliably with TLS in this study. 

Digital hemispherical photos were acquired with a Nikon D300 digital camera in combination 

with a Sigma Circular Fisheye lens. The camera was mounted on a tripod, levelled and set to 

the same height as the terrestrial laser scanner’s optical centre (1.75 m). Aperture-priority 

mode with the aperture fixed at f/6.3 was set and using the camera’s bracketing function five 

photos were taken at each plot centre with the exposure stops +2, +1, AE, -1, -2 (AE = 

automatic exposure, ± = F stops above/below AE). Photos were saved as 8-bit TIFF. To 

derive gap fraction, the photos were processed according to the Isodata-based approach of 

Pueschel et al. (2012) and with the Minimum threshold algorithm (Landini, 2011). 

2.2.3 Stand volume retrieval   

Mean stem volume was estimated from the mean plot DBH using a Norway spruce specific 

allometric equation (Zianis et al., 2005, Equation N° 88). Since height measurements could 

not be extracted from the TLS scans, an equation was chosen that only includes DBH. Mean 
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stand volume per hectare was estimated from the mean stem volume and the stand density. 

Stem and stand volumes were estimated separately for the manual and TLS measurements.   

2.2.4 LAI retrieval  

Based on the assumption of a random azimuthal foliage distribution and using Beer’s Law, 

gap probability (fraction) is modelled as a function of foliage projection function G toward a 

zenith angle θ, LAI, and path length through the canopy (the cosine of θ) such that: 

                              (1) 

LAI is derived from gap probability based on Miller (1967):    

                             
   

 
     (2) 

Based on mean gap probabilities for discrete zenith angle ranges dθi, e.g. LI-COR LAI-2000 

measurements (LI-COR, 1992), Equation (2) can be integrated numerically by summing the 

weighted logarithms of the individual zenith angle ranges’ gap fractions:  

                                   
 
     (3) 

With the LAI-2000, 5 zenith angle ranges (0–13°, 16–28°, 32–43°, 47–58°, 61–74°) are used. 

The weights          are based on the centre angles of these ranges. The weights are then 

normalized to sum to one (LI-COR, 1992).  

Equation (3) was used in combination with the discrete zenith angle ranges of the LAI-2000 

to calculate LAI based on the gap probabilities derived from the hemispherical photos and the 

terrestrial laser scans in this study. In addition, LAI-2000 measurements acquired at Norway 

spruce stands within the study area during an earlier field campaign were also used to derive 

LAI. As the clumping of canopy elements, particularly into individual tree crows can lead to 

an increase in the gap probability for a given LAI, the term effective LAI is often used instead 

(e.g. Jonckheere et al., 2004).  

The distinction between foliage and woody material can also often not be made with the 

optical LAI instruments; therefore the LAI derived from the measurements obtained in this 

study represents an effective Plant Area Index (PAIe). As the 3-PG model outputs leaf area, it 

was necessary to convert from PAIe to LAI in order to calibrate the model with the ground-
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based remote sensing measurements. PAIe was converted to LAI based on mean values of 

clumping, wood area index (WAI), and needle-to-shoot area ratio provided by Greve (2010) 

for Norway spruce. 

2.3 Long-term forest growth monitoring 

Forest growth and yield data for calibrating the model 3-PG for Norway spruce was provided 

by the forestry administration for the three long-term monitoring sites located within the study 

area. These sites are Hoxel, Hundheim, and Allenbach (Table 2). The Hundheim site includes 

three separate growth plots (Hundheim 1-3), the data of which were averaged for the model 

calibration. The growth data consists of various structural parameters including stocking, 

mean and top height, mean DBH, and stem volume. To better assess the growth at these sites, 

the growth data was compared to empirically derived yield tables for Norway spruce (Fig. 2) 

  

Figure 2: Comparison of the long term forest growth data used for model calibration in this study with 

growth data from empirical Norway spruce yield tables which account for medium stand thinning: 

Ertragstafeln Fichte (mäßige Durchforstung) nach Wiedemann (Schober, 1995). EK I-V represent different 

yield classes.  
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Table 2: Description of the forest growth monitoring sites. 
a
Stand age at the time of the last inventories in 

2006 (Allenbach) and 2007 (Hoxel/Hundheim). 
b
According to Forstliche Standortsaufnahme (2003). 

c
According to the World Reference Base for Soils (WRB). The site form mainly relates to the soil water 

regime; forms I-IV are not affected by logged water or groundwater, forms VII-X are affected by logged 

water or groundwater.     

Forestry district Section Stand age
a 
 Elevation Slope Exposition Site form

b
 Soil type

c
 

Dhronecken Hoxel 106 yrs 640 m 4° West III Dystric Cambisol 

Dhronecken Hundheim 82 yrs 515 m 3° West III Gleyic Cambisol 

Idarwald Allenbach 78 yrs 670 m 4° North-West IX Gleysol 

 

2.4 Model calibration and simulations  

2.4.1 Basic model calibration  

3-PG is a generic forest growth model based on simulating the physiological processes of tree 

growth as well as the environmental factors affecting growth. As the capability of tree species 

to adapt to environmental growing conditions varies and the growing conditions vary with site 

conditions, 3-PG needs to be parameterized separately for different tree species and forest 

sites (see Section 1). 3-PG has been parameterized mainly for evergreen species, including 

Douglas fir (Pseudotsuga menziesii), ponderosa pine (Pinus ponderosa), and Scots pine 

(Pinus sylvestris). 3-PG has not been extensively parameterized for Norway spruce. Where 

available own measurements of physiological processes and site conditions were used for the 

parameterization. Where not available, values taken from the literature were preferred over 

default model values (see Table A-1 in the Appendix for a detailed list of model parameter 

values and their reference).  

The main model parameters of the biomass allocation, the stem-to-foliage partitioning ratios 

at DBH 2 cm and 20 cm, and the main site parameters, site fertility and initial stocking, were 

estimated based on calibrating the model to the growth data of the three long-term monitoring 

sites. This model calibration was achieved by adjusting the model outputs of the structural 

parameters LAI, stocking, stand volume, and mean DBH to the measured time-series of these 

parameters (see Section 2.3). As measurements of LAI are not part of the long-term growth 

monitoring at these sites, artificial times-series were constructed from the LAI measurements 

obtained during the field campaigns (see Sections 2.1 and 2.2). For the model calibration, 

these LAI measurements were averaged over the stand age classes 20–40 yrs, 40–60 yrs, 60–

80 yrs, and 80–110 yrs. The LAI derived from the hemispherical photos based on the two 
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different approaches used in this study were averaged for the same purpose. A model 

calibration was considered to be realistic when the simulated LAI was within the boundaries 

of the artificially constructed LAI curves. In addition, the simulated values of net primary 

productivity were checked for plausibility.      

