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A B S T R AC T

In the first part of this work we generalize a method of building optimal confidence bounds
provided in Buehler (1957) by specializing an exhaustive class of confidence regions inspired
by Sterne (1954). The resulting confidence regions, also called Buehlerizations, are valid
in general models and depend on a “designated statistic” that can be chosen according
to some desired monotonicity behaviour of the confidence region. For a fixed designated
statistic, the thus obtained family of confidence regions indexed by their confidence level
is nested. Buehlerizations have furthermore the optimality property of being the smallest
(w.r.t. set inclusion) confidence regions that are increasing in their designated statistic. The
theory is eventually applied to normal, binomial, and exponential samples.
The second part deals with the statistical comparison of pairs of diagnostic tests and

establishes relations 1. between the sets of lower confidence bounds, 2. between the sets of
pairs of comparable lower confidence bounds, and 3. between the sets of admissible lower
confidence bounds in various models for diverse parameters of interest.

Z U S A M M E N FA S S U N G

Der erste Teil dieser Arbeit widmet sich der Verallgemeinerung eines Verfahrens von Bueh-
ler (1957) zur Konstruktion optimaler Konfidenzschranken, ausgehend von einer von Ster-
ne (1954) inspirierten, in naheliegendem Sinne universellen Klasse von Konfidenzbereichen.
Die dabei gebildeten Konfidenzbereiche, auch Buehlerisierungen genannt, sind in allgemei-
nen Modellen gültig und hängen von einer sog. »designierten Statistik« ab, welche gemäß
eines gewünschten Monotonieverhaltens des Konfidenzbereiches gewählt werden kann. Für
eine feste designierte Statistik besitzt die durch Indizierung durch das Konfidenzniveau ent-
standene Familie die Schachtelungseigenschaft. Buehlerisierungen besitzen ferner folgende
Optimalitätseigenschaft: Sie sind die (bzgl. mengentheoretischer Inklusion) kleinsten Konfi-
denzbereiche, welche bzgl. der designierten Statistik wachsen. Die Theorie wird schließlich
auf Normal-, Binomial- und Exponentialverteilungsmodelle angewandt.
Der zweite Teil befasst sich mit dem statistischen Vergleich von Paaren diagnostischer

Tests und stellt Beziehungen her 1. zwischen den Mengen unterer Konfidenzschranken,
2. zwischen den Mengen von Paaren vergleichbarer unterer Konfidenzschranken und 3.
zwischen den Mengen zulässiger unterer Konfidenzschranken in mehreren Modellen für
diverse interessierende Parameter.
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S Y M B O L S A N D A B B R E V I AT I O N S

LHS, RHS left-hand side, right-hand side
|A| cardinality of a set A∨, ∧ maximum, minimum

x−, x+ negative, positive part of a real number x
|m| the sum of the components of a multi-index m
f [A] image of a set A under a function f , i.e., {f(x) : x ∈ A}

f−1[B] preimage of a set B under a function f , i.e., {x : f(x) ∈ B}
pri projection onto the ith coordinate

1(p) indicator of a proposition p; equals 1 if p is true, otherwise 0
δx unit mass at a point x
Bp Bernoulli law with success probability p

Bn,p binomial law with sample size n and success probability p
Eλ exponential law with rate λ

Nµ,σ2 normal law with mean µ and variance σ2

Φ distribution function of the standard normal law N0,1

ϕ usual density of the standard normal law N0,1

suppP support of a law P

, , relations between models, introduced in Definition 5.3.2

In most of the remarks and many examples, the assumptions about the objects occurring
therein have been omitted for the sakes of brevity and a smoother readability. In such cases,
the assumptions of the immediately preceding definition, theorem, or lemma are tacitly
presupposed.
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I N T R O D U C T I O N

This work consists of two independent parts. The first part (Chapters 1–4) investigates
a class of confidence regions introduced in Buehler (1957), studied and generalized in a
multitude of papers such as Sudakov (1974), Winterbottom (1984), Harris and Soms (1991),
Reiser and Jaeger (1991), Revyakov (1992), Kabaila and Lloyd (1997), Kabaila and Lloyd
(2000), Kabaila (2001), Kabaila and Lloyd (2002), Kabaila and Lloyd (2003), Lloyd and
Kabaila (2003), Kabaila and Lloyd (2004), Kabaila and Lloyd (2006), Kabaila (2013), and
recently reinvented (see Lloyd and Kabaila, 2010) in Wang (2010). In the literature these
confidence regions have mainly been studied as confidence bounds, and are therefore known
under the names “Buehler bounds,” “tight confidence limits,” or “smallest upper/greatest
lower confidence bound.”
Before developing the theory of Buehler bounds, we introduce a class of confidence

regions in a general model P = (Pϑ : ϑ ∈ Θ) on an arbitrary measurable space (X ,A) for
the identity idΘ as parameter of interest. These confidence regions, very similar in nature
to the ones introduced in Sterne (1954), are given for β ∈ [0, 1] by

RT ,β(x) := {ϑ ∈ Θ: Pϑ(Tϑ > Tϑ(x)) < β} for x ∈ X

and depend on a family T = (Tϑ : ϑ ∈ Θ) of statistics Tϑ taking values in a separable totally
preordered set (which is practically always the real line). The family consisting of the RT ,β
turns out to be 1. nested if β varies, and 2. exhaustive if T varies, meaning that every
confidence region for the identity in P can be written as RT ,β for some T as above. The
latter universality property might appear interesting but it also makes this class too wide to
exhibit any optimality properties. If we restrict our focus, however, to families T consisting
of a single statistic T , henceforth called “designated statistic,” the then resulting confidence
region RT,β can be shown to be the smallest (with respect to set inclusion) confidence region
(with level β and for the identity in P) that is increasing in T . Under certain natural
conditions, RT,β becomes a confidence ray and can indeed be considered a generalization
of Buehler bounds, which explains the designation “Buehler confidence region.” If, instead
of its general aspect as a set-valued function admitting a certain confidence property, its
designated statistic is emphasized, RT,β is called “Buehlerization of T .”
The theory of Buehler confidence regions is presented here in a generality that may be

uncommon for some parts of statistics. We believe, however, that this approach simplifies
the comprehension of some proofs and does not noticeably hinder the reader’s grasping
of the essential notions. As for designated statistics, they can be assumed to take real
values for two reasons: firstly, the examples in the subsequent chapters employ solely real-
valued designated statistics; secondly, Theorem A.1.74 states that every separable totally
preordered set is in essence a subset of the real line.
Buehler’s theory is exemplarily applied to normal, binomial, and exponential samples.

In the normal setting, we start with the rather general model(
n⊗
i=1

N⊗mi
µi,σ2

i
: (µ, σ) ∈ Rn × ]0,∞[n

)
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x introduction

of n independent samples of known sizes mi and both unknown means µi and variances
σ2
i , and buehlerize several designated statistics. These examples, though most of them not

yielding useful confidence regions, prove fruitful in the more specialized models that follow,
where either variances σ2

i or means µi become known. In the binomial model(
n⊗
i=1

Bmi,pi : p ∈ [0, 1]n
)

of n independent binomial samples of known sizes mi and unknown success probabilities
pi, we consider variations of one designated statistic, namely the usual estimator for the
success probabilities vector. Several more specialized models appear for mainly illustrative
purposes. Buehlerization in the exponential model(

n⊗
i=1

E⊗miλi
: λ ∈ ]0,∞[n

)

of n independent exponential samples of known sizes mi and unknown rates λi yields useful
confidence regions with minimal effort and very straight-forward calculations. If the reader
wishes to obtain a glimpse into the practical application of the theory from Chapter 1, this
might be the right place to start.
The second part of this thesis (Chapter 5) investigates statistical relations between sev-

eral models for pairs of diagnostic tests. After a short informal introduction explaining the
terms “diagnostic test,” “sensitivity/specificity,” and “predictive values,” we state a multi-
nomial model by Gart and Buck (1966) that allows the study of pairs of diagnostic tests
when true states of the members of the population are unobservable and the prevalence of
the condition being examined is unknown. The main result establishes relations

• between the sets of lower confidence bounds,

• between the sets of pairs of comparable lower confidence bounds,

• between the sets of admissible lower confidence bounds

in various models for diverse parameters of interest. The proof of the result rests on a num-
ber of auxiliary results of essentially two different kinds: propositions allowing a (sometimes
partial) reduction of a statement in a certain model to one in a similar, already covered
model, and lemmas where images under certain linear maps of semialgebraic sets are com-
puted in an elementary manner (that is to say, without tools from real algebraic geometry).
In short, the outline of this thesis is thus as follows. Chapter 1 presents the theory behind

Buehler’s ideas, beginning with the general class of confidence regions RT ,β mentioned
above, specializing to Buehlerizations RT,β, and closing with some remarks on important
work published in that area. Chapters 2–4 apply this theory to normal, binomial, and
exponential models. The examples provided in these chapters assume some knowledge of
the concepts and terminology from Chapter 1, but can be read independently of each other.
Chapter 5 deals with the statistical comparison of pairs of diagnostic tests. It does not
rely on the previous chapters and can be read independently. Appendix A recapitulates
commonly used notions (such as functions and families, preorders, and topologies) and
some basic results, provides a counterexample to a conjectured inequality from Chapter 1
employing ordinal numbers, and recalls several basic statistical concepts.
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B U E H L E R C O N F I D E N C E R E G I O N S

• In 1957 Robert J. Buehler presented an increasing upper confidence bound in a
product binomial model for the product of the success probabilities. This confidence
bound has the optimality property of being smaller than any other such bound.
Buehler’s method of construction was readily generalizable and has since found wide
application in reliability theory. In statistics, however, this method remained until
recently largely unknown despite its interesting features and potential widespread
use. This chapter generalizes and develops some of the ideas published in the field of
Buehler bounds.

• Outline of this chapter:
– Section 1.1 introduces a class of confidence regions closely associated to both

Sterne’s (1954) confidence intervals and Buehler’s (1957) method. It turns out
that every confidence region is a member of this class by suitably selecting
some parameter. The necessary order theoretic and statistical background is
recapitulated in Sections A.1 and A.3, respectively, of Appendix A.

– Section 1.2 specializes the confidence regions introduced in the previous section,
introducing thus Buehler’s concept in a general setting. Examples and applica-
tions to the theory developed in this section are presented in Chapters 2–4.

– The notes in Section 1.3 briefly sketch some of the most important work in the
field of Buehler bounds.

1.1 A C L A S S O F C O N F I D E N C E R E G I O N S

1.1.1 Remark 1. Before considering the general problem of constructing confidence
regions for a parameter of interest κ, we shall focus on the special case κ = idΘ.
Confidence regions for κ based on ones for idΘ can be obtained (up to measurability
issues) using Theorem A.3.21.

2. We generalize Sterne’s (1954) construction of a confidence region for the binomial
model (Bn,p : p ∈ [0, 1]) to arbitrary models. This generalized confidence region de-
pends on an additional parameter, namely a family

T = (Tϑ : ϑ ∈ Θ)

of statistics, which makes it encompass, by suitably varying this parameter, classes
of well-known confidence regions.

3. As pointed out in Remark A.1.69, part 2, totally preordered sets are in the following
always endowed with their order topologies.

4. The two next lemmas lay the foundations for the confidence property of the function
considered in Definition 1.1.5.

1



2 buehler confidence regions

1.1.2 Lemma Let
• P be a law on a measurable space (X ,A),
• (Y ,≤) a separable totally preordered set,
• T : X → Y a statistic,
• F : X → [0, 1], x 7→ P (T ≤ T (x)).

Then
• F is measurable,
• P (F ≤ F (x)) = F (x) for x ∈ X .

If, moreover,
• Q is a further law on (X ,A),
• G : X → [0, 1], x 7→ Q(T ≤ T (x)),

then
• G is measurable,
• P (F ≤ F (x)) ≤ P (G ≤ G(x)) for x ∈ X .

Proof. 1. F is well-defined since {T ≤ y} = X \ {T > y} ∈ A for y ∈ Y due to the
measurability of T .

2. Let us consider F̃ : Y → [0, 1], y 7→ P (T ≤ y). Since F̃ is increasing, it is measurable
by Remark A.1.69, part 6. The measurability of F thus follows from F = F̃ ◦ T .

3. Let now x ∈ X . For ξ ∈ X , the inequality F (ξ) ≤ F (x) is equivalent to either
T (ξ) ≤ T (x) or both T (ξ) > T (x) and P (T (x) < T ≤ T (ξ)) = 0. Thus, by setting

AF := {ξ ∈ X : T (ξ) > T (x), P (T (x) < T ≤ T (ξ)) = 0}
= {T > T (x)} \ {F > F (x)},

we obtain AF ∈ A and

P (F ≤ F (x)) = F (x) + P (AF ).

4. We now show P (AF ) = 0. Let us first assume T [AF ] has a greatest element, say T (ξ)
with ξ ∈ AF . Then AF = {T (x) < T ≤ T (ξ)}:

• If x̃ ∈ AF , then T (x̃) > T (x) by definition of AF , and T (x̃) ≤ max T [AF ] = T (ξ)
by definition of ξ, hence x̃ ∈ {T (x) < T ≤ T (ξ)}.

• Let x̃ ∈ {T (x) < T ≤ T (ξ)}. Then T (x̃) > T (x) trivially, and F (x̃) = P (T ≤
T (x̃)) ≤ P (T ≤ T (ξ)) = F (ξ) ≤ F (x), where the first inequality is due to
T (x̃) ≤ T (ξ), which holds by assumption, combined with the monotonicity of
measures, and the second inequality follows from ξ ∈ AF and the representation
of AF in part 3. This yields x̃ ∈ AF .

From this follows P (AF ) = 0 by the definition of AF .
Let us now suppose that T [AF ] has no greatest element, i.e., let us assume the
existence of a function g : AF → AF such that T (g(ξ)) > T (ξ) for ξ ∈ AF . The
separability of Y implies the existence of a function y : AF → Y with countable
image such that T (ξ) < y(ξ) < T (g(ξ)) for ξ ∈ AF . This yields AF = ⋃

ξ∈AF {T (x) <
T ≤ y(ξ)}:

• Let x̃ ∈ AF . Then T (x̃) > T (x) trivially, and T (x̃) < y(x̃) by definition of y.
This implies x̃ ∈ {T (x) < T ≤ y(x̃)} ⊆ ⋃ξ∈AF {T (x) < T ≤ y(ξ)}.

• Let now x̃ ∈ {T (x) < T ≤ y(ξ)} for some ξ ∈ AF . This means T (x̃) > T (x)
and T (x̃) ≤ y(ξ). Since y(ξ) < T (g(ξ)) by definition of y, the latter inequality
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combined with the monotonicity of measures yields P (T (x) < T ≤ T (x̃)) ≤
P (T (x) < T ≤ T (g(ξ))) = 0, the latter equality following from g(ξ) ∈ AF and
the definition of AF . This implies x̃ ∈ AF .

Since y has countable image, there is a countable subset A′F ⊆ AF such that {{T (x) <
T ≤ y(ξ)} : ξ ∈ AF} = {{T (x) < T ≤ y(ξ)} : ξ ∈ A′F}. This yields

P (AF ) = P

 ⋃
ξ∈AF
{T (x) < T ≤ y(ξ)}


= P

 ⋃
ξ∈A′F

{T (x) < T ≤ y(ξ)}


≤ P

 ⋃
ξ∈A′F

{T (x) < T ≤ T (g(ξ))}


≤ 0,

where the first inequality follows from the definition of y and the monotonicity of
measures, and the second inequality from the countability of A′F , the σ-subadditivity
of measures, and g(ξ) ∈ AF for ξ ∈ A′F .

5. By applying the above to Q and G instead of P and F , we obtain the measurability
of G and

P (G ≤ G(x)) = F (x) + P (AG) ≥ F (x) = P (F ≤ F (x)).

1.1.3 Remark 1. The equality P (F ≤ F (x)) = F (x) in the conclusion of the last result
yields an explicit formula for the effective levels of the confidence regions defined later.

2. Not even the weaker result P (F ≤ F (x)) ≤ F (x) holds without presupposing
• separability on Y : Lemma A.2.6 yields a counterexample relying on ordinal

numbers;
• totality of the preorder ≤ on Y : if X := Y := {0, 1}2 are endowed with the

product order, P := U{0,1}2 is the uniform distribution on {0, 1}2, and T :=
id{0,1}2 the identity on {0, 1}2, then P (F ≤ F (1, 0)) = 3/4 > 1/2 = F (1, 0).

3. It may seem straightforward to characterize unbiasedness of the confidence regions
studied in Section 1.2. The inequality P (F ≤ F (x)) ≤ P (G ≤ G(x)) does not,
however, yield unbiasedness; an inequality of the type P (F ≤ t) ≤ P (G ≤ t) for
t ∈ [0, 1] would be required to this end. The resulting confidence regions from Section
1.2 turn out to be biased, as Remark 1.2.3, part 12, shows.

4. The set Y is practically always a subset of R or of the extended real line R. Theorems
A.1.74 and A.1.71 allow a reduction of the general setting to the real one in any case.

1.1.4 Lemma Let
• P be a law on a measurable space (X ,A),
• (Y ,≤) a separable totally preordered set,
• T : X → Y a statistic,
• β ∈ [0, 1].

Then {x ∈ X : P (T > T (x)) < β} ∈ A and

P ({x ∈ X : P (T > T (x)) < β}) = inf{P (T > T (x)) : x ∈ X , P (T > T (x)) ≥ β}.
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Proof. For brevity, let us set again

F : X → [0, 1], x 7→ P (T ≤ T (x)).

Lemma 1.1.2 implies the measurability of F , and thus

{x ∈ X : P (T > T (x)) < β} = (1− F )−1
[
[0, β[

]
∈ A. (∗)

We now show

P (F ≤ 1− β) = supF [F ≤ 1− β]. (∗∗)

Let us first assume the existence of some x ∈ X with F (x) = supF [F ≤ 1 − β]. Then
{F ≤ 1− β} = {F ≤ F (x)}:

• If ξ ∈ {F ≤ 1 − β}, then F (ξ) ≤ supF [F ≤ 1 − β] = F (x) by the definition of a
supremum.

• If ξ ∈ {F ≤ F (x)}, then F (ξ) ≤ F (x) = supF [F ≤ 1− β] ≤ 1− β.

Lemma 1.1.2 thus yields P (F ≤ 1− β) = P (F ≤ F (x)) = F (x) = supF [F ≤ 1− β].
Let us now assume F (x) 6= supF [F ≤ 1 − β] for x ∈ X . Then {F ≤ 1 − β} = {F <

supF [F ≤ 1− β]}:

• Let ξ ∈ {F ≤ 1−β}. Then F (ξ) ≤ supF [F ≤ 1−β] by the definition of a supremum.
Since F (ξ) 6= supF [F ≤ 1−β] by assumption, we have ξ ∈ {F < supF [F ≤ 1−β]}.

• Let ξ ∈ {F < supF [F ≤ 1− β]}. Then F (ξ) < supF [F ≤ 1− β] ≤ 1− β.

If {F ≤ 1− β} = ∅, then P (F ≤ 1− β) = 0 = supF [F ≤ 1− β], as the latter supremum
is taken in the unit interval, where sup ∅ = 0 holds. Let now {F ≤ 1 − β} 6= ∅ and let us
pick a sequence (xn : n ∈ N) ∈ {F ≤ 1− β}N such that (F (xn) : n ∈ N) is increasing with
F (xn)→ supF [F ≤ 1− β] for n→∞. Then

P (F ≤ 1− β) = P (F < supF [F ≤ 1− β])
= P (F < supn∈N F (xn))
= supn∈N P (F ≤ F (xn))
= supn∈N F (xn)
= supF [F ≤ 1− β],

where the first equality follows from what has just been shown, the second by construction
of the sequence (xn) and by assumption, the third from the continuity from below of
measures, the fourth from Lemma 1.1.2, and the last one by construction of (xn) again.
The equation (∗∗) is thus shown. Using (∗) in the first step and (∗∗) in the second, we

obtain

P ({x ∈ X : P (T > T (x)) < β}) = 1− P (F ≤ 1− β)
= inf(1− F )[1− F ≥ β].
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1.1.5 Definition (A general confidence procedure) Let
• P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A),
• (Y ,≤) a separable totally preordered set,
• T = (Tϑ : ϑ ∈ Θ) a family of statistics Tϑ : X → Y ,
• β ∈ [0, 1].

Let us define

RT ,β : X → 2Θ, x 7→ {ϑ ∈ Θ: Pϑ(Tϑ > Tϑ(x)) < β}.

If T is constant, say T = (T : ϑ ∈ Θ), we write RT,β for RT ,β. If the spaces X and Y
and their inherent preorders and topologies coincide, we write Rid,β instead of RidX ,β. If
different models are considered in the same context, we occasionally append the model to
the subscript and write RT ,β,P and RT,β,P , respectively.
1.1.6 Theorem (Nested confidence regions) Let

• P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A),
• (Y ,≤) a separable totally preordered set,
• T = (Tϑ : ϑ ∈ Θ) a family of statistics Tϑ : X → Y.

Then,
(i) for β ∈ [0, 1], RT ,β is a confidence region for idΘ with level β and effective level

βeff(RT ,β) = inf{Pϑ(Tϑ > Tϑ(x)) : x ∈ X , ϑ ∈ Θ, Pϑ(Tϑ > Tϑ(x)) ≥ β}.

(ii) (RT ,β : β ∈ [0, 1]) is a nested family, i.e.,

[0, 1]→ 2Θ, β 7→ RT ,β(x),

is increasing for fixed x ∈ X .

Proof. Lemma 1.1.4 implies

{RT ,β 3 ϑ} = {x ∈ X : Pϑ(Tϑ > Tϑ(x)) < β} ∈ A for ϑ ∈ Θ

and

inf
ϑ∈Θ

Pϑ(RT ,β 3 ϑ) = inf
ϑ∈Θ

Pϑ({x ∈ X : Pϑ(Tϑ > Tϑ(x)) < β})

= inf{Pϑ(Tϑ > Tϑ(x)) : x ∈ X , ϑ ∈ Θ, Pϑ(Tϑ > Tϑ(x)) ≥ β}
≥ β.

Part (ii) follows immediately from the definition of RT ,β.

1.1.7 Remark 1. The confidence regionRT ,β is a direct generalization of the confidence
region by Sterne (1954), where T consists of densities of the model P .

2. RT ,β has effective level β if, and only if, there are sequences (ϑn : n ∈ N) and (ξn : n ∈
N) taking values in Θ and X , respectively, with

inf
n∈N

Pϑn(Tϑn > Tϑn(ξn)) = β.

Let us first show the “if” part. Let (ϑn : n ∈ N) and (ξn : n ∈ N) be two sequences
with values in Θ and X , respectively, such that infn∈N Pϑn(Tϑn > Tϑn(ξn)) = β. Then
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{Pϑ(Tϑ > Tϑ(x)) : x ∈ X , ϑ ∈ Θ, Pϑ(Tϑ > Tϑ(x)) ≥ β}
⊇ {Pϑn(Tϑn > Tϑn(ξn)) : n ∈ N},

hence

βeff(RT ,β) = inf{Pϑ(Tϑ > Tϑ(x)) : x ∈ X , ϑ ∈ Θ, Pϑ(Tϑ > Tϑ(x)) ≥ β}
≤ inf

n∈N
Pϑn(Tϑn > Tϑn(ξn))

= β.

Since also βeff(RT ,β) ≥ β, we obtain βeff(RT ,β) = β.
The “only if” part follows from the separability of the unit interval or, more precisely,
from the existence, given a non-empty set A ⊆ [0, 1], of a sequence (an : n ∈ N) with
values in A such that inf A = infn∈N an.

3. For β = 0 we obtain RT ,0 ≡ ∅. This confidence region obviously also has effective
level β. We therefore often presuppose β > 0 in the following calculations.

4. If X is preordered and each statistic Tϑ of the family T increasing, then so is RT ,β.
In other words, if (X ,≤) is a preordered set and

x1 ≤ x2 =⇒ Tϑ(x1) ≤ Tϑ(x2) for x1, x2 ∈ X and ϑ ∈ Θ,

then

x1 ≤ x2 =⇒ RT ,β(x1) ⊆ RT ,β(x2) for x1, x2 ∈ X .

5. The property of nestedness states the implication

β1 ≤ β2 =⇒ RT ,β1(x) ⊆ RT ,β2(x) for β1, β2 ∈ [0, 1] and x ∈ X .

6. Remark A.3.25 implies that

f : [0, 1]→ [0, 1], β 7→ βeff(RT ,β),

is increasing. Furthermore, f(0) = 0, f(1) = 1, and f(β) ≥ β for β ∈ [0, 1]. The
Bernoulli example in Section 3.3, combined with Theorem 1.1.8, shows that f need
not be continuous.

7. Even if T = (Tϑ : ϑ ∈ Θ) and S = (Sϑ : ϑ ∈ Θ) consist of densities Tϑ and Sϑ of Pϑ
with respect to measures µ and ν, respectively, we need not have RT ,β = RS,β. In
fact, if {0, 1} is the sample space, P := µ := δ0 the unit mass at 0, and ν := δ0 +δ1 the
counting measure on {0, 1}, then T := 1{0,1} and S := 1{0} yield P (T > T (1)) = 0
and P (S > S(1)) = 1, which implies

RT,β(1) = {P} and RS,β(1) = ∅

for β ∈ ]0, 1[ in the model id{P} consisting of P alone.
8. Theorem 1.1.6 also applies to

R̃T ,β : X → 2Θ, x 7→ {ϑ ∈ Θ: Pϑ(Tϑ < Tϑ(x)) < β},

upon reversing, of course, the strict inequality sign “<” in part (i); this follows from
considering the dual order on Y . Theorem 1.1.8, however, states that we can restrict
our (theoretical) focus to the investigation of RT ,β.
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9. The intersection RT ,β1 ∩ R̃T ,β2 is thus also a confidence region with level β whenever
β1, β2 ∈ [0, 1] are such that β1 +β2 = 1+β (due to Lemma A.3.23). These confidence
regions are obviously also nested, that is,

β1 ≤ β′1 and β2 ≤ β′2 =⇒ RT ,β1(x) ∩ R̃T ,β2(x) ⊆ RT ,β′1(x) ∩ R̃T ,β′2(x)

for β1, β2, β
′
1, β

′
2 ∈ [0, 1] and x ∈ X . We cannot, however, express the effective level

of a confidence region built by intersection in terms of the effective levels of the
individual confidence regions.

10. If Tϑ � Pϑ is continuous for every ϑ ∈ Θ, then

R̃T ,β(x) = {ϑ ∈ Θ: Pϑ(Tϑ > Tϑ(x)) > 1− β} for x ∈ X ,

and the effective level of R̃T ,β is given by

βeff(R̃T ,β) = 1− sup{Pϑ(Tϑ > Tϑ(x)) : x ∈ X , ϑ ∈ Θ,
Pϑ(Tϑ > Tϑ(x)) ≤ 1 − β}.

11. As the Bernoulli example in Section 3.3 shows, the effective levels of RT ,β and R̃T ,β
need not be equal.

12. The next result relates R̃·,β to R·,β.
1.1.8 Theorem Let

• P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A),
• (Y ,≤) a separable totally preordered set,
• T = (Tϑ : ϑ ∈ Θ) a family of statistics Tϑ : X → Y,
• β ∈ [0, 1].

Then there exist
• a separable totally preordered set (Z,≤),
• a family S = (Sϑ : ϑ ∈ Θ) of statistics Sϑ : X → Z

such that |{Sϑ : ϑ ∈ Θ}| = |{Tϑ : ϑ ∈ Θ}| and

R̃T ,β = RS,β.

Proof. This follows after endowing Z := Y with the dual ≥ of the order ≤ on Y .

1.1.9 Remark 1. The part concerning the cardinality of the ranges of T and S makes
this theorem also applicable in Section 1.2, where T consists of a single statistic.

2. In case (Y ,≤) possesses a decreasing involution f (Remark A.1.9, part 3, defines
the term “involution”), the cumbersome construction of (Z,≤) can be avoided by
defining S := (f ◦Tϑ : ϑ ∈ Θ). Such is the case with Y := R or Y := ]0,∞[ (take, e.g.,
f(x) := −x or f(x) := 1/x, respectively).

3. The next result strengthens the statement from Theorem 1.1.8: Every confidence
region with level β > 0 for idΘ is attained by some RT ,β by suitable (and simple)
choice of Y and T .

1.1.10 Theorem (Universality) Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space
(X ,A) and β ∈ ]0, 1]. If R is a confidence region for idΘ, then there is a family T =
(Tϑ : ϑ ∈ Θ) of measurable indicators Tϑ : X → {0, 1} such that

R = RT ,β′ for every β′ ∈ ]0, βeff(R)].
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Proof. Let R be a confidence region for idΘ and

Tϑ : X → {0, 1}, x 7→ 1(ϑ ∈ R(x)),

for ϑ ∈ Θ. Since R is a confidence region, we have {R 3 ϑ} ∈ A, which implies the
measurability of Tϑ, for ϑ ∈ Θ.
Let β′ ∈ ]0, βeff(R)]. For ϑ ∈ Θ and x ∈ X , we have equivalence between ϑ ∈ R(x) and

Pϑ(Tϑ > Tϑ(x)) < β′. In fact, ϑ ∈ R(x) implies Tϑ(x) = 1, hence, Tϑ being {0, 1}-valued,
{Tϑ > Tϑ(x)} = ∅, and thus Pϑ(Tϑ > Tϑ(x)) = 0 < β′; conversely, ϑ /∈ R(x) implies
Tϑ(x) = 0, so {Tϑ > Tϑ(x)} = {R 3 ϑ}, whence Pϑ(Tϑ > Tϑ(x)) = Pϑ(R 3 ϑ) ≥ β′.
This equivalence yields R = RT ,β′ .

1.1.11 Remark 1. The above result cannot hold for β = 0 in view of RT ,0(x) = ∅ for
x ∈ X , which holds independently of T .

2. In light of Theorem 1.1.6, part (ii), the latter result might insinuate that, since every
confidence region for idΘ is in fact some RT ,β, every family of confidence regions is
nested. This is, of course, not true since the construction of the family T in Lemma
1.1.10 inevitably depends on R and thus on β. Theorem 1.1.6, part (ii), merely claims
the monotonicity of β 7→ RT ,β with fixed T .

3. Theorem 1.1.10 is mostly of theoretical interest. Indeed, to many well-known confi-
dence regions correspond canonical families T which do not necessarily consist solely
of indicators. For instance, the famous Clopper-Pearson confidence regions are ob-
tained by considering RT,β and R̃T,β for

T := id{0,...,n};

Sterne’s confidence regions are obtained as RD,β by considering the family D consist-
ing of the densities with respect to counting measure, i.e.,

D = (bn,p : p ∈ [0, 1]).

It would be misleading to restrict our attention to families of {0, 1}-valued statistics.
This justifies the general setting of Theorem 1.1.6.

4. Theorem 1.1.6 and the proof of Theorem 1.1.10 show that the effective level of a
confidence region R for idΘ with level β ∈ ]0, 1] is also given by

βeff(R) = inf{Pϑ(R \R(x) 3 ϑ) : x ∈ X , ϑ ∈ Θ, Pϑ(R \R(x) 3 ϑ) ≥ β}.

5. The following result shows that our considering the special parameter of interest idΘ
does not entail any loss in generality.

1.1.12 Theorem (General universality) Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable
space (X ,A), κ : Θ→ Γ a parameter of interest, and β ∈ ]0, 1]. If K is a confidence region
for κ, then there is a family T = (Tϑ : ϑ ∈ Θ) of measurable indicators Tϑ : X → {0, 1}
such that

K = κ[RT ,β′ ] for every β′ ∈ ]0, βeff(K)].

Proof. Theorem A.3.21, part (ii), yields the confidence region R := κ−1[K] for idΘ with
βeff(R) = βeff(K). Theorem 1.1.10 yields a family T of measurable indicators withR = RT ,β′
for β′ ∈ ]0, βeff(R)]. This yields κ[RT ,β′ ] = K for β′ ∈ ]0, βeff(K)].
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1.2 B U E H L E R I Z AT I O N

1.2.1 Remark We now focus on constant families T = (T : ϑ ∈ Θ).
1.2.2 Definition (Buehlerization) Let

• P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A),
• (Y ,≤) a separable totally preordered set,
• T : X → Y a statistic,
• β ∈ [0, 1].

The confidence region RT,β = RT,β,P from Definition 1.1.5, i.e.,

RT,β : X → 2Θ, x 7→ {ϑ ∈ Θ: Pϑ(T > T (x)) < β},

shall be called Buehlerization of the designated statistic T (in the model P).
1.2.3 Remark (Properties of Buehlerizations) 1. Let us endow X with the total pre-

order ≤T induced by T (defined in Lemma A.1.44, part 1) and its order topol-
ogy (from Definition A.1.68). If X is separable, then Remark A.1.46, part 4, yields
RT,β(x) ⊇ Rid,β(x) and R̃T,β(x) ⊇ R̃id,β(x) for x ∈ X , with equality everywhere if T
is injective. If, furthermore, A contains all Borel sets in X (defined in Remark A.1.69,
part 3), then Rid,β and R̃id,β are also confidence regions with level β for idΘ.

2. We have RT,β,P = Rid,β,T �P ◦T (the “pushforward model” T �P is defined in Remark
A.3.9).

3. The confidence region R̃T,β shall in view of Theorem 1.1.8 also be called Buehleriza-
tion of T . It possesses dual properties to RT,β.

4. If T � Pϑ is continuous for every ϑ ∈ Θ, then

R̃T,β(x) = {ϑ ∈ Θ: Pϑ(T > T (x)) > 1− β}.

5. Let us interpret events A ∈ A with Pϑ(A) ≥ β as probable and ones with Pϑ(A) ≤
1 − β as improbable under Pϑ. Let us also call an observation x1 ∈ X more extreme
(with respect to T ) than an observation x2 ∈ X if T (x1) > T (x2).

• RT,β(x) consists of those ϑ ∈ Θ that make the occurrence of an observation that
is more extreme than x not probable under Pϑ.

• If T � Pϑ is continuous for ϑ ∈ Θ, then R̃T,β(x) consists of those parameters
ϑ ∈ Θ that make the occurrence of an observation that is more extreme than x
not improbable under Pϑ.

6. If X is a topological space and T continuous and unbounded below on suppPϑ for
ϑ ∈ Θ (unboundedness and the support of a law are defined in Definitions A.1.43 and
A.3.2, respectively), then RT,1(x) = Θ for x ∈ X . (The same result holds with “below”
and “RT,1” replaced by “above” and “R̃T,1,” respectively.) In fact, the continuity of
T yields the openness of {T < T (x)}, the unboundedness assumption yields {T <
T (x)} ∩ suppPϑ 6= ∅, and the claim now follows from Remark A.3.3, part 1.

7. If κ : Θ → Γ is a parameter of interest for P , then κ[RT,β] is increasing in T and
κ[R̃T,β] is decreasing in T (monotonicity in T is defined in Definition A.1.40). In fact,
if x1, x2 ∈ X with T (x1) ≤ T (x2), then for ϑ ∈ Θ

Pϑ(T > T (x1)) ≥ Pϑ(T > T (x2)) and Pϑ(T < T (x1)) ≤ Pϑ(T < T (x2)),

hence κ[RT,β(x1)] ⊆ κ[RT,β(x2)] and κ[R̃T,β(x1)] ⊇ κ[R̃T,β(x2)].
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8. It follows from the respective definitions that κ[RT,β] has the same properties in the
set of all confidence regions for κ with level β that are increasing in T as κ[R̃T,β] in
the set of all confidence regions for κ with level β that are decreasing in T .

9. Theorem 1.1.8 states that we can again focus on RT,β.
10. RT,β is strictly increasing in T if, and only if, x1, x2 ∈ X with T (x1) ≤ T (x2) implies

the existence of some ϑ ∈ Θ with Pϑ(T ≤ T (x1)) ≤ 1− β < Pϑ(T ≤ T (x2)).
11. Let P be injective and invariant (invariance of models is defined in Definition A.3.30)

over a transformation group G (transformation groups are considered in Definition
A.3.27) on the sample space X . The Buehlerization RT,β of T is then equivariant over
G (equivariance of parameters of interest is defined in Definition A.3.33) if, and only
if, the following equivalence holds:

Pϑ(T > T (x)) < β ⇐⇒ Pg(ϑ)(T > T (g(x))) < β for x ∈ X and g ∈ G.

12. Buehlerizations RT,β can be biased. In fact, the Buehlerization of the identity id{0,1}
in the Bernoulli model from Section 3.3 is given by

Rid,β(x) =

[0, β[ if x = 0
[0, 1] if x = 1,

which yields for p, p′ ∈ [0, 1] the coverage probability

Bp(Rid,β 3 p′) =

p if p′ ∈ [β, 1]
1 if p′ ∈ [0, β[.

We thus obtain infp∈[0,1] Bp(Rid,β 3 p′) = 1 if p′ < β.
13. The following observation can be used to verify the measurability requirement for

confidence regions in parts (ii) and (iii) of the next theorem. Let us endow X with
the total preorder ≤T induced by T (defined in Lemma A.1.44, part 1). If A contains
all downrays in X , then {κ[RT,β] 3 γ}, {dκ[RT,β]e 3 γ} ∈ A for γ ∈ Γ. In fact,
let γ ∈ Γ and x ∈ X 2 with x1 ≤T x2. Due to Remark 1.2.3, part 7, κ[RT,β(x1)] 3 γ
implies κ[RT,β(x2)] 3 γ, and hence dκ[RT,β(x1)]e 3 γ implies dκ[RT,β(x2)]e 3 γ. Thus,
{κ[RT,β] 3 γ} and {dκ[RT,β]e 3 γ} are uprays in X , and, due to Remark A.1.35, part
1, members of A.

14. Strictly monotonic transformations of R-valued designated statistics are easily ex-
pressed in terms of the original Buehlerization: Let

• P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A),
• T : X → R a statistic,
• f : R→ R a strictly monotonic function,
• β ∈ [0, 1].

Then

Rf◦T,β =

RT,β if f is strictly increasing
R̃T,β if f is strictly decreasing.

15. Buehlerizations of designated statistics that are monotonic in each other are ordered:
Let
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• P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A),
• T, S : X → R two statistics,
• β ∈ [0, 1].

Remark A.1.46, parts 4 and 8, then implies the following:
(i) If T is increasing in S, then RS,β(x) ⊆ RT,β(x) and R̃S,β(x) ⊆ R̃T,β(x) for

x ∈ X .
(ii) If T is decreasing in S, then RS,β(x) ⊆ R̃T,β(x) and R̃S,β(x) ⊆ RT,β(x) for

x ∈ X .
16. In Chapters 2–4 we buehlerize merely point estimators since this simplifies computa-

tions and sometimes allows a representation of the resulting confidence regions in a
closed form. Buehler (1957) suggested the Buehlerization of confidence bounds. The
trend in most of the applications nowadays, however, is towards the Buehlerization of
approximate confidence bounds as these seemingly promise less conservatism. A truly
systematic study as to the choice of the designated statistic in specific situations is
still missing.

1.2.4 Theorem (Optimality of Buehlerizations) Let
• P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A),
• (Y ,≤) a separable totally preordered set,
• T : X → Y a statistic,
• β ∈ [0, 1].

Then the following holds:
(i) RT,β is the least confidence region for idΘ with level β that is increasing in T , i.e., if

R is any confidence region in the model P for idΘ with level β that is increasing in
T , then RT,β(x) ⊆ R(x) for x ∈ X .

(ii) If κ : Θ→ Γ is a parameter of interest for P and {κ[RT,β] 3 γ} ∈ A for γ ∈ Γ, then,
analogously, κ[RT,β] is the least confidence region for κ with level β that is increasing
in T .

(iii) If κ : Θ→ Γ is a parameter of interest for P, Γ preordered, and {dκ[RT,β]e 3 γ} ∈ A
for γ ∈ Γ, then, analogously, dκ[RT,β]e is the least confidence downray for κ with level
β that is increasing in T . (d·e is defined in Remark A.1.35, part 4.)

Proof. (i) follows from part (ii) since {RT,β 3 ϑ} ∈ A for ϑ ∈ Θ due to Theorem 1.1.6.
(ii) Remark 1.2.3, part 7, and Theorem A.3.21, part (i), yield that κ[RT,β] is a confidence

region for κ with level β that is increasing in T . Let now K be a confidence region
for κ with level β that is increasing in T , and let us assume the existence of some
x ∈ X with κ[RT,β(x)] 6⊆ K(x). Let us pick ϑ ∈ RT,β(x) with κ(ϑ) /∈ K(x). As K is
increasing in T , we obtain {T ≤ T (x)} ⊆ {K 63 κ(ϑ)}. Since ϑ ∈ RT,β(x), we obtain

Pϑ(K 63 κ(ϑ)) ≥ Pϑ(T ≤ T (x)) > 1− β,

which yields βeff(K) < β, contradicting the confidence property of K.
(iii) Part (ii), Remark A.1.35, part 4, and dGe ⊇ G for G ∈ 2Γ yield that dκ[RT,β]e is

a confidence downray for κ with level β that is increasing in T . Let now K be a
confidence downray for κ with level β that is increasing in T , and let us assume the
existence of some x ∈ X with dκ[RT,β(x)]e 6⊆ K(x). Remark A.1.35, part 5, yields
κ[RT,β(x)] 6⊆ K(x). The proof now proceeds exactly as in part (ii).
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1.2.5 Remark (Optimality and admissibility) 1. Theorem 1.2.4 not only states minimal-
ity, but optimality of κ[RT,β].

2. Remark 1.2.3, part 3, yields the following result: R̃T,β is the least confidence region
for idΘ with level β that is decreasing in T , and, if {κ[RT,β] 3 γ} ∈ A for γ ∈ Γ, then
κ[R̃T,β] is the least confidence region for κ with level β that is decreasing in T .

3. Let K be a set of confidence regions for κ admitting a least element minK. Then

(minK)(x) =
⋂

K∈K
K(x) for x ∈ X .

Most statisticians usually call “K-admissible” and “K-optimal” (and sometimes ap-
pend Buehler’s name) what we call “minimal in K” and “least in K,” respectively.
We believe this terminology to be clearer to readers from other fields since the order
⊆ naturally occurs when investigating confidence regions in all generality.

4. RT,β need not be minimal in the set of all confidence regions in the model P for idΘ
with level β; in fact, Buehlerizations of P-a.s. constant statistics are trivial.

5. The assumption of totality of the preorder on Y cannot be weakened considerably:
If X := Y := R2 are equipped with the product order and P := (N⊗2

µ,1 : µ ∈ R), then
Rid,β(x) 3 µ is equivalent to (1 − Φ(x1 − µ))(1 − Φ(x2 − µ)) < β for x ∈ R2 and
µ ∈ R, hence the set-valued sequence ({Rid,β 3 µ} : µ ∈ N) is decreasing with limit⋂
µ∈N{Rid,β 3 µ} = ∅, yielding limµ→∞N⊗2

µ,1(Rid,β 3 µ) = 0.
6. The next theorem gives sufficient conditions for a Buehlerization to be a confidence

down- or upray.
1.2.6 Theorem (Buehlerizations and down-/uprays) Let

• (Θ,≤), (X ,≤), and (Γ,≤) be preordered sets,
• (Y ,≤) a separable totally preordered set,
• P = (Pϑ : ϑ ∈ Θ) a stochastically monotonic model on X (see Remark A.1.69),
• κ : Θ→ Γ a monotonic parameter of interest for P,
• T : X → Y a monotonic statistic,
• β ∈ [0, 1].

Then the following holds:
(i) Let T and P be both increasing or both decreasing. Then RT,β is a confidence downray

and R̃T,β a confidence upray for idΘ with level β. Furthermore,
• if κ[idΘ ≤ ϑ] = {idΓ ≤ κ(ϑ)} for ϑ ∈ Θ, then κ[RT,β] is a confidence downray

and κ[R̃T,β] a confidence upray for κ with level β;
• if κ[idΘ ≤ ϑ] = {idΓ ≥ κ(ϑ)} for ϑ ∈ Θ, then κ[RT,β] is a confidence upray and
κ[R̃T,β] a confidence downray for κ with level β.

(ii) Let T be increasing and P decreasing or vice versa. Then the conclusions in (i) hold
with “downray” and “upray” interchanged.

