
 

 

Laura Giustarini 
 

Dem Fachbereich VI 
(Raum- und Umweltwissenschaften) 

der Universität Trier 
zur Verleihung des akademischen Grades 

Doktor der Naturwissenschaften (Dr. rer. nat.) 
genehmigte Dissertation 

 

Integrating remote sensing 
information from SAR sensors and 

hydraulic modelling 
 
 
 
 

Betreuender: 
Prof. Dr. Thomas Udelhoven 

Department of Remote Sensing and Geoinformatics 
University of Trier 

 

Berichterstattende: 
Dr. Andreas Krein 

Department of Hydrology - University of Trier 
Prof. Dr. Paul Bates 

School of Geographical Sciences - University of Bristol 
 
 
 
 
 
 

Trier, 2015 
 
 



VI 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
Egli muta il deserto in lago 

e la terra arida in fonti d'acqua. 
Salmo 107:35 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



VI 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



I 

 

CONTENTS 

 

Contents ................................................................................................................................................... I 

Acknowledgements ................................................................................................................................ III 

Summary ................................................................................................................................................. V 

1. Iintroduction ........................................................................................................................................ 1 

1.1. Facing flood risk ............................................................................................................................ 1 

1.2. Integrating remote sensing and modelling .................................................................................. 3 

1.3. State-of-the-art ............................................................................................................................ 5 

1.3.1. Flood mapping ....................................................................................................................... 5 

1.3.2. Data Assimilation ................................................................................................................... 8 

1.4. Objectives and Method .............................................................................................................. 10 

1.4.1. Flood mapping from SAR imagery ....................................................................................... 11 

1.4.2. Flood mapping uncertainty ................................................................................................. 12 

1.4.3. Assimilation of SAR-derived water elevations .................................................................... 13 

2. A change detection approach to flood mapping in urban areas using TerraSAR-X .......................... 15 

3. Accounting for image uncertainty in SAR-based flood mapping ...................................................... 29 

4. Assimilating SAR-derived water level data into a hydraulic model: a case study ............................. 37 

5. Synthesis ............................................................................................................................................ 55 

5.1. Conclusions ................................................................................................................................. 55 

5.2. Further applications ................................................................................................................... 58 

5.2.1. Further improvements in flood mapping ............................................................................ 58 

5.2.2. Data Assimilation in a broader context ............................................................................... 60 

6. Perspectives....................................................................................................................................... 63 

6.1. Flood hazard mapping ................................................................................................................ 63 

6.2. Assimilation of flood extent ....................................................................................................... 65 

References ............................................................................................................................................. 67 

Permissions ........................................................................................................................................... 75 

 

 



II 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  



III 

 

ACKNOWLEDGEMENTS 

First and foremost, thanks to the Lord, the loving God, for His showers of blessings throughout 

my life and for the opportunity of discovering a reflection of His beauty in science. 

I would like to thank my husband, Giovanni, the love of my life and also my biggest fan. I am 

very much thankful for his love, understanding, prayers and continuing support. I thank God for 

enlightening my life with his presence. 

I would like to express my deep and sincere gratitude to my research advisors, Prof. Dr. Thomas 

Udelhoven, Dr. Andreas Krein and Prof. Dr. Paul Bates, for giving me the opportunity to 

complete this thesis. I am extremely grateful for their enthusiasm and help. I would like to thank 

Prof. Dr. Paul Bates also for the period he offered me as a visiting scientist at Bristol University: 

it was an invaluable opportunity to carry out research in a highly dynamic environment. 

A special thank goes to Dr. Patrick Matgen. His kindness, motivation and sincerity have deeply 

inspired me. He has taught me the methodology to carry out and present research work as clearly 

as possible. It is a great privilege and honor to work under his guidance.  

I would like to express my gratitude to Tommaso Moramarco, for his genuine support at the very 

beginning of my career. I would also like to thank him for his friendship. My thank goes also to 

Florisa Melone. 

I would like to specially thank all my colleagues and supervisors, all those I met along my carrier, 

from IRPI-CNR in Italy, to CRP Gabriel Lippmann and LIST in Luxembourg, passing from the 

University of Bristol in the UK. 

I am extremely grateful to my parents for their love, prayers, caring and sacrifices for educating 

and preparing me for my future. A big thank goes to my brother and his girlfriend. A very 

heartfelt thanks also to my parents, brother and sister in-law, for their love and constant 

encouragement. 

Finally, my thanks go to all the friends who have supported me to complete the research work, 

directly or indirectly, even though their names are not listed here.  

I would have never thought research was for me, let alone completing a PhD, but God’s plans 

are always higher and greater. 

 
 
 
 
 
 
 



IV 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



V 

 

SUMMARY 

Floods are hydrological extremes that have enormous environmental, social and economic 

consequences and it is expected that climate change effects will increase their impacts in the 

future. 

Yet we still lack reliable technological solutions that enable us to accurately and consistently 

monitor inundations. Reliable observation data integrated into hydraulic models are needed to 

help us monitoring, predicting and projecting the responses of hydro-systems to varying 

boundary conditions. However, required data for setting-up, driving, calibrating and evaluating 

models and offering decision support are often inexistent or too crude and unreliable. With Earth 

Observation (EO) entering a new era, the increasing availability of free, open and reliable global 

satellite data and high quality measurement from airborne platforms is expected to trigger a step 

change in the quality and usefulness of such data. As a consequence, the operational assimilation 

of such data into high resolution modelling of hydrological processes can be envisaged for the 

first time. 

In this framework, the overall objective of this thesis was a contribution to the implementation of 

an end-to-end processing chain that integrates remote sensing information into hydraulic models. 

Specifically, the aim was to improve water elevation and discharge simulations by assimilating 

microwave remote sensing-derived flood information into hydraulic models. This work 

highlighted the complementarity of remote sensing-derived inundation maps and hydraulic 

modelling, with a specific focus on flood mapping in urban areas, where risks to people and the 

economic impacts are most critical. 

The first component of the proposed end-to-end processing chain is represented by a flood 

mapping algorithm which is used to process satellite data and convert them into hydraulic 

information. A fully automated flood mapping algorithm was here developed to enable the 

automated, objective, and reliable flood extent extraction from Synthetic Aperture Radar images, 

providing accurate results in both rural and urban regions. The method operates with minimum 

data requirements and it is efficient in terms of computational time, a characteristic that is 

fundamental for near real time applications. The output of this algorithm is a binary 

flooded/non-flooded map that represents an invaluable near real-time overview of flood extent 

and its impact on population and infrastructure. 

Given that there is no perfect procedure, the map obtained with the developed algorithm is still 

subject to uncertainties, introduced by the flood mapping algorithm itself. However, the 

additional component of uncertainty that is inherent in the image itself should also be taken into 

account. In this work, particular attention was given to image uncertainty deriving from speckle 

and its effect on the final flood map. From an original satellite image, by bootstrapping the image 

pixels, several synthetic images were generated and provided as input to the developed flood 
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mapping algorithm. From the analysis performed on the mapping products, it was concluded that 

speckle uncertainty could be considered as a negligible component of the total uncertainty. 

The final step of the proposed end-to-end processing chain is the actual integration of remote 

sensing information into hydraulic models. This was performed through data assimilation, using a 

Particle Filter. Real event water elevations, obtained from two subsequent satellite observations, 

were assimilated into a properly adapted version of the Particle Filter, modified to work with 

non-Gaussian distribution of observations. To deal with model structure error and, at the same 

time, possibly biased observations, a global and a local weight variant of the Particle Filter were 

tested. The variant to be preferred depends on the level of confidence that is attributed to the 

observations or to the model. This study also highlighted the complementarity of remote sensing 

derived and in-situ data sets. 

To sum up, it can be concluded that an accurate binary flood map, as the one that can be 

obtained in a completely unsupervised way from the developed flood mapping algorithm, 

represents an invaluable product for several end users. However, deriving additional hydraulic 

information, such as water elevations, from this binary map is a way of enhancing the value of 

the product itself. The additional data so derived can be assimilated, as tested in this study, into 

hydraulic models that will fill the gaps where EO, for technical reasons, cannot provide 

information. Moreover, these updated models will enable a more accurate and reliable short- to 

medium-range prediction of flooded areas. 
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1. INTRODUCTION 

1.1. Facing flood risk 

Flood is defined by the European Union (EU) Floods Directive (2007) as a covering by water of 

land not normally covered by water. 

Hydrological extremes such as floods have enormous environmental, social and economic 

consequences and it is expected that climate change effects, combined with concentration of 

population and economic development in many of the world’s largest port cities and deltaic 

locations, will increase their impacts in the future. The majority of major cities are located on 

floodplains, meaning that a significant part of human populations are vulnerable to floods and 

associated waterborne diseases and pollution. Almost one billion people are estimated to be 

exposed to flooding with an annual probability above 0.01 (Jongman et al., 2012). Financial losses 

due to flooding are expected to increase from ~US$6 billion per annum in 2005 to ~US$52 

billion per annum by 2050, due to socio-economic change alone (Hallegatte et al., 2013). 

In recent years, insurance companies face the problem of a substantial increase of flood claims. 

SwissRe’s latest report “Flood – an underestimated risk” states that floods nowadays rival 

earthquakes and hurricanes in terms of economic losses. According to Torsten Jeworrek of 

MunichRe (2013), the frequency of flood events in Germany and central Europe has increased by 

a factor of two since 1980. In 2013, around 45% of the insured losses derived from inland 

flooding. One particular concern of the insurance industry is the mapping of so-called ‘hot spot’ 

areas. These are clusters of industries relevant to global supply chains that are located within 

flood prone regions. Experience shows that interruption of such international supply-chains due 

to flooding causes extreme economic loss. In order to improve their services, insurance 

companies thus require detailed global and national disaster impact databases, to better identify 

areas vulnerable to flood losses. 

The migration of people towards cities located on river floodplains and coastal deltas is expected 

to increase flood risk over the coming decades (Jongman et al., 2012; Hirabayashi et al., 2013; 

Vörösmarty et al., 2000). In parallel, the observed and predicted altered precipitation and 

evapotranspiration distributions caused by climatic change are further increasing the threats 

posed on water security around the world. The more and more frequent occurrence of water 

excess periods also has a strong impact on food production and the availability of other natural 

resources at global scale. 

With more lives predicted to be touched by climate change-induced flooding, it is of utmost 

importance to mitigate the impact of floods and, at the same time, to keep water resources 

secure.  
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One of the main objectives of the European Union (EU) Floods Directive (2007) concerns the 

mitigation of the impact of floods. For this, consistent and accurate short- to medium-range 

flood forecasts are essential to allow stakeholders in flood management to better react to crises. 

According to the World Health Organization (2015), a fast and reliable assessment of the 

situation helps to anticipate critical needs such as search and rescue, medical assistance, 

evacuation and managing displacement of people and goods. This reduces the risk of exposure to 

waterborne diseases in the short term and maintains food security conditions over the long term 

(as crops and livestock are likely to be lost), while avoiding at the interruption of critical supply 

chains that are known to cause extreme financial losses to industry. To fulfil this mission, Civil 

Protections need information such as current and forecasted water levels, streamflow and 

inundation duration, especially in urban areas. Flood extent observations are used by emergency 

response services to target their limited resources on the most risk prone areas. 

However, risk estimations and optimal decision making in emergency situations are hampered by 

uncertainties inherent to numerical modelling-based flood forecasting. 

We still lack precise and reliable technological solutions that enable us to accurately monitor and 

predict floods, keeping at the same time water resources secure. Reliable observation data 

integrated into various types of environmental models are needed to help monitoring, predicting 

and projecting the responses of hydrosystems to varying boundary conditions. They will help 

answer major questions such as where, when, how often and for how long does water inundates 

the continental land surface, along with what volume of freshwater is stored, for how long does it 

reside in a particular place and what adaptation or mitigation strategies are effective to minimize 

negative impacts. These questions are recognised as some of the grand challenges facing the 

hydrological and land surface modelling communities over the coming decade and are 

fundamental to understanding the link between wetlands and our climate (Wood et al., 2011). 

Central to understanding inundation dynamics are consistent and accurate estimates of global 

freshwater discharge and high resolution data on how floodplains and wetlands inundate in 

response to river discharge dynamics (Wood et al., 2011). For most of the world, the river 

discharge at which floodplains inundate along river networks (e.g. bank full discharge) is 

unknown, yet this is fundamental to understanding the non-linear transform between runoff and 

floodplain inundation. Unfortunately, the data on river discharge and observations of flood 

inundation frequency, which might be used for bank full discharge estimation, are poor in many 

regions of the world. For example, the global gauge network is declining and is effectively non-

existent for large areas of the planet (Hannah et al., 2011; Vörösmarty et al., 1996).  

An alternative to ground measurements is represented by Earth Observation (EO) data. Synthetic 

Aperture Radar (SAR) satellites show interesting merits w.r.t. observing floods, as they are 

characterized by a good sensitivity to water and can provide data day and night, regardless of 

cloud cover. A present limitation is the fact that much of our current data is derived from either 

low resolution records that lack detail (e.g. ~25 km (Pringent et al., 2007)) or higher resolution 

data (≤75 m) that are patchy in space and time and yet to be processed globally (Pringent et al., 

2007; Brakenridge et al., 2002; Alsdorf, 2007; Bates et al., 2013). However, as discussed by 

Wagner et al. (2014), EO is now entering a new era where the increasing availability of free, open 

and reliable global satellite data and high quality measurement from airborne platforms is 
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expected to trigger a step change in the quality and usefulness of such data. The enhanced 

observational capabilities, in terms of spatial (ranging between 1m and 20m) and temporal (few 

days) resolution, of new SAR satellite constellations as TerraSar-X, Sentinel-1 and COSMO-

SkyMed render EO a potentially invaluable source of information. The combination of multiple 

and complementary sensors mounted on airborne and spaceborne platforms will enable 

monitoring terrestrial water bodies and related impacts in a way that is not achievable using 

conventional networks of (even densely equipped) measurement stations. These powerful new 

measurement techniques have the potential to overcome data scarcity by providing water-related 

information at global scale with unprecedented accuracy and spatiotemporal resolution. 

However, significant challenges still need to be overcome, particularly in terms of data storage 

and innovative processing chains for the automated processing of satellite data. 

In terms of models, high resolution modelling of hydrological processes across different spatial 

and temporal scales can be envisaged for the first time. Models provide indications not only in 

terms of flood extent but also in terms of other related hydraulic variables, such as water 

elevation, river discharge, flood duration and flow velocity. If used as inputs to different types of 

impact models, these variables can be used to better assess the economic, social and 

environmental consequences of floods. Simulating river discharge in a hydraulic model requires 

runoff data to force the model. Many methods exist to simulate global and/or local runoff, with 

some approaches performing better than others in locations which cannot always be determined 

a-priori. Runoff fields are usually represented using an ensemble, examples of which can be 

obtained from large forecast centres. The spread of this ensemble can be reduced significantly by 

assimilating observations where they exist. In forecasting mode, such data assimilation 

applications allow keeping the predictions on track. Ideally, this is achieved via the assimilation of 

streamflow measurements from distributed hydrometric stations. However, gauging stations are 

relatively sparse and irregular in space and their number is in decline. An inviting alternative that 

has obtained increased attention over the last years is to improve the predictions of runoff by 

assimilating hydrology-related data derived from EO data. The most comprehensive way to 

estimate inundation dynamics would then be to simulate inundation using an appropriate 

computer model and assimilate the available EO records to obtain a continuous and spatially 

complete estimate of global discharge and inundation. Such a model is also essential to 

understanding how natural variability or longer term changes in the hydrological cycle affect 

inundation (Pappenberger et al., 2005). 

The overall objective of this work is therefore to integrate advanced remote sensing technologies 

and hydraulic modelling for an improved understanding and prediction of rainfall-runoff 

transformation processes. Specifically, the aim is to improve water elevation and discharge 

simulations by correcting hydraulic models using microwave remote sensing-derived flood 

information. 

1.2. Integrating remote sensing and modelling 

Recently, a number of international Earth Observation (EO) initiatives have set up a research and 

development agenda to propose new products that serve user communities, such as emergency 

response services and insurance companies. The Working group on Disasters of the Committee 
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on Earth Observation Satellites (CEOS) highlighted the need to exploit the potential of new EO 

data sets to support flood management in its various phases (CEOS, 2013). In particular, CEOS 

deems insufficient the revisit rates of current satellite systems for flood extent and water level 

monitoring. The recent setup of new constellations of SAR satellites, such as COSMO-SkyMed, 

TerraSAR-X and Sentinel-1, allows for enhanced observational capabilities, in terms of spatial 

and temporal resolution. In Europe, it is expected to have a revisit time of 2 days, enabling the 

systematic high-frequency assimilation of remote sensing-derived flood extent maps into 

numerical prediction models. CEOS identifies as a priority a better integration of satellite 

observations with numerical prediction models to improve forecasts of water levels and flood 

extents on a daily basis, with a spatial resolution in the order of 15/20m or better. 

Data assimilation is defined as the adaption of model results using externally obtained data sets. 

In other words, it is the process by which observations are incorporated into a model, in order to 

put the model in better agreement with observed data, whenever new observations become 

available. The assumption behind data assimilation is that the combination of uncertain model 

predictions and uncertain observations will lead to an improved and more reliable forecast.  

Fig. 1 shows a scheme of a data assimilation application in the framework of hydraulic 

forecasting. In this example, the model is a hydraulic one, which predicts state variables such as 

water stages, discharge, velocities, flood extent. The observations to be assimilated are derived 

from remote sensing, specifically from SAR imagery. Hydraulically relevant observations that can 

be derived from SAR image analysis and later assimilated are, for example, flood extent and water 

stages. 

Uncertainty in model forecast mainly derives from input forcings and model’s parameters (e.g. 

Manning’s roughness coefficient) and structure (1D flow approximation, geometry errors, …). It 

is generally taken into account by computing an ensemble of model predictions. This ensemble 

reflects the uncertainty in the state of the modelled variable(s) of interest. Any time an external 

observation of a state variable is available, a weighted average can be computed between model 

results and the external observation. This weighted average can then be used as initial condition 

for the next forecasting time step. 

Several different approaches are available to assimilate measurements into hydraulic models. With 

the exception of direct insertion (Heathman et al., 2003), all data assimilation methods consist in 

adjusting model results by weighing model results and observations. The weights assigned to 

both model results and observations depend on the degree of uncertainty in model results and 

observations themselves. In order to perform data assimilation, various types of filters have been 

proposed in literature, such as Kalman filters (Aubert et al., 2003; Pellenq and Boulet, 2004), the 

Ensemble Kalman filter (EnKF) (Evensen, 1994) and the Particle Filter (PF). In comparison to 

the widely used EnKF, the PF does not require a Gaussian distribution of observations and 

model errors, since it can adapt to any probability density functions (Moradkhani, 2008). In other 

words, the PF allows the propagation of non-Gaussian distributions through nonlinear models. 

The following paragraph covers a summary on the state-of-the-art of satellite derived hydraulic 

information and the subsequent assimilation of these data into hydraulic models. 
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Figure 1: Scheme of a data assimilation approach in hydraulic modelling. 

 

1.3. State-of-the-art 

1.3.1. Flood mapping 

Nowadays, imaging of flooding is carried out routinely using both satellite and airborne sensors. 

For inundation detection, SAR sensors are preferred to visible band sensors because of their 

ability to penetrate clouds that are often present at times of flood and to image at night-time as 

well as during the day. The ability to obtain a synoptic view of the inundation extent, regardless 

the light and weather conditions, represents an extremely important feature for operational flood 

relief management. 

A number of active SARs with spatial resolutions as high as 3 m or better have recently been 

launched that are capable of detecting flooding. They include TerraSAR-X, Sentinel-1 and the 

four satellites of the COSMO-SkyMed constellation. The latter is particularly useful because it 

allows image sequences of flooding to be built up with 12- or 24-hour revisit intervals. 

In the absence of significant wind, rain or turbulent surface currents, water represents a smooth 

surface that reflects the radar signal in the specular direction, away from the antenna, producing a 

very low recorded backscattering. As a result, water has a well-defined backscattering signature 

(Ulaby and Bare, 1979; Henderson and Lewis, 1998) and it generally appears dark in a SAR 

image, due to specular reflection from the water surface. Roads and tarmac areas also exhibit low 

backscatter, though not as low as undisturbed water. For this reason, detection of open water in 

SAR images is then rather straightforward and a single radar observation of a flood (hereafter 

indicated as flood image) can be sufficient to detect floodwater on bare soils and scarcely 



6 Introduction 

 

vegetated terrains. As of today, the exploitation of EO satellite images represents the most 

powerful means for mapping flood extents in near real time and over large areas. 

Many studies in literature have demonstrated that SAR systems are suitable tools for flood 

mapping. Over the past decades, several analyses have used SAR data to map flood bodies with 

different techniques. Among the many flood extent mapping techniques currently available, 

commonly used methods are simple visual interpretation (e.g. Oberstadler et al., 1997), 

supervised classification (e.g. De Roo et al., 1999; Townsend, 2002), histogram thresholding (e.g. 

Hostache et al., 2006; Schumann et al., 2007; Pierdicca et al., 2008), and several different multi-

temporal change detection methods (e.g. Bazi et al., 2005). Active contour models based on 

image statistics have also been used by Bates et al. (1997) and Horritt (1999). Mason et al. (2007) 

proposed a flood extraction algorithm that considers both the SAR image and a DEM of the 

region, so that waterlines (instantaneous land-water boundaries) in the outcome flood map are 

conditioned to be smoothly varying in ground height along the river reach. Pulvirenti et al. 

(2011a) introduced a method that couples segmentation techniques and a SAR backscatter model. 

On a different note, in a recent study Schlaffer et al. (2015) proposed harmonic analysis of 

multitemporal ENVISAT ASAR time series to delineate flood events. 

One of the main limitations of many of the currently available flood mapping algorithms is their 

limited level of automation. Generally, their parameters are often determined through visual 

inspection of the image histograms and are subsequently fine-tuned by the operator based on the 

subjective analysis of the result. Fully automated image processing algorithms are still surprisingly 

scarce. In a first attempt towards automation, Martinis et al. (2009) described an automatic split-

based thresholding and classification refinement process, as a computationally efficient approach 

that provides reliable results in a rapid mapping context. Successively, Matgen et al. (2011) 

introduced a flood mapping hybrid methodology, which combines radiometric thresholding and 

region growing. Change detection is introduced as an optional final step, in case a reference 

image is available. The authors showed that the use of a reference image leads to the same results 

as those obtained with optimized manual approaches. This study is particularly significant 

because it proposes a robust methodology that reduces the delay between image acquisition and 

flood map extraction. Moreover, all parameters are automatically optimized by the algorithm 

itself, with the exception of the tolerance criterion for region growing. The authors acknowledge 

this limitation of their approach. In all their case studies, an a-priori fixed threshold provided 

satisfactory results, even though it cannot be excluded that in other situations, better results could 

be achieved with other threshold values. Matgen et al. (2011) conclude advocating in the future 

the development of an “all-at-once” calibration that optimizes all algorithms’ parameters, 

including region growing threshold, at the same time. Their study focused on the mapping of 

rural floods on coarse and intermediate resolution SAR images. 

Flood hazard is a major danger in both rural and urban areas worldwide. Nonetheless, it is in 

urban areas that the risks to people and the economic impacts are most critical. For 

understandable reasons, stakeholders in flood management are particularly interested in urban 

areas that are prone to flooding. However, in spite of the progress in the development of flood 

mapping procedures, the detection of inundation in urban areas still represents a critical issue. A 

difficulty of urban flood detection using SAR is that, as a consequence of its side-looking nature, 
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substantial areas of urban ground surface may not be visible to the SAR, due to radar shadowing 

and layover caused by buildings or taller vegetation. For example, Soergel et al. (2003) found that, 

in airborne SAR data of Karlsruhe, only one-third of the total road surface was visible to the 

SAR. Zwenzner and Voigt (2009), while developing a new procedure to improve the matching of 

flood masks with very high resolution digital elevation models, recognise the difficulty of 

applying it in urban areas, due to shadow/layover effects and strong backscattering (double 

bounce). 

This makes SAR less effective at detecting urban flooding than it might otherwise be. It is widely 

recognized that, in order to map floods within urban settlements and also vegetated areas, at least 

one pre-flood and one flood image have to be combined in a change detection approach. The 

idea is to search for areas in which the double bounce effect caused by the interaction between 

the ground surface and the surrounding vertical structures is enhanced by the presence of 

smooth and reflective floodwater (Pulvirenti et al., 2011b). 

Some investigations on mapping flooded urban settlements were carried out by Mason et al. 

(2010; 2012a). The paper of Mason et al. (2010) is a first attempt at mapping urban water, using a 

semiautomatic algorithm applied on a single high resolution TerraSAR-X flood image. The 

authors used the German Aerospace Center (DLR) SAR end-to-end simulator (SETES) and 

airborne scanning laser altimetry (LiDAR) data to estimate shadow and layover in the image. 

These are regions unseen by the satellite and, as inundation in this part of the image is considered 

undetectable, they are masked out in the flood mapping process. Of the remaining urban water 

pixels that are visible to TerraSAR-X, 76% were correctly detected, demonstrating the capability 

of detecting water from space in urban area. The algorithm assumes that high-resolution LiDAR 

data are available for the urban regions in the scene, so that the SAR simulator may be run in 

conjunction, to generate maps of radar shadow and layover. It is therefore limited to urban 

regions of the globe that have been mapped using LiDAR. Moreover, the algorithm requires user 

interaction at a number of stages. The same algorithm was further developed in Mason et al. 