The site parameters soil class and maximum available soil water (ASW) were inferred from 

the site information provided by the forestry administration (Table 2). Based on this data and 

the geology of the study area, a clay-loam was chosen from the four general soil classes 

available in 3-PG. Based on the classification of utilizable water holding capacity of the 

rooting zone (Forstliche Standortsaufnahme, 2003), a medium water holding capacity of 105 

mm was chosen as maximum available soil water (Table 3). Site fertility which results from 

the interaction of different site factors, and therefore difficult to measure directly, was 

estimated by taking the available site information into account. For the sites Allenbach, Hoxel, 

and Hundheim site fertilities of 0.3, 0.3, and 0.45 were set respectively (Table 3). 

Table 3: Stand initialization and site factor data used for the model simulations. 

 
Unit Allenbach Hoxel Hundheim Mean model Reference 

Year planted yr 1928 1901 1926 1901 Growth data  

Initial year yr 1 1 1 1  

Initial month - January January January January  

End age yr 100 120 100 110  

Initial foliage biomass t/ha 1 1 1 1 Landsberg & Waring (1997) 

Initial root biomass t/ha 3 3 3 3 Landsberg & Waring (1997) 

Initial stem biomass  t/ha 6 6 6 6 Landsberg & Waring (1997) 

Initial stocking  trees/ha 3000 7000 6000 5000 Estimated 

Initial ASW mm 100 100 100 100 Estimated 

Fertility rating  - 0.3 0.3 0.45 0.4 Estimated 

Soil class - Clay-loam Clay-loam Clay-loam Clay-loam Estimated 

Maximum ASW mm 105 105 105 105 Estimated 

Minimum ASW mm 0 0 0 0 Estimated 

 

Regarding the climate data required for running 3-PG, long-term meteorological observations 

were available from two weather stations within the study area (Fig. 1). These included hourly 

observations of temperature, rainfall, and solar radiation, available for the Morbach station of 

the German Weather Service for the years 1988–2002 and for the Leisel station of the ZIMEN 

network for the years 1991–2006. From these observations, mean monthly values required by 

3-PG (see Section 1) were averaged over the available periods. The Morbach data was used 

for running 3-PG for Hoxel and Hundheim. The Leisel data was used for the Allenbach site. 
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Based on these long-term averages and the stand ages of the monitoring sites up to which 

growth data was available, basic 3-PG simulations were run for 100 years for the Allenbach 

and Hundheim sites and for 120 years for Hoxel. The Microsoft Excel based implementation 

of 3-PG by P. Sands (2010) was used for all model simulations in this study (available from 

http://booksite.elsevier.com/9780123744609/). 

2.4.2 Extended model calibration  

In addition to the basic model simulations, extended simulations were run accounting for tree 

removal, either as a consequence of natural disturbances or silvicultural events (e.g. stand 

thinning). Both causes can be explicitly accounted for in 3-PG by specifying the number of 

removed trees and the corresponding fraction of biomass lost from each of the three biomass 

pools (see Section 1). As the stand history of the growth monitoring sites was unknown, tree 

removal was accounted for by fitting the simulated stocking and stand volume curves to the 

measured data. This resulted in the following stocking specifications for the sites, i.e. the 

model was forced to reduce its simulated stem density to the following stem densities at the 

specified ages: 337 trees/ha at age 65 (Allenbach), 968 trees/ha at age 60 (Hoxel), and 600 

trees/ha at age 68 (Hundheim). These were the only changes made compared to the basic 3-

PG model simulations. 

2.4.3 Parameter sensitivity study  

As the majority of parameters of the stand initialization and site factor data were inferred from 

the scarce stand and site information available for the three growth monitoring sites (see 

Tables 2 and 3), a parameter sensitivity study was carried out to assess the influence of the 

main stand initialization and site parameters. The common practice of varying one parameter 

while the remaining parameters are kept constant was used for this purpose. It is to be noted 

that this approach is not capable of accounting for interactions between model parameters 

which inevitably exist within such a complex model. Based on the basic model calibration, 

site fertility was varied by ± 0.1, and initial stocking was varied by ± 1000 trees per hectare 

(Table 4). For the maximum available soil water, the mean values of the classes “low”, 

“medium”, and “high” were taken from the classification of utilizable water holding capacity 

of the rooting zone (Forstliche Standortsaufnahme, 2003). 
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Table 4: Stand initialization and site parameter combinations used for the model sensitivity study.      

ASW = maximum available soil water [mm]  

Allenbach Hoxel 
  

Hundheim 
  

Stocking Fertility ASW Stocking Fertility ASW Stocking Fertility ASW 

2000 0.30 105 6000 0.30 105 5000 0.45 105 

3000 0.30 105 7000 0.30 105 6000 0.45 105 

4000 0.30 105 8000 0.30 105 7000 0.45 105 

3000 0.30 75 7000 0.30 75 6000 0.45 75 

3000 0.30 150 7000 0.30 150 6000 0.45 150 

3000 0.20 105 7000 0.20 105 6000 0.35 105 

3000 0.40 105 7000 0.40 105 6000 0.55 105 

 

2.4.4 Mean model calibration using artificial time series of forest structural parameters 

To assess whether 3-PG can be calibrated with artificial time series of forest structural 

parameters derived both from ground-based remote sensing measurements and traditional 

manual inventory measurements, the data collected during the field campaign in 2013 was 

used to generate artificial time series of stocking, LAI, mean DBH, and stand volume. The 

aim of this assessment was not to achieve a calibration of the species parameterization sheet 

different to the one from the basic model calibration, but to assess the potential of these time-

series to provide a local mean model calibration of stand initialization and site parameters. In 

this study, such a mean model calibration was tested for the Hoch- und Idarwald forest by 

comparing the artificial times series to model simulations based on an average initial stocking 

and site fertility. These were derived from averaging the values of the three monitoring sites 

(Table 3). 
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3 Results 

3.1 Ground-based measurements of forest structural parameters  

The ground-based measurements of the forest structural parameters used in this study are 

depicted in Figure 3. The LAI reveal the variability in stand structure which can be observed 

for Norway spruce stands in the study area, in particular for stands of the development phase 

dimensioning. This variability results from thinning activities adding to the natural variability 

observed during this development phase. The variability witnessed in the LAI for the stand 

age class 40-60 yrs, which corresponds to the dimensioning phase, seems to be dependent on 

the measurement method, too. The LAI derived from the terrestrial laser scanning exhibit the 

largest variability followed by the hemispherical photos and the LAI-2000. The mean TLS-

LAI is also distinctly higher than the LAI derived from the passive optical methods, which 

themselves agree rather well (Fig. 3a). In addition, the effects of using different approaches to 

the extraction of gap probability from hemispherical photos are clearly visible. 

