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Abstract

This dissertation includes three research articles on the portfolio risks of private in-

vestors. In the first article, we analyze a large data set of private banking portfolios in

Switzerland of a major bank with the unique feature that parts of the portfolios were

managed by the bank, and parts were advisory portfolios. To correct the heterogeneity

of individual investors, we apply a mixture model and a cluster analysis. Our results

suggest that there is indeed a substantial group of advised individual investors that

outperform the bank managed portfolios, at least after fees. However, a simple passive

strategy that invests in the MSCI World and a risk-free asset significantly outperforms

both the better advisory and the bank managed portfolios.

The new regulation of the EU for financial products (UCITS IV) prescribes Value

at Risk (VaR) as the benchmark for assessing the risk of structured products. The

second article discusses the limitations of this approach and shows that, in theory, the

expected return of structured products can be unbounded while the VaR requirement

for the lowest risk class can still be satisfied. Real-life examples of large returns within

the lowest risk class are then provided. The results demonstrate that the new regulation

could lead to new seemingly safe products that hide large risks. Behavioral investors who

choose products based only on their official risk classes and their expected returns will,

therefore, invest into suboptimal products. To overcome these limitations, we suggest

a new risk-return measure for financial products based on the martingale measure that

could erase such loopholes.

Under the mean-VaR framework, the third article discusses the impacts of the un-

derlying’s first four moments on the structured product. By expanding the expected

return and the VaR of a structured product with its underlying moments, it is possi-

ble to investigate each moment’s impact on them, simultaneously. Results are tested

by Monte Carlo simulation and historical simulation. The findings show that for the

majority of structured products, underlyings with large positive skewness are preferred.

The preferences for variance and for kurtosis are ambiguous.

Keywords: individual investor, portfolio management, private banking, mixture

model, cluster analysis, Value at Risk, structured products, risk measure, skewness,

kurtosis
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Abstract vii

Zusammenfassung

Diese Dissertation umfasst drei Forschungsarbeiten zum Thema Portfoliorisiken bei pri-

vaten Investoren. In der ersten Arbeit analysieren wir einen großen Datensatz von

Private-Banking-Portfolios einer schweizerischen Großbank. Dieser Datensatz weist die

Besonderheit auf, dass ein Teil der Portfolios von der Bank verwaltet wurde, während der

andere Teil Beratungsportfolios waren. Um die Heterogenität der einzelnen Anleger zu

korrigieren, setzen wir ein Mixture-Model und eine Cluster-Analyse ein. Unsere Ergeb-

nisse legen nahe, dass es tatsächlich innerhalb der Beratungsportfolios eine gewichtige

Gruppe von Einzelinvestoren gibt, die in der Lage waren, die Verwaltungsportfolios

zuübertreffen, zumindest nach Abzug der Gebühren. Doch eine einfache passive Strate-

gie, die in den MSCI World Index und eine risikofreie Anlage investiert, übertrifft sig-

nifikant sowohl die besseren Beratungsportfolios als auch die Verwaltungsportfolios.

Die neue Regelung der EU für Finanzprodukte (UCITS IV) schreibt den Value-

at-Risk (VaR) als Maßstab für die Einschätzung von Risiken strukturierter Produkte

vor. In der zweiten Forschungsarbeit diskutieren wir die Grenzen dieses Ansatzes und

zeigen, dass in der Theorie die erwartete Rendite von strukturierten Produkten unbe-

grenzt sein kann, während die VaR-Anforderung für die niedrigste Risikoklasse immer

noch erfüllt sein kann. Beispiele aus der Praxis mit großen Renditen innerhalb der

niedrigsten Risikoklasse werden dargestellt. Die Ergebnisse zeigen, dass es durch die

neue Regelung möglich ist, riskante Produkte als scheinbar sicher zu bewerben. Verhal-

tensorientierte Investoren, die Produkte nur auf Basis ihrer offiziellen Risikoklassen und

ihrer erwarteten Renditen wählen, werden dementsprechend in suboptimale Produkte

investieren. Um diese Einschränkungen zu überwinden, schlagen wir eine neues Risiko-

Rendite-Maß für Finanzprodukte auf Basis des Martingalmaßes vor, welches solche

Schlupflöcher schließen könnte.

Im Rahmen des Mean-VaRs diskutiert die dritte Forschungsarbeit die Auswirkun-

gen der ersten vier Momente des Basiswerts auf das strukturierte Produkt. Durch die

Expansion der erwarteten Rendite und des VaRs eines strukturierten Produkts mit

den Momenten des Basiswerts, ist es möglich, die Auswirkungen aller Momente auf

sie gleichzeitig zu untersuchen. Die Ergebnisse werden durch Monte-Carlo-Simulation

und historische Simulation getestet. Die Ergebnisse zeigen, dass für die Mehrheit der
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strukturierten Produkte Basiswerte mit großer positiver Schiefe bevorzugt werden. Die

Präferenzen für Varianz und für Kurtosis sind mehrdeutig.

Stichwörter: Einzelinvestor, Portfoliomanagement, Private-Banking, Mixture-Model,

Cluster-Analyse, Value-at-Risk, Strukturierte Produkt, Risikomaß, Schiefe, Kurtosis
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Chapter 1

Introduction

Studying the financial issues faced by individuals, namely household finance,

has become a growing and substantial research field of finance in recent years.

Besides asset pricing and corporate finance, the two traditional fields of financial

research, household finance offers researchers a series of new challenges as well as

new opportunities. A particular, and probably the biggest challenge in household

finance is that individual investors’ behavior and their preferences implied by this

behavior deviate to some extent from standard textbook theories. Those standard

financial theories have already been established in academia for decades, possibly

even for up to a century. As stated by John Campbell in his presidential address

to the American Finance Association in 2006: “Many households seek advice from

financial planners and other experts, yet some households make decisions that are

hard to reconcile with this advice or with any standard model.”

Financial researchers’ responses to this challenge are generally divided into

two camps. The first group tends to consider the behavior of private investors

to be boundedly rational, “rational” in the sense of standard financial theories,

e.g. maximizing the von Neumann-Morgenstern utility. Research in this group

identifies “mistakes” or “behavioral biases” of private investors, focuses on what

individuals should do and discusses how their “mistakes” can be reduced by, for

example, advisors or by regulators. Their approach is called “normative”, or

“neoclassical”.
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The second group views the issue in a “positive” way, as described by Camp-

bell (2006). Researchers in this group often take the behavior of private investors

for granted. They study the psychological roots of the individual’s behaviors,

induce theoretical forms of their preferences, explain financial markets and asset

prices with these preferences and discuss their further implications. Often, their

approach is called “behavioral”. Researchers such as Hersh Shefrin, believe that

the future of financial research will be more and more behavioral or “behavioral-

ized” (Shefrin, 2009). “Normative” or “positive” is only a rough categorization

of two research ideologies. They do not totally oppose, or exclude each other and

research frequently overlaps between the two.

According to this categorization, the present dissertation mostly falls into the

first group, the “normative” one. We discuss the risk, and accordingly the risk-

return tradeoff, of the private investor’s portfolio, particularly in the context of

financial advisors and regulators. The central question is whether and how private

investors can be helped by advisors and by regulators. This dissertation is based

on three of my research articles written during my PhD study from 2010 to 2014

at the University of Trier. They are “Should Your Bank Invest for Your? Evidence

from Private Banking Accounts” (Cao et al., 2011), “Risk Classes for Structured

Products: Mathematical Aspects and Their Implication for Behavioral Investors”

(Cao and Rieger, 2013) and “How does the Underlying affect the Risk-Return

Profiles of Structured Products?” (Cao, 2013). In the first article, we study

whether advice and delegation help private investors in their decisions. The second

and the third articles discuss the implications of the EU regulation for structured

products, which are a type of financial products involving derivatives and have

been popular among retail investors.

Chapter 2 of this dissertation is devoted to the first article. We analyze a

large data set of private banking portfolios in Switzerland of a major bank with

the unique feature that parts of the portfolios were managed by the bank, and

parts were advisory portfolios. To correct the heterogeneity of individual investors,

we apply a mixture model and a cluster analysis. Our results suggest that there

is indeed a substantial group of advised individual investors that outperform the
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bank managed portfolios, at least after fees. However, a simple passive strategy

that invests in the MSCI World and a risk-free asset significantly outperforms

both the better advisory and the bank managed portfolios.

The second and the third articles are presented together in Chapter 3, due

to their similar research contexts. The new regulation of the EU for financial

products (UCITS IV) prescribes Value at Risk (VaR) as the benchmark for as-

sessing the risk of structured products. The second article (Section 3.2) discusses

the limitations of this approach and shows that, in theory, the expected return

of structured products can be unbounded while the VaR requirement for the low-

est risk class can still be satisfied. Real-life examples of large returns within the

lowest risk class are then provided. The results demonstrate that the new regula-

tion could lead to new seemingly safe products that hide large risks. Behavioral

investors who choose products based only on their official risk classes and their

expected returns will, therefore, invest into suboptimal products. To overcome

these limitations, we suggest a new risk-return measure for financial products

based on the martingale measure that could erase such loopholes.

Under the mean-VaR framework, the third article (Section 3.3) discusses the

impacts of the underlying’s first four moments on the structured product. By

expanding the expected return and the VaR of a structured product with its un-

derlying moments, it is possible to investigate each moment’s impact on them,

simultaneously. Results are tested by Monte Carlo simulation and historical sim-

ulation. The findings show that for the majority of structured products, underly-

ings with large positive skewness are preferred. The preferences for variance and

for kurtosis are ambiguous.
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Chapter 2

Performance analysis of private

banking accounts

2.1 Introduction

In the first part of the dissertation, we want to study whether it is worth-

while for individual investors to entrust their money to a portfolio manager of a

private bank (discretionary account), or whether it would be sufficient to obtain

well-informed investment advice from the bank (advisory account). Individual

investors are known to be prone to suboptimal investments. Much research has

been done on this topic, particularly on the comparison with institutional in-

vestors, who usually do more research when making investment decision, often

have a larger search set of assets for purchase and sale, and devote more time

to searching. Individual investors typically lack either discipline or professional

knowledge. They may be overconfident and are more likely to be influenced by at-

tention and news. This research studies the performance of individual investors in

an advisory context – that is, with the assistance of an advisory service provided

by a bank – and compares their investment performances with the performances of

bank managed portfolios. In such a situation, individual investors to some extent

share the same information and knowledge as the bank providing the advice. We

try to identify in this case, whether institutional investors outperform individual
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investors.

Among the literature studying the relation between individual and institu-

tional investors, Barber et al. (2009) find that individuals lose from the trade and

institutions win, by studying a complete transaction data on the Taiwan Stock

Exchange. Based on data of a discount brokerage firm from the U.S., Barber and

Odean (2000) document that the net return of average household is poor. House-

holds underperform a market index by 1.1 percent annually on average. Research

with focus on the performance of mutual funds, which are one of the typical insti-

tutional investments in financial markets, mainly concludes that actively managed

funds on average, underperform their passively managed counterparts. However,

there is still some research on the value of actively managed funds. In a com-

prehensive analysis of the mutual fund industry, Wermers (2000) finds that from

1975 to 1994 mutual funds held stock portfolios that outperform a broad market

index by 1.3 percent per year. He concludes that funds pick stocks well enough

to cover their costs. Some recent research also suggests that some trades by in-

dividual investors are profitable. Coval et al. (2005) find strong persistence in

the performance of individual investors’ trade, indicating that some individuals

are able to earn abnormal return. Ivković and Weisbenner (2005) find that both

individuals and institutions appear to be able to exploit local information to gain

excess return. Although under-diversification is usually thought to be one of the

common mistakes of individual investors, e.g. Goetzmann and Kumar (2008);

Ivković et al. (2008) find that some individuals concentrating on a few securities

tend to outperform those diversifying across many stocks.

The features of individual investors’ behaviors are summarized in De Bondt

(1998), who describes four main anomalies: biased perceptions of price move-

ments, biased perceptions of values, error in managing risk and return and in-

adequate trading practices. The author also gives typical examples for these

anomalies:

• “people are optimistic in bull markets and pessimistic in bear markets.”

• “few individual investors have an adequate understanding or are capable of

using the valuation techniques [. . . ].”
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• “many households are under-diversified.”

• investment “discipline is difficult to maintain” for individual investors, i.e.

strategies are changed too often.

These facts have been studied in many follow-up works which can be divided into

several strands: overconfidence, under-diversification, effect of attention, etc.

The overconfidence literature relates the performance of individual investors

with psychology. Studies have found that people tend to overestimate the preci-

sion of their knowledge. Such overconfidence has been observed in many fields.

A comprehensive review is given in Odean (1998). Financial researchers extend

this theory to the study of investors. In Odean (1998), the author models over-

confidence “as a belief that a trader’s information is more precise than it actually

is” and then studies the relationship between overconfidence and trading vol-

ume, volatility, return, etc. He finds inter alia, that “overconfidence increases

expected trading volume, increases market depth, and decreases the expected

utility of overconfident traders”. Odean (1999) focuses on one particular group

of investors, those with discount brokerage account. He finds that “not only do

the securities that these investors buy not outperform the securities they sell by

enough to cover trading costs, but on average the securities they buy underper-

form those they sell”. The author concludes that overconfidence may contribute

to this fact, but that there could be other reasons as well. Barber and Odean

(2000) and Barber et al. (2009) investigate individual investors directly. Both

papers assert that trading results in large losses for individual investors and the

authors consider overconfidence as one of the explanations.

The under-diversification literature studies the common phenomenon that in-

dividual investors hold under-diversified portfolios, which, according to financial

theory, might be irrational. Goetzmann and Kumar (2008) study U.S. individ-

ual investors and find that “the level of under-diversification is greater among

younger, low-income, less-educated, and less-sophisticated investors”. Moreover,

the authors find that “under-diversification is costly to most investors, while a

small subset of them under-diversify due to superior information” and that “ the

level of under-diversification is correlated with investment choices that are consis-
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tent with overconfidence, trend-following behavior, and local bias”. Ivković et al.

(2008) study the phenomenon that concentrated individual investors outperform

more diversified ones and give information advantages as an explanation. Infor-

mation advantage is also studied in Ivković and Weisbenner (2005) for explaining

the local bias of individual investors.

A review of the literature concerning the effect of attention is given by Barber

and Odean (2008) , who investigate the effect of attention and news on individual

investors. One of their conclusions is that “the buying behavior of individual

investors is more heavily influenced by attention than is the buying behavior of

professional investors”.

In Campbell (2006), the author points out that there is heterogeneity in the

above mentioned behavioral effects across individual investors. Heterogeneity of

individuals’ investment performances is also confirmed in Coval et al. (2005).

As related topics, financial sophistication and literacy of investors are further

studied for example in Calvet et al. (2009), where the authors confirm that “richer,

educated households of larger size are less prone to making financial mistakes than

other households”. van Rooij et al. (2011) find that a majority of households

possesses limited financial literacy, which differs on different education, age and

gender.

The role of financial advisors has already attracted attentions from researchers.