(2012a) to extract waterline points spatially uncorrelated, to be later used in assimilation studies. 

Because of the aforementioned difficulties in detecting water in urban areas, institutional end 

users (e.g. civil protection agencies) as well as private industry (e.g. insurance companies) still 

make a relatively limited use of EO data for flood mapping. To increase the usefulness of EO 

data and to unlock its full potential for operational hydrology, it is presently possible to make use 

of the enhanced observational capabilities of new SAR satellite constellations. 

In addition to enabling flood extent map dissemination, EO-derived flood extent information 

have a wide potential of applications in hydraulic modelling, especially for model calibration and 

evaluation (e.g. Pappenberger et al., 2006; Di Baldassarre et al., 2009). 

Added value information can be derived from flood extent mapping in the form of water 

elevations. A well-known technique to derive water elevations from a map of inundation is to 

extract the heights from a high resolution DEM at the flood shorelines (Oberstadler et al., 1997; 

Schumann et al., 2008a). Some interesting developments in extracting water levels from remote 

sensing imagery are those that integrate topographic data (Raclot, 2006) with the aim to retrieve 

both flooded area and water elevations at the flood edge. Fusing flood edge information with 
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LiDAR or photogrammetric DEMs might lead to vertical accuracies of 20 to 30 cm (Matgen et 

al., 2007; Schumann et al., 2007; Hostache et al., 2009). A first attempt at estimating spatially 

distributed water elevations and their associated uncertainties was carried out by Schumann et al. 

(2008): they proposed a procedure based on Monte Carlo simulations. Hostache et al. (2009) 

introduced a slightly different approach, based on a more integrated uncertainty assessment and 

they built on the analysis of the confidence that can be given to the SAR derived shorelines. Both 

approaches take into account different sources of uncertainty (i.e. parameters of image 

segmentation algorithm, co-registration of geo-information layers, accuracy of digital elevation 

model) that affect the retrieval of water elevation data from remote sensing imagery. 

In the last decade, successful studies used SAR-derived water elevations for calibrating uncertain 

model parameters (e.g. Schumann et al., 2007; Hostache et al., 2009). Moreover, assimilation of 

remote sensing-derived water levels into flood forecasting systems has gained momentum in 

recent years with several proof-of-concept studies, demonstrating the ability of these data to 

improve model predictions (Neal et al., 2007; Neal et al., 2009; Matgen et al. 2010; Hostache et al. 

2010). As anticipated, concerning the information content of SAR-derived water elevations, 

Mason et al. (2012) proposed a method to select a subset of spatially uncorrelated waterline 

points, in an automated and near real time approach. 

Nowadays, SAR-derived water elevations are currently estimated together with their uncertainty, 

whereas observed flood extent binary maps are still commonly treated as deterministic. It goes 

without saying that flood extent maps themselves are subject to considerable uncertainty, 

however, quantifying it remains a rather challenging task. Although accounting for uncertainties 

and errors has been an implicit exercise in most studies using space-borne images of floods (see 

e.g. Schumann et al., 2008a; 2008b), a real appreciation and complete account of the uncertainties 

involved in extracting information has not really been fully explored yet. As a first successful 

attempt to address this problem, Di Baldassarre et al. (2009) produced an uncertain flood 

inundation map from near-simultaneous acquisition of two SAR images. They applied five 

different flood extraction techniques to both images and subsequently fused the derived ten flood 

extent maps according to a particular measure of consistency into a single fuzzy flood map. 

It is argued that such a type of uncertain inundation map may be a useful tool for flood risk 

mapping, as it expresses our belief in whether a particular image pixel is flooded by an event of a 

given magnitude (Schumann et al., 2010). However, an issue common to the studies carried out 

so far is the definition of the type of uncertainty they analyse. In other words, these works do not 

characterise uncertainty from a statistical point of view, particularly important not only in terms 

of risk management but also for assimilation purposes. 

 

1.3.2. Data Assimilation 

SAR-derived data may be used as calibration, validation and assimilation data for flood 

inundation models. Such models play a central role in real-time flood forecasting. The cost of 

damage caused by flooding is highly dependent on the warning time given before an event, 
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therefore the issue of timely flood alerts is critical and predicting floods remains a key concern of 

our society. 

Flood inundation models are hydraulic models that solve the shallow water equations at each 

node of a regular or irregular grid covering the river channel and floodplain, subject to boundary 

conditions that include the input flow rate to the domain (e.g. Bates et al., 2006). They are used to 

accurately predict the timing and magnitude of a flood. Hydraulic models not only represent 

valuable tools for independently generating flood extent maps at the time of the satellite 

acquisition, but also provide additional information, such as water levels, streamflow and 

inundation duration. Additionally, unlike purely satellite-based observations, these numerical 

model-based simulations generate flood extent maps that are always consistent with the 

underlying topography. Another added value is that they can be used to predict the evolution of 

the flood over several time steps, whereas EO images often provide only one or some snapshots 

of the flood evolution. 

Assimilation may be used to correct the model state and improve estimates of the model 

parameters and external forcing. There is thus no doubt about the potential of jointly using SAR 

remote sensing of floods and inundation modelling. A number of recent studies highlight the 

benefits of this type of integration for model calibration, evaluation and updating procedures. 

Over the last years, there has been a significant progress with respect to the integration of 

distributed hydrometric data with hydrodynamic models (e.g. Neal et al., 2007; Andreadis et al., 

2007; Matgen et al., 2010; Hostache et al., 2010; Biancamaria et al., 2011). 

In such data assimilation studies, modeled state variables and/or model parameters are 

sequentially verified and updated via measurements. The idea behind this is to merge the high 

temporal and generally rather poor spatial resolution of model predictions with more accurate but 

intermittent remote sensing observations, to yield the best possible model simulations. 

Furthermore, if integrated with parameter estimation techniques, there is the potential to estimate 

uncertain model parameters, which may be used to increase the accuracy of the model itself 

(Montanari et al., 2009). Data assimilation techniques based on different versions of the Kalman 

filter have been used to assimilate ground gauge-based river level data at different points along 

river reaches (Madsen and Skotner, 2005; Neal et al., 2007), from which discharge can be 

estimated through state augmentation. Despite this potential, applications of assimilation 

techniques with distributed elevation data continue to be rare. In one of the few studies of this 

type, Andreadis et al. (2007) successfully used a square-root ensemble Kalman filter to assimilate 

synthetic water surface elevation measurements from the proposed SWOT satellite mission, using 

simulations from a hydrodynamic model for estimating river discharge. Their study showed that 

the assimilation of 8 successive SWOT overpasses allowed a reduction of the relative error of 

discharge estimations from 23.2% to 10%. Lai and Monnier (2009) and Hostache et al. (2010) 

applied a variational data assimilation method using distributed water surface elevations in order 

to combine in an optimal way measurement data and a 2D shallow water model. This 

assimilation process allowed the identification of optimal Manning friction coefficients and the 

identification of areas in the floodplain and the channel where frictions are homogeneous. Smith 

et al. (2009) assimilated distributed data from wireless sensor networks in a parsimonious time 

series model to produce forecasts with reduced uncertainty. 
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Matgen et al. (2010) were among the first to propose an assimilation scheme based on the PF for 

assimilating EO-based water elevation data into hydraulic models. The experiment of Matgen et 

al. (2010) with synthetically generated observation data showed that it is possible to correct water 

depths, forecasted by a 1D hydrodynamic model, by assimilating remote-sensing derived water 

levels. They showed that the assimilation of synthetic EO water elevations has the potential to 

lead to increased model accuracy at the time of the satellite data acquisition. It was observed that 

the mere update of water elevations only improves model forecast for a very short time horizon. 

A more effective strategy was then tested, updating at the same time model water elevations and 

input discharge. This correction of the biased forcing led to more persistent improvement in 

model forecast. 

Garcia-Pintado et al. (2013) performed a synthetic analysis to evaluate the sensitivity of sequential 

assimilation w.r.t. scheduling of satellite acquisitions. They found out that imagery obtained early 

in the flood is shown to have a large influence on forecast statistics and that the revisit interval is 

most influential for early observations. In a subsequent study, Garcia-Pintado et al. (2015) 

assimilated water elevations derived from a sequence of real COSMO-SkyMed overpasses, 

showing improvements in the forecast. Nevertheless, according to the authors, their study cannot 

be considered conclusive regarding whether, in an operational situation, the simultaneous 

estimation of friction and bathymetry helps the current forecast. 

There is thus a clear need for a better understanding and parameterization of remote-sensing 

derived information uncertainty as well as for the development of new retrieval methods that 

help to improve the quality and reliability of the derived products. Furthermore, it is crucial to 

continue developing advanced assimilation filters that allow a direct and efficient insertion of 

flood extent data, particularly over urban areas. So far, the relatively low and irregular sampling 

rates of existing SAR sensors have clearly hampered the systematic and efficient integration of 

SAR data with hydrodynamic models. 

 

1.4. Objectives and Method 

The main research goal of this thesis is a contribution to the implementation of an end-to-end 

processing chain that integrates remote sensing information into hydraulic models. The 

underlining idea is that, from the moment a SAR image is available to the user, it should be 

rapidly and automatically processed to extract from it hydraulic relevant information, with a 

characterization of their uncertainty. Subsequently, the data so derived should be assimilated into 

a hydraulic model, to improve its forecast performances. The main appeal of this approach is the 

fact that the sequential assimilation of satellite derived data offers a unique opportunity to 

successively correct and improve the model, any time a remote observation is available. It is 

legitimate to hope that more frequent observations, and corresponding assimilation of such data, 

will lead to improvements in the model forecast performances. 

Specifically, the objectives of this work are the following: 

1) Rapid, accurate and fully automated mapping of rural and/or urban floods from SAR data. 
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2) Assessment of the uncertainty of SAR-derived hydraulic variables and subsequent assimilation 

of these observations into hydraulic models. 

In terms of flood mapping, several algorithms, already available in literature, have been presented 

in the previous paragraph. However, a common issue concerns their level of automation. In fact, 

the ideal algorithm would be, at the same time, fully automated, time-efficient and capable of 

providing accurate and reliable results. Moreover, it is important to give more attention to flood 

mapping in urban areas, as it is in built-up environments that risk and cost associated with 

flooding are highest. The first research goal of this thesis is the development of an algorithm 

capable of detecting flood extents, in both rural and urban areas, with sufficient accuracy and in a 

fully automated way. The map product obtained in step 1) is a binary flooded/non-flooded map 

that represents an invaluable near real-time overview of flood extent and its impact on population 

and infrastructure. 

Given that there is no perfect procedure, the map obtained with the developed algorithm would 

still be subject to uncertainties, introduced by the flood mapping algorithm itself. However, an 

additional component of uncertainty is inherent in the SAR image, due to its acquisition process. 

Therefore, the second scope of this work is the investigation of image uncertainty, focusing on 

one specific aspect of it which is represented by image uncertainty deriving from speckle. Speckle 

occurs where distributed targets are imaged and the pixel is representative of the contributions 

coming from several different scatterers. The main idea is to analyse how speckle uncertainty 

affects the retrieved flood extent. It is expected that speckle influence would not severely affect 

parameters of the flood mapping algorithm and, therefore, the corresponding detected flood 

extent. 

As anticipated, a binary flood map already represent, if considered as a stand-alone product, a 

valuable product for several users. However, deriving additional hydraulic information, such as 

water elevations, from this binary map is a way of adding value to the product itself. The 

additional data so derived can be assimilated, as proposed in step 2), into hydraulic models that 

will fill the gaps where EO, for technical reasons, cannot provide information. Moreover, these 

updated models will enable a more accurate and reliable short- to medium-range prediction of 

flooded areas. 

In this framework, this work aims to highlight the complementarity of remote sensing-derived 

inundation maps and hydraulic modelling, with a specific focus on flood mapping in urban areas 

that are, as anticipated, the most challenging and the most important to be correctly mapped. The 

objectives listed above were addressed by journal papers, presented in the following paragraphs. 

 

1.4.1. Flood mapping from SAR imagery 

The first element of the proposed end-to-end processing chain consists in the processing of SAR 

images to obtain a flood maps, in both rural and urban areas. 

Considering the numerous algorithms developed in literature for flood mapping, one may argue 

that it is still necessary to further develop their level of automation and objectivity. Generally, 
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state-of-the-art methods require manual user inputs and/or definition of same parameters. As 

anticipated, Matgen et al. (2010) already advocated the development of a fully automated 

algorithm, which optimises in an unsupervised way all its parameters. The ideal algorithm should 

not only be automated but also capable of accurately detecting water in both rural and urban 

areas, with minimum data requirements. Additionally, in an operational flood management 

perspective, such an algorithm should be also computationally efficient. 

To contribute to the developments in flood detection algorithms, with a special focus on urban 

areas, the application of a change detection approach on very high resolution SAR imagery was 

tested. The idea here proposed is to use two SAR backscattering images as inputs, one imaging 

the flood event (flood image) and another one observing the area when no flood was present 

(reference image). The conjunct use of a flood and a reference image is hypothesized to be 

capable of identifying regions unseen to the satellite. In other words, the benefit of performing 

change detection w.r.t. a reference image lies in the detection and exclusion from the flood map 

of areas that are not “visible” to the sensor (i.e., regions affected by “shadow”) and that 

systematically behave as specular reflectors (e.g., smooth tarmac, permanent water bodies), 

thereby reducing overdetection. This is an alternative approach to the one of Mason et al. (2010), 

which proposed the use of a LiDAR DEM and a SAR simulator. 

Building on the work of Matgen et al. (2010), the development of an “all-at-once” calibration that 

optimizes all algorithms’ parameters was here attempted, to design a flood mapping algorithm, 

capable of providing satisfactory results in mapping, in a completely unsupervised way, flood 

extents in both rural and urban areas. 

This objective was addressed analysing the case study of the July 2007 Severn River flood (UK). 

The inundation, one of the highest events in recent history of the UK, was observed by the high 

resolution SAR sensor on board TerraSAR-X. This study focuses on the city of Tewkesbury, in 

order to test the potential of SAR sensors to delineate flood in built-up environments, where 

flood risk is generally highest. For this event, overflights were performed by the Piper Chieftain 

aircraft operated by the Cambridge University Unit for Landscape Modelling to take aerial 

photographs of the inundation extent. Validation data was therefore available in the form of very 

high-resolution photos (0.2 m), from which the actual flood extent was derived through manual 

delineation. From the archive of TerraSAR-X images, a reference image was selected and used to 

obtain, in combination with the flood image, a mask of permanent surface-like radar response 

areas (tarmac, paved roads, parking lots) and of shadow-affected regions. 

 

1.4.2. Flood mapping uncertainty 

Flood maps derived from SAR observations are obtained as the result of image processing 

techniques, such as the one proposed in the previous paragraph. Given that there is no perfect 

procedure, the chosen mapping algorithm introduces errors and/or uncertainties in the retrieved 

flood map. Furthermore, SAR observations are susceptible to sources of uncertainty due to 

imaging characteristics (e.g. imaging modes, speckle, resolution) and/or ground perturbations 

(e.g. wind, trees, buildings masking water, terrain geometry). Therefore, it is important to assess 
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the nature and the impact of these uncertainties on the final flood map. Without this information, 

model calibration/validation or data assimilation activities could yield suboptimal results. 

Not only it is necessary to assess flood mapping uncertainty, but an effort should be also made to 

disentangle its different components. The analysis proposed here was focused on the analysis of 

one specific component of SAR image uncertainty, i.e. speckle uncertainty. As image speckle 

directly affect the image which is the input to the flood mapping algorithm, the propagation of 

this component of uncertainty trough the flood mapping algorithm to the final flood map was 

investigated. 

Analysis of flood mapping uncertainty due to speckle was carried out for the same flood analysed 

in the previous paragraph, the July 2007 Severn River flood (UK). In this study, other than a 

couple (flood/reference) of TerraSAR-X images, also a couple of ENVISAT ASAR Wide Swath 

mode images was considered. In fact, the 2007 flood was observed by two different SAR sensors, 

providing two flood images with different imaging characteristics. 

A non-parametric bootstrap method was introduced to take into account speckle uncertainty. In 

fact, a flood image can be regarded as a set of pixels that represents the best guess about the 

population from which the image was taken. Bootstrapping the pixels of the flood image, several 

synthetic images were constructed and used as input to the flood mapping algorithm to obtain 

the corresponding flood maps. The accuracy of these flood maps was evaluated w.r.t. an 

independent validation data set, obtained by manual delineation from very high-resolution photos 

(see previous paragraph) of actual flood shorelines. 

 

1.4.3. Assimilation of SAR-derived water elevations 

Remote sensors provide instantaneous snapshots of an area of the Earth’s surface, in this case of 

a time-specific extent of a flood. To obtain time continuous prediction of the flood evolution, 

there is a need to combine remote sensing data sets with hydrologic-hydraulic prediction models 

to generate time-lapses of flooded surfaces. Sequential data assimilation methods can be used to 

integrate time-continuous model state forecasts (e.g. surface water elevations) with remote 

sensing observations as they become available. 

Most of the studies performed so far in literature, concerns data assimilation of synthetic water 

elevations. In these experiments, synthetic observations are generally assumed to follow a 

Gaussian distribution, which is one of the requirements for the use of an EnKF. Matgen et al. 

(2010) proposed an assimilation scheme based on the Particle Filter (PF), as a possibility to relax 

the Gaussian assumption in the EnKF while preserving its advantages. In their study, a synthetic 

experiment was carried out, with artificial observations still assumed to have a Gaussian 

distribution. Nevertheless, the approach was designed in such a flexible way that the PF can be 

easily adapted to deal with different (non-Gaussian) distributions of real observed water 

elevations. The authors stated in their conclusions that one research question of future research 

would have been testing the proposed PF assimilation scheme with real event data.  
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In the study here presented, the objective was thus to examine the usefulness assimilating 

currently available satellite data, characterized by non-Gaussian distributions, to update a 

hydraulic model in near real time. The PF of Matgen et al. (2010) was adapted to deal with real 

event data, i.e. non-Gaussian distributions of water level observations. Having at disposal two 

subsequent satellite observations, problems related to the temporally (and spatially) variable 

distribution of water level observations were investigated. 

A characteristic of synthetic experiments is that it can be assumed that the model is correct in it 

structure, parameter set and initial or analysis conditions. In fact, the same model is used to create 

the synthetic observations and, later, to assimilate them. Therefore, the differences between 

observations and models only derived from inaccuracies in the input data. On the other hand, in 

a real case study, model structure errors (e.g. 1D flow approximation, errors in geometry) and 

parameter uncertainties (e.g. Manning’s roughness values), cause local bias that need to be taken 

into consideration. Therefore, an objective of the work here reported was the analysis of 

potentially biased distribution of water level observations. Two variants of the PF were proposed 

with a global and local particle weighting procedure. The first option finds the best water 

elevation line across all cross sections, while the second option finds the best solution at 

individual cross sections. The final objective was to assess the usefulness of SAR data with 

respect to in situ hydrometric station data. 

The test case of this proof-of-concept study is the Alzette River (Grand Duchy of Luxembourg). 

The flood event of January 2003 was imaged close to its peak by two different sensors: ERS-2 

SAR and ENVISAT SAR. From the two flood images, flood extents were delineated, 

corresponding to two different snapshots of the flood evolution. Water elevation data, 

corresponding to two subsequent time steps, were derived intersecting the two detected flood 

extents with a LiDAR DEM. The quantification of uncertainty for this type of observations was 

also performed, as this is a pre-requisite to any data assimilation study. It has to be noted that the 

methodology for flood mapping, water elevation extraction and uncertainty characterization refer 

to the state-of-the-art literature in 2009, shortly before the analysis here reported was carried out. 

Satellite data were assimilated into the hydraulic model set up for the Alzette River for a length of 

19 km. Flow direction in this area is mainly parallel to the channel and, as a consequence, the 2D 

flow field that is typically related to riverbank overtopping can be accurately approximated by a 

1D representation. Therefore, the Hydrologic Engineering Center River Analysis System – HEC-

RAS (HEC-RAS 4.0, 2008) was chosen as hydraulic model. The upstream boundary condition of 

the hydraulic model (flow hydrographs) was represented by an ensemble of semi-distributed 

hydrologic model forecasts. These were generated perturbing model parameters, forcings and 

initial conditions. On the other hand, for the hydraulic model, an assumption was made that 

model uncertainties derive only from the upstream boundary condition (output of the hydrologic 

model), while uncertainties in hydraulic model structure, parameterization, geometry and lateral 

inflow were not taken into account. 
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A Change Detection Approach to Flood Mapping
in Urban Areas Using TerraSAR-X
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Abstract—Very high resolution synthetic aperture radar (SAR)
sensors represent an alternative to aerial photography for delin-
eating floods in built-up environments where flood risk is highest.
However, even with currently available SAR image resolutions
of 3 m and higher, signal returns from man-made structures
hamper the accurate mapping of flooded areas. Enhanced image
processing algorithms and a better exploitation of image archives
are required to facilitate the use of microwave remote-sensing data
for monitoring flood dynamics in urban areas. In this paper, a
hybrid methodology combining backscatter thresholding, region
growing, and change detection (CD) is introduced as an approach
enabling the automated, objective, and reliable flood extent extrac-
tion from very high resolution urban SAR images. The method
is based on the calibration of a statistical distribution of “open
water” backscatter values from images of floods. Images acquired
during dry conditions enable the identification of areas that are
not “visible” to the sensor (i.e., regions affected by “shadow”)
and that systematically behave as specular reflectors (e.g., smooth
tarmac, permanent water bodies). CD with respect to a reference
image thereby reduces overdetection of inundated areas. A case
study of the July 2007 Severn River flood (UK) observed by
airborne photography and the very high resolution SAR sensor on
board TerraSAR-X highlights advantages and limitations of the
method. Even though the proposed fully automated SAR-based
flood-mapping technique overcomes some limitations of previous
methods, further technological and methodological improvements
are necessary for SAR-based flood detection in urban areas to
match the mapping capability of high-quality aerial photography.

Index Terms—Algorithms, flood mapping, image processing,
satellites, synthetic aperture radar (SAR).

I. INTRODUCTION

THE support of remote sensing for mapping changes in
water surface extents and elevations has been demon-

strated widely (for detailed reviews, see [1]–[5]). Recently,
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the 2009–2010 Data Fusion Contest, organized by the Data
Fusion Technical Committee of the IEEE Geoscience and Re-
mote Sensing Society, focused on the evaluation of existing
algorithms for flood mapping through change detection (CD)
[6]. The success of these research studies together with recent
public and political awareness for quantifying global environ-
mental change has led to a significant increase in the number
of satellites dedicated to flood monitoring and hydrology in the
wider sense. Importantly, flood monitoring from space has the
advantage of large area coverage and relatively fast response
services (see for example the International Charter “Space and
Major Disasters” initiated by major space agencies: http://www.
disasterscharter.org/).

The vast majority of a flooded area is rural rather than urban,
and accordingly most literature on remote-sensing-based flood
detection to date has focused on the rural case. However, it is
perhaps more important to detect the urban flooding because
of the increased risks and costs associated with it. Flood extent
can be detected in rural floods using synthetic aperture radars
(SARs) such as ERS and ASAR, but these have too low a
resolution (25 m) to detect flooded streets in urban areas.
However, a number of SARs with spatial resolutions as fine as
3 m or better have recently been launched and are potentially
capable of detecting urban flooding. They include TerraSAR-X,
RADARSAT-2, and the four COSMO-SkyMed satellites.

In an operational context, [7] proposed a hybrid methodology
which combines radiometric thresholding and region growing
as an approach enabling the automated, objective, and reli-
able flood extent extraction from SAR images. First results
on moderate- and low-resolution image data indicate that the
proposed method may outperform manual approaches if no
training data are available, even if the parameters associated
with these methods are determined in a non-optimal way. The
results demonstrate the algorithm’s potential for accurately
processing data from different SAR sensors.

Notable examples of research into automatic near real-
time flood detection algorithms using single-polarization high-
resolution (greater than a few meters) SAR imagery have
been shown by [8] and [9] on TerraSAR-X data and [10] on
COSMO-SkyMed data. The algorithms by [8] and [9] search
for water as regions of low SAR backscatter using a region-
growing iterated segmentation/classification approach, whereas
the technique by [10] is based on a fuzzy logic approach
which integrates theoretical knowledge about the radar return
from inundated areas based on backscattering models, with
simple hydraulic considerations and contextual information.
Both algorithms are very effective at detecting rural floods, but

0196-2892/$31.00 © 2012 IEEE
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would require substantial modification to work in urban areas
containing radar shadow and layover.

A semiautomatic algorithm for the detection of floodwater in
urban areas using TerraSAR-X has been developed by [11]. It
uses a SAR simulator [12] in conjunction with LiDAR terrain
data to estimate regions of the image in which water would
not be visible due to shadow or layover caused by buildings
and taller vegetation. Ground will be in radar shadow if it
is hidden from the radar by an adjacent intervening building.
The shadowed area will appear dark and may be misclassified
as water even if it is dry. In contrast, an area of flooded
ground in front of the wall of a building viewed in the range
direction may be allocated to the same range bin as the wall,
causing layover which generally results in a strong return and a
possible misclassification of flooded ground as unflooded. The
algorithm proposed by [11] is aimed at detecting flood extents
for validating an urban flood inundation model in an offline
situation and requires user interaction at a number of stages.