Proof. Let us assume T increasing, P stochastically increasing, and x ∈ X . The downray
property of RT,β(x) in Θ follows from Pϑ1(T > T (x)) ≤ Pϑ2(T > T (x)) for ϑ1, ϑ2 ∈ Θ with
ϑ1 ≤ ϑ2, by Theorem A.3.48. The rest now follows from Theorem 1.1.6 and by considering
all combinations of preorders and their duals on Θ and Y , while Lemma A.1.53, parts (iii)
and (iv), yields the “furthermore” claims.
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1.2.7 Remark (Buehlerized confidence bounds) 1. The condition “κ[idΘ ≤ ϑ] = {idΓ ≤
κ(ϑ)} for ϑ ∈ Θ” in the “furthermore” claim is stronger than κ simply being increas-
ing; analogously for the second condition and “decreasing.” In general, surjectivity of
κ does not suffice for its validity either.

2. In case Γ is furthermore complete (completeness of preordered sets is defined in
Definition A.1.39), the following implications hold for x ∈ X :

K(x) downray in Γ =⇒ K(x) =

{idΓ ≤ max K(x)} if max K(x) exists
{idΓ < sup K(x)} otherwise

K(x) upray in Γ =⇒ K(x) =

{idΓ ≥ min K(x)} if min K(x) exists
{idΓ > inf K(x)} otherwise.

Many statisticians are not interested in whether the boundaries inf K(x) and sup K(x)
are contained in the confidence region or not, and thus simply consider the confidence
bounds

κ : X → Γ, x 7→ inf K(x), and κ : X → Γ, x 7→ sup K(x).

3. If, in the just considered situation, we set κT,β := supκ[RT,β], and if (Γ,≤) = (Y ,≤),
an immediate question is whether we gain something by buehlerizing the Buehleriza-
tion of T or not. In other words, does κκT,β ,β ≤ κT,β hold? This is not the case, in gen-
eral. Remark 1.2.5, part 1, however, states the validity of the reverse inequality: Since
κT,β is increasing in T , we have RT,β(x) ⊆ RκT,β ,β(x), and thus κT,β(x) ≤ κκT,β ,β(x)
for x ∈ X .

4. The next example yields Buehlerizations of maxima and minima of several designated
statistics in product experiments.

1.2.8 Example (Product experiments) Let
• P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A),
• n ∈ N, m ∈ Nn, |m| := ∑n

i=1mi, and Pm := (⊗n
i=1 P

⊗mi
ϑi

: ϑ ∈ Θn),
• (Y ,≤) a separable totally preordered lattice,
• Ti : Xmi → Y a statistic for i ∈ {1, . . . , n},
• β ∈ [0, 1].

We are interested in the experiment Pm. Its sample space is ∏n
i=1Xmi , its parameter space

Θn. Let us interpret an observation x as an n-tuple (x1, . . . , xn) of vectors xi ∈ Xmi of
possibly different lengths with components xi,1, . . . , xi,mi ∈ X . Let us furthermore define
the projections

prk :
n∏
i=1
Xmi → Xmk , x 7→ xk, prk,l :

n∏
i=1
Xmi → X , x 7→ xk,l,

for k ∈ {1, . . . , n} and l ∈ {1, . . . ,mk}. Since

n⊗
i=1

P⊗miϑi

(∨n
k=1(Tk ◦ prk)

<≤
∨nk=1 Tk(xk)

)
=

n∏
i=1

P⊗miϑi

(
Ti

<≤
∨nk=1 Tk(xk)

)
n⊗
i=1

P⊗miϑi

(∧n
k=1(Tk ◦ prk)

>≥
∧nk=1 Tk(xk)

)
=

n∏
i=1

P⊗miϑi

(
Ti

>≥
∧nk=1 Tk(xk)

)
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for ϑ ∈ Θn and x ∈ ∏n
i=1Xmi , buehlerizing

• ∨
i(Ti ◦ pri) : ∏n

i=1Xmi → Y , x 7→ ∨n
i=1 Ti(xi), yields

R∨
i
(Ti◦pri),β(x) =

{
ϑ ∈ Θn :

n∏
i=1

P⊗miϑi
(Ti ≤

∨n
k=1 Tk(xk)) > 1− β

}

R̃∨
i
(Ti◦pri),β(x) =

{
ϑ ∈ Θn :

n∏
i=1

P⊗miϑi
(Ti <

∨n
k=1 Tk(xk)) < β

}

• ∧
i(Ti ◦ pri) : ∏n

i=1Xmi → Y , x 7→ ∧n
i=1 Ti(xi), yields

R∧
i
(Ti◦pri),β(x) =

{
ϑ ∈ Θn :

n∏
i=1

P⊗miϑi
(Ti >

∧n
k=1 Tk(xk)) < β

}

R̃∧
i
(Ti◦pri),β =

{
ϑ ∈ Θn :

n∏
i=1

P⊗miϑi
(Ti ≥

∧n
k=1 Tk(xk)) > 1− β

}

for x ∈ ∏n
i=1Xmi . In particular, if T : X → Y is a statistic and Ti(xi) = ∨mi

j=1 T (xi,j)
or Ti(xi) = ∧mi

j=1 T (xi,j) for xi ∈ Xmi and i ∈ {1, . . . , n}, then the above also yields
the Buehlerizations of ∨ni=1

∨mi
j=1(T ◦ pri,j),

∨n
i=1

∧mi
j=1(T ◦ pri,j),

∧n
i=1

∨mi
j=1(T ◦ pri,j), and∧n

i=1
∧mi
j=1(T ◦ pri,j).

1.3 N O T E S

Buehler confidence bounds have been established well before Buehler’s seminal work from
1957. An example are the renowned confidence bounds of Clopper and Pearson (1934) with
confidence level β ∈ [0, 1] in the binomial model

(Bn,p : p ∈ [0, 1])

(with fixed n ∈ N) for the parameter of interest id[0,1]. The upper bound is given by

uCP,β : {0, . . . , n} → [0, 1], x 7→ sup{p ∈ [0, 1] : Bn,p({0, . . . , x}) > 1− β}.

Since, for fixed x ∈ {0, . . . , n− 1}, the function

f : [0, 1]→ [0, 1], p 7→ Bn,p({0, . . . , x}),

is continuous (being a polynomial function), strictly decreasing (due to f ′(p) = −nbn−1,p(x)),
and surjective (due to f(0) = 1, f(1) = 0, and the intermediate value theorem), uCP,β(x)
can also be thought of as the unique p ∈ [0, 1] such that Bn,p({0, . . . , x}) = 1 − β in case
x < n, while uCP,β(n) = 1.
The lower confidence bound lCP,β with level β can be obtained by replacing each occur-

rence of Bn,p({0, . . . , x}) and “sup” with Bn,p({x, . . . , n}) and “inf,” respectively:

lCP,β : {0, . . . , n} → [0, 1], x 7→ inf{p ∈ [0, 1] : Bn,p({x, . . . , n}) > 1− β}.

Since, for fixed x ∈ {1, . . . , n}, the function

g : [0, 1]→ [0, 1], p 7→ Bn,p({x, . . . , n}),
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is continuous (again being a polynomial function), strictly increasing (due to g′(p) =
nbn−1,p(x−1)), and surjective (due to g(0) = 0, g(1) = 1, and the intermediate value theo-
rem), lCP,β(x) can also be thought of as the unique p ∈ [0, 1] such that Bn,p({x, . . . , n}) =
1− β in case x > 0, while lCP,β(0) = 0.

Together with the identity bn,p(x) = bn,1−p(n− x), this yields the relation

lCP,β(x) = 1− uCP,β(n− x), (1)

a property closely connected to equivariance (see Example A.3.34, part 2, for equivariance
in this binomial model). It is occasionally also used for defining the lower bound in terms
of the upper (or vice versa).
In their original paper Clopper and Pearson did not concentrate as much on the one-

sided setting (i.e., on confidence bounds) as on the two-sided situation (i.e., on confidence
intervals of the form ]lCP,(1+β)/2, uCP,(1+β)/2[). This may be the reason why their work
does not mention the monotonicity of either confidence bound. The nesting property (i.e.,
[0, 1] → [0, 1], β 7→ lCP,β(x), is decreasing and [0, 1] → [0, 1], β 7→ uCP,β(x), increasing for
fixed x ∈ {0, . . . , n}) is not brought up either, which, however, is more likely to be due to
the simplicity in this particular case.
If we append the sample size n to the Clopper and Pearson confidence bounds in order

to emphasize their dependence on the model (Bn,p : p ∈ [0, 1]), then the monotonicity of
the above functions f and g and the monotonicity of f(p) and g(p) with respect to n for
p ∈ [0, 1] yield that uCP,β,n and lCP,β,n are decreasing in n ∈ N.
Sterne (1954) proposed the confidence region

RS : {0, . . . , n} → 2[0,1], x 7→ {p ∈ [0, 1] : Bn,p(bn,p ≤ bn,p(x)) ≥ 1− β}.

Dümbgen (2004) notes that RS(x) is not always an interval. Indeed, for β := 0.928, n := 10,
x := 0, and (p, r, q) := (0.25, 0.27, 0.29) we obtain using R, version 3.0.2,

Bn,p(bn,p ≤ bn,p(x)) ≈ 0.0760 > 1− β,
Bn,r(bn,r ≤ bn,r(x)) ≈ 0.0717 < 1− β,
Bn,q(bn,q ≤ bn,q(x)) ≈ 0.0729 > 1− β,

hence p, q ∈ RS(x), but r /∈ RS(x). (Similar examples can be constructed for almost every
n ∈ N and for β’s in certain sets having 1 as an accumulation point.) This led Sterne to
the consideration of the confidence interval [minRS,maxRS] (the occurring minimum and
maximum exist since RS(x) is a closed set; in fact, [0, 1]→ [0, 1], p 7→ Bn,p(bn,p ≤ bn,p(x)),
is upper semicontinuous, for which Sterne fails to provide an argument). Sterne (1954)
argues in favor of his confidence intervals over the ones given by Clopper and Pearson (1934)
regarding their size at the extremal observations 0 and n and their coverage probabilities.
Crow (1956) proposes a modification of Sterne’s confidence interval, and shows that both

Sterne’s and his confidence intervals have minimal total length by proving that inverting a
family of tests (using Theorem A.3.39) with acceptance intervals of minimal length yields
a confidence interval with minimal total length.
Blyth and Still (1983) provide equivariant confidence intervals for the identity id[0,1]

in the classical binomial model (Bn,p : p ∈ [0, 1]) whose endpoints are increasing in the
observation for fixed n, and decreasing in n for a fixed observation. They list the three
possibilities that can occur regarding uniqueness and total interval length, and classify
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the confidence interval from Clopper and Pearson (1934) in this list. Newcombe (1998)
and Brown et al. (2001) compare several confidence intervals for the success probability in
binomial samples. Agresti and Coull (1998) argue for the usage of approximate confidence
intervals in terms of the behaviour of the coverage probabilities.
Buehler (1957) established the formula for supRT,β and gave tables for upper confidence

bounds in the model

(Bn1,p1 ⊗ Bn2,p2 : (p1, p1) ∈ [0, 1]2)

for the parameter of interest (p1, p2) 7→ p1p2. His tables are based on a Poisson approxima-
tion, which makes the values usable for a whole range of sample sizes n1 and n2. Buehler
used the designated statistic

T : {0, . . . , n1} × {0, . . . , n2} → [0, 1], (x1, x2) 7→ uCP,
√
β
(x1)uCP,√β

(x2),

where uCP,β denotes the upper confidence bound with level β from Clopper and Pearson.
At the end of his paper, Buehler (1957) generalizes his method to arbitrary discrete models
(the discreteness condition can, however, also be dropped) with existing confidence bounds
as designated statistics.
Sudakov (1974) provides upper and lower confidence bounds for the parameter of interest

[0, 1]n → [0, 1], p 7→ ∏n
i=1 pi, in the binomial model (∏n

i=1 Bmi,pi : p ∈ [0, 1]n) considered in
Section 3.1 of Chapter 3. This is motivated by interpreting the model as a representation
of a sequential system with n independent components each of which possesses a reliability
pi (i.e., a probability of failure 1 − pi) and is tested in mi trials; the above parameter of
interest then expresses the reliability index, i.e., the probability of non-failure of the entire
system. His confidence bounds arise by buehlerizing the maximum likelihood estimator∏n
i=1{0, . . . ,mi} → [0, 1], x 7→ ∏n

i=1 xi/mi. According to Lloyd and Kabaila (2003), these
results are obtained independently of the work by Buehler (1957).
Winterbottom (1984) summarizes some of the methods, among them Buehler’s (1957)

and some Bayesian ones, that have been applied on the general problem of finding lower
confidence bounds for the reliability index of a system consisting of multiple components.
The test data considered do not necessarily follow a binomial distribution, nor are other
properties of the underlying system assumed.
Harris and Soms (1991) prove some of the results from Buehler (1957) and Sudakov

(1974) in a more general setting by the inversion of families of tests, and disproves an
inequality from Sudakov (1974) involving the incomplete beta function.
Reiser and Jaeger (1991) consider a two-component series system with binomially dis-

tributed test data and buehlerize the maximum likelihood estimator. They illustrate the
anomaly (due, according to them, to the discreteness of the model) that additional success
results can result in a decrease of the lower confidence bound. A similar peculiarity of
Buehlerizations, the existence of so-called “ties,” is remarked by Harris and Soms (1983)
and investigated by Kabaila and Lloyd (2003) and, in more detail, Kabaila and Lloyd
(2006).

Revyakov (1992) reformulates and generalizes some of the results developed in Buehler
(1957), and applies them to a number of reliability problems. Jobe and David (1992) prove,
among other things, those fundamental results from Buehler’s theory in greater generality
for the first time.
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Pfanzagl (1994, Theorems 5.3.3, p. 167) presents, under certain continuity assumptions,
upper confidence bounds which possess a certain similarity to Buehlerizations and are
randomized subsequently.
Bagdonavičius et al. (1997) presents a similar result to our Lemma 1.1.2, which is then

used to establish a theorem much alike Buehler’s (1957) main result. Both results are due
to Bolshev (1965), who seems unaware of Buehler’s (1957). The second part illustrates the
results with examples using Poisson, exponential, Bernoulli, geometric, normal, and some
other samples.
Kabaila and Lloyd (1997) provide a theory of Buehler confidence bounds (similar in struc-

ture to what is presented here) for discrete models with approximate confidence bounds as
designated statistics. Their approach is slightly different from Buehler’s (1957), and their
results rely on the validity of a few supplementary regularity conditions, which, however,
also allow statements on coverage probabilities for certain parameter values. The parame-
ters of interest considered are real-valued, the parameter space is a finite-dimensional vector
space. Since the resulting Buehlerization is least subject to the conditions of 1. sustaining
a prescripted confidence level, and 2. being ordered the same way as the approximate
confidence bound they start with, Buehler bounds are called “tight.” The authors argue
heuristically in favor of employing approximate confidence limits instead of estimators as
designated statistics, an issue taken up more formally in Kabaila (2001), in Kabaila and
Lloyd (2002), where approximate confidence bounds based on the likelihood ratio statistic
are recommended as designated statistics, in Kabaila and Lloyd (2003), and in Kabaila
and Lloyd (2004), where consequences on the nestedness of Buehlerizations by a possible
dependence of the designated statistic on the confidence level are investigated.
Lloyd and Moldovan (2000) employ Buehler confidence bounds in a medical context to

investigate the difference between two correlated proportions. According to them, consid-
ering confidence bounds rather than two-sided confidence intervals yields less conservative
confidence statements.
Kabaila and Lloyd (2000) show that smallest upper and greatest lower confidence bounds

with prescribed confidence level exist only in some trivial or unusual models (like the
Bernoulli or the translated symmetric Bernoulli models from Sections 3.3 and 3.4 of Chap-
ter 3, respectively). In their main result, they establish an assumption that implies nonex-
istence of such a confidence bound, and verify that assumption in the binomial models of
sample size not less than two, and in models consisting of two independent binomial sam-
ples of equal size with the difference of their success probabilities as parameter of interest.
Looking for “best” confidence bounds makes thus sense after a restricting somehow the
class of considered confidence bounds—Buehler (1957) does so by adding the requirement
of monotonicity.
Lloyd and Kabaila (2003) prove the optimality of Buehler bounds in more generality and

claim that a modification is in order when a certain set inside a supremum is empty—a
problem that only arises if sup is, contrary to common practice, not defined as the least ele-
ment in the underlying completely ordered set. They furthermore show that Buehlerization
in general linear models yields trivial confidence bounds.
Wang (2006) rediscovers Buehler’s (1975) method, restricted to the classical binomial

model and citing only works by Bolshev and Nikulin, and establishes a condition allowing
to conclude whether or not confidence intervals are least among the ones having increasing
end-points that satisfy the property (1). This is used to investigate for which confidence
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levels the equal-tailed two-sided confidence interval by Clopper and Pearson (1934) is least
in that class. This line of work is continued in Wang (2010), where a more generalized
setting is considered, but still restating for the greater part results from already published
works, as pointed out by Lloyd and Kabaila (2010).

Applications of Buehler’s theory to a medical setting can be found in, e.g., Lloyd and
Moldovan (2000), Lloyd and Moldovan (2007), and Lloyd (2015).



2
A P P L I C AT I O N : N O R M A L S A M P L E S

• In this chapter and the next ones, the set Y from Definition 1.1.5 is mostly R or
a subset thereof, the order being the usual. Its interval topology is thus the usual
Euclidean topology and B is the Borel σ-algebra, as agreed in Remark A.1.69, parts
2 and 4.

• Let us remember that β ∈ ]0, 1[ (in view of Remarks 1.1.7, part 3, and 1.2.3, part 6),
unless stated otherwise.

• Outline of this chapter:
– Section 2.1 considers several normal samples with unknown means and vari-

ances. This is the most general model considered in this chapter. We buehlerize
minimum and maximum of the different samples’ means (beginning with Exam-
ple 2.1.3), minimum and maximum of the sample mean divided by the sample
standard deviation (beginning with Example 2.1.8), overall minimum and max-
imum (beginning with Example 2.1.13), and the sample mean of the different
samples’ means (beginning with Example 2.1.18).

– Section 2.2 deals with several normal samples with unknown means but known
variances. This is a submodel of the model from the previous section, which
means that some results can be taken over with just a few adjustments. We
determine the Buehlerization of minimum and maximum of the different sam-
ples’ means (beginning with Example 2.2.3), overall minimum and maximum
(beginning with Example 2.2.8), and the sample mean of the different samples’
means (beginning with Example 2.2.13).

– Section 2.3 considers several normal samples with unknown but equal means and
known variances. This is a submodel of the model from the previous section. We
calculate the Buehlerization of the sample mean of the different samples’ means
(Example 2.3.3).

– Section 2.4 treats several normal samples with known means but unknown vari-
ances. This is a submodel of the general model from Section 2.1. We determine
the Buehlerization of minimum and maximum of the different samples’ variances
and sample variances.

– Section 2.5 treats several normal samples with known means and unknown but
equal variances. This is a submodel of the model from the previous section. The
Buehlerization of the designated statistics from the previous section are derived
from the preceding results.

19
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2.1 S E V E R A L S A M P L E S

2.1.1 Definition Let n ∈ N and m ∈ Nn. Let us consider the n-sample normal model

P1 :=
(

n⊗
i=1

N⊗mi
µi,σ2

i
: (µ, σ) ∈ Rn × ]0,∞[n

)

with known individual sample sizes m1, . . . , mn.
2.1.2 Remark The sample space is X = ∏n

i=1 Rmi , the parameter space Θ = Rn× ]0,∞[n.
Let us interpret an observation x as an n-tuple (x1, . . . , xn) of vectors xi ∈ Rmi of possibly
different lengths with components xi,1, . . . , xi,mi .
2.1.3 Example Let us consider ∧iXi :

∏n
i=1 Rmi → R, x 7→ ∧n

i=1 xi, as designated statistic,
where, for i ∈ {1, . . . , n},

Xi :
n∏
j=1

Rmi → R, x 7→ xi := 1
mi

mi∑
j=1

xi,j,

denotes the arithmetic mean of the ith sample. Since (Rr → R, x 7→ ∑r
k=1 xk/r) �N⊗rν,τ2 =

Nν,τ2/r for r ∈ N, ν ∈ R, and τ ∈ ]0,∞[, we obtain
n⊗
i=1

N⊗mi
µi,σ2

i

(
n∧
i=1

Xi > t

)
=

n∏
i=1

Φ
(√

mi
µi − t
σi

)
(2)

for t ∈ R. Since (∧iXi) �
⊗n

i=1 N⊗mi
µi,σ2

i
is continuous, Remark 1.1.7, part 10, yields the

confidence regions given by

R∧
i
Xi,β

(x) =
{

(µ, σ) ∈ Rn × ]0,∞[n :
n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
< β

}

R̃∧
i
Xi,β

(x) =
{

(µ, σ) ∈ Rn × ]0,∞[n :
n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
> 1− β

}

for x ∈ ∏n
i=1 Rmi . Since

n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1Xk

σi

)
:

n∏
i=1

Rmi → ]0, 1[

is surjective, the effective levels of R∧
i
Xi,β

and R̃∧
i
Xi,β

are given due to Theorem 1.1.6,
part (i), by

βeff(R∧
i
Xi,β

) = βeff(R̃∧
i
Xi,β

) = β for β ∈ [0, 1].

2.1.4 Remark 1. We shall use in the proofs of the next few lemmas the fact that

Rn → ]0, 1[, µ 7→
n∏
i=1

Φ
(√

mi
µi − t
σi

)
,

is strictly increasing for t ∈ R and σ ∈ ]0,∞[n, and

]0,∞[→ ]0, 1[, σk 7→
n∏
i=1

Φ
(√

mi
µi − t
σi

)
,

is, for k ∈ {1, . . . , n}, t ∈ R and µ ∈ Rn, strictly increasing if µk < t, strictly
decreasing if µk > t, and constant if µk = t.
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2. The next result yields confidence regions for the following projections as parameters
of interest:

pr1 : Rn × ]0,∞[n → Rn, (µ, σ) 7→ µ,

pr2 : Rn × ]0,∞[n → ]0,∞[n, (µ, σ) 7→ σ.

2.1.5 Lemma Let us consider the projections pr1 and pr2 from Remark 2.1.4, part 2. For
x ∈ ∏n

i=1 Rmi then

pr1[R∧
i
Xi,β

(x)] =

R
n if β ∈ ] 1

2n , 1]⋃n
k=1{µ ∈ Rn : µk <

∧n
i=1 xi} if β ∈ ]0, 1

2n ]
(3)

pr1[R̃∧
i
Xi,β

(x)] =


Rn if β ∈ ]1− 1

2n , 1]

{µ ∈ Rn : |{µ > ∧n
i=1 xi}| > n− k} if β ∈ ]1− 1

2k−1 , 1− 1
2k ]

for some k ∈ {1, . . . , n}
(4)

pr2[R∧
i
Xi,β

(x)] = pr2[R̃∧
i
Xi,β

(x)] = ]0,∞[n. (5)

Proof. Let x ∈ ∏n
i=1 Rmi , and let us assume w.l.o.g. β ∈ ]0, 1[ (due to Remarks 1.1.7, part

3, and 1.2.3, part 6).
(3) Let β ∈ ] 1

2n , 1[. The inclusion LHS ⊆ RHS is clear. It therefore remains to show
LHS ⊇ RHS. To this end, let µ ∈ Rn, and let us define t := (∨nk=1 µk)∨ (∧nk=1 xk) + 1,
M := ∨n

k=1 mk, and

σi := M
t− ∧nk=1 xk
Φ−1(β1/n) for i ∈ {1, . . . , n}.

Then σ ∈ ]0,∞[n and , implies
n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
< Φn

(
M
t− ∧nk=1 xk

σ1

)
= β

due to Remark 2.1.4, part 1. Example 2.1.3 yields (µ, σ) ∈ R∧
i
Xi,β

(x). Since pr1(µ, σ) =
µ, we obtain µ ∈ LHS.
Let now β ∈ ]0, 1

2n ]. We first show LHS ⊆ RHS. To this end, let (µ, σ) ∈ R∧
i
Xi,β

(x),
and let us assume µ /∈ RHS. This means ∧ni=1 µi ≥

∧n
i=1 xi, which implies

n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
≥ Φn(0) = 1

2n ≥ β,

due to Remark 2.1.4, part 1, a contradiction to (µ, σ) ∈ R∧
i
Xi,β

(x) in view of Exam-
ple 2.1.3.
We now show LHS ⊇ RHS. Let µ ∈ RHS, and let us pick i0 ∈ {1, . . . , n} such that
µi0 <

∧n
k=1 xk. Let us define σi := 1 for i ∈ {1, . . . , n} \ {i0},

ε :=
n∏
i=1
i 6=i0

Φ (√mi(µi −
∧n
k=1 xk)) and σi0 :=

1 if ε ≤ 2β
√
mi0

µi0−
∧n

k=1 xk
2Φ−1(β/ε) if ε > 2β.
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Then σ ∈ ]0,∞[n and
n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
≤ εΦ

(
√
mi0

µi0 −
∧n
k=1 xk

σi0

)
< β

due to Remark 2.1.4, part 1. Example 2.1.3 yields (µ, σ) ∈ R∧
i
Xi,β

(x). Since pr1(µ, σ) =
µ, we obtain µ ∈ LHS.

(4) Let β ∈ ]1 − 1
2n , 1]. The inclusion LHS ⊆ RHS is clear. It thus remains to show

LHS ⊇ RHS. To this end, let µ ∈ Rn, and let us define t := (∧nk=1 µk)∧ (∧nk=1 xk)− 1,
M := ∨n

k=1mk, and

σi := M
t− ∧nk=1 xk

Φ−1((1− β)1/n) for i ∈ {1, . . . , n}.

Then σ ∈ ]0,∞[n and
n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
> Φn

(
M
t− ∧nk=1 xk

σ1

)
= 1− β

due to Remark 2.1.4, part 1. Example 2.1.3 yields (µ, σ) ∈ R∧
i
Xi,β

(x). Since pr1(µ, σ) =
µ, we obtain µ ∈ LHS.
Let now β ∈ ]1 − 1

2k−1 , 1 − 1
2k ] for some k ∈ {1, . . . , n}. We first show LHS ⊆ RHS.

To this end, let (µ, σ) ∈ R̃∧
i
Xi,β

(x), and let us assume µ /∈ RHS. This means
|{µ ≤ ∧n

i=1 xi}| ≥ k, i.e., µj ≤
∧n
i=1 xi for at least k of the indices j ∈ {1, . . . , n}.

Remark 2.1.4, part 1, implies
n∏
i=1

Φ
(
√
mi

µi −
∧n
j=1 xj

σi

)
≤ Φk(0) = 1

2k ≤ 1− β,

a contradiction to (µ, σ) ∈ R̃∧
i
Xi,β

(x) in view of Example 2.1.3.
We now show LHS ⊇ RHS. Let µ ∈ RHS, and let us define I := {µ >

∧n
j=1 xj} =

{i ∈ {1, . . . , n} : µi >
∧n
j=1 xj}, J := {1, . . . , n} \ I, and ε := β − 1 + 1

2k−1 ∈ ]0, 1
2k [. If

k ≥ 2, let furthermore M := ∨n
j=1mj, t := ∧n

j=1 µj, and, noting that (1− β)
1

k−1 < 1
2 ,

σi := 1 +M
t− ∧nj=1 xj

Φ−1((1− β)
1

k−1 )
for i ∈ J.

If J 6= ∅, then k ≥ 2 and, with arbitrary j ∈ J ,

η :=
∏
i∈J

Φ
(
√
mi
µi −

∧n
l=1 xl

σi

)
≥ Φ|J |

(
M
t− ∧nl=1 xl

σj

)
> 1− β

due to Remark 2.1.4, part 1. Let us pick N ∈ N such that (1−β
η

)1/N > 1
2 , and let us

define s := ∧
i∈I µi and

σi := t− ∧nl=1 xl

2Φ−1((1−β
η

)1/N)
for i ∈ I.
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Then σ ∈ ]0,∞[n and, with arbitrary j ∈ I,
n∏
i=1

Φ
(
√
mi
µi −

∧n
l=1 xl

σi

)
≥ ηΦ|I|

(
t− ∧nl=1 xl

σj

)
> η

(
1− β
η

)|I|/N
≥ 1− β

due to Remark 2.1.4, part 1. Example 2.1.3 implies (µ, σ) ∈ R∧
i
Xi,β

(x). Since
pr1(µ, σ) = µ, we obtain µ ∈ LHS.

(5) The inclusions pr2[R∧
i
Xi,β

(x)] ⊆ ]0,∞[n ⊇ pr2[R̃∧
i
Xi,β

(x)] are clear. We first show
the inclusion pr2[R∧

i
Xi,β

(x)] ⊇ ]0,∞[n. To this end, let σ ∈ ]0,∞[n, and let us define

µi :=
n∧
k=1

xk −
∨n
k=1 σk∨n
k=1mk

(
Φ−1(β1/n)

)
−
− 1 for i ∈ {1, . . . , n}.

Then µ ∈ Rn and
n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
≤ Φn

(
M
µ1 −

∧n
k=1 xk∨
σ

)
< β

due to Remark 2.1.4, part 1. Example 2.1.3 yields (µ, σ) ∈ R∧
i
Xi,β

(x). Since pr2(µ, σ) =
σ, we obtain σ ∈ pr2[R∧

i
Xi,β

(x)].
We now show pr2[R̃∧

i
Xi,β

(x)] ⊇ ]0,∞[n. To this end, let σ ∈ ]0,∞[n, and let us
define

µi :=
n∧
k=1

xk +
n∨
k=1

σkΦ−1((1− β)1/n) + 1 for i ∈ {1, . . . , n}.

Then µ ∈ Rn and
n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
≥ Φn

(
µ1 −

∧n
k=1 xk∨n

k=1 σk

)
> 1− β

due to Remark 2.1.4, part 1. Example 2.1.3 implies (µ, σ) ∈ R̃∧
i
Xi,β

(x). Together
with pr2(µ, σ) = σ, this yields σ ∈ pr2[R∧

i
Xi,β

(x)].

2.1.6 Remark 1. If we generalize the model P1 to P1|M×Σ, with M ⊆ Rn and Σ ⊆
]0,∞[n, Example 2.1.3 yields R∧

i
Xi,β,P1|M×Σ

(x) = R∧
i
Xi,β,P1

(x) ∩ (M × Σ) for x ∈∏n
i=1 Rmi , but an analogous version of Lemma 2.1.5 cannot be easily established in

such generality.
2. Lemma 2.1.5 yields for the parameter of interest Rn× ]0,∞[n → R, (µ, σ) 7→ ∧n

i=1 µi,
the confidence regions given by

∧
◦ pr1[R∧

i
Xi,β

(x)] =

R if β ∈ ] 1
2n , 1]

]−∞,∧ni=1 xi[ if β ∈ ]0, 1
2n ]

∧
◦ pr1[R̃∧

i
Xi,β

(x)] =

R if β ∈ ]1
2 , 1]

]∧ni=1 xi,∞[ if β ∈ ]0, 1
2 ]

for x ∈ ∏n
i=1 Rmi . This suggests that Buehlerization of ∧iXi in P1 is rather useless

(compared to the results obtained in the model P2 from the next section together
with the remarks on location-scale models in Lloyd and Kabaila (2003), Section 4).
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2.1.7 Example If we consider ∨iXi :
∏n
i=1 Rmi → R, x 7→ ∨n

i=1 xi, as designated statistic
and define

f :
n∏
i=1

Rmi →
n∏
i=1

Rmi , x 7→ −x,

g : Rn × ]0,∞[n → Rn × ]0,∞[n, (µ, σ) 7→ (−µ, σ),

then (∨iXi) �
⊗n
i=1 N⊗mi

µi,σ2
i

= (∧iXi ◦ f) �⊗n
i=1 N⊗mi−µi,σ2

i
, which yields the confidence regions

given by

R∨
i
Xi,β

(x) = g−1[R̃∧
i
Xi,β

(f(x))]

=
{

(µ, σ) ∈ Rn × ]0,∞[n :
n∏
i=1

Φ
(
√
mi

∨n
k=1 xk − µi

σi

)
> 1− β

}
R̃∨

i
Xi,β

(x) = g−1[R∧
i
Xi,β

(f(x))]

=
{

(µ, σ) ∈ Rn × ]0,∞[n :
n∏
i=1

Φ
(
√
mi

∨n
k=1 xk − µi

σi

)
< β

}

for x ∈ ∏n
i=1 Rmi , with effective levels

βeff(R∨
i
Xi,β

) = βeff(R̃∧
i
Xi,β

) = β = βeff(R∧
i
Xi,β

) = βeff(R̃∨
i
Xi,β

) for β ∈ [0, 1].

Lemma 2.1.5 furthermore yields for the parameters of interest pr1 and pr2 from Remark
2.1.4, part 2, the confidence regions given for x ∈ ∏n

i=1 Rmi by

pr1[R∨
i
Xi,β

(x)] =


Rn if β ∈ ]1− 1

2n , 1]

{µ ∈ Rn : |{µ < ∨n
i=1 xi}| > n− k} if β ∈ ]1− 1

2k−1 , 1− 1
2k ]

for some k ∈ {1, . . . , n}

pr1[R̃∨
i
Xi,β

(x)] =

R
n if β ∈ ] 1

2n , 1]⋃n
k=1{µ ∈ Rn : µk >

∨n
i=1 xi} if β ∈ ]0, 1

2n ]
pr2[R∨

i
Xi,β

(x)] = pr2[R̃∨
i
Xi,β

(x)] = ]0,∞[n.

2.1.8 Example If we consider Xi from Example 2.1.3 and define

Si :
n∏
k=1

Rmk → R, x 7→

√√√√ mi∑
k=1

(xi,k − xi)2/(mi − 1), for i ∈ {1, . . . , n},

then, since (√miXi/Si) � N⊗mi
µi,σ2

i
= tmi−1,µi/σi is continuous (the noncentral t-distribution

is introduced in Definition A.3.53), Remark 1.1.7, part 10, yields as Buehlerization of∧
i

√
miXi/Si the confidence regions given by

R∧
i

√
miXi/Si,β

(x) =
{

(µ, σ) ∈ Rn × ]0,∞[n :
n∏
i=1

tmi−1,µi/σi

(]
√
mi

xi
Si(x) ,∞

[)
< β

}

R̃∧
i

√
miXi/Si,β

(x) =
{

(µ, σ) ∈ Rn × ]0,∞[n :
n∏
i=1

tmi−1,µi/σi

(]
√
mi

xi
Si(x) ,∞

[)
> 1− β

}
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for x ∈ ∏n
i=1 Rmi . Since

n∏
i=1

tmi−1,µi/σi

(]
√
mi
Xi

Si
,∞

[)
:

n∏
i=1

Rmi → ]0, 1[

is surjective in view of Remark A.3.54, part 4, the effective levels of the above confidence
regions are given by

βeff(R∧
i

√
miXi/Si,β

) = βeff(R̃∧
i

√
miXi/Si,β

) = β for β ∈ [0, 1].

2.1.9 Remark For α ∈ ]0, 1[ and t ∈ R there is exactly one∧
µ/σ

α
(t) ∈ R such that t

n−1,
∧
µ/σ

α
(t) = α.

This follows from Remark A.3.54, part 6.
2.1.10 Lemma Let us consider the parameter of interest

∧ pr1
pr2

: Rn × ]0,∞[n → R, (µ, σ) 7→
n∧
i=1

µi
σi
.

For x ∈ ∏n
i=1 Rmi then

∧ pr1
pr2

[R∧
i

√
miXi/Si,β

(x)] =
]
−∞,

∧
µ/σ

β1/n

(
√
mi

xi
Si(x)

)[
(6)

∧ pr1
pr2

[R̃∧
i

√
miXi/Si,β

(x)] =
]∧

µ/σ1−β

(
√
mi

xi
Si(x)

)
,∞

[
. (7)

Proof. Let x ∈ ∏n
i=1 Rmi , and let us assume w.l.o.g. β ∈ ]0, 1[ (due to Remarks 1.1.7, part

3, and 1.2.3, part 6).
(6) We first show LHS ⊆ RHS. To this end, let (µ, σ) ∈ R∧

i

√
miXi/Si,β

(x), and let us
assume ∧ni=1 µi/σi ≥ supRHS. Remark A.3.54, part 6, then yields

n∏
i=1

tmi−1,µi/σi

(]
√
mi

xi
Si(x) ,∞

[)
≥

n∏
i=1

tmi−1,supRHS

(]
√
mi

xi
Si(x) ,∞

[)
≥ β,

a contradiction to (µ, σ) ∈ R∧
i

√
miXi/Si,β

(x) in view of Example 2.1.8.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define µi := t and σi := 1 for
i ∈ {1, . . . , n}. Then ∧ni=1 µi/σi = t. Remark A.3.54, part 6, yields

n∏
i=1

tmi−1,µi/σi

(]
√
mi

xi
Si(x) ,∞

[)
<

n∏
i=1

tmi−1,supRHS

(]
√
mi

xi
Si(x) ,∞

[)
= β,

implying (µ, σ) ∈ R∧
i

√
miXi/Si,β

(x) due to Example 2.1.8.
(7) We first show LHS ⊆ RHS. To this end, let (µ, σ) ∈ R̃∧

i

√
miXi/Si,β

(x), and let us
assume ∧ni=1 µi/σi ≤ inf RHS. Remark A.3.54, part 6, then yields

n∏
i=1

tmi−1,µi/σi

(]
√
mi

xi
Si(x) ,∞

[)
≤

n∏
i=1

tmi−1,inf RHS

(]
√
mi

xi
Si(x) ,∞

[)
≤ 1− β,
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a contradiction to (µ, σ) ∈ R̃∧
i

√
miXi/Si,β

(x) in view of Example 2.1.8.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define µ1 := t and σi := 1 for
i ∈ {1, . . . , n}. Since

lim
µ2,...,µn→∞

n∏
i=2

tmi−1,µi/σi

(]
√
mi

xi
Si(x) ,∞

[)
= 1,

we can pick µ2, . . . , µn ∈ [t,∞[ such that
n∏
i=2

tmi−1,µi/σi

(]
√
mi

xi
Si(x) ,∞

[)
>

1− β
ε
∧ (1− β),

where ε := tm1−1,µ1/σ1(]√m1 · x1/S1(x),∞[) ∈ ]0, 1[. Then ∧n
i=1 µi/σi = t. Remark

A.3.54, part 6, yields
n∏
i=1

tmi−1,µi/σi

(]
√
mi

xi
Si(x) ,∞

[)
≥ ε

n∏
i=2

tmi−1,µi/σi

(]
√
mi

xi
Si(x) ,∞

[)
> 1− β,

implying (µ, σ) ∈ R̃∧
i

√
miXi/Si,β

(x) in view of Example 2.1.8.

2.1.11 Definition For α ∈ ]0, 1[ and t ∈ R let∨
µ/σ

α
(t) := −

∧
µ/σ

α
(−t),

where ∧µ/σα is the confidence bound given in Remark 2.1.9.
2.1.12 Example If we consider ∨i√miXi/Si as designated statistic and set f and g as
in Example 2.1.7, then (∨i√miXi/Si) �

⊗n
i=1 N⊗mi

µi,σ2
i

= (∧i√miXi/Si ◦ f) �⊗n
i=1 N⊗mi−µi,σ2

i
,

which yields the confidence regions given by

R∨
i

√
miXi/Si,β

(x) = g−1[R̃∧
i

√
miXi/Si,β

(f(x))]

=
{

(µ, σ) ∈ Rn × ]0,∞[n :
n∏
i=1

tmi−1,−µi/σi

(]
−
√
mi

xi
Si(x) ,∞

[)
> 1− β

}

and

R̃∨
i

√
miXi/Si,β

(x) = g−1[R∧
i

√
miXi/Si,β

(f(x))]

=
{

(µ, σ) ∈ Rn × ]0,∞[n :
n∏
i=1

tmi−1,−µi/σi

(]
−
√
mi

xi
Si(x) ,∞

[)
< β

}

for x ∈ ∏n
i=1 Rmi , with effective levels

βeff(R∨
i

√
miXi/Si,β

) = βeff(R̃∧
i

√
miXi/Si,β

) = β

= βeff(R∧
i

√
miXi/Si,β

) = βeff(R̃∨
i

√
miXi/Si,β

) for β ∈ [0, 1].

Lemma 2.1.10 furthermore yields for the parameter of interest
∨ pr1

pr2
: Rn × ]0,∞[n → R, (µ, σ) 7→

n∨
i=1

µi
σi
,
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the confidence regions given for x ∈ ∏n
i=1 Rmi by∨ pr1

pr2
[R∨

i

√
miXi/Si,β

(x)] =
]
−∞,

∨
µ/σ

1−β

(
√
mi

xi
Si(x)

)[
∨ pr1

pr2
[R̃∨

i

√
miXi/Si,β

(x)] =
]∨

µ/σ
β1/n

(
√
mi

xi
Si(x)

)
,∞

[
,

where ∧µ/σβ is the confidence bound from Definition 2.1.11.
2.1.13 Example If we consider the designated statistic

∧
i,kXi,k :

n∏
i=1

Rmi → R, x 7→
n∧
i=1

mi∧
k=1

xi,k,

then, as (∧i,kXi,k) �
⊗n
i=1 N⊗mi

µi,σ2
i
is continuous, Remark 1.1.7, part 10, yields the confidence

regions given by

R∧
i,k
Xi,k,β

(x) =
{

(µ, σ) ∈ Rn × ]0,∞[n :
n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
< β

}

R̃∧
i,k
Xi,k,β

(x) =
{

(µ, σ) ∈ Rn × ]0,∞[n :
n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
> 1− β

}
for x ∈ ∏n

i=1 Rmi . Since
n∏
i=1

Φmi

(
µi −

∧
j,kXj,k

σi

)
:

n∏
i=1

Rmi → ]0, 1[

is surjective, their effective levels are given by

βeff(R∧
i,k
Xi,k,β

) = βeff(R̃∧
i,k
Xi,k,β

) = β for β ∈ [0, 1].

2.1.14 Remark 1. We shall use in the proof of the next lemma the fact that

Rn → ]0, 1[, µ 7→
n∏
i=1

Φmi

(
µi − t
σi

)
,

is strictly increasing for t ∈ R and σ ∈ ]0,∞[n, and

]0,∞[→ ]0, 1[, σk 7→
n∏
i=1

Φmi

(
µi − t
σi

)
,

is, for k ∈ {1, . . . , n}, t ∈ R and µ ∈ Rn, strictly increasing if µk < t, strictly
decreasing if µk > t, and constant if µk = t.

2. The next result yields confidence regions for the parameters of interest pr1 and pr2
from Remark 2.1.4, part 2.

2.1.15 Lemma Let pr1 and pr2 denote the projections from Remark 2.1.4, part 2, and
|m| := ∑n

i=1mi. For x ∈
∏n
i=1 Rmi then

pr1[R∧
i,k
Xi,k,β

(x)] =

R
n if β ∈ ] 1

2|m| , 1]⋃n
k=1{µ ∈ Rn : µk <

∧n
i=1

∧mi
j=1 xi,j} if β ∈ ]0, 1

2|m| ]
(8)

pr1[R̃∧
i,k
Xi,k,β

(x)] = Rn if β ∈ ]1− 1
2|m| , 1] (9)

pr2[R∧
i,k
Xi,k,β

(x)] = pr2[R̃∧
i,k
Xi,k,β

(x)] = ]0,∞[n. (10)
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Proof. Let x ∈ ∏n
i=1 Rmi , and let us assume w.l.o.g. β ∈ ]0, 1[ (due to Remarks 1.1.7, part

3, and 1.2.3, part 6).
(8) Let β ∈ ] 1

2|m| , 1]. The inclusion LHS ⊆ RHS is clear. It thus remains to show LHS ⊇
RHS. To this end, let µ ∈ Rn. Since

lim
σ1,...,σn→∞

n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
= 1

2|m| ,

we can pick σ ∈ ]0,∞[n such that

n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
= 1

2|m| < β.