Regarding the mean DBH, stem numbers, and stem densities retrieved from the TLS scans, 

the values agree well with the reference measurements for the stands of development phases 

dimensioning and maturing, but deviate strongly from the reference for qualification stands 

(Figs. 3b–d). While reference DBH is overestimated by the TLS, reference stem numbers and 

densities are underestimated by TLS. Both are the consequence of the occlusion effect that is 

inherent in terrestrial laser scans, in particular in single scan mode, i.e. scanning from a single 

location. Occlusion refers to the shadowing of background objects by foreground objects both 

lying in the same laser beam path. Occlusion can be partial or complete depending on object 

dimension, distance to scanner, and laser beam divergence. The underestimation of plot stem 

numbers is caused by the strong occlusion effects found in dense stands, which are especially 

characteristic for the qualification development phase. The result is a high degree of partial 

occlusion affecting the mathematical circle-fitting routine of the DBH retrieval algorithm in 

such a way as to overestimate the true diameter of these partially occluded stems.                              
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Figure 3. Ground-based plot measurements of forest structural parameters used in this study. (a) LAI, (b) 

Mean DBH, (c) Stem numbers, (d) Stem density. The LAI curves and error bars represent the mean and 

standard deviation of the LAI for the stand age classes 0–20 yrs, 20–40 yrs, 40–60 yrs, 60–80 yrs, and 80–

110 yrs. Hemi (Iso) refers to the LAI derived from the hemispherical photos based on the approach of 

Pueschel et al. (2012). Hemi (Min) refers to the LAI derived from the hemispherical photos based on the 

Minimum algorithm. The Hemi (Iso) and TLS curves are offset by +/- 2 years on the x-axis for a better 

visibility. For a description of the stand development phases qualification, dimensioning and maturing see 

Section 2.2.1. 

3.2 Basic model calibration 

The basic model calibration based on the growth data of the three monitoring sites shows that 

the potential growth at these sites can be simulated well with the 3-PG model (Figs. 4–6; as 

the figures in the following sub sections all have the same layout, a detailed caption is only 

provided for Fig. 4). This applies to the simulated LAI and stocking for stand ages greater 

than 20–40 years and for the simulated mean DBH and stand volume up to stand ages of 60–

80 years. The reason for the increasing differences between simulated and observed parameter 

values with increasing stand age is that the basic model calibration is statically simulating the 
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potential growth without explicitly accounting for biomass losses as a result of tree removal. 

As the growth monitoring at these sites is not intended to monitor the potential natural growth 

but the growth (or better the yield) that is achieved through active forest management (e.g. 

selective thinning), the measured growth data reflect the effects of such a controlled growth. 

This is particularly evident for the mature phase when harvesting starts and trees are removed. 

As a consequent, the stand volume is either reduced (Hoxel, Hundheim) or reaches a plateau 

(Allenbach) and the mean DBH curves concavely compared to the convex simulated mean 

DBH (Figs. 4–6). The latter results from the removal of large diameter trees and therefore a 

reduction in mean DBH and from the 3-PG model structure assuming forest stands to be made 

up of trees even-aged and with even stem diameters. In reality, the DBH within forest stands 

are of course far from being evenly distributed. 

 
Figure 4. Basic model calibration for the forest growth monitoring site Allenbach. (a) LAI, (b) Stocking, 

(c) Stand volume, (d) Mean DBH. The LAI represent the mean LAI of the stand age classes 0–20 yrs, 20–

40 yrs, 40–60 yrs, 60–80 yrs, and 80–110 yrs.  
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Figure 5. Basic model calibration for the forest growth monitoring site Hoxel.  

 
Figure 6. Basic model calibration for the forest growth monitoring site Hundheim.  
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3.3 Extended model calibration  

The extended model calibration shows that explicitly accounting for tree removal in 3-PG 

results in more realistic simulations of stocking and stand volume (Figs. 7–9). However, 

extrapolating the calibrated model to other sites would require the knowledge of stand history; 

information that in reality is not available on a large scale and would need to be inferred. 

While stocking and stand volume may be more realistically simulated, the effects of removing 

a specified fraction from the biomass pools through tree removal seems to impact the LAI 

development in an unrealistic way (Figs. 7–9). This is acknowledged by the model developers 

who therefore advise cautious use of this sort of forced model setting (Sands, 2001). The 

results also reveal that the model does not react dynamically to these settings; instead the 

biomass is merely reduced by the specified fractions and 3-PG continues to simulate statically 

the potential growth thereafter. Potential effects of tree removal on the development of the 

remaining trees, e.g. an increase in biomass allocation to foliage through the increased light 

availability, cannot be accounted for in 3-PG.                

 
Figure 7. Extended model calibration for the forest growth monitoring site Allenbach.  
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Figure 8. Extended model calibration for the forest growth monitoring site Hoxel. 

 
Figure 9. Extended model calibration for the forest growth monitoring site Hundheim.  
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3.4 Model parameter sensitivity   

The parameterization of the model input, stand initialization and site factor data, is a critical 

issue in the general application of the 3-PG model, due to the limited availability of detailed 

forest stand and soil data on a large scale. The spatial heterogeneity of soil physical properties 

and related soil water processes makes it especially difficult to determine these at forest stand 

level. Based on the available site information for the growth monitoring sites, the main site 

parameters initial stocking, site fertility, and maximum available soil water were estimated in 

this study (see Section 2.4.1). To evaluate this parameter estimation, a sensitivity study of 

these model parameters was carried out (see Section 2.4.3). Varying the available soil water 

had a small effect on the simulated LAI, stocking, stand volume, and mean DBH for all three 

sites (Figs. 10, 13, 16). This might be due to the selected clay-loam soil class which generally 

exhibits favourable soil physical properties. The more extreme soil classes sand and clay 

should be affected more strongly by varying the maximum available soil water. 

By comparison, varying the site fertility had a strong effect on simulated LAI, stand volume, 

and mean DBH for all three sites (Figs. 11, 14, 17). As the site fertility simply represents a 

linear scaling factor for the canopy quantum efficiency this was to be expected (see Section 

1). The results also demonstrate the importance of calibrating the model with time-series of 

both leaf and woody biomass, as fitting the simulations as closely as possible to only one of 

the variables may result in estimation errors for the other variable which, however, could be 

compensated for by errors in the allocation fractions (Sands, 2004). Varying the site fertility 

by ± 0.1 had little effect on the simulated stocking, which can be explained by the way stand 

self-thinning is modelled in 3-PG (see Section 1). For the three sites, the simulated stocking 

was affected noticeably only when site fertility was increased by more than 0.2 fertility units 

(results not shown).  

Varying the initial stocking by ± 1000 trees per hectare showed to have little effect on the 

simulated LAI and stand volume for all three sites (Figs. 12, 15, 18). With the exception of 

Allenbach, the simulated stocking and mean DBH were also only affected weakly, indicating 

that the initial stocking is not such a critical parameter provided a good initial estimate can be 

made. However, considering that the measured stocking varied strongly for the three sites (see 

Section 2.3, Fig. 2), determining an appropriate initial stocking might prove to be difficult for 

sites of unknown stand history.   
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Figure 10. Basic model calibration parameter sensitivity for Allenbach. Parameter: Maximum available 

soil water (ASW). 

