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Zusammenfassung (German Summary)

Matchingprobleme mit zusätzlichen Ressourcenbeschränkungen stellen eine Verallgemei-
nerung klassischer Matchingprobleme dar. Damit eine Menge von Kanten ein zuläs-
siges Matching für ein solches Problem ist, muss sie neben den Matchingbedinungen
noch die Anforderungen der zusätzlichen Ressourcenbeschränkungen erfüllen. Im Fokus
dieser Arbeit stehen Matchingprobleme mit zwei Arten zusätzlicher Ressourcenbeschrän-
kungen: Das couple constrained matching problem und das level constrained matching
problem. Im couple constrained matching problem fordern die zusätzlichen Ressour-
cenbeschränkungen, dass für eine Menge von Kantenpaaren (sogenannten couples) die
Kanten eines Paares entweder beide im Matching sind oder beide nicht im Matching
sind. Im level constrained matching problem kommt exakt eine zusätzliche Ressour-
cenbeschränkung vor. Sie gibt die Anzahl von sogenannten on-level Kanten in einem
Matching vor. In einem bipartiten Graphen, dessen Knoten mit Index notiert sind, sind
dies jene Kanten, deren zwei Endknoten den gleichen Index haben.
Zu Beginn werden grundlegende Formulierungen und Eigenschaften von Matching-

problemen wiederholt, die für das Verständnis dieser Arbeit von Bedeutung sind. Da-
rauffolgend werden die Formulierungen der beiden Hauptprobleme vorgestellt. Es wird
für beide Probleme gezeigt, dass deren Matchingvarianten maximales Matching, voll-
ständiges Matching und perfektes Matching polynomiell äquivalent sind. Als zusätzliche
Variante wird das Assignmentproblem mit beiden Arten von Ressourcenbeschränkungen
formuliert. Des Weiteren werden Probleme aus der Literatur vorgestellt, die in Bezug zu
den hier behandelten Matchingproblemen und deren Ressourcenbeschränkungen stehen.
Ein zentrales Ergebnis bezüglich des couple constrained matching problem ist, dass

dieses Problem NP-schwer ist. Dies wird durch die Verallgemeinerung einer Komple-
xitätsaussage zum Problem weighted matching with bonds aus der Literatur bewiesen.
Darüber hinaus geht aus den durchgeführten Reduktionsschritten des Beweises hervor,
dass das couple constrained matching problem auch dann NP-schwer ist, wenn es auf
bipartite Kreisgraphen beschränkt wird.
Ebenso befasst sich diese Arbeit mit Komplexitätsaspekten zum level constrained

matching problem. Dazu wird das Problem als perfektes Matchingproblem untersucht.
Es werden drei kombinatorische Optimierungsprobleme aus der Literatur vorgestellt,
deren Komplexität unbekannt ist, und die alle polynomiell äquivalent zum level con-
strained perfect matching problem sind. Eines dieser drei Probleme ist das resource
constrained perfect matching problem. Dieses Problem ist ein perfektes Matchingpro-
blem mit variabler Anzahl zusätzlicher Ressourcenbeschränkungen. Diese geben für
beliebige Teilmengen der Kanten obere Schranken für die Anzahl von Matchingkanten
aus diesen Teilmengen vor. Anhand dieses Problems wird dargestellt, welchen Einfluss
fixe und variable Parameter auf die Problemkomplexität haben können. Dazu wird

ix



Zusammenfassung (German Summary)

für verschiedene Kombinationen von fixen und variablen Eingabeparametern des Pro-
blems gezeigt, dass sie die polynomielle Lösbarkeit oder die NP-Schwere des Problems
implizieren. Dies erlaubt es auch, das level constrained perfect matching problem hin-
sichtlich seiner Komplexität innerhalb dieser Problemvarianten einzuordnen.
Ein Kapitel dieser Arbeit befasst sich damit, die beiden hier untersuchten Arten von

Ressourcenbeschränkungen zueinander in Bezug zu setzen. Zunächst wird gezeigt, dass
das level constrained perfect matching problem ein Spezialfall des couple constrained
perfect matching problem ist. Als wesentlicher Bestandteil dieser Thematik wird dann
die Komplexität des sogenannten couple and level constrained matching problem with
on-level couples bewiesen. Dieses Problem enthält beide Arten von Ressourcenbeschrän-
kungen, d.h. es enthält sowohl couple constraints als auch eine level constraint. Mittels
polynomieller Reduktion des Cliquenproblems wird gezeigt, dass dieses Problem NP-
vollständig ist. Der zugehörige Beweis basiert auf einer modularen Konstruktion und
Analyse der Instanz des couple and level constrained matching problem with on-level
couples in der Reduktion. Diesem Komplexitätsergebnis kommt eine besondere Bedeu-
tung zu, da das Problem ohne die level constraint leicht zu lösen ist. Somit wird auch
gezeigt, welchen Einfluss die level constraint auf eine leicht zu lösende – und insbesonders
polynomiell lösbare – Variante eines ressourcenbeschränkten Matchingproblems haben
kann.
Ein weiterer Teil dieser Arbeit widmet sich den Polytopen von Matchingproblemen

mit zusätzlichen Ressourcenbeschränkungen. Für das Polytop des relaxierten level con-
strained perfect matching problem wird eine Charakterisierung seiner nicht ganzzahli-
gen Ecken erarbeitet. Dazu wird eine Menge linearer Ungleichungen eingeführt für die
gezeigt wird, dass sie alle nicht ganzzahligen Ecken dieses Polytops von der convexen
Hülle aller ganzzahligen Lösungen separieren. Zudem wird dargelegt, dass für jede nicht
ganzzahlige Ecke eine separierende Ungleichung in polynomiell vielen Schritten gefunden
werden kann.
Zur Lösung des level constrained matching problem werden zwei neue Algorithmen

entwickelt. Der erste Algorithmus ist ein Approximationsalgorithmus für das level con-
strained matching problem auf level Graphen. Dieser hat die Eigenschaft, dass die von
ihm bestimmten Matchings die level constraint erfüllen und mindestens z∗ − 1 Kanten
enthalten, wobei z∗ die Kardinalität der Optimallösung ist. Der zweite Algorithmus ist
der Objective Branching Algorithmus. Dieser löst das equality constrained perfect match-
ing problem – ein perfektes Matchingproblem mit verallgemeinerter Variante der level
constraint – exakt. Er nutzt dabei aus, dass das gewichtete perfekte Matchingproblem
ohne zusätzliche Ressourcenbeschränkung polynomiell lösbar ist. Die Idee hinter dem
Algorithmus ist, dass eine Baumstruktur von Teilproblemen aufgebaut wird. Mit Hilfe
dieser Teilprobleme werden mögliche Lösungen des equality constrained perfect match-
ing problem bestimmt. Experimentelle Ergebnisse einer Implementierung des Objective
Branching Algorithmus finden sich im Anhang dieser Arbeit.
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Preface
In the wide field of combinatorial optimization problems, the matching problem is one of
the most investigated and best understood problems. In 1965 Jack Edmonds developed
his “blossom algorithm” for determining a maximum cardinality matching in graphs in
polynomial-time. From about that time onwards, the importance of matching problems
as a tool for modeling and solving many real-world problems became especially apparent.
From a complexity point of view, his work showed that the matching problem belongs
to the important class P of polynomially solvable problems.

Motivation of this work
The possibility of imposing additional constraints to the classical matching problem
proves very useful in modeling practical problems. It allows the creation of models
that represent the actual problem more accurately. Moreover, the additional constraints
might even be indispensable for modeling certain conditions. When matching problems
with different types of additional constraints are investigated, new combinatorial and
graph theoretical approaches to the problem need to be developed. Further, these prob-
lems give rise to investigations of their polytopal structure and lead to the challenge of
finding novel solution algorithms for the specific matching variant.
When tackling the task of finding a solution to a matching problem with additional

constraints, knowing about the complexity of that problem is of great advantage. If the
problem is NP-hard, then it is preferable (under the widely assumed hypothesis that
P 6= NP) to aim for a polynomial approximation algorithm rather than for a polynomial
algorithm which gives an exact solution to the problem. From a theoretical point of view,
investigations on the complexity of a matching problem with additional constraints often
reveal a connection to other combinatorial problems and shows how the problems can
be transformed into each other.
In general, additional side constraints of matching problems are referred to as resource

constraints. A very basic type of resource constraints are equality constraints. We will
distinguish whether they are imposed on matching problems as a set of additional con-
straints or as an individual constraint. Either way, the additional constraints themselves
are part of the problem input. When imposed as a set of constraints, the total number of
additional equality constraints is a significant part of the characteristic of the problem.
When imposed as a single constraint, it is the number of edges occurring in the equality
which is of particular interest.
In this work, we consider matching problems with two types of additional equality

constraints that represent these two opposed cases. The first one is a matching problem
which has imposed a set of additional equality constraints. Each constraint demands
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that for a given pair of edges either both edges are in the matching or none of them is in
the matching. This problem type represents the case of a variable number of additional
equality constraints with each individual equality having the lowest possible number
of variables while not being trivial. The second one is a matching problem which has
imposed a single equality constraint. This constraint demands that an exact number of
edges in the matching are elements of a special subset of the edges in the graph. The
content of this subset depends on the graph of the problem instance. This problem
type represents the case of a minimum number of additional constraints where it is the
number of variables in this constraint which is variable.
It is worth mentioning that the complexity of matching problems with additional

equality constraints is dependent on the combination of the basic matching problem
with these constraints. Hence, the effect of the additional constraints on the basic
matching problem is of particular interest. The investigations in this work aim at a
better understanding of complexity-related aspects of matching problems with additional
equality constraints. For that, it is important to mention that throughout this work we
follow the assumption that P 6= NP.

Structure of this work

In Chapter 1, we summarize elementary facts about classical matching problems that
are of relevance to this work. We recapitulate formulations of variants of matching
problems and briefly recall well-known transformation techniques and algorithms to solve
them. Further, definitions and basic properties of the matching polytope and the perfect
matching polytope are given.
In Chapter 2, the two main problems of this work – the couple constrained matching

problem and the level constrained matching problem – are introduced. Both problems
belong to the class of resource constrained matching problems. For each of the two prob-
lems the respective problem formulation is given in form of an integer linear program.
Further, we show the equivalence of different optimization variants of the respective
problems and present the assignment problems with corresponding side constraints. In
what follows, the implications of fixed parameters in the additional side constraints
we consider are discussed. This is done in the more general context of combinatorial
optimization problems, rather than restricting the assertions specifically to matching
problems. The chapter is concluded by presenting combinatorial optimization problems
from the literature which are related to our resource constrained matching problems.
Chapter 3 deals with the complexity of the couple constrained matching problem. We

start this chapter with a generalization of a known complexity result for the problem of
weighted matching with bonds. After showing some intermediate results, we finally prove
the new result that the couple constrained matching problem is NP-hard on bipartite
cycle graphs.
In Chapter 4, we examine complexity related aspects of the level constrained matching

problem. In this context we show that the level constrained perfect matching problem
is polynomially equivalent to three other combinatorial optimization problems from the
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literature. One of these problems is the so-called restricted perfect matching problem,
which is a perfect matching problem whose additional side constraints are upper bound
constraints rather than equality constraints. For different combinations of fixed and
variable parameters in these side constraints we investigate their effect on the complexity
of the problem. We show which conditions are sufficient for the problem to be NP-
hard and which are sufficient for it to be polynomially solvable. At the end of this
chapter, the complexity of the assignment problem with an additional equality constraint
is investigated.
In Chapter 5, couple constraints and the level constraint are associated with each

other. We first show that the level constrained perfect matching problem is a special
case of the couple constrained perfect matching problem. Then, we show that the level
constraint can be sufficient for making a polynomially solvable problem NP-hard when
being imposed on that problem. To this end, we introduce the couple and level con-
strained matching problem with on-level couples and prove that its decision version is
NP-complete. This problem is a matching problem with a special case of couple con-
straints together with a level constraint imposed on it. Without the additional level
constraint, the corresponding problem is polynomially solvable.
The topic of Chapter 6 is the polyhedral structure of resource constrained matching

problems. We present facet defining inequalities for the polytope corresponding to a
special case of the couple constrained assignment problem, as given in the literature.
For the polytope corresponding to the level constrained perfect matching problem we
take a closer look at its non-integral vertices. We develop a set of valid inequalities
which separates all non-integral vertices of the polytope from the convex hull of its
integral points. Further, we prove that for a given non-integral vertex of the polytope
a corresponding inequality which separates this vertex from the convex hull of integral
points can be found in polynomial time.
In Chapter 7, we deal with questions regarding the calculation of solutions of resource

constrained matching problems. We develop a new polynomial approximation algorithm
for the level constrained matching problem, which returns solutions whose size is at
most one less than the size of an optimal solution. We then describe a new algorithm
for exactly solving the perfect matching problem with an additional equality constraint.
The algorithm makes use of the fact that the perfect matching problem without an
additional side constraint is polynomially solvable.
Chapter 8 summarizes the main results of this work.
In the Appendix, a brief summary of the terminology and principles of computational

complexity is given. Further, it lists algorithms and computational results which are
mentioned in this work but are not crucial for the understanding of related topics.
Finally, a list of all problem formulations appearing in this work can be found in the
Appendix. It may be advisable to use this part for looking up specific formulations.
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1. Matchings – Introduction and Basic
Concepts

In this chapter, we recall those problem formulations and results concerning matching
problems which become relevant in the course of this work. This includes the formu-
lation of the classical matching problem and its variants, standard methods to solve
these problems and basic properties of the corresponding polytopes. For most of the
considerations in this chapter we distinguish between the bipartite case and the general
(nonbipartite) case.
We assume the reader to be familiar with the basic notations used in combinatorial

optimization. The formulations of the flow problems and the basic matching problems
in this chapter are as given by Ahuja et. al in [4]. For a comprehensive overview of the
wide field of matching problems in general we refer to the work of Ahuja et. al in [4] and
Schrijver in [49].
The chapter starts with an introduction of two types of flow problems in Section 1.1.

We formulate the maximum flow problem and the minimum cost flow problem with
regards to their importance as solution methods for bipartite matching problems.
In Section 1.2, we recall formulations of different variants of matching problems, in-

cluding the classical matching problem, its weighted version and the perfect and the
complete matching problem. Further, the assignment problem is formulated in terms as
used in this work.
Section 1.3 deals with polynomial solution methods of the matching problem and its

variants from Section 1.2. These methods are based on transforming the problems into
flow problems and on the usage of the Hungarian algorithm.
The perfect matching polytope and the matching polytope are considered in Section

1.4. We recall the properties of the polytopes which are of particular importance for this
work.
The chapter is concluded with Section 1.5, where the 3-dimensional matching problem

is introduced. The problem is formulated in terms of a hypergraph and its complexity
is stated.

1.1. Flow problems

1.1.1. The maximum flow problem

Let D = (N,A) be a directed graph with a source node s ∈ N and a sink node t ∈ N .
Further, let uij be the nonnegative arc capacity of arc (i, j) for all (i, j) ∈ A.

1



1. Matchings – Introduction and Basic Concepts

Problem Formulation 1.1 (Maximum flow). The task of the maximum flow problem
is to find a feasible flow of maximum value. It is formulated as the linear program

max v (1.1)

s.t.
∑

j:(i,j)∈A
xij −

∑
j:(j,i)∈A

xji =


v if i = s,

0 if i ∈ N \ {s, t},
−v if i = t

(1.2)

0 ≤ xij ≤ uij ∀ (i, j) ∈ A. (1.3)

The constraints (1.2) are called flow preservation constraints. Each vector x ∈ RA
which satisfies (1.2) and (1.3) is called a feasible flow in D. The value of the variable v
is the corresponding flow value. Each component xij is the amount of flow carried by
arc (i, j).
For a list of algorithms and corresponding running-times for the maximum flow prob-

lem see Appendix B. Among these algorithms there are algorithms having a polynomial
running-time, which implies that the maximum flow problem is polynomially solvable.
The extension of this result to the integer case is shown in [4].

Theorem 1.2. The maximum flow problem is polynomially solvable. If all arc capacities
are integer, the problem has an integer solution which can also be found in polynomial-
time.

1.1.2. The minimum cost flow problem
A generalization of the maximum flow problem is the minimum cost flow problem. Ad-
ditionally to the capacity values of arcs in A there is a cost value cij ∈ R for all arcs
(i, j) ∈ A. Furthermore, a feasible flow does not necessarily need to be balanced at each
node in N \{s, t}. Instead, the amount of flow emanating from a node minus the amount
of flow entering the node must equal a given number. Let b(i) be this number for all
nodes i ∈ N . If b(i) > 0 it is called the supply of node i, if b(i) < 0 it is called the
demand of node i.

Problem Formulation 1.3 (Minimum cost flow). The task of the minimum cost flow
problem is to find a feasible b-flow of minimum cost. It is formulated as the linear
program

min
∑

(i,j)∈A
cijxij (1.4)

s.t.
∑

j:(i,j)∈A
xij −

∑
j:(j,i)∈A

xji = b(i) ∀ i ∈ N (1.5)

0 ≤ xij ≤ uij ∀ (i, j) ∈ A. (1.6)

Each vector x ∈ RA which satisfies (1.5) is called a b-flow in D. If it additionally
fulfills (1.6) it is a feasible b-flow. For a list of algorithms and corresponding running-
times for the minimum cost flow problem see Appendix B. Among these algorithms there

2



1.2. Formulations of matching problems

are algorithms having a polynomial running-time, which implies that the minimum cost
flow problem is polynomially solvable. The extension of this result to the integer case is
shown in [4].

Theorem 1.4. The minimum cost flow problem is polynomially solvable. If all capacities
and supply/demand values are integer, the problem has in integer solution which can also
be found in polynomial-time.

1.2. Formulations of matching problems

LetG = (V,E) be an undirected graph. Amatching inG is a set of pairwise node-disjoint
edges in E. We identify a matching M in G with its incidence vector χM ∈ {0, 1}E ,
where

χMe =
{

1 if e ∈M,

0 otherwise

for all e ∈ E. In the case that the edges in E are denoted with indices, we simplify the
notation by writing χMi instead of χMei for all ei ∈ E. Given an edge [ui, vj ] ∈ E, we also
use the notations χM[ui,vj ] and χ

M
ij equivalently.

Given a matching M in G, a node v ∈ V is called M -covered (or covered by M) if
there exists an edge [v, w] ∈M . Otherwise, the node v is called M -exposed.

1.2.1. Matching problems on general graphs

Problem Formulation 1.5 (Matching). The matching problem is the problem of find-
ing a matching of maximum cardinality. It is formulated as the integer linear program

max
∑
e∈E

xe (1.7)

s.t.
∑
e∈δ(v)

xe ≤ 1 ∀ v ∈ V (1.8)

xe ∈ {0, 1} ∀ e ∈ E, (1.9)

where δ(v) denotes the set of edges incident to node v for all v ∈ V .

An optimal solution x ∈ {0, 1}E of a matching problem on G then is the incidence
vector of a matching of maximum cardinality in G. For a given matching M in G, we
say that two edges in E have the same matching activity if either both edges are in M
or both are not.
A matching M in the graph G is called a perfect matching if it covers all nodes in G.

Problem Formulation 1.6 (Perfect matching). The perfect matching problem is the
problem of finding a matching M in G such that all nodes in G are covered by an edge
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in M . It is formulated as the problem of finding a feasible solution to the system∑
e∈δ(v)

xe = 1 ∀ v ∈ V

xe ∈ {0, 1} ∀ e ∈ E.

The (perfect) matching problem (on bipartite and nonbipartite graphs) and the as-
signment problem (defined in Section 1.2.3) are the main problem types on which the
resource constrained matching problems we investigate in this work are based.
When each edge e ∈ E has an assigned weight ce ∈ R, then the matching problem

can be generalized by searching for a matching of maximum weight rather than one of
maximum cardinality. This yields the following problem:

Problem Formulation 1.7 (Weighted matching). The weighted matching problem is
the problem of finding a matching M in G which is of maximum weight. It is formulated
as the integer linear program

max
∑
e∈E

cexe (1.10)

s.t. (1.8), (1.9).

1.2.2. Matching problems on bipartite graphs
When the matching problem is stated on a bipartite graph G = (U ∪· V,E), constraints
(1.8) are replaced by the constraints∑

e∈δ(u)
xe ≤ 1 ∀ u ∈ U, (1.11)

∑
e∈δ(v)

xe ≤ 1 ∀ v ∈ V. (1.12)

Problem Formulation 1.8 (Bipartite matching). The bipartite matching problem is
the problem of finding a matching of maximum cardinality in a bipartite graph. It is
formulated as the integer linear program

max
∑
e∈E

xe (1.13)

s.t.
∑
e∈δ(u)

xe ≤ 1 ∀ u ∈ U (1.14)

∑
e∈δ(v)

xe ≤ 1 ∀ v ∈ V (1.15)

xe ∈ {0, 1} ∀ e ∈ E. (1.16)

In the case of a perfect matching problem on a bipartite graph, constraints (1.14) and
(1.15) are considered as equalities.
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Problem Formulation 1.9 (Bipartite perfect matching). The bipartite perfect match-
ing problem is the problem of finding a perfect matching in a bipartite graph. It is
formulated as the problem of finding a feasible solution to the system∑

e∈δ(u)
xe = 1 ∀ u ∈ U

∑
e∈δ(v)

xe = 1 ∀ v ∈ V

xe ∈ {0, 1} ∀ e ∈ E.

A perfect matching in a bipartite graph G = (U ∪· V,E) can only exist if the sizes of
the two color classes in G coincide, i.e. |U | = |V |. We next consider complete matchings,
which are matchings that cover all nodes in the smaller of the two sets U and V .

Problem Formulation 1.10 (Complete matching). The complete matching problem
is the problem of finding a matching M in the bipartite graph G = (U ∪· V,E) such that
all nodes in the smaller of the two color classes U and V are covered by M . Assuming
that |U | ≤ |V |, it is formulated as the problem of finding a feasible solution to the system∑

e∈δ(u)
xe = 1 ∀ u ∈ U

∑
e∈δ(v)

xe ≤ 1 ∀ v ∈ V

xe ∈ {0, 1} ∀ e ∈ E.

In contrast to the matching problem and the perfect matching problem, the complete
matching problem is defined only on bipartite graphs.
For all kinds of bipartite matching problems presented in this section there exist the

corresponding weighted problem variants as well. The objective of these problems is as
(1.10), where ce ∈ R is the weight of the edge e for all e ∈ E. As a special case of a
weighted bipartite matching problem we consider the assignment problem.

1.2.3. The assignment problem

Following the formulations of Burkard et. al [11] and Schrijver [49], the assignment
problem is a minimum cost perfect matching problem on a complete bipartite graph
Kn,n = (U ∪· V,E). Hence, it generalizes the bipartite perfect matching problem.
Let cij be the nonnegative cost of the edge [i, j] for all [i, j] ∈ E. In the context of

an assignment problem, an edge [i, j] in the graph Kn,n with i ∈ U and j ∈ V will also
be represented by the formulation that row i can be assigned to column j. This comes
from the interpretation of the graph Kn,n as a lattice of size n× n.
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Problem Formulation 1.11 (Assignment). The assignment problem (AP) is stated
as the following integer linear program:

min
n∑
i=1

n∑
j=1

cijxij (1.17)

s.t.
n∑
j=1

xij = 1 ∀ i = 1, . . . , n (1.18)

n∑
i=1

xij = 1 ∀ j = 1, . . . , n (1.19)

xij ∈ {0, 1} ∀ i, j = 1, . . . , n. (1.20)

Problem (1.17) – (1.20) is a balanced problem, i.e. it requires a graph with two color
classes of same size. In the unbalanced case, i.e. the case where |U | 6= |V |, the problem
corresponding to the assignment problem is to find a complete matching which is of
minimum cost. We are considering only balanced assignment problems, as problems on
a graph Km,n with m < n can be easily transformed into assignment problems on the
graph Kn,n.
Further, the restriction of the costs cij to be nonnegative can be done without loss

of generality. To see this, we consider a cost vector c′ whose components may also
be negative. Let x′ be an optimal solution to (1.17) – (1.20) with cost vector c′. Let
c′min := min{c′ij | i, j = 1, . . . , n}. We define a cost vector c as cij := c′ij − c′min. All
components of c are nonnegative. Now, we consider the assignment problem (1.17) –
(1.20) with cost vector c. As each feasible solution x contains exactly n components
which are of value 1 and all other components are of value 0, it holds that

min
n∑
i=1

n∑
j=1

cijxij

= min
n∑
i=1

n∑
j=1

(c′ij − c′min)xij

= min
n∑
i=1

n∑
j=1

c′ijxij − nc′min.

As nc′min is a constant, the assignment problem with cost vector c has the same
set of optimal solutions as the assignment problem with cost vector c′. This way all
problem instances with negative costs can be transformed into equivalent instances with
nonnegative costs.

1.3. Solution methods for matching problems
1.3.1. Solving bipartite matching problems
A standard technique for solving matching problems on bipartite graphs is the transfor-
mation of these problems into maximum flow problems (see [4], [34]), which is described
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next. The corresponding instance
(
D = (N,A), s, t, u

)
of the maximum flow problem

(see Section 1.1.1) is constructed as follows:

N = U ∪ V ∪ {s, t}, (1.21)
A = {(s, i) | i ∈ U} ∪ {(j, t) | j ∈ V } ∪ {(i, j) | [i, j] ∈ E with i ∈ U, j ∈ V }, (1.22)
uij = 1 for all (i, j) ∈ A. (1.23)

There is an equivalence of integral flows in D and matchings in G, which can be seen
when defining an edge [i, j] with i ∈ U and j ∈ V to be in a matching if and only if the
corresponding arc (i, j) ∈ A carries 1 unit of flow. Thus, each feasible integral flow of
value v in D corresponds to a matching of size v in the graph G, and vice versa. This
implies that a maximum integral flow in D corresponds to a maximum matching in G.
As the integer maximum flow problem is polynomially solvable (see Theorem 1.2), the
bipartite matching problem is polynomially solvable as well:

Theorem 1.12. Let G = (U ∪· V,E) be a bipartite graph. The matching problem on G
is polynomially solvable.

1.3.2. Solving weighted bipartite matching problems
Let G = (U ∪· V,E) be a bipartite graph and let c ∈ RE be a vector of edge weights. As
the weighted matching problem aims at determining a matching which is of maximum
weight, we can assume that all weights ce are nonnegative.

Transformation into minimum cost flow problem

We first present the approach of transforming the problem into a minimum cost flow
problem. The digraph D = (N,A) with source and sink nodes s and t and arc capacities
uij are defined as in (1.21) – (1.23) in Section 1.3.1. In addition, each arc (i, j) ∈ A with
i ∈ U and j ∈ V is assigned the cost −cij . All other arcs in A, i.e. the arcs emanating
from s or ending in t, are assigned a cost value of 0. We define b(k) = 0 for all k ∈ U ∪V
and b(s) = r, b(t) = −r, where r is a non-fixed variable.
Due to the equivalence of integral flows in D and matchings in G, each feasible integral

flow of total cost −z in D corresponds to a matching of size r and weight z in the graph
G. We solve the minimum cost flow problem for each r = 1, . . . ,min{|U |, |V |}. Among
all solutions, we consider a feasible integral b-flow which is of minimum cost. This flow
corresponds to an optimal solution of the weighted bipartite matching problem on the
graph G.

Applying the Hungarian algorithm

A second approach to solving the weighted bipartite matching problem is the so-called
Hungarian algorithm.
We extend G to a complete bipartite graph by adding all the edges e to G which are

missing, and assign them a weight of ce = 0. This way, all maximum weight matchings
in G can be assumed to be of the same size.
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If |U | 6= |V |, we balance the sizes of U and V by adding an appropriate number of
nodes to the smaller of the two sets, and add further edges of weight 0 to the graph.
Finally, the underlying graph is the complete bipartite graphKn,n, where n is the number
of nodes in the larger of the two color classes of G.
Now, for each matching in G which is of maximum weight there is a perfect matching

in Kn,n which is of the same weight, and vice versa. The Hungarian algorithm, listed as
Algorithm B.2 in Appendix B, determines a perfect matching of maximum weight with
respect to nonnegative edge weights in a complete bipartite graph Kn,n. The algorithm
is due to Kuhn [35], [36], who also proved its polynomial running-time.

Theorem 1.13. The weighted bipartite matching problem is polynomially solvable.

1.3.3. Solving weighted bipartite perfect matching problems

Let G = (U ∪· V,E) be a bipartite graph with |U | = |V | = n and let c ∈ RE be a vector
of edge weights. We now consider the task of finding a perfect matching in G which is
of maximum weight.
As the weighted bipartite perfect matching problem is a special case of the weighted

bipartite matching problem, the problem can be transformed into a minimum cost flow
problem as described in Section 1.3.2. As the resulting matching must be a perfect
matching, the parameter r is fixed to n. Then a feasible integral b-flow of minimum cost
in D corresponds to a an optimal solution to the weighted bipartite perfect matching
problem on the graph G.
It is further possible to use the Hungarian algorithm to determine a perfect matching

of maximum weight in G. We transform G into the complete bipartite graph Kn,n by
adding additional 0-weight edges. Now, we ensure that the Hungarian algorithm chooses
only those edges in Kn,n to be in a matching which have originally been in G.
To this end, we increase the weight ce for all edges e ∈ E. One should note that adding

a constant C to the weights of all edges in G does not change the set of maximum weight
perfect matchings in G. This holds as all perfect matchings in G are of the same size n,
and thus adding C to the edge weights is equivalent to adding the constant nC to the
objective function.
Let cmin := mine∈E ce and cmax := maxe∈E ce. Let C be a constant with

C > n(cmax − cmin)− cmax.

When adding C to the edge weight ce for all e ∈ E, the resulting edge weights c′e for
all edges e in Kn,n are as follows:

c′e =
{
ce + C if e ∈ E,
0 if e /∈ E.

Let M be a perfect matching in Kn,n with e ∈ E for all e ∈ M . Further, let N be a
perfect matching in Kn,n such that there is an edge e ∈ N with e /∈ E. The following
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holds:

c′(M) ≥ n(cmin + C)
= ncmin + nC + C − C
> ncmax − cmax + nC − C
= (n− 1)(cmax + C)
≥ c′(N)

Hence, a perfect matching consisting only of edges which are in E is of higher weight
than any perfect matching which contains an edge that is not in E. As the Hungarian
algorithm determines a perfect matching of maximum weight, it solves the weighted
bipartite matching problem.

Theorem 1.14. The weighted bipartite perfect matching problem is polynomially solv-
able.

1.3.4. Solving matching problems on general graphs
When a matching problem is stated on a nonbipartite graph G = (V,E), it is not possible
to transform the problem into a maximum flow problem. This is because the property
of a graph to be bipartite is essential for defining an orientation of the edges in E as
described in Section 1.3.1.
An algorithm for finding maximum matchings in nonbipartite graphs is presented in

Algorithm B.1 in Appendix B. The algorithm is based on so-called alternating trees
and a contraction procedure (called the shrinking procedure in Algorithm B.1) which
is credited to Edmonds [20]. Due to the running-time of the algorithm, we have the
following complexity result for the matching problem.

Theorem 1.15. The matching problem on a graph G = (V,E) is polynomially solvable.

1.3.5. Solving assignment problems
Let Kn,n = (U ∪· V,E) be the underlying graph of an assignment problem with corre-
sponding cost vector c ∈ RE . The assignment problem is a special case of the weighted
bipartite perfect matching problem. Hence, it can be polynomially solved by transform-
ing it into a minimum cost flow problem (see Section 1.1.2) and by using the Hungarian
algorithm (see Section 1.3.3).
As the Hungarian algorithm is designed to work on complete bipartite graphs, the

underlying graph of the assignment problem does not need to be adapted. So, the only
transformation step needed to be done before applying the Hungarian algorithm to an
instance of the assignment problem is to define the edge weights.
The task of the assignment problem is to find a perfect matching of minimum cost and

the Hungarian algorithm determines a perfect matching of maximum weight. Further,
all edge weights in the Hungarian algorithm need to be nonnegative. We define the edge
weights for the Hungarian algorithm as c′e := −ce+C, with C := maxe∈E{ce}. Thus, c′ is
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a vector of nonnegative edge weights. Finally, each solution of the Hungarian algorithm
of weight z corresponds to a solution of the assignment problem of cost −z + nC.

1.4. The perfect matching polytope and the matching polytope
The aim of this section is to provide definitions of matching polytopes together with
those properties that are of further interest in this work. Investigations on the structure
of polytopes of matchings with a special type of additional side constraint are presented
in Chapter 6.

Definition 1.16. Let G = (V,E) be a graph. Then, the perfect matching polytope
Pperfect matching(G) is the convex hull of incidence vectors of perfect matchings in G.
The matching polytope Pmatching(G) is the convex hull of incidence vectors of matchings
in G.

Given a graph G = (V,E), both polyhedrons Pperfect matching(G) and Pmatching(G) are
polytopes in RE .

1.4.1. Bipartite perfect matching polytopes and bipartite matching
polytopes

Let G = (V,E) be a bipartite graph. We consider the perfect matching polytope, first.
Each point x ∈ Pperfect matching(G) satisfies∑

e∈δ(v)
xe = 1 ∀ v ∈ V, (1.24)

xe ≥ 0 ∀ e ∈ E. (1.25)

Birkhoff [9] showed that constraints (1.24) and (1.25) are not only necessary but also
sufficient to describe Pperfect matching(G) (see [49] for Birkhoff’s proof in the terminology
of perfect matchings).

Theorem 1.17. Let G = (V,E) be a bipartite graph. Then, the perfect matching polytope
Pperfect matching(G) is determined by (1.24), (1.25).

We will give a reason for Theorem 1.17 in terms of total unimodularity. This allows us
to transfer this result to the matching polytope on bipartite graphs. Let A ∈ {0, 1}|V |×|E|
be the node-edge incidence matrix of the graph G = (V,E). Then, the constraints (1.24)
can be written as Ax = 1. Using the partitioning argument (see [43]) to show total
unimodularity, the following holds true:

Theorem 1.18. Let G be a graph. G is bipartite if and only if its node-edge incidence
matrix A is total unimodular.

Due to Theorem 1.18, the polytope described by (1.24) and (1.25) for the bipartite
graph G is integral and hence, these constraints determine the perfect matching polytope
Pperfect matching(G).
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The total unimodularity of A also implies that the polytope described by the following
constraints is integral for the bipartite graph G:∑

e∈δ(v)
xe ≤ 1 ∀ v ∈ V, (1.26)

xe ≥ 0 ∀ e ∈ E. (1.27)

As these constraints are necessary for any matching in G, we get the following result:

Theorem 1.19. Let G = (V,E) be a bipartite graph. Then, the matching polytope
Pmatching(G) is determined by (1.26), (1.27).

Concerning the dimension of the perfect matching polytope of a bipartite graph, Nad-
def [42] proved the following result:

Theorem 1.20. Let G = (V,E) be a bipartite graph which contains at least one perfect
matching. Let E0 be the set of edges contained in at least one perfect matching in G and
let k be the number of components of the graph (V,E0). Then,

dim (Pperfect matching(G)) = |E0| − |V |+ k.

1.4.2. Nonbipartite perfect matching polytopes and nonbipartite matching
polytopes

If the graph G = (V,E) is not bipartite, then the constraints (1.24), (1.25) do not
determine the perfect matching polytope. To see this, consider the complete graph K3.
The vector x =

(
1
2 ,

1
2 ,

1
2

)>
satisfies these constraints but cannot be written as a convex

combination of incidence vectors of perfect matchings in K3, as there are no perfect
matchings in K3. Thus, x /∈ Pperfect matching(G).
Edmonds [19] showed that adding constraints of the form

x(δ(U)) ≥ 1 ∀ U ⊆ V with |U | odd (1.28)

to the set of constraints (1.24), (1.25) suffices to determine the perfect matching polytope.

Theorem 1.21. Let G = (V,E) be any graph. Then, the perfect matching polytope
Pperfect matching(G) is determined by (1.24), (1.25), (1.28)

Edmonds also offers a characterization of the matching polytope of a general graph
G = (V,E):

Theorem 1.22. Let G = (V,E) be any graph. Then, the matching polytope Pmatching(G)
is determined by ∑

e∈δ(v)
xe ≤ 1 ∀ v ∈ V,

xe ≥ 0 ∀ e ∈ E,

x(E(U)) ≤
⌊1

2 |U |
⌋

∀ U ⊆ V with |U | odd.
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1.4.3. The polytope of nonbipartite matching problems with an additional
cardinality constraint

In this section we consider the polytope of a matching problem with an additional
cardinality constraint. This is of particular interest as investigations regarding additional
constraints on matchings are the main subject of this work.
In Theorem 1.19 and Theorem 1.22 formulations of the matching polytope Pmatching(G)

are given for G being a bipartite graph and a nonbipartite graph, respectively. Let
G = (V,E) be any graph and let k and l be nonnegative integers with k ≤ l. We
now consider the matching polytope for the case that a matching M in G must satisfy
k ≤ |M | ≤ l.
In [49], Schrijver presents a formulation of the convex hull of incidence vectors of

matchings whose size is at least k and at most l. The result is presented in the next
theorem. This determines the polytope corresponding to the matching problem with an
additionally imposed cardinality constraint.

Theorem 1.23. Let G = (V,E) be a graph and let k, l ∈ Z+
0 with k ≤ l. Then, the

convex hull of incidence vectors of matchings M satisfying k ≤ |M | ≤ l is equal to the
set of those vectors x in the matching polytope Pmatching(G) satisfying k ≤ 1>x ≤ l.

In other words, the polytope corresponding to the matching problem with a cardinality
constraint is determined by adding

k ≤
∑
e∈E

xe ≤ l (1.29)

to the formulation of Pmatching(G). Schrijver describes this as the fact that “certain slices
of the matching polytope are again integer polytopes”.
It is essential in Theorem 1.23 that the cardinality constraint affects the entire match-

ing, i.e. the incidence vector components corresponding to all edges in E appear in
constraint (1.29). To see this, we consider the special case where k = l. Now, the
additional cardinality constraint (1.29) requires matchings to be exactly of cardinality
k (resp. l). If this cardinality constraint applies only to a subset R of the edges, the
polytope PR,k := {x ∈ RE+ | x ∈ Pmatching(G) and x(R) = k} is not integral in general,
as the following example shows.
Let G = (V,E) = K2,2 with E = {[i, j] | i, j = 1, 2} and let k = l = 1. Further, let

R := {[1, 1], [2, 2]}. The vector x ∈ RE with xe = 1
2 for all e ∈ E is in PR,k but it cannot

be written as a convex combination of incidence vectors of matchings M in G satisfying
|M ∩R| = k.
Matching problems with an exact cardinality constraint affecting only a special subset

of the edges of a graph are discussed in Section 2.2 and Chapter 4.

1.5. The 3-dimensional matching problem
In Section 1.2 we introduced the perfect matching problem, which is polynomially solv-
able. In this section we show a more general variant of the perfect matching problem,
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which is NP-complete. This problem is stated on a generalized concept of graphs, called
hypergraphs (see [49]):

Definition 1.24. Let V be a finite set and let E be a family of subsets of V . The pair
H = (V, E) is called a hypergraph. Any element of V is called a node and any element
of E is called an edge.

A graph is a special case of a hypergraph where all edges are of cardinality at most 2.
A matchingM in a hypergraph H = (V, E) is a subset of E , represented by an incidence
vector y ∈ {0, 1}E , which satisfies∑

F∈E:F3v
yF ≤ 1 ∀ v ∈ V.

Using the terminology of a hypergraph, the 3-dimensional matching problem is for-
mulated next (compare [31]). Let H = (U ∪ V ∪W, E) be a hypergraph with pairwise
disjoint color classes U, V and W , each of them of size n, and an edge set E where each
edge is an element of U × V ×W .

Problem Formulation 1.25 (3-Dimensional matching). The task of the 3-dimensional
matching problem (3DM) is to determine a matchingM in H which is of size n.

The following result is due to Karp [31], who polynomially reduces the partitioning
problem (see Appendix C) to 3DM.

Theorem 1.26. The 3-dimensional matching problem is NP-complete.

The 2-dimensional counterpart of 3DM is the perfect matching problem on a bipartite
graph G = (X ∪· Y,E) with |X| = |Y |. In classical (2-dimensional) matching, each
edge has two end-nodes (assumed that the graph is free of loops) at which it can meet
with one or more edges. In 3-dimensional matching, there is a third color class (or
third dimension) W and each edge contains 3 nodes at which it can meet with other
edges. Due to this additional node in an edge, each edge appears in 3 inequalities of
the matching constraints, rather than in only 2 as it is the case in the classical perfect
matching problem. Thus, the matching condition that no two edges are allowed to meet
at any node is more extensive in 3-dimensional matching.
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There are two classes of matching problems with additional side constraints which we
summarize as resource constrained matching problems: The couple constrained matching
problem and the level constrained matching problem. While both problems are matching
problems, they differ in the type of side constraints additionally imposed.
Couple constrained matching problems demand in each additional side constraint that

for a given pair of edges both edges have the same matching activity. Level constrained
matching problems demand in one additional side constraint that an exact number of
matching edges are elements of a special set called the set of on-level edges.
Couple constrained matching problems vary in the number of additional side con-

straints, with all of them having a support of size 2. Level constrained matching prob-
lems have just one side constraint, whose support can grow with the problem size. Hence,
the couple constrained matching problem and the level constrained matching problem
represent two classes of matching problems with additional side constraints of different
characteristics. These are the main problems considered in this work.
The aim of Sections 2.1 and 2.2 is to introduce these problems. In each section we

first give the mathematical formulation of the considered problem and show which other
matching variants with the same type of additional side constraints are equivalent. We
then define the assignment problem with the same set of additional side constraints.
In Section 2.3, we take a closer look at the additional side constraints of resource

constrained matching problems. We show that if the number of couples or the number
of demanded on-level edges is fixed, then the couple constrained matching problem and
the level constrained matching problem can be solved polynomially.
We conclude this chapter with a section addressing other matching problems from

the literature which have additional side constraints that are related to those in the
couple constrained matching problem and the level constrained matching problem. We
also investigate the relation of resource constrained matching problems to symmetric
matching problems. Furthermore, the integer equal flow problem – to which the couple
constrained matching problem and the level constrained matching problem both can be
polynomially reduced – is presented.

