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Abstract

Given a compact set K ⊂ Rd, the theory of extension operators examines the question,
under which conditions on K, the linear and continuous restriction operators

rn : E n(Rd)→ E n(K), f 7→
(
∂α f

∣∣∣
K

)
|α|≤n

, n ∈ N0 and

r : E (Rd)→ E (K), f 7→
(
∂α f

∣∣∣
K

)
α∈Nd

0
,

have a linear and continuous right inverse. This inverse is called extension operator and
this problem is known as Whitney’s extension problem, named after Hassler Whitney.
In this context, E n(K) respectively E (K) denote spaces of Whitney jets of order n re-
spectively of infinite order. With E n(Rd) and E (Rd), we denote the spaces of n-times re-
spectively infinitely often continuously partially differentiable functions onRd. Whitney
already solved the question for finite order completely in his papers [Whi34a], [Whi34b]
and [Whi34c]. He showed that it is always possible to construct a linear and continuous
right inverse En for rn. This work is concerned with the question of how the existence of
a linear and continuous right inverse of r, fulfilling certain continuity estimates, can be
characterized by properties of K. On E (K), we introduce a full real scale of generalized
Whitney seminorms

(
‖ · ‖s,K

)
s≥0, where ‖·‖s,K coincides with the classical Whitney semi-

norms for s ∈ N0. We equip also E (Rd) with a family
(
‖ · ‖s,L

)
s≥0 of those seminorms,

where L shall be a a compact set with K ⊂ L̊. This family of seminorms on E (Rd)
suffices to characterize the continuity properties of an extension operator E, since we
can without loss of generality assume that E(E (K)) ⊂ D s(L).
In Chapter 2, we introduce basic concepts and summarize the classical results of Whit-
ney and Stein.
In Chapter 3, we modify the classical construction of Whitney’s operators En and show
that ‖En(·)‖s,L ≤ C‖ · ‖s,K for s ∈ [n, n + 1).
In Chapter 4, we generalize the results of Frerick, Jordá and Wengenroth published
in [FJW16b] and show that LMI(1) for K implies the existence of an extension operator
E without loss of derivatives, i.e. we have it fulfils ‖E(·)‖s,L ≤ C‖ · ‖s,K for all s ≥ 0.
We show that a large class of self similar sets, which includes the Cantor set and the
Sierpinski triangle, admits an extensions operator without loss of derivatives.
In Chapter 5 we generalize the results of Frerick, Jordá and Wengenroth in [FJW11] and
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show that WLMI(r) for r ≥ 1 implies the existence of a tame linear extension operator
E having a homogeneous loss of derivatives, such that ‖E(·)‖s,L ≤ C‖ · ‖(r+ε)s,K for all
s ≥ 0 and all ε > 0.
In the last chapter we characterize the existence of an extension operator having an
arbitrary loss of derivatives by the existence of measures on K.



Zusammenfassung

Gegeben sei eine kompakte Menge K ⊂ Rd. Die Theorie der Extensionsoperatoren
beschäftigt sich mit der Frage, welche Eigenschaften K haben muss, damit die linearen
und stetigen Einschränkungen

rn : E n(Rd)→ E n(K), f 7→
(
∂α f

∣∣∣
K

)
|α|≤n

, n ∈ N0 und

r : E (Rd)→ E (K), f 7→
(
∂α f

∣∣∣
K

)
α∈Nd

0
,

eine lineare und stetige Rechtsinverse besitzen. Die Inverse wird als Extensionsopera-
tor bezeichnet und dieses Problem ist bekannt als Whitneys Extensionsproblem, benannt
nach Hassler Whitney. In diesem Zusammenhang bezeichnen E n(K) beziehungsweise
E (K) die Räume der Whitney-Funktionen auf K der Ordnung n beziehungsweise un-
endlicher Ordnung. Mit E n(Rd) beziehungsweise E (Rd) bezeichnen wir die Räume n-
mal beziehungsweise unendlich oft stetig partiell differenzierbarer Funktionen auf Rd.
Whitney löste dieses Problem für rn bereits vollständig in seinen Veröffentlichungen
[Whi34a], [Whi34b] und [Whi34c]. Er konnte zeigen, dass es immer, unabhängig von
den Eigenschaften von K, möglich ist eine lineare und stetige Rechtsinverse En von rn

zu konstruieren. Diese Arbeit beschäftigt sich mit der Frage, wie die Existenz einer lin-
earen und stetigen Rechtsinversen von r mit gewissen Stetigkeitsabschätzungen durch
Eigenschaften von K charakterisiert werden kann. Auf E (K) führen wir eine reelle
Skala von verallgemeinerten Whitney-Seminormen

(
‖ · ‖s,K

)
s≥0 ein, wobei ‖ · ‖s,K für

s ∈ N0 mit den klassischen Whitney-Seminormen übereinstimmt. Auch E (Rd) statten
wir mit einer reellen Skala dieser Seminormen

(
‖ · ‖s,L

)
s≥0 aus, wobei L ⊂ Rd kompakt

ist mit L̊ ⊃ K. Diese Familie von Seminormen genügt um die Stetigkeitseigenschaften
eines Extensionsoperators E zu untersuchen, da ohne Beschränkung der Allgemeinheit
E(E (K)) ⊂ D s(L).
In Kapitel 2 führen wir grundlegende Begriffe ein und stelle auch die klassischen Ergeb-
nisse von Whitney und Stein zusammengefasst dar.
In Kapitel 3 beweisen wir, dass der klassische Extensionsoperator En von Whitney
‖En(·)‖s,L ≤ C‖ · ‖s,K für alle s ∈ [n, n + 1) erfüllt.
Aufbauend darauf verallgemeinern wir in Kapitel 4 die in [FJW16b] von Frerick, Jordá
und Wengenroth veröffentlichten Ergebnisse und zeigen, dass die Eigenschaft LMI(1)
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für K die Existenz eine Extensionsoperators E ohne Verlust impliziert. Das bedeutet,
dass E die Ungleichung ‖E(·)‖s,L ≤ C‖ · ‖s,K für alle s ≥ 0 erfüllt. Wir zeigen, dass eine
große Klasse selbstähnlicher Mengen, welche unter anderem die Cantor-Menge und das
Sierpinski-Dreieck enthält, einen Extensionsoperator ohne Verlust zulässt.
In Kapitel 5 verallgemeinern wir die von Frerick, Jordá und Wengenroth in [FJW11]
veröffentlichten Ergebnisse und zeigen, dass WLMI(r) für r ≥ 1 die Existenz eines
zahm-linearen Extensionsoperators mit homogenem Verlust impliziert, welcher für alle
s ≥ 0 und ε > 0 die Ungleichung ‖E(·)‖s,L ≤ C‖ · ‖(r+ε)s,K erfüllt.
Im letzten Kapitel charakterisieren wir die Existenz eines Extensionsoperators mit be-
liebig vorgegebenem Verlust durch die Existenz von Maßen auf K.
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Chapter 1

Introduction

The main basis of this work are the three papers [Whi34a], [Whi34b] and [Whi34c]
published by Hassler Whitney in 1934. They offered a new and fruitful approach to
deal with the following extension problem. Consider a compact subset K of Rd and a
continuous function f : K → R. The question arises how to decide if the domain of
this function f can be extended to Rd or an open superset of K, such that the extended
function is n-times or even infinite often continuously partially differentiable. Another
way of stating this question is, to find a meaningful definition of differentiability for
functions defined in compact or closed sets. We will use the symbols E n(K) respectively
E (K) for those spaces. Whitney found a way to achieve this by using the well known
Taylor theorem as a definition instead of getting it as a conclusion from the definition
of differentiability. In the classical setting, Taylor’s theorem shows that a function f ,
which is n-times continuously partially differentiable at some point x0, can be locally
approximated by its Taylor polynomial T n

x0
, which is a polynomial of degree ≤ n. The

coefficients of the polynomial depend on the derivatives of the function at this point.
For the difference f −T n

x0
between the function and its Taylor polynomial, the remainder

Rn
x0

, the asymptotic behaviour at x0 can be described by Rn
x0

(x) = o(|x − x0|
n) as x →

x0. Since the Taylor polynomial already contains the derivatives of the function, it is
necessary to replace these derivatives by other functions if one wants to use this theorem
as a definition for differentiability. Therefore the objects contained in the spaces E n(K)
respectively E (K) cannot just be single functions but have to be families of functions(

f (α)
)
|α|≤n

in E n(K) and
(

f (α)
)
α∈Nd

0
in E (K) which we will call Whitney jets of order n

respectively of infinite order later on. For these jets, the ’formal’ Taylor polynomial of
order n centred at y ∈ K can very naturally be defined as

T n
y

((
f (α)

)
|α|≤n

)
(x) B

∑
|α|≤n

f (α)(y)
α!

(x − y)α.

1
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The corresponding remainder itself has to be a family of functions, where the β-th entry
is defined as

Rn
y

((
f (α)

)
|α|≤n

)(β)
(x) B f (β)(x) − ∂βT n

y

((
f (α)

)
|α|≤n

)
(x).

With that, the space E n(K) is defined as the space of all jets
(

f (α)
)
|α|≤n
∈

∏
|α|≤n C (K),

for which the remainder has the following asymptotic behaviour

lim
t→0

sup
|β|≤n

{∣∣∣∣∣Rn
y

((
f (α)

)
|α|≤n

)(β)
(x)

∣∣∣∣∣ |x − y||β|−n : x, y ∈ K, 0 < |x − y| ≤ t
}
. (1.1)

This is indeed the same asymptotic property, which the classical remainder shows in
Taylor’s theorem. The space E n(K) endowed with the norm∥∥∥∥( f (α)

)
|α|≤n

∥∥∥∥
n,K
B sup
|β|≤n,x∈K

∣∣∣ f (β)(x)
∣∣∣ (1.2)

+ sup
|β|≤n,t>0

{∣∣∣∣∣Rn
y

((
f (α)

)
|α|≤n

)(β)
(x)

∣∣∣∣∣ |x − y||β|−n : x, y ∈ K, 0 < |x − y| ≤ t
}

is a Banach space. The space E (K) is constructed as the projective limit of the E n(K).
Also for F ⊂ Rd closed, the spaces E n(F) and E (F) can be constructed as projective
limits of the spaces E n(Kl) respectively E (Kl) for a fundamental sequence (Kl)l∈N of
compact sets for F.

Whitney could show, that this is indeed a meaningful definition of differentiability
in the sense, that the continuous and linear restriction operators

rn : E n(Rd)→ E n(K), f 7→
(
∂α f

∣∣∣
K

)
|α|≤n

, and

r : E (Rd)→ E (K), f 7→
(
∂α f

∣∣∣
K

)
|α|∈Nd

0

are surjective. Furthermore he was able to prove in a constructive way, that the restric-
tion operators rn have a linear and continuous right inverse, called extension operator.

The research which build up on these findings was mainly dedicated to the ques-
tion, in which circumstances also the restriction operator r has a continuous and linear
right inverse. It is relatively easy to see that not all geometries of K allow such an ex-
tension operator. Counterexamples are for instance singletons and sets contained in a
hyperplane. But there are also examples of sets which even coincide with the closure
of their interior and still do not admit an extension operator. Tidten proved in [Tid79]
that certain sequences of pairwise disjoint intervals and sets with exponential cusps do
not admit such an operator. On the other hand many classes of sets could be character-
ized which admit an extension operator. For instance Seeley constructed in [See64] an
extension operator for half spaces and Stein dealt with sets having a Lipschitz bound-
ary in [Ste70]. Stein’s result was then generalized by Bierstone in [Bie78] and Frerick
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in [Fre07b] later on.

This work is also dedicated to the question of the characterization for ’good’ geome-
tries of a compact sets, such that they admit an extension operator. It is mainly based on
the ideas of Frerick, Jordá and Wengenroth which they exhibited in the papers [FJW16b]
and [FJW11]. They approached the question again in a constructive way by constructing
an operator which resembles the one Whitney constructed. The operators En Whitney
constructed as inverse of rn has the following structure

En

((
f (α)

)
|α|≤n

)
(x) =

 f (0)(x), x ∈ K∑
i∈N ϕi(x)

∑
|α|≤n

f (α)(xi)
α! (x − xi)α, x < K

,

where (ϕi)i∈N is a partition of Kc satisfying certain conditions, and the points xi ∈ K
depend on the supports of the ϕi. The idea is to interpolate the entries f (α) of the jets by
measures µα,i, which results in an operator E of the following structure

E
((

f (α)
)
α∈Nd

0

)
(x) =

 f (0)(x), x ∈ K∑
i∈N ϕi(x)

∑
|α|≤m(i)

µα,i( f (0))
α! (x − xi)α, x < K

,

where the sequence (m(i))i∈N has to be chosen in the course of the construction. The
measures µα,i only depend on the first entry of the jet f (0), which has the additional
charme that the extension operator E also simultaneously extends all jets of finite order.
The operator E can therefore be applied to a jet

(
f (α)

)
|α|≤n
∈ E n(K) but it is not necessar-

ily a continuous operator from E n(K) to E n(Rd). The continuity propterties of the opera-
tor on the projective scale can be characterized by means of a ’loss of derivatives’, which
shall be a mapping σ : N0 → N0 with σ(n) ≥ n, such that E : E σ(n)(K) → E n(Rd) is
continuous. In [FJW16b], the authors characterized the existence of an extension opera-
tor having no loss of derivatives, which means σ(n) = n for all n ∈ N0. In [FJW11] they
characterized the existence of a tame linear extension operator, which means σ(n) = cn
for some c ≥ 1. Since σ(n) is then not always a natural number, the last case shows
that it is also necessary to generalize the definition of the Whitney spaces E n(K) and
to ’fill the gaps’ between E n(K) and E n+1(K), respectivelly to fill the gaps between the
seminorms ‖ · ‖n,K and ‖ · ‖n+1,K on E (K). This is done in [FJW11] in a very natural way
by replacing the term |x − y||β|−n by |x − y|s−n for n ≤ s < n + 1. In this work, we also
generalize the right side of the operator, so that we have a full real scale of seminorms
on E (K) and E (Rd). In Chapter 3, we generalize the construction of Whitneys operators
En, such that En also extends the spaces E s(K) for s ∈ [n, n + 1). In the Chapters 4 and
5, we generalize the results of the papers [FJW16b] and [FJW11] to the full real scale of
seminorms. In the last Chapter, we characterize the existence of an extension operator
with an arbitrary loss by means of the existence of measures.



Chapter 2

Preliminaries

2.1 Some Basic Notations and Results
As a very basic notation in multidimensional analysis we want to introduce the multiin-
dex notation. It allows a very short and compact notation which resembles the notation
in dimension 1.

2.1 Definition. We call any vector α ∈ Nd
0 a (d-dimensional) multiindex. For x ∈ Rd

and β ∈ Nd
0, we set

1. |α| B
d∑

i=1
αi,

2. xα B
d∏

i=1
xαi

i .

3. The addition of two multiindices of the same dimension as well as the multipli-
cation of a multiindex with a scalar is defined as in the d-dimensional Euclidean
space.

4.
(
α
β

)
B α!

(α−β)!β! .

5. For β ∈ Nd
0 we define the relation

β ≤ α⇔ βi ≤ αi for all i ∈ {1, ..., d}.

In the following remark we gather some easy consequences which will often be used
throughout this work.

2.2 Remark. 1. For two multiindices α, β it is obviously true that |α + β| = |α| + |β|
and if β ≤ α we also have |α − β| = |α| − |β|.

4
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2. For an arbitrary multi-index α ∈ Nd
0, the following inequality holds for all x ∈ Rd

|xα| ≤ |x||α|,

where |x| denotes the Euclidean length of x. This follows easily by definition:

|xα| =

∣∣∣∣∣∣∣∏1≤i≤d

xαi
i

∣∣∣∣∣∣∣ ≤ ∏
1≤i≤d

|xi|
αi ≤

∏
1≤i≤d

|x|αi = |x||α|.

2.3 Definition. Spaces of differentiable functions
Let Ω ⊂ Rd be an open set. Then we define for n ∈ N0

E n(Ω) B { f : ∂α f exists and is continuous in Ω for all |α| ≤ n},

E (Ω) B { f : ∂α f exists and is continuous in Ω for all α ∈ Nd
0}.

To define the topology on those spaces, let (Kl)l∈N be a fundamental sequence of compact
sets for Ω. Then let the supremum seminorm be defined as

| · |n,Kl : E n(Ω)→ [0,∞), f 7→ sup {|∂α f (x)| : x ∈ Kl, |α| ≤ n} .

The system of seminorms (| · |n,Kl)l∈N defines a Fréchet space topology on E n(Ω) and the
system (| · |l,Kl)l∈N0 defines a Fréchet space topology on E (Ω).

Now we turn our attention to Taylor’s theorem, which is the key result leading us to
the results of Whitney in the next section.

2.4 Theorem. Taylor’s theorem
Let f : Rd → R be n-times continuously partially differentiable at y ∈ Rd. Then for all
|α| = k there exists a gα : Rd → R with limx→y gα(x) = 0 such that

f (x) =
∑
|α|≤n

∂α f (y)
α!

(x − y)α +
∑
|α|=n

gα(x)(x − y)α

= T n
y ( f )(x) + Rn

y( f )(x),

with Rn
y(x) = o(|x − y|n). The polynomial T n

y ( f ) is called Taylor polynomial of order n
centred at y and Rn

y( f ) is called the Taylor remainder.

2.5 Remark. 1. For f ∈ E n+1(Rd) there exist a lot of representations of Rn
y( f ), which

we only state here. Let θ ∈ [0, 1]

• Lagrange representation: Rn
y( f )(x) =

∑
|α|=n+1

∂α f (y+θ(x−y))
α! (x − y)α,

• Cauchy representation: Rn
y( f )(x) = (n+1)(1−θ)n ∑

|α|=n+1
∂α f (y+θ(x−y))

α! (x−y)α.
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2. It is also possible to formulate a converse Taylor theorem. If for a given f : Rd →

R and all |α| ≤ n there exist continuous functions f (α) : Rd → R and gα : Rd → R
with limx→y gα(x) = 0 such that

f (x) =
∑
|α|≤n

f (α)(y)
α!

(x − y)α +
∑
|α|=n

gα(x)(x − y)α,

then f is n-times continuously partially differentiable at y and ∂α f (y) = f (α)(y). A
proof can be found in [Oli54].Thus, Taylor’s theorem can also be used to define
partial differentiability.

2.2 Differentiable Functions on Closed Sets in the Sense
of Whitney

Taking up on Remark 2.5, we now go in the direction Whitney took in [Whi34a] in order
to use Taylor’s formula to define differentiability of functions on closed sets. We begin
with the definition of the ’formal’ Taylor polynomial and its corresponding remainder
for a family of arbitrary functions on a compact set K ⊂ Rd. In the following, the Greek
letters α and β always represent a multiindex unless stated otherwise.

2.6 Definition. Let n ∈ N0 and F =
(

f (α)
)
|α|≤n

be a family of continuous functions

defined on a compact set K ⊂ Rd, hereafter referred to as jet (of order n). For each such
jet we can define its ’formal’ Taylor polynomial of order n centred at y ∈ K evaluated
at the point x ∈ Rd as

T n
y (F)(x) B

∑
|α|≤n

f (α)(y)
α!

(x − y)α.

For the partial derivatives of the Taylor polynomial we get

∂βT n
y (F)(x) = T n−|β|

y

((
f α+β

)
|α|≤n−|β|

)
(x) =

∑
|α|≤n−|β|

f (α+β)(y)
α!

(x − y)α.

We define the corresponding Taylor remainder Rn
y(F)(α) ∈

∏
|α|≤n C (K) as

Rn
y(F)(α)(x) B f (α)(x) − ∂αT n

y (F)(x).

We note that the Taylor polynomial can be defined on whole Rd, whereas the remainder
can only be defined on K and that the definition of both does not depend on any smooth-
ness properties of the entries of F. In addition to jets of finite order, we also call a
countably infinite family of continuous functions

(
f (α)

)
α∈Nd

0
on K a jet (of infinite order).
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Before giving the definition of the spaces of Whitney jets, we state the following
lemma.

2.7 Lemma. Let K ⊂ Rd be compact and let F =
(

f (α)
)
|α|≤n

be a jet of order n defined

on K. Then for x, y ∈ K, n ∈ N0,|β| ≤ n and each z ∈ Rd it is true that

∂βT n
x (F)(z) − ∂βT n

y (F)(z) =
∑
|α|≤n

(z − x)α

α!
Rn

y(F)(α+β)(x).

Proof. A proof can be found in [Ste70] page 177. �

In the following we will make extensive use of the following well known notations
for a real number s ≥ 0

• bsc B max{n ∈ N0 : n ≤ s}, which denotes the integer value of s or floor of s,

• {s} B s − bsc which denotes the fractional part of s.

The following definition of the Whitney spaces as the (in a certain sense) correct
description for the space of differentiable functions on closed sets is rather technical,
but it will be fully justified by Whitney’s results, which we will present in the following
section.