Follow-up work from this was carried out by [13]. Here,
the objective was to build on a number of aspects of the
existing algorithms to develop an automatic near real-time
method for flood detection in urban and rural areas. In
the urban area, 75% of the urban water pixels visible to
TerraSAR-X were correctly detected, though this percentage
reduced somewhat if the urban flood extent visible in the
aerial photos and detected by TerraSAR-X was considered,
because flooded pixels in the shadow/layover areas not visible
to TerraSAR-X then had to be taken into account. Better flood
detection accuracy was achieved in rural areas, with almost
90% of water pixels being correctly detected by TerraSAR-X.
The algorithm assumes that high-resolution LiDAR data are
available for at least the urban regions in the scene, so that a
SAR simulator may be run in conjunction with the LiDAR data
to generate maps of radar shadow and layover in urban areas. It
is therefore limited to urban regions of the globe that have been
mapped using LiDAR.

In an operational flood management perspective, an ideal
flood-mapping system operating in near real time should be
fully automatic, computationally efficient, independent of the
content of local geo-information databases, and, most impor-
tantly, capable of providing accurate and reliable results.

To contribute to the recent developments in high-
performance flood detection algorithms to obtain timely and
more accurate flood warnings, we propose an effective tech-
nique based on image differencing as proposed by [7], which
may compete with existing algorithms in terms of accuracy and
level of automation. For this, we also focus on high-resolution
SAR data for flood detection inside urban areas and use the
TerraSAR-X image of the England summer 2007 floods as
demonstration. Although this is only a single test, and different
results may be obtained for other urban areas where the built
environment is different to the UK case studied here, it does
provide a first demonstration of the potential of the method.

II. METHODOLOGY

Martinis et al. [8] recently highlighted an apparent lack
of traceability and standardization in many SAR-based flood-

Fig. 1. General scheme of the three processing steps of the flood detection
algorithm M2b.

mapping methodologies. This concern has led to the intro-
duction of two variants of an automated and physically based
SAR-based flood-mapping algorithm [7]. Both variants, which
are termed M1 and M2a, respectively, exploit the statistics
of backscattering coefficients retrieved from SAR to segment
an image into its flooded and non-flooded parts. While M1
only considers a single SAR flood image to extract pixels
corresponding to “open water” via thresholding and region
growing, M2a adds CD with respect to a non-flood reference
image to improve the algorithm’s performance. In this paper,
we introduce an enhanced version of M2a, which we term M2b.
This method addresses some of the shortcomings of M2a that
[7] identified in two representative case studies.

This section provides a detailed overview for all processing
steps of the flood extraction algorithm M2b, together with
the associated parameters defining each process and a list of
differences with respect to the M1 and M2a algorithms previ-
ously introduced. In addition to standard pre-processing steps
commonly involved with Level 1 SAR data, the M2b algorithm
consists of four processing steps (Fig. 1).

A. Statistical Distribution of the “Open Water” Backscatter

The flood extraction algorithm uses as input Level 1 SAR
data that are geocoded, coregistered, and calibrated. The first
step is the estimation of the probability density function (PDF)
of backscattering values associated with “open water.” The
aim of this processing step is the calibration of a theoretical
PDF that optimally fits the empirical distribution of backscatter
values from “open water” inferred from the SAR image. Ac-
cording to [14], the backscatter variability on a homogeneous
surface is mainly due to speckle and the theoretical PDF that
best describes the distribution of backscatter originating from a
homogeneous surface is a Gamma PDF. Here, we hypothesize
“open water” to be a homogeneous surface, which means that
a potential limitation of the approach, and SAR mapping of
inundated surfaces in general, relates to the possible roughening
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of “open water” caused by emerging vegetation, wind, or rain-
fall. Alternative PDFs have been parameterized and tested: the
K-distribution and the RiIG distribution functions (see, e.g.,
[15]). However, the goodness of fit provided by the three PDFs
was found to be almost equivalent, with the Gamma PDF
slightly outperforming the other two functions in this particular
case study. Moreover, the Gamma PDF has only two parameters
(compared to three parameters for the other PDFs) and the
additional advantage of a physically based interpretation for
homogeneous areas with fully developed speckle [14]. The
latter can be considered a reasonable assumption for “open
water.” Consequently, the Gamma PDF was preferred over
other competing PDFs for approximating the distribution of
backscatter values corresponding to “open water”
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where k is the shape parameter of the gamma distribution and
σ0
m is the gamma distribution mode. The parameter σ0

1 is the
minimum backscatter value in the SAR image, which needs
to be applied so that the gamma distribution is, therefore, only
computed for positive values.

Two parameters thus need to be optimized to identify the
theoretical gamma function f that best fits the empirical dis-
tribution of backscatter values from “open water” h (i.e., image
histogram). The optimization of the two parameters k and σ0

m

consists in minimizing the root mean squared error (RMSE)
between the image histogram and the gamma distribution, for
backscatter values lower than σ0

thr, with the parameter σ0
thr ≥

σ0
m representing the point where the distributions f and h

start deviating. The optimization is performed with sequentially
increasing values of σ0

m and σ0
thr. For both parameters, the

proposed sampling step is 0.1 dB. The optimization process is
initiated with a first-guess value for σ0

m of −25 dB. For each
tested mode value, sequentially increasing σ0

thr values, higher
than the corresponding tested σ0

m value, are selected. For each
set of σ0

m and σ0
thr values, the parameter k is optimized using

the nonlinear fitting process of [16], i.e., the nonlinear regres-
sion based on the Levenberg–Marquardt algorithm for nonlin-
ear least squares. The RMSE between the theoretical density
function f and the empirical density distribution h is calculated
for each parameter set and over all backscatter values lower
than σ0

thr. Finally, the parameter set (σ0
m, k, σ0

thr) providing the
lowest RMSE is set as optimal. In case the image histogram
is not bimodal, an appropriate option is available for the user
to manually set a range of plausible values, inside which the
algorithm tests different modes searching for the optimal one.

B. Backscatter Thresholding

The aim of the this step is to extract seeds of “open water”
areas from the flood image, being either individual pixels or re-
gions. The parameter σ0

thr represents the maximum backscatter
value for which the fit between the theoretical and empirical
PDF is satisfactory. For backscattering values higher than σ0

thr,
the distribution functions f and h start deviating. As a matter

of fact, σ0
thr is considered the maximum backscatter value

for which there is no significant overlap between radiometric
distributions corresponding to water bodies and other land use
types. Since the backscatter values from water surfaces are
comparatively low, this value is used to extract the seeds of
water bodies by selecting the pixels having backscatter values
lower than σ0

thr. This thresholding yields a preliminary flood
inundation map that represents the seed region for a subsequent
region growing process.

Moreover, to be able to map permanent water bodies, the
threshold computed on the flood image, σ0

thr, is also applied on
the reference SAR image to classify seeds of permanent water
bodies. It is worth noting that these seeds include, in addition
to permanent water bodies, other smooth surfaces with a water
surface-like radar response as well as all shadow-affected areas.
The issue related to smooth surfaces will be discussed in more
detail in the following sections.

C. Region Growing

Next, the extracted water bodies, representing the seeds, are
dilated using the region growing approach of [17]. The proce-
dure iteratively grows the seeds until a given tolerance level is
reached. The sequence of thresholding and region growing only
adds pixels to the seeds that are located in the vicinity of the pre-
liminary flood extent, thereby limiting the risk of overdetection
in areas distant from the flooded area (i.e., misclassification of
“dry” pixels as “wet”). The tolerance parameter characterizes
the regional homogeneity of the backscattering behavior. The
tolerance criterion adopted here is based on the percentiles of
the theoretical gamma distribution of “open water” pixels.

The iterative procedure incorporates pixels with backscatter
values lower than σ0

rg, corresponding to a given percentile,
RG%, of the theoretical gamma distribution of “water” pixels in
the image. In this paper, we propose a simultaneous calibration,
recently advocated by [7]. The approach optimizes the tolerance
criterion together with the CD parameter introduced in the next
section.

Region growing, with the same threshold value σ0
rg, is also

applied to dilate the seeds of permanent smooth surfaces ob-
tained from the reference image. The approach provides a mask
of water surface-like radar response areas that is used to limit
the region growing applied on the flood image, thereby prevent-
ing the spreading of flooded areas into permanent smooth areas.

D. CD

Matgen et al. [7] argued that flood maps resulting from re-
gion growing should include all “open water” pixels connected
to the seeds. The region growing should thus extend into the
high percentiles of the gamma distribution. However, the re-
sulting overdetection needs to be removed by the subsequently
applied CD step. CD thus aims at removing pixels from the
flood extent map that do not correspond to flood water. To do
so, only pixels that significantly change their backscatter values
with respect to their baseline backscatter values are kept in
the flood extent map, while pixels that did not decrease their
backscatter values by a minimum amount are removed. This



2420 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 51, NO. 4, APRIL 2013

Fig. 2. (a1) Flood image (July 25, 2007) and (b1) postflood reference image
(July 22, 2008). Zoom in to the area of interest (city of Tewkesbury) for (a2)
the flood image and (b2) the reference one.

means that the main river channel, which is a permanent water
body, is not any longer an integral part of the flooded area.

The specific parameter of the CD is Δσ0, defined as the
required minimum change in backscatter between the reference
and the flood image for a pixel being considered as flooded.
To determine the optimal criterion for the required minimum
change in backscatter, an iterative procedure is adopted. As
mentioned earlier, the two parameters σ0

rg and Δσ0 are op-
timized through a simultaneous calibration, minimizing the
RMSE computed over the whole range of backscatter values
in the flood image between the theoretical gamma distribution
and the empirical distribution of “open water” pixels. This
means that different threshold values, σ0

rg , which correspond
to different percentiles of the theoretical gamma distribution,
are sequentially selected from an interval of plausible values,
and a corresponding minimum CD parameter Δσ0 is optimized
for each tested threshold value. We consider as plausible values
all values that are greater than σ0

thr and which increase with
a sampling step of 1% up to the value of 99% of the Gamma
PDF and then with an increment of 0.1% up to the value of
99.9% of the Gamma PDF. For every parameter set (σ0

rg, Δσ0),
the sequence of region growing and CD processes is applied
on the area conditioned by the permanent smooth area mask.
At the end of each iteration, the histogram of “flood water” pix-
els is computed. The corresponding empirical PDF is compared
against the initially calibrated theoretical gamma distribution
(1). The parameter set (σ0

rg, Δσ0) providing the lowest RMSE
value is set as optimal.

To summarize, M2b essentially represents an improved
version of the M2a method introduced by [7]. The two
algorithms both take into account a reference SAR image
and include four inter-related processing steps (i.e., calibra-
tion of gamma distribution function, radiometric thresholding,

region growing, and CD). However, while M2a predefines
the region growing parameter as the 99% percentile of the
“water” backscatter gamma distribution, M2b adds flexibility to
the optimization process by calibrating the tolerance criterion
that, together with the associated CD parameter Δσ0, mini-
mizes the RMSE between empirical and theoretical distribution
functions.

This modification implemented in M2b constitutes an impor-
tant change as it renders the algorithm fully automated, without
any requirement of manual user inputs. Therefore, the mapping
process is believed to be entirely objective. Another important
improvement is that M2b, unlike M2a, makes use of the ref-
erence image to build a mask of permanent water surface-like
radar response areas. Indeed, to render the algorithm suitable
for urban flood mapping, it is necessary to mask out not only
smooth surfaces like tarmac, paved roads, and parking lots, but
also all regions in shadow-affected areas unseen by the satellite.
In urban areas, the latter are particularly important as they
potentially lead to a significant part of overdetected flooded
areas. This issue will be thoroughly discussed in Section IV-B2.

It should also be noted that method M2a and its enhanced
version M2b both rely on the availability of reference images
acquired from the same orbital track, with the same incidence
angle, polarization, and resolution, and prior to the onset of
flooding. Moreover, the adequate choice of a season-dependent
reference image might help reducing the effects of changes
in vegetation, as argued recently by [18]. With the advent of
relatively new sensors such as TerraSAR-X, it can be difficult
to find an image that satisfies these selection criteria. However,
as image archives are gradually being built up, this should be
less of a problem in the near future. If no reference image is
available, method M1 can be applied.

III. STUDY AREA AND AVAILABLE DATA SET

This section describes the study area, the flooding event and
the available remote-sensing images for testing and evaluating
the proposed automated flood delineation algorithm.

The image data used for this study were acquired for
the approximately 1-in-150-year flood that took place around
Tewkesbury, U.K., in July 2007 [11]. Extreme rainfall inten-
sities resulted in substantial flooding of urban and rural areas;
about 1000 properties in the town of Tewkesbury were affected
[19]. Tewkesbury lies at the confluence of the River Severn,
flowing in from the northwest, and the River Avon, flowing
in from the northeast. Bankfull discharge is approximately
350 m.s−1 (or 4.5 m in gauged level) at the Saxons Lode
gauging station ∼7 km upstream of Tewkesbury. The summer
2007 event was unusual for the study site in that the majority
of the flow derived from local rainfall. On the 20th July, two
days prior to flood peak, more than 12 cm of rain fell on the
surrounding area. The flood peak of 5.43 m Ordnance Data
Newlyn was measured at Tewkesbury on July 22 with both
rivers exhibiting a more rapid increase in flow than a typical
autumn or winter event that may build over many weeks, with
flows increasing from 100 m.s−1 to > 500 m.s−1 in 57 h,
between the 20th and the 22nd July. The river did not return
to below bankfull until July 31. In the region of interest (red
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TABLE I
CHARACTERISTICS OF THE AVAILABLE IMAGES (STRIPMAP MODE) FOR THE ANALYZED FLOOD EVENT

box in Fig. 2), an area of 1.5 km2 was possibly flooded at the
time of the TerraSAR-X overpass, according to a 2 m resolution
hydraulic model [20].

The majority of the buildings are two storey houses. In the
area of interest, there are some industrial warehouses but no
large-size factories. Overall, the study area is rather representa-
tive of a typical urban landscape in the UK. To demonstrate
the applicability of our proposed SAR image segmentation
algorithm, we define urban area as the zone inside and in the
vicinity of the built-up region of the town of Tewkesbury.

A. TerraSAR-X Images

A unique data set consisting of numerous types of remotely
sensed images over one single event hydrograph were acquired
over the selected study area [20]. From this data set, a stripmap
TerraSAR-X image acquired on July 25, 2007 (at 06:34 GMT,
Wednesday) was selected (see Fig. 2). The image is a multi-look
ground range spatially enhanced scene with 1.5 m pixel spacing
and has a mean incidence angle of 24◦. Its H/H polarization
mode arguably allows for the best discrimination between a
SAR image’s flooded and non-flooded parts [8]. At the time of
the satellite overpass and image acquisition, there was relatively
low wind speed and no rain [11]. Moreover, no rainfall was
recorded in the 30 h preceding the TerraSAR-X acquisition, as
well as during the satellite overpass itself.

In their flood delineation study, [11] used the single
TerraSAR-X flood image together with airborne scanning laser
altimetry (LiDAR) data. Here, we also consider a dry reference
image which is a postflood image acquired from the same
orbit track and with the same polarization as the flood image.
This way, geometric problems related to coregistration can be
limited, and baseline backscatter values can be inferred. A
single scene having these imaging characteristics and covering
all of the azimuth extent of the target is available in the current
TerraSAR-X image archive. It was acquired on July 22, 2008
(at 06:34 GMT, Tuesday), almost exactly a year after the flood
event had occurred. The flood and non-flood images have both
been acquired in the same month of the year. Hence, it can be
assumed that the state of vegetation is similar in both images.
This is important as decreases in backscatter values between
any two images are caused not only by flooding, but also by
changes in vegetation.

The two images, whose characteristics are listed in Table I,
have been georeferenced and calibrated. These two processes
are important to preserve a backscatter consistency and an
accurate coregistration between the images. Hence, it can
be avoided to erroneously consider as flooding related those
changes in backscattering values that are due to differences in
image acquisition characteristics.

Fig. 3. (a) Flood validation map obtained from high-resolution aerial photog-
raphy on July 24, 2007 at 11:30 GMT: The permanent water bodies are also
displayed; (b) comparison between the LISFLOOD computed flood extent at
the time of aerial photographs acquisition (July 24, 2007 at 11:30 GMT) and
TerraSAR-X overpass (July 25, 2007 at 6:34 GMT).

The TerraSAR-X images used in this study have a 1.5 m pixel
spacing and a ground resolution of the order of magnitude of
3 m. This means that each pixel represents a 1.5× 1.5 m2 area
on the ground and that only individual objects of dimensions
bigger than 3 m can be discriminated in the image. In an
operational context, the reference image would ideally consist
of a preflood satellite acquisition. However, in this particular
case, given the relative novelty of a sensor such as TerraSAR-X,
it was not possible to find a reference image, prior to the onset
of flooding, acquired from the same orbital track and with same
polarization. Therefore, a postflood image was selected.

Particular attention has been given to an adequate coregistra-
tion of the images, as an accurate overlapping is a prerequisite
for detecting flooding-related changes in the backscattering
behavior. The accuracy of the georeferencing is of subpixel
precision. Next, the images have been filtered with a 5 ×
5 Gamma-MAP filter to decrease the speckle contribution. This
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filter smoothes out the speckle granularity while preserving
details, such as the contours of buildings and flooded areas [21].
It also impacts the parameterization of the gamma PDF (1) by
reducing the spread of backscattering values associated with
“open water.” The red box area in Fig. 2 presents the area of
interest for the city of Tewkesbury: it refers to a rectangular area
of 1135 × 998 pixels (1.5 m pixel spacing) for a total surface
of ∼3 km2.

B. Validation Data Set

The validation data set, consisting of very high resolution
0.2 m aerial photographs acquired during the flooding event
in July 2007, enables a comprehensive evaluation of the algo-
rithm’s performance in terms of SAR-based flood delineation.
An aircraft operated by the Environment Agency of England
and Wales carried out the overflights.

The flood extent was obtained through manual photo-
interpretation [Fig. 3(a)]. Taking advantage of existing landuse
maps of the area, permanent water bodies associated with
rivers and canals have been removed from the validation map.
While in general the delineation of flood boundaries from such
high-resolution optical products is relatively straightforward,
it is important to note that the flooding of densely vegetated
and built-up environments can lead to some ambiguities. For
instance, in the case of bare soil fields, the accurate positioning
of the separation line between muddy flood waters and non-
flooded areas is nontrivial. However, for this case study, dif-
ficulties in shoreline delineation were encountered only in a
limited number of locations.

In addition, it is important to bear in mind that the aerial
photographs were acquired on July 24 (at 11:30 GMT) while
the TerraSAR-X image was obtained 19 h later on July 25
(at 06:34 GMT). Although there was no significant decrease
in gauged water levels between the acquisition time of aerial
photographs and the TerraSAR-X overpass [22], this time gap
might be responsible for some discrepancies between the aerial
photography-derived and SAR-derived flooded areas. To esti-
mate the potential variation of flood extent between the two
acquisition times, simulations with a previously calibrated hy-
draulic 2 m LISFLOOD-FP flood model [23] have been carried
out both at the acquisition time of the aerial photographs and
at the TerraSAR-X overpass. It is here assumed that the model
provides a satisfactory representation of the time variation of
the flood extent, since an evaluation of the model results showed
that the model predicts water levels with a mean error of less
than 30 cm [20]. The simulations show a reduction of the
flooded area of approximately 5% between the two time steps.
In particular, Fig. 3(b) shows the differences between the two
simulated flood inundation maps. The most notable differences
can be observed on a triangular-shaped field (see middle-right
part in the domain of interest) from which, according to the
model simulations, flood water was drained between the two
overpasses. This location was also problematic in terms of
identifying its flooding status through photo-interpretation, as
explained in more details in the discussion section. These
factors, all unrelated to the processing of the SAR images, need
to be taken into account during the analysis, as all the observed

Fig. 4. Optimization of the parameters of the automated algorithm for M2b
method. (a) RMSE calculated by comparing the empirical image histogram
with several competing Gamma PDFs, obtained with different values for the
mode, σ0

m. (b) RMSE calculated by comparing the optimized Gamma PDF
and the empirical image histogram after region growing and change detection,
for different tested values of the region growing parameter, σ0

rg . (c) Example of
RMSE calculated by comparing the optimized Gamma PDF and the empirical
image histogram obtained, for a given fixed region growing parameter, σ0

rg ,
testing several change detection values, Δσ0. (d) Empirical image histogram
and optimized Gamma PDF. (e) Empirical image histogram with the optimized
region growing parameter, σ0

rg , displayed. (f) Example of the effect deriving
from the application of the optimized change detection value, Δσ0, for a given
region growing parameter, σ0

rg .

differences may not be necessarily due to the inability of the
proposed algorithms for accurately extracting the flood extent
from SAR imagery.

IV. RESULTS AND DISCUSSION

This section assesses the classification accuracy obtained
with the fully automated flood detection algorithm M2b and
contrasts its performance with those of the previously intro-
duced M1 and M2a algorithms. It also provides insights into the
added value of reference images for flood delineation in urban
areas.

A. Extraction of Flooded Areas

The flood extent has been extracted from the TerraSAR-X
image using the three methods M1, M2a, and M2b.

In particular, for method M2b, Fig. 4 illustrates the opti-
mization of the four parameters: the mode of the “open water”
backscatter gamma PDF, σ0

m, the backscatter threshold, σ0
thr,

the tolerance criterion for the region growing step, σ0
rg, and the

minimum CD value, Δσ0.
Panel (a) reports the optimization of the mode parameter,

while panel (d) provides the corresponding optimized gamma
PDF in red, together with the histogram of the backscatter
values in the flood image. Panel (d) displays the value of the
second parameter, σ0

thr (i.e., in this case study equal to
−15.5 dB) as the maximum backscatter value for which there
was no overlap between the empirical histogram and the the-
oretical gamma PDF. The optimized value is also provided in
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Fig. 5. (a) Backscatter histogram of the reference image with superimposed
threshold value σ0

thr , computed on the flood image; (b) reference mask.

Fig. 5(a), together with the backscatter histogram of pixels in
the reference image. This value is used to derive the reference
mask of permanent water surface-like radar response areas
through thresholding of the reference image [Fig. 5(b)]. From
Fig. 4(d) and Fig. 5(a), it can be observed that for high backscat-
ter values, there is a systematic noise in the return signal of both
TerraSAR-X images. This is arguably due to the high complex-
ity of urban topography and its considerable impact on the high-
resolution backscattering signal. However, at this stage, this
is only a hypothesis that could not be verified: other inherent
technological reasons related to very high resolution SAR data
could be at the origin of the noisy data. Considering the region
growing step of method M2b, it is important to mention that the
parameters σ0

rg and Δσ0 are optimized together. Therefore, the
subplot in panel (b) of Fig. 4 illustrates the impact that different
σ0
rg parameters (each associated with a corresponding optimal

Δσ0 value) have on the RMSE. Similarly, panel (c) provides
an example of the performance of Δσ0 values for a given σ0

rg

value: Fig. 4(c) refers to the optimal σ0
rg value for the case

study. The backscatter value corresponding to the optimized
σ0
rg value is also displayed in panels (e) and (f). Finally, panel

(f) shows the empirical histogram of flood pixel values before
and after CD: these histograms are computed only with the
pixels inside the SAR-derived flooded area. The reduction of
the distribution tail and the related reduction of overdetection
are indicated by the empirical histogram approaching the theo-
retical gamma PDF.

B. Evaluation at City Level (Quantitative Analysis)

1) Overview of Flood Maps: Three flood extent maps were
obtained through the application of the three image process-
ing algorithms. The corresponding contingency matrices were
computed using the evidence provided by aerial photography.
The binary pattern of flooded and non-flooded pixels was com-
pared against the reference flood map (in this case, see Fig. 3).
The result is a matrix (or contingency table) of four possible
outcomes. With respect to the reference flooded area, there
are two ways for a remote-sensing-derived flooded area to be
correct (either by correctly representing flooded or non-flooded
pixels) and two ways to be incorrect (either by erroneously
under- or overpredicting the observed inundation extent). The
values of the contingency matrix for all methods are reported
in Table II (and also displayed as contingency maps in Fig. 6)
for a quantitative evaluation of the performances. Moreover,

TABLE II
QUANTITATIVE EVALUATION OF TERRASAR-X DERIVED FLOOD EXTENT

the optimized (and/or fixed) parameter values for the region
growing and the CD are indicated.

From Table II, it can be concluded that in the present case
study, the three algorithms provide very similar performance
levels. When the evaluation is carried out at a regional scale
(i.e., at city level), the differences seem to be marginal. Methods
M2a and M2b slightly outperform method M1 with respect
to the main performance measures provided in Table II. For
example, the total error is lower when CD is applied. While
the underdetection obtained with M2b is slightly higher than
with M1 and M2a, this is compensated with a lower overde-
tection. Overall, M2b and M2a perform better than M1, as it
was expected, suggesting that CD with respect to a non-flood
reference image does provide some advantages.