2.1. The couple constrained matching problem

2.1.1. Introduction and problem formulation

The first problem we introduce is the couple constrained matching problem. In this
problem it is required that for given pairs of edges each of the two edges which appear
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in the same pair must have the same matching activity. These types of constraints are
called couple constraints.
Couple constraints have practical applications especially when there are pairs of node-

to-node assignments that are mutually dependent. This may appear, for instance, in a
workers to jobs matching problem, where there are pairs of workers that build a team
and there are pairs of jobs which require to be worked on by members of the same team.
Couple constraints can also be used to include conditions in modeling which become

relevant after an assignment has happened. An example of this is assigning jobs to
machines where processing a job means producing an end-product. Whenever there are
two end-products which are known to be further processed, it is preferable to assign
the two preceding jobs to machines which offer an advantage for the next processing
step. This advantage could be a spatial proximity of the machines or the fact that both
machines guarantee the same production quality. For example, when assigning the tasks
of producing different car parts to production plants, it is desirable to produce two parts
in the same plant if they appear together in a further production step. This diminishes
transportation costs between plants.
Further practical applications are given by Aboudi et al. in [1]. They consider the

problem of assigning courses to classrooms, where two consecutive courses are to be held
in the same classroom in two consecutive time slots. They also consider job to worker
assignments where it is necessary to take into consideration that in married couples
both partners must be assigned jobs that are located in the same city. In [10], stability
issues of a similar problem, namely the problem of matching married couples to a pair
of positions at hospitals, are considered. Padberg and Sassano [45] investigate a more
general version of the couple constrained matching problem, which they call matching
with bonds. This is a maximum weight matching problem, where bonds replace the
couples in the additional side constraints. Bonds are sets of edges of arbitrary size. As
a part of their analysis, they also consider the case of all bonds having a maximum
cardinality of 2, so that the problem becomes a maximum weight couple constrained
matching problem.
The couple constrained matching problem we define in this section is a maximum car-

dinality matching problem with a varying number of specific additional side constraints.
Each side constraint ties two variables xe and xf in the simplest way, i.e. xe = xf . This
type of side constraint requires that the matching either includes both edges e and f or
excludes them both. Each such constraint is of a simple structure, but their number is
not limited in advance.

Definition 2.1. Let G = (V,E) be a graph with V = {v1, . . . , vn}. A couple collection
F = {F1, . . . , Fk} in G is defined to be a set of pairwise disjoint pairs of edges in E, i.e.
Fi ∩ Fj = ∅ for all Fi, Fj ∈ F with i 6= j. A pair F = {e, f} ∈ F is referred to as a
couple.

Given a graph G and a couple collection F in G as problem input, we now formulate
the couple constrained matching problem:
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Problem Formulation 2.2 (Couple constrained matching). The couple constrained
matching problem (CCMP) is stated as the following integer linear program:

max
∑
e∈E

xe (2.1)

s.t.
∑

e∈δ(vi)
xe ≤ 1 ∀ i = 1, . . . , n (2.2)

xe = xf ∀ e, f ∈ F, ∀ F ∈ F (2.3)
xe ∈ {0, 1} ∀ e ∈ E. (2.4)

Problem ((2.1), (2.2), (2.4)) is a maximum cardinality matching problem on a graph
G = (V,E). The additional constraints (2.3) are the crucial ones for this problem. They
demand that either both edges of a couple F ∈ F are selected to be in the matching or
none of them. These side constraints will be called couple constraints. Clearly, if F does
not contain any couple, then we have the classical matching problem. When a matching
in G satisfies the additional constraints (2.3), we refer to it as a solution matching of
the corresponding CCMP instance.
Without loss of generality, for each couple F = {e, f} it holds that e and f are not

incident to the same node, as otherwise at most one of these edges could possibly be in
a matching and consequently, due to the couple constraints, none of them would be in
a matching. Therefore, we can delete such e and f from the edge set E in advance.

2.1.2. Polynomially equivalent optimization variants

The couple constrained matching problem is defined as a maximum cardinality problem.
With regards to complexity, it does not make a difference whether it is formulated
as a maximum cardinality matching problem or as a perfect matching problem. We
summarize the complexity relationship between these two problem variants in Theorem
2.4. For that, we define the following problem variant of the CCMP:

Problem Formulation 2.3 (Couple constrained perfect matching). The couple con-
strained perfect matching problem (CCPMP) is the problem of finding a perfect matching
satisfying the couple constraints in a graph.

Theorem 2.4. The following problems are polynomially equivalent:

• The couple constrained matching problem.

• The couple constrained perfect matching problem.

Proof. It is clear that the CCPMP can be polynomially reduced to the CCMP on the
same graph. We now show the opposite direction. For that, we consider the CCMP as
a decision problem. Let (G,F , k) be a problem instance of the decision version of the
CCMP with G = (V,E) being a graph, F being a couple collection on G and k being a
nonnegative integer. The question is whether there exists a matching in G which fulfills
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2. Resource Constrained Matching

the couple constraints concerning F and which is of size at least k. We now show how
(G,F , k) is polynomially reduced to the problem instance (G′,F ′) of the CCPMP.
Let n := |V | and let d := n− 2k. The graph G′ =

(
V ∪ V ′, E ∪ E′

)
is defined by

V ′ := {v′1, . . . , v′d},
E′ :=

{
[v, v′i] | v ∈ V, i = 1, . . . , d

}
∪
{
[v′i, v′j ] | i, j = 1, . . . , d; i 6= j

}
.

The couple collection F ′ contains the same couples as F , thus F ′ := F .
If G′ contains a perfect matching, then at least n− d = 2k nodes in V are covered by

edges in E. Hence, if G′ contains a perfect matching satisfying the couple constraints
concerning F ′, then there is a matching of size at least k in G, which fulfills the couple
constraints concerning F . On the other hand, each matching in G which is of size at least
k can be extended to a perfect matching in G′. Hence, if G contains a matching of size
at least k which fulfills the couple constraints concerning F , then G′ contains a perfect
matching satisfying the couple constraints concerning F ′. Obviously, the reduction is
polynomial in the size of G.

The polynomial equivalence of the CCMP and the CCPMP also holds when restricting
the underlying graphs to be bipartite. Further, on bipartite graphs one can formulate
the following problem variant of the CCMP:

Problem Formulation 2.5 (Couple constrained complete matching). The couple con-
strained complete matching problem (CCCMP) is the problem of finding a complete
matching satisfying the couple constraints in a bipartite graph.

Theorem 2.6. The following problems are polynomially equivalent:

• The couple constrained matching problem on a bipartite graph.

• The couple constrained complete matching problem.

• The couple constrained perfect matching problem on a bipartite graph.

Proof. It is easy to see that the CCPMP on bipartite graphs can be polynomially reduced
to the CCCMP, and that the CCCMP can be polynomially reduced to the CCMP on
bipartite graphs. In these reductions, the underlying graph and couple collection do not
change.
We now show the opposite direction, and start with a reduction from the CCMP on

bipartite graphs to the CCCMP. Let (G,F , k) be a problem instance of the decision
version of the CCMP, with G = (X ∪· Y,E) being a bipartite graph, F being a couple
collection on G and k being a nonnegative integer. The question is whether there exists
a matching in G of size at least k, which fulfills the couple constraints corresponding to
F . Without loss of generality, let X be the smaller of the two color classes in G and let
n := |X|. We now show how (G,F , k) is polynomially reduced to the problem instance
(G′,F ′) of the CCCMP. The bipartite graph G′ =

(
X ∪· (Y ∪ Y ′), E ∪ E′

)
is defined by

Y ′ := {v1, . . . , vn−k},
E′ := {[x, vi] | x ∈ X, i = 1, . . . , n− k}.
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2.1. The couple constrained matching problem

The couple collection F ′ contains the same couples as F , thus F ′ := F . Now, G′
contains a matching covering X and fulfills the couple constraints concerning F ′ if and
only if G contains a matching of size at least k which fulfills the couple constraints
concerning F .
Next, we show a reduction from the CCCMP to the CCPMP on bipartite graphs.

Let (G,F) be a problem instance of the CCCMP, with G = (X ∪· Y,E) being a bi-
partite graph and F being a couple collection on G. Again, without loss of generality,
let X be the smaller of the two color classes in G and let d := |Y | − |X| denote the
difference in the cardinality of the two color classes. We now show how (G,F) is poly-
nomially reduced to the problem instance (G′,F ′) of the CCPMP. The bipartite graph
G′ =

(
(X ∪X ′) ∪· Y,E ∪ E′

)
is defined by

X ′ := {v1, . . . , vd},
E′ := {[vi, y] | y ∈ Y, i = 1, . . . , d}.

Due to the nodes in X ′, the two color classes in G′ are of same cardinality. As before,
the couple collection does not change along the reduction, i.e. F ′ := F . Now, G′ contains
a perfect matching which fulfills the couple constraints concerning F ′ if and only if G
contains a matching which covers all nodes in X and fulfills the couple constraints
concerning F .
It is easy to see that all reductions described here are polynomial in the input size of

the corresponding problem.

2.1.3. The couple constrained assignment problem
When couple constraints are imposed on the classical assignment problem, we get the
assignment problem with additional constraints demanding that in specified pairs either
both of the edges or neither of the edges are in the assignment.
Similar to a couple collection, let F = {F1, . . . , Fk} be a set containing pairwise disjoint

sets of the form Fh = {(i, j), (k, l)} with i, j, k, l ∈ {1, . . . , n}. Further, let cij ∈ R be the
cost of assigning row i to column j for all i, j = 1, . . . , n.

Problem Formulation 2.7 (Couple constrained assignment). The couple constrained
assignment problem (CCAP) is stated as the following integer linear program:

min
n∑
i=1

n∑
j=1

cijxij (2.5)

s.t.
n∑
j=1

xij = 1 ∀ i = 1, . . . , n (2.6)

n∑
i=1

xij = 1 ∀ j = 1, . . . , n (2.7)

xij = xkl ∀ (i, j), (k, l) ∈ F, ∀ F ∈ F (2.8)
xij ∈ {0, 1} ∀ i, j = 1, . . . , n. (2.9)
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2. Resource Constrained Matching

This problem can also be viewed as a minimum cost couple constrained perfect match-
ing problem on the complete bipartite graph Kn,n. This interpretation allows us to refer
to edges and their costs in the underlying complete bipartite graph of an assignment
problem.

2.2. The level constrained matching problem

2.2.1. Introduction and problem formulation

In this section we introduce the level constrained matching problem. It is a resource
constrained matching problem with a single additional side constraint. This constraint
demands a feasible matching to contain an exact number of so-called on-level edges in a
bipartite graph. Given fixed indices of the nodes in the graph, these are the edges with
end-nodes that have the same index.
Restrictions on the number of selected edges from a given subset R of the edge set are

considered in the literature e.g. by Karzanov [32], Yi et. al. [52] and Alfakih et. al [6], [7].
A common formulation of this problem in the literature is a generalized formulation as a
perfect matching problem where an additional linear constraint

∑n
i=1

∑n
j=1 cijxij = k is

required to be fulfilled. As this problem is NP-hard in general (see [13]), the coefficients
cij are restricted to be 0-1-valued. In this particular case, those edges whose correspond-
ing variables have coefficient 1 construct the set R. Instead of defining the additional
side constraint by means of a set R ⊆ E, also the terminology of edges being colored
blue and red is used in the literature. Then, the problem is stated as the problem of
finding a perfect matching which contains exactly k red edges.
We choose the notation which refers to a subset R ⊆ E. For the problem we introduce

in this section, we have that R is the set of on-level edges in G.

Definition 2.8. Let G = (U ∪· V,E) be a bipartite graph with U = {u1, . . . , un},
V = {v1, . . . , vn}. Furthermore, let the assignment of indices to nodes in U and V be
fixed. The set of edges E is partitioned into two subsets. An edge of the form [ui, vi] for
i = 1, . . . , n will be called an on-level edge. All other edges, i.e. those of the form [ui, vj ]
for i, j = 1, . . . , n with i 6= j will be called off-level edges. The graph G is called a level
graph if [ui, vi] ∈ E for all i = 1, . . . , n.

Next, we formulate the problem of finding a maximum matching with an exact number
of on-level edges. Let G = (U ∪· V,E) be a bipartite graph with U = {u1, . . . , un},
V = {v1, . . . , vn} and let k be an integer with 0 ≤ k ≤ n. As in Definition 2.8, let the
assignment of indices to nodes in U and V be fixed, so that the set of on-level edges in
G is uniquely defined.
To add clarity, we emphasize that both the graph G (with fixed node indices) and

the parameter k are part of the problem input. We now formulate the level constrained
matching problem:
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2.2. The level constrained matching problem

Problem Formulation 2.9 (Level constrained matching). The level constrained match-
ing problem (LCMP) is stated as the following integer linear program:

max
∑
e∈E

xe (2.10)

s.t.
∑

e∈δ(ui)
xe ≤ 1 ∀ i = 1, . . . , n (2.11)

∑
e∈δ(vi)

xe ≤ 1 ∀ i = 1, . . . , n (2.12)

∑
[ui,vi]∈E

x[ui,vi] = k (2.13)

xe ∈ {0, 1} ∀ e ∈ E. (2.14)

Problem ((2.10), (2.11), (2.12), (2.14)) is a maximum cardinality matching problem
on the bipartite graph G. The additional constraint (2.13) affects the number of on-level
edges in a feasible matching. It demands that exactly k of them are contained in a
matching. This side constraint will be called the level constraint. When a matching in
G satisfies the additional constraint (2.13), we refer to it as a solution matching of the
corresponding LCMP instance.

Annotation. An instance of the LCMP depends on the indexation of the nodes in the
graph G = (U, V ). Throughout this work we assume that for each instance of LCMP
(and for other problems which contain a level constraint) such a indexation is given as
part of the problem input, without mentioning it explicitly. The only type of renumbering
of nodes under which an LCMP instance is invariant is where the nodes in U and V are
renumbered analogously, i.e. ui ∈ U is renamed uj ∈ U if and only if vi ∈ V is renamed
vj ∈ V .

2.2.2. Polynomially equivalent optimization variants
The underlying matching problem in the LCMP is a maximum cardinality matching
problem. We will show that concerning its complexity it makes no difference whether the
underlying matching problem is a maximum cardinality, complete or perfect matching
problem. We emphasize that the level constrained complete matching problem is the
only variant of the LCMP where the two color classes of the underlying bipartite graph
are allowed to be of different cardinality.

Problem Formulation 2.10 (Level constrained complete matching). The level con-
strained complete matching problem (LCCMP) is the problem of finding a complete
matching satisfying the level constraint in a bipartite graph.

Problem Formulation 2.11 (Level constrained perfect matching). The level con-
strained perfect matching problem (LCPMP) is the problem of finding a perfect matching
satisfying the level constraint in a bipartite graph.

Theorem 2.12. The following problems are polynomially equivalent:
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2. Resource Constrained Matching

• The level constrained matching problem.

• The level constrained complete matching problem.

• The level constrained perfect matching problem.

The proof is similar to that of Theorem 2.6, where couple constrained matching prob-
lems on bipartite graphs are considered. Here, we will take care that no additional
on-level edges appear in a graph along a problem reduction, as the level constraint
always refers to the entire set of on-level edges.

Proof. It is easy to see that the LCPMP can be polynomially reduced to the LCCMP,
and that the LCCMP can be polynomially reduced to the LCMP. In these reductions,
the underlying graph and the parameter of the level constraint do not change.
We now show the opposite direction, starting with a reduction from the LCMP to the

LCCMP. Let (G, k, l) be a problem instance of the decision version of the LCMP, where
G = (X ∪· Y,E) is a bipartite graph with X = {x1, . . . , xn1} and Y = {y1, . . . , yn2}. The
parameters k and l are nonnegative integers serving as parameter for the level constraint
and as decision parameter, respectively. The question is whether there exists a matching
in G which contains exactly k on-level edges and which is of size at least l.
Without loss of generality, let n1 ≤ n2. Further, let d := n1 − l. If l > n1 then

there is no matching in G which is of cardinality at least l. We now show how (G, k, l)
is polynomially reduced to the problem instance (G′, k′) of the LCCMP. The bipartite
graph G′ =

(
X ∪· (Y ∪ Y ′), E ∪ E′

)
is defined by

Y ′ := {yn2+1, . . . , yn2+d},
E′ := {[x, yn2+i] | x ∈ X, i = 1, . . . , d}.

As G′ contains the same on-level edges as G, we define k′ := k. Obviously, there is a
matching in G′ which contains exactly k′ on-level edges and which covers X, if and only
if there is a matching in G which contains exactly k on-level edges and which is of size
at least l.
Next, we show a reduction from the LCCMP to the LCPMP. Let (G, k) be a

problem instance of the LCCMP, where G = (X ∪· Y,E) is a bipartite graph with
X = {x1, . . . , xn1}, Y = {y1, . . . , yn2} and where k is a nonnegative integer. Again,
without loss of generality, let n1 ≤ n2 and let d := n2 − n1 denote the difference in
the cardinality of the two color classes. In case d = 1, the LCCMP instance can be
solved by solving n2 problem instances of the LCPMP on the graphs G−y1, . . . , G−yn2 ,
with unchanged parameter k. One should note that the number of LCPMP instances to
solve is polynomially bounded by the size of G. In the case where d ≥ 2, we polynomi-
ally reduce (G, k) to the problem instance (G′, k′) of the LCPMP. The bipartite graph
G′ =

(
(X ∪X ′) ∪· Y,E ∪ E′

)
is defined by

X ′ := {xn1+1, . . . , xn1+d},
E′ := {[xn1+i, yj ] | i = 1, . . . , d; j = 1, . . . , n2 with n1 + i 6= j}.
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2.3. Input parameters of resource constrained matching problems and complexity

The edges in E′ connect all nodes in X ′ with all nodes in Y while leaving out all on-
level edges. Due to the nodes in X ′, the two color classes in G′ are of same cardinality.
As before, the parameter for the level constraint does not change, i.e. k′ := k. Now,
G′ contains a perfect matching which contains exactly k′ on-level edges if and only if G
contains a matching which covers all nodes in X and contains exactly k on-level edges.
Finally, all reductions used in this proof are polynomial in the size of their input

problems.

Theorem 2.12 allows us to switch between different variants of underlying matching
problems when considering complexity issues of level constrained matching problems. It
is clear that a complexity result for any of the three variants also applies for the other
two variants.

2.2.3. The level constrained assignment problem

Next, we give a formulation of the assignment problem having a level constraint as
additional side constraint. The assignment problem is interpreted in this case as a
minimum weight matching problem on a complete bipartite graph Kn,n. The level
constraint requires that the number of on-level edges in a feasible assignment equals a
given value.
Let cij ∈ R be the cost of edge [i, j] for all i, j = 1, . . . , n. Further, let k be the

parameter of the level constraint, with 0 ≤ k ≤ n.

Problem Formulation 2.13 (Level constrained assignment). The level constrained
assignment problem (LCAP) is an assignment problem with an imposed level constraint.
Its formulation as an integer linear program is as follows:

min
n∑
i=1

n∑
j=1

cijxij

s.t.
n∑
j=1

xij = 1 ∀ i = 1, . . . , n

n∑
i=1

xij = 1 ∀ j = 1, . . . , n

n∑
i=1

xii = k

xij ∈ {0, 1} ∀ i, j = 1, . . . , n.

2.3. Input parameters of resource constrained matching
problems and complexity

In this section, we will investigate the number of couples occurring in a couple collection
in a CCMP instance and the parameter k of the level constraint in an LCMP instance.
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2. Resource Constrained Matching

We will show that if these parameters are fixed, then the problems can be solved poly-
nomially. The reason for this will be given in the more general context of combinatorial
optimization problems rather than referring to the special case of matching problems.
Let E be a finite set and let L be a subset of the power set 2E . Further, let c : E → R

be a weight function on the elements in E. For any set S ⊆ E we denote its weight
by c(S) :=

∑
e∈S c(e). A triple (E,L, c) serves as problem input for a combinatorial

optimization problem.

Definition 2.14. A combinatorial optimization problem (COP) is defined to be the
problem

max{c(S) | S ∈ L}.

In order to be compliant with the other problem formulations in this work, we apply
the following terminology to COPs. We say that the problem Π is a COP if Π is a
– possibly infinite – set of instances (E,L, c).
When the weighted matching problem or the perfect matching problem are expressed

in terms of a COP, each of their instances consists of the following components. The set
E corresponds to the set of edges of the underlying graph G. In the case of a weighted
matching problem, the set L consists of all matchings in G and the function c maps all
elements in E to their weights. In the case of a perfect matching problem, L is the set
of all perfect matchings in G and c maps all elements in E to any constant.
We now adapt the couple constraints and the level constraint to the more general

setting of a COP. For that, let Π be any COP.
We start with imposing couple constraints to Π. To this end, we extend each problem

instance (E,L, c) of Π by a couple collection F . A couple collection on the set E of
an instance of a COP is considered to be a set of pairwise disjoint couples, where each
couple is a subset of E with cardinality 2. A couple collection for a COP does not differ
much from its original definition, except that the elements in the couples are not edges
of a graph but rather general elements from the set E.

Definition 2.15. Let Π be a COP. The problem Πcpl is defined to consist of the problem
instances of Π which are extended as follows: For each problem instance (E,L, c) of Π
there is a couple collection F on E. This yields the problem instance (E,L, c,F) of Πcpl

which is defined to be the problem

max{c(S) | S ∈ L and e ∈ S ⇔ f ∈ S for all {e, f} ∈ F}.

We now adapt the level constraint to the context of a COP. As the definition of an
on-level edge cannot be applied to a general COP, we replace the level constraint by an
equality constraint on an arbitrary subset of E.

Definition 2.16. Let Π be a COP. The problem Πequ is defined to consist of the problem
instances of Π which are extended as follows: For each problem instance (E,L, c) of Π
there is a subset D of E and a nonnegative integer k. This yields the problem instance
(E,L, c,D, k) of Πequ which is defined to be the problem

max{c(S) | S ∈ L and |S ∩D| = k}.
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One should note that both problems Πcpl and Πequ themselves are COPs again, when
in each of their problem instances the additional restrictions are taken as necessary for
a set to be in L. Before we establish complexity results for Πcpl with a fixed number of
couples and for Πequ with a fixed parameter k, we introduce the following generalization
of a COP.

Definition 2.17. Let Π be a COP. The problem Πsubset is defined to consist of the
problem instances of Π which are extended as follows: For each problem instance (E,L, c)
of Π there are two arbitrary subsets T and R of E such that T ⊆ R ⊆ E. This yields
the problem instance (E,L, c, T,R) of Πsubset which is defined to be the problem

max{c(S) | S ∈ L and S ∩R = T}.

In this problem, all feasible solutions contain all elements in T but no other elements in
R. With the help of the problem Πsubset we can give sufficient conditions for a COP with
additional side constraints as in the CCMP or the LCMP to be polynomially solvable:

Lemma 2.18. Let Π be a combinatorial optimization problem such that Πsubset is poly-
nomially solvable. Then, the following holds true:
If the number of couples in each instance of Πcpl is bounded above by a fixed integer p,

then Πcpl is polynomially solvable. If the parameter k in each instance of Πequ is fixed,
then Πequ is polynomially solvable.

Proof. We begin with the couple constrained problem. Let (E,L, c,F) be an instance
of the problem Πcpl. Without loss of generality, we assume that F is a couple collection
consisting of exactly p couples. For each couple Fi = {ei, fi} ∈ F with ei, fi ∈ E, the
couple constraints demand that either both elements ei and fi are in a solution of the
corresponding problem instance, or none of them.
In order to build a problem instance of Πsubset let R := {e ∈ E | ∃ F ∈ F : e ∈ F}.

Taking into account that F consists of p pairwise disjoint couples, there are 2p different
subsets Ti ⊆ R which correspond to edges in couples that satisfy the couple constraints.
Now, we can solve the problem Πcpl on the instance (E,L, c,F) by solving the problem
Πsubset on the instances (E,L, c, Ti, R) for all i = 1, . . . , 2p and choosing the solution
which has the biggest objective value.
Since Πsubset is polynomially solvable, each instance (E,L, c, Ti, R) can be solved in

polynomial time. As p is fixed, 2p is a constant. Hence, solving the problem Πsubset on
the instances (E,L, c, T1, R), . . . , (E,L, c, T2p , R) and finding the solution with biggest
objective value can be done in polynomial time.
Now, we come to the level constrained problem. Let (E,L, c,D, k) be an instance of

the problem Πequ, where D is an arbitrary subset of E. We denote the cardinality of
D by d, and the cardinality of E by m. There are

(d
k

)
possibilities to choose exactly

k elements from the set D. Let Ti ⊆ D, i = 1, . . . ,
(d
k

)
, be all subsets of D which are

of cardinality k. We define R := D. An optimal solution of the instance (E,L, c,D, k)
exists if and only if it also is an optimal solution of the problem Πsubset on at least one
of the instances (E,L, c, Ti, R), for i = 1, . . . ,

(d
k

)
.
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Concerning the number of sets Ti, it holds that(
d

k

)
= d!

(d− k)!k! ≤ d
k ≤ mk.

As k is fixed, mk is a polynomial inm. Together with the assumption that the problem
Πsubset can be solved in polynomial time this yields that the instance (E,L, c,D, k) of
the problem Πequ can be solved in polynomial time.

Lemma 2.18 has direct consequences for the CCMP with a fixed number of couples
and the LCMP with a fixed cardinality parameter. To see this, we show that when the
COP Π in Lemma 2.18 is the matching problem, then the conditions of the lemma are
fulfilled.

Theorem 2.19. The couple constrained matching problem with a fixed number of cou-
ples and the level constrained matching problem with a fixed cardinality parameter are
polynomially solvable.

Proof. Let Π be the matching problem and let the graph G = (V,E) be an arbitrary
problem instance of the matching problem. Further, let R be an arbitrary subset of
E and let T be an arbitrary subset of R. Here, an instance of Πsubset on the graph
G and the sets T and R is the problem of finding a maximum matching in G which
contains all edges in T and none in R\T . We now show that this problem can be solved
polynomially. For that, we can assume that T itself is a matching, as otherwise it follows
directly that there is no matching in G containing all edges in T .
Let G′ = G[V \V (T )]−R be the subgraph of G without all edges in R and where the

end-nodes (including their incident edges) of all edges in T are deleted, see Figure 2.1.
The graph G has a matching M of size s with M ∩ R = T , if and only if the subgraph
G′ has a matching M ′ of size s − |T |. Hence, the task is to find a maximum matching
M ′ in G′, which can be done in polynomial time (see [20]).
As a consequence, Lemma 2.18 can be applied for the CCMP with a fixed number of

couples and for the LCMP with a fixed cardinality parameter.

2.4. Related problems

This section deals with problems closely related to the CCMP and the LCMP. We first
show that the CCMP and the LCMP both are special cases of the maximum integer equal
flow problem. We then investigate the special cases of the CCMP and the LCMP where
the problems are stated on symmetric bipartite graphs and the solution matchings are
demanded to be symmetric. We finish this section with presenting matching problems
in the literature which have further variations of additional side constraints.
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Figure 2.1.: a) Example of a graph G = (V,E), a set R ⊆ E (dashed edges), and a set
T ⊆ R (bold edges). A maximum matching M in G with M ∩ R = T is of
size 3. b) The graph G′ = G[V \ V (T )] − R. A maximum matching M ′ in
G′ is of size 1.

2.4.1. Integer equal flows
In this section we introduce the concept of integer equal flows and show that the CCMP
and LCMP are special cases of it. The maximum integer equal flow problem is a gen-
eralization of the maximum integer flow problem (compare Section 1.1), where it is
additionally required that for given arc subsets R1, . . . , Rk all arcs in the same set carry
the same amount of flow. We will show that the maximum integer equal flow problem
generalizes the CCMP on bipartite graphs and the LCMP. This is analogous to the
classical maximum flow problem which generalizes the classical matching problem on
bipartite graphs.
Equal flows (and also integer equal flows) were first introduced by Sahni [48]. Formally,

let D = (V,A) be a digraph with n := |V |. Let s, t ∈ V be two distinct nodes denoting
the source node and the sink node in D, respectively. Further, let uij be the nonnegative,
integer-valued capacity of arc (i, j) for all (i, j) ∈ A. Now, let R1, . . . , Rk be pairwise
disjoint subsets of A, i.e. each arc in A appears in at most one set Ri for any i = 1, . . . , k.

Problem Formulation 2.20 (Maximum integer equal flow). The maximum integer
equal flow problem is stated as the following integer linear program:

max v (2.15)

s.t.
∑

j:(i,j)∈A
xij −

∑
j:(j,i)∈A

xji =


v if i = s,

0 if i ∈ V \ {s, t},
−v if i = t

(2.16)

0 ≤ xij ≤ uij ∀ (i, j) ∈ A (2.17)
xi1j1 = xi2j2 ∀ (i1, j1), (i2, j2) ∈ Rh,∀ h = 1, . . . , k (2.18)
xij ∈ Z ∀ (i, j) ∈ A. (2.19)

Problem ((2.15) – (2.17)) describes the classical maximum flow problem. Constraints
(2.18) demand that all arcs which appear in the same set Rh, for any h = 1, . . . , k, must
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carry the same amount of flow. We call the sets R1, . . . , Rk homologous sets and call a
constraint of the form (2.18) a homologous constraint.
Applications of this problem can be found in [5], [8] and [41]. Among them is the

modeling of a water resource system (see [5]). In the corresponding network, water
sources are represented by supply nodes and water consuming elements are represented
by demand nodes. Water bearing elements, such as rivers and pipes, are represented by
arcs. In order to consider several time steps, the underlying network is time-expanded,
i.e. it is replicated for each time period. The homologous constraints are then used for
modeling the requirement that the amount of potable water is the same for each time
period.
The maximum integer equal flow problem is NP-hard, which was proven by Sahni

[48]. In [41], Meyers and Schulz investigate the approximability of this problem. They
show that the integrality gap between an optimal solution of the LP-relaxation and an
optimal integer solution can be arbitrarily large. Concerning its approximability they
achieve the following result:

Theorem 2.21. There is no 2n(1−ε)-approximation algorithm for the maximum integer
equal flow problem for any fixed ε > 0, even if a nontrivial solution is guaranteed to
exist, unless P = NP .

In the same article, they show that this result holds true even if all homologous arc
sets have cardinality 2. This special case is called the maximum paired integer equal
flow problem.

Problem Formulation 2.22 (Maximum paired integer equal flow). The maximum
paired integer equal flow problem corresponds to the maximum integer equal flow problem
where all homologous arc sets are of size 2.

Our aim is to transform matching problems with additional couple or level constraints
into integer equal flow problems. The resulting equal flow problems are maximum paired
integer equal flow problems where the capacity of each arc is 1. We first show that even
under this capacity restriction, the problem is NP-hard. To this end, we combine a
complexity result from Srinathan et al. [50] with a trick used by Meyers and Schulz in
[41]. This trick allows us to replace homologous sets of arbitrary size by homologous
sets of size 2, as long as the original sets have the property that all arcs in any set Ri
emanate from the same node.

Theorem 2.23. The maximum paired integer equal flow problem with each arc having
capacity 1 is NP-hard.

Proof. Srinathan et al. [50] show that the maximum integer equal flow problem is NP-
hard, even if all arcs have capacity 1 and all arcs in a homologous set emanate from
the same node. Let

(
D = (V,A), s, t, R1, . . . , Rk

)
be a problem instance of this problem.

Now, we show how to replace all homologous sets of size greater than 2 with homologous
sets of size exactly 2.
For each homologous set R = R1, . . . , Rk with |R| > 2 we do the following: Let

R = {(v0, v1), (v0, v2), . . . , (v0, vp)}. Each arc in R emanates from node v0. In the
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digraph D, these arcs are replaced with the structure illustrated in Figure 2.2. Formally,
we introduce p new nodes v′1, . . . , v′p. Then, we replace the arc (v0, vi) with two arcs
(v0, v

′
i), (v′i, vi) for all i = 1, . . . , p. All these arcs are assigned a capacity of 1. The set

R itself is replaced by the sets {(v′i, vi), (v0, v
′
i+1)} for all i = 1, . . . , p − 1 and the set

{(v′p, vp), (v0, v
′
1)}.

v1

v′1

v2

v′2

v3

v′3

vp−1

v′p−1

vp

v′p

v0

Figure 2.2.: a) Structure by which a homologous set {(v0, v1), . . . , (v0, vp)} is transformed
into p homologous sets of size 2. Two edges with the same pattern belong
to the same homologous set.

Together with the flow preservation constraints the new homologous sets ensure that
all arcs (v0, v

′
i), (v′i, vi), for i = 1, . . . , p, carry the same amount of flow. As all arcs in R

are replaced by simple paths of length 2, the set of feasible flows in D is not affected.
Hence, each feasible flow in the original problem instance can be easily transformed into
a feasible flow of the modified problem instance with the same value, and vice versa.
The total number of arcs in all sets R1, . . . , Rk is bounded above by the total number

of arcs in D. Therefore, the number of additional nodes added to D is at most |A|, the
total number of new arcs is at most 2|A| and the number of homologous sets of size 2 is
also bounded by |A|. This shows that the reduction described here is polynomial in the
size of the digraph D.

Transformation of the CCMP on bipartite graphs and the LCMP into the
maximum paired integer equal flow problem

The condition that all arcs in a homologous set must carry the same amount of flow
allows us to transform the CCMP on bipartite graphs and the LCMP into the maximum
paired integer equal flow problem. Both transformations are based on the standard
technique of transforming a bipartite matching problem into a maximum flow problem,
which is described in Section 1.3.1. We begin with the transformation of the CCMP on
bipartite graphs, as the transformation of the LCMP is based on it.
Let

(
G,F

)
be a problem instance of the CCMP, with G = (U ∪· V,E) being a bipartite

graph and F = {F1, . . . , Fp} being a couple collection on the set of edges E. The
maximum paired integer equal flow problem to solve this CCMP instance is posed on
the digraph D = (U ∪ V ∪ {s, t}, A), with a source node s and a sink node t. The set of
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arcs is defined as follows:

A := {(s, u) | u ∈ U} ∪ {(v, t) | v ∈ V } ∪ {(u, v) | [u, v] ∈ E with u ∈ U, v ∈ V } .

The capacity of all arcs in A is set to 1. The homologous sets R1, . . . , Rp for this prob-
lem are defined such that the corresponding homologous constraints reflect the couple
constraints:

Ri := {(u, v) | [u, v] ∈ Fi with u ∈ U, v ∈ V } for all i = 1, . . . , p.

All sets R1, . . . , Rk are of size 2. Hence, (D, s, t, R1, . . . , Rp) is an instance of the
maximum paired integer equal flow problem.
Analogous to the standard technique of transforming a bipartite matching problem

into a maximum flow problem there is an equivalence between feasible matchings of the
CCMP and flows of the paired integer equal flow problem: There is a matching of size v
in G satisfying the couple constraints concerning F if and only if there is an (s, t)-flow of
value v in D with all arcs in a set Ri carrying the same amount of flow for all i = 1, . . . , p.
Let us now consider the LCMP. Instances of this problem type can also be transformed

into maximum paired integer equal flow problem instances with all arcs having a capacity
of 1. The transformation mainly builds on the reformulation of the level constraint as
a set of couple constraints. We refer to Section 5.1 in which we show how to transform
an LCMP instance into a CCMP instance. Then, the resulting CCMP instance can
be transformed into an instance of the maximum paired integer equal flow problem as
described above.
Regarding the complexity of the integer equal flow problem, it is important whether

the number of homologous sets is fixed or not (see Section 2.3 for discussions about
the impact of fixed problem parameters to combinatorial optimization problems). The
maximum integer equal flow problem and the more general minimum cost flow version of
it are polynomially solvable if the number of homologous sets is fixed (see [41]). Ahuja
et al. [5] present explicit solution algorithms for the special case where the minimum
cost integer equal flow problem contains exactly one homologous set.

2.4.2. Couple constraints and the symmetric matching problem

Definition 2.24. Let G = (U ∪· V,E) be a bipartite graph with U = {u1, . . . , un} and
V = {v1, . . . , vn}. Furthermore, let the index of each node in U and V be fixed. The
graph G is called symmetric if [ui, vj ] ∈ E ⇔ [uj , vi] ∈ E for all i, j = 1, . . . , n.

We now consider a special class of CCMP instances, where the underlying graph
G = (U ∪· V,E) is a symmetric bipartite graph with U = {u1, . . . , un}, V = {v1, . . . , vn}.
Further, the couples in the couple collection F = {F1, . . . , Fp} are such that a solution
matching in G is symmetric, i.e. for each symmetric pair of edges ([ui, vj ], [uj , vi]) ∈ E×E
there is a couple {[ui, vj ], [uj , vi]} ∈ F and each couple in F corresponds to a symmetric
pair of edges in E×E. In this case, the CCMP is equivalent to the symmetric matching
problem (see [37]). This problem can be solved by transforming it into a maximum
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matching problem. One should note that in our case the graph G may contain edges of
the form [ui, vi], in contrast to the case discussed by Lawler [37].
In the proof of Theorem 2.26 it is shown how the transformation works for the weighted

case, i.e. for finding a maximum weight symmetric matching in a symmetric graph G.
We formulate this problem in the more general context of weighted couple constrained
matching problems. Of course, this method can also be used for the unweighted case.
Let ce ∈ R be the weight of the edge e for all e ∈ E.

Problem Formulation 2.25 (Weighted couple constrained matching). The weighted
couple constrained matching problem (w-CCMP) is stated as follows:

max
∑
e∈E

cexe

s.t. (2.2) – (2.4).

Theorem 2.26. Let G = (U ∪· V,E) be a symmetric bipartite graph. Let F be a couple
collection in G with F = {e, f} ∈ F if and only if e and f are symmetric edges in E.
Furthermore, let ce ∈ R be the weight of the edge e for all e ∈ E.
Then, the weighted couple constrained matching problem with couple collection F can

be solved in polynomial time.

Proof. Let (G,F , c) be an instance of the w-CCMP, where G = (U∪· V,E) is a symmetric
bipartite graph, F is a couple collection with the property that F = {e, f} ∈ F if and
only if e and f are symmetric edges in E, and c ∈ RE is a vector of edge weights.
The transformation of (G,F , c) into a problem instance (H = (W,M), d) of the general

weighted matching problem works as follows. Each pair of nodes (ui, vi) ∈ U×V induces
a node wi in W . Further, each pair of symmetric edges ([ui, vj ], [uj , vi]) ∈ E × E with
i 6= j induces an edge [wi, wj ] inM , which is assigned the weight d[wi,wj ] = c[ui,vj ]+c[uj ,vi].
An edge of the form [wi, wj ] in H represents the two symmetric edges [ui, vj ] and [uj , vi]
in G.
For each edge [ui, vi] in E, the graph H further contains a node xi and an edge [wi, xi]

with weight d[wi,xi] = c[ui,vi]. The edge [wi, xi] represents the single edge [ui, vi] in G.
Figure 2.3 depicts an example of the construction of the graph H.
Now, G contains a matching M satisfying the couple constraints concerning F which

is of total weight z if and only if H contains a matching N of total weight z.

It is worth mentioning that if there are no edges of the form [ui, vi] in G, then the
graph H in the proof of Theorem 2.26 does not contain any nodes xi. Hence, if we
have an unweighted CCMP with a couple collection with properties as in Theorem 2.26,
stated on a symmetric bipartite graph G which does not contain any edges of the form
[ui, vi], then the transformation results in an unweighted matching problem.

2.4.3. The level constraint and the symmetric matching problem
Let us consider the special case in which, besides satisfying the level constraint, the
sought-after perfect matching in the LCPMP must also be symmetric. The underlying
graph G for this kind of problem is a symmetric bipartite graph.
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a)

u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

c12c21

c11

b)

w1

w2

w3

w4

w5

x1

x4

c12 + c21

c11

Figure 2.3.: a) Example of a weighted symmetric bipartite graph. cij denotes the weight
of edge [ui, vj ] (weights only partially listed). b) Weighted graph resulting
from the problem transformation. Weights of edges are noted along the
edges (weights only partially listed).

Problem Formulation 2.27 (Level constrained symmetric perfect matching). The
level constrained symmetric perfect matching problem (LCPMP-SYM) is the problem
of finding a symmetric perfect matching satisfying the level constrained in a symmetric
bipartite graph.

Theorem 2.28. The level constrained symmetric perfect matching problem can be solved
in polynomial time.

Proof. Let (G, k) be an instance of the LCPMP-SYM, where G = (U ∪· V,E) is a sym-
metric bipartite graph with U = {u1, . . . , un}, V = {v1, . . . , vn}, and k is a nonnegative
integer with k ≤ n. This problem instance transforms to a perfect matching problem on
a (not necessarily symmetric) graph H = (W,F ), which is defined as follows (see Figure
2.4):

W := {w1, . . . , wn, x1, . . . , xk}, (2.20)
F := {[wi, wj ] | ([ui, vj ], [uj , vi]) is a pair of symmetric edges in G with i 6= j} (2.21)

∪ {[wi, xj ] | [ui, vi] ∈ E, j = 1, . . . , k}.

Each pair of symmetric edges ([ui, vj ], [uj , vi]), with i 6= j, induces an edge [wi, wj ] in
the graph H. Hence, each edge of the form [wi, wj ] in H represents the two symmetric
edges [ui, vj ] and [uj , vi] inG. For each on-level edge [ui, vi] inG, the node wi is connected
to all nodes x1, . . . , xk in the graph H. Each edge [wi, xj ], j = 1, . . . , k, stands for the
possibility to choose the on-level edge [ui, vi] to be in a symmetric matching in G.
Now, we show that there is a symmetric perfect matching M in G which contains

exactly k on-level edges if and only if there is a perfect matching N in H. Let M be a
symmetric perfect matching in G containing exactly k on-level edges. Without loss of
generality, let [u1, v1], . . . , [uk, vk] be those on-level edges (otherwise, the nodes in G can
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a)

k = 2 u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

u6 v6 b)

w1

w2

w3

w4

w5

w6

x1

x2

Figure 2.4.: a) Example of a problem instance of the LCPMP-SYM with level constraint
parameter k = 2. A solution matching M is indicated with bold edges.
b) Graph resulting from problem reduction. The bold edges indicate a per-
fect matching N .

be renamed taking into account that ui ∈ U is renamed uj ∈ U if and only if vi ∈ V is
renamed vj ∈ V ). Based on M , the set N is defined as

N := {[wi, wj ] | ([ui, vj ], [uj , vi]) is a symmetric pair of edges in M with i 6= j} (2.22)
∪ {[wi, xi] | [ui, vi] ∈M}.

It holds that N is a matching in H, as by definition, no two edges of N meet at a node
xi. Further, no two edges share an end-node wi, as no two edges inM share an end-node
ui or vi. What remains to be shown is that N covers all nodes in H. The matching M
is perfect and hence covers the nodes ui and vi for all i = 1, . . . , n. Therefore, N covers
all nodes wi, i = 1, . . . , n. Furthermore, the node xj is covered by N for all j = 1, . . . , k,
which results from the definition of N and the fact that M contains the k on-level edges
[u1, v1], . . . , [uk, vk].
Now, let N be a perfect matching in H. We construct a matching M in the graph G

conversely to the construction of N from M .