2.8 Definition. For K ⊂ Rd compact, s ≥ 0 and F =
(

f (α)
)
|α|≤bsc

∈
∏
|α|≤bsc C (K) we

define for t > 0

qs,K(F, t) B sup
{
|Rbscy (F)(α)(x)||x − y||α|−s : x, y ∈ K, 0 < |x − y| ≤ t, |α| ≤ bsc

}
,

and with this, we set

E s(K) B

F ∈
∏
|α|≤bsc

C (K) : lim
t→0

qs,K(F, t) = 0

 ,
E (K) B

F ∈
∏
α∈Nd

0

C (K) : lim
t→0

qs,K(F, t) = 0 for all s ≥ 0

 .
We endow the space E s(K) with the norm

‖F‖s,K B |F|bsc,K + sup
t>0

qs,K(F, t),

where
|F|bsc,K B sup

{
| f (α)(x)| : x ∈ K, |α| ≤ bsc

}
.
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The space E (K) is equipped with the Fréchet space topology induced be the family
of seminorms (‖ · ‖s,K)s∈N0 . In the case of s ∈ N0, the definition of the spaces E s(K)
coincides with the definition of the classical Whitney spaces given in [Whi34a]. The
completeness of the spaces E s(K) for s < N0 is shown in the next remark. If M is a closed
set, we choose a fundamental sequence of compact sets (Kl)l∈N and define E s(M) and
E (M) again as projective limits. For an open set Ω and a fundamental sequence (Kl)l∈N

thereof, the classical Whitney norms ‖ · ‖n,Kl also induce the Fréchet space topology on
the spaces E n(Ω) (by the canonical identification of f with the jet (∂α f )|α|≤n), which we
introduced in Definition 2.3. This definition can be generalized naturally to all s ≥ 0 by
setting

E s(Ω) B
{

f ∈ E bsc(Ω) :
(
∂α f

∣∣∣
K

)
|α|≤bsc

∈ E s(K) for all compact K ⊂ Ω

}
.

Furthermore we define

D s(K) B
{
f ∈ E s(Rd) : supp( f ) ⊂ K

}
.

Equipped with the norm ‖ f ‖s,K B
∥∥∥∥(∂α f

∣∣∣
K

)
|α|≤bsc

∥∥∥∥
s,K

, the spaces D s(K) are complete. In

the following we will mostly not mention the set in the subscript of the norms if it is
clear on which set they are defined.

2.9 Remark. 1. The reason why we define the generalized Whitney spaces E s(K)
for s < N0 as we did it, is that we want E (K) to be dense in E s(K) for all s.
If instead we would merely impose Lipschitz conditions as Stein did in [Ste70],
this is not the case any more. To see this, let f : [−1, 1] → R, x 7→

√
|x|. Then

f ∈ Lip
1
2 ([−1, 1]), but is not approximable with respect to the corresponding norm

by a smooth function.

2. For a compact set K ⊂ Rd and s ≥ 0, E s(K) is a Banach space. To see this,
let (Fn)n∈N be a Cauchy sequence in E s(K). Since the convergence in the Whit-
ney norm implies convergence in the supremum norm and since

∏
|α|≤bsc C (K)

equipped with the supremum norm is a Banach space, there exists an F ∈
∏
|α|≤bsc C (K)

such that limn→∞ |F − Fn|bsc = 0. To show that F ∈ E s(K), let ε > 0. Depending
on ε, we find m ∈ N, such that ‖Fn − Fm‖s <

ε
3 for all n ≥ m. Depending on m we

find a t > 0 so that
|Rbscy (Fm)(β)(x)|
|x − y|s−|β|

<
ε

3

for all 0 < |x − y| < t. Since we have

|Rbscy (F)(β)(x) − Rbscy (Fn)(β)(x)||x − y||β|−s
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≤

| f (β)(x) − f (β)
n (y)| +

∑
|α|≤bsc−|β|

| f (α+β)(y) − f (α+β)
n (y)|

α!
|x − y||α|

 |x − y||β|−s

≤|F − Fn|bsc

|x − y||β|−s +
∑

|α|≤bsc−|β|

|x − y||α|+|β|−s

α!

 ,
and because (Fn)n∈N converges uniformly to F we always find n = n(|x − y|) > m
such that

|Rbscy (F)(β)(x) − Rbscy (Fn)(β)(x)|
|x − y|s−|β|

<
ε

3
.

We note that n just depends on the distance of x and y. So we get for an arbitrary
pair x, y ∈ K with 0 < |x − y| < t

|Rbscy (F)(β)(x)|
|x − y|s−|β|

≤
|Rbscy (F)(β)(x) − Rbscy (Fn)(β)(x)|

|x − y|s−|β|
+
|Rbscy (Fn)(β)(x) − Rbscy (Fm)(β)(x)|

|x − y|s−|β|

+
|Rbscy (Fm)(β)(x)|
|x − y|s−|β|

<ε.

The fact that n just depends on |x − y| shows that qs,K(F, t) exists and that it con-
verges in t to 0.

3. For K convex and compact and s ∈ [0,∞), Lemma 2.10 shows that the conditions

lim
t→0

qs,K(F, t) = 0

and

lim
t→0

sup
{
| f (β)(x) − f (β)(y)|
|x − y|{s}

: x, y ∈ K, 0 < |x − y| < t, |β| = bsc
}

= 0

are equivalent. The proof of Lemma 2.10 also shows that the Whitney norm ‖ · ‖s
and the norm

‖|F|‖s B |F|bsc + sup
t>0

{
| f (β)(x) − f (β)(y)|
|x − y|{s}

: x, y ∈ K, 0 < |x − y| ≤ t, |β| = bsc
}
.

are equivalent on E s(K). Therefore, for a compact but not necessarily convex set
K it is always possible to equip the spaces D s(K) with a norm ‖|·|‖s,L where L ⊃ K
compact and convex. Lemma 2.11 shows that the norm can be even simplified
further by replacing the supremum norm summand by taking the supremum only
over the highest degree derivatives.
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4. Let s1, s2 be positive numbers such that bs1c ≤ s1 ≤ s2 ≤ bs1c + 1. If K consists
only of finitely many points, then l B min{|x − y| : x, y ∈ K, x , y} > 0. Hence,

|Rbs2c
y (F)(β)(x)|
|x − y|s2−|β|

=
|Rbs1c

y (F)(β)(x)|
|x − y|s1−|β|

|x − y|s1−s2 ≤
|Rbs1c

y (F)(β)(x)|
|x − y|s1−|β|

ls1−s2 ,

which gives

‖F‖s2 = |F|bs2c + sup
t>0

qK,s2(F, t)

≤ |F|bs1c + ls1−s2 sup
t>0

qK,s1(F, t)

≤ max(1, ls1−s2)‖F‖s1 .

Thus both norms are equivalent. Be that as it may, the case of finite sets K is not
of great interest for the following work, since then the space E (K) cannot admit
a continuous and linear extension operator as pointed out in [FJW11].

2.10 Lemma. Let K ⊂ Rd be a convex and compact set, then the norms ‖ · ‖s and ‖| · |‖s
are equivalent on E s(K).

Proof. It is obviously true that |‖F‖|s ≤ ‖F‖s for all F ∈ E s(K). So we only have to
prove the existence of a constant C > 0 such that ‖F‖s ≤ C|‖F‖|s for all F ∈ E s(K).
Following the classical theorem of Whitney, each entry f (β) of the jet F can be extended
to an bsc − |β|-times continuously partially differentiable function on Rd. Therefore we
also can regard the entries of the Taylor remainder Rbscx (F)(β) as being bsc − |β|-times
partially differentiable at any point y ∈ K for each x ∈ K. This allows us to apply the
mean value theorem. If |β| = bsc − 1, then we find a z ∈ (x, y) such that

|Rbscx (F)(β)(y)|
|x − y|s−|β|

=
|Rbscx (F)(β)(y) − Rbscx (F)(β)(x)|

|x − y|{s}+1 =
|∇(Rbscx (F)(β))(z)(x − y)|

|x − y|{s}+1 .

Let j B maxi∈{1,...,d} |R
bsc
x F(β+ei)(z)|. Applying the Cauchy-Schwarz inequality and using

the fact that |x − y| > |x − z|, we obtain

|Rbscx (F)(β)(y)|
|x − y|{s}+1 ≤

|∇(Rbscx (F)(β))(z)|
|x − y|{s}

<
√

d
|Rbscx (F)(β+e j)(z)|
|x − z|{s}

≤
√

d|‖F‖|s.

Proceeding inductively, we arrive at

‖F‖s ≤
√

dbsc|‖F‖|s.

�
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2.11 Lemma. Let K ⊂ Rd be compact. Then for a compact and convex set L ⊃ K the
space D s(K) can be equipped with the following equivalent norms: ‖ ·‖s,K , ‖ ·‖s,L, ‖| · |‖s,L
and

‖| f |‖′s,L B sup
x∈L
|α|=bsc

|∂α f (x)| + sup
t>0

{
|∂β f (x) − ∂β f (y)|
|x − y|{s}

: x, y ∈ K, 0 < |x − y| ≤ t, |β| = bsc
}
.

Proof. The equivalence of the first three norms is rather obvious using the preceding
lemma. The only thing which is left to show is that there exists a positive constant C
such that for each f ∈ D s(K) the following inequality holds

| f |bsc ≤ C sup
x∈L
|α|=bsc

|∂α f (x)|.

As in the proof of the preceding lemma, we can again apply the mean value theorem
and proceed recursively. Let |α| = bsc − 1 and choose z ∈ L \ K. Then we have for
arbitrary x ∈ K

|∂α f (x)| = |∂α f (x) − ∂α f (z)| ≤ |∇(∂α f )(y)||x − z| ≤ λ
√

d sup
x∈L
|β|=bsc

|∂β f (x)|,

where λ denotes the diameter of L. Proceeding recursively we can set C B λbsc
√

dbsc.
�

Now we reformulate the conditions on the Taylor remainder using a modulus of
continuity. We do this to be able to formulate the results and proofs in the next chapter
in an easier way than Whitney did, leaning on the notation which Malgrange used in
[Mal67].

2.12 Definition. An increasing, continuous and concave function µ : [0,∞) → [0,∞)
with µ(0) = 0 is called a modulus of continuity.

2.13 Remark. Given two moduli of continuity µ1 and µ2, it is easy to show that also
µ1 ◦ µ2 is a modulus of continuity.

The next theorem shows, that the asymptotical behaviour of the Taylor remainder
can naturally be described with moduli of continuity. It is a generalisation of Theorem
2.2 in [Mal67].

2.14 Theorem. The following statements are equivalent for each F ∈ E s(K).

1. lim
t→0

qs,K(F, t) = 0.
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2. There exists a modulus of continuity µ such that∣∣∣Rbscx (F)(β)(y)
∣∣∣ ≤ |x − y|s−|β|µ(|x − y|) (2.1)

for x, y ∈ K and |β| ≤ bsc. Moreover we can choose µ such that ‖F‖s = |F|bsc +

µ(diam(K)).

3. There exists a modulus of continuity µ0 such that∣∣∣∂βT bscx (F)(z) − ∂βT bscy (F)(z)
∣∣∣ ≤ µ0(|x − y|)(|z − x|s−|β| + |z − y|s−|β|) (2.2)

for x, y ∈ K, z ∈ Rd and |β| ≤ bsc. The proof shows in fact that we can choose
µ0 = Cµ, where C depends only on d and bsc.

Proof. To see that 1. is equivalent to 2. we only have to prove that 1. implies 2. We
note that qs,K(F, t) is increasing in t and continuous at 0 which allows us to choose
a modulus of continuity µ with µ(0) = 0, µ(t) ≥ qs,K(F, t) for t ∈ (0, diam(K)) and
µ(t) ≡ qs,K(F, diam(K)) for t ≥ diam(K).

No we show that 2. implies 3.
Using Lemma 2.7 and the assumptions, we obtain∣∣∣∂βT bscx (F)(z) − ∂βT bscy (F)(z)

∣∣∣
=

∣∣∣∣∣∣∣∣
∑

|α|≤bsc−|β|

(z − x)α

α!
Rbscy (F)(α+β)(x)

∣∣∣∣∣∣∣∣
≤

∑
|α|≤bsc−|β|

|z − x||α|

α!

∣∣∣Rbscy (F)(α+β)(x)
∣∣∣

≤ µ(|x − y|)
∑

|α|≤bsc−|β|

|z − x||α||x − y|s−|α|−|β|

α!

= µ(|x − y|)|x − y|{s}
∑

|α|≤bsc−|β|

|z − x||α||x − y|(bsc−|β|)−|α|

α!

To be able to apply the binomial theorem on the sum, we group the multi-indices by
their absolute value. To this end let p(d, i) B

∣∣∣{α ∈ Nd
0 : |α| = i}

∣∣∣ =
(

d+i−1
i

)
. Remark

that p(d, i) ≤ p(d, bsc − |β|) for all i ≤ bsc − |β|. For the binomial theorem we have to
replace 1

α! by
(
bsc−|β|
|α|!

)
. Therefore we have to make sure that there exists a constant C0,

only depending on bsc and d, such that 1
α! ≤ C0

(
bsc−|β|
|α|!

)
for all |β| ≤ bsc. So C0 has to fulfil

C0 ≥
(bsc−|β|−|α|)!|α|!
α!(bsc−|β|)! . Because for fixed bsc we have to consider only a finite number of
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α and β, we can define C0 B max
{

(bsc−|β|−|α|)!|α|!
α!(bsc−|β|)! : |β| ≤ bsc, |α| ≤ bsc − |β|

}
and are done.

Hence, we get∣∣∣∂βT bscx (F)(z) − ∂βT bscy (F)(z)
∣∣∣

≤ µ(|x − y|)|x − y|{s}
∑

|α|≤bsc−|β|

|z − x||α||x − y|(bsc−|β|)−|α|

α!

≤ µ(|x − y|)|x − y|{s}
∑

i≤bsc−|β|,i∈N

C0 p(d, i)
(
bsc − |β|

i

)
|z − x|i|x − y|bsc−|β|−i

≤ C0 p(d, bsc)µ(|x − y|)|x − y|{s}(|z − x| + |x − y|)bsc−|β|

≤ C0 p(d, bsc)µ(|x − y|)|x − y|{s}(|z − x| + |x − z| + |z − y|)bsc−|β|

≤ 2bsc−|β|C0 p(d, bsc)µ(|x − y|)|x − y|{s}(|z − x| + |z − y|)bsc−|β|.

In both cases, |z − x| ≤ |z − y| and |z − x| > |z − y|, we get

(|z − x| + |z − y|)bsc−|β| =|z − x|bsc−|β| + |z − y|bsc−|β|

+
∑

1≤i≤bsc−|β|−1

(
bsc − |β|

i

)
|z − x|i|z − y|bsc−|β|−i

≤

2 +
∑

1≤i≤bsc−|β|−1

(
bsc − |β|

i

) (|z − x|bsc−|β| + |z − y|bsc−|β|).

Setting

C1(bsc, d) B max
|β|≤bsc

2 +
∑

1≤i≤bsc−|β|−1

(
bsc − |β|

i

) 2bscC0 p(d, bsc),

we have so far∣∣∣∂βT bscx (F)(z) − ∂βT bscy (F)(z)
∣∣∣ ≤ C1(bsc, d)µ(|x − y|)|x − y|{s}(|z − x|bsc + |z − y|bsc).

Thus, it is left to show, that there exists a constant C2, again depending only on d and
bsc, such that:

|x − y|{s}(|z − x|bsc + |z − y|bsc) ≤ C2(|z − x|s + |z − y|s).

For this we remark first that

|x − y|{s} ≤ |z − x|{s} + |z − y|{s}.

To see this, we may first assume that |z − x| ≥ |z − y|. Then there is a q ∈ [0, 1] such that
q|z − x| = |z − y|. So we get an equivalent formulation of our problem and we have to
show that

f (q) B (1 + q){s} − q{s} ≤ 1 for all q ∈ [0, 1].
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Since we have f (0) = 1, it is sufficient to show that the first derivative of f is negative
on (0, 1]. We compute

f ′(q) = {s}(1 + q){s}−1 − {s}q{s}−1,

and since (1 + q){s}−1 < q{s}−1 for q ∈ (0, 1], we have the desired result. Therefore, we
get

|x − y|{s}(|z − x|bsc + |z − y|bsc) ≤ (|z − x|{s} + |z − y|{s})(|z − x|bsc + |z − y|bsc)

= |z − x|s + |z − y|s + |z − x|{s}|z − y|bsc + |z − x|bsc|z − y|{s}

≤ 3(|z − x|s + |z − y|s),

which shows the assertion.
The last implication, 3. implies 2., is again easy to prove.∣∣∣Rbscx (F)(β)(y)

∣∣∣ =
∣∣∣ f (β)(y) − ∂βT bscx (F)(y)

∣∣∣
=

∣∣∣∂βT bscy (F)(y) − ∂βT bscx (F)(y)
∣∣∣

≤ µ0(|x − y|)(|y − y|s−|β| + |x − y|s−|β|)

= |x − y|s−|β|µ0(|x − y|).

Note that we can assume s < N0 and therefore |y − y|s−|β| = 0 for each β ≤ bsc. �

Before the end of this section, we prove two propositions which will be very helpful
in the next chapters. To explain the purpose of these propositions, let 0 ≤ s0 ≤ s,

F =
(

f (α)
)
|α|≤bsc

∈ E s(K),

and let E : E s(K)→ E s0(Rd) denote the constructed extension operator. By construction
we always know that E(F)

∣∣∣
Kc ∈ C∞(Kc) and that ∂αE(F)(x) = f (α)(x) for all x ∈ K and

all |α| ≤ s0. Thus, to prove that E(F) ∈ E s0(Rd), we have to show that E(F) admits
continuous partial derivatives up to order s0 on the boundary of K, which is done with
Proposition 2.15, and that for a compact set L with L̊ ⊃ supp(E(F)):

lim
t→0

qs0,L

((
∂αE(F)

∣∣∣
L

)
|α|≤bs0c

, t
)

= 0,

which is done with Proposition 2.16. Since the product of E with a test function ϕ with
ϕ ≡ 1 on K is again an extension operator with the same continuity properties, we can
without loss of generality assume that such a compact set L exists and is convex. The
convexity of L saves us some computational effort by Remark 2.9. For the proof of
Proposition 2.16, we follow Malgrange’s proof of Complement 3.6 in [Mal67].
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2.15 Proposition. Let K ⊂ Rd be compact, s ≥ 0, f : Rd → R such that f ∈ C∞(Kc),
f ≡ 0 on K and such that for all β ∈ Nd

0 with |β| ≤ s and ε > 0 there exists a δ > 0 with∣∣∣∣ ∂β f (x)
dist(x,K)s−|β|

∣∣∣∣ < ε for all x ∈ {y ∈ Kc : dist (y,K) < δ}, or shorter

|∂β f (x)| = o(dist (x,K)s−|β|) for all β ∈ Nd
0 with |β| ≤ s and x→ ∂K. (2.3)

Then f admits partial derivatives up to order bsc in Rd and ∂β f ≡ 0 on K for each
|β| ≤ bsc.

Proof. We will prove the existence of the partial derivatives only for those of first order,
i.e. we show that

lim
h→0

| f (x0 + he) − f (x0)|
h

= 0 (2.4)

for an arbitrary x0 ∈ ∂K and some unit vector e. The same argument can be used
for all the other partial derivatives. First we remark that f is continuous in Rd\∂K by
assumption and the continuity in ∂K follows immediately from (2.3). In order to show
(2.4), let ε > 0. With (2.3) we find a δ > 0 such that∣∣∣∣∣ ∂ f

∂x1
(x)

∣∣∣∣∣ /|x − x0|
s−1 < ε for all x ∈ Uδ(x0) ∩ Kc. (2.5)

We choose h ∈ Uδ(0) such that x0 + he ∈ Kc ∩ Uδ(x0) (if no such h exists we have
∂ f
∂x1

(x) = 0). Because K is compact we find x̃ ∈ [x0 + he, x0] ∩ K which minimizes
the distance of x0 + he to K. According to x̃ we find a 0 < |h̃| < |h| which fulfils
x0 + he = x̃ + h̃e and we obtain

| f (x0 + he) − f (x0)|
hs =

| f (x0 + he) − f (x̃)|
hs (2.6)

=
| f (x̃ + h̃e) − f (x̃)|

h̃s

h̃s

hs

≤
| f (x̃ + h̃e) − f (x̃)|

h̃s
.

Since [x0 + he, x̃) ⊂ Kc, f is continuous on [x0 + he, x̃] and ∂ f
∂x1

exists on (x0 + he, x̃), we
can apply the mean value theorem to get a x̂ ∈ (x0 + he, x̃) such that

∂ f
∂x1

(x̂) =
f (x̃ + h̃e) − f (x̃)

h̃
.

Together with (2.5) and (2.6) we have for h ≤ 1

| f (x0 + he) − f (x0)|
h

≤
| f (x0 + he) − f (x0)|

hs ≤

∣∣∣∣∣ ∂ f
∂x1

(x̂)
∣∣∣∣∣ /|x̂ − x0|

s−1 ≤ ε,

which gives the desired result. Since f ≡ 0 on K we already know that ∂β f ≡ 0 on K̊
for all β ≤ bsc. The calculation above shows that this is true on the whole set K. �
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2.16 Proposition. Let K ⊂ Rd be compact, s ≥ 0 and ∈ E bsc(Rd) such that F B(
∂α f

∣∣∣
K

)
|α|≤bsc

∈ E s(K) and f ∈ E bsc+1(Kc). Then f ∈ E s(Rd) provided that the following
conditions hold:

1. There is a modulus of continuity µ such that for all |β| ≤ bsc and x ∈ Rd

|∂β f (x) − ∂βT bsca (F) (x)| ≤ µ(dist (x,K)) · dist (x,K)s−|β| , (2.7)

where a denotes a point in K with |x − a| = dist (x,K).

2. For |β| = bsc + 1 there is a modulus of continuity µ such that for all x ∈ Kc

|∂β f (x)| ≤ µ(dist (x,K)) · dist (x,K)s−|β| . (2.8)

Proof. In order to show that f ∈ E s(Rd), we prove that
(
∂α f

∣∣∣
L

)
|α|≤bsc

∈ E s(L) for each
convex and compact L ⊃ K, where E s(L) is equipped with the norm ‖| · |‖s,L.

