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Abstract

Shape optimization is of interest in many fields of application. In particular, shape
optimization problems arise frequently in technological processes which are modelled
by partial differential equations (PDEs). In a lot of practical circumstances, the
shape under investigation is parametrized by a finite number of parameters, which,
on the one hand, allows the application of standard optimization approaches, but, on
the other hand, unnecessarily limits the space of reachable shapes. Shape calculus
presents a way to circumvent this dilemma. However, so far shape optimization
based on shape calculus is mainly performed using gradient descent methods. One
reason for this is the lack of symmetry of second order shape derivatives or shape
Hessians.
A major difference between shape optimization and the standard PDE constrained

optimization framework is the lack of a linear space structure on shape spaces. If
one cannot use a linear space structure, then the next best structure is a Rieman-
nian manifold structure, in which one works with Riemannian shape Hessians. They
possess the often sought property of symmetry, characterize well-posedness of op-
timization problems and define sufficient optimality conditions. In general, shape
Hessians are used to accelerate gradient-based shape optimization methods.
This thesis deals with shape optimization problems constrained by PDEs and em-

beds these problems in the framework of optimization on Riemannian manifolds
to provide efficient techniques for PDE constrained shape optimization problems on
shape spaces. The Riemannian geometrical point of view on unconstrained shape op-
timization established in [84] is extended to a Lagrange-Newton and a quasi-Newton
technique in shape spaces for PDE constrained shape optimization problems. These
techniques are based on the Hadamard-form of shape derivatives, i.e., on the form
of integrals over the surface of the shape under investigation. It is often a very
tedious, not to say painful, process to derive such surface expressions. Along the
way, volume formulations in the form of integrals over the entire domain appear
as an intermediate step. This thesis couples volume integral formulations of shape
derivatives with optimization strategies on shape spaces in order to establish efficient
shape algorithms reducing analytical effort and programming work. In this context,
a novel shape space is proposed.
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Zusammenfassung

Formoptimierung ist in vielen Anwendungsbereichen von großem Interesse. Ins-
besondere entstehen Formoptimierungsprobleme in technologischen Prozessen, die
mit Hilfe von partiellen Differentialgleichungen (PDEs) modelliert werden. In vielen
praktischen Anwendungen ist die zu untersuchende Form durch endlich viele Parame-
ter charakterisiert. Einerseits ermöglicht dies die Anwendung von Standardoptimie-
rungsansätzen, andererseits wird der Raum der erreichbaren Formen unnötig be-
grenzt. Einen Weg dieses Dilemma zu umgehen liefert das Formenkalkül. Bisher
wurden die auf dem Formenkalkül basierenden Formoptimierungprobleme jedoch
hauptsächlich mit Gradientenabstiegsverfahren gelöst. Die im Allgemeinen vorhan-
dene Unsymmetrie der zweiten Formableitung bzw. der Form-Hesse-Matrix ist ein
Grund hierfür.
Generell sind Formenräume keine linearen Räume, wodurch eine große Lücke

zwischen Formoptimierung und der herkömmlichen PDE-beschränkten Optimierung
entsteht. Diese Lücke gilt es zu schließen. Falls kein linearer Raum in Frage kommt
bzw. vorhanden ist, dann fällt die nächst beste Wahl auf eine Riemannsche Mannig-
faltigkeit. Möchte man auf Riemannschen Mannigfaltigkeiten optimieren, so muss
man mit dem Riemannschen Form-Gradienten bzw. der Form-Hesse-Matrix arbeiten.
Die Riemannsche Form-Hesse-Matrix besitzt im Gegensatz zu der herkömmlichen
Form-Hesse-Matrix die häufig gewünschte Eigenschaft der Symmetrie. Solch eine
Hesse-Matrix gibt Auskunft über die Wohlgestelltheit eines Optimierungsproblems
und definiert die hinreichenden Optimalitätsbedingungen. Im Allgemeinen wird sie
verwendet, um gradientenbasierte Formoptimierungsverfahren zu beschleunigen.
Diese Arbeit befasst sich mit PDE-beschränkten Formoptimierungsproblemen,

welche als Optimierungsprobleme auf Riemannschen Mannigfaltigkeiten betrachtet
werden, um effiziente Methoden auf Formenräumen für diese bereitzustellen. Durch
Anknüpfen an die Riemannschen Formoptimierungsansätze, welche in [84] für unbe-
schränkte Formoptimierungsprobleme entwickelt wurden, erweitert diese Arbeit sie
um Lagrange-Newton, sowie quasi-Newton Ansätze für PDE-beschränkte Probleme.
In diesen Methoden wird die Hadamard-Form der Formableitung verwendet. Diese
Hadamard-Form ist ein Oberflächenintegral und oftmals sehr aufwendig und zeit-
intensiv herzuleiten. Als Zwischenergebnis dieser Herleitung erhält man ein Volu-
menintegral, welches aus mehreren Gesichtspunkten viel attraktiver ist als ein Ober-
flächenintegral. Daher beschäftigt sich diese Arbeit zusätzlich mit der Frage, wie man
dieses Volumenintegral in den in dieser Arbeit entwickelten Formoptimierungsmetho-
den verwenden kann, um Effizienz durch Reduzierung analytischer Arbeit und des
Programmieraufwandes zu erreichen. In diesem Zusammenhang wird ein neuer For-
menraum definiert.
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Preface

As part of this thesis, three refereed publications were written, which appear as [87,
88, 89] in the bibliography. Furthermore, one paper [86] is accepted for publication.
These works are fundamental for this thesis and therefore integrated. Moreover,
therein, the theoretical methods were mainly implemented in C++ for test problems
by the co-author Dr. Martin Siebenborn. Since these implementations endorse and
illustrate the results of this thesis, some figures are taken from [86, 88, 89].
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Chapter 1
Introduction

1.1 Motivation, aim and scope of the thesis

Shape optimization is of high importance in a wide range of applications, in particular
in the context of partial differential equations (PDEs). A lot of real world problems
can be reformulated as PDE constrained shape optimization problems. Aerodynamic
shape optimization [81], acoustic shape optimization [102], optimization of interfaces
in transmission problems [34, 68, 73], shape optimization in thermo-elastic processes
[95], image restoration and segmentation [43], electrochemical machining [42] and
inverse modelling of skin structures [68] can be mentioned as examples. The subject
of shape optimization is covered by several fundamental monographs, see for instance
[23, 41, 67, 93]. So far, the research on shape optimization was focussed on the
theoretical framework, the study of existence of solutions and on the determination
of shape derivatives. The optimization methodology is mostly limited to steepest
descent methods based on the shape derivative with only very few exceptions (cf. [43,
77, 84]). One reason for this is the lack of symmetry of second order shape derivatives
or shape Hessians.
Questions like “How can shapes be defined?” or “How does the set of all shapes

look like?” have been extensively studied in recent decades. Already in 1984, David
G. Kendall has introduced the notion of a shape space, which is published in [48].
Often, a shape space is just modelled as a linear (vector) space, which in the simplest
case is made up of vectors of landmark positions (cf. [20, 40, 48, 75, 92]). However,
there is a large number of different shape concepts, e.g., plane curves [63, 64, 65,
66], surfaces in higher dimensions [11, 12, 50, 54, 62], boundary contours of objects
[32, 60, 107], multiphase objects [106], characteristic functions of measurable sets
[111] and morphologies of images [25]. In a lot of processes in engineering, medical
imaging and science, there is a great interest to equip the space of all shapes with a
significant metric to distinguish between different shape geometries. For example, it
is very important to compute distances between shapes in computational anatomy.
If one knows that a patient’s tissue is close to a failing one, e.g., a failing heart or
a human cerebral tissue affected by Alzheimer’s disease, an early treatment can be
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Chapter 1. Introduction

started. In the simplest shape space case (landmark vectors), the distances between
shapes can be measured by the Euclidean distance, but in general, the study of
shapes and their similarities is a central problem. Now, we can ask how we can
tackle natural questions like “How different are shapes?”, “Can we determine the
measure of their difference?” or “Can we infer some information?”. In order to
answer these questions mathematically, we have to put a metric on the shape space.
There are various types of metrics on shape spaces, e.g., inner metrics [11, 12, 64],
which can be seen as describing a deformable material that the shape itself is made
of. In contrast to these inner metrics, there are also outer metrics [13, 17, 36, 48, 64].
Since the differential operator governing these metrics is defined even outside of the
shape, they can be seen as describing some deformable material that the ambient
space of the shape is made of. Furthermore, metamorphosis metrics [45, 101], the
Wasserstein or Monge-Kantorovic metric on the shape space of probability measures
[5, 14, 15], the Weil-Petersson metric [55, 91], current metrics [26, 27, 103] and
metrics based on elastic deformations [32, 108] should be mentioned. However, it is
a challenging task to model both, the shape space and the associated metric. There
does not exist a common shape space or shape metric suitable for all applications.
Different approaches lead to diverse models. The suitability of an approach depends
on the requirements in a given situation. In this thesis, among all these shape space
concepts, we pick the Riemannian shape manifold introduced by Peter W. Michor and
David Mumford in which a two-dimensional shape is defined as a smooth embedding
from the unit circle into the plane (cf. [63]). Moreover, we consider inner metrics.
More precisely, we first work with so-called Sobolev metrics on this shape space. Of
course, there are a lot of further metrics on it (cf. [64]), but the Sobolev metric is
the most suitable choice for our applications. However, we consider also so-called
Steklov-Poincaré metrics in order to enable the usage of volume integral formulations
of shape derivatives in optimization strategies. Note that it is not possible to use
these formulations by considering Sobolev metrics.

A priori parametrizations of shapes of interest are often used in an industrial
context because of the resulting vector space framework. On the one hand, it allows
the application of standard optimization software, on the other hand, it severely
limits the insight into optimal shapes because only shapes corresponding to the a
priori parametrization can be reached. A way to circumvent this dilemma is presented
by shape calculus. Therefore, this thesis focuses on shape optimization in the context
of shape calculus, which does not suffer from this limitation. Interpreting PDE
constrained shape optimization as optimization on shape manifolds is one of the main
aims of this thesis. Riemannian manifolds are the next best option if one cannot
work with vector spaces. Optimization on finite dimensional manifolds is discussed
in-depth in [1]. However, in this thesis, we consider infinite dimensional manifolds.
As shown by Peter W. Michor and David Mumford in [64] and related papers, the set
of shapes can be understood as an infinite dimensional Riemannian manifold with
a tangent space defined by normal vector fields. More precisely, a two-dimensional
shape is represented by a smooth embedding from the unit circle into the plane

2



1.1. Motivation, aim and scope of the thesis

modulo diffeomorphisms from the unit circle into itself. Loosely speaking, we can
think of shapes as the images of simple closed smooth curves in the plane. Since
a re-parametrization does not affect the image of a shape, one is led to consider
equivalence classes of curves by factoring out diffeomorphisms from the unit circle
into itself. This moduli space is a manifold and gets its Riemannian structure by
introducing appropriate metrics (cf. [10, 11, 12, 62, 63, 64]). However, it consists
only of C∞-shapes. By a C∞-shape we mean a simply connected, non-empty and
compact subset of the Euclidean space with infinitely often differentiable boundary.
As discussed in [84], the interpretation of tangent vectors as directional deriva-

tives builds the bridge between differential geometric concepts of Riemannian shape
manifolds and shape optimization. In [84], also a Riemannian shape Hessian is in-
troduced, which is symmetric and provides a Taylor series expansion in contrast to
the classical notion of a shape Hessian, which is described as a second order shape
derivative. Furthermore, connections between both Hessian concepts are discussed.
This opens the door to optimization algorithms in the fashion of non-linear program-
ming (NLP) approaches. However, in [84], only unconstrained shape optimization
problems are considered. This thesis aims at extending the Riemannian geometrical
point of view on shape optimization established in [84] to PDE constrained shape
optimization problems. Note that the publication [84] utilizes the above-mentioned
shape space introduced by Peter W. Michor and David Mumford. Thus, it is only
concerned with C∞-shapes, which limits the application of methods to a certain ex-
tent. Therefore, another aim of this thesis is to propose a novel shape space, which
consists not only of C∞-shapes. In other words, we want to extend the definition of
C∞-shapes to shapes with kinks in their boundaries.
Recent progresses in PDE constrained optimization on shape manifolds are based

on the Hadamard-form of shape derivatives, i.e., on the form of integrals over the
boundary of the shape under investigation, as well as intrinsic shape metrics. Major
effort in shape calculus has been devoted towards such Hadamard-form expressions
(cf. [23, 93]). It is often very tedious to derive boundary formulations of shape deriva-
tives. Along the way, domain formulations in form of integrals over the entire domain
appear as an intermediate step. Recently, it has been shown that this intermediate
formulation has numerical advantages, see for instance [16, 34, 44, 73]. In [58], also
practical advantages of domain shape formulations have been demonstrated. For
example, they require less smoothness assumptions. Furthermore, the derivation
as well as the implementation of domain integral formulations require less manual
and programming work. Thus, there arises the natural aim to use domain integral
forms of shape derivatives in optimization strategies on shape spaces, which seem
tightly coupled with boundary integral formulations of shape derivatives. However,
domain integral forms of shape derivatives require an outer metric on the domain
surrounding the shape boundary. This thesis aims to harmonize both points of view
by deriving a metric from an outer metric. Based on this metric, another main aim
of this thesis is to propose efficient shape optimization algorithms, which also reduce
the analytical effort so far involved in the derivation of shape derivatives.
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Chapter 1. Introduction

In summary, this thesis deals with PDE constrained shape optimization problems
and its main contributions are the following:

• Embedding PDE constrained shape optimization problems in the framework
of optimization on shape spaces.

• Extending the Riemannian geometrical point of view on shape optimization
established in [84] to PDE constrained shape optimization.

• Coupling domain integral formulations of shape derivatives with optimization
techniques.

• Providing efficient shape optimization algorithms on shape manifolds.

• Defining a shape space which consists not only of C∞-shapes.

1.2 Structure of the thesis

This thesis is structured as follows:

For the convenience of the readerChapter 2 introduces notations and background
knowledge required in this thesis. All used symbols and function spaces are listed
in Section 2.1. Second-order PDEs are the topic of Section 2.2. Subsection 2.2.1
is concerned with weak solutions of PDEs, more precisely second-order PDEs. Af-
ter a brief introduction to Sobolev spaces, weak solutions of elliptic and parabolic
PDEs are defined. Subsection 2.2.2 provides regularity results of second-order elliptic
PDEs, which are relevant in Chapter 6 and 7. Finally, Section 2.3 provides definitions
and results from differential topology and geometry. Subsection 2.3.1 presents man-
ifold definitions and introduces related objects like tangent spaces, vector bundles
and mappings between manifolds. The Riemannian geometric part of this section,
Subsection 2.3.2, defines covariant derivatives, parallel transports, geodesics and the
exponential map. It closes with an important remark about quotient manifolds.

Chapter 3 deals with shape spaces. Among all shape space concepts, the space
Be of two-dimensional shapes introduced by Peter W. Michor and David Mumford
is essential in this thesis. Thus, Section 3.1 defines this shape space, which is even a
shape manifold. Section 3.2 is devoted to Riemannian metrics on this shape space.
Very important is the first Sobolev metric, which is mainly considered in Section 3.2.
In particular, an expression of the covariant derivative is produced. For the sake of
completeness, the short Section 3.3, which generalizes the shape space Be and its
properties to higher dimensions, closes this chapter.

Shape derivatives are the topic of Chapter 4. In Section 4.1, notations and def-
initions from shape calculus are provided. Special attention is paid to the material
and shape derivative, which are needed throughout this thesis, and to the theorem
of Correa and Seeger, which is applied to deduce shape derivatives. In Section 4.2,
we consider problems of finding interfaces between two subdomains. An elliptic

4



1.2. Structure of the thesis

(Subsection 4.2.1) and a parabolic shape interface optimization problem (Subsec-
tion 4.2.2) are introduced. Moreover, their shape derivatives – expressed as domain
and boundary integrals – are deduced. These expressions are essential in Chapter 5
to 7 because they exemplify and support the theoretical approaches established in
these chapters. Section 4.3 focuses on shape optimization in the context of shape
calculus. In particular, the connection of Riemannian geometry on the shape space
Be to shape optimization is analyzed by providing expressions of the Riemannian
shape gradient and the Riemannian shape Hessian with respect to the Sobolev met-
ric. Finally, Section 4.4 proposes a volume shape derivative formula for a special
class PDE constrained shape interface problems.
In Chapter 5, the Riemannian geometrical point of view on shape optimization

established in [84] is extended to PDE constrained shape optimization problems.
Section 5.1 presents a sequential quadratic programming (SQP) approach. The main
tool for the development of respective Lagrange-Newton methods is the concept of
vector bundles associated with shape manifolds. Subsection 5.1.1 provides such a
Riemannian vector bundle framework, which is applied to the elliptic shape interface
optimization problem given in Subsection 4.2.1. Furthermore, shape variants of
quasi-Newton methods are provided in Section 5.2 and exemplified by the parabolic
shape interface optimization problem given in Subsection 4.2.2. Numerical results,
which are presented in Section 5.3, endorse the results of the first two sections. In
Subsection 5.3.1, quadratic convergence rates of the Lagrange-Newton approach are
demonstrated. Finally, Subsection 5.3.2 shows superlinear convergence rates of the
quasi-Newton methods.
Chapter 6 is intended to enable the usage of domain integral forms of shape

derivatives in optimization strategies. Section 6.1 discusses generalized Steklov-
Poincaré operators as basis for scalar products on shape spaces. Section 6.2 rephrases
optimization algorithms on shape spaces within the framework of domain integral
formulations of shape derivatives and in the context of Steklov-Poincaré metrics in-
troduced in Section 6.1. In this manner, quasi-Newton methods based on volume ex-
pressions of shape derivatives and Steklov-Poincaré metrics are provided. Section 6.3
discusses not only algorithmic and implementation details, but also numerical results
for the parabolic shape interface optimization problem given in Subsection 4.2.2.
Moreover, it compares the approach established in Chapter 5 (based on surface ex-
pressions of shape derivatives) with the approach established in this chapter (based
on volume formulations of shape derivatives) from a computational point of view.
All chapters mentioned so far are only concerned with C∞-shapes. This limits the

application of the methods proposed in the previous chapters to a certain extent. As a
remedy, Chapter 7 proposes a novel shape space in order to extend these methods to
shapes of it with respect to the shape metric gS introduced in Section 6.1. Section 7.1
is devoted to a shape space definition. Moreover, its connection to shape calculus is
given in order to formulate the shape quasi-Newton methods of Chapter 6 on this
shape space. Section 7.2 gives numerical results. Finally, Section 7.3 investigates the
connection of geodesics discussed in [32] to geodesics in the novel shape space B1/2

5



Chapter 1. Introduction

with respect to the Steklov-Poincaré metric gS in order to obtain a distance measure
for shapes of B1/2 with respect to gS .
This thesis concludes with Chapter 8, which gives a summary (Section 8.1) and

an outlook towards future research fields (Section 8.2).
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Chapter 2
Notations and background knowledge

This chapter provides notations and background knowledge and is organized as
follows. Section 2.1 lists all used symbols and function spaces. Second-order partial
differential equations and their regularity are the topic of Section 2.2. After a brief in-
troduction to Sobolev spaces of integer and fractional order, special attention is paid
to elliptic and parabolic PDEs. Finally, Section 2.3 provides definitions and results
from differential topology and differential geometry. This section presents manifold
definitions and introduces related objects like tangent spaces, vector bundles and
mappings between manifolds. The Riemannian geometric part of this section defines
covariant derivatives, parallel transports, geodesics and the exponential map.

2.1 A brief glossary of notations and conventions

For convenience this section gives a brief glossary of all required symbols. The
following conventions and notations are needed throughout this thesis.

Sets and geometrical domains

N set of natural numbers including zero; N := N∪{∞}, N∗ := N\{0}
Rd Euclidean space of dimension d ∈ N∗; R = R1

Sd unit sphere in the Euclidean space Rd+1

Norms and scalar products

Let U and V be Hilbert spaces.

〈·, ·〉U scalar product in U
‖ · ‖U norm in U
(·, ·)U×V duality pairing between U and V

7



Chapter 2. Notations and background knowledge

If the space is clear from the context, we denote the respective norm or scalar product
by ‖·‖ or 〈·, ·〉. Analogously for duality pairings. Next, we list some norms and scalar
products on particular spaces:

‖ · ‖p p-norm in Rd, i.e., ‖x‖p := p

√∑d
i=1 |xi|p, when p ∈ [1,∞), and

‖x‖∞ := maxi∈{1,...,n} |xi|
‖ · ‖gnc norm induced by the inner product gnc defined by the Sobolev

metric gn = (gnc )c, i.e., ‖ · ‖gnc :=
√
gnc (·, ·)

Linear algebra

Let A and B be matrices and let x and y denote two vectors.

AT transpose of A

A−1 inverse of A

det(A) determinant of A

tr(A) trace of A

A : B sum of component-wise products, i.e., A : B :=
∑

ij AijBij

xT y scalar product of x and y

Banach and Hilbert spaces

Unless stated otherwise, Ω denotes a bounded domain in Rd with Lipschitz boundary
∂Ω. The closure of Ω is denoted by Ω.

C(Ω) set of continuous functions in Ω

Ck(Ω) set of functions with derivatives up to order k ∈ N in C(Ω);
C0(Ω) = C(Ω)

Ckb (Ω) set of Ck(Ω)-functions with bounded derivatives up to order k ∈ N
Ck0 (Ω) set of Ck(Ω)-functions which vanish on ∂Ω

Ck,r(Ω) Hölder spaces, i.e., set of Ck(Ω)-functions which are Hölder-
continuous with exponent r ∈ [0, 1]; Ck,0(Ω) = Ckb (Ω)

Lp(Ω) set of p-integrable Lebesgue functions in Ω, when p ∈ [0,∞), and
L∞(Ω) is the set of essentially bounded Lebesgue functions in Ω

L1
loc(Ω) set of all locally integrable functions in Ω

W k,p(Ω) Sobolev spaces

Hk(Ω) Hk(Ω) := W k,2(Ω); H0(Ω) = L2(Ω)

Hk
0 (Ω) set of Hk(Ω)-functions whose derivatives in the sense of traces

vanish on ∂Ω up to order k − 1

8



2.1. A brief glossary of notations and conventions

Hk(Ω)′ dual space of Hk(Ω)

Hk
loc(Ω) set of all locally Hk(Ω)-functions

H1/2(∂Ω) set of Dirichlet traces on ∂Ω for H1(Ω)

H−1/2(∂Ω) dual space of H1/2(∂Ω)

The vector valued versions of C(Ω), Ck(Ω), etc. are denoted by C(Ω,Rd), Ck(Ω,Rd),
etc. In the following, C∞-functions are also called smooth functions.

Spaces involving time and related notations

Let [0, T ] denote a time interval with final time T > 0. Often, it is important to
identify functions Ω × [0, T ] → R with maps from [0, T ] into a Banach space, e.g.,
H1(Ω). In particular, the space L2(0, T ;H1(Ω)) plays an especially important role
in the study of parabolic equations.
Let H and P denote abstract Banach spaces with dual spaces H ′ and P ′. In order to
handle weak solutions of parabolic differential equations, we introduce the following
spaces involving time and a weak time derivative notation:

L2(0, T ;H) set of L2-integrable functions from [0, T ] into H

C(0, T ;H) set of all continuous functions from [0, T ] into H

W (0, T ;H) set of L2(0, T ;H)-functions whose first weak time derivatives ex-
ist and are elements of L2(0, T ;H ′)

Y (0, T ;H,P ) set of L2(0, T ;H)-functions whose first weak time derivatives ex-
ist and are elements of L2(0, T ;P ′)

ẙ weak time derivative of a function y ∈ L2(0, T ;H)

Differential geometry

Let M and N be manifolds and let f : M → N denote a differentiable map between
these two manifolds. Moreover, let γ : I →M be a curve in M , where I ⊂ R denotes
an interval. We use the following symbols from differential geometry:

TpM tangent space of M at p ∈M
(E, π,M) vector bundle ofM , whereM is called the base space, E is called

the total space and π : E →M is called the bundle projection

(TM, π,M) tangent bundle of M , where TM is the disjoint union of all tan-
gent spaces of M

Γ(TM) set of all differentiable vector fields on M

Γγ(TM) set of all differentiable vector fields along γ

∇cov covariant derivative

9



Chapter 2. Notations and background knowledge

exp exponential map

T vector transport

R retraction

P parallel transport

[·, ·] Lie bracket

XM
p,q set of all differentiable paths inM connecting two points p, q ∈M

IMp,v maximal existence interval of a geodesic through p ∈M in direc-
tion v ∈ TpM

grad Riemannian shape gradient operator

Hess Riemannian shape Hessian operator

Shape spaces, metrics and related notations

Let M be a compact smooth manifold of dimension m > 1 and let N be a connected
Riemannian manifold of dimension n > m. We use the following spaces:

Emb(M,N) manifold of all smooth embeddings from M into N

Emb0([0, 1],R2) set of all C∞([0, 1],R2)-functions being injective immersions with
fixed endpoints

Imm(M,N) manifold of all smooth immersions from M into N

Diff(M) regular Lie group of all diffeomorphisms from M into itself

Diff0([0, 1]) set of all diffeomorphisms from [0, 1] into itself with fixed end-
points

Be(M,N) Be(M,N) := Emb(M,N)/Diff(M); manifold of submanifolds of
type M in N ; Be := Be(S

1,R2)

Bi(M,N) Bi(M,N) := Imm(M,N)/Diff(M); infinite dimensional orbifold
whose points are smooth immersed submanifolds of typeM in N ;
Bi := Bi(S

1,R2)

B0
e ([0, 1],R2) B0

e ([0, 1],R2) := Emb0([0, 1],R2)/Diff0([0, 1])

Let X denote a bounded domain in R containing Γ0, where Γ0 is the boundary of a
Lipschitz domain X0 ⊂ X. In this case, we use the following sets:

H1/2(Γ0,Rd) space of all continuous and injective deformations from Γ0 in X,
where these deformations arise from H1(X,X)-functions

Homeo1/2(Γ0) set ofH1/2(Γ0,Rd)-functions which are homeomorphisms from Γ0

into itself

B1/2(Γ0,Rd) B1/2(Γ0,Rd) := H1/2(Γ0,Rd)
/
Homeo1/2(Γ0); space of all H1/2-

shapes
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2.1. A brief glossary of notations and conventions

In this thesis, by metrics we mean families of positive inner products, i.e., Rieman-
nian metrics on manifolds. We consider the following metrics:

gn n-th Sobolev metric, where n ∈ N∗ and g0 is equal to the standard
L2-scalar product

gS Steklov-Poincaré metric

Shape transformations, differential and shape calculus

Let t ∈ [0, T ] with T > 0. Moreover, let J be a real-valued shape differentiable
functional. We suppose that this functional is well defined for any measurable set
Ω in D, where D denotes a non-empty subset of Rd. Moreover, let p : Ω → R be a
generic function and let V be a sufficiently smooth vector field.

In this thesis, we distinguish between domain and boundary formulations of shape
derivatives. Moreover, note the difference between shape derivatives of objective and
generic functions. We use the following notation:

j(Ω) shape functional J without a regularization term

jreg(Ω) regularization term of a shape functional J

DJ(Ω)[V ] shape derivative of J at Ω in direction V

DjΩ(Ω)[V ] domain formulation of Dj(Ω)[V ]

DjΓ(Ω)[V ] boundary formulation of Dj(Ω)[V ]

dp(x)[V ] directional derivative of p at a point x ∈ Ω in direction V

ṗ or Dmp material derivative of p

p′ shape derivative of p

To handle, for example, shape derivatives, we need (shape) transformations:

Ft mapping D → Rd, where F0 := id

Ωt transformed geometrical domain in Rd of the form Ωt = Ft(Ω),
where Ω0 = Ω

Γt boundary of Ωt

pt generic real-valued function defined on Ωt, where p0 = p

Moreover, we use the following derivatives and related objects:

DFt Jacobian of Ft
Dα α-th partial derivative, where α is a multi-index

Ds arc length derivative

11



Chapter 2. Notations and background knowledge

n normal on ∂Ω
∂y
∂xi

, yxi ,
∂xiy or dxiy

partial derivative of a function y : Ω → R, i.e., for the i-th stan-
dard coordinate vector ei and x = (x1, ..., xd) ∈ Ω, it is given by
∂y
∂xi

(x) = limh→0
y(x+hei)−y(x)

h , provided this limit exists
∂
∂n normal derivative on ∂Ω
∂
∂τ tangential derivative on ∂Ω
∂
∂t time derivative
d+

dt t=0
total time derivative evaluated at t = 0+

Furthermore, we need the following differential elements and operators:

dx, dxt differential element in Ω, Ωt

ds, dst differential element on ∂Ω, ∂Ωt

dt differential element over [0, T ]

∇ gradient operator

∇Γ tangential gradient operator with respect to Γ = ∂Ω

div divergence operator

divΓ tangential divergence operator with respect to Γ = ∂Ω

κ mean curvature of Γ = ∂Ω; κ := 1
d−1divΓ(n)

4 Laplace operator

ED Dirichlet solution operator

EN Neumann solution operator

T Dirichlet-to-Neumann map or Steklov-Poincaré operator

S Neumann-to-Dirichlet map or Poincaré-Steklov operator

T pr projected Dirichlet-to-Neumann map

Spr projected Neumann-to-Dirichlet map

Miscellaneous I

Let the domain Ω be partitioned into two disjoint subdomains Ω1,Ω2 ⊂ Ω separated
by an interface Γint = ∂Ω1∩∂Ω2 as illustrated in Figure 4.1. Moreover, let f : Ω→ R
be a function. In this case, we use the following notation:

Γout outer boundary of the split domain

Γint interface or interior boundary of the split domain

f
Ωi

restriction of f to Ωi, where i = 1, 2

12



2.2. Second order PDEs and their regularity

γ0 trace on Γint

γ1 normal derivative, where the normal vector is defined on Γint

J·K jump symbol; JfK := f
Ω1
− f

Ω2

Miscellaneous II

∪· disjoint union

L Lagrangian

I or id identity function

L length functional

E energy functional

δij Kronecker delta

2.2 Second order PDEs and their regularity

A partial differential equation is an equation involving an unknown function of two
or more variables and certain of its partial derivatives. Often, there are further con-
ditions given, so-called boundary or initial value conditions. For example, a condition
that specifies the value of the dependent variable on the boundary is called a Dirichlet
boundary condition, a condition that specifies the normal derivative of the dependent
variable on the boundary is called a Neumann boundary condition and a condition
that specifies both, the value and the normal derivative of the dependent variable
on the boundary, is called a Cauchy boundary condition. These different boundary
conditions ensure that the corresponding class of PDEs has a unique and stable solu-
tion. More precisely, elliptic problems require either Dirichlet or Neumann boundary
conditions, parabolic problems require Dirichlet or Neumann boundary conditions
combined with initial conditions and hyperbolic problems require Cauchy boundary
conditions.

In this thesis, we consider second order elliptic and parabolic PDEs combined
with appropriate boundary conditions. We need a theorem of higher regularity in
Chapter 7 and a theorem of infinite differentiability for weak solutions of elliptic
PDEs in Chapter 6. Only these theorems are provided in this section. For more
details about the regularity theory we refer to the literature, e.g., [31].

This section is organized as follows. Before we address the question whether a
weak solution of an elliptic PDE is in fact smooth, we introduce second-order elliptic
and parabolic PDEs as well as their weak solutions in Subsection 2.2.1. Afterwards,
Subsection 2.2.2 presents a theorem of higher regularity and a theorem of infinite
differentiability for weak solutions of elliptic PDEs.

13



Chapter 2. Notations and background knowledge

2.2.1 Solutions of PDEs

Let Ω be an open and bounded subset of Rd with boundary Γ = ∂Ω. In this thesis,
we mainly study the following elliptic boundary value problem:

Ley = f in Ω (2.1)
y = 0 on Γ (2.2)

The function y : Ω → R is the unknown function, f ∈ L2(Ω) is given and Le de-
notes an elliptic second-order partial differential operator. Condition (2.2) is called a
Dirichlet boundary condition. In general, a second-order partial differential operator
L has one of the following forms:

Ly = −
d∑

i,j=1

(
aijyxi

)
xj

+
d∑
i=1

biyxi + cy (divergence form) (2.3)

Ly = −
d∑

i,j=1

dijyxixj +
d∑
i=1

eiyxi + cy (non-divergence form) (2.4)

Here the coefficients aij , dij , bi, ei and c are given, where i, j ∈ {1, ..., d}. Note that
these two forms are equivalent if the highest order coefficients aij are C1-functions.
Indeed the divergence form (2.3) becomes

Ly = −
d∑

i,j=1

dijyxixj +
d∑
i=1

bi − d∑
j=1

aijxj

 yxi + cy.

We call the partial differential operator L elliptic if there exists a constant θ > 0
such that

d∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2

for almost every x ∈ Ω and all ξ ∈ Rd. An example for an elliptic equation is the
Poisson equation, which we achieve by choosing aij = δij , bi = 0, c = 0. In this case,
we get Le = −4, where 4 denotes the Laplace operator. For y : Ω→ R, x ∈ Ω ⊂ Rd,
it is given by

4y(x) :=
d∑
i=1

yxixi(x).

