
Operations on Graphs, Arrays and Automata

(Meenakshi Paramasivan)

September 2017

Operations on Graphs, Arrays and Automata

Dissertation

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich IV der Universität Trier

Vorgelegt von
M.Phil.-Mathematiker

Meenakshi Paramasivan
aus Chennai, India

Erster Gutachter: Prof. Dr. H. Fernau, Universität Trier
Zweiter Gutachter: Prof. Dr. R. Freund, Universität Wien

Tag der mündlichen Prüfung: 25. September 2017

”Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes“

I am Alpha and Omega, the beginning and the end, the first and the last.
Revelation 22:13

ACKNOWLEDGMENTS

I would like to thank my doctoral father (supervisor), Prof. Dr. Henning Fernau, in
making my years of graduation fruitful, enjoyable, and memorable. When I joined
the program, all I had was interest in theoretical research in Germany. Henning
has provided space to explore as a researcher. I benefited by numerous discussions
that I had with him. I owe my interest in formal languages and automata theory
to him. His patient guidance, support, and encouragement have led me towards
the completion of this thesis. His multi-area research personality, had a great
influence on me. Special thanks to him and his wife for the wonderful swimming
sessions. For all the things I learned from him, technical and otherwise, I will
forever be grateful.

I would like to thank my second doctoral supervisor, Prof. Dr. Rudolf Freund
with whom I had useful discussions in connecting the research topics in this thesis
to further develop in a simple and unique way, his specific and different thinking
made always the discussions to think out of the box/border.

I would like to thank Dr. T. Robinson and Dr. D.G. Thomas for sharing their
ideas, for getting me interested in problems related to array grammars, and for
many collaborations. A special thanks to Dr. N. G. David for being my mentor.
On the most trying days to get through the DAAD Scholarship, his faith in me
has helped me to stay for DAAD Scholarship. I would like to thank all teachers
from Madras Christian College, especially, Dr. V. Rajkumar Dare and Dr. M. K.
Viswanath for their motivation to study further.

I would also like to thank the people with whom I have had useful discussion
on technical topics related to this thesis or otherwise. These include Dr. Daniel
Meister (discussions on counter automata), Dr. Markus L. Schmid (for clearing
my stupid questions always and helping me with latex learning by his specific
comments to type in latex), Franz Brauße (Graph Theory sessions) and S. James
Immanuel (for discussions on Picture Languages).

I also thank all the Computer Science faculty at University of Trier, who have
been responsible for imparting to me their knowledge on various aspects of the
computer science through numerous seminars. I would like to thank the university
for its financial support and the wonderful infrastructure and working environment
that it provides to its members. A special thanks to Heike Beewen and Nicole
Trouet-Schartz.

A special thanks to Sagaya Mary (maths teacher in Christ King Girls’ Hr.
Sec. School), Parvathi (maths teacher for X standard in the year 2002 in school),
Thiyagu (tution class - maths teacher for XII - Arul Institute), Mumtaj Fathima
(my only math-companion from X standard until today), Kannan Babu, Kalavathi
N and Ramya Jose (MCC friends) and also to Kumaran Sivagnanam and James

Babu (from ABN-AMRO, RBS) for their timely supportive words to continue my
education. A big thanks to Else Schneider for her friendly and family support to
stay responsible in Trier. A warm thanks to all my friends for making my social
life enjoyable.

Finally, most importantly, I owe my thanks to my grand parents especially to
my ammachi Sagayavalli Perumal, my father Paramasivan Pandian, my mother
Sankareswari Paramasivan, sister Sagayavalli Paramasivan, my husband Magesh
Kumar and my daughter Naphtali (Tharshanaa) who have filled my life with love,
joy and have always had confidence in me, even when I myself did not. With their
encouragement and support only, taking up research was possible in a foreign
country. Words are not enough to express my gratitude for what they have done
for me.

My heartly thanks to the Holy Spirit who is the Comforter (counselor, helper,
advocate, intercessor, strengthener and standby), whom the Father has sent in the
name of Jesus Christ (John 14:26), and my heartly thanks to K. Antony Sharmila,
Pastor. Danial Jebanesan Ramanathan, his wife Sulatha D J and Pastor. Mike
Williams.

Last but not least my sincere thanks to Christ King Girls’ Hr. Sec. School,
Madras Christian College, East Tambaram for the Education provided and to
Deutscher Akademischer Austauschdienst (DAAD), Ada-Lovelace-Projekt Trier
for the funding provided and to Mensa Trier Petrisberg for its delicious and healthy
food and to Liberty Christian Centre Selaiyur and Gemeinde des lebendigen Gottes
Trier e.V. for many reasons.

Abstract

Automata theory is the study of abstract machines. It is a theory in theoretical
computer science and discrete mathematics (a subject of study in mathematics
and computer science). The word automata (the plural of automaton) comes from
a Greek word which means “self-acting”. Automata theory is closely related to
formal language theory [99, 101]. The theory of formal languages constitutes the
backbone of the field of science now generally known as theoretical computer
science. This thesis aims to introduce a few types of automata and studies the
class of languages recognized by them.

Chapter 1 is the road map with introduction and preliminaries. In Chapter 2
we consider few formal languages associated to graphs that has Eulerian trails.
We place few languages in the Chomsky hierarchy that has some other properties
together with the Eulerian property.

In Chapter 3 we consider jumping finite automata, i. e., finite automata in
which input head after reading and consuming a symbol, can jump to an arbitrary
position of the remaining input. We characterize the class of languages described
by jumping finite automata in terms of special shuffle expressions and survey other
equivalent notions from the existing literature. We could also characterize some
super classes of this language class.

In Chapter 4 we introduce boustrophedon finite automata, i. e., finite automata
working on rectangular shaped arrays (i. e., pictures) in a boustrophedon mode
and we also introduce returning finite automata that reads the input, line after
line, does not alters the direction like boustrophedon finite automata i. e., reads
always from left to right, line after line. We provide close relationships with the
well-established class of regular matrix (array) languages. We sketch possible
applications to character recognition and kolam patterns.

Chapter 5 deals with general boustrophedon finite automata, general returning
finite automata that read with different scanning strategies. We show that all 32
different variants only describe two different classes of array languages. We also
introduce Mealy machines working on pictures and show how these can be used
in a modular design of picture processing devices.

In Chapter 6 we compare three different types of regular grammars of array
languages introduced in the literature, regular matrix grammars, (regular : regular)
array grammars, isometric regular array grammars, and variants thereof, focusing
on hierarchical questions. We also refine the presentation of (regular : regular)
array grammars in order to clarify the interrelations.

In Chapter 7 we provide further directions of research with respect to the study
that we have done in each of the chapters.

Contents

1 Road Map 1
1.1 Origin: Overview . 1
1.2 Ingredients: Preliminaries . 4

1.2.1 Words, Languages and Machines 5
1.2.2 Two Dimensional World 8
1.2.3 Graphs . 13

2 Eulerian Trails 22
2.1 Formal Language Questions for Eulerian Trails 22
2.2 Standard PLD . 30
2.3 Eulerian Traces . 32

3 Jumping Finite Automata 45
3.1 JFA and Shuffle Expressions . 45
3.2 Algebraic Properties: Shuffle and Permutation 49
3.3 The Language Class JFA . 54
3.4 The Language Classes GJFA and SHUF 60
3.5 Representations and Normal Forms 70

4 Scanning Automata and Grammars 76
4.1 Boustrophedon Finite Automata 77
4.2 Returning Finite Automata . 84
4.3 Regular Matrix Languages . 95
4.4 Regular Array Grammars . 101
4.5 Pumping and Interchange Lemmas 116

4.5.1 Pumping Lemmas . 116
4.5.2 Interchange Lemmas . 118
4.5.3 Application of Pumping and Interchange Lemmas 119

4.6 Hierarchy Results, Further Automata Models 120
4.6.1 BFA Languages and Regular Matrix Languages 120
4.6.2 3-Way Automata . 122

4.6.3 Isometric Array Languages 123
4.7 Closure Properties . 124

4.7.1 Set Operations . 124
4.7.2 Reflection-like Operations 125
4.7.3 Catenation and Catenation Closure 126

4.8 Possible Applications to Character Recognition 127
4.9 Possible Applications to Kolam Patterns 128

5 Picture Transforming Automata 132
5.1 General Boustrophedon Finite Automata 132
5.2 General Returning Finite Automata 136
5.3 Language Families under the Unary Operators 137
5.4 Picture Transforming Automata 142

6 Regular Grammars for Array Languages 150
6.1 (Regular : Regular) Array Grammars 150
6.2 Regular Grammars, Isometric Array Languages 157

7 Destination: Further Directions 168

List of Figures

1.1 Diagram of graph G . 14
1.2 Diagram of graph H . 14
1.3 G, M(G) and A(G) . 16
1.4 Walk, Trail and Path . 19
1.5 A connected graph . 19
1.6 A disconnected graph with 3 components 19
1.7 Closed trail and Cycle . 20
1.8 Graph Representation of Königsberg Bridge Problem 20
1.9 n = 1 and n = 4 . 21
1.10 n = 2 and n = 3 . 21

2.1 Graph G and PLDφ(G) in Example 7 23
2.2 Eulerian trails W1 and W2 . 25
2.3 W1 ·x0 W2 . 25
2.4 Graphs G, G′, G′′, G′1, G′2 . 29
2.5 PLDs of Graphs in Fig.2.4 . 29
2.6 PLD(G) with respect to PLDs φ1 and φ2 in Example 9 31
2.7 Deterministic Blind One-Counter Machine M that accepts ET ◦ . 33
2.8 Case 1a and Case 2a . 40
2.9 DFA A . 43

3.1 Finite Machine M . 49
3.2 General Finite Machine M ′ . 49
3.3 An example JFA, final states not specified. 57
3.4 The finite machine of Example 12. 59
3.5 Inclusion diagram of our language families. 63

4.1 How M− processes an input. 79
4.2 BFA M that accepts the language LL in Example 16 80
4.3 Example derivation of the BFA M in Example 16 80
4.4 d-BFA Md . 83
4.5 RFA M ′ that accepts the language LL in Example 16 84

4.6 RFA M ′ constructed by Theorem 23 with only useful states 94
4.7 BFA M constructed by Theorem 23 with only useful states 94
4.8 RFA M constructed by Theorem 24 with all reachable states . . . 100
4.9 A sample parallel derivation of the constructed RMG. 100
4.10 How an IRAG can generate L\. 105
4.11 How array processing of automata and grammars complement. . . 108
4.12 BFA MD that accepts the language LRect(Gd,D) in Illustration 8 . 114
4.13 BFA MR that accepts the language LRect(Gd,R) in Illustration 8 . . 116
4.14 BFA ML that accepts the language LRect(Gd,L) in Illustration 8 . . 117
4.15 BFA MLRD that accepts the language LRect(Gd) in Illustration 8 . 117
4.16 Relations between array language families if |Σ| > 1. 121
4.17 Relations between isometric array language families 125
4.18 RFA MF that accepts the language of F tokens, of all sizes and of

all proportions . 129
4.19 RFA M that accepts the language of P tokens, of all sizes and of

all proportions . 129
4.20 RFA accepting L(ML) � L(MF) 129
4.21 RFA accepting transpose of the set of all Aasanapalakai 130
4.22 A sample element in the set of all Aasanapalakai 131

5.1 GRFA M that accepts the language in Example 25. 136
5.2 GRFA R that accepts L(R) = {•}+

+ � ({x}� {x}+) � {•}+
∗ . . . 145

5.3 MPM M ′ designed according to our description. 145
5.4 GRFA R† that accepts M ′−(L(R)) 146
5.5 MPM M . 147
5.6 GRFA R′ that accepts M−(L(R†)) 149

6.1 Derivation tree for F2 . 153
6.2 Case (i) (on left) and Case (ii) (on right) for a sample element in

H(L̂) . 158
6.3 Semi-holes . 159
6.4 How an IRAG can scan BFA pictures, keeping track of the right

border . 161
6.5 How to scan the picture M8 (on the left) and M9 (on the right) . . 164
6.6 The world of rectangular array language families 167

List of Tables

1.1 Unary Operators . 11
1.2 Table of Operators. 12

4.1 Closure properties of the family L(BFA) 127

5.1 Operators/Directions for GBFAs and GRFAs. 138
5.2 Simplifying array languages with MPMs 144

Chapter 1

Road Map

1.1 Origin: Overview

Operations: what does it mean here?
Operation can refer to medical surgery, a military campaign, or mathematical
methods such as ÷ and ×. Operation comes from the Latin word opus (“work”)
and can refer to a whole range of practical activities and work. In the driving
lessons, we learn the proper operation of a motor vehicle. In computer science: an
operation is performed on the basis of an instruction. In this thesis we deal mostly
with mathematical methods.

Operations: why and how to study them?
An operation is a calculation from one value or more input values (called operands)
to an output value. The number of operands is the arity of the operation. The most
commonly studied operations are binary operations of arity 2, such as + and ×,
and unary operations of arity 1, such as additive inverse, multiplicative inverse,
negation and trigonometric functions. An operation of arity 0 is a constant.

Operations can involve mathematical objects other than numbers. The logical
values TRUE and FALSE can be combined using logic operations, such as AND,
OR, and NOT. Vectors can be added and as well as subtracted. Operations on
functions include composition, convolution. Rotations can be combined using the
function composition operation, performing the first rotation and then the second.

Operations on sets include binary operations ∪ and ∩ and unary operation of
complementation. Operations may not be defined for every possible value. For
example, in the real numbers one cannot divide by zero or take square roots of

1

negative numbers. The values for which an operation is defined form a set called
its domain. The set which contains the values produced is called the co-domain,
but the set of actual values attained by the operation is its range. For example,
in the real numbers, the squaring operation only produces non-negative numbers;
the co-domain is the set of real numbers but the range is the non-negative numbers.

Operations can involve dissimilar objects. A vector can be multiplied by a
scalar to form another vector. And the inner product operation on two vectors
produces a scalar. An operation may or may not have certain properties, as it may
be associative, commutative, idempotent, and so on. The values combined are
called operands, arguments, or inputs, and the value produced is called the value,
result, or output. Operations can have fewer or more than two inputs.

An operation is like an operator, but the point of view is different. For instance,
one often speaks of “the operation of +” or “+ operation” when focusing on the
operands and result, but one says “+ operator” (rarely “operator of +”) when
focusing on the process, or from the more abstract viewpoint, the function + :
M ×M →M .

Operations: what we study here?
We study the operations on Graphs, Arrays and Automata, now we will see a brief
and rough introduction to each of them in the following:

Graphs:

Graph operations produce new graphs from initial ones. They may be separated
into the following categories: Unary operations create a new graph from initial
one. Elementary operations or editing operations create a new graph from initial
one by a simple local change, such as addition or deletion of a vertex or of an
edge, merging and splitting of vertices, edge contraction, etc.

Advanced operations create a new graph from one initial one by a complex
changes, for instance; transpose graph, complement graph, line graph, graph
rewriting and dual graph etc. Binary operations create a new graph from two
initial ones G1 and G2 such as: graph union, graph intersection, and graph join
etc.

2

Arrays:

Array operations are also is of two types, unary and binary. Unary operators
that we have discussed in this thesis form a dihedral group. Binary operators
are row (column) catenation of two arrays. Array operations are helpful to find
results on closure properties of array languages, to find the connection to character
recognition and to apply to make Kolam patterns.

Automata:

We can analyze, modify and combine automata. By analyzing we mean to find the
unreachable states which are unnecessary (not useful), also transitions associated
with those states. This in short can be said as finding the accessible part of the
automata by deleting those states. By modifying as described above we obtain an
automaton with only useful states for which we can find the complement when it is
a complete one. For combining automata, two operations are normally considered,
one is parallel composition and another one is product which we will see often.
We will also see automata with input and output.

Thesis: Contribution
Some major results of this thesis have been published by the author in some of the
conference proceedings or journals. Now we see very briefly how those results,
presented in the forthcoming chapters, correspond to those articles:

Chapter 2 has few results been originally presented in [28]. Section 3.3 and
Section 3.4 are presented in [29] and its journal version [33]. Chapter 4, contains
work published in [30] and [34] its journal version [31]. Most of the results of
Chapter 5 and Chapter 6 are presented in [35] and [36], respectively.

Complexity results from the articles mentioned above, were not the original
contribution from the author, instead those were contributed by other co-authors
so those results are excluded in this thesis.

In this thesis some of the sections has well explained results with proofs, lots
of explanations whereas some are not, as those are not published with proofs are
available with detailed proofs for instance; Theorem 25 has an alternative proof
in this thesis compared to the one in [31] and some of the inductive proofs and
illustrations.

3

1.2 Ingredients: Preliminaries
In this section we give some notations and then we give an overview of some
standard definitions concerning words, languages and machines. We follow the
terminologies, basic notions of formal languages and automata theory as in [50].
We give the same for two dimensional words, languages in the second subsection
and also for graphs in the third subsection.

Let N := {1, 2, 3, . . .} be the set of natural numbers and let N0 := N ∪ {0}.
Let S be a set. Then Card(S) is the number of its elements. The empty set is
denoted by ∅. If M,N are subsets of S, then we write M ⊆ N if and only if
x ∈M ⇒ x ∈ N , and M (N if and only if M ⊆ N and M 6= N . And

M ∪N = {x ∈ S | x ∈M or x ∈ N}.

M ∩N = {x ∈ S | x ∈M and x ∈ N}.
M \N = {x ∈ S | x ∈M and x /∈ N}.

A singleton is a subset of S consisting of just one element. If no confusion
can arise, we shall not distinguish elements of S from singletons. The set of
all subsets of S, i. e., the powerset of S, is denoted by P(S) or 2S . With the
preceding convention, S ⊆ P(S). For any sets A and B, the set of all total
functions f : A → B is denoted BA. The domain dom(f) of a partial function
f : S → T is the set of elements x ∈ S for which f(x) is defined. f can be viewed
as a (total) function from S into P(T), and with the convention T ⊆ P(T), as a
total function from S into T ∪ {∅}. Then dom(f) = {x ∈ S | f(x) 6= ∅}. The
hull operator (closure operator) on a set S is a function H : 2S → 2S from the
power set of S to itself which satisfies the following conditions for all A,B ⊆ S:

A ⊆ H(A) (H is extensive)
A ⊆ B ⇒ H(A) ⊆ H(B) (H is increasing)

H(H(A)) = H(A) (H is idempotent).

For n ≥ 1, let Nn be the n-fold Cartesian product of N with itself. For x, y ∈
Nn, i. e., x = (x1, . . . , xn) and y = (y1, . . . , yn), let x+y = (x1 +y1, . . . , xn+yn)
and for c ∈ N, let cx = (cx1, . . . , cxn).

A semigroup consists of a set G and a binary operation on G, denoted by ∗,
and which is assumed to be associative: For any a, b, c ∈ G, a∗(b∗c) = (a∗b)∗c.
An identity element or a unit is an element e ∈ G such that e ∗ a = a ∗ e = a for
all a ∈ G. A semigroup which has a identity element is a monoid. The identity
element of a monoid is unique.

4

Given two subsets A,B of a monoid M , the product AB is defined by

AB = {c ∈M | ∃a ∈ A,∃b ∈ B : c = ab} (1.1)

A semiring consists of a set R and of two binary operations, called addition
and multiplication, noted + and · , and satisfying the following conditions:

• R is a commutative monoid for the addition (a+ b = b+ a for all a, b ∈ R)
with identity element 0;

• R is a monoid for multiplication;

• Multiplication is distributive with respect to the addition: for all a, b, c ∈ R
a · (b+ c) = a · b+ a · c;
(a+ b) · c = a · c+ b · c;

• For all a ∈ R, 0 · a = a · 0 = 0.

If R is a monoid, then P(R) is a semiring with set union for addition and the
multiplication (1.1).

1.2.1 Words, Languages and Machines
An alphabet Σ is a finite, non-empty set of symbols. A word (string) (of length
k > 0) over an alphabet Σ is a finite sequence of symbols (elements) from Σ.
The empty string or empty word is the string with zero occurrences of symbols,
denoted by ε . The length of a word w, is the number of symbols that occur in
w, denoted by |w|. The number of occurrences of a in w is denoted by |w|a. For
example |graph| = 5 and |graph|p = 1. Note that |ε| = 0.

If Σ is an alphabet, then Σk is defined to be the set of strings of length k. Note
that Σ0 = {ε}. The set of all words including ε over an alphabet Σ is denoted by
Σ∗. The set of all non-empty words over Σ is denoted by Σ+ = Σ∗ \ {ε}. Clearly,

Σ∗ = Σ+ ∪ {ε}. Put another way, Σ+ =
∞⋃
n=1

Σn and Σ∗ =
∞⋃
n=0

Σn.

Let u and v be words. Then uv denotes the concatenation of u and v, we write
u · v or simply uv. More precisely, if u = a1a2 · · · ai and v = b1b2 · · · bj , then
|uv| = i+ j, uv = a1a2 · · · aib1b2 · · · bj . For any word w, εw = wε = w. That is,
ε is the identity for concatenation. Note that (Σ∗, ·) is a free monoid generated by
Σ with identity ε.

5

We say that a string v ∈ Σ∗ is a factor of a string w ∈ Σ∗ if there are
u1, u2 ∈ Σ∗ such that w = u1 · v · u2. If u1 or u2 is the empty string, then v
is a prefix (or a suffix, respectively) of w.

If Σ is an alphabet, L ⊆ Σ∗, then L is a language over Σ. The reversal (mirror
image) of w = a1a2 . . . an, denoted by wR, is defined as wR = anan−1 . . . a2a1.
Note that εR = ε. If L is a language, then the reversal of L, denoted by LR, is
defined as LR = {wR : w ∈ L} is the language consisting of the reversals of all
its strings. For instance, if L = {001, 10, 111}, then LR = {100, 01, 111}.

A deterministic finite automaton, in short DFA consists of a finite set of states
and a set of transitions from state to state that occur on input symbols chosen from
an alphabet Σ. For each input symbol there is exactly one transition out of each
state (possibly back to the state itself). One state, usually denoted q0 or s is the
initial state, in which the automaton starts. Some states are designated as final or
accepting states. A directed graph, called a transition diagram, is associated with
an DFA as follows. The vertices of the graph correspond to the states of the DFA.
If there is a transition from state q to state p on input a, then there is an arc labeled
a from state q to state p in the transition diagram. The DFA accepts a string x if
the sequence of transitions corresponding to the symbols of x leads from the start
state to an accepting state.

We formally denote a DFA by a 5-tuple M = (Q,Σ, δ, q0, F), where Q is a
finite set of states, Σ is a finite input alphabet, q0 ∈ Q is the initial state, F ⊆ Q
is the set of final states, and δ is the transition function mapping Q×Σ to Q. That
is, δ(q, a) is a state for each state q and input symbol a.

The behavior of a DFA on a string can be described by extending the transition
function δ to apply to a state and a string rather than a state and a symbol. We
define a function δ̂ from Q × Σ∗ to Q. The intension is the δ̂(q, w) is the unique
state p such that there is a path in the transition diagram from q to p, labeled w.
More formally

1. δ̂(q, ε) = q, and

2. for all strings x and input symbols a,

δ̂(q, xa) = δ(δ̂(q, x), a).

A string w is said to be accepted by a DFA M = (Q,Σ, δ, q0, F) if δ̂(q0, w) =
p for some p ∈ F . The language accepted by M , designated L(M), is the set
{w | δ̂(q0, w) ∈ F}. Consider modifying the DFA model to allow zero, one, or

6

more transitions from a state on the same input symbol. This model is said to be
nondeterministic finite automaton, in short NFA.

A language is a regular set (or just regular) if it is the set accepted by some
finite automaton. The term “regular” comes from “regular expressions”, another
formalism we see next and which defines the same class of languages as the finite
automaton’s. We denote this language class byREG.

Definition 1. Let Σ be an alphabet. The regular expressions over Σ and the sets
that they denote are defined recursively as follows:

• ∅ is a regular expression and denotes { }, i. e., L(∅) = { }.

• ε is a regular expression and denotes the set {ε}, i. e., L(ε) = {ε}.

• For each a ∈ Σ, a1 is a regular expression and denotes the set {a}, i. e.,
L(a) = {a}.

• If r, s are regular expressions denoting the languages R, S respectively,
then (r + s), (rs) and (r∗) are regular expressions that denote the sets
R ∪ S, RS, and R∗, respectively.

In writing regular expressions we can omit parentheses if we assume that ∗ has
higher precedence than concatenation or +, and that concatenation has higher
precedence than +. For example, ((0(1∗)) + 0) may be written 01∗ + 0. We may
also abbreviate the expression rr∗ by r+.

Remark 1. When necessary to distinguish between a regular expression r and the
language denoted by r, we use L(r) for the latter. When no confusion is possible
we use r for both the regular expression and the language denoted by the regular
expression.

Let us now recall the definitions of (multi) counter machines [37, 47]. Let Z be
the set of integers (positive, negative and zero) and ~0 be the multidimensional
all-zero-vector. sgn(x) is the sign of integer x, i. e., sgn(x) = −1 if x < 0.
sgn(x) = 0 if x = 0. sgn(x) = 1 if x > 0.

Definition 2. A k-counter machine M = (Q,Σ, δ, q0, F, k) consists of a finite
set Q of states, a designated initial state q0, a designated subset F of final or
accepting states, a finite input alphabet Σ, k ≥ 1 and a finite transition relation

δ ⊆ Q× (Σ ∪ {ε})× {−1, 0, 1}k ×Q× {−1, 0, 1}k.
1When one symbol is part of a regular expression, it is written in boldface. However we view

a and a as the same symbol.

7

A configuration c of M is a member of Q×Σ∗×Zk. The set of configurations
is denoted by C(M). Especially, c0(w) = (q0, w,~0) is the initial configuration for
w and CF = F × {(ε,~0)} is the set of final configurations.

If (q, a, u1, . . . , uk, q
′, v1, . . . , vk) ∈ δ, (q, aw, y1, . . . , yk) is a configuration of

M with ui = sgn(yi) for 1 ≤ i ≤ k, then we write

(q, aw, y1, . . . , yk) `M (q′, w, y1 + v1, . . . , yk + vk).

If a = ε, this is an ε-move. `M is a relation on Q × Σ∗ × Zk. Its reflexive
transitive closure is denoted by `∗M . The language accepted by M is

L(M) = {w ∈ Σ∗ : ∃cF ∈ CF (c0(w) `∗M cF)}.

We restrict our machines to be “blind” by forcing identical action for all counter
configurations, and restrict them to be “partially blind”, by not allowing transitions
for negative counters and by forcing other transitions to ignore counter contents.

Definition 3. A k-counter machine M = (Q,Σ, δ, q0, F, k) is blind if for each
q, q′ ∈ Q, a ∈ Σ ∪ {ε}, and for all ui, vi, xi ∈ {0, 1,−1}

(q, a, u1, . . . , uk, q
′, v1, . . . , vk) ∈ δ ⇐⇒ (q, a, x1, . . . , xk, q

′, v1, . . . , vk) ∈ δ.

In other words, a blind counter machine is unable to check the signs of its counters
during a computation. Only at the end, the acceptance condition checks whether
all counters are zero. A partially blind multi-counter machine may be viewed as a
blind multicounter machine which gets stuck when one of its counters decreases
below zero. Formal definitions of (partially) blind (multi) counter machines are
given in [37, 47].

Definition 4. A k-counter machine M = (Q,Σ, δ, q0, F, k) is deterministic if for
each q ∈ Q, a ∈ Σ and for all ui ∈ {−1, 0, 1} it is true that

|{(q, a, u1, . . . , uk, q
′, v1, . . . , vk) ∈ δ : q′ ∈ Q, vi ∈ {−1, 0, 1}}|

+ |{(q, ε, u1, . . . , uk, q
′, v1, . . . , vk) ∈ δ : q′ ∈ Q, vi ∈ {−1, 0, 1}}| ≤ 1.

1.2.2 Two Dimensional World
Let us now give an overview of the standard definitions and notations regarding
two-dimensional words and languages. We follow the terminologies, notations as
in [106], [41].

8

A two-dimensional word (also called as picture, matrix or an array) over Σ is
a tuple

W := ((a1,1, a1,2, . . . , a1,n), (a2,1, a2,2, . . . , a2,n), . . . , (am,1, am,2, . . . , am,n)) ,

where m,n ∈ N and, for every i, 1 ≤ i ≤ m, and j, 1 ≤ j ≤ n, ai,j ∈ Σ. We
define the number of columns (or width) and number of rows (or height) of W by
|W |c := n and |W |r := m, respectively. For the sake of convenience, we also
denote W by [ai,j]m,n or by a matrix in a more pictorial form. If we want to refer
to the j th symbol in row i of the picture W , then we use W [i, j] = ai,j .

By Σ+
+, we denote the set of all (non-empty) pictures over Σ, every subset

L ⊆ Σ+
+ is a picture language. L̄ = Σ+

+ \ L is the complement of the picture
language L.

Let W := [ai,j]m,n and W ′ := [bi,j]m′,n′ be two non-empty pictures over Σ.
The column concatenation of W and W ′, denoted by W � W ′, is undefined if
m 6= m′ and is the picture

a1,1 a1,2 ... a1,n b1,1 b1,2 ... b1,n′
a2,1 a2,2 ... a2,n b2,1 b2,2 ... b2,n′

...
...

...
...

am,1 am,2 ... am,n bm′,1 bm′,2 ... bm′,n′

otherwise. The row concatenation ofW andW ′, denoted byW�W ′, is undefined
if n 6= n′ and is the picture

a1,1 a1,2 ... a1,n
a2,1 a2,2 ... a2,n

...
...

am,1 am,2 ... am,n

b1,1 b1,2 ... b1,n′
b2,1 b2,2 ... b2,n′

...
...

bm′,1 bm′,2 ... bm′,n′

otherwise. In order to denote that, e. g., U�V is undefined, we also write U�V =
undef.

Example 1. Let

W1 :=
a b a
b c a
a b b

, W2 :=
b c
b a
c a

and W3 := a b c
c b b .

Then W1 �W2 = W1 �W3 = undef, but

W1 �W2 =
a b a b c
b c a b a
a b b c a

and W1 �W3 =
a b a
b c a
a b b
a b c
c b b

.

9

For a pictureW and k, k′ ∈ N, byW k we denote the k-fold column-concatenation
of W , by Wk we denote the k-fold row-concatenation of W , and we write W k

k′ :=
(W k)k′ .

The row and column catenation operations can be also viewed as operations on
languages. If L1 and L2 are two picture languages the column product is defined
as

L1 � L2 = {W �W ′ : W ∈ L1,W
′ ∈ L2}

and the row product is defined as

L1 � L2 = {W �W ′ : W ∈ L1,W
′ ∈ L2}

Let L be a picture language and L1,� = L, Li+1,� = Li,� � L for i ≥ 1; then

L+ =
∞⋃
i=1

Li,� (column concatenation plus closure)

Let L be a picture language and L1,� = L, Li+1,� = Li,� � L for i ≥ 1; then

L+ =
∞⋃
i=1

Li,� (row concatenation plus closure)

Also, we define n-fold iterations (powers) of column catenation as W n and n-
fold iterations (powers) of row catenation as Wn. Accordingly, Σn

m is understood,
as well as Σ+

m =
⋃
n≥1 Σn

m and similarly Σn
+. In this sense, Σ++ = Σ+

+.

Example 2. One can use the operations given so far to describe array languages
by expressions. For instance, L0 = {0}+

+ is the set of all arrays filled with zeros.
L1 = {1}+ � L0 is the language of all arrays over {0, 1} whose first column
is filled with ones, and all other (non-zero many) positions are filled with zeros.
Finally, L| = L0 � L1 is the language of all arrays that contain one column c
that is completely filled with ones, but all other positions are filled with zeros;
additionally there is at least one column to the left of c and one to the right of c.

Unary Operations and Connections to Group Theory

As pictures are (also) geometrical objects, several further unary operations can be
introduced [106]: quarter-turn (rotate clockwise by 90◦) Q, half-turn (rotate by
180◦) H , anti-quarter-turn (rotate anti-clockwise by 90◦ (or rotate clockwise by
270◦)) Q−1, transpose T (reflection along the main diagonal), anti-transpose T ′

(reflection along the anti-diagonal), Rh (reflection along a horizontal (base) line),
Rv(reflection along a vertical line). Together with the identity I , these (now eight)

10

operators form a non-commutative group (with respect to composition), the well-
known dihedral group D4 [6]; see Table 1.1a.

In Table 1.1a, ◦ is the function composition. So, if f : X → Y and g : Y → Z
are two functions, then g ◦ f : X → Z is defined by (g ◦ f)(x) = g(f(x)) for all
x ∈ X . How Table 1.1a works is shown below forW := [ai,j]m,n in the following.

(T ◦Rv)(W) = T

a1,n . . . a1,2 a1,1

a2,n . . . a2,2 a2,1
...

...
am,n . . . am,2 am,1

 =

a1,n a2,n . . . am,n
...

...
a1,2 a2,2 . . . am,2
a1,1 a2,1 . . . am,1

= Q−1(W).

Table 1.1: Unary Operators

◦ I Q−1 H Q Rv Rh T T ′

I I Q−1 H Q Rv Rh T T ′

Q−1 Q−1 H Q I T T ′ Rh Rv

H H Q I Q−1 Rh Rv T ′ T
Q Q I Q−1 H T ′ T Rv Rh

Rv Rv T ′ Rh T I H Q Q−1

Rh Rh T Rv T ′ H I Q−1 Q
T T Rv T ′ Rh Q−1 Q I H
T ′ T ′ Rh T Rv Q Q−1 H I

(a) Composition table of unary operators.

Normal Form
I (Q ◦Q) ◦ (Q ◦Q)
Q−1 Q ◦ (Q ◦Q)
H Q ◦Q
Rv Q ◦ T
Rh T ◦Q
T ′ Q ◦ (Q ◦ T)

(b) Normal form for the unary
operators with Q and T .

Let O = {I,Q−1, H,Q,Rv, Rh, T, T
′} be the set of these 8 unary operators

comprising D4. The operators in D4 are usually partitioned into the four rotations
(including the identity) {I,Q−1, H,Q}, which form the subgroup D2 of D4, and
four reflections {Rv, Rh, T, T

′}.

These operations can be also applied (picture-wise) to picture languages and

11

(language-wise) to families of picture languages. It is interesting to add the fact
that one single rotation Q generates all rotations (as a subgroup of D4) and that
all of D4 are generated by one rotation Q and one reflection T .

In Table 1.1b we make explicit how any operator can be written using the
composition of the two mentioned operators. Table 1.1b can be deduced from
Table 1.1a, for instance Q−1 = Q ◦ (Q ◦Q) since Q−1 = Q ◦H and H = Q ◦Q.
This simple observation helps simplify several of our arguments.

For instance, we can combine sequences of catenation and unary operations
from D4 to obtain Table 1.2, starting out from the four simple observations (1)
Q(W1�W2) = Q(W2)�Q(W1) (however, mind the sequence of arguments), (2)
Q(W1 �W2) = Q(W2) � Q(W1), (3) T (W1 �W2) = T (W1) � T (W2) and (4)
T (W1 �W2) = T (W1) � T (W2). For example,

H(W1 �W2) = (Q ◦Q)(W1 �W2) (By Table 1.1b)
= Q(Q(W1 �W2)) (By the definition of ◦)
= Q(Q(W2) �Q(W1)) (Apply Observation (1))
= Q(Q(W1)) �Q(Q(W2)) (Apply Observation (2))
= H(W1) �H(W2) (By Table 1.1b)

Table 1.2: Table of Operators.

W1 �W2 W1 �W2

I I(W1) � I(W2) I(W1) � I(W2)
Q Q(W2) �Q(W1) Q(W1) �Q(W2)
Q−1 Q−1(W1) �Q−1(W2) Q−1(W2) �Q−1(W1)
H H(W2) �H(W1) H(W2) �H(W1)
T T (W1) � T (W2) T (W1) � T (W2)
T ′ T ′(W2) � T ′(W1) T ′(W2) � T ′(W1)
Rv Rv(W1) �Rv(W2) Rv(W2) �Rv(W1)
Rh Rh(W2) �Rh(W1) Rh(W1) �Rh(W2)

Remark 2. Recall that all these reflection operations are self-inverse, i. e.,

T ◦ T = Rh ◦Rh = Rv ◦Rv = I ,

where I is the identity on Σ+
+. (See Table 1.1a).

12

Example 3. Let us continue with Example 2. T (L0) = Rv(L0) = Rh(L0) = L0.
Rv(L1) 6= Rh(L1) = L1 6= T (L1). Rv(L|) = Rh(L|) = L| 6= T (L|).

Having ◦ as the function composition, we obtain the following lemma that has
two identities, which we will use later.

Lemma 1. Rh = T ◦Rv ◦ T and Rv = T ◦Rh ◦ T .

Proof. Due to Remark 2, it is sufficient to show that Rh ◦ T = T ◦ Rv, as both
claimed identities follow from this single identity. Let us first consider Rh ◦ T :

(Rh ◦ T)(W) = Rh

a1,1 a2,1 . . . am,1
a1,2 a2,2 . . . am,2

...
...

a1,n a2,n . . . am,n

 =

a1,n a2,n . . . am,n
...

...
a1,2 a2,2 . . . am,2
a1,1 a2,1 . . . am,1

= Q−1(W)

and then we already have that (T ◦Rv)(W) = Q−1(W).

Remark 3. It is also easy to observe how these operations combine, e. g., T (W1�
W2) = T (W1)�T (W2) and T (W1�W2) = T (W1)�T (W2), orRv(W1�W2) =
Rv(W1) � Rv(W2), Rv(W1 �W2) = Rv(W2) � Rv(W2), and similarly with Rh.
Also, we have T (W+) = (T (W))+, T (W+) = (T (W))+, Rv(W

+) = (Rv(W))+

and Rv(W+) = (Rv(W+)), and similarly with Rh.

Example 4. Let us apply Remark 3 to our previous examples.
Rv(L1) = Rv({1}+ � L0) = Rv(L0) �Rv({1}+) = L0 � {1}+ 6= L1.
Rh(L1) = Rh({1}+ � L0) = Rh({1}+) �Rh(L0) = {1}+ � L0 = L1.
T (L1) = T ({1}+ � L0) = T ({1}+) �Rh(L0) = {1}+ � L0 6= L1.
Rv(L|) = Rv(L0 � L1) = Rv(L1) �Rv(L0) = (L0 � {1}+) � L0 = L|.
Rh(L|) = Rh(L0 � L1) = Rh(L0) �Rh(L1) = L0 � L1 = L|.
T (L|) = T (L0 � L1) = T (L0) � T (L1) = L0 � {1}+ � L0 =: L−.

We will use later L| and L− frequently as simple (counter-) example languages.

1.2.3 Graphs
Let us now give a brief overview of some standard definitions concerning the
graphs. We follow the terminologies, basic notations of Graph Theory as in [10].

Definition 5. A graph G = (V (G), E(G), ψG) is an ordered triple, where V (G)
is the nonempty finite set of vertices, E(G) is a set of edges disjoint from V (G),
and ψG is an incidence function that associates each edge of G to an unordered
pair of (not necessarily distinct) vertices of G, which we write as words of length
two over the alphabet V (G). If e is an edge and u and v are vertices such that
ψG(e) = uv, then e is said to join u and v; the vertices u and v are called the ends
of e.

13

Example 5. G = (V (G), E(G), ψG) where V (G) = {v1, v2, v3, v4, v5}, E(G) =
{e1, e2, e3, e4, e5, e6, e7, e8} and ψG is defined by ψG(e1) = v1v2, ψG(e2) = v2v3,
ψG(e3) = v3v3, ψG(e4) = v3v4 ψG(e5) = v2v4, ψG(e6) = v4v5, ψG(e7) = v2v5,
ψG(e8) = v2v5. The diagram of G is given in Fig. 1.1.

Example 6. H = (V (H), E(H), ψH) where V (H) = {u, v, w, x, y}, E(H) =
{a, b, c, d, e, f, g, h} and ψH is defined by ψH(a) = uv, ψH(b) = uu, ψH(c) =
vw, ψH(d) = wx ψH(e) = vx, ψH(f) = wx, ψH(g) = ux, ψH(h) = xy. The
diagram of H is in Fig. 1.2.

v3

v4

v5

v2 v1

e2

e3

e4

e5

e6
e8

e7

e1

Figure 1.1: Diagram of graph G

u

v

w

x y

g

b

a
e

c
f

d

h

Figure 1.2: Diagram of graph H

Definition 6. The ends of an edge are said to be incident with the edge, and vice
versa. Two vertices which are incident with a common edge are adjacent, as are
two edges which are incident with a common vertex. An edge with identical ends
is called a loop, and an edge with distinct ends a link. Two or more links that join
the same pair of vertices are called parallel edges.

For example, e3 of G (Fig. 1.1) is a loop; all other edges of G are links.

Remark 4. Note that the parallel loops do not get the name of parallel edges.

Definition 7. A graph is simple if it has no loops and no parallel edges.

The graphs of Fig. 1.1 and Fig. 1.2 are not simple. The number of vertices of
a graph G is called the order of the graph, denoted by ν(G) and the number of
edges of the graph G is called the size of the graph, denoted by ε(G). Hereafter
the letter G denotes a graph. Moreover, when just one graph is under discussion,
we usually denote this graph byG. We then omit the letterG from graph-theoretic
symbols and write, for instance, V , E, ν and ε instead of V (G), E(G), ν(G) and
ε(G).

14

Definition 8. Two graphs G and H are identical (written G = H) if V (G) =
V (H), E(G) = E(H), and ψG = ψH .

Definition 9. Two graphs G and H are said to be isomorphic (written G ∼= H)
if there are bijections θ : V (G) → V (H) and φ : E(G) → E(H) such that
ψG(e) = uv if and only if ψH(φ(e)) = θ(u)θ(v); such a pair (θ, φ) of mappings
is called an isomorphism between G and H .

To show two graphs are isomorphic, one must indicate an isomorphism between
them. Note that G and H in Fig. 1.2 are not identical, but isomorphic.

Definition 10. A simple graph in which each pair of distinct vertices is joined by
an edge is called a complete graph.

Up to isomorphism, there is just one complete graph on n vertices; it is denoted
by Kn. Here we can note that ν(Kn) = n and ε(Kn) = n(n− 1)/2.

Definition 11. A graph G is called as empty graph if ν(G) = ε(G) = 0.

Definition 12. A graph G is called as trivial graph if ν(G) = 1, ε(G) = 0.

Definition 13. A bipartite graph is one whose vertex set can be partitioned into
two subsets X and Y , so that each edge has one end in X and one end in Y ; such
a partition (X, Y) is called a bipartition of the graph.

Definition 14. A complete bipartite graph is a simple bipartite graph with the
bipartition (X, Y) in which each vertex of X is joined to each vertex of Y ; if
|X| = m and |Y | = n, such a graph is denoted by Km,n where ν(Km,n) = m+n,
ε(Km,n) = mn.

Let us denote the vertices of G by v1, v2, . . . , vν and the edges by e1, e2, . . . , eε.
To any graph G there corresponds a ν × ε matrix called the incidence matrix and
the ν × ν matrix called the adjacency matrix of G.

Definition 15. The incidence matrix of G is the ν × ε matrix M(G) = [mij],
where mij is the number of times (0, 1 or 2) that vi and ej are incident.

The incidence matrix of a graph is just a different way of specifying the graph. If
mij = 2 then ej is a loop incident with vi in graph G.

Definition 16. The adjacency matrix of G is the ν×ν matrix A(G) = [aij], where
aij is the number of edges joining vi and vj .

A graph, its incidence matrix, and its adjacency matrix are shown in Fig.1.3.

15

v1 v2

v3v4

e2

e1

e7
e3

e4

e6

e5

e1 e2 e3 e4 e5 e6 e7 dG(v)
v1 1 1 0 0 1 0 1 4
v2 1 1 1 0 0 0 0 3
v3 0 0 1 1 0 0 1 3
v4 0 0 0 1 1 2 0 4

v1 v2 v3 v4

v1 0 2 1 1
v2 2 0 1 0
v3 1 1 0 1
v4 1 0 1 1

Figure 1.3: G, M(G) and A(G)

Definition 17. A graph H is a subgraph of G (written H ⊆ G) if V (H) ⊆ V (G),
E(H) ⊆ E(G), and ψH is the restriction of ψG to E(H).

Definition 18. A graph H is a proper subgraph of G (written H (G), if H ⊆ G
and H 6= G.

Suppose that V ′ is a nonempty subset of V . The subgraph of G whose vertex set
is V ′ and whose edge set is the set of those edges of G that have both ends in V ′

is called the subgraph of G induced by V ′ and is denoted by G[V ′]; we say that
G[V ′] is an induced subgraph of G. The induced subgraph G[V \ V ′] is denoted
by G− V ′; it is the subgraph obtained from G by deleting the vertices in V ′ with
their incident edges. If V ′ = {v} we write G− v for G− {v}. Now suppose that
E ′ is a nonempty subset of E. The subgraph of G whose vertex set is the set of
ends of edges in E ′ and whose edge set is E ′ is called the subgraph of G induced
by E ′ and is denoted by G[E ′]; G[E ′] is an edge-induced subgraph of G. The
spanning subgraph of G with edge set E \ E ′ is written simply as G − E ′; it is
the subgraph obtained from G by deleting the edges in E ′. Similarly, the graph
obtained from G by adding a set of edges E ′ is denoted by G + E ′. If E ′ = {e}
we write G− e and G+ e instead of G− {e} and G+ {e}.

Let G1 and G2 be subgraphs of G. We say that G1 and G2 are disjoint if they
have no vertex in common, and edge-disjoint if they have no edge in common.
The union G1 ∪G2 of G1 and G2 is the subgraph with vertex set V (G1) ∪ V (G2)
and edge setE(G1)∪E(G2); ifG1 andG2 are disjoint, we sometimes denote their
union by G1 + G2. The intersection G1 ∩ G2 of G1 and G2 is defined similarly,
but in this case G1 and G2 must have at least one vertex in common.

Definition 19. The degree dG(v) of a vertex v in G is the number of edges of G
incident with v, each loop counting as two edges.

16

The degree of a vertex in G in connection with M(G) can be written as: dG(vi) =∑
1≤j≤ε(G)

mij for vi ∈ V (G) where 1 ≤ i ≤ ν(G). We denote by δ(G) and ∆(G)

the minimum and maximum degrees, respectively, of vertices of G. Let us recall
the following two results.

Theorem 1 ([10]).
∑
v∈V

dG(v) = 2ε

Corollary 1 ([10]). In any graph, the number of vertices of odd degree is even.

In Fig. 1.3, we can see that
∑

1≤i≤4

d(vi) = 14, while counting degrees of vertices,

each edge contributes two degrees: one each to its end vertices. That is each edge
is counted twice while counting the degrees of all vertices. Therefore the sum of
degrees of all vertices in G is twice the number of edges in G, here the numbers
of edges is 7.

Definition 20. A graph G is k-regular if d(v) = k for all v ∈ V ; a regular graph
is one that is k-regular for some k.

Complete graphs Kn and complete bipartite graphs Kn,n are regular, since we
have Kn is (n− 1)-regular and Kn,n is n-regular.

Definition 21. Let k ∈ N0. A walk (of length k) in a graphG is a finite non-empty
alternating sequence W = v0e0v1e1v2e2 . . . vk−1ek−1vk of vertices and edges in
G such that ψG(ei) = vivi+1 for all 0 ≤ i < k. The length of the walk W is
denoted by `(W) Let us denote by E(W) the set of edges which appear in W ,
and let us denote by λW (e) the number of occurrences of e ∈ E(G) in W . Set
V (W) = {vi | i = 0, . . . , k}.

We say that W is a walk from v0 to vk, or a (v0,vk)-walk. The vertices v0 and
vk are called the origin and terminus of W , respectively, and v1, v2, . . . , vk−1 its
internal vertices. If v0 = vk then walk is closed and open if they are different. We
speak of a covering walk if E(W) = E(G), whereas a V (G)-covering walk only
satisfies V (W) = V (G). A covering walk is called a double-tracing if λW (e) = 2
for every e ∈ E(G).

IfW = v0e0v1e1 . . . vk−1ek−1vk is a walk, then the walk vkek−1vk−1 . . . v1e0v0,
obtained by reversing W , is denoted by WR. If W1 = v0e0v1e1 . . . vk−1ek−1vk,
W2 = x0f0x1f1 . . . x`−1f`−1x` are walks and if vk = x0 then the concatenation of
W1 and W2 at the vertex vk is the walk v0e0 . . . vk−1ek−1vkf0x1f1 . . . xk−1fk−1xk,
and it is denoted by W1 ·vk W2. Here we can note that `(W1) = k, `(W2) = ` and
`(W1 ·vk W2) = k + `.

17

A subsequence of a walk W is a walk that can be derived from W , by deleting
either its prefix or suffix or both, in the walk W . For example, X = v1e5v4e5v1 is
a subsequence of walk W = v0e0v1e5v4e5v1e6v4e7v2e1v1 derived by deleting its
prefix v0e0 and suffix e6v4e7v2e1v1. A section of a walk W = v0e0v1 . . . ek−1vk
is a walk that is a subsequence vieivi+1ei+1 . . . vj−1ej−1vj of W ; we refer to this
subsequence as the (vi,vj)-section of W .

In a simple graph, a walk v0e0 . . . ek−1vk is determined by the sequence v0v1 . . . vk
of its vertices; hence a walk in a simple graph can be specified simply by its vertex
sequence. Moreover, even in graphs that are not simple, we shall sometimes refer
to a sequence of adjacent vertices as a ‘walk’. In such cases it is understood that
the discussion is valid for every walk with that sequence.

Similar to V (G), E(G), ν(G) and ε(G), the number of vertices of a walk W
in G is called the order of the walk, denoted by ν(W) and the number of edges of
the graph W is called the size of the walk, denoted by ε(W).

Definition 22. Let W = v0e0v1e1 . . . ek−1vk be a walk. W is called a trail if
ei 6= ej whenever i 6= j, 0 ≤ i, j ≤ k − 1; in this case `(W) = ε(W).

Remark 5. W = v0 is the trivial trail and `(W) = ε(W) = 0. A second smallest
trail can be a loop or an edge between two vertices. More explicitly, W = v0e0v1

is a second smallest trail, if v0 = v1 then W is a loop and if v0 6= v1 then W is a
link between v0 and v1. In both cases `(W) = ε(W) = 1.

Definition 23. An open trail satisfying `(W) = |V (W)| − 1 is a path.

In other words, an open trail in which no vertex appears (traversed) more than
once is called a path. The number of edges, ε(W), in a pathW is called the length
of the path. It immediately follows, then, that an edge which is not a loop is a
path of length one. It should also be noted that a loop can be included in a trail
but not in a path. The terminal vertices of a path are of degree one, and the rest
of the vertices (intermediate vertices) are of degree two. This degree, of course,
is counted only with respect to the edges included in the path and not the entire
graph in which the path may be contained.

Fig.1.4 illustrates a walk, a trail and a path in a graph. We shall also use the
word ‘path’ to denote a graph or subgraph whose vertices and edges are of a path.
Just as with walks we sometimes use the term (v0,vk)-path to denote a path from
v0 to vk.