M := {[ui, vj ], [uj , vi] | [wi, wj ] ∈ N} ∪ {[ui, vi] | ∃ j : [wi, xj ] ∈ N}. (2.23)

By definition, M is symmetric. As no two edges in N meet at a node wi, no two edges
in M meet at a node ui or vi. Hence, the set M is a matching. Each N -covered node wi
implies that the nodes ui and vi both are M -covered. Since all nodes wi for i = 1, . . . , n
are N -covered, it follows that M is a perfect matching. What remains to be shown is
that M contains exactly k on-level edges. This holds true, as N is perfect and hence
covers all nodes xj , for j = 1, . . . , k, by k edges of the form [wi, xj ].
The fact that the perfect matching problem can be solved in polynomial time (see

Section 1.3) finishes the proof.
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The statement in Theorem 2.28 can be extended to the weighted case, where a sym-
metric matching satisfying the level constraint and being of maximum weight is sought.

Problem Formulation 2.29 (Weighted level constrained symmetric matching). The
weighted level constrained symmetric matching problem (w-LCMP-SYM) is the problem
of finding a maximum weight symmetric matching satisfying the level constraint in a
symmetric graph.

Theorem 2.30. The weighted level constrained symmetric matching problem is polyno-
mially solvable.

Proof. We transform the w-LCMP-SYM into a general weighted matching problem. For
that, let (G, c, k) be an arbitrary instance of the w-LCMP-SYM, where G = (U ∪· V,E)
is a symmetric bipartite graph with U = {u1, . . . , un}, V = {v1, . . . , vn}, c : E → R is
a weight function and k is a nonnegative integer with k ≤ n. This problem instance
is transformed into a problem instance (H, c′) of the weighted matching problem. The
graph H = (W,F ) is constructed as described by (2.20) and (2.21) in the proof of
Theorem 2.28. Hence, its node set W contains the nodes wi for all i = 1, . . . , n and the
nodes xj for all j = 1, . . . , k.
The edge weights c′ are defined based on the weight function c of the graph G. An

edge of the form [wi, wj ] ∈ F is assigned the weight

c′[wi,wj ] := c[ui,vj ] + c[uj ,vi] for all i, j = 1, . . . , n with i 6= j.

In order to define the weights of the remaining edges in H, letM :=
∑
e∈E |ce|+1. Then,

an edge of the form [wi, xj ] ∈ F is assigned the weight

c′[wi,xj ] := c[ui,vi] +M,

for all i = 1, . . . , n for which the on-level edge [ui, vi] exists in G.
We now show that the graph G has a symmetric matching of weight z containing

exactly k on-level edges if and only if the graph H has a matching of weight z+ kM . In
order to transform a given symmetric matching NG in G into a matching NH in H, and
vice versa, we will use the same construction method as described in (2.22) and (2.23)
in the proof of Theorem 2.28.
The transformation of NG into NH and vice versa is based on the assumption that the

k on-level edges in NG are the edges [u1, v1], . . . , [uk, vk]. This can be assumed without
loss of generality (otherwise, the nodes are renamed by taking into account that ui ∈ U
is renamed uj ∈ U if and only if vi ∈ V is renamed vj ∈ V ). We have seen in the proof
of Theorem 2.28 that NG is a symmetric matching if and only if NH is a matching.
Concerning the weights of the matchings we have the following situation: For an edge

f in H with an end-node xi, its weight c′f is the weight of the corresponding on-level
edge in G plus the summand M . As the symmetric matching NG contains exactly k
on-level edges, the matching NH contains exactly k edges which have an end-node of
the form xi. The weights of the other edges in NH simply accumulate the weights of the
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corresponding symmetric edges in NG. Hence, if NG has weight z, then NH has weight
z + kM .
To show the other direction of the equivalence, let NH be a matching in H which has

weight z + kM . The weight of NH and the definition of M imply that NH contains
exactly k of the edges with end-nodes x1, . . . , xk. We construct the symmetric matching
NG from NH following the procedure described in (2.23) in the proof of Theorem 2.28.
Thus, NG contains exactly k on-level edges. It further holds that all edges in NH of the
form [wi, wj ] induce two edges in NG whose weights sum up to c′[wi,wj ] and all edges in
NH of the form [wi, xj ] induce an edge in NG of weight c′[wi,xj ] −M . Therefore, if NH

has weight z + kM then NG has weight z.

Equivalence between symmetric perfect matchings with satisfied level constraint
and general perfect matchings

We use the transformation from the proof of Theorem 2.28 to establish a one-to-one
correspondence between symmetric perfect matchings with satisfied level constraint and
general perfect matchings. For that, we need to exclude the possibility that one sym-
metric perfect matching can be represented by more than one general perfect matching.
This situation occurs in the transformation presented in the proof of Theorem 2.28.
To see this, let G = (U ∪· V,E) be a symmetric bipartite graph with U = {u1, . . . , un},

V = {v1, . . . , vn} and let k be a nonnegative integer with k ≤ n. Let the graph
H = (W,F ) be constructed as described by (2.20) and (2.21) in the proof of Theorem
2.28. We consider a perfect matching N in the graph H. Let

L(N) := N ∩ {[wi, xj ] | i = 1, . . . , n; j = 1, . . . , k}

be the set of those edges in N which have an end-node in {x1, . . . , xk}.
Let π : {1, . . . , k} → {1, . . . , k} be an arbitrary permutation of the indices 1, . . . , k.

Permuting the end-nodes xi of the edges in L(N) according to π yields

Lπ(N) :=
{

[wi, xπ(j)] | [wi, xj ] ∈ L(N)
}
.

Based on the permutation π, let Nπ be the matching resulting from permuting the
end-nodes xi of the edges in L(N):

Nπ = N \ L(N) ∪ Lπ(N).

One should note that all nodes wi, i = 1, . . . , n, are covered by Nπ. Further, all nodes
xi, i = 1, . . . , k, are Nπ-covered. Hence, the set Nπ is a perfect matching in H. Now,
according to the transformation in (2.23), the matching Nπ transforms to the same
symmetric perfect matching in G for all permutations π.
In order to avoid that a symmetric perfect matching in G is represented by more than

one perfect matching in H, we consider a restriction on the perfect matchings in H: Let
N be a perfect matching in H and let

I(N) := {i | ∃ j ∈ {1, . . . , k} : [wi, xj ] ∈ N}
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be the set of those indices i for which the nodes wi are covered by edges incident to any
nodes xj , j = 1, . . . , k. Let φN : I(N)→ {1, . . . , k} be defined by φN (i) := j, where j is
such that [wi, xj ] ∈ L(N). The mapping φN is well-defined, as for each i ∈ I(N) there
is exactly one edge of the form [wi, xj ] in the perfect matching N . Now, we allow only
those perfect matchings N in H for which φN is strictly increasing, i.e. φ(i) < φ(j) for
all i, j ∈ I with i < j.
Lemma 2.31. Let G = (U ∪· V,E) be a symmetric graph with U = {u1, . . . , un},
V = {v1, . . . , vn} and let k be a nonnegative integer with k ≤ n. Let H = (W,F ) be
the graph defined as in (2.20) and (2.21). Further, letM be the set of symmetric perfect
matchings in G which contain exactly k on-level edges and let N be the set of perfect
matchings N in H for which φN is strictly increasing. Then, there exists a bijection
τ :M→N .
Proof. First, we specify the mapping τ . For that, we need to ensure that all matchings
N = τ(M) satisfy that φN is strictly increasing. Let M be a matching in M. Let
[ui1 , vi1 ], . . . , [uik,vik ] be the on-level edges in M , ordered by strictly increasing indices of
their end-nodes, i.e. ih < il for all h < l.
Then, τ is defined by τ(M) := N with

N := {[wi, wj ] | ([ui, vj ], [uj , vi]) is a symmetric pair of edges in M, i 6= j}
∪ {[wij , xj ] | j = 1, . . . , k}.

We have already seen that N is a perfect matching in H. In the definition of N we
make use of the fact that we have ordered the on-level edges ofM with strictly increasing
indices of their end-nodes. As this order is unique, the mapping τ is well-defined. The
strictly increasing order of the on-level edges in M implies that the nodes wi1 , . . . , wik
are also ordered with strictly increasing indices. Therefore, it holds that φN is strictly
increasing and hence, N ∈ N . Figure 2.4 shows an example of a transformation of a
matching M ∈M into a matching τ(M) ∈ N .
To show the injectivity of τ , let M1,M2 ∈ M be such that τ(M1) = τ(M2) = N . All

off-level edges in M1 and M2 appear only in symmetric pairs, and each symmetric pair
of off-level edges uniquely induces one edge in N . Therefore, both matchings M1 and
M2 must contain the same off-level edges. The set of edges [wij , xj ], j = 1, . . . , k in N is
induced by a unique set of on-level edges. Hence, M1 and M2 contain the same on-level
edges. So, it holds that M1 = M2.
To show the surjectivity of τ , let N be an arbitrary matching in N . We define a

matching M ∈M as follows:

M := {[ui, vj ], [uj , vi] | [wi, wj ] ∈ N} ∪ {[ui, vi] | ∃ j ∈ {1, . . . , k} : [wi, xj ] ∈ N}.

Obviously, τ(M) contains an edge [wi, wj ] if and only if [wi, wj ] ∈ N . Further, M
contains an on-level edge [ui, vi] if and only if node wi is N -covered. Therefore, τ(M)
and N cover the same nodes wi by an edge incident to nodes xi. Since the nondecreasing
order of these nodes by their indices is unique, both matchings τ(M) and N contain the
same edges incident to nodes xi. Finally, the matchings τ(M) and N contain the same
edges and therefore, τ(M) = N .
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2.4.4. Level constrained perfect matching and 3-dimensional matching
As stated in Sections 1.3 and 1.5, the perfect matching problem is a polynomially solv-
able problem and the 3-dimensional matching problem is NP-hard. It is an interesting
question of what complexity problems situated “between” these two problem types are,
i.e. problems which cannot be modeled as perfect matching problems but which are spe-
cial cases of 3DM. The level constrained perfect matching problem is such a problem.
The LCPMP can be interpreted as a 3DM problem where the matching constraints con-
cerning the nodes in its third color class are used only to ensure that the level constraint
is satisfied.
We now show that the LCPMP is a special case of 3DM.

Theorem 2.32. The level constrained perfect matching problem can be polynomially
reduced to the 3-dimensional matching problem.

Proof. Let (G = (U ∪· V,E), k) be an instance of the LCPMP, where G is a bipartite
graph with U = {u1, . . . , un}, V = {v1, . . . , vn} and k is an integer-valued number
with k ≤ n. This instance is reduced to a 3DM problem instance on the hypergraph
H = (U ∪ V ∪W, E), where W := {w1, . . . , wn}. Its set of edges is defined by

E :=
{
{ui, vi, wh} | [ui, vi] ∈ Eon with ui ∈ U, vi ∈ V ;h = 1, . . . , k

}
∪
{
{ui, vj , wh} | [ui, vj ] ∈ Eoff with ui ∈ U, vj ∈ V ;h = k + 1, . . . , n

}
,

where Eon denotes the set of on-level edges and Eoff denotes the set of off-level edges in
the graph G.
Now, let M be a perfect matching in G containing exactly k on-level edges. Without

loss of generality, let [u1, v1], . . . , [uk, vk] be the on-level edges in M . Let M ⊆ E be
defined as

M :=
{
{ui, vi, wi} | i = 1, . . . , k

}
∪
{
{ui, vj , wi} | [ui, vj ] ∈M with ui ∈ U, vj ∈ V and i 6= j

}
.

AsM is a matching and all nodes wi appearing in any edge ofM are pairwise different,
there are no edges inM sharing a node. Thus,M is a matching in the hypergraph H.
As M contains exactly n edges, M contains n edges as well. Hence, it is a solution to
the 3DM problem on H.
Next, letM be a solution to the 3DM problem on the hypergraph H. We define a set

M ⊆ E as follows:

M :=
{

[ui, vi] | ui ∈ U, vi ∈ V : {ui, vi, wh} ∈ M for some h = 1, . . . , k
}

∪
{

[ui, vj ] | ui ∈ U, vj ∈ V : {ui, vj , wh} ∈ M for some h = k + 1, . . . , n
}

For each edge in M both of its end-nodes also appear in an edge in the matchingM.
Further, no two edges in M share a node. Thus, the set M is a matching in G. The
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hypergraph H is constructed such that each edge in E contains a node in W . Together
with the fact that M is a matching in H of size n, this implies that M is of size n as
well. Further, all nodes in W are covered byM. Each edge inM that covers a node wh
for any h = 1, . . . , k induces an on-level edge [ui, vi] for some i = 1, . . . , n in M . Each
edge in M that covers a node wh for any h = k + 1, . . . , n induces an off-level edge in
M . Thus, M contains exactly k on-level edges.
The construction of the hypergraph H and the construction of the matching M based

on M can be done polynomially in the size of G. Hence, the reduction is polynomial,
which completes the proof.

2.4.5. Matching problems with different variations of additional side
constraints in the literature

There are numerous variations of matching problems with additional side constraints
considered in the literature. Our aim here is to present those whose additional side
constraints are closely related to couple constraints and the level constraint, rather
than giving a complete list of matching problems with additional side constraints. For
overviews of these problems, the reader may refer to e.g. [47] and [11].
A natural generalization of the couple constrained matching problem arises from al-

lowing couples to be of arbitrary size. This case is considered by Padberg and Sassano
in [45], where the generalized couples are called bonds. The authors introduce the prob-
lem matching with bonds, where bonds replace couples in the corresponding constraints.
Matching with bonds is further investigated in Section 3.1.
A formulation of additional side constraints by means of a digraph is given by Hefner

and Kleinschmidt [28]. They introduce the Master/Slave-matching problem, whose prob-
lem input consists of a graph G = (V,E) and a digraph D = (V,A) on the same set of
nodes. The aim is to find a maximum matchingM in G, such that for all arcs (u, v) ∈ A
the following holds: If u is M -covered then v is M -covered. The authors show that the
Master/Slave-matching problem is NP-hard.
Concerning the level constraint there are more problems with variations of this con-

straint in the literature. The level constraint is an equality constraint referring to a
special subset of edges of a bipartite graph. A natural generalization is to demand
this equality constraint for a general subset of edges. Imposing this type of constraint
on a perfect matching problem yields the equality constrained perfect matching problem
(ECPMP), which is defined as follows. Let G = (U ∪· V,E) be a bipartite graph with
|U | = |V | = n, let R ⊆ E be a general subset of the edges in G and let k be an integer-
valued parameter with 0 ≤ k ≤ n. The task is to find a perfect matching M in G
satisfying the additional constraint

|M ∩R| = k. (2.24)

Here, R is part of the problem input and hence it is not fixed. The problem was
formulated by Papadimitriou and Yannakakis in [46]; its complexity is still unknown
(refer to [7], [52] and [16]). We review the results of Papadimitriou and Yannakakis [46]
and establish a complexity relationship to the LCPMP in Section 4.1.
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It is interesting to see that the ECPMP is a nontrivial problem even on complete
bipartite graphs. This problem can be interpreted as finding an assignment which satis-
fies the additional side constraint (2.24); it is called the equality constrained assignment
problem (ECAP). Similar to the last problem, the task here is to find a perfect matching
M in a complete bipartite graph Kn,n satisfying the side constraint |M ∩R| = k, where
R is a subset of the edge set of the graph Kn,n. We further discuss this problem in
Section 4.3. A polynomial time algorithm for solving this problem is given by Karzanov
[32] and Yi et al. [52].
If the additional side constraint in the ECPMP is replaced by an inequality of the same

structure, it is not required that an exact number of edges in a perfect matching are
elements of R, but rather there is a defined upper bound on the number of edges which
are allowed to be elements of R. The restricted perfect matching problem (RPMP) is the
problem of finding a perfect matching M in a bipartite graph G = (U ∪· V,E) satisfying
the upper bound constraints

|M ∩Ri| ≤ ri,

with Ri ⊆ E and ri being integral for all i = 1, . . . , l. This problem is investigated in
[29] and [46]. We discuss its complexity relationship to the LCPMP in Section 4.1. The
consequences of a fixed number of upper bound constraints as well as of fixed bounds
on the values ri are discussed in Section 4.2.
Concerning the ECPMP, Costa et. al [16] study this problem with a focus on the

characterization of the set R, for which a matching satisfying the additional constraint
exists. More specifically, given a sequence of integers k1, . . . , ks, they search for a small-
est subset of edges R such that there exists a maximum matching Mi in G satisfying
|Mi ∩R| = ki for all i = 1, . . . , s. The authors prove the minimum cardinality of R in
the case of regular bipartite graphs with two parameters k1 and k2. Beside giving results
for special cases, they also present upper bounds on the cardinality of R for the case of
k1, . . . , ks being consecutive integers.
Side constraints which directly affect the notion of a matching are investigated by

Stockmeyer and Vazirani [51]. For a graph G and an integer-valued parameter δ they
ask for a matchingM in G which is of maximum cardinality and which has the property
that the distance between each pair of edges in M is at least δ. The authors call this
problem maximum δ-separated matching. They show that the decision version of this
problem is NP-complete, even for bipartite graphs with a maximum node degree of 4.
Most of the matching-type problems with additional side constraints discussed in the

literature are assignment problems.
Dell’Amico and Martello [18] introduce the k-cardinality assignment problem (k-AP).

In this problem, all feasible assignments are restricted to be of size k. Hence, the
task is to find a minimum cost assignment among all those assignments that are of
cardinality k. The cardinality restriction is ensured by one additional side constraint.
This side constraint is an equality constraint referring to all edges in a complete bipartite
graph. The main results to this problem are discussed in Section 4.3. As applications
of this problem the authors suggest the problem of finding a minimum cost assignment
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of workers to machines, under the condition that only a subset of workers and machines
needs to be assigned. Further, they mention that the k-AP may appear as a subproblem
when solving a specific satellite communication problem. In this problem, m earth
stations need to communicate to n different earth stations via satellite. The satellite is
using a k× k switch, which allows to establishes a specific set of k interconnections at a
time.
A well known generalization of the classical assignment problem is the generalized

assignment problem (GAP). Here, the assignment problem has several upper bound side
constraints imposed. The GAP can be interpreted as the problem of assigning jobs
j ∈ J = {1, . . . ,m} to agents i ∈ I = {1, . . . , n}, with the restrictions that each job is
assigned to exactly one agent, capacity restrictions on the agents are fulfilled and the
total cost of the assignment is minimized. The problem is formulated as follows:

min
∑
i∈I

∑
j∈J

cijxij

s.t.
∑
i∈I

xij = 1 ∀ j ∈ J

∑
j∈J

aijxij ≤ bi ∀ i ∈ I (2.25)

xij ∈ {0, 1} ∀ i ∈ I, j ∈ J,

where cij ∈ R is the cost of assigning job j to agent i, the value aij ∈ R is the capacity
consumption of job j being processed by agent i, and bi ∈ R is the capacity limit of agent
i, for all i ∈ I and j ∈ J . The additional restrictions (2.25) are knapsack constraints.
Their number is not fixed and it can grow linearly with the number of agents. One can
see directly that the assignment problem in its original form (see Section 1.2.3) results
from the GAP when |I| = |J | and aij = 1, bi = 1 for all i ∈ I, j ∈ J . Fisher et. al [24]
prove that the GAP is an NP-hard problem. In [12], Cattrysse and Wassenhove give
an overview of different kinds of relaxations of the GAP and compare the bounds these
relaxations deliver.
A survey of real-life applications where the GAP appears is given by Öncan [44].

These applications comprise employee and machine scheduling, routing and supply chain
problems, as well as different variants of the facility location problem. Further, the
author presents several extensions of the GAP, e.g. the non-linear capacity constrained
GAP or a multi-resource GAP which has multiple knapsack constraints per agent.
Mazzola and Neebe [39] discuss the assignment problem with side constraints (APSC),

which generalizes the GAP. Additionally to the constraints used in the classical assign-
ment problem, the APSC has the constraints∑

i∈I

∑
j∈J

aijkxij ≤ bk for all k ∈ S, (2.26)

with S = {1, . . . , s}. The authors present a branch-and-bound procedure for solving the
APSC to optimality. For that, lower bounds on the optimal objective function value are
obtained by solving the Lagrangian relaxation of the APSC, where the constraints (2.26)
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are dualized. Further, the authors develop a heuristic for approximating an optimal
solution to the APSC. Aboudi and Jörnsten investigate the same problem in [2]. They
call it the resource constrained minimum weight assignment problem.
Beside problem variants where the task is to find an assignment of minimum cost, a

common problem variant asks for an assignment of specific cost. Clearly, this generalizes
a side constraint which demands a specific number of edges to be out of a given set
R ⊆ E. Kochenberger et. al [33] present an approach where the additional side constraint
demanding the exact weight property is transformed into a quadratic penalty objective
function. The resulting problem is the quadratic assignment problem (QAP), for which
the authors present computational results based on a heuristic.
A different approach to include additional restrictions in an assignment problem is

followed by Felici and Mecoli [23]. They introduce the so-called assignment problem
with preference conditions (APPC). The preference conditions only affect the objective
function value of an assignment and have no impact on its feasibility. Hence, in the
APPC an assignment which satisfies the preference conditions is of lower cost than one
that does not satisfy them. The authors consider two types of preference constraints:
The join preference, which demands that all edges in a predefined subset of edges are
in the assignment, and the split preference, which demands that at most one edge of
a predefined subset of edges is in the assignment. In practical applications, the pref-
erence constraints may arise in the following way: In jobs to workers assignments, the
constraints can model the situation where it is beneficial that groups of workers are
working together on jobs or that, on the contrary, no two workers of the same group are
working on a job. In the context of job shop problems, the preference constraints allow
us to consider situations where all jobs of a specific type should be processed on the
same machine, or situations where conflicts arise when certain jobs are processed on the
same machine. In an integer programming formulation of the APPC in [23], the impact
of preference constraints on the objective function is modeled by means of additional
binary variables. The authors show that the APPC with split preferences can be solved
in polynomial time by transformation into a minimum cost flow problem. The APPC
with join preferences is NP-hard. For this problem variant, a heuristic which is also
based on a minimum cost flow problem is presented.
There are further restrictions which only affect the objective function. In the case that

the objective is not to minimize the total cost of an assignment but rather to minimize the
maximum cost of one edge appearing in an assignment, we get the bottleneck assignment
problem. Its objective function is

min max
i,j=1,...,n

cijxij .

The bottleneck assignment problem is investigated by Mazzola and Neebe in [40]. Of
course, there are several different variants of similar objective functions, e.g. for mini-
mizing the maximum difference between the costs of two edges in an assignment or for
minimizing the sum of the k largest costs of edges appearing in an assignment (see [47]
for an overview).
In [25], Gardner et. al discuss various problems in discrete tomography. They cover
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complexity questions regarding the existence, uniqueness and the reconstruction of finite
subsets of the lattice Zd from their line sums in m lattice directions. A lattice point is
in the subset if it has assigned a value of 1, otherwise its value is 0. A line sum is the
sum of values of the lattice points which are on a given line. For each given direction
v ∈ Zd \ {0} a line sum is given for all lines parallel to v. From a practical point of
view, the reconstruction problem is of particular interest. In the case that m = 2,
the reconstruction of a lattice subset from line sums in m directions can be done in
polynomial-time. For m ≥ 3, the authors show that this problem is NP-hard.
The LCPMP can be used to model a special case of the reconstruction problem on

the lattice Z2. In this special case, there are two directions ( 1
0 ) and ( 0

1 ). The lines
parallel to these directions correspond to the rows and the columns of the 2-dimensional
lattice. All line sums for lines in these directions, i.e. the sums of the values of points
in any row or in any column of the lattice, are 1. Additionally, there is a single line
sum for a third direction which adds up the values of the points on the main diagonal
(in terms of a matrix) of the lattice. We briefly describe the construction of the graph
of the LCPMP instance. Each node in one color class of the graph corresponds to one
row of the lattice and each node in the other color class corresponds to one column of
the lattice. Consequently, an edge [i, j] in the graph corresponds to the point in row i
and column j of the lattice (or vice versa, depending on the color classes i and j are in).
One can see that when the nodes in the graph have appropriate indices, then the points
on the main diagonal of the lattice are represented by the set of on-level edges in the
graph. Hence, the level constraint models the line sum corresponding to the diagonal
entries. In a perfect matching each node is covered by exactly one edge. This models
the fact that the line sums corresponding to the first two directions are all 1. From a
modeling point of view it is very restrictive to allow only instances with line sums of 1
for these directions, but at the same time the LCPMP allows for modeling that some
points in the lattice must have a value of 0: This is due to the underlying graph, which
does not need to be complete. Hence, all points corresponding to edges which are not
in the graph are assumed to have a value of 0.
It is interesting to see that the LCPMP is a problem between the two cases m = 2 and

m = 3, i.e. the polynomially solvable case and the case which is NP-hard. Complexity
related investigations on the LCPMP are carried out in Chapter 4.

42



3. Complexity of Couple Constrained
Matching

We have seen in Section 2.4.1 that the CCMP on bipartite graphs can be polynomially
reduced to the maximum paired integer equal flow problem. This can be interpreted
in the way that the bipartite CCMP is “not more difficult” than the maximum paired
integer equal flow problem. Unfortunately, this does not imply complexity statements
for the (bipartite) CCMP, as the maximum paired integer equal flow problem is NP-hard
(compare Theorem 2.23) and thus belongs to the class of “hardest” solvable problems.
So, the reduction does not answer the question of what complexity the CCMP is. In this
chapter, we answer this question by presenting a new complexity result on this problem,
which is that the CCMP is NP-hard, even on the class of bipartite cycles.
We start by giving a formulation of the problem weighted matching with bonds. Pad-

berg and Sassano introduce this problem in [45]. They are the first who investigate the
complexity of a matching problem additionally demanding the same matching activity
for subsets of edges. Edges that are required to have the same matching activity are
grouped in so-called bonds. The authors first consider the general case where bonds
can be of any size, and show that this problem is NP-hard. Later, they transfer their
complexity result to the case of bonds having cardinality at most 2. It is important to
notice that – in contrast to the CCMP – weighted matching with bonds includes edge
weights, which makes the problem more general than the CCMP. Originally, Padberg
and Sassano simply refer to this problem as matching with bonds. We use the extended
name to emphasize that it is a maximum weight problem.
To show that the CCMP is NP-hard, we extend Padberg’s and Sassano’s ideas from

[45] while always considering the unweighted case. So, we first prove the new result
that matching with bonds without edge weights is NP-hard. This is done by reduction
from the independent set problem. Then, after showing some intermediate results, we
prove that the CCMP is NP-hard. The complexity result we establish is even stronger:
Along the reduction, we define the problem instances of the CCMP on cycle graphs only.
Finally, this results in the fact that the CCMP is NP-hard even if the underlying graph
is a bipartite cycle.
The chapter concludes with complexity results concerning the CCAP. For that, the

special case where all couples contain only on-level edges is considered.

3.1. The complexity of matching with bonds
Padberg and Sassano introduce the notion of weighted matching with bonds in [45]. We
follow their notation, which is given in the next definition.
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Definition 3.1. Let G = (V,E) be a graph. A bond structure in G is a partition B of
E. The sets B ∈ B are called bonds.

Next, we present the formulation of the problem of finding a maximum weight match-
ing such that either all edges of a bond are in the matching or none of them. Let
G = (V,E) be a graph and let ce ∈ R be the weight of edge e for all e ∈ E. Further, let
B be a bond structure in G.

Problem Formulation 3.2 (Weighted matching with bonds). Weighted matching with
bonds (w-MB) is stated as the following integer linear program:

max
∑
e∈E

cexe (3.1)

s.t.
∑

e∈δ(vi)
xe ≤ 1 ∀ i = 1, . . . , n (3.2)

xe = xf ∀ e, f ∈ B, ∀ B ∈ B with |B| ≥ 2 (3.3)
xe ∈ {0, 1} ∀ e ∈ E. (3.4)

Constraints of the form (3.3) are called bond constraints. One should note that given a
set of pairwise disjoint subsets of E, the set can always be completed to a bond structure
by adding single-edge bonds to it; one for each edge that is not yet included in the given
subsets.
Padberg and Sassano show that w-MB is NP-hard by reduction from the weighted

independent set problem (which they refer to as vertex-packing). Furthermore, they
show that the assertion stays true even when the underlying graph is restricted to be a
simple cycle [45].

Theorem 3.3. Weighted matching with bonds on cycles is NP-hard.

We now show that this complexity result can be generalized to be valid also in the
unweighted case. For that, we investigate the class of those problems among w-MB,
where all edge weights are equal to 1. In the resulting class of problems, the task is to
find a maximum cardinality matching in the graphG which satisfies the bond constraints.
We prove that this class of problems is NP-hard.

Problem Formulation 3.4 (Matching with bonds). Matching with bonds (MB) is
stated as the following integer linear program:

max
∑
e∈E

xe (3.1’)

s.t. (3.2) – (3.4).

MB arises from w-MB by replacing the objective function (3.1) with (3.1’). This is
a common specialization step in combinatorial optimization, as it equalizes the impact
of the edges on the objective value and hence changes the problem type from maximum
weight to maximum cardinality.
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In order to show that MB is NP-hard, we now prove that the independent set problem
is polynomially reducible to matching with bonds. The proof begins with constructing
a simple cycle Ḡ and a bond structure B̄. This will be done by generalizing Padberg’s
and Sassano’s proof of Theorem 3.3. Then, we extend the cycle graph and the bond
structure in order to get a problem instance (G∗,B∗) of the unweighted problem MB.
Beside constructing this MB problem instance explicitly, we will also point out which
general properties the underlying graph needs to have in order to make the reduction
work. One should note that we reduce from the unweighted independent set problem,
in contrast to Padberg and Sassano, who reduce from the weighted independent set
problem.

Theorem 3.5. Matching with bonds is NP-hard.

Proof. Suppose we are given an instance of the independent set problem, which is a
connected graph H = (VH , EH), with VH = {vi | i = 1, . . . , |VH |}. The independent set
problem consists of finding a subset S of VH which has maximum cardinality, such that
no two nodes in S are connected by an edge in EH .
Denote by π = (vi1 , ei1 , . . . , eim , vim+1 = vi1) an optimal Chinese postman tour of H,

i.e. a closed walk of minimum cardinality which uses every edge of H at least once.
Based on π, we construct a graph G∗ = (V ∗, E∗) and a bond structure B∗ to get

an instance (G∗,B∗) of MB, whose solution reveals a solution of the independent set
problem on H. Finally, the graph G∗ is a simple cycle together with some isolated,
node-disjoint edges.
The intuition is as follows: Each edge in G∗ represents a node in π and hence, also a

node in VH . A single node in VH may be represented by several nodes in π. The edges
in G∗ representing the same node in VH are accumulated in one bond. Hence, there is
a one-to-one correspondence between the bonds in G∗ and the nodes in VH .
We describe (G∗,B∗) in two steps. First, we define a simple cycle Ḡ = (V̄ , Ē) on the

edges of the Chinese postman tour. This cycle is a subgraph of G∗.

V̄ = {eik | k = 1, . . . ,m},
Ē = {[eik−1 , eik ] | k = 2, . . . ,m+ 1},

where eim+1 is identical to ei1 . The bond structure B̄, which partitions the edge set Ē,
is defined as

B̄ = {B̄i | i = 1, . . . , |VH |}, with B̄i = {[eik−1 , eik ] ∈ Ē | vik = vi} for all vi ∈ VH .

An example of Ḡ and B̄ can be found in Figure 3.3 (neglect isolated edges in part c).
The structure of Ḡ and B̄ is as follows: Each node in V̄ corresponds to an edge in π
and for each occurrence of an edge ei in π we have one node in V̄ . Two nodes eik−1 , eik
in V̄ are adjacent in Ḡ if and only if the sequence (eik−1 , vi, eik) is contained in π for
some i = 1, . . . , |VH |. So, each edge in Ē corresponds to a node vi ∈ VH . Since nodes in
VH can be visited more than once in π, more than one edge in Ē can correspond to the
same node vi ∈ VH .
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The relationship between edges in Ē and nodes in VH is used when composing the
bonds. A bond B̄i ∈ B̄ contains an edge [eik−1 , eik ] ∈ Ē if and only if the sequence
(eik−1 , vi, eik) is contained in π. So, each bond B̄i ∈ B̄ corresponds to a node vi ∈ VH .
As a result, Ḡ is a simple cycle and B̄ is a bond structure on it.
Before we complete the description of G∗ and B∗, we show why our present graph and

bond structure already guarantee a relation which is substantial for our reduction:

Claim. A subset S of VH is an independent set in H if and only if M :=
⋃
i:vi∈S B̄i is

a matching in Ḡ.

Proof of Claim. We show that two nodes vp, vq ∈ VH are adjacent in H if and only
if the corresponding edges in B̄p and B̄q cannot be together in a matching in Ḡ. Let
vp, vq ∈ VH be the two end-nodes of an edge eik ∈ EH . As π is a Chinese postman tour
it does contain the edge eik at least once, and there exist edges eik−1 and eik+1 in EH
so that π contains the sequence (eik−1 , vp, eik , vq, eik+1). For Ḡ this means that there is
an edge in B̄p and an edge in B̄q, both incident to node eik (see Figure 3.1). These two
edges cannot appear together in a matching in Ḡ. Since the bond constraints state that
either all or none of the edges in one bond shall be in a matching, the edges in B̄p and
B̄q are not allowed to be together in the same matching.
Now let us assume that there are two edges u ∈ B̄p and v ∈ B̄q, p 6= q, which are both

incident to the same node eik ∈ V̄ . We show that the nodes vp and vq are adjacent in H.
As u and v are edges in the simple cycle Ḡ, it contains the sequence (eik−1 , u, eik , v, eik+1)
(see Figure 3.2). Since nodes in Ḡ are adjacent if and only if the corresponding edges
appear consecutively in π, there exists a sequence (eik−1 , vp, eik , vq, eik+1) in π. Hence,
vp and vq are adjacent in H.

eik−1

eik

eik+1B̄p B̄q

Figure 3.1.: Sequence with two edges in
bonds B̄p and B̄q, both in-
cident to node eik .

eik−1

eik

eik+1u v

Figure 3.2.: Sequence with two edges
u and v, both incident to
node eik .

Note that due to the bond constraints all matchings M in an MB problem are of the
form M =

⋃
i∈I, B̄i, for some index set I. For the corresponding independent set S, we

have that S = {vi | B̄i ⊆M}.
Next, we finish the construction of G∗ and the bond structure B∗. Our aim is to have

a bond structure with bonds of equal size. We make use of the fact that each occurrence
of a node vi in π correlates with one edge in the bond B̄i. For each node vi in VH , let cvi
be the number of its occurrences in π. Further, let cmax := max{cvi | vi ∈ VH}. For each
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vi ∈ VH we define a set Ei, which consists of cmax − cvi pairwise node-disjoint edges:

Ei := {[uji , w
j
i ] | j = 1, . . . , cmax − cvi}, (3.5)

with uji 6= wji and uji , w
j
i /∈ V̄ for all i = 1, . . . , |VH |, j = 1, . . . , cmax − cvi . If cvi = cmax,

we set Ei to be the empty set.
The graph G∗ is composed of the simple cycle Ḡ and the edges defined in (3.5):

E∗ := Ē ∪

 ⋃
i=1,...,|VH |

Ei

 .
We also add the new edges to the bonds and define B∗i := B̄i∪Ei for all i = 1, . . . , |VH |.

This completes the bond structure B∗ = {B∗1 , . . . , B∗|VH |}. An example for G∗ and B∗
can be found in Figure 3.3. By augmenting the bonds this way, we ensure that B∗ is a
partition of E∗ with all bonds being of the same size, i.e.

|B∗1 | = . . . = |B∗|VH || = cmax.

This allows us to compare the size of an independent set S in H to the size of the
corresponding edges M =

⋃
i:vi∈S B

∗
i in G∗:

|S| = |{i | B∗i ⊆M}| =
1

cmax
|M |.

As a consequence, S ⊆ VH is an independent set of maximum size in H if and only if
M =

⋃
i:vi∈S B

∗
i is a matching of maximum size in G∗.

The reduction described above can be done in polynomial time. Edmonds and Johnson
describe how to find an optimal Chinese postman tour π in polynomial time [22]. They
also show that every edge in H is used at most twice by π. So, in π each node vi ∈ VH
is visited at most 2deg(vi)

2 = deg(vi) times, where deg(vi) is the degree of node vi for all
vi ∈ VH . As a consequence, cmax is bounded above by the maximum degree degmax in
H. This leads to

|V ∗| ≤ 2|EH |+ 2
|VH |∑
i=1
|Ei| ≤ 2|EH |+ 2cmax|VH | ≤ 2|EH |+ 2degmax|VH |,

|E∗| = |
|VH |⋃
i=1

B∗i | = cmax|VH | ≤ degmax|VH |.

This completes the proof.

In the preceding proof an instance of MB consisting of a graph and a bond structure
was constructed. We have seen that the graph of this problem instance has a maximum
node degree of 2. Corollary 3.6 follows as a direct consequence of this fact.

Corollary 3.6. Matching with bonds on graphs with maximum node degree 2 is NP-hard.
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Figure 3.3.: a) An example graph H. Nodes v1, v3, v5 form a unique maximum inde-
pendent set. b) Optimal Chinese postman tour π in H. Dashes indicate
a second visit to edges. c) Graph G∗ for problem MB. Bonds are denoted
along the edges they contain.

3.2. The complexity of the couple constrained matching
problem

We now switch from bonds to couples and come from matching with bonds to the couple
constrained matching problem. In order to prove that the CCMP is NP-hard, some
intermediate complexity results will be established first. This will be done by showing a
sequence of problem reductions. It can be summarized as follows.
We begin with the node cover problem (NC) on graphs with a node degree of at most

3. This problem is polynomially reduced to NC on 4-regular graphs. The node cover
problem and the independent set problem have equivalent complexity, as the complement
of a node cover is an independent set, and vice versa (see [26] for a detailed proof).
Making use of this fact, we switch from NC to the independent set problem and continue
by polynomially reducing the independent set problem on 4-regular graphs to MB with
bond size 2. Finally, this problem will be polynomially reduced to the CCMP. The
sequence of problem reductions is depicted in Figure 3.4.
The independent set problem, MB and the CCMP will be treated as optimization

problems. Instead of considering NC as an optimization problem, we will consider the
decision version of NC. As both problems are polynomially equivalent [26], switching
from optimization to decision problems does not affect the NP-hardness results.
Concerning the first problem reduction, Garey et al. prove that the NC decision prob-

lem on graphs with node degree at most 3 is NP-complete [27], [26]. As they do not
show NP-completeness of the problem restricted to 4-regular graphs explicitly, this is
what we show next.

Lemma 3.7. The node cover decision problem on 4-regular graphs is NP-complete.

Proof. It is obvious that the NC decision problem on 4-regular graphs is in NP, as the
same problem without restrictions on the graph is already in NP.
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Figure 3.4.: Sequence of problem reductions

So, it remains to be shown that our variant of the problem is NP-hard. We make
use of the fact that the NC decision problem on graphs with node degree at most 3 is
NP-complete (see [27], [26]). In the following it is described how this problem can be
polynomially reduced to the NC decision problem on 4-regular graphs.
Let (H = (VH , EH), k) with VH = {v1, . . . , v|VH |} be an instance of the NC decision

problem on graphs with node degree at most 3. The question to answer is whether H
contains a node cover S ⊆ VH of size less than or equal k. We will reduce (H, k) to a
problem instance of the NC decision problem on a graph G′ = (V,E) with an integer k′,
which are both defined based on the given problem instance (H, k). As required, G′ will
be a 4-regular graph.
The graph H will serve as basis for the construction of the graph G′. We denote the

sum of all node degrees in H by zH , i.e. zH :=
∑
i=1,...,|VH | deg(vi). Of course, zH is

an even integer number. Further, let di := 4 − deg(vi) be the degree deficit of node
vi ∈ VH for all i = 1, . . . , |VH |. The degree deficit of a node in H denotes how many
edges (non-loops) incident to that node are missing, to be a node of degree 4. The total
degree deficit of H is denoted by dH , so we have

dH =
∑
vi∈VH

di = 4|VH | − zH .

We ensure to get a 4-regular graph by “filling up” node degrees in H. This is done with
the aid of special structured subgraphs we call bricks. A brick is a graph B = (VB, EB)
which is constructed as follows (see Figure 3.5):

VB = {bi | i = 1, . . . , 6},
EB = {[bi, bj ] | 1 ≤ i < j ≤ 5 with i 6= 4} ∪ {[b4, b6], [b5, b6]}.

In other words, nodes b1, . . . , b5 in the brick induce the graph K5 − [b4, b5]. Instead
of the edge [b4, b5], B contains the edges [b4, b6] and [b5, b6]. One can see directly that
every node in B has degree 4, except for node v6, which has degree 2.
Brick graphs as defined above are employed in the following way: A brick B is inserted

in the graphH by connecting the brick node v6 to two nodes vi, vj in VH with deg(vi) < 4
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Figure 3.5.: Brick B

and deg(vj) < 4. As a result, node b6 has degree 4, and the total degree deficit of the
resulting graph H +B is decremented to dH+B = dH − 2. We call the new edges [b6, vi]
and [b6, vj ] docking edges.
The graph G′ is constructed by repeating the above procedure until the total degree

deficit of the resulting graph is 0, which means that it is 4-regular. One should note that
it is always possible to get a 4-regular graph G′ that way, since the total degree deficit
starts from dH , which is an even number, and decreases by 2 each time a brick is added.
In order to distinguish the bricks in G′ from each other, let B1, . . . , Bp with p = |dH |

2
be the brick subgraphs which are added to H. The nodes in a brick Bi are denoted by
bi1, . . . , b

i
6.

The second part of the problem instance is the parameter k′, which is defined as

k′ := k + 4p.

We will show now that (H, k) is a yes-instance of the NC decision problem if and only
if (G′, k′) is a yes-instance of the NC decision problem. First, we consider an isolated
brick B. One can see (e.g. by enumeration) that a minimum node cover in B consists
of 4 nodes. Further, SB := {b1, b2, b3, b6} is a minimum node cover in B which contains
the node b6.
Now, let (H, k) be a yes-instance of the NC decision problem. This means there is a

node cover SH ⊆ VH of cardinality |SH | ≤ k. We define

S′ := SH ∪
( p⋃
i=1

SBi

)
,

with SBi = {bi1, bi2, bi3, bi6} for all i = 1, . . . , p, corresponding to SB as defined above.
The set of edges in G′ can be partitioned into the sets

EH , E(Bi), E(Di), for i = 1, . . . , p,
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3.2. The complexity of the couple constrained matching problem

where E(Bi) and E(Di) are the set of all edges in brick Bi and the set of the two docking
edges emanating from brick Bi, respectively, for all i = 1, . . . , p. Since SH is a node cover
in H, the edges in EH are covered by S′. For any i = 1, . . . , p we have that SBi is a
node cover in Bi which contains the node bi6. So, S′ covers all edges in E(Bi) and both
docking edges in E(Di), as they are both incident to node bi6. Concerning the size of
S′ we have that |S′| = |SH | + 4p ≤ k + 4p. As a result, S′ is a node cover in G′ with
cardinality |S′| ≤ k′.
Next, let (G′, k′) be a yes-instance of the NC decision problem. Hence, there exists

a node cover S′ ⊆ V , with |S′| ≤ k′. We have seen that each node cover contains at
least 4 nodes in every brick. As there are p brick subgraphs in G′, it follows that at
most |S′| − 4p nodes in VH suffice to cover all edges in EH . The term |S′| − 4p can be
estimated by

|S′| − 4p ≤ k′ − 4p = k,

which shows that (H, k) is a yes-instance of the NC decision problem.
What is left to show is that the problem transformation as described above is poly-

nomial in the input size of (H, k). Determining the degree of each node in H can surely
be done in polynomial time. Consequently, the calculation of the problem parameter k′
can also be done in polynomial time. G′ comprises the original graph H and p bricks
plus two docking edges per brick. As each brick subgraph is of the same constant size,
the total size of all bricks including docking edges in G′ is in O(p) = O

(
|dH |

2

)
= O(VH).

