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Abstract 

This study aims to estimate the cotton yield at the field and regional level via the 

APSIM/OZCOT crop model, using an optimization-based recalibration approach based on the 

state variable of the cotton canopy—the leaf area index (LAI), derived from atmospherically 

corrected Landsat-8 OLI remote sensing images in 2014. First, a local sensitivity and global 

analysis approach was employed to test the sensitivity of cultivar, soil and agronomic 

parameters to the dynamics of the LAI. After sensitivity analyses, a series of sensitive 

parameters were obtained. Then, the APSIM/OZCOT crop model was calibrated by 

observations over a two-year span (2006–2007) at the Aksu station, combined with these 

sensitive cultivar parameters and the current understanding of cotton cultivar parameters. 

Third, the relationship between the observed in-situ LAI and synchronous perpendicular 

vegetation indices derived from six Landsat-8 OLI images covering the entire growth stage 

was modelled to generate LAI maps in time and space. Finally, the Particle Swarm 

Optimization (PSO) and general-purpose optimization approach (based on Nelder-Mead 

algorithm) were used to recalibrate four sensitive agronomic parameters (row spacing, sowing 

density per row, irrigation amount and total fertilization) according to the minimization of the 

root-mean-square deviation (RMSE) between the simulated LAI from the APSIM/OZCOT 

model and retrieved LAI from Landsat-8 OLI remote sensing images. After the recalibration, 

the best simulated results compared with observed cotton yield were obtained. The results 

showed that: (1) FRUDD, FLAI and DDISQ were the major cultivar parameters suitable for 

calibrating the cotton cultivar. (2) After the calibration, the simulated LAI performed well 

with an RMSE and mean absolute error (MAE) of 0.45 and 0.33, respectively, in 2006 and 

0.46 and 0.41, respectively, in 2007. The coefficient of determination between the observed 

and simulated LAI was 0.83 and 0.97, respectively, in 2006 and 2007. The Pearson’s 

correlation coefficient was 0.913 and 0.988 in 2006 and 2007, respectively, with a significant 

positive correlation between the simulated and observed LAI. The difference between the 

observed and simulated yield was 776.72 kg/ha and 259.98 kg/ha in 2006 and 2007, 

respectively. (3) Cotton cultivation in 2014 was obtained using three Landsat-8 OLI images—

DOY136 (May), DOY 168 (June) and DOY 200 (July)—based on the phenological 

differences in cotton and other vegetation types. (4) The yield estimation after the assimilation 

closely approximated the field-observed values, and the coefficient of determination was as 

high as 0.82, after recalibration of the APSIM/OZCOT model for ten cotton fields. The 

difference between the observed and assimilated yields for the ten fields ranged from 18.2 to 

939.7 kg/ha. The RMSE and MAE between the assimilated and observed yield was 417.5 and 
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303.1 kg/ha, respectively. These findings provide scientific evidence for the feasibility of 

coupled remote sensing and APSIM/OZCOT model at the field level. (5) Upscaling from field 

level to regional level, the assimilation algorithm and scheme are both especially important. 

Although the PSO method is very efficient, the computational efficiency is also the 

shortcoming of the assimilation strategy on a regional scale. Comparisons between the PSO 

and general-purpose optimization method (based on the Nelder-Mead algorithm) were 

implemented from the RSME, LAI curve and computational time. The general-purpose 

optimization method (based on the Nelder-Mead algorithm) was used for the regional 

assimilation between remote sensing and the APSIM/OZCOT model. Meanwhile, the basic 

unit for regional assimilation was also determined as cotton field rather than pixel. Moreover, 

the crop growth simulation was also divided into two phases (vegetative growth and 

reproductive growth) for regional assimilation. (6) The regional assimilation at the vegetative 

growth stage between the remote sensing derived and APSIM/OZCOT model-simulated LAI 

was implemented by adjusting two parameters: row spacing and sowing density per row. The 

results showed that the sowing density of cotton was higher in the southern part than in the 

northern part of the study area. The spatial pattern of cotton density was also consistent with 

the reclamation from 2001 to 2013. Cotton fields after early reclamation were mainly located 

in the southern part while the recent reclamation was located in the northern part. Poor soil 

quality, lack of irrigation facilities and woodland belts of cotton fields in the northern part 

caused the low density of cotton. Regarding the row spacing, the northern part was larger than 

the southern part due to the variation of two agronomic modes from military and private 

companies. (7) The irrigation and fertilization amount were both used as key parameters to be 

adjusted for regional assimilation during the reproductive growth period. The result showed 

that the irrigation per time ranged from 58.14 to 89.99 mm in the study area. The spatial 

distribution of the irrigation amount is higher in the northern part while lower in southern 

study area. The application of urea fertilization ranged from 500.35 to 1598.59 kg/ha in the 

study area. The spatial distribution of fertilization was lower in the northern part and higher in 

the southern part. More fertilization applied in the southern study area aims to increase the 

boll weight and number for pursuing higher yields of cotton. The frequency of the RSME 

during the second assimilation was mainly located in the range of 0.4–0.6 m2/m2. The 

estimated cotton yield ranged from 1489 to 8895 kg/ha. The spatial distribution of the 

estimated yield is also higher in the southern part than the northern study area.  
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1 Introduction  

1.1 Cotton production in the Tarim Basin: environmental sustainability 

As a famous cotton production region, the Tarim Basin is located in the northwest of China. 

The oasis area along the Tarim River, especially in the upper and middle reaches of Tarim 

River (Figure 3.1a), is the largest agricultural area in southern Xinjiang. Water in the Tarim 

River comes from the melting glacier and snow on the surrounding mountains. In recent 

decades, with the increase in the reclamation and expansion of cotton cultivation, numerous 

grasslands, bare lands and woodlands have been reclaimed into croplands (Liu et al., 2016). 

As an extremely arid zone, the study area is irrigated primarily by rivers, reservoirs and 

groundwater. Then the competition between irrigation and ecological water becomes a 

conflict point. Due to increases in irrigation levels for agricultural production, ecological 

water for ecosystems has been significantly decreased, leading to declines in natural 

vegetation mass. Meanwhile, numerous artificial dams and reservoirs constructed in the upper 

and middle reaches of the Tarim River have led to water deficits and vegetation declines in the 

lower reaches of the Tarim vegetation area known as the "Green Corridor" (Liu et al., 2014a). 

A reasonable and effective irrigation schedule not only ensures crop growth and yield but also 

minimizes irrigation requirements. Therefore, a project pertaining to the sustainable 

management of river oases along the Tarim River was proposed by the Bundesministerium für 

Bildung und Forschung in Germany in 2010 (http://www.sumario.de/). Its main objective is 

the reasonable and sustainable management of oases along the Tarim River under the regime 

of a changing climate and society (http://www.sumario.de/objectives).   

The oasis area along the Tarim River is also one of the most important regions for cotton 

cultivation in China (Feike et al., 2015). An optimal fertilization and irrigation schedule for 

cotton would be beneficial for maintaining the balance between agricultural and ecological 

water supplies. However, the excessive irrigation and fertilization application caused a series 

of environmental issues, such as degenerated ecosystems, increasing water mineralization 

along the Tarim River, soil salinization, land degradation, desertification and dust storm 

formation (Zhao et al., 2012; Liu et al., 2016). Therefore, specific objectives of this research 

aim to improve the agricultural production process of cotton using the crop growth model, 

remote sensing and geoinformatic tools and to optimize agricultural managements to reduce 

damages to the environment along the Tarim River.  

http://www.sumario.de/
http://www.sumario.de/objectives
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1.2 Introduction to crop growth models 

Crop growth models are generally developed based on the transmission and conversion theory 

of matter and energy within Soil-Vegetation-Atmosphere transfer models (SVATs) that 

investigate important land surface model (Avissar, 1998). Driven by meteorological factors 

associated with soil water and nitrogen, other environmental conditions and agronomic 

practices, crop growth models simulate the photosynthesis, respiration, transpiration and 

nutrition during the crop growth process, crop morphological development, and yield 

formation, as well as their response to climate and soil (Xing et al., 2009; Thorp et al., 2014). 

Thus, the crop model was employed in this research to simulate the mechanism of cotton 

growth processes: (1) the productivity of cotton in the end of growth season; (2) the response 

of cotton growth, development and yield formation to environmental changes and agronomic 

practices in cotton growth processes.  

Crop growth models have gone from initially purely theoretical studies to practical 

application through an evolution involving three stages: model development in the early 

stage, initial application in the mid-stage and practical application in the current stage (Li, 

2012). With the development of crop growth models, unified model parameters and 

input/output formats are critical for improving the universality, accuracy and operability of 

crop models (Jones et al., 2003). A series of crop growth models based on these objectives 

have been proposed based on a generic platform and set of modules. These crop growth 

models are developed based on the theory of canopy photosynthesis (de Wit, 1965; Monsi and 

Saeki, 2005; Loomis and Williams, 1963) and the physiological process theory (Curry and 

Chen, 1971; Stapleton and Meyers, 1971). Meanwhile, these models consider environmental 

stresses and limitations influencing the crop growth process (Childs et al., 1977; Van Keulen, 

1975; Penning de Vries et al., 1982). The more notable crop growth models are generally 

divided into three categories: Wageningen, USA and Australian model series.   

Wageningen crop models 

The Wageningen crop model series in the Netherlands, also named “de Wit Scholl” (Bouman 

et al., 1996), emphasizes the universality of crop growth simulations. These crop models 

simulate the physiological mechanisms and ecological processes of crop growth and yield 

formation (Bouman et al., 1996). Based on the ELCROS (Elementary Crop Simulator) (de 

Wit, 1970) and BACROS (Basic Crop Growth Simulator) model (de Wit et al., 1978), a 

Simple and Universal Crop Growth Simulator (SUCROS) model was developed (Spitters et 
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al., 1989) to simulate the growth process of crops. In order to explore the possibility of 

increasing productivity in developing countries (Van Keulen and Wolf, 1986), the World Food 

Research Centre developed a famous World Food Studies (WOFOST) Model (Boogaard et 

al., 1998). The WOFOST software simulates crop growth processes at three different levels, 

namely potential crop growth, crop growth under water restrictions and crop growth under 

nutrient restrictions (Boogaard et al., 1998). The WOFOST model can also express simulated 

results using graphics and provide users a menu interface to select crop types, production 

level, climate, soil and crop genetic characteristics (Boogaard et al., 1998). Additionally, 

Wageningen University and International Rice Research Institute (IRRI) co-developed the 

ORYZA model series, such as ORYZA2000, based on the physiological and ecological 

processes of rice (Bouman et al., 2001).  

Crop growth models in the USA 

Based on the characteristics of American agriculture and climate (Wang, 2013), many crop 

growth models in the USA were developed, such as the CERES (Crop Estimation through 

Resource and Environment Synthesis) model, CROPGRO (Crop Growth) model, EPIC 

(Environmental Policy Integrated Climate Model) model and GOSSYM model. CERES series 

models fully consider the dynamics of the crop-soil-atmosphere system to simulate crop 

growth, development and yield (Jones and Kiniry, 1986). CERES series models are oriented 

towards a variety of crops, such as wheat (Ritchie and Otter, 1985), rice (Ritchie et al., 1986), 

maize (Jones and Kiniry, 1986) and barley (Otter-Nacke et al., 1991). The CROPGRO model, 

initially developed for seed legumes (Hoogenboom et al., l992), simulates the growth, 

development and yield of soybeans (Wilkerson et al., 1983), dry beans (Hoogenboom et al., 

1994) and non-leguminous crops (Boote et al., 2012). The EPIC model (Mitchell et al., 1996) 

includes physiological crop growth, soil erosion modules, soil water and transport of 

nutrients. Characteristics of the EPIC model are developed into a main frame based on generic 

physiological and ecological processes for a variety of crops combined with a variety of crop 

growth and agronomic parameters (Mitchell et al., 1996). The GOSSYM model, developed to 

simulate cotton growth and yield (Baker et al., 1983; Lemmon, 1986), also considers effects 

of climatic factors, agronomic practices, hydraulic properties of soil and other environmental 

factors on the physiological process of cotton (Reddy and Baker, 1988).  

Because numerous parameters and variables restrict wide applications of models, an IBSNAT 

(International Benchmark Sites for Agro-technology Transfer) project (Uehara and Tsuji, 
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1991) was implemented by the U.S. Department of Agriculture (USDA) in 1986 to develop 

DSSAT (Decision Support System for Agro-technology Transfer) software (Jones et al., 2001; 

Jones et al., 2003). The DSSAT model aims to summarize various crop growth models and 

standardize input and output variables for universal applications (Jones et al., 2003). The 

DSSAT model, including CERES and CROPGRO modules, is a landmark for the practical 

application of crop models in the USA.  

Australian crop model schools 

The Agricultural Production Systems Simulator (APSIM) model was developed by the 

Agricultural Production Systems Research Unit (APSRU) and the Queensland government 

(Keating et al., 2003). This model includes fertilization, irrigation, soil erosion, soil nitrogen 

balance, soil moisture balance and the solute transport and residue decomposition modules 

(Holzworth et al., 2014). Similar to the DSSAT model, the APSIM model integrates a variety 

of crop growth models by establishing a generic platform (McCown et al., 1996). The APSIM 

model also uses the “plug in and plug out” approach (McCown et al., 1996) to integrate 

findings from a single crop model into a unified decision support system (Figure 1.1). It 

shows the model pedigree of APSIM, the models that have influenced the inception of the 

APSIM and the external models that have been incorporated into APSIM (Holzworth et al., 

2014). The largest difference between the APSIM and other crop models is that soil rather 

than vegetation is considered the core of the APSIM model (Keating et al., 2003). The APSIM 

model is widely applied in numerous functions, including crop management, crop breeding, 

cultivation systems, regional water balance, climate change and land use (Keating et al., 

2003). 

 



 1 Introduction 5 

 
Figure 1.1 The development process of APSIM model (Holzworth et al., 2014) 

The OZCOT sub-model 

The cotton growth model was initially used in the southeastern U.S. in the 1960s, and then 

was expanded to major cotton producing regions (Thorp et al., 2014). Existing cotton models 

are divided into models specific to cotton (e.g., GOSSYM, Cotton2K, COTCO2, OZCOT and 

CROPGRO-Cotton) and generic crop models (e.g., EPIC, WOFOST, SUCROS, GRAMI, 

CropSyst and AquaCrop) (Table 1.1) (Thorp et al., 2014).  
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Table 1.1 Descriptions of existing cotton simulation models (Thorp et al., 2014) 

Model Predecessor Models Programming Language Time Step Major Decision Support  

GOSSYM 
SIMCOT I 

Fortran Daily COMAX 
SIMCOT II 

Cotton2K 
GOSSYM 

C++, formerly Fortran Hourly None 
CALGOS 

COTCO2 
KUTUN 

Fortran Hourly None 
ALFALFA 

OZCOT SIRATAC C#, formerly Fortran Daily APSIM 
CSM-CROPGRO-Cotton CROPGRO-Soybean Fortran Daily DSSAT 

Currently, the OZCOT model has been integrated into the APSIM platform (Figure 1.1). 

Because the APSIM/OZCOT model was employed in this paper to simulate cotton growth, we 

mainly focus on the introduction of the OZCOT model. As a physiology-based model, the 

OZCOT model is driven by air temperature and radiation interception to simulate daily cotton 

growth, linking a fruiting dynamic model with a water balance and simple nitrogen uptake 

module (Table 1.2)  (Thorp et al., 2014).  

Table 1.2 Cotton growth and development processes simulated by OZCOT (Thorp et al., 2014) 

Name Descriptions Name Descriptions 

Phenology 

Develops the number of fruiting sites based on 
thermal time 
Calculates the number of squares, bolls, open 
bolls, and aborted fruits based on crop carrying 
capacity 

Partitioning 
Allocates carbon to 
cohort pools for 
developing bolls 

Potential carbon 
assimilation Canopy-level radiation interception Yield 

components 

Calculates fiber mass 
as a fraction of boll 
mass and boll size 

Respiration Uses empirical functions of respiration based 
on fruiting site count and air temperature Stress 

Calculates stress due 
to water, nitrogen, 
and air temperature 

Crop growth and development processes simulated by OZCOT are phenology, potential 

carbon assimilation, respiration, partitioning, yield components and stress (Thorp et al., 

2014). Additionally, the management practices simulated in the OZCOT model are sowing 

date, cultivars, planting density, irrigation, fertilization, defoliation and cropping sequence 

(Hearn, 1994). In the OZCOT model, phenological phases are parallel to growth process of 

cotton. Regarding the OZCOT model, the three categories of phenological parameters are the 

sowing date, base temperature of cotton growth and growing degree-day (hereafter GDD) for 

critical events. Phenological development stages of cotton were considered in the OZCOT 

model (Table 1.3). In the OZCOT model, the major simulated phenological phases were the 

emergence date, the first square event, boll formations and harvesting. The phenological 
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development stages of cotton span the period from sowing to physiological maturity, which 

are mainly controlled by thermal time and modified by stress and photoperiod (Hargreaves et 

al., 2013).  

Table 1.3 Cotton phenological development stages (Hearn, 1994; Hargreaves et al., 2013) 

Fractional Boll Development Developmental Name Starting Processes 

 Sowing Seed germination 

 Emergence Vegetative growth 

 First Square Reproductive development 

 Small Squares (3.0-5.0mm)  
 Medium Squares (5.0-10.0mm)  
 Large Squares (>10.0mm)  
0.0 Flowering  
0.07 Small bolls (<25mm)  
0.21 Medium bolls (25.0-37.5mm)  
0.33 Large bolls (37.5-42.5mm)  
0.55 Inedible bolls  
1.0 Open bolls  

To better understand the physiological cotton model, cotton phenology in the study area is 

firstly analysed. Generally, the growth period of cotton is divided into five critical growth 

stages (Table 1.4): (1) sowing to emergence, (2) seedling, (3) squaring, (4) flowering and boll 

formation (small, medium and large bolls) and (5) boll opening and harvesting (DAXUAR, 

2001; Wang et al., 2002). As a thermophilic and light-loving plant, cotton has a base 

temperature for growth of approximately 12 ℃ in the study area 

(http://nzw.funonglu.com/mianhua/szhj.html). In order to vividly understand these special 

events during the cotton growth period, we have also provided pictures from field campaigns 

in 2014 illustrating these cotton growth stages (Figure 1.2).  