Two vertices u and v of G are said to be connected if there is a (u,v)-path in
G. Connectedness is an equivalence relation on the vertex set V . Thus there is a

18

v0

v4 v1

v2v3

e4 e0

e6

e5

e7
e1

e2

e3

Walk: v0e0v1e5v4e5v1e6v4e7v2e1v1

Trail: v2e2v3e3v4e7v2e1v1e6v4

Path: v3e2v2e7v4e4v0e0v1

Figure 1.4: Walk, Trail and Path

partition of V into nonempty subsets V1, V2, . . . , Vω such that two vertices u and v
are connected if and only if both u and v belong to the same set Vi. The subgraphs
G[V1], G[V2], . . . , G[Vω] are called the components of G. If G has exactly one
component, G is connected; otherwise G is disconnected. We denote the number
of components of G by ω(G). Connected and disconnected graphs are depicted in
Fig. 1.5 and Fig. 1.6.

Figure 1.5: A connected graph
Figure 1.6: A disconnected graph with 3
components

Definition 24. Let W = v0e0 . . . ek−1vk be a closed trail. A closed trail W is a
cycle if ε(W) = |V (W)|; in this case we have `(W) = k > 0. 2

Just as with paths we use the term ‘cycle’ to denote a graph that corresponds to a
cycle.

Definition 25. A cycle of length k is called a k-cycle; a k-cycle is odd or even
according as k is odd or even.

2Cycles are often called circuits, while closed trails are often called cycles. Note that a cycle
must have at least one edge.

19

v0

v1v2

v3

e1 e2

e0

e4

e5

e7

e3

e6 Closed trail:
v0e2v1e7v3e6v2e5v2e3v1e1v0

Cycle: v3e0v0e1v1e7v3

Figure 1.7: Closed trail and Cycle

A 3-cycle is often called a triangle. Examples of a closed trail and a cycle are
given in Fig. 1.7.

Definition 26. A covering trail is called an Eulerian Trail.

Remark 6. Let G be the trivial graph then W = v0 is the trivial Eulerian trail.

These trails named after Euler since he was the first to investigate the existence of
such trails in graphs. In the earliest known paper on graph theory of Euler [24],
he showed that it was impossible to cross each of the seven bridges of Königsberg
once and only once during a walk through the town. Proving that such a walk
is impossible amounts to showing that the graph of Fig. 1.8 contains no Eulerian
trail.

Definition 27. A closed Eulerian trail is an Eulerian Tour.

Remark 7. W = v0e0v0 is the smallest Eulerian tour.

A B

D

C

Figure 1.8: Graph Representation of Königsberg Bridge Problem

20

Definition 28. A graph is Eulerian if it contains an Eulerian tour.

Let us recall the following few results.

Theorem 2 ([10]). A nonempty connected graph is Eulerian if and only if it has
no vertices of odd degree.

Corollary 2 ([10]). A connected graph has an Eulerian trail if and only if it has
at most two vertices of odd degree.

Figure 1.9: n = 1 and n = 4
Figure 1.10: n = 2 and n = 3

Remark 8. A graphG with an Eulerian trailW with n vertices, where 4 ≥ n ≥ 1
and ε(G) = 3 can be drawn in as many ways as in Figures 1.9 and 1.10.

21

Chapter 2

Eulerian Trails

In this chapter we try to answer a (first) question: How to place sets of Eulerian
trails [24] in the Chomsky hierarchy? This was motivated by yet another (second)
question: How to do the so called shuffle operation [43] that has been defined in
1970’s and also its restrictions such as literal shuffle [8], balanced literal shuffle
and shuffle operation on trajectories [81] to the Eulerian graphs? The second
question has been answered in [91] using the pseudo-linear form (PLF) [102]. The
first question has been answered by us in [28]. Here in this chapter we provide
detailed proofs for some of the theorems in [28] and also few new results.

2.1 Formal Language Questions for Eulerian Trails
We consider connected graphs. If we draw all the vertices of a graph G =
(V,E, ψ) on a horizontal line, then we associate different integers to the vertices
by a function called pseudo-linear drawing, which is defined as follows:

Definition 29. A pseudo-linear drawing (PLD) is an injective function φ : V → Z.

Definition 30. PLDφ(G) is a graph with vertex set φ(V) such that PLDφ(G)∼= G.

Definition 31. If φ is a PLD, then u is to the left of v in the drawing PLDφ(G) if
and only if φ(u) < φ(v). Similarly u is to the right of v in the drawing PLDφ(G)
if and only if φ(v) < φ(u).

Example 7. Let G be graph as in Fig. 2.1 and let φ be a PLD defined as φ(v0) =
100, φ(v1) = 1000 and φ(v2) = 2000 then PLDφ(G) is as in Fig. 2.1.

Let us define the word representation of the Eulerian trails as follows:

22

v1

v2

v0

e1e2

e0

G: 1000 2000100
PLDφ(G):

Figure 2.1: Graph G and PLDφ(G) in Example 7

Definition 32. A connected graph G = (V,E, ψ), with an Eulerian trail W =
v0e0v1e1 . . . ek−1vk and any PLD φ : V → Z, defines a word w = word(G, φ,W)
∈ Σ∗, Σ = {→,←, |} associated to G, φ and W as follows:

word(G, φ,W) =

ε if W = v0

w′w′′, w′′ =→ |s if s = φ(vk)− φ(vk−1) ≥ 0 ∧W 6= v0

w′w′′, w′′ =← |s if s = φ(vk−1)− φ(vk) > 0 ∧W 6= v0

Here w′ = word(G′, φ′,W ′), where W ′ = v0e0 . . . ek−2vk−1, G′ (G,

G′ =

{
G− ek−1 if dG(vk) > 1

G− vk if dG(vk) = 1

with V (G′) = V ′ = V if G′ = G − ek−1 and V ′ = V − vk if G′ = G − vk,
E(G′) = E ′ (E, ψ′ is the restriction of ψ to E ′ and φ′ the restriction of φ to V ′.

Note 1: In the above definition the trail W satisfies W = W ′ ·vk−1
W ′′ where

`(W ′) = k − 1, and W ′′ = vk−1ek−1vk where `(W ′′) = 1 to satisfy `(W) = k.

Note 2: W ′′ = vk−1ek−1vk is an Eulerian trail of the graph G′′ = (V ′′, E ′′, ψ′′),
where V ′′ = {vk, vk−1}, E ′′ = {ek−1}, ψ′′(ek−1) = vk−1vk. Then G′′ satisfies the
condition that G = G′ ∪ G′′ with vk−1 ∈ V ′ ∩ V ′′. Here G′ and G′′ are edge-
disjoint but not vertex-disjoint. Also G′′ has a PLD φ′′, the restriction of φ to V ′′,
that is φ′′ = φ|V ′′ . So we have word(G′′, φ′′,W ′′) = w′′. This gives the following
observation.

Observation 1. word(G, φ,W) = word(G′, φ′,W ′) · word(G′′, φ′′,W ′′).

Example 8. Let us consider a graphG = (V,E, ψ), where V = {x, y}, E = {e},
ψ(e) = xy with an Eulerian trail W = xey and a PLD φ : V → Z which is given
as φ(x) = z0 and φ(y) = z1, where z0, z1 ∈ Z. By Definition 32 we find that

word(G, φ,W) =

{
→ |s if z0 + s = z1, s > 0

← |s if z1 + s = z0, s > 0

If x = y then z0 = z1, then s = 0 and word(G, φ,W) =→.

23

Hence, G, φ, and an Eulerian trail W in G specify a word word(G, φ, W) = w
over the alphabet Σ = {→,←, |}, called Eulerian trace. This gives the following
formal definition of the set of all Eulerian traces.

Definition 33. ET = {w ∈ {→,←, |}∗ | ∃G = (V,E, ψ) with an Eulerian trail
W = v0e0v1e1 . . . ek−1vk and ∃ a PLD φ : V → Z such thatw = word(G, φ,W)}.

Lemma 2. ET ⊆ Σ∗ \ (({|}Σ∗) ∪ {←}), where Σ = {→,←, |}.

Proof. Let w ∈ ET . By Definition 33, there exists a graph G = (V,E, ψ) with
an Eulerian trail W = v0e0v1e1 . . . ek−1vk and there exists a PLD φ : V → Z such
that w = word(G, φ,W). By Definition 32, we have two cases for w as follows:
Case 1: Ifw = ε thenw ∈ Σ∗\(({|}Σ∗)∪{←}). Case 2: Ifw 6= ε thenw = w′w′′,
where w′ = word(G′, φ′,W ′) (here again w′ = ε or w′ 6= ε which we will see
as sub cases of Case 2 below) and w′′ =→ |s, if s = φ(vk) − φ(vk−1) ≥ 0 and
w′′ =← |s, if s = φ(vk−1)−φ(vk) > 0. This implies w′′ ∈ Σ∗ \ (({|}Σ∗)∪{←}).
Again by Definition 32, we have two cases for w′ as follows: Case 2a: If w′ = ε
then w = w′′. Case 2b: If w′ 6= ε then w′ = w′1w

′
2, where w′1 = word(G′1, φ

′
1,W

′
1)

and w′2 =→ |s, if s = φ(vk) − φ(vk−1) ≥ 0 and w′2 =← |s, if s = φ(vk−1) −
φ(vk) > 0. If w′1 = ε then w′ ∈ Σ∗ \ (({|}Σ∗) ∪ {←}). But if w′1 6= ε then
w′1 will be decomposed to two words and we should continue to discuss again
until we get a decomposition that has the first word as ε then the decomposition
stops and we could see that the second word is in Σ∗ \ (({|}Σ∗) ∪ {←}). Now
we conclude Case 2 that if w 6= ε then w ∈ Σ∗ \ (({|}Σ∗) ∪ {←}). Hence
ET ⊆ Σ∗ \ (({|}Σ∗) ∪ {←}).

Observation 2. Let us consider a word w ∈ Σ∗ \ (({|}Σ∗) ∪ {←}), namely
w =→ |s. Let us reconsider the graph G = (V,E, ψ) in Example 8. If s > 0
then we find word(G, φ,W) =→ |s or word(G, φ,W) =← |s. Similarly if s = 0
then word(G, φ,W) =→. So we observe that w =→ |s1 , s1 ≥ 0 and w =← |s2 ,
s2 > 0 corresponds to an Eulerian trail W with `(W) = 1 of a graph G with
ν(G) = ν(W) = n, where 2 ≥ n ≥ 1 and ε(G) = 1 that has a PLD φ such that
word(G, φ,W) = w.

Lemma 3. Let W1 and W2 be two Eulerian trails of graphs G1 = (V1, E1, ψ1)
and G2 = (V2, E2, ψ2) respectively. Then W1 ·vk W2 is also an Eulerian trail of
graph G1 ∪ G2 with vk ∈ V1 ∩ V2 and vk being the terminus of W1 and origin of
W2.

Proof. Let W1 = v0e0v1 . . . ek−1vk and W2 = x0f0x1 . . . f`−1x` be two Eulerian
trails of graphs G1 = (V1, E1, ψ1) and G2 = (V2, E2, ψ2) respectively. We have
V1 = {v0, . . . , vk} and V2 = {x0, . . . , x`}. Assume vk = x0. Then W1 ·vk W2 =
v0e0 . . . ek−1vkf0 . . . f`−1x`. Let W = W1 ·vk W2. Now W is an Eulerian trail of a

24

graph G, where G = G1 ∪G2 with vk ∈ V1 ∩ V2 and vk being the terminus of W1

and origin of W2.

Observation 3. Lemma 3 is true only for vk being the terminus of W1 and the
origin of W2 and it is not true for any vk ∈ V1 ∩ V2. For instance, let W1 =
x0e0x1e4x2e1x0e2x3 and W2 = y0f0x0f1y2 (see Fig. 2.2). Here, x0 is the vertex
common in the vertex set of both W1 and W2. But it is not both: terminus of W1

and origin of W2, so W1 ·x0 W2 is not an Eulerian trail (see Fig. 2.3).

x2

x0

x1

x3

y2

x0

y0

e0 e1

e2

e4

f1f0

W2

W1

Figure 2.2: Eulerian trails W1 and W2

x2

x0

x1

x3

y0

y2

e2

e1

e0

e4

f0

f1

Figure 2.3: W1 ·x0 W2

To prove the other inclusion of Lemma 2, let us define the homomorphism h :
Σ∗ → {→,←}∗ such that h(→) =→, h(←) =← and h(|) = ε. Let us consider
w ∈ Σ∗ \ (({|}Σ∗)∪{←}). We have to prove that w ∈ ET . For this let us restate
Σ∗ \ (({|}Σ∗) ∪ {←}) ⊆ ET in more detail as in the following lemma.

Lemma 4. Let w ∈ Σ∗ \ (({|}Σ∗) ∪ {←}). Let k ∈ N0. If |h(w)| = k, then
w corresponds to an Eulerian trail W with `(W) = ε(W) = k of a graph G =
(V,E, ψ) with ν(G) = ν(W) = n where k + 1 ≥ n ≥ 1 and ε(G) = k that has a
PLD φ : V → Z such that word(G, φ,W) = w.

Proof. Let us prove this lemma by induction on k. Induction Basis: If |h(w)| =
k = 0 then w ∈ {|}∗ which implies w = ε. Let us consider an Eulerian trail W
of the graph G = (V,E, ψ) where V = {v0}, E = ∅ and ψ = ∅ that has a PLD
φ : V → Z. We find that word(G, φ,W) = ε. Moreover, w corresponds to the
Eulerian trail W with `(W) = ε(W) = 0 of the graph G with ν(G) = ν(W) = 1
where G and W satisfies the conditions stated in Lemma 4.

Induction Hypothesis (IH): Assume that if |h(w)| ≤ k, k ≥ 0 then w corresponds
to an Eulerian trail W with `(W) = ε(W) = k of a graph G = (V,E, ψ) with
ν(G) = ν(W) = n, k + 1 ≥ n ≥ 1 and ε(G) = k that has a PLD φ : V → Z
such that word(G, φ,W) = w.

25

Induction Step: We prove the lemma for |h(w)| = k + 1, k ≥ 0. Let w = w′w′′

where |h(w′)| = k and |h(w′′)| = 1 and w′, w′′ ∈ Σ∗ \ (({|}Σ∗) ∪ {←}).

By IH w′ corresponds to an Eulerian trail W ′ with `(W ′) = ε(W ′) = k

of a graph G′ = (V ′, E′, ψ′) with ν(G′) = n′, k + 1 ≥ n′ ≥ 1 ∧ ε(G′) = k

that has a PLD φ′ : V ′ → Z such that word(G′, φ′,W ′) = w′.

 (2.1)

By Observation 2, w′′ corresponds to an Eulerian trail W ′′ with `(W ′′) = ε(W ′′) = 1 of
a graph G′′ = (V ′′, E′′, ψ′′) with ν(G′′) = n′′, 2 ≥ n′′ ≥ 1 and ε(G′′) = 1 that has a
PLD φ′′ : V ′′ → Z such that word(G′′, φ′′,W ′′) = w′′.

Let W ′ = v0e0 . . . ek−1vk. Let W ′′ = xey. For G′′ we have two cases. Case 1: If n′′ = 1
then V ′′ = {x}. Case 2: If n′′ = 2 then V ′′ = {x, y}. φ′′(x) = zx and φ′′(y) = zy,
where x, y ∈ V ′′ and zx, zy ∈ Z and this implies that x 6= y where as in Case 1 we have
x = y.

We have V ′ = {v0, . . . , vk}. Let φ′(vk) = φ′′(x), then x = vk (since φ′ and φ′′ are
injective functions) and this implies φ′(vk) = zx. Here V ′ ∩ V ′′ 6= ∅. More precisely,

V ′ ∩ V ′′ =

{
{vk} if zy /∈ {φ′(vi), 0 ≤ i ≤ k},
{vk, y} if zy ∈ {φ′(vi), 0 ≤ i ≤ k}.

From these two cases of V ′ ∩ V ′′, we have two cases for y ∈ V ′′, respectively:
Case 1 : If y /∈ V ′ then W ′ ·vk W ′′ = v0e0 . . . ek−1vkey with `(W ′ ·vk W ′′) = `(W ′) +
`(W ′′) = k+1 of a graphG = (V,E, ψ) where V = V ′∪V ′′,E = E′∪E′′, ψ : E → V 2

is the incidence function such that ψ|E′ = ψ′ and ψ|E′′ = ψ′′, with

• k + 2 ≥ ν(G) ≥ 1 since ν(G) = n′ + (n′′ − 1) = n′ + 1 ≤ (k + 1) + 1 = k + 2
by IH from (2.1) and since ν(G) = n′ + 1 ≥ 1,

• ε(G) = k + 1 since E = E′ ∪ E′′ ∧ E′ ∩ E′′ = ∅,

that has a PLD φ : (V ′∪V ′′)→ Z where φ is obtained from both φ′ and φ′′ with φ′(vk) =
φ′′(x) (since x = vk ∈ V ′ ∩ V ′′) such that word(G,φ,W ′ ·vk W ′′) = word(G,φ,W ′) ·
word(G,φ,W ′′) = w′w′′.
Case 2 : If y ∈ V ′ then W ′ ·vk W ′′ with `(W ′ ·vk W ′′) = `(W ′) + `(W ′′) = k + 1 of
a graph G = (V,E, ψ) where V = V ′ ∪ V ′′ and E = E′ ∪ E′′ and ψ : E → V 2 is the
incidence function such that ψ|E′ = ψ′ and ψ|E′′ = ψ′′, with

• k + 1 ≥ ν(G) ≥ 1 since ν(G) = n′ ≤ k + 1 by IH from (2.1) and since ν(G) =
n′ ≥ 1,

• ε(G) = k + 1 since E = E′ ∪ E′′ ∧ E′ ∩ E′′ = ∅,

26

that has a PLD φ : (V ′ ∪ V ′′) → Z where φ = φ′ such that word(G,φ,W ′ ·vk W ′′) =
word(G,φ,W ′) · word(G,φ,W ′′) = w′w′′.

By Lemma 3, as W ′ and W ′′ are Eulerian trails, W ′ ·vk W ′′ is also an Eulerian trail. As
vk ∈ V ′ ∩ V ′′, we can also note that G = G′ ∪ G′′ in both cases. Therefore, w with
|h(w)| = k + 1 corresponds to an Eulerian trail W with `(W) = ε(W) = k + 1 of a
graph G = (V,E, ψ) with ν(G) = ν(W) = n, k+ 2 ≥ n ≥ 1 and ε(G) = k+ 1 that has
a PLD φ : V → Z such that word(G,φ,W) = w. Hence, by the principle of induction
the lemma is proven.

Theorem 3. ET = Σ∗ \ (({|}Σ∗) ∪ {←}).

Proof. The proof follows from Lemmas 2 and 4.

Illustration 1. Let us now illustrate Lemma 4. Let w =→ | → | ← ||. Then
w ∈ Σ∗\({|}Σ∗). As |h(w)| = 3, by Lemma 4, w corresponds to an Eulerian trail
W with `(W) = ε(W) = 3 of a graph G = (V,E, ψ) with ν(G) = ν(W) = n
where 4 ≥ n ≥ 1 and ε(G) = 3 that has a PLD φ : V → Z such that
word(G, φ,W) =→ | → | ← ||.

Now let us see how the word → | → | ← || corresponds to a graph G, that
describes a triangle (G is a 3-cycle): Let us split the word w =→ | → | ← || such
that w′ =→ | → | and w′′ =← ||. Then |h(w′)| = 2 and |h(w′′)| = 1.

Now again split w′ =→ | → | such that w′1 =→ |, w′2 =→ |. Then |h(w′1)| =
1 and |h(w′2)| = 1. By Lemma 4, w′1 corresponds to an Eulerian trail W ′

1 with
`(W ′

1) = 1 of a graph G′1 = (V ′1 , E
′
1, ψ

′
1) with ν(G′1) = ν(W ′

1) = n′1 where 2 ≥
n′1 ≥ 1 and ε(G′1) = 1 that has a PLD φ′1 : V ′1 → Z such that word(G′1, φ

′
1,W

′
1) =

w′1. Now let us find the graph G′1 such that word(G′1, φ
′
1,W

′
1) = w′1 =→ |.

Let W ′
1 = v0e0v1 be the Eulerian trail of the graph G′1 with V ′1 = {v0, v1},

E ′1 = {e0} and ψ′1(e0) = v0v1. Please note that up to this moment we cannot
conclude whether n′1 = 1 (v0 = v1) or n′ = 2 (v0 6= v1).

Let φ′1(v0) = z0 and φ′1(v1) = z1, where z0, z1 ∈ Z. Let us write w′1 =→ |s1 ,
where s1 = 1. Since s1 = 1 by Definition 32 we have s1 = z1 − z0 = 1 ≥ 0,
which implies that z0 6= z1, and that implies v0 6= v1 (n′1 = 2).

Therefore we can draw the graph G′1 as an edge between two vertices v0 and
v1 (see Fig. 2.4). Also since z0 < z1, v0 is to the left of v1 in PLDφ′1

(G′1) (see
Fig. 2.5). Also note that z0 + s1 = z1.

27

Similarly, By Lemma 4, w′2 corresponds to an Eulerian trail W ′
2 with `(W ′

2) =
1 of a graph G′2 = (V ′2 , E

′
2, ψ

′
2) with ν(G′2) = ν(W ′

2) = n′2 where 2 ≥ n′2 ≥ 1 and
ε(G′2) = 1 that has a PLD φ′2 : V ′2 → Z such that word(G′2, φ

′
2,W

′
2) = w′2. Now

let us find the graph G′2 such that word(G′2, φ
′
2,W

′
2) = w′2 =→ |.

Let W ′
2 = v1e1v2 be the Eulerian trail of the graph G′2 with V ′2 = {v1, v2},

E ′2 = {e1} and ψ′2(e1) = v1v2. Let φ′2(v1) = z1 and φ′2(v2) = z2, where
z1, z2 ∈ Z. Let us write w′2 =→ |s2 , where s2 = 1. Since s2 = 1 we have
by Definition 32 that s2 = z2 − z1 = 1 ≥ 0, which implies that z1 6= z2, and
that implies v1 6= v2 (n′2 = 2). Therefore we can draw the graph G′2 as an edge
between two vertices v1 and v2 (see Fig. 2.4). Also since z1 < z2, v1 is to the left
of v2 in PLDφ′2

(G′2) (see Fig. 2.5). Also note that z1 + s2 = z2.

We have w′ =→ | → |. Then |h(w′)| = 2. By Lemma 4 w′ corresponds to
an Eulerian trail W ′ with `(W ′) = ε(W ′) = 2 of a graph G′ = (V ′, E ′, ψ′) with
ν(G′) = ν(W ′) = n′ where 2 + 1 ≥ n′ ≥ 1 and ε(G′) = 2 that has a PLD
φ′ : V ′ → Z such that word(G′, φ′,W ′) = w′.

Let us concatenate the Eulerian trailsW ′
1 = v0e0v1 andW ′

2 = v1e1v2 and name
it as W ′, so W ′

1 ·v1 W
′
2 = W ′. Then we have W ′ = v0e0v1e1v2 and `(W ′) = 2. We

know from W ′
1 and W ′

2 that v0 6= v1 and v1 6= v2. Also we know that z0 + s1 = z1,
s1 = 1 and z1 + s2 = z2, s2 = 1. This implies that z0 6= z2. Since z0 6= z2,
v0 6= v2. Therefore we can draw G′ as in Fig. 2.4.

By Lemma 4, w′′ corresponds to an Eulerian trail W ′′ with `(W ′′) = 1 of a
graph G′′ = (V ′′, E ′′, ψ′′) with ν(G′′) = ν(W ′′) = n′′ where 2 ≥ n′′ ≥ 1 and
ε(G′′) = 1 that has a PLD φ′′ : V ′′ → Z such that word(G′′, φ′′,W ′′) =← ||.
Now let us find the graph G′′ such that word(G′′, φ′′,W ′′) = w′′ =← ||.

Let W ′′ = v2e2v3 be the Eulerian trail of the Graph G′′ with V ′′ = {v2, v3},
E ′′ = {e2} and ψ′′(e2) = v2v3. Let φ′′(v2) = z2 and φ′′(v3) = z3, where
z2, z3 ∈ Z. Let us write w′′ =← |s3 , where s3 = 2. Since s3 = 2 we have
by Definition 32 that s3 = z2 − z3 = 2 ≥ 0, which implies that z2 6= z3, and
that implies v2 6= v3 (n′′ = 2). Therefore we can draw the graph G′′ as an edge
between two vertices v2 and v3 (see Fig. 2.4). Also since z3 < z2, v3 is to the left
of v2 in the PLDφ′′(G′′) (see Fig. 2.5). Also note that z3 + s3 = z2.

Finally, we have that w =→ | → | ← ||. Then |h(w)| = 3. By Lemma 4
w corresponds to an Eulerian trail W with `(W) = ε(W) = 3 of a graph
G = (V,E, ψ) with ν(G) = ν(W) = n where 3 + 1 ≥ n ≥ 1 and ε(G) = 3 that
has a PLD φ : V → Z such that word(G, φ,W) = w.

28

v0 v1e0
G′1

v1

v2

e1
G′2

v1v0

v2

e0

e1G′

v2

v3

e2G′′

v1

v2

v0

e1e2

e0

G

Figure 2.4: Graphs G, G′, G′′,
G′1, G′2

z0 z1
PLDφ′1

(G′1)

z1 z2
PLDφ′2

(G′2)

z1 z2z0

PLDφ′(G′)

z2z3

PLDφ′′(G′′)

z1 z2z0
PLDφ(G)

Figure 2.5: PLDs of Graphs in Fig.2.4

Let us concatenate the Eulerian trails W ′ = v0e0v1e1v2, and W ′′ = v2e2v3

and name it as W , so W ′ ·v2 W
′′ = W . Then we have W = v0e0v1e1v2e2v3 and

`(W) = 3. We know from W ′ and W ′′ that v0 6= v1, v1 6= v2, v0 6= v2 and
v2 6= v3. Also we know that z0 + s1 = z1, s1 = 1 and z1 + s2 = z2, s2 = 1 and
z2 − s3 = z3, s3 = 2. This implies that z0 = z3 and z1 6= z3. Since z0 = z3,
v0 = v3 and since z1 6= z3, v1 6= v3. Therefore we can draw G as in Fig. 2.4. Also
since z0 < z1 < z2, v0 is to the left of v1 and v1 is to the left of v2 in the PLD(G)
(see Fig. 2.5). Also note that z0 + 1 = z1, z1 + 1 = z2 and z2 − 2 = z0.

29

2.2 Standard PLD
In Section 2.1 we saw that given any connected graph G = (V,E, ψ) with an
Eulerian trail W and any PLD φ : V → Z, we find a word w ∈ ET . Conversely,
given any word w ∈ ET we find the connected graph G = (V,E, ψ) with an
Eulerian trail W that has a PLD φ : V → Z such that word(G, φ,W) = w.

Given a word w ∈ ET we find the graph G that satisfies word(G, φ,W) = w,
but there can be infinitely many graphs for w ∈ ET which are isomorphic to G.
Let a graph, say Gw be a representative of the equivalence class of isomorphic
graphs of G, where Gw = (V,E, ψ) with V = {vi}, 0 ≤ i ≤ k, E = {ej},
0 ≤ j ≤ k − 1 and ψ(e) = uv, e ∈ E and u, v ∈ V . By the illustration of
Lemma 4, we have seen that the PLD φ plays a vital role in identifying the right
graph G = (V,E, ψ), for the given word w ∈ ET .

Now, it is natural to think about the uniqueness in PLD, by having a standard
variant of it, and to have a unique graph Gw that has an Eulerian trail W with the
standard PLD φw that gives a unique PLDφw(Gw). Notice that, as φ(v0) ∈ Z and
it (v0 is the start vertex (origin) of W) is not specified with w ∈ ET , so there
are infinitely many PLDs φ such that w = word(G, φ,W), but all are obtained
from another by shifting along the horizontal line and hence describe the same
graph. Let us now see an example for this and then we will formally define how
this shifting gives us the same graph.

Example 9. Let w =→ | → | then by Definition 33 there exists a graph G =
(V,E, ψ) where V = {v0, v1, v2}, E = {e0, e1}, ψ(e0) = v0v1 and ψ(e1) = v1v2

with an Eulerian trail W = v0e0v1e1v2 and there exists a PLD φ : V → Z such
that w = word(G, φ,W). For the graph G let us define two PLDs φ1 : V → Z
and φ2 : V → Z. Let us define the first PLD φ1 as follows: φ1(v0) = 0 φ1(v1) =
1 and φ1(v2) = 2. Similarly one can define another PLD say φ2 as follows:
φ2(v0) = 100 φ2(v1) = 101 and φ2(v2) = 102.

Like in example 9 there are infinitely many PLDs that can be defined for w =→
| → |. But this does not affect the properties of G and hence of the Eulerian trail
W . This makes us to think on putting our PLDφ(G) in infinitely many ways in the
horizontal line (number line) with respect to the infinitely many PLDs. In Fig. 2.6,
we have only provided PLDφ1(G) and PLDφ2(G) for graph G with respect to the
PLDs φ1 and φ2 in example 9, but one can think of placing PLDφ(G) in number
line anywhere between −∞ and∞ with respect to φ that has been defined.

30

−1 0 1 2 99 100 101 102 103

Figure 2.6: PLD(G) with respect to PLDs φ1 and φ2 in Example 9

In the end it is going to be the same graph G where ever we wish to place it
in the number line. That is we are horizontally translating the PLDφ(G) in the
number line. Let us formally define this horizontal translation of PLDφ(G) in
terms of PLD as follows:

Definition 34. Let φ : V → Z be a PLD of the graph G = (V,E, ψ) with
an Eulerian trail W with `(W) = ε(G) = k and ν(W) = ν(G) = n where
k + 1 ≥ n ≥ 1, k ∈ N0. Let φ(vi) = zi where vi ∈ V and 0 ≤ i ≤ k. The
translation of φ, φT : V → Z is defined by φT (vi) = zi + C where C ∈ Z.

Note: In Definition 34 if C > 0 then the translation happened towards right
whereas if C < 0 then the translation happened towards left and if C = 0 then
φT = φ that is in this case no translation has happened.

Definition 35. Let P be the set of all PLDs. Let φ1, φ2 ∈ P . We say that φ1, φ2

are equivalent, φ1 w φ2 if and only if φ1(v)− φ2(v) = d for some d ∈ Z and for
all v ∈ V .

As the name chosen in the previous definition suggests, we can prove that the
relation w on P is an equivalence relation:

Lemma 5. w ⊆ P × P is an equivalence relation.

Proof. We have to check the three properties of an equivalence relation.
Reflexivity: Let φ ∈ P . If d = 0 then φ(v)− φ(v) = 0, v ∈ V . So, φ w φ.

Symmetry: Let φ1, φ2 ∈ P . Assume that φ1 w φ2. Then φ1(v) − φ2(v) = d1 for
some d1 ∈ Z and for all v ∈ V . Then φ2(v)− φ1(v) = −(φ1(v)− φ2(v)) = −d1

and −d1 ∈ Z and for all v ∈ V . Thus, φ2 w φ1.

Transitivity: Let φ1, φ2, φ3 ∈ P . Assume that φ1 w φ2 and φ2 w φ3. Then
φ1(v)− φ2(v) = d1 for some d1 ∈ Z and for all v ∈ V . Also, φ2(v)− φ3(v) = d2

for some d2 ∈ Z and for all v ∈ V . Then φ1(v) − φ3(v) = (φ1(v) − φ2(v)) +
(φ2(v)−φ3(v)) = d1 +d2. Let d3 = d1 +d2. Since d1, d2 ∈ Z, d3 ∈ Z. Therefore,
φ1 w φ3.

Since w on the set P is an equivalence relation. For each φ1 ∈ P we can define
the equivalence class of φ1, denoted by [φ1], to be the set

[φ1] = {φ2 ∈ P | φ2 w φ1}.

31

Let us now define the standard PLD φw as follows:

Definition 36. A PLD φw ofGw is said to be a standard PLD, if and only if the start
vertex v0 of the Eulerian trail W of Gw satisfies the condition that φw(v0) = 0.

Here after, for every w ∈ ET we refer to one unique graph Gw = (Vw, Ew, ψw)
where Vw = {v0, . . . , vk}, Ew = {e0, . . . , ek−1}, and ψw(e) = uv, where e ∈ Ew
and u, v ∈ Vw. This unique graph Gw is isomorphic to all the graphs G that
satisfy word(G, φ,W) = w and the PLD φ can be translated to the standard PLD
φw by Definition 34. This uniqueness is important for us to have one single graph
Gw and one single PLD φw that leads to have one PLD(Gw) for the given word
w ∈ ET . For example, for the graphG in example 9 we can find the unique graph
Gw in this example Gw = G and φw is obtained by translation of φ2 (see Fig. 2.6)
to φ1 by Definition 34 and in this example φ1 = φw.

2.3 Eulerian Traces
In this section we will be discussing about certain subsets of ET that describe few
properties of the Eulerian traces.

Lemma 6. ET ∈ REG.

Proof. By Theorem 3, ET = Σ∗ \ (({|}Σ∗)∪ {←}). Since ET is expressed by a
regular expression Σ∗ \ (({|}Σ∗) ∪ {←}), Σ = {→,←, |}, ET ∈ REG.

We define the set ET ◦ ⊆ ET of descriptions of Eulerian graphs as follows:

Definition 37. ET ◦ = {w ∈ Σ∗ : w ∈ ET ∧Gw is Eulerian}, Σ = {→,←, |}.

Let us define a deterministic blind one-counter machine M that accepts ET ◦,
L(M) = ET ◦. Let M = (Q,Σ, δ, q, F, 1) where

• Q = {q, q′, r, l} is the finite set of states,

• Σ = {→,←, |} is the input alphabet,

• δ : Q× Σ× {−1, 0, 1} → Q× {−1, 0, 1} as described
in the state diagram (see Fig. 2.7),

• q ∈ Q is the initial state,

• F = {r, l} ⊆ Q is the set of final states.

32

qstart

r

l

q′

|, {−1, 0, 1} / 1

→, {−1, 0, 1} / 0

|, {−1, 0, 1} / −1

←
,{−

1,0,1}/0

|, {
−1
, 0
, 1
}/
−

1

←
, {−

1,
0,

1}
/0

→
, {−

1, 0, 1}/0

→
, 0
/0

←
, 0/0

Figure 2.7: Deterministic Blind One-Counter Machine M that accepts ET ◦

The language accepted byM is L(M) = {w ∈ Σ∗ : w ∈ ET \{ε}∧c0(w) `+
M

cf (w)}, i. e., L(M) = {w ∈ Σ∗ : w ∈ ET \ {ε} ∧ ∃m > 0 : (q, w, 0) `mM
(f, ε, 0)}, f ∈ F . Let us prove in Lemmas 9 and 10 that L(M) = ET ◦ for the
deterministic blind one-counter machine M in Fig. 2.7.

Lemma 7. G = (V,E, ψ), E = {e0, . . . , ek−1} is Eulerian if and only if G′ =
(V ′, E ′, ψ′), V ′ ⊆ V , E ′ = {e0, . . . , ek−3} ∪ {e′}, e′ /∈ E is Eulerian, where G′ is
obtained from G by replacing two adjacent edges from G by a single edge that is
not in G.

Proof. G′ is obtained from G by selecting two adjacent edges, say, e1, e2 ∈ E
and by replacing them by e′ ∈ E ′ such that ψG(e1) = uv, ψG(e2) = vw and
ψG′(e

′) = uw. Then ψ|E\{e1,e2} = ψ′|E′\{e′}.

V ′ =

{
V if dG(v) > 2,

V \ {v} if dG(v) = 2.

By Theorem 2, G is Eulerian if and only if dG(x) is even, for all x ∈ V . This
implies that dG(x) = dG′(x), for all x ∈ V \ {v}. And dG′(v) = dG(v) − 2 is
even if and only if dG(v) is even. G is Eulerian implies that dG(x) is even for

33

all x ∈ V . Due to the construction of G′, we have dG′(x) is even for all x ∈ V ′
which implies G′ is Eulerian. G′ is Eulerian implies that dG′(x) is even for all
x ∈ V ′. This implies that dG(x) = dG′(x) for all x ∈ V . This implies that G is
Eulerian.

Lemma 8. Let M be the machine in Fig. 2.7. Let w ∈ ET with a decomposition
w = w′w′′ where w′, w′′ ∈ ET and for some `1 ≥ 0, `2 ≥ 1

if w′′ =→ |`1 , then (q, w, 0) `+
M (r, ε, 0) ⇐⇒ Gw is Eulerian,

and if w′′ =← |`2 , then (q, w, 0) `+
M (l, ε, 0) ⇐⇒ Gw is Eulerian.

Proof. Let M be the machine in Fig. 2.7. Let w ∈ ET with a decomposition
w = w′w′′ where w′, w′′ ∈ ET and for some `1 ≥ 0, `2 ≥ 1, if w′′ =→ |`1 , then
our claim is (q, w, 0) `+

M (r, ε, 0) ⇐⇒ Gw is Eulerian, and if w′′ =← |`2 , then
our claim is (q, w, 0) `+

M (l, ε, 0) ⇐⇒ Gw is Eulerian. We prove both claims by
induction on |w|. Note that for the case that |w| = 1, since ET does not have a
word←, for the induction basis we have the following:

Induction Basis: If |w| = 1, then there is a decomposition w = w′w′′ where
w′, w′′ ∈ ET and for some `1 ≥ 0,

if w′′ =→ |`1 , then

(q, w, 0) `1
M (r, ε, 0)⇐⇒ w′ = ε ∧ w′′ =→ |0 (since |w| = 1)

⇐⇒ w =→ (since w = w′w′′)
⇐⇒ Gw is Eulerian (see Remark 7)

Induction Hypothesis: Assume that the lemma is true for |w| ≤ n, n > 0.

Induction Step: For |w| = n + 1, n > 0 with a decomposition w = w′w′′ where
w′, w′′ ∈ ET and for some `1 ≥ 0, `2 ≥ 1, if w′′ =→ |`1 , then (q, w, 0) `+

M

(r, ε, 0) ⇐⇒ Gw is Eulerian and if w′′ =← |`2 , then (q, w, 0) `+
M (l, ε, 0) ⇐⇒

Gw is Eulerian.

For w ∈ ET with the decomposition w = w′w′′, w′, w′′ ∈ ET and for some
`1 ≥ 0, `2 ≥ 1, we have the following two cases (Right Ending and Left Ending):

Case 1 (Right Ending): if w′′ =→ |`1 , then based on w′ we have the following
cases:

Case 1a: If w′ = ε then w = w′′ and if `1 = 0 then (q, w, 0) ``1+1
M (r, ε, `1) ⇐⇒

Gw is Eulerian (by Induction Basis), but if `1 > 0 then (q, w, 0) ``1+1
M (r, ε, `1)

implies that (r, ε, `1) 6= (r, ε, 0) which implies w /∈ L(M) and this implies Gw is

34

not Eulerian (whereas it has an Eulerian trail). See Fig. 2.8.

Case 1b: If w′ 6= ε, then there is a decomposition w′ = w′1w
′
2, where w′1 ∈ ET

and w′2 =← |p2 or w′2 =→ |p1 , p1 ≥ 0, p2 ≥ 1. Let |w′1| = p′1, p′1 ≥ 0.

Let u = w′2w
′′. Then, we have w = w′1u and |u| = p1 + `1 + 2 or |u| = p2 + `1 + 2

also |w| = p′1 + p1 + `1 + 2 or |w| = p′1 + p2 + `1 + 2. Let p1 + `1 + 2 = s1

and p2 + `1 + 2 = s2 then |u| = s1 or |u| = s2 and |w| = p′1 + |u|. Also since
|w| = n+ 1, n > 0 we have n = p′1 + |u| − 1.

Now, let us define

ū =

→ |p1+`1 if u =→ |p1 → |`1

→ |`1−p2 if u =← |p2 → |`1 ∧ p2 < `1

← |p2−`1 if u =← |p2 → |`1 ∧ `1 < p2

Claim I :
∀t ∈ {q, r, l} ∀i, j ∈ Z ([∃f ∈ {r, l} : (t, u, i) `|u|M (f, ε, j)] ⇐⇒ [∃f̄ ∈ {r, l} :

(t, ū, i) `|ū|M (f̄ , ε, j)])

Proof of Claim I : Let t ∈ {q, r, l} and i, j ∈ Z. We prove by induction on |u|.
Induction Basis: If |u| = 2 then u =→→. By definition ū, the ū corresponding to
u is nothing but ū =→. So we have the following:

If u =→→ and if ū =→ then

∃f ∈ {r, l} : (t, u, i) `2
M (f, ε, j)

⇐⇒ ∃f ∈ {r, l} : (t,→→, i) `2
M (f, ε, j) (since u =→→)

⇐⇒ (t,→→, i) `1
M (r,→, i) `1

M (f, ε, j) ∧ f = r ∧ i = j (by δ of M)
⇐⇒ (t,→→, i) `2

M (f, ε, j) ∧ f = r ∧ i = j (by definition of `2
M)

⇐⇒ (t,→, i) `1
M (f̄ , ε, j) ∧ f̄ = r ∧ i = j (by δ transitions of M)

⇐⇒ (t, ū, i) `1
M (f̄ , ε, j) ∧ f̄ = r ∧ i = j (since ū =→)

Induction Hypothesis: We assume that Claim I is true for all |u| ≤ s1 − 1, s1 > 2
and |u| ≤ s2 − 1, s2 > 3.

Induction Step: We now prove that Claim I is true for all |u| = s1 and |u| = s2.
Depending upon u we have three cases.

Case 1 : Let us consider the case if u =→ |p1 → |`1 then ū =→ |p1+`1 . Let
u = u1|`1 , where u1 =→ |p1 → then ū = ū1|`1 , where ū1 =→ |p1 .

35

∃f ∈ {r, l} : (t, u, i) `|u|M (f, ε, j)

⇐⇒ ∃f ∈ {r, l} : (t,→ |p1 → |`1 , i) `p1+`1+2
M (f, ε, j) (since u =→ |p1 → |`1)

⇐⇒ ∃f ∈ {r, l} : (t, u1|`1 , i) `p1+`1+2
M (f, ε, j) (as u = u1|`1 , u1 =→ |p1 →)

⇐⇒ (t, u1|`1 , i) `p1+2
M (r, |`1 , i+ p1) ``1M (f, ε, j) ∧ f = r ∧ j = i+ p1 + `1

(by δ transitions of M)

⇐⇒(t, ū1|`1 , i) `p1+1
M (r, |`1 , i+ p1) ``1M (f̄ , ε, j) ∧ f̄ = r ∧ j = i+ p1 + `1

(by applying IH to u1 and by δ transitions of M)

⇐⇒ ∃f̄ ∈ {r, l} : (t, ū1|`1 , i) `p1+`1+1
M (f, ε, j)

(by definition of reflexive transitive closure of `+
M)

⇐⇒ ∃f̄ ∈ {r, l} : (t,→ |p1+`1 , i) `p1+`1+1
M (f̄ , ε, j) (as ū = ū1|`1 , ū1 =→ |p1)

⇐⇒ ∃f̄ ∈ {r, l} : (t, ū, i) `|u|M (f̄ , ε, j) (since ū =→ |p1+`1)

Case 2 : If u =← |p2 → |`1 ∧ p2 < `1 then ū =→ |`1−p2 . Let u = u1|`1 , where
u1 =← |p2 → then ū = ū1|`1 , where ū1 =→ |−p2 .

∃f ∈ {r, l} : (t, u, i) `|u|M (f, ε, j)

⇐⇒ ∃f ∈ {r, l} : (t,← |p2 → |`1 , i) `p2+`1+2
M (f, ε, j)

(since u =← |p2 → |`1 ∧ p2 < `1)

⇐⇒ ∃f ∈ {r, l} : (t, u1|`1 , i) `p2+`1+2
M (f, ε, j) (as u = u1|`1 , u1 =← |p2 →)

⇐⇒ (t, u1|`1 , i) `p2+2
M (r, |`1 , i+ p2) ``1M (f, ε, j) ∧ f = r ∧ j = i+ p2 + `1

(by δ transitions of M)

⇐⇒(t, ū1|`1 , i) `−p2+1
M (r, |`1 , i− p2) ``1M (f̄ , ε, j) ∧ f̄ = r ∧ j = i− p2 + `1

(by applying IH to u1 and by δ transitions of M)

⇐⇒ ∃f̄ ∈ {r, l} : (t, ū1|`1 , i) `−p2+`1+1
M (f̄ , ε, j)

(by definition of reflexive transitive closure of `+
M)

⇐⇒ ∃f̄ ∈ {r, l} : (t,→ |`1−p2 , i) ``1−p2+1
M (f̄ , ε, j)

(since ū = ū1|`1 , ū1 =→ |−p2)

⇐⇒ ∃f̄ ∈ {r, l} : (t, ū, i) `|u|M (f̄ , ε, j) (since ū =→ |`1−p2)

Case 3 : If u =← |p2 → |`1 ∧ `1 < p2 then ū =← |p2−`1 . Let u = u1|`1 , where
u1 =← |p2 → then ū = ū1|−`1 , where ū1 =← |p2 .

36

∃f ∈ {r, l} : (t, u, i) `|u|M (f, ε, j)

⇐⇒ ∃f ∈ {r, l} : (t,← |p2 → |`1 , i) `p2+`1+2
M (f, ε, j)

(since u =← |p2 → |`1 ∧ `1 ≤ p2)

⇐⇒ ∃f ∈ {r, l} : (t, u1|`1 , i) `p2+`1+2
M (f, ε, j) (as u = u1|`1 , u1 =← |p2 →)

⇐⇒ (t, u1|`1 , i) `p2+2
M (r, |`1 , i+ p2) ``1M (f, ε, j) ∧ f = r ∧ j = i+ p2 + `1

(by δ transitions of M)

⇐⇒(t, ū1|`1 , i) `p2+1
M (l, |`1 , i+ p2) ``1M (f̄ , ε, j) ∧ f̄ = l ∧ j = i+ p2 − `1

(by applying IH to u1 and by δ transitions of M)

⇐⇒ ∃f̄ ∈ {r, l} : (t, ū1|`1 , i) `p2−`1+1
M (f̄ , ε, j)

(by definition of reflexive transitive closure of `+
M)

⇐⇒ ∃f̄ ∈ {r, l} : (t,← |p2−`1 , i) `p2−`1+1
M (f̄ , ε, j)

(since ū = ū1|−`1 , ū1 =← |p2)

⇐⇒ ∃f̄ ∈ {r, l} : (t, ū, i) `|u|M (f̄ , ε, j) (since ū =← |p2−`1)

So, from all the three cases we can conclude that Claim I is true for all |u| = s1

and |u| = s2. Before we start Claim II recall that Claim I and II are different from
each other as w = w′1u, we can note that Claim I is on uwhere as Claim II is on w.

Claim II : ∃f ∈ {r, l} : (q, w, 0) `|w|M (f, ε, 0) ⇐⇒ ∃f̄ ∈ {r, l} : (q, w̄, 0) `|w̄|M
(f̄ , ε, 0).

Proof of Claim II : Let w̄ = w′1ū. We prove the claim by induction on |w|. We
know that |w| = p′1 + |u| and |w̄| = p′1 + |ū|. Also we have |w| = n + 1, n > 0.
Let n+ 1 = m.

Induction Basis: If |w| = 2 then w =→ |0 → |0. i. e., w =→→. Since |w| = 2
and w = w′1u, we have w′1 = ε and w = u which implies that the Induction Basis
follows as same as the Induction Basis in Claim I with i = j = 0 and t = q.

Induction Hypothesis: Assume that Claim II is true for |w| ≤ m, m > 1.

Induction Step: We have to prove that Claim II is true for |w| = m+ 1, m > 1.
Since w = w′1u, if w′1 = ε then p′1 = 0 which implies w = u and this implies that
|w| = |u| also |w̄| = |ū|, so in this case the Induction Step also follows as same
as the Induction Step in Claim I.

37

But if w′1 6= ε then p′1 > 0 which implies that |w| = p′1 + |u| and |w̄| = p′1 + |ū|.
Now depending upon u and the corresponding ū we have the following three
cases.

Case 1 : Let us consider the case if u =→ |p1 → |`1 then ū =→ |p1+`1 .

Let u = u1|`1 , where u1 =→ |p1 → then ū = ū1|`1 , where ū1 =→ |p1 .

∃f ∈ {r, l} : (q, w, 0) `|w|M (f, ε, 0)

⇐⇒ ∃f ∈ {r, l} : (q, w′1u, 0) `p
′
1+|u|
M (f, ε, 0) (since w = w′1u and p′1 > 0)

⇐⇒ ∃f ∈ {r, l} : (q, w′1 → |p1 → |`1 , 0) `p
′
1+s
M (f, ε, 0)

(since u =→ |p1 → |`1 ∧ |u| = s)

⇐⇒ ∃f ∈ {r, l} : (q, w′1u1|`1 , 0) `p
′
1+s
M (f, ε, 0) (as u = u1|`1 , u1 =→ |p1 →)

⇐⇒ ∃f ′ ∈ {r, l} : (q, w′1u1|`1 , 0) `p
′
1
M (f ′, u1|`1 , i) `sM (f, ε, 0)

∧ f = r ∧ i = −(p1 + `1) (by δ transitions of M)

⇐⇒ ∃f ′ ∈ {r, l} : (q, w′1ū1|`1 , 0) `p
′
1
M (f ′, ū1|`1 , i)

`p1+1
M (r, |`1 , i+ p1) ``1M (f̄ , ε, 0)

∧ f̄ = r ∧ j = −(p1 + `1) + (p1 + `1) = 0

(by applying IH to w′1u1 and by δ transitions of M)

⇐⇒∃f ′ ∈ {r, l} ∃f̄ ∈ {r, l} : (q, w′1ū1|`1 , 0) `p
′
1+p1+`1+1
M (f, ε, 0)

(by definition of reflexive transitive closure of `+
M)

⇐⇒ ∃f̄ ∈ {r, l} : (q, w′1 → |p1+`1 , 0) `p
′
1+p1+`1+1
M (f̄ , ε, 0) (as ū1 =→ |p1)

⇐⇒ ∃f̄ ∈ {r, l} : (q, w′1ū, 0) `p
′
1+|ū|
M (f̄ , ε, 0)

(since ū =→ |p1+`1 ∧ |ū| = p1 + `1 + 1)

⇐⇒ ∃f̄ ∈ {r, l} : (q, w̄, 0) `|w̄|M (f̄ , ε, 0) (since w̄ = w′1ū and p′1 > 0)

Similarly we can have the remaining two cases:

Case 2 : If u =← |p2 → |`1 ∧ p2 < `1 then ū =→ |`1−p2 .
Case 3 : If u =← |p2 → |`1 ∧ `1 < p2 then ū =← |p2−`1 .

Now from these three cases we can conclude that Claim II is true for all |w| =
m+ 1, m > 1.

38

Case 2 (Left Ending): if w′′ =← |`2 , then based on w′ = ε and w′ 6= ε we have
the following cases:

Case 2a: If w′ = ε then w = w′′ and if `2 = 1 then (q, w, 0) ``2+1
M (l, ε, `2)

implies that (l, ε, `2) 6= (l, ε, 0) which implies w /∈ L(M) and this implies Gw is
not Eulerian (whereas it has an Eulerian trail). See Fig. 2.8.

Case 2b: Now, let us define ū for left ending as we have defined in Case 1b for
right ending.