The results do not reflect the added value that we expected
from the methodological improvements of method M2b. This
result is due to the fact that, in this particular case study, the
optimized region growing threshold σ0

rg equals 98%, which is
very close to the pre-defined 99% value that [7] proposed for
M2a. A similar result was obtained in a pretest of the fully
automated algorithm with an ENVISAT ASAR WSM image
available for the same flood. These two case studies on the
one hand suggest that the threshold chosen by [7] is rather
plausible and, on the other hand, validate the applicability of the
procedure to images with different resolution. Here, the tradeoff
involves a controlled growing of the seed region to be able to
limit the overdetection of flooded areas. While the latter can
be partly removed by the subsequent CD, the results indicate
that the reduced overdetection comes at the cost of an increased
underdetection of flooded areas. The results also indicate that
method M2b, which provides an optimal empirical distribution
with respect to the targeted gamma distribution of “open water”
backscatter values, does not necessarily generate a more accu-
rate flood inundation map than M2a. On a more positive note,
it can be observed that the simultaneous optimization of region
growing threshold σ0

rg and CD parameter Δσ0, computed by
minimizing the RMSE between empirical and theoretical distri-
bution functions, nearly led to the maximum value of correctly
detected pixels (81.7% as reported in Table II). Moreover, from
Fig. 7, it can be observed that in this case study, the optimum
parameter set also yields the best performance with respect to
the validation data.

A comparison with the flood extent detected for the same
test case with the semiautomatic procedure of [11] cannot be
carried out in a very meaningful way due to the fact that the
input data sets in the two studies are different. Mason et al. [11]
took advantage of a regional DEM, so that SAR-derived water
ground heights smoothly vary along the river reach, but did
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Fig. 6. Contingency map deriving from method: (a) M1, (b) M2a, (c) M2b.
For the sake of clearness in the representation, the displayed maps have been
cleaned by neighborhood analysis in post-processing step.

not make use of a preflood reference image. However, the
comparison of contingency matrices, on a common area of
interest and validation data set, reveals that the M2b method
performance of 81.7% of correctly detected pixels is rather
close to the percentage of 85.4% obtained with the flood
inundation map provided by [11]. This result indicates that

Fig. 7. RMSE values computed for different region growing thresholds (M2b
method) during the optimization process and corresponding performances in
terms of correctly predicted pixels (as flooded and as nonflooded).

topography data could be used more efficiently than preflood
reference images for increasing the accuracy of SAR-derived
flooded areas. However, this assessment needs to be confirmed
in future studies.

To better appreciate the advantages of these methodological
enhancements, it is worth analyzing the PDF of backscattering
values associated with pixels located inside the flood extents,
the latter corresponding either to the validation map obtained
from aerial photographs or the flood extents computed with
the different versions of the image-processing algorithm. The
different PDFs are displayed in Fig. 8. It becomes evident from
the panels that the PDF of “flood water” pixels from high-
resolution photos is reasonably close to a gamma distribution,
albeit characterized by a heavy tail end. M1 does enable the
identification of a majority of water pixels but it misses out
the tail of the distribution. M2a yields a better performance,
as it adds more pixels to the flood extent, thereby reducing the
number of underdetected flood pixels. However, there is still
a tendency to slightly overestimate part of the tail of the the-
oretical gamma PDF. Because of its enhanced CD procedure,
M2b method is capable of growing the seeds further into the
high percentiles of the gamma distribution, reducing the heavy
tail end and keeping the PDF of detected water pixels closer
to the theoretical one. It is worth noting here that the PDF of
backscattering values inside the area delimited by the high-
resolution photos exhibits a particular tail that is missed by all
three versions of the flood detection algorithm. Surprisingly, the
high number of pixels with associated high backscatter values
is not only due to the expected increased backscatter response
from urban structures. In fact, the probability distribution from
pixels located in rural areas exhibits the same heavy tail end as
the one of pixels located in urban areas (Fig. 9).

Further research is needed to get a better understanding of
the particular shape of the PDF of backscatter values. One
possible explanation can be that some of the pixels changed
their status from “flooded” to “nonflooded” between the two
data acquisitions, as already shown in Fig. 3(b).

From this first overview of results, it can be concluded that
the strength of CD is that it allows the region growing to extend
further into the high percentiles of the gamma distribution
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Fig. 8. Backscatter probability density function of water pixels from the high-
resolution photographs and water pixels from the method: (a) M1, (b) M2a,
(c) M2b. The histograms refer to the algorithm output, with no post-processing
cleaning step included.

as it efficiently removes part of the resulting overdetection.
More case studies are needed before a generalization of these
findings can be done in a meaningful way. Nevertheless,
these preliminary results corroborate those reported by [7] in
case studies dealing with moderate- and low-resolution SAR
imagery.

On the selected domain (i.e., rectangular area of 1135 ×
998 pixels), the running time of the complete M2b process on
an Intel Core 2Quad CPU, 2.66 GHz and 3.24 GB RAM is less
than 30 min, indicating the appropriateness of the method also
for near real-time applications.

Fig. 9. (a) Main rural and urban areas overlapped on the pixels in the flood
image covered by water according to the high-resolution aerial photographs;
(b) corresponding backscatter probability density functions.

To summarize, it can be observed that the results obtained
with the three versions of the algorithm are rather similar, with
the performance of the fully automated M2b being comprised
between those obtained with the simplified but fully automated
approach M1 and the more subjective one M2a. Moreover,
since the correct classification rate of the proposed methods are
comparable to those obtained by [11], it could be argued that
the main part of the 18% misclassification still remaining can
be imputed to limitations of the SAR imaging technique.

2) The Problem of Unseen Regions: One feature that re-
quires special attention relates to regions in a SAR image
that cannot be seen by the radar sensor because of its side-
looking nature. The affected regions are commonly referred
to as “shadow” and “layover.” In the context of urban flood
mapping, “shadow” and “layover” are due to geometric dis-
tortions caused mainly by the presence of buildings. Their
impact on SAR-based flood mapping is twofold. First, flooding
does not impact the radar response from shadow areas and,
consequently, SAR-based detection of flooded shadow areas is
not possible (i.e., problem of underdetecting floods). Second,
the low radar response from shadow regions might erroneously
lead to their classification as “flooded” even in the case they
are not (i.e., problem of overdetecting floods). Here, we assume
that the resulting overdetection might be addressed through
CD since urban shadow areas do not change between two
images acquired with the same imaging characteristics. This is
confirmed by the reduction in overdetection shown in Table II.
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Fig. 10. Mask of regions unseen by TerraSAR-X due to shadow and layover,
from [11].

On the other hand, due to double-bounce reflection effects, the
urban layover backscatter could be different in the flood and ref-
erence images. This phenomenon typically occurs in vegetated
areas, where flooding yields an increased backscatter due to the
double bouncing between the flooded ground and branches or
leaves, resulting in a higher return signal in the flood image.
A similar mechanism of multiple reflections between flooded
streets and walls could potentially result in a brighter backscat-
ter in the urban areas covered by the flood image. Classification
errors are expected to be higher in urban areas than in forested
regions [24], and therefore the layover contribution should be
taken into account when mapping flooded urban areas. In fact,
the inherent underdetection problem can only be addressed
through technological advances (e.g., look angles closer to
nadir) or the use of ancillary data (e.g., topography data).

For the imaging characteristics of the July 25, 2007
TerraSAR-X image, [11] computed a mask of areas affected by
“shadow” and “layover” in the city of Tewkesbury (Fig. 10).
They used the German Aerospace Center (DLR) SAR end-
to-end simulator in conjunction with airborne scanning laser
altimetry (LiDAR) data to estimate regions of the image in
which water would not be “visible” to the instrument. In this
paper, we made use of the shadow/layover mask from [11] to
evaluate the risk of misclassifying pixels in areas not “visible”
to the SAR sensor. In the area of interest (red box in relevant
figures), the shadow/layover mask of [11] covers a total area
of ∼1 km2, which represents a significant percentage (∼39%)
of the total area. However, according to the validation map, the
flooded area not visible to the satellite reduces to 0.25 km2,
over a total flood extent of 1.22 km2 (see Table III). Moreover,
due to the 24◦ look angle, in this particular case study, the
effect of layover is greater than shadow, as it covers a much
larger flooded area. This is mostly due to the diffuse presence
of hedges along the borders of the different fields in the rural
areas.

As flooding in shadow/layover areas is undetectable for
SAR, the corresponding regions would need to be delineated
a priori and considered as areas with an “unidentifiable status
of flooding.” In fact, even if a flood is correctly classified in a

TABLE III
QUANTITATIVE ANALYSIS OF WATER PIXELS (PIXEL SIZE 1.5 m)

IN THE SHADOW REGIONS [11]

shadow region, this result should be viewed as an error as the
right answer is obtained for the wrong reason. As the objective
of the developed method was to generate a mask of surfaces
that produce a radar signal response similar to that of inundated
areas to constrain the flood extent outside the shadow areas, in
the following, we focus only on the overlap between the ob-
tained flood extent and the shadow areas derived by [11]. Note
that the shadow mask itself, obtained with the SAR simulator
and the LiDAR data, might contain some degree of uncertainty.
In general, the overlap between the SAR-derived flood extent
and the shadow mask is restricted to the border regions of large
clusters of pixels, which were correctly classified as “flooded.”
The number of such pixels is not significant in comparison
to the total number of extracted flood pixels (see Table III):
furthermore, it can be observed that M2b helps in significantly
reducing the number of pixels classified as “flood water” in
the shadow regions. This is due to the fact that parts of the
shadow-affected areas are included in the mask of permanent
water surface-like radar response areas described earlier. By
considering a reference image acquired from the same orbital
track as the target image, M2b method reduces the risk of
classifying “shadow” areas as “flooded.”

C. Evaluation at Street Level (Qualitative/Thematic Analysis)

The benefits of using a reference image, including the mask-
ing of permanent smooth areas representing in this case study
∼20% of the area of interest, become obvious when looking
at the spatial distribution of errors (Fig. 6). The application of
algorithms M2a and M2b leads to the expected reduction of
misclassified pixels in urban areas. Numerous scattered clusters
of pixels that were initially erroneously classified as “flooded”
could be removed, thereby significantly reducing overdetection.
In Table IV, a thematic analysis with a special focus on urban
features complements the quantitative analysis presented earlier
(Table II).

The objective is to understand the advantages and limita-
tions of the three variants of the SAR-based flood delineation
algorithms for correctly identifying flooding in urban areas.
From the results shown in Table IV, it can be observed that in
spite of the high-resolution SAR imagery used in this study,
the detection of flooding in built-up environments remains a
very challenging task. All algorithms struggle to recognize
the flooding status of many small-scale features that might
be crucial, as their state of flooding could mean significant
interruptions of everyday life. However, overall, the enhanced
algorithm M2b performs best, with a slightly reduced number
of misclassified areas. In particular, M2b enables the a priori
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TABLE IV
IMPROVEMENT DERIVING FROM THE USE OF A REFERENCE IMAGE: COMPARISON OF THE DIFFERENT METHODS FOR SOME REGIONS, WITH A SPECIAL

EMPHASIS ON URBAN FEATURES. SEE FIG. 6 FOR THE LOCATION OF STREETS, CROSSINGS, AND URBAN/RURAL AREAS

(THE CORRECTLY CLASSIFIED REGIONS OF EACH METHOD ARE IN BOLD FONT)

delineation of areas characterized by specular-like reflections
(i.e., areas with permanent water surface-like radar responses).
This is helpful given that smooth areas (e.g., R2 & R3) tend
to be systematically classified as flooded by M1 and, to a
lesser extent, by M2a. On the other hand, more open areas,
such as the main roads R12 and R13, are correctly classified
by all three methods. It is worth mentioning that, despite
these somewhat encouraging results, M2b fails to correctly
delineate flooding in many densely vegetated and built-up
environments.

These errors will be analyzed in more detail in the following
sections. In this analysis, we will consider ancillary data (e.g.,
land use map, oral communications from local experts) to better
understand the reasons that are at the origin of the remaining
misclassifications. Moreover, the mask of regions unseen by
the satellite, i.e., shadow and layover, has also been taken into
account for error detection at street level.

1) The Problem of Overdetection: As it can be seen from
the urban flood maps presented in Fig. 6, both over- and under-
detection are reduced as a result of applying the M2b algorithm
rather than its predecessors. This is particularly evident in the
case of the large shopping mall labeled R3. Due to the flatness
of its roof and resulting specular reflection, it was erroneously
classified as flooded by M1, while M2a and M2b correctly
excluded it from the flooded area. This emblematic example
best illustrates the potential added value of reference images, as
they enable the a priori identification of the majority of smooth
areas.

Similarly, other wide flat regions, such as parking lots and
airfields, are recognizable in the reference image. For in-
stance, the region labeled R1 corresponds to a large parking

lot composed of three parts. M2b completely removes one of
them from the flood extent map, while the two other parts
are significantly reduced in size. The sub-optimal performance
of M2b is arguably due to a difference in the number and
placement of vehicles at the time of the two satellite overpasses.
In very high resolution SAR imagery the presence or not of
an object like a car inevitably impacts the radar response. This
necessarily influences the capability of the M2b algorithm to
reliably identify areas of smooth tarmac and unfortunately may
not be resolvable at all, for obvious reasons.

The region labeled R2, an area both flat and made of tar-
mac but not used as a parking space, shows the capability of
M2b to avoid the typical misclassifications of smooth areas as
flooded.

Finally, the thematic analysis confirms the algorithm’s abil-
ity for identifying permanent water bodies. The permanently
flooded bed of the River Avon and some adjacent boat marinas
are removed from the flood extent map when taking into ac-
count the reference image: this becomes evident when looking
at the areas of overdetection in the panels (b) and (c) of Fig. 6.
Clearly, this result is not achievable with a single flood image,
as M1 would invariably classify permanent water bodies as
flooded (see panel (a) of Fig. 6).

Despite the previously mentioned ability of M2b to detect
areas with permanent low backscatter values, there are still
some shadow-affected areas that are erroneously classified as
“flooded.” A typical example is a large inclined rooftop in
region R9. This is classified as “flooded” by all three methods
due to the fact that one side is not “visible” to the SAR
sensor. Other examples of this behavior can be found on various
inclined rooftops in the R7 region.
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To summarize, some risk of overdetecting flooded areas in
built-up environments inevitably remains. Non-flooded areas
that appear smooth and water-surface like at radar wavelengths
as well as areas unseen by the satellite because of the side-
looking nature of SAR systematically produce very low signal
returns and are not easily distinguishable from flooded areas.
The results of this study suggest that taking into account the
baseline backscatter values from “dry” reference images partly
addresses the problem. Wide, open areas of tarmac or concrete
(roads, parking lots, airfields, etc.) can be identified and re-
moved from the final flood map (or, alternatively, categorized
as areas impossible to classify), while the situation is more
problematic with shadow areas. To check the plausibility of
both types of regions to be flooded, we expect that the use
of high-resolution high-precision DEM data may be helpful.
More research on the integration of additional data sources into
the image-processing algorithm is needed for this to provide
significant advantages.

2) The Problem of Underdetection: With respect to the
problem of underdetecting the true flood extent using SAR
observations, the results shown in Table II indicate that method
M2b leads to a decrease in performance. In fact, the percentage
of underdetected flood pixels rises from 15.6% obtained with
the initial M2a method to its M2b-related value of 16.2%. The
increase in underdetection between M2a and M2b is mainly
due to the fact that the optimized value of RG% is lower than
the a priori one. However, it has to be underlined that this
type of error is generally to be found on the edge of inundated
fields or in the vicinity of the main riverbed with tall vegetation
surrounding the areas. While the algorithm accurately retrieves
most of the flooded areas in wide, open areas, it can be ob-
served that it systematically fails to retrieve flooding under the
vegetation canopy. These errors are not related to the image-
processing algorithm; rather they are due to the fact that with
X-band radar systems volume scattering originating from the
vegetation canopy causes increased signal return. Furthermore,
as already mentioned in Section III-B, it cannot be ruled out
that the validation flood extent itself is affected by a slight
overestimation, as it was acquired closer to peak discharge than
the satellite images. This could also at least partly explain the
underdetection documented in the contingency matrix. Also,
the uncertainties in the delineation of the flood validation extent
from aerial photography are expected to have some marginal
effect.

For example, an important area of apparent underdetection
is the triangular shaped field labeled R15. However, due to the
time difference between the acquisitions of aerial photographs
satellite imagery, it is likely that most of the floodwater was
drained from the field in the 19 h preceding the TerraSAR-X
acquisition. This hypothesis is confirmed by hydraulic model
simulations [see Fig. 3(b)].

The roughening of water surfaces due to wind is another
inherent and potentially significant limitation of the algorithm
proposed in this study. When there are regular waves on the
surface of the water, Bragg resonance can result in very high
signal returns [25]. The misclassification of the area labeled
R18 as non-flooded represents a typical example. From the air
photos and model simulations, there can be no doubt about the

flooding of the area. However, waves are clearly identifiable
on the standing water. This renders accurate flood detection
extremely difficult (if not impossible), as it violates the algo-
rithm’s main underlying assumption of flooded areas behaving
as specular reflectors.

V. CONCLUSION AND PERSPECTIVES

This study proposes a promising methodology that is shown
to be capable of providing satisfactory results in mapping, in
a completely unsupervised way, flood extent in a challenging
case study, such as an urban flooding.

A. New Findings and Conclusion

The proposed algorithm is based on the calibration of a
PDF on the backscatter values associated with “open water.”
Next, a sequence of optimized backscatter thresholding, region
growing, and CD is applied on the flood image and a pre-
or postflood reference image acquired with the same imag-
ing characteristics. Since no manual (and subjective) input is
required from the end user, the algorithm enables automated,
objective, and repeatable flood detection. It operates with mini-
mum data requirements, considering as input data a flood image
and a reference image acquired before or after the flooding, also
maintaining the option of functioning with only a crisis image.
The algorithm is efficient in both the two fully automated
versions (M1 and M2b), as the processing time on an Intel(R)
Core (TM) 2Quad CPU, 2.66 Ghz, and 3.24 GB RAM for
a study area of 1135x998 pixels is less than 30 min. With a
classification accuracy of around 82%, the algorithm yielded
satisfactory results with respect to aerial photography-derived
flooded areas in an urban case study. Since the classification
accuracies of the proposed methods are comparable to those
obtained by [11], it could be argued that the main part of
the 18% of the remaining misclassification can be imputed to
limitations of the SAR imaging technique.

The difficulty of detecting flooded areas in a built-up en-
vironment has been partially addressed by a CD approach
that makes use of pre- or postflood reference images available
in the data archives of satellite data providers. In particular,
the shadow effect stemming from man-made structures can
be taken into account through a mask of permanent water
surface-like radar response areas. This approach overcomes
the need of a high-resolution DEM and a SAR simulator for
determining shadow regions that are not visible to the satellite.
On the other hand, it requires a reference image with the same
imaging characteristics as the flood image. While the number
of suitable candidate images can be very limited in case of
relatively new satellites, such as TerraSAR-X, it is important
to note that image archives are gradually being built up, which
will progressively increase the likelihood of finding adequate
reference images in the online archives.

B. Future Research

Some further improvements are still necessary before the
deployment of a fully automated SAR-based flood delineation



GIUSTARINI et al.: CHANGE DETECTION APPROACH TO FLOOD MAPPING 2429

algorithm operating in a near-real time can be envisaged. Our
results indicate that in spite of the high-resolution SAR imagery
used in this study, the detection of flooding in built-up envi-
ronments remains a very challenging task. To further improve
the method, we aim at taking advantage of topographic and
land use data, which are now becoming more readily available
at global scale, albeit with variable accuracy and resolution.
We hypothesize that such ancillary data will help reduce the
elevation curvature along the flood edges as argued by [11] and
identify parts of the underdetection caused by emerging objects
such as trees or buildings. In addition, future research should
investigate the usefulness of alternative distribution functions
for optimally fitting the distribution of backscatter values cor-
responding to “open water” over different study areas.

We consider this study to be timely because there is a
clear need for rapidly acquiring, processing, and distributing
hydrology-related information derived from SAR imagery. In a
crisis management context, where the situation on the ground
can change very fast, data are more valuable if available shortly
after the acquisition. The lag time between satellite acquisition
and availability of information for efficient data assimilation
can be variable from hours, in case of basins with small
contributing areas and low response times, to days for much
larger catchments. In fact, for near real-time applications in
hydrology, where flood extent data is systematically assimilated
into hydrologic-hydraulic models, the value of remote-sensing
data is much higher if rapidly accessible [26], [27].

APPENDIX

OBTAINING THE CODE

The flood-mapping code here described is a science tool
developed by a team of researchers, and we are happy to
provide a copy of it for non-commercial studies. The code is
reasonably well documented and has been tested in different
case studies; however, it has not been through the same quality
control procedure you would expect for a commercial software
package. Using the code also requires some basic computing
expertise. If you would like to obtain a copy of the code or
are interested in collaborative research, then please contact
us at one of the following addresses: giustari@lippmann.lu,
hostache@lipmman.lu, matgen@lippmann.lu
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a  b  s  t  r  a  c  t

Operational  flood  mitigation  and flood  modeling  activities  benefit  from  a rapid  and  automated  flood
mapping  procedure.  A  valuable  information  source  for  such  a flood  mapping  procedure  can  be  remote
sensing  synthetic  aperture  radar (SAR)  data.  In  order  to  be  reliable,  an  objective  characterization  of  the
uncertainty  associated  with  the flood  maps  is required.

This  work  focuses  on  speckle  uncertainty  associated  with the  SAR  data  and  introduces  the use  of  a
non-parametric  bootstrap  method  to  take  into  account  this  uncertainty  on  the resulting  flood  maps.
From  several  synthetic  images,  constructed  through  bootstrapping  the  original  image,  flood  maps  are
delineated.  The  accuracy  of  these  flood  maps  is also  evaluated  w.r.t.  an  independent  validation  data  set,
obtaining,  in the two  test  cases  analyzed  in  this  paper,  F-values  (i.e.  values  of  the  Jaccard  coefficient)
comprised  between  0.50 and  0.65.  This  method  is further  compared  to an  image  segmentation  method
for  speckle  analysis,  with  which  similar  results  are  obtained.  The  uncertainty  analysis  of  the  ensemble

of  bootstrapped  synthetic  images  was  found  to  be  representative  of  image  speckle,  with  the  advantage
that  no  segmentation  and  speckle  estimations  are  required.

Furthermore,  this  work  assesses  to what  extent  the  bootstrap  ensemble  size  can  be reduced  while
remaining  representative  of  the  original  ensemble,  as operational  applications  would  clearly  benefit
from  such  reduced  ensemble  sizes.

©  2014  Elsevier  B.V.  All  rights  reserved.
ntroduction and objective

Rapid flood mapping, together with uncertainty assessment and
elivery of flood maps, are of considerable importance for response
ctivity planning during emergencies and as a support for long-
erm risk management. Given its cloud penetrating and night/day
perational capabilities and its skill in capturing the different scat-
ering behavior between flooded and non-flooded areas (Pierdicca
t al., 2013), synthetic aperture radar (SAR) constitutes a valu-
ble source of information to provide flood maps. Such maps can
hen be used for the calibration or validation of hydraulic mod-
ls (Di Baldassarre et al., 2009; Hostache et al., 2009; Montanari
t al., 2009; Stephens et al., 2012; Mason et al., 2012; Schumann

t al., 2014). Hydraulic information derived from flood maps, such
s flood extents or water stages, can also be employed in a data
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assimilation (DA) framework in order to improve model predictions
(Matgen et al., 2010; Hostache et al., 2010; Giustarini et al., 2011).

Flood maps derived from SAR observations are the result of
image processing procedures. Given that there is no perfect proce-
dure and no best practice on selecting one over another, the chosen
mapping procedure may  introduce errors or uncertainties in the
retrieved flood map. Furthermore, SAR observations are suscepti-
ble to sources of uncertainty due to imaging characteristics (e.g.
imaging modes, speckle, resolution) and ground perturbations (e.g.
wind, trees, buildings masking water, terrain geometry). There-
fore, it is important to assess the impact of these uncertainties
on the final flood map. Without this information, model cali-
bration/validation or DA activities could yield suboptimal results
(Quaife et al., 2008).

In order to assess uncertainty in flood delineation methods, the
few approaches proposed in literature employ an ensemble of flood
maps (Schumann et al., 2008; Di Baldassarre et al., 2009). However,

the number of ensemble members and the procedure to obtain the
different ensemble members tend to be subjective. For example,
Schumann et al. (2008) investigated uncertainty in SAR-derived
water stages, for a single SAR image and a single flood mapping

dx.doi.org/10.1016/j.jag.2014.06.017
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rocedure, identifying two main sources of uncertainty. The first
ne corresponds to the parameter value applied to classify a pixel
s flooded (i.e. wet/dry classification threshold), whereas the sec-
nd one stems from the geocoding of the image itself. They decided
o test four different threshold values and fifty image geocodings, to
btain an ensemble of flood maps and corresponding SAR-derived
ater levels. In a second study, Di Baldassarre et al. (2009) con-

idered uncertainty due to both the available SAR image and the
pplied procedure. They computed ten flood maps, combining two
vailable SAR images, acquired at nearly the same time but having a
ifferent resolution, with five different flood mapping procedures.
hese case studies show that it is important, yet not trivial, to cor-
ectly and objectively quantify uncertainty in flood mapping. In
ood mapping, uncertainty principally stems from the image input
o the algorithm and from the algorithm itself.

The flood mapping procedure (Giustarini et al., 2013) employed
n this paper, deterministically fits its parameter values to a given
AR image. The uncertainty we focus on stems from image uncer-
ainty, which is propagated through the flood mapping procedure.

