
A Method for Completely Positive and
Nonnegative Matrix Factorization

DISSERTATION

zur Erlangung des akademischen Grades eines
Doktor der Naturwissenschaften Dr. rer. nat.

vorgelegt am Fachbereich IV
der Universität Trier

von

M. Sc. Patrick Hermann Groetzner

Trier, 2018

Eingereicht am 11.06.2018
Disputation am 06.08.2018
Gutachter Prof. Dr. Mirjam Dür

Prof. Dr. Florian Jarre

Zusammenfassung

Viele nicht konvexe Optimierungsprobleme können als konvexes Problem über dem Kegel der
vollständig positiven Matrizen reformuliert werden, sodass für diese Reformulierung lokale und
globale Optima zusammenfallen und daher keine globalen Optimierungstechniken notwendig sind.
Dies ist möglich, da die Komplexität des Problems nun vollständig in der Kegelnebenbedingung
enthalten ist. Daher ist es nicht verwunderlich, dass die Überprüfung der Zugehörigkeit einer
Matrix zum vollständig positiven Kegel NP-schwer ist, wie in [38] gezeigt. Als Hauptresultat
dieser Arbeit werden wir sehen, wie algorithmisch ein Zertifikat generiert werden kann, welches
für geeignete Startwerte verifiziert, dass eine gegebene Matrix vollständig positiv ist.

Dazu werden wir zunächst einige, den vollständig positiven Kegel betreffende Fakten sehen,
die im Anschluss durch einige notwendige und teilweise hinreichende Bedingungen für eine
vollständig positive Matrix ergänzt werden. Als fundamentale Definition gilt hier, dass eine Matrix
A ∈ Rn×n vollständig positiv ist, falls es eine ZerlegungsmatrixB ∈ Rn×r gibt, die eintragsweise
nichtnegativ ist und die Gleichung A = BBT erfüllt. Eine solche Zerlegung liefert daher immer
ein Zertifikat, welches zeigt, dass die gegebene Matrix vollständig positiv ist. Basierend auf dieser
Definition werden wir einige Fakten zu diesen Zerlegungen sehen, die nichtzuletzt auch für die
praktischen Anwendungen relevant sind und daher durch diese motiviert werden können.

Basierend auf diesen Zerlegungen ist es zusätzlich möglich, weitere und teilweise neue Bedin-
gungen für vollständig positive Matrizen abzuleiten. Hier ist es insbesondere notwendig mit einer
passenden Startzerlegung der Matrix zu beginnen. Wie eine solche Zerlegung generiert werden
kann, wird ebenfalls gezeigt. Hier werden wir insbesondere auf orthognale Matrizen als Werkzeug
zurückgreifen. So ist es insgesamt möglich, das Problem der Verifizierung der Zugehörigkeit einer
Matrix zum vollständig positiven Kegel auf ein Zulässigkeitsproblem zu reduzieren. Im Detail ist
es dazu notwendig, eine Matrix im Schnitt eines polyedrischen Kegels und dem nichtnegativen Or-
thanten zu finden. Dabei werden wir auf die auf von Neumann (cf. [95]) zurückgehende Technik
der alternierenden Projektionen zurückgreifen, um eine solche Matrix zu generieren.

Für dieses Verfahren wird eine kurze Einführung und Erläuterung der Anwendung auf ver-
schiedene Typen von Mengen gegeben. Insbesondere werden anhand von geometrischen Eigen-
schaften bekannte Resultate bezüglich der Konvergenz des Verfahrens und deren Geschwindigkeit
gezeigt. Erweitert man die Idee der alternierenden Projektionen auf mehr als zwei Mengen,
so spricht man vom zyklischen Projektions-Verfahren. Auch für diesen Ansatz werden bekan-
nte Resultate für Unterräume und allgemeine konvexe Mengen gezeigt. Des Weiteren wird ein
neues Konvergenzresultat für die zyklische Projektion zwischen transversalen Mannigfaltigkeiten
hergeleitet, welches auf den Resultaten für die alternierenden Projektionen auf Mannigfaltigkeiten
in [70] basiert.

Insbesondere lässt sich die Methode der alternierenden Projektionen auf semialgebraische Men-
gen anwenden, wie in [42] gezeigt. Dieses Resultat werden wir nutzen, um einen ersten Algorith-

i

mus zur Generierung von Zerlegungen von vollständig positiven Matrizen herzuleiten. Für diesen
Algorithmus ist es möglich, ein lokales Konvergenzresultat zu zeigen. Insbesondere greift dieser
Algorithmus jedoch auf das wiederholte Lösen von sogenannten second order cone Problemen
zurück. Diese sind zwar in polynomieller Zeit lösbar, aber immer noch vergleichsweise rechenin-
tensiv.

Aus diesem Grund werden wir eine modifizierte Variante dieses Algorithmus sehen, die ohne
diese speziellen Probleme auskommt. Hier verlieren wir zwar das lokale Konvergenzresultat,
aber numerische Experimente zeigen, dass dieser Ansatz für nahezu alle getesteten Beispiele
vollständig positiver Matrizen in sehr kurzer Zeit eine Zerlegung liefert.

Neben der Generierung von Zerlegungen für vollständig positive Matrizen können die gezeigten
Methoden und Verfahren auch im Kontext der sogenannten Nichtnegativen Matrix Zerlegung
angewandt werden. Hier werden wir sehen, dass für die symmetrische Variante dieser Zerlegung
lediglich zusätzliche niedrig-Rang Nebenbedingungen bedacht und integriert werden müssen. Für
den allgemeinen, nicht symmetrischen Fall hingegen können zwar die Ansätze der Verfahren zur
Generierung von Zerlegungen für vollständig postitive Matrizen verwendet werden, müssen aber
auf nicht-quadratische Ausgangsmatrizen erweitert werden. Hier werden wir sehen, dass orthog-
onale Matrizen nicht mehr das Werkzeug der Wahl sind und entsprechend ersetzt werden müssen.
Des Weiteren ist es nicht mehr möglich auf den Ansatz der alternierenden Projektionen zurück-
zugreifen, da die dazu notwendigen Projektionen nicht mehr berechnet werden können. Nichts-
destotrotz ist es möglich, die Ideen des modifizierten Algorithmus für vollständig positive Ma-
trizen auch in diesem Kontext zu verwenden. Sowohl für den symmetrischen, als auch für den
allgemeinen Fall der nichtnegativen Matrixzerlegung, werden wir zahlreiche numerische Experi-
mente sehen, die die Anwendbarkeit der in dieser Arbeit generierten Algorithmen auch in diesem
Kontext untermauern.

ii

Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mir bei der Anfertigung dieser
Dissertation unterstützend zur Seite gestanden haben.

Ein besonderer Dank gilt hier Frau Prof. Dr. Mirjam Dür und dies nicht nur für die Betreuung
dieser Doktorarbeit. Durch ihr Vertrauen in mich und das damit verbundene Angebot bei ihr tätig
zu werden, war es mir erst möglich, in das bearbeitete Themengebiet einzusteigen. Sie hatte mich
in meinen mathematischen Interessen bestärkt und basierend auf diesen, offene Forschungsfragen
formuliert, sodass mir der Zugang zu einem mir größtenteils noch unbekannten Forschungsgebiet
leichtgemacht wurde. Während der gesamten Betreuungszeit waren ein klares Ziel und perfekte
Organisation stetige Begleiter. Regelmäßige Treffen und fachliche Diskussionen waren ein Garant
für eine produktive Arbeitsatmosphäre und haben diese Arbeit erst ermöglicht. Wann immer Fra-
gen aufkamen oder Unklarheiten ein Vorankommen hemmten, hatte Frau Dür ein offenes Ohr und
produktive Anregungen. Nicht zuletzt machten ausführliche Hilfestellungen bei der Formulierung
mathematischer Inhalte und Feedback zu Vorträgen oder Ausarbeitungen eine Weiterentwicklung
meinerseits möglich.

Zudem wurde mir insbesondere durch zahlreiche internationale Konferenzen die Möglichkeit
der globalen Kontaktknüpfung eröffnet, sodass hier zukünftige Forschungskooperationen entste-
hen können. In unmittelbarer Zukunft freue ich mich weiterhin mit Frau Dür arbeiten zu können
und weiß ihre Förderung und Unterstützung in jeder Phase meiner potentiellen wissenschaftlichen
Karriere sehr zu schätzen.

Des Weiteren gilt mein Dank Herrn Prof. Dr. Florian Jarre für die Bereitschaft als Zweitgutachter
für diese Dissertation zu fungieren, wie auch für die Möglichkeit, den Code seines in Zusammen-
arbeit mit Frau Prof. Dr. Katrin Schmallowsky entstandenen Ansatzes zu nutzen.

Außerdem möchte ich der German-Israeli Foundation for Scientific Research and Develop-
ment (GIF) im Projekt Matrices (G-18-304.2/2011) sowie der Deutschen Forschungsgemeinschaft
(DFG) und damit verbunden den Verantwortlichen des Graduiertenkollegs 2126 Algorithmic
Optimization (ALOP) an der Universität Trier für die finanzielle Unterstützung während meiner
Promotionszeit danken. Durch eine überzeugende Organisation, ein vielfältiges wissenschaftliches
Programm und der Möglichkeit zur Teilnahme an internationalen Konferenzen, wurden mir auch
als assoziiertes Mitglied im Graduiertenkolleg ALOP stets Optionen zur Weiterbildung und Kon-
taktknüpfung ermöglicht.

Ein weiterer Dank geht an das SIAM Student Chapter in Trier, welches durch seine zahlreichen
wissenschaftlichen und nicht wissenschaftlichen Aktivitäten immer zu einer produktiven Arbeits-
atmosphäre beigetragen hat.

iii

Nicht zuletzt möchte ich mich bei meiner Mutter bedanken, die mir während meines gesamten
Lebens immer mit Rat und Tat zur Seite stand. Sie hat mir insbesondere mein Studium ermöglicht,
sodass ich die Mathematik und ihre Facetten für mich entdecken und somit den Weg der Promotion
einschlagen konnte.

Ferner möchte ich den Korrekteuren dieser Arbeit für die hilfreichen Kommentare und Anre-
gungen danken. Dies sind im Detail: Claudia Adams, Philipp Annen, Dana Becker, David Geulen,
Simone Hesse, Daniel Hoffmann, Asim Nomani, Thorben Schlierkamp und Robin Schrecklinger.

iv

Contents

1 Short Summary 1

2 Introduction 3
2.1 The Copositive and the Completely Positive Cone 3
2.2 Complexity and Theoretical Certificates for Complete Positivity 6
2.3 The Interior of the Completely Positive Cone 10
2.4 The cp-rank and the cp+-rank for Completely Positive Matrices 12
2.5 Matrices of High cp-rank . 15
2.6 The Boundary of the Completely Positive Cone 17
2.7 Conic Programming and Applications . 18

3 Factorizations for Completely Positive Matrices 23
3.1 Related Work . 23
3.2 CP-Factorizations are not Unique . 24
3.3 The Role of Orthogonal Matrices . 25
3.4 Nearly Positive Matrices . 33
3.5 Further Conditions for Complete Positivity . 34
3.6 Generating Initial Factorizations of Arbitrary Order 35
3.7 Generating Factorizations for Matrices in the Interior via Maximization Problems 37

4 The Factorization Problem as a Nonconvex Feasibility Problem 41
4.1 Feasibility Problems to Verify Complete Positivity 41
4.2 Feasibility Problems for Matrices in the Interior of the Completely Positive Cone 44

5 Alternating Projections 45
5.1 Alternating Projections on Subspaces . 45
5.2 Alternating Projections on Convex Sets . 51

5.2.1 Cyclic Projections Among a Sequence of Convex Sets 54
5.2.2 Alternating Projections and the Angle Between Convex Sets 56

5.3 Alternating Projections on Manifolds . 60
5.4 Cyclic Projections Among a Sequence of Manifolds 69
5.5 Alternating Projections on Closed Sets and on Semialgebraic Sets 75

6 Applying Alternating Projections to Construct CP-Factorizations 79
6.1 An Alternating Projections Approach for CP-Factorizations 79
6.2 Modifying the Alternating Projections Method 82
6.3 Algorithms for Matrices in the Interior of the Completely Positive Cone 85

v

Contents

7 Numerical Results 89
7.1 A Specifically Structured Example in Different Dimensions 89
7.2 The Influence of the Parameter r . 91
7.3 A Low cp-rank Matrix Without Known Factorization 93
7.4 A Concrete Example for Algorithm 1 . 94
7.5 Algorithms 1 and 2 in Comparison . 95
7.6 Column Replication Versus Appending Zero Columns 96
7.7 Performance of Algorithm 2 on the Boundary and in the Interior of CPn 97
7.8 Other Difficult Instances . 98
7.9 Randomly Generated Examples of Higher Order 99
7.10 Comparison with an Algorithm by Ding et al. 100
7.11 Comparison with a Method by Jarre and Schmallowsky 103
7.12 A Real Life Application in Statistics . 106
7.13 Examples for Algorithms 4 and 5 . 107

8 Nonnegative Matrix Factorization 109
8.1 Symmetric Nonnegative Matrix Factorization 109

8.1.1 Algorithms for Symmetric Nonnegative Matrix Factorization 110
8.1.2 Numerical Results for Symmetric Nonnegative Matrix Factorization . . . 113

8.2 General Nonnegative Matrix Factorization . 118
8.2.1 Generalizing the Results to the Framework of Nonnegative Matrix Factor-

ization . 119
8.2.2 Exact Projection Algorithm for Nonnegative Matrix Factorization 126
8.2.3 Modified Algorithm for Nonnegative Matrix Factorization 127
8.2.4 Numerical Results for Nonnegative Matrix Factorization 130

9 Conclusion and Further Remarks 135

Appendix: Singular Value Decomposition and Pseudoinverse Matrices 137

List of Algorithms 141

List of Figures 143

List of Tables 145

Nomenclature 147

Bibliography 151

Index 157

vi

1 Short Summary

A matrixA ∈ Rn×n is called completely positive if there exists an entrywise nonnegative matrixB

such that A = BBT . These matrices can be used to obtain convex reformulations of for example

nonconvex quadratic or combinatorial problems. According to [11], one of the main problems

with completely positive matrices is checking whether a given matrix is completely positive. As

shown in [38], this is NP-hard in general. So far, it is still an open question whether checking

A ∈ CPn is also in NP.

For a given matrixA ∈ CPn, it is nontrivial to find a cp-factorizationA = BBT withB ∈ Rn×r+

since this factorization would provide a certificate for the matrix to be completely positive. But

this factorization is not only important for the membership to the completely positive cone, it can

also be used to recover the solution of the underlying quadratic or combinatorial problem.

In addition, it is not a priori known how many columns r are necessary to generate a cp-

factorization for the given matrix. The minimal possible number of columns is called the cp-rank

of A and so far it is still an open question how to derive the cp-rank for a given matrix. Some facts

on completely positive matrices and the cp-rank will be given throughout the following chapter

and especially in Sections 2.2 and 2.4.

Moreover, in Chapter 6, we will see a factorization algorithm, which, for a given completely

positive matrixA and a suitable starting point, computes the nonnegative factorizationA = BBT .

The algorithm therefore returns a certificate for the matrix to be completely positive. As intro-

duced in Chapter 3, the fundamental idea of the factorization algorithm is to start from an initial

factorization A = B̃B̃T , with B̃ ∈ Rn×n not necessarily entrywise nonnegative, and extend B̃ to

a matrix B ∈ Rn×r, where r is greater than or equal to the cp-rank of A and A = BBT . Then it

is the goal to transform the initial factorization A = BBT into a cp-factorization.

This problem can be formulated as a nonconvex feasibility problem, as shown in Section 4.1,

and solved by a method which is based on alternating projections, as proven in Chapter 6.

On the topic of alternating projections, a survey will be given in Chapter 5. Here we will

see how to apply this technique to several types of sets like subspaces, convex sets, manifolds

and semialgebraic sets. Furthermore, we will see some known facts on the convergence rate for

alternating projections between these types of sets. Considering more than two sets yields the so

called cyclic projections approach. Here some known facts for subspaces and convex sets will be

shown. Moreover, we will see a new convergence result on cyclic projections among a sequence

of manifolds in Section 5.4.

In the context of cp-factorizations, a local convergence result for the introduced algorithm will

be given. This result is based on the convergence for alternating projections between semialgebraic

sets in [42].

1

1 Short Summary

To obtain cp-facrorizations with this first method, it is necessary to solve a second order cone

problem in every projection step, which is very costly. Therefore, in Section 6.2, we will see

an additional heuristic extension, which improves the numerical performance of the algorithm.

Extensive numerical tests in Chapter 7 will show that the factorization method is very fast in most

instances. In addition, we will see how to derive a certificate for the matrix to be an element of the

interior of the completely positive cone. The key aspects and results on deriving cp-factorizations

can also be found in the submitted preprint article [50].

As a further application, this method can be extended to find a symmetric nonnegative matrix

factorization, where we consider an additional low-rank constraint. Here again, the method to

derive factorizations for completely positive matrices can be used, albeit with some further adjust-

ments, introduced in Section 8.1. Moreover, we will see that even for the general case of deriving a

nonnegative matrix factorization for a given matrix A ∈ Rm×n, the key aspects of the completely

positive factorization approach can be used. To this end, it becomes necessary to extend the idea

of finding a completely positive factorization such that it can be used for rectangular matrices.

This yields an applicable algorithm for nonnegative matrix factorization in Section 8.2. Numer-

ical results for this approach will suggest that the presented algorithms and techniques to obtain

completely positive matrix factorizations can be extended to general nonnegative factorization

problems.

The majority of the notation in this thesis will be standard notation. Nevertheless, for the

reader’s convenience, a Nomenclature is provided at the end of this thesis. Since the algorithmic

approaches to obtain completely positive factorizations are related to the Moore-Penrose-inverse,

and the nonnegative matrix factorization approach is based on an initial factorization calculated

via singular value decomposition, some facts on these topics are collected in the Appendix. In

addition, a Bibliography and an Index are also provided at the end of this thesis.

2

2 Introduction

To introduce the topic of completely positive matrices, the following chapter is organized as fol-

lows: First, we will see an introduction to the copositive and the completely positive matrix cone as

subsets of the set of symmetric matrices, followed by some known facts on how to prove whether

a given matrix is completely positive. Moreover, we will have a closer look at the interior of the

completely positive cone and at its boundary. Especially for the latter, we will introduce the nota-

tion of the cp-rank and the cp+-rank to obtain the sufficient number of columns for a completely

positive factorization at the boundary or in the interior. In the end of this chapter, we will see some

applications of the completely positive cone in the context of conic programming.

2.1 The Copositive and the Completely Positive Cone

In the context of completely positive optimization, we will consider only symmetric matrices of

given order n. To this end, Sn will denote the set of n × n symmetric matrices. Having this, we

can now introduce one of the fundamental properties of a matrix for this thesis.

Definition 2.1. A symmetric matrix A ∈ Rn×n is called completely positive if there exists an

entrywise nonnegative matrix B ∈ Rn×r such that A = BBT . The factorization A = BBT with

B entrywise nonnegative will be called cp-factorization throughout this thesis.

To mention the key properties of completely positive matrices, we further need the following

definition.

Definition 2.2. We call a convex cone K pointed if K ∩ (−K) = {0}.

Now the following properties hold, see for example the survey article of Dür [43] or the book

of Berman and Shaked-Monderer [11]. Here Rn+ denotes the set of entrywise nonnegative vectors

in Rn.

Lemma 2.3. The set of completely positive matrices,

CPn :=
{
A ∈ Sn

∣∣ A = BBT , where B ∈ Rn×r, B ≥ 0
}

= conv
{
xxT

∣∣ x ∈ Rn+
}
,

is a closed, pointed, convex matrix cone with nonempty interior, whose extreme rays are the rank-1

matrices xxT , where x ∈ Rn+.

In the following, we will have a closer look at the dual of the set CPn. For this, we denote by

〈A,B〉 := trace(ATB) =
n∑

i,j=1
aijbij the inner product of two matrices A,B ∈ Rn×n. Thus, we

3

2 Introduction

can define the dual of a closed convex cone K ⊆ Sn as

K∗ := {X ∈ Sn | 〈X,Y 〉 ≥ 0 for all Y ∈ K} . (1)

As shown in [9, Chapter 1, Section 2], we can additionally describe the interior of the dual cone

as follows:

int(K∗) = {X ∈ Sn | 〈X,Y 〉 > 0 for all Y ∈ K \ {0}} . (2)

Considering the dual of the set of completely positive matrices gives rise to the set of so called

copositive matrices. We call a symmetric matrix A ∈ Rn×n copositive if the quadratic form

xTAx is nonnegative for all nonnegative vectors x. As shown in [11, Proposition 1.24], we have

the following properties:

Lemma 2.4. The set of copositive matrices,

COPn :=
{
A ∈ Sn

∣∣ xTAx ≥ 0 for all x ∈ Rn+
}
,

is a closed, pointed, convex matrix cone with nonempty interior.

To show that CPn and COPn are dual cones of each other, we need the following Lemma, for

which the proof can be found in [11, Theorem 1.36].

Lemma 2.5. S is a closed convex cone if and only if S = S∗∗.

Now we can show the following duality, cf. [11, Theorem 2.3]:

Theorem 2.6. CPn and COPn are dual cones in the space Sn. This means CP∗n = COPn and

COP∗n = CPn.

Proof. Consider a symmetric matrix X ∈ Rn×n. Then we have X ∈ CP∗n if and only if

〈X,A〉 ≥ 0 for all A ∈ CPn. This is true if and only if trace(XA) ≥ 0 for all A ∈ CPn.

Let A = BBT be a cp-factorization of A, with B of n rows and entrywise nonnegative, then

X ∈ CP∗n if and only if trace(XBBT) = trace(BTXB) ≥ 0, if and only if bTXb ≥ 0 for every

b ∈ Rn+. This implies X ∈ COPn such that CP∗n = COPn. On the other hand, CPn is a closed

convex cone according to Lemma 2.3, such that Lemma 2.5 implies COP∗n = CP∗∗n = CPn,

completing the proof.

To show that these matrix cones also have a close relation to other matrix cones, consider the

following two definitions.

Definition 2.7. The set S+
n := {A ∈ Sn | xTAx ≥ 0 for all x ∈ Rn} = {A ∈ Sn | A < 0}

defines the cone of positive semidefinite matrices, where A < 0 indicates that the matrix A is

positive semidefinite.

The set Nn := {A ∈ Rn×n | Aij ≥ 0 for all i, j = 1, . . . , n} defines the cone of entrywise

nonnegative matrices. In short form, we will write A ≥ 0 for Aij ≥ 0 for all i, j = 1, . . . , n

throughout this thesis.

4

2.1 The Copositive and the Completely Positive Cone

Then every X ∈ S+
n is also copositive since xTAx ≥ 0 for every x ∈ Rn, implying

S+
n ⊆ COPn.

On the other hand, considering A ∈ Nn gives xTAx ≥ 0 for every nonnegative x such that

Nn ⊆ COPn. This shows for the Minkowski sum

S+
n +Nn ⊆ COPn.

For n ≤ 4, we have S+
n + Nn = COPn, cf. [34], but to show that equality does not hold for

n ≥ 5, consider the so called Horn matrix, cf. [11, Example 1.30]:

H =


1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1

 . (3)

To show that H is copositive, write

xTHx = (x1 − x2 + x3 + x4 − x5)2 + 4x2x4 + 4x3(x5 − x4)

= (x1 − x2 + x3 − x4 + x5)2 + 4x2x5 + 4x1(x4 − x5).

Here the first expression shows xTHx ≥ 0 for nonnegative x and x5 ≥ x4, whereas on the

other hand, the second expression shows xTHx ≥ 0 for nonnegative x and x5 < x4. Hence,

H ∈ COP5. Moreover, H is neither positive semidefinite, nor entrywise nonnegative. It can be

shown, cf. [53], thatH is extreme for COP5 such thatH can not be decomposed into H = S+N

with S ∈ S+
5 and N ∈ N5.

Symmetric matrices which are entrywise nonnegative and positive semidefinite at the same

time are called doubly nonnegative matrices, see for example [11]. We denote the set of all such

matrices by

DNN n := S+
n ∩Nn = {A ∈ Sn | A ≥ 0 and A < 0}.

Then, by duality, we get the property

CPn ⊆ DNN n. (4)

If the order n is clear from the context and to simplify notation, we will drop the index n and

simply write CP , COP and DNN for the introduced sets.

To show that the necessary condition in (4) is not sufficient in general, consider the following

doubly nonnegative matrix ADNN , which is not completely positive, cf. [11, Example 2.9].

5

2 Introduction

Example 2.8. Consider the matrix

ADNN =


1 1 0 0 1

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

1 0 0 1 6

 ,

then ADNN ∈ DNN 5 \ CP5.

To show that the matrix is not completely positive, we need certificates for a matrix to be

completely positive. A selection of some certificates is given in the following section.

2.2 Complexity and Theoretical Certificates for Complete
Positivity

It is easy to construct completely positive matrices, but one of the main problems in the theory of

completely positive matrices is deciding if a given matrix is completely positive, as mentioned in

the preface of [11].

In general, checking whether a given matrix is completely positive is NP-hard, as shown in [38,

Theorem 5.3], but there exist several theoretical conditions for complete positivity of a matrix. For

a comprehensible survey of these conditions, the reader is referred to [11, Chapter 2].

Nevertheless, we will see some of the conditions in the following part to keep this thesis self

contained. In the following, we consider only symmetric square matrices A,C ∈ Rn×n.

A matrix remains completely positive under the following operations, cf. [11, Chapter 2.1].

Lemma 2.9. (a) The sum A+ C of completely positive matrices A,C is completely positive.

(b) The Kronecker product A⊗ C of completely positive matrices A,C is completely positive.

(c) If A is completely positive and D ∈ Rm×n+ , then DADT is completely positive.

(d) If A is completely positive and k ∈ N, then Ak is completely positive.

(e) If P ∈ Rn×n is a permutation matrix, then A is completely positive if and only if P TAP is

completely positive.

(f) If D ∈ Rn×n is diagonal matrix with positive diagonal entries, then A is completely positive

if and only if DAD is completely positive.

Proof. (a) Let A = B1B
T
1 with B1 ≥ 0 and C = B2B

T
2 with B2 ≥ 0, then the matrix

B = [B1|B2] is entrywise nonnegative with (A + C) = BBT , showing that the sum A + C

is completely positive.

6

2.2 Complexity and Theoretical Certificates for Complete Positivity

(b) Let A = B1B
T
1 with B1 ≥ 0 and C = B2B

T
2 with B2 ≥ 0, then the matrix B = B1 ⊗ B2

is entrywise nonnegative with (A ⊗ C) = BBT , showing that the Kronecker product is

completely positive.

(c) Let A = BBT with B ≥ 0. Then DADT = (DB)(DB)T is completely positive.

(d) If k is even, we have k = 2l for l ∈ N such that Ak = (Al)2 = (Al)(Al)T , where Al ∈ Rn×n+ ,

proving that Ak is completely positive. If on the other hand k is odd, we have k = 2l + 1 for

l ∈ N such that Ak = A2l+1 = AlAAl and part (c) shows that Ak is completely positive.

(e) If A is completely positive, part (c) proves that P TAP is completely positive. For the re-

verse part on the other hand, let P TAP be completely positive and consider a cp-factorization

P TAP = FF T with F ≥ 0. Then PP T = P TP = In since P is orthogonal and we get

A = P (P TAP)P T = PFF TP T = (PF)(PF)T .

Thus, A is completely positive since PF ≥ 0 is entrywise nonnegative as a permutation of a

nonnegative matrix.

(f) If A is completely positive, again part (c) shows that DADT is completely positive. If on the

other hand DADT is completely positive, let DADT = FF T with F ≥ 0. By definition we

have D = Diag(D11, . . . Dnn) with Dii > 0 for every i. Thus, D ∈ Rn×n+ is nonsingular and

we have D−1 = Diag(1
D11

, . . . , 1
Dnn

) is entrywise nonnegative. Then

A = D−1(DAD)D−1 = D−1FF TD−1 = (D−1F)(D−1F)T ,

proving that A is completely positive.

For these conditions, it is necessary to start with a completely positive matrix. The following

conditions can be used to show that a given matrix is completely positive, cf. [11, Chapter 2.4].

Theorem 2.10. Entrywise nonnegative, symmetric, diagonally dominant matrices are completely

positive.

Proof. Let A ∈ Rn×n be entrywise nonnegative, symmetric and diagonally dominant and let

ai := aii −
n∑
j=1
j 6=i

aij ≥ 0,

where aij denotes the specific entry of A. In addition, let Fij ∈ Rn×n have entry equal to 1 in

positions ii, ij, ji, jj and zero entries everywhere else. Thus, Fij = fijf
T
ij , where fij ∈ Rn with

entries fi = fj = 1 and fk = 0 for every k 6= i, j, proving that Fij is completely positive. Then

we have

A =
∑

1≤j<i≤n
aijFij + Diag(a1, . . . , an).

7

2 Introduction

Further, we can write

Diag(a1, . . . , an) = Diag(
√
a1, . . . ,

√
an) Diag(

√
a1, . . . ,

√
an)T ,

proving that Diag(a1, . . . , an) is completely positive. Since CPn is a matrix cone, aijFij is also

completely positive and Lemma 2.9 (a) now proves A ∈ CPn.

For the next certificate, we need the definition of a comparison matrix and an M-matrix. There

exist several equivalent definitions for an M-matrix. For a survey on this topic, the reader is

referred to [81]. We will use the following definition.

Definition 2.11. (a) Let A ∈ Rn×n. The comparison matrix of A is denoted by M(A) and is

defined by

M(A)ij =

 |aij | , if i = j

−|aij | , if i 6= j.

(b) A matrix A ∈ Rn×n is called M-matrix if it can be written as A = sI −B, where B ∈ Rn×n+

and s ≥ ρ(B). Here ρ(B) denotes the spectral radius of B.

Now we can give our next theoretical condition for complete positivity, cf. [11, Theorem 2.6].

Theorem 2.12. Let A ∈ Rn×n be symmetric and entrywise nonnegative. Furthermore, let its

comparison matrix M(A) be positive semidefinite. Then A is completely positive.

Proof. M(A) is an M-matrix and therefore we can show, see for example [11, Theorem 1.16], that

there exists a diagonal matrix D with positive diagonal entries such that DM(A)D is diagonally

dominant. The entries of DM(A)D and DAD are equal in absolute value such that DAD is

also diagonally dominant. Now Theorem 2.10 shows that DAD is completely positive. Finally,

Lemma 2.9 (f) proves that A is completely positive.

In addition, So and Xu proved the following simple sufficient condition for a doubly nonnegative

matrix to be completely positive, see [88, Theorem 2.5].

Theorem 2.13. Let A ∈ DNN n with rank(A) = r. Further let Ri denote the i-th row sum of A

for every i = 1, . . . , n and let

rR2
i ≥ (r − 1)Aii(R1 + · · ·+Rn) for all i = 1, . . . , n,

where Aii denotes the i-th diagonal entry of A. Then A is completely positive. Moreover, r is a

sufficient number of columns for a cp-factorization.

We will have a closer look at the number of columns for a cp-factorization in Section 2.4.

Theorem 2.13 provides a sufficient but not necessary condition for a doubly nonnegative matrix to

be completely positive, which would help us to show thatADNN in Example 2.8 is not completely

positive. Nevertheless, we will use the result in Theorem 2.13 to show that a given matrix is

completely positive in Section 7.3.

8

2.2 Complexity and Theoretical Certificates for Complete Positivity

Furthermore, many certificates for complete positivity are based on graph theoretical aspects.

To show that the matrix ADNN in Example 2.8 is not completely positive, we will use one of

them, cf. [11, Theorem 2.8]. Here a symmetric matrix A is called a matrix realization of a graph

G if the off-diagonal entries Aij are nonzero whenever the vertices i and j are connected by an

edge in G.

Theorem 2.14. Let G be a triangle-free graph and A be a nonnegative symmetric matrix realiza-

tion of G. Then A is completely positive if and only if the comparison matrix M(A) is positive

semidefinite.

Remark 2.15. Coming back to Example 2.8, we see that the graph of ADNN is triangle free, but

its comparison matrix 
1 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 6


is not positive semidefinite such that ADNN is not completely positive.

So here we can find a contradiction, indicating that these results may be useful to discard the

membership to the completely positive cone. For the conditions we considered so far, it seems

unclear how they can be used algorithmically to obtain a certificate for an arbitrary matrix to be

completely positive. Motivated by the definition of CP , we also have the following characteriza-

tions:

Lemma 2.16. A ∈ Rn×n is completely positive if and only if one of the following conditions

holds:

(a) There exists an entrywise nonnegative matrix B ∈ Rn×r such that A = BBT .

(b) A has the following sum-representation

A =

r∑
i=1

bib
T
i , where bi ∈ Rn+ for every i = 1, . . . , r.

These two conditions are equivalent if bi in (b) denotes the i-th column of B in (a). The repre-

sentation in Lemma 2.16 (b) is called the rank-1 representation of A since it decomposes A into

a sum of rank-1 matrices bibTi . So, finding a cp-factorization is a certificate for the matrix to be

completely positive. We will use this fact in the following chapters to introduce an algorithmic

method to show that a given matrix is completely positive. In addition, for small dimensions, we

have the following certificate, which can also be used algorithmically.

Going back to (4), stating CPn ⊆ DNN n, it can be shown that additionally the reverse impli-

cation

DNN n ⊆ CPn (5)

holds for n ≤ 4, giving the following lemma, cf. [73].

9

2 Introduction

Lemma 2.17. Let A ∈ Rn×n and n ≤ 4. Then A is completely positive if and only if A is doubly

nonnegative.

So, for small dimensions, it is sufficient to verify that all entries are nonnegative and the matrix

is positive semidefinite to get a certificate for complete positivity. But Example 2.8 shows that for

n ≥ 5, the if-part of Lemma 2.17 does not hold any more.

So far, we can not distinguish between matrices on the boundary of CPn and in the interior of

CPn. For this, we need a characterization of the interior of the completely positive cone. So we

will have a closer look at the interior of the cone in the following section.

2.3 The Interior of the Completely Positive Cone

Especially in Section 2.7, it may become important to verify strict feasibility of a matrix and

therefore to ensure the membership to the interior of the completely positive cone. The properties

mentioned in the previous sections already provide a first characterization of the interior of the

completely positive cone. More precisely, based on (4) and Lemma 2.17, we have

CPn ⊆ DNN n for every n ∈ N and

CPn = DNN n for every n ≤ 4.

Thus, we further get for n ≤ 4:

int(CPn) = int(Nn) ∩ int(S+
n) = {A ∈ Sn | A > 0 and A � 0}.

Here int(Nn) describes the set of entrywise strictly positive matrices and int(S+
n) is the set of

positive definite matrices.

For n ≥ 5, it follows that int(CPn) ⊆ int(Nn)∩ int(S+
n) but equality does not hold in general.

For a concrete example of an entrywise nonnegative and positive definite matrix, which is an

element of the boundary of the completely positive cone, see Example 2.43 in Section 2.6.

To give an explicit characterization of the interior of the completely positive cone for arbitrary

order n, consider the following Theorem, cf. [44, Theorem 2.3].

Theorem 2.18. For B1 ∈ Rn×n and B2 ∈ Rn×r, let the notation [B1 | B2] describe the matrix

in Rn×(n+r) whose columns are the columns of the matrix B1 augmented with the columns of B2.