So we have to show that

lim
t→0

sup
{
|∂β f (x) − ∂β f (y)|
|x − y|{s}

: 0 < |x − y| < t, x, y ∈ L, |β| = bsc
}

= 0. (2.9)

We split the proof in three different cases. The first case is that both points, x and y,
belong to K. We apply inequality (2.2) of Theorem 2.14 to prove this case. The second
case is that only one of the points lies in K. To show this case we apply inequality (2.7).
The last case is that both points are located in L \ K for which we use inequality (2.8).

1. Let x, y ∈ K. Since F ∈ E s(K) it is clear that

|∂β f (x) − ∂β f (y)|
|x − y|{s}

≤ µ0(|x − y|),

where µ0 shall be the modulus of continuity belonging to the jet F, which exists
by Theorem 2.14.

2. Let x ∈ L \ K and y ∈ K. First we choose a point a ∈ K, such that |x − a| =

dist (x,K). Then inequality (2.7) shows that

|∂β f (x) − ∂β f (y)| ≤ |∂β f (x) − ∂β f (a)| + |∂β f (a) − ∂β f (y)|

≤ |∂β f (x) − ∂βT bsca F(x)| + µ0(|a − y|)|a − y|{s}

≤ µ(|x − a|)|x − a|{s} + µ0(2|x − y|)2{s}|x − y|{s}

≤ (µ(|x − y|) + 2{s}µ0(2|x − y|))|x − y|{s},

which proves this case because

µ(|x − y|) + 2{s}µ0(2|x − y|)→ 0 for |x − y| → 0.
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3. For the last case we assume x, y ∈ L \ K. We split this case in two subcases. First
we assume that dist (x,K) ≥ 2|x− y|. This condition ensures that the line segment
[x, y] is contained in L \ K. Applying the mean value theorem, we get a z ∈ (x, y)
such that

∂β f (x) − ∂β f (y) = ∇(∂β f (z))(x − y).

Now we can apply inequality (2.8) on the right side to get

|∂β f (x) − ∂β f (y)| ≤ |∇(∂β f )(z)||x − y|

≤
√

dµ(dist (z,K)) · dist (z,K)s−|β|−1
|x − y|

=
√

dµ(dist (z,K)) · dist (z,K){s}−1
|x − y|.

(2.10)

Since dist (x,K) ≥ 2|x−y|, we have dist (z,K) ≥ |x−y| and therefore |x−y|1−{s}

dist(z,K)1−{s} < 1.
Furthermore, µ being concave yields that for all 0 < a < 1 and all x ≥ 0 the
following inequality holds

aµ(x) = aµ(x) + (1 − a)µ(0) ≤ µ(ax + (1 − a)0) = µ(ax).

So we get

µ(d(z,K))
dist (z,K)1−{s} |x−y| ≤ µ

(
dist (z,K){s} |x − y|1−{s}

)
|x−y|{s} ≤ µ

(
λ{s}|x − y|1−{s}

)
|x−y|{s},

which proves our assertion, since

lim
|x−y|→0

µ
(
λ{s}|x − y|1−{s}

)
= 0.

The second case is that dist (x,K) < 2|x − y|. For this we choose a, b ∈ K such
that

|x − a| = dist (x,K) , |y − b| = dist (y,K) ,

which leads to

|y − b| ≤ |y − a| ≤ |x − y| + |x − a| ≤ 3|x − y|,
|a − b| ≤ |x − a| + |x − y| + |y − b| ≤ 2|x − y| + |x − y| + 3|x − y| = 6|x − y|.

And therefore we can expand

∂β f (x) − ∂β f (y) = ∂β f (x) − ∂β f (a) + ∂β f (a) − ∂β f (b) + ∂β f (b) − ∂β f (y),

which permits us to use the derived inequalities from the first two cases. Using
inequality (2.7) results in

|∂β f (x) − ∂β f (y)| ≤ |∂β f (x) − ∂β f (a)| + |∂β f (a) − ∂β f (b)| + |∂β f (b) − ∂β f (y)|
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≤ µ(|x − a|)|x − a|{s} + µ0(|a − b|)|a − b|{s} + µ(|b − y|)|b − y|{s}

≤ µ(2|x − y|)2{s}|x − y|{s} + µ0(6|x − y|)6{s}|x − y|{s} + µ(3|x − y|)3{s}|x − y|{s}

≤ (2{s} + 6{s} + 3{s})µ̃(6|x − y|)|x − y|{s}, (2.11)

where µ̃ is a modulus of continuity satisfying µ̃ ≥ max{µ, µ0}. Since the last term
converges to 0 if |x − y| → 0, the proof of (2.9) is complete.

�

2.3 The Results of Whitney and Stein
In this section we provide an overview of the classical results of Whitney and Stein. We
chose those two because Whitney’s work was seminal for the whole theory of extension
operators and Stein’s result on the extension problem for Sobolev spaces also yields a
result for the central problem (2.12).

In 1934, Hassler Whitney published the three groundbraking articles [Whi34a],
[Whi34b] and [Whi34c] on the question of how to describe the space of functions de-
fined on a closed set M in Rd which can be extended to a function defined on the whole
Rd having a certain order of differentiability. The first article [Whi34a] already solved
the problem for finite orders of differentiability completely, and in addition he proved
that this extension can be achieved by a continuous and linear operator En, which is the
right inverse of the restriction operator

rn : E n(Rd)→ E n(M), f 7→
(
∂α f

∣∣∣
M

)
|α|≤n

.

To put it short, for all n ∈ N the following short sequence is exact and splits in the
category of Fréchet spaces

0→ I n
F (Rd)→ E n(Rd)

rn
→ E n(M)→ 0,

where I n
M(Rd) B

{
f ∈ E n : ∂α f

∣∣∣
M
≡ 0 for all |α| ≤ n

}
. The fact that rn ◦ En = id means

that E n(M) is exactly the space of restrictions of n-times continuously partially differen-
tiable functions on Rd to M. The extension problem, which he solved for the finite order
case, is much more complicated in the infinite order case and even until today subject
of current research. In the same paper he published the result, that the restriction

r : E (Rd)→ E (M), f 7→
(
∂α f

∣∣∣
M

)
|α|∈Nd

0

is surjective, or equivalently the following sequence is exact

0→ IF(Rd)→ E (Rd)
r
→ E (M)→ 0, (2.12)
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where IM(Rd) B
{
f ∈ E : ∂α f

∣∣∣
M
≡ 0 for all α ∈ Nd

0

}
. Since then, most of the research

in this field has been concerned with the problem to characterize those sets, for which
the latter sequence splits or equivalently when this extension can also be achieved with a
continuous and linear extension operator. Iconic counterexamples for closed sets which
do not admit such an extension operators are singletons or the examples given by Tidten
in [Tid79], e.g. the exponential cusp:

Mexp B
{
(x, y) ∈ R2 : |y| ≤ exp

(
−x−1

)
, 0 ≤ x ≤ 1

}
.

In [Whi34c], Whitney examines another, perhaps more intuitive, way of defining differ-
entiability on closed sets, i.e. by simply defining for an open and bounded set O:

C n(Ō) B
{
f ∈ C (Ō) : f ∈ C n(O) and ∂α f is uniformly cont. on O for all |α| ≤ n

}
.

Equipped with the supremum norm | · |n,O, this space is a Banach space. Since all the
partial derivatives are uniformly continuous, it is possible to uniquely extend them to
the boundary of O. Whitney introduced a special regularity condition for sets and could
show that if O fulfills this condition, the spaces C n(Ō) and E n(Ō) are isomorphic, and
therefore each f ∈ C n(Ō) together with all its partial derivatives can be extended to
an n-times continuously partially differentiable function on Rd. According to Whitney,
this result also holds for unbounded O. A set satisfies this regularity condition if there
exists a constant C > 0 such that for each x, y ∈ O there exists a rectifiable arc Γ in O
which connects x and y and so that the length |Γ| fulfills the inequality |Γ| ≤ C|x − y|.
This way of defining smooth functions on closed sets has its downsides when it comes
to the infinite order case. As usual, the space C∞(Ō) is constructed as projective limit
of the spaces C n(Ō) and is therefore a Fréchet space. Unfortunately it turned out that
for special geometries of Ō, the Whitney space E (Ō) is a proper and dense subspace of
C∞(Ō). Since the restriction operator r, as mentioned above, is surjective, there exist
functions f ∈ C∞(Ō), such that there is no extension f̃ ∈ E (Rd) with ∂α f̃

∣∣∣
Ō

= ∂α f for
all α ∈ Nd

0, which is of course totally counter-intuitive. One example of such a set in R2

is [−1, 1]2 \ Mexp. On the other hand there are geometries as the sets O with Lipschitz
boundary treated i.a. in [Ste70], [Bie78] and [Fre07b] for which C∞(Ō) = E (Ō) but not
necessarily C n(Ō) = E n(Ō).

The elements of the Whitney spaces are families of functions called Whitney jets.
The aim of the paper [Whi34b] is to investigate wether it is possible to reduce those
jets to single functions, thus to find conditions which involve only f (0). Whitney could
solve the problem in the one dimensional case. He showed that a continuous function
f defined on a closed set M is in E n(M) (in the sense that f is the restriction of an
n-times continuously partially differentiable function on Rd or equivalently can be com-
pleted to a full Whitney jet with f (0) = f ) if and only if the n-th difference quotients
show a certain convergence behaviour. The question of how to find a characterization in
higher dimensions is also a very current field of research with important contributions
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by Glaeser [Gla58], Bierstone, Milman and Pawlucki in [BMP03], [BMP06], Frerick,
Jordá and Wengenroth in [FJW16a] and last but not least Fefferman i.a. in [Fef06].

In his book [Ste70], Stein published two results concerning extension operators. The
first one is a variation of Whitney’s result on the finite order extension operators En. He
showed that En : Lip(γ, F) → Lip(γ,Rd) is continuous for each n < γ ≤ n + 1, where
the Lipschitz spaces on closed sets M are defined as those

(
f (α)

)
|α|≤n
∈

∏
|α|≤n C (M) for

which there exists a constant L ≥ 0 such that for each |β| ≤ n and all x, y ∈ M we have

| f (β)(x)| ≤ L and
∣∣∣∣∣Rk

y

((
f (α)

)
|α|≤n

)(β)
(x)

∣∣∣∣∣ ≤ L|x − y|γ−|β|.

The main reason for citing his work in this context is his second result about the exten-
sion problem for Sobolev spaces. For k ∈ N0 and 1 ≤ p ≤ ∞ the Sobolev space Wk,p(Rd)
denotes the space of all those functions from Lp(Rd) for which all partial derivates exist
up to order k in the week sense and are also in Lp(Rd). Already in [Cal61], Calderón
constructed extension operators for those spaces, but those operators depend on the de-
gree of differentiability k and are not valid for the cases p = 1 and p = ∞. The big
advantage of Stein’s result is that he constructed one operator doing the extension for
all integers k and all 1 ≤ p ≤ ∞, so E : Wk,p(Ω) → Wk,p(Rd) continuous. In order
for this to work, Ω has to be locally the graph of a Lipschitz continuous function. As
mentioned above, the spaces C∞(Ω̄) and E (Ω̄) then coincide. Stein shows in his proof
that for f ∈ C k(Ω̄)(⊂ Wk,∞(Ω)) we have that E( f ) ∈ C k(Rd). So Stein’s operator also
offers a solution for (2.12). Since the norm on Wk,∞(Ω), as defined in [Ste70] on page
122, equals the supremum norm on C k(Ω̄), it is evident that Stein’s operator fulfils the
norm inequalities

|E( f )|k,L ≤ C| f |k,Ω̄,

for all f ∈ C∞(Ω̄) and some compact set L̊ ⊃ Ω̄. This is the best possible continuity
estimate and we say that this operator has no loss of derivatives. We will prove a more
general result on this kind of operators in Chapter 4.

The research on extension operators for Sobolev spaces continued i.a. with the
works of Jones who generalized the results of Stein in [Jon81] to locally uniform do-
mains with the downside that his operators were again depending on the order of differ-
entiability. Rogers could connect the results of Stein and Jones in [Rog04] to construct
an extension operator E : Wk,p(Ω)→ Wk,p(Rd) working for all k ∈ N0 and all 1 ≤ p ≤ ∞
and Ω being locally uniform.



Chapter 3

Generalized Extension Theorem of
Whitney

In this chapter we generalize Whitney’s result about finite order extension operators as
formulated in Section 1.3. Whitney constructed his extension operators En between the
spaces E n(K) and E n or likewise Dn(L) for some compact and convex L with L̊ ⊃ K.
Our aim is to expand Whitney’s construction to obtain operators Es : E s(K) → D s(L)
for all s ≥ 0, i.e. operators ’on the real scale’ instead of just ’on the natural scale’. This
extension is necessary for the next chapters, where we construct operators which are not
only a solution to (2.12) but which also map simultaneously all the spaces E s(K) into
E s(Rd).

3.1 Statement of the Main Result
3.1 Theorem. Whitney’s extension theorem
For each s ≥ 0 and each compact set L with L̊ ⊃ K, there is a linear and continuous
mapping Es : E s(K)→ D s(L) such that for every jet F =

(
f (α)

)
|α|≤bsc

∈ E s(K) and every

x ∈ K, we have ∂βE(F)(x) = f β(x) for |β| ≤ bsc.

The proof of this theorem shows that for all n ∈ N0 the operator is defined in the
same way for all s ∈ [n, n + 1). Therefore the statement of the following lemma makes
sense. The proof of this lemma is contained in the proof of the main theorem.

3.2 Lemma. Let n ∈ N0 be arbitrary and L ⊂ Rd be a cube with K ⊂ L̊. Since
E : E s(K)→ D s(L) is continuous for all s ∈ [n, n + 1) there exist constants Cs such that
‖|E(F)|‖s,L ≤ Cs‖F‖s,K . These constants can be chosen such that the mapping s 7→ Cs is
continuous and bounded on [n, n + 1).

21
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3.2 Proof of the Main Result
Now we can prove the generalized version of Whitney’s extension theorem. In the
following the family of functions (ϕi)i∈I shall denote a certain partition of unity which
is for instance given in Lemma 3.1, [Mal67]. We will list the important properties in the
next lemma.

3.3 Lemma. Whitney’s partition of unity
Let K ⊂ Rd be compact and Ω ⊃ K open. Then there exists a countable family of
positive testfunctions ϕi ∈ D(Ω \ K) with the following properties.

1.
∑∞

i=1 ϕi(x) = 1 for all x ∈ Ω \ K and each point belongs to at most N supports
supp(ϕi) for some constant N ∈ N.

2. supp(ϕi) → K for i → ∞, that is, for each ε > 0 there is k ∈ N such that
supp(ϕi) ⊂ {x ∈ Rd : dist (x,K, <) ε} for all i ≥ k.

3. diam(supp(ϕi)) ≤ 2dist (supp(ϕi),K).

4. There are constants cβ such that |∂βϕi(x)| ≤ cβdist (x,K)−|β| for all i ∈ N, β ∈ Nd
0,

and x ∈ Rd.

With the aid of this decomposition we can prove now the main result of this chapter.

Proof. For s ∈ N this is the classical extensions theorem of Whitney. So we may assume
that s ∈ (0,∞) \ N. In the following let L ⊂ Rd be a compact and convex set, such that
K ⊂ L̊. We will apply the partition of unity (ϕi)i∈I only on L\K. As in the original proof
of Whitney we take the following operator as our candidate for the desired extension:

Es(F)(x) =

 f (0)(x), x ∈ K∑
i∈N ϕi(x)T bscai (F)(x), x < K

,

where ai denotes a point in K such that dist
(
supp(ϕi),K

)
= dist

(
supp(ϕi), ai

)
, and for

the ease of short notation we set in the following f̃ B Es(F). We note directly that
obviously Es(F) ∈ E (Rd \ K). In the course of this proof µ shall denote a modulus of
continuity for the jet F, so it fulfils (2.1) of Theorem 2.14. Furthermore let λ denote the
diameter of K, so λ B supx∈L dist (x,K).
We structure the following proof into four parts.

1. We prove the existence of a constant C depending only on bsc, d and λ such that
for every |β| ≤ bsc, a ∈ K and x ∈ L, we have:

|∂β f̃ (x) − ∂βT bsca (F)(x)| ≤ Cµ(|x − a|)|x − a|s−|β|. (3.1)
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2. We show that for each |β| > bsc we can find a constant C depending only on β, bsc
and λ, such that

|∂β f̃ (x)| ≤ Cµ(dist (x,K))dist (x,K)s−|β| . (3.2)

3. We show that f̃ ∈ D s(L).

4. We show that Es : E s(K) → D s(L) is continuous. Furthermore we show that
the continuity constants Cs, for which the inequality ‖|Es(F)|‖s,L ≤ Cs‖F‖s,K is
true for every F ∈ E s(K), can be chosen such that the mapping s 7→ Cs depends
continuously on s on each interval [n, n + 1) for each n ∈ N0 and is bounded on
these intervals.

1. So we begin with the first part and note that we have for every x ∈ L \ K,

f̃ (x) − T bsca (F)(x) =
∑
i∈N

ϕi(x)
(
T bscai

(F)(x) − T bsca (F)(x)
)
.

Hence applying Leibniz’s formula, we arrive at

∂β f̃ (x) − ∂βT bsca (F)(x) =
∑
i∈N

∑
l≤β

(
β

l

)
∂lϕi(x)∂β−l

(
T bscai

(F)(x) − T bsca (F)(x)
)
.

First, we consider those terms for which l = 0. For x ∈ supp(ϕi) we have obviously
dist (x,K) ≤ |x − a| and dist (x,K) ≤ |x − ai| ≤ 3dist (x,K), and hence

µ(|a − ai|) ≤ µ(|x − a| + |x − ai|) ≤ µ(4|x − a|) ≤ 4µ(|x − a|).

Now we use (2.1) of Theorem 2.14 and get a constant C0 = C0(bsc, d) such that

|ϕi(x)|
∣∣∣∂βT bscai

(F)(x) − ∂βT bsca (F)(x)
∣∣∣

≤ C0µ(|a − ai|)
(
|x − ai|

s−|β| + |x − a|s−|β|
)

≤ 16C0µ(|x − a|)|x − a|s−|β|,

which is an inequality of the form needed for (3.1). Now we treat the terms for l , 0.
First, we note that for all x ∈ L \ K we have∑

i∈N

∂lϕi(x) = 0.

Thus, we obtain∑
i∈N

∂lϕi(x)∂β−l
(
T bscai

(F)(x) − T bsca (F)(x)
)

=
∑
i∈N

∂lϕi(x)∂β−l
(
T bscai

(F)(x) − T bscb (F)(x)
)
,
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for an arbitrary b ∈ K. If we choose b such that |x − b| = dist (x,K), we have (as in the
first case) by (2.1) of Theorem 2.14 the constant C0 and by Lemma 3.3 a constant C1(l)
such that ∣∣∣∣∣∣∣∑i∈N ∂lϕi(x)∂β−l

(
T bscai

(F)(x) − T bsca (F)(x)
)∣∣∣∣∣∣∣

≤
∑
i∈N

∣∣∣∂lϕi(x)
∣∣∣ ∣∣∣∣∂β−l

(
T bscai

(F)(x) − T bscb (F)(x)
)∣∣∣∣

≤
∑
i∈N

C1(l)dist (x,K)−|l|C0µ(|ai − b|)(|x − ai|
s−|β|+|l| + |x − b|s−|β|+|l|)

≤ 16NC1(l)C0µ(|x − b|)|x − b|s−|β|.

Setting
C B max{16C0, 16NC0 max

|l|≤bsc
C(l)},

we have proved the assertion.

2. Now, we turn our attention to the proof of inequality (3.2). For this we basically
proceed in the same way as for the proof of inequality (3.1). Let a ∈ K such that
dist (x,K) = |x − a|. Since T bsca (F) is a polynomial of order bsc we have that ∂βT bsca (F) ≡
0, which leads to

|∂β f̃ (x)| = |∂β f̃ (x) − ∂βT bsca (F)(x)|

=
∑
i∈N

∑
l≤β

(
β

l

)
∂lϕi(x)∂β−l

(
T bscai

(F)(x) − T bsca (F)(x)
)
.

Again we have ∂β−l
(
T bscai (F)(x) − T bsca (F)(x)

)
= 0 if |β − l| > bsc and therefore we just

consider |l| > 0 and can argue exactly in the same way as in the first part of the proof.

3. Now that (3.1) and (3.2) are established, we can prove that f̃ ∈ D s(L). Because
supp(ϕi) ⊂ L for each i ∈ I it is clear that supp( f̃ ) ⊂ L.

We first conclude that f̃ admits continuous partial derivatives up to order bsc in Rd.
Since the existence is clear in Kc and K̊, we only have to prove it on ∂K. But since
F ∈ E bsc(K) and the operator Es is the classical Whitney operator, this follows directly
from the results in [Whi34a] or [Mal67]. The fact that f̃ ∈ D s(L) follows then directly
from Proposition 2.16.

