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Abstract 

Earth’s environment sustains a current population of more than seven billion humans, whose 

well-being are reliant on the provision of ecosystem services jeopardized by environmental change. 

In this context, space-based earth observation (EO) is a prerequisite for enhanced and sustainable land 

use management. Only few satellite missions fulfill the basic requirements for operational 

environmental monitoring on the regional scale; among these the Landsat mission with its open data 

policy stands out. However, increasing data volumes have led to a ‘digital-divide’, as the adequate use 

of this rich EO archive is dependent on high-performing technology. Consequently, it is key to develop 

methods that account for the most data-intensive processing steps, then used for the generation and 

provision of analysis-ready, standardized, higher-level (Level 2 and Level 3) baseline products, which 

in turn enable a wider range of end-users to instate an even wider variety of environmental monitoring 

systems. Level 2 products are radiometrically normalized image products including atmospheric 

correction, and represent the first product level for widespread environmental usage. In a 

complementary sense, Level 3 products are temporal aggregations of lower-level products, and are 

generally termed ‘composites’. Besides other favorable characteristics, Level 3 products have some 

potential to lessen the ‘digital-divide’ as a large amount of data can be ‘distilled’ into a better 

manageable data volume. 

Accordingly, the overarching research task of this dissertation was to develop a framework for 

generating analysis-ready higher-level EO satellite products that may eventually be linked with 

operational monitoring systems. Hence, efficient and fully automatic mass data processing streamlines 

were implemented accounting for the most data-intensive processing steps. In this regard, this thesis 

attempts to make a significant contribution in the yet under-researched drylands of Southern Africa. 

A fully automatic radiometric preprocessing system (Level 2) was implemented, featuring a 

memory-resident processing streamline. The method was applied to the complete Angolan, Zambian, 

Zimbabwean, Botswanan, and Namibian Landsat record, amounting 58,731 images with a total data 

volume of nearly 15 TB. A modified version of the Fmask algorithm was implemented for 

cloud/shadow detection, wherein dryland-specific improvements were developed to reduce false 

positives in complexly structured savanna images. Integrated correction of atmospheric, topographic 

and bidirectional effects was implemented. Atmospheric correction was based on radiative theory and 

includes corrections for multiple scatterings and the adjacency effect. A multilayered toolset was 

developed to favorably estimate aerosol optical depth (AOD) over persistent cast shadow and water 

targets. Therein, a combined image-, database-, and object-based approach was developed with 
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consideration of the target’s view and illumination geometry, altitude, and environmental 

contribution. In case of dark target absence, a precompiled spatio-temporal AOD climatology was 

used as reasonable surrogate. A semi-empirical C-correction was implemented for topographic 

correction, and bidirectional effects were corrected using a global set of bidirectional reflectance 

distribution function model parameters. Gridding and reprojection to a common reference system were 

already included at Level 2, hence facilitating easy and efficient processing and analysis. 

The selection of phenologically similar observations is a key monitoring requirement for 

multi-temporal analyses, and hence, the generation of Level 3 products that realize phenological 

normalization on the pixel-level was pursued. As a prerequisite, Land Surface Phenology (LSP) at 

appropriate spatial resolution was needed. Therefore, coarse resolution LSP was derived in a first step, 

then spatially refined by fusing it with a small number of Level 2 images. For this purpose, a novel 

data fusion technique was developed, wherein a focal filter based approach employs multi-scale 

and -source prediction proxies. Prediction quality was ensured by simulating artificial landscapes 

(R² = 0.84), and by application to a heterogeneous agricultural site. Objects larger than the effective 

coarse resolution were predicted reliably – and even significantly smaller objects were predicted 

accurately if there were pure homogeneous coarse resolution pixels within the focal filter. 

A phenology-adaptive pixel-based compositing framework (Level 3) was implemented using 

a parametric weighting-scheme based observation selector, wherein phenological normalization was 

achieved by coupling the target day (i.e. the main compositing criterion) to the input LSP. Inter-annual 

variations in the timing of LSP were also accounted for and the inter- to intra-annual contribution was 

controlled with a single parameter. The approach was demonstrated by generating peak, end and 

minimum of season composites, and by comparing these with static composites (fixed target day). It 

was shown that the phenological normalization accounts for terrain- and land cover class-induced LSP 

differences. However, it needs to be carefully considered which technique is best for a given purpose. 

In any case, the use of the comprehensively corrected downstream products enables a wide range of 

monitoring options, among them the detection of within-state processes like forest degradation. 

In summary, the developed preprocessing framework is capable of generating several analysis-

ready baseline EO satellite products. These include radiometrically normalized and geometrically 

consistent Landsat time series, as well as phenologically sound and seamless image composites across 

large areas. These datasets can be used to promote regional case studies like the mapping of 

agricultural regimes, but may also be directly integrated into more operational monitoring systems – 

e.g. in support of the Reducing Emissions from Deforestation and Forest Degradation (REDD) 

incentive.
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1 Regional Environmental Monitoring from Space 

Sustaining a current population of more than seven billion humans, planet earth faces many 

pressures, which makes comprehensive environmental monitoring an indispensable task. Up to date, 

more than 75% of the terrestrial land surface has already been modified (Ellis and Ramankutty 2008). 

Humanity is constantly growing and reshapes its surrounding environment at the same time, not 

necessarily for the good: the world’s (semi-) natural ecosystems and biodiversity are diminishing at 

alarming rates and climate continues to be irreversibly altered (Butchart et al. 2010, Hansen et al. 

2013, IPCC 2013). Human well-being is and will be increasingly influenced by the complex system 

of interactions and feedbacks between environmental change and the provisioning of ecosystem 

services (ESS, MEA 2005). As an example, the conflicts between food supply and forest integrity or 

timber production may result in a self-energizing feedback loop in the long-term: a growing world 

population tends to transform land at the expense of forest, whose loss is the second largest contributor 

to global greenhouse gas emission (van der Werf et al. 2009). This in turn may change climate towards 

more frequent extreme weather events (IPCC 2012) that threaten food security and may result in food 

shortages (McMichael et al. 2006), which were traditionally countered by transforming even more 

land (Godfray et al. 2010). At worst, such feedback mechanisms can force components of the Earth 

system beyond their ‘tipping point’ with large impacts on human welfare (Lenton et al. 2008). In order 

to break such cycles and to use limited resources sustainably, a key prerequisite for enhanced land use 

management is to continuously monitor the status and usage of earth’s environment, as well as to 

predict the future impact of current land use (Townshend et al. 2008). 

This perception is widely accepted, however, the globally most concerning areas are often the 

most under-researched and under-instrumented areas at the same time. For instance, the Southern 

African Miombo belt was identified as tipping point of global importance because it supports the 

transport of summer rainfall and humidity from the Congo rainforest zone towards the southern arid 

savannas (Leadley et al. 2010). Nevertheless, most research takes place (and is tuned to) industrialized 

countries like the United States of America, Europe, Australia, and to a lesser extent also to emerging 

countries like China, India and Brazil (Hassan 2008). Brazil as an example has long been in the public 

eye as deforestation (Myers 1993) and biodiversity loss hotspot (Myers et al. 2000), and hence has 

put significant effort into forest loss combat (Boucher et al. 2013) – but at the same time the carbon 

balance was offset by increased deforestation in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, and 

Angola (Hansen et al. 2013). Space-based earth observation (EO) is certainly the only technology that 

can account for this imbalance. This becomes apparent when considering that 34 sovereign states 

launched 197 EO satellite missions during the past couple of decades at an ever increasing rate 
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(Belward and Skøien 2015), reflecting the fact that this technology was already identified as game-

changer half a century ago (DOI 1966): 

 

‘The time is now right and urgent to  

apply space technology towards the solution of  

many pressing natural resources problems being  

compounded by population and industrial growth.’ 

Stewart Udall, 1966 

U.S. Secretary of the Interior 

 

Satellite imagery has long been used for EO in general (see e.g. Davis 2007), and increasingly 

also in an operational sense as most countries or international communities maintain some sort of 

operational monitoring system like the US National Land Cover Database (NLCD, Homer et al. 2015), 

the Eastern Australian woodland monitoring (Danaher et al. 2010), Brazil’s Amazon Deforestation 

Project (PRODES, Shimabukuro et al. 1998), the European Union-led Global Monitoring for 

Environment and Sustainability services (GMES/Copernicus, Aschbacher and Milagro-Pérez 2012), 

China’s Earth Observation System (Xingfa and Xudong 2015), or South Africa’s Advanced Fire 

Information System (AFIS, Frost and Scholes 2007). Yet, many observation programs are nationally 

grown, and hence are not fully comparable across the globe. Consequently, an ideal, hypothetical EO 

system would not stop at boundaries but would observe the complete globe. However, due to the scale 

at which environmental processes occur (see next section), it is at least challenging to do so – and 

even more important, local processes may be overlooked in a global implementation but may still be 

globally important. As an example, global studies may underestimate Namibian deforestation because 

the complete loss of the typically sparse tree cover (< 10%) might be valued as an effect of detection 

uncertainty in many other parts of the world. At the other end of the spectrum, a rather local monitoring 

poses the risk of process leakage or displacement (DeFries et al. 2007). Hence, a compromise between 

global and local EO may be beneficial in many circumstances; this compromise is hereby denoted 

‘regional’ and is defined as any geographic region large enough to avoid leakage and small enough 

for environment-specific tuning, which may range from state to (sub-) continental. For instance, such 

a strategy is pursued in the decentralized but regionally tuned monitoring systems under the REDD[+] 

incentive (Reducing Emissions from Deforestation and Forest Degradation [and the role of 

conservation, sustainable management of forests and enhancement of forest carbon stocks in 
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developing countries]), wherein each participating country needs to formally define ‘forest’ but 

nonetheless is bound to report land cover status and change within a defined conceptual framework. 

Several initiatives exist to define such frameworks with the goal to harmonize and funnel 

regional EO efforts. On one hand, this is achieved by building consensus about what to monitor (e.g. 

Pereira et al. 2013), and on the other hand by providing good practice guidelines about how to monitor 

and validate (e.g. Penman et al. 2003, Olofsson et al. 2014). The Global Climate Observing System 

(GCOS) accordingly proposed the so-called ‘essential climate variables’ (ECV, GCOS 2003), defined 

as a ‘physical, chemical or biological variable or a group of linked variables that critically contributes 

to the characterization of Earth’s Climate’ (Bojinski et al. 2014). ECV-qualification includes climate 

relevancy, observation feasibility and cost-effectiveness (Bojinski et al. 2014), hence the ECV concept 

is dynamic and needs to be understood as the absolute minimal monitoring setup. However, it is also 

recognized that other variables may be important too, and may become ‘essential’ in the future; in fact 

GCOS considered 70 variables for land surface characterization, although only a few were formally 

defined as ECV yet (Bojinski et al. 2014). Recently, the Group on Earth Observation Biodiversity 

Observations Network (GEO-BON) adopted this concept as ‘essential biodiversity variables’ (EBV) 

in order to measure biodiversity change (Pereira et al. 2013). A number of crucial EO-compatible 

variables have been identified through both consortia, and they are anticipated to form the backbone 

of future global EO monitoring frameworks. Important terrestrial variables include land cover, 

fraction of absorbed photosynthetic active radiation, leaf area index, above ground biomass, soil 

carbon, disturbance regime, phenology, ecosystem structure, extent, fragmentation and composition 

(Houghton et al. 2012, GEO-BON 2016). 

In this context, appropriate data streams and processing environments have to be instated. This 

thesis attempts to make a contribution towards the provision of fundamental satellite baseline datasets, 

which may be eventually used for the derivation of ECVs, EBVs and similar important environmental 

variables in a yet under-researched part of the globe, namely Southern Africa. This introduction is 

structured as follows: section I-2 will give an overview on the requirements of an ideal monitoring 

system, and section I-3 will review current EO missions in the context of these requirements. Section 

I-4 will specify the baseline data products needed for regional environmental monitoring and will 

outline the state-of-the-art. Section I-5 will identify the corresponding research gaps and the thesis’ 

research objectives will eventually be formulated. 
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2 Requirements for Regional Environmental Monitoring 

Considering specifications of a monitoring framework, the immediate question that arises is: 

what are the technical requirements for monitoring preferably all essential variables and are satellite 

missions available that fulfill these requirements? The monitoring requirements are closely tied to the 

main resolutions of remote sensing systems, i.e. the spectral, spatial, temporal and radiometric 

resolution. These resolutions dictate which processes can be resolved distinctively. In the following, 

the ideal monitoring requirements are specified for each resolution group, and the subsequent chapter 

will shortly review current space-borne EO systems with regard to these requirements. 

2.1 Spectral resolution 

The spectral domain and resolution of EO systems potentially have the largest influence 

regarding the essential variables that can be derived or not. In general, three major domains are 

suitable: optical reflective, optical thermal and radar systems. They merely provide complementary 

information and can be utilized under different observation settings. An optimal remote sensing 

system would have sensitivity for the complete electromagnetic spectrum, but due to engineering 

constraints, detector arrays or antennas can only be focused on one part of the spectrum, and it is 

seldom to have all types of sensors onboard a single satellite platform. 

The optical reflective domain is most widely used and has been proven effective for many EO 

tasks. The absolute minimum spectral configuration for environmental monitoring are two optical 

bands in the red and near infrared as prerequisite for vegetation monitoring due to their sensitivity to 

chlorophyll absorption and biomass (Tucker 1979, Townshend and Justice 1988). Additional bands 

in the visible and shortwave infrared are requested for a wider range of purposes like water mapping, 

soil/vegetation, snow/cloud and deciduous/coniferous differentiation, assessment of healthy 

vegetation and plant water, and geological applications (Blanchard and Weinstein 1980). 

Hyperspectral imaging spectrometers represent the maximum spectral configuration and allow to 

resolve fine biophysical, biochemical, and geochemical details (Kaufmann et al. 2006). 

Additional capabilities in the optical thermal domain are useful for enhanced cloud detection 

(Zhu and Woodcock 2012), and enable drought monitoring (Anderson et al. 2013), as well as detection 

of plant heat/water stress (Blanchard and Weinstein 1980). Opposed to reflective systems, thermal 

sensors also have the capability to sense during night orbits, e.g. for active volcano monitoring 

(Wulder et al. in press). 
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Synthetic Aperture Radar (SAR) have the ability to penetrate visibly opaque objects, and 

hence, the backscattered radiation is a function of scattering and attenuation processes within a 

volume, e.g. a canopy. The intensity is strongly influenced by the dielectric constant of the respective 

medium, and hence, imaging radars are sensitive to water or moisture variations and can be applied 

for land cover, biomass, inundation or soil moisture mapping (Kasischke et al. 1997). As clouds are 

transparent in this part of the spectrum, SAR data are a viable addition to optical imagery – especially 

in parts of the world that are permanently overcast or where vegetation growth coincides with the 

rainy season (Kasischke et al. 1997). However, radar alone cannot overcome this problem: Saatchi et 

al. (1997) demonstrated that wet season SAR images are not suited to map deforestation accurately 

because of the equalizing effect of moisture in the canopy and on the surface. They recommended to 

analyze imagery from the dry season – where optical data availability is of less concern likewise. 

2.2 Radiometric resolution 

The radiometric resolution is the ability to resolve differences of received energy, which is 

directly linked to the sensor’s signal-to-noise ratio (SNR). Simply put, the higher the radiometric 

resolution, the better the discrimination of subtle variations on the earth’s surface. Specifically, high 

SNR decreases the risk of band saturation over bright surfaces like snow, cloud or rock and is very 

beneficial for approaches that utilize low radiance targets like water or shadows (Roy et al. 2014c). 

The only drawback of increased quantization is an increase in data volume. 

2.3 Spatial resolution 

In terms of geographic scale, environmental processes have to be monitored with imagery that 

can distinctly resolve them. As an example, forest clearings vary between hundreds of meters 

(mechanized agriculture) to tens of meters (smaller agricultural or urban clearing) to < 15 m in more 

heterogeneous landscapes (DeFries et al. 2007). Often, a minimum mapping unit of < 1 ha is declared 

necessary (De Sy et al. 2012, Danaher et al. 2010). It has to be noted that finer resolution is not 

necessarily superior for all monitoring purposes, e.g. due to the complicating effect of cast shadow or 

elevation-dependent object displacement. Methods for estimating the optimal spatial resolution exist 

and are often based on the analysis of spatial autocorrelation. The optimal resolution can vary greatly 

for different objectives (e.g. single tree or forest stand monitoring), landscape structures (patch size 

and heterogeneity) and spectral bands; e.g. Marceau et al. (1994) found an optimal resolution of 2.5 m 

to 21.5 m for discriminating coniferous classes, Menges et al. (2001) found that a resolution between 

20 m and 27 m was optimal for mapping land cover types. Nested approaches are also possible 

(Stellmes et al. 2010), where coarser resolution data can be used to identify hot spots for further 
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investigation with finer data (DeFries et al. 2007). There is no formal definition on the common spatial 

resolution domains and their boundaries. This is reflected in inconsistent naming conventions in 

literature, and as such, high resolution is hereby defined as < 10 m, medium resolution as 10–100 m, 

and coarse resolution as 100–1000 m, wherein the 100–500 m domain is termed moderate resolution. 

In general, coarser-than 1 km data are not appropriate for environmental monitoring (Townshend and 

Justice 1988), unless paired with very high repeat frequency which can partially account for the 

reduced geometric detail (Stellmes et al. 2010). 

2.4 Temporal resolution 

The temporal requirements are even more environment- and process-dependent than the spatial 

ones. The optimal observation interval, length and timing is dependent on the persistency of the 

phenomenon as well as on other interfering processes and effects that may mask the process of interest. 

As an example, carbon stock changes with high uncertainty usually require a measurement frequency 

of a couple of years to decreases the effect of short-term variability and climate fluctuations (Penman 

et al. 2003). This equally applies to the length of record, as e.g. reliable trend parameters can only be 

extracted from long time series (Stellmes et al. 2010). Other processes should be monitored annually, 

as e.g. forest clearing may be unobserved with longer intervals due to regrowth of canopy or pasture 

(Danaher et al. 2010). Often, shorter intervals may be beneficial as more frequent observations can 

often decrease the uncertainty (Penman et al. 2003) and are even mandatory in many cases. As an 

example, savanna burn scars are usually undetectable after about one month due to the predominant 

fine fuel combustion product that is easily removed by wind; on the contrary burn scars in temperate 

and boreal forests may be detectable for years or decades (Pereira 2003). The derivation of Land 

Surface Phenology (LSP) is an example for the need of even denser acquisitions. 16-day temporal 

resolution is already considered as coarse (Archibald and Scholes 2007) as e.g. spatial and temporal 

variability can be significantly shorter (Menzel et al. 2001). Another aspect is to choose an optimal 

point in time for monitoring. For instance, barren fields might be falsely classified as fallows if the 

imagery was acquired in an unfortunate phenological state (Griffiths et al. 2013a), seasonal variations 

in broadleaved canopies might erroneously be classified as deforestation (DeFries et al. 2007), or trees 

and understory grass can be spectrally inseparable in parts of the year (Armston et al. 2009). In any 

case, multi-temporal monitoring requires adequate consistency (Hostert et al. 2003), and therefore 

selected data need to share similar temporal characteristics, i.e. at the same local time, in the same 

season – or more specifically, in the same phenological state (Röder et al. 2008) – and if possible also 

considering inter-annual fluctuations in vegetation seasonality as these can be larger than the 

magnitude of the actual change between the years (Lambin 1996). In many cases, the selection of an 
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optimal observation period has to compete with external constraints, e.g. persistent cloud coverage 

during a rainy season. 

In addition, it is often required to make retrospective assessments, which is e.g. a key 

requirement and challenge for REDD+ (Herold et al. 2011). Accordingly, a satellite data record should 

extend as far as possible into the past. Equally important is continuity, as it is a prerequisite for 

consistent operational monitoring (Stellmes et al. 2010). A currently emerging new class of 

monitoring systems is especially interested in timeliness. Early warning management and law 

enforcement support systems can be developed on top of near-real time (NRT) monitoring systems 

(Hansen et al. 2016) – provided that the satellite data become swiftly available after they were sensed. 
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3 Capability of current EO Systems for Regional Environmental Monitoring 

In summary, it was outlined that an ideal EO mission should have high SNR sensitivity in all 

parts of the spectrum, should be able to capture large regions with a spatial resolution in the order of 

decameters with high repeat frequency at constant local time, and should provide a data record that 

extends into the past and future. This chapter will shortly review whether these requirements are 

fulfilled by existing EO systems and will introduce some of the most widely used satellite missions. 

There are or were 197 successfully launched earth-orbiting satellite missions that are 

designated for non-military land surface observation (as of December 2013, Belward and Skøien 

2015), and of these, only sun-synchronous orbiters come into consideration as their near-polar orbit 

provides the opportunity for global mapping (Belward and Skøien 2015) and to ensure repeat 

observations at comparable times. High resolution sensors lack swath width and hence are not suitable 

to cover large areas in a reasonable time frame, although repeat coverage can be significantly increased 

using satellite constellations with multiple identically equipped spacecrafts. However, the ground 

segment is equally important to be truly considered: among others, a global acquisition plan must be 

in place and well calibrated low-level data products must be distributed at no charge (Belward and 

Skøien 2015). Consequently many commercial satellites are not suitable for operational monitoring 

per se, but can still be instrumental to support calibration and validation. Belward and Skøien (2015) 

found evidence that even mild restrictions on data access decrease its usage and discourage the 

development of monitoring systems around such type of data. As such, free and open data policy is 

key. The long and the short of it, no single open-access satellite constellation fulfills all requirements 

yet, and consequently, a compromise between the spatial, temporal, spectral and radiometric 

monitoring resolutions has to be made. 

In practice, the Landsat program currently occupies the leading role for regional environmental 

monitoring (Roy et al. 2014c, Cohen and Goward 2004), and is further consolidating influence as it 

is evolving into an operational monitoring program (Wulder et al. in press) with safeguarded financing 

over the next couple of decades (Foust 2015). The newest satellites steadily incorporate new 

technology without sacrificing continuity with the existing long-term data record (1982–today), which 

represents the most comprehensive and longest uninterrupted cross-calibrated (Markham and Helder 

2012) EO data record ever gathered (Wulder et al. in press). The radiometric resolution is 8 bit for the 

Thematic Mapper (TM) type-of sensors onboard Landsat 4, 5 and 7 and was improved to 12 bit for 

the Operational Land Imager (OLI) onboard Landsat 8 (Roy et al. 2014c). The spatial resolution of 

30 m is in range of the spatial requirements and is adequate for monitoring landscape processes 

(Danaher et al. 2010). The Field-of-View (FOV) is ±7.7° and one swath is about 185 km wide 
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(Blanchard and Weinstein 1980), which allows for covering large areas with still relatively low surface 

reflectance anisotropy effects. The sun-synchronous orbit at 705 km altitude results in near-global 

coverage at nadir repeat frequency of 16 days at about 09:30 local standard time (Blanchard and 

Weinstein 1980). The temporal resolution is even higher in overlap areas that increase towards the 

poles (Kovalskyy and Roy 2013), and for some periods, two satellites were/are operational, which 

further doubled repeat frequency. However, it also needs to be noted that – with exception of the 

United States, Australia and eastern China (Wulder et al. in press) – the data availability can be of 

some concern due to a wide variety of reasons like the late instatement of a global acquisition plan 

(Arvidson et al. 2001), changes in program management and budgeting (Goward et al. 2006), 

temporary or permanent sensor outages like the scanline corrector failure of Landsat 7’s Enhanced 

Thematic Mapper (ETM+, Markham et al. 2004) or simply adverse climate settings (Asner 2001). 

Nevertheless, the Landsat Global Archive Consolidation (LGAC) re-migrated internationally held 

data to U.S. Geological Survey (USGS) holdings, and although some data was irrecoverable, the 

usable archive has more than doubled thereby (Wulder et al. in press), which in combination with the 

public opening of the Landsat archive in 2008 (Woodcock et al. 2008) marked the game changer for 

environmental monitoring (Wulder et al. 2012). 

In 2000, the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra was 

launched into the Landsat 7 orbit to further complement the Landsat monitoring system with 

multiscale capabilities (Justice et al. 1998), while maintaining continuity with the Advanced Very 

High Resolution Radiometer (AVHRR), too. Outstanding temporal characteristics with one–two day 

revisit frequency were achieved by wide FOV sensor design (approx. ±65°), although at the expense 

of nadir spatial resolution (250–1000 m) and its degradation towards the edges of the swath (Wolfe et 

al. 1998). Hence, MODIS serves the coarse spatial resolution / high frequency segment and is often 

used for global studies (e.g. Clinton and Gong 2013, Friedl et al. 2002) or for analyses that require 

high temporal or angular resolution like the derivation of LSP (e.g. Zhang et al. 2003) or the estimation 

of the bidirectional reflectance distribution function (BRDF) and albedo (Schaaf et al. 2002). Due to 

the orbital (Justice et al. 1998) and spectral congruence, (Barnes et al. 1998), MODIS and Landsat are 

often used in tandem by fusing them into dense synthetic time series (e.g. Gao et al. 2006, Zhu et al. 

2010, Zhu et al. 2016) or by applying MODIS-measured variables to Landsat images, e.g. for 

atmospheric (Ju et al. 2012) or BRDF correction (Roy et al. 2008). 

Currently, these constellations are increasingly backed by the European Space Agency’s 

(ESA) Sentinel fleet. Sentinel-3’s Ocean and Land Colour Instrument (OLCI) was designed to provide 

continuity with the MEdium Resolution Imaging Spectrometer (MERIS, Donlon et al. 2012), and thus 
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has similar capabilities as MODIS. Sentinel-2’s Multi Spectral Instrument (MSI) is similar to OLI at 

better spectral, spatial and temporal resolution. In this thesis, Sentinel data was not yet considered due 

to the lack of a long data record. This equally applies to SAR data, where an acquisition plan suitable 

for global operational monitoring was firstly realized with Sentinel-1 (Torres et al. 2012). However, 

it is noted that the synergistic usage of Landsat with the Sentinel-line of satellites – and also similar 

upcoming optical and SAR missions – possesses a tremendous potential for future regional 

environmental monitoring systems. 
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4 Product Specification 

Although there is currently a lot of enthusiasm regarding the usage of Landsat data, and even 

more about Sentinel-2, for many researchers and institutions it is challenging – and often impossible – 

to employ such data for the development of regional monitoring programs. Traditionally, analyses 

were either based on a few time steps and large areas (Masek et al. 2008) or on small areas and shorter 

time steps (Sonnenschein et al. 2011), which often were selected, preprocessed and quality-checked 

(e.g. cloud masking) with considerable manual effort. Nowadays, state-of-the-art monitoring 

programs are in demand of integrating a manifold of satellite data at ever-increasing temporal, spatial 

and spectral resolution that both cover a large area and make use of the full-depth of the existing 

archive; even global analyses are possible nowadays (e.g. Hansen et al. 2013). As of January 2015, 

there were ~ 5.5 Mio. Landsat images with a total data volume of > 4PB in the USGS holdings 

(Wulder et al. in press), and even for smaller reporting areas like the REDD-qualifying country of 

Zambia, there are nearly 22K images available for the same period (USGS 2016b). Consequently, 

with the ever increasing data volume also comes unprecedented data pressure: although data has 

become available to everyone, the high technical demand in terms of data processing, storage 

infrastructure (Gibbs et al. 2007), and downlink capabilities (Roy et al. 2010b) has led to a 

‘digital-divide’ (Norris 2001), and hence bars part of the science community from utilizing complete 

EO archives adequately. Consequently, it is of major importance to develop methods that account for 

the most data-intensive processing steps, then used for the generation and provision of analysis-ready, 

standardized baseline products, which in turn enable a wider range of end-users to instate a wide 

variety of environmental monitoring systems. 

4.1 Product Level Definitions 

As a means of categorizing and standardizing such baseline products, NASA’s Earth 

Observing System Data and Information System (EOSDIS) hierarchical product level classification 

scheme is generally used, see Table I-1. Level 0 data, i.e. the raw data downlinked from space, are 

generally not available to end-users and software developers. Commonly, the space agencies provide 

Level 1B data, i.e. radiometrically calibrated and georectified data. Level 2 data are derived from 

Level 1 and most notably include some sort of atmospheric correction. Level 3 data are temporally 

aggregated Level 2 (or Level 1) data that are provided in a different spatial reference, commonly a 

grid system with a shared coordinate system. The generation of Level 3 products is commonly termed 

‘compositing’. Level 4 products are thematic model output; ECVs and EBVs generally fall under this 

category. 
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Although the above described level definitions are generally agreed on, several modifications 

are used by different product generation systems. As an example, Landsat data generated by the 

Level 1 Product Generation System (LPGS) are distributed as Level 1T, Level 1G or Level 1Gt 

products, which are essentially Level 1B data with differences in the georectification quality. Among 

these, only Level 1T data are suitable for Level 3 and Level 4 product generation, as the other 

categories are not co-registered reliably and hence are not suited for multi-temporal application 

(Townshend et al. 1992). In addition, following the above definitions, Level 3 products are the first 

that are mapped on a regular grid, whereas the lower level products are still in georectified swath 

geometry (e.g. the Landsat WRS-2 path/row system). However, there is currently a rising demand for 

gridded and analysis-ready products (Hansen and Loveland 2012) – regardless of product level. This 

is e.g. reflected in ESA’s production and distribution strategy of Sentinel-2 data as they already 

include gridding on their Level 1 category C (Drusch et al. 2012). Similarly, the attribution of 

simplistic radiometric corrections like Top-of-Atmosphere (TOA) reflectance is becoming indistinct, 

as ESA also distributes Level 1C data in TOA reflectance (Drusch et al. 2012), which is adopted in 

this study, too: TOA reflectance is considered Level 1 and surface reflectance is considered Level 2. 

4.2 Required Product Level 

Level 4 products, e.g. ECVs, are eventually needed for reporting environmental resource status 

and change. According to the EOSDIS definition, these can be derived from any lower-level product 

and can be based on mono-, bi- or multi-temporal observations, possibly also including products from 

Table I-1. Product level definition. 

Level Description 

Level 0 Reconstructed, unprocessed instrument/payload data at full resolution; any and all 
communications artifacts, e.g., synchronization frames, communications headers, 

duplicate data removed. 

Level 1A Reconstructed, unprocessed instrument data at full resolution, time-referenced, and 
annotated with ancillary information, including radiometric and geometric 

calibration coefficients and georeferencing parameters, e.g., platform ephemeris, 

computed and appended but not applied to the Level 0 data. 

Level 1B Level 1A data that have been processed to sensor units. 
Level 2 Derived geophysical variables at the same resolution and location as the Level 1 

source data. 

Level 3 Variables mapped on uniform spacetime grid scales, usually with some 
completeness and consistency. 

Level 4 Model output or results from analyses of lower level data, e.g., variables derived 

from multiple measurements. 

Defined by NASA’s Earth Observing System Data and Information System (EOSDIS) in consistency with the 
Committee on Data Management, Archiving and Computing (CODMAC) definitions (copied from Asrar and 

Greenstone 1995). 

 



Chapter I Product Specification 

 

14 

 

different sensors and other data sources. The minimum required product level is strongly dependent 

on the environmental process of interest. Lower level products might suffice for specific approaches 

like mono-temporal classification, although Song et al. (2001) reported that the accuracy of such 

analyses was always improved with atmospheric correction. Atmospheric correction is strictly 

necessary for multi-temporal and/or multi-sensor analyses (Röder et al. 2005), and concurrently even 

enables the derivation of biophysical variables and their use for assessing subtle land degradation 

processes in sparsely vegetated rangelands (e.g. Hostert et al. 2003, Röder et al. 2008). As of today, 

degradation processes are still under-assessed (Mertz et al. 2012), which might partially be due to the 

fact that automatic preprocessing and web-enabled provisioning of atmospherically corrected medium 

resolution satellite products represents a fairly new development (Loveland and Dwyer 2012). As 

such, one cannot overemphasize the importance of Level 2 products as fundamental basis of 

hierarchical product generation streamlines because they represent the first product level for 

widespread environmental usage. In the context of providing truly analysis-ready products, it becomes 

increasingly vital to already include gridding and reprojection on Level 2 (opposed to the EOSDIS 

definition) as this significantly simplifies the application of exhaustive time series algorithms – or 

facilitates Level 3 composite production – that make use of all available data but are generally invoked 

on a per-pixel basis (e.g. Zhu and Woodcock 2014b, Griffiths et al. 2013b). 

In a supplementary sense, Level 3 data can also be suitable for specific research tasks or 

circumstances. Compositing can be a means to generate spatially consistent datasets at regular repeat 

frequency, and thus enforces temporal equidistance, which often is a methodological key requirement 

(e.g. Jönsson and Eklundh 2004, Udelhoven 2011). In addition, the generation of (multi-) annual 

composites can be sufficient or can even have advantages: 5-year reporting intervals are generally 

sufficient for operational forest monitoring (Penman et al. 2003), and the use of carefully compiled 

annual time series reduces seasonal variations and hence directly unveils both drastic and long-term 

landscape changes (e.g. Kennedy et al. 2010, Hird et al. 2016). Furthermore, temporally aggregated, 

but spatially complete data enable the use of long-established and effective traditional remote sensing 

techniques like bi-temporal change detection (Singh 1989). Eventually, Level 3 products have some 

potential to lessen the ‘digital-divide’ because composites are analysis-ready baseline products that 

implicitly include the full-depth of the original Level 2 archive – with a fractional amount of the 

original data volume. 

4.3 State-of-the-art Product Generation Systems 

As outlined above, Level 2 and Level 3 baseline products are needed in an EO production 

streamline. There already exist a number of successful Level 2 and 3 product generation systems 
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tailored for processing large quantities of Landsat data. This sub-chapter will shortly introduce some 

of the most widely used architectures, as well as it will summarize the key differences that are mainly 

attributed to the geographic area and thematic objective that has driven their development. 

1) Level 2 product generation systems 

The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS, Masek et al. 

2006) and the Eastern Australian Preprocessing Framework (Flood et al. 2013) are of special note as 

they were successfully applied to a wide range of studies (e.g. Masek et al. 2008, Schmidt et al. 2015), 

but are also quite different in design. They differ with respect to supported satellite sensors, and they 

feature a different set of corrections and processing modules, as well as the specific implementation 

of these. 

LEDAPS initially aimed at providing surface reflectance inputs for the decadal assessment of 

North American ecosystem disturbance (Masek et al. 2006) and was developed on basis of the existing 

and very successful MODIS preprocessing architecture (Vermote et al. 1997, Justice et al. 2002, 

Vermote et al. 2002). Aerosol optical depth (AOD) is estimated using an image-based dense dark 

vegetation approach (DDV, Kaufman and Sendra 1988). Topographic and bidirectional effects are not 

accounted for. Cloud detection relies on Fmask (Zhu and Woodcock 2012). LEDAPS was developed 

for TM and ETM+ imagery, but the project was not further developed, and hence, OLI data are 

processed with a newer suite of methods called Landsat Surface Reflectance Code (LaSRC, Vermote 

et al. in press). To date, global Landsat data are processed with the respective system and made 

available over the internet (USGS 2016b). As a note of caution, the USGS states that these products 

should be considered provisional (USGS 2016a), which reflects that the development of Level 2 

products is still a running topic that concerns all involved space agencies and international institutions; 

see e.g. the Atmospheric Correction Inter-comparison Exercise (ESA 2016). 