Then we have

int(CPn) = {BBT | B = [B1 | B2], where B1 > 0 is nonsingular, and B2 ≥ 0}. (6)

Let Rn++ denote the set of entrywise strictly positive vectors in Rn, then (6) can be rewritten in

terms of the rank-1 representation of BBT :

int(CPn) =


r∑
i=1

bib
T
i

∣∣∣∣∣∣∣
r ≥ n, bi ∈ Rn+ for every i,

bi ∈ Rn++ for every i ≤ n,
span(b1, . . . , bn) = Rn

 .

10

2.3 The Interior of the Completely Positive Cone

An improved characterization of the interior of the completely positive cone can be found in [36,

Theorem 7.4] and reads as follows:

Theorem 2.19. Consider the cone CPn for n ∈ N. Then we have

int(CPn) =

{
r∑
i=1

bib
T
i

∣∣∣∣∣ bi ∈ Rn++ for every i,

span(b1, . . . , br) = Rn

}
= {BBT | B > 0 and rank(B) = n}

(7)

and

int(CPn) =

{
r∑
i=1

bib
T
i

∣∣∣∣∣ b1 ∈ Rn++, bi ∈ Rn+ for every i,

span(b1, . . . , br) = Rn

}
= {BBT | rank(B) = n, B = [a | B̂], where a ∈ Rn++, B̂ ≥ 0}.

(8)

Here we can show, cf. [36, Lemma 7.13], that these two characterizations are equivalent to each

other according to the following rotation argument. Equivalent in this case means that a rank-1

representation in equation (8) can be transformed to a rank-1 representation in equation (7) of

Theorem 2.19.

Lemma 2.20. Let a ∈ Rn++ and b ∈ Rn+. Then there exist vectors c, d ∈ Rn++ such that

aaT + bbT = ccT + ddT .

Proof. Consider θ ∈ R and define

aθ := a cos(θ)− b sin(θ),

bθ := b cos(θ) + a sin(θ).

Then we observe that

aaT + bbT = aθa
T
θ + bθb

T
θ .

Since a ∈ Rn++ and b ∈ Rn+, we can pick θ > 0 sufficiently small such that aθ, bθ ∈ Rn++. Now

let c = aθ and d = bθ, completing the proof.

Remark 2.21. This rotation argument can be seen as a special application of an orthogonal

matrix to a given decomposition. We will use the idea of transforming decompositions in Chapter 3

to generate a certificate for a matrix to be completely positive.

To characterize the membership of a matrix to the completely positive cone or to the interior of

the cone, it is sufficient to find a certain rank-1 representation or a decomposition matrix, as shown

in Lemma 2.16 and Theorem 2.19. Here the question is how many columns or how many rank-1

matrices do we need to prove the membership to CPn or its interior. So the question arises whether

we can say anything about the parameter r. We will consider this question in the following section.

11

2 Introduction

2.4 The cp-rank and the cp+-rank for Completely Positive
Matrices

The factorization of a completely positive matrix A 6= 0 with rank(A) ≥ 2 is never unique. We

illustrate this with an example by Dickinson, cf. [35].

Example 2.22. Consider the matrix

A :=

18 9 9

9 18 9

9 9 18

 .

Then A = BiB
T
i for each of the following matrices:

B1 :=

4 1 1

1 4 1

1 1 4

 , B2 :=

3 3 0 0

3 0 3 0

3 0 0 3

 , B3 :=

3 3 0

3 0 3

0 3 3

 .

Observe that the factorizations A = BiB
T
i for i = 1, 2 prove that A ∈ int(CPn), whereas the

factorization A = B3B
T
3 does not. Moreover, note that the number of columns of the factors Bi

varies. This gives rise to the following definitions.

Definition 2.23. Let A ∈ Rn×n. The cp-rank of A is defined as

cpr(A) := inf{r ∈ N | ∃ B ∈ Rn×r, B ≥ 0, A = BBT }.

The cp+-rank of A is

cpr+(A) := inf{r ∈ N | ∃ B ∈ Rn×r, B > 0, A = BBT }.

It is an open problem to compute the cp-rank or the cp+-rank of a matrix, cf. [10]. Nevertheless,

there are partial results on upper and lower bounds for the cp-rank of a completely positive matrix.

The following results can be found in [11, Section 3.1].

Lemma 2.24. Let A,B ∈ Rn×n be completely positive. Then:

(a) cpr(A+B) ≤ cpr(A) + cpr(B).

(b) cpr(A) ≥ rank(A).

The relation to the rank in Lemma 2.24 (b) results in the question whether the cp-rank can be

equal to the rank. This question is well studied in [11, Section 3.4]. We will see some of the results

for small dimensions here.

Theorem 2.25. If A ∈ Rn×n is completely positive and rank(A) ≤ 2, then

cpr(A) = rank(A).

12

2.4 The cp-rank and the cp+-rank for Completely Positive Matrices

Theorem 2.26. If A ∈ Rn×n is completely positive and n ≤ 3, then

cpr(A) = rank(A).

To show that the last theorem does not hold for n = 4, consider the following counterexample,

cf. [11, Example 3.1].

Example 2.27. The matrix

Acp4 =


6 3 3 0

3 5 1 3

3 1 5 3

0 3 3 6


is of rank 3 and has cp-rank equal to 4.

To show that the matrix Acp4 is of cp-rank 4, we have a closer look at the support of a rank-1

representation of the matrix. Here supp(x) := {i ∈ {1, . . . , n} | xi 6= 0} will denote the

support of a vector x ∈ Rn. If Acp4 =
r∑
i=1

bib
T
i is a minimal rank-1 representation of Acp4, then

1 ∈ supp{bi} for at least one i ∈ {1, . . . , 4}. Without loss of generality, let 1 ∈ supp(b1).

Assuming 1 6∈ supp(bi) for every i 6= 1, we have

b1b
T
1 =


6 3 3 0

3 3
2

3
2 0

3 3
2

3
2 0

0 0 0 0

 ,

such that the entry (A − b1b
T
1)23 < 0. But since (A − b1b

T
1) =

r∑
i=2

bib
T
i is completely posi-

tive, this leads to a contradiction. Hence, 1 must belong to at least two of the supports supp(bi),

i = 1, . . . , r. By symmetry, 4 also belongs to at least two of the supports supp(bi), i = 1, . . . , r.

Adding the fact that 1 and 4 can not belong to the same support (otherwise we would have

(Acp4)14 6= 0) eventually shows r ≥ 4. This implies

cpr(Acp4) ≥ 4 > 3 = rank(A).

To show that the cp-rank is equal to 4, we will use the following result, cf. [11, Theorem 3.3].

Theorem 2.28. Let A ∈ Rn×n be completely positive and n ≤ 4. Then

cpr(A) ≤ n.

Remark 2.29. Theorem 2.28 now shows cpr(Acp4) = 4.

The following theorem can give an upper bound for the cp-rank in higher dimensions, depending

on the rank of the matrix, cf. [11, Theorem 3.5].

13

2 Introduction

Theorem 2.30. Let A ∈ Rn×n completely positive and rank(A) = k, with k ≥ 2. Then we have

cpr(A) ≤ k(k + 1)

2
− 1.

If we consider the order of the given matrix instead of the rank, this naturally extends to the

following upper bound for the cp-rank.

Theorem 2.31. Let A ∈ Rn×n completely positive. Then we have

cpr(A) ≤ n(n+ 1)

2
− 1. (9)

Considering this result and Theorem 2.28, we notice that especially for lower dimensions, there

exist much tighter upper bounds for the cp-rank than (9). Bomze, Dickinson and Still showed in

[15, Theorem 5.1] the following tighter upper bound for the cp-rank and gave an upper bound for

the cp+-rank of a completely positive matrix in the interior of the cone. Here the analysis of the

bounds on the cp-rank or the cp+-rank are based on the results in [18] and [86].

Theorem 2.32. We have:

• There exist matrices A ∈ int(CPn) for which cpr(A) 6= cpr+(A).

• For all A ∈ CPn, we have:

cpr(A) ≤ cpn :=

n for n ∈ {2, 3, 4}
1
2n(n+ 1)− 4 for n ≥ 5.

• For all A ∈ int(CPn), we have:

cpr+(A) ≤ cp+
n :=

n+ 1 for n ∈ {2, 3, 4}
1
2n(n+ 1)− 3 for n ≥ 5.

For a matrix A ∈ CPn \ int(CPn), we have cpr+(A) = ∞. This motivates studying matrices

on the boundary of CPn. Here the reader is referred to Section 2.6. On the other hand, we have the

following characterization of the interior of the completely positive cone, cf. [15, Theorem 1.2].

Lemma 2.33. For A ∈ Sn, we have

A ∈ int(CPn)⇐⇒ cpr+(A) <∞ and rank(A) = n.

In addition, if we define the numbers

pn := max{cpr(A) | A ∈ CPn} and (10)

p+
n := max{cpr+(A) | cpr+(A) <∞},

we get the following result, cf. [15, Theorem 5.1].

14

2.5 Matrices of High cp-rank

Lemma 2.34. Let pn and p+
n be as defined above. Then

pn ≤ p+
n ≤ pn + 1.

Based on the definition of pn, we further have the following result:

Remark 2.35. It can be shown, see [18, Corollary 2.1], that asymptotically pn is close to the
upper bound cpn in Theorem 2.32.

Furthermore, Lemma 2.34 gives rise to the question when the cp-rank is equal to the cp+-rank.

Remark 2.36. Example 2.22 fulfills this property since cpr+(A) = 3 according to the factoriza-
tion matrix B1. On the other hand, we have rank(A) = 3 and therefore, using Theorem 2.26, we
also have cpr(A) = 3.

To show that this property holds generically within the completely positive cone, consider the

following theorem, cf. [15, Corollary 6.8].

Theorem 2.37. Consider A ∈ CPn. The following properties are generic within the completely
positive cone:

(a) Having infinitely many completely positive factorizations A = BBT , where B ∈ Rn×cpr(A).

(b) The cp- and cp+-ranks being equal.

So this means that the cp-rank and the cp+-rank are equal almost everywhere, or in other words,

the set

{A ∈ CPn | cpr(A) 6= cpr+(A)}

is a set of measure zero.

In contrast to Theorem 2.28, we will consider matrices of high cp-rank in the following section,

showing that the result in Theorem 2.28 does not hold for n > 4.

2.5 Matrices of High cp-rank

For concrete examples of matrices A ∈ CPn with n ≥ 5 and cpr(A) > n, the reader is referred

to the results of Bomze, Schachiner and Ulrich in [17]. Here the authors developed a method to

generate examples for matrices of high cp-rank. We mention some of them in the context of this

thesis. First, we consider n = 7 and the following example.

Example 2.38. Consider the matrix

Acp14 =



163 108 27 4 4 27 108

108 163 108 27 4 4 27

27 108 163 108 27 4 4

4 27 108 163 108 27 4

4 4 27 108 163 108 27

27 4 4 27 108 163 108

108 27 4 4 27 108 163


∈ R7×7.

It is shown in [17] that cpr(Acp14) = 14 and the matrix is of full rank.

15

2 Introduction

This is therefore an example, where the cp-rank is greater than the rank of the matrix and

especially greater than the order of the matrix since the matrix is of full rank. Another example,

now of order 8, is the following.

Example 2.39. Consider the matrix

Acp18 =



541 880 363 24 55 11 24 0

880 2007 1496 363 48 22 22 24

363 1496 2223 1452 363 24 22 11

24 363 1452 2325 1584 363 48 55

55 48 363 1584 2325 1452 363 24

11 22 24 363 1452 2223 1496 363

24 22 22 48 363 1496 2007 880

0 24 11 55 24 363 880 541


∈ R8×8.

It is shown in [17] that cpr(Acp18) = 18 and the matrix is of full rank.

In addition, Bomze, Schachinger and Ulrich provided the following concrete examples for

n = 9 and n = 11, cf. [17].

Example 2.40. Consider the matrix

Acp26 =



2548 1628 363 60 55 55 60 363 1628

1628 2548 1628 363 60 55 55 60 363

363 1628 2483 1562 363 42 22 55 60

60 363 1562 2476 1628 363 42 55 55

55 60 363 1628 2548 1628 363 60 55

55 55 42 363 1628 2476 1562 363 60

60 55 22 42 363 1562 2483 1628 363

363 60 55 55 60 363 1628 2548 1628

1628 363 60 55 55 60 363 1628 2548


∈ R9×9.

It is shown in [17] that cpr(Acp26) = 26 and the matrix is of full rank.

Example 2.41. Consider the matrix

Acp32 =
1

441



781 0 72 36 228 320 240 228 36 96 0

0 845 0 96 36 228 320 320 228 36 96

72 0 827 0 72 36 198 320 320 198 36

36 96 0 845 0 96 36 228 320 320 228

228 36 72 0 781 0 96 36 228 240 320

320 228 36 96 0 845 0 96 36 228 320

240 320 198 36 96 0 745 0 96 36 228

228 320 320 228 36 96 0 845 0 96 36

36 228 320 320 228 36 96 0 845 0 96

96 36 198 320 240 228 36 96 0 745 0

0 96 36 228 320 320 228 36 96 0 845



∈ R11×11.

It is shown in [17] that cpr(Acp32) = 32 and the matrix is of full rank.

16

2.6 The Boundary of the Completely Positive Cone

All these examples are artificially generated and so far there are no known cp-rank factorizations

for these matrices. We will see later in the numerical results to the factorization algorithms that

generating cp-factorizations for these matrices seems to be difficult. These matrices did not ap-

pear in applications but nevertheless they provide a counterexample for the Drew-Johnson-Loewy

(DJL) conjecture, which can be found in [40] and reads as follows.

Remark 2.42. Considering pn as defined in (10), the DJL conjecture suspects that

pn ≤
⌊
n2

4

⌋
,

where bxc describes the floor function evaluated in x. Thus, bxc = max{m ∈ Z | m ≤ x}.
So for n = 7, Example 2.38 shows cpr(Acp14) = 14 > 12 =

⌊
72

4

⌋
and for n = 8, Example 2.39

shows cpr(Acp18) = 18 > 16 =
⌊

82

4

⌋
. Moreover, the DJL conjecture is false for n = 9 since

Example 2.40 proves cpr(Acp26) = 26 > 20 =
⌊

92

4

⌋
and for n = 11 since Example 2.41 proves

cpr(Acp32) = 32 > 30 =
⌊

112

4

⌋
.

For general counterexamples for the DJL-conjecture, the reader is referred to [18].

As mentioned in Section 2.4, we will have a closer look at the boundary of the completely

positive cone. Thus, we consider the set of matrices with infinite cp+-rank in the following section.

2.6 The Boundary of the Completely Positive Cone

The boundary of the completely positive cone is defined as

bd(CPn) = CPn \ int(CPn) or

bd(CPn) = {A ∈ CPn | cpr+(A) =∞}.

If we consider the definition of the dual of a cone in (1) and of the interior of the dual cone in

(2), we also have the following characterization for the boundary, based on COPn, as the dual

cone of CPn.

bd(CPn) = {X ∈ Sn | 〈X,Y 〉 = 0 for at least one Y ∈ COPn \ {0}} . (11)

We will use this certificate to show that the following matrix is an element of the boundary of

the completely positive cone, cf. [44, Example 2.2].

Example 2.43. Consider the matrix

ADS =


8 5 1 1 5

5 8 5 1 1

1 5 8 5 1

1 1 5 8 5

5 1 1 5 8

 .

17

2 Introduction

Then ADS ∈ CP5 since A = BBT with

B =


1 0 0 0 1 1 0 0 1 2

1 1 0 0 0 2 1 0 0 1

0 1 1 0 0 1 2 1 0 0

0 0 1 1 0 0 1 2 1 0

0 0 0 1 1 0 0 1 2 1

 ∈ R5×10
+

and ADS 6∈ int(CP5) since there exists a copositive matrix H such that 〈A,H〉 = 0. This matrix

is the Horn matrixH in equation (3). Equation (11) then shows that the matrixADS is an element

of the boundary of CP5.

Remark 2.44. Since the matrix ADS is also positive definite and entrywise nonnegative, this

gives a concrete example proving int(Nn) ∩ int(S+
n) 6⊆ int(CPn) for n ≥ 5, as mentioned in

Section 2.3.

By definition, we have CPn = conv{xxT | x ∈ Rn+} and therefore the extreme rays of CPn
are the completely positive matrices of rank 1:

ext(CPn) = {xxT | x ∈ Rn+}.

In Chapter 7, we will see that the introduced methods to find factorizations for completely

positive matrices also work well for some matrices at the boundary of CPn, but nevertheless for

some instances at the boundary the method may fail numerically.

In the following section, we will see the key applications for completely positive and copositive

matrices and how the factorizations of completely positive matrices become important for these

applications.

2.7 Conic Programming and Applications

As mentioned in [43], the concept of copositivity was first introduced in 1952 by Motzkin in [78],

followed by numerous publications dealing with copositivity and complete positivity. In optimiza-

tion, the cones of completely positive and copositive matrices appeared in the 1990s and since then

many papers work on completely positive or copositive reformulations of several types of noncon-

vex problems. Here the main idea is to overcome the lack of convexity since the reformulation

allows us to avoid global optimization techniques, because for these reformulations, any optimum

is global. Especially for reformulations of combinatorial problems, it becomes important to gen-

erate a completely positive factorization of the solution, in order to recover the solution of the

underlying problem.

18

2.7 Conic Programming and Applications

A general conic program is a linear optimization problem in matrix variables over a certain

matrix cone C. It can be written in the following form:

min 〈C,X〉
s. t. 〈Ai, X〉 = bi (i = 1, . . . ,m)

X ∈ C.

For the matrix cone C, we can think of Rn×n+ , corresponding to linear programming, of S+
n ,

corresponding to semidefinite programming or of COPn respectively CPn, corresponding to

copositve or completely positive programming, repectively. In addition, another cone plays an

important role for the methods presented in this thesis. The following definition can be found for

example in [2].

Definition 2.45. The second order cone of order n is defined as the set

SOCn =
{

(x, t) ∈ Rn−1 × R
∣∣ ‖x‖ ≤ t} .

Here ‖ · ‖ denotes the Euclidean norm. This set is also known as the ice cream cone or as the

Lorentz-cone.

A general second order cone problem, or short SOCP, can then be written as follows:

min 〈c, x〉
s. t. Ax ≤ b

x ∈ SOC.
(SOCP)

In the following, we will focus on completely positive and copositive problems and their appli-

cations.

Completely positive matrices have received a lot of attention in the area of quadratic and binary

optimization, as it has been shown that many combinatorial and nonconvex quadratic problems

can be formulated as linear problems over CPn. For surveys on this area, the reader is referred

to [13, 21, 43]. As a first example, consider the problem of computing the stability number α of a

graph G on n nodes. A stable set is a set of vertices in a graph, where no two vertices are adjacent

and the stability number is the cardinality of the largest possible stable set of the graph.

De Klerk and Pasechnik showed that α is the solution of a maximization problem over CPn,

cf. [29]:

α = max{〈E,X〉 | 〈A+ I, X〉 = 1, X ∈ CPn}, (12)

where A is the adjacency matrix of G and E is the all-ones matrix.

An optimal solution X∗ of (12) also contains information about the maximal stable set: if X∗

is of rank 1, i.e., X∗ = x∗(x∗)T , then supp(x∗) is the unique stable set in G. If rankX∗ > 1,

then X∗ can be factorized as X∗ =
∑r

i=1 xix
T
i , and supp(xi) is a maximal stable set for each i.

The completely positive reformulation of finding the maximum stable set in (12) motivated a

reformulation of the following formulation by Motzin and Straus [76] for the clique number ω(G)

19

2 Introduction

of a graph G. The clique number of a graph is the cardinality of the largest possible subset of

vertices, where every pair of vertices is adjacent. Such a subset is called a clique ofG. Considering

the complement graph Ḡ of G, cliques in G correspond to stable sets in Ḡ. The clique problem

was one of the 21 problems, which were shown to be NP-complete by Richard M. Karp in [63].

Motzkin and Straus [76] showed that

1

ω(G)
= min

{
xT (E −A)x

∣∣ eTx = 1, x ≥ 0
}
. (13)

Here A denotes the adjacency matrix of the graph, e is the all-ones-vector and E is again the

all-ones-matrix. We now write the objective function as xT (E − A)x = 〈(E − A), xxT 〉 and

analogously the constraint eTx = 1 can be written as 〈eeT , xxT 〉 = 1. Then, since E = eeT and

with X := xxT and equation (13), the clique number of a graph is the solution of the following

convex problem:
min 〈(E −A), X〉
s. t. 〈E,X〉 = 1

X ∈ CPn.
(14)

Here the complexity of the problem moved to the conic constraint and allows a convex refor-

mulation such that any optimum will be global. To solve the reformulated problem, it is again

necessary to verify the membership of a matrix to the completely positive cone. But we need not

only a certificate for the matrix to be completely positive, we need a completely positive factor-

ization of the matrix to recover the solution of the underlying problem. Going back to the stability

number problem in equation (12), we can then provide the maximum stable set itself and not only

its cardinality. This gives a first motivation to generate cp-factorizations in practical applications.

Furthermore, we will see that equation (13) is a special case of the standard quadratic problem,

which motivates another important field for completely positive reformulations. As the following

problems show, completely positive optimization is also closely connected to quadratic optimiza-

tion. First, we will consider the general standard quadratic problem, shortly written as STQP:

min xTAx

s. t. eTx = 1

x ≥ 0.

(STQP)

A solution of this quadratic problem minimizes the not necessarily convex objective function and

is an element of the standard simplex. Applying the same manipulations as used to obtain (14)

now gives the following completely positive reformulation of the standard quadratic problem:

min 〈A,X〉
s. t. 〈E,X〉 = 1

X ∈ CPn.
(15)

Here again, the objective function can be rewritten as xTAx = 〈A, xxT 〉 and analogously the

constraint eTx = 1 can be written as 〈eeT , xxT 〉 = 1. If we define X := xxT and E again

20

2.7 Conic Programming and Applications

denotes the all-ones matrix, we get the above reformulation in (15). Based on (14), we get that

solving the standard quadratic problem is also NP-hard. Moreover, the reformulation in (15) is

again convex and the objective function is linear such that the optimum must be attained in an

extremal point. Therefore, the optimum will be attained in a rank-one matrix xxT with x ≥ 0 and

eTx = 1 according to Lemma 2.3. This proves that (15) is an exact reformulation of the standard

quadratic problem.

This approach does not only work for a single standard quadratic problem, but also for multiple

STQP, where one considers the cartesian product of multiple simplices, cf. [16].

A further extension of the reformulations for quadratic problems was given by Burer in 2009.

As shown in [21], it is possible to give a completely positive reformulation for any quadratic

problem with linear and binary constraints. More precisely, it is possible to derive a completely

positive reformulation of the following quadratic problem:

min xTQx+ 2cTx

s. t. aTi x = bi (i = 1, . . . ,m)

x ≥ 0

xj ∈ {0, 1} (j ∈ B).

(16)

Here B denotes some index subset for the binary variables. This problem can be equivalently

formulated as the following completely positive problem:

min 〈Q,X〉+ 2cTx

s. t. aTi x = bi (i = 1, . . . ,m)

〈aiaTi , X〉 = b2i (i = 1, . . . ,m)

xj = Xjj (j ∈ B)(
1 xT

x X

)
∈ CPn.

(17)

Beside the so far considered quadratic problems, it is also possible to reformulate the following

fractional quadratic problem, as shown in [82]. Here consider a copositive matrix A and addi-

tionally assume that xTAx = 0 yields x = 0. Now the fractional quadratic problem reads as

follows:
max xTQx

xTAx

s. t. eTx = 1

x ≥ 0,

where no further assumptions onQ are necessary. This problem is then equivalent to the following

problem, as shown in [82]:
min 〈Q,X〉
s. t. 〈A,X〉 = 1

X ∈ CPn.

For further remarks on this result, see also [20].

21

2 Introduction

Moreover, the need to factorize completely positive matrices arises in statistics in the area of

multivariate extremes, cf. [27], where it is shown how tail dependence of a multivariate regularly-

varying random vector can be summarized in a so called tail pairwise dependence matrix Σ of

pairwise dependence metrics. This matrix Σ can be shown to be completely positive, and a non-

negative factorization of it can be used to estimate probabilities of extreme events or to simulate

realizations with pairwise dependence, summarized by Σ. So this application is again depending

on the completely positive factorizations itself such that proving complete positivity is not suffi-

cient. This therefore gives a further motivation for the question of how to derive a factorization

for completely positive matrices. For numerical details on this application, the reader is referred

to Section 7.12.

As recently shown, completely positive matrices are also related to quantum physics, cf. [94].

Overall, we saw that for numerous optimization problems a convex reformulation can be found

using the completely positive cone. As already mentioned, the whole complexity moves to the

cone constraint. Therefore, it is important to decide whether a given matrix is completely positive

or not, especially in terms of solving these problem reformulations or in terms of identifying the

stable set of vertices, for instance. Therefore, we will have a closer look at the factorizations of

completely positive matrices in the following chapter. As mentioned in Lemma 2.16, they provide

a certificate for the matrix to be completely positive.

22

3 Factorizations for Completely Positive
Matrices

In this chapter, we will show theoretical results to obtain a factorizationA = BBT withB ≥ 0 for

a given completely positive matrixA. This is not least motivated by the applications in Section 2.7.

Finding such a factorization would not only help to recover optimal solutions in combinatorial op-

timization problems, it also provides a certificate forA ∈ CPn, according to Lemma 2.16. Proving

the membership to the completely positive cone is necessary for the completely positive reformu-

lations, introduced in the previous section. This is in general an NP-hard task, as mentioned

in [38, Theorem 5.3]. In addition to proving the membership to the completely positive cone,

finding a factorization A = BBT where B is entrywise strictly positive would even prove that

A ∈ int(CPn), a property that may be useful to ensure strict feasibility for a completely positive

problem reformulation.

This chapter is organized as follows: Since other authors have studied the completely positive

factorization problem before, a short survey is given in the following section. Afterwards, we will

focus on the properties of completely positive factorizations and how they are related among each

other. Here we will see that orthogonal matrices play a major role. With the help of orthogonal

matrices, it is then possible to derive theoretical certificates for a matrix to be completely positive.

It is important for these results to start with an initial factorization of the given matrix, which is

not entrywise nonnegative in general. Therefore, we will see how to obtain such a factorization of

arbitrary order. Moreover, in the last part of this chapter, we will see that the certificates for the

completely positive cone can also be specified to verify the membership to the interior of the cone.

3.1 Related Work

Factorization of matrices with special structures has been studied for a few decades – here the

reader is especially referred to the references given in [11] and [37]. Dickinson and Dür [37]

extend this work and give a factorization algorithm for acyclic matrices which works in linear

time. Also Bomze [14] deals with special structures and shows how a factorization of an n × n
matrix can be constructed if a factorization of an (n− 1)× (n− 1) principal submatrix is known.

For a general input matrix A, Jarre and Schmallowsky [62] use a quadratic factorization heuristic

to generate a sequence of matrices BBT that, for a suitable starting point, eventually converges

to A. Their algorithm works well for matrices of up to order 200× 200. For a comparison of this

approach to the methods introduced in this thesis, the reader is referred to Section 7.11. Nie [79]

treats the completely positive factorization problem as a special case of a A-truncated K-moment

23

3 Factorizations for Completely Positive Matrices

problem. For this more general problem, Nie develops an algorithm based on solving a sequence of

(numerically expensive) semidefinite optimization problems. Nie reports numerical experiments

for the factorization of completely positive matrices up to order 8 × 8. Sponsel and Dür [89]

develop an algorithm for the projection of a matrix onto the dual of CPn, which can also be

used to compute completely positive factorizations. However, for reasonably big input matrices,

the algorithm runs into memory problems. Finally, Anstreicher, Burer, and Dickinson [3] are

developing a factorization algorithm based on the ellipsoid method.

In the following section, we will show that cp-factorizations are not unique in general.

3.2 CP-Factorizations are not Unique

Let us recall Example 2.22 and the factorizations therein: Consider the matrix

A :=

18 9 9

9 18 9

9 9 18

 .

Then A = BiB
T
i for each of the following matrices:

B1 :=

4 1 1

1 4 1

1 1 4

 , B2 :=

3 3 0 0

3 0 3 0

3 0 0 3

 , B3 :=

3 3 0

3 0 3

0 3 3

 . (18)

For the same matrix A, we can consider another factorization of the same order as B1 and B3,

based on the eigendecomposition of A. To be more precise, let

A =


−0.4010 0.7112 1√

3

0.8165 −0.0083 1√
3

−0.4154 −0.7029 1√
3


︸ ︷︷ ︸

eigenvectors

·

9 0 0

0 9 0

0 0 36


︸ ︷︷ ︸

eigenvalues

·


−0.4010 0.7112 1√

3

0.8165 −0.0083 1√
3

−0.4154 −0.7029 1√
3


T

︸ ︷︷ ︸
eigenvectors

be the eigendecomposition of A. Then we define

B4 :=


−0.4010 0.7112 1√

3

0.8165 −0.0083 1√
3

−0.4154 −0.7029 1√
3

 ·

√

9 0 0

0
√

9 0

0 0
√

36



=

−1.2030 2.1337 3.4641

2.4494 −0.0250 3.4641

−1.2463 −2.1087 3.4641

 ,

(19)

such that B4B
T
4 = A.

24

3.3 The Role of Orthogonal Matrices

Thus, if we would have only B4B
T
4 as a factorization of A, we would not be able to deduce

the membership of A to the completely positive cone since B4 is not entrywise nonnegative. So

the questions arises whether we can transform a given factorization to a different factorization.

And especially, whether is it possible to transform any factorization of a given completely positive

matrix A into a completely positive factorization. To answer this question, we will have a closer

look at orthogonal matrices in the following section.

3.3 The Role of Orthogonal Matrices

Recall that a matrix Q ∈ Rr×r is called orthogonal if QQT = Ir. The set of orthogonal matrices

is a smooth manifold, also called the Stiefel manifold, see for example [1]. These matrices will be

used to transform any given factorization of a completely positive matrix into a cp-factorization.

We therefore consider the following definition.

Definition 3.1. We denote by Or the set of r × r orthogonal matrices, and we introduce

O+
r := {Q ∈ Or | detQ = 1} and O−r := {Q ∈ Or | detQ = −1}.

The first set is the set of rotation matrices, the latter is the set of reflection matrices.

Clearly, Or = O+
r ∪ O−r and hence Or is nonconnected. It is well known that Or is compact,

as shown in the following Lemma.

Lemma 3.2. The set Or is a compact subset of Rr×r.

Proof. Consider the mapping f : Rr×r → Rr×r, A 7→ AAT . Then f is continuous and we have

Or = f−1(Ir), where Ir denotes the r × r identity matrix. As a preimage of a singleton, Or is

closed. Since ‖Qx‖ = ‖x‖ for each Q ∈ Or and x ∈ Rr, we have that Or is also bounded. The

theorem of Heine-Borel now proves that Or is a compact set.

The set Or is not convex since for any Q ∈ Or we have −Q ∈ Or, but on the other hand,
1
2Q + 1

2(−Q) = 0 6∈ Or. However, using the well known Schur complement theorem, cf. [28,

Theorem A.9], we can characterize the convex hull of the set of orthogonal matrices. To prove the

Schur complement theorem, we need the following lemma, cf. [57, Section 1.1].

Lemma 3.3. Let A ∈ Rn×n be an arbitrary matrix and Q ∈ Rn×n be a nonsingular matrix. Then

we have:

A � 0⇐⇒ QAQT � 0,

where A � 0 again indicates A being positive semidefinite.

Proof. Let x ∈ Rn be an arbitrary vector. Then A is positive semidefinite if and only if xTAx ≥ 0.

With y := (Q−Tx) ∈ Rn, this is equivalent to

0 ≤ xTQ−1QAQTQ−Tx = (Q−Tx)TQAQT (Q−Tx) = yT (QAQT)y,

which is true if and only if QAQT is positive semidefinite.

25

3 Factorizations for Completely Positive Matrices

Theorem 3.4. Consider the block matrix

M =

(
A B

BT C

)
,

where A is positive definite and C is symmetric. Then the matrix

C −BTA−1B

is called the Schur complement of A in M . Moreover, the following are equivalent:

(a) M � 0.

(b) C −BTA−1B � 0.

Here A � 0 again indicates that a given matrix A is positive semidefinite.

Proof. Let D = −A−1B and consider the matrix product(
I 0

DT I

)(
A B

BT C

)(
I D

0 I

)
=

(
A 0

0 C −BTA−1B

)
.

Since

det

(
I 0

DT I

)
= 1,

Lemma 3.3 shows that

M � 0 ⇔

(
I 0

DT I

)(
A B

BT C

)(
I D

0 I

)
� 0 ⇔

(
A 0

0 C −BTA−1B

)
� 0.

Due to the fact that a block diagonal matrix is positive (semi)definite if and only if its diagonal

blocks are positive (semi)definite, the proof is complete.

With the help of Theorem 3.4, we can prove the following equality.

Lemma 3.5. We have

{
Q ∈ Rr×r

∣∣ QQT � Ir} =

{
Q ∈ Rr×r

∣∣∣∣∣
(
Ir QT

Q Ir

)
� 0

}
,

where Ir is again the r × r identity matrix.

Proof. Let

Q ∈

{
Q ∈ Rr×r

∣∣∣∣∣
(
Ir QT

Q Ir

)
� 0

}
,

then by applying Theorem 3.4, we get the following equivalent statement since the identity matrix

is positive definite and symmetric:

26

3.3 The Role of Orthogonal Matrices

Ir −QI−1
r QT � 0⇐⇒ QQT � Ir,

completing the proof.

These sets will give a characterization of the convex hull of the set of orthogonal matrices. To

see this, we consider the following characterization of convOr, as shown in [84, Proposition 4.8].

Lemma 3.6. The set convOr has the following representation:

convOr =

{
X ∈ Rr×r

∣∣∣∣∣
(

0 X

XT 0

)
� I2r

}
, (20)

where I2r denotes the identity matrix of order 2r × 2r.

Proof. As in [84], we will prove both inclusions separately. First, consider an arbitrary matrix

Q ∈ Or. Since QTQ = Ir, it follows that(
Ir −Q
−QT Ir

)
=

(
Ir

−QT

)(
Ir −Q

)
� 0,

and by rearranging we see that Q is an element of the right hand side of equation (20). Since the

right hand side is a convex set, it follows that

convOr ⊆

{
X ∈ Rr×r

∣∣∣∣∣
(

0 X

XT 0

)
� I2r

}
.

For the reverse inclusion, assume that X is an element of the right hand side of equation (20) and

consider its singular value decomposition. For a short review and some basic facts on the singular

value decomposition, the reader is referred to the Appendix of this thesis. Thus, there exists a

diagonal matrix Σ containing the singular values of X and orthogonal matrices U, V ∈ Or such

that X = UΣV T . Consider the orthogonal matrix(
UT 0

0 V T

)
.

Then (
UT 0

0 V T

)(
0 X

XT 0

)(
UT 0

0 V T

)T
=

(
0 Σ

Σ 0

)
and using Lemma 3.3, we see that(

0 X

XT 0

)
� I2r ⇐⇒

(
0 Σ

Σ 0

)
� I2r,

which is equivalent to−1 ≤ Σii ≤ 1 for i ∈ {1, . . . , r}. It follows that Σ ∈ Dr ∩ convOr, where

Dr denotes the set of (square) diagonal matrices of order r. Thus, X = UΣV T ∈ convOr.

27

3 Factorizations for Completely Positive Matrices

Now we can show that Lemma 3.5 provides two description of convOr:

Lemma 3.7. We have

convOr =

{
Q ∈ Rr×r

∣∣∣∣∣
(
Ir QT

Q Ir

)
� 0

}
.