Table 1.4 Cotton growth stages in Alar (DAXUAR, 2001; Wang et al., 2002) 

Major phenological events Period 
Sowing 4 April-20 April 
Emergence 16 April-30 April 
Seedling 30 April-20 May 
Square (1st) 20 May-27 May 
Squaring (flower buds) 27 May-20 June 
Flowering/Blooming 20 June-26 June 
Boll formation 26 June-29 August 
Opening boll 29 August-6 October 
Whole stage 4 April-6 October 

 

http://nzw.funonglu.com/mianhua/szhj.html
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Figure 1.2  Photos illustrating the major growth stages of cotton (from field works in 2014 and 

http://blog.sina.com.cn/s/blog_409096490101o5ps.html)   

Regarding the leaf development, its appearance and leaf area expansion is also a function of 

the growing degree-day (Hearn, 1994). LAI is also a critical indicator in this research, and 

therefore, it is an important factor that must be discussed. The first square event in the 

OZCOT model is the critical demarcation point between vegetative and reproductive growth. 

Ideally, simulations of LAI within the OZCOT model can be found in the Table 1.5. The 

potential growth of the leaf is subject to the solar radiation interception and transpiration and 

to agronomic practices. In addition, the leaf senescence is also a factor influencing LAI 

dynamics, and it is mainly caused by the soil water and nitrogen stress (Hearn, 1994).  

Table 1.5 Simulation of LAI within OZCOT model (Hearn, 1994) 

 LAI 
Emergence LAI=f (plant population, cotyledons area per plant) 
Vegetative growth LAI expands exponentially until the 1st square event 
Reproductive growth LAI=f (numbers of fruiting sites) 
Leaf senescence SENLF=f (soil moisture index, fruit load) 

However, crop growth models have also some flaws on optimizing the agricultural production 

and growth process. Crop growth models cannot obtain effects of disasters and pest on canopy 

growth status of crop. Additionally, crop growth models can not accurately simulate the 

agricultural production on a regional scale. However, remote sensing can capture the timely 

canopy information of crop to provide true observations of cotton growth status on a regional 

scale. Meanwhile, remote sensing also overcomes the time-consuming and labour-intensive 

http://blog.sina.com.cn/s/blog_409096490101o5ps.html
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task obtaining in-situ measured input parameters and initial conditions within crop growth 

models. Then remote sensing images can provide accurate parameters to calibrate crop growth 

models. Therefore, the simulated accuracy on agricultural production of crop growth models 

are improved by the inclusion of remote sensing data in many regions for various crops 

(Table 1.6) while rarely previous researches were reported in this study area.  

1.3 Strategies for optimizing crop growth models 

The rapid development of remote sensing and geographic information systems (GIS) provides 

a scientific approach to apply crop growth models on a regional scale. Based on the 

classification of parameters within crop growth models (Claverie et al., 2012), parameters are 

generally divided into crop-specific and field-specific parameters. Field-specific parameters 

can be acquired from multi-temporal remote sensing images and GIS interpolation, such as 

the emergence date and the effective accumulated temperature for the various growth stages. 

Generated regional data are used as input parameters to drive crop growth models. This 

simulation method is called “simulation after interpolation” (McVicar and Jupp, 2002). 

Conversely, the approach simulating spatial crop growth by interpolating many field specific 

simulations is called “interpolation after simulation” (Wu et al., 2006). Many scholars have 

used these methods to upscale the application of crop models to the regional scale by GIS 

interpolation (Tan and Shibasaki, 2003; Bastiaanssen and Ali, 2003; Liu et al., 2007; Hebbar 

et al., 2008; Muslim et al., 2015). However, the largest shortcoming of these two approaches 

is the spatial heterogeneity involved in upscaling. Therefore, the use of remote sensing data in 

a wide range of applications is needed to gradually resolve this issue.  

After Wiegand et al. (1979) introduced remote sensing data into the crop model to improve 

model simulation accuracy, remote sensing derived parameters coupled with various crop 

models have been widely used to estimate yield and simulate crop growth. Remote sensing 

observations are generally acquired from in-situ spectral observations, spaceborne and 

airborne data. Many studies have described various criteria for integrating remote sensing 

observations into crop growth models (Bach and Mauser, 2003; Dorigo et al., 2007; Zhao et 

al., 2013). Based on previous studies, the combination of remote sensing observations and 

crop models can be divided into three major strategies: the forcing strategy, continuous 

assimilation strategy and sequence assimilation strategy (Delécolle et al., 1992).  
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Forcing strategy 

The forcing strategy is implemented by directly driving crop model variables retrieved from 

remote sensing images or updating corresponding state variables (such as LAI) in crop models 

using remote sensing observations (Delécolle et al., 1992) (Figure 1.3). The input data 

retrieved from remote sensing images are equivalent to the state variables within the crop 

models (Delécolle et al., 1992). The hypothesis of the forcing strategy is that state variables 

derived from remote sensing observations are more accurate than crop model simulations 

(Dorigo et al., 2007). This strategy overcomes the deficit of the inversion of biophysical 

parameters directly derived from remote sensing images to accurately obtain these parameters 

(Delécolle et al., 1992). Crop models generally simulate the daily growth of crops while 

available remote sensing images have no such high temporal resolution. In order to keep 

consistent time-stepping with crop models, remote sensing observations are usually integrated 

into the simulated curve, and then they are interpolated in accordance with the crop model 

time step and remote sensing observations (Delécolle et al., 1992). Therefore, numerous 

interpolation approaches, such as the wavelet method (Dorigo et al., 2007), linear 

interpolation and fast Fourier transformations (Roerink et al., 2000), have been proposed to 

fill gaps among the observations. The forcing strategy is generally applied in the early stage 

of combining remote sensing observations with crop growth models on a regional scale 

(Maas, 1988; Liu et al., 1997; Matsushita and Tamura, 2002; Chiesi et al., 2002; Yun, 2003; 

Morari et al., 2004; Xiong et al., 2008; Mo et al., 2009). 

            

Figure 1.3 Schematic diagram for the forcing strategy (Delécolle et al., 1992) 
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 Continuous assimilation strategy 

The continuous assimilation strategy mainly determines the initial states and input parameters 

of the crop model by minimizing the difference between crop model simulation results and 

remote sensing observations (Delécolle et al., 1992). Then the optimized initial states and 

parameters within the crop model are determined for simulations of growth process and yield 

formation (Delécolle et al., 1992). This strategy is also called crop model re-initialization/re-

parameterization and it can be divided into two specific approaches. 

The model initialization/parameterization strategy employs retrieved biophysical parameters 

such as the LAI to adjust the relevant parameters and initial states of the crop model to reduce 

the differences between model simulations and synchronous remote sensing observations 

(Delécolle et al., 1992) (Figure 1.4). Adjusted initial values and parameters are regarded as 

initial conditions and parameters of crop growth model. The assimilation of remote sensing 

observed state variables for the model initialization/parameterization has also been applied for 

winter wheat (Maas, 1991), maize (Maas, 1993), sugar beet (Clevers and van Leeuwen, 1996; 

Clevers et al.,1997) and grassland ecosystems (Nouvellon et al., 2001) based on the observed 

ground radiation, airborne remote sensing images and satellite remote sensing images.  

           

Figure 1.4 Schematic diagram for the recalibration strategy (Delécolle et al., 1992) 

The other strategy (initialization and parameterization of crop model using spectroscopic data) 

couples crop growth models with remote sensing reflectance (or vegetation index), based on a 
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Moulin et al., 1995). Key parameters and initial states of crop growth are determined by 

directly comparing the observed reflectance from remote sensing images to the simulated 

reflectance from the coupled crop model (Figure 1.5). This strategy has also been further 

implemented by coupling remote sensing data, crop models and radiative transfer models 

together (Supit, 1997; Guérif and Duke, 1998; Weiss et al., 2001; Fang et al., 2011; Launay 

and Guérif, 2005).  

Sequence assimilation strategy 

The sequence assimilation strategy, also called the updating strategy, continuously updates the 

state variables of crop models using externally observed data (Dorigo et al., 2007) (Figure 

1.6). When new observed data appear, the status of crop model prediction becomes the 

background and is updated by observed data (Curnel et al., 2011). The updated status restarts 

the crop model integration until all observations are used (Curnel et al., 2011). The 

assumption of this strategy is that if there is a model state variable with a higher accuracy at 

time T, this state variable will improve the accuracy of the future simulated state variables 

(Delécolle et al., 1992). The advantage of the sequence assimilation strategy is that new 

observed data are used to update the predicted state of the model in a stable fashion (Delécolle 

et al., 1992). Based on this strategy, a series of assimilation algorithms (Dorigo et al., 2007), 

such as the EnKF (Ensemble Kalman Filter) algorithm, have been employed to improve the 

accuracy of crop yield estimation by linking crop models and remote sensing images (de Wit 

et al., 2007; Curnel et al., 2011).  
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Figure 1.5 Assimilation strategy by comparing simulated reflectance and satellite reflectance (Delécolle et 
al., 1992) 

 

 

Figure 1.6 Schematic diagram for the sequence assimilation strategy (Delécolle et al., 1992) 
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crop models together (Table 1.6). This table shows some of the studies that have been 

conducted. Few studies have included remote sensing images with high spatial resolution. 

Medium and low resolution images were used in these studies, such as Landsat TM and 

MODIS images. The LAI is one of the most important coupling variables between remote 

sensing data and crop models. Regarding assimilation algorithms, previous studies have given 

a variety of algorithms.  

These investigations used various strategies and state variables in the assimilation between the 

remote sensing inversion and the crop model simulation. The first strategy reinitializes and 

recalibrates parameters using the biophysical and chemical parameters from the crop model 

simulation and remote sensing inversion. These state variables include the LAI, soil water 

content, fraction of absorbed photosynthetic active radiation (FPAR), leaf nitrogen, 

phenological information and chlorophyll. The second strategy acquires a better yield by 

comparing the reflectance from remote sensing images and the crop model nested with a 

radiation transfer model. In addition, vegetation indices have been also used instead of 

reflectance to optimize the simulation by minimizing differences between simulated and 

retrieved vegetation indices.   

Compared to the first strategy, the second one is more scientific from a physical perspective 

by directly comparing the physical reflectance. However, this strategy has also led to 

numerous problems. After introducing radiation transfer models into the assimilation scheme, 

additional uncertainties have been introduced, such as uncertainties in the input parameters 

and initial conditions within the radiation transfer model. Simultaneously, computing 

resources have also increased, decreasing the computing efficiency. 

According to the EU (European Union) program on “climate change, agriculture and food 

security”, three major crop types, namely Maize, Wheat and Rice, were mainly mentioned 

(Hoefsloot et al., 2012). Similarly, numerous scholars have focused on wheat, maize and rice 

(Table 1.6). Few studies on cotton have been reported. Correspondingly, numerous common 

crop models have been employed such as the SWAP, DSSAT and WOFOST models while 

the APSIM model has been rarely used. Regarding the assimilation between remote sensing 

and crop models, the state variable is most important for linking variables from model 

simulations and remote sensing inversion. During this EU-Project, scientists have also 

frequently used the LAI, GAI (Green Area Index) and NDVI (or reflectance). The most 

frequently used parameter is the LAI (Watson, 1947), a parameter was developed for 

revealing vegetation canopy status in field experiments (Hoefsloot et al., 2012). This result is 
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also consistent with other similar investigations (Fang et al., 2008; Mo et al., 2005; Ma et al., 

2008).  

The remote sensing images used were mainly MODIS, SPOT, AVHRR and Landsat 

TM/ETM+ images. Both the summary of related studies and the EU project give useful 

examples for the assimilation between the LAI derived from remote sensing data and the LAI 

simulated from the APSIM/OZCOT model. Therefore, coupled crop growth models with 

remote sensing and GIS has become a popular and state of the art area of research from the 

field to the regional scale. 
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Table 1.6 Previous researches on assimilation between remote sensing and crop models 

RS data Assimilation algorithms Crop model Crop types Variables Authors 

ASD PSO RiceGrow Rice LAI，LNA Zhu et al., 2010 

ASD PSO and EnSRF RiceGrow Rice LAI，LNA Wang et al., 2012 

MODIS HJ CCD PSO WOFOST Rice SAVI Wu et al., 2012 

MODIS SCE-UA and SA COSIM Cotton LAI Zhao et al., 2005 

ASD VFSA CERES-Wheat Winter 
wheat LAI Liu et al., 2011a 

MODIS Cost function CERES-Wheat Winter 
wheat LAI Wang et al., 2011 

MODIS TM SCE-UA CERES-Maize Maize LAI Jin et al., 2012 

SAR Cost function WOFOST Rice Biomass Tan et al., 2011 

ENVISAT ASAR SCE-UA ORYZA2000 Rice LAI Shen et al., 2009 

MODIS LAI EnKF WOFOST Winter 
wheat LAI Wu, 2012 

MODIS Forward deducing + pixel 
model WOFOST Winter 

wheat LAI Guo et al., 2014 

MODIS LAI GPP SA, SCE-UA WOFOST Wheat LAI GPP Wang, 2013 

MODIS LAI GPP EnKF WOFOST-
HYDRUS Maize LAI Li, 2012 

MODIS LAI EnKF WOFOST Winter 
wheat LAI Huang et al., 2012 

MODIS FSEOPT software WOFOST Winter 
wheat LAI, ET Zhang et al., 2007 

HJ-1A/B SCE-UA WOFOST Rice LAI Chen et al., 2010 

MODIS LAI SCE-UA CERES-wheat Wheat LAI Yan et al., 2006 

MODIS FSEOPT software WOFOST Winter 
wheat LAI Ma et al., 2005 

MODIS NDVI SCE-UA EPIC Maize LAI Ren et al., 2011 

ASD HJ TM SCE-UA WheatGrow Wheat LAI LNA Huang et al., 2011 

Observed LAI Constrained analysis WOFOST Maize LAI, TAGP Sun et al., 2013 

SPOT, Airborne images Optimization algorithm SUCROS Sugar beet TSAVI Launay and Guérif, 2005 

HJ-1A/B CCD POD4DVar CERES-wheat Wheat LAI Jiang et al., 2014 

SPOT, Airborne images Optimization algorithm SUCROS Sugar beet TSAVI Guérif and Duke, 2000 

Ground radiometry Updating and forcing CERES-Wheat Wheat LAI Thorp et al., 2010 

MODIS FSEOPT WOFOST Winter 
wheat SAVI Ma et al., 2008 

ASD EnKF CERES-Wheat Wheat NDVI Li et al., 2011 

MODIS LAI EnKF WOFOST Wheat LAI Zhu et al., 2013 

ENVISAT/ASAR, 
MERIS variational assimilation CERES-wheat Wheat LAI Dente et al., 2008 

MODIS-LAI EnKF DSSAT Maize LAI Ines et al., 2013 

IRS LISS-III Modified corrective 
approach WTGROWS Wheat LAI Sehgal et al., 2005 

MODIS LAI POWELL optimization CERERS-Maize maize LAI Fang et al., 2011 

MODIS MOD15A2 EnKF DSSAT Wheat LAI Nearing et al., 2012 

Landsat 8 OLI PSO WOFOST Rice LAI Jin et al., 2015 

ASD spectral data PSO WOFOST Rice Vegetation 
index Wu et al., 2013 

MODIS L1B GA SWAP Wheat ET Irmak and Kamble, 2009 

MODIS L1B GA SWAP NA ET, LAI Charoenhirunyingyos et al., 
2011 

MODIS constant gain Kalman filter SWAP Wheat LAI, ET Vazifedoust et al., 2009 

Continued  
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Table 1.6 Continued 

RS data Assimilation algorithms Crop model Crop types Variables Authors 

Landsat 5 TM PEST  SWAP NA ET Droogers et al., 
2010 

MODIS LAI EnKF PyWOFOST Maize LAI Zhao et al., 2013 

hand-held radiometer FSEOPT SUCROS Sugar beet reflectance Guérif and Duke, 
1998 

MODIS LAI EnKF WOFOST Winter 
wheat LAI Liu et al., 2014b 

ASD spectral data PSO DSSAT-CERES Wheat Canopy Nitrogen 
accumulation Li et al., 2015 

MODIS LAI SCE-UA SWAP Winter 
wheat Phenological information Xu et al., 2011 

IRTS-P3 infrared 
radiative thermometer SCE-UA SVAT NA Surface radiometric 

temperature Crow et al., 2008 

 



   

2 Objectives 

Based on the background and problems mentioned above, five main objectives for this study 

are proposed as follows: 

Objective 1: Implementing APSIM/OZCOT model in a spatial mode (GIS-based crop 

growth model) 

In order to solve the flaws within crop growth models, a GIS-based crop growth model 

coupled with remote sensing images is proposed (Figure 2.1). This flowchart illustrates the 

procedure for comparing the LAI derived from remote sensing images and the 

ASPIM/OZCOT model by tuning sensitive parameters within the crop growth model, based 

on an assimilation method. This GIS-based crop growth model includes two important parts: 

the earth observation and ASPIM/OZCOT model. First, the PVI is retrieved from time series 

Landsat-8 OLI remote sensing images after the radiometric correction. Then, a statistical 

model is used to analyse the relationship between the PVI and the observed in-situ LAI by 

correlation analysis. In addition, the APSIM/OZCOT model is employed after the 

parameterization to simulate the LAI of cotton. Afterwards, the comparison between the 

simulated and the retrieved LAI is analysed to parameterize the relevant parameters in the 

APSIM/OZCOT model. Finally, the regional yield of cotton can be obtained based on these 

optimized parameters in the APSIM/OZCOT model. 

Objective 2: Land use mapping of cotton cultivation 

Prior to the assimilation, the explicit distribution of cotton cultivation is the first step. Then a 

series of remote sensing images within a whole growth period are used to extract cotton 

pattern combined with phenological events of different vegetation types.   

Objective 3: LAI retrieval from Landsat 8 OLI remote sensing data 

LAI is an important state variable in this coupling model between remote sensing and crop 

growth models. Timely LAI observations of cotton canopy derived from multi-temporal 

remote sensing images can provide the true LAI status to the APSIM/OZCOT model. Then 

seasonal LAI maps within the cotton cultivation region are retrieved from remote sensing data 

in this research.  
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Objective 4: APSIM/OZCOT model for yield prediction at the field level  

After the calibration of cultivar parameters within the APSIM/OZCOT model, the 

APSIM/OZCOT model can accurately simulate the growth process and yield formation of 

cotton. Then this coupling model is implemented to simulate the LAI dynamics and yield 

formation at the field scale.  

Objective 5: APSIM/OZCOT model for regional yield prediction   

After the implementation of this coupling model, this strategy is then applied to the regional 

scale. In order to increase the computational efficiency, we also implement the assimilation 

during two growth periods of cotton: the early stage and mid-late growth stage.    