 
Figure 11. Basic model calibration parameter sensitivity for Allenbach. Parameter: Site fertility. 
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Figure 12. Basic model calibration parameter sensitivity for Allenbach. Parameter: Initial stocking. 

 
Figure 13. Basic model calibration parameter sensitivity for Hoxel. Parameter: Maximum available soil 

water (ASW). 
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Figure 14. Basic model calibration parameter sensitivity for Hoxel. Parameter: Site fertility. 

 
Figure 15. Basic model calibration parameter sensitivity for Hoxel. Parameter: Initial stocking.  
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Figure 16. Basic model calibration parameter sensitivity for Hundheim. Parameter: Maximum available 

soil water (ASW). 

 
Figure 17. Basic model calibration parameter sensitivity for Hundheim. Parameter: Site fertility. 



Chapter VI  3 Results 

26 

 

 
Figure 18. Basic model calibration parameter sensitivity for Hundheim. Parameter: Initial stocking. 

3.5 Mean model calibration using artificial time series of forest structural 

parameters 

In this study, the potential use of artificial time series of forest structural parameters derived 

from ground-based remote sensing and traditional manual inventory measurements in order to 

calibrate mean local 3-PG simulations was investigated. The results show that mean model 

simulations of LAI, stocking, stand volume, and mean DBH compared well with the manual 

inventory measurements (Fig. 19). However, the results also demonstrate the need to collect 

this data for forest stands covering a wide range of development phases. This is due to the 

observed high variability in forest structure resulting from forest management practices and 

locally varying environmental growing conditions (see Section 3.1). This prerequisite is even 

more evident for the time-series derived from ground-based RS-measurements (Fig. 20) since  

they showed an underestimation of stocking and an overestimation of mean DBH for young 

forest stands (see Section 3.1). As a consequence, calibrating a mean local model based on 

artificial time-series of only up to 60–70 years would result in a poor model calibration. 

Ground-based RS-measurements of young stands may even need to be excluded from such a 

mean model calibration. 
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Figure 19. Mean model simulations compared to artificial time series of forest structural parameters 

constructed from in situ reference measurements.  

 
Figure 20. Mean model simulations compared to artificial time series of forest structural parameters 

constructed from ground-based remote sensing measurements. LAI, stocking, and DBH are based on in 

situ measurements. Stand volume was derived using an allometric equation. 
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4 Discussion  

4.1 Basic and extended model calibration 

The present study could show that calibrating 3-PG with growth data from three monitoring 

sites yielded simulations that were in agreement with the potential growth at these sites (see 

Section 3.2). This is not surprising, though, as model simulations were compared to growth 

data that also served as input into the model calibration. An independent assessment of the 

model calibration (i.e. model validation) was not carried out in this study due to the limited 

number of long-term growth monitoring sites. To compensate to some degree for this lack of 

a proper model validation, a model parameter sensitivity study was carried out, which at least 

provided constraints on some of the main model parameters.  

In addition, the simulation results of the basic model calibration also provided helpful insights 

into the behaviour of the 3-PG model and its potential limitations. One of the main issues 

found in this regard was 3-PG’s static simulation of potential growth and yield, deviating 

considerably from the observed stand growth after 60–80 years, in particular for stand volume 

and mean DBH (see Section 3.2). This was the result of (a) the basic model calibration which 

did not account for the removal of trees other than by self-thinning, and (b) the fact that forest 

stands in the Hoch- und Idarwald are actively managed, i.e. forest management practices such 

as selective thinning are applied. As these can be explicitly accounted for in 3-PG, extended 

model simulations were carried out yielding more realistic stockings and stand volumes (see 

Section 3.3).  

However, the results also showed that 3-PG is not able to react dynamically to forced changes 

in its biomass pools, i.e. 3-PG reduces these pools by specified fractions and continues to 

statically simulate the potential growth thereafter. Effects of tree removal on the development 

of the remaining trees, such as a change in the biomass allocation due to the increased light 

availability, cannot be accounted for in 3-PG. This is a major limitation for its application to 

managed forests. Another limitation lays in the model implementation of forest management 

practices itself since this requires the knowledge of stand management history. As this kind of 

information is not readily available over large areas, this seems to be the main bottleneck of 

the general application of 3-PG to simulate the growth and yield of managed forest stands.      
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The lack of information on large-scale forest stand development might be compensated for by 

inferring this information from repeated observations of airborne or satellite remote sensing, 

in particular active optical sensors such as LiDAR (Light Detection and Ranging) capable of 

providing direct measures of forest structure (e.g. Kangas and Maltamo, 2009). However, this 

would necessitate the development of a remote sensing based proxy (e.g. laser return density 

or a spectral index) that could be directly linked to the structural parameters required by the 

model.           

4.2 Model parameter sensitivity 

The model parameter sensitivity study showed that the applied variations of initial stocking 

and maximum available soil water did not strongly impact on the basic model simulations of 

LAI, stocking, stand volume, and DBH (see Section 3.4). This does not mean, though, that the 

accurate determination of these site parameters is not critical; rather they just had no effect on 

the basic model settings of this study. Due to the interactions between model parameters it can 

be expected that varying initial stocking and ASW will have an effect on simulations based on 

different model settings. For example, sites with sandy and clay soil types should be affected 

more strongly by variations in the ASW as these soil types are characterized by soil physical 

properties with unfavourable plant available water holding capacities. As a consequence of 

the spatial heterogeneity of soil physical properties and related soil water processes, the 

availability of spatially detailed soil data is limited and therefore difficult to be determined for 

forest stands at larger scales. The same applies to the site properties site fertility and initial 

stocking.   

The parameter sensitivity study revealed that the site fertility has a significant effect on model 

simulations (see Section 3.4). The fact that model simulations varied strongly although site 

fertility was only varied by ± 0.1 demonstrates that determining site fertility is crucial for 

successfully applying 3-PG to sites that were not included in the model calibration. Indeed, 

determining site fertility accurately is a major challenge as this parameter cannot be directly 

linked to any easily measurable soil chemical property, in particular over large areas. Besides, 

the isolated effects of soil chemical properties such as soil water pH or the C/N ratio on tree 

growth and related physiological processes is difficult to quantify (Landsberg & Sands, 2011). 

This is due to the complex interactions between physiological processes and their driving 

factors as well as to the ability of trees to adapt to some degree to varying environmental 
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conditions. The difficulty to quantify site fertility is also the reason why it is implemented in 

3-PG simply as a linear scaling of the canopy quantum efficiency (see Section 1). In general, 

site quality (i.e. the productive capacity of a site) is difficult to define and describe as it results 

from the combined effects of various site factors including soil water and topography (Mäkelä 

et al., 2000).        