It is possible to determine which nodes get connected to bricks in the following way. All
nodes in H and their degrees are maintained in a list L. Two successive nodes in L with
positive degree deficit get connected to a brick. This is done until all degree deficits are
0. As the maximum degree deficit of a node is 4, the number of steps needed for this
procedure is polynomially bounded by the size of the list, which is |VH |.

The complexity result of Lemma 3.7 can be used directly to strengthen the statement of
Theorem 3.5. For that, the independent set problem on 4-regular graphs is polynomially
reduced to MB.

Lemma 3.8. Matching with bonds on cycles is NP-hard, even if all bonds have cardi-
nality 2.

Proof. To show this result, we consider the proof of Theorem 3.5. Now, letH = (VH , EH)
be an instance of the independent set problem, with H being a 4-regular graph.
The key property of H is that it is an Eulerian graph, which means that there exists

a tour in H which contains every edge in EH exactly once. Hence, this tour is also an
optimal Chinese postman tour π in H. As the underlying graph H is 4-regular, each
node vi ∈ VH is visited exactly twice in π. Following the proof of Theorem 3.5, we use π
to get a simple cycle Ḡ and a bond structure B̄. Due to the fact that each node vi ∈ VH
is visited exactly twice in π, we have that each bond Bi ∈ B̄, i = 1 . . . , |VH |, consists
of exactly 2 edges. Hence, all bonds in B̄ are of the same size already and there is no
need for additional edges to adjust the difference in the bonds’ cardinalities. Therefore,
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3. Complexity of Couple Constrained Matching

G∗ := Ḡ and B∗ := B̄ are the final graph and bond structure and form a problem instance
of MB.
As we applied the same construction techniques as in the proof of Theorem 3.5, we

note that G∗ is a simple cycle and all bonds in B∗ have cardinality 2.

As a result of Lemma 3.8, MB stays NP-hard even under the restrictions that the
underlying graph is a cycle and all bonds are of size 2. We keep these restrictions on
MB and finally show that this problem is polynomially reducible to the CCMP.
First, the difference between MB and the CCMP is clarified. Instead of a bond struc-

ture, the CCMP has a couple collection F = {F1, . . . , Fk}. All couples in F must be
of size 2. A couple collection – in contrast to a bond structure – does not need to be a
partition of the set of edges of the underlying graph, but it can. This implies that MB
on cycles with bonds having cardinality 2 is a special case of the CCMP on cycles.

Theorem 3.9. The couple constrained matching problem is NP-hard on cycles.

Proof. We show that MB on cycles with bonds having cardinality 2 is polynomially
reducible to the CCMP on cycles. Let (G,B) be a problem instance of MB on cycles
with bonds having cardinality 2. As all of the bonds are of cardinality 2, they can be
simply renamed couples. Thus, F := B is a couple collection with Fi := Bi for all
Bi ∈ B. Now, (G,F) is a problem instance of the CCMP and it has the same optimal
solution as the problem instance (G,B) of MB. As Lemma 3.8 states that MB on cycles
with bonds of cardinality 2 is NP-hard, it follows that CCMP on cycles is NP-hard.

A final remark on MB with restrictions should be mentioned here. In case the restric-
tions on the bond sizes as given in Lemma 3.8 are loosened to be of the form |B| ≤ 2 for
all B ∈ B, a stronger relationship between MB and the CCMP holds: MB with bonds
having cardinality at most 2 is polynomially equivalent to the CCMP.

3.2.1. The bipartite case

In the previous section we showed that the couple constrained matching problem is NP-
hard on cycle graphs (see Theorem 3.9). This result was established with the help of
Lemma 3.8. There is a further implication from that lemma, which allows us to state
that the couple constrained matching problem is NP-hard even on bipartite cycles. We
make use of the fact that bonds partition the edge set of a graph. As the underlying
graph is a cycle and all bonds are of cardinality 2, the cycle is of even length and thus,
it is bipartite. In the reduction we use in the proof of Theorem 3.9, MB on cycles with
bonds having cardinality 2 is reduced to the CCMP without changing the underlying
graph. This yields the following result.

Corollary 3.10. The couple constrained matching problem is NP-hard on bipartite cy-
cles.

The previous result can also be shown directly by reducing the CCMP on cycles to
the CCMP on bipartite cycles. We show this reduction next.
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Theorem 3.11. The couple constrained matching problem on cycles can be polynomially
reduced to the couple constrained matching problem on bipartite cycles.

Proof. Let (G, C) be an instance of the CCMP, where G = (V,E) is a cycle and
C = {C1, . . . , Cp} is a couple collection on G. Let k denote the length of the cycle
G and let V = {v1, . . . , vk} be an ordering of the nodes corresponding to their sequential
appearance in the cycle, i.e. [vi, vi+1] ∈ E for all i = 1, . . . , k, with vk+1 being identical
to v1. Hence, G can be written as [v1, e1, v2, . . . , vk, ek, v1].
In the case that k is even, G is bipartite and no problem reduction needs to be done.

In the case that k is odd, we transform the problem instance (G, C) into the problem
instance (H,D), with H = (W,F ) being a bipartite cycle graph and D being a couple
collection on H. For that, let b ∈ E denote an edge in G that is not contained in
any couple in C. Such an edge exists, since G contains an odd number of edges and
the number of edges of all the couples in C is even. Without loss of generality, let
b = ek = [vk, v1].
Loosely spoken, the graph H corresponds to a doubling of the cycle G, where the two

resulting cycles are connected by a modified edge b and its duplicate. Figure 3.6 depicts
the construction scheme of the graph H and the couple collection D. More formally,
let the set of nodes of H be defined as W := V ∪ {v′i | i = 1, . . . , k}. The edge set of
H contains all the edges fi := ei = [vi, vi+1] which also appear in E \ {b}, and their
corresponding duplicates f ′i := [v′i, v′i+1]. So, F := {fi, f ′i | ei ∈ E, i = 1, . . . , k − 1}.
So far, H consists of two broken-up cycles. A connection between them is achieved by
adding two more edges to F :

fk := [vk, v′1] and f ′k := [v′k, v1].

Now, H is an even cycle of the form

[v1, f1, v2, . . . , vk, fk, v
′
1, f
′
1, v
′
2, . . . , v

′
k, f
′
k, v1].

For each couple Cs = {ei, ej} in C there exists a couple Ds = {fi, fj} and a cou-
ple D′s = {f ′i , f ′j}. The two edges fk and f ′k constitute an additional couple D∗. So,
D = {Ds, D

′
s | s = 1, . . . , p} ∪ {D∗}. This completes the description of the problem in-

stance (H,D).
One should note the “symmetry” of the two almost-cycles the graph H is composed of.

It is reflected in the relationship between the edges fi and f ′i . For any i = 1, . . . , k it holds
that fi is incident to fj if and only if f ′i is incident to f ′j . Concerning their occurrence
in couples, it holds that an edge fi is in the couple Ds if and only if its corresponding
duplicate f ′i is in the couple D′s. The couple D∗ ensures that if fk is contained in a
solution matching N in H, then neither f1 nor fk−1 are in N . Analogously, if f ′k is in a
solution matching N in H, then neither f ′1 nor f ′k−1 are in N . This reflects the incidence
relationships of the corresponding edges in the original graph G.
Let N be a maximum matching in H which fulfills the couple constraints concern-

ing D. Due to the symmetry in H, the subsets N1 = {fi ∈ N | i = 1, . . . , k} and
N2 = {f ′i ∈ N | i = 1, . . . , k} are of the same size. Otherwise, one could discard the
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Figure 3.6.: a) Cycle graph of odd length k. Edge names ei and their membership to
example couples Ci are written along the edges, on the outer and inner
side of the cycle, respectively. b) Even cycle graph constructed in problem
reduction.

edges of the smaller of the two subsets and replace them with the symmetric counter-
part of the larger one. To show that such a replacement would give a feasible matching,
suppose that N2 is the larger of the two subsets. Let N̄ be the matching resulting from
replacing N1 in N with {fi | f ′i ∈ N2}. Obviously, N̄ fulfills the couple constraints
concerning D. In order to be a feasible matching, neither the two edges f1 and f ′k nor
the two edges fk and f ′1 may appear together in N̄ . We have already stated that the
edges f ′k and f ′1 cannot be together in N . After the replacement, f1 is in N̄ if and only
if f ′1 is in N . Hence, f1 and f ′k are not both in N̄ . Analogously, fk is in N̄ if and only if
f ′k is in N . Hence, fk and f ′1 are not both in N̄ .
The solutions to the problem instances (G, C) and (H,D) are related in the following

way. A matchingM in G can be deduced from a matching N in H by the following rule:

M := {ei ∈ E | fi ∈ N}.

Obviously, M is a matching in G and when N satisfies the couple constraints concerning
D, then M satisfies the couple constraints concerning C.
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A consequence of the fact that both subsets N1 and N2 are of the same size is that

|M | = 1
2 |N |.

For the rest of this proof, we implicitly expect all mentioned matchings to fulfill the
corresponding couple constraints. Now, we show that a maximum matching M in G is
of size z if and only if a maximum matching N in H is of size 2z.
LetM be a maximum matching in G of size z and assume there is a matching N̄ in H

with |N̄ | > 2z. Constructing M̄ from N̄ as described above yields a matching in G with
|M̄ | = 1

2 |N̄ | > z = |M |, contradicting the optimality of M . Next, let N be a maximum
matching in H of size 2z and assume that there is a matching M̄ in G with |M̄ | > z.
Then, N̄ := {fi, f ′i ∈ F | ei ∈ M̄} is a matching in H of size |N̄ | = 2|M̄ | > 2z = |N |,
contradicting the optimality of N .
The graph H contains exactly twice as many nodes and edges as the graph G. The

number of couples in D is |D| = 2|C|+1. Hence, the problem reduction is polynomial.

The fact that we can restrict the underlying graph of the CCMP to bipartite cycles
without changing the problem complexity opens up a link to level graphs, which are
defined in Definition 2.8 in Section 2.2.

Corollary 3.12. The couple constrained matching problem is NP-hard on level graphs.

Proof. Due to Theorem 3.11, the CCMP is NP-hard on bipartite cycles. The nodes of
any bipartite cycle G = (U ∪· V,E) with U = {u1, . . . , un} and V = {v1, . . . , vn} can be
renamed such that the set of edges is

E =
{
[ui, vi] | i = 1, . . . , n

}
∪
{
[ui, vi+1] | i = 1, . . . , n

}
,

where vn+1 is identical to v1. The edge set E contains all on-level edges [ui, vi], where
i = 1, . . . , n. So, the bipartite cycle G is a level graph. Hence, the CCMP is NP-hard
also when restricting the underlying graph to be a level graph.

3.3. Complexity issues of the couple constrained assignment
problem

The couple constrained assignment problem as defined in Section 2.1.3 corresponds to a
minimum cost couple constrained matching problem on a complete bipartite graph.
Aboudi and Nemhauser [3] introduce the CCAP with an additional restriction on

the couple collection. They assume a couple collection F = {F1, . . . , Fp} to have the
property that each node in the graph is incident to at most one edge in

⋃p
i=1 Fi. Then,

by renaming the nodes in the graph, the couple constraints (2.8) can be replaced with
constraints of the form

x2k−1,2k−1 = x2k,2k for all k = 1, . . . , p. (3.6)
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Problem Formulation 3.13 (Couple constrained assignment with on-level couples).
The couple constrained assignment problem with on-level couples (CCAP-L) is the cou-
ple constrained assignment problem where all couple constraints are of the form (3.6).

In order to state the complexity of this problem, we take a further look at the couple
constrained matching problem and recall the weighted version of it (compare Problem
Formulation 2.25): The weighted couple constrained matching problem (w-CCMP) is the
problem of finding a maximum weight matching satisfying the couple constraints.
As stated in Section 3.2, the CCMP is NP-hard on bipartite cycle graphs. Thus,

the w-CCMP on bipartite cycle graphs is NP-hard as well. We show that this result
holds when assuming that no two edges out of any couples share an end-node. Then, a
reduction to the CCAP-L is easy.

Lemma 3.14. The weighted couple constrained matching problem on bipartite cycles,
where no two edges of any couples share an end-node, is NP-hard.

Proof. We polynomially reduce the w-CCMP on bipartite graphs to the w-CCMP on
bipartite cycles where no two edges in any couple share an end-node.
Let (G, c,F) be an instance of the w-CCMP, where G = (U ∪· V,E) is a bipartite cycle

graph with U = {u1, . . . , un}, V = {v1, . . . , vn} and edge weights ce ∈ R for all e ∈ E.
Let F = {F1, . . . , Fp} be a couple collection for which we assume that among the edges
of the couples there exist at least two edges which share an end-node. Clearly, as G is
a cycle, there cannot be more than 2 edges sharing the same end-node. The number of
nodes in G which appear to be end-nodes of two edges of any couples is denoted by r.
Let M be defined as an integer that is bigger than the sum of the absolute values of all
edge weights: M :=

∑
e∈E |ce|+ 1.

Now, for each two edges es = [uh, vi] ∈ Fs and et = [vi, uj ] ∈ Ft, s 6= t, which share an
end-node vi, we put two additional edges fi, gi in between them as follows. We replace
the path [uh, vi, uj ] with [uh, v′i, zi, v′′i , uj ], as depicted in Figure 3.7. The edges es and et
now have the end-nodes uh, v′i and v′′i , uj , respectively. The new edges fi = [v′i, zi] and
gi = [zi, v′′i ] are assigned a weight ofM , where all other edges keep their original weights.
The resulting graph is denoted by H. One should note that the couple collection F has
not been modified and is applied in the couple constraints in both graphs G and H.
Now, it holds that G contains a matching satisfying the couple constraints which is of

weight l if and only if H contains a matching satisfying the couple constraints which is
of weight rM + l. To see this, we first consider a matching NG in G which satisfies the
couple constraints and has weight l. Applying NG to the graph H gives a matching NH

which also satisfies the couple constraints and has weight l. Additionally, for each pair
of edges (fi, gi) in H we can add either fi or gi to NH . This is possible, because at most
one of the edges es and et is in NH , due to their incidence in G. As there are r of such
edge pairs, the resulting matching is of size rM + l.
Now we consider the remaining implication. LetNH be a matching inH which satisfies

the couple constraints and has weight rM + l. Then, NH contains exactly one edge in
each of the r pairs (fi, gi). This ensures that at most one of the edges es and et – which
share an end-node in G – is in NH . Removing all those edges which are of the form fi
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Figure 3.7.: a) Path with two edges es and et in couples Fs and Ft. Both edges share
the end-node vi. b) New path with two additional edges fi and gi. Here, es
and et do not have an end-node in common.

or gi from NH yields a matching in G which still satisfies the couple constraints and has
weight l.
The graphH built along this problem reduction is a bipartite cycle, as the added paths

are of even length and only lengthen the cycle G. The reduction itself is polynomial, as
the graph H contains at most 3|U ∪ V | nodes and at most |E|+ 2|U ∪ V | edges.

With the help of Lemma 3.14 the complexity of the CCAP-L can be stated now:

Corollary 3.15. The couple constrained assignment problem with on-level couples is
NP-hard.

Proof. Let
(
G = (U ∪· V,E), c,F

)
be a problem instance of the w-CCMP, where G is

a bipartite cycle with |U | = |V | =: n and ce ∈ R is the weight of the edge e for all
e ∈ E. Further, let the couple collection F be such that no two edges of any couples
share an end-node. Without loss of generality, let the nodes be named such that the
couples contain on-level edges only.
We show that each such problem instance can be solved by solving a problem instance(
Kn,n = (U ∪· V,E′), c′,F ′

)
of the CCAP-L. For that, in the CCAP-L instance the costs

of the edges of the graph Kn,n are defined as follows. Each edge e ∈ E′ which is also in
E and is not contained in any couple and has a nonnegative weight ce is assigned the
cost c′e := −ce. Each edge e ∈ E′ which is also in E and is contained in a couple {e, f}
with ce + cf ≥ 0 is also assigned the cost c′e := −ce. All other edges in E′ are assigned
a cost of M , with M :=

∑
e∈E |ce|+ 1. The couple collection in the CCAP-L instance is

defined to be F ′ := F .
Then, the w-CCMP instance has an optimal solution N∗ of weight z∗ if and only if

the CCAP-L instance has an optimal solution of cost −z∗ + tM , where t = n− |N∗|.
As Lemma 3.14 states that the w-CCMP on bipartite cycle graphs with no two edges

in any couples sharing an end-node is NP-hard, this simple problem reduction shows
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that the CCAP-L is NP-hard as well.

One should note that the complexity of the CCAP-L depends on the costs in the
objective function. When all costs are equal, the problem is easy to solve. Then, an
optimal solution x∗ is given by

x∗ii = 1 for all i = 1, . . . , n,
x∗ij = 0 for all i, j = 1, . . . , n with i 6= j.

The following lemma summarizes this complexity result:

Lemma 3.16. The couple constrained assignment problem with on-level couples and
uniform costs is polynomially solvable.

58



4. Complexity Aspects of Level Constrained
Matching

In this chapter, we discuss complexity aspects of the level constrained matching problem
and related problems. The first part of this chapter deals with two perfect matching
problems with different additional side constraints and a cycle packing problem with
an additional side constraint. We show that each of these problems is polynomially
equivalent to the LCMP (we do so by considering the LCPMP instead of the LCMP).
One of the matching problems with additional side constraints considered is the equality
constrained perfect matching problem. Alfakih et al. [7], Yi et al. [52] and Costa et
al. [16] mention that it is an open question whether a polynomial algorithm exists for
this problem. Due to its equivalence to the LCPMP, this increases the relevance of
complexity results related to the LCPMP.
In the second part of this chapter, we take a closer look at the so-called restricted

perfect matching problem, which is also polynomially equivalent to the LCPMP. We
present changes in its problem formulation which are sufficient for the problem to become
polynomially solvable or to become NP-hard. To this aim we investigate the impact of
fixed and variable parameters in the additional side constraints to the complexity of
the problem. We consider different combinations of fixed and variable parameters and
present special cases from the literature. A final comparison of the different cases shows
assumptions in the problem formulation which are of great importance for figuring out
the complexity of the problem. This gives us an intuition about the complexity of this
class of problems. We will see that the complexity of restricted matching problems (and
thus, also the LCMP) lies on the edge between being NP-hard and polynomially solvable.
The third part of this chapter deals with the complexity of the assignment problem

with an additional equality constraint. First, the case where the equality constraint
affects all edges of the underlying complete bipartite graph is presented. Then, we
discuss the case where the equality constraint affects an arbitrary subset of the edges.
For the rest of this chapter, we follow the widely assumed hypothesis that P 6= NP.

Hence, we assume that polynomially solvable problems and NP-hard problems are of
different complexity.

4.1. Problems of the same complexity as the level constrained
perfect matching problem

We will consider three problems for which we will show that they are of the same com-
plexity as the LCMP. The problems are briefly described next. We remark that we
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4. Complexity Aspects of Level Constrained Matching

consider the following problems as perfect matching problems and compare them to
the LCPMP instead of the LCMP. This matches the problem definitions in the litera-
ture. Due to Theorem 2.12 this can be done without loss of generality, as complexity
statements for the LCPMP also apply for the LCMP, and vice versa.

Problem Formulation 4.1 (Equality constrained perfect matching). Let G = (U ∪·
V,E) be a bipartite graph with U = {u1, . . . , un}, V = {v1, . . . , vn}. Let R ⊆ E and
let k be an integer-valued parameter with 0 ≤ k ≤ n. The equality constrained perfect
matching problem (ECPMP) is the problem of finding a perfect matching M in G such
that

|M ∩R| = k. (4.1)

Problem Formulation 4.2 (Restricted perfect matching with fixed number of restric-
tions). Let G = (U ∪· V,E) be a bipartite graph with U = {u1, . . . , un}, V = {v1, . . . , vn}.
Let R1, . . . , Rl ⊆ E with l fixed. Further, let r1, . . . , rl be positive integer values. The
restricted perfect matching problem with fixed number of restrictions (l-RPMP) is the
problem of finding a perfect matching M in G such that

|M ∩Ri| ≤ ri for all i = 1, . . . , l. (4.2)

Problem Formulation 4.3 (Exact cycle sum). Let D = (V,A) be a directed graph with
V = {v1, . . . , vn}. Let k be an integer-valued parameter with 0 ≤ k ≤ n. The exact cycle
sum problem is the problem of finding a set of node-disjoint cycles of total length exactly
k in D.

The ECPMP is – just like the LCPMP – a perfect matching problem with an additional
equality constraint. The set of edges this constraint refers to is not restricted to the set
of on-level edges but rather to an arbitrary subset of the edge set. Therefore, it is a
generalization of the LCPMP. The l-RPMP is also a perfect matching problem, but
with a fixed number of additional inequality constraints. Its constraints define upper
bounds on the number of edges of arbitrary subsets in a feasible matching. Each single
constraint is less restrictive than the additional equality constraint of the ECPMP, but
there can be more than one of them. The exact cycle sum problem is the problem
of finding node-disjoint cycles in a directed graph, with one additional side constraint
requiring that the sum of the lengths of all cycles equals a given value. This problem is
not defined in terms of a perfect matching problem, but we will show in which way it is
related to them.
Papadimitriou and Yannakakis [46] were the first who related the complexity of the

above problems to each other. Originally, they formulated the ECPMP and the l-RPMP
as complete matching problems with the corresponding side constraints. As we consider
the case where both color classes of the underlying bipartite graph are of the same size,
we formulate the problems as perfect matching problems. The following result is due to
Papadimitriou and Yannakakis [46].

Theorem 4.4. For each l ≥ 2 the ECPMP, the l-RPMP and the exact cycle sum
problem are all polynomially equivalent.
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4.1. Problems of the same complexity as the level constrained perfect matching problem

We briefly recall the ideas behind the reduction steps from the l-RPMP to the ECPMP
to the exact cycle sum problem. Detailed descriptions of the reduction steps can be found
in the proof of Theorem 4.4 in [46].

Proof (Outline). Concerning the first reduction step, Papadimitriou and Yannakakis use
a generalized variant of the ECPMP in which all edges in the graph are weighted and a
perfect matching with total weight equal to a given value is sought. This problem is called
the exact weight perfect matching problem (EWPMP). The l-RPMP with upper bound
constraints referring to the subsets R1, . . . , Rl is polynomially reduced to the EWPMP
with weights encoded in unary. This is done using edge weights which uniquely indicate
in which of the subsets R1, . . . , Rl an edge is contained. Then, there exists a solution
matching to the l-RPMP if and only if there exists a solution matching among a series
of EWPMP instances which differ in the demanded weights. The encoding lengths of
the weights and the number of problem instances of the EWPMP both are polynomially
bounded above, which is due to the fact that the parameter l of the the l-RPMP instance
is fixed.
Next, EWPMP with weights encoded in unary is polynomially reduced to the ECPMP

with a cardinality restriction referring to a subset of edges R. Each edge with weight w
is replaced by a path having 2w− 1 edges. In such a path exactly w node-disjoint edges
are in R. Adding paths whose lengths linearly depend on weights is possible here since
all weights are encoded in unary.
For the next step the authors use a generalized variant of the exact cycle sum problem,

where all arcs in the digraph are weighted and the task is to find a set of node-disjoint
cycles with total weight equal to a given value. We call this the exact weight cycle sum
problem. Then, the ECPMP is polynomially reduced to the exact weight cycle sum
problem with weights encoded in unary. Starting from an arbitrary perfect matching
M in the graph of the problem instance of the ECPMP, the digraph in the problem
instance of exact weight cycle sum is defined such that all possibilities to change the
matching mate of a node u are represented by an arc emanating from u and ending at a
new matching mate. The weight of such an arc corresponds to the difference in the total
weight of the matching after and before changing the matching mate. Let R and k be
the subset of edges and the cardinality parameter in the additional equality constraint
in the instance of the ECPMP. In order to see if (and how) M can be changed into a
solution matching of the ECPMP instance, the demanded total weight of all cycles is
defined to be k − |M ∩R|.
At last, the exact weight cycle sum problem with weights encoded in unary is polyno-

mially reduced to the exact cycle sum problem. The encoding of the weights in unary
allows us to replace each arc with weight w by a path of w single arcs.

The problems where weights are encoded in unary in the outline of the proof of Theo-
rem 4.4 can be seen as intermediate problems in the entire reduction sequence. Regarding
the reduction from the l-RPMP to the EWPMP with weights encoded in unary, this re-
duction is polynomial due to the following: The values of the weights depend on the
number of edges in the underlying graph and the parameter l. Since l is a constant,
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4. Complexity Aspects of Level Constrained Matching

each weight can be written down in unary in polynomial time. When the EWPMP
with weights encoded in unary is polynomially reduced to other problems, the encoding
scheme of the weights allows reduction steps which are polynomial in the values of the
weights, rather than in their logarithmic values.
One should note that although Papadimitriou and Yannakakis have shown the poly-

nomial equivalence of the above problems, the question remains whether these problems
are NP-hard or polynomially solvable. This remains an open question.
Nevertheless, we use their result to compare the complexity of the LCPMP to the

complexity of these problems. We show that the LCPMP is of the same complexity as
the ECPMP, the l-RPMP and the exact cycle sum problem. In Theorem 4.5 we prove
the polynomial equivalence of the LCPMP to these three problems. In the corresponding
proof, the LCPMP is polynomially reduced to ECPMP and the exact cycle sum problem
is polynomially reduced to LCPMP.

Theorem 4.5. For each l ≥ 2 the LCPMP is polynomially equivalent to the ECPMP,
the l-RPMP and the exact cycle sum problem.

Proof. As the additional equality constraint in the ECPMP generalizes the level con-
straint, it is clear that the LCPMP polynomially reduces to the ECPMP. What remains
to be proven is that one of the three problems in Theorem 4.4 polynomially reduces to
the LCPMP. To do this, we reduce from the exact cycle sum problem.
Let (D, k) be a problem instance of exact cycle sum, where D = (V,A) is a directed

graph with nodes V = {v1, . . . , vn} and k is an integer with 0 ≤ k ≤ n. We poly-
nomially reduce (D, k) to a problem instance of the LCPMP on the bipartite graph
G = (V ∪· V ′, E). The set V ′ = {v′1, . . . , v′n} consists of copies of the nodes in V . For
each arc (vi, vj) ∈ A the edge set E contains the edge [vi, v′j ]. Further, E contains the
on-level edges [vi, v′i] for all i = 1, . . . , n. The parameter k′ of the level constraint is
defined as k′ := n− k. An example of this reduction is given in Figure 4.1.
A matching in G is interpreted as follows: If an off-level edge [vi, v′j ] with i 6= j is in

M , then the arc (vi, vj) is in the solution of the exact cycle sum problem. If an on-level
edge [vi, v′i] is in M , then the node vi is not contained in any cycle of the solution of the
exact cycle sum problem.
Now, we show that there is a perfect matching in G which contains exactly k′ on-

level edges if and only if there is a set of node-disjoint cycles of total length k in D.
If G contains a perfect matching which satisfies the level constraint, the arcs building
the required cycles to solve the exact cycle sum instance are as described in the above
interpretation of a matching in G. As the matching is perfect, all nodes vi ∈ V and
v′i ∈ V ′ are covered by an edge of the matching. Hence, for each node vi in the digraph
D either none of its incident arcs are chosen to be in a cycle or exactly one ingoing and
one outgoing arc are chosen to be in a cycle. This implies that the selected arcs build
node-disjoint cycles. The level constraint ensures that exactly k′ = n− k on-level edges
are in a matching. Therefore, exactly n − k nodes in the graph D are not contained
in any cycle, which is equivalent to exactly k nodes being contained in cycles. This
corresponds to the demanded total length of the cycles.
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a)

k = 5 v1 v2 v3

v4 v5 v6 b)

k′ = 1 v1 v′1

v2 v′2

v3 v′3

v4 v′4

v5 v′5

v6 v′6

Figure 4.1.: a) Example of a problem instance of the exact cycle sum problem. A solution
to it, which is a set of node-disjoint cycles of total length k, is indicated with
bold arcs. b) Graph from problem reduction. A solution to the LCPMP,
which is a perfect matching with exactly k′ on-level edges, is indicated with
bold edges.

Now, let there be a set of node-disjoint cycles of total length k in D. A solution
matching of the LCPMP instance can be constructed by the following rule. For each
arc (vi, vj) contained in one of the cycles, the off-level edge [vi, v′j ] is included in the
matching. For each node vi in the digraph D which is not contained in any cycle, the
on-level edge [vi, v′i] is included in the matching. As the cycles are node-disjoint, the
resulting set of edges is a matching in G. The required total length of the cycles implies
that exactly n−k nodes in H are not contained in any cycle. Therefore, there are exactly
k′ on-level edges in the matching.
The problem reduction is polynomial, as |V ∪ V ′| = 2n and |E| = |A|+ n, and as the

construction of a solution matching of the LCPMP out of a set of cycles can be done in
O(|V |).

One should note that in the reduction of the exact cycle sum problem to the LCPMP
the graph of the LCPMP instance is a level graph. Hence, the statement of Theorem
4.5 stays valid for the LCPMP being restricted to level graphs.
Theorem 4.5 has interesting consequences. The polynomial equivalence of the LCPMP

and the ECPMP proves that the level constraint of the LCPMP and the equality con-
straint of the ECPMP both have the same impact on the complexity of a perfect matching
problem. This holds true even though the level constraint is a special case of an equality
constraint. The differences in the two side constraints show up in the support of the
corresponding equalities. While the support of an equality constraint in the ECPMP
contains variables corresponding to the edges in any subset R of edges, the support of
a level constraint in the LCPMP has a fixed structure. Each variable appearing in it
corresponds to an on-level edge.
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4.2. Assumptions decisive for the complexity of restricted
matching

Under the assumption that P 6= NP, the restricted perfect matching problem as de-
fined in Section 4.1 is on the borderline between being polynomially solvable and being
NP-hard. Its complexity depends on details of its problem formulation. Depending on
whether certain problem parameters are fixed or not, the problem is polynomially solv-
able or NP-hard. We will show which changes in the formulation of the upper bound side
constraints in restricted perfect matching problems are sufficient for the problem to be
polynomially solvable or NP-hard. This problem is well qualified for such investigations,
as we can modify not only the parameters within the upper bound side constraints, but
also the number of these constraints. Further, there is a variant of a restricted perfect
matching problem introduced by Itai et. al [29], which is NP-hard.
We begin with the restricted perfect matching problem as formulated and analyzed by

Itai et. al [29] and discuss its main properties. As this problem variant is not restricted
in the number of upper bound constraints, it can be seen as the general class of restricted
perfect matching problems. Then, we recall the formulation of the l-RPMP as defined
in Section 4.1. In this problem the number of upper bound side constraints is fixed. Two
variants of restricted perfect matching problems which are both polynomially solvable
will be presented afterwards. Finally, the problem variants are compared to each other
concerning their complexity. A graphical listing of the different problem variants and
their relation to each other can be found in Figure 4.2.

Poly. solvable NP-hard

RPMP
fixed no. restrictns

LCPMP

RPMP

LCMP

RPMP
fixed no. restrictns,
upper bounds fixed

RPMP
single restriction

reducable to reducable to

equivalent

equivalent

reducable to

Figure 4.2.: Complexity relationships between the level constrained (perfect) matching
problem and restricted perfect matching problems.
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All problems considered in this section are stated on a bipartite graph G = (U ∪· V,E)
with U = {u1, . . . , un} and V = {v1, . . . , vn}. In any problem variant of the restricted
perfect matching problem, we refer to its upper bound side constraints as restrictions.

4.2.1. Restricted perfect matching with a variable number of restrictions
Itai et. al [29] define the general restricted perfect matching problem as follows:

Problem Formulation 4.6 (Restricted perfect matching). Let R1, . . . , Rk ⊆ E and let
r1, . . . , rk be positive integer values. The restricted perfect matching problem (RPMP)
is the problem of finding a perfect matching M in G, which satisfies

|M ∩Ri| ≤ ri for all i = 1, . . . , k.

The number of these restrictions, k, is part of the input and is not fixed.

One should mention that Itai et. al also present variants of this problem as complete
and maximum matching problem.
In the RPMP, the number of upper bound side constraints is not fixed in advance, it

rather is specified by the problem input. In other words, each problem instance of the
RPMP may contain an arbitrary number of them. This fact is used by Itai et. al to
prove that the RPMP is NP-hard (see [29]).
Itai et. al prove that the restricted complete matching problem is NP-hard, which

directly results in the fact that the RPMP is NP-hard. The authors show a reduction of
the satisfiability problem of boolean expressions in normal form (see Problem Formula-
tion C.12 in Appendix C) to the restricted complete matching problem. Each clause is
identified by exactly one node in the first color class of the underlying bipartite graph.
In the second color class there is exactly one node for each occurrence of each literal in
a clause. A node representing a clause and a node representing a literal of a clause are
connected by an edge if and only if the two clauses coincide. An edge in a matching
indicates that the literal corresponding to an end-node of the edge is chosen to be in the
solution of the satisfiability problem. Hence, it must be prevented that the matching
contains two edges with end-nodes standing for literals that are complements of each
other. This is done with the help of the restrictions and the corresponding subsets of
edges R1, . . . , Rk. Each two edges with end-nodes standing for literals that are comple-
ments of each other build a set Ri. The upper bound on the number of matching edges
in a set Ri is set to 1 for all i = 1 . . . , k. At this point it shows that the number of
restrictions cannot be fixed, as with an increasing number of clause nodes and literal
nodes the number of sets Ri also increases. This prevents the parameter k from being
fixed.

4.2.2. Restricted perfect matching with a fixed number of restrictions
As introduced in Section 4.1, the l-RPMP is a restricted perfect matching problem with
a fixed number of restrictions

|M ∩Ri| ≤ ri for all i = 1, . . . , l.
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It is stated in Theorem 4.4 that for l ≥ 2 the l-RPMP is polynomially equivalent
to the ECPMP. As mentioned before, the complexity of the ECPMP and hence, the
complexity of the l-RPMP for each l ≥ 2, is unknown. On the other hand, we stated in
Theorem 4.5 that for each l ≥ 2 the l-RPMP is polynomially equivalent to the LCPMP,
as well, and for the LCPMP we develop an approximation algorithm in Section 7.1.
A crucial condition in the problem formulation of the l-RPMP is that the number of

restrictions l (and thus, the number of sets R1, . . . , Rl) is fixed. This is exactly where
this problem and the problem variant by Itai et. al differ from each other.

4.2.3. Restricted perfect matching with a single restriction
For the special case when there is only one restriction in the restricted perfect matching
problem, there exists a polynomial solution to it.

Problem Formulation 4.7 (Restricted perfect matching with single restriction). The
restricted perfect matching problem with a single restriction (1-RPMP) corresponds to
the l-RPMP with l = 1.

Itai et. al [29] offer a solution strategy based on the reformulation of the problem as
a minimum cost flow problem. We present their result in the next theorem:

Theorem 4.8. The restricted perfect matching problem with a single restriction is poly-
nomially solvable.

Proof. Let
(
G = (U ∪· V,E), R1, r1

)
be a problem instance of the 1-RPMP, where G is

a bipartite graph with |U | = |V | = n, the set R1 is a subset of E and r1 is a positive
integer. The problem instance of the resulting minimum cost flow problem is denoted by(
D = (N,A), s, t, p, c, b

)
, with distinct source and sink nodes s and t in N , arc capacities

pa for all a ∈ A, arc costs ca for all a ∈ A and supply/demand values bz for all z ∈ N .
The digraph D and the parameters of the minimum cost flow problem are defined as
follows:

N = U ∪ V ∪ {s, t}, where s, t /∈ U ∪ V,
A = {(s, u) | u ∈ U} ∪ {(v, t) | v ∈ V }

∪ {(u, v) | [u, v] ∈ E, u ∈ U, v ∈ V },
pa = 1, for all a ∈ A,

c(u,v) =
{

1 if [u, v] ∈ R1,

0 else,

bz =


n if z = s,

0 for all z ∈ N \ {s, t},
−n if z = t.

We can assume that there is a flow in D which has a flow value of n, as otherwise the
graph G would not contain any perfect matching. The digraph D is created following
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the usual approach when reformulating a minimum cost perfect matching problem on a
bipartite graph as a minimum cost flow problem (compare Section 1.3.2).
The fact that there is only one restriction in the 1-RPMP allows us to “encode” this

upper bound side constraint in terms of the costs of the arcs. All arcs that correspond to
edges in R1 are assigned a cost value of 1, all other arcs have cost 0. Therefore, the total
cost of a flow in D equals the number of edges in the matching which are in R1. Since
the aim is to find a feasible flow of minimum cost, there exists a solution of total cost
less than or equal to r1 if and only if there is a perfect matching M in G which satisfies
|M ∩ R1| ≤ r1. The minimum cost flow problem can be solved in polynomial time (see
Section 1.1.2), e.g. by the successive shortest path method, therefore, the 1-RPMP can
be solved in polynomial time.

It is interesting to see that reformulating an instance of the RPMP as a minimum cost
flow problem does not work this way when there are two or more restrictions. In the
case of a single restriction, a solution to the minimum cost flow problem has a minimum
number of arcs corresponding to edges in R1. So, the restriction is incorporated into the
objective function of the minimum cost flow problem. The value of the upper bound
r1 does not appear in its formulation. In the case of two restrictions, there is not a
single set of arcs anymore out of which a minimum number of arcs are chosen. There
are rather two sets of arcs which need to be considered separately, both with their own
upper bound value. This cannot be modeled by a single objective function. So, the
RPMP with two upper restrictions belongs to the class of resource constrained problems
whose complexity is unknown.
The situation is different when additionally to a fixed number of restrictions in the

l-RCMP we demand that all upper bounds r1, . . . , rl are bounded above by a fixed value.

4.2.4. Restricted perfect matching with a fixed number of restrictions and a
fixed bound on the restrictions’ upper bound values

Let l and r be two fixed, positive integers. We now consider the l-RPMP on the graph
G with restrictions

|M ∩Ri| ≤ ri, for all i = 1, . . . , l,

with ri ≤ r for all i = 1, . . . , l.
In contrast to the l-RPMP, in this problem each upper bound value of the restrictions

is bounded above by the fixed value r. We show that this variant of the RPMP is
polynomially solvable.

Theorem 4.9. Let G = (V,E) be a graph and let m := |E|. Further, let l and r be two
fixed, positive integers.
The l-RPMP with all upper bound values of the restrictions bounded above by r can

be solved on G in O
(
mrl · PM(G)

)
, where PM(G) is the time needed to solve a perfect

matching problem on the graph G.
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Proof. Let mi := |Ri| for all i = 1, . . . , l. The number of possibilities to choose at
most ri edges from the set Ri equals

∑ri
j=0

(mi
j

)
for all i = 1, . . . , l. For the number of

combinations of all possibilities over all sets R1, . . . , Rl it holds that
l∏

i=1

ri∑
j=0

(
mi

j

)
≤

l∏
i=1

r∑
j=0

(
m

j

)
=

l∏
i=1

r∑
j=0

m!
(m− j)!j! ≤

l∏
i=1

mr = mrl. (4.3)

One should mention that in order to determine the exact number of combinations,
all edges appearing in more than one set Ri need to be treated with special care. As
these edges decrease the number of possible combinations, estimation (4.3) stays valid.
So, the number of possible combinations to choose edges out of R1, . . . , Rl such that
the restrictions are satisfied, is in O(mrl). As l and r are fixed, the number of possible
combinations is asymptotically bounded by a polynomial in m.
In order to find out whether there is a perfect matching in G which satisfies the restric-

tions, we proceed similarly to what we presented in Section 2.3. For each combination
of edges as described above, we first check if it fulfills the matching conditions. If it
does not, then the corresponding combination is discarded. If it does, we remove all
edges in the current combination from G including their end-nodes. Further, all edges
in
⋃l
i=1Ri which are not in the current combination are also removed from G. Let Ḡ

denote the resulting graph. Then, we search for a perfect matching in Ḡ. This can be
done in polynomial time (see Section 1.3.4). If there is a perfect matching in Ḡ, then this
matching can be extended by the edges of the current combination to a perfect matching
in G which satisfies the upper bound restrictions.
Hence, the l-RPMP with a fixed bound on the upper bound values of the restrictions

can be solved polynomially by enumerating all feasible combinations of edges out of
R1, . . . , Rl and using a polynomial-time perfect matching algorithm. The total running-
time of this procedure is O(mrl · PM(G)), where PM(G) is the time needed to solve a
perfect matching problem in the graph G, and l and r are the fixed values from the
problem formulation.

4.2.5. Comparison of the restricted perfect matching problem variants
When comparing the different problem variants of the restricted perfect matching prob-
lems described in this section, we find that the complexity of the problem depends on
whether the number of restrictions, i.e. the number of additional upper bound side con-
straints, is fixed or not. More specifically, when the number of side constraints is not
fixed, then the RPMP is NP-hard. This fact is independent from the upper bound values
of the restrictions. As one can see in the corresponding NP-hardness proof of Itai et.
al [29], all upper bounds used are of value 1. So, the RPMP with a variable number of
restrictions is NP-hard even when the upper bounds are fixed to 1.
On the other hand, when the number of restrictions is fixed, it then holds that the

problem can be solved polynomially if the upper bound values in the restrictions are
bounded above by a fixed value.
Situated “between” these two problem variants is the l-RPMP where the number of

restrictions is fixed but the upper bound values are not bounded above by a fixed value.
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Although its classification as polynomially solvable or NP-hard is still open, we presented
modifications in its problem formulation which are sufficient for the problem to become
polynomially solvable or NP-hard.
The problem variant with a single restriction has a special position in the classification

of the problems. We have seen that it is polynomially solvable due to the fact that there
is exactly one restriction, independent from the value of its upper bound. As a summary
of this section we refer to Figure 4.2 again, where the complexity relationship between
all problem variants discussed in this section and their relationship to the LCPMP (and
the LCMP) is depicted.

4.3. The complexity of assignment problems with an additional
equality side constraint

Next, we consider assignment problems which have imposed an additional equality con-
straint. In Section 2.2.3 we defined the level constrained assignment problem, which
corresponds to the special case where the additional equality constraint is applied to the
set of on-level edges. In order to be able to name single assignments explicitly, we follow
the notion of formulating the problem on a complete bipartite graph.