ū =

← |p2+`2 if u =← |p2 ← |`2

← |`2−p1 if u =→ |p1 ← |`2 ∧ p1 < `2

→ |p1−`2 if u =→ |p1 ← |`2 ∧ `2 ≤ p1

Case 2b will also have Claim I and II similar to Case 1b, where u and ū will have
← and → instead of → and ← respectively also p1 is replaced by p2 and `1 is
replaced by `2 (compare the definitions of ū in Case 1b and Case 2b). Having
these changes in Claim I and II of Case 1b, according counter values and state
information follows, so we do not prove formally the Claims I and II for Case 2b.
Now after having these two cases (Right and Left Ending) we continue to do the
induction step of our lemma as follows:

We have |w| = m,m > 1 and |w| = p′1+|u|, |u| > 1. Also we have |w̄| = p′1+|ū|.
Let |w̄| = b, b > 0. We can apply the Induction Hypothesis for w̄ as follows:

For |w̄| = b, b > 0 with a decomposition w̄ = w′1ū where w′1, ū ∈ ET and for
some `1 ≥ 0, `2 ≥ 1, if ū =→ |`1 , then (q, w̄, 0) `+

M (r, ε, 0) ⇐⇒ Gw̄ is
Eulerian and if ū =← |`2 , then (q, w̄, 0) `+

M (l, ε, 0) ⇐⇒ Gw̄ is Eulerian.

From Claim II of Case 1b, we have (q, w, 0) `|w|M (r, ε, 0) ⇐⇒ (q, w̄, 0) `|w̄|M
(r, ε, 0) and this implies that (q, w, 0) `+

M (r, ε, 0) ⇐⇒ (q, w̄, 0) `+
M (r, ε, 0)

since |w̄| = b, b > 0 and |w| = m, m > 1.

And from Claim II of Case 2b we have (q, w, 0) `|w|M (l, ε, 0) ⇐⇒ (q, w̄, 0) `|w̄|M
(l, ε, 0) and this implies that (q, w, 0) `+

M (l, ε, 0) ⇐⇒ (q, w̄, 0) `+
M (l, ε, 0)

since |w̄| = b, b > 0 and |w| = m, m > 1.

So, for |w̄| = b, b > 0 with a decomposition w̄ = w′1ū where w′1, ū ∈ ET and for
|w| = m, m > 1 with a decomposition w = w′w′′ where w′, w′′ ∈ ET and for
some ` ≥ 0,

39

if w′′ =→ |`1 , then

(q, w, 0) `+
M (r, ε, 0)⇐⇒ (q, w̄, 0) `+

M (r, ε, 0) (by Claim II of Case 1b)
⇐⇒ Gw̄ is Eulerian (by IH)
⇐⇒ Gw is Eulerian (by Lemma 7)

if w′′ =← |`2 , then

(q, w, 0) `+
M (l, ε, 0)⇐⇒ (q, w̄, 0) `+

M (l, ε, 0) (by Claim II of Case 2b)
⇐⇒ Gw̄ is Eulerian (by IH)
⇐⇒ Gw is Eulerian (by Lemma 7)

So, we can conclude that for |w| = n + 1, n > 0 with the decomposition w =
w′w′′ where w′, w′′ ∈ ET and for some `1 ≥ 0, `2 ≥ 1, if w′′ =→ |`1 , then
(q, w, 0) `+

M (r, ε, 0) ⇐⇒ Gw is Eulerian, and if w′′ =← |`2 , then (q, w, 0) `+
M

(l, ε, 0) ⇐⇒ Gw is Eulerian.

`1 = 0

`1 > 0,
`2 ≥ 1

Figure 2.8: Case 1a and Case 2a

Lemma 9. Let M be the machine in Fig. 2.7. Let w ∈ ET \ {ε}. Then,
(q, w, 0) `+

M (f, ε, 0), f ∈ F ⇐⇒ Gw is Eulerian.

Proof. Consider the machine M in Fig. 2.7. Let w ∈ ET \ {ε}. Any accepting
computation of M will start in state q and will make one transition to state r or
state l and never return to state q. Thus it is sufficient to find the conditions on w
such that w is accepted by M by reaching final states r, l. Those conditions are
for all w ∈ ET \ {ε} (q, w, 0) `+

M (r, ε, 0) or (q, w, 0) `+
M (l, ε, 0). By Lemma 8

we proved the following statements:

If (q, w, 0) `+
M (r, ε, 0) then Gw is Eulerian.

If (q, w, 0) `+
M (l, ε, 0) then Gw is Eulerian.

If Gw is Eulerian then (q, w, 0) `+
M (r, ε, 0) or (q, w, 0) `+

M (l, ε, 0).

Hence we have (q, w, 0) `+
M (f, ε, 0), f ∈ F ⇐⇒ Gw is Eulerian.

40

Lemma 10. Let M be the machine in Fig. 2.7. Then, L(M) = ET ◦

Proof. The language accepted by M ,

L(M) = {w ∈ Σ∗ : w ∈ ET \ {ε} ∧ (q, w, 0) `+
M (f, ε, 0)} (By Definition 2)

= {w ∈ Σ∗ : w ∈ ET ∧Gw is Eulerian} (By Lemma 9)
= ET ◦ (By Definition 37).

Theorem 4. ET ◦ is a deterministic blind one-counter language.

Proof. By Lemma 10, there exists a deterministic blind one-counter machine that
accepts ET ◦ hence ET ◦ is a deterministic blind one-counter language.

We now define formally, ETloop-free by both semantic and syntactic descriptions.

Definition 38. ETloop-free = {w ∈ Σ∗ : w ∈ ET \ {ε} ∧Gw has no loops}.

The above semantic description ofETloop-free can be given syntactically as follows:
{w ∈ Σ∗ : w ∈ ET \ {ε} ∧ w ∈ (({→} ∪ {←}){|}+)+}.

Let us prove in Lemma 11 that semantic and syntactic descriptions of ETloop-free

are equivalent. If E = ((→ + ←)|+)+ then L(E) = (({→} ∪ {←}){|}+)+ and
as mentioned in Remark 1 we use E for L(E).

Lemma 11. ∀w ∈ ET \ {ε} [w ∈ ((→ +←)|+)+ ⇐⇒ Gw has no loops].

Proof. Let w ∈ ET \ {ε}. We first prove that w ∈ ((→ +←)|+)+ ⇒ Gw has no
loops. We prove this by induction on |h(w)|, where h : Σ∗ → {→,←}∗ such that
h(→) =→, h(←) =← and h(|) = ε. Before we start the induction, note that the
smallest w ∈ ((→ + ←)|+)+ are nothing but w ∈ (→ + ←)|. So we start our
basis with |h(w)| = 1.

Induction Basis: If |h(w)| = 1 then w ∈ → |+ or w ∈ ← |+. If w ∈ → |s, s ≥ 1
then Gw is the single edge that connects the start vertex v0 to vertex v1 satisfying
φw(v0) = 0 and φw(v1) = s with v1 becoming the end vertex, i. e., describing
a right move by s steps in the PLD(Gw). Similarly, If w ∈ ← |s, s ≥ 1 then
Gw is the single edge that connects the start vertex v0 to the vertex v1 satisfying
φw(v0) = 0 and φw(v1) = −s, with v1 becoming the end vertex, i. e., describing a
left move by s steps in the PLD(Gw). In both cases Gw is the single edge between
the two vertices v0 and v1, that has no loops, because |φw(v0)− φw(v1)| = s ≥ 1.

41

Induction Hypothesis: Assume that for all w ∈ ((→ +←)|+)+ with |h(w)| ≤ n,
n ≥ 1, we know that Gw has no loops.

Induction Step: Consider w ∈ ((→ + ←)|+)+ with |h(w)| = n + 1, n ≥ 1. Our
claim is to show that Gw has no loops. Let w = xa with x ∈ ((→ + ←)|+)+,
|h(x)| = n and a needs to start with → or ←. Since |h(x)| = n and |h(w)| =
n+ 1, n ≥ 1 we have |h(xa)| = |h(x)|+ |h(a)| = n+ 1 that implies |h(a)| = 1.
This implies that a ∈ (→ +←)|+.

By induction hypothesis Gx has no loops. Let X = v0e0 . . . ek−1vk be a Eulerian
trail of Gx with the standard PLD φx. Now we have two cases for a as follows:

Case 1: If a ∈ → |+, then the Eulerian trail X ·vk vkekvk+1 of Gxa, where
ek /∈ {e0, . . . , ek−1} has no loops as both Eulerian trails X and vkekvk+1 does
not have any loops. Case 2: If a ∈← |+, then as in Case 1, Gxa has no loops.

Therefore, w ∈ ((→ + ←)|+)+ with |h(w)| = n + 1, n ≥ 1 implies Gw has no
loops.

Now, secondly we prove that Gw has no loops implies w ∈ ((→ +←)|+)+.

Let us consider the graph Gw with an Eulerian trail W that has the standard PLD
φw that has no loops. By Definition 32, we have word(Gw, φw,W) = w. Now
our aim is to prove that w ∈ ((→ + ←)|+)+. We prove this by induction on
`(W). Before we start the induction, note that `(W) = 0 is excluded since we
have considered w ∈ ET \ {ε}.

Induction Basis: If `(W) = 1 then W = v0e0v1 and φw(v0) = 0 since W of
Gw has no loops φw(v1) 6= 0 which implies that φw(v1) = s, s ∈ Z \ {0}. By
Definition 32, if φw(v1) = s1, s1 ≥ 1 then w =→ |s1 and if φw(v1) = s2, s2 ≤ −1
then w =← |−s2 . This implies that w ∈ ((→ +←)|+)+ for the Induction Basis.

Induction Hypothesis: Assume that Gw has no loops implies w ∈ ((→ +←)|+)+

for `(W) ≤ n, n ≥ 1.

Induction Step: For Gw that has no loops with `(W) = n + 1, n ≥ 1. Our aim is
to prove that w ∈ ((→ +←)|+)+. If `(W) = n+ 1 then W = v0e0 . . . vnenvn+1

and φw(v0) = 0 since W of Gw has no loops φw(v1) 6= 0 (if φw(v1) = 0 then
v0 = v1 which implies e0 as the looping edge). So none of consecutive vertices
can be mapped to same integer by the PLD φw that means for all vi, vj ∈ Vw :
φw(vi) 6= φw(vj), j = i+ 1 where i, j ≥ 0.

42

Let us consider some Eulerian trail X = v0e0 . . . en−1vn of Gx that has no loops,
with the standard PLD φx; by Induction Hypothesis, x ∈ ((→ + ←)|+)+. Let
us consider another Eulerian trail A = vnenvn+1 of Ga with the standard PLD φa
that has no loops, again by Induction Hypothesis a ∈ (→ + ←)|+. Here a is as
same as w in the Induction Basis.

By Lemma 3, since vn is the terminus of the Eulerian trail X and origin of the
Eulerian trail A we have X ·vn A is also an Eulerian trail of Gx ∪ Ga. Here
W = X ·vnA and Gw = Gx∪Ga. This implies that w = x ·a and this implies that
w ∈ ((→ + ←)|+)+. Hence Gw that has no loops with `(W) = n + 1, n ≥ 1,
implies w ∈ ((→ +←)|+)+.

Let us define a deterministic finite automaton (DFA) A that accepts ETloop-free, a
quintuple A = (Q,Σ, δ, q0, F), where

• Q = {q0, q1, q2} is the set of states,

• Σ = {→,←, |} is the input alphabet,

• δ : Q× Σ→ Q as described in the state diagram (Fig. 2.9),

• q0 ∈ Q is the initial state,

• F = {q2} ⊆ Q is the set of final states.

The language accepted by A, L(A) = ETloop-free, i. e., L(A) = {w ∈ Σ∗ : w ∈
ET \ {ε} ∧ δ̂(q0, w) = q2} = {w ∈ Σ∗ : w ∈ ET \ {ε} ∧ w ∈ ((→ +←)|+)+}.

Let us formally prove in Lemma 12 the correctness of the DFA A in Fig. 2.9
accepting the language ETloop-free which is given by mutual induction.

Lemma 12. Let A be the machine in Fig. 2.9. Then L(A) = {w ∈ Σ∗ : w ∈
ET \ {ε} ∧ w ∈ L(E)}, where E = ((→ +←)|+)+.

q0

start

q1 q2
→,← |

→,←

|

Figure 2.9: DFA A

43

Proof. The proof is by mutual induction involving the following statements:

1. δ̂(q0, w) = q1 if and only if w ∈ (→ +←)(|+(→ +←))∗.

2. δ̂(q0, w) = q2 if and only if w ∈ (→ + ←)(|+(→ + ←))∗|+. The proof
of this statement ensures that the language of the DFA A as described in
Fig. 2.9 is the set of strings in ET that does not have the occurrence of only
the→ or← arrows which makes it to be loop-free. The proof is by induction
on |h(w)|, where h : Σ∗ → {→,←}∗ such that h(→) =→, h(←) =← and
h(|) = ε.

Induction Basis: If |h(w)| = 1, then w ∈ → |+ or w ∈ ← |+. Statement (2) says
that δ̂(q0, w) = q2 which is true. As w ∈ → |+ or w ∈ ← |+ does not satisfy the
conditions of statement (1), it is clear that the statement (1) is also true.

Induction Hypothesis: Assume for all w ∈ ((→ + ←)|+)+ with |h(w)| ≤ n,
n ≥ 1 that both statements (1) and (2) are true.

Induction Step: Consider w ∈ ((→ + ←)|+)+ with |h(w)| ≤ n + 1, n ≥ 1. Our
claim is that to show both statements (1) and (2) are true.

Let w = xa with x ∈ ((→ + ←)|+)+, |h(x)| = n and a needs to start with →
or←. Since |h(w)| = n + 1, n ≥ 1 we have |h(xa)| = |h(x)| + |h(a)| = n + 1
which implies that |h(a)| = 1. This implies that a ∈ (→ +←)|+.

1. Suppose w ∈ (→ + ←)(|+(→ + ←))∗. Since there is a transition from q0

to q1 on reading→ or← and there are transitions from q1 to q1 on reading |’s
followed by→ (or |’s followed by←) repeatedly it follows δ̂(q0, w) = q1.

Assume δ̂(q0, w) = q1. However this is possible only if w is a word from
(→ +←)(|+(→ +←))∗.

2. Suppose w ∈ (→ + ←)(|+(→ + ←))∗|+. By statement (1) we know
that if w′ ∈ (→ + ←)(|+(→ + ←))∗ then δ̂(q0, w

′) = q1. Since there
are transitions from q1 to q2 on reading |’s it follows that δ̂(q0, w) = q2.
Assume δ̂(q0, w) = q2 On examining the transition function we find that
δ̂(q0, w) = q2 is possible only if w ∈ (→ +←)(|+(→ +←))∗|+.

Theorem 5. ETloop-free ∈ REG

Proof. ETloop-free = {w ∈ Σ∗ : w ∈ ET \ {ε} ∧ w ∈ (({→} ∪ {←}){|}+)+}
by Lemma 11 and by Lemma 12, ETloop-free = L(A) for the finite automaton A in
Fig. 2.9. Hence, ETloop-free ∈ REG.

44

Chapter 3

Jumping Finite Automata

It is evident from the history of automata theory, the classical finite automaton has
been extended in many different ways: two-way automata, multi-head automata,
automata with additional resources (counters, stacks, etc.), and so on. However,
for all these variants, it is always the case that the input is read in a continuous
fashion. On the other hand, there exist models that are closer to the classical model
in terms of computational resources, but that differ in how the input is processed
(e. g., restarting automata [90] and biautomata [66]).

One such model that has drawn comparatively little attention is the jumping
finite automata (JFA) introduced by Meduna and Zemek [85, 86], in which input
head can jump to an arbitrary position within the remaining input after reading
and consuming the input symbol.

We introduce a variant of regular-like expressions, called alphabetic shuffle
expressions, that characterize JFA languages [32] in terms of expressions using
shuffle, union, and iterated shuffle (or shuffle star), which enables us to put them
into the context of classical formal language results, especially we put them into
the context of earlier literature in the area of shuffle expressions. We show that JFA
languages are closed under iterated shuffle which was an open question from [86].
This approach also clarifies the closure properties under Boolean operations.

3.1 JFA and Shuffle Expressions
Let us now recall the language operations of shuffle and permutation, and the
notion of semilinearity.

45

Definition 39. The shuffle operation, denoted by�, is defined by

u� v =

{
x1y1x2y2 . . . xnyn :

u = x1x2 . . . xn, v = y1y2 . . . yn,
xi, yi ∈ Σ∗, 1 ≤ i ≤ n, n ≥ 1

}
,

L1� L2 =
⋃
u∈L1
v∈L2

(u� v) ,

for u, v ∈ Σ∗ and L1, L2 ⊆ Σ∗.

Note that an inductive definition of shuffle operation, equivalent to Definition 39
is available in [81].

Definition 40. For L ⊆ Σ∗, the iterated shuffle of L is

L�,∗ =
∞⋃
n=0

L�,n,

where L�,0 = {ε} and L�,i = L�,i−1
� L, i ≥ 1.

The set of permutations of a word can be then conveniently defined using the
shuffle operation.

Definition 41. The set perm(w) of all permutations of w is inductively defined as
follows:

perm(w) =

{
{ε}, |w| = 0 ,

{a}� perm(u), w = a · u, a ∈ Σ, u ∈ Σ∗ .

The permutation operator extends to languages in the natural way as follows:

perm(L) =
⋃
w∈L

perm(w), L ⊆ Σ∗.

Observation 4. ∀x, y ∈ Σ∗ : x ∈ perm(y)⇐⇒ y ∈ perm(x).

Definition 42. A subsetA ⊆ Nn is said to be linear if there are v, v1, . . . , vm ∈ Nn

such that

A = {v + k1v1 + k2v2 + · · ·+ kmvm : k1, k2, . . . , km ∈ N}.

A subset A ⊆ Nn is said to be semilinear if it is a finite union of linear sets.

46

A permutation of the coordinates in Nn preserves semilinearity. Let Σ be a finite
set of n elements. A Parikh mapping ψ from Σ∗ into Nn is a mapping defined by
first choosing an enumeration a1, . . . , an of the elements of Σ and then defining
inductively ψ(ε) = (0, . . . , 0), ψ(ai) = (δ1,i, . . . , δn,i), where δj,i = 0 if i 6= j and
δj,i = 1 if i = j, and ψ(au) = ψ(a) + ψ(u) for all a ∈ Σ, u ∈ Σ∗. For clarity,
we sometimes add the alphabet Σ as a subscript to ψ. Any two Parikh mappings
from Σ∗ into Nn differ only by a permutation of the coordinates of Nn. Hence, the
concept introduced in the following definition is well-defined.

Definition 43. Let Σ be a finite set of n elements. A subset A ⊆ Σ∗ is said to be
a language with the semilinear property, or slip language for short, if ψ(A) is a
semilinear subset of Nn for a Parikh mapping ψ of Σ∗ into Nn. The class of all
slip languages is denoted by PSL.

Following Meduna and Zemek [85, 86], we denote a general finite machine as
M = (Q,Σ, R, s, F), where Q is a finite set of states, Σ is the input alphabet,
Σ ∩ Q = ∅, R is a finite set of rules1 of the form py → q, where p, q ∈ Q and
y ∈ Σ∗, s ∈ Q is the start state and F ⊆ Q is a set of final states. If all rules
py → q ∈ R satisfy |y| ≤ 1, then M is a finite machine. We interpret M in two
ways.

• As a (general) finite automaton: a configuration of M is any string in QΣ∗,
the binary move relation on QΣ∗, written as⇒, is defined as follows:

pw ⇒ qz ⇐⇒ ∃ py → q ∈ R : w = yz .

• As a (general) jumping finite automaton: a configuration of M is any string
in Σ∗QΣ∗, the binary jumping relation on Σ∗QΣ∗, written as y, satisfies:

vpw y v′qz′ ⇐⇒ ∃ py → q ∈ R ∃ z ∈ Σ∗ : w = yz ∧ vz = v′z′ .

We hence obtain the following languages from a (general) finite machine M :

LFA(M) = {w ∈ Σ∗ : ∃ f ∈ F : sw ⇒∗ f},
LJFA(M) = {w ∈ Σ∗ : ∃ u, v ∈ Σ∗ ∃ f ∈ F : w = uv ∧ usv y∗ f} .

where the first defines the language classes REG and the second defines JFA
(accepted by JFAs) and GJFA (accepted by GJFAs). Moreover, CFL denotes
the class of context-free languages.

Next, we define a special type of expressions that use the shuffle operator. Such
shuffle expressions have been an active field of study over decades; we only point
the reader to [59], [60] and [61].

1We also refer to rules as transitions with labels from Σ∗.

47

Definition 44. Symbols ∅, ε and each a ∈ Σ are shuffle expressions. If S1, S2

are shuffle expressions, then (S1 · S2), (S1 + S2), S1
∗, (S1 � S2) and S1

�, ∗ are
shuffle expressions, and nothing else is a shuffle expression. The language L(S)
generated by a shuffle expression S is defined as follows: L(∅) = ∅, L(ε) = ε,
L(a) = a. If L(S1) = L1 and L(S2) = L2, then L((S1 · S2)) = L1 · L2,
L((S1+S2)) = L1∪L2, L(S1

∗) = L1
∗, L((S1�S2)) = L1�L2, and L(S1

�, ∗) =
L1
�, ∗.

We first recall the SHUF expressions introduced by Jantzen [58], from which
we then derive α-SHUF expressions, which are tightly linked to jumping finite
automata.

Definition 45. Symbols ∅, ε and each w ∈ Σ+ are (atomic) SHUF expressions.
If S1, S2 are SHUF expressions, then (S1 + S2), (S1 � S2) and S1

�,∗ are SHUF
expressions. The semantics of SHUF expressions is defined as follows:

• L(∅) = ∅, L(ε) = {ε}, L(w) = {w}, w ∈ Σ+,

• For SHUF expressions S1 and S2,
L(S1 + S2) = L(S1) ∪ L(S2),
L(S1� S2) = L(S1)� L(S2), and
L(S1

�,∗) = L(S1)�,∗.

Definition 46. A SHUF expression is an α-SHUF expression, if its atoms are only
∅, ε or single symbols a ∈ Σ.

Since α-SHUF expressions are SHUF expressions, the semantics follows as it is
already defined. Let us illustrate the concepts defined above by two examples.

Example 10. Let M be the finite machine depicted in Figure 3.1, which accepts
the regular language LFA(M) = L((abc)∗). However, if we interpret M as a
JFA, it accepts LJFA(M) = {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c}. Obviously,
LJFA(M) is also defined by the α-SHUF expression (a� b� c)�,∗.

Example 11. The general finite machine M ′ depicted in Figure 3.2 accepts the
regular language LFA(M ′) = L((abcd)∗). However, it is not easy to describe the
language LJFA(M ′) in a simple way. Obviously, perm(LFA(M ′)) 6= LJFA(M ′)
since bacd /∈ LJFA(M ′) and, furthermore, the SHUF expression (ab� cd)∗ does
not describe LJFA(M ′) either.

48

start

a b

c

Figure 3.1: Finite Machine M

start
ab

cd

Figure 3.2: General Finite Machine M ′

3.2 Algebraic Properties: Shuffle and Permutation
In this section, we state some basic algebraic properties of shuffle, permutation
operations. To this end, we first recall the following computation rules for the
shuffle operator from [58].

Proposition 6. Let M1,M2,M3 be arbitrary languages.

1. M1�M2 = M2�M1 (commutative law),

2. (M1�M2)�M3 = M1� (M2�M3) (associative law),

3. M1� (M2 ∪M3) = M1�M2 ∪M1�M3 (distributive law),

4. (M1 ∪M2)�,∗ = (M1)�,∗� (M2)�,∗,

5. (M1
�,∗)�,∗ = (M1)�,∗,

6. (M1�M2
�,∗)�,∗ = (M1� (M1 ∪M2)�,∗) ∪ {ε}.

The second, third and fifth rule are also true for (iterated) catenation instead of
(iterated) shuffle. This is no coincidence, as we will see. Recall from [79] that a
commutative semiring is one whose multiplication is commutative.

We can deduce from the first three computation rules the following result.

Proposition 7. (2Σ∗ ,∪,�, ∅, {ε}) is a commutative semiring.

Proof. The proof follows from the following facts:

• (2Σ∗ ,∪, ∅) is a commutative monoid; this is a well-known set-theoretic
statement.

• (2Σ∗ ,�, {ε}) is a commutative monoid; this corresponds to the first two
computation rules, plus the fact that {ε} is the identity element with respect
to the shuffle operation.

49

• the distributive law was explicitly stated as the third computation rule.

We are now discussing some special properties of operator perm in a different
(algebraic) viewpoint. Reminiscent of the presentation in [38], there is another
way of looking at the permutation operator. Namely, let w ∈ Σn be a word
of length n, spelled out as w = a1 · · · an for ai ∈ Σ. Then, u ∈ perm(w)
if and only if there exists a bijection π : {1, . . . , n} → {1, . . . , n} such that
u = aπ(1) · · · aπ(n). In combinatorics, such bijections are known as permutations.
This also shows that |perm(w)| ≤ (|w|)!. Next, we summarize two important
properties of the operator perm in the following two lemmas.

Lemma 13. Let Σ = {a1, . . . , an}. The set {perm(w) : w ∈ Σ∗} is a partition
of Σ∗. There is a natural bijection between this partition and the set of functions
N|Σ|, given by the Parikh mapping ψΣ : Σ∗ → N|Σ|, w 7→ (|w|a1 , . . . , |w|an).
Namely, perm(w) = ψ−1

Σ (ψΣ(w)) for w ∈ Σ∗.

Proof. Letw = a1 · · · an. Then u ∈ perm(w) if and only if there exists a bijection
π : {1, . . . , n} → {1, . . . , n} such that u = aπ(1) · · · aπ(n). This implies that u ∈
ψ−1

Σ (|w|a1 , . . . , |w|an) which implies u ∈ ψ−1
Σ (ψΣ(a1 · · · an)) and which implies

u ∈ ψ−1
Σ (ψΣ(w)) for w ∈ Σ∗.

Lemma 14. perm : 2Σ∗ → 2Σ∗ is a hull operator.

Proof. We are going to show the three properties separately.

extensive Clearly, if w ∈ L, then w ∈ perm(w) ⊆ perm(L). Hence, L ⊆
perm(L).

increasing Consider two languages L1 ⊆ L2. Consider w ∈ perm(L1) ∩ Σn.
This means that there is a permutation π : {1, . . . , n} → {1, . . . , n}, say,
w = a1 · · · an for some ai ∈ Σ, such that u = aπ(1) · · · aπ(n) for some
u ∈ L1. As L1 ⊆ L2, u ∈ L2. Therefore, w ∈ perm(L2).

idempotent Let w ∈ perm(perm((L)) ∩Σn with w = a1 · · · an for ai ∈ Σ. This
means that there is a permutation π : {1, . . . , n} → {1, . . . , n} such that
u = aπ(1) · · · aπ(n) for some u ∈ perm(L). This means that there is another
permutation π′ such that u′ = aπ′(π(1)) · · · aπ′(π(n)) ∈ L. As the composition
of π and π′ is again a permutation, we find that w ∈ perm(L). Hence,
perm(perm(L)) ⊆ perm(L), and as perm is extensive, perm(perm(L)) =
perm(L).

This shows the claim.

50

Due to the well-known correspondence between hull operators and (systems of)
closed sets, we will also speak about perm-closed languages in the following,
i. e., languages L satisfying perm(L) = L. Such languages are also said to be
commutative, see [74]. Note that there exists a possibly better known semiring
in formal language theory, using catenation instead of shuffle; let us make this
explicit in the following statement.

Proposition 8 ([33]). (2Σ∗ ,∪, ·, ∅, {ε}) is a semiring that is not commutative
whenever |Σ| > 1.

Another algebraic interpretation can be given as follows.

Proposition 9. Parikh mappings can be interpreted as semiring morphisms from
(2Σ∗ ,∪,�, ∅, {ε}) to (2N|Σ| ,∪,+, ∅, {~0}), where ~0 is the tuple with |Σ| zeros.

Proof. The proof follows from the following facts: (i) For L1, L2 ⊆ Σ∗ : ψΣ(L1∪
L2) = ψΣ(L1)∪ψΣ(L2), (ii) For L1, L2 ⊆ Σ∗ : ψΣ(L1�L2) = ψΣ(L1)+ψΣ(L2),
and (iii) ψΣ(∅) = ∅ and ψΣ({ε}) = {~0}, ~0 is the tuple with |Σ| zeros.

Especially, we conclude:

Proposition 10. For u, v ∈ Σ∗, perm(u) = perm(v) if and only if ψΣ(u) =
ψΣ(v). For L1, L2 ⊆ Σ∗, perm(L1) = perm(L2) if and only if ψΣ(L1) = ψΣ(L2).

Proof. The proof follows from Lemma 13 and from the fact ψΣ is surjective.

Due to Proposition 10, we can call u, v ∈ Σ∗ (and also L1, L2 ⊆ Σ∗) Parikh-
equivalent or permutation-equivalent if ψΣ(u) = ψΣ(v) (ψΣ(L1) = ψΣ(L2), re-
spectively). The relation between (iterated) catenation and (iterated) shuffle can
now be neatly expressed as follows.

Theorem 11. perm : 2Σ∗ → 2Σ∗ is a semiring morphism from the semiring
(2Σ∗ ,∪, ·, ∅, {ε}) to the semiring (2Σ∗ ,∪,�, ∅, {ε}) that also respects the iterated
catenation resp. iterated shuffle operation.

Clearly, perm cannot be an isomorphism, since the catenation semiring is not
commutative, while the shuffle semiring is, see Proposition 7. The proof of the
previous theorem, broken into several statements that are also interesting in their
own right, is presented in the following. Notice that in the terminology of Ésik
and Kuich [21], Theorem 11 can also be stated as follows: perm : 2Σ∗ → 2Σ∗ is a
starsemiring morphism from (2Σ∗ ,∪, ·, ∗, ∅, {ε}) to (2Σ∗ ,∪,�,�,∗, ∅, {ε}). Some
of the required properties are also listed in [80] (without giving a proof).

Lemma 15. ∀u, v ∈ Σ∗: perm(u · v) = perm(u)� perm(v).

51

Proof. We prove this lemma by induction on |u|. Induction Basis: |u| = 1. So,
u ∈ Σ. By Definition 41, perm(u · v) = {u}� perm(v) = perm(u)� perm(v).
Induction Hypothesis: For u ∈ Σn, perm(u ·v) = perm(u)�perm(v). Induction
Step: Consider |u| = n + 1. Let u = x1x2 . . . xn+1, xi ∈ Σ. We now claim that
perm(x1x2 . . . xn+1 · v) = perm(x1x2 . . . xn+1)� perm(v).

perm(x1x2 . . . xn+1 · v) = {x1}� perm(x2 . . . xn+1 · v) (by Definition 41)
= {x1}� perm(x2 . . . xn+1)� perm(v) (IH)
= perm(x1x2 . . . xn+1)� perm(v) (by Definition 41).

Therefore, perm(u · v) = perm(u)� perm(v).

Lemma 16. ∀u, v ∈ Σ∗: u� v ⊆ perm(u · v).

Proof. It is clear that u� v ⊆ perm(u)� perm(v), as perm is a hull operator,
see Lemma 14, and also by monotonicity L1 ⊆M1, L2 ⊆M2 implies L1�L2 ⊆
M1�M2. According to Lemma 15 perm(u)�perm(v) = perm(u·v). Therefore,
u� v ⊆ perm(u · v).

As a consequence of Lemma 16 and since perm is a hull operator, we obtain the
following lemma.

Lemma 17. ∀u, v ∈ Σ∗: perm(u� v) = perm(u · v) = perm(u)� perm(v).

Proof. As indicated, from u� v ⊆ perm(u · v) we conclude that perm(u� v) ⊆
perm(perm(u · v)) = perm(u · v). Conversely, as {u · v} ⊆ u� v, perm(u · v) ⊆
perm(u�v). Hence, perm(u�v) = perm(u ·v). Now this together with Lemma
15 gives perm(u� v) = perm(u)� perm(v).

Lemma 18. Let L,L1, L2 ⊆ Σ∗. Then

1. perm(Ln+1) = perm(Ln� L),

2. perm(L1)� perm(L2) = perm(L1� L2) = perm(L1 · L2), and

3. (perm(L))�,∗ = perm(L�,∗) = perm(L∗).

Proof. We are going to prove three parts separately.

1. The inclusion perm(Ln+1) ⊆ perm(Ln�L) is true, since Ln+1 ⊆ Ln�L.
We now prove the other inclusion perm(Ln+1) ⊇ perm(Ln � L). Let
w ∈ Ln � L, then ∃u ∈ Ln, v ∈ L : w ∈ u � v. This implies that
∃u ∈ Ln, v ∈ L : w ∈ perm(u·v) by Lemma 16. Therefore, perm(Ln+1) =
perm(Ln� L).

52

2. Consider L1 ⊆ Σ∗, L2 ⊆ Σ∗. Let w ∈ perm(L1)� perm(L2). Let x′ ∈
perm(L1), y′ ∈ perm(L2) such that w ∈ x′ � y′. Hence, there exists some
x ∈ L1 such that x′ ∈ perm(x) (also x ∈ perm(x′)). Likewise, there
exists some y ∈ L2 with y′ ∈ perm(y). Hence, w ∈ perm(x)�perm(y) =
perm(x�y) by Lemma 17. Therefore, w ∈ perm(L1�L2)∩perm(L1·L2).
Similarly, if w ∈ perm(L1�L2) then w ∈ perm(L1)� perm(L2). Hence,
perm(L1)� perm(L2) = perm(L1� L2).

3. We will prove (perm(L))�,n = perm(L�,n) and perm(L�,n) = perm(Ln)
by induction on n.

Induction Basis: (perm(L))�,0 = {ε} = perm(ε) = perm(L�,0).

Induction Hypothesis: (perm(L))�,n = perm(L�,n).

Induction Step: We now claim that (perm(L))�,n+1 = perm(L�,n+1).

(perm(L))�,n+1 = (perm(L))�,n� perm(L) (By Definition 40)
= perm(L�,n)� perm(L) (By Induction Hypothesis)
= perm(L�,n� L) (By (2) in Lemma 18)

= perm(L�,n+1) (By Definition 40).

We now prove perm(L�,n+1) = perm(Ln+1) by induction on n.

Induction Basis: perm(L�,0) = perm(ε) = {ε} = perm(ε) = perm(L0).

Induction Hypothesis: perm(L�,n) = perm(Ln).

Induction Step: We now claim that perm(L�,n+1) = perm(Ln+1).

perm(L�,n+1) = perm(L�,n� L) (By Definition 40)
= perm(L�,n)� perm(L) (By (2) in Lemma 18)
= perm(Ln)� perm(L) (By Induction Hypothesis)
= perm(Ln� L) (By (2) in Lemma 18)
= perm(Ln+1) (By (1) Lemma 18).

By the definitions of iterated catenation (Kleene star) and iterated shuffle,
the claim of the second part follows.

Proof of Theorem 11
Proof. Recall that perm, in order to be a semiring morphism, should satisfy
the following properties: (i) By an easy standard set-theoretic argument we get
∀L1, L2 ⊆ Σ∗ : perm(L1 ∪ L2) = perm(L1) ∪ perm(L2), (ii) By Lemma 18

53

∀L1, L2 ⊆ Σ∗ : perm(L1 · L2) = perm(L1)� perm(L2), and (iii) perm(∅) = ∅
and perm({ε}) = {ε} are trivial claims. Furthermore, we claim an according
preservation property for the iterated catenation resp. shuffle, which is explicitly
stated and proven in Lemma 18.

Remark 9. Let us make some further algebraic consequences explicit.
(i) perm(L) can be seen as the canonical representative of all languages L̃ that
are permutation-equivalent to L.
(ii) As perm is a morphism, there is in fact a semiring isomorphism between the
permutation-closed languages (over Σ) and N|Σ|, in this case, which is basically
a Parikh mapping.
(iii) There is a further natural isomorphism between the monoid (N|Σ|,+,~0) and
the free commutative monoid generated by Σ.

3.3 The Language Class JFA
Lemma 19. Let M = (Q,Σ, R, s, F) be a finite machine. Then the connection
between both rewrite relations defined via M : ∀p, q ∈ Q ∀w ∈ Σ∗(∃ u, v ∈ Σ∗ :
w = uv and upvy∗q)⇐⇒ (∃ x ∈ perm(w) : px⇒∗q).

Proof. Let p, q ∈ Q and let w ∈ Σ∗, we prove by induction on |w|. Induction
Basis: ∃ u, v ∈ Σ∗ : w = uv and upv y0 q ⇔ p = q and u = ε = v and
w = ε⇐⇒ pε⇒0 q and ε ∈ perm(w).

Induction Hypothesis: We assume that the lemma is true for all w ∈ Σ∗ : |w| ≤ n.
That is (∃ u, v ∈ Σ∗ : w = uv and upv yn q)⇐⇒ (∃ x ∈ perm(w) : px⇒n q).

Induction Step: We now prove that the lemma is true for all w ∈ Σ∗ : |w| = n+1.

∃ u, v ∈ Σ∗ : w = uv and upv yn+1 q

⇐⇒ ∃ u, v ∈ Σ∗ : w = uv ∃ u′, v′ ∈ Σ∗ ∃ r ∈ Q : py → r ∈ R
and upv y u′rv′ yn q

⇐⇒ ∃ u′, v′ ∈ Σ∗ : v = yv′, u = u′ and py → r ∈ R and u′rv′ yn q

⇐⇒ ∃ u′, v′ ∈ Σ∗ : v = yv′, u = u′ and py → r ∈ R
and ∃ x′ ∈ perm(u′v′) : rx′ ⇒n q (By Induction Hypothesis)
⇐⇒ u′, v′ ∈ Σ∗ : v = yv′, u = u′

and pyx′ ⇒ rx′ ⇒n q

⇐⇒ pyx′ ⇒ rx′ ⇒n q and yx′ ∈ perm(uv)

⇐⇒ px⇒n+1 q and x ∈ perm(w).

54

yx′ ∈ perm(uv) in the last step follows by:

perm(yx′) = {y}� perm(x′) (By Definition 41)
= {y}� perm(uv′) (Since x′ ∈ perm(u′v′))
= perm(uyv′) (By Definition 41)
= perm(uv) (Since yv′ = v).

∃u, v ∈ Σ∗ : w = uv, upv yn+1 q ⇐⇒ ∃x ∈ perm(w) : px⇒n+1 q.

Lemma 20. Let M be a finite machine. Then LJFA(M) = perm(LFA(M)).

Proof. Let M = (Q,Σ, R, s, F) be a finite machine. LJFA(M) = {w ∈ Σ∗ :
∃ u, v ∈ Σ∗ ∃ f ∈ F : w = uv ∧ usv y∗ f}. LFA(M) = {w ∈ Σ∗ : ∃ f ∈ F :
sw ⇒∗ f}. Now our claim is that LJFA(M) = perm(LFA(M)).

w ∈ LJFA(M)

⇐⇒ ∃ u, v ∈ Σ∗ w = uv ∃ f ∈ F : usv y∗ f
(By the definition of LJFA(M))
⇐⇒ ∃ u, v ∈ Σ∗ w = uv ∃ f ∈ F∃ n ∈ N : usv yn f

(By the definition of reflexive transitive closure of y:y∗=
⋃
n∈N

yn)

⇐⇒ ∃ x ∈ perm(w) ∃ f ∈ F ∃ n ∈ N : sx⇒n
FAf (By Lemma 19)

⇐⇒ ∃ x ∈ perm(w) ∃ f ∈ F : sx⇒∗FAf

(By the definition of reflexive transitive closure of⇒:⇒∗=
⋃
n∈N

⇒n)

⇐⇒ ∃ x ∈ perm(w) : x ∈ LFA(M) (By the definition of LFA(M))
⇐⇒ ∃ x ∈ LFA(M) : w ∈ perm(x) (By Observation 4)

⇐⇒ w ∈
⋃

x∈LFA(M)

perm(x) (By the definition of union)

⇐⇒ w ∈ perm(LFA(M)) (By Definition 41).

As an example for this lemma we can recall Example 10 of theJFA, LJFA(M) =
{w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c} = perm(LFA(M)), which is nothing but
the perm of LFA(M) = {abc}∗.

Lemma 21. If R is an α-SHUF expression , then L(R) is a JFA.

55

Proof. The proof is by structural induction. Basis: It has three cases, ∅, ε and
each a ∈ Σ. If R is an α-SHUF expression and R is one of ∅, ε or a, then
L(R) would be L(∅) = {∅}, L(ε) = {ε} or L(a) = {a}, respectively, which are
JFAs, accepted by some finite machine M = (Q,Σ, R, s, F). Let R1, R2 are
α-SHUF expressions such that, L(R1), L(R2) are in JFA, accepted by M1,M2

respectively.

L((R1)�,∗) = (L(R1))�,∗ (By Definitions 46 and 45)
= (LJFA(M1))�,∗ (By Induction)
= (perm(LFA(M1)))�,∗ (By Lemma 20)
= perm(LFA(M1)∗) (By Theorem 18)
= perm(LFA(M ′)) for some finite machine M ′

(Since regular languages are closed under ∗)
= LJFA(M ′) (By Lemma 20)

The ∪,� can be proved by the closure properties of JFAs as in Theorems 26
and 27 (see Section 4.3) of [85].

L(R1 +R2) = L(R1) ∪ L(R2) (By Definitions 46 and 45)
= LJFA(M1) ∪ LJFA(M2) (By Induction)

= LJFA(M̃) for some M̃ (Since JFAs are closed under ∪ [85]).

L(R1�R2) = L(R1)� L(R2) (By Definition 46 and 45)
= LJFA(M1)� LJFA(M2) (By Induction)

= LJFA(M̃) for some M̃ (Since JFAs are closed under� [85]).

By the definition of a jumping finite automaton M , it is clear that w ∈ LJFA(M)
implies that perm(w) ⊆ LJFA(M), i. e., perm(LJFA(M)) ⊆ LJFA(M). Since
perm is extensive as a hull operator (see Lemma 14), we can conclude:

Corollary 3. If L ∈ JFA, then L is perm-closed.

This also follows from results of [85]. In particular, we mention the following
important characterization theorem from [86], that we enrich by combining it with
the well-known theorem of Parikh [92] using Proposition 10.

56

s

r

start

t

a

b

a, b

a, b

Figure 3.3: An example JFA, final states not specified.

Theorem 12. JFA = perm(REG) = perm(CFL) = perm(PSL).

This theorem also generalizes the main result of [75]. It also indicates certain
properties of this language class have been previously derived under different
names; for instance, Latteux [74] writes JFA as c(RAT), and he mentions yet
another characterization for this class in the literature, which is the class of all
perm-closed languages whose Parikh image is semilinear; as in Section 3.1, the
class of languages whose Parikh image is semilinear is known as slip languages
[45], or PSL for short. Due to Lemma 13, there is a natural bijection between
JFA and the recognizable subsets of the monoid (N|Σ|,+,~0). Let us mention
one corollary that can be deduced from these connections; for proofs, we refer to
[20, 44].

Corollary 4. JFA is closed under intersection and under complementation.

Notice that the proof given in Theorem 17.4.6 in [86] is wrong, as nondeterminism
inherent in JFAs due to the jumping feature is neglected. For instance, consider
the deterministic2 JFA M = ({r, s, t}, {a, b}, R, {s}, F) with rules according to
Figure 3.3. If F = {r}, then M accepts all words that contain at least one a. But,
if F = {s, t}, then M accepts ε and all words that contain at least one b. This
clearly shows that the standard state complementation technique does not work
for JFAs.

The Parikh’s theorem in [22] links JFAs to the literature on “commutative
context-free languages” for which we give just two references [7, 68]. Also, a sort
of normal forms for language classes L such that perm(L) = JFA have been
studied, for instance, the class L of letter-bounded languages can be characterized
in various ways, see [12, 14, 51] for a kind of survey. Since finite languages are
regular, we can conclude the following corollary of Theorem 12.

Corollary 5. Let L be a finite language. Then, L ∈ JFA if and only if L is
perm-closed.

2According to [86], a JFA is deterministic if each state has exactly one outgoing transition for
each letter.

57

This also shows that all finite JFA languages are so-called commutative regular
languages as studied by Ehrenfeucht, Haussler and Rozenberg in [19]. We will
come back to this issue later. Next, we shall show that JFA coincides with the
class of α-SHUF expressions. To this end, we observe that a regular expression
E can be easily turned into an α-SHUF expression describing perm(L(E)) by
replacing catenations and Kleene stars with shuffles and iterated shuffles (this is a
direct consequence of the fact that the perm operator is a semiring morphism as
stated in Theorem 11).

Lemma 22. Let R′ be a regular expression. Let the α-SHUF expression R be
obtained from R′ by consequently replacing all · by �, and all ∗ by �,∗ in R′.
Then, perm(L(R′)) = L(R).

Proof. Let R′ be a regular expression. By definition, this means that L(R′) = K,
whereK is some expression over the languages ∅, {ε} and {a}, a ∈ Σ, using only
union, catenation and Kleene-star. By Theorem 11, perm(K) can be transformed
into an equivalent expression K ′ using only union, shuffle and iterated shuffle.
Furthermore, in K ′, the operation perm only applies to languages of the form ∅,
{ε} and {a}, a ∈ Σ, which means that by simply removing all perm operators,
we obtain an equivalent expression K ′′ over languages ∅, {ε} and {a}, a ∈ Σ,
using only union, shuffle and iterated shuffle. This expression directly translates
into the α-SHUF expression R with L(R) = perm(L(R′)).

We are now ready to prove our characterization theorem for JFA.

Theorem 13. A language L ⊆ Σ∗ is in JFA if and only if there is some α-SHUF
expression R such that L = L(R).

Proof. If L ∈ JFA, then there exists a regular language L′ such that L =
perm(L′) by Theorem 12. L′ can be described by some regular expression R′. By
Lemma 22, we find an α-SHUF expression R with L = perm(L(R′)) = L(R).

Conversely, if L is described by some α-SHUF expression R, i. e., L = L(R),
then construct the regular expression R′ by consequently replacing all� by · and
all �,∗ by ∗ in R. Clearly, we face the situation described in Lemma 22, so that
we conclude that perm(L(R′)) = L(R) = L. As L(R′) is a regular language,
perm(L(R′)) = L ∈ JFA by Theorem 12.

As a consequence of Theorem 13, we obtain the following corollary, adding to
the list of closure properties given in [85]. Also we can observe that this is true
because α-SHUF languages are closed under iterated shuffle.

Corollary 6. JFA is closed under iterated shuffle.

58

Let us finally mention a second characterization of the finite perm-closed sets in
terms of α-SHUF expressions (recall Corollary 5 that states first characterization).

Proposition 14. Let L be a language. Then, L is finite and perm-closed if and
only if there is an α-SHUF expression R, with L = L(R), that does not contain
the iterated shuffle operator.

Proof. Let L be a finite language with L = perm(L). RL is a regular expression,
with L(RL) = L, which uses only catenation, union operations. As L is perm-
closed, α-SHUF expression R obtained from RL by replacing all catenation by
shuffle operators satisfies L(R) = perm(L(RL)) = L by Lemma 22 and does not
contain the iterated shuffle operator. Conversely, let R be an α-SHUF expression
that does not contain the iterated shuffle operator. By combining Theorem 13 with
Corollary 3, we know that L(R) is perm-closed. It is rather straightforward that
L(R) is also finite.

Example 12. Let M be the finite machine presented in Fig. 3.4. In the standard
way, we can turn M into the regular expression

E = ((ab∗ab)∗((ab∗aa) + b)(ab∗aa)∗((ab∗ab) + b))∗

(ab∗ab)∗((ab∗aa) + b)(ab∗aa)∗

with LFA(M) = L(E). By Lemma 22, LJFA(M) = L(E ′), where

E ′ = ((a� b�,∗� a� b)�,∗� ((a� b�,∗� a� a) + b)

� (a� b�,∗� a� a)�,∗� ((a� b�,∗� a� b) + b))�,∗

� (a� b�,∗� a� b)�,∗� ((a� b�,∗� a� a) + b)

� (a� b�,∗� a� a)�,∗ .

sstart

f

r

t

a

b a

b

a

b

a

b

Figure 3.4: The finite machine of Example 12.

59

3.4 The Language Classes GJFA and SHUF
In the previous section, we saw that JFA and α-SHUF expressions correspond
to each other in a very similar way as classical regular expressions correspond to
finite automata. More precisely, in the translation between α-SHUF expressions
and JFA, the atoms of the α-SHUF expression will become the labels of the JFA
and vice versa.

GJFAs differ from JFAs only in that the labels can be arbitrary words instead of
symbols and, similarly, SHUF expressions differ from α-SHUF expressions only
in that the atoms can be arbitrary words. This suggests that a similar translation
between GJFAs and SHUF expressions exists and, thus, these devices describe
the same class of languages. Unfortunately, this is not the case, which can be
demonstrated with a simple example: letM = ({s}, {a, b, c, d}, {sab→ s, scd→
s}, s, {s}) be a GJFA, which naturally translates into the SHUF expression E =
(ab + cd)�,∗. It can be easily verified that every word that is accepted by M can
also be generated by E, but, as acbd ∈ (L(E) \ LJFA(M)), we have LJFA(M) (
L(E). In the following, we shall see that not only this naive translation between
GJFA and SHUF expressions fails, but the language classes GJFA and SHUF
are incomparable.

Lemma 23. Let M = ({s}, {a, b, c, d}, {sab → s, scd → s}, s, {s}). Then,
L(M) is not a SHUF language.

Proof. Assume the contrary, letE be a SHUF expression withL(E) = L(M). As
the number of occurrences of both a and d are unbounded in words from L(M),
one of the two cases must hold:

Case 1: E contains a subexpression (R)�,∗ such that there exists a w ∈ L(R) with
|w|a ≥ 1 and |w|d ≥ 1.

Case 2: E contains a subexpression R1 � R2 such that there exists a w ∈ L(R1)
with |w|a ≥ 1 and a w′ ∈ L(R2) with |w|d ≥ 1.

Both cases imply L(E) contains a word with factor ad. This gives a contradiction,
since such words are not in LJFA(M).

Lemma 24. Let L = L(ac� (bd)�,∗). L is not accepted by any GJFA.

Proof. Assume the contrary that L is accepted by a GJFA M . Let n be greater
than the maximum length of a transition label in M and let w = abncdn. The
accepting computation of M on w uses exactly one transition with a label u that
contains c.

60

• If u = bicdj for i, j ≥ 0, all earlier transitions only consume factors that
are completely contained in the prefix abn−i or the suffix dn−j of w =
abn−i(bicdj)dn−j . This implies that, by using the same sequence of tran-
sitions, M can accept w′ = bicdjabn−idn−j .

• Otherwise, u = abrcds for r, s ≥ 0, i. e., it contains both a and c. By
the choice of n, an earlier transition labeled with bk with k > 0 was used.
However, this implies that also w′′ = abn−kcdnbk is accepted by M .

The case of w′ ∈ L(M) violates the condition that the symbol a precedes c in
words from L, while the case of w′′ ∈ LJFA(M) contradicts the fact that the
words in L do not end with b.

Lemma 25. {ab}�,∗ ∈ (GJFA ∩ SHUF) \ JFA.

Proof. Obviously, {ab}�,∗ = L((ab)�,∗). Furthermore, {ab}�,∗ = LJFA(M),
where M is the GJFA with a single state s, which is both initial and final, and a
single rule sab → s. As ab ∈ {ab}�,∗, but ba /∈ {ab}�,∗, {ab}�,∗ is not perm-
closed, and hence not a JFA language.

It is interesting to note that if the permutation closures of separating languages
from Lemmas 23 and 24 are taken, then we get JFA languages. As shall be
demonstrated next (see Theorem 15), this property holds for all SHUF and GJFA
languages.

Theorem 15. perm(GJFA) = perm(SHUF) = perm(PSL) = JFA.