 

 

Figure 2.1 Flowchart of the assimilation between remote sensing and APSIM/OZCOT model 
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3 Study Site 

3.1 Characterisation of study site 

The study area, administered by Alar City, is located in the Xinjiang Uygur Autonomous 

Region, NW China, residing at the northern edge of the Taklamakan Desert. It is also located 

at the intersection of three rivers namely the Aksu, Yarkand and Hotan Rivers (Figure 3.1). 

Alar is administrated by both the Xinjiang Uygur Autonomous Region and the Xinjiang 

Production and Construction Corps (XPCC), in which a hybrid management system is 

implemented. Since 1998, private farms, local government and XPCC have expanded their 

farmland and reclaimed arable land driven by increases in the price of cotton. Most recent 

reclamations were devoted to cultivated cotton. 

According to data from the Alar Statistical Year Book 

(http://www.ale.gov.cn/structure/zjale/ssrk.htm), the population of Alar is about 310 100 in 

2014 and the number of employees is about 152 500 while the agricultural employees are only 

41 300. In the year of 2014, the agricultural GDP is about 20.85 billion Chinese Yuan (CNY) 

based on data from the Alar Statistical Year Book. Among them, the output value of 

cultivation was 18.67 billion CNY while the output value of forestry, animal husbandry and 

fishery was 0.2 billion, 1.15 billion and 0.08 billion CNY, respectively. In 2014, based on 

data from the Alar Statistical Year Book, the cultivation area of cotton, grain and vegetable 

was 150.67, 21.41 and 4.81 thousand ha, respectively, while their production was 35.46×107, 

20.97×107 and 14.11×107 kg respectively (Figure 3.2). The percentage of cotton cultivation 

was approximately 85.2% of crop cultivation in 2014. Based on questionnaires during field 

works, we know that Alar is the main upland cotton cultivation region and a cultivation region 

for island cotton in China. 
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Figure 3.1 (a) Study area location in China; (b) LAI, yield and land cover samples in the study area 

a 

b 
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Figure 3.2 Cultivation and production of three major crops in 2014 

Based on the SRTM (Shuttle Radar Topographic Mission) DEM (Digital Elevation Model) 

data (Jarvis et al., 2008), the terrain of the study area is relatively flat with an altitude ranging 

from 994 to 1045 m (Figure 3.3a). Generally, the terrain trends higher in the northwest and 

lower in the southeast of study area. There is a total of 17 types of soil in the study area based 

on a soil map from the University of Hohenheim using the Harmonized World Soil Database 

(HSWD) (FAO et al., 2012) (Figure 3.3b). Alar is the interchange of the Aksu, Hotan and 

Yarkand Rivers and also the source of the Tarim River. The study area is a cotton region 

irrigated by groundwater and runoff pumping. 
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Figure 3.3 (a) Soil types map (FAO et al., 2012); (b) the digital elevation model (Jarvis et al., 2008)  

Alar belongs to the extremely arid continental desert climate in the warm temperate zone. 

According to meteorological data during 1959–2014 at the Alar National Weather Station, the 

annual average temperature, rainfall and solar radiation in this region was approximately 

10.7 ℃, 48.5 mm and 16.8 MJ/m2 (Figure 3.4), respectively. Based on seasonal dynamics of 

the annual average temperature, rainfall and solar radiation reached maximum in summer and 

a 

b 
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minimum in winter. The total rainfall in July from 1959 to 2014 was about 626.28 mm while 

the lowest was 34.5 mm in January. The highest average radiation in June was about 24.78 

MJ/m2 while the lowest average radiation in December was 8.25 MJ/m2. The highest average 

temperature in July was 24.73 ℃ while the lowest average temperature was −8.37 ℃ in 

January. 
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Figure 3.4 Inter and intra-annual changes of rainfall, radiation and temperature in Alar, 1959-2014 



 3 Study Site 26 

3.2 Selection of test area   

Agronomic practices such as specific cotton variety, fertilization, irrigation and cultivation 

modes are all allocated and managed by the various corps of XPCC. Homogeneous and large 

cotton fields, approximately 700 × 120 m in size, are useful for the large-scale cultivation and 

management of cotton. Additionally, a station (80° 45′ E, 40° 37′ N and altitude 1028 m) 

belonging to the Chinese Ecosystem Research Network, namely the Aksu National Field 

Scientific Observation and Research Station for Farmland Ecosystem (hereafter Aksu station), 

is located in the study area (Figure 3.1e). Because the Aksu station is designed to represent a 

typical oasis agricultural ecosystem, numerous long term monitoring data regarding soil water, 

salt, nutrients and agronomic practices for cotton were obtained.  

Variations in the organization of agricultural production patterns and the type of arable land 

use resulted from the two different modes of agronomic management from the XPCC and 

private farms. Therefore, Alar is a typical study area for analysing cotton growth modelling 

coupled with remote sensing images. In order to acquire an optimal boundary for the study 

area that includes all cotton fields within field campaigns, we further selected four border 

points as follows (Table 3.1). Then, we used the rectangle with the four border points to 

define the study area (Figure 3.1e).   

Table 3.1 Description of study area used for the assimilation 

 

UTM  44 N Easting 

(meter) 

Longitude 

(degree) 

UTM  44 N Northing 

(meter) 

Latitude 

(degree) 
Field 

West 484761.283 80.81985 4496028.297 40.614936 G30 

North 497916.852 80.975343 4505204.538 40.69774 G27 

South 509519.015 81.112385 4486232.118 40.526769 G34 

East 528420.000 81.336066 4498048.597 40.632788 G08 



   

4 Data and Methods 

4.1 Remote sensing images and pre-processing 

Because the revisit time of Landsat-8 is 16 days, Landsat-8 Operational Land Imager (OLI) 

remote sensing images are not continuous daily observations. Furthermore, cloudiness caused 

missing visible and near-infrared (VIS-NIR) remote sensing images. Meanwhile, the 

APSIM/OZCOT model has a daily simulation step. Thus, selecting optimal state variables 

derived from remote sensing images is critical for describing the physiological process of the 

APSIM/OZCOT model. In this paper, we selected seven cloud-free Landsat-8 OLI remote 

sensing images at DOY 72 (13 March), DOY 136 (16 May), DOY 168 (17 June), DOY 200 

(19 July), DOY232 (20 August), DOY 248 (5 September) and DOY 280 (7 October). These 

Landsat-8 OLI remote sensing images covered the phenological stages from seedling to boll 

opening and maturation. Thus, LAI values retrieved from Landsat-8 OLI time series images 

are considered trusted state variables for the assimilation strategy between the 

APSIM/OZCOT model and remote sensing images.  

In addition, MODIS MCD43A3 Albedo and MOD/MYD 09A1 reflectance images were also 

obtained during the same period as OLI images to assist the atmospheric correction of the 

Landsat-8 OLI images. The spatial resolution of the MCD43A3 product (nadir BRDF-

adjusted reflectance) is 500 meters while its temporal resolution is 16 days. The spatial 

resolution of MOD/MYD 09A1 is 500 m and the temporal resolution is 8 days. The MODIS 

EVI (enhanced vegetation index) products in 2001, 2008 and 2013 were also obtained to 

generate EVI magnitude maps for modelling the spatiotemporal dynamics of reclamation. All 

remote sensing images were acquired from the NASA’s Earth Observing System Data and 

Information System.   

An MRT (MODIS Re-projection Tool) was used to transform an ISIN (Integerized Sinusoidal) 

projection of MODIS images into a Universal Transverse Mercator (UTM) 44 and a World 

Geodetic System 1984 (WGS84) datum ellipsoid. Meanwhile, the data format of MODIS was 

also converted into the ENVI standard from HDF-EOS (Hierarchical Data Format-Earth 

Observing System) and the spectral band order was adjusted to be the same as Landsat-8 OLI 

images. Then a Gaussian Low Pass method was employed to generate a template with the 

kernel size of 17 × 17 (the size is greater than 500/30). Afterwards, Landsat-8 OLI images 

were aggregated into 500 m level by the Gaussian Low Pass downscaling approach. 

Downscaling OLI images with 500 m were resampled into 500 m by a pixel aggregate 
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method, which using the mean value of all pixels contributing to the output pixel as the value 

of output pixels.  

Then land cover sampling was implemented based on MODIS MCD43A3 and Landsat-8 OLI 

images. Thus, some dark targets such as the water body, shade, dense cotton coverage and 

low reflectance soil, as well as the high reflectance soil and sand, were selected. After 

selecting the Region of Interest (ROI), spectral curves of various ROIs were checked to avoid 

errors caused by failures related to the MODIS algorithm. Afterwards, the estimated 

atmospheric parameters were obtained by estimating the relationship between the MODIS 

MCD43A4 and Landsat-8 OLI images using AtCPro software, developed by the 

environmental remote sensing department, University of Trier (Hill, 2013) (Figure 4.1). The 

RMSE between the MODIS MCD 43A4 and Landsat OLI image at DOY 200 was only 

0.03844, and the angstrom beta, angstrom nu and water vapour were all obtained. Based on 

estimated atmospheric parameters, we implemented the atmospheric correction of Landsat-8 

OLI image combined with the SRTM DEM data for the topographic correction. Then, we 

compared vegetation reflectance between the MODIS MCD43A4 products and Landsat-8 

OLI remote sensing images at DOY 200 (Figure 4.2). The atmospherically-corrected Landsat 

OLI image showed better performance against the MODIS spectral curve of vegetation.   

 

Figure 4.1 The estimated atmospheric parameters based on an AtCPro software (Hill, 2013) 
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Figure 4.2 Comparison of MODIS and corrected Landsat 8 OLI vegetation reflectance responses 

4.2 Ground data collection 

The daily climate data during 1958–2014 were recorded by the Alar National Principal 

Station of China Meteorological Administration (code 51730) affiliated to World 

Meteorological Organization (WMO), located in the study area. As a driver for the 

APSIM/OZCOT model, daily climate data include maximum and minimum temperature, 

rainfall and sunshine hours. All these daily climate data were obtained from China 

Meteorological Data Sharing Service System. According to the metadata, maximum and 

minimum temperature, rainfall and sunshine hours were all first multiplied by 0.1. Then 

sunshine hours were converted into solar radiation since the solar radiation is a climatic factor 

driving the APSIM/OZCOT model. The daily solar radiation was calculated using the 

following formula proposed by Doorenbos and Pruitt (1977). These formulas are as follows: 

0( ) 0.8 ( )L
L L

S SH H a b H a b
S S

= × + × = × × + ×                                                 (4.1) 

(2 /15)L sS W= • ; 1cos ( tan tan )sW δ−= − Φ•                                                    (4.2) 

where H is the daily solar radiation; LH is the daily solar radiation under the sunny state; 

S and LS represent the actual sunshine hour and the day length; Φ is the latitude; δ is the 

solar declination; sW  is the hour angle; a and b are empirical constants of 0.248 and 0.752, 

respectively, according to Chinese conditions (Zuo et al., 1963); 0H is the extraterrestrial 
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irradiation and the atmospheric transparency coefficient is 0.8 in Western China (Tong et al., 

2005).  

Additionally, the formula of the extraterrestrial irradiation (Zuo et al., 1963) is as follows: 

0 0(1/ ) (cos cos sin ( /180) sin sin )sc s sH G E W Wπ δ π δ= • × • Φ• • + • Φ• •       (4.3) 

0 1.00011 0.034221cos 0.00128sin 0.000719cos 2 0.000077sin 2E = + Γ + Γ + Γ + Γ     (4.4) 

(180 / ) (0.006918 0.399912 cos 0.070257 sin 0.006758 cos 2 0.000907 sin 2 0.002697 cos3 0.00148 sin 3 )δ π= • − • Γ + • Γ − • Γ + • Γ − • Γ + • Γ

  

 2 ( 1) / 365nπΓ = • −                 (4.5) 

where scG  is the solar constant; 0E is the correction factor of Earth's orbital eccentricity; Γ  is 

year angle and n is the DOY (day of year). 

The climatic data including the maximum temperature, minimal temperature, precipitation 

and solar radiation in 2014 at the Alar State Station of Meteorology was listed (Figure 4.3). 

 

Figure 4.3 Daily climate data within 2014 at the Alar State Station of Meteorology 

A total of 26 observed in-situ soil profiles were acquired from the University of Hohenheim 

in Germany, a member of the SuMaRiO project (Figure 3.1e). Meanwhile, cotton yield and 
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biomass data before harvesting from a total of ten fields (Figure 3.1e) in 2014 was collected 

by staff at the University of Hohenheim and provided for this research (Table 4.1).  

Table 4.1 In situ observed cotton yield in 2014 (provided by University of Hohenheim) 

  A01 A03 A04 A05 A60 A61 A62 A63 A65 A66 

Cotton Yield (×103 kg/ha) 4.57 5.76 6.12 7.36 5.46 7.97 6.64 7.75 7.87 7.67 

Biomass (×103 kg/ha) 11.67 14.81 9.38 16.41 8.90 14.21 12.88 14.26 16.18 13.89 

In addition to 16 cotton fields with soil profiles, a total of 20 uniformly distributed cotton 

fields without soil profiles covering the entire study area were selected as LAI sampling plots 

according to the corresponding administration that they were affiliated with. The distribution 

of sampling plots not only reflects variations in agronomic practices, but also reveals spatial 

variations of cotton growth. In each sampling plot, about 9–12 points over an interval of 

greater than 30 meters (the pixel size of Landsat OLI image) were selected to reflect the 

heterogeneity of cotton growth. Field campaigns were implemented during three major cotton 

growth stages, namely the seedling, flower-boll and boll opening-mature stage. Finally, the 

LAI measurement, plant height measurement was both performed by employing a LAI-2000 

Plant Canopy Analyser (LI-COR Inc., Lincoln, Nebraska) and a rule with millimetre-level 

accuracy (Figure 4.4; Figure 4.5). The LAI within cotton fields was estimated using this non-

destructive method. Simultaneously, about five measurements of the plant canopy height 

nearby each sampling point were taken and averaged to a mean height per sampling point. 

About 9–12 plant canopy height values per cotton field were acquired.  

  

  
 

Figure 4.4 LAI and height measurement during three major cotton growth stages 

DOY 143 DOY 265 

DOY 202 Plant height measurement 
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Figure 4.5 Sampling strategy for LAI-2000 over cotton field A01: (a) LAI was measured in a total of 12 
plots, the size of each plot was about 5×5 meters and distance between them was > 30 meters (the pixel size 
of Landsat OLI image); (b) illustrate a detailed measurement about the first plot (A01-1) within field A01 

Meanwhile, data pertaining to agronomic practices, cotton price and disasters of each plot 

were acquired using numerous questionnaires and interviews with local residents (Figure 4.6). 

Agronomic practices mainly include the cotton variety, cultivation mode, sowing date, 

irrigation and fertilization (amount and date). Among these cotton varieties, a cultivar titled 

XLZ37 created by the local company, has been cultivated since 2010, exceeding 60% of the 

total cotton cultivation area in Southern Xinjiang (Wang, 2010). A test in 2009 of the XLZ37 

cotton variety showed that the boll weight and lint percentage were 6.1 g and 45.7%, 
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respectively (http://baike.baidu.com/view/8227023.htm). Generally, cotton was cultivated 

using the tractor sowing machine (Figure 4.7). During the field campaign, the wide space is 

about 65 cm and the narrow space is 12 cm, while the plant space is 10 cm. This row 

configuration can be used as a reference for determining the range of the row spacing 

parameter in the assimilation strategy.  

  

Questionnaire 

 
Interview 

 
Pesticide spraying 

 
Irrigation and fertilization 

Figure 4.6 Field campaigns during three major cotton growth stages 

 

 

 

 

 

 

http://baike.baidu.com/view/8227023.htm
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Figure 4.7 Cultivation configuration of cotton using tracker sowing in study area 

Additionally, about 15 land cover types including cotton, maize, rice, jujube and pear orchard 

were obtained using the handheld GPS (Global Positioning System) (Figure 3.1b). These data 

were used for assessing the accuracy of cotton cultivation extraction based on Landsat-8 OLI 

remote sensing images. 

4.3 LAI retrieval from Landsat 8 OLI images  

To obtain the regional LAI maps within a growth period of crop, the relationship between the 

observed LAI and corresponding vegetation index derived from remote sensing images was 

modelled. In these relationships, many kinds of vegetation indices are from the composition 

of visible, near infrared red and shortwave infrared bands (Kaufman and Remer, 1994; 

Hansen and Schjoerring, 2003; Stenberg et al., 2004; Yang et al., 2012) were used, such as 

NDVI and EVI. The relationship between the observed LAI and vegetation indices derived 

from remote sensing images was limited to the canopy closure and soil reflectance (Peddle et 

al., 1999). In the study area, the soil background noise in cotton fields with low vegetation 

closure at the early growth stage affects the accurate extraction of vegetation index. Thus, a 
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  Side Row 
   Side Row  

Mulch 

65cm 

12cm 

10cm 

12cm 



 4 Data and Methods 35 

soil line concept was proposed and extracted from remote sensing images (Baret et al., 

1993a). Then, based on this soil line concept, a perpendicular vegetation index (PVI) was 

proposed to eliminate soil effects (Richardson and Wiegand, 1977). The formula of the PVI is 

as follows, 

                         
2

1 ( )
1

NIR REDPVI a b
a

ρ ρ= − × −
+

                                (4.6) 

where a and b are slope and intercept of the soil line, respectively and NIRρ and REDρ are the 

near infrared and red band, respectively.  

Then we selected DOY 136 (May), DOY 200 (July) and DOY 248 (September) in 2014 as 

three critical dates to obtain the PVI synchronized to LAI measurements. In addition, we also 

selected DOY 72 (March) before the cotton cultivation event to construct a whole and 

continuous PVI growth curve of cotton during 2014. Correspondingly, the actual LAI of 

cotton field is nil for DOY 72. Then a mathematically statistical method was employed to 

model the relationship between the average observed LAI and PVI values within all observed 

cotton fields during the entire growth period of cotton.  

4.4 Mapping cotton cultivation pattern  

Because the phenological events of vegetation are different, available remote sensing images 

in the leaf-on (full foliation) and leaf-off (defoliation) period (Loveland et al., 1995) provide 

near real time observations to track phenological events and indicators of the vegetation 

canopy on the rational spatial and temporal scale (Fan et al., 2015). Thus, this information can 

be used as temporal indicators of remote sensing images to extract vegetation and crop types 

in many researches (Rembold and Maselli, 2006; Wardlow et al., 2007) with a higher 

accuracy than using a single remote sensing image classification (Peng et al., 2009). This 

phenology-based remote sensing classification method generally establishes the crop growth 

curve using vegetation indices derived from time series remote sensing images, and then 

extracts crop types based on the rulesets from the temporal variations in vegetation indices 

caused by various phenological events of vegetation types (Wardlow and Egbert, 2008). 