Despite these issues, a possibility to determine site fertility on a large scale could be to use 

forest stand growth rates. To infer site fertility or more generally site quality from tree growth 

itself is a traditional and established practice in forestry. It is linked to the height age curves 

obtained from yield tables (Pretzsch, 2009). Usually the top height at some reference age, also 

referred to as the site index (von Gadow, 2003), is used for this purpose because top height 

showed to be relatively insensitive to thinning (Van Laar and Akça, 2007). In order to account 

for the fact that height age curves for sites of different productivity are not necessarily of 

anamorphic shape, i.e. of constant proportion to each other, a relatively high age needs to be 

used as reference age.  

This is demonstrated by the development of top height at the two monitoring sites Hundheim 

and Allenbach (Fig. 2): While top height at Allenbach exceeds top height at Hundheim up to a 

stand age of 60 years, it distinctly drops below the Hundheim height development thereafter. 

This means that the site index cannot be applied to forest stands of ages well below the 

reference age. In addition, the indicative strength of top height for site productivity is reduced 

for highly structured mixed stands and in case of thinning from above (Pretzsch, 2009).  

Instead of using the static site index (i.e. static insofar as it is based on the present state of a 

variable), top height increment derived from repeated observations of airborne remote sensing 

could hold the potential for an improved estimation of site fertility and therefore forest 

growth. LiDAR that as an active optical sensor is capable of measuring height directly would 

especially qualify for this purpose. However, such an approach would require the knowledge 

of (a) stand age to normalize the growth rates and (b) thinning measures to account for their 

effect on growth (see von Gadow, 2003).  

While information on stand age is available for public forests on a large scale through state 

forest management databases, information on the kind, severity, and intensity of thinning of 

stands is not readily available for large areas. As repeated remote sensing observations are 

able to capture changes in forest canopy structure, these might help deduce information about 
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thinning measures provided that these affect the forest canopy. Repeated observations from 

below the canopy made with ground-based remote sensing sensors (terrestrial laser scanning, 

hemispherical photography) should, however, be able to detect structural changes not visible 

from above. Alternatively, remotely sensed surrogates linked to above-ground productivity 

such as maximum LAI could be used to infer information on site fertility (Coops et al., 2012).                 

4.3 Mean model calibration using artificial time series of forest structural 

parameters  

The results from the comparison of artificial time series of forest structural parameters with 

mean model simulations proved that it is possible to calibrate such a mean local model with 

inventory measurements (see Section 3.5). However, it could also be shown that constructing 

artificial time series suffers from the fact that stand development can vary locally as a result 

of forest management and varying site growing conditions. This showed in the high structural 

variability of the stands sampled this study, in particular for stands of the dimensioning phase.  

Possible solutions to minimize the effect of this variability on model calibration would be to 

either sample only sites with similar site growing conditions or sample a sufficiently large 

number of forest stands covering the full range of stand development phases and site qualities. 

Covering the full range of development phases is especially important if the artificial time 

series are to be constructed from ground-based remote sensing measurements. This is due to 

the underestimation of stocking and the overestimation of DBH for young forest stands by 

TLS and its impact on model calibration (see Sections 3.1 and 3.5).  

While TLS was shown to be able to successfully estimate stocking and mean DBH for stands 

of the development phases dimensioning and maturing, the estimation of these parameters for 

young stands of the qualification phase proved to be inaccurate. This, however, was mainly 

the result of scanning in single scan mode (i.e. from a single location), known to being prone 

to the occlusion effect (see Section 3.1). This effect can be reduced by scanning from multiple 

locations, therefore increasing the accuracy of the stocking and mean DBH estimates. Another 

observation made from the results was that the LAI derived from TLS is distinctly higher than 

the LAI derived from the passive optical instruments (see Section 3.1). This is in agreement 

with a number of studies on the LAI retrieval from TLS and is attributed to the scanner’s laser 

beam divergence (e.g. Danson et al., 2008; Béland et al., 2014). 
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With regard to the use of artificially constructed time series of LAI for the model calibration, 

it has to be noted that all indirect LAI methods suffer from some degree of uncertainty (e.g. 

related to the data processing and/or LAI models). In addition, the conversion from effective 

plant area index (i.e. what the indirect methods actually measure) to LAI by accounting for 

clumping and the contribution of woody elements suffers from the fact that these correction 

factors can only be measured indirectly.  

It is therefore crucial to compare the indirect LAI methods to measurements of litter fall and 

establish a sound empirical relationship between these in order to use the artificial LAI time 

series for the model calibration with confidence. Nevertheless, combining the artificial LAI 

time series from different indirect methods yields plausible ranges and allows calibrating a 

mean local model. The good results of the basic and extended model simulations also support 

the general use of these LAI time series for the model calibration (see Sections 3.2 and 3.3). 
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5 Conclusion  

This study investigated the potential of ground-based remote sensing to assess forest growth 

models. This was done by comparing model simulations calibrated with (a) long-term growth 

data, (b) artificial time series constructed from traditional forest inventory, and (c) artificial 

time series constructed from ground-based remote sensing measurements. The study could 

demonstrate that it is possible to calibrate a mean local model based on manual inventory and 

ground-based remote sensing measurements of forest structural parameters.  

However, it was also shown that the sampling design applied for the terrestrial laser scanning 

(i.e. scanning from a single location at the plot centre) impacts the accuracy of the parameter 

retrieval and therefore the model calibration. The estimation accuracies achieved in single 

scan mode for stocking and mean DBH of qualification stands were insufficient, and further 

research is required to optimize the TLS sampling design for model calibration including this 

development phase. In addition, this study revealed that the forest growth model 3-PG suffers 

from a number of drawbacks limiting its practical applicability in forest management. Besides 

the necessity to account for forest management practices such as thinning, the required model 

input of stand initialization and site data, in particular initial stocking and site fertility, were 

identified as the main limitations.  

As information on both is spatially limited, airborne and/or satellite remote sensing could be 

potentially used to derive this information at larger scales. However, more research is needed 

to infer stand and site variables, e.g. soil properties (Coops et al., 2012), from remotely sensed 

surrogates to model forest development. A combination of active and passive optical sensors 

and of ground-based and airborne or satellite sensors will most likely provide the ideal basis 

for calibrating and validating forest growth models since these different sensors complement 

each other ideally with regard to how they capture forest structural and biophysical properties. 
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Appendix 

Table A-1. Parameter values used for Picea Abies in the 3-PG model simulations. 