The Eastern Australian Preprocessing Framework (Flood et al. 2013) was developed for 

operational state-wide monitoring of vegetation and land surface change. The framework supports the 

correction of TM, ETM+ and SPOT High Resolution Geometric (HRG) imagery, and was recently 

updated to also work with OLI (Flood 2014). Cloud detection is not fully integrated, but is also done 

using Fmask (Zhu and Woodcock 2012). The framework features an integrated correction of 

atmospheric, topographic and bidirectional effects – although strongly optimized for Australian 

settings. AOD is parameterized using a low and fixed constant due to the widespread lack of dark 

vegetation and the fairly clear Australian atmosphere (Gillingham et al. 2011). 
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2) Level 3 product generation systems 

There are also significant differences between Level 3 product generation systems as a direct 

result of the wealth of existing techniques. Often, compositing criteria are based on optimizing band 

or index statistics (e.g. maximum, minimum or median selection, see Holben 1986, Cabral et al. 2003, 

Dennison et al. 2005, Flood 2013), sometimes amended by view angle constraints (e.g. Huete et al. 

2002). Increasingly, new methods emerge that consider multiple criteria, among them the Web-

enabled Landsat Data (WELD, Roy et al. 2010a), and the parametric weighting scheme developed by 

Griffiths et al. (2013b). 

WELD was initially developed to provide cloud-free composites of the conterminous United 

States using Level 1 ETM+ imagery. A decision-tree-based compositing technique is employed to 

generate monthly, seasonal and annual composites. Implemented criteria include tests for cloudiness 

and the selection tree prefers observations with high brightness temperature and/or Normalized 

Differenced Vegetation Index (NDVI). Global WELD products are currently generated using 

additional TM images (Roy et al. 2014a), and the approach was also demonstrated with a Level 2 

ETM+ baseline (Roy et al. 2014b). 

Griffiths et al. (2013b) developed a compositing approach for monitoring land use change in 

the Carpathian ecoregion. The approach was also successfully applied to complete Canada (White et 

al. 2014). They utilize multiple years of Level 2 (LEDAPS) TM and ETM+ data to generate seasonal 

composites and to overcome cloud-induced data shortage in areas where the Landsat archive is less 

densely populated. The technique employs a parametric weighting scheme, where the suitability of 

each observation is scored with respect to the intra- and inter-annual difference to a predefined 

temporal target (e.g. year 2010 / Day-of-Year 180) as well as to the potential cloudiness, which is 

determined by the spatial proximity to the cloud mask. The observation with the highest total score is 

selected for the composite. Reprojection and tiling of Level 1 or Level 2 data was performed prior to 

compositing in both approaches. 
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5 Research Question 

In the course of the preceding sections, it was outlined that space-based observation of 

environmental processes, e.g. in the form of essential climate/biodiversity variables are indispensable 

for enhanced and sustainable earth resource usage (I-1). The consequential formalization of 

monitoring requirements (I-2) and capabilities (I-3), as well as product requirements (I-4) leads to the 

conclusion that a consistent and integrated preprocessing of Level 1 into Level 2 and 3 Landsat 

products is an integral prerequisite that can facilitate the instatement of regional environmental 

monitoring systems as it relieves the end-user from any form of preprocessing and hence has great 

potential to increase operational throughput. The state-of-the-art was shortly reviewed in the last sub-

chapter (I-4.3), and although the currently existing production systems have already proven their 

effectiveness with regards to environmental monitoring, it also is noted that the current systems still 

lack functionality in various crucial aspects. These gaps will be outlined in the subsequent subchapter, 

followed by a specific formalization of the thesis’ research objectives and structure. 

5.1 Gap Analysis 

As noted earlier, most research and product development takes place in industrialized 

countries, whereas less-observed grey spots are present in parts of the globe – among them Southern 

Africa. Regarding methodology, a gap was identified in such dryland areas, as the presented Level 2 

production systems either rely on DDV, or assume that AOD can be approximated by a constant if 

there is no dark vegetation. Whilst the drawback of the first method is self-explanatory, the latter 

approach is limited by assuming that AOD is low and does not vary in space and time. Both conditions 

are violated during the rainless burning season in Southern Africa. To a lesser extent, the cloud 

detection algorithm Fmask is also error-prone in drylands, as it occasionally produces a high rate of 

false positives in complexly structured areas with high temperature differences between land covers. 

None of the systems corrects for adjacency effects, which denotes the scattering towards the 

sensor from adjacent surface elements. This effects adds a perturbing component to the target’s signal 

and is especially critical in heterogeneous areas when measuring AOD over dark targets that are 

embedded in a bright landscape. 

Furthermore, the full integration of atmospheric, topographic and bidirectional effects is not 

sufficiently met by the existing systems – or is strongly optimized for a limited geographic extent. 

While LEDAPS and LaSRC only feature atmospheric correction, the Australian approach basically 

includes all three corrections, although the coupled topography-BRDF correction is somewhat limited 
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as it was derived by an exhaustive sampling of Australian Landsat data under different illumination 

and viewing conditions in several topography and land cover classes. This approach may not be 

feasible where Landsat data availability and land cover information are below the Australian standard. 

The authors of LaSRC reason that additional corrections do not need to be fully integrated during 

atmospheric correction (Vermote et al. in press), as they can also be performed afterwards; however 

current Level 3 production systems either still use Level 1 data or rely on Level 2 data that lack further 

corrections for topographic and bidirectional effects. This makes a strong point for the direct 

integration of these corrections into Level 2 production, as this enables a wider range of applications 

at Level 3, too. 

The harmonized processing of imagery from different sensors is also not fully accomplished, 

as e.g. the US based LEDAPS and LaSRC algorithms are specialized for TM/ETM+ and OLI data, 

respectively. Again, the Australian approach fulfills this requirement, although global applicability 

may not be possible with the current toolset (see last paragraph). 

Moreover, the increasing demand for analysis-ready gridded Level 2 products in a single 

projection is currently not met. Level 3 and Level 4 product developers are still in need to convert the 

data prior to their analyses, which is not a sophisticated procedure, but still implies an avoidable and 

computationally costly preprocessing step that – at least temporary – doubles data volume. 

In chapter I-2.4, the selection of phenologically similar observations was identified as a key 

monitoring requirement for multi-temporal analyses, yet, this condition is not exhaustively explored 

by the existing Level 3 systems. Generally, state-of-the-art techniques are capable of generating 

‘seasonal’ composites. However, this is either accomplished by index based selection within a 

predefined temporal window or by selecting observations that are as close as possible to a predefined 

day, which both are global approaches that do not consider that spatial and inter-annual variations in 

phenology may be present across a study area, e.g. in the form of terrain altitude induced shifts in leaf 

development. 

A Level 3 production system that realizes phenological normalization would be the direct 

consequence, and hence, a Land Surface Phenology baseline at appropriate spatial resolution would 

be needed for enforcing this criterion on the pixel level. As outlined before, the temporal monitoring 

requirement for accurately deriving LSP is to employ a time series with a temporal resolution of at 

least 16 days – a condition that cannot be fulfilled with Landsat data in many parts of the world. 



Chapter I Research Question 

 

19 

 

5.2 Objectives and Structure 

Consequently, the overarching research task of this dissertation was to develop a framework 

for generating analysis-ready higher-level EO satellite products that may be linked with operational 

environmental monitoring systems. More specifically, Level 2 and Level 3 products should be 

produced that fill the specified research gaps within a single production system, using Landsat as an 

example. This thesis attempts to make a contribution in a yet under-researched part of the globe, 

namely the drylands of Southern Africa. Hence, efficient and fully automatic mass data processing 

streamlines needed to be implemented with non-proprietary software components accounting for the 

most data-intensive processing steps. 

In detail, three objectives were formulated, which were addressed in five peer-reviewed 

publications. The objectives and structure of this thesis are briefly outlined in the following and are 

summarized and reviewed in Chapter VII. 

 

Objective I: Development of a Level 2 production system – Fully automatic 

radiometric preprocessing of large Level 1 satellite archives with integrated 

corrections for atmospheric, topographic and bidirectional effects as well as 

cloud/cloud shadow detection and geometric refurbishment. 

Objective II: Development of a Land Surface Phenology baseline – Derivation of 

phenological descriptors for their use in a pixel-based compositing framework. 

Objective III: Development of a Level 3 production system – Pixel-based 

compositing on the basis of current state-of-the-art compositing techniques with a 

special emphasis on developing methods for phenological normalization. 

 

Radiometrically normalized image archives represent the fundamental basis for a broad-

ranging set of monitoring demands. This first objective is primarily answered in Chapter II, where the 

developed Level 2 preprocessing system is presented. Partial aspects are addressed in Chapter III, i.e. 

a dryland-specific add-on to an existing cloud and cloud shadow detection technique, and Chapter IV, 

i.e. the derivation of a spatio-temporal aerosol fallback climatology for dryland-specific handling of 

gaps in image-based AOD estimation. 
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As a key monitoring requirement for multi-temporal analyses, observations from the same 

vegetation development stage are needed and it was assessed that this condition is not exhaustively 

explored by existing compositing techniques. Hence, objective two represents an intermediate – but 

essential – step towards the third objective, wherein LSP at Landsat’s spatial resolution is needed. As 

coarse resolution sensors are better suited for the derivation of LSP, Chapter V presents a novel data 

fusion technique for improving the spatial resolution of coarse continuous fields in general. 

Following this, the datasets generated within the first two objectives are used to develop a 

compositing framework that realizes the selection of phenologically similar observations on the pixel 

level. This objective is addressed in Chapter VI, which presents a phenology-adaptive version of a 

parametric weighting based compositing algorithm. 

Eventually, Chapter VII will summarize the three objectives and the thesis will conclude with 

a brief outlook, wherein it will be illustrated how the herein developed methods and datasets may 

promote regional case studies or be integrated into operational environmental monitoring concepts. 
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Abstract 

We developed a large area preprocessing framework for multi-sensor Landsat data, capable of 

processing large data volumes. Cloud and cloud shadow detection is performed by a modified Fmask 

code. Surface reflectance is inferred from Tanré’s formulation of the radiative transfer, including 

adjacency effect correction. A pre-compiled MODIS water vapor database provides daily or 

climatological fallback estimates. Aerosol optical depth (AOD) is estimated over dark objects that are 

identified in a combined database and image-based approach, where information on their temporal 

persistency is utilized. AOD is inferred with consideration of the actual target reflectance and 

background contamination effect. In case of absent dark objects in bright scenes, a fallback approach 

with a modelled AOD climatology is used instead. Topographic normalization is performed by a 

modified C-correction. The data are projected into a single coordinate system and are organized in a 

gridded data structure for simplified pixel-based access. We based the assessment of the produced 

dataset on an exhaustive analysis of overlapping pixels: 98.8% of the redundant overlaps are in the 

range of the expected ±2.5% overall radiometric algorithm accuracy. AOD is in very good agreement 

with AERONET sunphotometer data (R²: 0.72 to 0.79, low intercepts and slopes near unity). The 

uncertainty in using the water vapor fallback climatology is approximately ±2.8% for the TM SWIR1 

band in the wet season. The topographic correction was considered successful by an investigation of 

the non-relationship between the illumination angle and the corrected radiance. 
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1 Introduction 

Landsat data are one of the most valuable resources for earth observation (Cohen and Goward 

2004) due to their long term data continuity (Wulder et al. 2008) and their optimal resolution to 

monitor processes at the landscape level (Danaher et al. 2010). With the advent of open data policy 

(Woodcock et al. 2008), accompanied by technical progress in terms of processing, storing and 

transmission infrastructure and the increasing availability of automated processing routines (e.g. Zhu 

and Woodcock 2012), the usage of Landsat data changed fundamentally (Wulder et al. 2012). 

Historically, analyses were either based on a few images and large areas (Masek et al. 2008) or on 

small areas and shorter time steps (Sonnenschein et al. 2011). Now, it has become feasible to make 

use of the full depth of the Landsat archive, as well as covering very large areas at the same time. 

Nevertheless, Landsat data are still provided in the traditional Worldwide Reference System 2 (WRS-

2) framework (Hansen and Loveland 2012), where the image footprints vary from acquisition to 

acquisition. This involves several obstacles for the end user, e.g. the integrated usage of data from 

different paths requires the reprojection to a unique coordinate system, which simplifies the adequate 

usage of the data-rich orbital overlap area. Even in the case of using only one WRS-2 footprint, all 

images have to be cropped to the same extent. This is even mandatory if sophisticated follow up 

applications like time series analyses (TSA) or the derivation of pixel based composites (PBC, 

Griffiths et al. 2013b) are to be addressed. The usage of these dense time-series applications requires 

the data of a given location to be easily and quickly accessible, regardless of their initial path and row 

designation, projection, acquisition time or sensor. Therefore, preprocessed imagery in a gridded data 

structure represents a more suitable structure for TSA or PBC applications (Hansen and Loveland 

2012), as demonstrated by the Web-enabled Landsat Data (WELD) project (Roy et al. 2010a). 

Existing large area production systems (Hansen and Loveland 2012) or similar preprocessing 

architectures (Roy et al. 2010a) most often do not include a full and integrated radiometric treatment, 

i.e. accounting for atmospheric and topographic effects simultaneously. Topographic variation even 

has a greater impact on the remotely sensed data than atmospheric effects (Kobayashi and Sanga-

Ngoie 2008), thus topography should be accounted for if the area of interest is not merely flat. More 

sophisticated analyses of large amounts of data like spectral unmixing or the quantitative derivation 

of biomass indicators (e.g. in support for monitoring systems in a Reducing Emissions from 

Deforestation and forest Degradation (REDD) in developing countries context) for several or many 

time steps also requires more sophisticated radiometric corrections, i.e. surface reflectance products. 

Hansen and Loveland (2012) recently published an overview of several Landsat data processing 

systems for large area monitoring, whereby the corrections range from Top-of-Atmosphere (TOA) 



Chapter II Radiometric Preprocessing 

 

25 
 

reflectance to surface reflectance, some of them including topographic and/or directional effects. Most 

systems only correct the data to TOA reflectance (Hansen and Loveland 2012). The widely-used 

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS, Masek et al. 2006) produces 

surface reflectance by utilizing radiative transfer modelling, though the system does not account for 

topography. Of note is the Eastern Australia preprocessing framework (Flood et al. 2013) that 

minimizes atmospheric, topographic and bidirectional effects, though their integrated BRDF 

correction might not allow the direct transfer to areas that suffer from low data availability. 

Large area generation systems that apply a terrain normalization and provide gridded surface 

reflectance products of multi-sensor Landsat data are still scarce or require input data that may not be 

available in each part of the world. As such, we chose a sufficiently elaborate method set that 

minimizes the amount of input data, in order to provide a processing framework that may even be 

applied in areas where the general data availability is still low and where specific environmental 

settings preclude the usage of specific processing strategies, e.g. in our study area in Southern Africa. 

We here present an operational approach that processes all available multi-sensor Level 1T (L1T) 

Landsat Digital Number (DN) data to surface reflectance and stores the processed data in a gridded 

tile structure as known from the MODIS land products. The generated products are tailored for 

applications that require rapid and easy data access, make use of a large amount of data across space 

and time and demand radiometrically normalized data. The processing scheme includes modules for 

cloud masking, atmospheric and topographic correction, reprojection and gridding. 

2 Study Area 

The method was developed in Southern Africa, entirely including the countries of Angola, 

Zambia, Zimbabwe, Botswana and Namibia (ca. 3.7 Mio. km²). The area was designated because 

nation-wide and cross-national wall-to-wall mapping of forest and ecosystem related parameters are 

to be targeted in the future, thus the inclusion of whole countries. For example, any REDD+ 

assessment should monitor deforestation and forest degradation rates at the national level to avoid 

leakage to unobserved spots (DeFries et al. 2007). In addition, the countries themselves were chosen 

because their national territory partially falls into the Kavango-Zambezi Transfrontier Conservation 

Area (KAZA TFCA), which is planned to be centered on the Caprivi-Chobe-Victoria Falls area. Thus, 

the area is a highly interesting spot for any kind of cross-boundary studies regarding a wide variety of 

ecological and social questions. The area is climatically diverse, especially owing to the latitudinal 

precipitation gradient, mainly as a consequence of the Intertropical Convergence Zone (ITCZ, 

Nicholson 1981). The vegetation cover ranges from dense Miombo forests in Angola to sparse xerilic 

savanna ecosystems in the Kalahari, and also includes more extreme surface types like swamps, salt 
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pans and deserts (Olson et al. 2001). The seasonal cycle is closely tied to seasonal changes in large 

scale air movement and solar configuration, which results in three hygrothermal seasons that spatially 

and annually differ in timing and length due to the variability in precipitation (Fynn et al. 2014): (i) 

hot wet season (~ November to April), (ii) cool dry season (~ May to August) and (iii) hot dry season 

(~ September to October). The study area is displayed in Fig. II-1. Nonetheless, the presented 

preprocessing scheme is not bound to this area and can be ported elsewhere. 

3 Data 

3.1 Landsat data 

All available intersecting Landsat images from 194 WRS-2 frames were acquired from the 

U.S. Geological Survey archive (USGS). We downloaded even very cloudy images of up to 70% 

cloud coverage because the Automated Cloud Cover Assessment (ACCA) system occasionally fails 

to estimate the cloud coverage with sufficient precision (Zhu and Woodcock 2012). We discarded 

images that were not corrected with the Level 1 Product Generation System (LPGS) to L1T precision, 

as a reliable co-registration among images was considered to be of major importance for TSA and 

PBC follow-up applications. At the time of writing, we acquired and processed 58,731 L1T images 

with a total data volume of nearly 15 TB (see Table II-1 for details). 

 

Fig. II-1. Location of the study area and number of available L1T images per Landsat frame. 
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Fig. II-1 displays the total number of available images for each WRS-2 frame. The data 

availability is quite low when compared to other areas such as the United States. There is a pronounced 

North-South gradient where data availability is extremely low in northern Angola due to the 

characteristic regional rainfall patterns where the north-western part of the study area is already 

located in the tropics. 

Fig. II-2 displays all available Landsat images for each year (top) and each month (bottom). 

The data availability is unevenly distributed among the years, e.g. due to satellite (de-) commissioning, 

changes in acquisition strategies, technical failure, climatic reasons and so forth. There is a seasonality 

in data availability with more data during the dry season and less data during the wet season. 

The Landsat Global Archive Consolidation effort (Loveland and Dwyer 2012) is currently still 

in progress, and we might expect up to 200 additional Landsat images per frame (Wulder et al. in 

press) which will significantly foster the applicability of subsequent analyses approaches– provided 

that each image is of sufficient quality to be processed to L1T precision. 

Table II-1. Acquired L1T Landsat images 

 Number Size Start End 

L4 TM 225 0.03 10/22/1987 03/27/1993 
L5 TM 24,204 3.34 04/12/1984 11/17/2011 
L7 ETM+ SLC-On 7,166 1.83 06/30/1999 05/28/2003 
L7 ETM+ SLC-Off 20,816 4.44 07/22/2003 12/31/2014 
L8 OLI 6,332 5.53 04/11/2013 12/31/2014 

Number, compressed data volume in TB and time range of the acquired images. 
 
 

 

Fig. II-2. Number of available L1T images per year (top) and month (bottom). 
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3.2 Digital Elevation Model 

Recently, the USGS publicly released the 1-arc-Second (~30 m) Digital Elevation Model 

(DEM) derived by the Shuttle Radar Topography Mission (SRTM, USGS 2015). We pre-compiled an 

elevation mosaic generously covering all of sub-equatorial Africa. DEM data are used for the 

topographic correction and for applying an elevation correction to the optical depths. 

3.3 Precipitable Water Vapor 

MODIS water vapor data are used for the physically based correction of water vapor 

absorption in the earth’s atmosphere. We use the MOD05 and MYD05 products, as well as the 

MOD03 and MYD03 geolocation tables, which are automatically downloaded from the Level 1 and 

Atmosphere Archive and Distribution System (LAADS) at NASA’s Goddard Space Flight Center. 

We use data that were derived from the near infrared water vapor algorithm (Gao and Kaufman 2003), 

which relies on water vapor attenuation of the near infrared (NIR) radiation. The column water vapor 

amount is determined from radiative transfer theory on basis of ratios between water vapor absorbing 

and atmospheric window bands. The product is obtained at 1 km spatial resolution and the temporal 

resolution is up to one day if considering both Aqua and Terra observations. 

4 Methods 

The presented framework for processing Landsat data from L1 DN values to a gridded surface 

reflectance product is schematically shown in Fig. II-3. The download of Landsat and SRTM data, as 

well as the mosaicking of the DEM are performed rather manually in advance. The core functionality 

of the framework is enclosed in the solid box, where the main modules are the identification of clouds 

and cloud shadows (4.2), the radiometric processing (4.3) and geometric modules for the finishing of 

the data (4.4). The radiometric correction combines methods for atmospheric and topographic 

corrections, which rely on the computation of the angular scene parameters, the derivation of 

topographic information and an elaborated scheme for retrieving AOD in a joint database-, image- 

and object-based approach. The gaseous transmission is accounted for by a MODIS derived water 

vapor database that is scheduled operationally. Table II-2 defines the mathematical symbols used in 

this paper. 

4.1 Implementation 

The code is able to process Landsat images from the Thematic Mapper (TM), Enhanced 

Thematic Mapper (ETM+) and Operational Land Imager (OLI) sensors. For the sake of dataset 
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consistency we opted for processing only the traditional six reflective bands. Thus we omit the ultra 

blue and cirrus bands of the OLI sensor. We also do not make use of the Landat-8 quality layer for 

the same reason as well as not using the cirrus band in Fmask, as opposed to Zhu et al. (2015). 

Detailed processing information of the key modules are appended to the metadata in order to 

enable the user to gauge the quality of the processed images. 

The framework is entirely implemented with Open Source software and is written in C. The 

Geospatial Data Abstraction Library (GDAL 2013) Application Programming Interface (API) is used 

for reading data in GeoTiff and Hierarchical Data Format (HDF), as well as for reprojection purposes. 

The cURL API is used for the automatic download of MODIS data. The GNU Scientific Library is 

used for optimization procedures. On-node and across-node parallelization is achieved by using GNU 

parallel (Tange 2011) where one processor is fed with one image at a time. The processing chain is 

streamlined in Random Access Memory (RAM )such that the data is only read once and only the very 

final output is written to disc. 

Several modules can be disabled or enabled in any possible combination, e.g. the topographic 

correction, reprojection and/or tiling modules. The atmospheric correction can also be switched off, 

in which case TOA reflectance is produced. Instead of using the dark object database retrieval options, 

externally derived AOD values can be passed to the algorithm. More advanced processing options can 

also be modified, e.g. the environmental correction can be disabled and either the multiple scattering 

or the simpler single-scattering approximation can be employed.  

4.2 Cloud and cloud shadow detection 

We integrated a modified version of the Fmask algorithm (Zhu and Woodcock 2012) and we 

implemented the modifications described by Frantz et al. (2015b), i.e. the discarding of the termination 

criterion for shadow matching and the inclusion of an additional darkness filter, as well as most of the 

Fmask updates (Zhu et al. 2015). In addition, we modified the match similarity metric for matching 

the clouds with their shadows. In the original Fmask code (Zhu and Woodcock 2012), a cloud is 

shifted along a projected search path and a match between this projected shadow and potential cloud 

and cloud shadow layers is computed. The original cloud is excluded from the match. Nevertheless, 

if there is a big cloud in the search path, the match similarity is maxed out, because the projected 

shadow is completely contained in the bigger cloud. Thus, the shadow matching often “runs” into the 

next big cloud and the actual shadow is missed. Therefore, we only match the projected shadow with 

the potential shadow layer, which provides good results when combined with the disabling of the 

termination criterion (Frantz et al. 2015b).  
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Fig. II-3. Schematic workflow of the preprocessing framework. B, C and D refer to subchapters 2–4 of the 
methods section. 

Table II-2. Mathematical symbols 

Symbol Meaning 

λ Wavelength 
ρ, ρ*, ρp Surface reflectance, at-satellite reflectance, path reflectance 
<ρ> Background contribution to the apparent target reflectance 
ϴs, ϴv Sun and view zenith angles 
Φs, Φv Sun and view azimuth angles 
µs, µv Cosine of ϴs and ϴv, indicating downwelling and upwelling terms, respectively 
T, td, ts Total transmittance, direct transmittance, scattered (diffuse) transmittance 
Tg, Tw Total gaseous transmittance, water vapor transmittance 
aw, W, M Water vapor absorption coefficient, precipitable water vapor, relative air mass 
L*, d, ESUN At-satellite radiance, Earth-Sun distance, mean solar exo-atmospheric irradiance 
Apl, R, g Plane albedo, reflectance functions, asymmetry factor 
τ, τa, τr Total, aerosol and molecular optical depth 
P, Pa, Pr Total, aerosol and molecular phase functions 
Ψ_, s Backscattering angle, spherical albedo 
g1, g2, α Asymmetry parameters of the TTHG function 
ρ*

o, ρ*
e, r Dark object reflectance, environment reflectance and target radius 

ρs, ρw, ρf Reference reflectance, volumic water reflectance, Fresnel reflectance 
a0, a1, a2 Coefficients of the logarithmic τa vs. λ regression 
A, C Topographic A- and C-Factors 
i, cos i Incidence angle, illumination angle 
b, m Intercept and slope of linear regression between cos i and L* 
h, h0 Portion of the sky dome which contributes to the diffuse illumination (h0: h at cos i = 0) 
ϴn, Φn Topographic slope and aspect 

Definition of the mathematical symbols used in this paper. 
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Rather than buffering the cloud and cloud objects, we calculate the distance to the next cloud 

or cloud shadow (Meijster et al. 2000) for each pixel. This approach increases the flexibility of this 

dataset regarding varying demands of different follow-up applications: the user can decide on how 

large the buffer should be for his specific application or can make use of the full distance information; 

e.g. Griffiths et al. (2013b) used the cloud distance in a PBC application to score the usability of a 

given observation by using a transfer function. We append the cloud/shadow pixel distance as 7th layer 

to the processed data (spectral information is stored in the first 6 bands). 

In order to increase the computational performance, we implemented two full-stop criteria 

where the processing of an image is terminated after or within (before the costly shadow matching) 

the cloud detection module if the scene cloud coverage exceeds a given user-defined threshold. We 

set this threshold to 25% unbuffered cloud and cloud shadow cover. 

4.3 Radiometric Processing 

Following Tanré’s formulation for radiative transfer (Tanré et al. 1990) and by adding a 

topographic correction factor A (Teillet et al. 1982, Kobayashi and Sanga-Ngoie 2008), the surface 

reflectance ρ can be expressed as (Hill 1993): 

� = � ∙ �∗/��	
� , 

� ∙ �1 − 〈�〉 ∙ �� − �� ∙ �1 − 〈�〉 ∙ �� − �	
�� ∙ ��	

� ∙ 〈�〉�	
�� ∙ ��	

�  (II-1)

where ρ* is the at-satellite reflectance, ρp is the path reflectance and <ρ> is the background 

contribution to the apparent target reflectance. µs and µv are the cosines of the sun and view zenith 

angles ϴs and ϴv. T(µv), td(µv) and ts(µv) are the total, direct and scattered (i.e. diffuse) upwelling 

transmittances, respectively; downward transmission terms are indicated by their dependence on µs. 

Tg(µs,µv) is the total gaseous transmission and s denotes the spherical albedo. Most of the variables in 

eq. II-1 and the following equations are wavelength-dependent; we omitted the wavelength subscript 

λ for the sake of simpler equations. 

The adjacency effect is accounted for by the background contribution <ρ>, which is derived 

from the weighted sum of the measured apparent reflectance around the target and from the target 

itself (for details, see Tanré et al. 1981, Hill 1993). 

A simplified schematic workflow for the radiometric correction module is shown in Fig. II-4. 
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1) DN-to-TOA-reflectance conversion 

The TOA reflectance ρ*of a tilted surface is computed (Chander et al. 2009) by: 

�∗ = � ∙ �� ∙ �∗ 	��� ∙ 
��⁄ . (II-2)

The at-satellite radiance L* is derived from the calibrated DNs by applying the rescaling factors which 

are included in the metadata (Chander et al. 2009). The mean solar exo-atmospheric spectral irradiance 

ESUN was derived by applying sensor-specific relative spectral response (RSR) functions to the 

Thuillier solar spectrum (Chander et al. 2009, Thuillier et al. 2003). ϴs and the solar azimuth angle 

Φs, as well as the Earth-Sun distance d (Spencer 1971) are computed by using the date and location 

from the metadata. Though it is generally accepted to only use the sun position at the scene center 

(Hansen and Loveland 2012), we compute sun positions for square blocks of 333 Landsat pixels, 

 

Fig. II-4. Workflow for the radiometric processing. The subsections of this chapter are grouped in boxes. 
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which results in a roughly 10 km spaced sun position grid; the view zenith ϴv and azimuth angles Φv 

are computed likewise. 

2) Atmospheric correction 

a) Gaseous Transmittance 

In our current implementation, we focus on the transmittance of water vapor absorption as first 

approximation. Amongst the radiance-modifying gases, water vapor is the most variable agent. The 

gaseous transmittance term in eq. II-1 then simplifies to: 

��	
� , 

� = �"	
�� ∙ �"	

�, (II-3)

where the down-welling water vapor transmittance function is computed (Bird and Riordan 1986) by: 

�"	
�� = exp	'− 0.2385 ∙ ." ∙ / ∙ 0	
���1 + 20.07 ∙ ." ∙ / ∙ 0	
���3.456 (II-4)

which is dependent on the relative air mass M, on spectral water vapor absorption coefficients aw and 

on the precipitable water vapor W (measured in centimeters). The relative air mass M is defined (Bird 

and Riordan 1986) as: 

0	
�� = 1 �
� + 0.15 ∙ 	93.885 − 8��9:.�5;�⁄ . (II-5)

The up-welling water vapor transmittance is calculated by using ϴv and µv instead of ϴs and 

µs. We derived hyperspectral aw values from the high-resolution transmission molecular absorption 

database (HITRAN, Rothman et al. 2013) with the Landsat RSR functions. 

Precipitable water estimates W are provided by a previously generated MODIS water vapor 

database. Therefore, we implemented an operational module for automatic data acquisition and 

processing of MODIS data. For each WRS-2 frame in continental sub-equatorial Africa, day-specific 

water vapor loadings are derived if possible. We determine spatial averages from all cloud- and sun-

glint-free pixels within the WRS-2 footprints, separately for the Terra and Aqua granules. If estimates 

from both sensors are available, we choose the one with the larger number of valid pixels, which in 

most cases is Terra for Landsat 7 (99.4%) and Aqua for Landsat 5/8 (99.2%) due to orbital 

characteristics. If there are less than 10% of valid pixels, the average is expected to be unreliable and 

we fall back on an alternative parameterization, which applies for missing data of any kind, including 

the pre-MODIS era, coverage gaps between the swaths, sensor outages and the like. Southern African 

climate is dominated by a stable and pronounced seasonality into a dry and wet season. Therefore, W  



Chapter II Radiometric Preprocessing 

 

34 
 

is replaced by an average seasonal proxy derived from a statistical analysis of the complete MODIS 

water vapor data sequence – if necessary. This fallback climatology was used in 100% of all cases 

before 2000, 25.3% in 2000, 2.2% in 2001, 2.8% in 2002 and less than 0.4% thereafter, which reflects 

the phased commissioning of the Terra and Aqua platforms. Exemplary water vapor data are plotted 

in Fig. II-5 for WRS-2 Path/Row 177/072 with daily values in the top panel and the fallback 

climatology below. Water vapor follows a seasonal cycle with low values in the dry season and high 

values in the wet season. The standard deviation is higher in the wet season, which could indicate that 

the error in using the fallback values is smaller during the dry season during which Landsat data 

availability is higher. In order to document the usability of this approach across the study area, we 

 

Fig. II-5. Visualization of the water vapor database for WRS-2 Path/Row 177/072 (19.71°E, 17.35°S). Top: 
daily values and 15-day running mean; bottom: average seasonal cycle and standard deviation on monthly 

basis. 
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appended additional examples in the supplemental material section of this article. We chose the 

Landsat frames with the highest monthly average and standard deviation. The seasonal and annual 

variability is higher in the latter example (compared to Fig. II-5), but a seasonal pattern is evident 

nonetheless. In addition, we provide maps of the fallback climatology (as shown in Fig. II-5 bottom 

for one frame) for complete sub-equatorial Africa in the supplemental material section. 

 

b) Aerosol optical depth 

(1) Radiative Transfer Theory 

All remaining unknown parameters in eq. II-1 can be derived from aerosol optical depth τa 

(Hill and Sturm 1991, Hill 1993), by either using the single scattering approximation (Gordon 1981) 

or by also considering multiple scattering processes (Sobolev 1975). Equations II-6–II-19 provide the 

derivation of these atmospheric scattering terms from τa using the multiple scattering approach (refer 

to Hill and Sturm (1991) for the simpler single scattering approximation). The practical estimation of 

τa is outlined in the next chapters (2–4). 

The path reflectance ρp is defined by an exact treatment of first order scattering and an 

approximate solution for higher order scatterings: 

�� = ��< + �3	1 + =�


� − 2	

 + 
�� + >� ∙ �1 − exp	? 

⁄ − ? 
�⁄ �� �4	

 + 
���⁄ . (II-6)

The plane albedo Apl is given (Irvine 1975) by: 

��< = 1− A	

� ∙ A	
��4 + 3	1 − =�? (II-7)

where the reflectance functions R(µs) (replace µs with µv to obtain R(µv)) are given (Irvine 1975) by: 

A	
�� = 1 + 3
�2 + B1 − 3

�2 C ∙ DEF	−? 
�⁄ � (II-8)

with the asymmetry factor (Aranuvachapun 1986) 

= = �G ∙ 	=: + =�� − =�� ∙ ?H ?⁄ . (II-9)

The total optical depth 

? = ?H + ?I (II-10)



Chapter II Radiometric Preprocessing 

 

36 
 

is the sum of τa and the molecular optical depth τr for a standard Rayleigh atmosphere (Guzzi et al. 