Compared to distinguishing vegetated pixels from non-vegetated pixels, the cotton cultivation 

extraction from the vegetated area is more worth analysing. Thus, feature bands and 

combinations associated with their thresholds were proposed to extract the cotton cultivation 

pattern based on phenological differences between cotton and woodland, orchard and the 
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other crops. The phenological variations between cotton and woodland shelterbelt, orchard 

(including apple, pear and jujube) in the study area were used to assist remote sensing images 

for obtaining the cotton cultivation pattern. At the seedling stage, the individual cotton plant is 

small, and the cotton population is relatively sparse while the woodland shelterbelt and 

orchard type have already turned green with significant signals on the remote sensing images. 

The cotton population shows the opposite characteristics at the blooming stage compared to 

the seedling stage of cotton (Figure 4.8).  

 

 

 

 

 

 

Figure 4.8 Temporal variations of vegetated signals between cotton and woodland, orchard 

In addition to the massive cotton cultivation, the study area is also sporadically mixed with 

the rice and the spring-summer maize silage. The spring maize was usually sown in early 

April and harvested in early July. After the harvest, maize fields were then ploughed by 

farmers to re-cultivate the summer maize. The duration of summer maize ranges from mid-

July to early October. The spring and summer maize both belong to maize silage. As a major 

crop, cotton was sown in early-mid April and harvested in early-mid October, 2014. Rice was 

sown during late April-early May and harvested in mid-late October. The sowing, growth and 

harvest calendars of various crops are listed in this paper (Figure 4.9) and the changing trend 

Cotton seedling 

 

2014-5-16, seedling stage 

 
Jujube, woodland shelterbelt belt in May 

 

Cotton Blooming 

 

2014-7-19, Blooming stage 
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of NDVI is mapped (Figure 4.10a). Because the NDVI of maize is higher than rice and cotton 

at DOY 136, the maize pattern can be easily excluded. Since the rice field is generally 

irrigated during mid-June (DOY 168), the NDVI of rice closely equals nil.  

Specifically, land cover types in regions affected by human activities seriously fluctuate due 

to environmental disasters and anthropogenic activities (Gómez et al., 2016). Therefore, we 

considered the disruptive effects of hail and sandstorm disasters on cotton growth at the 

emergence and seedling stage of cotton. After these disasters, farmers usually re-cultivate 

cotton or cultivate rice instead of cotton to guarantee the minimum harvest loss and reduce 

soil salinization, pests and diseases within cotton fields. During field campaigns, we obtained 

several cotton fields attacked by hail disaster in the late May, 2013. Therefore, we selected 

three Landsat 8 OLI images after May in 2013: DOY 165 (14-June), DOY 181 (30-June) and 

DOY197 (16-July). Then a NDVI curve was constructed based on these three images and the 

other images in 2014 (Figure 4.10b). Similar to rice type, the NDVI curve of rice cultivation 

after disasters is also different from the normal growth and re-cultivation of cotton after 

disasters (Figure 4.10b). Although farmers’ behaviours caused the delay of cotton growth, the 

seasonal NDVI dynamics appear the similar trend, which is different from other vegetation 

types. Although there are some errors caused by the annual variations of cotton growth, the 

NDVI dynamic trend for re-cultivation of cotton after disasters can still reveal its phenology 

development. Moreover, the percentage of re-cultivation of cotton after disasters usually 

occupies less than healthy (or stable) cotton. However, based on these rulesets, the method 

about extracting cotton cultivation map is more robust and accurate. In conclusion, based on 

temporal NDVI variations of cotton, the other vegetation types and non-vegetation types, a 

cotton extraction model with related rulesets and their thresholds was established to extract 

cotton cultivation patterns.  

 
Figure 4.9 Crop cultivation and harvesting calendar in the study area 
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Figure 4.10 (a) Changes in NDVI of three crops, (b) NDVI changes of crops caused by hail disaster 

4.5 APSIM/OZCOT model   

4.5.1 Sensitivity analysis 

Prior to the application of the APSIM/OZCOT model, the sensitivity analysis of input 

parameters and initial conditions is a convenient pathway to understand the mechanism and 

adjust parameters within the model (Zhao et al., 2014). All parameters in the APSIM/OZCOT 

model are divided into three categories: cultivar, soil and agronomic parameters. Then a total 

of 36 cultivar parameters, 20 soil parameters and 4 agronomic parameters were selected to test 

their sensitivities to LAI dynamics (Table 4.2; Table 4.3; Table 4.4). These selected cultivar 

parameters control the phenological development simulation, leaf development simulation 

and biomass formation (Hearn and da Roza, 1985; Hearn, 1994). Additionally, selected soil 

and agronomic parameters can affect dynamics of soil moisture and nitrogen content, thereby 

affecting the phenological development, leaf development and biomass formation of cotton 

(Hearn, 1994).  

Sensitivity analysis approaches include local and global sensitivity analysis (Saltelli et al., 

1999). As a local sensitivity analysis, the “one-at-a-time” (OAT) approach tests the impact of 

an individual parameter on model results by adjusting an individual parameter and fixing the 

other parameters (Hamby, 1994; McCarthy, 2010). Although this method is easy to 

implement, it only reveals the direct influence of parameters on results but ignores the indirect 

effects of mutual coupling among parameters (He, 2015). Additionally, a global sensitivity 

analysis can test the effects of changes in multiple parameters on the simulated results and 

analyse the direct and indirect effects of each parameter on model results (Crosetto et al., 

2000). Global sensitivity analysis approaches based on the variance, such as the Extended 

a b 
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Fourier Amplitude Sensitivity Test (EFAST) method, have been widely applied in crop 

growth models (Jiang et al., 2011; Zhao et al., 2014; He, 2015). The EFAST method was 

proposed based on the advantage of the Sobol’ approach (Saltelli and Sobol’, 1995) and the 

Fourier Amplitude Sensitivity Test (FAST) method (Saltelli et al., 1999). The EFAST method 

is based on variance analysis, and variances of simulated results can reflect the sensitivity of 

input parameters (Saltelli et al., 1999). The variance of model results is decided by individual 

input parameters and their interactions (Saltelli et al., 1999). The independent sensitivity of a 

single input parameter is measured by a first-order sensitivity while the overall sensitivity of 

parameters (independence and interaction) is measured by a global sensitivity (Crosetto and 

Tarantola, 2001). Therefore, the decomposition of the variance can obtain contribution to the 

variance of various parameters and coupling between the parameters, that is, the sensitivity 

index of various parameters (Crosetto and Tarantola, 2001; Zhao et al., 2014).   

Based on ranges of these cultivar and agronomic parameters, we selected several values 

between maximal and minimal values to test the sensitivity of each parameter to LAI 

dynamics. We considered the observed in-situ values of the soil parameters as a baseline, 

including a plus and minus 5%, to generate the range of observed values. Meanwhile, the 

OAT approach and EFAST approach were both employed to analyse the sensitivity of these 

parameters to the LAI.  
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Table 4.2 Description of parameters in OZCOT model (Hearn, 1994; McCarthy, 2010) 

Code Parameter Unit Range Description 

1 RATE_EME
RGENCE mm/DD 0.0-1.0 Growth rate (mm per day) from sowing to emergence 

2 ACOTYL mm2 0.0-1000.0 Leaf area of cotyledons 

3 RLAI mm2/mm2 0.0-1.0 Base rate of leaf growth pre first square 

4 DLDS_MAX mm2/site 0.0-5.0 Maximum leaf area increase per site 

5 FLAI mm2/site 0.0-1.0 Varietal adjustment for rate of LAI gain per fruiting site 

6 DDISQ DD >400 Thermal time between emergence and the appearance of the first 
square 

7 SQCON squares/pla
nt/DD 0.001-0.030 Squaring constant for generating sites per DD 

8 TIPOUT days >52 Day degrees delay caused by tipping out damage 

9 FCUTOUT nil 0.0-1.0 Constant used to determine when site production stops due to boll 
load 

10 FBURR nil 0.0-5.0 Proportional boll weight with Burr Fraction included 

11 POPCON nil 0.0-1.0 Plant population constant for adjustment of daily site production 

12 RESPCON nil 0.001-0.030 Respiration constant 

13 FRUDD1 

DD 

40-60 

Array of values of cumulative Day Degrees for each growth phase 
of fruit development (8 categories) 

14 FRUDD2 124-216 

15 FRUDD3 230-420 

16 FRUDD4 252-456 

17 FRUDD5 365-624 

18 FRUDD6 479-792 

19 FRUDD7 649-1051 

20 FRUDD8 824-1338 

21 BLTME1 

nil 

0.000-0.000 

Thermal time for fruit categories as a proportion of the total 
required to develop a complete boll (categories 4-8) 

22 BLTME2 0.000-0.000 

23 BLTME3 0.000-0.000 

24 BLTME4 0.056-0.084 

25 BLTME5 0.168-0.252 

26 BLTME6 0.264-0.396 

27 BLTME7 0.440-0.660 

28 BLTME8 0.800-1.000 

29 WT1 

nil 

0.00832-0.01248 

Relative weight of each category relative to a mature (inedible)  
green boll (cat 7) 

30 WT2 0.02176-0.03264 

31 WT3 0.11528-0.17292 

32 WT4 0.07904-0.11856 

33 WT5 0.40336-0.60504 

34 WT6 0.76936-1.15404 

35 WT7 0.80000-1.00000 

36 WT8 0.46280-0.69420 
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Table 4.3 Soil properties used in the APSIM/OZCOT model (provided by University of Hohenheim) 

Code Parameter Description   Observation   Min (-5%) Max (5%) 
37 SAT1 Saturated water content at soil layer 1 0.426 0.4047 0.4473 
38 SAT2 Saturated water content at soil layer 2 0.463 0.43985 0.48615 
39 SAT3 Saturated water content at soil layer 3 0.471 0.44745 0.49455 
40 SAT4 Saturated water content at soil layer 4 0.441 0.41895 0.46305 
41 DUL1 Drained upper limit of soil water content at soil layer 1 0.246 0.2337 0.2583 
42 DUL2 Drained upper limit of soil water content at soil layer 2 0.159 0.15105 0.16695 
43 DUL3 Drained upper limit of soil water content at soil layer 3 0.22 0.209 0.231 
44 DUL4 Drained upper limit of soil water content at soil layer 4 0.241 0.22895 0.25305 
45 LL151 15Bar lower limit of soil water content at soil layer 1 0.062 0.0589 0.0651 
46 LL152 15Bar lower limit of soil water content at soil layer 2 0.048 0.0456 0.0504 
47 LL153 15Bar lower limit of soil water content at soil layer 3 0.055 0.05225 0.05775 
48 LL154 15Bar lower limit of soil water content at soil layer 4 0.061 0.05795 0.06405 
49 airdry1 Volumetric water content for air dry soil at soil layer 1 0.062 0.0589 0.0651 
50 airdry2 Volumetric water content for air dry soil at soil layer 2 0.016 0.0152 0.0168 
51 airdry3 Volumetric water content for air dry soil at soil layer 3 0.018 0.0171 0.0189 
52 airdry4 Volumetric water content for air dry soil at soil layer 4 0.02 0.019 0.021 
53 bd1 Bulk density at soil layer 1 1.52 1.444 1.596 
54 bd2 Bulk density at soil layer 2 1.42 1.349 1.491 
55 bd3 Bulk density at soil layer 3 1.4 1.33 1.47 
56 bd4 Bulk density at soil layer 4 1.48 1.406 1.554 

 

Table 4.4 Agronomic parameters used in the APSIM/OZCOT model 

Code Parameter Description Min Max 
57 Irrigate_amount The amount of irrigation application (unit: mm) 50 300 
58 Fert_amount The amount of fertilization application (unit: kg/ha) 50 300 
59 Row_spacing The spacing between cotton rows (unit: mm) 300 600 
60 Sowing density Sowing density per row (unit: plant/m2 in row) 20 50 

4.5.2 Local calibration 

Variations of cotton varieties in different regions are mainly subject to the local climate, soil, 

water and other environmental factors. Although physiology-based cotton growth models can 

simulate the growth and development processes of cotton, detailed parameters between 

various cotton cultivars are also specific. Especially, the temperature and accumulated 

temperature controlling a rational phenology of cotton vary among different cultivars. 

Because the APSIM/OZCOT model was developed based on cotton varieties and growth 

environment in Australia, cultivar parameters are first calibrated based on local crop varieties 

and climate prior to the application in different regions to minimize cultivar-related 

uncertainties (Zhao et al., 2014). These cultivar parameters used to calibrate are generally 

sensitive to the LAI and yield while non-sensitive parameters can be briefly treated (Cavero et 
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al., 1998). The calibration procedure for cotton mainly includes the calibration of cotton 

phenology and the growth process (such as yield and LAI). During the cotton growth period, 

the most influentially phenological parameters were calibrated first and then the yield and 

LAI parameters were calibrated for the APSIM model (Zhao et al., 2014). A logical 

phenology of cotton simulation is therefore a pre-step for LAI simulation.  

We proposed that cultivar parameters about phenological development within all cotton 

varieties in the study area are similar while the differences between them are only parameters 

controlling the yield formation, insect and disease resistance. Because these cotton varieties 

are all affected by the similar climatic condition, all cotton varieties belong to mid-late 

maturing varieties. In addition, most crop cultivar parameters are genetic and decided by crop 

varieties (Ma et al., 2013). Thus, parameters controlling the phenological development of 

cotton are basically consistent in the study area during 2006–2014.  

In order to obtain local cultivar parameters, we designed a test at the Aksu Station based on 

the observed soil, climate and agronomic data (such as the application date and amount of 

irrigation/fertilization, plant density, sowing date and row spacing) during two successive 

cotton seasons (2006–2007) at the Aksu station (Zhao and Hu, 2010). These data provide the 

detailed input data and initial conditions of the APSIM/OZCOT model, greatly reducing 

uncertainties in these data within the model. Meanwhile, we selected three sensitive 

parameters (FLAI, FRUDD8 and DDISQ) to calibrate local cultivars based on the sensitivity 

analysis of cultivar parameters. These parameters mainly focused on the LAI growth and 

phenological development of cotton. Since the phenology is controlled by GDD, a series of 

temperature parameters such as DDISQ and FRUDD were selected to adjust the phenology 

and yield formation of cotton. Additionally, the leaf area growth during the reproductive 

growth is controlled by the FLAI parameter. Similar to numerous researches (Ma et al., 2008; 

Guérif and Duke, 2000), a trial and error method and an optimization method were both 

employed to determine the selected parameters within crop models by minimizing the 

differences between the simulated values and the in-situ measurements. Additionally, the 

relevant article regarding the calibration of parameters at the Aksu Station (Yang et al., 2014) 

was used as a reference to obtain parameters for local cultivars. Meanwhile, the lint 

percentage and seed cotton weight per boll of a cotton variety were both obtained. 

The flowchart illustrates the procedure for executing and calibrating the APSIM/OZCOT 

model using meteorological, soil and agronomic data (Figure 4.11). First, the 

APSIM/OZCOT model was primarily modelled, driven by the meteorological data by 
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plugging in OZCOT, soil nitrogen and water, and other sub-modules as well as a series of 

agronomic practices. Then the simulated LAI and yield was validated against in-situ observed 

data by adjusting three selected parameters. After that, the best values for three selected 

parameters between 2006 and 2007 were obtained by minimizing the gap between the 

simulated and observed LAI and yield after a loop process. Finally, a trial and error method 

was employed to determine a hybrid cotton variety based on three optimized parameters 

between 2006 and 2007. Meanwhile, the validation to simulated LAI and yield based on the 

hybrid cotton variety was also assessed using three indicators. The relevant formulas (Jachner 

et al., 2007) are as follows: 
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   (4.7) 

where RMSE  is root-mean-square error; MAE is mean absolute error; R is the Pearson’s 

correlation; obsLAI and simLAI  are the observed and simulated LAI, respectively; obsLAI
−

and 

simLAI
−

are average observed and simulated LAI; n is number of external samples (remote 
sensing or field observations); and i is the number index.     

  

Figure 4.11 Schematic diagram of the calibration process of the APSIM/OZCOT cotton model 
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4.5.3 Assimilation strategies 
Based on the proposed framework in the second chapter, we emphasize on the detailed 

assimilation strategies (Figure 2.1). In addition to the APSIM/OZCOT model and remote 

sensing, an optimization platform with appropriate algorithms is critical to link these two 

parts. Meanwhile, an objective function is used to reflect the difference between the LAI 

derived from remote sensing, and crop model simulation. In this paper, the objective function 

of coupling remote sensing with the crop model is the root mean squared error (RMSE) 

between the simulated and observed LAI.   

Optimization algorithms 

Based on a summary of the literature regarding assimilation strategies between crop models 

and remote sensing, we also analysed and reclassified a series of assimilation algorithms, 

evaluating the computational speed, efficiency, accuracy and stability (Ines et al., 2013). This 

paper selected a Particle Swarm Optimization (PSO) approach and a general-purpose 

optimization based on the Nelder-Mead algorithm (Nelder and Mead, 1965) as assimilation 

algorithms because they are easy to implement with high computational efficiency and 

optimal performance. The general-purpose optimization based on the Nelder-Mead algorithm 

is included as an option for box-constrained optimization and simulated annealing (Nash, 

1990). 

The PSO algorithm was proposed in 1995 (Eberhart and Kennedy, 1995), which was derived 

from the predatory behaviour of birds. The most easy and effective predatory approach for 

birds is searching in regions where the nearest bird is near the food source (Kennedy et al., 

2001). A bird flock is considered a swarm and each individual in the swarm is considered a 

particle without quality and volume. If we assume that the swarm consisting of m  particles 

flies in a D-dimensional space with a certain velocity, each particle searches the historically 

best position and the best position of other particles in the swarm by updating the direction of 

movement and magnitude of velocity for each particle after iterations (Kennedy, 1997). Then 

their expressions are as follows (Eberhart and Shi, 2001; Wang et al., 2014),  

① the position of particle i is expressed as follows: 1 2( , ,..., )i i i idx x x x= , 1 i m≤ ≤ , 1 d D≤ ≤  

② the velocity of particle i is expressed as 1 2( , ,..., )i i i idv v v v=  

③ the historically best position of particle i is expressed as 1 2( , ,..., )i i i idp p p p=  

④ the historically best position of all particles within a swarm is expressed 
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as 1 2( , ,..., )g g g gdp p p p= . 