Parameters Abb./symbol Unit Value Reference 

Allometric relationships & partitioning 
    

Foliage:stem partitioning ratio @ D=2 cm pFS2 - 0.6 Estimated 

Foliage:stem partitioning ratio @ D=20 cm pFS20 - 0.3 Estimated 

Constant in the stem mass v. diam. relationship aS - 0.208 
Schwarzmeier 
(2000)  

Power in the stem mass v. diam. relationship nS - 2.15 
 

Maximum fraction of NPP to roots pRx - 0.8 Default 

Minimum fraction of NPP to roots pRn - 0.25 Default 

Litterfall & root turnover 
    

Maximum litterfall rate gammaFx 1/month 0.019 White et al. (2000) 

Litterfall rate at t = 0 gammaF0 1/month 0.001 Default 

Age at which litterfall rate has median value tgammaF months 24 Default 

Average monthly root turnover rate gammaR 1/month 0.015 Default 

Temperature modifier (fT) 
    

Minimum temperature for growth Tmin deg. C -2 
Landsberg et al. 
(2003) 

Optimum temperature for growth Topt deg. C 15 
 

Maximum temperature for growth Tmax deg. C 22 
 

Frost modifier (fFRost) 
    

Days production lost per frost day kF days 1 Default 

Soil water modifier (fSW) 
    

Moisture ratio deficit for fq = 0.5  SWconst - 0.5 
Based on soil class 
estimate 

Power of moisture ratio deficit SWpower - 5 
 

Atmospheric CO2 modifier (fCO2) 
    

Assimialtion enhancement factor at 700 ppm fCalpha700 - 1.4 Default 

Canopy conductance enhancement factor at 700 
ppm 

fCg700 - 0.7 Default 

Fertitlity effects 
    

Value of 'm' when FR = 0 m0 - 0.015 Estimated 

Value of 'fNutr' when FR = 0 fN0 - 0.5 Estimated 

Power of (1-FR) in 'fNutr'  fNn - 1 Default 

Age modifier (fAge) 
    

Maximum stand age used in age modifier MaxAge years 200 Estimated 

Power of relative age in function for fAge nAge - 4 Default 

Relative age to give fAge = 0.5 rAge - 0.95 Default 

Stem mortality & self-thinning 
    

Mortality rate for large t gammaNx %/year 0 Default 

Seedling mortality rate (t = 0) gammaN0 %/year 0 Default 

Age at which mortality rate has median value tgammaN years 3 Estimated 

Shape of mortality response ngammaN - 3 Estimated 

Max. stem mass per tree @ 1000 trees/hectare wSx1000 kg/tree 300 Default 

Power in self-thinning rule thinPower - 1.5 Default 

Fraction mean single-tree foliage biomass lost per 
dead tree 

mF - 0.2 Default 
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Fraction mean single-tree root biomass lost per 
dead tree 

mR - 0.2 Default 

Fraction mean single-tree stem biomass lost per 
dead tree 

mS - 0.2 Default 

Specific leaf area 
    

Specific leaf area at age 0 SLA0 m
2
/kg 6 Default 

Specific leaf area for mature leaves SLA1 m
2
/kg 7.8 White et al. (2000) 

Age at which specific leaf area = (SLA0+SLA1)/2 tSLA years 15 Estimated 

Light interception 
    

Extinction coefficient for absorption of PAR by 
canopy 

k - 0.5 Default 

Age at canopy cover  fullCanAge years 3 Default 

Maximum proportion of rainfall evaporated from 
canopy 

MaxIntcptn - 0.15 Default 

LAI for maximum rainfall interception 
LAImaxIntcpt
n 

- 5 Default 

Production and respiration 
    

Canopy quantum efficiency alpha 
molC/molP
AR 

0.055 Default 

Ratio NPP/GPP Y - 0.47 Default 

Conductance 
    

Minimum canopy conductance MinCond m/s 0 Default 

Maximum canopy conductance MaxCond m/s 0.02 Default 

LAI for maximum canopy conductance LAIgcx - 3.33 Default 

Defines stomatal response to VPD CoeffCond 1/mBar 0.05 Default 

Canopy boundary layer conductance BLcond m/s 0.2 Default 

Wood and stand properties 
    

Branch and bark fraction at age 0 fracBB0 - 0.15 Default 

Branch and bark fraction for mature stands fracBB1 - 0.1 Pretzsch (2010) 

Age at which fracBB = (fracBB0+fracBB1)/2 tBB years 20 Estimated 

Minimum basic density - for young trees rhoMin t/m3 0.440 Default 

Maximum basic density - for older trees rhoMax t/m3 0.440 Default 

Age at which rho = (rhoMin+rhoMax)/2 tRho years 4 Default 

Conversion factors 
    

Intercept of net v. solar radiation relationship Qa W/m2 -90 Default 

Slope of net v. solar radiation relationship Qb - 0.8 Default 

Molecular weight of dry matter gDM_mol gDM/mol 24 Default 

Conversion of solar radiation to PAR molPAR_MJ mol/MJ 2.3 Default 
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1 Summary  

The general objectives of this dissertation were (1) to contribute to a systematic assessment of 

factors influencing the retrieval of core forest structural parameters from ground-based remote 

sensing by investigating factors which have not or only scarcely been the focus of previous 

research so far, and (2) to investigate whether estimates of these core structural parameters 

can, in practice, be used to calibrate an eco-physiological forest growth model. Four specific 

objectives were formulated to pursue these general aims. In the following a summary of the 

main results in relation to the general objectives is given. 

Objective 1: Assessing the influence of camera external and internal factors on the retrieval of 

gap fraction, LAI, and clumping index from hemispherical photos and standardizing their 

processing. 

Hemispherical photography has become a widely used tool for the estimation of forest canopy 

structural parameters for a number of reasons (see Sections 3.1 and 4.1). However, it suffers 

from the major drawback of a lack of standardization. This is due to the numerous interrelated 

factors affecting the parameter retrieval from hemispherical photos, above all photo exposure 

and thresholding, which have not yet been studied regarding the interrelations with file 

format, radiometric image resolution, and image band selection. Therefore, the study in 

Chapter II dealt with these issues based on the comparison of four different threshold 

algorithms. The results showed that the radiometric image resolutions applied (16-bit vs. 8-

bit) had no significant effect on the parameter retrieval, regardless of the remaining parameter 

combinations.  

By contrast, the file format proved to impact the structural parameters, i.e. JPEG-based gap 

fractions were significantly lower than TIFF- and RAW-based gap fractions. This resulted in 

a bias in the log-averaged effective Plant Area Index (PAIe) derived from the JPEGs, which 

affected the clumping correction. This effect was associated with the quantization process of 

the JPEG-compression and may vary widely for different cameras since they apply different 

quantization factors. The JPEG format, consequently, does not yield consistent measurements 

which are crucial for standardizing the hemispherical photo acquisition and analysis. Thus, 

the authors suggested abandoning the use of JPEG for canopy structural analysis. 