Proof. First, we observe that(
Ir QT

Q Ir

)
� 0 ⇔

((
Ir 0

0 Ir

)
+

(
0 QT

Q 0

))
� 0 ⇔ I2r �

(
0 −QT

−Q 0

)
.

Thus, Lemma 3.6 yields:

Q ∈
{
Q ∈ Rr×r

∣∣∣∣ (Ir QT

Q Ir

)
� 0

}
⇔ I2r �

(
0 −QT

−Q 0

)
⇔ −QT ∈ convOr ⇔ Q ∈ convOr,

concluding the proof.

The convex hull of the set of rotation matrices, convO+
r , can also be described by semidefinit-

ness constraints. To obtain the result by Saunderson et al. (cf. [84]), it is necessary to consider the

following matrices.

Definition 3.8. We will consider matrices Aij ∈ S2r−1 for 1 ≤ i, j ≤ r. They are described as

Aij = −P TSaundΛiΩjPSaund,

where Λi and Ωj for i, j = 1, . . . , r are the 2r × 2r skew-symmetric matrices defined as

Λi =

i−1 times︷ ︸︸ ︷(
1 0

0 −1

)
⊗ · · · ⊗

(
1 0

0 −1

)
⊗

(
0 −1

1 0

)
⊗

r−i times︷ ︸︸ ︷(
1 0

0 1

)
⊗ · · · ⊗

(
1 0

0 1

)

Ωj =

(
1 0

0 1

)
⊗ · · · ⊗

(
1 0

0 1

)
︸ ︷︷ ︸

j−1 times

⊗

(
0 −1

1 0

)
⊗

(
1 0

0 −1

)
⊗ · · · ⊗

(
1 0

0 −1

)
︸ ︷︷ ︸

r−j times

and PSaund ∈ R2r×2r−1
is the following matrix:

PSaund =
1

2


I2r−1 +

r−1 times︷ ︸︸ ︷(
1 0

0 −1

)
⊗ · · · ⊗

(
1 0

0 −1

)

I2r−1 −

(
1 0

0 −1

)
⊗ · · · ⊗

(
1 0

0 −1

)
︸ ︷︷ ︸

r−1 times


.

As mentioned in [84], with P TSaundMPSaund we select a 2r−1 × 2r−1 principal submatrix of an
arbitrary matrix M . Moreover, since Λi and Ωj are skew-symmetric and commute for every
1 ≤ i, j ≤ r, the matrices Aij are symmetric. Since Λi and Ωj are signed permutation matrices,
so is −ΛiΩj such that all the entries of Aij are elements of {−1, 0, 1} for every 1 ≤ i, j ≤ r.

28

3.3 The Role of Orthogonal Matrices

With this definition, we can now give the representation of convO+
r in the following Theorem,

cf. [84, Theorem 1.3].

Theorem 3.9. The convex hull convO+
r can be described as follows:

convO+
r =

X ∈ Rr×r
∣∣∣∣∣∣
(

0 X

XT 0

)
� I2r,

r∑
i,j=1

Aij(RX)ij � (r − 2)I2r−1

 ,

where R = Diag(1, 1, . . . , 1,−1) ∈ Rr×r and the Aij are the matrices introduced in Defini-

tion 3.8. For r ∈ {2, 3}, this simplifies to

convO+
2 =

{(
c −s
s c

)
∈ R2×2

∣∣∣∣∣
(

1 + c s

s 1− c

)
� 0

}

and

convO+
3 =

X ∈ R3×3

∣∣∣∣∣∣
3∑

i,j=1

Aij(RX)ij � I4


=

{
X ∈ R3×3

∣∣∣∣∣
(

1−X11−X22+X33 X13+X31 X12−X21 X23+X32
X13+X31 1+X11−X22−X33 X23−X32 X12+X21
X12−X21 X23−X32 1+X11+X22+X33 X31−X13
X23+X32 X12+X21 X31−X13 1−X11+X22−X33

)
� 0

}
.

This result is based on the equation

convO+
r = convOr ∩ (r − 2)(O−r)◦,

where (O−r)◦ represents the polar of the set of reflection matrices. Theorem 3.9 can therefore be

proven with the help of Lemma 3.6. The result can be easily extended to convO−r , but as shown

in Section 4.1, it is not necessary to analyse both components of Or separately in our context.

We will use the representation of the set of orthogonal matrices or reflection matrices to obtain a

certificate for complete positivity in Chapter 6. On the other hand, we will use a further property

of the set of orthogonal matrices to introduce a numerical method to show complete positivity

in terms of semialgebraic sets. Expanding the condition QQT = Ir into r2 quadratic equations

shows that Or is a semialgebraic set, as we will see later in Section 6.1.

Hitherto, the connection between factorizations of complete positive matrices and orthogonal

matrices is still missing. The following technical lemma will be used to prove a fundamental

connection.

Lemma 3.10. Let B,C ∈ Rn×r with BBT = CCT . For i = 1, . . . , n, let Bi resp. (BBT)i

denote the i-th rows of B resp. BBT . And in the same way, for i = 1, . . . , n, let Ci resp. (CCT)i

denote the i-th rows of C resp. CCT . Further let R(B) ⊆ Rr resp. R(C) ⊆ Rr denote the

subspaces spanned by the rows of B and C, respectively. Then:

29

3 Factorizations for Completely Positive Matrices

(a)

Bn =

n−1∑
i=1

λiBi if and only if
(
BBT

)
n

=

n−1∑
i=1

λi
(
BBT

)
i
, (21)

with the same scalar values λi (i = 1, . . . , n) in both equations.

(b) There exists a linear map ϕ : R(B)→ R(C) such that ϕ(Bi) = Ci for all i = 1, . . . , n.

Proof. (a) We will prove both directions separately. To show that the right hand side in (21) is

necessary, we assume that the left hand side holds and we consider the last row
(
BBT

)
n

of

BBT . Thus, we have

(BBT)n = BnB
T =

(
n−1∑
i=1

λiBi

)
BT =

n−1∑
i=1

λiBiB
T =

n−1∑
i=1

λi
(
BBT

)
i
,

such that the equation on the right hand side in (21) holds.

Conversely, assume that the equation on the right hand side of (21) holds. Since
(
BBT

)
ij

=

BiB
T
j for every i, j = 1, . . . , n, we have for any entry

(
BBT

)
nj

of the row (BBT)n:

BnB
T
j =

(
BBT

)
nj

=
n−1∑
i=1

λi
(
BBT

)
ij

=
n−1∑
i=1

λiBiB
T
j

for every j = 1, . . . , n. This gives(
Bn −

n−1∑
i=1

λiBi

)
BT
j = 0 for every j = 1, . . . , n.

This means that

z :=

(
Bn −

n−1∑
i=1

λiBi

)
∈ span{B1, . . . , Bn}⊥

since the inner product of z with any rowBj is zero. At the same time, z ∈ span{B1, . . . , Bn}
by construction. Consequently, z = 0, which now proves the equality on the left handside

in (21).

(b) First, we observe that rank(B) = rank
(
BBT

)
= rank

(
CCT

)
= rank(C) since the equality

BBT = CCT holds. If the matrices B and C are of full row-rank, the result in (b) is obvious.

Now we assume that rank(B) = n− 1 and without loss of generality, we assume that the last

row Bn of B is linearly dependent on the rows B1, . . . , Bn−1. Thus, we have

Bn =
n−1∑
i=1

λiBi (22)

for some scalar values λ1, . . . , λn−1. Let ϕ denote the unique linear function with

ϕ(Bi) = Ci for all i = 1, . . . , n− 1.

30

3.3 The Role of Orthogonal Matrices

It remains to show that ϕ(Bn) = Cn. Applying part (a) to equation (22) shows

(BBT)n =

n−1∑
i=1

λi(BB
T)i =

n−1∑
i=1

λi(CC
T)i,

where the last equality holds since BBT = CCT . Again with part (a), now applied to the

matrix CCT in the last equation, we get

Cn =
n−1∑
i=1

λiCi,

with the same scalar values λi, . . . , λn−1. Finally, we get

ϕ(Bn) = ϕ

(
n−1∑
i=1

λiBi

)
=

n−1∑
i=1

λiϕ (Bi) =
n−1∑
i=1

λiCi = Cn,

concluding the case rank(B) = n− 1.

If rank(B) < n − 1, we can apply the same technique such that the linear map ϕ exists for

any rank(B) ∈ {1, . . . , n}. This eventually proves part (b).

The next lemma is well known and can be found for instance in [96, Lemma 1]. The lemma will

be fundamental for the main algorithm in Chapter 6 and illustrates how different factorizations

of a matrix are related. It bridges the gap between the theory of orthogonal matrices and cp-

factorizations.

Lemma 3.11. Let B,C ∈ Rn×r. Then BBT = CCT if and only if there exists Q ∈ Or with

BQ = C.

Proof. The if part is obvious. To see the reverse, observe that B and C are of equal rank since

rank(B) = rank(BBT) = rank(CCT) = rank(C). Let Bi resp. Ci (i = 1, . . . , n) denote the

rows ofB resp.C, and letR(B) ⊆ Rr resp.R(C) ⊆ Rr denote the subspaces spanned by the rows

of B and C, respectively. Due to Lemma 3.10 (b), there exists a linear map ϕ : R(B) → R(C)

such that ϕ(Bi) = Ci for all i = 1, . . . , n.

Moreover, the equality BBT = CCT entails that

〈Bi, Bj〉 = 〈ϕ(Bi), ϕ(Bj)〉 for all i, j ∈ {1, . . . , n},

so ϕ is an isometry. Extending ϕ fromR(B) to an isometry on Rr gives the desired matrixQ.

Lemma 3.11 therefore shows that two cp-factorizations for the same matrix are connected via

an orthogonal matrix.

31

3 Factorizations for Completely Positive Matrices

Getting back to Example 2.22 and the factorizations in (18) of the matrix

A =

18 9 9

9 18 9

9 9 18

 ,

Lemma 3.11 gives rise to the following equations.3 3 0

3 0 3

0 3 3


︸ ︷︷ ︸

B3

·


2
3

2
3 −1

3
2
3 −1

3
2
3

−1
3

2
3

2
3


︸ ︷︷ ︸

Q

=

4 1 1

1 4 1

1 1 4


︸ ︷︷ ︸

B1

Hence, we can transform one cp-factorization into a second one, provided the two factorization

matrices are of the same order. Even for factorizations of the matrix, which are not entrywise

nonnegative, like B4 in (19), we can apply Lemma 3.11. This yields the following equation.−1.2030 2.1337 3.4641

2.4494 −0.0250 3.4641

−1.2463 −2.1087 3.4641


︸ ︷︷ ︸

B4

·

−0.4010 0.7112 0.5774

0.8165 −0.0083 0.5774

−0.4154 −0.7029 0.5774


︸ ︷︷ ︸

Q

=

4 1 1

1 4 1

1 1 4


︸ ︷︷ ︸

B1

Remark 3.12. We can transform any factorization A = BBT , with B ∈ Rn×r not necessarily

entrywise nonnegative, of a completely positive matrix A with cpr(A) ≤ r into a cp-factorization

using an orthogonal matrix.

As another application of Lemma 3.11, consider a decomposition A = BBT , where B has one

or multiple nonpositive columns and all the other columns are entrywise nonnegative. Then this is

still a decomposition showing A ∈ CPn according to the following argument:

Corollary 3.13. Let A = BBT with B ∈ Rn×r and Bj ≤ 0 for some column indices

j ∈ J ⊆ {1, . . . , r} and Bi ≥ 0 for all i 6∈ J . Then there exists an orthogonal matrix Q ∈ Rr×r

such that BQ ≥ 0. This proves A ∈ CPn.

Proof. Let Q ∈ Rr×r with Qil = 0 for all i 6= l, Qii = 1 or all i 6∈ J and Qjj = −1 for all j ∈ J .

Then BQ ≥ 0 since the columns of BQ fulfill (BQ)i = Bi for all i 6∈ J and (BQ)j = −Bj ≥ 0

for all j ∈ J . In addition, we have

(BQ)(BQ)T = BQQT︸ ︷︷ ︸
In

BT = BBT = A

since Q is an orthogonal matrix. This completes the proof.

Thus, we have the following additional characterization of completely positive matrices:

32

3.4 Nearly Positive Matrices

Corollary 3.14. The set of completely positive matrices is equal to the following set:

CPn = {A ∈ Rn×n | A = BBT , where B ∈ Rn×r, Bi ≥ 0 or Bi ≤ 0 for every column Bi}.

Considering not only a single orthogonal matrix but a sequence of orthogonal matrices gives

rise to the definition of a nearly positive matrix. We will have a closer look at these matrices in the

following section, which will lead us to a sufficient condition for a matrix to be an element of the

interior of the completely positive cone.

3.4 Nearly Positive Matrices

As mentioned in Remark 3.12, we can use orthogonal matrices to transform an arbitrary factor-

ization A = BBT of a completely positive matrix A into a cp-factorization as long as the number

of columns in B is greater than or equal to cpr(A). If we consider not only a single orthogonal

matrix but a certain sequence of such matrices, we have the following definition, cf. [85].

Definition 3.15. A matrixB ∈ Rn×r is called nearly positive if there exists a sequence of matrices

(Ql)l∈N ∈ Or such that

lim
l→∞

Ql = Ir and BQl > 0 for all l ∈ N.

Then we have {B ∈ Rn×r | B nearly positive} ⊆ {B ∈ Rn×r | B ≥ 0} according to the

following argument:

Lemma 3.16. Every nearly positive matrix is entrywise nonnegative.

Proof. We have

0 ≤ lim
l→∞

BQl︸︷︷︸
>0

= B lim
l→∞

Ql = B · I = B

and therefore B ≥ 0.

But the reverse subset implication does not hold, as the following lemma shows.

Lemma 3.17. We have {B ∈ Rn×r | B nearly positive} 6⊇ {B ∈ Rn×r | B ≥ 0}.

Proof. For every matrix A ∈ CPn \ int(CPn) with rank(A) = n (see for examle ADS in Exam-

ple 2.43), there exists a matrix B ∈ Rn×cpr(A) with B ≥ 0 and A = BBT , but there does not

exist a matrix C ∈ Rn×cpr(A) with A = CCT and C > 0. B is therefore entrywise nonnegative

but not nearly positive, completing the proof.

A simple necessary condition for an entrywise nonnegative matrix B to be nearly positive is the

following, cf. [85, Proposition 2.3].

Lemma 3.18. If B ∈ Rn×r is nearly positive, then BBT > 0.

Proof. Consider Q ∈ Or such that BQ > 0. Then BBT = BQQTBT = (BQ)(BQ)T > 0.

33

3 Factorizations for Completely Positive Matrices

The main idea of nearly positive matrices is to slightly perturb nonnegative matrices into the

interior of the nonnegative orthant. In the context of the interior of the completely positive cone,

as described in Section 2.3, they can also be used in the following lemma, cf. [85, Proposition 7.3].

Lemma 3.19. Let B ∈ Rn×r be entrywise nonnegative and of full row-rank. Further assume that

B is nearly positive. Then BBT ∈ int(CPn).

Proof. Since B is nearly positive, there exists an orthogonal matrix Q such that BQ > 0. Then

BBT = (BQ)(BQ)T and (BQ) is of full row rank, proving BBT is of full rank and therefore

we have BBT ∈ int(CPn).

Thus, the interior of the completely positive cone has the following inner approximation:

{
BBT

∣∣ B ≥ 0 nearly positive and rank(B) = n
}
⊆ int(CPn).

Furthermore, a generalized version of this approach yields a certificate for complete positivity,

as mentioned in the following section.

3.5 Further Conditions for Complete Positivity

A further theoretical condition for A ∈ CPn can be deduced from Definition 3.15 and reads as

follows:

Lemma 3.20. Consider a matrix A ∈ Rn×n with its factorization A = BBT with B ∈ Rn×r. If

B is nearly positive, then A ∈ CPn.

Proof. If B is nearly positive, there exists an orthogonal matrix Q ∈ Rr×r such that BQ > 0.

Since A = (BQ)(BQ)T , we have A ∈ CPn.

Here a strong condition has to hold to verify complete positivity. This lemma is based on an

entrywise strictly positive factorization such that we can not apply this result to some matrices at

the boundary of the completely positive cone. Thus, the condition in Lemma 3.20 is not necessary

to show that a matrix is completely positive. For a necessary and sufficient condition for complete

positivity, Lemma 3.11 gives rise to the following statement.

Lemma 3.21. Let A ∈ Rn×n with its factorization A = BBT , where B ∈ Rn×r. Further assume

that r ≥ cpr(A). Then A ∈ CPn if and only if there exists Q ∈ Or such that BQ ≥ 0.

Proof. For the if part, letQ ∈ Or such thatBQ ≥ 0. ThenA = (BQ)(BQ)T is a cp-factorization

proving A ∈ CPn. For the reverse part on the other hand, let A ∈ CPn. Since r ≥ cpr(A), there

exists a cp-factorization A = CCT with C ∈ Rn×r and C ≥ 0. Lemma 3.11 gives an orthogonal

matrix Q ∈ Rr×r such that BQ = C ≥ 0, which completes the proof.

For this lemma, it is necessary to start with a sufficient number of columns r in the given initial

factorization A = BBT . In the next section, we will see that it is always possible to generate such

an initial factorization.

34

3.6 Generating Initial Factorizations of Arbitrary Order

3.6 Generating Initial Factorizations of Arbitrary Order

We will now analyse how to generate initial factorizations A = BBT with variying numbers of

columns in B. The following results can also be found in the submitted article [50].

To obtain an initial factorization A = BBT with B ∈ Rn×n, we can for instance use the

Cholesky decomposition A = LLT , where L is a lower triangular matrix, or the eigenvalue de-

composition A = V ΣV T , by setting B := V Σ
1
2 . In both cases, the factorization matrix is square

but not necessarily entrywise nonnegative. To generate a factorization with r > n columns, we

will use a different approach. To ensure a correct choice of r, we note the following remark.

Remark 3.22. Since it is known that cpr(A) can be considerably larger than n and in general it

is not possible to compute cpr(A), we will use the upper bound cpn for the cp-rank, as introduced

in Lemma 2.32, for our desired number of columns in our initial factorization. So we set r = cpn,

ensuring r ≥ cpr(A), such that the number of columns in our initial factorization B will be

sufficient to generate a cp-factorization.

To obtain an initial factorization of order n × cpn, we will use the following two approaches:

Consider an initial factorization A = B̃B̃T with B̃ ∈ Rn×n and assume that cpr(A) is unknown,

but cpr(A) ≤ cpn. One way to construct an n × cpn-matrix B̂ with A = B̂B̂T is to append

k := cpn − n zero columns to B̃, i.e.,

B̂ := [B̃, 0n×k]. (23)

Numerically, it turns out that using the following replication approach is more promising than

using B̂ as our initial factorization, see Section 7.6 below.

Lemma 3.23. Consider an initial factorizationA = B̃B̃T with B̃ ∈ Rn×n. Let B̃j denote the j-th

column of B̃, and assume without loss of generality that B̃n is the column with the least number

of negative entries. Now we decompose B̃n into m := cpn − n+ 1 columns to obtain

B :=

B̃1, . . . , B̃n−1,
1√
m
B̃n,

1√
m
B̃n, . . . ,

1√
m
B̃n︸ ︷︷ ︸

m columns

 ∈ Rn×cpn . (24)

Then BBT = A.

Proof. Let Bj denote the j-th column of B. Then we get

BBT =

cpn∑
j=1

BjB
T
j =

n−1∑
j=1

B̃jB̃
T
j +

cpn∑
j=n

(
1√
m
B̃n

)(
1√
m
B̃n

)T

=
n−1∑
j=1

B̃jB̃
T
j +

1

m
(cpn − n+ 1)B̃nB̃

T
n =

n∑
j=1

B̃jB̃
T
j ,

where the last equality follows by the definition of m. Since B̃B̃ = A, the proof is complete.

35

3 Factorizations for Completely Positive Matrices

Remark 3.24. For this theoretical result, the column can be arbitrarily chosen. Here it is recom-

mended to pick the column with the least number of negative entries. In some cases, there exists a

strictly positive column. If A is positive definite for example, then the first column of the Cholesky

decomposition is entrywise strictly positive.

For a concrete example of this approach, consider the matrices B2 and B3 in Example 2.22.

Then picking the last column of B3 for the replication as introduced in equation (24) gives:

B3 =

3 3 0
3 0 3
0 3 3

 =⇒


3 3 0 0

3 0 3√
2

3√
2

0 3 3√
2

3√
2


︸ ︷︷ ︸

=:B

,

such that B3B
T
3 = BBT . The generated matrix B and the matrix B2 in Example 2.22 are of the

same order such that we can apply Lemma 3.11 to guarantee the existence of an orthogonal matrix

Q ∈ R4×4, which yields

BQ = B2 ⇐⇒

3 3 0 0

3 0 3/
√

2 3/
√

2

0 3 3/
√

2 3/
√

2


︸ ︷︷ ︸

B∈R3×4

·


1/2 1/2 1/2 −1/2

1/2 1/2 −1/2 1/2

0 0 1/
√

2 1/
√

2

1/
√

2 −1/
√

2 0 0


︸ ︷︷ ︸

Q∈R4×4

=

3 3 0 0

3 0 3 0

3 0 0 3


︸ ︷︷ ︸

B2∈R3×4

.

This shows that if we apply Lemma 3.23 in advance, we can transform two different factoriza-

tions into one another, even though they are of different order. Therefore, consider the factorization

matrix with the least number of columns and pick the column with the least number of negative

entries and replicate this column until the number of columns in the second factorization matrix

is reached. Then Lemma 3.11 returns the orthogonal transformation matrix. We will use this

method, combined with the results in Lemma 3.21, to introduce a new algorithmic method to

check complete positivity in Chapter 6. The main idea of this approach is given in the following

remark.

Remark 3.25. Let A ∈ Rn×n and consider an initial factorization A = BBT (resp. A = B̂B̂T),

generated using Lemma 3.23 (resp. the method in equation (23)) such that B ∈ Rn×cpn (resp.

B̂ ∈ Rn×cpn). Lemmas 2.32 and 3.11 now prove thatA ∈ CPn if and only if there existsQ ∈ Ocpn

such that BQ ≥ 0 (resp. B̂Q ≥ 0).

This gives rise to the following observation:

Remark 3.26. Let A ∈ CPn. Then it is possible to obtain a cp-factorization A = BBT with

B ∈ Rn×r for any r ∈ [cpr(A), cp+
n], even for any r ≥ cpr(A).

In addition, based on Lemma 3.21, it is possible to derive an optimization problem, whose

optimal value can verify whether a given matrix is an element of the interior of the completely

positive cone. The details of this approach are given in the following section.

36

3.7 Generating Factorizations for Matrices in the Interior via Maximization Problems

3.7 Generating Factorizations for Matrices in the Interior via
Maximization Problems

In this section, we will introduce a certificate which can be used to prove the membership of a given

nonsingular matrix to the interior of the completely positive cone. As shown in Theorem 2.19, for

A ∈ Rn×n nonsingular, it is sufficient to generate a factorization A = BBT , where B ∈ Rn×r

and r ≥ cpr+(A) such that B ≥ 0 and Bi > 0 for at least one column Bi, in order to show

A ∈ int(CPn).

Inspired by Lemma 3.21, the idea of the following approach is to start with an arbitrary initial

factorization A = B̃B̃T , where B̃ ∈ Rn×n is not necessarily nonnegative, and to construct from

that a factorization A = BBT , where B ∈ Rn×r is again not necessarily entrywise nonnegative,

but r ≥ cpr+(A). Here again, the method introduced in Lemma 3.23 can be used. But since

the cp+-rank can be larger than the cp-rank, as shown in Section 2.4, it may become necessary

to increase the number of columns in the initial factorization to cp+
n , the upper bound for the

cp+-rank given in Lemma 2.32. For this, we will use cp+
n instead of cpn for the number of

columns in Lemma 3.23 for the results in this section, in case the exact cp+-rank is unknown.

Now let A = BBT with B ∈ Rn×r and r ≥ cpr+(A) and consider the following problems:

max ε

s. t. (BQ)ij ≥

{
ε, j = 1, i = 1, . . . , n

0, j 6= 1, i = 1, . . . , n

Q ∈ Or

(25)

and

max ε

s. t. BQ ≥ εEn×r
Q ∈ Or,

(26)

where En×r again denotes the all-ones matrix, in this case of order n × r. Then the following

lemma holds.

Lemma 3.27. Let A = BBT as considered above. Then A ∈ int(CPn) if and only if A has full

rank and the optimal value ε∗ of problem (25) or (26) is strictly positive.

Proof. First, we will show that a strictly positive optimal value in either of the problems is suffi-

cient to show A ∈ int(CPn). For this, let ε∗ > 0 for problem (25) and assume that A is of full

rank. Then we get for the optimal solution Q∗ of (25)

BQ∗ ≥ ε∗


1 0 · · · 0
...

...
...

1 0 · · · 0

 ,

such that rank(BQ∗) = n, BQ∗ ≥ 0 and the first column (BQ∗)1 > 0. In addition, we have

37

3 Factorizations for Completely Positive Matrices

A = (BQ∗)(BQ∗)T since Q∗ ∈ Or. With Theorem 2.19 and especially equation (8) therein, we

finally get A ∈ int(CPn).

If on the other hand ε∗ > 0 for problem (26) and A is again of full rank, we get for the optimal

solution Q∗ of (26)

BQ∗ ≥ ε∗En×r > 0.

Again, we have A = (BQ∗)(BQ∗)T since Q∗ ∈ Or. Thus, Theorem 2.19 and especially equa-

tion (7) therein shows A ∈ int(CPn).

For the reverse part, we assume that A ∈ int(CPn). Then A has full rank according to Theo-

rem 2.19 and there exists a matrix C, written columnwise as [C1, . . . , Cr], such that A = CCT ,

C ≥ 0 and C1 > 0. Due to Lemma 3.11, there exists an orthogonal matrix Q ∈ Or such that

BQ = C. This Q is feasible for (25), so the optimal value fulfills

ε∗ ≥ min
i∈{1,...,n}

Ci1 > 0.

On the other hand, according to Theorem 2.19, there also exists a matrix D ∈ Rn×r such that

A = DDT and D > 0. With the help of Lemma 3.11, there exists another orthogonal matrix

Q2 ∈ Or such that BQ2 = D. This Q2 is feasible for (26), so the optimal value fulfills

ε∗ ≥ min
i∈{1,...,n},
j∈{1,...,r}

Dij > 0

and the proof is complete.

So, this lemma allows us to check membership to the completely positive cone and its interior

by solving a maximization problem. Since the set of orthogonal matrices is not a convex set, as

shown in Section 3.3, the problems (25) and (26) are not convex. Thus, these problems are hard

to solve and Lemma 3.27 clearly provides only a theoretical result.

A first idea to overcome the lack of convexity would be to convexify the orthogonality constraint

and therefore to optimize over the convex hull of the set of orthogonal matrices, which was given

in Lemma 3.7. This gives rise to the following problem:

max ε

s. t. (BQ)ij ≥

{
ε, j = 1, i = 1, . . . , n

0, j 6= 1, i = 1, . . . , n(
I QT

Q I

)
� 0.

(27)

As the following example shows, the results in Lemma 3.27 will not hold for problem (27).

38

3.7 Generating Factorizations for Matrices in the Interior via Maximization Problems

Example 3.28. Consider the matrix

A =

18 9 9

9 18 9

9 9 18


as given in Example 2.22 and its initial factorization, cf. equation (19):

A = B4B
T
4 with B4 =

−1.2030 2.1337 3.4641

2.4494 −0.0250 3.4641

−1.2463 −2.1087 3.4641

 .

Since we already know that cpr+(A) = 3 (see Remark 2.36), it is not necessary to replicate

columns to obtain a tractable initial factorization. To solve the problem (27), we use Matlab and

especially we apply SDP solvers like SDPT3, cf. [92] or [93]. We will again use these solver

for the numerical experiments in Chapter 7. Now solving problem (27) with initial factorization

matrix B4 returns the following matrix Q as an optimal solution:

Q =

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

1.0000 0.0001 0.0001

 .

Then we have

B4Q =

3.4641 0.0002 0.0002

3.4641 0.0002 0.0002

3.4641 0.0002 0.0002

 ,

but obviously Q 6∈ O3 such that

(B4Q)(B4Q)T =

12.0000 12.0000 12.0000

12.0000 12.0000 12.0000

12.0000 12.0000 12.0000

 6= A.

So finally, even though the optimal value ε∗ = 3.4641 > 0 and Q is optimal for (27), we can

not verify whether A is an element of the interior of the completely positive cone by solving prob-

lem (27).

Thus, the convexified version of problem (25) is solvable, but does not give any certificate

for complete positivity, as long as the resulting matrix Q is not orthogonal. Thus, the result in

Lemma 3.27 can not be extended to the convex problem in (27).

But the method shown in this section now motivates the idea to verify complete positivity by

solving a certain feasibility problem. We will therefore modify the problem in (26). Here the

details are given in the following chapter.

39

4 The Factorization Problem as a
Nonconvex Feasibility Problem

This chapter is organized as follows: First, we will see how to prove complete positivity based

on certain nonconvex feasibility problems. In the second part, we will show how these feasibility

problems can be generalized in order to prove that the given matrix is even an element of the

interior of the completely positive cone.

4.1 Feasibility Problems to Verify Complete Positivity

From now on, we will assume that we are given an initial factorizationA = BBT withB ∈ Rn×r,
where either r = cpr(A) if this quantity happens to be known, or otherwise we use the bound from

Lemma 2.32 and set r = cpn. The problem of finding a completely positive factorization of A can

then be formulated as the following feasibility problem, cf. [50, Equation (3)]:

find Q

s. t. BQ ≥ 0

Q ∈ Or.
(28)

Since a factorization is always a certificate for the matrix to be completely positive, we can

derive the following result.

Theorem 4.1. Let A = BBT with B ∈ Rn×r and r ≥ cpr(A). Moreover, consider the prob-

lem (28). Then A ∈ CPn if and only if (28) is feasible.

Proof. For the if part, letQ ∈ Or such thatBQ ≥ 0. ThenA = (BQ)(BQ)T is a cp-factorization

such that A ∈ CPn. For the reverse part, Lemma 3.21 returns a matrix Q which is feasible for

(28), concluding the proof.

In addition, consider the following problem, which yields another certificate for complete posi-

tivity.
find Q

s. t. BQ ≥ 0

Q ∈ O+
r .

(29)

Then the problems (28) and (29) are equivalent according to the following argument:

Lemma 4.2. Problem (28) is feasible if and only if problem (29) is.

41

4 The Factorization Problem as a Nonconvex Feasibility Problem

Proof. The if part is obvious. For the reverse part, we consider two cases. If problem (28) returns

an orthogonal matrix Q ∈ O+
r , this matrix Q is also feasible for (29). If on the other hand

problem (28) returns a matrixQ− ∈ O−r , we can multiplyQ− with a permutation matrix P ∈ O−r ,

which permutes two columns. Then the matrix Q−P =: Q ∈ O+
r is also feasible for (29). This

concludes the proof.

This shows that it is not necessary to consider the setO−r separately, as mentioned in Section 3.3.

Unfortunately, neither Or nor O+
r are convex sets such that neither problem (28) nor (29) is a

convex problem. Thus, they are hard to solve and again, a first idea to obtain a solvable problem

would be to consider the convex hulls of Or or O+
r . As shown in Lemma 3.7, it is possible to use

a certain semidefinite relaxation of the orthogonality constraint such that convexifying (28) yields

the semidefinite feasibility problem

find Q

s. t. BQ ≥ 0(
I QT

Q I

)
� 0.

(30)

Problem (29) can be convexified using the technique by Saunderson et al. (cf. [84]), as shown in

Theorem 3.9. This again leads to a semidefinite feasibility problem, however one of considerably

larger size.
find Q

s. t. BQ ≥ 0(
0 Q

QT 0

)
� I2r

r∑
i,j=1

Aij(RQ)ij � (r − 2)I2r−1 ,

(31)

where R = Diag(1, 1, . . . , 1,−1) and Aij are the matrices introduced in Definition 3.8.

Remark 4.3. It should be noted that (30) is always feasible (take Q = 0) and can therefore not

be used to refute the membership of A to the completely positive cone.

On the other hand, problem (31) can be used to refute the membership to the completely positive

cone, as the following lemma shows.

Lemma 4.4. If problem (31) is infeasible, then this certifies that the input matrix A is not com-

pletely positive.

Proof. We prove this result by contradiction. For this, we assume that A ∈ CPn, but there does

not exist a matrix Q ∈ convO+
r such that BQ ≥ 0 entrywise. Thus, according to Lemma 4.2,

there does not exist a Q ∈ Or such that BQ ≥ 0. Since A ∈ CPn, Remark 3.26 gives a

factorization A = CCT with C ∈ Rn×r, r = cpn and C ≥ 0. Since B ∈ Rn×r, Lemma 3.11

gives an orthogonal matrix Q such that BQ = C ≥ 0. This yields a contradiction, completing the

proof.

42

4.1 Feasibility Problems to Verify Complete Positivity

Nevertheless, both problems (30) and (31) can give a certificate for complete positivity. They

can be solved by applying SDP solvers, using interior point methods.

Lemma 4.5. If solving either of the convexified problems happens to provide a Q ∈ Or (resp.
Q ∈ O+

r), then we have derived a completely positive factorization of A.

Proof. Let Q ∈ Or (resp. Q ∈ O+
r). Then we have A = (BQ)(BQ)T since Q is orthogonal, and

BQ ≥ 0 since Q solves the problem (30), or problem (31), respectively.

Unfortunately, in numerical tests with randomly generated completely positive input matricesA,

we have always observed the third case: the convexified problems were feasible, but the resulting

matrix Q that could be obtained was not orthogonal. In this case, nothing can be inferred about A.

The following example corroborates this observation.

Example 4.6. Consider the matrix

A =

18 9 9

9 18 9

9 9 18


as given in Example 2.22 and its initial factorization, cf. equation (19):

A = B4B
T
4 with B4 =

−1.2030 2.1337 3.4641

2.4494 −0.0250 3.4641

−1.2463 −2.1087 3.4641

 .

Since cp3 = 3 and we already know that cpr(A) = 3 (see Remark 2.36), it is not necessary to
replicate columns for our initial factorization. Problem (31) then returns the following matrix as
a feasible solution.

Q =

−0.0004 −0.0004 −0.0004

−0.0006 −0.0006 −0.0006

0.4821 0.4825 0.4817

 .

Indeed, this matrix is feasible for (31) and we have

B4Q =

1.6692 1.6705 1.6678

1.6690 1.6703 1.6677

1.6718 1.6732 1.6704

 ≥ 0.

But since Q is not an orthogonal matrix, this will not give a cp-factorization. We get

(B4Q)(B4Q)T =

8.3582 8.3575 8.3716

8.3575 8.3568 8.3709

8.3716 8.3709 8.3851

 6= A.

Consequently, convexifying problems (28) or (29) does not produce any useful insight, so we

need to pursue a different approach. In Chapter 5, we will see an introduction to the alternating

projections method, which will yield an applicable algorithm to obtain a cp-factorization of a

completely positive matrix and therefore a certificate for complete positivity. This result will be

43

4 The Factorization Problem as a Nonconvex Feasibility Problem

based on problem (28). Before that, we will derive a similar feasibility problem as in (28) to prove

membership of a matrix to the interior of the completely positive cone.