Proof. By Theorem 12,JFA = perm(PSL). Let us prove that perm(GJFA)∩
perm(SHUF) = JFA. Clearly JFA ⊆ perm(GJFA) ∩ perm(SHUF) and
we have to show that perm(GJFA) ∩ perm(SHUF) ⊆ JFA.

Case 1: Let L ∈ SHUF be described by a SHUF expression X . Then perm(L)
is described by the α-SHUF expression X ′ that is obtained from X by replacing
each atomic word a1 · · · an ∈ Σ∗ of length n ≥ 2 by the α-SHUF subexpression
a1� · · ·� an. By Theorem 11, perm(L) = perm(L(X)) = L(X ′).

Case 2: Let L ∈ GJFA. The well-known construction of a finite automaton that
simulates a given general finite automaton can be applied to obtain, from a given
GJFA M , a JFA M ′ with the property perm(LJFA(M)) = LJFA(M ′).

The correctness of this method immediately follows from our reasoning towards
Theorem 12. In both the cases we conclude that perm(L) lies in JFA.

61

Let us now prove that perm(GJFA) = perm(SHUF) = JFA. Let L ⊆ Σ∗.
Then, the following three claims are equivalent: (i) L ∈ JFA, (ii) L is perm-
closed and L ∈ GJFA, and (iii) L is perm-closed and L ∈ SHUF .

As each L ∈ JFA is perm-closed and in GJFA∩SHUF , we only have to show
the upward implications. If L ∈ GJFA, then by Case 2, perm(L) ∈ JFA. If, in
addition, L is perm-closed, then perm(L) = L, which shows the claim. Similarly,
we can show that, if L is perm-closed and L ∈ SHUF , then L ∈ JFA.

We summarize the inclusion relations between the language families considered
in this chapter in Figure 3.5. In this figure, an arrow from class A to B represents
the strict inclusion A (B. A missing connection between a pair of language
families means incomparability.

Theorem 16. The inclusion and incomparability relations displayed in Figure 3.5
are correct.

Proof. We first show the correctness of the subset relations. The class REG ∩
JFA is obviously included in both REG and JFA, and any non-commutative
regular language and the non-regular JFA language L = {w ∈ {a, b}∗ : |w|a =
|w|b} show these subset relations to be proper. That JFA (SHUF ∩ GJFA
follows by definition and Lemma 25. Similarly, both SHUF∩GJFA (GJFA
and SHUF ∩ GJFA (SHUF follows by definition and Lemmas 23 and 24,
respectively.

Theorem 15 together with Lemma 14 (as the operator perm is extensive) shows
that the classes SHUF and GJFA are contained in PSL. Namely, if this would
not be the case, then there should be a language L, say, in GJFA \ PSL. Now,
perm(L) ∈ perm(GJFA)⊆ PSL, butL ∈ PSL if and only if perm(L) ∈ PSL
by definition of PSL, yielding a contradiction.

Similarly, there should be a language L, say, in SHUF \PSL. Now, perm(L) ∈
perm(SHUF) ⊆ PSL, but L ∈ PSL if and only if perm(L) ∈ PSL, again
yielding a contradiction. Since SHUF and GJFA are incomparable, these two
inclusions are proper.

By Parikh’s theorem [92] and as the context-free languages do not contain the
language studied in Example 10, CFL (PSL. Finally, REG (CFL is well-
known; thus, all the claimed proper subset relations hold. Since JFA is a proper
superclass of REG ∩ JFA, it contains a language not in REG. Furthermore, as
in [86, Lemma 17.3.2], the regular language {a}∗{b}∗ is not in GJFA.

62

PSL

perm(GJFA) = perm(SHUF) =

perm(PSL) = JFA = α-SHUF

SHUF ∩ GJFA

REG

SHUF GJFA CFL

REG ∩ JFA

Figure 3.5: Inclusion diagram of our language families.

By a similar argument as used in the proof of Lemma 23, it can also be shown
that {a}∗{b}∗ /∈ SHUF (more precisely, since it is a language which is infinite,
either a subexpression that contains both a and b is subject to an iterated shuffle
operation or two subexpressions which produce only a and b, respectively, are
connected by a shuffle operation).

Hence, REG is incomparable with all the classes on the left side of the diagram.
The language of Example 10 is in JFA, but not in CFL. Furthermore, {a}∗{b}∗
is a context-free language, which implies that CFL is also incomparable with
all the classes on the left side of the diagram. Finally, the incomparability of
the classes SHUF and GJFA is established by Lemmas 23, 24 and 25. This
concludes the proof.

Theorem 17. GJFA is closed under mirror image.

Proof. Given L ∈ GJFA. Then there exists a GJFA M = (Q,Σ, R, s, F) that
accepts L. We have to show that the languague LR ∈ GJFA. Let us build a
GJFA MR = (Q,Σ, R′, s, F) that accepts LR, where R′ has the following rule
pyR → q,where py → q ∈ R ∀p, q ∈ Q, y ∈ Σ∗. Now, our claim is that
(LJFA(M))R = LJFA(MR). Let w ∈ LJFA(M). Then wR ∈ (LJFA(M))R.
Now, our claim is that wR ∈ (LJFA(M))R ⇐⇒ wR ∈ LJFA(MR). i. e., ∀ t, f ∈
Q ∃ uR, vR ∈ Σ∗ : wR = vRuR ∧ vRtuR y∗MR f ⇐⇒ ∃ u, v ∈ Σ∗ : w = uv ∧
utv y∗M f . i. e., ∀ t, f ∈ Q ∃n ∈ N ∃ uR, vR ∈ Σ∗ : wR = vRuR ∧ vRtuR yn

MR

f ⇐⇒ ∃ u, v ∈ Σ∗ : w = uv ∧ utv yn
M f . We prove this by induction on the

63

number of jumps n. Induction Basis: When n = 1

∃ uR, vR ∈ Σ∗ : wR = vRuR ∧ vRtuR y1
MR f

⇐⇒ ∃ uR, vR ∈ Σ∗ : wR = vRuR ∧ ∃ twR → f ∈ R′

⇐⇒ ∃ u, v ∈ Σ∗ : w = uv ∧ ∃ tw → f ∈ R
⇐⇒ ∃ u, v ∈ Σ∗ : w = uv ∧ utv y1

M f.

Induction Hypothesis: ∀ t, f ∈ Q ∃n ∈ N

∃ uR, vR ∈ Σ∗ : wR = vRuR ∧ vRtuR yn−1
MR f

⇐⇒ ∃ u, v ∈ Σ∗ : w = uv ∧ utv yn−1
M f.

Induction Step: ∀ t, f ∈ Q ∃n ∈ N

∃ uR, vR ∈ Σ∗ : wR = vRuR ∧ vRtuR yn
MR f

⇐⇒ ∃ uR, vR, u′R, v′R ∈ Σ∗ : wR = vRuR∃ r ∈ Q : tyR → r ∈ R′

and vRtuR y1
MR v

′Rru′R yn−1
MR f

⇐⇒ ∃ uR, vR, u′R, v′R ∈ Σ∗ : wR = vRuR

and uR = yRu′R ∧ vR = v′R and tyR → r ∈ R′

and v′Rru′R yn−1
MR f

⇐⇒ ∃ u, v ∈ Σ∗ : w = uv ∃ u′, v′ ∈ Σ∗ : u = u′ ∧ v = yv′

and ty → r ∈ R and u′rv′ yn−1
M f (By Induction Hypothesis)

⇐⇒ ∃ u, v, u′, v′ ∈ Σ∗∃ r ∈ Q : ty → r ∈ R
and utv y1

M u′rv′ yn−1
M f

⇐⇒ ∃ u, v ∈ Σ∗ : w = uv ∧ utv yn
M f.

Let us now recall the definitions of SE and SHUF from [59]. The family SE
is equal to the class of languages definable by shuffle expressions. SHUF is a
subclass of SE and has been studied in [58]. Next we prove that SHUF is closed
under mirror image, for this we first prove the following lemmas.

Lemma 26. (ua� vb) = (u� vb)a ∪ (ua� v)b.

Proof. The proof is based on induction.

64

Induction Basis: It has two cases, when u = ε and v = ε. Case 1: If u = ε, then
ua� vb = ε · a� vb = a� vb. We now prove this by induction on length of v.
Induction Basis for Case 1: When v = ε.

a� vb = a� ε · b (Since v = ε)
= a� b (Since ε · b = b)
= ba ∪ ab (By Definition 39)
= {b}a ∪ {a}b (Since L(b) = {b} and L(a) = {a})
= (ε� b)a ∪ (a� ε)b (By Definition 39)
= (ε� ε · b)a ∪ (ε · a� ε)b (Since ε · a = a and ε · b = b).

Therefore, (ua� vb) = (u� vb)a ∪ (ua� v)b for the basis.
Induction Step for Case 1: Let v = b′v′.

a� vb = a� b′v′b (Since v = b′v′)
= a(b′v′b) ∪ b′(a� v′b) (By Definition 39)
= ab′v′b ∪ b′((v′b)a ∪ (a� v′)b) (By Induction Hypothesis)
= ab′v′b ∪ b′v′ba ∪ b′(a� v′)b (By Distributive Law)
= b′v′ba ∪ (ab′v′ ∪ b′(a� v′))b (By Distributive Law)
= b′v′ba ∪ (a� b′v′)b (By Definition 39)
= vba ∪ (a� v)b (Since v = b′v′).

Therefore, a� vb = vba ∪ (a� v)b. Hence the basis for Case 1.

Case 2: If v = ε, then ua� vb = ua� ε · b = ua� b. We now prove this by
induction on length of u. Induction Basis for Case 2: When u = ε.

ua� b = ε · a� b (Since u = ε)
= a� b (Since ε · a = a)
= ba ∪ ab (By Definition 39)
= {b}a ∪ {a}b (Since L(b) = {b} and L(a) = {a})
= (ε� b)a ∪ (a� ε)b (By Definition 39)
= (ε� ε · b)a ∪ (ε · a� ε)b (Since ε · a = a and ε · b = b).

Therefore, (ua� vb) = (u� vb)a ∪ (ua� v)b for the basis.

65

Induction Step for Case 2: Let u = a′u′.

ua� b = a′u′a� b (Since u = a′u′)
= a′(u′a� b) ∪ b(a′u′a) (By Definition 39)
= a′((u′� b)a ∪ (u′a)b) ∪ ba′u′a (By Induction Hypothesis)
= a′(u′� b)a ∪ a′u′ab ∪ ba′u′a (By Distributive Law)
= (a′(u′� b) ∪ ba′u′)a ∪ a′u′ab (By Distributive Law)
= (a′u′� b)a ∪ a′u′ab (By Definition 39)
= (u� b)a ∪ uab (Since u = a′u′).

Therefore, ua� b = (u� b)a ∪ uab. Hence the basis for Case 2.

Induction Step: Let u = a′u′ and v = b′v′.

ua� vb = a′u′a� b′v′b (Since u = a′u′ and v = b′v′)
= a′(u′a� b′v′b) ∪ b′(a′u′a� v′b) (By Definition 39)
= a′((u′� b′v′b)a ∪ (u′a� b′v′)b) ∪ b′((a′u′� v′b)a ∪ (a′u′a� v′)b)

(By Induction Hypothesis)
= a′(u′� b′v′b)a ∪ a′(u′a� b′v′)b ∪ b′(a′u′� v′b)a ∪ b′(a′u′a� v′)b

(By Distributive Law)
= (a′(u′� b′v′b) ∪ b′(a′u′� v′b))a ∪ (a′(u′a� b′v′) ∪ b′(a′u′a� v′))b

(By Distributive Law)
= (a′u′� b′v′b)a ∪ (a′u′a� b′v′)b (By Definition 39)
= (u� vb)a ∪ (ua� v)b (Since u = a′u′ and v = b′v′).

Hence, (ua� vb) = (u� vb)a ∪ (ua� v)b.

Lemma 27. a) ∀L1 ⊆ Σ∗L2 ⊆ Σ∗ : (L1 ∪ L2)R = (L1)R ∪ (L2)R.
b) (
⋃∞
i=1 Li)

R =
⋃∞
i=1(Li)

R.

Proof. a) Let w ∈ L1 ∪ L2. Then w ∈ L1 ∨ w ∈ L2. This implies wR ∈ (L1)R ∨
wR ∈ (L2)R. Claim: (L1 ∪ L2)R = (L1)R ∪ (L2)R. Let wR ∈ (L1)R ∪ (L2)R.

wR ∈ (L1)R ∪ (L2)R ⇐⇒ wR ∈ (L1)R ∨ wR ∈ (L2)R (By Definition of Union)
⇐⇒ w ∈ L1 ∨ w ∈ L2 (By Definition of Reversal)
⇐⇒ w ∈ L1 ∪ L2 (By Definition of Union)

⇐⇒ wR ∈ (L1 ∪ L2)R (By Definition of Reversal).

Hence (L1 ∪ L2)R = (L1)R ∪ (L2)R. Hence the proof of (a).

66

b) We prove this lemma by induction on i. Induction Basis: When i = 1. Then
(L1)R = LR1 . Induction Hypothesis: (L1∪L2∪. . .∪Ln)R = (L1)R∪(L2)R∪. . .∪
(Ln)R. Induction Step: Let w ∈

⋃∞
i=1(Li). Then w ∈ L1 ∨ w ∈ L2 ∨ . . . ∨ w ∈

Ln ∨ . . . that implies wR ∈ (L1)R ∨wR ∈ (L2)R ∨ . . . ∨wR ∈ (Ln)R ∨ Now
our Claim is that (

⋃∞
i=1 Li)

R =
⋃∞
i=1(Li)

R. Let wR ∈ (
⋃∞
i=1 Li)

R. Then we have

wR ∈ (∪∞i=1Li)
R ⇐⇒ w ∈ ∪∞i=1Li (By Definition of Reversal)
⇐⇒ ∃i ≥ 1 : w ∈ Li (By Definition of Union)

⇐⇒ ∃i ≥ 1 : wR ∈ (Li)
R (By Definition of Reversal)

⇐⇒ wR ∈ ∪∞i=1(Li)
R (By Definition of Union).

Hence (
⋃∞
i=1 Li)

R =
⋃∞
i=1(Li)

R. Hence the proof of (b).

Lemma 28. a) ∀x, y ∈ Σ∗ : (x� y)R = xR � yR.
b) ∀x ∈ Σ∗∀n ≥ 0 : (x�,n)R = (xR)

�,n.
c) ∀x ∈ Σ∗ : (x�,∗)R = (xR)

�,∗.

Proof. a) Let w ∈ x � y. wR ∈ (x � y)R. Induction Basis: It has two cases,
when x = ε and y = ε. Case 1: When x = ε

wR ∈ (ε� y)R (Since x = ε)

wR ∈ {y}R (Since (ε� y) = {y})
wR ∈ {yR} (Since {y}R = {yR})
wR ∈ εR � yR (Since {yR} = (ε� yR) and ε = εR).

Case 2: When y = ε is similar to Case 1. Induction Step: Let x = au and y = bv.
xR = (au)R and yR = (bv)R that implies xR = uRaR and yR = vRbR.

(x� y)R = (au� bv)R (Since x = au and y = bv)

= (a(u� bv) ∪ b(au� v))R (By Definition 39)

= (a · (u� bv))R ∪ (b · (au� v))R (By (a) in Lemma 27)

= (u� bv)R · aR ∪ (au� v)R · bR (Since (a · b)R = bR · aR)

= (uR � (bv)R) · aR ∪ ((au)R � v)R · bR (By Induction Hypothesis)

= (uR � vRbR) · aR ∪ (uRaR � v)R · bR (Since (a · b)R = bR · aR)

= uRaR � vRbR (By Lemma 26)

= (au)R � (bv)R (Since (a · b)R = bR · aR)

= xR � yR (Since xR = uRaR and yR = vRbR).

Hence the proof of (a).

67

b) We prove this by induction on n. Induction Basis: When n = 0. Then we have

(x�,0)R = {ε}R (By Definition 40)

= {εR} (Since {ε}R = {εR})
= {ε} (Since ε = εR)

= (xR)
�,0

(By Definition 40).

Induction Step:

(x�,n)R = (x�,n−1
� x)R (By Definition 40)

= (x�,n−1)R � xR (By (a) in Lemma 28)

= (xR)�,n−1
� xR (By Induction Hypothesis)

= (xR)�,n (By Definition 40).

Hence the proof of (b).

c)

(x�,∗)R = (
∞⋃
n=0

x�,n)R (By Definition 40)

=
∞⋃
n=0

(x�,n)R (By (b) in Lemma 27)

=
∞⋃
n=0

(xR)�,n (By (b) in Lemma 28)

= (xR)�,∗ (By Definition 40)

Hence the proof of (c).

Lemma 29. a) ∀L1 ⊆ Σ∗L2 ⊆ Σ∗ : (L1� L2)R = (L1)R � (L2)R.
b) ∀L ⊆ Σ∗ : (L�,∗)R = ((L)R)

�,∗.

Proof. a) Let w ∈ L1 � L2. wR ∈ (L1 � L2)R. Let x ∈ L1, y ∈ L2 : wR ∈
(x � y)R. Now we claim that wR ∈ xR � yR which is true by (a) in Lemma
28. Therefore, wR ∈ (L1)R � (L2)R. Similarly, if wR ∈ (L1)R � (L2)R then
wR ∈ (L1� L2)R. Hence (L1� L2)R = (L1)R� (L2)R. Hence the proof of (a).
b) Let w ∈ L�,∗. wR ∈ (L�,∗)R. Let x ∈ L : wR ∈ (x�,∗)R. Now we claim
that wR ∈ (xR)

�,∗ which is true by (c) in lemma 28. Therefore, wR ∈ ((L)R)
�,∗.

Similarly, if wR ∈ ((L)R)
�,∗ then wR ∈ (L�,∗)R. Hence (L�,∗)R = ((L)R)

�,∗.

68

Theorem 18. SHUF is closed under mirror image.

Proof. Before proving this theorem let us define the reversal function as follows:
Reverse is a function from a SHUF expression to a SHUF expression such that
if S is a SHUF expression, then L(Reverse(S)) = (L(S))R.

We have the following for each SHUF expression: If ∅ and each w ∈ Σ∗ are
SHUF expressions, then ∅ 7→ ∅, w 7→ wR and if S1, S2 are SHUF expressions,
then (S1 +S2) 7→ (Reverse(S1) +Reverse(S2)), (S1�S2) 7→ (Reverse(S1)�
Reverse(S2)) and ((S1)�,∗) 7→ ((Reverse(S1))�,∗).

Claim: ∀L ∈ SHUF ⇒ LR ∈ SHUF . Assume that L is defined by some SHUF
expression S. We show that there is another SHUF expression Reverse(S) such
that L(Reverse(S)) = (L(S))R, i.e., the language of Reverse(S) is the reversal
of the language of S.

We prove this by structural induction. Induction Basis: We have two cases, ∅ and
w for w ∈ Σ∗. If S is a SHUF expression and S is one of ∅ or w, then L(S) would
be L(∅) = ∅ or L(w) = {w}, respectively.

Case 1:
If S = ∅, then L(S) = L(∅) = ∅ = ∅R = L(Reverse(∅)) = L(Reverse(S)).
Therefore, (L(S))R = L(Reverse(S)).

Case 2:
If S = w, then L(S) = L(w) = {w} ⊆ Σ∗ and L(Reverse(S)) = L(wR) =
{wR} ⊆ Σ∗. Now, (L(S))R = {w}R = {wR} = L(Reverse(S)). Therefore,
(L(S))R = L(Reverse(S)).

Induction: Let S1, S2 are SHUF expressions such thatL(S1), L(S2) are in SHUF .

(L(S1 + S2))R = (L(S1) ∪ L(S2))R (By Definition 45)

= (L(S1))R ∪ (L(S2))R (By (a) in Lemma 27)
= L(Reverse(S1)) ∪ L(Reverse(S2)) (By Induction)
= L(Reverse(S1) +Reverse(S2)) (By Definition 45)
= L(Reverse(S1 + S2)) (By the Reverse function).

69

(L(S1� S2))R = (L(S1)� L(S2))R (By Definition 45)

= (L(S1))R � (L(S2))R (By (a) in Lemma 29)
= L(Reverse(S1))� L(Reverse(S2)) (By Induction)
= L(Reverse(S1)�Reverse(S2)) (By Definition 45)
= L(Reverse(S1� S2)) (By the Reverse function).

(L(S�,∗1))R = ((L(S1))�,∗)R (By Definition 45)

= ((L(S1))R)�,∗ (By (b) in Lemma 29)
= (L(Reverse(S1)))�,∗ (By Induction)
= L((Reverse(S1))�,∗) (By Definition 45)

3.5 Representations and Normal Forms
Our desired representation theorem is stated as follows:

Theorem 19 (Representation Theorem 1). Let L ∈ JFA. Then there exists
a number n ≥ 1 and finite sets Mi, Ni for 1 ≤ i ≤ n, so that the following
representation is valid.

L =
n⋃
i=1

perm(Mi)� (perm(Ni))
�,∗ (3.1)

We will prove this representation theorem on the level of α-SHUF expressions, so
that we actually get a normal form theorem for these. A central tool in the proofs
of this normal form theorem is the following notion that corresponds to the well-
known star-height of regular expressions. Let us recall the following definitions
of star-height and string form; see [15, 16, 48].

Definition 47. The star-height hα(E) of a regular expression E is inductively
defined as follows:

• hα(∅) = hα(ε) = hα(a) = 0 for a ∈ Σ.

• hα(E1∪E2) = hα(E1E2) = max{hα(E1), hα(E2)}∧hα(E∗) = hα(E)+1.

Definition 48. The star-height h(R) of a regular languageR is defined by h(R) =
min{hα(E) : E is a regular expression denoting R}.

70

Thus, for any regular expression E, hα(E) is the maximum length of a sequence
of stars in the expression E, such that each star is in the scope of the star that
follows it. h(E), however, indicates the star height of the language L(E) denoted
by E as defined above. Obviously, for any regular language R, h(R) ≥ 1 iff R is
infinite.

Definition 49. The string form Es of a regular expression E is defined inductively
as follows:

• If hα(E) = 0 then Es = w1 ∪ w2 ∪ · · · ∪ wp where wj ∈ Σ∗, j = 1, . . . , p,
p ≥ 0.

• If hα(E) = k > 0, then Es = F1 ∪ F2 ∪ · · · ∪ Fp, p > 0 where each Fi is a
string of the form:

w1H
∗
1w2H

∗
2 · · ·wlH∗l wl+1, l > 0,

where wj ∈ Σ∗, Hj are in string form and hα(Hj) ≤ k − 1, j = 1, . . . , l.

Notice that the string form is very close to the normal form that we have derived
for our shuffle expressions.

Example 13. LetE = (10∗1)∗. Then hα(E) = 2 is the star height ofE. However,
h(E) = 1 because E1 = ε ∪ 1(0 ∪ 11)∗1 is an expression equivalent to E, i.e.,
L(E1) = L(E).

Example 14. Let E = (0 ∪ 10∗1)∗. Here again hα(E) = 2. Moreover, this
language has been shown to be of star height 2 by McNaughton [84], using graph-
theoretical methods.

Definition 50. We can inductively associate the (shuffle iteration) height h to any
α-SHUF expression S as follows.

• If S is a base case, then h(S) = 0.

• If S = (S1 + S2) or S = (S1� S2), then h(S) = max{h(S1), h(S2)}.

• If S = S�,∗1 , then h(S) = h(S1) + 1.

The shuffle iteration height of a L ∈ JFA is then the smallest shuffle iteration
height of any α-SHUF expression S describing L.

Let us mention the following consequence obtained by combining Theorem 19
with Theorem 13, Lemma 22 and Theorem 12.

Corollary 7. L ∈ JFA if and only if there is a regular language R of star height
at most one such that L = perm(R).

71

Immediately from the Definition 50, we obtain from Proposition 14:

Corollary 8. A language is finite and perm-closed if and only if it can be described
by some α-SHUF expression of shuffle iteration height zero.

Recall that Eggan’s Theorem [18] relates the star height of a regular language
to its so-called cycle rank, which formalizes loop-nesting in NFA’s. Again, the
characterization theorems that we derived allow us to conclude that, in short, for
any L ∈ JFA there exists some finite machine M of cycle rank at most one such
that LJFA(M) = L. Corollary 8 means that, in order to show Theorem 19, it is
sufficient (and in a sense stronger) to prove the following normal form theorem
for α-SHUF expressions. The proof resembles the one given by Jantzen [58] for
a different variant of shuffle expressions, but we keep it here, as it shows several
technicalities with these notions.

Theorem 20. For any α-SHUF expression R, an equivalent α-SHUF expression
S with h(S) = 1 can be constructed that is the union of n α-SHUF expressions
S1, . . . , Sn such that Si = Fi � G�,∗i , where h(Fi) = h(Gi) = 0, 1 ≤ i ≤ n.
Moreover, we can assume that Fi =

⋃n(i)
j=1 uj and Gi =

⋃m(i)
j=1 vj , where all uj and

vj are α-SHUF expressions with� as their only operators.

Proof. We show the claim by induction on the height of R. If h(R) = 0, then
S = R� ∅�,∗ is an equivalent expression in the desired normal form. Let h > 0.
Assume now that the result is true for all α-SHUF expressions of height less
than h and consider some α-SHUF expression R with h(R) = h. By repeatedly
applying the distributive law, we can obtain an equivalent α-SHUF expression R′

that is of the following form:

R′ =
m⋃
j=1

k(j)

�
k=1

Sj,k ,

where each expression Sj,k contains only shuffle and iterated shuffle operators.
In a first step, by applying the commutative law of the shuffle, we can order
the Sj,k such that, slightly abusing notation, Sj,1, . . . , Sj,b(j) are base cases, and
Sj,b(j)+1, . . . , Sj,k(j) are of the form Sj,i = (Tj,i)

�,∗.

To simplify the further discussions, we can assume that none of the base cases
Sj,1, . . . , Sj,b(j) is ∅, as this would mean that the language L(�

k(j)
k=1 Sj,k) is empty,

and we can omit this part immediately from the union. In the next step, we form
F ′j :=�

b(j)
k=1 Sj,k.

Notice that, by Corollary 8, each F ′j represents a finite perm-closed set. Moreover,
we define α-SHUF expressions G′j of iteration height less than h as follows. If

72

b(j) = k(j), then G′j := ∅. Otherwise, G′j :=
⋃k(j)
i=b(j)+1 Tj,i. By using Rule 4

from Proposition 6, one can see that

R′′ :=
m⋃
j=1

F ′j � (G′j)
�,∗

is equivalent to R′. As all G′j have iteration height less than h, we can apply the
induction hypothesis to them and replace G′j by equivalent expressions

n(j)⋃
i=1

Fj,i�G�,∗j,i ,

where each Fj,i and each Gj,i are α-SHUF expressions of height zero. Rule 4
now yields the following equivalent expression:

R′′′ :=
m⋃
j=1

F ′j �
n(j)

�
i=1

(
Fj,i�G�,∗j,i

)
�,∗

Now, we can apply Rule 6 to avoid nesting of the iterated shuffle. Hence, the
following expression is again equivalent:

Riv :=
m⋃
j=1

F ′j �
n(j)

�
i=1

(Fj,i� (Fj,i ∪Gj,i)
�,∗ ∪ {ε})

Finally, setting Fj,I := F ′j ��i∈I F
′
j,i and Gj,I :=

⋃
i∈I(Fj,i ∪ Gj,i) for I ⊆

I(j) := {1, . . . , n(j)}, with Fj,∅ = F ′j and Gj,∅ = ∅, and observing that also these
α-SHUF expressions are of height zero, we define

S :=
m⋃
j=1

⋃
I⊆I(j)

Fj,I �G�,∗j,I .

By the commutative and distributive laws and by Rule 4, S is equivalent to Riv

and satisfies all the properties of the theorem, possibly apart from the last sentence,
which can be enforced by exhaustively applying the distributive law.

As an example for the above theorem consider an α-SHUF expression R =
(a�,∗ � b)�,∗. An equivalent α-SHUF expression S = (b� (b ∪ a)�,∗) ∪ {ε} is
constructed by the union of S1 and S2 where S1 = b� (b ∪ a)�,∗ and S2 = {ε}
such that S1 = F1 � G�,∗1 where F1 = b and G1 = b ∪ a. Also S2 = F2 � G�,∗2

where F2 = {ε} and G2 = ∅. Here h(F1) = h(F2) = h(G1) = h(G2) = 0.

73

Also our assumption in the statement is valid in the example as we can evident
from the following that all uj and vj are α-SHUF expressions with� as their only
operators: F1 =

⋃2(1)
j=1 uj , F1 = u1; u1 = b and F2 =

⋃2(2)
j=1 uj , F2 = u1; u1 = {ε}.

Similarly G1 =
⋃m(1)
j=1 vj , G1 = v1 ∪ v2; v1 = b, v2 = 2 and G2 =

⋃m(2)
j=1 vj ,

G2 = v1; v1 = ∅.

The Representation Theorem can also be derived in yet another method, as
in [20], where the connection to the definition of semilinear sets is also drawn,
though with a different method and background.

As mentioned earlier, regular expressions over free commutative monoids can
be re-interpreted as regular expressions dealing with Parikh vectors. As in [29] we
have Theorem 19 on the level of α-SHUF expressions, so that we have a normal
form theorem for these expressions. Our proof idea was similar to the one that
Jantzen presented in [58]. However, in meantime we understood the connections
to Parikh’s theorem better, so that we presented a different reasoning in [32].

By the results of Meduna and Zemek, we know that JFA and REG are two
incomparable families of languages. Above, we derived several characterizations
ofJFA∩FIN ⊆ REG. Let us first explicitly state a characterization ofJFA∩
REG that can be easily deduced from our previous results.

Proposition 21. L ∈ JFA∩REG if and only if L ∈ REG and L is perm-closed.

We mention this, as the class JFA ∩ REG can be also characterized as follows
according to Ehrenfeucht, Haussler and Rozenberg [19]. Namely, they describe
this class of (what they call) commutative regular languages as finite unions of
periodic languages. We are not giving a definition of this notion here, but rather
state an immediate consequence of their characterization in our terminology.

Corollary 9. A language L is regular and perm-closed if and only if L is the finite
union of periodic languages.

Proof. If L is regular and perm-closed, then language L is the finite union of
periodic languages according to [19, Theorem 6.5]. Conversely, as the finite union
of perm-closed languages is perm-closed, we can conclude from [19, Theorem
6.5] that the finite union of periodic languages is regular and perm-closed.

Let us finally mention, yet another characterization of JFA ∩ REG that was
derived in [75, Theorem 3] and also by us in [32]. Moreover, a relaxed version
of the notion of commutativity (of languages) allows a characterization of REG,
as shown by Reutenauer [97]. We would also like to point to [46], where not

74

only learnability questions of this class of languages were discussed, but also two
further normal form representations of JFA ∩ REG were mentioned. Further
algebraic properties of JFA∩REG were presented by Mateescu [80]. A proper
subclass of JFA ∩ REG (star-free commutative languages) was characterized
in [9] with the help of shuffle expressions in a certain normal form.

75

Chapter 4

Scanning Automata and Grammars

Syntactic considerations of digital images have a tradition of about five decades.
They should (somehow) reflect methods applied to picture processing. However,
one of the basic methods of scanning pictures in practice have not been thoroughly
investigated from a more theoretical point of view: that of using space-filling
curves [89, 95, 100, 110, 115]. Here, we start such an investigation with what can
be considered as the most simple way of defining space-filling curves: scanning
an image line after line.

We introduce finite automata that work this way and call them boustrophedon
finite automata, or BFA for short, a notion derived from the name of ancient forms
of writing that run ‘as the ox turns’. This is an automaton model for processing
rectangular-shaped digitized bordered pictures that moves its head one by one at
each computation step and changes its direction when the borders are visited.

We also consider returning finite automata, or RFA for short, finite automata
that scan images line by line and does not alters its direction. We prove that both
BFA and RFA describe the same class of pictures.

In contrast to other automata models introduced in the literature, designed for
processing pictures, our automata BFA and RFA can read each position (and hence
each input symbol) only once. So, in a sense, our automata models correspond,
in the string case, to one-way automata, while other models generalize the idea of
two-way automata.

In the string case, one-way automata and two-way automata can be shown to
be equivalent, by the classical crossing sequence argument or by constructions of
Vardi [113], but this is no longer true in the two-dimensional case, as we will show.

76

In the one-dimensional, i. e., in the string world, one-way finite automata
rather naturally correspond to (regular) grammars. It is natural to compare our
approach to existing grammar models for the two-dimensional case. We do this in
two ways. We show that BFAs are equivalent to regular matrix grammars (RMGs)
as introduced in a sequence of papers of Rani Siromoney and her co-authors in
the early 1970s. These two-dimensional picture languages have connections to
the generation of kolam patterns [107, 116].

Secondly, we compare with isometric regular array grammars (IRAG) [17,
114] that have been introduced as the lowest level of the Chomsky hierarchy of
grammars that describe two-dimensional languages. Here, we see the technicality
that pictures are (usually) no longer restricted to be of rectangular shape. But,
when restricted to the generation of rectangular-shaped pictures, IRAGs can be
shown to generalize both BFAs and RMGs.

Our work shows tighter connections between finite automata that works on
pictures and array grammars of different types; for overviews on this topic, see [55,
63]. We consider pumping lemmas and interchange lemmas for two-dimensional
languages that enable to prove proper hierarchy results. Finally, the constructions
showing the interrelations between isometric and non-isometric models turn out
to be non-trivial.

4.1 Boustrophedon Finite Automata
We now give the main definition of this section, introducing a new automaton
model for picture processing.

Definition 51. A boustrophedon finite automaton, or BFA for short, specified as a
7-tuple M = (Q,Σ, R, s, F,#,�), where Q is a finite set of states, Σ is an input
alphabet, R ⊆ Q × (Σ ∪ {#}) × Q is a finite set of rules. A rule (q, a, p) ∈ R
is usually written as qa → p. The special symbol # /∈ Σ indicates the border of
the rectangular picture that is processed, s ∈ Q is the initial state, F is the set of
final states.

We are now going to discuss the notions of configurations, valid configurations
and an according configuration transition to formalize the work of BFAs, based
on snapshots of their work.

Let � be a new symbol indicating an erased position and let Σ#,� := Σ ∪
{#,�}. Then CM := Q× (Σ#,�)+

+ × N is the set of configurations of M .

77

A configuration (p,A, µ) ∈ CM is valid if 1 ≤ µ ≤ |A|r and, for every i,
1 ≤ i ≤ µ − 1, the ith row equals # �|A|c−2 #, for every j, µ + 1 ≤ j ≤ |A|r,
the j th row equals #w#, w ∈ Σ|A|c−2, and, for some ν, 0 ≤ ν ≤ |A|c − 2,
w ∈ Σ|A|c−ν−2, the µth row equals # �ν w#, if µ is odd and #w �ν #, if µ is
even.

Notice that valid configurations model the idea of observable snapshots of the
work of the BFA.

• If (p,A, µ) and (q, A′, µ) are two valid configurations such that A and A′

are identical but for one position (i, j), where A′[i, j] = � while A[i, j] ∈
Σ, then (p,A, µ) `M (q, A′, µ) if pA[i, j]→ q ∈ R.

• If (p,A, µ) and (q, A, µ+1) are two valid configurations, then (p,A, µ) `M
(q, A, µ + 1) if the µth row contains only # and � symbols, and if p# →
q ∈ R.

The reflexive transitive closure of the relation `M is denoted by `∗M .

The BFA M is deterministic, or a BDFA for short, if for all p ∈ Q and
a ∈ Σ ∪ {#}, there is at most one q ∈ Q with pa→ q ∈ R.

The language L(M) accepted by M is then the set of all m × n pictures W
over Σ such that

(s,#m :W : #m, 1) `∗M (f,#m :�n
m : #m,m)

for some f ∈ F .

Note that the automaton works on a picture with a first and last column of only
symbols, but only the part in between these border columns is accepted. In
other words, the computation starts with scanning the left uppermost corner of the
picture and then working through the picture row-by-row, as the ox turns, i. e., the
boustrophedon way, until the last entry of the last row is scanned. The following
illustrates how a BFA scans some input picture and also how a picture of a valid
configuration looks like; it can be seen that the sequence of � only indicate how
far the input has been processed, see Fig. 4.1.

It should be also clear that the representation on the right-hand side of the
previous picture contains all information necessary to describe a configuration
apart from the state.

78

0 0 0 0 0
→ → → → → →

0 0 0 0 0
← ← ← ← ← ← ←↩
1 1 1 0 1
↪→ → → → → → →
0 0 0 0 0
← ← ← ← ← ← ←↩
0 0 0 0 0
↪→ → → → → →

� � � � �
� � � � �
� � � 0 1
0 0 0 0 0
0 0 0 0 0

Figure 4.1: How M− processes an input.

Remark 10. Notice that since rules of the form p#→ q need not be present in R,
so that in some natural sense the classical regular string languages are a special
case of BFA languages.

Example 15. The language of a horizontal line L− is generated by the BFA
M− = (Q,Σ, R, s, F,#,�) with Q = {s, b, w, b′, f}, Σ = {0, 1}, R = {s0 →
b, b0 → b, b# → b, b# → w,w1 → w,w# → b′, b′0 → f, f0 → f, f# → f},
Σ = {0, 1}, F = {f}. M− accepts L− = T (L|). Reconsider Fig. 4.1. The
displayed sample array is not accepted, because the processing is stuck exactly in
the snapshot shown on the right-hand side, which belongs to state w. There is no
rule digesting the next input symbol 0 here.

Example 16. The set LL of tokens L of all sizes and of all proportions, formally
represented by

LL =
{

(x (•)n)m−1

x xn
: n ≥ 1,m ≥ 2

}
is accepted by BFA M = (Q,Σ, R, s, F,#,�), where Q = {s, s1, s2, s3, s4, s5},
Σ = {x, •}, R = {sx → s5, s5• → s1, s1• → s1, s1# → s2, s1# → s4, s2• →
s2, s2x → s3, s3# → s, s3# → s4, s4x → s4}, and F = {s4}. A pictorial form
of this BFA M is given in Fig. 4.2. We show how a sample token of L is accepted
by M in Fig. 4.3.

Note that we always write the state information exactly above the symbol which
is being read by the automaton at that step (current position in the picture) of
computation, this way displaying the configurations. BFAs with unary alphabets
Σ can give interesting examples, as we now show.

Example 17. Consider M = ({s0, s1, s2}, {a}, {s0a → s1, s1a → s0, s0# →
s2, s2a → s2, s2# → s2}, s0, {s2},#,�). Clearly, L(M) = {a � a}+ � {a}+

+

is the set of all pictures over {a} that have an even number of columns and at
least two rows. Notice that the ‘even property’ of the column number needs to be
checked only once (in the first row), as row concatenation enforces this property
on the other rows, as well. Clearly, M is deterministic.

79

s

start

s5

s1 s2

s3

s4

x •

#

• •

x

#

#

x

#

Figure 4.2: BFA M that accepts the language LL in Example 16

s
x • • •
x • • •
x • • •
x • • •
x x x x

`M

s5
� • • •
x • • •
x • • •
x • • •
x x x x

`M

s1
� � • •
x • • •
x • • •
x • • •
x x x x

`2
M

s1
� � � �
x • • •
x • • •
x • • •
x x x x

`M

� � � �
s2

x • • •
x • • •
x • • •
x x x x

`3
M

� � � �
s2

x � � �
x • • •
x • • •
x x x x

`M

� � � �
s3
� � � �
x • • •
x • • •
x x x x

`M

� � � �
� � � �

s
x • • •
x • • •
x x x x

`M

� � � �
� � � �

s5
� • • •
x • • •
x x x x

`M

� � � �
� � � �

s1
� � • •
x • • •
x x x x

`2
M

� � � �
� � � �

s1
� � � �
x • • •
x x x x

`M

� � � �
� � � �
� � � �

s2
x • • •
x x x x

`3
M

� � � �
� � � �
� � � �

s2
x � � �
x x x x

`M

� � � �
� � � �
� � � �
s3
� � � �
x x x x

`M

� � � �
� � � �
� � � �
� � � �

s4
x x x x

`4
M

� � � �
� � � �
� � � �
� � � �

s4
� � � �

Figure 4.3: Example derivation of the BFA M in Example 16

80

Here and in the following, if X is some mechanism (automata or grammars) for
describing pictures, thenLΣ(X) is the family of non-empty picture languages over
the alphabet Σ that can be described by X . If the alphabet does not matter, we can
omit the subscript Σ. For instance, LΣ(BFA) is the family of picture languages
L ⊆ Σ+

+ such that there is some BFA M with L = L(M).

Remark 11. We have defined the BFA in such a way that it accepts the picture
by reading a last non-# symbol, but we can think of the acceptance by reading a
in the end. In the current BFA model by reading a # it is meant to turn from
one row to another. In addition to this we can slightly modify the model to accept
the picture by reading the last #, which we wish to remark here as an alternative
acceptance for the BFA.

Now, we derive several normal form characterizations for our picture language
class L(BFA). Later, we will briefly discuss so-called 3-way automata and 4-way
automata (see [41]).

Theorem 22. Let Σ be some alphabet. Then, LΣ(BDFA) = LΣ(BFA).

Proof. Use the well-known subset construction for determinizing finite automata.
This works out, as our BFAs are syntactically the same as classical finite automata,
only the interpretation of their processing is different.

One of the benefits of having deterministic models is that it usually entails closure
under complementation. This is also the case for picture processing automata, as
we will later see.

Remark 12. As we have with word-processing automata, we can insist on having
complete BFA and BDFA, meaning that for each state and each input symbol,
there is at least one successor state. Clearly, we can easily enforce completeness
by introducing a trash state, so that this issue does not need further attention.

Let us now see a normal form for BFAs that ensures direction-awareness which
we have introduced in [34].

Definition 52. Let M = (Q,Σ, R, s, F,#,�) be a BFA. M is called direction-
aware, or d-BFA for short, if there is a mapping d : Q → {r, `} such that d(q) =
d(p) for any rule qa → p with a ∈ Σ and d(q) 6= d(p) for any rule q# → p. In
addition, d(s) = r.

Remark 13. As we had BDFA for the BFA, it is natural to have deterministic
d-BFAs, or d-BDFA for short, for the d-BFAs.

We now prove the direction-aware normal form lemma, in short DANF lemma.

81

Lemma 30. LΣ(BFA) = LΣ(d− BFA).

Proof. LΣ(d− BFA) ⊆ LΣ(BFA) is trivial since d-BFAs are a special case of
BFAs. Let us prove the other direction LΣ(BFA) ⊆ LΣ(d− BFA). Given a
BFA M = (Q,Σ, R, s, F,#,�). Let us define a (direction-aware) d-BFA Md =
(Qd,Σ, Rd, (s, r), Fd,#,�) where Qd = Q × {r, `} with a mapping d : Qd →
{r, `}, (q, x) 7→ x for x ∈ {r, `}, (s, r) ∈ Qd is the start state with (s, r) 7→ r,
Fd ⊆ Qd and Fd = F × {r, `} and Rd is defined as follows:

Rd = {(p, x)a→ (q, x) : pa→ q ∈ R and x ∈ {r, `}}
∪ {(p, x)#→ (q, y) : p#→ q ∈ R and x, y ∈ {r, `}, x 6= y}.

The idea of the construction is that the second component in the state allows us
to keep track of the direction, depending upon reading odd- or even-numbered
rows.

Illustration 2. Let us illustrate the DANF Lemma with the BFA M in Figure 4.2.
Let us formally define the equivalent d-BFA Md = (Qd,Σ, Rd, (s, r), Fd,#,�),
where Qd = Q× {r, `} = {s, . . . , s5} × {r, `}, i. e., Qd = {(s, r), (s1, r), (s2, r),
(s3, r), (s4, r), (s5, r), (s, `), (s1, `), (s2, `), (s3, `), (s4, `), (s5, `)}, i. e., Qd has 12
states, with a mapping d : Qd → {r, `}, (q, x) 7→ x for x ∈ {r, `}, q ∈ Qd,
(s, r) ∈ Qd is the start state with (s, r) 7→ r, Fd ⊆ Qd and Fd = {s4} × {r, `} =
{(s4, r), (s4, `)} and Rd using the construction in DANF Lemma is defined as
follows:

Rd = {(s, r)x→ (s5, r), s, `)x→ (s5, `), }
∪ {(p, x)#→ (q, y) : p#→ q ∈ R and x, y ∈ {r, `}, x 6= y}.

Rd as described in Figure 4.4 (with only useful states), Fd = {(s4, r), (s4, `)}.
Here we can note that the final state (s4, `) will be reached if the pictures have
even number of rows and the final state (s4, r) will be reached if the pictures have
odd number of rows. A sample token of L accepted by Md is

x • • •
x • • •
x • • •
x x x x

Let us now see how this sample is accepted by Md in Figure 4.4. Please note
that we always write the state information exactly above the symbol which is being
read by the automaton at that step (current position in the picture) of computation.

82

(s1, r)(s, r)

start

(s5, r)

(s2, `)

(s3, `)

(s4, r)

(s4, `)x •

#

• • x

x
#

#

x #

Figure 4.4: d-BFA Md

(s,r)
x • • •
x • • •
x • • •
x x x x

`Md

(s5,r)
� • • •
x • • •
x • • •
x x x x

`3
Md

(s1,r)
� � � �
x • • •
x • • •
x x x x

`Md

� � � �
(s2,`)

x • • •
x • • •
x x x x

`3
Md

� � � �
(s2,`)

x � � �
x • • •
x x x x

`Md

� � � �
(s3,`)

� � � �
x • • •
x x x x

`Md

� � � �
� � � �

(s,r)
x • • •
x x x x

`Md

� � � �
� � � �

(s5,r)
� • • •
x x x x

`3
Md

� � � �
� � � �

(s1,r)
� � � �
x x x x

`Md

� � � �
� � � �
� � � �

(s4,`)
x x x x

`4
Md

� � � �
� � � �
� � � �

(s4,`)
� � � �

As the construction mentioned in DANF Lemma preserves determinism and from
Theorem 22 we obtain:

Remark 14. LΣ(d− BFA) = LΣ(d− BDFA).

83

4.2 Returning Finite Automata
In this section we examine whether the boustrophedon processing mode of our
automata is essential. To this end, let us consider yet another interpretation of
finite automata, this time termed returning finite automata, or RFA for short.

Syntactically, they are identical to BFA, so they can be again described by a 7-
tuple M = (Q,Σ, R, s, F,#,�). However, they always process rows from left to
right. Formally, this means that we can carry over all parts of the definition of BFA
apart from the notion of a valid configuration, which needs to be slightly modified.

Now, a configuration (p,A, µ) ∈ CM is valid if 1 ≤ µ ≤ |A|r and, for every
i, 1 ≤ i ≤ µ− 1, the ith row equals # �|A|c−2 #, for every j, µ + 1 ≤ j ≤ |A|r,
the jth row equals #w#, w ∈ Σ|A|c−2, and, for some ν, 0 ≤ ν ≤ |A|c − 2,
w ∈ Σ|A|c−ν−2, the µth row equals # �ν w#.

For instance, M− from Example 15, viewed as an RFA, will accept L− again.
Now, we return to Example 16, here giving an RFA M ′ that accepts the language
LL. Consider M ′ = (Q,Σ, R, s, F,#,�), where Q = {s, s1, s2, s3}, Σ = {x, •},
R = {sx → s3, s3• → s1, s1• → s1, s1# → s2, s1# → s, s2x → s2}, and
F = {s2}; see Fig. 4.5.

Theorem 23. Let Σ be some alphabet. Then, LΣ(BFA) = LΣ(RFA).

Proof. We first show how a RFA can simulate a BFA. The basic idea summarized
as follows. On the first row, which is scanned from left to right by both automata,
the RFA simulates the BFA one to one. Assume that the BFA, while moving on to
the second row, changes into a state q, scans the row from right to left and enters
a state p when the beginning of this row is reached.

s

start

s3

s1 s2

x •

•

#

x

#

Figure 4.5: RFA M ′ that accepts the language LL in Example 16

84

In order to simulate this behaviour, the RFA stores its current state q in the finite
state control and guesses the state p. It then scans the second row from left to right
(starting in state p) by applying the transitions of the BFA in the reverse direction.
When the end of the row is reached, the computation only proceeds if the RFA is
in state q. This procedure is then repeated.

More formally, the states of the RFA like BFA states or triples thereof. These
triples simulate the processing of even rows and are like (`, q, r), where q is the
actual state, r is the state that the RFA should reach after finishing the current even
row at the right border and ` is the state in which the RFA starts simulating the
current row (left border). The formal definition is as follows.

Let M = (Q,Σ, R, s, F,#,�) be some BFA. Then, the equivalent RFA M ′ =
(Q′,Σ, R′, s, F ′,#,�) is defined by Q′ = Q ∪ (Q×Q×Q),

R′ = {pa→ q | pa→ q ∈ R, a ∈ Σ}
∪ {(`, q, r)a→ (`, p, r) | pa→ q ∈ R, `, r ∈ Q, a ∈ Σ}
∪ {p#→ (`, `, q) | p#→ q ∈ R, ` ∈ Q}
∪ {(`, r, r)#→ q | `#→ q ∈ R, r ∈ Q} ,

and F ′ = F ∪ {(`, q, q) | ` ∈ F, q ∈ Q}. The idea is that the rules from R
are now (only) deriving the odd-numbered rows, while for the simulation of the
even-numbered rows, we borrow the mirror-image construction well-known from
classical formal language theory. Hence, the first component ` of some triple
(`, q, r) ∈ Q × Q × Q memorizes the state associated to the first symbol of that
row, q is the current state and r is associated to the last symbol in the row. Reading
switches between both simulation modes. The formal (induction) proof of the
correctness of the construction is carved via the basic observations that can be
summarized as follows:

1. Both the given BFA and the simulating RFA work in exactly the same way
on rows with an odd number.

2. If #a1 . . . an# describes an even-numbered row and the BFA just starts
processing it, say, in state r, then it will read it from right to left. After
having processed the whole row, the BFA will be in state `. The claim
is that then there the simulating RFA will read this row from left to right,
starting in state (`, `, r) and terminating in state (`, r, r) after reading the
whole row.

3. Conversely, if the simulating RFA starts processing an even-numbered row
in state (`, `, r), finishing it off in state (`, r, r), then the original BFA can
read this row from right to left, starting in state r and terminating in state `.

85

4. If the whole input array has an odd number of rows, the BFA will read the
last row from left to right and the same will be done by the simulating RFA,
so that such an array will be accepted by the BFA if and only it will be
accepted by the simulating RFA.

5. If the whole input array has an even number of rows, the BFA will read
the last row from right to left, starting in state r and terminating in state `;
clearly, the array is accepted if and only if ` is a final state. According to the
previous discussions, this is the case if and only if the RFA processes this
last starting in state (`, `, r) and finishing in state (`, r, r), with the additional
property that the array is accepted if and only if ` is final, so if and only if
the original BFA had accepted this array.