Besides the elliptic boundary value problem (2.1)-(2.2), we also study PDEs in-
volving time. Let [0, T ] denote a time interval with final time T > 0 and let y be
time-dependent. We mainly consider the following parabolic boundary value prob-
lem:

∂y

∂t
+ Lpy = f in Ω× (0, T ] (2.5)

y = 0 on Γ× (0, T ] (2.6)
y = g in Ω× {0} (2.7)
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2.2. Second order PDEs and their regularity

Here the function y : Ω × [0, T ] → R is the unknown function, g ∈ L2(Ω) and
f ∈ L2(0, T ;L2(Ω)) are given and ∂

∂t + Lp denotes a parabolic second-order par-
tial differential operator. The last condition (2.7) is called an initial condition. We
say ∂

∂t +Lp is a parabolic second-order partial differential operator if Lp is a second-
order partial differential operator for each time t and if, furthermore, there exists a
constant θ > 0 such that

d∑
i,j=1

aij(x, t)ξiξj ≥ θ|ξ|2

for all (x, t) ∈ Ω× (0, T ] and all ξ ∈ Rd. An example of a parabolic equation is the
heat equation, which we get by choosing aij = δij , bi = 0, c = 0, f = 0.
Now, we address questions like “How do solutions of PDEs look like?” and “What

are the properties of these solutions?”. But what exactly is a solution of a PDE?
Should we ask, for example, that a solution has to be analytic or infinitely differen-
tiable? This is desirable, but also a too strong requirement. We have to distinguish
between classical and weak solutions. Assuming that a classical solution of a k-th or-
der PDE exists, it is unique, depends continuously on the data given in the problem
and is at least k-times continuously differentiable. This means that all derivatives
which appear in the PDE exist and are continuous, although higher derivatives maybe
do not exist. However, in general, such classical solutions do not exist or it is very
hard to find them. As a remedy, we define the notion of weak solutions for a given
PDE. For these, not all derivatives may exist, but nonetheless the weak solutions
satisfy the equation in some precisely defined sense. In other words, we separate the
existence and regularity problems by defining a weak solution with the expectation
that if we do not require too much smoothness, we can easier establish its exis-
tence, uniqueness and continuous dependence on the given data. In the following,
we illustrate the concept of weak solutions for elliptic and parabolic second-order
PDEs.

Weak solutions of second-order PDEs

Roughly speaking, the general idea to define weak solutions of a PDE Ly = f is to
rewrite it by using a so-called test function p such that half of the derivatives of y are
shifted to p by applying the integration by parts formula given in the sequel. This
new form is called the weak or variational formulation of the PDE. In our setting of
second-order PDEs, this means that we deal only with weak first-order derivatives.
Before we focus on these solutions, we give a very brief introduction to Sobolev
spaces. In particular, we define weak derivatives and formulate the above-mentioned
integration by parts formula.

A brief introduction to Sobolev spaces. We introduce Sobolev spaces very
briefly without defining any norms or scalar products which are not required in this
thesis. For a detailed introduction to Sobolev spaces and their properties we refer to
the literature, e.g., [99].

15
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Weak derivatives are motivated by repeated use of the integration by parts formula
which is achieved by applying the Gauß-Green theorem. Before we can formulate this
theorem and, thus, the integration by parts formula, we have to introduce domains
of class Ck,r, where k ∈ N and r ∈ [0, 1], and in particular Lipschitz domains on
which many PDEs are defined. In the following, we denote by Bd(x,R) the ball in
Rd centred at x ∈ Rd with radius R > 0.

Definition 2.1 (Hölder spaces). Let Ω ⊂ Rd be open, let k ∈ N and let r ∈ (0, 1]. A
function v ∈ C(Ω) is called Hölder-continuous with exponent r if the Hölder coefficient

‖v‖C0,r := sup
x,y∈Ω

x 6=y

|v(x)− v(y)|
|x− y|r

is finite. The Banach spaces

Ck,r(Ω) := {v ∈ Ck(Ω): ‖Dαv‖C0,r <∞ ∀α ∈ Nd, |α| ≤ k}

are called the Hölder spaces. In particular, the space C0,1(Ω) consists of all Lipschitz-
continuous functions. If r = 0, the function and its derivatives are bounded. In this
case, Ckb (Ω) stands for Ck,0(Ω).

Definition 2.2 (Ck,r-boundary, Lipschitz domain). Let Ω ⊂ Rd be open with bound-
ary Γ = ∂Ω. Moreover, let k ∈ N and let r ∈ [0, 1]. We say Ω has a Ck,r-boundary
or Ω is Ck,r, where Ck stands for Ck,0, if for any x ∈ Γ there exist local coordinates
y1, ..., yd centred at x, i.e., such that x is the unique solution of y1 = · · · = yd = 0,
and constants a, b > 0 as well as a mapping ψ ∈ Ck,r(Bd−1(x, a)), where Bd−1(x, a)
is considered in the linear subspace defined by (y1, ..., yd−1), subject to the following
conditions:

(i) yd = ψ(ỹ)⇒ (ỹ, yd) ∈ Γ,

(ii) ψ(ỹ) < yd < ψ(ỹ) + b⇒ (ỹ, yd) ∈ Ω,

(iii) ψ(ỹ)− b < yd < ψ(ỹ)⇒ (ỹ, yd) 6∈ Ω.

A domain Ω is called Lipschitz if it is C0,1.

Now, we can formulate the theorem of Gauß-Green.

Theorem 2.3 (Gauß-Green). Let i ∈ {1, ..., d}, let Ω ⊂ Rd be a bounded Lipschitz
domain and let y ∈ C1(Ω). Then the identity∫

Ω
yxidx =

∫
∂Ω
ynids

holds, where ni denotes the i-th component of the outward pointing unit normal vector
field n = (n1, ...nd) to Ω.
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2.2. Second order PDEs and their regularity

Applying this theorem yields the integration by parts formula:

Theorem 2.4 (Integration by parts formula). Let Ω, i and n be as in Theorem 2.3.
Moreover, let y, p ∈ C1(Ω). Then the following identity holds:∫

Ω
yxipdx = −

∫
Ω
ypxi dx+

∫
∂Ω
ypnids (2.8)

As just seen, in every bounded Lipschitz domain Ω ⊂ Rd, we can apply the Gauß-
Green Theorem 2.3. In particular, if y, φ ∈ Ck(Ω) with φ = 0 on Γ = ∂Ω, we get the
following equation by repeated application of the integration by parts formula (2.8):∫

Ω
yDαφ dx = (−1)|α|

∫
Ω
φDαy dx, (2.9)

where α = (α1, ..., αd) is a multi-index of order |α| = k with |α| :=
∑d

i=1 αi and

Dα :=
∂|α|

∂α1x1 · · · ∂αdxd

denotes the α-th partial derivative. Note that the right-hand side of (2.9) is well
defined whenever y is locally integrable in Ω, i.e., Lebesgue integrable over every com-
pact subset of Ω. We denote by L1

loc(Ω) the space of all locally integrable functions
in Ω. In this setting, functions are not assumed to be differentiable, but Lebesgue
integrable only. This motivates a generalization of the standard concepts of deriva-
tives.

Definition 2.5 (Weak derivative). Let Ω ⊂ Rd be a bounded Lipschitz domain, let
y ∈ L1

loc(Ω) and let α denote a multi-index. A function w ∈ L1
loc(Ω) is called the

α-th weak derivative of y if∫
Ω
yDαφ dx = (−1)|α|

∫
Ω
wφ dx ∀φ ∈ C∞0 (Ω). (2.10)

We denote the α-th weak derivative of y by w = Dαy.

Now, we can introduce Sobolev spaces. Note that we have to distinguish between
integer and fractional order Sobolev spaces. After introducing them, we recall a
special Sobolev embedding theorem.

Definition 2.6 (Integer order Sobolev spaces). Let Ω ⊂ Rd be a bounded domain,
let k ∈ N and let 1 ≤ p ≤ ∞. The Banach spaces

W k,p(Ω) := {y ∈ L1
loc(Ω): ∀α ∈ Nd, |α| ≤ k ∃Dαy ∈ Lp(Ω)}

are called the integer order Sobolev spaces. If p = 2, we denote

Hk(Ω) := W k,2(Ω),
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which are Hilbert spaces with respect to the inner products

〈u, v〉Hk(Ω) =
∑
|α|=k

〈Dαu,Dαv〉L2(Ω) .

Moreover, we define
H1

0 (Ω) := {y ∈ H1(Ω): y
Γ

= 0}.

Definition 2.7 (Fractional order Sobolev spaces). Let Ω ⊂ Rd be a bounded domain,
let k ∈ N, let σ ∈ (0, 1) and let 1 ≤ p <∞. The Banach spaces

W σ,p(Ω) :=

{
v ∈ L2(Ω):

|v(x)− v(y)|

|x− y|
d
p

+σ
∈ Lp(Ω× Ω)

}
,

W σ,∞(Ω) := C0,σ(Ω)

are called the fractional order Sobolev spaces or the Sobolev-Slobodeckij spaces. If
s > 1 is not an integer and s = k + σ, the Sobolev spaces W s,p(Ω) consist of those
equivalence classes of functions y ∈ W k,p(Ω) whose weak derivatives Dαy belong to
W σ,p(Ω), where |α| = k, i.e.,

W s,p(Ω) := {y ∈W k,p(Ω): ∀α ∈ Nd, |α| = k ∃Dαy ∈W σ,p(Ω)}.

In the case that p =∞, we define

W s,∞(Ω) := Ck,σ(Ω).

If p = 2, we denote

Hσ(Ω) := W σ,2(Ω),

Hs(Ω) := W s,2(Ω),

which are Hilbert spaces.

In Chapter 7, we need the second part of the following Sobolev embedding theorem
(cf. [24, Theorem 2.72]).

Theorem 2.8. Let Ω ⊂ Rd be a Lipschitz domain, let 1 ≤ p ≤ ∞ and let k ∈ N. If
kp > d, the following statements hold:

(i) If d
p 6∈ N and j satisfies (j − 1)p < d < jp, then W k,p(Ω) is embedded in

Ck−j,r(Ω) for all r ≤ j − d
p .

(ii) If dp ∈ N and j = d
p + 1 satisfies k ≥ j, then W k,p(Ω) is embedded in Ck−j,r(Ω)

for all r < 1.
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Elliptic PDEs and their weak solutions. In order to define weak solutions of
second-order elliptic PDEs (2.1)-(2.2), we consider the operator Le in divergence
form (2.3), assume aij , bi, c ∈ L∞(Ω) and suppose aij = aji, where i, j ∈ {1, ..., d}.
Moreover, assuming that ∂Ω is C1, an outward pointing unit normal vector field
exists. Now, we rewrite equation (2.1) in such a way that only first-order derivatives
of the solution y show up. For this purpose, we multiply the PDE by a smooth
function p of compact support and integrate over Ω by applying the integration by
parts formula (2.8). In this way, we obtain the variational formulation∫

Ω

d∑
i,j=1

aijyxipxj +
d∑
i=1

biyxip+ cypdx =

∫
Ω
fpdx (2.11)

for y, p ∈ H1
0 (Ω). Note that there are no boundary terms in (2.11) because we chose

p ∈ H1
0 (Ω) due to the Dirichlet boundary condition (2.2). Now, we can define weak

solutions of (2.1)-(2.2).

Definition 2.9 (Weak solution). We call y ∈ H1
0 (Ω) a weak solution of the boundary

value problem (2.1)-(2.2) if the variational equality

a(y, p) = b(p) ∀p ∈ H1
0 (Ω) (2.12)

is satisfied, where the bilinear form a(·, ·) is given by the left-hand side and the linear
form b(·) is given by the right-hand side of the variational formulation (2.11).

Parabolic PDEs and their weak solutions. Analogous to the elliptic case, we
consider the operator Lp in divergence form (2.3), assume aij , bi, c ∈ L∞(Ω) and
suppose aij = aji, where i, j ∈ {1, ..., d}, in order to define weak solutions of the
second-order parabolic PDEs (2.5)-(2.7). Moreover, we assume again that ∂Ω is C1.
Often, it is easier to identify functions y : Ω× [0, T ]→ R with mappings from [0, T ]
into a Banach space. In other words, we switch our point of view by considering y
not as a function of x ∈ Ω and t ∈ [0, T ] together, but rather as a mapping from
[0, T ] into a Banach space of functions on Ω. As in the elliptic case, we have to
rewrite equation (2.5) in variational form. Note that there is a time derivative in
(2.5) such that we do not only have to integrate over Ω, but also in time. Recall
that in the elliptic case, we require merely the existence of weak first-order partial
derivatives. The boundary value problem is brought into a variational form in which
half of the derivatives are shifted to the test function p. With respect to t, only weak
derivatives come into question. There are two possibilities which lead to a source of
asymmetry in the treatment of y and p:

1. We postulate the existence of the weak time derivative of y, which then is not
needed for the test function p.

2. We do not postulate the existence of the weak time derivative of y, which then
is needed for the test function p.
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Before we can give the variational formulation of (2.5)-(2.7), we have to introduce
suitable function spaces.

Definition 2.10. Let H be a Hilbert space and let H ′ denote its dual space. More-
over, let [0, T ] be a time interval with final time T > 0. The space L2(0, T ;H)
consists of L2-integrable functions y : [0, T ] → H and the space C(0, T ;L2(Ω)) con-
sists of continuous functions y : [0, T ] → H. A weak time derivative of a function
y ∈ L2 (0, T ;H) is denoted by ẙ and given by the following condition:∫ T

0
φ ẙ dt = −

∫ T

0

∂φ

∂t
y dt ∀φ ∈ C∞0 ([0, T ])

We define the linear space of all L2(0, T ;H)-functions having weak first time deriva-
tives in L2(0, T ;H ′) by

W (0, T ;H) := {y ∈ L2(0, T ;H) : ẙ ∈ L2
(
0, T ;H ′

)
exists}. (2.13)

In this thesis, we consider H = H1(Ω) or H = H1
0 (Ω). Note that in this setting, the

formula of integration by parts holds for all elements of W (0, T ;H). This is because
every element ofW (0, T ;H) coincides – possibly after a suitable modification on a set
of zero measure – with an element of C(0, T ;L2(Ω)), i.e., W (0, T ;H) is continuously
embedded in the space C(0, T ;L2(Ω)). The proof of this statement can be found, for
example, in [109, 110]. For further properties of the space W (0, T ;H) we refer to
the literature, e.g., [37, 100].
We choose the second possibility of the above-mentioned two in this thesis, i.e.,

we postulate the existence of the weak time derivative of p, which then is not needed
for y. This means, after multiplying the PDE by a smooth function of compact sup-
port and after integrating over Ω by applying the integration by parts formula (2.8),
we integrate by parts over time in order to transfer the time derivative of y to the test
function. In summary, we choose p ∈W (0, T ;H1

0 (Ω)) and y ∈ L2(0, T ;H1
0 (Ω)). Note

that we choose H1
0 (Ω) due to the Dirichlet boundary condition (2.6). Moreover, note

that the term y(T ) is not necessarily defined, because functions y ∈ L2(0, T ;H1
0 (Ω))

need not be continuous in time. The adjoint variable p ∈W (0, T ;H1
0 (Ω)) has higher

regularity. In particular, p(0) and p(T ) are well defined as traces in L2(Ω) for all
p ∈ W (0, T ;H1

0 (Ω)) (cf. [56]). Therefore, we require p(T ) = 0 in order to get rid
of the term y(T ) which would arise by applying integration by parts in time. The
variational formulation can be given in analogy to the elliptic case:

a(y, p) = b(p) ∀p ∈W (0, T ;H1
0 (Ω)), (2.14)

where the bilinear form is given by

a(y, p) =−
∫

Ω
gp(0) dx−

∫ T

0

∫
Ω
y
∂p

∂t
dxdt

+

∫ T

0

∫
Ω

d∑
i,j=1

aijyxipxj +

d∑
i=1

biyxip+ cyp dxdt

(2.15)
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2.2. Second order PDEs and their regularity

and the linear form is given by

b(p) =

∫ T

0

∫
Ω
fp dxdt. (2.16)

Now, we define weak solutions of (2.5)-(2.7).

Definition 2.11 (Weak solution). We call y ∈ L2(0, T ;H1
0 (Ω)) a weak solution of

the boundary value problem (2.5)-(2.7) if the variational equality

a(y, p) = b(p) ∀p ∈W (0, T ;H1
0 (Ω)) s.t. p(T ) = 0 (2.17)

is satisfied, where the bilinear form a(·, ·) is given by the left-hand side and the linear
form b(·) is given by the right-hand side of the variational formulation (2.14).

2.2.2 Regularity

In this brief subsection, we address the question whether a weak solution of an
elliptic PDE is in fact smooth. We touch only a few aspects of regularity theory. For
the proofs, more details or the regularity results of parabolic PDEs we refer to the
literature, e.g., [31].

A theorem of higher regularity is needed in Chapter 7.

Theorem 2.12 (Higher regularity). Let m ∈ N. Assume aij , bi, c ∈ Cm(Ω) for all
i, j ∈ {1, ..., d} and f ∈ Hm(Ω). Suppose u ∈ H1(Ω) is a weak solution of (2.1).
Then u ∈ Hm+2

loc (Ω).

In the above theorem, Hm+2
loc (Ω) denotes the space of all locally Hm+2-functions

in Ω. A function is called locally Hm+2 in Ω if it is a Hm+2-function in every
compact subset of Ω. Theorem 2.12 can be extended up to the boundary.

Theorem 2.13 (Higher regularity up to the boundary). Let m ∈ N. Assume
aij , bi, c ∈ Cm+1(Ω) for all i, j ∈ {1, ..., d}, f ∈ Hm(Ω) and ∂Ω is Cm+2. Sup-
pose u ∈ H1

0 (Ω) is a weak solution of the boundary value problem (2.1)-(2.2). Then
u ∈ Hm+2(Ω).

Besides the theorems of higher regularity, we require theorems of infinite differen-
tiability in Chapter 6.

Theorem 2.14 (Infinite differentiability). Let aij , bi, c ∈ C∞(Ω) for all i, j ∈ {1, ..., d}
and f ∈ C∞(Ω). Suppose u ∈ H1(Ω) is a weak solution of (2.1). Then u ∈ C∞(Ω).

This theorem can also be extended up to the boundary.

Theorem 2.15 (Infinite differentiability up to the boundary). Let aij , bi, c ∈ C∞(Ω)
for all i, j ∈ {1, ..., d}, f ∈ C∞(Ω) and ∂Ω is C∞. Suppose u ∈ H1

0 (Ω) is a weak
solution of the boundary value problem (2.1)-(2.2). Then u ∈ C∞(Ω).
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Chapter 2. Notations and background knowledge

2.3 Fundamentals of differential topology and geometry

In differential topology, homotopy classes of maps and the possibility of finding suit-
able differentiable maps in them, e.g., immersions, embeddings or isomorphisms, are
studied. In contrast to this, in differential geometry, additional structures, e.g., vector
fields or Riemannian metrics, are put on differentiable manifolds and properties con-
nected with these objects are studied. This section provides definitions and theorems
from differential topology and geometry which are required in this thesis. For more
details we refer to the literature, e.g., [52, 53, 57, 59]. Subsection 2.3.1 presents man-
ifold definitions and introduces related objects like tangent spaces, vector bundles
and mappings between manifolds. The Riemannian geometric part of this section,
Subsection 2.3.2, defines covariant derivatives, parallel transports, geodesics and the
exponential map. It closes with an important remark about quotient manifolds.

2.3.1 A few manifold definitions and related objects

We start with some basic manifold definitions and related objects. Manifolds are
based on topological spaces. For the convenience of the reader we repeat their defi-
nition in the sequel.

Definition 2.16 (Topological space). A set X together with a collection V of subsets
of X is called a topological space if the following axioms are fulfilled:

(i) ∅ and X belong to V.

(ii) The union of any collection of members of V belongs to V.

(iii) The intersection of any finite number of elements of V belongs to V.

It is assumed that the reader is familiar with basic topological concepts as there are,
for example, homomorphisms, isomorphisms, Hausdorff spaces, Fréchet spaces, etc.
Roughly speaking, we get a manifold by glueing together open subsets of topological
vector spaces with isomorphisms. Let E be a class of topological vector spaces. More
precisely, let it be either of the following classes:

• Let Efd denote the class which consists of finite dimensional vector spaces with
the Euclidean topology.

• Let EH denote the class which consists of Hilbert spaces.

• Let EB denote the class which consists of Banach spaces.

• Let EF denote the class which consists of Fréchet spaces.

Each of these classes is a subclass of EF . There is a well-developed theory of dif-
ferentiability for maps between open subsets of Fréchet spaces, which we use in the
following definition.
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2.3. Fundamentals of differential topology and geometry

Definition 2.17 (Manifold). Let E be a class of topological vector spaces.

(i) Let M be a topological space. An E-chart for M is a pair (Uα, φα) consisting
of an open subset Uα ⊂ M and a map φα : Uα → φα(Uα) ⊂ EUα such that
EUα is of class E, φα(Uα) ⊂ EUα is an open subset and φα is an isomorphism.
An E-atlas for M is a collection {(Uα, φα)}α of E-charts such that {Uα}α is
an open covering of M . A topological space together with an E-atlas is called a
(topological) manifold modelled on E or E-manifold.

(ii) Let M be a manifold modelled on E. Then M is called a finite dimensional
manifold if E = Efd, a Hilbert manifold if E = EH , a Banach manifold if
E = EB and a Fréchet manifold if E = EF .

(iii) Let M be an E-manifold with atlas {(Uα, φα)}α and let k ∈ N. For each pair of
indices α, β the map φβ ◦φ−1

α : φα(Uα ∩Uβ)→ φβ(Uα ∩Uβ) is an isomorphism
between open subsets of the E-vector spaces EUα and EUβ . These maps are
called the transition maps. An E-manifold is called a differentiable manifold
when its transition maps are diffeomorphisms. The atlas {(Uα, φα)}α of M
is called a Ck-atlas if for each pair of indices α, β the transition maps are
diffeomorphisms of class Ck. A chart (U, φ) of M is called Ck-compatible with
a Ck-atlas {(Uα, φα)}α of M if {(Uα, φα)}α ∪ (U, φ) is a Ck-atlas of M . A
Ck-atlas of M is called maximal if any Ck-compatible chart of M is contained
in it. A manifold with a maximal Ck-atlas is called a Ck-manifold.

(iv) A subset N of a manifold M is called a submanifold if for each q ∈ N there
is a chart (Uα, φα) of M such that φα(Uα ∩ N) = φα(Uα) ∩ FUα, where FUα
is a closed linear subspace of EUα. Then N is clearly itself a manifold with(
Uα ∩N,φα

Uα∩N

)
as charts.

In this thesis, we work with infinite dimensional manifolds. In general, they are
modelled on Banach spaces. If we have Riemannian geometry structures, which are
defined in Subsection 2.3.2, these infinite dimensional manifolds are modelled on
Hilbert spaces. Manifolds of smooth mappings between finite dimensional manifolds
are the foremost examples of infinite dimensional manifolds. In the following, we
work with the space of embeddings and immersions from the unit circle into the
plane, which are infinite dimensional manifolds, more precisely Fréchet manifolds.
Before we can define embeddings and immersions, we have to introduce tangent
spaces. There are various ways of defining them:

• Geometric via velocities of curves.

• Algebraic via derivations.

• Physical via cotangent spaces.

Among these three possibilities, we pick the geometric definition. For the other two
we refer to the literature, e.g., [53].
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Chapter 2. Notations and background knowledge

Definition 2.18 (Tangent space). Let M be a differentiable manifold with atlas
{(Uα, φα)}α and let p ∈M . A curve γ : R→M with γ(0) = p is called differentiable
if the composition φα ◦ γ is differentiable at t = 0 for all α with p ∈ Uα. Two
differentiable curves γ0, γ1 : R→M with γ0(0) = γ1(0) = p are called p-equivalent if

d

dt t=0

φα(γ0(t)) =
d

dt t=0

φα(γ1(t))

holds for all α with p ∈ Uα. We write γ0
p∼ γ1 if γ0 is p-equivalent to γ1. The

(geometric) tangent space of M at p is defined as the set of equivalence classes

TpM := {γ : R→M : γ differentiable, γ(0) = p}/ p∼ . (2.18)

An element of TpM is called a tangent vector of M with foot point p.

The disjoint union of all tangent spaces of a differentiable manifold leads to a so-
called tangent bundle. It is an example of a vector bundle.

Definition 2.19 (Vector bundle). Let M be a connected Ck-manifold with k ∈ N and
let {Uα}α be an open covering of M . A vector bundle over M is a triple (E, π,M)
consisting of a topological space E, the manifold M and a continuous surjective map
π : E →M such that for each α there is a mapping τα : π−1(Uα)→ Uα × E0, where
E0 denotes a Fréchet space, satisfying the following conditions:

(i) The map τα is a Ck-isomorphism commuting with the projection on Uα, i.e.,
the following diagram is commutative:

π−1(Uα) Uα

Uα × E0

τα

In particular, we obtain an isomorphism τα(x) : π−1(x) → {x} × E0 on each
fiber Ex := π−1(x).

(ii) On each fiber π−1(x), there is given a structure of a Fréchet space. Moreover,
the trivializing map τα(x) : π−1(x) = Ex → E0 is a linear isomorphism for all
x ∈ Uα.

(iii) If Uα and Uβ are two members of the open covering {Uα}α, then the mapping
Uα ∩ Uβ → L(E0, E0), x 7→ (τβ ◦ τ−1

α )(x) is a continuous linear map, where
L(E0, E0) denotes the space of continuous linear maps from the Fréchet space
E0 into itself.

We call M the base space and E the total space of the bundle. Moreover, the mapping
π is called the bundle projection.
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2.3. Fundamentals of differential topology and geometry

Note that in the finite dimensional case, condition (iii) in the above definition is
implied by condition (ii) as shown in [57]. An example of a vector bundle is the
tangent bundle (TM, π,M) of a manifold M , where TM :=

⋃
p∈M TpM. Note that

there is a natural projection π : TM → M, TpM 3 v 7→ p since each v ∈ TM is in
one and only one tangent space TpM . A vector field on a manifold M is a function
from M into TM that assigns to each point p ∈M a tangent vector v ∈ TpM .

Suppose that f : M → N is a map between two differentiable manifoldsM and N .
Moreover, let p ∈ M be given. We define the differential of f at p in the next
definition. It is a linear map dfp : TpM → Tf(p)N . The application of dfp to a
tangent vector is called the pushforward. The definition of a pushforward depends
on the used tangent space. We define it for our setting, where tangent vectors are
defined as equivalence classes of curves.

Definition 2.20 (Differential of a mapping between manifolds, pushforward). Let
M and N denote differentiable manifolds with atlases {(Uα, φα)}α and {(Vβ, ψβ)}β.
A mapping f : M → N is called Ck, where k ∈ N, if ψβ ◦ f ◦ φ−1

α is Ck for all charts
(Uα, φα) and (Vβ, ψβ) with f(Uα) ⊂ Vβ. We denote by Ck(M,N) the space of all
k-times continuously differentiable functions f : M → N . The derivative of f at p is
defined by

dfp : TpM → Tf(p)N, γ 7→ dfp(γ) :=
d

dt t=0

(f ◦ γ)(t).

The tangent vector dfp(γ) is called the pushforward of a vector γ ∈ TpM by f .

Now, we are able to define the above-mentioned immersions and embeddings.
Moreover, we need the definition of a submersion.

Definition 2.21 (Immersion, embedding, submersion). Let M and N be manifolds.
Moreover, let f : M → N be a C∞-differentiable mapping.

(i) The map f is called an immersion if its differential dfp : TpM → Tf(p)N is
injective at every point p ∈M .

(ii) The map f is called an embedding if it is a proper injective immersion, where
f is proper if the preimage f−1(K) = {p ∈M : f(p) ∈ K} is compact for every
compact subset K ⊂ N .

(iii) The map f is called a submersion if its differential dfp : TpM → Tf(p)N is
surjective at every point p ∈M .

The set of all immersions f : M → N is denoted by Imm(M,N) and the set of all
embeddings f : M → N is denoted by Emb(M,N).

An example of a proper immersion is the map f : S1 → R2, (x, y) 7→ (x, xy), which
is not an embedding because the points (0, 1), (0,−1) have the same image under f .
In Figure 2.1, an example of an immersion and an embedding are visualized.
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Chapter 2. Notations and background knowledge

Figure 2.1: Example of an embedding (left) and an immersion which is not an em-
bedding (right).

As already mentioned, we work with the space of embeddings and immersions
from the unit circle into the plane. These spaces are Fréchet manifolds due to the
following theorem.

Theorem 2.22. Let M and N be differentiable finite dimensional manifolds.

(i) The inclusions Emb(M,N) ⊂ Imm(M,N) ⊂ C∞(M,N) hold.

(ii) If dim(M) ≤ dim(N) and M is compact, then the space C∞(M,N) is a Fréchet
manifold.

(iii) If dim(M) ≤ dim(N) and M is compact, then the spaces Emb(M,N) and
Imm(M,N) are Fréchet manifolds.

Proof. The inclusions in (i) are obvious. For (ii) see Proposition 42.3 in [52]. If
dim(M) ≤ dim(N) and M is compact, the spaces Emb(M,N), Imm(M,N) are
open in the Fréchet manifold C∞(M,N) as shown in [52, Theorem 44.1]. Thus, they
are also Fréchet manifolds.

2.3.2 Riemannian geometry

In the sequel, we introduce the notion of a Riemannian manifold and give related
notations as well as basic theorems without proofs. A Riemannian metric provides
us with an inner product on each tangent space and can be used to measure the
length of curves in a manifold. In this context, a distance function can be defined.
This turns the manifold into a metric space in a natural way.

Definition 2.23 (Riemannian manifold). Let M be a differentiable manifold. A
Riemannian metric on M is a collection g = (gp)p∈M of inner products

gp : TpM × TpM → R, (v, w) 7→ gp(v, w),

one for every p ∈ M , such that the map M → R, p 7→ gp(X(p), Y (p)) is smooth
for every pair of vector fields X,Y on M . A differentiable manifold equipped with a
Riemannian metric is called a Riemannian manifold and denoted by (M, g).
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2.3. Fundamentals of differential topology and geometry

It is not completely obvious that a manifold admits a Riemannian metric. The
next theorem gives an answer to this question.

Theorem 2.24. All paracompact connected Hausdorff manifolds admit Riemannian
metrics.

In the following, let M be connected and equipped with a Riemannian metric
g = (gp)p∈M . We define the length of a C1-curve γ : [0, 1]→M by

L(γ) :=

1∫
0

√
gp(γ̇(t), γ̇(t))dt. (2.19)

Note that it is invariant under re-parametrizations. Moreover, we define a distance
function by

d : M ×M → [0,∞), (p, q) 7→ inf
γ∈XM

p,q

L(γ), (2.20)

where

XM
p,q := {γ : [0, 1]→M : γ differentiable with γ(0) = p, γ(1) = q} (2.21)

denotes the space of differentiable paths in M connecting two points p, q ∈M . Note
that this space is non-empty if M is connected. The distance function d defines a
metric inM in the traditional sense, the Riemannian distance, and induces the same
topology as the given atlas. Now, we can ask whether there is a smooth curve γ
with fixed endpoints p, q such that γ minimizes the length functional L : XM

p,q → R.
Geodesics give an answer to this question. In the following, we see that shortest
curves between two fixed points in a manifold are geodesics (cf. Theorem 2.31). Thus,
the Riemannian distance is also called the geodesic distance. To define geodesics, we
have to introduce the covariant derivative. Note that there always exists a unique
Riemannian connection on a Riemannian manifold (see, for example, [53]).

Definition 2.25 (Covariant derivative). Let (TM, π,M) be the tangent bundle of a
Riemannian manifold (M, g) and let Γ(TM) denote the set of all differentiable vector
fields on M . A covariant derivative on (TM, π,M), which is also called connection,
is a map

∇cov : Γ(TM)× Γ(TM)→ Γ(TM), (X,Y ) 7→ ∇cov
X Y (2.22)

such that

(i) ∇cov
X (λY + µZ) = λ∇cov

X Y + µ∇cov
X Z,

(ii) ∇cov
X (fY ) = X(f) · Y + f · ∇cov

X Y ,

(iii) ∇cov
f ·X+g·Y Z = f · ∇cov

X Z + g · ∇cov
Y Z

hold for all λ, µ ∈ R, X,Y, Z ∈ Γ(TM) and f, g ∈ C∞(M). In (ii), X(f) = ∇cov
X f

denotes the directional derivative of f in direction X. A connection ∇cov is called
torsion-free if
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(iv) [X,Y ] = ∇cov
X Y −∇cov

Y X

holds for all X,Y ∈ Γ(TM), where [·, ·] denotes the Lie bracket on Γ(TM) defined by
[X,Y ] := X(Y (f))−Y (X(f)) for all f ∈ C∞(M). A connection is called compatible
with the Riemannian metric g if

(v) X(g(Y, Z)) = g(∇cov
X Y,Z) + g(Y,∇cov

X Z)

holds for all X,Y, Z ∈ Γ(TM). A torsion-free connection which is also compatible
with a Riemannian metric is called the Riemannian connection or the Levi-Civita
connection.

In order to define geodesics on Riemannian manifolds, we need the following propo-
sition which gives not just a rule for differentiating a vector field along a curve, but
also a relation to the Levi-Civita connection.

Theorem 2.26. Let (M, g) denote a differentiable Riemannian manifold and let
γ : I → M be a curve in M , where I ⊂ R denotes an interval. Moreover, let
(TM, π,M) be the tangential bundle and let Γγ(TM) be the set of all differentiable
vector fields along γ, where a vector field X ∈ Γγ(TM) on γ is defined as a curve
X : I → TM such that π ◦X = γ. Furthermore, ∇cov denotes the Levi-Civita con-
nection on (TM, π,M). Then there exists a unique operator

D

dt
: Γγ(TM)→ Γγ(TM)

such that for all λ, µ ∈ R and f ∈ C∞(I) the following conditions are fulfilled:

(i) D
dt(λX + µY ) = λDXdt + µDYdt ,

(ii) D
dt(fY ) = Df

dt · Y + f · DYdt ,

(iii) D
dt(X ◦ γ) = ∇cov

γ̇ X.

The Levi-Civita connection can be used to define parallel vector fields and geodesics.

Definition 2.27 (Parallel vector field). A vector field X along a differentiable curve
γ : R → M in a Riemannian manifold (M, g) is called parallel if ∇cov

γ̇ X = 0, where
∇cov denotes the Levi-Civita connection on (TM, π,M).

The following theorem states that for given initial values at a point in a Riemannian
manifold we get a parallel vector field defined globally along any curve through this
point.

Theorem 2.28 (Parallel transport). Let (M, g) be a Riemannian manifold and let
I = (a, b) ⊂ R be an open interval. Moreover, let γ : [a, b] → M be a smooth curve
on I, let t0 ∈ I and let X0 ∈ Tγ(t0)M . Then there exists a unique parallel vector field
Y along γ such that X0 = Y (t0). For t0, t ∈ I we define the map

Pγ(t0, t) : Tγ(t0)M → Tγ(t)M, X0 7→ Y (t),

where Y ∈ Γγ(TM) is the unique parallel vector field along γ satisfying X0 = Y (t0).
The collection of maps Pγ(t0, t) for t0, t ∈ I is called the parallel transport along γ.
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Now, we define geodesics, which are curves γ : R → M in a manifold M whose
tangent field γ̇ is parallel along γ.