Allen (2001) points out that financial institutions create an agency problem, where

the investment decision makers do not necessarily own the assets. Krausz and

Paroush (2002) model financial advisors’ behavior when facing a conflict of inter-

est between themselves and investors paying for both financial advice and exe-

cution as a joint product. Inderst and Ottaviani (2009) analyze in a theoretical

perspective the inherent conflict between the task of prospecting for customers

and the task of advising for the needs of the customers when searching for suit-

able products. Bergstresser et al. (2009) study broker-sold and direct-sold funds

from 1996 to 2004 and find no substantial tangible benefits delivered by brokers.

Moreover, broker-sold funds have lower risk-adjusted performance than direct-

sold funds, even before fees, and funds with higher fees are sold more. Kramer
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(2009) finds no evidence of significant out- or underperformance of advised in-

vestors in comparison with self-directed investors. Hackethal et al. (2011) find

that advised portfolios deliver lower net return and lower risk-adjusted perfor-

mance than self-managed portfolios on average and this phenomenon is stronger

with bank advisors than with independent financial advisors. Bhattacharya et al.

(2011) study the case of unbiased financial advices. They find that the portfolio

efficiency of investors following the advice increases, but that financial advice is

hardly followed by those who receive it and thus that advised portfolios on average

show no improvement of efficiency. They conclude that unbiased financial advice

is a necessary but not sufficient condition for individual investors’ benefit.

Different from the above-mentioned studies, this research compares advised

portfolios and bank managed portfolios within one setting. The financial advisor

for one client is at the same time the portfolio manager, and thus the final decision

maker for another client. Given that the same institution plays different roles

simultaneously, the comparison in this case will be more direct.

The dataset we use for this research stems from the private banking depart-

ment of a large bank in Switzerland with mainly international clients. This unique

data encompasses 4,870 clients for the years 2005 and 2006. A client could choose

between two different mandates: an advisory (non-discretionary) mandate or a

discretionary mandate. With the advisory mandate, the client himself determines,

which investment to make at what time. The bank consults the client with regard

to an appropriate investment and carries out the relevant transactions. With the

discretionary mandate, the investment of the client is mainly taken care of by the

bank. The client and the bank make an agreement on the investment policy, which

is implemented as precisely as possible afterwards. Therefore, the advisory man-

date can be considered as an individual investment in an advisory context, while

the discretionary mandate is an institutional investment. For both of the man-

dates, the clients have to pay fees periodically, where the fee for the discretionary

mandate is higher than that for the advisory mandate. A distinguishing feature

of our data is that it contains both types of clients. Each client in our dataset is

marked as either having an advisory mandate or a discretionary mandate.
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The goal of our study is to compare the performance of these two groups. To

do so, the most natural question needs to be answered first: Does the bank do a

better job than the individual investors themselves? To assess the performance of

the bank (the discretionary mandate clients) and the advisory mandate clients, the

annualized return, the annualized volatility, the Sharpe ratio, the Beta coefficient,

Jensen’s alpha and the Treynor/Black ratio are calculated from the data, taking

into account the fees paid by clients. In the advisory mandate group, we addi-

tionally allow for heterogeneous investors. Some of them might have “strange”

portfolios, e.g. because they use their bank account for hedging of (unknown)

other positions or because they invest in a rather hazardous way: they might

be either overconfident, under-diversified or easy to be influenced by attention

and news, etc. As such accounts will inevitably worsen the average performance

of the advisory mandate group, we have been looking for a method to exclude

them from the analysis. To this end, we employ the mixture model and a cluster

analysis to identify potential subgroups among the advisory mandate clients. The

mixture model is a tool for examining and representing the presence of subgroups

of individuals within an overall population, without requiring that an observable

variable should identify the subgroup to which an individual observation belongs.

Our algorithm is done in R with the package mixtools, see Benaglia et al. (2009).

We draw two main conclusions from the empirical results. First, there is a

substantial group of advised individual investors that outperforms the bank man-

aged portfolios, at least after fees. Second, neither the better advisory portfolio

nor the discretionary portfolio can beat the market. An index portfolio performs

the best in our sample.

The rest of the chapter is organized as follows. Section 2.2 discusses the

performance difference between the two mandate groups and the difference among

subgroups of the advisory mandate. Section 2.3 compares the performance of

advisory and discretionary portfolios with a simple two-fund strategy. Section 2.4

concludes.



2.2 Does the bank do a better job than individual investors? 11

2.2 Does the bank do a better job than individ-

ual investors?

2.2.1 Advisory mandate vs. discretionary mandate

Advisory mandate and discretionary mandate are two different services of

private banking for investors. The advisory mandate allows the clients to make

all their own investment decisions, whilst they have the access to the bank’s

research advice and execution services. The discretionary mandate authorizes

the bank to manage a client’s investment based on his investment objectives.

Clients can remain involved and will receive reporting regarding the positioning

and performance of their investment portfolio. The decision-making responsibility

will lie with the bank.

The advantage of a discretionary mandate is a saving of time by relying com-

pletely on the expertise of the bank. With the expertise of the bank, clients can

use the time saved to pursue their other commitments. The advantages of an ad-

visory mandate are flexibility and autonomy. Some clients may want contribute

more to the investment process than others, and are willing to make decisions on

their own. However, how closely the client follows the advice given by the bank

is up to him and not measurable in our data. A large degree of heterogeneity is

to be expected. In our sample, the fee is 0.6% p.a. for the advisory mandate and

1.2% p.a. for the discretionary mandate.

2.2.2 Performance measures

In order to measure the performance of the portfolios, we calculate the Sharpe

ratio, the Beta, Jensen’s alpha and the Treynor/Black ratio, in addition to annu-

alized return and volatility from the dataset, taking into account the fees paid by

clients.

The Sharpe ratio (Sharpe (1966)) measures the excess return per unit of risk

in an investment,

SRi =
ri − rf
σi

, (2.1)
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where ri and σi are the expected return and the volatility of portfolio i. rf is the

risk-free interest rate.

The Beta is a parameter in the capital asset pricing model (CAPM),

βi =
Cov(ri, rM)

σ2
M

, (2.2)

where Cov(ri, rM) is the covariance between portfolio i and the market portfolio.

σ2
M is the variance of the market portfolio.

The Jensen’s alpha for portfolio i is defined as

αi = ri − [rf + βi,m(rM − rf )], (2.3)

where rM and βi,m are expected market return and the Beta of the portfolio,

respectively (Jensen (1968)).

The Treynor/Black ratio for portfolio i is defined as

TBi =
αi
σεi
, (2.4)

where αi is the Jensen’s alpha, σεi is the standard deviation of the residual

(Treynor and Black (1973)).

2.2.3 Correcting for investors: mixture model and cluster

analysis

In this research we allow the advisory clients to be heterogeneous. As men-

tioned before, some of them might have “strange” portfolios, e.g. because they use

their bank account for hedging of (unknown) other positions or because they invest

in a rather hazardous way: They might be either overconfident, under-diversified

or easy to be influenced by attention and news or have other alternative invest-

ment motifs. To identify these subgroups among the advisory mandate clients,

we employ two different methods: the mixture model and a cluster analysis.

Much of the theory of mixture models is based on the assumption that the
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full sample consists of subsamples, but it is unknown which individual belongs to

which subsample. Subgroups follow a particular form of distribution and quite

often this form is assumed to be univariate or multivariate normal. Suppose the

random variables X1, . . . , Xn are a random sample from a finite mixture of m > 1

arbitrary distributions, which are called components. The density of each Xi may

be written as

gθ(Xi) =
m∑
j=1

λjφj(Xi), Xi ∈ Rr, (2.5)

where θ = (λ, φ) = (λ1, . . . , λm, φ1, . . . , φm) denotes the parameter and the λj

are positive with Σm
j=1λj = 1. The densities φj are assumed to be drawn from

some family F of density functions. By expressing the density of each observation

with the sum of several normal densities, the full sample is decomposed into

several subsamples, without the need of knowing which observation belongs to

which subgroup. Thus, the mixture model is a helpful technique in our study, as

we also don’t know which of the investors have the above-mentioned alternative

investment motif. One of the estimation procedures for mixture model is the

Expectation Maximization (EM) algorithms, for more detail see Benaglia et al.

(2009) and references therein.

Another approach we employ is a cluster analysis. Cluster analysis assigns a

set of observations into subsets, according to their dissimilarities or more precisely,

their distances from each other. A common choice to measure the dissimilarity is

the (squared) Euclidean distance,

d(xi, xi′) =

p∑
j=1

(xij − xi′j)2, (2.6)

where xi and xi′ are two multivariate observations from the sample, with xi =

(xi1, xi2, . . . , xip)
T and xi′ = (xi′1, xi′2, . . . , xi′p)

T. The clustering is done in such a

way that the observations within each subset are more closely related with each

other than observations assigned to different subsets. For more detail see, e.g.,

Hastie et al. (2009). By doing so, it is possible to identify subgroups within the full

sample. In contrast to the mixture model, a cluster analysis needs no assumption
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Mandate Variable Observations Min Max Mean Median Std. deviation

Full sample
Return 4,870 -0.525 0.592 0.057 0.043 0.062

Volatility 4,870 0.001 0.732 0.047 0.031 0.053

Advisory
Return 2,962 -0.525 0.592 0.064 0.043 0.076

Volatility 2,962 0.001 0.732 0.059 0.043 0.064

Discretionary
Return 1,908 -0.009 0.221 0.046 0.043 0.025

Volatility 1,908 0.005 0.230 0.029 0.028 0.016

Table 2.1: Descriptive statistics for annualized return and volatility.

about the distribution of the subsamples and thus has more flexibility.

2.2.4 Empirical results

Data

The data covers the period from the beginning of 2005 to the end of 2006. (For

data protection reasons it is not possible to study a sample of current accounts.)

Only natural persons are included in the analysis, i.e. firm clients, foundations,

employees and so on are not considered. Each observation represents a client. In

order to avoid duplication, the analysis considers only clients who held the same

mandate during the whole examination period. Those who switched mandate

within the two years, for example, from the discretionary mandate to the advi-

sory mandate, are not considered. The average age of the discretionary mandate

client is 64. Their average investment is 446,000 CHF. For the advisory mandate

client, their average age is 61 and their investment is 1,118,000 CHF on average.

There are 4,870 observations, 1,908 with discretionary mandate and 2,962 with

advisory mandate. The portfolios are held by international clients investing into

Switzerland, thus we use USD instead of CHF as the benchmark currency. We

use the 12 month LIBOR USD of the year 2005 and 2006 as the risk-free interest

rate, which gives a average value of 4.72%. For the market portfolio, we use the

MSCI World USD of the same period, with an annualized return of 12.638%.

Figure 2.1 gives a scatter plot of the sample. The descriptive statistics are

summarized in Table 2.1. The full sample’s annualized return ranges from -0.525
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Figure 2.1: Scatter plot of advisory mandate clients (blue) and discretionary man-
date clients (red) for return and volatility.
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to 0.592, with a mean of 0.057 and a median of 0.043. The return of the advisory

group varies between -0.525 and 0.592, with a mean of 0.064 and a median of

0.043. The discretionary group’s return ranges from -0.009 to 0.221. The mean

is 0.046 and the median is 0.043. The return of the advisory group is distributed

more widely than that of the discretionary group. The standard deviation of the

advisory group is 0.076, while the standard deviation of the discretionary group

is 0.025 – thus, much lower than that of the advisory group. With a minimum

of -0.525, the advisory clients have a much worse return than the discretionary

mandate clients, whose minimal return is close to 0. However, the best performer

of the advisory mandate clients exceeds the best of the discretionary mandate

clients. With 0.592 the former has a surprisingly good annualized return, whereas

the latter reaches a return of 0.221. While the mean return for the advisory man-

date clients is higher than for the discretionary mandate clients, their respective

medians, which are less likely to be influenced by outliers, are the same. The

annual volatility of the full sample ranges from 0.001 to 0.732, both the minimum

and the maximum are achieved by the advisory mandate clients. The mean and

the median of the full sample’s volatilities are 0.047 and 0.031, respectively. The

discretionary mandate clients have a maximal volatility of 0.23, which is much

lower than the advisory mandate client’s maximum, while both groups have min-

imal volatilities close to 0. Both the mean and the median of volatilities for the

advisory mandate clients are higher than for the discretionary mandate clients.

The standard deviation of volatilities for advisory mandate clients is also much

higher than for discretionary mandate clients. The former is 0.064 and the latter

is 0.016. These facts support our assumption that the advisory clients are hetero-

geneous – more heterogeneous than the discretionary mandate clients. In sum,

although the mean return of the advisory mandate clients is higher than that

of the discretionary mandate clients, their medians of return are the same. No

one outperforms the other. However, the discretionary group clearly has a lower

volatility than the advisory group.

The Sharpe ratio, see Equation (2.1), the Beta, see (2.2), Jensen’s alpha,

see (2.3) and the Treynor/Black ratio, see (2.4), are given in Table 2.2. While
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Mandate Variable Observations Min Max Mean Median Std. deviation

Full sample

SR 4,870 -38.250 2.740 -0.721 -0.125 2.436
β 4,870 -1.319 5.763 0.262 0.166 0.373
α 4,870 -0.753 0.513 -0.011 -0.017 0.049

TB 4,870 -39.370 2.632 -1.137 -0.641 2.364

Advisory

SR 2,962 -38.250 2.740 -0.931 -0.097 3.008
β 2,962 -1.319 5.763 0.314 0.168 0.454
α 2,962 -0.753 0.513 -0.009 -0.015 0.062

TB 2,962 -39.370 2.632 -1.278 -0.524 2.941

Discretionary

SR 1,908 -4.985 1.868 -0.393 -0.167 0.960
β 1,908 -0.177 2.232 0.181 0.165 0.160
α 1,908 -0.070 0.086 -0.016 -0.019 0.015

TB 1,908 -5.767 1.576 -0.917 -0.788 0.872

Table 2.2: Descriptive statistics for Sharpe ratio (SR), Beta (β), Jensen’s alpha
(α) and Treynor/Black ratio (TB).

the Sharpe ratio for advisory mandate clients ranges from -38.25 to 2.74, for

discretionary mandate clients it varies between -4.985 and 1.868. The mean for the

advisory group is -0.931, and -0.393 for the discretionary group. While the median

for the advisory group is -0.097, that for the discretionary group is -0.167. The

advisory mandate clients’ Sharpe ratios are more widely distributed than the ones

of discretionary mandate clients. For Beta, the values of the advisory group are

more widely distributed than the ones of the discretionary group. Both the mean

and the median of the former are higher than that of the latter. Jensen’s alpha

shows a similar result as Beta: Both the mean and the median of the discretionary

group are lower than that of the advisory group, whose values are distributed more

widely. Concerning the Treynor/Black ratio, the median of the advisory group is

higher than the one of the discretionary group, while the mean of the former is

lower than that of the latter. Judging from these performance measures, advisory

mandate clients slightly outperform their discretionary mandate counterparts;

however, the former are distributed more widely and have higher variation than

the latter. Due to the ambiguous meanings of the negative Sharpe ratio and the

negative Treynor/Black ratio, comparisons based on them are not so meaningful.
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Component 1 Component 2 Discretionary
Proportion 0.734 0.266 -

Mean -0.017 0.015 -0.016
Median -0.017 0.015 -0.019

Standard deviation 0.023 0.110 0.015

Table 2.3: Result of mixture modeling for Jensen’s alpha.