4. To show that the operator Es is continuous, we equip D s(L) with the norm ‖| · |‖s,L
and we prove the existence of a constant C = C(s, d, λ) such that ‖| f̃ |‖s,L ≤ C‖F‖s,K . By
definition of the norm we have

‖| f̃ |‖s,L = | f̃ |L,∞ + sup
t>0

{
|∂β f̃ (x) − ∂β f̃ (y)|
|x − y|{s}

: x, y ∈ L, 0 < |x − y| < t, |β| = bsc
}
.
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In the following we will estimate both summands. Beginning with the supremum norm
part we have for |β| ≤ bsc and arbitrary x ∈ L, a ∈ K

|∂β f̃ (x)| ≤
∣∣∣∂β f̃ (x) − ∂βT bsca (F)(x)

∣∣∣ +
∣∣∣∂βT bsca (F)(x)

∣∣∣ .
Applying inequality (3.1) and Theorem 2.14 (note that µ(t) ≤ µ(diam(K)) ≤ ‖F‖s for all
t > 0) we get a constant C0(bsc, d, λ) such that∣∣∣ f̃ (β)(x) − ∂βT bsca (F)(x)

∣∣∣ ≤ C0µ(|x − a|)|x − a|s−|β|

≤ C0µ(diam(K)) max(1, λs)
≤ C1(s, d, λ)‖F‖s,K .

For the second summand we have

|∂βT bscα (F)(x)| =

∣∣∣∣∣∣∣∣
∑

|α|≤bsc−|β|

f (α+β)(a)
α!

(x − a)α

∣∣∣∣∣∣∣∣
≤

∑
|α|≤bsc−|β|

1
α!
‖F‖s,Kλ|α|,

and therefore we find a constant C2(bsc, d, λ) such that

|∂βT bscα (F)(x)| ≤ C2(bsc, d, λ),

which gives in the sum
|∂β f̃ (x)| ≤ (C1 + C2)‖F‖s,K .

Furthermore we note that C1 depends continuously on s̃ and for all s ∈ [n, n + 1) it is
true that

C0(n, d, λ) ≤ C1(s, d, λ) ≤ C0(n, d, λ) max(1, λn+1).

It is left to show that we also find a constant C = C(s, d, λ) with comparable proper-
ties for all x, y ∈ L and all |β| = bsc such that

|∂β f̃ (x) − ∂β f̃ (y)|
|x − y|{s}

≤ C‖F‖s,K . (3.3)

To achieve this we can use the results from part three of this proof. If x, y ∈ K we simply
have

|∂β f̃ (x) − ∂β f̃ (y)|
|x − y|{s}

≤ µ(|x, y|) ≤ ‖F‖s,K .

For x ∈ L \ K and y ∈ K we get by (2.9)

|∂β f̃ (x) − ∂β f̃ (y)|
|x − y|{s}

≤ Cµ(|x − y|) ≤ C‖F‖s,K ,
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where the constant C depends only on bsc and not on the fractional part of s.
For x, y ∈ L \ K we get taking the inequalities (2.10) and (2.11) together a constant

which depends continuously on {s} and which is bounded on each interval [n, n + 1) for
each n ∈ N0. �



Chapter 4

Extension Operators without Loss of
Derivatives

The main result of this chapter is a characterization of all compact sets K ⊂ Rd which
admit an extension operator E : E (K) → E (Rd) fulfilling the best possible continuity
estimates, i.e.

‖|E(F)‖|s,L ≤ Cs‖F‖s,K (4.1)

for all Whitney jets F ∈ E (K) and any compact and convex set L with K ⊂ L̊. The
inequalities (4.1) are best possible because, since E is an extension operator, it doesn’t
change the jet itself, so the smoothness properties can only be preserved in the best case.
In this case we say that E has no loss of derivatives or shortly no loss. First results in the
construction of an extension operator without loss are due to Seeley [See64] for the case
of closed half spaces, Stein [Ste70] for the case of compact sets with Lip1-boundary.
The main contribution in this chapter is a generalization of a result of Frerick, Jordá and
Wengenroth given in [FJW16b].

The existence of an extension operator without loss is characterized by the geome-
try of the underlying compact set K. On the one hand we show the equivalence to the
existence of certain measures supported in K, and on the other hand we show the equiva-
lence to the validity of Markov inequalities for polynomials on K. Different types of this
Markov type inequalities have already been considered by various authors in the attempt
to characterize ’good’ geometries of K such that E (K) admits an extension operator. To
give a short overview of the use of Markov inequalities in the context of extension oper-
ators, we refer to the work of Pawłucki and Pleśniak in [PP86], [PP88], [PP89], [Ple90],
Bos and Milman in [BM95], Frerick in [Fre07a] and Frerick, Jordá and Wengenroth
in [FJW11].

Pleśniak proved in [Ple90] Theorem 3.3 that E (K), endowed with a weaker topology
than generated by the Whitney seminorms, admits an extension operator if and only if
there exist positive constants C and r such that for all polynomials p ∈ C[x1, ..., xd] the

27
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following inequality holds for each α ∈ Nd
0

|∂αp|0,K ≤ C deg(p)r|α||p|0,K .

Goncharov proved in [Gon96] that this global version of a Markov inequality is not
necessary for the existence of an extension operator if E (K) is equipped with the Fréchet
space topology generated by the Whitney semi norms. The authors Bos and Milman
showed then in [BM95] that this global Markov inequality is equivalent to the validity
of the following local version. K fulfils this local version if and only if there exist r ≥ 1,
ε0 > 0 and Ck > 1 such that for all polynomials p ∈ C[x1, ..., xd] with deg(p) ≤ k, each
x0 ∈ K and 0 < ε < ε0 the following inequality holds

|∇p(x0)| ≤ Ckε
−r|p|0,B(x0,ε)∩K ,

or equivalently for all α ∈ Nd
0

|∂αp(x0)| ≤ Ckε
−r|α||p|0,B(x0,ε)∩K .

If a set K fulfils those inequalities for an exponent r we write in the following that it
has LMI(r). More importantly they could show in Theorem E that both versions are
again equivalent to the existence of an extension operator having a homogeneous loss
of derivatives.

Using a weaker form of LMI, or short WLMI, this result was improved in [FJW11]
and the loss of derivatives could be calculated depending on the exponent of the Markov
inequality. In detail, K fulfils this weaker form of the Markov inequality LMI(r) if and
only if K fulfils LMI(s) for all s > r. The resulting extension operator fulfils then
|E(F)|n ≤ Cn,ε‖F‖(r+ε)n,K for all F ∈ E (K), n ∈ N0 and arbitrary ε > 0.

In Theorem 4.6 of [Fre07a], Frerick characterized the existence of an extension op-
erator on a compact set K using different types of global and local Markov inequalities.
Suitable for K let L be compact with K ⊂ L̊. Then K fulfils the global form of the
inequality if and only if for all θ ∈ (0, 1) there are r ≥ 1 and C ≥ 1 such that for all
polynomials p ∈ C[x1, ..., xd]

sup
x∈K
|∇p(x)| ≤ C deg(p)r sup

x∈L
|p(x)|θ sup

x∈K
|p(x)|1−θ,

and K fulfils the local form if and only if for all θ ∈ (0, 1) there are r ≥ 1 and ε0 > 0
such that for all k ∈ N there is C ≥ 1 such that for all polynomials p ∈ C[x1, ..., xd], all
x0 ∈ K and all ε ∈ (0, ε0)

|∇p(x0)| ≤
C
εr sup
|x−x0 |≤ε

|p(x)|θ sup
|x−x0 |≤ε,x∈K

|p(x)|1−θ.

We close this chapter by showing that a rather general family of self similar fractals,
including well known sets as the Cantor set, the Sierpinski triangle and Koch curve,
admits an extension operator without loss. For this we use an equivalent condition to
LMI(1) and results on so called d-sets given in the paper [JSW84] of Jonsson, Sjögren
and Wallin and as well results of Triebel in [Tri11] and Falconer in [Fal14].
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4.1 Statement of the Main Result
In Theorem 4.1 we generalize the results of [FJW16b] in which the authors prove
the equivalence of LMI(1) to the existence of an extension operator having no loss
of derivatives on the natural scale. This means that E fulfils the norm inequalities
|E(F)|n ≤ Cn‖F‖n,K for each F ∈ E (K). This operator is constructed in a way that it
is even defined for all f ∈ E 0(K) and therefore simultaneously is an extension operator
for all the spaces E n(K). We will show in Theorem 4.1 that LMI(1) is also equivalent to
the existence of an extension operator E having no loss of derivatives on the real scale,
meaning that E fulfils ‖|E(F)|‖s,L ≤ Cs‖F‖s,K for arbitrary compact and convex set L
with K ⊂ L̊.

4.1 Theorem. Extension operator without loss of derivatives
For K ⊂ Rd compact, the following statements are equivalent

1. K satisfies the LMI(1) condition.

2. For all α ∈ Nd
0, x ∈ ∂K and ε > 0 there exist measures να,x,ε on K such that for

each s ≥ 0 and each jet
(

f (α)
)
|α|≤bsc

∈ E s(K),

(a) lim
ε→0

sup
|α|≤bsc,x∈∂K

|να,x,ε( f (0)) − ε|α| f (α)(x)|
εs = 0,

(b) lim
ε→0

sup
|α|>bsc,x∈∂K

|να,x,ε( f (0))|
εs = 0.

3. K admits an extension operator without loss of derivatives which fulfils the norm
inequalities on the real scale.

In fact we show in the following two sections only that 1. ⇒ 2. ⇒ 3. The equiva-
lence follows from the results in [FJW16b]. There it is shown that the LMI(1) condition
is equivalent to the existence of an extension operator E : E (K) → E (Rd) without loss
of derivatives on the natural scale. Since the operator constructed in 3. has of course
this property, the equivalence is established.

Thus taking all characterizations of the LMI(1) condition into account we yield the
following corollary.

4.2 Corollary. For K ⊂ Rd the following statements are equivalent

1. K satisfies the LMI(1) condition.

2. For all α ∈ Nd
0, x ∈ ∂K and ε > 0 there exist measures να,x,ε on K such that for

each s ≥ 0 and
(

f (α)
)
|α|≤bsc

∈ E s(K),
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(a) lim
ε→0

sup
|α|≤bsc,x∈∂K

|να,x,ε( f (0)) − ε|α| f (α)(x)|
εs = 0,

(b) lim
ε→0

sup
|α|>bsc,x∈∂K

|να,x,ε( f (0))|
εs = 0.

3. K admits an extension operator without loss of derivatives (on the real scale).

4. For all α ∈ Nd
0, x ∈ ∂K and ε > 0 there exist measures να,x,ε on K such that for

each n ∈ N0 and
(

f (α)
)
|α|≤n
∈ E n(K),

(a) lim
ε→0

sup
|α|≤n,x∈∂K

|να,x,ε( f (0)) − ε|α| f (α)(x)|
εn = 0,

(b) lim
ε→0

sup
|α|>n,x∈∂K

|να,x,ε( f (0))|
εn = 0.

5. K admits an extension operator without loss of derivatives (on the natural scale).

6. There is % ∈ (0, 1), such that for each x0 ∈ K and ε ∈ (0, 1) the set K ∩ B(x0, ε) is
not contained in any band of the form {x ∈ Rd : |〈b, x − x0〉| ≤ %ε} where b ∈ Rd

with |b| = 1 arbitrary.

7. It exists % ∈ (0, 1), such that for each x0 ∈ K and ε ∈ (0, 1) there are d pairwise
different points x1, ..., xd ∈ K ∩ B(x0, ε) such that for all n ∈ {0, ..., d − 1}

dist (xn+1, affhull{x0, ..., xn}) ≥ %ε.

Here affhull{x0, ..., xn} shall denote the affine hull of the points.

Especially the properties 6 and 7 have a purely geometric character which allows di-
rect application to examples. The equivalence of property 6 to LMI(1) has been shown
in [JSW84] in Theorem 1.3. The equivalent property 7 was proved in [BM95] in The-
orem D. We will make extensive use of the last characterization in order to prove the
existence of extension operators for our examples at the end of this chapter.

4.2 Construction of the Measures
We start with showing the sufficiency of LMI(1) for the existence of the measures. To
achieve this, we first cite Proposition 5 of [FJW16b] which we will then use to prove
a modified version of Proposition 4 in the same paper. Ongoing we make use of the
following notation for ’blow-ups’ of the underlying compact set K. For ε > 0 and x ∈ K
we write

Ax,ε B ε−1(K − x) ∪ {y ∈ Rd : |y| ≥ ε−1}.



31

4.3 Proposition. Let K ⊂ Rd be a compact subset satisfying LMI(1). Then there exists
a continuous and radial function % : Rd → (0,∞) with |y|n = o(%(y)) for |y| → ∞ and all
n ∈ N such that for each x ∈ ∂K, ε ∈ (0, 1) and α ∈ Nd

0 there exists a finite regular Borel
measure µ B µα,x,ε on Ax,ε with total variation |µ|(Ax,ε) ≤ 1 such that∫

Ax,ε

yβ
1
%(y)

dµ(y) =

α!, β = α

0, else
.

Proof. A proof can be found in [FJW16b]. �

4.4 Proposition. Let K ⊂ Rd be a compact subset satisfying LMI(1). Then for all
α ∈ Nd

0, x ∈ ∂K and ε ∈ (0, 1), there is a measure να,x,ε on K such that for each s ≥ 0
and each F =

(
f (α)

)
|α|≤bsc

∈ E s(K),

1.

lim
ε→0

sup
|α|≤bsc,x∈∂K

|να,x,ε( f (0)) − ε|α| f (α)(x)|
εs = 0,

2.

lim
ε→0

sup
|α|>bsc,x∈∂K

|να,x,ε( f (0))|
εs = 0.

Proof. We assume without loss of generality that K ⊂ B(0, 1
4 ). For x ∈ ∂K, ε ∈ (0, 1),

α ∈ Nd
0 and f ∈ C (K) we define with the measure µα,x,ε from Proposition 4.3

να,x,ε( f ) B
∫
ε−1(K−x)

f (εy + x)
%(y)

dµα,x,ε(y). (4.2)

For each f ∈ C (Rd) with support in B(0, 3
4 ) we then have

να,x,ε( f
∣∣∣
K

) =

∫
Ax,ε

f (εy + x)
%(y)

dµα,x,ε(y)

since |x + εy| > 3
4 whenever |y| > 1

ε
.

Multiplying Whitney’s extension operator Es : E s(K) → E s(Rd) from Theorem 3.1
with a cut-off function, we may assume that Es(F) ∈ D s(B(0, 3

4 )) for each F ∈ E s(K).
To shorten the notation, we will denote by f̃ the extension Es(F). Applying Taylor’s
theorem we find ξ = ξ(x, ε, y, f̃ ) ∈ (x, x + εy) such that

|να,x,ε( f (0)) − ε|α| f (α)(x)| =

∣∣∣∣∣∣
∫

Ax,ε

f̃ (εy + x)
%(y)

dµα,x,ε(y) − ε|α|∂α f̃ (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫

Ax,ε

∑
γ<bsc

∂γ f̃ (x)
γ!

ε|γ|yγ + εbsc
∑
|γ|=bsc

∂γ f̃ (ξ)
γ!

yγ
 1
%(y)

dµα,x,ε(y) − ε|α|∂α f̃ (x)

∣∣∣∣∣∣∣∣ .
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Since ∑
|γ|≤bsc,γ,α

(
∂γ f̃ (x)
γ!

ε|γ|
∫

Ax,ε

yγ

%(y)
dµα,x,ε(y)

)
= 0,

we can subtract this term from the above and obtain

|να,x,ε( f (0)) − ε|α| f (α)(x)| = εbsc

∣∣∣∣∣∣∣∣
∫

Ax,ε

∑
|γ|=bsc

(
∂γ f̃ (ξ)
γ!

−
∂γ f̃ (x)
γ!

)
yγ

%(y)
dµα,x,ε(y)

∣∣∣∣∣∣∣∣ ,
and therefore we have using |ξ − x| ≤ ε|y|

|να,x,ε( f (0)) − ε|α| f (α)(x)|
εs =

∣∣∣∣∣∣∣∣
∫

Ax,ε

∑
|γ|=bsc

1
γ!

(
∂γ f̃ (ξ) − ∂γ f̃ (x)

ε{s}

)
yγ

%(y)
dµα,x,ε(y)

∣∣∣∣∣∣∣∣
≤

∑
|γ|=bsc

1
γ!

∫
Ax,ε

|∂γ f̃ (ξ) − ∂γ f̃ (x)|
ε{s}

∣∣∣∣∣ yγ

%(y)

∣∣∣∣∣ d|µα,x,ε|(y)

≤
∑
|γ|=bsc

1
γ!

∫
Ax,ε

|∂γ f̃ (ξ) − ∂γ f̃ (x)|
ε{s}

|y||γ|

|%(y)|
d|µα,x,ε|(y)

≤
∑
|γ|=bsc

1
γ!

∫
Ax,ε

|∂γ f̃ (ξ) − ∂γ f̃ (x)|
|ξ − x|{s}

|y||γ|+{s}

|%(y)|
d|µα,x,ε|(y).

To show that the last integral converges uniformly in x to zero for ε → 0, we split it in
the integrals over the sets Ax,ε ∩ {|y| > r} and Ax,ε ∩ {|y| ≤ r}. For the first integral we use
the facts

|∂γ f̃ (ξ) − ∂γ f̃ (x)|
|ξ − x|{s}

≤
∥∥∥ f̃

∥∥∥
s,B(0, 3

4 )
,

|µα,x,ε|(Ax,ε) ≤ 1 and |y|n/%(y)→ 0 for |y| → ∞ for all n ∈ N. Thus we get∫
Ax,ε∩{|y|>r}

|∂γ f̃ (ξ) − ∂γ f̃ (x)|
|ξ − x|{s}

|y||γ|+{s}

|%(y)|
d|µα,x,ε|(y)

≤
∥∥∥ f̃

∥∥∥
s,B(0, 3

4 )
sup

Ax,ε∩{|y|>r}

|y||γ|+{s}

%(y)

≤
∥∥∥ f̃

∥∥∥
s,B(0, 3

4 )
sup
{|y|>r}

|y||γ|+{s}

%(y)
.

The last term converges to zero for r → ∞ and is independent of ε. For the integral
over the second set we first observe that |ξ − x| ≤ ε|y| ≤ rε, which implies since f̃ ∈
D s(B(0, 3

4 )) that uniformly

|∂γ f̃ (ξ) − ∂γ f̃ (x)|
|ξ − x|{s}

→ 0 for ε→ 0.
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Thus we get ∫
Ax,ε∩{|y|≤r}

|∂γ f̃ (ξ) − ∂γ f̃ (x)|
|ξ − x|{s}

|y||γ|+{s}

|%(y)|
d|µα,x,ε|(y)

≤ qs,B(0, 3
4 )( f̃ , rε) sup

y∈Rd

|y||γ|+{s}

|%(y)|
,

which converges for a fixed r to zero for ε → 0. All together this proves the first
property of the measures.

For the second property we proceed now analogously. With Taylor’s theorem we
find again a ξ ∈ (x, x + εy) such that

|να,x,ε( f (0))| =

∣∣∣∣∣∣
∫

Ax,ε

f̃ (x + εy
%(y)

dµα,x,ε(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫

Ax,ε

∑
|γ<bsc

∂γ f̃ (x)
γ!

ε|γ|yγ + εbsc
∑
|γ|=bsc

∂γ f̃ (ξ)
γ!

yγ
 1
%(y)

dµα,x,ε(y)

∣∣∣∣∣∣∣∣ .
Since |α| > bsc, we have that ∫

Ax,ε

yγ

%(y)
dµα,x,ε(y) = 0

for all |γ| ≤ bsc, and therefore∫
Ax,ε

∑
|γ|≤bsc

∂γ f̃ (x)
γ!

ε|γ|
yγ

%(y)
dµα,x,ε(y) = 0.

Subtracting this, we get as for the first property that

|να,x,ε( f (0))|
εs ≤

∑
|γ|=bsc

1
γ!

∫
Ax,ε

|∂γ f̃ (ξ) − ∂γ f̃ (x)|
|ξ − x|{s}

|y|s

|%(y)|
d|µα,x,ε|(y),

which allows the same reasoning as for the first property. �

4.3 Construction of the Extension Operator
In this section we prove that in Theorem 4.1 the existence of the measures on K implies
the existence of an extension operator on E (K) without loss. The operator will be con-
structed with the help of the measures derived in the former section.

In the next lemma we list some additional properties of Whitney’s partition of unity.
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4.5 Lemma. For K ⊂ Rd compact, let (ϕi)i∈I be a partion of unity ofRd\K as it is defined
in Lemma 3.1 of [Mal67]. Then this partition has the following three properties, where
we denote by γi the distance of K to supp(ϕi).

1. For all n ∈ N, |α| ≤ n and β ∈ Nd
0 we obtain positive constants Cβ,n independent

of i such that
sup

x∈supp(ϕi)

∣∣∣∂β((x − xi)αϕi(x))
∣∣∣ ≤ Cβ,nγ

|α|−|β|
i .

2. For all n ∈ N, |α| > n and β ∈ Nd
0 we obtain positive constants Cβ,n independent

of i such that

sup
x∈supp(ϕi)

∣∣∣∂β((x − xi)αϕi(x))
∣∣∣ ≤ Cβ,n3|α| sup

γ≤α,β

α!
(α − γ)!

γ
|α|−|β|
i .

3. For all n ∈ N and β ∈ Nd
0 we have∑

|α|>n

sup
γ≤α,β

1
(α − γ)!

3|α| ≤ 3|β|e3d(|β| + 1)d.

Proof. For the first inequality we apply Leibniz’s formula and get

∣∣∣∂β((x − xi)αϕi(x))
∣∣∣ ≤∑

γ≤β

(
β

γ

)
|∂γ ((x − xi)α)|

∣∣∣∂β−γϕi(x)
∣∣∣ .