During each iteration, the position and velocity of a particle is generally updated based on 

individually and globally best positions. Their formulas (Eberhart and Shi, 2001) are as 

follows,    

                 1
1 2( ) ( )k k k k k k

id id id id gd idv w v c p x c p xε η+ = × + − + −                       (4.8) 

                                            1 1k k k
id id idx x v+ += +                                                    (4.9) 

where k is the iteration; w is the inertia weight; 1c  and 2c  are acceleration constants; ε and 

η are uniformly distributed random numbers in the range [0, 1]. In order to prevent the 

particles from drifting away from the searching space, the velocity of particle is limited to a 

maximum velocity range [−Vmax, Vmax]. In this research, both 1c  and 2c  generally take on a 

value of 2 (Eberhart and Shi, 2001) and the iteration ( w ) is 0.4 (Eberhart and Shi, 2001). The 

number of dimensions in the study is the number of agronomic parameters in the 

APSIM/OZCOT model.   

Specific processes of the PSO algorithm are as follows (Kennedy, 1997; Eberhart and Shi, 

2001) (Figure 4.12): 

Step 1：Setting up the threshold range for each parameter and randomly initializing the 

position and velocity of each particle within a swarm.  

Step 2：Evaluating the optimization fitness function (i.e., the cost function) of each particle 

in the APSIM/OZCOT model 

Step 3：For each particle, the cost function value (or position) of this iteration was used to 

compare with its best position (pbest) for all iterations. If the current value is better than pbest, 

its position is considered to be the current optimal position. Otherwise, its optimal position is 

not changed. 

Step 4：The optimal position of each particle in this iteration (pbest) is used to compare with 

the best position of the whole swarm (gbest) in previous iterations. If the value of a certain 

particle is better, its value is then considered to be the current global best position (gbest). 

Otherwise, the optimal position of the swarm is not changed. 

Step 5：Setting parameters of the velocity and position formula (Eberhart and Shi, 2001), and 

changing the velocity and position of each particle, respectively.    
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Step 6：If there is no cost function value or iteration that reaches a preset maximum number, 

the program returns to Step 2 and continues the iterative optimization until the termination 

condition is satisfied.       

Computational efficiency of PSO 

Prior to application of the PSO assimilation method, we tested the computational efficiency of 

the PSO assimilation method. There are two factors influencing the PSO efficiency, namely 

particles and iterations. In order to acquire the best results with a fast computational speed, a 

series of particles and iterations were selected to test their responses to PSO capacity based on 

the RMSE between the simulated and retrieved LAI from Landsat-8 OLI images (Figure 

4.13). According to the performance of particles, the RMSE decreased dramatically from 10 

to 15 particles while the change of RMSE was not significant. Therefore, the optimal number 

of particles was 15. Similarly, the performance of iterations showed that the optimal number 

of iterations was 60. Thus, the particles and iterations used in the assimilation at the field level 

were set as 15 and 60, respectively.  
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Figure 4.12 The flowchart of PSO algorithm (Kennedy, 1997) 

  

Figure 4.13 (a) The response of particles; (b) iterations to PSO capacity 
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5 Results and Discussion  

5.1 Cotton cultivation pattern  

According to the proposed cotton extraction model, the cotton cultivation pattern in 2014 was 

obtained based on Landsat-8 remote sensing images coupled with thresholds (Figure 5.1). 

The cotton extraction model includes three steps. First, the NDVI derived from DOY 168 was 

used to exclude non-vegetated areas (water, rice field with water, artificial land and bare land). 

The NDVI map at DOY 200 was used to extract arable land and woodland with high 

vegetation coverage. Then, the NDVI map at DOY 136 was used to extract lower coverage of 

vegetation and exclude the woodland. Finally, the cotton cultivation pattern was extracted 

(Figure 5.2) based on the rule that “If (NDVI168 > 0.09) and (NDVI136 < 0.1) and (NDVI200 > 

0.3) then we have a cotton cultivation area”.  

 

Figure 5.1 Flowchart of cotton cultivation extraction process 
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Figure 5.2 (a) Landsat 8 OLI images at DOY 232; (b) cotton cultivation pattern in 2014  

Regarding the accuracy of cotton cultivation classification, we mainly focused on the 

accuracy of small-size cotton fields. A long and narrow cotton field along a road in the 

northwestern study area was specifically used to test the accuracy of this classification 

algorithm. We used high spatial resolution images from Google Earth to ensure whether the 

region was a road or cotton field (Figure 5.3). The result showed that the long and narrow 

cotton field was accurately extracted and the classification algorithm based on phenology was 

creditable. Simultaneously, a total of 47 cotton fields for in situ LAI and yield observations 

and 15 other land cover samples (non-cotton farmlands) during field campaigns were also 

a 

b 
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introduced to test the accuracy of the classification. Additionally, 40 cotton field samples and 

43 non-cotton field samples were also collected from the Google Earth, which are evenly 

distributed in the study area. The ratio of the correct sample to the total sample is considered 

an indicator for evaluating the accuracy of cotton cultivation extraction. The results show that 

the classification accuracy of the cotton cultivation pattern is 89.7% (Table 5.1). Therefore, 

this classification algorithm was determined as a highly accurate method through the 

acquisition of the cotton distribution. 

Table 5.1 Accuracy assessment of cotton cultivation mapping  

Sample numbers Incorrect samples Correct samples Accuracy (%) 

145 15 130 89.7 

 

  

 

Figure 5.3 (a) Cotton extraction of linear fields; (b) Google Earth image; (c) the location of linear field 
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5.2 LAI maps derived from Landsat-8 OLI images  
The soil line determination from Landsat-8 OLI remote sensing images is the first step to 

extract PVI images. A two-dimensional space is then constituted by the red and near-infrared 

channels to acquire a soil line (Figure 5.4). In order to minimize the effects of water on the soil 

line, an NDWI (Normalized Difference Water Index) index was used to mask the water body 

information. Then, an algorithm proposed by Baret (Maas and Rajan, 2010) was performed to 

extract the soil line from Landsat-8 OLI remote sensing images. Thereby, the slope and 

intercept of the soil line were both obtained.  

  

  

Continued 
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DOY 72, NIR= 1.086994844* RED-0.002019263           

DOY 136 , NIR= 1.10741714*RED-0.00849347      

DOY 168, NIR = 1.047428517*RED+0.002005908  

DOY 200, NIR = 1.084513570*RED+0.003994049 

DOY 232, NIR = 0.993305179*RED -0.008429875 

DOY 248, NIR = 1.084310028*RED+0.003450165 

DOY 280, NIR = 1.000171447*RED+0.001021523 

Average soil line, NIR = 1.057734*RED-0.00121 

Figure 5.4 Soil lines from Landsat 8 OLI images of 2014 (the green line is the individual soil line 
corresponding to each image, and the blue line is the average soil line) 

The soil line is not a strictly straight line but a stripe with a suitable width. Therefore, the 

slopes of soil lines are different. In addition, the main factors (Baret et al., 1993b) affecting 

the bare soil line are: (1) external factors unrelated to the observed surface (sensor parameters, 

observation and illumination direction and atmospheric conditions); (2) soil surface 

conditions (e.g., orientation, roughness, shadow, crust and straw residues); (3) the inherent 

physical and chemical form impacting the spectral characteristics of soil (e.g., mineral 

composition, organic matter, moisture, particle size, soil structure). The soil water and the 

roughness on soil line have weaker impact (Baret et al., 1993b). Additionally, errors from the 

atmospheric correction can also lead to differences in slopes of soil lines.  

DOY 232 DOY 248 

DOY 280 
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For the same region, although parameters of the soil line fluctuate over time and are 

influenced by many factors, these changes are totally stable. Thus, we selected seven epoch 

Landsat-8 OLI images for soil line extraction based on the method mentioned above. The 

slope and intercept of the soil line were both analysed. Slopes of the seven soil lines ranged 

from 0.993305 to 1.107417 while the intercepts of the seven soil lines ranged from −0.00849 

to 0.003994 (Table 5.1). Stoner and Baumgardner (1981) published the results of soil lines 

with slopes ranging from 1.06 to 1.60 and intercepts ranging from −0.01 to 0.07. Thus, the 

slope and intercept parameters of these seven soil lines coincide with the results from Stoner 

and Baumgardner (1981), as the maximal slope of the seven soil lines is 1.107 and the 

minimal slope is 0.993305, with a mean and average deviation of slope of 1.06 and 0.038, 

respectively. The average deviation of slope is less than 0.1 indicating that the soil line 

changes over time but is relatively stable in the study area (Qin et al., 2012). This stability 

also explains the validity and reliability of this method in extracting the soil line. Additionally, 

the best soil line corresponding to remote sensing images was determined by comparing the 

position of the individual and average soil line in the NIR-RED plotting space (Figure 5.4). 

In addition to DOY 232 and 280, the other images used average soil line (Table 5.2). Finally, 

a series of Landsat-8 OLI remote sensing images from 2014 were all used to obtain PVI maps 

based on corresponding soil lines. 

Table 5.2 Comparison of individual soil line and average soil line 

DOY Slope Intercept   The best soil line 
72 1.086995 -0.00202  Average soil line 
136 1.107417 -0.00849  Average soil line 
168 1.047429 0.002006  Average soil line 
200 1.084514 0.003994  Average soil line 
232 0.993305 -0.00843   
248 1.08431 0.00345  Average soil line 
280 1.000171 0.001022   
Average 1.057734 -0.00121   
 

A linear relationship between the observed LAI and PVI was obtained with a R2 of 0.8777 

(Figure 5.5). The relationship shows that there is data gap within the PVI range between 0.1 

and 0.2 due to lack of observed LAI in June. The designed field campaign planning aims to 

collect the LAI at early (May), middle (July) and late growth stage (September) of cotton. 

However, cotton grows rapidly and LAI expands exponentially in June. Additionally, the soil 

disturbance within cotton fields at the early growth stage, personal errors and systematic 

errors from the LAI-2000 equipment also affect the accurate LAI measurement. After 
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supplementing these observed LAI data, the relationship between observed LAI and PVI 

probably appears nonlinear since the relationship between biophysical, chemical parameters 

of vegetation and the spectral reflectance has been proven nonlinear (Kokaly and Clark, 1999). 

LAI maps within 2014 were then mapped according to this regression model between the 

observed LAI and PVI derived from Landsat-8 OLI remote sensing images (Figure 5.6). 

 

 

Figure 5.5 The relationship between observed LAI and PVI derived from Landsat 8 OLI images 
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Figure 5.6 LAI maps derived from Landsat 8 OLI remotely sensed images within 2014 

 

Due to personal and systematic errors, lack of LAI observations in June as well as non-fully 

synchronized time (day-to-day) between remote sensing observations and field observations, 
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the observed LAI resulted in a bias of the remote sensing derived LAI. Then we analysed the 

bias between remote sensing derived and observed LAI. The observed LAI from these six 

cotton fields (namely A09, A10, A21, A23, A24 and G20) was weakly affected by soil 

disturbances and personal errors during the field campaign in May. Therefore, these six cotton 

fields were selected to reveal the bias of remote sensing derived LAI. The in situ observed 

LAI in these six cotton fields may be higher or lower than LAI derived from remote sensing 

images. Then the RMSE between remote sensing derived LAI and observed LAI for these six 

cotton fields during three field campaigns was obtained. Afterwards, the error bars (remote 

sensing derived LAI ± ½ RMSE) at DOY 136, 200 and 248 (three field campaigns) were 

obtained to reveal the accuracy of remote sensing derived LAI. Additionally, we also used the 

optimized LAI curves from the APSIM/OZCOT model to check the reliability of the LAI 

from the equation between the remote sensing derived PVI and observed LAI (Figure 5.7). 

The result showed that the LAI curves after the optimization for the six fields were close to 

the error range at DOY 136, 200 and 248 though these curves did not fully pass through these 

error ranges. Thus, the remote sensing derived LAI can be considered an accurately external 

observation for the APSIM/OZCOT model simulation though they have some biases.  
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Figure 5.7 The error bar of 6 fields between remote sensing derived and in situ observed LAI (the red error 
bar is the RMSE between remote sensing derived LAI and in situ observed LAI) 

5.3 APSIM-based yield prediction  

 Sensitive parameters 

The OAT method was initially used to test the sensitivity of parameters to LAI dynamics. The 

result showed that there were ten cultivar parameters (Table 4.2) sensitive to LAI dynamics, 

namely SQCON, FCUTOUT, FLAI, DDISQ, DLDS_MAX, POPCON, FBURR, ACOTYL, 

RLAI and FRUDD3 (Figure 5.8). The sensitivity of soil parameters (Table 4.3) is less than 

G20 

A21 

A09 

A23 

A10 

A24 



 5 Results and Disscussion 58 

the cultivar parameters (Figure 5.9), while the four agronomic parameters (Table 4.4) were 

all sensitive to LAI dynamics (Figure 5.10). Then we tested the sensitivity of these cultivar 

parameters and four agronomic parameters to the LAI using an EFAST global sensitivity 

analysis method. Because five major cotton varieties were cultivated in 2014, we selected five 

corresponding cotton fields to test the sensitivity of parameters to LAI dynamics. Figure 5.11 

shows the distribution of the global sensitivity of parameters to the LAI of five cultivars from 

five cotton fields (A01, A05, A09, A22 and A10). We also obtained the average global and 

local sensitivity index of parameters to the LAI at these five cotton plots (Figure 5.12). 

According to sensitivity of these parameters to the LAI, the results showed that one cultivar 

parameter (RLAI) and four agronomic parameters (row spacing, sowing density per row, 

irrigation and fertilization amount) were the most sensitive to the LAI dynamics of cotton. 

The RLAI parameter is the base rate of leaf growth before the first square event, which makes 

LAI expands exponentially until the first square event. Therefore, RLAI is most sensitive to 

LAI dynamics. Numerous investigations have confirmed similar agronomic parameters using 

global and local sensitivity analysis methods based on various crop growth models (Jiang et 

al., 2011; Wu et al., 2009; Zhang and Su, 2012). Similar to these studies, these agronomic 

parameters of cotton in this research are difficult to obtain on a regional scale. Thus, wide 

application of the crop model is limited on a regional scale.  
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Figure 5.8 Sensitivity of 10 major cultivar parameters to LAI dynamics 

 

  

Figure 5.9 Sensitivity of two soil parameters to LAI dynamics 
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Figure 5.10 The sensitivity analysis of agronomic parameters to LAI dynamics 
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Figure 5.11 Error bar of global sensitivity of parameters at five plots to LAI dynamics 
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Figure 5.12 (a) Average global sensitivity; (b) and local sensitivity of parameters to LAI dynamics 

APSIM/OZCOT model calibration  

First, the PSO optimization method was used to optimize cultivar parameters by minimizing 

the difference between the simulated and observed LAI during 2006–2007 (Figure 5.13). The 

best parameters were obtained for 2006 and 2007, as follows (Table 5.3).  

Table 5.3 Optimized cultivar parameters in the APSIM/OZCOT model 

 DDISQ FLAI FRUDD8 RMSE 
2006 300 0.50 998.49 0.388 
2007 357.90 0.55 1029.03 0.367 
Hybrid 330 0.52 1015  

a 

b 
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Figure 5.13 The difference between simulated and observed LAI between 2006 and 2007  

According to these results and the relevant article (Yang et al., 2014), we initially determined 

a hybrid variety of cotton using the trial and error method (Table 5.3). The simulated lint 

yield of cotton using this hybrid cultivar was 2755 and 2525.1 kg/ha in 2006 and 2007, 

respectively, and the yield was 6028.45 and 5525.38 kg/ha. Additionally, the observed cotton 

yield was 5251.7 and 5265.4 kg/ha in 2006 and 2007, respectively (Table 5.4). The difference 

between the observed and simulated yield was 776.72 kg/ha and 259.98 kg/ha in 2006 and 

2007. In total, the yield simulation of the APSIM/OZCOT model after calibration at the Aksu 

Station was accurate and can be widely applied.  

 Table 5.4 Accuracy of the simulated and observed yield during 2006-2007 

 Lint yield (kg/ha) Lint percent (%) Yield Simulation Yield Observation Gap 
2006 2755 45.7 6028.45 5251.73 776.72 
2007 2525.1 45.7 5525.38 5265.4 259.98 
                             

Then, the comparison between the simulated and observed LAI was used to verify the 

accuracy of this hybrid cultivar in the APSIM/OZCOT model (Figure 5.14). The coefficient 

of determination was 0.83 and 0.97 in 2006 and 2007, respectively, with a significant positive 

correlation. The RMSE and MAE between observed and simulated LAI was 0.45 and 0.33, 

respectively, in 2006. Additionally, the RMSE and MAE between observed and simulated 

LAI was 0.46 and 0.41, respectively, in 2007. The Pearson’s correlation coefficient was 0.913 

at the 0.05 level (significant correlation at .05 level, bilaterally) in 2006. In addition, the 

Pearson’s correlation coefficient was 0.988 at the 0.01 level (significant correlation at .01 

level, bilaterally) in 2007.  

 

2006 2007 
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Figure 5.14 Correlation analysis of simulated and observed cotton LAI during 2006-2007 

Therefore, the main cultivar parameters (Table 5.5) of the cotton cultivar variety (hybrid 

XLZ37) in the study area were finally obtained. Then the XLZ37 cotton variety within the 

OZCOT model can be used for the assimilation between remote sensing and crop growth 

model in the next step.  

Table 5.5 Initial parameters of OZCOT model calibration 

Parameters Value Definition 

DDISQ 330 Growing degree-day accumulation to the first square 

Percent_I 45.7 Percentage lint in boll yield by weight 

SCBOLL 6.1 Weight seed cotton per boll 

Baset 12 Minimum temperature as a base for temperature calculations 

FLAI 0.52 Varietal adjustment for rate of LAI gain per fruiting site 

FRUDD1-8 55-1015 55, 190, 390, 410, 590, 650, 900, 1015 

 Assimilation at the field scale 

Parameters that require optimization are sensitive to the LAI; however, they are difficult to be 

determined and obtained on a large scale. According to the sensitivity analysis of parameters 

from the APSIM/OZCOT model, four agronomic parameters namely row spacing, sowing 

density per row, fertilization and irrigation amount were the most sensitive to LAI dynamics. 

Meanwhile, obtaining these four parameters on a regional scale was difficult, and the 

accuracy of these parameters from questionnaires is also limited. Therefore, this paper 

selected row spacing, sowing density per row, fertilization and irrigation amount as 

parameters to be optimized (Table 5.6). The initial values and ranges of these parameters 

were also defined prior to the optimization between the observed and simulated LAI. The 

initial values for four parameters were determined according to Gao (2014).  