1987): 

?I = 0.0088 ∙ J94.:5K3.�L. (II-11)

The total phase function 

> = >H ∙ ?H ?⁄ + >I ∙ ?I ?⁄  (II-12)

for the backscattering angle 

M_ = cos9:R−


� − �	1 − 

��	1 − 
����3.5 cos	S
 −S��T (II-13

is obtained from the phase functions for molecular (Bucholtz 1995) 

>I = 0.75 ∙ 	1 + UV��M_� (II-14)

and aerosol scattering Pa. The aerosol scattering equation is approximated by a two-term Henyey-

Greenstein (TTHG) function with g1 = 0.836, g2 = 0.537 and α = 0.968, representing a continental 

aerosol model (Aranuvachapun 1986): 

>H = 	1 − =:�� ∙ G�1 + =:� − 2=: cos M_�:.5 +
	1 − =��� ∙ 	1 − G��1 + =�� + 2=� cos M_�:.5 (II-15)

The down-welling total scattering transmittance 

�	
�� = exp	−	0.52?I + 0.167?H� 
�⁄ �, (II-16)

the direct portion 

��	
�� = exp	−? 
�⁄ �, (II-17)

and the scattered portion 

��	
�� = �	
�� − ��	
�� (II-18)

are readily computed (the up-welling terms are retrieved by replacing µs with µv). The spherical albedo 

s, viewed from the ground, is given by: 

� = expX−	?I + ?H�Y ∙ 	0.92?I + 0.333?H�. (II-19)
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Thus, solving eq. II-1 only requires a robust estimation of τa,, which – in the absence of 

measurements – is commonly derived from the image itself with dark target techniques, assuming that 

candidate objects exist in every image (e.g. Hill and Sturm 1991). 

(2) Dark Object Database 

For the practical implementation of this concept, we utilize a partially image-based approach 

by using a pre-compiled Dark Object Database (DODB). The DODB is created from the complete 

data series of each pixel and guarantees that the dark objects (DOs) are estimated from the same pixels 

for all bands and that preferably the temporally more persistent ones are used for estimating τa. This 

prevents that temporary dark objects (like flood water, burned areas or cloud shadows) are used in 

some images while completely different DOs are used in other images that do not contain such objects. 

The generation of the DODB is a prerequisite for our preprocessing algorithm, thus we based 

the generation of the DODB on an analysis of the DNs of every available image. DOs are identified 

in each image by using the red and near infrared band histograms (see next paragraph). After all the 

individual images are analyzed, the dark object persistency DOP (with DOP = [0,100], i.e. the 

percentage of the time a pixel is dark) is derived for each pixel in the study area. In order to account 

for potential land cover change during the past 30+ years, we compiled 3 decadal databases, i.e. 

[1984,1995], [1996,2005] and [2006,2015]. The DODB is designed such that newly acquired data can 

be simply integrated into the database by updating the DOP score. Fig. II-6 displays a subset of the 

DOP, as well as two examples of Landsat false color images for an area that is characterized by varying 

water levels (more water during the late wet season, middle) and the presence of burn scars (more 

likely during the course of the dry season, bottom). The use of the most persistent DOs effectively 

prevents the usage of the transient dark features, in this case the flood plains and the burned areas, 

which were also marked as DO in some images (b/w tones in the top panel). 

We identify DOs in the red and near infrared bands for each processed image. The NIR band 

is utilized because of (i) the decreasing scattering effect at longer wavelengths (Luo et al. 2008) which 

increases the darkening effect of shadowed pixels (Zhu and Woodcock 2012) and because (ii) most 

surface features are bright and thus maximize the contrast to shadowed areas (Zhu and Woodcock 

2012). The red band is used to reject highly turbid water bodies. For both bands, the DOs are retrieved 

from the lower bounds of the band histograms. 
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(3) Image-based estimation of AOD 

Based on the persistent DOs, we employ an object-based approach where it is attempted to 

derive τa for each non-transient dark object on a physically sound basis, implicitly including the 

adjacency effect. During the actual radiometric processing, the DOP is available to the algorithm and 

is used in combination with the ρ* image under consideration. We only use pixels with consecutively 

decreasing ρ* for all bands, which represents an important property of an ideal DO as it should follow 

a λ-x relation (Chavez 1988). Objects with less than 10 valid pixels or that are in close proximity to 

clouds (<10 px) are discarded. The object reflectance ρ*
o, environment reflection ρ*

e and target radius 

r are directly inferred from the image, the target altitude is considered by adjusting τr (Guzzi et al. 

1987) and the objects are separated into water and topographic shadow targets based on the 

illumination situation. If ρ*
e is smaller than ρ*

o, the object is rejected. 

Our approach builds on the method of Royer et al. (1988), where ρ*
o is matched with the 

spectral reference reflectance ρ*
s of a typical dark object. In case of water, the surface reference 

reflectance is given by: 

�� = �" + �Z��	
�� �	
��⁄ , (II-20)

 

Fig. II-6. Visualization of a section of the dark object database and two example images (25.06°E, 17.79°S). 
Top: Dark object persistency; middle: false-color image of a late wet-season image; bottom: false-color 

image of a dry-season image. The same stretch was applied to both images with R/G/B = NIR/red/green. 
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with ρw being the volumic water reflectance that is obtained from a spectral reference library (see 

below). The Fresnel surface specular reflectance ρf  is computed as a function of the incidence angle i 

(Kay et al. 2009), assuming that water surfaces are flat. Aerosol optical depth is determined in a 

bandwise iterative procedure by gradually adding atmospheric scattering to ρs, thus simulating the 

reference reflectance ρ*
s as it would be sensed at the top of the atmosphere (solve eq. II-1 for ρ* with 

A = 1 while increasing τa, starting with a pure Rayleigh atmosphere, i.e. τa = 0). This process terminates 

once ρ*
s and ρ*

o match; see Royer et al. (1988) for a detailed description. In the case of cast shadow, 

we use a modified version of this approach where ρf  is ignored but the topographic correction factor 

A (see topographic correction) is included in order to model the shaded ρ*
s. The procedure is outlined 

in Fig. II-4 in simplified form. 

In order to (i) obtain a more physically coherent set of the wavelength dependent τa, (ii) reduce 

measurement dependent variations (Hill 1993) and (iii) to have an instrument for gauging the quality 

of the estimation, i.e. R² (Royer et al. 1988), we perform a logarithmic regression between τa and λ. A 

second-order polynomial fit is employed: 

ln ?H = .3 + .: ∙ ln J + .� ∙ 	ln J��, (II-21)

which enables the modelling of the inherent ln τa curvature of biomass burning and desert dust aerosols 

as a consequence of accumulation mode dominating aerosol size distributions (Eck et al. 1999). If 

unsuccessful (e.g. if the Ångström exponent a1 > 0), the simpler linear Ångström relation (Ångström 

1964) is tried in a second step, where the second order term in eq. II-21 is ignored (a2 = 0). If the fit 

to the Ångström equation is also unsuccessful (e.g. if a1 > 0), the object is rejected. 

Due to the profound variability of naturally occurring water bodies / land surfaces, we pre-

compiled spectral reference libraries (for a range of possible conditions) using spectral modelling 

software. The water color simulator WASI (Gege 2004) and the leaf optical properties + canopy 

bidirectional reflectance model PROSAIL (Jacquemoud et al. 2009) are used for the water and cast 

shadow targets, respectively. For each object, each reference spectrum ρs is tested and the 

corresponding τa estimate that yields the best R² in the logarithmic regression is retained; if the best 

R² is smaller than 0.1, the object is rejected. 

As dark targets are not abundantly available across the images in our study area (Frantz et al. 

2015a), we compute a τa scene average from all available targets, weighted by the R² of the logarithmic 

regressions while considering the individual target altitudes (Guzzi et al. 1987). Once τa is retrieved, 

the governing equation (eq. II-1) can be solved by computing all parameters as described in chapter 

(1) using eq. II-6–II-19. We introduce some scene fidelity by using coarsely gridded (333 px) sun-
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target-view angle dependencies that allow the scattering equations to vary over the scene. In addition, 

τa and τr are adjusted for the pixel’s altitude (Guzzi et al. 1987) in order to approximate the elevation 

dependency on the optical depths. 

(4) Fallback strategy 

The African savanna landscape is often bright (Kaufman and Sendra 1988) and a substantial 

number of Landsat footprints do not contain dark targets (all objects were rejected, see previous 

section) in which case we cannot retrieve τa and consequently employ an alternative fallback strategy 

in a second step. 

We implemented a backdoor-interface, where externally generated τa values can be passed to 

the algorithm. In this case, the image-based estimation of τa is skipped and the external values are used 

instead. We made use of this possibility for the images where we could not identify any valid dark 

target and re-processed these images with modelled τa values. This applied to ~14% of the images and 

especially occurred in the bright landscapes of southern Namibia and Botswana. 

We used the τa values of all the images where the above presented method worked well and 

modelled the climatic seasonal course of τa with a dependence on geolocation: we used a multivariate 

regression model described by the geolocation and the acquisition day-of-years of the available τa 

values to estimate a set of spatio-temporal τa fallback values with a revisited version of Frantz et al. 

(2015a), i.e. direct modelling of τa instead of ρp. 

 

c) Topography correction 

Topography correction is done by applying a modified C-correction (Kobayashi and Sanga-

Ngoie 2008), which is a physically based correction of topography, amended by an empirically derived 

extra parameter C (Hantson and Chuvieco 2011). The topographic correction factor in eq. II-1 is 

determined for every image, band and pixel: 

� = 	cos 8� + ] ∙ ℎ39:� 	cos _ +] ∙ ℎ39:ℎ�⁄ . (II-22)

The illumination angle cos i is computed (Smith 1980) by: 

cos _ = cos 8� cos 8` + sin8� sin8` cos	S� −S`�. (II-23)

The topographic slope ϴn and aspect Φn are computed with the Horn (1981) method from the 

DEM that was warped to the extent and resolution of the Landsat image under consideration. The 
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h-factor describes the portion of the sky dome which contributes to the diffuse illumination, where h0 

is the h-factor at cos i = 0 (Kobayashi and Sanga-Ngoie 2008). The C-factor is estimated from a linear 

regression between cos i and the spectral radiance from an inclined surface L*. The empirically-

derived C-factor is then the ratio of intercept b and slope m: 

] = b c⁄ . (II-24)

The main focus of attention in computing the A-factor is to derive this C-factor. Because of 

the image-based nature of this correction, we were in need to incorporate several stabilizing 

constraints in order to estimate the C-factor in a robust manner for preferably all images: 

• The results of the C-correction can be improved if the C-factor is not derived for the entire 

Landsat image, but separately for different land cover classes (Kobayashi and Sanga-Ngoie 

2008). Thus we split the image pixels into two classes based on an arbitrary Normalized 

Differenced Vegetation Index (NDVI) threshold of 0.4 (Hantson and Chuvieco 2011). 

• If there is no equal abundancy of differently illuminated pixels, the regression-based correction 

often fails to be representative for all topography classes and results in significant 

under/overcorrection. Hantson and Chuvieco (2011) used a threshold of 2° slope angle for 

excluding rather flat pixels. We found that this method worked in many cases, but depending 

on image-content, this constraint is often not sufficient for Landsat frames with unequally 

mixed and complex terrain. In our operational setting, we found it very effective to also stratify 

the image with 5° slope classes. Thus, we estimate the C-factor for each land cover and slope 

class separately. 

• If the coefficient of determination R² is less than 1% in a given class, we assume that the C-

correction did not perform well and we fall back on a simple Minnaert Correction (Teillet et 

al. 1982) with a fixed Minnaert coefficient of 0.8. This simplifies the A-factor to 

� = 	cos 8� cos _⁄ �3.d. (II-25)

The relationship between L* and cos i is in general not very high; Kobayashi and Sanga-Ngoie 

(2008) reported R² values between 5% and 30% for the different bands of their testing image. 

Such high R² values are not always given if the image is not entirely mountainous, thus we set 

the threshold to 1% to test if there is at least any evidence of a relation. The class-dependent 

topographic correction approach implies that one image may be corrected with different 

methods, giving precedence to the more advanced C-correction as it commonly comes off as 

winner in comparative topographic studies (e.g. Hantson and Chuvieco 2011).  
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4.4 Reprojection and Gridding 

Once the Landsat data are radiometrically corrected, they are reprojected into the output 

coordinate system using bilinear resampling and second order polynomial warping. For our study data, 

we chose a Lambert Azimuthal Equal Area (LAEA) projection with its origin in the centroid of 

Southern Africa. After reprojection, the data are organized in smaller arbitrary tiles. Therefore, a grid 

in the target projection is created. The grid originates at a custom point Ogrid and a new tile is created 

each ngrid pixels. For our study area, we chose the arbitrary grid to origin at Ogrid = 0°/0° in Lat/Lon 

and ngrid was chosen to be 1000 px in the LAEA projection. In order to avoid confusion about 

nomenclature, we hereby define the term 

• 'grid' as an arbitrary sub-division with square units in the target coordinate system,  

• 'tile' as an entity of the grid with a unique tile identifier, e.g. X0003_Y0002 and  

• 'chip' as the individual gridded images that are affiliated with the tile. 

 

The disintegration of the classical Landsat WRS-2 data structure into a new, gridded tile 

representation has several benefits: (1) easy and rapid pixel based data access, (2) simple co-

registration among images – regardless of their initial path and row designation, and thus (3) exploiting 

the full depth of the Landsat archive, as well as (4) easier ordering of data for study areas that 

commonly match imperfectly with WRS-2 frames. 

5 Results 

5.1 Processing stats 

We processed 58,731 Landsat images of 194 WRS-2 frames with the presented method. 

41,762 images were fully processed; 16,876 images were terminated in an early stage because the 

cloud contamination exceeded the maximum allowable cloud cover threshold and 90 images were so 

far not processed because of a recent failure in the Thermal Infrared Sensor (TIRS) calibration. The 

processed images were partitioned into 4,524 tiles and 1,912,733 chips, resulting in a total data volume 

of 27.86 TB. The core processing was finished in less than 4 days on a moderately sized processing 

cluster (2 nodes à 56 CPUs). Fig. II-7 displays the number of processed chips per tile. The data 

availability – corrected for redundant data – is highest in the overlap region between two orbits. 
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5.2 Spectral consistency in overlap regions 

Our gridded data structure enables us to analyze the spectral consistency within three types of 

overlapping image regions: 

• LPGS generates redundant data in the overlap region of adjacent WRS-2 frames that were 

captured in the same orbit. Thus, any difference in this redundant overlap should be caused 

exclusively by the implemented processing chain and enables the exploration of the inherent 

systematic errors/uncertainties. 

• The revisit overlaps between two adjacent orbits, are captured 7 days apart by the same 

Landsat system. The data might vary somehow due to different atmospheric situations and 

oppositional viewing directions, which we assume to have the greatest impact. In addition, 

rapid phenology processes, as well as process-based change like changing water levels, burned 

areas or active fires might add to the difference. 

• The observation frequency reduces to 1 day in the cross-sensor overlaps if data from several 

sensors are considered, though the viewing aspect angle is still substantially different. A 

comparison between the 1 day and 7 day differences might be useful to differentiate between 

the cross-sensor uncertainties and differences that are caused by surface processes. 

 

The assessment is based on an exhaustive analysis of all overlapping chips. The spectral 

consistency for every chip pair was assessed by the spectral RMSE of the 6 reflective bands b, 

averaged over all overlapping pixels p (eq. II-26). In order to avoid situations with unlike atmospheric 

conditions, we omitted pixels that are located within a 10 km radius from clouds or cloud shadows. 

cD.eA0�� = :
`∑ g:h∑ iUℎ_F1�,j − Uℎ_F2�,jk�hjl:�̀l: . (II-26)

Fig. II-8 displays histograms of this assessment for the three overlap types. Quantiles are drawn 

in colors. The differences in the redundant overlaps are smallest: the mean of the revisit (cross-sensor) 

overlaps is 0.70% (0.84%) larger than in the redundant overlaps. The error in the cross-sensor overlaps 

is usually larger than in the revisit overlaps (0.14% difference in the mean), though the 99% quantile 

is slightly smaller. The expected accuracy of the full radiometric processing chain is in the order of 

± 2.5% reflectance (Röder et al. 2005). 98.8% of all redundant chip pairs are within this range. 

Considering the orbital overlaps, still 92.8% (91.0%) of the revisit (cross-sensor) chip pairs are 

enclosed. 
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Fig. II-7. Number of processed chips per arbitrary tile, corrected for redundant overlaps. 

 

 

 

 

Fig. II-8. Histograms of the spectral consistency assessment of overlapping chip pairs. The histogram bin 
width was set to 0.25% reflectance. The y-axis is drawn logarithmic. Quantiles are drawn in colors. 

 



Chapter II Radiometric Preprocessing 

 

45 
 

5.3 Aerosol optical depth 

Sunphotometer data from the Aerosol Robotic Network (AERONET, Holben et al. 1998) are 

commonly considered the most accurate terrestrial τa measurements, and as such, we derived 

Landsat equivalent τa from all available AERONET data in our study area with eq. II-21. The 

relationship (R²) between the satellite-based and the coinciding ground-measured τa is between 0.72 

and 0.79 for all bands (see Fig. II-9), intercepts are in the order of 0.02–0.03 and the relationship is 

very close to the 1-to-1 line. The colors represent different AERONET sites (blue colors: Zambia, red 

colors: Namibia, green colors: Botswana, no stations for the remaining countries) and the point sizes 

indicate the mean DOP of the dark targets. The majority of the observations is from the two Mongu 

sites (23.15°E, 15.25°S) which are drawn as rectangles. 

The fallback surface, i.e. the spatio-temporal aerosol climatology was modelled from all 

available τa estimates across the whole study area; see Frantz et al. (2015a) for details. Regarding the 

quality of the aerosol climatology, Frantz et al. (2015a) found that the modelled seasonal aerosol cycle 

matches well with an average seasonal cycle derived from the AERONET Mongu station. An updated 

assessment of this relationship is included in the supplemental material section of this article with R² 

between 0.81 and 0.84 for all bands. 

 

Fig. II-9. Linear regression between image-based Landsat and terrestrial AERONET AOD measurements for 
all stations and all coinciding observations. The colors represent different AERONET sites; blue to purple: 
Zambia, red/orange: Namibia, green: Botswana. The majority of the data is from the Mongu sites, Zambia. 
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5.4 Uncertainty in climatic water vapor database 

If daily water vapor values are not available, we rely on a fallback climatology. In order to 

better understand the potential error and document the uncertainty in using this method, we simulated 

the potential effect of varying water vapor concentrations. The effect of water vapor absorption is 

albedo-dependent. Therefore, we picked a Landsat frame which includes both bright and dark surface 

elements. The Etosha pan is a large salt pan without drainage. The pan is normally very bright but it 

can be partially flooded after heavy rain and the water can be retained during the course of the dry 

season. The analysis is based on Landsat 5 data since the TM is the most water vapor impacted Landsat 

sensor because of its spectral configuration. We chose two cloud-free images that captured a partially 

flooded pan, one in the dry (08/10/2008) and one in the late wet season (03/22/2009). 

We corrected each image with the retrieved daily water vapor values (DV) and with the 

corresponding climatic average (CA) which would be used in case the daily value would not be 

available. In addition, we also increased and decreased the climatic average by one and two standard 

 

Fig. II-10. Potential errors in using climatically derived water vapor estimates instead of daily values. The 
analysis was performed with two dry/wet season TM images of the Etosha Pan. Both images were corrected 

with different water vapor values (Table II-3). The figure displays the difference in surface reflectance (in %) 
between the correction with day-specific values and the correction with climatically derived variants. 
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deviations (see Table II-3). We base our analysis on the resulting difference in surface reflectance 

between the DV and the climatic variants, see Fig. II-10. The impact of water vapor is small on the 

NIR and SWIR2 bands but clearly evident in the SWIR1 band; the VIS bands are hardly affected and 

thus not displayed here. The effect is more pronounced for very bright surfaces. The daily water vapor 

estimate of the dry season image is very similar to the climate average, whereas the daily estimate in 

the wet season is approximately 1.5 standard deviations smaller than the climate average. Thus, the 

corrected reflectance differs by 0.53% (4.8%) between the DV and CA for the dry (wet) season image 

for extremely bright features (100% reflectance). The effect is less pronounced for grey objects (50% 

reflectance): 0.29% (2.6%) difference. For the SWIR1 wet season images, the difference in corrected 

reflectance between the CA+ (CA++) and the CA- (CA--) variants is approximately 3% (6.2%) for 

grey objects. In the dry season, the differences are 2.6% and 5.6%, respectively, thus the uncertainty 

in the wet season is slightly higher. 

5.5 Topographic correction 

Fig. II-11 illustrates the implemented topographic correction for an illustrative sample area. 

The depicted images were captured over the mountainous Huila province (southern Angola) in the 

middle of June (winter solstice) under low illumination conditions (sun elevation: 41°). The elevation 

ranges between 534 m and 1532 m. Topographic effects were substantially reduced and the corrected 

image appears to be rather flat. 

Fig. II-12 demonstrates the effectiveness of the topographic correction by averaging the NIR 

reflectance (separately for both land cover classes) with dependence on the topographic aspect. The 

illumination direction (sun azimuth: 37°) is clearly visible in the uncorrected image (red), whereas the 

effect is substantially reduced in case of the C-correction (green). In order to show the advantage of 

our method over the simpler fallback option, we also corrected this image with the Minnaert correction 

(blue), which has a tendency for overcorrection. 

Table II-3. Precipitable water values 

Water vapor variant Abbr. 
Dry season 

08/10/2008 

Wet season 

03/22/2009 

Daily value DV 1.02 2.32 

Climatic average - 2 sd CA-- 0.29 1.96 
Climatic average - 1 sd CA- 0.70 2.85 
Climatic average CA 1.12 3.74 
Climatic average + 1sd CA+ 1.53 4.63 
Climatic average + 2sd CA++ 1.95 5.52 

Precipitable water value variants (in cm) used for simulating the effect of climatic averages on the corrected 
reflectance of different land surface types. 
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The topographic correction was quantitatively evaluated by comparing the R² of the 

relationship between cos i and L, before and after the radiometric correction. Fig. II-13 displays 

histograms of the difference in R². All images with more than 10% of sloped terrain (> 5°) were used 

to derive the histograms. The R² usually decreases after the correction. The strength of the decrease is 

 

Fig. II-11. Illustration of the topography correction 
for a mountainous Landsat-8 image in Huila, Angola 

(13.39°E, 15.86°S; 1000 m elevation range) under 
low illumination conditions (sun elevation: 41°, 
azimuth: 37°). Top: no topography correction; 

middle: topographically corrected; bottom: digital 
elevation model. The same stretch was applied to 

both images with R/G/B = NIR/SWIR1/red. 

 

 

Fig. II-12. Average aspect-dependent NIR 
reflectance for the image (full frame) shown in Fig. 

II-11 for the vegetated (top) and bare (bottom) 
classes. The image was processed with the 

implemented C-Correction (green), the Minnaert 
correction (blue) and with disabled topography 

correction (red). Flat curves point to a successful 
topographic normalization. 

 

 

Fig. II-13. Topographic correction evaluation. The histogram bin width was set to 0.01 R². The correction 
was quantitatively evaluated by differencing the R² of the relationship between cos i and L, before and after 

the radiometric correction. A decrease in R² points to a reduction of topographic effects. 
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different for the six spectral bands. The R² of the blue band occasionally increases after the correction 

and the decrease is more apparent in the infrared bands. 

6 Discussion 

6.1 Dataset consistency 

We mainly based the quantitative assessment of the dataset on an exhaustive analysis of all 

overlapping chip pairs which enables us to gauge the processing consistency. The differences between 

processed redundant data are attributed to our processing chain. These differences are usually very 

small and 98.8% of all overlaps were within the expected 2.5% algorithm accuracy (Röder et al. 2005); 

99.4% differ by less than 3%. The differences between the chips are likely to be caused by the image 

based methods, where different image content can cause different AOD retrievals. As such, we 

conclude that the AOD estimation strategy worked reasonably well (see also next chapter) and we 

expect our processing chain to be of sufficient quality for any following pixel-based compositing or 

time series analysis application. 

The revisit and cross-sensor overlaps are captured on different dates and inhibit different 

orbital characteristics, different atmospheric states and potentially also land surface change. We 

presume that opposite view angles have the greatest impact since we do not correct for BRDF. The 

differences are indeed greater than in the redundant overlaps. Therefore, we assume that the part of 

the BRDF, attributed solely to the different viewing geometry (which we partially account for by 

considering the varying sun-target-view geometry in the atmospheric scattering terms), is in the 

dimension of this difference, i.e. < ~1% reflectance. As the sun geometry does not change significantly 

during this time period, we are not able to assess the actual combined effect of BRDF with the 

performed overlap analysis, though the impact on our dataset is likely to be significantly larger as 

recently documented by Nagol et al. (2015). Accounting for BRDF effects is complex and not yet a 

standard correction for Landsat data. An optimal BRDF correction would estimate pixel-based 

bidirectional parameters by using many observations within a short time period (Schaaf et al. 2002) – 

an approach which is not applicable to Landsat data alone (Flood et al. 2013). In addition, the 

parameter estimation with high temporal and coarse spatial resolution data is also problematic in arid 

areas during the wet season (Huete et al. 2002). Thus, the transfer from MODIS-based bidirectional 

parameters to Landsat data (e.g. Roy et al. 2008) is also restricted in such environments due to the 

insufficient angular sampling in parts of the year. One notable and promising approach is to infer a 

globally applicable set of bidirectional parameters by implementing a sampling design, where pixels 

from a broad range of differently sloped and illuminated pixels in the Landsat orbital overlaps and in 
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different land cover classes are selected (Flood et al. 2013). Nevertheless, a-priori knowledge about 

the land cover, a confident guess about the spectral stability over time and sufficient input data is 

needed – demands that are still not met everywhere. 

Based on a comparison of the two orbit overlap variants, we might be able to differentiate 

between the cross-sensor introduced error and changes that are attributed to surface change processes 

(e.g. green flush events, fire or flooding), because the probability of surface change is higher in the 

revisit case. In general, the cross-sensor overlap differences were larger than the ones in the revisit 

overlaps. Thus, we conclude that surface change has less impact than cross-sensor calibration errors 

on average. As an exception to this, the 99% quantile was larger in the revisit overlaps, which could 

point to surface change. This implies that surface change happens rarely (within 7 days), but if it does, 

it has a large impact on the differences of overlapping data. The cross-sensor errors might be amplified 

by the slightly different spectral configuration of the OLI sensor – compared to the TM and ETM+. 

Flood (2014) recently found that the error in surface reflectance is around 2%, which also partially 

conforms to our results. The mean cross-sensor error is 1.64%, though the errors between overlapping 

Landsat 7 and Landsat 5 (1.67%) / Landsat 8 (1.60%) chips do not differ significantly in our case and 

the OLI-to-ETM+ error is even slightly smaller than the TM-to-ETM+ error. This might be due to the 

improved radiometric characterization of the OLI sensor, compared to the TM, or presumably another 

yet unexplored factor. 

6.2 Aerosol optical depth 

The estimation of AOD in bright landscapes is a difficult task and the absence of dark objects 

on a large scale might preclude the usage of image based assessments (Gillingham et al. 2011). Flood 

et al. (2013) mitigated this problem by using a fixed AOD for eastern Australia. Whilst this is a sound 

strategy if the AOD is expected to be rather low, errors are inevitably included if the actual aerosol 

content is high (Gillingham et al. 2012). The AOD in Southern Africa is particularly variable (Frantz 

et al. 2015a) due to the accumulation (washout) of aerosols during the dry burning (wet rain) season 

(Eck et al. 2001) and regularly assumes large values (see Fig. II-9). Therefore, we developed a method 

where the image-based dark object retrievals were amended by temporal information on the 

persistency of dark objects. This approach supports the use of the temporally more persistent dark 

objects, which helped to increase the quality of the AOD retrievals in an environment where few dark 

objects exist. Transient dark objects like burned areas were thus successfully rejected.  

We used AERONET data to gauge the quality of our AOD estimation strategy. Unfortunately, 

few AERONET sites exist in the study area; the majority of the stations is confined to Zambia, there 
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also exist three (two) stations in Namibia (Botswana) but no station in Angola and Zimbabwe. In 

addition, most of the stations also have very few high quality Level 2 data. Most of the data is 

constrained to the two sites in Mongu, Zambia. Fortunately, this location is relatively central in the 

study area. 

It was shown that our physically-based AOD estimation on basis of radiative transfer theory 

is in very good agreement with available AERONET data (Fig. II-9): R² range between 0.72 and 0.79, 

intercepts are low and slopes are near unity. Despite being mainly driven by the Mongu observations 

(square signatures), the few observations from the other stations (point signatures) also fit reasonably 

well (Fig. II-9). We therefore expect that the calibrated AOD retrievals are reasonably accurate in 

areas with similar climate and landscape composition as the sites with AERONET coverage, which 

are especially the wooded and forested regions in Angola and Zambia. It cannot be ruled out that the 

errors in the more arid ecosystems are larger and there is still a considerable amount of images (14%) 

where this strategy did not work due to the high albedo and dryness of savannas and deserts. We 

reasonably accounted for this with the fallback strategy by using modelled values (Frantz et al. 2015a). 

We consider these values as an acceptable guess for the actual AOD in a spatially and temporally 

explicit manner (see (Frantz et al. 2015a) and the supplemental material of this article). 

Due to the above mentioned difficulties and environmental constraints, we recognize that AOD 

might still be one of the major uncertainties regarding the quality of our dataset. Nevertheless, we 

assume the AOD estimations and the AOD climatology to be sufficiently precise to give a reasonable 

characterization of atmospheric scattering in this highly variable ecosystem. 

6.3 Water vapor 

It was shown that the effect of water vapor is small in all but the SWIR1 bands. The TM is the 

most impacted sensor regarding water vapor because the SWIR1 band is substantially influenced by 

water vapor absorption. The OLI sensor in turn is hardly affected by water vapor absorption because 

the SWIR1 band was substantially reduced and was moved well away from the absorption band. It 

was shown that the difference in using a climatically derived water vapor value was approximately 

2.6% reflectance for grey wet season objects if the daily value is approximately 1.5 standard deviations 

smaller than the climatology. It was also shown that the uncertainty in using the climatology fallback 

values is slightly higher in the wet season. The corrected reflectance of grey objects in the dry season 

differed by approximately 2.6% (5.6%) when considering the 1 (2) standard deviation range from the 

average. The 2 standard deviation range is only slightly higher than the range of the expected overall 

algorithm accuracy of ± 2.5% (Röder et al. 2005). Therefore we consider it important to derive as 
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precise as possible water vapor loadings for the current state of the atmosphere; but if not available, 

the use of a climatologic seasonal cycle is a tolerable fallback strategy with a reasonable uncertainty. 

It might be worth the effort to improve on the water vapor database, e.g. by filling the pre-MODIS era 

with NOAA AVHRR derived water vapor estimates (e.g. Sobrino et al. 1999), which would e.g. 

decrease the risk that inappropriate values would be used in significantly wetter, drier, hotter or colder 

years. Yet, this strategy would necessitate a thorough examination of the different methods and sensors 

with regards to the continuity of the estimated values and was not yet implemented. In any case, the 

presence of a clear seasonality in water vapor should be verified for other study areas before using 

this fallback strategy. 

6.4 Topographic correction 

It was shown that the topographic correction caused a decrease in the correlation strength 

between cos i and L in most cases, suggesting that topographic effects are substantially reduced (Hill 

et al. 1995). This effect was more pronounced in the NIR and SWIR bands due to the stronger 

darkening effect of topographic shadow in the longer wavelength bands (Luo et al. 2008), where the 

removal of this effect has a greater impact. Contrary, the blue band was occasionally affected by an 

increase in the correlation strength. The blue band is not the best estimator of assessing the topographic 

effect, because thick haze can completely impede a relationship between cos i and L. As such, we tend 

to not overvalue the R² increases in the blue band. Random manual investigation points to a successful 

topographic normalization, which is also supported by the presented example. In addition, it was 

shown that the implemented topographic correction performed better than the Minnaert fallback 

option. Cosine-based corrections tend to overcorrect areas under low illumination conditions (Meyer 

et al. 1993) and the Minnaert factor’s purpose is simply to dampen the correction strength. One way 

to optimize the Minnaert value would be to estimate it via a linear regression (Meyer et al. 1993) as it 

is the case for the C-correction. Nevertheless, as the Minnaert correction is the fallback option in the 

case that the regression-based C-correction did not work, estimating the Minnaert factor would also 

not work, and as such, a fixed correction factor is required for this purpose. 

7 Outlook and Conclusion 

In a future version of our algorithm, we consider to expand on the radiometric correction 

module. Further atmospheric gases like ozone or uniformly mixed gases are to be included and we 

also consider to provide a more spatially explicit treatment of AOD by interpolating between the dark 

objects as done by Masek et al. (2006). Nevertheless, these strategies will only work if there are plenty 

of dark objects, which is a severe constraint in Southern Africa (Kaufman and Sendra 1988). 
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Therefore, the benefit of any further correction should be evaluated with regards (i) to the actual 

improvement in the corrected reflectance, (ii) to the extra cost in computing time, (iii) to the global 

applicability and (iv) to the global data availability that any new add-on would require. 

The geometric correction of Landsat L1T data is commonly precise; Loveland and Dwyer 

(2012) report on a global geometric accuracy of ~50 m. Nevertheless, Southern African L1T data are 

occasionally poorly co-registered. In our current implementation, we do not account for this potential 

error source but an additional bulk-image registration module could be included in the processing 

chain. 

We also intend to prepare and adapt our framework for new Landsat like systems like any 

upcoming Landsat 9+ spacecraft or the soon-to-be-available Sentinel-2 data. We consider our 

approach to be sufficiently transferable to similar medium-resolution data as we are already processing 

data from all available Landsat systems with the same algorithm, which is e.g. not employed in 

LEDAPS. The gridded data structure, the sensor-specific water vapor absorption coefficients and exo-

atmospheric irradiances will facilitate the incorporation of other data, though specific adaptations will 

surely be necessary. For Sentinel-2 data, it will be mandatory to include a full BRDF treatment because 

of the larger swath width. Fortunately, the observing geometry and acquisition frequency of Sentinel-

2, combined with Landsat, will also facilitate to obtain BRDF parameters from the data itself, which 

is very difficult with Landsat data alone. 

As already highlighted by Hansen and Loveland (2012), the development of (i) higher level 

products, (ii) from multi-sensor data, (iii) provided in arbitrarily – but regularly – divided tiles is a key 

component in enabling end-users to make the best use of medium resolution data, both across space 

and time. Currently, these demands are not fully met. Landsat standard products lack systematic 

gridding; higher-level Sentinel-2 products are currently not planned; and Landsat legacy, Landsat 8 

and Sentinel-2 data are not processed with the same algorithm. As such, we specifically developed 

our processing strategy to derive gridded surface reflectance and cloud/shadow products from multi-

sensor data – potentially also Sentinel-2 or similar data in the near future. Gridded higher level 

products will significantly simplify the application of pixel-based algorithms and will also allow a 

broader range of end-users to perform such analyses. We chose sufficiently elaborate methods with 

as few as possible input data. As such, we presume that the presented processing framework may even 

generate consistent and high qualitative data in areas where the general data availability is still low, 

which we demonstrated for Southern Africa. As such, we preferred image-based solutions where 

applicable, e.g. for aerosol estimation and topographic correction and opted to not account for BRDF 
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effects until the general applicability to medium resolution data without any pre-knowledge of the 

study area has become more feasible. 
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Abstract 

We developed a new two-step approach for automated masking of clouds and their shadows 

in Landsat imagery. The first step is comprised of detecting clouds and cloud shadows in every 

Landsat image independently by using the Fmask algorithm. We modified two features of the original 

Fmask: we dropped the termination criterion for shadow matching and we appended a darkness filter 

to counteract false-positives in bifidly structured dryland areas. The second step utilizes the scene-by-

scene detections of the first step and additional time series of cloud and cloud shadow probabilities. 