Results from the mixture model approach

We then employ the mixture model to identify subgroups within the advisory

mandate group based on Jensen’s alpha. The Sharpe ratio and the Treynor/Black

ratio are not considered in the analysis, because of their negative values. The

procedure is done through the EM algorithm for normal mixtures. The modeling

results are presented in Table 2.3. The density estimations for the components

are given in Figure 2.2.

The advisory mandate clients are decomposed into two subgroups (compo-

nents) by the algorithm. For comparison purposes, we again give the mean and

median of the discretionary group next to the mixture modeling result in the ta-

ble. Since the mixture model assume normal distributions, the mean is identical

to the median for each component. The first component of the advisory group has

a average Jensen’s alpha of -0.017 and a standard deviation of 0.023. The second

component’s mean and standard deviation of Jensen’s alpha are 0.015 and 0.11,

respectively. The second component clearly outperforms the discretionary group

by the mean and the median; however, the discretionary group has the lowest

standard deviation. Welch’s t-test on the two components gives a p-value much

lower than 0.0001, indicating the mean Jensen’s alphas of the two components are

significantly unequal. The same test on the means between the second component

and the discretionary group also delivers a significant result.
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Figure 2.2: Density estimations of two components for Jensen’s alpha. Original
data is presented as black histogram.
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Results from the cluster analysis

Moreover, cluster analysis is implemented in this study. We employ two-

dimensional cluster analysis on return and volatility. The procedure is done with

the Euclidean distance and hierarchical clustering. In the case of two clusters, one

cluster has 2,943 observations and the other has 19 observations. The descriptive

statistics are presented in Table 2.4, together with the descriptive statistics of the

discretionary mandate group, for comparison purpose. A scatter plot is given in

Figure 2.3, where the second cluster (Advisory II) represents the individuals with

low return and high volatility. These investors corresponds to “weird” portfolios,

i.e. portfolios with very poor performance suggesting other than usual investment

motivations (hedging or “gambling”). In this case, the second cluster’s size might

be too small for us to draw reasonable conclusions. In the case of three clusters,

one cluster has 2,926 observations, another cluster has 19 observations and the

third cluster has 17 observations, see Table 2.5 and Figure 2.4. Now the third

cluster (Advisory III) represents the individual investors with high volatility and

relatively high return. The second cluster, as before represents, “weird” portfo-

lios. By excluding the second and the third clusters and focusing on the first

cluster (Advisory I), we now have a relatively reasonable representation of the

usual individual investors. The first cluster has the same median of return as the

discretionary group, while the mean of the former is larger than that of the latter.

Both the mean and the median of volatilities of the first cluster are higher than

that of the discretionary group, respectively. Welch’s t-tests on returns, volatili-

ties and Jensen’s alphas between the first cluster and the discretionary group all

give p-values lower than 0.001, suggesting significantly unequal means of return,

unequal means of volatilities and unequal means of Jensen’s alpha. In order to

consider the influence of fee, we did the same tests on return (before fee) and

Jensen’s alpha (before fee) between the first cluster and the discretionary group.

The test on return (before fee) gives a p-value lower than 0.0001, while the test

on Jensen’s alpha (before fee) delivers a p-value of 0.024.

To check robustness, we randomly sample 50% of the observations from each

mandate and repeat several times the mixture model and cluster analysis. The
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Mandate Variable Observations Min Max Mean Median Std. deviation

Advisory I
Return 2,943 -0.154 0.592 0.066 0.043 0.071

Volatility 2,943 0.001 0.700 0.057 0.043 0.057
α 2,943 -0.397 0.513 -0.006 -0.015 0.054

Advisory II
Return 19 -0.525 -0.149 -0.270 -0.225 0.102

Volatility 19 0.182 0.732 0.385 0.363 0.137
α 19 -0.753 -0.177 -0.359 -0.320 0.143

Discretionary
Return 1,908 -0.009 0.221 0.046 0.043 0.025

Volatility 1,908 0.005 0.230 0.029 0.028 0.016
α 1,908 -0.070 0.086 -0.016 -0.019 0.015

Table 2.4: Descriptive statistics of clusters and discretionary group for return,
volatility and Jensen’s alpha (α).

results are virtually the same as for the full sample. In sum, by mixture modeling

Jensen’s alpha, we are able to identify subgroups among the individual investors.

One subgroup is significantly better than the other. These “better” investors also

significantly outperform the bank. By cluster analysis on return and volatility, we

correct the whole group of individual investors by focusing on the main cluster.

These investors have a significantly higher return and a higher volatility than

the discretionary group. Judging from Jensen’s alpha, the main cluster of the

individual investors significantly outperforms the bank. Even when differences in

fee are not taken into account, the out-performance is significant, albeit only on

a 5% level. This results is slightly puzzling, as it suggests that fees explain most

of the performance difference, but probably not all.

2.3 Comparing performance with a passive in-

vestment

After comparing the performances of the advisory group with the discretionary

group, it is natural to raise the question, how well the individual investors as well

as the bank manage their investments, i.e. if they can beat the market. Our

next step is to simply compare their performances with the two-fund strategy. A

two-fund portfolio is constructed with a risk-free asset and risky assets to balance
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Figure 2.3: Scatter plot of two clusters for return and volatility.
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Figure 2.4: Scatter plot of three clusters for return and volatility.
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Mandate Variable Observations Min Max Mean Median Std. deviation

Advisory I
Return 2,926 -0.154 0.407 0.064 0.043 0.070

Volatility 2,926 0.0001 0.438 0.055 0.042 0.050
α 2,926 -0.397 0.388 -0.007 -0.015 0.050

Advisory II
Return 19 -0.525 -0.149 -0.270 -0.225 0.102

Volatility 19 0.182 0.732 0.385 0.363 0.137
α 19 -0.753 -0.177 -0.359 -0.320 0.143

Advisory III
Return 17 0.096 0.592 0.385 0.396 0.140

Volatility 17 0.176 0.700 0.391 0.399 0.170
α 17 -0.250 0.513 0.185 0.191 0.196

Discretionary
Return 1,908 -0.009 0.221 0.046 0.043 0.025

Volatility 1,908 0.005 0.230 0.029 0.028 0.016
α 1,908 -0.070 0.086 -0.016 -0.019 0.015

Table 2.5: Descriptive statistics of clusters and discretionary group for return,
volatility and Jensen’s alpha (α).

risk and return. If the market portfolio is chosen as the risky asset, then the

allocation is along the capital market line, according to modern portfolio theory.

In our analysis we choose the MSCI World ETF as the risky asset in our two-fund

portfolio. Index ETFs (Exchange Traded Funds) are index funds that attempt to

replicate a stock market index and can be traded in stock exchanges.

The MSCI World Index is listed in USD. We refer to the ETFs issued by

financial institutions in the market for their fee requirements. An institution

requires a fee of 0.4% p.a. for the MSCI World ETF. We then construct two-fund

portfolios with different weights on risky asset, in our case the ETF, and the risk-

free asset. Starting from 100% weight on the risky asset and 0% on the risk-free

asset, to 75% weight on the risky asset and 25% on the risk-free asset, then to 50%

weight on both, at last 25% weight on the risky asset and 75% on the risk-free

asset. The risk-free asset in the MSCI World portfolio is the 12 months LIBOR

USD. We choose the main cluster (the first cluster in the three clusters case of the

cluster analysis) of the advisory group as a representation for individual investors.

The annualized return (after fee), the volatility and Jensen’s alpha of this two-

fund portfolio with different portfolio weights are given in Table 2.6, together with

the performances of the main cluster of the advisory group and the discretionary
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Risky asset Weight for risky asset Return Volatility α

MSCI World ETF

100% 0.112 0.078

0
75% 0.103 0.058
50% 0.084 0.039
25% 0.065 0.019

Discretionary - 0.043 0.028 -0.019
Advisory I - 0.043 0.043 -0.015

Table 2.6: Annualized return, volatility and Jensen’s alpha (α) for two-fund portfo-
lio, discretionary group and the main cluster of advisory group. For discretionary
group and main cluster of advisory group, the median is presented.

group. Both the individual investors and the bank have a negative Jensen’s alpha.

When the weight on the risky asset in the two-fund portfolio decreases to 25%,

where its volatility is lower than the volatilities of the individual investors and

the bank, the two-fund portfolio still delivers a higher return than the individuals

and the bank do. Both the individual investors and the bank thus cannot beat

the market.

Finally, it could of course be that non-standard investor preferences (e.g. larger

degrees of loss aversion or specific investment goals) influence portfolio optimiza-

tion in a way that makes simple risk-return optimization suboptimal and requires

more sophisticated, asymmetric payoff profiles. Our analysis can a priory not

exclude that this could explain why bank managed portfolios perform worse than

passive investments when focusing solely on risk and return. Theoretical results

(Hens and Rieger (2013)) however seem to suggest that this explanation would

require highly non-standard risk preferences that are unlikely to hold for a larger

number of investors. To sum up, it seems that our general result, namely that

bank managed portfolios perform rather poorly as compared to passive invest-

ments and to a substantial group of advisory clients’ portfolios still holds.
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2.4 Conclusion

We have analyzed a unique data set of private banking portfolios in Switzerland

of a major bank. Parts of the portfolios were managed by the bank, parts were

advisory portfolios. At first glance, individual investors and the bank did not

clearly outperform each other by return and risk-adjusted performance, even when

taking into account the higher fees for bank managed portfolios; however, bank

managed portfolios on average did have a lower portfolio risk than individual

investors’ portfolios. This comparison, however, is not unbiased, since there might

be groups of individual investors with non-standard investment goals, e.g. hedging

or they might invest in a hazardous way.

We tried to correct for these effects in two different ways: First, we applied a

mixture model approach on the risk-adjusted performances. Second, we conducted

a cluster analysis on return and volatility. The results of our analysis seem to

suggest that there is indeed a substantial group of advised individual investors

that outperforms the bank managed portfolios, at least after fees.

This result itself does not necessarily mean that investors who entrust their

money to a discretionary account make a bad decision: It seems likely that their

financial skills are systematically lower than the skills of the investors who decide

for an advisory mandate. Our final result, however, suggests that for both of

these groups there is an easy way to improve their performances without the

need of sophisticated financial abilities: We found that a simple passive strategy

that invests in the MSCI World and a fixed interest asset (e.g. US government

bonds) in our sample significantly outperformed both the better advisory and the

discretionary portfolios.



Chapter 3

Risk classification for structured

products

3.1 Introduction

The third chapter of the dissertation deals with the risk of structured prod-

ucts. Structured products (SPs) are a class of financial products which combine

a set of elementary financial instruments, e.g. stocks and derivatives, in order to

achieve specific investment purposes. Two typical examples are capital protected

products and discount certificates: Capital protected products allow the investor

to participate, to a certain degree, in the potential gains of a stock or an index

(the underlying), whilst being protected against potential losses at the same time.

This kind of products can be constructed by combining a call option with a fixed

interest investment. Discount certificates offer shares of an underlying at a price

below its current market price. In return, the investor must be prepared to accept

a fixed maximum return (the cap). Investors will receive one share of the un-

derlying per discount certificate if at maturity the underlying price is lower than

the cap strike. If the underlying price at maturity is higher than or equal to the

cap strike, investors will receive a cash settlement amount equivalent to the cap

strike. A discount certificate can be constructed from the underlying and short

calls. For an overview of structured products, see Blümke (2009).
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According to Célérier and Vallée (2013), assets under management (AUM) for

retail structured products alone, is about 700 billion EUR in Europe in 2011,

about 3% of all European financial savings or 12% of mutual funds’ AUM. Al-

though Europe is currently the world’s largest market, the US and Asian mar-

kets are expanding rapidly. Due to structured products’ relatively complicated

structures and the occasional lack of transparency of their internal mechanisms,

understanding their risk has always been an important issue for all investors, but

especially for retail investors. One example is the case of the Hong Kong-listed

company Citic Pacific and its 2 billion USD losses from the accumulator, a struc-

tured product that requires an investor to buy a specified amount of a security

or currency at a fixed price, settled periodically, subject to certain conditions, as

seen in a report by Santini (2008) from The Wall Street Journal.

In 2010, the European Commission has introduced a series of new directives,

regulations and guidelines (European Commission (2010a,b), CESR (2010)) for

the Undertakings for Collective Investments in Transferable Securities. This set

of directives is usually referred to as “UCITS IV”. Structured funds (another

name for structured products) are one of the financial products considered by

these regulations. The principle of the regulations is to use annual volatility as a

risk measure to classify different products into different risk categories, in order

to give investors a uniform view of their investment risk. The risk measurement

for structured products is implemented through Value at Risk (VaR). Based on

historical performance or simulation, the VaR of a structured fund is calculated at

a given level. Then a corresponding volatility is computed from this VaR, based

on the assumption that the return follows (log)-normal distributions. A similar

approach based on VaR has also been adopted in Switzerland, see Swiss Structured

Products Association (2013). VaR as a risk measure has been controversial for

years in academia, see, e.g., Artzner et al. (1999) on the fact that VaR is not

coherent. The financial crisis beginning in 2008 also revealed an abuse of VaR.

One can naturally wonder, whether VaR is an appropriate risk measure for such

complicated financial instruments as structured products and whether the newly

introduced EU regulations can give a sufficient indication for the risk of structured
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products.

Research literature on structured products has mainly focused on the seller’s

side, e.g., pricing and hedging of the products. Recently, attention has begun

to be paid to the buyer’s perspective. Branger and Breuer (2008) investigate

the utility benefit that CRRA investors gain from investment certificates. Das

and Statman (2009) propose a new framework of portfolio optimization, which

differs from the mean-variance portfolio theory, and use this framework to analyze

structured products. Breuer and Perst (2007) analyze the investors’ utility for

buying structured products in the cumulative prospect theory framework. Hens

and Rieger (2013) conclude that, from a theoretical point of view, only behavioral

factors like loss aversion, gambling to avoid sure losses, probability weighting and

misestimation, overconfidence, etc. can explain the demand for the majority of

structured products. Rieger (2012) conducts experiments and concludes that a

systematic probability misestimation is the main driver for the attractiveness of

some of the most popular structured products.

Portfolio choice under VaR or other downside risk measures is another strand

of the literature. Basak and Shapiro (2001) discuss the optimal portfolio policy

of a utility maximizing investor with the VaR constraint. Alexander et al. (2006)

compare mean-VaR model to the mean-variance analysis. Benati (2003) solves

the portfolio choice problem with coherent risk measure constraint by linear pro-

gramming. Cui et al. (2013) compare different approximation methods of VaR

estimation for portfolio with derivatives, where the analysis is mainly based on

normal distributed risk factors.