 

 

RMSE=0.45 
MAE=0.33 

RMSE=0.46 
MAE=0.41 
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Table 5.6 Initial value and ranges of parameters within APSIM model 

Parameters Initial value Value range 

Row spacing 460 mm 350-550 mm 
Sowing density per row (plants/m2 in row) 9.2 1-12 
Irrigation per time 60 mm  50-90 mm 
Total fertilization (urea) 900 kg/ha 500-1600 kg/ha 

The row spacing changes with cotton cultivar (Wang et al., 2002), machine size (the track 

wheel) and sowing modes (DAXUAR, 2001). Figure 5. 15 shows a common mode of cotton 

cultivation in the study area. The narrow spacing ranges from 200 to 300 mm while the wide 

spacing ranges from 500 to 600 mm (Liu et al., 2011b; Yang et al., 2014; Wang et al., 2002). 

Additionally, the wide and narrow rows are 650 and 120 mm, respectively, during the field 

campaign. Additionally, salt, drought and sandstorms can minimize the number of plants. 

Although these two sowing modes vary, the difference in the row spacing should be narrow. 

Thus, the range of row spacing was assigned from 350 to 550 mm.  

According to the relevant articles (Liu et al., 2011b; Yang et al., 2014; Gao, 2014), the sowing 

density ranges from 15 to 28.6 plants/m2.  Therefore, we defined the sowing density as 15 to 

35 plants/m2. In the APSIM model, the sowing density is controlled by two parameters: row 

spacing and sowing density per row (plants/m2 in row). Based on ranges of row spacing and 

sowing density, the sowing density per row (plants/m2 in row) within the APSIM model was 

finally determined (Table 5.6).   

Regarding the agronomic practices in the APSIM/OZCOT model, the winter and spring 

irrigation were both determined by questionnaires and interviews. Generally, the winter 

irrigation occurs in November after harvesting while the spring irrigation occurs in February 

before the sowing event. Both the spring irrigation and winter irrigation are generally applied 

to press the salt and maintain the soil moisture within the cotton fields. The winter and spring 

irrigation amounts are about 225 and 285 mm, respectively, between mid-November and 

February. Thus, these two specific irrigation events in the study area are critical for cotton 

cultivation and soil moisture. During Early-Mid June, the first irrigation during the growth 

period is normally implemented. Prior to this event, no irrigation event occurs during the 

growth period. Regarding the application amount of irrigation, it is mainly decided by the soil 

moisture within cotton fields, generally ranging from 50 to 90 mm (Gao, 2014). According to 

the technical specification of cotton in the Alar (Gao, 2014), the irrigation during the growth 

period is approximately 60 mm per time and there is a total of 9–10 times irrigation. Irrigation 
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events in the growth period are terminated in late August with an interval of 7–10 days. 

Meanwhile, fertilization and irrigation time was averaged from 34 surveying cotton plots 

during 2010–2014. It is also basically consistent with relevant articles and reports from 

military cotton planting in Alar. The dates are as follows: 10-June, 20-June, 01-July, 10-July, 

17-July, 25-July, 01-August, 10-August and 20-August.   

In addition to irrigation, fertilization is also important for cotton growth and yield formation. 

Fertilization is generally divided into the basal manure and top dressing. The basal manure is 

implemented before or at the sowing event and the nitrogen amount is about 150 kg/ha. 

Regarding top dressing events, the date and frequencies are both consistent with irrigation 

events during the growth period. Meanwhile, fertilization dissolved in water is transported to 

the cotton fields with a total amount during growth period of approximately 500–1600 kg/ha.    

 

Figure 5.15 An illustration of the commonly used sowing mode in study area 

We used the PSO method to minimize the variation between the LAI retrieved from Landsat-

8 OLI images and the simulated LAI from the crop model. Then, we compared the simulated 

LAI using the mono APSIM/OZCOT model and assimilated LAI using the coupled remote 

sensing and APSIM/OZCOT model with the LAI retrieved from remote sensing images at the 

Aksu Station (Figure 5.16). The results showed that the difference between the remote 

sensing derived LAI and the assimilated LAI based on the PSO method was smaller, and the 

RMSE between them was only 0.75 m2/m2. Compared to the mono APSIM/OZCOT model 

simulation, the hybrid method between remote sensing and the crop model have a better 

fitting degree between retrieved and simulated LAI. Therefore, it perfectly met the 

requirement of assimilation between remote sensing and the crop model.  
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Figure 5.16 The match between remote sensing derived LAI and initial LAI using APSIM/OZCOT model, 
simulated LAI after the PSO assimilation at the Aksu Station 

In order to validate the accuracy of assimilations from the coupled remote sensing and 

APSIM/OZCOT model, a total of ten cotton fields (Figure 3.1b) with the in-situ yield 

observation were selected to construct coupling models between remote sensing and the crop 

model based on the PSO method. A quantitative assessment of the coupled model was 

performed by comparing the simulated cotton yield after assimilation with the corresponding 

observed yield. Assimilation results showed that the yield estimation after the assimilation 

was very close to the field-observed values and the coefficient of determination was as high as 

0.82 (Figure 5.17b). The difference between the observed and assimilated yields for the ten 

fields ranged from 18.2 to 939.7 kg/ha. Meanwhile, two indicators, RMSE and MAE, were 

also used to assess the error between the observed and assimilated yield. The RMSE and 

MAE was 417.5 and 303.1 kg/ha, respectively. The Pearson’s correlation coefficient was 

0.932** at 0.01 level (significant correlation at .01 level, bilaterally). 

Compared to the yield estimation using the mono APSIM/OZCOT model simulation based on 

the recommended values of parameters (Figure 5.17a), the assimilation strategy between 

remote sensing and APSIM/OZCOT model performed better on the yield simulation. In 
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addition to Aksu station, the simulated LAI using the APSIM/OZCOT model and remote 

sensing observations at the other cotton fields more closely approximated the remote sensing 

observation compared to the mono APSIM/OZCOT model (Figure 5.18). Thus, the strategy of 

coupling the APSIM/OZCOT model with the remote sensing observations is a more accurate 

method to obtain the LAI growth process and yield estimation of cotton. 

 

 

Figure 5.17 (a) the relationship between the observed and simulated yield of 10 cotton fields using the 
mono APSIM/OZCOT model; (b) the relationship using PSO method 
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Figure 5.18 The relationship between observed and assimilated LAI using PSO method, simulated LAI 
using mono APSIM/OZCOT model at 9 cotton fields   

5.4 Regional assimilation results and discussions  

Algorithm selection on the regional assimilation 

Time consumption with 15 particles and 60 iterations was about 0.83 hours. In this paper, 

there are a total of 240 000 cotton cultivation pattern pixels. Therefore, application of the PSO 

method at pixel level would consume approximately 22.7 years (240 000×0.83 / (24×365)). 

The computational efficiency is the largest obstacle for the application of assimilation on a 

regional scale. Therefore, comparisons between the PSO and general-purpose optimization 

method (based on the Nelder-Mead algorithm) were analysed on a field scale based on the 

computational efficiency, simulated LAI curve and accuracy (RMSE). We selected nine 

cotton fields with in-situ yield and LAI observations covering the entire study area. The result 

at the Aksu station showed that the computational efficiency of the general-purpose 

optimization (based on the Nelder-Mead algorithm) is faster than the PSO, though the PSO 

method only used 15 particles and 10 iterations (Figure 5.19). The RMSE between the remote 

sensing derived LAI and simulated LAI using the general-purpose optimization method 

(based on the Nelder-Mead algorithm) was greater than the PSO, while their LAI curves were 

A63 A65 

A66 
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similar. Then, we selected the other seven fields, which were uniformly distributed in the 

study area, to compare the results between the PSO and general-purpose optimization method 

(based on the Nelder-Mead algorithm) (Figure 5.20). The results revealed that two methods 

had similar effects (similar RMSE and LAI curves), while the computing speed of the 

general-purpose optimization method (based on the Nelder-Mead algorithm) was faster than 

the PSO method (Table 5.7). Thus, we can use the general-purpose optimization method 

(based on the Nelder-Mead algorithm) on a regional scale in the following analysis. 

 

Figure 5.19 The comparison between PSO and general-purpose optimization method (based on the Nelder-
Mead algorithm) at Aksu station  

Table 5.7 The comparison between computational time and RMSE at various fields 

 PSO General-purpose optimization (based on Nelder-Mead algorithm) 

 Speed/Minutes RMSE Speed RMSE 
A63 9.35 0.59 3.29 0.73 
A66 9.46 0.46 2.28 0.508 
A07 9.60 0.40 5.5 0.54 
A18 9.64 0.10 2.8 0.20 
A25 9.36 0.27 3.85 0.27 
G15 10.01 0.49 3.69 0.44 
G25 9.64 0.34 2.28 0.44 
G32 9.58 0.52 4.35 0.75 

Nelder-Mead method, time= 2.65mins, RMSE=0.55 

PSO, time= 9.70mins, RMSE=0.30 

Aksu station 
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Figure 5.20 The comparison between PSO and general-purpose optimization method (based on the Nelder-
Mead algorithm) at other fields  
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 Regional assimilation scheme 

Although the computational efficiency of the general-purpose optimization method (based on 

the Nelder-Mead algorithm) is faster than the PSO algorithm, the assimilation on a regional 

scale based on each pixel is also a huge amount of work. Therefore, we analysed several 

schemes to obtain the spatial distribution of LAI and agronomic parameters. The generated 

grid can also divide the study area into the equivalent grids, while it breaks the boundaries of 

the cotton lands. Parts of the grids include various cotton fields, and it is difficult to provide a 

reasonable and efficient pathway for agronomic management for each cotton field. Finally, 

the scheme of using the cotton fields extracting from the Landsat-8 OLI images was 

considered the basic unit. This scheme is easier to provide scientific and convenient evidence 

for cotton management.  

Additionally, we also divided the simulation of LAI within a growth season simulated by the 

APSIM/OZCOT model into three stages, namely the emergence-early stage, middle stage and 

late stage (Table 5.8; Figure 5.21). Then the computational efficiency dropped a lot. 

Meanwhile, a general-purpose optimization method (based on the Nelder-Mead algorithm) 

within the R package was used to replace the PSO algorithm due to its highly operational 

efficiency. A systematic framework was also considered when simulating the mid-late stage 

of LAI because LAI growth is a continuous process. In addition to assimilated parameters at 

different stages, the optimized parameters after assimilation at former stages were also 

considered. The optimized parameters from the early stage were therefore introduced in the 

assimilation of the mid-late stage.  

Table 5.8 Descriptions of cotton LAI growth 

 DOY of RS Observation Duration 
Emergence-early stage 136, 168 Mid-April -- Mid-June 
Middle stage 200, 232 Mid-June -- Late August 
Late stage 248, 280 After early September 
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Figure 5.21 Cotton LAI development stages simulated from the APSIM/OZCOT model 

Regional assimilation at the early stage 

Due to a small region with flat terrain in the study area and only a meteorological station, the 

climatic condition can be considered homogeneous. Meanwhile, we also consider the soil 

condition homogeneous though soil conditions spatially vary. Then APSIM/OZCOT model 

expects crop growth conditions by the adjustment of parameters within the model. During the 

early period of cotton growth, there are two remote sensing observations (DOY 136 and 168) 

and the major agronomic practice is the sowing density.  

Regarding the early growth stage of LAI growth, the LAI is mainly controlled by the plant 

population when the emergence event occurs. Due to the lack of irrigation and fertilization 

events during this period, LAI growth is decided by the sowing density per row and row 

spacing. Both sowing density per row and row spacing decide the sowing density of cotton. 

Additionally, the sowing density is a regional parameter, varying among the different fields, 

which is affected by weather disasters (hail, sandstorms and drought), soil moisture, soil 

texture and salinity. The row spacing and plant spacing are both affected by sowing machines, 

which mainly control potential plant populations. However, the soil moisture, texture and 

salinity affected by agronomic practices and natural conditions mainly control the emergence 

of cotton. In addition, weather disasters are able to impact the survival rate of cotton seedling. 

Thus, we conclude that the sowing density is an easily dynamic parameter when upscaled in 

the APSIM/OZCOT model from the field to the regional level. Therefore, we selected the 

 

Emergence-
early stage 

 

                 Middle stage 

                 Late stage 
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sowing density per row and row spacing as two key parameters to adjust the dynamics of the 

LAI to fit the corresponding remote sensing observations on a regional scale.  

Prior to assimilating the LAI derived from remote sensing images and the APSIM/OZCOT 

model, a data normalization was first implemented due to the different ranges of the two 

parameters. After the normalization, parameters are both assigned to the range of 0–1, under 

the same standard. The formula (Aksoy and Haralick, 2001) is as follows,  

      min

max min

x xPar
x x

−
=

−
                                 (5.1) 

where Par  is the parameter after the normalization; x is the initial parameter; and maxx and 

minx are the maximal and minimal parameters before normalization.  

The result shows that the row spacing varies from about 350.02 to 488.65 mm (Figure 5.22a) 

and the density per row varies from 1 to 11.99 plants/m2 (Figure 5.22b). Moreover, the 

spatial distribution of the row spacing is higher in the northern study area than the southern 

region. Conversely, the spatial distribution of the density per row is lower in the northern 

region than the southern study area. The RMSE of LAI ranges from 0.06 to 0.89 and the mean 

RMSE is 0.22 (Figure 5.22c). The frequency of the RMSE is near 0.2 (Figure 5.23). The 

spatial distribution of the RMSE for assimilated results also showed that this method was 

feasible and robust with a higher credibility on a regional scale (Figure 5.22c; Figure 5.23). 

Based on these two parameters (row spacing and density per row), the sowing density of 

cotton was finally obtained. The result shows that the sowing density varies from about 2.4 to 

34.2 plants/m2 (Figure 5.24a). In addition, the sowing density in the northern study area is 

less than the southern region (Figure 5.24a). The sowing density was largest in the southwest 

region of the study area where state demonstration zones of high yield cotton fields were 

located, based on questionnaires.  

The quality of the cotton fields is closely related to the emergence and yield of cotton while 

directly related to the cultivated ages of arable lands, because long-term cultivation increases 

the humus content in the soil (Migdall et al., 2012). Thus, the temporal and spatial dynamics 

of arable lands were analysed based on multi-temporal remote sensing images. Figure 5.24(b) 

shows the arable land dynamics in the study area during 2001–2013. The red, green and blue 

colours show the distribution of arable lands in 2001, 2008 and 2013 by employing the 

magnitude of the MODIS EVI (Mader, 2013). Permanent arable lands (stable arable land from 

2001 to 2013) are mainly distributed in southern region. Reclamations driven by the economic 
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development occurred in the northern study area during 2001–2008. During 2008–2013, the 

reclamation also mainly appeared in the northern study area. Low sowing density was 

primarily located in the northern region of the study area while high sowing density was 

located in the southern region, illustrated by the spatial analysis distribution of plant density 

and arable land reclamation. This point of view is also consistent with the spatial distribution 

of the high-standard Farmland Construction project (Figure 5.25). The scope of this project is 

located in the southwest of study area by overlying the distribution map of this project and the 

Landsat OLI image at DOY 232 (Figure 5.25a, b). This project aimed to pursue higher yield 

of cotton by improving the soil fertility and irrigation facilities of arable lands.  
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Figure 5.22 (a) Spatial distribution of row spacing; (b) Spatial distribution of density per row; (c) RMSE 
distribution of LAI adjusting APSIM to optimally match satellite observed LAI 

c 

b 
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Figure 5.23 Frequency of LAI RMSE for each cotton field at early growth stage 
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Figure 5.24 (a) Spatial distribution of sowing density by adjusting APSIM to optimally match satellite 
observed LAI; (b) land use dynamics based on MODIS EVI (from Mader, 2013) 
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Figure 5.25 (a) Landsat 8 OLI image at DOY 232; (b) High-standard Farmland Construction project in the 

southwestern study area overlaying on the Landsat image (yellow color is farmland) 

In addition to arable land dynamic analyses based on remote sensing images, we also obtained 

the spatial distribution of the woodland belt surrounding arable lands by the field survey and 

by questionnaires. Sparse woodland belt and regions lacking a woodland belt surrounded 

recently reclaimed arable land in the northern study area (Figure 5.26a). In this case, cotton 

plants cultivated in these recently reclaimed arable lands are easily destroyed by wind erosion 

at the early growth stage of cotton. During the field survey, seedlings of cotton were buried 

and killed by sandstorms in the northern study area, affecting the survival rate of seedlings 

(Figure 5.27). In addition, parts of recent reclamations in the northern region are located close 

to deserts, and as such, the soil texture is not suitable for cultivating cotton (Figure 5.26b). 

Meanwhile, deserts provide a convenient source for sandstorms, which can seriously 

undermine recently cultivated arable lands.  

 

 

 

a b 
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               (a), Artificial windbreak in the cotton field 

                             (b), Sand in the cotton field  

                             (c), Soil salinity in the cotton field   

Figure 5.26 Photos illustrating various factors influencing the emergence and survival rate of cotton 
seedling 

Based on questionnaires and interviews, northern reclamations belong to private companies 

while southern arable lands belong to military farmland. Southern arable lands have been 

equipped with more perfect irrigation facilities compared to the northern region. The 

southwestern study area is administrated by the Group 8, 1st Agricultural Division with a 

national agricultural development (high standard farmland construction) project. During 

2011–2013, numerous tasks were implemented to improve the quality of cotton fields, 

including construction of an irrigation system and canal seepage, soil improvement, 

windbreak updating, land levelling and agricultural technical training. The usage period of 

reclamation in northern region is approximately 20–30 years. To pursue higher profits and 

decreasing costs, these recent reclamations are generally not equipped with updated irrigation 

facilities. Therefore, differences in equipment and facilities of arable lands were apparent.   