Chapter VII  1 Summary 

127 

 

The image band selection (red/blue channel) for the thresholding process was also found to 

affect the parameter retrieval as a result of a stronger blooming effect in the blue band. In 

addition, the study demonstrated that these effects are interrelated with the exposure setting 

and threshold algorithm. This is an important finding because previous studies on optimum 

exposure were based on specific image settings. As a consequence, an original approach was 

successfully developed in Chapter II to minimize the influence of interrelations between 

image exposure and band. This approach yielded PAIe that were consistent with the PAIe 

derived from the LiCOR LAI-2000, providing compatibility between these two passive 

optical methods. This is crucial for the standardization of methods when it comes to applying 

them for model calibration purposes.                        

Objective 2: Assessing the influence of main TLS scanner properties, firmware based noise 

compression and data filtering on the retrieval of gap fraction and LAI, and comparing TLS-

derived estimates with LAI derived from litter fall measurements.              

Section 4.1 highlighted not only the advantages of hemispherical photography over other 

passive optical sensors but also the main drawbacks of this method, including the sensitivity 

to variable sky illumination conditions and the lack of a true 3-D canopy representation, thus 

limiting the retrieval of clumping from hemispherical photos. Active optical sensors such as 

terrestrial laser scanning provide the means to overcome these limitations, hence yielding 

potentially more consistent estimates of the core structural parameters. However, a number of 

factors that may influence the retrieval of these parameters have not yet been investigated in 

detail for phase-shift terrestrial laser scanning.  

The study in Chapter III dealt with some of the main factors including scan speed, scan 

resolution, scanner-specific noise compression, and firmware based data filtering. It could be 

demonstrated that the use of the FARO scanner-specific noise compression yielded LAI that 

strongly overestimated mean long-term LAI derived from litter fall measurements. As data 

filtering such as noise compression is routinely applied to reduce the TLS point cloud size and 

remove erroneous range measurements (e.g. Simonse et al., 2003; Bienert et al., 2006), this 

finding is highly significant to forest canopy structural analysis based on TLS. Scan speed and 

scan resolution were also shown to impact the retrieval of gap fraction and LAI but to a much 

lesser degree than noise compression. The resulting variability was lower than the variability 

induced by different LAI models, too (e.g. Miller, 1967; Jupp et al., 2008). Nevertheless, high 
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scan speeds exhibited higher noise levels, which led to the conclusion that these settings 

should be avoided when scanning forest canopies. More importantly though, concerning the 

potential use of phase-shift terrestrial laser scanning, it was found that LAI estimates not 

based on noise compression were quite consistent despite the various scan settings applied. 

They also showed good agreement with the LAI derived from litter fall measurements, giving 

confidence in the general applicability of TLS for LAI retrieval. Even so, the results indicated 

that the proposed approach of filtering scan data to derive gap fraction needs to be improved 

and compared to alternative approaches, in particular to 3-D voxel-based methods.                          

Objective 3: Assessing the influence of main TLS scanner and scan properties, firmware based 

noise compression and data filtering on the retrieval of stocking, DBH, and stem volume.                 

Similar to the use of TLS to retrieve canopy structural parameters, the retrieval of the standard 

forest inventory parameters stocking, DBH, and stem volume has not yet been investigated 

with respect to the interrelation of factors influencing the parameter retrieval. The studies 

presented in the Chapters IV and V intended to bridge this gap. Chapter IV mainly dealt with 

the effects of scan mode (i.e. single or multiple scans) and mathematical circle fitting on the 

estimation accuracy of stem diameter measurements. As part of these studies, an original 

approach to the automated detection of trees and calculation of stem diameter height profiles 

from TLS point clouds was developed.  

The tree detection rates achieved within circular plots of 30 m radii were very good (85% and 

84% for Beech and Douglas fir respectively), proving that stocking can be estimated with 

sufficient accuracy for stands within the observed stocking range (500-1000 trees/ha). The 

applied circle fit algorithms yielded DBH of similar accuracies, which suggests that the use of 

mathematical circle fitting to retrieve stem diameters from TLS point clouds is an appropriate 

and effective method. In addition, the results showed that the DBH errors are normally 

distributed with a slight mean bias and are also independent of range (i.e. within 30 m range), 

both regardless of tree species. This is of particular relevance to the estimation of an unbiased 

mean plot DBH, which is a core input parameter in forest growth models. DBH estimation 

errors were also shown to depend on scan mode: DBH derived from merged scans (i.e. scans 

from multiple locations) had significantly higher accuracies than DBH derived from single 

scans. This is of relevance to the modelling of short growth periods as could be shown in this 

study by comparing the estimation errors to the mean increment of different DBH size classes 
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over a 4-year period. For DBH less than 20 cm (Douglas fir) respectively 25 cm (Beech), 

single scan estimation errors exceeded the mean increment, which indicates that depending on 

increment and stem diameter, short-term growth of trees may not be reliably measured with 

TLS.  

With regard to the direct measurement of stem volume based on TLS, six sample trees were 

selected and their stem diameter profiles measured up to a stem height of 10 m. From these, 

stem volume was calculated. The single scan volumes exhibited a large error range of -34% to 

+44%, which is clearly insufficient for scaling up to tree or even stand volumes. By 

comparison, the merged scans yielded volume errors of -2% to +6%, which demonstrates the 

potential of TLS to measure stem volume and hence stem biomass. As these results were 

based on a relatively small sample set, though, the feasibility of such retrieval in standard 

forest inventory has yet to be corroborated.  

The study in Chapter V complemented Chapter IV by confirming its main findings (i.e. the 

range-independence and normal distribution of estimation errors) for different scan speeds 

and resolutions as well as for larger ranges (up to 50 m). However, it could be shown that the 

range within which DBH can be extracted from TLS point clouds decreases with a decrease in 

scan resolution. The latter also resulted in a decrease in tree detection rates. Moreover, the 

tree detection demonstrated the effect of occlusion on the retrieval of stocking, the magnitude 

of which was found to increase strongly with range. This is of relevance to the integration of 

TLS into forest inventory, especially regarding the sampling design. The practical application 

of TLS for forestry applications such as growth modelling was therefore a key aspect of 

objective N° 4.                                            

Objective 4: Exploring the potential of estimates of stocking, DBH, LAI, and stem volume derived 

from ground-based remote sensing to calibrate an eco-physiological forest growth model and its 

comparison with model calibrations based on long-term growth and standard forest inventory 

data. 

The potential of TLS to derive stocking, DBH, and stem volume was investigated thoroughly 

in Chapters IV and V. However, these studies were based on data collected in two stands 

representing only a limited range of stand densities. Therefore, the aim of this final study was 

to collect scans within forest stands covering a large range of stand densities and the main 

development phases. The purpose was to obtain estimates of the core structural parameters 
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that could then be used for the calibration of a forest growth model. The study demonstrated 

that it is possible to calibrate a mean local model using so-called artificial time series derived 

from standard inventory.  