In the second section (Section 3.2) of this chapter, we firstly analyze the prob-

lem from a theoretical perspective. We show that measuring the risk of structured

products with VaR has limitations – in theory the expected return of the struc-

tured products can be infinite positive while the VaR requirement for the lowest

risk class can still be satisfied. Then we directly use market data to give practical

examples showing that this problem is not merely a theoretical one. Furthermore,

we propose a new theoretical approach to measure the performance of financial

products and apply this approach to market data.
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The third section (Section 3.3) of the chapter will not focus on the design of

the payoff function of the structured product, but on the underlying. The aim

is to discuss whether and how the underlying’s return distribution, especially its

first four moments, can affect the risk-return profile of a structured product under

the mean-VaR framework. The outcomes will be relevant for the product design

from the seller’s side and for the portfolio planning from the buyer’s side, as well

as for the risk classification from the regulator’s side.

Studies on the preference for skewness and higher moments of the return dis-

tribution have begun from Kraus and Litzenberger (1976), where the authors

state that positive skewness is preferred by investors. Their analysis is based on

expanding the expected utility with Taylor series to cubic term. Scott and Hor-

vath (1980) show that the preference direction for positive odd central moments is

positive and for even central moments, it is negative. They expand the expected

utility to higher order term. Since then, it has become common to carry out the

discussion under the expected utility framework. Recent studies include: explain-

ing underdiversification with a mean-variance-skew model (Mitton and Vorkink

(2007)). Chang et al. (2013) derive skewness from option prices and investigate

the impact of the implied skewness on underyling returns with Capital Asset

Pricing Model (CAPM)-like models.

In the third section, we first show that there is no one-to-one relation between

the expected return and the VaR of a structured product. Switching underly-

ings does affect the risk-return profile of a product. Then, we expand both the

expected return and the VaR of a structured product with its underlying’s first

four moments. This allows us to discuss the impact of each moment on both the

expected return and the VaR, simultaneously. The theoretical results are then

tested by Monte Carlo simulations, where we consider the cases of normal distri-

bution, t-distribution and NIG-distribution, as the distribution for the underlying

log-return. Structured products considered in the simulations are tracker cer-

tificates, discount certificates and capped outperformance certificates. Simulation

with real-world data is also carried out on three structured products. Underlyings

are seven major European stock market indices.
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3.2 Mathematical aspects and their implications

This section deals with the limitation of using VaR as the risk measure for

structured products and its implications. It is organized as follows: Subsection

3.2.1 develops theoretical arguments and gives practical examples. Subsection

3.2.2 proposes a risk-return measure for financial products. Subsection 3.2.3 con-

cludes.

3.2.1 VaR as risk measure for structured products

Theoretical limitations

Let the underlying price be a random variable X on a probability space

(Ω,F ,P), with the probability density function f(x) and the cumulative distri-

bution function F (x). We normalize X0, the underlying price at time 0, to be 1

and further assume that X is nonnegative. The payoff (value) of the structured

product is a function y : R+ → R+ of X. We assume that y(x) is nondecreasing,

see Rieger (2011). y0 (the value of the structured product at time 0) is also nor-

malized to 1. `(x) is the Radon-Nikodym derivative of the martingale measure P∗

with respect to the physical measure P. We assume that low payoffs are relatively

more expensive than high payoffs, i.e., `(x) is decreasing, and additionally assume

that `(x)→ 0 for n→∞. Rf and rf denote gross and net risk-free interest rate,

respectively.

In order to attract investors, the issuer (bank or other financial institution)

of the structured products wants to design products which, according to the EU

regulation, have a low risk while still giving large expected return. Translated

into mathematics, the issuer wants to have a product y(X) which maximizes

its expected return under the physical probability measure and meets the VaR

constraint at the same time. The issuer, thus, faces the problem of maximizing

the expectation of y(X) over all y,

max
y

E[y(X)] = max
y

∫
R+

y(x)f(x)dx, (3.1)
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subject to the VaR constraint

− inf{m|P(ln(y(X)) ≤ m) > α} = V aRα. (3.2)

Proposition 3.2.1. Under the VaR constraint (3.2), there exists an y, such that

E[y(X)] is unbounded from above.

Proof. Because we assumed that y(·) is nondecreasing, the VaR constraint (3.2)

can be rewritten as

− inf{m|P(X ≤ y−1(exp(m))) > α} = V aRα,

which means

P(X ≤ y−1(exp(−V aRα))) ≥ α.

We additionally assume that exp(−V aRα) < Rf , i.e. that the gross return at the

VaR is smaller than the risk-free gross rate. This is usually the case: the gross

return at VaR is usually below 1 (a loss), while Rf is usually above 1.

Let z = y−1(exp(−V aRα)). Construct a sequence

yn(x) =


0, x ≤ z,

exp(−V aRα), z < x ≤ n,

Kn, x > n.

(3.3)

Then it holds for every n > z that

P(yn(X) = 0) = P(X ≤ z) ≥ α,

P(yn(X) ≤ exp(−V aRα)) > α,

− inf{m|P(yn(X) ≤ exp(m)) > α} = V aRα,

thus, the VaR constraint (3.2) is fullfilled.
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Due to no-arbitrage, we have under the martingale measure P∗

E∗[yn(X)] =

∫
R+

yn(x)`(x)f(x)dx = Rf , (3.4)

which is equivalent to

z∫
0

0`(x)f(x)dx+

n∫
z

exp(−V aRα)`(x)f(x)dx+

∞∫
n

Kn`(x)f(x)dx = Rf ,

then we have

Kn =

Rf − exp(−V aRα)
n∫
z

`(x)f(x)d(x)

∞∫
n

`(x)f(x)d(x)

. (3.5)

When n → ∞, the numerator of (3.5) converges to some nonzero constant and

the denominator converges to 0. Thus, lim
n→∞

Kn =∞.

E[yn(X)] =

z∫
0

0f(x)dx+

n∫
z

exp(−V aRα)f(x)dx+

∞∫
n

Knf(x)dx (3.6)

= exp(−V aRα)(F (n)− F (z)) +

Rf − exp(−V aRα)
n∫
z

`(x)f(x)d(x)

∞∫
n

`(x)f(x)d(x)

(1− F (n))

= exp(−V aRα)(F (n)−F (z))+

Rf − exp(−V aRα)

n∫
z

`(x)f(x)d(x)

 1− F (n)
∞∫
n

`(x)f(x)d(x)

.

(3.7)

When n→∞, the term exp(−V aRα)(F (n)− F (z)) and the term

Rf − exp(−V aRα)
n∫
z

`(x)f(x)d(x) in equation (3.7) converge to some nonzero
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constants, respectively. The term

1− F (n)
∞∫
n

`(x)f(x)d(x)

=
1− F (n)

1−
n∫
0

`(x)f(x)d(x)

, (3.8)

according to L’Hopital, when n→∞, equals

−f(n)

−`(n)f(n)
=

1

`(n)
→∞,

because we assumed that `(n)→ 0 for n→∞.

Thus, we have lim
n→∞

E[yn(X)] =∞.

Generally, if we see the payoff of the products as a function of the underlying’s

return, the above proof constructs a type of product that gives investors nothing

at the lower tail of the underlying’s return distribution. In a large part of the

distribution, it gives the investor exactly the log return of the VaR but not more

than that. At the upper tail of the distribution, it gives a relatively large return.

Furthermore, as we see from the above proof, if this return at the upper tail goes

to infinity while its probability goes to zero, the expected return of the whole

product (at least theoretically) goes to infinity. This construction meets the VaR

constraint and gives (arbitrarily) large expected returns.

We now show that the products offering such a return profile can be con-

structed with four European call options with the same maturity:

yt = e−rf (T−t)
(

exp(−V aRα)

d
(C1

t − C2
t ) +

Kn − exp(−V aRα)

e
(C3

t − C4
t )

)
.

(3.9)

The four call options C1, C2, C3 and C4 have strikes K1 = z − d, K2 = z,

K3 = n and K4 = n+ e, respectively. Ci
t , i = 1, 2, 3, 4, are their values at time t.

This means we construct a structured product by longing exp(−V aRα)
d

units of C1,

shorting the same number of C2, longing Kn−exp(−V aRα)
e

units of C3 and shorting

again the same amount of C4. d and n are parameters of the product which can

be adjusted by the issuer. Figure 3.1 gives the payoff diagram of this product.
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A2 

A1 

z-d 0 z n n+e 

0 

exp(-VaRα) 

Kn 

X 

y(X) 

Figure 3.1: Payoff diagram

At maturity time T , the value of this structured product is:

yT =
exp(−V aRα)

d
(C1

T − C2
T ) +

Kn − exp(−V aRα)

e
(C3

T − C4
T ) (3.10)

=
exp(−V aRα)

d
((XT−K1)+−(XT−K2)+)+

Kn − exp(−V aRα)

e
((XT−K3)+−(XT−K4)+)

=
exp(−V aRα)

d
((XT−(z−d))+−(XT−z)+)+

Kn − exp(−V aRα)

e
((XT−n)+−(XT−(n+e))+).

By doing so, we are able to construct a structured product with a payoff profile:

yn(X) =



0, X ≤ z − d,
exp(−V aRα)

d
(X − z + d), z − d < X ≤ z,

exp(−V aRα), z ≤ X ≤ n,

exp(−V aRα) + Kn−exp(−V aRα)
e

(X − n), n ≤ X ≤ n+ e,

Kn, X > n+ e.

(3.11)

This product satisfies the VaR constraint (3.2).

Additionally, yn(X) has to fulfill the no-arbitrage condition (3.4). Thus, the
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areas of the triangles A1 and A2 in the payoff diagram Figure 3.1 must be equal

under P∗:

z∫
z−d

exp(−V aRα)

d
(x− z + d)dP ∗X(x) =

n+e∫
n

Kn − exp(−V aRα)

e
(x− n− e)dP ∗X(x).

(3.12)

The expected return of the product is then given by

E[y(X)] = 0·P(X ≤ z−d)+

z∫
z−d

exp(−V aRα)

d
(x− z + d)f(x)dx+exp(−V aRα)P(z ≤ X ≤ n)

+

n+e∫
n

(
exp(−V aRα) +

Kn − exp(−V aRα)

e
(x− n)

)
f(x)dx+KnP(X > n+ e).

(3.13)

The first four terms are finite. The last term KnP(X > n+ e) equals

Kn (1− F (n+ e)) =

Rf − exp(−V aRα)
n∫
z

`(x)f(x)d(x)

∞∫
n

`(x)f(x)d(x)

(1− F (n+ e)) , (3.14)

with Kn derived from the no-arbitrage condition and equation (3.5). Following

the same procedure as the proof of Proposition 3.2.1, (3.14) is unbounded, when

n goes to infinity, i.e., lim
n→∞

E[yn(X)] = ∞. Thus, the expected return of the

structured product is unbounded.

If we assume that a behavioral investor follows the (simple and natural) strat-

egy to choose the product with the largest return in his risk class, such products

will be highly attractive to him, although they will very likely not reflect his true

preference for risk exposure. A sophisticated investor would notice that from

the payoff diagram. Risk classifications, however, are designed particularly for

unsophisticated, “behavioral” investors.
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These products just serve as a theoretical construction for us to demonstrate

the problem. They are not important in the market at the moment. However,

this kind of structured products might become more and more interesting in the

market, because the EU regulation pointed out in this research might drive banks

to design products in this direction. A similar type of structured products already

exists in the market, namely the so-called stability notes. Investors can receive

an interest rate higher than the risk-free rate and at maturity they can get their

initial capital back, unless some “disruptive event” occurs. A disruptive event can

be, e.g., a stock market crash. For example, if the DAX decreases more than 10%,

then the product expires and investors get only max(0, 100%−L ∗ [M − 10%]) of

their capital back, where M is the percentage of how much the DAX decreases. L

is the leverage of the product set before. If L = 10 and M = 15%, then investors

lose half of their capital. If M = 20%, then investors lose all of their capital. Such

a product could be in the lowest risk class, according to the EU classification,

although a total loss is possible.

A practical example

We now look at some simple numerical examples. Imagine a product of this

type constructed on 19 January 2012 with an initial value of 100 EUR and a

maturity of one year (52 weeks). Its underlying is the DAX. As risk-free interest

rate serves the 12 months Euribor, which was at 1.812% on this day. Based on the

historical weekly performance from 2007 to 2011, the 1% quantile of the annual

gross return of the underlying is 54.57% (net return -45.43%). By multiplying this

return with the price of the DAX on 19 January, 2012, which was at 6416.26, we

obtain a target price of 54.57%×6416.26 = 3501.35. This target price corresponds

to z in Section 3.2.1. It is the underlying price level where the corresponding payoff

of the structured product is supposed to be exp(−V aRα).

Due to the fact that liquidity for DAX options is too low (particularly for

strike levels far away from the current DAX level), we instead use four call warrants

(Optionsscheine). Warrants are financial derivatives similar to options. One major

difference between warrants and options is that the former are issued by private
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parties, typically the corporation on which a warrant is based, while the latter are

exchange based. We obtained the information on warrants from Scoach, which

is a popular trading platform for structured products in German-speaking areas.

Real-time quoted prices as well as historical prices of financial securities can be

easily found online. The data include issuer, type (call or put), conversion ratio,

exercise type (European or American), bid and ask price, etc.

We then follow the approach presented in the last section to construct the

structured products with four call warrants. In real markets like Scoach, the

strike price is not continuous but discrete. Therefore, we cannot always find

warrants with the exact same strikes as suggested by our theory. In case we

cannot find a perfect match, we choose the warrants with strikes as close to our

“theoretical strikes” as possible. The first call’s strike is chosen to be slightly

lower than the target price, the second’s strike is slightly higher than the first

call’s strike and very close to the target price. For the other two call warrants,

we try different strikes and choose the ones that give the largest average return

when used together with the first two warrants. See Table 3.1 for an overview.

Theoretically, we would want to have the strikes of the third and fourth call

as large as possible to increase the expected return. However, when applied to

historical market data (past 5 years’ underlying prices), strikes of 5000 and 5050

for the third and fourth call, respectively, yield the highest average return. One

reason for this is probably that call options (warrants) which are far out of the

money are overpriced by issuers. Another, maybe more important, reason is that

simulating product returns with weekly underlying data from the past 5 years, in

accordance with the EU regulation, is probably not a very good approximation to

the real expected return as anticipated by the market. Following the methodology

prescribed in CESR (2010), we compute the VaR of this product. Table 3.2 shows

the performance of this product based on a simulation over the past 5 years with

different quantities of each call warrant in it. These quantities of warrants are

obtained by solving a system of equations. They have to meet the following

conditions: (1) Given a desired volatility level (0.4%, 1%, etc.), the corresponding

VaR value should exactly be the return of the product, when only the first and the
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1st Call 2nd Call 3rd Call 4th Call
Strike 3400 3450 5000 5050
Expiry March 13, 2013 March 13, 2013 March 13, 2013 March 13, 2013

Conversion ratio 100 : 1 100 : 1 100 : 1 100 : 1
Exercise type American American American American

Mid price 30.87 30.42 16.85 16.45

Table 3.1: Call warrants used to construct the product.