Example 2.1.13 implies (µ, σ) ∈ R∧
i,k
Xi,k,β

(x).
Let now β ∈ ]0, 1

2|m| ]. We first show LHS ⊆ RHS. To this end, let (µ, σ) ∈ R∧
i,k
Xi,k,β

(x),
and let us assume ∧nk=1 µk ≥

∧n
i=1

∧mi
j=1 xi,j. Remark 2.1.14, part 1, then implies

n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
≥ 1

2|m| ≥ β,

a contradiction to (µ, σ) ∈ R∧
i,k
Xi,k,β

(x) in view of Example 2.1.13.
We now show LHS ⊇ RHS. Let µ ∈ RHS, and let us pick r ∈ {1, . . . , n} such that
µr <

∧n
i=1

∧mi
j=1 xi,j. Since

lim
σr→0+

n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
= 0,

we can pick σ ∈ ]0,∞[n such that

n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
< β.

Example 2.1.13 yields (µ, σ) ∈ R∧
i,k
Xi,k,β

(x).
(9) Let β ∈ ]1 − 1

2|m| , 1]. The inclusion LHS ⊆ RHS is clear. It thus remains to show
LHS ⊇ RHS. To this end, let µ ∈ Rn. Since

lim
σ1,...,σn→∞

n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
= 1

2|m| ,

we can pick σ ∈ ]0,∞[n such that

n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
= 1

2|m| > 1− β.

Example 2.1.13 yields (µ, σ) ∈ R̃∧
i,k
Xi,k,β

(x).
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(10) The inclusions pr2[R∧
i,k
Xi,k,β

(x)] ⊆ ]0,∞[n ⊇ pr2[R̃∧
i,k
Xi,k,β

(x)] are clear. It thus
remains to show ]0,∞[n ⊆ pr2[R∧

i,j
Xi,j ,β

(x)] ∩ pr2[R̃∧
i,j
Xi,j ,β

(x)]. To this end, let
σ ∈ ]0,∞[n. Since

lim
µ1,...,µn→Inf

n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
=

0 if Inf = −∞,
1 if Inf =∞,

we can pick µ ∈ Rn such that
n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
= 1

2|m| < β resp. > 1− β

Example 2.1.13 yields (µ, σ) ∈ R∧
i,k
Xi,k,β

(x) resp. (µ, σ) ∈ R̃∧
i,k
Xi,k,β

(x).

2.1.16 Remark The preceding result yields for the parameter of interest ∧ ◦ pr1 : Rn ×
]0,∞[n → R, (µ, σ) 7→ ∧n

i=1 µi, the confidence regions given by

∧
◦ pr1[R∧

i,j
Xi,j ,β

(x)] =

R if β ∈ ] 1
2|m| , 1]

]−∞,∧ni=1
∧mi
j=1 xi,j[ if β ∈ ]0, 1

2|m| ]∧
◦ pr1[R̃∧

i,j
Xi,j ,β

(x)] = R if β ∈ ]1− 1
2|m| , 1]

for x ∈ ∏n
i=1 Rmi . This suggests that Buehlerization of ∧i,j Xi,j in P1 is rather useless.

2.1.17 Example If we consider

∨
i,j Xi,j :

n∏
i=1

Rmi → R, x 7→
n∨
i=1

mi∨
j=1

xi,j,

as designated statistic and set f and g as in Example 2.1.7, then (∨i,j Xi,j) �
⊗n
i=1 N⊗mi

µi,σ2
i

=
(∧i,j Xi,j ◦ f) �⊗n

i=1 N⊗mi−µi,σ2
i
, which yields the confidence regions given by

R∨
i,j
Xi,j ,β

(x) = g−1[R̃∧
i,j
Xi,j ,β

(f(x))]

=
{

(µ, σ) ∈ Rn × ]0,∞[n :
n∏
i=1

Φmi

(∧n
j=1

∧mj
k=1 xj,k − µi
σi

)
> 1− β

}
R̃∨

i
Xi,β

(x) = g−1[R∧
i
Xi,β

(f(x))]

=
{

(µ, σ) ∈ Rn × ]0,∞[n :
n∏
i=1

Φmi

(∧n
j=1

∧mj
k=1 xj,k − µi
σi

)
< β

}

for x ∈ ∏n
i=1 Rmi , with effective levels

βeff(R∨
i,j
Xi,j ,β

) = βeff(R̃∧
i,j
Xi,j ,β

) = β = βeff(R∧
i,j
Xi,j ,β

) = βeff(R̃∨
i,j
Xi,j ,β

)

for β ∈ [0, 1]. Lemma 2.1.15 furthermore yields for the parameters of interest pr1 and pr2
from Remark 2.1.4 the confidence regions given for x ∈ ∏n

i=1 Rmi by

pr1[R∨
i,j
Xi,j ,β

(x)] = Rn if β ∈ ]1− 1
2|m| , 1]
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pr1[R̃∨
i,j
Xi,j ,β

(x)] =

R
n if β ∈ ] 1

2|m| , 1]⋃n
k=1{µ ∈ Rn : µk >

∨n
i=1

∨mi
j=1 xi,j} if β ∈ ]0, 1

2|m| ]
pr2[R∨

i,j
Xi,j ,β

(x)] = pr2[R̃∨
i,j
Xi,j ,β

(x)] = ]0,∞[n.

2.1.18 Example If we consider the mean

X :
n∏
i=1

Rmi → R, x 7→ x := 1
n

n∑
i=1

xi =
n∑
i=1

mi∑
j=1

xi,j
nmi

,

of the different samples’ means as designated statistic, then X �
⊗n

i=1 N⊗mi
µi,σ2

i
= N

µ,σ2/m/n,
which yields

n⊗
i=1

N⊗mi
µi,σ2

i
(X > x) = Φ

√n µ− x√
σ2/m


for x ∈ ∏n

i=1 Rmi . Here, µ = ∑n
i=1 µi/n and σ2/m = ∑n

i=1 σ
2
i /(nmi). Since X �

⊗n
i=1 N⊗mi

µi,σ2
i

is continuous, Remark 1.1.7, part 10, yields the confidence regions given by

RX,β(x) =
(µ, σ) ∈ Rn × ]0,∞[n :

√
n
µ− x√
σ2/m

< Φ−1(β)


R̃X,β(x) =
(µ, σ) ∈ Rn × ]0,∞[n :

√
n
x− µ√
σ2/m

< Φ−1(β)


for x ∈ ∏n
i=1 Rmi . Since

Φ
√n µ−X√

σ2/m

 :
n∏
i=1

Rmi → ]0, 1[

is surjective, the effective levels of RX,β and R̃X,β are given by

βeff(RX,β) = βeff(R̃X,β) = β for β ∈ [0, 1].

2.1.19 Lemma Let us consider the parameter of interest

κ : Rn → R, (µ, σ) 7→ µ = 1
n

n∑
i=1

µi.

For x ∈ ∏n
i=1 Rmi then

κ[RX,β(x)] =

R if β ∈ ]1
2 , 1]

]−∞, x[ if β ∈ ]0, 1
2 ]

(11)

κ[RX,β(x)] =

R if β ∈ ]1
2 , 1]

]x,∞[ if β ∈ ]0, 1
2 ].

(12)
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Proof. Let x ∈ ∏n
i=1 Rmi , and let us assume w.l.o.g. β ∈ ]0, 1[ (due to Remarks 1.1.7, part

3, and 1.2.3, part 6).
(11) Let β ∈ ]1

2 , 1]. The inclusion LHS ⊆ RHS is clear. It thus remains to show LHS ⊇
RHS. To this end, let t ∈ R, and let us define µi := t for i ∈ {1, . . . , n}. Since

lim
σ1→∞

√
n
x− µ√
σ2/m

= 0 < Φ−1(β),

we can pick σ ∈ ]0,∞[n such that (µ, σ) ∈ RX,β(x) in view of Example 2.1.18.
Let now β ∈ ]0, 1

2 ]. We first show LHS ⊆ RHS. Let (µ, σ) ∈ RX,β(x), and let us
assume µ ≥ x. Then

√
n
µ− x√
σ2/m

≥ 0 ≥ Φ−1(β),

a contradiction to (µ, σ) ∈ RX,β(x) in view of Example 2.1.18.
We now show LHS ⊇ RHS. Let t ∈ ]−∞, x[, and let us define µi := t for i ∈ {1, . . . , n}.
Since

lim
σ1,...,σn→0+

√
n
µ− x√
σ2/m

= −∞ < Φ−1(β),

we can pick σ ∈ ]0,∞[n such that (µ, σ) ∈ RX,β(x) in view of Example 2.1.18.
(12) Let β ∈ ]1

2 , 1]. The inclusion LHS ⊆ RHS is clear. It thus remains to show LHS ⊇
RHS. To this end, let t ∈ R, and let us define µi := t for i ∈ {1, . . . , n}. Since

lim
σ1→∞

√
n
x− µ√
σ2/m

= 0 < Φ−1(β),

we can pick σ ∈ ]0,∞[n such that (µ, σ) ∈ R̃X,β(x) in view of Example 2.1.18.
Let now β ∈ ]0, 1

2 ]. We first show LHS ⊆ RHS. To this end, let (µ, σ) ∈ R̃X,β(x), and
let us assume µ ≤ x. Then

√
n
x− µ√
σ2/m

≥ 0 ≥ Φ−1(β),

a contradiction to (µ, σ) ∈ R̃X,β(x) in view of Example 2.1.18.
We now show LHS ⊇ RHS. Let t ∈ ]x,∞[, and let us define µi := t for i ∈ {1, . . . , n}.
Since

lim
σ1,...,σn→0+

√
n
x− µ√
σ2/m

= −∞ < Φ−1(β),

we can pick σ ∈ ]0,∞[n such that (µ, σ) ∈ R̃X,β(x) in view of Example 2.1.18.
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2.2 S E V E R A L S A M P L E S W I T H K N OW N VA R I A N C E S

2.2.1 Definition Let n ∈ N, m ∈ Nn, and σ ∈ ]0,∞[n, and let

P2 :=
(

n⊗
i=1

N⊗mi
µi,σ2

i
: µ ∈ Rn

)

be the n-sample normal model with known variances σ2
1, . . . , σ2

n and known sample sizes
m1, . . . ,mn.
2.2.2 Remark 1. The sample space is X = ∏n

i=1 Rmi , the parameter space Θ = Rn.
2. P2 is stochastically increasing.
3. The following is a special case of P2:

P ′2 :=
(

n⊗
i=1

N⊗miµi,σ2 : µ ∈ Rn

)
for σ ∈ ]0,∞[,

the n-sample homoscedastic normal model with known variance σ2 and known sample
sizes m1, . . . , mn.

2.2.3 Example If we consider the designated statistic ∧iXi from Example 2.1.3, then the
calculations there yield

R∧
i
Xi,β

(x) =
{
µ ∈ Rn :

n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
< β

}

R̃∧
i
Xi,β

(x) =
{
µ ∈ Rn :

n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
> 1− β

}
,

for x ∈ ∏n
i=1 Rmi , with effective levels βeff(R∧

i
Xi,β

) = βeff(R̃∧
i
Xi,β

) = β for β ∈ [0, 1].

2.2.4 Remark For α ∈ ]0, 1[ and t ∈ R there is exactly one

∧
µ
α
(t) ∈ R such that

n∏
i=1

Φ
(
√
mi

∧
µα(t)− t
σi

)
= α.

In fact, f : R → ]0, 1[, s 7→ ∏n
i=1 Φ(√mi

s−t
σi

), is bijective since it is strictly increasing and
continuous with lims→−∞ f(s) = 0 and lims→∞ f(s) = 1.
2.2.5 Lemma Let us consider the parameter of interest

∧
: Rn → R, µ 7→

n∧
i=1

µi.

For x ∈ ∏n
i=1 Rmi then

∧
[R∧

i
Xi,β

(x)] =
]
−∞,

∧
µ
β
(∧ni=1 xi)

[
(13)

∧
[R̃∧

i
Xi,β

(x)] =


]∧n

i=1 xi − Φ−1(β)∨ni=1
σi√
mi
,∞

[
if β ∈ [1

2 , 1]]∧n
i=1 xi − Φ−1(β)∧ni=1

σi√
mi
,∞

[
if β ∈ [0, 1

2 ].
(14)
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Proof. Let x ∈ ∏n
i=1 Rmi , and let us assume w.l.o.g. β ∈ ]0, 1[ (due to Remarks 1.1.7, part

3, and 1.2.3, part 6).
(13) We first show LHS ⊆ RHS. Let µ ∈ R∧

i
Xi,β

(x) and assume ∧ni=1 µi ≥ supRHS.
Remarks 2.1.4, part 1, and 2.2.4 imply

n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
≥

n∏
i=1

Φ
(
√
mi

supRHS− ∧nk=1 xk
σi

)
= β,

a contradiction to µ ∈ R∧
i
Xi,β

(x) in view of Example 2.2.3.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define µi := t for i ∈ {1, . . . , n}.
Remark 2.1.4, part 1, yields

n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
<

n∏
i=1

Φ
(
√
mi

supRHS− ∧nk=1 xk
σi

)
= β,

hence µ ∈ R∧
i
Xi,β

(x) due to Example 2.2.3. Together with ∧nk=1 µk = t, this yields
t ∈ LHS.

(14) We first show LHS ⊆ RHS. To this end, let µ ∈ R̃∧
i
Xi,β

(x), and let us assume∧n
i=1 µi ≤ inf RHS. Pick i0 ∈ {1, . . . , n} such that µi0 = ∧n

i=1 µi. Remark 2.1.4, part
1, implies

n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
≤ Φ

(
√
mi0

µi0 −
∧n
k=1 xk

σi0

)

≤


Φ
(

Φ−1(1− β)
√
mi0
σi0

∨n
i=1

σi√
mi

)
if β ∈ [1

2 , 1[

Φ
(

Φ−1(1− β)
√
mi0
σi0

∧n
i=1

σi√
mi

)
if β ∈ ]0, 1

2 ]

≤ 1− β,

a contradiction to µ ∈ R̃∧
i
Xi,β

(x) in view of Example 2.2.3.
We now show LHS ⊇ RHS. Let t ∈ RHS, let us pick i0 ∈ {1, . . . , n} such that

σi0√
mi0

=


∨n
i=1

σi√
mi

if β ∈ [1
2 , 1[∧n

i=1
σi√
mi

if β ∈ ]0, 1
2 [,

and let us define µi0 := t. Then

ε := Φ
(
√
mi0

t− ∧nk=1 xk
σi0

)
>


Φ
(

Φ−1(1− β)
√
mi0
σi0

∨n
k=1

σk√
mk

)
if β ∈ [1

2 , 1[

Φ
(

Φ−1(1− β)
√
mi0
σi0

∧n
k=1

σk√
mk

)
if β ∈ ]0, 1

2 ]

= 1− β.

If we further define

µi :=
 n∧
k=1

xk + Φ−1

(1− β
ε

)1/n
 n∨
k=1

σk

 ∨ t for i ∈ {1, . . . , n} \ {i0},
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then, with arbitrary j ∈ {1, . . . , n} \ {i0},

n∏
i=1

Φ
(
√
mi
µi −

∧n
k=1 xk
σi

)
> εΦn−1

(
µj −

∧n
k=1 xk∨n

k=1 σk

)
≥ ε

(
1− β
ε

)n−1
n

> 1− β.

Example 2.2.3 implies µ ∈ R̃∧
i
Xi,β

. Together with ∧n
k=1 µk = t, this yields t ∈

LHS.

2.2.6 Definition For α ∈ ]0, 1[ and t ∈ R let
∨
µ
α
(t) := −

∧
µ
α
(−t),

where ∧µα is the confidence bound from Remark 2.2.4.
2.2.7 Example Let us consider the designated statistic ∨iXi from Example 2.1.17, and
let us set f as in Example 2.1.7 and g : Rn → Rn, µ 7→ −µ. Then (∨iXi) �

⊗n
i=1 N⊗mi

µi,σ2
i

=
(∧iXi ◦ f) �⊗n

i=1 N⊗mi−µi,σ2
i
, which yields the confidence regions given by

R∨
i
Xi,β

(x) = g−1[R̃∧
i
Xi,β

(f(x))]

=
{
µ ∈ Rn :

n∏
i=1

Φ
(
√
mi

∨n
k=1 xk − µi

σi

)
> 1− β

}
R̃∨

i
Xi,β

(x) = g−1[R∧
i
Xi,β

(f(x))]

=
{
µ ∈ Rn :

n∏
i=1

Φ
(
√
mi

∨n
k=1 xk − µi

σi

)
< β

}

for x ∈ ∏n
i=1 Rmi , with effective levels

βeff(R∨
i
Xi,β

) = βeff(R̃∧
i
Xi,β

) = β = βeff(R∧
i
Xi,β

) = βeff(R̃∨
i
Xi,β

) for β ∈ [0, 1].

Lemma 2.2.10 furthermore yields for the parameter of interest

∨
: Rn → R, µ 7→

n∨
i=1

µi,

the confidence regions given for x ∈ ∏n
i=1 Rmi by∨

[R∨
i
Xi,β

(x)] =
∨

[g−1[R̃∧
i
Xi,β

(f(x))]]

= −
∧

[R̃∧
i
Xi,β

(f(x))]

=


]
−∞,∨ni=1 xi + Φ−1(β)∨ni=1

σi√
mi

[
if β ∈ [1

2 , 1]]
−∞,∨ni=1 xi + Φ−1(β)∧ni=1

σi√
mi

[
if β ∈ [0, 1

2 ]∨
[R̃∨

i
Xi,β

(x)] =
∨

[g−1[R∧
i
Xi,β

(f(x))]]

= −
∧

[R∧
i
Xi,β

(f(x))]

=
]∨

µ
β
(∨ni=1 xi),∞

[
.
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2.2.8 Example If we consider the designated statistic ∧i,j Xi,j from Example 2.1.13, then
the calculations there yield

R∧
i,k
Xi,k,β

(x) =
{
µ ∈ Rn :

n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
< β

}

R̃∧
i,k
Xi,k,β

(x) =
{
µ ∈ Rn :

n∏
i=1

Φmi

(
µi −

∧n
j=1

∧mj
k=1 xj,k

σi

)
> 1− β

}

for x ∈ ∏n
i=1 Rmi , with effective levels βeff(R∧

i,k
Xi,k,β

) = βeff(R̃∧
i,k
Xi,k,β

) = β for β ∈ [0, 1].

2.2.9 Remark For α ∈ ]0, 1[ and t ∈ R there is exactly one

∧∧
µ
α
(t) ∈ R such that

n∏
i=1

Φmi

(∧∧
µα(t)− t
σi

)
= α.

In fact, f : R → ]0, 1[, s 7→ ∏n
i=1 Φmi( s−t

σi
), is bijective since it is strictly increasing and

continuous with lims→−∞ f(s) = 0 and lims→∞ f(s) = 1.
2.2.10 Lemma Let us consider the parameter of interest

∧
: Rn → R, µ 7→

n∧
i=1

µi.

For x ∈ ∏n
i=1 Rmi then

∧
[R∧

i,j
Xi,j ,β

(x)] =
]
−∞,

∧∧
µ
β
(∧ni=1

∧mi
j=1 xi,j)

[
(15)

∧
[R̃∧

i,j
Xi,j ,β

(x)] =
 n∧
i=1

mi∧
j=1

xi,j +
n∧
i=1

σiΦ−1
(
(1− β)1/mi

)
,∞

 . (16)

Proof. Let x ∈ ∏n
i=1 Rmi , and let us assume w.l.o.g. β ∈ ]0, 1[ (due to Remarks 1.1.7, part

3, and 1.2.3, part 6).
(15) We first show LHS ⊆ RHS. To this end, let µ ∈ R∧

i,j
Xi,j ,β

(x), and let us assume∧n
i=1 µi ≥ supRHS. Remarks 2.1.14, part 1, and 2.2.9 imply

n∏
i=1

Φmi

(
µi −

∧n
k=1

∧mk
r=1 xk,r

σi

)
≥

n∏
i=1

Φmi

(
supRHS− ∧nk=1

∧mk
r=1 xk,r

σi

)
= β,

a contradiction to µ ∈ R∧
i,j
Xi,j ,β

(x) in view of Example 2.2.8.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define µi := t for i ∈ {1, . . . , n}.
Remarks 2.1.14, part 1, and 2.2.9 imply

n∏
i=1

Φmi

(
µi −

∧n
k=1

∧mk
r=1 xk,r

σi

)
<

n∏
i=1

Φmi

(
supRHS− ∧nk=1

∧mk
r=1 xk,r

σi

)
= β,

hence µ ∈ R∧
i,j
Xi,j ,β

(x) due to Example 2.2.8. Together with ∧nk=1 µk = t, this yields
t ∈ LHS.
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(16) We first show LHS ⊆ RHS. To this end, let µ ∈ R̃∧
i,j
Xi,j ,β

(x), and let us assume∧n
i=1 µi ≤ inf RHS. Let us pick i0 ∈ {1, . . . , n} such that µi0 = ∧n

i=1 µi. Remark 2.1.14,
part 1, implies

n∏
i=1

Φmi

(
µi −

∧n
k=1

∧mk
r=1 xk,r

σi

)
≤ Φmi0

(
µi0 −

∧n
k=1

∧mk
r=1 xk,r

σi0

)

≤ Φmi0

∧ni=1 σiΦ−1
(
(1− β)1/mi

)
σi0


≤ Φmi0

(
Φ−1

(
(1− β)1/mi0

))
= 1− β,

a contradiction to µ ∈ R̃∧
i,j
Xi,j ,β

(x) in view of Example 2.2.8.
We now show LHS ⊇ RHS. Let t ∈ RHS, let us pick i0 ∈ {1, . . . , n} such that

σi0Φ−1
(
(1− β)1/mi0

)
=

n∧
i=1

σiΦ−1
(
(1− β)1/mi

)
,

and let us define µi0 := t. Then

ε := Φmi0

(
t− ∧nk=1

∧mk
r=1 xk,r

σi0

)

> Φmi0

∧ni=1 σiΦ−1
(
(1− β)1/mi

)
σi0


= Φmi0

(
Φ−1

(
(1− β)1/mi0

))
= 1− β.

Since

lim
µi→∞
for i 6=i0

n∏
i=1
i 6=i0

Φmi

(
µi −

∧n
k=1

∧mk
r=1 xk,r

σi

)
= 1,

we can pick µi ∈ ]t,∞[ for i ∈ {1, . . . , n} \ {i0} such that
n∏
i=1
i 6=i0

Φmi

(
µi −

∧n
k=1

∧mk
r=1 xk,r

σi

)
>

1− β
ε
∧ (1− β).

Example 2.2.8 implies µ ∈ R̃∧
i,j
Xi,j ,β

(x). Together with ∧n
k=1 µk = t, this yields

t ∈ LHS.

2.2.11 Remark For α ∈ ]0, 1[ and t ∈ R let∨∨
µ
α
(t) := −

∧∧
µ
α
(−t),

where ∧∧µα is the confidence bound from Remark 2.2.9.
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2.2.12 Example Let us consider the designated statistic ∨i,j Xi,j from Example 2.1.17, and
let us set f and g as in Example 2.2.7. Then (∨iXi)�

⊗n
i=1 N⊗mi

µi,σ2
i

= (∧iXi◦f)�⊗n
i=1 N⊗mi−µi,σ2

i
,

which yields the confidence regions given by

R∨
i,j
Xi,j ,β

(x) = g−1[R̃∧
i,j
Xi,j ,β

(f(x))]

=
{
µ ∈ Rn :

n∏
i=1

Φmi

(∨n
j=1

∨mj
k=1 xj,k − µi
σi

)
> 1− β

}
R̃∨

i,j
Xi,j ,β

(x) = g−1[R∧
i,j
Xi,j ,β

(f(x))]

=
{
µ ∈ Rn :

n∏
i=1

Φmi

(∨n
j=1

∨mj
k=1 xj,k − µi
σi

)
< β

}

for x ∈ ∏n
i=1 Rmi , with effective levels

βeff(R∨
i,j
Xi,j ,β

) = βeff(R̃∧
i,j
Xi,j ,β

) = β = βeff(R∧
i,j
Xi,j ,β

) = βeff(R̃∨
i,j
Xi,j ,β

)

for β ∈ [0, 1]. Lemma 2.2.10 furthermore yields for the parameter of interest
∨

: Rn → R, µ 7→
n∨
i=1

µi,

the confidence regions given for x ∈ ∏n
i=1 Rmi by∨

[R∨
i,j
Xi,j ,β

(x)] =
∨

[g−1[R̃∧
i,j
Xi,j ,β

(f(x))]]

= −
∧

[R̃∧
i,j
Xi,j ,β

(f(x))]

=
−∞, n∨

i=1

mi∨
j=1

xi,j −
n∧
i=1

σiΦ−1
(
(1− β)1/mi

)
∨

[R̃∨
i,j
Xi,j ,β

(x)] =
∨

[g−1[R∧
i,j
Xi,j ,β

(f(x))]]

= −
∧

[R∧
i,j
Xi,j ,β

(f(x))]

=
]∨∨

µ
β
(∨ni=1

∨mi
j=1 xi,j),∞

[
.

2.2.13 Example If we consider the designated statistic X from Example 2.1.18, then the
calculations there yield

RX,β(x) =
µ ∈ Rn : µ < x+

√
σ2/m

n
Φ−1(β)


R̃X,β(x) =

µ ∈ Rn : µ > x−

√
σ2/m

n
Φ−1(β)


for x ∈ ∏n

i=1 Rmi , with effective levels βeff(RX,β) = βeff(R̃X,β) = β for β ∈ [0, 1]. This
immediately yields for the parameter of interest κ : Rn → R, µ 7→ µ = ∑n

i=1 µi/n, the
confidence regions given for x ∈ ∏n

i=1 Rmi by

κ[RX,β(x)] =
−∞, x+

√
σ2/m

n
Φ−1(β)
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κ[R̃X,β(x)] =
x−

√
σ2/m

n
Φ−1(β),∞

 .

2.3 S E V E R A L H O M O G E N E O U S S A M P L E S W I T H K N OW N
VA R I A N C E S

2.3.1 Definition Let n ∈ N, m ∈ Nn, and σ ∈ ]0,∞[n, and let

P3 :=
(

n⊗
i=1

N⊗mi
µ,σ2

i
: µ ∈ R

)

be the n-sample homogeneous normal model with known variances σ2
1, . . . , σ2

n and known
sample sizes m1, . . . ,mn.
2.3.2 Remark 1. The sample space is X = ∏n

i=1 Rmi , the parameter space Θ = R.
2. P3 is stochastically increasing.
3. The following model is a special case of P3:

P ′3 := (N⊗nµ,σ2 : µ ∈ R) for σ ∈ ]0,∞[,

the one-sample normal model with known variance σ2 and known sample size n. The
sample space in this case is X = Rn.

2.3.3 Example If we consider the designated statistic X from Example 2.1.18, then the
calculations in Example 2.2.13 yield for the identity idR as parameter of interest the confi-
dence regions given by

RX,β(x) =
]
−∞, x+

√
σ2/mΦ−1(β)

[
R̃X,β(x) =

]
x−

√
σ2/mΦ−1(β),∞

[

for x ∈ ∏n
i=1 Rmi , with effective levels βeff(RX,β) = βeff(R̃X,β) = β for β ∈ [0, 1].

In the model P ′3 from the previous remark, the Buehlerizations of X : Rn → R, x 7→
x := ∑n

i=1 xi/n, yield for the same parameter of interest the well-known confidence regions
given for x ∈ Rn by

RX,β,P ′3
(x) =

]
−∞, x+ σ√

n
Φ−1(β)

[
R̃X,β,P ′3

(x) =
]
x− σ√

n
Φ−1(β),∞

[
.
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2.4 S E V E R A L S A M P L E S W I T H K N OW N M E A N S

2.4.1 Definition Let n ∈ N, m ∈ (N \ {1})n, and µ ∈ Rn, and let

P4 :=
(

n⊗
i=1

N⊗mi
µi,σ2

i
: σ ∈ ]0,∞[n

)

be the n-sample normal model with known means µ1, . . . , µn and known sample sizes
m1, . . . ,mn.
2.4.2 Remark 1. The sample space is X = ∏n

i=1 Rmi , the parameter space Θ = ]0,∞[n.
2. P2 is not stochastically monotonic.
3. The following model is a special case of P4:

P ′4 :=
(

n⊗
i=1

N⊗mi
µ,σ2

i
: σ ∈ ]0,∞[n

)
for µ ∈ R,

the n-sample homogeneous normal model with known mean µ and known sample
sizes m1, . . . , mn.

2.4.3 Example If we set Si as in Example 2.1.8, then Remark A.3.54, part 1, yields
((mi − 1)S2

i /σ
2
i ) � N⊗mi

µi,σ2
i

= χ2
mi−1 for i ∈ {1, . . . , n}. Since these laws are continuous, the

Buehlerizations of ∧i S2
i : ∏n

i=1 Rmi → [0,∞[, x 7→ ∧n
i=1 S

2
i (x), are given by

R∧
i
S2
i ,β

(x) =
{
σ ∈ ]0,∞[n :

n∏
i=1

χ2
mi−1

(]
mi − 1
σ2
i

n∧
k=1

S2
k(x),∞

[)
< β

}

R̃∧
i
S2
i ,β

(x) =
{
σ ∈ ]0,∞[n :

n∏
i=1

χ2
mi−1

(]
mi − 1
σ2
i

n∧
k=1

S2
k(x),∞

[)
> 1− β

}

for x ∈ ∏n
i=1 Rmi in view of Remark 1.1.7, part 10. Let us note that R∧

i
S2
i ,β

(x) = ∅ and
R̃∧

i
S2
i ,β

(x) = ]0,∞[n if x contains at least one constant vector xi = (xi,1, . . . , xi,mi). Since

n∏
i=1

χ2
mi−1

(]
mi − 1
σ2
i

n∧
k=1

S2
k ,∞

[)
:

n∏
i=1

Rmi → ]0, 1[

is surjective, the effective levels of these confidence regions are given by

βeff(R∧
i
S2
i ,β

) = βeff(R̃∧
i
S2
i ,β

) = β for β ∈ [0, 1].

2.4.4 Remark 1. We shall employ in the proof of Lemma 2.4.5 the fact that

]0,∞[n → ]0, 1[, σ 7→
n∏
i=1

χ2
mi−1

(]
mi − 1
σ2
i

n∧
k=1

S2
k(x),∞

[)
,

is, for fixed x ∈ ∏n
i=1 Rmi ,

• strictly increasing if each vector xi = (xi,1, . . . , xi,mi) is not constant,
• constantly 1 if there is a constant vector xi = (xi,1, . . . , xi,mi).
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2. For α ∈ ]0, 1[ and t ∈ ]0,∞[ there is exactly one

∧
σ
α
(t) ∈ ]0,∞[ such that

n∏
i=1

χ2
mi−1

(]
mi − 1

(∧σα(t))2 t,∞
[)

= α.

In fact, f : ]0,∞[→ ]0, 1[, s 7→ ∏n
i=1 χ

2
mi−1(]mi−1

s2
t,∞[), is bijective since it is strictly

increasing and continuous with lims→0 f(s) = 0 and lims→∞ f(s) = 1. Let us further-
more define ∧σα(0) := 0.

3. For i ∈ {1, . . . , n}, α ∈ ]0, 1[, and t ∈ ]0,∞[ there is exactly one

σiα(t) ∈ ]0,∞[ such that χ2
mi−1

(]
mi − 1

(σiα(t))2 t,∞
[)

= α,

namely σiα(t) :=
√

(mi − 1)t/F−1
i (1− α), where Fi denotes the distribution function

of the law χ2
mi−1. Let us furthermore define σiα(0) = 0.

2.4.5 Lemma Let us consider the parameters of interest

∧
: ]0,∞[n → ]0,∞[, σ 7→

n∧
i=1

σi,
∨

: ]0,∞[n → ]0,∞[, σ 7→
n∨
i=1

σi.

For x ∈ ∏n
i=1 Rmi then

∧
[R∧

i
S2
i ,β

(x)] =
]
0,
∧
σ
β
(∧ni=1 S

2
i (x))

[
(17)

∧
[R̃∧

i
S2
i ,β

(x)] =
]
n∧
i=1

σi1−β(∧nk=1 S
2
k(x)),∞

[
(18)

∨
[R∧

i
S2
i ,β

(x)] =


]0,∞[ if n ≥ 2 and no xi is constant
∅ if n ≥ 2 and some xi is constant]
0, σ1β(S2

1(x))
[

if n = 1

(19)

∨
[R̃∧

i
S2
i ,β

(x)] =
]∧

σ1−β(∧nk=1 S
2
k(x)),∞

[
. (20)

Proof. Let x ∈ ∏n
i=1 Rmi , and let us assume w.l.o.g. β ∈ ]0, 1[ (due to Remarks 1.1.7, part

3, and 1.2.3, part 6). If xi = (xi,1, . . . , xi,mi) is constant for some i ∈ {1, . . . , n}, then∧n
k=1 S

2
k(x) = 0, hence the claims are clear by Example 2.4.3 and Remark 2.4.4, parts 2

and 3. Let us therefore suppose that each vector xi = (xi,1, . . . , xi,mi) is not constant, that
is, ∧nk=1 S

2
k(x) > 0.

(17) We first show LHS ⊆ RHS. Let σ ∈ R∧
i
S2
i ,β

(x), and let us assume ∧ni=1 σi ≥ supRHS.
Remark 2.4.4, parts 1 and 2, implies

n∏
i=1

χ2
mi−1

(]
mi − 1
σ2
i

n∧
k=1

S2
k(x),∞

[)
≥

n∏
i=1

χ2
mi−1

(]
mi − 1

(supRHS)2

n∧
k=1

S2
k(x),∞

[)
= β,

a contradiction to σ ∈ R∧
i
S2
i ,β

(x) in view of Example 2.4.3.
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We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define σi := t for i ∈ {1, . . . , n}.
Remark 2.4.4, part 1, then yields

n∏
i=1

χ2
mi−1

(]
mi − 1
σ2
i

n∧
k=1

S2
k(x),∞

[)
<

n∏
i=1

χ2
mi−1

(]
mi − 1

(supRHS)2

n∧
k=1

S2
k(x),∞

[)
= β,

hence σ ∈ R∧
i
S2
i ,β

(x) due to Example 2.4.3. Together with ∧nk=1 σk = t, this yields
t ∈ LHS.

(18) We first show LHS ⊆ RHS. Let σ ∈ R̃∧
i
S2
i ,β

(x), and let us assume ∧ni=1 σi ≤ inf RHS.
Let us pick i0 ∈ {1, . . . , n} such that σi0 = ∧n

i=1 σi. Remark 2.4.4, parts 1 and 3,
yields

n∏
i=1

χ2
mi−1

(]
mi − 1
σ2
i

n∧
k=1

S2
k(x),∞

[)
≤ χ2

mi0−1

(]
mi0 − 1
σ2
i0

n∧
k=1

S2
k(x),∞

[)

≤ χ2
mi0−1

(]
mi0 − 1

(inf RHS)2

n∧
k=1

S2
k(x),∞

[)

≤ χ2
mi0−1

 (mi0 − 1)∧nk=1 S
2
k(x)

(σi01−β(∧nk=1 S
2
k(x)))2 ,∞


= 1− β,

a contradiction to σ ∈ R̃∧
i
S2
i ,β

(x) due to Example 2.4.3.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us pick i0 ∈ {1, . . . , n} such that

σi01−β(∧nk=1 S
2
k(x)) =

n∧
i=1

σi1−β(∧nk=1 S
2
k(x)).

Since

lim
σi→∞
for i 6=i0

n∏
i=1

χ2
mi−1

(]
mi − 1
σ2
i

n∧
k=1

S2
k ,∞

[)
= χ2

mi0−1

(]
mi0 − 1
σ2
i0

n∧
k=1

S2
k ,∞

[)

> χ2
mi0−1

(]
mi0 − 1

(inf RHS)2

n∧
k=1

S2
k ,∞

[)
= 1− β

in view of Remark 2.4.4, part 1, we can choose σi ∈ ]t,∞[ for i ∈ {1, . . . , n} \ {i0}
such that σ ∈ R̃∧

i
S2
i ,β

(x) due to Example 2.4.3. Together with ∧ni=1 σi = t, this yields
t ∈ LHS.

(19) If n ≥ 2 and x = (x1, . . . , xn) contains at least one constant vector xi = (xi,1, . . . , xi,mi),
then Example 2.4.3 yields R∧

i
S2
i ,β

(x) = ∅, which implies the claim. Let us now con-
sider the case n ≥ 2, and let us assume furthermore that x contains no constant
vector xi. The inclusion LHS ⊆ RHS is clear. It thus remains to show LHS ⊇ RHS.
To this end, let t ∈ ]0,∞[, and let us define σ1 := t. Since

lim
σ2→0+

n∏
i=1

χ2
mi−1

(]
mi − 1
σ2
i

n∧
k=1

S2
k(x),∞

[)
= 0 < β,
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for σ3, . . . , σn ∈ ]0,∞[, we can choose σ2, . . . , σn ∈ ]0, t[ such that σ ∈ R∧
i
S2
i ,β

(x) in
view of Example 2.4.3. Together with ∨ni=1 σi = t, this yields t ∈ LHS.
Let us now consider the case n = 1. Example 2.4.3 and Remark 2.4.4, part 1, yield
the equivalence

σ ∈ RS2
1 ,β

(x) ⇐⇒ σ < σ1β(S2
1(x)),

which implies the claim.
(20) We first show LHS ⊆ RHS. To this end, let σ ∈ R̃∧

i
S2
i ,β

(x), and let us assume∨n
i=1 σi ≤ inf RHS. Remark 2.4.4, parts 1 and 3, then yields

n∏
i=1

χ2
mi−1

(]
mi − 1
σ2
i

n∧
k=1

S2
k(x),∞

[)
≤

n∏
i=1

χ2
mi−1

(]
mi − 1

(inf RHS)2

n∧
k=1

S2
k(x),∞

[)
= 1− β,

a contradiction to σ ∈ R̃∧
i
S2
i ,β

(x) due to Example 2.4.3.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define σi := t for i ∈ {1, . . . , n}.
Remark 2.4.4, parts 1 and 3, then yields

n∏
i=1

χ2
mi−1

(]
mi − 1
σ2
i

n∧
k=1

S2
k(x),∞

[)
>

n∏
i=1

χ2
mi−1

(]
mi − 1

(inf RHS)2

n∧
k=1

S2
k(x),∞

[)
= 1− β,

which implies σ ∈ R̃∧
i
S2
i ,β

(x) due to Example 2.4.3. Together with ∨ni=1 σi = t, this
yields t ∈ LHS.

2.4.6 Example If we set Si as in Example 2.1.8, then Remark A.3.54, part 1, yields
((mi − 1)S2

i /σ
2
i ) � N⊗mi

µi,σ2
i

= χ2
mi−1 for i ∈ {1, . . . , n}. Since these laws are continuous, the

Buehlerizations of ∨i S2
i : ∏n

i=1 Rmi → [0,∞[, x 7→ ∨n
i=1 S

2
i (x), are given by

R∨
i
S2
i ,β

(x) =
{
σ ∈ ]0,∞[n :

n∏
i=1

χ2
mi−1

(]
0, mi − 1

σ2
i

n∨
k=1

S2
k(x)

[)
> 1− β

}

R̃∨
i
S2
i ,β

(x) =
{
σ ∈ ]0,∞[n :

n∏
i=1

χ2
mi−1

(]
0, mi − 1

σ2
i

n∨
k=1

S2
k(x)

[)
< β

}

for x ∈ ∏n
i=1 Rmi in view of Remark 1.1.7, part 10. Let us note that R∨

i
S2
i ,β

(x) = ∅ and
R̃∨

i
S2
i ,β

(x) = ]0,∞[n if x consists of solely constant vectors xi = (xi,1, . . . , xi,mi). Since
n∏
i=1

χ2
mi−1

(]
0, mi − 1

σ2
i

n∨
k=1

S2
k

[)
:

n∏
i=1

Rmi → ]0, 1[

is surjective, the effective levels of these confidence regions are given by

βeff(R∨
i
S2
i ,β

) = βeff(R̃∨
i
S2
i ,β

) = β for β ∈ [0, 1].

2.4.7 Remark 1. We shall employ in the proof of Lemma 2.4.8 the fact that

]0,∞[n → ]0, 1[, σ 7→
n∏
i=1

χ2
mi−1

(]
0, mi − 1

σ2
i

n∨
k=1

S2
k(x)

[)
,

is, for fixed x ∈ ∏n
i=1 Rmi ,
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• strictly decreasing if at least one vector xi = (xi,1, . . . , xi,mi) is not constant,
• constantly 0 if every vector xi = (xi,1, . . . , xi,mi) is constant.

2. For α ∈ ]0, 1[ and t ∈ ]0,∞[ there is exactly one

∨
σ
α
(t) ∈ ]0,∞[ such that

n∏
i=1

χ2
mi−1

(]
0, mi − 1

(∨σ
α
(t))2 t

[)
= α.

In fact, f : ]0,∞[ → ]0, 1[, s 7→ ∏n
i=1 χ

2
mi−1(]0, mi−1

s2
t[), is bijective since it is strictly

decreasing and continuous with lims→0 f(s) = 1 and lims→∞ f(s) = 0. Let us further-
more define ∨σ

α
(0) := 0.

2.4.8 Lemma Let us consider the parameters of interest ∧ and ∨ from Lemma 2.4.5.
With the confidence bounds σiβ from Remark 2.4.4, part 3, we have for x ∈ ∏n

i=1 Rmi

∧
[R∨

i
S2
i ,β

(x)] =
]
0,
∨
σ

1−β
(∨ni=1 S

2
i (x))

[
(21)

∧
[R̃∨

i
S2
i ,β

(x)] =

]0,∞[ if n ≥ 2]
σ11−β(S2

1(x)),∞
[

if n = 1
(22)

∨
[R∨

i
S2
i ,β

(x)] =
]
0,

n∨
i=1

σiβ(∨ni=1 S
2
i (x))

[
(23)

∨
[R̃∨

i
S2
i ,β

(x)] =
]∨

σ
β
(∨nk=1 S

2
k(x)),∞

[
. (24)

Proof. Let x ∈ ∏n
i=1 Rmi , and let us assume w.l.o.g. β ∈ ]0, 1[ (due to Remarks 1.1.7, part

3, and 1.2.3, part 6). If xi = (xi,1, . . . , xi,mi) is constant for every i ∈ {1, . . . , n}, then∨n
k=1 S

2
k(x) = 0, hence the claims are clear by Example 2.4.6 and Remarks 2.4.4, parts 2

and 3, and 2.4.7. Let us therefore suppose that at least one vector xi = (xi,1, . . . , xi,mi) is
not constant, that is, ∨nk=1 S

2
k(x) > 0.

(21) We first show LHS ⊆ RHS. To this end, let σ ∈ R∨
i
S2
i ,β

(x), and let us assume∧n
i=1 σi ≥ supRHS. Remark 2.4.7 then implies

n∏
i=1

χ2
mi−1

(]
0, mi − 1

σ2
i

n∨
k=1

S2
k(x)

[)
≤

n∏
i=1

χ2
mi−1

(]
0, mi − 1

(supRHS)2

n∨
k=1

S2
k(x)

[)
= 1− β,

a contradiction to σ ∈ R∨
i
S2
i ,β

(x) in view of Example 2.4.6.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define σi := t for i ∈ {1, . . . , n}.
Remark 2.4.7 then implies

n∏
i=1

χ2
mi−1

(]
0, mi − 1

σ2
i

n∨
k=1

S2
k(x)

[)
>

n∏
i=1

χ2
mi−1

(]
0, mi − 1

(supRHS)2

n∨
k=1

S2
k(x)

[)
= 1− β,

yielding σ ∈ R∨
i
S2
i ,β

(x) due to Example 2.4.6. Together with ∧ni=1 σi = t, this yields
t ∈ LHS.
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(22) Let us first consider the case n ≥ 2. The inclusion LHS ⊆ RHS is clear. It therefore
remains to show LHS ⊇ RHS. To this end, let t ∈ ]0,∞[ and let us define σ1 = t.
Since

lim
σ2→∞

n∏
i=1

χ2
mi−1

(]
0, mi − 1

σ2
i

n∨
k=1

S2
k(x)

[)
= 0 < β,

for σ3, . . . , σn ∈ ]0,∞[, we can choose σ2, . . . , σn ∈ ]t,∞[ such that σ ∈ R̃∨
i
S2
i ,β

(x)
in view of Example 2.4.6. Together with ∧ni=1 σi = t, this yields t ∈ LHS.
Let us now consider the case n = 1. Example 2.4.6 and Remark 2.4.7, part 1, yield
the equivalence

σ ∈ RS2
1 ,β

(x) ⇐⇒ σ > σ11−β(S2
1(x)),

which implies the claim.
(23) We first show LHS ⊆ RHS. To this end, let σ ∈ R∨

i
S2
i ,β

(x), and let us assume∨n
i=1 σi ≥ supRHS. Let us pick i0 ∈ {1, . . . , n} such that σi0 = ∨n

i=1 σi. Remarks
2.4.4, part 3, and 2.4.7, part 1, then imply

n∏
i=1

χ2
mi−1

(]
0, mi − 1

σ2
i

n∨
k=1

S2
k(x)

[)

≤ χ2
mi0−1

(]
0, mi0 − 1

σ2
i0

n∨
k=1

S2
k(x)

[)

≤ χ2
mi0−1

(]
0, mi0 − 1

(supRHS)2

n∨
k=1

S2
k(x)

[)

≤ χ2
mi0−1

0, mi0 − 1
(σi0β(∨nk=1 S

2
k(x)))2

n∨
k=1

S2
k(x)


= 1− χ2

mi0−1

 mi0 − 1
(σi0β(∨nk=1 S

2
k(x)))2

n∨
k=1

S2
k(x),∞


= 1− β,

a contradiction to σ ∈ R∨
i
S2
i ,β

(x) in view of Example 2.4.6.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us pick i0 ∈ {1, . . . , n} such that

σi0β(∨nk=1 S
2
k(x)) =

n∨
i=1

σiβ(∨nk=1 S
2
k(x)).