The converse direction, simulating RFAs with BFAs, can be seen in a similar way.
We give the formal construction as follows:

Let M = (Q,Σ, R, s, F,#,�) be some RFA. Then, the equivalent BFA M ′ =
(Q′,Σ, R′, s, F ′,#,�) is defined by Q′ = Q ∪ (Q×Q×Q),

R′ = {pa→ q | pa→ q ∈ R, a ∈ Σ}
∪ {(r, q, `)a→ (r, p, `) | pa→ q ∈ R, `, r ∈ Q, a ∈ Σ}
∪ {p#→ (r, r, q) | p#→ q ∈ R, r ∈ Q}
∪ {(r, `, `)#→ q | r#→ q ∈ R, ` ∈ Q} ,

and F ′ = F ∪ {(r, q, q) | r ∈ F, q ∈ Q}. The idea is similar to the idea of
simulating BFAs with RFAs as we had above. We again implement a variant
of the mirror-image construction from classical formal language theory on even-
numbered rows. Such a row is started in the state (r, r, q), replacing state q in
the given RFA, which means that r is guessed as the target state that the RFA
would reach after scanning this row, i. e., after reading the right end of the row.
Correspondingly, the transition (r, q, `)a → (r, p, `) not only simulates the RFA
transition pa→ q in a reverse fashion, but also keeps track of the target state r of
the simulated RFA (to be reached at the right end of the row), as well as of the state
` with which the RFA started its processing of the row (at the left end). Applying
(r, `, `)# → q not only simulates the RFA transition r# → q, but also checks if
the state ` was reached that was memorized as the state that the simulated RFA
entered upon starting to read the left end of the row. The formal proof can be done
by induction.

86

Correctness of the construction of Theorem 23
In this section observations 2 and 3 are proved in Lemma 31 where we will prove
that the BFA and the simulating RFA are same for the current even-numbered row,
if this current even-numbered row is assumed to be the last row then observation
5 is also true if ` ∈ F and (`, r, r) ∈ F ′.

For observations 1 and 4 we need more lemmas which shall mainly connect the #
rules which makes the switching process between both of the modes, we do not
give explicitly here as these lemmas can also proved similar to Lemma 31.

A configuration of the BFAs for the odd rows can be described as follows and
it is the same for the RFAs since both are moving from left to right for the odd
numbered rows:

CBFA
ODD =

� � � . . . �
� � � . . . �

#
...

...
... # , q

� � a . . . b

#
...

...
... #

 = CRFA
ODD

Even-numbered rows are interesting to see, as the BFAs and RFAs differ in its
configuration in this case and those can be described as follows:

CBFA
EVEN =

� � � . . . �
� � � . . . �

#
...

...
... # , q

b . . . a � �

#
...

...
... #

CRFA
EVEN =

� � � . . . �
� � � . . . �

#
...

...
... # , (`, q, r)

� � a′ . . . b′

#
...

...
... #

Having these pictures in mind, now we can consider only the current row that the
BFAs (RFAs) are processing and prove the correctness of the construction via the
induction on the length of that current row which is the number of the columns n
(we make n as fixed).

87

As mentioned earlier, let us do this for an even-numbered row. Before applying
induction let us capture now all the three scenarios (beginning, intermediate and
final) in the case of the even-numbered row as follows:

Beginning: BFA: (#a1 . . . an#, r) and RFA: (#a1 . . . an#, (`, `, r)).

Intermediate: BFA: (#a1 . . . am� . . .�#, p) `pam→q (#a1 . . . am−1� . . .�#, q)
and RFA: (#� . . .� amam+1 . . . an#, (`, q, r)) `(`,q,r)am→(`,p,r) (#� . . .� am+1

. . . an#, (`, p, r)).

Final: BFA: (# � . . .� #, `) and RFA: (# � . . .� #, (`, r, r)).

So, the general argument can be stated as in the following Lemma 31.

Lemma 31. Let M and M ′ be the BFA and RFA as given in the first part of
construction of Theorem 23. Let d be mapping as defined in the Definition 52.
Then ∀`, r ∈ Q : d(`) = d(r) = ` ∀n ∈ N ∀w ∈ Σn (#w#, (`, `, r)) `nM ′
(# �n #, {(`, r, r) ∈ Q′ | (#w#, r) `nM (# �n #, `)}).

Proof. We prove this lemma by the induction on nwhich is the length of the string
that is processed in the current even-numbered row and its same as the number of
the computations that the BFA (or RFA) would need to process this string.

Induction Basis: When n = 1 then w = a1 and ∀`, r ∈ Q : d(`) = d(r) = `
(#a1#, (`, `, r)) `1

M ′ (# �1 #, {(`, r, r) ∈ Q′ | (#a1#, r) `1
M (# �1 #, `)}).

Induction Hypothesis: ∀k ∈ N 1 ≤ k < n ∀`, r ∈ Q : d(`) = d(r) = `
(#w#, (`, `, r)) `kM ′ (# �k #, {(`, r, r) ∈ Q′ | (#w#, r) `kM (# �k #, `)}).

Induction Step: Let Q′w = {(`, r, r) ∈ Q′ | (#w#, r) `nM (# �n #, `)}. Q′w is
nothing but the set of states that are reachable by w using the rules from the RFA
M ′, so we can note that Q′w ⊆ Q′. Now our Claim is that ∀`, r ∈ Q : d(`) =
d(r) = ` ∀n ∈ N ∀w ∈ Σn (#w#, (`, `, r)) `nM ′ (# �n #, Q′w).

88

So, ∀`, r ∈ Q : d(`) = d(r) = ` ∀n ∈ N ∀w ∈ Σn

(#w#, (`, `, r)) `nM ′ (# �n #, Q′w)

⇐⇒
(#w#, (`, `, r))(`n−1

M ′ ◦ `
1
M ′)

(# �n #, {(`, r, r) ∈ Q′ | (#w#, r)(`n−1
M ◦ `1

M)(# �n #, `)})
⇐⇒

∃Q′′ ⊆ Q′w∃an ∈ Σ

[(#w#, (`, `, r)) `n−1
M ′ (# �n−1 an#, Q′′) `1

M ′ (# �n #, Q′w)]

⇐⇒
∃Q′′ ⊆ Q′w∃a1, an ∈ Σ[∃x ∈ Σn−2 : w = a1 · x · an∃p ∈ Q : d(p) = `

(#a1 · x · an#, (`, `, r)) `n−1
M ′

(# �n−1 an#, {(`, p, r) ∈ Q′ | (#a1 · x · an#, r) `n−1
M (#a1 �n−1 #, p)}) `1

M ′

(# �n #, {(`, r, r) ∈ Q′ | (#a1 �n−1 #, p) `1
M (# �n #, `)})]

By this lemma we are done with a part (observations 2 and 3) of one direction
of the correctness proof. As mentioned earlier, the parts of converse direction
(simulating RFAs with BFAs) is similar to the one provided here.

Illustration 3. Let us now illustrate Theorem 23 with our Example 16. For the
BFA M = (Q,Σ, R, s, F,#,�) given in Example 16, let us now formally define
the equivalent RFA M ′ = (Q′,Σ, R′, s, F ′,#,�), where Q′ = {s, s1, . . . , s5} ∪
({s, s1, . . . , s5} × {s, s1, . . . , s5} × {s, s1, . . . , s5}), that is Q′ has 222 states.

In order to avoid re-computation we do lazy evaluation: so before writing the
rules of R′ we use the construction of the above theorem to create the 4 sets of
rules (2 sets without # and 2 sets with #) of R′ that we need using the 10 rules (6
rules without # and 4 rules with #) in R of our BFA M in Example 16.

The 1st set of rules in R′ has the following 6 sets of rules (out of which only 4
of them will be useful for us), since for an input from Σ other than # we have 6
rules in our BFA. And each of these 6 sets has only a single rule in it, resulting in
6 singleton sets, so let us write those 6 single rules in one set as follows:

{sx→ s5, s5• → s1, s1• → s1, s4x→ s4, s2• → s2, s2x→ s3}

Please note that above for the first rule (sx→ s5) we need not think about the
case • ∈ Σ, since there is no such rule in our BFA from the starting state s for the

89

input • ∈ Σ. Like this we can ignore some of the rules in this RFA construction as
we are simulating it only using our BFA rules. The last two rules in the above set
are not useful to us to simulate our RFA here.

The 3rd set of rules in R′ has 24 rules (6 rules for each rule with # in our BFA
(4 rules)) out of which we only need the following 12 rules (2 sets (each of these
set will have 6 rules) of rules) using the following 2 rules s1# → s2, s1# → s4

from our BFA. As mentioned earlier we ignore the other two rules s3# → s,
s3#→ s4 here.

Using the rule s1#→ s2 ∈ R we obtain the following set of rules:

{s1#→ (`, `, s2) | s1#→ s2 ∈ R, ` ∈ Q}
= {s1#→ (s, s, s2), s1#→ (s1, s1, s2),

s1#→ (s2, s2, s2), s1#→ (s3, s3, s2),

s1#→ (s4, s4, s2), s1#→ (s5, s5, s2)} .

Using the rule s1#→ s4 ∈ R we obtain the following set of rules:

{s1#→ (`, `, s4) | s1#→ s4 ∈ R, ` ∈ Q}
= {s1#→ (s, s, s4), s1#→ (s1, s1, s4),

s1#→ (s2, s2, s4), s1#→ (s3, s3, s4),

s1#→ (s4, s4, s4), s1#→ (s5, s5, s4)} .

Before applying the 2nd set of rules in R′, we select 6 states out of the 12
states that we have in our hand after processing the 3rd set of Rules in such a
way that these states can read x, (using our BFA rules, especially the one that
takes us to a state after processing a x, as we could see from our BFA s5, s3, s4

are the states that are reached after processing a x) so now the 6 states would be
(s5, s5, s2), (s3, s3, s2), (s4, s4, s2), (s5, s5, s4), (s3, s3, s4), (s4, s4, s4).

The 2nd set of rules inR′ has 216 rules (36 rules for each rule (6 rules) without
in our BFA) out of which we only need 6 rules since after applying the 3rd set
of rules, we already ignored the states that we do not require for our construction
and selected only 6 states to proceed further. Let us apply a rule from the 2nd set
of rules in R′ to these 6 states as per our construction (6 rules, each rule for each
state) as follows:

(s5, s5, s2)x → (s5, s, s2), (s3, s3, s2)x → (s3, s2, s2), (s4, s4, s2)x → (s4, s4, s2),
(s5, s5, s4)x→ (s5, s, s4), (s3, s3, s4)x→ (s3, s2, s4), (s4, s4, s4)x→ (s4, s4, s4).

90

Now we have in our hand again 6 states, we could see as per our construction
we already have one final state among these 6 states, which is (s4, s4, s4). The
RFA that we have constructed will reach this final state for the pictures that have
only 2 rows in it.

Before applying again the 2nd set of rules in R′, we select 2 states out of the 6
states that we have in our hand in such a way that these states can read a •, (using
our BFA rules (especially that takes us to a state after processing a •, as we could
see from our BFA s2 is the only state that is reached after processing a • and not
the other two states s, s4) so now the 2 states would be (s3, s2, s2), (s3, s2, s4).

Now we apply again the 2nd set of rules in R′, that is from the 216 rules, we
are forced to apply only the 2 rules since we have ignored the states that we do not
require for our construction and selected only 2 states to proceed further. Let us
apply a rule from the 2nd set of rules in R′ to these 2 states as per our construction
(2 rules, each rule for each state) as follows:

(s3, s2, s2)• → (s3, s2, s2), (s3, s2, s4)• → (s3, s2, s4).

Now we have in our hand again 2 states (actually the same 2 states), and we
could see that as per our construction none of them are final states.

The 4th set of rule in R′ has 24 rules (6 rules for each rule with # in our BFA
(4 rules)) out of which we only need the following 12 rules (2 sets (each of these
set will have 6 rules) of rules) using the following 2 rules (s3# → s, s3# → s4)
from our BFA. As mentioned earlier we ignore the other two rules s1# → s2,
s1#→ s4 here.

Using the rule s3#→ s ∈ R we obtain the following set of rules:

{(s3, r, r)#→ s | s3#→ s ∈ R, r ∈ Q}
= {(s3, s, s)#→ s, (s3, s1, s1)#→ s,

(s3, s2, s2)#→ s, (s3, s3, s3)#→ s,

(s3, s4, s4)#→ s, (s3, s5, s5)#→ s} .

Using the rule s3#→ s4 ∈ R we obtain the following set of rules:

{(s3, r, r)#→ s4 | s3#→ s4 ∈ R, r ∈ Q}
= {(s3, s, s)#→ s4, (s3, s1, s1)#→ s4,

(s3, s2, s2)#→ s4, (s3, s3, s3)#→ s4,

(s3, s4, s4)#→ s4, (s3, s5, s5)#→ s4} .

91

Before applying the 1st set of rules in R′, we select 2 states out of the 12 states
that we have now in our hand after processing the 4th set of rules, in such a way
that these states can read a x, (using our BFA rules (especially the one that takes
us to a state after processing a x, as we could see from our BFA s, s4 are the states
that are reached after processing a x) so now the 2 states would be s, s4.

The 1st set of rules in R′ has 6 rules (for each rule without # in our BFA) out
of which we only need 2 rules since after applying the 4th set of rules, we already
ignored the states that we do not require for our construction and forced to have
only 2 states to proceed further. Let us apply a rule from the 1st set of rules in
R′ to these 2 states as per our construction (2 rules, each rule for each state) as
follows: sx→ s5, s4x→ s4.

Now we have in our hand again 2 states, and we could see that as per our
construction we already have one final state among these 2 states, which is s4.
The RFA that we have constructed will reach this final state for the pictures that
have only odd number of rows in it.

The other state s5 is not a final state, so it will be processed further as we
mentioned in the beginning, for the 1st set of rules in R′ and will be continued
further until it leads to either one of the 2 final states (s4, s4, s4) and s4. We can
observe that this step is the one that leads to accept pictures with even number of
rows other than picture with only 2 number of rows. R′ contains 270 rules. These
are made explicit now:

R′ = {sx→ s5, s5• → s1, s1• → s1, s4x→ s4, s2• → s2, s2x→ s3}
∪ {(`, s5, r)x→ (`, s, r) | `, r ∈ Q} ∪ {(`, s1, r)• → (`, s1, r) | `, r ∈ Q}
∪ {(`, s4, r)x→ (`, s4, r) | `, r ∈ Q} ∪ {(`, s2, r)• → (`, s2, r) | `, r ∈ Q}
∪ {(`, s3, r)x→ (`, s2, r) | `, r ∈ Q} ∪ {(`, s1, r)• → (`, s5, r) | `, r ∈ Q}
∪ {s1#→ (`, `, s2) | ` ∈ Q} ∪ {s1#→ (`, `, s4) | ` ∈ Q}
∪ {s3#→ (`, `, s) | ` ∈ Q} ∪ {s3#→ (`, `, s4) | ` ∈ Q}
∪ {(s1, r, r)#→ s2 | r ∈ Q} ∪ {(s1, r, r)#→ s4 | r ∈ Q}
∪ {(s3, r, r)#→ s | r ∈ Q} ∪ {(s3, r, r)#→ s4 | r ∈ Q} , and

alsoF ′ = {s4, (s4, s, s), (s4, s1, s1), (s4, s2, s2), (s4, s3, s3), (s4, s4, s4), (s4, s5, s5)}.

But the accepting computation of M ′ need not go through all of the 270 rules
in R′, Instead of drawing such a big automaton, let us draw this RFA M ′ ignoring
the states and rules that we do not require to accept the language in Example 16,
so, omitting useless states and transitions involving them (see Fig. 4.6).

92

This automaton is equivalent to the one given in Fig. 4.5 that has only 4 states
which is via the classical state elimination method [64]. Notice again that both the
BFA we started with and the RFA that we have obtained are incomplete automata.

Illustration 4. Let us now illustrate the reverse inclusion of Theorem 23 with the
RFA in Fig 4.5. For the RFA M ′ = (Q,Σ, R, s, F,#,�), with Q = {s, s1, s2, s3},
Σ = {x, •}, R = {sx → s3, s3• → s1, s1• → s1, s1# → s2, s1# → s, s2x →
s2}, and F = {s2} that accepts the language in Example 16.

Let us now formally define the equivalent BFA M = (Q′,Σ, R′, s′, F ′,#,�),
where Q′ = Q ∪ (Q × Q × Q). i. e., Q′ = {s, s1, s2, s3} ∪ ({s, s1, s2, s3} ×
{s, s1, s2, s3} × {s, s1, s2, s3}), i. e., Q′ has 68 states, R′ contains 84 rules that
are made explicit now:

R′ = {sx→ s3, s3• → s1, s1• → s1, s2x→ s2}
∪ {(r, s3, `)x→ (r, s, `) | `, r ∈ Q} ∪ {(r, s1, `)• → (r, s3, `) | `, r ∈ Q}
∪ {(r, s2, `)x→ (r, s2, `) | `, r ∈ Q} ∪ {(r, s1, `)• → (r, s1, `) | `, r ∈ Q}
∪ {s1#→ (r, r, s) | r ∈ Q} ∪ {s1#→ (r, r, s2) | r ∈ Q}
∪ {(s1, `, `)#→ s | ` ∈ Q} ∪ {(s1, `, `)#→ s2 | ` ∈ Q} ,

and F ′ = {s2, (s2, s, s), (s2, s1, s1), (s2, s2, s2), (s2, s3, s3)}.

Let us draw this BFA M by having only useful states (see Fig. 4.7). This
automaton M is equivalent to the one in Fig. 4.2 which is again via the classical
state elimination method [64]. Here again BFA and RFA are incomplete automata.

Remark 15. We could note that the d-BFA Md in Fig. 4.4 that was constructed
using DANF Lemma is equivalent to the RFA in Fig. 4.6 that was constructed
using Theorem 23.

Remark 16. We can also introduce deterministic RFAs, or RDFAs for short.
Again with the subset construction, they are easily seen to describe the same
family of array languages. Notice that this does not automatically follow from
combining Theorem 22 and Theorem 23, as the construction in the latter result
will introduce nondeterminism in general.

Finally, notice that for pictures over a unary alphabet, the power of RFAs and
BFAs trivially coincide; reconsider the automaton given in Example 17 working
as a RFA.

93

s1s

start

s5

(s3, s3, s2)

(s3, s2, s2)

s4

(s4, s4, s4)

x •

#

•

•

x

x

#

#

x #

Figure 4.6: RFA M ′ constructed by Theorem 23 with only useful states

s

start

s5

s1 (s1, s1, s)

(s1, s, s)

s2

(s2, s2, s2)

x •

#

• • x

x

#

#

x #

Figure 4.7: BFA M constructed by Theorem 23 with only useful states

94

4.3 Regular Matrix Languages
We now recall the notion of two-dimensional right-linear grammars (2RLG) as
given in [41]. The original definition of a 2RLG (under the name of a regular
matrix grammar (RMG)) and the properties of the corresponding class of picture
languages, traditionally called RML, standing for regular matrix languages, can
be found in [71, 105, 106, 111].

Definition 53. A two-dimensional right-linear grammar (RMG for short) is a 7-
tuple G = (Vh, Vv,ΣI ,Σ, S, R

h, Rv), where:

• Vh is a finite set of horizontal non-terminals;

• Vv is a finite set of vertical non-terminals, with Vh ∩ Vv = ∅;

• ΣI ⊆ Vv is a finite set of intermediates;

• Σ is a finite set of terminals;

• S ∈ Vh is a starting symbol;

• Rh is a finite set of horizontal rules of the form V → AV ′ or V → A, where
V , V ′ ∈ Vh and A ∈ ΣI;

• Rv is a finite set of vertical rules of the form W → aW ′ or W → a, where
W,W ′ ∈ Vv and a ∈ Σ.

In fundamental contrast to the processing of arrays by BFA or by RFA, there
are two phases of derivation of a RMG. In the first phase, a horizontal string
of intermediate symbols is generated by means of the string grammar Gh =
(Vh,ΣI , S, R

h), denoted by H(G).

Note that the length of the intermediate strings generated by H(G) determines
the number of columns of the picture that is going to be generated. In the second
phase, treating each intermediate as a start symbol, the vertical generation of the
actual picture is done in parallel, by applying a finite set of right-linear rules Rv.
In order to produce a rectangular-shaped picture, the rules of Rv must be applied
in parallel; this also means that the rules of the form Vi → ai are all applied
in every column simultaneously to finish the picture with generating its last row.
These rules make sure that the columns can grow only in downward direction. For
simplicity, we write a single derivation step of H(G) as well a parallel derivation
step (in the second phase) as⇒. Following our conventions, we will denote the
corresponding language family by L(RMG).

95

We note that our model is closely connected with RMG, as we will show
more precisely in the following. The formalization of RMG that we chose is
closer to our model than the original one due to Siromoney and her co-authors.
Alternatively, we could have referred to finite-state matrix automata as defined in
[105]; their work pretty much resembles that of RFAs, but in a sense, they are just
the natural automaton model corresponding to the RMG defined above, so that the
technicalities that point to the differences between finite-state matrix automata and
RFAs are very similar to what we are going to expose below. Let us clarify the
working of RMG with two examples.

Example 18. Let us now formally define a RMG G that generates a ‘turned
variant’ of the language given in Example 16 as follows. Consider the RMG
G = (Vh, Vv,ΣI ,Σ, S, R

h, Rv), where:

• Vh = {S,A};

• Vv = {S1, B, S2, C};

• ΣI = {S1, S2} ⊆ Vv;

• Σ = {•, x, y};

• S ∈ Vh is the starting symbol;

• Rh = {S → S1A, A→ S1A, A→ S2};

• Rv = {S1 → •B, B → •B, B → y, S2 → xC, C → xC,C → y}.
We could see that the language generated by this RMG G, L(G), is the set L′L of
tokens L of all sizes and of all proportions formally represented by

L′L =
{

((•)n x)m−1

yn y : n ≥ 1,m ≥ 2
}
.

A sample token of L generated by G is
• • • • • • • • • x
• • • • • • • • • x
• • • • • • • • • x
y y y y y y y y y y

Let us now show how this sample is generated by G,
S ⇒ S1A ⇒8 S1S1S1S1S1S1S1S1S1A ⇒ S1S1S1S1S1S1S1S1S1S2 describes
the work of H(G). From this intermediate string, we can generate the sample in
four parallel steps.

S1S1S1S1S1S1S1S1S1S2 ⇒ • • • • • • • • • x
B B B B B B B B B C

⇒2
• • • • • • • • • x
• • • • • • • • • x
• • • • • • • • • x
B B B B B B B B B C

⇒
• • • • • • • • • x
• • • • • • • • • x
• • • • • • • • • x
y y y y y y y y y y

96

Example 19. Consider the RMG G = ({S, S1, S2}, {B,W}, {B,W}, {0, 1}, S,
{S → BS1, S1 → BS1, S1 → WS2, S2 → BS2, S2 → B}, {W → 1W,W →
1, B → 0B,B → 0}). As the reader can verify, G describes the language L| with
one vertical line, which is a ‘turned variant’ of the language L− from Example 15,
also see Example 2.

Example 20. Let us reconsider the language of Example 17. This language
can be generated by the RMG G = ({S0, S1}, {A,B}, {A,B}, {a}, S0, {S0 →
AS1, S1 → AS0, S1 → A}, {A→ aB,B → aB,B → a}).

As we will later see, it is no coincidence that this unary BFA language is also a
unary RML. However, in general, we find the following relationship.

Theorem 24. Let Σ be some alphabet. Then, LΣ(BFA) = T (LΣ(RMG)).

Proof. We provide two simulations to show the claim. Let G = (Vh, Vv,ΣI ,Σ, S,
Rh, Rv) be a RMG. We are going to construct an RFA M = (Q,Σ, R, s, F,#,�)
accepting T (L(G)) which is sufficient for the claim LΣ(BFA) ⊇ T (LΣ(RMG))
thanks to Theorem 23 and Remark 2. Let Q = (Vh ∪ {f}) × (Vv ∪ {f}) ∪ {s},
where f /∈ Vh ∪ Vv, and F = {(f, f)}. Let R contain the following rules:

• sa→ (S ′, A′), if S → AS ′ ∈ Rh and A→ aA′ ∈ Rv,

• sa→ (f, A′), if S → A ∈ Rh and A→ aA′ ∈ Rv,

• (X,A)a→ (X,A′), if X ∈ Vh ∪ {f} and A→ aA′ ∈ Rv,

• (X,A)a→ (X, f), if A→ a ∈ Rv, X ∈ Vh,

• (X, f)#→ (X ′, A), if X → AX ′ ∈ Rh,

• (X, f)#→ (f, A), if X → A ∈ Rh,

• (f, A)a→ (f, f), if A→ a ∈ Rv.

The idea of the construction is that the generation of columns ofG is performed in
the second component of the state pairs, whereas the first component corresponds
to the generation of the axiom (i. e., the first row of the pictures generated by G).
The crucial difference is that the first symbol of the axiom (which in the case of
RFA is the first column instead of the first row) is generated and then the first row
is generated before the second letter of the axiom is generated in the next row.
Hence, the two phases of the picture construction of G are fitting together.

The converse is seen as follows. Let M = (Q,Σ, R, s, F,#,�) be some RFA.
We construct a RMG G = (Vh, Vv,ΣI ,Σ, S, R

h, Rv) (generating the transposed
pictures of L(M)) with Vh = Q ∪ {S}, Vv = ΣI = Q×Q, and rules

97

• S → (s, r)r ∈ Rh for all r ∈ Q,

• q → (q, r)r ∈ Rh for all q, r ∈ Q,

• q → (q, f) ∈ Rh for all f ∈ F , q ∈ Q,

• (p, r)→ a(q, r) ∈ Rv for all pa→ q ∈ R, r ∈ Q,

• (p, r)→ a ∈ Rv for all pa→ q ∈ R and q#→ r ∈ R,

• (p, f)→ a ∈ Rv for all pa→ f ∈ R, f ∈ F .

This concludes the formal construction whose correctness proof can be given by
induction. We give the correctness proof idea for the first direction in Theorem 24.
Assume that the RMG has generated a single column only then this would be the
single row accepted by the RFA, in general if RMG has generated n columns then
simulating this RMG can be done by a RFA as per our construction, this general
argument can be achieved by induction on n through looking at the sentential
form and configuration of considered RMG and RFA respectively at any time of
the induction. The correctness of the converse direction can also be viewed in a
similar manner.

Illustration 5. Let us now illustrate Theorem 24 with the help of Example 18. We
first apply the transpose to this language L′L, which gives T (L′L), i. e.,

T (L′L) =
{

((•)n y)m−1

xn y : n ≥ 1,m ≥ 2
}
.

As per the construction given by us in Theorem 24, let us formally define
a RFA M = (Q,Σ, R, s, F,#,�) with L(M) = T (L′L). Namely, set Q =
{s, (S, S1), (S,B), (S, S2), (S,C), (S, f), (A, S1), (A,B), (A, S2), (A,C), (A, f),
(f, S1), (f,B), (f, S2), (f, C), (f, f)}, i. e., Q has 16 states, F = {(f, f)} and R
has 22 rules which are made explicit now:

• s• → (A,B),

• (S, S1)• → (S,B), (A, S1)• → (A,B), (f, S1)• → (f,B),
(S,B)• → (S,B), (A,B)• → (A,B), (f,B)• → (f,B),
(S, S2)x→ (S,C), (A, S2)x→ (A,C), (f, S2)x→ (f, C),
(S,C)x→ (S,C), (A,C)x→ (A,C), (f, C)x→ (f, C),

• (S,B)y→ (S, f), (A,B)y→ (A, f),
(S,C)y→ (S, f), (A,C)y→ (A, f),

• (S, f)#→ (A, S1), (A, f)#→ (A, S1),

98

• (A, f)#→ (f, S2),

• (f,B)y→ (f, f), (f, C)y→ (f, f).

The accepting computation of M , need not go through all of the 22 rules,
hence by omitting the non-reachable states we obtain RFA M in Fig. 4.8, here
we can also note that all the reachable states are useful states and none of the
reachable states are useless.

Illustration 6. Let us now illustrate the reverse direction of Theorem 24 with our
Example 16 via the RFA in Fig. 4.5. Let M = (Q,Σ, R, s, F,#,�) be the RFA
in Fig. 4.5, so that L(M) = LL. As per the construction given in Theorem 24, we
construct the RMG G = (Vh, Vv,ΣI ,Σ, S, R

h, Rv) with

• Vh = {s, s1, s2, s3} ∪ {S},

• Vv = ΣI = {s, s1, s2, s3} × {s, s1, s2, s3}, i. e.,
ΣI = {(s, s), (s, s1), (s, s2), (s, s3), (s1, s), (s1, s1), (s1, s2), (s1, s3),
(s2, s), (s2, s1), (s2, s2), (s2, s3), (s3, s), (s3, s1), (s3, s2), (s3, s3)},

• Σ = {x, •};

• S ∈ Vh is a starting symbol; and

• Rh = {S → (s, s)s, S → (s, s1)s1, S → (s, s2)s2, S → (s, s3)s3,
s→ (s, s)s, s→ (s, s1)s1, s→ (s, s2)s2, s→ (s, s3)s3,
s1 → (s1, s)s, s1 → (s1, s1)s1, s1 → (s1, s2)s2, s1 → (s1, s3)s3,
s2 → (s2, s)s, s2 → (s2, s1)s1, s2 → (s2, s2)s2, s2 → (s2, s3)s3,
s3 → (s3, s)s, s3 → (s3, s1)s1, s3 → (s3, s2)s2, s3 → (s3, s3)s3,
s→ (s, s2), s1 → (s1, s2), s2 → (s2, s2), s3 → (s3, s2)};

• Rv = {(s, s)→ x(s3, s), (s, s1)→ x(s3, s1), (s, s2)→ x(s3, s2),
(s, s3)→ x(s3, s3), (s3, s)→ •(s1, s), (s3, s1)→ •(s1, s1),
(s3, s2)→ •(s1, s2), (s3, s3)→ •(s1, s3), (s1, s)→ •(s1, s),
(s1, s1)→ •(s1, s1), (s1, s2)→ •(s1, s2), (s1, s3)→ •(s1, s3),
(s2, s)→ x(s2, s), (s2, s1)→ x(s2, s1), (s2, s2)→ x(s2, s2),
(s3, s3)→ x(s3, s3), (s1, s)→ •, (s1, s2)→ •, (s3, s)→ •,
(s3, s2)→ •, (s2, s2)→ x}.

L(G) is the set L′′L of tokens L

of all sizes and of all proportions, formally
represented by

L′′L =
{

xn x
((•)n x)m−1

: n ≥ 1,m ≥ 2
}
.

99

s

start

(A,B) (A, f)

(A, S1)

(f, S2)(f, C)(f, f)

•

•

•

x x

y

#

#

xy

Figure 4.8: RFA M constructed by Theorem 24 with all reachable states

A sample token of

L

generated by G is

x x x

• • x

• • x

• • x

• • x

This sample is generated by G as follows. First, H(G) acts as displayed
below; the subsequent parallel derivation steps of G are shown in Fig. 4.9.

S ⇒ (s, s)s
⇒ (s, s)(s, s2)s2

⇒ (s, s)(s, s2)(s2, s2)

(s,s)(s,s2)(s2,s2) ⇒
x x x

(s1,s) (s1,s2) (s2,s2)

⇒3

x x x
• • x
• • x
• • x

(s1,s) (s1,s2) (s2,s2)

⇒

x x x
• • x
• • x
• • x
• • x

Figure 4.9: A sample parallel derivation of the constructed RMG.

100

4.4 Regular Array Grammars
Notice that according to our definition, arrays can only have a rectangular shape.
These are also known as non-isometric arrays in the literature, to distinguish them
from isometric arrays that are not restricted to rectangular shapes, which can be
modeled as mappings assigning letters from Σ or blank symbol # to discretized
positions in the plane. Here, by shape we refer to those positions that are assigned
letters (not the blank symbol). Isometric array languages are mostly described by
some sort of isometric array grammars [98].

As we only encounter a special form of these grammars, namely, regular array
grammars, we need not define any more details here. Finally, we will actually
somehow abuse these devices to process arrays which have a rectangular shape,
as they can be easily interpreted as isometric arrays.

Isometric regular array grammars (IRAG) [17, 114] have been introduced
as the lowest level of the Chomsky hierarchy of grammars that describe two-
dimensional languages. An isometric array consists of (finitely) many occurrences
of symbols from Σ placed in the grid points (pixels) of Z2 (the discretized plane);
the points of the plane which are not marked with elements of Σ are supposed to
be marked with the blank symbol # /∈ Σ. Notice that the introduction of a blank
symbol allows the description of pictures that are not of rectangular shape. These
pictures are usually formalized (more generally) as mappings Z2 → Σ ∪ {#}
with the understanding that symbols from Σ are assigned to at most finitely many
positions (grid points). The collection of all such mappings (in other words, of all
pictures), is denoted by Σ++ in this chapter, with the implicit understanding that
/∈ Σ is reserved as a background symbol.

Sometimes, isometric arrays are considered identical if they can be transferred
into each other by translation. The according equivalence classes are denoted by
putting brackets around the arrays, array languages or families of such languages.

Now, we are going to formally relate the isometric arrays with non-isometric
arrays. To this end, we identify some m × n matrix (aij) with entries from Σ,
i. e., some element from Σ+

+, with the isometric array A with A(i, j) = aij for
1 ≤ i ≤ m and 1 ≤ j ≤ n and A(i, j) = # for all other cases. In this sense,
we can think of Σ++ as being the set of all isometric rectangular arrays whose left
upper non-blank entry is at coordinate (1, 1).

Interestingly enough, also some sort of reverse embedding is possible. If A ∈
Σ++ is an isometric array, then there is some smallest m × n rectangle such that

101

outside of this rectangle, only background symbols are attached to grid points
via A. This (unique) rectangular-shaped array can be viewed as an element of
(Σ ∪ {#})+

+. In other words, we have an embedding emb1 : Σ+
+ → Σ++ and

another embedding emb2 : Σ++ → (Σ ∪ {#})+
+ such that:

• If A ∈ Σ+
+, then A = emb2(emb1(A)).

• If A ∈ Σ++ has a rectangular shape (concerning grid points labeled with
symbols from Σ), if uppermost leftmost grid point of this rectangular shaped
array has the coordinate (1, 1), then A = emb1(emb2(A)).1 Conversely, if
A ∈ Σ++ does not satisfy the above conditions, then A 6= emb1(emb2(A)).

For simplicity, we will identify Σ+
+ with {A ∈ Σ++ | emb1(A) ∈ Σ+

+}.

We will now formally introduce the class of isometric grammars (and families
of array languages) for this chapter.

Definition 54. An isometric regular array grammar G, or IRAG for short, is a
quintuple G = (N,Σ, P, S,#), where N is the non-terminal alphabet, Σ is the
terminal alphabet, P is the set of rules, S ∈ N is the start symbol, and # is the
blank symbol. Moreover, every rule from P is of the form

#A → Ba , A# → aB ,
B
→

A a
,

A a
→

B
, or A → a ,

where A,B ∈ N and a ∈ Σ. The derivation of a grammar proceeds as follows:

• At the beginning, the whole discretized plane is filled with blank symbols.

• Then, the start symbol S ∈ N is placed on some grid position, replacing #.
To be more precise, this means that an initial configuration is described by
some mapping ι : Z2 → {S,#} such that |ι−(S)| = 1 (here ι− denotes the
inverse mapping of ι).

• Intermediately, we find that all non-blank symbols in the plane are terminal
symbols but one, say, A ∈ N . Formally, this means that an intermediate
configuration can be described by some mapping χ : Z2 → N ∪ Σ ∪ {#}
satisfying |χ−(N)| = 1; in the case discussed in the following, we assume
that |χ−(A)| = 1.

1Note that we slightly abuse notation here, since, technically, some occurrences of # in
emb1(emb2(A)) are background symbols, while others are actual terminals, already present in
emb2(A); however, we interpret all these occurrences as background symbols.

102

– If the position left to A is blank, then we can apply a rule of the first
listed type; this application replaces the blank symbol to the left of
A by B and then A by a. This type of rule is therefore called a left
movement.
Given χ, the successor configuration χ′ hence satisfies:

χ′(x, y) =

χ(x, y) if χ(x, y) 6= A

a if χ(x, y) = A

B if χ(x, y) = # ∧ χ(x+ 1, y) = A

The successor configurations χ′ for the other types of rules informally
described below can be formalized in a similar way.

– If the position right to A is blank, we can similarly apply the second
type of rule. Applying such a rule implements a right movement.

– If the position above A is blank, we can likewise apply the third type
of rule. This means an upward movement.

– If the position below A is blank, we can alternatively apply the fourth
type of rule, which yields a downward movement.

• In any case, we can (if possible) apply the last type of rule; in that case A
is replaced by a, so that none of the previously described rule applications
are possible henceforth. That is, a terminal configuration can be seen as a
mapping τ : Z2 → Σ ∪ {#} satisfying |τ−(Σ)| <∞.

Let L(G) collect all isometric terminal arrays that can be derived by a finite
sequence of rule applications in the described way. More formally, we write χ⇒
χ′ if χ′ is the successor configuration of χ. Then L(G) = {τ : Z2 → (Σ ∪ {#}) |
ι⇒+ τ} .

As the start position is arbitrary, any isometric terminal array W : Z2 → Σ ∪
{#} ∈ L(G) carries along an infinite number of other arrays W ′ ∈ L(G) that can
be obtained by translating W . Of course, this does not affect [L(G)].

Definition 55. LΣ(IRAG) = {L(G) : G is an IRAG with terminal alphabet Σ} .
LRect(G) = {L(G) ∩ Σ+

+ : G is an IRAG with terminal alphabet Σ} .
LRect,Σ(IRAG) = {LRect(G) : G is an IRAG with terminal alphabet Σ} .

Let us now define four special types of IRAG that are defined by forbidding certain
directions as we have introduced in [34]. Correspondingly, we obtain four types
of families of picture languages.

103

Definition 56. Let G be some IRAG. If G contains no upwards (or downwards,
or left, or right) movements, we face an U -IRAG (or D-IRAG, L-IRAG, R-IRAG,
respectively). Let X ∈ {U,D,L,R}. Then,

LΣ(X-IRAG) = {L(G) : G is a X-IRAG with terminal alphabet Σ}.
LRect,Σ(X-IRAG) = {LRect(G) : G is an X-IRAG with terminal alphabet Σ}.

Example 21. Let us reconsider the set LL of tokens L. A U -IRAG G = (N,Σ,
P, S,#) such that LRect(G) = LL is defined as follows:

• N = {S,A,B,E, F},

• Σ = {x, •}, and

• P = {S# → xA,A# → •A, #B → B•, E# → xE, #F → Fx,
A •
→

B
,
A •
→

F
,
B x
→

S
,
B x
→

E
, E → x, F → x

}
.

By way of contrast, the following grammar uses all four types of movements.

Example 22. Consider the array language L\ the set of all square pictures of
diagonal lines from the upper left corner to the lower right corner where the
elements in the diagonal are 1 and the other elements are 0. An IRAG G =
(N,Σ, P, S,#) such that LRect(G) = L\ is defined as follows: N = {S,A,B,
C,H,E, F}, Σ = {0, 1}, P = P1∪P2∪P3 where P1 contains the following rules,
sequentially numbered for the ease of presentation:

1 :
A
→

S 1
, 2 :

A
→

A 0
, 3 : #A → B 0 , 4 : #B → B 0 , 5 :

B 1
→

F
, 6 :

C 0
→

C
,

7 : C# → 0 H , 8 : H# → 0 H , 9 :
E
→

H 0
, a :

A
→

E 1
, b :

F 0
→

C
, c : S → 1 ,

P2 = {d : F → 0}, and P3 = {f : E → 1}.

Note: The rules from P1 ∪P2 are used to generate square arrays of even rows and
columns and the rules from P1∪P3 are used to generate square arrays of odd rows
and columns. The elements in L are the set of all pictures with equal number of
rows and columns i. e., m = n. Hereafter we only say n and we have two cases
for n. For the sake of presentation, we consider only n = 5 and n = 6 to illustrate
the work of the grammar in these two cases, see Fig. 4.10. The arrows indicate the
movements of the grammar when generating the sample, and the indices of these
arrows refer to the rule labels.

However, also IRAGs with three directions only can be pretty tricky, in a sense,
more than, say, BFAs. Consider the following example.

104

n = 5 :

1 ←4 0 ←4 0 ←4 0 ←3 0
↓5 ↑2
0 1 ←4 0 ←3 0 0
↓b ↓5 ↑2 ↑2
0 0 1f 0 0

↓6 ↓b ↑9 ↑a ↑2
0 0 →7 0 1 0
↓6 ↑9 ↑1
0 →7 0 →8 0 →8 0 1

n = 6 :

1 ←4 0 ←4 0 ←4 0 ←4 0 ←3 0
↓5 ↑2
0 1 ←4 0 ←4 0 ←3 0 0
↓b ↓5 ↑2 ↑2
0 0 1 ←3 0 0 0
↓6 ↓b ↓5 ↑a ↑2 ↑2
0 0 0d 1 0 0
↓6 ↓6 ↑9 ↑a ↑2
0 0 →7 0 →8 0 1 0
↓6 ↑9 ↑1
0 →7 0 →8 0 →8 0 →8 0 1

Figure 4.10: How an IRAG can generate L\.

Example 23. G = ({S,A,B,C}, {a, b, c}, P, S,#) with the following, relatively
few, rules generates the following somehow complex language.

LRect(G) = (({b}+ � {a}) � ({c}� {c}+) � ({a}� {a}+))

∪ ({a}� {a}+)

∪ (({a}� {a}+) � ({b}� {b}+) � ({c}� {c}+) � ({a}� {a}+))

∪ ({c}� {a})
∪ (({c}� {a}) � ({b}� {c}� {a})+)

Here, P contains:

• Start rules: S#→ aA, #S → Ba, S
→ c

A ;

• Terminating rule: A→ a;

• Row-moving rules: A#→ aA, #A→ Aa, #B → Bb, C#→ cC;

• Column-moving rules: A
→ a

B , B
→ b

C , C
→ c

A .

We now introduce three mappings on the set P of an IRAG G = (N,Σ, P, S,#).
To this end, it is convenient to think of P being partitioned into Pr (collecting all
right movements), Pd (downward movements), P` (left movements), Pu (upward
movements) and Pt (terminating rules).

• Rv acts as the identity on Pd ∪ Pu ∪ Pt. For p = #A → Ba ∈ P`, we
give Rv(p) = A# → aB . Hence, Rv(P`) = (Rv(P))r. Likewise, for p′ =
A# → aB ∈ Pr, we set Rv(p

′) = #A → Ba . Hence, Rv(Pr) = (Rv(P))`.

• Rh acts as the identity on Pr ∪ P` ∪ Pt. For p =
B
→

A a
∈ Pu, we set

Rh(p) =
A a
→

B
. Hence, Rh(Pu) = (Rh(P))d. Similarly, downward

movements are mapped onto upward movements.

105

• T is the identity on Pt. For p = #A → Ba ∈ P`, we introduce T (p) =
B
→

A a
. This way, T (P`) = (T (P))u. Similarly, upward movements of

P are mapped onto left movements of T (P), right movements of P are
mapped onto downwards movements of T (P) and vice versa.

We further transfer these operations Rv, Rh and T to grammars and write,
for instance, T (G) for the grammar (N,Σ, T (P), S,#) obtained from the IRAG
G = (N,Σ, P, S,#). By following the derivation of a grammar step-by-step, it is
straightforward to conclude the following lemma.

Lemma 32. Let G = (N,Σ, P, S,#) be an IRAG. Then,

• Rv(LRect(G)) = LRect(Rv(G)),

• Rh(LRect(G)) = LRect(Rh(G)), and

• T (LRect(G)) = LRect(T (G)).

These simple observations allow us to conclude some nice properties of families
of languages of rectangular-shaped arrays that can be described by IRAGs.

Corollary 10. LRect,Σ(IRAG) is closed under the reflection operations Rv, Rh

and T .

Corollary 11. The reflection operations translate language classes as follows.

• Rv(LRect,Σ(R−IRAG)) = LRect,Σ(L−IRAG),

Rv(LRect,Σ(L−IRAG)) = LRect,Σ(R−IRAG),

LRect,Σ(U−IRAG) is closed under Rv,

LRect,Σ(D−IRAG) is closed under Rv,

• Rh(LRect,Σ(U−IRAG)) = LRect,Σ(D−IRAG),

Rh(LRect,Σ(D−IRAG)) = LRect,Σ(U−IRAG),

LRect,Σ(L−IRAG) is closed under Rh,

LRect,Σ(R−IRAG) is closed under Rh,

• T (LRect,Σ(L−IRAG)) = LRect,Σ(U−IRAG),

T (LRect,Σ(U−IRAG)) = LRect,Σ(L−IRAG),

T (LRect,Σ(D−IRAG)) = LRect,Σ(R−IRAG),

T (LRect,Σ(R−IRAG)) = LRect,Σ(D−IRAG).

Theorem 25. LΣ(BFA) = LRect,Σ(U−IRAG).

106

Proof. We first show that LΣ(BFA) ⊆ LRect,Σ(U−IRAG) . Let M = (Q,Σ, R,
(s, r), F,#,�) be some BFA. W.l.o.g., according to Lemma 30, we can assume
that M is a BFA in DANF; so, the second component of the state alphabet gives
the direction of the movements, and we start with a right movement. We remove
useless states from M so that M has only useful states.

Now define an U−IRAG, G = (N,Σ, P, S,#), with L(M) = LRect(G), in three
steps. As first step we extract LEFT, RIGHT movements and terminal rules. As
second step we extract the DOWNWARD movement rules of the target U−IRAG
from the given BFA M by combining the non-# rule with the # rule of the BFA
M . Finally, we collect all rules in steps 1 and 2 and eliminate the useless non-
terminals and rules, and we define the U−IRAG G such that L(M) = LRect(G).
Let us write the three steps formally as follows:

First Step: For the right and left movements and for the terminating rules we
include the following production rules into P :

• #(p, `)→ (q, `)a ∈ P for all (p, `)a→ (q, `) ∈ R, a ∈ Σ,

• (p, r)#→ a(q, r) ∈ P for all (p, r)a→ (q, r) ∈ R, a ∈ Σ,

• (p, d)→ a ∈ P for all (p, d)a→ (f, d) ∈ R, a ∈ Σ, (f, d) ∈ F .

Second Step: For direction-changing steps, we add DOWNWARD movement
rules. As can be seen, they combine two rules of the BFA, as the grammar never
‘reads’ the border marker #.

•
(p,r) a

→
(q′,`)

∈ P for all {(p, r)a→ (q, r), (q, r)#→ (q′, `)} ⊆ R;

• (p,`) a
→

(q′,r)
∈ P for all {(p, `)a→ (q, `), (q, `)#→ (q′, r)} ⊆ R.

Third Step: Define required U−IRAG G = (N,Σ, P, S,#), N is constructed
from Q by possibly eliminating useless non-terminals, S = (s, r), and P collects
all rules described in the first and second step; again P might skip useless rules.

A computation of the BFA is imitated by a derivation of the target grammar
U−IRAG step by step. At any stage of the BFA, the current state of the BFA is
matched with the current non-terminal of the simulating U−IRAG as in Fig. 4.11.
The merge of configurations of BFA and U−IRAG in this figure yields the input
array, where� in BFA and # in U−IRAG are transparent during merging. Hence
LΣ(BFA) ⊆ LRect,Σ(U−IRAG) .

107

Input Array
x • • •
x • • •
x • • •
x x x x

BFA

� � � �
(p,`)

x � � �
x • • •
x x x x

U−IRAG
x • • •

(p,`) • • •
#
#

Figure 4.11: How array processing of automata and grammars complement.

LRect,Σ(U−IRAG) contains languages that can be generated by IRAGs which
have rules with the directions R, L, D. Considering the non-terminals of such
grammar as states, a BFA can simulate the movements, since the arrays in this
language family are of rectangular shape. There is one technicality that needs
attention, though: The derivation of a U -IRAG could start either in the right or
in the left direction, and there is even the possibility to create single columns by
moving down straight away.

For a more formal argument, consider the U−IRAG G = (N,Σ, P, S,#). Let
us first memorize the first direction that was taken by constructing Gd = (N ×
{L,R,D} ∪ {S},Σ, Pd, S,#) by defining:

• S#→ x(A,R) ∈ Pd if S#→ xA ∈ P ,

• #S → (A,L)x ∈ Pd if #S → Ax ∈ P ,

• S
→

x
(A,D) ∈ Pd if S

→ x
A ∈ P .

From now on, this start direction is preserved by setting (A,X)# → x(B,X) ∈
Pd for X ∈ {L,R,D} if A#→ xB ∈ P , and similarly for the other (left, down)
directions and for the terminating rules. Of course, this might introduce some
rules that are not reachable from S that we can easily eliminate now.

We can classify rules of Gd collected in Pd into those having the start direction
(consistently) attached to the non-terminals that occur in it, leading to the rule
sets Pd,X for X ∈ {L,R,D}. Based on this we can form grammars Gd,X =
(N × {X} ∪ {S},Σ, Pd,X , S,#). Clearly by construction, L(G) = L(Gd) =
L(Gd,L) ∪ L(Gd,R) ∪ L(Gd,D). Also LRect(G) = LRect(Gd) = LRect(Gd,L) ∪
LRect(Gd,R) ∪ LRect(Gd,D).

In the following arguments, we can assume that the IRAG that we consider can
start only in one direction: left, right, or down. We can easily modify the non-
terminal alphabets, so they only contain the start symbol as a common symbol,
and as the non-terminal symbols will correspond to the states of the BFAs that
we construct (plus one final state f), it is easy to see that we can form one BFA

108

out of the three BFAs that are obtained from these three IRAGs, starting out into
different directions.

Case 1: Downward Start. Consider Gd,D as in the previous construction. This is
the simplest case, as we know that, in order to describe a rectangular array, Gd,D

can only perform downwards movements or terminating rules. We can simulate
a rule S

→
x

(A,D) ∈ Pd,D by the two rules Sx → A′ and A′# → A. Similarly,
(A,D)

→ x
(B,D) ∈ Pd,D is imitated by the two rules Ax → B′ and B′# → B. A

terminating rule (A,D) → a corresponds to a rule Aa → f , where f is the only
final state of the BFA. Let us call the BFA simulating the downward start MD.

Let us have the following preparatory step, before we start the remaining two
cases for the Right and Left Starts:

Interludium: Right and Left Starts. As a preparatory step, let us first modify Gd,R

and Gd,L as follows, leading to G′d,R and G′d,L. The (new) non-terminals (apart
from the start symbol) look like (A, 0, R) and (A, 1, R) for non-terminals (A,R)
of Gd,R and similarly with Gd,L. Start rules have (A, 0, X) on their right-hand
side instead of (A,X) in Gd,X , X ∈ {L,R}. Similarly, terminating rules have
(A, 0, X) or (A, 1, X) on their left-hand side instead of (A,X) in Gd,X .

The downward-moving rules are adapted as follows. (A,X)
→ x

(B,X) ∈ Pd,X is
replaced by (A,0,X)

→ x
(B,1,X) and (A,1,X)

→ x
(B,0,X) . The switch between 0 and

1 in the second component is essential, as here we store if the grammar is working
on an odd- or even-numbered row. Moreover, G′d,R contains the following left-
and right-moving rules. Notice that now the information if the grammar works on
an odd- or even-numbered row is simply maintained.

• (A, 0, R)#→ a(B, 0, R) ∈ P ′d,R if (A,R)#→ a(B,R) ∈ Pd,

• #(A, 1, R)→ (B, 1, R)a ∈ P ′d,R if #(A,R)→ (B,R)a ∈ Pd.

Similarly, G′d,L contains the following left- and right-moving rules.

• (A, 1, L)#→ a(B, 1, L) ∈ P ′d,L if (A,L)#→ a(B,L) ∈ Pd,

• #(A, 0, L)→ (B, 0, L)a ∈ P ′d,L if #(A,L)→ (B,L)a ∈ Pd.

Again, we can simplify the obtained grammars by deleting unreachable rules.