All clear-sky observations of a pixel are used to estimate the probabilities’ median and standard 

deviation. Any observation that deviates more than a multiple of the standard deviation from the 

median is considered an outlier and thus a remaining cloud or cloud shadow. The method was 

specifically designed for use in water-limited dryland areas, where event-based precipitation is 

predominant. As an effect, green vegetation peaks are highly variable, both in timing, magnitude and 

frequency with adverse effects on commonly used Fourier-based outlier detection methods. The 

method is designed to be robust even if temporally dense data coverage is not available. 
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1 Introduction 

Landsat data are one of the most valuable resources for earth observation (Cohen and Goward 

2004, Leimgruber et al. 2005), because of long term data continuity (Wulder et al. 2008), free data 

access (Woodcock et al. 2008) and their optimal resolution to monitor landscape processes (Danaher 

et al. 2010). However, a great proportion of all available Landsat images is obscured by clouds and 

their shadows, most predominantly in the tropics (Asner 2001). 

The detection of clouds and their shadows is an inevitably required early step in any following 

image analysis application, because clouds adversely influence most analyses, among them 

atmospheric corrections, biophysical variables like the Normalized Difference Vegetation Index 

(NDVI, Tucker 1979) values and land cover classifications (Zhu and Woodcock 2012). 

Clouds either reduce the amount of usable data if cloud contaminated scenes are simply 

discarded or they have to be detected and masked. Historically, the overall cloud contamination of a 

Landsat scene was estimated by the Automated Cloud Cover Assessment (ACCA) system (Irish 2000, 

Irish et al. 2006). In general, ACCA fails to delineate the exact location and boundaries of clouds and 

their shadows (Zhu and Woodcock 2012) with adverse effects on automated analyses. Therefore, 

manual cloud detection was often performed, which in turn limited the amount of usable data, because 

of time and cost limitations. 

Fortunately, cloud and cloud shadow detection in Landsat imagery has matured in the previous 

years with the development of the Fmask algorithm (Zhu and Woodcock 2012). The accuracy of the 

Fmask results is reported to be good: Zhu and Woodcock (2012) reported an overall accuracy of 

96.41%, cloud producer’s accuracy of 92.1% and cloud user’s accuracy of 89.4%. The producer’s 

accuracy for shadows is more than 70% and the user’s accuracy is more than 50%. They used 142 

manually screened reference images, globally stratified over 9 latitudinal zones. 

The Fmask algorithm applies one scene-specific probability threshold for all pixels in a scene 

(Zhu and Woodcock 2012). Cloud and cloud shadow masks can be further enhanced by applying time 

series based detection methods that make use of the scene-by-scene detections of Fmask. Besides 

other multi-temporal cloud detection approaches (e.g. Hagolle et al. 2010), Zhu et al. (2012) and Zhu 

and Woodcock (2014a) presented a subsequent time series analysis of TOA reflectance, developed in 

a rather humid study area in the northeastern United States. They fit series of sine and cosine functions 

to the remaining clear-sky observations for each pixel and detect outliers (i.e. missed clouds and cloud 

shadows) using the model residuals. 
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Unlike temperate areas, water-limited dryland areas are often comprised of evergreen 

woodlands, open forests and grasslands that do not follow a strict sinusoidal phenological course. 

Phenology in arid areas is rather driven by event based precipitation (Tan et al. 2011) that is highly 

variable, both in timing, magnitude and frequency and can trigger a flush of (green) vegetation growth. 

In these cases, the conditions of equidistantly spaced phenology peaks is not met anymore and thus, 

fitting a Fourier based model of sine and cosine functions might not be an appropriate choice (Mader 

2012). Large data gaps are a general problem where either the acquisition plan or the cloud coverage 

do not permit a high frequent data coverage, e.g. areas outside the U.S., which were frequently not 

part of Landsat's acquisition plans. Although the current effort of reallocating data from foreign data 

providers (Hansen and Loveland 2012) eases this drawback to a certain degree, temporal dense 

coverage is still an issue in many places. In addition, dryland biomes are often characterized by a 

pronounced partitioning of seasonality into a dry and wet season. During the wet season, where 

phenology is most dynamic, cloud-free Landsat data are often not available. Therefore, fitting a sine-

based model might not be the best choice under these specific circumstances. 

Here we present an approach to identify additional clouds and cloud shadows in Landsat 

imagery using a two-step cloud screening procedure, especially tailored for dryland ecosystems. The 

first step is comprised of applying the Fmask algorithm to the individual Landsat images (Zhu and 

Woodcock 2012). We modified two criteria of the Fmask algorithm to perform better in a dryland 

environment. The second step is a subsequent time-series based outlier detection method, based on 

the results of the first step to reduce omission errors. It is designed as an alternative to the method 

presented by Zhu and Woodcock (2014a) for areas where the middle of the growing period(s) does 

not occur at the same time every year. 

2 Study area 

The method was developed in an Australian savanna ecosystem in Queensland. The study area 

is included in WRS-2 Path/Row 093/078 and is centered at approximately 26°00’08’’S and 

147°25’48’’E. The location of the study area (150 x 150 km) is displayed in Fig. III-1 as the white 

box. The structural formations dominating the area, namely open forests and woodlands, are 

characteristic for Queensland's savannas, accounting for over 70% of Australian forests in terms of 

structure and biomass (Lucas et al. 2006). The major tree communities in this area are formed by 

evergreen eucalyptus, acacia or callitris dominated woodlands to open forests (Regional Ecosystem 

Mapping fo 2006: Neldner et al. 2012). The region is characterized by variable rainfall and the 

ecosystem itself is generally water limited. The average monthly evaporation exceeds the average 

monthly rainfall throughout the year (Cowie et al. 2007) with a pronounced dry and wet season, where 
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the rainfall is precipitated by short duration storms with high temporal and spatial variability (Cowie 

et al. 2007). 

3 Data 

All available Landsat 5 Thematic Mapper (TM) data of WRS-2 path/row 93/78 for the three 

year period of 2007–2009 were used in this study. Standard terrain corrected (Level 1T) Landsat data 

were obtained from the U.S. Geological Survey archive (USGS). Images that were not corrected to 

L1T precision were discarded, as a reliable co-registration among images was considered to be of 

major importance. 

4 Methods 

The presented method is a two-step cloud screening procedure, where the first step is 

comprised of scene-by-scene detections with a slightly modified version of the Fmask algorithm (Zhu 

and Woodcock 2012). The results from the first step are utilized in the second step, where the cloud 

and cloud shadow probabilities and the final masks are used in a time-series based outlier detection 

method. 

4.1 Step 1: Fmask 

Fmask is a fully automated cloud and cloud shadow screening application based on TOA 

reflectance (Zhu and Woodcock 2012). Fmask is based on physical properties of clouds and their 

shadows to produce potential layers of clouds and cloud shadows. Cloud shadows are found by 

combining several existing approaches; i.e. object matching and lapse rate methods. The original 

 

Fig. III-1:  Study Area. 
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algorithm is described in detail by Zhu and Woodcock (2012). Here we adapted the code in two major 

points to meet our requirements: 

• Termination criterion: 

In Fmask (Zhu and Woodcock 2012), shadows are matched by utilizing the geometrical 

relationship between a cloud and its shadow as well as modeling the three-dimensional shape 

and its presumed base height by using temperature information. This 3D shape is projected to 

the ground, while iterating through possible cloud base heights. For every iteration, a match 

similarity between the calculated shadow and a potential layer of shadows is computed. 

Iteration proceeds until the match becomes less than 98% of the maximum match similarity. 

We decided to discard this termination criterion. Shadow matching was found to terminate too 

early in many cases, which meant that only a fraction of the shadow was captured. In this 

implementation, the shadow match with the highest match similarity was considered the 

winner if the score was greater than 0.3. Otherwise no shadow was matched. 

• Darkness Filter: 

In the dryland ecosystems under investigation, we encountered a special case of land 

cover composition, where Fmask occasionally produced a high rate of false positives. This 

applies if the image is composed of two extremely different land cover classes with uneven 

areal distribution. Drylands are often comprised of very bright and hot surfaces (due to their 

sparse and dried-out vegetation cover), but in the presence of open water, patches of active 

vegetation can co-exist in the same image (e.g. river deltas, river basins and the like). These 

dark vegetation patches might be classified as clouds if the bright surface types are more 

dominant in terms of area. 

During the selection of the PCPs (Potential Cloud Pixel), dark pixels might pass 

because the implemented Whiteness filter is rather a “Flatness” filter, which excludes pixels 

that have a high variability in the visible bands. Thus this filter also lets sufficiently black or 

grey pixels pass. We integrated an additional darkness filter into the PCP selection query (i.e. 

potentially cloudy only if the mean reflectance of the visible bands > 0.15). This filter is based 

on the observation that clouds are normally rather white. 

Furthermore, the cloud probability of these features is usually very high because of the 

large temperature difference between the bright surrounding area and the vegetated surface. In 

Fmask, the temperature probability is derived by a quantile based approach that uses all non-

PCP pixels. In the savanna systems under investigation, the bright and hot part of the image 
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often dominates in terms of area, thus the temperature probability gets biased towards the hot 

surfaces. Water-cooled and transpirating vegetated surfaces are then significantly colder and 

hence show a very high cloud probability. Therefore, the darkness filter was also added in the 

selection of the final cloud layer, where the cloud probability is otherwise the dominant driver 

to identify cloudy pixels. 

 

In addition to the original Fmask implementation, the internal intermediate probability 

products, namely the cloud and cloud shadow probabilities are stored. Pixel-based time series of these 

probabilities are used to capture additional clouds and their shadows in the second step. A short 

description of the probability layers is presented in the following, details can be found in the original 

Fmask publication (Zhu and Woodcock 2012). 

• Cloud probability 

In Fmask, the cloud probability is derived by combining land or water specific 

thematic probabilities. For both land and water, a temperature probability is estimated by 

rescaling the Brightness Temperature (BT) by percentiles of the land/water clear-sky pixels' 

BT. Various spectral tests are performed to obtain estimates of clear sky pixels in an early 

stage of the algorithm. In case of water, a brightness probability is computed. It exploits the 

property of water to have a very low, but stable reflectance in Band 5 and a significant 

increase in case of a cloud. Contrary, optical reflectance is very inconsistent for different land 

cover types, while being quite constant for clouds (Zhu and Woodcock 2012). Thus a 

variability probability is computed instead of a brightness probability. The Whiteness Index 

(Gomez-Chova et al. 2007) and modified versions of NDVI (Tucker 1979) and Normalized 

Difference Snow Index (NDSI, Hall et al. 1995) are used to capture the earth land surface’s 

spectral variability. Modified versions of NDVI and NDSI are used to counteract inconsistent 

index behavior in case of saturated VIS but under-saturated NIR and SWIR bands (Dozier 

1989). 

• Shadow probability 

Shadowed areas are mainly illuminated by scattered radiation and the scattering in 

NIR and SWIR bands is weaker than in VIS (Luo et al. 2008). Additionally, NIR and SWIR 

reflectance is usually higher than the reflectance in VIS. Thus, a stronger darkening effect is 

evident in the long wavelength bands. Therefore, a morphological flood-fill transformation 

of bands 4 and 5 is performed in Fmask (Soille et al. 2003, Vincent 1993). This filling 
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procedure causes objects with a local depression in reflectance compared to their 

surroundings (e.g. cloud shadows, but also lakes or patches of vegetation in a desert) to be 

filled with the values along their border. 

4.2 Step 2: Outlier detection 

Once all individual images are processed with Fmask and the cloud and cloud probabilities are 

saved as second output product, we implemented a time series algorithm, which detects additional 

clouds and shadows on a per-pixel basis. The cloud and shadow masks are used to provide the clear-

sky observations, whereas the probabilities are used to separate some remaining clouds and shadows 

from this data heap. Clear-sky observations are used to estimate basic statistics of the land surface. A 

deviation from these statistics is considered as cloud remnant. The process is illustrated as workflow 

in Fig. III-2. 

The probabilities of the clear-sky observations are assumed to be stable throughout time – at 

least for a restricted period of time. Therefore an anomaly in any of the probabilities throughout a 

three-year-period was considered as being an undetected cloud or cloud shadow. For each pixel (x,y), 

the median and the standard deviation of the clear-sky time series are computed for each probability 

probj, with j = cld or shd. A pixel at time ti, i=1,…,n (n = number of images) is marked as outlier if 

any probj is greater than a threshold thrj: 

Vm�n_Do	E, p, �q� = FoVbr<�	E, p, �q� > �ℎor<�	||	FoVb�u�	E, p, �q� > �ℎo�u�	, (III-1)

which is its median plus a multiple m of its standard deviation: 

�ℎov = cD�wFoVbv	E, p�x +cv ∙ �� wFoVbv	E, p�x. (III-2)

The multipliers mj are the only tweakable input parameters of our algorithm. They allow for balancing 

the omission and commission errors. Ideally, they can be found by inverting the code with a Look-up-

Table approach, where the parameters are chosen that match the best with an independent dataset. In 

practice, this might not be applicable due to problems in setting up a reference dataset of sufficient 

quality as outlined by Zhu and Woodcock (2014a). Therefore, the choice of the multipliers mj will be 

in practice based on visual scene analysis. For our presented data, we set mshd to 3.5, mcld was set to 3, 

though we suggest that these parameters should be reconsidered for every study site. 

This approach tends to identify many small outlier objects accidentally. Therefore, rigorous 

spatial filtering is applied to each mask image at times ti. An outlier pixel is only accepted if it is 

completely surrounded by other outliers in an 8-connected neighborhood. If not, the outlier is rejected 
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and considered to be clear-sky. Finally, all remaining outliers are buffered by 7 pixels and the outlier 

masks and original Fmask-derived masks are combined for each point in time i. 

5 Results and Discussion 

Fig. III-3 illustrates the outlier method for two pixels (marked in Fig. III-4) that were missed 

by Fmask. The outlier detection algorithm was capable of detecting data points within the shadow 

probability time series (a) and the cloud probability time series (b). In the case of the cloud probability 

example (b), the importance of the removal of Fmask identifications (yellow) for calculating the 

statistics is evident, where the inclusion of these data points could bias the standard deviation and the 

median (the effect on standard deviation might be more severe) in a way that the outlier would not be 

detected anymore. In addition, apparently the use of cloud and shadow probabilities allows us to use 

rather simple thresholding techniques compared with Zhu and Woodcock (2014a) as the probability 

layers are mostly free of phenological fluctuations. We superimposed the clear-sky NDVI time series 

in Fig. III-3. It can be seen that there is an irregular, rainfall driven phenology, which is clearly visible 

in the NDVI, but not in the probability time series. The fluctuations in the probability time series are 

rather erratic and do not seem to inherit from phenological processes. 

Furthermore, it can be seen that detecting clouds and shadows in this specialized data space 

allows even for the detection of thin clouds (example b), where the cloud is not even clearly visible in 

the NDVI transformation. 

Fig. III-4 depicts typical results of Fmask and of the extension for an example of a densely 

packed cumulus formation. Yellow polygons depict the Fmask results and additional outliers are 

drawn in blue. Especially cloud shadows are subject to omission in Fmask, which was to be expected 

as the shadow inaccuracy was determined to be higher (Zhu and Woodcock 2012). This is particularly 

 

Fig. III-2:  Workflow of the two-step algorithm. 
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true in cases where the cloud was missed or the cloud is extremely cold and high and thus too far away 

to be linked properly to its shadow. Furthermore, small and almost transparent clouds were sometimes 

not detected, too (e.g. the cloud marked by b). Very thin stratus clouds or plumes of thick haze/high 

aerosols were also of concern (not depicted here). A high proportion of these objects could be captured 

with the additional outlier approach. The outlier detection produced reasonable results for most land 

cover types. As an exception, there were some false positives when dark objects of short duration were 

present. Fresh burn scars are characterized by a charred and dark surface, thus the shadow probability 

increases rapidly for a short time. Therefore, some recently burned areas were flagged partially as 

being shadow. We expect that this is also true for other transient dark features (as temporal flooding), 

though we did not encounter this in our testing data. In a future version of our algorithm, we might 

account for this problem by exploiting the cloud/shadow geometry, e.g. by implementing another 

repeat of the Fmask shadow matching routine after the outlier detection step or by simply rejecting 

shadow detections that are too far away from the next cloud. 

The time series based outlier detection in the probability images was designed to decrease the 

error of omission. The error of commission might increase to some degree or might remain unaffected. 

As a suggestion, this method can be used in applications that are very sensitive to remaining cloud 

contamination, but are robust in case of missing data. For example, the Spatial and Temporal Adaptive 

 

Fig. III-3:  Illustration of the time series outlier detection for two pixels marked in Fig. III-4. An outlier (blue 
bars) is detected if its cloud/shadow probability is greater than the pixel median + a standard deviation 

multiplier (statistics retrieved from the clear-sky observations, black bars), thus being in the grey area. Fmask 

detections (yellow bars) are used to separate most of the observations before calculating the statistics. NDVI 
time series of the clear-sky observations are plotted in green. 
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Reflectance Fusion Model (STARFM, Gao et al. 2006) predictions are very likely to decrease if 

transient changes in reflectance are present (e.g. clouds) and are per se designed to bridge temporal 

data gaps and make use of multiple images and neighborhood information. This means in most cases 

there will still be an estimated pixel value, even if that specific pixel was masked out in one image. 

6 Summary 

Cloud and cloud shadow detection in Landsat imagery has matured recently with the 

introduction of Fmask (Zhu and Woodcock 2012). Fmask accuracy is known to be of very high 

quality, though not perfect. Therefore, a two-step cloud and cloud shadow screening method was 

introduced to decrease omission errors for applications that are sensitive to remaining cloud 

contamination. We modified two features of the original Fmask code (first step). Firstly, the 

termination criterion for shadow matching was dropped. Secondly, we added a darkness filter to 

improve detections for areas that are characterized by large surface property gradients. 

A robust time series based outlier detection method was developed to reduce omission errors. 

The method utilizes the scene-by-scene detections of the first step. All clear-sky observations of a 

pixel are used to estimate the median and standard deviation of the cloud and cloud shadow probability 

time series. The cloud and cloud shadow probabilities are intermediate products of Fmask (Zhu and 

Woodcock 2012). 

Contrary to existing add-ons (Zhu and Woodcock 2014a, Zhu et al. 2012), the presented 

algorithm was specifically developed for dryland areas that are characterized by the absence of 

phenology peaks at regular intervals. Furthermore, the algorithm is considered to be more robust in 

case of temporally sparse Landsat data and bad acquisition distributions over the year due to a 

pronounced dry/wet seasonality because of the conceptual simplicity. In addition, the method’s 

 

Fig. III-4:  Landsat RGB-composite (bands 4/5/3, i.e. NIR/SWIR1/RED) for the illustration of the outlier 

detection method (blue) as compared to the Fmask detections (yellow). The image was captured on 
02/03/2007, which corresponds to the date with the blue bars in Fig. III-3; the corresponding pixels are 

marked with a) and b). 
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simplicity and its non-iterative nature might give it an edge compared to Zhu and Woodcock (2014a) 

if computation speed or access to high-end hardware is a limiting factor. 
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Abstract 

We developed a spatio-temporal path reflectance climatology for use in atmospheric 

corrections for a Landsat preprocessing framework. The climatology is intended as a fallback strategy 

for aerosol estimation in bright Southern African savannah ecosystems where the rarity of dark objects 

decreases the applicability of common image-based aerosol estimation strategies and the widespread 

burning prohibits the use of a fixed aerosol loading. We predicted the climatological path reflectance 

surface by applying a multivariate regression model to all available path reflectance retrievals on basis 

of the geolocation and the days of the year on which the data were acquired. The resulting predictions 

are able to successfully model major spatio-temporal gradients of the path reflectance distribution. 

The prediction error (weighted RMSE at 0.483 µm) was less than 1% reflectance while the prediction 

itself varied by 4.6% reflectance. Thus, using the modelled climatology for atmospheric correction is 

favorable compared to a fixed aerosol content. 
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1 Introduction 

Recent advances in open data policies (Woodcock et al. 2008) have drastically changed the 

use of Landsat data and encouraged the development of mass-processing frameworks (Wulder et al. 

2012). Concurrently, the use of an increasing amount of Landsat images also raised the demands on 

the radiometric processing quality and on the derivation of ready-to-use standard products (Hansen 

and Loveland 2012). Currently, radiative transfer modelling (e.g. Tanré et al. 1979) is agreed to be 

the quasi-standard in radiometric corrections and as such the estimation of aerosol optical depth 

(AOD) becomes a key parameter due to its profound impact on biophysical parameters (Gillingham 

et al. 2012). State-of-the-art large area generation systems like the widely used LEDAPS approach 

(Landsat Ecosystem Disturbance Adaptive Processing System, Masek et al. 2006) estimate the AOD 

directly from the imagery. It is assumed that a few virtually zero reflectance pixels exist in every 

image (Hill and Sturm 1991) and the aerosol loading is commonly derived by applying the dark, dense 

vegetation method (DDV, e.g. Kaufman and Sendra 1988) or the dark object subtraction approach 

(DOS, e.g. Moran et al. 1992, Chavez 1996). Whilst these are generally accepted approaches, the 

estimation of AOD with dark object methods is not usable if there are no suitable targets. Kaufman 

and Sendra (1988) already identified regions where the large-scale absence of dark vegetation restricts 

the operational usage of the DDV approach, which applies for some larger parts of our study area in 

the bright Southern African savannahs. Gillingham et al. (2011) already documented the inability to 

operationally apply the DDV under the similar Australian conditions which led to the decision of 

simply fixing the AOD to a reasonable value in the Eastern Australian Landsat preprocessing scheme 

(Flood et al. 2013). Nevertheless, it is more desirable to correct each image with a more appropriate 

atmospheric parameter set, which is especially mandatory if the assumption of a stable AOD is 

violated. Southern African savannahs are amongst the most fire-prone and most frequently burnt 

ecosystems in the world (Bond and Keeley 2005) and as such substantial seasonal and spatial 

variations in aerosol loadings are prevalent (Eck et al. 2001). 

We report on the derivation of a spatially explicit path reflectance climatology for its intended 

use in an operational preprocessing framework as a substitute for occasionally erroneous image-based 

path reflectance and AOD estimations in the case that meaningful dark objects cannot be identified in 

a given image. This climatology generates a smooth surface from the surrounding reliable retrieved 

path reflectance values, thus bridging the gaps where the image-based aerosol characterization failed. 

The corrected Landsat data are intended to be used in a pixel-based compositing application in the 

context of wall-to-wall deforestation and forest degradation assessments, as well as being intended for 

time series applications in general. 
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2 Methods 

2.1 Background 

We implemented an operational large-area preprocessing framework for the generation of 

multi-sensor surface reflectance Landsat datasets (Frantz et al. 2016a). The approach includes 

methods for the automatic detection of clouds and cloud shadows (Zhu and Woodcock 2012, Zhu et 

al. 2015), functions for reprojecting the data to a shared coordinate system and the partitioning of the 

data to gridded data structure. The radiometric correction includes a C-correction for terrain 

normalization (Kobayashi and Sanga-Ngoie 2008, Teillet et al. 1982). The atmospheric correction 

module is based on Tanré’s formulation of the radiative transfer (Tanré et al. 1979) and includes 

adjacency effect correction, the correction of water vapour absorption by a MODIS-derived (Moderate 

Resolution Imaging Spectroradiometer) water vapour database and a joint database- and image-based 

estimation of AOD over dark objects. The employed dark object database holds information on the 

temporal persistence of dark objects and was generated by an exhaustive analysis of all available 

uncorrected Landsat images. The darkest pixels were identified in each image and the dark object 

persistency (DOP = [0 … 100], i.e. the percentage of the time a pixel is dark) is derived for each pixel 

in the study area. The most permanent objects are then favoured in the actual radiometric processing 

for the path reflectance estimation. The usage of the DOP substantially increases the quality of 

retrieved values over the dark objects because transient dark features like temporal flooding or burnt 

areas are successfully rejected while perennial water bodies or topographic shadows are favoured. A 

visualization of the DOP for two sample areas is appended as electronic material in the “figshare” 

section. We processed all available 57,371 Level 1T Landsat images for Angola, Zambia, Zimbabwe, 

Botswana and Namibia and recorded the estimated path reflectance ρp, on which our prediction model 

is based. The path reflectance is closely related to AOD (Hill and Sturm 1991), which can be inferred 

with a scattering model (e.g. the multiple scattering approximation, Sobolev 1975) as demonstrated 

in (Frantz et al. 2016a). 

2.2 Observations 

We successfully characterized the scattering effects for the majority of the Landsat images 

with this approach. Nevertheless, we encountered serious problems in deriving AOD for a substantial 

number of Landsat images (~43% of all images), which especially was a problem in southern Namibia 

and Botswana where the dry season surface is bright and dark objects are rare or not apparent at all. 

Therefore, we closely investigated the seasonal and spatial patterns of the 57% successful ρp estimates. 
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Fig. IV-1 depicts ρp for an illustrative Landsat frame at the Namibian/Angolan border that includes 

the perennial Cubango and Cuito rivers. The retrieved ρp values in this frame were of high quality and 

all depicted points were estimated from permanent dark objects, i.e. objects that are the darkest pixels 

in the given scene over time. There is a clear seasonal pattern, which is especially pronounced in the 

visible bands, where the effect of aerosols is most prominent. The depicted region follows the typical 

Southern African climate with two main seasons, i.e. a wet and a dry season. The dry season begins 

in May and lasts until September, though the hottest temperatures are not reached until October, when 

the rainfall sums are also still relatively low (Weber 2013). Path reflectance values are small during 

the wet season and begin to increase with the onset of the dry season. The increase continues until the 

approximate end of the dry season in September/October after which the values quickly drop back to 

the wet season base value. 

In addition to the temporal pattern, we also identified spatial dependencies. Fig. IV-2 displays 

mean ρp values for the blue wavelength band for the dry season acquisition months. The aerosol 

accumulation apparently starts earlier in north-western Angola and progresses towards Botswana in 

the south-eastern part of the region. The aerosol depletion also starts earlier in north-Western Angola 

while the highest loadings are found in the centre of the study area in the late dry season. Overall, the 

amplitude of the aerosol accumulation is lowest in the South. Fig. IV-2 also indicates the Landsat 

frames where the identification of dark objects failed, which are especially the southern dry savannah 

ecotypes, whereas reliable estimates were retrieved in the darker regions, e.g. the Okavango catchment 

 

Fig. IV-1. Successful path reflectance retrievals for the six reflective Landsat bands for an illustrative Landsat 

frame (177/072). The frame is located at the Namibian/Angolan border and includes the perennial Cubango 

and Cuito rivers. The grey background indicates the dry season. 
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area. In addition, some frames in northern Angola are also suspect of missing data, though this is due 

to a substantial decrease in data availability because of persistent cloud overcast in the tropics. 

2.3 Modelling 

As a consequence of the observed temporal and spatial patterns, we aimed at generating a 

spatially distributed ρp climatology, modelled from the available data. This climatology is intended to 

be used as fallback strategy in the implemented Landsat preprocessing framework when actual AOD 

cannot be retrieved from dark targets. 

A multivariate regression model described by the geolocation – coordinates (X,Y) - and the 

acquisition day-of-year (DOY) of the 57% successful ρp estimates was employed for every Landsat 

band b: 

�y,z = U3 + U:{ + U�| + U;{| + U4{� + U5|� + Uh	DOY� + U�	DOY�� + 

 Ud{ sin	2π	DOY� 365⁄ � + U�{ cos	2π	DOY� 365⁄ � + 

 U:3| sin	2π	DOY� 365⁄ � + U::| cos	2π	DOY� 365⁄ � + 

 U:�{ sin	4π	DOY� 365⁄ � + U:;{ cos	4π	DOY� 365⁄ � + 

 U:4| sin	4π	DOY� 365⁄ � + U:5| cos	4π	DOY� 365⁄ � + 

 U:h{ sin	6π	DOY� 365⁄ � + U:�{ cos	6π	DOY� 365⁄ � + 

 U:d| sin	6π	DOY� 365⁄ � + U:�| cos	6π	DOY� 365⁄ �. 

(IV-1)

The DOP (in %, see also Fig. IV-3) was used to weight the observations during the estimation 

of the regression coefficients c0-19 by the means of weighted least squares fitting. We assumed that 

 

Fig. IV-2. Mean path reflectance retrievals (0.483 µm). Mean values are computed for every Landsat frame 

for the depicted acquisition months; only the successful retrievals were considered. ‘?’ marks indicate 
Landsat frames where the dark object identification failed or there were no cloud-free images. 
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temporally persistent dark objects are more reliable for characterizing atmospheric scattering effects 

due to their inherent pseudo-invariant reflectance, which is often exploited for improving atmospheric 

correction methods (Themistocleous et al. 2013). The coefficient c0 is the path reflectance intercept; 

the coefficients c1-5 explain purely spatial trends on the path reflectance, whereas the coefficients c6-7 

explain the non-interacting temporal trend. The remaining coefficients describe combined spatio-

temporal effects by modelling seasonal cycles of varying frequency with geolocation-dependency. As 

a boundary condition, the prediction is enforced to be cyclic by twofold data repetition yielding three 

identical annual cycles. 

3 Results 

Table 1 summarizes ρp prediction errors for the employed spatio-temporal model, i.e. the Mean 

Error (ME) as a measure for the prediction bias, the Mean Absolute Error (MAE), the Root Mean 

Squared Error (RMSE) and its weighted counterpart (WRMSE). 

The ME indicate that the residuals ei are close to zero and have a small bias. The bias is largest 

in the blue wavelength band. The MAE, RMSE and WRMSE all report similar errors and the errors 

for the first four wavelengths are very similar and in the order of 1% reflectance. The MAE values are 

smallest and RMSE values are the greatest due to the stronger contribution of outliers. The WRMSE 

might be the most appropriate measure for quantifying the goodness of the fit since we also employed 

a weighted prediction. 

Fig. IV-3 depicts the blue wavelength ρp retrievals (points) for one path of Landsat data (one 

orbit in approximate North-South direction), as well as the resulting prediction (line). The prediction 

successfully modelled the main seasonal and latitudinal variations in ρp. It is also apparent that there 

are fluctuations and outliers around the modelled fit, which surely affect the prediction errors shown 

Table IV-1. Path reflectance prediction errors for every Landsat band. 

Wavelength (µm) Landsat band ME MAE RMSE WRMSE 

 
 ∑ D� e⁄q̀l:   ∑ |D�| e⁄q̀l:   g∑ D�� e⁄q̀l:   g∑ ��D��q̀l: ∑ ��q̀l:⁄  

0.483 Blue 0.00111 0.0080 0.0110 0.0095 

0.560 Green 0.00005 0.0080 0.0108 0.0101 

0.662 Red -0.00054 0.0082 0.0109 0.0099 

0.835 NIR -0.00045 0.0080 0.0104 0.0099 
1.648 SWIR1 0.00004 0.0020 0.0032 0.0031 

2.206 SWIR2 0.00003 0.0006 0.0013 0.0012 

Mean Error (ME), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and weighted Root Mean 
Squared Error (WRMSE). All errors are reported in reflectance units. ei are the residuals between the model fit 

and the actual data for every data point i, wi are the weights used for the prediction. 
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in Table 1. Fig. IV-4 summarizes the latitude dependency of several key parameters of the data show 

in Fig. IV-3. Fig. IV-4a corroborates the previous finding that the aerosol peaking is delayed in the 

south. The maximum values (Fig. IV-4b) are found at medium latitudes, though this might be different 

in other orbital slices in the study area. Concurrently, the minimum predictions (Fig. IV-4c) increase 

southwards, indicating a higher base level of aerosol loading. 

 

Fig. IV-3. Initial path reflectance retrievals (0.483µm) and prediction (line) for a series of Landsat frames 
within one orbit (path 170, i.e. in the eastern part of the study area). The path/row is labelled in the bottom 

right corner. The persistence of the dark objects (DOP) which were used for estimating the path reflectance is 

indicated by the variable point size. The persistence was used to weight the observations in the prediction. 

 

 

Fig. IV-4. Latitude dependence of (a) the timing of peak aerosol loading, (b) the maximum predicted path 

reflectance and (c) the minimum predicted path reflectance. The data are inferred from the depicted 
prediction in Fig. IV-3. 
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We inferred the aerosol optical depth at 483 µm from the modelled ρp climatology by using 

the multiple scattering approximation (Frantz et al. 2016a). Fig. IV-5 illustrates the spatial AOD 

surfaces for selected dates in the dry season. The prediction resulted in a smooth and seamless AOD 

surface for the entire study area and corroborates the earlier findings, i.e. (1) an earlier onset in aerosol 

accumulation in the North, (2) stronger aerosol loadings in the North, (3) earlier aerosol depletion in 

the North and (4) highest aerosol loadings in the centre of the study area towards the end of the dry 

season. The complete and animated daily time series of AOD surfaces is appended as electronic 

material in the “figshare” section of this article. 

In order to quantitatively evaluate the goodness of the retrieved ρp and AOD values, we 

compared our results with data from the Aerosol Robotic Network (AERONET). The site at Mongu, 

Zambia (15.254°S, 23.151°E) is the only station with multiple years of data within our study area. We 

computed the average seasonal AOD cycle at 0.483 µm and used the corresponding Landsat frame 

 

Fig. IV-5. Predicted aerosol optical depth surfaces at 0.483µm for three dates in the dry season; see the online 

version of this article for the complete and animated time series. 

 

 

Fig. IV-6. Average annual AOD cycle for the AERONET Mongu site and the corresponding AOD prediction. 

The path reflectance offset was found by inverting the multiple scattering computation such that the RMSE 

between the AERONET and the predicted AOD is minimized. 
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(175/071) for the comparison, see Fig. IV-6. The ME between the AERONET climatology (points) 

and the inferred AOD climatology (dashed line) is 0.137 which indicates that the path reflectance 

estimations are systematically too low. We tried to quantitatively assess the underestimation in ρp by 

inverting the multiple scattering computations such that the RMSE between the AERONET and the 

predicted AOD is minimized: ρp is then underestimated by 0.0074 reflectance (dotted line in Fig. IV-

6). The AERONET climatology and the offset AOD are very similar. 