Let us define σi0 := t. Since

lim
σi→0+
for i 6=i0

n∏
i=1

χ2
mi−1

(]
0, mi − 1

σ2
i

n∨
k=1

S2
k(x)

[)

= χ2
mi0−1

(]
0, mi0 − 1

σ2
i0

n∨
k=1

S2
k(x)

[)

> χ2
mi0−1

(]
0, mi0 − 1

(supRHS)2

n∨
k=1

S2
k(x)

[)
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= χ2
mi0−1

0, mi0 − 1
(σi0β(∨nk=1 S

2
k(x)))2

n∨
k=1

S2
k(x)


= 1− χ2

mi0−1

 mi0 − 1
(σi0β(∨nk=1 S

2
k(x)))2

n∨
k=1

S2
k(x),∞


= 1− β,

we can pick σi ∈ ]0, t[ for i{1, . . . , n}\{i0} such that σ ∈ R∨
i
S2
i ,β

(x) due to Example
2.4.6. Together with ∨ni=1 σi = t, this yields t ∈ LHS.

(24) We first show LHS ⊆ RHS. To this end, let σ ∈ R̃∨
i
S2
i ,β

(x), and let us assume∨n
i=1 σi ≤ inf RHS. Remark 2.4.7 then yields

n∏
i=1

χ2
mi−1

(]
0, mi − 1

σ2
i

n∨
k=1

S2
k(x)

[)
≥

n∏
i=1

χ2
mi−1

(]
0, mi − 1

(inf RHS)2

n∨
k=1

S2
k(x)

[)
= β,

a contradiction to σ ∈ R̃∨
i
S2
i ,β

(x) due to Example 2.4.6.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define σi := t for i ∈ {1, . . . , n}.
Remark 2.4.7 then yields

n∏
i=1

χ2
mi−1

(]
0, mi − 1

σ2
i

n∨
k=1

S2
k(x)

[)
<

n∏
i=1

χ2
mi−1

(]
0, mi − 1

(inf RHS)2

n∨
k=1

S2
k(x)

[)
= β,

which implies σ ∈ R̃∨
i
S2
i ,β

(x) due to Example 2.4.6. Together with ∨ni=1 σi = t, this
yields t ∈ LHS.

2.4.9 Example If we set

S̃i :
n∏
k=1

Rmk → R, x 7→

√√√√ 1
mi

mi∑
k=1

(xi,k − µi)2, for i ∈ {1, . . . , n},

then Remark A.3.54, part 2, yields (miS̃
2
i /σ

2
i ) � N⊗mi

µi,σ2
i

= χ2
mi

for i ∈ {1, . . . , n}. The
calculations in Examples 2.4.3 and 2.4.6 and Lemmas 2.4.5 and 2.4.8 with mi and S̃i
instead of mi − 1 and Si, respectively, yield the confidence regions for the parameters of
interest ∧ and ∨ from Lemma 2.4.5 based on the Buehlerizations of ∧i S̃2

i and ∨i S̃2
i given

by
∧

[R∧
i
S̃2
i ,β

(x)] =
]
0,
∧
σ̃
β
(∧ni=1 S̃

2
i (x))

[
∧

[R̃∧
i
S̃2
i ,β

(x)] =
]
n∧
i=1

σ̃i1−β(∧nk=1 S̃
2
k(x)),∞

[

∨
[R∧

i
S̃2
i ,β

(x)] =


]0,∞[ if n ≥ 2 and no xi is constantly µi
∅ if n ≥ 2 and some xi is constantly µi]
0, σ̃1β(S̃2

1(x))
[

if n = 1
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∨
[R̃∧

i
S̃2
i ,β

(x)] =
]∧

σ̃1−β(∧nk=1 S̃
2
k(x)),∞

[
∧

[R∨
i
S̃2
i ,β

(x)] =
]
0,
∨
σ̃

1−β
(∨ni=1 S̃

2
i (x))

[
∧

[R̃∨
i
S̃2
i ,β

(x)] =

]0,∞[ if n ≥ 2]
σ̃11−β(S̃2

1(x)),∞
[

if n = 1∨
[R∨

i
S̃2
i ,β

(x)] =
]
0,

n∨
i=1

σ̃iβ(∨ni=1 S̃
2
i (x))

[
∨

[R̃∨
i
S̃2
i ,β

(x)] =
]∨

σ̃
β
(∨nk=1 S̃

2
k(x)),∞

[
.

for x ∈ ∏n
i=1 Rmi , where, for α ∈ ]0, 1[, t ∈ ]0,∞[, and i ∈ {1, . . . , n},

∧
σ̃
α
(t) is the unique s ∈ ]0,∞[ with

n∏
i=1

χ2
mi

(]
mi

s2 t,∞
[)

= α,
∧
σ̃
α
(0) := 0,

∨
σ̃
α
(t) is the unique s ∈ ]0,∞[ with

n∏
i=1

χ2
mi

(]
0, mi

s2 t
[)

= α,
∨
σ̃
α
(0) := 0,

σ̃iα(t) is the unique s ∈ ]0,∞[ with χ2
mi

(]
mi

s2 t,∞
[)

= α, σ̃iα(0) := 0.

2.5 S E V E R A L H O M O S C E DA S T I C S A M P L E S W I T H
K N OW N M E A N S

2.5.1 Definition Let n ∈ N, m ∈ Nn, and µ ∈ Rn, and let

P5 :=
(

n⊗
i=1

N⊗miµi,σ2 : σ ∈ ]0,∞[
)

be the n-sample homoscedastic normal model with known means µ1, . . . , µn and known
sample sizes m1, . . . ,mn.
2.5.2 Remark 1. The sample space is X = ∏n

i=1 Rmi , the parameter space Θ = ]0,∞[.
2. P2 is not stochastically monotonic.
3. The following is a special case of P5:

P ′5 := (N⊗nµ,σ2 : σ ∈ ]0,∞[) for µ ∈ R,

the one-sample normal model with known mean µ and known sample size n. The
sample space in this case is X = Rn.

2.5.3 Example If we set Si as in Example 2.1.8, then the Buehlerizations of ∧i S2
i and∨

i S
2
i are given, using the confidence bounds ∧σβ and ∨σ

β
from Remarks 2.4.4, part 3,

and 2.4.7, part 2, respectively, by

R∧
i
S2
i ,β

(x) =
]
0,
∧
σ
β
(∧ni=1 S

2
i (x))

[
R̃∧

i
S2
i ,β

(x) =
]∧

σ1−β(∧ni=1 S
2
i (x)),∞

[
R∨

i
S2
i ,β

(x) =
]
0,
∨
σ
β
(∨ni=1 S

2
i (x))

[
R̃∨

i
S2
i ,β

(x) =
]∨

σ
1−β

(∨ni=1 S
2
i (x)),∞

[
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for x ∈ ∏n
i=1 Rmi due to Examples 2.4.3 and 2.4.6. The effective levels of these confidence

regions are given by

βeff(R∧
i
S2
i ,β

) = βeff(R̃∧
i
S2
i ,β

) = βeff(R∨
i
S2
i ,β

) = βeff(R̃∨
i
S2
i ,β

) = β for β ∈ [0, 1].

In the model P ′5 from the previous remark, the Buehlerization of

S : Rn → [0,∞[, x 7→

√√√√ n∑
i=1

(xi − x)2/(n− 1),

yield for the identity id]0,∞[ as parameter of interest the confidence regions given for x ∈ Rn

by

RS2,β,P ′5(x) =
]
0,
√

n− 1
F−1(1− β)S(x)

[
R̃S2,β,P ′5(x) =

]√
n− 1
F−1(β)S(x),∞

[
,

where F denotes the distribution function of the law χ2
n−1.

2.5.4 Example If we set S̃i as in Example 2.4.9, then the Buehlerizations of ∧i S̃2
i and∨

i S̃
2
i are given, using the confidence bounds ∧ σ̃β and ∨ σ̃

β
from Example 2.4.9 by

R∧
i
S̃2
i ,β

(x) =
]
0,
∧
σ̃
β
(∧ni=1 S̃

2
i (x))

[
R̃∧

i
S̃2
i ,β

(x) =
]∧

σ̃1−β(∧ni=1 S̃
2
i (x)),∞

[
R∨

i
S̃2
i ,β

(x) =
]
0,
∨
σ̃
β
(∨ni=1 S̃

2
i (x))

[
R̃∨

i
S̃2
i ,β

(x) =
]∨

σ̃
1−β

(∨ni=1 S̃
2
i (x)),∞

[
for x ∈ ∏n

i=1 Rmi due to Example 2.4.9. The effective levels of these confidence regions are
given by

βeff(R∧
i
S̃2
i ,β

) = βeff(R̃∧
i
S̃2
i ,β

) = βeff(R∨
i
S̃2
i ,β

) = βeff(R̃∨
i
S̃2
i ,β

) = β for β ∈ [0, 1].

In the model P ′5 from Remark 2.5.2, part 3, the Buehlerization of

S̃ : Rn → [0,∞[, x 7→

√√√√ n∑
i=1

(xi − µ)2/n,

yield for the identity id]0,∞[ as parameter of interest the confidence regions given for x ∈ Rn

by

RS̃2,β,P ′5
(x) =

]
0,
√

n

F−1(1− β) S̃(x)
[

R̃S̃2,β,P ′5
(x) =

]√
n

F−1(β) S̃(x),∞
[
,

where F denotes the distribution function of the law χ2
n.





3
A P P L I C AT I O N : B I N O M I A L S A M P L E S

• In this chapter, the set Y is a subset of the integers, the order is the usual. Its interval
topology and the induced Borel σ-algebra are both the power set of Y .

• Let us remember that β ∈ ]0, 1[ due to Remark 1.1.7, part 3, unless stated otherwise.
• Outline of this chapter:

– Section 3.1 deals with several binomial samples with known sample sizes and
unknown success probabilities. This is the most general model considered in
this chapter. We buehlerize minimum and maximum of the scaled samples. The
Buehlerization of the sample mean of the scaled samples lies unfortunately out
of reach.

– Section 3.2 investigates single binomial samples on the basis of the results from
the previous section. The identity is buehlerized and Sterne’s (1954) confidence
region is derived.

– Section 3.3 deals with the simple but nevertheless instructive Bernoulli model.
We buehlerize again the identity, but this time on the basis of a general result
that yields every confidence region with level β for the identity on the parameter
space.

– Section 3.4 investigates a translated symmetric version of the model from the
previous section. The latter two models are particular in the sense that they
allow for the existence of minimal resp. least confidence down- and uprays.

3.1 S E V E R A L S A M P L E S

3.1.1 Definition Let n ∈ N, m ∈ Nn, and let

P :=
(

n⊗
i=1

Bmi,pi : p ∈ [0, 1]n
)

be the n-sample binomial model with known sample sizes m1, . . . , mn.
3.1.2 Remark The sample space is X = ∏n

i=1{0, . . . ,mi}, the parameter space Θ = [0, 1]n.
3.1.3 Example Let us consider the designated statistic

∧
X/m :

n∏
i=1
{0, . . . ,mi} → [0, 1], x 7→

n∧
i=1

xi
mi

.

Its Buehlerization is then given for x ∈ ∏n
i=1{0, . . . ,mi} by

R∧X/m,β(x) =
{
p ∈ [0, 1]n :

n∏
i=1

Bmi,pi

({⌊
mi

n∧
k=1

xk
mk

⌋
+ 1, . . . ,mi

})
< β

}

R̃∧X/m,β(x) =
{
p ∈ [0, 1]n :

n∏
i=1

Bmi,pi

({⌈
mi

n∧
k=1

xk
mk

⌉
, . . . ,mi

})
> 1− β

}
.

49
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Since, for i ∈ {1, . . . , n},

mi

n∧
k=1

xk
mk

=

0 if xk = 0 for some k ∈ {1, . . . , n}
mi if x = m,

we have

[0, 1]n =

R
∧
X/m,β(x) if x = m

R̃∧X/m,β(x) if xk = 0 for some k ∈ {1, . . . , n}.

Due to the above and the surjectivity of

[0, 1]→ [0, 1], p 7→
n∏
i=1

Bmi,p({1, . . . ,mi}) =
n∏
i=1

(1− (1− p)mi),

[0, 1]→ [0, 1], p 7→
n∏
i=1

Bmi,p({mi}) = p
∑n

i=1 mi ,

the effective levels of R∧X/m,β and R̃∧X/m,β are

βeff(R∧X/m,β) = βeff(R̃∧X/m,β) = β for β ∈ [0, 1].

3.1.4 Remark 1. We shall use the fact that, for r ∈ N and k ∈ Nr,

[0, 1]n → [0, 1], p 7→
r∏
i=1

Bki,pi({bkitc+ 1, . . . , ki}),

is strictly increasing for t ∈ [0, 1[, and constantly 0 for t = 1, and

[0, 1]n → [0, 1], p 7→
r∏
i=1

Bki,pi({dkite, . . . , ki}),

is strictly increasing for t ∈ ]0, 1], and constantly 1 for t = 0.
2. For r ∈ N, k ∈ Nr, α ∈ [0, 1], and t ∈ [0, 1[ there is exactly one

∧
p(k)

α
(t) ∈ [0, 1] such that

r∏
i=1

B
ki,
∧
p(k)

α
(t)({bkitc+ 1, . . . , ki}) = α.

In fact, f : [0, 1] → [0, 1], p 7→ ∏r
i=1 Bki,p({bkitc + 1, . . . , ki}), is bijective since it is

strictly increasing and continuous with f(0) = 0 and f(1) = 1.
3. For r ∈ N, k ∈ Nr, α ∈ [0, 1], and t ∈ ]0, 1] there is exactly one

∨
p(k)

α
(t) ∈ [0, 1] such that

r∏
i=1

Bki,
∨
p(k)

α
(t)({0, . . . , dkite − 1}) = α,

namely ∨ p(k)
α
(t) := 1− ∧ p(k)α(1− t).

4. For r ∈ N, k ∈ Nr, α ∈ [0, 1], and t ∈ ]0, 1] there is exactly one
∨
p̃(k)

α
(t) ∈ [0, 1] such that

r∏
i=1

Bki,
∨
p̃(k)

α
(t)({dkite, . . . , ki}) = 1− α.

In fact, f : [0, 1]→ [0, 1], p 7→ ∏r
i=1 Bki,p({dkite, . . . , ki}), is bijective since it is strictly

increasing and continuous with f(0) = 0 and f(1) = 1.
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5. For r ∈ N, k ∈ Nr, α ∈ [0, 1], and t ∈ [0, 1[ there is exactly one
∧
p̃(k)

α
(t) ∈ [0, 1] such that

r∏
i=1

B
ki,
∧
p̃(k)

α
(t)({0, . . . , bkitc}) = 1− α,

namely ∧ p̃(k)α(t) := 1− ∨ p̃(k)
α
(1− t).

6. For k ∈ N, α ∈ [0, 1], and t ∈ ]0, 1] there is exactly one

p(k)
α
(t) ∈ [0, 1] such that Bk,p(k)

α
(t)({dkte, . . . , k}) = 1− α.

In fact, f : [0, 1] → [0, 1], p 7→ Bk,p({dkte, . . . , k}), is bijective since it is strictly
increasing and continuous with f(0) = 0 and f(1) = 1.

7. For k ∈ N, α ∈ [0, 1], and t ∈ [0, 1[ there is exactly one

p(k)α(t) ∈ [0, 1] such that Bk,p(k)α(t)({0, . . . , bktc}) = 1− α,

namely p(k)α(t) := 1− p(k)
α
(1− t).

8. The functions ∧ p(k)α,
∨
p(k)

α
, ∧ p̃(k)α,

∨
p̃(k)

α
, p(k)

α
, and p(k)α are increasing with∧

p(k)
α
(0) = p∗(α) lim

t→1

∧
p(k)

α
(t) = 1

lim
t→0

∨
p(k)

α
(t) = 0

∨
p(k)

α
(1) = p∗(α)

lim
t→0

∨
p̃(k)

α
(t) = p∗(1− α)

∨
p̃(k)

α
(1) = (1− α)1/|k|

∧
p̃(k)

α
(0) = 1− (1− α)1/|k| lim

t→1

∧
p̃(k)

α
(t) = p∗(1− α)

lim
t→0

p(k)
α
(t) = 0 p(k)

α
(1) = (1− α)1/k

p(k)α(0) = 1− (1− α)1/k lim
t→1

p(k)α(t) = 1,

where, for γ ∈ [0, 1], p∗(γ)
p∗(γ)

 denotes the unique p ∈ [0, 1] satisfying


∏r
i=1(1− (1− p)ki) = γ∏r
i=1(1− pki) = γ.

9. If k ∈ N, and lCP,β and uCP,β denote the lower and upper confidence bound, respec-
tively, with level β of Clopper and Pearson (1934) for (Bk,p : p ∈ [0, 1]), and the above
functions p(k)

β
and p(k)β are extended to [0, 1] by continuity, then

p(k)
β

(
x

k

)
= lCP,β(x) and p(k)β

(
x

k

)
= uCP,β(x) for x ∈ {0, . . . , k}.

3.1.5 Lemma Let us consider the parameters of interest
∧

: [0, 1]n → [0, 1], p 7→
n∧
i=1

pi,
∨

: [0, 1]n → [0, 1], p 7→
n∨
i=1

pi.

For x ∈ ∏n
i=1{0, . . . ,mi} then

∧
[R∧X/m,β(x)] =


[
0,∧ p(m)β(∧ni=1

xi
mi

)
[

if x 6= m

[0, 1] if x = m
(25)
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∧
[R̃∧X/m,β(x)] =


]∧n

i=1 p(mi)β(∧nk=1
xk
mk

), 1
]

if xi > 0 for i ∈ {1, . . . , n}

[0, 1] if xi = 0 for some i ∈ {1, . . . , n}
(26)

∨
[R∧X/m,β(x)] =


[
0, p(m)β( x

m
)
[

if n = 1 and x < m

[0, 1] if n = 1 and x = m, or n ≥ 2
(27)

∨
[R̃∧X/m,β(x)] =


]∨

p̃(m)
β
(∧ni=1

xi
mi

), 1
]

if xi > 0 for i ∈ {1, . . . , n}

[0, 1] if xi = 0 for some i ∈ {1, . . . , n}.
(28)

Proof. Let x ∈ ∏n
i=1{0, . . . ,mi}. Example 3.1.3 then yields R∧X/m,β(m) = [0, 1]n and

R̃∧X/m,β(x) = [0, 1]n if some xi = 0.
(25) It remains to consider the case x 6= m. Let us first show LHS ⊆ RHS. To this end, let

p ∈ R∧X/m,β(x), and let us assume ∧ni=1 pi ≥ supRHS. Remark 3.1.4, part 1, then
implies

n∏
i=1

Bmi,pi

({⌊
mi

n∧
k=1

xk
mk

⌋
+ 1, . . . ,mi

})

≥
n∏
i=1

Bmi,supRHS

({⌊
mi

n∧
k=1

xk
mk

⌋
+ 1, . . . ,mi

})
= β,

a contradiction to p ∈ R∧X/m,β(x) in view of Example 3.1.3.
Let us now show LHS ⊇ RHS. Let t ∈ RHS(x), and let us define pi := t for i ∈
{1, . . . , n}. Remark 3.1.4, parts 1 and 2, then implies

n∏
i=1

Bmi,pi

({⌊
mi

n∧
k=1

xk
mk

⌋
+ 1, . . . ,mi

})

<
n∏
i=1

Bmi,supRHS

({⌊
mi

n∧
k=1

xk
mk

⌋
+ 1, . . . ,mi

})
= β,

hence p ∈ R∧X/m,β(x) due to Example 3.1.3. Together with ∧ni=1 pi = t, this yields
t ∈ LHS(x).

(26) It remains to consider the case where xi > 0 for some i ∈ {1, . . . , n}. Let us pick
i0 ∈ {1, . . . , n} such that p(mi0)

β
(∧nk=1

xk
mk

) = ∧n
i=1 p(mi)β(∧nk=1

xk
mk

).
We first show the inclusion LHS ⊆ RHS. To this end, let p ∈ R̃∧X/m,β(x), and let us
assume ∧nk=1 pk ≤ inf RHS. Remark 3.1.4, parts 1 and 6, then implies

n∏
i=1

Bmi,pi

({⌈
mi

n∧
k=1

xk
mk

⌉
, . . . ,mi

})

≤ Bmi0 ,inf RHS

({⌈
mi0

n∧
k=1

xk
mk

⌉
, . . . ,mi0

})
= 1 − β,

contradicting p ∈ R̃∧X/m,β(x) in view of Example 3.1.3.
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We now show LHS ⊇ RHS. To this end, let t ∈ RHS, and let us define

pi0 := t

ε := Bmi0 ,pi0

({⌈
mi0

n∧
k=1

xk
mk

⌉
, . . . ,mi0

})
(∈ ]1− β, 1])

pi := t ∨
(

1
2

(
1 +

∧
p(m|{1,...,n}\{i0}) 1−β

ε

(
n∧
k=1

xk
mk

)))
for i ∈ {1, . . . , n} \ {i0}.

Remark 3.1.4, parts 1 and 2, implies

n∏
i=1

Bmi,pi

({⌈
mi

n∧
k=1

xk
mk

⌉
, . . . ,mi

})

> ε
n∏
i=1
i 6=i0

B
mi,
∧
p(m|{1,...,n}\{i0}) 1−β

ε
(
∧n

k=1 xk/mk)

({⌈
mi

n∧
k=1

xk
mk

⌉
, . . . ,mi

})
= 1−β,

hence p ∈ R̃∧X/m,β(x) in view of Example 3.1.3. Together with ∧n
k=1 pk = t, this

yields t ∈ LHS.
(27) The case n = 1 is a special case of (25) since ∧ p(m)β = p(m)β in that case. Let

us therefore assume n ≥ 2. The inclusion LHS ⊆ RHS is clear. It thus remains to
show LHS ⊇ RHS. To this end, let t ∈ [0, 1], and let us define p1 := t and pi := 0 for
i ∈ {2, . . . , n}. Remark 3.1.4, part 1, then implies

n∏
i=1

Bmi,pi

({⌊
mi

n∧
k=1

xk
mk

⌋
+ 1, . . . ,mi

})

≤ Bm2,0

({⌊
m2

n∧
k=1

xk
mk

⌋
+ 1, . . . ,m2

})
= 0,

hence p ∈ R∧X/m,β due to Example 3.1.3. Together with ∨n
k=1 pk = t, this yields

t ∈ LHS.
(28) It remains to consider the case where xi > 0 for every i ∈ {1, . . . , n}. We first show

LHS ⊆ RHS. To this end, let p ∈ R̃∧X/m,β(x), and let us assume ∨nk=1 pk ≤ inf RHS.
Remark 3.1.4, parts 1 and 4, then implies

n∏
i=1

Bmi,pi

({⌈
mi

n∧
k=1

xk
mk

⌉
, . . . ,mi

})

≤
n∏
i=1

Bmi,inf RHS

({⌈
mi

n∧
k=1

xk
mk

⌉
, . . . ,mi

})
= 1 − β,

contradicting p ∈ R̃∧X/m,β(x) in view of Example 3.1.3.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define pi := t for i ∈ {1, . . . , n}.
Remark 3.1.4, parts 1 and 4, then implies

n∏
i=1

Bmi,pi

({⌈
mi

n∧
k=1

xk
mk

⌉
, . . . ,mi

})



54 application: binomial samples

>
n∏
i=1

Bmi,inf RHS

({⌈
mi

∧ x

m

⌉
, . . . ,mi

})
= 1 − β,

hence p ∈ R̃∧X/m,β(x) due to Example 3.1.3. Together with ∨nk=1 pk = t, this yields
t ∈ LHS.

3.1.6 Example Let us consider the designated statistic
∨
X/m :

n∏
i=1
{0, . . . ,mi} → [0, 1], x 7→

n∨
i=1

xi
mi

.

Since (m − idX ) � ⊗n
i=1 Bmi,pi = ⊗n

i=1 Bmi,1−pi and ∨
X/m = 1 − (∧X/m) ◦ (m − idX ),

Example 3.1.3 yields the confidence regions given for x ∈ ∏n
i=1{0, . . . ,mi} by

R∨X/m,β(x) = 1− R̃∧X/m,β(m− x)

=
{
p ∈ [0, 1]n :

n∏
i=1

Bmi,pi

({
0, . . . ,

⌊
mi

n∨
k=1

xk
mk

⌋})
> 1− β

}
R̃∨X/m,β(x) = 1−R∧X/m,β(m− x)

=
{
p ∈ [0, 1]n :

n∏
i=1

Bmi,pi

({
0, . . . ,

⌈
mi

n∨
k=1

xk
mk

⌉
− 1

})
< β

}

and, using Lemma 3.1.5,

∨
[R∨X/m,β(x)] =


[
0,∨ni=1 p(mi)β(∨nk=1

xk
mk

)
[

if xi < mi for every i ∈ {1, . . . , n}

[0, 1] if xi = mi for some i ∈ {1, . . . , n}

∨
[R̃∨X/m,β(x)] =


]∨

p(m)
β
(∨nk=1

xk
mk

), 1
]

if xi > 0 for some i ∈ {1, . . . , n}

[0, 1] if xi = 0 for every i ∈ {1, . . . , n}

∧
[R∨X/m,β(x)] =


[
0,∧ p̃(m)β(∨nk=1

xk
mk

)
[

if xi < mi for every i ∈ {1, . . . , n}

[0, 1] if xi = mi for some i ∈ {1, . . . , n}

∧
[R̃∨X/m,β(x)] =


]
p(m)

β
( x
m

), 1
]

if n = 1 and x > 0

[0, 1] if n = 1 and x = 0, or n ≥ 2.

3.1.7 Remark The Buehlerization of the designated statistic

X/m :
n∏
i=1
{0, . . . ,mi} → [0, 1], x 7→ 1

n

n∑
i=1

xi
mi

,

involves rather complex calculations and does not seem to be establishable without in-
vesting considerably more effort. Mattner and Tasto (2014), however, have shown that for
β ≥ 3/4 the confidence bounds uCP,β = p(n)β(·/n) and lCP,β = p(n)

β
(·/n) are, if modified

at only n− 1 resp. 1, valid for the parameter of interest

[0, 1]n → [0, 1], p 7→ p := 1
n

n∑
k=1

pk,

in the model (∗ni=1 Bpi : p ∈ [0, 1]n) of Bernoulli convolutions ∗ni=1 Bpi := Bp1 ∗ . . . ∗ Bpn .
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3.2 O N E S A M P L E

3.2.1 Definition Let n ∈ N. Let us consider the one-sample binomial model

P := (Bm,p : p ∈ [0, 1])

with known sample size m.
3.2.2 Remark The sample space is X = {0, . . . ,m}, the parameter space Θ = [0, 1].
3.2.3 Example Let us consider the family

D := (bm,p : p ∈ [0, 1])

of densities bm,p = ∑m
k=1

(
m
k

)
pk(1− p)m−k1{k} of Bm,p with respect to counting measure on

{0, . . . ,m}. The terms Bm,p(bm,p > bm,p(x)) and Bm,p(bm,p < bm,p(x)) cannot be expressed
in a more explicit form in general. The confidence region RD,β differs from Sterne’s (1954)
proposed one RS

β only by the fact that it does not contain its boundary points, that is,
RD,β = RS

β \ ∂RS
β.

Since

[0, 1]× {0, . . . , n} → [0, 1], (p, x) 7→ bm,p(x),

is surjective (which follows from the surjectivity of its restriction to [0, 1]×{n}, i.e., [0, 1]→
[0, 1], p 7→ bn,p(n) = pn) the same applies to

[0, 1]× {0, . . . ,m} → [0, 1], (p, x) 7→ Bm,p(bm,p ∼ bm,p(x)),

where ∼ ∈ {<,>}, due to the unimodality of every bm,p. The effective levels of RD,β and
R̃D,β are thus

βeff(RD,β) = βeff(R̃D,β) = β for β ∈ [0, 1].

3.2.4 Example If we consider the identity id{0,...,m} as designated statistic, then Example
3.1.6 for instance yields the confidence regions given for x ∈ {0, . . . ,m} by

Rid,β(x) =

[0, 1] if x = n

[0, p(m)β( x
m

)[ otherwise

 R̃id,β(x) =

[0, 1] if x = 0
]p(m)

β
( x
m

), 1] otherwise

 .
Their effective levels are

βeff(Rid,β) = βeff(R̃id,β) = β for β ∈ [0, 1].

3.2.5 Remark One can show that Rid,β and R̃id,β are minimal in the set of all confidence
down- resp. uprays with level β for id[0,1].
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3.3 B E R N O U L L I M O D E L

3.3.1 Definition Let P := (Bp : p ∈ [0, 1]) be the Bernoulli model, i.e., the one-sample
binomial model with sample size 1.
3.3.2 Remark The sample space is X = {0, 1}, the parameter space Θ = [0, 1].
3.3.3 Example We would like to find a general expression of an arbitrary confidence
bound for the identity id[0,1] in this model. Let us therefore consider a general family

T = (Tp : p ∈ [0, 1])

of functions Tp : {0, 1} → Y (the set Y being as required in the statement of Theorem
1.1.6), and let β ∈ ]0, 1]. The confidence regions RT ,β and R̃T ,β from Definition 1.1.5 then
depend on T solely via the two sets

A := {p ∈ [0, 1] : Tp(0) < Tp(1)} and B := {p ∈ [0, 1] : Tp(0) > Tp(1)}.

In fact,

Bp(Tp > Tp(x)) =


p if p ∈ A and x = 0,
1− p if p ∈ B and x = 1,
0 otherwise,

and the same result holds for Bp(Tp < Tp(x)) with A and B interchanged. What follows is
therefore also valid for R̃T ,β after switching A and B. We obtain

RT ,β(0) = (A ∩ [0, β[) ∪ ([0, 1] \ A) (29)
RT ,β(1) = (B ∩ ]1− β, 1]) ∪ ([0, 1] \B). (30)

The effective level of RT ,β is given by

βeff(RT ,β) = inf
(
(A ∪ (1−B)) ∩ [β, 1]

)
for β ∈ [0, 1].

3.3.4 Remark By varying A,B ∈ 2[0,1] with A ∩ B = ∅ in (29) and (30), we exhaust the
set of all confidence regions with level β for id[0,1] in this model in view of Theorem 1.1.10.
3.3.5 Example Let us consider the family

D := (bp : p ∈ [0, 1])

of densities bp = p1{1} of Bp with respect to counting measure on {0, 1}. We then have
A = ]1

2 , 1] and B = [0, 1
2 [, hence

for β ∈ ]1
2 , 1]: RD,β(0) = [0, β[ RD,β(1) = ]1− β, 1]

for β ∈ ]0, 1
2 ]: RD,β(0) = [0, 1

2 ] RD,β(1) = [ 1
2 , 1]

and

for β ∈ [1
2 , 1]: R̃D,β(0) = [0, 1] R̃D,β(1) = [0, 1]
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for β ∈ ]0, 1
2 ]: R̃D,β(0) = [0, β[ ∪ [1

2 , 1] R̃D,β(1) = [0, 1
2 ] ∪ ]1− β, 1].

The effective levels of RD,β and R̃D,β are given for β ∈ [0, 1] by

βeff(RD,β) =

β if β ∈ {0} ∪ [1
2 , 1]

1
2 if β ∈ ]0, 1

2 ]

 βeff(R̃D,β) =

1 if β ∈ [1
2 , 1]

β if β ∈ [0, 1
2 [

 .
3.3.6 Example If we consider the identity id{0,1} as designated statistic, we obtain A =
[0, 1] and B = ∅, which yields the confidence regions given by

Rid,β(0) = [0, β[ R̃id,β(0) = [0, 1]
Rid,β(1) = [0, 1] R̃id,β(1) = ]1− β, 1],

with effective levels

βeff(Rid,β) = βeff(R̃id,β) = β for β ∈ [0, 1].

3.3.7 Remark One can show that Rid,β and R̃id,β are least in the set of all confidence
down- resp. uprays with level β for id[0,1].

3.4 T R A N S L AT E D S Y M M E T R I C B E R N O U L L I M O D E L

3.4.1 Definition Let

Pϑ := 1
2(δbϑc + δbϑc+1) = δbϑc ∗ B1/2 for ϑ ∈ R

and P := (Pϑ : ϑ ∈ R) be a translated version of the symmetric Bernoulli model.
3.4.2 Remark The sample space is X = Z, the parameter space Θ = R.
3.4.3 Example If we consider the identity idZ on the integers Z as designated statistic,
then

Rid,β(x) = {ϑ ∈ R : Pϑ(]x,∞[ ∩ Z) < β}
R̃id,β(x) = {ϑ ∈ R : Pϑ(]x− 1,∞[ ∩ Z) > 1− β}

for x ∈ Z. Since

Pϑ(]x,∞[ ∩ Z) =


0 if bϑc < x

1
2 if bϑc = x

1 if bϑc > x

for x ∈ Z, we have

Rid,β(x) =

]−∞, x[ if β ∈ ]0, 1
2 ]

]−∞, x+ 1[ if β ∈ ]1
2 , 1]

 , R̃id,β(x) =

[x,∞[ if β ∈ ]0, 1
2 ]

[x− 1,∞[ if β ∈ ]1
2 , 1]


for x ∈ Z. The effective levels of Rid,β and R̃id,β are

βeff(Rid,β) = βeff(R̃id,β) =


1
2 if β ∈ ]0, 1

2 ]
1 if β ∈ ]1

2 , 1].
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3.4.4 Remark One can show that Rid,β and R̃id,β are least in the set of all confidence
down- resp. uprays with level β for idR.



4
A P P L I C AT I O N : E X P O N E N T I A L S A M P L E S

• In this chapter and the next ones, the set Y is ]0,∞[, the order being the usual. Its
interval topology is thus the usual Euclidean topology and B is the Borel σ-algebra
on ]0,∞[, as agreed in Remark A.1.69, part 4.

• Let us remember that β ∈ ]0, 1[ due to Remarks 1.1.7, part 3, and 1.2.3, part 6,
unless stated otherwise.

• Outline of this chapter:
– Section 4.1 considers several exponential samples with known sample sizes and

unknown rates. This is the most general model considered in this chapter. We
buehlerize overall minimum and maximum of the samples.

– The short Section 4.2 specializes to one exponential sample with known size
m and unknown rate. The results from the previous section yield confidence
bounds for the identity on the parameter space.

4.1 S E V E R A L S A M P L E S

4.1.1 Definition Let n ∈ N and m ∈ Nn. Let us consider the n-sample exponential model

P1 :=
(

n⊗
i=1

E⊗miλi
: λ ∈ ]0,∞[n

)
with known individual sample sizes m1, . . . , mn.
4.1.2 Remark The sample space is X = ∏n

i=1]0,∞[mi , the parameter space Θ = ]0,∞[n.
Let us interpret an observation x as an n-tuple (x1, . . . , xn) of vectors xi ∈ Rmi of possibly
different lengths with components xi,1, . . . , xi,mi . In the case n = 1, let us interpret x =
(x1, . . . , xm) as a vector of length m of strictly positive numbers.
4.1.3 Example Let us consider∧

i,j Xi,j :
n∏
i=1

]0,∞[mi → ]0,∞[, x 7→
n∧
i=1

mi∧
j=1

xi,j,

as designated statistic. Since (∧i,j Xi,j) �
⊗n
i=1 E⊗miλi

= E∑n

i=1 miλi
, we obtain

n⊗
i=1

E⊗miλi

∧
i,j Xi,j >

n∧
i=1

mi∧
j=1

xi,j

 = E∑n

i=1miλi

 n∧
i=1

mi∧
j=1

xi,j,∞

 (31)

= exp
− n∧

i=1

mi∧
j=1

xi,j
n∑
k=1

mkλk

 (32)

for x ∈ ∏n
i=1]0,∞[mi . Since exponential distributions are continuous, Remark 1.1.7, part

10, yields the confidence regions given by

R∧
i,j
Xi,j ,β

(x) =
{
λ ∈ ]0,∞[n :

n∑
i=1

miλi >
− log(β)∧n
i=1

∧mi
j=1 xi,j

}

59
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R̃∧
i,j
Xi,j ,β

(x) =
{
λ ∈ ]0,∞[n :

n∑
i=1

miλi <
− log(1− β)∧n
i=1

∧mi
j=1 xi,j

}

for x ∈ ∏n
i=1]0,∞[mi . Since

exp
(
−∧i,jXi,j

n∑
k=1

mkλk

)
:

n∏
i=1

]0,∞[mi → ]0, 1[

is surjective, the effective levels of R∧
i,j
Xi,j ,β

and R̃∧
i,j
Xi,j ,β

are given by

βeff(R∧
i,j
Xi,j ,β

) = βeff(R̃∧
i,j
Xi,j ,β

) = β for β ∈ [0, 1].

4.1.4 Lemma Let us consider the parameters of interest

prk :
n∏
i=1

]0,∞[mi → ]0,∞[, λ 7→ λk, for k ∈ {1, . . . , n}

∧
:

n∏
i=1

]0,∞[mi → ]0,∞[, λ 7→
n∧
i=1

λi,

∨
:

n∏
i=1

]0,∞[mi → ]0,∞[, λ 7→
n∨
i=1

λi.

For x ∈ ∏n
i=1 Rmi and k ∈ {1, . . . , n} then

prk[R∧
i,j
Xi,j ,β

(x)] =


]0,∞[ if n ≥ 2]
− log(β)
m
∧m

j=1 xj
,∞

[
if n = 1

(33)

prk[R̃∧
i,j
Xi,j ,β

(x)] =
]
0, − log(1− β)
mk

∧n
i=1

∧mi
j=1 xi,j

[
(34)

∧
[R∧

i,j
Xi,j ,β

(x)] =


]0,∞[ if n ≥ 2]
− log(β)
m
∧m

j=1 xj
,∞

[
if n = 1

(35)

∧
[R̃∧

i,j
Xi,j ,β

(x)] =
]
0, − log(1− β)∧n

i=1
∧mi
j=1 xi,j

∑n
r=1mr

[
(36)

∨
[R∧

i,j
Xi,j ,β

(x)] =
]

− log(β)∧n
i=1

∧mi
j=1 xi,j

∑n
r=1mr

,∞
[

(37)

∨
[R̃∧

i,j
Xi,j ,β

(x)] =
]
0, − log(1− β)∧n

r=1mr
∧n
i=1

∧mi
j=1 xi,j

[
. (38)

Proof. Let x ∈ ∏n
i=1]0,∞[mi and k ∈ {1, . . . , n}, and let us assume w.l.o.g. β ∈ ]0, 1[ (due

to Remarks 1.1.7, part 3, and 1.2.3, part 6).

(33) Let us first consider the case n ≥ 2. The inclusion LHS ⊆ RHS is clear. It thus
remains to show LHS ⊇ RHS. To this end, let t ∈ ]0,∞[, and let us define λk := t
and λi := − log(β)/∧nr=1

∧mr
j=1 xr,j for i ∈ {1, . . . , n} \ {k}. Then

n∑
i=1

miλi ≥ mkt+ (n− 1) − log(β)∧n
i=1

∧mi
j=1 xi,j

>
− log(β)∧n
i=1

∧mi
j=1 xi,j

,
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which yields λ ∈ R∧
i,j
Xi,j ,β

(x) due to Example 4.1.3. Since prk(λ) = t, we have
t ∈ LHS.
Let us now consider the case n = 1. This also implies k = 1. Example 4.1.3 yields
the equivalence

λ ∈ R∧
i,j
Xi,j ,β

(x) ⇐⇒ λ >
− log(β)
m
∧m
j=1 xj

,

which implies the claim.

(34) We first show the inclusion LHS ⊆ RHS. To this end, let λ ∈ R̃∧
i,j
Xi,j ,β

(x). Example
4.1.3 yields ∑n

r=1mrλr < − log(β)/∧ni=1
∧mi
j=1 xi,j, which implies

λk <
− log(1− β)

mk
∧n
i=1

∧mi
j=1 xi,j

−
n∑
r=1
r 6=k

mr

mk

λr <
− log(1− β)

mk
∧n
i=1

∧mi
j=1 xi,j

,

i.e., prk(λ) ∈ RHS.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us set λk := t. Since

lim
λr→0+
for r 6=k

n∑
r=1

mrλr = mkλk <
− log(1− β)∧n
i=1

∧mi
j=1 xi,j

,

we can pick λr ∈ ]0,∞[ with λ ∈ R̃∧
i,j
Xi,j ,β

(x) due to Example 4.1.3. Since prk(λ) = t,
we obtain t ∈ LHS.

(35) Let us first consider the case n ≥ 2. The inclusion LHS ⊆ RHS is clear. It thus re-
mains to show LHS ⊇ RHS. To this end, let t ∈ ]0,∞[, and let us define λ1 :=
t and λi := t ∨ (− log(β)/∧nr=1

∧mr
j=1 xr,j) for i ∈ {2, . . . , n}. Then ∑n

i=1miλi >
− log(β)/∧ni=1

∧mi
j=1 xi,j, hence λ ∈ R∧

i,j
Xi,j ,β

(x) due to Example 4.1.3. Since ∧ni=1 λi =
λ1 = t, we have t ∈ LHS.
The case n = 1 behaves identically to the one corresponding to (33): Example 4.1.3
yields the equivalence

λ ∈ R∧
i,j
Xi,j ,β

(x) ⇐⇒ λ >
− log(β)
m
∧m
j=1 xj

,

which implies the claim.

(36) We first show the inclusion LHS ⊆ RHS. To this end, let λ ∈ R̃∧
i,j
Xi,j ,β

(x), and let
us assume ∧ni=1 λi ≥ supRHS. Then

n∑
i=1

miλi ≥ supRHS
n∑
r=1

mr = − log(1− β)∧n
i=1

∧mi
j=1 xi,j

,

contradicting Example 4.1.3.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define λi := t for i ∈ {1, . . . , n}.
Then

n∑
i=1

miλi = t
n∑
i=1

mi <
− log(1− β)∧n
i=1

∧mi
j=1 xi,j

,

i.e., λ ∈ R̃∧
i,j
Xi,j ,β

(x) due to Example 4.1.3. Since ∧ni=1 λi = t, we have t ∈ LHS.
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(37) We first show the inclusion LHS ⊆ RHS. To this end, let λ ∈ R∧
i,j
Xi,j ,β

(x), and let
us assume ∨ni=1 λi ≤ inf RHS. Then

n∑
i=1

miλi ≤ inf RHS
n∑
r=1

mr = − log(β)∧n
i=1

∧mi
j=1 xi,j

,

contradicting Example 4.1.3.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define λi := t for i ∈ {1, . . . , n}.
Then

n∑
i=1

miλi = t
n∑
i=1

mi >
− log(β)∧n
i=1

∧mi
j=1 xi,j

,

i.e., λ ∈ R∧
i,j
Xi,j ,β

(x) due to Example 4.1.3. Since ∨ni=1 λi = t, we have t ∈ LHS.