We note that ∂γ((x− xi)α) = 0 if γ j > α j for at least one j ∈ {1, ..., d}, thus we can assume
that |α| − |γ| ≥ 0 in the following, or also that α − γ ∈ Nd

0 which allows the application
of the inequality from Remark 2.2 part 2. Using part 3. of Lemma 3.3 we get for all
x ∈ supp(ϕi)

|x − xi| ≤ diam(supp(ϕi)) + γi ≤ 3γi,

and of course it is true that dist (x,K) ≥ γi, which gives together with part 4. of the same
lemma ∣∣∣∂β((x − xi)αϕi(x))

∣∣∣ ≤∑
γ≤β

(
β

γ

)
α!

(α − γ)!
|x − xi|

|α|−|γ|cβdist (x,K)|γ|−|β|

≤
∑
γ≤β

(
β

γ

)
α!

(α − γ)!
3|α|−|γ|γ|α|−|γ|i cβγ

|γ|−|β|
i

=
∑
γ≤β

(
β

γ

)
α!

(α − γ)!
cβ3|α|−|γ|γ

|α|−|β|
i .
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We can then set

Cβ,n = sup
|α|≤n

∑
γ≤β

(
β

γ

)
α!

(α − γ)!
cβ3|α|−|γ|.

For the second inequality we calculate in the same way but we set

Cβ,n =
∑
γ≤β

(
β

γ

)
cβ3−|γ|.

To get the third inequality we use Fubini’s theorem to get∑
|α|>n

sup
γ≤α,β

1
(α − γ)!

3|α| ≤ 3|β|
∑
γ≤β

∑
|α|>n
α≥γ

1
(α − γ)!

3|α−γ|

≤ 3|β|
∑
γ≤β

∑
α∈Nd

0

1
α!

3|α|

= 3|β|
∑
γ≤β

 ∑
α1∈N0

· · ·
∑
αd∈N0

1
α1!
· · ·

1
αd!

3α1 · · · 3αd


= 3|β|

∑
γ≤β

∑
j∈N0

1
j!

3 j


d

= 3|β|e3d
d∏

i=1

(βi + 1)

≤ 3|β|e3d(|β| + 1)d

�

4.6 Theorem. Construction of an extension operator without loss of derivatives
Let K ⊂ Rd be compact. If for all α ∈ Nd

0, x ∈ ∂K and ε ∈ (0, 1), there is a measure
να,x,ε satisfying the conditions of Theorem 4.1, then there exists a linear and continuous
extension operator E : E (K)→ E (Rd) without loss of derivatives.

Proof. In the following we denote with Es the Whitney operator with the properties
shown in Theorem 3.1. Then we set with the measures να,x,ε of Proposition 4.4

µα,i B να,xi,γi/γ
|α|
i .

For F =
(

f (α)
)
α∈Nd

0
∈ E (K), we define the sought-after extension operator E as follows

E(F)(x) B

 f (0)(x), x ∈ K∑
i∈N ϕi(x)

∑
|α|≤i

1
α!µα,i( f (0))(x − xi)α, x < K.
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We structure the proof in the following steps. The continuity of the operator is
proved in the next section.

1. For all s ≥ 0, β ∈ Nd
0 and F ∈ E s(K) we have∣∣∣∂βE(F)(x) − ∂βEs(F)(x)

∣∣∣ = o(dist (x,K)s−|β|) for x→ ∂K, (4.3)

or equivalently:

For all s ≥ 0, β ∈ Nd
0 and F ∈ E s(K) there exists a modulus of continuity µβ such

that ∣∣∣∂βE(F)(x) − ∂βEs(F)(x)
∣∣∣ ≤ µβ(dist (x,K))dist (x,K)s−|β| . (4.4)

2. Let L be a compact and convex set with L̊ ⊃ K, then
(
∂α f̃

)
|α|≤bsc

∈ E s(L).

We start with the proof of inequality (4.3). For x ∈ Rd \ K we define i(x) B inf{i ∈
I : x ∈ supp(ϕi)} and as we are only interested in the behaviour near the boundary
of K, we can limit ourselves here to those x ∈ L \ K with i(x) > bsc. Because of
property 2 of Lemma 3.3 we then have that i(x) → ∞ is equivalent to x → ∂K. For
|β| ≤ bsc, F ∈ E s(K) and i(x) > bsc we have

∂βE(F)(x) − ∂βEs(F)(x) =
∑
i≥i(x)

∑
|α|≤bsc

1
α!

(µα,i( f (0)) − f (α)(xi))∂β((x − xi)αϕi(x))

+
∑
i≥i(x)

∑
bsc<|α|≤i

1
α!
µα,i( f (0))∂β((x − xi)αϕi(x)).

We will estimate both terms. Using the hypotheses on the measures we get for |α| ≤ bsc

|µα,i( f (0)) − f (α)(xi)| = o(γs−|α|
i ) as i→ ∞.

Lemma 3.3 states that each x ∈ Rd \K is contained in a finite number of supports which
allows us to treat the series as finite sums. Thus we obtain together with Lemma 4.5.1
for the first term that ∣∣∣∣∣∣∣ ∑

|α|≤bsc

1
α!

(µα,i( f (0)) − f (α)(xi))∂β((x − xi)αϕi(x))

∣∣∣∣∣∣∣
≤

∑
|α|≤bsc

1
α!

∣∣∣µα,i( f (0)) − f (α)(xi)
∣∣∣ ∣∣∣∂β ((x − xi)αϕi(x))

∣∣∣
≤

∑
|α|≤bsc

1
α!

∣∣∣να,xi,γi( f (0)) − γ|α|i f (α)(xi)
∣∣∣

γ|α|i

Cβ,bscγ
|α|−|β|
i

= o(γs−|β|
i ) as i→ ∞.
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Since the conditions dist (x,K) → 0, i(x) → ∞ and γi(x) → 0 are equivalent, it follows
that

lim
x→∂K

∑
i≥i(x)

∣∣∣∣∣∣∣ ∑
|α|≤bsc

1
α!

(µα,i( f (0)) − f (α)(xi))∂β((x − xi)αϕi(x))

∣∣∣∣∣∣∣ dist (x,K)|β|−s = 0.

For the second summand Lemma 4.5.2 and .3 imply that∣∣∣∣∣∣∣ ∑
|α|>bsc

1
α!
µα,i( f (0))∂β((x − xi)αϕi(x))

∣∣∣∣∣∣∣
≤

∑
|α|>bsc

1
α!
γ−|α|i o(γs

i )Cβ,bsc sup
γ≤α,β

α!
(α − γ)!

3|α|γ|α|−|β|i

≤ o(γs
i )Cβ,bsce3d(|β| + 1)d3|β|γ−|β|i

= o(γs−|β|
i ) as i→ ∞.

As for the first summand we conclude

lim
x→∂K

∑
i≥i(x)

∣∣∣∣∣∣∣ ∑
bsc<|α|≤i

1
α!
µα,i( f (0))∂β((x − xi)αϕi(x))

∣∣∣∣∣∣∣ dist (x,K)|β|−s = 0,

which proves (4.3).
For the proof that E(F) ∈ E s(Rd), we first note that (4.3) together with Propo-

sition 2.15 shows that the function E(F) − Es(F) is bsc-times continuously partially
differentiable on Rd. Since we already know that Es(F) ∈ E s(Rd) this gives E(F) =

E(F)−Es(F)+ Es(F) ∈ E bsc(Rd). Then inequality (4.4) allows the application of Propo-
sition 2.16. For this we note that ∂αE(F)(x)−∂αEs(F)(x) = 0 for all |α| ≤ bsc and x ∈ K,
and therefore

∂βT bsca

(
(∂αE(F) − ∂αEs(F))|α|≤bsc

)
= 0,

for all |β| ≤ bsc and a ∈ K. �

In the next section we will calculate the constants occurring in the continuity esti-
mates to study their behaviour, which of course proves the continuity of E.

4.4 A Closer Look at the Continuity Estimates
In this section we prove the following result on the continuity constants.

4.7 Proposition. Let E : E (K) → E (Rd) be the extension operator constructed in
Theorem 4.6. Then for each s ≥ 0 there is a constant Cs > 0 such that the inequality
‖|E(F)‖|s,L ≤ Cs‖F‖s,K holds for each F ∈ E s(K) and each compact and convex set L
with L̊ ⊃ K. Furthermore these constants can be chosen such that the mapping s 7→ Cs

is continuous and bounded on each interval [n, n + 1) for every n ∈ N0.
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Proof. Let n ∈ N0 arbitrary. In the course of this proof we will call a family of constants
(Cs)s∈[n,n+1) admissible if they just depend on s, d and λ and if the mapping s 7→ Cs is
continuous and bounded on each interval [n, n + 1) for each n ∈ N. Let Es : E s(K) →
E s(Rd) be again the generalized Whitney operator constructed in Theorem 3.1. Then
we have by the triangle inequality

‖|E(F)|‖s,L ≤ ‖|(E − Es)(F)|‖s,L + ‖|Es(F)|‖s,L. (4.5)

For the second summand with Lemma 3.2 we can find a family
(
C(0)

s

)
s≥0

of admissible
constants. So we only have to check the continuity estimate for the first summand. The
proof is structured in two steps.

1. We show that there is an admissible family of constants
(
C(1)

s

)
s≥0

such that

|(E − Es)(F)|s,L ≤ C(1)
s ‖|Es(F)|‖s,L. (4.6)

2. We show that there is an admissible family of constants
(
C(2)

s

)
s≥0

such that for all
x1, x2 ∈ L and all |β| = bsc

|∂β(E − Es)(F)(x1) − ∂β(E − Es)(F)(x2)|
|x1 − x2|

{s} ≤ C(2)
s ‖|Es(F)|‖s,L. (4.7)

From those two inequalities it follows then directly that

‖|(E − Es)(F)|‖s,L ≤ (C(1)
s + C(2)

s )C(0)
s ‖F‖s,K ,

where the family
(
(C(1)

s + C(2)
s )C(0)

s

)
s≥0

is of course admissible.
For the proof of inequality (4.6) it suffices to show the inequality for |β| = bsc as

Lemma 2.11 shows. So let x ∈ L \ K, for x ∈ K this is trivial.

∂β(E − Es)(F)(x) =
∑
i∈N

∑
|α|≤min(i,bsc)

1
α!

(µα,i( f (0)) − f (α)(xi))∂β(ϕi(x)(x − xi)α)

+
∑
i>bsc

∑
bsc<|α|≤i

1
α!
µα,i( f (0))∂β(ϕi(x)(x − xi)α)

−
∑
i≤bsc

∑
i<|α|≤bsc

1
α!

f (α)(xi)∂β(ϕi(x)(x − xi)α).

In order to prove (4.6) we have to show the three following inequalities

1. For i ∈ N and |α| ≤ min(i, bsc) we show that

|µα,i( f (0)) − f (α)(xi)||∂β(ϕi(x)(x − xi)α| ≤ C(s, d, λ, %)‖|Es(F)|‖s,L. (4.8)
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2. For bsc < |α| ≤ i we need to show that∑
|α|>bsc

1
α!
|µα,i( f (0))||∂β(ϕi(x)(x − xi)α)| ≤ C(s, d, λ, %)‖|Es(F)|‖s,L. (4.9)

3. For i ≤ bsc and i < |α| ≤ bsc we show that

| f (α)(xi)||∂β(ϕi(x)(x − xi)α)| ≤ C(s, d, λ, %)‖|Es(F)|‖s,L. (4.10)

For the first case we get, using Lemma 4.5 a constant Cβ,bsc

|µα,i( f (0)) − f (α)(xi)||∂β(ϕi(x)(x − xi)α| ≤ Cβ,bsc
|να,xi,γi( f (0)) − γ|α|i f (α)|

|γbsci |
.

Using now the technique of the proof of Proposition 4.4 we get

|να,xi,γi( f (0)) − γ|α|i f (α)(xi)|

γbsci

= γ{s}i

|να,xi,γi( f (0)) − γ|α|i f (α)(xi)|
γs

i

= γ{s}i

∣∣∣∣∣∣∣∣
∫

Axi ,γi

∑
|γ|=bsc

1
γ!
∂γEs(F)(ξ) − ∂γEs(F)(xi)

γ{s}i

yγ

%(y)
dµα,xi,γi(y)

∣∣∣∣∣∣∣∣
≤ λ{s}

∫
Axi ,γi

∑
|γ|=bsc

1
γ!
|∂γEs(F)(ξ) − ∂γEs(F)(xi)|

γ{s}i

|y||γ|

%(y)
d|µα,xi,γi |(y)

≤ λ{s}
∫

Axi ,γi

∑
|γ|=bsc

1
γ!
|∂γEs(F)(ξ) − ∂γEs(F)(xi)|

|ξ − x|{s}
|y|s

%(y)
d|µα,xi,γi |(y)

≤ λ{s} sup
y∈Rd

(
|y|s

%(y)

)  ∑
|γ|=bsc

1
γ!

 |µα,xi,γi |(Axi,γi)‖|Es(F)|‖s,L.

Setting

C(s, d, λ, %) B Cβ,bscλ
{s} sup

y∈Rd

(
|y|s

%(y)

)  ∑
|γ|=bsc

1
γ!


establishes (4.8) because |µα,xi,γi |(Axi,γi) ≤ 1 and the function % depends only on K itself.
It is clear that the family (C(s, d, λ, %))s≥0 is admissible.

For the proof of (4.9) we use the same approach and get with Lemma 4.5 a constant
Cβ,bsc such that∑

|α|>bsc

1
α!
|µα,i( f (0))||∂β(ϕi(x)(x − xi)α)| = Cβ,bsc

∑
|α|>bsc

|να,xi,γi( f (0))|

γbsci

3|α| sup
γ≤α,β

1
(α − γ)!

.
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Furthermore we have here also

|να,xi,γi( f (0))|
γs

i
=

∣∣∣∣∣∣∣∣
∫

Axi ,γi

∑
|γ|=bsc

1
γ!
∂γEs(F)(ξ) − ∂γEs(F)(xi)

γ{s}i

yγ

%(x)
dµα,xi,γi(y)

∣∣∣∣∣∣∣∣
≤

∫
Axi ,γi

∑
|γ|=bsc

1
γ!
|∂γEs(F)(ξ) − ∂γEs(F)(xi)|

γ{s}i

|y||γ|

%(x)
d|µα,xi,γi |(y)

≤

∫
Axi ,γi

∑
|γ|=bsc

1
γ!
|∂γEs(F)(ξ) − ∂γEs(F)(xi)|

|ξ − x|{s}
|y|s

%(x)
d|µα,xi,γi |(y)

≤ sup
y∈Rd

(
|y|s

%(y)

)  ∑
|γ|=bsc

1
γ!

 |µα,xi,γi |(Axi,γi)‖|Es(F)|‖s,L,

which leads, using again |µα,xi,γi |(Axi,γi) ≤ 1, to∑
|α|>bsc

1
α!
|µα,i( f (0))||∂β(ϕi(x)(x − xi)α)|

≤ Cβ,bsc

∑
|α|>bsc

|να,xi,γi( f (0))|
γs

i
γ{s}i 3|α| sup

γ≤α,β

1
(α − γ)!

≤ Cβ,bsc sup
y∈Rd

(
|y|s

%(y)

)
λ{s}

 ∑
|γ|=bsc

1
γ!

 ∑
|α|>bsc

3|α| sup
γ≤α,β

1
(α − γ)!

‖|Es(F)|‖s,L

≤ Cβ,bsc sup
y∈Rd

(
|y|s

%(y)

)
λ{s}e3d(bsc + 1)d3bsc‖|Es(F)|‖s,L,

which establishes (4.9) by setting

C(s, d, λ, %) B Cβ,bsc sup
y∈Rd

(
|y|s

%(y)

)
λs̃e3d(bsc + 1)d3bsc.

For the proof of (4.10) let i ≤ bsc and i < |α| ≤ bsc. Since we have here again for a
given s only a finite combination of i and α we can compute easily

| f (α)(xi)||∂β(ϕi(x)(x − xi)α)| ≤ ‖|Es(F)|‖s,LCβ,bscmax
i≤bsc

max
i<|α|≤bsc

γ|α|−bsci .

Thus the proof of (4.6) is complete.
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Now we prove inequality (4.7) and compute for x1, x2 ∈ L \ K

∂β(E − Es)(F)(x1) − ∂β(E − Es)(F)(x2)

=∂β

∑
i∈N

ϕi(·)
∑
|α|≤i

1
α!
µα,i( f (0))(· − xi)α

 (x1) − ∂β
∑

i∈N

ϕi(·)
∑
|α|≤bsc

1
α!

f (α)(xi)(· − xi)α
 (x1)

−∂β

∑
i∈N

ϕi(·)
∑
|α|≤i

1
α!
µα,i( f (0))(· − xi)α

 (x2) + ∂β

∑
i∈N

ϕi(·)
∑
|α|≤bsc

1
α!

f (α)(xi)(· − xi)α
 (x2)

=
∑
i∈N

∑
|α|≤min(i,bsc)

1
α!

(µα,i( f (0)) − f (α)(xi))
(
∂β(ϕi(·)(· − xi)α)(x1) − ∂β(ϕi(·)(· − xi)α)(x2)

)
+

∑
i>bsc

∑
bsc<|α|≤i

1
α!
µα,i( f (0))

(
∂β(ϕi(·)(· − xi)α)(x1) − ∂β(ϕi(·)(· − xi)α)(x2)

)
−

∑
i≤bsc

∑
i<|α|≤bsc

1
α!

f (α)(xi)
(
∂β(ϕi(·)(· − xi)α)(x1) − ∂β(ϕi(·)(· − xi)α)(x2)

)
and for x1 ∈ L \ K, x2 ∈ K we compute similarly:

∂β(E − Es)(F)(x1) − ∂β(E − Es)(F)(x2)

=∂β

∑
i∈N

ϕi(·)
∑
|α|≤i

1
α!
µα,i( f (0))(· − xi)α

 (x1) − ∂β
∑

i∈N

ϕi(·)
∑
|α|≤bsc

1
α!

f (α)(xi)(· − xi)α
 (x1)

− f (β)(x2) + f (β)(x2)

=
∑
i∈N

∑
|α|≤min(i,bsc)

1
α!

(µα,i( f (0)) − f (α)(xi))∂β(ϕi(·)(· − xi)α)(x1)

−
∑
i≤bsc

∑
i<|α|≤bsc

1
α!

f (α)(xi)∂β(ϕi(·)(· − xi)α)(x1)

+
∑
i>bsc

∑
bsc<|α|≤i

1
α!
µα,i( f (0))∂β(ϕi(·)(· − xi)α)(x1).

The case that both points belong to K is trivial.
We start with the case that both points belong to L \ K. Here we get three different

terms which we have to estimate.

1. We show that there are admissible constants
(
C(a)

s

)
s≥0

such that for each s ≥ 0 and
each |α| ≤ bsc:

|µα,i( f (0))− f (α)(xi)||∂β(ϕi(·)(·−xi)α)(x1)−∂β(ϕi(·)(·−xi)α)(x2)||x1−x2|
−{s} ≤ C(a)

s ‖F‖s.K
(4.11)



42

2. We show that there are admissible constants
(
C(b)

s

)
s≥0

such that for each s ≥ 0 and
each |α| ≤ bsc:

| f (α)(xi)||∂β(ϕi(·)(·−xi)α)(x1)−∂β(ϕi(·)(·−xi)α)(x2)||x1−x2|
−{s} ≤ C(b)

s ‖F‖s,K (4.12)

3. We show that there are admissible constants
(
C(c)

s

)
s≥0

such that for each s ≥ 0 and
each |α| > bsc:

|µα,i( f (0))||∂β(ϕi(·)(·−xi)α)(x1)−∂β(ϕi(·)(·−xi)α)(x2)||x1−x2|
−{s} ≤ C(c)

s ‖F‖s,K (4.13)

Starting with the proof of (4.11) we distinguish here between the two subcases, |x1 −

x2| ≥ γi and |x1 − x2| < γi for the estimation of the second factor in the left side of
(4.11). To make the notation easier we set Cbsc B max|β|≤bsc+1 Cβ,bsc where the Cβ,bsc are
the constants derived in Lemma 4.5. If we have |x1 − x2| ≥ γi we compute with Lemma
4.5

|∂β(ϕi(·)(· − xi)α)(x1) − ∂β(ϕi(·)(· − xi)α)(x2)| ≤ 2Cbscγ
|α|−|β|
i , (4.14)

and for the second case we apply the mean value theorem and again Lemma 4.5 to get

|∂β(ϕi(·)(· − xi)α)(x1) − ∂β(ϕi(·)(· − xi)α))(x2)| ≤
√

dCbscγ
|α|−|β|−1
i |x1 − x2|. (4.15)

For the case |x1 − x2| ≥ γi we get therefore that |x1 − x2|
−{s} ≤ γ−{s}i and using (4.14) we

compute

|µα,i( f (0)) − f (α)(xi)||∂β(ϕi(x1)(x1 − xi)α − ϕi(x2)(x2 − xi)α)||x1 − x2|
−{s}

≤2Cbsc
|να,xi,γi − γ

|α|
i f (α)(xi)|
γs

i
.

For the case |x1 − x2| < γi we compute with (4.15)

|µα,i( f (0)) − f (α)(xi)||∂β(ϕi(x1)(x1 − xi)α − ϕi(x2)(x2 − xi)α)||x1 − x2|
−{s}

≤
√

dCbsc
|να,xi,γi − γ

|α|
i f (α)(xi)|

γbsc+1
i

|x1 − x2|
1−{s}

≤
√

dCbsc
|να,xi,γi − γ

|α|
i f (α)(xi)|
γs

i
.