4 Discussion 

Our prediction model generates seamless and smooth ρp and AOD surfaces for the entire study 

area and for each DOY. We intended to model the large-scale spatial path reflectance climatology and 

aimed to reproduce the major aerosol gradients in the study area. The presented model statistics 

indicated that the prediction model generally adapts to the input data, but there are also deviations 

from the underlying data. The weighted RMSE indicated that the prediction error is in the order of 

0.01 reflectance for the short wavelength bands. The blue-band ρp prediction range (i.e. predicted 

maximum – minimum) is 0.046 and the input ρp range is even higher: 0.07 (99% of the data). 

Therefore, the prediction error is 4.6 (7) times smaller than the predicted (observed) data range and 

thus, we conclude that using such a climatology is preferable over using a constant aerosol loading in 

the radiometric correction. This observation is also supported by the findings of Gillingham, Flood 

and Gill (2012), who found that a fixed AOD (at 0.5 µm) of 0.05 only ensures reliable results if the 

actual AOD is less than 0.1. The annual AOD variability is significantly higher in our study area 

(compare with Fig. IV-5) but a quantitative assessment about the effect on generated products when 

using a constant vs a climatological aerosol characterization would be useful for future work. 

Nevertheless, these findings should be verified for other study areas where burning might be less 

influential. In areas where the AOD is rather stable throughout the year, fixing AOD might be the 

more practical approach. 

In general, aerosol tends to accumulate during the course of the dry season but the onset, end, 

minimum and maximum of the accumulation are variable. The northern part of the study area is more 

affected by aerosol. The Southern African burning regimes are a major factor in the spatio-temporal 

distribution of aerosols (Eck et al. 2001). In Southern Africa, the seasonality is very strictly partitioned 

into a wet and a dry season. In the wet season, the aerosol loading is washed out (Eck et al. 2001). In 

the dry season, burning is very widespread (Stellmes et al. 2013a) and the absence of precipitation 

allows for the accumulation of biomass burning aerosol particles. The burning season starts and stops 

earlier in the North (Stellmes et al. 2013a) and so does the aerosol accumulation. The aerosol loading 

is also higher, which could be partially caused by the early burns because the potential accumulation 
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time is prolonged. In addition, northern Angola is characterized by the highest fuel loads due to the 

latitudinal rainfall gradient, which results in a larger amount of burned biomass and emitted aerosols 

per burned area if the burning efficiency is assumed to be constant (Scholes et al. 1996, Barbosa et al. 

1999). Smaller amounts of fuel, as well as the late start of the main fire season (Stellmes et al. 2013a) 

could be responsible for the delayed aerosol accumulation and the decreased aerosol loadings in the 

South and centre of the area. 

The comparison between the inferred AOD and AERONET data revealed that our method 

systematically underestimates ρp and AOD. The ρp underestimation was less than 1% reflectance but 

the effect on AOD was clearly visible. AERONET data availability in our study area is very limited 

(only one site with sufficient data) and as such, we cannot confirm nor verify that this bias globally 

applies to our data or if there are regional deviations. The initial estimation of the path reflectance was 

performed in the employed Landsat preprocessing framework (Frantz et al. 2016a) where it was 

attempted to identify the true reflectance of the dark objects. The iteration step for determining the 

true reflectance was set to 1% reflectance and thus the underestimation of less than 1% could result 

from this. Potentially, the increase of the iteration resolution would compensate for the 

underestimation and will be considered in the next re-processing. 

While the approach well represents large scale gradients in the aerosol distribution, the 

generalized model may not adequately resolve local variations at a spatial extension of approximately 

two Landsat scenes or less. The observed variations (see e.g. Fig. IV-2) could be caused by distinct 

local fire regimes, the distribution of urban centers and potentially also locally driven deviations from 

the climate regime, e.g. the occurrence of orographic rainfalls. In addition, uncertainties in estimating 

ρp over dark objects could also add to the heterogeneity. Nevertheless, we aimed at reproducing the 

large-scale variations in order to provide a regionally adapted alternative to using a fixed aerosol 

characterization in a radiometric preprocessing scheme and as such, we conclude that the local 

deviations are acceptable in the practical implementation. 

5 Conclusion 

We developed a climatology based alternative strategy for coping with variable aerosol 

loadings under the environmental constraint of absent dark objects in bright ecoregions. Contrary to 

fixing the aerosol optical depth to a reasonable value, our approach explicitly models the spatio-

temporal aerosol distribution from the available surrounding path reflectance estimations and thus 

reproduces the major large-scale gradients. The predictions are intended to serve as input to an 
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operational radiometric preprocessing framework for the generation of large area surface reflectance 

Landsat datasets. 
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Abstract 

Satellite-derived land surface phenology (LSP) serves as a valuable input source for many 

environmental applications such as land cover classifications and global change studies. Commonly, 

LSP is derived from coarse-resolution (CR) sensors due to their well-suited temporal resolution. 

However, LSP is increasingly demanded at medium-resolution (MR), but inferring LSP directly from 

medium-resolution imagery remains a challenging task (e.g. due to acquisition frequency). As such, 

we present a methodology that directly predicts medium-resolution LSP on the basis of the respective 

CR LSP and MR reflectance imagery. The approach considers information from the local pixel 

neighborhood at both resolutions by utilizing several prediction proxies, including spectral distance 

and multi-scale heterogeneity metrics. The prediction performs well with simulated data (R² = 0.84) 

and the approach substantially reduces noise. The size of the smallest reliably predicted object 

coincides with the effective CR pixel size (i.e. instantaneous field-of-view). Nevertheless, even sub-

pixel objects can be reliably predicted provided that pure CR pixels are located within the search 

radius. The application to real MODIS LSP and Landsat reflectance well preserves the phenological 

landscape composition, and the spatial refinement is especially striking in heterogeneous agricultural 

areas, where e.g. the circular shape of center pivot irrigation schemes is successfully restored at 

medium-resolution. 
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1 Introduction 

Satellite-derived land surface phenology (LSP) provides important information for land 

use/cover mapping as well as change detection (Andres et al. 1994, Brunsell and Gillies 2003, 

Stellmes et al. 2013b), for determining the vegetation response to climate change and variability 

(Brown et al. 2012, White et al. 2005), for usage in large-scale biosphere models (Fisher et al. 2006), 

and is considered to improve pixel-based composites (Griffiths et al. 2013b). The use of LSP has 

proven to improve the accuracy of derived information compared to single date methodologies, 

especially in areas where inter-annual LSP variability is high (Simonetti et al. 2015). 

LSP is commonly derived by using data from coarse-resolution (CR) sensors because of their 

well-suited temporal resolution of less than 16 days (Archibald and Scholes 2007). While LSP derived 

from these sensors is accepted to be of good quality, its coarse resolution is insufficient to characterize 

LSP at higher spatial resolution and in heterogeneous areas (Melaas et al. 2013), and as such, CR LSP 

is less useful for applications that rely on the description of LSP at the landscape level or in highly 

fragmented landscapes. 

On the contrary, inferring LSP directly from medium resolution (MR) imagery like Landsat is 

a challenging task due to the relatively low acquisition frequency (Melaas et al. 2013), as well due to 

the substantially reduced data availability in some parts of the world (see e.g. Kovalskyy and Roy 

2013). Whilst the generation of MR LSP is applicable in areas like the United States (Melaas et al. 

2013), these methods are inappropriate for areas where the Landsat archive is less densely populated, 

especially in arid areas where the clear-sky data availability during the wet growing season is virtually 

zero. As a further constraint, Landsat based methods are commonly developed in rather stable north 

American forests and are based on the long-term LSP average from which small annual deviations are 

inferred (Fisher et al. 2006, Fisher and Mustard 2007, Melaas et al. 2013). However, inter-annual 

variations can be significant (White et al. 1997); for instance burning is widespread in Southern Africa 

(Bond and Keeley 2005) and results in an abrupt end of the green season in one year, whereas the 

season may extend significantly longer in another year if unburnt. A high inter-annual variability in 

LSP has also been observed over India (Atkinson et al. 2012) and Europe (Atzberger et al. 2013). Few 

approaches exist to infer LSP from actual Landsat time series with methods developed for CR hyper-

temporal data (e.g. Kovalskyy et al. 2012). Nevertheless, their use is strictly constrained to areas where 

the Landsat inter- and intra-annual data availability is high and constant; a data density of less than 

16 days is needed to describe LSP precisely (Archibald and Scholes 2007). 
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Another popular approach is to infer MR LSP (e.g. Schmidt et al. 2012, Walker et al. 2012) 

in a two-step approach by (i) predicting a time series of synthetic MR surface reflectance images and 

(ii) applying a CR phenology detection code (e.g. Jonsson and Eklundh 2002) to this synthetic MR 

time series. The first step is often approached by employing the spatial and temporal adaptive 

reflectance fusion model (STARFM, Gao et al. 2006), one of its modifications (e.g. Zhu et al. 2010, 

Fu et al. 2013) or regularized spatial unmixing approaches (e.g. Zhukov et al. 1999, Amoros-Lopez 

et al. 2011). Nevertheless, landscape heterogeneity is known to decrease STARFM prediction quality 

substantially, which results in poor image contrast (Zhu et al. 2010), while the enhancement of the 

modified codes in all environments is as yet inconclusive (Emelyanova et al. 2013). Moreover, recent 

research indicates that a temporal resolution of MR imagery of less than 25 days is eventually needed 

to ensure high prediction quality (Förster et al. 2015). In addition, the technical demand on storage 

capabilities and processing time is high for large-area projects, since two computationally intensive 

algorithms are to be applied one after another. 

As opposed to existing data fusion techniques, we report on a novel approach that directly 

predicts LSP at finer resolution on the basis of the respective CR LSP and MR reflectance imagery. 

The prediction is characterized by great spatial detail and the method avoids the need of predicting a 

dense time series of MR images in the first step. Southern African (section 2) MODIS LSP (3.1) and 

Landsat data (3.2) are used in this study, though the method (presented in section 4) is general enough 

to be also applied to other sensor pairs and similar continuous fields. An indirect validation is 

performed with a simulation study by applying the method to an artificial landscape in a controlled, 

yet realistic setting (6). Exemplary results of the application to real data are presented in section 7. 

Relevant issues are directly discussed in the respective later sections (6, 7) and the key findings are 

summarized in section 8. 

2 Study Area 

The Southern African study area includes the countries of Angola, Zambia, Zimbabwe, 

Botswana and Namibia (~3.7·106 km²; see Fig. V-1) and is centered at the upcoming Kavango-

Zambezi Transfrontier Conservation Area (KAZA TFCA). The area is phenologically diverse due to 

differences in large-scale vegetation cover, primarily as a function of climate gradients. The 

northwestern part of Angola is located in the tropics and the rainfall decreases southwards due to the 

temporally shorter influence of the Intertropical Convergence Zone (ITCZ, Nicholson 1981): the mean 

annual rainfall is higher than 1500 mm in northern Angola and less than 200 mm (50 mm) in southern 

Namibia (Namib Desert) (Hijmans et al. 2005). Continentality is also a governing factor, where the 

Namib Desert is the most arid place due to multiple aridifying effects of climate variables and ocean 
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currents (Van Zinderen Bakker 1975). The vegetation cover ranges from dense Miombo forests in 

Angola to sparse xerilic savanna ecosystems in the Kalahari, and also includes more extreme surface 

types like swamps, salt pans and deserts (Olson et al. 2001). Being in the southern hemisphere, the 

phenological cycle of a given year y starts with the peak of season (POS), followed by end of season 

(EOS), minimum of season (MOS) and ends with the start of season (SOS). Fig. V-1 displays the 

POS, EOS and MOS for 2005 – derived from CR data (see 3.1). Large-scale differences occur, where 

especially the Angolan and western Zambian Miombo forests contrast the southern savanna ecotypes 

and the more arid Namibian landscapes. 

3 Data 

3.1 Coarse resolution LSP: MODIS 

We used the 16-day Vegetation Indices (VI) Dataset at 250 m spatial resolution (Huete et al. 

1999) to capture the CR LSP. The complete time series of the Terra (MOD13Q1) and the Aqua 

 

Fig. V-1 (a): Study area and coarse resolution LSP. KAZA TFCA: Kavango-Zambezi Transfrontier 

Conservation Area. The RGB-composite depicts the peak of season (POS, red), end of season (EOS, green) 

and minimum of season (MOS, blue) for 2005. The “+” indicates the subset in Fig. V-8. (b): Histograms of 
the depicted data. 
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(MYD13Q1) MODIS sensors was incorporated. We used the Enhanced Vegetation Index (EVI) as a 

proxy for biomass development and the day-of-composite (DOC) information to recreate the actually 

sensed time series with a nominal temporal resolution of 8 days. The use of the exact acquisition dates 

can improve LSP accuracy (Bachoo and Archibald 2007). The DOC was used as the time axis and the 

VI Usefulness Index (Huete et al. 1999) was used to weight the data points during the fitting procedure 

via a damped exponential transfer function. Observations that were flagged as clouds were assigned a 

weight of zero. 

CR LSP was obtained by applying the Spline analysis of Time Series algorithm (SpliTS, 

Mader 2012). SpliTS is a computer code to fit spline models to remotely-sensed time series and to 

derive LSP. It is a data-driven method that is able to handle non-equidistant time series and to process 

the exact DOC. A set of 20 LSP parameters is derived for each pixel, including date-specific 

parameters, integral information about the growing seasons, amplitudes, etc. Our prediction approach 

can handle any of these parameters and simultaneously processes a number of p parameters for a given 

year y. CR LSP is reprojected on-the-fly with nearest neighbor resampling to match the extent, 

projection and resolution of the gridded MR data (see 3.2). 

3.2 Medium resolution reflectance: Landsat 

We prepared a comprehensive Landsat surface reflectance dataset, which was specifically 

developed for its use in applications that demand simplified pixel-based access, higher-level 

radiometric input data and require as many observations as possible (Frantz et al. 2016a). The 

atmospheric correction module includes radiative transfer code based correction (Tanré et al. 1979) 

of multiple atmospheric scattering processes (Sobolev 1975) with variable illumination/view 

geometry, a joint database- and image-based estimation of aerosol optical depth (AOD) over dark 

targets, adjacency effect correction and a spatio-temporally variable water vapor correction using 

MODIS data. Topographic normalization is achieved by a modified C-correction (Kobayashi and 

Sanga-Ngoie 2008) with 30 m SRTM data. Cloud and cloud shadow detection is performed with a 

modified version of the Fmask algorithm (Frantz et al. 2016a, Zhu and Woodcock 2012, Zhu et al. 

2015, Frantz et al. 2015b). All available Landsat Level 1T data (Landsat 5, Landsat 7, and Landsat 8) 

were processed, are stored in a gridded data structure in binary image format, and are readily available 

as input candidates to our prediction algorithm. We define the term 'tile' as an entity of the processing 

grid and the term 'chip' as the gridded image datasets that are affiliated with a specific tile (Frantz et 

al. 2016a). 4524 tiles with 1000 x 1000 px (i.e. 194 WRS-2 frames) are needed to cover the study area 

and 963,563 chips (originating from 20,940 full Landsat images from 2001–2012) were considered to 

predict MR LSP. 
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Fig. V-2 displays the temporal density of all processed Landsat images per month from 2001–

2012. When considering all tiles (Fig. V-2a), there is usually an observation within four nominal 

Landsat repeat cycles (i.e. 64 days) throughout the year on average. A large proportion of the data 

(90% quantile) is characterized by a lower repeat coverage. There is a pronounced seasonality where 

the repeat coverage in the drier months (May-November) is less than two repeat cycles on average 

(32 days) and the coverage in the wet season is worse. If only considering tiles that are not part of 

orbital overlap areas (Fig. V-2b), the temporal density is significantly worse. The repeat coverage in 

the drier months reduces to around four repeat cycles and the coverage in the wet season is very poor 

with an average revisit frequency of 90–100 days or more (December to April). A large proportion of 

the images (90% quantile) has significantly worse repeat coverage. Due to the relative proximity of 

the study area to the Equator, orbital overlaps are small, and as such Fig. V-2b is more important than 

Fig. V-2a in assessing if it would be possible to infer LSP reliably from this dataset for the complete 

area. In addition, the temporal density shown in Fig. V-2 was not corrected for cloud coverage, which 

is high in the wet season and virtually zero in the dry season, and as such would decrease the repeat 

coverage even more – of a given pixel – in the wet season. The given data density does not allow us 

to infer LSP directly, especially when considering that the vegetation period coincides with the wet 

season (roughly November to April). 

 

 

Fig. V-2. Temporal density of the available Landsat images per month from 2001–2012. Statistics were 

calculated per tile and then averaged for the complete study area. (a): Temporal density in all tiles; (b): 

Temporal density in tiles that do not have orbital overlaps. The alternating bars in the background indicate 
intervals of 16 days (nominal nadir repeat coverage of a single Landsat system). 
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4 Method 

The main assumption of our method is that a few MR observations are sufficient to separate 

image regions with similar phenology qualitatively, but are not suited to quantify LSP directly with 

high temporal precision – which in turn is possible using CR data. Therefore, we propose that CR LSP 

can be related to the evolution of reflectance through time at the medium resolution – provided that 

the MR images are distributed reasonably well over the year. As such, we aim to link the very accurate 

CR LSP to the corresponding MR spatial features by exploiting their specific spatio-temporal patterns. 

This is achieved by using the information from the local pixel neighborhood at both resolutions. This 

approach is somewhat related to the well-known STARFM code (Gao et al. 2006), though we do not 

remain in reflectance feature space but directly predict LSP from CR LSP and MR reflectance inputs. 

Based on a few assumptions on the reliability of the CR and MR data under different conditions, we 

define several proxies at both resolutions (subsections 1–3) that define the final neighboring pixel’s 

weight (4). In order to increase the computational performance, the MR reflectance data are 

aggregated prior to the prediction (5). The general workflow of the method is outlined in Fig. V-3; the 

corresponding sections are given in the corners of the boxes. 

MR LSP is predicted using a focal filter approach with a circular kernel (kernel diameter 

k = 2·r + 1 with radius r). All pixels within r are considered to contribute to the prediction. The kernel 

size is the main tweakable input parameter and controls the level of detail of the prediction as well as 

processing time. 

In principle, the predicted MR LSP for pixel (x,y) and LSP parameter p, i.e. Mxy,p is obtained 

by computing the weighted mean of the neighboring CR LSP pixels (j,i), i.e. Cji,p with a moving kernel 

of size k: 

	0��,� = ∑ ∑ X/′vq,�]vq,�Y�ql:�vl: ∑ ∑ /′vq,��ql:�vl:� , (V-1)

where 

(x,y), (j,i), k: Central pixel, neighbor pixel, kernel size. 

p:  Index for LSP parameter. 

Mxy,p:  Predicted medium-resolution LSP of central pixel. 

Cji,p:  Coarse-resolution LSP of neighbor pixels. 

W’ji,p  neighbor pixel weight. 



Chapter V Land Surface Phenology 

 

90 

 

Note that the rejection criteria are not accounted for in Eq. (V-1) for simplicity, e.g. the use of 

circular kernels. 

In order to solve Eq. (V-1), we need to set up a weight W’ji,p for each neighboring pixel (j,i) in 

order to calculate the MR pixel value at (x,y). As outlined before, we weight the neighboring pixels 

according to several prediction proxies (1–3): 

4.1 Spectral distance 

As the CR LSP is assumed to be related to the evolution of MR reflectance, a neighboring 

pixel (j,i) should contribute more to the weighted mean if it is spectrally similar to (x,y). The spectral 

similarity is a proxy for the probability that the adjacent pixel is characterized by similar surface 

conditions, which increases the probability of phenological similarity. We measure the spectral 

distance Sji by calculating the Mean Absolute Error (MAE) between the spectra at (x,y) and (j,i): 

�vq = :
`�
∑ ����,j − �vq,j�`�jl: , (V-2)

where b is the MR spectral band and nb is the number of bands (see 4.5 for details). 

High values of Sji indicate a large spectral distance and should not be used, as (x,y) and (j,i) do 

not belong to the same land cover class. Similar to STARFM (Gao et al. 2006), the prediction is of 

higher quality if only within-class pixels are used. Nevertheless, there must also be enough pixels to 

make a good prediction. We use a dynamic cutoff threshold for Sji: Smax. We start with an Smax of 0.05 

 

Fig. V-3. Workflow of the presented methodology with references to the sections and subsections. 
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MAE, which is a very strict cutoff threshold. If not enough pixels contribute to the prediction, we 

iteratively increase Smax by a factor of 2 until more than nmin neighboring pixels are available. 

Nevertheless, we only allow four iterations to avoid the prediction strength of the weighted mean 

being weakened too much. We dynamically determine nmin based on k, where nmin is 0.5% of nk (the 

number of pixels in the kernel): 

e� = ��� 4⁄  (V-3)

e�q` = 0.5 ∙ e� 100⁄  (V-4)

Fig. V-4 schematically illustrates the prediction process with arbitrary data. The MR 

reflectance (only one MR band) and the CR LSP are shown in (a–b). The spectral distance proxy is 

displayed in Fig. V-4c and assumes low values for spectrally similar pixels. 

4.2 Medium resolution heterogeneity 

We propose that CR LSP is more representative at the MR scale if the CR sub-pixel 

heterogeneity is low. Therefore, we compute the spatial heterogeneity for every band in the MR 

spectral data. The overall heterogeneity score Tji is the heterogeneity metric of the band with the 

greatest heterogeneity. We use a focal standard deviation filter to infer the heterogeneity with a kernel 

size of 11 px; the full width at half maximum (FWHM) of the line spread function in the scan direction 

is approximately 10 MR pixels for the red MODIS band (Barnes et al. 1998), which we rounded to 

the next odd number. The kernel size is adjustable in order to permit the usage of other combinations 

of MR/CR data. 

The higher Tji is, the more heterogeneous is the CR sub-pixel surface. Fig. V-4d displays Tji 

for the arbitrary MR data in (a) and Tji is highest where two cover types in the MR data adjoin. 

4.3 Coarse resolution heterogeneity 

We propose that CR LSP is also more representative at the MR scale if the CR LSP itself is 

spatially homogeneous. This is because it is more likely that the CR sub-pixel heterogeneity is low 

when the pixels are also homogeneous at their inherent resolution. Moreover, if the CR LSP is strongly 

heterogeneous, there are two adjacent CR pixels that have a substantially different phenology. As the 

real surface elements (as they would be sensed from an MR instrument) most likely do not match the 

CR pixel boundaries, the CR pixel boundary area cannot be used to estimate MR LSP reliably. Thus, 

we also compute the textural heterogeneity of the CR LSP for each parameter p. We use the same 
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focal standard deviation filter as in the derivation of the MR texture. This filter accentuates the CR 

pixel boundaries if they are heterogeneous. 

The CR heterogeneity weight Uji,p is the estimated CR texture of p at (j,i). The higher Uji,p is, 

the more heterogeneous is CR LSP. Fig. V-4e displays Uji for the arbitrary CR data in (b) and assumes 

the highest values in the pixel boundaries where the phenology differs substantially from CR pixel to 

CR pixel. 

4.4 Neighbor weight 

In the next step, the retrieved weights Sji, Tji and Uji,p are rescaled in order to avoid unit scale 

factors when calculating the total weight and to increase the flexibility of the presented methods when 

used with different continuous fields. In addition, rescaling increases the contrast between the best 

and the worst weights through a sigmoidal transfer function for emphasized usage of the best pixels 

 

Fig. V-4. Schematic illustration of the prediction process. In this example, 1 CR pixel equals 9 MR pixels. 
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in each kernel. Therefore we apply a range adjustment (the fractional term in Eq. (5)) to the individual 

weights Rji (i.e. Sji, Tji and Uji,p) such that all weights range from 0–1, where 0 is the best pixel in the 

kernel and 1 is the worst. The logistic S-shaped transfer function with range adjustment of the general 

form 

A′vq = 1 �1 + exp		25 ∙ Avq − A�q`
A�H� − A�q` − 7.5���  (V-5)

is applied to all the weights Rji, where R’ji is the rescaled weight, i.e. S’ji, T’ji and U’ji,p. After 

transforming the weights, R’ji = 1 indicates a pixel that should contribute greatly to the prediction; 

R’ji = 0 does not contribute at all. 

The final neighbor pixel weight W’ji,p for the phenology descriptor p is then simply the product 

of the rescaled weights S’ji, T’ji and U’ji,p: 

/′vq,� = �′vq ∙ �′vq ∙ �′vq,�. (V-6)

Fig. V-4f displays W’ji,p, which assumes the highest values in areas where the three proxies Sji, 

Tji and Uji,p are small. The CR LSP Cji,p in (b) is finally averaged with Eq. (V-6) to predict the LSP of 

the central pixel, i.e. Mxy,p. The prediction is indicated by the highlighted MR pixel in (b) and is more 

similar to the pure CR LSP pixels that belong to the same MR land cover class in the bottom-right 

corner. 

4.5 Aggregation of MR data 

We feed the prediction code with MR reflectance from several seasonal windows within the 

year under consideration y. The parameterization of the window lengths and numbers is in control of 

the user and needs to be adjusted for different study areas. Based on an analysis of the CR LSP and 

on MR data availability, we defined four windows as they are documented in Table V-1. They 

approximate the main climatic seasons and their unequal duration compensates for the uneven MR 

data availability throughout the year. 

Each window is filled with the pixel-mean of all available clear-sky MR images. In a first 

attempt, only Landsat images that were captured with working Scan Line Corrector (SLC-on) are 

considered. If SLC-on data are insufficient, SLC-off data are also considered. Occasionally, a window 

is partly or completely unfilled after this procedure, because there was no valid observation at all. Due 

to the following statistical procedures, we cannot permit no-data observations, and fill those pixels 

with the pixel mean of the other windows. 
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The MR data volume is reduced with a principal component analysis (PCA) of the windowed 

MR data. All components that explain at least 97.5% of the overall variance are retained. This step is 

not strictly necessary to produce good results, but it was merely introduced because of performance 

considerations. Fewer bands decrease the computational cost of obtaining Sji and the PCA retains the 

information that matters most for the discrimination of spectrally similar pixels. Afterwards, the 

components are normalized in order to avoid that Sji is merely driven by the first component (i.e. the 

overall contrast) as key information for the discrimination of phenological types is also inherent in 

other components. 

5 Implementation 

The code is entirely based on open-source software and is written in C. The application 

programming interface (API) of the Geospatial Data Abstraction Library (GDAL) is used to reproject 

the MODIS data to match the Landsat tiles. The PCA was computed using the GNU Scientific Library 

(GSL) with matrix support provided by the Basic Linear Algebra Subprograms (BLAS) library. 

Shared memory parallelization was implemented by utilizing the Open Multi-Processing (OpenMP) 

API. The processing runs on a tile basis. In order to produce a seamless product, we append data of 

the neighboring 8 tiles to the tile under consideration. The number of appended lines/columns depends 

on the chosen kernel size k. 

6 Algorithm test with simulated data 

In order to ensure that the presented approach performs as wanted – within the limits of its 

assumptions – we performed a simulation study. As such, (i) we generated an artificial simulated 

landscape that reflects observed landscape characteristics. (ii) We simulated corresponding MR 

reflectance and (iii) MR LSP based on a statistical analysis of recent Landsat data. CR LSP (iv) was 

inferred by degrading the MR LSP. We propose our method to be functional if the (v) MR LSP can 

Table V-1. Definition of the seasonal windows 

seasonal window window start window end 

left wet season 312 (-1) 130 (0) 
cool dry season 131 (0) 218 (0) 

hot dry season 219 (0) 330 (0) 

right wet season 331 (0) 130 (+1) 

Definition of the seasonal windows used for selecting MR input. Values are day-of-year; the values in the 
brackets represent the year relative to the year under consideration y, which means that the ‘left wet season’ 

window starts in the previous year and the ‘right wet season’ extends to the next year. 
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be reasonably well restored by predicting it from degraded CR LSP and simulated MR reflectance 

inputs. 

(i) Southern African environments are generally composed of large wood-, shrub- and 

grassland patches with smaller agricultural and urban elements. A random multifractal map (Fig. V-

5a) was generated with QRULE (Gardner and Urban 2007), and we manually placed streets and 

defined six urban seeds. Built-up structures were randomly placed around the streets following a 

lognormal distribution with a penalty on the distance to the next seed. The structure orientation was 

inferred from street bearing and the width and height were varied by random numbers for the normal 

distribution. Constrained by knowledge about the occurrence of agriculture in different land covers, 

and as a function of distance to streets and preferably around settlements (Schneibel et al. 2013), fields 

with random sizes and orientations were also randomly placed in the landscape. 

(ii) Based on an existing MR classification (Schneibel et al. 2013), we extracted class-wise 

statistics (mean and standard deviation) within the left green, cool dry and hot dry season windows 

(Table V-1) from the 2013/14 Landsat 7/8 time series to simulate MR reflectance images (Fig. V-5b). 

This was achieved by assigning the class-specific reflectance (+ noise) to the simulated landscape 

(using normally distributed random numbers while ensuring autocorrelation between the bands). The 

Fig. V-5. Simulated random landscape (a) and corresponding true color MR reflectance images (b) in three 

seasonal windows (left wet, cool dry and hot dry season). The marked regions in (a) are discussed in the text. 

The same stretch was applied to all images in (b). The size of the simulated landscape is 1024 x 1024 px; the 

prediction radius r is 100 px. 
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images were filtered (3 x 3 px lowpass) in order to add spatial autocorrelation and to avoid sharp 

transitions between land covers to approximate real satellite acquisitions better. 

(iii) Class-specific MR LSP statistics were inferred from the 2013/14 Landsat time series 

(mean and standard deviation). Analogous to (ii), normally distributed random numbers were 

generated and spatial autocorrelation was added. We exemplarily show results for the EVI amplitude 

Fig. V-6. Algorithm test with simulated data. (a) simulated MR amplitude; (b) simulated CR amplitude; (c) 
predicted MR amplitude; (d) absolute difference between simulated and predicted MR amplitude. The 

marked regions in (d) are discussed in the text and are also shown in Fig. V-5a. The monochromatic color bar 

refers to the amplitude values (a-c) and the right color bar refers to the absolute amplitude difference (d). The 
size of the simulated landscape is 1024 x 1024 px; the prediction radius r is 100 px. 
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(AMP, Fig. V-6a) - as this parameter can be inferred from the densified Landsat 7/8 time series with 

sufficient precision. 

(iv) The MR AMP was degraded to 250 m (i.e. CR AMP, Fig. V-6b) using a MODIS point 

spread function (Barnes et al. 1998). 

(v) Using the degraded CR LSP (iv) and simulated MR reflectance (ii) as input, we predict 

MR LSP (Fig. V-6c) and assess if the presented approach is able to restore the simulated MR LSP (iii) 

reasonably well. The kernel size k was set to 200 px. The difference between simulated and predicted 

MR LSP is shown in Fig. V-6d, and the statistical correlation as well as histograms are shown in Fig. 

V-7. 

The predicted landscape patches are characterized by clearly defined boundaries (Fig. V-6c) 

that are even slightly sharper than in the simulated AMP (Fig. V-6a). AMP values were also predicted 

with high precision (see Fig. V-7, R² = 0.84). It is very striking that the predicted AMP is less noisy 

than the inputs (homogeneous appeal in Fig. V-6c) and the distinct LSP of different land cover classes 

can be better separated than in the simulated dataset (see the 1D-histograms in Fig. V-7). This is 

caused by the average-based prediction process that strictly uses only the spectrally nearest neighbors. 

Fig. V-6d depicts the difference between simulated and predicted AMP; 82.7% of all pixels differ by 

less than 0.025, which is approximately the error that can be expected from a radiometric 

preprocessing chain (Röder et al. 2005). Nevertheless, there are also many pixels with higher 

differences, mostly as a result of the difference in noise between simulated and predicted AMP. The 

differences are highest in the dwarf shrub-/grasslands, which is also the land cover with highest 

variability in AMP and reflectance inputs; whereas the settlements and dense woodlands have low 

differences due to their low AMP and reflectance variability. There is also some remaining noise in 

the predicted AMP (Fig. V-6c), which occurs because of the noise-induced inseparability of similar 

land covers (partially overlapping normal distributions in simulated MR reflectance and AMP; see 

1D-histogram in Fig. V-7). In addition, there are also object size- and distance-related effects that 

clearly demonstrate the strengths and limitations of the presented approach. It is apparent that the 

prediction strength of the built-up class (street) rapidly decreases once the distance to the outskirts of 

the settlement exceeds the radius r (as indicated by the three circles). There were no neighboring pure 

built-up CR pixels and the street itself was too small (i.e. not even visible in the CR image). 

Analogously, any object that is smaller than the Field-of-View of the CR instrument (the FWHM of 

the line spread function in scan direction is approximately 10 MR pixels for the red MODIS band 

(Barnes et al. 1998)) cannot be precisely predicted if there are no pure CR pixels within r, see e.g. the 
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objects marked by ‘A’ and ‘B’ in Fig. V-6. On the contrary, even very small objects can be predicted 

with sufficient precision if pure pixels exist nearby (see e.g. ‘C’ in Fig. V-6). 

7 Application to real data 

We predicted the POS, EOS, MOS and SOS parameters for the 12 year period from 2001–

2012 at Landsat spatial resolution for the entire study area. The kernel size k was set to 200 pixels. 

Fig. V-8 displays prediction results (b) as well as the input CR LSP (a) for a phenologically 

diverse area in southern Zambia (15.83°S, 27.93°E; R/G/B: POS/EOS/MOS for 2005). The location 

of the area is indicated by the “+” in Fig. V-1. The sugar production in Mazabuka is Zambia’s biggest 

agricultural site and largest freshwater consumer (Richardson 2010). Widespread irrigation causes a 

broad mix of phenology that contrasts against both the naturally occurring woodlands and the riverine 

vegetation of the Kafue River. The images reveal that the general composition of LSP is adequately 

preserved in the predicted image, which is also supported by the nearly identical histograms of CR 

and MR LSP (Fig. V-8c). The prediction accounts for the mixed pixels in the CR image and has clearly 

defined object boundaries. This is especially pronounced in the very heterogeneous agricultural areas 

where e.g. the circular shape of the center pivots or the parcel boundaries were successfully 

reconstructed (see the enlarged subsets ‘A’ and ‘B’ in the right panel of Fig. V-8). 