4.3.1. Equality constraint on all edges of the graph
We start with a variant of an additional equality side constraint for which the problem
turns out to be polynomially solvable. The problem is an assignment problem where the
size of the assignment needs to equal a given parameter k. Dell’Amico and Martello refer
to this problem as the k-cardinality assignment problem (k-AP) (see [18]). We call this
problem the fixed size assignment problem, in order to avoid the parameter k appearing
in the problem name, as k is part of the problem input.
Formally, let m,n ∈ N and let k be a nonnegative integer with k ≤ min(m,n). Let

cij ∈ R be the cost of the edge [i, j] for all i = 1, . . . ,m and j = 1, . . . , n.

Problem Formulation 4.10 (Fixed size assignment). The fixed size assignment prob-
lem (FSAP) is stated as the integer linear program

min
m∑
i=1

n∑
j=1

cijxij

s.t.
n∑
j=1

xij ≤ 1 ∀ i = 1, . . . ,m (4.4)

m∑
i=1

xij ≤ 1 ∀ j = 1, . . . , n (4.5)

m∑
i=1

n∑
j=1

xij = k (4.6)

xij ∈ {0, 1} ∀ i = 1, . . . ,m, ∀ j = 1, . . . , n.
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A noticeable difference to the formulation of assignment problems in Section 1.2.3
and Section 2.2.3 lies in the constraints (4.4), (4.5). In the formulation of the clas-
sical assignment problem these constraints are equalities. Here, these constraints are
inequalities.
One should note that the parameter k is part of the input of the problem. Otherwise,

the problem could be solved easily as follows. As the assignment is supposed to contain
exactly k of the mn edges, we can find an optimal solution by checking all

(mn
k

)
possible

solutions for the best objective value. We have that(
mn

k

)
= (mn)!

(mn− k)!k! ∈ O
(
(mn)k

)
.

Hence, if k were fixed, then this would yield a polynomial solution procedure.
Dell’Amico and Martello [18] show that the FSAP with k not being fixed is polyno-

mially solvable. They offer three different polynomial solution approaches.
Firstly, they interpret the FSAP as a problem on an intersection of two matroids M1

and M2. In order to define the matroids, let the underlying graph of the FSAP be
Km,n = (U ∪· V,E). Then, M1 = (E, I1) is the matroid on the ground set E, where
I1 is the set of all subsets I ⊆ E with |I| ≤ k and with no two edges in I sharing an
end-node in U . The matroid M2 = (E, I2) has the same ground set and I2 is the set of
all subsets I ⊆ E with |I| ≤ k and with no two edges in I sharing an end-node in V .
Now, the FSAP corresponds to the problem of finding a minimum cost subset of E which
is contained in both sets I1 and I2, and which is of cardinality k. Each basis of M1 or
M2 is an independent set of maximum cardinality in the corresponding matroid. The
FSAP is feasible if and only if there exists a common basis B of the two matroids with
|B| = k. In order to find a common basis, the weighted matroid intersection algorithm
(see Lawler [37], Edmonds [21]) can be used. This algorithm finds a common basis of
M1 and M2 which is of minimum cost in polynomial time. In order to solve the FSAP,
we determine this basis and check whether it is of cardinality k or not.
The second solution approach to the FSAP is to show that the constraint matrix of

the problem is totally unimodular. Let B ∈ {0, 1}(m+n)×mn be the constraint matrix
corresponding to the inequalities (4.4) and (4.5). By adding m + n slack variables, the
inequalities can be transformed into equalities, i.e. the problem is in standard form. The
complete constraint matrix of the FSAP in standard form is the (m+n+1)×(mn+m+n)
matrix

A =
(

B I

1 . . . 1 0 . . . 0

)
,

where I is the identity matrix Im+n. Dell’Amico and Martello prove that the matrix A
is totally unimodular by using the well-known partitioning argument (see [43]). Hence,
the FSAP can be solved polynomially using linear programming techniques.
The third alternative to solve the FSAP polynomially is by modeling the problem as a

minimum cost flow problem. The digraph for this problem is constructed as usual when
transforming a weighted bipartite matching problem into a minimum cost flow problem
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(see Section 1.3.2). Then, the FSAP corresponds to the problem of finding a b-flow of
value k which is of minimum cost.
For the case of a sparse cost matrix (cij)ij , Dell’Amico et. al [17] derive an efficient

algorithm which is faster than the minimum cost flow approach.
All solution approaches from above have in common that they make use of the fact

that the equality constraint (4.6) contains all variables with non-zero coefficients. In
other words, it refers to all of the edges in the graph. In contrast to this constraint,
the level constraint applies its cardinality restriction only to a subset of the edges – the
on-level edges.
Unfortunately, the solution approaches for the FSAP cannot be applied in the case

where the additional cardinality constraint refers to a general subset R of the edges.
Nevertheless, the problem of finding an assignment which satisfies an additional equality
constraint on a general subset of the edges can be solved polynomially. The next section
deals with this problem.

4.3.2. Equality constraint on a subset of edges of the graph
Now, we generalize the set of edges which are affected by the additional equality con-
straint. We consider a perfect matching problem on the complete bipartite graph
Kn,n = (U ∪· V,E) with an additional cardinality constraint demanding an exact number
of edges of a given set R ⊆ E to be in the matching. Let k denote that number, with k
being an integer-valued parameter with 0 ≤ k ≤ n.

Problem Formulation 4.11 (Equality constrained assignment). The equality con-
strained assignment problem (ECAP) is the problem of finding a solution to the system

n∑
j=1

xij = 1 ∀ i = 1, . . . , n (4.7)

n∑
i=1

xij = 1 ∀ j = 1, . . . , n (4.8)∑
[ui,vj ]∈R

xij = k (4.9)

xij ∈ {0, 1} ∀ i, j = 1, . . . , n. (4.10)

In order to coincide with the formulation of this problem in the literature, the ECAP
is stated as a feasibility problem without objective function. In the case that the set R is
of the form R = {[ui, vi] | i = 1, . . . , n}, the constraint (4.9) becomes the level constraint
and the ECAP coincides with the LCAP from Section 2.2 with all weights being equal
to 1.
Karzanov [32] was the first who gave necessary and sufficient conditions for the exis-

tence of a feasible solution to the ECAP. Yi, Murty and Spera [52] simplified the proofs
of these conditions and used them to develop a polynomial algorithm to solve the ECAP:

Theorem 4.12. The equality constrained assignment problem on the complete bipartite
graph Kn,n can be solved in O(n2.5).
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The authors derive the algorithm and the corresponding conditions in two steps. First,
they restrict the graph G to not contain any so-called odd 2 × 2 subgraphs. These are
subgraphs of G induced by two nodes of each color class, U and V , which have an odd
number of edges in R. Next, they consider the case when G[R] contains a matching MR

of size k and G[E \R] contains a matchingMR̄ of size n−k. The two matchings together
become, after some modifications, a solution matching to the ECAP. The modifications
steps are made to avoid that nodes are covered by two edges in MR and MR̄. A detailed
description of the algorithm can be found in [52].
In the formulation of the ECAP ((4.7) – (4.10)), no objective function is considered.

Adding the objective function of the classical assignment problem to it yields the corre-
sponding optimization problem

min
n∑
i=1

n∑
j=1

cijxij

s.t. (4.7) – (4.10).

No polynomial time algorithm for solving this problem is known yet. This fact also is
of importance for the LCMP, as the LCMP is a special case of this problem. This can
be seen when setting R to be the set of on-level edges and setting cij := −1 for all edges
[ui, vj ] that are contained in the graph of the LCMP instance, and cij := 0 otherwise.
Then, the above problem has an optimal solution of total cost −z if and only if the
LCMP instance has an optimal solution of size z. Even though there is no polynomial
time algorithm for the optimization variant of the ECAP yet, Alfakih et. al [7] present
classes of facets of the ECAP polytope for the special case which they refer to as the
partitioned case (see Section 6.2).
Let us consider the original formulation of the ECAP as a feasibility problem again.

Now, we go one step further in generalizing the equality constraint (4.9) and replace it
with

n∑
i=1

n∑
j=1

cijxij = k (4.11)

When cij is interpreted as the cost of the edge [ui, vj ], constraint (4.11) requires that
the total cost of a perfect matching is equal to k. If cij ∈ {0, 1} for all i, j = 1, . . . , n,
constraint (4.11) corresponds to constraint (4.9) with R being defined appropriately.
For cij being general nonnegative integers for all i, j = 1, . . . , n, this problem is NP-

complete. Chandrasekaran et. al [13] prove this by showing that the subset sum problem
is a special case of this problem.
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In this chapter, we investigate the relationship between couple constraints and the level
constraint, and we determine the complexity of a new resource constrained matching
problem where both types of side constraints appear together.
In Section 5.1 we show that the level constrained matching problem can be polyno-

mially reduced to the couple constrained matching problem. In Section 5.2 we prove
that the decision version of the couple and level constrained matching problem is NP-
complete. In this problem, the couples are restricted to contain only on-level edges. It
holds that if the level constraint is removed, the resulting couple constrained match-
ing problem instances are trivial to solve. Thus, our complexity result also shows that
adding a single level constraint to a polynomially solvable class of couple constrained
matching problems suffices to induce an NP-hard problem.

5.1. Couple constraints as generalization of the level constraint

Couple constraints, together with a simple modification of the underlying graph, can be
used to model a level constraint. In other words, the couple constraints generalize the
level constraint. We show this by giving a polynomial reduction of the LCPMP to the
CCPMP.

Theorem 5.1. The level constrained perfect matching problem can be polynomially re-
duced to the couple constrained perfect matching problem.

Proof. We start with a problem instance
(
G, k

)
of the LCPMP, where G = (U ∪· V,E)

is a bipartite graph with U = {u1, . . . , un}, V = {v1, . . . , vn}, and k is an integer with
0 ≤ k ≤ n. Without loss of generality, let [u1, v1], . . . , [up, vp] be the on-level edges
occurring inG. Based onG and k, we build a problem instance of the CCPMP. It consists
of a graph G′ =

(
(U ∪U ′)∪· (V ∪V ′), E ∪E′)

)
and a couple collection F = {F1, . . . , Fp}.

Figure 5.1 illustrates the construction of the graph G′ and the couple collection F .
The sets U ′ and V ′ are defined as follows:

U ′ := {u′i | i = 1, . . . , p} ∪ {xi | i = 1, . . . , p− k},
V ′ := {v′i | i = 1, . . . , p} ∪ {yi | i = 1, . . . , p− k}.
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5. The Complexity of Couple and Level Constrained Matching

The set E′ contains the following edges between U ′ and V ′:

E′ := {[u′i, v′i] | i = 1, . . . , p}
∪ {[u′i, yj ] | i = 1, . . . , p; j = 1, . . . , p− k}
∪ {[v′j , xj ] | i = 1, . . . , p; j = 1, . . . , p− k}.

The couples of the couple collection F are defined to be the following:

Fi := {[ui, vi], [u′i, v′i]}, for i = 1, . . . , p.

The couple constraints ensure that an on-level edge [ui, vi] in E is chosen to be in the
solution matching if and only if the corresponding on-level edge [u′i, v′i] in E′ is chosen
to be in it.
Now, we consider a perfect matching in G′. One can see that each perfect matching

in G′ contains exactly k on-level edges of the form [u′i, v′i]: If there would be less than k,
then not all of the nodes u′i, i = 1, . . . , p, could be covered by the matching. Otherwise,
if there would be more than k, then not all of the nodes xj , j = 1, . . . , p − k, could
be covered by the matching. This means that the entire graph G′ contains a perfect
matching satisfying the couple constraints regarding F if and only if the subgraph G
has a perfect matching containing exactly k on-level edges.
The construction of the problem instance of the CCPMP is polynomial in the input

size of the problem instance of the LCPMP, as |U ′|, |V ′| ≤ 2n and |F| = p ≤ n. This
completes the proof.

a)

k = 3 u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

u6 v6 b)

u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

u6 v6

F4

F5

F1

F3

F2

u′1 v′1

u′2 v′2

u′3 v′3

u′4 v′4

u′5 v′5

y1 x1

y2 x2
F4

F5

F1

F3

F2

Figure 5.1.: a) Example of an LCPMP instance with k = 3. All on-level edges are dashed.
A perfect matching which contains exactly k on-level edges is indicated with
bold edges. b) CCPMP instance resulting from problem reduction. The
couples to which the on-level edges belong are noted above the on-level
edges. Bold edges indicate a perfect matching which satisfies the couple
constraints.
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5.2. The complexity of the couple and level constrained matching problem

5.2. The complexity of the couple and level constrained
matching problem

In this section, we investigate the case where couple constraints and a level constraint
appear together as additional side constraints in a matching problem. In formulating
the problem, these two types of side constraints get imposed on a matching problem one
after the other. We start with a polynomially solvable special case of the CCMP. We
will then prove that it suffices to add a single level constraint to it, in order to make
the resulting problem – the couple and level constrained matching problem – NP-hard.
This problem has not been considered in the literature before.

5.2.1. The couple constrained matching problem with on-level couples

The starting point of our considerations is a class of couple constrained matching prob-
lems which can be solved in polynomial time. We have shown in Section 3.2 that the
CCMP is NP-hard in general. At the end of Section 3.3, we have already mentioned a
special case of the CCMP which is polynomially solvable (see Lemma 3.16). There, we
considered the CCMP stated on a complete bipartite graph Kn,n with all couples con-
taining on-level edges only. This special case of the CCMP is polynomially solvable. An
optimal solution can be found easily by choosing all on-level edges to be in a matching.
Obviously, the restriction on the couples to contain only on-level edges makes this an
optimal solution to the CCMP on all level graphs. According to these observations, we
now define the class of CCMP instances which fulfill these restrictions on couples.
Let G = (U ∪· V,E) be a level graph, with U = {u1, . . . , un} and V = {v1, . . . , vn}.

Further, let F = {F1, . . . , Fp} be a couple collection with Fr = {[u2r−1, v2r−1], [u2r, v2r]}
for all r = 1, . . . , p.

Problem Formulation 5.2 (Couple constrained matching with on-level couples). The
couple constrained matching problem with on-level couples (CCMP-L) is formulated as
the integer linear program

max
∑
e∈E

xe

s.t.
∑

e∈δ(ui)
xe ≤ 1 ∀ i = 1, . . . , n

∑
e∈δ(vi)

xe ≤ 1 ∀ i = 1, . . . , n

x2r−1,2r−1 = x2r,2r ∀ r = 1, . . . , p
xe ∈ {0, 1} ∀ e ∈ E.

It is important to note that the graphs in problem instances of the CCMP-L are level
graphs. As we have mentioned above, for each problem instance of the CCMP-L which
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contains a level graph G = (U ∪· V,E) with 2n nodes, an optimal solution x∗ is given by

x∗ii = 1 for all i = 1, . . . , n,
x∗ij = 0 for all [ui, vj ] ∈ E with i 6= j.

Lemma 5.3. The couple constrained matching problem with on-level couples is polyno-
mially solvable.

The fact that all couples in an instance of the CCMP-L consist of on-level edges only,
is a necessary condition for the problem to be polynomially solvable. If this restriction
on the couples is left out, we get the (original) CCMP on level graphs, which is NP-hard,
as we have shown in Corollary 3.12.
One should note that the reason for the CCMP-L being polynomially solvable does

not lie in fixing the number of couple constraints. The number of couple constraints in
the CCMP-L can grow linearly with the number of nodes, as in any level graph with 2n
nodes there can be up to 1

2n couples.

5.2.2. The couple and level constrained matching problem with on-level
couples

Now, we will investigate what impact an additional resource constraint has on the easy-
to-solve CCMP-L. To this end we impose a level constraint to the CCMP-L. The resulting
problem is defined as follows.
Let G = (U ∪· V,E) be a level graph, with U = {u1, . . . , un}, V = {v1, . . . , vn} and

let F = {F1, . . . , Fp} be a couple collection with Fr = {[u2r−1, v2r−1], [u2r, v2r]} for all
r = 1, . . . , p. Further, let k be a nonnegative integer with k ≤ n.

Problem Formulation 5.4 (Couple and level constrained matching with on-level
couples). The couple and level constrained matching problem with on-level couples
(CLCMP-L) is formulated as the integer linear program

max
∑
e∈E

xe (5.1)

s.t.
∑

e∈δ(ui)
xe ≤ 1 ∀ i = 1, . . . , n (5.2)

∑
e∈δ(vi)

xe ≤ 1 ∀ i = 1, . . . , n (5.3)

x2r−1,2r−1 = x2r,2r ∀ r = 1, . . . , p (5.4)
n∑
i=1

xi,i = k (5.5)

xe ∈ {0, 1} ∀ e ∈ E. (5.6)

We will prove that the decision version of the CLCMP-L is NP-complete. The decision
version of the CLCMP-L is defined in the obvious way. In addition to G,F and k from
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above, an instance contains an integer l with 0 ≤ l ≤ n. The CLCMP-L decision
problem asks whether there is a matching M of size |M | ≥ l in G, which satisfies the
couple constraints for F and the level constraint for k.

Building blocks

To prove NP-completeness of the CLCMP-L decision problem, we will polynomially
reduce an arbitrary instance of the NP-complete clique decision problem to a problem
instance of the CLCMP-L decision problem. In this instance, the graph and parts of
the couple collection will be constructed modularly out of so-called building blocks. The
building blocks are based on the parameters of the clique problem. We now present the
construction of such a building block.
Consider a graph H = (WH , EH) with WH = {w1, . . . , wn} and an integer l with

0 ≤ l ≤ n, which together constitute an instance of the clique decision problem.
Each node w ∈ WH induces a building block, which consists of an auxiliary graph
Gw = (Uw ∪· Vw, Ew) and a couple collection Fbw. The construction of this building block
depends on the neighbors of the node w and the parameter l. Let ΓH(w) denote the set
of neighbors of the node w in the graph H. The auxiliary graph Gw consists of the two
connected components, Bw and Dw, as shown in Figure 5.2.
The first subgraph Bw = (V B

w , E
B
w ) is a bipartite graph whose node set V B

w consists
of the two color classes Xw and X ′w. They are defined as

Xw := {aw,w̃ | w̃ ∈ ΓH(w)} ∪ {bw,h | h = 1, . . . , l − 1},
X ′w := {a′w,w̃ | w̃ ∈ ΓH(w)} ∪ {b′w,h | h = 1, . . . , l − 1}.

So, for each edge that connects the node w with one of its neighbors, say w̃, in H, there
is a node aw,w̃ in Xw representing this adjacency. Further, Xw contains l− 1 additional
nodes bw,h. The definition of the second color class X ′w is analogous to the definition of
Xw.
The edge set EBw corresponding to the subgraph Bw contains two types of edges.

First, it contains all on-level edges between Xw and X ′w. Second, it contains all edges
connecting the nodes aw,w̃ and b′w,h for all aw,w̃ ∈ Xw and b′w,h ∈ X ′w. Formally, the edge
set EBw is defined as

EBw :=
{

[aw,w̃, a′w,w̃], [bw,h, b′w,h] | w̃ ∈ ΓH(w);h = 1, . . . , l − 1
}

∪
{

[aw,w̃, b′w,h] | w̃ ∈ ΓH(w);h = 1, . . . , l − 1
}
.

Besides the subgraph Bw, there is a second subgraph Dw = (V D
w , E

D
w ). This subgraph

is a bipartite level graph in form of a simple cycle. Its node set V D
w consists of the two

color classes Yw and Y ′w. The subgraph Dw is defined as

Yw := {dw,h | h = 1, . . . , l − 1},
Y ′w := {d′w,h | h = 1, . . . , l − 1},

EDw :=
{

[dw,h, d′w,h] | h = 1, . . . , l − 1
}
∪
{

[dw,h, d′w,h+1] | h = 1, . . . , l − 1
}
,
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with d′w,l being identified with the node d′w,1, in order to close the cycle.
Next, we define the couple collection Fbw = {F bw,h | h = 1, . . . , l − 1} by

F bw,h :=
{

[bw,h, b′w,h], [dw,h, d′w,h]
}

for all h = 1, . . . , l − 1.

The couples in Fbw can be seen as links between the subgraphs Bw and Dw. In Figure
5.2, two edges of the same couple are marked with the same color.
The properties of the auxiliary graph Gw and the couple collection Fbw are summarized

in the following lemma.

Lemma 5.5. Let H = (WH , EH) be a graph with WH = {w1, . . . , wn} and let l be an
integer with 0 ≤ l ≤ n. Furthermore, let w be an arbitrary node in WH and let ΓH(w)
be the set of neighbors of w. The graph Gw and the couple collection Fbw are constructed
as described above. Then, the following properties hold:

• The graph Gw is a bipartite level graph.

• The subgraphs Bw and Dw are node-disjoint. Each of them are connected compo-
nents.

• The subgraph Bw = (V B
w , E

B
w ) is of the following size:

◦ |V B
w | = 2 (degH(w) + l − 1),

◦ EBw contains degH(w)+ l−1 on-level edges and degH(w)(l−1) off-level edges.

• The subgraph Dw = (V D
w , E

D
w ) is of the following size:

◦ |V D
w | = 2(l − 1),

◦ EDw contains l − 1 on-level edges and l − 1 off-level edges.

• The entire auxiliary graph Gw = (Uw ∪· Vw, Ew) is of the following size:

◦ |Uw| = |Vw| = degH(w) + 2(l − 1),

◦ |Ew| = degH(w)l + 3(l − 1).

• The couple collection Fbw consists of l − 1 couples. All couples contain on-level
edges only.

NP-completeness of the couple and level constrained matching problem with
on-level couples

We use the introduced building blocks to prove the main result in this section:

Theorem 5.6. The decision version of the couple and level constrained matching prob-
lem with on-level couples is NP-complete.
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a)

w1 w2

w3

w4

w5

b)

B1 : B2 :

D1 : D2 :

a1,2

a1,3

a1,4

a′1,2
F a1,2

a′1,3

a′1,4

a2,1

a2,3

a2,4

a2,5

a′2,1
F a1,2

a′2,3

a′2,4

a′2,5b1,1 b′1,1
F b1,1

b2,1 b′2,1
F b2,1

b1,2 b′1,2
F b1,2

b2,2 b′2,2
F b2,2

b1,3 b′1,3
F b1,3

b2,3 b′2,3
F b2,3

d1,1 d′1,1
F b1,1

d1,2 d′1,2
F b1,2

d1,3 d′1,3
F b1,3

d2,1 d′2,1
F b2,1

d2,2 d′2,2
F b2,2

d2,3 d′2,3
F b2,3

Figure 5.2.: a) Example graph H. b) Auxiliary graphs G1 = B1 +D1 and G2 = B2 +D2,
corresponding to nodes w1, w2 in H and parameter l = 4. For ease of
notation we identify a node wi with its index i. Equally colored (non-black)
edges belong to the same couple, which is notated along them. For clearness,
all on-level edges are shown dashed.

Proof. It is clear that the problem is in NP, as for any proposed solutionM ⊆ E, checking
constraints (5.2)-(5.6) and determining the size of M can be done in polynomial time.
In order to show that the CLCMP-L decision problem is NP-hard, the decision version

of the clique problem will be polynomially reduced to it.
Let (H, l) be an instance of the clique decision problem, where H = (WH , EH) is a

graph with WH = {w1, . . . , wn}, |EH | = m and l is an integer with 0 ≤ l ≤ n. The
question to answer is whether H contains a clique C ⊆ WH of size at least l and, if it
does, what it looks like. We will consider the equivalent question, whether H contains
a clique of size exactly l.
Based on H and l, we will construct a problem instance of the CLCMP-L decision

problem which consists of a bipartite level graph G′, a couple collection F composed of
on-level edges only, and integers k and l′ serving as parameters for the level constraint
and as a decision parameter, respectively.
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We start by defining the graph G′ = (U ∪· V,E) using the introduced building blocks.
We remark that whenever a node wi appears as an index we replace it with i for ease of
notation.
For each node wi in WH and the set of its neighbors, Γ(wi), let Gi be the auxiliary

graph as constructed in Lemma 5.5. The graph G′ = (U ∪· V,E) is composed of these
auxiliary graphs, i.e. G′ := G1 + . . . + Gn. Each auxiliary graph Gi is of the form
Gi = Bi +Di, where Bi = (Xi ∪· X ′i, EBi ) and Di = (Yi ∪· Y ′i , EDi ) for all i = 1, . . . , n. Of
course, |U | = |V | and G′ is a bipartite level graph.
In order to determine the size of G′, we add up the sizes of the auxiliary graphs, which

are given in Lemma 5.5:

|U | = |V | =
n∑
i=1
|Ui|

=
n∑
i=1

(degH(wi) + 2(l − 1))

= 2m+ 2n(l − 1),

(5.7)

|E| =
n∑
i=1
|Ei|

=
n∑
i=1

(degH(wi)l + 3(l − 1))

= 2ml + 3n(l − 1).

(5.8)

The graph G′ is motivated by the following idea. For i = 1, . . . , n, each node ai,j ∈ Xi

stands for an edge [wi, wj ] emanating from node wi in the graph H. In the subgraph Bi,
each of the l − 1 nodes b′i,h stand for the possibility to cover a node ai,j by an off-level
edge. This represents the fact that if a node wi ∈ WH is a member of a clique C of
size l, it has l − 1 neighbors in C. So, if an off-level edge [ai,j , b′i,h] is in a matching
for some h ∈ {1, . . . , l − 1}, this indicates that both end-nodes of [wi, wj ] are members
of the clique C. On the other hand, if an on-level edge [ai,j , a′i,j ] is in a matching for
some [wi, wj ] ∈ EH , this indicates that not both end-nodes of [wi, wj ] are members of
the clique C.
One should note that for each edge [wi, wj ] in EH there are two corresponding nodes

ai,j and aj,i in the subgraphs Bi and Bj , respectively. Hence, there are 2m nodes of the
form ai,j in G′ in total.
The entire couple collection F comprises the couples F bi,h for all i = 1, . . . , n and

h = 1, . . . , l − 1 and the couples

F ai,j :=
{

[ai,j , a′i,j ], [aj,i, a′j,i]
}

for all [wi, wj ] ∈ EH .

Hence, F can be written as

F = {F ai,j | i = 1, . . . , n; j : [wi, wj ] ∈ EH} ∪ {F bi,h | i = 1, . . . , n;h = 1, . . . , l − 1}.
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While for a fixed index i the couples in F bi,h can be seen as links between the subgraphs
Bi and Di, the couples in F ai,j connect the subgraphs Bi and Bj , for i 6= j. In Figure 5.2,
two edges of the same couple are marked with the same color. The couple collection F
consists of p = m+ n(l − 1) couples. All couples contain on-level edges only. So, (after
renaming the nodes in V B

i and V D
i ) the couple constraints can be written in the form

(5.4).
The next parameter to define is the integer k for the level constraint. As k states how

many on-level edges of G′ a feasible matching must contain, this constraint establishes
a connection among all the subgraphs in G′. The parameter is defined as follows:

k := 2m+ (2n− 3l)(l − 1).

The decision parameter l′ completes the problem instance of the CLCMP-L decision
problem. It is defined as

l′ := 2m+ (2n− l)(l − 1).

The construction of the problem instance (G′,F , k, l′) is polynomial in the input size
of the instance

(
H = (WH , EH), l

)
. Properties (5.7) and (5.8) ensure that the graph

G′ is of polynomial size in |WH |, |EH | and l. It is important to notice that l itself is
bounded above by n. Furthermore, all steps during the definition of G′ can be done
in polynomial time. The same holds true for the definition of the couple collection F ,
which is basically an ordered listing of the on-level edges in G′. The parameters k and
l′ can also be calculated in polynomial time.
Next, we show that the following equivalence holds: The graph H contains a clique of

size exactly l if and only if the graph G′ contains a matching which meets constraints
(5.2)-(5.6) and is of size at least l′.
So, let H = (WH , EH) be a graph with WH = {w1, . . . , wn}, |EH | = m and let

C = {wi1 , . . . , wil} be a clique in H. Let G′,F , k and l′ be defined as above. Based on
C and l, a matching M in the graph G′ will be defined next. An example of what M
looks like for a graph H with a clique C and a parameter l can be found in Figure 5.3.
As mentioned before, an off-level edge in M , which covers a node ais,it , indicates that

the nodes wis and wit in H both are members of the clique C. In other words, it indicates
that the edge [wis , wit ] is in EH(C). An on-level edge in M , which covers a node ais,it ,
indicates that not both nodes wis and wit are members of the clique C. In other words,
it indicates that the edge [wis , wit ] is not in EH(C). Anyway, it may still be the case
that one of the nodes wis , wit is in the clique.
For a better understanding of how the matching M is composed, we partition M into

several subsets. To this end, first we consider nodes wis which are members of C. The
decision as to which edges of the corresponding auxiliary graph Gis are in the matching
depends on which neighboring nodes of wis are also in C. We similarly consider the
nodes wq which are not in C.
We start by considering a node wis ∈ C and define which edges in the corresponding

auxiliary graph Gis are in M . For each node wit ∈ C with wit 6= wis , the matching
contains an off-level edge that is incident to the node ais,it in the subgraph Bis . The set
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a)

w1 w2
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Figure 5.3.: a) Example graph H with clique C of size l = 4. Nodes in C and edges
in E(C) are blue colored. b) Graph G′ corresponding to H and l. The
blue edges in G′ build a matching M , which corresponds to C and satisfies
(5.2) – (5.5).
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5.2. The complexity of the couple and level constrained matching problem

containing these edges is denoted by MB
is . For each node wq /∈ C which is adjacent to

wis in H, the matching contains the on-level edge [ais,q, a′is,q] in the subgraph Bis . The
set containing these edges is denoted by M̄B

is . In the subgraph Dis , all off-level edges
are defined to be in the matching. The set containing these edges is denoted by MD

is .
We apply these construction rules for all nodes wis , s = 1, . . . , l, and the corresponding
auxiliary graphs Gis , s = 1, . . . , l. The resulting subsets of M are as follows:

MB
is :={[ais,it , b′is,t] | t = 1, . . . , s− 1}

∪ {[ais,it , b′is,t−1] | t = s+ 1, . . . , l} for all s = 1, . . . , l,

M̄B
is :=

{
[ais,q, a′is,q] | ∃ [wis , wq] ∈ EH with wq /∈ C

}
for all s = 1, . . . , l,

MD
is :={[dis,h, d′is,h+1] | h = 1, . . . , l − 1} for all s = 1, . . . , l,

with dis,l being defined as dis,1.
Now, we come to the auxiliary graphs Gq corresponding to the nodes wq /∈ C. Here,

all on-level edges in both subgraphs Bq and Dq are contained in the matching. The sets
containing these edges are denoted by M̄B

q and M̄D
q , respectively. Again, we apply these

construction rules for all nodes wq /∈ C and the corresponding auxiliary graphs Gq. The
resulting subsets of M are as follows:

M̄B
q :=

{
[aq,t, a′q,t] | ∃ [wq, wt] ∈ EH

}
∪
{

[bq,h, b′q,h] | h = 1, . . . , l − 1
}

for all q with wq /∈ C,

M̄D
q :=

{
[dq,h, d′q,h] | h = 1, . . . , l − 1

}
for all q with wq /∈ C.

The matching M finally is composed of the above subsets:

M :=
l⋃

s=1

(
MB
is ∪ M̄

B
is ∪M

D
is

)
∪

⋃
q:wq /∈C

(
M̄B
q ∪ M̄D

q

)
.

In the example in Figure 5.3, the corresponding sets for the indices s = 2 (with i2 = 2)
and q = 5 are:

MB
2 =

{
[a2,1, b

′
2,1], [a2,3, b

′
2,2], [a2,4, b

′
2,3]
}
,

M̄B
2 =

{
[a2,5, a

′
2,5]
}
,

MD
2 =

{
[d2,1, d

′
2,2], [d2,2, d

′
2,3], [d2,3, d

′
2,1]
}
,

M̄B
5 =

{
[a5,j , a

′
5,j ], [b5,h, b′5,h] | j = 2, 3, 4;h = 1, 2, 3

}
,

M̄D
5 =

{
[d5,1, d

′
5,1], [d5,2, d

′
5,2], [d5,3, d

′
5,3]
}
.
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5. The Complexity of Couple and Level Constrained Matching

Concerning the cardinality of the above defined subsets of M , we have that

|MB
is | = l − 1 for all s = 1, . . . , l,

|M̄B
is | = degH(wis)− (l − 1) for all s = 1, . . . , l,

|MD
is | = l − 1 for all s = 1, . . . , l,

|M̄B
q | = degH(wq) + l − 1 for all q : wq /∈ C,

|M̄D
q | = l − 1 for all q : wq /∈ C.

We now verify the demanded properties of M . First of all, for s = 1, . . . , l and q
with wq /∈ C, the sets MB

is ,M
D
is , M̄

B
is , M̄

B
q and M̄D

q are matchings. As the corresponding
subgraphs, Bis , Dis , Bq and Dq, are pairwise node-disjoint, M is a matching as well, and
therefore satisfies constraints (5.2) and (5.3).
We continue by checking the couple constraints. These constraints are affected by

on-level edges only. The subsets of M , in which they appear, are the sets M̄B
is , M̄

B
q and

M̄D
q for all s = 1, . . . , l and q with wq /∈ C. So, we need to consider all edges of the form

[ai,j , a′i,j ], with at least one of the nodes wi, wj not being in C, and all edges of the form
[bq,h, b′q,h] and [dq,h, d′q,h], with q such that wq /∈ C.
For any s = 1, . . . , l, any q, t with wq, wt /∈ C and any h = 1, . . . , l − 1 it holds that

[ais,q, a′is,q] ∈ M̄
B
is ⇔ [aq,is , a′q,is ] ∈ M̄

B
q , (5.9)

[aq,t, a′q,t] ∈ M̄B
q ⇔ [at,q, a′t,q] ∈ M̄B

t , (5.10)
[bq,h, b′q,h] ∈ M̄B

q ⇔ [dq,h, d′q,h] ∈ M̄D
q . (5.11)

Equivalences (5.9) and (5.10) state that the couple constraints concerning the cou-
ples in F ai,j hold for all [wi, wj ] ∈ EH . The equivalences in (5.11) ensure that the
couple constraints concerning the couples in F bi,h are satisfied for all i = 1, . . . , n and
h = 1, . . . , l − 1. Hence, the couple constraints (5.4) are fulfilled.
Next, the level constraint is verified. For that, the cardinalities of the sets

⋃l
s=1 M̄

B
is ,⋃

q:wq /∈C M̄
B
q and

⋃
q:wq /∈C M̄

D
q are added. We have that

|
l⋃

s=1
M̄B
is |+ |

⋃
q:wq /∈C

M̄B
q |+ |

⋃
q:wq /∈C

M̄D
q |

=
∑
wi∈C

(degH(wi)− (l − 1)) +
∑

wq∈WH\C
(degH(wq) + l − 1) +

∑
wq∈WH\C

(l − 1)

=
∑

wi∈WH

degH(wi)−
∑
wi∈C

(l − 1) +
∑

wq∈WH\C
(l − 1) +

∑
wq∈WH\C

(l − 1)

= 2m− l(l − 1) + 2(n− l)(l − 1)
= 2m+ (2n− 3l)(l − 1).

(5.12)

Hence, the level constraint (5.5) is fulfilled.
The total size of M can be obtained easily now. The edges in M are either on-

level edges, or they are in the sets MB
is or MD

is , i = 1, . . . , l. The number of on-level
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5.2. The complexity of the couple and level constrained matching problem

edges is given in (5.12). Concerning the cardinalities of the latter sets we have that
|
⋃l
s=1M

B
is | = |

⋃l
s=1M

D
is | = l(l − 1). So, the cardinality of M is

|M | = 2m+ (2n− 3l)(l − 1) + 2l(l − 1) = 2m+ (2n− l)(l − 1).

As |M | ≥ l′, the matching M proves (G′,F , k, l′) to be a “yes”-instance of the
CLCMP-L decision problem.
Now we assume that the graphH = (WH , EH) withWH = {w1, . . . , wn} and |EH | = m

has no clique of size l. Let G′,F , k, l′ be defined as above, based on H and l. We show
that there is no matching in G′, which fulfills the couple constraints for F , the level
constraint with parameter k and is of size at least l′. Figure 5.4 illustrates this case for
an example graph H.
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Figure 5.4.: a) Example graph H which does not contain a clique of size l = 4. b) Graph
G′ resulting from problem reduction. There is no matching in G′ which
satisfies (5.2) – (5.5) and which is of size at least l′ = 32.
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Let M be a matching in the graph G′, which fulfills the couple constraints concerning
F and satisfies the level constraint for parameter k. In order to obtain information about
the cardinality of M , let α be the total number of the off-level edges in M which are in
the subgraphs B1, . . . , Bn. We call these edges alpha-edges. Let us consider any off-level
edge [ai,j , b′i,h] in the subgraph Bi, for some i = 1, . . . , n and h = 1, . . . , l − 1. If this
edge is in M , none of the two on-level edges [ai,j , a′i,j ] and [bi,h, b′i,h] can be in M . The
structure of the subgraph Bi ensures that each of its on-level edges shares exactly one
end-node with an off-level edge. Due to this fact, it holds that if [ai,j , b′i,h] is in M , then
it will be the only off-level edge in M sharing an end-node with [ai,j , a′i,j ] or [bi,h, b′i,h].
As a consequence, the alpha-edges in M prevent 2α on-level edges in B1, . . . , Bn from
being in M . Additionally, when an on-level edge [bi,h, b′i,h] is prevented from being in
the matching M , the couple constraints concerning the couple F bi,h ensure that the edge
[di,h, d′i,h] in the subgraph Di is not in M , either. Hence, the alpha-edges in M prevent
3α on-level edges in G′ from being in M .
M is assumed to contain k = 2m+ (2n− 3l)(l− 1) on-level edges. According to (5.7),

there are 2m + 2n(l − 1) on-level edges in G′ in total. So, the following estimation is
valid:

2m+ 2n(l − 1)− 3α ≥ 2m+ (2n− 3l)(l − 1)
⇔ α ≤ l(l − 1).

(5.13)

Let β be the total number of the off-level edges in M which are in the subgraphs
D1, . . . , Dn. We call these edges beta-edges. These edges prevent at least β on-level
edges in the subgraphs D1, . . . , Dn from being inM . Additionally, when an on-level edge
[di,h, d′i,h] is prevented from being in the matching M , the couple constraints concerning
couple F bi,h ensure that the corresponding edge [bi,h, b′i,h] in the subgraph Bi is not in M ,
either.
The consequences of all alpha-edges and beta-edges inM are combined in the following

way. For each alpha-edge [ai,j , b′i,h] in M , we take into account that the on-level edge
[ai,j , a′i,j ] cannot be in M . For each beta-edge [di,h, d′i,h+1] in M , we take into account
that both on-level edges [di,h, d′i,h] and [bi,h, b′i,h] cannot be in M .
Again, as the level constraint is supposed to be fulfilled, the following inequality must

be valid:
2m+ 2n(l − 1)− α− 2β ≥ 2m+ (2n− 3l)(l − 1)

⇔ α+ β ≤ 1
2α+ 3

2 l(l − 1).
(5.14)

Together with the upper bound for α from (5.13), it must hold that

α+ β ≤ 2l(l − 1).

As all edges in the matching M are either on-level or off-level edges in G′, we have
that |M | = k + α+ β. If M is assumed to be of size at least l′, it follows that

2m+ (2n− 3l)(l − 1) + α+ β ≥ 2m+ (2n− l)(l − 1)
⇔ α+ β ≥ 2l(l − 1).
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5.2. The complexity of the couple and level constrained matching problem

This leads to the fact that |M | ≥ l′ if and only if α+ β = 2l(l − 1).
There are three more direct consequences of inequality (5.14):

Claim. If M fulfills the level constraint and |M | ≥ l′, the following statements hold:

1. β ≤ l(l − 1).

2. Each node of the form ai,j and each node of the form di,h in G′ is covered by an
edge in M .

3. The beta-edges in M are distributed as follows: Each subgraph Di, i = 1, . . . , n,
has either none or all of its off-level edges in M .

Proof of Claim. 1. Seeking a contradiction, let us assume that β can be written as
β = l(l − 1) + δ, with δ ≥ 1. Applying this value of β to inequality 5.14 implies
that α ≤ l(l − 1)− 2δ. This contradicts α+ β = 2l(l − 1).

2. Let γ and δ denote the number of nodes of the form ai,j and di,h, respectively, which
are not covered by an edge in M . Then, none of the on-level edges incident to any
of these nodes is in M , while none of the off-level edges incident to them is in M ,
either. Hence, none of the on-level edges incident to these nodes is prevented from
being in M by an alpha-edge or beta-edge. Taking this into account in estimation
(5.14), the following inequality must be valid:

2m+ 2n(l − 1)− α− 2β − γ − δ ≥ 2m+ (2n− 3l)(l − 1)

⇔ α+ β ≤ 2l(l − 1)− 1
2γ −

1
2δ.

Due to the fact that α+ β = 2l(l − 1) this implies that γ = δ = 0.

3. Otherwise, in each subgraph Di where this is not the case, the number of its on-
level edges prevented from being in M is strictly greater than the number of its
off-level edges in M . Then, inequality (5.14) can be strengthened to

2m+ 2n(l − 1)− α− 2β − 1 ≥ 2m+ (2n− 3l)(l − 1)

⇔ α+ β ≤ 2l(l − 1)− 1
2 ,

which contradicts α+ β = 2l(l − 1).

The bounds α ≤ l(l − 1), β ≤ l(l − 1) together with equality α + β = 2l(l − 1) imply
that

α = β = l(l − 1).

Now we can continue from part 3 of the claim. As β = l(l − 1), there are exactly l
subgraphs among D1, . . . , Dn which have exactly l − 1 off-level edges in M . All other
subgraphs among D1, . . . , Dn do not contain any off-level edges in M , but all of their
on-level edges are contained in M due to part 2 of the claim.
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Furthermore, the couple constraints concerning the couples F bi,h for all i = 1, . . . , n and
h = 1, . . . , l − 1, imply that exactly l of the subgraphs Bi, i = 1, . . . , n, have no on-level
edges of the form [bi,h, b′i,h] inM , while the other subgraphs have all on-level edges of the
form [bi,h, b′i,h] in M . As α = l(l − 1), there are exactly l subgraphs among B1, . . . , Bn
which have exactly l − 1 off-level edges in M . Let Bi1 , . . . , Bil be those subgraphs. If
node ais,j in Bis is covered by an off-level edge in M , then, due to the couple constraints
concerning couple F ais,j and due to part 2 of the claim, node aj,is in Bj is covered by
an off-level edge as well. Hence, Bj ∈ {Bis | s = 1, . . . , l}. So, all nodes ai,j which are
covered by an off-level edge inM are the nodes ais,it for all s, t = 1, . . . , l with s 6= t. The
existence of these nodes implies that the edge [wis , wit ] exists in H for all s, t = 1, . . . , l
with s 6= t. Hence, {wi1 , . . . , wil} is a clique in H. This contradicts the assumption that
there is no clique of size l in H.
In conclusion, if the graph H does not contain a clique of size l, then there is no match-

ing in G′ which fulfills the couple constraints concerning F , satisfies the k-cardinality
constraint and is of cardinality at least l′.
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6. Properties of Resource Constrained
Matching Polytopes

The polytopal structure of a resource constrained matching problem is interesting not
only from a theoretical point of view but also for the development of solution methods.
Aboudi and Nemhauser [3] present a class of facet inducing inequalities of the polytope

of the CCAP-L. We recapitulate their results in Section 6.1.
In Section 6.2, we establish a characterization of the non-integral vertices of the poly-

tope corresponding to the linear relaxation of the LCPMP. For each non-integral vertex
x̄ of the polytope of the relaxed problem, we present a set of inequalities that separate
x̄ from the convex hull of integral solutions. Furthermore, we show that for any given
non-integral vertex a specific inequality that separates the vertex from the convex hull
of integer solutions can be determined in polynomial time.