In both cases we can proceed now as in the proof of (4.8) and (4.11) is established. For
the proof of (4.13) we proceed basically in the same way and for (4.12) we have in the
case that |x1 − x2| ≥ γi

| f (α)(xi)||∂β(ϕi(·)(· − xi)α)(x1) − ∂β(ϕi(·)(· − xi)α)(x2)||x1 − x2|
−{s}
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≤‖|Es(F)|‖s,L2Cbscmax
i≤bsc

max
i<|α|≤bsc

γ|α|−s
i

and in the case that |x1 − x2| < γi we get

| f (α)(xi)||∂β(ϕi(·)(· − xi)α)(x1) − ∂β(ϕi(·)(· − xi)α)(x2)||x1 − x2|
−{s}

≤‖|Es(F)|‖s,LCbscγ
|α|−|β|−1
i |x1 − x2|

1−{s}

≤‖|Es(F)|‖s,L
√

dCbscmax
i≤bsc

max
i<|α|≤bsc

γ|α|−s
i .

It remains to handle the case x1 ∈ L \ K and x2 ∈ K. But as seen above this case is
even easier and can be proved in the same manner. �

4.5 Examples
In the following examples we focus on some well known fractal sets and we will use
Corollary 4.2 to prove that they admit an extension operator without loss of derivatives.

4.8 Example. 1. Cantor set
The Cantor set is the set of all points which is iteratively defined by the following
process. We start with the interval C0 = [0, 1] and remove from it the middle
third to get C1 = [0, 1

3 ] ∪ [ 2
3 , 1]. In the next step we remove again from both

remaining intervals the middle third to get C2 = [0, 1
9 ]∪ [2

9 ,
1
3 ]∪ [ 2

3 ,
7
9 ]∪ [8

9 , 1] and
so on. Continuing like this we get for each n ∈ N that Cn = Cn−1

3 ∪
(

2
3 + Cn−1

3

)
. The

Cantor set C is then defined as C B
⋂

n∈N0
Cn. To show that C admits an extension

operator without loss of derivatives we prove that C fulfils property 7 of Corollary
4.2. Let x0 ∈ C and ε > 0. Then we have to find x1 ∈ C with |x0 − x1| > %ε for
some % > 0 which does not depend on x0 or ε. Since Cn is always a union of
disjoint intervals, there is for each n ∈ N0 an interval In ⊂ Cn which contains x0.
We choose now n so large that In−1 ∩ B(x0, ε)c , ∅ and In ∩ B(x0, ε)c = ∅. The
situation is depicted in Figure 4.1.

We choose x1 now as the boundary point of In which has the greatest distance to
x0. Since x0 cannot belong to the middle third of In, x1 is uniquely determined.
Then we have

|x0 − x1| ≥
2
3
|In| =

2
9
|In−1| ≥

2
9
ε.

So we can choose % = 2
9 .

2. Generalized versions of the Cantor set
There are many ways to generalize the definition of the Cantor set. For instance it
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Figure 4.1: Choice of x1 for the Cantor set

is possible to modify the length of middle interval which is taken out in each step.
Instead of taking out one third of the original length, one could choose l ∈ (0, 1)
and take out from each Interval I a piece of length l|I|. The above proof remains
valid also in this case and repeating the same steps yields % = 1−l2

4 .
A way to further generalize this setting would be to allow that l depends on the
iteration step n, so you have a sequence (ln)n∈N0 ∈ (0, 1)N0 . To be able to find a
fixed % in this case, 1 must not be an accumulation point of this sequence. This
covers for instance the case of the Smith-Volterra-Cantor set where l(n) = 1

4n+1 .

3. Sierpinski triangle
The Sierpinski triangle is two dimensional analogon of the Cantor set which is
constructed with triangles instead of intervals. For the iterative procedure we
start with an equilateral triangle T0. In the next step, T0 is divided into 4 equi-
lateral triangles of the same size and the middle one (without its boundary) is
removed. The three remaining triangles form T1. The same procedure is then ap-
plied to the three triangles to arrive at T2 and so on. The first five iteration steps
are depicted in Figure 4.2.
The Sierpinski triangle is then again defined as T B

⋂
n∈N0

Tn. In order to prove
that T admits an extension operator without loss of derivatives, we check again
property 7 of Corollary 4.2. For that, we choose x0 ∈ T and ε > 0. We have to
find x1, x2 ∈ T and % > 0 independent of x0 and ε, such that

|x0 − x1| ≥ %ε, dist (x2, aff{x0, x1}) ≥ %ε.
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Figure 4.2: First steps in the construction of the Sierpinski triangle

Basically we follow the same approach as for the Cantor set. For x0 we find
a uniquely determined sequence of equilateral triangles (∆n)n∈N0 with ∆0 = T0,
such that ∆n % ∆n+1 and x0 ∈ ∆n for each n ∈ N0. We choose n ∈ N0 with
∆n−1 ∩ B(x0, ε) , ∅ and ∆n ∩ B(x0, ε) = ∅. Then we choose x1 and x2 to be the
vertices of ∆n which maximize the distance to x0. Since x0 cannot belong to the
center of the circumscribed circle of ∆n, both points are uniquely determined. The
choice is visualized in Figure 4.3.
If we denote with l(∆n) the side length of ∆n we have per construction l(∆n) =
1
2 l(∆n−1), and therefore

|x0 − x1| ≥
1
2

l(∆n) =
1
4

l(∆n) >
1
4
ε,

dist (x2, aff{x0, x1}) ≥
1
2

l(∆n) =
1
4

l(∆n) >
1
4
ε.

This shows that T fulfils property 7 of Corollary 4.2 with % = 1
4 .

4. Sierpinski tetrahedron
The Sierpinski tetrahedron is the analogon of the Sierpinski triangle in three di-
mensions. It is constructed in the same way by starting with an equilateral tetra-
hedron and in each step the side lengths of the tetrahedra are divided by two.
The first two iteration steps are shown in Figure 4.4. Since each side face of the
tetrahedron is in each iteration step a Sierpinski triangle, an analogous choice
of the points x1, x2, x3 yields that the Sierpinski tetrahedron fulfils property 7 of
Corollary 4.2 also with % = 1

4 .
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Figure 4.3: Choice of x1 and x2 for the Sierpinski triangle

All the above examples of fractal sets for which we rather manually verified the
property 7 of Corollary 4.2 can also be treated with a more general approach to show
that they have LMI(1). To describe this approach, we first have to introduce some basic
concepts which play a central role in the theory of fractals. The first is the idea of a finite
set of functions which is used to define a fractal set, but which also allows to iteratively
approximate the set it defines.

4.9 Definition. Let D ⊂ Rn be a closed set. Then a mapping S : D → D is called a
contraction (contracting similarity) on D if there exists a 0 < r < 1 such that for each
x, y ∈ D the following inequality holds

|S (x) − S (y)| ≤ (=)r|x − y|.

A finite set of contractions is called an iterated function system of short IFS. A set
F ⊂ Rn is called attractor of an IFS {S 1, ..., S m} if

F =

m⋃
i=1

S i(D).

A fundamental property of an IFS is that it uniquely determines a non-empty and
compact attractor, see for instance Theorem 9.1 in [Fal14] or Theorem 4.2 in [Tri11].
All the fractal sets we had in our last example can be defined via such an IFS where each
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Figure 4.4: First steps in the construction of the Sierpinski tetrahedron

mapping is even a contracting similarity. For instance the Cantor set is the attractor of
the IFS {S 1, S 2}, where S 1 : Rn → Rn, x 7→ 1

3 x and S 2 : Rn → Rn, x 7→ 1
3 x + 2

3 .
A very interesting property of such an IFS is, that it is not only possible to define a

fractal set as attractor, but it is also possible to approximate the attractor by iteratively
applying the mappings on a starting set. The starting set can indeed by any non-empty
compact subset K of Rn. This construction can be formalized in the following way for
an IFS {S 1, ..., S m} and K compact:

S 0(K) B K, S 1(K) B
m⋃

i=1

S i(K), ..., S k(K) B S 1(S k−1)(K).

Then it is true that S∞(K) B limk→∞ S k(K) exists in the metric space of all non-empty
compact subsets ofRd equipped with the Hausdorff metric, and furthermore S∞(K) = F.
For our purposes we need the following additional property of an IFS and its attractor.

4.10 Definition. Let {S 1, ..., S m} be an IFS with attractor F. Then the IFS fulfils the
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open set condition if there exists a non-empty open set O ⊂ Rn such that

m⋃
i=1

S i(O) ⊂ O and S i(O) ∩ S j(O) = ∅ for all i , j.

The open set condition ist not as restrictive as it may seem. Again all our previously
mentioned examples fulfill this condition. For the Cantor set we can choose the open
interval (0, 1). For the Sierpinski triangle (tetrahedron) one can take the interior of the
triangle (tetrahedron) with which we started the iterative construction. Even the Koch
curve fulfills this requirement as can be seen in Example 9.5 in [Fal14]

4.11 Definition. Given an IFS of contraction similarities {S m, ..., S m}with ratios r1, ..., rm

and attractor F, the unique solution d of the equation

m∑
i=1

rd
i = 1

denotes the similarity dimension of F.

According to Theorem 9.3 in [Fal14], the similarity dimension d fulfils

d = dimH(F) = dimB(F),

where dimH(F) denotes the Hausdorff dimension of F and dimB(F) denotes the Box
dimension of F. The last concept we have to introduce before we can apply the result
of [JSW84] is the concept of d-sets.

4.12 Definition. Let M ⊂ Rn and 0 ≤ d ≤ n. Then M is called a d-set if there exists a
Borel measure µ in Rn having the following properties:

1. supp(µ) = M,

2. There exists constants c1, c2 > 0 such that for all x ∈ M and all 0 < r < 1

c1rd ≤ µ(B(x, r) ∩ M) ≤ c2rd.

For those d-sets Jonsson, Sjögren and Walling published the following result in
[JSW84].

4.13 Theorem. If F ⊂ Rn is a d-set with d > n − 1, then F fulfils LMI(1).

On the other hand, there is the following result which can be found in Theorem 4.7
in [Tri11].
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4.14 Theorem. Let {S 1, ..., S n} be an IFS of contracting similarities with attractor F
that fulfils the open set condition and has similarity dimension d. Then F is self-similar
and a compact d-set.

Putting both theorems together, we get that each compact set F ⊂ Rn, which is
the attractor of an IFS of contracting similarities, which fulfils the open set condition
and has similarity dimension d > n − 1, admits an extension operator without loss of
derivatives. For instance the Koch curve in R2 fulfils all these requirements with d =
log 4
log 3 ≈ 1.26 > 1 and therefore admits an extension operator without loss of derivatives.



Chapter 5

Tame Linear Extension Operators

In this chapter we show that the tame linear extension operator constructed in [FJW11]
is also continuous on the real scale. Furthermore, in the last section of this chapter
we present a modified construction of Whitney’s finite order extension operators Es.
Frerick, Jordá and Wengenroth prove in [FJW11] that a compact set K fulfils WLMI(r)
for some r ≥ 1 if and only if it admits a tame linear extension operator. We introduced
the weak local Markov inequality, or for short WLMI, already at the beginning of the
last chapter. Tame linear means in this context, that the extension operator E fulfils the
following continuity estimates for each F ∈ E (K), ε > 0 and m ∈ N0

|E(F)|m ≤ Cm,ε‖F‖(r+ε)m. (5.1)

For a general definition of tame linear operators between Fréchet spaces see for instance
[Vog87].

5.1 Statement of the Main Result
Our main result in this chapter is the transfer of the main result in [FJW11] from the
natural to the real scale and reads as follows.

5.1 Theorem. For a compact set K ⊂ Rd, the following statements are equivalent.

1. K fulfils the WLMI(r) for some r ≥ 1.

2. K admits a tame linear extension operator E : E (K) → E (Rd) which extends
simultaneously all E s(K), and which fulfils the following continuity estimates for
all convex and compact set L ⊂ Rd with L̊ ⊃ K, each F ∈ E (K), ε > 0 and s ≥ 0

‖|E(F)|‖s,L ≤ Cs,ε‖F‖(r+ε)s,K . (5.2)

50
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5.2 Proof of the Main Result
For the proof we first note, that we only have to construct the operator given K fulfils
WLMI(r). To achieve that we show that for L̊ ⊃ K compact and convex the following
inequalities hold for each F ∈ E (K), ε > 0 and s ∈ [0,∞):

‖|E(F) − Ebrsc(F)|‖s,L ≤ Cs,ε‖F‖(r+ε)s,K , (5.3)

where again Ebrsc : E brsc(K)→ D brsc(L) denotes the Whitney operator. Since

‖|E(F) − Ebrsc(F)|‖s,L
= |E(F) − Ebrsc(F)|bsc,L

+ sup
t>0

{
|∂β(E(F) − Ebrsc(F))(x1) − ∂β(E(F) − Ebrsc(F))(x2)|

|x1 − x2|
{s} :

x1, x2 ∈ L, 0 < |x1 − x2| ≤ t, |β| = bsc
}
,

we only have to prove inequality (5.3) for the second summand. In the following calcu-
lation we will only focus on the case that x1, x2 ∈ L \ K, the cases that one of the points
or even both belong to K are easier respectively trivial. In order to achieve a shorter
notation we set in the following

ϕi,α(x) B ϕi(x)(x − xi)α.

We first prove the following estimation which holds for all families (m(i))i∈N, all β ∈ Nd
0

and all families of complex numbers (aα,i)α∈Nd
0 ,i∈N

∞∑
i=1

∑
0<|α|≤m(i)

|aα,i|
∣∣∣∂βϕi,α(x1) − ∂βϕi,α(x2)

∣∣∣ |x1 − x2|
|β|−s ≤ C(3)

β sup
i∈N

C(2)
m(i) sup

0<|α|≤m(i)
|aα,i|γ

|α|−s
i .

(5.4)
To show this, we distinguish the cases |x1 − x2| ≥ γi and |x1 − x2| < γi. For the first case
we get with (4.14) a positive constant Cbsc with∣∣∣∂βϕi,α(x1) − ∂βϕi,α(x2)

∣∣∣ |x1 − x2|
|β|−s ≤ Cβγ

|α|−|β|
i |x1 − x2|

|β|−s

≤ Cβγ
|α|−s
i .

For the second case we compute with (4.15)∣∣∣∂βϕi,α(x1) − ∂βϕi,α(x2)
∣∣∣ |x1 − x2|

|β|−s ≤ Cβγ
|α|−|β|−1
i |x1 − x2|

1+|β|−s

≤ Cβγ
|α|−|β|−1
i γ

1+|β|−s
i

= Cβγ
|α|−s
i .
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Thus, we get

∞∑
i=1

∑
0<|α|≤m(i)

|aα,i|
∣∣∣∂βϕi,α(x1) − ∂βϕi,α(x2)

∣∣∣ |x1 − x2|
|β|−s

≤ 2NCβ sup
i∈N

(
d + m(i) − 1

m(i)

)
sup

0<|α|≤m(i)
|aα,i|γ

|α|−s
i ,

where N denotes as usual the maximum number of supports of the ϕi which can contain
either x1 or x2, and

(
d+m(i)−1

m(i)

)
is the number of multiindices with norm smaller or equal

to m(i). By setting C(2)
m(i) B

(
d+m(i)−1

m(i)

)
and C(3)

β B 2NCβ we have proved (5.4). From (5.4)
we can also conclude that

limsup
x→∂K

sup
|β|≤bsc+1

∞∑
i=1

∑
0<|α|≤m(i)

|aα,i|
∣∣∣∂βϕi,α(x1) − ∂βϕi,α(x2)

∣∣∣ |x1 − x2|
|β|−s (5.5)

≤ C(3)
bsc+1limsup

i→∞
C(2)

m(i) sup
0<|α|≤m(i)

|aα,i|γ
|α|−s
i .

According to the proof in [FJW11], the families (δi)i∈N and (m(i))i∈N are chosen in a
way that

lim
i→∞

C(1)

r+
δi
2 ,m(i)

C(2)
m(i)γ

1
2

δi
r+δi

i = 0.

Since limi→∞
δi

r+δi
= 0 we get for arbitrary ε > 0 that δi

r+δi
< εs

r for i big enough, and
therefore we have

sup
i∈N

C(1)

r+
δi
2 ,m(i)

C(2)
m(i)γ

εs
2r
i < ∞. (5.6)

Following Lemma 2 in [FJW11] we can choose measures µα,i = µα,x0,ε(α,i),m(i) according

to ε(α, i) B γ
1

r+δi
i such that ∂αP(x0) = µα,i(P) for all polynomials P with deg(P) ≤ m(i)

and total variation |µα,i| ≤ C(1)

r+
δi
2 ,m(i)

γ
−|α|

r+
δi
2

r+δi
i . For those measures we get the following

two inequalities. We assume that b(r + ε)sc = brsc + εs so that the order of the Taylor
polynomial fits to the order of the Whitney norm. The first one is true for 0 < |α| ≤
brsc ≤ m(i):

|µα,i( f (0)) − f (α)(xi)| = |µα,i( f (0) − T brsc
xi

(F))|

≤ C(1)

r+
δi
2 ,m(i)

γ
−|α|

r+
δi
2

r+δi
i sup

{
| f 0(x) − T brsc

xi
(F)(x)| : x ∈ B(xi, γ

1
r+δi
i ) ∩ K

}
≤ C(1)

r+
δi
2 ,m(i)

γ
−|α|

r+
δi
2

r+δi
i sup

 | f 0(x) − T brsc
xi (F)(x)|

|x − xi|
(r+ε)s |x − xi|

(r+ε)s : x ∈ B(xi, γ
1

r+δi
i ) ∩ K


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≤ C(1)

r+
δi
2 ,m(i)

γ
−|α|

r+
δi
2

r+δi
i γ

1
r+δi

(r+ε)s

i sup

 | f 0(x) − T brsc
xi (F)(x)|

|x − xi|
(r+ε)s : x ∈ B(xi, γ

1
r+δi
i ) ∩ K


≤ C(1)

r+
δi
2 ,m(i)

γ−|α|i γ
rs+εs
r+δi

i ‖F‖(r+ε)s.

(5.7)

The second inequality is valid for brsc < |α| ≤ m(i) and it can be proven in the same way
as the first one using that for |α| > brsc we have µα,i(T

brsc
xi (F)(x)) = ∂αT brsc

xi (F)(x) = 0:

|µα,i( f (0))| = |µα,i( f (0) − T brsc
xi

(F)(x))| ≤ C(1)

r+
δi
2 ,m(i)

γ−|α|i γ
rs+εs
r+δi

i ‖F‖(r+ε)s. (5.8)

In this setting the operator E is defined at x ∈ L \ K as

E(F)(x) B
∑
i∈N

∑
|α|≤m(i)

1
α!
µα,i( f (0))ϕi,α(x).

Hence we get as difference

E(F)(x) − Ebrsc(F)(x) = T1,s(F)(x) + T2,s(F)(x),

where

T1,s(F)(x) B
∑
i≥ j(s)

( ∑
0<|α|≤brsc

1
α!

(
µα,i( f (0)) − f (α)(xi)

)
ϕi,α(x)

+
∑

brsc<α|≤m(i)

1
α!
µα,i( f (0))ϕi,α(x)

)
,

and

T2,s(F)(x) B
j(s)−1∑
i=1

( ∑
0<|α|≤brsc

1
α!

(
µα,i( f (0)) − f (α)(xi)

)
ϕi,α(x)

+
∑

m(i)<α|≤brsc

− f (α)(xi)
α!

ϕi,α(x)
)
.

The index j(s) is defined as the smallest index such that m(i) ≥ brsc for i ≥ j(s). So we
get for x1, x2 ∈ L \ K∣∣∣∣∂βE(F)(x1) − ∂βEbrsc(F)(x1) −

(
∂βE(F)(x2) − ∂βEbrsc(F)(x2)

)∣∣∣∣
≤

∣∣∣∂βT1,s(F)(x1) − ∂βT1,s(F)(x2)
∣∣∣ +

∣∣∣∂βT2,s(F)(x1) − ∂βT2,s(F)(x2)
∣∣∣ .
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Starting with the first summand we have, using (5.4), (5.6), (5.7) and (5.8) for |β| = bsc:∣∣∣∂βT1,s(F)(x1) − ∂βT1,s(F)(x2)
∣∣∣ |x1 − x2|

|β|−s

≤

∞∑
i= j(s)

( ∑
0<|α|≤brsc

1
α!

∣∣∣µα,i( f (0)) − f (α)(xi)
∣∣∣ ∣∣∣∂βϕi,α(x1) − ∂βϕi,α(x2)

∣∣∣
+

∑
brsc<|α|≤m(i)

1
α!
|µα,i( f (0))|

∣∣∣∂βϕi,α(x1) − ∂βϕi,α(x2)
∣∣∣ )|x1 − x2|

|β|−s

≤

∞∑
i= j(s)

( ∑
0<|α|≤brsc

1
α!

C(1)

r+
δi
2 ,m(i)

γ−|α|i γ
rs+εs
r+δi

i ‖F‖(r+ε)s

∣∣∣∂βϕi,α(x1) − ∂βϕi,α(x2)
∣∣∣ |x1 − x2|

|β|−s

+
∑

brsc<|α|≤m(i)

1
α!

C(1)

r+
δi
2 ,m(i)

γ−|α|i γ
rs+εs
r+δi

i ‖F‖(r+ε)s

∣∣∣∂βϕi,α(x1) − ∂βϕi,α(x2)
∣∣∣ |x1 − x2|

|β|−s
)

≤ 2
∑
i∈N

( ∑
0<|α|≤m(i)

1
α!