SAR image uncertainty is mainly due to speckle, leading to
andom changes in the pixel’s brightness and usually hampering
ecision making on a pixel basis (Oliver and Quegan, 1998). This
henomenon occurs where distributed targets are imaged and the
ixel is therefore representative of the contributions coming from
any scatterers with random phase. These contributions cause

nterference and result in speckle. In an amplitude or intensity
mage, speckle appears as a noise-like multiplicative modulation
f backscatter. As a consequence, the individual value of a pixel
epresents a rather inaccurate measurement of its true backscatter.
n order to account for speckle in uncertainty analysis, each pixel
an be characterized by its speckle distribution, which is different
or each particular land cover class. This speckle characteriza-
ion can be accomplished with speckle reconstruction techniques
Frost et al., 1982; Durand et al., 1987; Lee et al., 2009), which
ry to approximate the backscatter over the entire image, or with
egmentation methods, which hypothesize the presence of struc-
ures in the image and are potentially powerful techniques for
xtracting information from SAR images (Lee and Jurkevich, 1989;
orritt, 1999; Zhang et al., 2008; Sui et al., 2012). These latter
ethods assume that the image is composed of relatively homoge-

eous regions, whereas adjacent regions are separated by edges
orresponding to changes in some local statistic, such as mean
rightness or texture (Caves et al., 1998). The assumption of a uni-
orm backscatter within each segment is useful to extract speckle
rom the given image by first segmenting the image into uniform
egions and by then extracting the speckle distribution of each
egion.

In this work, differently from already published methods, a
on-parametric bootstrap method is proposed to account for the

nfluence of speckle. Bootstrap methods (Efron, 1979; Efron and
ibshirani, 1993) belong to the class of resampling methods in
hich multiple new samples are drawn from the data sample

t hand in order to estimate a statistical unknown population
arameter. Resampling methods are generally used when it is not
traightforward to use the classical statistical methods in the esti-
ation of the parameter, for instance, when one disposes of a small

ata set. In this work, only one SAR image is available, which can
e regarded as a set of pixels that represents the best guess about
he population from which the image was formed. A first advan-
age of the proposed bootstrap method is that it is fully automatic,
n the sense that it does not require specific knowledge on image
rocessing, in contrast to, e.g. segmentation methods. Moreover,

hile image segmentation could result in a rather time-consuming
rocess, particularly for large images, the proposed method should
e rather independent of the image size in terms of process time.
ventually, since the bootstrap method can result in a large set of
 Observation and Geoinformation 34 (2015) 70–77 71

bootstrap data sets, we  also assess the smallest appropriate num-
ber of data sets needed to still adequately describe the uncertainty
in the flood maps due to speckle.

Methodology

Flood mapping procedure

In this work, the flood mapping procedure described in
Giustarini et al. (2013) and based on Matgen et al. (2011) is applied
for flood delineation. It is a hybrid procedure combining backscatter
thresholding, region growing and change detection w.r.t. an avail-
able reference image. The procedure assumes that the histogram
of backscatter values in a SAR flood image can be modeled as two
partially overlapping histograms: one histogram derived from the
backscatter values representing “open water” in the image and the
other one from the backscatter values representing the non-flooded
areas (Ulaby et al., 1986). The flood mapping method is based on fit-
ting a scaled gamma  curve to the backscatter values that represent
“open water” in the flood image:

f (�0; k, �0
m)

(�0 − �0
1 )

k−1

((�0
m − �0

1 )/(k − 1))
k
� (k)

exp

(
− (�0 − �0

1 )(k − 1)

�0
m − �0

1

)

(1)

where k is the shape parameter of the scaled gamma curve, �0 is
the backscatter value of a pixel in the SAR image, �0

m is the mode
of the scaled gamma curve and �0

1 is the minimum backscatter
value in the SAR image, applied so that the curve only takes posi-
tive values. Next, a sequence of three steps, optimized backscatter
thresholding, region growing, and change detection, is applied on
the flood image and on a pre- or post-flood reference image with
the same imaging characteristics (track, orbit, polarization, acquisi-
tion mode). In the first step, based on the fitted curve, a backscatter
threshold parameter �0

thr
is determined, and the flooded area is

extracted by selecting the pixels with a backscatter value lower
than �0

thr
. Concerning the second step, the region growing parame-

ter �0
rg is the one on whose basis pixels in the vicinity of the water

bodies are included in the flood area. The change detection param-
eter ��0 is defined as the required minimum change in backscatter
between the reference and the flood image for a pixel being retained
as flooded. The second and the third step, i.e. region growing and
change detection, are simultaneously and iteratively performed.
This means that several different �0

rg values are sequentially tested
and a corresponding ��0 is optimized for each tested �0

rg value.
At the end of each iteration, the histogram of “open water” pix-
els is computed and it is compared with the initially calibrated
theoretical gamma  curve. The parameter set (�0

rg , ��0) providing
the lowest RMSE value, computed between the histogram of “open
water” pixels and the theoretical gamma  curve, is set as optimal.

Since no manual and subjective input is required from the end
user, the procedure enables automated, objective and repeatable
flood detection. The parameters, �0

m and �0
thr

only depend on the
histogram shape and the gamma  curve optimized on it, whereas
�0

rg and ��0 also depend on the geographical patterns in the SAR
image.

The flood mapping procedure automatically optimizes its
parameters in a deterministic way for a couple of given input SAR
images. However, the uncertainty stemming from the image acqui-
sition process, affecting the actual images used as input to the
flood mapping procedure, influences the parameter values. In order
to take into account this uncertainty and its effect on the pixel

histogram and flood mapping classification accuracy, several syn-
thetic flood images are generated and provided as input for the
procedure itself. It has to be noted that only for the flood image,
synthetic images are generated, whereas the reference image is
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ept unchanged. Synthetic flood images are obtained with two  dif-
erent approaches: image segmentation and the non-parametric
ootstrap method.

mage segmentation method

The objective of image segmentation is to produce a set of non-
verlapping homogeneous regions, requiring that the union of two
djacent regions should be heterogeneous (Pal and Pal, 1993; Fu
nd Mui, 1981). This method has also been fruitfully used to cope
ith SAR speckle (Lee and Jurkevich, 1989; Zhang et al., 2008;

ulvirenti et al., 2011), which is a multiplicative noise-like phe-
omenon, preventing the direct retrieval of the backscatter per
ixel. The segmentation of a SAR image helps to identify regions
orresponding to different land cover classes such as fields, urban
rea, water bodies and so on. Thus, the hypothesis of the segmen-
ation method is that the entire image is composed of relatively
niform backscatter regions, showing local changes at their bor-
ers. In contrast to filtering approaches, segmentation does not try
o reconstruct the backscatter value of each pixel, but focuses on the
xplicit description of image structures (Caves et al., 1998). There-
ore, in the segmentation method there is no need to determine in
dvance the speckle models, a task that could even be unfeasible in
he case of non-completely developed speckle. As can be the case
ith high resolution SAR data, the number of scatterers per pixel

s then limited, leading to the fact that the speckle appears with
ide spatially correlated patterns depending on the scene geome-

ry (Quartulli and Datcu, 2004). Setting a speckle model for filtering
uch imagery is then a rather difficult task.

Using the segmentation method, each region can be decom-
osed into its mean backscatter value and its speckle distribution,
omputed as the empirical distribution of the residuals between
he mean backscatter value of the region and the backscatter
alue of each pixel inside the specific region (Oliver and Quegan,
998). Based on the aforementioned considerations, the segmen-
ation method can be profitably used to generate a set of synthetic
peckle-dependent flood images, where each pixel is the sum of
wo terms, the mean backscatter value of the segment and a ran-
om speckle value, sampled from its segment speckle distribution.
hus, each synthetic flood image can be used as input to the flood
apping procedure, together with the unchanged reference image,

o compute the associated flood map, with its corresponding clas-
ification accuracy. In this work, 1000 synthetic flood images and
ence 1000 flood maps were generated.

In order to produce a map  of homogeneous regions, we adopted
he segmentation method of Pulvirenti et al. (2011), which is basi-
ally composed of two main steps. In the first step, the input space
see further) is clustered by the K-means algorithm (Duda and Hart,
973; Haralick and Dinstein, 1975), while in the second step, the
ap  showing the clusters is transformed into a segmented map,

hrough segmenting each cluster into many connected regions,
onsidering eight neighbors in the connectivity rule (Pulvirenti
t al., 2011, 2013). In order to efficiently perform the clustering,
he input features should describe several characteristics of SAR
mages. Different land cover classes have their own unique geomet-
ic structures, roughness, soil moisture levels and so on, resulting
n different brightness and textures. However, one single feature,
s in our case the backscatter values of a single SAR image, can-
ot describe in sufficient detail different regions and objects in a
AR image. Therefore, it is useful to add other pieces of informa-
ion, i.e. contextual features, to improve the performance of SAR
mage segmentation (Dekker, 2003; Yu et al., 2013). In our work,

he second order spatial statistical parameters (Haralick et al., 1973;
aralick, 1979) have been added in this respect as input to the clus-

ering algorithm. The resulting input space is thus composed of 4
eatures: the SAR backscatter values and the three most effective
 Observation and Geoinformation 34 (2015) 70–77

second order statistical parameters, i.e. homogeneity, contrast and
dissimilarity (Baraldi and Parmiggiani, 1995; Pacifici et al., 2009).

These statistical parameters have been computed using a 5 × 5
moving window, and a horizontal and vertical shift of one pixel.
The size of the moving window and the shift parameter have been
selected based on results recently published in Pierdicca et al. (in
press). Additional tests have been performed with different values
of these parameters. The evaluation of the corresponding perfor-
mance is carried out in the first step of the segmentation procedure
(i.e. clustering), based on the Jeffries–Matusita (J-M) distance, such
that values that maximize the spectral cluster separability are
selected. Indeed, the J-M distance has been calculated for each
spectral cluster w.r.t. all the others: it provides information on sep-
arability between two  classes and takes values in the interval [0,2),
according to Richards and Jia (1999). Values close to 2 indicate a
higher degree of separability, while those close to 0 a lower one.

Non-parametric bootstrap method

The non-parametric bootstrap method (Efron, 1979; Efron and
Tibshirani, 1993) belongs to the class of resampling methods. It is
based on the idea that the sample itself, i.e. the entire set of pixel
values in the image, offers the best guess about the population from
which the sample was taken. The bootstrap method, in which boot-
strap replicas of an original data set are generated, has already been
applied in a similar optimization problem in remote sensing, i.e.
the estimation of aboveground biomass (Carreiras et al., 2012). The
application of the bootstrap method as a possible way to account
for speckle stems from the idea that speckle is present in the entire
image. Therefore, resampling the image could globally take into
account speckle, with the advantage of not having to segment the
image into uniformly textured regions. In the non-parametric boot-
strap method, the entire initial data set of n observations (where
n is the total number of pixel values within the image) is first ran-
domly sampled with replacement. The result is a bootstrap data set
of n resampled observations. A pixel histogram can be computed
for each bootstrap data set, in order to assess the effect of image
uncertainty on the histogram itself. The bootstrap data set is a vec-
tor of resampled pixels values, where geographical patterns are
lost. Therefore, to create a synthetic flood image preserving geo-
graphic pattern, the pixels of the original image and the bootstrap
data set are first ordered according to their backscatter value. Sec-
ond, a synthetic flood image is created by replacing the pixels of the
original image with the pixels having the same rank in the ordered
bootstrap data set. In other words, the smallest backscatter value
in the bootstrap data set is positioned in the same location as the
smallest backscatter value in the original image, and so on. The
flood mapping procedure is applied on this synthetic flood image,
together with the unchanged reference image, to compute the asso-
ciated flood map  with its corresponding classification accuracy.
These steps are repeated m times (according to Efron and Tibshirani
(1993) m should be between 1000 and 2000. We  chose m = 1000)
in order to obtain an estimate of the bootstrap distribution of the
respective values of interest, e.g. the classification accuracy.

This bootstrap distribution consists of 1000 values, correspond-
ing to 1000 bootstrap data sets or 1000 synthetic flood images,
leading to a high computational cost when flood maps should be
delineated for each of these images. This would be rather inefficient,
particularly in near real time applications. Therefore, it is essential
to identify the smallest size m for the ensemble of bootstrap data
sets that is still capable of maintaining the representation of the
uncertainty as given by the entire estimate of the bootstrap distri-

bution. In this way, the full distribution of 1000 values would no
longer be necessary. To this end, different ensembles with sizes
k = 10, 20,. . .,  100, 200,. . .,  1000 are repeatedly (1000 times for
each tested ensemble size k) drawn with replacement from the
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Table  1
Characteristics of the images for the summer flood event in 2007.

Image Date and time
of acquisition

Image type Pixel size
(m)

Ground
resolution (m)

Band Polarization

Flood Jul 23 2007
10:27 am

ENVISAT ASAR WSM  75 150 C VV

Reference Oct 01 2007
10:25 am

ENVISAT ASAR WSM  75 150 C VV

Flood Jul 25 2007 TerraSAR-X Stripmap 1.5 3 X HH
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6:34 am
Reference Jul 22 2008

6:34am
TerraSAR-X Stripmap

ntire bootstrap distribution. For each ensemble size, the standard
eviations, both on the mean and on the standard deviation of the
ccuracies of the ensemble members, are computed. On the basis
f these results, it is possible to identify the smallest ensemble size
hat is still meaningful and representative for the entire bootstrap
istribution, and applicable for further use.

ase studies and available data

The proposed procedure has been tested on the July 2007 flood
vent in the Tewkesbury region (UK), which was observed by two
ifferent SAR sensors, providing images with different character-

stics. The study data set is composed of the following couples of
atellite images: two ENVISAT ASAR Wide Swath images and two
tripMap TerraSAR-X images, whose characteristics are listed in

able 1.

As displayed in Fig. 1, the chosen area of interest (AOI) for
he ENVISAT image corresponds to a large area (∼730 km2), with
03 × 649 pixels (n = 196,647) having a pixel size of 75 m × 75 m.

ig. 1. Study site, showing the larger area of interest (AOI) of the couple of ENVISAT ima
mages (b). The validation map  is obtained from high-resolution aerial photos through m
.5 3 X HH

For the high-resolution TerraSAR-X image, the selected AOI cor-
responds to the city of Tewkesbury (∼3 km2), with 1335 × 998
pixels (n = 1,332,330) having a pixels size of 1.5 m × 1.5 m.  In order
to evaluate the classification accuracy of the flood maps derived
on the basis of each couple of SAR images, a validation data set
is available, composed of very high-resolution 0.2 m aerial pho-
tographs, acquired during the flood event on July 24 at 11:30 am.
The observed flood extent was  delineated in the form of a binary
flooded/non-flooded map  through manual photo-interpretation
(see in Fig. 1), such that a validation flood map is obtained. This
validation map  is compared to those obtained as output of the flood
mapping procedure, using the Jaccard coefficient (Jaccard, 1908;
see also De Baets et al., 2001) as a measure of the classification
accuracy (denoted F by Horritt et al. (2007)):

F = A
(2)
A + B + C

where A is the number of pixels of the flooded area correctly pre-
dicted by the model, B is the number of pixels predicted as flooded
that are observed to be non-flooded (over-prediction) and C is the

ges (a) and the smaller AOI, centered on the city of Tewkesbury, of the TerraSAR-X
anual delineation.
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Fig. 2. Original SAR images (a and d), mean backscatter values in the segmented images (b and e) and speckle residuals (c and f), for the ENVISAT flood image and the
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erraSAR-X flood image.

umber of pixels that are predicted as non-flooded and yet are
bserved to be flooded. F ranges from 0 to 1, where 1 represents
erfect classification. It has to be pointed out that the flood mapping
rocedure classifies the entire AOI, however, in the evaluation we
nly focus on the flooded area and its surroundings through exclud-
ng the pixels that are correctly classified as non-flooded (Horritt
t al., 2007).

esults and discussion

nalysis of the segmentation method

The final maps resulting from the entire segmentation method
re shown in Fig. 2. This figure shows the original SAR images ((a)
nd (d)), the segmented images or the map/image with the mean
ackscatter value of each segment ((b) and (e)), and the speckle
aps/images ((c) and (f)), obtained by subtracting the second from

he first one. A visual inspection of the results shows that the
egmented images, (b) and (e), still contain all the well-defined
tructures that are also present in the original images, (a) and (d).
o evaluate the performance of the segmentation method, it is ver-
fied whether the defined segments correspond to homogeneous
egions in space, i.e. whether the statistics of backscatter values
ithin a segment are similar to that of a fully developed speckle.

o this aim, it is essential to check the speckle maps, which in case

f a successful segmentation should not contain any structure or
patial pattern associated to the scene (Oliver and Quegan, 1998).
s shown in Fig. 2(c) and (f), a very limited number of objects is still
artly detectable in the images of speckle residuals.
Comparison of both methods

Each of the above described methods, i.e. both the image seg-
mentation method and the non-parametric bootstrap method,
results in 1000 synthetic flood images. In order to investigate
whether both methods yield similar results, one could employ
a statistical test that compares the obtained image histograms.
However, to our knowledge, no statistical test exists that allows
comparing two groups of 1000 image histograms. Nevertheless, a
visual inspection of the panels in Fig. 3 indicates the similarity for
the mean, maximum and minimum values in each histogram bin,
for the ENVISAT and the TerraSAR-X images.

The similarity in the image histograms, as derived by bootstrap
or by segmentation, is reflected in similar values of the procedure’s
parameters, �0

m and �0
thr

, those that only depend on the histogram
shape and the gamma  curve optimized on it. The results are not
shown here, as the main issue of the paper does not concern the
analysis of the specific parameters of the flood mapping proce-
dure. On the other hand, a conclusion can be drawn on the fact
that speckle, as modeled by the bootstrap or by the segmentation
method, has an extremely similar effect on the method’s parame-
ters.

Subsequently, the flood mapping procedure was applied on
the synthetic flood images, given as input to the flood mapping
algorithm, together with the unchanged reference image. Since
validation data are available in this case study, the F-values (cfr.
Eq. (2)) that reflect the classification accuracy, can be computed.

Table 2 lists the obtained ranges of F-values for the synthetic flood
images obtained by both methods. This table shows that both meth-
ods yield comparable F-values, although the ranges of F-values
obtained with the two  methods on the TerraSAR-X flood image
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Fig. 3. Mean, maximum and minimum values for each bin of the 1000 histograms
after application of the bootstrap method (top panels) and segmentation method
(
fl
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Fig. 4. Histograms of the F-values of the flood maps obtained after application of
the  flood mapping procedure on the synthetic images generated by applying the

F
d

bottom panels) on the original ENVISAT (a1 and b1) and TerraSAR-X (a2 and b2)
ood images.

o not overlap. The matching in terms of flood mapping accuracy
hows that the ranking step in the bootstrap method compensates
or the loss of geographical patterns due to bootstrapping the image
ixel values. The obtained F-values denote that misclassifications

re still present, which can be addressed to limitations of the flood
apping method and the SAR imaging technique itself (shadowed

reas and a possible double-bounce effect).

able 2
ange of F-values obtained for the synthetic flood images after application of the
egmentation and the bootstrap method on the ENVISAT and TerraSAR-X original
ood images.

Segmentation method Bootstrap method

ENVISAT [0.50 0.60] [0.50 0.64]
TerraSAR-X [0.54 0.57] [0.57 0.60]

ig. 5. Standard deviations on the mean (a1 and a2) and on the standard deviation (b1
istribution of F, for each tested ensemble size, for the ENVISAT (a1 and b1) and the Terra
bootstrap (top panels) or the segmentation method (bottom panels) on the original
ENVISAT (a1 and b1) and TerraSAR-X (a2 and b2) flood images.

A statistical comparison was  performed on the resulting F-
values to test for significant differences. First, a Shapiro–Wilk test
(Shapiro and Wilk, 1965) was performed to check whether the
F-values, displayed in Fig. 4, are normally distributed. As this is
not the case (p-value <0.05), a non-parametric Wilcoxon rank sum
test (Mann and Whitney, 1947) was  further performed to test for
significant differences. p-values smaller than 0.05 were obtained
for comparison of both methods on the ENVISAT and TerraSAR-
X original flood images. The test hence reveals that there exists a
significant difference between the two methods. However, it has
to be noted that the obtained F-values only differ slightly. As the

Wilcoxon rank sum test is based on a ranking of the F-values, the
obtained results indicate that the ranking of the F-values conse-
quently places the F-values of one method before the F-values of the
other method. Yet, as the F-values themselves do not differ much

 and b2) of the F-values of 1000 ensembles randomly drawn from the bootstrap
SAR-X flood image (a2 and b2).
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see Table 2), we still conclude that both methods yield comparable
esults.

Both methods involve resampling the pixel values of the orig-
nal image. The bootstrap method resamples at the image scale,

hereas the segmentation method locally resamples according to
ifferent speckle patterns. Furthermore, the bootstrap method uses

 ranking step that is essential for preserving geographical patterns,
hereas the segmentation method inherently takes into account

he structure present in the image. The bootstrap method has the
dvantage of being extremely straightforward and efficient, as it
oes not require any specific image-processing knowledge and
xtra computation time for segmentation. Therefore, it represents
n effective method for assessing speckle influence on flood extent.

educing the ensemble size

In order to increase the computational efficiency when the boot-
trap method is to be used in an operational mode, it was  tested
hether the size of the ensemble of bootstrap data sets, i.e. the

nsemble of synthetic flood images, could be reduced while still
btaining a representative distribution of F-values. To this end, sets
f different sample sizes were repeatedly sampled with replace-
ent from the bootstrap distribution of F-values. For each of these

ets, the mean F-value and the standard deviation were calculated.
n order to estimate the reliability of these means and standard
eviations, the standard deviations on these means and on the
tandard deviations were calculated for each of the sample sizes.
ig. 5 shows the standard deviation on the mean (top panels)
nd on the standard deviation (bottom panels) of the F-values of
000 repeatedly sampled sets for different sample sizes, for the
NVISAT (left panels) and the TerraSAR-X (right panels) test cases.
he results show that the values of standard deviation do not differ
uch for ensemble sizes ranging from ca. 200 to 1000. However,

or ensemble sizes smaller than ca. 200, the value of the standard
eviation increases exponentially, indicating that these samples
o not adequately reflect the bootstrap distribution. Therefore, a
ootstrap distribution of ca. 200 values, which corresponds to an
nsemble of ca. 200 synthetic flood images, is considered to be an
nsemble with a reasonable size, still representative of the entire
ootstrap distribution. However, the eventual choice of the num-
er of images is user-defined and should be regarded as a trade-off
etween computational cost and representativeness.

onclusions

In this paper, two methods have been compared to take into
ccount speckle uncertainty in a flood mapping procedure. In this
aper we assessed only speckle-induced uncertainty, which rep-
esents one of several components of the total uncertainty. An
mage segmentation method has been applied to determine differ-
nt speckle patterns on the basis of which speckle can be resampled
nd added to the mean backscatter value of the segment such that
ynthetic flood images can be generated. Alternatively, a procedure
ased on the non-parametric bootstrap method was  proposed. The
ethod takes into account speckle uncertainty by resampling with

eplacement the pixel values of the original image. In order to pre-
erve the geographic location in the creation of a synthetic flood
mage, a ranking procedure was used to position the bootstrapped
alues within the synthetic flood image.

The image histograms of the synthetic flood images obtained
fter application of both methods have been visually compared. It

as observed that the local resampling according to the speckle dis-

ribution, as performed in the segmentation method, yields similar
istograms as those obtained by globally resampling the original

mage, as performed with the bootstrap method.
 Observation and Geoinformation 34 (2015) 70–77

Furthermore, the flood mapping procedure has been applied on
both sets of 1000 synthetic flood images. On the basis of an inde-
pendent validation set, the F-value that reflects the classification
accuracy of the flood maps was calculated. It was observed that
although slightly higher F-values were obtained with the bootstrap
method, one can still conclude that both methods yield similar val-
ues. This indicates that the ranking step in the bootstrap method
compensates for the loss of geographical patterns due to bootstrap-
ping the image pixel values.

In addition, it was checked whether the size of the ensemble
of bootstrap data sets, i.e. the ensemble of synthetic flood images,
could be reduced such that the computational efficiency of the
bootstrap method is increased. This would facilitate its use in fur-
ther applications. It was found that an ensemble of ca. 200 synthetic
flood images is still representative for the entire bootstrap distri-
bution.
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Abstract. Satellite-based active microwave sensors not only
provide synoptic overviews of flooded areas, but also offer an
effective way to estimate spatially distributed river water lev-
els. If rapidly produced and processed, these data can be used
for updating hydraulic models in near real-time. The useful-
ness of such approaches with real event data sets provided by
currently existing sensors has yet to be demonstrated. In this
case study, a Particle Filter-based assimilation scheme is used
to integrate ERS-2 SAR and ENVISAT ASAR-derived wa-
ter level data into a one-dimensional (1-D) hydraulic model
of the Alzette River. Two variants of the Particle Filter assim-
ilation scheme are proposed with a global and local particle
weighting procedure. The first option finds the best water
stage line across all cross sections, while the second option
finds the best solution at individual cross sections. The vari-
ant that is to be preferred depends on the level of confidence
that is attributed to the observations or to the model. The
results show that the Particle Filter-based assimilation of re-
mote sensing-derived water elevation data provides a signif-
icant reduction in the uncertainty at the analysis step. More-
over, it is shown that the periodical updating of hydraulic
models through the proposed assimilation scheme leads to
an improvement of model predictions over several time steps.
However, the performance of the assimilation depends on the
skill of the hydraulic model and the quality of the observation
data.