Definition 2.29 (Geodesic). A geodesic on a Riemannian manifold (M, g) is a
smooth curve γ : R→M which satisfies the equation ∇cov

γ̇ γ̇ = 0, where ∇cov denotes
the Levi-Civita connection on (TM, π,M).

The following fundamental uniqueness and existence result holds for geodesics.

Theorem 2.30. Let (M, g) be a Riemannian manifold. If p ∈ M and v ∈ TpM ,
then there exists a unique geodesic γ : I →M such that γ(0) = p and γ̇(0) = v in an
open interval I = (−ε, ε) ⊂ R.

Due to the following theorem, geodesics in a Riemannian manifold (M, g), which
connect two different points p, q ∈M , are critical points of the energy functional

E(γ) :=
1

2

1∫
0

g(γ̇(t), γ̇(t))dt (2.23)

on the space XM
p,q defined in (2.21).

Theorem 2.31. Let (M, g) be a Riemannian manifold and let p, q ∈M . Moreover,
let γ ∈ XM

p,q be a curve inM , where XM
p,q is defined in (2.21). Furthermore, L denotes

the length functional (2.19) and E denotes the energy functional (2.23). Then the
following conditions are equivalent:

(i) ∇γ̇ γ̇ = 0, i.e., γ is a geodesic.

(ii) Either p = q or g(γ̇, γ̇) = c 6= 0 and γ is a critical point of L, where c is an
arbitrary constant.

(iii) γ is a critical point of E.

Due to Theorem 2.30, through each point p ∈ M and in each direction v ∈ TpM
there exists a unique geodesic in a Riemannian manifold (M, g). We define the
maximal existence interval of such a geodesic by

IMp,v :=
⋃

I∈ĨMp,v

I, (2.24)

where

ĨMp,v := {I ⊂ R : I open, 0 ∈ I, there exists a geodesic γ : I →M satisfying

γ(0) = p ∈M, γ̇(0) = v ∈ TpM}.
(2.25)

This motivates the definition of the exponential map.
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Definition 2.32 (Exponential map). Let (M, g) denote a Riemannian manifold,
p ∈M and v ∈ TpM . Moreover, let IMp,v denote the maximal existence interval (2.24)
and Vp := {v ∈ TpM : 1 ∈ IMp,v}. The exponential map is defined by

exp :
⋃
p∈M
{p} × Vp →M, (p, v) 7→ expp(v) := γ(1), (2.26)

where expp(v) denotes the exponential map of M at p which assigns to every tangent
vector v ∈ Vp the point γ(1) and γ : IMp,v → M is the unique geodesic satisfying
γ(0) = p and γ̇(0) = v.

The following theorem states that a geodesic is given by the exponential map.

Theorem 2.33. Let (M, g) denote a Riemannian manifold, p ∈ M and v ∈ Vp
with Vp given as in Definition 2.32. Then IMp,v = {t ∈ R : tv ∈ Vp} and the geodesic
γ : IMp,v →M with γ(0) = p, γ̇(0) = v is given by γ : IMp,v →M, t 7→ γ(t) = expp(tv).

Besides exponential maps, this thesis deals with retractions. They can be used to
locally reduce an optimization problem on a manifold to an optimization problem
on its tangent space.

Definition 2.34 (Retraction). A retraction on a manifold M is a smooth mapping
R : TM →M with the following properties:

(i) Rp(0p) = p, where Rp denotes the restriction of R to TpM and 0p denotes the
zero element of TpM .

(ii) dRp(0p) = idTpM , where idTpM denotes the identity mapping on TpM and
dRp(0p) denotes the pushforward of 0p ∈ TpM by R.

Condition (ii) is called the local rigidity condition. Equivalently, for every v ∈ TpM ,
the curve γ : R → M , t 7→ Rp(tv) satisfies γ̇(0) = v. Moving along this curve γ is
thought of as moving in direction v while being constrained to stay onM . Note that
every manifold which admits a Riemannian metric also admits a retraction defined
by the exponential mapping (cf. [1, Section 5.4]).

In Theorem 2.28, the parallel transport along a curve in a manifold M is defined.
However, we need a more general notion, the so-called vector transport, which speci-
fies how to transport a tangent vector η form a point p ∈M to a point Rp(η), where
R denotes a retraction on M .

Definition 2.35 (Vector transport). Let (M, g) be a Riemannian manifold and let
⊕ denote the Whitney sum, i.e.,

TM ⊕ TM := {(ξp, ηp) : ξp, ηp ∈ TpM, p ∈M}. (2.27)

A vector transport on M is a differentiable mapping

T : TM ⊕ TM → TM, (ξp, ηp) 7→ Tξp(ηp)

satisfying the following properties for all p ∈M :
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(i) There exists a retraction R : TM →M , called the retraction associated with T ,
such that the following diagram commutes:

TM ⊕ TM TM

TM M

T

pr1 π

R

where pr1 : TM ⊕ TM → TM is the projection onto the first component and
π : TM →M denotes the foot point map.

(ii) T0p(ηp) = ηp for all ηp ∈ TpM , where 0p denotes the zero element of TpM .

(iii) Tξp(ληp + µζp) = λTξp(ηp) + µTξp(ζp) for all ηp, ζp ∈ TpM and all λ, µ ∈ R.

If a manifold is endowed with a Riemannian metric, we expect that manifolds
induced by this manifold, e.g., submanifolds or quotient manifolds, inherit a Rie-
mannian metric in a natural way. We are mainly interested in quotient manifolds.
In the following remark, we clarify some quotient manifold concepts.

Remark 2.36 (Quotient manifold). Let M be a manifold equipped with an equiv-
alence relation ∼ and let M be the corresponding quotient, i.e.,

M = M/∼ := {[x] : x ∈M},

where
[x] := {y ∈M : y ∼ x}

denotes the equivalence class of an element x ∈ M . We call an equivalence relation
∼ admissible if M is a manifold such that

π : M →M/∼, x 7→ [x]

is a submersion. The mapping π is called the canonical projection. In the following,
let ∼ be admissible. In this case, M is called the quotient manifold of M by ∼. Let
p ∈M and v ∈ TpM . Moreover, let p be an element of the equivalence class π−1(p).
Note that π−1(p) admits a tangent space Vp = Tp(π

−1(p)) called the vertical space at
p (cf. [1]). In the following, let the space M be endowed with a Riemannian metric
g. A mapping H is called a horizontal distribution onM if it assigns to each element
p ∈M a subspace Hp of TpM complementary to Vp such that TpM = Hp⊕Vp. The
subspace Hp is defined by

Hp := {η ∈ TpM : g(η, θ) = 0 ∀θ ∈ Vp}

and called the horizontal space at p. If M is endowed with a horizontal distribution,
then there exists one and only one element v ∈ TpM that belongs to Hp and satisfies

31
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dπp(v) = v (cf. [1]). This unique vector v is called the horizontal lift of v at p. If
for every p ∈ M and every u, v ∈ TpM the expression gp(u, v) does not depend on
p ∈ π−1(p), then gp(u, v) := gp(u, v) defines a Riemannian metric on M . Endowed
with this Riemannian metric, M is called a Riemannian quotient manifold of M
and the natural projection π : M → M is a Riemannian submersion. In the next
chapter, Riemannian metrics are defined on the structure space M . In this way, the
map to the quotient space becomes a Riemannian submersion. In general, assuming
that a surjective mapping π̃ : A → B between two manifolds A,B with a surjective
tangent map and a Riemannian metric g on A are given, π̃ is a submersion if it has
the following properties (cf. [64]):

(i) The tangent bundle to A splits into the subbundle TA> tangent to the fibers of
π̃ and its orthogonal complement TA⊥ with respect to g. Here TA> is called
the vertical bundle and TA⊥ is called the horizontal bundle.

(ii) Under the isomorphism dπ̃x : TxA
⊥ → Tπ(x)B, the restriction of the Rieman-

nian metric g to the horizontal bundle is required to define a Riemannian metric
on TyB independent of the choice of the point x ∈ π̃−1(y) in the fiber. In this
way, the submersion π̃ becomes a Riemannian submersion.
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Chapter 3
Riemannian metrics on a shape manifold

Shapes and their similarities has been extensively studied in recent decades. David
G. Kendall [48] has already introduced the notion of a shape space in 1984. In
[48], shapes are characterized by labeled points in the Euclidean space, so-called
landmarks, and the author investigates Riemannian structures on this space. How-
ever, there is a large number of different shape concepts, e.g., landmark vectors
[20, 40, 48, 75, 92], plane curves [63, 64, 65, 66], surfaces [11, 12, 50, 54, 62], bound-
ary contours of objects [32, 60, 107], multiphase objects [106], characteristic functions
of measurable sets [111] and morphologies of images [25]. In order to answer natural
questions like “How different are shapes?”, “Can we determine the measure of their
difference?” or “Can we infer any information?” mathematically, we put a metric
on the space of shapes. There are various different types of metrics on shape spaces,
e.g., inner metrics [11, 12, 64], outer metrics [13, 17, 36, 48, 64], metamorphosis
metrics [45, 101], the Wasserstein or Monge-Kantorovic metric on the shape space
of probability measures [5, 14, 15], the Weil-Peterson metric [55, 91], current metrics
[26, 27, 103] and metrics based on elastic deformations [32, 108]. However, in general,
the modelling of both, the shape space and the associated metric, is a challenging
task and different approaches lead to diverse models. The suitability of an approach
depends on the demands in a given situation. There exists no common shape space
or shape metric suitable for all applications.
In this thesis, among all above-mentioned shape space concepts, we pick the shape

space introduced by Peter W. Michor and David Mumford. In [63], the authors
consider smooth embeddings from the unit circle into the plane modulo diffeomor-
phisms from the unit circle into itself as the space of all two-dimensional shapes and
propose an L2-metric regularized by the curvature of shape boundaries. This curva-
ture weighted L2-metric is motivated by the observation that the standard L2-metric
induces vanishing geodesic distance in their shape space (cf. [62]). This chapter is
devoted to the definition of this essential Riemannian shape manifold and to one
special Riemannian metric on it, the first Sobolev metric. This Riemannian metric
is crucial in the following chapters.
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Chapter 3. Riemannian metrics on a shape manifold

This chapter is organized as follows. Section 3.1 introduces the Riemannian shape
space of Peter W. Michor and David Mumford, which is essential in Chapter 5.
Section 3.2 is devoted to Riemannian metrics on this shape space. Special attention
is paid to the first Sobolev metric for which an expression of the covariant derivative
is provided. These two first sections are concerned with two-dimensional shapes,
which are mainly considered in this thesis. However, for the sake of completeness,
this chapter closes with the very short Section 3.3, which generalizes the shape space
and its properties to higher dimensions.

3.1 Definition of a shape space

First, we concentrate on two-dimensional shapes. In this subsection, a shape of
dimension two is defined as a simply connected and compact subset of R2 with C∞-
boundary. Since the boundary of an object or a shape is all that matters, we can
think of two-dimensional shapes as the images of simple closed smooth curves in the
plane of the unit circle. Such simple closed smooth curves can be represented by
embeddings from the circle S1 into the plane R2, see for instance [53]. Therefore, the
set of all embeddings from S1 into R2, denoted by Emb(S1,R2), represents all simple
closed smooth curves in R2. However, note that we are only interested in the shape
itself and that images are not changed by re-parametrizations. Thus, all simple
closed smooth curves which differ only by re-parametrizations can be considered
equal to each other because they lead to the same image. Let Diff(S1) denote the
set of all diffeomorphisms from S1 into itself. This set contains all the smooth re-
parametrizations mentioned above. In [63], the set of all two-dimensional shapes is
characterized by

Be = Be(S
1,R2) := Emb(S1,R2)/Diff(S1). (3.1)

A particular point on the shape space Be is represented by a curve

c : S1 → R2, θ 7→ c(θ)

and illustrated in the left picture of Figure 2.1. Because of the equivalence relation
Diff(S1), the tangent space is isomorphic to the set of all smooth normal vector fields
along c, i.e.,

TcBe ∼=
{
h : h = αn, α ∈ C∞(S1)

}
, (3.2)

where n denotes the exterior unit normal field to the shape boundary c such that
n(θ) ⊥ cθ(θ) for all θ ∈ S1, where cθ = ∂c

∂θ . Since we are dealing with parametrized
curves, we have to work with the arc length and its derivative. Therefore, we use
the following terminology:

ds = |cθ|dθ (arc length)

Ds =
∂θ
|cθ|

(arc length derivative)
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3.2. Riemannian metrics on the shape space

3.2 Riemannian metrics on the shape space

In [52], it is proven that the shape space Be is a smooth manifold. Is it even perhaps a
Riemannian shape manifold? This question was investigated by Peter W. Michor and
David Mumford. They show in [63] that the standard L2-metric on the tangent space
is too weak because it induces geodesic distance equals zero. This phenomenon is
called the vanishing geodesic distance phenomenon. The authors employ a curvature
weighted L2-metric as a remedy and prove that the vanishing phenomenon does not
occur for this metric. Several Riemannian metrics on this shape space are examined
in further publications, e.g., [11, 62, 64]. All these metrics arise from the L2-metric
by putting weights, derivatives or both in it. In this manner, we get three groups of
metrics:

• Almost local metrics arise by putting weights in the L2-metric (cf. [10, 12, 64]).

• Sobolev metrics arise by putting derivatives in the L2-metric (cf. [11, 64]).

• Weighted Sobolev metrics arise by putting both, weights and derivatives, in the
L2-metric (cf. [12]).

It can be shown that all these metrics do not induce the phenomenon of vanishing
geodesic distance under special assumptions. To list all these goes beyond the scope
of this thesis, but they can be found in the above-mentioned publications. All Rie-
mannian metrics mentioned above are inner metrics. This means that the metric
is directly defined on the deformation vector field such that the deformation is pre-
scribed on the shape itself and the ambient space stays fixed. In [32, 54, 66, 106],
further inner metrics can be found. In contrast, outer metrics define a deformation
vector field on the ambient space such that the deformation of the ambient space
induces a deformation of the shape. Outer metrics are used, for example, in the
method of large deformation diffeomorphic metric matching (LDDMM), e.g., ap-
plied to problems in computational anatomy. For any information about LDDMM
we refer to the literature, e.g., [13, 36, 38, 78].
In the following, we clarify how the above-mentioned inner Riemannian metrics

can be defined on the shape space Be. For this purpose, we need a larger space of
shapes, which has a nice property. We introduce the space

Bi = Bi(S
1,R2) := Imm(S1,R2)/Diff(S1) ⊃ Be, (3.3)

where Imm(S1,R2) denotes the set of all immersions from S1 into R2. Note that
we can identify a closed smooth curve with an immersion from the circle into the
plane (cf. [53]). Thus, the space Bi consists of all closed smooth curves which differ
only by re-parametrizations. Figure 2.1 illustrates shapes of both spaces, Be and Bi.
The embedding shows a shape which is an element of Be ⊂ Bi and the immersion
illustrates a shape which is an element of Bi, but not an element of Be. In [19],
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Chapter 3. Riemannian metrics on a shape manifold

it is shown that Bi is an orbifold, which is a generalization of a manifold (for an
introduction to orbifolds see, for example, [2]). Furthermore, the mapping

π : Imm(S1,R2)→ Bi (3.4)

is a submersion. Now, we use the orbifold structure to define Riemannian metrics on
the shape space. The important point to note here is that we want to define an inner
metric. This means that we have to define a Riemannian metric on Imm(S1,R2)
such that the submersion π induces a Riemannian metric on the shape space. A
Riemannian metric on Imm(S1,R2) is a family g = (gc(h, k))c∈Imm(S1,R2) of inner
products gc(h, k), where h and k denote vector fields along c ∈ Imm(S1,R2). The
most simple inner product on the tangent bundle to Imm(S1,R2) is the standard
L2-inner product gc(h, k) :=

∫
S1 〈h, k〉 ds. Note that TcImm(S1,R2) ∼= C∞(S1,R2)

for all c ∈ Imm(S1,R2). Moreover, note that the differential ds is invariant under the
action of Diff(S1). Because of the properties of submersions (cf. Remark 2.36), the
tangent bundle to Imm(S1,R2) splits into subbundles, tangent and horizontal to the
fibers of π with respect to the metric. The restriction of the metric to this horizontal
subspace gives the quotient metric such that the submersion π is Riemannian. More
precisely, the quotient metric induced by the L2-metric is given by

g0 : TcBe × TcBe → R,

(h, k) 7→
∫
S1

〈α, β〉 ds = 〈α, β〉L2(S1) ,
(3.5)

where h = αn and k = βn denote two elements of the tangent space TcBe given in
(3.2). Unfortunately, in [63], Peter W. Michor and David Mumford show that this
L2-metric induces vanishing geodesic distance, as already mentioned above.

For the discussion in the following chapters, among all the above-mentioned Rie-
mannian metrics, we pick the Sobolev metric g1 defined in the sequel. In the follow-
ing, some results on it are provided. For more details about the other Riemannian
metrics we refer to the literature, e.g., [10, 11, 12, 62, 64].

Definition 3.1 (Sobolev metric). Let n ∈ N∗. The n-th Sobolev metric is defined by

gn : TcImm(S1,R2)× TcImm(S1,R2)→ R,

(h, k) 7→
∫
S1

〈(
I + (−1)nAD2n

s

)
h, k
〉
ds,

where A > 0 denotes the metric parameter.

In particular, due to Definition 3.1 and the isomorphism of the tangent space TcBe
given in (3.2), the first Sobolev metric on Be is defined by

g1 : TcBe × TcBe → R,

(h, k) 7→
∫
S1

〈(I −A4c)α, β〉 ds = 〈(I −A4c)α, β〉L2(S1) ,
(3.6)
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where h = αn and k = βn denote two elements of the tangent space TcBe and
4c denotes the Laplace-Beltrami operator on the surface c. The following theorem,
which is proven in [11], states under which assumptions the phenomenon of the
vanishing geodesic distance does not occur for the Sobolev metric.

Theorem 3.2. Let n ∈ N∗. The Sobolev metric gn induces non-vanishing geodesic
distance on Be if it is stronger or as strong as the g1-metric, i.e., if there is a constant
k > 0 such that

‖h‖gnc ≥ k ‖h‖g1
c

(3.7)

holds for all h ∈ TcImm(S1,R2) and all c ∈ Imm(S1,R2).

An essential operation in Riemannian geometry is the covariant derivative. In
differential geometry, it is often written in terms of the Christoffel symbols. In [11],
Christoffel symbols associated with the Sobolev metrics gn are provided. However,
in order to provide a relation with shape calculus in the next chapters, another
representation of the covariant derivative in terms of the Sobolev metric g1 is needed.
The Riemannian connection provided in the following theorem makes it possible to
specify the Riemannian shape Hessian in Section 4.3.

Theorem 3.3. Let A > 0 and let h,m ∈ TcImm(S1,R2) denote vector fields along
c ∈ Imm(S1,R2). Moreover, L1 := I −AD2

s is a differential operator on C∞(S1,R2)
and L−1

1 denotes its inverse operator. The covariant derivative associated with the
Sobolev metric g1 can be expressed as

∇mh = L−1
1 (K1(h)) with K1 :=

1

2
〈Dsm, v〉

(
I +AD2

s

)
, (3.8)

where v = cθ
|cθ| denotes the unit tangent vector.

Proof. Let h, k,m be vector fields on R2 along c ∈ Imm(S1,R2). Moreover, d(·)[m]
denotes the directional derivative in direction m. By [63],

d(|cθ|)[m] =
〈mθ, cθ〉
|cθ|

(3.9)

holds. From

d(|cθ|)[m]
(3.9)
=

〈
mθ,

cθ
|cθ|︸︷︷︸
=v

〉
=

〈
∂θ
|cθ|︸︷︷︸
=Ds

m|cθ|, v

〉
= 〈Dsm, v〉 |cθ| (3.10)

we get

d(|cθ|k)[m] = k|cθ|k−1d(|cθ|)[m]
(3.10)

= k 〈Dsm, v〉 |cθ|k. (3.11)

Applying (3.10), we obtain

d(L1)[m] = d
(
I −AD2

s

)
[m] = d

(
I −A

∂2
θ

|cθ|2

)
[m] = −Ad

(
|cθ|−2

)
[m]∂2

θ

(3.10)
= 2A 〈Dsm, v〉 ∂2

θ |cθ|−2 = 2A 〈Dsm, v〉D2
s .

(3.12)
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Combining (3.10) with (3.12) we get

d
(
g1
c (h, k)

)
[m] = d

(∫
S1

〈L1(h), k〉 ds
)

[m]

=

∫
S1

〈d (L1(h)) [m], k〉 ds+

∫
S1

〈L1(h), k〉 d (|cθ|) [m]dθ

(3.10)
=

(3.12)

∫
S1

〈
2A 〈Dsm, v〉D2

sh, k
〉
ds+

∫
S1

〈L1(h), k〉 〈Dsm, v〉 |cθ|dθ︸ ︷︷ ︸
=ds

=

∫
S1

2A 〈Dsm, v〉
〈
D2
sh, k

〉
ds+

∫
S1

〈h, k〉 〈Dsm, v〉 ds

−
∫
S1

A
〈
D2
sh, k

〉
〈Dsm, v〉 ds

=

∫
S1

〈Dsm, v〉
(
〈h, k〉+A

〈
D2
sh, k

〉)
ds.

(3.13)

Since the differential operator Ds is anti self-adjoint for the L2-metric g0, i.e.,∫
S1 〈Dsh, k〉 ds =

∫
S1 〈h,−Dsk〉 ds,∫

S1

〈
D2
sh, k

〉
ds =

∫
S1

〈
h,D2

sk
〉
ds (3.14)

holds. We proceed analogously to the proof of Theorem 2.1 in [84], which exploits
the product rule for Riemannian connections. Thus, we conclude from

d
(
g1
c (h, k)

)
[m]

(3.13)
=

∫
S1

〈Dsm, v〉
[

1

2

(
〈h, k〉+A

〈
D2
sh, k

〉)
+

1

2

(
〈h, k〉+A

〈
D2
sh, k

〉)]
ds

(3.14)
=

∫
S1

〈
1

2
〈Dsm, v〉

(
I +AD2

s

)
h, k

〉
+

〈
h,

1

2
〈Dsm, v〉

(
I +AD2

s

)
k

〉
ds

=

∫
S1

〈
L1

[
L−1

1

(
1

2
〈Dsm, v〉

(
I +AD2

s

)
h

)]
, k

〉
ds

+

∫
S1

〈
h, L1

[
L−1

1

(
1

2
〈Dsm, v〉

(
I +AD2

s

)
k

)]〉
ds

= g1
c

(
L−1

1

(
1

2
〈Dsm, v〉

(
I +AD2

s

)
h

)
, k

)
+ g1

c

(
h, L−1

1

(
1

2
〈Dsm, v〉

(
I +AD2

s

)
k

))
that the covariant derivative associated with g1 is given by (3.8).

Remark 3.4. As stated in [64], the inverse operator L−1
1 is an integral operator

whose kernel has an expression in terms of the arc length distance between two
points on a curve and their unit normal vectors. For the existence and more details
about L−1

1 we refer to [64].
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3.3 Shape space in higher dimensions

This thesis is principally concerned with two-dimensional shapes, but for the sake
of completeness it should be mentioned that the shape space Be and its theoretical
results given in the previous section can be generalized to higher dimensions.
Let M be a compact manifold and let N denote a Riemannian manifold with

dim(M) < dim(N). In [62], the space of all submanifolds of type M in N is defined
by

Be(M,N) := Emb(M,N)/Diff(M), (3.15)

i.e., by the set of all equivalence classes of embeddings from M into N , where the
equivalence relation is given by the set of all diffeomorphisms from M into itself.
In Figure 3.1, a three-dimensional shape which is an element of the shape space
Be(S

2,R3) and a three-dimensional shape which is not an element of this shape
space are illustrated. Moreover, the vanishing geodesic distance phenomenon occurs
also for the L2-metric in higher dimensions as verified in [62]. For the definition of
the Sobolev metric g1 in higher dimensions we refer to [11].

Figure 3.1: The left picture illustrates a shape in Be(S2,R3). In contrast, the right
picture shows no element of Be(S2,R3).
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Chapter 4
Shape derivative

Shape optimization is of interest in many fields of application, in particular, in
the context of partial differential equations. Aerodynamic shape optimization [81],
acoustic shape optimization [102] or optimization of interfaces in transmission prob-
lems [34, 68, 73] can be mentioned as examples. In industry, shapes are often rep-
resented within a finite dimensional design space. However, this reduction is often
seen as being too restrictive (cf. [94]), which motivates shape optimization based on
shape calculus. Major effort in shape calculus has been devoted towards expressions
for shape derivatives in a so-called Hadamard-form, i.e., in a surface integral form
(cf. [23, 93]). It is often a very tedious process to derive surface formulations of
shape derivatives. Along the way, there appear volume formulations in the form
of integrals over the entire domain as an intermediate step. Recently, it has been
shown that this intermediate formulation has numerical advantages, see, for exam-
ple, [34, 73]. Furthermore, the derivation as well as the implementation of volume
integral formulations require less manual and programming work than the derivation
and implementation of surface integral formulations. Hence, there arises the natural
aim to use volume expressions of shape derivatives. This chapter aims at provid-
ing both, volume and surface formulations of shape derivatives, which are required
in the next chapters. The usage of volume shape derivatives expressions in shape
optimization is the topic of Chapter 6.

This chapter is organized as follows. We first set up notations and terminology in
Section 4.1. Afterwards, we focus on problems of finding the interface of two subdo-
mains (Section 4.2). We consider an elliptic shape interface optimization problem in
Subsection 4.2.1 and a parabolic one in Subsection 4.2.2. Moreover, we provide their
shape derivatives expressed as surface and volume integrals in each subsection. In
Section 4.3, we embed shape optimization problems in the framework of optimization
on Riemannian manifolds. Special attention is paid to the Riemannian shape gradi-
ent and the Riemannian shape Hessian. Finally, Section 4.4 provides a volume shape
derivative formula for a special class of PDE constrained shape interface problems.
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Chapter 4. Shape derivative

4.1 Basic concepts

This section provides basic definitions and terminology to prepare this chapter. Spe-
cial attention is paid to material and shape derivatives which are needed throughout
this thesis.
The main focus of shape optimization is to investigate shape functionals. First,

we give the definition of a shape functional.

Definition 4.1 (Shape functional). Let D denote a non-empty subset of Rd, where
d ∈ N∗. Moreover, A ⊂ {Ω: Ω ⊂ D} denotes a set of subsets. A function

J : A → R, Ω 7→ J(Ω)

is called a shape functional.

Let D be as in the above definition. Throughout this thesis any shape functional is
denoted by J . We suppose that this functional is well defined for any measurable
set Ω in D. Moreover, let {Ft}t∈[0,T ] be a family of mappings Ft : D → Rd such that
F0 = id, where T > 0. This family transforms the domain Ω into new perturbed
domains

Ωt := Ft(Ω) = {Ft(x) : x ∈ Ω} with Ω0 = Ω

and the boundary Γ into new perturbed boundaries

Γt := Ft(Γ) = {Ft(x) : x ∈ Γ} with Γ0 = Γ.

Considering the domain Ω as a collection of material particles which are changing
their position in the time-interval [0, T ], the family {Ft}t∈[0,T ] describes the motion
of each particle. This means that at time t ∈ [0, T ] a material particle x ∈ Ω has the
new position xt := Ft(x) ∈ Ωt with x0 = x. The motion of each such particle x can
be described by the velocity method or by the perturbation of identity.

Definition 4.2 (Velocity method). For a sufficiently smooth vector field V the
velocity method defines the family of the above-mentioned mappings as the flow
Ft(x) := ξ(t, x) determined by the following initial value problem:

dξ(t, x)

dt
= V (ξ(t, x))

ξ(0, x) = x

Definition 4.3 (Perturbation of identity). The perturbation of identity is defined by
Ft(x) := x+ tV (x), where V denotes a sufficiently smooth vector field.

Remark 4.4. We use the perturbation of identity throughout this thesis.

This thesis deals with PDE constrained shape optimization problems, i.e., shape
optimization problems constrained by equations involving an unknown function of
two or more variables and at least one partial derivative of this function. Often, we
have further conditions as outlined in Section 2.2. A shape optimization problem is
defined as follows:
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Definition 4.5 (Shape optimization problem). A shape optimization problem is
given by

min
Ω
J(Ω),

where J is a shape functional. When J depends on a solution of a PDE, we call the
shape optimization problem PDE constrained.

To solve PDE constrained shape optimization problems, we need their shape deriva-
tives.

Definition 4.6 (Shape derivative). Let D ⊂ Rd be open, where d ≥ 2 is a natural
number. Moreover, let k ∈ N and let Ω ⊂ D be measurable. The Eulerian derivative
of a shape functional J at Ω in direction V ∈ Ck0 (D,Rd) is defined by

DJ(Ω)[V ] := lim
t→0+

J(Ωt)− J(Ω)

t
. (4.1)

If for all directions V ∈ Ck0 (D,Rd) the Eulerian derivative (4.1) exists and the map-
ping

G(Ω): Ck0 (D,Rd)→ R, V 7→ DJ(Ω)[V ]

is linear and continuous, the expression DJ(Ω)[V ] is called the shape derivative of
J at Ω in direction V ∈ Ck0 (D,Rd). In this case, J is called shape differentiable of
class Ck at Ω.

The following so-called Hadamard Structure Theorem is very important. Among
other things, it states that only the normal part of a vector field on the boundary
has an impact on the value of the shape derivative.

Theorem 4.7 (Hadamard Structure Theorem). Let D and Ω be as in Definition 4.6.
Moreover, let the shape functional J be shape differentiable of class Ck at every do-
main Ω ⊂ D with Ck−1-boundary Γ = ∂Ω. Then there exists a scalar distribution
r ∈ Ck0 (Γ)′ such that G(Ω) ∈ Ck0 (Ω,Rd)′ of J at Ω is given by

G(Ω) = γ′Γ(r · n). (4.2)

Here Ck0 (Γ)′ and Ck0 (Ω,Rd)′ denote the dual spaces of Ck0 (Γ) and Ck0 (Ω,Rd). Moreover,

γΓ : Ck0 (D,Rd)→ Ck0 (Γ,Rd), v → v
Γ

denotes the trace operator and γ′Γ its adjoint operator.

Proof. See Theorem 2.27 in [93].

Note that the Hadamard Structure Theorem 4.7 actually states the existence of a
scalar distribution r = r(Ω) on the boundary Γ of a domain Ω. However, in this
thesis, we always assume that r is an integrable function. In general, if r ∈ L1(Γ),
then r is obtained in the form of the trace on Γ of an element G ∈ W 1,1(Ω). This
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Chapter 4. Shape derivative

means that it follows from (4.2) that the shape derivative can be expressed more
conveniently as

DJ(Ω)[V ] =

∫
Γ
r 〈V, n〉 ds.

Thus, in many cases and particularly in this thesis, the shape derivative arises in two
equivalent notational forms:

DJΩ[V ] :=

∫
Ω
RV (x) dx (volume formulation) (4.3)

DJΓ[V ] :=

∫
Γ
r(s) 〈V (s), n(s)〉 ds (surface formulation) (4.4)

Here R is a (differential) operator acting linearly on the vector field V and r ∈ L1(Γ)
with DJΩ[V ] = DJ(Ω)[V ] = DJΓ[V ]. In the following, the volume formulation is
also called the domain formulation and the surface formulation is also called the
boundary formulation.

There are a lot of options to prove shape differentiability of shape functionals,
which depend on a solution of a PDE, and to derive the shape derivative of a PDE
constrained shape optimization problem. The min-max approach [23], the chain rule
approach [93], the Lagrange method of Céa [18] and the rearrangement method [47]
have to be mentioned in this context. A nice overview about these approaches is
given in [98]. Note that the approach of Céa is frequently used to derive shape
derivatives, but itself gives no proof of shape differentiability. Indeed, there are cases
where the method of Céa fails (cf. [74, 96]). However, we use the min-max formu-
lation of the Lagrangian corresponding to the PDE constrained shape optimization
problem under consideration. We deduce its shape derivative by an application of
the theorem of Correa and Seeger, which moreover guarantees its existence. Before
we formulate this theorem, we focus on a rule for differentiating perturbed volume
integrals, which is needed to derive shape derivatives in the sequel. We have to deal
with so-called material derivatives whose definition is given in the following. For a
material derivative free approach we refer to [96, 97].

Definition 4.8 (Material derivative). Let Ω,Ωt, Ft and T be as above. Moreover,
let {pt : Ωt → R : t ≤ T} denote a family of mappings. The material derivative of a
generic function p(= p0) : Ω→ R at x ∈ Ω is denoted by Dmp or ṗ and given by the
derivative of the composed function pt ◦Ft : Ω→ Ωt → R defined in the fixed domain
Ω, i.e.,

ṗ(x) := lim
t→0+

(pt ◦ Ft) (x)− p(x)

t
=
d+

dt
(pt ◦ Ft) (x)

t=0
.

The classical chain rule for differentiation applied to ṗ gives the relation between
material and shape derivatives.
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Definition 4.9 (Shape derivative). Let p be as in the previous definition. The shape
derivative of p in the direction of a vector field V is denoted by p′ and given by

p′ = ṗ− V T∇p in Ω. (4.5)

In the next sections, the following rules for the material derivative are needed to
derive shape derivatives of objective functions depending on solutions of PDEs.

Theorem 4.10. Let p, q : Ω → R be two functions and let Dm denote the material
derivative with respect to the perturbation of identity Ft = id+ tV .

(i) For the material derivative the product rule holds, i.e.,

Dm(p q) = Dmp q + pDmq. (4.6)

(ii) While the shape derivative commutes with the gradient, the material derivative
does not, but the following equality holds:

Dm∇p = ∇Dmp−∇V T∇p (4.7)

(iii) The following identity holds:

Dm

(
∇qT∇p

)
= ∇Dmp

T∇q −∇qT
(
∇V +∇V T

)
∇p+∇pT∇Dmq (4.8)

Proof. See [16, Section 5].

We aim to deduce shape derivative formulas. For this purpose, we have to consider
a perturbed objective function due to Definition 4.6. In the following theorem, the
above-mentioned rule for differentiating perturbed domain integrals is given.