6.1. Some facets for the couple constrained assignment
polytope

In [3], Aboudi and Nemhauser introduce a class of facets for the polytope of the couple
constrained assignment problem with on-level couples. For presenting this class of facets
we recall the constraints of this problem as introduced in Section 3.3:

n∑
j=1

xij = 1 ∀ i = 1, . . . , n (6.1)

n∑
i=1

xij = 1 ∀ j = 1, . . . , n (6.2)

x2r−1,2r−1 = x2r,2r ∀ r = 1, . . . , p (6.3)
xij ∈ {0, 1} ∀ i, j = 1, . . . , n, (6.4)

where the constraints in (6.3) are the couple constraints concerning the couple collection
F = {F1, . . . , Fp} with Fr = {(2r − 1, 2r − 1), (2r, 2r)} for all r = 1, . . . , p.
Let S =

{
x ∈ {0, 1}n2 | x satisfies (6.1) – (6.4)

}
be the set of feasible solutions to the

CCAP-L. The couple constrained assignment polytope – for the case of on-level couples –
is the convex hull of S, denoted by conv(S). Further, let the polytope corresponding to
the linear relaxation of this problem be P =

{
x ∈ Rn2

≥0 | x satisfies (6.1) – (6.3)
}
.

In order to be compliant with the notation of Aboudi and Nemhauser, let I and J be
arbitrary subsets of N = {1, . . . , n}. Further, let x(I, J) =

∑
i∈I
∑
j∈J xij . We define
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the sets K and K̃, which will appear in the facet inducing inequalities, as follows:

K := {2r − 1 | {2r − 1, 2r} ⊆ I ∩ J, r = 1, . . . , p} ,
K̃ := {2r − 1 | {2r − 1, 2r} ⊆ (N \ I) ∩ (N \ J), r = 1, . . . , p} .

Aboudi and Nemhauser show in [3] that the following holds true:

Theorem 6.1. Let I, J ⊆ N with |I|+ |J | = n− 1. Let |K̃| ≥ 1. Then, the inequality∑
i∈K∪K̃

xii ≤ x(I, J) (6.5)

defines a facet for conv(S).

Further, they show that in the special case of a single couple constraint x11 = x22, the
facets from Theorem 6.1 completely describe conv(S).

Theorem 6.2. Let Q be the set of points satisfying inequality (6.5) for the CCAP-L
with a single couple constraint:

Q =
{
x ∈ Rn

2 | x11 ≤ x(I, J) for all I, J ⊆ {3, 4, . . . , n} : I, J 6= ∅, |I|+ |J | = n− 1
}
.

Then, conv(S) = P ∩Q.

6.2. Characterization of non-integral vertices of the level
constrained perfect matching polytope

In this section, we establish a class of inequalities which have the property to separate
all non-integral vertices of the LP-relaxation of the LCPMP from the convex hull of
its integer solutions. For any such non-integral vertex x̄ we show how to polynomially
determine an inequality which separates x̄ this way.
A problem strongly related to the LCPMP is the ECAP. In the ECAP there is an

additional equality constraint which refers to a set of edges R that is not restricted to
be the set of on-level edges. Further, the underlying graph in the ECAP is a complete
bipartite graph. Alfakih et. al [7] present two classes of facet inducing inequalities for
the polytope of the ECAP for instances belonging to what they call the partitioned case.
It can be shown that if R is the set of on-level edges, then no problem instance of the
ECAP with n > 2 belongs to the partitioned case. Hence, their results cannot be applied
to the polytope of the LCPMP even when the underlying graph is complete.
We consider an LCPMP on the graph G = (U ∪· V,E), with U = {u1, . . . , un} and

V = {v1, . . . , vn}. The parameter of the level constraint is a nonnegative integer k with
k ≤ n. Let Eon denote the set of on-level edges in E. Due to the definition of the
LCPMP in Section 2.2.2, each feasible solution to the LCPMP satisfies the following
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constraints: ∑
e∈δ(ui)

xe = 1 ∀ i = 1, . . . , n (6.6)

∑
e∈δ(vi)

xe = 1 ∀ i = 1, . . . , n (6.7)

n∑
i=1

x[ui,vi] = k (6.8)

xe ∈ {0, 1} ∀ e ∈ E. (6.9)

Let S =
{
x ∈ {0, 1}E | x satisfies (6.6) – (6.9)

}
be the set of feasible solutions to the

LCPMP. The level constrained perfect matching polytope is the convex hull of S. Further,
let P =

{
x ∈ RE≥0 | x satisfies (6.6) – (6.8)

}
be the polytope corresponding to the linear

relaxation of the LCPMP.
In order to establish our results, we take a closer look at the on-level edges contained

in cycles in G, and the position at which they appear in the cycles.

Definition 6.3. Let G = (U ∪· V,E) be a bipartite graph and let

C = [z1, ei1 , z2, . . . , zl−1, eil−1 , zl, eil , z1]

be a cycle in G, with zj ∈ U ∪ V and eij ∈ E for all j = 1, . . . , l. Let Con denote the set
of all on-level edges in C and let Coff denote the set of all off-level edges in C.
We define OC and EC to be the sets of on-level edges which appear at an odd and at

an even position in C, respectively:

OC :=
{
eij ∈ Con | j is odd

}
,

EC :=
{
eij ∈ Con | j is even

}
.

We call (OC , EC) a parity on-level partition of C. A cycle C is called balanced if
|OC | = |EC |. Otherwise, it is called unbalanced.

See Figure 6.1 for a parity on-level partition of an example cycle. Obviously, a parity
on-level partition of a cycle is not unique. It depends on which node in the cycle is
considered as node z1 and the direction in which the cycle is noted. So, for one cycle
C there can be up to two parity on-level partitions which differ from each other only in
that the sets OC and EC are interchanged.

Lemma 6.4. Let x ∈ P and let C = [z1, ei1 , z2, . . . , zl−1, eil−1 , zl, eil , z1] be a cycle in G,
such that

∑
e∈E(C) xe = |C|

2 . Let (OC , EC) be a parity on-level partition of C. Then the
following holds:

• If C is balanced, then

x(Con) = |OC | = |EC |.
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u1 v1

u2 v2

u3 v3
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u6 v6

O

O

O

E

Figure 6.1.: Example of a bipartite cycle C and a parity on-level partition (O, E) of C
with |O| = 3 and |E| = 1. All on-level edges of C are dashed. Above each
on-level edge it is noted to which of the two sets OC or EC it belongs.

• If xe is integral for all e ∈ E(C), then

x(Con) ∈ {|OC |, |EC |} .

• If C is unbalanced and 0 < xe < 1 for all e ∈ E(C), then

min {|OC |, |EC |} < x(Con) < max {|OC |, |EC |} .

Proof. Let x and C be as assumed. As
∑
e∈E(C) xe = |C|

2 and x fulfills constraints (6.6)
and (6.7), it holds that xeij + xeij+1

= 1 for all j = 1, . . . , l, with eil+1 being identified
with ei1 . Let p := xei1 and q := xei2 . Then, we have that

x(OC) = p|OC |,
x(EC) = q|EC |.

This has the following implications to x(Con):

x(Con) = x(OC) + x(EC)
= p|OC |+ q|EC |
≤ pmax {|OC |, |EC |}+ qmax {|OC |, |EC |} (6.10)
= max {|OC |, |EC |} .

Analogously, one can show that

x(Con) ≥ min {|OC |, |EC |} . (6.11)
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If C is balanced, the bounds (6.10) and (6.11) imply that x(Con) = |OC | = |EC |.
If xe is integral for all e ∈ E(C), then either p = 1 and q = 0 or p = 0 and q = 1.
Hence, x(Con) is equal to either |OC | or |EC |. If C is unbalanced and 0 < xe < 1 for all
e ∈ E(C), then the “≤” sign in estimation (6.10) can be replaced by “<” and the “≥”
sign in estimation (6.11) can be replaced by “>”. This completes the proof.

For the special case where x is integral, it holds that xe = 1 either for all edges e ∈ OC
or for all edges e ∈ EC . This is stated in Lemma 6.6. In its proof we make use of the
following definition:

Definition 6.5. Let G = (U,E) be a graph. Let P = [ui1 , ei1 , ui2 , . . . , uip ] be a path
in G with uih ∈ U for all h = 1, . . . , p and eih ∈ E for all h = 1, . . . , p − 1. Let
Q = [uj1 , ej1 , uj2 , . . . , ujq ] be a path in G with ujh ∈ U for all h = 1, . . . , q and ejh ∈ E
for all h = 1, . . . , q − 1. Further, let uip = uj1.
We define the composition of P and Q as

P ◦Q := [ui1 , ei1 , ui2 , . . . , uip , ej1 , uj2 , . . . , ujq ].

Lemma 6.6. Let x ∈ S and let C be an unbalanced cycle in G such that x
(
E(C)

)
= |C|

2 .
Let (OC , EC) be a parity on-level partition of C. Then, exactly one of the following two
statements holds true:

• x(OC) = |OC | and x(EC) = 0;

• x(OC) = 0 and x(EC) = |EC |.

Proof. We start with a general fact concerning the components of x which belong to a
path of even length in the cycle C.

Claim. For each path P of even length in the cycle C it holds that x
(
E(P )

)
= |P |

2 .

Proof of Claim. First, we show that for each path P̃ of even length in the graph G it
holds that x

(
E(P̃ )

)
≤ |P̃ |2 . Let N(P̃ ) denote the set of nodes contained in P̃ . Constraints

(6.6) and (6.7) imply that

|P̃ |+ 1 =
∑

z∈N(P̃ )

x(δ(z)) ≥ 2
∑

e∈E(P̃ )

xe = 2x
(
E(P̃ )

)
.

Hence, x
(
E(P̃ )

)
≤ |P̃ |+1

2 . As x is integral and |P̃ | is even, this finally implies that
x
(
E(P̃ )

)
≤ |P̃ |2 . Since the path P is a path of even length in C and C is a cycle in G, it

holds that x
(
E(P )

)
≤ |P |2 .

Now we show that x
(
E(P )

)
≥ |P |2 . Let P ′ be a path in C such that P ◦P ′ = C. Then,

|C|
2 = x

(
E(C)

)
=

∑
e∈E(P )

xe +
∑

e∈E(P ′)
xe.
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As P ′ is a path of even length in G as well, this implies that

x
(
E(P )

)
= x

(
E(C)

)
− x

(
E(P ′)

)
≥ |C|2 −

|P ′|
2 = |P |2 .

Thus, x
(
E(P )

)
= |P |

2 .

Note that at least one of the sets OC and EC is nonempty, as C is unbalanced. Thus, at
most one of the two statements in Lemma 6.6 holds true, as |OC | 6= 0 if OC is nonempty
and |EC | 6= 0 if EC is nonempty.
Due to the fact that x ∈ S and x

(
E(C)

)
= |C|

2 , one of the values xeij and xeij+1
is

1 and the other one is 0 for all edges eij and eij+1 appearing consecutively in C. This
implies that if one of the sets OC or EC is empty, then the nonempty of the two sets
(denoted by B) satisfies either x(B) = |B| or x(B) = 0. For the empty of the two sets
(denoted by B̄) it holds that x(B̄) = |B̄| = 0. Thus, in this special case the proof
is complete. So, for the rest of the proof we assume that both sets OC and EC are
nonempty.
We now show that for at least one of the sets OC and EC it holds that x(OC) = 0

or x(EC) = 0. To this end we assume that there exist two edges e = [ui1 , vj1 ] ∈ OC
and f = [ui2 , vj2 ] ∈ EC with xe = 1 and xf = 1, and leading this assumption to a
contradiction. Let Pe,f denote the shortest path in C from an end-node of e to an end-
node of f . Let p := |Pe,f | be the length of that path. As e ∈ OC and f ∈ EC , the path
Pe,f must be of even length. Due to the claim, it holds that x (E(Pe,f )) = |Pe,f |

2 . We can
write Pe,f as

Pe,f = [zi1 , ei1 , zi2 , . . . , zip , eip , zip+1 ],

with zi1 ∈ {ui1 , vj1} and zip+1 ∈ {ui2 , vj2}. Let

P ′e,f = [zi2 , ei2 , zi3 , . . . , zip−1 , eip−1 , zip ]

be the path Pe,f without the first and the last edge.
As xe = xf = 1, it holds that xei1 = xeip = 0. As P ′e,f is a path of even length in C,

the claim implies

|Pe,f |
2 = x (E(Pe,f )) = xei1 + xeip + x

(
E(P ′e,f )

)
=
|P ′e,f |

2 = |Pe,f | − 2
2 , (6.12)

which is a contradiction. Hence, either x(OC) = 0 or x(EC) = 0.
Without loss of generality, let x(EC) = 0 (otherwise, i.e. in the that case x(OC) = 0,

all edge indices in C can be increased by 1 in order to get a parity on-level partition of
C with EC and OC switched).
To finish the proof, we now show that x(OC) = |OC |. To this end, we assume that

x(OC) < |OC |. Let e∗ ∈ OC with xe∗ = 0 and let f∗ be any edge in EC . Let P be the
shortest path in C which contains the edges e∗ and f∗. As e∗ ∈ OC and f∗ ∈ EC , this
path is of even length. Due to the claim, it holds that x (E(P )) = |P |

2 .
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The first and the last edge in P are the edges e∗ and f∗ (in some order), and for
both edges we have xe∗ = xf∗ = 0. Analogous to the equality (6.12) this implies that
x
(
E(P )

)
= |P |−2

2 , which contradicts x
(
E(P )

)
= |P |

2 .

One should note that in Lemma 6.6 it is also possible that OC = ∅ or EC = ∅. Now,
we introduce a class of valid inequalities for conv(S). An example for the validity of the
inequalities is depicted in Figure 6.2.

Theorem 6.7. Let C be an unbalanced cycle in the graph G and let PC = (OC , EC) be
a parity on-level partition of C with |OC | > |EC |.
Let ν := k − |OC |+ 1, where k is the parameter of the level constraint (6.8). Fur-
thermore, let TC :=

{
(ei1 , . . . , eiν ) | eij ∈ Eon \ C, eis 6= eit for all s 6= t

}
be the set of

ν-tuples of on-level edges in E which do not appear in the cycle C.
Then, the inequalities (I1

C) and (I2
C) as defined next are valid for conv(S).

i) If k < |OC |:

∑
e∈E(C)

xe − xe′ ≤
|C|
2 − 1 ∀ e′ ∈ δ

(
N(OC)

)
∩ Coff (I1

C)

ii) If k ≥ |OC |:

∑
e∈E(C)

xe − xe′ +
∑
f∈T

xf ≤
|C|
2 − 1 + ν ∀ e′ ∈ δ

(
N(OC)

)
∩ Coff,∀ T ∈ TC

(I2
C)

Proof. We start with showing case i): Let x be any point in S. We assume that
x(E(C)) = |C|

2 , as it is clear that all the inequalities in (I1
C) are satisfied by x if

x(E(C)) ≤ |C|
2 − 1. Thus, due to Lemma 6.6, xe = 1 either for all e ∈ OC or for

all e ∈ EC . As k < |OC |, it cannot hold that xe = 1 for all e ∈ OC . Hence, xe = 0 for all
e ∈ OC . When x(E(C)) = |C|

2 it holds that two incident edges e, f ∈ E(C) satisfy either
xe = 1, xf = 0 or xe = 0, xf = 1. Therefore, xe′ = 1 and x satisfies the inequalities (I1

C).
Now, we consider case ii): Again we assume that x(E(C)) = |C|

2 , as the bounds
−xe′ ≤ 0 and x(T ) ≤ ν yield that all the inequalities in (I2

C) are satisfied by x if
x(E(C)) ≤ |C|2 − 1. We use Lemma 6.6 and the fact that two incident edges e, f ∈ E(C)
satisfy either xe = 1, xf = 0 or xe = 0, xf = 1. If xe = 1 for all e ∈ EC , then xe′ = 1 and
x satisfies the inequalities (I2

C).
If xe = 1 for all e ∈ OC , then there are exactly k − |OC | on-level edges f in Eon \ C

with xf = 1. Hence, ∑
f∈T

xf ≤ k − |OC | = ν − 1.

As a consequence, x satisfies the inequalities (I2
C).
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Note that given an unbalanced cycle C in G and a parity on-level partition PC ,
exactly one of the types of inequalities (I1

C) or (I2
C) applies. We summarize both types

of inequalities under the term (IC).
Next, we consider the fractional vertices of the polytope P . For each such vertex

x̄ there exists an inequality in (IC) which is violated by x̄. Before we show this, we
establish as an auxiliary result Lemma 6.8.

Lemma 6.8. Let x̄ ∈ P be a non-integral vertex of the polytope P . Then, there is a
unique fractional cycle C in G. This cycle is unbalanced.

Proof. As first part of this proof we show that all fractional edges in E, i.e. edges
e ∈ E with 0 < x̄e < 1, build an unbalanced cycle in G. The point x̄ contains at
least one fractional component. As x̄ fulfills constraints (6.6) and (6.7), there must
be a cycle C in G such that 0 < x̄e < 1 for all e ∈ E(C). Furthermore, the cycle C is
unbalanced regarding any parity on-level partition (OC , EC). To see this, we assume that
|OC | = |EC |. Let C = [zi1 , ei1 , zi2 , . . . , zip , eip , zi1 ] and let ε := min{x̄e, 1−x̄e | e ∈ E(C)}.
We define the points x̄′ and x̄′′ by

x̄′e :=


x̄e, if e /∈ E(C);
x̄e + ε, if e = eij ∈ E(C) and j is odd;
x̄e − ε, if e = eij ∈ E(C) and j is even;

x̄′′e :=


x̄e, if e /∈ E(C);
x̄e − ε, if e = eij ∈ E(C) and j is odd;
x̄e + ε, if e = eij ∈ E(C) and j is even.

As ε is added with alternating sign to the components of x̄ which correspond to edges
in C, the points x̄′ and x̄′′ both satisfy constraints (6.6) and (6.7). As ε is chosen
sufficiently small, 0 ≤ x̄′e ≤ 1 and 0 ≤ x̄′′e ≤ 1 for all e ∈ E. Moreover, as C is assumed
to be balanced, both points also satisfy constraint (6.8). Hence, x̄′, x̄′′ ∈ P . Now, x̄ can
be written as x̄ = 1

2 (x̄′ + x̄′′), which contradicts x̄ being a vertex of P .
So, we have proven that there is a fractional cycle C in G which is unbalanced. It

remains to be shown that this cycle is unique. To this end, we assume that there exist
2 cycles C1 and C2 in G, with 0 < x̄e < 1 for all e ∈ E(C1) ∪ E(C2) and with at least
one edge e ∈ E(C1) with e /∈ E(C2). As a balanced cycle contradicts x̄ being a vertex
of P , the cycles C1 and C2 both must be unbalanced. Let (OC1 , EC1) and (OC2 , EC2) be
parity on-level partitions of C1 and C2, respectively.
Let C1 = [zi1 , ei1 , zi2 , . . . , zip , eip , zi1 ] and let C2 = [zh1 , eh1 , zh2 , . . . , zhq , ehq , zh1 ] with

the property that an on-level edge eij ∈ E(C1) is in OC1 if and only if j is odd and an
on-level edge ehl ∈ E(C2) is in OC2 if and only if l is odd.
For an arbitrary ε1 > 0 let

ε2 := −|OC1 | − |EC1 |
|OC2 | − |EC2 |

ε1.
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We define an auxiliary point y′ by alternatingly adding ε1 and −ε1 to the components
of x̄ which correspond to the edges in C1, starting with edge ei1 . Then, the point x̄′ is
defined by alternatingly adding ε2 and −ε2 to the components of y′ which correspond to
the edges in C2, starting with edge eh1 .

y′e :=


x̄e, if e /∈ E(C1);
x̄e + ε1, if e = eij ∈ E(C1) and j is odd;
x̄e − ε1, if e = eij ∈ E(C1) and j is even;

x̄′e :=


y′e, if e /∈ E(C2);
y′e + ε2, if e = ehj ∈ E(C2) and j is odd;
y′e − ε2, if e = ehj ∈ E(C2) and j is even.

Next, we define an auxiliary point y′′ by alternatingly adding −ε1 and ε1 to the
components of x̄ which correspond to the edges in C1, starting with edge ei1 . Then, the
point x̄′′ is defined by alternatingly adding −ε2 and ε2 to the components of y′′ which
correspond to the edges in C2, starting with edge eh1 .

y′′e :=


x̄e, if e /∈ E(C1);
x̄e − ε1, if e = eij ∈ E(C1) and j is odd;
x̄e + ε1, if e = eij ∈ E(C1) and j is even;

x̄′′e :=


y′′e , if e /∈ E(C2);
y′′e − ε2, if e = ehj ∈ E(C2) and j is odd;
y′′e + ε2, if e = ehj ∈ E(C2) and j is even.

As ε1 or ε2 are added with alternating sign to cycle components of x̄, both points
x̄′ and x̄′′ satisfy constraints (6.6) and (6.7). For ε1 being sufficiently small, we have
0 ≤ x̄′e ≤ 1 and 0 ≤ x̄′′e ≤ 1 for all e ∈ E. The difference in the sum of the on-level
components of x̄′ and the sum of the on-level components of x̄ is

x̄′(Eon)− x̄(Eon) = |OC1 |ε1 − |EC1 |ε1 + |OC2 |ε2 − |EC2 |ε2.

Together with the definition of ε2 this yields

x̄′(Eon)− x̄(Eon) = |OC1 |ε1 − |EC1 |ε1 −
(
|OC2 | − |EC2 |

)(
|OC1 | − |EC1 |

)
|OC2 | − |EC2 |

ε1 = 0,

and thus x̄′(Eon) = x̄(Eon) = k. Analogously,

x̄′′(Eon)− x̄(Eon) = −|OC1 |ε1 + |EC1 |ε1 − |OC2 |ε2 + |EC2 |ε2 = 0,

and thus x̄′′(Eon) = x̄(Eon) = k.
Hence, x̄′ and x̄′′ both satisfy constraint (6.8) and thus both points are in P . Now, x̄

can be written as x̄ = 1
2 (x̄′ + x̄′′), which contradicts x̄ being a vertex of P .

So, there is exactly one fractional cycle C in G. As we have shown in the beginning
of the proof, this cycle additionally is unbalanced.
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Figure 6.2.: a) Example of an LCPMP instance with an unbalanced cycle C indicated
with dashed edges, and a parity on-level partition (O, E) of C with |O| = 3
and |E| = 1. In inequalities (IC) we have that e′ ∈ {e′1, . . . , e′4}, ν = 2 and
TC =

{(
f1, f2

)}
. b) A point x ∈ S with x(E(C)) = |C|

2 , which satisfies (I2
C).

c) A fractional vertex x̄ ∈ P , which violates (I2
C) for all e′ ∈ {e′1, . . . , e′4}.

Theorem 6.9. Let x̄ ∈ P be a non-integral vertex of the polytope P . Then, there is an
inequality in (IC) which is not satisfied by x̄.

Proof. Due to Lemma 6.8 there exists a unique fractional cycle C in the graph G, which
in addition is unbalanced. Let PC = (OC , EC) be a parity on-level partition of C with
|OC | > |EC | and let ν := k − |OC |+ 1.
As C is the only cycle in G with 0 < x̄e < 1 for all e ∈ E(C) and constraints (6.6) and

(6.7) are satisfied for all z ∈ N(C), it holds that x̄(E(C)) = |C|
2 . Furthermore, it holds

that x̄e′ < 1 for all e′ ∈ δ
(
N(OC)

)
∩ Coff as e′ is an edge in the cycle C.

i) If k < |OC |, the point x̄ does not satisfy any inequality in (I1
C). This follows directly

from x̄(E(C)) = |C|
2 and x̄e′ < 1 for all e′ ∈ δ

(
N(OC)

)
∩ Coff.

ii) If k ≥ |OC |, we make use of the fact that C contains all edges e ∈ E where x̄e is
fractional. Thus, it holds that x̄f ∈ {0, 1} for all f ∈ Eon \Con. Due to the fact that
x̄(Eon) = k, this further implies that x̄(Con) is integral. Together with the fact that
x̄(Con) < |OC |, as we have stated in Lemma 6.4, it follows that x̄(Con) ≤ |OC | − 1.
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Hence, there is a tuple T0 ∈ TC with
∑
f∈T0 x̄f ≥ k − (|OC | − 1) = ν. So,

∑
e∈E(C)

x̄e − x̄e′ +
∑
f∈T0

x̄f >
|C|
2 − 1 + ν.

An example of a fractional vertex of P cut off by an inequality in (I2
C) can be also

found in Figure 6.2. The proof of Theorem 6.9 reveals how to determine an explicit
inequality in (IC) that cuts off an non-integral vertex from P .

Corollary 6.10. Let x̄ ∈ P be a non-integral vertex of the polytope P . Then, an
inequality

∑m
i=1 aixi ≤ a0 in (IC) which is not satisfied by x̄ can be found in O(m),

where m := |E|.

Proof. The fractional cycle C in G can be found in O(m) by first searching for an edge
ei1 ∈ E with 0 < x̄ei1 < 1 and then iteratively searching for the fractional edge that
shares an end-node with the current fractional edge. A parity on-level partition (OC , EC)
of C with |OC | > |EC | can be determined by going through the edges of the cycle C in the
appropriate order. While doing so, we can also determine an edge e′ ∈ δ

(
N(OC)

)
∩Coff,

with x̄e′ ≤ x̄e for all e ∈ δ
(
N(OC)

)
∩ Coff.

i) If k < |OC |, then we have already determined all components of a violated inequality
in (I1

C).

ii) If k ≥ |OC |, then we further need to determine a tuple T0 ∈ TC such that T0 ∈
argmaxT∈TC x̄(T ). By checking (at most) all components of x̄ which belong to on-
level edges in E \C, this can be done in O(m). Then, all components of a violated
inequality in (I2

C) are determined.

In total, all steps can be performed in O(m).

We conclude this section by mentioning that the total number of inequalities in (IC)
needed to cut off all non-integral vertices of P might be exponential in n, as for each
cycle C in G there exists a set of inequalities based on this cycle. Nevertheless, we
have shown how to determine a separating inequality for a specific non-integral vertex
in polynomial time.
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7. Novel Solution Algorithms for Equality
Constrained Matching

We have seen in Section 4.3.2 that perfect matchings satisfying one additional equality
side constraint in a complete bipartite graph can be found using a polynomial algorithm
by Yi, Murty and Spera [52]. It remains an open question whether there is a polyno-
mial algorithm for this problem on general bipartite graphs, which are not necessarily
complete. In this chapter we present novel solution approaches for this problem with
emphasis on the level constraint as side constraint.
For the level constrained matching problem on level graphs we develop a polynomial

approximation algorithm in Section 7.1. A matching returned by this algorithm satisfies
the level constraint and is of size at least z∗ − 1, where z∗ is the size of an optimal
solution.
In Section 7.2 we develop an exact solution algorithm for the equality constrained per-

fect matching problem on bipartite graphs. We describe the design of the corresponding
algorithm and give notes on its implementation.

7.1. Approximation algorithm for the level constrained
matching problem

The aim of this section is to develop a polynomial approximation algorithm for the LCMP
on level graphs. The LCMP-approximation algorithm guarantees to return matchings
which satisfy the level constraint and which have a cardinality that differs from the
cardinality of an optimal solution by at most 1. Furthermore, if the optimal solution of
an LCMP instance is not a perfect matching, the LCMP-approximation algorithm even
returns an optimal solution. The importance of this algorithm lies in the fact that no
polynomial solution algorithm for the LCMP is known – even when it is restricted to
level graphs (compare Section 4.1).

7.1.1. The LCMP-approximation algorithm
The approximation procedure can be broken down into two phases. First, it determines
the largest matching which contains at most as many on-level edges as the parameter
of the level constraint. Most likely, this matching does not satisfy the level constraint
with equality, otherwise an optimal solution has been found. Second, the matching is
modified to satisfy the level constraint by adding the missing number of on-level edges
to it. Of course, this step entails that new edges are added and some existing edges are
removed from the formerly found matching.
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Algorithm 7.1 Approximation algorithm for level constrained matching
LCMP-Approx(G, k)
Input: Bipartite level graph G = (U ∪· V,E) with U = {u1, . . . , un}, V = {v1, . . . , vn},

integer k with 0 ≤ k ≤ n
Output: Matching M in G with |M ∩ Eon| = k
1: Phase 1:
2: M ← maximum matching M̄ in G s.t. |M̄ ∩ Eon| ≤ k . Minimum cost flow problem
3: if M ∩ Eon = k then
4: return M
5: Phase 2:
6: z ← k − |M ∩ Eon| . Level constraint deficit
7: Construct graph SM = (W,F ) with
W ← {wi | i = 1, . . . , n : [ui, vi] /∈M},
F ←

{
[wi, wj ]i | [ui, vj ] ∈M,ui ∈ U, vj ∈ V, i 6= j

}
8: M ′ ←M ; z′ ← z
9: if there exists a node wi ∈W with degSM (wi) = 1 then . Path case
10: insert([ui, vi],M ′) . Insertion corrsp. to first node of path
11: z′ ← z′ − 1; mark node wi
12: while z′ > 0 and wi has an unmarked neighbor node x in SM do
13: i← j ∈ {1, . . . , n} such that wj = x
14: insert([ui, vi],M ′) . Insertion corrsp. to other nodes in path
15: z′ ← z′ − 1; mark node wi
16: if z′ = 0 then
17: return M ′

18: while z′ > 0 and there exists an unmarked node wi in SM do . Cycle case
19: insert([ui, vi],M ′) . Insertion corresp. to first node wi of cycle Ci
20: z′ ← z′ − 1; mark node wi
21: while z′ > 0 and wi has an unmarked neighbor node x in SM do
22: i← j ∈ {1, . . . , n} such that wj = x
23: insert([ui, vi],M ′) . Insertion corresp. to other nodes in cycle Ci
24: z′ ← z′ − 1; mark node wi
25: return M ′

26: procedure insert([ui, vi],M)
27: while M contains an edge e incident to ui or vi do
28: M ←M \ {e}
29: M ←M ∪ {[ui, vi]}
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The LCMP-approximation algorithm is listed as Algorithm 7.1. In the following para-
graphs we describe the individual steps of the algorithm. Its correctness, approximation
quality and its running-time are proven in Theorem 7.4.
In order to describe how the two phases of the approximation procedure work exactly,

we consider the algorithm being applied to a problem instance (G = (U ∪· V,E), k) of the
LCMP. In this instance, G is a bipartite level graph with node sets U = {u1, . . . , un} and
V = {v1, . . . , vn}. As G is a level graph, it contains an edge [ui, vi] for all i = 1, . . . , n.
Further, k is a nonnegative integer with k ≤ n. Let m := |E| denote the number of
edges in G.

Phase 1

The objective of Phase 1 of the LCMP-approximation algorithm is to find a matching of
maximum size in G which satisfies a weakened form of the level constraint. The matching
is not needed to contain exactly k on-level edges, it rather is required to contain at most
k of them. More precisely, the task is to determine an optimal solution to the following
problem:

max
∑
e∈E

xe (7.1)

s.t.
∑

e∈δ(ui)
xe ≤ 1 ∀ i = 1, . . . , n (7.2)

∑
e∈δ(vi)

xe ≤ 1 ∀ i = 1, . . . , n (7.3)

n∑
i=1

x[ui,vi] ≤ k (7.4)

xe ∈ {0, 1} ∀ e ∈ E. (7.5)

To find an optimal solution M of this problem, a series of minimum cost flow problem
instances is solved. Each single minimum cost flow problem instance is used to find – if
it exists – a matching Mr in the graph G which is of a specific size r and which satisfies
the upper bound constraint (7.4). Then, the matching with biggest cardinality among
M1, . . . ,Mn is a solution to problem (7.1) – (7.5).
We now define the instance of the minimum cost flow problem (see Section 1.1.2)

which is used to calculate a matching Mr for some r = 1, . . . , n. Let D = (N,A) be
a digraph with a source node s ∈ N and a sink node t ∈ N . For each arc a ∈ A, its
capacity is denoted by pa and its cost is denoted by ca. Further, the value bz is the
supply/demand of a node z ∈ N . The digraph D and the parameters of the minimum
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cost flow problem instance are defined as follows:

N := U ∪ V ∪ {s, t},
A := {(s, ui) | ui ∈ U} ∪ {(vj , t) | vj ∈ V } ∪ {(ui, vj) | [ui, vj ] ∈ E with ui ∈ U, vj ∈ V },
pa := 1 for all a ∈ A,

c(u,v) :=
{

1 if there is an i ∈ {1, . . . , n} such that u = ui ∈ U and v = vi ∈ V,
0 else,

bz :=


r if z = s,

−r if z = t,

0 else.

An optimal b-flow in the digraph D corresponds to a matching in the graph G which
is of size r and contains a minimum number of on-level edges.
LetMi denote the matching corresponding to an optimal solution of the above defined

minimum cost flow problem with the parameter r = i. Let M be that matching among
M1, . . . ,Mn which has maximum cardinality and satisfies the upper bound constraint
(7.4). It can be found efficiently among M1, . . . ,Mn by a binary search approach. This
avoids determining Mi for all i = 1, . . . , n, which would imply solving the minimum cost
flow problem for all parameter values r = 1, . . . , n (though even that could be done in
polynomial time).
If M satisfies the upper bound constraint with equality, it fulfills the level constraint

from the initial LCMP instance. In this case, the LCMP-approximation algorithm re-
turns the matching M as a solution. If M does not satisfy the upper bound constraint
with equality, the LCMP-approximation algorithm continues with Phase 2.

Phase 2

The objective of Phase 2 is to modify the matchingM from Phase 1 such that it contains
exactly k on-level edges and hence satisfies the level constraint. In Figure 7.1 the main
steps of Phase 2 are illustrated at an example.
The difference between the demanded number of on-level edges and the number of

on-level edges in M is denoted by z, i.e.

z = k − |{[ui, vi] ∈M | i = 1, . . . , n}|.

Whenever an on-level edge [ui, vi] is added toM , this is done according to the following
definition:

Definition 7.1. Let G = (U ∪· V,E) be a bipartite level graph with U = {u1, . . . , un}
and V = {v1, . . . , vn}. Let M be a matching in G and let e = [ui, vi] be an on-level edge
in G with e /∈M .
When we say that the on-level edge e is inserted into M , this implies that the following

steps are done:
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7.1. Approximation algorithm for the level constrained matching problem

1. Removal of those edges from M which are incident to either ui or vi,

2. Adding [ui, vi] to M .

In Algorithm 7.1, the procedure insert carries out the insertion of on-level edges into
matchings.
In order to determine which on-level edges are to be inserted into M , we define an

auxiliary graph SM . This graph results from restricting G to contain only those edges
which are inM , and shrinking it by identifying the two nodes ui and vi for all i = 1, . . . , n.
One should note that the resulting graph may contain loops resulting from the on-level
edges which are in M already, and it may contain parallel edges due to symmetric edges
in M . We remove all loops including their associated nodes. Parallel edges are kept and
are distinguished by a superscript.
The graph SM = (W,F ) is defined by

W = {wi | i = 1, . . . , n : [ui, vi] /∈M} ,

F =
{

[wi, wj ]i | [ui, vj ] ∈M,ui ∈ U, vj ∈ V, i 6= j
}
.

The superscript i of an edge in F denotes that the edge is induced by an edge in
M with end-node ui ∈ U . This enables SM to contain parallel edges [wi, wj ]i, [wi, wj ]j
which are induced by two edges of the form [ui, vj ], [uj , vi] in M , with i 6= j.
As the maximum node degree in SM is 2, there is a unique partition of SM into

node-disjoint paths and cycles. Let P and C denote the set of these paths and cycles,
respectively. The first step of increasing the number of on-level edges in M depends on
whether there exists a path in this partition or not. This can easily be figured out by
checking whether there is a node in SM which has degree 1.
If there is a node wi1 ∈ W with degSM (wi1) = 1, then let P =

[
wi1 , wi2 , . . . , wip

]
be

the unique path in P which contains the node wi1 . If there is no such node, the following
case discrimination is skipped and we define M ′ := M and z′ := z.

Case 1: z < p. The on-level edges [ui1 , vi1 ], . . . , [uiz , viz ] are inserted into M . Let Mapp
be the resulting matching. The LCMP-approximation algorithm terminates and
returns Mapp.

Case 2: z ≥ p. The on-level edges [ui1 , vi1 ], . . . , [uip , vip ] are inserted into M . Let M ′ be
the resulting matching and let z′ := z − p.

Now, the remaining deficit z′ in the number of on-level edges in M ′ is balanced out.
Let C1, . . . , Cl be cycles in C such that their total length is at least z′ and such that the
total length of the cycles C1, . . . , Cl−1 is strictly less than z′. Such an l exists as each
pair of nodes (ui, vi) in G either is already covered by an on-level edge in M ′ or there is
a node wi which represents this pair and which is in a cycle in SM . Further, the total
number of these nodes in SM is n− |M ′| ≥ k − |M ′| = z′.
Let qi denote the length of the cycle Ci for all i = 1, . . . , l. Further, let each cycle Ci be

of the form Ci = [wi1 , . . . , wiqi , wi1 ]. Then, the on-level edges [uij , vij ] are inserted into
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M ′ for all i = 1, . . . , l − 1 and j = 1, . . . , qi. Let M ′′ denote the resulting matching and
let z′′ := z′ −

∑l−1
i=1 qi. Finally, the on-level edges [ul1 , vl1 ], . . . , [ulz′′ , vlz′′ ] are inserted

into M ′′. Let Mapp be the resulting matching. The LCMP-approximation algorithm
terminates and returns the matching Mapp.
As far as the practical implementation is concerned, the cycles C1, . . . , Cl are not

needed to be determined explicitly. We rather start with one cycle and successively
insert on-level edges into the current matching with respect to the indices of the nodes
in the cycle and the order in which the nodes appear in the cycle. We then consider the
next cycle and continue this procedure, until the current matching contains exactly k
on-level edges.
In order to find corresponding cycles in SM , we proceed as follows. We keep a separate

list of all nodes in SM . In this list, all nodes appearing in P are marked. Whenever an
on-level edge [ui, vi] is added to the current matching, the corresponding node wi in a
cycle in SM is marked as well. We go through this list in increasing order of the nodes’
indices. When an unmarked node of degree 2 has been found, this node lies in a yet
unconsidered cycle. The next time we need to find a cycle, we begin the search from the
last node we have marked.

a)

u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

u6 v6

u7 v7 b)

w1

w2

w4

w5

w6

w7 c)

u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

u6 v6

u7 v7

Figure 7.1.: a) Example of an instance of problem (7.1) – (7.5) with k = 4. An optimal
solution matching M with at most k on-level edges is indicated with bold
edges. b) Graph SM , based on the matching M . The graph SM can be
partitioned into the two cycles [w1, w2, w1] and [w4, w5, w6, w7, w4]. c) Bold
edges indicate the matching Mapp as returned by the LCMP-approximation
algorithm. Here, Mapp is an optimal solution to the LCMP instance.

Lemma 7.2. Let (G = (U ∪· V,E), k) be a problem instance of the LCMP, where G is a
bipartite level graph, U = {u1, . . . , un}, V = {v1, . . . , vn}, m = |E| and k is a nonnegative
integer with k ≤ n.
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Then, at the end of Phase 1 of the LCMP-approximation algorithm, the setM is an op-
timal solution to problem (7.1) – (7.5). The running-time of Phase 1 is O

(
n2m(logn)2).

Proof. In Phase 1, the problem to solve is a maximum matching problem with an addi-
tional upper bound side constraint. In Section 4.2 we presented a polynomial solution
procedure for the perfect matching problem with a single upper bound side constraint,
proposed by Itai et al. [29]. We slightly extend their approach in order to determine an
optimal solution M to problem (7.1) – (7.5).
In the LCMP-approximation algorithm, minimum cost flow problems on the digraph

D with different supply/demand values are solved. This is motivated by the equivalence
of integral b-flows in D and matchings in G which are of size r = b(s). The graph G
contains a matching of size r which satisfies the upper bound constraint (7.4) if and only
if the minimum cost flow problem with parameters b(s) = r, b(t) = −r has an optimal
solution f with

∑
i=1,...,n f(ui,vi) ≤ k.

Let M∗ be an optimal solution to problem (7.1) – (7.5). The size of M∗ ranges from 1
to n. Therefore, the biggest matching among M1, . . . ,Mn which also satisfies the upper
bound constraint is an optimal solution to problem (7.1) – (7.5).
Now, we calculate the running-time of Phase 1 of the LCMP-approximation algorithm.

The construction of an instance of the minimum cost flow problem is linear in the size
of the graph G. The digraph D contains |N | = 2n + 2 nodes and |A| = m + 2n arcs.
Additionally, all arcs are assigned a cost and a capacity value and all nodes are assigned
a supply/demand value. After the first instance is created, the underlying digraph D,
the arc costs and the arc capacities remain unchanged. The only two values that change
in the different instances are the supply of node s and the demand of node t. Therefore,
the construction of all n minimum cost flow problem instances is linear in the size of G.
For solving an instance of the minimum cost flow problem we consider the successive-

shortest-path problem. Its running-time is O
(
|N |US(D)

)
, where U is the maximum

supply of any node in D and S(D) denotes the time taken to solve a shortest path
problem on the digraph D.
In each problem instance, the source node s has a supply of value b(s) = r, which

is bounded above by n. Hence, each problem instance of the minimum cost flow prob-
lem can be solved in O

(
n2S(D)

)
. We select Dijkstra’s algorithm as the shortest path

algorithm. It can be implemented on a heap structure such that its running-time on
D is O (|A| log |N |) = O ((m+ n) logn). Using Dijkstra’s algorithm in the successive-
shortest path algorithm yields a running-time of O

(
(n2m+ n3) logn

)
. Considering that

in a level graph G it holds that m ≥ 1
2n, each problem instance of the minimum cost

flow problem can be solved in O
(
n2m logn

)
.