Construction 1 Construction 2 Construction 3 Construction 4 Construction 5
Quantity of 1st Call 201.73 198.93 189.79 168.46 152.8532
Quantity of 2nd Call -201.73 -198.93 -189.79 -168.46 -152.8532
Quantity of 3rd Call 23.05 26.21 36.48 60.4863 78.04
Quantity of 4th Call -23.05 -26.21 -36.48 -60.4863 -78.04
Average log-return 10.06% 9.98% 9.71% 8.91% 8.18%

99% VaR -0.86% 0.54% 5.24% 17.16% 26.88%
EU volatility 0.4% 1% 3% 8% 12%

True volatility 3.87% 4.43% 6.29% 10.98% 17.76%
Risk Class 1 2 3 4 5

Table 3.2: Performance of the structured products with different compositions, as-
suming a total investment of 100 EUR. (Negative quantity means short position.)

second calls are exercised (underlying price is below the strike of the third call);

(2) With the budget constrain of 100 EUR, the first and the second calls have the

same quantity, the third and the fourth calls also have to have same quantity.

With a 100 EUR budget, the first construction takes 201.73 long positions

in the first call warrant, the same short positions in the second call, 23.05 long

positions in the third call and the same short positions in the fourth call. By

doing so, we achieve an average log-return of 10.06%. According to CESR (2010)’s

calculation, the 99% VaR of this product is −0.0086 and the corresponding annual

volatility1 is 0.4%. This product is, thus, classified into risk class 1, i.e., the

lowest risk group. The second to the fifth construction use different amounts of

warrants and exhibit different risk-return profiles. By changing the quantities of

call warrants, we can have the product classified into risk class 2, 3, 4, 5, etc. To

consider robustness, we tried different combinations of call warrants with other

1This is the volatility of a lognormally distributed asset with the same VaR.
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strikes and got similar results.2

The trick this product does, is similar to the trick we used in Section 2, namely:

in less than 1% of the cases it gives a return smaller than VaR. In some cases

returns just equal VaR and in other cases the product gives relatively large returns

to make the average return of the whole product as large as possible. This result

looks attractive for investors: While the 1 year Euribor on the same day offers

an interest rate of 1.812% (a log-return of 1.796%), this product gives investors

a log-return of 10.06% with 0.4% “official” volatility whilst being classified into

the lowest risk class, according to EU regulations. However, the real risk within

this product can be higher. The true volatility based on historical simulations

is 3.87%, i.e., almost ten times as high as the “official” volatility. Theoretically,

there is a nearly one percent chance that the investor loses all of his investment.

(In this example, there is a 1% chance that the DAX is below the target price of

3501.35 in the past 5 years.) By designing the product tailored to the VaR, the

tail distribution of the product’s return is ignored. As long as the 1% quantile

meets the VaR requirement, other parts of the return distribution can be freely

chosen. This leaves space for performance manipulation, especially when financial

derivatives are included in the portfolio, which makes it possible to obtain almost

any form of return distribution. Again, less sophisticated, behavioral investors

will fall into this “trap”.

3.2.2 Alternative risk-return measures

Theory

While previous section clearly demonstrated the strong limitations of the new

risk classification scheme based on Value at Risk, the question remains open

whether there exists a more appropriate risk measure for structured products.

2We notice that the average log-return of the product does not increase accordingly in the
riskier classes. EU regulation (CESR (2010)) simulates log-return of structured products with
past 5 years’ weekly underlying prices. The average log-retun in Table 3.2 is the average of
these simulated log-returns. The use of 5 years’ historical weekly prices, which amounts to less
than 300 observations, may not sufficiently reflect the return distribution of the underlying in
the future and thus explain the relation between return and risk class in Table 3.2.
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A distinct feature of structured products is that, theoretically, any payoff

profile is achievable. This leaves space for manipulation as long as only part

of, but not the whole payoff distribution, is concerned by the risk measure. Let’s

take expected shortfall (ES) for example. In the case of a continuous distribution,

it is defined as the conditional expectation of the return given that the return is

lower than VaR (to be consistent with the definition of VaR in Section 2.1, we

define ES with log return here),

ESα = E(ln(X)| ln(X) ≤ −V aRα).

Although this method considers not only one quantile point as VaR does, but

the whole lower tail of the return distribution (the expectation of this part), it

still neglects the other part of the return distribution above the lower tail. It is

not difficult to design structured products which meet the constraint of ES at the

lower tail but still give a high expected return. This kind of products can even

also have a certain probability for the investor to lose most of his investment,

although this problem is obviously much smaller than with VaR.

The very fact that structured products allow for so much flexibility seems to

make it possible to adapt their design to any possible risk classification scheme

so that the scheme will underestimate their risk and a handsome expected return

with little risk can be promised to prospective investors. In this section we want

to discuss whether this is indeed the case.

To this aim, we define at first what we mean with an appropriate risk–return

measure:

Definition 3.2.2. An appropriate risk–return measure is a pair of two functions

(measuring risk and return, respectively) depending on the product’s gains and

losses and the market parameters such that:

(1) The risk only depends on the losses of the product.

(2) Risk is strictly monotonic regarding all losses, i.e. if the losses become worse

in some situations and not better anywhere, the risk increases.
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(3) Return is strictly monotonic regarding all gains, i.e. if the gains become

better in some situations and not worse anywhere, the return increases.

(4) The return of a risk-free fixed interest investment corresponds to its interest.

(5) For a given maximum level of risk, the largest achievable return is bounded.

All of these conditions seem to be intuitive, however, VaR as risk measure

and expected return as return measure do not satisfy these conditions: As we

have seen in the previous section, condition (5) is violated. Moreover, VaR is not

monotonic, because only the payoff that occurs at the 99% probability value plays

any role for its computation. Therefore, condition (2) is also violated.

An appropriate risk-return measure would not allow behavioral investors, who

simply search for a high return within a certain risk category, to be fooled into tak-

ing inappropriate risks as easily. But does there exist any appropriate risk–return

measure? To answer this question, we need to recall the concept of martingale

measure: This probability measure can be understood as normalized market price

for “Arrow-securities”. An Arrow-security at x is a contract that pays out one

monetary unit at maturity if and only if the underlying has the value x at ma-

turity. Martingale measures can be estimated from option prices (e.g., Jackwerth

and Rubinstein (1996)). It is, therefore, possible to use them for the construction

of a risk–return measure – at least in theory, being aware of potential implemen-

tation issues.

We define the following risk–return measure:

Definition 3.2.3. Define the risk σ̃ and the return µ̃ of a structured product with

payoff function y on a market with martingale measure P∗ by

σ̃ := −E∗[(y(X)−Rf )1y(X)<1] = −
∫
{x; y(x)<1}

(y(x)−Rf ) dP
∗
X(x), (3.15)

µ̃ := rf + E∗[(y(X)−Rf )1y(X)>1] = rf +

∫
{x; y(x)>1}

(y(x)−Rf ) dP
∗
X(x), (3.16)
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where 1A denotes the indicator function of the set A.

We can prove the following theorem:

Theorem 3.2.4. If P∗ > 0 a.e. (which is the case if the market is arbitrage-free),

then (σ̃, µ̃) as defined by Definition 3.2.3 is an appropriate risk–return measure

in the sense of Definition 3.2.2.

Proof. Condition (1) holds by definition. (2) and (3) follow from the assump-

tion that P∗ > 0 a.e. Condition (4) follows from a simple calculation with the

expectation, for y(x) = Rf :

µ̃ := rf + E∗[(y(X)−Rf )1y(X)>1] = rf + E∗[(Rf −Rf )1y(X)>1] = rf .

Finally, we need to prove the crucial condition (5). From the No-Arbitrage Con-

dition we have

E∗[y(X)] = Rf . (3.17)

Therefore, µ̃ − σ̃ = rf or µ̃ = rf + σ̃. In other words: When we prescribe a

maximum level of risk σ̃max , the maximum return can at most be rf + σ̃max

which provides us with the required bound.

From the proof we can also see that using this martingale measure for risk

and return, the classical risk–return line based on the CAPM can be converted

to a more general setting that includes structured products: all products will be

placed on a sloping line in the new µ̃–σ̃ diagram, like classical assets are placed

on a sloping line of the mean–variance diagram.

While the proposed risk-return measure protects against “disguising” of risk,

it looks at first glance very unusual: normally, risk and return measures use the

physical probability and not the martingale (or risk-neutral) probability. What

are the implications of this? The martingale measure can be understood as the

prices of Arrow securities. They result from an aggregation of beliefs and prefer-

ences of the market participants. In this way, risk preferences are already built
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into the risk-return measure. Nevertheless, one might argue that for sophisti-

cated investors these two parameters would not be sufficient to decide on their

investments. This is certainly true, however, in this article we discuss behavioral

(unsophisticated) investors, since they are the group for which the regulation has

been designed. Our result shows that the current regulation poses severe prob-

lems for such investors (while sophisticated investors might simply ignore the EU

regulated risk measure and use their own measures). The risk-return pair intro-

duced in this section offers one possible solution to circumvent this problem. It

should be emphasized that we do neither claim uniqueness nor optimality for this

measure, but it seems to us a very parsimonious way to achieve the necessary

goals.

Applications

We apply the new risk-return measure σ̃ and µ̃ to some real world examples

for yn(X) (equation (3.11)) and compare the results with the VaR-based risk

measure. We do not directly estimate martingale measures from market data

and then price the two equations (3.15) and (3.16) with the estimated martingale

measure. Instead, we use warrants again to construct two sub-portfolios which

have the same payoff profile as equations (3.15) and (3.16). Then we find out the

cost for the construction of each sub-portfolio. Equation (3.15) can be regarded

as a product giving the same payoff as the original product minus the risk-free

rate, when the original product’s gross return is lower than one, and otherwise it

pays nothing. Equation (3.16) is a product having the same payoff as the original

product minus the risk-free rate, when the original product’s gross return is larger

than one, and otherwise it pays nothing. This method is relatively simple and

avoids the estimation of the martingale measure.3

In the construction of the two sub-portfolios, some warrant prices are interpo-

lated with cubic splines in case their strikes are unavailable in the market. We use

interpolations because this time we need precise strikes. Thus, σ̃ is the negative

3A detailed discussion of the methodology for implementing the new risk-return measure,
especially the part dealing with the estimation of martingale measure, would be beyond the
scope of this research and can be the topic of subsequent research.
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Construction 1 Construction 2 Construction 3 Construction 4 Construction 5
Quantity of 1st Call 201.73 198.93 189.79 168.46 152.8532
Quantity of 2nd Call -201.73 -198.93 -189.79 -168.46 -152.8532
Quantity of 3rd Call 23.05 26.21 36.48 60.4863 78.04
Quantity of 4th Call -23.05 -26.21 -36.48 -60.4863 -78.04
Average log-return 10.06% 9.98% 9.71% 8.91% 8.18%

99% VaR -0.86% 0.54% 5.24% 17.16% 26.88%
EU volatility 0.4% 1% 3% 8% 12%

True volatility 3.87% 4.43% 6.29% 10.98% 17.76%
Risk Class 1 2 3 4 5

µ̃ 10.18% 10.42% 10.87% 11.94% 12.72%
σ̃ 8.14% 8.38% 8.84% 9.9% 10.68%

Table 3.3: Performance of the structured products with different compositions, as-
suming a total investment of 100 EUR. (Negative quantity means short position.)

cost of the “lower sub-portfolio” relative to the initial value of the whole portfo-

lio (100 EUR). µ̃ is the risk-free rate plus the cost of the “upper sub-portfolio”

relative to the initial value of the whole portfolio. The results are presented in

Table 3.3, together with the results of the VaR-based risk measure. We see that

σ̃ increases as µ̃ increases, from construction 1 to construction 5 towards riskier

classes.

We apply the VaR-based risk measure and our new risk-return measure to

two common structured products: capital protected products and discount cer-

tificates. The capital protected products we constructed here have the DAX as

its underlying. They are constructed with zero-coupon bonds and call warrants.

The price of a zero-coupon bond is simply a discount with the Euribor as risk-free

rate. Discount certificates here are composed with underlying and short calls.

Underlying is again the DAX. All warrant prices are obtained from Scoach, with

the 19 January 2012 as construction date. Results are presented in Table 3.4 and

Table 3.5. For capital protected products, the risk and return profiles change

when the level of protection is changed. A lower level of capital protection leads

to more risk and a larger return measure µ̃. For discount certificates, the risk

and return profile changes with the discount rate: The lower the discount rate,

the lower the risk, as measured by EU volatility, true volatility or the new risk
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100% Protection 98% Protection 95% Protection 90% Protection
Average log-return 0.94% 0.00% -1.56% -4.24%

99% VaR 0 0.0202 0.0513 0.1054
EU volatility 0.77% 1.63% 2.95% 5.23%

True volatility 1.28% 2.70% 4.84% 8.44%
Risk Class 1 2 3 4

µ̃ 2.58% 3.64% 5.17% 7.74%
σ̃ 0.80% 1.82% 3.48% 5.90%

Table 3.4: Performance of capital protected products.

89.32% Discount 92.53% Discount 95.10% Discount 97.14% Discount
Average log-return 2.61% 1.58% 0.45% -0.86%

99% VaR 0.3698 0.4050 0.4325 0.4536
EU volatility 16.09% 17.50% 18.59% 19.43%

True volatility 12.63% 14.54% 16.03% 16.93%
Risk Class 6 6 6 6

µ̃ 8.25% 9.16% 9.90% 10.46%
σ̃ 7.76% 8.69% 9.43% 10%

Table 3.5: Performance of discount certificates.

measure σ̃. Lower discount rates also correspond with lower return measures µ̃.4

By comparing the results of applying the VaR-based risk measure and our

new risk-return measure to the three types of structured products, we make the

following observations:

The products yn(X) of Section 2 have the highest returns, as measured either

by average log-return or by our new return measure µ̃. These products have

an average log-return up to 10.06%, while being classified into risk class 1. In

contrast, capital protected products have the lowest returns. In the case of 100%

4We notice that the differences between µ̃ and σ̃ within each type of the three products are
relatively constant, but they differ from type to type of the products. For the products yn(X),
µ̃ − σ̃ is always 2.04%, slightly higher than the risk-free rate (1.812%). For capital protected
products, µ̃− σ̃ is always very close to the risk-free rate. For discount certificates, it is more than
1% below the risk free-rate. Theoretically, the difference between µ̃ and σ̃ should be the risk-free
rate. In practice, mispricing for options is not uncommon (e.g., Constantinides et al. (2009)),
which explains the deviations. The size of the difference is in line with literature studying the
mispricing of structured products.
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capital protection, they can be also classified into risk class 1, but deliver only an

average log-retun of 0.94%. The VaR-based risk measure exhibits a substantial

inconsistency here. In risk class 1 (the class with the lowest risk), one product can

have a log-return of 10.06%, while another has only 0.94% – obviously, downside

risk is not adequately modeled here. If we look at µ̃ and σ̃ of these two products,

the difference is well reflected: The product of construction 1 has both a larger

µ̃ and a larger σ̃ than the 100% capital protected products. These two products

have substantially different risk-return profiles. yn(X) is much riskier than the

100% capital protected products, judging from the σ̃. Classifying them into the

same risk class can be seriously misleading for investors. Discount certificates

have returns smaller than yn(X) but higher than capital protected products, as

measured both by average log-return and µ̃. However, they are always classified

into risk class 6, a class with relatively high risk.