Correspondence to:L. Giustarini
(giustari@lippmann.lu)

1 Introduction

Due to its all weather and day and night capability, Synthetic
Aperture Radar (SAR) is regarded as the most promising
technology to monitor floods from space. Since the launch
of the ENVISAT mission in 2002 and more recently the suc-
cessful launches of the high-resolution COSMO Skymed,
TerraSAR-X and Radarsat-2 missions in 2007, considerable
progress has been made with respect to SAR-based flood de-
lineation algorithms (e.g. Zwenzner and Voigt, 2009; Mar-
tinis et al., 2009; Mason et al., 2010; Matgen et al., 2010,
2011). These methods were specifically developed for rapid,
repeatable and reliable flood mapping. Remote sensing data
have become more frequent and rapidly available and accu-
racies of SAR-derived flood detection have improved due to
higher spatial resolutions and enhanced image processing al-
gorithms. There is a growing pressure on the scientific com-
munity to find new ways to use the increased volume and ac-
curacy of remote sensing data in order to improve near real-
time flood monitoring and prediction applications (Di Bal-
dassarre et al., 2009).

The retrieval of water level data by merging remote
sensing-derived shorelines with a digital elevation model
(“indirect measuring technique”) can be viewed as a way to
add value to remote sensing data for hydrological applica-
tions (e.g. Hostache et al., 2009; Raclot, 2006; Schumann et
al., 2007). Direct measuring techniques such as those from
the proposed swath altimetry “Surface Water and Ocean To-
pography” (SWOT) mission (Alsdorf et al., 2007) represent a
potential enhancement of the indirect measuring techniques
as they enable the systematic acquisition of elevation data

Published by Copernicus Publications on behalf of the European Geosciences Union.
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of inland water surfaces with an observation uncertainty of
50 cm for a 50 m spatial resolution (Lee et al., 2010). Both
techniques enable the monitoring of changes in water volume
in ways that are not possible using hydrometric station data.

However, as space-borne sensors provide instantaneous
snap-shots of an area of the Earth’s surface, there is a need to
combine remote sensing data sets with hydrologic-hydraulic
prediction models to generate time-lapses of flooded sur-
faces. Sequential data assimilation methods can be used
to integrate time-continuous model state forecasts (e.g. soil
moisture, surface water storage) with remote sensing obser-
vations as they become available. The quantification of un-
certainty for all observations is a pre-requisite to any mean-
ingful data assimilation study. To date, only a few stud-
ies have investigated the uncertainty description of remote
sensing derived water stages. According to Schumann et
al. (2008), geo-location accuracy of the flood extent and pa-
rameter uncertainty in flood delineation algorithms are the
most significant sources of uncertainty in a high resolution
ENVISAT ASAR-based flood mapping application. In a
water level retrieval process, which consists in merging the
remote sensing-derived shorelines with a digital elevation
model, these errors add up to the errors that are inherent in
the topography data. The uncertainty assessment approach
of Schumann et al. (2008) results in cross-section specific
cumulative distribution functions (cdfs) of water elevation
estimates. In the case study of the Alzette 2003 flood, the
indirect water stage measuring technique yields cdfs that in-
dicate non-normal distributions and skewness of the SAR-
based water level estimates for many cross-sections. Uncer-
tainty of stage over the entire river reach was on the order of
2 m.

In situ measurements are routinely assimilated for
hydrologic-hydraulic modelling applications (e.g. Neal et al.,
2007; Madsen and Skotner, 2005; Pauwels and De Lannoy,
2009). However, only a few studies have attempted to assim-
ilate remote sensing-derived water stage data into hydraulic
models. Matgen et al. (2007) used a direct insertion method
that forced water stage data simulated by a hydraulic model
to fall within the confidence interval of ENVISAT and Euro-
pean Remote Sensing satellite (ERS-2) SAR-derived water
stages. They showed that the insertion of remote sensing de-
rived water levels increased the accuracy of modelled water
levels. However, this version of a direct insertion method is
not an optimal sequential assimilation method and appears
as a useful approach only if uncertainties associated with ob-
servation data are much smaller than simulation uncertainties
and distribution functions of observations are unknown.

Different variants of the Kalman filter present dynamic
methods for merging uncertain simulation data with uncer-
tain observations. Andreadis et al. (2007) and Biancamaria
et al. (2010) successfully applied an ensemble Kalman fil-
ter (EnKF) to assimilate synthetic water level measurements
from the proposed SWOT mission with simulations from the
LISFLOOD-FP 2-D hydraulic model (Bates and De Roo,

2000). Durand et al. (2008) assimilated virtual SWOT-
derived water level observations into a hydraulic model of
the Amazon River to improve the estimates of bathymetric
depths by 84 % compared to the model runs without assimi-
lation.

Neal et al. (2009) used the EnKF with a real event SAR
image of the flood extent. The ensemble uncertainty was
estimated by image histogram thresholding with different
backscattering values and repeatedly shifting the resulting
flood boundaries in space in order to approximate geo-
location errors. The measurement error covariance was de-
fined from the perturbations of this ensemble of water level
estimates around the mean. Neal et al. (2009) only con-
sidered the measurement members with the smallest inter-
quantile range over the ensemble at any river section. This
was suggested as a quality control step prior to assimila-
tion that was needed because some locations produced bi-
ased data (e.g. shorelines next to steep slopes and tall vege-
tation). They also argue that, because of the spatial coverage
offered by remote sensing, it is not necessary to use all mea-
surements. Following this approach, they showed that it is
possible to significantly reduce discharge and water level un-
certainty of a hydraulic model by using ENVISAT Advanced
SAR-derived water stage estimates.

Since the Gaussian error assumption may not be satisfied
for most remote sensing observations of water stage, Mat-
gen et al. (2010) proposed an assimilation scheme based on
the Particle Filter (PF) as a possibility to relax the Gaus-
sian assumption in the EnKF while preserving its advantages.
Their experiments showed that the PF is able to correct wa-
ter depths from a corrupted 1-D hydrodynamic model by as-
similating synthetic observations that are realistic in terms
of accuracy for remote sensing-derived water levels. In this
case, the PF leads to a significant increase of the accuracy
and a reduction of the model forecast uncertainty. Matgen
et al. (2010) further state that problems related to a spatially
and temporally variable non-Gaussian distribution of water
level observations still need to be solved.

The objective of this paper is thus to examine the use-
fulness of currently available satellite data to update a hy-
draulic model in near real time, through a PF-based assimi-
lation scheme. The specific objectives are: (1) to adapt the
PF assimilation scheme in order to deal with non-Gaussian
distributions of remote sensing derived (RSD) water levels;
(2) to deal with model structural errors and parameter uncer-
tainties, proposing two variants of the PF; (3) to assess the
usefulness of SAR data with respect to in situ hydrometric
station data.

2 Study area and available data

The area of interest is situated in the Grand Duchy of Lux-
embourg (Fig. 1).
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Fig. 1. Study site in the Alzette River basin showing:(a) the
drainage area down to Pfaffenthal and the 19 km river reach whose
geometry is represented by the cross sections,(b) the hydrometric
stations along the river.

The hydrologic model is applied to a basin area of 356 km2

draining to a stream gauge located in Pfaffenthal. This pro-
duces the upstream boundary condition for the hydrody-
namic model, which simulates the 19 km reach of the Alzette
River between hydrometric stations at Pfaffenthal and Mer-
sch (Montanari et al., 2009). The river reach is described by
144 ground-surveyed and evenly spaced (∼130 m) channel
cross sections.

The investigated event was a flood recorded in January
2003. Hydrometric data were recorded every 15 min at
six stream gauges interspersed throughout the 19 km reach
(Pfaffenthal, Walferdange, Steinsel, Hunsdorf, Lintgen and
Mersch). Moreover, information about the maximum water
level reached along the river during the flood was available,
as measured by means of a theodolite (altimetric accuracy
around±2 cm) at distributed points across the floodplain.
The availability of in situ data not only allows evaluating the
results of the assimilation of remote sensing data, but also
helps to contrast the use of space-based and in situ based wa-
ter level monitoring in a data assimilation exercise. The com-
parison of results provides insights on the advantages and
limitations of each data set.

This paper makes use of the measured precipitation rate to
drive the hydrologic model: hourly rainfall data observed in
Livange between 1 and 7 January 2003 are available. Con-
trary to Neal et al. (2009), who used predictions of convec-
tive and stratiform precipitation and evaporation, in this case
the forcings of the hydrologic model can be considered as
the best available representation of the rain field, potentially
leading to a more accurate basin response. The set-up of this
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Fig. 2. The 2 available satellite images in backscatter values:
(a) ERS-2 SAR image,(b) ENVISAT ASAR image. The hydromet-
ric stations are also shown. In radar imagery, flooded areas appear
in black colour due to the comparatively low signal return on open
water bodies.

case study can be viewed as a realistic representation of an
operational application of the proposed methodology.

Two subsequent SAR images, acquired at two distinct
stages of the 2003 flood event have been used in this study:
one was acquired by the ERS-2 satellite during the rising
limb of the flood wave; the second image by the ENVISAT
satellite just after the flood peak. The two images are shown
in Fig. 2 as well as the six stream gauges distributed along the
river. A LiDAR DEM of the floodplain at a spatial resolution
of 2 m and a vertical accuracy of±15 cm was fused with re-
mote sensing derived flood boundaries to retrieve the water
stages (Schumann et al., 2009). RSD observations of the wa-
ter stages in the river were retrieved from the two available
images, which have a spatial resolution of 12.5 m: in other
words, at each cross section more or less independent water
stages were observed.
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Uncertainty assessment for RSD water stages

Different approaches can be used to estimate spatially dis-
tributed water levels and their associated uncertainties from
a sequence of wet/dry flood edges extracted from radar im-
agery and fused with a DEM.

Schumann et al. (2008) proposed a procedure to esti-
mate uncertainty associated with RSD water stage data us-
ing a Monte Carlo-based statistical analysis. Hostache et
al. (2009) introduced a slightly different approach based on
a more integrated uncertainty assessment and based on the
analysis of the confidence that can be given to the SAR de-
rived shorelines. Both approaches take into account differ-
ent sources of uncertainty (i.e. parameters of image segmen-
tation algorithm, co-registration of geo-information layers,
accuracy of digital elevation model) that affect the retrieval
of water elevation data from remote sensing imagery. First,
flood extension limits with their respective geo-location un-
certainty are derived from a SAR image using a radiometric
thresholding-based procedure. Next, the part of the SAR de-
rived shoreline having a high probability of being erroneous
(close to building and trees) due to the incapability of the
SAR sensor to detect water in the corresponding areas are
removed from the analysis. This provide pertinent shore-
lines that will be used for the water level estimation. Finally,
the ensemble of relevant flood boundaries is superimposed
on a DEM in order to estimate water levels. The method
takes into account the uncertainty stemming from the un-
derlying DEM and ultimately provides empirical distribution
functions of water level data from space at every river cross
section (Fig. 3). In assimilation studies, this approach thus
potentially allows exploiting the full empirical distribution
of observed water levels. However, the resulting uncertainty
can be very high (Fig. 3). Moreover the distribution functions
often exhibit bias and skewness, especially in the vicinity of
steep embankments. All of these factors render the use of the
empirical distribution functions in data assimilation studies
problematic.

In order to reduce the estimation uncertainty, all water
level estimates were hydraulically constrained. The proce-
dure was first introduced by Raclot (2006) and consisted
in applying hydraulic rules, governing overland flow in a
floodplain, on water level intervals derived from aerial pho-
tographs. The hypothesis for applying this procedure is that
the uncertainty on the estimated water level is known ac-
curately enough to assume that the real water level is in-
cluded inside the water level estimate intervals. Consider-
ing the effort that was made to take account of all sources
of uncertainty and remove errors impacting the extraction
of water levels from remote sensing imagery, it is reason-
able to assume that the “true” water level is included in-
side each interval. This hypothesis is supported by the fact
that all ground-surveyed measurements of water elevation are
included in the above-mentioned intervals (Hostache et al.,
2009). Up-/downstream relationships between water level
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Fig. 3. Diagram showing an example of:(a) flood extent de-
rived from a satellite image superimposed on the DEM and the
river cross-section location,(b) illustration of water level extraction
method from inundation extent and cross-section and c) the remote
sensing derived water levels along a portion of stream(c) before and
(d) after the hydraulic coherence constrain.

estimates were first defined depending on the location of the
water stage estimates within the floodplain. Knowing that
the water level decreases from upstream to downstream, an
algorithm imposed the following two constraints on the wa-
ter stage estimate intervals: (1) the upper bounds of the wa-
ter stage intervals have to decrease from upstream to down-
stream and (2) the lower bounds of the water stage intervals
have to increase from downstream to upstream. This algo-
rithm allowed a significant reduction of the mean water level
estimation intervals, as shown in the panels on the bottom
right in Fig. 3. As a result, water level information was avail-
able as cross-section specific values of the possible local wa-
ter levels.

3 Simulation design

Figure 4 shows the setup of the data assimilation experi-
ments using event data. The methodology consists of as-
similating remote sensing-derived water stage observations
into an ensemble of 1-D hydraulic model integrations for a
number of cross sections. The upstream boundary condi-
tions (flow hydrographs) are produced using an ensemble of
semi-distributed hydrologic model forecasts with perturbed
parameter sets, initial conditions and precipitation data.
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Fig. 4. Flowchart of the data assimilation experiment.

3.1 Coupled hydrologic-hydraulic model

The semi-distributed hydrologic model is loosely coupled to
a 1-D hydraulic model: the discharge hydrograph computed
by the hydrologic model is used as upstream boundary con-
dition to drive the hydraulic simulation, but the hydraulic
model does not feed back into the hydrologic model.

The rainfall-runoff transformation is carried out using the
Community Land Model version 2.0 (CLM 2.0) (Dai et al.,

2003), a global land surface model built over the 356 km2

drainage area of the Alzette River extending upstream from
the gauging station at Pfaffenthal. To generate meaningful
ensembles of model predictions, we followed the procedure
of De Lannoy et al. (2007). Model parameters, forcings and
initial conditions of the hydrologic model were perturbed in
such a way that the ensemble mean differs from the obser-
vation by a value that is equal to the time average of the
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ensemble spread (De Lannoy et al., 2006). More details on
the ensemble generation and the verification measures that
were used to monitor the ensemble spread can be found in
Matgen et al. (2010). The land surface model was initialized
a month before the analyzed flood event to allow spin up and
balancing of the state variables in each ensemble member.

The assumption is made that model uncertainties derive
only from the upstream boundary condition, which means
that uncertainties in hydraulic model structure, parameters,
geometry and lateral inflow are not accounted for. More-
over, it is worth mentioning that errors in the inflow peak
timing are not taken into account. Therefore, in order to rep-
resent the hydrodynamic model uncertainty, an ensemble of
64 upstream boundary conditions (i.e. discharge) was gener-
ated with CLM 2.0, adopting the same methodology as dis-
cussed in Matgen et al. (2010). The hydrographs are shown
in Fig. 5 together with the 2 time steps of satellite overpasses
for the 2003 flood event. As opposed to the synthetic exper-
iment by Matgen et al. (2010), no artificial bias was added
here to the output of the hydrologic model. However, we
noticed that during the receding limb of the hydrograph, the
ensemble did not bracket the observed discharge, indicating
a tendency of the hydrologic model to underestimate the in-
flow during that period. The ensemble of the hydraulic model
realizations or particles (see box on top-left of Fig. 4) has
been produced by integrating the hydrodynamic model with
all the members of the discharge ensemble generated by the
hydrologic model for the analysis period 1 January 15:00–
7 January 23:00, 2003 (GMT+1).

The hydraulic model is implemented over a 19 km reach of
the Alzette River between the gauging stations of Pfaffenthal
and Mersch. Since flow direction in this area is mainly paral-
lel to the channel, the 2-D flow field that is typically related
to riverbank overtopping can be accurately approximated by
a 1-D representation and thus, the Hydrologic Engineering
Center River Analysis System – HEC-RAS (HEC-RAS 4.0,
2008) – was set-up for 1-D river flow computation.

3.2 Data assimilation algorithm

The data assimilation technique applied in this study is a se-
quential Particle Filter (PF), an ensemble filtering method
that has its origin in Bayesian estimation. Unlike the widely
used EnKF (e.g. Burgers et al., 1998; Evensen, 1994), which
simplifies the recursive estimation by assuming a Gaussian
distribution for both the model and the observation error
structure, the PF relaxes the need for restrictive assump-
tions regarding the shape of the probability density functions
and can easily manage the propagation of a non-Gaussian
distribution through nonlinear hydrologic and hydrodynamic
models (Moradkhani, 2008). In the PF the assumption of
Gaussianity is relaxed and the fundamental idea is to rep-
resent the required posterior density by a set of properly
weighted samples (Smith et al., 2008), named particles, and
to compute the estimate based on these samples and weights.
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Fig. 5. Ensemble of the 64 upstream boundary conditions generated
by the CLM 2.0. The gauged flow is also shown in bold line and the
time of the two satellite overpasses are overlaid.

3.2.1 Sequential Importance Sampling (SIS)

The simplest implementation of the PF is based on the Se-
quential Importance Sampling (SIS) method (see box in the
middle of Fig. 4). Each particle consists of a possible value
of the state. The filtering density is approximated by a dis-
crete distribution, whose support is the set of particles. The
probability mass assigned to each particle is proportional to
that particle’s weight, which, in turn, is proportional to the
likelihood of the observation at the assimilation time step
(Fearnhead, 2002).

In this case study, a particle represents the water surface
line resulting from one hydrodynamic model run at the as-
similation time stept = k, and the number of state variables
corresponds to the number of cross sections. The particles
are sampled directly from the state-space to represent the
posterior probability, and a weight is computed for each par-
ticle according to the information contained in the RSD water
level observations. In this case study, the SIS algorithm was
implemented using two different distribution functions that
are characteristic for the data sets at hand. A local weight,
wi,j , is assigned to any state variablej for any particlei (the
indexk is left out to avoid confusion but the weights are re-
computed at any time-step of observation acquisition). Note
that the weighting procedure can be adapted to any kind of
distribution function.

Section 2.1 describes an approach for retrieving for each
cross section an interval of possible water stage values. In
this case, as only the maximum and minimum water level
values are available for each cross section, we assimilate
the observation data assuming a uniform distribution, whose
boundaries are the derived maximum and the minimum water
stage estimates. Therefore, the likelihood or weight,wi,j , of
the water level,xi,j , simulated by particlei at cross section
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j for the time-step of the observation acquisition is simply
computed as:

wi,j
=

{ 1
b−a

for aj
≤ xi,j

≤ bj

0 for xi,j < aj (or) xi,j > bj (1)

wherex is the state vector of the state variables (simulated
water stages at any cross sectionj for any particlei),a andb

are the lower and upper observed endpoints or minimum and
maximum, respectively, for any cross sectionj . All assim-
ilation experiments were also carried out using hydrometric
station data as it allowed contrasting results obtained with
relatively uncertain but densely distributed satellite-derived
data with those obtained with accurate but poorly distributed
in situ measurements. When assimilating data from these
stations, a Gaussian distribution was used, assuming the
recorded water level to be the mean of a normal distribution
whose shape is also defined by a pre-defined value of stan-
dard deviation (Matgen et al., 2010). Note that water stage
estimates obtained from space-borne swath altimeters were
assumed to be normally distributed as well (Andreadis et al.,
2007). One weight,wi,j , for any water level,xi,j , simulated
by particlei at cross sectionj for the time-step of the obser-
vation acquisition is therefore computed as:

wi,j
=

1

σ
√

2π
e

−(xi,j
−µj )

2

2σ2 (2)

wherex is the state vector of the state variables (simulated
water stages at any cross secrtionj for any particlei), µ is
the observation vector andσ is the standard deviation asso-
ciated to the observations.

Regardless of the way the weights of the individual parti-
cles are computed (e.g. assuming a normal or uniform distri-
bution of residuals), the matrix of weights contains all local
weights,wi,j , that are obtained for any model run or particle
i at all theNo observed cross sectionsj . Subsequently, an
overall likelihood of the water level globally simulated along
the river reach for any particle or model run is computed by
applying the joint probability theory for independent vari-
ables:

wi
=

No∏
j=1

wi,j (3)

whereNo is the number of observations.
The resulting global weight is then normalized.

W i
=

wi

Np∑
i=1

wi

(4)

Np is the number of particles or water surface lines.

The probability obtained with the global weights at the
previous steps allows computing an expectation of the up-
dated water stage as follows for the assimilation time-step
k:

E(xk) = xexp=

Np∑
i=1

xiW i (5)

3.2.2 Sequential Importance Resampling (SIR)

Because of the stochastic behaviour of the system, the parti-
cles tend toward dispersion and there is a risk that many of
them obtain negligible weight during the analysis. This be-
haviour, called degeneracy, is defined as the tendency to con-
verge to a single point estimate (Moradkhani et al., 2005).
To avoid unnecessarily high computational resources, a re-
sampling step is carried out to eliminate samples with low
weight and to replicate samples with high weight. In other
words, the HEC-RAS model is re-initialized at the time-step
of the observation acquisition,k, replicating the water lines
with higher weight (see box on the bottom of Fig. 4). The re-
sampled particles have the same weight, until the next assim-
ilation step. The most common resampling scheme is the Se-
quential Importance Resampling (SIR) developed by Gordon
et al. (1993). The authors refer to Moradkhani et al. (2005)
and Weerts et al. (2006) for more detailed explanations of the
SIR and its use in hydrologic applications.

It should be mentioned that resampling is independent of
the proposal distribution (Fearnhead, 2002) but it is also pos-
sible to implement a PF without resampling. In any case, the
SIR algorithm also suffers from particle degeneracy. Smith
et al. (2008) showed that the resampling step only reduces
the degeneracy of the particles. Moreover, a different prob-
lem may arise, known as sample impoverishment, causing
particles with high weight to be selected many times, which
leads to a loss of diversity in the sample. In fact, due to
the discrete approximation of the filtering density, inaccura-
cies accumulate over many time steps and the result is of-
ten a clustering of particles in small areas of the state-space
(Fearnhead, 2002).

The experimental set-up of this case study avoided the
problem of sample impoverishment through a loose coupling
of the hydrologic and hydraulic model components. Only
the water levels were resampled, while the spread in the in-
put data was maintained. Therefore, even in the extreme
case where a single particle was retained and replicated, the
spread in the discharge hydrographs ensured that shortly af-
ter the assimilation a sufficient spread of the state variables
was obtained. As in Matgen et al. (2010), at the assimi-
lation time-stepk, the estimate of the upstream water level
x1

exp (Eq. 5) was used to compute the corresponding estimate

of the dischargeE
(
Q1

k

)
, using the HEC-RAS internal rating

curve. A simple algorithm was then applied for the updating
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Fig. 6. Cross section specific empirical histograms of RSD water
levels for four hydrometric sections, shown with numbers increas-
ing in river flow direction, for the first satellite overpass (ERS-2 on
2 January 2003 at 22.00 GMT+1). RSD, minimum, maximum and
station recorded water levels (where available) are also shown.

of the forcings (i.e. dischargeQ) until the next assimilation
time-step (see box on bottom right of Fig. 4):

Q1
i = Q1

i −

(
Q1

k −E
(
Q1

k

)
Q1

k

)
·Q1

i (6)

whereQ1
i is the upstream discharge of particlei andQ1

k is
the average, computed during the analysis stepk, of the hy-
drograph ensemble. The forcing update was applied until
the next assimilation time-step, based on the assumption that
relative model errors remain constant and that correcting the
inflows by the same relative error term at subsequent time
steps will improve the accuracy of the model prediction.

3.3 Synthetic experiment vs. real-event case study

The set-up of the case study was very similar to the one pre-
sented for the synthetic experiment in Matgen et al. (2010),
but there were some significant differences that need to be
highlighted.

3.3.1 First assumption: observations

In the synthetic experiment, one of the basic assumptions was
that the observed and assimilated (synthetic) satellite water
level data were unbiased and normally distributed. In a real
case study, the Gaussian assumption may not be satisfied for
at least some of the remote sensing-derived water stage ob-
servations. Examples of cross-section specific pdfs of RSD
data retrieved with the procedure proposed by Schumann et
al. (2008) are shown in Fig. 6. The data obtained from the
first satellite overpass (ERS-2 on 2 January 2003 at 11.00
GMT+1) are given for four representative cross sections. As
it can be seen, the data at each section exhibit a different

pdf shape. Obviously, the normal distribution is not a suit-
able candidate distribution for representing the pdf. In the
same panels, the maximum and minimum water levels deriv-
ing from the hydraulic coherence concept (Hostache et al.,
2009) are also shown. It can be seen from these results that
a significant reduction of the water level estimation intervals
was obtained (see also Fig. 3). Here we assume that within
each interval the RSD water levels are uniformly distributed.

Furthermore, Fig. 6 highlights bias and skewness in the
RSD data retrieved using the first image. The RSD water
levels at the first satellite overpass (ERS-2 on 2 January 2003
at 11.00 GMT+1) for the gauged cross section of Lintgen
(named 115 in the hydraulic model) were not centered on the
in situ water level measurements. For this cross section and
the considered time step, the RSD water levels showed a ten-
dency to overestimate the actual water level. After applying
the hydraulic coherence concept, the plausible interval was
significantly narrowed and, most importantly, included the
ground “truth”. Therefore, the data assimilation algorithm
was run assuming the uniform pdf to represent the statistical
distribution of RSD water levels.