C(1)

r+
δi
2 ,m(i)

γ−|α|i γ
rs+εs
r+δi

i ‖F‖(r+ε)s

∣∣∣∂βϕi,α(x1) − ∂βϕi,α(x2)
∣∣∣ |x1 − x2|

|β|−s

≤ 2C(3)
β ‖F‖(r+ε)s sup

i∈N
C(1)

r+
δi
2 ,m(i)

γ
rs+εs
r+δi

i C(2)
m(i) sup

0<|α|≤m(i)
γ−|α|i γ|α|−s

i

= 2C(3)
β ‖F‖(r+ε)s sup

i∈N
C(1)

r+
δi
2 ,m(i)

C(2)
m(i)γ

εs−δi s
r+δi

i .

The last supremum is finite because γ
εs
2r
i < γ

εs−δi s
r+δi

i < γ
εs
r

i for i large enough. The second
summand can be treated in the same manor, and both together prove for |β| = bsc the
desired continuity estimate (5.3). Proceeding analogously as above, but using (5.5)
yields for all β ∈ Nd

0:

lim
x→∂K

∣∣∣∂βE(F)(x) − ∂βEbrsc(F)(x)
∣∣∣ dist (x,K)|β|−s

≤ 2C(3)
β ‖F‖(r+ε)s lim

i→∞
C(1)

r+
δi
2 ,m(i)

C(2)
m(i)γ

εs−δi s
r+δi

i

= 0.

With Proposition 2.15 and 2.16 we can finally conclude that E(F) ∈ E s(Rd).

5.3 A Modified Construction of Whitney’s Operators
In this section we present a modified construction of Whitney’s finite order extension
operators Es : E s(K)→ E s(Rd). The motivation for this construction mainly is the ε in
our Theorem 5.1 and the aim to get rid of it. In order to get better continuity estimates,
it could be beneficial to have more degrees of freedom in the construction. Theorem 4.9
in [Fre07a] offers such a possibility.
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5.2 Theorem. Let K ⊂ Rd be compact and assume that there are ε0 > 0, r ≥ 1 such that
for every k ∈ N there is C ≥ 1 such that for all ε0 > ε > 0 and all z ∈ ∂K there is x ∈ K
with |x − z| < ε and

|∂αp(x)| ≤
C
εr|α| sup

|y−z|≤ε,y∈K
|p(y)|

for all p ∈ C[x1, ..., xn], deg(p) ≤ k, |α| ≤ k. Then E (K) has (DN).

By Theorem 3.3 in the same paper, the condition (DN) for K is in fact equivalent
to the existence of an extension operator E : E (K) → E (Rd). But it is unknown which
loss of continuity this operator has. Our original intent to prove a version of Theo-
rem 5.1 for ε = 0 applying the same techniques failed. But we are able to present a
modified construction of the operators Es in the hope that it can be helpful for future
results. In the classical construction, first the Whitney decomposition is constructed
which gives a family (ϕi)i∈N and then for each i ∈ N points xi ∈ ∂K are chosen, such that
dist

(
supp(ϕi), x

)
= dist

(
supp(ϕi),K

)
. At these points we center the Taylor polynomials.

In the new construction we will not center the Taylor polynomials at the points xi but
instead we will use the condition from Theorem 5.2 to choose for each of the points xi

another x̃i ∈ K with |xi − x̃i| < γ1/r
i . If we check the proofs of the Theorems 4.1, 5.1

and also 6.2, the desired properties for the constructed extension operators E are always
shown for the difference E − Es. To get an easy expression for those differences, it is
very convenient if both operators are ’centred’ at the same points of K. For s ≥ 0 and
F ∈ E s(K) the modified Whitney operator is then defined as

E(F)(x) =

 f (0)(x), x ∈ K∑
i∈I ϕi(x)T bscx̃i

(F)(x), x < K
.

In the following theorem we show that this so constructed operator maps E rs(K) con-
tinuously into E s(K).

5.3 Theorem. Let K ⊂ Rd be compact. If K fulfils the conditions of Theorem 5.2 and we
adjust the construction of the Whitney operator as described above, then this operator
maps E rs(K) continuously into E s(Rd) for each s ≥ 0.

Proof. In the following let L ⊂ Rd be an open cube such that K ⊂ L̊. We will apply the
partition of unity (ϕi)i∈I only on L \ K. We structure the following proof into four parts.

1. We prove the existence of a constant C depending only on bsc, d and λ and a
modulus of continuity µ such that for every |β| ≤ bsc, for a ∈ K with |x − a| =

dist (x,K), x ∈ L, one has:

|∂βE(F)(x) − ∂βT bsca (F)(x)| ≤ Cµ(|x − a|)|x − a|s−|β|. (5.9)
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2. We show that for each |β| = bsc + 1 there is a constant C depending only on bsc, λ
and a modulus of continuity µ such that

|∂βE(F)(x)| ≤ Cµ(dist (x,K))dist (x,K)s−|β| . (5.10)

3. We show that E(F) ∈ D s(L).

4. We show that E : E rs(K) → D s(L) is continuous. Furthermore, we show that
the continuity constants Cs, for which the inequality ‖|E(F)|‖s,L ≤ Cs‖F‖rs,K is
true for every F ∈ E rs(K), can be chosen such that the mapping s 7→ Cs depends
continuously on s on each interval [n, n + 1) for each n ∈ N0 and is bounded on
these intervals.

1. Starting with the proof of (5.9), we first note that without loss of generality we can
limit our calculations to those x ∈ Kc with dist (x,K) ≤ 1. An application of Leibniz’s
formula shows that for each x ∈ L \ K we have

∂βE(F)(x) − ∂βT bsca (F)(x) =
∑
i∈N

∑
l≤β

(
β

l

)
∂β−lϕi(x)∂l

(
T brsc

x̃i
(F)(x) − T bsca (F)(x)

)
.

We observe that

T bsca (F)(x) = T brsc
a (F)(x) −

∑
bsc+1≤|α|≤brsc

f (α)(a)
α!

(x − a)α,

and thus we have for |β| ≤ bsc + 1

∂βT bsca (F)(x) = ∂βT brsc
a (F)(x) −

∑
bsc+1−|β|≤|α|≤brsc−|β|

f (α+β)(a)
α!

(x − a)α.

For |β ≤ bsc we then obtain∣∣∣∣∂β−lϕi(x)∂l
(
T brsc

x̃i
(F)(x) − T bsca (F)(x)

)∣∣∣∣
≤ dist (x,K)|l|−|β|

∣∣∣∂lT brsc
x̃i

(F)(x) − ∂lT brsc
a (F)(x)

∣∣∣
+ dist (x,K)|l|−|β|

∣∣∣∣∣∣∣ ∑
bsc+1−|l|≤|α|≤brsc−|l|

f (α)(a)
α!

(x − a)α
∣∣∣∣∣∣∣ .

From |xi − x̃i| ≤ γ
1
r
i ≤ dist (x,K)

1
r and dist (x,K) = |x − a| ≤ 1 it follows that

|x − x̃i| ≤ |x − xi| + |xi − x̃i| ≤ 3dist (x,K) + dist (x,K)
1
r ≤ 4dist (x,K)

1
r = 4|x − a|

1
r ,
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and
|a − x̃i| ≤ |a − x| + |x − x̃i| ≤ 5|a − x|

1
r .

For the first of the two summands we get by an application of Theorem 2.14.3 that
there exists a modulus of continuity µ1 such that

dist (x,K)|l|−|β|
∣∣∣∂lT brsc

x̃i
(F)(x) − ∂lT brsc

a (F)(x)
∣∣∣

≤ dist (x,K)|l|−|β| µ1(a − x̃i)(|x − x̃i|
rs−|l| + |a − x|rs−|l|)

≤ dist (x,K)|l|−|β| µ1(5|a − x|
1
r )(4rs−|l||a − x|

1
r rs− 1

r |l| + |a − x|rs−|l|)

≤ dist (x,K)|l|−|β| µ1(5|a − x|
1
r )(4rs|a − x|s−|l| + |a − x|s−|l|)

≤ 4rsµ1(5|a − x|
1
r )|a − x|s−|β|,

which proves (5.9) for the first summand. For the second summand using that |x−a| ≤ 1
and |l| ≤ bsc, we calculate

dist (x,K)|l|−|β|
∣∣∣∣∣∣∣ ∑
bsc+1−|l|≤|α|≤brsc−|l|

f (α)(a)
α!

(x − a)α
∣∣∣∣∣∣∣

≤ dist (x,K)|l|−|β|C|F|brsc,K |a − x|bsc+1−|l|

= C|F|brsc,Kdist (x,K)|l|−|β| |a − x|s−|l||a − x|bsc+1−s

= C|F|brsc,K |a − x|s−|β||a − x|bsc+1−s.

As constant C we can simply choose
∑
|α|≤brsc

1
α! which only depends on brsc and d and

since bsc + 1 − s > 0 we can directly take µ2 : [0,∞) → R, x 7→ C|F|brsc,K xbsc+1−s as
modulus of continuity in this case. Then choosing a modulus of continuity µ which
fulfils

µ(x) ≥ max(4rsµ1(5|a − x|
1
r ), µ2(x)),

finally proves (5.9).
2. In order to prove (5.10) we use the fact that ∂βT bsca (F)(x) = 0 for |β| > bsc. In

the following we will just treat the case that |β| ≤ brsc because otherwise we can use
∂βT brsc

a (F)(x) = 0 and the below calculations just get easier. So for bsc + 1 ≤ |β| ≤ brsc
we have

|∂βE(F)(x)|

= |∂βE(F)(x) − ∂βT bsca (F)(x)|

=

∣∣∣∣∣∣∣∂βE(F)(x) − ∂β
∑

i∈N

ϕi(x)T bsca (F)(x)


∣∣∣∣∣∣∣

≤
∑
i∈N

∑
l≤β

(
β

l

)
|∂β−lϕi(x)||∂lT brsc

x̃i
(F)(x) − ∂lT bsca (F)(x)|
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≤
∑
i∈N

∑
l≤β

(
β

l

)
|∂β−lϕi(x)||∂lT brsc

x̃i
(F)(x) − ∂lT brsc

a (F)(x)|

+
∑
i∈N

∑
l≤β,|l|≤bsc

(
β

l

)
|∂β−lϕi(x)|

∣∣∣∣∣∣∣ ∑
bsc+1−|l|≤|α|≤brsc−|l|

f (α+l)(a)
α!

(x − a)α
∣∣∣∣∣∣∣

+
∑
i∈N

∑
l≤β,|l|>bsc

(
β

l

)
|∂β−lϕi(x)|

∣∣∣∣∣∣∣ ∑
|α|≤brsc−|l|

f (α+l)(a)
α!

(x − a)α
∣∣∣∣∣∣∣ .

The first and second summand can obviously be treated in the same way as in the proof
of (5.9). For the last summand we have

|∂β−lϕi(x)|

∣∣∣∣∣∣∣ ∑
|α|≤brsc−|l|

f (α+l)(a)
α!

(x − a)α
∣∣∣∣∣∣∣ ≤ C|F|brsc,Kdist (x,K)|l|−|β|

= C|F|brsc,Kdist (x,K)|l|−|β| |a − x|s−|l||a − x||l|−s

= C|F|brsc,Kdist (x,K)s−|β|
|a − x||l|−s.

Since |l| > s, here we can also choose a modulus of continuity µ satisfying

|a − x||l|−s ≤ |a − x|bsc+1−s ≤ µ|a − x|.

3. Now that (5.9) and (5.10) are established we can prove that E(F) ∈ D s(L).
Because supp(ϕi) ⊂ L for each i ∈ I it is clear that supp(E(F)) ⊂ L. First we conclude
that E(F) admits continuous partial derivatives up to the order bsc in Rd. Since the
existence is clear in Kc and K̊, we only have to prove it on ∂K. This can be done using
(5.9) and proceeding as in the proof of Theorem 3.2 in [Mal67]. From Proposition 2.16
we obtain that E(F) ∈ D s(L).

4. Here we can basically proceed in the same way as in part 4 of the proof of
Theorem 3.1. �



Chapter 6

Extension Operators with an Arbitrary
Loss of Derivatives

In this chapter we consider the question which we have already formulated in Section
2.3, to characterize the geometrical properties of a compact set K such that this set
admits and extension operator E : E (K) → E (Rd) or equivalently, when does the short
exact sequence (2.12) split. The main result of this chapter is a characterization of
all compact sets K ⊂ Rd which admit an extension operator with a prescribed loss of
derivatives. In this context we describe the continuity properties of an extension operator
E via a function σ : [0,∞)→ [0,∞) having the properties defined in Definition 6.1. An
extension operator E : E (K)→ E (Rd) is then said to have a loss of derivatives σ, if and
only if it satisfies the inequality

‖|E(F)|‖s,L ≤ Cs‖F‖σ(s),K ,

for all s ≥ 0, F ∈ E (K) and L̊ ⊃ K compact and convex. We construct the operator
in the same fashion as in the previous chapter, so it is again an operator which extends
all the spaces E σ(s)(K) simultaneously to E s(Rd) and which resembles in its form the
classical Whitney operator.

The characterization of the existence of an extension operator in terms of the ex-
istence of certain measures on K already turned out to be very fruitful in the previous
chapters and it also offers a new approach for a question originally risen by Mityagin
in [Mit61]. It is the very natural question of a geometric characterization of those com-
pact sets K ⊂ Rd such that E (K) admits an extension operator. However, this result
cannot be regarded as a final solution to this problem because it is far away from a nice
geometric condition as for instance the inequality of Jonsson, Sjögren and Wallin offers
in the case of operators with no loss.

59
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6.1 Statement of the Main Result
In generalization of operators having no or a homogeneous loss of derivatives which we
dealt with in the last chapters, we now want to allow for operators having an arbitrary
continuity behaviour on the spectrum of Whitney spaces.

6.1 Definition. Let K ⊂ Rd be compact and E : E (K) → E (Rd) be an extension
operator. For a surjective and monotonically increasing map σ : [0,∞) → [0,∞) we
say that E has loss of derivatives σ if and only if E : E σ(s)(K) → E s(Rd) is continuous
for all s ≥ 0, or equivalently if it fulfils the following norm inequality for all s ≥ 0

|‖E(F)‖|s,L ≤ Cs‖F‖σ(s),K

for all F ∈ E σ(s)(K) and compact and convex sets L ⊂ Rd with L̊ ⊃ K. In this terms, an
operator E with no loss of derivatives has σ = id.

We have to be careful with this term, because if defined like this, an operator does
not have a unique loss of derivatives. If σ is a loss of derivatives for E, then each sur-
jective and monotonically increasing map τ : [0,∞) → [0,∞) with τ ≥ σ is also a loss
of derivatives for E. And also defining ’the’ loss of derivatives as the infimum over all
such functions would not be appropriate as the results in [FJW11] indicate.

Our main result in this chapter is the following characterization.

6.2 Theorem. For K ⊂ Rd compact and σ : [0,∞) → [0,∞) strictly monotonically
increasing with σ(0) = 0, the following statements are equivalent:

1. E (K) admits an extension operator E with loss of derivatives σ.

2. For all α ∈ Nd
0, x ∈ ∂K and ε > 0 there are measures να,x,ε on K such that for each

F ∈ E σ(s) and n ∈ N0

(a) lim
ε→0

sup
|α|≤bsc,x∈∂K

|να,x,ε( f (0)) − ε|α| f (α)(x)|
εs = 0,

(b) lim
ε→0

sup
|α|>bsc,x∈∂K

|να,x,ε( f (0))|
εs = 0.

As an interesting consequence of this theorem we have the following corollary.

6.3 Corollary. If a compact set K ⊂ Rd admits a continuous extension operator E :
E (K)→ E (Rd), then we can also construct a ’Whitney like’ extension operator with the
same loss of derivatives.
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6.2 Construction of the Measures
In this section we prove the first part of the main theorem, i.e. the existence of the oper-
ator implies the existence of the measures.

A main tool in the construction of the measures is Eidelheit’s theorem characterizing
the solvability of an infinite system of equations.

6.4 Theorem. Eidelheit’s theorem
Let E be a Fréchet space, (Uk)k∈N be a fundamental system of zero neighbourhoods in E
and let (T j) j∈N be linearly independent, continuous linear forms on E. Then the infinite
system of equations

T jx = y j for all j ∈ N

is solvable for each sequence y ∈ ω if, and only if, the following holds:

dim((E′)U◦k
∩ span{T j : j ∈ N}) < ∞ for all k ∈ N.

Proof. A proof can be found in [MV97], Theorem 26.27. �

The symbol (E′)U◦k
is defined as the span of U◦k , so (E′)U◦k

B spanU◦k = ∪t>0tU◦k .
Endowed with the Minkowski functional of U◦k , (E′)U◦k

is a Banach space.

In the following we deal with sequence spaces. We will now shorty recall relevant
definitions. In contrast to the ’classical’ definitions of sequence spaces, we will define
them over the index set Nd

0, but basically, that won’t change anything of relevance.

6.5 Definition. For a given dimension d ∈ Nwe define the sequence spaces of sequences
over the index set Nd

0:

• ω(Nd
0) B CN

d
0 .

• ϕ(Nd
0) B

{
(xα)α∈Nd

0
∈ ω(Nd

0) : ]
{
α ∈ Nd

0 : xα , 0
}
< ∞

}
.

• s(Nd
0) B

{
(xα)α∈Nd

0
∈ ω(Nd

0) : lim|α|→∞ |xα||α|k = 0 for all k ∈ N
}
. Since this space

is nuclear by Example 29.4 in [MV97], the topology is generated by the funda-
mental system of seminorms pk((xα)α∈Nd

0
) =

∑
α∈Nd

0
|xα||α|k as well as by the system

p̃k((xα)α∈Nd
0
) = supα∈Nd

0
|xα||α|k.

• s′(Nd
0) B

{
(xα)α∈Nd

0
∈ ω(Nd

0) : p∗k((xα)α∈Nd
0
) < ∞ for one k ∈ N

}
shall denote the

dual space of s(Nd
0). The Minkowski functional p∗k of U◦k = {y ∈ s′ : |

∑
α∈Nd

0
yαxα| ≤

1 for all x ∈ s with pk(x) < 1} is given by p∗k((xα)α∈Nd
0
) = supα∈Nd

0
|xα||α|−k (see

[MV97] Lemma 27.12).
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With the help of Eidelheit’s theorem, we now can prove the following representation
lemma.

6.6 Lemma. The mapping T : s(Nd
0) → ω(Nd

0), (λβ)β∈Nd
0
7→

(∑
β∈Nd

0
λββ

γ
)
γ∈Nd

0

is surjec-

tive.

Proof. The mapping T can be decomposed in countably infinite many linear forms Tγ,
where for each γ ∈ Nd

0 we have

Tγ

(
(λβ)β∈Nd

0

)
=

∑
β∈Nd

0

λββ
γ,

and all these linear forms are obviously elements of s′(Nd
0). For the span s′(Nd

0)U◦k
of U◦k

we have
s′(Nd

0)U◦k
=

{
(xα)α∈Nd

0
∈ s′(Nd

0) : p∗k((xα)α∈Nd
0
) < ∞

}
.

Thus, to be able to apply Eidelheit’s theorem, we have to check for each k ∈ N that

dim


(
%γ

)
γ∈Nd

0
∈ ϕ(Nd

0) : sup
β∈N

d
0

∣∣∣∣∣∣∣∣∣
∑
γ∈Nd

0

%γβ
γ

∣∣∣∣∣∣∣∣∣ |β|−k < ∞

 < ∞.
We show by contradiction that for each (%γ)γ∈Nd

0
∈ ϕ(Nd

0) with

sup
β∈Nd

0

∣∣∣∣∣∣∣∣∣
∑
γ∈Nd

0

%γβ
γ

∣∣∣∣∣∣∣∣∣ |β|−k < ∞ (6.1)

it is true that %γ = 0 for |γ| > k. So we assume that m B max{|γ| : %γ , 0} > k
and let Pm(x) =

∑
|γ|=m %γxγ. Following the assumption, there is x = (x1, ..., xd) ∈ Rd

with x1, ..., xd > 0 such that Pm(x) , 0. Since the set {tβ : β ∈ Nd
0, t > 0} is dense in

{x ∈ Rd : x ≥ 0}, there is β0 ∈ N
d
0 with Pm(β0) , 0. It is easy to see that for all βl B lβ0

it is true for any γ ∈ Nd
0 that βγl = l|γ|βγ0 and thus we get∣∣∣∣∣∣∣∣

∑
|γ|=m

%γβ
γ
l

∣∣∣∣∣∣∣∣ = |Pm(β0)|lm

and ∣∣∣∣∣∣∣∣
∑
|γ|<m

%γβ
γ
l

∣∣∣∣∣∣∣∣ ≤ lm−1
∑
|γ|<m

|%γ||β
γ
0 |.

Since m > k we have

lim
l→∞

∣∣∣∣∣∣∣∣
∑
|γ|≤m

%γβ
γ
l

∣∣∣∣∣∣∣∣ |βl|
−k = ∞,

which is a contradiction to (6.1). �



63

The following lemma gives the solution to a certain moment problem. It can be seen
as the analogon to Proposition 4.3.

6.7 Lemma. Let (kα)α∈N0 ∈ ω(Nd
0) be arbitrary. Then there is (%β)β∈Nd

0
∈ s(Nd

0) such that
for all α ∈ Nd

0 there is a sequence (λ(α)
β ) ∈ s(Nd

0) with |λ(α)
β | ≤

%β
2 for all β ∈ Nd

0, satisfying∑
β∈Nd

0

λ(α)
β βγ


γ∈Nd

0

= (kαδαγ)γ∈Nd
0
.