4.2 Feasibility Problems for Matrices in the Interior of the
Completely Positive Cone

In this section, we will assume that we are given an initial factorizationA = BBT withB ∈ Rn×r,
where either r = cpr+(A) if this quantity happens to be known, or otherwise we use the upper

bound from Lemma 2.32 and set r = cp+
n .

Based on (25) and (26), we consider the following feasibility problems for some ε > 0:

find Q

s. t. (BQ)ij ≥

{
ε, j = 1, i = 1, . . . , n

0, j 6= 1, i = 1, . . . , n

Q ∈ Or

(32)

and

find Q

s. t. BQ ≥ εEn×r
Q ∈ Or

. (33)

Similar to Theorem 4.1, we get the following result:

Theorem 4.7. Let ε > 0 be small enough and A = BBT with B ∈ Rn×r and r ≥ cpr+(A).
Further let A be of full rank and consider the problems (32) and (33). Then A ∈ int(CPn) if and
only if (32) or (33) is feasible.

Proof. For the if part let Q ∈ Or such that BQ ≥ εEn×r or

BQ ≥

{
ε, j = 1, i = 1, . . . , n

0, j 6= 1, i = 1, . . . , n.

Then A = (BQ)(BQ)T is a cp-factorization showing A ∈ int(CPn) according to Theorem 2.19.
For the reverse part, assume that A ∈ int(CPn). Thus, there exists a factorization A = CCT ,
where C ∈ Rn×r is entrywise strictly positive. Since B and C are of the same order, Lemma 3.11
provides an orthogonal matrix Q ∈ Or such that BQ = C. The matrix Q is then feasible for both
problems (32) and (33) if ε > 0 is chosen small enough. This completes the proof.

But again, the problems (32) and (33) are not convex and therefore they are hard to solve. Sim-

ilar to the approaches in (30) or (31), it would be possible to convexify these problems using the

convex hull of the set of orthogonal matrices or rotation matrices. Unfortunately, this leads to the

same drawback as shown in Example 4.6. So, to solve the feasibility problems (28), (29), (32)

and (33), we need to pursue a different approach. To obtain a tractable method to solve the fea-

sibility problems, we will use the method of alternating projections. In the following chapter, we

give a survey of this method for several types of sets.

44

5 Alternating Projections

In this chapter, we give an outline of the alternating projections method for several types of sets.

For an introduction to this topic, the reader is referred to [6], [31] and [51]. Moreover, we will

have a look at an extension of this method, considering more than two sets. This will lead us to the

so called cyclic projections approach. In this context, some known facts for subspaces and convex

sets will be given. Considering a sequence of manifolds, we will also prove a convergence result

for the cyclic projections method in this setting. In the end of this chapter, we will have a closer

look at how to obtain an element in the intersection of two semialgebraic sets, based on the results

in [41]. The latter will be used to solve the feasibility problems mentioned in the previous chapter.

But first, we consider a suitable definition for the projection onto a closed subset M of a Hilbert

space H . Throughout this chapter, ‖ · ‖ will denote the norm induced by the scalar product of H .

Definition 5.1. Let H be a Hilbert space and let M ⊆ H be a closed subset. The projection of a

point x ∈ H onto M will be denoted by PM (x) and is the best approximation to x from M , i.e.

‖x− PM (x)‖ = min
y∈M

‖x− y‖.

Here it should be mentioned that the projection of x onto M is not necessarily unique. For exam-

ple, consider the boundary of the closed unit ball M := B1(0) \ int(B1(0)) in Rn and x = 0,

then PM (0) = M .

We will use the method of alternating projections to obtain points in the intersection of two

or more sets. Considering the case of two linear subspaces of a Hilbert space motivates the first

approach on alternating projections by von Neumann, which was first published in 1933 (cf. [95])

and can also be found in [6].

5.1 Alternating Projections on Subspaces

Let A,B be closed linear subspaces of a Hilbert space H and consider the task of finding a point

in the intersection A ∩B. We will use the following sequence to obtain a point in the intersection

of the subspaces algorithmically, starting from an arbitrary point x ∈ H . This definition can be

found for example in [6].

Definition 5.2. Let A,B be closed linear subspaces in a Hilbert space H . Given a starting point

x ∈ H , we define:

b0 := x, an := PA(bn−1), bn := PB(an) for every n ≥ 1,

45

5 Alternating Projections

based on the projection introduced in Definition 5.1. The sequences (an)n∈N and (bn)n∈N are

called von Neumann sequences and the sequence (b0, a1, b1, a2, b2, . . .) is called the alternating

von Neumann sequence.

Geometrically, this can be interpreted as follows: To find the best approximation to x in A∩B,

we first project the starting point x orthogonally onto the set A. The resulting element in A is then

orthogonally projected onto the set B. This point is again projected onto A and so on, until a point

in the intersection A ∩ B is reached. Note, by the way, that A ∩ B 6= ∅: since A,B are linear

subspaces, we have 0 ∈ A ∩ B. As mentioned in [6], this approach has advantages whenever the

projections onto A and B are easier to calculate than the projection onto the intersection A ∩B.

Figure 5.1: Alternating projections for two linear subspaces in R2

A
B

b0 := x

a1 := PA(x)

b1 := PB(a1)
a2 := PA(b1) b2 := PB(a2)

This procedure is illustrated in Figure 5.1. In this figure, we can see that for the given starting

point x, we set b0 := x and start the procedure with an orthogonal projection of b0 ontoA. We then

continue with alternating projections onto B and A. Eventually, the limits of the von Neumann

sequences provide an element of the intersection A ∩ B, which is a singleton in this special case.

This visualizes the idea of alternating projections for closed linear subspaces in the 2-dimensional

space. The approach extends naturally to higher dimensional spaces as well.

Based on Definition 5.2, we will mention the main result for alternating projections for two

closed linear subspaces, which was first given by von Neumann in [95] and can also be found

in [6] and [31]. For a proof of this result, see also [24, Theorem 5.1.5].

Theorem 5.3. Let A,B be closed linear subspaces in a Hilbert space H . Then the von Neumann

sequences and the alternating von Neumann sequence converge to PA∩B(x) in norm.

Thus, the mentioned sequences converge to the projection of the starting point x onto the inter-

section. More precisely, we can write this result as

lim
n→∞

‖an − PA∩B(x)‖ = 0.

46

5.1 Alternating Projections on Subspaces

This is a very strong result, which can not be equivalently extended to other types of sets, as we

will see later in this chapter.

Remark 5.4. As Figure 5.1 illustrates for the alternating projections between subspaces, the con-

vergence result does not require any constraints on the starting point. We therefore have a global

convergence result.

Hitherto, we considered only two closed linear subspaces and their intersection in a Hilbert

space H . The following result shows that this idea can also be extended to multiple closed linear

subspaces in H . Here it becomes necessary to project onto the subspaces in a certain order and

to stick to this order for the entire process. Therefore, this method is called cyclic projections

method. This generalized approach was introduced by Halperin in [54] and can also be found

in [5], [24] and [31].

Theorem 5.5. Let V1, . . . , Vk be closed linear subspaces of a Hilbert space H . Further define

V :=
k⋂
i=1

Vi and consider an arbitrary starting point x ∈ H . Then

lim
n→∞

‖(PVkPVk−1
. . . PV1)nx− PV x‖ = 0.

So, we have a global convergence result for the cyclic projections approach for a finite sequence

of subspaces. Again, this method converges in norm to the projection of the starting point onto the

intersection of the subspaces. Note again that V 6= ∅ since 0 ∈ V .

Remark 5.6. Geometrically this process can be interpreted as follows: We start with a projection

of the starting point onto the first subspace V1 and the thus generated point is projected onto the

second subspace V2. In general, the point in subspace Vi is then projected onto the next subspace

Vi+1 until Vk is reached. The point in Vk is then again projected onto the set V1 and a new cycle

starts. This method terminates whenever a fixed point of this cycle is reached. More formally, we

can write the cyclic projections approach for a given starting point x ∈ H as

v1
1 := PV1(x) , v1

2 := PV2(v1
1) , . . . , v1

k := PVk(v1
k−1)

such that

v1
k = (PVkPVk−1

. . . PV1)(x),

closing the first cycle. The second cycle then reads as

v2
1 := PV1(v1

k) , v
2
2 := PV2(v2

1) , . . . , v2
k := PVk(v2

k−1)

such that

v2
k = (PVkPVk−1

. . . PV1)2(x).

For the n-th cycle, this yields

vnk = (PVkPVk−1
. . . PV1)n(x).

47

5 Alternating Projections

Theorem 5.5 therefore shows that this procedure converges to a fixed point, i.e., a point z with

(PVkPVk−1
. . . PV1)(z) = z.

Convergence in norm, as shown in Theorems 5.3 and 5.5, does not give any information about

the convergence rate. In the following, we will see that it is possible to determine the convergence

rate of the alternating projections approach for two or more subspaces. For these results, the

reader is referred for example to [4, Section 1 and 2] or [31, Section 6]. The key aspects are also

collected in the following results. Here, the convergence rate will depend on the angle between

the subspaces and therefore we consider the definition of the so called Friedrichs angle first.

Definition 5.7. Let A,B be closed linear subspaces of a Hilbert space H . Let BH := {x ∈ H |
‖x‖ ≤ 1} denote the unit ball in H . The Friedrichs angle α(A,B) between A and B is the angle

in [0, π2] whose cosine is given by

cosα(A,B) := sup
{
|〈x, y〉|

∣∣∣ x ∈ A ∩ (A ∩B)⊥ ∩BH and y ∈ B ∩ (A ∩B)⊥ ∩BH
}
.

Deutsch showed in [32, Lemma 9.5] that the Friedrichs angle can also be written in the following

way, where ‖ · ‖op denotes the operator norm.

Lemma 5.8. For the Friedrichs angle in Definition 5.7, we get

cosα(A,B) =
∥∥∥PB∩(A∩B)⊥PA∩(A∩B)⊥

∥∥∥
op

= ‖PBPA − PA∩B‖op .

Proof. We have

cosα(A,B) = sup
{
|〈x1, x2〉| x1 ∈ A ∩ (A ∩B)⊥ ∩BH and x2 ∈ B ∩ (A ∩B)⊥ ∩BH

}
= sup

{
|〈PA∩(A∩B)⊥x1, PB∩(A∩B)⊥x2〉| ‖x1‖ ≤ 1, ‖x2‖ ≤ 1

}
= sup

{
|〈PB∩(A∩B)⊥PA∩(A∩B)⊥x1, x2〉| ‖x1‖ ≤ 1, ‖x2‖ ≤ 1

}
= sup


∥∥∥PB∩(A∩B)⊥PA∩(A∩B)⊥(x)

∥∥∥
‖x‖

‖x‖ 6= 0


=
∥∥∥PB∩(A∩B)⊥PA∩(A∩B)⊥

∥∥∥
op
.

This proves the first equality. Moreover, it can be shown that∥∥∥PB∩(A∩B)⊥PA∩(A∩B)⊥

∥∥∥
op

=
∥∥∥PBPAP(A∩B)⊥

∥∥∥
op
,

cf. [32, Lemma 9.5 (7)]. This gives

cosα(A,B) =
∥∥∥PBPAP(A∩B)⊥

∥∥∥
op

= ‖PBPA(I − PA∩B)‖op

= ‖PBPA − PBPAPA∩B‖op = ‖PBPA − PA∩B‖op ,

showing the second equality.

48

5.1 Alternating Projections on Subspaces

Based on the definition of the Friedrichs angle, Kayalaar and Weinert showed the following

result, cf. [64, Theorem 2].

Theorem 5.9. Let A,B be closed linear subspaces of a Hilbert space H , define c := cosα(A,B)

and let x ∈ H . Then

‖(PBPA)nx− PA∩Bx‖ = c2n−1‖x‖ for any n ≥ 1.

This means that for the alternating von Neumann sequence, we have convergence as fast as

geometrical progression, provided that c < 1, which is true if and only if the Friedrichs angle

between A and B is positive.

To determine the convergence rate of the cyclic projections approach for an arbitrary finite

number of subspaces V1, . . . , Vk, we consider the subspaces Vi and
k⋂

j=i+1
Vj for every i ≤ k − 1.

This gives the following result by Smith, Solomon and Wagner, cf. [87]. This result can also be

found in [31, Theorem 6.4].

Theorem 5.10. Let V1, . . . , Vk be closed linear subspaces of a Hilbert space H . Further let

V :=
k⋂
j=1

Vj . Then for each x ∈ H , we have

‖(PVkPVk−1
. . . PV1)nx− PV x‖ ≤ cn‖x‖,

where

c =

1−
k−1∏
i=1

sin2 α

Vi, k⋂
j=i+1

Vj

 1
2

.

Remark 5.11. For this c in Theorem 5.10, we have c ∈ [0, 1]. And c < 1 if for every i ∈ {1, . . . , n}
the following inequality holds:

α

Vi, k⋂
j=i+1

Vj

 > 0.

On the other hand, it is possible to generalize the Friedrichs angle to more than two subspaces,

giving the following definition, cf. [4, Definition 2.1]:

Definition 5.12. Let V1, . . . , Vk be closed linear subspaces of a Hilbert space H . Further let

V :=
k⋂
j=1

Vj . The Friedrichs number c(V1, . . . , Vk) associated to the k subspaces is defined as

c(V1, . . . , Vk) := sup

{
2

k − 1

∑
i<j Re〈vi, vj〉

‖v1‖2 + · · ·+ ‖vk‖2

∣∣∣∣ vi ∈ Vi ∩ V ⊥, ‖v1‖2 + · · ·+ ‖vk‖2 6= 0

}
.

Here Definition 5.12 and Definition 5.7 coincide for the case k = 2, as the following lemma

shows.

49

5 Alternating Projections

Lemma 5.13. Let V1, V2 be two closed linear subspaces of a Hilbert space H . Further let

c(V1, V2) be as defined in Definition 5.12 and let cosα(V1, V2) be as introduced in Definition 5.7.

Then c(V1, V2) = cosα(V1, V2).

Proof. Due to Definition 5.12, we have

c(V1, V2) = sup

{
2 Re〈v1, v2〉
‖v1‖2 + ‖v2‖2

∣∣∣∣ vi ∈ Vi ∩ (V1 ∩ V2)⊥, ‖v1‖2 + ‖v2‖2 6= 0

}
= sup

{
2 Re〈v1, v2〉
‖v1‖2 + ‖v2‖2

∣∣∣∣ vi ∈ Vi ∩ (V1 ∩ V2)⊥, ‖v1‖2 = ‖v2‖2 = 1

}
= sup

{
Re〈v1, v2〉

∣∣∣ vi ∈ Vi ∩ (V1 ∩ V2)⊥, ‖v1‖2 = ‖v2‖2 = 1
}
.

Now let λ := 〈v1,v2〉
|〈v1,v2〉| ∈ C, such that |λ| = 1 and

〈v1, λv2〉 = λ 〈v1, v2〉 =
〈v1, v2〉
| 〈v1, v2〉 |

〈v1, v2〉 =
| 〈v1, v2〉 |2

| 〈v1, v2〉 |
= | 〈v1, v2〉 | ∈ R.

This yields Re〈v1, λv2〉 = 〈v1, λv2〉 = | 〈v1, v2〉 | and since V2 is a subspace, we have λv2 ∈ V2

with ‖λv2‖ = ‖v2‖. Furthermore, for any x ∈ (V1 ∩ V2) with 〈x, v2〉 = 0, we have 〈x, λv2〉 =

λ〈x, v2〉 = 0 such that λv2 ∈ (V1 ∩ V2)⊥. Finally, we get with the above reformulation of

c(V1, V2):

c(V1, V2) = sup
{
|〈v1, v2〉|

∣∣∣ vi ∈ Vi ∩ (V1 ∩ V2)⊥, ‖v1‖2 = ‖v2‖2 = 1
}

= sup
{
|〈v1, v2〉|

∣∣∣ vi ∈ Vi ∩ (V1 ∩ V2)⊥, ‖v1‖2 ≤ 1, ‖v2‖2 ≤ 1
}

= cosα(V1, V2).

Moreover, as mentioned in [4], we always have c(V1, . . . , Vk) ∈ [0, 1]. Furthermore, the follow-

ing result concerning the convergence rate for more than two subspaces holds, cf. [4, Theorem 2.4].

Theorem 5.14. Let V1, . . . , Vk be closed linear subspaces of a Hilbert space H . Further let

V :=
k⋂
j=1

Vj . Suppose that c := c(V1, . . . , Vk) < 1. Then we have

‖(PVkPVk−1
. . . PV1)n − PV ‖op ≤

[
1−

(
1− c
4k

)2
]n

2

for any n ≥ 1.

So, in this section, we saw that alternating and cyclic projections between subspaces converge

globally in norm and we can give a convergence rate whenever the cosine of the Friedrichs angle

or the Friedrichs number is bounded away from one. In the following section, we will have a

closer look at alternating projections between general convex sets.

50

5.2 Alternating Projections on Convex Sets

5.2 Alternating Projections on Convex Sets

In this section, we assume A,B to be closed convex sets of a Hilbert space H . We are looking for

a point in the intersection A∩B, in case A∩B is nonempty. Otherwise, we are looking for a pair

of points (a, b) ∈ A×B attaining the minimal distance, as described in the following definition.

Definition 5.15. Let A,B be closed sets of Hilbert space H . Then we define the minimal distance

between A and B as

d(A,B) := inf {‖a− b‖ | a ∈ A and b ∈ B} .

If A ∩B 6= ∅, we have d(A,B) = 0.

To obtain a point in the intersection A ∩ B (or a pair of points attaining d(A,B)), we will use

the von Neumann sequences as introduced in Definition 5.2. Considering only two sets first, an

early result by Cheney and Goldstein from 1959 should be mentioned, cf. [25, Theorem 4].

Theorem 5.16. Let A and B be closed convex sets in a Hilbert space H and let x ∈ H be an

arbitrary starting point. Moreover, consider the von Neumann sequence (b0, b1, . . .), provided by

the operator PB(PA), such that b0 = x and bi+1 = (PB(PA))(bi) = (PB(PA))i(b0) for every

i ≥ 1. Then convergence of (PB(PA))n to a fixed point of PB(PA) (that is (PB(PA))(z) = z) is

ensured if one of the following conditions holds:

(a) A or B is a compact set.

(b) A or B is a finite dimensional set and d(A,B) is attained.

This theorem provides convergence independent from the starting point for finite dimensional

Hilbert spaces H , but does not give any hints concerning the convergence rate. In addition, the

result holds even for convex sets which do not intersect. Nevertheless, Theorem 5.16 only shows

convergence for alternating projections between exactly two convex sets. Figure 5.2 gives an

example for two intersecting convex sets in R2 and visualizes the results of Theorem 5.16 in a

concrete setting.

In Figure 5.2, we consider an arbitrarily chosen starting point x. To start the alternating pro-

jections approach, we first project x orthogonally onto the set A. The thus generated point is

projected orthogonally onto the set B. We continue this procedure until a fixed point of the pro-

jection PBPA is reached. In this case, the limit z of the alternating projections approach is very

close to the point a4 and fulfills PBPA(z) = z, such that in the limit we obtained a point in the

intersection A ∩B.

51

5 Alternating Projections

Figure 5.2: Alternating projections for two convex sets in R2

A B

b0 := x, Starting Point

a1

b1

a2
b2

a3 b3a4

Since Theorem 5.16 also holds for convex sets A and B with A ∩ B = ∅, we can as well

visualize the convergence result in this setting, again for a concrete example in R2. Figure 5.3

shows the alternating projections for two polyhedra in R2.

Figure 5.3: Alternating projections for two nonintersecting convex sets in R2

b0 := x, Starting Point

A B

a1

b1a2

b2a3

b3 = b4a4

Again, we start with an arbitrarily chosen starting point x and first project x orthogonally onto

the set A. The thus generated point is then projected onto the set B and we continue as described

before. In this concrete example, we have b4 = PB(a4) = PBPA(b3) = b3 and therefore we

reached a fixed point of PBPA (in this case, in a finite number of steps). This example fulfills

the assumptions in Theorem 5.16 and therefore illustrates the convergence of the von Neumann

sequences to a fixed point of PBPA and thus the results in the theorem for this concrete example.

The points a4, b3 not only give a fixed point of the projection, they also attain the minimal

52

5.2 Alternating Projections on Convex Sets

distance between A and B. Hence, we have

‖a4 − b3‖ = d(A,B).

This is ensured by the following results, which are based on [7, Section 2 and 4]. The key aspect

can also be found in [6, Fact 1.2].

Lemma 5.17. Let H be a Hilbert space and consider closed convex subsets A,B of H and a

starting point x ∈ H . In addition, let E := {a ∈ A | ‖a − b̄‖ = d(A,B) for some b̄ ∈ B} and

F := {b ∈ B | ‖ā − b‖ = d(A,B) for some ā ∈ A}, the set of points in A (resp. B) that are

nearest to B (resp. A). Then:

(a) E = Fix(PAPB) (resp. F = Fix(PBPA)), the set of fixed points of the Projection PAPB
(resp. PBPA).

(b) The value d(A,B) is attained if and only if E,F are nonempty.

(c) Consider the displacement vector v = Pcl(B−A)(0) and let E and F be nonempty. Then

‖v‖ = d(A, b). Moreover, we have E + v = F and F = (A+ v) ∩B.

Having this, we can give the main result in this setting, cf. [6, Fact 1.2] and [7, Theorem 4.8].

Theorem 5.18. Let H be a Hilbert space and consider closed convex subsets A,B of H and a

starting point x ∈ H . Assume that d(A,B) is attained and consider the von Neumann sequences

as introduced in Definition 5.2. Then we get:

(a) Let v := Pcl(B−A)(0) be the displacement vector introduced in Lemma 5.17. If A or B is

compact, then we get

lim
n→∞

‖an − e∗‖ = 0 and lim
n→∞

‖bn − (e∗ + v)‖ = 0

for some e∗ ∈ E. Moreover, we have f∗ := e∗ + v ∈ F , again due to Lemma 5.17.

(b) Without a compactness assumption, only weak convergence can be ensured.

This theorem now shows that the von Neumann sequences in Figure 5.3 converge to a pair of

points (e∗ = b3 and f∗ = a4) attaining d(A,B). In addition, we have the following corollary.

Corollary 5.19. If A ∩B 6= ∅, then E = F = A ∩B.

Proof. If A ∩ B 6= ∅, then the value d(A,B) is attained for every point in A ∩ B. Hence, by

definition, we have E = A ∩B = F .

Thus, Figure 5.2 can also be seen as an illustration of the convergence result in Theorem 5.18.

Like in Section 5.1, the question arises whether it is possible to apply this method to more than

two convex sets. For this, it is necessary to project in a certain cyclic order, similar to the approach

mentioned in 5.6, but now for a sequence of convex sets.

53

5 Alternating Projections

5.2.1 Cyclic Projections Among a Sequence of Convex Sets

Before we will analyse the cyclic projections approach for a sequence of convex sets, we will see

that it becomes necessary to assume that the convex sets have nonempty intersection. To this end,

we consider the following example in R2.

Figure 5.4: Cyclic projections approach for four noninterseting convex sets in R2

B C

DA
x

a1

b2 ≈ b1

c1

d1

a2

copt

aopt

bopt

dopt

For the cyclic projections approach between convex sets, we will use the cyclic projections

method introduced in Remark 5.6, where the subspaces Vi are simply replaced by the closed

convex sets Ai.

In Figure 5.4, the cyclic projections approach is visualized for four convex sets, where the order

of projection is alphabetical. More precisely, we have

A = B1([1, 4]), B = B1([1, 1]), C = B1([4, 1]) and D = B1([4, 4]),

where Br(x) denotes the closed ball in R2 of radius r with center equal to the vector x ∈ R2. The

cyclic projections approach begins with the starting point x and its orthogonal projection onto the

closed convex setA. This generates the point a1, which is then projected orthogonally onto the set

B, returning b1. Next, we project b1 onto the set C, keeping the alphabetical order. This generates

c1, which is projected onto D as the last projection of the first cycle. The second cycle starts with

the projection of d1 onto A again. This returns the point a2. If we now project a2 orthogonally

onto B, we get the point b2, which is very close to our first iterate b1 in B. From now on, every

iterate in each set will be very close to the previous iterate in this set such that in the limit we reach

a fixed point of the cycle PDPCPBPA.

Considering only two closed convex sets, Theorem 5.18 shows that under the given assumptions,

the von Neumann sequences converge to a pair of points attaining the minimal distance between

the two convex sets. As Figure 5.4 shows, this can not be generalized to more than two sets.

54

5.2 Alternating Projections on Convex Sets

More precisely, considering the points a2, b1, c1, d1 and the convex hull conv{a2, b1, c1, d1}, it

can be seen that there exists a square of smaller volume, where every vertex is an element of one

of the sets. This square is illustrated as the convex hull conv{aopt, bopt, copt, dopt}. Moreover, the

points aopt, bopt, copt, dopt can never be a limit of a cyclic projections approach since for example

copt 6= PC(bopt). Therefore, the points a2, b1, c1, d1, which are very close to the limits of the cyclic

projections approach in each set, do not attain the minimal distance among the sets A,B,C,D in

any reasonable sense. For example, if we consider (c1, d1) ∈ C × D and (copt, dopt) ∈ C × D,

we have ‖copt − dopt‖ < ‖c1 − d1‖. This also holds for any other pairwise distance between two

elements of {a2, b1, c1, d1} or {aopt, bopt, copt, dopt}.
Motivated by this counterexample, we will from now on assume that

⋂k
i=1Ai 6= ∅. Under this

assumption, it is possible to derive a convergence result for the cyclic projections method on a

sequence of convex sets, as shown in the following result, see for example [26, Theorem 3.2].

Theorem 5.20. Let A1, . . . , Ak be an ordered sequence of closed and convex subsets of a Hilbert

space H . Further let
⋂k
i=1Ai 6= ∅. Then for every starting point x ∈ H , we consider the cyclic

projections method as shown in Remark 5.6. Then the following holds:

(a) The cyclic projections method converges weakly to a point a ∈
⋂k
i=1Ai.

(b) The cyclic projections method converges in norm to a point a ∈
⋂k
i=1Ai if one of the sets Ai

is boundedly compact. (This means that the intersection of Ai and an arbitrary closed ball is

compact).

Here it should be mentioned that a closed convex set is boundedly compact if and only if it

is locally compact, as for example mentioned in [65]. Since every compact set is also locally

compact, we have the following corollary.

Corollary 5.21. Under the same assumptions as in Theorem 5.20, the cyclic projections method

converges in norm to a point a ∈
⋂k
i=1Ai if one of the sets Ai is compact.

For all these results, the convergence is again independent from the starting point and therefore

global convergence is ensured.

Additional sufficient conditions for convergence in norm of the iterates of the cyclic projections

approach are summed up in the following theorem, based on the results by Gubin et al. in [51,

Theorem 1].

Theorem 5.22. Let A1, . . . , Ak be an ordered sequence of closed and convex subsets of a Hilbert

space H . Further let
⋂k
i=1Ai 6= ∅ and let any of the following conditions be satisfied:

(a) Aj ∩ int

(⋂k
i=1
i 6=j

Ai

)
6= ∅ for every j ∈ {1, . . . , k}.

(b) H is finite dimensional.

(c) The sets Ai are all halfspaces, that is Ai = {x ∈ H | 〈ci, x〉 ≤ βi} for every i ∈ {1, . . . , k}.

Then for any starting point x ∈ H , the cyclic projections method converges in norm to a point

a ∈
⋂k
i=1Ai.

55

5 Alternating Projections

Here part (b) gives a generalization of Theorem 5.16 and part (c) can be seen as a generalization

of the result in Theorem 5.5 to halfspaces.

So far, we have a certificate for convergence in norm or weak convergence, but we do not have

a result on the convergence rate. Similar to the results in Section 5.1, we will introduce a certain

angle between convex sets, giving an explicit convergence rate for alternating or cyclic projections

on intersecting convex sets.

5.2.2 Alternating Projections and the Angle Between Convex Sets

We start by defining the concept for two convex sets. After that, we consider the case of more

than two sets. For the case of two intersecting convex sets in a Hilbert space H , we will analyse

a certain angle between these two sets. The definiton of the angle and further definitions in this

section are based on the reults by Deutsch and Hundal in [33]. As in [33], we assume here that H

is a real Hilbert space.

First, we introduce the ε-polar cone as defined in [33, Definition 3.1].

Definition 5.23. Let A be a closed convex set A in a Hilbert space H , and let ε > 0. Then the

ε-polar cone of A is defined as

A◦,ε := cone {x− PA(x) | x ∈ Bε(0)} ,

where Bε(0) denotes the closed ball of radius ε with center equal to 0 ∈ H .

The set A◦,ε is a convex cone and generalizes the so called polar cone, which is defined as

A◦ := {x ∈ H | 〈x, y〉 ≤ 0 for all y ∈ A}.

For a convex cone K and with equation (1), we therefore have

K◦ = −K∗,

where K∗ denotes the dual cone of K. Taking an arbitrary y ∈ H , the ε-polar cone can be

generalized in the following way, cf. [33, Lemma 3.2]:

(A− y)◦,ε = cone {x− PA(x) | x ∈ Bε(y)} . (34)

Further, if y ∈ int(A), we have for ε > 0 sufficiently small, that

(A− y)◦,ε = {0} = (A− y)◦.

The property (A− y)◦,ε ⊇ (A− y)◦ holds for any y ∈ A (cf. [33, Theorem 3.3]), but in general

we have (A− y)◦,ε 6= (A− y)◦, as Figure 5.5 shows.

In this figure, we consider a two dimensional example, where A = B1([1, 0]) is the blue set

and y = [0, 0] is the origin. Then the polar cone A◦ is the green ray starting in the origin and

56

5.2 Alternating Projections on Convex Sets

Figure 5.5: The polar cone and ε-polar cone are different in general

A
(0,0)

ε

A◦

A◦,ε

pointing into direction [−1, 0] since for any x = λ · [−1, 0], with λ ≥ 0, and any y ∈ A, we have

〈x, y〉 ≤ 0.

On the other hand, to determine the ε-polar cone A◦,ε, we consider a ball around the origin with

radius equal to ε. Now we consider all points x ∈ Bε([0, 0]) and directions (x − PA(x)) as any

possible vector in A◦,ε, where PA(x) is the projection of x onto the set A. The extreme rays of

these directions are located at the intersection of the boundaries of B1([1, 0]) and Bε([0, 0]) and

they are marked in orange. Any conic combination of these two extreme vectors can be attained

by a vector (x− PA(x)) and therefore the conic hull of these vectors is the ε-polar cone. The set

A◦,ε itself is marked in yellow and contains all possible rays in between the extremal directions.

Clearly, A◦ is one of these rays such that A◦ ⊆ A◦,ε, but any other ray in A◦,ε is not an element

of A◦, proving (A− y)◦,ε 6= (A− y)◦ in general.

In addition, if we consider various values for ε > 0, the following monotonicity holds, cf. [33,

Lemma 3.2 (i)]:

A◦,ε1 ⊆ A◦,ε2 for any ε2 ≥ ε1 > 0.

This result is illustrated in Figure 5.6, again for the two dimensional example in Figure 5.5.

Figure 5.6: ε-polar cones for different values of ε

A
(0,0)

ε1

ε2

A◦,ε1

A◦,ε2

57

5 Alternating Projections

Here the smaller red ball with radius ε1 corresponds to the smaller cone, marked in green. On

the other hand, the greater value ε2 corresponds to the larger cone, which is marked in yellow.

Nevertheless, in some cases the ε-polar cone and the polar cone are equal, as the following

lemma shows, cf. [33, Corollaries 3.4 and 3.5].

Lemma 5.24. Let Ai := {x ∈ H | 〈x, ai〉 ≤ αi} be a halfspace with ai ∈ H \ {0} and αi ∈ R
for every i ∈ {i, . . . , k}. For the polyhedron P =

⋂k
i=1Ai and y ∈ P , let ε(y) > 0 be sufficiently

small. Then we have

(P − y)◦,ε = cone{ai | i ∈ I(y)} = (P − y)◦,

where I(y) := {i ∈ {1, . . . , k} | 〈y, ai〉 = α1} denotes the set of active indices for y relative

to P .

In addition, let K be a closed convex cone, A a closed affine set, ε > 0 and y ∈ A. Then the

following holds:

K◦,ε = K◦ and (A− y)◦,ε = (A− y)◦.

We will now use the definition of an ε-polar cone to define the angle between convex sets,

cf. [33, Definition 4.1].

Definition 5.25. Let A1, A2 be closed convex sets with 0 ∈ A1 ∩A2. Further let ε ≥ 0. Then for
i ∈ {1, 2}, the i-th ε-angle between the ordered pair A1 and A2 is the angle in the interval [0, π2]

whose cosine ci(A1, A2; ε) is given by

ci(A1, A2; ε) := sup


∥∥∥P

A2∩(A◦,ε
1 +A◦,ε

2)
P
A1∩(A◦,ε

1 +A◦,ε
2)

(x)
∥∥∥

‖x‖

∣∣∣∣∣∣ x ∈ Ai ∩ (A◦,ε1 +A◦,ε2), ‖x‖ = ε

 .

If ε = 0 or Ai ∩ (A◦,ε1 +A◦,ε2) ∩Bε(0) = ∅, we define ci(A1, A2; ε) = 0.

IfA1 andA2 are closed linear subspaces, Definition 5.25 and Definition 5.7 coincide, as the fol-

lowing lemma shows, cf. [33, Lemma 4.2]. In particular, for closed linear subspaces, the ε-angles

are independent of ε.

Lemma 5.26. Let A1 and A2 be closed linear subspaces of a Hilbert space H . Further let ε > 0.

Then c1(A1, A2; ε) = cosα(A1, A2).

Proof. For subspaces A1, A2 and ε > 0, we have

(A1 ∩A2)⊥ = A⊥1 +A⊥2 = A◦1 +A◦2 = A◦,ε1 +A◦,ε2 ,

where the last equation follows by Lemma 5.24. Now let BH denote the unit ball in H . Then

58

5.2 Alternating Projections on Convex Sets

Lemma 5.8 yields:

cosα(A1, A2)

= sup


∥∥∥PA2∩(A1∩A2)⊥PA1∩(A1∩A2)⊥(x)

∥∥∥
‖x‖

∣∣∣∣∣∣ ‖x‖ = 1


= sup


∥∥∥PA2∩(A1∩A2)⊥PA1∩(A1∩A2)⊥(x)

∥∥∥
‖x‖

∣∣∣∣∣∣ ‖x‖ = ε


= sup


∥∥∥PA2∩(A1∩A2)⊥PA1∩(A1∩A2)⊥(x)

∥∥∥
‖x‖

∣∣∣∣∣∣ x ∈ A1 ∩ (A1 ∩A2)⊥, ‖x‖ = ε


= sup


∥∥∥P

A2∩(A◦,ε1 +A◦,ε2)
P
A1∩(A◦,ε1 +A◦,ε2)

(x)
∥∥∥

‖x‖

∣∣∣∣∣∣ x ∈ A1 ∩ (A◦,ε1 +A◦,ε2), ‖x‖ = ε


= c1(A1, A2; ε).

Similar to the Friedrichs angle, it is possible to generalize the ε-angle to more than two closed

convex sets. We therefore consider the following definition, cf. [33, Definition 4.3].