3.3.2 Second assumption: model

A further characteristic of the synthetic experiment by Mat-
gen et al. (2010) was that the hydraulic model was correct
in it structure, parameter set and initial or analysis condi-
tions. Therefore, the differences between observations and
models only derived from inaccuracies in the input data (i.e.
hydrographs at the upstream boundary). This means that, for
a given forcing (Q), the model generally performs equally
well (or poorly) at all cross sections along the river. In other
words, due to the fact that the same model is used both to
generate the artificial satellite observations and to assimilate
them, a model run that is good at a given cross section per-
forms well at all the other cross sections.

In a real case study, model structure errors (e.g. 1-D flow
approximation, errors in geometry) and parameter uncertain-
ties (e.g. Manning’s roughness values), cause local bias that
need to be taken into consideration. We expect such models
to have a less uniform behavior along the river reach. This
raises difficulties in the selection of a good model run, as
it might happen that one model performs globally well over
the whole river reach but at the same time has a poor perfor-
mance at a local level (i.e. at some cross sections).

In the present case study, a first assimilation test was car-
ried out with the same Manning’s values as in Montanari
et al. (2009): one value for the channel and one for the
floodplain. However, by using spatially-distributed stage-
discharge measurements it is possible to further reduce po-
tential errors that may originate from a too simplistic param-
eterization of the model. By introducing additional model
parameters, we expect the resulting model to have potentially
better behaviour at a local scale.
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For the Alzette River and for the considered flood event,
previous studies have shown that the floodplain does not
play a significant role in the flood hydraulics (Hostache et
al., 2009; Montanari et al., 2009). Therefore, for the flood-
plain a Manning’s coefficient equal to 0.184 s m−1/3 was as-
sumed (Montanari et al., 2009). The Manning friction coef-
ficients for the channel was calibrated by means of discharge
measurements carried out in the period 2001–2009 along the
river reach on the hydrometric stations of Pfaffenthal, Stein-
sel, Hunsdorf and Lintgen. The geometry of the river is de-
scribed by the 144 channel cross sections that were surveyed
in 2001. It is important to note that the SAR-observed flood-
ing event occurred in January 2003. All cross sections with
available simultaneous measurements of water level and dis-
charge were analyzed by comparing the cross section of the
hydraulic model with those observed during each discharge
measurement campaign. As there is no evidence that would
indicate any significant changes in riverbed geometry, we as-
sume the river geometry to be temporally stable.

Measurements of both water levels and discharge taken at
the same time allowed calibrating Manning’s roughness val-
ues for the four cited cross sections in the main channel.
Following the random sampling of 4 values for the chan-
nel roughness from a range of plausible values (i.e. 0.030–
0.060 s m−1/3), parameters of the cross sections that are lo-
cated between the 4 gauging stations were estimated through
linear interpolation. As upstream boundary discharge, we
used the January 2003 discharge data that was estimated
from recorded water levels and a calibrated rating curve.
The model was evaluated by comparing the observed rating
curves at the 4 cross sections with the internal rating curves
of HEC-RAS. The selected model set is the one that min-
imizes the difference between simulated and observed wa-
ter levels for a range of observed and simulated discharge
values.

The calibration reproduced the high discharge values rea-
sonably well, with Manning’s roughness coefficients set
equal to 0.042, 0.044, 0.053 and 0.039 s m−1/3, for Pfaffen-
thal, Steinsel, Hunsdorf and Lintgen, respectively. The plots
in Fig. 7 display the calibrated rating curves for the cross
sections with available measurements. For the cross sections
in between, the friction coefficient was linearly interpolated.
It has to be noted that the distance between Pfaffenthal and
Steinsel is nearly 8 km, which is rather significant with re-
spect to the total river reach length (19 km). Therefore we
expect model errors to be higher in the upper part of the river
reach. In particular, the cross section of Walferdange did not
have measurement data and its friction value was deduced
from the one in Steinsel, the nearest calibrated cross section.

The observed January 2003 discharge hydrograph at the
upstream boundary condition was used as input for the cali-
brated model to assess its capability in reproducing observed
spatio-temporal fluctuations of water surface elevation. This
assessment was made by comparing the observed and the
simulated hydrographs at all the gauged cross sections. The
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Fig. 7. Calibrated rating curves for the cross sections with available
discharge measurements.

Nash-Sutcliffe efficiency was computed obtaining an aver-
age value on the gauged cross sections of 0.84, indicating a
satisfactory result in terms of model performance.

4 Results and discussion

The hydrodynamic model, built from the 144 surveyed cross
sections, was used to simulate water levels along the river
reach, considering as inputs the ensemble of 64 hydro-
graphs generated by the CLM 2.0. At each satellite over-
pass, RSD water level estimates were assimilated into the
coupled hydrologic-hydraulic model following the procedure
outlined in Sect. 3.2. The results are compared against in situ
observed station data. It is important to note that in situ data
were assimilated only at the time steps of the satellite over-
passes. This analysis can be considered as a benchmark test
that enables contrasting the performances obtained when as-
similating, respectively, very precise but poorly distributed
ground-surveyed information and spatially distributed but
highly uncertain satellite data.

4.1 Global weighting procedure (gw)

4.1.1 Analysis step

When a satellite observation becomes available, weights are
computed for all the simulations at any cross section. A
global weight is computed for every particle according to the
procedure outlined in Sect. 3.2.1.

Figure 8 shows the histograms of computed water stages
before and after resampling the particles during the assimila-
tion procedure. The histograms shown here correspond to the
four intermediate gauging stations in Walferdange, Steinsel,
Hunsdorf and Lintgen. The two groups of four panels on top
refer to the first satellite overpass (i.e. ERS-2 image), while
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Fig. 8. Histograms of water stages at 4 intermediate cross sections, before and after the resampling step (gw: global weight). Left panels
show the application of the uniform pdf on the RSD water levels, right panels the use of the normal pdf on the hydrometric station data. Top
graphs refer to the first ERS-2 overpass; bottom ones to the ENVISAT overpass. Gauged level and its presumed uncertainty are also shown.

those on the bottom refer to the second assimilation time step
(i.e. ENVISAT image). On the left, the results of the assim-
ilation corresponding to the application of the uniform pdf
with the RSD observed data are displayed, while on the right
the reported outcome corresponds to the application of the
normal pdf with the in situ data. The in situ measurements at
six hydrometric stations located on the river reach also serve
as validation datasets for assessing the performance of the
analysis. The performance of the assimilation is evaluated
through the mean error value, the change in distance between
the mean of the a priori histogram and the truth compared to
the distance between the mean of the a posteriori histogram
and the truth. The standard deviation of the histogram both
a priori and a posteriori is computed as a measure of the re-
duction of uncertainty in the water level at the assimilation
time step.

Considering the use of the uniform pdf (panels on the left
side in Fig. 8), the results obtained via the assimilation of the
intervals, defined by the maxima and minima of the retrieved
water stages, show a significant reduction of the spread in the
a posteriori distribution of the simulated water stages. The

reduction in uncertainty is evident for the first time step and
becomes even more significant for the second. Moreover, at
the time step of the ERS-2 image acquisition, at all the inves-
tigated cross sections the a posteriori distribution of water
level estimates encompasses the truth. However, the spread
reduction is most significant for cross sections in Hunsdorf
and Lintgen, located in the downstream part of the river,
where most of the flooding occurred (i.e. where most obser-
vations of water stage are available). As a result of the analy-
sis there is a decrease of the mean error value, changing from
−0.07 to 0.02 m for Hunsdorf cross section and from−0.14
to −0.06 m for Lintgen. The decrease in terms of standard
deviation (changing from 0.29 to 0.13 m and from 0.33 to
0.14 m for the two cross sections, respectively) further out-
lines the positive effect that the assimilation procedure has
at a local level. However, for the sections in Walferdange
and Steinsel, both located in the upstream part of the river
reach, we observe a tendency to overestimate the recorded
stage data post assimilation. In both sections the mean er-
ror value increases, from 0.22 to 0.37 m in Walferdange and
from 0.17 to 0.34 m in Steinsel. The fact that the standard
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Table 1. Mean error (mev) and standand deviation (std) values computed for the two satellite acquisitions before and after the assimilation
analysis step, for the four cross sections with available ground observation measurements, considering the assimilation of the RSD data with
the uniform pdf and the use of the normal pdf with the hydrometric station data.

uniform pdf normal pdf

mev (m) std (m) mev (m) std (m)

before after before after before after before after
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Steinsel 0.17 0.34 0.45 0.25 0.17 0.16 0.45 0.10
Hunsdorf −0.07 0.02 0.29 0.13 −0.07 −0.06 0.29 0.04
Lintgen −0.14 −0.06 0.33 0.14 −0.14 −0.11 0.33 0.06
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Walferdange −0.02 0.38 0.28 0.01 −0.08 0.19 0.29 0.02
Steinsel −0.36 0.10 0.28 0.01 −0.42 −0.16 0.29 0.02
Hunsdorf −0.52 −0.08 0.25 0.01 −0.58 −0.29 0.25 0.03
Lintgen −0.54 0.07 0.32 0.01 −0.61 −0.16 0.32 0.03

deviation is reduced merely illustrates that uncertainty, as it is
defined here, only expresses model uncertainty and not truly
probabilistic prediction limits of the assimilation procedure.

This limitation of the “global weighting procedure” is con-
firmed by the results obtained at the second assimilation time
step. Overall, the assimilation of data retrieved from the
ENVISAT ASAR image leads to the selection of only two
particles; one is kept for the simulation and the other one
is replicated 62 times. This means that only two simula-
tions provide water surface lines that are included in the RSD
intervals at all cross sections. As a matter of fact, the stan-
dard deviation values are negligible after this time step, while
the mean error values are reduced to less than 10 cm for all
cross sections, except Walferdange, where an overestimation
remains apparent. On all other sections the a posteriori dis-
tribution includes the truth. It has to be observed that for
Walferdange it was not possible to calibrate the roughness
value of the hydraulic model, due to the unavailability of dis-
charge measurements. Its Manning’s coefficient was interpo-
lated considering the values of the upstream and downstream
cross sections. The poor quality of the model results at this
cross section could thus be explained with a badly calibrated
model. Moreover, as flooding only occurred on the down-
stream part of the river reach, there are no RSD observations
available in the upper part of the river (i.e. upstream of the
Steinsel cross section). These limitations partly explain the
difficulty the global weighting procedure has to select mod-
els that perform well along the entire river reach. This result
shows that one of the main assumption of the synthetic ex-
periment, namely that input data is the only source of error
in hydraulic modelling, can no longer be maintained. Table 1
summarizes the results in terms of mean error and standard
deviation values for the two assimilation time steps and the
two distribution functions.

Before applying and testing a procedure based on local
weighting, an experiment was carried out with precise in situ
measurements of water level, recorded at six cross sections
along the river at the time of the two satellite overpasses.
This test represents a circular way to operate, due to the fact
that the same data set is used for assimilation and validation.
However, the rationale behind this test is to distinguish model
errors from observation errors. A good model is expected to
provide results that are centred on the truth at every single
cross section. In this experiment the normal pdf was used,
assuming a standard deviation equal to 0.1 m to represent the
uncertainty of the measurements. As can be seen from the
panels on the right in Fig. 8, for the ERS-2 satellite over-
pass, the resampled particles show a good reduction of the
spread (standard deviation ranging from 0.04 m to 0.10 m)
and always encompass the truth. However, the assimilation
of in situ measurements at the time step of the ENVISAT
image acquisition highlights a contradictory behaviour. The
reduction of the spread is very significant and only a limited
number of particles are selected at any cross section. The
results are surprisingly similar to those results obtained with
the less accurate RSD observations. However, only in Stein-
sel did the assimilation methodology predict the truth, while
for all other cross-sections the resampling of the particles ei-
ther leads to a slight over- or underestimation. This indicates
that no model run performs equally well along the entire river
reach. We assume that this is due to the fact that important
sources of errors are not sufficiently well represented by the
ensemble of model runs.

Table 1 summarises the information in terms of perfor-
mance and standard deviation values for the two satellite ac-
quisitions and the two distribution functions. From these re-
sults we conclude that the proposed PF-based filtering ap-
proach is an efficient tool to assimilate observations de-
scribed by characteristic distribution functions. However, the
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observed over- and underestimations are an indication that
local inconsistencies persist in the calibrated model. This
can lead to a sub-optimal functioning of the PF or indeed the
rejection of all models: when one particle represents the wa-
ter level over the whole reach as state vector and the weights
are computed according to Eq. (3), systematic model errors
at a local scale heavily impact the weight that is attributed to
individual particles. Rather than selecting and replicating the
best particles overall, the application of the joint probabil-
ity theory for independent particles penalizes particles that
have low weight at some locations. As a result, the global
weighting procedure favours compromise solutions that pro-
vide acceptable results at all model cross-sections. There-
fore, it is important to bear in mind that the PF has been ini-
tially designed for removing noise and not systematic errors.
A pre-requisite for the application of the PF is thus to reduce
systematic errors in the model prior to any data assimilation
experiment.

4.1.2 Forecasting step

Following the analysis step, the model is propagated in time:
to do so, the hydrodynamic model is first re-initialized with
updated water stages and then run with the updated up-
stream inflow data until a new observation becomes avail-
able. Figure 9 shows the stage hydrographs corresponding
to the cross-section at Lintgen, when using the uniform pdf
to assimilate the RSD observations. The performance of the
forecast is illustrated considering the RMSE of the ensemble
mean water stage,hass, with respect to the recorded water
stagehtruth:

RMSE(t) =

√√√√√√
t∑

p=tass+dt

(
hass(p)−htruth(p)

)2
t −(tass+dt)+1·dt

t ≥ tass+dt (7)

which is computed over different time windows, starting
from the first time step after the satellite overpass,tass+dt,
and stopping att − (tass+dt)+1, wheredt is the time step of
the simulation, in order to evaluate the usefulness of the as-
similation as a function of the number of time steps following
the analysis step.

As it can be seen from Fig. 9, after the ERS-2 satellite
overpass, when the analysis step efficiently drags the simu-
lated water level towards the observed water level, the RMSE
is first close to zero before gradually increasing at subsequent
time steps due to the predominant effect of the inflow condi-
tion. Although the relative error term was correctly inferred
from satellite observations, it becomes obvious from Fig. 9
that the proposed inflow correction model (Eq. 6) under-
predicts simulation errors in the time window between the
two satellite acquisitions. However, the forecasts with filter
are consistently better than the open loop predictions for the
first time steps. After the second acquisition the RMSE ap-
proaches zero and the error terms in Eq. (6) leads to correct

Fig. 9. Stage hydrographs at the cross section Lintgen with the 2
assimilation time steps (bottom panel) considering the RSD water
level intervals assimilated through a uniform distribution: the fore-
casting performance is illustrated with the RMSE evolution in time
(top panel). The cyan line represents the RMSE before assimilation
and the black line displays the RMSE after assimilation.

predictions for more than 5 h after the assimilation, as the er-
ror remains constant for some time steps. Nevertheless, later
on the application of a constant error prediction term for the
inflow leads to wrong predictions, with an underestimation
of the receding limb of the hydrograph. Hence, the analysis
step is of fundamental importance in order to carry out an
efficient inflow correction. Errors in the analysis propagate
through the inflow correction model and this can significantly
decrease model performance at later time steps.

4.2 Local weighting procedure (lw)

4.2.1 Analysis step

As an alternative to the global weighting procedure, an ap-
proach based on local weighting has been developed and
tested. In this procedure, each cross section has its own par-
ticle set, with as state vector the water levels at the cross sec-
tion itself (i.e. the state vector is a scalar). Each particle has
its own weight, as required for the PF. This procedure is dif-
ferent from global weighting, where one particle has as state
vector the water level over the whole reach.
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Table 2. Idem Table 1, but considering the local weighting variant of the PF.

uniform pdf normal pdf
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Steinsel 0.17 0.36 0.45 0.31 0.17 0.00 0.45 0.14
Hunsdorf −0.07 −0.02 0.29 0.12 −0.07 0.00 0.29 0.08
Lintgen −0.14 −0.17 0.33 0.24 −0.14 −0.01 0.33 0.10
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Walferdange −0.02 0.04 0.28 0.16 −0.08 −0.01 0.29 0.08
Steinsel −0.36 −0.28 0.28 0.19 −0.42 −0.06 0.29 0.10
Hunsdorf −0.52 −0.40 0.25 0.17 −0.58 −0.08 0.25 0.15
Lintgen −0.49 −0.41 0.31 0.24 −0.61 −0.07 0.32 0.13

Once again, the uniform distribution was used in the as-
similation algorithm. We expect a local weighting based
method to yield better results when model structural and pa-
rameterization errors are present. However, this method will
be rather sensitive to local observational errors. The results
are given in Fig. 10. The histograms were obtained at four
representative cross sections.

Using the uniform distribution together with the local
weighting procedure, the reduction of uncertainty is less
evident than with the global weighting method. At each
cross section all particles that provide water stage esti-
mates included in the RSD intervals are retained and equally
weighted. As a result, the standard deviation values are gen-
erally higher than before. While the global weighting proce-
dure applied to the ENVISAT-derived data led to the selec-
tion of only one particle, the application of a local weight-
ing procedure causes many simulations to be retained at each
cross section. For instance, in Lintgen after the second as-
similation step the standard deviation is reduced to 0.00 using
a global weight but only to 0.24 using local weights. All the
a posteriori distributions include the truth, even if in Walfer-
dange a tendency to overestimate the truth persists. With re-
spect to the mean error values, the two weighting approaches
give comparable results at the first assimilation step. For the
second satellite overpass an improvement can be observed
for the upper part of the river, whereas for Hunsdorf and Lint-
gen, both located in the lower part of the study area, the ten-
dency to slightly underestimate the truth is further enhanced.

Finally, the assimilation was carried out using in situ wa-
ter level measurements at six cross sections at the time of
the two satellite overpasses (Fig. 10). Here we apply the
local weighting procedure to compute the a posteriori his-
tograms. As expected, this is the easiest setup for the assim-
ilation algorithm to recognise the truth. For both time steps
and in all the cross sections, the resampled particles encom-
pass the truth. This experiment shows that if observations
are of high quality, the local weighting procedure yields very

satisfactory results. Adopting a local weighting procedure
significantly reduced model uncertainty, as demonstrated by
the means of the global weighting experiment. However, as
we suspect other sources of error than inflows (e.g. spatially
varying friction parameters, intermediate inflows and/or er-
rors in geometry) to be responsible for contradicting results
obtained in sub-reaches of the model domain, it has to be ex-
pected that these improvements cannot be maintained over
many time steps. It is therefore recommended to use the re-
sults of the analysis to find the reasons for regionally conflict-
ing results and to make use of such a diagnosis for improving
the model in a more persistent way than through a mere re-
initialization and inflow correction.

Considering the local weighting variant of the PF, Table 2
summarises the results in terms of mean error and standard
deviation for the two time satellite acquisitions and for the
two distribution functions.

4.2.2 Forecasting step

Figure 11 illustrates the performance of the forecasts consid-
ering the local weighting procedure to assimilate the ground
measurements recorded at six hydrometric stations. It shows
that when the analysis step gives good results (i.e. when the
error term at the time of the observation is correctly esti-
mated), the short-term forecasts with assimilation are im-
proved. However, the limitation of a possible overcorrection
of inflow persists as the inflow-corrected mid-term to long-
term forecasts seem to have less skill than the open loop
predictions. A possible explanation is that the two satellite
observations were acquired during the hydrograph’s rising
limb when model errors are known to be only weakly cor-
related in time. This is due to the fact that during the ris-
ing limb, errors are difficult to predict as precipitation errors
continuously add to model parameter and model structural
errors. This conclusion is in line with the findings of Mat-
gen et al. (2010) who stated that because of the underlying
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Fig. 10. Idem Fig. 8, but applying the local weighting approach for every location along the river (lw: local weight).

assumption of constant relative errors, the inflow correction
model is reliable only during flow recession periods.

5 Conclusions

Our case study illustrates advantages and drawbacks related
to the application, in a quasi-operational context, of a PF-
based assimilation of RSD water levels into a hydraulic
model. Two variants of the PF, based respectively on local
weighting and global weighting procedures, are proposed. In
the global weighting procedure, a single particle contains wa-
ter levels at all cross sections as state vector. Hence, the like-
lihood for each particle is derived from its ability to correctly
predict water levels along the entire river reach. The local
weighting procedure attributes a separate particle set to each
cross section (i.e. a single particle has the water level from
one cross section as state vector) and thus associates like-
lihoods to each particle according to its ability to correctly
predict water stage at a given cross section. The experiment
concludes with the following findings.

1. Matgen et al. (2010) demonstrated through a series of
synthetic experiments with unbiased model forecasts

and observations that a PF-based assimilation scheme
enables the sequentially updating of flood forecasting
models. The filter helps to correct for errors in the
forcings and guides the recovery of the correct water
depth over a modelled river reach. In our real-event case
study, even according to the best-case scenario when
precise in situ measurements are assimilated into a hy-
draulic model, difficulties arise from the fact that model
accuracy varies in space. This makes it difficult for a
global weighting procedure to identify a model run that
performs equally well at all cross sections. In fact, in-
put errors are not the only source of model uncertainty.
Parameter uncertainty and geometry errors, as well as
intermediate inflow errors, lead to locally biased model
results. Therefore, an assimilation scheme that is based
on a local weighting procedure seems to be the preferred
solution when dealing with a model that cannot be well
calibrated and when observations with a very low un-
certainty are to be assimilated.

2. Before any assimilation of data, the set-up and calibra-
tion of the hydraulic model are of paramount impor-
tance. It is important to bear in mind that the Particle
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Fig. 11. Idem Fig. 9, but for the local weighting procedure and the
assimilation of the ground measurements.

Filter (and also the Kalman Filter) is a method designed
to filter noise, not systematic errors. Our results show
that this is particularly important when in situ measure-
ments are assimilated, because there is a significant risk
that the performance of a model at a local level is not
truly representative for its behaviour at a regional level.
In this case, the assimilation can potentially lead to a
deterioration of model performance.

3. The quality of the observation data is the second fac-
tor that largely determines the effectiveness of the fil-
ter. In instrumented basins with well-calibrated models,
the hydrodynamic model uncertainty appears low com-
pared to currently available remote sensing observation
uncertainty. Nevertheless, our experiment shows that
forecast improvements are achievable with currently ex-
isting SAR data. However, there is a need to take
into account the possibility of bias in the observation
data. A PF that is based on a local weighting proce-
dure is the preferred solution when assimilating unbi-
ased and/or very precise observations as it helps to iden-
tify the true water surface line at the time of data ac-
quisition. In ungauged basins where RSD water levels
are the only available data source, the PF with a global
weighting procedure is to be recommended. Certainly,
methodologies for retrieving water levels from remote

sensing observations need to be improved. The avail-
ability of VHR SAR satellites and the global DEMs
with increased accuracy can be used to further reduce
uncertainty and bias of such data sets. The hydraulic
coherence concept that was applied in this study is an-
other step forward. We show that observational uncer-
tainty can be significantly reduced by using hydraulic
rules governing overland flow in a floodplain to correct
unrealistic water levels.

4. Our results further show the added value of RSD wa-
ter levels when compared to in situ measurements.
Both data sets appear to be complementary. In situ
measurements are precise and provide time-continuous
data. However, the data sets are only available as point
measurements, which can lead to the over- or under-
correction of models. The RSD information provides
distributed water level information over many cross sec-
tions. The uncertainty of water stage estimates inferred
from currently operating sensors, as well as sampling
rates of 24 h and less, represent serious limitations. The
combination of both data sets likely yields the best as-
similation results but more research on this topic is re-
quired.

5. For operational applications, it is important to achieve a
persistent improvement of the forecasts as a result of
a PF-based assimilation of water stage data. Due to
the dominant effect of the upstream boundary condition,
this means that the results of the analysis need to be used
to correct erroneous inflow data. Although this study
focused mainly on an improvement of the analysis step,
two limitations of the initially proposed inflow correc-
tion model are highlighted. First, it becomes obvious
that the analysis step is of paramount importance for
carrying out an efficient inflow correction: errors in the
analysis propagate through the inflow correction model,
thereby potentially degrading the skill of the forecasts.
Second, the error prediction model itself needs to be
reviewed as it is clearly shown that the underlying as-
sumption of constant relative errors is not valid, espe-
cially during the rising limb of the hydrograph. Hence,
we advocate the development of enhanced error predic-
tion models.

Moreover, future research should consider the application
of the proposed assimilation scheme to longer river reaches.
We believe that the approach we introduced in this paper has
the highest potential for model improvements in large river
systems that are poorly gauged but which could benefit from
the use of globally and freely available remote sensing data
(see also Schumann et al., 2010). In fact, when the ultimate
objective is the use of updated levels for flood forecasting
applications, we hypothesize that in larger river systems the
dominating effect of the boundary condition is reduced and
this would indeed favor more persistent model improvements
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through data assimilation procedures. Moreover, the applica-
tion of the proposed assimilation scheme to other case stud-
ies will lead to a better understanding of the scaling issue
linking the length of the river reach to the model forecast
performance.

Acknowledgements.This study was part of the HYDRASENS
project, financed by the National Research Fund (FNR) of the
Grand Duchy of Luxembourg and the Belgian Federal Science Pol-
icy Office in the framework of the STEREO II research programme
(Contract nr. SR/00/100). Renaud Hostache was funded by the
FLOODTRACKER project, financed by the National Research
Fund (FNR) of the Grand Duchy of Luxembourg in the framework
of the CORE research programme. Gabriëlle De Lannoy is a
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5. SYNTHESIS 

5.1. Conclusions 

This thesis offered a number of insights into the progresses towards the implementation of an 

end-to-end processing chain that integrates remote sensing information into hydraulic models. 