(38) We first show the inclusion LHS ⊆ RHS. To this end, let λ ∈ R̃∧
i,j
Xi,j ,β

(x), and let
us assume ∨ni=1 λi ≥ supRHS. Let us pick i0 ∈ {1, . . . , n} with λi0 = ∨n

i=1 λi. Then
n∑
i=1

miλi > mi0λi0 ≥ mi0 supRHS = mi0∧n
r=1mr

· − log(1− β)∧n
i=1

∧mi
j=1 xi,j

≥ − log(1− β)∧n
i=1

∧mi
j=1 xi,j

,

contradicting Example 4.1.3.
We now show LHS ⊇ RHS. Let t ∈ RHS. Let us pick i0 ∈ {1, . . . , n} such that
mi0 = ∧n

i=1mi, and let us define λi0 := t. Since

lim
λi→0+
for i 6=i0

n∑
i=1

miλi = mi0t <
− log(1− β)∧n
i=1

∧mi
j=1 xi,j

,

we can pick λi ∈ ]0,∞[ such that λ ∈ R̃∧
i,j
Xi,j ,β

(x) in view of Example 4.1.3. Since∨n
i=1 λi = t, we have t ∈ LHS.

4.1.5 Remark In case m1 = . . . = mn =: M , Example 4.1.3 immediately yields for the
parameter of interest κ : ]0,∞[n → ]0,∞[, λ 7→ ∑n

k=1 λk the confidence regions given for
x ∈ ∏n

i=1]0,∞[M by

κ[R∧
i,j
Xi,j ,β

(x)] =
]

− log(β)
M
∧n
i=1

∧M
j=1 xi,j

,∞
[

κ[R̃∧
i,j
Xi,j ,β

(x)] =
]
0, − log(1− β)
M
∧n
i=1

∧M
j=1 xi,j

[
.

4.1.6 Example Let us consider

∨
i,j Xi,j :

n∏
i=1

]0,∞[mi → ]0,∞[, x 7→
n∨
i=1

mi∨
j=1

xi,j,

as designated statistic. The situation is now similar to, but cannot be readily reduced to
the one from Example 4.1.3. We have

n⊗
i=1

E⊗miλi

∨
i,j Xi,j <

n∨
i=1

mi∨
j=1

xi,j

 =
n∏
k=1

(
1− e−λk

∧n

i=1

∧mi
j=1 xi,j

)mk
(39)
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for x ∈ ∏n
i=1]0,∞[mi . Since exponential distributions are continuous, Remark 1.1.7, part

10, yields the confidence regions given by

R∨
i,j
Xi,j ,β

(x) =
{
λ ∈ ]0,∞[n :

n∏
k=1

(
1− e−λk

∧n

i=1

∧mi
j=1 xi,j

)mk
> 1− β

}

R̃∨
i,j
Xi,j ,β

(x) =
{
λ ∈ ]0,∞[n :

n∏
k=1

(
1− e−λk

∧n

i=1

∧mi
j=1 xi,j

)mk
< β

}

for x ∈ ∏n
i=1]0,∞[mi . Since

n∏
k=1

(
1− e−λk

∧
i,j
Xi,j

)mk :
n∏
i=1

]0,∞[mi → ]0, 1[

is surjective, the effective levels of R∨
i,j
Xi,j ,β

and R̃∨
i,j
Xi,j ,β

are given by

βeff(R∨
i,j
Xi,j ,β

) = βeff(R̃∨
i,j
Xi,j ,β

) = β for β ∈ [0, 1].

4.1.7 Remark Let us notice that

]0,∞[n → ]0, 1[, λ 7→
n∏
k=1

(
1− e−λkt

)mk
,

is strictly increasing for t ∈ ]0,∞[.
4.1.8 Lemma Let us consider the parameters of interest

prk :
n∏
i=1

]0,∞[mi → ]0,∞[, λ 7→ λk, for k ∈ {1, . . . , n}

∧
:

n∏
i=1

]0,∞[mi → ]0,∞[, λ 7→
n∧
i=1

λi,

∨
:

n∏
i=1

]0,∞[mi → ]0,∞[, λ 7→
n∨
i=1

λi.

For x ∈ ∏n
i=1 Rmi and k ∈ {1, . . . , n} then

prk[R∨
i,j
Xi,j ,β

(x)] =
]
− log(1− (1− β)1/mk)∨n

i=1
∨mi
j=1 xi,j

,∞
[

(40)

prk[R̃∨
i,j
Xi,j ,β

(x)] =


]0,∞[ if n ≥ 2]
0, − log(1−β1/m)∨m

j=1 xj

[
if n = 1

(41)

∧
[R∨

i,j
Xi,j ,β

(x)] =
− log(1− (1− β)1/

∧n

r=1 mr)∨n
i=1

∨mi
j=1 xi,j

,∞

 (42)

∧
[R̃∨

i,j
Xi,j ,β

(x)] =
0, − log(1− β1/

∑n

r=1mr)∨n
i=1

∨mi
j=1 xi,j

 (43)

∨
[R∨

i,j
Xi,j ,β

(x)] =
− log(1− (1− β)1/

∑n

r=1 mr)∨n
i=1

∨mi
j=1 xi,j

,∞

 (44)
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∨
[R̃∨

i,j
Xi,j ,β

(x)] =


]0,∞[ if n ≥ 2]
0, − log(1−β1/m)∨m

j=1 xj

[
if n = 1.

(45)

Proof. Let x ∈ ∏n
i=1]0,∞[mi and k ∈ {1, . . . , n}, and let us assume w.l.o.g. β ∈ ]0, 1[ (due

to Remarks 1.1.7, part 3, and 1.2.3, part 6).

(40) We first show LHS ⊆ RHS. To this end, let λ ∈ R∨
i,j
Xi,j ,β

(x). Example 4.1.6 then
yields(

1− e−λk
∨n

i=1

∨mi
j=1 xi,j

)mk
> (1− β)

n∏
r=1
r 6=k

(
1− e−λr

∨n

i=1

∨mi
j=1 xi,j

)−mr
> 1− β,

i.e., λk ∈ RHS.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define λk := t. Since

lim
λr→∞
for r 6=k

n∏
r=1

(
1− e−λr

∨n

i=1

∨mi
j=1 xi,j

)mr
=
(

1− e−λk
∨n

i=1

∨mi
j=1 xi,j

)mk
> 1− β,

we can pick λr ∈ ]0,∞[ for r ∈ {1, . . . , n} \ {k} such that λ ∈ R∨
i,j
Xi,j ,β

(x) due to
Example 4.1.6. Since prk(λ) = t, this implies t ∈ LHS.

(41) We first consider the case n ≥ 2. The inclusion LHS ⊆ RHS is clear. It thus remains
to show LHS ⊇ RHS. To this end, let t ∈ ]0,∞[, and let us define λk := t. Since, for
any l ∈ {1, . . . , n} \ {k},

lim
λl→0+

n∏
r=1

(
1− e−λr

∨n

i=1

∨mi
j=1 xi,j

)mr
= 0 < β,

we can pick λr ∈ ]0,∞[ for r ∈ {1, . . . , n} \ {k} such that λ ∈ R̃∨
i,j
Xi,j ,β

(x) due to
Example 4.1.6. Since prk(λ) = t, we obtain t ∈ LHS.
Let us now consider the case n = 1. This also implies k = 1. Example 4.1.6 yields
the equivalence

λ ∈ R̃∨
i,j
Xi,j ,β

(x) ⇐⇒ λ <
− log(1− β1/m)∨m

j=1 xj
,

which implies the claim.

(42) We shall first show the inclusion LHS ⊆ RHS. To this end, let λ ∈ R∨
i,j
Xi,j ,β

(x). For
l ∈ {1, . . . , n} then

(
1− e−λl

∨n

i=1

∨mi
j=1 xi,j

)ml
>

n∏
r=1

(
1− e−λr

∨n

i=1

∨mi
j=1 xi,j

)mr
> 1− β,

hence λl >
∧n
r=1(− log(1−(1−β)1/mr)/∨ni=1

∨mi
j=1 xi,j) = inf RHS, i.e., ∧nl=1 λl ∈ RHS.
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We now show LHS ⊇ RHS. Let t ∈ RHS. Let us pick r0 ∈ {1, . . . , n} such that
mr0 = ∧n

r=1mr, and let us define λr0 := t. Since

lim
λr→∞
for r 6=r0

n∏
r=1

(
1− e−λr

∨n

i=1

∨mi
j=1 xi,j

)mr
=
(

1− e−λr0
∨n

i=1

∨mi
j=1 xi,j

)mr0
> 1− β,

we can choose λr ∈ ]t,∞[ for r ∈ {1, . . . , n} \ {r0} such that λ ∈ R∨
i,j
Xi,j ,β

(x) due
to Example 4.1.6. Since ∧nr=1 λr = t, we obtain t ∈ LHS.

(43) We first show the inclusion LHS ⊆ RHS. To this end, let λ ∈ R̃∨
i,j
Xi,j ,β

(x), and let
us assume ∧ni=1 λi ≥ supRHS. Remark 4.1.7 then implies

n∏
r=1

(
1− e−λr

∨n

i=1

∨mi
j=1 xi,j

)mr
≥
(

1− e− supRHS
∨n

i=1

∨mi
j=1 xi,j

)∑n

r=1mr = β,

contradicting Example 4.1.6.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define λi := t for i ∈ {1, . . . , n}.
Remark 4.1.7 then implies

n∏
r=1

(
1− e−λr

∨n

i=1

∨mi
j=1 xi,j

)mr
<
(

1− e− supRHS
∨n

i=1

∨mi
j=1 xi,j

)∑n

r=1mr = β

i.e., λ ∈ R̃∨
i,j
Xi,j ,β

(x) due to Example 4.1.6. Since ∧ni=1 λi = t, we have t ∈ LHS.

(44) We first show the inclusion LHS ⊆ RHS. To this end, let λ ∈ R∨
i,j
Xi,j ,β

(x), and let
us assume ∨ni=1 λi ≤ inf RHS. Remark 4.1.7 then implies

n∏
r=1

(
1− e−λr

∨n

i=1

∨mi
j=1 xi,j

)mr
≤
(

1− e− inf RHS
∨n

i=1

∨mi
j=1 xi,j

)∑n

r=1 mr = 1− β,

contradicting Example 4.1.6.
We now show LHS ⊇ RHS. Let t ∈ RHS, and let us define λi := t for i ∈ {1, . . . , n}.
Remark 4.1.7 then implies

n∏
r=1

(
1− e−λr

∨n

i=1

∨mi
j=1 xi,j

)mr
>
(

1− e− supRHS
∨n

i=1

∨mi
j=1 xi,j

)∑n

r=1mr = 1− β

i.e., λ ∈ R∨
i,j
Xi,j ,β

(x) due to Example 4.1.6. Since ∨ni=1 λi = t, we have t ∈ LHS.

(45) We first the case n ≥ 2. The inclusion LHS ⊆ RHS is clear. It thus remains to show
LHS ⊇ RHS. To this end, let t ∈ ]0,∞[, and let us define λ1 := t. Since, for any
l ∈ {2, . . . , n},

lim
λl→0+

n∏
r=1

(
1− e−λr

∨n

i=1

∨mi
j=1 xi,j

)mr
= 0 < β,

we can pick λ2, . . . , λn ∈ ]0, t[ such that λ ∈ R̃∨
i,j
Xi,j ,β

(x) in view of Example 4.1.6.
Since ∨nr=1 λr = t, we obtain t ∈ LHS.
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The case n = 1 behaves identically to the one corresponding to (41): Example 4.1.6
yields the equivalence

λ ∈ R̃∨
i,j
Xi,j ,β

(x) ⇐⇒ λ <
− log(1− β1/m)∨m

j=1 xj
,

which implies the claim.

4.1.9 Remark 1. We have not been able to establish an analogue to Remark 4.1.5
for the designated statistic ∨i,j Xi,j and the sum as parameter of interest without a
considerable amount of calculations.

2. Determining the Buehlerization of the sum

S :
n∏
i=1

]0,∞[mi → ]0,∞[, x 7→
n∑
i=1

mi∑
j=1

xi,j,

is in simple cases possible using the density of the convolution of exponential distri-
butions provided by Akkouchi (2008).

4.2 O N E S A M P L E

4.2.1 Definition Let m ∈ N. Let us consider the one-sample exponential model

P2 := (E⊗mλ : λ ∈ ]0,∞[)

with known sample size m.
4.2.2 Remark The sample space is X = ]0,∞[m, the parameter space Θ = ]0,∞[.
4.2.3 Example If we buehlerize ∧ : ]0,∞[m → ]0,∞[, x 7→ ∧m

i=1 xi, and
∨ : ]0,∞[m →

]0,∞[, x 7→ ∨m
i=1 xi, then Examples 4.1.3 and 4.1.6 yield for the identity on the parameter

space the confidence regions given for x ∈ ]0,∞[m by

R∧,β(x) =
]
− log(β)
m
∧m
i=1 xi

,∞
[

R̃∧,β(x) =
]
0, − log(1− β)

m
∧m
i=1 xi

[

R∨,β(x) =
]
− log(1− (1− β)1/m)∨m

i=1 xi
,∞

[
R̃∨,β(x) =

]
0, − log(1− β1/m)∨m

i=1 xi

[
.



5
C O M PA R I N G PA I R S O F D I AG N O S T I C T E S T S

• This chapter’s (unattained) aim is the construction, in analogy to Mattner and Mat-
tner (2013), of confidence bounds in models describing pairs of diagnostic tests. Let
us assume that we would like to statistically compare two diagnostic tests without
being able to observe the true states of the members of the underlying population.
Let us also assume no knowledge about the prevalence of the condition that is being
examined or any kind of independence between the two diagnostic tests. In some
cases it might be reasonable to assume that one diagnostic test is, e.g., more sensi-
tive than the other. A confidence bound for the difference of the two diagnostic tests’
specificities can in such a case yield superiority of one test over the other.

• The main result of this chapter is the diagram in Theorem 5.3.6. It relates several
models for pairs of diagnostic tests. The notation is similar to the one employed in
Mattner and Mattner (2013). Most results in this chapter rely on computations made
“by hand” and are incomplete in the sense that central questions remain unfortunately
unanswered.

• Outline of this chapter:
– Section 5.1 gives an brief informal introduction to the notion of diagnostic test.
– Section 5.2 presents a statistical model for handling pairs of diagnostic tests due

to Gart and Buck (1966).
– Section 5.3 contains the above mentioned main result, which establishes rela-

tions
∗ between the sets of lower confidence bounds,
∗ between the sets of pairs of comparable lower confidence bounds,
∗ between the sets of admissible lower confidence bounds

in various models for diverse parameters of interest.
– The proof of the main result rests on a number of auxiliary results, which are

provided in Section 5.4. These results are of essentially two kinds: propositions
allowing a (sometimes partial) reduction of a statement in a certain model to
one in a similar, already covered model, and lemmas where images under certain
linear maps of semialgebraic sets are computed in an elementary manner (that
is to say, without tools from real algebraic geometry).

5.1 I N FO R M A L I N T R O D U C T I O N

5.1.1 Definition By a (dichotomous) diagnostic test we mean any procedure for classifying
objects of a fixed set, called population, into two states.
5.1.2 Remark 1. The state space is most often taken to be {0, 1}, with 1 being inter-

preted as “condition present” or “positive”, and 0 as “condition absent” or “negative.”

67
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2. Although the term “diagnostic test” is customarily used in a mainly medical con-
text, it naturally occurs in numerous other areas, among them psychology, quality
assurance, financial engineering, and everyday life.

5.1.3 Example 1. From medicine: measurement of body temperature to diagnose in-
fluenza; checking for tooth ache to diagnose dental caries; performance of an elisa
test to determine the presence of hiv; using a breathalyzer to determine alcohol
consumption.

2. From psychology: performance of an iq test to determine above average intelligence;
taking a personality test to diagnose schizophrenia.

3. From quality assurance: “trying out” specimina to determine whether ot not a prod-
uct is durable; immersion into fluids to diagnose watertightness.

4. From financial engineering: looking at the distribution of up- and downcrossings of
a financial product’s value to detect a high volatility.

5. From everyday life: measuring air humidity to predict whether or not it will rain in
the next few hours.

5.1.4 Remark Is it preferable in order to diagnose influenza to simply measure one’s body
temperature or to pay a visit to the physician? The latter diagnostic test may be more
reliable, but is also more expensive and more time-consuming than the former. In order to
decide whether a more sophisticated test is worth its money and effort, we need some way
of quantifying its features of interest to us.
5.1.5 Definition (Sensitivity and specificity) Given a diagnostic test for some condition, its
sensitivity is the probability of a positive test result given the presence of the condition, and
its specificity is the probability of a negative test result given the absence of the condition.
In symbols and with P denoting “the underlying” probability measure,

sensitivity := P(test = 1 | state = 1)
specificity := P(test = 0 | state = 0).

5.1.6 Remark 1. The pair consisting of the sensitivity and specificity of a diagnostic
test represent the accuracy of that diagnostic test.

2. Of greater interest to practitioners, who tend to be more oriented towards a prognosis,
are two different figures: the positive predictive value, which is the probability of the
condition being present given a positive test result, and the negative predictive value,
which is the probability of the condition being absent given a negative test result:

positive predictive value := P(state = 1 | test = 1)
negative predictive value := P(state = 0 | test = 0).

3. The pair consisting of the predictive values of a diagnostic test represent the useful-
ness of that diagnostic test.

4. In defining the predictive values we treated these numbers as attributes of the diag-
nostic test solely. This is, however, not the case—they also depend on another figure,
intrinsic to the population: the prevalence of the condition, which is the probability
that the condition is present in the population at hand. Using the predictive val-
ues in order to compare two diagnostic tests is thus improper since one of the tests
may dominate the other in terms of their predictive values inside one population but
may be inferior inside a different population. This is the reason we chose to compare
diagnostic tests according to their accuracy and not their usefulness.
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5.2 A M O D E L FO R T WO D I AG N O S T I C T E S T S

5.2.1 Remark In the following we shall often need to sum over some of the indices of a
multi-indexed family. For instance, if x ∈ [0,∞[{0,1}2 , then we would like to have x+0 =
x0,0 +x1,0, x1+ = x1,0 +x1,1, and x++ = x+0 +x+1 = x0,0 +x0,1 +x1,0 +x1,1. This motivates
the following, somewhat unusual definition.
5.2.2 Definition (Summation notation for arrays) Let (Ij : j ∈ J) be a finite family of
finite sets Ij, I := ∏

j∈J Ij its cartesian product, and X a subset of an abelian group with
operation + (that is not contained in either set Ij). Given i′ ∈ ∏j∈J(Ij ∪ {+}) and x ∈ X ,
we set xi′ := ∑

xi, where the sum is taken over all i ∈ I with i|{i′ 6=+} = i′|{i′ 6=+}.
5.2.3 Definition (Notation for counting densities) Given two sets X and Y , we denote by

prob(X ) :=
{
f ∈ [0, 1]X :

∑
x∈X

fx = 1
}

the set of probability counting densities on X and by

mark(X ,Y) := {f ∈ [0, 1]X×Y : f(x, · ) ∈ prob(Y) for x ∈ X}

the set of Markov (transition) counting densities from X to Y . In this context we write
fy|x for f(x, y) if f ∈ mark(X ,Y).
5.2.4 Definition (Multinomial distribution) Let X be a finite set. We denote by Mn,p the
multinomial distribution with sample size n ∈ N and outcome probabilities p ∈ prob(X ),
given by the probability counting density

{0, . . . , n}X → [0, 1], k 7→
(
n

k

)
pk,

where(
n

k

)
:= n!∏

x∈X kx!
· 1
(∑
x∈X

kx = n

)

denotes the multinomial coefficient for n ∈ N0 and k ∈ NX0 .
5.2.5 Remark The mapping

prob(X )→ Prob({0, . . . , n}X ), p 7→ Mn,p,

is injective: if p, q ∈ prob(X ) with p 6= q, there is x ∈ X with px 6= qx, hence k := n1{x} ∈
{0, . . . , n}X satisfies Mn,p({k}) = pnx 6= qnx = Mn,q({k}).
5.2.6 Remark Let us consider a pair of diagnostic tests applied each to a population of size
n ∈ N. The prevalence of the diagnosis within the underlying population is a number π1 ∈
[0, 1] and can thus be extended to a probability counting density π ∈ prob({0, 1}). The two
diagnostic tests can be described by a Markov counting density χ ∈ mark({0, 1}, {0, 1}2),
where, e.g., χ0,1|1 stands for the probability that an individual, chosen randomly from the
part of the population consisting of positive individuals, tests negatively by means of the
first test and positively by means of the second.
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The two diagnostic tests may also be considered separately by defining two Markov
counting densities χ′, χ′′ ∈ mark({0, 1}, {0, 1}) by χ′j|i := χj+|i = χj,0|i + χj,1|i and χ′′j|i :=
χ+j|i = χ0,j|i + χ1,j|i for i, j ∈ {0, 1} (see Definition 5.2.3 for the notation involving a
subscript “+”). The sensitivity and specificity of the first test are then given by χ′1|1 and
χ′0|0, respectively, and analogously for the second test.
Let us stress that knowledge of the two individual diagnostic tests χ′ and χ′′ does not

suffice in order to recover the original pair of diagnostic tests χ, except in the case of
conditional independence of the two tests.
5.2.7 Definition (Pairs of diagnostic tests) Let us consider the parameter space

Θ := prob({0, 1})×mark({0, 1}, {0, 1}2).

Given a parameter (π, χ) ∈ Θ, its joint density is given by π ⊗ χ : {0, 1} × {0, 1}2 → [0, 1],
(i, j) 7→ πiχj|i. We will denote the second marginal density of π⊗χ by µ(π, χ), i.e., µ maps
Θ onto prob({0, 1}2) and is given by

µ(π, χ)j = π0χj|0 + π1χj|1 for j ∈ {0, 1}2.

The model is then taken to be

P := (Mn,µ(π,χ) : (π, χ) ∈ Θ),

consisting thus of all multinomial distributions Mn,µ(π,χ) with sample size n and outcome
probabilities given by the second marginal density µ(π, χ).
5.2.8 Remark 1. This model is in essence due to Gart and Buck (1966).

2. Many parameters of interest are non-identifiable in P (identifiability is defined in
Definition A.3.12). Mattner and Mattner (2013, Lemma 2.8) yields for instance the
non-identifiability of Θ→ [0, 1], (π, χ) 7→ π1.

3. The consideration of µ(π, χ) rather than (π, χ) makes sense and is even required by
the fact that true states are de facto unobservable.

4. A higher specificity of the second test over the first is expressible as χ′′0|0 ≥ χ′0|0 or,
equivalently, χ1,0|0 ≥ χ0,1|0; a higher sensitivity of the second test over the first as
χ′′1|1 ≥ χ′1|1 or, equivalently, χ0,1|1 ≥ χ1,0|1.

5. Certain situations allow postulating some relation between the individual diagnostic
tests. Suppose, for instance, that the first test constitutes a part of the second and
that the second then yields a positive result if already the first one does. It is then
plausible to assume the first test at most as sensitive as the second one, i.e., χ′1|1 ≤ χ′′1|1.
This suggests considering submodels PR := P|ΘR = (Mn,µ(π,χ) : (π, χ) ∈ ΘR) obtained
by restricting the parameter space to

ΘR := {(π, χ) ∈ Θ: (χ′0|0, χ′1|1)R (χ′′0|0, χ′′1|1)},

where R is a binary relation on R2. The relation in the above example, for instance,
would be R = R2⊗≤ (we refer to Definition A.1.22, part 3, for product relations).

6. The mapping R 7→ ΘR is increasing, i.e., R ⊆ S ⊆ R4 implies ΘR ⊆ ΘS.
7. The set Θ2,≤ from Mattner and Mattner (2013) is represented here by Θ≤⊗R2 .

5.2.9 Example This numerical example justifies the consideration of submodels PR. Ay-
diner et al. (2012) consider three tests for screening for methicillin-resistant Staphylococcus
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aureus (mrsa): LightCycler® Advanced mrsa, Detect-Ready® mrsa, and CHROMagar
mrsa. The latter plays the role of gold standard (reference test) for comparing the first
two tests. It is thus reasonable to work in the model P≤⊗≤ when the first test is either
LightCycler® Advanced mrsa or Detect-Ready® mrsa, and the second test is CHROMa-
gar mrsa. The summary of their data can be found in Tables 2 and 3, where, e.g., k0,1 = 5
from Table 2 means that five patients were diagnosed negatively by LightCycler® Advanced
mrsa and positively by CHROMagar mrsa.

k0,0 = 1000 k0,1 = 5 k0+ = 1005
k1,0 = 15 k1,1 = 27 k1+ = 42

k+0 = 1015 k+1 = 32 k++ = 1047

Table 2: LightCycler® Advanced mrsa vs CHROMagar mrsa

k0,0 = 978 k0,1 = 11 k0+ = 989
k1,0 = 4 k1,1 = 15 k1+ = 19

k+0 = 982 k+1 = 26 k++ = 1008

Table 3: Detect-Ready® mrsa vs CHROMagar mrsa

5.3 R E L AT I N G M O D E L S FO R T WO D I AG N O S T I C T E S T S

5.3.1 Definition For a real number x ∈ R, let

x+ := x ∨ 0 and x− := −x ∧ 0

denote its positive and negative parts, respectively, so that x = x+−x− and |x| = x+ +x−.
5.3.2 Definition (Relations between experiments) Let P = (Pϑ : ϑ ∈ Θ) andQ = (Qη : η ∈
H) be two models on a common measurable space (X ,A), let κ : Θ→ R and λ : H→ R be
parameters of interest for P and Q, respectively, and let β ∈ [0, 1]. We write

(P , κ) (Q, λ) if every lower confidence bound with level β for the parameter of interest
κ in the model P is also one for the parameter of interest λ in the model Q;

(P , κ) (Q, λ) if, given two lower confidence bounds L and L′ such that
• both are valid for the parameter of interest κ in the model P ,
• both are valid for the parameter of interest λ in the model Q,
• both have level β in both of the above settings,

the superiority (see Definition A.3.19) of L over L′ with respect to κ in P implies
the superiority of L over L′ with respect to λ in Q;
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(P , κ) (Q, λ) if, given a lower confidence bound L with level β both for the parameter
of interest κ in the model P and for the parameter of interest λ in the model Q,
admissibility of L with respect to κ in P implies admissibility of L with respect to λ
in Q;

(P , κ) (Q, λ) if (P , κ) (Q, λ) and (Q, λ) (P , κ);

(P , κ) (Q, λ) if (P , κ) (Q, λ) and (Q, λ) (P , κ);

(P , κ) (Q, λ) if (P , κ) (Q, λ) and (Q, λ) (P , κ).

If more than one relation holds between (P , κ) and (Q, λ), we shall write the relations
more succinctly on top of each other, e.g., (P , κ) (Q, λ).
5.3.3 Remark The relations , , and are reflexive, , , , , and are
transitive, and in general no combination of them is symmetric (except the obvious ,

, , and combinations thereof) or antisymmetric.
5.3.4 Lemma Let X be a set, and P = (Pϑ : ϑ ∈ Θ) and Q = (Qη : η ∈ H) two models on
the measurable space (X , 2X ). Let furthermore κ : Θ→ R and λ : H→ R be parameters of
interest for P and Q, respectively, and let β ∈ [0, 1].

(i) If to every η ∈ H corresponds some ϑ ∈ Θ with Qη = Pϑ and λ(η) ≥ κ(ϑ), then
(P , κ) (Q, λ).

(ii) If to every η ∈ H corresponds some ϑ ∈ Θ with Qη = Pϑ and λ(η) ≤ κ(ϑ), then
(P , κ) (Q, λ).

(iii) If (P , κ) (Q, λ), then also (P , κ) (Q, λ).

Proof. (i) Let L be a lower confidence bound for κ in P with level β. Let η ∈ H and
pick ϑ ∈ Θ with Qη = Pϑ and λ(η) ≥ κ(ϑ). Then Qη(L ≤ λ(η)) = Pϑ(L ≤ λ(η)) ≥
Pϑ(L ≤ κ(ϑ)) ≥ β. L is thus a lower confidence bound for λ in Q with level β.

(ii) Let L and L′ be two lower confidence bounds for both κ in P and λ in Q with levels
β, and assume L′ better than L with respect to κ in P . Let η ∈ H, t ∈ ]−∞, λ(η)[
and pick ϑ ∈ Θ with Qη = Pϑ and λ(η) ≤ κ(ϑ). Then t ∈ ]−∞, κ(ϑ)[ also, hence
Qη(L′ ≥ t) = Pϑ(L′ ≥ t) ≥ Pϑ(L ≥ t) = Qη(L ≥ t). L′ is thus also better than L
with respect to λ in Q.

(iii) For ease of expression, let us denote by C the set of lower confidence bounds with
level β for both κ in P and λ in Q. Let L ∈ C be admissible with respect to κ in P ,
and let L′ ∈ C be better than L with respect to λ in Q. Due to (P , κ) (Q, λ), L′
is better than L with respect to κ in P . Since L is admissible in C with respect to κ
in P , L is better than L′ with respect to κ in P . Due to (P , κ) (Q, λ), L is better
than L′ with respect to (Q, λ). This yields the admissibility of L in C with respect to
λ in Q. The remaining part of the claim follows by symmetry.

5.3.5 Remark 1. Lemma 5.3.4 is a restatement of the fundamental Lemma 4.1 from
Mattner and Mattner (2013).
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2. Lemma 5.3.4, parts (i) and (ii), implies in particular: If to every (ϑ1, η2) ∈ Θ × H
corresponds some (η1, ϑ2) ∈ H × Θ with Pϑi = Qηi and κ(ϑi) ≤ λ(ηi) for i ∈ {1, 2},
then (P, κ) (Q, λ). These assumptions are trivially fulfilled if P = Q and κ ≤ λ.

3. The following theorem, relating different submodels and parameters of interest using
the notions introduced in Definition 5.3.2, constitutes the main result of this chapter.

5.3.6 Theorem (Relations between models of diagnostic tests) Let
• n ∈ N,
• κ : prob({0, 1}2)→ [−1, 1], q 7→ q0,1 − q1,0,
• κi : Θ→ [−1, 1], (π, χ) 7→ πi(χ′′i|i − χ′i|i) for i ∈ {0, 1},
• M := (Mn,q : q ∈ prob({0, 1}2)),
• M′ := (Mn,q : q ∈ {κ ≥ 0}),
• M′′ := (Mn,q : q ∈ {κ ≤ 0}).

Then the following diagram holds:

(M,−κ−) (M, κ+)

(M′′, κ) (M, κ) (M′, κ)

(P ,−κ0) (P , κ1 − κ0) (P , κ1)

(P≤⊗R2 ,−κ0) (P≤⊗R2 , κ1 − κ0) (P≤⊗R2 , κ1)

(PR2⊗≤,−κ0) (PR2⊗≤, κ1 − κ0) (PR2⊗≤, κ1)

(P≤⊗≤,−κ0) (P≤⊗≤, κ1 − κ0) (P≤⊗≤, κ1)

(P≤⊗≥,−κ0) (P≤⊗≥, κ1 − κ0) (P≤⊗≥, κ1)

Proof. The proof uses Lemma 5.3.4, Remark 5.3.5, part 2, and the following results from
the next section: Lemmas 5.4.6, 5.4.7, 5.4.12, 5.4.13, and Remark 5.4.5, part 1.
Let us first make the following observation: Given a parameter of interest λ : Θ→ R for
P and binary relations R, S on R2 with S ⊇ R, Lemma 5.3.4, parts (i) and (ii), implies
(PS, λ) (PR, λ).

• (M, κ) (P , κ1−κ0): Let (π, χ) ∈ Θ, and let us define q := µ(π, χ) ∈ prob({0, 1}2).
Lemma 5.3.4, parts (i) and (ii), and Remark 5.4.5, part 1, then yield the assertion.

• (M, κ) (P , κ1 − κ0): Let q ∈ prob({0, 1}2), and let us pick, using Lemma 5.4.7,
(π, χ) ∈ µ−1[{q}]. Remark 5.4.5, part 1, and Lemma 5.3.4, parts (i) and (ii), then
part (iii), yield the assertion.
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• (P , κ1 − κ0) (P≤⊗R2 , κ1 − κ0) follows from Θ≤⊗R2 ⊇ Θ≤⊗≤, Lemma 5.4.6 and a
double application of Lemma 5.3.4, parts (i) and (ii), then part (iii).

• (P≤⊗R2 , κ1 − κ0) (PR2⊗≤, κ1 − κ0) follows from Θ≤⊗R2 ∩ ΘR2⊗≤ ⊇ Θ≤⊗≤ and a
double application of Lemmas 5.4.6 and 5.3.4, parts (i) and (ii), then part (iii).

• (PR2⊗≤, κ1 − κ0) (P≤⊗≤, κ1 − κ0) follows from ΘR2⊗≤ ⊇ Θ≤⊗≤ and a double
application of Lemmas 5.4.6 and 5.3.4, parts (i) and (ii), then part (iii).

• (P≤⊗≤, κ1 − κ0) (P≤⊗≥, κ1 − κ0) follows from Lemmas 5.3.4, parts (i) and (ii),
and 5.4.6.

• (P≤⊗R2 , κ1−κ0) (P≤⊗R2 , κ1) is shown in Mattner and Mattner (2013, Theorem
1.1, parts A–C).

• (P , λ) (P≤⊗R2 , λ) for λ ∈ {κ1,−κ0} follows from Θ ⊇ Θ≤⊗R2 and the observation
at the beginning of the proof.

• (P , λ) (PR2⊗≤, λ) for λ ∈ {κ1,−κ0} follows from Θ ⊇ ΘR2⊗≤ and the observation
at the beginning of the proof.

• (P≤⊗R2 , λ) (P≤⊗≤, λ) for λ ∈ {κ1,−κ0} follows from Θ≤⊗R2 ⊇ Θ≤⊗≤ and the
observation at the beginning of the proof.

• (P≤⊗R2 , λ) (P≤⊗≥, λ) for λ ∈ {κ1,−κ0} follows from Θ≤⊗R2 ⊇ Θ≤⊗≥ and the
observation at the beginning of the proof.

• (PR2⊗≤, λ) (P≤⊗≤, λ) for λ ∈ {κ1,−κ0} follows from ΘR2⊗≤ ⊇ Θ≤⊗≤ and the
observation at the beginning of the proof.

• (PR2⊗≤,−κ0) (PR2⊗≤, κ1−κ0) follows from −κ0 ≤ κ1−κ0 on ΘR2⊗≤ and Remark
5.3.5, part 2.

• (PR2⊗≤,−κ0) (PR2⊗≤, κ1−κ0): Let (π, χ) ∈ ΘR2⊗≤. If we set q := µ(π, χ), Pr := 0,
Se1, Se2 ∈ [0, 1] arbitrary with Se1 ≤ Se2, and Sp1 := q0+ and Sp2 := q+0, then
equations (27)–(30) of Lemma 2.3 from Mattner and Mattner (2013) are satisfied,
yielding (π̃, χ̃) ∈ ΘR2⊗≤ with µ(π̃, χ̃) = q = µ(π, χ) and π̃ = (1, 0). This implies
κ1(π̃, χ̃) = 0, yielding (κ1 − κ0)(π, χ) = κ ◦ µ(π, χ) = κ ◦ µ(π̃, χ̃) = (κ1 − κ0)(π̃, χ̃) =
−κ0(π̃, χ̃). Lemma 5.3.4, part (ii), then part (iii) and the previous point, yields the
claim.

• (P≤⊗≤, κ1 − κ0) (P≤⊗≤, κ1) follows from κ1 − κ0 ≤ κ1 on Θ≤⊗≤ and Remark
5.3.5, part 2.

• (P≤⊗≤,−κ0) (P≤⊗≤, κ1−κ0) follows from −κ0 ≤ κ1−κ0 on Θ≤⊗≤ and Remark
5.3.5, part 2.

• (P≤⊗≥, κ1 − κ0) (P≤⊗≥, κ1) follows from κ1 − κ0 ≤ κ1 on Θ≤⊗≥ and Remark
5.3.5, part 2.
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• (P≤⊗≥, κ1 − κ0) (P≤⊗≥, κ1): Let (π, χ) ∈ Θ≤⊗≥. Lemma 5.4.12, part (b), with
q := µ(π, χ) and Pr := 1 then yields (π̃, χ̃) ∈ Θ≤⊗≥ with µ(π̃, χ̃) = q = µ(π, χ)
and π̃ = (0, 1). This implies κ0(π̃, χ̃) = 0, yielding (κ1 − κ0)(π, χ) = κ ◦ µ(π, χ) =
κ ◦ µ(π̃, χ̃) = (κ1 − κ0)(π̃, χ̃) = κ1(π̃, χ̃). Lemma 5.3.4, part (i), yields the claim.

• (P≤⊗≥,−κ0) (P≤⊗≥, κ1−κ0) follows from κ1−κ0 ≤ −κ0 on Θ≤⊗≥ and Remark
5.3.5, part 2.

• (P≤⊗≥,−κ0) (P≤⊗≥, κ1−κ0): Let (π, χ) ∈ Θ≤⊗≥. Lemma 5.4.13, part (b), with
q := µ(π, χ) and Pr := 0 then yields (π̃, χ̃) ∈ Θ≤⊗≥ with µ(π̃, χ̃) = q = µ(π, χ)
and π̃ = (1, 0). This implies κ1(π̃, χ̃) = 0, yielding (κ1 − κ0)(π, χ) = κ ◦ µ(π, χ) =
κ ◦ µ(π̃, χ̃) = (κ1 − κ0)(π̃, χ̃) = −κ0(π̃, χ̃). Lemma 5.3.4, part (i), yields the claim.

• (P ,−κ0) (P , κ1 − κ0) (P , κ1) follows from the transitivity of .

• (M, κ) (M′, κ) follows from the observation at the beginning of the proof.

• (M, κ) (M′′, κ) follows from the observation at the beginning of the proof.

• (M, κ) (M, κ+) follows from κ ≤ κ+ and Remark 5.3.5, part 2.

• (M, κ) (M,−κ−) follows from −κ− ≤ κ and Remark 5.3.5, part 2.

• (M′′, κ) (M,−κ−) follows from −κ− = κ on {κ ≤ 0} and the observation at
the beginning of the proof.

• (M′, κ) (M, κ+) follows from κ+ = κ on {κ ≥ 0} and the observation at the
beginning of the proof.

5.3.7 Remark 1. The relation (P≤⊗R2 , κ1) (P≤⊗≤, κ1) does not hold. In fact, if
L ≡ 0, then L trivially is a lower confidence bound for κ1 in P≤⊗≤, but not a lower
confidence bound for κ1 in P≤⊗R2 since Mn,µ(π,χ)(L ≤ κ1(π, χ)) = Mn,µ(π,χ)(∅) = 0
for (π, χ) ∈ Θ≤⊗> obtained with Lemma 5.4.12, part (b), with Pr := 1 and arbitrary
∆Se < 0.

2. Theorem 5.3.6 allows reducing certain inference problems for non-identifiable param-
eters of interest (e.g., κ1 in P≤⊗≤) to corresponding ones for identifiable parameters
of interest (e.g., κ inM in view of Remark 5.2.5).

5.4 AU X I L I A R Y R E S U LT S

5.4.1 Remark We establish in the following first some results on isomorphisms that prove
useful for extending assertions regarding one submodel PR to another one PR′ . The lemmas
that follow are often incomplete and proved “by hand” (instead of a more systematic
approach using real algebraic geometry or the theory on functional equations as presented
in, e.g., Aczél (1966), Aczél (1984), or Aczél and Dhombres (1989)). They are needed for
the proof of Theorem 5.3.6.
5.4.2 Lemma Let f1 : X → X , f2, g1 : X → Y, and g2 : Y → Y be four functions. Then
the following implication holds:

f1[·] ◦ f−1
2 [·] = g−1

1 [·] ◦ g2[·] =⇒ g1 ◦ f1 = g2 ◦ f2.
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The converse implication holds if fi is surjective and g3−i is injective for some i ∈ {1, 2}.

Proof. Let us assume f1[·] ◦ f−1
2 [·] = g−1

1 [·] ◦ g2[·] and let x ∈ X . Then x ∈ f−1
2 [{f2(x)}]

and hence f1(x) ∈ f1[f−1
2 [{f2(x)}]] = g−1

1 [g2[{f2(x)}]] = g−1
1 [{g2 ◦ f2(x)}], which implies

g1 ◦ f1(x) = g2 ◦ f2(x) since h[h−1[{y}]] ∈ {∅, {y}} for any function h.
Let us now assume that g1 ◦ f1 = g2 ◦ f2 and let A ∈ 2Y . The inclusion f1[f−1

2 [A]] ⊆
g−1

1 [g2[A]] holds without additional assumptions since x ∈ f−1
2 [A] implies g1 ◦ f1(x) =

g2 ◦ f2(x) ∈ g2[A]. Let now i ∈ {1, 2} and suppose fi is surjective and g3−i is injective.
Applying f−1

i [·] from the right and g−1
3−i[·] from the left to g1 ◦ f1 = g2 ◦ f2 yields

g−1
3−i[·] ◦ gi[·] ◦ fi[·] ◦ f−1

i [·] = g−1
3−i[·] ◦ g3−i[·] ◦ f3−i[·] ◦ f−1

i [·],

i.e., f3−i[·] ◦ f−1
i [·] = g−1

3−i[·] ◦ gi[·] or, equivalently, fi[·] ◦ f−1
3−i[·] = g−1

i [·] ◦ g3−i[·] due to
Remark A.1.15.

5.4.3 Definition A function f : X → Y factorizes over a function g : X → Z if there is a
function h : Z → Y such that f = h ◦ g.
5.4.4 Remark 1. f factorizes over g if, and only if, to every z ∈ Z corresponds some

y ∈ Y with g−1[{z}] ⊆ f−1[{y}]. (This condition implies that f is constant wherever
g is constant.) In fact, if f = h ◦ g, z ∈ Z, and y := h(z), then, for ξ ∈ g−1[{z}],
we have f(ξ) = h ◦ g(ξ) = h(z) = y. Conversely, for every z ∈ Z, let h(z) stand for
some y ∈ Y with g−1[{z}] ⊆ f−1[{y}]. Then, for x ∈ X , we have x ∈ g−1[{g(x)}] ⊆
f−1[{h(g(x))}], which yields f(x) = h(g(x)).

2. One could analogously define: A function f : X → Y factorizes under a function
g : Z → Y if there is a function h : X → Z such that f = g ◦ h.

3. Let Φ: Θ → Θ and ψ : prob({0, 1}2) → prob({0, 1}2) be bijective. By Lemma 5.4.2
(applied to f1 := Φ, f2 := g1 := µ, and g2 := ψ), we have the equivalence

Φ ◦ µ−1 = µ−1 ◦ ψ ⇐⇒ µ ◦ Φ factorizes over µ,

in which case ψ[·] = µ[·] ◦ Φ[·] ◦ µ−1[·] by Remark A.1.15 since µ is surjective.
4. Further below, we are interested in sets of the form T [µ−1[{q}] ∩ ΘR] for different

maps T defined on Θ.
5. Let s : {1, 2} → {1, 2}, k 7→ 3 − k, and let us consider the involutions ϕj on

mark({0, 1}, {0, 1}2), ψj on prob({0, 1}2), and Φj on Θ given by

ϕ1(χ)ι|i := χ1−ι|1−i, ϕ2(χ)ι|i := χι◦s|i,

ψ1(q)ι := q1−ι, ψ2(q)ι := qι◦s,

Φ1(π, χ) := (1− π, ϕ1(χ)), Φ2(π, χ) := (π, ϕ2(χ))

for i ∈ {0, 1}, ι ∈ {0, 1}2, (π, χ) ∈ Θ, q ∈ prob({0, 1}2), and 1 := (1, 1). Let
furthermore

σ :
⋃
n∈N

Rn →
⋃
n∈N

Rn, (x1, . . . , xn) 7→ (1− x1, x2, . . . , xn) for n ∈ N.