Proof. We first observe that the set {(kαδα,γ)γ∈Nd
0

: α ∈ Nd
0} is compact in the Fréchet

space of all sequences ω(Nd
0). This follows directly by Tychonov’s theorem or the char-

acterizations of compactness in metric spaces given in Proposition 4.8 in [MV97]. By
Corollary 26.22 in [MV97] surjective maps between Fréchet spaces lift compact sets.
This gives a compact set K ⊂ s(Nd

0) such that with the surjective mapping T of the
previous Lemma we have

T (K) ⊃ {(kαδα,γ)γ∈Nd
0

: α ∈ Nd
0}.

Thus, we can choose a sequence (%β)β∈Nd
0
∈ s(Nd

0) satisfying |λβ| ≤
%β
2 for all β ∈ Nd

0 and
all (λβ)λ∈Nd

0
∈ K. �

In the following theorem we construct measures approximating the derivatives of
functions in E on the boundary of some compact set K.

6.8 Theorem. Let s ≥ 0 and K ⊂ Rd be compact. Then for all α ∈ Nd
0, x ∈ ∂K and ε > 0

there are measures µα,x,ε supported on a ball B with B̊ ⊃ K such that for all f ∈ E s(Rd)
we have

1. lim
ε→0

sup
|α|≤bsc,x∈∂K

|µα,x,ε( f ) − ε|α|∂α f (x)|
εs = 0,

2. lim
ε→0

sup
|α|>bsc,x∈∂K

|µα,x,ε( f )|
εs = 0.

Proof. By cutting off, it is enough to show the assertion for f ∈ D s(B) = {g ∈ E s(Rd) :
supp(g) ⊂ B} where B is a fixed ball containing K in its interior. We apply the previous
lemma choosing kα = α! for each α ∈ Nd

0. Then there are sequences (λ(α)
β )β∈Nd

0
and

(%β)β∈Nd
0
, both in s(Nd

0), such that for all α ∈ Nd
0

∑
β∈Nd

0

λ(α)
β βγ =

α! for γ = α,

0 else,
(6.2)
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and such that |λ(α)
β | < %β for all α, β ∈ Nd

0. With this we define for each g ∈ D0(B) and
x ∈ ∂K

µα,x,ε(g) B
∑
β∈Nd

0

λ(α)
β g(x + εβ).

We start with the proof of 1., hence let |α| ≤ bsc. With Taylor’s theorem we then find a
ξ ∈ [x, x + εβ] such that

∣∣∣µα,x,ε( f ) − ε|α|∂α f (x)
∣∣∣ =

∣∣∣∣∣∣∣∣∣
∑
β∈Nd

0

λ(α)
β f (x + εβ) − ε|α|∂α f (x)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∑
β∈Nd

0

λ(α)
β

 ∑
|γ|<bsc

∂γ f (x)
γ!

ε|γ|βγ + εn
∑
|γ|=bsc

∂γ f (ξ)
γ!

βγ

 − ε|α|∂α f (x)

∣∣∣∣∣∣∣∣∣ .
Using (6.2) we get

ε|α|∂α f (x) = α!ε|α|
∂α f (x)
α!

=
∑
β∈Nd

0

λ(α)
β βαε|α|

∂α f (x)
α!

,

and

0 =
∑

|γ|≤bsc,γ,α

∑
β∈Nd

0

λ(α)
β βγ

 ε|γ|∂γ f (x)
γ!

=
∑
β∈Nd

0

λ(α)
β

∑
|γ|≤bsc,γ,α

βγε|γ|
∂γ f (x)
γ!

,

which results in
ε|α|∂α f (x) =

∑
β∈Nd

0

λ(α)
β

∑
γ≤bsc

βγε|γ|
∂γ f (x)
γ!

.

Therefore, we get using that ε ≤ |ξ − x||β|−1

∣∣∣µα,x,ε( f ) − ε|α|∂α f (x)
∣∣∣ = εbsc

∣∣∣∣∣∣∣∣∣
∑
β∈Nd

0

λ(α)
β

∑
|γ|=bsc

βγ
1
γ!
|∂γ f (ξ) − ∂γ f (x)|

∣∣∣∣∣∣∣∣∣
= εs

∣∣∣∣∣∣∣∣∣
∑
β∈Nd

0

λ(α)
β

∑
|γ|=bsc

βγ
1
γ!
|∂γ f (ξ) − ∂γ f (x)|

ε{s}

∣∣∣∣∣∣∣∣∣
≤ εs

∑
|γ|=bsc

∑
β∈Nd

0

%β|β|
s |∂

γ f (ξ) − ∂γ f (x)|
|ξ − x|{s}

≤ εs
∑
|γ|=bsc

∑
β∈Nd

0

%β|β|
s sup

y∈(x,x+εβ]

|∂γ f (y) − ∂γ f (x)|
|y − x|{s}

,
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where the last term is independent of α. We now show that the supremum over all
boundary points of K of the last sum converges to 0 for each |γ| = bsc. To do this, we
split the sum for some index m ∈ N into

sup
x∈∂K

∑
β∈Nd

0

%β|β|
s sup

y∈(x,x+εβ]

|∂γ f (y) − ∂γ f (x)|
|y − x|{s}

≤ sup
x∈∂K

∑
|β|≤m

%β|β|
s sup

y∈(x,x+εβ]

|∂γ f (y) − ∂γ f (x)|
|y − x|{s}

+ sup
x∈∂K

∑
|β|>m

%β|β|
s sup

y∈(x,x+εβ]

|∂γ f (y) − ∂γ f (x)|
|y − x|{s}

.

Since f ∈ D s(B) and therefore has a compact support, there exists a constant C > 0
such that supx,y∈Rd

|∂γ f (x)−∂γ f (y)|
|x−y|{s} < C for all |γ| = bsc. And since (%β)β∈Nd

0
∈ s(Nd

0) with
%β ≥ 0 for all β it follows that

lim
m→∞

∑
|β|>m

%β|β|
s = 0.

Thus, the second sum converges to 0 for m → ∞ and is independent of the choice of ε.
It is left to show that the first sum also converges to 0 but for ε → 0. For this we use
again the fact that since f ∈ D s(B), all the ∂γ f are uniformly continuous, so we have
that supy∈(x,x+εβ]

|∂γ f (y)−∂γ f (x)|
|y−x|{s} → 0 uniformly for ε→ 0. Then using∑

β≤m

%β|β|
s ≤

∑
β∈Nd

0

%β|β|
s,

for all m ∈ N, finishes the proof for the case |α| ≤ bsc.
For the case |α| > bsc we argue similarly. With Taylor’s theorem we again find a ξ ∈
[x, x + εβ] such that

∣∣∣µα,x,ε( f )
∣∣∣ =

∣∣∣∣∣∣∣∣∣
∑
β∈Nd

0

λ(α)
β f (x + εβ)

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∑
β∈Nd

0

λ(α)
β

 ∑
|γ|<bsc

∂γ f (x)
γ!

ε|γ|βγ + εbsc
∑
|γ|=bsc

∂γ f (ξ)
γ!

βγ


∣∣∣∣∣∣∣∣∣ .

Since |α| > bsc, we have that ∑
β∈Nd

0

λ(α)
β βγ = 0

for all |γ| ≤ bsc, and therefore we get∣∣∣∣∣∣∣∣∣
∑
β∈Nd

0

λ(α)
β

∑
|γ|<bsc

∂γ f (x)
γ!

ε|γ|βγ

∣∣∣∣∣∣∣∣∣ = 0 =

∣∣∣∣∣∣∣∣∣
∑
β∈Nd

0

λ(α)
β

∑
|γ|=bsc

∂γ f (x)
γ!

ε|γ|βγ

∣∣∣∣∣∣∣∣∣ .
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This results in

∣∣∣µα,x,ε( f )
∣∣∣ =

∣∣∣∣∣∣∣∣∣
∑
β∈Nd

0

λ(α)
β

 ∑
|γ|<bsc

∂γ f (x)
γ!

ε|γ|βγ + εbsc
∑
|γ|=n

∂γ f (ξ)
γ!

βγ


∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
∑
β∈Nd

0

λ(α)
β

− ∑
|γ|=bsc

∂γ f (x)
γ!

ε|γ|βγ + εbsc
∑
|γ|=bsc

∂γ f (ξ)
γ!

βγ


∣∣∣∣∣∣∣∣∣

≤ εs
∑
|γ|=n

∑
β∈Nd

0

%β|β|
s |∂

γ f (ξ) − ∂γ f (x)|
|ξ − x|{s}

≤ εs
∑
|γ|=n

∑
β∈Nd

0

%β|β|
s sup

y∈(x,x+εβ]

|∂γ f (y) − ∂γ f (x)|
|y − x|{s}

,

where again the last term is independent of α which ensures that the supremum over all
α > bsc exists. The same argument as in the first case also shows the desired conver-
gence property in this case. �

We prove now that 1. implies 2. in our main Theorem 6.2. We use the extension
operator to project the measures constructed in the previous corollary from the dual
space of E (Rd) on the dual space of E (K).

6.9 Theorem. Let K ⊂ Rd such that it admits an extension operator with loss σ. Then
for all α ∈ Nd

0, x ∈ ∂K and ε > 0 there are measures να,x,ε supported on K such that for
each F ∈ E σ(s) and s ≥ 0

1. lim
ε→0

sup
|α|≤bsc,x∈∂K

|να,x,ε( f (0)) − ε|α| f (α)(x)|
εs = 0

2. lim
ε→0

sup
|α|>bsc,x∈∂K

|να,x,ε( f (0))|
εs = 0.

Proof. Let E denote the extension operator with loss σ. Then it is clear that for all
F =

(
f (α)

)
|α|≤bσ(s)c

∈ E σ(s)(K) and all x ∈ K we have

f (α)(x) = ∂αE(F)(x).

Since E(F) ∈ E s(K), by taking the measures µα,x,ε from the previous corollary we can
define

να,x,ε( f (0)) B µα,x,ε(E(F)).

The proof is complete by applying the properties of the measures µα,x,ε. �
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6.3 Construction of the Extension Operator
In this section we will construct the extension operator with the given measures. As
already indicated, the main idea is to construct the operator as in Chapter 4. Thus, given
the measures in Theorem 6.2 we set for µα,i B να,xi,γi/γ

|α|
i :

E(F)(x) =

 f (0)(x), x ∈ K∑
i∈N ϕi(x)

∑
|α|≤i

1
α!µα,i( f (0))(x − xi)α, x < K.

Again we split the proof in two parts

1. For β ∈ Nd
0 and x ∈ Kc we show that for each F ∈ E σ(s)(K) we have∣∣∣∂βE(F)(x) − ∂βEs(F)(x)

∣∣∣ = o(dist (x, ∂K)s−|β|) for x→ ∂K. (6.3)

Using Proposition 2.15 and 2.16, this implies that E(F) ∈ E s(L).

2. We show that E is continuous and has loss of derivatives σ.

In order to show (6.3) we can limit us again to those x ∈ L \ K with i(x) = min{i ∈ I :
x ∈ supp(ϕi)} > bsc. This allows us to express the difference E − Es very simple by

∂βE(F)(x) − ∂βEs(F)(x) =
∑
i≥i(x)

∑
|α|≤bsc

1
α!

(µα,i( f (0)) − f (α)(xi))∂β(ϕi(x)(x − xi)α)

+
∑
i≥i(x)

∑
bsc<|α|≤i

1
α!
µα,i( f (0))∂β(ϕi(x)(x − xi)α).

Starting with the first summand, we have by assumption

lim
ε→0

sup
|α|≤bsc,x∈∂K

|να,x,ε( f 0) − ε|α| f (α)(x)|
εs = 0.

Since i(x) → ∞ is equivalent to x → ∂K, we get for all |α| ≤ bsc using the definition of
µα,i:

lim
i→∞

|µα,i( f (0)) − f (α)(xi)|

γs−|α|
i

= 0.

Thus, we can conclude with Lemma 4.5 for a given i ≥ i(x):

sup
x∈Rd

∣∣∣∣∣∣∣ ∑
|α|≤bsc

1
α!

(µα,i( f (0)) − f (α)(xi))∂β(ϕi(x)(x − xi)α)

∣∣∣∣∣∣∣ γ|β|−bsci

= sup
x∈supp(ϕi)

∣∣∣∣∣∣∣ ∑
|α|≤bsc

1
α!

(µα,i( f (0)) − f (α)(xi))∂β(ϕi(x)(x − xi)α)

∣∣∣∣∣∣∣ γ|β|−|α|i γ|α|−bsci
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≤ sup
x∈supp(ϕi)

∑
|α|≤bsc

1
α!
|µα,i( f (0)) − f (α)(xi)|

γs−|α|
i

|∂β(ϕi(x)(x − xi)α)|

γ
|α|−|β|
i

≤Cbsc
∑
|α|≤bsc

|µα,i( f (0)) − f (α)(xi)|

γs−|α|
i

.

Now let ε > 0 be arbitrary. Since the last term converges to 0 for i → ∞, we can find
j ∈ N such that for all i ≥ j

sup
x∈Rd

∣∣∣∣∣∣∣ ∑
|α|≤bsc

1
α!

(µα,i( f (0)) − f (α)(xi))∂β(ϕi(x)(x − xi)α)

∣∣∣∣∣∣∣ γ|β|−bsci <
ε

N
,

meaning that we have for all points x ∈ L \ K for which i(x) > j∑
i≥i(x)

1
dist (x,K)s−|β|

∣∣∣∣∣∣∣ ∑
|α|≤bsc

1
α!

(µα,i( f (0)) − f (α)(xi))∂β(ϕi(x)(x − xi)α)

∣∣∣∣∣∣∣
≤

∑
i≥i(x)

1

γ
s−|β|
i

∣∣∣∣∣∣∣ ∑
|α|≤bsc

1
α!

(µα,i( f (0)) − f (α)(xi))∂β(ϕi(x)(x − xi)α)

∣∣∣∣∣∣∣
≤ε.

Now we estimate the second summand. By assumption we have for all |α| > bsc:

lim
i→∞

|µα,i( f (0))|

γs−|α|
i

= 0.

Thus, Lemma 4.5.2 and .3 imply that∣∣∣∣∣∣∣ ∑
|α|>bsc

1
α!
µα,i( f (0))∂β((x − xi)αϕi(x))

∣∣∣∣∣∣∣
≤

∑
|α|>bsc

1
α!
γ−|α|i o(γs

i )Cβ,bsc sup
γ≤α,β

α!
(α − γ)!

3|α|γ|α|−|β|i

≤ o(γs
i )Cβ,bsce3d(|β| + 1)d3|β|γ−|β|i

= o(γs−|β|
i ) as i→ ∞.

As for the first summand we conclude

lim
x→∂K

∑
i≥i(x)

∣∣∣∣∣∣∣ ∑
bsc<|α|≤i

1
α!
µα,i( f (0))∂β((x − xi)αϕi(x))

∣∣∣∣∣∣∣ dist (x,K)|β|−s = 0,

which proves completes the proof of (6.3). The application of Proposition 2.15 and 2.16
then implies E(F) ∈ E s(L).
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To show the continuity of E : E σ(s)(K)→ E s(Rd), we first note that the operator E − Es

takes its values in I s(K) = {g ∈ E s(Rd) : ∂αg(x) = 0 for all x ∈ K, |α| ≤ bsc}. This
operator is continuous if we equip I s(K) with the topology of pointwise convergence,
which follows directly from the locally finite property of Whitney’s partition of unity.
Hence, using the closed graph theorem, we obtain the continuity of E − Es : E σ(s) →

I s(K) with respect to the Fréchet space topology on I s(K). The continuity of Es :
E σ(s) → D s(L) permits to get positive constants Cs such that ‖|E(F)|‖s,L ≤ Cs‖F‖σ(s),K ,
which completes the proof.

6.4 Examples
In the following we list examples of compact sets admitting an extension operator hav-
ing a loss of derivatives σ , id.

6.10 Example. 1. For r ≥ 1 we consider the following two dimensional cuspidal set

Kr B

{
(x, y) ∈ R2 : 0 ≤ x ≤ 1,

1
2

xr ≤ y ≤ 2xr

}
.

In the paper [FJW11] of Frerick, Jordá and Wengenroth, the authors show in Ex-
ample 5 that this set fulfills LMI(r) and therefore also the weaker form WLMI(r)
which is per definition fulfilled if and only if LMI(s) is fulfilled for each s > r.
The main result of this paper is that a compact set K ⊂ Rd fulfills this weaker
form of the local Markov inequality for some r ≥ 1 if and only if K admits an
extension operator with a tame linear loss of derivative (for a general definition
of tame linear operators between Fréchet spaces see for instance [Vog87]), i.e.
for all ε > 0 and n ∈ N0 there exists a positive constant Cn,ε > 0 such that for all
F ∈ E (K) the following norm inequality holds

|E(F)|n ≤ Cn,ε‖F‖(r+ε)n,K .

This result is generalized in appendix A to hold also for the real scale, i.e. the
following inequality is satisfied for each s ≥ 0 and each convex and compact
L̊ ⊃ K

|‖E(F)‖|s,L ≤ Cs,ε‖F‖(r+ε)s,K .

Therefore the above cuspidal set also admits an extension operator which is con-
tinuous on the real scale.

2. In Section 2.3 we already mentioned the results of Stein. He proved that if an open
set Ω locally is the graph of a Lipschitz function, it is possible to construct an ex-
tension operator E which maps simultaneously all the Sobolev spaces Wk,p(Ω)
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into Wk,p(Rd). In [Bie78] Bierstone could prove a generalization of this result
to a broader class of sets which he called Lipschitz domains. In order to briefly
introduce this class, we say that a function φ : Rd−1 → R satisfies a Lipschitz
condition of order γ with 0 < γ ≤ 1 if and only if there exists a constant C > 0
such that for all x, y ∈ Rd−1 the inequality |φ(x) − φ(y)| ≤ C|x − y|γ holds. Then
the open set {(x, y) ∈ Rd : y > φ(x)} and rotations thereof are called Lipschitz
domains of class Lip γ. The class Lip γ also contains all open sets which are
locally a graph of a Lip γ function in the above sense. A set Ω is locally the graph
of a Lip γ function if for all a ∈ ∂Ω the exists an open neighbourhood of Ua of a
such that Ω ∩ Ua ∈ Lip γ. The result of Bierstone then reads as follows:

If X is the closure of some open set Ω ∈ Lip γ, then there exists an extension
operator E : E (X) → C∞(Rd). Furthermore if 1

γ
∈ N, then E can be constructed

such that for each L ⊂ Rd compact there exists a K ⊂ X compact so that for each
m ∈ N there is a C > 0 such that the following inequality holds for each F ∈ E (X)

|E(F)|m,L ≤ C|F|m
γ ,K .

Frerick proved in [Fre07b] a generalization of Bierstone’s result and could get
around the restriction that 1

γ
∈ N. His extension operator fulfils the continuity

estimates
|E(F)|m,L ≤ C|F|dm

γ e,K , (6.4)

where dm
γ
e denotes the smallest integer which is greater or equal than m

γ
. Using

this result, he could show that the cuspidal sets of the form

Kγ B {(x, y) ∈ R2 : 0 ≤ x ≤ 1,−x
1
γ ≤ y ≤ x

1
γ },

of which the interior is indeed ∈ Lip γ, admit such an extension operator E and
furthermore, the continuity estimates (6.4) are the best possible in the sense that
there cannot exist κ ∈ (γ, 1] such that E fulfilled (6.4) with κ instead of γ.

3. A prominent example for a set admitting an extension operator not having a tame
linear loss of derivatives, was given by Goncharov in [Gon96]. The disjoint union

K B {0} ∪
⋃
n∈N

[
bn −

1
2

bn, bn +
1
2

bn

]
of shrinking intervals with bn B exp(−Mn) and M ≥ 3. Goncharov showed in
his paper that this set does not fulfill LMI of any exponent but E (K) admits an
extension operator. By the main result of [FJW11], this operator cannot be tame
linear.



Appendix A

Open Problems

In this appendix we gather some questions which could not be solved in this work and
therefore offer an interesting outlook for future research on the topic of extension oper-
ators for spaces of Whitney jets.

1. We achieved in Chapter 6 a characterization of the existence of an extension oper-
ator on E (K) which has prescribed loss of derivatives. We found that the existence
of an extension operator can be characterized by the existence of measures on K
which locally approximate the entries of the Whitney jets on the boundary of K.
The quality of the approximation depends on the loss of derivatives. In the Chap-
ters 4 and 5, we gave characterizations of the existence for the special cases of
operators having no or a homogeneous loss of derivatives. Apart from the exis-
tence of measures on K, it is possible in these cases to find characterizations of
a more geometrical character, which are easier to verify for a given compact set.
The question arises, if such a property can found which gives a characterization
of the existence of extension operators having an arbitrary loss of derivatives.

2. Is there a ’universal’ loss of derivatives σ0 : [0,∞) → [0,∞) such that for all
compact sets K ⊂ Rd which admit an extension operator, there is λ > 0 and an
extension operator E : E (K)→ E (Rd) with loss of derivatives λσ0.

3. According to Example 1. in Section 6.4, the cuspidal set

Kr B

{
(x, y) ∈ R2 : 0 ≤ x ≤ 1,

1
2

xr ≤ y ≤ 2xr

}
.

for r ≥ 1 admits a tame linear extension operator with a loss of (r + ε)s 7→ s. All
efforts to show that it is possible to get rid of the ε for r > 1, i.e. to show that a
loss of only rs 7→ s can be achieved, failed so far. For the set

K B
{
(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ xr

}
,

71
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Bierstone already showed in [Bie78] for r ∈ N, that it admits and extension oper-
ator having a loss of σ(n) = rn.
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