Theorem 4.11. Let Ω,Ωt, p and pt be as in Definition 4.8. Then

d+

dt

(∫
Ωt

pt dxt

)
t=0

=

∫
Ω
ṗ+ div(V )p dx (4.9)

holds.

Proof. Using the theorem of substitution for integrals and applying the classical rule
of differentiation of integrals with respect to parameters, we get

d+

dt

(∫
Ωt

pt dxt

)
t=0

=
d+

dt

(∫
Ω

(pt ◦ Ft) · det(DFt) dx
)

t=0

=

∫
Ω

d+

dt
((pt ◦ Ft) · det(DFt))

t=0

dx,
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whereDFt denotes the Jacobian of Ft. The derivative of the deformation determinant
deduced in [80] is given by

d+

dt
(det(DFt))

t=0

= div(V ).

Applying the product rule for differentiation combined with this deformation deter-
minant derivative gives

d+

dt
((pt ◦ Ft) · det(DFt))

t=0

= ṗ+ div(V )p,

which completes the poof.

Remark 4.12. The concept of material and shape derivatives of a scalar-valued
function p : Ω→ R can be extended to its boundary Γ = ∂Ω. Since this goes beyond
the scope of this thesis, we mention only a few aspects required in this thesis. For
more details we refer to the literature, e.g., [70]. Let z : Γ → R be the trace on the
boundary Γ of p. In this setting, the boundary shape derivative z′ is defined by

z′ = ṗ− V T∇Γp, (4.10)

where ∇Γ denotes the tangential gradient given by

∇Γp = ∇p− ∂p

∂n
n.

Here ∂
∂n denotes the derivative normal to Γ. Combining (4.5) with (4.10) gives the

correlation of boundary and domain shape derivatives:

z′ = p′ + V T ∂p

∂n
n

In the next sections, we do not only have to deal with domain integrals, but also
with boundary integrals. Therefore, we also need a rule for differentiating perturbed
boundary integrals, which is similar to (4.9) and given by the following theorem.

Theorem 4.13. Let Γt and T be as assumed above and let {zt : Γt → R : t ≤ T} be
a family of mappings. Then

d+

dt

(∫
Γt

zt dst

)
t=0

=

∫
Γ
ż + divΓ(V )z ds (4.11)

holds, where divΓ(V ) denotes the tangential divergence of V defined by

divΓ(V ) = div(V )− nT ∂V
∂n

.
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Proof. Lemma 11.2 in [46] states∫
Γt

zt dst =

∫
Γ
(zt ◦ Ft) · det(DFt)

∣∣(DFt)−Tn∣∣ ds
if zt ∈ L1(Γt). From this, we get

d+

dt

(∫
Γt

zt(st) dst

)
t=0

=

∫
Γ

d+

dt

(
(zt ◦ Ft) · det(DFt)

∣∣(DFt)−Tn∣∣)
t=0

ds

by applying the classical rule of differentiation of integrals with respect to parameters.
Applying the product rule combined with the derivative

det(DFt)
∣∣(DFt)−Tn∣∣

t=0

= divΓ(V )

given in [46] yields

d+

dt

(
(zt ◦ Ft) · det(DFt)

∣∣(DFt)−Tn∣∣)
t=0

= ż + divΓ(V )z,

which completes the proof.

Besides (4.11), which includes the material derivative, the next theorem gives a rule
for differentiating perturbed boundary integrals, which contains the shape derivative
instead. For the proof, which is quite technical, we refer to [51].

Theorem 4.14. If Γt and zt be as above. Then

d+

dt

(∫
Γt

zt dst

)
t=0

=

∫
Γ
z′ +

(
∂z

∂n
+ zκ

)
〈V, n〉 ds

holds, where κ denotes the mean curvature of Γ.

In this thesis, the objective functions include so-called perimeter regularization
terms denoted by jreg. More precisely,

J(Ω) = j(Ω) + jreg(Ω), where jreg(Ω) := µ

∫
Γ

1 ds with µ > 0. (4.12)

The following theorem provides the first and second order shape derivative of the
regularization term jreg(Ω) in the two-dimensional case.

Theorem 4.15. Let Γ be the boundary of a bounded domain Ω ⊂ R2. Moreover, V
and W are two sufficiently smooth vector fields. For

jreg(Ω) :=

∫
Γ

1 ds
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we have

Djreg(Ω)[V ] =

∫
Γ
κ 〈V, n〉 ds, (4.13)

D2jreg(Ω)[V,W ] =

∫
Γ

∂V

∂τ

∂W

∂τ
〈V, n〉 〈W,n〉 ds, (4.14)

where κ denotes the mean curvature of Γ and ∂
∂τ is the derivative tangential to Γ.

Proof. See Proposition 5.1 and Remark 5.3 in [71].

As already mentioned, we deduce shape derivatives of PDE constrained shape
optimization problems by an application of the theorem of Correa and Seeger. This
theorem (in its original version) is given in the sequel.

Remark 4.16. In its original version, the theorem of Correa and Seeger is restricted
to locally convex vector spaces. In this thesis, shape spaces are not locally convex
spaces. More precisely, they can be identified as infinite dimensional Riemannian
manifolds (cf. Chapter 3). Thus, a reformulation of Theorem 4.19 is required to
make it applicable in order to deduce shape derivative formulas. In [23, Chapter 10],
such a reformulation is provided.

To formulate the theorem of Correa and Seeger, a few notations and definitions have
to be introduced:
Let U0 6= ∅ and V0 6= ∅ be subsets of Hausdorff spaces U and V and let X be
a Hausdorff locally convex real topological vector space. Moreover, let L be an
extended real valued function on X × U × V . For x ∈ X we define

V (x) :=

{
v ∈ V0 : sup

v∈V0

inf
u∈U0

L(x, u, v) = inf
u∈U0

L(x, u, v)

}
,

U(x) :=

{
u ∈ U0 : inf

u∈U0

sup
v∈V0

L(x, u, v) = sup
v∈V0

L(x, u, v)

}
.

Definition 4.17 (Dini directional derivatives). With the above notation and a di-
rection W ∈ X, the Dini directional derivatives of L(·, u, v) are defined by

DL(x, u, v)[W ] = lim
t→0+

L(xt, u, v)− L(x, u, v)

t
,

DL(x, u, v)[W ] = lim
t→0+

L(xt, u, v)− L(x, u, v)

t
,

where xt = xt(x) = x + tW (x) is the perturbation of x ∈ X determined by the
perturbation of identity.

Definition 4.18 (u.s.c., l.s.c., s.s.c.). Let T and Z be Hausdorff spaces and let
A : T → Z be a multifunction.
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(i) The multifunction A is upper semi-continuous (u.s.c.) at t0 ∈ T , if whenever
O ⊂ Z is an open subset which contains A(t0), then the set {t : A(t) ⊂ O}
contains a neighbourhood of t0.

(ii) The multifunction A is lower semi-continuous (l.s.c.) at t0 ∈ T , if whenever
an open subset O ⊂ Z satisfies O∩A(t0) 6= ∅, then {t : A(t)∩O 6= ∅} contains
a neighbourhood of t0.

(iii) The multifunction A is sequentially semi-continuous (s.s.c.) at t0 ∈ T , if for
every sequence {tk} converging to t0, there exist z0 ∈ A(t0) and a sequence
{zk} accumulating at z0 such that zk ∈ A(tk) for all k sufficiently large.

With these notations and definitions in mind, we can state the original version of
the theorem of Correa and Seeger:

Theorem 4.19 (Correa and Seeger). Assume that the multifunctions t 7→ U(xt),
t 7→ V (xt) are s.s.c. at 0, where xt = xt(x) = x+ tW (x) is the perturbation of x ∈ X
determined by the perturbation of identity and t ∈ R+. Moreover, let the following
properties hold:

(P1) There exists a δ > 0 such that the function t 7→ L(xt, u, v) is finite and contin-
uous on [0, δ[ for every (u, v) ∈ U0 × V0.

(P2) The function R+ × V0 3 (t, v) 7→ DL(xt, u0, v)[W ] is u.s.c. at {0} × V (x) and
finite for all u0 ∈ U(x). The function R+ × U0 3 (t, u) 7→ DL(xt, u, v0)[W ] is
l.s.c. at {0} × U(x) and finite for all v0 ∈ V (x).

(P3) There exists a δ > 0 such that

sup
v∈V0

inf
u∈U0

L(xt, u, v) = inf
u∈U0

sup
v∈V0

L(xt, u, v) ∀t ∈ [0, δ[.

Set h(xt) := supv∈V0
infu∈U0 L(xt, u, v) = infu∈U0 supv∈V0

L(xt, u, v).

Then the directional derivative Dh(x)[W ] exists and is characterized by

sup
v∈V0

inf
u∈U0

DL(x, u, v)[W ] = Dh(x)[W ] = inf
u∈U0

sup
v∈V0

DL(x, u, v)[W ].

Proof. See Theorem 2.1 in [21].

Remark 4.20. We use a min-max formulation of the Lagrangian corresponding
to a PDE constrained shape optimization problem. This means that we express the
objective function of a PDE constrained shape optimization problem as a min-max of
the Lagrangian corresponding to this optimization problem. In this way, the problem
of shape differentiability of an objective function is reduced to the differentiability
of the min-max function. Theorem 4.19 ensures the differentiability of a min-max
function.
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Chapter 4. Shape derivative

4.2 PDE constrained shape interface problems

In this section, we consider problems of finding interfaces between two subdomains.
These problems are used to illustrate the connection of shape optimization to Rie-
mannian geometry in Chapter 5. We consider an elliptic shape interface optimization
problem in Subsection 4.2.1 and a parabolic one in Subsection 4.2.2. Their shape
derivatives, expressed as domain and boundary integrals, are deduced in prepara-
tion for the theoretical discussions in the next chapters. More precisely, we need
boundary expressions of their shape derivatives in Chapter 5 and we require shape
derivatives expressed as domain integrals in Chapter 6.

4.2.1 Elliptic problem

In this subsection, we consider a PDE constrained shape optimization problem which
is inspired by the standard tracking-type elliptic optimal control problem and moti-
vated by electrical impedance tomography. It is very close to the model problem in
[18, Example 2] and to the inverse interface problem in [46]. Preparing the theoret-
ical discussions in Section 5.1, we deduce its shape derivative expressed as domain
and boundary integrals.

Problem formulation

Let the domain Ω := (0, 1)2 ⊂ R2 be partitioned into two disjoint subdomains
Ω1,Ω2 ⊂ Ω such that Ω1 ∪· Γint ∪· Ω2 = Ω and ∂Ω1 ∩ ∂Ω2 = Γint, where ∪· denotes the
disjoint union. In contrast to the outer boundary Γout := ∂Ω, which is assumed to
be fixed, the inner boundary Γint, which is also called the interface, is variable. Let
the interface Γint be an element of

B0
e = B0

e

(
[0, 1],R2

)
:= Emb0([0, 1],R2)/Diff0([0, 1]), (4.15)

where

Emb0([0, 1],R2) := {φ ∈ C∞([0, 1],R2) : φ(0) = (0.5, 0), φ(1) = (0.5, 1),

φ proper injective immersion},

Diff0([0, 1]) := {φ : [0, 1]→ [0, 1] : φ(0) = 0, φ(1) = 1, φ diffeomorphism}.

The shape space B0
e

(
[0, 1],R2

)
is constructed in analogy to the manifold Be(S1,R2)

introduced in Chapter 3. Consequently, a particular point of B0
e

(
[0, 1],R2

)
is rep-

resented by a curve c : [0, 1] → R2, θ 7→ c(θ). Because of the equivalence relation
Diff0([0, 1]), the tangent space is isomorphic to the set of all smooth vector fields
along c, i.e.,

TcB
0
e

(
[0, 1],R2

) ∼= {h : h = αn, α ∈ C∞([0, 1])},
where n is the unit outward normal to Ω1 at the interface Γint. Now, we replace Γint
by u and consider Ω depending on u. Thus, we denote it by Ω(u) = Ω1(u)∪· u∪· Ω2(u).
In the left picture of Figure 4.1, the construction of Ω(u) is illustrated.
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We define the following PDE constrained shape optimization problem:

min
u

J(u) = j(u) + jreg(u) :=
1

2

∫
Ω(u)

(y − y)2 dx+ µ

∫
u

1 ds (4.16)

s.t. −4y = f in Ω(u) (4.17)
y = 0 on ∂Ω(u) (4.18)

The right-hand side of the Poisson equation (4.17) is given by a jumping coefficient

f :=

{
f1 = const. in Ω1(u)

f2 = const. in Ω2(u)
. (4.19)

Of course, formulation (4.17) of the PDE has to be understood only formally because
of the jumping coefficient f . The second term jreg(u) in the objective function J
defined in (4.16) is a perimeter regularization with µ > 0. It is frequently used to
overcome ill-posedness of optimization problems (cf. [6]). As already mentioned, n
is the unit outward normal to Ω1(u) at u. We observe that the unit outward normal
to Ω2(u) at u is equal to −n, which enables us to use only one normal n for the
subsequent discussions. Furthermore, we have conditions on the interface u. We
formulate explicitly the continuity of the state and the flux at the interface u as

JyK = 0,
s
∂y

∂n

{
= 0 on u. (4.20)

The jump symbol J·K denotes the discontinuity across the interface and is defined for
v ∈ Ω by

JvK := v
Ω1
− v

Ω2
. (4.21)

For the observation y we assume y ∈ L2(Ω).
It is well known that the boundary value problem (4.17)-(4.18) admits a weak

solution y ∈ H1
0 (Ω(u)) (cf. for example [31, Chapter 6]). Let us consider such weak

solutions in the following. Note that these solutions have higher regularity. To be
more precise, a smooth boundary combined with f ∈ L2(Ω) and y ∈ L2(Ω) put the
solution y ∈ H1

0 (Ω) in H2(Ω) due to Theorem 2.13. Thus, it is guaranteed that
∂y

Ω1(u)

∂n ,
∂y

Ω2(u)

∂n ∈ H1/2(u) by the trace theorem for Sobolev spaces.
In the setting above, the boundary value problem (4.17)-(4.18) becomes, in its

weak form,
au(y, p) = bu(p) ∀p ∈ H1

0 (Ω(u)), (4.22)

where

au(y, p) =

∫
Ω(u)
∇yT∇p dx−

∫
u

s
∂y

∂n
p

{
ds, (4.23)

bu(p) =

∫
Ω(u)

fp dx. (4.24)

51



Chapter 4. Shape derivative

Let
F :=

{
(y, u, p) : y, p ∈ H1

0 (Ω(u)), u ∈ B0
e ([0, 1],R2)

}
. (4.25)

The Lagrangian corresponding to (4.16)-(4.20) is defined by

L : F → R, (y, u, p) 7→ J(y, u) + au(y, p)− bu(p), (4.26)

where au, bu are defined in (4.23)-(4.24) and J is given in (4.16).

Remark 4.21. The integral over Ω is understood as the sum of the integrals over
Ω1 and Ω2 in this thesis.

Shape derivative formulas

We first consider the objective function J defined in (4.16) without perimeter reg-
ularization. The shape derivative can be expressed as an integral over the domain
Ω(u) and an integral over the interface u. We first deduce the domain integral by
an application of Theorem 4.19. Afterwards, we convert it into an interface integral
by applying integration by parts on u. Due to the theorem of Correa and Seeger,
the shape derivative of L evaluated in its saddle point is equal to the one of J . A
saddle point (y, u, p) ∈ F of the Lagrangian L is given by

∂L (y, u, p)

∂y
=
∂L (y, u, p)

∂p
= 0, (4.27)

which leads to the adjoint equation given in strong form by

−4p = −(y − y) in Ω(u) (4.28)
p = 0 on ∂Ω(u) (4.29)

and to the state equation given in strong form by

−4y = f in Ω(u). (4.30)

We formulate explicitly the interface conditions of (4.28)-(4.29) by

JpK = 0,

s
∂p

∂n

{
= 0 on u. (4.31)

Remark 4.22. Note that only the normal part of a vector field V on the variable
boundary – in our case, on the interface u – has an impact on the value of the shape
derivative expressed as boundary integral due the Hadamard Structure Theorem 4.7.

Now, we formulate a theorem which provides a representation of the shape deriva-
tive expressed as domain integral. Later on, this domain integral allows us to calcu-
late the boundary expression of the shape derivative.

52



4.2. PDE constrained shape interface problems

Theorem 4.23. Let y ∈ H1
0 (Ω(u)) be the weak solution of (4.17)-(4.18). Moreover,

let p ∈ H1
0 (Ω(u)) denote the weak solution of the adjoint equation (4.28)-(4.29). Then

the shape derivative of the objective function J without perimeter regularization, i.e.,
the shape derivative of j, in direction V is given by

DjΩ(u)(u)[V ] =

∫
Ω(u)
−∇yT

(
∇V +∇V T

)
∇p− pV T∇f

+ div(V )

(
1

2
(y − y)2 +∇yT∇p− fp

)
dx.

(4.32)

Proof. Let (y, u, p) ∈ H1
0 (Ω(u)) × B0

e ([0, 1],R2) × H1
0 (Ω(u)). Moreover, let L̃ be

defined by
L̃ (y, u, p) = j(u) + au(y, p)− bu(p), (4.33)

where au, bu are defined in (4.23)-(4.24) and j is given in (4.16). In analogy to [23,
Chapter 10, Subsection 5.2], we can verify that

j(u) = min
y∈H1

0 (Ω(u))
max

p∈H1
0 (Ω(u))

L̃ (y, u, p) (4.34)

holds. We apply the theorem of Correa and Seeger on the right-hand side of (4.34).
The verification of the assumptions of this theorem can be checked in the same way
as in [23, Chapter 10, Subsection 6.4]. We obtain formula (4.32) by evaluation of the
shape derivative of the Lagrangian (4.33) in its saddle point. Applying the rule for
differentiating domain and boundary integrals given in (4.9) and (4.11) yields

DL̃ (y, u, p)[V ] =

∫
Ω(u)

Dm

(
1

2
(y − y)2

)
+Dm

(
∇yT∇p

)
−Dm(fp)

+ div(V )

(
1

2
(y − y)2 +∇yT∇p− fp

)
dx

−
∫
u
Dm

(s
∂y

∂n
p

{)
+ divu(V )

s
∂y

∂n
p

{
ds.

(4.35)

By combining (4.35) with the product rule and (4.8) we obtain

DL̃ (y, u, p)[V ] =

∫
Ω(u)

(y − y)ẏ +∇ẏT∇p+∇yT∇ṗ

−∇yT
(
∇V +∇V T

)
∇p− ḟp− fṗ

+ div(V )

(
1

2
(y − y)2 +∇yT∇p− fp

)
dx

−
∫
u

s
Dm

(
∂y

∂n

)
p+

∂y

∂n
ṗ

{
+ divu(V )

s
∂y

∂n
p

{
ds.

Now, we consider the saddle point condition (4.27) or, equivalently, the weak form
of the adjoint equation (4.28)-(4.29) and the design equation (4.30). From this we
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get

DL̃ (y, u, p)[V ] =

∫
Ω(u)
−∇yT

(
∇V +∇V T

)
∇p− ḟp

+ div(V )

(
1

2
(y − y)2 +∇yT∇p− fp

)
dx

+

∫
u

s
∂p

∂n
ẏ −Dm

(
∂y

∂n

)
p

{
+ divu(V )

s
∂y

∂n
p

{
ds,

(4.36)

where the term ḟp in the domain integral is equal to pV T∇f in the both subdomains
Ω1(u) and Ω2(u) because of (4.5). Due to (4.20) and (4.31), we get

s
∂p

∂n
ẏ

{
= ẏ

s
∂p

∂n

{
= 0 on u, (4.37)

s
Dm

(
∂y

∂n

)
p

{
= Dm

(
∂y

∂n

)
JpK = 0 on u. (4.38)

The identity s
∂y

∂n
p

{
= 0 on u (4.39)

follows from (4.20), (4.31) and the identity

JabK = JaK b1 + a2 JbK = a1 JbK + JaK b2, (4.40)

which implies
JabK = 0 if JaK = 0 ∧ JbK = 0. (4.41)

By combining (4.36)-(4.39) and the theorem of Correa and Seeger, we obtain (4.32).

The domain integral (4.32) can be converted into a boundary integral. The follow-
ing theorem provides a representation of the shape derivative expressed as boundary
integral.

Theorem 4.24. Assume that the elliptic PDE problem (4.17)-(4.18) is H2-regular,
i.e., a solution y exists and is at least in H2(Ω(u)). Moreover, assume that the adjoint
equation (4.28)-(4.29) admits a solution p ∈ H2(Ω(u)). Then the shape derivative
of the objective function J without perimeter regularization, i.e., the shape derivative
of j, in direction V is given by

Dju(u)[V ] = −
∫
u
JfK p 〈V, n〉 ds. (4.42)
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Proof. Integration by parts in (4.32) yields∫
Ω(u)

div(V )

(
1

2
(y − y)2 +∇yT∇p− fp

)
dx

= −
∫

Ω(u)
V T
(
(y − y)∇y +∇

(
∇yT∇p

)
−∇(fp)

)
dx

+

∫
u

s(
1

2
(y − y)2 +∇yT∇p− fp

)
〈V, n〉

{
ds

+

∫
∂Ω(u)

(
1

2
(y − y)2 +∇yT∇p− fp

)
〈V, n〉 ds.

(4.43)

Since the outer boundary ∂Ω(u) is fixed, we can choose the deformation vector field
V equals zero in small neighbourhoods of ∂Ω(u). Therefore, in (4.43), the outer
integral disappears. Combining (4.32), (4.43) and the vector calculus identity

∇yT
(
∇V +∇V T

)
∇p+ V T∇

(
∇yT∇p

)
= ∇pT∇

(
V T∇y

)
+∇yT∇

(
V T∇p

)
,

which is proved in [16], gives

Dju(u)[V ] =

∫
Ω(u)
−∇pT∇

(
V T∇y

)
−∇yT∇

(
V T∇p

)
− (y − y)V T∇y + fV T∇p dx

+

∫
u

s(
1

2
(y − y)2 +∇yT∇p− fp

)
〈V, n〉

{
ds.

(4.44)

By applying integration by parts in (4.44) we get∫
Ω(u)
∇yT∇

(
V T∇p

)
dx

= −
∫

Ω(u)
4yV T∇p dx+

∫
u

s
∂y

∂n
V T∇p

{
ds+

∫
∂Ω(u)

∂y

∂n
V T∇p ds

(4.45)

and analogously∫
Ω(u)
∇pT∇

(
V T∇y

)
dx

= −
∫

Ω(u)
4pV T∇y dx+

∫
u

s
∂p

∂n
V T∇y

{
ds+

∫
∂Ω(u)

∂p

∂n
V T∇y ds.

(4.46)

In (4.45)-(4.46), the outer integrals vanish due to the fixed outer boundary ∂Ω(u) as
in (4.43). Thus, it follows that

Dju(u)[V ] =

∫
Ω(u)

V T∇p (4y + f) + V T∇y (4p− (y − y)) dx

+

∫
u

s(
1

2
(y − y)2 +∇yT∇p− fp

)
〈V, n〉

{

−
s
∂y

∂n
V T∇p

{
−

s
∂p

∂n
V T∇y

{
ds

(4.47)
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holds. In (4.47), the domain integral vanishes due to (4.28) and (4.30). Moreover, the
term

q
1
2(y − y)2 〈V, n〉

y
disappears because of (4.20) and the term

q
∇yT∇p 〈V, n〉

y

vanishes because of the continuity of ∇y and ∇p. The identity
s
∂y

∂n
V T∇p

{
=

s
∂p

∂n
V T∇y

{
= 〈V, n〉

s
∂y

∂n

∂p

∂n

{
= 0 (4.48)

follows from (4.20), (4.31) and (4.41). If we summarize all this, we obtain (4.42).

Now, we consider the objective function (4.16) with perimeter regularization. The
following theorem gives the boundary integral expression of its shape derivative.

Theorem 4.25. Under the assumptions of Theorem 4.24 the shape derivative of the
objective function J in direction V is given by

DJu(u)[V ] =

∫
u

(− JfK p+ µκ) 〈V, n〉 ds, (4.49)

where κ denotes the curvature corresponding to the normal n.

Proof. Combining (4.42) with formula (4.13) in Theorem 4.15 we get (4.49).

Remark 4.26. In Theorem 4.23, the volume shape derivative expression (4.32)
is obtained under the assumptions that both, the solution y of the elliptic prob-
lem (4.17)-(4.18) and the solution p of the adjoint equation (4.28)-(4.29), belong to
H1

0 (Ω). In contrast to this, we need a higher regularity to provide the surface shape
derivative expressions (4.42) and (4.49). In Theorem 4.24 and Theorem 4.25, the
shape derivative expressions are obtained under the assumption that y, p ∈ H2(Ω).
The crucial point is that for the elliptic problem (4.17)-(4.18), a smooth boundary
combined with f ∈ L2(Ω) and y ∈ L2(Ω) put the solutions y, p ∈ H1

0 (Ω) in H2(Ω)
due to Theorem 2.13.

4.2.2 Parabolic problem

In this subsection, we introduce a model problem which is given by a parabolic shape
interface optimization problem. Among other things, it is motivated by the question
“How is the absorption of a medical cream into the human skin?”. This is a topic in
[68]. Preparing the theoretical discussions in Section 5.2 and in Chapter 6, its shape
derivative, expressed as domain and boundary integral, is deduced by an application
of Theorem 4.19 and a generalization of the approach in [73] for parabolic problems.

Problem formulation

As in the previous subsection, we denote by u the interface between two subdo-
mains. The domain X := (0, 1)2 ⊂ R2 with fixed Lipschitz boundary Γout = ∂X
is partitioned into two disjoint subdomains X1, X2 ⊂ X such that u = ∂X1 ∩ ∂X2,
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4.2. PDE constrained shape interface problems

Ω2Ω1

Γint

X2

X1

Γtop

Γint

Γleft Γright

Γbottom

Figure 4.1: Example of a domain Ω = Ω1 ∪· Γint ∪· Ω2 and X = X1 ∪· Γint ∪· X2. Both
domains depend on the interface Γint.

u = ∂X2(= Γint), X1 ∪· u∪· X2 = X and Γbottom ∪· Γleft ∪· Γright ∪· Γtop = ∂X (= Γout).
An example of such a domain is illustrated in the right picture of Figure 4.1. The
interface u is assumed to be smooth, variable and an element of the shape space
Be introduced in Chapter 3. We consider X depending on u and denote it by
X(u) = X1(u) ∪· u ∪· X2(u).
We introduce the following parabolic PDE constrained shape optimization problem

in strong form:

min
u

J(u) = j(u) + jreg(u) :=

∫ T

0

∫
X(u)

(y − y)2 dxdt+ µ

∫
u

1ds (4.50)

s.t.
∂y

∂t
− div(k∇y) = f in X(u)× (0, T ] (4.51)

y = 1 on Γtop × (0, T ] (4.52)
∂y

∂n
= 0 on (Γbottom ∪ Γleft ∪ Γright)× (0, T ] (4.53)

y = y0 in X(u)× {0} (4.54)

with

k :=

{
k1 = const. in X1(u)× (0, T ]

k2 = const. in X2(u)× (0, T ]
(4.55)

denoting a jumping coefficient, n being the unit outward normal vector to X2(u)
and y0 ∈ H1(X(u)). Of course, formulation (4.51) of the PDE has to be understood
only formally because of the jumping coefficient k. The unit outward normal to
X1(u) is equal to −n, which enables us to use only one normal n for the subsequent
discussions. Furthermore, we have conditions on the interface u. We formulate
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Chapter 4. Shape derivative

explicitly the continuity of the state and the flux at the interface as

JyK = 0 ,

s
k
∂y

∂n

{
= 0 on u× (0, T ], (4.56)

where the jump symbol J·K is defined as in (4.21). As in the previous section, the
second term jreg(u) in the objective function in (4.50) is a perimeter regularization
with µ > 0. It is frequently used in this kind of problems. However, in [96, 97], a
weaker, but more complicated regularization is used in order to show existence of
solutions. As in [100], we assume f ∈ L2(0, T ;L2(X(u))). Moreover, we assume for
the observation y ∈ L2(0, T ;L2(X(u))).
In the following, we consider a weak solution y ∈ L2(0, T ;H1(X(u))) of problem

(4.51)-(4.54). Note that it is known that such a solution exists (cf. for example [31,
Chapter 7]). Recall that there are two possibilities for y which lead to a source
of asymmetry in the treatment of the state variable y and the adjoint variable p
(cf. Subsection 2.2.1). This means, if we consider y ∈ L2(0, T ;H1(X(u))), then we
have to choose p ∈ W (0, T ;H1(X(u))). Note that the values y(0, x) and y(T, x),
which arise by applying integration by parts in time (cf. Remark 4.27 and 4.28),
are not necessarily defined because functions y ∈ L2(0, T ;H1(X(u))) need not be
continuous in time. The given value y0 can be inserted for y(0, x), but the final value
y(T, x) cannot be eliminated so easily. The adjoint variable p ∈ W (0, T ;H1(X(u)))
has higher regularity. In particular, p(0, ·) and p(T, ·) are well defined as traces
in L2(X(u)) for all p ∈ W (0, T ;H1(X(u))) (cf. [56]). Therefore, it makes sense
to require p(T, x) = 0 in order to get rid of the term y(T, x). In the following,
we assume p = 0 in X(u) × {T}. We have also higher regularity for weak so-
lutions of parabolic problems. More precisely, a solution y ∈ L2(0, T ;H1(X(u)))
of (4.51)-(4.54) is an element of L2(0, T ;H2(X(u))) if f ∈ L2(0, T ;L2(X(u))) and
y0 ∈ H1(X(u)). See for instance [31, Theorem 6, Subsection 7.1.3]). Thus, it is guar-

anteed that
∂y

X1(u)

∂n ,
∂y

X2(u)

∂n ∈ L2(0, T ;H1/2(u)) by the trace theorem for Sobolev
spaces.
In the setting above, the boundary value problem (4.51)-(4.54) is written in weak

form as
a(y, p) = b(y, p, p1, p2) ∀p ∈W (0, T ;H1(X(u))) (4.57)

and for all p1 ∈ L2(0, T ;H−1/2(Γtop)) and p2 ∈ L2(0, T ;H1/2(Γbottom∪Γleft∪Γright)).
Here the bilinear form is given by

a(y, p) = −
∫
X(u)

y0 p(0, x) dx

−
∫ T

0

∫
X(u)

∂p

∂t
y dxdt+

∫ T

0

∫
X(u)

k∇yT∇p dxdt

−
∫ T

0

∫
u

s
k
∂y

∂n
p

{
dsdt−

∫ T

0

∫
Γout

k1
∂y

∂n
p dsdt

(4.58)
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and the linear form is given by

b(y, p, p1, p2) = b1(p) + b2(y, p1, p2) (4.59)

with

b1(p) =

∫ T

0

∫
X(u)

fp dxdt, (4.60)

b2(y, p1, p2) =

∫ T

0

∫
Γtop

p1(y − 1) dsdt+

∫ T

0

∫
Γout\Γtop

p2
∂y

∂n
dsdt. (4.61)

For (y, u, p) ∈ L2(0, T ;H1(X(u)))×Be ×W (0, T ;H1(X(u))) the Lagrangian cor-
responding to (4.50)-(4.56) is defined by

L (y, u, p) := J(u) + a(y, p)− b(y, p, p1, p2) (4.62)

with a, b defined in (4.58)-(4.61), J given in (4.50), p1 ∈ L2(0, T ;H−1/2(Γtop)) and
p2 ∈ L2(0, T ;H1/2(Γbottom ∪ Γleft ∪ Γright)).

Remark 4.27. For all y, p ∈W (0, T ;H1(X(u))) the integration by parts formula∫ T

0

∫
X(u)

∂y

∂t
p dxdt

=

∫
X(u)

y(T, x)p(T, x) dx−
∫
X(u)

y(0, x)p(0, x) dx−
∫ T

0

∫
X(u)

∂p

∂t
y dxdt

(4.63)

holds (cf. [100, Theorem 3.11]). Note that the integrals are to be understood as
duality pairings.

Remark 4.28. Let H denote a Banach space and H ′ its dual. In [100], it is shown
that a weak solution y ∈ L2(0, T ;H) to a special initial boundary value problem
exists (cf. [100, Theorem 3.9]). Moreover, possibly after a modification of y on a set
of zero measure, the weak time derivative of this solution y ∈ L2(0, T ;H) exists and
is an element of L2(0, T ;H ′) (cf. [100, Theorem 3.12]). Arguments identical to those
in the proof of Theorem 3.12 in [100] ensure that a solution y ∈ L2(0, T ;H1(X(u))) of
(4.51)-(4.54) is – possibly after a modification on a set of zero measure – an element of
W (0, T ;H1(X(u))). In particular, this means that the integration by parts formula
(4.63) can be applied for a solution y ∈ L2(0, T ;H1(X(u))) of (4.51)-(4.54).

Remark 4.29. The integral over X is understood as the sum of the integrals over
X1 and X2 in this thesis.

Shape derivative formulas

As in the previous subsection, we first consider the objective function J in (4.50)
without perimeter regularization, i.e., the objective function j. The shape derivative
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of j can be expressed as domain and boundary integral. Analogous to the previous
subsection, we first deduce the domain integral of the shape derivative by an ap-
plication of Theorem 4.19. Afterwards, we convert it into an interface integral by
applying integration by parts on u. Due to Theorem 4.19, the shape derivative of L
evaluated in its saddle point is equal to the one of J . A saddle point

(y, u, p) ∈ L2(0, T ;H1(X(u)))×Be ×W (0, T ;H1(X(u)))

of the Lagrangian (4.62) is given by

∂L (y, u, p)

∂y
=
∂L (y, u, p)

∂p
= 0, (4.64)

which leads to the adjoint equation given in strong form by

−∂p
∂t
− div(k∇p) = −(y − y) in X(u)× [0, T ) (4.65)

p = 0 in X(u)× {T} (4.66)
∂p

∂n
= 0 on (Γbottom ∪ Γleft ∪ Γright)× [0, T ) (4.67)

p = 0 on Γtop × [0, T ) (4.68)
p1 = −k1p on (Γbottom ∪ Γleft ∪ Γright)× [0, T ) (4.69)

p2 = k1
∂p

∂n
on Γtop × [0, T ) (4.70)

and to the state equation given in strong form by
∂y

∂t
− div(k∇y) = f in X(u)× (0, T ]. (4.71)

We formulate explicitly the interface conditions of (4.65)-(4.70) by
s
k
∂p

∂n

{
= 0, JpK = 0 on u× [0, T ) (4.72)

The next theorem gives a domain expression of the shape derivative of j, which
we need in Chapter 6. Later on, this domain expression is used in order to express
the shape derivative of j and J as a boundary integral.