A first step in this direction concerns the development of an algorithm that is capable of 

providing satisfactory results in mapping, in a completely unsupervised way, flood extents in both 

rural and urban areas. The latter is the most challenging environment, due to man-made features, 

but it also represents the area where flooding is a major hazard, as a consequence of the increased 

risks to life and property in such a region. Build-up environments are therefore at the centre of 

the interest of stakeholders in flood management and civil protection agencies. 

A fully automated SAR mapping algorithm was here developed to enable the automated, 

objective, and reliable flood extent extraction from SAR data (Giustarini et al., 2013), both in 

rural and urban areas. It is a hybrid methodology that integrates statistical modelling of 

backscatter values attributed to water bodies with backscatter thresholding, region growing and 

change detection. This combination of different image treatment techniques aims to combine 

their respective strengths, limiting at the same time their own shortcomings, if considered 

individually. 

The main advantage of the proposed algorithm lies in the fact that no manual and subjective user 

input is required from the user, enabling therefore automated flood detection. The flood 

mapping procedure of Giustarini et al. (2013) automatically optimizes all its parameters, 

overcoming one of the limitations of Matgen et al. (2010), i.e. the presence of a parameter with a 

fixed a-priori value. Building on the conclusion of the same paper, the developed algorithm 

include an “all-at-once” calibration that optimizes all algorithms’ parameters, including the region 

growing threshold parameter. The method operates with minimum data requirements and it 

efficient in terms of computational time, a characteristic that is fundamental for near real time 

applications. The algorithm is also currently hosted in the Grid Processing On Demand (G-

POD) platform of the European Space Agency (https://gpod.eo.esa.int/). 

The use of a couple flood/reference images enables the creation of a mask of permanent surface-

like radar response areas (tarmac, paved roads, parking lots) and of shadow-affected regions. 

These areas, not visible to the satellite, are then removed from the final flood map. The merit of 

this approach is that, other than the flood image, it only requires one additional input, which is 

the reference image, to produce such a mask of “undetectable” areas. On the other hand, the 

algorithm of Mason et al. (2010) necessitates of two additional inputs, i.e. a high-resolution DEM 

and a SAR simulator. A potential issue of the method of Giustarini et al. (2011) concerns the 

number of suitable candidate images, which can be (currently) limited in case of relatively new 

satellites. However, it is important to note that image archives are gradually being built up, which 
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will progressively increase the likelihood of finding adequate reference images in the online 

archives in the near future. 

This algorithm of Giustarini et al. (2013) overcomes some limitations of previous methods. In 

particular, with minimum data requirements and taking advantage of change detection, it allows 

mapping rural and urban flooding, in a completely unsupervised way, providing accurate and 

reliable results. The challenging test case of flooding in the city of Twekesbury (UK) proved that 

the algorithm is capable of mapping urban flooding with good accuracy. Nevertheless, further 

technological and methodological improvements are still necessary for SAR-based flood 

detection algorithm in urban areas to match the mapping capability of high-quality aerial 

photography. 

Some of the difficulties of mapping flood in urban environment were addressed by the use of a 

reference image. Concerning the issue of shadow areas, some progresses were possible through 

the use of change detection. Its strength lies in the fact that it allows the region growing to extend 

further into the high percentiles of the gamma distribution, as it efficiently removes part of the 

resulting overdetection. Here, it was assumed that the resulting overdetection might be addressed 

through change detection, since urban shadow areas do not change between two images acquired 

with the same imaging characteristics. The main part of the misclassification can be imputed to 

limitations of the SAR imaging techniques. On the other hand, one of the remaining limitations is 

the detection of flooding in layover regions. 

A second drawback of the algorithm of Giustarini et al. (2013) is the assumption of bimodality in 

the image histogram. In the proposed method, an appropriate option is already available in case 

of non-bimodal histogram. It consists in the option, for the user, to manually set a range of 

plausible backscatter values, inside which the algorithm tests different modes searching for the 

optimal one. However, this violates the assumption of a complete level of automation, 

introducing subjectivity and reducing traceability and reproducibility. 

Further research is still needed to improve the algorithm’s performances and to do so it is also 

hypothesize that ancillary data (topography, land use, …) could play a significant role and should 

be included in all cases where higher classification accuracy is needed. 

A rapid access to the archive of images is also of paramount importance for an algorithm based 

on change detection. Moreover, in a crisis management context, it is well known that the value of 

remote sensing information rapidly decreases (Matgen et al., 2007). The time delay between 

image acquisition and distribution of flood information needs thus to be substantially shortened, 

if current and future SAR satellite missions are to be routinely used for flood observations. 

Moving to the analysis of flood mapping uncertainty, the paper of Giustarini et al. (2015a) 

investigated the influence of speckle on both the image histogram and the resulting flood map. 

To investigate the propagation of this component of uncertainty, from the SAR image to the final 

map, the algorithm of Giustarini et al. (2013) was applied. 

From the original SAR image, several synthetic images were generated by bootstrapping the 

image pixels. Visual inspection of the different histograms of the synthetic images showed 

minimal differences. This outcome was confirmed by similar values, in terms of the flood 
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mapping algorithm’s parameters, when the synthetic images were provided as input to the code 

of Giustarini et al. (2013). From this it was concluded that speckle uncertainty could be 

considered as a negligible component of the total uncertainty. Additionally, flood maps obtained 

from the synthetically generated images were compared against validation data, concluding that 

also in terms of classification accuracy the influence of speckle uncertainty can be regarded as 

minor. 

Next key tasks will be the analysis of other uncertainty components, such as other imaging 

characteristics (e.g. imaging modes, resolution) and/or ground perturbations (e.g. wind, trees, 

buildings masking water, terrain geometry). 

A further conclusion of this paper concerned the identification of the smallest number of 

synthetic images needed to adequately describe uncertainty due to speckle. From the initial 

number of 1000 images, it was found that an ensemble of 200 would still be correctly 

representative of speckle uncertainty. Nevertheless, for near real time applications such a number 

is still too high, particularly w.r.t. the fact that only one component of the total uncertainty is 

addressed. 

The final step of the proposed end-to-end processing chain is the actual integration of remote 

sensing information into hydraulic models. This was performed through data assimilation, using a 

PF to weigh the different ensemble members. 

Real event water elevations were assimilated into a properly adapted version of the PF of Matgen 

et al. (2010), modified to deal with non-Gaussian distribution of observations. The flexibility of 

the assimilation filter was tested considering uniform distribution of observations, envisaging also 

the exploitation of the full empirical distribution of water elevations. Unfortunately, for the 

specific test case, the uncertainty of the full empirical distribution in SAR-derived water 

elevations was too high to prove useful in the specific assimilation study. 

To deal with model structure error and, at the same time, possibly biased observations, a global 

and a local weight variant of the PF were tested. The variant to be preferred depends on the level 

of confidence that is attributed to the observations or to the model. It was found that an 

assimilation scheme based on a local weighting procedure seems to be the preferred solution 

when dealing with a model that cannot be well calibrated and also when unbiased and/or very 

precise observations are to be assimilated. In ungauged basins, where remote sensing derived 

water elevations are the only available data source, the PF with a global weighting procedure is to 

be recommended. 

The availability of two subsequent satellite observations allowed testing the capability of error 

prediction model to correctly update the input discharge to the model. It was found that the 

underlying assumption of constant relative errors is not valid in a real case study, especially 

during the rising limb of the hydrograph. Therefore, future research will deal with the revision of 

the error prediction model. 

The study of Giustarini et al. (2011) also highlighted the complementarity of remote sensing 

derived and in-situ data sets. In-situ measurements are precise and provide time-continuous data 

but they are only available as point measurements, which can lead to the over- or undercorrection 
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of models. On the other hand, the remote sensing derived information provides distributed water 

level information over many cross sections but only at times of satellite overpasses. 

A major limitation of the proposed method is the fact that the step of water elevations extraction, 

intersecting a DEM and a mapped flood extent, tend to be a rather time consuming task, which 

hampers the application of this approach in near real time. 

 

5.2. Further applications 

In addition to the material presented in this thesis, some recent developments have been 

proposed to deal with several limitations of the presented approach.  

 

5.2.1. Further improvements in flood mapping 

One of the limitations of the algorithm of Giustarini et al. (2013) is the assumption of bimodality 

in the image histogram. As anticipated, in case the image histogram is not bimodal, the 

optimization of the theoretical curve describing the water pixels has to be manually constrained 

in a user-defined range. This violates the assumption of a complete level of automation. To 

overcome this shortcoming, Lu et al. (2014) proposed an alternative procedure for core water 

body identification, in case of non-bimodal image histogram. In their method, the statistical 

distribution of the “open water” backscatter is derived through a difference image obtained from 

the flood and the reference ones. After a mask of core water bodies is identified in the difference 

image, the mask itself is applied on the flood image to extract the pixels located in the core water 

bodies and estimate on the histogram obtained with only those pixels the statistical distribution 

of the “open water” backscatter. Experimental results with two pairs of SAR images showed 

accurate classification accuracy, for images characterized by non-bimodal histograms. With 

respect to the algorithm of Giustarini et al. (2013), the method of Lu et al. (2014) is characterized 

by an increased robustness in detecting floods in SAR images is its robustness, obtained without 

losing accuracy and efficiency. 

A remaining limitations of the algorithm of Giustarini et al. (2013) was the detection of flooding 

in layover regions. The more recent paper of Mason et al. (2014) investigated the use of double 

scattering to detect urban flooding in layover regions, where flooding may not normally be 

apparent. In this paper, urban flooding was successfully detected in layover regions using double 

scattering between the (possibly flooded) ground surface and the walls of adjacent buildings. The 

authors tested their approach, both including and excluding a change detection step between 

flood and reference image, obtaining similar results. 

In spite of the progress in the development of flood mapping procedures, the detection of 

inundation in vegetated and urban areas still represents a critical issue. The presence of water is 

rarely detectable in an unambiguous way with intensity SAR data alone (i.e., the backscattering 

coefficient sigma nought) because, especially in urban environments, multiple effects influence 

the radar response. To fully exploit available SAR data, SAR interferometric coherence represents 

a potentially valuable technique. While the usefulness of the coherence for detecting water in 
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open space has been demonstrated in several studies (Marinelli et al., 1997; Nico et al., 2000; 

Refice et al., 2014), first insights on how this feature can be used to detect water in urban areas 

have been reported only recently. For example, Chini et al. (2012) analysed the use of COSMO-

SkyMed data for the floods caused by the 2011 tsunami in Japan. Franceschetti et al. (2002) 

showed that the double bounce effect in urban areas is typically represented in SAR images by a 

very bright line that appears on the side of the wall that is illuminated by the radar. However, 

using the model developed by Ferro et al. (2011), which assumes for simplicity an isolated 

building, Pulvirenti et al. (under review) found that even in an ideal situation of an isolated 

building surrounded by a homogenous ground surface, the increase of the double bounce due to 

the presence of floodwater is not very high, if buildings are not aligned parallel to the SAR flight 

direction. This increase can hardly be detected through an intensity change detection approach in 

a complex urban environment, where the assumption of isolated buildings is often unrealistic. 

Hence, an idea would be to integrate intensity data with other features extracted from SAR data, 

such as the coherence. The interferometric coherence is basically a measurement of the degree of 

correlation between two complex (phase and amplitude) SAR images. It is defined as the 

normalized cross correlation between the images (Zebker and Villasenor, 1992). It is particularly 

related to the change in the spatial arrangement of the scatterers within a SAR image pixel (Chini 

et al., 2015), and thus to geometric changes in the scene. An interferometric pair can be built 

using two images taken before the flood (hereafter denoted as pre-event pair), after the flood 

(post-event pair) or one image before and another after the flood (co-event pair). It is expected 

that flooded areas will exhibit low coherence, which helps distinguishing them from non-flooded 

regions (especially over targets such as urban areas) where this feature is expected to be high. 

These considerations suggest that a coherence change detection approach could effectively 

complement one that is solely based on intensity change detection. 

An additional improvement in terms of flood mapping and its uncertainty would be the 

generation of flood probabilistic maps. All the previously mentioned mapping algorithms provide 

flood extent estimates in the form of binary maps. In other words, each pixel is classified either 

as flooded or as non-flooded, without any uncertainty to characterize its status. As an alternative, 

flood extent estimates could be expressed in the form of probabilistic maps, where the estimated 

condition of any given pixel is represented by a continuous probability in the range [0, 1]: with 0 

indicating pixels that are certainly dry, 1 indicating pixels that are certainly flooded, and 

intermediate values indicating an intermediate probability of a pixel being flooded. A map 

displaying uncertainty in the prediction of each pixels’ status would represent a precious source 

of information, in the sense that it would show pixel by pixel the level of confidence of the 

output map. For example, pixels with a value of 1 (flooded) or of 0 (non-flooded) are 

characterized by no uncertainty: they are located in the core of the water bodies, either 

permanent or temporary, or considerably far away from the river network and/or on regions 

raised about the river network, respectively. This lack of uncertainty will make these pixels the 

less problematic areas in terms of decision making. On the other hands, pixels with a 

probabilistic value of ~0.5 will be the most uncertain, requiring to be treated with caution by 

decision makers. They are presumably located in the transition area between the core of water 

bodies and the non-flooded regions around them. 
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In literature, some attempts to characterise uncertainties in flood extent maps have been 

proposed, based on random realisations of potential sources of uncertainty (e.g. Hostache et al. 

2006; 2009; Schumann et al., 2008a; Di Baldassarre et al., 2009; Giustarini et al., 2015a), but these 

studies tend to be rather time consuming and do not characterise uncertainty from a statistical 

point of view, necessary for assimilation purposes. 

A possibility to explore is an approach inspired by the algorithms of Giustarini et al. (2013) and 

based on a Bayesian framework. The idea is to use the first part of the flood mapping algorithm 

to decompose the image histogram in its two components and then to estimate the probability of 

a pixel to be flooded, conditioned on its backscatter value, with a Bayesian approach (Giustarini 

et al., 2015b). The method is composed of two steps. First, the statistical distribution of open 

water backscatter in the flood image is estimated. Assuming that the image histogram is 

composed of two populations (flooded and non-flooded), subtracting the statistical distribution 

of open water from the total image histogram, the statistical distribution of non-flooded pixels 

can be obtained. Second, in the framework of a Bayesian approach, the probability of being 

flooded of each pixel is derived based on its backscatter value, using two sets of probabilities: the 

already computed two probability distributions of the two populations and two prior probabilities 

of pixels status, which have to be estimated. 

 

5.2.2. Data Assimilation in a broader context 

In a broader context, it is interesting to report two more applications of the same data 

assimilation algorithm of Giustarini et al. (2011). The first study, still concerning the field of 

hydrology, uses the same PF assimilation scheme and assimilates the same type of satellite 

derived observations, i.e. water elevations, of Giustarini et al. (2011). However, here the aim is 

the retrieval of riverbed bathymetry. A second study moves to the research field of crop growth 

modelling and presents an adaption of the PF assimilation scheme of Giustarini et al. (2011). In 

this case, also the assimilated observations are different, being derived from multi spectral 

satellite data. These studies show the flexibility of such an assimilation scheme based on the PF 

and its usefulness for different research and application fields. 

The study by Hostache et al. (2015) used the same PF developed in Giustarini et al. (2011) to 

assimilate synthetic observations of water elevations, similar to those that can be expected to be 

measured by a drifting buoy floating along a river reach. The idea is to evaluate the potentiality of 

Global Navigation Satellite System (GNSS), like for instance Global Positioning System (GPS), 

for measuring such data. These observations of water elevations would be extremely beneficial if 

assimilated into hydraulic models to retrieve riverbed bathymetry, which is generally rarely 

available but mandatory for accurate hydrodynamic modelling. Synthetic observations of a 

drifting buoy were generated assuming a 30 cm average error of water surface elevation 

measurements. By assimilating the synthetic observation into a 1D hydrodynamic model, it was 

shown that the riverbed bathymetry can be retrieved with an accuracy of 36 cm. Moreover, the 

water surface elevations simulated by the hydro dynamic model using the retrieved bathymetry 

were found to be in good agreement with the synthetic “truth”, exhibiting an RMSE of 27 cm. 
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In the paper of Machwitz et al. (2014), a second application of the developed PF assimilation 

scheme was tested in a the research field of crop growth modelling. The coupling of a crop 

growth model (CGM) with a radiative transfer (RTM) model offers the possibility to assimilate 

remote sensing data and to overcome uncertainties in input parameters and settings. The particle 

filter of Giustarini et al. (2011) was adapted to assimilate spectra observations and later used to 

assimilate multi spectral satellite data into the CGM APSIM, coupled with the RTM PROSAIL. 

As the PF does not require Gaussian distribution of the parameters and is capable of dealing with 

non-linear models, it provides a flexible method to integrate any remote sensing data into a 

coupled CGM-RTM. The method was applied for maize fields in Luxembourg. First, to test the 

applicability and the robustness of the algorithm, a synthetic experiment in a completely 

controlled environment was setup. The suitability of synthetically generated RapidEye and 

Sentinel-2 data was tested. The spectral resolution of both sensors proved to be capable of 

improving model forecasts after assimilation. A major outcome of the synthetic experiment was 

highlighting the importance of the remote sensing acquisition time. Only assimilations performed 

in a limited time window of 20 days between Day Of the Year 175 and 195 was found to provide 

a significant improvement in model forecast. The real case study with observed RapidEye data 

from 2010 confirmed these findings. In the optimal time window determined through the 

synthetic experiment, data assimilation lead to a significant increase of accuracy (up to 36%) in 

model forecast. In some of the case studies, accuracy did not vary (1-2%) and this happened 

mainly for situations where biomass prediction in the open-loop was already quite accurate. It is 

important to mention that a CGP like APSIM provides only one value (at each time stamp) for 

an entire test site area. This mean that the entire polygonal region will be attributed the same 

unique value modelled in APSIM. The added value of data assimilation, through the coupling 

with spatially distributed remote sensing observations, is that assimilation can be performed pixel 

by pixel, obtaining after assimilation a spatial distribution of different forecasted values inside the 

given polygon. This is a move beyond point information, as generally provided by models, 

towards spatially distributed predictions. 
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6. PERSPECTIVES 

Before the proposed end-to-end processing chain can be turned into practice, several 

improvements are needed. In terms of user access to satellite data, efforts should be made 

towards a reduction of the latency time, i.e. time between the acquisition of an image and the 

moment it is available to the user. It goes without saying that a rapid access to images would 

increase the efficiency of the proposed method. Concerning the issue of time, while the described 

flood mapping algorithm has been proved of having time-efficient performances, the bottleneck 

of the procedure remains in the accessibility to the SAR images. 

Nevertheless, faster and automated procedures are still needed to extract water elevations from 

detected flood extents. Moving towards an approach purely based on satellite observations, the 

availability of global DEM with high resolution, such as the WorldDEM DTM, would be 

welcome. This would render the processing chain independent from the existence of a local 

LiDAR DEM. 

This remains valid as long as the variable assimilated into hydraulic model is water elevation. In 

fact, assimilation of flood extent could be envisaged for the first time if observations in terms of 

probabilistic maps could be obtained, replacing the currently used binary maps 

(flooded/nonflooded). 

Such a probabilistic map (Giustarini et al., 2015b) would offer exciting opportunities for reducing 

the number of inputs and steps required before data assimilation can be performed. For example, 

the need of a DEM to derive water elevation would be relieved and, with this, the corresponding 

and generally time-consuming, step of water elevation computation. For a reliable assessment of 

flood mapping uncertainty and a subsequent successful data assimilation, a probabilistic map 

would need to take into account all other uncertainty components, rather than the simple speckle 

effect (Giustarini et al., 2015a). 

Eventually, for flood mapping applications, systematic and more frequent acquisition would be 

of paramount importance to improve model forecast. The upcoming Sentinel 1 mission offer a 

unique opportunity to observe the Earth with a short revisit interval, essential to capture 

highlydynamic basin-scale hydrological processes, coupled with high-spatial resolution imaging 

characteristics. 

 

6.1. Flood hazard mapping 

A move beyond pure mapping of flood from satellite would be the assignment of a non-

exceedance probability (and corresponding return period) to the retrieved pattern of an 

inundation. Flood risk mapping from space would be then achieved, combining several imaged 

inundations with their attributed return periods. 
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Traditional approaches for flood risk mapping are based on a cascade of process-based models. 

A hydraulic model is set up for the region of interest and design flood hydrographs of a given 

return period are routed through it (Alfieri et al., 2014). The general assumption is that the return 

period of the design hydrograph is attributed to the flood extent so obtained. While this 

procedure is commonly accepted as best practice, it is well known that this assumption is not 

always valid, particularly in situations where long river reaches are considered and long travel 

times and possible interactions between different tributaries play a significant role (Neal et al., 

2013). That is why, in the framework of a comprehensive and standardized flood risk 

management at global scale, the development of a remote sensing-based flood hazard mapping 

method is of primary interest. 

A flood hazard mapping approach purely based on satellite observations would be welcome by 

the scientific community, as it would have the merit of being accurate, robust and applicable 

throughout the world, particularly in regions where ground observations are not available. 

However, this approach is currently limited by the fact that collected time series of images are 

discontinuous and the time periods covered are not long enough to provide an estimate of flood 

inundation probability distributions. 

Because of the aforementioned limitations of existing methods, a step change in large scale flood 

hazard mapping could be achieved by combining discontinuous (and typically short) series of 

remote sensing-derived flood inundation maps with a time-continuous (long) series of 

hydrological data. The assumption behind this approach is that observed inundations of the 

discontinuous series show a good correlation with the synchronous value of the hydrological 

variable in the continuous series. This has been proven true for the relationship between 

inundation and river discharge (Frazier and Page, 2009) and for the relationship between 

inundation and water height (Jung et al., 2011). 

Huang et al. (2014) combined remotely sensed data obtained with Moderate Resolution Imaging 

Spectroradiometer (MODIS) and gauge observations of discharge, to derive a flood probability 

map over the Murray-Darling basin in Australia. The first step of the procedure is the selection of 

a point measurement, i.e. a stream gauge, which is assumed to be representative of a predefined 

floodable area. The choice is based on the understanding of the hydrology of the region in 

response to floods, with constrains related to the length and completeness of available data 

records, for reasons of statistical significance. An inherent limitation of this approach is therefore 

the type of hydrological variable used. Considering that river gauge networks tend to be poorly 

distributed and in decline, a global scale application of this method remains problematic. 

As an alternative, a recent work (Giustarini et al., submitted) combines the global water 

information provided by the PDWC2012 (Pappenberger et al., 2012) model at high temporal 

(daily) and relatively coarse spatial (1 km) resolution with discontinuous but comparatively high 

spatial-resolution flood maps, derived from microwave remote sensing observations. The novelty 

of this study relies on the use of modelled time-continuous series of flood extent or volume that 

cover, on a global scale and with consistent quality, a period that is adequate for enabling 

statistical analysis. The study site is the Severn basin (UK), a data-rich catchment that allows for a 

comprehensive validation of the proposed procedure. 



Perspectives 65 

 

A first objective of this study is the analysis of correlation between satellite-derived flood extent 

and synchronous modelled variables, i.e. modelled flood extent and volume. Secondly, the aim is 

to explore the possibility of using variables derived from a global scale hydrodynamic model to 

attribute probabilities to satellite-derived flood maps. The idea behind such an approach is to 

highlight the complementarity of remote sensing-derived inundation maps and time-continuous 

modelled series for flood hazard mapping, building upon the availability for all regions of the 

world of a modelled time series of flood inundation map, both complete and of sufficient length 

for statistical analysis. 

 

6.2. Assimilation of flood extent 

The probabilistic map of Giustarini et al. (2015b) would be beneficial also for data assimilation 

studies. 

Assimilation of hydraulic variables derived from remote sensing has gained momentum in recent 

years with several proof-of-concept studies, demonstrating the ability of these data to improve 

model predictions (Matgen et al., 2010; Hostache et al., 2010; Giustarini et al., 2011; Mason et al., 

2012b). The observation most commonly assimilated is represented by water elevation data, at 

various points along the modelled reach. The above mentioned methods all make use of water 

elevations, which may be estimated indirectly along the flood extents in SAR images by 

intersecting flood extent and floodplain topography. This procedure cannot generally be 

performed in a real-time scenario, as it tends to be rather time-consuming. 

The direct assimilation of flood extents into models would then be extremely beneficial, 

eliminating the intermediate step of water levels extraction. New data assimilation method will 

need to be developed to assimilate a 2D product such a probabilistic map. In fact, in a flood 

probabilistic map each pixel value represents the uncertainty associated with its status of being 

flooded. For example, pixels with a value of 1 (flooded) or of 0 (non-flooded) are characterized 

by no uncertainty and they will not be taken into account in the assimilation algorithm. On the 

other hands, pixels with a probabilistic value of ~0.5 will be the most uncertain and also crucial 

for assimilation applications. While the pixel value represents its uncertainty, the variable of 

interest, i.e. the pixel status, remains a binary one (flooded/non-flooded). A binary pdf can 

therefore be envisaged to assimilate into hydraulic models this type of observation as provided by 

a flood probabilistic map. 
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