 

Fig. V-7. 2D-histogram of simulated and predicted MR amplitude, bordered by the corresponding 1D-

histograms. The letters indicate the simulated land-cover clusters and the legend colors match Fig. V-5a. 
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 Fig. V-9a–d and Fig. V-10a–d depict the MR reflectance input for the four seasonal windows for the 

subsets ‘A’ and ‘B’, respectively. The data availability was 1-2, 1-2, 4 and 1 SLC-on observations per 

pixel for the left wet, cool dry, hot dry and right wet season, respectively. The data availability was 

rather low in most windows, but the approach produces reliable results if at least one high-quality 

Fig. V-8. Comparison of coarse-resolution LSP (a) and predicted medium-resolution LSP (b). The RGB-
composite depicts the peak of season (POS, red), end of season (EOS, green) and minimum of season (MOS, 

blue) for 2005. Selected areas are enlarged in the right panel (4x zoom). (c) Histograms of the depicted data; 

the lines refer to MR LSP and the polygons to CR LSP. 
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image per phenological key stage is available (as approximated by the seasonal windows). The 

windowed reflectance images allow for a qualitative separation of image regions with similar 

phenology. In addition, the MR heterogeneity Tji and the CR heterogeneity Uji,p of the POS, EOS and 

MOS parameters are also shown in Fig. V-9e–f and Fig. V-10e–f, and indicate pixels that are preferred 

for predicting the MR LSP (dark colors). The successful restoration of clearly defined MR patches 

like the agricultural parcels in Fig. V-8 supports the validity of the presented procedure and the 

prediction is characterized by great spatial detail. 

Nevertheless, some features that are present in CR LSP are not preserved in the prediction, 

e.g. the cyan pixels marked by “?” in Fig. V-8. The temporal resolution of the few input windows 

might be too low, which would imply that this specific phenological process could not be properly 

 

Fig. V-9. MR reflectance input data (a–d), MR 

heterogeneity Tji (e) and CR heterogeneity Uji,p (f) for 
subset ‘A’ in Fig. V-8. (a–d): Average reflectance for 

the four seasonal windows (Table V-1) with RGB = 

near infrared, shortwave infrared, red. The same 

stretch is applied to all images. (f): RGB composite 
of Uji,p for p = POS, EOS and MOS. 

 

Fig. V-10. MR reflectance input data (a–d), MR 

heterogeneity Tji (e) and CR heterogeneity Uji,p (f) for 
subset ‘B’ in Fig. V-8. (a–d): Average reflectance for 

the four seasonal windows (Table V-1) with RGB = 

near infrared, shortwave infrared, red. The same 

stretch is applied to all images. (f): RGB composite 
of Uji,p for p = POS, EOS and MOS. 
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disentangled. The three implemented prediction proxies might also be insufficient in this case, and 

further inclusion of other proxies might potentially mitigate the mismatch – provided that a further 

generally valid assumption can be developed. The prediction failed to match the CR LSP with well-

defined MR objects that clearly contrast against the surroundings. The mismatch could also be caused 

by uncertainties in the processing chain of any input data source. The radiometric processing quality 

of the input Landsat data is generally sound (98.8% of all data was assessed (Frantz et al. 2016a) to 

be within the expected 2.5% algorithm accuracy (Röder et al. 2005)) – although it cannot be ruled out 

that single images are not perfectly corrected, which could e.g. be caused by using modeled AOD 

fallback values in areas where dark targets do not exist (Frantz et al. 2015a). The observed artifacts 

could also be caused by compositing-related noise in MODIS VI data, which is known to affect the 

precise determination of LSP (Huete et al. 2002). Though the effect of noise is reduced by applying a 

smoothing spline, remnant artifacts still occur. MODIS VI noise is especially pronounced in arid areas 

during the rainy season due to the substantially decreased high-quality observation frequency, 

remaining sensor view angle effects and residual cloud and aerosol contamination (Huete et al. 2002). 

As the simulation (section 6) demonstrated the de-noising capabilities of the presented approach, it is 

likely that this noise was effectively flattened in the process. Nevertheless, we cannot address the 

source of this discrepancy with certainty. 

8 Conclusions 

We developed a prediction approach that fuses coarse resolution LSP with medium resolution 

reflectance imagery. The required medium resolution data density is rather low. Nevertheless, the 

prediction quality severely decreases if images are not available at several phenological key stages 

throughout the year. If sufficient temporal sampling is not given any more, the main assumption of 

the method is violated and areas with similar LSP properties cannot be delineated due to the lack of 

temporal contrast. This is also the case if the temporal-spectral separability within the pre-defined 

windows is not sufficient. LSP is directly predicted at the finer scale, and thus the costly need for 

generating a dense image series at the target resolution is circumvented. The general landscape 

composition of LSP is well preserved in the prediction, and medium resolution objects are spatially 

well-defined and have very clear boundaries. LSP values are reliably transferred to the spatial structure 

at medium resolution. The method implicitly de-noises LSP, yet it preserves sharp edges. The size of 

the smallest reliably predicted object coincides with the effective size of the coarse resolution pixels 

(determined by IFOV). Nevertheless, even significantly smaller elements can be successfully 

predicted if there are pure coarse resolution pixels within the search kernel – if not, the prediction 

strength decreases. The size of the kernel is the most important determinant regarding prediction 
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quality, but also with respect to processing time. The results indicate that the generated medium 

resolution LSP is well-suited for its further usage. The method was presented to be used with Southern 

African MODIS LSP and Landsat reflectance data, but the method is general enough to be also applied 

to other study areas, sensor pairs and continuous fields, e.g. SPOT, RapidEye or Sentinel-2 data and 

above-ground biomass (Saatchi et al. 2011). 
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Abstract 

The need for operational monitoring of landscape processes on the national to global scale led 

to an increased demand for pixel-based composites using moderate- to medium-resolution earth 

observation (EO) archives. Commonly, composites are generated without explicit consideration of 

temporal criteria but are rather based on optimizing band indices within a pre-defined temporal 

window. However, for certain applications phenology-adapted composites that represent the land 

surface as being in the same phenological stage are required. For instance, tree type or age 

discrimination for areas with terrain altitude induced shifts in greening up or senescence might greatly 

benefit from such coherent data sets. We developed a novel pixel-based compositing technique that 

dynamically adjusts the selection process to the underlying land surface phenology (LSP) of each 

pixel. By doing so, phenologically sound composites across large areas can be derived for regular 

intervals and different phenological points in time, e.g. peak, end or minimum of season. Various 

DOY (day of year) scoring functions were implemented to flexibly define the phenological target. The 

technique can be applied to any kind of gridded EO archive, which we demonstrated for MODIS and 

Landsat data. It was also shown that the technique is general enough to be applied globally. 

Homogeneous and seamless multi-annual composites could be generated across the whole of Zambia 

(approx. 750·103 km²) for most seasons. As an exception, we found even very frequent MODIS 

observations to be insufficient to generate peak vegetation composites as the green growth in our study 

area coincides with the rainy season. The phenology-adaptive composites were compared to static 

ones, i.e. using a single and global target DOY. Results clearly indicated that biomass levels differ 

significantly if the pixel-based LSP diverges from the static target DOY substantially. The resulting 

composites were shown to perform a phenological normalization across elevation gradients and land 

cover classes. However, the implications are non-trivial and the characteristics of both methods need 

to be considered cautiously before deciding which approach is superior with regards to a specific 

thematic application. The inter- to intra-annual data contribution was handled with a single parameter, 

which in combination with different data availabilities between and within the seasons, determines 

whether an observation from the target year or an observation from an adjacent year closer to the 

phenological target is selected. The quality of the MODIS and Landsat composites, as well as the 

performance of the phenology-adaptive and static compositing techniques was assured using a 

quantitative cross-comparison. The generation of a 12-year annual time series demonstrated the 

feasibility for land cover change and modification mapping. Several change processes were clearly 

discriminable. The resulting phenologically coherent composites are important to establish national, 

regional or even global landscape monitoring, reporting and verification systems.  



Chapter VI Pixel-Based Compositing 
 

106 
 

1 Introduction 

The need for establishing operational landscape monitoring systems on the national to global 

scale is more pressing than ever (Hansen and Loveland 2012), e.g. to support the “Reducing Emissions 

from Deforestation and Forest Degradation and the role of conservation, sustainable management of 

forests and enhancement of forest carbon stocks in developing countries” (REDD+) mechanism. In 

this context, it is inevitable to establish national measurement, reporting and verification systems 

(MRV, Herold and Skutsch 2011), which can only be instated on the basis of non-leaking, wall-to-

wall remote sensing products (DeFries et al. 2007, Gibbs et al. 2007). 

The availability of moderate (100–500 m) to medium (10–100 m) resolution optical imagery 

steadily increased throughout the past decade, starting with the global and operational deliverance of 

user-friendly standard products (250–500 m) from the Moderate Resolution Imaging 

Spectroradiometer (MODIS; Justice et al. 2002). A change in data policy towards unlimited access to 

30 m Landsat data (Woodcock et al. 2008) fostered a new era in the field of earth observation (EO) 

and changed the usage of satellite imagery fundamentally (Wulder et al. 2012). The recent 

commissioning of open access Sentinel-2A imagery (10–20 m) has once again increased the 

operational monitoring capabilities with optical EO data through increased spatial, temporal and 

spectral resolution (Drusch et al. 2012). The launch of Sentinel-2B, scheduled for early 2017, will 

further double this revisit frequency, and the continuity of the Landsat mission is also safeguarded; 

currently Landsat 9 is planned to be launched in 2023. 

However, with the ever increasing data volume also comes unprecedented data pressure: 

although data has become available to everyone, the high technical demand in terms of data 

processing, storage (Gibbs et al. 2007) and also downlink capabilities (Roy et al. 2010b) currently bar 

part of the science community from utilizing complete EO archives adequately. As such, it is of major 

importance to develop methods for enriching these massive data pools, and to provide ready-to-use, 

preprocessed baseline data for regular intervals, e.g. for 5 year reporting intervals as required for 

operational forest monitoring (Penman et al. 2003). Pixel-based composites (PBC) are suitable 

products to accomplish this task, as they substantially reduce the data volume to enable ‘traditional’ 

analyses (e.g. land cover / change classification as in Griffiths et al. 2013a), provide cloud-free and 

seamless images over large areas (Holben 1986), but nonetheless make use of the full archive depth 

implicitly. 

Numerous compositing techniques were developed for their use with optical EO time series, 

most notably with the Advanced Very High Resolution Radiometer (AVHRR), MODIS and various 
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Landsat sensors. Detailed overviews of existing compositing methods and their specific disadvantages 

can be found in (Dennison et al. 2007) or (Lück and van Niekerk 2016). Most commonly, compositing 

criteria are based on optimizing band or index statistics (e.g. maximum, minimum or median selection, 

see Holben 1986, Cabral et al. 2003, Dennison et al. 2005, Flood 2013), sometimes amended by view 

angle constraints (e.g. Huete et al. 2002). It is yet undecided which compositing technique is best 

(Lück and van Niekerk 2016), as most techniques have certain limitations that decrease the product 

quality (Dennison et al. 2007). 

In the past years, the compositing of Landsat data gained enormous popularity (e.g. Griffiths 

et al. 2013b, Roy et al. 2010a, Flood 2013), which on the one hand is a result of political, technical 

and algorithmic progress (Wulder et al. 2012), and on the other hand is driven by the demand for 

seamless (supra-) national “images” at finer spatial resolution. For a range of analyses (Song et al. 

2001), the generation of composites using top-of-atmosphere (TOA) reflectance inputs, as employed 

in the Web-enabled Landsat Data project (WELD, Roy et al. 2010a) is a straightforward and 

sufficiently precise procedure. However, other analyses like the quantification of within-state 

processes – such as forest degradation – require higher level radiometric input data (Hansen and 

Loveland 2012). For this purpose, a number of large-area production systems exist. The Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS, Masek et al. 2006), which is 

considered as state of the art standard Landsat product, was e.g. used to generate radiometrically 

normalized composites across the Carpathians (Griffiths et al. 2013b) and Canada (White et al. 2014). 

A full integration of atmospheric correction procedures with further corrections for topographic and 

bidirectional effects, as well as homogenizing algorithmic for multiple sensors (e.g. Frantz et al. 

2016a) might additionally pave the way for a number of more advanced analysis procedures like 

within-state gradual change detection (Vogelmann et al. in press). 

Although Landsat data receive largest attention in the context of compositing, coarser-

resolution data like MODIS or the recently launched Sentinel-3A may be equally valuable for the 

global assessment  of land surface processes, e.g. to identify hot spot areas of forest loss (DeFries et 

al. 2007). As such, flexible compositing techniques that can be applied to any kind of optical EO 

image archive are required. 

Commonly, compositing techniques are designed to provide time series of regularly spaced 

images (e.g. 8-day global MODIS composites (Justice et al. 2002) or monthly to annual Landsat 

composites (Roy et al. 2010a)), though it is not always feasible to generate gap-free products where 

frequent clear-sky observations cannot be guaranteed. As an example, even annual Landsat 

composites – of usable quality – cannot be generated in parts of the world (e.g. Griffiths et al. 2013b), 
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due to limited data availability as a consequence of adverse climatic settings and non-systematic 

acquisition plans outside of the United States. For many operational monitoring tasks, such frequent 

observations are not necessarily required, e.g. the assessment of carbon stock changes (Penman et al. 

2003). As such, another class of compositing algorithms was developed that not only use observations 

from a narrow temporal window, but instead consider all data within a couple of years. Instead of 

optimizing a single spectral criterion, a parametric weighting scheme is used to combine a multitude 

of selection criteria, especially introducing temporal characteristics to anchor the composite to a pre-

defined Day-of-the-Year (DOY, Griffiths et al. 2013b). 

Shortcomings of this method mainly occur where phenological differences within target areas 

result in spectrally ambiguous composites. For instance, barren fields might be falsely classified as 

fallows if the composited information was acquired in an unfortunate phenological state (Griffiths et 

al. 2013a), or seasonal variations in broadleaved canopies might erroneously be classified as 

deforestation (DeFries et al. 2007). This makes a strong case for the generation of phenologically 

coherent pixel-based composites. Whilst using a fixed DOY might be a sound strategy if good 

knowledge on the regional seasonality is available (Griffiths et al. 2013b), results may be improved if 

spatial and temporal variations in LSP are considered explicitly. Large-scale variations in LSP are 

commonly a result of several abiotic factors, among them topographic factors such as altitude (Jochner 

et al. 2012, Arroyo 1990) and aspect (Arroyo et al. 1981), climatic factors such as temperature 

(Williams-Linera 1997, White et al. 1997), rainfall (White et al. 1997), continentality (Arroyo 1990), 

irradiance (Bollen and Donati 2005) and day length (Bollen and Donati 2005). Biotic factors like the 

degree of urbanization (Jochner et al. 2012) also influence LSP. Local variations in LSP can also be 

significant, and are especially common in water-limited dryland landscapes (or in agricultural areas 

in general), where one land cover class has unlimited water supply (e.g. riverine or swamp vegetation) 

whereas other land cover classes quickly dry out after the offset of the rains. In addition, inter-annual 

variations in LSP can also be substantial (White et al. 1997, Atkinson et al. 2012, Atzberger et al. 

2013), e.g. El Niño events decrease the wet season rainfalls and lengthen the dry season in the Amazon 

forest (Asner et al. 2000). Landscape processes like burning can also abruptly end the green season, 

whereas the season may extend significantly longer in fire-free years (Frantz et al. 2016b). 

Consequently, a pixel-based LSP dataset as temporal target layer would allow for a more data-

driven parameterization and could eliminate the need to manually parameterize the target DOY. 

Accordingly, we propose a compositing technique that 

• employs a parametric weighting scheme with full consideration of annual LSP at the pixel-

scale, to generate phenologically coherent composites across large areas, 
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• allows for a data-driven parameterization of temporal compositing characteristics, 

• is flexible with regards of using different compositing criteria, 

• is general enough for global application, and 

• may be applied to any gridded EO archive. 

We introduce our study area with an emphasis on the abiotic factors that shape LSP in section 

2. Section 3 provides a brief input data description regarding reflectance and LSP products, including 

an assessment of data availability. The phenology-adaptive compositing technique is described in 

section 4, and will be applied to the daily surface reflectance MODIS product and to a nadir 

bidirectional reflectance distribution function (BRDF) adjusted Landsat reflectance (NBAR) dataset. 

Compositing statistics in terms of the temporal successfulness of approaching the target DOY and 

year are presented for both datasets. As a direct result of the outstanding temporal characteristics of 

MODIS, we demonstrate the effectiveness of our approach by comparing phenology-adaptive MODIS 

composites to their “fixed-DOY” equivalents using map representations of differences in the 

Enhanced Vegetation Index (EVI), followed by a quantitative analysis and a demonstration of the 

phenological normalization across an elevation gradient and between land covers. Global applicability 

is demonstrated by generating MODIS composites across a latitudinal gradient from boreal Russia to 

South Africa. The Landsat composite quality is ensured by a quantitative comparison to the MODIS 

composites, and eventually, a 12-year annual Landsat time series is employed to characterize drastic 

and decadal-scale scale landscape dynamics across Zambia. Results are presented in section 5, and 

are discussed in section 6, including a discussion of the utility of the phenology-adaptive and static 

techniques with regard to different applications. The paper ends with conclusions in section 7.  

2 Study Area 

Zambia was chosen as study area (approx. 750·103 km²) due to its relevance as being qualified 

for REDD+ financial support because of its considerable forest and woodland cover. Furthermore, the 

interaction of regional wind currents and terrain supported the development of distinct vegetation 

patterns with both large-scale gradients and local variations in LSP. 

Zambian climate is strongly dependent on elevation, and features tropical-warm climate on the 

predominant high plateaus (1000 m a.s.l.). Tropical-hot climate characterizes the lower valley plains 

(325-920 m a.s.l.) in the South, while tropical-cool climate is found on the highest plateaus, e.g. the 

Nyika Plateau in the North-East (2100-2200 m a.s.l.). The terrain of Zambia is shown in Fig. VI-1a. 

The seasonality is closely tied to seasonal changes in large scale air movement and solar configuration, 

which results in three hygrothermal seasons; i.e. (i) the hot wet season (November-April), (ii) cool dry 
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season (May-August) and (iii) hot dry season (September-October). The season start, end and lengths, 

and the precipitation sums are altered both by the local relief and by the geographic location. In 

general, the season lengths and the precipitation sums decrease from North-West (180-190 days, 

1000-1400 mm) to South-East (120-130 days, < 800 mm) due to the temporally shorter influence of 

the Intertropical Convergence Zone (ITCZ) in the South. The on- and offsets of the rains are also tied 

to the migration of the ITCZ over Zambia, which is located north of Zambia during the dry season. 

On average, the rains start in mid-October in the North-West and arrive in the South-East at the end 

of November. The rains stop in the South at mid-March and last until the end of April in the North-

West. The monthly rainfall sums for 2005 are shown in Fig. VI-1b. The timing of the minimum and 

maximum temperatures also follow this pattern, where the coolest temperatures are found in June/July 

and the hottest temperatures in October/November immediately before the onset of the rains (Schultz 

1983). 

The main part of the country is covered by semi-evergreen Miombo woodlands. Evergreen dry 

forests are found in western Zambia on infertile Kalahari sands and are replaced by grasslands where 

seasonal waterlogging suppresses tree growth. The drier and hotter southern part of the country is 

dominated by deciduous woodlands, where Mopane woodlands are found in the lowest and driest 

regions. Permanent shallow flooding along the rivers and swamps, in combination with the relatively 

flat terrain support large areas of seasonally flooded grasslands (Olson et al. 2001). 

Fig. VI-1. Overview of the study area (Zambia). (a): Digital Elevation Model (DEM), acquired by the Shuttle 
Radar Topography Mission (SRTM). The Worldwide Reference System 2 (WRS-2) is superimposed. (b): 

Monthly rainfall sums for 2005, obtained from the Africa Rainfall Climatology version2 (ARC2; Novella and 
Thiaw 2013). 
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3 Data 

3.1 Surface Reflectance 

1) MODIS 

We acquired daily MODIS surface reflectance images (using data from the Terra platform, 

MOD09GA) from the Land Processes Distributed Active Archive Center’s (LP DAAC) Data Pool. 

The product provides surface reflectance images at 500 m resolution and 1–2 day nominal revisit 

frequency (Vermote and Vermeulen 1999). In order to generate multi-annual composites centered at 

2005, each image between 2003 and 2007 for the four tiles covering Zambia (as well as for 11 tiles 

covering a large latitudinal gradient) was downloaded and processed, resulting in 1814 images per 

tile. Due to the vicinity of Zambia to the equator, the acquisition orbits do not support daily coverage 

in most parts of the study area. The number of clear-sky observations is shown in in Fig. VI-2a; on 

average 625 observations were available (σ = 147, min = 57, max = 1013). The reflectance data (blue: 

0.469µm, green: 0.555µm, red: 0.645µm, near infrared: 0.859µm, shortwave infrared: 1.64µm and 

2.13µm) and view zenith angle layers were extracted to binary image format, and the quality layers 

were parsed to compute the pixel distance to the next cloud or cloud shadow. 

2) Landsat 

We prepared a ready-to-use multi-sensor Landsat dataset, including reflectance and cloud 

detection products (Frantz et al. 2016a), specifically developed for its use in bulk-data applications 

like pixel-based compositing. All available Level 1T data from the Thematic Mapper (TM), Enhanced 

Thematic Mapper plus (ETM+), and the Operational Land Imager (OLI) were processed, and are 

stored in a gridded data structure in binary image format such that rapid pixel-based access to the full 

depth of the Landsat archive is instantaneously given. Level 1G data was not processed as a reliable 

co-registration amongst images was considered of prime importance. All images were available to the 

compositing algorithm, which was allowed to pick images as needed. Data from different sensors 

receive equal treatment in the proposed compositing approach. In this study, we focused on the period 

2001–2012, where our data pool is populated with 60,800 (TM) and 131,601 (ETM+) gridded image 

datasets (30 x 30 km) resulting from 1702 (TM) and 3825 (ETM+) original images in Worldwide 

Reference System 2.  

The radiometric processing chain generated NBAR products, featuring an integrated 

correction of atmospheric, topographic and bidirectional effects. The atmospheric correction module 

was based on radiative transfer theory (Tanré et al. 1979) and accounted for multiple atmospheric 
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scatterings with variable illumination/view geometry, and included a combined image-, database- and 

object-based estimation of aerosol optical depth over temporally persistent dark targets. Adjacency 

effect correction and a spatio-temporally variable water vapour correction with the MODIS 

precipitable water product (Gao and Kaufman 2003) are also included. Topographic normalization 

was achieved with a modified image-based C-correction with 1-arc-Second SRTM data (USGS 2015). 

The correction of bidirectional effects employs a global set of MODIS-derived BRDF kernel 

parameters (Roy et al. 2016). The pixel distance to the next cloud or cloud shadow was computed 

with a modified version of the Fmask algorithm (Zhu and Woodcock 2012, Zhu et al. 2015, Frantz et 

al. 2015b, Frantz et al. 2016a). The haze optimized transformation (HOT; Zhu and Woodcock 2012), 

and the view zenith angle were also appended to the output stack. All data were prepared in a regular 

grid, and share a single projection (Lambert Azimuthal Equal Area), such that our proposed algorithm 

may process tile after tile and pixel after pixel, while utilizing the full archive depth without any need 

for projection or co-registration considerations. 

The intersecting Landsat frames are superimposed in Fig. VI-1a; 49 WRS-2 frames were 

needed for full coverage. Due to the vicinity to the equator and the small swath of the Landsat sensors, 

overlaps between adjacent orbits are relatively small, which in combination with the relatively poor 

data availability poses challenges on generating seamless image products; Frantz et al. (2016b) 

showed that the average clear-sky revisit frequency in non-overlapping areas well exceeds 100 days 

in the wet season and is about 50 days in the dry season. The clear-sky data availability for the five-

year period 2003–2007 is shown in Fig. VI-2b; on average 43.5 observations were available (σ = 17.5, 

min = 0, max = 161). 

3.2 Land Surface Phenology 

Land Surface Phenology in Zambia is diverse, primarily as a function of elevation, climate and 

local variations in water availability. Since phenology on the southern hemisphere is shifted compared 

 
Fig. VI-2. Number of clear-sky observations for the MODIS (a) and Landsat (b) composites for the five-year 

period 2003–2007. 
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to the northern hemisphere, the vegetation maximum approximately coincides with the turn of the 

year. In order to facilitate computations, we do not strictly use DOY values, but use a continuous field 

of values in the algorithm internals, i.e. days since 01/01/0000. The average timing of three 

phenological key stages used throughout the manuscript is given in Table VI-1. 

The peak of season (POS) is the timing of maximum vegetation growth and occurs during the 

rainy season. The minimum of season (MOS) is the absolute minimum of vegetation development 

between two peaks and coincides with the hottest temperatures in the dry season. The end of season 

(EOS) approximately coincides with the annual temperature minimum, where drying already 

decreased the green stock substantially. The three parameters for 2005 are depicted in Fig. VI-3. The 

patterns are primarily a function of regional wind currents associated with the rainfall seasonality and 

terrain altitude (compare to Fig. VI-1). 

We prepared two sets of LSP data to guide the compositing process, one at moderate spatial 

resolution (250 m) and one at medium spatial resolution (30 m). A detailed description of the 

derivation of these inputs was given by Frantz et al. (2016b), and only a brief summary will be given 

here. Moderate resolution LSP was obtained by applying the Spline analysis of Time Series algorithm 

(SpliTS, Mader 2012) to MODIS EVI time series (MOD13Q1/MYD13Q1). The day of composite 

information was explicitly used to recreate the actually sensed time series, and the VI usefulness index 

(a sublayer given in the MODIS products) was used for weighting the data points during the procedure. 

Data from both MODIS sensors on-board Aqua and Terra were combined to increase the temporal 

resolution. Spline models were fit to the EVI time series and phenological parameters were extracted 

thereof: POS and MOS are the timing of annual extremes, and the EOS is defined as the date where 

the spline crosses 20% of the seasonal amplitude between POS and MOS. Following this, the spatial 

resolution was further improved by fusing the moderate resolution LSP with the temporally limited 

Landsat reflectance (Frantz et al. 2016b). The fusion intensively uses the information from the local 

pixel neighborhood at both resolutions, where a few discrete Landsat images are used to disentangle 

the LSP with textural and spectral homogeneity metrics. The employed methods avoid the need of 

generating a dense time series of synthetic Landsat like images in a first step as the target layer is 

directly predicted at increased spatial resolution. 

The previously described temporal LSP metrics were derived for the years 2001–2012. As an 

approximation, the average of the 12 year LSP is computed by the compositing algorithm and is used 

for missing data, or for pre-2001 and post-2012 periods. The datasets were generated with the same 
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grid system as the MODIS and Landsat data, respectively, such that pixel-based operations can be 

used during the compositing. 

4 Methods 

4.1 Compositing 

Image compositing generally identifies the best suited observation in a given period of time 

on the basis of pre-defined criteria at the pixel-level. Following this definition, we consider each 

observation from the target year Yt and from a number of bracketing years y (i.e. Yt ±y), and use a 

parametric weighting scheme similar to Griffiths et al. (2013b) and White et al. (2014). 

We determine the suitability of any observation by computing the total score ST from a 

weighted linear combination of a number of thematic scores: 

�� = ∑/� ∑/⁄ , (VI-1)

Table VI-1. Mean timing of LSP. 

 Peak of season End of season Minimum of season 

Abbreviation POS EOS MOS 
Mean DOY 25 ≙	January	25 174 ≙	June	23 245 ≙	September	2 

Land Surface Phenology (LSP) for three key stages in 2005. 
 

Fig. VI-3. Land Surface Phenology (LSP) for 2005; (a): peak of season (POS), (b): end of season (EOS), (c): 
minimum of season (MOS). (d): normalized histograms of POS, EOS and MOS (standardized by histogram 

maximum), and color bar for (a-c). The POS can be at the end or at the beginning of the calendar year, and as 
such, the data ranges from December 1, 2004 (DOY 336) to December 31, 2005 (DOY 365). The depicted 

color-ramp is used for all DOY images throughout the paper. 
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where the scores S characterize the phenology-adapted suitability of the acquisition day (SD) and year 

(SY), the probability of cloudiness (SC), the potential contamination with haze (SH), the spectral 

correlation (SR) and the view zenith angle (SV), respectively. The scores are computed on a per-pixel 

basis and are defined to be within [0,1]. The employed transfer functions are described in the following 

sub-sections. The relative importance of the scores may be adjusted with the weighting parameters W, 

which are also in the range [0,1], where W = 0 disables the usage of the corresponding score. The 

observation with the highest total score is selected for the composite. The mathematical symbols used 

throughout the paper are defined in Table VI-2. 

1) Intra-annual contribution: acquisition day 

We use the pixel-based LSP to dynamically adjust scoring functions for each pixel. We use a 

sequence of three temporal LSP parameters, e.g. 

• p0: POS, 

• p1: EOS and 

• p2: MOS. 

Other sequences are also permitted, e.g. start of season (SOS), POS, EOS; which would simply 

result in composites anchored at a different phenological stage. 

Thus, for each pixel and each year in [Yt - y, Yt + y], there are three temporal parameters: p0, 

p1 and p2. The correct year of the LSP is selected by choosing the year in which p1 is closest to the 

image under consideration, which is necessary if the phenological curve coincides with the turn of the 

year. Three function values (s0, s1 and s2) need to be pre-defined, and they are to be evaluated at p0, p1 

and p2 for each pixel. The choice of s0, s1 and s2 triggers the usage of different scoring functions, i.e. 

either a Gaussian function or ascending/descending sigmoidal ones. 

In the case of the Gaussian, s0, s1 and s2 must be in [0,1] and s0 < s1 > s2. A Gaussian function 

is then adapted to the LSP by numerically determining the width of the Gaussian bell σ; the amplitude 

of the Gaussian is simply s1 (typically s1 = 1) and p1 shall represent the target DOY. In order to adapt 

to asymmetric LSP, σ is determined for both tails separately: 

�� = �F3 − F:� �−2 ∙ log	�3 �:⁄ �⁄
σ¡ = �F� − F:� �−2 ∙ log	�� �:⁄ �⁄  (VI-2)
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The DOY score SD is computed with 

�¢ = £�: ∙ expX−0.5 ∙ �¤ − F:�� ���⁄ Y,								¤ < F:��: ∙ exp	−0.5 ∙ �¤ − F:�� �¡�⁄ �,								¤ ≥ F:�, (VI-3)

where the left-tail function is used if D is before p1. If not, the right-tail function is used. 

The procedure of fitting a Gaussian to the LSP (p0 = POS, p1 = EOS, p2 = MOS) is illustrated in Fig. 

VI-4a–d. In (a–b), s0, s1 and s2 are set to 0.01, 1.00 and 0.01; p1 is assumed constant and p0 and p2 

converge symmetrically towards p0 (a) or progress forward asymmetrically (b). The Gaussian 

functions adapt to the changing LSP accordingly, which in practice would be the LSP of different 

pixels. In Fig. VI-4c–d, the LSP is held constant and the effect of modifying the function values is 

demonstrated; the Gaussians also adapt to these variations. The effect of increased s0 and/or s2 values 

on the composite would be that the chance of selecting a broader range of DOYs is increased. On the 

contrary, a more narrow Gaussian (i.e. low s0 and/or s2 values) would increase the selection rate of 

DOYs that are close to the target DOY. 

To account for conditions where the selected DOY should not extend beyond or start before a 

certain date, we implemented descending and ascending sigmoidal functions, in which case p0 or p2 

serve as target DOY layer. These functions are particularly useful if e.g., a ‘dry minimum’ composite 

should be created where only data from within the dry season are to be considered; the onset of the 

rains typically ends the season, triggers a green flush event, and thus alters the landscape quickly (see 

also Fig. VI-1 for the monthly rainfall sums). 

Table VI-2. Mathematical symbols. 

Symbol  Meaning 

Yt, y  Target year and allowed number of bracketing years 
Dt, D  Target Day-of-the-Year (DOY), DOY of image acquisition 
∆Y, ∆D  Absolute difference to target year and DOY 
ST  Total score 
SD, SY  Temporal scores for acquisition DOY and year 
SC, SH, SR, SV  Auxiliary scores for cloud, haze, correlation and view angle 
WD, WY, WC, 
WH, WR, WV 

 
Weighting parameters for the temporal and auxiliary scores 

p0, p1, p2  Land Surface Phenology (LSP) metrics 
s0, s1, s2  Function values for the LSP metrics 
σl, σr  Left- and right-tail width (sigma) for the Gaussian DOY scoring function 
a, b  Shape parameters for the sigmoidal DOY scoring functions 
Yf  Y-factor; i.e. relative inter-/intra-annual contribution 
d, dreq  Cloud and cloud shadow distance, and distance after the sky is assumed to be clear 
θ, θreq  View zenith angle, and angle at which SV approaches 0 
Definition of the mathematical symbols used in this paper. 
 



Chapter VI Pixel-Based Compositing 
 

117 
 

�¢ = §�3 	1 + exp	. ∙ �¤ − F:� + b��,								�3 > ���⁄
�� 	1 + exp	. ∙ �¤ − F:� + b��,								�� > �3�⁄  (VI-4)

Analogous to the Gaussian type, function values s0, s1 and s2 at p0, p1 and p2 are pre-defined 

with  

• 1 ≥ s0 > s1 > s2 ≥ 0 for a descending sigmoid or 

• 0 ≤ s0 < s1 < s2 ≤ 1 for an ascending sigmoid. 

The function parameters a and b are retrieved from Nelder-Mead Simplex Optimization 

(Nelder and Mead 1965) where the RMSE between s0, s1, s2 and the evaluation of Eq. (VI-4) at p0, p1 

and p2 is minimized. s0 or s2 denote the function maxima and b causes the midpoint of the function to 

shift away from p1 towards p0 or p2. The steepness parameter a assumes positive (negative) values for 

the descending (ascending) type. Acquisition dates D that are before (after) Dt are scored with the LSP 

of the previous (next) year with the descending (ascending) sigmoid, such that they assume a very low 

SD – in order to satisfy the need for the generation of within-season only composites. 

The procedure of fitting the logistic S-curves is shown in Fig. VI-4e–h for a descending (e–f) 

and an ascending case (g–h); s0 = 0.99 (0.01), s1 = 0.10 and s2 = 0.01 (0.99). Fig. VI-4e,g demonstrate 

the capability of the sigmoid to adjust to the dynamic LSP, which in practice would be the LSP of 

different pixels. Analogous to the Gaussian type, the compositing behavior can be controlled by 

modifying s0, s1 and s2 where an increase generally increases the chance that DOYs further away from 

Dt are selected; exemplarily see Fig. VI-4f,h for a sequence of s1 values. 

2) Inter-annual contribution: acquisition year 

In the case of generating composites from multi-annual observations, it is required to define 

tradeoff criteria between data from Yt and acquisitions from other years that potentially are closer to 

Dt. Preferably, observations from Yt should be selected to minimize the risk of land cover change 

between the years while acquisitions close to Dt are needed to increase the phenological consistency. 

Observations from bracketing years should not be used until the data availability in Yt is too limited. 