Due to

(ϕ1(χ)′ι|i, ϕ1(χ)′′ι|i) = (χ′1−ι|1−i, χ′′1−ι|1−i) and (ϕ2(χ)′, ϕ2(χ)′′) = (χ′′, χ′)
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for ι, i ∈ {0, 1}, we obtain

Φ1[ΘS⊗R] = ΘR⊗S = Φ2[ΘRop⊗Sop ]

for binary relations R, S on R. From µ−1[{q}] = Φj[µ−1[{ψj(q)}]] and the bijectivity
of Φj for j ∈ {1, 2} it follows that

T [µ−1[{q}] ∩Θ≤⊗≤] ⊆ T [µ−1[{q}] ∩Θ≤⊗R2 ] ∩ T [Φ1[µ−1[{ψ1(q)}] ∩Θ≤⊗R2 ]],
T [µ−1[{q}] ∩Θ≤⊗≥] ⊆ T [µ−1[{q}] ∩Θ≤⊗R2 ]

∩ T [Φ1[Φ2[µ−1[{ψ1 ◦ ψ2(q)}] ∩Θ≤⊗R2 ]]],
T [µ−1[{q}] ∩ΘR2⊗≤] = T [Φ1[µ−1[{ψ1(q)}] ∩Θ≤⊗R2 ]]

for maps T defined on Θ.
5.4.5 Remark 1. Let us note that κ1 − κ0 = κ ◦ µ. In fact, for (π, χ) ∈ Θ, we have

(κ1 − κ0)(π, χ) = π1(χ′′1|1 − χ′1|1)− π0(χ′′0|0 − χ′0|0)
= π1(χ0,1|1 − χ1,0|1)− π0(χ1,0|0 − χ0,1|0)
= µ(π, χ)0,1 − µ(π, χ)1,0.

2. The next result unifies certain steps in the proof of Theorem 5.3.6.
5.4.6 Lemma For every (π, χ) ∈ Θ there exists (π̃, χ̃) ∈ Θ≤⊗≤ with µ(π̃, χ̃) = µ(π, χ)
and (κ1 − κ0)(π̃, χ̃) = (κ1 − κ0)(π, χ).

Proof. Let π̃0 := 1(κ(µ(π, χ)) ≤ 0) and π̃1 := 1− π̃0, as well as

(χ̃j|π̃(0), χ̃j|π̃(1)) := (1(j = 1− π̃), µ(π, χ)j) for j ∈ {0, 1}2.

Then (π̃, χ̃) ∈ Θ≤⊗≤ and µ(π̃, χ̃)j = χ̃j|π̃(1) = µ(π, χ)j for j ∈ {0, 1}2. The rest now follows
from Remark 5.4.5, part 1.

5.4.7 Lemma Let q ∈ prob({0, 1}2). Then

µ−1[{q}] ∩Θ≤⊗R2 6= ∅, (46)
µ−1[{q}] ∩ΘR2⊗≤ 6= ∅, (47)
µ−1[{q}] ∩Θ≤⊗≤ 6= ∅, (48)
µ−1[{q}] ∩Θ≤⊗≥ 6= ∅ ⇐⇒ q0,1 ≤ q1,0. (49)

Proof. (48) follows from Lemma 5.4.6, while (46) and (47) follow from (48) and Θ≤⊗≤ ⊆
ΘR2⊗≤ ∩Θ≤⊗R2 . As to (49), if (π, χ) ∈ µ−1[{q}] ∩Θ≤⊗≥, then

q0,1 = π0χ0,1|0 + π1χ0,1|1 ≤ π0χ1,0|0 + π1χ1,0|1 = q1,0

since χ+0|0 ≥ χ0+|0 and χ+1|1 ≤ χ1+|1. If q0,1 ≤ q1,0, then πi := 1/2 and χι|i := qι for
i ∈ {0, 1} and ι ∈ {0, 1}2 satisfy (π, χ) ∈ Θ≤⊗≥ and µ(π, χ) = q.

5.4.8 Remark The following results are analogues to Lemmas 2.3–2.16 from Mattner and
Mattner (2013). Not every one of them is needed for the proof of Theorem 5.3.6, but each
one can be of interest or might prove useful for possible future extensions of that theorem.
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5.4.9 Lemma (Analogue to Lemma 2.3 fromMattner and Mattner, 2013) Let q ∈ prob({0, 1}2),

TA : Θ→ R5, (π, χ) 7→ (π1, χ
′
0|0, χ

′
1|1, χ

′′
0|0, χ

′′
1|1),

and AR := TA[µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) A≤⊗≤ = {(Pr, Sp1, Se1, Sp2, Se2) ∈ [0, 1]5 : Sp1 ≤ Sp2, Se1 ≤ Se2, (50)–(53)} =: A′,
where

(1− Pr)Sp1 + Pr(1− Se1) = q0+ (50)
(1− Pr)Sp2 + Pr(1− Se2) = q+0 (51)

(1− Pr)(Sp1 + Sp2 − 1)+ + Pr(1− Se1 − Se2)+ ≤ q0,0 (52)
(1− Pr)Sp1 + Pr(1− Se2) ≥ q0,0 (53)

(b) A≤⊗≥ = {(Pr, Sp1, Se1, Sp2, Se2) ∈ [0, 1]5 : Sp1 ≤ Sp2, Se1 ≥ Se2, (50)–(52)} =: A′′.

(c) AR2⊗≤ = {(Pr, Sp1, Se1, Sp2, Se2) ∈ [0, 1]5 : Se1 ≤ Se2, (50), (51), (54), (55)} =: A′′′,
where

(1− Pr)(1− Sp1 − Sp2)+ + Pr(Se1 + Se2 − 1)+ ≤ q1,1 (54)
(1− Pr)(1− Sp1 ∨ Sp2) + Pr Se1 ≥ q1,1 (55)

Proof. By Remark 5.4.4 and in view of Lemma 2.3 from Mattner and Mattner (2013), it
remains to show A′ ⊆ A≤⊗≤ and A′′ ⊆ A≤⊗≥. Let a := (Pr, Sp1, Se1, Sp2, Se2) ∈ A′ resp.
A′′ and set π := (1− Pr,Pr). Since

f : [(Sp1 + Sp2 − 1)+, Sp1]× [(1− Se1 − Se2)+, (1− Se1) ∧ (1− Se2)] =: M → R,
(x, y) 7→ π0x + π1y,

is continuous, its domain connected, and f(minM) ≤ q0,0 ≤ f(maxM) by (52) and (53)
resp. (52) and (50), depending on whether a ∈ A′ or A′′, there exists (χ0,0|0, χ0,0|1) ∈ M
with π0χ0,0|0 + π1χ0,0|1 = q0,0. With

χ0,1|0 := Sp1 − χ0,0|0 χ0,1|1 := 1− Se1 − χ0,0|1

χ1,0|0 := Sp2 − χ0,0|0 χ1,0|1 := 1− Se2 − χ0,0|1

χ1,1|0 := 1− Sp1 − Sp2 + χ0,0|0 χ1,1|1 := Se1 + Se2 − 1 + χ0,0|1

we obtain (π, χ) ∈ Θ≤⊗≤ resp. Θ≤⊗≥, again depending on whether a ∈ A′ or A′′. We
furthermore have µ(π, χ) = q and F (π, χ) = a, i.e., a ∈ A≤⊗≤ resp. A≤⊗≥.
Part (c) follows from Lemma 2.3 from Mattner and Mattner (2013) and

AR2⊗≤ = τ [TA[Φ1[µ−1[{q}] ∩ΘR2⊗≤]]] = τ [TA[µ−1[{ψ1(q)}] ∩Θ≤⊗R2 ]] = A′′′

since TA = τ ◦ TA ◦ Φ1 with τ : R5 → R5, x 7→ (1− x1, x3, x2, x5, x4).

5.4.10 Lemma (Analogue to Lemma 2.9 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TB : Θ→ R3, (π, χ) 7→ (π1, χ
′
1|1, χ

′′
1|1),

and BR := TB[µ−1[{q}] ∩ΘR] for binary relations R on R2. Then
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(a) B≤⊗≤ = {(Pr, Se1, Se2) ∈ [0, 1]3 : Se1 ≤ Se2, (56)–(60)} =: B′, where

Pr− q1+ ≤ Pr(1− Se1) ≤ q0+ (56)
Pr− q+1 ≤ Pr(1− Se2) ≤ q+0 (57)

−q0,0 ≤ Pr(Se1 + Se2 − 1) ≤ q1,1 (58)
Pr(Se2 − Se1) ≥ q0,1 − q1,0 (59)
Pr(Se2 − Se1) ≤ q0,1 (60)

(b) B≤⊗≥ = {(Pr, Se1, Se2) ∈ [0, 1]3 : Se1 ≥ Se2, (56)–(59)} =: B′′.

Proof. It remains to show B′ ⊆ B≤⊗≤ and B′′ ⊆ B≤⊗≥. Let (Pr, Se1, Se2) ∈ B′ resp. B′′.
In view of (56) and (57) we can choose (Sp1, Sp2) ∈ [0, 1]2 satisfying (50) and (51), and
furthermore Sp1 ≤ Sp2 if Pr = 1. By subtracting (51) from (50) we obtain using (59)
(1 − Pr)(Sp1 − Sp2) + Pr(Se2 − Se1) = q0,1 − q1,0 ≤ Pr(Se2 − Se1), yielding Sp1 ≤ Sp2 if
Pr < 1. (52) follows using (58) by adding (50) and (51), while (53) is implied by subtracting
(60) from (50). Lemma 5.4.9 yields (Pr, Sp1, Se1, Sp2, Se2) ∈ A≤⊗≤ resp. A≤⊗≥ and thus
(Pr, Se1, Se2) ∈ B≤⊗≤ resp. B≤⊗≥.

5.4.11 Lemma (Analogue to Lemma 2.9 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TB̃ : Θ→ R3, (π, χ) 7→ (π1, χ
′
0|0, χ

′′
0|0),

and B̃R := TB̃[µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) B̃≤⊗≤ = {(Pr, Sp1, Sp2) ∈ [0, 1]3 : Sp1 ≤ Sp2, (61)–(65)} =: B̃′, where

q0+ − Pr ≤ (1− Pr)Sp1 ≤ q0+ (61)
q+0 − Pr ≤ (1− Pr)Sp2 ≤ q+0 (62)

−q1,1 ≤ (1− Pr)(Sp1 + Sp2 − 1) ≤ q0,0 (63)
(1− Pr)(Sp2 − Sp1) ≥ q1,0 − q0,1 (64)
(1− Pr)(Sp2 − Sp1) ≤ q1,0 (65)

(b) B̃≤⊗≥ = {(Pr, Sp1, Sp2) ∈ [0, 1]3 : Sp1 ≤ Sp2, (61)–(63), (64′)} =: B̃′′, where

(1− Pr)(Sp2 − Sp1) ≤ q1,0 − q0,1 (64′)

Proof. (a) Since TB̃ = σ ◦ TB ◦ Φ1, we have B̃≤⊗≤ = σ[TB[Φ1[µ−1[{q}] ∩ Θ≤⊗≤]]] =
σ[TB[µ−1[{ψ1(q)}] ∩Θ≤⊗≤]] = B̃′ due to Lemma 5.4.10 (a).

(b) Let τ : R3 → R3, (x1, x2, x3) 7→ (x1, x3, x2). Since TB̃ = σ ◦ τ ◦ TB ◦ Φ1 ◦ Φ2, we have

B̃≤⊗≥ = σ[τ [TB[Φ1[Φ2[µ−1[{q}] ∩Θ≤⊗≥]]]]]
= σ[τ [TB[µ−1[{ψ1 ◦ ψ2(q)}] ∩Θ≤⊗≥]]]
= B̃′′

due to Lemma 5.4.10 (b).
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5.4.12 Lemma (Analogue to Lemma 2.10 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TC : Θ→ R2, (π, χ) 7→ (π1, χ
′′
1|1 − χ′1|1),

and CR := TC [µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) C≤⊗≤ = {(Pr,∆Se) ∈ [0, 1]2 : (66)} =: C ′, where

q0,1 − q1,0 ≤ Pr ∆Se ≤ q0,1 ∧ (q0,1 − q1,0 + 1− Pr) (66)

(b) C≤⊗≥ = {(Pr,∆Se) ∈ [0, 1]× [−1, 0] : (66′)} =: C ′′, where

q0,1 − q1,0 ≤ Pr ∆Se ≤ q0,1 − q1,0 + 1− Pr (66′)

Proof. It remains to show C ′ ⊆ C≤⊗≤ and C ′′ ⊆ C≤⊗≥. Let (Pr,∆Se) ∈ C ′ resp. C ′′. If
Pr = 0, then (Se1, Se2) := (0,∆Se) resp. (Se1, Se2) := (−∆Se, 0) fulfills (56)–(60). Lemma
5.4.10 yields (Pr, Se1, Se2) ∈ B≤⊗≤ resp. B≤⊗≥ and thus (Pr,∆Se) ∈ C≤⊗≤ resp. C≤⊗≥.
If Pr > 0, we can pick

Se′1 ∈ [(1− q0+/Pr)+, 1 ∧ (q1+/Pr)] =: M1

Se′2 ∈ [(1− q+0/Pr)+, 1 ∧ (q+1/Pr)] =: M2

such that ∆Se = Se′2 − Se′1. Let us note that M1,M2 6= ∅ since

1 ∧ (q1+/Pr)− (1− q0+/Pr)+ = min{1/Pr− 1, q0+/Pr, q1+/Pr, 1} ≥ 0
1 ∧ (q+1/Pr)− (1− q+0/Pr)+ = min{1/Pr− 1, q+0/Pr, q+1/Pr, 1} ≥ 0.

This is possible since

f : M1 ×M2 → R, (x, y) 7→ y − x,

is continuous, its domain connected, and

Pr f(minM1,maxM2) = q+1 ∧ Pr− (Pr− q0+)+

= min{q+1 + q0+ − Pr, q+1, q0+,Pr}
≥ min{q0,1 − q1,0 + 1− Pr, q0,1,Pr ∆Se}
= Pr ∆Se
= max{q0,1 − q1,0,Pr ∆Se}
≥ max{q0,1 − q1,0 + Pr− 1,−q+0,−q1+,−Pr}
= max{Pr− q1+ − q+0,−q+0,−q1+,−Pr}
= (Pr− q+0)+ − q1+ ∧ Pr
= Pr f(maxM1,minM2)

by (66) resp. (66′).
By considering translations of (Se′1, Se′2) along the diagonal we can choose (Se1, Se2) ∈

M1×M2 such that (58) holds in addition to ∆Se = Se′2− Se′1 = Se2− Se1. This is possible
since

M1 ×M2 → R, (x, y) 7→ x+ y − 1,
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is continuous, its domain connected, and

Pr g(minM1, y) ≤ Pr g(minM1,maxM2)
= (Pr− q0+)+ + q+1 ∧ Pr− Pr
= max{q+1 ∧ Pr− q0+, q+1 ∧ Pr− Pr}
≤ (q+1 − q0+)+

= (q1,1 − q0,0)+

≤ q1,1

and

Pr g(x,maxM2) ≥ Pr g(minM1,maxM2)
= (Pr− q0+)+ + q+1 ∧ Pr− Pr
= min{(Pr− q0+)+ + q+1 − Pr, (Pr− q0+)+}
≥ min{q+1 − q0+, 0}
= min{q1,1 − q0,0, 0}
≥ −q0,0

for (x, y) ∈M1 ×M2.
Since (Se1, Se2) ∈M1 ×M2, we have

Pr− q1+ ≤ (Pr− q1+)+ = Pr− Pr ∧ q1+ = Pr(1−maxM1) ≤ Pr(1− Se1) ≤
≤ Pr(1 −minM1) = Pr − (Pr − q0+)+ = q0+ ∧ Pr ≤ q0+

and

Pr− q+1 ≤ (Pr− q+1)+ = Pr− Pr ∧ q+1 = Pr(1−maxM2) ≤ Pr(1− Se2) ≤
≤ Pr(1 −minM2) = Pr − (Pr − q+0)+ = q+0 ∧ Pr ≤ q+0,

i.e., (56) and (57). (66) resp. (66′) implies (59) and (60), hence Lemma 5.4.10 yields
(Pr, Se1, Se2) ∈ B≤⊗≤ resp. B≤⊗≥, and thus (Pr,∆Se) ∈ C≤⊗≤ resp. C≤⊗≥.

5.4.13 Lemma (Analogue to Lemma 2.10 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TC̃ : Θ→ R2, (π, χ) 7→ (π1, χ
′′
0|0 − χ′0|0),

and C̃R := TC̃ [µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) C̃≤⊗≤ = {(Pr,∆Sp) ∈ [0, 1]2 : (67)} =: C̃ ′, where

q1,0 − q0,1 ≤ (1− Pr)∆Sp ≤ q1,0 ∧ (q1,0 − q0,1 + Pr) (67)

(b) C̃≤⊗≥ = {(Pr,∆Sp) ∈ [0, 1]2 : (67′)} =: C̃ ′′, where

q1,0 − q0,1 − Pr ≤ (1− Pr)∆Sp ≤ q1,0 − q0,1 (67′)
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Proof. (a) Since TC̃ = σ ◦ TC ◦ Φ1, we have

C̃≤⊗≤ = σ[TC [Φ1[µ−1[{q}] ∩Θ≤⊗≤]]] = σ[TC [µ−1[{ψ1(q)}] ∩Θ≤⊗≤]] = C̃ ′

due to Lemma 5.4.12 (a).

(b) Let τ : R2 → R2, (x1, x2) 7→ (x1,−x2). Since TC̃ = σ ◦ τ ◦ TC ◦ Φ1 ◦ Φ2, we have

C̃≤⊗≥ = σ[τ [TC [Φ1[Φ2[µ−1[{q}] ∩Θ≤⊗≥]]]]]
= σ[τ [TC [µ−1[{ψ1 ◦ ψ2(q)}] ∩Θ≤⊗≥]]]
= C̃ ′′

due to Lemma 5.4.12 (b).

5.4.14 Lemma (Analogue to Lemma 2.11 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TD : Θ→ R2, (π, χ) 7→ (π1, χ
′
1|1),

and DR := TD[µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) D≤⊗≤ = {(Pr, Se1) ∈ [0, 1]2 : (68)} =: D′, where

(Pr− q1+) ∨ (Pr− q+1) ∨ Pr + q0,1 − q1+

2 ∨ Pr− q1,1

2 ∨

∨ (q0,1 − q1,0) ≤ Pr(1 − Se1) ≤ q0+ (68)

(b) D≤⊗≥ = {(Pr, Se1) ∈ [0, 1]2 : (68′), q0,1 ≤ q1,0} =: D′′, where

(Pr− q1+) ∨ Pr + q0,1 − q1+

2 ≤ Pr(1− Se1) ≤ q0+ ∧ q+0 ∧
Pr + q0,0

2 (68′)

Proof. We first show D≤⊗≤ ⊆ D′ and D≤⊗≥ ⊆ D′′. Let (Pr, Se1) ∈ D≤⊗≤ resp. D≤⊗≥. By
Lemma 5.4.10 there exists Se2 ∈ [0, 1] with Se2 ≥ Se1 resp. Se2 ≤ Se1, satisfying (57) and
(58). In the case (Pr, Se1) ∈ D≤⊗≤, we have

Pr(1− Se1) ≥ Pr(1− Se2) ≥ Pr− q+1

due to Se1 ≤ Se2 and (57), and

Pr(1− Se1) = Pr(Se2 − Se1)− Pr(Se1 + Se2 − 1) + Pr
2 ≥ Pr− q1,1

2

due to Pr ≤ 1, Se1 ≤ Se2, and (58). In the case (Pr, Se1) ∈ D≤⊗≥, we have

Pr(1− Se1) ≤ Pr(1− Se2) ≤ q+0

due to Se1 ≥ Se2 and (57), and

Pr(1− Se1) = Pr(Se2 − Se1)− Pr(Se1 + Se2 − 1) + Pr
2 ≤ Pr + q0,0

2
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due to Se1 ≥ Se2 and (58). The remaining inequalities in (68) resp. (68′) follow from
Lemma 2.11 of Mattner and Mattner (2013).
We now show D′ ⊆ D≤⊗≤ and D′′ ⊆ D≤⊗≥. Let (Pr, Se1) ∈ D′ resp. D′′. Either of (68)

and (68′) implies (56). If Pr = 0, then Se1 and Se2 := 1 resp. Se2 := 0 fulfill (57)–(60).
Lemma 5.4.10 yields (Pr, Se1, Se2) ∈ B≤⊗≤ resp. B≤⊗≥ and thus (Pr, Se1) ∈ D≤⊗≤ resp.
D≤⊗≥.
If Pr > 0, let us note that (57)–(60) and 0 ≤ Se2 ≤ 1 are equivalent to Se2 ∈

⋂4
i=1Ri

with

R1 :=
[
1− q+0

Pr ,
q+1

Pr

]
, R2 :=

[
1− Se1 −

q0,0

Pr , 1− Se1 + q1,1

Pr

]
,

R3 :=
[
Se1 + q0,1 − q1,0

Pr , Se1 + q0,1

Pr

]
, R4 := [0, 1].

Furthermore, (68) is equivalent to

Pr− q0+ ≤ Pr Se1 ≤ q1+ ∧ q+1 ∧
Pr + q1+ − q0,1

2 ∧ Pr + q1,1

2 ∧ (Pr + q1,0 − q0,1) (69)

while (68′) is equivalent to

(Pr− q0+) ∨ (Pr− q+0) ∨ Pr− q0,0

2 ≤ Pr Se1 ≤ q1+ ∧
Pr + q1+ − q0,1

2 (69′)

We shall now show that ⋂4
i=1Ri 6= ∅ or, equivalently, maxRi ≥ minRj for i, j ∈

{1, 2, 3, 4}. Once this has been established, we may set Se2 := min{maxRi : i ∈ {1, 2, 3, 4}}
resp. Se2 := max{minRi : i ∈ {1, 2, 3, 4}} to also obtain Se1 ≤ Se2 resp. Se1 ≥ Se2, as will
be shown afterwards.
By (68) or (69) resp. (68′) or (69′), we have

• Pr(maxR1 −minR1) = 1− Pr ≥ 0,
Pr(maxR1 −minR2) = q1,1 + q0+ − Pr(1− Se1) ≥ q1,1 ≥ 0,
Pr(maxR1 −minR3) = q1+ − Pr Se1 ≥ 0,

maxR1 ≥ 0 = minR4,

• Pr(maxR2 −minR1) = Pr(1− Se1)− Pr + q1+ + q0,0 ≥ q0,0 ≥ 0,
Pr(maxR2 −minR2) = q1,1 + q0,0 ≥ 0,
Pr(maxR2 −minR3) = Pr + q1+ − q0,1 − 2Pr Se1 ≥ 0,

maxR2 ≥ 0 = minR4,

• Pr(maxR3 −minR1) = Pr Se1 − Pr + q0+ + q1,0 ≥ q1,0 ≥ 0,
Pr(maxR3 −minR2) = 2Pr Se1 − Pr + q0+ ≥ Pr Se1 ≥ 0,
Pr(maxR3 −minR3) = q1,0 ≥ 0,

maxR3 ≥ 0 = minR4,

• Pr(maxR4 −minR3) = Pr + q1,0 − q0,1 − Pr Se1 ≥ 0
maxR4 = 1 ≥ minR1 ∨minR2 ∨minR4.

In the case (Pr, Se1) ∈ D′, (69) implies

Pr(maxR1 − Se1) = q+1 − Pr Se1 ≥ 0,
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Pr(maxR2 − Se1) = Pr + q1,1 − 2Pr Se1 ≥ 0,
Pr(maxR3 − Se1) = q0,1,

maxR4 = 1 ≥ Se1,

hence Se1 ≤ Se2. In the case (Pr, Se1) ∈ D′′, (69′) implies

Pr(Se1 −minR1) = Pr Se1 − Pr + q+0 ≥ 0,
Pr(Se1 −minR2) = 2Pr Se1 − Pr + q0,0 ≥ 0,
Pr(Se1 −minR3) = q1,0 − q0,1 ≥ 0,

Se1 ≥ minR4 = 0,

hence Se1 ≥ Se2. Lemma 5.4.10 yields (Pr, Se1, Se2) ∈ B≤⊗≤ resp. B≤⊗≥, i.e., (Pr, Se1) ∈
D≤⊗≤ resp. D≤⊗≥.

5.4.15 Lemma (Analogue to Lemma 2.11 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TD̃ : Θ→ R2, (π, χ) 7→ (π1, χ
′
0|0),

and D̃R := TD̃[µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) D̃≤⊗≤ = {(Pr, Sp1) ∈ [0, 1]2 : (70)} =: D̃′, where

q0+ − Pr ≤ (1− Pr)Sp1 ≤ q0+ ∧ q+0 ∧
1− Pr− q1,0 + q0+

2 ∧

∧ 1− Pr + q0,0

2 ∧ (1 − Pr − q1,0 + q0,1) (70)

(b) D̃≤⊗≥ = {(Pr, Sp1) ∈ [0, 1]2 : (70′), q0,1 ≤ q1,0} =: D̃′′, where

(q0+ − Pr) ∨ q0,1 + q0+ − Pr
2 ≤ (1− Pr)Sp1 ≤ q0+ ∧ q+0 ∧

q0,0 + 1− Pr
2 (70′)

Proof. Since TD̃ = σ◦TD◦Φ1, we have D̃≤⊗≤ = σ[TD[Φ1[µ−1[{q}]∩Θ≤⊗≤]]] = σ[TD[µ−1[{ψ1(q)}]∩
Θ≤⊗≤]] = D̃′ due to Lemma 5.4.14 (a), which proves (a).

To prove (b), we first show D̃≤⊗≥ ⊆ D̃′′. Let (Pr, Sp1) ∈ D̃≤⊗≥. By Lemma 5.4.11 there
exists Sp2 ∈ [Sp1, 1] with (62) and (63). We thus have

(1− Pr)Sp1 ≤ (1− Pr)Sp2 ≤ q+0

due to Sp1 ≤ Sp2 and (62), and

(1− Pr)Sp1 = (1− Pr)(Sp1 + Sp2 − 1)− (1− Pr)(Sp2 − Sp1) + 1− Pr
2

≤ q0,0 + 1− Pr
2

due to Sp1 ≤ Sp2 and (63). Together with

D̃≤⊗≥ = σ[TE[Φ1[Φ2[µ−1[{q}] ∩Θ≤⊗≥]]]]
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= σ[TE[µ−1[{ψ1 ◦ ψ2(q)}] ∩Θ≤⊗≥]]
⊆ σ[TE[µ−1[{ψ1 ◦ ψ2(q)}] ∩Θ≤⊗R2 ]]

and Lemma 2.12 from Mattner and Mattner (2013), we obtain (70′), i.e., (Pr, Sp1) ∈ D̃′′.
We now show D̃′′ ⊆ D̃≤⊗≥. Let (Pr, Sp1) ∈ D̃′′. (70′) implies (61). If Pr = 1, then Sp1

and Sp2 := 1 satisfy (62), (63), and (64′). Lemma 5.4.11 yields (Pr, Sp1, Sp2) ∈ B̃≤⊗≥ and
thus (Pr, Sp1) ∈ D̃≤⊗≥.
If Pr < 1, let us note that (62), (63), (64′), and Sp1 ≤ Sp2 ≤ 1 are equivalent to

Sp2 ∈
⋂4
i=1 R̃i with

R̃1 :=
[
q+0 − Pr
1− Pr ,

q+0

1− Pr

]
, R̃2 :=

[
1− Sp1 −

q1,1

1− Pr , 1− Sp1 + q0,0

1− Pr

]
,

R̃3 :=
[
Sp1, Sp1 + q1,0 − q0,1

1− Pr

]
, R̃4 := [0, 1].

Furthermore, (70′) is equivalent to

(q1+ − Pr) ∨ (q+1 − Pr) ∨ 1− Pr− q0,0

2 ≤ (1− Pr)(1− Sp1) ≤

≤ q1+ ∧
1− Pr + q1+ − q0,1

2 (71)

We shall now show that ⋂4
i=1 R̃i 6= ∅ or, equivalently, max R̃i ≥ min R̃j for i, j ∈

{1, 2, 3, 4}. Once this has been established, we may, for instance, set Sp2 := min{max R̃i : i ∈
{1, 2, 3, 4}}.
By (70′) or (71), we have

• (1− Pr)(max R̃1 −min R̃1) = Pr ≥ 0,
(1− Pr)(max R̃1 −min R̃2) = q1+ + q0,0 − (1− Pr)(1− Sp1) ≥ q0,0 ≥ 0,
(1− Pr)(max R̃1 −min R̃3) = q+0 − (1− Pr)(1− Sp1) ≥ 0,

max R̃1 ≥ 0 = min R̃4,

• (1− Pr)(max R̃2 −min R̃1) = Pr− q1,0 + (1− Pr)(1− Sp1)
≥ (1− Pr)(1− Sp1)− q1+ + Pr
≥ 0,

(1− Pr)(max R̃2 −min R̃2) = q0,0 + q1,1 ≥ 0,
(1− Pr)(max R̃2 −min R̃3) = q0,0 + 1− Pr− 2(1− Pr)(1− Sp1) ≥ 0,

max R̃2 ≥ 0 = min R̃4,

• (1− Pr)(max R̃3 −min R̃1) = Pr− q0+ + (1− Pr)Sp1 ≥ 0,
(1− Pr)(max R̃3 −min R̃2) = Pr− q0+ − q0,1 + 2(1− Pr)Sp1 ≥ 0,
(1− Pr)(max R̃3 −min R̃3) = q1,0 − q0,1 ≥ 0,

max R̃3 ≥ 0 = min R̃4,

• (1− Pr)(max R̃4 −min R̃2) = (1− Pr)Sp1 + q1,1 ≥ 0,
max R̃4 = 1 ≥ min R̃1 ∨min R̃3 ∨min R̃4.

Lemma 5.4.11 yields (Pr, Sp1, Sp2) ∈ B̃≤⊗≥, i.e., (Pr, Sp1) ∈ D̃≤⊗≥.
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5.4.16 Lemma (Analogue to Lemma 2.12 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TE : Θ→ R2, (π, χ) 7→ (π1, χ
′′
1|1),

and ER := TE[µ−1[{q}) ∩ΘR] for binary relations R on R2. Then

(a) E≤⊗≤ = {(Pr, Se2) ∈ [0, 1]2 : (72)} =: E ′, where

(Pr− q+1) ∨ Pr− q+1

2 ≤ Pr(1− Se2) ≤ q+0 ∧ q0+∧

∧ (Pr + q1,0 − q0,1) ∧ Pr + q+0 − q0,1

2 ∧ Pr + q0,0

2 (72)

(b) E≤⊗≥ = {(Pr, Se2) ∈ [0, 1]2 : (72′), q0,1 ≤ q1,0} =: E ′′, where

q+0 ∨
Pr + q+0 − q0,1

2 ≤ Pr(1− Se2) ≤ (Pr− q+1) ∧ (Pr− q1+) ∧ Pr− q1,1

2 (72′)

Proof. Since TE = σ ◦ TD̃ ◦ Φ1 ◦ Φ2, we have E≤⊗≥ = σ[TD̃[Φ1[Φ2[µ−1[{q}] ∩ Θ≤⊗≥]]]] =
σ[TD̃[µ−1[{ψ1 ◦ ψ2(q)}] ∩Θ≤⊗≥]] = E ′′ due to Lemma 5.4.15 (b), which proves (b).
To prove (a), we first show E≤⊗≤ ⊆ E ′. Let (Pr, Se2) ∈ E≤⊗≤. By Lemma 5.4.10 there

exists Se1 ∈ [0, Se2] with (56) and (58). We thus have

(1− Pr)Se2 ≤ (1− Pr)Se1 ≤ q0+

due to Se1 ≤ Se2 and (56), as well as

(1− Pr)Se2 = Pr− Pr(Se2 − Se1)− Pr(Se1 + Se2 − 1)
2 ≥ Pr− q+1

2

due to (58) and (60), and

(1− Pr)Se2 = Pr− Pr(Se2 − Se1)− Pr(Se1 + Se2 − 1)
2 ≤ Pr + q0,0

2

due to Se1 ≤ Se2 and (58). Together with E≤⊗≤ ⊆ TE[µ−1[{q}] ∩Θ≤⊗R2 ] and Lemma 2.12
from Mattner and Mattner (2013), we obtain (72), i.e., (Pr, Se2) ∈ E ′.
We now show E ′ ⊆ E≤⊗≤. Let (Pr, Se2) ∈ E ′. (72) implies (57). If Pr = 0, then Se2 and

Se1 := 0 satisfy (56) and (58)–(60). Lemma 5.4.10 yields (Pr, Se1, Se2) ∈ B≤⊗≤ and thus
(Pr, Se2) ∈ E≤⊗≤.

If Pr > 0, let us note that (56), (58)–(60), and 0 ≤ Se1 ≤ Se2 are equivalent to Se1 ∈⋂4
i=1 Si with

S1 :=
[
1− q0+

Pr ,
q1+

Pr

]
, S2 :=

[
1− Se2 −

q0,0

Pr , 1− Se2 + q1,1

Pr

]
,

S3 :=
[
Se2 −

q0,1

Pr , Se2 + q1,0 − q0,1

Pr

]
, S4 := [0, Se2].

Furthermore, (72) is equivalent to
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(Pr− q+0) ∨ (Pr− q0+) ∨ (q0,1 − q1,0) ∨ Pr + q0,1 − q+0

2 ∨

∨ Pr− q0,0

2 ≤ PrSe2 ≤ q+1 ∧
Pr + q+1

2 (73)

We shall now show that ⋂4
i=1 Si 6= ∅ or, equivalently, max Si ≥ minSj for i, j ∈

{1, 2, 3, 4}. Once this has been established, we may, for instance, set Sp1 := max{minSi : i ∈
{1, 2, 3, 4}}.
By (72) or (73), we have

• Pr(max S1 −minS1) = 1− Pr ≥ 0,
Pr(max S1 −minS2) = q1,1 + q+0 − Pr(1− Se2) ≥ q1,1 ≥ 0,
Pr(max S1 −minS3) = q1,0 + q+1 − Pr Se2 ≥ q1,0 ≥ 0,

max S1 ≥ 0 = minS4,

• Pr(max S2 −minS1) = Pr(1− Se2)− Pr + q+1 + q0,0 ≥ q0,0 ≥ 0,
Pr(max S2 −minS2) = q0,0 + q1,1 ≥ 0,
Pr(max S2 −minS3) = Pr + q+1 − 2Pr Se2 ≥ 0,

max S2 ≥ 0 = minS4,

• Pr(max S3 −minS1) = Pr Se2 + q+0 − Pr ≥ 0,
Pr(max S3 −minS2) = 2Pr Se2 + q+0 − q0,1 − Pr ≥ 0,
Pr(max S3 −minS3) = q1,0 ≥ 0,

max S3 ≥ 0 = minS4,

• Pr(max S4 −minS1) = Pr Se2 − Pr + q0+ ≥ 0,
Pr(max S4 −minS2) = 2Pr Se2 + q0,0 − Pr ≥ 0,
Pr(max S4 −minS3) = q0,1 ≥ 0,

max S4 ≥ 0 = minS4.

Lemma 5.4.10 yields (Pr, Se1, Se2) ∈ B≤⊗≤, i.e., (Pr, Se2) ∈ E≤⊗≤.

5.4.17 Lemma (Analogue to Lemma 2.12 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TẼ : Θ→ R2, (π, χ) 7→ (π1, χ
′′
0|0),

and ẼR := TẼ[µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) Ẽ≤⊗≤ = {(Pr, Sp2) ∈ [0, 1]2 : (74)} =: Ẽ ′, where

(q+0 − Pr) ∨ q+0 + q1,0 − Pr
2 ∨ (q1,0 − q0,1) ≤ (1− Pr)Sp2 ≤ q+0 (74)

(b) Ẽ≤⊗≥ = {(Pr, Sp2) ∈ [0, 1]2 : (74′)} =: Ẽ ′′, where

(q+1 − Pr) ∨ q+1 + q0,1 − Pr
2 ≤ (1− Pr)(1− Sp2) ≤ q+1 ∧ q1+∧

∧ 1− Pr + q1,1

2 (74′)
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Proof. (a) Since TẼ = σ ◦ TE ◦ Φ1, we have

Ẽ≤⊗≤ = σ[TE[Φ1[µ−1[{q}] ∩Θ≤⊗≤]]] = σ[TE[µ−1[{ψ1(q)}] ∩Θ≤⊗≤]] = Ẽ ′

due to Lemma 5.4.16 (a).

(b) Since TẼ = σ ◦ TD ◦ Φ1 ◦ Φ2, we have

Ẽ≤⊗≥ = σ[TD[Φ1[Φ2[µ−1[{q}] ∩Θ≤⊗≥]]]]
= σ[TD[µ−1[{ψ1 ◦ ψ2(q)}] ∩Θ≤⊗≥]]
= Ẽ ′′

due to Lemma 5.4.14 (b).

5.4.18 Lemma (Analogue to Lemma 2.13 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TF : Θ→ R, (π, χ) 7→ χ′′1|1 − χ′1|1,

and FR := TF [µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) F≤⊗≤ = [(q0,1 − q1,0)+, 1] =: F ′.

(b) F≤⊗≥ =
 [−1, 0] if q0,1 ≤ q1,0

∅ otherwise

 =: F ′′.

Proof. (a) It remains to show F ′ ⊆ F≤⊗≤. Let ∆Se ∈ F ′ and consider Pr := 1(q1,0 <
q0,1)(q0,1 − q1,0)/∆Se. Lemma 5.4.12 yields (Pr,∆Se) ∈ C≤⊗≤ and thus ∆Se ∈ F≤⊗≤.

(b) If q0,1 ≤ q1,0, then F ′′ = [−1, 0] ⊇ F≤⊗≥. For ∆Se ∈ F ′′ and Pr := 0 we obtain
(Pr,∆Se) ∈ C≤⊗≥ by Lemma 5.4.12 and thus ∆Se ∈ F≤⊗≥.
If q0,1 > q1,0, then Lemma 5.4.7 implies F≤⊗≥ = ∅ = F ′′.

5.4.19 Lemma (Analogue to Lemma 2.13 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TF̃ : Θ→ R, (π, χ) 7→ χ′′0|0 − χ′0|0,

and F̃R := TF̃ [µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) F̃≤⊗≤ = [(q1,0 − q0,1)+, 1] =: F̃ ′.

(b) F̃≤⊗≥ =
 [0, 1] if q0,1 ≤ q1,0

∅ otherwise

 =: F̃ ′′.

Proof. (a) Since TF̃ = TF ◦ Φ1, we have

F̃≤⊗≤ = TF [Φ1[µ−1[{q}] ∩Θ≤⊗≤]] = TF [µ−1[{ψ1(q)}] ∩Θ≤⊗≤] = F̃ ′

due to Lemma 5.4.18 (a).
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(b) Since TF̃ = −TF ◦ Φ1 ◦ Φ2, we have

F̃≤⊗≥ = −TF [Φ1[Φ2[µ−1[{q}] ∩Θ≤⊗≥]]]
= −TF [µ−1[{ψ1 ◦ ψ2(q)}] ∩Θ≤⊗≥]
= F̃ ′′

due to Lemma 5.4.18 (b).

5.4.20 Lemma (Analogue to Lemma 2.14 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TG : Θ→ R, (π, χ) 7→ χ′1|1,

and GR := TG[µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) G≤⊗≤ = G′, where

G′ :=
[
0,
(

q1+

q1+ + q0,1
∨ q1,1

(q+1 − q1,0)+

)
∧ 1

]
with 0

0
:= 1

(b) G≤⊗≥ =
 [0, 1] if q0,1 ≤ q1,0

∅ otherwise

 =: G′′

Proof. (a) It remains to show G′ ⊆ G≤⊗≤. Let Se1 ∈ G′. If q1,0 ≥ q0,1, then q+1−q1,0 ≤ q1,1
and thus G′ = [0, 1]. With Pr := 0 we obtain (Pr, Se1) ∈ D≤⊗≤ by Lemma 5.4.14 and
thus Se1 ∈ G≤⊗≤.
If q1,0 < q0,1, let

f : ]0, 1]→ R, x 7→ min
{
q1+

x
,
1
2 + q1+ − q0,1

2x , 1 + q1,0 − q0,1

x

}
,

as well as x1 := q1+ + q0,1 and x2 := q+1 − q1,0, both belonging to ]0, 1] in view of
q1,0 < q0,1 and q ∈ prob({0, 1}2). Since

f(x1) = min
{

q1+

q1+ + q0,1
,
1
2 + q1+ − q0,1

2q1+ + 2q0,1
, 1 + q1,0 − q0,1

q1+ + q0,1

}

= min
{

q1+

q1+ + q0,1
,
q1+ + q1,0

q1+ + q0,1

}

= q1+

q1+ + q0,1

and

f(x2) = min
{

q1+

q+1 − q1,0
,
1
2 + q1+ − q0,1

2q+1 − 2q1,0
, 1 + q1,0 − q0,1

q+1 − q1,0

}

= min
{

q1+

q+1 − q1,0
,

q1,1

q+1 − q1,0

}

= q1,1

q+1 − q1,0
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= q1,1

(q+1 − q1,0)+ ,

we have limx→0 f(x) = −∞ < Se1 ≤ maxG′ ≤ f(x1) ∨ f(x2). The function f be-
ing continuous, we can pick Pr ∈ ]0, 1] such that Se1 = f(Pr). Lemma 5.4.14 yields
(Pr, Se1) ∈ D≤⊗≤ and thus Se1 ∈ G≤⊗≤.

(b) If q0,1 ≤ q1,0, then G′′ = [0, 1] ⊇ G≤⊗≥. For Se1 ∈ G′′ and Pr := 0 we obtain (Pr, Se1) ∈
D≤⊗≥ by Lemma 5.4.14 and thus Se1 ∈ G≤⊗≥.
If q0,1 > q1,0, then Lemma 5.4.7 implies G≤⊗≥ = ∅ = G′′.

5.4.21 Lemma (Analogue to Lemma 2.14 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TG̃ : Θ→ R, (π, χ) 7→ χ′0|0,

and G̃R := TG̃[µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) G̃≤⊗≤ = G̃′, where

G̃′ :=
[
0,
(

q0+

q0+ + q1,0
∨ q0,0

(q+0 − q0,1)+

)
∧ 1

]
with 0

0
:= 1

(b) G̃≤⊗≥ =
 [0, 1] if q0,1 ≤ q1,0

∅ otherwise

 =: G̃′′

Proof. (a) Since TG̃ = TG ◦ Φ1, we have

G̃≤⊗≤ = TG[Φ1[µ−1[{q}] ∩Θ≤⊗≤]] = TG[µ−1[{ψ1(q)}] ∩Θ≤⊗≤] = G̃′

due to Lemma 5.4.20 (a).

(b) If q0,1 ≤ q1,0, then G̃′′ = [0, 1] ⊇ G̃≤⊗≥. For Sp1 ∈ G̃′′ and Pr := 1 we obtain (Pr, Se1) ∈
D̃≤⊗≥ by Lemma 5.4.15 and thus Sp1 ∈ G̃≤⊗≥.
If q0,1 > q1,0, then Lemma 5.4.7 implies G̃≤⊗≥ = ∅ = G̃′′.

5.4.22 Remark Let us note that in the next results 0/0 := 0, as opposed to the preceding
Lemmas. We would like to point out that this definition (instead of their 0/0 := 1) ought
to be used in Lemma 2.15 of Mattner and Mattner (2013).
5.4.23 Lemma (Analogue to Lemma 2.15 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TH : Θ→ R, (π, χ) 7→ χ′′1|1,

and HR := TH(µ−1({q}) ∩ΘR) for binary relations R on R2. Then

(a) H≤⊗≤ = H ′, where

H ′ :=
[

q0,1

q0+ + q1,0
∧ (q0,1 − q1,0)+

q0+ − q1,0
, 1
]

with 0
0

:= 0
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(b) H≤⊗≥ =
 [0, 1] if q0,1 ≤ q1,0

∅ otherwise

 =: H ′′

Proof. (a) It remains to show H ′ ⊆ H≤⊗≤. Let Se2 ∈ H ′. If q1,0 ≥ q0,1, then H ′ = [0, 1].
With Pr := 0 we obtain (Pr, Se2) ∈ E≤⊗≤ by Lemma 5.4.16, and thus Se2 ∈ H≤⊗≤.
If q1,0 < q0,1, let

f : ]0, 1]→ R, x 7→ max
{

1− q+0

x
,
1
2 + q0,1 − q+0

2x ,
q0,1 − q1,0

x

}
,

as well as x1 := q+0 + q0,1 and x2 := q0+ − q1,0, both belonging to ]0, 1] in view of
q1,0 < q0,1 and q ∈ prob({0, 1}2). Since

f(x1) = max
{

1− q+0

q+0 + q0,1
,
q0,1 − q1,0

q+0 + q0,1
,
1
2 + q0,1 − q+0

2q+0 + 2q0,1

}

= max
{

q0,1

q+0 + q0,1
,
q0,1 − q1,0

q+0 + q0,1

}

= q0,1

q+0 + q0,1

and

f(x2) = max
{

1− q+0

q0+ − q1,0
,
q0,1 − q1,0

q0+ − q1,0
,
1
2 + q0,1 − q+0

2q0+ − 2q1,0

}

= max
{
q0,1 − 2q1,0

q0+ − q1,0
,
q0,1 − q1,0

q0+ − q1,0

}

= q0,1 − q1,0

q0+ − q1,0
,

we have limx→0 f(x) = ∞ > Se2 ≥ minH ′ ≥ f(x1) ∧ f(x2). The function f be-
ing continuous, we can pick Pr ∈ ]0, 1] such that Se2 = f(Pr). Lemma 5.4.16 yields
(Pr, Se2) ∈ E≤⊗≤, and thus Se2 ∈ H≤⊗≤.