The matching M can be determined among M1, . . . ,Mn by a binary search procedure
(see [15]). We need to search for the biggest i = 1, . . . , n such thatMi exists and contains
at most k on-level edges. We can use a binary search approach, as the series of matchings
M1, . . . ,Mn has the following property: IfMi does not exist or does not satisfy the upper
bound constraint (7.4), then Mj does not exist or satisfy the upper bound constraint for
any j ≥ i. This holds as all matchings of size j which are feasible for problem (7.2) –
(7.5) contain a feasible matching of size i for all i ≤ j.
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In the course of the binary search procedure, a minimum cost flow problem instance
with parameter r = i is solved only when the key value i of the corresponding matching
Mi is considered. Hence, the number of minimum cost flow problems which need to be
solved to find the biggest matching Mi which satisfies the upper bound constraint (7.4)
is in O(logn).
This implies that Phase 1 has a total running-time of O

(
n2m(logn)2).

Lemma 7.3. Let G, k be as in Lemma 7.2. Further, let M be the matching resulting
from Phase 1 of the LCMP-approximation algorithm.
Then, at the end of Phase 2 of the algorithm, the resulting set Mapp is a matching in

the graph G and satisfies the level constraint. The running-time of Phase 2 is O(n).

Proof. First, we show that at any point in Phase 2, the setsM,M ′ andM ′′ are matchings
in the graph G and each of them contains at most k on-level edges.
We have seen in Lemma 7.2 that the set M resulting from Phase 1 is a matching and

contains at most k on-level edges. All edges that are added to M in the course of Phase
2 are on-level edges. Before an edge of the form [ui, vi] is added to the current matching,
we remove those edges from it which are incident to either ui or vi. This ensures that
after the on-level edge [ui, vi] is added toM (M ′,M ′′), still no two edges inM (M ′,M ′′)
meet at the same node.
The decision as to which on-level edges are to be added to the current matching

depends on the graph SM . The index of the end-nodes of an added on-level edge always
coincides with the index of a node in SM . As, by definition, the graph SM does not
contain a node wi if the on-level edge [ui, vi] is in M , all edges added to M (M ′,M ′′) in
Phase 2 have not been in M (M ′,M ′′) before. Further, no on-level edges are removed
from M (M ′,M ′′) in Phase 2. Hence, inserting a total number of exactly z on-level
edges into M ensures that the number of on-level edges in the matching never exceeds
k. Further, it finally yields a matchingMapp which contains exactly k on-level edges and
hence fulfills the level constraint.
Now, we calculate the running-time of Phase 2. Phase 2 starts with the construction

of the graph SM . By going through the edges in the matching M from Phase 1, the
graph SM can be constructed in the form of an adjacency list in O(n).
Let us now consider an on-level edge [ui, vi] which is meant to be inserted into the

current matching. The edges which are to be removed from the current matching can
be found by first determining the edges in SM which are incident to wi. They can be
determined in constant time, as SM is stored in an adjacency list and each node has
at most 2 incident edges. These edges are either [wi, wj ]i, [wi, wj ]j or both, for some
j = 1, . . . , n. They correspond to either [ui, vj ], [uj , vi] or both edges in the current
matching and can also be determined in constant time if stored appropriately. Further,
adding an on-level edge to the current matching can be done in constant time. Thus,
the entire action of inserting one on-level edge into the current matching can be done in
constant time.
In total, z ≤ n on-level edges are inserted into M . The LCMP-approximation al-

gorithm uses the indices of the nodes in the path P , if it exists, and in the cycles
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Ci, i = 1, . . . , l, to determine which on-level edges are inserted into M . Searching for a
path P and the cycles Ci in SM in the way described in the algorithm can be done in
O(n). Hence, Phase 2 of the LCMP-approximation algorithm is completed in O(n).

Theorem 7.4. Let (G = (U ∪· V,E), k) be an instance of the LCMP, where G is a bi-
partite level graph, U = {u1, . . . , un}, V = {v1, . . . , vn}, m := |E| and k is a nonnegative
integer with k ≤ n. Let Mopt be an optimal solution to this problem instance.
Then, the LCMP-approximation algorithm applied to this problem instance returns a

matchingMapp in G which satisfies the level constraint. It holds that |Mapp| ≥ |Mopt|−1.
In the case that Mopt is not a perfect matching, it holds that |Mapp| = |Mopt|. The
LCMP-approximation algorithm runs in O

(
n2m(logn)2).

Proof. It follows directly from Lemma 7.2 and Lemma 7.3 that Mapp is a matching
in the graph G which satisfies the level constraint. The running-time of the LCMP-
approximation algorithm also is a direct consequence of these lemmata. Next, we show
that the claimed approximation quality holds.
We have shown in Lemma 7.2 that at the end of Phase 1, the matching M is an

optimal solution to the problem (7.1) – (7.5). As Mopt also is a feasible solution to this
problem, it holds that |M | ≥ |Mopt|.
Now, we investigate the changes in the cardinality of M during Phase 2. We start by

considering the structure of the graph SM . Due to its construction, the maximum node
degree in SM is 2. Further, if there would be a node wi with deg(wi) = 0, both the nodes
ui and vi in the graph G would not be covered by M . Then, the on-level edge [ui, vi]
could be added to M while still satisfying the upper bound constraint (7.4), as Phase
2 is only started when M contains strictly less than k on-level edges. This contradicts
the fact that at the beginning of Phase 2, M is the biggest matching in G satisfying this
upper bound constraint. Hence, each node wi in SM has deg(wi) ∈ {1, 2}. This implies
that there is a partition of the graph SM into pairwise node-disjoint paths and cycles.
We denote these sets of paths and cycles by P and C, respectively.
Whenever an on-level edge is inserted into M , there is a node wi in the graph SM ,

whose index determines the index of the end-nodes ui and vi of the added on-level edge.
As all nodes wi in SM appear either in paths or in cycles of the sets P and C, we
investigate the following two cases:

• Let P =
[
wi1 , . . . , wip

]
be a path in P. Let T be the set of nodes in P whose

indices correspond to the indices of end-nodes of on-level edges which are added
during Phase 2. According to the LCMP-approximation algorithm, T is always of
the form T = {wi1 , . . . , wih}, with h ≤ p.
If h < p, then there are h edges in P which are incident to nodes in T . Concerning
the construction of SM , these edges correspond to h edges in M . Therefore, when
inserting the on-level edges [ui1 , vi1 ], . . . , [uih , vih ] into M , there are h edges which
must be removed from M to ensure that M stays a matching. As a result, there is
no difference in the size ofM before and after inserting these on-level edges. A spe-
cial case arises when h = p. When inserting the on-level edges [ui1 , vi1 ], . . . , [uip , vip ]
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into M , there are p − 1 edges which must be removed from M to ensure that M
stays a matching. As a result, after inserting these on-level edges into M , the size
of M is increased by 1.

• Let Ci =
[
wi1 , . . . , wiqi , wi1

]
be a cycle in C. Let T be the set of nodes in Ci whose

indices correspond to the indices of end-nodes of on-level edges which are added
during Phase 2. As all nodes in T appear consecutively in Ci, the set T can be
written in the form T = {wi1 , . . . , wih}, with h ≤ qi.
If h < qi, then there are h + 1 edges in Ci which are incident to nodes in T .
Therefore, when inserting the on-level edges [ui1 , vi1 ], . . . , [uih , vih ] into M , there
are h+1 edges which must be removed fromM to ensure thatM stays a matching.
As a result, the size of M decreases by 1. Also here a special case arises when
h = qi. When inserting the on-level edges [ui1 , vi1 ], . . . , [uiqi , viqi ] into M , there
are qi edges which must be removed from M to ensure that M stays a matching.
As a result, there is no difference in the size of M before and after inserting these
on-level edges.

Now, we consider the case that at the beginning of Phase 2 there exists a path
P =

[
wi1 , . . . , wip

]
in P. This case occurs if M is not a perfect matching in G, as

this implies at least one unmatched node ui or vi in G, which results in a node wi in SM
with degree deg(wi) = 1.
If z < p, inserting on-level edges into M as described in the LCMP-approximation

algorithm yields a matching Mapp with

|Mapp| = |M | ≥ |Mopt|.

If z ≥ p, first all on-level edges [ui1 , vi1 ], . . . , [uip , vip ] are inserted intoM , which yields
a matching M ′ with |M ′| = |M | + 1. The case z = p is not possible, as otherwise M ′
would be a matching which satisfies the level constraint and which is of bigger size than
an optimal solution. Hence, there still must be a deficit in the number of on-level edges
in M ′ and the LCMP-approximation algorithm proceeds as follows.
First, for the cycles C1, . . . , Cl−1, on-level edges corresponding to all nodes in these

cycles are inserted into M ′. This yields the matching M ′′ with |M ′′| = |M ′|. Second,
on-level edges corresponding to a proper subset of nodes in a cycle Cl are inserted into
M ′′. This results in a matching Mapp with

|Mapp| = |M ′′| − 1 = |M ′| − 1 = |M | ≥ |Mopt|. (7.6)

One should note that the number of cycles in C is always sufficient to add enough on-
level edges this way. To see this, we recall that each node in SM stands for the possibility
to add an on-level edge to M , and all nodes in SM appear either in a path in P or in a
cycle in C. Furthermore, if z > p, then P is the only path in P, as otherwise one could
insert on-level edges such that the resulting matching satisfies the level constraint and
its size would be greater than |Mopt|.
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Now, we consider the case that P is empty. Then, we have that M ′ = M . This
changes the equality (7.6) as follows:

|Mapp| = |M ′′| − 1 = |M ′| − 1 = |M | − 1 ≥ |Mopt| − 1.

In any case, the LCMP-approximation algorithm returns a matching Mapp which
satisfies the level constraint and which is of size |Mapp| ≥ |Mopt| − 1.

Theorem 7.4 states that the LCMP-approximation algorithm returns a solution match-
ing Mapp whose size is at least |Mopt| − 1, where Mopt is an optimal solution to the
underlying LCMP instance. As the graph in the LCMP instance is a level graph, we can
assume that |Mopt| ≥ 1. Then, the following estimation holds:

|Mapp|
|Mopt|

≥ 1− 1
|Mopt|

. (7.7)

Let (G = (U ∪· V,E), k)) be a LCMP instance, where G is a bipartite level graph with
|U | = |V | = n and k is a nonnegative integer with k ≤ n. The only case where Mapp
may be strictly smaller than Mopt is when Mopt is a perfect matching in G, i.e. when
|Mopt| = n. So, when Mopt is not a perfect matching, estimation (7.7) simplifies to

|Mapp|
|Mopt|

= 1.

When Mopt is a perfect matching, the estimation (7.7) can be written as

|Mapp|
|Mopt|

≥ 1− 1
n
.

Hence, the approximation ratio of our LCMP-approximation algorithm is 1− 1
n , where

n is the number of nodes in one color class of the graph G. This ratio is independent
from the parameter k and converges to 1 with increasing number of nodes in G.

7.1.2. Improvement of the LCMP-approximation algorithm

It is possible to increase the number of problem instances for which the result of the
LCMP-approximation algorithm is an optimal solution. To achieve this, we extend the
part of the algorithm where cycles in C are considered to add the missing number of
on-level edges z′ to M ′. More specifically, we enhance the selection of cycles C1, . . . , Cl
in the case that there is no path in P.
In the LCMP-approximation algorithm, these cycles have the property that their total

length is at least z′ and that their total length without cycle Cl is strictly less than z′.
The aim of the improvement is to choose these cycles such that their total length is
exactly z′, if possible. If such cycles exist, then on-level edges [ui, vi] are inserted into
M ′ for all nodes wi in these cycles, and the number of edges removed fromM ′ to preserve
its matching property also is exactly z′. As a result, the number of edges added to M ′
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equals the number of edges removed from it. This is beneficial if the underlying LCMP
instance has an optimal solution Mopt which is a perfect matching. In this case, a cycle
Cl for which not all of its nodes are considered when inserting on-level edges causes a
difference in the size of Mapp and the size of Mopt. Using the above improvement, even
if the underlying LCMP instance has a perfect matching as an optimal solution, the
LCMP-approximation algorithm will return an optimal solution – provided that there
exist cycles in C of total length equal to z′.
The problem of selecting cycles C1, . . . , Cl in C such that the sum of their lengths equals

z′ is the subset-sum problem. In general, the subset-sum problem is NP-complete (see
[15]). Nevertheless, it can be solved pseudo-polynomially using a dynamic programming
approach (see [15]):
Let (v1, . . . , va, y) be an instance of the subset-sum problem, with all parameters in this

instance being nonnegative integer numbers (see Problem Formulation C.11 in Appendix
C). The question is whether there is a subset of the values v1, . . . , va whose sum is
equal to y. The dynamic programming approach to this problem is based on the idea of
solving the instances (v1, . . . , vj , s) for all j = 1, . . . , a and s = 1, . . . , y. This can be done
recursively, starting with the trivial problems where j = 1. Each recursive calculation
can be done in constant time. Hence, solving all of the above instances, including the
original problem where j = a and s = y, can be done in O(ay).
Concerning the above problem of finding appropriate cycles, a is the number of cycles

in G, which is bounded by n. The parameter y corresponds to z′, which is also bounded
by n, as the maximum number of missing on-level edges in M ′ is bounded by n. Thus,
the dynamic programming approach applied to find a subset of cycles in C which have
total length z′ is polynomial in the input size of the graph G. Its running-time is in
O(n2). Using this improvement increases the running-time of Phase 2 but, the total
running-time of the LCMP-approximation algorithm does not change.
It is clear that a subset of cycles in C with the desired property does not always

exist. It depends on the structure of the matching M from Phase 1. Furthermore,
when there exists a path P in P at the beginning of Phase 1, then there cannot be
such a subset of cycles in C. To see this, let p denote the length of the path P . Then,
the LCMP-approximation algorithm considers cycles in C only if z > p. This implies
that the matching M ′ has size |M ′| = |M | + 1 ≥ |Mopt| + 1. If there would exist
cycles C1, . . . , Cl in C with total length z′, then the LCMP-approximation algorithm
would return a matching Mapp with |Mapp| = |M ′| ≥ |Mopt| + 1, which contradicts the
optimality of Mopt.

7.2. The objective branching method

In Section 7.1 we presented an approximation algorithm for the LCMP on level graphs.
The algorithm we develop in this section is designed to be applicable to perfect matching
problems with an additional equality constraint which can refer to any subset of the
edges. It exactly solves the equality constrained perfect matching problem (ECPMP)
(see Section 4.1). We call our algorithm the objective branching algorithm.
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We recall that the problem which is solved by the objective branching algorithm is
defined as follows. Let G = (U ∪· V,E) be a bipartite graph with |U | = |V | = n and
E = {e1, . . . , em}. Let R be any subset of E and let k be a nonnegative integer with
k ≤ n. The ECPMP is the problem of finding a feasible solution to the system∑

e∈δ(u)
xe = 1 ∀ u ∈ U (7.8)

∑
e∈δ(v)

xe = 1 ∀ v ∈ V (7.9)

∑
e∈R

xe = k (7.10)

xe ∈ {0, 1} ∀ e ∈ E. (7.11)

7.2.1. Motivation of the objective branching algorithm

Our algorithm makes use of the structure of ECPMP instances. The central idea is
to take advantage of the fact that except for the side constraint (7.10), the problem
consists of the well-known classical perfect matching problem ((7.8),(7.9),(7.11)). It is
crucial for the objective branching algorithm that there exists a polynomial-time solution
algorithm for the weighted version of this subproblem, i.e. for the maximum weight
perfect matching problem (w-PM):

max
m∑
i=1

cixi

s.t. (7.8), (7.9), (7.11).

We refer to the Hungarian algorithm (see Algorithm B.2 in Appendix B) as a poly-
nomial solution method for the weighted perfect matching problem on bipartite graphs.
Note that the input graph G must be extended to a complete bipartite graph by adding
0-weight edges. Further, the edge weights ce must be incremented by a constant in order
to ensure that the perfect matching contains edges in E only.
The way we make use of w-PM when solving the ECPMP is motivated by the following

idea. Each solution x∗ ∈ {0, 1}m of the ECPMP is a feasible point for w-PM. Hence,
for determining a solution of the ECPMP it suffices to consider the points x ∈ {0, 1}m
which are feasible for w-PM. Further, each feasible point x ∈ {0, 1}m for w-PM is a
vertex of the m-dimensional unit cube [0, 1]m. For each such x there exists a coefficient
vector c ∈ {−1, 1}m such that x is the unique optimal solution to w-PM with objective
function coefficient vector c. Thus, also for each solution x∗ ∈ {0, 1}m of the ECPMP
there exists a coefficient vector c ∈ {−1, 1}m such that x∗ is the unique optimal solution
to w-PM with objective function coefficient vector c.
On the other hand, if a feasible point x of w-PM satisfies the constraint (7.10), then x

solves the ECPMP. For that reason, we call a feasible point of w-PM a candidate solution
for the ECPMP.
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7.2.2. Main strategy of the objective branching algorithm
In order to get candidate solutions for the ECPMP, we solve instances of w-PM with
different objective function coefficient vectors c ∈ {−1, 0, 1}m. An optimal solution x of
such a w-PM instance, which is returned by the weighted perfect matching solver, is con-
sidered as a candidate solution for the ECPMP, and it is checked whether

∑
e∈R xe = k.

If this equality holds, the additional side constraint (7.10) is satisfied and we have found
a solution to the ECPMP. If the additional side constraint is not satisfied, the objective
branching algorithm continues by solving the next w-PM instance. We allow 0 as a value
of an objective function coefficient in order to be able to formulate w-PM instances where
the set of optimal solutions we aim for is not only a single vertex of the unit cube but
rather the set of vertices of a face of the unit cube.
The problem instances of w-PM are organized in a binary tree structure T . Each

node in T corresponds to a w-PM problem instance with a specific objective function.
Let PM(c) denote the w-PM instance with given objective function coefficient vector
c ∈ {−1, 0, 1}m. In the following, we also use the term PM(c) to name the node which
stands for the problem instance PM(c). We use common notations concerning binary
trees: The depth of a node in T is the length of the path from the root of T to that
node, and a level of T consists of all nodes with the same depth. We denote the depth
of the instance PM(c) by l(c) for all instances PM(c) in T . So, an instance PM(c) is at
level i if and only if l(c) = i. For a vector c ∈ {−1, 0, 1}m we define

Nc := {i = 1, . . . ,m | ci = −1},
Zc := {i = 1, . . . ,m | ci = 0},
Pc := {i = 1, . . . ,m | ci = 1}.

The root node of T stands for the problem PM(0), i.e. the w-PM instance where the
coefficient vector of the objective function is (0, . . . , 0)> ∈ Rm. If the candidate solution
coming from a problem PM(c) does not solve the ECPMP instance, then two child nodes
are created. A node PM(c) with 0 ≤ l(c) ≤ m− 1 can have two child nodes PM(c−) and
PM(c+), with

c−i :=
{
ci if i 6= l(c) + 1,
−1 if i = l(c) + 1,

c+
i :=

{
ci if i 6= l(c) + 1,
1 if i = l(c) + 1.

We call the resulting tree T an objective branching tree. Figure 7.2 illustrates the
general construction scheme of T . One can observe that for any problem instance PM(c)
at level l it holds that ci ∈ {−1, 1} for all i = 1, . . . , l and ci = 0 for all i = l+ 1, . . . ,m.
With each node PM(c) in T we associate a set

F (c) = {x ∈ {0, 1}m | x satisfies (7.8) and (7.9), xi = 0 ∀ i ∈ Nc, xj = 1 ∀ j ∈ Pc} .

It holds that F (c−), F (c+) ⊆ F (c) for all coefficient vectors c of instances PM(c) with
depth l(c) ≤ m− 1. Hence, applying this property recursively yields

F (c′) ⊆ F (c) for all nodes PM(c′) in the subtree rooted at node PM(c). (7.12)
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c> = (0, . . . , 0)

−000 . . .

−−00 . . .

−−−0 . . . −−+0 . . .

−+00 . . .

−+−0 . . . −++0 . . .

+000 . . .

+−00 . . .

+−−0 . . . +−+0 . . .

++00 . . .

++−0 . . . +++0 . . .

Figure 7.2.: General structure of an objective branching tree T . Each node contains the
coefficient vector c of the problem instance PM(c) it stands for. Coefficient
vectors are denoted in form c1c2c3 . . . with the “−” sign representing a −1
and the “+” sign representing a 1.

Solving an instance PM(c) with a coefficient vector c ∈ {−1, 0, 1}m does not only yield
a solution which serves as a candidate solution for the ECPMP, but can also reveal a set
of vertices of the m-dimensional unit cube which can be excluded from being solutions
of the ECPMP. Thus, there is the possibility to prune the objective branching tree T at
some nodes.
As an essential component of our algorithm, at each node in T it is checked whether the

tree T can be pruned at this node after the corresponding w-PM instance is solved. If it
can be pruned, no branching takes place at the corresponding node, i.e. the current node
does not have any child nodes. This way, the number of nodes and problem instances of
w-PM in T which are to be solved is decreased, which is beneficial for the running-time
of the objective branching algorithm. Reasons for pruning T at a node are presented in
Section 7.2.3.
Taken all together, the objective branching algorithm combines solving w-PM in-

stances to find candidate solutions for the ECPMP and constructing the objective
branching tree by branching and pruning steps. It is listed as Algorithm 7.2.

7.2.3. Pruning the objective tree

In the following, we describe three conditions, each of which allows us to prune the tree
T at the current node. The pruning steps are illustrated at an example in Figure 7.3.
For all conditions described next, let PM(c̄) be the problem instance which was solved
last and let x̄ be an optimal solution of it.
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Algorithm 7.2 Algorithm for solving the equality constrained perfect matching problem
ObjectiveBranching(G,R, k)
Input: Bipartite graph G = (U ∪· V,E) with |U | = |V | = n and m := |E|, a set R ⊆ E,

an integer k with 0 ≤ k ≤ n
Output: Perfect matching M in G with |M ∩R| = k
1: T ←

(
(0, . . . , 0)>

)
. Initialize list T with 0 ∈ Rm

2: l← 0 . Current level in objective branching tree
3: d← dim(Pperfect matching(G))
4: F ← ∅ . Set of aff. indep. vectors (for Pruning Cond. 3)
5: repeat
6: c← first vector in T ; remove first vector from T
7: if cl+1 6= 0 then
8: l← l + 1
9: x← Hungarian(G, c) . Where G is extended to compl. bip. graph, c extended
10: if

∑
e∈R xe = k then . Check feasibility of candidate solution

11: return x
12: if prune(c, x, k, l, R, d, F ) = false then . Check pruning conditions
13: if l ≤ m− 1 then
14: c− ← c; c−l+1 ← −1 . Coeff. vector of first child node
15: c+ ← c; c+

l+1 ← 1 . Coeff. vector of second child node
16: add c− and c+ to the end of T
17: until T is empty
18: return “problem infeasible”

19: procedure prune(c, x, k, l, R, d, F )
20: Nc ← {i | ci = −1}; Zc ← {i | ci = 0}; Pc ← {i | ci = 1}
21: IR ← {i | ei ∈ R}
22: if ∃ i ∈ Nc : xi = 1 or ∃ j ∈ Pc : xj = 0 then . Check Pruning Cond. 1
23: return true
24: else if |Pc ∩ IR| > k or |Pc ∩ IR| < k − |Zc ∩ IR| then . Check Pruning Cond. 2
25: return true
26: else . Check Pruning Cond. 3
27: if |F | = d+ 1 then
28: A←

(
v1 ··· vd+1
1 ··· 1

)
, with {v1, . . . , vd+1} = F

29: π ← permutation corresp. to row permutations in LU-decomposition of A
30: if π(i) ∈ Nc ∪ Pc ∪ {m+ 1}∀ i = 1, . . . , d+ 1 then
31: return true
32: else if F ∪ {x} is a set of affinely independent vectors then
33: F ← F ∪ {x} . Update set of aff. indep. vectors

34: return false
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c> = (0, 0, 0, 0, 0, 0)

c> = (−1, 0, 0, 0, 0)

c> = (−1,−1, 0, 0, 0)
x> = (0, 0, 1, 1, 1)

c> = (−1, 1, 0, 0, 0)
x> = (0, 1, 0, 1, 1)

c> = −11−100 c> = −11100

c> = (1, 0, 0, 0, 0)

c> = (1,−1, 0, 0, 0)
x> = (1, 1, 0, 0, 1)

c> = (1, 1, 0, 0, 0)
x> = (1, 1, 0, 0, 1)

c> = 11−100 c> = 11100

prune!
Condition 2:
|Pc ∩ IR| = 0
< 1 = k − |Zc ∩ IR|

prune!
Condition 1:
x2 = 1 and 2 ∈ Nc

prune! prune!
Condition 3:
π(i) ∈ Nc ∪ Pc ∪ {6}
for all i = 1, . . . , 4

Assume that
|F | = d + 1 = 4,
π = (6, 1, 3, 2, 4, 5)

Figure 7.3.: Objective branching tree T with exemplary pruning steps. The corre-
sponding ECPMP instance is

(
G = (U ∪ V,E), R, k

)
with E = {e1, . . . , e5},

R = {e1, e2, e5}, k = 2 and d = dim(Pperfect matching) = 3.

Pruning Condition 1

Theorem 7.5 (Pruning Condition 1). If x̄i = 1 for some i ∈ Nc̄ or x̄j = 0 for some
j ∈ Pc̄, then T can be pruned at the current node.

Proof. The set of feasible solutions of the ECPMP is a subset of the set of feasible points
of w-PM. As x̄ is feasible for w-PM and maximizes the objective function c̄>x, there are
no feasible solutions x̄′ for w-PM – and thus, neither for the ECPMP – with c̄>x̄′ > c̄>x̄.
This implies that there is no feasible solution x̄′ for w-PM with x̄′i = 0 for all i ∈ Nc̄ and
x̄′j = 1 for all j ∈ Pc̄. Thus, F (c̄) = ∅. Property (7.12) then yields that for each node
PM(c′) in the subtree rooted at the current node PM(c̄) it holds that F (c′) = ∅.
For each feasible point x of w-PM there is a coefficient vector c ∈ {−1, 0, 1}m and a

problem instance PM(c) in T such that x ∈ F (c). Hence, if F (c) = ∅ for a coefficient
vector c ∈ {−1, 0, 1}m, then the problem instance PM(c) does not need to be considered
for calculating a candidate solution, i.e. the problem w-PM with weights ci does not
need to be solved. So, all nodes PM(c′) in the subtree rooted at the current node PM(c̄)
can be neglected and the tree T can be pruned at the current node.

Pruning Condition 2

Theorem 7.6 (Pruning Condition 2). Let IR := {i = 1, . . . ,m | ei ∈ R} be the support
of the constraint (7.10).
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If |Pc̄ ∩ IR| > k or |Pc̄ ∩ IR| < k− |Zc̄ ∩ IR|, then T can be pruned at the current node.

Proof. Due to property (7.12), it holds that if F (c̄) contains no point which satisfies the
side constraint (7.10), then none of the sets F (c′) for any node PM(c′) in the subtree
rooted at PM(c̄) contains a point which satisfies (7.10). We show that the negation of
the pruning condition is necessary for F (c̄) to contain points which satisfy (7.10).
Let x ∈ F (c̄) be a point satisfying (7.10). It holds that

Pc̄ ⊆ {i = 1, . . . ,m | xi = 1} ⊆ Pc̄ ∪ Zc̄
⇒ Pc̄ ∩ IR ⊆ {i = 1, . . . ,m | xi = 1} ∩ IR ⊆ (Pc̄ ∪ Zc̄) ∩ IR.

This implies that

|Pc̄ ∩ IR| ≤ |{i = 1, . . . ,m | xi = 1} ∩ IR| ≤ |Pc̄ ∩ IR|+ |Zc̄ ∩ IR|.

Due to the side constraint (7.10) we have that

|{i = 1, . . . ,m | xi = 1} ∩ IR| =
∑
i∈IR

xi =
∑
e∈R

xe = k.

Thus, if F (c̄) contains a point satisfying (7.10), then

|Pc̄ ∩ IR| ≤ k ≤ |Pc̄ ∩ IR|+ |Zc̄ ∩ IR|.

Refinement of Pruning Condition 2

In order to state a refinement of Pruning Condition 2 we make the following assumptions.
Let IR := {i = 1, . . . ,m | ei ∈ R} be the support of the constraint (7.10). Let the current
problem instance PM(c̄) be replaced by the two problem instances PM(c1) and PM(c2),
with

c1
i =


−1 if i ∈ Nc̄,

1 if i ∈ Pc̄,
0 if i ∈ Zc̄ ∩ IR,
δ if i ∈ Zc̄ \ IR,

c2
i =


−1 if i ∈ Nc̄,

1 if i ∈ Pc̄,
0 if i ∈ Zc̄ ∩ IR,
−δ if i ∈ Zc̄ \ IR,

where δ > 0 is sufficiently small such that x′i = x̄i for all optimal solutions x′ of PM(c1)
or PM(c2) and for all i ∈ Nc̄ ∪ Pc̄.
Let x1 and x2 be optimal solutions of PM(c1) and PM(c2), respectively. Further, we

assume that x1 ∈ F (c1) and x2 ∈ F (c2), as otherwise the objective branching tree can
be pruned at the current node due to Pruning Condition 1.

Theorem 7.7 (Pruning Condition 2refd). If
∑
i∈IR x

1
i > k or

∑
i∈IR x

2
i < k, then T can

be pruned at the current node.
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Proof. The coefficient vector c1 corresponds to the coefficient vector c̄ where all compo-
nents with value 0 and with indices not in the support of the additional constraint have
the value δ. The point x1 ∈ F (c1) is an optimal solution of PM(c1), which is a maximum
weight problem. Due to the choice of the values in the coefficient vector c1, the point x1

contains the maximum number of components xe with value 1 for e ∈ Zc̄ \ IR, among
all points x ∈ F (c1). Thus, it holds that

∑
i∈IR x

1
i ≤

∑
i∈IR xi for any point x ∈ F (c1).

As a consequence,
∑
i∈IR x

1
i is the minimum value of the left-hand side of the constraint

(7.10), evaluated at any point x ∈ F (c1). The case for the problem instance PM(c2) and
the inequality

∑
i∈IR x

2
i < k is treated analogously.

Pruning Condition 3

In order to state Pruning Condition 3 we make the following assumptions. Let d be
the dimension of the perfect matching polytope of w-PM (see Theorem 1.20). Let
v1, . . . , vd+1 ∈ {0, 1}m be feasible points for w-PM which are affinely independent. We
define the matrix A as

A :=
(
v1 · · · vd+1

1 · · · 1

)
∈ {0, 1}(m+1)×(d+1).

Let LU = PA be an LU-decomposition of the matrix A, where L ∈ R(m+1)×(d+1)

and U ∈ R(d+1)×(d+1). The matrix P ∈ {0, 1}(m+1)×(m+1) is a permutation matrix.
Let π : {1, . . . ,m + 1} → {1, . . . ,m + 1} be the permutation corresponding to the row
permutations resulting from multiplication of P from the left.

Theorem 7.8 (Pruning Condition 3). If π(i) ∈ Nc̄∪Pc̄∪{m+1} for all i = 1, . . . , d+1,
then T can be pruned at the current node.

Proof. Each feasible point x ∈ {0, 1}m of w-PM can be expressed as an affine combination
of the points v1, . . . , vd+1. Hence, there exists a vector λ ∈ Rd+1 such that Aλ = ( x1 ).
Using the LU-decomposition from above, the equality system Aλ = ( x1 ) can be written

as

LUλ = P

(
x
1

)
. (7.13)

The equality system (7.13) has a solution if and only if there exists a vector z ∈ Rd+1

such that

Lz = P

(
x
1

)
. (7.14)

As the matrix L results from an LU-decomposition, it is of the form L =
(
L1

L2

)
, with

L1 ∈ R(d+1)×(d+1) being a lower triangular matrix and L2 ∈ R(m−d)×(d+1).
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Let y := P ( x1 ), i.e. yi = xπ(i) for all i = 1, . . . ,m with π(i) 6= m + 1 and yi = 1 if
π(i) = m+ 1. Due to the fact that L1 has full rank, the equality system

L1z =

 y1
...

yd+1

 (7.15)

has a unique solution z∗. Hence, the equality system (7.14) (and therefore (7.13)) is
solvable if and only if

L2z∗ =

yd+2
...

ym+1

 .
This has the following consequence. If the values of the components xπ(i) are fixed for

all i = 1, . . . , d+ 1 with π(i) 6= m+ 1, then all values y1, . . . , yd+1 in (7.15) are fixed as
well, and there exists at most one feasible point for w-PM.
For the current problem instance PM(c̄) we are only interested in feasible solutions

that are in F (c̄), as all other feasible solutions are in sets F (c′) with c′i 6= c̄i for some
i = 1, . . . , l(c̄). Therefore, when π(i) ∈ Nc̄ ∪ Pc̄ ∪ {m + 1} for all i = 1, . . . , d + 1, the
values of the components xπ(i) are fixed for all i = 1, . . . , d+ 1. With these values fixed,
there is at most one feasible point for w-PM, which implies that |F (c̄)| ≤ 1. Due to
the property (7.12), after solving the current instance PM(c̄), none of the nodes in the
subtree rooted at node PM(c̄) need to be considered and the objective branching tree T
can be pruned at the current node.

A special property of Pruning Condition 3 is that once it is fulfilled for a node PM(c̄)
with depth l(c̄), the condition is also fulfilled for all nodes PM(c′) with l(c′) ≥ l(c̄).

7.2.4. Notes on the implementation of the objective branching algorithm
This section is concluded with remarks on the implementation of the developed algo-
rithm, which leads to a lower number of nodes in the objective branching tree in practice.
We also implemented the objective branching algorithm as a C++ program to retrieve
experimental results on its practical behavior. A table with information on the struc-
tural behavior of the algorithm, i.e. the number of nodes in the objective branching
tree and the number of pruning decisions, is given in Appendix B.3. Its data is based
on runs of the algorithm on different instances of the LCPMP, where for each value of
the parameter of the level constraint we considered 100 randomly created bipartite level
graphs.

General notes on the implementation of pruning conditions

Concerning the implementation of the objective branching algorithm, the pruning con-
ditions can be handled as independent components. This makes it possible to run the
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algorithm with only a selected subset of pruning conditions, in order to investigate the
effect of special combinations of these conditions. One should note that even when all
pruning conditions are deactivated, the algorithm returns a correct solution. The modu-
lar arrangement also offers the possibility to extend the set of pruning conditions with
further conditions. In the following we present additional information on the implemen-
tation of pruning conditions.

Implementation of Pruning Condition 2

Pruning Condition 2 does not depend on the optimal solution x̄ of PM(c̄). Therefore,
this condition can be checked before an optimal solution to the current problem instance
is calculated. Then, each pruning instruction it returns also avoids the calculation of an
optimal solution to the current instance of w-PM.

Implementation of Pruning Condition 2refd

It is not possible to apply the refined version of Pruning Condition 2 before the current
w-PM instance is solved, as Pruning Condition 2refd makes use of the optimal solution
of this instance.
Pruning Condition 2refd is fulfilled if

∑
i∈IR x

1
i > k or

∑
i∈IR x

2
i < k. It is implemented

to first check if
∑
i∈IR x

1
i > k. In order to do this, only the result x1 of the problem

instance PM(c1) is needed. In the case that for x1 the condition
∑
i∈IR x

1
i > k is

already satisfied, the second part of the pruning condition, which is to check whether∑
i∈IR x

2
i < k holds true, is not needed. Thus, the solution x2 of the problem instance

PM(c2) is not needed to be known.
We make use of this fact and insert the problem instance PM(c2) into the objective

branching tree if and only if
∑
i∈IR x

1
i ≤ k. This reduces the total number of nodes

inserted into the tree, which is beneficial for the practical running-time of the objective
branching algorithm.

Implementation of Pruning Condition 3

For applying Pruning Condition 3, it is required that d + 1 affinely independent points
v1, . . . , vd+1, all feasible for w-PM, are known. In Algorithm 7.2, these nodes are collected
in the set F . As long as F contains less than d+1 elements, for each solution x returned
by the w-PM solver it is checked whether the points in F together with the point x are
affinely independent. If they are, F is expanded by x. In order to determine whether the
points in F = {v1, . . . , vs} and x are affinely independent, the linear equation system(
v1 ··· vs
1 ··· 1

)
λ = 0 is solved. Using an LU-decomposition for solving this linear equation

system is advantageous in two ways.
First, when a new point vs+1 is added to F , the new LU-decomposition does not need

to be calculated from the beginning, but rather can be updated; i.e. it can be calculated
based on the former LU-decomposition. When F contains d+ 1 elements, then the LU-
decomposition used for deciding affine independence also is the LU-decomposition which
is used in Pruning Condition 3.
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Second, the values π(1), . . . , π(s) of the row permutation in the LU-decomposition
of the matrix A =

(
v1 ··· vs
1 ··· 1

)
with s ≤ d do not change when the LU-decomposition

is updated due to a new point vs+1. We make use of this fact by bringing forward
components of the coefficient vector based on which two new child nodes are created:
We first branch on those indices j for which there exists an i = 1, . . . , s such that π(i) = j.
This way, Pruning Condition 3 is fulfilled earlier in the course of the algorithm.
Let Ī := {i = 1, . . . ,m | ci = 0 for all PM(c) ∈ T} be the set of indices i for which no

node PM(c) with ci = ±1 currently exists in T . This implies that for each index i ∈ Ī
no instance PM(c) with ci = ±1 has been solved yet. All indices in Ī can be brought
forward as branching indices when a new level in the objective tree is filled with nodes,
as they have not been used as index for branching steps yet.
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8. Summary

The two main problems which were subject of our investigations in this work were the
couple constrained matching problem and the level constrained matching problem. They
are representatives of the class of resource constrained matching problems – a problem
class which consists of matching problems with additional side constraints.
For both problems we presented their formulations and introduced the corresponding

assignment problem with the same type of additional side constraints. Furthermore,
connections between the problems discussed in this work and related combinatorial op-
timization problems from the literature were shown.
The types of additional side constraints in the couple constrained matching problem

and the level constrained matching problem differ in the number of imposed constraints
as well as in their structure. We related the two problems to each other and presented a
polynomial reduction from the level constrained perfect matching problem to the couple
constrained perfect matching problem. This implies that the level constrained matching
problem can be regarded as a special case of the couple constrained matching problem.
As a central result we showed that the couple constrained matching problem is NP-

hard. To prove this result, we first generalized a complexity result from the literature,
which is that the problem of weighted matching with bonds is NP-hard. Then, we
provided some complexity results for intermediate problems, which finally enabled us
to show the complexity of the couple constrained matching problem. Furthermore, we
strengthened our result by proving that the problem stays NP-hard even when requiring
the underlying graph to be a bipartite cycle. This could be shown as all reduction steps
from the problem matching with bonds to the couple constrained matching problem were
designed such that the constructed problem instances in the reductions were stated on
bipartite graphs only.
A substantial part of this work dealt with complexity aspects of the level constrained

matching problem and the polynomially equivalent level constrained perfect matching
problem. We proved that the level constrained perfect matching problem is polynomi-
ally equivalent to three other combinatorial optimization problems from the literature,
whose computational complexity is unknown. One of these problems was the resource
constrained perfect matching problem, for which we investigated the impact of fixed
input parameters on its complexity. To this end, we presented different settings of fixed
and variable input parameters which were sufficient for the problem to become polyno-
mially solvable or NP-hard.
Along our complexity analysis of the couple constrained matching problem and the

level constrained matching problem we also considered assignment problems with either
a set of additional couple constraints or an additional level constraint imposed on it.
A problem of major relevance we introduced was the couple and level constrained
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matching problem with on-level couples. In this problem both types of additional side
constraints were brought together. We proved that the decision version of this problem
is NP-complete by polynomially reducing the decision version of the clique problem to
it. In this problem reduction we made use of a modular approach for constructing and
analyzing the underlying graph of the couple and level constrained matching problem
with on-level couples. This complexity result is particularly interesting, as the problem
is trivial to solve when it is formulated without the level constraint. This way we showed
the impact the level constraint can have on the complexity of an easy-to-solve variant of
a resource constrained matching problem.
One chapter of this work was dedicated to polytopes of resource constrained matching

problems. We established new results on the structure of the level constrained perfect
matching polytope in terms of a characterization of the non-integral vertices of the
polytope corresponding to the linear relaxation of the level constrained perfect matching
problem. This was done by presenting a set of linear inequalities which separate all non-
integral vertices of this polytope from the convex hull of all integer solutions of the
level constrained perfect matching problem. Furthermore, we showed that for each such
non-integral vertex a separating inequality can be found in polynomial time.
As solution approaches for the level constrained matching problem, we presented two

algorithms. The first algorithm we developed was a polynomial approximation algorithm
for the level constrained matching problem stated on level graphs. Its approximation
quality ensured that the size of a returned matching was at most one edge less than
the size of an optimal solution. The second algorithm we developed was the objective
branching algorithm. It solves the equality constrained perfect matching problem, which
is a generalization of the level constrained perfect matching problem, to optimality. We
designed the algorithm to benefit from the fact that the problem it solves contains the
well-known perfect matching problem as a subproblem. A run of this algorithm is based
on a tree structure in which each node is used to calculate a candidate solution of the
equality constrained perfect matching problem.
The results presented in this work contribute essential parts to the understanding

of the matching problem either with additional couple constraints, with an additional
level constraint, or with both types of constraints imposed together. For the couple
constrained matching problem we showed that there is no polynomial solution algorithm,
assuming that P 6= NP. Regarding the level constrained matching problem we analyzed
its complexity by means of complexity comparisons to other combinatorial optimization
problems and to problems with different combinations of fixed input parameters. We
showed that the level constraint is a crucial side constraint for the couple and level
constrained matching problem with on-level couples to be NP-hard. The existence of a
polynomial approximation algorithm and the characterization of non-integral vertices of
its polytope might serve as a promising starting point for further research approaches
towards this problem.
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In this section, we review the notion of NP-completeness. We informally present the
problem classes P and NP, define the classes of NP-hard and NP-complete problems,
and introduce the terminology used for developing complexity results in this work. The
introduction to this topic follows the introduction to the theory of NP-completeness in
[38] and [4]. For a formal definition of the concept of NP-completeness and a compre-
hensive discussion of computational complexity, see [26].

A.1. Running-times
When analyzing running-times, we are mostly interested in their asymptotical behavior.
We use the standard notation for denoting asymptotical upper bounds, which is defined
as follows: For a function g : N→ R we define

O(g) := {f : N→ R | ∃ c ∈ R, n0 ∈ N such that ∀ n ≥ n0 : f(n) ≤ c · g(n)}.