Case 2: Right start. Now, the processing corresponds exactly to that of BFAs, as
we are interested only in rectangular-shaped arrays. This means, in particular, that
a sequence of right moves must be followed by one downward move, and then a
sequence of left moves follows, etc. The only possibly critical thing is observed at

109

the borders: Instead of a (direct) downward movement, the simulating BFA again
has to first sense the current symbol and then the background symbol; this can be
achieved as in Case 1. We therefore omit details here. However, notice that the
resulting BFA is already direction-aware. The states of the form (A, 0, R) move
right, and the states of the form (A, 1, R) move left. Hence, we can obtain MR

from G′d,R.

Case 3: Left start. Here, a sequence of left moves should be followed by one
downward move, and then a sequence of right moves and so on. This can be
simulated with the idea of the mirror-image construction known for regular string
languages, but this idea has to be combined with the construction from previous
case.

More formally, consider G′d,L = (N ′d,L,Σ, P
′
d,L, S,#) obtained from Interludium

Step. We first construct a grammar Gd,L that generates Ld,L = LRect(G
′
d,L)

by only starting with right-moves. Gd,L = (Nd,L,Σ, Pd,L, S
′
L,#) is defined by

Nd,L = ((N ∪ {Φ}) × N ′d,L × N) ∪ {S ′L}, where S ′L /∈ N is a new start symbol
and Φ /∈ N is a new symbol indicating (guessing) the end of a derivation in the
current row.

Pd,L =
{
S ′L#→ x(Y,X, 0, L, S)

∣∣ (X,0,L)
→ x

(Y,1,L) ∈ P ′d,L
}

∪ {S ′L#→ x(Φ, X, 0, L, S) | (X, 0, L)→ x ∈ P ′d,L}
∪ {(Y,X, 0, L, S)#→ x(Y, Z, 0, L, S) |

#(Z, 0, L)→ (X, 0, L)x ∈ P ′d,L, Y = Φ ∨ (Y, 1, L) ∈ N ′d,L}
∪ {(Y,X, 0, L, A)#→ x(Y, Z, 0, L, A) |

#(Z, 0, L)→ (X, 0, L)x ∈ P ′d,L, (A, 0, L) ∈ N ′d,L, Y = Φ ∨ (Y, 1, L) ∈ N ′d,L}
∪ {#(Y,X, 1, L, A)→ (Y, Z, 1, L, A)x |

(Z, 1, L)#→ x(X, 1, L) ∈ P ′d,L, (A, 1, L) ∈ N ′d,L, Y = Φ ∨ (Y, 0, L) ∈ N ′d,L}

∪
{

(Y,X,0,L,S)
→ x

(B,A,1,L,Y)

∣∣ #S → (X, 0, L)x ∈ P ′d,L, (A, 1, L) ∈ N ′d,L,

(Y, 1, L) ∈ N ′d,L, (B = Φ ∨ (B, 1, L) ∈ N ′d,L)
}

∪
{

(Y,X,0,L,Z)
→ x

(B,A,1,L,Y)

∣∣ #(Z, 0, L)→ (X, 0, L)x ∈ P ′d,L, (A, 1, L),∈ N ′d,L,

(Y, 1, L) ∈ N ′d,L, (B = Φ ∨ (B, 1, L) ∈ N ′d,L)
}

∪
{

(Y,X,1,L,Z)
→ x

(B,A,0,L,Y)

∣∣ (Z, 1, L)#→ x(X, 1, L) ∈ P ′d,L, (A, 0, L) ∈ N ′d,L,

(Y, 0, L) ∈ N ′d,L, (B = Φ ∨ (B, 0, L) ∈ N ′d,L)}
∪ {(Φ, X, 0, L, S)→ x | #S → (X, 0, L)x ∈ P ′d,L}
∪ {(Φ, X, 0, L, Z)→ x | #(Z, 0, L)→ (X, 0, L)x ∈ P ′d,L}
∪ {(Φ, X, 1, L, Z)→ x | (Z, 1, L)#→ x(X, 1, L) ∈ P ′d,L} .

Notice that Gd,L always starts into the right direction. More precisely, the rule
S ′L# → x(Y,X, 0, L, S) maintains the following pieces of information: (1) As

110

it produces the symbol x in the leftmost upper corner of the image, it did in fact
simulate one part of the rule (X,0,L)

→ x
(Y,1,L) ∈ P ′d,L. (2) As the second part of

simulation would be to move down, continue with non-terminal Y , coming from
non-terminal X; these information are stored in first two components of the new
non-terminal (Y,X, 0, L, S). (3) As in the mentioned mirror-image construction,
we have to also store as the target non-terminal the start symbol of the simulated
grammar, which is the purpose of the last component of the new non-terminal.

The mirror-image construction is fully reflected in rules that are of the form
(Y,X, 0, L, S)# → x(Y, Z, 0, L, S), where #(Z, 0, L) → (X, 0, L)x ∈ P ′d,L;
originally, the grammar was generating from left to right, switching from Z to
X and producing x, but in the simulating grammar, the generation is from right
to left, switching from X to Z in the second component of the non-terminal.
The simulation of the generation of the first row is completed with (Y,X,0,L,S)

→
x

(B,A,1,L,Y) for #S → (X, 0, L)x ∈ P ′d,L.

Apart from simulating the left move of the simulated grammar by a right move as
described with the previous case of rules, the simulating grammar also switches
into processing the next row, guessing new symbols A and B to be verified later,
and setting the previously remembered symbol Y as the new target symbol to be
reached at the end of reading the second row.

Recall that this symbol Y was part of the very first rule simulation of simulating
grammar, and this ensures that the correct simulation of this first guessed rule (of
P ′d,L) will be checked after reaching the left border again (in the second row). The
third component of the new non-terminal serves to indicate the parity of the row
that is worked in, as was the case for the simulated grammar.

The simulation of left moves of the original grammar is similarly seen by right
moves of the simulating grammar. In the end, it is guessed that the simulation
terminates, by guessing Φ. This allows to end the simulation. For instance, if it
was (already) guessed that only a single-row picture is generated, the derivation
of the simulating grammar stops with applying a rule (Φ, X, 0, L, S) → x for
#S → (X, 0, L)x ∈ P ′d,L.

In the end, we can apply the construction of Case 2 in order to obtain the BFA ML

from Gd,L.

Final Construction. As the state alphabets of MD, MR, and ML can be thought of
having only the start state (after renaming) and the final state f in common, we can

111

build the BFA simulating the originally given IRAG by simply merging the rule
sets of the three automata MD, MR, and ML. Hence, we also have LΣ(BFA) ⊇
LRect,Σ(U−IRAG) .

As a consequence of Theorem 25 and Cor. 11 we obtain:

Corollary 12. For each alphabet Σ,

T (LΣ(BFA)) = LRect,Σ(L−IRAG) .

Illustration 7. Let us now illustrate Theorem 25 by reconsidering the d-BFA M
in Fig. 4.4. As per the construction in Theorem 25, let us now formally define an
U−IRAG G = (N,Σ, P, S,#) with L(M) = LRect(G) in three steps. We focus
on presenting the rules, giving reasons based on the transitions of M . As (s3, `)
is a useless non-terminal, we omit it and all rules that would produce it.

1. #(s2, `) → (s2, `)• and #(s4, `) → (s4, `)x are the left movements, due to
the transitions (s2, `)• → (s2, `) and (s4, `)x→ (s4, `).

2. (s, r)#→ x(s5, r), (s5, r)#→ •(s1, r) , (s1, r)#→ •(s1, r) and
(s4, r)# → x(s4, r) are all right movements, based on (s, r)x → (s5, r),
etc.

3. (s4, r) → x and (s4, `) → x are the two terminating rules, due to the two
final states of the given d-BFA.

4.
(s5,r) •

→
(s2,`)

,
(s5,r) •

→
(s4,`)

,
(s1,r) •

→
(s4,`)

,
(s1,r) •

→
(s2,`)

(s2,`) x
→

(s,r)
and

(s2,`) x
→

(s4,r)
are the downwards movements, due to combining pairs of

transitions like (s5, r)• → (s, r), (s, r)#→ (s2, `), etc.

Illustration 8. Let us reconsider G in Example 23 to illustrate reverse direction
of Theorem 25. Our aim is to find a BFA M with L(M) = LRect(G), following
the construction of the reverse direction of Theorem 25. Let us first construct Gd

as follows: Gd = (Nd, {a, b, c}, Pd, S,#) where Nd = {A,B,C} × {L,R,D} ∪

112

{S}, i. e., Nd has 10 non-terminals and Pd has the following 27 rules.

Pd =
{

#S → (B,L)a, S#→ a(A,R),
S c
→

(A,D)

}
∪ {(A,L)#→ a(A,L), (A,R)#→ a(A,R), (A,D)#→ a(A,D)}
∪ {#(A,L)→ (A,L)a,#(A,R)→ (A,R)a,#(A,D)→ (A,D)a}
∪ {#(B,L)→ (B,L)b,#(B,R)→ (B,R)b,#(B,D)→ (B,D)b}
∪ {(C,L)#→ c(C,L), (C,R)#→ c(C,R), (C,D)#→ c(C,D)}

∪
{

(A,L) a
→

(B,L)
,

(A,R) a
→

(B,R)
,

(A,D) a
→

(B,D)

}
∪
{

(B,L) b
→

(C,L)
,

(B,R) b
→

(C,R)
,

(B,D) b
→

(C,D)

}
∪
{

(C,L) c
→

(A,L)
,

(C,R) c
→

(A,R)
,

(C,D) c
→

(A,D)

}
∪ {(A,L)→ a, (A,R)→ a, (A,D)→ a} .

We also have Pd,L, Pd,R and Pd,D colored in blue, red and violet, respectively,
for the grammars Gd,L, Gd,R and Gd,D, respectively, that classify the initial rule
used by G as being a leftward, rightward, or downward movement, respectively.
Clearly by construction L(G) = L(Gd) = L(Gd,L)∪L(Gd,R)∪L(Gd,D) and also
LRect(G) = LRect(Gd) = LRect(Gd,L) ∪ LRect(Gd,R) ∪ LRect(Gd,D). Finally, we
form one BFA MLRD out of the three BFAs ML, MR and MD that are obtained
from the three U−IRAGs: Gd,L, Gd,R and Gd,D, starting in different directions.

Downward Start: Consider Gd,D. Recall Gd,D can only execute downward
movements or terminating rules to describe a rectangular array. We simulate the
rules from Pd,D as follows with transitions from MD, collected in RD:

• Sc→ A′ ∈ RD and A′#→ A ∈ RD since
S c
→

(A,D)
∈ Pd,D,

• Aa→ B′ ∈ RD and B′#→ B ∈ RD since
(A,D) a

→
(B,D)

∈ Pd,D,

• Bb→ C ′ ∈ RD and C ′#→ C ∈ RD since
(B,D) b

→
(C,D)

∈ Pd,D,

• Cc→ D′ ∈ RD and D′#→ A ∈ RD since
(C,D) c

→
(A,D)

∈ Pd,D,

• Aa→ f ∈ RD since (A,D)→ a ∈ Pd,D.

At this stage we have the BFAMD = (QD,Σ, RD, S, {f},#,�) as in Fig. 4.12.
Notice that

L(MD) = ({c}� {a}) ∪ (({c}� {a}) � ({b}� {c}� {a})+) .

113

S

start

A′

A

f

B′

D′

B

C

C ′
c #

a

a

#

b

#
c

#

Figure 4.12: BFA MD that accepts the language LRect(Gd,D) in Illustration 8

Interludium: Let us modify Gd,L, Gd,R to obtain G′d,L and G′d,R as follows:

The non-terminals (apart from start symbol) look like (A, 0, X) and (A, 1, X)
for (A,X) ∈ Nd,R ∪ Nd,L. More explicitly, G′d,L = (N ′d,L,Σ, P

′
d,L, S,#) where

N ′d,L = {A,B,C} × {0, 1} × {L} ∪ S, i. e., N ′d,L has 7 non-terminals and P ′d,L
has 13 rules, but when we follow the construction given in Theorem 25, we delete
unreachable rules and we obtain Reach−P ′d,L, that has only the reachable rules.
Both P ′d,L and Reach− P ′d,L are explicitly written as follows:

P ′d,L = {#S → (B, 0, L)a}
∪ {(A, 0, L)→ a, (A, 1, L)→ a}

∪
{

(A,0,L) a
→

(B,1,L)
,

(A,1,L) a
→

(B,0,L)

}
∪
{

(B,0,L) b
→

(C,1,L)
,

(B,1,L) b
→

(C,0,L)

}
∪
{

(C,0,L) c
→

(A,1,L)
,

(C,1,L) c
→

(A,0,L)

}
∪ {(A, 1, L)#→ a(A, 1, L), (C, 1, L)#→ c(C, 1, L)}
∪ {#(A, 0, L)→ (A, 0, L)a, #(B, 0, L)→ (B, 0, L)b} .

Reach− P ′d,L = {#S → (B, 0, L)a} ∪ {(A, 0, L)→ a}

∪
{

(B,0,L) b
→

(C,1,L)

}
∪
{

(C,1,L) c
→

(A,0,L)

}
∪ {(C, 1, L)#→ c(C, 1, L)}
∪ {#(A, 0, L)→ (A, 0, L)a, #(B, 0, L)→ (B, 0, L)b} .

Moreover, G′d,R = (N ′d,R,Σ, P
′
d,R, S,#), where N ′d,R = {A,B,C} × {0, 1} ×

{R} ∪ S, i. e., N ′d,R also has 7 non-terminals and P ′d,R has 13 rules but when we

114

follow the construction given in Theorem 25, we delete unreachable rules. Only
Reach− P ′d,R is made explicit as follows:

Reach− P ′d,R = {S#→ a(A, 0, R)} ∪ {(A, 0, R)→ a, (A, 1, R)→ a}

∪
{

(A,0,R) a
→

(B,1,R)

}
∪
{

(B,1,R) b
→

(C,0,R)

}
∪
{

(C,0,R) c
→

(A,1,R)

}
∪ {(A, 0, R)#→ a(A, 0, R), (C, 0, R)#→ c(C, 0, R)}
∪ {#(A, 1, R)→ (A, 1, R)a, #(B, 1, R)→ (B, 1, R)b} .

Right Start: From grammar G′d,R that we have constructed above, let us consider
only the reachable rules Reach-P ′d,R and let us simulate those reachable rules to
obtain the BFA MR as in Fig. 4.13. Here we can note that states that have 0 in
their triple move right and that the states that have 1 move left. It is easy to check
that L(MR) = ({a}� {a}+)∪ (({a}� {a}+)� ({b}� {b}+)� ({c}� {c}+)�
({a}� {a}+)) .

Left Start: From grammar G′d,L that we have constructed above, let us consider
only the reachable rules Reach- P ′d,L. We follow mirror-image construction given
in Theorem 25 and in order to obtain ML. We construct Gd,L that generates
LRect(Gd,L). Gd,L = (Nd,L,Σ, Pd,L, S

′
L,#) where Nd,L = (({A,B,C} ∪ {Φ})×

({A,B,C}×{0, 1}×{L}∪S)×{A,B,C})∪{S ′L}, where S ′L /∈ N and Φ /∈ N ,
i. e., Nd,L has 85 non-terminals and Pd,L has 245 rules, when we consider only
the reachable rules that are useful. We now delete unreachable and useless rules
and obtain P Reach

d,L .

P Reach
d,L = {S ′L#→ b(C,B, 0, L, S)}

∪
{

(C,B,0,L,S) a
→

(A,C,1,L,C)
,

(A,C,1,L,C) c
→

(φ,A,0,L,A)

}
∪ {#(A,C, 1, L, C)→ (A,C, 1, L, C)c}
∪ {(C,B, 0, L, S)#→ b(C,B, 0, L, S)}
∪ {(Φ, A, 0, L, A)#→ a(Φ, A, 0, L, A), (Φ, A, 0, L, A)→ a} .

Now, we can simulate rules from P Reach
d,L to obtain BFA ML as in Fig. 4.14.

Observe that
L(ML) = ({b}+ � {a}) � {c}+ � {a}+ .

As the number of columns must coincide in each row, it can be seen that

L(ML) = ({b}+ � {a}) � ({c}� {c}+) � ({a}� {a}+) .

115

We rename the start state of ML as in the final construction of Theorem 25.
Now finally, we combine all the three BFAs: ML, MR and MD those we have
obtained from each case, to form one BFA MLRD as in Fig. 4.15 which finalizes
the illustration.

4.5 Pumping and Interchange Lemmas
Pumping and interchange lemmas are the combinatorial core tool of many non-
inclusion results in Formal Languages and are hence of crucial importance to show
strictness of inclusions between language families.

4.5.1 Pumping Lemmas
Since in the pictures of an RML, the first row as well as the columns are generated
by regular grammars, there are two ways to apply the pumping lemma for regular
languages: we can pump the first row, which results in repetitions of a column-
factor of the picture, or we can pump each column individually, which will only
lead to a rectangular shaped picture if the pumping exponents are, in a sense, well-
chosen. Hence, we can conclude a horizontal and a vertical pumping lemma for
RML (see [72]) and, due to Theorem 24, these pumping lemmas carry over to
BFA languages in the following way.

Lemma 33. [30] Let M be a BFA. Then there exists an n ∈ N, such that, for
every W ∈ L(M) with |W |r ≥ n, W = X � Y � Z, |X � Y |r ≤ n, |Y |r ≥ 1
and, for every k ≥ 0, X � Yk � Z ∈ L(M).

S

start

(B, 0, R)′

(A, 0, R)

(B, 1, R)

(C, 1, R)′

(C, 0, R)

(A, 1, R)

(A, 0, R)′

f
a

a
a

b #
c

a

a

b c

a

Figure 4.13: BFA MR that accepts the language LRect(Gd,R) in Illustration 8

116

S ′L

start

(C,B, 0, L, S)

(A,C, 0, L, C)′

(A,C, 1, L, C)

(Φ, A, 1, L, A)′

(Φ, A, 0, L, A)

f

b
ab # c #c a a

Figure 4.14: BFA ML that accepts the language LRect(Gd,L) in Illustration 8

Sstart

(A, 0, R)

(B, 0, R)′

(B, 1, R)

(C, 1, R)′

(C, 0, R) (A, 0, R)′

(A, 1, R)

(C,B, 0, L, S)

(A,C, 0, L, C)′

(A,C, 1, L, C)

(Φ, A, 1, L, A)′

(Φ, A, 0, L, A)

A′

A

B′

D′

B C ′

C f
a

aa

#
b # #

c

a
a

b c

a

b

ab # c
#c a

a
c

#

a

a

b

#

c#

Figure 4.15: BFA MLRD that accepts the language LRect(Gd) in Illustration 8

117

Lemma 34. [31] Let M be a BFA. Then there exists an n ∈ N, such that, for
every

(x1 � y1 � z1) � (x2 � y2 � z2) � . . .� (xm � ym � zm) ∈ L(M) ,

with |yi|c ≥ n, 1 ≤ i ≤ m, there exist factorisations yi = ui � vi � wi with
|vi|c ≥ 1, 1 ≤ i ≤ m, such that, for every k1, k2, . . . , km ∈ N with |v1|(k1 − 1) =
|v2|(k2 − 1) = . . . = |vm|(km − 1),

(x1 � u1 � vk1
1 � w1 � z1) � . . .� (xm � um � vkmm � wm � zm) ∈ L(M) .

Lemma 33 is straightforward and to see that Lemma 34 holds, it is sufficient to
note that n is the maximum of all pumping lemma constants for the individual
rows (recall that each row is generated by an individual regular grammar), so in
each row any factor of length at least n contains a factor that can be pumped.
Obviously, not every way of pumping the rows results in a rectangular shaped
picture, so the pumping exponents must be restricted accordingly.

While the vertical pumping lemma has the nice property that a whole row-
factor can be pumped, in the horizontal pumping lemma we can only pump the
factors of each individual row, that are independent from each other. As a result,
this lemma does not guarantee the possibility of pumping by 0, i. e., removing a
factor, which, for classical regular languages, often constitutes a particularly ele-
gant way of showing the non-regularity of a language.

However, it was shown in [30] that also for BFA there exists a horizontal
pumping lemma that pumps whole column-factors (which then also translates into
a vertical pumping lemma for RML that pumps whole row-factors).

Lemma 35. [30] Let M be a BFA and let m ∈ N. Then there exists an n ∈ N,
such that, for every W ∈ L(M) with |W |r ≤ m and |W |c ≥ n, W = X�Y �Z,
|X � Y |c ≤ n, |Y |c ≥ 1 and, for every k ≥ 0, X � Y k � Z ∈ L(M).

4.5.2 Interchange Lemmas
We wish to point out that in a similar way, we can also prove a row and a column
interchange lemma (the only difference is that the number n has to be chosen large
enough to enforce repeating pairs of states):

Lemma 36. [30] LetM be a BFA. Then there exists an n ∈ N, such that, for every
W ∈ L(M) with |W |r ≥ n, there exists a factorisationW = V1�X�V2�Y �V3,
|X|c ≥ 1, |Y |c ≥ 1, such that V1 � Y � V2 �X � V3 ∈ L(M).

118

Lemma 37. [30] Let M be a BFA and let m ∈ N. Then there exists an n ∈ N,
such that, for every W ∈ L(M) with |W |r ≤ m and |W |c ≥ n, there exists
a factorisation W = V1 � X � V2 � Y � V3, |X|c ≥ 1, |Y |c ≥ 1, such that
V1 � Y � V2 �X � V3 ∈ L(M).

4.5.3 Application of Pumping and Interchange Lemmas
This section shows several applications of the previous lemmas that are useful for
the hierarchy results that we are going to provide below. Also, these lemmas help
to understand the limitations of this approach to areas like Character Recognition.

We start with a more illustrative example for Lemma 36. To this end, recall L\
from Example 22, the set of pictures of diagonal lines from the upper-left corner
to the lower-right corner (realised with some binary alphabet), i. e.,

L\ =

 , , , , , . . .

 .

If L can be recognised by a BFA, then, according to Lemma 36, there is a
picture W ∈ L with W = V1 � X � V2 � Y � V3, |X|c ≥ 1, |Y |c ≥ 1, and
W ′ = V1 � Y � V2 �X � V3 ∈ L(M). The following illustrates how this leads
to a contradiction:

W = =

V1

X
V2

Y
V3

, W ′ = .

V1

Y
V2

X
V3

We chose L to only contain square pictures with a diagonal connecting the
upper-left corner with the lower-right one for presentational reasons. In the same
way, it can be shown that the set of single continuous diagonal lines cannot be
recognised by BFA. Similarly, by Lemma 37, or Pumping Lemmas 33 and 35 in
order to show that L cannot be recognised by a BFA.

Next, we show that the set of pictures containing only vertical stripes cannot
be accepted by a BFA.

Lemma 38. The language L| with a vertical line is not accepted by any BFA.

Proof. As in Example 2, L| is a picture language over the alphabet {0, 1}, where
the vertical line consists of occurrences of the symbol 1. Let us assume that L| can

119

be recognised by a BFAM and letW = (0n�1�0n)�(0n�1�0n) ∈ L|, where
n is the number of Lemma 34. According to Lemma 34, there are factorisations
0n = u1 � v1 � w1 = u2 � v2 � w2 with |vi|c ≥ 1, i ∈ {1, 2}, such that
W ′ = (u1� (v1)|v2|+1�w1�1�0n)� (0n�1�u2� (v2)|v1|+1�w2) ∈ L| (note
that since |v1|((|v2|+1)−1) = |v2|((|v1|+1)−1), these pumping exponents lead
to a rectangular picture). However, since |u1 � (v1)|v2|+1 � w1|c > n, W ′ /∈ L|,
which is a contradiction.

Lemma 39. The language L− with a horizontal line cannot be generated by any
RMG.

Proof. By Example 4, T (L−) = L|. So, if L− would be generated by some
RMG, then T (L−) would be accepted by some BFA according to Theorem 24,
contradicting Lemma 38.

Recall the language L\ from Example 22.

Lemma 40. The language L\ of square pictures with ones on the main diagonal
and zeros elsewhere is not accepted by any BFA, nor generated by any RMG.

Proof. For BFAs, this has been shown at the beginning of this section. Since
T (L\) = L\, if L\ would be generated by some RMG, then T (L\) would be
accepted by some BFA according to Theorem 24, a contradiction.

Recall the language L1 from Example 2.

Lemma 41. The language (L1)+ of vertical stripes is not in L{0,1}(BFA).

Proof. We can easily adapt the proof of Lemma 39. Now, we have to discuss the
array W = (1�0n� 1�0n)� (1� 0n�1�0n) ∈ (L1)+, where n is the number
of Lemma 34. The remaining details are left to the reader.

4.6 Hierarchy Results, Further Automata Models
In this section, we review three types of language hierarchy results.

4.6.1 BFA Languages and Regular Matrix Languages
We start with a summary of results, including some application of combinatorial
lemmas of the preceding section.

Theorem 26. For each Σ with |Σ| > 1,LΣ(BFA)∪LΣ(RMG) (LRect,Σ(IRAG) .

120

LRect,Σ(IRAG)

LΣ(BFA) ∪ LΣ(RMG)

LΣ(BFA) = LRect,Σ(U−IRAG) LΣ(RMG) = LRect,Σ(L−IRAG)

LΣ(BFA) ∩ LΣ(RMG)

Figure 4.16: Relations between array language families if |Σ| > 1.

Proof. The inclusion is a consequence of Theorem 25 and Corollary 12. The
strictness of the inclusion can be seen by the array language L\ from Example 22
and Lemma 40.

Figure 4.16 shows inclusion diagram for non-unary array languages, displaying
strict inclusions and incomparabilities, also compare the Lemmas 38 and 39 and
Examples 15 and 19. For the ease of reference, now we explicitly mention the
consequence of this reasoning:

Lemma 42. Let |Σ| > 1. Neither LΣ(BFA) nor LΣ(RMG) is closed under T .

For the unary case, we know that all the language families coincide except for
LRect,{a}(IRAG), for which we only conjecture equality with L{a}(BFA) as we
did in [34]. We summarize these observations as follows.

Corollary 13. For non-unary alphabets Σ, the inclusion diagram displayed in
Figure 4.16 is correct.

A special case of picture languages are formed by those over a one-letter alphabet,
where (consequently) only shapes prevail. In this case, we find the following:

Proposition 27. [31] If |Σ| = 1, then LΣ(BFA) = LΣ(RMG).

Corollary 14. L{a}(BFA) ∩ L{a}(RMG) = L{a}(BFA) ∪ L{a}(RMG).

This contrasts with the conjecture formulated after Theorem 26, which is the only
open question regarding the relations between the language families mentioned in
Fig. 4.16 for the unary case. It might be also helpful to revisit the considerations
of Anselmo, Giammarresi and Madonia [3] on regular expressions for unary array
languages here.

121

4.6.2 3-Way Automata
Yet another interesting related class of non-isometric array languages is the one
accepted by 3-way two dimensional DFA [54, 65, 55, 93], denoted as 3-DFA and
3-NFA. We do not give the formal definition of the automaton here, as we are not
really making use of it. However, let us list some facts that are interesting when
comparing them with our model:

• These automata are quite similar to BFA in the way they scan a picture:

– They move their head only left, right and down across the picture, but
they cannot move upwards. However, they can scan symbols multiple
times, as they can freely move left and right.

– They can also only sense but not move onto the left and right border
symbols. However, in accordance with the previous item, they can
also move, e. g., left when sensing the rightmost border.

– In addition, they can also sense the lower border (which we did not
introduce for BFA).

• L(3−DFA) (L(3− NFA); see [52].

• As these automata are similar to BFA in the way they scan the pictures, if we
restrict 3-DFA and 3-NFA to move down only at the end, then these 3-way
models are equivalent to BFA. To see this, compare with the (now) classical
constructions showing the equivalence of one-way and two-way automata
models in the case of string languages [113].

Let us express the most important relation to our new model in the following
statement.

Theorem 28. L(BFA) (L(3− NFA).

Proof. It is clear from above description that 3-way DFAs can simulate BDFAs.
The languages L\ and L|, known from previous examples, can all be accepted by
appropriate 3-way DFAs. This shows strictness of the inclusions. We only sketch
how to accept the diagonal language L\, using left-right movements and down
movements, starting in the leftmost upper corner of the array.

1. Check if the first row contains only one occurrence of 1 (using left and right
movements), namely in its leftmost corner.

2. After the check, move back to the unique occurrence of 1 in this row.

122

3. Then, move one square to the right and one square down and check if this
square contains a 1. If so, check if in this row does not occur any other
occurrences of 1. If this check is passed, goto Step 2.

4. If moving right in Step 3 is no longer possible, check if moving down is not
possible, either. If both moves are not possible, then we encountered a 1 in
the rightmost lower corner of the array, and the automaton accepts the input
array.

Observe how we used reading one position multiple times.

From [53, Theorem 6.4] and also from [57], it follows that 3-NFA array languages
are not closed under quarter-turn. However, in order to compare RMGs with 3-
NFAs, we now present another rather simple example that also shows this fact.

Proposition 29. [31] L(RMG) \ L(3−DFA) 6= ∅.

Our previous considerations also show that L(RMG) is a proper subclass of 3-
DFAs with rotated inputs as considered in [57]. Let us only mention that 3-way
finite automata can be further generalized to 4-way automata, see [41], and these
automata can again be simulated by yet another model, so-called OTAs.

These characterize a more general form of regular array languages, the so-
called recognizable picture languages.

Let us finally remark that previously 3-way automata have also been studied
when fed with rotated inputs. As (classical) 3-way DFAs can easily simulate
BFAs, we get as a corollary to our previous considerations that RMGs can be
simulated by 3-way deterministic finite automata with rotated inputs, see [56, 57].

4.6.3 Isometric Array Languages
Conversely, in particular as BFAs process pictures rather in an isometric way, we
can use them also to describe non-rectangular arrays. Informally speaking, the
processing should start in the uppermost row that contains a symbol from Σ. In
this row, the processing starts on the leftmost symbol, moves to the right, until
it reaches background symbol #. Upon sensing it, automaton moves downwards
to the next row and continues processing it by moving to the left, until again a
background symbol # is sensed, when the next row is processed, etc.

For comparing these isometric array language classes, it is better to go for
looking at equivalence classes of languages under translation, usually denoted by
square brackets. So, we arrive at classes like [LisoΣ (BFA)] or [LΣ(IRAG)]. The

123

picture of the language families become more intricate here. An illustration can
be found in Figure 4.17.

Theorem 30. For isometric array language classes, inclusion, incomparability
relations stated in Figure 4.17 holds for any alphabet Σ with |Σ| > 1.

Proof. Basically, all arguments can be borrowed from the non-isometric case.
Notice, however, that the (unary!) picture

a
a a
a

cannot be described by any BFA-
type mechanism, while three directions of movements suffice.

As an interesting side note, let us mention that[
LΣ(U−IRAG)

]
=
[
LΣ(D−IRAG)

]
as well as [

LΣ(R−IRAG)
]

=
[
LΣ(L−IRAG)

]
can be seen by the ‘mirror-image construction’ performed above on the level

of RMG.

4.7 Closure Properties
We are now ready to study closure properties of the language families that we are
interested in. As often, it will be useful that we obtained several characterizations
of our language families already. As a by-product, we will obtain that many of the
previously introduced language families coincide.

4.7.1 Set Operations
L(RMG) are closed under Boolean operations. More precisely, it was shown in
[106] that L(RMG) (hence L(BFA), since T (L1 ∪ L2) = T (L1) ∪ T (L2)) are
closed under union, using a standard grammar construction. We supplement this
by the following two results.

Theorem 31. For each alphabet Σ, LΣ(BFA) is closed under complementation.

Proof. First, let us recall from Theorem 22 that BDFA and BFA describe the same
class of picture languages. Let M = (Q,Σ, R, s, F,#,�) be some BDFA. Then
we can construct a BDFAM by state complementation, i. e.,M = (Q,Σ, R, s,Q−
F,#,�). On some input picture A ∈ Σ+

+, M reaches the same state as M and,
furthermore, since both M and M are deterministic, there exists exactly one state
q ∈ Q that can be reached by M and M on input A. This directly implies that
A ∈ L(M) if and only if A /∈ L(M); thus, L(M) = L(M). Hence BFA picture
languages are closed under complementation.

124

[LΣ(IRAG)]

[
LΣ(U−IRAG)

]
∪
[
LΣ(R−IRAG)

]
[
LisoΣ (BFA) ∪Q(LisoΣ (BFA))

][
LΣ(U−IRAG)

]
[
LisoΣ (BFA)

]
[
LΣ(R−IRAG)

]
[
Q(LisoΣ (BFA))

][
LΣ(U−IRAG)

]
∩
[
LΣ(R−IRAG)

]
[
LisoΣ (BFA) ∩Q(LisoΣ (BFA))

]
Figure 4.17: Relations between isometric array language families

Notice that the previous theorem has become easy because we have a deterministic
model for BFAs, in contrast to what has been established for RML before. De
Morgan’s law now immediately yields:

Corollary 15. For each alphabet Σ, LΣ(BFA) is closed under intersection.

4.7.2 Reflection-like Operations
As often, the ease or complication of positive closure result depends on a chosen
model. As the three reflection-like operations Rv, Rh and T that we study in this
section have similarities to the mirror operation in classical Formal Languages, we
try to borrow the according construction, showing that the regular string languages
are closed under reversal (or mirror image).

Theorem 32. [105] LΣ(RMG) = Rv(LΣ(RMG)).

Corollary 16. LΣ(BFA) = Rh(LΣ(BFA)).

Proof. Observe that Rh = T ◦Rv ◦ T and apply Theorems 24 and 32.

Corollary 17. LΣ(RMG) = Rh(LΣ(RMG)).

Proof. By Cor. 11 and 12, the claim follows.

Corollary 18. LΣ(BFA) = Rv(LΣ(BFA)).

Proof. Observe that Rv = T ◦Rh ◦ T and apply Theorem 24 and Cor. 17.

125

Notice that we can also deduce the following results for IRAG, proving that the
four possibilities of defining 3-way IRAGs processing rectangular arrays only lead
to two classes of languages that we also characterized in different ways in this
chapter.

Corollary 19. Let Σ be some alphabet. Then,
LRect,Σ(R−IRAG) = LRect,Σ(L−IRAG) = LΣ(RMG);
LRect,Σ(D−IRAG) = LRect,Σ(U−IRAG) = LΣ(BFA).

In this section we would like to mention one can also think of giving a simple
proof when we first consider the closure under Rh and Rv of LΣ(RMG) which
is also carried to LΣ(BFA) via Theorem 24 and Lemma 1 This short proof for
Theorem 25 is given by us in [31].

4.7.3 Catenation and Catenation Closure
Row and column catenations and catenation closures correspond to catenation and
catenation closure operations in the string case; in fact, positive closure properties
can be shown in a similar way. In the following proofs, we use the RFA model.

Theorem 33. ∀L1, L2 ∈ LΣ(RFA), L1 � L2 ∈ LΣ(RFA).

Proof. Let M1 = (Q1,Σ, R1, s1, F1,#,�) and M2 = (Q2,Σ, R2, s2, F2,#,�)
be two RFAs. W.l.o.g., Q1 ∩ Q2 = ∅. We construct the RFA M� such that
L(M�) = L(M1) � L(M2). M� = (Q�,Σ, R�, s1, F2,#,�) is defined by
Q� = Q1 ∪ Q2, R� = R1 ∪ R2 ∪ {f# → s2 | pa → f ∈ R1, f ∈ F1}. The
idea of the construction is to first process RFA M1; from the final states of M1, by
reading a #, we connect to the initial state of the second RFA M2 which is then
processed, ending up in the final states of M2.

Theorem 34. ∀L ∈ LΣ(RFA), L+ ∈ LΣ(RFA).

Proof. Let M = (Q,Σ, R, s, F,#,�) be an RFA and let L = L(M). Now, we
construct the RFA M+ that accepts L+. M+ = (Q,Σ, R+, s, F,#,�) is defined
by R+ = R ∪ {f# → s | pa → f ∈ R, f ∈ F}, The idea of the construction
is to process the RFA M several times. So, once reaching a final state of M , M+

can restart by reading a #.

Theorem 35. Let Σ be an alphabet with at least two letters. Then, LΣ(BFA) is
not closed under column catenation, nor under column catenation plus.

Proof. Reconsider the languages L0 and L1 from Example 2, with {0, 1} ⊆ Σ. It
is straightforward to see that both are BFA languages. However, as L| = L0 �L1,
their column catenation is not a BFA language according to Lemma 38. Moreover,
(L1)+ /∈ LΣ(BFA) due to Lemma 41.

126

Operations Symbols References L(BFA)
Union ∪ [106] Yes
Complementation ¯ Theorem 31 Yes
Intersection ∩ Corollary 15 Yes
Row Concatenation � Theorem 33 Yes
Column Concatenation � Theorem 35 No
Row Concatenation Plus L+ Theorem 34 Yes
Column Concatenation Plus L+ Theorem 35 No
Transpose T Lemma 42 No
Reflection about the vertical Rv Corollary 18 Yes
Reflection about the horizontal Rh Corollary 16 Yes

Table 4.1: Closure properties of the family L(BFA)

Notice that for the counter-example used in the preceding proof, it is important
that our alphabet has at least two letters. Namely, as BFA and RML languages
coincide on unary alphabets according to Proposition 27, we could even state a
positive closure property for unary BFA languages under column catenation.

4.8 Possible Applications to Character Recognition
Character recognition has always been testbed application for picture processing
methods. We refer to [26, 27, 1] and the literature quoted therein. In this regard,
we are now going to discuss the recognition of some classes of characters, also
(sometimes) showing the limitations of our approach, making use of the pumping
lemmas that we have shown above (see Section 4.5).

For example, consider the set LLFix of all L tokens of all sizes but with fixed
proportion, i. e., the ratio between the two arms of L being 1. First three members
of LLFix are as follows:

x •
x x

,
x • •
x • •
x x x

,
x • • •
x • • •
x • • •
x x x x

.

We claim that LLFix is not accepted by any BFA. Suppose there exists a BFA
to accept LLFix . Then by Lemma 33 there exists an n ∈ N, such that, for every
W ∈ LLFix with |W |r ≥ n, W = X � Y � Z, |X � Y |r ≤ n, |Y |r ≥ 1 and,
for every k ≥ 0, X � Yk � Z ∈ LLFix . But, unfortunately, for many values of k
we get L tokens with unequal arms which are not members of LLFix which gives a
contradiction to our assumption.

127

On the other hand, as pointed out by Example 16, if we do not require the
ratio between the two arms to be fixed, then the corresponding set of pictures can
be recognised by a BFA. Similarly, the characters A (if given in the form), E,
F, H, I, P (if given in the form), or U (if given in the form) can be recognised
by BFA, if we do not require fixed proportions. We will make this explicit in two
examples below. In particular, this means that , , , , or are valid characters, as
well. Note that the character I plays a special role: this set of characters can only
be recognised by a BFA if it is given in form {·k1

n � xn � ·k2
n | k1 ≤ k, k2, n ∈ N}

or {·k1
n � xn � ·k2

n | k1 ≤ k, or k2 ≤ k, n ∈ N}, for some fixed constant k ∈ N
(i. e., a BFA is not able to recognise the set of all vertical lines, see Lemma 38).

A similar argument applies to the letter T, even if we allow writings like .
A possible remedy might be to consider the recognition of transposed letters, as
well, because horizontal lines can be detected with BFAs, see Example 15.

However, if we insist on fixed proportions, then it can be easily shown that the
character classes mentioned above cannot be recognised by BFAs. For example,
if the length of an arm of a character (or the distance between two parallel arms)
is only allowed to grow in proportion to the length of another arm, then vertical
or horizontal pumping lemma shows this class of characters cannot be recognised
by a BFA.

More generally, as shown by Lemma 40, even single diagonal lines cannot be
detected by BFA, which excludes several classes of characters from the class of
BFA languages, e. g., A, K, M, N, X.

Example 24. We define an RFAMF that accepts the set LF of tokens F in Fig. 4.18.
Accepted samples look as follows:

x x
x x
x • ,

x x
x •
x x
x •
, or

x x x
x • •
x • •
x x x
x • •

, while
x x x
x • x
x x x
x • •

or
x x x x
x • • x
x • • x
x x x x
x • • •

are examples from LP, the language of tokens P.

As an illustration of the construction of Theorem 33, we refer to Fig. 4.20 for an
automaton accepting LL � LF, where LL is based on Fig. 4.5.

4.9 Possible Applications to Kolam Patterns
Let us formally have the RMG G = (Vh, Vv,ΣI ,Σ, S, R

h, Rv) that generates the
patterns of aasanapalakai as described in [105] as follows:

128

q1

start

q2 q3

q4

q5 q6

q7 q8

x

x

x

x #
#

x

•#

#

x

•

#

Figure 4.18: RFA MF that accepts the language of F tokens, of all sizes and of all
proportions

z1

start

z2 z3 z4

z5

z6

z8

z7 z9 z10 z11

z12 z13x
x x x

#
x

• x

#

#

x
x

•
#

x

•

x

#

Figure 4.19: RFA M that accepts the language of P tokens, of all sizes and of all
proportions

s

start

s3

s1 s2 q3

q4

q5 q6

q7 q8

x •

• x

#
#

#

x

x

#
#

x

•#

#

x

•

#

Figure 4.20: RFA accepting L(ML) � L(MF)

129

• Vh = {S,A,B,C,D};

• Vv = {S1, S2, S3, S4, A1, B1, A2, B2, C2, D2, A3, B3, C3, D3, A4, B4};

• ΣI = {S1, S2, S3, S4} ⊆ Vv;

• Σ = {a, b, c, a1, a2, a3, a4} where

– a is of the form

.
. .

.
.
. .
. ,

– b is a blank space,

– c is for the form
. .
. . ,

– a1 is of the form
.
. . ,

– a2 = Rh(a1), a3 = T (a1) and a4 = Rh(a3);

• S ∈ Vh is a starting symbol;

• Rh = {S → S1C,C → S2B,B → S3C,B → S3A,A→ S2D,D → S4};

• Rv = {S1 → bA1, A1 → a1S1, A1 → a1B1, B1 → b, S2 → a2A2,
A2 → aB2, B2 → bA2, B2 → bC2, C2 → aD2, D2 → a4,
S3 → bA3, A3 → bB3, B3 → cA3, B3 → cC3, C3 → bD3,
D3 → b, S4 → bA4, A4 → a3S4, A4 → a3B4, B4 → b}.

Now one can apply Theorem 24, to illustrate the kolam aasanapalakai via
RFA. Instead of illustrating via Theorem 24, we attempt directly to define an RFA

s

start

s3

s1 s2 q3

q5 q4

q6 q7 q8

q9 q10 q11 q12 q13

q14 q15 q16

b

b

b

#

a2

a′

a′ a4

#
b b

b b b b

a1

c

#

a3b

b

Figure 4.21: RFA accepting transpose of the set of all Aasanapalakai

130

Figure 4.22: A sample element in the set of all Aasanapalakai

considering the transpose of the symbols from Σ especially a′ = T (a) as follows:

The smallest picture accepted by RFA in Fig. 4.21 would be
b a3 b a3 b
a2 a′ b a′ a4
b b c b b
a2 a3 b a′ a4
b a1 b a1 b

and

this will correspond to an element of the infinite set of pictures L(G), the set of
all aasanapalakai (a sample is given in Fig. 4.22), for the RMG G which we have
define above.

Further examples of this type include the vine creeper, the swing plank and
the flower cradle (for figures see [107]).

131

Chapter 5

Picture Transforming Automata

This chapter can be summarized as follows: (a) We show that variety of picture
scanning devices basically only describe two different array language families.
(b) This result is obtained by making use of connections to the theory of dihedral
groups. (c) Further closure properties of array language families are derived. (d)
We also introduce Mealy picture machines and show how they could be useful in
a modular design of picture processing automata.

5.1 General Boustrophedon Finite Automata
Now we give one of the main definitions of this section, a new, parameterized
automaton model for picture processing [35].

A general boustrophedon finite automaton, or GBFA for short, is an 8-tuple
M = (Q,Σ, R, s, F,#,�, D), where Q is a finite set of states, Q is partitioned
into Qf and Qb, Σ is an input alphabet, R ⊆ Q × (Σ ∪ {#}) × Q is a finite set
of rules. A rule (q, a, p) ∈ R is usually written as qa → p. We impose some
additional restrictions. If q ∈ Qf and a ∈ Σ, then qa→ p ∈ R is only possible if
p ∈ Qf . Such transitions are also called forward transitions and collected within
Rf . Similarly, if q ∈ Qb and a ∈ Σ, qa → p ∈ R is only possible if p ∈ Qb

(backward transitions, collected in Rh). Finally, border transitions (collected in
R#) are of the form q#→ p with q ∈ Qf iff p ∈ Qb. Namely, the special symbol
/∈ Σ indicates the border of the rectangular picture that is processed, s ∈ Qf

is the initial state, F is the set of final states, and D ∈ D indicates the move
directions. Here,

D =
{(

s→ ↓
↓ ←

)
,
(
s↓ →
→ ↑

)
,
(↓ ←s
→ ↓

)
,
(← ↓s
↑ ←

)
,
(→ ↓
s↑ →

)
,
(↑ ←
s→ ↑

)
,
(↓ ←
← ↑s

)
,
(→ ↑
↑ ←s

)}
We now discuss notions of configurations, valid configurations, an according

132

configuration transition to formalize the work of GBFAs, based on snapshots of
their work.

Let � be a new symbol indicating an erased position and let Σ#,� := Σ ∪
{#,�}. Then CM := Q× (Σ++

#,� ∩ ({#}+ � ({#}+ � (Σ∪ {�})++ � {#}+)�
{#}+)) × {f, d} is the set of configurations of M . Hence, the first and last
columns and the first and last rows are completely filled with #, and these are
the only positions that contain #.

The initial configuration is determined by the input array A ∈ Σ++. More
precisely, if A has m rows and n columns, then(

s,#n+2 	 (#m : A: #m)	#n+2, f
)

shows the according initial configuration cinit(A). Similarly, a final configuration
is then given by (

qf ,#
n+2 	 (#m :�n

m : #m)	#n+2, d
)

for some qf ∈ F and d ∈ {b, f}.

The processing of the automaton is then crucially depending on D ∈ D. The
arrow that appears together with s indicates the direction of forward processing
of the first, third, fifth etc. line. For instance, the first listed direction contains
s →, determining that the odd-numbered rows of the input array are scanned left
to right. Similarly, the second listed direction contains s ↓, determining that the
odd-numbered columns of the input array are scanned top to bottom. When the
automaton encounters a border symbol, it processes the next line in the reversed
way (backward processing).

This is also indicated in the little pictures that describe D ∈ D. For instance,
in the first case, the ↓ in the first row indicates that after hitting the border, the
automaton moves downwards, processing (as indicated by the← in the last row)
now from right to left, until border is hit again, that means to move downwards
one more row, as indicated by the ↓ in the last row. The other D ∈ D can be
interpreted in a similar fashion, as explained below. Let us now formalize this
description. Notice that an odd-numbered row of the input array corresponds to
an even-numbered row if we consider the input array bordered by a #-layer.

• If (p,A, f) and (q, A′, f) are two configurations such that A and A′ are
identical but for one position (i, j), 1 ≤ i ≤ m + 2, 1 ≤ j ≤ n + 2, where
A′[i, j] = � while A[i, j] ∈ Σ, then (p,A, f) `M (q, A′, f) if pA[i, j] →
q ∈ Rf . Moreover, i is even.

133

• Conversely, if (p,A, f) and (q, A′, f) are two configurations such that A
and A′ are identical but for one position (i, j), 1 ≤ i ≤ m + 2, 1 ≤ j ≤
n + 2, where A′[i, j] = � while A[i, j] ∈ Σ, then (p,A, b) `M (q, A′, b) if
pA[i, j]→ q ∈ Rh. Moreover, i is odd.

• If (p,A, f) and (q, A, b) are two configurations, then (p,A, f) `M (q, A, b)
or (p,A, b) `M (q, A, f) if p#→ q ∈ R#.

The reflexive transitive closure of the relation `M is denoted by `∗M . A ∈ Σ++

is accepted by a GBFA M with direction DBFA :=
(
s→ ↓
↓ ←

)
if cinit(A) `∗M c such

that c is a final configuration.

The following illustrates how such a GBFA scans some input picture and how
a picture of a valid configuration looks like; it can be seen that the sequence of �
only indicates how far the input has been processed:

#
a b a b a
→ → → → → →

b c a c b
← ← ← ← ← ← ←↩
a b b b b
↪→ → → → → → →
a b c b b
← ← ← ← ← ← ←↩
c b b a a
↪→ → → → → →
#

#
� � � � �
� � � � �
� � � b b
a b c b b
c b b a a
#

It should be also clear that the representation on right-hand side of previous
picture contains all information necessary to describe a configuration apart from
the state.

Now, we define the other modes by applying transformations according to the
following table.

D =
(
s↓ →
→ ↑

) (↓ ←s
→ ↓

) (← ↓s
↑ ←

) (→ ↓
s↑ →

) (↑ ←
s→ ↑

) (↓ ←
← ↑s

) (→ ↑
↑ ←s

)
fD(A) = T (A) Rv(A) Q−1(A) Q(A) Rh(A) T ′(A) H(A)

A is accepted by a GBFA M with a different direction D if fD(A) is accepted
by the GBFAMBFA that coincides withM in every detail except for the direction,
which is now DBFA. This means, for instance, in the case of D =

(
s↓ →
→ ↑

)
, that

instead of scanning the input array A column by column, the first column top-
down, the second bottom-up, and so forth, we rather transpose A and then scan
the transposed array row by row, the first row left-right, the second right-left, and
so forth.

The GBFA M is deterministic, or a GBDFA for short, if for each p ∈ Q and
a ∈ Σ ∪ {#}, there is at most one q ∈ Q with pa→ q ∈ R.

134

This way, we define language classes likeLD(GBFA) of those array languages
accepted by GBFAs working with direction D, as well as

L(GBFA) :=
⋃
D∈D

LD(GBFA) .

Of course, the interesting question is if the eight language families that we can
obtain in these ways are really different from each other or not. Also, the situation
of L(GBFA) needs to be investigated, as well as the role of determinism. From
the definitions of GBFAs with their eight working modes and unary operations
that we have seen in the group-theoretic excursion from the Subsection 1.2.2, we
can immediately derive the following characterization result.

Theorem 36. The class LDBFA
(GBFA) coincides with the following classes of

picture languages: T
(
L(

s↓ →
→ ↑

)(GBFA)

)
, Rv

(
L(↓ ←s
→ ↓

)(GBFA)

)
,

Q−1

(
L(← ↓s
↑ ←

)(GBFA)

)
, Q
(
L(→ ↓

s↑ →
)(GBFA)

)
, Rh

(
L(↑ ←

s→ ↑
)(GBFA)

)
,

T ′
(
L(↓ ←
← ↑s

)(GBFA)

)
, and H

(
L(→ ↑
↑ ←s

)(GBFA)

)
.

Due to the connections to group theory described above, we can easily infer from
the previous theorem characterizations of the seven other classes, referring back
to LDBFA

(GBFA). We collect these results in the following theorem.

Theorem 37. We obtain the following list of characterizations.

• L(
s↓ →
→ ↑

)(GBFA) = T (LDBFA
(GBFA)).

• L(↓ ←s
→ ↓

)(GBFA) = (Q ◦ T) (LDBFA
(GBFA)).

• L(→ ↓
s↑ →

)(GBFA) = (Q ◦ (Q ◦Q)) (LDBFA
(GBFA)).

• L(← ↓s
↑ ←

)(GBFA) = Q (LDBFA
(GBFA)).