3.2.3 Conclusion

In this section, we have seen that the new EU regulations for risk classes of

structured products give unfortunate incentives to issuers of such products: Risk

can be “swept under the carpet” so that products with temptingly high expected

returns can be designed, and behavioral investors that follow a simple strategy

of maximizing expected returns within a given risk category will be tricked into

taking inappropriately high risks. We have proved that it is theoretically possible

to construct products with arbitrarily large expected return even in the lowest

risk class. In a real life example, we were able to produce an average return of

more than 10% in this lowest risk class, a class which is otherwise reserved for

bonds of issuers with first class credit rating. All of this demonstrates that a risk

measure based on VaR is not appropriate to regulate the market of structured

products. Issuers will soon use the resulting loopholes and investors will misjudge

the risk trusting the “officially” low risk levels that the issuer can claim.

While it is certainly important to point out weaknesses in regulations, it is

much more difficult to suggest a better alternative: Most natural risk classification

schemes could suffer from similar problems as the one based on VaR. Nevertheless,
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we show that it is, at least theoretically, possible to define a risk–return measure

that does not allow for any similar loopholes. In principle, this measure can be

computed from option market data, although we admit practical limitations, and

that other (better) methods might exist. At the very least, however, the measure

provides a “proof of concept” for an alternative regulation that is free of the

current regulation’s deficits.

There are further points about the validity of risk classifications – beyond the

scope of this article – that should be addressed in future studies. First, issuers

might improve the “official” risk category by choosing convenient underlyings.

Second, the computation of risk factors based on historical data might influence

results depending on the timing within the business cycle or the precise method

in which the historical data is used. Both points require further investigations.

3.3 Impact of the underlying on the risk-return

profiles of SPs

In this section, we discuss the impacts of the underlying’s return distribu-

tion, especially its first four moments, on the risk and return profile of structured

products. It is organized as follows: The following subsection presents the theo-

retical framework of the analysis. Subsection 3.3.2 discusses in a theoretical way

the impacts of the underlying moments on the expected return and the VaR of

a structured product. The theoretical findings are then tested by Monte Carlo

simulation in Subsection 3.3.3. Subsection 3.3.4 presents the results of historical

simulation. Subsection 3.3.5 forms the conclusion.

3.3.1 The theoretical framework

Consider two underlyings: underlying 1 and underlying 2. Let their prices Xi,

i = 1, 2, be random variables with the probability density functions fi(x) and the

cumulative distribution functions Fi(x).

Then, y(X1) and y(X2) are two structured products with identical payoff func-
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tion, but written on different underlyings. The (1 − α)-VaRs of these two struc-

tured products are given by,

V aRi,α = − inf{m|P(ln(y(Xi)) ≤ m) > α}, i = 1, 2. (3.18)

Among the different ways of defining VaR, we follow the one adopted by the

EU regulation (CESR (2010)), where VaR is calculated with log-return of the

structured product and with the sign changed.

In order to make the following discussions more consistent, we transform the

payoff function y(x) to be based on the log-return of X, namely, g(ln(x)) = y(x).

Then, g(·) = y(e(·)). In the rest of the text, we call g(·) the payoff algorithm of

the structured product.

Next we will see that a same VaR value does not guarantee the same expected

return of structured products with different underlyings. Denote the expected

return of the structured product by µy, namely, µy = E[y(x)] = E[g(ln(x)].

Proposition 3.3.1.

V aR1,α = V aR2,α (3.19)

is not a sufficient condition for

µy,1 = µy,2, (3.20)

where µy,i is the expected return of the product y(Xi).

Proof. (3.19) is equivalent to,

ln(y(qX1,α)) = ln(y(qX2,α)),

where qXi,α is the α-quantile of Xi (i.e. P(Xi ≤ qXi,α) = α).

(3.20) is equivalent to,

E[y(X1)] = E[y(X2)].

Assume y(x) is strictly increasing around qX1,α. Since ln(y(X)) is a strictly in-
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creasing function, we have further

qX1,α = qX2,α. (3.21)

Let us assume qX1,α = qX2,α = q, then

E[y(X1)] =

∫
R+

y(x)f1(x)dx =

q∫
0

y(x)f1(x)dx+

+∞∫
q

y(x)f1(x)dx (3.22)

and

E[y(X2)] =

∫
R+

y(x)f2(x)dx =

q∫
0

y(x)f2(x)dx+

+∞∫
q

y(x)f2(x)dx. (3.23)

Since the two terms
q∫

0

y(x)f1(x)dx and
+∞∫
q

y(x)f1(x)dx in (3.22) and the two terms

q∫
0

y(x)f2(x)dx and
+∞∫
q

y(x)f2(x)dx in (3.23) are all nonnegative,

∫
R+

y(x)f1(x)dx =

∫
R+

y(x)f2(x)dx

will not always hold for all fi(x) if we do not have the condition that

f1(x) = f2(x) a.e. (3.24)

In this proposition, we have the only condition (3.19), which is equivalent to

qX1,α = qX2,α = q, meaning that

q∫
0

f1(x)dx =

q∫
0

f2(x)dx = α. (3.25)

(3.25) is not sufficient for (3.24), so (3.19) is not sufficient for (3.20).
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The idea of Proposition 3.3.1 may seem not surprising. For a given payoff

function of the structured product, there is no one-to-one relationship between

the expected return and the VaR. Switching underlying will affect the risk and

return profiles of structured products. This motivates a further investigation into

the impacts of underlying’s return distribution on the structured products.

Consider a fixed payoff function of the structured product, the issuer (a bank

or another financial institution) of the product wants to find out an underlying,

based on which the product delivers a return as high as possible, subject to a

given VaR level. Mathematically, this means, given a payoff function y(x) of

the structured product, the issuer faces the problem of maximizing its expected

return while meeting the VaR constraint at the same time, i.e. searching for the

mean-VaR frontier, by choosing an appropriate underlying X:

max
X

µy = max
X

E[y(X)] = max
X

∫
R+

y(x)dP, (3.26)

subject to the VaR constraint

− inf{m|P(ln(y(X)) ≤ m) > α} ≤ V aRα. (3.27)

Let L = ln(X) and E[L] = µ. First, we expand the VaR of the product with

its underlying’s moments.

The (1− α)-VaR of y(x) is given by,

V aRα = − inf{m|P(ln(y(X)) ≤ m) > α}. (3.28)

Assume y is strictly increasing around qX,α, the α-quantile of X, then (3.28)

is equivalent to,

V aRα = − inf{m|P(X ≤ y−1(em) > α}

= − inf{m|P(ln(X) ≤ ln(y−1(em)) > α},
(3.29)

because ln(x) is strictly increasing.
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Let the α-quantile of L be qα (i.e. P (L ≤ qα) = P (ln(X) ≤ qα) = α ), then

V aRα = − ln(y(exp(qα))) = − ln(g(qα)), (3.30)

V aRα is decreasing in qα, apparently.

Based on Cornish-Fisher expansion (Cornish and Fisher (1937), Fisher and

Cornish (1960) and Hill and Davis (1968)), the α-quantile of a non-normal random

variable can be approximated with its first four moments and the standard normal

quantile,

qα = µ+ σ

(
pα +

p2
α − 1

6
γ1 +

p3
α − 3pα

24
γ2 −

2p3
α − 5pα

36
γ2

1

)
, (3.31)

where µ, σ, γ1, γ2 and qα are expectation, standard deviation, skewness, excess

kurtosis and α-quantile of ln(X), respectively. pα is α-quantile of a standard

normal distribution. Then, the (1 − α)-VaR of the structured product y(X) is

given by,

V aRα = − ln(g(qα))

= − ln

(
g

(
µ+ σ

(
pα +

p2
α − 1

6
γ1 +

p3
α − 3pα

24
γ2 −

2p3
α − 5pα

36
γ2

1

)))
.

(3.32)

Discussions have been raised on the validity and the accuracy of Cornish-

Fisher expansion and there are also other quantile approximation methods, see,

e.g. Wallace (1958). The reasons we choose Cornish-Fisher expansion to approx-

imate the quantile of underlying’s log-return are: Firstly, because it is one of the

earliest methods for quantile approximation, it is also one of the most well-known

methods (e.g. Gabrielsen et al. (2012) recently employs Cornish-Fisher expansion

to forecast VaR with time varying moments); Secondly, Cornish-Fisher expansion

requires that the limiting distribution of the approximated random variable is

normal distribution, which is theoretically the case of the log-return of financial

assets, according to the Central Limit Theorem; Thirdly, this article aims to study
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the direction of the impacts of underlying moments on the risk-return profiles of

structured products. Our primary concern is the sign before each moment in

(3.32). The accuracy of the approximation is thus relatively in a secondary place.

Next, we expand the expected return of the product. Let us further assume

that the payoff function of the structured product is a piecewise linear function

with the form,

y(X) =



a1X + b1, if X ∈ A1,

a2X + b2, if X ∈ A2,

· · ·

anX + bn, if X ∈ An,

(3.33)

where ai ≥ 0, bi ∈ R, for i = 1, 2, · · · ,m,
⋃n
i=1Ai = R+ and at least for one j,

aj > 0.

The vast majority of structured products will have payoff functions of this

form. In fact, almost all the official categories of structured products currently

listed at European Structured Investment Products Association (2012) can be

described with a payoff function in form of Equation (3.33). Exceptions are, e.g.

twin-win certificates, which have a decreasing payoff part, i.e. ai < 0 for some i,

and this part is defined only on a finite interval of X.

Rewrite (3.33) with the payoff algorithm g and ln(X),

y(X) = g(ln(X)) = g(L) =



a1e
ln(X) + b1, if X ∈ A1,

a2e
ln(X) + b2, if X ∈ A2,

· · ·

ane
ln(X) + bn, if X ∈ An,

(3.34)

=



a1e
L + b1, if L ∈ B1,

a2e
L + b2, if L ∈ B2,

· · ·

ane
L + bn, if L ∈ Bn.

(3.35)
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The expected return of y(X) is then given by,

µy =

∫
R

g(L)dP =

∫
B1

(a1e
L + b1)dP +

∫
B2

(a2e
L + b2)dP + · · ·+

∫
Bn

(ane
L + bn)dP

= a1

∫
B1

eLdP + a2

∫
B2

eLdP + · · ·+ an

∫
Bn

eLdP

+ b1P(B1) + b2P(B2) + · · ·+ bnP(Bn).

(3.36)

Because ai, bi, P(Bi) and
∫
Bi

eLdP are all nonnegative, there exist ā ∈ [min(ai),max(ai)]

and b̄ ∈ [min(bi),max(bi)], such that

a1

∫
B1

eLdP + a2

∫
B2

eLdP + · · ·+ an

∫
Bn

eLdP = ā
∑
i

∫
Bi

eLdP

and

b1P(B1) + b2P(B2) + · · ·+ bnP(Bn) = b̄
∑
i

P(Bi).

Thus, (3.36) can be written as,

µy = ā
∑
i

∫
Bi

eLdP + b̄
∑
i

P(Bi) = ā

∫
R

eLdP + b̄, (3.37)

namely,

µy = āE[eL] + b̄. (3.38)

Let us expand eL at µ (the expectation of L) with Taylor series,

eL = eµ+eµ(L−µ)+
eµ

2!
(L−µ)2+

eµ

3!
(L−µ)3+

eµ

4!
(L−µ)4+

∞∑
i=5

eµ

i!
(L−µ)i. (3.39)
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Take expectation of both sides of (3.39),

E[eL] = eµ +
eµ

2!
σ2 +

eµ

3!
µ3 +

eµ

4!
µ4 +O(µ5), (3.40)

where σ2 is the variance and µi is the i-th central moment of L, respectively.

Namely,

E[eL] = eµ +
eµ

2!
σ2 +

eµ

3!
σ3γ1 +

eµ

4!
σ4(γ2 + 3) +O(µ5), (3.41)

where γ1 and γ2 are the skewness and the excess kurtosis of L, respectively. Let

γ1 ≥ − 3
σ
, then, c.p., E[eL] is increasing in µ in (3.41). For example, if σ = 0.3,

γ1 ≥ − 3
σ

means the skewness of L is no smaller than −10.

Equation (3.38) becomes then,

µy = āeµ +
āeµ

2!
σ2 +

āeµ

3!
σ3γ1 +

āeµ

4!
σ4(γ2 + 3) + āO(µ5) + b̄, (3.42)

with positive ā and b̄.

Via Equation (3.42), we are able to expand the expected return of a structured

product with its underlying’s moments.

3.3.2 The impacts of underlying moments

By considering Equation (3.42) and Equation (3.32) together, we are able to

discuss the impacts of each moment of the underlying on the expected return

and the VaR of a structured product, simultaneously. Before we proceed, let us

summarize the important assumptions we have made,

(A1) The payoff function y(·) follows the form of (3.33);

(A2) The payoff function y(·) is strictly increasing around qX,α, the α-quantile

of X;
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(A3) The skewness γ1 of the underlying log-return ln(X), is no smaller than

− 3
σ
, where σ is the underlying volatility.

Proposition 3.3.2. If ln(X) follows a normal distribution (i.e. X is log-normal

distributed), and the payoff function y(X) of the structured product satisfies (A1)

and (A2), then under the mean-VaR framework, underlyings with large expected

log-return is preferred, the preference for its variance is ambiguous.

Proof. When ln(X) follows normal distribution, i.e. ln(X) ∼ N(µ, σ2),

qα = µ+ σpα, (3.43)

where pα denotes the α-quantile of a standard normal distribution. Equation

(3.30) becomes,

V aRα = − ln(g(µ+ σpα)). (3.44)

Since the level α for VaR is always at the left tail of the distribution (e.g., α

is 1% in the EU regulation CESR (2010)), pα in (3.44) is negative. V aRα is thus

decreasing in µ and increasing in σ.

Furthermore, (3.42) becomes

µy = āeµ +
āeµ

2!
σ2 +

3āeµ

4!
σ4 + āO(µ5) + b̄, (3.45)

because γ1 = 0 and γ2 = 0 for normal distributed ln(X).

Observe (3.44) and (3.45) together: Because we have ā ≥ 0, The first term

āeµ, the second term āeµ

2!
σ2 and the third term 3āeµ

4!
σ4 in (3.45) are all increasing

in µ. Larger µ will thus increase µy, the expected return of the product. µy is

obviously increasing in σ2, too. Larger underlying variance will increase expected

return of the product, it will however, increase the VaR of the product in (3.44)

at the same time.

In the CAPM world, the market portfolio is considered to be (log-)normal

distributed and mean-variance efficient. Proposition 3.3.2 suggests that in the

CAPM world, choosing the market portfolio as the underlying of structured prod-

ucts does not necessarily improve their risk and return profiles. Expected return
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is increasing both in the mean and in the variance of underlying’s log-return, how-

ever, the VaR will be decreasing in the mean and increasing in the variance of the

underlying at the same time. Small underlying volatility will decrease both the

return and the risk of the structured product.

Proposition 3.3.3. If ln(X) is distributed with zero skewness (e.g. symmetrically

distributed), and the payoff function y(X) of the structured product satisfies (A1)

and (A2), then under the mean-VaR framework, underlyings with large expected

log-return will be preferred, the preferences for the variance and the kurtosis are

both ambiguous.