Definition 5.27. Let A1, A2, . . . , Ak be closed convex sets with 0 ∈
⋂k
i=1Ai and let ε ≥ 0. For

i = 1 or i = k, the i-th ε-angle of the ordered collection A1, A2, . . . , Ak is the angle in [0, π2]

whose cosine is defined as

ci(A1, . . . , Ak; ε) := sup

{∥∥PAk∩AεPAk−1∩Aε . . . PA1∩Aε(x)
∥∥

‖x‖
x ∈ Ai ∩Aε ∩Bε(0)

}
,

where Aε :=
k∑
i=1

A◦,εi . If ε = 0 or Ai ∩Aε ∩Bε(0) = ∅, we define ci(A1, A2, . . . , Ak; ε) = 0.

Remark 5.28. The assumptions 0 ∈ A1∩A2 in Definition 5.25 or 0 ∈
⋂k
i=1Ai in Definition 5.27

are equivalent to the assumptions A1 ∩ A2 6= ∅ or
⋂k
i=1Ai 6= ∅: If 0 is no element of the

intersection we take y ∈
⋂k
i=1Ai and consider Ai − y instead of Ai for every i.

Now we can give a convergence rate for cyclic (and alternating) projections approach on closed

convex subsets. Here the reader is referred to [33, Theorem 4.6].

Theorem 5.29. Let A1, A2, . . . , Ak be closed convex subsets of a Hilbert space H such that⋂k
i=1Ai 6= ∅, and let x ∈ H . Further consider the cyclic projections approach as introduced in

59

5 Alternating Projections

Remark 5.6 and let a ∈
⋂k
i=1Ai be its (weak) limit, given by Theorem 5.20. Then for every n ≥ 1:

‖(PAk
PAk−1

. . . PA1)n(x)− a‖ ≤ ck,n−1‖(PAk
PAk−1

. . . PA1)n−1(x)− a‖

≤ c1,1

n−1∏
j=1

ck,j

 ‖x− a‖,
where

c1,1 = c1(A1 − a,A2 − a, . . . , Ak − a; ‖PA1(x)− a‖),

and for j = 1, . . . , n− 1, we define

ck,j := ck(A1 − a,A2 − a, . . . , Ak − a; ‖xjk − a‖) with xjk = (PAk
PAk−1

. . . PA1)j(x).

This theorem gives an explicit convergence rate depending on the ε-angle between the convex

sets. To sum up the results in Theorem 5.14 and Theorem 5.29, we have a linear convergence

rate for cyclic or alternating projections onto subspaces or onto closed convex sets, depending

on the generalized angle between the sets. For the generalized angle for subspaces, we used the

Friedrichs-number in Definition 5.12, and for closed convex sets, we used the ε-angle as defined

in Definition 5.27. So far, a global convergence result could be shown for cyclic projections

onto subspaces, as well as for cyclic projections onto closed convex sets. Hitherto, all sets we

considered were convex subsets of a Hilbert space H . In the following section, we will have

a closer look at manifolds, which are not convex in general. It will be shown that alternating

projections can also be applied to these nonconvex sets, albeit we will lose the global convergence

in general.

5.3 Alternating Projections on Manifolds

In this section, we will show that the alternating projections method can also be applied to non-

convex sets. More precisely, we will see a convergence result for alternating projections between

transversally intersecting manifolds. The definitions and propositions shown here are based on the

results by Lewis and Malick, which can be found in [70]. First, we will give a short definition of

a smooth manifold, cf. [83, Section 6.C].

Definition 5.30. We say that a subsetM of a Euclidean space E is aCk manifold of codimension d

around x̄ ∈ M if there exists an open set U ⊆ E with x̄ ∈ U such that the following equation

holds:

M ∩ U = {x ∈ U | F (x) = 0} ,

where F : U → Rd is a Ck function with surjective derivative throughout U . Here k denotes the

degree of smoothness of the manifold M or the function F .

Since sets that are defined this way are not convex any more, we are looking for a best approx-

imation instead of a unique projection in general. Let M be a smooth manifold in a Euclidean

60

5.3 Alternating Projections on Manifolds

space E. Motivated by Definition 5.1, we denote the best approximation to x ∈ E from M by

PM (x) := argmin{‖x− y‖ | y ∈M}. (35)

Throughout this section, we will consider the tangent space and its orthogonal complement,

which are defined as follows:

Definition 5.31. Let M be a Ck-manifold around a point x ∈M . The tangent space to M at x is

then defined as

TM (x) := ker(∇F (x)),

where ker(f(x)) denotes the kernel of a function f . And the normal space to M at x is defined as

NM (x) := TM (x)⊥.

For the results in this section, it is necessary to concretise the intersection of two manifolds in E.

We therefore introduce the concept of transversality as in [70, Definition 2.1].

Definition 5.32. Let M,N ⊆ E be Ck-manifolds around a point x ∈ M ∩ N . Then M and N

intersect transversally in x if

TM (x) + TN (x) = E,

where TM (x) is the tangent space toM at x from Definition 5.31 and the sum of the tangent spaces

is the Minkowski sum. We say that two manifolds are transverse if they intersect transversally.

For transverse manifolds, we know that the intersection is again a manifold and in any point of

the intersection, the tangent space to the intersection is explicitly given, as the following lemma

shows.

Lemma 5.33. Let M,N ⊆ E be transverse Ck-manifolds. Then:

(a) M ∩N itself is a Ck manifold with codimension codim(M ∩N) = codim(M) + codim(N).

(b) For any point x ∈M ∩N , we have TM∩N (x) = TM (x) ∩ TN (x).

Proof. (a) This result can be found in [52, page 30].

(b) First, note that since M ∩N ⊆M and M ∩N ⊆ N , we have for any x ∈M ∩N that

TM∩N (x) ⊆ TM (x) ∩ TN (x).

Moreover, part (a) yields

dim(M ∩N) = dim(M) + dim(N)− dim(E).

Let x ∈M ∩N , then this gives

dim(TM∩N (x)) = dim(TM (x)) + dim(TN (x))− dim(E).

61

5 Alternating Projections

On the other hand, since M and N are transverse, we know that

dim(TM (x) ∩ TN (x)) = dim(TM (x)) + dim(TN (x))− dim(TM (x) + TN (x))

= dim(TM (x)) + dim(TN (x))− dim(E).

Altogether, TM∩N (x) ⊆ TM (x) ∩ TN (x) and both vectorspaces are of the same dimension,

hence they must be equal. This completes the proof.

Figure 5.7: Transversality for manifolds. An example in R2

y∗

TL(y∗)

L

TN (y∗)

N

M

x∗

TM (x∗)
TN (x∗)

α

Figure 5.7 shows the difference between transverse manifolds and nontransverse manifolds

around an intersection point in R2. In this concrete example, we have M = bd(B1([−1.5, 0]),

N = bd(B1([0, 0])) and L = bd(B1([2, 0])). The point x∗ represents a point in the intersection

of the transverse manifolds M and N . To see that these two manifolds are transverse, consider the

tangent space to M at x∗ and the tangent space to N at x∗. They only have one point in common

and every x ∈ R2 can be represented as a sum xTN (x∗) + xTM (x∗) with xTM (x∗) ∈ TM (x∗) and

xTN (x∗) ∈ TN (x∗). On the other hand, the point y∗ represents the intersection of the manifolds N

and L. Here, the manifolds do not intersect transversally since the tangent space to N at y∗ and

the tangent space to L at y∗ are equal, such that for example x∗ can not be expressed as a sum of

elements in this linear subspaces.

In order to apply alternating projections on manifolds, we need to guarantee the existence of

PM (x) in equation (35) for any x which is close enough to M . Here the following lemma holds,

cf. [70, Lemma 2.1].

Lemma 5.34. Let M ⊆ E be a Ck-manifold around a point x ∈ M with k ≥ 2. Then for any

point x̄ ∈ Bε(x), with ε > 0 small enough, the projection operator PM is well defined and there

exists a unique projection PM (x̄) on M . In addition, the function PM is of class Ck−1 around x

with derivative

∇PM (x) = PTM (x).

62

5.3 Alternating Projections on Manifolds

We therefore have a unique best approximation onM of any point x̄ close enough toM . On the

other hand, we will extend the definition of a Friedrichs angle from Definition 5.7 to the context

of manifolds, again to obtain a convergence rate, this time for the alternating projections between

manifolds. For the following definition, see also [70, Definition 3.1].

Definition 5.35. Consider two manifolds M and N in the Euclidean space E around a point
x ∈ M ∩N . The angle between M and N at x is the angle in [0, π2] whose cosine c(M,N ;x) is
given by

c(M,N ;x) := cosα (TM (x), TN (x)) ,

where α (TM (x), TN (x)) is the Friedrichs angle, introduced in Definition 5.7, since TM (x) and
TN (x) are subspaces. This value is well defined unless one tangent space is a subspace of the
other. In this case, we define c(M,N ;x) = 0.

Moreover, we also have the following property, as mentioned in [70]:

Lemma 5.36. Let A,B be subspaces of a Euclidean space E and let BE := {x ∈ E | ‖x‖ ≤ 1}
denote the unit ball in E. Then the supremum

cosα(A,B) = sup
{
|〈x, y〉|

∣∣∣ x ∈ A ∩ (A ∩B)⊥ ∩BE and y ∈ B ∩ (A ∩B)⊥ ∩BE

}
is attained and we always have cosα(A,B) < 1.

Proof. The compactness ofA∩(A∩B)⊥∩BE andB∩(A∩B)⊥∩BE ensures that the supremum
is attained. Moreover, we will prove the inequality cosα(A,B) < 1 by contradiction. To this end,
assume that cosα(A,B) = 1, i.e.,

max
{
|〈x, y〉|

∣∣∣ x ∈ A ∩ (A ∩B)⊥ ∩BE and y ∈ B ∩ (A ∩B)⊥ ∩BE

}
= 1.

Thus, there exists x ∈ A ∩ (A ∩ B)⊥ ∩ BE and y ∈ B ∩ (A ∩ B)⊥ ∩ BE such that by the
Cauchy-Schwarz-Inequality we have

1 = |〈x, y〉| ≤ ‖x‖ ‖y‖ ≤ 1.

This shows that αx = y for some scalar value α. Thus, we have y ∈ A∩B since A is a subspace.
Moreover, we have y ∈ (A ∩ B)⊥ by construction. Hence, y = 0 and we get |〈x, y〉| = 0, which
is a contradiction.

The angle between manifolds is also visualized in Figure 5.7. For the transverse manifolds M

andN and x∗ ∈M∩N , the angle is marked as α between the tangent spaces TM (x∗) and TN (x∗).

Considering the manifolds L and N and the point y∗ ∈ N ∩ L, the tangent space TN (y∗) is equal

to the tangent space TL(y∗) and therefore c(N,L; y∗) = 0 by definition.

Remark 5.37. The angle between manifolds in Definition 5.35 depends on x in general. If M and
N are subspaces, the angle becomes independent from x and this yields

c(M,N ;x) = cosα(M,N) for every x ∈M ∩N.

In this case, Definition 5.7 and Definition 5.35 coincide.

63

5 Alternating Projections

Since TM (x) and TN (x) are subspaces, we also have the following characterization of the angle

between manifolds, where ‖ · ‖op again denotes the operator norm.

Lemma 5.38. LetM andN be two manifolds in the Euclidean space E around a point x ∈M∩N .

Then we have

c(M,N ;x) =
∥∥PTM (x)PTN (x) − PTM (x)∩TN (x)

∥∥
op
.

If we additionally assume that the manifolds M and N intersect transversally in x, we further

have

c(M,N ;x) =
∥∥PTM (x)PTN (x) − PTM∩N (x)

∥∥
op
.

Proof. The first statement follows from Lemma 5.8 and the second part follows from Lemma 5.33.

In addition, the angle, seen as a function in x, is smooth according to the following lemma,

cf. [70, Lemma 3.4].

Lemma 5.39. Let M and N be two transverse Ck manifolds around a point x ∈ M ∩ N with

k ≥ 2. Then the function

c(M,N ; ·) : M ∩N → [0, 1], x 7→ c(M,N ;x)

is of class Ck−1 around x.

With the definition of an angle between two manifolds at a common point, we can now give

the following asymptotical improvement of the iterates of the alternating projections approach in

Definition 5.2 for manifolds. This result and its proof can be found in [70, Theorem 4.2].

Theorem 5.40. Let M and N be two transverse C2 manifolds around a point x ∈M ∩N . Then

we have:

lim sup
x→x,x 6∈M∩N

‖PMPN (x)− PM∩N (x)‖
‖x− PM∩N (x)‖

≤ c(M,N ;x).

Proof. Due to Lemma 5.34, there exists ε > 0 such that the operators PM , PN and PM∩N are

well defined and of class C1 in the neighbourhood Bε(x). To make sure that the fraction in the

result is well defined, we need to show that PMPN is also well defined. So consider x ∈ B ε
2
(x)

such that

‖x− PN (x)‖ = ‖x− x+ x− PN (x)‖ ≤ ‖x− x‖+ ‖x− PN (x)‖ ≤ 2‖x− x‖ ≤ ε,

which shows PN (x) ∈ Bε(x). Thus, PMPN is also well defined and of class C1 on B ε
2
(x).

Hence, the fraction is well defined.

Now consider an arbitrary sequence (xr)r∈N in B ε
2
(x) \ (M ∩N) tending to x. We will write

xr := PM∩N (xr) to shorten notation. Thus, we have

PMPN (xr)− xr = PMPN (xr)− PMPN (xr). (36)

64

5.3 Alternating Projections on Manifolds

Since M ∩ N is again a C2 manifold (cf. Lemma 5.33), Lemma 5.34 shows that the operator

PM∩N is continuous and it follows

lim
r→∞

xr = x,

such that equation (36) can be written in the following way, using continuous differentiability.

PMPN (xr)− xr = ∇(PMPN)(xr)(xr − xr) + o (‖xr − xr‖) . (37)

By the chain rule and Lemma 5.34, we have

∇(PMPN)(xr) = PTM (xr)PTN (xr). (38)

According to the transversality assumption and since (xr−xr) ∈ NM∩N (xr) = TM∩N (xr)
⊥, we

get

PTM (xr)∩TN (xr)(xr − xr) = PTM∩N (xr)(xr − xr) = 0.

Thus, we can write

PTM (xr)PTN (xr)(xr − xr) = (PTM (xr)PTN (xr) − PTM (xr)∩TN (xr))(xr − xr). (39)

Combining equations (37), (38) and (39) gives

‖PMPN (xr)− xr‖
‖xr − xr‖

≤
∥∥PTM (xr)PTN (xr) − PTM (xr)∩TN (xr)

∥∥
op

+ o(1).

By Lemma 5.38, this simplifies to

‖PMPN (xr)− xr‖
‖xr − xr‖

≤ c(M,N ;xr) + o(1).

Taking the limsup in this inequality and by Lemma 5.39, we get

lim sup
xr→x,xr 6∈M∩N

‖PMPN (xr)− xr‖
‖xr − xr‖

≤ c(M,N ;x),

concluding the proof.

With the help of Theorem 5.9, the result in Theorem 5.40 can be generalized in the following

way:

Corollary 5.41. Let M and N be two transverse C2 manifolds around a point x ∈M ∩N . Then

we have for every n ≥ 1:

lim sup
x→x,x 6∈M∩N

‖(PMPN)n(x)− PM∩N (x)‖
‖x− PM∩N (x)‖

≤ c(M,N ;x)2n−1.

This gives rise to the following remark.

65

5 Alternating Projections

Remark 5.42. Under the assumptions of Theorem 5.40, we have that for every c > c(M,N ;x),

there exists a radius ε > 0 such that for all x ∈ Bε(x), we have

‖PMPN (x)− PM∩N (x)‖ ≤ c‖x− PM∩N (x)‖. (40)

Having this, we can now give the main result for alternating projections between two transverse

manifolds, cf. [70, Theorem 4.3].

Theorem 5.43. Let E be a Euclidean space and let M and N be two transverse manifolds around

a point x ∈M ∩N . Further let the starting point x0 ∈ E be close enough to x. Then the method

of alternating projections and its sequence (xk)k∈N, with xk+1 = PMPN (xk) for every k ≥ 0, is

well defined and d({xk},M ∩N) decreases Q-linearly to zero for k →∞. More precisely, given

any 1 > c > c(M,N ;x) and x0 close enough to x, the iterates satisfy

d({xk+1},M ∩N) ≤ c · d ({xk},M ∩N) for every k ≥ 0,

where d(A,B) is the distance between two sets A and B, as in Definition 5.15. Furthermore, the

iterates xk converge linearly to a point x∗ ∈M ∩N . That is, for some constant a > 0, we have:

‖xk − x∗‖ ≤ ack for every k ≥ 0.

Proof. Due to Lemma 5.36, we know that c(M,N ;x) < 1. Now choose c such that

c(M,N ;x) < c < 1 and ε > 0 such that (40) is satisfied. Set δ = (1 − c) ε4 > 0 and con-

sider any starting point x ∈ Bδ(x). We will prove the theorem in two parts and use the same

notation as in the proof of [70, Theorem 4.3].

For the first part, we will show by induction that the sequence (xk)k∈N is well defined and both

xk and its projection xk := PM∩N (xk) are elements of Bε(x) and satisfy the following system of

inequalities for every k ≥ 0.

‖xk − xk−1‖ ≤ δck, (H1)

‖xk − xk‖ ≤ δck, (H2)

‖xk − xk−1‖ ≤ 2δck, (H3)

‖xk − x‖ ≤ 2

(
k∑
i=0

ci

)
δ, (H4)

‖xk − x‖ ≤ 2

(
k∑
i=0

ci

)
δ. (H5)

Let us define x−1 := x0. Since ‖x0 − x0‖ ≤ ‖x0 − x‖ ≤ δ, inequalities (H1), (H2), (H3) and

(H5) are satisfied in the case k = 0. For (H4) with k = 0, we have

‖x0 − x‖ ≤ ‖x0 − x0‖+ ‖x0 − x‖ ≤ 2δ.

66

5.3 Alternating Projections on Manifolds

So the inequalities (H1) to (H5) hold for k = 0 and x0, x0 ∈ Bε(x). Now assume that these

inequalities hold for an arbitrary k ≥ 0 and further assume that xk, xk ∈ Bε(x). We will prove

that these conditions also hold for k replaced by k + 1.

If xk ∈ M ∩ N , there is nothing to prove. On the other hand, if xk 6∈ M ∩ N , we have

xk ∈ Bε(x). Hence, PMPN (xk) = xk+1 is well defined and the inequality

‖xk+1 − xk‖ ≤ c‖xk − xk‖

holds according to Remark 5.42. This gives

d({xk+1},M ∩N) ≤ ‖xk+1 − xk‖ ≤ c‖xk − xk‖ = c · d({xk},M ∩N). (41)

To show (H1) for k replaced by k + 1, we use inequality (H2) for k and inequality (41). This

yields

‖xk+1 − xk‖ ≤ c‖xk − xk‖ ≤ δck+1. (42)

To show (H2) for k + 1, we already have ‖xk+1 − xk+1‖ ≤ ‖xk+1 − xk‖ by definition of the

projection xk+1. Thus, inequality (42) gives

‖xk+1 − xk+1‖ ≤ δck+1. (43)

From inequalities (42) and (43), we can obtain (H3) for k + 1:

‖xk+1 − xk‖ ≤ ‖xk+1 − xk+1‖+ ‖xk+1 − xk‖ ≤ 2δck+1. (44)

Since ‖xk+1 − x‖ ≤ ‖xk+1 − xk‖ + ‖xk − x‖, inequalities (44) and (H4) for k yield (H4) for

k + 1:

‖xk+1 − x‖ ≤ 2δck+1 + 2

(
k∑
i=0

ci

)
δ ≤ 2

(
k+1∑
i=0

ci

)
δ. (45)

Similarly, we have ‖xk+1 − x‖ ≤ ‖xk+1 − xk‖ + ‖xk − x‖ and inequalities (42) and (H4) give

inequality (H5) for k + 1:

‖xk+1 − x‖ ≤ δck+1 + 2δ
k∑
i=0

ci ≤ 2δ
k+1∑
i=0

ci. (46)

So the inequalities (H1) to (H5) also hold for k + 1. Moreover, since

(1− c)
k∑
i=0

ci =

k∑
i=0

(ci − ci+1) = 1− ck+1 < 1,

we have
∑k

i=0 c
i < 1

1−c and the inequalities (45) and (46) yield

‖xk+1 − x‖ ≤
2δ

1− c
≤ ε

2

67

5 Alternating Projections

and

‖xk+1 − x‖ ≤
ε

2
,

such that xk+1 and xk+1 are elements of Bε(x). This ends the proof of the first part by induction.

For the second part, we first prove the convergence of the sequence (xk)k∈N of projections. To

this end, we show that this sequence in M ∩N ∩Bε(x) is Cauchy. Consider inequality (H3) and

write for all indices k, l with l ≥ k ≥ 0:

‖xl − xk‖ ≤
l∑

i=k+1

‖xi − xi−1‖ ≤ 2δ
l∑

i=k+1

ci ≤ 2δ

1− c
ck+1, (47)

where the last inequality comes from

(1− c)
l∑

i=k+1

ci =

l∑
i=k+1

(ci − ci+1) = ck+1 − cl+1 < ck+1.

Thus, the sequence (xk)k∈N is Cauchy and hence converges to an element x∗ ∈ M ∩ N . More

precisely, we have

‖xk − x∗‖ ≤
2δ

1− c
ck+1.

Together with inequality (H2), this implies the following:

‖xk − x∗‖ ≤ ‖xk − xk‖+ ‖xk − x∗‖ ≤ δck +
2δ

1− c
ck+1 =

(
1 +

2c

1− c

)
δck.

Thus, we have ‖xk − x∗‖ ≤ ack for every k ≥ 0, completing the proof.

This theorem provides local convergence of the alternating projections approach for transverse

manifolds around a point x of the intersection. It also provides the convergence rate depending on

a parameter c ∈ [c(M,N ;x), 1]. For this to make sense, it is necessary to have c(M,N ;x) < 1,

which is always the case due to Lemma 5.36.

To visualize the alternating projections method for transverse manifolds and to substantiate the

local convergence, let us have a look at the Figure 5.8.

First, we consider the starting point x0 and its orthogonal projection onto the blue manifold N .

The point PN (x0) is then projected onto the red manifoldM . This is our next iterate x1. We iterate

this process and we see that the point x3 is already very close to an element of the intersection

M ∩N . In the limit, we will obtain a point in M ∩N . Since the manifolds are transverse in this

intersection point, this is an example for the local convergence as described in Theorem 5.43. To

show that we only have local convergence, we next consider the starting point y0. Similar to x0,

we first project y0 onto N and then we project PN (y0) back onto M . This gives the next iterate

y1. If we now project y1 onto N and PN (y1) onto M , we obtain the same point y1 again. So we

reached a fixed point of the alternating projections approach, even though a point y∗ ∈M ∩N and

δ > 0 exist such that y0 ∈ Bδ(y∗). In this case, the value δ is not small enough, i.e., the starting

68

5.4 Cyclic Projections Among a Sequence of Manifolds

Figure 5.8: Alternating projections for two one-dimensional manifolds in R2

δ

N

M

y∗

x0x1

x2

x3

y0
y1

point y0 is not close enough to y∗. Choosing a smaller radius δ̃ and a starting point ỹ0 ∈ Bδ̃(y
∗)

would ensure convergence of the iterates to y∗ due to Theorem 5.43.

As mentioned in [70, Corollary 4.1], the convergence rate in Theorem 5.43 extends to the case

of closed convex sets in the following setting.

Corollary 5.44. Let A and B be two closed convex sets in the Euclidean space E such that the

boundaries bd(A) and bd(B) are smooth manifolds. If the intersection A ∩ B is nonempty, then

the sequence (xk)k∈N, with x0 given and xk+1 = PAPB(xk), is well defined and converges to a

point x∗ ∈ A ∩ B. If the manifolds bd(A) and bd(B) intersect transversally in x∗, the sequence

(xk)k∈N converges linearly with a rate depending on c(bd(A), bd(B);x∗).

So far, the alternating projections approach was analysed for two manifolds only. In the fol-

lowing section, we will extend the idea of alternating projections between manifolds to cyclic

projections among a sequence of manifolds.

5.4 Cyclic Projections Among a Sequence of Manifolds

Hitherto, we showed the convergence of the alternating projections approach for two transverse

smooth manifolds based on the results in [70]. We will use the approaches therein and the method

of cyclic projections as introduced in Section 5.1 for subspaces to extend the result to the case

of multiple intersecting manifolds M1,M2, . . . ,Mn. For the convergence result in this setting,

we need that the intersection
⋂n
i=1Mi itself is a Ck manifold around x with T⋂n

i=1Mi
(x) =⋂n

i=1 TMi(x). This can be ensured by the following lemma.

69

5 Alternating Projections

Lemma 5.45. Let M1 . . . ,Mn be Ck manifolds with x ∈ M :=
⋂n
i=1Mi. Further assume that

for every i ∈ {2, . . . , n}, the manifolds Mi and
(⋂

j<iMj

)
intersect transversally in x. Then⋂n

i=1Mi itself is a Ck manifold around x with T⋂n
i=1Mi

(x) =
⋂n
i=1 TMi(x).

Proof. We will prove this result inductively on the number of manifolds l. For l = 2, Lemma 5.33

shows that M12 := M1 ∩ M2 is a Ck manifold and TM12(x) = TM1(x) ∩ TM2(x). Now we

consider three manifolds M1,M2,M3. By assumption, the manifolds M3 and M12 are transverse

such that Lemma 5.33 shows that

M123 := M12 ∩M3 = (M1 ∩M2) ∩M3

is a Ck manifold and

TM123(x) = TM12(x) ∩ TM3(x) = TM1(x) ∩ TM2(x) ∩ TM3(x).

For increasing numbers of manifolds, this approach can be equivalently extended such that the

statement will hold for every l = 2, . . . , n.

Having this, we can now give the following asymptotical improvement result.

Theorem 5.46. Let M1, . . . ,Mn be C2 manifolds around a common point x ∈ M :=
⋂n
i=1Mi.

Further assume that for every i ∈ {2, . . . , n}, the manifolds Mi and
(⋂

j<iMj

)
intersect trans-

versally in x and let T (x) :=
n⋂
i=1

TMi(x). Then we have:

lim sup
x→x, x 6∈M

∥∥(PMnPMn−1 . . . PM1)(x)− PM (x)
∥∥

‖x− PM (x)‖
≤ c,

where

c =

1−
n−1∏
i=1

sin2 α

TMi(x),
n⋂

j=i+1

TMj (x)

 1
2

.

Proof. Due to Lemma 5.34, there exists ε > 0 such that the operators PM1 , . . . , PMn and PM are

of class C1 and well defined in the neighbourhood Bε(x). To make sure that the fraction in the

result is well defined, consider δ := ε
2n−1 and x ∈ Bδ(x) such that

‖x− PM1(x)‖ = ‖x− x+ x− PM1(x)‖ ≤ ‖x− x‖+ ‖x− PM1(x)‖

≤ 2‖x− x‖ ≤ 2δ < ε.

Thus, (PM2PM1) is well defined on Bδ(x) and

‖x− (PM2PM1)(x)‖ = ‖x− PM1(x) + PM1(x)− (PM2PM1)(x)‖

≤ ‖x− PM1(x)‖+ ‖PM1(x)− PM2(PM1(x))‖

≤ 2‖PM1(x)− x‖ ≤ 22‖x− x‖ ≤ 4δ < ε.

70

5.4 Cyclic Projections Among a Sequence of Manifolds

Hence, (PM3PM2PM1) is well defined on Bδ(x) and by induction we get

‖x−
(
PMn−1PMn−2 . . . PM1

)
(x)‖

= ‖x−
(
PMn−2 . . . PM1

)
(x) +

(
PMn−2 . . . PM1

)
(x)−

(
PMn−1PMn−2 . . . PM1

)
(x)‖

≤ 2‖x−
(
PMn−2 . . . PM1

)
(x)‖ ≤ 2n−1‖x− x‖ ≤ 2n−1δ = ε,

which shows PMnPMn−1 . . . PM1 is also well defined onBδ(x) and of class C1. Thus, the fraction

is well defined.

Now consider an arbitrary sequence (xr)r∈N inBδ(x)\M tending to x. We will write xr := PM (xr)

to shorten notation. Thus, we have

(PMnPMn−1 . . . PM1)(xr)−xr = (PMnPMn−1 . . . PM1)(xr)− (PMnPMn−1 . . . PM1)(xr). (48)

With the help of Lemma 5.45, we know that M is again a C2 manifold. Lemma 5.34 then shows

that the operator PM is continuous and it follows

lim
r→∞

xr = x,

such that (48) can be written in the following way, using continuous differentiability:

(
PMnPMn−1 . . . PM1

)
(xr)−xr = ∇

(
PMnPMn−1 . . . PM1

)
(xr)(xr−xr)+o (‖xr − xr‖) . (49)

And by the chain rule and Lemma 5.34, we have

∇(PMnPMn−1 . . . PM1)(xr) = PTMn (xr)PTMn−1
(xr) . . . PTM1

(xr). (50)

Due to the Lemma 5.45, we have that T (xr) = TM (xr) and since (xr − xr) ∈ NM (xr) =

TM (xr)
⊥, we get

PT (xr)(xr − xr) = PTM (xr)(xr − xr) = 0.

Thus, we can write

PTMn (xr)PTMn−1
(xr) . . . PTM1

(xr)(xr − xr)

=
(
PTMn (xr)PTMn−1

(xr) . . . PTM1
(xr) − PT (xr)

)
(xr − xr).

(51)

Combining equations (49), (50) and (51) gives∥∥(PMnPMn−1 . . . PM1

)
(xr)− xr

∥∥
‖xr − xr‖

=
∥∥∥(PTMn (xr)PTMn−1

(xr) . . . PTM1
(xr) − PT (xr)

)
(xr − xr)

∥∥∥ 1

‖xr − xr‖
+ o(1).

71

5 Alternating Projections

With the help of Theorem 5.10 and taking the limsup, we finally get

lim sup
x→x, x 6∈M

∥∥(PMnPMn−1 . . . PM1)(x)− PM (x)
∥∥

‖x− PM (x)‖
≤ c,

with

c =

1−
n−1∏
i=1

sin2 α

TMi(x),

n⋂
j=i+1

TMj (x)

 1
2

,

completing the proof.

Corollary 5.47. Under the assumptions of Theorem 5.46, we even get

lim sup
x→x, x 6∈M

∥∥(PMnPMn−1 . . . PM1)n(x)− PM (x)
∥∥

‖x− PM (x)‖
≤ cn,

with the same value c as in Theorem 5.46.

Moreover, we know that for every constant c̃ > c, with c as in Theorem 5.46, there exists ε > 0

such that for any starting point x ∈ Bε(x), we have

∥∥(PMnPMn−1 . . . PM1)(x)− PM (x)
∥∥ ≤ c̃ ‖x− PM (x)‖ . (52)

Furthermore, the following lemma holds.

Lemma 5.48. Let M1, . . . ,Mn be C2 manifolds around a point x ∈ M :=
⋂n
i=1Mi. Further

assume that for every i ∈ {1, . . . , n} and every index set J ⊆ {1, . . . , n} \ {i}, the manifolds Mi

and
(⋂

j∈JMj

)
intersect transversally in x. Let c be as defined in Theorem 5.46. Then we have

0 ≤ c < 1.

Proof. By construction, we have c ∈ [0, 1]. Moreover, Lemma 5.45 shows that for any

i ∈ {1, . . . , n}, the intersection
⋂n
j=i+1Mj itself is a C2 manifold and for every i ∈ {1, . . . , n},

we have
n⋂

j=i+1

TMj (x) = T⋂n
j=i+1Mj

(x).

For every i ∈ {1, . . . , n}, Definition 5.35, Lemma 5.45 and Lemma 5.36 now show that

c

Mi,

n⋂
j=i+1

Mj ;x

 = cosα

TMi
(x),

n⋂
j=i+1

TMj
(x)

 = cosα
(
TMi

(x), T⋂n
j=i+1 Mj

(x)
)
< 1,

where the angle α is defined as in Definition 5.7. This yields

α

TMi(x),
n⋂

j=i+1

TMj (x)

 > 0,

for every i ∈ {1, . . . , n}. The inequality c < 1 now follows from Remark 5.11, completing the

proof.

72

5.4 Cyclic Projections Among a Sequence of Manifolds

Having this result, it is now possible to derive the following convergence result.

Theorem 5.49. Let E be a Euclidean space and let M1, . . . ,Mn be manifolds around a point x ∈
M :=

⋂n
i=1Mi. Further assume that for every i ∈ {1, . . . , n} and index set J ⊆ {1, . . . , n}\{i},

the manifolds Mi and
(⋂

j∈JMj

)
intersect transversally in x. Further let the starting point

x0 ∈ E be close enough to x. Then the method of cyclic projections and its sequence (xk)k∈N,

with xk+1 = (PMnPMn−1 . . . PM1)(xk) for every k ≥ 0, is well defined and d({xk},
⋂n
i=1Mi)

decreases Q-linearly to zero for k →∞.

More precisely, given any 1 > c̃ > c, with c as in Theorem 5.46, and x0 close enough to x, the

iterates satisfy

d

(
{xk+1},

n⋂
i=1

Mi

)
≤ c̃ · d

(
{xk},

n⋂
i=1

Mi

)
for every k ≥ 0,

where d(A,B) is the distance between two sets A and B as in Definition 5.15. Furthermore, the

iterates xk converge linearly to a point x∗ ∈
⋂n
i=1Mi. That is, for some constant a > 0, we have:

‖xk − x∗‖ ≤ ac̃k for every k ≥ 0.

Proof. Due to Lemma 5.48, we know that c < 1. Now choose c̃ such that c < c̃ < 1 and ε > 0

such that (52) is satisfied. Set δ = (1 − c̃) ε4 > 0 and consider any starting point x ∈ Bδ(x). We

will prove the theorem in two parts and use the notation in the proof of [70, Theorem 4.3].

For the first part, we will show by induction that the sequence (xk)k∈N is well defined and both

xk and its projection xk := P⋂n
i=1Mi

(xk) are elements of Bε(x) and satisfy the following system

of inequalities for every k ≥ 0.

‖xk − xk−1‖ ≤ δc̃k, (H1)

‖xk − xk‖ ≤ δc̃k, (H2)

‖xk − xk−1‖ ≤ 2δc̃k, (H3)

‖xk − x‖ ≤ 2

(
k∑
i=0

c̃i

)
δ, (H4)

‖xk − x‖ ≤ 2

(
k∑
i=0

c̃i

)
δ. (H5)

Let us define x−1 := x0. Since ‖x0 − x0‖ ≤ ‖x0 − x‖ ≤ δ, inequalities (H1), (H2), (H3) and

(H5) are satisfied for k = 0. For (H4) with k = 0, we have

‖x0 − x‖ ≤ ‖x0 − x0‖+ ‖x0 − x‖ ≤ 2δ.

So the inequalities (H1) to (H5) hold for k = 0 and we have x0, x0 ∈ Bε(x). Now assume that

these inequalities hold for an arbitrary k ≥ 0 and further assume that xk, xk ∈ Bε(x). We will

prove that these conditions also hold for k replaced by k + 1.

73

5 Alternating Projections

If xk ∈
⋂n
i=1Mi, there is nothing to prove. On the other hand, if xk 6∈

⋂n
i=1Mi, we have

xk ∈ Bε(x). Hence, (PMnPMn−1 . . . PM1)(xk) = xk+1 is well defined and the inequality

‖xk+1 − xk‖ ≤ c̃‖xk − xk‖

holds according to (52). This gives

d

(
{xk+1},

n⋂
i=1

Mi

)
≤ ‖xk+1 − xk‖ ≤ c̃‖xk − xk‖ = c̃ · d

(
{xk},

n⋂
i=1

Mi

)
. (53)

To see that the inequalities (H1) to (H5) hold for k replaced by k + 1, we use the same arguments

as in Theorem 5.43 and again, this yields xk+1, xk+1 ∈ Bε(x). This ends the proof of the first part

by induction.