• L(↑ ←
s→ ↑

)(GBFA) = (T ◦Q) (LDBFA
(GBFA)).

• L(↓ ←
← ↑s

)(GBFA) = (Q ◦ (Q ◦ T)) (LDBFA
(GBFA)).

• L(→ ↑
↑ ←s

)(GBFA) = (Q ◦Q) (LDBFA
(GBFA)).

These characterizations are also valid for the corresponding deterministic classes.

135

BFAs that we have seen in the previous chapter basically work as GBFAs do when
working in mode DBFA.

Theorem 38. For each direction modeD, we know: LD(GBFA) = LD(GBDFA).

Proof. By previous reasoning, we can derive from Remark 14 that LD(GBFA) =
LD(GBDFA) is true for D = DBFA. By Theorem 37, we have characterizations
of LD(GBFA) in terms of LDBFA

(GBFA). These characterizations are also valid
for the corresponding deterministic classes.

5.2 General Returning Finite Automata
Another model that we have seen was returning finite automata (RFA). We are
now going to generalize the work of RFA in the following, again by introducing
working modes for them. Now, a pair of directions like D = (s→ ↓) is sufficient,
indicating that an input array is always processed row by row, top down, where
each row is scanned from left to right; moreover, the procedure is (here) started at
the upper left corner of the array, as indicated by the position of s. The processing
mode just describes coincide with that of RFAs (See Section 4.2). Leaving out
the formal definition for now, we arrive at language families like LD(GRFA). It
is sufficient to understand that there is no need to give any direction information.
There are (again) eight natural processing modes D:

(s→ ↓) , (s↓ →) , (↓ ←s) , (← ↓s) , (s→ ↑) , (s↑ →) , (↑ ←s) , (← ↑s) .

These can be naturally partioned into the row-first modes Drow−f = {(s→ ↓) ,
(↓ ←s) , (s→ ↑) , (↑ ←s)} and the four other column-first modes inDcol−f . Again,
we have deterministic variants, and we can consider the union of all languages
pertaining to these GRFA-variants.

Example 25. The set of all arrays over {a, b} such that each array in the set has
exactly one row completely filled with b’s and a’s everywhere else is accepted by
a GRFA M as shown in Figure 5.1.

q0

start

q1 q2q4 q3
b

a

#
#

a

#
ba a

Figure 5.1: GRFA M that accepts the language in Example 25.

136

As with GBFAs, we can alternatively describe the work of a GRFA working in
mode D by first performing a unary operation on the image and then processing
the image in the mode DRFA = (s→ ↓) that corresponds to RFAs. Therefore, we
obtain the following characterizations for these modes.

Theorem 39. The class LDRFA
(GRFA) coincides with the following classes:

T
(
L(s↓ →)(GRFA)

)
, Rv

(
L(↓ ←s)(GRFA)

)
, Q−1

(
L(← ↓s)(GRFA)

)
,

Q
(
L(s↑ →)(GRFA)

)
, Rh

(
L(s→ ↑)(GRFA)

)
, T ′

(
L(← ↑s)(GRFA)

)
,

and H
(
L(↑ ←s)(GRFA)

)
.

We can use previous theorem to obtain a representation like Theorem 37 also for
GRFAs.

Theorem 40. We obtain the following list of characterizations.

• L(s↓ →)(GRFA) = T (LDRFA
(GRFA)).

• L(↓ ←s)(GRFA) = (Q ◦ T) (LDRFA
(GRFA)).

• L(s↑ →)(GRFA) = (Q ◦ (Q ◦Q)) (LDRFA
(GRFA)).

• L(← ↓s)(GRFA) = Q (LDRFA
(GRFA)).

• L(s→ ↑)(GRFA) = (T ◦Q) (LDRFA
(GRFA)).

• L(← ↑s)(GRFA) = (Q ◦ (Q ◦ T)) (LDRFA
(GRFA)).

• L(↑ ←s)(GRFA) = (Q ◦Q) (LDRFA
(GRFA)).

We can conclude from Theorem 23:

Corollary 20. LDBFA
(GBFA) = LDRFA

(GRFA).

By Theorem 37 and Theorem 40, we also get a complete list of correspondences
between GBFAs and GRFAs as in Table 5.1. For instance, Q(LDRFA

(GRFA)) =
LD(GRFA) forD = (← ↓s) can be read off as the table entry. The previous result
means that determinism does not restrict the power of GRFA in all processing
modes.

5.3 Language Families under the Unary Operators
We are now going to collect, prove several results relating the different language
families that we have introduced so far by means of the unary operators that we
discussed above. The proofs will also show that it is quite valuable to have the
different processing modes available.

137

Table 5.1: Operators/Directions for GBFAs and GRFAs.

O T Rv Q−1 Q Rh T ′ H

GBFA
(
s↓ →
→ ↑

) (↓ ←s
→ ↓

) (→ ↓
s↑ →

) (← ↓s
↑ ←

) (↑ ←
s→ ↑

) (↓ ←
← ↑s

) (→ ↑
↑ ←s

)
GRFA (s↓ →) (↓ ←s) (s↑ →) (← ↓s) (s→ ↑) (← ↑s) (↑ ←s)

Lemma 43. LD(GRFA) = Rv(LD(GRFA)) for D ∈ Drow−f .

Proof. LetM = (Q,Σ, R, s, F,#,�, (s→ ↓)) be some GRFA and let L = L(M).
Let us construct some GRFA M v that accepts Rv(L). M v = (Qv,Σ, Rv, QI , QF ,
#,�, (s→ ↓)) is defined byQv = Q×Q×Q,Q# = {q | pa→ q∧q#→ r ∈ R},
QI = {(s, q, r)} where q ∈ Q, r ∈ Q#,

Rv = {(`, q, r)a→ (`, p, r) | pa→ q ∈ R, ` ∈ Q, r ∈ Q#, a ∈ Σ}
∪ {(`, `, p)#→ (q, t, r) | p#→ q ∈ R, `, r, t ∈ Q, a ∈ Σ}
∪ {(`, q, f)a→ (`, p, f) | pa→ q ∈ R, ` ∈ Q, f ∈ F, a ∈ Σ}

and QF ⊆ Qv, QF = {(`, `, f) | f ∈ F, ` ∈ Q}.

The idea of the construction is that of the mirror-image construction, well-known
from classical formal language theory. Here, the first component ` of some triple
(`, q, r) ∈ Q × Q × Q memorizes the state associated to the left-most symbol of
that row, q is the current state and r is associated to the right-most symbol in the
row. Reading # switches to the next row until the final state is reached. We only
considered the first processing mode here, the other three modes can be shown
using similar constructions. The converse direction follows as Rv ◦ Rv = I (See
Remark 2).

As the vertical reflection can be likewise seen as a change in the processing mode,
we can immediately conclude:

Corollary 21. L(s→ ↓)(GRFA) = L(↓ ←s)(GRFA);
L(s→ ↑)(GRFA) = L(↑ ←s)(GRFA).

Due to Theorem 40, we can also conclude:

Lemma 44. LD(GRFA) = Rh(LD(GRFA)) for D ∈ Drow−f .

Lemma 45. LD(GRFA) = Rh(LD(GRFA)) for D ∈ Dcol−f .

Hence, we can immediately conclude the following characterizations.

138

Corollary 22. L(s→ ↓)(GRFA) = L(s→ ↑)(GRFA);
L(↓ ←s)(GRFA) = L(↑ ←s)(GRFA).

Corollary 23. L(s↓ →)(GRFA) = L(s↑ →)(GRFA);
L(← ↓s)(GRFA) = L(← ↑s)(GRFA).

Lemma 43 and Corollary 20 give the following corollary; also see Theorem 36;
similar closure properties for the other processing modes can be easily derived by
combining what we have shown so far.

Corollary 24. LDBFA
(GBFA) = Rv(LDBFA

(GBFA)).

By Corollary 20 and Theorem 39, we obtain:

Theorem 41. LDBFA
(GBFA) = Q(L(s↑ →)(GRFA)).

Theorem 41 immediately yields the following result, as Q ◦Q−1 is the identity.

Corollary 25. Q−1(LDBFA
(GBFA)) = L(s↑ →)(GRFA).

By Theorems 37, 40, Corollary 20, and Table 5.1, we can conclude the following:

Corollary 26. LDBFA
(GBFA) = Q−1(L(s↑ →)(GRFA)).

As Q−1 ◦Q−1 = H , Corollaries 25 and 26 yield:

Corollary 27. LDBFA
(GBFA) = H(LDBFA

(GBFA)).

As Rh = H ◦Rv, Corollaries 24 and 27 give:

Corollary 28. LDBFA
(GBFA) = Rh(LDBFA

(GBFA)).

We can now summarize our characterization of picture language classes:

Theorem 42. The picture language family LDBFA
(GBFA) equals

• LD(GBFA) for D ∈
{
DBFA,

(↓ ←s
→ ↓

)
,
(↑ ←
s→ ↑

)
,
(→ ↑
↑ ←s

)}
;

• LD(GRFA) for D ∈ Drow−f .

The picture language family T (LDBFA
(GBFA)) equals

• LD(GBFA) for D ∈
{(

s↓ →
→ ↑

)
,
(← ↓s
↑ ←

)
,
(→ ↓
s↑ →

)
,
(↓ ←
← ↑s

)}
;

• LD(GRFA) for D ∈ Dcol−f .

139

Proof. (a)LDBFA
(GBFA) =Cor. 24 Rv(LDBFA

(GBFA)) =Thm. 37 L(↓ ←s
→ ↓

)(GBFA).

LDBFA
(GBFA) =Cor. 28 Rh(LDBFA

(GBFA)) =Thm. 37 L(↑ ←
s→ ↑

)(GBFA).

LDBFA
(GBFA) =Cor. 27 H(LDBFA

(GBFA)) =Thm. 37 L(→ ↑
↑ ←s

)(GBFA).

(b) LDBFA
(GBFA) =Cor. 20 L(s→ ↓)(GRFA) =Cor. 21 L(↓ ←s)(GRFA)

=Cor. 22 L(↑ ←s)(GRFA) =Cor. 21 L(s→ ↑)(GRFA).

(c) T (LDBFA
(GBFA)) =Thm. 37 L(

s↓ →
→ ↑

)(GBFA).

T (LDBFA
(GBFA)) =Table 1.1a Q(Rh(LDBFA

(GBFA)))
=Cor. 28 Q(LDBFA

(GBFA)) =Thm. 37 L(← ↓s
↑ ←

)(GBFA).

T (LDBFA
(GBFA)) =Table 1.1a Q

−1(Rv(LDBFA
(GBFA)))

=Cor. 24 Q
−1(LDBFA

(GBFA)) =Thm. 37 L(→ ↓
s↑ →

)(GBFA).

T (LDBFA
(GBFA)) =Table 1.1a T

′(H(LDBFA
(GBFA)))

=Cor. 27 T
′(LDBFA

(GBFA)) =Thm. 37 L(↓ ←
← ↑s

)(GBFA).

(d) T (LDBFA
(GBFA)) =Cor. 20 T (LDRFA

(GRFA)) =Thm. 40 L(s↓ →)(GRFA).

T (LDBFA
(GBFA)) =(c) Q(LDBFA

(GBFA))
=Cor. 20 Q(LDRFA

(GRFA)) =Thm. 40 L(← ↓s)(GRFA).

T (LDBFA
(GBFA)) =(c) Q

−1(LDBFA
(GBFA))

=Cor. 20 Q
−1(LDRFA

(GRFA)) =Thm. 40 L(s↑ →)(GRFA).

T (LDBFA
(GBFA)) =(c) T

′(LDBFA
(GBFA))

=Cor. 20 T
′(LDBFA

(GBFA)) =Thm. 40 L(← ↑s)(GRFA).

Corollary 29. L(GBFA) = L(s↓ →)(GRFA) ∪ L(s→ ↓)(GRFA).

Remark 17. As can be seen by applying the exchange property arguments in
Section 4.5, the set of square-sized arrays of odd length whose middle row and
middle column contain b’s, while all other positions are filled with a’s, is not in
L(GBFA).

Let O collect the eight unary operators introduced in Subsection 1.2.2.

Corollary 30. ∀O ∈ O : O(L(GBFA)) = L(GBFA).

To underline the special importance of the two operations Q and T from O, we
can also state:

140

Corollary 31. L(GBFA) = Q(LDBFA
(GBFA)) ∪ LDBFA

(GBFA) and
L(GBFA) = T (LDBFA

(GBFA)) ∪ LDBFA
(GBFA).

Let us now turn to the two binary catenation operations.

Theorem 43. ∀L1, L2 ∈ LDRFA
(GRFA), L1 � L2 ∈ LDRFA

(GRFA).

Proof. Let M1 = (Q1,Σ, R1, s1, F1,#,�, (s→ ↓)) and M2 = (Q2,Σ, R2, s2, F2,
#,�, (s→ ↓)) be two GRFAs, with L1 = L(M1) and L2 = L(M2). W.l.o.g.,
assume that Q1 ∩ Q2 = ∅. Let us construct the GRFA M� that accepts L1 � L2

(i.e., L(M�) = L1 � L2). M� = (Q�,Σ, R�, s1, F2,#,�, (s→ ↓)) is defined
by Q� = Q1 ∪ Q2, R� = R1 ∪ R2 ∪ {f# → s2 | f ∈ F1}. The idea of the
construction is to first simulate M1; whenever a final state is entered at the end of
reading a line, then the simulation may switch to M2.

Corollary 32. ∀L1, L2 ∈ Q(LDRFA
(GRFA)), L1 � L2 ∈ Q(LDRFA

(GRFA)).

Define a mapping str : Σ+
2 → (Σ ∪ {#})+, W 7→ w where w = w1#w2,

|W |c = n, n ≥ 2 and |W |r = 2; moreover, |w1| = |w2| = n, so that |w| = 2n+1.

Lemma 46. If L ∈ LDRFA
(GRFA) with L ⊆ Σ+

2 , then str(L) is context-free.

Proof. A pushdown automaton uses its finite control as the GRFA and simply
checks if the two rows have equal length by using its pushdown store.

Theorem 44. ∃L1, L2 ∈ LDRFA
(GRFA) : L1 � L2 /∈ LDRFA

(GRFA).

Proof. Let L =
{

1 0`

1 0`
: ` ≥ 1

}
. Clearly, L ∈ LDRFA

(GRFA). However, str(L�
L) is a variant of the crossing dependency language known to be not context-free.
By Lemma 46, L� L /∈ LDRFA

(GRFA).

Corollary 33. ∃L1, L2 ∈ Q(LDRFA
(GRFA)) : L1 � L2 /∈ Q(LDRFA

(GRFA)).

Theorem 45. L(GRFA) is closed neither under column catenation nor under row
catenation.

Proof. Consider L from the proof of Theorem 44. By Theorem 43, L′ = L �
{0}+

+ � {1}+ � {0}+
+ ∈ LDRFA

(GRFA). If L′ � L′ ∈ LDRFA
(GRFA), then also

L�L ∈ LDRFA
(GRFA), contradicting the reasoning from Theorem 44. Exchange

property arguments in Section 4.5 show that {L′, L′�L′}∩Q(LDRFA
(GRFA)) =

∅, as horizontal lines in arbitrary positions cannot be checked by finite automata
working column by column.

So far, we have used finite automata to only accept picture (languages). If such
devices should be used in practice, at least two questions show up:

• Can we design such automata in a systematic, best modular fashion?

• Can we set up these automata so that they can tolerate certain input errors?

We will see this in the next section.

141

5.4 Picture Transforming Automata
To answer both questions, we introduce a generalization of Mealy machines to
picture processing. A Mealy Picture Machine, or MPM for short, can be specified
as a 9-tuple M = (Q,Σ,Γ, δ, λ, q0,#, F,D), where Q is a finite set of states, Σ
is a finite set of input symbols, Γ is a finite set of output symbols, δ : Q × (Σ ∪
{#})→ Q is the transition function, λ : Q×Σ→ Γ is the output function, q0 ∈ Q
is the initial state, # /∈ Σ, # /∈ Γ, is the special symbol that indicates the borders
of the picture that is processed, F is the set of final states, and D ∈ D indicates
the move directions of the GRFAs. Let us now give the notion of configurations
to formalize the working of MPMs, based on the snapshots of their work. Here,
we assume (w.l.o.g.) that Σ ∩ Γ = ∅. Let Υ := Σ ∪ Γ and Υ# := Υ ∪ {#}. Then
CM := Q×(Υ++

∩({#}+ � ({#}+ � Υ++ � {#}+))�{#}+)×N is the set of
configurations of M . Hence, the first and last columns and the first and last rows
are completely filled with #, and these are the only positions that contain #. The
initial configuration is determined by the input array A ∈ Σ++. More precisely,
if A has m rows and n columns, then(

q0,#
n+2 	 (#m : A: #m)	#n+2, 1

)
shows according initial configuration Cinit(A). Similarly, a final configuration

Cfin(A′) is then given by(
qf ,#

n+2 	 (#m : A′ : #m)	#n+2, n
)

for some A′ ∈ Γ++ with m rows and n columns and for some qf ∈ F . The
processing of the machine depends onD ∈ D of the GRFAs. Let us now formalize
the description with direction D = (s→ ↓); the remaining seven directions can be
formalized similarly but we did not explicitly write those here.1

• If (p,A, µ) and (q, B, µ) are two configurations such that A and B are
identical but for one position (i, j), 1 ≤ i ≤ m + 2, 1 ≤ j ≤ n + 2,
where B[i, j] ∈ Γ, while A[i, j] ∈ Σ, then (p,A, µ) `M (q, B, µ) if
δ(p,A[i, j]) = q and λ(p,A[i, j]) = B[i, j].

• If (p,A, µ) and (q, A, µ + 1) are two configurations, then (p,A, µ) `M
(q, A, µ+ 1) if δ(p,#) = q.

The reflexive transitive closure of the relation `M is denoted by `∗M . Notice
that for each A ∈ Σ++ there is at most one A′ ∈ Γ++ such that Cinit(A) `∗M
Cfin(A′). We can hence view M as a partial function M : Σ++ 9 Γ++.

1We could also use the unary operations and their inverses to formally describe the processing.

142

Theorem 46. Given L ∈ LDRFA
(GRFA), with L ⊆ Σ++, and an MPM M :

Σ++ 9 Γ++, then M(L) ∈ LDRFA
(GRFA).

Proof. Let R = (Q,Σ, P, s, F,#,�, (s→ ↓)) be some GRFA then L(R) ⊆ Σ++.
Let M : Σ++ 9 Γ++ be an MPM, M = (QM ,Σ,Γ, δ, λ, sM ,#, FM , (s→ ↓))
lifted to M : 2Σ++ → 2Γ++ , i.e., M(Σ++) ⊆ Γ++. Now our aim is to define
a GRFA R′ such that L(R′) = M(L(R)). R′ = (Q′,Γ, P ′, s′, F ′,#,�, (s→ ↓))
is defined by Q′ = Q × QM , P ′ = {(p, q)c → (p′, q′) | ∃a ∈ Σ : pa → p′ ∈
P, δ(q, a) = q′∧λ(q, a) = c}∪{(p, q)#→ (p′, q′) | p#→ p′ ∈ P, δ(q,#) = q′},
s′ = (s, sM) ∈ Q′ is the start state and F ′ = F × FM is the set of final states.

The idea of the construction is that the automatonR′, upon reading c ∈ Γ, guesses
which symbol a ∈ Σ was translated into c by M , and this guess is verified by
a parallel simulation of the work of M and of R on input symbol a. Similarly,
the simulation is performed when encountering a border symbol #. An array
A′ ∈ Γ++ is accepted iff the array A ∈ Σ++ that is guessed letter-by-letter in the
described fashion is accepted by R and translated by M into A′.

Theorem 47. Given L ∈ LDRFA
(GRFA), with L ⊆ Γ++, and an MPM M :

Σ++ 9 Γ++, then M−(L) ∈ LDRFA
(GRFA) with M−(L) ⊆ Σ++.

Proof. Let R = (Q,Γ, P, s, F,#,�, (s→ ↓)) be some GRFA with L(R) ⊆ Γ++.
Let M : Σ++ 9 Γ++ be an MPM, M = (QM ,Σ,Γ, δ, λ, sM ,#, FM , (s→ ↓))
lifted to M : 2Σ++ → 2Γ++ and M− : 2Σ++ → 2Γ++ , i.e., M−(Γ++) ⊆ Σ++.
Now our aim is to define a GRFA R′ such that L(R′) = M−(L(R)). R′ =
(Q′,Σ, P ′, s′, F ′,#,�, (s→ ↓)) is defined by Q′ = Q × QM , P ′ = {(p, q)a →
(p′, q′) | δ(q, a) = q′ ∧ pλ(q, a) → p′ ∈ P} ∪ {(p, q)# → (p′, q′) | δ(q,#) =
q′ ∧ p#→ p′ ∈ P}, s′ = (s, sM) ∈ Q′ is the start state and F ′ = F × FM .

Let us now explain the extended power of GRFA by adding MPM with it. Also,
we want to describe how to use MPMs and further closure properties to design
more complicated GRFAs, starting off from very simple automata. Suppose the
task is to design a GRFA R′ with L(R′) = L′, see Table 5.2. How can we obtain
such an automaton? We see that the pictures in L′ can be decomposed into two
subsequent rows of x and one first column of x. It looks easier to design automata
for both tasks separately and then combine them later ‘somehow’. This is what
MPMs can do. Assume that we have designed an MPM M that takes inputs from
Σ++, with Σ = {x, •}, and does the following:

• It converts all • symbols into a if they do not appear in the first column.

• It converts all x symbols into a if they appear in first column, but into b if
they appear in any other column.

143

Assume we have designed M . M(L′) can be found in Table 5.2. How can we
further process this? Maybe, it would be an idea to design another MPM M ′ that
takes inputs from {a, b}++ and converts them according to the following:

• It converts a symbols into • but one special to be mentioned later.

• When it first reads a b, this must be in the second column, and this b must
be followed by b’s only in the current row, which is then converted into a
row of •’s only. (If the first row where M ′ encounters any b’s is not of the
form ab+, M ′ will not enter an accepting state when further processing the
input array, as it has observed an input error.)

• In the next row, it is checked if the first symbol is a a. This will then be
converted to x.

• Any further occurrences of b will be converted into x.

Table 5.2: Simplifying array languages with MPMs

L′ =

{
(x (•)n)`−1

x (x)n

x (x)n

(x (•)n)m−1

: n,m, ` ≥ 1

}
,

M(L′) =

{
(a (a)n)`−1

a (b)n

a (b)n

(a (a)n)m−1

: n,m, ` ≥ 1

}
.

As a consequence, we find:

M ′(M(L′)) =

{
(• (•)n)`−1

• (•)n
x (x)n

(• (•)n)m−1

: n,m, ` ≥ 1

}
=

{
(• (•)n)`
x (x)n

(• (•)n)m−1

: n,m, ` ≥ 1

}
.

We can devise a quite similar machine R that then accepts all arrays over
{•, x} that start with at least one row filled with •, followed by one row of length
at least two completely filled with x and then followed by an arbitrary number
(possibly zero many) of rows filled up with •. Now, the GRFA R′ we are looking
for can be obtained by first constructing R† for accepting M ′−(L(R)), based on
R and M ′, and then constructing R′ accepting M−(L(R†)), based on R† and M .

144

The drawback of this design approach could be a certain state explosion. For
instance, already the smallest GRFA implementing L(R) has five states and the
smallest MPM for M ′ has six states, which gives us 30 states for R†, unless we
interleave steps that delete useless states or even implement state minimization
procedures.

More Details on Our Example for Modular Design
Now we will give the detailed explanation of our example for modular design that
we have mentioned above.

The GRFA R we start with is R = (Q,Γ, P, s, F,#,�, (s→ ↓)), where Q =
{s1, s2, s3, s4, s5}, Γ = {x, •}, P = {s1• → s1, s2x → s3, s3x → s4, s4x →
s4, s5• → s5, s1# → s1, s5# → s5, s1# → s2, s4# → s5}, s = s1 and F =
{s4, s5}. A pictorial representation of R is in Figure 5.2.

s1start s2 s3 s4 s5
x x

•,# •,#x

Figure 5.2: GRFA R that accepts L(R) = {•}+
+ � ({x}� {x}+) � {•}+

∗ .

The MPM M ′ = (QM ′ ,Σ,Γ, δM ′ , λM ′ , sM ′ ,#, FM ′ , (s→ ↓)) where QM ′ =
{q1, . . . , q6}, Σ = {a, b} Γ = {x, •}, δM ′ , λM ′ are as depicted in Figure 5.3,
sM ′ = q1 and FM ′ = {q6}.

q1

start

q2

q3

q4 q5 q6

a/• b/•
a/•

b/•

#

#
a/x

a/•
a/•

#, b/x

Figure 5.3: MPM M ′ designed according to our description.

Now let us construct the GRFA R† that accepts M ′−(L(R)), based on R
and M ′. This construction is an illustration of Theorem 47. The GRFA R† is
given by R† = (Q′′,Σ, P ′′, s′′, F ′′,#,�, (s→ ↓)) where Q′′ = Q × QM ′ , i.e.,
Q′′ = {s1, . . . , s5}×{q1, . . . , q6}, i.e.,Q′′ has 30 states, Σ = {a, b}, s′′ = (s1, q1),
F ′′ = F × FM ′ = {s4, s5} × {q6} = {(s4, q6), (s5, q6)}, and

145

P ′′ = {(s1, q1)a→ (s1, q2), (s5, q1)a→ (s5, q2),
(s1, q2)b→ (s1, q4), (s5, q2)b→ (s5, q4),
(s1, q2)a→ (s1, q3), (s5, q2)a→ (s5, q3),
(s1, q3)a→ (s1, q3), (s5, q3)a→ (s5, q3),
(s1, q4)b→ (s1, q4), (s5, q4)b→ (s5, q4),
(s2, q5)a→ (s3, q6), (s3, q5)a→ (s4, q6), (s4, q5)a→ (s4, q6)
(s1, q6)a→ (s1, q6), (s5, q6)a→ (s5, q6),
(s2, q6)b→ (s3, q6), (s3, q6)b→ (s4, q6), (s4, q6)b→ (s4, q6)
(s1, q3)#→ (s1, q1), (s1, q4)#→ (s1, q5), (s1, q6)#→ (s1, q6)
(s1, q3)#→ (s2, q1), (s1, q4)#→ (s2, q5), (s1, q6)#→ (s2, q6)
(s4, q3)#→ (s5, q1), (s4, q4)#→ (s5, q5), (s4, q6)#→ (s5, q6)
(s5, q3)#→ (s5, q1), (s5, q4)#→ (s5, q5), (s5, q6)#→ (s5, q6)}.

We can note 9 states out of 30 states are not involved in the construction (which
means that they directly had fallen into the not reachable states) and only 21 states
are involved, in these 21 when we ignore the not reachable and useless states,
using the rules from P ′′, we arrive at the GRFA R† with only 8 useful states as
depicted in Figure 5.4.

(s1, q1)

start

(s1, q2) (s1, q4)(s1, q3)

(s2, q5)(s3, q6)(s4, q6)(s5, q6)

a

aa

b

b

b #

#
a,#

ab

Figure 5.4: GRFA R† that accepts M ′−(L(R))

The MPMM is given byM = (QM ,Σ,Γ, δM , λM , sM ,#, FM , (s→ ↓)) where
QM = {t1, t2}, Σ = {x, •} Γ = {a, b}, δM , λM are as depicted in Figure 5.5,
sM = t1 and FM = {t2}.

Now we construct GRFA R′ that we were aiming at, that accepts M−(L(R†)),
based onR† andM , we can note this construction is an illustration of Theorem 47.

The GRFA R′ = (Q′,Σ, P ′, s′, F ′,#,�, (s→ ↓)) where Q′ = Q′′ × QM

i.e., Q′ has 60 states, but since we arrived at the GRFA R† with only 8 useful
states as in Figure 5.4, we are interested in only 16 states out of these 60 states,

146

t1start t2

x/a

x/b

•/a
#

Figure 5.5: MPM M

Σ = {x, •}, s′ = ((s1, q1), t1), F ′ = F ′′ × FM = {((s4, q6), t2), ((s5, q6), t2)},
and P ′ = {((s1, q1), t1)x→ ((s1, q2), t2), ((s1, q2), t1)x→ ((s1, q3), t2),
((s1, q3), t1)x→ ((s1, q3), t2), ((s2, q5), t1)x→ ((s3, q6), t2),
((s5, q6), t1)x→ ((s5, q6), t2),
((s1, q1), t2)• → ((s1, q2), t2), ((s1, q2), t2)• → ((s1, q3), t2),
((s1, q3), t2)• → ((s1, q3), t2), ((s2, q5), t2)• → ((s3, q6), t2),
((s5, q6), t2)• → ((s5, q6), t2),
((s1, q2), t2)x→ ((s1, q4), t2), ((s1, q4), t2)x→ ((s1, q4), t2),
((s3, q6), t2)x→ ((s4, q6), t2), ((s4, q6), t2)x→ ((s4, q6), t2),
((s1, q3), t2)#→ ((s1, q1), t1), ((s1, q4), t2)#→ ((s2, q5), t1),
((s4, q6), t2)#→ ((s5, q6), t1), ((s5, q6), t2)#→ ((s5, q6), t1)},

here we can note that 3 states out of 16 states are not at all involved in the
construction (directly fallen into the not reachable states) and only 13 states are
involved, in these 13 states when we ignore again the not reachable, using the
rules from P ′, we will finally be arriving at the GRFA R′ that we have aimed at
with 9 useful states as depicted in Figure 5.6.

Please note that here the useless states are not in the discussion because they
have been already got ignored when we selected only 16 states out of 60 states
from Q′.

This example already shows that lazy evaluation approach, aiming to provide
states only when they become necessary, is very useful and practical to ease the
modular design of picture processing automata.

Notice that MPMs naturally generalize array homomorphisms as considered
in [105]. Also, with the possibility to implement multiple passes (by applying the
described form of transductions), it is easy to also implement set operations like
union or intersection, as the first reading automaton could communicate with the

147

automaton doing the second read by changing one particular part of the picture,
for instance, by printing a special character at the very end, signaling acceptance.
However, we also have negative results like the following one.

Theorem 48. T (L(GRFA)) is not closed under MPM nor under inverse MPM
mappings.

Proof. Exchange property argument in Section 4.5, shows that the language L =
{a}+

+ � {b}+ � {a}+
+ /∈ T (L(GRFA)). However, it is easy to design an MPM M

that only translates arrays from L into some arrays over the alphabet {0}. Also,
{0}+

+ ∈ T (L(GRFA)). This shows non-closure under inverse MPM mappings, as
L = M−({0}+

+). Conversely, let the MPM M ′ work on arrays over the alphabet
{0, 1} as follows: If a row starts with 0, thenM ′ will translate the whole row into a
row of a’s. If a row starts with 1, thenM ′ will translate the whole row into a row of
b’s. Now, it is easy to see that L′ := ({0}+�{1}�{0}+)�{0}+

+ ∈ T (L(GRFA)),
while M ′(L′) = L is not.

It would therefore be interesting to study hierarchies of array languages defined by
combining array processing devices that alternate between row-wise or column-
wise processing, working on multiple passes over given images. This would also
enable us to implement error-correction features, like thinning out blurred lines.
This also shows that combining different processing modes in subsequent passes
could be useful in practice.

148

((s1, q1), t1)

st
ar

t

((s1, q2), t2)

((s1, q4), t2)

((s1, q3), t2)

((s2, q5), t1)

((s3, q6), t2)

((s4, q6), t2)

((s5, q6), t1)((s5, q6), t2)

x

•

•

#

x

x

x

#

#

x

x

x

•

#

Figure 5.6: GRFA R′ that accepts M−(L(R†))

149

Chapter 6

Regular Grammars for Array
Languages

Several regular-like mechanisms have been proposed in the literature in order
to generalize, say, right-linear grammars from the one-dimensional (string) case
to the two-dimensional world. RMG and BFA are among the simpler devices.
RMG have been extended towards, so-called (regular : regular) array grammars
((R:R)AG) in [106].

As described in Chapter 4, the so-called isometric regular array grammars
(IRAG, originally introduced to describe non-rectangular-shaped pictures) can be
viewed as natural extensions of BFAs and then seen to describe a superclass of
BFA and RMG languages. By splitting the definition of (R:R)AG into two parts,
according to the types, we can also formally describe the main reason why (in
general) IRAGs cannot be simulated by (R:R)AGs.

6.1 (Regular : Regular) Array Grammars
Siromoney et al. introduced another interesting class of array grammars called
(R:R)AG [106] to generate picture languages which cannot be generated by RMG.
As we are not so much interested in other language families (as described in
[106]), we are now giving a different yet equivalent formalization of this picture
language description as we have introduced in [36]:

Definition 57. An (R:R)AG can be specified as G = (S, VN , VI ,Σ, PN , PI , π, τ),
where the components are as follows:

• A non-terminal alphabet VN with a distinctive start symbol S ∈ VN ,

• an intermediate alphabet VI , disjoint from VN ,

150

• a terminal alphabet Σ, disjoint from VN ∪ VI ,

• a set PN of non-terminal rules that are either of the form A → XB (right-
linear), or of the form A → BX (left-linear), where A,B ∈ VN and X ∈
VI ,

• a set PI of rules of the form A→ X , with A ∈ VN and X ∈ VI ,

• a picture association mapping π : VI → LΣ(RMG) ∪ LΣ(BFA),

• a type interpretation mapping τ : PN → {�,�} such that τ(p1) = τ(p2)
implies that p1 is right-linear if and only if p2 is right-linear.

Observe that the last condition implies that p1 is left-linear if and only if p2 is left-
linear. The derivation proceeds as follows: first, a derivation tree T is generated
by the linear rules given by PN , PI , starting with S. According to the type, the
inner nodes are henceforth interpreted as row or as column catenation. Finally, π
is applied to all leaves of the tree.

So, we obtain a tree whose leaves correspond to array languages and whose
inner nodes show catenation operators; hence, we can inductively, bottom-up,
associate a language to all inner nodes and hence to the root of T . The language we
associate withG is then the union of all languages associated to roots of derivation
trees of G in this manner. This describes the language family L((R : R)AG).

Remark 18. The definition of (R:R)AG in [106] is equivalent to the Definition 57.
The production rules in [106] have three different forms of rules, say, P1, P2 and
P3, where P1 is the finite set of non-terminal rules which are regular, P2 is the
finite set of intermediate rules which ensures that the intermediate languages are
regular or transpose of such a language, P3 is the finite set of terminal rules.

In our Definition 57 we ensure the property of P1 via τ , the property of P2 via
π, as π(X) = L where L ∈ L(RMG) or L ∈ T (L(RMG)) (i. e., L(BFA), see
Theorem 24) and the property of P3 also via π.

The conditions in [106] might look more complicated at first glance, due to the
fact that there are even three different forms of rules. However, the last two kinds
of rules basically allow derivation processes as RMGs do, and our definition is
much more similar to the way that (R:R)AGs are used in [106], [Example 2.1(a)]
than the one of that original paper itself.

Example 26. A (R:R)AG that generates the staircase of x’s of a fixed proportion
is defined as G = (S, VN , VI ,Σ, PN , PI , π, τ), where

151

• VN = {S,A},

• VI = {X↑, X→, X},

• Σ = {x, •},

• PN = {S → AX→, A→ X↑S},

• PI = {S → X},

• a picture association mapping π : VI → LΣ(RMG) ∪ LΣ(BFA) is given by
π(X↑) = {(• • •• • •)n � (••) | n ≥ 1}, π(X→) = {(• • x

• • x
x x x

)� (• • •• • •)n | n ≥ 1}
and π(X) =

• • • x
• • • x
x x x x

, Here π(X↑) ∈ LΣ(RMG), π(X→) ∈ LΣ(BFA) and
interestingly π(X) ∈ LΣ(RMG) ∩ LΣ(BFA),

• a type interpretation mapping τ : PN → {�,�} is given by τ(S →
AX→) = � and τ(A→ X↑S) = �. Here τ(S → AX→) 6= τ(A→ X↑S).

To obtain

• • • • • • • • • x
• • • • • • • • • x
• • • • • • x x x x
• • • • • • x • • •
• • • x x x x • • •
• • • x • • • • • •
x x x x • • • • • •

we have the expression ((X↑((X↑X)X→))X→), being

interpreted as ((X↑� ((X↑�X)�X→))�X→). Let F1 = (X↑�X)�X→. We
can then provide the recursive expression Fn+1 = (X↑ � Fn) �X→, n ≥ 1.

The corresponding tree for F2 is shown in Fig. 6.1.

Let us define two subclasses of L((R : R)AG), namely L�−`,�−r((R : R)AG)
and L�−`,�−r((R : R)AG).

Definition 58. An (R:R)AG G with |τ(PN)| = 2 is called �-left, �-right

• if A→ BX ∈ PN then τ(A→ BX) = �,

• if A→ XB ∈ PN then τ(A→ XB) = �.

�-left, �-right (R:R)AG describes the language family L�−`,�−r((R : R)AG).

Definition 59. An (R:R)AG G with |τ(PN)| = 2 is called �-left, �-right

• if A→ BX ∈ PN then τ(A→ BX) = �,

• if A→ XB ∈ PN then τ(A→ XB) = �.

�-left, �-right (R:R)AG describes the language family L�−`,�−r((R : R)AG).

By the definition of (R:R)AG (see Definition 57), we can state:

152

(�)S

(�)A

• • • • • • •
• • • • • • • X↑ (�)S

(�)A

• • • •
• • • • X↑ S

X
• • • x
• • • x
x x x x

X→

• • x
• • x
x x x
• • •
• • •

X→

• • x
• • x
x x x
• • •
• • •
• • •
• • •

Figure 6.1: Derivation tree for F2

Lemma 47. L((R : R)AG) = L�−`,�−r((R : R)AG) ∪ L�−`,�−r((R : R)AG).

Notice that this is not a partition of L((R : R)AG), as there are interesting array
languages in L�−`,�−r((R : R)AG)∩L�−`,�−r((R : R)AG), as we will see in the
following remark.

Remark 19. For our arguments given in the following, it is crucial to observe that
�-left, �-right (R:R)AG differ from �-left, �-right (R:R)AG in the way pictures
are puzzled together from basic RMG- or BFA-pieces. Example 26 is generated
by some �-left, �-right (R:R)AG.

This can be viewed as starting in the lower left corner of the array, putting
• • • x
• • • x
x x x x

first, then stacking some sub-array on top, some other to the right etc.

But, �-left, �-right (R:R)AG would rather start the puzzling process in the top-
most right corner of the array, putting

• • • x
• • • x
x x x x

first, then stacking some sub-array
on below that is from {(x

x) � (• • •• • •)n | n ≥ 1}, some other to the left from

{(• • •• • •)n �
• • •
• • •
• • •
• • •
x x x

| n ≥ 1} and so on.

According to [41], any of the natural way of defining the regularity for two-
dimensional objects should coincide along with the classical notion of regularity
in some one-dimensional restriction.

153

Lemma 48. (a) A regular string language corresponds to a language of single-
row arrays generated by RMG. (b) A regular string language corresponds to a
language of single-column arrays generated by RMG.

Proof. Suppose L is a regular string language. Then, there exists a right-linear
grammar G = (V,Σ, P, S) such that L(G) = L. We can construct an RMG G1

such that L(G1) = L(G) = L as follows: G1 = (V, Vv,ΣI ,Σ, S, R
h, Rv), where

Vv = {Sa | a ∈ Σ}, ΣI ⊆ Vv, Rh = {A → SaB | A → aB ∈ P} ∪ {A →
Sa | A → a ∈ P} where A, B ∈ V and Sa ∈ ΣI and Rv = {Sa → a | Sa ∈
Vv, a ∈ Σ}. Similarly, we can prove (b) by constructing an RMG to generate
T (L) in the case of single-column arrays. Here, the intermediate symbols of the
RMG will take over the role of the non-terminal symbols of the given right-linear
grammar.

By combining Lemma 48 with Theorem 24 we could obtain the Corollary 34 and
Remark 20, as BFA and RMG languages are contained inL�−`,�−r((R : R)AG)∩
L�−`,�−r((R : R)AG).

Corollary 34. (a) A regular string language corresponds to a language of single-
row arrays accepted by BFA.

(b) A regular string language corresponds to a language of single-column
arrays accepted by BFA.

Remark 20. A language of single-row (column) arrays is in both families
L�−`,�−r((R : R)AG) and L�−`,�−r((R : R)AG).

Lemma 49. A language of single-row (column) arrays generated by some IRAG
corresponds to a regular string language.

Proof. The proof idea is that if we assume the IRAG generating a single-row
language not to move down or up then it will be moving either right or left which
is nothing but doing the same job of right-linear or left-linear grammar resulting
in a regular string language.

From previous chapters and also from [30, 35] and [106] we know that L(RMG)
is not closed under row catenation, while L(BFA) is not closed under column
catenation. So, it makes sense to consider the classes L(RMG) � L(RMG) of
all array languages that can be represented as row catenations of languages from
L(RMG), as well as L(BFA) � L(BFA).

Lemma 50. (L(RMG) � L(RMG)) ∪ (L(BFA) � L(BFA))
(L�−`,�−r((R : R)AG) ∩ L�−`,�−r((R : R)AG).

154

Proof. Let us consider the rules from some (R:R)AG, S → X1A and A → X2

with either π(X1), π(X2) ∈ L(RMG) and τ(S → X1A) = �, or π(X1), π(X2) ∈
L(BFA) and τ(S → X1A) = �, we can produce these single catenations with
left-linear rules as well and the strictness follows as (L(RMG) � L(RMG)) (
L�−`,�−r((R : R)AG) and (L(BFA) � L(BFA)) (L�−`,�−r((R : R)AG)

Consider the array language L = {0}+
+ � {1}+ � {0}+

+ that can be described by
the RMG G = (Vh, Vv,ΣI ,Σ, S, R

h, Rv), where Vh = {S,X, Y }, Vv = {A,B},
ΣI = Vv, Σ = {0, 1},Rh = {S → AX,X → AX,X → BY, Y → AY, Y → A}
and Rv = {A → 0A,A → 0, B → 1B,B → 1}. But, there is no BFA for
this L, as BFAs are unable to track vertical lines in arbitrary (general) positions,
which correspond to the column of 1’s in L. Similarly, RMGs cannot describe
languages consisting of horizontal lines in arbitrary position. By way of contrast,
L− = L � {1}+ can be still described by some RMG, although it contains some
horizontal line. But this line (row of 1s) is not in arbitrary position, but at the very
bottom of all pictures.

A similar argument applies to vertical lines that are (only) at a fixed distant
from the top or from the bottom. Slightly modifying the language, we will also
say, here and in the following, that, once a grammar was fixed, a line can be in
arbitrary position in a sufficiently large picture. The reason is that with respect
to the grammar, interchange arguments (based on pigeon hole) will work, as the
picture is sufficiently big (a notion that naturally depends on the size of the fixed
grammar). This minimum size condition is necessary, as otherwise ‘small arrays’
can be always treated as exceptional arrays by the grammar we look at.

Consider nowL′ = L−�L−�L. We claim thatL′ cannot be written as the row
concatenation of any two RMG languages. Assume the contrary. Then, discuss
some picture P sufficiently big not to be possibly treated by the hypothetical pair
of grammars G1 and G2 (with L′ = L(G1) � L(G2)) as a special case. Also, we
assume that the two vertical lines are sufficiently far apart in P . Hence, there are
P1 ∈ L(G1) and P2 ∈ L(G2) such that P = P1�P2. As the two vertical lines are
far apart, there must be (at least) one picture, say, P1, that is still sufficiently big
and contains a vertical line, contradicting interchange arguments. This example
proves the strictness of the following inclusion (the inclusion itself is trivial).

Lemma 51. (L(RMG) � L(RMG)) ((L(RMG) � L(RMG) � L(RMG)) .

Corollary 35. (L(BFA) � L(BFA)) ((L(BFA) � L(BFA) � L(BFA)) .

This argument can be generalized to k-fold catenations, as say, P1, containing two
vertical lines exists simply by pigeon hole.

155

Theorem 49. For each k ≥ 1, we have:
L(RMG)k (L(RMG)k+1, as well as L(BFA)k (L(BFA)k+1.

As (fixed) finite catenations of a single type can be expressed by both language
families L�−`,�−r((R : R)AG) and L�−`,�−r((R : R)AG), we can also conclude:

Corollary 36. For any k ≥ 1,
L(RMG)k ∪ L(BFA)k (L�−`,�−r((R : R)AG) ∩ L�−`,�−r((R : R)AG) .

In [106, Theorem 3.1], it is claimed that L((R : R)AG) is closed under union,
without giving any proof. We prove that it is not the case in the following.

Theorem 50. L((R : R)AG) is not closed under union.

Proof. Let us reconsider the array language L = {0}+
+ � {1}+ � {0}+

+ that can
be described by some RMG. Let L̂ = (T (L) � L � T (L)) � L � T (L) . This
language can be described by some (R:R)AG that starts puzzling together the
pieces from the left lower corner. Namely, consider the �-left, �-right (R:R)AG
specified by: VN = {S,A,B,C,AT}, VI = {XL, XT} with π(XL) = L and
π(XT) = T (L). Here L ∈ L(RMG) and T (L) ∈ L(BFA) (by Theorem 24),
PN = {S → CXT , C → BXL, B → XTA,A → XLAT} and PI = {AT →
XT}. Notice that

H(L̂) = T (L) � L� (T (L) � L� T (L)) . (6.1)

Assume that there is some (R:R)AG G generating L̂ ∪H(L̂). Consider a picture
P from H(L̂) that is sufficiently big and that is generated by G starting in the left
lower corner. We also assume that subpictures that compose P by the description
of H(L̂) are sufficiently big not to be treated as special cases by G.

In process of generating P , there will be first phase where left lower subpicture of
P consisting of 0s only is generated (possibly, this gives empty picture), before a
BFA- or RMG-image is put on top or to the right of the hitherto produced picture,
introducing some 1s for the first time. We have to distinguish two cases.

We give a sample element from H(L̂) that explains the two cases in pictorial form
in Fig. 6.2.

(i) Assume that the first 1s are generated in a subpicture put on top of the initial
block of zeros. This could describe some lower part of subpicture T (L), possibly
with some zeros coming from L (on its right). The grammar will proceed, until
the first 1s of the long vertical line are produced.

156

Now, a phase must follow in which all but possibly a few of topmost 1s in this
vertical line are produced, as otherwise there is no way to communicate to the
position of the 1, which would formally lead to some interchange arguments.

Having derived this, it also means that arbitrarily large pictures from {0}∗+ �
(T (L) � L � T (L)) have to be produced by some RMG or some BFA, which is
impossible, as such pictures contain both horizontal and vertical lines in arbitrary
position.

(ii) Assume that the first 1s are generated in a subpicture put to the right of the
initial block of zeros. If this happened in the first few rows (counted from the
bottom border), then this part can still count into the initialization phase.

However, generating 1s of this vertical line later is not possible without running
into interchange arguments again, as there is no possibility to communicate the
exact position of the vertical line when continuing towards the top border, unless
this line (up to few positions) marks the borderline of the generation process. In
that case, we arrive at a situation similar as in Case (i), so that we again arrive at a
contradiction.

From the argument of the previous theorem, in particular observing Eq. (6.1), we
conclude:

Corollary 37. NeitherL�−`,�−r((R : R)AG) norL�−`,�−r((R : R)AG) is closed
under half-turn.

By way of contrast, we like to mention the following positive result:

Lemma 52. L�−`,�−r((R : R)AG) and L�−`,�−r((R : R)AG) are closed under
union.

6.2 Regular Grammars, Isometric Array Languages
To determine the relation between (R:R)AGs and IRAGs more precisely, recall the
definition of IRAG (see Definition 54). As already mentioned in the introduction
of this chapter, BFAs can be interpreted as IRAGs when considering the LRect
interpretation. Namely, BFAs can be seen as IRAGs that are bound to first move
(several steps) east, then one step south, then (several steps) west, then one step
south, and again (several steps) east, etc. (*)

Remark 21. As the textbook construction for showing closure under union for
grammar-based language families works for IRAGs as well, it is clear that we can

157

Figure 6.2: Case (i) (on left) and Case (ii) (on right) for a sample element inH(L̂)

have a finite number of case distinctions in the constructions for IRAGs that we
provide in the following.

Definition 60. Semi-holes are the pattern that has some blank symbol surrounded
by three terminal symbols and one blank symbol on its four sides, or two terminal
symbols and two blank symbols. Holes are defined to be the pattern that has some
blank symbols completely surrounded by terminal symbols or semi-holes.

A picture that explains semi-holes is in Fig. 6.3. Our first non-trivial result states
that IRAGs simulating BFAs can be indeed self-delimiting in the sense that for
the simulating grammar G, LRect(G) equals the set of terminal arrays derivable
in G that contain no holes or semi-holes. Hence, at least the outer shape of such
arrays is always rectangular. This is interesting as the rectangle-filter within the
definition of LRect(G) might appear a bit artificial.

Lemma 53. Each BFA can be simulated by some self-delimiting IRAG.

Proof. We can only sketch the basic ideas of the simulation. Assume we are given
an IRAGGwith the movement restrictions explained in (*) simulating some BFA.
Our simulation will work for arrays from a certain number of columns onward
only, depending on the number of non-terminals of G. However, IRAGs that are
bound to generate arrays with a limited numbers of columns only can easily keep
track of this number (within their non-terminals), so that a self-delimiting version
of them is straightforward to obtain. Also, if the arrays have only few rows, self-
delimiting IRAGs can be built that simulate the generation process, basically by
moving first south, then turning around (one step to east), moving north, again
one step to east, moving south, etc. The new non-terminals have to keep track of

158

Figure 6.3: Semi-holes

all non-terminal information of the rows that were ‘half-started’, but as there are
only few rows to keep track of, this is possible.

We need this minimum number of columns as well as rows, as we are going to
codify state information in a certain pattern of shapes. We are explaining this only
to some more extent for the right border (that should be straight in the end), but
by marking the upper right corner with special coding, one can think of ‘walking
around’ the current (already straight) north border in order to stratifying the left
border in a similar way as we explain for the eastern (right) border.

Let us (only) describe the grammar that is responsible for generating arrays with
a number of rows of the form 6k + 1 and a number of columns bigger than some
number ν like q6, where q is the number of states. Assume we are simulating the
first move to the right of the BFA (as indicated in the preceding paragraph, this
will be rather the second move to the right in the overall simulation). At some
point, the generation process guesses to move south, not really completing the
first row, actually leaving out two squares to fill. As finally we are going to fill in
the missing parts of the array, we have to store within the picture what the non-
terminal was when we decided to move down, and what the non-terminal was that
we guessed to continue with after moving down. Next, we are moving left by a
certain number of steps s that codify both the two states mentioned before and

159

four more states for the next four rows. We are storing the number s that was
guessed in our non-terminal, as this allows us to recover the state information of
the first six rows. Then, we move down again by three steps to row number five.
We move to the east again by s steps, move down on row six and then move back
by s + 1 steps again, moving upwards until row number two. As s was stored,
we can correctly simulate first the transitions on row number six, and then the
transitions on the other four rows. Of course, we need to store (again) the correct
‘current’ non-terminal informations for rows two through six.

Having arrived at second row, we continue simulating the BFA as in traditional
way, as we know the current non-terminal on the second row, so that we can move
left. Having arrived at the left border (whose existence we assume for now), we
move south and continue to move eastward, finally verifying that we reached the
non-terminal that was guessed for the third row, continuing to move west on the
fourth row, east on the fifth row and west again on sixth row, each time verifying
the correctness of the guessed non-terminals (as well as the movements made so
far) when turning downwards on the east side.