Theorem 4.30. Let y ∈ L2(0, T ;H1(X(u))) be the weak solution of the parabolic
PDE problem (4.51)-(4.54). Moreover, let p ∈ W (0, T ;H1(X(u))) denote the weak
solution of the adjoint equation (4.65)-(4.70). Then the shape derivative of the ob-
jective function J without perimeter regularization, i.e., the shape derivative of j, in
direction V is given by

DjX(u)(u)[V ]

=

∫ T

0

∫
X(u)

− k∇yT
(
∇V +∇V T

)
∇p− p∇fTV

+ div(V )

(
1

2
(y − y)2 +

∂y

∂t
p+ k∇yT∇p− fp

)
dxdt.

(4.73)

60



4.2. PDE constrained shape interface problems

Proof. The solution y ∈ L2(0, T ;H1(X(u))) of the parabolic PDE problem (4.51)-
(4.54) is – possibly after a modification on a set of zero measure – an element of
W (0, T ;H1(X(u))) (cf. Remark 4.28). Thus, the integration by parts formula (4.63)
can be applied.
Let

(y, u, p) ∈ L2(0, T ;H1(X(u)))×Be ×W (0, T ;H1(X(u))),

p1 ∈ L2(0, T ;H−1/2(Γtop)),

p2 ∈ L2(0, T ;H1/2(Γbottom ∪ Γleft ∪ Γright)).

Moreover, let L̃ be defined by

L̃ (y, u, p) = j(u) + a(y, p)− b(y, p, p1, p2), (4.74)

where a, b are given in (4.58)-(4.61) and j is given in (4.50). In analogy to [23,
Chapter 10, Subsection 5.2], we can verify that

j(u) = min
y∈L2(0,T ;H1(X(u)))

max
p∈W (0,T ;H1(X(u)))

L̃ (y, u, p) (4.75)

holds. We apply Theorem 4.19 on the right-hand side of (4.75). This means that
we obtain formula (4.73) by evaluation of the shape derivative of the Lagrangian
(4.74) in its saddle point. The verification of the assumptions of this theorem can be
checked in the same way as in [23, Chapter 10, Subsection 6.4]. Applying the rule
for differentiating domain and boundary integrals given in (4.9) and (4.11) combined
with (4.63) yields

DL̃ (y, u, p)[V ]

=−
∫
X(u)

Dm (y0p(0, x)) dx

+

∫ T

0

∫
X(u)

1

2
Dm

(
(y − y)2

)
−Dm

(
∂p

∂t
y

)
+Dm

(
k∇yT∇p

)
−Dm (fp)

+ div(V )

(
1

2
(y − y)2 +

∂y

∂t
p+ k∇yT∇p− fp

)
dx dt

−
∫ T

0

∫
u
Dm

(s
k
∂y

∂n
p

{)
+ divu(V )

s
k
∂y

∂n
p

{
dsdt

−
∫ T

0

∫
Γout

Dm

(
k1
∂y

∂n
p

)
+ divΓout(V )k1

∂y

∂n
p dsdt

−
∫ T

0

∫
Γtop

Dm(p1(y − 1)) + divΓtop(V )p1(y − 1) dsdt

−
∫ T

0

∫
Γout\Γtop

Dm

(
p2
∂y

∂n

)
+ divΓout\Γtop

(V )p2
∂y

∂n
dsdt
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Applying (4.6) and (4.8) gives

DL̃ (y, u, p)[V ]

=−
∫
X(u)

y0 ṗ(0, x) dx

+

∫ T

0

∫
X(u)

(y − y)ẏ −Dm

(
∂p

∂t

)
y − ∂p

∂t
ẏ − ḟp− fṗ

+ k∇ẏT∇p+ k∇yT∇ṗ− k∇yT
(
∇V +∇V T

)
∇p

+ div(V )

(
1

2
(y − y)2 +

∂y

∂t
p+ k∇yT∇p− fp

)
dx dt

−
∫ T

0

∫
u

s
Dm

(
k
∂y

∂n

)
p+ k

∂y

∂n
ṗ

{
+ divu(V )

s
k
∂y

∂n
p

{
dsdt

−
∫ T

0

∫
Γout

Dm

(
k1
∂y

∂n

)
p+ k1

∂y

∂n
ṗ+ divΓout(V )k1

∂y

∂n
p dsdt

−
∫ T

0

∫
Γtop

ṗ1(y − 1) + p1ẏ + divΓtop(V )p1(y − 1) dsdt

−
∫ T

0

∫
Γout\Γtop

ṗ2
∂y

∂n
+ p2Dm

(
∂y

∂n

)
+ divΓout\Γtop

(V )p2
∂y

∂n
dsdt.

Note that the outer boundary Γout is fixed. Thus, we can choose the deformation
vector field V equals zero in small neighbourhoods of Γout. From (4.64) we obtain

DL̃ (y, u, p)[V ]

=

∫ T

0

∫
X(u)
−k∇yT

(
∇V +∇V T

)
∇p− ḟp

+ div(V )

(
1

2
(y − y)2 +

∂y

∂t
p+ k∇yT∇p− fp

)
dxdt

+

∫ T

0

∫
u

s
k
∂p

∂n
ẏ

{
−

s
Dm

(
k
∂y

∂n

)
p

{
− divu(V )

s
k
∂y

∂n
p

{
dsdt

where the term ḟp is equal to p∇fTV in X(u) due to (4.5). We get
s
k
∂p

∂n
ẏ

{
= ẏ

s
k
∂p

∂n

{
= 0 on u,

s
Dm

(
k
∂y

∂n

)
p

{
= Dm

(
k
∂y

∂n

)
JpK = 0 on u

due to (4.56) and (4.72). Moreover, due to (4.56), (4.72) and (4.41), we get the
identity s

k
∂y

∂n
p

{
= 0 on u.

Applying Theorem 4.19 completes the proof.
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In Theorem 4.30, the domain shape derivative expression is obtained under the
assumptions that the solution y of the parabolic PDE problem (4.51)-(4.54) belongs
to L2(0, T ;H1(X(u))) and the solution p of the adjoint equation (4.65)-(4.70) belongs
to W (0, T ;H1(X(u))). Note that the domain integral (4.73) can be converted into a
boundary integral. However, as in the previous subsection (cf. Remark 4.26), we need
a higher regularity to provide boundary shape derivative expressions. More precisely,
p has to be an L2(0, T ;H2(X(u)))-function having weak first time derivatives in
L2(0, T ;H1(X(u))′) and y has to be an element of L2(0, T ;H2(X(u))). We introduce
the space

Y (0, T ;H,P ) :=
{
y ∈ L2(0, T ;H) : ẙ ∈ L2(0, T ;P ′) exists

}
.

This space consists of all L2(0, T ;H)-functions whose weak first time derivatives
exist and are elements of L2(0, T ;P ′), where H and P denote Banach spaces and P ′

denotes the dual space of P . The following theorem is a generalization of Lemma 1
in [73] for parabolic problems and provides two boundary expressions of the shape
derivative.

Theorem 4.31. Assume that a solution y of the parabolic PDE problem (4.51)-
(4.54) exists and is at least in L2(0, T ;H2(X(u))). Moreover, assume that the adjoint
equation (4.65)-(4.70) admits a solution p ∈ Y (0, T ;H2(X(u)), H1(X(u))). Then
the shape derivative of the objective function J without perimeter regularization, i.e.,
the shape derivative of j, in direction V is given by

Dju(u)[V ] =

∫ T

0

∫
u
〈V, n〉

s
−2k

∂y

∂n

∂p

∂n
+ k∇yT∇p

{
dsdt. (4.76)

Let y1 := y
X1(u)

and p2 := p
X2(u)

. Then the shape derivative of the objective
function j in direction V can be expressed as

Dju(u)[V ] =

∫ T

0

∫
u
JkK∇yT1 ∇p2 〈V, n〉 dsdt. (4.77)

Proof. In (4.73), let us consider

∫
X(u)

div(V )

(
1

2
(y − y)2 +

∂y

∂t
p+ k∇yT∇p− fp

)
dx

=

∫
X1(u)

div(V )

(
1

2
(y − y)2 +

∂y

∂t
p+ k1∇yT∇p− fp

)
dx

+

∫
X2(u)

div(V )

(
1

2
(y − y)2 +

∂y

∂t
p+ k2∇yT∇p− fp

)
dx.
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Applying integration by parts yields∫
X(u)

div(V )

(
1

2
(y − y)2 +

∂y

∂t
p+ k∇yT∇p− fp

)
dx

=

∫
u∪Γout

(
1

2
(y − y)2 +

∂y

∂t
p+ k1∇yT∇p− fp

)
〈V, n〉 ds

−
∫
X1(u)

V T

(
(y − y)∇y +∇

(
∂y

∂t
p

)
+ k1∇

(
∇yT∇p

)
−∇ (fp)

)
dx

+

∫
u

(
1

2
(y − y)2 +

∂y

∂t
p+ k2∇yT∇p− fp

)
〈V,−n〉 ds

−
∫
X2(u)

V T

(
(y − y)∇y +∇

(
∂y

∂t
p

)
+ k2∇

(
∇yT∇p

)
−∇ (fp)

)
dx

=−
∫
X(u)

V T

(
(y − y)∇y +∇

(
∂y

∂t
p

)
+ k∇

(
∇yT∇p

)
−∇fp− f∇p

)
dx

+

∫
u

s(
1

2
(y − y)2 +

∂y

∂t
p+ k∇yT∇p− fp

)
〈V, n〉

{
ds

+

∫
Γout

(
1

2
(y − y)2 +

∂y

∂t
p+ k1∇yT∇p− fp

)
〈V, n〉 ds.

Combining this with (4.73) and the vector calculus identity

∇yT
(
∇V +∇V T

)
∇p+ V T∇

(
∇yT∇p

)
= ∇pT∇

(
V T∇y

)
+∇yT∇

(
V T∇p

)
,

which is proved in [16], gives

Dj(u)[V ]

=

T∫
0

[∫
X(u)
−k∇pT∇

(
V T∇y

)
− k∇yT∇

(
V T∇p

)
− (y − y)V T∇y

− V T∇
(
∂y

∂t
p

)
+ fV T∇p dx

+

∫
u

s(
1

2
(y − y)2 +

∂y

∂t
p+ k∇yT∇p− fp

)
〈V, n〉

{
ds

+

∫
Γout

(
1

2
(y − y)2 +

∂y

∂t
p+ k1∇yT∇p− fp

)
〈V, n〉 ds

]
dt.

(4.78)

Let us consider∫
X(u)

k∇yT∇
(
V T∇p

)
dx

=

∫
X1(u)

k1∇yT∇
(
V T∇p

)
dx+

∫
X2(u)

k2∇yT∇
(
V T∇p

)
dx
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in (4.78). Then by applying integration by parts we get∫
X(u)

k∇yT∇
(
V T∇p

)
dx

=

∫
X1(u)

k1∇yT∇
(
V T∇p

)
dx+

∫
X2(u)

k2∇yT∇
(
V T∇p

)
dx

=

∫
u∪Γout

k1
∂y

∂n
V T∇p ds−

∫
X1(u)

div(k1∇y)∇pTV dx+

∫
u
k2
∂y

∂n
V T∇p ds

−
∫
X2(u)

div(k2∇y)∇pTV dx

= −
∫
X(u)

div(k∇y)∇pTV dx+

∫
u

s
k
∂y

∂n
V T∇p

{
ds+

∫
Γout

k1
∂y

∂n
V T∇p ds.

Analogously, we get∫
X(u)

k∇pT∇
(
V T∇y

)
dx

= −
∫
X(u)

div(k∇p)∇yTV dx+

∫
u

s
k
∂p

∂n
V T∇y

{
ds+

∫
Γout

k1
∂p

∂n
V T∇y ds.

Applying the integration by parts formula (4.63) in (4.78) yields∫ T

0

∫
X(u)

V T∇∂y
∂t
p dxdt = −

∫ T

0

∫
X(u)

V T∇y∂p
∂t

dxdt.

Thus, it follows that

Dj(u)[V ]

=

T∫
0

[∫
X(u)
∇pTV

(
−∂y
∂t

+ div(k∇y) + f

)

+∇yTV
(
∂p

∂t
+ div(k∇p)− (y − y)

)
dx

+

∫
u

s(
1

2
(y − y)2 +

∂y

∂t
p− k∇yT∇p− fp

)
〈V, n〉

{

−
s
k
∂y

∂n
V T∇p

{
−

s
k
∂p

∂n
V T∇y

{
ds

+

∫
Γout

(
1

2
(y − y)2 +

∂y

∂t
p− k1∇yT∇p− fp

)
〈V, n〉

− k1
∂y

∂n
V T∇p− k1

∂p

∂n
V T∇y ds

]
dt

+

∫
X(u)

V T∇y(T, x)p(T, x) dx

(4.79)
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holds. The domain integrals in (4.79) vanish due to (4.65), (4.66) and (4.71). More-
over, the term

r(
∂y
∂t − f

)
p
z
vanishes because of (4.72) and the term

q
1
2(y − y)2

y

disappears because of (4.56). Then the identity
s
k
∂y

∂n
V T∇p

{
=

s
k
∂p

∂n
V T∇y

{
= 〈V, n〉

s
k
∂y

∂n

∂p

∂n

{
on u (4.80)

follows from (4.56) and (4.72). Since the outer boundary Γout is not variable, we
can choose the deformation vector field V equals zero in small neighbourhoods of
Γout. Therefore, the outer integral in (4.79) disappears and we obtain the interface
integral (4.76). It is easy to verify that∫

u
〈V, n〉

s
−2k

∂y

∂n

∂p

∂n
+ k∇yT∇p

{
ds =

∫
u
JkK∇yT1 ∇p2 〈V, n〉 ds, (4.81)

which completes the proof. For a detailed computation of (4.80) and (4.81) we refer
to [46, Subsection 11.3.2].

Now, we consider the objective function (4.50) with perimeter regularization. The
following theorem provides two boundary integral expressions of its shape derivative.

Theorem 4.32. Under the assumptions of Theorem 4.31, the shape derivative of
the objective function J in direction V is given by

DJu(u)[V ] =

∫
u

[∫ T

0
〈V, n〉

s
−2k

∂y

∂n

∂p

∂n
+ k∇yT∇p

{
dt+ 〈V, n〉µκ

]
ds, (4.82)

where κ denotes the curvature corresponding to the normal n. Let y1 := y
X1(u)

and
p2 := p

X2(u)
. Then the shape derivative of the objective function J in direction V

can be expressed as

DJu(u)[V ] =

∫
u

[∫ T

0
〈V, n〉 JkK∇yT1 ∇p2 dt+ 〈V, n〉µκ

]
ds. (4.83)

Proof. Combining Theorem 4.31 with formula (4.13) in Theorem 4.15 we get (4.82)
and (4.83).

Remark 4.33. In Theorem 4.30, the volume shape derivative expression is ob-
tained under the assumption that a solution y of the parabolic equation (4.51)-
(4.54) belongs to L2(0, T ;H1(X(u))) and that a solution p of the adjoint equation
(4.65)-(4.70) belongs to W (0, T ;H1(X(u))). In contrast to this, we need a higher
regularity to convert this volume expression to a surface integral. In Theorem 4.31
and Theorem 4.32, the shape derivative expressions are obtained under the assump-
tions that y ∈ L2(0, T ;H2(X(u))) and p ∈ Y (0, T ;H2(X(u)), H1(X(u))). A solu-
tion y ∈ L2(0, T ;H1(X(u))) of the parabolic problem (4.51)-(4.54) is an element of
L2(0, T ;H2(X(u))) if y0 ∈ H1(X(u)) and f ∈ L2(0, T ;L2(X(u))). Furthermore, a
solution p ∈ W (0, T ;H1(X(u))) of the adjoint equation (4.65)-(4.70) is an element
of Y (0, T ;H2(X(u)), H1(X(u))) if y − y ∈ L2(0, T ;L2(X(u))). See for instance [31,
Theorem 6, Subsection 7.1.3]).
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4.3. Riemannian shape calculus

4.3 Riemannian shape calculus

As pointed out in [84], shape optimization can be viewed as optimization on Rie-
mannian shape manifolds and the resulting optimization methods can be constructed
and analyzed within this framework. This combines algorithmic ideas from [1] with
the differential geometrical point of view established in [11]. In this short section, we
analyze the connection of Riemannian geometry on the shape space Be introduced
in the previous chapter to shape optimization in order to prepare Chapter 5.

Remark 4.34. In Chapter 6, the shape space Be containing C∞-shapes unneces-
sarily limits the application of methods established in this chapter. More precisely,
numerical investigations have shown that the optimization techniques also work on
shapes with kinks in the boundary. This means that they are not limited to elements
of Be and another shape space definition is required. Thus, in Chapter 7, we extend
the definition of C∞-shapes to shapes of class H1/2 and propose a novel shape space.
Its connection to shape calculus can be found in Section 7.1.

As already mentioned in Chapter 3, we mainly consider the Sobolev metric g1

on the shape space Be. The Riemannian connection with respect to this metric is
given in Theorem 3.3. This connection makes it possible to specify the Riemannian
shape Hessian of an optimization problem. First, we have to detail the Riemannian
shape gradient. Due to the Hadamard Structure Theorem 4.7, there exists a scalar
distribution r on the boundary Γ of the domain Ω under consideration. If we assume
r ∈ L1(Γ), the shape derivative can be expressed on the boundary Γ of Ω as

DJΓ[V ] =

∫
Γ
r 〈V, n〉 ds. (4.84)

The distribution r is often called the shape gradient. This terminology is also used
in this thesis. However, note that gradients depend always on chosen scalar prod-
ucts defined on the space under consideration. Thus, it rather means that r is the
usual L2-shape gradient. Since we want to optimize on shape manifolds, we have
to find a representation of the shape gradient with respect to a Riemannian metric
defined on the shape manifold under consideration. This representation is called the
Riemannian shape gradient. The shape derivative can be expressed (more concisely)
as

DJΓ[V ] =

∫
Γ
αr ds

if V
∂Ω

= αn. In order to get an expression of the Riemannian shape gradient with
respect to the Sobolev metric g1, we look at the isomorphism

TcBe ∼=
{
h : h = αn, α ∈ C∞(S1)

}
given in (3.2). Due to this isomorphism, a tangent vector h ∈ TΓBe is given by
h = αn with α ∈ C∞(Γ). This leads to the following definition.
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Definition 4.35 (Riemannian shape gradient with respect to the Sobolev metric).
A Riemannian representation of the shape derivative, i.e., the Riemannian shape
gradient of a shape differentiable objective function J in terms of the Sobolev metric
g1, is given by

grad(J) = qn with (I −A4Γ)q = r, (4.85)

where Γ ∈ Be, A > 0, q ∈ C∞(Γ) and r denotes the (standard) shape gradient given
in (4.84).

Now, we can specify the Riemannian shape Hessian. It is based on the Riemannian
connection ∇ related to the Sobolev metric g1. This Riemannian connection is given
in Theorem 3.3. In analogy to [1], we can define the Riemannian shape Hessian as
follows:

Definition 4.36 (Riemannian shape Hessian). In the setting above, the Riemannian
shape Hessian of a two times shape differentiable objective function J is defined as
the linear mapping

TΓBe → TΓBe, h 7→ Hess(J)[h] := ∇hgrad(J). (4.86)

Now, the Riemannian shape gradient and the Riemannian shape Hessian are de-
fined. These two objects are required in Chapter 5, in which we are concerned with
PDE constrained optimization on shape manifolds.

4.4 A view on volume shape derivative formulas

In this section, we provide a volume shape derivative formula for a special class of
PDE constrained shape interface problems. For the convenience of the reader we do
not consider regularization terms in the objective function. Of course, if necessary,
they can be added in the same way as in the problems of the previous sections.

Problem formulation

Let d, l ∈ N∗ and T > 0. We denote by X ⊂ Rd a bounded domain with Lipschitz
boundary ∂X. Let this domain be partitioned into two subdomains X1, X2 ⊂ X
separated by an interface Γint = ∂X1 ∩ ∂X2 such that X1 ∪· Γint ∪· X2 = X. This
interface is assumed to be smooth and variable. In contrast, the outer boundary
Γout = ∂X is assumed to be fixed. Since the domain X depends on Γint, we write
X(Γint). To be in line with Subsection 4.2.2, we replace Γint by u. Examples of such
partitioned domains are illustrated for d = 2 in Figure 4.1.
In the following, let a1(t, x; ·, ·) denote a bilinear form on Rd×l × Rd×l for all

(t, x) ∈ [0, T ] ×X(u). Moreover, let a2(t, x; ·) : Rd×l → Rl and i(t, x; ·) : Rl → R be
functions for all (t, x) ∈ [0, T ]×X(u). We assume that a1(·, ·; ξ, η) and a2(·, ·; ξ) are
continuously differentiable for all ξ, η ∈ Rd×l. Furthermore, i(·, ·; ζ) is assumed to be
continuously differentiable for all ζ ∈ Rl.
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4.4. A view on volume shape derivative formulas

Let y : [0, T ]×X(u)→ Rl be an element of L2(0, T ;H1(X(u),Rl)). Moreover, let
a1, a2 and i be integrable in [0, T ]×X(u) such that the following integrals exist. We
consider the following PDE constrained shape interface problem in weak form:

min
u

J(u) :=

∫ T

0

∫
X(u)

i(t, x; y)dxdt (4.87)

s.t. a(y, p) = b(p) ∀p ∈W (0, T ;H1(X(u),Rl)) (4.88)

with bilinear form

a(y, p) =−
∫
X(u)

yT0 p(0, x) dx

−
∫ T

0

∫
X(u)

yT
∂p

∂t
dxdt+

∫ T

0

∫
X(u)

a1(t, x;M∇y,∇p)dxdt

−
∫ T

0

∫
Γout

a2(t, s;M1∇y)pdsdt−
∫ T

0

∫
u
Ja2(t, s;M∇y)pK dsdt

(4.89)

and linear form

b(p) =

∫ T

0

∫
X(u)

fT pdxdt, (4.90)

where

f :=

{
f1 = const. in X1(u)× (0, T ]

f2 = const. in X2(u)× (0, T ]

and J·K denotes the jump symbol defined in (4.21). Note that the weak equation
(4.88)-(4.90) contains jump conditions such that there is a discontinuity across the
interface u. Among other things, these conditions are described by a (d× d)-matrix
denoted by M . We formulate explicitly the continuity of the state and the flux at
the interface as

JyK = 0 , Ja2(t, s;M∇y)K = 0 on u× (0, T ], (4.91)

Note that the flux condition is given by a2. In general, this flux condition includes
the outward unit normal n to X2(u). Examples of such flux conditions can be found
at the end of this section. Note that there is the initial condition

y = y0 in X(u)× {0}

included in (4.89). Let y0 ∈ H1(X(u),Rl) be given. Intentionally, the weak for-
mulation of the PDE (4.87)-(4.90) is chosen for ease of presentation. Note that the
boundary integrals in (4.89) are to be understood as duality pairings.

Remark 4.37. As in Subsection 4.2.2, we have to assume p = 0 in X(u)× {T} in
order to get rid of the term y(T, x) in (4.89). Note that this value is not necessarily
defined because y ∈ L2(0, T ;H1(X(u),Rl)) need not to be continuous in time.
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Remark 4.38. The integration by parts in time can be applied. More precisely,∫ T

0

∫
X(u)

∂y

∂t

T

pdxdt

=

∫
X(u)

y(T, x)T p(T, x) dx−
∫
X(u)

y(0, x)T p(0, x) dx−
∫ T

0

∫
X(u)

yT
∂p

∂t
dxdt

holds for all y, p ∈W (0, T ;H1(X(u),Rl)).

Shape derivative formula

As in the previous sections, we deduce the shape derivative of the problem above by
applying Theorem 4.19. Note that this subsection provides a volume shape derivative
formula with regard to Chapter 6. This chapter establishes optimization algorithms,
which require only boundary shape derivative formulas and, thus, do not need sur-
face shape derivative formulas. Note that we do not convert the volume integral
expression of the shape derivative into an interface integral as in the sections before.
First, we build the Lagrangian corresponding to the problem above. We define

K := L2(0, T ;H1(X(u),Rl))×Be(Sl−1,Rl)×W (0, T ;H1(X(u),Rl)). (4.92)

For (y, u, p) ∈ K the Lagrangian is given by

L (y, u, p) := J(u) + a(y, p)− b(p), (4.93)

where J is defined in (4.87) and a, b are given in (4.89)-(4.90). Due to the theorem
of Correa and Seeger, the shape derivative of L evaluated in its saddle point is equal
to the one of J . A saddle point (y, u, p) ∈ K of the Lagrangian (4.93) is given by

∂L (y, u, p)

∂y
=
∂L (y, u, p)

∂p
= 0, (4.94)

which leads to the adjoint equation given in weak form by∫ T

0

∫
X(u)

∂p

∂t

T

q dxdt+

∫ T

0

∫
X(u)

a1(t, x;M∇p,∇q)dxdt

−
∫ T

0

∫
Γout

a2(t, s;M1∇p)q dsdt−
∫ T

0

∫
u
Ja2(t, s;M∇p)qK dsdt

= −
∫ T

0

∫
X(u)

∂i(t, x; y)

∂y
q dxdt ∀q ∈ L2(0, T ;H1(X(u),Rl))

(4.95)

and to the design equation given in weak form by (4.88)-(4.90). Note that we have
interface conditions on the interface for the adjoint p. We formulate them explicitly
as

JpK = 0 , Ja2(t, s;M∇p)K = 0 on u× [0, T ). (4.96)

Now, we are able to formulate the following theorem which provides a volume
shape derivative formula.
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Theorem 4.39. Assume that a solution y of the PDE problem (4.88)-(4.90) exists
and is at least in L2(0, T ;H1(X(u),Rl)). Moreover, assume that the adjoint equa-
tion (4.95) admits a solution p which is at least in W (0, T ;H1(X(u),Rl)). If the
assumptions of the theorem of Correa and Seeger are fulfilled, the shape derivative of
the objective function J defined in (4.16) is given by

DJX(u)(u)[V ]

=

∫ T

0

∫
X(u)

− a1(t, x;M∇V T∇y,∇p)− a1(t, x;M∇y,∇V T∇p)− V T∇fp

+ div(V )
(
i(t, x; y) +

∂y

∂t

T

p+ a1(t, x;M∇y,∇p)− fT p
)
dxdt.

(4.97)

Proof. Due to arguments identical to those in the proof of Theorem 3.12 in [100], a
solution y ∈ L2(0, T ;H1(X(u),Rl)) of the PDE problem (4.88)-(4.90) is – possibly
after a modification on a set of zero measure – an element of W (0, T ;H1(X(u),Rl)).
This means that integration by parts in time can be applied (cf. Remark 4.38).
Let u ∈ Be(Sl−1,Rl) and let L be the Lagrangian defined in (4.93). In analogy

to [23, Chapter 10, Subsection 5.2], we can verify that

J(u) = min
y∈L2(0,T ;H1(X(u),Rl))

max
p∈W (0,T ;H1(X(u),Rl))

L (y, u, p) (4.98)

holds. We apply Theorem 4.19 on the right-hand side of (4.98). This means that we
obtain formula (4.97) by evaluation of the shape derivative of the Lagrangian (4.93)
in its saddle point.
Applying the rules for differentiating domain and boundary integrals given in (4.9)

and (4.11) combined with integration by parts in time yields

DL (y, u, p)[V ]

=−
∫
X(u)

Dm

(
yT0 p(0, x)

)
dx+

∫ T

0

∫
X(u)

Dmi(t, x; y) dxdt

+

∫ T

0

∫
X(u)
−Dm

(
yT
∂p

∂t

)
+Dm (a1(t, x;M∇y,∇p))−Dm

(
fT p

)
+ div(V )

(
i(t, x; y) +

∂y

∂t

T

p+ a1(t, x;M∇y,∇p)− fT p
)
dx dt

−
∫ T

0

∫
u
Dm (Ja2(t, s;M∇y)pK) + divu(V ) Ja2(t, s;M∇y)pK dsdt

−
∫ T

0

∫
Γout

Dm (a2(t, s;M1∇y)p) + divΓout(V )a2(t, s;M1∇y)pdsdt.

From this, by applying the rules for material derivatives given in Section 4.1 we
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obtain

DL (y, u, p)[V ]

=

∫
X(u)
−ẏT0 p(0, x)− yT0 ṗ(0, x) dx

+

∫ T

0

∫
X(u)

∂i(t, x; y)

∂y
ẏ − yT ∂ṗ

∂t
− ẏT ∂p

∂t
+ a1(t, x;M∇ẏ −M∇V T∇y,∇p)︸ ︷︷ ︸

=a1(t,x;M∇ẏ,∇p)−a1(t,x;M∇V T∇y,∇p)

+ a1(t, x;M∇y,∇ṗ−∇V T∇p)︸ ︷︷ ︸
=a1(t,x;M∇y,∇ṗ)−a1(t,x;M∇y,∇V T∇p)

−ḟT p− fT ṗ

+ div(V )

(
i(t, x; y) +

∂y

∂t

T

p+ a1(t, x;M∇y,∇p)− fT p
)
dx dt

−
∫ T

0

∫
u
JDma2(t, s;M∇y)p+ a2(t, s;M∇y) ṗK + divu(V ) Ja2(t, s;M∇y)pK dsdt

−
∫ T

0

∫
Γout

Dma2(t, s;M1∇y)p+ a2(t, s;M1∇y) ṗ+ divΓout(V )a2(t, s;M1∇y)p dsdt,

where the term ḟT p is equal to V T∇fp due to (4.5). The outer boundary Γout is not
variable. Thus, we can choose the deformation vector field V equals zero in small
neighbourhoods of Γout. Now, let us consider the saddle point condition (4.94). This
gives

dL (y, u, p)[V ]

=

∫ T

0

∫
X(u)
−a1(t, x;M∇V T∇y,∇p)− a1(t, x;M∇y,∇V T∇p)− V T∇fp

+ div(V )

(
i(t, x; y) +

∂y

∂t

T

p+ a1(t, x;M∇y,∇p)− fT p
)
dxdt

+

∫ T

0

∫
u

Ja2(t, s;M∇p) ẏK− JDma2(t, s;M∇y)pK

− divu(V ) Ja2(t, s;M∇y)pK dsdt

Due to (4.91) and (4.96), we get

Ja2(t, s;M∇p) ẏK = Ja2(t, s;M∇p)K ẏ = 0 on u× (0, T ],

JDma2(t, x;M∇y)pK = Dma2(t, x;M∇y) JpK = 0 on u× (0, T ].

The identity
Ja2(t, s;M∇y)pK = 0 on u× (0, T ),

which follows from (4.40), (4.91) and (4.96), completes the proof.
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4.4. A view on volume shape derivative formulas

The shape derivative formula (4.97) can be applied, for example, to the elliptic
problem (4.16)-(4.20) of Subsection 4.2.1 or to the parabolic problem (4.50)-(4.56)
of Subsection 4.2.2, where we ignore the regularization term jreg in the objective
functions J given in (4.16) and (4.50):

• Elliptic problem
Without time dependence and by choosing l = 1, d = 2, M = I and

a1(x; ·, ·) : R2 × R2 → R, (ξ, η) 7→ ξT η

we get (4.32). Note that the flux condition is given by

a2(s; ·, ·) : R2 → R, ξ 7→ ξTn.

• Parabolic problem
By choosing l = 1, d = 2, M = kI, f = f1 = f2 = const. in [0, T ]×X(u) and

a1(t, x; ·, ·) : R2 × R2 → R, (ξ, η) 7→ ξT η

we get (4.73). Note that the flux condition is given by

a2(s; ·, ·) : R2 → R, ξ 7→ ξTn.

Another example for the application of the shape derivative formula (4.97) is the
following shape optimization problem (without regularization term) constrained by
the linear elasticity equation:

min
u∈Be(S2,R3)

J(u) :=

∫
X(u)

σ(y) : ε(y)dx (4.99)

s.t.− div(σ(y)) = f in X(u) (4.100)
y = 0 on Γout (4.101)

with

σ(y) := λtr(ε(y))I + 2µε(y), (4.102)

ε(y) :=
1

2
(∇y +∇yT ). (4.103)

In linear elasticity, σ is called the stress tensor and ε is called the strain tensor. λ and
µ denote the Lamé parameters, which can be expressed in terms of Young’s modulus
E and Poisson’s ratio ν as

λ =
νE

(1 + ν)(1− 2ν)
, (4.104)

µ =
E

2(1 + ν)
. (4.105)
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Chapter 4. Shape derivative

In the objective function (4.99), we use the inner product of two second-order tensors.
It is given as the sum of component-wise products, i.e.,

σ(y) : ε(y) :=
∑
ij

σ(y)ijε(y)ij .

We formulate explicitly the continuity of the state and the flux at the interface by

JyK = 0, Jσ(y) · nK = 0 on u. (4.106)

Note that we have no time dependence. We set l = d = 3 and M = I. Moreover, we
choose f = f1 = f2 = const. in X(u). The bilinear form a1(x, ·, ·) is given by

a1(x; ·, ·) : R3 × R3 → R, (∇y,∇p) 7→ σ(y) : ∇p.

Furthermore, the flux condition is given by

a2(s; ·) : R3×3 → R3, ∇y 7→ σ(y) · n.

Applying the shape derivative formula (4.97) on the PDE constrained problem (4.99)-
(4.101) yields

DJX(u)(u)[V ] =

∫
X(u)

[
− σ(y) : (∇V T∇p)− σ(p) : (∇V T∇y)− V T∇fp

+ div(V )
(
σ(y) : ε(y) + σ(p) : ∇y − fT p

)]
dx.