For the second part, we first prove the convergence of the sequence (xk)k∈N of projections. For

this, we show that this sequence in
⋂n
i=1Mi ∩ Bε(x) is Cauchy. Consider inequality (H3) and

write for all indices k, l with l ≥ k ≥ 0:

‖xl − xk‖ ≤
l∑

i=k+1

‖xi − xi−1‖ ≤ 2δ
l∑

i=k+1

c̃i ≤ 2δ

1− c̃
c̃k+1, (54)

where the last inequality comes from

(1− c̃)
l∑

i=k+1

c̃i =

l∑
i=k+1

(c̃i − c̃i+1) = c̃k+1 − c̃l+1 < c̃k+1.

Thus, the cyclic projections sequence is Cauchy and hence converges to an element x∗ ∈
⋂n
i=1Mi.

More precisely, we have

‖xk − x∗‖ ≤
2δ

1− c̃
c̃k+1.

Together with inequality (H2), this implies the following:

‖xk − x∗‖ ≤ ‖xk − xk‖+ ‖xk − x∗‖ ≤
(

1 +
2c̃

1− c̃

)
δc̃k.

Thus, we have ‖xk − x∗‖ ≤ ac̃k for every k ≥ 0, completing the proof.

This gives the desired convergence result for cyclic projections among a sequence of manifolds.

In the following section, we will consider more general closed sets. The results in the next section

will be used to derive a local convergence result for our main algorithm in Chapter 6.

74

5.5 Alternating Projections on Closed Sets and on Semialgebraic Sets

5.5 Alternating Projections on Closed Sets and on
Semialgebraic Sets

As we will see in this section, it is also possible to apply the alternating projections approach to

general closed sets, which are not necessarily convex. In this context, Drusvyatskiy and coauthors

developed fundamental results in [41] and [42], which are summarized in this section.

First, we will generalize the concept of transversality to closed sets. For this, it is necessary to

consider a generalization of the normal space as given in Definition 5.31.

Definition 5.50. Consider a Euclidean space E, a set Q ⊆ E and x ∈ Q. Vectors in the set

Np
Q(x) := {λu | λ ∈ R with λ > 0, u ∈ E, x ∈ PQ(x+ u)}

are called proximal normals to Q at x, and the set Np
Q(x) is called proximal normal cone to Q

at x. Here PQ(x+ u) denotes the set of best approximations to the vector x+ u from Q.

Let (xn)n∈N be a sequence inQ tending to x. Then the limits of the proximal normals are called

normals. They form the normal cone NQ(x).

Remark 5.51. If Q is a smooth manifold, then the set NQ(x) coincides with normal space in

Definition 5.31 and therefore we can use the same notation.

Again, the definition of a transverse intersection is understood pointwise for points in the inter-

section, now for two closed sets, cf. [41, Definition 3.2.1].

Definition 5.52. Consider two closed sets Q and R in E and let x ∈ Q ∩R. Then

(a) Q and R are called transverse at x if

NQ(x) ∩ (−NR(x)) = {0}.

(b) Q and R are called intrinsically transverse at x with modulus κ ∈ (0, 1] if there exists ε > 0

such that for any x ∈ Q ∩Bε(x) and y ∈ R ∩Bε(x), we have

max

{
d

({
1

‖y − x‖
(y − x)

}
, NQ(x)

)
, d

({
1

‖y − x‖
(y − x)

}
,−NR(x)

)}
≥ κ,

where d(·, ·) denotes the minimal distance between two sets, as introduced in Definition 5.15.

Remark 5.53. Here it should be mentioned that transversality implies intrinsic transversality, as

shown in [42, Proposition 3.3].

Having these definitions, we can now show the main result for alternating projections between

closed sets, as given in [42, Theorem 6.1]. This result can also be found in [41, Theorem 3.2.3].

Theorem 5.54. Let Q,R be closed subsets of a Euclidean space E. Let Q and R be intrinsically

transverse at a point x ∈ Q ∩ R with κ > 0. Then for any constant c ∈ (0, κ), there exists

δ > 0 such that for every starting point x ∈ Bδ(x), the alternating projections method converges

linearly with rate (1− c2) to a point in Q ∩R.

75

5 Alternating Projections

Figure 5.9: Alternating projections between closed sets

R

Q

x1

r1

r2r3r4r5r6

x2
r̄q̄

Figure 5.9 illustrates the alternating projections between closed sets. Both sets are nonconvex

in this example. Considering starting point x1, we can see that the von Neumann sequence in R

converges to a point in Q ∩R in the limit. To see that we only have local convergence in general,

consider starting point x2. Here the projection onto R gives the point r̄. Projecting this point onto

Q gives the point q̄. Projecting q̄ back onto R returns r̄ again such that the sequence does not

converge to a point in the intersection (but to a fixed point of the von Neumann sequence).

For the rest of this section, we will consider special closed sets in the Euclidean space E, and

we consider the following definition, see for example [30].

Definition 5.55. A closed subset X of E is called semialgebraic if

X = {x ∈ E | fi(x) ≥ 0 for every i = 1, . . . ,m},

where f1, f2, . . . , fm : E→ R are polynomial functions, or if X is a finite union of such sets.

Theorem 5.54 clearly generalizes the convergence of alternating projections to the case of in-

tersecting closed sets. According to the following lemma, cf. [42, Theorem 7.1], it is possible to

derive a convergence result for the alternating projections approach for closed semialgebraic sets.

Lemma 5.56. Consider two closed semialgebraic sets X,Y ⊆ E. Then for almost every x ∈ E,

transversality holds at every point in the (possibly empty) intersection X ∩ (Y − x).

With this, it is now possible to determine a convergence result for alternating projections be-

tween semialgebraic sets, cf. [42, Theorem 7.3].

76

5.5 Alternating Projections on Closed Sets and on Semialgebraic Sets

Theorem 5.57. Let X,Y be two nonempty closed semialgebraic subsets of a Euclidean space E.

In addition, let X be bounded. If the alternating projections approach starts in a point x ∈ Y

close enough to X , then the distance d({xn}, X ∩ Y) of the iterates to the intersection of X and

Y converges to zero. Hence, every limit point is an element of X ∩ Y .

To check transversality or intrinsic transversality in advance, it would be necessary to know a

priori a point in the intersection X ∩ Y . Thus, the result in Theorem 5.57 is strong since we do

not have to verify a transversality property in advance. Especially no point in the intersection is

needed, which would make the alternating projections approach redundant.

We will use Theorem 5.57 to show local convergence of a first method to derive completely

positive factorizations as a special application of alternating projections on semialgebraic sets.

In the following chapters, we will have a closer look at this approach and show its convergence

theoretically in Chapter 6, and illustrate the convergence for concrete examples in Chapter 7.

77

6 Applying Alternating Projections to
Construct CP-Factorizations

In this chapter, we will show algorithmic approaches to generate completely positive factoriza-

tions for matrices in the interior or at the boundary of the completely positive cone. Here a local

convergence result will be given, based on the convergence of alternating projections between two

semialgebraic sets. Moreover, we will see modifications of these approaches, which are still able

to generate cp-factorizations for a given completely positive matrix, but take only a fraction of the

computation time of the first approaches. The results in Sections 6.1 and 6.2 can also be found in

the submitted article [50].

6.1 An Alternating Projections Approach for CP-Factorizations

First, we will give a concrete approach, proving whether a given matrix A is completely positive.

To this end, consider an initial factorization A = BBT with B ∈ Rn×r, where either r = cpr(A)

if this quantity happens to be known, or otherwise we use the bound from Lemma 2.32 and set

r = cpn. In both cases, we can ensure such an initial factorization with the approach introduced

in Section 3.6.

Let us go back to the nonconvex feasibility problem (28) in Section 4.1. Therefore, we consider

the problem:

find Q

s. t. BQ ≥ 0

Q ∈ Or.
(28)

As shown in Theorem 4.1, A is completely positive if and only if problem (28) is feasible.

Introducing the polyhedral cone

P := {Q ∈ Rr×r | BQ ≥ 0},

we can write (28) as

find Q ∈ P ∩ Or. (55)

We will use the method of alternating projections between semialgebraic sets, as introduced in

Section 5.5, to obtain a point in the intersection of these two sets. In order to apply this method, we

need to be able to project onto the sets P andOr. For this, we use the following results. To shorten

notation, we will write ‖A‖ for the Frobenius norm of a matrix A and ‖x‖ for the Euclidean norm

79

6 Applying Alternating Projections to Construct CP-Factorizations

of a vector x. This yields ‖A‖ = ‖ vec(A)‖, where vec(A) stacks the columns of A in a long

column vector. Moreover, the Frobenius norm is unitarily invariant, which means that for any two

unitary matrices U, V , we have ‖UAV ‖ = ‖A‖. To see this, we write

‖UAV ‖2 = trace((V TATUT)(UAV)) = trace(ATA) = ‖A‖2.

Now, for the projection onto P , we have the following result.

Lemma 6.1. The projection of a matrix M onto P is unique and computing it amounts to solving

a second order cone problem (SOCP):

min ‖X −M‖
s. t. BX ≥ 0

⇔
min t

s. t. BY ≥ −BM
(t, vec(Y)) ∈ SOC.

Proof. Since P is a polyhedral cone and hence convex, the projection of a matrix M onto P
is unique. To show that it is sufficient to solve the mentioned second order cone problem, let

Y := X −M such that

min ‖X −M‖
s. t. BX ≥ 0

⇔
min ‖Y ‖
s. t. BY +BM ≥ 0

⇔
min t

s. t. BY ≥ −BM
t ≥ ‖Y ‖

⇔
min t

s. t. BY ≥ −BM
t ≥ ‖ vec(Y)‖

⇔
min t

s. t. BY ≥ −BM
(t, vec(Y)) ∈ SOC,

completing the proof.

Note that SOCPs can be solved in polynomial time using interior point methods. Hence, the

projection onto P can be calculated via solving a second order cone problem. Here for example

the solvers SDPT3 (cf. [92] or [93]) or Sedumi (cf. [91]) can be used.

On the other hand, the projection of a matrix M ontoOr, the set of orthogonal matrices, always

exists since Or is compact, as shown in Lemma 3.2. However, it may not be unique due to the

nonconvexity ofOr. We therefore consider the best approximation as introduced in Definition 5.1

and for manifolds in equation (35). If we denote by POr(M) the set of best approximations to

Or in M , computing an element of POr(M) can be done through the polar decomposition of

M according to the following lemma, a proof of which can be found in [12, Corollary 5.6.4 and

Fact 9.9.42].

Lemma 6.2. Let M ∈ Rr×r. Then there exists the so called polar decomposition of M , i.e., there

exist a positive semidefinite matrix T ∈ Rr×r and an orthogonal matrix Q ∈ Rr×r such that

M = TQ.

80

6.1 An Alternating Projections Approach for CP-Factorizations

For any unitarily invariant norm ‖ · ‖, we have

‖M −Q‖ ≤ ‖M − U‖ for all U ∈ Or.

We take this Q ∈ POr(M). The polar decomposition can be computed via the singular value

decomposition, as the following lemma shows. For a short review and some basic facts on the

singular value decomposition, the reader is again referred to the Appendix of this thesis.

Lemma 6.3. To obtain the polar decomposition, and therefore a best approximation of a given

matrix M in Or, we take the singular value decomposition M = UΣV T of M . Here U, V are

orthogonal matrices and Σ is a diagonal matrix containing the singular values of M . Then for

the polar decomposition of M , we have

M = TQ, where T = UΣUT and Q = UV T .

Proof. First, we observe

TQ = UΣUTUV T = UΣV T = M

and since U, V ∈ Or, we get Q ∈ Or. On the other hand, we know that T is positive semidefinite

since Σ contains the nonnegative singular values of M and is therefore positive semidefinite.

Remark 6.4. Let M ∈ Rr×r. The computation of the polar decomposition of M can be done in

O(r3) steps according to Lemma 6.3 and [48, Section 5.4.5].

Hence, we can efficiently compute the projections PP(M) and POr(M) of a matrix M onto P
and Or, respectively. The alternating projections method to compute a factorization of a com-

pletely positive matrix A now reads as follows:

Algorithm 1 Alternating projections between P and Or
Input: A = BBT with B ∈ Rn×r and r ≥ cpr(A); initial matrix Q0 ∈ Or

1: k ← 0

2: while BQk 6≥ 0 do
3: Pk ← PP(Qk)

4: Qk+1 ← POr(Pk)

5: k ← k + 1

6: end while

Output: Qk ∈ Or and a completely positive factorization A = (BQk)(BQk)
T

Numerically, we can stop the algorithm whenever BQk ≥ −εE for some ε > 0 or the iteration

counter k reaches its predefined maximum kmax. For the numerical experiments in Chapter 7, we

will use kmax = 5000 and ε = 10−15 for most instances.

To prove a local convergence result for this approach, we will first show that both sets P and

Or are semialgebraic sets as introduced in Definition 5.55.

81

6 Applying Alternating Projections to Construct CP-Factorizations

Lemma 6.5. The sets P and Or are semialgebraic sets.

Proof. By definition we have Or = {Q ∈ Rr×r | QQT − I = 0}. The set is therefore given as

a solution set of a set of polynomial equations and is therefore semialgebraic. On the other hand,

we have P = {Q ∈ Rr×r | BQ ≥ 0}. The set is therefore given as a solution set of a set of

polynomial (even linear) inequalities and is therefore semialgebraic as well.

Local convergence for Algorithm 1 is now ensured by the following theorem, which can also be

found in the submitted article, cf. [50, Theorem 4.2].

Theorem 6.6. Let A ∈ CPn. Let A = BBT be any initial factorization with B ∈ Rn×r and

r ≥ cpr(A). Define P := {Q ∈ Rr×r | BQ ≥ 0}. Then we have:

(a) P ∩ Or 6= ∅,

(b) if started at a point Q0 close to P ∩Or, then Algorithm 1 converges to a point Q∗ ∈ P ∩Or.
In this case, A = (BQ∗)(BQ∗)T is a completely positive factorization of A.

Proof. (a): It follows from A ∈ CPn and r ≥ cpr(A) that there exists C ∈ Rn×r, C ≥ 0 with

A = CCT . Since A = BBT = CCT , Lemma 3.11 implies that there exists Q ∈ Or such that

BQ = C ≥ 0, i.e., Q ∈ P ∩ Or.
(b): Both P andOr are closed semialgebraic sets due to Lemma 6.5. Moreover,Or is bounded,

as shown in Lemma 3.2. The convergence result for this setting now follows by applying the result

in [42, Theorem 7.3], which can also be found in Theorem 5.57 of this thesis.

So Algorithm 1 provides local convergence to a point in the intersection of both sets and there-

fore a cp-factorization of the given matrix A. But in Step 3 of Algorithm 1, we have to solve an

SOCP in every iteration to compute PP(Qk). Even though this can be done in polynomial time,

it is still very costly. Here it turns out that a slight modification of this step provides a much bet-

ter numerical performance. In the following section, we will have a closer look at this modified

method.

6.2 Modifying the Alternating Projections Method

Although solving an SOCP in every projection step onto P can be computed in polynomial time, it

is still very costly. Instead of projecting onto the set P in Algorithm 1 via the SOCP reformulation

introduced in Lemma 6.1, we proceed as follows. Nevertheless, we will lose the local convergence

theory.

As a substitute for computing the projection PP(Q) of Q onto P := {Q ∈ Rr×r | BQ ≥ 0},
we rather project BQ onto the nonnegative orthant by computing a matrix D ∈ Rn×r through

Dij := max {(BQ)ij , 0} for all i = 1, . . . , n and j = 1, . . . , r. (56)

Since the nonnegative orthant of the matrix space Rn×r is convex, this projection is always unique.

82

6.2 Modifying the Alternating Projections Method

Note that D ∈ Rn×r, so in order to obtain an approximation to Q in P , we need to lift D into

the space Rr×r. For this, we will use the following tool, cf. [60, Theorem 2] and the main result

in [80]:

Lemma 6.7. LetB,D be as introduced above and consider the equationBX = D. If the equation

is solvable, then the complete set of solutions is given as

S :=
{
X = B+D + (I −B+B)Y

∣∣ Y ∈ Rn×n
}
⊆ Rr×r,

where B+ denotes the Moore-Penrose-inverse.

In case the equation BX = D has no solution, we get that ‖BX −D‖ is minimal if and only

if X ∈ S.

For some basic facts on the Moore-Penrose-inverse, the reader is again referred to the Appendix

of this thesis.

Based on Lemma 6.7, we further have the following result, cf. [80].

Lemma 6.8. Let B,D be as introduced above and consider the equation BX = D. Further, let

X̄ := B+D. Then

‖X̄‖2 ≤ ‖X‖2 for every X ∈ S.

Proof. Let X ∈ S. Then there exists a matrix Y such that

X = B+D + (I −B+B)Y.

First, we will show that B+D and (I −B+B)Y are orthogonal, based on the properties of B+:

〈
B+D, (I −B+B)Y

〉
= trace

(
(B+D)T (I −B+B)Y

)
= trace

(
(B+BB+D)T (I −B+B)Y

)
= trace

(
(B+D)TB+B(I −B+B)Y

)
= trace

(
(B+D)TB+(B −BB+B)Y

)
= trace

(
(B+D)TB+(B −B)Y

)
= 0.

Hence,

‖X‖2 = ‖B+D + (I −B+B)Y ‖2 = ‖B+D‖2 + ‖(I −B+B)Y ‖2 ≥ ‖B+D‖2 = ‖X̄‖2,

completing the proof.

Remark 6.9. X̄ is therefore called the least squares solution of the equation BX = D. And

since (I −B+B)Y is the projection of Y onto the kernel of B, we can write every solution of the

equation BX = D as a sum of the least squares solution and an element of the kernel of B. More

generally, we know that X = B+D + (I − B+B)Y is the solution of the least squares Problem

‖BX −D‖2, which is closest to Y .

83

6 Applying Alternating Projections to Construct CP-Factorizations

Based on this remark, we can now give an approximation to Q in P , which can be computed

easily and especially without solving an SOCP.

Lemma 6.10. Let D be the projection of BQ onto the nonnegative orthant. If D = BQ, then

Q = PP(Q) ∈ P . If on the other hand D 6= BQ, we let B+ denote the Moore-Penrose-inverse of

B and define

P̂ := B+D + (I −B+B)Q ∈ Rr×r.

If the equation BX = D has a solution X , then P̂ ∈ P .

Proof. If D = BQ, then BQ ≥ 0, i.e., Q ∈ P and therefore Q equals its projection onto P . Oth-

erwise let D 6= BQ and assume that BX = D has a solution X . The assumption that D 6= BQ

means that Q does not solve the equation BX = D. Since the equation is solvable, P̂ is a solu-

tion due to Lemma 6.7. Furthermore, it is the unique solution which minimizes the distance to Q

according to Remark 6.9. Thus, P̂ is the projection of Q onto the set {X ∈ Rr×r | BX = D}.
This set is a subset of P since D ≥ 0. So in this case, we have P̂ ∈ P .

In addition, if the equation BX = D does not have a solution, then X = P̂ minimizes the

residual ‖BX −D‖ and among all minimizers it is the one closest to Q. In this case, we get from

the properties of B+ that

BP̂ = BB+D + (B −BB+B)Q = BB+D,

and if in addition the rows of B are linearly independent (which is true if A has full rank), then

BB+ = In, which implies that BP̂ = D ≥ 0, and hence again P̂ ∈ P . If the rows of B are

linearly dependent, then it may happen that P̂ /∈ P , however this does not seem to impair the good

numerical performance.

From now on, we will take P̂ as an approximation of PP(Q). This reasoning leads to the

following modification of Algorithm 1:

Algorithm 2 Modified algorithm for completely positive matrix factorizations
Input: A = BBT with B ∈ Rn×r and r ≥ cpr(A); initial matrix Q0 ∈ Or

1: k ← 0

2: while BQk 6≥ 0 do
3: D ← max{BQk, 0} entrywise

4: P̂k ← B+D + (I −B+B)Qk

5: Qk+1 ← POr(P̂k)

6: k ← k + 1

7: end while

Output: Qk ∈ Or and a completely positive factorization A = (BQk)(BQk)
T

Clearly, if Algorithm 2 terminates, then it yields a completely positive factorization of A. How-

ever, since Algorithm 2 is not a pure alternating projections method, we do not get a local con-

84

6.3 Algorithms for Matrices in the Interior of the Completely Positive Cone

vergence result like in Theorem 6.6. Nevertheless, numerical experiments in Chapter 7 will show

that this algorithm is highly efficient.

In the following section, we will see that it is possible to modify Algorithms 1 and 2 to show

that a matrix is even an element of the interior of the completely positive cone.

6.3 Algorithms for Matrices in the Interior of the Completely
Positive Cone

In this section, we will first see an algorithm based on Algorithm 1, which can be used to gain a

certificate for a given matrix A to be an element of the interior of the completely positive cone.

Assume that we are given an initial factorization A = BBT with B ∈ Rn×r, where either

r = cpr+(A) if this quantity happens to be known, or if the exact cp+-rank is unknown, then

the bound r = cp+
n from Lemma 2.32 may be used. As described in Theorem 4.7, solving one of

the feasibility problems in (32) or (33) is equivalent to proving A ∈ int(CPn).

To use Algorithm 1 in this setting, we have to replace the set P with one of the following sets

Pε,1 :=

{
Q ∈ Rr×r

∣∣∣∣∣ BQij ≥
{
ε, j = 1, i = 1, . . . , n

0, j 6= 1, i = 1, . . . , n

}}
or

Pε,2 := {Q ∈ Rr×r | BQ ≥ εEn×r},

where ε > 0 is a small threshold value.

Remark 6.11. If we denote by Eε the matrix whose entries of the first column are equal to ε and

all other entries are equal to 0, then this yields

Pε,1 = {Q ∈ Rr×r | BQ ≥ Eε}.

Similar to Lemma 6.1, we have the following result:

Lemma 6.12. The projection of a matrix M onto Pε,1 or Pε,2 is unique and computing it amounts

to solving an explicit second order cone problem (SOCP) for each of the sets:

For the projection onto Pε,1, we consider the problems

min ‖X −M‖
s. t. BX ≥ Eε

⇔
min t

s. t. BY ≥ Eε −BM
(t, vec(Y)) ∈ SOC.

And for the projection onto Pε,2, we consider the problems

min ‖X −M‖
s. t. BX ≥ εEn×r

⇔
min t

s. t. BY ≥ εEn×r −BM
(t, vec(Y)) ∈ SOC.

85

6 Applying Alternating Projections to Construct CP-Factorizations

Proof. Since Pε,1 and Pε,2 are polyhedral sets and hence convex, the projection of a matrix M

onto Pε,1 or Pε,2 is unique. With the same argument as in Lemma 6.1 and Y := X −M , we get

for Pε,1:

min ‖X −M‖
s. t. BX ≥ 0

⇔
min ‖Y ‖
s. t. BY ≥ Eε −BM

⇔
min t

s. t. BY ≥ Eε −BM
t ≥ ‖Y ‖

⇔
min t

s. t. BY ≥ Eε −BM
t ≥ ‖ vec(Y)‖

⇔
min t

s. t. BY ≥ Eε −BM
(t, vec(Y)) ∈ SOC,

Replacing Eε with εEn×r shows the result for Pε,2, completing the proof.

So we can compute the projection of a matrix onto Pε,1 or Pε,2. This gives rise to the following

algorithms, which are based on Algorithm 1. For the first algorithm, we consider the set Pε,1.

Algorithm 3 Alternating projections between Pε,1 and Or
Input: A = BBT with B ∈ Rn×r and r ≥ cpr+(A); initial matrix Q0 ∈ Or; ε > 0

1: k ← 0

2: while BQk 6≥ Eε do
3: Pk ← PPε,1(Qk)

4: Qk+1 ← POr(Pk)

5: k ← k + 1

6: end while

Output: Qk ∈ Or and a cp-factorization A = (BQk)(BQk)
T with (BQk) ≥ Eε

Alternatively, considering the set Pε,2 gives rise to the following algorithm.

Algorithm 4 Alternating projections between Pε,2 and Or
Input: A = BBT with B ∈ Rn×r and r ≥ cpr+(A); initial matrix Q0 ∈ Or; ε > 0

1: k ← 0

2: while BQk 6≥ εEn×r do
3: Pk ← PPε,2(Qk)

4: Qk+1 ← POr(Pk)

5: k ← k + 1

6: end while

Output: Qk ∈ Or and a cp-factorization A = (BQk)(BQk)
T with (BQk) > 0

In addition, note that Pε,1 and Pε,2 are semialgebraic sets since they are the solution set to a set

of polynomial inequalities. Hence, Theorem 6.6 extends to this setting and we get the following

result.

86

6.3 Algorithms for Matrices in the Interior of the Completely Positive Cone

Theorem 6.13. Let A ∈ int(CPn). Further let A = BBT be any initial factorization with

B ∈ Rn×r and r ≥ cpr+(A). Define Pε,1 = {Q ∈ Rr×r | BQ ≥ Eε} and Pε,2 = {Q ∈ Rr×r |
BQ ≥ εEn×r} for ε > 0 and Eε as introduced in Remark 6.11. Then we have:

(a) There exists ε > 0 such that Pε,1 ∩ Or 6= ∅ and Pε,2 ∩ Or 6= ∅.

(b) Let ε > 0 be small enough. If started at a pointQ0 close to Pε,1∩Or (resp. to Pε,2∩Or), then

Algorithm 3 (resp. Algorithm 4) converges to a pointQ∗ ∈ Pε,1 ∩ Or (resp. Q∗ ∈ Pε,2 ∩ Or).
In this case, A = (BQ∗)(BQ∗)T is a completely positive factorization of A with BQ∗ ≥ Eε

(BQ∗ > 0 resp.), showing that A ∈ int(CPn).

Proof. We will prove both parts separately.

(a): Since A ∈ int(CPn) and r ≥ cpr+(A), it follows from equation (7) that there exists

C ∈ Rn×r such that C > 0 and A = CCT . Since A = BBT = CCT , Lemma 3.11 implies that

there exists Q ∈ Or such that BQ = C > 0. Let ε1 := mini,j Cij > 0, then Q ∈ Pε1,2 ∩ Or.
On the other hand, due to equation (8), there exists C̄ ∈ Rn×r such that C̄ ≥ 0, the first column

of C̄ is entrywise strictly positive and A = C̄C̄T . Again Lemma 3.11 implies that there exists

Q ∈ Or such that BQ = C̄. Let ε2 := mini C̄i1 > 0, then Q ∈ Pε2,1 ∩ Or. Finally, we define

ε := min{ε1, ε2}, proving part (a).

(b): Both Pε,1 (respectively Pε,2) andOr are closed semialgebraic sets andOr is bounded. The

convergence result now follows by applying [42, Theorem 7.3], which was given as Theorem 5.57

in this thesis.

We can also give a modified algorithm based on Algorithm 2 to avoid second order cone prob-

lems in every projection step onto Pε,1 or Pε,2. To this end, it is necessary to replace the projection

onto the nonnegative orthant in equation (56) with the following projection for some ε > 0:

If we use Pε,1, let

Dε,1
ij := max{BQij , (Eε)ij} for all i = 1, . . . , n and j = 1, . . . , r,

where Eε is as defined in Remark 6.11. Further for Pε,2, let

Dε,2
ij := max{BQij , ε} for all i = 1, . . . , n and j = 1, . . . , r.

Compared to Lemma 6.10, we have the following stronger result in this setting.

Lemma 6.14. Consider the matrices Dε,1 and Dε,2 as defined above. If BQ = Dε,i for any

i ∈ {1, 2}, then Q ∈ Pε,i. Moreover, let B+ denote the Moore-Penrose-inverse of B and define

P̂ ε,i := B+Dε,i + (I −B+B)Q ∈ Rr×r,

for every i ∈ {1, 2}. Then P̂ ε,i ∈ Pε,i for every i ∈ {1, 2}.

Proof. Since the proofs are equal for any choice of i ∈ {1, 2}, will will prove the result in general

for i ∈ {1, 2}: If Dε,i = BQ, then Q ∈ Pε,i by definition. Now let Dε,i 6= BQ and assume

87

6 Applying Alternating Projections to Construct CP-Factorizations

that BX = Dε,i has a solution X . Since Dε,i 6= BQ, the matrix Q does not solve the equation

BX = Dε,i. Since the equation is solvable, P̂ ε,i is a solution due to Lemma 6.7. Moreover, it is

the unique solution of the equation BX = Dε,i which minimizes the distance to Q according to

Remark 6.9. Thus, the matrix P̂ ε,i is the projection of Q onto the set {X ∈ Rr×r | BX = Dε,i}.
This set is a subset of Pε,i by definition. So we get P̂ ε,i ∈ Pε,i.

Furthermore, we can show that there always exists a solution X to BX = Dε,i. To see this,

note that X = P̂ ε,i minimizes the residual ‖BX −Dε,i‖ and among all minimizers it is the one

closest to Q. In this case, the properties of B+ yield

BP̂ ε,i = BB+Dε,i + (B −BB+B)Q = BB+Dε,i.

Since A ∈ int(CPn), we know A is of full rank by definition. Thus, the rows of B are linearly

independent inducing BB+ = In, cf. Lemma A.3. This now implies BP̂ ε,i = Dε,i and hence

again P̂ ε,i ∈ Pε,i.

Thus, we will take P̂ ε,1 resp. P̂ ε,2 as an approximation of PPε,1(Q) respectively PPε,2(Q).

This motivates the following modified algorithm. Here we consider only Pε,2. To obtain the

Algorithm for Pε,1, we simply have to replace the set Dε,2 with Dε,1 and the algorithm terminates

if BQk ≥ Eε, where Eε is as defined in Remark 6.11.

Algorithm 5 Modified algorithm for the interior of the completely positive cone
Input: A = BBT with B ∈ Rn×r and r ≥ cpr+(A); initial matrix Q0 ∈ Or; ε > 0

1: k ← 0

2: while BQk 6≥ εEn×r do
3: Dε,2 ← max{BQk, εEn×r} entrywise

4: P̂k ← B+Dε,2 + (I −B+B)Qk

5: Qk+1 ← POr(P̂k)

6: k ← k + 1

7: end while

Output: Qk ∈ Or and a completely positive factorization A = (BQk)(BQk)
T with (BQk) > 0

Again, this approach is not a pure alternating projections method such that we loose the local

convergence result in this case.

In the following chapter, we will see numerical experiments which prove that the modified Algo-

rithms 2 and 5 are highly efficient. Furthermore, we will illustrate the convergence of Algorithm 1

and 4 for concrete examples.

88

7 Numerical Results

In this chapter, we will analyse the numerical performance of the algorithms introduced in Chap-

ter 6. Some of the experiments mentioned here can also be found in the submitted article [50].

The following numerical results were carried out on a computer with 88 Intel Xenon ES-

2699 cores (2.2 Ghz each) and a total of 0.792 TB RAM. The algorithms were implemented

in MatlabR2017a, the SOCPs in Algorithms 1 and 4 were solved using Yalmip R20170626 and

SDPT3 4.0.

The experiments were carried out as follows: If A is of full rank, then we use the Cholesky

factorization as the initial factorization B̃; otherwise, we compute B̃ via the eigendecompostion

as in Section 3.2. For the given value r ≥ cpr(A), we generate from B̃ a matrix B ∈ Rn×r

with A = BBT by column replication as described in Lemma 3.23. We use column replication

throughout, only in Section 7.6 we also use appending zero columns as described in Section 3.6

for comparison.

We produce the random starting point Q0 by generating a random r × r-matrix M using the

Matlab command randn and then setting Q0 ← POr(M). Algorithm 1 (resp. Algorithm 2) ter-

minates successfully at iteration k if BQk ≥ −10−15, it terminates unsuccessfully if a maximum

number of iterations (usually 5000) is reached. Since not all starting points lead to a successful ter-

mination, we repeat the experiment for a number of different starting points (usually 100 starting

points).

7.1 A Specifically Structured Example in Different Dimensions

First of all, we will show that Algorithm 2 terminates successfully in different dimensions. To this

end, consider the following example, cf. [85, Example 7.4].

Example 7.1. Let en denote the all-ones-vector in Rn and consider the matrix

An :=

(
0 eTn−1

en−1 In−1

)T (
0 eTn−1

en−1 In−1

)
∈ Rn×n.

It has been shown in [85, Example 7.4] that An ∈ int(CPn) for every n ≥ 2. By construction,

it is clear that cpr(An) = n. Nevertheless, the given factorization does not verify the membership

to the interior of the completely positive cone since every column has at least one zero entry.

For the first experiment, we will try to factorizeAn for the values n ∈ {10, 20, 50, 75, 100, 150}.
In addition, since the exact cp-rank is known, we use r = cpr(An) = n and a maximum of 5000

iterations per starting point. For each An, we tested 100 starting points and plotted the percentage

89

7 Numerical Results

of successfully terminating starting points depending on the number of iterations. The results are

illustrated in Figure 7.1.

Figure 7.1: Success rate of Algorithm 2 for Example 7.1 with different values of n.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

number of iterations

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
ta

rt
in

g
po

in
ts

 g
iv

in
g

a
cp

-f
ac

to
riz

at
io

n
in

 le
ss

 th
an

 x
 it

er
at

io
ns

n=10
n=20
n=50
n=75
n=100
n=150

On the abscissa, we find the number of iterations upper bounded by 5000, the maximum number

of iterations. On the axis of ordinates, we see the percentage of starting points out of the 100

starting points providing a cp-factorization in less then x iterations. First, we notice in Figure 7.1

that Algorithm 2 succeeds in factorizing An in all cases. However, the percentage of successful

starting points varies. Let us have a closer look at the blue line, representing n = 10, and at the

dotted purple line, representing n = 75, in comparison. Here we see that after 500 iterations

approximately 65% of the starting points already provided a cp-factorization for n = 10, whereas

for n = 75 the algorithm did not terminate successfully so far. After 3000 iterations conversely,

the algorithm terminates successfully for approximately 45% of the starting points for n = 75.

For n = 10 more than 80% of the starting points led to a cp-factorization. These values will not

increase, given an increasing number of iterations. Thus, in total we notice that for n = 10 more

than 80% of the starting points, and for n = 75 more than 50% of the starting points returned a

cp-factorization of A in less than 5000 iterations. Moreover, the percentage of successful starting

points decreases for increasing n. Here we should keep in mind that we used the exact cp-rank

information, and not the upper bound cpn for the cp-rank, for the number of columns in our initial

factorization.

This example therefore verifies the successful termination of Algorithm 2. A concrete cp-

factorization for n = 10, returned by the algorithm, is A10 = CCT , where

90

7.2 The Influence of the Parameter r

C =



0.5716 0.4287 0.0532 0.0000 0.5069 2.8415 0.1569 0.3434 0.1138 0.0000

0.4191 0.3664 0.0544 0.1965 0.5360 0.0361 1.1595 0.1242 0.0149 0.0000

0.0000 0.1171 0.1892 0.8072 0.3366 0.1984 0.4776 0.3755 0.0137 0.8815

0.3279 0.3561 1.1101 0.1012 0.4358 0.0637 0.3159 0.3811 0.1635 0.2394

1.0491 0.1137 0.0821 0.0000 0.5241 0.0000 0.1859 0.1382 0.0436 0.7413

0.0000 0.3273 0.0195 0.0000 1.2030 0.0101 0.1399 0.5775 0.0000 0.3034

0.2479 1.1492 0.0489 0.0000 0.1329 0.0353 0.2987 0.4310 0.0034 0.5671

0.5300 0.6589 0.1273 0.8149 0.6319 0.0077 0.0169 0.0333 0.4516 0.0000

0.6267 0.2148 0.0616 0.4197 0.1999 0.0046 0.2810 1.1234 0.0177 0.0000

0.2355 0.2335 0.0546 0.0000 0.3507 0.0762 0.4681 0.5151 1.0344 0.4516



.