The use of ground-based remote sensing for this purpose was shown to suffer from biased 

estimates of the structural parameters for stands of the qualification phase. This was due to the 

effect of occlusion (see Section 4.2) and the sampling design used, i.e. a single scan was 

collected at each plot centre to simulate the radial sampling design traditionally applied in 

German forest inventory (see Section 3.2). As occlusion can be minimized by increasing the 

number of scans, it should be possible to remove the observed estimation bias. In any case, 

for stands of the development phases dimensioning and maturing, TLS-derived structural 

parameters agreed well with reference measurements.  

The study also identified potential limitations of the applied growth model 3-PG, specifically 

its inability to predict the growth of managed forest stands. The main limitations were found 

to be the model input of initial stocking, site fertility, and the necessity to account for forest 

management practices such as thinning. Nevertheless, the basic model calibration based on 

long-term growth data resulted in good estimates of stand development (stocking, standing 

volume, mean DBH) up to the point in time at which strong thinning commenced.          
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2 Conclusions and outlook 

The specific research objectives were successfully achieved with regard to the general aims of 

this dissertation. The findings from Chapters II-V contributed significantly to a systematic 

assessment of the factors influencing the retrieval of core forest structural parameters from 

ground-based remote sensing, corroborating the immense potential of these methods for forest 

structure and growth analysis. Notably, the capability of terrestrial laser scanning to capture 

stands in their three-dimensionality is the major advantage over traditional measurements 

(compare the introductory sections 3 and 4) and key to improving the analysis and modelling 

of forest structure and growth.  

Nevertheless, the findings of this thesis also confirmed that the effect of occlusion remains the 

main limitation of TLS, in particular regarding the routine integrating of TLS into forest 

inventory and its use for model calibration. Occlusion may be minimized by increasing the 

number of scans and optimizing the sampling design. This approach in turn decreases its 

sampling efficiency, though, thus minimizing a crucial intrinsic advantage over the standard 

inventory measurements. In addition, increasing the number of scans increases the size of the 

scan data, which presents a challenge to an automated and efficient information extraction.  

Despite using an optimized multiple scan-based sampling design, occlusion may still pose a 

problem depending on stand density (Antonarakis, 2011), degree of branching (Kankare et al., 

2013), and the parameter of interest. As TLS scans from below the canopy, this particularly 

affects the upper canopy and within crown space, e.g. measurement of tree height (see Section 

4.2). Statistical techniques to estimate the distribution of vegetative elements within occluded 

canopy areas and/or the virtual 3-D reconstruction of tree and canopy structure are promising 

approaches to deal with the problem of occlusion (e.g. Côté et al., 2009; Van der Zande et al., 

2010).       

Alternatively, the combination of airborne laser scanning (ALS) and TLS was suggested to 

minimize occlusion (e.g. Litkey et al., 2008; Tansey et al., 2009). ALS and TLS are also 

mutually beneficial when it comes to canopy structural measures such as LAI (e.g. Hilker et 

al., 2010; Hopkinson et al., 2013). Even though a number of studies including Chapter III of 

this thesis could show that consistent estimates of gap fraction and LAI can be achieved with 

TLS, these basically represent another indirect measure of leaf area and biomass. That is why 
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further research is required to compare the LAI derived from TLS with direct methods such as 

litter fall measurements, which has only rarely been done until now (e.g. Clawges et al., 2007; 

Fleck et al., 2011; Pueschel et al., 2014). In addition, the comparison of different LAI models 

(2-D vs. 3-D approaches) and the retrieval of a spatially explicit reference of gap fraction 

need further research attention (e.g. Côté et al., 2009; Henning and Radtke, 2006).  

Despite these issues, TLS bears great potential for an improved retrieval of structural and bio-

physical parameters due to its rapid technical advance (multi-spectral scanners, etc.). For 

example, dual wavelength scanners have already been successfully applied to separate foliage 

from woody components (e.g. Li et al., 2013) and to retrieve leaf water content (Gaulton et 

al., 2013). Forestry applications that integrate laser scanning will benefit significantly from 

these developments. This includes the eco-physiological modelling of forest growth with the 

model 3-PG which was shown in this study to be limited in its practical application to predict 

the development of managed forest stands (see Chapter VI).  

The limitations were mainly related to the mandatory model inputs of initial stocking and site 

fertility as well as to the necessity to explicitly account for thinning measures. Both inputs are 

required in a spatially explicit form if the growth of managed stands is to be realistically 

simulated for larger areas. However, as stand-level information on site fertility and stand 

management is only available for small areas, it needs to be inferred from other sources for 

larger areas. Airborne and satellite remote sensing sensors are the most appropriate source for 

this purpose, even though remotely sensed metrics are far from yielding quantitative 

descriptions of site fertility and stand development. This is partly due to the fact that these 

properties are influenced by a multitude of factors (e.g. soil chemical and physical properties, 

tree competition), most of which cannot be derived from remote sensing.  

Consequently, remote sensing can only provide surrogates from which site fertility and stand 

development can be inferred (see Chapter VI). Ideally, this is achieved by multi-temporal 

observations capturing actual stand dynamics. These repeated observations may also be used 

to dynamically parameterize model simulations (see Chapter I, Section 2). Laser scanning, 

which is able to provide direct measures of stand structure, particularly qualifies for this 

purpose. Other sensor types including imaging spectroscopy might be useful as well; see e.g. 

Waring et al. (2010) for a detailed review of the potential integration of remote sensing data 

into forest growth models. The synergistic use of different sensors and at different scales (e.g. 
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active/passive, ground-based/airborne) will most likely lead to an improved calibration and 

evaluation of forest growth models since these sensors complement one another ideally with 

respect to the information they provide on forest structural and biophysical properties. 

In the context of a sustainable forest development ensuring the preservation of the forests’ 

ecosystem services, this synergistic approach will provide a comprehensive framework for the 

remote sensing based support of sustainable forest management and policy. As mentioned 

above, such an approach will comprise different sensors on different platforms and at multiple 

scales to facilitate the different information requirements of the various forestry branches and 

their activities. For example, while satellite-based sensors such as ESA’s upcoming Sentinel
5
 

missions, due to its large spatial and high temporal coverage, will provide ideal support for 

national and state forest inventories, airborne imaging spectroscopy and laser scanning will 

facilitate regional and local hotspot monitoring of effects such as drought stress or insect 

calamities. These observations will be complemented by ground-based remote sensing such as 

terrestrial laser scanning and unmanned aerial vehicle-based (i.e. drones) sensors that allow 

the retrieval of structural and bio-physical parameters at the stand level or even for individual 

trees. This linkage of remote sensing observations at multiple scales backed up by ground-

based traditional inventory will contribute greatly to the multi-purpose approach of modern 

forestry and its future development.                      

 

                                                 
5 http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview3 
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