Meanwhile, the piped irrigation is first used to irrigate military arable land in the south of the 

study area prior to recently reclaimed farmlands in the north of the study area. Additionally, 

high soil salinity in northern cotton fields led to decreases in cotton seedling emergence. In 

conclusion, poor soil texture and irrigation equipment, high salinity and missing woodland 

belts have resulted in a low emergence rate and low survival rate of cotton seedlings at the 

early growth stage in the northern region (Figure 5.26). 

c 

b a 



 5 Results and Disscussion 83 

  

  

Figure 5.27 Photos of (a) sandstorms; (b) cotton plants without disaster at the same day; (c) damaged cotton 
plants caused by sandstorms; (d) a dead cotton caused by the sandstorm 

Regional assimilation at the mid-late stage 

During the mid-late period of cotton growth, there are four remote sensing observations 

(DOY 200, 232, 248 and 280) and the major agronomic practices are fertilization and 

irrigation. The middle period is a stage of dramatic change in LAI due to the co-existence of 

vegetative and reproductive growth, greatly dominated by agronomic practices such as 

irrigation and fertilization. Furthermore, the effects of water and fertilizer in the early (before 

mid-July) and late period (after mid-July) vary considerably different functions in the 

dynamics of the LAI and yield formation at this stage. Early irrigation and fertilization aim to 

promote the vegetative growth and the early squaring event of cotton. As a result, the growth 

stage of cotton is consistent with climatic conditions, i.e., the boll formation stage is 

consistent with the stage providing best light and temperature. Irrigation and fertilization 

application during the early period aim to accelerate the vegetative growth for a rational 

canopy structure and height. A sufficient canopy height of cotton can produce fruit branches 

and flowers and form cotton bolls. Therefore, the irrigation and fertilization events before July 

aim to build a rational canopy structure and optimal phenology of cotton. 

a b 

c d 
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Mid-late July contains an alternating phase between the vegetative and reproductive growth 

periods. Therefore, increasing agronomic practices, such as irrigation and fertilization, 

promote rapid growth and a high yield of cotton. These measures transfer vegetative growth 

into reproductive growth by controlling the plant height and canopy growth of cotton. Finally, 

August is a prosperous reproductive growth period for cotton. Therefore, more irrigation and 

fertilization can prevent shedding of flowers and bolls. Sufficient irrigation and fertilization 

application is critical for anti-shedding caused by nitrogen and water stresses during this 

period. These conclusions were also confirmed by in-situ experiments (Wang et al., 2002) 

(Figure 5.28), which are as follows.  

 

Figure 5.28 Cotton dry matter accumulation rate and its group genital dry matter accumulation rate in study 
area (Wang et al., 2002) 

The late stage of LAI growth is a period for harvesting and leaf senescence. Generally, no 

irrigation and fertilization events occur. Therefore, the leaf senescence is the most critical 

factor influencing the LAI at the late stage, and it is decided by GDD (McMichael and 

Hesketh, 1982). Leaf longevity is also controlled by water. Early water stress can delay 

development and strengthen the life of the leaf, while late water stress can accelerate the leaf 

senescence (Hearn, 1994). In summary, leaf senescence is a function of GDD modified by the 

soil water and boll survival. Therefore, the amount of irrigations at the middle stage can affect 

the soil water. We mainly used the irrigation and fertilization amount as parameters to adjust 

the LAI at the middle stage of cotton growth. Additionally, the amount of irrigation at the 

middle stage can affect the LAI dynamics at the late stage of cotton growth. Therefore, we 

assimilated the middle and late growth stages using four remote sensing observations and two 

regional parameters, namely the irrigation and fertilization amount.  
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Similar to the simulation at the first stage, the irrigation and fertilization amount were also 

normalized to a range of 0–1 in order to ensure an identical standard. Then, these two 

parameters were used to assimilate the LAI from APSIM simulation and remote sensing 

inversion on a regional scale. Prior to this process, the optimal density specific to each cotton 

field was first introduced into the assimilation step at the mid-late stage. After the assimilation, 

the irrigation per time and the total fertilization amount on a regional scale were obtained by 

the APSIM/OZCOT model. The irrigation amount per time on a regional scale ranges from 

58.14 to 89.99 mm (Figure 5.29a). In the mid-late period, the flood from Tarim River can 

relieve the shortage situation of water, especially in the northern study area. Therefore, the 

irrigation amount in the northern study area can also dramatically increase to maintain 

moisture in sandy soil. Meanwhile, the total urea fertilization mainly ranges from 500.35 to 

1598.59 kg/ha (Figure 5.29b). The assimilated nitrogen fertilization is also close to the 

findings from the nearby counties in the Tarim Basin (Wang et al., 2005). On the contrary, it 

also confirms the accuracy of the fertilization range in the Table 5.6. The variations in spatial 

distribution of irrigation and fertilization were decided by the APSIM/OZCOT model after 

minimizing the gap between remote sensing retrieved LAI and model simulated LAI. The 

RMSE between the model simulated and remote sensing observed LAI approximately ranges 

from 0.07 to 1.57 m2/m2 (Figure 5.29c). The frequency of the RSME was mainly located in 

the range of 0.4–0.6 m2/m2 (Figure 5.30). Based on these four optimized parameters, the 

regional cotton yield was also obtained by the APSIM/OZCOT simulation. The estimated 

cotton yield ranged from 1489 to 8895 kg/ha (Figure 5.31). The spatial distribution was also 

consistent with the arable land reclamation. The highest cotton yield was from the southern 

part of study area while the northern part had the least yield. 
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Figure 5.29 (a) Spatial distribution of irrigation per time; (b) spatial distribution of total urea fertilization; (c) 
the RMSE of LAI between remote sensing observations and APSIM/OZCOT simulations 

a 

b 

c 



 5 Results and Disscussion 87 

 

Figure 5.30 Frequency of RMSE of LAI for each cotton fields at mid-late growth stage 

 

Figure 5.31 Spatial distribution of cotton yield at the end of growth season 

The spatial distribution of irrigation is higher in the northern part, while it is lower in the 

southern part. Conversely, the spatial distribution of fertilization is lower in the northern part 

compared to the southern part. Meanwhile, we tested the effects of different combinations 
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between irrigation and fertilization on the cotton yield with in-situ observed soil profiles. 

Fertilization ranges from 0 to 1500 kg/ha and irrigation ranges from 10 to 100 mm. When 

irrigation is fixed, the yield increased with an increase in fertilization. After the maximum 

yield, the yield maintains a stable level and decreases a bit when urea fertilization is added 

(Table 5.9). However, the effect of irrigation on the yield under stable fertilization was 

complex. Additionally, we found four major combinations as follows: 

(1) Combination of high fertilization and high irrigation generally causes the maximum yield.  

(2) Combination of high fertilization and low irrigation generally causes a medium yield.  

(3) Combination of low fertilization and high irrigation generally causes the minimum yield.  

(4) Combination of low fertilization and low irrigation generally causes a low yield.  

Based on these phenomena, it can be concluded that the high irrigation inhibits the growth of 

cotton. 

Table 5.9 The response of various combination of irrigation and urea fertilization to yield (kg/ha) (taking 
cotton field A04 as an example) 

Irrigation (mm)  
Fertilization (kg/ha) 

1500 1000 600 500 400 300 200 100 76 50 20 10 0 

0 2166.8 2167.3 2152.9 2150.2 2085.7 2018.1 1883.2 1576.8 1429.1 1184.1 861.7 827.8 827.8 

10 2267.6 2268.8 2269.8 2269.7 2268.4 2341 2214.7 1397.9 1231.6 1068.5 862.1 838.6 838.6 

30 2270.2 2274.6 2284 2288.6 2291.4 2304.3 2224.1 1701 1518.9 1240.5 1024.8 1024.8 1024.8 

40 2892.9 2881.9 2873.9 2874.7 2845.3 2740 2285 1354.3 1231.2 977.4 839.5 839.5 839.5 

55 2598.2 2602 2612.4 2614.6 2617.1 2368.1 2023.5 1256.2 1135.4 861 682.5 682.5 682.5 

60 2566.7 2568.4 2571.7 2589.9 2493.2 2261.7 1999.8 1376.1 1200.4 906.1 730.1 730.1 730.1 

70 3211.6 3211.8 3210.5 3207.3 3118.3 2653.5 2072.7 1241.5 1111.9 889.1 740.7 740.7 740.7 

80 3212.6 3212.5 3215.8 3212.4 3117.6 2569.3 1750.8 1172.7 1014.5 843.2 706.3 706.3 706.3 

100 3103.6 3103.2 3099 3092.5 2561.5 2272.9 1506.8 1005.8 840.5 686.3 631.5 631.5 631.5 

In conclusion, these spatial variations of irrigation and fertilization were caused by the 

APSIM/OZCOT model by adjusting these two parameters to minimize the difference between 

the remote sensing retrieved LAI and simulated LAI from the APSIM/OZCOT model. Thus, 

the spatial relationship between irrigation, fertilization and yield on a regional scale reveals 

similar results—high irrigation and low fertilization causes the low yield in the northern part 

while low irrigation and high fertilization causes high yield in the southern part of study area. 



   

6 Conclusions  

In this research, the accuracy of cotton yield estimation was improved on a regional scale by 

coupling time series Landsat-8 OLI remote sensing images from 2014 with the 

APSIM/OZCOT crop growth model. The corresponding conclusions are as follows:  

(1) The sensitivity analysis was implemented to test the cultivar, soil and agronomic 

parameters within the APSIM/OZCOT model. These results showed that the row spacing, 

sowing density per row, irrigation and total fertilization amount were sensitive factors to LAI 

dynamics on a regional scale. A local calibration was implemented to adjust local cotton 

variety based on climate, soil conditions, agronomic practices and default cultivar parameters 

within the APSIM/OZCOT model. Then, a Chinese-specific cultivar suitable for the study 

area was also proposed. It is important to use the proposed Chinese specific cultivar, which is 

better than using the default Australian cultivar within the APSIM/OZCOT model. 

(2) The accurate cotton cultivation distribution was extracted based on multi-temporal remote 

sensing images after a precise atmospheric correction and phenological variations of various 

vegetation types. This method is better than that only using single remote sensing image. 

Meanwhile, a series of Landsat-8 OLI images covering the entire growth period in 2014 was 

used to derive PVI images. The regional LAI maps were also obtained by a statistical 

relationship between the PVI and the observed in-situ LAI. Compared to the other vegetation 

indices, PVI is better to extract vegetation index by effectively minimizing the soil noise. 

(3) The assimilation results on a field scale based on the PSO algorithm show that this 

assimilation strategy is better than the mono APSIM/OZCOT model simulation. It proved the 

feasibility of this assimilation strategy. Additionally, the general-purpose optimization 

method (based on the Nelder-Mead algorithm) had similar accuracy compared to the PSO 

algorithm but more rapid computational efficiency.  

(4) The assimilation results on a regional scale based on the general-purpose optimization 

method (based on the Nelder-Mead algorithm) show that the spatial distribution of plant 

density appeared higher in the southern part of the study area while lower in the northern part. 

This spatial distribution of sowing density is consistent with arable land reclamation during 

2001–2013. The northern part is the major region for recent reclamation while the southern 

part nearby the Tarim River is age-old reclamation. The spatial distribution of irrigation is 

higher in the northern part while it is lower in southern part. Conversely, the spatial 

distribution of fertilization is lower in the northern part compared to the southern part. 
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Additionally, the spatial distribution of the simulated yield also revealed a higher yield in the 

southern part of study area with lower cotton yield in northern part.  

(5) In short, the coupling model between remote sensing and APSIM/OZCOT model 

proposed in this research has effectively resolved the limitation upscaling the crop growth 

model simulation from a field scale to a regional scale. Compared to simulated results from 

the mono APSIM/OZCOT model, this coupling model strategy is better on simulating the 

regional cotton growth process and yield. This promising approach also solves uncertainties 

from the stand-alone crop growth model. Model-related uncertainties can potentially be 

reduced by assimilating remote sensing data during the growing season of cotton. After the 

assimilation, the theoretically optimal time series of LAI was obtained to reduce errors. 

(6) However, there are also many uncertainties with coupling of remote sensing and crop 

growth models. Uncertainties from remote sensing retrieved state variables, optimized 

algorithms, crop growth models and input parameters (Li et al., 2017) also result in 

uncertainties in simulated results. Because the crop growth model is a general simplification 

of real crop growth conditions, uncertainties induced by the model architecture (Confalonieri 

et al., 2009) include imperfect physical expressions of crop growth and unreasonable 

adjustment of model parameters. Due to these uncertainties, the simulated results usually 

deviate from the reality of crop conditions, resulting in low accuracy of yield prediction 

(Iizumi et al., 2009; Ceglar et al., 2011). Additionally, numerous parameters vary over time 

and cannot match the temporal scale of crop growth coupling models (Li et al., 2017). 

Likewise, the spatial heterogeneity of soil properties, crop cultivars and meteorological data 

also result in uncertainties in regional crop growth models. In this research, lack of the 

detailed soil map with attributes on the regional scale resulted in the deviation of assimilation 

results. Similar to parameters in the crop growth model, uncertainties of state variables (such 

as the LAI) derived from remote sensing observations also lead to uncertainties in 

assimilation strategy. Systematic errors from the LAI-2000 equipment and personal errors 

both bring deviations of in situ LAI observations during the field campaigns. Moreover, lack 

of in situ observed LAI in June caused the data gap. Remote sensing observations and in situ 

LAI observations are not fully synchronous (day-to-day). These flaws thereby affected 

problems of the relationship between PVI and observed LAI. Then remote sensing derived 

LAI observations provided not enough accurate canopy states for the APSIM/OZCOT model. 

Additionally, the limitation of optimized algorithms (Aote et al., 2013; Shang and Mao, 2006) 

also resulted in the uncertainties. 
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(7) In the future, we will extend this assimilation strategy about agronomic practices to the 

watershed scale and solve the pixel-based assimilation by introducing a better algorithm with 

high computational efficiency and accuracy. Meanwhile, multi-annual analyses of the 

assimilation will be implemented to make this coupling model between remote sensing and 

APSIM/OZCOT model more stable on simulating the cotton growth process. Thereby, 

simulated results with higher credibility can provide scientific evidence for decision makers. 

In addition to Landsat-8 OLI images, numerous remote sensing images from various sensors, 

such as Chinese HJ and GF/CCD, RapidEye and Sentinel-1/2 images can be used to construct 

a temporal curve within the cotton growth period. It makes the daily medium-resolution 

remote sensing images in an entire growth period of cotton. Then the dates of remote sensing 

observations are synchronous to in situ LAI observations during field campaigns, thereby 

reducing errors and uncertainties within the LAI retrieval. Since the theoretically daily remote 

sensing observation is not easy to obtain, multisource remote sensing images covering the 

major and critical growth stages (phenological events) of cotton and other crops can be 

considered an effective scheme. Experience during field campaigns provides a reference for 

designing field LAI observations by fully considering the specific phenology of cotton and 

other crops. During the rapid growth period of LAI, an in situ observation experiment is 

necessary. Additionally, a canopy height simulation will also be considered as there is no 

precise model simulating the canopy height within the OZCOT model. In addition to LAI, 

evapotranspiration and canopy height can be used as state variables to assimilate the coupling 

model between remote sensing and APSIM model for more robust results. The computational 

efficiency can be reduced due to more state variables while the stability of the assimilation 

can still increase.  

(8) Different from similar researches (Table 1.6), the regional assimilation strategy in this 

research was treated respectively at two growth stages of cotton. This solution can reduce the 

interactions among the parameters within the APSIM model and clearly explain effects of 

these parameters on the crop growth process. Moreover, it can also reduce the local optimum 

by constructing a low-dimensional parameter space (Li et al., 2014). Thus, this strategy can 

better illustrate the mechanism of crop growth models and it can be applied for assimilations 

on growth processes of different crops in the future. In summary, assimilation of remote 

sensing images into crop growth models is a state of the art and promising approach to predict 

yield at the field and regional level. 
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Appendix 
The appendix is about sensitivity analysis, PSO and General-purpose Optimization method 
using R script. If you will use these scripts in the future work, please cite this dissertation.  

Appendix 1 PSO R script  
################### read remote sensing LAI from a text file########################## 

setwd ("D:\\OZCOT_LAI_RS\\") 

data<-read.table("D:\\OZCOT_LAI_RS\\LAI_per_Field_all.txt",header =TRUE, sep="") 

for (i in 1:36){ 

  A=data[i,1] 

  B=data[i,2] 

  Z=data[i,3] 

  C=data[i,4]   

  E=data[i,5] 

  G=data[i,6] 

} 

################################Constant Day of Year (DOY) ###################### 

Ai = 136; # DOY 136 

Bj = 168; # DOY 168 

Zq = 200; # DOY 200 

Cp = 232; # DOY 232 

El = 248; # DOY 248 

Gm = 280; # DOY 280 

###########The code about extracting biomass, although this part is not used in this paper################# 

###########The biomass can be also extracted from APSIM.out file using sink and scan commands, similarly 

###########the density and the other parameters and result can be used this method. These two methods can be 

###########used as a reference for similar researches #################################### 

getbiomass <- function(fname) { 

  gettoken <- function(con, tok) { 

    pos <- 1 

    repeat { 

      ch <- readChar(con,1) 

      if (identical(ch, character(0))) return(FALSE) 

      if (ch==substr(tok,pos,pos)) { 

        pos <- pos+1 

        if (pos==(nchar(tok)+1)) return(TRUE) 

      } else { 

        pos <- 1 

      } 

    }  

  } 
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  con <- file(fname, "rt") 

  if (gettoken(con, "total above ground biomass (kg/ha) =")==FALSE) { 

    close(con) 

    warning(paste("File", fname, "doesn't seem to be an APSIM file!")) 

    return(numeric(0)) 

  } 

  tmp <- scan(con,double(),1,quiet=TRUE) 

  close(con) 

  return(tmp) 

} 

###################Descriptions about using R to run APSIM model ########################### 

#The R script about running APSIM model is provided by Liang He (Institute of Geographic Sciences and 

#Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China) (He, 2015), and 

#modified by Guilin Liu (Trier University, Environmental Remote Sensing & Geoinformatics, D-54286 Trier, 

#Germany).   