Since all the entries are nonnegative, this is clearly a cp-factorization of A10. Moreover, since for

example the second columns is even entrywise strictly positive and the matrix A10 is of full rank,

this factorization proves A10 ∈ int(CP10), based on the results in Theorem 2.19. Here the given

factorization in Example 7.1 does not provide a certificate for A10 ∈ int(CP10). So even without

applying Algorithm 5, it may happen that the resulting decomposition proves the membership to

the interior of the completely positive cone.

For this experiment, the value r was equal to the cp-rank of the input matrix An for every n. So

what happens if we allow more than cpr(An) columns in our initial factorization? This question

will be answered in the following section.

7.2 The Influence of the Parameter r

For the Algorithms 1 and 2, we need an input parameter r ≥ cpr(A) and for the Algorithms 4

and 5 an input parameter r ≥ cpr+(A). However, for a general input matrix A ∈ Rn×n, it is

usually impossible to compute cpr(A) or cpr+(A). Therefore, it becomes necessary to use the

bounds cpn or cp+
n from Lemma 2.32, i.e., to use r = cpn ≥ cpr(A) or r = cp+

n ≥ cpr+(A).

In the following experiment, we will see the influence of the parameter r. We therefore fixed the

parameter n in Example 7.1 and considered increasing values of r ≥ n. Figure 7.2 shows the

performance of Algorithm 2 in this setting. Here n = 6 was used with a maximum number of

5000 iterations per starting point and a total of 1000 starting points for each value of r.

Figure 7.2 shows that the algorithm produces a cp-factorization of A6 for each value of r. Note,

however, that the percentage of successful starting points increases for increasing r such that for

r ≥ 15 nearly every starting point gives a cp-factorization of A6 in less than 750 iterations. Con-

sidering r = 6, we notice that even after 5000 iterations the algorithm only terminates successfully

for around 75% of the starting points. In addition, Figure 7.2 indicates that an increasing value

of r leads to a decreasing average number of iterations until termination. If we compare the yel-

low dashed graph, representing r = 12, and the green graph, representing r = 18, we can see

a clear shift to the left for increasing r, showing a decreasing average number of iterations until

termination, even if the success rate is similar.

A similar picture can be obtained for the matrixAn from Example 7.1 for other values of n. For

this, see for example Figure 7.3, where we fixed the value n = 10 and considered again several

values of r ≥ cpr(A10).

91

7 Numerical Results

Figure 7.2: Success rate of Algorithm 2 for the matrixA6 from Example 7.1 using different values
of r ≥ cpr(A6) = 6.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

number of iterations

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
ta

rt
in

g
po

in
ts

 g
iv

in
g

a
cp

-f
ac

to
riz

at
io

n
in

 le
ss

 th
an

 x
 it

er
at

io
ns

r=6
r=9
r=12
r=15
r=18

Figure 7.3: Success rate of Algorithm 2 for the matrixA10 from Example 7.1 using different values

of r ≥ cpr(A10) = 10.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

number of iterations

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
ta

rt
in

g
po

in
ts

 g
iv

in
g

a
cp

-f
ac

to
riz

at
io

n
in

 le
ss

 th
an

 x
 it

er
at

io
ns

r=10
r=20
r=30
r=40
r=50

92

7.3 A Low cp-rank Matrix Without Known Factorization

Here we can also observe the following: Increasing the parameter r up to 40 gives a success

rate of 100%, such that any of the 1000 starting points returned a cp-factorization of A10. In

conclusion, we see that it can make sense to increase the value of r, even though the exact cp-

rank is known, such that more starting points will yield a successful termination. Of course, this

results in a trade off between the increasing order r, leading to higher computation times, and an

increasing success rate for the starting points. Hence, for numerical applications, this gives rise to

the following suggestion:

Remark 7.2. As a recommended recipe for the choice of the parameter r, we start the algorithm

with r = n and increase r gradually up to cpn, stopping whenever the algorithm successfully

outputs a factorization. The reason behind this recommendation is that obviously iterations are

faster for smaller values of r (recall that the algorithm works with matrices in Rr×r), cf. also

Table 7.2 in Section 7.9 for this observation. Moreover, for small n, the bound cpn ≈ n, whereas

for large n, we have cpn � n. Numerical evidence shows that for most matrices cpr(A)� cpn,

so setting r = cpn results in unnecessarily long computation times.

The matrices in Example 7.1 are of full rank and therefore the cp-rank can not be smaller than n

due to Lemma 2.24 (b). In the following section, we will therefore consider a matrix which is not

of full rank and is therefore not an element of the interior of the completely positive cone.

7.3 A Low cp-rank Matrix Without Known Factorization

Hitherto, we considered matrices for which a cp-factorization is already known. In this section,

we consider a matrix which is known to be completely positive, but for which no factorization is

known.

Example 7.3. Consider the following matrix from [88, Example 2.7]:

A =


41 43 80 56 50

43 62 89 78 51

80 89 162 120 93

56 78 120 104 62

50 51 93 62 65


According to the sufficient condition from [88, Theorem 2.5] (see also Theorem 2.13), this

matrix is completely positive with cpr(A) = rank(A) = 3.

We try to factorize this matrix using Algorithm 2 with r = 5. We use the 5 × 5 eigenvalue

decomposition of A which gives the initial factorization matrix

B =

(0.0000 0.0000 0.1341 −1.5233 6.2178
0.0000 0.0000 −1.6716 1.9775 7.4361
0.0000 0.0000 1.5900 −0.9900 12.5893
−0.0000 −0.0000 0.2307 3.0140 9.7398

0.0000 −0.0000 −1.4547 −3.0168 7.3337

)
,

where the absolute values of all the±0.0000 entries are less than or equal to 10−7. Due to the fact

that rank(A) = 3, we only have three relevant columns. Using the randomly generated starting

93

7 Numerical Results

matrix

Q0 =

(−0.1279 −0.2308 0.7810 −0.0522 −0.5636
0.7308 −0.6428 −0.0056 −0.2022 0.1084
−0.0936 −0.3503 0.1076 0.8965 0.2308

0.3208 0.1351 −0.4341 0.3342 −0.7607
0.5812 0.6265 0.4358 0.2026 0.1967

)
, (57)

Algorithm 2 provides the following cp-factorization in 0.019 seconds and after 262 iterations,

again with a precision of 10−7:

A = B̃B̃T , with B̃ =

(
3.1801 3.0200 4.6654 0.0000 0.0000
5.5713 5.1616 2.0779 0.0000 0.0000
8.2927 4.9557 8.2869 0.0000 0.0000
8.4857 4.6641 3.1999 0.0000 0.0000
2.3517 4.9677 5.8984 0.0000 0.0000

)
. (58)

Since two zero columns appear in the matrix B, this factorization confirms that cpr(A) = 3 and

gives an explicit cp-factorization of A for the first time.

Since A is not of full rank, A /∈ int(CP5). So this example shows that Algorithm 2 can

also factorize matrices on the boundary of the completely positive cone. We will compare the

performance of Algorithm 2 in the interior and on the boundary of CPn in Section 7.7. Before

that, we will show that Algorithm 1, again applied to Example 7.3, also returns a cp-factorization.

7.4 A Concrete Example for Algorithm 1

We can also apply Algorithm 1 to Example 7.3 in order to obtain a cp-factorization. In contrast

to Algorithm 2 and the results in the previous section, Algorithm 1 provides the following cp-

factorization in 3.8 seconds and after 6 iterations:

A = B̃B̃T , with B̃ =

(
1.6834 2.2445 0.8958 2.8246 4.9343
1.5748 5.1870 2.7833 3.9399 3.0571
5.0415 5.5538 2.2720 4.8436 8.7816
4.1271 6.6558 3.2893 3.8871 4.0912
0.3538 2.1936 0.9657 4.2716 6.3940

)
.

Here we use the following starting point

Q0 =

(0.2730 −0.4657 0.1679 −0.1818 −0.8046
−0.4681 0.5075 −0.1734 −0.6082 −0.3513

0.6708 0.0676 0.0054 −0.6566 0.3380
0.3533 0.6915 0.4903 0.3086 −0.2478
0.3628 0.2069 −0.8374 0.2659 −0.2315

)
.

To show that Algorithm 1 provides a different result compared to Algorithm 2 for the same

starting point, we test Algorithm 1 also for the starting point Q0 in equation (57). Here after the

very first iteration and 1.81 seconds Algorithm 1 returns

A = B̃B̃T , with B̃ =

(
4.1600 4.1090 2.0356 1.3517 0.9161
3.8291 2.7471 4.4371 2.4489 3.7559
7.9270 7.9547 4.7735 1.0762 3.4555
5.0406 4.2915 5.5257 0.9113 5.3677
5.1462 4.7580 2.1849 3.3308 0.0992

)
. (59)

Comparing the factorizations in equations (58) and (59), we can see that both algorithms provide

different factorizations for the same starting point. Moreover, Algorithm 2 takes only 1% of the

computation time of Algorithm 1 for this starting value, even though more iterations are necessary

to obtain a cp-factorization. In addition, the factorization in equation (59) does not prove the

equation cpr(A) = 3, in contrast to equation (58). Hence, Example 7.3 gives a first hint on the

differences in the results of both algorithms. In the following section, we will therefore have a

closer look at the performance of Algorithms 1 and 2 in comparison.

94

7.5 Algorithms 1 and 2 in Comparison

7.5 Algorithms 1 and 2 in Comparison

The next experiment is again based on Example 7.3 and compares the performance of Algorithms 1

and 2. Here we test the same 100 starting points for both algorithms, choosing 500 as a maximal

number of iterations per starting point. Even though we already know the cp-rank of the given

matrix, we will chose r = cp5 = 12 to compare the performance of both algorithms in the setting

of no further information. The success rate for each algorithm is plotted in Figure 7.4.

Figure 7.4: Success rates of Algorithms 1 and 2 in comparison.

0 50 100 150 200 250 300 350 400 450 500

number of iterations

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
s
ta

rt
in

g
 p

o
in

ts
 g

iv
in

g
 a

 c
p
-f

a
c
to

ri
z
a
ti
o
n

in
 l
e
s
s
 t
h
a
n
 x

 i
te

ra
ti
o
n
s

Algorithm 1

Algorithm 2

Figure 7.4 shows that Algorithms 1 and 2 only have local convergence, since not every starting

point returns a cp-factorization in less than 500 iterations. For Algorithm 1, this substantiates the

results in Theorem 6.6. If we look at the success rate after 500 iterations, Algorithm 1 provides a

completely positive factorization for 61% of the starting points, whereas Algorithm 2 terminates

successfully for 78% of the starting points. In addition, we see that the number of iterations

necessary to compute a factorization is lower for Algorithm 1. Especially, if we consider the

success rate after 100 iterations, Algorithm 1 already reaches its maximal success rate whereas

for Algorithm 2 only around 20% of the starting points return a cp-factorization. However, the

iterations of Algorithm 1 are much more expensive: running all 100 starting points in Algorithm 2

takes 4.5 seconds, but 5656 seconds for Algorithm 1.

This shows that Algorithm 2 is much faster in total: although it may need more iterations than

Algorithm 1, the numerical cost of a single iteration is much smaller. Moreover, the percentage of

successfully terminating starting points is higher for Algorithm 2.

95

7 Numerical Results

Next, we will take a closer look at the initial factorizations and their influence on the perfor-

mance of Algorithm 2, i.e. we will compare the performance of Algorithm 2 for the two different

possibilities to obtain a suitable initial factorization introduced in Section 3.6.

7.6 Column Replication Versus Appending Zero Columns

In Section 3.6, we mentioned two possible ways of expanding an initial factorization matrix

B ∈ Rn×n into a matrix with r ≥ cpr(A) columns: either by column replication as described

in (24), or by appending zero columns as introduced in (23). To see which approach performs

numerically better, we use Example 7.1 for n = 5 and r = cp5 = 12 such that column replication

or appending zero columns is necessary for our initial factorization. We use the same 100 starting

points for both approaches and a maximum of 500 iterations per starting point. The performance

of Algorithm 2 in this setting is illustrated in Figure 7.5.

Figure 7.5: Success rate of Algorithm 2 for column replication versus appending zero columns.

0 50 100 150 200 250 300 350 400 450 500

number of iterations

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
s
ta

rt
in

g
 p

o
in

ts
 g

iv
in

g
 a

 c
p

-f
a

c
to

ri
z
a

ti
o

n

in
 l
e

s
s
 t

h
a

n
 x

 i
te

ra
ti
o

n
s

Column Replication

Appending Zero Columns

Figure 7.5 shows that when appending zero columns, roughly 55% of the starting points yield

a cp-factorization in less than 500 iterations, as opposed to 95% if we use column replication.

Focussing on the starting points for which the algorithm terminates successfully, the mean number

of iterations needed to provide a cp-factorization is 212 for the column replication approach and

346 if we append zero columns. For those cases where both approaches were successful, column

replication was always faster, i.e., terminated after fewer iterations. Moreover, given any number

of iterations in between 0 and 500, appending zero columns never returns a higher success rate

for this example. These results suggest that the column replication approach is numerically more

efficient than appending zero columns.

In the following section, we will have a closer look at the performance of Algorithm 2 at the

boundary and in the interior of the completely positive cone.

96

7.7 Performance of Algorithm 2 on the Boundary and in the Interior of CPn

7.7 Performance of Algorithm 2 on the Boundary and in the
Interior of CPn

In this section, we illustrate how Algorithm 2 behaves for matrices on the boundary of CPn. We

start with an instance where the algorithm fails. Consider again the matrix in Example 2.43.

Example 7.4. Consider the following matrix taken from [44]:

ADS =


8 5 1 1 5

5 8 5 1 1

1 5 8 5 1

1 1 5 8 5

5 1 1 5 8

 ∈ CP5 \ int(CP5).

Neither Algorithm 1 nor Algorithm 2 succeed in factorizing this matrix. In view of Theo-

rem 6.6, this may seem surprising, however we can suspect that the region of local convergence of

Algorithm 1 is so small that numerical precision prevents us from finding a starting point there.

In the following, we will see that for slight perturbations of this matrix, Algorithm 2 becomes

successful in finding a factorization. To this end, we investigate convex combinations ofA and the

following matrix C ∈ int(CP5):

C = MMT , where M =


1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

 .

Table 7.1 shows the performance of Algorithm 2 for Aλ := λADS + (1−λ)C for different values

of λ ∈ [0, 1]:

λ time (sec.) success rate (%) λ time (sec.) success rate (%)
0 3 100 0.8 51 50
0.1 5 99 0.9 72 23
0.2 9 95 0.95 69 26
0.3 15 93 0.97 69 36
0.4 28 82 0.976 71 24
0.5 32 73 0.977 79 5
0.6 34 72 0.9774 80 1
0.7 46 51 0.9775 83 0

Table 7.1: Performance of Algorithm 2 for the matrix Aλ for different values of λ ∈ [0, 1] and
r = cp+

5 = 12. For each Aλ, we run Algorithm 2 with 100 starting points and a
maximum of 5000 iterations per starting point. Column 2 shows the total computation
time of Algorithm 2 for all 100 starting points.

97

7 Numerical Results

For the matrix C itself, every starting point returns a cp-factorization but as we approach the

boundary of CPn, the success rate decreases and the computing time increases. The latter is

because the closer we get to the boundary, the higher the number of starting points for which the

algorithms runs for a high number of iterations. Note that only very close to the matrix ADS
does the success rate decrease rapidly, and we even find a factorization of the matrix Aλ with

λ = 0.97749.

Nevertheless, Example 7.3 and the numerical results in Section 7.3 prove that Algorithm 2

works well for some matrices at the boundary. In the following, we will consider more difficult

instances for which both algorithms struggle to return a cp-factorization.

7.8 Other Difficult Instances

Whereas Algorithm 2 succeeded in factorizing the matrix of low cp-rank from Example 7.3, it

failed for all the matrices of high cp-rank introduced in Section 2.5. As shown, these are specifi-

cally constructed matrices for which cpr(A) � rank(A). Algorithm 2 failed for these instances,

even by gradually increasing r up to two or three times cpr(A). So for these artificially gener-

ated matrices, Algorithm 2 seems to struggle finding a suitable initial orthogonal matrix, even for

higher values of r. Similar observations hold for Algorithm 1 such that both algorithms struggle

to find cp-factorizations for these matrices.

Nevertheless, the following example proves that Algorithm 2 can factorize matrices for which

the cp-rank is greater than the rank. To this end, let us go back to Example 2.27 and consider the

matrix

Acp4 =


6 3 3 0

3 5 1 3

3 1 5 3

0 3 3 6


of rank 3 with cpr(Acp4) = 4. Using the exact cp-rank information, we set r = 4. This yields the

initial factorization Acp4 = BBT with

B =

0 0.0000 −1.7321 1.7321

0 −1.4142 −0.0000 1.7321

0 1.4142 0.0000 1.7321

0 −0.0000 1.7321 1.7321

 .

Then, starting Algorithm 2 with the initial orthogonal matrix

Q0 =

−0.7722 −0.2153 −0.5685 −0.1851

−0.2036 0.6411 −0.1983 0.7129

0.1634 −0.7227 −0.1605 0.6520

0.5793 0.1423 −0.7822 −0.1800



98

7.9 Randomly Generated Examples of Higher Order

returns the following factorization in 0.0187 seconds and after 314 iterations:

Acp4 = CCT , with C =

1.2759 2.0910 0.0000 0.0000

1.2759 0.6562 1.7151 0.0000

0.0000 1.4347 0.0341 1.7148

0.0000 0.0000 1.7492 1.7148

 .

Since all the entries are nonnegative, this is a cp-factorization of Acp4, proving that Algorithm 2

can factorize matrices of cp-rank greater than the rank.

In addition, we can try to apply Algorithm 2 to recover the stable set of a graph from the solution

of problem (12). Unfortunately, this is unsuccessful. The reason is that typically the solution

of (12) is a matrix that contains a number of zero entries, which imposes a certain sparsity pattern

for the factorization matrix B as well: whenever Aij = 0 and A = BBT , then the columns Bi
and Bj necessarily have to have disjoint support. Generating an orthogonal matrix that provides

this is extremely unlikely, so without further adjustments, Algorithm 2 will typically fail for such

instances.

In the following, we will show that the algorithms may fail in these special cases but will

terminate successfully for randomly generated examples even of high order.

7.9 Randomly Generated Examples of Higher Order

Next, we investigate randomly generated matrices of higher order to see how the algorithm de-

pends on the order of the input matrix. The instances were generated as follows: First, we generate

a random n × k matrix B using the Matlab command randn. Next, we compute C by setting

Cij := |Bij | for all i, j, and finally we take A = CCT as the matrix to be factorized by our

algorithm. By construction, we have A ∈ CPn with cpr(A) ≤ k. Table 7.2 illustrates the results

for k = 2n.

n cp+
n r # of initial Q0 # of iterations time (sec.)

35 627 36 58.6 1937 192
50 1272 51 92 1765 504
50 1272 151 1 177 0.9
100 5047 151 1 1365 9.8
100 5047 301 1 183 4
150 11322 201 1.2 2384 42
200 20097 301 1.1 1547 47
1000 500497 1500 1.1 2454 1092
2000 2000997 3000 1.2 2993 9675

Table 7.2: Performance of Algorithm 2 for randomly generated matrices A for several values of n
and k = 2n. For n ≤ 50, we used 100 starting points, for n > 50, we used 10 starting
points. In each case, we used a maximum of 5000 iterations per starting point. The
numbers in columns 4-6 represent the average of 100 randomly generated instances.

99

7 Numerical Results

Table 7.2 shows that for every value of n and r > k, Algorithm 2 is successful for all randomly

generated instances.

Taking a more detailed look at the case n = 50 and especially the case r = n + 1, we see that

92 starting points were necessary to obtain a cp-factorization, on average of the 100 runs. Here

each run takes more than 500 seconds on average. For the case r = 3n + 1 on the other hand,

all starting points lead to a successful termination. Moreover, each of the 100 runs takes only one

second on average. Table 7.2 shows similar results for n = 100. This might be due to the fact that

n + 1 is not necessarily a sufficient number of columns in our initial factorization, since we just

know that n ≤ cpr(A) ≤ k = 2n. Hence, we conclude that using a higher value of r can lead to

immense time savings, although a single iteration will take longer.

In addition, we also tested matrices of high order. As can be seen from Table 7.2, time con-

sumption increases exponentially for increasing n, but even for n = 2000, Algorithm 2 provides

a factorization. Here every run takes 160 minutes on average.

In addition, we notice that the upper bound cp+
n increases quadratically for increasing n, such

that, as already mentioned in Section 7.2, it is recommended to start with a value r � cp+
n .

But on the other hand, if the value r is chosen too small, the number of columns in the initial

factorization might be insufficient, as we can see in Table 7.2 for several values of n. For most

instances r = 1.5n was sufficient, still fulfilling r � cp+
n .

In the following section, we will compare the performance of Algorithm 2 with an existing

algorithm by Ding et al. introduced in [39].

7.10 Comparison with an Algorithm by Ding et al.

In [39], Ding et al. proposed a simple algorithm for cp-factorizations. Their algorithm works by

updating a randomly chosen initial factorization. For the reader’s convenience, this method is

stated as Algorithm 6.

Algorithm 6 The algorithm by Ding et al. [39]
Input: matrixA ∈ Rn×n, r ∈ N, qmax ∈ N, MaxIter ∈ N, β ∈ (0, 1]

1: for q = 1 : qmax do
2: B ← randn(n, r)
3: optional: B ← max(AB(BTB)−1, 0)
4: while (‖A−BBT ‖2 ≥ 10−12 or mini,j Bij ≤ −10−15) or k < MaxIter do
5: for i = 1 : n do
6: for j = 1 : r do
7: Bij ← Bij

(
1− β + β

(AB)ij
(BBTB)ij

)
8: end for
9: end for

10: end while
11: end for

Here we use β = 0.5 as suggested in [39], qmax = 100 and MaxIter = 5000. For each r, we

perform 100 runs of Algorithm 6.

100

7.10 Comparison with an Algorithm by Ding et al.

r av. computation time (sec.) av. success rate (%) av. number of iterations
3 4.8 18.5 50
4 5.5 13.5 51
5 5.5 15.6 51
10 5.1 4.5 52
15 5.9 2.4 51

Table 7.3: Performance of Algorithm 6 applied to Example 2.22.

Table 7.3 shows the performance of this method for the matrix

A :=

18 9 9

9 18 9

9 9 18


as in Example 2.22. Note that this matrix has cp-rank 3 due to Remark 2.36, so setting r = 3 in

Algorithm 6 would be optimal. The numbers in the table represent averages over the 100 runs:

average computation time for 100 initial values, average percentage of successful starting points,

and the average number of iterations if a successful initial matrix B is chosen.

Table 7.3 indicates that both the computation time and the average number of iterations are

independent of r, however the success rate is very sensitive to this parameter.

To compare these results with the performance of Algorithm 2, we run the same experiment

for Algorithm 2 with 100 starting points and a maximum of 5000 iterations per starting point and

values r ∈ {3, 4, 5, 10, 15}, again applied to the matrix in Example 2.22. The results are summed

up in the following table. The numbers in the table represent averages over the 100 runs: average

computation time for 100 initial values, average percentage of successful starting points, and the

average number of iterations if a successful initial matrix B is chosen.

r av. computation time (sec.) av. success rate (%) av. number of iterations
3 4.4 59.5 51
4 2.8 79.7 51
5 2.1 88 50
10 0.8 99.2 50
15 1.8 99.9 50

Table 7.4: Performance of Algorithm 2 applied to Example 2.22.

Here we notice that the average number of iterations is again independent of r and is similar to

results for Algorithm 6. But on the other hand, the average computation time is decreasing for in-

creasing values of r up to 10, in contrast to the stable computation time measured for Algorithm 6.

This is due to the fact that the success rate is increasing until it reaches nearly 100%. Increasing

the number of columns r in our initial factorization to more than 10 still increases the already very

high success rate on average, but the drawback of the increased order of the matrices is bigger such

that in total the average computation time increases again. Overall, we again get the result that

101

7 Numerical Results

a higher value of r leads to a higher success rate, indicating that the success rate of Algorithm 2

does not drop for higher values of r, in contrast to the success rate of Algorithm 6.

The observation that Algorithm 6 is sensitive to r is even more striking if we apply Algorithm 6

to Example 7.3, a 5 × 5 matrix A with cpr(A) = rank(A) = 3, as can be seen in Table 7.5: In

that example, the algorithm terminates only if r = cpr(A) is used, otherwise it fails completely.

r av. computation time (sec.) av. success rate (%)
3 8.5 4.5
5 9.7 0
10 9.3 0
15 9.2 0

Table 7.5: Performance of Algorithm 6 by Ding et al. with β = 0.5, qmax = 100 and MaxIter =
5000, applied to Example 7.3 and using different values of r. The numbers are averages
of 100 runs per value of r.

Again we compare the results in Table 7.5 to the performance of Algorithm 2 in this setting. We

test 100 starting points and a maximum of 5000 iterations per starting point for different values of

r ≥ n. Similar to the previous tables, the numbers in Table 7.6 represent the average of 100 runs.

r av. computation time (sec.) av. success rate (%) av. number of iterations
5 7.1 60.9 50
10 4.5 95.5 50
15 8.7 97.9 51

Table 7.6: Performance of Algorithm 2 applied to Example 7.3.

Here we see that for this example we can again obtain better results with Algorithm 2. The av-

erage number of iterations is still constant compared to the results for the matrix in Example 2.22.

Even for r = 5, we already have a success rate of more than 60% for Algorithm 2, whereas Al-

gorithm 6 fails completely. Again increasing the value r results in an increasing success rate on

average. For r ≥ 10 more than 95% of the starting points returned a cp-factorization.

Remark 7.5. To use r < n for our algorithms, we need further adjustments. These adjustments

are introduced in Chapter 8 as a method to derive nonnegative matrix factorizations for a given

matrix.

In addition, we test the performance of Algorithm 1 under the same conditions but with a max-

imum number of 500 iterations per starting point. The results can be found in Table 7.7 and

represent the average of 100 runs.

r av. computation time (sec.) av. success rate (%) av. number of iterations

5 5275 90.1 50

Table 7.7: Performance of Algorithm 1 applied to Example 7.3.

102

7.11 Comparison with a Method by Jarre and Schmallowsky

This proves that applying Algorithm 1 to Example 7.3 with an initial factorization of order 5×5

increases the success rate up to more than 90% on average, albeit with an increased computation

time. So, in total, we see that Algorithm 6 fails completely for r ≥ 5 whereas Algorithms 1 and 2

have a success rate of up to 98% in this setting.

More experiments with randomly generated matrices also showed that the algorithm of Ding

et al. is highly sensitive with respect to the parameter r and works badly if an inappropriate r is

chosen. Since in general, the cp-rank is not known a priori, this strong sensitivity with respect to

r must be considered a huge drawback. This is a disadvantage of Algorithm 6 which Algorithm 2

does not exhibit, and hence we consider Algorithm 2 more stable and robust with respect to the

algorithm parameters.

In the following, we will will compare the performance of Algorithm 2 to a method introduced

by Jarre and Schmallowsky, cf. [62].

7.11 Comparison with a Method by Jarre and Schmallowsky

As already mentioned in Section 3.1, Jarre and Schmallowsky [62] introduced a method to obtain

a certificate for a given matrix to be completely positive. Their method is based on an augmented

primal dual method (cf. [61]) and aims to solve a certain second order cone problem, where it

is necessary to solve Lyapunov equations to obtain a cp-factorization. For more details on this

approach, the reader is referred to [62, Section 2].

In the following, we will compare the performance of this approach to the performance of Algo-

rithm 2. As our first experiment, we consider again the matrixAcp4 as introduced in Example 2.27:

Acp4 =


6 3 3 0

3 5 1 3

3 1 5 3

0 3 3 6

 .

As shown in Section 7.8, Algorithm 2 returns a cp-factorization for this matrix in 0.0187 seconds

for the considered starting point. For the approach by Jarre and Schmallowsky on the other hand,

the user has to choose the number of columns for the factorization, such that we used the smallest

possible value (5 in this case) greater than or equal to 4, the cp-rank of Acp4. Then their approach

was not able to return a cp-factorization for Acp4 of order 4 × 5. Instead, the approach returns a

the matrix

B =


1.0383 0.3235 0.3234 0.0000 2.1753

0.4283 1.8625 0.0005 0.6358 0.9803

0.4283 0.0005 1.8625 0.6358 0.9803

0.0006 0.8341 0.8341 2.1598 0.0043

 ∈ R4×5

with ‖A−BBT ‖F = 1.1674. Hence, the approach provides a completely positive approximation

to A instead of a cp-factorization. Moreover, this observation extends to the case where we allow

more than 5 columns for the factorization. To this end, we analyse the quality of the approximation

103

7 Numerical Results

of the approach by Jarre and Schmallowsky by estimating ‖Acp4 − BBT ‖F with B ∈ R4×r for

several values of r. The results are summed up in the following table.

r ‖Acp4 −BBT ‖F
5 1.1674
6 1.3903
7 0.3723
8 0.3723
9 0.1262
10 0.4633

Table 7.8: Quality of the approximation of the approach by Jarre and Schmallowsky applied to
Example 2.27.

As can be seen from Table 7.8, the quality of the approximation is sensitive to the choice of r.

Nevertheless, the returned factorizations never provide a cp-factorization of Acp4, whereas Algo-

rithm 2 returned a cp-factorization Acp4 = CCT with ‖A − CCT ‖F ≤ 10−14. This proves that

the method by Jarre and Schmallowsky clearly returns an approximation A ≈ BBT in general

instead of a cp-factorization A = BBT with (numerically) strict equality, like Algorithm 2 does.

Nevertheless, for some instances, the quality of the approximation of the approach by Jarre and

Schmallowsky and of Algorithm 2 are comparable and both approaches return a cp-factorization.

To see this, we consider randomly generated instances. With the same technique as introduced in

Section 7.9 and given n ∈ N, we generate a random n× 2n matrix B using the Matlab command

randn. Next, we compute C by setting Cij := |Bij | for all i, j, and finally we take A = CCT as

the matrix to be factorized by both approaches.

If we apply this approach to n = 7, we obtain the following matrix as our next example:

A =



13.7162 8.1090 10.0752 7.3940 10.7332 4.2551 9.8380

8.1090 9.9804 6.7089 6.1420 8.3044 3.9286 6.7772

10.0752 6.7089 9.6070 5.6133 8.3782 3.6309 6.6191

7.3940 6.1420 5.6133 10.2718 8.1573 4.3024 5.9480

10.7332 8.3044 8.3782 8.1573 12.8697 4.1992 9.1688

4.2551 3.9286 3.6309 4.3024 4.1992 2.5807 3.3640

9.8380 6.7772 6.6191 5.9480 9.1688 3.3640 13.1836

 .

For r = 10, the approach by Jarre and Schmallowsky returns the following cp-factorization in

0.4077 seconds: A = BBT , with

B =



1.7734 0.1505 0.6719 0.1970 0.2793 0.2526 0.1826 2.8187 1.0669 0.8942

0.0080 1.3661 0.0000 0.3043 0.1793 0.2435 0.3595 1.6954 1.0568 1.9518

0.6721 0.0432 1.7315 0.0829 0.2259 0.2708 0.0121 1.9629 0.984 1.0967

0.0763 0.3062 0.0000 1.3124 0.1996 0.2576 0.2959 1.4663 2.471 0.0110

0.2570 0.2373 0.2292 0.2489 1.8249 0.1256 0.2112 2.5483 1.4300 0.8387

0.0290 0.1997 0.1637 0.2194 0.0000 0.7260 0.2026 0.8241 1.0080 0.4491

0.0995 0.3678 0.0000 0.3108 0.1788 0.2680 1.5625 3.224 0.0509 0.0002


and ‖A−BBT ‖F ≤ 10−14.

104

7.11 Comparison with a Method by Jarre and Schmallowsky

For the same matrixA and r = 10, Algorithm 2 returns the following cp-factorization in 0.0381

seconds: A = CCT , with

C =



0.3444 2.1460 0.2384 0.5727 1.9311 0.1196 0.0503 2.0715 0.7345 0.1752

1.0831 2.1524 1.6663 0.7409 0.8276 0.2355 0.0570 0.3151 0.0000 0.0761

0.1144 1.8852 0.0000 1.1551 1.1350 1.1921 0.0342 1.4079 0.0852 0.0764

0.0025 2.8284 0.0000 0.0000 0.0000 0.0047 0.0000 0.0907 1.4773 0.2854

1.5264 2.2389 0.0000 0.0000 1.6931 0.9844 0.0212 0.5427 1.1283 0.3514

0.4031 1.4953 0.0000 0.2069 0.0000 0.0000 0.0048 0.3708 0.0184 0.0397

1.9081 1.0882 0.5006 0.7516 0.3537 0.0000 0.0654 2.0581 1.7313 0.4246


and ‖A − CCT ‖F ≤ 10−14. Thus, to achieve a comparable quality of approximation like Algo-

rithm 2, the method by Jarre and Schmallowsky takes more time for this concrete example. Here

the exact factor is 10.7.

Moreover, we can apply the approach by Jarre and Schmallowsky to randomly generated matri-

ces for higher values of n and different choices of r, in order to compare the performance of this

approach to the performance of Algorithm 2 in this setting, which can be found in Table 7.2. The

results for the approach by Jarre and Schmallowsky in this setting are collected in Table 7.9.

n r time (sec.)
35 36 5.16
50 51 17.12
50 151 28, 84
100 151 53.79
100 301 88.66
200 301 198.59

Table 7.9: Performance of the approach by Jarre and Schmallowsky for randomly generated ma-
trices A for several values of n and k = 2n. The numbers in column 3 represent the
average of 100 randomly generated instances.

If we compare the results in Table 7.2 and Table 7.9, we notice that especially in smaller di-

mensions and for r chosen close to n, the approach by Jarre and Schmallowsky is less time

consuming since the algorithm does not enforce (numerically) strict equality for the factoriza-

tion A = BBT . Considering higher dimensions and especially the cases where r is chosen more

distant to n, the method of Jarre and Schmallowsky starts struggling with the increasing order,

whereas Algorithm 2 does not exhibit this drawback in general. In contrast to the method by Jarre

and Schmallowsky, Algorithm 2 is less time consuming if, for a given order n, we choose a larger

value for r. More precisely, if we consider the case n = 100 and r = 301, Algorithm 2 pro-

vides a cp-factorization in 4 seconds on average of the 100 randomly generated instances, whereas

the method by Jarre and Schmallowsky takes more than 88 seconds on average to return a cp-

factorization. If we take a detailed look at the case n = 200 and r = 301, the method by Jarre

and Schmallowsky takes more than 198 seconds on average of 100 randomly generated instances,

whereas Algorithm 2 takes only 42 seconds on average. For these concrete examples, both ap-

proaches returned a cp-factorization in any case.

105

7 Numerical Results

In addition, we applied the method by Jarre and Schmallowsky to randomly generated instances

of order 1000, where we chose r = 1500. In this setting, the computation time exceeded

5677 seconds on average of 15 randomly generated instances to reach a matrix B such that

‖A−BBT ‖F ≤ 10−10. Therefore, Algorithm 2 is again faster on average, as Table 7.2 shows.