Proof. In this case, (3.42) becomes

µy = āeµ +
āeµ

2!
σ2 +

āeµ

4!
σ4(γ2 + 3) + āO(µ5) + b̄. (3.46)

And (3.32) becomes,

V aRα = − ln

(
g

(
µ+ σ

(
pα +

p3
α − 3pα

24
γ2

)))
. (3.47)

The term pα + p3α−3pα
24

γ2 and the term p3α−3pα
24

in (3.47) are both negative,

because pα is negative and γ2 is nonnegative. Consequently, the (1 − α)-VaR of

the structured product V aRα will be decreasing in µ, increasing in σ and in γ2.

The expected return µy of the product is obviously increasing in µ. µy will also

be increasing in σ2 and in γ2, since γ2 ≥ 0. Because V aRα is decreasing in µ and

increasing in σ and in γ2, only large expectation from the underlying’s log-return

is preferred. The preferences for the variance and the kurtosis of the underlying in

this case are both conflicting: Larger variance (kurtosis) will increase the expected

return of the product, but increase the VaR at the same time.

Let the excess kurtosis γ2 in Proposition (3.3.3) be zero, (3.46) becomes (3.45)

and (3.47) becomes (3.44). We will have a corollary with the same result as

Proposition (3.3.2).
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Corollary 3.3.4. If ln(X) follows a mesokurtic distribution (i.e. ln(X) has zero

excess kurtosis) with zero skewness, and the payoff function y(X) of the structured

product satisfies (A1) and (A2), then under the mean-VaR framework, underly-

ings with large expected log-return is preferred, the preference for its variance is

ambiguous.

Finally, let us discuss the general case of the underlying distribution.

Proposition 3.3.5. If the payoff function y(X) of the structured product satis-

fies (A1) and (A2) and the underlying satisfies (A3), then under the mean-VaR

framework, underlyings with large expected log-return will be preferred. Large pos-

itive skewness is also preferred. The preference for the underlying variance is

ambiguous, the preference for underlying kurtosis is also ambiguous.

Proof. Let us directly look at (3.42) and (3.32).

For V aRα, it is clearly decreasing in µ. The impact of σ is ambiguous, because

term

pα +
p2
α − 1

6
γ1 +

p3
α − 3pα

24
γ2 −

2p3
α − 5pα

36
γ2

1 (3.48)

can be both positive and negative, depending on the combination of γ1 and γ2.

As for γ1, (3.48) is a quadratic function of γ1. The minimum is achieved at

γ1 = 3p2α−3
2p3α−5pα

, which is negative for pα < −1.581 (α < 0.057), a typical level for

VaR. Thus, when γ1 ≤ 3p2α−3
2p3α−5pα

, the VaR is increasing in γ1; when γ1 >
3p2α−3

2p3α−5pα
,

the VaR is decreasing in γ1. It is safe to say that large positive skewness will

reduce the VaR.

As for γ2, it is obvious that V aRα is increasing in γ2. Because σ > 0 and the

term p3α−3pα
24

< 0 for α < 0.042 (pα < −1.732), which is typical for VaR.

In (3.42), the impact of µ on µy is obviously positive. µy is increasing both in

γ1 and in γ2. Because σ > 0, µy is also increasing in σ.

Putting VaR together: Keeping other moments fixed, underlyings with large

expected log-return will be preferred. Large positive skewness will be preferred,

too. The impact of underlying variance is ambiguous. Increasing the underlying

kurtosis will increase the expected return of the product and however, increase

the VaR of the structured product, too.
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Let the excess kurtosis γ2 in Proposition (3.3.5) be zero, we will have the

following corollary.

Corollary 3.3.6. If ln(X) follows a mesokurtic distribution (i.e. ln(X) has zero

excess kurtosis), and the payoff function y(X) of the structured product satis-

fies (A1) and (A2) and the underlying satisfies (A3), then under the mean-VaR

framework, underlyings with large expected log-return will be preferred. Large pos-

itive skewness is also preferred. The preferences for the underlying variance is

ambiguous.

Let us summarize the above propositions and corollaries. If the payoff func-

tion y(X) of the structured product satisfies (3.33), then other moments being

fixed, its expected return is increasing in the expectation, in the variance, in the

skewness and in the kurtosis of the underlying’s log-return. Its VaR is increasing

in the kurtosis and decreasing in the expectation of the underlying’s log-return.

The impacts of the variance and the skewness are in general ambiguous. In other

words, under the mean-VaR framework:

1. Expectation µ

Other moments being fixed, large expected log-return of the underlying is al-

ways preferred.

2. Variance σ2

The preferences for the variance of the underlying’s log-return is ambiguous.

3. Skewness γ1

Large positive skewness is preferred.

4. Kurtosis γ2

The preference for the kurtosis of the underlying’s log-return is always am-

biguous. Large kurtosis increases both the expected return and the VaR of the

product.
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The results of this section indicate that mean-variance efficient underlyings,

in contrast to the intuition, do not necessarily improve the risk-return profiles

of structured products, because on the one hand, small variance may decrease

the VaR, dependent on the specific product setup; on the other hand, it will

decrease the return of the product as well. The importance of kurtosis risk in the

context of portfolio with derivatives, is also confirmed by the results. Ignoring the

kurtosis of the underlying whose log-return is leptokurticly distributed, will lead

to underestimations for the VaR of the structured product.

3.3.3 Monte Carlo simulation

Because it is not always possible to find out different real-world underlyings

with one moment being different and other three moments being similar, it will

be more feasible to test the theoretical results in the previous section with simu-

lations. In this section, random numbers are generated from a given distribution.

These random numbers as log-returns of the underlying are used to calculate the

underlying prices at the maturity of the structured product and consequently,

the payoffs of the structured product can be simulated. Based on the simulated

payoffs, we will have the simulated expected return (the mean of the simulated

return) and the VaR of the product. The distributions used are normal distribu-

tion, t-distribution and NIG-distribution. The structured products considered are

tracker certificates, discount certificates and capped outperformance certificates.

Normal distribution N(µ, σ2) is the distribution underlying the Black-Scholes

model (Black and Scholes (1973)) and the CAPM. If a random variable L ∼
N(µ, σ2), then the expectation, the variance, the skewness and the excess kurtosis

of L are µ, σ2, 0 and 0, respectively. Although it is widely used, literature has

suggested that financial asset’s log-return does not necessarily follow a normal

distribution. Asymmetry and “fat tail” are not uncommon in financial markets

(Tsay (2002)). Alternatives to normal distribution are, for example, t-distribution

and NIG-distribution.

If a random variable T follows a t-distribution with η degrees of freedom, then
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its probability density function is given by,

f(t) =
Γ
(
η+1

2

)
√
ηπΓ

(
η
2

) (1 +
t2

2

)− η+1
2

, (3.49)

where Γ is the gamma function. When η > 4, the expectation, the variance,

the skewness and the excess kurtosis of T are 0, η
η−2

, 0 and 6
η−4

, respectively. A

transformed version of t-distribution is often used. If L follows a transformed

t-distribution with η degrees of freedom, a location parameter µ and a scale pa-

rameter σ, then

L = µ+

√
η − 2

η
Tσ, (3.50)

where, T has a probability density function of (3.49). In comparison to a normal

distribution, L in (3.50) will have positive excess kurtosis and can better capture

the “fat tails” of the financial asset’s return.

The normal-inverse Gaussian (NIG) distribution is a subclass of the generalised

hyperbolic distribution. If a random variable G follows a NIG-distribution with

parameters µNIG, δ, α and β, then its probability density function is given by,

f(g) =
αδK1

(
α
√
δ2 + (g − µNIG)2

)
π
√
δ2 + (g − µNIG)2

eδγ+β(g−µNIG), (3.51)

where K1 is the modified Bessel function of the third kind with index 1, γ =√
α2 − β2. We will use a transformed variant in the simulation,

L = µ+
G− (µNIG + δβ/γ)

δα2/γ3
σ. (3.52)

This distribution is meant to capture both the skewness and “fat tail” from finan-

cial asset’s log-return.

Tracker certificates are one of the participation products. They simply track

the performance of the underlying assets. Holding a tracker certificate has basi-

cally the same payoff as holding the underlying itself. We consider this product in

the simulation as an example for products with very simple payoff functions. They
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are usually constructed with zero-strike calls (LEPO). For more detail of tracker

certificates, see Blümke (2009). The payoff function of a tracker certificate is

simply y(X) = X, and thus its payoff algorithm is g(L) = g(ln(X)) = eln(X) = eL.

Discount certificates are one of the yield enhancement products. As introduced

in Chapter 1, on the one hand, they offer the buyer shares of an underlying at a

price lower than its current price. The buyer, on the other hand, has to accept

a fixed maximum return (the cap). At maturity, if the underlying price is lower

than the cap, the buyer will receive one share of the underlying per discount

certificate; otherwise, the buyer will receive a cash settlement equivalent to the

cap. Discount certificates are usually constructed by holding the underlying and

selling call options with strike being the cap. The payoff function of a discount

certificate can be described by,

y(X) = X − (X −K)+ =

{
K, if X > K,

X, if 0 < X ≤ K,
(3.53)

where K is the cap. Its payoff algorithm is thus,

g(L) = g(ln(X)) =

{
K, if ln(X) > ln(K),

eln(X), if ln(X) ≤ ln(K),
(3.54)

=

{
K, if L > ln(K),

eL, if L ≤ ln(K).
(3.55)

Capped outperformance certificates (also called turbo certificates) are another

type of participation products. They allow for a disproportionate participation

in the gains of the underlying, at any level above the strike price. In return, the

buyer’s profit is limited (capped) on the upside. They are usually constructed

with the underlying, a long at-the-money call and two short out-of-the-money
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calls. Their payoff function can be described by,

y(X) = X+(X−K1)+−2(X−K2)+ =


2K2 −K1,

2X −K1,

X,

if X > K2,

if K1 < X ≤ K2,

if 0 < X ≤ K1,

(3.56)

for K2 > K1, where K1 is the strike of the first long call, which is usually set

to be the spot price of the underlying, K2 is the strikes of the two short calls

determined by the premium paid for the first call. The payoff algorithm of a

capped outperformance certificate is thus given by,

g(L) = g(ln(X)) =


2K2 − 1,

2eln(X) − 1,

eln(X),

if ln(X) > ln(K2),

if ln(1) < ln(X) ≤ ln(K2),

if ln(X) ≤ ln(1),

(3.57)

=


2K2 − 1,

2eL − 1,

eL,

if L > ln(K2),

if 0 < L ≤ ln(K2),

if L ≤ 0,

(3.58)

because we have normalized the spot price to be 1, K1 = X0 = 1.

Next, we simulate the underlying price at the maturity of the structured prod-

uct with the three distributions and plug them into the payoff functions of the

three products discussed above. In each case, the yearly risk free interest rate

is assumed to be 0.6%. The maturity of all products is assumed to be 1 year.

The confidence level for the VaR is set to be 99% (α = 0.01), the same as the

CESR (2010). Option prices are obtained also from the simulation, namely, the

discounted mean of the simulated payoffs at maturity. The strike K2 of the sec-

ond call in capped outperformance certificates are determined by Black-Scholes

option prices. Underlying price at time 0 are assumed to be 1,000. The cap of

the discount certificate is 1,500, 1.5 times of the innitial underlying price.

1. Simulation results with normal distribution

Figure 3.2, 3.3 and 3.4 present the simulation results of normal distribution for
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tracker certificates, discount certificates and capped outperformance certificates,

respectively. The parameter µ ranges from −0.2 to 0.2, σ is from 0.05 to 0.35.

The simulation times are 100,000. The mean return and the VaR of the products

are plotted against the mean and volatility of the simulated underlying log-return.

For the mean returns, all three products reveal similar shapes. All three

products exhibit clear upward trends of the mean return with respect to increasing

underlying mean µ. From the plots, the three products’ mean returns also increase

moderately, when the underlying volatility σ increases.

For the VaR, all three products have almost the same shape in the figures,

too. There are downward trends of the VaR with respect to an increasing µ and

upward trends respect to an increasing σ. These results are in line with the theo-

retical findings in previous section: If the underlying’s log-return follows normal

distribution N(µ, σ2), then the expected return of the product is increasing in µ

and in σ. The VaR of the product is decreasing in µ and increasing in σ.

2. Simulation results with t-distribution

Figure 3.5, 3.6 and 3.7 present the simulation results of t-distribution. The

upper parts of the figures plot the mean return and the VaR against the mean and

the volatility of the simulated underlying log-return, respectively. The degrees of

freedom of the t-distribution is 6, corresponding to a kurtosis of 3. The parameter

µ ranges from−0.2 to 0.2, σ is from 0.05 to 0.35. The simulation times are 100,000.

All three products reveal similar shapes: Product returns are increasing in µ and

in σ. Products’ VaRs are decreasing in µ and increasing in σ.

The lower parts of the figures plot the mean return and the VaR against the

excess kurtosis γ2 of the simulated underlying log-return with different volatilities

(30%, 32.5%, 35%, 37.5%) and µ = 0.1, η ranging from 5 to 9, respectively. For

all products, both the return and the VaR reveal slightly upward trends with an

increasing kurtosis. Besides, at a fixed kurtosis, larger volatility increases both

the product return and VaR.

The results also confirm Proposition 3.3.3 that for a underlying whose log-

return is distributed with zero skewness, a large µ is always preferred and the



3.3 Impact of the underlying on the risk-return profiles of SPs 65

impacts of volatility and kurtosis are conflicting: They both increase the product

return and the VaR at the same time.

3. Simulation results with NIG-distribution

Figure 3.8, 3.9 and 3.10 present the simulation results of NIG-distribution. The

upper parts of the figures plot the mean return and the VaR against the mean and

the volatility of the simulated underlying log-return, respectively. The parameters

of the NIG-distribution are µNIG = 0.1, δ = 3, α = 50 and β = −2. The simulation

times are 100,000. All three products reveal similar shapes: Product returns are

increasing clearly in µ and moderately in σ. Products’ VaRs are decreasing in µ

and increasing in σ.

The lower parts of the figures plot the mean return and the VaR against

the excess kurtosis γ2 and skewness γ1 of the simulated underlying log-return,

respectively. The parameters of the NIG-distribution are µ = 0.1, σ = 0.3, µNIG =

0, δ = 1, α ranging from 1 to 2 and β ranging from -0.5 to 0.5. Different from

previous cases, where we can discuss the impact of one moment while keeping the

other moments fixed; the skewness and the excess kurtosis of the NIG-distribution

simulation appear to be related with each other in this case. The excess kurtosis

γ2 seems to be a quadratic function of the skewness γ1. It is thus difficult to

identify the impact from each of them.