(4.107)

For the sake of completeness, we give the adjoint equation corresponding to the
PDE constrained problem (4.99)-(4.101):

−div(σ(p)) = −f in X(u) (4.108)
p = 0 on Γout (4.109)

Remark 4.40. Note that

σ(y) : ∇p = σ(y) : ε(p) (4.110)

holds because σ(y) is symmetric, see for instance [90]. From this we get

σ(y) : ∇p = σ(p) : ∇y (4.111)

by transformations. We use (4.110)-(4.111) to specify the adjoint equation (4.108)-
(4.109). Moreover, we require (4.111) to specify the shape derivative (4.107). Note
that the right-hand side of (4.108) arises from the weak formulation of the linear
elasticity equation (4.100)-(4.101), more precisely:

J(u) =

∫
X(u)

σ(y) : ε(y)dx =

∫
X(u)

fy dx

⇒
∫
X(u)

∂

∂y
(σ(y) : ε(y)) dx =

∫
X(u)

f dx
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Chapter 5
Lagrange-Newton and quasi-Newton
approach

Many real world problems can be formulated as shape optimization problems.
In particular, shape optimization problems arise frequently in technological pro-
cesses, which are modelled by PDEs as in [7, 8, 9, 30, 35, 79, 82, 83]. In a lot of
practical circumstances, the shape under investigation is parametrized by a finite
number of parameters, which, on the one hand, allows the application of standard
optimization approaches, but, on the other hand, unnecessarily limits the space of
reachable shapes. Shape calculus, which has been the subject of several monographs
[23, 67, 93] and which has been a topic in the previous chapter, presents a way to
circumvent this dilemma. However, so far optimization based on shape calculus is
mainly performed using gradient descent methods, which can be shown to converge.
The major difference between shape optimization and the standard PDE constrained
optimization framework is the lack of a linear space structure in shape spaces. If one
cannot work with linear spaces, then Riemannian manifolds are the next best option.
Riemannian manifolds for shape spaces are discussed in [11, 12, 62, 63, 64] and in
Chapter 3. The publication [84] links shape calculus with shape manifolds and, thus,
enables the usage of optimization techniques on manifolds in the context of shape
optimization. This chapter is devoted to the extension of the Riemannian geomet-
rical point of view on shape optimization established in [84] to a Lagrange-Newton
and a quasi-Newton approach for PDE constrained shape optimization. Generally,
a Lagrange-Newton method is obtained by applying a Newton method to find sta-
tionary points of the Lagrangian. In contrast to this method, which requires the
Hessian of the Lagrangian in each iteration, quasi-Newton methods only need an
approximation in each iteration. Such an approximation is realized, for example, by
a limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.
This chapter is organized as follows. In Section 5.1, the above-mentioned Lagrange-

Newton approach is formulated. It is based on optimization on Riemannian vector
space bundles and exemplified for the elliptic shape interface optimization problem
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Chapter 5. Lagrange-Newton and quasi-Newton approach

introduced in Subsection 4.2.1. Section 5.2 presents a limited memory BFGS quasi-
Newton technique in shape spaces and discusses the theoretical background from
optimization on Riemannian manifolds. Finally, Section 5.3 gives numerical results
for the interface problems introduced in Section 4.2.

5.1 Lagrange-Newton approach

This section is devoted to a Lagrange-Newton approach for PDE constrained shape
optimization problems. Newton-type methods have been used in shape optimiza-
tion for many years, e.g., [28, 72]. Here we specify them for the particular case
of shape manifolds. Subsection 5.1.1 presents a vector bundle framework on which
the Lagrange-Newton approach is based. This framework is based on the Rieman-
nian framework established in [84], which enables the discussion of Lagrange-Newton
methods within the shape calculus framework for PDE constrained shape optimiza-
tion. Afterwards, in Subsection 5.1.2, this Riemannian vector bundle framework
is applied to the elliptic shape interface optimization problem considered in Sub-
section 4.2.1. The numerical results for this application are presented in Subsec-
tion 5.3.1.

5.1.1 Riemannian vector bundle framework

Definition 2.19 of a vector bundle can be generalized to a Riemannian one. Instead
of Banach spaces, we have to deal with Hilbert spaces. Let (M, g) be a Riemannian
manifold of class Cq with q ∈ N and suppose that (H,π,M) is a Riemannian vector
bundle. This means that for each u ∈ M the fiber H(u) := Hu is a Hilbert space,
there is a bundle-projection π : H → M and for an open covering {Ui}i of M there
is a local Cq-isomorphism

τi : π
−1(Ui)→ Ui ×H0.

Moreover, each τi induces a linear isometric isomorphism

τi(u) : H(u)→ H0 (5.1)

on each fiber π−1(u) = H(u) for all u ∈ Ui. The total space H of the vector bundle
(H,π,M) is by itself a Riemannian manifold, where the tangent bundle TH satisfies
TyH ∼= H(u)⊕ TuM . Let

E := {(y, u) : y ∈ H(u), u ∈M}.

Moreover, let au define a bilinear form and let bu be a linear form. We consider the
following PDE constrained optimization problem in weak form:

min
(y,u)∈E

J(y, u) , J : E → R (5.2)

s.t. au(y, p) = bu(p) ∀p ∈ H(u) (5.3)
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5.1. Lagrange-Newton approach

The scalar valued function J is assumed to be Cq. Intentionally, the weak formula-
tion of the PDE is chosen for ease of presentation. Now, we define the Lagrangian L
in order to formulate the adjoint and design equation to the PDE constrained opti-
mization problem (5.2)-(5.3).

Definition 5.1. The Lagrangian corresponding to (5.2)-(5.3) is defined by

L : F → R, (y, u, p) 7→ J(y, u) + au(y, p)− bu(p),

where F := {(y, u, p) : y, p ∈ H(u), u ∈M} with T(y,u,p)F ∼= H(u)× TuM ×H(u).

Let (ŷ, û) ∈ E solve the optimization problem (5.2)-(5.3). Then the (adjoint)
variational problem, which we obtain by differentiating L with respect to y, is given
by

aû(z, p) = − ∂

∂y y=ŷ
J(y, û)z ∀z ∈ H(û) (5.4)

and the design problem, which we obtain by differentiating L with respect to u, is
given by

∂

∂u u=û
[J(ŷ, u) + au(ŷ, p̂)− bu(p̂)]w = 0 ∀w ∈ TûM, (5.5)

where p̂ ∈ H(û) solves (5.4). The derivative on the left-hand side of (5.5) means
the shape derivative DL (ŷ, u, p̂)[w]

u=û
. If we differentiate L with respect to p, we

obtain the state equation (5.3). The conditions (5.3)-(5.5) can be collected in the
following condition:

dL (ŷ, û, p̂)[h] = 0 ∀h ∈ T(ŷ,û,p̂)F, (5.6)

where dL (ŷ, û, p̂)[h] denotes the directional derivative of L at (ŷ, û, p̂) in direction h.
For h = (hy, hu, hp) with ‖h‖T(y,u,p)F = 1, it is given by

dL (ŷ, û, p̂)[h] = dyL (ŷ, û, p̂)hy + duL (ŷ, û, p̂)hu + dpL (ŷ, û, p̂)hp, (5.7)

where dy = ∂
∂y , du = ∂

∂u , dp = ∂
∂p and duL (ŷ, û, p̂)hu is another notation for the

shape derivative DL (ŷ, û, p̂)[hu].

Remark 5.2. The condition (5.6) or, equivalently, the conditions (5.3)-(5.5) are
the well-known Karush-Kuhn-Tucker (KKT) conditions.

By using a Riemannian metric g = (gu)u∈M on M and a smoothly varying scalar
product 〈·, ·〉u on the Hilbert space H(u), we can envision T(y,u,p)F as a Hilbert space
with the canonical scalar product

〈
z1

w1

q1

,

z2

w2

q2


〉
T(y,u,p)F

= 〈z1, z2〉u + gu(w1, w2) + 〈q1, q2〉u . (5.8)
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Chapter 5. Lagrange-Newton and quasi-Newton approach

This scalar product can be used to find a representation of the Riemannian gradient

gradL (y, u, p) =


gradyL (y, u, p)

graduL (y, u, p)

gradpL (y, u, p)

 ∈ T(y,u,p)F

by the condition

〈gradL (y, u, p), h〉T(y,u,p)F
= dL (y, u, p)[h] ∀h ∈ T(y,u,p)F.

Now, similarly to standard non-linear programming, we can solve the problem of
finding (y, u, p) ∈ F with

gradL (y, u, p) = 0 (5.9)

in order to find solutions of the optimization problem (5.2)-(5.3). The non-linear
problem (5.9) has exactly the form of the root finding problems discussed in [84].
Exploiting the Riemannian structure on TF , we can formulate a Newton iteration.
Let HessL denote the Riemannian Hessian, which is based on the resulting Rie-
mannian connection ∇cov : Γ(TF ) × Γ(TF ) → Γ(TF ). Moreover, let R denote a
retraction map on F . With this notation the Newton iteration is formulated in
Algorithm 1.

Algorithm 1. k-th Newton iteration.
(1) Compute the increment ∆ξ as solution of

HessL (ξk)∆ξ = −gradL (ξk). (5.10)

(2) Compute the increment ξk+1 = Rξk(αk ·∆ξ) for some steplength αk.

In the following, we have to specify both, the Riemannian Hessian and the re-
traction map. However, we first have to specify the scalar product on the involved
Hilbert space. We want to choose a metric that is as simple as possible in the Hilbert
space parts. Therefore, we use a metric defined on the Hilbert space (H0, 〈·, ·〉0) and
transfer this canonically to the Hilbert spaces H(u). Thus, in the following, we as-
sume that we have to deal with one particular chart (Ui, τi) of the covering {Ui}i
only, where τi : π−1(Ui)→ H0 × Ui, and define

〈z1, z2〉u := 〈τi(u)z1, τi(u)z2〉0 ∀u ∈ Ui .

Now, we devote to the retraction R on F in Algorithm 1. Retractions can be rep-
resented by geodesics, which are given by the exponential map due to Theorem 2.33.
In the Hilbert space parts of F , they are represented by straight lines in H0. Thus,
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5.1. Lagrange-Newton approach

if expM denotes the exponential map on the manifold M , the exponential map on F
can be expressed in the form

exp(y,u,p)(z, w, q)

=
((
τi
(
expMu (w)

)−1 ◦ τi(u)
)

(y + z), expMu (w),
(
τi
(
expMu (w)

)−1 ◦ τi(u)
)

(p+ q)
)
.

Within iteration (5.10) in Algorithm 1, the Riemannian Hessian has to be dis-
cussed. It is based on the Riemannian connection ∇cov : Γ(TF )× Γ(TF )→ Γ(TF ).
Let ∇M denote the Riemannian covariant derivative on (TM, π̃,M), where π̃ is the
natural projection (cf. Subsection 2.3.1). Due to the observation that mixed co-
variant derivatives of vectors from H with respect to tangential vectors in TM are
reduced to simple directional derivatives, which is the case for derivatives in linear
spaces anyway, for (hy, hu, hp) ∈ T(y,u,p)F the covariant derivative is given as follows:

∇cov
(hy ,hu,hp) : T(y,u,p)F → T(y,u,p)F,

hy

hu

hp

 7→

dyhy hy + duhy hu + dphy hp

dyhu hy +∇Mhuhu + dphu hp

dyhp hy + duhp hu + dphp hp

 (5.11)

In our vector bundle setting, the Riemannian Hessian of the Lagrangian is defined
by the mapping

T(y,u,p)F → T(y,u,p)F , l 7→ HessL [l] := ∇cov
l gradL . (5.12)

From (5.11)-(5.12) we conclude the following block structure of the Hessian:

HessL =


dygradyL dugradyL dpgradyL

dygraduL ∇MgraduL dpgraduL

dygradpL dugradpL 0

. (5.13)

Note the difference of the Hessian in the vector bundle setting (cf. (5.12)) and the
Riemannian shape Hessian defined on a Riemannian manifold (M, g). In the case
(M, g) = (B0

e , g
1) or (M, g) = (Be, g

1), the Riemannian shape Hessian is given by
(4.86). In the following, we denote the Riemannian shape Hessian defined on M by
HessM to avoid confusion. The representation of the covariant derivative ∇Be with
respect to the Sobolev metric g1 is given in Theorem 3.3.
Let 4ξ = (z, w, q)T in (5.10). Then, in order to solve equation (5.10) in Algo-

rithm 1, the following equations have to be satisfied for all (z, w, q)T ∈ T(y,u,p)F :

H11(z, z) +H12(w, z) +H13(q, z) = −au(z, p)− ∂

∂y
J(y, u)z (5.14)

H21(z, w) +H22(w,w) +H23(q, w) = − ∂

∂u
[J(y, u) +au(y, p)− bu(p)]w (5.15)

H31(z, q) +H32(w, q) +H33(q, q) = −au(y, q) + bu(q) (5.16)

79



Chapter 5. Lagrange-Newton and quasi-Newton approach

In (5.14)-(5.16), the terms Hij , where i, j ∈ {1, 2, 3}, are given by

H11(z, z) =
∂2

∂y2
J(y, u)zz,

H12(w, z) =
∂

∂u

[
au(z, p) +

∂

∂y
J(y, u)z

]
w,

H13(q, z) = au(z, q),

H21(z, w) =
∂

∂y

∂

∂u
([J(y, u) + au(y, p)]w) z,

H22(w,w) = g
(
HessML (y, u, p)[w], w

)
,

H23(q, w) =
∂

∂p

∂

∂u
([au(y, p)− bu(p)]w) q,

H31(z, q) = au(z, q),

H32(w, q) =
∂

∂u
[au(y, q)− bu(q)]w,

H33(q, q) = 0.

The covariant derivative ∇cov on F reveals natural symmetry properties and, thus,
obvious symmetries can be observed in the above components not involving second
shape derivatives. A key observation in [84] is that even the expression H22 is
symmetric in the solution of the shape optimization problem. This motivates a
shape sequential quadratic programming (SQP) method as outlined below, where
away from the solution only expressions in H22 are used which are non-zero at the
solution. Its basis is the following observation:

If the term H22 is replaced by an approximation Ĥ22 such that

(i) the approximation Ĥ22 omits all terms in H22 which are zero at the solution
and

(ii) the reduced Hessian of (5.13) built with this approximation is coercive,

then equation (5.10) is equivalent to the following linear quadratic problem (QP):

min
(z,w)

1

2

(
H11(z, z) + 2H12(w, z) + Ĥ22(w,w)

)
+
∂

∂y
J(y, u)z+

∂

∂u
J(y, u)w (5.17)

s.t. au(z, q) +
∂

∂u
[au(y, q)− bu(q)]w = −au(y, q) + bu(q) ∀q ∈H(u) (5.18)

In the next subsections, we also omit terms in H21 and H12 which are equal to zero
when evaluated at the solution of the optimization problem. Nevertheless, quadratic
convergence of the resulting SQP method is to be expected and indeed observed in
Subsection 5.3.1.
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5.1.2 Application of the Riemannian vector bundle framework

In this section, we apply the theoretical discussion of the previous section to the
elliptic PDE constrained shape interface optimization problem (4.16)-(4.20) discussed
in Subsection 4.2.1. Consequently, we consider shapes u ∈ B0

e , where the space B0
e

is defined in (4.15). For our discussions, among the various Riemannian metrics
mentioned in Section 3.2, we pick the first Sobolev metric g1.
Now, F defined in Definition 5.1 is given by (4.25). The metric in the vector space

parts is constructed by employing a mesh deformation. Mesh deformations are often
used to deform a computational mesh smoothly in accordance with a boundary de-
formation of the computational domain. In our setting, we deform the computational
domain rather than only the mesh. Moreover, we assume that there is a bijective
C∞-mapping Φu : (0, 1)2 → Ω(u), e.g., Φu is the deformation given by the solution
of a linear elasticity equation. Thus, we can construct the linear isomorphism (5.1)
by the bijective identification τ(u) : H1

0 (Ω(u))→ H1
0

(
(0, 1)2

)
, g 7→ g ◦ Φu.

We have to detail the expressions in equation (5.10). The Lagrangian L is defined
in (4.26). The shape derivative of L in the direction of a continuous vector field V is
given in Theorem 4.25. We now focus on the weak formulation (5.14)-(5.16). In the
case of (4.16)-(4.20), we observe the following expressions for the right-hand sides:

−au(z, p)− ∂

∂y
J(y, u)z =−

∫
Ω(u)
∇zT∇p+ (y − y)z dx (5.19)

− ∂

∂u
[J(y, u) + au(y, p)− bu(p)]w =

∫
u

(JfK p− µκ) 〈w, n〉 ds (5.20)

−au(y, q) + bu(q) =

∫
Ω(u)
−∇yT∇q + fq dx (5.21)

These expressions are set to zero in order to define the necessary optimality condi-
tions. In the following, we discuss more details about the Hessian. First, we consider
Hij , where i, j ∈ {1, 2, 3}, without the term H22, which requires special care. The
other terms can be expressed at the solution (y, u, p) ∈ F of the optimization problem
(4.16)-(4.20) for all h = (z, w, q)T ∈ T(y,u,p)F as

H11(z, z) =
∂2

∂y2
J(y, u)zz =

∫
Ω(u)

zz dx,

H12(w, z) =
∂

∂u

[
au(z, p) +

∂

∂y
J(y, u)z

]
w = 0,

H13(q, z) = au(z, q) =

∫
Ω(u)
∇zT∇q dx,

H21(z, w) =
∂

∂y

∂

∂u
([J(y, u) + au(y, p)]w)z = 0,

H23(q, w) =
∂

∂p

∂

∂u
([au(y, p)− bu(p)]w) q = −

∫
u
JfK q 〈w, n〉 ds,
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H31(z, q) = au(z, q) =

∫
Ω(u)
∇zT∇q dx,

H32(w, q) =
∂

∂u
[au(y, q)− bu(q)]w = −

∫
u
JfK q 〈w, n〉 ds,

H33(q, q) = 0.

Now, we consider the term H22. We evaluate it at the solution of the optimization
problem. Arguments identical to those in the proof of Proposition 5.5.2 in [1] can
be used to state that the Riemannian shape Hessian based on the metric g1 on B0

e

satisfies the relation

g1
(
HessB

0
eL (y, u, p)[w], w

)
= D2L (y, u, p)[w,w]−DL (y, u, p)

[
∇B0

e
w w

]
. (5.22)

Since H22 is evaluated at the solution of the optimization problem,

DL (y, u, p)
[
∇B0

e
w w

]
= 0 (5.23)

holds. In Subsection 5.3.1, the solution of (4.16)-(4.20) is a straight line connection
of the points (0.5, 0), (0.5, 1). In this special case, the curvature is equal to zero and,
thus, the necessary optimality condition (5.20) reduces to

− ∂

∂u
[J(y, u) + au(y, p)− bu(p)]w =

∫
u
JfK p 〈w, n〉 ds. (5.24)

Combining (5.22)-(5.24) with Theorem 4.14 and Theorem 4.15 gives

H22(w,w)

= g1
(
HessB

0
e (J(y, u) + au(y, p)− bu(p))w,w

)
=

∫
u
−D (JfK p) [w] 〈w, n〉 − JfK

(
κp+

∂p

∂n

)
〈w, n〉 〈w, n〉

+ µ
∂w

∂τ

∂w

∂τ
〈w, n〉 〈w, n〉 ds,

(5.25)

where ∂
∂τ denotes the derivative tangential to u. In our setting, we observe

p = 0 in Ω(u) (5.26)

in the solution of the tracking-type optimization problem (4.16)-(4.20). Thus, in the
solution, all derivatives of p are equal to zero. Consequently,

D (JfK p) [w] = JfKDp[w] = 0 and
∂p

∂n
= 0 on u. (5.27)

Due to (5.25)-(5.27), H22 reduces to

Ĥ22(w,w) =

∫
u

(
µ
∂w

∂τ

∂w

∂τ
− JfKκp

)
〈w, n〉 〈w, n〉 ds. (5.28)
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5.1. Lagrange-Newton approach

By using the expressions above, we can formulate the QP (5.17)-(5.18) at the
solution in the following form:

min
(z,w)
F(z, w, y, p) (5.29)

s.t.
∫

Ω(u)
∇zT∇q dx−

∫
u
JfK qw ds

= −
∫

Ω(u)
∇yT∇q dx+

∫
Ω(u)

fq dx ∀q ∈ H1
0 (Ω(u)) (5.30)

with the objective function

F(z, w, y, p) =

∫
Ω(u)

z2

2
+ (y − y)z dx+

∫
u
µκw − JfK pw ds

+
1

2

∫
u
µ

(
∂w

∂τ

)2

− JfKκpw2 ds.

(5.31)

This QP is given in weak form, but it can be rewritten in the more intelligible strong
form of an optimal control problem as follows:

min
(z,w)
F(z, w, y, p) (5.32)

s.t. −4z = 4y + f in Ω(u) (5.33)
z = 0 on ∂Ω(u) (5.34)

s
∂z

∂n

{
= JfKw on u (5.35)

Note that the interface condition (5.35) can also be expressed as

∂z

∂n
= f1w and − ∂z

∂n
= f2w on u.

The adjoint problem to the optimal control problem (5.32)-(5.35) is the following
boundary value problem:

−4q = −z − (y − y) in Ω(u) (5.36)
q = 0 on ∂Ω(u) (5.37)

The resulting design equation for the optimal control problem (5.32)-(5.35) is given
by

0 = − JfK (p+ κpw + q) + µκ− µ∂
2w

∂τ2
on u. (5.38)
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Chapter 5. Lagrange-Newton and quasi-Newton approach

5.2 Quasi-Newton approach

This section is devoted to a quasi-Newton approach for PDE constrained shape
optimization problems. Quasi-Newton methods on general manifolds have already
been discussed in [1, 33, 77]. Here we specify them for the particular case of shape
manifolds. From a different standpoint, the discussion in this section can be viewed
as a generalization of the elliptic structured inverse modelling in the publications
[46, 73] to the parabolic case. The methodology and algorithm established in this
section apply, for example, to the problem of inversely determining cell shapes in the
human skin as investigated in [68].
As already mentioned in Section 4.3, shape optimization can be viewed as opti-

mization on Riemannian shape manifolds and the resulting optimization methods
can be constructed and analyzed within this framework. We consider connected and
compact subsets X2 ⊂ R2 with X2 6= ∅ and variable C∞-boundary ∂X2 (cf. Fig-
ure 4.1). The boundary ∂X2 can be identified with a simple closed curve c : S1 → R2

and is an element of the shape space Be defined in (3.1). In this thesis, among all
Riemannian metrics mentioned in Section 3.2, we pick the Sobolev metric g1 given
in (3.6). With the shape space (Be, g

1) and its tangent space TcBe, which is given in
(3.2), we can state an expression of the Riemannian shape gradient corresponding to
a shape derivative. In this section, we mean always the Riemannian shape gradient
with respect to (Be, g

1) by grad(·). In our setting, the Riemannian shape gradient
is given in Section 4.3, more precisely in (4.85).
In the sequel, we need the concept of the covariant derivative corresponding to

the Sobolev metric g1. This covariant derivative is given in Theorem 3.3. Moreover,
we need the exponential map expc : TcBe → Be, h 7→ expc(h) which defines a local
diffeomorphism between the tangent space and the manifold by following the locally
uniquely defined geodesic expc(h) starting in c ∈ Be with velocity h ∈ TcBe.

Recall that a Lagrange-Newton method is obtained by applying a Newton method
on the KKT-conditions of a PDE constrained optimization problem. Its application is
based on the tangent condition. In contrast to this method, the application of a quasi-
Newton method is based on the secant condition. The secant condition is formulated
on the Riemannian manifold Be analogously to [1] for a step cj+1 := Rcj (ηj) resulting
from an increment ηj ∈ TcjBe in iteration j via a retraction R as

gradJ(cj+1)− TηjgradJ(cj) = Gj+1[Tηjηj ].

Here J : Be → R denotes the objective function of a PDE constrained shape opti-
mization problem, Gj+1 is intended to approximate the Riemannian shape Hessian
HessBe J(cj+1) = ∇BegradJ(cj+1) and

T : TBe ⊕ TBe → TBe, (hc, kc) 7→ Thckc

denotes a vector transport associated with the chosen retraction R (cf. Defini-
tion 2.35). Note that, in a quasi-Newton method, we need only an approximation of
the Hessian. Such an approximation is realized, for example, by a limited memory
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5.2. Quasi-Newton approach

Algorithm 2. Inverse limited memory BFGS update in (Be, g
1).

ρj ← g1(yj , sj)
−1

q ← gradJ(cj)
for i = j − 1, . . . , j −m do

si ← Tqsi
yi ← Tqyi
αi ← ρig

1(si, q)
q ← q − αiyi

end for
q ← g1(yj−1,sj−1)

g1(yj−1,yj−1)
q

for i = j −m, . . . , j − 1 do
βi ← ρig

1(yi, z)
q ← q + (αi − βi)si

end for
return q

BFGS update technique. Moreover, note that we want to approximate the Rieman-
nian shape Hessian HessBe by such a technique. In order to formulate a limited
memory BFGS update in a concise way, we have to introduce the following notation
for a typical linear operator associated with the Sobolev metric:

h⊗ k : TcBe → TcBe, v 7→ g1(k, v)h,

where h, k ∈ TcBe. With this notation and the abbreviations

sj = Tηjηj ∈ Tcj+1Be, (5.39)
yj = gradJ(cj+1)− TηjgradJ(cj) ∈ Tcj+1Be (5.40)

we can rephrase the BFGS update on the shape manifold Be endowed with the
Riemannian metric g1 as

Gj+1 = G̃j −
(G̃jsj)⊗ (G̃jsj)

g1(sj , G̃jsj)
+

yj ⊗ yj
g1(sj , yj)

,

where G̃j = Tηj ◦ Gj ◦ T −1
ηj . In [77], superlinear convergence properties for BFGS

quasi-Newton methods on manifolds are analyzed for the case that Tηj is an isometry.
This requirement is satisfied if T and R are, for example, the parallel transport and
the exponential map. The corresponding update of the inverse operator can be
written in the form

G−1
j+1 =

(
I − sj ⊗ yj

g1(yj , sj)

)
G̃−1
j

(
I − yj ⊗ sj

g1(yj , sj)

)
+

sj ⊗ sj
g1(yj , sj)

,

see for instance [69]. This is the most convenient update formulation in an infinite
dimensional setting. In standard formulations, update formulas require the storage
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Chapter 5. Lagrange-Newton and quasi-Newton approach

of the whole convergence history up to the current iteration. Limited memory update
techniques have been developed in order to reduce the amount of storage (cf. [69]).
In the current situation, an inverse one is formulated in Algorithm 2, whose out-
put is q = G−1

j gradJ(cj). Algorithm 2 is conceptually similar to the double loop
algorithm in finite dimensional Euclidean spaces. Yet, the inner products are now
given by the Sobolev metric and vector transports are considered. Moreover, in the
j-th iteration, sj given in (5.39) denotes the distance between two iterated shapes
and yj given in (5.40) denotes the difference of iterated Riemannian shape gradients.
In Subsection 5.3.2, the BFGS Algorithm 2 is tested for the parabolic shape inter-
face optimization problem defined in Subsection 4.2.2. For this problem, the shape
derivative and the (standard) shape gradient can be found in Theorem 4.32. More-
over, in the Riemannian setting (Be, g

1), the Riemannian shape gradient is given by
(4.85).

5.3 Numerical results

This section discusses numerical results for the Lagrange-Newton approach (Sub-
section 5.3.1) and the quasi-Newton approach (Subsection 5.3.2) established in the
previous sections.

5.3.1 Lagrange-Newton approach

We solve the optimal control problem (5.32)-(5.35) by employing a conjugate gradient
iteration (CG-iteration) for the reduced problem (5.38), i.e., we iterate over the
variable w. In each step, the CG-iteration needs a residual of equation (5.38) from
wk. First, we compute the state variable zk from the state equation (5.33)-(5.35).
Afterwards, we compute the adjoint variable qk from the adjoint equation (5.36)-
(5.37). This enables us to evaluate the residual

rk = − JfK
(
p+ κpwk + qk

)
+ µκ− µ∂

2wk

∂τ2
(5.41)

from the design equation (5.38). In this way, we create an iterative solution technique
very similar to SQP techniques known from linear spaces.
The particular values for the parameters are chosen as f1 = 1 000 and f2 = 1.

Moreover, the regularization parameter is µ = 10. The data y are generated from a
solution of the state equation (4.17)-(4.18) with u being the straight line connection
of the points (0.5, 0), (0.5, 1). The starting point of the iterations is described by a
B-spline defined by the two control points (0.6, 0.7), (0.4, 0.3).
Similar to [84], the retraction chosen for the shape is just the addition of wkn to the

current shape. We build a coarse unstructured triangular grid Ω1
h with roughly 6 000

triangles as shown in the left picture of Figure 5.1. We also perform computations
on uniformly refined grids Ω2

h and Ω3
h with roughly 24 000 and 98 000 triangles. In
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5.3. Numerical results

Figure 5.1: Iterations 0, 1 and 2 (left to right) together with deformations of the
coarsest mesh Ω1

h.

each iteration, the volume mesh is deformed according to the elasticity equation. In
Figure 5.1, there are also shown the next two iterations on the coarsest grid.
In each iteration, the distance of a shape uk to the optimal solution u∗ is approx-

imated by

dist(uk, u∗) =

∫
u∗

∣∣∣∣〈uk, e1

〉
− 1

2

∣∣∣∣ ds,
where e1 = (1, 0)T denotes the first unit vector. The following table, which gives
these distances, demonstrates that indeed quadratic convergence can be observed
on the finest mesh, but also that the mesh resolution has a strong influence on the
convergence properties:

It.-No. Ω1
h Ω2

h Ω3
h

0 0.0705945 0.070637 0.0706476

1 0.0043115 0.004104 0.0040465

2 0.0003941 0.000104 0.0000645

A standard shape calculus steepest method is based on the (reduced) shape deriva-
tive given in Theorem 4.25. The major advantage of the Newton method over such a
standard method is the natural scaling of the step. When first experimenting with a
steepest descent method, we found by trial and error that one needs a scaling around
10 000 in order to obtain sufficient progress.

5.3.2 Quasi-Newton approach

We test the algorithms developed in Section 5.2 with the problem (4.50)-(4.56) in the
domain X = (−1, 1)2. This domain contains a compact and closed subset X2 with
smooth boundary Γint. The parameter valid in the exterior X1 = X\X2 is chosen
to be k1 = 1, the parameter valid in the interior X2 is chosen to be k2 = 0.001
and the regularization parameter is chosen to be µ = 0.0001. The final time of the
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Chapter 5. Lagrange-Newton and quasi-Newton approach

Figure 5.2: Initial and final shape geometry together with the iterations of the BFGS
method in Be.

simulation is T = 20. For our test case, the initial condition is y0(x) = 0 for all
x ∈ Ω. Furthermore, we set f(x, t) = 0 in (x, t) ∈ Ω×(0, T ]. First, we build artificial
data y by solving the state equation (4.51)-(4.56) for the setting X̃2 = {x : |x| < r}
with r = 0.5. Afterwards, we choose another domain X2. Figure 5.2 illustrates the
interior boundary Γint around the initial domain X2 and the target domain X̃2.

Remark 5.3. We obtain y ∈ L2(0, T ;H1(X)) as assumed in Subsection 4.2.2 by
choosing the measurements y as the solution of model equation (4.51)-(4.56) .

In order to solve the boundary value problem (4.51)-(4.56), its weak form (4.57)-
(4.61) is discretized in space using standard linear finite elements. The parameter
k is approximated in an element-wise constant space. Furthermore, we choose the
implicit Euler method for the temporal discretization. The interval [0, T ] is divided
into 30 equidistantly distributed time steps. We can solve the adjoint equation (4.65)-
(4.68) by applying the same spatial and temporal discretization as for the primal one.
Finally, the resulting linear systems are solved using the conjugate gradient method.
An essential part of Algorithm 2 is a discrete version of the Laplace-Beltrami

operator, which, on the one hand, is used to get a feasible representation of the
shape gradient and, on the other hand, is needed for the scalar products in the
BFGS method. Therefore, we implement the formulas given in [61], which describe
an operator that can be used as the Laplace-Beltrami operator as well as to compute
the discrete mean curvature. However, this approach is tailored to two dimensional
triangulated surfaces. Thus, we have to extend the polygonal line in our test case in
the third coordinate direction such that a surface is spanned and then triangulated.
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5.3. Numerical results

We investigate the convergence behaviour of the steepest descent method and
the limited memory BFGS quasi-Newton method. We choose a constant metric
parameter A = 0.001 and a fixed step-size 1 in both optimization strategies.

Remark 5.4. We do not apply a line search strategy because of the computational
cost. Each descent test in the line search requires the solution of the parabolic PDE
in time and, in addition, the computation of the mesh deformation, which includes
also a PDE. Since the resulting step lengths in both, the gradient and BFGS method,
are feasible for this particular setting, a line search is not obligatory.

The necessary operations between the tangent spaces and the manifold are chosen
essentially as the identity operator, i.e., for η ∈ TcBe we define

Rc(η)(s) := s+ η(s) ∀s ∈ c,
Tηv(s) := v(s− η(s)) ∀s ∈ Rc(η).