As these are contradicting demands, we introduce the Y-factor Yf, which defines the tradeoff between 

inter- and intra-annual data contribution with a single parameter. To adapt to spatial variations in the 

steepness of vegetation development or senescence, Yf is parameterized with a dynamic adjustment 

on the basis of pixel-based LSP. Recall that the intra-annual scoring is determined from p0, p1 and p2 
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using different scoring functions. We slice the interval of the most dynamic range of p0, p1, p2 into 

intervals p↔  that are defined by Yf and the allowed number of bracketing years y: 

F↔ = §	F: − F3� 	�p + 1� ∙ |©�,⁄ 	¤ < F:�|	�3 > ���	F� − F:� 	�p + 1� ∙ |©�⁄ , 	¤ ≥ F:�|	�� > �3� (VI-5)

Fig. VI-4. Schematic illustration of the LSP-adaptive DOY scoring functions. The Gaussian type is shown in 
(a–d); the logistic S-curves in (e–h). For illustration purposes, we have either visualized fits to the variable 
LSP with constant function values (a,b,e,g), or have visualized fits to constant LSP but variable function 

values (c,d,f,h). The chosen LSP and scoring function values are indicated as p0–2 and s0–2; the point 
signatures indicate the p and s values, and ‘var.’ indicates that a parameter was varied; the variation of the p 
and s values can be taken from the x- and y-axis, respectively. For consistency with the following real-life 

examples, the p-values were tagged semantically with POS, EOS and MOS. In all cases, the target metric is 
the phenological parameter with the highest score, i.e. EOS (a–d), POS (e–f) and MOS (g–h). 

 

Fig. VI-5. Illustration of the Y-factor Yf for an arbitrary example. The figure shows isolines of the total score 
ST, drawn with a dependence on ∆Y and ∆D. The right tail Gaussian type was chosen and two years around 
the target year are allowed; i.e. y = 2. The total score was computed as a combination of the Year score SY 

and the DOY. The higher Yf, the higher is SY – and the smaller is the influence of ∆Y on ST. 
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where the first equation is used for the left-tail Gaussian or the descending sigmoid, and the second 

equation for the right-tail Gaussian or the ascending sigmoid. 

The Year score SY is defined to enable a merely DOY-driven selection, but with a penalty on 

the bracketing years. It is the evaluation of the DOY scoring function relative to the function maximum 

at ∆Y·p↔ for the Gaussian type 

�ª = £�: ∙ expX−0.5 ∙ �∆|F↔�� ���⁄ Y,					¤ < F:��: ∙ exp	−0.5 ∙ �∆|F↔�� �¡�⁄ �,					¤ ≥ F:� (VI-6)

and the sigmoidal types 

�ª = §�3 	1 + exp	.�F3 + ∆|F↔ − F:� + b��, 	�3 > ���⁄
�� 	1 + exp	.�F; − ∆|F↔ − F:� + b��, 	�� > �3�⁄  (VI-7)

Fig. VI-5 illustrates the influence of Yf on ST for an arbitrary example where D is after p1, and 

the DOYs are scored with the right-tail Gaussian with s1 = 1 and s2 = 0.01; y = 2 years. The total score 

ST was computed using SD and SY only. Three different Yf are shown in (a-c) which alter the curvature 

of the ST isolines. In the case of Yf = 3, the isolines are rather vertical, which means that ST for a given 

∆D do not differ substantially between the years, and observations from the bracketing years may be 

included in the composite. In the case of Yf = 0.75, the isolines are curved substantially, which strongly 

decreases the selecting rate of non-Yt observations. As an example (green isoline), observations with 

∆D <= 23 and ∆Y = 1 can only be selected if there is no observation in ∆Y = 0 with ∆D <= 61. The 

chance of selecting a ∆Y = 2 observation is even worse, as the same ST cannot be achieved. The actual 

effect of varying Yf on the composited DOYs and Years is shown in Fig. VI-12.  

3) Cloud distance score 

We score the pixel’s distance to the next cloud or cloud shadow d with a sigmoid in order to 

devaluate pixels that are in close proximity to a cloud or a cloud shadow. Fmask cloud detections are 

generally of high quality (Zhu and Woodcock 2012) but they are not perfect (Zhu and Woodcock 

2014a, Frantz et al. 2015b), thus cloud remnants remain in the data and especially shadows might be 

missed. Nevertheless, clouds are typically clustered and unidentified shadows are also constrained to 

the proximity of the more reliably detectable clouds. Therefore, the concentric devaluation of pixels 

around the detected clouds also accounts for the missed objects. Griffiths et al. (2013b) defined a 
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parameter dreq beyond which the sky is assumed to be clear. We slightly modified the cloud scoring 

function (Fig. VI-6) to adapt better to different dreq: 

�¬ = 1 X1 + expX−10 �¡­® ∙ i� − �¡­® 2⁄ k⁄ YY⁄ . (VI-8)

4) Haze score 

The utilized preprocessing framework included a full radiometric treatment of the data (Frantz 

et al. 2016a). Nevertheless, local plumes of thick haze are still present in the imagery and are also 

subject of omission in Fmask, e.g. haze caused by biomass burning is not detected reliably due to its 

transparency and warmth. Therefore, we added the Fmask Haze Optimized Transformation (HOT; 

Zhu and Woodcock 2012, Zhang et al. 2002) to the output stack in the preprocessing framework. The 

HOT has already proven its usability in compositing techniques (Lück and van Niekerk 2016), and as 

such, we use this proxy for devaluating hazy observations with a sigmoid (see Fig. VI-6, dashed): 

�¯ = 1 	1 + exp	10 0.02 ∙ �°±� + 0.015�⁄ ��⁄ . (VI-9)

5) Correlation score 

EO imagery can contain a variety of errors or undesired effects which are hard to account for 

with scoring functions tailored for a specific purpose. This especially applies if a priori knowledge 

about potential error sources is not available, and/or specific avoidance strategies cannot be developed. 

Undesired effects may be data artifacts (e.g. due to impulse noise or any other sensor anomaly see 

Fig. VI-7a, residual misregistration, or undesired transient phenomena like short-term flooding, active 

fires or missed clouds/shadows. 

As such, we developed a general criterion, which relates a given spectrum to the pixel’s 

spectral stability within the requested period of time, and thus minimizes outlier-induced noise 

 
Fig. VI-6. Cloud distance and haze scoring functions; dreq was set to 100 pixels. 
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regardless of the type of noise. Through time, spectra are commonly highly correlated, and as such, 

we compute the temporal correlation matrix from all spectra of a given pixel. We use the mean 

absolute correlation |rµ| – i.e. the column average of the correlation matrix; see Fig. VI-7a – as spectral 

stability proxy in the computation of the correlation score, see Fig. VI-7b: 

�² = 1 X1 + expX−10 	0.5 ∙ 2 3⁄ � ∙ i�o³� − 0.5 ∙ 4 3⁄ k⁄ YY⁄ . (VI-10)

6) View angle score 

Wide swath sensors like MODIS provide near-daily global coverage, though off-nadir data is 

of poorer quality due to the “bowtie” effect, where the FOV at the scan edge (approx. 65°) is 

approximately 2.0 and 4.8 times larger than at nadir in the track and scan directions, respectively 

(Wolfe et al. 1998). It is well known that the consideration of view angle effects improves composite 

quality considerably (e.g. Chuvieco et al. 2005), therefore we use a sigmoid to devaluate off-nadir 

pixels on the basis of the view zenith angle θ of a given observation (see Fig. VI-8): 

�´ = 1 X1 + expX10 8¡­® ∙ i8 − 8¡­® 2⁄ k⁄ YY⁄ . (VI-11)

θreq is the angle at which SV approaches 0, and can be adapted with respect to the viewing 

geometry of a specific sensor. 

4.2 Implementation and user interaction 

The code is entirely based on open-source software and is written in C. The GNU Scientific 

Library is used for optimization procedures. Shared memory parallelization was implemented by 

utilizing the Open Multi-Processing (OpenMP) API. The compositing algorithm works on a per-tile-

basis, though data from the requested tiles are directly written to a single output file, which is basically 

a mosaic of composites. 

If required, the compositing algorithm can be parameterized by setting only a few parameters. 

The spatial extent, the target Year Yt, the number of bracketing years y and the Y-factor Yf must be 

set. If the phenology-adaptive approach is to be used, the user must input the LSP data (p0, p1 and p2) 

and needs to define the corresponding function values s0, s1 and s2. If static composites are to be 

created, fixed values for p0, p1 and p2 need to be defined instead. The function type (Gaussian or 

sigmoid) is automatically chosen from the given s values. The weighting parameters W can also be 

modified and individual scores S can be disabled. Several output files can be generated on demand: 
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• pixel-based composites are written by default, 

• composite information about (i) the number of considered clear-sky observations (in 

dependency of dreq – see Fig. VI-2), (ii) the selected D, (iii) ∆D, (iv) ∆Y, (v) sensor ID (4, 5, 7 

or 8 in the case of Landsat), (vi) Path/Row of the best observation, and (vii) the 12-year 

variability of LSP,  

• scores of the best observation (ST, SD, SY. SC, SH, SR, SV), and 

 
Fig. VI-7. Exemplary illustration of the spectral stability assessment and correlation scoring function. (a): 

mean absolute correlation derived from the temporal correlation matrix, and Landsat-7 NIR image (Path/Row 
172/072) affected by sensor anomalies. (b): correlation scoring function. 

 

 
Fig. VI-8. View zenith angle scoring function; θreq was set to 40° and 7.5° for MODIS and Landsat, 

respectively. 
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• spectral variability metrics can be produced optionally. The spectral variability is a 

representation of the stability or variation of the land surface during the 2y+1 year compositing 

period. Spectral variability metrics were shown to be an asset in land cover classifications 

(Griffiths et al. 2013b). Each clear-sky observation which is sufficiently far away from the 

next cloud (in dependency of dreq) contributes to these metrics. Mean (i), standard deviation 

(ii), minimum (iii), maximum (iv), range (v), skewness (vi) and kurtosis (vii) may be output. 

4.3 Application to EO archives 

We demonstrate our method for application with MODIS and Landsat archives. Very dense 

MODIS data (temporal resolution ~2 days) enable the selection of observations which are as close as 

possible to the target DOY, and are thus optimal to demonstrate the temporal aspects of the presented 

approach. In order to demonstrate the effect of using pixel-based LSP, we generated a set of 

phenology-adaptive composites (using the coarse resolution LSP) and a set using a static target DOY, 

i.e. the mean value of the LSP (see Table VI-1). For each set, three seasonal composites for 2005±2 

were generated: POS, EOS and MOS. The seasonal composites were generated using the same input 

LSP layers, but with different DOY scoring functions, i.e. the descending sigmoid, two-tailed 

Gaussian and ascending sigmoid, respectively. The EVI was computed for each composite as 

benchmark for differences in vegetation development as a result of the two compositing techniques. 

Differences between the techniques are shown and the composites are compared quantitatively. The 

mean error (ME) as a measure for bias, the mean absolute error (MAE), the root mean squared error 

(RMSE) and the coefficient of determination (R²) were computed for each combination. Spatial 

autocorrelation was reduced with a random selection of ~17,500 samples using Poisson Disc sampling 

(Tulleken 2008). As additional proof of concept, we examine the (non-)relationship between EVI and 

elevation for a small subset with a large elevation gradient and a number of land cover classes for both 

the phenology-adaptive and the static composites. We also generated three different phenology-

adaptive EOS composites using different Y-factors (0.75, 1.5, 3.0) to demonstrate the effect of the 

inter- to intra-annual selection process. The full parameterization is summarized in Table VI-3. WD 

and WY were set to 1. WH was set to 0, because the HOT was not available as we acquired 

atmospherically corrected MODIS data. WC was set to 0, because we did not encounter severe data 

artifacts in the resulting composites, and the correlation matrix is computationally expensive for a 

very large number of input images (1814 images), thus we considered the cost-benefit ratio ineffective 

for its usage with dense MODIS data. WC and WV were set to 0.33, in order to guarantee that SD cannot 

be overruled by close-nadir and cloud-free observations in unfavorable seasons. The potential for 

global applicability is demonstrated by generating MODIS EOS composites for a large latitudinal 
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gradient from boreal Russia to South Africa. We generated a phenology-adaptive version, and static 

composites that were anchored at the hemispheric mean EOS, which is DOY 256 and 106 for the 

northern and southern hemisphere, respectively. 

In the next step, we applied both the phenology-adaptive and static compositing techniques to 

the Landsat data, using the medium resolution phenology or the mean LSP values. Analogously to 

MODIS, we generated three seasonal composites for 2005±2 years, i.e. POS, EOS and MOS. The 

Landsat composites were cross-compared with MODIS to ensure data quality. To lessen the effect of 

differing spatial resolution, the Landsat composites were degraded to 500 m using a MODIS point 

spread function (Barnes et al. 1998). The sampling procedure and statistical measures are the same as 

described in the last paragraph and are presented together with the cross-comparison between the 

MODIS composites. The complete parameterization is summarized in Table VI-3. We used all scores, 

while ensuring that the auxiliary scores cannot outmax the temporal ones. In order to show the 

potential for land cover change mapping, we generated an annual Landsat EOS time series (2001–

2012 ±0) with the phenology-adaptive technique. The Change, Aftereffect and Trend (CAT, Hird et 

al. 2016) transform was applied to the EVI representations for visualizing both drastic and gradual 

landscape dynamics across whole Zambia at medium resolution. Due to the non-optimal data 

availability of Landsat data, we rigorously rejected all observations that deviate more than ±16 days 

from Dt. 

Table VI-3. Parameterization of the MODIS and Landsat composites. 

 peak of season end of season min. of season peak of season end of season min. of season 

 MODIS MODIS MODIS Landsat Landsat Landsat 

Yt, y 2005 ±2 2005 ±2 2005 ±2 2005 ±2 2005 ±2 2005 ±2 
Yf 0.75 [1.5, 3.0]* 0.75 [1.5, 3.0]* 0.75 [1.5, 3.0]* 0.75 0.75 0.75 

p0–2 LSP POS, EOS, MOS POS, EOS, MOS POS, EOS, MOS POS, EOS, MOS POS, EOS, MOS POS, EOS, MOS 
p0–2 static 25, 174, 245 25, 174, 245 25, 174, 245 25, 174, 245 25, 174, 245 25, 174, 245 

s0, s1, s2 0.99, 0.10, 0.01 0.01, 1.00, 0.01 0.01, 0.1, 0.99 0.99, 0.10, 0.01 0.01, 1.00, 0.01 0.01, 0.10, 0.99 

scoring 
function 

descending 
sigmoid 

two-tailed 
Gaussian 

ascending 
sigmoid 

descending 
sigmoid 

two-tailed 
Gaussian 

ascending 
sigmoid 

WD, WY. 
WC, WH, 
WR, WV 

1.00, 1.00, 
0.33, 0.00, 
0.00, 0.33 

1.00, 1.00, 
0.33, 0.00, 
0.00, 0.33 

1.00, 1.00, 
0.33, 0.00, 
0.00, 0.33 

1.00, 1.00, 
0.20, 0.20, 
0.20, 0.33 

1.00, 1.00, 
0.20, 0.20, 
0.20, 0.33 

1.00, 1.00, 
0.20, 0.20, 
0.20, 0.33 

dreq, θreq 10, 40 10, 40 10, 40 100, 7.5 100, 7.5 100, 7.5 
* In case of the phenology-adaptive MODIS composites, an experiment with three different Y-factors was performed. 
For the remaining composites, Yf = 0.75. 
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5 Results 

5.1 MODIS composites 

We generated phenology-adaptive MODIS composites centered at the POS, EOS and MOS 

metrics, as well as static composites that only use the mean value of the LSP for each pixel. We used 

the descending sigmoid, two-tailed Gaussian and ascending sigmoid for POS, EOS and MOS, 

respectively. The same LSP metrics were chosen for each composite while only altering the scoring 

values s0, s1 and s2. We used a relatively low Y-factor, thus data from Yt is preferred – if available. 

The complete parameterization is summarized in Table VI-3. We uploaded the generated MODIS 

composites to the Mendeley Data Repository. The data can be accessed with following link: 

https://data.mendeley.com/datasets/bj7jn39ds2/draft?a=e0e0a086-f665-40f1-86d2-9f20c292f9a6. 

Fig. VI-9 depicts the composites for the three seasons (rows). The phenology-adaptive 

composites are shown in the first column; the static composites in the second column. The third 

column depicts the difference in EVI; red colors indicate a higher EVI in the phenology-adaptive 

images. The temporal characteristics are shown in Fig. VI-10, i.e. the selected DOY, ∆D (either using 

the phenology-adaptive or static target) and ∆Y. Basic statistics are summarized in Table VI-4. The 

number of observations is identical for all composites because they were generated with the same 

input data. On average 625 observations were considered (σ = 147, min = 57, max = 1013). The 

number of observations is shown in Fig. VI-2a. 

Based on visual inspection, the POS composites are of least quality and are characterized by a 

stained appeal; the phenology-adaptive version is slightly more homogeneous. The EOS and MOS 

composites are of highest quality. Bidirectional effects are readily visible in the static MOS composite 

as there is a distinct discontinuity between neighboring orbits, and to a smaller degree also in the static 

EOS composite. The swaths are not visible in the phenology-adaptive versions, although the 

composites are generally more grained than the static ones. 

The EOS composites differ by less than ±7 days from Dt, and the MOS composites by less 

than ±10 days. On the contrary, the POS composite differs by more than a month (and additionally 

have a large standard deviation), despite a stronger contribution of the bracketing years. Virtually all 

data of the EOS composite were acquired in Yt, whereas the POS and MOS composites also include 

data from ∆Y ≥ 1, which in both cases is more pronounced in the phenology-adaptive version. The 

selected DOYs resemble the LSP input patterns presented in Fig. VI-3 (with exception of the POS 

composite), whereas the static versions show little spatial variation besides the acquisition orbits. 
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Almost all parts of the EOS composites differ substantially with both positive and negative 

EVI differences. Different ecosystems and topographic units are clearly discriminable in the ∆EVI 

image (static minus phenology-adaptive). Differences in the POS images are rather regionalized. 

Negative ∆EVI values are mainly found in the phenological extremes in the flooded grassland and 

swamp areas, while other areas in the northwestern part, as well as the positive ∆EVI values rather 

Fig. VI-9. Pixel-based MODIS composites for the target year 2005. The composites were anchored at three 
different phenological stages; (a-c): peak of season, (d-f): end of season, (g-i): minimum of season. The com-
posites in the first column (a,d,g) were generated with the phenology-adaptive approach; the composites in 
the second column (b,e,h) were generated using a static target date (mean of the LSP metrics). The depicted 

band combination is RGB = near infrared, shortwave infrared and red, thus combining complementary infor-
mation from the three different wavelength domains. The band combination, as well as the same stretch is ap-
plied to all reflectance composites throughout the paper. The third column (c,f,i) depicts the difference in the 
Enhanced Vegetation Index between the phenology-adaptive and static composites; i.e. red colors indicate a 

higher EVI in the phenology-adaptive composite. The green rectangle in (f) indicates the extent of Fig. VI-11. 
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coincide with the previously described stained patterns. The MOS composites are characterized by 

only small negative ∆EVI values, while larger parts of Zambia have high positive ∆EVI values. 

Fig. VI-11 displays the MODIS EOS EVI layer for a subset with a large elevation gradient. 

The phenology-adaptive version is shown in the left column and the static one in the right column. 

Table VI-4. Temporal basic statistics of MODIS and Landsat composites. 

   
 |∆D| 

MODIS 
 

|∆Y| 

MODIS 

 |∆D| 

Landsat 
 

|∆Y| 

Landsat 

  Yf  µ σ  µ σ  µ σ  µ σ 

Dt = POS LSP 
0.75  42.41 27.90  0.24 0.43  50.31 28.68  0.30 0.46 
1.50  39.79 28.05  0.61 0.71       

3.00  37.59 27.64  0.93 0.83       
Dt = 25 static 0.75  34.57 19.26  0.11 0.32  44.48 24.79  0.17 0.38 
               

Dt = EOS LSP 
0.75  5.57 5.98  0.00 0.05  16.80 17.21  0.02 0.15 
1.50  5.43 5.20  0.01 0.11       

3.00  4.84 4.18  0.07 0.27       

Dt = 174 static 0.75  6.43 5.19  0.00 0.01  16.28 11.17  0.02 0.14 
               

Dt = MOS LSP 
0.75  9.87 10.66  0.21 0.41  16.27 14.13  0.59 0.50 
1.50  9.16 10.72  0.64 0.68       

3.00  8.54 10.37  0.99 0.77       
Dt = 245 static 0.75  8.78 5.62  0.03 0.16  15.57 9.74  0.65 0.47 
 

Fig. VI-10. Temporal characteristics of the generated MODIS composites in Fig. VI-9. The three seasons are 
plotted in the rows; (a-b): peak of season, (c-d): end of season, (e-f): minimum of season. The left half of the 
figure (a,c,e) refers to the phenology-adaptive composites; the right half (b,d,f) to the static composites. For 
each composite, the selected DOY, the difference to the target DOY ∆D and the difference to the target year 

∆Y are shown. The same color ramps are applied throughout the paper where appropriate. 
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The phenology-adaptive composite (a) is spatially homogeneous, whereas larger differences can be 

seen in the static composite (b). As can be seen in (d), the EVI increases with elevation, whereas this 

elevation-dependency is largely normalized in (c). There is also land cover dependent variability (f), 

and as can be seen in (e), the phenological normalization removes large parts of the within and between 

ecoregion differences. 

Fig. VI-12 displays the effect of Yf on the relative intra-annual to inter-annual data contribution 

in the compositing process for the POS, EOS and MOS composites. In case of the EOS, the effect of 

Yf is negligible and virtually all data were acquired in Yt, approximately within two weeks before Dt 

and one week after. However, the POS and MOS composites also include data from other years, ∆D 

is generally higher (especially in the POS), and the choice of Yf clearly affects the compositing process. 

In any case, most data is from Yt. An increase in Yf reduces the amount of data from Yt and more data 

from ∆Y ≥ ±1 is selected. In case of POS and Yf = 3.00, the amount of data from ∆Y = ±2 is even larger 

 
Fig. VI-11. EVI of the MODIS EOS composites for a sample area. The subset is indicated in Fig. VI-9 and is 
characterized by a large terrain elevation gradient (> 1000 m). The phenology-adaptive version is shown in 

the left column; the static version in the right column. (a–b): EVI maps; the brown–green color ramp is 
linearly stretched from 0–0.5, (c–d): 2D-histograms between EVI and terrain elevation, (e–f): EVI boxplots 
for the World Wildlife Fund terrestrial ecoregions (Olson et al. 2001); A–D are Central Zambezian Miombo 

woodlands, southern Miombo woodlands, Zambezian and Mopane woodlands and Zambezian flooded 
grasslands, respectively. 
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than from ∆Y = ±1. The choice of Yf has the reverse effect on the intra-annual selection. An increase 

in Yf increases the amount of data that was acquired close to Dt. In case of the POS, data from ∆D < 30 

and ∆Y ≥ ±1 is selected at the expense of data with ∆Y = 0 and ∆D = 40–90. In case of the MOS, data 

from ∆D > -9 and ∆Y ≥ ±1 is selected at the expense of data with ∆Y = 0 and ∆D = -9–-16. The mean 

and standard deviations of |∆D| and |∆Y| are summarized in Table VI-4. 

5.2 Global application 

In order to demonstrate the global applicability of our approach, we generated MODIS EOS 

composites for 2005 for a large latitudinal gradient from boreal Russia to South Africa (Fig. VI-13). 

We generated a phenology-adaptive version (b), and static composites that were anchored at the 

hemispheric mean EOS, which is DOY 256 and 106 for the northern (a) and southern hemisphere (c), 

respectively. The tropics are similar in all composites. Large differences are visible in the sub-tropical 

belts (~10°N–10°S), where the phenology-adaptive version has produced the greatest homogeneity 

between the North and South. The static northern composite has higher (lower) biomass in the North 

(South), whereas the static southern composites has lower and approx. equal biomass in the North and 

South, respectively. Southern Africa also features large differences, where large parts of the sub-

continent look barely vegetated in (a). Similarly, snow is very abundant at mid- and high northern 

latitude in (c). The phenology-adaptive version is also not free of snow but the northern temperate and 

boreal forest is spatially more homogeneous in terms of biomass than in the northern static composite. 

5.3 Landsat composites 

Analogously to the MODIS composites, phenology-adaptive and static Landsat composites 

were generated with a similar setup: POS, EOS and MOS composites using the descending sigmoid, 

Gaussian and ascending sigmoid functions, respectively. Fig. VI-14 depicts the generated phenology-

adaptive composites. The temporal characteristics are shown below the composites, i.e. the selected 

DOY, ∆D and ∆Y. Basic statistics are summarized in Table VI-4. The number of observations is 

identical for all composites because they were generated with the same input data. On average 43.5 

observations were considered (σ = 17.5, min = 0, max = 161). The number of observations is shown 

in Fig. VI-2b. 

The Landsat composites look similar to the MODIS ones, and analogously, the POS composite 

is of least quality, while the EOS and MOS composites are of high visual quality. The EOS and MOS 

composites differ by less than ±17 days from Dt, while the POS composite differs by more than a 

±50 days (and additionally by a large standard deviation of about one month). The standard deviation 
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of the MOS composite is slightly lower than in the EOS composite, which is due to non-

optimal data availability in some orbits in the EOS case. The MOS composite is characterized by a 

higher share of data from the bracketing years, which in this case alleviated the non-optimal data 

 
Fig. VI-12. Effect of different Y-factors on the 

phenology-adaptive MODIS composites. Histograms 
of the difference to the target DOY (line signature; 
top x-axis), and target year (barplot; bottom x-axis) 
are shown for the peak of season (a), end of season 

(b) and minimum of season (c) composites. 

 

 
Fig. VI-13. Pixel-based MODIS composites for the 
target year 2005 across a large latitudinal gradient. 

The composites are end of season variants, where (b) 
is a phenology-adaptive composite; (a) and (c) are 
static composites that were anchored at the average 

end of season of the northern (a) and southern 
hemisphere (c). 
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availability in Yt. Overall, the temporal differences are larger than in the MODIS composites as a result 

of the different data densities. In case of the EOS and MOS composites, the selected DOYs resemble 

the LSP input patterns presented in Fig. VI-3, although not as precisely as the MODIS composites. 

 

5.4 Cross-comparison 

The quantitative cross-comparison of the phenology adaptive and static versions of the 

MODIS and Landsat composites is shown in Fig. VI-15. The phenological stages are shown in the 

rows (POS, EOS, and MOS from top to bottom) and the derived statistical measures in the columns. 

Green colors indicate a good match, red colors indicate differences.  

The within-sensor POS composites have low ME, low MAE and RMSE and high R². The 

within-technique POS composites have high ME, high MAE and RMSE and yet high R². The between-

sensor-and-technique composites have similar errors as the within-technique composites, although the 

sign of ME is not consistent. The R² values are high for all combinations. 

The within-sensor EOS composites have low ME, relatively high MAE and RMSE and 

intermediate R². The within-technique EOS composites have high ME, relatively low MAE and 

RMSE (compared to within-sensor EOS) and relatively high R² (compared to within-sensor EOS). 

Fig. VI-14. Pixel-based Landsat composites for the target year 2005. The composites were anchored at three 
different phenological stages; (a): peak of season, (b): end of season, (c): minimum of season. The 

composites were generated with the proposed phenology-adaptive approach. Temporal characteristics are 
shown below the corresponding composite. For each composite, the selected DOY, the difference to the 

target DOY ∆D and the difference to the target year ∆Y are shown. 
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The static MODIS and Landsat composites have highest R². The between-sensor-and-technique 

composites have the highest errors. 

The within-sensor MOS composites have high ME with higher EVI in the static composites. 

The within-Landsat composites are characterized by low MAE and RMSE and high R², whereas the 

within-MODIS composites have good to intermediate MAE, ME and R². The within-technique MOS 

composites have low ME, RMSE and good R² values. The agreement in MAE, RMSE and R² is partly 

better and partly worse in the within-sensor and within-technique composites (except for within-

Landsat). The between-sensor-and-technique composites have the highest errors, although the error 

metrics (apart from ME) are more similar than in the EOS composites. 

Fig. VI-15. EVI cross-comparison of the generated MODIS and Landsat composites. The phenological stages 
are shown in the rows with peak of season in (a–d), end of season in (e–h) and minimum of season in (i–l). 
Different statistical measures are shown in the columns with mean error (ME), mean absolute error (MAE), 
root mean squared error (RMSE) and coefficient of determination (R²) from left to right. The MODIS/Land-

sat composites are abbreviated with ‘MOD’/‘LND’ and the phenology adaptive and static versions with 
‘LSP’/’STA’, respectively. The residuals are calculated as e = x - y; e.g. the lower-left ME value in (a) means 
that the static MODIS composite features higher EVI values than the phenology adaptive Landsat composite. 

The color ramps are consistent within each column. 
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5.5 Time series application 

Fig. VI-16 depicts the CAT transformation applied to the annual Landsat EOS composite time 

series. The CAT transformation was developed to capture change events and gradual decadal-scale 

landscape dynamics and is effective to ‘distill’ the complete data archive into three variables that 

describe very different aspects of a changing landscape (Hird et al. 2016). The Change (largest 

difference between years), Aftereffect (mean of post-change) and Trend (slope of regression of the 

entire time series) components are mapped to RGB space and can be directly interpreted. 

Deforestation appears in red–orange colors due to the dominance of the Change layer; pure red colors 

indicate a complete replacement of forest with bare ground or water, whereas orange colors indicate 

that there remains some biomass after the change which represents a typical agricultural signature 

(recall that we have produced EOS composites). Stable forests appear in green due to the high biomass 

and the absence of any change and trend. Forest degradation appears in yellowish tones due to the 

negative trend; the mixture of red and green is both a function of the standing biomass and the rate of 

change. Gradual regrowth appears in cyan colors due to the absence of change, and gradual increase 

of biomass. Pinkish colors denote areas where a change and a positive trend were detected; these are 

mainly land covers that are characterized by strong inter-annual variations of biomass like the flooding 

plains and swamps. The CAT transformation is shown for complete Zambia, and for three subsets that 

depict different change processes. Forest degradation is depicted in Fig. VI-16b–d, where the 

yellowish areas represent areas where trees were selectively removed, while an increase in biomass is 

evident in the enclosed forest patch. Deforestation is readily visible in (e-g), where large forest areas 

were cleared to establish mechanized agriculture, leaving only isolated pockets of intact forest. A 

savanna-mosaic landscape is depicted in (h-j), where most part of the area was burnt before our 

analysis period. The area is largely characterized by an increase in biomass (blue areas), whereas the 

previously unburnt woodlands are stable. In addition, it can be seen that the flood plains are 

characterized by a high change, which rather is an effect of inter-annual variability within this land 

cover. 

6 Discussion 

6.1 MODIS composites and selected seasons 

We developed and implemented a composting technique based on a parametric weighting 

scheme as firstly proposed for Landsat data by Griffiths et al. (2013b), and in fact, the generated static 

composites are comparable to the Griffiths method. Besides implementing new selection scores and 
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enabling the code to be applied to optical EO imagery in general, we especially introduced a novel 

methodology for incorporating phenological information in the compositing process. As the Landsat 

data availability is relatively poor in this part of the world, the temporal compositing capabilities were 

tested with the daily MODIS product and were compared to a static equivalent, i.e. fixed DOY 

representing the mean state of the LSP. Multi-annual composites for three seasons were generated for 

both variants: peak of season, end of season and minimum of season. We used three different scoring 

functions (descending sigmoid, two-tailed Gaussian and ascending sigmoid), which resulted in three 

very different composites, although the same input data were used. The algorithm successfully 

 
Fig. VI-16. CAT Transformation of the annual EOS Landsat composites, mapped to RGB space as Change, 

Aftereffect, and Trend, respectively. Three exemplary subsets (100 km²) depicting different change processes 
are shown in (b–d; 13.02°S / 30.76°E), (e–g; 14.78°S / 27.21°E), and (h–j; 16.23°S / 25.79°E) with CAT 

transformation, 2002 and 2012 composites from left to right. 
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generated seasonal composites as close as possible to the phenological/static targets. In case of the 

phenology-adaptive version, the selected DOYs closely resemble the LSP input, which supports the 

functionality of the method. The three seasons were chosen as they potentially enable different 

analyses. Dry season images (e.g. EOS) are often employed for forestry applications in drylands due 

to the improved separability between trees and grass: drying minimizes photosynthetic herbaceous 

ground cover while trees might keep up a green foliage throughout the season (Armston et al. 2009). 

The driest point in time (i.e. MOS) is not necessarily suited to accomplish this task as deciduous trees 

can lose their foliage completely. This time may be appropriate for mapping burned areas. Whereas a 

single end of season image (≙ static composite) cannot be used in tropical savannas due to the 

temporarily limited persistency of the burned signal (Pereira 2003), the pixel-based selection of the 

minimum vegetation development could be instrumental. This season might also be optimal for soil-

related analyses as dead or dry vegetation alter the reflectance shape less than green cover does (Siegal 

and Goetz 1977). Even though the generation of high-quality POS composites is problematic in areas 

where the rainy season and vegetation growth coincide, e.g. in dryland areas, POS composites may be 

highly suitable for certain applications, for instance the derivation of peak biomass maps as needed in 

the REDD+ context. Often a combination of different seasonal composites might be the best choice 

to accomplish specific tasks. Thus, for instance in the context of REDD+, EOS composites may be 

used to differentiate between woody and herbaceous biomass whereas the POS composites would 

allow for a better quantification of annual biomass. Other DOY-based LSP parameters can easily be 

integrated to generate other seasonal composites, e.g. start of season or inflection point parameters 

that might provide further essential information on ecosystems. 

6.2 Landsat composites 

Analogously to MODIS, multi-seasonal Landsat composites were generated. The selected 

DOYs closely resemble the LSP input, although the different orbits are partly visible (see Fig. VI-14). 

Similar to MODIS, the POS was of insufficient quality, whereas the EOS and MOS composites are 

visually homogenous and are characterized by relatively low differences to the target. However, the 

differences are larger than in the MODIS composites, which we attribute to the lower temporal 

resolution. The revisit frequency of MODIS was 1–2 days, whereas the nominal Landsat revisit time 

is 8–16 days in SLC-on and off image areas, respectively. In practice, this frequency cannot be met, 

see e.g. (Frantz et al. 2016b). The visibility of the acquisition orbits in the DOY and composite images 

is also a result of the worse temporal coverage. However it is noted that this applies to each 

compositing technique, may it be phenology-adaptive or not. This is the primary reason why we 

mainly use very dense MODIS to demonstrate the effectiveness of our approach. 
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6.3 Phenology-adaptive vs. static composites 

1) Regional application 

Despite the visual congruence of the phenology-adaptive and static Zambian composites, there 

are in fact substantial differences that are illustrated in the ∆EVI images (Fig. VI-9). By definition, the 

phenology-adaptive versions should have higher (lower) EVI values than the static POS (MOS) 

composites due to the employed one-sided sigmoidal scoring functions. Areas, where the LSP matches 

the Zambian average should have comparable EVI values. On the contrary, the phenology-adaptive 

EOS composite should have approximately equal amounts of pixels with higher and lower EVI values 

as a two-tailed Gaussian function was used. The POS composites are hard to interpret, since the target 

DOY could not be approached successfully as a consequence of persistent cloud coverage in the rainy 

season (see also the discussion on the Y-factor). As such, it is not surprising that the phenology-

adaptive version does not always feature the highest EVI, as a significant amount of data is from 

different years with different biomass levels. This also manifests in the composites themselves, which 

are characterized by a stained appeal and feature severe reflectance discontinuities. This is also 

reflected in the quantitative cross-comparison: The within-MODIS composites have low ME and 

MAE values in EVI, thus there is no bias and on average, the composites are very similar. RMSE is 

intermediate, which means that there are some outliers that deviate from this; R² is high nonetheless. 