For the skewness γ1, there appear to be moderate upward trends of product

return with respect to increasing γ1 and clear upward trends of VaR with repect to

decreasing γ1 for all the three products (without γ2 being fixed). For the excess

kurtosis γ2, product return appears to be increasing with γ2, when γ1 is large

(positive); when γ1 is small (negative), product return appears to be decreasing

in γ2. However, these trends against γ2 is affected by γ1 at the same time. We are

unable to tell when γ1 is small (negative), whether the decreasing product return is

a consequence of a decreasing γ1 or a consequence of an increasing γ2. For VaR, it

is the same. The VaRs appear to be increasing with γ2, when γ1 is small (negative);

when γ1 is large (positive), products’ VaR appear to be decreasing in γ2. However,

we are unable to tell when γ1 is large (positive), whether the decreasing VaR is a
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Country Austria Finland France Germany Ireland Italy Netherlands
Stock index ATX OMX Helsinki 25 CAC 40 DAX ISEQ Overall FTSE MIB AEX

Mean -0.0207 0.0436 0.0066 0.0846 0.0184 -0.0712 0.0172
Vola 0.3124 0.2704 0.2019 0.1986 0.3048 0.2494 0.2428

Skewness -0.8503 -0.8287 -0.7119 -0.9776 -1.8469 -0.5596 -1.2310
Ex. Kurtosis 0.2444 0.1727 -0.1374 0.2503 3.5372 -0.0196 1.6501

Table 3.6: Descriptive statistics for the log-return of major European stock market
indices, from 3 March 2008 to 24 February 2014.

consequence of an increasing γ1 or a consequence of an increasing γ2.

The results are in line with the parts of Proposition 3.3.5 concerning the im-

pacts of expectation, variance and skewness. Since we are unable to distinguish

the effect of the excess kurtosis from that of the skewness in the simulation, the

impacts of excess kurtosis on the expected return and on the VaR of the product

are unclear in this case; although its impacts are confirmed in the previous case

of t-distribution simulation.5

3.3.4 Historical simulation

After seeing the results of Monte Carlo simulation in Section 3.3.3, we also

checked our theoretical findings with real-world data. We consider seven major

stock market indices in the eurozone and simulate the performances of the three

above-mentioned structured products with weekly historical stock index levels

from 2008 to 2014. See Table 3.6 for the descriptive statistics of the stock market

indices we used. The maturities of the products are again assumed to be 1 year.

Option prices are obtained with Black-Scholes formula. For the risk-free interest

rate, we take the average 12 months Euribor of the same year as the construction

date. For the volatility, we calculate the realized volatility of each index over the

next 52 weeks after the construction date. The VaR level is again 99%. The cap

of the discount certificate is 1.5 times of the index levels on the construction date.

One day in every week from 3 March 2008 to 25 February 2013, we construct

5We have also carried out simulations with skewed t-distribution (Hansen (1994)). The
results are similar as NIG-distribution: γ2 appears to be a quadratic function of γ1 and we are
unable to distinguish the effect of the excess kurtosis from that of the skewness.
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the three structured products. Then we plug the index levels 52 weeks later from

this day into the payoff function of the products to obtain products’ returns. Based

on these historically simulated returns, we calculate the VaR of the products.

The average return and the VaR of each of the three products for the seven

European stock indices are presented in Table 3.7. Products written on different

underlyings exhibit different risk-return profiles, as measured by average return

and VaR. In this case, it is impossible to perfectly compare the results between

different underlyings, because we cannot compare one moment while controlling

other three moments. However, we can still make the following observations:

First, Germany’s DAX appears to be the best performing underlying for all

three structured products. Products written on DAX have always the highest

average return and the lowest VaR. In contrast, Italy’s FTSE MIB delivers much

worse results. For all the three products, FTSE MIB has always lower average

returns but higher VaRs than products written on DAX. This can be explained

by the fact that DAX in this period has substantially the highest mean of the

log-return among the seven underlyings, while FTSE MIB has the lowest mean.

Second, let us look at Austria (ATX) and Finland (OMX Helsinki 25). The

mean of their log-returns differ substantially. However, the differences between

their volatilities and between their skewness are small. The difference between

their kurtosis is relatively small, too, compared to that between their means.

Finland’s stock index, which has a higher mean than Austria does, delivers better

risk-return profiles for structured products than Austria’s stock index does. This

again confirms the positive impact from the mean of the underlying log-return.

Third, for Austria (ATX) and France (CAC 40), the mean of their indices

are very close to each other and the skewness of CAC 40 is higher than that of

ATX. According to our theoretical results, products based on CAC 40 should

have (slightly) better risk-return profiles than products based on ATX. This can

be confirmed by the historically simulated results in Table 3.7, where products

written on CAC 40 have similar or a little higher average returns, but lower VaRs

than products written on ATX. Although differences between their volatilities

and between their kurtosis are not small, these two moments’ impacts on the risk-
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Country Austria Finland France Germany Ireland Italy Netherlands
Stock index ATX OMX Helsinki 25 CAC 40 DAX ISEQ Overall FTSE MIB AEX

Tracker certificates
Average return 1.0240 1.0804 1.0262 1.1085 1.0589 0.9592 1.0449

99%-VaR 0.8468 0.7133 0.5044 0.4445 1.0531 0.7057 0.6939
Discount certificates

Average return 1.0387 1.0887 1.0373 1.1205 1.0716 0.9756 1.0534
99%-VaR -0.0379 -0.085 -0.0366 -0.1138 -0.0691 0.0247 -0.052

Cappped. out. cer.
Average return 0.3847 0.4425 0.5487 0.5629 0.3165 0.4007 0.4585

99%-VaR 0.9554 0.8154 0.6002 0.5747 1.1504 0.9145 0.7797

Table 3.7: Historically simulated average gross return and 99%-VaR of structured
products (tracker certificates, discount certificates and capped outperformance cer-
tificates), written on major European stock market indices. Simulation with his-
torical indices levels from 3 March 2008 to 24 February 2014.

return profiles of structured products are ambiguous, according to our theoretical

findings.

3.3.5 Conclusion

In the this section, we have tried to discuss the impacts of underlying’s mo-

ments on the expected return and the VaR of structured products – in other words,

the preferences for the underlying’s moments under the mean-VaR framework.

We first see that the risk-return profile of a structured product can theoretically

be affected by different underlyings. Then, we expand the expected return of a

structured product with Taylor series and expand the VaR of the product with

Cornish-Fisher approach. This allows us to study the impacts of underlying’s first

four moments on the expected return and the VaR of a product, simultaneously.

Theoretical results are derived for the cases where the underlying’s log-return fol-

lows normal distribution, zero-skewness distribution, mesokurtic distribution or a

general distribution with nonzero skewness and nonzero excess kurtosis.

Under the mean-VaR framework, the findings show that for the majority of

structured products: other moments being fixed, underlyings with large expected

log-return are always preferred. The preference for the volatility of the under-

lying is ambiguous. Large positive skewness is also preferred. The impacts of
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its kurtosis on the expected return and the VaR of the product are ambiguous –

large kurtosis increases both the expected return and the VaR (risk) at the same

time. The results indicate that mean-variance efficient underlyings (the market

portfolio if in the CAPM world), do not necessarily improve the risk-return pro-

file of a structured product. Because small variance may decrease the VaR on

the one hand, it will on the other hand decrease the return of the product as

well. The importance of kurtosis risk in the context of portfolio with derivatives

is also confirmed by the results. Ignoring the kurtosis of the underlying whose

log-return is leptokurticly distributed, will lead to underestimations for the VaR

of the structured product.

The theoretical results are tested with Monte Carlo simulations. We consider

the cases of normal distribution, t-distribution and NIG-distribution. Structured

products used in the simulation are tracker certificates, discount certificates and

capped outperformance certificates. Simulation results are not at odds with the

theoretical findings.

A limitation of the research is that the discussions are based on one period

models. Although it is true that buyers of structured products usually implement

a buy-and-hold strategy and there is basically no trading before maturity, this one

period framework is not capable of considering the path-dependent products, e.g.

products with barrier option component or variance swaps, etc. Further study

can extend the framework of the research to a multi-period one.
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Figure 3.2: Simulated mean return (left) and VaR (right) of tracker certificates
with normal distributed underlying log-return. The x-axis is the mean of the simu-
lated underlying log-return. The y-axis is the volatility of the simulated underlying
log-return. 100,000 times simulation.
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Figure 3.3: Simulated mean return (left) and VaR (right) of discount certificates
with normal distributed underlying log-return. The x-axis is the mean of the simu-
lated underlying log-return. The y-axis is the volatility of the simulated underlying
log-return. 100,000 times simulation.
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Figure 3.4: Simulated mean return (left) and VaR (right) of capped outperfor-
mance certificates with normal distributed underlying log-return. The x-axis is
the mean of the simulated underlying log-return. The y-axis is the volatility of the
simulated underlying log-return. 100,000 times simulation.
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Figure 3.5: Top: Simulated mean return (left) and VaR (right) of tracker certifi-
cates with t-distributed (6 degrees of freedom) underlying log-return. The x-axis
is the mean of the simulated underlying log-return. The y-axis is the volatility of
the simulated underlying log-return. 100,000 times simulation. Bottom: Simu-
lated mean return (left) and VaR (right) of tracker certificates with t-distributed
underlying log-return. The x-axis is the excess kurtosis of the simulated underly-
ing log-return. The solid line, the dashed line, the dotted line and the “-.” line
stand for a volatility of 30%, 32.5%, 35% and 37.5%, respectively. 1,000,000 times
simulation.
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Figure 3.6: Top: Simulated mean return (left) and VaR (right) of discount certifi-
cates with t-distributed (6 degrees of freedom) underlying log-return. The x-axis is
the mean of the simulated underlying log-return. The y-axis is the volatility of the
simulated underlying log-return. 100,000 times simulation. Bottom: Simulated
mean return (left) and VaR (right) of discount certificates with t-distributed un-
derlying log-return. The x-axis is the excess kurtosis of the simulated underlying
log-return. The solid line, the dashed line, the dotted line and the “-.” line stand
for a volatility of 30%, 32.5%, 35% and 37.5%, respectively. 1,000,000 times
simulation.
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Figure 3.7: Top: Simulated mean return (left) and VaR (right) of capped out-
performance certificates with t-distributed (6 degrees of freedom) underlying log-
return. The x-axis is the mean of the simulated underlying log-return. The y-axis
is the volatility of the simulated underlying log-return. 100,000 times simulation.
Bottom: Simulated mean return (left) and VaR (right) of capped outperformance
certificates with t-distributed underlying log-return. The x-axis is the excess kur-
tosis of the simulated underlying log-return. The solid line, the dashed line, the
dotted line and the “-.” line stand for a volatility of 30%, 32.5%, 35% and 37.5%,
respectively. 1,000,000 times simulation.
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Figure 3.8: Top: Simulated mean return (left) and VaR (right) of tracker cer-
tificates with NIG-distributed underlying log-return. The x-axis is the mean of
the simulated underlying log-return. The y-axis is the volatility of the simulated
underlying log-return. 100,000 times simulation. Bottom: Simulated mean return
(left) and VaR (right) of tracker certificates with NIG-distributed underlying log-
return. The x-axis and the y-axis are the excess kurtosis (γ2) and the skewness
(γ1) of the simulated underlying log-return, respectively. The VaR plot is rotated
for a better view angle. 100,000 times simulation.
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Figure 3.9: Top: Simulated mean return (left) and VaR (right) of tracker cer-
tificates with NIG-distributed underlying log-return. The x-axis is the mean of
the simulated underlying log-return. The y-axis is the volatility of the simulated
underlying log-return. 100,000 times simulation. Bottom: Simulated mean return
(left) and VaR (right) of tracker certificates with NIG-distributed underlying log-
return. The x-axis and the y-axis are the excess kurtosis (γ2) and the skewness
(γ1) of the simulated underlying log-return, respectively. The VaR plot is rotated
for a better view angle. 100,000 times simulation.
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Figure 3.10: Top: Simulated mean return (left) and VaR (right) of tracker cer-
tificates with NIG-distributed underlying log-return. The x-axis is the mean of
the simulated underlying log-return. The y-axis is the volatility of the simulated
underlying log-return. 100,000 times simulation. Bottom: Simulated mean return
(left) and VaR (right) of tracker certificates with NIG-distributed underlying log-
return. The x-axis and the y-axis are the excess kurtosis (γ2) and the skewness
(γ1) of the simulated underlying log-return, respectively. The VaR plot is rotated
for a better view angle. 100,000 times simulation.
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Célérier, C. and Vallée, B. (2013). What drives financial complexity? a look into

the retail market for structured products. Research paper, HEC Paris.

CESR (2010). CESR’s guidelines on the methodology for the calculation of the

synthetic risk and reward indicator in the Key Investor Information Document.

Committee of European Securities Regulators. CESR/10-673.

Chang, B. Y., Christoffersen, P., and Jacobs, K. (2013). Market skewness risk and

the cross section of stock returns. Journal of Financial Economics, 107(1):46–

68.

Chen, H.-L., Jegadeesh, N., and Wermers, R. (2000). The value of active mutual

fund management: An examination of the stockholdings and trades of fund

managers. Journal of Financial and Quantitative Analysis, 35(3):343–68.

Constantinides, G. M., Jackwerth, J. C., and Perrakis, S. (2009). Mispricing of

s&p 500 index options. Review of Financial Studies, 22(3):1247–1277.

Cornish, E. A. and Fisher, R. A. (1937). Moments and cumulants in the specifica-

tion of distribution. Revue de l’Institut International de Statistique, 5:307–322.

Coval, J. D., Hirshleifer, D. A., and Shumway, T. (2005). Can individual investors

beat the market? Working paper, Harvard University.

Cui, X., Zhu, S., Sun, X., and Li, D. (2013). Nonlinear portfolio selection using ap-

proximate parametric value-at-risk. Journal of Banking & Finance, 37(6):2124–

2139.



84 BIBLIOGRAPHY

Das, S. R. and Statman, M. (2009). Beyond mean-variance: Portfolios with

derivatives and non-normal returns in mental accounts. SSRN Working Paper.

De Bondt, W. F. (1998). A portrait of the individual investor. European Economic

Review, 42(3-5):831–844.

El-Jahel, L., Perraudin, W., and Sellin, P. (1999). Value at risk for derivatives.

Journal of Derivatives, 6(3):7–26.

Elton, E. J. and Gruber, M. J. (2000). The rationality of asset allocation recom-

mendations. Journal of Financial and Quantitative Analysis, 35(1):27–41.

European Commission (2010a). Commission directive 2010/43/eu. Official Jour-

nal of the European Union, L 176:42–61.

European Commission (2010b). Commission regulation (eu) no 583/2010. Official

Journal of the European Union, L 176:1–15.

European Structured Investment Products Association (2012). Eusipa derivative

map. http://www.eusipa.org/images/grafiken/european_map_web.pdf,

Published: May. 2012, Accessed: 15 Jan. 2014.

Federal Reserve Bank of Minnneapolis (2012). Methodology for estimating risk

neutral probability density function. Federal Reserve Bank of Minnneapo-

lis Banking and Policy Studies. http://www.minneapolisfed.org/banking/

rnpd/methodology.pdf, Accessed: 25 Jun. 2013.

Figlewski, S. (2008). Estimating the implied risk neutral density for the u.s.

market portfolio. In Bollerslev, T., Russell, J. R., and Waston, M., editors,

Volatility and Time Series Econometrics: Essays in Honor of Robert F. Engle,

pages 323–354. Oxford Unversity Press.

Fisher, R. A. and Cornish, E. A. (1960). The percentile points of distributions

having known cumulants. Technometrics, 2(2):209–225.
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