This setting corresponds to one explicit Euler step for the exponential map and the
parallel transport in the case of the choice A = 0 in the metric g1. From the point of
view of implementation, this is the most convenient choice. Computing an explicit
Euler step for the exponential map and a parallel transport for A > 0 requires the
solution of yet another solution of an elliptic equation on the surface. However,
numerical experiments have shown that the convergence properties of the resulting
iterations are not changed and, thus, the additional numerical effort does not pay off
in comparison with the inexpensive retraction above.
A main problem, which arises in the discrete case using linear finite elements, is

that both, the representation of the shape gradient, which is determined by (4.76)
or (4.77), and the normal vector field, are discontinuous across element interfaces.
Thus, they cannot be applied directly as a deformation to the shape. Therefore, for
all linear test-functions v on Γint, we solve the following L2-projection to obtain a
representation in piece-wise linear basis functions:∫

Γint

uv ds =

∫
Γint

(∫ T

0
JkK∇yT1 ∇p2 dt

)
nv ds. (5.42)

Then the resulting element-wise linear function u can be applied as a Dirichlet bound-
ary condition in a linear elasticity equation. A second Dirichlet condition is chosen
to be zero on the outer boundary of X such that the domain keeps its outer shape.
Solving this PDE gives a deformation field, which can be evaluated in each mesh
node, and a triangulation of the optimized shape without the need of re-meshing the
domain X.
As specified in [11], the measurements of convergence rates ideally have to be

performed in terms of the geodesic distance defined in (2.20). However, this requires
the computation of the full geodesic connecting the current iterate with the solution,
which is a highly expensive operation. Because of the local rigidity condition of
retractions (cf. Definition 2.34), an approximation of the geodesic distance is

dist(cj , ĉ) := ‖η‖g1
ĉ
, (5.43)
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where ĉ denotes the optimal solution and η ∈ TĉBe is defined by cj = Rĉ(η). There-
fore, in the discrete setting, we compute the shortest distance to ĉ in normal direction
for each node of the iterated shape cj . Then we form the L2-norm of this distance
field over ĉ, which is used to measure the convergence. The cost of this operation is
quadratic with respect to the number of nodes on the surface. Starting in one node
on cj in normal direction, the determination of a point of intersection with ĉ requires
to check all boundary segments. This is the reason why we restrict our numerical
results to two-dimensional computations.
Figure 5.3a visualizes the convergence history of different BFGS strategies com-

pared to a pure gradient method for the problem (4.50)-(4.56). It can clearly be seen
that the BFGS methods are superior to the gradient based method. Furthermore,
we observe superlinear convergence in the BFGS case. It is yet surprising that, in
this particular test case, there is hardly any difference between the number of stored
gradients in the limited memory BFGS methods. This changes for the pure elliptic
case of (4.50)-(4.54). Leaving out the the time dependence in (4.50)-(4.54) leads to
the following PDE constrained shape optimization problem:

min
u∈Be

J(u) =

∫
X(u)

(y − y)2dx+ µ

∫
u

1ds (5.44)

s.t. − div(k∇y) = f in X(u) (5.45)
y = 1 on Γtop (5.46)
y = 0 on Γbottom (5.47)

∂y

∂n
= 0 on Γbottom ∪ Γleft ∪ Γright (5.48)

In this elliptic case, we observe small improvements in the convergence while enlarg-
ing the memory width for the BFGS method, which is visualized in Figure 5.3b.

Remark 5.5. Note that the boundary conditions of (5.44)-(5.48) are changed com-
pared to the parabolic model (4.50)-(4.54) since these conditions lead to a homoge-
neous steady state distribution of y. The shape gradient for the problem (5.44)-(5.48)
can be found in [46].

Back in the parabolic case, we also investigate the influence of the grid on the
convergence, which is depicted in Figure 5.4. Two grids are tested. A coarse one
with approximately 25 000 cells and a much finer grid with about 100 000 cells. It
can be seen that the convergence is almost grid independent for both, the gradient
and the BFGS method. This also visualizes the discretization error.
In a final test run, we investigate the convergence under noisy measurements.

For this purpose, we add white noise ω(t, x) to the measurements y(t, x) with an
amplitude of 5% of the maximum value of y, which is 1.0 due to the boundary
conditions. We perform 100 runs of Algorithm 2 in the above-described setting. Due
to the disturbed measurements, we obtain slightly different optimal shapes. In order
to estimate the difference between these shapes, the maximum point-wise distance
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(a) Parabolic problem.
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(b) Elliptic problem.

Figure 5.3: Limited memory BFGS methods compared to a pure gradient method.
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Figure 5.4: BFGS method compared to pure gradient method on different grids.
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(a) Optimal shapes.
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Figure 5.5: 100 optimized shapes with 5% noise in the measurements y.

is evaluated. We observe that this distance is only 0.21% of the mean diameter of
all converged shapes, which is relatively small compared to the noise added to the
measurements. In Figure 5.5a, all 100 converged shapes are visualized. From this
point of view there are hardly any differences noticeable. Figure 5.5b shows a zoom
into the region framed with dashed lines with approximately 200x magnification.
Furthermore, in these experiments, we observe that also a regularization parameter
µ = 0 can be used without a noticeable difference.
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Chapter 6
Optimization based on Steklov-Poincaré
metrics

As seen in Chapter 4, it is a very tedious process to derive boundary formulations
of shape derivatives. Along the way, domain formulations in the form of integrals
over the entire domain appear as an intermediate step. In the literature, e.g., [23,
93], major effort in shape calculus has been devoted towards expressions for shape
derivatives in the Hadamard-form, i.e., in the boundary integral form. It is known
that the second order shape derivative, formerly coined as the shape Hessian, is
nonsymmetric in general. This has been an obstacle for the algorithmic developments
in shape optimization in the fashion of non-linear programming for a long time.
In the previous chapters and in [84], shape optimization has been considered as
optimization on Riemannian shape manifolds. This enables the design and analysis
of NLP-like algorithms including one-shot sequential quadratic programming and
gives a theoretical insight into the structure of the second order shape derivative in
comparison to the Riemannian shape Hessian. Coercivity results for shape Hessians
for elliptic problems can be found in [22] and well-posedness results for those are
given in [29].
On the other hand, it has been shown that the above-mentioned intermediate

formulations have numerical advantages, see for instance [16, 34, 44, 73]. In [58],
also practical advantages of the domain shape formulations have been presented.
For example, they require less smoothness assumptions. Furthermore, the derivation
as well as the implementation of domain integral formulations require less manual and
programming work. Thus, there arises the natural aim to combine domain integral
formulations of shape derivatives with NLP-type optimization strategies on shape
spaces, which seem, so far, tightly coupled with boundary integral formulations of
shape derivatives. This chapter aims at demonstrating that this coupling is indeed
possible and that it naturally leads to Steklov-Poincaré metrics on shape spaces. In
contrast to Chapter 5, this chapter avoids consciously surface formulations of shape
derivatives in order to provide more handy optimization algorithms. Another aim
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of this chapter is a comparison – under algorithmic aspects – between the approach
described in Section 5.2 and and the novel approach provided in this chapter. Recall
that the approach described in Section 5.2 is based on surface expressions of shape
derivatives and contains the Riemannian shape gradient built with respect to the
Sobolev metric g1. In contrast, the novel approach provided in this chapter involves
volume formulations of shape derivatives and a corresponding metric.
This chapter is organized in the following way. In Section 6.1, we discuss gener-

alized Steklov-Poincaré operators as basis for scalar products on shape spaces. Sec-
tion 6.2 rephrases the NLP-like optimization algorithms on shape spaces within the
framework of domain integral formulations of shape derivatives and in the context of
the Steklov-Poincaré metrics introduced in Section 6.1. Finally, Section 6.3 discusses
not just algorithmic and implementation details, but also numerical results for the
parabolic transmission shape optimization problem introduced in Subsection 4.2.2.
Moreover, it compares the two above-mentioned approaches with each other from a
computational point of view.

6.1 The Steklov-Poincaré metric gS

We first consider two-dimensional shapes. Recall that we look at connected and
compact subsets X2 ⊂ X ⊂ R2 with X2 6= ∅ and C∞-boundary Γint = ∂X2, where X
denotes a bounded domain with Lipschitz-boundary (cf. right picture of Figure 4.1).
As in Section 5.2, we identify the variable boundary Γint with a simple closed smooth
curve c : S1 → R2. The set of smooth boundary curves c is characterized by the
shape space Be defined in (3.1). Its tangent space TcBe is given in (3.2). Recall that
the Sobolev metric g1 given in (3.6) has previously been considered in this thesis.
However, it requires a shape derivative in Hadamard-form as an efficient means to
solve linear systems involving the Laplace-Beltrami operator in surfaces. All of this
is certainly not impossible, but requires computational overhead, which we can get
rid of by using the metrics discussed below. The algorithmic aspects of the both
approaches are compared in Section 6.3. This section is devoted to the introduction
of metrics dovetailed to shape optimization and based on domain formulations of
shape derivatives.
The ideal Riemannian metric for shape manifolds in the context of PDE con-

strained shape optimization problems is to be derived from a symmetric represen-
tation of the second shape derivative in the solution of the optimization problems.
Often, this operator can be related to the Dirichlet-to-Neumann map, aka Steklov-
Poincaré operator, or the Laplace-Beltrami operator, see for instance [82]. If one
aims at mesh independent convergence properties, one of these two is appropriate
in most cases. It can be observed that the Laplace-Beltrami operator is spectrally
equivalent to the square of the Steklov-Poincaré operator. We recall that two unitary
operators F, F̃ on separable Hilbert spaces H, H̃ are said to be spectrally equivalent
if there exists an isometric isomorphism W : H → H̃ such that WF = F̃W . The
latter operator, the Steklov-Poincaré operator, seems to be more fundamental and
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we focus on it as basis for the scalar product on TcBe. Another advantage of this
operator is that it blends well with a corresponding mesh deformation strategy.
Most often, the Dirichlet-to-Neumann map is associated with the Laplace operator.

However, as pointed out in [3, 49], more general elliptic operators can be involved.
For the purpose of mesh deformation, an elasticity operator may be the ideal choice.
In numerical computations, its inverse, the Neumann-to-Dirichlet map, aka Poincaré-
Steklov operator, is also of importance. Therefore, we first define these operators. In
the following, we restrict no longer to the two-dimensional case. Note that (Be, g

1)
can be extended to higher dimensions d (cf. Section 3.3). In the sequel, we use the
continuous generalized trace map

γ : H1
0 (X,Rd)→ H1/2(Γint,Rd)×H−1/2(Γint,Rd),

U 7→

(
γ0U

γ1U

)
:=

 U
Γint

∂
∂nU Γint

. (6.1)

Analogously to [49], we define the Neumann and Dirichlet solution operator.

Definition 6.1 (Neumann solution operator, Dirichlet solution operator). Let X,
Γint and γ be as above and let U, V ∈ H1

0 (X,Rd) be two vector fields. Moreover, let

a : H1
0 (X,Rd)×H1

0 (X,Rd)→ R (6.2)

denote a symmetric and coercive bilinear form. The Neumann solution operator for
the inner boundary Γint is given by

EN : H−1/2(Γint,Rd)→ H1
0 (X,Rd), u 7→ U (6.3)

with U defined as the solution of the variational problem

a(U, V ) =

∫
Γint

uT (γ0V ) ds ∀V ∈ H1
0 (X,Rd). (6.4)

The Dirichlet solution operator for the inner boundary Γint is given by

ED : H1/2(Γint,Rd)→ H1
0 (X,Rd), u 7→ U (6.5)

with U defined as the solution of the variational problem

a(U, V ) = 0 ∀V ∈ H1
0 (X,Rd) ; U

Γint
= u. (6.6)

Remark 6.2. Note that both, the Neumann and Dirichlet solution operator, are
derived from a symmetric and coercive bilinear form (cf. (6.2)). Furthermore, the
integral in the right-hand side of equation (6.4) is to be understood as duality pairing.

Now, we can define the Dirichlet-to-Neumann map and the Neumann-to-Dirichlet
map.
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Definition 6.3 (Steklov-Poincaré operator, Poincaré-Steklov operator). Let γ0 and
γ1 be defined as in (6.1). In the setting of Definition 6.1, the Dirichlet-to-Neumann
map T and the Neumann-to-Dirichlet map S are defined by

T := γ1 ◦ ED : H1/2(Γint,Rd)→ H−1/2(Γint,Rd), (6.7)

S := γ0 ◦ EN : H−1/2(Γint,Rd)→ H1/2(Γint,Rd). (6.8)

The Dirichlet-to-Neumann map is also called the Steklov-Poincaré operator and the
Neumann-to-Dirichlet map is also known as the Poincaré-Steklov operator.

The following theorem is a generalization of Theorem 2.3.1 in [49] from scalar fields
to vector fields. It collects basic properties of the Steklov-Poincaré and Poincaré-
Steklov operator. For the proof we refer to [49].

Theorem 6.4. Let T and S be the Steklov-Poincaré and Poincaré-Steklov operators.
Then the following statements hold:

(i) T = S−1.

(ii) The operator S is continuous and symmetric with respect to the standard L2-
duality pairing between H−1/2(Γint,Rd) and H1/2(Γint,Rd).

(iii) Both operators, S and T , are coercive.

For the purpose of defining an appropriate scalar product on the tangent space of
shape spaces, we define the following mappings.

Definition 6.5 (Projected Steklov-Poincaré operator, projected Poincaré-Steklov
operator). Let H ∈ {H−1/2, H1/2} and let T and S be the Steklov-Poincaré and
Poincaré-Steklov operators. We define

η : H(Γint)→ H(Γint,Rd), α 7→ α · n,

ηT : H(Γint,Rd)→ H(Γint), U 7→ nTU.

The projected Steklov-Poincaré operator T pr and the projected Poincaré-Steklov op-
erator Spr are given by

T pr := ηT ◦ T ◦ η : H1/2(Γint)→ H−1/2(Γint), (6.9)

Spr := ηT ◦ S ◦ η : H−1/2(Γint)→ H1/2(Γint). (6.10)

Both operators, T pr and Spr, inherit symmetry, coercivity, continuity and invertibil-
ity from the operators T and S. However, in general, we observe T pr 6= (Spr)−1.
Both operators can be used for the definition of a scalar product on the tangent space
of a shape space. In line with the discussion of Sobolev metrics in [63], we prefer
a scalar product with a smoothing effect like the projected Dirichlet-to-Neumann
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map T pr. However, we need its inverse in numerical computations, which is usually
not Spr, although spectrally equivalent. We can limit the computational burden if
we use directly (Spr)−1 as a metric on the tangent space, having a similar smoothing
effect, but also the advantage of the straightforward inverse Spr. Let us explicitly
formulate the operator Spr. Due to Definition 6.1, Definition 6.3 and Definition 6.5,
the projected Poincaré-Steklov operator is given by

Spr : H−1/2(Γint)→ H1/2(Γint), α 7→ (γ0U)Tn, (6.11)

where U ∈ H1
0 (X,Rd) solves the Neumann problem

a(U, V ) =

∫
Γint

α · (γ0V )Tn ds ∀V ∈ H1
0 (X,Rd), (6.12)

which corresponds to an elliptic problem with fixed outer boundary and forces α·n at
the inner boundary Γint. After careful consideration of all opportunities, we propose
to use the scalar products gS defined below.

Definition 6.6 (Steklov-Poincaré metric). In the setting above, we define the scalar
products gS on H1/2(Γint) by

gS : H1/2(Γint)×H1/2(Γint)→ R,

(α, β) 7→ 〈α, (Spr)−1β〉 =

∫
Γint

α(s) · [(Spr)−1β](s) ds.
(6.13)

These scalar products are called the Steklov-Poincaré metrics.

Remark 6.7. Note that a Steklov-Poincaré metric depends on the choice of the
bilinear form (6.2). Thus, different bilinear forms lead to various Steklov-Poincaré
metrics.

6.2 Quasi-Newton methods

As already mentioned, the shape derivative can be expressed as a boundary integral
(cf. (4.4)) due to the Hadamard Structure Theorem 4.7. Recall that the shape
derivative can be written more concisely as

DJΓint [V ] =

∫
Γint

αr ds

if V
Γint

= αn, where r is at least in L1(Γint) (cf. Section 4.3). Due to this handy
expression of the shape derivative and isomorphism (3.2), we can state the connec-
tion of the shape space Be with respect to the Steklov-Poincaré metric gS to shape
calculus. A representation h ∈ TΓintBe

∼= C∞(Γint) of the shape gradient in terms of
gS is determined by

gS(φ, h) = (r, φ)L2(Γint)
∀φ ∈ C∞(Γint), (6.14)
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which is equivalent to∫
Γint

φ(s) · [(Spr)−1h](s) ds =

∫
Γint

r(s)φ(s) ds ∀φ ∈ C∞(Γint). (6.15)

From this we get h = Sprr = (γ0U)Tn, where U ∈ H1
0 (X,Rd) solves

a(U, V ) =

∫
Γint

r · (γ0V )Tn ds = DJΓint [V ] = DJX [V ] ∀V ∈ H1
0 (X,Rd). (6.16)

This means that a representation of the domain integral formulation in terms of
the elliptic form (6.2) as used in [34] can – projected to the normal component on
the interface Γint – be interpreted as the representation of the boundary integral
formulation in terms of (Spr)−1. However, in physical terms, the information of the
shape derivative is used as a force in the domain or on the boundary. We obtain a
vector field U as an (intermediate) result, which can serve as a deformation of the
computational mesh identical to a Dirichlet deformation.

Remark 6.8. In general, h = Sprr = (γ0U)>n is not necessarily an element of
TΓintBe because it is not ensured that U ∈ H1

0 (X,Rd) is C∞. Under special assump-
tions depending on the coefficients of a second-order partial differential operator and
the right-hand side of a PDE, a weak solution U which is at least H1

0 -regular is C∞
by Theorem 2.14.

We rephrase the limited memory BFGS quasi-Newton method for shape optimiza-
tion (cf. Section 5.2) in terms of gS and in generalization to domain formulations
of shape derivatives. We note that a complete deformation of a shape optimization
algorithm is just the (linear) sum of all iterations. This means that the BFGS update
formulas can be rephrased directly in terms of the deformation vector field, rather
than only as boundary deformations to be transferred to the domain mesh in each
iteration.
BFGS update formulas need the evaluation of scalar products, where at least one

argument is a gradient-type vector. This is a vector which indeed arises as a gradient
on the variable boundary Γint. In contrast, a deformation-type vector describes
an arbitrary boundary deformation in normal direction. According to the Steklov-
Poincaré metric introduced in Section 6.1, we can assume that a gradient-type vector
u ∈ TcBe can be written as

u = (γ0U)Tn (6.17)

for some vector field U ∈ H1
0 (X,Rd). The other argument v is either of gradient-

type or of deformation-type, which can also be assumed to be of the form (6.17),
i.e., v = (γ0V )Tn for some V ∈ H1

0 (X,Rd). If u is a gradient of a shape objective
function J , we observe

gS(u, v) = DJΓint [V ] = DJX [V ] = a(U, V ). (6.18)
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This observation can be used to reformulate the scalar product gS(·, ·) on the bound-
ary equivalently as a(·, ·) for domain representations. In the sequel, we only consider
domain representations Uj ∈ H1

0 (X,Rd) of gradJ(cj) ∈ H1/2(Γint), mesh deforma-
tions Sj ∈ H1

0 (X,Rd) and differences Yj := Uj+1 − TSjUj ∈ H1
0 (X,Rd), where TSj

denotes the vector transport as in Section 5.2. With this notation we formulate
the double-loop of an inverse limited memory BFGS quasi-Newton method in Algo-
rithm 3. The resulting vector q = G−1

j gradJ(cj) ∈ H1
0 (X,Rd) is simultaneously a

shape deformation as well as a deformation of the domain mesh.

Algorithm 3. Inverse limited memory BFGS update in terms of gS .

ρj ← gS
(
(γ0Yj)

Tn, (γ0Sj)
Tn
)−1

= a(Yj , Sj)
−1

q ← Uj
for i = j − 1, . . . , j −m do

Si ← TqSi
Yi ← TqYi
αi ← ρi g

S
(
(γ0Si)

Tn, (γ0q)
Tn
)

= ρi a(Si, q)
q ← q − αiYi

end for
q ← gS((γ0Yj−1)Tn,(γ0Sj−1)Tn)

gS((γ0Yj−1)Tn,(γ0Yj−1)Tn)
Uj =

a(Yj−1,Sj−1)
a(Yj−1,Yj−1) Uj

for i = j −m, . . . , j − 1 do
βi ← ρi g

S
(
(γ0Yi)

Tn, (γ0z)
Tn
)

= ρi a(Yi, z)
q ← q + (αi − βi)Yi

end for
return q

6.3 Numerical results

This section discusses algorithmic and implementation details as well as numerical
results for the parabolic shape interface problem introduced in Subsection 4.2.2.
Moreover, the limited memory BFGS shape optimization algorithms of Section 5.2
based on surface expressions of shape derivatives and the Sobolev metric g1 are
compared with the analogous Algorithm 3 based on volume representations of shape
derivatives and the Steklov-Poincaré metric gS .

Implementation and algorithmic details

As in Subsection 5.3.2, we consider the domain X = (−1, 1)2, which contains a
compact and closed subset X2 with smooth boundary Γint, and we choose k1 = 1,
k2 = 0.001, T = 20, y0(x) = 0 for all x ∈ X and f(x, t) = 0 in (x, t) ∈ X × (0, T ].
Furthermore, we build the artificial data y exactly as described in Subsection 5.3.2.
In contrast to Subsection 5.3.2, where the perimeter regularization is weighted by
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µ = 10−4, the results shown in this section are computed under a mild perimeter
regularization with µ = 10−6.
The numerical solution of the parabolic boundary value problem (4.51)-(4.56) is

obtained by discretizing its weak formulation (4.57)-(4.61) with linear finite elements
in space and an implicit Euler scheme in time. For the time discretization, 30 equidis-
tantly distributed time steps are chosen. The diffusion parameter k is discretized as
a piecewise constant function in contrast to the continuous trial and test functions.
The corresponding adjoint problem (4.65)-(4.70) can be discretized in the same way.
More precisely, it is not necessary to assemble different linear operators, which is at-
tractive in terms of computational effort. All arising linear systems are then solved
using the preconditioned conjugate gradient method.
An essential part of a shape optimization algorithm is to update the finite element

mesh after each iteration. For this purpose, we use a solution of the linear elasticity
equation

div(σ) = f elas in X (6.19)
U = 0 on Γout (6.20)

with

σ := λtr(ε)I + 2µε, (6.21)

ε :=
1

2

(
∇U +∇UT

)
, (6.22)

where σ is the stress tensor and ε is the strain tensor. Here λ and µ denote the Lamé
parameters, which can be expressed in terms of Young’s modulus E and Poisson’s
ratio ν (cf. (4.104) and (4.105)). The solution U is then added to the coordinates
of the finite element nodes. Note that the Lamé parameters do not need to have a
physical meaning here. It is rather essential to understand their effect on the mesh
deformation. Young’s modulus E states the stiffness of the material, which enables
to control the step size for the shape update, and Poisson’s ratio ν gives the ratio
controlling how much the mesh expands in the remaining coordinate directions when
compressed in one particular direction. The numerical results are obtained using
ν = 0.01 and E = 0.1.

Remark 6.9. Equations (6.19)-(6.22) are modified according to the optimization
approach under consideration.

Comparison between Algorithm 2 and 3

Our investigations focus on the comparison between two approaches. More precisely,
we compare Algorithm 2, based on surface expressions of the shape derivatives, versus
Algorithm 3, based on volume formulations of shape derivatives. For convenience we
summarize the main aspects of these two approaches:
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• First approach (Algorithm 2):
This approach is based on surface expressions of shape derivatives as described
intensively in Section 5.2. Here a representation of the shape gradient on Γint
with respect to the Sobolev metric g1 is computed and applied as a Dirichlet
boundary condition in the linear elasticity mesh deformation. This involves
two operations, which are non-standard in finite element tools and, thus, lead
to additional coding effort:

(i) Since we are dealing with linear finite elements, the gradient expressions of
the state y and the adjoint p in (4.76) or, equivalently, (4.77) are piecewise
constant and cannot be applied directly to the mesh as deformations.
Thus, we have to implement a kind of L2-projection on Γint as described
in Subsection 5.3.2 bringing back the sensitivity information into the space
of continuous and linear functions.

(ii) We need a discrete version of the Laplace-Beltrami operator for the Sobolev
metric g1. We implement the formulas given in [61] as described in Sub-
section 5.3.2. Since the approach presented in this publication is tailored
to two-dimensional surfaces, we have to extend our two-dimensional grid
in the third coordinate direction.

• Second approach (Algorithm 3):
Algorithm 3 involves volume formulations of shape derivatives and a corre-
sponding metric, the Steklov-Poincaré metric gS , which is very attractive from
a computational point of view. The computation of a representation of the
shape gradient with respect to the chosen inner product of the tangent space
is moved into the mesh deformation itself. The elliptic operator (6.2) – in our
setting, the linear elasticity – is used as both, an inner product and a mesh
deformation, leading to only one linear system, which has to be solved.

Both approaches follow roughly the same steps. In Figure 6.1, the complete opti-
mization algorithms are summarized for the choice m = 0 in Algorithm 2 and 3.
Note that Algorithm 2 and 3 boil down to steepest descent methods by choosing
m = 0. Figure 6.1b summarizes the entire optimization algorithm for the second
approach. In contrast to this, Figure 6.1a gives the complete optimization algorithm
in the case of surface shape derivative expressions.
As already mentioned in Remark 6.9, equations (6.19)-(6.22) are modified accord-

ing to the optimization approach under consideration. If we use a surface formula-
tion of the shape derivative, which is given in (4.76) or, equivalently, (4.77) for the
parabolic model problem, the Dirichlet boundary condition

U = U surf on Γint

is added. Here U surf is a representation of the shape gradient with respect to the
Sobolev metric g1. In this case, the source term f elas is set to zero. Otherwise,
if the mesh deformation operator is also used as shape metric, f elas is assembled
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Evaluate measurements

Solve the state and adjoint equation

Assemble the Dirichlet boundary
condition of the linear elasticity equation:

• Implement a L2-projection of the piecwise
constant shape gradient and add curvature

• Compute a discrete version of the Laplace-
Beltrami operator

Solve the linear elasticity equation
with source term equals zero

Apply the resulting deformation
to the finite element mesh

(a) Surface shape derivative expressions.

Evaluate measurements

Solve state and adjoint equation

Assemble the linear elasticity equation:

• Assemble the volume form of the
shape derivative only for V with
Γint ∩ supp(V ) 6= ∅ as a source term

• Assemble derivative contributions which
are in surface formulations, e.g., perimeter
regularizations, into the right hand-side in
form of Neumann boundary conditions

Solve the linear elasticity equation

Apply the resulting deformation
to the finite element mesh

(b) Volume shape derivative expressions.

Figure 6.1: Complete optimization algorithms.

according to the domain expression (4.32) and there is no Dirichlet condition on U .
This covers only the portion of the shape derivative for which a volume formulation
is available. Parts of the objective function leading to surface expressions only,
such as, for instance, the perimeter regularization jreg, are incorporated in Neumann
boundary conditions. More precisely, for our model problem given in Subsection 4.2.2
we have to solve the following equation in the context of a domain formulation of
the shape derivative and its representation in terms of gS :

a(U, V ) = DjX [V ] +Djreg(X)[V ] ∀V ∈ H1
0 (X,Rd), (6.23)

where DjX [V ] is given in (4.73) and Djreg(X)[V ] is given in (4.13). We set the
bilinear form (6.2) as the weak form of the linear elasticity equation leading to

a(U, V ) =

∫
X
σ(U) : ε(V ) dx. (6.24)

Remark 6.10. Note that (6.23) is justified by the main result (6.16) of the pre-
vious sections stating that the connection between a volume formulation of a shape
derivative and a bilinear form leads to a representation of the shape gradient with
respect to gS . By choosing the bilinear form (6.2) as the weak form of the linear
elasticity equation (cf. (6.24)), equation (6.23) is the weak form of (6.19)-(6.22) in-
volving the incorporated Neumann boundary condition. As mentioned above, this
boundary condition arises from the perimeter regularization jreg.

The right-hand side of the discretized weak form of (6.23) is assembled only for test
functions whose support includes Γint. The behaviour of the algorithm with full
assembly for all test functions is illustrated in Figure 6.2. The magnitude of the
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(a) BFGS iterates with unmodified approximation of the volume shape gradient.

(b) Magnitude of unmodified volume source term.

Figure 6.2: Wrong mesh deformations and source term due to discretization errors
in the unmodified right-hand side of (6.23).

unmodified discretization of the source term is visualized (cf. Figure 6.2b), which
shows not only non-zero values outside of Γint due to discretization errors, but leads
also to detrimental mesh deformations (cf. Figure 6.2a). Assembling the right-hand
side of (6.23) only for test functions whose support intersect with Γint is due to the
following reasoning. In exact integration, the integral DjX [V ] should be zero for
all test functions V which do not have Γint within their support. Thus, non-zero
integral contributions are caused by discretization noise. On the other hand, its
effect on the optimization algorithm can be understood from a perturbation point
of view. We may assume that the Riemannian shape Hessian, whose action in the
optimal solution coincides with the action of the (standard) shape Hessian, i.e.,
gS(∇gradJ [V ], U) = D(DJ [V ])[U ], is coercive on the boundary, i.e., for projections
ηTV

Γint
. This guarantees a well-posed problem. However, the Hessian operator ap-

proximated in the BFGS update strategy described in Algorithm 3 deals with a Hes-
sian defined on the whole mesh, which possess a huge kernel, determined by all vector
fields with zero normal component on the boundary. Thus, the space H1

0 (Ω,Rd) of
all admissible deformations has a decomposition H1

0 (Ω,Rd) = HΓint ⊕ H⊥Γint
, where

HΓint := {EN (αn) : α ∈ H−1/2(Γint)} and H⊥Γint
denotes its orthogonal complement

in the chosen bilinear form (6.2) – in our setting, (6.24). Shape gradients and in-
crements in H1

0 (Ω,Rd) lie in HΓint only. It is obvious that limited memory BFGS
update formulas produce steps which lie again in HΓint only. This means that the
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(a) Smooth deformations and convergence to optimal shape due to modified source term.

(b) The volume-based optimization approach enables the use of much coarser spatial dis-
cretizations, approximately 1 000 cells.

Figure 6.3: BFGS iterates with corrected source term DjX [V ] indicating mesh inde-
pendent convergence.

optimization algorithm in function spaces always acts on the coercive shape Hessian.
However, the discretized version is a perturbation of this Hessian. Thus, perturbed
coercive operators stay coercive if the perturbation is not too large. However, positive
semidefinite operators with a non-trivial kernel get directions of negative curvature
if they are perturbed. These directions of negative curvature are chosen if we al-
low non-zero components in the right-hand side of the discretized mesh deformation
equation (6.23) in the interior of the domain. On the other hand, if we do not allow
zero components there, the algorithm acts in the subspace of the discretization of
HΓint only, where the projected Hessian is a perturbation of the shape Hessian and,
thus, coercive if the perturbation is not too large.
We conclude this section with a brief discussion of the numerical results. Fig-

ure 6.2-6.3 show the initial configuration and the iterations 2, 4 and 20 of the full
BFGS algorithm as just described. In Figure 6.2, the algorithm is shown for the un-
modified assembly of the right-hand side in (6.23) leading to divergence, whereas Fig-
ure 6.3 shows a selection of BFGS iterates for the modified source term. Figure 6.3b
demonstrates that the optimization algorithm based on domain shape derivative ex-
pressions can be applied to very coarse meshes. This is due to the fact that there is
no dependence on normal vectors like in the case of surface shape gradients. Finally,
Figure 6.4 shows the convergence of a full BFGS method, a limited memory BFGS
method with three gradients in memory and a pure gradient method for the surface
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2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0,001

0,01

0,1

1

Gradient Vol
Gradient Surf
BFGS vol
BFGS surf
l3-BFGS Vol
l3-BFGS Surf

Figure 6.4: Convergence history of BFGS and gradient methods for volume versus
surface shape derivative expressions on a grid with approximately 100 000
cells. Convergence is measured as an approximation of the geodesic dis-
tance in the shape space.

and volume shape derivative formulation. In our tests, the convergence with the
Laplace-Beltrami representation of the shape gradient seems to require fewer iter-
ations compared to the domain-based formulation. Yet, the domain-based form is
computationally more attractive since it also works for much coarser discretizations.
This can be seen in Figure 6.3. Figure 6.3a shows the necessary fineness of the mesh
for the surface gradient to lead to a reasonable convergence. However, the coarse
grid in Figure 6.3b works only for the domain-based formulation.

Remark 6.11. This chapter deals with elements of Be only. In the next chapter,
a novel shape space is introduced and the optimization Algorithm 3 is formulated
on it. In its numerical part (Section 7.2), there are an illustration and a further
discussion about the mesh quality difference by using the first and second approach
(cf. Figure 7.3).
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Chapter 7
Towards a novel shape space

In general, finding a shape space and an associated metric is a challenging task and
different approaches lead to various models. There exists no common shape space or
shape metric suitable for all applications. The specific situation is essential for the
suitability of a certain approach.
The scalar product introduced in Definition 6.6 correlates shape gradients with

H1-deformations. Under special assumptions, these deformations give shapes of
class H1/2, which are defined below. Now, we get to the point mentioned in Sec-
tion 4.3 (cf. Remark 4.34), where the shape space Be is no longer suitable for our
investigations because it unnecessarily limits the application of the methods estab-
lished in the previous chapters. In the setting of Be, shapes can be considered as the
images of embeddings from the unit circle into the plane. From now on we have to
think of shapes as boundary contours of deforming objects. Therefore, the definition
of another shape space is required. An advantage over the shape space Be is that
the novel shape space to be constructed in the sequel is not limited to objects with
C∞-boundary.
Gradient flows and consequently geodesics depend on the metric which is chosen

on a shape space. Thus, this chapter is not only devoted to a novel shape space
definition, but also to the problem of quantifying differences between shapes. In [32],
a Riemannian metric on a space of shape contours motivated by linear elasticity is
proposed. This metric can be interpreted as the rate of physical dissipation during
the deformation of a viscous liquid object (cf. [106]). In [104, 105, 106, 108], shapes
are represented by level set functions, which allows topological transitions along
geodesic paths whose computations are based on a variational time discretization.
This establishes a link between a pairwise elastic shape matching and a Riemannian
flow perspective on paths in shape spaces. All this is summarized in [104]. However,
we are only interested in shapes sharing the same topology. The approach in [32]
allows general topologies of shapes, but it requires the topology to stay the same
during the evolution.
This chapter is organized as follows. Section 7.1 is devoted to the set of all shapes in
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the context of the Steklov-Poincaré metric gS , i.e., to a novel shape space definition.
Moreover, its connection to shape calculus is given in order to formulate the shape
quasi-Newton methods of Chapter 6 (Algorithm 3) on this shape space. Section 7.2
demonstrates how Algorithm 3 works with such shapes. Finally, Section 7.3 links
geodesics discussed in [32] with geodesics in the novel shape space B1/2 with respect
to the Steklov-Poincaré metric gS in order to obtain a distance measure for shapes
of B1/2 with respect to gS .

7.1 The shape space B1/2

In this section, we extend the definition of C∞-shapes, which are elements of the
shape space of Peter W. Michor and David Mumford introduced in Chapter 3, to
shapes of class H1/2. In the following, it is clarified what we mean by H1/2-shapes.