########################################################################################## 

APSIM<-function(x){ 

library(XML) # Loading the XML packages in R 

library(stringr) 

doc <- xmlParse("Cotton_Alar_simulation.sim")           #reading the xml file (*.sim document)  

r <- xmlRoot(doc)                                      # getting the top-level node of *.sim xml file 

###############set the start date and end date of simulation######################## 

xmlValue(r[[3]][["initdata"]][["start_date"]])<-"01/01/2014" #beginning of year in simulation 

xmlValue(r[[3]][["initdata"]][["end_date"]])<-"31/12/2014" #end of year in simulation 

###################### Agronomic parameters ################  

xmlValue(r[[5]][[6]][["initdata"]][["ui"]][["row_spacing"]])<-x[1]   # the row space of cotton 

xmlValue(r[[5]][[6]][["initdata"]][["ui"]][["density"]])<-x[2]   # the density per row of cotton 

xmlValue(r[[5]][[15]][["initdata"]][["ui"]][["amount"]])<-x[3]   # irrigation 

xmlValue(r[[5]][[16]][["initdata"]][["ui"]][["FertAmt"]])<-x[4]   # fertilization 

##############################setting the sowing date######################## 

xmlValue(r[[5]][[6]][["initdata"]][["ui"]][["date1"]])<- "10-apr"   # sowing date 

xmlValue(r[[5]][[6]][["initdata"]][["ui"]][["date2"]])<- "10-apr"   # sowing date 

  ######################update the output data########################### 

xmlValue(r[[5]][[2]][["initdata"]][["outputfile"]])<-"Cotton_Alar_simulation.out" 

   #### #### #### ##save the modified xml document   ## #### #### #### ##### 

saveXML(newXMLDoc(r),file="Cotton_Alar_simulation_temp.sim", encoding=getEncoding(doc))  

shell('"Cotton_Alar_simulation_temp.sim"')  #run the external exe in R 

SUM<-read.table(paste0("Cotton_Alar_simulation.out"),skip=4, 

                  col.names=c("day_of_year","lai","yield","height","dm"))  

  lai<-SUM$lai        

  yield_max<-SUM$yield 
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  dm<-SUM$dm 

  biomass<-getbiomass("Cotton_Alar_simulation.sum") 

  return(list(lai,yield_max,dm,biomass)) 

}  

######## #### ############ #### ####    cost function ######################## #### #### 

FITNESSSUM<-function(x,A,B,Z,C,E,G,Ai,Bj,Zq,Cp,El,Gm){ 

  result<-APSIM(x) 

  lai<-result[[1]] 

 Fit=sqrt(((A-lai[Ai])*(A-lai[Ai])+(B-lai[Bj])*(B-lai[Bj])+(Z-lai[Zq])*(Z-lai[Zq])+(C-lai[Cp])*(C-lai[Cp]) 

           +(E-lai[El])*(E-lai[El])+(G-lai[Gm])*(G-lai[Gm]))/6) 

 return(Fit) 

} 

######## #### #### #### ####    PSO program ######################## 

#MATLAB scripts provided by Zhenhai Li (Beijing Research Center for Information Technology in Agriculture, 

#Beijing Academy of Agriculture and Forestry Sciences and National Engineering Research Center for 

#Information Technology in Agriculture, Beijing, 100101, China and Institute of Agricultural Remote Sensing 

#and Information Application, Zhejiang University, Hangzhou 310029, China) and Da Liu (China University of 

#Geosciences) (Liu, 2013), modified by Guilin Liu (Trier University, Environmental Remote Sensing & 

#Geoinformatics, D-54286 Trier, Germany).   

PSOSUM<-function(A,B,Z,C,E,G,Ai,Bj,Zq,Cp,El,Gm){ 

  x=matrix(0,nrow=N,ncol=D) 

  v=matrix(0,nrow=N,ncol=D) 

  p=matrix(0,N,1)   

  y=matrix(0,nrow=N,ncol=D) 

  pg=matrix(0,nrow=1,ncol=D)  

  Pbest=matrix(0,nrow=M,ncol=1)  

  Xmin=array(1,D) 

  Xmax=array(1,D) 

  Vmin=array(1,D) 

  Vmax=array(1,D) 

########using a default value of D =4 (number of parameters) ############### 

Xmin[1]=350;Xmax[1]=550 

Xmin[2]=1;Xmax[2]=12   

Xmin[3]=50;Xmax[3]=90 

Xmin[4]=500;Xmax[4]=1600 

  Vmin[1]=-Xmin[1]/10;Vmax[1]=Xmax[1]/10; 

  Vmin[2]=-Xmin[2]/10;Vmax[2]=Xmax[2]/10; 

  Vmin[3]=-Xmin[3]/10;Vmax[3]=Xmax[3]/10; 

  Vmin[4]=-Xmin[4]/10;Vmax[4]=Xmax[4]/10; 

  #####initilization###### 

  for (i in 1:N){ 
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    for (j in 1:D){       

      x[i,j]=Xmin[j]+runif(1,0,1)*(Xmax[j]-Xmin[j]) 

      v[i,j]=Vmin[j]+runif(1,0,1)*(Vmax[j]-Vmin[j]) 

    }    

  }  

  for (k in 1:N){ 

    p[k]=FITNESSSUM(x[k,],A,B,Z,C,E,G,Ai,Bj,Zq,Cp,El,Gm)  

    y[k,]= x[k,]        

  }  

  pg = x[N,]      

  tmin = FITNESSSUM(pg,A,B,Z,C,E,G,Ai,Bj,Zq,Cp,El,Gm) 

  for ( l in 1:(N-1)){ 

    t1=FITNESSSUM(x[l,],A,B,Z,C,E,G,Ai,Bj,Zq,Cp,El,Gm) 

    if (t1<tmin){ 

      tmin = t1; 

      pg = x[l,] 

    }      

  }  

pg_ini = pg; 

############iteration begins################## 

  for (m in 1:M){ 

    for (n in 1:N){ 

      v[n,]=w*v[n,]+c1*runif(1,0,1)*(y[n,]-x[n,])+c2*runif(1,0,1)*(pg-x[n,]) 

      for (dim in 1:D){                                             

        if (v[n,dim]>Vmax[dim]){ 

          v[n,dim]=Vmax[dim] 

        }else{ 

          if (v[n,dim]<Vmin[dim]){ 

            v[n,dim]=Vmin[dim] 

          } 

        } 

      } 

       

      x[n,]=x[n,]+v[n,]  

      for (dim in 1:D){                                            

        if (x[n,dim]>Xmax[dim]){ 

          x[n,dim]=Xmax[dim] 

        }else{ 

          if (x[n,dim]<Xmin[dim]){ 

            x[n,dim]=Xmin[dim] 

          } 
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        } 

      } 

      print(x[n,]) 

      pnow=FITNESSSUM(x[n,],A,B,Z,C,E,G,Ai,Bj,Zq,Cp,El,Gm) 

      

      if (pnow<p[n]){ 

        p[n]=pnow;  

        y[n,]=x[n,];          

     }  

     pbest_m= FITNESSSUM(pg,A,B,Z,C,E,G,Ai,Bj,Zq,Cp,El,Gm) 

     if (p[n]<pbest_m){ 

       pg=y[n,]  

     }  

    }  

        Pbest[m]=FITNESSSUM(pg,A,B,Z,C,E,G,Ai,Bj,Zq,Cp,El,Gm) 

   }  

  print(pg) 

  xm=t(pg)  

  fv=FITNESSSUM(pg,A,B,Z,C,E,G,Ai,Bj,Zq,Cp,El,Gm) 

  gui=APSIM(pg) 

  lai_best=gui[[1]] 

  yield_max=gui[[2]] 

  dm=gui[[3]] 

  biomass=gui[[4]] 

  return(list(xm,fv,pg_ini,Pbest,lai_best,yield_max,dm,biomass)) 

  } 

##############################main function and plot################################## 

strt<-Sys.time() 

######################## Constants in the PSO code#################### 

c1 = 2.0;   #learning factor 

c2 = 2.0;   #learning factor 

M = 60;    #M is the iteration 

D = 4;    #D is the number of independent variables, it is better to use a small value by dividing growth stages  

N = 15;    #N is the number of particles  

w = 0.4;   #Weight 

################### read txt########################## 

setwd("D:\\OZCOT_LAI_RS\\") 

data<-read.table("D:\\OZCOT_LAI_RS\\LAI_per_Field_all.txt",header =TRUE, sep="") 

parameters<-matrix(0,nrow=D,ncol=37) 

RMSE_result<-matrix(nrow=M,ncol=37) 

lai_result<-matrix(nrow=365,ncol=37) 
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yield_max<-matrix(nrow=365,ncol=37) 

dm<-matrix(nrow=365,ncol=37) 

biomass<-matrix(nrow=365,ncol=37) 

   for (i in 1:36){ 

  A=data[i,1] 

  B=data[i,2] 

  Z=data[i,3] 

  C=data[i,4]   

  E=data[i,5] 

  G=data[i,6] 

  xm = PSOSUM(A,B,Z,C,E,G,Ai,Bj,Zq,Cp,El,Gm) 

  VV<-xm[[1]] 

  parameters[,i]<-VV 

  RMSE_result[,i]<-xm[[4]] 

  lai_result[,i]<-xm[[5]] 

  yield_max[,i]<-xm[[6]] 

  dm[,i]<-xm[[7]] 

  biomass[,i]<-xm[[8]] 

} 

#################Constant################# 

Ai = 136; # DOY 136 

Bj = 168; # DOY 168 

Zq = 200; # DOY 200 

Cp = 232; # DOY 232 

El = 248; # DOY 248 

Gm = 280; # DOY 280 

doy=array (1,365) 

for (i in 1:365){ 

  doy[i]=i 

} 

#####xm = PSOSUM(A,B,Z,C,E,G,Ai,Bj,Zq,Cp,El,Gm) 

lais <- APSIM(unlist(xm[1])) 

lais=unlist(xm[5]) 

doy_obs<-list(Ai,Bj,Zq,Cp,El,Gm) 

lai_obs<-list(A,B,Z,C,E,G) 

plot(doy,lais) 

points(doy_obs,lai_obs,col=2) 

################Save as result##################### 

write.table(parameters,file="D:\\OZCOT_LAI_RS\\parameters.txt",row.names=F,col.names=F,sep=",") 

write.table(RMSE_result,file="D:\\OZCOT_LAI_RS\\RMSE.txt",row.names=F,col.names=F,sep=",") 

write.table(lai_result,file="D:\\OZCOT_LAI_RS\\lai_result.txt",row.names=F,col.names=F,sep=",") 
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write.table(yield_max,file="D:\\OZCOT_LAI_RS\\yield_max.txt",row.names=F,col.names=F,sep=",") 

write.table(dm,file="D:\\OZCOT_LAI_RS\\biomass.txt",row.names=F,col.names=F,sep=",") 

write.table(biomass,file="D:\\OZCOT_LAI_RS\\dm.txt",row.names=F,col.names=F,sep=",") 

print(Sys.time()-strt) 
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Appendix 2 Sensitivity analysis R script  
############# Descriptions about Sensitivity analysis R script########################## 

#The sensitivity analysis algorithm with R script was used in this research based on detailed descriptions of 

#this algorithm from https://cran.r-project.org/web/packages/sensitivity/sensitivity.pdf. The R script is 

#provided by Liang He (Institute of Geographic Sciences and Natural Resources Research, Chinese 

#Academy of Sciences, Beijing, 100101, China) (He, 2015), and modified by Guilin Liu (Trier University, 

#Environmental Remote Sensing & Geoinformatics, D-54286 Trier, Germany).   

############################################################################## 

library(XML) # Loading the XML packages 

library(sensitivity) 

library(stringr) 

source("Cot_APSIM2014_A02.R") 

###########ready for saving sensitivity data################################# 

no_parameter<-13; 

first_order_yield<-matrix(0,nrow=1,ncol=no_parameter) 

total_order_yield<-matrix(0,nrow=1,ncol=no_parameter) 

first_order_lai<-matrix(0,nrow=1,ncol=no_parameter) 

total_order_lai<-matrix(0,nrow=1,ncol=no_parameter) 

first_order_height<-matrix(0,nrow=1,ncol=no_parameter) 

total_order_height<-matrix(0,nrow=1,ncol=no_parameter) 

#start time 

strt<-Sys.time() 

############### sensitivity analysis ########################### 

n<-100 

loop<-n*no_parameter 

yield_sa<- fast99(model = NULL, factors=c("flai", 

                                          "dlds_max", 

                                          "RLAI", 

                                          "DDISQ", 

                                          "ACOTYL", 

                                          "fburr", 

                                          "popcon", 

                                          "fcutout", 

                                          "sqcon", 

                                          "row_spacing", 

                                          "density", 

                                          "amount", 

https://cran.r-project.org/web/packages/sensitivity/sensitivity.pdf
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                                          "FertAmt"), 

                                         

                  n = n,q ="qunif", q.arg = list("flai"=list(min=0.1,max=1.0), 

                                                 "dlds_max"=list(min=0.009,max=0.15), 

                                                 "RLAI"=list(min=0.001,max=0.03), 

                                                 "DDISQ"=list(min=400,max=500), 

                                                 "ACOTYL"=list(min=0.1,max=1000.0), 

                                                 "fburr"=list(min=0.8,max=5.0), 

                                                 "popcon"=list(min=0.1,max=1.0), 

                                                 "fcutout"=list(min=0.1,max=1.0), 

                                                 "sqcon"=list(min=0.01448,max=0.02844), 

                                                 "row_spacing"=list(min=400,max=600), 

                                                 "density"=list(min=15,max=35), 

                                                 "amount"=list(min=10,max=300), 

                                                 "FertAmt"=list(min=60,max=1000)) 

                  

) 

y<-c() 

lai<-c() 

height<-c() 

for (i in 1:loop){ 

  result<- APSIM(yield_sa$X[i,])  

  y[i]<-result[1]                    

  lai[i]<-result[2]                 

  height[i]<-result[3]           

   print(i) 

} 

####################################for yield##################################### 

tell(yield_sa, as.numeric(y)) 

print(yield_sa) 

first_order_1<-yield_sa$D1/yield_sa$V 

total_order_1<-1-yield_sa$Dt/yield_sa$V 

first_order_yield[1,]<-first_order_1 

total_order_yield[1,]<-total_order_1 

###########################for LAI#################################################### 

tell(yield_sa, as.numeric(lai)) 

first_order_1<-yield_sa$D1/yield_sa$V 

total_order_1<-1-yield_sa$Dt/yield_sa$V 

first_order_lai[1,]<-first_order_1 
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total_order_lai[1,]<-total_order_1 

#########################for height################################## 

tell(yield_sa, as.numeric(height)) 

first_order_1<-yield_sa$D1/yield_sa$V 

total_order_1<-1-yield_sa$Dt/yield_sa$V 

first_order_height[1,]<-first_order_1 

total_order_height[1,]<-total_order_1 

############################for sensitivity save########################################## 

write.table(first_order_yield,file=('firstorder_yield_A.txt'),row.names=FALSE,col.names=FALSE) 

write.table(total_order_yield,file=('totalorder_yield_A.txt'),row.names=FALSE,col.names=FALSE) 

write.table(first_order_lai,file=('firstorder_lai_A.txt'),row.names=FALSE,col.names=FALSE) 

write.table(total_order_lai,file=('totalorder_lai_A.txt'),row.names=FALSE,col.names=FALSE) 

write.table(first_order_height,file=('firstorder_height_A.txt'),row.names=FALSE,col.names=FALSE) 

write.table(total_order_height,file=('totalorder_height_A.txt'),row.names=FALSE,col.names=FALSE) 

############################save the simulation results############################## 

write.table(y,file=('efast_yield_A.txt'),row.names=FALSE,col.names=FALSE) 

write.table(lai,file=('efast_lai_A.txt'),row.names=FALSE,col.names=FALSE) 

write.table(height,file=('efast_height_A.txt'),row.names=FALSE,col.names=FALSE) 

print(Sys.time()-strt) 
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Appendix 3 General-purpose optimization algorithm in R script 
#The R script about running APSIM model is provided by Liang He (Institute of Geographic Sciences and 

#Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China) (He, 2015), and 

#modified by Guilin Liu (Trier University, Environmental Remote Sensing & Geoinformatics, D-54286 Trier, 

#Germany).   

APSIM<-function(x){ 

  library(XML)  

  library(stringr) 

  doc <- xmlParse("Alar Cotton_ID_A3.sim")             

  r <- xmlRoot(doc)                                       

    ## ##set the start date and end date of simulation   ## ## ## ## 

  xmlValue(r[[3]][["initdata"]][["start_date"]])<-"01/01/2014"  

  xmlValue(r[[3]][["initdata"]][["end_date"]])<-"31/12/2014"  

    ######### Agronomic parameters ############ 

    xmlValue(r[[5]][[6]][["initdata"]][["ui"]][["row_spacing"]])<-x[1] 

    xmlValue(r[[5]][[6]][["initdata"]][["ui"]][["density"]])<-x[2] 

    ############################set the sowing date######################## 

  xmlValue(r[[5]][[6]][["initdata"]][["ui"]][["date1"]])<-"10-apr"    

  xmlValue(r[[5]][[6]][["initdata"]][["ui"]][["date2"]])<-"10-apr"    

    ####################update the output data########################### 

    xmlValue(r[[5]][[2]][["initdata"]][["outputfile"]])<-"Alar Cotton_ID_A3.out" 

    ##save the modified xml document 

  saveXML(newXMLDoc(r),file="Alar Cotton_ID_A3_temp.sim", encoding=getEncoding(doc))    

shell('"Alar Cotton_ID_A3_temp.sim"')   

  SUM<-read.table(paste0("Alar Cotton_ID_A3.out"),skip=4, 

                  col.names=c("day_of_year","lai","yield"))  

    lai<-SUM$lai         

  yield_max<-SUM$yield 

    return(list(lai,yield_max)) 

  } 

par=runif(2) 

fn<-function (par,min.x, max.x,A,B,Ai,Bj){ 

    min.x<-c(350,1) 

  max.x<-c(550,12) 

    if (any(par<0)||any(par>1)) return (9999) 

    x<-par*(max.x-min.x)+min.x 

  result<-APSIM(x) 

  lai<-result[[1]] 



 Appendix 122 

  Fit=sqrt(((A-lai[Ai])*(A-lai[Ai])+(B-lai[Bj])*(B-lai[Bj]))/2) 

  return(Fit) 

} 

#################Constant################# 

Ai = 136; # DOY 136 

Bj = 168; # DOY 168 

data<-read.table("D:\\Early_simulation_density\\LAI_954Polygons_all.txt",header =TRUE, sep="") 

parameters<-matrix(0,nrow=2,ncol=477) 

RMSE_result<-matrix(0,nrow=1,ncol=477) 

 

##########Descriptions about Nelder-Mead method in R########################### 

#The general-purpose optimization based on Nelder–Mead method was coded by Guilin Liu 

#and Dr. Sebastian Mader (Trier University, Environmental Remote Sensing & 

#Geoinformatics, D-54286 Trier, Germany), based on the detail description from 

#https://stat.ethz.ch/R-manual/R-devel/library/stats/html/optim.html   
################################################################################# 

 

for (i in 1:477){ 

  A=data[i,1] 

  B=data[i,2] 

   xm<-optim(par,fn,gr=NULL,min.x, max.x,A,B,Ai,Bj,method=c("Nelder-Mead")) 

   VV<-xm[[1]] 

  WW<-xm[[2]] 

  parameters[,i]<-VV 

  RMSE_result[,i]<-WW 

  } 

################Save as result##################### 
write.table(parameters,file="D:\\Early_simulation_density\\parameters.txt",row.names=F,col.names=F,sep=",") 

write.table(RMSE_result,file="D:\\Early_simulation_density\\RMSE.txt",row.names=F,col.names=F,sep=",") 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/optim.html
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