Let P be any problem and let I be an instance of P . The size |I| of instance I is
the binary encoding length of I. In general, the encoding scheme does not need to be
binary; any scheme with at least two symbols is suitable.
We say that an algorithm solves the problem P, if it accepts all instances of P as input

and returns a solution for each instance in finite time. When applying an algorithm to
solve a problem instance I, we refer to its running-time T (I) as the number of time
steps (or basic computational steps) needed to produce an output. A polynomial-time
algorithm (or just polynomial algorithm) for a problem P is an algorithm for which a
constant k exists such that T (I) ∈ O(nk) for all instances I of P with size n. We say
that a problem P is polynomially solvable, if there exists a polynomial-time algorithm
for P .

A.2. The classes P and NP
For the purpose of defining the sets P, NP and the classes of NP-hard and NP-complete
problems, we consider all problems as decision problems, i.e. problems in which for any
instance the answer is either “yes” or “no”. As an example, we consider an instance of the
matching problem on a graph G together with a nonnegative, integer-valued parameter
k. An instance of the corresponding decision problem would be the question whether G
contains a matching of size at least k.
Formally, given an encoding alphabet Σ with Σ∗ denoting the set of all finite strings of

elements in Σ, a decision problem Π is a subset Π ⊆ Σ∗ and an instance of Π is a string
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x ∈ Σ∗. According to this notation, the set Π consists of all instances x ∈ Σ∗ which
have the answer “yes”. Hence, instances to which the answer is “yes” can be interpreted
as feasible instances of a problem. A feasible instance of a decision problem is called a
yes-instance. An instance which is infeasible is called a no-instance.
The feasibility of an instance I of a decision problem P is strongly linked with a

certificate (or witness) C(I), which is a structure of size polynomially bounded in |I|,
and which affirms I to be a yes-instance. In an instance I = (G, k) of the decision version
of the matching problem from above, a matching M in G of size |M | ≥ k is a certificate
for I being a yes-instance.
The class P consists of all decision problems which are polynomially solvable. The

class NP consists of all decision problems P for which there exists a polynomial-time
algorithm which verifies that for a given yes-instance I of P and a given structure C(I),
the structure C(I) is a correct certificate for I.
Let P and P ′ be two decision problems. We say that P ′ is polynomially reducible to P

(denoted by P ′ ≤p P ), if there is a mapping f from the set of instances of P ′ to the set
of instances of P such that the following holds: For each instance I ′ of P ′, the instance
f(I ′) of P is constructed in time bounded by a polynomial in |I ′|, with the property
that solving the instance f(I ′) solves the instance I ′ as well. A polynomial reduction of
P ′ to P implies that the problem P ′ is at most as hard to solve as the problem P . If
P ′ ≤p P and P ≤p P ′, then the problems P and P ′ are called polynomially equivalent.
A decision problem P is called NP-hard, if P ′ ≤p P for all P ′ ∈ NP. An NP-hard

problem P which also is in NP is called NP-complete. Hence, NP-complete problems
can be considered as the hardest problems in NP.
Cook [14] proved that the satisfiability problem is NP-complete. This is the first

problem which was shown to be NP-complete. The existence of an NP-complete problem
P allows us to prove the NP-completeness of a problem P ′ ∈ NP by means of a reduction:
As it holds that P ′′ ≤p P for all P ′′ ∈ NP, one can show that P ′ is NP-complete by
polynomially reducing P to P ′.

A.3. Optimization problems

Combinatorial optimization problems often appear in the form of an optimization prob-
lem, in which an optimal structure is searched for instead of a “yes”- or “no”-answer.
To each optimization problem there is a corresponding decision problem which contains
an additional parameter serving as a bound for the optimization problem’s objective
function. It is a lower bound if the optimization problem is a maximization problem and
it is otherwise an upper bound. For example, in the matching problem the task is to
determine a matching of maximum size. In the decision problem corresponding to the
matching problem the question is whether the graph contains a matching of size at least
k, where k is the additional lower bound parameter.
Optimization problems and their corresponding decision problems are polynomially

equivalent (see [26]). Due to this fact, an optimization problem is polynomially solvable
if and only if the corresponding decision problem is in P.
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Furthermore, we will call an optimization problem NP-hard if the corresponding de-
cision problem is NP-complete, as the existence of a polynomial-time algorithm for the
optimization problem would imply that P = NP.
A review of NP-completeness results for decision versions of some basic combinatorial

optimization problems, together with the corresponding reduction sequences beginning
with the satisfiability problem, is given in [38].
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B. Supplementary Information on
Algorithms

In this section, additional information concerning solution algorithms for flow problems
and for matching problems are listed. Furthermore, we present results of runs of the
objective branching algorithm applied on randomly created problem instances of preset
size.

B.1. Algorithms for flow problems

Let D = (N,A) be a digraph with n := |N | and m := |A|. Let uij be the capacity of the
arc (i, j) for all (i, j) ∈ A and let U := max(i,j)∈A uij . Table B.1 lists solution algorithms
for the maximum flow problem together with their running-times on instances of the
size as above. Extensive descriptions of the algorithms can be found in [4].

Algorithm Running-time
Labeling algorithm O(nmU)
Capacity scaling algorithm O(nm log(U))
Successive shortest path algorithm O(n2m)
Generic preflow-push algorithm O(n2m)
FIFO preflow-push algorithm O(n3)
Highest-label preflow-push algorithm O(n2√m)
Excess scaling algorithm O(nm+ n2 log(U))

Table B.1.: List of algorithms for the maximum flow problem (from [4]).

We now list algorithms for the minimum cost flow problem. Let cij be the cost of the
arc (i, j) for all (i, j) ∈ A and let C := max(i,j)∈A |cij |. Table B.2 lists solution algorithms
for the minimum cost flow problem together with their running-times on instances of
the size as above. Descriptions and further analyses of the algorithms can be found in
[4].
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Algorithm Running-time
Cycle-canceling algorithm O(mCU)
Successive shortest path algorithm O(nU)
Primal-dual algorithm O(min{nU, nC})
Capacity scaling algorithm O((m log(U))(m+ n log(n)))
Cost scaling algorithm O(n3 log(nC))
Double scaling algorithm O(nm log(U) log(nC))
Minimum mean cycle canceling algorithm O(n2m3 log(n))
Repeated capacity scaling algorithm O((m2 log(n))(m+ n log(n)))
Enhanced capacity scaling algorithm O((m log(n))(m+ n log(n)))

Table B.2.: List of algorithms for the minimum cost flow problem (from [4]).

B.2. Algorithms for matching problems
B.2.1. The maximum matching algorithm
Before presenting Edmond‘s algorithm (listed as Algorithm B.1) for solving the matching
problem, we provide basic information on the idea behind the algorithm. To this end,
we briefly present the concept of alternating trees and the contraction procedure. For
a more detailed analysis of the algorithm and its theoretical background, see [20], [49]
and [34].

Definition B.1. Let G = (V,E) be a graph and let M be a matching in G. Let s ∈ V
be an M -exposed node. An alternating tree T with root s is a tree T in G which has the
root node s and which satisfies the following properties:

1. For each node v ∈ V (T ) the (s, v)-path in T is an M -alternating path.

2. Each node v ∈ V (T ) \ {s} is covered by an edge in M ∩ E(T ).

By even(T ) and odd(T ) we denote all the nodes in V (T ) whose distances to the
root node s are even or odd, respectively. A basic property of an alternating tree in G
concerning a matchingM used by the algorithm is the following: Each node u ∈ even(T )
which is adjacent to an M -exposed node v ∈ V \V (T ) induces an (s, v)-path in G which
is an augmenting path concerning M .
We now describe the concept of contracting a subset of nodes in G = (V,E). Let

B ⊆ V . ByG/B we denote the graph resulting from contracting the setB, i.e. identifying
all nodes in B with one new vertex b. This graph then consists of the nodes (V \B)∪{b}.
For all edges in G which have exactly one end-node v ∈ B, this end-node is replaced by
b in the graph G/B. All edges in G with both end-nodes in B do not occur in G/B.
In the algorithm, this contraction step is used to shrink a set of nodes B ⊆ V (T ) which
build an odd cycle in G.
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Algorithm B.1 Maximum matching in general graphs
Maximum-Matching(G)
Input: Graph G = (V,E)
Output: Maximum matching in G
1: M ← ∅; F ← ∅ . F contains nodes of forest for which max. matching has been found
2: while F 6= V do
3: G′ ← G− F . Subgraph for which max. matching will be determined
4: M ′ ← ∅ . M ′ will be max. matching in subgraph G′

5: if M ′ is a perfect matching in G′ then
6: expand all contracted nodes in VT
7: F ← F ∪ VT ; M ←M ∪M ′
8: goto 2
9: s←M ′-exposed node in G′

10: T = (VT , ET )← ({s}, ∅) . Start alternating tree with root s
11: if ∃ [u, v] ∈ E(G′) with u ∈ even(T ) and v /∈ odd(T ) then
12: if v is M ′-exposed and v 6= s then
13: augment M ′ along the augmenting (s, v)-path in T
14: expand M ′ by undoing shrinking modifications . Compare Lemma B.2
15: G′ ← G− F . Undo shrinking applied to G′

16: goto 5
17: if v ∈ even(T ) then
18: Shrink(G′,M ′, T, [u, v]) . Shrink odd cycle
19: goto 11
20: if v is covered by [v, w] ∈M ′ then
21: VT ← VT ∪ {v, w}; ET ← ET ∪ {[u, v], [v, w]} . Let T grow
22: goto 11
23: expand all contracted nodes in VT . Situation: T cannot grow, s stays exposed
24: F ← F ∪ VT ; M ←M ∪M ′
25: goto 2
26: return M

27: procedure Shrink(G′,M ′, T, [u, v])
28: C ← cycle of odd length induced by adding [u, v] to T
29: G′ ← G′/V (C); T ← T/V (C)
30: M ′ ←M ′ \ E(C)

Let C be a cycle of odd length in G. Lemma B.2, which can be found e.g. in [34] and
[49], shows that a matching in the contracted graph G/V (C) can always be extended to
a matching in the original graph G.

Lemma B.2. Let C be a cycle of odd length in G. Let G′ := G/V (C) and let M ′ be a
matching in G′.
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Then, there is a matching M in the graph G with M ⊆ M ′ ∪ E(C), such that the
number of M -exposed nodes in G equals the number of M ′-exposed nodes in G′.

The proof of Lemma B.2 is based on the fact that |C|−1
2 edges in the cycle C can be

chosen to be in the matching M . The following result can be found in [34] and [49]:

Theorem B.3. Let G = (V,E) be a graph with n := |V | and m := |E|. Algorithm
B.1 can be implemented such that its running-time on G is O(nmα(n)), where α is the
inverse Ackermann function.

For an overview of different running-times depending on the data structures used, see
[49].

B.2.2. The Hungarian algorithm

The Hungarian algorithm, listed as Algorithm B.2, determines a perfect matching of
maximum weight with respect to nonnegative edge weights in a complete bipartite graph
Kn,n. We present the algorithm following the notations of Jungnickel in [30], where an
array mate assigns each node i in Kn,n a node j in Kn,n, where i and j are end-nodes of
the same matching edge. The Hungarian algorithm and Theorem B.4 are due to Kuhn
[35], [36].

Theorem B.4. Algorithm B.2 determines a perfect matching of maximum weight in a
complete bipartite graph Kn,n in O(n3).

B.3. Experimental results for the objective branching algorithm
In this section, we present results of the objective branching algorithm applied to ran-
domly created problem instances. The results give information on the behavior of the
algorithm in terms of the structure of the underlying objective branching trees. Table
B.3 lists these results.

B.3.1. Problem instances

The results in Table B.3 correspond to runs of the objective branching algorithm on
LCPMP instances of the form (G, k), with G being a bipartite level graph and k being
the parameter of the level constraint. In each LCPMP instance, the undlerying graph
G = (U ∪· V ) is a bipartite level graph with |U | = |V | = 200 and |E| = 500. This type of
(sparse) graph turned out to be suitable for investigations of the practical behavior of
the objective branching algorithm: Using this type of graph, there are LCPMP instances
which are feasible and there are LCPMP instances which are infeasible, depending on the
parameters of the level constraint. Thus, the behavior of the algorithm can be observed
for both kinds of problem instances, feasible and infeasible ones.
The graphs of the LCPMP instances are constructed as follows. We build bipar-

tite level graphs Gl = (U ∪· V,El), for l = 1, . . . , 100, where U = {u1, . . . , u200} and
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Algorithm B.2 Hungarian algorithm. Determines a maximum weight perfect matching
in a complete bipartite graph.
Hungarian(G, c)
Input: Complete bipartite graph G = (V,E) with V = S ∪· T , where S = {1, . . . , n}

and T = {1′, . . . , n′}. Nonnegative weight cij for all edges [i, j′] ∈ E.
Output: Perfect matching of maximum weight in G, given by array mate.
1: for v ∈ V do mate(v)← 0
2: for i = 1 to n do ui ← max{cij : j = 1, . . . , n}; vi ← 0
3: nrex← n
4: while nrex 6= 0 do
5: for i = 1 to n do m(i)← false; p(i)← 0; δi ←∞
6: aug← false; Q← {i ∈ S : mate(i) = 0}
7: repeat
8: remove an arbitrary node i from Q; m(i)← true; j ← 1
9: while aug = false and j ≤ n do

10: if mate(i) 6= j′ then
11: if ui + vj − cij < δj then
12: δj ← ui + vj − cij ; p(j)← i
13: if δj = 0 then
14: if mate(j′) = 0 then
15: AUGMENT(mate, p, j′)
16: aug← true; nrex← nrex − 1
17: else
18: Q← Q ∪ {mate(j′)}
19: j ← j + 1
20: if aug = false and Q = ∅ then
21: J ← {i ∈ S : m(i) = true}; K ← {j′ ∈ T : δj = 0}
22: δ ← min{δj : j′ ∈ T \K}
23: for i ∈ J do ui ← ui − δ
24: for j′ ∈ K do vj ← vj + δ

25: for j′ ∈ T \K do δj ← δj − δ
26: X ← {j′ ∈ T \K : δj = 0}
27: if mate(j′) 6= 0 for all j′ ∈ X then
28: for j′ ∈ X do Q← Q ∪ {mate(j′)}
29: else
30: choose j′ ∈ X with mate(j′) = 0
31: AUGMENT(mate, p, j′)
32: aug← true; nrex← nrex − 1
33: until aug = true
34: return mate
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35: procedure AUGMENT(mate, p, j′)
36: repeat
37: i← p(j); mate(j′)← i; next← mate(i); mate(i)← j′

38: if next 6= 0 then
39: j′ ← next
40: until next = 0

V = {v1, . . . , v200}. The edge sets El are sets of exactly 500 (non-parallel) edges ran-
domly connecting nodes in U and V for all l = 1, . . . , 100. It is ensured that each graph
Gl contains the on-level edge [ui, vi] for all i = 1, . . . , 200 and l = 1, . . . , 100.

B.3.2. Results
The first column of Table B.3 contains the values of the parameter k for which the
problem instances (Gl, k) have been solved by the objective branching algorithm for all
l = 1, . . . , 100. The algorithm used Pruning Conditions 1, 2 and Pruning Condition 2refd.
For k being an entry in the first column, the other column entries in the corresponding
row read as follows:

• Column #feasible: Number of those LCPMP instances (Gl, k), l = 1, . . . , 100,
which are feasible.

• Column #nodes: Number of nodes in the objective branching tree for which the
corresponding (w-PM) instances have been solved. The value presented is the
mean of the values concerning all instances (Gl, k), for l = 1, . . . , 100.

• Column #leaves: Number of nodes at level 500 of the objective branching tree for
which the corresponding (w-PM) instances have been solved. The value presented
is the mean of the values concerning all instances (Gl, k), for l = 1, . . . , 100.

• Column PC1: Number of pruning decisions due to a satisfied Pruning Condition 1.
The value presented is the mean of the values concerning all instances (Gl, k), for
l = 1, . . . , 100.

• Column PC2: Number of pruning decisions due to a satisfied Pruning Condition 2.
The condition is checked and possible pruning is applied before solving the (w-PM)
instance corresponding to the current node. The value presented is the mean of
the values concerning all instances (Gl, k), for l = 1, . . . , 100.

• Column PC2refd: Number of pruning decisions due to a satisfied Pruning Condi-
tion 2refd. The value presented is the mean of the values concerning all instances
(Gl, k), for l = 1, . . . , 100.

• Column #PM(c2): Number of problem instances PM(c2) solved in order to check
the second part of the Pruning Condition 2refd. The value presented is the mean
of the values concerning all instances (Gl, k), for l = 1, . . . , 100.
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k #feasible #nodes #leaves PC1 PC2 PC2refd #PM(c2)
0 0 1 0 0 0 1 0
5 0 1 0 0 0 1 0

10 0 1 0 0 0 1 0
15 0 1 0 0 0 1 0
20 0 1 0 0 0 1 0
25 0 1 0 0 0 1 0
30 0 1 0 0 0 1 0
35 0 1 0 0 0 1 0
40 0 1 0 0 0 1 0
45 0 1 0 0 0 1 0
50 0 1 0 0 0 1 0
55 0 1 0 0 0 1 0
60 0 1 0 0 0 1 0
65 0 1 0 0 0 1 0
70 0 1 0 0 0 1 0
75 0 1 0 0 0 1 0
80 0 1 0 0 0 1 0
85 0 1 0 0 0 1 0
90 0 1 0 0 0 1 0
95 0 1 0 0 0 1 0
100 0 1 0 0 0 1 0
105 0 1 0 0 0 1 0
110 0 1 0 0 0 1 0
115 0 1 0 0 0 1 0
120 1 1.35 0 0.04 0 1.04 0.13
125 2 1.16 0 0 0 0.98 0.08
130 3 3.09 0 0.26 0 1.18 0.81
135 8 7.22 0 0.93 0 1.15 2.53
140 13 12.05 0 1.61 0 1.29 4.51
145 27 28.95 0 4.76 0 1.28 11.32
150 41 66.38 0 12.21 0 1.66 26.05
155 63 200.09 0 43.28 0 2.31 77
160 76 261.51 0 57.71 0 2.46 100.44
165 84 351.73 0 85.71 0 2.67 131.69
170 94 386.74 0 96.63 0 3.01 144.06
175 98 423.67 0 112.61 0 3.92 154.85
180 99 282.32 0 73.14 0 4.71 104.24
185 99 173.97 0 43.02 0 4.49 65.35
190 99 198.55 0 49.01 0 8.39 74.67
195 80 232.68 0 62.66 0 9.89 84.68
200 100 2 0 0 0 0 1

Table B.3.: Results of the objective branching algorithm solving LCPMP instances.
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One can see in Table B.3 that for k = 0, 5, 10, . . . , 115 none of the problem instances
(Gl, k) for any l = 1, . . . , 100 are feasible. In other words, there is no perfect matching
containing k = 0, 5, 10, . . . , 115 on-level edges in the graph Gl for any l = 1, . . . , 100.
In this case, the objective branching algorithm terminates after solving the (w-PM)
instance corresponding to the root node of the objective branching tree. This is due to
Pruning Condition 2refd. As there are no PM(c2) instances considered by this pruning
condition, the first part of Pruning Condition 2refd is always fulfilled. Thus, it holds
that

∑
i∈IR x

1
i > k, for IR being the support of the level constraint and c1 being the

coefficient vector of the root node, with c1
i = δ for all i ∈ {1, . . . , 500} \ IR and c1

i = 0,
otherwise. This shows that each perfect matching in Gl contains strictly more than 115
on-level edges for all l = 1, . . . , 100.
For k = 200, the PM(c2) instance corresponding to the root node PM(c1) is considered

by Pruning Condition 2refd during the run of the algorithm. For its coefficient vector
c2 it holds that c2

i = −δ for all i ∈ {1, . . . , 500} \ IR and c2
i = 0, otherwise. Thus,

the solution of the corresponding instance PM(c2) yields a matching which contains all
on-level edges and thus is a candidate solution that is feasible for the instance (Gl, 200)
for all l = 1, . . . , 100.
For k = 120, 125, 130, . . . , 200, there are instances (Gl, k) which are feasible for some

l = 1, . . . , 100. Thus, there are instances for which the objective branching tree is not
pruned at the root node and a various number of nodes in the tree need to be considered
until a feasible solution is found.
It turns out that the number of satisfied Pruning Conditions 1 is bounded (roughly)

linearly on the number of nodes considered in the objective branching tree. Furthermore,
the number of PM(c2) instances considered by Pruning Condition 2refd also depends
(roughly) linearly on the number of nodes considered in the objective branching tree.
One can observe that the number of pruning decisions due to a satisfied Pruning

Condition 2refd increases with the value of k (except for k = 200) and it is independent
from the number of nodes in the tree. The following relationship serves as an explanation
for this behavior: For k ≥ 100 it holds that the smaller the difference between the
maximum number of on-level edges in a perfect matching (which is 200 in our instances)
and the value of k, the higher the possibility that Pruning Condition 2refd is satisfied.
One can see that the number of instances which are feasible increases with the value of

k (except for k = 195). This is due to the sparse structure of the graphs Gl. Hence, the
mean number number of nodes considered in the objective branching tree also increases.
This trend does not continue for k ≥ 180. The mean number of nodes considered in the
objective branching tree for k = 185 is significantly lower than that for k = 175. This
indicates that Pruning Condition 2refd is satisfied already for nodes at lower levels in the
tree when the value of k increases.
It is noticeable that no nodes at level 500 (leaf nodes) in the objective branching

tree are considered by the algorithm for any instance (Gl, k). Thus, for each instance
the algorithm either determines a feasible solution or determines the infeasibility of the
instance before any (w-PM) instances corresponding to nodes at the maximum level of
the tree have been solved.
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Concerning the Pruning Condition 2 one can see that its condition is not satisfied for
any instance (Gl, k). As this condition depends on the sets Nc and Pc, it is more likely
to be satisfied at high tree levels. Pruning Condition 2refd is the more powerful condition
which is useful even at low levels of the objective branching tree. The drawback of its
use is the additional PM(c2) nodes that need to be inserted into the tree.
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In the following we list formulations of all problems occurring in this work. The problems
are grouped according to their problem type. For those problems whose formulations are
given in the course of this work, their numerations are carried over. All other problem
formulations are numbered separately. The formulations given in the Section Other
combinatorial (optimization) problems can be found in [15] and [30].

Flow problems

Problem Formulation 1.1 (Maximum flow). Let D = (N,A) be a directed graph with
a source node s ∈ N and a sink node t ∈ N . Further, let uij be the nonnegative arc
capacity of the arc (i, j) for all (i, j) ∈ A.
The maximum flow problem is formulated as the following linear program:

max v

s.t.
∑

j:(i,j)∈A
xij −

∑
j:(j,i)∈A

xji =


v if i = s,

0 if i ∈ N \ {s, t},
−v if i = t

0 ≤ xij ≤ uij ∀ (i, j) ∈ A.

Problem Formulation 1.3 (Minimum cost flow). Let D = (N,A) be a directed graph
with a source node s ∈ N and a sink node t ∈ N . Let uij be the nonnegative arc capacity
of the arc (i, j) for all (i, j) ∈ A and let cij ∈ R be the cost value of the arc (i, j) for all
arcs (i, j) ∈ A. Let b(i) be the supply/demand value of the node i for all i ∈ N .
The minimum cost flow problem is formulated as the following linear program:

min
∑

(i,j)∈A
cijxij

s.t.
∑

j:(i,j)∈A
xij −

∑
j:(j,i)∈A

xji = b(i) ∀ i ∈ N

0 ≤ xij ≤ uij ∀ (i, j) ∈ A.

Problem Formulation 2.20 (Maximum integer equal flow). Let D = (V,A) be a
digraph with two distinct nodes s, t ∈ V denoting the source node and the sink node in
D, respectively. Further, let uij be the nonnegative, integer-valued capacity of the arc
(i, j) for all (i, j) ∈ A. Let R1, . . . , Rk be pairwise disjoint subsets of A.
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The maximum integer equal flow problem is stated as the following integer linear
program:

max v

s.t.
∑

j:(i,j)∈A
xij −

∑
j:(j,i)∈A

xji =


v if i = s,

0 if i ∈ V \ {s, t},
−v if i = t

0 ≤ xij ≤ uij ∀ (i, j) ∈ A
xi1j1 = xi2j2 ∀ (i1, j1), (i2, j2) ∈ Rh,∀ h = 1, . . . , k
xij ∈ Z ∀ (i, j) ∈ A.

Classical matching problems
Problem Formulation 1.5 (Matching). Let G = (V,E) be a graph.
The matching problem is the problem of finding a matching of maximum cardinality

in G. It is formulated as the following integer linear program:

max
∑
e∈E

xe

s.t.
∑
e∈δ(v)

xe ≤ 1 ∀ v ∈ V

xe ∈ {0, 1} ∀ e ∈ E,

where δ(v) denotes the set of edges incident to node v for all v ∈ V .

Problem Formulation 1.6 (Perfect matching). Let G = (V,E) be a graph.
The perfect matching problem is the problem of finding a matching M in G such that

all nodes in G are covered by an edge in M . It is formulated as the problem of finding
a feasible solution to the system∑

e∈δ(v)
xe = 1 ∀ v ∈ V

xe ∈ {0, 1} ∀ e ∈ E.

Problem Formulation 1.8 (Bipartite matching). Let G = (U ∪· V,E) be a bipartite
graph.
The bipartite matching problem is the problem of finding a matching of maximum

cardinality in G.

Problem Formulation 1.9 (Bipartite perfect matching). Let G = (U ∪· V,E) be a
bipartite graph.
The bipartite perfect matching problem is the problem of finding a perfect matching

in G.
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Problem Formulation 1.10 (Complete matching). Let G = (U ∪· V,E) be a bipartite
graph.
The complete matching problem is the problem of finding a matching M in the bi-

partite graph G such that all nodes in the smaller of the two color classes U and V are
covered by M . Assuming that |U | ≤ |V |, it is formulated as the problem of finding a
feasible solution to the system

∑
e∈δ(u)

xe = 1 ∀ u ∈ U

∑
e∈δ(v)

xe ≤ 1 ∀ v ∈ V

xe ∈ {0, 1} ∀ e ∈ E.

Problem Formulation 1.7 (Weighted matching). Let G = (V,E) be a graph and let
ce ∈ R be the weight of the edge e for all e ∈ E. The weighted matching problem is the
problem of finding a matching M in G which is of maximum weight. It is formulated as
the following integer linear program:

max
∑
e∈E

cexe

s.t.
∑
e∈δ(v)

xe ≤ 1 ∀ v ∈ V

xe ∈ {0, 1} ∀ e ∈ E.

Problem Formulation C.1 (Symmetric matching). Let G = (U∪· V,E) be a symmetric
bipartite graph with U = {u1, . . . , un} and V = {v1, . . . , vn}. A symmetric matching
M in G is a matching satisfying that [ui, vj ] ∈ M if and only if [uj , vi] ∈ M for all
i, j = 1, . . . , n.
The symmetric matching problem is the problem of finding a symmetric matching of

maximum size in G.

Problem Formulation C.2 (Symmetric perfect matching). Let G = (U ∪· V,E) be a
symmetric bipartite graph with U = {u1, . . . , un} and V = {v1, . . . , vn}. A symmetric
matching M in G is a matching satisfying that [ui, vj ] ∈ M if and only if [uj , vi] ∈ M
for all i, j = 1, . . . , n.
The symmetric perfect matching problem is the problem of finding a symmetric perfect

matching in G.

Problem Formulation 1.11 (Assignment). Let n be a nonnegative integer number.
Let cij ∈ R be a cost value for all i, j = 1, . . . , n. The assignment problem (AP) is stated
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as the following integer linear program:

min
n∑
i=1

n∑
j=1

cijxij

s.t.
n∑
j=1

xij = 1 ∀ i = 1, . . . , n

n∑
i=1

xij = 1 ∀ j = 1, . . . , n

xij ∈ {0, 1} ∀ i, j = 1, . . . , n.

Problem Formulation 1.25 (3-Dimensional matching). Let H = (U ∪ V ∪W, E) be a
hypergraph with pairwise disjoint color classes U, V and W , each of them of size n, and
an edge set E where each edge is an element of U × V ×W .
The 3-dimensional matching problem (3DM) is the problem of determining a matching
M in H which is of size n.

Couple constrained matching problems
Problem Formulation 2.2 (Couple constrained matching). Let G = (V,E) be a graph
with V = {v1, . . . , vn}. Let F = {F1, . . . , Fk} be a couple collection in G.
The couple constrained matching problem (CCMP) is stated as the following integer

linear program:

max
∑
e∈E

xe

s.t.
∑

e∈δ(vi)
xe ≤ 1 ∀ i = 1, . . . , n

xe = xf ∀ e, f ∈ F, ∀ F ∈ F
xe ∈ {0, 1} ∀ e ∈ E.

Problem Formulation 2.3 (Couple constrained perfect matching). Let G be a graph
and let F be a couple collection in G.
The couple constrained perfect matching problem (CCPMP) is the problem of finding

a perfect matching satisfying the couple constraints F in G.

Problem Formulation 2.5 (Couple constrained complete matching). Let G be a bi-
partite graph and let F be a couple collection in G. The couple constrained complete
matching problem (CCCMP) is the problem of finding a complete matching satisfying
the couple constraints F in G.

Problem Formulation 2.25 (Weighted couple constrained matching). Let G = (V,E)
be a graph and let F be a couple collection in G. Let ce ∈ R be the cost of the edge e for
all e ∈ E.
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The weighted couple constrained matching problem (w-CCMP) is stated as the fol-
lowing integer linear program:

max
∑
e∈E

cexe

s.t.
∑

e∈δ(vi)
xe ≤ 1 ∀ i = 1, . . . , n

xe = xf ∀ e, f ∈ F, ∀ F ∈ F
xe ∈ {0, 1} ∀ e ∈ E.

Problem Formulation 2.7 (Couple constrained assignment). Let n be a nonnegative
integer number. Let F = {F1, . . . , Fk} be a set of pairwise disjoint sets of the form Fh =
{(i, j), (k, l)} with i, j, k, l ∈ {1, . . . , n}. Let cij ∈ R be a cost value for all i, j = 1, . . . , n.
The couple constrained assignment problem (CCAP) is stated as the following integer

linear program:

min
n∑
i=1

n∑
j=1

cijxij

s.t.
n∑
j=1

xij = 1 ∀ i = 1, . . . , n

n∑
i=1

xij = 1 ∀ j = 1, . . . , n

xij = xkl ∀ (i, j), (k, l) ∈ F, ∀ F ∈ F
xij ∈ {0, 1} ∀ i, j = 1, . . . , n.

Problem Formulation 5.2 (Couple constrained matching with on-level couples). Let
G = (U ∪· V,E) be a level graph, with U = {u1, . . . , un} and V = {v1, . . . , vn}. Further,
let F = {F1, . . . , Fp} be a couple collection with Fr = {[u2r−1, v2r−1], [u2r, v2r]} for all
r = 1, . . . , p.
The couple constrained matching problem with on-level couples (CCMP-L) is formu-

lated as the integer linear program

max
∑
e∈E

xe

s.t.
∑

e∈δ(ui)
xe ≤ 1 ∀ i = 1, . . . , n

∑
e∈δ(vi)

xe ≤ 1 ∀ i = 1, . . . , n

x2r−1,2r−1 = x2r,2r ∀ r = 1, . . . , p
xe ∈ {0, 1} ∀ e ∈ E.

Problem Formulation 3.13 (Couple constrained assignment with on-level couples).
Let n be a nonnegative integer number and let p be an integer valued parameter with
1 ≤ p ≤ n. Let cij ∈ R be a cost value for all i, j = 1, . . . , n.
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The couple constrained assignment problem with on-level couples (CCAP-L) is stated
as the following integer linear program:

min
n∑
i=1

n∑
j=1

cijxij

s.t.
n∑
j=1

xij = 1 ∀ i = 1, . . . , n

n∑
i=1

xij = 1 ∀ j = 1, . . . , n

x2k−1,2k−1 = x2k,2k ∀ k = 1, . . . , p
xij ∈ {0, 1} ∀ i, j = 1, . . . , n.

Level constrained matching problems
Problem Formulation 2.9 (Level constrained matching). Let G = (U ∪· V,E) be a
bipartite graph with U = {u1, . . . , un} and V = {v1, . . . , vn}. Further, let k be an integer
with 0 ≤ k ≤ n.
The level constrained matching problem (LCMP) is formulated as the following integer

linear program:

max
∑
e∈E

xe

s.t.
∑

e∈δ(ui)
xe ≤ 1 ∀ i = 1, . . . , n

∑
e∈δ(vi)

xe ≤ 1 ∀ i = 1, . . . , n

n∑
i=1

x[ui,vi] = k

xe ∈ {0, 1} ∀ e ∈ E.

Problem Formulation 2.11 (Level constrained perfect matching). Let G = (U ∪· V,E)
be a bipartite graph with U = {u1, . . . , un} and V = {v1, . . . , vn}. Further, let k be an
integer with 0 ≤ k ≤ n.
The level constrained perfect matching problem (LCPMP) is the problem of finding a

perfect matching satisfying the level constraint with parameter k in G.

Problem Formulation 2.10 (Level constrained complete matching). Let G = (U ∪·
V,E) be a bipartite graph with U = {u1, . . . , un1} and V = {v1, . . . , vn2}. Further, let k
be an integer with 0 ≤ k ≤ min{n1, n2}.
The level constrained complete matching problem (LCCMP) is the problem of finding

a complete matching satisfying the level constraint with parameter k in G.
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Problem Formulation 2.27 (Level constrained symmetric perfect matching). Let G =
(U ∪· V,E) be a symmetric bipartite graph with U = {u1, . . . , un} and V = {v1, . . . , vn}.
Further, let k be an integer with 0 ≤ k ≤ n.
The level constrained symmetric perfect matching problem (LCPMP-SYM) is the

problem of finding a symmetric perfect matching satisfying the level constraint with pa-
rameter k in G.

Problem Formulation C.3 (Weighted level constrained symmetric matching). Let
G = (U ∪· V,E) be a symmetric bipartite graph with U = {u1, . . . , un}, V = {v1, . . . , vn}.
Let we ∈ R+

0 be the weight of the edge e for all e ∈ E. Further, let k be an integer with
0 ≤ k ≤ n. A symmetric matching M in G is a matching satisfying that [ui, vj ] ∈ M if
and only if [uj , vi] ∈M for all i, j = 1, . . . , n.
The weighted level constrained symmetric matching problem (w-LCMP-SYM) is the

problem of finding a symmetric matching in G which is of maximum weight and satisfies
the level constraint with parameter k.

Problem Formulation 2.13 (Level constrained assignment). Let n be a nonnegative
integer. Let k be an integer with 0 ≤ k ≤ n. Let cij ∈ R be a cost value for all
i, j = 1, . . . , n.
The level constrained assignment problem (LCAP) is formulated as the following in-

teger linear program:

min
n∑
i=1

n∑
j=1

cijxij

s.t.
n∑
j=1

xij = 1 ∀ i = 1, . . . , n

n∑
i=1

xij = 1 ∀ j = 1, . . . , n

n∑
i=1

xii = k

xij ∈ {0, 1} ∀ i, j = 1, . . . , n.

Matching with bonds

Problem Formulation 3.4 (Matching with bonds). Let G = (V,E) be a graph and let
B be a bond structure in G.
Matching with bonds (MB) is the problem corresponding to the following integer linear
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program:

max
∑
e∈E

xe (3.1’)

s.t.
∑

e∈δ(vi)
xe ≤ 1 ∀ i = 1, . . . , n

xe = xf ∀ e, f ∈ B, ∀ B ∈ B with |B| ≥ 2
xe ∈ {0, 1} ∀ e ∈ E.

Problem Formulation 3.2 (Weighted matching with bonds). Let G = (V,E) be a
graph and let ce ∈ R be the weight of the edge e for all e ∈ E. Let B be a bond structure
in G.
Weighted matching with bonds (w-MB) is the problem corresponding to the following

integer linear program:

max
∑
e∈E

cexe

s.t.
∑

e∈δ(vi)
xe ≤ 1 ∀ i = 1, . . . , n

xe = xf ∀ e, f ∈ B, ∀ B ∈ B with |B| ≥ 2
xe ∈ {0, 1} ∀ e ∈ E.

Other resource constrained matching problems and related
problems
Problem Formulation 4.6 (Restricted perfect matching). G = (U∪· V,E) be a bipartite
graph with U = {u1, . . . , un}, V = {v1, . . . , vn}. Let R1, . . . , Rk ⊆ E and let r1, . . . , rk be
positive, integer values. The restricted perfect matching problem (RPMP) is the problem
of finding a perfect matching M in G, which satisfies

|M ∩Ri| ≤ ri for all i = 1, . . . , k.

Problem Formulation 4.2 (Restricted perfect matching with fixed number of restric-
tions). Let G = (U ∪· V,E) be a bipartite graph with U = {u1, . . . , un}, V = {v1, . . . , vn}.
Let R1, . . . , Rl ⊆ E with l fixed. Further, let r1, . . . , rl be positive, integer values.
The restricted perfect matching problem with fixed number of restrictions (l-RPMP)

is the problem of finding a perfect matching M in G, such that |M ∩ Ri| ≤ ri for all
i = 1, . . . , l.

Problem Formulation 4.3 (Exact cycle sum). Let D = (V,A) be a directed graph with
V = {v1, . . . , vn}. Let k be an integer-valued parameter with 0 ≤ k ≤ n.
The exact cycle sum problem is the problem of finding a set of node-disjoint cycles of

total length exactly k in D.
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Problem Formulation 4.10 (Fixed size assignment). Let m,n ∈ N and let k be a
nonnegative integer with k ≤ min(m,n). Let cij ∈ R be a cost value for all i = 1, . . . ,m
and j = 1, . . . , n.
The fixed size assignment problem (FSAP) is formulated as the integer linear program

min
m∑
i=1

n∑
j=1

cijxij

s.t.
n∑
j=1

xij ≤ 1 ∀ i = 1, . . . ,m

m∑
i=1

xij ≤ 1 ∀ j = 1, . . . , n

m∑
i=1

n∑
j=1

xij = k

xij ∈ {0, 1} ∀ i = 1, . . . ,m; j = 1, . . . , n.

Problem Formulation 4.1 (Equality constrained perfect matching). Let G = (U ∪·
V,E) be a bipartite graph, with U = {u1, . . . , un} and V = {v1, . . . , vn}. Let R ⊆ E and
let k be an integer-valued parameter, with 0 ≤ k ≤ n.
The equality constrained perfect matching problem (ECPMP) is the problem of finding

a perfect matching M in G, such that |M ∩R| = k.

Problem Formulation 4.11 (Equality constrained assignment). Let Kn,n = (U∪· V,E)
be a complete bipartite graph and let R ⊆ E. Furhter, let k be an integer-valued parameter
with 0 ≤ k ≤ n.
The equality constrained assignment problem (ECAP) is the problem of finding a

solution to the system
n∑
j=1

xij = 1 ∀ i = 1, . . . , n

n∑
i=1

xij = 1 ∀ j = 1, . . . , n∑
[ui,vj ]∈R

xij = k

xij ∈ {0, 1} ∀ i, j = 1, . . . , n.

Couple and level constrained matching problem
Problem Formulation 5.4 (Couple and level constrained matching with on-level cou-
ples). Let G = (U ∪· V,E) be a level graph with U = {u1, . . . , un}, V = {v1, . . . , vn}.
Let F = {F1, . . . , Fp} be a couple collection with Fr = {[u2r−1, v2r−1], [u2r, v2r]} for all
r = 1, . . . , p. Further, let k be a nonnegative integer with k ≤ n.
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C. List of problem formulations

The couple and level constrained matching problem with on-level couples (CLCMP-L)
is formulated as the integer linear program

max
∑
e∈E

xe

s.t.
∑

e∈δ(ui)
xe ≤ 1 ∀ i = 1, . . . , n

∑
e∈δ(vi)

xe ≤ 1 ∀ i = 1, . . . , n

x2r−1,2r−1 = x2r,2r ∀ r = 1, . . . , p
n∑
i=1

xi,i = k

xe ∈ {0, 1} ∀ e ∈ E.

Other combinatorial (optimization) problems

Problem Formulation C.4 (Independent set). Let G = (V,E) be a graph. A subset
S ⊆ V is an independent set in G if no two nodes in S are adjacent.
The independent set problem (ISP) is the problem of finding an independent set S ⊆ V

in G which is of maximum cardinality.

Problem Formulation C.5 (Weighted independent set). Let G = (V,E) be a graph
and let wv ∈ R be the weight of the node v for all v ∈ V . A subset S ⊆ V is an
independent set in G if no two nodes in S are adjacent.
The weighted independent set problem (w-ISP) is the problem of finding an indepen-

dent set S ⊆ V in G which is of maximum weight regarding w.

Problem Formulation C.6 (Shortest path). Let G = (V,E) be a graph and let s and
t be two distinct nodes in V . Let le ∈ R+

0 be the length of the edge e for all e ∈ E.
The shortest path problem (SPP) is the problem of finding an s-t path P in G which

is of minimum length.

Problem Formulation C.7 (Chinese postman). Let G = (V,E) be a graph and let
le ∈ R+

0 be the length of the edge e for all e ∈ E. A tour C = [v0, e1, v1, . . . , et, vt = v0]
in G with vi ∈ V for all i = 0, . . . , t and ei ∈ E for all i = 1, . . . , t is a Chinese postman
tour if C contains each edge of G at least once.
The Chinese postman problem (CPP) is the problem of finding a Chinese postman

tour C in G which is of minimum length.

Problem Formulation C.8 (Node cover). Let G = (V,E) be a graph. A subset S ⊆ V
is a node cover in G if all edges in E have at least one end-node in S.
The node cover problem (NCP) is the problem of finding a node cover S ⊆ V in G

which is of minimum cardinality.

148



Problem Formulation C.9 (Clique). Let G = (V,E) be a graph. A subset S ⊆ V is
a clique in G if for each pair of nodes in S the nodes are adjacent.
The clique problem (CP) is the problem of finding a clique S ⊆ V in G which is of

maximum cardinality.

Problem Formulation C.10 (Exact cover). Let U = {ui | i = 1, . . . , n} be a set of n
elements and let S = {Sj | j = 1, . . . ,m} be a set of m subsets of U .
In the exact cover problem (ECP) the task is to find a subset of S which partitions

the set U .

Problem Formulation C.11 (Subset-sum). Let U = {ui | i = 1, . . . , n} be a set of
nonnegative integer numbers and let t be a nonnegative integer.
In the subset-sum problem the task is to find a subset S of U such that

∑
u∈S u = t.

Problem Formulation C.12 (3-conjunctive normal form satisfiability). A literal in a
boolean formula is an occurrence of a variable or its negation. A clause is a disjunction of
one or more literals. A boolean formula is in 3-conjunctive normal form, if it is expressed
as an conjunction of clauses where each clause has exactly three distinct literals.
In the 3-conjunctive normal form satisfiability problem (3-CNF-SAT) the task is to

determine whether a given boolean function in 3-conjunctive normal form is satisfiable
or not.
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