Of course, it could have happened that we turned south prematurely, but this will
finally cause some left-over holes or semi-holes. We then continue the whole
process in rows seven through twelve, again coding another six-tuple of states.
Instead of starting a new cycle when moving eastwards on row 6k + 1, grammar
can likewise decide to terminate. Then, it will start to move up and guess the states
for the five penultimate rows that were originally part of the guess when moving
down. This guess is now verified by trying to fill in the part that was left over on
the move down. Only if the guesses are completely verified, the simulation can
continue moving up without leaving holes or semi-holes. Finally, we can end our
simulation in the upper rightmost corner of some rectangle around the array or
in one of the two neighboring squares. This scanning strategy is also depicted in
Figure 6.4. Modifications of this strategy can be developed if the number of rows
is not of the form 6k + 1.

Finally, if the left border is also to be drawn as a straight line, it is clear at least
in the small example shown in Figure 6.4 that one could walk in row zero (top
row) to the left and, assuming that at the left side a similar encoding strategy was
performed as in the right side, then we can again verify this by scanning along the
encodings on the left side, as well.

For several of the following simulations, a simpler condition is indeed sufficient,
assuming that there is some fixed left border. In following statement, the corner
of a rectangular array is either one of four squares that has two blank neighbors, or

160

• • • • • • • • ↓
↓ • • • • • • • •
• • • • • • • • ↓
↓ • • • • • • • •
• • • • • • • • ↓
↓ • • • • • • • •
• • • • • • • • •

• • • • • • ↓ → •
• • • ↓ • • • ↑ ←
• • ↑ ↓ • • • • ↑
• • ↑ ↓ ↑ • • • •
• • ↑ • • • ↓ → ↑
• • ↑ • • • • ↑ ←
• • • • • • • • ↑

To the left, two different scanning strategies are
depicted. If there are only few columns, the usual
strategy to first move east, then west on second
row etc. can be used. With many columns, we
move down a bit earlier in Phase 1 to encode the
non-terminals. This encoding is scanned in Phase
2 (we now use violet and orange for west and
east).

Figure 6.4: How an IRAG can scan BFA pictures, keeping track of the right border

one of the (in total at most eight) squares of the array that are neighbors of the four
previously described squares. This notion of a corner is somewhat more flexible
than that of a square having two blank neighbors, and this is necessary because
of the well-known chessboard effect: When scanning a rectangular chessboard,
one always moves from a black square to a white square or vice versa. Hence, for
instance, it is not possible to start in the leftmost upper square on a 8 × 8 board
and move to the rightmost lower square, visiting all squares of the board.

Lemma 54. Each BFA can be simulated by some IRAG that scans a picture with
a fixed left border, starting in any corner and ending in a different corner of the
array, assuming that the picture is big enough.

Proof. Let us consider starting in the leftmost upper square of the array first. We
already saw in the previous lemma how to end in the rightmost upper corner. By
duplicating the technique to build the right border, it is also possible to move down
once more in a third phase, ending up with a straight right side and in the rightmost
lower corner. Finally, it would be then also possible to move to the left once more
in row 6k + 2 (assuming the situation described to some detail in the previous
proof). By the closure properties of BFA languages, say, regarding reflections, it
would be also possible to start scanning in any other corner of the array. Also, only
slight modifications are necessary to start the scan in the leftmost upper corner that
is not necessary the leftmost upper square according to the preceding discussions.
The size restriction in the formulation of the lemma is due to the fact that in
particular the scanning of single-row or single-column pictures is not possible
under the mentioned conditions.

As RMG languages are rotations of BFA languages by [35], analogous statements
hold for scanning pictures of RMGs with IRAGs, as well. Also, assuming that
one of the borders is already straight, we can maintain the straightness of the
other picture borders. We are now ready to present the main result of this section.

Theorem 51. L((R : R)AG) (LRect(IRAG).

161

Proof. Assume in the following (without loss of generality, as we can give such
similar arguments otherwise) that we associate row catenation to right-linear rules
and consequently column catenation to left-linear rules, a situation depicted in an
example in Fig. 6.1. By Remark 19, the picture is puzzled together from pieces of
BFA and RMG arrays starting from the leftmost lower of these pictures up to the
rightmost upper of these pictures.

One can keep track of derivation, moving bottom-up along the derivation tree,
within the non-terminal of the simulating IRAG whose working strategy we are
going to sketch now. We are first assuming that all the pictures are big enough for
the scanning strategies as described in the previous lemma.

We can start simulation in the leftmost lower corner of the leftmost lower picture
and end the scan in the rightmost upper corner of that subarray. Notice that the
left border of this subarray is implicitly given by the filter function of the LRect
operator. When doing the scan, we can also guarantee that the rightmost border of
this subarray is properly maintained. If the next subarray to be scanned according
to the derivation tree is combined via column catenation, then we leave the first
subarray either via the rightmost upper square or via the square south to it. Hence,
we would enter the second subarray in its leftmost upper corner. As the first array
maintained its right border straight, the left border of this second array is straight,
as well. We can hence scan the second subarray, guaranteeing all its borders to
be straight, and leaving it in the rightmost upper corner. Similarly, if the second
subarray would have been combined via row catenation, we would leave the first
subarray either via the rightmost upper square or via the square west to it. So,
we can scan this second subarray from its rightmost lower to its rightmost upper
corner, maintaining all borders straight.

Inductively, we can assume that we are leaving the ‘last’ subarray in its upper
right corner, considering the two cases of the row or column catenation as in the
previous discussion. As also by induction, the left and lower borders in particular
are maintained to be straight, the whole construction will yield a valid scan using
the LRect operator.

Let us briefly discuss the situation when some of the pictures are too small to be
scanned in the sketched way. In fact, this is only a formal problem for single-row
or single-column pictures. But, it is not hard to see that such exceptional pictures
can be merged with neighboring pictures, as (arguing more formally) the language
of all single-row or single-column pictures filtered out from some RMG language
is also a BFA language and vice versa, so that we can use the known closure
properties of these language families to slightly modify the original (R:R)AG to

162

avoid such situations altogether. The strictness of the inclusion follows from the
fact that L((R : R)AG) is not closed under union whereas LRect(IRAG) is closed
under union.

We would like to mention the following example by attempting to define an IRAG,
as it is argued in [106] that no (R:R)AG can generate this example language.

Example 27. Consider the array language

L =

x
•
x

,
• x
• x
x •
• x
x x

,

• • x
• • x
• x x
• x •
x • x
• x x
x x x

,

• • • x
• • • x
• • x x
• • x x
• x x •
• x • x
x • x x
• x x x
x x x x

,

• • • • x
• • • • x
• • • x x
• • • x x
• • x x x
• • x x •
• x x • x
• x • x x
x • x x x
• x x x x
x x x x x

,

• • • • • x
• • • • • x
• • • • x x
• • • • x x
• • • x x x
• • • x x x
• • x x x •
• • x x • x
• x x • x x
• x • x x x
x • x x x x
• x x x x x
x x x x x x

, . . . ,

being the set of all pictures as given in [106] [Example 2.4]. Let us name (call)
the elements in the language L as Mi, i ≥ 1. So, Mi has i columns. We illustrate
the IRAG production rule application process for M8 and M9 in Fig. 6.5.

One can see the pattern of the IRAG production rule application process for both
odd and even arrays for the general case starting from M8 and M9 with the help
of the pattern that we have described in Fig. 6.5.

The pattern we have in generation of the pictures in both odd arrays and even
arrays ensures that the production rules of the required IRAG has no chance in
generating arrays that are not in the language L. We did not give the formal
grammar rules as it will have many non-terminals and it is hard to illustrate and
write them all in a compact way, we skip the details and instead we give the idea
as follows:

First of all, we did not start our pattern from the smallest arrays, instead we did
start from M8 for the even picture and from M9 for the odd picture, the reason
behind is that we need a certain minimum size to make the construction work, but
it is easy to give special grammars for the smaller examples that can be finally
combined into a bigger grammar for L; also see Remark 21.

The production rules of the grammar for the larger pictures has 5 phases which
are described in following. Notice that there are deterministic, nondeterministic
phases. The deterministic phases are basically creating special structures, like
keys (colored in blue) and locks (colored in orange and green), that guarantee
that no other malicious derivations are possible.

163

• → • → • → • → • → • →| • x
↑ ↓ ↓
• • ← • ← • ← • • ← • x
↑ ↓ ↑ ↓ ↓
• • → • → • • • x ← x
↑ ↓ ↑ ↓ ↓
• • ← • ← • • • x → x
↑ ↓ ↑ ↓ ↓
• • → • → • • x → x x
↑ ↓ ↑ ↓ ↓
• • ← • ← • • ←| x ← x x

↑ ↓
−
↓

• • → • • ← x x ← x x
↑ ↓ ↓ ↑ ↓ ↑ ↓
• • ← • • x x x ← x
↑
− ↓ ↑ ↓
• ← • ← • x x x x → •

↑ ↓ ↑ ↓ ↑
−
↓

• → • → • x x ← x • x
↑ ↓ ↑ ↓
• • ← x x x → • → x x
↑ ↓ ↑ ↓ ↑ ↓
• • x |← x • x ← x x
↑ ↓ ↑ ↓ ↑ ↓
• x x → • → x x x x
↑ ↓ ↑ ↓ ↑ ↓
• x → • x ← x x x x
↑ ↓ ↑ ↓ ↑ ↓
x • ← x x x x x x
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
• x x x x x x x
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
x ← x x |← x x ← x x ← x

• → • → • → • → • → • → • →| • x
↑ ↓ ↓
• • ← • ← • ← • ← • • ← • x
↑ ↓ ↑ ↓ ↓
• • → • → • → • • • x ← x
↑ ↓ ↑ ↓ ↓
• • ← • ← • ← • • • x → x
↑ ↓ ↑ ↓ ↓
• • → • → • → • • x → x x
↑ ↓ ↑ ↓ ↓
• • ← • ← • ← • • ←| x ← x x

↑ ↓
−
↓

• • → • → • • ← x x ← x x
↑ ↓ ↓ ↑ ↓ ↑ ↓
• • ← • ← • • x x x x
↑ ↓ ↓ ↑ ↓ ↑ ↓
• • → • → • x x x x ← x
↑ ↓ ↓ ↑ ↓
• • ← • ← • x x x x → •

↑ ↓ ↓ ↑ ↓ ↑
−
↓

• • • ← x x x ← x • x
↑ ↓ ↓ ↑ ↓ ↑ ↓
• • • x x x → • → x x
↑
− ↓ ↑ ↓ ↑ ↓
• ← • x x ← x • x ← x x

↑ ↓ ↑ ↓ ↑ ↓
• → • x x → • → x x x x
↑ ↓ ↑ ↓ ↑ ↓
• x |← x • x ← x x x x
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
• x → • → x x x x x x
↑ ↓ ↑ ↓ ↑ ↓
x ← • x ← x x x x x x

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
• → x x x x x x x x
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
x ← x |← x x ← x x ← x x ← x

Figure 6.5: How to scan the picture M8 (on the left) and M9 (on the right)

The nondeterministic phases fill in the remaining parts of the rectangular shape
by sweeping to and fro arbitrarily often. Without such nondeterministic phases,
only a finite number of arrays could be created.

First Phase: This is a deterministic phase, starts from the upper rightmost corner
moves two steps down, then makes a curvy move in order to create the first key,
then it goes two steps down again. The end of this phase is shown by − in the
pictures in Fig. 6.5.

Before describing the second phase observe that the picture Mi in this language
has a diagonal filled with i •’s separating two regions of x of the give picture,
for instance in M9 it is the diagonal that has nine •’s. Let us call this diagonal a
separating diagonal.

164

Second Phase: This is a nondeterministic phase. It continues after the first phase
to create the x’s and •’s that are available above the separating diagonal except
those that follow the staircase kind of pattern which we see in the next phase.
These x’s and •’s are created by moving up and down, going west in each change
of direction. Also, we can identify two sub-phases: first, only x’s are generated,
then the sweep southwards is always started by two •’s.

There are two types of guesses in this phase: when moving up or down, it has to
be guessed when to change directions, and finally we have to start the next phase.
These guesses should be correct, as otherwise there will be holes or semi-holes in
the picture, assuming that we are not violating the rectangular outer shape after
all. We do not have such arrays in our language. There are minor differences
between the generation of •’s in the even and odd case as evident from Fig. 6.5.

Third Phase: In this phase grammar first creates the second key then generates a
staircase pattern which is again deterministic up to the decision where to end the
staircase. There are some differences between the creation of the keys and in the
staircase movements in the even and odd case as evident from Fig. 6.5, where we
again marked the beginning and the end of this phase.

Fourth Phase: After finishing the staircase pattern we allow the rules to fill the x’s
that are available below the separating diagonal except those that were part of the
staircase pattern. This is done in a nondeterministic, sweeping fashion, guessing
both the times when to turn around and the time when to leave this phase. Wrong
guesses will again destroy, desired rectangular structure or leave (semi-) holes.

Fifth Phase: This phase has 4 stages,
in the first stage deterministically we create the second lock as described in the

pattern and we mark by strokes where the deterministic phase ends, going beyond
the lock structure. We also highlighted the main part of the lock by using orange
and green. It should be clear that only the key pattern that was created at the
beginning of the third phase fits here. After this deterministic stage we continue
with

the second stage, when nondeterministically the grammar rules will generate
all the •’s to reach the top left corner and then turn right. This also draws the left
border and the upper border of the picture. If the turn is not correctly guessed,
the first key-lock structure will be missed which is tested

in the third stage where the rules generate the first lock deterministically
(marked with strokes again), and finally

165

in the 4th stage the grammar rules sweep west-east creating the •’s after the
third stage as described in the pattern and stops exactly with required structure
next to the second key-lock structure that was described before.

These five phases apply for both odd and even pictures. Now let us justify that
the pattern is ensuring the required structure of the pictures in L. We already
mentioned the role of deterministic steps that created the two key-lock structures.
Moreover, notice that the sweeps of the second and of the fifth phase are both
vertically and horizontally designed in a way that prevents deviating from the
intended pattern.

We can now also complete our study on the relation of string languages to the
array languages studied in this chapter in the following.

Theorem 52. For a language of single-row (column) arrays L, the following
statements are equivalent.

1. L corresponds to a regular string language.

2. L ∈ L(RMG) ∩ L(BFA).

3. L ∈ L�−`,�−r((R : R)AG) ∩ L�−`,�−r((R : R)AG).

4. L is generated by some (R:R)AG.

5. L is generated by some IRAG.

Proof. The proof follows like a circular fashion via Lemma 48, Corollary 34,
Remark 20, Theorem 51 and Lemma 49.

We conclude this chapter by presenting a survey of hierarchical relations between
the considered language families in Fig. 6.6 (here arrows mean strict inclusion,
arrows that follow by transitivity are omitted, no arrows mean incomparability,
otherwise). All these results can be found in this chapter. Notice that L(BFA)
and L(RMG) � L(RMG) are incomparable, as in particular the array language
{0}+

+ � {1}+ � {0}+
+ � {1}+ � {0}+

+ ∈ L(BFA) \ (L(RMG) � L(RMG)).
Similarly, L(RMG) and L(BFA) � L(BFA) are incomparable.

166

LRect(IRAG)

L((R : R)AG) = L�−`,�−r((R : R)AG) ∪ L�−`,�−r((R : R)AG)

L�−`,�−r((R : R)AG) L�−`,�−r((R : R)AG)

L�−`,�−r((R : R)AG) ∩ L�−`,�−r((R : R)AG)

L(BFA) L(RMG)

L(BFA) ∩ L(RMG)

(L(RMG)� L(RMG))(L(BFA)� L(BFA))

Figure 6.6: The world of rectangular array language families

167

Chapter 7

Destination: Further Directions

Chapter 2: Eulerian Trails in the Chomsky Hierarchy
We have considered undirected graphs, one can consider directed graphs and find
new results in the formal language perspective that we have approached in this
chapter. We did not study the colouring of Eulerian trails (graphs) which can be
studied further. We have introduced few normal forms in [28] one can continue
this research with some or other normal forms, for instance; edge-crossing free
Eulerian trails (tours).

We have considered only Eulerian graphs, but one can think of other variants
of graphs, for instance; Hamiltonian graphs, Star of David, etc. Also we have
not considered 3-dimensional (or n-dimensional) Eulerian graphs (trails) are open
for research. Also the concept of trajectories with respect to word representation
of graphs can be applied and verified for the (similar) graphs that we have been
considered.

We do not have any proper practical applications, implementations, or the real
world usage with these concepts that have been introduced in this chapter, for
instance; some of the transport modes are Eulerian trails, sometimes tours.

Chapter 3: Jumping Finite Automata
As JFA languages have many more connections with the classical approaches of
formal languages [32] considerably deviates and adds more on to [29]. It is hard
to trace back all origins and names of the concepts introduced so far. We only
mention a few of these sources, also to facilitate finding the names of the concepts
and understanding the connections to other parts of mathematics and computer
science.

168

We do not give a survey on all the neighboring areas. Rather, we give some
impression about the richness of interrelations in section ‘Discussion of Related
Concepts’ in [32]. We have related the concept of jumping finite automata to the,
actually quite well-studied, area of expressions involving shuffle operators. This
immediately opens up further questions, and it also shows some limitations for
this type of research programme.

• Is there a characterization of the class of languages accepted by general
jumping finite automata in terms of expressions?1

• The original motivation for introducing variants of expressions involving
shuffle operators was to model the parallel features from the programming
languages; see, e. g., [13, 83, 104].

It is well-known that adding all the according features immediately lead to
expressions that are computationally complete, i. e., they characterize the
recursively enumerable languages [5].

Notably, expressions with limited nesting of iterated catenation, iterated
shuffle operators (as provided by our main normal form results for the α-
SHUF expressions) have a descriptive power limited by Petri nets (without
inhibitor arcs), so that in particular the non-emptiness problem for such
limited expressions is decidable (in contrast to the general situation), confer
[4, 23, 69, 82].

Yet, decidability questions for Petri nets are quite hard, so that in any case
the study of restricted versions of shuffle expressions or related devices is
of considerable practical interest. Hierarchies as the one explained in [40]
should inspire similar research for α-SHUF expressions.

• The whole area seems to be related to membrane systems, also known as P
systems. The reason is that membrane computing often reduces to multiset
computing, which is just another name for dealing with subsets of N|Σ|.
These connections are explained by Kudlek and Mitrana in [73].

Summarizing, the study of expressions involving the shuffle operation, as well
as of variants of jumping automata, still offers a lot of interesting questions, as it
is also indicated in the recent survey of Restivo [96].

1We claimed to have found such a characterization at the German Formal Language community
meeting in 2014, but this claim turned out to be flawed.

169

Chapter 4: Scanning Automata and Grammars
Scanning pictures line by line ‘as the ox turns’ is for sure not a new invention
in image processing. For instance, in [42], boustrophedon scanning is used as a
preprocessing step for the optical character recognition task related to the number
plates. Also, this strategy is one kind of the standard way to compose the larger
pictures from smaller ones, called snake by rows; see https://imagej.net/
Image_Stitching.

We have tried to derive a formal model that does mirror this strategy. On the
one hand, we have shown that this formal model is pretty stable, as it has various
characterizations, and it is even linked to RML, one of the earliest formal models
of picture processing. On the other hand, there are quite some natural operations
under which we would hope such a model to be closed, as, for example, transpose
(which, for BFA, is not the case, see Lemma 42).

There are more powerful models than ours that have been proposed for picture
processing, like 4-way NFAs or OTAs; see [41]. However, OTAs are related to our
model in the sense that they process a picture diagonal by diagonal, whereas our
model process it row by row. The additional power seems to come from the fact
that during a computation, OTAs label positions of the pictures by states and this
labelling depends not only on the current symbol, but also on the state labels of the
upper and left neighbours (i. e., OTAs are special versions of cellular automata).
This means that information can be passed from top to bottom in every single
column, whereas BFA can only accumulate information of a whole row. Notice
that, when we remove this option from the way OTAs work, we arrive at a model
that is possibly even closer to ours, the only difference being the way images are
scanned. Clearly, diagonal scans can (now) detect diagonal lines, but now there is
no way to detect vertical or horizontal ones, as would be the case for RML or BFA.

Conversely, we have seen that diagonals cannot be detected by neither RML
nor BFA. Possibly, a more thorough study of different scanning schemes from the
point of view of the (typical) classes of images that can be accepted would lead to
new insights telling how images should be scanned by computers in practice.

Also in the context of these automata, boustrophedon scanning modes have
been discussed, but mostly to study the notion of determinism in connection with
Wang tiles; see [76, 77, 78]. The more restricted models of 3-way NFAs or 3-
way DFAs do possess a decidable emptiness problem, but the decision procedure
seems to be double-exponential, as explained in [93].

170

https://imagej.net/Image_Stitching
https://imagej.net/Image_Stitching

As explained in Chapter 4, it is possible to define a restriction of 3-way NFAs
(or also 3-way DFAs) that captures (exactly) the class of BFA-pictures.

From a formal language point of view, using two heads, scanning row by row
from left to right and right to left in parallel corresponds to even-linear languages
as introduced in [2] and further generalized in [38, 25, 108, 112]. We mention bio-
inspired models of computation that are closely linked to these language classes,
as in [87]. Instead of heads, one could likewise use pebbles for marking.

Also, learnability issues might be of interest, as only very few results are
known about learning picture languages, see [109] as one example. In this context,
the proven non-existence of (efficiently computable) minimum-state automata
poses some problems.

Another idea originating from Inoue, Takanami and Taniguchi [56] is to scan
pictures twice, say, first with a BDFA and then let again another BDFA process
the quarter-turned picture. Such a processing model is obviously able to accept
L(RMG) ∪ L(BFA) and enjoys the same decidability properties as BDFAs. It
might be good to work this out more in detail, as it could be a quite powerful,
yet practically relevant formal model of picture processing. Observe that we get
closer to 4-way automata in this way.

As we also touched the area of isometric array languages, it might be good
to address the decidability and complexity questions of geometric or topological
problems in this context (that cannot be meaningfully done for the non-isometric
case), for instance, regarding the number of holes, as this was done in the very
beginning of digital picture processing, see [103], but it seems to, ever since, have
been neglected, although related combinatorial questions are treated sometimes,
see [11].

In both of isometric world and non-isometric world, it might be an idea to
approach different discrete topologies of the plane, as frequently discussed in the
literature on discrete geometry, for instance, hexagonal or triangular connections;
see [70, 88] for recent discussions. Of course, the possible movements of finite
automata on such topologies would have to be adapted. As another direction of
future research, notice that there have been lots of studies on the descriptional
complexity of regular string languages (see [49]), but not much has been done
about a genuinely two-dimensional theory of descriptional complexity; see [94].
For instance, what about the simple question whether or not the cubic or quadratic
blow-ups in the transformations between the models treated (BFAs, RFAs, RMGs,
IRAGs) are really necessary?

171

Lots of research remains to be done here in order to fully understand these
simple models of image processing. Finally, our considerations might bear some
consequences on several models designed for string processing. We now sketch
some connections to so-called sweeping and rotating automata, as discussed in
[62].

Sweeping automata process strings by alternating reading directions at the
end markers, while rotating automata continue at the left end of the word when it
has detected the right end marker. In contrast to two-way automata, they cannot
change directions or process positions more often in any other way.

Finally coming back to array languages, let us mention that we are not aware
of any other studies on automata minimization apart from the ones that we have
mentioned. This opens up venues for future research.

Chapter 5: Picture Transforming Automata
We hope that simple finite automata models that we presented in this chapter can
form a starting point to bring these syntactic ideas back into the practice of image
processing. This is also why we studied seemingly simplistic working modes of
such automata, including their use in image transformations.

We also like to mention that a student of ours has done the implementing of
the machine transformation algorithms that we showed to prove closure properties
of GBFA languages. This software will be available on request.

A possible further direction of research could be to integrate these models
into pattern recognition algorithms. As exhibited by Flasiński in [39], this would
be necessitating the development of the Grammatical Inference algorithms. In
this context, it looks that we have to overcome the following technical problem:
mostly, learners converge to canonical hypotheses like minimum-state automata
and hence, efficient learners also comprise efficient state minimization algorithms.
However, we have the following theorem in [35]

Theorem 53. It is NP-hard to decide, given some BDFA M = (Q,Σ, R, s, F,#,
�) on some binary input alphabet Σ = {a, b}, whether or not there is an equiva-
lent BDFA M ′ with only one state.

This result seems to pose some difficulties in applying Grammatical Inference
techniques to Syntactic Pattern Recognition in the context of picture scanning

172

automata. It also indicates some limitations to the modular design approach of
picture processing automata.

Chapter 6: Regular Grammars for Array Languages
Extending syntactic descriptions from the one- to the two-dimensional world is
still an exciting topic, offering quite a number of open questions. In our opinion, it
is still unclear what the ‘right’ extension is. This type of discussion was somehow
set to an end by developing quite a number of mutually equivalent mechanisms of
regular picture languages in the 1990s.

However, as even the simplest decision problems as mostly as, turn out to be
undecidable for these (basically due to the possibility to simulate Turing machine
carpets), it is still an open research area to present mechanisms that are simple
enough to have nice algorithmic properties and still powerful enough to be useful
for practical purposes. Also, understanding better how the various mechanisms
interrelate, as undertaken is an approach to classify these mechanisms.

173

Bibliography

[1] F. Álvaro, J.-A. Sánchez, and J.-M. Benedı́. Recognition of on-line hand-
written mathematical expressions using 2D stochastic context-free gram-
mars and hidden Markov models. Pattern Recognition Letters, 35:58–67,
2014.

[2] V. Amar and G. Putzolu. On a family of linear grammars. Information and
Control (now Information and Computation), 7:283–291, 1964.

[3] M. Anselmo, D. Giammarresi, and M. Madonia. New operations and reg-
ular expressions for two-dimensional languages over one-letter alphabet.
Theoretical Computer Science, 340(1):408–431, 2005.

[4] T. Araki, T. Kagimasa, and N. Tokura. Relations of flow languages to Petri
net languages. Theoretical Computer Science, 15:51–75, 1981.

[5] T. Araki and N. Tokura. Flow languages equal recursively enumerable
languages. Acta Informatica, 15:209–217, 1981.

[6] M. A. Armstrong. Groups and Symmetry. Springer-Verlag, 1988.

[7] J. Beauquier, M. Blattner, and M. Latteux. On commutative context-free
languages. Journal of Computer and System Sciences, 35(3):311–320,
1987.

[8] B. Bérard. Literal shuffle. Theoretical Computer Science, 51:281–299,
1987.

[9] J. Berstel, L. Boasson, O. Carton, J.-E. Pin, and A. Restivo. The expressive
power of the shuffle product. Information and Computation, 208(11):1258–
1272, 2010.

[10] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North
Holland, 1976.

174

[11] V. E. Brimkov, A. Maimone, G. Nordo, R. P. Barneva, and R. Klette. The
number of gaps in binary pictures. In G. Bebis, R. D. Boyle, D. Koracin,
and B. Parvin, editors, Advances in Visual Computing, First International
Symposium, ISVC, volume 3804 of LNCS, pages 35–42. Springer, 2005.

[12] M. Cadilhac, A. Finkel, and P. McKenzie. Bounded Parikh automata. Inter-
national Journal of Foundations of Computer Science, 23(8):1691–1710,
2012.

[13] R. H. Campbell and A. N. Habermann. The specification of process syn-
chronization by path expressions. In E. Gelenbe and C. Kaiser, editors,
Operating Systems OS, volume 16 of LNCS, pages 89–102. Springer, 1974.

[14] C. Choffrut, A. Malcher, C. Mereghetti, and B. Palano. First-order log-
ics: some characterizations and closure properties. Acta Informatica,
49(4):225–248, 2012.

[15] R. S. Cohen. Star height of certain families of regular events. Journal of
Computer and System Sciences, 4:281–297, 1970.

[16] R. S. Cohen and J. A. Brzozowski. General properties of star height of reg-
ular events. Journal of Computer and System Sciences, 4:260–280, 1970.

[17] C. R. Cook and P. S.-P. Wang. A Chomsky hierarchy of isotonic array gram-
mars and languages. Computer Graphics and Image Processing, 8:144–
152, 1978.

[18] L. C. Eggan. Transition graphs and the star-height of regular events. The
Michigan Mathematical Journal, 10(4):385–397, December 1963.

[19] A. Ehrenfeucht, D. Haussler, and G. Rozenberg. On regularity of context-
free languages. Theoretical Computer Science, 27:311–332, 1983.

[20] S. Eilenberg and M. P. Schützenberger. Rational sets in commutative
monoids. Journal of Algebra, 13:173–191, 1969.

[21] Z. Ésik and W. Kuich. Modern Automata Theory. 2012.

[22] J. Esparza, P. Ganty, S. Kiefer, and M. Luttenberger. Parikh’s theorem: A
simple and direct automaton construction. Information Processing Letters,
111(12):614–619, 2011.

[23] J. Esparza and M. Nielsen. Decidability issues for Petri nets – a survey.
EATCS Bulletin, 52:244–262, 1994.

175

[24] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
academiae scientiarum Petropolitanae, 8:128–140, 1736. Reprint in [67].

[25] H. Fernau. Even linear simple matrix languages: formal language proper-
ties and grammatical inference. Theoretical Computer Science, 289:425–
489, 2002.

[26] H. Fernau and R. Freund. Bounded parallelism in array grammars used
for character recognition. In P. Perner, P. Wang, and A. Rosenfeld, editors,
Advances in Structural and Syntactical Pattern Recognition (Proceedings
of the SSPR’96), volume 1121 of LNCS, pages 40–49. Springer, 1996.

[27] H. Fernau, R. Freund, and M. Holzer. Regulated array grammars of fi-
nite index. In Gh. Păun and A. Salomaa, editors, Grammatical Models of
Multi-Agent Systems, pages 157–181 (Part I) and 284–296 (Part II). Lon-
don: Gordon and Breach, 1999.

[28] H. Fernau and M. Paramasivan. Formal language questions for Eulerian
trails. In T. Neary and M. Cook, editors, Machines, Computations and Uni-
versality, MCU, volume 128 of Electronic Proceedings in Theoretical Com-
puter Science EPTCS, pages 25–26. Open Publishing Association, 2013.

[29] H. Fernau, M. Paramasivan, and M. L. Schmid. Jumping finite automata:
Characterizations and complexity. In F. Drewes, editor, Implementation
and Application of Automata - 20th International Conference, CIAA, vol-
ume 9223 of LNCS, pages 89–101. Springer, 2015.

[30] H. Fernau, M. Paramasivan, M. L. Schmid, and D. G. Thomas. Scanning
pictures the boustrophedon way. In R. P. Barneva, B. B. Bhattacharya, and
V. E. Brimkov, editors, International Workshop on Combinatorial Image
Analysis IWCIA, volume 9448 of LNCS, pages 202–216. Springer, 2015.

[31] H. Fernau, M. Paramasivan, M. L. Schmid, and D. G. Thomas. Simple pic-
ture processing based on finite automata and regular grammars. Submitted
to Journal of Computer and System Sciences, 2017.

[32] H. Fernau, M. Paramasivan, M. L. Schmid, and V. Vorel. Characteriza-
tion and complexity results on jumping finite automata. Technical Report
arXiv:1512.00482, arXiv, cs.FL, Cornell University, 2015.

[33] H. Fernau, M. Paramasivan, M. L. Schmid, and V. Vorel. Characterization
and complexity results on jumping finite automata. Theoretical Computer
Science, 679:31–52, 2017.

176

[34] H. Fernau, M. Paramasivan, and D. G. Thomas. Regular array grammars
and boustrophedon finite automata. In H. Bordihn, R. Freund, B. Nagy, and
Gy. Vaszil, editors, Eighth Workshop on Non-Classical Models of Automata
and Applications (NCMA 2016); Short Papers, pages 55–63, 2016.

[35] H. Fernau, M. Paramasivan, and D. G. Thomas. Picture scanning automata.
In R. P. Barneva, V. E. Brimkov, and J. M. R. S. Tavares, editors, Computa-
tional Modeling of Objects Presented in Images. Fundamentals, Methods,
and Applications - 5th International Symposium, CompIMAGE 2016, vol-
ume 10149 of LNCS, pages 132–147. Springer, 2017.

[36] H. Fernau, M. Paramasivan, and D. G. Thomas. Regular grammars for array
languages. In R. Freund, F. Mráz, and D. Průša, editors, Ninth Workshop
on Non-Classical Models of Automata and Applications (NCMA), pages
119–134, 2017.

[37] H. Fernau, K. Reinhardt, and L. Staiger. Decidability of code properties.
RAIRO Informatique théorique et Applications/Theoretical Informatics and
Applications, 41:243–259, 2007.

[38] H. Fernau and J. M. Sempere. Permutations and control sets for learning
non-regular language families. In A. L. Oliveira, editor, Grammatical In-
ference: Algorithms and Applications, 5th International Colloquium ICGI
2000, volume 1891 of LNCS/LNAI, pages 75–88. Springer, 2000.

[39] M. Flasiński. Chapter 1.1; syntactic pattern recognition: paradigm issues
and open problems. In C. H. Chen, editor, Handbook of Pattern Recognition
and Computer Vision, 5th Edition, pages 3–25. World Scientific, 2016.

[40] N. E. Flick and M. Kudlek. On a hierarchy of languages with catenation and
shuffle. In H.-C. Yen and O. H. Ibarra, editors, Developments in Language
Theory, DLT, volume 7410 of LNCS, pages 452–458. Springer, 2012.

[41] D. Giammarresi and A. Restivo. Two-dimensional languages. In G. Rozen-
berg and A. Salomaa, editors, Handbook of Formal Languages, Volume III,
pages 215–267. Berlin: Springer, 1997.

[42] I. Giannoukos, C.-N. Anagnostopoulos, V. Loumos, and E. Kayafas. Op-
erator context scanning to support high segmentation rates for real time
license plate recognition. Pattern Recognition, 43(11):3866–3878, 2010.

[43] S. Ginsburg and S. A. Greibach. Principal AFL. pages 308–338, 1970.

177

[44] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas, and lan-
guages. Pacific Journal of Mathematics, 16(2):285–296, 1966.

[45] S. Ginsburg and E. H. Spanier. AFL with the semilinear property. Journal
of Computer and System Sciences, 5:365–396, 1971.

[46] A. C. Gómez and G. I. Álvarez. Learning commutative regular languages.
In A. Clark, F. Coste, and L. Miclet, editors, Grammatical Inference: Algo-
rithms and Applications, 9th International Colloquium, ICGI, volume 5278
of LNCS, pages 71–83. Springer, 2008.

[47] S. Greibach. Remarks on blind and partially blind one-way multicounter
machines. Theoretical Computer Science, 7:311–324, 1978.

[48] K. Hashiguchi. Regular languages of star height one. Information and
Control (now Information and Computation), 53(3):199–210, 1982.

[49] M. Holzer and M. Kutrib. Descriptional and computational complexity of
finite automata - a survey. Information and Computation, 209(3):456–470,
2011.

[50] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Reading (MA): Addison-Wesley, 1979.

[51] O. H. Ibarra and S. Seki. Characterizations of bounded semilinear lan-
guages by one-way and two-way deterministic machines. International
Journal of Foundations of Computer Science, 23(6):1291–1306, 2012.

[52] K. Inoue and I. Takanami. Closure properties of three-way and four-way
tape-bounded two-dimensional Turing machines. Information Sciences,
18(3):247–265, 1979.

[53] K. Inoue and I. Takanami. Three-way two-dimensional multicounter au-
tomata. Information Sciences, 19(1):1–20, 1979.

[54] K. Inoue and I. Takanami. A note on decision problems for three-way two-
dimensional finite automata. Information Processing Letters, 10:245–248,
1980.

[55] K. Inoue and I. Takanami. A survey of two-dimensional automata theory.
Information Sciences, 55(1-3):99–121, 1991.

[56] K. Inoue, I. Takanami, and H. Taniguchi. Two-dimensional automata with
rotated inputs. Information Sciences, 21(3):221–240, 1980.

178

[57] K. Inoue, I. Takanami, and R. Vollmar. Three-way two-dimensional finite
automata with rotated inputs. Information Sciences, 38:271–282, 1986.

[58] M. Jantzen. Eigenschaften von Petrinetzsprachen. Technical Report IFI-
HH-B-64, Fachbereich Informatik, Universität Hamburg, Germany, 1979.

[59] M. Jantzen. The power of synchronizing operations on strings. Theoretical
Computer Science, 14:127–154, 1981.

[60] M. Jantzen. Extending regular expressions with iterated shuffle. Theoreti-
cal Computer Science, 38:223–247, 1985.

[61] J. Jedrzejowicz and A. Szepietowski. Shuffle languages are in P. Theoreti-
cal Computer Science, 250(1–2):31–53, 2001.

[62] C. A. Kapoutsis, R. Královic, and T. Mömke. Size complexity of rotat-
ing and sweeping automata. Journal of Computer and System Sciences,
78(2):537–558, 2012.

[63] J. Kari and V. Salo. A survey on picture-walking automata. In W. Kuich
and G. Rahonis, editors, Algebraic Foundations in Computer Science - Es-
says Dedicated to Symeon Bozapalidis on the Occasion of His Retirement,
volume 7020 of LNCS, pages 183–213. Springer, 2011.

[64] E. Kinber and C. Smith. Theory of Computing. A Gentle Introduction.
Prentice Hall, 2001.

[65] E. B. Kinber. Three-way automata on rectangular tapes over a one-letter
alphabet. Information Sciences, 35(1):61–77, 1985.

[66] O. Klı́ma and L. Polák. On biautomata. RAIRO Informatique théorique et
Applications/Theoretical Informatics and Applications, 46:573–592, 2012.

[67] D. König. Theorie der endlichen und unendlichen Graphen. Mit einer
Abhandlung von L. Euler, volume 6 of Teubner-Archiv zur Mathematik.
Leipzig: BSB B.G. Teubner, 1986.

[68] J. Kortelainen. Remarks about commutative context-free languages. Jour-
nal of Computer and System Sciences, 56(1):125–129, 1998.

[69] S. R. Kosaraju. Decidability of reachability in vector addition systems (pre-
liminary version). In H. R. Lewis, B. B. Simons, W. A. Burkhard, and L. H.
Landweber, editors, Proceedings of the 14th Annual ACM Symposium on
Theory of Computing, STOC, pages 267–281. ACM, 1982.

179

[70] G. Kovács, B. Nagy, and B. Vizvári. On weighted distances on the Khal-
imsky grid. In N. Normand, J.-P. V. Guédon, and F. Autrusseau, editors,
Discrete Geometry for Computer Imagery - 19th IAPR International Con-
ference, DGCI, volume 9647 of LNCS, pages 372–384. Springer, 2016.

[71] K. Krithivasan and R. Siromoney. Array automata and operations on array
languages. International Journal of Computer Mathematics, 4(A):3–40,
1974.

[72] K. Krithivasan and R. Siromoney. Characterizations of regular and context-
free matrices. International Journal of Computer Mathematics, 4(A):229–
245, 1974.

[73] M. Kudlek and V. Mitrana. Considerations on a multiset model for mem-
brane computing. In Gh. Păun, G. Rozenberg, A. Salomaa, and C. Zandron,
editors, Membrane Computing, International Workshop, WMC-CdeA 2002,
volume 2597 of LNCS, pages 352–359. Springer, 2003.

[74] M. Latteux. Cônes rationnels commutatifs. Journal of Computer and Sys-
tem Sciences, 18(3):307–333, 1979.

[75] M. Latteux and G. Rozenberg. Commutative one-counter languages are
regular. Journal of Computer and System Sciences, 1:54–57, 1984.

[76] V. Lonati and M. Pradella. Snake-deterministic tiling systems. In
R. Královic and D. Niwinski, editors, Mathematical Foundations of Com-
puter Science, MFCS, volume 5734 of LNCS, pages 549–560. Springer,
2009.

[77] V. Lonati and M. Pradella. Deterministic recognizability of picture lan-
guages with Wang automata. Discrete Mathematics & Theoretical Com-
puter Science, 12(4):73–94, 2010.

[78] V. Lonati and M. Pradella. Strategies to scan pictures with automata based
on Wang tiles. RAIRO Informatique théorique et Applications/Theoretical
Informatics and Applications, 45(1):163–180, 2011.

[79] M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of
Mathematics and Its Applications. Reading, MA: Addison-Wesley, 1983.

[80] A. Mateescu. Scattered deletion and commutativity. Theoretical Computer
Science, 125(2):361–371, 1994.

[81] A. Mateescu, G. Rozenberg, and A. Salomaa. Shuffle on trajectories: Syn-
tactic constraints. Theoretical Computer Science, 197(1–2):1–56, 1998.

180

[82] E. W. Mayr. An algorithm for the general Petri net reachability problem.
SIAM Journal on Computing, 13(3):441–460, 1984.

[83] A. W. Mazurkiewicz. Parallel recursive program schemes. In J. Becvár,
editor, Mathematical Foundations of Computer Science 1975, MFCS, vol-
ume 32 of LNCS, pages 75–87. Springer, 1975.

[84] R. McNaughton. The loop complexity of pure-group events. Information
and Control (now Information and Computation), 11(1/2):167–176, 1967.

[85] A. Meduna and P. Zemek. Jumping finite automata. International Journal
of Foundations of Computer Science, 23(7):1555–1578, 2012.

[86] A. Meduna and P. Zemek. Chapter 17: Jumping finite automata. In Regu-
lated Grammars and Automata, pages 567–585. Springer, New York, 2014.

[87] B. Nagy. On a hierarchy of 5′ → 3′ sensing Watson-Crick finite automata
languages. Journal of Logic and Computation, 23(4):855–872, 2013.

[88] B. Nagy. Cellular topology and topological coordinate systems on the
hexagonal and on the triangular grids. Annals of Mathematics and Arti-
ficial Intelligence, 75(1-2):117–134, 2015.

[89] R. Niedermeier, K. Reinhardt, and P. Sanders. Towards optimal locality in
mesh-indexings. Discrete Applied Mathematics, 117:211–237, 2002.

[90] F. Otto. Restarting automata. In Z. Ésik, C. Martı́n-Vide, and V. Mitrana,
editors, Recent Advances in Formal Languages and Applications, vol-
ume 25 of Studies in Computational Intelligence, pages 269–303. Springer,
2006.

[91] M. Paramasivan and N. G. David. Shuffle operations on Euler graphs. Ma-
pana Journal of Sciences, 10(1):63–78, 2011.

[92] R. J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–
581, 1966.

[93] H. Petersen. Some results concerning two-dimensional Turing machines
and finite automata. In H. Reichel, editor, Fundamentals of Computation
Theory, 10th International Symposium, FCT ’95, volume 965 of LNCS,
pages 374–382. Springer, 1995.

[94] D. Průša. Non-recursive trade-offs between two-dimensional automata and
grammars. Theoretical Computer Science, 610:121–132, 2016.

181

[95] P. Prusinkiewicz, A. Lindenmayer, and F. D. Fracchia. Synthesis of space-
filling curves on the square grid. In H.-O. Peitgen, J. M. Henriques, and
L. F. Penedo, editors, Fractals in the Fundamental and Applied Sciences,
pages 341–366. IFIP, North-Holland, 1990.

[96] A. Restivo. The shuffle product: New research directions. In A. Horia
Dediu, E. Formenti, C. Martı́n-Vide, and B. Truthe, editors, Language and
Automata Theory and Applications - 9th International Conference, LATA,
volume 8977 of LNCS, pages 70–81. Springer, 2015.

[97] C. Reutenauer. A new characterization of the regular languages. In S. Even
and O. Kariv, editors, Automata, Languages and Programming, 8th Collo-
quium, ICALP, volume 115 of LNCS, pages 177–183. Springer, 1981.

[98] A. Rosenfeld and R. Siromoney. Picture languages – a survey. Languages
of Design, 1:229–245, 1993.

[99] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages (3
volumes). Springer, 1997.

[100] H. Sagan. Space-Filling Curves. Springer, 1994.

[101] A. Salomaa. Formal Languages. Academic Press, 1973.

[102] R. Santhanam and K. Krithivasan. Graph splicing systems. Discrete Ap-
plied Mathematics, 154(8):1264–1278, 2006.

[103] S. M. Selkow. One-pass complexity of digital picture properties. Journal
of the ACM, 19(2), April 1972.

[104] A. C. Shaw. Software descriptions with flow expressions. IEEE Transac-
tions on Software Engineering, 4(3):242–254, 1978.

[105] G. Siromoney, R. Siromoney, and K. Krithivasan. Abstract families of ma-
trices and picture languages. Computer Graphics and Image Processing,
1:284–307, 1972.

[106] G. Siromoney, R. Siromoney, and K. Krithivasan. Picture languages with
array rewriting rules. Information and Control (now Information and Com-
putation), 22(5):447–470, 1973.

[107] G. Siromoney, R. Siromoney, and K. Krithivasan. Array grammars and
kolam. Computer Graphics and Image Processing, 3:63–82, 1974.

182

[108] R. Siromoney. On equal matrix languages. Information and Control (now
Information and Computation), 14:133–151, 1969.

[109] R. Siromoney, L. Mathew, K. G. Subramanian, and V. R. Dare. Learning
of recognizable picture languages. In A. Nakamura, M. Nivat, A. Saoudi,
P. Shen-Pei Wang, and K. Inoue, editors, Parallel Image Analysis, ICPIA,
volume 654 of LNCS, pages 247–259. Springer, 1992.

[110] R. Siromoney and K. G. Subramanian. Space-filling curves and infinite
graphs. In H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph grammars
and their application to computer science, volume 153 of LNCS, pages
380–391, 1983.

[111] K. G. Subramanian, L. Revathi, and R. Siromoney. Siromoney array gram-
mars and applications. International Journal of Pattern Recognition and
Artificial Intelligence, 3:333–351, 1989.

[112] Y. Takada. Learning even equal matrix languages based on control sets.
In A. Nakamura, M. Nivat, A. Saoudi, P. Shen-Pei Wang, and K. Inoue,
editors, Parallel Image Analysis, ICPIA, volume 652 of LNCS, pages 274–
289. Springer, 1992.

[113] M. Y. Vardi. A note on the reduction of two-way automata to one-way
automata. Information Processing Letters, 30(5):261–264, 1989.

[114] P. S.-P. Wang. Some new results on isotonic array grammars. Information
Processing Letters, 10:129–131, 1980.

[115] I. H. Witten and B. Wyvill. On the generation and use of space-filling
curves. Software–Practice and Experience, 13:519–525, 1983.

[116] K. Yanagisawa and S. Nagata. Fundamental study on design system of
kolam pattern. Forma, 22:31–46, 2007.

183

184

Index

ET ◦, 32
ETloop-free, 41
Gw, 30, 32
LRect(G), 103
∆(G) , 17
α-SHUF expression, 48
δ(G), 17
`(W), 17
N, 4
N0, 4
Dcol−f , 136
Drow−f , 136
ν(G), 14
ν(W), 18
ω(G), 19
D-IRAG, 104
L-IRAG, 104
R-IRAG, 104
U -IRAG, 104
perm(w), 46
ε(G), 14
ε(W), 18
�-left, �-right (R:R)AG, 152
�-left, �-right (R:R)AG, 152
dG(v), 16
k-counter machine, 7
k-cycle, 19
k-fold column-concatenation, 10
k-fold row-concatenation, 10
k-regular graph, 17
(R:R)AG, 150
(regular : regular) array grammars, 150
SHUF expressions, 48

3-DFA, 122
3-NFA, 122

adjacency matrix of G, 15
adjacent vertices (edges), 14
alphabet, 5
anti-quarter-turn, Q−1, 10
anti-transpose, T ′, 10
array, 9

BFA, 77
bipartite graph, 15
blind counter machines, 8
boustrophedon finite automata, 77

column concatenation, 9
column concatenation plus closure, 10
column product, 10
complete bipartite graph, 15
complete graph, 15
concatenation of walks, 17
connected graph, 19
corner, 160
covering walk, 17
cycle, 19

d-BFA, 81
deterministic k-counter machine, 8
deterministic finite automaton, 6
dihedral group, 11
direction-aware BFA, 81
disconnected graph, 19

edge-induced subgraph, 16
empty graph, 15

185

empty word, 5
Euler Trace, ET , 24
Eulerian Graph, 21
Eulerian Tour, 20
Eulerian Trail, 20

GBFA, 132
general boustrophedon finite automaton,

132
general jumping finite automaton, 47
general returning finite automata, 136
GJFA, 47
graph, G, 13
GRFA, 136

half-turn, H , 10
holes, 158
hull operator, 4

identical graphs, 15
incidence matrix of G, 15
incident edges (vertices), 14
induced subgraph, 16
isometric arrays, 101
isometric regular array grammar (IRAG),

102
isomorphic graphs, 15
iterated shuffle, 46

jumping finite automaton (JFA), 47

kolam aasanapalakai, 131
kolam swing plank, 131

lazy evaluation, 89, 147
linear, semilinear, 46
link, 14
lock, key, 163
loop, 14

matrix, 9
Mealy Picture Machine (MPM), 142
monoid, 4

non-isometric arrays, 101
nondeterministic finite automaton, 7

parallel edges, 14
partially blind counter machines, 8
path, 18
picture, 9
picture language, 9
PLDφ(G), 22
proper subgraph, 16
pseudo-linear drawing, 22

quarter-turn, Q, 10

reflection along horizontal, Rh, 10
reflection along vertical, Rv, 10
regular expressions, 7
regular graph, 17
regular language,REG, 7
regular matrix grammar (RMG), 95
regular matrix language (RML), 95
returning finite automata (RFA), 84
reversal, mirror image, 6
row concatenation, 9
row concatenation plus closure, 10
row product, 10

section of walk, 18
self-delimiting IRAG, 158
semi-holes, 158
semigroup, 4
semiring, 5
separating diagonal, 164
shape, 101
shuffle expressions, 48
shuffle operation, 46
simple graph, 14
standard PLD, 32
star-height, 70
string form, 71
subgraph, 16
subsequence of walk, 18

186

trail, 18
transpose, T , 10
trivial graph, 15
two-dimensional right-linear grammar,

95
two-dimensional word, 9

walk, 17
word w of G, 23
word, string, 5

187

	Road Map
	Origin: Overview
	Ingredients: Preliminaries
	Words, Languages and Machines
	Two Dimensional World
	Graphs

	Eulerian Trails
	Formal Language Questions for Eulerian Trails
	Standard PLD
	Eulerian Traces

	Jumping Finite Automata
	JFA and Shuffle Expressions
	Algebraic Properties: Shuffle and Permutation
	The Language Class Lg
	The Language Classes Lg
	Representations and Normal Forms

	Scanning Automata and Grammars
	Boustrophedon Finite Automata
	Returning Finite Automata
	Regular Matrix Languages
	Regular Array Grammars
	Pumping and Interchange Lemmas
	Pumping Lemmas
	Interchange Lemmas
	Application of Pumping and Interchange Lemmas

	Hierarchy Results, Further Automata Models
	BFA Languages and Regular Matrix Languages
	3-Way Automata
	Isometric Array Languages

	Closure Properties
	Set Operations
	Reflection-like Operations
	Catenation and Catenation Closure

	Possible Applications to Character Recognition
	Possible Applications to Kolam Patterns

	Picture Transforming Automata
	General Boustrophedon Finite Automata
	General Returning Finite Automata
	Language Families under the Unary Operators
	Picture Transforming Automata

	Regular Grammars for Array Languages
	(Regular : Regular) Array Grammars
	Regular Grammars, Isometric Array Languages

	Destination: Further Directions