This does not imply that the POS composites are of high quality. On the contrary, as already described 

before, neither the phenology-adaptive nor the static composites could approach the target day 

successfully, and as such, the composites are simply similar as both versions are rather bound by the 

end of the rains (in fact, 60% of the composites are the same observations). In principle, this also 

applies to the Landsat composites, which are even more similar as the temporal resolution is even 

more problematic, and thus nearly 70% of the composites are the same observations. 

On the contrary, The EOS and MOS composites were of high quality and the target DOY could 

be approached with high precision. The EOS composites feature large connected areas with both 

negative and positive EVI differences. This supports the correctness of the procedure as in certain 

biomes and regions the end of the season occurs earlier/later than the Zambian average. The 

quantitative assessment supports this. The within-sensor composites have low ME, thus there is no 

bias which is a result of the two-sided Gaussian scoring function that caused both negative and positive 

EVI differences. MAE, RMSE are high and R² are intermediate, which means that there are indeed 

larger differences pointing to a successful levelling of phenological differences in the phenology-

adaptive version. 
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The MOS composites features large patches of positive differences, which also supports the 

correctness of the procedure as the phenology-adaptive approach should select observations close to 

the seasonal minimum. As an exception, there are some negative differences, although the magnitude 

and abundance is not as large as that of the positive ones. In addition, they do not form large connected 

areas. Potential error sources may be attributed to minor noise in MOD09GA data or to the derivation 

of LSP itself, which was inferred from the MODIS EVI products (MOD13Q1, MYD13Q1). The EVI 

product is derived from constrained-view angle maximum-value compositing, which is not optimal 

for finding the seasonal minimum with utmost precision. The employed smoothing spline might also 

have caused some inaccuracies in finding the seasonal minimum as it cannot adapt to breakpoints 

perfectly, e.g. induced by fire. Nevertheless, the compositing produced the desired results at large, 

which is also backed by the quantitative cross-comparison as there is a large positive bias (ME) 

between the within-sensor composites due to the one-sided sigmoid. MAE is relatively low, which is 

due to the fact that the static composite was parameterized with the mean value of the phenology used 

in the phenology-adaptive version, and as such, only the land covers that deviate from this mean are 

different. This explains why the RMSEs are higher than the MAEs due to the stronger effect of 

outliers. 

2) Local application 

Static and phenology-adaptive EOS versions were further compared for as smaller subset, 

where elevation gradients (> 1000 m) are a primary source of LSP variability, and as such, the effect 

of using different compositing techniques can be shown effectively (Fig. VI-11). It was shown that 

the phenology-adaptive version is spatially homogeneous, whereas larger differences occur in the 

static composites. The phenology-adaptive technique accounts for the elevation-induced shifts in 

EOS, and hence, there is more or less one EVI value for the complete elevation range. On the contrary, 

elevation-induced gradients can be readily seen in the static version, wherein EVI values increase with 

elevation. Note that this counterintuitive behavior is a result of the temperature distribution as 

described in chapter 2, where the tropical-warm climate in higher regions provides better conditions 

for biomass accumulation than the tropical-hot climate in the lower valley plains. In addition, there is 

also a land-cover class dependent variability in EVI. It needs to be noted that the World Wildlife Fund 

(WWF) terrestrial ecoregions were used for the stratified boxplots, which are a rather coarse and 

spatially generalizing description of land cover. Nevertheless, the different classes are clearly 

separable in the static composite whereas this variability was reduced with phenology-adaptive 

compositing. This both applies to the between ecoregion and within ecoregion variability, and thus 

the phenological harmonization was successfully realized. 
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3) Global application 

A large latitudinal gradient from boreal Russia to South Africa was chosen to demonstrate the 

utility of our approach for global scale analysis support. As shown in Fig. VI-13, even cross-

hemispheric composites may be generated and the forests in the same geographic zones are similar 

for both hemispheres. This is especially striking in the sub-tropical belts, whereas large differences 

occur in the static composites (that were anchored at the hemispheric mean phenology). It is also 

apparent that a phenology-adaptive composite minimizes the risk to choose an unfortunate target DOY 

that might cause severe misinterpretations: the complete sub-continent of Southern Africa seems 

barely vegetated in the static composite tuned to the northern hemisphere, whereas different savanna, 

grass and woodland biomes can be resolved in the phenology-adaptive version. Northern hemispheric 

snow contamination is also a good example of this effect, as a less careful selected target DOY can 

result in severe snow cover (part c), whereas the phenology adaptive approach can account for 

latitudinal variations in the timing of the snowy season and also for inter-annual differences. However, 

it needs to be noted that the phenology-adaptive version is also not free of snow, although the affected 

areas are rather unvegetated and are thus of less concern for vegetation-based studies (bare soils and 

water bodies). It is likely that the phenology detection code might have interpreted the snow signal as 

a vegetative cycle. Areas that are characterized by a low phenological amplitude (tropics / deserts), 

are relatively similar in all versions. On the one hand, this is caused by the spectral invariance over 

the year, but is also a result of the reduced availability of cloud-free observations in tropic regions, 

which was already discussed in the last chapter in the wet season Zambian example. 

4) Implications 

The question arises whether phenology-adaptive or static composites are superior for large 

area mapping and monitoring tasks, and we recommend considering the compositing method carefully 

for any given application. For regions that do not feature large gradients or discontinuities in LSP (this 

especially might apply to small areas), the overhead in using the more complex phenology-adaptive 

approach might not be justified, since an LSP dataset at an appropriate spatial scale needs to be derived 

in the first step. The static approach might also be superior for certain land cover classification tasks, 

as e.g. the discrimination of crop types partly rely on the phenological phase difference of the growing 

stages (Van Niel and McVicar 2004) – although this might be equalized by additionally using the 

selected DOY layer in the classification. On the contrary, the phenology-adaptive technique re-phases 

the crop development, and thus decreases the spectral variability within the crop classes. This feature 

might improve the separability against other classes such as grasslands, fallows, abandoned land or 
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bare grounds (Griffiths et al. 2013a). The phenology-adaptive approach might also alleviate problems 

related to within-class differences in LSP, e.g. as a function of terrain altitude. As an example, the 

derivation of forest information layers like the classification of tree species (Stoffels et al. 2015) would 

benefit from the disintegration of development stage differences, and would thus account for the 

altitude-induced delay of foliage growth. In the context of forest clearing, the generation of a 

homogeneous leaf-on composite could also decrease false detections, as e.g. seasonal variations in 

broadleaved canopies might erroneously be classified as deforestation if acquired in an unfortunate 

phenological stage (DeFries et al. 2007). 

6.4 MODIS vs. Landsat composites 

The consistency between the MODIS and Landsat within-technique composites was 

quantitatively evaluated. It is noted that different spectral response, a different radiometric 

preprocessing (especially including different types of corrections), different view geometry (although 

reduced by preferring near-nadir pixels in the compositing) and different spatial resolution (although 

reduced by degrading the Landsat composites with a MODIS point spread function) will inevitably 

result in differences. However, we assume that the greatest differences occur due to phenological 

differences as a result of the different repeat frequencies. This is supported by the ME values that 

show large positive differences in the POS composites, both for the static and phenology-adaptive 

version. As can be seen in Table VI-4, the mean |∆D| is “only” 42 (34) days for the phenology-

adaptive (static) MODIS composites whereas it is 50 (44) days for Landsat. Thus, the MODIS 

composites reach farther into the wet season and consequently have higher EVI. The between-sensor 

MOS composites are very similar and all statistics indicate a good agreement (especially ME), which 

is also reflected in low mean |∆D| values (Table VI-4). In this comparison, the EOS composite 

statistics are a bit harder to interpret because of the nature of the two-tailed Gaussian scoring functions, 

which permits both earlier- and later-than-target observations with higher and lower EVI, respectively. 

As such, it is possible that an early MODIS observation and a late Landsat observation was chosen, 

and vice versa, which results in a somewhat larger MAE and RMSE statistics. This is especially driven 

by the limited data availability of the Landsat system, which might have a bias towards one end: the 

ME indicates a negative bias which implies that earlier-than-target Landsat observation were 

preferably chosen (the ∆D image in Fig. VI-14 supports this). Nevertheless, the statistics indicate a 

fairly good agreement – especially if compared to the within-sensor EOS composite statistics. Overall, 

the quantitative comparison indicates that the between-sensor differences (like radiometry) are indeed 

within an acceptable range and that differences are mostly a result of temporal characteristics. 
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6.5 Intra- to inter-annual contribution and seasonal suitability 

The effect of the Y-factor on the relative intra- to inter-annual data contribution was shown in 

Fig. VI-12 for very dense MODIS data. The inter-annual scoring scheme was designed such that data 

from the target year are always preferred, and it is more likely that a higher share of data from 

bracketing years are selected if Yf is increased. Yf, in combination with the inter- and intra-annual data 

availabilities eventually determines the selection process. If the clear-sky data availability close to the 

phenological target is high in Yt, the effect of Yf is negligible – as data from Yt is always preferred. 

This was the case for the EOS composites, where different Y-factors did not substantially influence 

the selection process (see Fig. VI-12b) as very low differences to the target DOY could already be 

achieved with 2005 data only (see Table VI-4). Therefore, the data availability in 2005 was sufficient 

to generate a homogeneous EOS composite. On the contrary, different Y-factors substantially 

influenced the selection in case of the POS and MOS composites (see Fig. VI-12). In case of the POS, 

the data availability in the wet season was insufficient, and as such, stained composites were generated 

(see Fig. VI-9). If a higher share of data from the bracketing years are incorporated (increase in Yf), 

observations closer to the phenological target are selected (see Fig. VI-12a). Nevertheless, the 

differences to the target DOYs are high with any Yf (see Table VI-4). As such, we conclude that the 

quality of POS composites must be regarded as being of low quality due to the impossibility to 

approach the phenological target adequately, even when considering 5 years of very frequent MODIS 

data. While it might be expected that frequent Sentinel-2 acquisitions could alleviate the medium-

resolution information retrieval in areas and periods dominated by persistent cloud cover, our results 

with MODIS clearly indicate the opposite. Hence, we suggest that additional research should be 

conducted before deciding whether peak season composites in arid areas are of sufficient quality to 

be incorporated in operational monitoring programs or if the compositing artifacts are of larger 

magnitude (in terms of spectral contrast) than the effect of the monitored processes. In case of the 

MOS, the parametrization of Yf influenced the compositing process (see Fig. VI-12c), but the 

differences to the target DOYs were small nonetheless (see Table VI-4). The differences are 

approximately twice as high as in the EOS composites, which could be due to the employed one-sided 

sigmoid, whereas a two-tailed Gaussian was used for EOS. However, the differences are still low on 

average (regardless of Yf) and the resulting composites are visually homogeneous. An increase in Yf 

allowed more data from the bracketing years, which implies that – compared to the EOS – the clear-

sky data availability during the driest period of the year is slightly reduced. This might be an effect of 

the widespread burning plumes (Stellmes et al. 2013a) or substantially higher aerosol levels during 

this period (Frantz et al. 2015a). 
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We cannot provide a general rule on how to choose an optimal Y-factor, but there are a number 

of environmental and data-related factors that should influence the parameterization. As discussed 

above, the choice of Yf is uncritical if enough data are available in the requested season. If not, 

following points should be considered. If the study area is dominated by surface types that are rather 

stable between the years (in terms of reflectance and amount of biomass; however, the timing of the 

LSP may vary between the years as the phenology-adaptive approach accounts for inter-annual 

variations), e.g. forests, a higher Y-factor might be feasible in order to decrease ∆D and to generate a 

composite that is as close as possible to the requested phenological target. On the contrary, more 

unstable cover types might necessitate a low Yf. As an example, inter-annual variations in the amount 

of biomass of grasslands or grass-dominated savannas can be substantial, as biomass is accumulated 

over multiple years unless burned (Scholes et al. 1996), which both alter the spectral characteristics 

from year to year. Hence, even if a grassland is captured in the same phenological state, the reflectance 

might differ substantially between the years due to variations in biomass. We also suggest to use a 

low Yf if land cover change is to be expected within the compositing period. 

6.6 Homogeneity and bidirectional effects 

Bidirectional effects were readily visible in the static MODIS composites as a discontinuity of 

surface reflectance between neighboring orbits. Although the effect is stronger in the MOS, it is also 

evident in the EOS. On the contrary, this effect is not visible in the phenology-adaptive versions. We 

presume this being a side effect of the phenology-adaptive approach in that the extensive mixing of 

acquisition dates on the pixel scale increases the angular variability, and thus masks the visibility of 

bidirectional effects on the orbital scale. However it needs to be stated that bidirectional effects are 

still present on the pixel scale. In fact, the phenology-adaptive versions do look more grained in 

comparison to the static ones, which is likely an effect of the increased angular variability. On the 

contrary, the static composites only feature a limited angular variability, as continuous orbits were 

selected (see Fig. VI-10) that are characterized by strictly opposed view geometries. In both cases 

however, the incorporation of the view zenith score resulted in the avoidance of the worst view 

geometries. The Landsat data were corrected for bidirectional effects, and the resulting composites 

are merely free of these effects. There are some discontinuities along the orbits in the EOS composite 

(Fig. VI-14b), although this is rather induced by phenology as the difference to the target DOY is 

larger in some orbits than in others. This is also supported by the MOS composite as it has smaller 

differences to the target DOY and is merely free of such discontinuities (Fig. VI-14c). 

In case of Landsat, we produced composites based on higher level radiometric input data, 

including corrections for atmospheric, topographic and a global part of bidirectional effects. In case 
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of MODIS, only atmospheric effects were considered, although the MODIS NBAR product may also 

be input, in which case a phenology-adaptive composite of composites would be generated. However, 

the very high temporal frequency would be sacrificed by doing so. The compositing algorithm is not 

in need for a specific input product and may also be parameterized using unelaborate inputs, e.g. TOA 

reflectance. However, we consider it advantageous to generate the best possible product in order to 

enable any kind of follow-up analysis, be it qualitative or quantitative. 

6.7 Implemented scores 

Griffiths et al. (2013b) determined the suitability of any observation by a combination of 

acquisition day, acquisition year and the distance of a pixel to the next cloud or shadow. We expanded 

on this approach by tuning the inter- and intra-annual criteria with pixel-based phenology and by 

introducing additional scores to devaluate hazy observations, spectral outliers and observations 

acquired with high view angles. Especially the last criterion was instrumental in generating 

homogeneous MODIS composites; and although the FOV is narrow and orbital overlaps (at least in 

our study area) are small for the Landsat composites, the inclusion of this scoring function also 

increased the homogeneity at the very edge of the swaths slightly. However, we expect that this effect 

would be more pronounced in areas with larger overlaps and with input datasets not featuring a 

correction for bidirectional effects; as it was the case with MODIS in this study. The implemented 

correlation score helped to devaluate observations with transient land cover change like flooding or 

active fires, whereas the algorithm behavior is not strictly defined with regards to permanent land 

cover change. However, the correlation score is expected to favor the land cover that was observed 

more often, and the use of LSP ensures that the selected observations are at least in same phenological 

state – although not necessarily in the same land cover class. The year score and the Y-factor further 

reduce the risk of selecting different land covers as target year observations are generally preferred. 

We consider our approach flexible with respect to the definition of additional scoring functions, which 

can be easily integrated into equation VI-1. As an example, spectral scores that devaluate burned or 

flooded areas might be applicable for specific research questions in our study area, or specific sensors 

may be devaluated as done by White et al. (2014). Nevertheless, such criteria should be well-

considered since the resulting composites will be harder to interpret as they are no longer dominated 

by temporal characteristics, and the homogeneity might be decreased. 

6.8 Time series application 

The potential for land cover change mapping was demonstrated by applying the CAT 

transformation (Hird et al. 2016) to an annual Landsat EOS time series (2001–2012 ±0) with the 
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phenology-adaptive technique. It needs to be noted that biomass differences between a vegetated and 

an unvegetated surface are lower than in the POS, which decreases the signal-to-noise ratio of this 

application (therefore, a national stretch was employed instead of the one Hird et al. (2016) proposed). 

However, the EOS is optimal to separate trees and grass, whereas their inseparability can shroud land 

cover change in the POS. Even more importantly, it was demonstrated that the quality of the EOS 

composites was high because the target day could be approached successfully with target-year-only 

data, a requirement that was not met by the POS composites. As such, the EOS is a reasonable 

compromise to identify land cover change processes. 

In order to detect gradual processes, an annual approach was chosen, which has resulted in an 

increase in ∆D compared to the five-year cases shown above, which necessitated the rigorous filtering 

of the time series before applying the CAT transform; all observations that deviate more than ±16 days 

from Dt were rejected. This allowed to extract the change, aftereffect and trend information with 

adequate accuracy. The resulting CAT images are merely free of artifacts, which supports the quality 

of the approach as inter-annual fluctuations are low. The CAT image clearly indicates different change 

processes – even gradual ones, and thus provides a comprehensive picture of the land cover 

transformations and modifications throughout the past decade. The next step would be to 

quantitatively map the corresponding change classes and to provide nationwide change statistics, 

which is out of scope of this paper as this is not a straightforward analyses. As can already be seen 

with the fairly simple CAT transform, the same change process has to be interpreted within a context. 

As an example, the gradual increase in biomass shown in Fig. VI-16h–j is due to regrowth after a large 

savanna fire, which represents a significantly different ecological meaning than e.g. biomass increase 

in a forest stand or following agricultural abandonment. 

7 Conclusion 

We implemented a parametric pixel-based compositing approach by integrating methods for 

adapting the compositing process to the underlying land surface phenology of each pixel. The 

technique can be applied to any kind of gridded EO archive, which we demonstrated for MODIS and 

Landsat data. In both cases, homogeneous and seamless multi-annual composites could be generated 

across large areas for most seasons. It was shown that the technique is general enough to be applied 

globally. 

Seasonal composites can be generated by inputting spatially-explicit LSP layers, and the 

choice of the scoring functions further increases the flexibility in generating composites representing 

different phenological phases. The resulting composites were shown to perform a phenological 
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normalization across elevation gradients and land cover classes. As an alternative, fixed DOY 

composites may also be generated, and the potential application of either method is discussed and 

should be considered with care. The inter- to intra-annual data contribution can be controlled by a 

single parameter which handles the tradeoffs between using data from the target year versus using 

data that is preferably very close to the target day. We implemented a number of auxiliary scores for 

specific purposes, e.g. to avoid clouds. The scores can be disabled or enabled in any possible 

combination and the strength of each score may be adjusted freely. 

As the Landsat data availability is relatively poor in this part of the world, the temporal 

improvements of this approach were demonstrated with the daily MODIS product. It was 

demonstrated that wet season composites could not be generated with sufficient precision, however, 

dry season composite generation was successful. These composites were found to be coherent and 

homogeneous in most areas, which also applied to analogously generated Landsat composites. 

Unsurprisingly, the target dates could not be matched as exactly as in the MODIS composites as a 

consequence of the lower temporal resolution. The quality of the MODIS and Landsat composites, as 

well as the performance of the phenology-adaptive and static compositing techniques was assured 

using a quantitative cross-comparison.  The generation of a 12-year annual time series demonstrated 

the feasibility for land cover change and modification mapping. Several change processes were clearly 

discriminable. 

Potential applications of the method include for instance the generation of decadal, five-year 

or annual composites representing the land cover in the same phenological stage for the establishment 

of national, regional or even global landscape monitoring, reporting and verification systems. 
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1 Summary 

In this thesis, the development of a framework for generating higher-level EO satellite 

products for potential use in regional environmental monitoring programs was pursued. Special 

attention was put into the development of processing options for dryland areas, although not explicitly 

limited to these. This overarching research task was partitioned into three major objectives. 

The generation of a radiometrically normalized and geometrically consistent dataset denoted 

as Level 2 products was pursued with objective I. These baseline data represent the fundamental basis 

needed for most higher-level environmental analyses. The generation of a Land Surface Phenology 

baseline was addressed in objective II, and directly leads over to objective III, wherein the datasets 

generated in I–II are used to frame a Level 3 processing system capable of generating seasonal pixel-

based composites with phenological normalization. 

In the following, the three objectives are summarized briefly, and the next chapter will 

eventually illustrate how the herein developed methods and datasets may promote regional case 

studies or be integrated into operational environmental monitoring concepts. 

1.1 Objective I: Development of a Level 2 production system 

A fully automatic radiometric preprocessing streamline was successfully implemented; see 

Chapter II. The method was applied to the complete Angolan, Zambian, Zimbabwean, Botswanan and 

Namibian TM, ETM+ and OLI Level 1T data record held in USGS holdings as of 31.12.2014. The 

data quality was estimated to be within specification for 98.8% of 41,762 processed images. 

Cloud and cloud shadow detection was implemented by integrating a modified version of the 

Fmask algorithm. The implemented modifications were described in Chapter II - 4.2 and Chapter III 

- 4.1. Dryland-specific improvements were developed by including an additional darkness filter for 

reducing false positives in bifidly structured images (cold and hot surface elements); the approach 

presented in Chapter III can be applied to Southern Africa without modification since Australian and 

Southern African savannas are similar in structure and landscape composition. In addition, the 

termination criterion for matching clouds with their shadows was discarded, which in combination 

with a modification of the match similarity metric increased the shadow detection capabilities. For 

enhanced computational performance, full-stop criteria were incorporated to skip the costly shadow 

matching if the image was already assessed to be useless. Note that the time-series based add-on (also 

presented in Chapter III - 4.2) was not implemented in this product generation system. Although 

omission errors could have been reduced by incorporating this technique, a per-image processing was 
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considered most efficient for mass-generation of Level 2 products as it enables the implementation of 

in-memory processing streamlines. 

Atmospheric correction was based on radiative theory and includes corrections for multiple 

scatterings and the adjacency effect. Significant work was put into the derivation of AOD, and hence 

a multilayered toolset was developed (and is currently further advanced) where AOD is favorably 

estimated over persistent cast shadow and water targets. It is based on a combined image-, database-, 

and object-based approach using the target-specific view and illumination geometry, altitude, and 

environmental contamination. If there are no persistent targets within an image, AOD may also be 

estimated from transient targets. If these are also not available, there are two options: for simplicity, a 

(i) global AERONET-derived constant AOD may be used – or a (ii) variable spatio-temporally AOD 

surface may be input. The derivation of this surface was described in Chapter IV; note that the method 

was revisited and the products in Chapter II were based on an AOD surface instead of path reflectance. 

Both the restriction to persistent dark targets, as well as the fallback to a reasonable AOD climatology 

(in case of dark target absence) helped to generate a qualitative dataset in an environment where AOD 

is particularly high and variable, but difficult to determine at the same time. Current work is going on 

to further advance the AOD module, e.g. by using a spatially explicit AOD map if applicable, and by 

adding a DDV estimator. 

A semi-empirical C-correction was implemented for topographic correction, where a stratified 

linear regression between the illumination angle and the at-sensor radiance was employed. 

Topographic effects were substantially reduced after the correction, which was especially successful 

in the infrared bands, while less reduction was occasionally achieved in the shortwave bands as high 

aerosol levels with substantial diffuse illumination can impede a linear relation. However, for 

operational implementation, the correction was deemed sufficiently adequate, especially when 

compared to readily available alternatives like the Minnaert-correction which was shown to have a 

tendency for overcorrection. 

At the time of writing the article in Chapter II, it was decided to not include a correction for 

bidirectional effects, until a technique becomes available that could be automatically applied 

independently of data availability and without a priori land cover knowledge. During the course of 

working on this thesis, researchers have demonstrated that the BRDF shapes of land surfaces are fairly 

similar over Landsat’s FOV, and as such, a global set of MODIS-derived BRDF spectral model 

parameters may be used to mass-produce NBAR (Roy et al. 2016). Consequently, this method was 

assimilated into the presented Level 2 production system, and the complete dataset was reprocessed 

to NBAR prior to generating the Level 3 Landsat products presented in Chapter VI. 
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Gridding and reprojection to a common reference system were fully integrated, such that the 

resulting Level 2 products are suited for easy and efficient further processing. For the study area, a 

Lambert Azimuthal Equal Area projection was chosen with its centroid in the middle of Southern 

Africa, such that adjacent areas could be attached easily if required in the future. The grid size was 

defined with 30 x 30 km as a reasonable compromise between a sufficiently large geographical extent 

and modest product volume: the complete time series of one tile should fit into memory for further 

processing with off-the-shelf hardware, and hence, it was specified that at least 1,000 chips 

(reflectance + cloud products; compare with Fig. II-7) should be processible with low-tech 

workstations with 16 GB RAM. Nevertheless, the code was held flexible such that the projection and 

gridding parameters can be modified or disabled at will, e.g. for global implementation using a 

sinusoidal projection. 

It is noted that two specific processing options deviate from the ideal conception of the 

per-image analysis, where a given image should be touched once-only. The pre-compilation of the 

dark object database is a prerequisite for only using the most persistent dark targets for AOD 

estimation. However, this processing strategy is not mandatory, and although it is conceptually 

favorable to restrict to invariant and persistent dark targets, sufficiently accurate results may also be 

produced without (especially in areas where transient dark targets are less dominating). The second 

deviation is the generation of the AOD climatology: the complete dataset needed to be processed in a 

first step, the climatology was built on the basis of all successful AOD estimates, and the failed images 

were finally reprocessed using the external values. Nevertheless, the core processing functionality, i.e. 

the cloud, radiometric and geometric modules, was streamlined entirely in memory without dumping 

of temporal data or intermediate products to the hard disk. And thus, the ideal conception of the per-

image analysis can be fulfilled if these critical processing strategies are not used, which is expected to 

be adequate in areas where AOD estimation is less problematic. 

The product generation system was developed to process data from all TM-heritage sensors, 

and it was shown that the radiometric agreement between the OLI and ETM+ was similar as the 

agreement of the more identically constructed TM and ETM+. Current work is going on to implement 

Sentinel-2 product generation, and it is expected that the radiometric continuity to OLI will enable a 

full-fledged synergistic usage. 

The radiometrically corrected satellite products are expected to make a contribution towards 

the simplified integration into data-intensive applications and to promote the development of specific 

regional case studies. The Level 2 products were already or are currently used for a number of 

purposes, most obviously for fusing LSP and Level 3 product generation with subsequent delineation 
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of landscape processes as presented in Chapters V–VI. Other current uses will shortly be presented in 

the following outlook section. 

1.2 Objective II: Development of a Land Surface Phenology baseline 

As a prerequisite for generating phenology-adaptive Level 3 products, an LSP baseline at 

appropriate spatial resolution had to be generated. The approach was outlined in Chapter V. 

The data availability and the magnitude of inter-annual variations in the study area were 

identified inadequate for deriving LSP from Landsat data themselves, whereas it is generally accepted 

to do so with dense but coarse MODIS data. Therefore, a MODIS LSP dataset was generated in a first 

step using a spline-based phenology extraction algorithm. Afterwards, a novel data fusion technique 

for improving the spatial resolution of such coarse continuous fields was developed. 

A focal filter based approach was implemented where the coarse continuous field is fused with 

a small number of seasonally distributed medium resolution reflectance images that are insufficient to 

describe LSP temporally accurate but nonetheless include qualitative information to separate image 

regions with different phenological patterns. The local pixel neighborhood was intensively used by 

employing multiscale prediction proxies, including spectral distance and heterogeneity metrics. The 

quality of the prediction was demonstrated using simulated landscapes, and by application to a 

heterogeneous agricultural site in Zambia. In general, the prediction was of high quality (R² = 0.84), 

and even reduced noise in the input data. Objects larger than the coarse resolution IFOV can be reliably 

predicted – and even significantly smaller objects can be predicted accurately if there are pure 

homogeneous coarse resolution pixels within the focal filter window. Spatial patterns, e.g. circular 

irrigation pivots were successfully restored at medium spatial resolution. 

Being a pixel-based method, the approach makes direct use of the gridded Level 2 products 

generated in Chapter II. Appropriate data are automatically selected; the operator simply needs to 

define a number of seasonal windows to capture the main phenological patterns. Data from 

neighboring tiles are appended on-the-fly to the tile under consideration to produce a seamless LSP 

baseline. 

Regarding computational efficiency, comparable existing approaches commonly rely on a 

two-step procedure where a dense synthetic time series is generated in a first step, and afterwards LSP 

is inferred thereof. On the contrary, the presented approach infers LSP from coarse resolution and then 

predicts LSP at finer resolution. This is computationally advantageous in two respects: (i) the 

derivation of LSP is much faster if done with coarse data (one 250 m MODIS pixel equals ~70 Landsat 
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pixels) and (ii) the focal-based prediction has to be done once-only – opposed to once per dense time 

step. 

Although this approach was developed and used for phenological normalization of image 

composites, the derived information also serves as an example of a Level 4 model output as phenology 

is an EBV itself and may be further used for a wide range of ecological analyses. In a recent study, 

coarse resolution LSP was shown to be a strong indicator for modelling plant alpha diversity across 

large areas (Revermann et al. 2016). However, the main criticism of this work was the mismatch of 

MODIS spatial resolution and the employed vegetation plot database. That said, data as presented 

here have the potential to make a strong contribution in the field of ecology and biodiversity as they 

match the scale at which many landscape processes are happening. 

1.3 Objective III: Development of a Level 3 production system 

A phenology-adaptive pixel-based compositing framework was successfully implemented 

using a parametric weighting scheme based observation selector; see Chapter VI. The method was 

mainly demonstrated with Zambian MODIS and Landsat data, thus showing that any similar EO 

archive may be input. 

The phenological normalization was primarily achieved by allowing the target day to vary 

from pixel to pixel in dependence of the input LSP. Hence, for each pixel, a function is fit to three 

phenological parameters – two-tailed Gaussians and ascending/descending sigmoid functions can be 

used – and the corresponding Landsat data are scored accordingly. This is done separately for each 

season in order to account for inter-annual differences. The inter-annual contribution was controlled 

by a single parameter, also in dependence of LSP in order to account for different 

greenness/senescence rates between the seasons. 

Peak, end and minimum of season composites were generated with MODIS and Landsat data. 

It was shown that similar composites can be generated with both data sources, and the primary source 

of discrepancy was identified to be the more limited Landsat data availability. Hence, the method 

makes best use of dense image archives like MODIS and the application to temporally coarser 

resolved data somehow limits applicability, although it needs to be noted that this applies to any kind 

of compositing technique and is not a specific drawback of the phenology-adaptive technique. In any 

case, the enhanced temporal capabilities of the two-satellite Sentinel-2 system will represent a most 

welcome asset for the presented technique, which is expected to significantly boost medium resolution 

Level 3 data quality. 
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The phenology-adaptive composites were compared with static parameterizations that more or 

less correspond to the original approach of Griffiths et al. (2013b). It was demonstrated that large 

differences between the techniques occur across the study region as a function of large-scale climatic 

gradients and are locally modified by terrain altitude. It was demonstrated that the phenological 

normalization can account for such terrain-induced LSP differences. It was also discussed which 

technique is better; a question that cannot be answered in general because both methods have unique 

advantages and hence, it needs to be carefully considered which technique is best for a given purpose. 

Global applicability was demonstrated by generating composites across a large latitudinal 

gradient from boreal Russia to South Africa with MODIS data, where the phenological normalization 

was readily visible across the hemispheres. In addition, it was demonstrated that an unfortunate 

definition of a static target date can shroud land cover, as e.g. most parts of Southern Africa appeared 

bare in the composite anchored at the northern hemispheric mean EOS.  

The approach makes direct use of the gridded Level 2 and LSP products generated in Chapter 

II and V. Appropriate data are automatically selected based on a limited number of mandatory criteria. 

Whilst the approach runs on a per-tile basis, the resulting composites are on the fly mosaicked to a 

single seamless image. The usage of the comprehensively corrected downstream products enables a 

wide range of monitoring options, among them the detection of within-state processes like forest 

degradation. Using the Change, Aftereffect and Trend (CAT) transformation, it was demonstrated that 

many landscape processes, being abrupt or gradual, can be resolved with the generated data. 
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2 Conclusions and Outlook 

The developed preprocessing framework is capable of generating several analysis-ready 

baseline EO satellite products. These include radiometrically normalized and geometrically consistent 

Landsat time series, as well as phenologically sound and seamless image composites across large 

areas. Current work is underway to further develop the methods, to integrate new satellite sensor 

sources like Sentinel-2 and to further validate the atmospheric correction and aerosol optical depth 

estimation scheme under a broader range of environmental settings than considered in this thesis. 

Concurrently, the approach is also transferred, tested and if necessary adapted to other study areas, 

among them temperate and mountainous forest areas. 

Several regional case studies are currently built around the generated Level 2 and Level 3 

datasets. As an example, Schneibel et al. (2016) used a number of manually selected Level 2 images 

for mapping agricultural expansion and evaluated the corresponding tradeoffs between food and 

timber ecosystem services in central Angola. Based on this, they illustrated the utility of annual 

composites in combination with time series decomposition for characterizing socio-economic induced 

shifts of agricultural regimes in the context of post-war migration (Schneibel et al. upcoming). The 

potential of multi-seasonal phenology-adaptive composites, in combination with extensive field data 

is currently explored for vegetation-type mapping. Moreover, phenology-adaptive composites at 

decadal intervals are currently considered for regional land cover / change mapping, and spectral-

unmixing based forest dynamics analysis. 

Besides the implementation of these datasets in regional case studies, the generated products 

also possess the potential for direct integration into more operational monitoring systems. As an 

example, multiannual composites at regular repeat frequency are a viable basis for the REDD MRV 

systems, where especially the phenological normalization teamed up with forest structure information 

could make a contribution towards regional biomass change estimations. More concretely, the 

developed processing streamline, with ongoing Sentinel-2 adaption, is currently established for 

statewide tree species mapping in collaboration with state agencies, and is thus potentially 

transitioning into an operational service. To even go one step further, the full automation of 

radiometric preprocessing of medium resolution imagery hypothetically enables the implementation 

of near-real time monitoring systems, e.g. by issuing deforestation alerts (e.g. Hansen et al. 2016, Zhu 

et al. 2012). If these are coupled with effective environmental law enforcement (e.g. Nepstad et al. 

2014), such a system would have great potential to prevent illegal deforestation at an early stage. In 

general, such systems could make a significant contribution towards a more sustainable resource use, 
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which is of crucial importance given the dependence of the well-being of the 7+ billion people on the 

ability of ecosystems to supply services and functions that are vital to mankind. 
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