We would like to recall once again that a shape in the sense of the shape space of
Peter W. Michor and David Mumford is given by the image of an embedding from
the unit sphere Sd−1 into the Euclidean space Rd. In view of our generalization, it
has technical advantages to consider a prior shape Γ0 as the boundary Γ0 = ∂X0

of a connected and compact subset X0 ⊂ X ⊂ Rd with X0 6= ∅, where X denotes
a bounded Lipschitz domain (cf. Figure 4.1). Let the prior set X0 be a Lipschitz
domain, i.e., Γ0 is a Lipschitz boundary. An example of a prior shape is the cube. It
is the union of six faces, where each is a portion of a plane, i.e., a smooth surface.
General shapes – in our novel terminology – arise from H1-deformations of such a
prior set X0. These H1-deformations, evaluated at a prior shape Γ0 = ∂X0, give
deformed shapes Γint if the deformations are injective and continuous. We call these
shapes of class H1/2 and define the set

H1/2(Γ0,Rd) := {w : Γ0 → X : ∃W ∈ H1(X,X) s.t.
W

Γ0
injective, continuous, W

Γ0
= w}. (7.1)

However, in order to have a unique representation for each shape, we have to factor
out the homeomorphisms from the prior shape Γ0 into itself which are compatible
with the set (7.1). Thus, we characterize the following shape space:

Definition 7.1 (Shape space B1/2). Let X, X0 and Γ0 be as above. The space of all
H1/2-shapes is given by

B1/2(Γ0,Rd) := H1/2(Γ0,Rd)
/
Homeo1/2(Γ0), (7.2)

where H1/2(Γ0,Rd) is given in (7.1) and Homeo1/2(Γ0) is defined by

Homeo1/2(Γ0) := {w : w ∈ H1/2(Γ0,Rd), w : Γ0 → Γ0 homeomorphism}. (7.3)

Remark 7.2. Of course, the properties of the shape space B1/2
(
Γ0,Rd

)
have to be

investigated. For example the independence of the prior shape Γ0 in the shape space
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definition is an open question. If it is independent, we can choose, for example, the
unit sphere Sd−1 as prior shape. Another important question is whether the shape
space has a manifold structure. Note that this question is very hard and a lot of
effort has to be put into it to find the answer. From a theoretical point of view there
are several other open questions. However, this goes beyond the scope of this thesis
and is a topic of subsequent work.

Remark 7.3. In the following, we assume that B1/2
(
Γ0,Rd

)
has a manifold struc-

ture. If necessary, we can refine the space B1/2(Γ0,Rd), e.g., by restriction to an
explicit deformation field W . In our setting, it arises from the linear elasticity equa-
tion and the request of the existence of an arbitrary one is perhaps too strong. This
way, we can replace H1/2(Γ0,Rd) by a linear space, which is in particular a manifold.
However, this conceivable limitation leaves the following theory untouched.

If Γ ∈ B1/2(Γ0,Rd) is smooth enough to admit a normal vector field n, the following
isomorphisms arise from definition (7.1):

TΓB1/2(Γ0,Rd) ∼= {h : h = φn a.e., φ ∈ H1/2(Γ) continuous}
∼= {φ : φ ∈ H1/2(Γ) continuous}

(7.4)

Now, we can formulate the shape quasi-Newton methods of Section 6.2 on the
shape space B1/2

(
Γ0,Rd

)
with respect to gS . Before we can do that, we have to

state its connection to shape calculus.

Connection with shape calculus

As often mentioned in the previous chapters, the shape derivative of a shape func-
tional can be expressed as boundary integral (cf. (4.4)) due to the Hadamard Struc-
ture Theorem 4.7. Moreover, it can be expressed as

DJΓint [V ] =

∫
Γint

αr ds (7.5)

if V
Γint

= αn, where r is at least in L1(Γint) (cf. Section 4.3). Due to the handy

expression (7.5) and isomorphism (7.4), we can state the connection of B1/2(Γ0,Rd)
with respect to the Steklov-Poincaré metric gS to shape calculus. A representation
h ∈ TΓintB1/2(Γ0,Rd) ∼= {h : h ∈ H1/2(Γ) continuous} of the shape gradient in terms
of gS is determined by

gS(φ, h) = (r, φ)L2(Γint)
(7.6)

for all continuous φ ∈ H1/2(Γint), which is equivalent to∫
Γint

φ(s) · [(Spr)−1h](s) ds =

∫
Γint

r(s)φ(s) ds (7.7)

for all continuous φ ∈ H1/2(Γint).
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Quasi-Newton methods

Based on the connection (7.6) we can formulate the quasi-Newton methods of Sec-
tion 6.2 also on B1/2(Γ0,Rd) with respect to gS . From (7.7) we get

h = Sprr = (γ0U)Tn,

where U ∈ H1
0 (X,Rd) solves

a(U, V ) =

∫
Γint

r · (γ0V )Tn ds = DJΓint [V ] = DJX [V ] ∀V ∈ H1
0 (X,Rd). (7.8)

In general, h = Sprr = (γ0U)>n is not necessarily an element of TΓintB1/2(Γ0,Rd)
because it is not ensured that U ∈ H1

0 (X,Rd) is continuous. Under special assump-
tions depending on the coefficients of a second-order partial differential operator, the
right-hand side of a PDE, the domain X on which a PDE is defined and the dimen-
sion of X, the continuity of a weak solution of a PDE is guaranteed by Theorem 2.12
combined with the Sobolev embedding Theorem 2.8. More precisely, in the setting
above, if the conditions of Theorem 2.12 are fulfilled, we obtain that the H1

0 -regular
solution U is Hm+2-regular, where m ∈ N. Moreover, we see that U is a Cmb -function
in the two-dimensional case by choosing r = 0 in Theorem 2.8.

7.2 Numerical results

This section considers two model problems:
In Subsection 7.2.1, we consider the parabolic shape interface problem introduced

in Subsection 4.2.2. We solve it by an application of the quasi-Newton method using
the volume formulation (4.73) of the shape derivative as described in the previous
chapter (cf. second approach in Section 6.3). In contrast to Section 6.3, the boundary
of the initial shape is not smooth, but it has four kinks as illustrated in the left picture
of Figure 7.1. The aim of this subsection is to illustrate how Algorithm 3 works with
two-dimensional shapes of B1/2(Γ0,R2).
Subsection 7.2.2 is devoted to a test problem whose optimal solution cannot be

achieved in the shape space Be and with the classical approaches which are based on
surface expressions of shape derivatives and on the Sobolev metric g1. More precisely,
we compute a shape embedded in a Stokes-flow, which minimizes drag and satisfies
geometric constraints. The optimal solution is well-known as the so-called Haack
ogive [39, 76]. This is a shape with two kinks as visualized as the final shape in Fig-
ure 7.2. The aim of this subsection is to illustrate the difference of the mesh quality
by using the limited memory BFGS shape optimization Algorithm 2 in Be and the
analogous Algorithm 3 in B1/2(Γ0,R2). It has to be mentioned that this comparison
is done in [85] and the results are briefly reproduced in this subsection because they
endorse and illustrate the theoretical results of Chapter 6 and Section 7.1.
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Figure 7.1: Smooth mesh deformations with kinks in the initial configuration.

7.2.1 Parabolic shape interface problem

We consider the parabolic shape interface problem introduced in Subsection 4.2.2 and
use the same implementation details as in Section 6.3. More precisely, the numerical
solution of the parabolic problem (4.51)-(4.56) is obtained by discretizing its weak
formulation (4.57)-(4.61) with linear finite elements in space and an implicit Euler
scheme in time. For discretization details we refer to Section 6.3.

We consider the domain X = (−1, 1)2, which contains a compact and closed
subdomain X2 with boundary Γ, and we set k1 = 1, k2 = 0.001, T = 20, y0(x) = 0
for all x ∈ X and f(x, t) = 0 in (x, t) ∈ X × (0, T ]. In contrast to Section 6.3, the
boundary Γ of the initial shape is not smooth, but it has four kinks as illustrated
in the left picture of Figure 7.1. The artificial data y are exactly as described in
Subsection 5.3.2. In contrast to Subsection 5.3.2, where the perimeter regularization
is weighted by µ = 10−4, and in contrast to Section 6.3, where a mild perimeter
regularization µ = 10−6 is chosen, we use a stronger regularization for the non-
smooth initial configuration shown in the left picture of Figure 7.1. It is chosen
in the first iterations as µinit = 0.01. In this particular case, the regularization is
controlled by a decreasing sequence from µinit to µ = 10−6.

As already mentioned in Section 6.3, an essential part of the shape optimization
algorithm is to update the finite element mesh after each iteration. For this purpose,
we use a solution of the linear elasticity equation (6.19)-(6.22), where the stiffness E
and the ratio ν are chosen as in Section 6.3. For the parabolic model problem, we
have to solve equation (6.23) in the context of a domain formulation of the shape
derivative and its representation in terms of gS . Moreover, we have to assemble the
right-hand side of (6.23) as described in Section 6.3 to prevent divergence as shown
in Figure 6.2. For more details we refer to Section 6.3.

Figure 7.1 illustrates the initial configuration and the iterations 2, 4 and 20 of the
full BFGS Algorithm 3. We see that this algorithm works also for shape geometries
with kinks in the boundary.
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Figure 7.2: Initial and final shape geometry together with the iterations of the BFGS
method in B1/2(Γ0,R2). Source: [85].

7.2.2 Minimization of energy dissipation in Stokes flow

This subsection reproduces the results of [85] because they endorse and illustrate the
theoretical results of Chapter 6 and Section 7.1.
The test problem in this subsection is the minimization of energy dissipation of

a body in a Stokes flow. We consider an incompressible flow which is dominated
by viscous forces around an obstacle. A bounded domain X is partitioned into two
disjoint subdomains X1, X2 ⊂ X such that X = X1 ∪· Γ∪· X2 with Γ = ∂X2 as illus-
trated in Figure 4.1. The interior domain X2 is the obstacle with variable boundary
Γ and the exterior domain X1 denotes the flow field. In the implementations, we
use finite elements, where X2 is a hole in the discretization mesh. The aim is to
shape the two-dimensional shape X2 such that the energy dissipation of the system
is minimized under certain geometrical constraints. The volume vol(X2) and the
barycenter bc(X2) of the shape X2 are required to be constant for the optimization
to be reasonable. These geometric constraints are necessary in order to obtain non-
trivial solutions. The shape shrinks to a straight line without the volume constraint
and floats out of the computational domain without the barycenter constraints.
The detailed problem formulation is given in [85, Section 2]. It includes an ob-

jective functional together with a system PDE – the Stokes equation, where the
viscosity is normalized to 1 – and the above-mentioned geometric constraints. In
[85], the quasi-Newton methods established in Section 5.2 for g1 (cf. Algorithm 2)
and in Section 6.2 for gS (cf. Algorithm 3) together with an augmented Lagrangian
framework is set up to solve this PDE constrained minimization problem.
The aim of this subsection is to visualize the difference of the mesh quality by using

surface versus volume expressions of shape derivatives. Note that in Section 6.3 the
implementation differences of these two approaches are pointed out (cf. first versus
second approach). Figure 6.1 illustrates the complete optimization algorithms of
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(a) g1 after 65 gradient steps. (b) gS after 16 BFGS steps.

Figure 7.3: Comparison of shape metrics with respect to the mesh quality. Source:
[85].

these two approaches in the case of the steepest descent method. The algorithmic
details of the augmented Lagrangian approach can be found in [85]. The discus-
sion of the mesh quality focusses on the limited memory BFGS shape optimization
Algorithm 2 and the analogous Algorithm 3. Note that the augmented Lagrangian
framework is only necessary to handle the geometric constraints.

The computational domain is chosen to be X = (−3, 6) × (−2, 2). The initial
shape X2 is given by X2 = {x : |x| < 0.5} leading to vol(X2) = π

4 . Thus, the prior
shape Γ0, which is necessary to define the shape space B1/2(Γ0,R2), is a circle with
barycenter bc(X2) = (0, 0), radius r = 0.5 and an element of Be. The computa-
tional grid consists of 10 150 triangles. The PDE constrained minimization problem
described above is solved by applying the limited memory BFGS shape optimization
Algorithm 2 in Be and the analogous Algorithm 3 in B1/2(Γ0,R2). Figure 7.2 shows
the initial and final shape geometry, which are the bold shapes, and the correspond-
ing 16 iterated shapes which arise when Algorithm 3 is applied in B1/2(Γ0,R2) and 3
gradients are stored. The final shape is an element of B1/2(Γ0,R2), where the prior
shape is the above-mentioned circle centred at (0, 0) with radius 0.5. An important
point to note is that this optimal solution cannot be achieved by applying the limited
memory BFGS shape optimization Algorithm 2. This algorithm – or, in general, a
classical approach based on surface expressions of shape derivatives – only take de-
formations normal to the shape boundary into account. This reflects the Hadamard
Structure Theorem 4.7 stating that only the normal component of deformations af-
fects the objective function. The iterations lead to discretization meshes that do
not allow further computations due to degenerated cells as visualized in Figure 7.3a.
This figure shows a part of the shape and the corresponding mesh after 65 gradient
steps. However, using the Steklov-Poincaré metric allows also surface nodes to slide
along the shape, which strongly influences the mesh quality. This can be seen in
Figure 7.3b, which illustrates a part of the shape and the corresponding mesh after
16 BFGS steps. For implementation details we refer to [85, Section 5].
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7.3 Geodesics related to continuum mechanics

The aim of this section is to investigate the relation between the novel shape space
B1/2(Γ0,Rd) with respect to the Steklov-Poincaré metric gS and the shape distance
measure proposed in [32]. With this relation, we obtain a distance measure for
shapes of B1/2(Γ0,Rd) with respect to gS . We see that the geodesics in B1/2(Γ0,Rd)
with respect to gS are the geodesics discussed in [32]. The corresponding distance
measure is called the elastic deformation distance. The authors use some concepts
from continuum mechanics to propose a Riemannian metric motivated by linear
elasticity on a space of shape contours.

Remark 7.4. The metric considered in [32] is interpreted as the rate of physical
dissipation during the deformation of a viscous object in [105, 106] and is elaborated
in [108]. Geodesics are connected with continuum mechanics of a viscous fluid trans-
port. All this is summarized in [104]. Therefore, we refer to [104] for more details.
Moreover, an implementation approach of geodesic paths, which is based on a vari-
ational time discretization, can be found in [104]. Note that in [104, 105, 106, 108],
shapes are represented by level set functions, which allows topological transitions
along the geodesic paths. In contrast to this, the approach in [32] allows general
topologies, but it requires to maintain the topology during the evolution.

To measure distances in the novel shape space with respect to the Steklov-Poincaré
metric, we use some Riemannian geometry concepts. We recall the following differ-
ential geometric statements from Section 2.3:
A Riemannian metric is an inner product on the tangent bundle of a manifold. On
manifolds, the distance between two arbitrary points is defined as the infimum of
the lengths of all differentiable paths connecting the two points under consideration.
Note that a differentiable local shortest path between two points of a manifold is a
geodesic. To compute the length of a path, we have to integrate its velocity, i.e., the
absolute value of its first derivative along the path. To integrate the velocity of a
path on the manifold, the length of tangent vectors have to be measured. This is
usually done by utilizing the norm induced by the Riemannian metric.

The elastic deformation energy given in [32] and defined in the sequel is induced
by the Steklov-Poincaré metric gS due to the following reasoning:
We get a representation of the shape gradient in terms of gS by solving (7.8). In
particular, we obtain a tangent vector arising from the solution of (7.8), i.e., a de-
formation inducing shape morphings. As already clarified in Section 6.2, the scalar
product gS(·, ·) on the surface can be reformulated equivalently as a symmetric and
coercive bilinear form a(·, ·) for volume representations (cf. (6.18)). Thus, it is suf-
ficient to consider such an inner product to measure distances between shapes in
B1/2(Γ0,Rd) with respect to gS . If we choose the inner product as the weak form of
the linear elasticity equation leading to (6.24), we get an elastic deformation energy
and a corresponding distance measure as in [32].
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Remark 7.5. The elastic deformation energy can be defined via a variational for-
mulation. It can be shown that minimizers of the corresponding variational problem
exist and that they are essentially unique (cf. [32]). The computation of shortest
paths goes beyond the scope of this thesis. Thus, we refer to [32, 104, 105, 106, 108].
In the numerical part of [32], shortest paths with respect to the elastic deformation
energy are computed. The corresponding figures can be found in [32, Section 5.3].

Now, we consider the shape space B1/2(Γ0,Rd), more precisely, elements of it. We
recall once again that – in this setting – shapes are given by the images of injective and
continuous H1/2-deformations of prior shapes Γ0. These H1/2-deformations come
from H1-deformations of open and bounded domains X containing Γ0. Roughly
speaking, the elements of B1/2(Γ0,Rd) arise from H1-deformations acting on prior
sets X0 ⊂ X with Lipschitz boundaries Γ0. Thus, a variation Γ of a prior shape Γ0

is associated with a mapping

U : [0, 1]→ H1
0 (X,Rd), t 7→ U(t), (7.9)

where the variable t ∈ [0, 1] represents geometrically the coordinate along a path of
transport fields U(t) ∈ H1

0 (X,Rd). In this setting, X (t) ⊂ X(t) describes the de-
formed object and Γ(t) characterizes the deformed shape at time t ∈ [0, 1]. Therefore,
a smooth path

γ : [0, 1]→ B1/2(Γ0,Rd), t 7→ u(t) (7.10)

in this shape space is associated with a family (U(t))t∈[0,1] of deformations, where
u(t) = U(t)

Γ0
.

Remark 7.6. Note that a path (7.10) is given by a curve of injective and continuous
deformation fields, i.e.,

γ : [0, 1]→
(
Γ0 → Rd

)
, t 7→

(
θ 7→ u(t, θ)

)
. (7.11)

More precisely, a shape variation Γ(= Γ(t)) of a prior shape Γ0 is given by the image
of an injective and continuous deformation u of Γ0 at time t ∈ [0, 1], i.e., Γ = u(t,Γ0).
Since Γ0 is fixed, we write Γ = u(t) (= γ(t)) to be in line with (7.10).

In our setting, such deformations U arise from (7.8) as already stated above. Thus,
we can choose the inner product

a(U, V ) =

∫
X
σ(U) : ε(V ) dx, (7.12)

where U, V ∈ H1
0 (X,Rd), to measure the distance between two shapes. In (7.12),

σ denotes the stress tensor and ε is the strain tensor in linear elasticity, which are
defined in (6.21)-(6.22).
In a first step to a definition of a suitable shape distance measure, we give the

definition of a volume elastic deformation energy (cf. [32]).
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Definition 7.7 (Volume elastic deformation energy). Let λ ≥ 0 and µ > 0 de-
note the Lamé parameters involved in the stress and strain tensor in linear elasticity
(cf. (6.21)-(6.22)). Moreover, let U ∈ H1

0 (X,Rd) denote a vector field defined on X.
The elastic energy of the deformation U on X is given by

E(U) = a(U,U) =

∫
X
σ(U) : ε(U) dx, (7.13)

where σ and ε are defined in (6.21)-(6.22).

In the following, we consider deformation energies on the shape itself. Due to (7.4),
these energies should deform a shape Γ ∈ B1/2(Γ0,Rd) in normal direction. This
means that we have to define an elastic energy of a surface deformation φ ∈ H1/2(Γ).
For this purpose, we define a special kind of trace operator. Let Γ be smooth enough
to admit a normal vector field n. Moreover, let tr : H1

0 (X,Rd)→ H1/2(Γ,Rd) be the
trace operator on the Sobolev spaces for vector valued functions restricted to Γ. The
trace operator

trn : H1
0 (X,Rd)→ H1/2(Γ), U 7→ 〈tr(U), n〉 (7.14)

defined in [32] is continuous and surjective. This means that for every φ ∈ H1/2(Γ)
there exists an U ∈ H1

0 (X,Rd) such that trn(U) = φ, as shown in [32].
Now, we are able to define the surface elastic deformation energy as the infimum of

all domain elastic energies (7.13), which deform a shape Γ in normal direction. Note
that X depends on Γ in our setting. To clarify this, we write XΓ in the following.

Definition 7.8 (Surface elastic deformation energy). Let Γ ∈ B1/2(Γ0,Rd). The
elastic energy of a surface deformation φ ∈ H1/2(Γ) is defined as

EΓ(φ) := inf
U∈H1

0 (XΓ,Rd)

trnU=φ

E(U). (7.15)

With this surface elastic deformation energy, which is firstly defined in [32], we
obtain an elastic shape distance on B1/2(Γ0,Rd) with respect to the Steklov-Poincaré
metric gS . For a shape variation along a path γ : [0, 1] → B1/2(Γ0,Rd), which is
induced by the deformation family (U(t))t∈[0,1], the path length L is given by

L(γ) :=

∫ 1

0

√
Eγ(t)(γ̇(t)) dt (7.16)

and the energy E is given by

E(γ) :=

∫ 1

0
Eγ(t)(γ̇(t)) dt, (7.17)

where γ̇ = ∂γ
∂t denotes the temporal variation of γ at time t ∈ [0, 1]. The temporal

variation γ̇(t) is the velocity of γ(t) normal to γ(t). This is a tangent vector at
γ(t) ∈ B1/2(Γ0,Rd) and, thus, a continuous surface deformation φ(t) ∈ H1/2(Γ(t))
due to (7.4).
With all this, we can define a geodesic path.
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Definition 7.9 (Geodesic). A geodesic path between two shapes Υ, Υ̃ ∈ B1/2(Γ0,Rd)
is a curve γ : [0, 1] → B1/2(Γ0,Rd) with γ(0) = Υ and γ(1) = Υ̃ which locally
minimizes the length L or, equivalently, the energy E defined in (7.16)-(7.17).

Remark 7.10. Note that

σ(U) : ε(V ) =
λ

2
trε(U)trε(V ) + µ tr(ε(U)T ε(V )) (7.18)

holds. As stated in [106], in an isotropic Newtonian fluid, the integrand in (7.13) is
the local rate of viscous dissipation, i.e.,

diss(U) = σ(U) : ε(U), (7.19)

where U ∈ H1
0 (X,Rd). It describes the rate at which the mechanical energy is

locally converted into heat due to friction. More precisely, (trε(U))2 measures the
local change of volume and tr(ε(U)2) measures the local change of length induced
by U . By using the notation of [106], the energy E can be expressed as the infimum
over the dissipation

Diss
(
(U(t), XΓ(t))t∈[0,1]

)
=

∫ 1

0

∫
XΓ(t)

diss(U(t)) dxdt. (7.20)

A geodesic defined with respect to this energy mimics the energetically optimal way
to continuously deform a fluid volume as stated in [105, 106, 108].

With Definition 7.9 we reach the aim of this section. We establish the relation
between the geodesics in B1/2(Γ0,Rd) with respect to gS and the geodesics discussed
in [32] and, thus, we obtain a distance measure between shapes. The authors propose
an energy of infinitesimal deformation (cf. surface elastic deformation energy) of
shapes in Be(S

d,Rd+1). This energy is based on the elastic deformation energy
(cf. volume elastic deformation energy), i.e., on linear elasticity. A shape metric is
derived from it. Since geodesics are locally minimizers of the length or, equivalently,
of the energy, they also obtain a definition of geodesics in defining the energy of
infinitesimal deformation of shapes. However, they do not formulate such a definition,
but it should be mentioned that it would be almost the same as Definition 7.9. The
difference is that we work with the shape space B1/2(Γ0,Rd) and we consider the
Steklov-Poincaré metric gS . This leads us to the above definition. In contrast, in [32],
the shape space Be(Sd,Rd+1) is considered and such a definition would be obtained
in defining these energies without considering a special metric. However, they give
an alternative interpretation of the elastic deformation energy based on differential
geometry. Moreover, the authors show that the perturbation of the metric on a
shape, which is deformed by an infinitesimal deformation, is a special case of the
elastic deformation energy. In our case, the above energies are justified by (6.18),
which allows to reformulate the scalar product gS(·, ·) on the surface equivalently as a
symmetric and coercive bilinear form a(·, ·) for volume representations. If we choose
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the inner product as the weak form of the linear elasticity equation, we obtain the
elastic deformation energies and a corresponding distance measure as in [32]. Note
that we also get a connection to [104, 105, 106, 108] by establishing the correlation
to [32] (cf. Remark 7.4 and 7.10).
Finally, it should be mentioned that there are several open questions from a the-

oretical point of view. As already stated in [32], the existence of minimizers of the
length (or the energy), i.e., geodesics, is an open problem. In a finite dimensional set-
ting, the theorem of Hopf and Rinow ensures the existence of geodesics on manifolds
which are complete as metric spaces. However, in our infinite dimensional setting,
this theorem cannot be applied.
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Chapter 8
Conclusion and outlook

This final chapter addresses the questions “What have we done in this thesis?”
(Section 8.1) and “Which questions remain open for further research?” (Section 8.2).

8.1 Summary

In this thesis, we have done the following:

Chapter 2 introduces notations and background knowledge required in this thesis.
All used symbols and function spaces are listed in Section 2.1. Section 2.2 is devoted
to second-order PDEs and regularity results of second-order elliptic PDEs, which
are relevant in Chapter 6 and 7. Finally, Section 2.3 provides some definitions and
results from differential topology and geometry.

Shape spaces are the topic of Chapter 3. Among all shape space concepts, the
space Be of two-dimensional shapes introduced by Peter W. Michor and David Mum-
ford is essential in this thesis. In order to prepare the discussions and investigations
in Chapter 5 to 7, Section 3.1 defines this essential shape space, which is even a
shape manifold. Section 3.2 is devoted to Riemannian metrics on this shape space.
Special attention is paid to the first Sobolev metric, which is mainly considered
in Section 3.2. In particular, an expression of the covariant derivative associated
with the first Sobolev metric is provided in Theorem 3.3. The covariant derivative
is needed later on in order to give an expression of the Riemannian shape Hessian
(cf. (4.86)). For the sake of completeness, the short Section 3.3 generalizes the shape
space Be and its properties to higher dimensions.

Chapter 4 deals with shape derivatives. In Section 4.1, notations and definitions
from shape calculus are provided. Special attention is paid to the material and shape
derivative, which are needed throughout this thesis, and to the theorem of Correa
and Seeger. In Section 4.2, we consider problems of finding interfaces between two
subdomains. An elliptic (Subsection 4.2.1) and a parabolic shape interface optimiza-
tion problem (Subsection 4.2.2) are introduced. Moreover, their shape derivatives
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expressed as domain and boundary integrals are deduced. These expressions are
essential in Chapter 5 to 7 because they exemplify and support the theoretical ap-
proaches established in these chapters. Section 4.3 focuses on shape optimization in
the context of shape calculus. In particular, the connection of Riemannian geometry
on the shape space Be to shape optimization is analyzed by providing expressions
of the Riemannian shape gradient and the Riemannian shape Hessian with respect
to the first Sobolev metric. Finally, Section 4.4 provides a volume shape derivative
formula of a general shape interface problem (cf. Theorem 4.39). In this context, a
volume shape derivative of an optimization problem constrained by the linear elastic-
ity equation – more precisely, shape derivative (4.107) of (4.99)-(4.101) – is given.

In Chapter 5, the Riemannian geometrical point of view on shape optimization
established in [84] is extended to shape optimization problems constrained by PDEs.
Section 5.1 presents a sequential quadratic programming approach, which is based on
the idea that Riemannian shape Hessians do not differ from classical shape Hessians
in the solution of a shape optimization problem and that Newton methods still con-
verge locally quadratically if Hessian terms which are zero at the solution anyway
are neglected. Subsection 5.1.1 provides a Riemannian vector bundle framework,
which is the main tool for the development of respective Lagrange-Newton methods.
This vector bundle framework is applied to the elliptic shape interface optimization
problem of Subsection 4.2.1. Furthermore, shape variants of quasi-Newton methods
are provided in Section 5.2. They are exemplified by the parabolic shape interface
optimization problem of Subsection 4.2.2. Numerical results, which are presented in
Section 5.3, endorse the results of the first two sections. In Subsection 5.3.1, quadratic
convergence rates of the Lagrange-Newton approach are demonstrated. Finally, Sub-
section 5.3.2 shows superlinear convergence rates of the quasi-Newton methods.
In Chapter 4, volume integrals are converted into surface integrals. We see that

a lot of effort has to be put into these conversions. Moreover, it is not always clear
how a surface formulation looks like and which additional assumptions have to be
made in its derivation. In Chapter 5, we see that a lot of coding work is obsolete
using surface formulations of shape derivatives. Another point, which pushes us to
our limits, is that the shape deformation sometimes leads to shapes, where normal
vectors can no longer be reliably evaluated. Thus, Chapter 6 is intended to enable
the usage of domain integral forms of shape derivatives in optimization strategies.
Section 6.1 discusses generalized Steklov-Poincaré operators as basis for scalar prod-
ucts on shape spaces. Section 6.2 rephrases optimization algorithms on shape spaces
within the framework of volume integral formulations of shape derivatives and in
the context of Steklov-Poincaré metrics, which are introduced in Section 6.1. In this
manner, quasi-Newton methods based on volume expressions of shape derivatives and
Steklov-Poincaré metrics are provided. In particular, an optimization algorithm, Al-
gorithm 3, is formulated. Section 6.3 discusses not only algorithmic and implementa-
tion details, but also numerical results for the parabolic shape interface optimization
problem given in Subsection 4.2.2. Moreover, the approach of Chapter 5 based on
surface expressions of shape derivatives is compared with the approach of this chap-
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8.1. Summary

ter based on volume formulations of shape derivatives from a computational point
of view.

All chapters mentioned so far are concerned with C∞-shapes, which limits the
application of the methods proposed in the previous chapters to a certain extent.
As a remedy, Chapter 7 proposes a novel shape space B1/2 in order to extend
these methods to shapes of it with respect to the shape metric gS introduced in
Section 6.1. Section 7.1 is devoted to the shape space definition. Moreover, its
connection to shape calculus is given in order to formulate the shape quasi-Newton
methods of Chapter 6 on this shape space. Section 7.2 gives numerical results.
Finally, Section 7.3 establishes the connection of the geodesics in B1/2 with respect to
the Steklov-Poincaré metric gS to the geodesics discussed in [32] in order to obtain
a distance measure for shapes of B1/2 with respect to gS .

To sum up, the novelties of this thesis are as follows:

• In Chapter 3, an expression of the covariant derivative associated with the first
Sobolev metric is provided (Theorem 3.3).

• In Chapter 4, not only novel shape derivatives for interface problems are de-
veloped (volume shape derivatives: Theorem 4.23, Theorem 4.30 and Theo-
rem 4.39; surface shape derivatives: Theorem 4.24 and Theorem 4.31), but
also the connection of Riemannian geometry on the shape space Be to shape
optimization is stated by providing expressions of the Riemannian shape gradi-
ent (Definition 4.35) and the Riemannian shape Hessian (Definition 4.36) with
respect to the first Sobolev metric.

• In Chapter 5, the Riemannian shape calculus framework established in [84] is
generalized to Lagrange-Newton and quasi-Newton approaches for PDE con-
strained shape optimization problems. Lagrange-Newton and quasi-Newton
methods are applied in shape spaces. Two optimization algorithms, Algo-
rithm 1 and 2, are formulated. Finally, in Section 5.3, it is shown that these
approaches are viable and lead to computational methods with superior conver-
gence properties when compared to only linearly converging standard steepest
descent methods.

• In Chapter 6, the joint work of surface and volume based shape derivative
expressions is enabled. As outlined in Section 6.3, this leads to a novel shape
optimization algorithm, Algorithm 3, with several computational and analytic
advantages.

• In Chapter 7, the definition of a novel shape space (Definition 7.1) which is
not limited to objects with C∞-boundary is given.
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Chapter 8. Conclusion and outlook

8.2 Future work

The results of this thesis leave space for several issues which have to be addressed in
the future, like:

• Analysis of the properties of B1/2:
In Chapter 7, the shape space B1/2 is introduced. From a theoretical point of
view there are several open questions about this shape space, e.g., the indepen-
dence of the prior shape Γ0 in the shape space definition. Another important
question is whether the shape space has a manifold structure. Note that this
question is very hard and a lot of effort has to be put into it to find the answer.
In future work, such kind of questions have to be addressed to analyze the
properties of this shape space.

• Computation of geodesics and geodesic distances:
The usage of the exponential map within optimization algorithms is an ex-
pensive operation. Therefore, in all optimization algorithms, we implement
retractions instead of the exponential map. However, we should keep in mind
that the retractions implemented in this thesis may leave the shape space Be
for large shape deformations because intersections and kinks may appear in the
shape. In general, this does not happen for geodesics or the exponential map.
Thus, at least, more refined retractions have to be developed for large shape
deformations. In this context, there is another topic which has to be addressed
in future work. In general, measurements of convergence rates ideally has to be
performed in terms of the geodesic distance. In this thesis, we approximate the
geodesic distance. An efficient way to compute geodesics and in this manner
to measure the convergence rates in terms of the geodesic distance has to be
established in future work.

• Optimizing variational inequalities on shape manifolds:
Some PDEs arise from simplified variational inequalities (VIs). Thus, it is
a natural question to ask how we can optimize shape optimization problems
constrained by VIs of the following form:

min
Ω

J(Ω, y) (8.1)

s.t. a(y, v − y) + φΩ(v)− φΩ(y) ≥ (fΩ, v − y)V ′Ω×VΩ
∀v ∈ VΩ. (8.2)

Here the set Ω ⊂ Rd, d = 2 or d = 3, is open and connected, the state y ∈ VΩ

is an element of a Hilbert space VΩ with dual space V ′Ω 3 fΩ and (·, ·)V ′Ω×VΩ

denotes the duality pairing. The bilinear form a : VΩ × VΩ → R is assumed
to be symmetric and continuous, the function φΩ : VΩ → R is a proper convex
function and the objective function J is a real valued shape functional. For a
parabolic problem, a time derivative term has to be added in (8.2) in analogy
to [46, Chapter 10]. The aim of future work is to treat VI constrained shape
optimization problems of the form (8.1)-(8.2) and its parabolic generalization
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8.2. Future work

from an analytical and numerical point of view by an approach aiming at semi-
smooth Newton methods on shape vector bundles. It is not a very far step from
the optimization approaches on shape spaces established in this thesis to semi-
smooth Newton methods. However, note that the problem class (8.1)-(8.2) is
very challenging because of the necessity to operate in inherently non-linear
and non-convex shape spaces. In classical VIs, there is no explicit dependence
on the domain, which adds an unavoidable source of non-linearity and non-
convexity due to the non-linear and non-convex nature of shape spaces.
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