(b) Since TH = TG̃ ◦ Φ1 ◦ Φ2, we have

H≤⊗≥ = TG̃[Φ1[Φ2[µ−1[{q}] ∩Θ≤⊗≥]]] = TG̃[µ−1[{ψ1 ◦ ψ2(q)}] ∩Θ≤⊗≥] = H ′′

due to Lemma 5.4.21 (b).

5.4.24 Lemma (Analogue to Lemma 2.15 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TH̃ : Θ→ R, (π, χ) 7→ χ′′0|0,

and H̃R := TH̃ [µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) H̃≤⊗≤ = H̃ ′, where

H̃ ′ :=
[

q1,0

q1+ + q0,1
∧ (q1,0 − q0,1)+

q1+ − q0,1
, 1
]

with 0
0

:= 0
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(b) H̃≤⊗≥ =
 [0, 1] if q0,1 ≤ q1,0

∅ otherwise

 =: H̃ ′′

Proof. (a) Since TH̃ = TH ◦ Φ1, we have

H̃≤⊗≤ = TH [Φ1[µ−1[{q}] ∩Θ≤⊗≤]] = TH [µ−1[{ψ1(q)}] ∩Θ≤⊗≤] = H̃ ′

due to Lemma 5.4.23 (a).

(b) Since TH̃ = TG ◦ Φ1 ◦ Φ2, we have

H̃≤⊗≥ = TG[Φ1[Φ2[µ−1[{q}] ∩Θ≤⊗≥]]] = TG[µ−1[{ψ1 ◦ ψ2(q)}] ∩Θ≤⊗≥] = H̃ ′′

due to Lemma 5.4.20 (b).

5.4.25 Lemma (Analogue to Lemma 2.16 from Mattner and Mattner, 2013) Let q ∈
prob({0, 1}2),

TI : Θ→ R, (π, χ) 7→ π1,

and IR := TI [µ−1[{q}] ∩ΘR] for binary relations R on R2. Then

(a) I≤⊗≤ = [(q0,1 − q1,0)+, 1− (q1,0 − q0,1)+] =: I ′

(b) I≤⊗≥ =

[

1
2 −

∣∣∣q1,0 − q0,1 − 1
2

∣∣∣ , 1
2 +

∣∣∣q1,0 − q0,1 − 1
2

∣∣∣] if q0,1 ≤ q1,0

∅ otherwise

 =: I ′′

Proof. (a) Lemma 2.16 from Mattner and Mattner (2013) implies

I≤⊗≤ = TI [µ−1[{q}] ∩Θ≤⊗R2 ∩ Φ1[Θ≤⊗R2 ]]
⊆ TI [µ−1[{q}] ∩Θ≤⊗R2 ] ∩ TI [Φ1[µ−1[{ψ1(q)}] ∩Θ≤⊗R2 ]]
= [(q0,1 − q1,0)+,max{1− (q1,0 − q0,1)+, q1,0 − q0,1}]
∩ [min{(q0,1 − q1,0)+, 1− q0,1 + q1,0}, 1− (q1,0 − q0,1)+]

= [(q0,1 − q1,0)+, 1− (q1,0 − q0,1)+]
= I ′.

Let now Pr ∈ I ′. If q0,1 ≤ q1,0, then Pr ∈ I ′ implies q0,1 − q1,0 + 1 − Pr ≥ 0, so that
∆Se := 0 fulfills (66). If q0,1 > q1,0, then Pr ∈ I ′ implies ∆Se := (q0,1 − q1,0)/Pr ∈ ]0, 1]
and (66). In both cases Lemma 5.4.12 (a) yields (Pr,∆Se) ∈ C≤⊗≤ and thus Pr ∈ I≤⊗≤.

(b) If q0,1 > q1,0, then Lemma 5.4.7 implies I≤⊗≥ = ∅ = I ′′. Suppose therefore q0,1 ≤ q1,0
from now on.
Lemma 2.16 from Mattner and Mattner (2013) implies

I≤⊗≥ = TI [µ−1[{q}] ∩Θ≤⊗R2 ∩ Φ1[Φ2[Θ≤⊗R2 ]]]
⊆ TI [µ−1[{q}] ∩Θ≤⊗R2 ] ∩ TI [Φ1[Φ2[µ−1[{ψ1 ◦ ψ2(q)}] ∩Θ≤⊗R2 ]]]
= [0,max{1− q1,0 + q0,1, q1,0 − q0,1}] ∩ [min{q1,0 − q0,1, 1− q1,0 + q0,1}, 1]
= [min{q1,0 − q0,1, 1− q1,0 + q0,1},max{q1,0 − q0,1, 1− q1,0 + q0,1}]
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= I ′′.

Let now Pr ∈ I ′′. If q0,1 + 1/2 ≥ q1,0, then Pr ∈ I ′′ = [q1,0 − q0,1, 1 − q1,0 + q0,1]
implies ∆Se := (q0,1 − q1,0)/Pr ∈ [−1, 0[ and (66′). If q0,1 + 1/2 < q1,0, then Pr ∈ I ′′ =
[1− q1,0 + q0,1, q1,0 − q0,1] implies ∆Se := (q0,1 − q1,0 + 1)/Pr− 1 ∈ [−1, 0] and (66′). In
both cases Lemma 5.4.12 (b) yields (Pr,∆Se) ∈ C≤⊗≥ and thus Pr ∈ I≤⊗≥.





A
B A S I C N O T I O N S

• This appendix defines some frequently used notions and terminology, and recapitu-
lates some fundamental results. It does not introduce the concepts gently or with
much explanation, nor does it always provide proofs for the results (sources contain-
ing proofs are, however, mentioned in the remarks following them).

• Outline of this appendix:
– Section A.1 deals with cartesian products, functions and families, relations
(mostly preorders), and their connections.

– Section A.2 presents a counterexample taken from Rudin (1986) employing or-
dinal numbers.

– Section A.3 introduces fundamental statistical concepts and results, such as
models, confidence regions, tests, and the duality between them, P-variables,
stochastic monotonicity, and monotone likelihood ratios.

A.1 F U N C T I O N S A N D R E L AT I O N S

A.1.1 Definition The power set of a set A is denoted by 2A.
A.1.2 Definition Let X , Y , and Z be three sets. Given elements x ∈ X , y ∈ Y , and z ∈ Z
we define the pair with components x and y and the triplet with components x, y, and z as

(x, y) := {x, {x, y}} and (x, y, z) := (x, (y, z)),

respectively. The set of all pairs (x, y) with x ∈ X and y ∈ Y constitutes the cartesian
product of X and Y , denoted by

X × Y := {(x, y) ∈ 2X∪2X∪Y : x ∈ X , y ∈ Y}.

A.1.3 Remark If X or Y is empty, then so is X × Y (and vice versa).
A.1.4 Definition Let X and I be two sets. A triplet (I, f,X ) where

f ⊆ I ×X

is such that for every i ∈ I there exists one, and only one, x ∈ X with (i, x) ∈ f is called
function or mapping (from I to X ). The sets I and X are usually referred to as domain
and codomain, respectively, of the function.
A.1.5 Remark 1. We denote a function (I, f,X ) more commonly by

f : I → X

or, more succinctly, by f whenever I and X are fixed, clear from the setting, or
simply irrelevant.
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2. It is customary to write f(i) = x instead of (i, x) ∈ f .
3. Writing i 7→ f(i) means that f is defined by mapping each i from its domain to f(i).
4. It is common to omit the name of a function when defining it (especially if it is not

relevant or if the function does not occur later on), as in

I → X , x 7→ f(x).

5. One way of specifying a function without giving a specific definition or name is to
write, e.g., R→ C. This stands for any element of the set CR (see Definition A.1.17).

6. A usual way of defining a function is thus, e.g.,

f : R→ C, x 7→ exp(ix).

7. In the above definition, I = ∅ is allowed, in which case f = ∅ is named the empty
function. The case X = ∅ can only occur if I = ∅.

A.1.6 Remark 1. Functions are often regarded as “black boxes,” producing an output
based on some kind of input. Whenever a function f : I → X is interpreted as a
means to index objects, it is rather called family. In such situations, we often write
fi instead of f(i) and denote the family f then by

(fi : i ∈ I).

We occasionally call a finite family a tuple, and a finite family whose members are
numbers a vector.

2. When the codomain of a family is a set of functions we often use a stylized letter
like F to denote the family and fi (instead of Fi) for its values. The reason behind
this is the conventional usage of the minuscule f for a family’s functions and stylized
versions of this letter for families, sets, or classes of functions, like F = (fi : i ∈ I).

3. Families and sets are sometimes used interchangeably, often without doing any real
harm:

• given a family f : I → X , its range {fi : i ∈ I} is a set encompassing all members
of f ;

• given a set X , the identity function idX : X → X , x 7→ x, is a family whose
members coincide with those of X .

A.1.7 Definition Let f : X → Y be a function and A ⊆ X . The function

f |A : A→ Y , x 7→ f(x),

is called restriction of f to A.
A.1.8 Definition A function f : X → Y is called

• injective (or one-to-one), if f(x1) = f(x2) implies x1 = x2 for x1, x2 ∈ X ;
• surjective (or onto), if for every y ∈ Y there is an x ∈ X with f(x) = y;
• bijective, if it is both injective and surjective.

A.1.9 Remark Let f : X → Y be a function.
1. f is bijective if, and only if, to each y ∈ Y corresponds exactly one x ∈ X with f(x) =
y. This unique x is denoted by f−1(y), and the thus defined function f−1 : Y → X is
called inverse of f .
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2. The mere mentioning of the inverse f−1 entails the claim that f is bijective.
3. If f = f−1, then f is called an involution.
4. Injective functions can be made bijective by narrowing down their codomain to their

range: if f is injective, then X → f [X ], x 7→ f(x), is bijective.
A.1.10 Definition If p is a logical proposition, then

1(p) :=

1 if p is true
0 otherwise

is called indicator of the proposition p. A close companion is the indicator function of a
subset A of a given set X :

1A : X → {0, 1}, x 7→ 1(x ∈ A).

A.1.11 Remark An indicator function of a set A ⊆ X is
• injective if, and only if, it is the empty function or |A|+ 1 = |X | ≤ 2,
• surjective if, and only if, A /∈ {∅,X}.

A.1.12 Definition Let f : X → Y and g : Y → Z be two functions. Their composition
g ◦ f is then given by

g ◦ f : X → Z, x 7→ g(f(x)).

A.1.13 Remark In some situations it is customary to write the composition g ◦ f of two
functions as g(f). If, e.g., g : R→ R, x 7→ x2, and f := cos, then g◦f is usually expressed as
cos2. This covers also the case of, e.g., κ[R], occurring in Theorem A.3.21, or ∧[R∧X/m,β],
occurring in Lemma 3.1.5. The value of the latter function at x does, by the way, not stand
for the least element of R∧X/m,β(x), but for the set {∧ni=1 pi ∈ [0, 1] : p ∈ R∧X/m,β(x)}.
A.1.14 Definition Let f : X → Y be a function. The functions

f [·] : 2X → 2Y , A 7→ {f(x) ∈ Y : x ∈ A},
f−1[·] : 2Y → 2X , B 7→ {x ∈ X : f(x) ∈ B},

are called image and preimage functions, respectively, of f . Instead of f [·](A) and f−1[·](B)
we write f [A] and f−1[B], respectively. In order to contrast f from its image function f [·],
f is sometimes written as f(·).
A.1.15 Remark 1. We have

f [f−1[B]] ⊆ B and f−1[f [A]] ⊇ A for A ∈ 2X and B ∈ 2Y ,

with equality if f is surjective or injective, respectively. Conversely, if there is equality
for all B ∈ {{y} : y ∈ Y} or for all A ∈ {{x} : x ∈ X}, then f is surjective or injective,
respectively.

2. The image function of the preimage function of f

f−1[[·]] := (f−1[·])[·] : 22Y → 22X , B 7→ {f−1[B] ∈ 2X : B ∈ B},

and the preimage function of the image function of f

[f−1[·]] := (f [·])−1[·] : 22Y → 22X , B 7→ {A ∈ 2X : f [A] ∈ B},
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are in general different functions. In fact, f : R → R, x 7→ x2, and B := {{1}}
yield f−1[[B]] = {{−1, 1}} and [f−1[B]] = {{−1}, {1}, {−1, 1}}. More precisely, this
remark’s first part implies

f−1[[·]] = [f−1[·]] ⇐⇒ f is bijective.

3. The image function of the image function of f

f [[·]] := (f [·])[·] : 22X → 22Y , A 7→ {f [A] ∈ 2Y : A ∈ A},

and the preimage function of the preimage function of f

[f [·]] := (f−1[·])−1[·] : 22X → 22Y , A 7→ {B ∈ 2Y : f−1[B] ∈ A},

are in general different functions, too. In fact, the above f and A := {{−1}} yield
f [[A]] = {{1}} and [f [A]] = ∅. More precisely, this remark’s first part implies

f [[·]] = [f [·]] ⇐⇒ f is bijective.

4. For two functions f, g : X → Y the following equivalences hold:

f = g ⇐⇒ f [·] = g[·] ⇐⇒ f−1[·] = g−1[·]
f injective ⇐⇒ f [·] injective ⇐⇒ f−1[·] ◦ f [·] = id2X

f surjective ⇐⇒ f [·] surjective ⇐⇒ f [·] ◦ f−1[·] = id2Y .

5. For two functions f : X → Y and g : Y → Z we have

(g ◦ f)[·] = g[·] ◦ f [·] and (g ◦ f)−1[·] = f−1[·] ◦ g−1[·].

A.1.16 Definition If f : X → Y is a function and p(y) is a logical assertion whose truth
depends on y ∈ Y , we often write

{p(f)} := {x ∈ X : p(f(x))}

and omit the curly braces if {p(f)} is the argument of a function. For instance, if B ∈ 2Y ,
then {f ∈ B} = f−1[B].
A.1.17 Definition The cartesian product of a family (Xi : i ∈ I) of sets is

∏
i∈I
Xi :=

{
x : I →

⋃
i∈I
Xi : xi ∈ Xi for i ∈ I

}
.

If Xi = X for all i ∈ I, we write X I instead of ∏i∈I X . If the index set I is finite, say
I = {1, . . . , n}, then we write ∏n

i=1Xi, or X n if all Xi are equal to, say, X , for its cartesian
product.
A.1.18 Remark 1. Identifying pairs with their canonical functional representatives via

X × Y → (X ∪ Y){1,2}, (x, y) 7→
(
{1, 2} → X ∪ Y , 1 7→ x, 2 7→ y

)
makes this definition of cartesian products compatible with the one given for a family
of length two in Definition A.1.2. Let us note that the above expression to the right
is not to be read as a triplet, but as the definition of a mapping (which, formally, is
a triplet anyway).
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2. We therefore also define X n := X {1,...,n} for n ∈ N, and X 0 := X ∅ = {∅}.
3. The axiom of choice states that arbitrary cartesian products of non-empty sets are

non-empty.
A.1.19 Definition Let X be a set and n ∈ N. Any subset of X n is called n-ary relation
on X and n its order. Relations of order 2 and 3 are commonly called binary and ternary,
respectively.
A.1.20 Remark 1. The term “relation,” without further specification of an order, de-

notes in the following always one of order 2, i.e., a binary relation.
2. Given a relation R, it is customary to write xR y rather than (x, y) ∈ R in order to

stress the existence of a relationship between x and y.
A.1.21 Example Examples for relations on a set X are 1. X 2, the all-relation, 2. ∅, the
empty relation, and 3. ∆X := {(x, x) ∈ X 2 : x ∈ X}, the diagonal of X .
A.1.22 Definition 1. If R is a relation on a set X and X0 ⊆ X is a subset, then the

relation

R|X0 := R ∩ X 2
0

on X0 is called induced by R on X0.
2. If R is a relation on a set X , then the relation

Rop := R:= {(x, y) ∈ X 2 : y Rx}

on X is called dual relation of R.
3. If (Ri : i ∈ I) is a family of relations Ri on sets Xi, then the relation

⊗
i∈I

Ri :=
(x, y) ∈

(∏
i∈I
Xi
)2

: xiRi yi for i ∈ I


on ∏i∈I Xi is called product relation of (Ri : i ∈ I). For finite families (R1, . . . , Rn) we
also employ the notation R1⊗ . . .⊗Rn. If all relations Ri are equal, say R, we write
R⊗I and, in the case of a finite family of length n, R⊗n for the product relation.

4. If (R1, . . . , Rn) is a finite family of relations on a set X , then the relation

R1 · . . . ·Rn := {(x0, xn) ∈ X 2 : there are x1, . . . , xn−1 ∈ X with
xi−1Ri xi for i ∈ {1, . . . , n}}

is called their relational product. If all relations Ri are equal, say R, we write R·n for
their relational product.

A.1.23 Remark 1. Subsets and cartesian products of sets endowed with a relation shall
in the following always be endowed with the induced or product relation, respectively.

2. The mapping R 7→ Rop is an involution (on the set of all relations on a fixed set),
i.e., the dual of the dual relation yields the original relation (hence the practice of
denoting duals by reflecting the symbol that designates the original relation).

3. If R is a relation on a set X and X0 ⊆ X a subset, then Rop|X0 = (R|X0)op =: R|opX0 .
A.1.24 Definition Let X be a set and ∆X := {(x, x) ∈ X 2 : x ∈ X} its diagonal. A relation
R on X is called reflexive if ∆X ⊆ R, irreflexive if ∆X ∩ R = ∅, symmetric if R ⊆ Rop,
antisymmetric if R ∩Rop ⊆ ∆X , transitive if R·2 ⊆ R, and total if R ∪Rop ∪∆X = X 2.
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A.1.25 Remark 1. Each of the above properties is passed on to induced and dual
relations, and each one but totality is passed on to products. The latter means: if
(Ri : i ∈ I) is a family of relations Ri on sets Xi, each having one and the same of
the above properties except totality, then the product ⊗i∈I Ri also possesses this
property.

2. Let (Ri : i ∈ I) be a family of relations on a set X . Then ⋂i∈I Ri is the greatest and⋃
i∈I Ri the least (see Definition A.1.37) relation on X contained in or containing, re-

spectively, every Ri. Furthermore, (⋃i∈I Ri)op = ⋃
i∈I R

op
i and (⋂i∈I Ri)op = ⋂

i∈I R
op
i ,

as well as (⋃i∈I Ri)·2 = ⋃
i,j∈I Ri · Rj and (⋂i∈I Ri)·2 ⊆

⋂
i∈I R

·2
i . This yields the

implications

Ri reflexive for i ∈ I =⇒


⋂
i∈I Ri reflexive⋃
i∈I Ri reflexive if I 6= ∅

Ri irreflexive for i ∈ I =⇒


⋂
i∈I Ri irreflexive if I 6= ∅⋃
i∈I Ri irreflexive

Ri symmetric for i ∈ I =⇒
⋂
i∈I
Ri and

⋃
i∈I
Ri symmetric

Ri antisymmetric for i ∈ I =⇒
⋂
i∈I
Ri and

⋃
i∈I
Ri antisymmetric

Ri transitive for i ∈ I =⇒
⋂
i∈I
Ri transitive

Ri total for i ∈ I =⇒


⋂
i∈I Ri total⋃
i∈I Ri total if I 6= ∅.

3. Given a relation R on a set X , we can thus define 1. the reflexive hull Rrefl := ⋂{S ⊆
X 2 : S ⊇ R reflexive} = R ∪ ∆X of R, the smallest reflexive relation containing
R, 2. the irreflexive core Rirrefl := ⋃{S ⊆ R : S irreflexive} = R \ ∆X , the greatest
irreflexive relation contained in R, 3. the symmetric hull Rsymm := ⋂{S ⊆ X 2 : S ⊇ R
symmetric} = R∪Rop, the smallest symmetric relation containing R, 4. the transitive
hull Rtrans := ⋂{S ⊆ X 2 : S ⊇ R transitive} = ⋃

n∈NR
·n, the smallest transitive

relation containing R, and the total hull Rtot := ⋂{S ⊆ X 2 : S ⊇ R total}, the
smallest total relation containing R.

A.1.26 Definition 1. A reflexive, symmetric, and transitive relation is called an equiv-
alence relation; such relations are often denoted by ∼ or ≡.

2. A reflexive and transitive relation is called a preorder; preorders are often denoted
by symbols like ≤ or �.

3. An antisymmetric preorder is called an order.
4. An irreflexive and transitive relation is called a strict order; strict orders are most

often denoted by < or ≺.
5. The pair (X ,≤) is called a preordered or ordered set if ≤ is a preorder or order,

respectively, on X .
6. The pair (X , <) is called strictly ordered set if < is a strict order on X .

A.1.27 Remark 1. Subsets of R are in the following always endowed with the usual
order, unless stated otherwise.
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2. The product of a single preorder or of a single strict order shall be denoted by the
same symbol as the preorder or strict order, respectively, if no confusion arises (see
Remark A.1.30 for an example of a confusing situation).

A.1.28 Example Let X be a set. The diagonal ∆X is the smallest reflexive relation on X .
It is moreover a symmetric order. The smallest irreflexive relation on X is ∅. It is also a
symmetric and antisymmetric strict order.
A.1.29 Theorem Let X be a set and ∆X := {(x, x) ∈ X 2 : x ∈ X} its diagonal.
(i) Let ≤ be an order on X . Then

< := ≤str := ≤ \∆X

defines a strict order on X .
(ii) Let < be a strict order on X . Then

≤ := <unstr := < ∪∆X

defines an order on X .
(iii) Let ≤ be a preorder on X . Then

< := ≤str := ≤ \ ≤op

defines a strict order on X .

Proof.
(i) 1. Irreflexivity: This follows at once from the definition of <.

2. Transitivity: Let x, y, z ∈ X with x < y and y < z. The x ≤ y and y ≤ z, which
yields x ≤ z due to the transitivity of ≤. Furthermore, x 6= z since, otherwise,
x ≤ y and y ≤ z = x together with the antisymmetry of ≤ imply x = y, a
contradiction to x < y. This yields x < z.

(ii) 1. Reflexivity: This follows at once from the definition of ≤.
2. Antisymmetry: Let x, y ∈ X with x ≤ y and y ≤ x. If x 6= y, then x < y and
y < x, and the transitivity of < implies x < x, a contradiction to the irreflexivity
of y.

3. Transitivity: Let x, y, z ∈ X with x ≤ y and y ≤ z. In case x = y = z we obtain
x ≤ z trivially, while in all other cases we obtain x < z, thus also x ≤ z.

(iii) 1. Irreflexivity: Let x ∈ X . We have x < x if, and only if, both x ≤ x and its negation
hold. Thus, x 6< x.

2. Transitivity: Let x < y and y < z. This means x ≤ y, y 6≤ x, y ≤ z, and z 6≤ y. We
have to show x ≤ z and z 6≤ x. From the transitivity of ≤ follows already x ≤ z.
If z ≤ x were valid, then the transitivity of ≤ would imply z ≤ y, a contradiction
to z 6≤ y.

A.1.30 Remark Let ≤ be an order and < a strict order.
1. ≤ \ ≤op =≤ \∆X , implying that part (iii) generalizes part (i). In fact,≤ ∩ ≤op = ∆X

due to the antisymmetry of ≤.
2. ≤str ⊂ ≤ and <unstr ⊃ <, and (≤str)unstr = ≤ and (<unstr)str = <.
3. (≤op)str = (≤str)op and (<op)unstr = (<unstr)op.
4. If I is a set, then (≤⊗I)str ⊇ (≤str)⊗I and (<⊗I)unstr ⊆ (<unstr)⊗I . Both inclusions are

in general strict.
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A.1.31 Remark Given an order ≤, then < := ≤str if the symbol < is unspecified. Similarly,
given a strict order <, then ≤ := <unstr if ≤ is unspecified.
A.1.32 Example 1. ≤op = ≥ and <op = >, considered as relations on R.

2. ⊆op = ⊇, considered as relations on some set of sets.
A.1.33 Definition Let (X ,≤) be a preordered set. A set D ⊆ X is called downray if

x ∈ D, y ∈ X , y ≤ x =⇒ y ∈ D, (75)

and upray if (75) holds with ≤ replaced by its dual ≥. Arbitrary intersections of up- with
downrays are called intervals.

A.1.34 Remark 1. D ⊆ X is a downray if, and only if, D ⊇ ⋃x∈D{idX ≤ x}.
2. Due to the order’s reflexivity we have D ⊆ ⋃x∈D{idX ≤ x} for every D ⊆ X .
3. D ⊆ X is a downray or upray if, and only if, its indicator function 1D is decreasing

or increasing (see Definition A.1.40), respectively.
4. Other frequently encountered names for the terms “down-” and “upray” are lower

set, decreasing set, initial segment, downward closed set and upper set, increasing set,
upward closed set, respectively.

5. In certain of the following results we restrict our attention to downrays since a con-
sideration of the dual order (which amounts to replacing each occurrence of “≤” with
“≥,” and vice versa) yields analogous results for uprays.

A.1.35 Remark 1. Complements of downrays are uprays. This follows from 1Ac =
1− 1A for A ∈ 2X .

2. Any union or intersection of downrays remains a downray. This follows from 1∪i∈IDi =
supi∈I 1Di and 1∩i∈IDi = infi∈I 1Di and part 2 of Remark A.1.34. (These sup and inf
are to be understood pointwise and to be formed in {0, 1}.)

3. Given a set A ⊆ X , we therefore call

dAe := dAeX :=
⋂
{D ∈ 2X : D downray, D ⊇ A}

the downray generated by A in X . Another common notation for dAe is ↓A.
4. Generated downrays admit the representation

dAe =
⋃
x∈A
{idX ≤ x}

since A ⊆ ⋃x∈A{idX ≤ x} is a downray and since any downray D ⊆ X with D ⊇ A
fulfills D = ⋃

x∈D{idX ≤ x} ⊇ ⋃x∈A{idX ≤ x}.
5. Let us note that

2X → 2X , A 7→ dAe,

is increasing (see Definition A.1.40) with respect to ⊆ and preserves arbitrary unions
due to the preceding remark (the latter meaning d⋃i∈I Aie = ⋃

i∈IdAie for families
(Ai : i ∈ I) of subsets of X ). It does not preserve even finite intersections (for instance,
X := [0, 1], A := {1}, and B := {1/2} yield dA ∩ Be = ∅ 6= dAe ∩ dBe = [0, 1/2]),
but we have d⋂i∈I Aie ⊆ ⋂i∈IdAie for families (Ai : i ∈ I) of subsets of X .

6. Generated downrays make apparent that rays are not necessarily totally ordered
sets. If we endow, e.g., X := {0, 1}2 with the product order, then X \ {(1, 1)} =
d{(1, 0), (0, 1)}e is not totally ordered.
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7. Not every downray admits a countable generator, as shows the example of X :=
D := R endowed with the order =. Assuming even a total order does not remedy
this deficit: the least uncountable ordinal ω1 (see Section A.2 for details on ordinal
numbers), which is a well-ordered (hence, totally ordered) set, possesses no countable
generator since all downrays in ω1 are ordinals strictly less than ω1 and, as such,
countable.

A.1.36 Lemma Let (X ,≤) be a preordered set and X0 ⊆ X . Then the downrays in X0 are
precisely the intersections of X0 with downrays in X .

Proof. If D0 is a downray in X0, then considering the downray D := dD0eX in X yields
D0 = D ∩ X0 . If, conversely, D is a downray in X , then D0 := D ∩ X0 is a downray in X0
since ⋃

x∈D0

{idX0 ≤ x} = X0 ∩
⋃
x∈D0

{idX ≤ x} ⊆ X0 ∩
⋃
x∈D
{idX ≤ x} ⊆ D0

A.1.37 Definition Let (X ,≤) be a preordered set and X0 ⊆ X . An element ξ ∈ X is called
1. a lower bound for X0 if {idX0 ≥ ξ} = X0, 2. minimal if {idX < ξ} = ∅, 3. least or smallest,
and denoted by minX in case of uniqueness (see the next remark), if {idX ≥ ξ} = X ; it is
called an upper bound for X0, maximal, or greatest if it is a lower bound for X0, minimal, or
least, respectively, with respect to the dual preorder. A supremum of X0 is a least element
in the set of upper bounds for X0; an infimum is a supremum with respect to the dual
preorder.
A.1.38 Remark 1. In what follows, we consider merely lower bounds, minimal, and

least elements. Analogous results about the notions “upper bound,” “maximal,” and
“greatest” follow by considering the dual preorder.

2. Minimal elements need not be unique, not even in ordered sets: in the ordered set
(2{0,1} \ {∅},⊆) both {0} and {1} are minimal.

3. In preordered sets, least elements need not be unique either: if X := {0, 1}2 \ {(0, 0)}
and x � y is defined to hold whenever x1 ≤ y1 or x2 ≤ y2 for x, y ∈ X , then (X ,≤)
is a totally preordered set in which both (0, 1) and (1, 0) are least (note that ≤ = X 2

since 1 ∈ {x1, x2} ∩ {y1, y2} for x, y ∈ X ). In ordered sets, however, least elements
are unique due to the order’s antisymmetry.

4. Suprema need not exist, not even in totally ordered sets: the set X0 := {x ∈ Q : x2 <
2} admits no supremum in X := Q.

A.1.39 Definition A preordered set (X ,≤) is called 1. complete if every subset of X has a
supremum and an infimum, 2. conditionally complete if every non-empty subset of X having
an upper or lower bound also has a supremum or infimum, respectively, 3. well-ordered if
every non-empty subset of X has a least element.
A.1.40 Definition Let X be a set, (Y ,≤) and (Z,≤) be two preordered sets, and T : X →
Y a function. A function f : X → Z is called increasing in T if

T (x1) ≤ T (x2) =⇒ f(x1) ≤ f(x2)

for x1, x2 ∈ X . It is called
• decreasing in T if it is increasing in T after the preorder ≤ on (either Y or) Z is

switched with its dual order ≥,
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• strictly increasing in T if it is increasing after the orders ≤ on Y and Z are switched
with their corresponding strict orders <,

• strictly decreasing in T if it is increasing after the orders ≤ on Y and Z are switched
with their strict < and strict dual orders >, respectively.

Functions that are (strictly) increasing or decreasing in T are called (strictly) monotonic
in T . We employ these terms without appending “in T” if X = Y and T = idX .
A.1.41 Remark 1. If (X ,≤), (Y ,≤), and (Z,≤) are preordered sets, and f : X →

Y and g : Y → Z are both increasing or both decreasing, then their composition
g ◦ f is increasing. If one of them is increasing and the other decreasing, then their
composition g ◦ f is decreasing.

2. f is increasing in T if, and only if, there is a function g : Y → Z such that g|T [X ] is
increasing and f = g ◦ T . In fact, the previous remark yields the “if” part, while the
“only if” part follows by picking g ∈ ∏y∈T [X ] f [T = y] and extending it arbitrarily to
Y .

3. Strictly monotonic functions from totally ordered sets to preordered sets are injective.
A.1.42 Lemma A preordered set (X ,≤) is well-ordered if, and only if, its preorder is total
and there is no strictly decreasing sequence in X .

Proof. Let (X ,≤) be well-ordered. Since {x, y} has a least element for x, y ∈ X , ≤ is total.
Let now x ∈ X N be decreasing. Since x[N] has a least element, there is some N ∈ N with
xN ≤ xn for n ∈ N. The monotonicity of x implies xn = xN for n ≥ N .
Let us now assume that ≤ is total and that there is some non-empty X0 ⊆ X with no

least element. We then construct a strictly decreasing sequence in X recursively as follows.
Let x1 ∈ X0. Given xn ∈ X0 for some n ∈ N, we pick xn+1 ∈ X0 with xn+1 < xn (this is
possible since, otherwise, {idX0 ≥ xn} = X0, making xn least in X0).

A.1.43 Definition Let (X ,≤) and (Y ,≤) be two preordered sets and X0 ⊆ X . A function
T : X → Y is called unbounded above or below on X0 if for each y ∈ Y there is some x ∈ X0
with f(x) > y or f(x) < y, respectively.
A.1.44 Lemma Let X and Y be two sets and T : X → Y a function.

1. If ≤ is a (total) preorder on Y, then

≤T := {x ∈ X 2 : T (x1) ≤ T (x2)}

is a (total) preorder on X .
2. If < is a strict order on Y, then

<T := {x ∈ X 2 : T (x1) < T (x2)}

is a strict order on X .

Proof. • Reflexivity of ≤T : For x ∈ X we have T (x) ≤ T (x) due to the reflexivity of
≤, hence x ≤T x.

• Irreflexivity of <T : For x ∈ X we have T (x) 6< T (x) due to the irreflexivity of <,
hence x 6<T x.

• Transitivity of ≤T and <T : Let (≺,≺T ) ∈ {(≤,≤T ), (<,<T )} and let x ∈ X 3 with
x1 ≺T x2 and x2 ≺T x3. Then T (x1) ≺ T (x2) and T (x2) ≺ T (x3), so T (x1) ≺ T (x3)
due to the transitivity of ≺, which means x1 ≺T x3.
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• Totality of ≤T : Let x ∈ X 2. The totality of ≤ implies T (x1) ≤ T (x2) or T (x2) ≤
T (x1), yielding x1 ≤T x2 or x2 ≤T x1.

A.1.45 Definition The preorder ≤T and the strict order <T from the preceding lemma
shall be referred to as the preorder and the strict order, respectively, induced by T .
A.1.46 Remark 1. The strict order <T induced by T is total if, and only if, < ∩ T [X ]2

is total (on T [X ]) and T is injective.
Proof. Let <T be total and let x ∈ X 2 with x1 6= x2. The totality of <T implies
x1 <T x2 or x2 <T x1, which means T (x1) < T (x2) or T (x2) < T (x1). This yields
the totality of < ∩ T [X ]2. The irreflexivity of < implies T (x1) 6= T (x2), yielding the
injectivity of T .
Let now < ∩ T [X ]2 be total, T injective, and let x ∈ X 2 with x1 6= x2. The injectivity
of T implies T (x1) 6= T (x2), and the totality of < then implies T (x1) < T (x2) or
T (x2) < T (x1), which means x1 ≤T x2 or x2 ≤T x1.

2. The preorder ≤T induced by T is an order if, and only if, ≤ ∩ T [X ]2 is an order and
T is injective.
Proof. Let ≤T be an order and let x ∈ X 2 with T (x1) ≤ T (x2) and T (x2) ≤ T (x1).
Then x1 ≤T x2 and x2 ≤T x1, and the antisymmetry of ≤T implies x1 = x2, hence
T (x1) = T (x2). The injectivity of T follows from the above and the reflexivity of ≤.
Let now ≤ ∩ T [X ]2 be an order, T injective and x ∈ X 2 with x1 ≤T x2 and x2 ≤T x1.
Then T (x1) ≤ T (x2) and T (x2) ≤ T (x1), and the antisymmetry of ≤ ∩ T [X ]2 implies
T (x1) = T (x2). The injectivity of T implies x1 = x2.

3. (X ,≤T ) is well-ordered if, and only if, (T [X ],≤ ∩ T [X ]2) is well-ordered.
Proof. Let (X ,≤T ) be well-ordered and ∅ 6= B ⊆ T [X ]. Set A := T−1[B]. Then
∅ 6= A ⊆ X , hence there is some ξ ∈ A with ξ ≤T x for x ∈ A. Thus, T (ξ) ≤ T (x)
for x ∈ A, which means that T (ξ) ≤ z for z ∈ B.
Let now (T [X ],≤ ∩ T [X ]2) be well-ordered and ∅ 6= A ⊆ X . Then ∅ 6= T [A] ⊆ T [X ],
hence there is some ξ ∈ A with T (ξ) ≤ T (x) for x ∈ A. Thus, ξ ≤T x for x ∈ A.

4. We have (≤T )str ⊇ (≤str)T and (<T )unstr ⊆ (<unstr)T , with equality in both cases if
T is injective. In fact,

(≤T )str = {x ∈ X 2 : T (x1) ≤ T (x2), x1 6= x2}
(≤str)T = {x ∈ X 2 : T (x1) ≤ T (x2), T (x1) 6= T (x2)}

and

(<T )unstr = {x ∈ X 2 : T (x1) < T (x2) or x1 = x2}
(<unstr)T = {x ∈ X 2 : T (x1) < T (x2) or T (x1) = T (x2)}.

5. We have (≤T )op = (≤op)T =: ≤op
T and (<T )op = (<op)T =: <op

T .
6. Every preorder can be regarded as being induced by some function (the identity for

instance).
7. Let (X ,≤X ) and (Y ,≤Y) be two preordered sets. A function T : X → Y is increasing

if, and only if, ≤X ⊆ ≤T . Analogous results hold for “decreasing” and the strict
variants.



106 basic notions

8. Let X be a set, (Y ,≤Y) and (Z,≤Z) two preordered sets, and T : X → Y and
S : X → Z two functions. T is increasing or decreasing in S if, and only if, ≤S ⊆ ≤T
or ≤S ⊆ ≤op

T , respectively.
A.1.47 Example Let X := {1/n : n ∈ N}. Then idX is strictly increasing, but there is no
strictly decreasing function f : X → X since, otherwise, 1/k = f(1) < f(1/n) for some
k ∈ N and every n ≥ 2, which implies {f(1/n) : n ≥ 2} ⊆ {1/n : n ∈ {1, . . . , k − 1}}, a
contradiction since the left set is infinite due to Remark A.1.41.
A.1.48 Definition Let (X ,≤) and (Y ,≤) be two preordered sets. A function f : X → Y
is called (strictly) unimodal if there is some ξ ∈ X such that f |{idX≤ξ}

f |{idX≥ξ}

 is (strictly)
 increasing

decreasing

 .
A.1.49 Remark Let f : Z→ ]0,∞[ be a function with

f(n+ 1)
f(n)

 >

<

 1 ⇐⇒ n

 <

>

 ξ
for some ξ ∈ R. Then

Arg max f = {dξe, bξc+ 1}

and f is unimodal (even strongly if ξ /∈ Z).
A.1.50 Example 1. For f = bn,p with n ∈ N and p ∈ ]0, 1[, we obtain

Arg max bn,p = {d(n+ 1)pe − 1, b(n+ 1)pc}.

If p ∈ {0, 1}, then Arg max bn,p = {np}.
2. For f = pλ with λ ∈ ]0,∞[, we obtain

Arg max pλ = {dλe − 1, bλc}.

A.1.51 Definition For n ∈ N and x ∈ Rn we denote by

x(i) := min
{
ξ ∈ R :

n∑
k=1

1(ξ ≥ xk) ≥ i

}
for i ∈ {1, . . . , n}

the ith order statistic of x.
A.1.52 Remark We have ∧nk=1 xk = x(1) ≤ x(2) ≤ . . . ≤ x(n) = ∨n

k=1 xk.
A.1.53 Lemma Let (X ,≤) and (Y ,≤) be two preordered sets and f : X → Y a function.
(i) If f is increasing, then preimages of down- or uprays in Y are down- or uprays in X ,

respectively.
(ii) If f is decreasing, then preimages of down- or uprays in Y are up- or downrays in X ,

respectively.
(iii) If f [idX ≤ x] = {idY ≤ f(x)} for x ∈ X , then images of down- or uprays in X are

down- or uprays in Y, respectively.
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(iv) If f [idX ≤ x] = {idY ≥ f(x)} for x ∈ X , then images of down- or uprays in X are
up- or downrays in Y, respectively.

A.1.54 Remark We have the implications

f increasing =⇒ f [idX ≤ x] ⊆ {idY ≤ f(x)} for x ∈ X
f decreasing =⇒ f [idX ≤ x] ⊆ {idY ≥ f(x)} for x ∈ X ,

but surjectivity of f alone does not suffice for the converse inclusions to hold.

Proof of Lemma A.1.53. The claim concerning preimages follows from 1f−1[B] = 1B ◦ f
and Remark A.1.41.
The claim concerning images follows from

f [D] = f

[ ⋃
x∈D
{idX ≤ x}

]
=
⋃
x∈D

f [idX ≤ x] =
⋃
x∈D
{idY ≤ f(x)} = df [D]eY

for downraysD in X , and the consideration of all remaining three combinations of preorders
and their duals on X and Y .

A.1.55 Remark The following result is needed in the chapters with applications to well-
known distribution classes.
A.1.56 Lemma Let (X ,≤) and (Y ,≤) be two preordered sets and f, g : X → Y two func-
tions with f ≤ g. Then

f−1[D] ⊇ g−1[D] and f−1[U ] ⊆ g−1[U ] for downrays D and uprays U in Y.

Moreover,

g[idX ≤ x] = {idY ≤ g(x)} for x ∈ X =⇒ f [D] ⊆ g[D] for downrays D in X
f [idX ≤ x] = {idY ≤ f(x)} for x ∈ X =⇒ f [U ] ⊇ g[U ] for uprays U in X
g[idX ≤ x] = {idY ≥ g(x)} for x ∈ X =⇒ f [D] ⊇ g[D] for downrays D in X
f [idX ≤ x] = {idY ≥ f(x)} for x ∈ X =⇒ f [U ] ⊆ g[U ] for uprays U in X .

Proof. If D is a downray in Y and x ∈ g−1[D], then f(x) ≤ g(x) ∈ D, which implies
f(x) ∈ D, i.e., x ∈ f−1[D]. If U is an upray in Y and x ∈ f−1[U ], then U 3 f(x) ≤ g(x),
which implies g(x) ∈ U , i.e., x ∈ g−1[U ].

From the implications concerning preimages we prove merely the first one since the
others follow from a consideration of all three remaining combinations of dual orders on X
and Y . For a downray D in X and x ∈ D we have f(x) ≤ g(x), and, since Lemma A.1.53
yields that g[D] is a downray in Y , we obtain f(x) ∈ g[D].

A.1.57 Definition Let (X ,≤) be a totally preordered set. The sets {idX < x} and {idX >
x} are called open downray and open upray, respectively, with endpoint x ∈ X . Open
intervals are finite (i.e., possibly empty) intersections of open downrays with open uprays.
A.1.58 Remark If (X ,≤) is a totally preordered set, then open down-, uprays, and inter-
vals are down-, uprays, or intervals, respectively.
A.1.59 Definition Let X be a set. A system T ⊆ 2X is called a topology on X if
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1. ⋂T0 ∈ T for T0 ⊆ T with |T0| <∞,
2. ⋃T0 ∈ T for T0 ⊆ T,

in which case (X ,T) is called a topological space.

A.1.60 Remark 1. If (X , d) is a metric space, then the system of open sets is a topology
on X , called induced by d.

2. Metric spaces shall in the following always be equipped with their induced topologies.
A.1.61 Remark Let X be a set.

1. If T ⊆ 22X is a set of topologies T on X , then ⋂ T is a topology on X .
2. Therefore, given a system T0 ⊆ 2X ,

τ(T0) :=
⋂
{T ∈ 22X : T ⊇ T0 is a topology on X}

is the least topology on X containing T0. T0 is called a subbase of τ(T0).
3. T0 ⊆ 2X is called a base of τ(T0) if ⋂T1 ∈ T0 for T1 ⊆ T0 with |T1| <∞.
4. The topology τ(T0) can also be expressed as the set of arbitrary unions of finite

intersections of members of T0.
A.1.62 Definition Let (X ,T) be a topological space and X0 ⊆ X . Then T ∩ X0 := {U ∩
X0 : U ∈ T} is a topology on X0, called subspace topology or induced by T on X0.
A.1.63 Definition Let (X ,T) be a topological space. A subset X0 ⊆ X is called dense (in
X ) if U ∩ X0 6= ∅ for U ∈ T \ {∅}.
A.1.64 Definition Let (X ,T) be a topological space. The density dens(X ,T) of (X ,T) is
the least cardinality of a dense subset of X , i.e.,

dens(X ,T) := min{|X0| : X0 ⊆ X is dense}.

The hereditary density of (X ,T) is

heredens(X ,T) := sup{dens(X0,T ∩ X0) : X0 ⊆ X}.

A.1.65 Remark 1. The minimum in the definition of dens(X ,T) exists since every car-
dinal number is an ordinal number and every set of ordinal numbers is well-ordered.

2. Obviously, dens(X ,T) ≤ heredens(X ,T).
3. If the topology T is clear from the context (as is the case with, e.g., totally preordered

sets according to Remark A.1.69), we merely write dens(X ) and heredens(X ).
A.1.66 Definition A topological space (X ,T) is called separable if dens(X ,T) ≤ ℵ0, i.e.,
if there exists a countable dense subset of X .
A.1.67 Example We have dens(R) = ℵ0 since the rationals are countable and dense in
the reals. Even the stronger result heredens(R) = ℵ0 holds by Theorem A.1.71.
A.1.68 Definition Let (X ,≤) be a totally preordered set. The topology I(X ) on X having
as subbase the system of all open intervals in X is called order topology on X .
A.1.69 Remark Let (X ,≤) be a totally preordered set.

1. The system of all open intervals in X is a base of the order topology I(X ) on X .
2. Unless stated otherwise, X shall in the following always be endowed with its order

topology—and not its Alexandrov topology (which is the system of all uprays in X ),
as is usually the case with preordered sets.
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3. We can thus speak of the Borel σ-algebra B(X ) := σ(I(X )) on X , i.e., the σ-algebra
generated by all open intervals.

4. When considered as a measurable space, X shall in the following always be endowed
with its Borel σ-algebra.

5. Intervals are Borel sets. This follows from Remark A.1.35 and the observation that
every downray D that is not open can be expressed as D = {idX ≤ x} = X \ {idX >
x} ∈ B(X ) for some x ∈ X .

6. If (Y ,≤) is a further totally preordered set and f : X → Y is monotonic, then Lemma
A.1.53, Remark A.1.58, and the above imply the measurability of f .

7. X0 ⊆ X is dense if, and only if, the following implication holds for every open interval
I in X :

I 6= ∅ =⇒ I ∩ X0 6= ∅.

8. If X0 ⊆ X is dense, then so is X1 := X0 ∪ {ξ ∈ X : ξ = minX or ξ = maxX}, and
|X1| = |X0|. In fact, if X is finite, then the preceding part yields minX ,maxX ∈ X0,
and if X is infinite, then so is X0, hence |X1| = |X0|.

A.1.70 Example The order topology I(X ) on an interval X ⊆ R (endowed with the usual
order) coincides with the usual (induced) Euclidean topology on X . This does not, however,
hold for arbitrary subsets X ⊆ R, as shows X := {−1} ∪ {1/n : n ∈ N}.
A.1.71 Theorem If (X ,≤) is a totally preordered set, then heredens(X ) = dens(X ).

Proof. A proof can be found in Bridges and Mehta (1995) or Scott (2012).

A.1.72 Definition Let (X ,≤) and (Y ,≤) be two preordered sets. A function f : X → Y
is called order-preserving if the following equivalence holds:

x1 ≤ x2 ⇐⇒ f(x1) ≤ f(x2) for x1, x2 ∈ X .

A.1.73 Remark 1. The term “order-preserving” usually denotes a function that pre-
serves the order in merely one direction, i.e., an increasing function. Our definition
follows the one from Debreu (1954, bottom of p. 160).

2. If a function f : X → Y is order-preserving, then the following equivalence holds:

x1 < x2 ⇐⇒ f(x1) < f(x2) for x1, x2 ∈ X .

This follows from the following chain of equivalences:

x1 < x2 ⇐⇒ x1 ≤ x2 and x2 6≤ x1

⇐⇒ f(x1) ≤ f(x2) and f(x2) 6≤ f(x1)
⇐⇒ f(x1) < f(x2).

3. Order-preserving functions between ordered sets are thus injective.
4. If X is totally preordered, then f is order-preserving if, and only if, merely the

following implication holds:

x1 ≤ x2 =⇒ f(x1) ≤ f(x2) for x1, x2 ∈ X .



110 basic notions

In fact, let us assume the above implication. Then the following chain of implications
holds:

x1 6≤ x2 =⇒ x2 ≤ x1

=⇒ x2 < x1

=⇒ f(x2) < f(x1)
=⇒ f(x1) 6≤ f(x2),

where the first implication follows from the totality of the preorder ≤ on X , the
second one by definition of the strict order < = ≤str on X , the third one by part 1,
and the last one by definition of the strict order < = ≤str on Y .

A.1.74 Theorem Let (X ,≤) be a totally preordered set. Then dens(X ) ≤ ℵ0 if, and only
if, there is an order-preserving function f : X → R.

Proof. The following proof is in essence due to Greinecker (2012).
• Let us assume dens(X ) ≤ ℵ0, and let us choose a countable dense set X0 = {xn : n ∈

N} in X . If we define

f : X → R, x 7→
∑
n∈N
xn≤x

1
2n −

∑
n∈N
xn≥x

1
2n ,

then f is order-preserving due to part 3 of the last remark and the following impli-
cations:

x ≤ y =⇒
{
{n ∈ N : xn ≤ x} ⊆ {n ∈ N : xn ≤ y}
{n ∈ N : xn ≥ x} ⊇ {n ∈ N : xn ≥ y}

=⇒ f(x) ≤ f(y).

• Let now f : X → R be an order-preserving function. Let us set

G :=
{

(α, β) ∈ Q2 : α < β, f−1
[
]α, β[

]
6= ∅

}
.

Then G, being a subset of Q2, is countable. Let us consider a choice function g : G→
X with g(α, β) ∈ f−1

[
]α, β[

]
. Then X0 := g[G] is dense in X . To see this, we shall

apply Remark A.1.69, part 7. Let I be a non-empty open interval in X . Let us first
suppose I = {x < idX < y} for some x, y ∈ X . Part 1 of the previous remark then
yields for z ∈ X the equivalence

x < z < y ⇐⇒ f(x) < f(z) < f(y).

Let now z ∈ I. The denseness of Q in R yields α, β ∈ Q with f(x) < α < f(z) <
β < f(y). This implies (α, β) ∈ G, and thus g(α, β) ∈ f−1

[
]α, β[

]
⊆ I, the inclusion

following from the above equivalence. This yields I ∩ X0 6= ∅. The cases where the
interval I is of the form {idX > x} or {idX < x} are handled the same way.

A.1.75 Remark Debreu (1954) gives necessary conditions for the existence of a contin-
uous order-preserving function f : X → R. Cantor (1895, § 11) does similarly for order-
isomorphisms f : X → [0, 1].
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A.2 O R D I N A L N U M B E R S

A.2.1 Remark While the inequality

P (F ≤ t) ≤ t for t ∈ [0, 1]

holds for every law P on R with corresponding distribution function F , this may not be so
upon replacing R with an arbitrary totally ordered set. Lemma A.2.6, taken from Rudin
(1986, Chapter 2, exercise 18), illustrates this.
A.2.2 Definition A set α is called an ordinal (number) if (α,∈unstr) is well-ordered and
every element of α is also a subset of α.
A.2.3 Remark In order to understand the rest of this section it suffices to know of the
existence of a least uncountable ordinal number, denoted by ω1. The interested reader may
consult, e.g., Dugundji (1966, Chapter 2, Section 6) or Jech (2003, Chapter 1, Section 2)
for a rigorous introduction to the theory of ordinal numbers. Special attention to the first
uncountable ordinal number is given in Dugundji (1966, Chapter 2, Section 9), where it is
denoted by Ω.
A.2.4 Definition Let

X := ω1 + 1 = [0, ω1]

be the second uncountable ordinal (see, e.g., Jech, 2003) and

A1 :=
⋃

α∈[0,ω1[
{A ⊆ X : [α, ω1[ ⊆ A}

A0 := {Ac : A ∈ A1}
A := A1 ∪ A0.

A.2.5 Remark 1. A1 is an upray and A0 a downray in (2X ,⊆).
2. A1 ∩ A0 = ∅. In fact, if A ∈ A1 ∩ A0, then there exist two ordinals α1, α0 ∈ [0, ω1[

with [α1, ω1[ ⊆ A and [α0, ω1[ ⊆ Ac, hence [α1 ∨ α0, ω1[ ⊆ A ∩ Ac = ∅, yielding
α1 ∨ α0 = ω1, a contradiction.

A.2.6 Lemma (i) A is a σ-algebra on X .
(ii) P := 1A1|A is a law on X .
(iii) If F denotes the distribution function of P , then {F ≤ 0} ∈ A and P (F ≤ 0) = 1.

Proof. (i), (ii) We have X ∈ A1, which yields P (∅) = 0. By definition of A0, the equivalence
A ∈ A1 ⇐⇒ Ac ∈ A0 holds. Given a sequence (An : n ∈ N) ∈ AN, we distinguish the
following two cases:

• There is some N ∈ N with AN ∈ A1. The previous remark then yields ⋃n∈NAn ∈
A1. If the sequence is furthermore pairwise disjoint, then An ∈ A0 for n ∈
N \ {N}, which implies P (⋃n∈NAn) = 1 = P (AN) = ∑∞

n=1 P (An).
• An ∈ A0 for every n ∈ N. Pick, for each n ∈ N, an ordinal αn ∈ [0, ω1[

with [αn, ω1[ ⊆ Ac
n. Then α := ⋃

n∈N αn is, as a countable union of countable
sets, a countable ordinal, i.e., α ∈ [0, ω1[. Furthermore, [α, ω1[ ⊆ ⋂

n∈NA
c
n, i.e.,⋃

n∈NAn ∈ A0. This also implies P (⋃n∈NAn) = 0 = ∑∞
n=1 P (An).
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(iii) The following equivalences hold for x ∈ X :

F (x) = 0 ⇐⇒ ]x, ω1] ∈ A1

⇐⇒ x < ω1.

Thus, {F ≤ 0} = [0, ω1[ ∈ A1 and P (F ≤ 0) = 1.

A.3 S TAT I S T I C A L N O T I O N S

A.3.1 Definition Let (X ,A) and (Y ,B) be two measurable spaces. A function T : X → Y
is called measurable (with respect to A and B) if

T−1[B] ∈ A for B ∈ B,

that is, more succinctly and using the notation “f−1[[·]]” established in Remark A.1.15, if
T−1[[B]] ⊆ A. In a statistical context, measurable functions defined on the sample space
are called statistics.

A.3.2 Definition If (X ,T) is a topological space and µ a measure on X , then

suppµ := X \
⋃
{U ∈ T : µ(U) = 0}

denotes the support of µ.
A.3.3 Remark 1. We have suppµ = {x ∈ X : µ(U) > 0 for U ∈ T with U 3 x}.

2. suppµ is the largest closed set A ⊆ X such that µ(U ∩ A) > 0 for U ∈ T with
U ∩ A 6= ∅.

3. If the topology is metrizable, then suppµ is the smallest closed subset A ⊆ X with
µ(X \ A) = 0 (see, e.g., Parthasarathy, 2005, Theorem 2.21, p. 12).

A.3.4 Definition A measure µ on a measurable space (X ,A) is called continuous if µ(A) =
0 for every countable A ∈ A.
A.3.5 Definition Let (X ,A, µ) be a measure space, (Y ,B) a measurable space, and
T : X → Y a measurable function (with respect to A and B). We write

T � µ := µ ◦ (T−1[·]|B)

for the image measure of µ under T . If µ is a probability measure, we say distribution of T
under µ rather than image measure of µ under T .
A.3.6 Definition Let (X ,A, µ) be a measure space. A measurable function f : X → R is
called semi-integrable if (

∫
X f+ dµ) ∧ (

∫
X f− dµ) <∞. Its integral is then as usual the well-

defined quantity
∫
X f dµ :=

∫
X f+ dµ −

∫
X f− dµ ∈ R ∪ {−∞,∞}. A function f : X → Rn

is called semi-integrable if each of its components fk : X → R is, and its integral is then∫
X f dµ := (

∫
X fk dµ : k ∈ {1, . . . , n}) ∈ (R ∪ {−∞,∞})n.

A.3.7 Definition Let (X ,A, µ) be a measurable space and f semi-integrable. We write

µ(f) :=
∫
X
f dµ

for the integral of f .
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A.3.8 Definition Let (X ,A) be a measurable space. A family

P = (Pϑ : ϑ ∈ Θ)

of probability measures Pϑ on (X ,A) is called a model or experiment on (X ,A).
A.3.9 Remark Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A), and
(Y ,B) another measurable space. A statistic T : X → Y then induces the model

T � P := (T � Pϑ : ϑ ∈ Θ)

on (Y ,B).
A.3.10 Definition Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A) and Γ
a set. A mapping

κ : Θ→ Γ

is called a parameter of interest in P .
A.3.11 Remark Parameters of interest are often given by maps κ with dom(κ) ⊇ Θ. We
then, too, designate by κ instead of κ|Θ the parameter of interest.
A.3.12 Definition Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A). A
parameter of interest κ : Θ→ Γ is called identifiable if the following implication holds:

Pϑ = Pη =⇒ κ(ϑ) = κ(η) for ϑ, η ∈ Θ.

A.3.13 Remark Identifiability of idΘ is the same as injectivity of the model P .
A.3.14 Example In the model P := (N⊗nµ+ν,σ2 : (µ, ν) ∈ R2), with known sample size n ∈ N
and variance σ2 ∈ ]0,∞[, the parameter of interest R2 → R, (µ, ν) 7→ µ+ ν, is identifiable,
whereas R2 → R, (µ, ν) 7→ µ− ν, is not. The first claim follows from Nµ+ν,σ2(idR) = µ+ ν,
the second one from N1−1,σ2 = N0,σ2 . Examples of non-identifiable parameters of interest
in multinomial models can be found in Section 5.3 of Chapter 5.
A.3.15 Definition Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A) and
κ : Θ→ Γ a parameter of interest. A function

K: X → 2Γ

such that {K 3 γ} ∈ A for γ ∈ Γ is called a confidence region for κ (in P). Its effective
level is the number

βeff(K) := inf
ϑ∈Θ

Pϑ(K 3 κ(ϑ)).

Given β ∈ [0, 1], the confidence region K is said to have level β if βeff(K) ≥ β.
A.3.16 Remark In contrast to many statisticians, we explicitly do not exclude the possi-
bility of K(x) = ∅. In fact, such an occurrence is rather informative since it tells us that
the data x ∈ X correspond to the (1 − β)100% (or less) of cases where K does not cover
the true parameter κ(ϑ).
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A.3.17 Definition Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A), (Γ,≤)
a preordered set, and κ : Θ → Γ a parameter of interest. A function L : X → Γ such that
{L ≤ idΓ} = {γ ∈ Γ: L ≤ γ} is a confidence region is called lower confidence bound. If
≤ is replaced by its dual preorder ≥, then it is called upper confidence bound. Confidence
regions whose values are downrays, uprays, or intervals in Γ (see Definition A.1.33) are
called confidence downrays, uprays, or intervals, respectively.
A.3.18 Remark 1. The reason for introducing confidence rays instead of merely confi-

dence bounds lies, apart from the obvious and profitable generalization appreciable
in higher dimensional sets Γ, in the ability to distinguish between confidence regions
that include their boundary (as in our definition) and ones that do not (i.e., {L < idΓ}
is required to be a confidence region).

2. Classical cases of confidence downrays are thus ]κ,∞[ and [κ,∞[ in the case Γ = R,
κ being a lower confidence bound.

A.3.19 Definition (Comparison of confidence bounds) Let
• P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A),
• κ : X → R a parameter of interest,
• L and L′ two lower confidence bounds for κ with level β ∈ [0, 1].

L′ is called better than (or superior to) L if

Pϑ(L′ ≥ t) ≥ Pϑ(L ≥ t) for ϑ ∈ Θ and t ∈ ]−∞, κ(ϑ)[,

strictly better (or strictly superior) if additionally strict inequality holds for at least one
such pair (ϑ, t), and equivalent if each is better than the other. L is called admissible if
there is no strictly better confidence bound for κ to the level β.
A.3.20 Remark Admissibility of L is the same as superiority of L over L′ for all confidence
bounds L′ (for κ and to level β) that are better than L.
A.3.21 Theorem Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A), κ : Θ→
Γ a parameter of interest for P, and β ∈ [0, 1].
(i) Let R be a confidence region for idΘ, K := κ[R], and {K 3 κ(ϑ)} ∈ A for ϑ ∈ Θ.

Then K is a confidence region for κ with effective level βeff(K) ≥ βeff(R), and the
following implication holds:

κ−1[K(x)] ⊆ R(x) for x ∈ X =⇒ βeff(K) = βeff(R).

(ii) Let K be a confidence region for κ and R := κ−1[K]. Then R is a confidence region
for idΘ with effective level βeff(R) = βeff(K).

Proof. (i) Since ϑ ∈ R(x) implies κ(ϑ) ∈ κ[R(x)] = K(x) for ϑ ∈ Θ and x ∈ X , we have
{K 3 κ(ϑ)} ⊇ {R 3 ϑ} and thus Pϑ(K 3 κ(ϑ)) ≥ Pϑ(R 3 ϑ) for ϑ ∈ Θ. This yields
the first claim. The second claim follows from {K 3 κ(ϑ)} ⊆ {R 3 ϑ} (in addition
to the reverse inclusion just shown) since κ(ϑ) ∈ K(x) implies ϑ ∈ κ−1[K(x)] ⊆ R(x)
for x ∈ X and ϑ ∈ Θ.

(ii) Since ϑ ∈ R(x) = κ−1[K(x)] is equivalent to κ(ϑ) ∈ K(x) for ϑ ∈ Θ and x ∈ X , we
have {R 3 ϑ} = {K 3 κ(ϑ)} ∈ A and Pϑ(R 3 ϑ) = Pϑ(K 3 κ(ϑ)) for ϑ ∈ Θ.

A.3.22 Remark 1. Remark A.1.15 yields the converse inclusion κ−1[K(x)] ⊇ R(x) for
x ∈ X in Theorem A.3.21(i).
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2. If (X ,≤) is preordered, the monotonicity behaviours of R and K with respect to set
inclusion on 2Θ and 2Γ, respectively, coincide.

A.3.23 Theorem Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A), κ : Θ→
Γ a parameter of interest, and K a countable set of confidence regions K for κ with respective
levels β(K) ∈ [0, 1] such that

α :=
∑
K∈K

(1− β(K))

converges in [0, 1]. Then⋂
K : X → 2Γ, x 7→

⋂
K∈K

K(x),

is a confidence region for κ with level β := 1− α.

Proof. For ϑ ∈ Θ we have{⋂
K 3 κ(ϑ)

}
=

⋂
K∈K
{K 3 κ(ϑ)} ∈ A

and

Pϑ
(⋂
K 63 κ(ϑ)

)
= Pϑ

 ⋃
K∈K
{K 63 κ(ϑ)}

 ≤ ∑
K∈K

(1− β(K)).

A.3.24 Definition Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A),
κ : Θ→ Γ a parameter of interest for P , and B ⊆ [0, 1]. A family (Kβ : β ∈ B) of confidence
regions Kβ for κ is called nested if

B→ 2Γ, β 7→ Kβ(x),

is increasing for x ∈ X , i.e., if

β1, β2 ∈ B, β1 ≤ β2 =⇒ Kβ1(x) ⊆ Kβ2(x) for x ∈ X .

A.3.25 Remark If a family (Kβ : β ∈ B) of confidence regions Kβ is nested, then

B→ [0, 1], β 7→ βeff(Kβ),

is increasing.
A.3.26 Definition Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A) and
κ : Θ→ Γ a parameter of interest. A confidence region K: X → 2Γ for κ is called unbiased
if

Pϑ(K 3 κ(ϑ)) ≥ Pϑ(K 3 κ(ϑ′)) for ϑ, ϑ′ ∈ Θ.

A.3.27 Definition Let X be a set. A set G ⊆ XX of bijective functions X → X that is a
group with respect to composition ◦ of functions is called a transformation group on X . In
such a case, members of the group G are called transformations of X .
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A.3.28 Example 1. A frequently occurring transformation group on R is given by

N := {R→ R, x 7→ σx+ µ : (µ, σ) ∈ R× ]0,∞[};

its generalization to Rn is

{Rn → Rn, x 7→ Σx+ µ :
µ ∈ Rn, Σ ∈ Rn×n symmetric and positive definite}.

A transformation group on Rn that is more easily to handle is

N ′ := {Rn → Rn, x 7→ x+ µ : µ ∈ Rn}.

2. A transformation group on {0, . . . , n} is given by

B := {id{0,...,n}, ({0, . . . , n} → {0, . . . , n}, x 7→ n− x)}.

A.3.29 Remark Let G be a transformation group on a set X .
1. A function f : X → Y is called invariant over G if f ◦ g = f for every g ∈ G; it is

called equivariant over G, if G “induces” in some way a second transformation group
G ′ on Y such that to every g ∈ G corresponds some g′ ∈ G ′ with f ◦ g = g′ ◦ f .

2. If we define

x ≡G y :⇐⇒ g(x) = y for some g ∈ G,

then ≡G is an equivalence relation on X . In fact, the existence of a neutral element
in G yields the reflexivity, and the closedness with respect to building inverses and
compositions the symmetry and the transitivity, respectively.

3. The equivalence class {ξ ∈ X : ξ ≡G x} of x ∈ X is called the orbit of x.
4. Functions that are invariant over G are obviously constant on every orbit.
5. A function F : X → Y is called maximal invariant over G if the following equivalence

holds:

F (x1) = F (x2) ⇐⇒ x1 ≡G x2 for x1, x2 ∈ X .

6. Let F : X → Y be maximal invariant over G. A function f : X → Z is then invariant
over G if, and only if, there is a function f ′ : Y → Z with f = f ′ ◦ F .
Proof. Let us first assume the invariance of f , and let us define

f ′ : Y → Z, y 7→

f(x) if y = F (x) for some x ∈ X
z0 otherwise,

with an arbitrary z0 ∈ Z. Then f ′ is well-defined since F (x1) = F (x2) implies
x1 ≡G x2 (due to the maximal invariance of F ), which in turn implies f(x1) = f(x2)
(due to the invariance of f). Trivially, we have f ′ ◦ F = f .
Let us now assume the existence of a function f ′ as above, and let g ∈ G and
x ∈ X . Since g(x) ≡G x and F is maximal invariant, we have F (g(x)) = F (x), hence
f(g(x)) = f ′(F (g(x))) = f ′(F (x)) = f(x). Thus, f is invariant over G.
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A.3.30 Definition Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A) and
G a transformation group of measurable functions on X . The model P is called invariant
over G if for g ∈ G and ϑ ∈ Θ the distribution g � Pϑ of g under Pϑ is again a member
of the model P , i.e., if to every g ∈ G and every ϑ ∈ Θ corresponds a g(ϑ) ∈ Θ with
g � Pϑ = Pg(ϑ).
If P is injective and invariant over G, then, given a transformation g ∈ G, the thus well-

defined mapping g : Θ → Θ is called induced by g; if, furthermore, G := {g ∈ ΘΘ : g ∈ G}
is a transformation group on Θ, then G is called induced by G.
A.3.31 Remark If an injective model P = (Pϑ : ϑ ∈ Θ) is invariant over a transformation
group G on the sample space which induces a transformation group G on the parameter
space Θ, then

idX = idΘ, g ◦ h = g ◦ h, and g−1 = g−1 for g, h ∈ G.

The first equation is obvious. The second one follows from Pg◦h(ϑ) = (g ◦ h) � Pϑ = g � (h �
Pϑ) = g � Ph(ϑ) = Pg(h(ϑ)) = Pg◦h(ϑ) for ϑ ∈ Θ and the injectivity of the model P . The
following equivalences for ϑ, η ∈ Θ yield the third one:

g−1(η) = ϑ ⇐⇒ g(ϑ) = η

⇐⇒ g � Pϑ = Pη

⇐⇒ g−1 � (g � Pϑ) = g−1 � Pη

⇐⇒ Pϑ = g−1 � Pη

⇐⇒ g−1(η) = ϑ.

A.3.32 Example 1. The normal model (Nµ,σ : (µ, σ) ∈ R × ]0,∞[) is injective and
invariant over the transformation group N from Example A.3.28. The induced trans-
formation group is

N = {R× ]0,∞[→ R× ]0,∞[, (ν, τ) 7→ (µ+ ν, σ2τ 2) : (µ, σ) ∈ R× ]0,∞[}.

2. The normal model (⊗n
i=1 N⊗mi

µi,σ2
i
: µ ∈ Rn) from Section 2.2 of Chapter 2 is also in-

jective and invariant over the transformation group N ′ from Example A.3.28. The
induced transformation group is

N ′ = N ′.

3. The binomial model (Bn,p : p ∈ [0, 1]) is injective and invariant over the transforma-
tion group B from Example A.3.28. The induced transformation group is

B = {id[0,1], ([0, 1]→ [0, 1], p 7→ 1− p)}.

A.3.33 Definition Let P = (Pϑ : ϑ ∈ Θ) be an injective model on a measurable space
(X ,A), G a transformation group on X inducing a transformation group G on Θ, and
κ : Θ → Γ a parameter of interest. A confidence region K: X → 2Γ is called equivariant
over G if

K(g(x)) = g[K(x)] for x ∈ X and g ∈ G.



118 basic notions

A.3.34 Example 1. The confidence regions from Example 2.2.13 given by

RX,β(x) =
µ ∈ Rn : µ < x+

√
σ2/m

n
Φ−1(β)


R̃X,β(x) =

µ ∈ Rn : µ > x−

√
σ2/m

n
Φ−1(β)


for x ∈ ∏n

i=1 Rmi in the model (⊗n
i=1 N⊗mi

µi,σ2
i
: µ ∈ Rn) from Section 2.2 of Chapter 2

are clearly equivariant over the transformation group N ′ from Example A.3.28.
2. A confidence region K: {0, . . . , n} → 2[0,1] for the identity id[0,1] in the binomial

model (Bn,p : p ∈ [0, 1]) is equivariant if, and only if, it satisfies

K(n− x) = {1− p ∈ [0, 1] : p ∈ K(x)} for x ∈ {0, . . . , n}.

A.3.35 Definition Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A) and
Θ0 ⊆ Θ. A measurable function (with respect to A and 2{0,1})

ψ : X → {0, 1}

is called a test for the hypothesis Θ0 (in P). Its effective level is the number

αeff(ψ) := sup
ϑ∈Θ0

Pϑ(ψ).

The complement Θ \Θ0 of the hypothesis is called alternative. Given α ∈ [0, 1], the test ψ
is said to preserve the (or simply have) level α if αeff(ψ) ≤ α.
A.3.36 Remark 1. Tests are used to reject hypotheses as follows: after observing x ∈

X , the hypothesis is rejected if ψ(x) = 1.
2. A randomized test is a measurable function ψ : X → [0, 1]. After observing x ∈ X ,

the hypothesis is rejected with probability ψ(x). The decision is thus dependent on
the outcome of yet another experiment.

3. The next result is an analogue of Theorem A.3.23.
A.3.37 Theorem Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A) and
Ψ a countable set of tests ψ for the respective hypotheses Θ0(ψ) with respective levels
α(ψ) ∈ [0, 1] such that

α :=
∑
ψ∈Ψ

α(ψ)

converges in [0, 1]. Then

sup
ψ∈Ψ

ψ = 1⋃
ψ∈Ψ{ψ=1}

is a test for the hypothesis ⋂ψ∈Ψ Θ0(ψ) with level α.

Proof. For ϑ ∈ ⋂ψ∈Ψ Θ0(ψ) we have

Pϑ

(
sup
ψ∈Ψ

ψ

)
= Pϑ

 ⋃
ψ∈Ψ
{ψ = 1}

 ≤ ∑
ψ∈Ψ

α(ψ).
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A.3.38 Definition Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A) and
Θ0 ⊆ Θ. A test ψ for the hypothesis Θ0 is called unbiased if

Pϑ(ψ) ≤ Pϑ′(ψ) for ϑ ∈ Θ0 and ϑ′ ∈ Θ \Θ0.

A.3.39 Theorem Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A), κ : Θ→
Γ a parameter of interest for P, and α ∈ [0, 1].
(i) To every confidence region K for κ with level 1 − α corresponds a family test(K) =

(test(K)γ : γ ∈ Γ) of tests

test(K)γ : X → {0, 1}, x 7→ 1(γ /∈ K(x)),

for the respective hypotheses κ−1[{γ}] with level α.
(ii) To every family ψ = (ψγ : γ ∈ Γ) of tests ψγ for the respective hypotheses κ−1[{γ}]

with respective levels α corresponds a confidence region

conf(ψ) : X → 2Γ, x 7→ {γ ∈ Γ: ψγ(x) = 0},

for κ with level 1− α.
(iii) The thus well-defined maps test and conf are bijective and inverse to each other.

Proof. (i) Let K be a confidence region for κ with level 1− α, γ ∈ Γ, and

ψ : X → {0, 1}, x 7→ 1(γ /∈ K(x)).

Since {K 63 γ} ∈ A, ψ is measurable. If κ−1[{γ}] = ∅, then αeff(ψ) = 0 ≤ α. In the
other case we obtain

Pϑ(ψ) = Pϑ(ψ = 1) = Pϑ(K 63 κ(ϑ)) ≤ α for ϑ ∈ κ−1[{γ}],

yielding αeff(ψ) ≤ α.
(ii) Let, for γ ∈ Γ, ψγ be a test for the hypothesis κ−1[{γ}] and let us define

K: X → 2Γ, x 7→ {γ ∈ Γ: ψγ(x) = 0}.

We have {K 3 γ} = {ψγ = 0} ∈ A for γ ∈ Γ. Moreover,

Pϑ(K 3 κ(ϑ)) = Pϑ(ψκ(ϑ) = 0) = 1− Pϑ(ψκ(ϑ)) ≥ 1− α for ϑ ∈ Θ,

yielding βeff(K) ≥ 1− α.
(iii) test−1 = conf is obvious.

A.3.40 Remark 1. Let K be a confidence region for κ. After observing x ∈ X , a hypoth-
esis Θ0 ⊆ Θ is rejected by test(K) if K(x)∩κ[Θ0] = ∅. In fact, Θ0 ⊆

⋃
ϑ∈Θ0 κ

−1[{κ(ϑ)}]
is rejected if κ−1[{κ(ϑ)}] is for ϑ ∈ Θ0, i.e., if κ(ϑ) /∈ K(x) for ϑ ∈ Θ0.

2. K(x) ∩ κ[Θ0] = ∅ is equivalent to κ−1[K(x)] ∩Θ0 = ∅:
• if ϑ ∈ κ−1[K(x)] ∩Θ0, then ϑ ∈ Θ0 and κ(ϑ) ∈ K(x), i.e., κ(ϑ) ∈ K(x) ∩ κ[Θ0];
• if γ ∈ K(x) ∩ κ[Θ0], then there is some ϑ ∈ Θ0 with γ = κ(ϑ), i.e., ϑ ∈
κ−1[K(x)] ∩Θ0.
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A.3.41 Definition Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A) and
Θ0 ⊆ Θ. A statistic α̂ : X → [0, 1] such that

sup
ϑ∈Θ0

Pϑ(α̂ ≤ u) ≤ u for u ∈ [0, 1]

is called P-variable for the hypothesis Θ0.
A.3.42 Remark 1. Using the language of stochastic preorders (see Definition A.3.46),

P-variables are statistics α̂ that are, under the hypothesis, stochastically greater than
uniformly distributed statistics on [0, 1], i.e., U[0,1] ≤st α̂ � Pϑ for ϑ ∈ Θ0.

2. After having fixed a level α ∈ [0, 1], the hypothesis Θ0 is rejected on the basis of an
observation x ∈ X if α̂(x) ≤ α.

3. As Theorem A.3.45 shows, P-variables correspond to certain families of tests. Testing
a hypothesis can therefore usually be done with a multitude of different P-variables.

4. Many statisticians call “P-value” what we have defined as P-variable. We reserve the
term P-value for a realization α̂(x) of a P-variable α̂.

A.3.43 Definition Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A),
Θ0 ⊆ Θ, and A ⊆ [0, 1]. A family (ψα : α ∈ A) of tests ψα for the hypothesis Θ0 is called
nested if

A→ {0, 1}, α 7→ ψα(x),

is increasing for x ∈ X , i.e., if

α1, α2 ∈ A, α1 ≤ α2 =⇒ ψα1(x) ≤ ψα2(x) for x ∈ X .

A.3.44 Remark If a family (ψα : α ∈ A) of tests ψα is nested, then

A→ [0, 1], β 7→ αeff(ψα),

is increasing.
A.3.45 Theorem Let P = (Pϑ : ϑ ∈ Θ) be a model on a measurable space (X ,A), Θ0 ⊆ Θ,
and A ⊆ [0, 1].
(i) To every P-variable α̂ for the hypothesis Θ0 corresponds a nested family test(α̂) =

(test(α̂)α : α ∈ A) of tests

test(α̂)α : X → [0, 1], x 7→ 1(α̂(x) ≤ α),

for the hypothesis Θ0 with respective levels α.
(ii) To every nested family ψ = (ψα : α ∈ A) of tests ψα for the hypothesis Θ0 with

respective levels α corresponds a P-variable

p-var(ψ) : X → [0, 1], x 7→ inf{α ∈ A: ψα(x) = 1},

for the hypothesis Θ0.

Proof. See Mattner (2014).
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A.3.46 Definition Let (X ,≤) be a preordered set, endowed with the σ-algebra generated
by the order topology on X . For two laws P and Q on X let

P ≤st Q :⇐⇒ P (U) ≤ Q(U) for uprays U ⊆ X
P <st Q :⇐⇒ P (U) < Q(U) for uprays U ⊆ X with P (X \ U) ∧Q(U) > 0.

≤st and <st are called stochastic preorder and strict stochastic preorder on X , respectively.
A.3.47 Remark 1. ≤st and <st of course depend on the underlying set X , as well as

its preorder ≤. The former is, however, not reflected in our notation since it is in all
considered cases clear from the context.

2. ≤st and <st are a preorder and a strict preorder, respectively, on the set of laws onX .
3. We have (≤st)str ⊇ <st and (<st)unstr ⊆ ≤st.
4. Models P = (Pϑ : ϑ ∈ Θ) on preordered sets (X ,≤) having preordered parameter sets

(Θ,≤) can thus possess monotonicity properties. For strict monotonicity, however, the
strict stochastic preorder <st instead of (≤st)str is considered. For instance, P is said
to be stochastically increasing if

ϑ1 ≤ ϑ2 =⇒ Pϑ1 ≤st Pϑ2 for ϑ1, ϑ2 ∈ Θ

and stochastically strictly increasing if

ϑ1 < ϑ2 =⇒ Pϑ1 <st Pϑ2 for ϑ1, ϑ2 ∈ Θ.

A.3.48 Theorem Let (X ,≤) and (Y ,≤) be two preordered sets, ≺ ∈ {≤st, <st}, and let
P and Q be two laws on X with P ≺ Q and T : X → Y a monotonic function. Then

T increasing =⇒ T � P ≺ T �Q

T decreasing =⇒ T �Q ≺ T � P.

A.3.49 Theorem Let Pi and Qi be laws on preordered sets (Xi,≤i) with Pi ≺ Qi for
i ∈ {1, . . . , n} and ≺ ∈ {≤st, <st}. Then

⊗n
i=1 Pi ≺

⊗n
i=1 Qi.

A.3.50 Example Let n ∈ N and m ∈ Nn.
1. The family (⊗n

i=1 Bmi,pi : p ∈ [0, 1]n) is stochastically strictly increasing. This follows
from Theorems A.3.48 and A.3.49, the monotonicity of {0, 1}n → {0, . . . , n}, x 7→∑n
k=1 xk, and Bp <st Bq for p, q ∈ [0, 1] with p < q.

2. For σ ∈ ]0,∞[, the family (⊗n
i=1 N⊗miµi,σ2 : µ ∈ Rn) is stochastically strictly increasing.

This follows from Theorem A.3.49 and Nµ,σ2 <st Nν,σ2 for µ, ν ∈ R with µ < ν.
3. The family (⊗n

i=1 E⊗miλi
: λ ∈ ]0,∞[n) is stochastically strictly decreasing. This follows

from Theorem A.3.49, and Eλ <st Eµ for λ, µ ∈ ]0,∞[ with λ > µ.
4. The family (⊗n

i=1 P⊗miλi
: λ ∈ ]0,∞[n) is stochastically strictly increasing. This follows

from Theorem A.3.49, and Pλ <st Pµ for λ, µ ∈ ]0,∞[ with λ < µ.
A.3.51 Definition Let (Θ,≤) and (Y ,≤) be preordered sets and T : X → Y a statistic.
A model P = (Pϑ : ϑ ∈ Θ) on a measurable space (X ,A) is said to have (strictly) increas-
ing/decreasing likelihood ratios in T if for ϑ0, ϑ1 ∈ Θ with ϑ0 < ϑ1 there are densities fϑi
of Pϑi for i ∈ {0, 1} with respect to some measure µ on (X ,A) such that

fϑ1

fϑ0

is (Pϑ0 + Pϑ1)-a.s. (strictly) increasing/decreasing in T .
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A.3.52 Remark If P has increasing/decreasing likelihood ratios in T , then T �P is stochas-
tically increasing/decreasing.
A.3.53 Definition Let µ ∈ R, n ∈ N \ {1}, X := idRn , and

X := 1
n

n∑
i=1

Xi and S :=
(

1
n− 1

n∑
i=1

(Xi −X)2
)1/2

.

The laws

χ2
n−1 := ((n− 1)S2) � N⊗n0,1 and tn−1,µ :=

√
n
X

S
� N⊗nµ,1

are called χ2-distribution (with n−1 degrees of freedom) and noncentral t-distribution (with
n− 1 degrees of freedom and noncentrality parameter µ), respectively.
A.3.54 Remark 1. We have ((n − 1)S2/σ2) � N⊗nµ,σ2 = χ2

n−1 and (
√
n ·X/S) � N⊗nµ,σ2 =

tn−1,µ/σ for µ ∈ R and σ ∈ ]0,∞[.
2. If S̃ : Rn → R, x 7→

√∑n
i=1(xi − µ)2, then (S̃2/σ2)�N⊗nµ,σ2 = χ2

n. The law χ2
n is usually

defined this way.
3. If T : R× ]0,∞[→ R, (x, y) 7→ x/

√
y/n, then T � (Nµ,1 ⊗ χ2

n) = tn,µ. The law tn,µ is
usually defined this way.

4. The laws χ2
n−1 and tn−1,µ are continuous and with support suppχ2

n−1 = [0,∞[ and
supp tn−1,µ = R, respectively. For µ ∈ R \ {0}, tn−1,µ is asymmetric.

5. We have χ2
n−1  δ∞ for n → ∞, and tn−1,µ  δ±∞ for µ → ±∞. This follows

straightly from the definition and tn−1,µ = (
√
nX+µ

S
) � N⊗n0,1 , respectively.

6. It follows that R → ]0, 1[, µ 7→ tn−1,µ(]−∞, x]), is strictly increasing and surjective
for x ∈ R.
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I N D E X

accuracy, see test
admissible, see confidence bound
Alexandrov topology, see topology
all-relation, see relation
alternative, 118
antisymmetric, see relation
axiom of choice, 99

base, see topology
bijective, see function
binary, see relation
bound, see lower bound
Buehler confidence region, see Buehleriza-

tion
Buehlerization, 9

optimality, 11
product experiment, 13
ray, 12

cartesian product, see product
χ2-distribution, 122
codomain, see function
complete, 103

conditionally, 103
composition, see function
condition

absent, 67
present, 67

conditionally complete, see complete
confidence bound, 114

admissible, 114
better, 114
strictly, 114

equivalent, 114
superior, 114
strictly, 114

confidence downray, 114
confidence interval, 114
confidence level, see confidence region
confidence region, 113

equivariant, see equivariant

level
confidence, 113
effective, 113

unbiased, 3, 115
confidence upray, 114
continuous, 112

decreasing, see monotonic
decreasing set, see ray
degrees of freedom, see χ2-distribution or

t-distribution
dense, 108
density, 108

hereditary, 108
designated statistic, 9
diagonal, see relation
distribution, see image measure
domain, see function
downray, see ray
downward closed set, see ray
dual, see relation

effective level, see confidence region or test
equivalence class, 116
equivariant, 116, 117
experiment, see model

factorize, 76
family, 96
function, 95

bijective, 96
codomain, 95
composition, 97
domain, 95
empty, 96
identity, 96
image, 97
injective, 96
inverse, 96
involution, 97
preimage, 97
range, 96
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surjective, 96

generated downray, see ray
greatest, see least
greatest lower bound, see infimum
group

transformation, 115
induced, 117

hull, see relation
hypothesis, 118

identifiable, 113
identity, see function
image, see function
image measure, 112
increasing, see monotonic
increasing set, see ray
indicator, 97

function, 97
induced, see relation
infimum, 103
initial segment, see ray
injective, see function
integral, 112
interval, 102

open, 107
invariant, 116, 117

maximal, 116
inverse, see function
involution, see function
irreflexive, see relation

joint density, 70

least, 103
least uncountable ordinal, see ordinal
least upper bound, see supremum
likelihood ratio, 121
lower bound, 103
lower confidence bound, see confidence bound
lower set, see ray

map, see function
mapping, see function
Markov counting density, 69
maximal, see minimal
measurable, 112
metric space, 108

minimal, 103
model, 113

induced, 113
monotonic, 104

decreasing, 103
strictly, 104

increasing, 103
strictly, 104

multinomial coefficient, 69
multinomial distribution, 69

outcome probabilities, 69
sample size, 69

n-ary relation, see relation
negative, see condition
negative part, 71
nested

confidence regions, 115
tests, 120

noncentrality parameter, see t-distribution
NPV, see test

ω1, see ordinal
one-to-one, see function
onto, see function
open interval, see interval
open ray, see ray
orbit, 116
order, see relation, 100

strict, 100
topology, see topology

order statistic, 106
ordinal, 111

least uncountable, 103
outcome probabilities, see multinomial dis-

tribution

P-value, 120
P-variable, 120
pair, see product
parameter of interest, 113
population, 67
positive

seecondition, 67
positive part, 71
PPV, see test
predictive values, see test
preimage, see function
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preorder, 100
prevalence, 68
probability counting density, 69
product

cartesian, 95, 98
pair, 95

relational, 99
product relation, see relation
pushforward measure, see image measure

randomized test, see test
range, see function
ray

downray, 102
generated, 102
open, 107
upray, 102

reflexive, see relation
relation, 99

all-relation, 99
antisymmetric, 99
between models, 71
binary, 99
diagonal, 99
dual, 99
empty, 99
equivalence, 100, 116
hull, 100
induced, 99
irreflexive, 99
order, 99
induced, 105

product, 99
reflexive, 99
symmetric, 99
ternary, 99
total, 99
transitive, 99

restriction, 96

sample size, see multinomial distribution
semi-integrable, 112
sensitivity, see test
separable, 108
smallest, see least
specificity, see test
state space, 67

statistic, 112
statistical test, see test
stochastic preorder, 121

strict, 121
stochastically increasing, 121

strictly, 121
strict order, see order
subbase, see topology
support, 112
supremum, 103
surjective, see function
symmetric, see relation

t-distribution
noncentral, 122

ternary, see relation
test

diagnostic, 67
accuracy, 68
predictive values, 68
sensitivity, 68
specificity, 68
usefulness, 68

statistical, 118
effective level, 118
level, 118
randomized, 118
unbiased, 119

topological space, see topology
topology, 107

Alexandrov, 108
base, 108
induced, 108
order, 108
subbase, 108
subspace, 108

total, see relation
transformation, 115
transitive, see relation
tuple, 96

unbiased, see confidence region or test
unbounded, 104
unimodal, 106
universality, 7, 8
unobservable states, 70
upper bound, see lower bound
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upper confidence bound, see confidence bound
upper set, see ray
upray, see ray
upward closed set, see ray
usefulness, see test

vector, 96

well-ordered, 103