The numerical results in this section substantiate that especially in higher dimensions Algo-

rithm 2 is less time consuming and, if terminating, always returns a cp-factorization, even for the

matrices at the boundary of the completely positive cone. Moreover, Algorithm 2 is less time

consuming in case the exact cp-rank of the given matrix is unknown (which is in general always

the case) such that we need to use a reasonable upper bound on the cp-rank for the choice of r.

7.12 A Real Life Application in Statistics

As mentioned in Section 2.7, completely positive programming can be used in statistics and more

precisely in the area of multivariate extremes, cf. [27]. Here we consider a pairwise dependence

matrix Σ, containing the tail dependence of a multivariate regularly-varying random vector. This

matrix Σ can be shown to be completely positive, such that we can try to factorize such a matrix Σ.

For the following experiments, Cooley and Thibaud provided different matrices Σ, which were

obtained directly from real data.

For the first experiment in this setting, consider the matrix

Σ =


6.1875 5.8750 5.8750 5.2500 4.3125

5.8750 10.3125 7.8750 8.2500 8.0000

5.8750 7.8750 12.6250 9.6250 8.7500

5.2500 8.2500 9.6250 11.5625 6.3125

4.3125 8.0000 8.7500 6.3125 8.8125

 .

For this matrix, Algorithm 2 returns the following factorizations A = BiB
T
i for i ∈ {1, 2, 3},

with

B1 =


0.6588 0.5438 1.7947 1.4781 0.2277

2.1293 0.5364 0.6916 1.7792 1.3591

0.8345 2.5656 1.2861 0.8303 1.7330

0.4916 1.8741 0.0000 2.4309 1.3781

2.1843 1.5622 0.6822 0.3881 0.9924

 ∈ R5×5
, B2 =


0.0077 2.1630 0.8771 0.8095 0.2904

1.3422 1.2768 1.7145 1.5153 1.2826

0.0000 1.4213 0.0000 3.0627 1.1066

0.0818 0.6542 1.7515 2.8390 0.0000

1.5820 1.1039 0.0193 1.9116 1.1986

 ∈ R5×5
,

B3 =


0.4350 1.5167 1.1971 0.0000 1.0013 1.0541 0.2593 0.2899

1.2273 0.7209 1.9365 0.0000 0.0000 1.3857 0.0000 1.6175

2.0036 0.5622 1.4211 1.7310 0.6016 1.5892 0.6244 0.0350

2.3119 0.4022 2.0777 0.0000 0.1405 0.6385 1.1375 0.1325

0.7529 0.1023 1.6964 1.4998 0.0715 1.3171 0.0000 1.1697

 ∈ R5×8

and several other matrices B of order 5× 5 or 5× 8, factorizing Σ.

Having these factorizations, Cooley and Thibaud (cf. [27]) were able to analyse the probability

of two sets, associated with the factorizations of Σ, of being in an extreme set. In general, the

cp-factorization can be used to estimate probabilities of extreme events or to simulate realizations

with pairwise dependence, summarized by Σ.

106

7.13 Examples for Algorithms 4 and 5

Moreover, we applied Algorithm 2 to derive cp-factorizations for a certain matrix Σ ∈ R44×44.

For this matrix, only 52 columns for the initial factorization were necessary to ensure the con-

vergence of Algorithm 2 to a cp-factorization. The fact that we require only 52 columns, which

shows that cpr(Σ) ≤ 52, was surprising for the application in statistics and hence allowed a new

perspective on the statistical application.

Overall, this application proves that the presented method in this thesis can be applied to real

world applications. Moreover, they can produce new insights on the considered topic.

In the following, we will see that Algorithms 4 and 5 are also stable approaches to show that a

given matrix is an element of the interior of the completely positive cone.

7.13 Examples for Algorithms 4 and 5

To show the performance of Algorithms 4 and 5, we will consider again the matrix

A :=

18 9 9

9 18 9

9 9 18

 ∈ int(CP3)

as introduced in Example 2.22. Even though we already know a factorization provingA ∈ int(CP3),

we will use r = cp+
3 = 4 for the number of columns in our initial factorization.

Thus, we start with the initial factorization A = BBT , where

B =

(
2.1213 1.2247 2.4495 2.4495

−2.1213 1.2247 2.4495 2.4495

0.0000 −2.4495 2.4495 2.4495

)
. (60)

This factorization is computed via the column replication approach, based on the factorization

in equation (19) of A. For ε = 0.1 and the starting point

Q0 =

 0.5794 0.6095 0.3569 0.4067

0.4636 −0.1065 0.3493 −0.8073

−0.3467 −0.3148 0.8574 0.2134

−0.5737 0.7197 0.1245 −0.3706

 ,

Algorithm 5 returns after 0.012 seconds and 88 iterations the following factorization:

A = B̃B̃T , with B̃ =

0.2629 2.3362 3.5296 0.1229

3.6184 0.1000 2.2107 0.1000

1.9501 2.5196 0.6420 2.7271

 .

This factorization is entrywise greater than or equal to ε = 0.1 and therefore showsA ∈ int(CP3).

On the other hand, again starting with the initial matrix B in equation (60) and for ε = 0.1,

Algorithm 4 returns for the starting matrix

Q0 =

 0.3741 −0.8766 0.2043 −0.2233

−0.3010 −0.4225 −0.6309 0.5770

0.6418 0.1496 0.2442 0.7114

0.5980 0.1752 −0.7075 −0.3335



107

7 Numerical Results

and after 4.9 seconds and 11 iterations the following factorization:

A = B̂B̂T , with B̂ =

0.5754 3.5983 1.8978 1.0581

0.8018 0.1625 2.2318 3.5142

3.8463 0.9917 1.2121 0.8678

 .

This factorization is again entrywise greater than or equal to ε = 0.1. Thus, both algorithms can

be used to obtain a certificate for the matrix to be an element of the interior of the completely

positive cone.

The influence of the parameter ε on the performance of Algorithm 5 is now illustrated in Fig-

ure 7.6. For those results, we test the success rate of 1000 starting points with a maximum of 1000

iterations per starting point for several values of ε, again for the matrix in Example 2.22. We use

Algorithm 5 and as before, we fix the value r = 4.

Figure 7.6: Success rate of Algorithm 5 for Example 2.22.

0 100 200 300 400 500 600 700 800 900 1000

number of iterations

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
ta

rt
in

g
po

in
ts

 g
iv

in
g

a
st

ric
tly

 p
os

iti
ve

 c
p-

fa
ct

or
iz

at
io

n
in

 le
ss

 th
an

 x
 it

er
at

io
ns

epsilon=0.01
epsilon=0.05
epsilon=0.1
epsilon=0.2
epsilon=1

In Figure 7.6, we can see that the success rate decreases for increasing values of ε. Especially

if ε is chosen too large, Algorithm 5 will not converge any more. This drawback is illustrated for

ε = 1, where the Algorithm fails for every starting point. But if ε > 0 is chosen small enough,

we can obtain a strictly positive cp-factorization in more than 50% of the starting points Q0 in less

than 1000 iterations.

In the following chapter, we will introduce the connection of completely positive matrix factor-

ization to general nonnegative matrix factorization and we will show how the Algorithms 1 and 2

can be adapted to become applicable in this context.

108

8 Nonnegative Matrix Factorization

In this chapter, we will take a closer look at the topic of nonnegative matrix factorization. First,

we will consider the symmetric case and throughout this chapter, we will see that factorizing com-

pletely positive matrices is closely related to symmetric nonnegative matrix factorization. But on

the other hand, it will also turn out that these two topics are still different and further adjustments

are necessary to be able to apply Algorithms 1 and 2 in this setting. Here we will have a closer

look at these adjustments in the setting of symmetric nonnegative matrix factorization and how the

adapted versions of the Algorithms 1 and 2 perform in this setting. Afterwards, we will consider

the general (non-symmetric) case of nonnegative matrix factorization. Here we will see that only

Algorithm 2 can be modified to be numerically applicable in this context.

8.1 Symmetric Nonnegative Matrix Factorization

Let A ∈ Rn×n+ be a symmetric matrix. For the symmetric nonnegative matrix factorization of A,

consider the following problem, which can be found for example in [19, Equation (1)], [39, Equa-

tion (11)], [59, Problem 7.3] or [71, Equation (2)].

Definition 8.1. Given a symmetric matrix A ∈ Rn×n+ and k � n, the solution matrix B ∈ Rn×k+

of

min
B∈Rn×k

+

‖A−BBT ‖2F

yields the symmetric nonnegative matrix factorization BBT of A.

Here we should note that in contrast to the cp-factorization, it is sufficient to have A ≈ BBT

instead of strict equality, since for a symmetric nonnegative matrix factorization, we are looking

for a nonnegative matrix B giving a lowrank approximation BBT to the matrix A. Completely

positive matrix factorization can therefore be seen as a special case of the symmetric case of

nonnegative matrix factorization, albeit without the low rank constraint. For the cp-factorizations

we consider k ≥ cpr(A), such that k is always greater than or equal to the rank of the matrix. In

the setting of symmetric nonnegative matrix factorization, we are looking for a factorization that

is entrywise nonnegative and gives a rank-k low-rank approximation to the given matrix such that

k < rank(A) ≤ n.

Moreover, we can rewrite the problem in Definition 8.1 based on the notation we introduced in

the previous chapters. More precisely, in the context of symmetric nonnegative matrix factoriza-

109

8 Nonnegative Matrix Factorization

tion, we are looking for a matrix X ∈ CPn with cpr(X) = k, which solves the problem:

min
X∈CPn

cpr(X)=k

‖A−X‖2F .

Thus, the symmetric nonnegative matrix factorization searches for the best completely positive

approximation of cp-rank k to A. Since in general, it is not possible to compute the cp-rank of a

given completely positive matrix (cf. Section 2.4), we will use the rank of the matrix as a lower

bound for the cp-rank, which is often tight, as shown in Chapter 3. For this, we will try to factorize

a rank-k approximation of A instead of A itself.

The symmetric nonnegative matrix factorization is related to data clustering, particularly Kernel

K-means clustering and Laplacian-based spectral clustering, as discussed in [39]. As a concrete

example, it can be used to analyse the structure of a given dataset, like facial poses, as shown

in [56], or heterogeneous microbiome data, as introduced in [71]. As we will see later, symmetric

nonnegative matrix factorization can be seen as a special case of the general nonnegative matrix

factorization. Therefore, more applications of this approach will be mentioned in the subsequent

Section 8.2. In the following section, we will discuss the question of how to derive a symmetric

nonnegative matrix factorization. Here two methods, which are based on Algorithms 1 and 2, will

be introduced.

8.1.1 Algorithms for Symmetric Nonnegative Matrix Factorization

To compute a solution to the problem in Definition 8.1, and therefore a symmetric nonnegative

matrix factorization of a given matrix A and given order k, there already exist several methods. A

first algorithm was already given in Algorithm 6 by Ding et al. in [39], since we do not have any

restrictions for the value k. Newton-like methods for symmetric nonnegative matrix factorization

can be found in [66, Section 3]. For further methods on symmetric nonnegative matrix factoriza-

tion, the reader is referred to Borhani et al. in [19]. Here the authors introduce an accelerated

proximal gradient method and a certain alternating direction approach and show its convergence.

In the following, we will show that Algorithms 1 and 2 can also be applied to this setting. To

this end, we will factorize a rank-k approximation to the given matrix A, instead of A itself. To

determine the best rank-k approximation of a matrix in norm sense, we will use the well known

theorem by Eckart and Young, cf. [45], which was proven to hold for any unitarily invariant

norm by Mirsky, cf. [74]. The results as presented can be found for example in [58] and [90,

Theorems 6.1 and 6.3].

110

8.1 Symmetric Nonnegative Matrix Factorization

Theorem 8.2. Let A ∈ Rn×m and consider its singular value decomposition A = UΣV T , where

U ∈ On, V ∈ Om and

Σ =



σ1
...

. . . · · · 0 · · ·

σl
...

...
...

· · · 0 · · · · · · 0 · · ·
...

...


∈ Rn×m,

where rank(A) = l and σ1 ≥ σ2 ≥ · · · ≥ σl > 0 are the (positive) singular values of A. So, A

can be written as

A =

l∑
i=1

σiuiv
T
i ,

where ui respectively vi is the i-th column of the matrix U respectively V for every i ∈ {1, . . . , l}.
Then for k ≤ l = rank(A), the best rank-k approximation (in the Frobenius norm) of A is given

by

Ak :=
k∑
i=1

σiuiv
T
i .

In other words,

Ak = argmin
{
‖A−X‖2F

∣∣ X ∈ Rn×m with rank(X) ≤ k
}

with corresponding minimal value

‖A−Ak‖2F =

m∑
i=k+1

σ2
i .

Moreover, if σk > σk+1, then Ak is the unique global minimizer.

The following lemma now motivates the use of Algorithm 1 or 2 to obtain a symmetric nonneg-

ative matrix factorization and gives rise to the subsequent remarks.

Lemma 8.3. Let A ∈ Sn and consider its best rank-k approximation Ak from Theorem 8.2 for

some k ≤ n. Further assume that Ak ∈ CPn. Then any cp-factorization Ak = BBT with

B ∈ Rn×k of Ak is a solution to the problem in Definition 8.1 and therefore a symmetric nonneg-

ative matrix factorization of A of rank k.

Proof. LetAk = BBT be a cp-factorization of the matrixAk. Then ‖A−Ak‖F is minimal among

all matrices of rank k due to Theorem 8.2. Thus, ‖A − BBT ‖F is minimal and since B ∈ Rn×k

with B ≥ 0, we have that BBT is a symmetric nonnegative matrix factorization of A.

Thus, for a symmetric nonnegative matrix factorization, it is sufficient to find a cp-factorization

for the best rank-k approximation of the given matrix of order n×k. This gives rise to Algorithm 7.

111

8 Nonnegative Matrix Factorization

Algorithm 7 Symmetric nonnegative matrix factorization based on Algorithm 1
Input: A ∈ Rn×n with its singular value decomposition A = UΣV T ; k ≤ n; initial matrix
Q0 ∈ Ok

1: Ak ←
k∑
i=1

σiuiv
T
i

2: [Vk,Σk]← eig(Ak)
3: Bk ← Vk

√
Σk ∈ Rn×k

4: i← 0
5: while BkQi 6≥ 0 do
6: Pi ← PP(Qi)
7: Qi+1 ← POk

(Pi)
8: i← i+ 1
9: end while

Output: Qi ∈ Or and a symmetric nonnegative matrix factorization (BkQi)(BkQi)
T of A.

Here in step 1, we determine the best rank-k approximation Ak to A, followed by the computa-

tion of the eigendecomposition of the matrix Ak in step 2. With this, we compute the matrix Bk in

step 3, which now replaces the given initial factorization matrix B in Algorithm 1. The algorithm

then continues like Algorithm 1, based on the matrix Bk. More precisely, we consider the set

P = {Q ∈ Rk×k | BkQ ≥ 0} and the set Ok for the alternating projections approach. Again,

we will use the second order cone approach, introduced in Lemma 6.1, to compute the projection

onto the set P . For the projection onto Ok, we use the polar decomposition from Lemma 6.2.

If the algorithm terminates successfully, it returns an orthogonal matrix Qi giving a symmetric

nonnegative matrix factorization (BkQi)(BkQi)
T of A due to Lemma 8.3.

Remark 8.4. Since for the symmetric nonnegative matrix factorization it is necessary to determine

an entrywise nonnegative matrix B ∈ Rn×k, it is not necessary to use column replication to

obtain a feasible initial factorization. The algorithm of course terminates successfully only for

completely positive matrices Ak with cpr(Ak) = k. For the case cpr(Ak) > k, it is possible

to take the best rank-(k − 1) approximation Ak−1 of the given matrix A and to check whether

cpr(Ak−1) = k. Unfortunately, even if Ak−1 = BBT with B ∈ Rn×k is a cp-factorization

of Ak−1, this factorization is not necessarily a symmetric nonnegative matrix factorization of

A for a given value k since rank(B) = k − 1 and due to Theorem 8.2, it may happen that

‖A−Ak‖F < ‖A−Ak−1‖F = ‖A−BBT ‖F .

Furthermore, we have the following convergence result:

Theorem 8.5. Let A ∈ Sn such that the best rank-k approximation Ak ∈ CPn. Let Ak = BkBk
T

be any initial factorization with Bk ∈ Rn×k and assume that cpr(Ak) = k ≤ rank(A). Define

P := {Q ∈ Rk×k | BkQ ≥ 0}. Then we have:

(a) P ∩ Ok 6= ∅,

(b) if started at a point Q0 close to P ∩Ok, then Algorithm 7 converges to a point Q∗ ∈ P ∩Ok.

In this case, Ak = (BkQ
∗)(BkQ

∗)T is a completely positive factorization of Ak, which yields

a symmetric nonnegative matrix factorization (BkQ
∗)(BkQ

∗)T of A.

112

8.1 Symmetric Nonnegative Matrix Factorization

Proof. (a): It follows from Ak ∈ CPn and k = cpr(A) that there exists C ∈ Rn×k such that

C ≥ 0 and A = CCT . Since A = BBT = CCT and the matrices B,C are of the same order,

Lemma 3.11 implies that there exists Q ∈ Ok such that BQ = C ≥ 0, i.e., Q ∈ P ∩ Ok.

(b): Both P andOk are closed semialgebraic sets due to Lemma 6.5. Moreover,Ok is bounded,

as shown in Lemma 3.2. The convergence result now follows by applying [42, Theorem 7.3],

which can be found in Theorem 5.57 of this thesis.

Instead of using Algorithm 1 as a basis, where it is necessary to solve a second order cone

problem in every projection step onto the set P , we can also use Algorithm 2. This motivates

Algorithm 8.

Algorithm 8 Symmetric nonnegative matrix factorization based on Algorithm 2
Input: A ∈ Rn×n with its singular value decomposition A = UΣV T ; k ≤ n; initial matrix

Q0 ∈ Ok

1: Ak ←
k∑
i=1

σiuiv
T
i

2: [Vk,Σk]← eig(Ak)

3: Bk ← Vk
√

Σk ∈ Rn×k

4: i← 0

5: while BkQi 6≥ 0 do
6: D ← max{BkQi, 0} entrywise

7: P̂i ← B+
k D + (I −Bk+Bk)Qi

8: Qi+1 ← POk
(P̂i)

9: i← i+ 1

10: end while

Output: Qi ∈ Or and a symmetric nonnegative matrix factorization (BkQi)(BkQi)
T of A.

The steps 1 to 3 in Algorithm 8 are equal to the first steps in Algorithm 7, such that we start

the algorithms with the same initial factorization BkBkT of Ak. Compared to Algorithm 7 and

based on Lemma 6.10, we compute P̂ to approximate PP(Q), as motivated in Section 6.2 and as

implemented in Algorithm 2. Nevertheless, this modified approach is again not a pure alternating

projections approach such that we can not prove a local convergence result like in Theorem 8.5.

In the following, we will analyse the numerical performance of Algorithms 7 and 8 for concrete

examples.

8.1.2 Numerical Results for Symmetric Nonnegative Matrix Factorization

The following numerical results were again carried out on a computer with 88 Intel Xenon ES-

2699 cores (2.2 Ghz each) and a total of 0.792 TB RAM. The algorithms were implemented in

MatlabR2017a, the SOCPs in Algorithm 7 were solved using Yalmip R20170626 and SDPT3 4.0.

The algorithms terminate successfully at iteration i if BkQi ≥ −10−15, it terminates unsuccess-

fully if a maximum number of iterations (usually 5000) is reached.

113

8 Nonnegative Matrix Factorization

As a first example, we consider again the matrix ADS in Example 2.43. Here we saw in Sec-

tion 7.7 that Algorithms 1 and 2 fail to show that the matrix is completely positive. In the follow-

ing, we will show that with the help of Algorithms 7 or 8, we can give a symmetric nonnegative

matrix factorization for this matrix. To this end, we fix the parameter k = 2. Then we have the

following best rank-2 approximation A2 to ADS due to Theorem 8.2:

ADS =


8 5 1 1 5

5 8 5 1 1

1 5 8 5 1

1 1 5 8 5

5 1 1 5 8

 =
5∑
i=1

σiuiv
T
i

A2 =


7.7889 5.1708 0.9348 0.9348 5.1708

5.1708 4.3618 3.0528 3.0528 4.3618

0.9348 3.0528 6.4798 6.4798 3.0528

0.9348 3.0528 6.4798 6.4798 3.0528

5.1708 4.3618 3.0528 3.0528 4.3618

 =

2∑
i=1

σiuiv
T
i ,

where
∑5

i=1 σiuiv
T
i denotes the singular value decomposition of ADS . The initial factorization

A2 = B2B
T
2 is then given via the eigendecomposition of A2 and the matrix B2 reads as

B2 =


−2.0000 1.9465

−2.0000 0.6015

−2.0000 −1.5747

−2.0000 −1.5747

−2.0000 0.6015

 .

As shown in the proof to Corollary 3.13, an entrywise nonpositive column can be easily trans-

formed to a nonnegative column, using an orthogonal matrix. We therefore use

A2 =


2.0000 1.9465

2.0000 0.6015

2.0000 −1.5747

2.0000 −1.5747

2.0000 0.6015




2.0000 1.9465

2.0000 0.6015

2.0000 −1.5747

2.0000 −1.5747

2.0000 0.6015


T

as an initial factorization. Starting Algorithm 7 with this input matrix, the very first starting point

returns the following decomposition in 2 seconds.

A2 =


2.7897 0.0817

1.8238 1.0177

0.2609 2.5321

0.2609 2.5321

1.8238 1.0177




2.7897 0.0817

1.8238 1.0177

0.2609 2.5321

0.2609 2.5321

1.8238 1.0177


T

Here only one iteration was necessary. This decomposition is an exact cp-factorization of

A2 and therefore a symmetric nonnegative matrix factorization of A according to Lemma 8.3.

Whereas we could not verify the membership of ADS to the completely positive cone algorithmi-

cally, we can give a symmetric nonnegative matrix factorization of rank 2 for this matrix.

Apart from Algorithm 7, we can also apply Algorithm 8 to ADS with k = 2. A comparison of

the performance of Algorithms 7 and 8 for the same 1000 starting points, again for the matrixADS ,

114

8.1 Symmetric Nonnegative Matrix Factorization

can be found in Figure 8.1. In both cases, we consider 100 as a maximum number of iterations per

starting point for each approach. But it turns out that in no case 100 iterations were necessary.

Figure 8.1: Success rates of Algorithms 7 and 8 for Example 2.43 with k = 2 for the same starting
points.

0 10 20 30 40 50 60 70 80 90 100

number of iterations

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
ta

rt
in

g
po

in
ts

 g
iv

in
g

a
sy

m
m

et
ric

 n
on

ne
ga

tiv
e

m
at

rix
 fa

ct
or

iz
at

io
n

in
 le

ss
 th

an
 x

 it
er

at
io

ns

Exact Projection
Inexact Projection

To analyse the graphs in Figure 8.1 in more detail, we first focus on the blue dashed graph,

representing the performance of Algorithm 7. Here we notice that any of the 1000 starting points

returns a symmetric nonnegative matrix factorization in less than 5 iterations. Considering the red

graph, representing the performance of Algorithm 8, we see that to exceed a success rate of 50%,

it becomes necessary to allow more than 50 iterations. But after around 80 iterations any starting

point returns a symmetric nonnegative matrix factorization of ADS . For the 1000 starting points,

Algorithm 7 takes around 350 seconds, whereas Algorithm 8 is less time consuming and takes

only 1.3 seconds. This is again due to the fact that it is not necessary to solve an SOCP in every

iteration step in Algorithm 8. But since the order of the SOCP is in general smaller than n, the

drawback of Algorithm 7 compared to Algorithm 8 is smaller than the drawback of Algorithm 1

compared to Algorithm 2.

Increasing values of k lead to a failure in both approaches. This is presumably due to the fact

that both approaches start struggling to show Ak is completely positive for k > 2, analogue to the

results shown in Section 7.7.

Similar to the first example, we obtain the following results on symmetric nonnegative matrix

factorization of the matrix A in Example 2.22, again for k = 2. Here an illustrative comparison of

the performance of Algorithms 7 and 8 for this matrix can be found in Figure 8.2.

115

8 Nonnegative Matrix Factorization

Figure 8.2: Success rates of Algorithms 7 and 8 for Example 2.22 with k = 2 for the same starting
points.

0 10 20 30 40 50 60 70 80 90 100

number of iterations

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
ta

rt
in

g
po

in
ts

 g
iv

in
g

a
sy

m
m

et
ric

 n
on

ne
ga

tiv
e

m
at

rix
 fa

ct
or

iz
at

io
n

in
 le

ss
 th

an
 x

 it
er

at
io

ns

Exact Projection
Inexact Projection

Here again, we test the same 1000 starting points for both approaches and as before, both

algorithms return a symmetric nonnegative matrix factorization in less then 100 iterations for any

starting point. Moreover, Algorithm 7 takes again at most 5 iterations to return a factorization.

To show the influence of the parameter k, we will again use the method described in Section 7.9

to obtain randomly generated matrices. In this concrete setting, we use the Matlab command

randn to generate a random matrix B ∈ Rn×n for a given scalar value n. Next, we compute C

by setting Cij := |Bij | for all i, j, and finally take A = CCT as the matrix for which we want

to find a symmetric nonnegative matrix factorization. Then by construction A ∈ CPn and again,

as an initial factorization for both Algorithms 7 and 8, we consider the the matrix Bk as the exact

initail factorization of the best rank-k approximation Ak of A.

The performance of Algorithm 8 for n = 10 and several values of k ≤ n can be found in

Figure 8.3. Here we test the same randomly generated matrix A ∈ R10×10 and its best rank-k

approximationAk for every k. To be more precise, for every k, we use 100 randomly chosen initial

orthogonal matrices and test if the algorithm terminates successfully in less than 5000 iterations.

As it turns out, it is possible to determine a symmetric nonnegative matrix factorization of A

for every value of k. But the success rate depends on the parameter k. In particular, the closer

k gets to the order n of A, the lower the success rate. For k ≤ 6, the algorithm terminates

successfully in less than 3000 iterations for every starting point, whereas for k = 8 for instance,

even after 5000 iterations only around 45% of the starting points return a symmetric nonnegative

matrix factorization. Combined with the results of the numerical experiments in Section 7.1, we

can therefore see that the success rate of the presented Algorithms 2 and 8 (which is based on

Algorithm 2) is higher, the more distant r (or k respectively) is chosen to n.

116

8.1 Symmetric Nonnegative Matrix Factorization

Figure 8.3: Success rate of Algorithm 8 for random matrices A of order 10× 10 for several values
of k and 100 randomly chosen starting points for each k.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

number of iterations

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
ta

rt
in

g
po

in
ts

 g
iv

in
g

a
sy

m
m

et
ric

 n
on

ne
ga

tiv
e

m
at

rix
 fa

ct
or

iz
at

io
n

in
 le

ss
 th

an
 x

 it
er

at
io

ns

k=4
k=5
k=6
k=7
k=8

In the following experiment, we will analyse the influence of the order n of the matrix A on

the performance of Algorithm 8. We will test the performance of the algorithm for randomly

generated matrices A ∈ Rn×n for several values of n. For every n we fix k = b0.7nc, where

b·c is again the floor function, and we test 100 randomly chosen initial starting points Q0 and a

maximum of 5000 iterations per starting point. The success rate of Algorithm 8 in this setting is

illustrated in Figure 8.4.

Figure 8.4: Success rate of Algorithm 8 for random matrices of order n× n with k = b0.7nc.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

number of iterations

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
ta

rt
in

g
po

in
ts

 g
iv

in
g

a
sy

m
m

et
ric

 n
on

ne
ga

tiv
e

m
at

rix
 fa

ct
or

iz
at

io
n

in
 le

ss
 th

an
 x

 it
er

at
io

ns

n=5,k=3
n=7,k=4
n=10,k=7
n=15,k=10
n=25,k=17

117

8 Nonnegative Matrix Factorization

Here we see that again for every n, the algorithm terminates successfully for some starting

points. Moreover, for every n ≤ 7, the algorithm returns a symmetric nonnegative matrix factor-

ization for every starting point. If we consider n = 15 for instance, we notice that this property

does not hold for larger values of n since in this case only around 80% of the starting points lead

to a symmetric nonnegative matrix factorization. In total, we have some similarities to the results

in Section 7.2, where we illustrated the performance of Algorithm 2 in a similar setting.

In the following, we will consider the general case of nonnegative matrix factorization, where

the given matrix is not necessarily square and we are looking for a nonnegative factorization with

matrices of different order in general. Here it will turn out that some of the results obtained so far

can also be applied to this generalized framework.

8.2 General Nonnegative Matrix Factorization

An introduction to the nonnegative matrix factorization problem can be found for example in [47].

As shown there, for a nonnegative matrix factorization of a matrix A ∈ Rn×m, consider the

following problem, which can be found for example in [47, Equation (3)] or more general in [97,

Equation (2)].

Definition 8.6. Let A ∈ Rn×m+ and k � min{n,m}, then the solution matrices B ∈ Rn×k+ and

C ∈ Rk×m+ of

min
B∈Rn×k

+ , C∈Rk×m
+

‖A−BC‖2F

yield the nonnegative matrix factorization BC of A.

Similar to the symmetric case, we are looking for a certain nonnegative low-rank approximation

of A. Adding further constraints to this problem or slight changes in the objective function lead

to various specially structured nonnegative matrix factorization problems. For a comprehensive

collection of these problems, the reader is referred to [97]. For example, if we drop the assumption

that A is entrywise nonnegative in Definition 8.6 and allow one of the matrices B,C to have nega-

tive entries, this defines the so called Semi Nonnegative Matrix Factorization, cf. [97, Section 2.2].

This problem is motivated by data clustering.

Another example is the so called Sparse Nonnegative Matrix Factorization, cf. [97, Sections 2.7-

2.9], where we add the (possibly weighted) penalty term
∑

i,j Cij to the objective function in

Definition 8.6 to ensure sparsity for the matrix C.

Also the symmetric case in Section 8.1 can be seen as a special case of the problem in Defini-

tion 8.6.

Nonnegative matrix factorization itself can be seen as a special subclass of so called constrained

low-rank matrix approximation problems as introduced in [47]. Therefore, various applications of

the nonnegative matrix factorization approach are related to this topic. One very illustrative appli-

cation, again mentioned in [47], is hyperspectral imaging. In contrast to a standard RGB image

where every pixel has 3 channels, every pixel of a hyperspectral image is represented via more

than 100 channels, which correspond to deeper information of several wavelengths of the image,

118

8.2 General Nonnegative Matrix Factorization

some of them blind to the human eye. By that, a deeper analysis of the structure of the image

becomes possible. This method boils down to the nonnegative matrix factorization framework.

But even more general, in the context of data science, nonnegative matrix factorization can be

used for so called intelligent data analysis, as shown in [23] as the second chapter in the book of

Naik [77]. Especially when the quantities are known to be nonnegative, for example due to phys-

ical rules, nonnegative matrix factorization can be used to determine part-based representations

of given data. Here a concrete example, again given in [23], is educational data mining. For a

survey on this topic, the reader is referred to [75]. Here the goal is to collect, store and analyse

data obtained from learning and evaluation processes of students.

Other possible applications are multi-document summarization, see for example [22], or anal-

ysis of magnetic resonance spectroscopy data, as shown in [67]. As already mentioned for the

symmetric case, nonnegative matrix factorization is closely related to data clustering. For more

details on this application, the reader is referred to [68].

In the following, we will have a closer look at algorithmic approaches to obtain a nonnegative

matrix factorization. Moreover, we will show that the results obtained so far in this thesis can be

generalized to this setting

8.2.1 Generalizing the Results to the Framework of Nonnegative Matrix
Factorization

To show that the results in Chapter 6 can also be applied in the context of nonnegative matrix

factorization, a first thing to mention is that Theorem 8.2 holds for every A ∈ Rn×m. Thus, we

can again consider the best rank-k approximation Ak to A. Similar to the symmetric case, now

the idea is to obtain a nonnegative factorization for the matrix Ak. Moreover, the following result

holds.

Lemma 8.7. Let A ∈ Rn×m+ and consider its best rank-k approximation Ak from Theorem 8.2 for

some k ≤ min{n,m}. Then any factorization Ak = BC with B ∈ Rn×k+ and C ∈ Rk×m+ of Ak
is a solution to the problem in Definition 8.6 and therefore a nonnegative matrix factorization of

A for a given value k ≤ min{n,m}.

Proof. Let Ak = BC be a nonnegative factorization of the matrix Ak. Then ‖A − Ak‖F is

minimal among all matrices of rank k due to Theorem 8.2. Thus, ‖A − BC‖F is minimal and

since B ∈ Rn×k+ and C ∈ Rk×m+ , we know that BC is a nonnegative factorization of A.

Thus, to obtain a nonnegative matrix factorization of A, it is sufficient to factorize Ak = BC,

where B ∈ Rn×k and C ∈ Rk×m are entrywise nonnegative matrices. To this end, a first step is

to compute an initial factorization, which is not necessarily entrywise nonnegative. For this, the

following approach can be used.

Starting withA = UΣV T , the singular value decomposition ofA, we can obtain the best rank-k

approximation of A, as shown in Theorem 8.2, as

Ak =
k∑
i=1

σiuiv
T
i ,

119

8 Nonnegative Matrix Factorization

where rank(A) ≥ k and the ui respectively vi represent the i-th column of U respectively V . This

can also be written in matrix form as

Ak = UkΣkV
T
k ,

where the matrices Uk, Σk, Vk are the truncated versions of U,Σ and V . More precisely, we have,

again with ui respectively vi denoting the i-th column of U respectively V ,

Ak =
(
u1 . . . un

)
︸ ︷︷ ︸
∈Rn×n



σ1
...

. . . · · · 0 · · ·

σk
...

...
...

· · · 0 · · · · · · 0 · · ·
...

...


︸ ︷︷ ︸

∈Rn×m

(
v1 . . . vm

)T
︸ ︷︷ ︸

∈Rm×m

=
(
u1 . . . uk

)
︸ ︷︷ ︸

=:Uk∈Rn×k


σ1

. . .

σk


︸ ︷︷ ︸

=:Σk∈Rk×k

(
v1 . . . vk

)T
︸ ︷︷ ︸

=:V T
k ∈Rk×m

.

An initial factorization A = BkCk, where Bk ∈ Rn×k and Ck ∈ Rk×m are not necessarily

entrywise nonnegative, can now be obtained by setting

Bk := Uk
√

Σk ∈ Rn×k and Ck :=
√

ΣkV
T
k ∈ Rk×m. (61)

Now we discuss the question of how to transform this factorization into a nonnegative factor-

ization. Due to the lack of symmetry in this general framework, we can not apply Lemma 3.11 in

this setting, as the following example substantiates. Therefore, it becomes necessary to introduce

a generalized version of this lemma. As it turns out, orthogonal matrices are not the key tool any

more.

Example 8.8. Let

B =

(
6 0

0 6

)
, C =

(
2 0

0 2

)
, D =

(
3 0

0 3

)
and F =

(
4 0

0 4

)
.

Then we have BC = DF , but there does not exist a Q ∈ O2 such that BQ = D and QTC = F

since we have(
6 0

0 6

)
︸ ︷︷ ︸

B

·

(
1
2 0

0 1
2

)
︸ ︷︷ ︸

Q

=

(
3 0

0 3

)
︸ ︷︷ ︸

D

and

(
2 0

0 2

)
︸ ︷︷ ︸
Q−1

·

(
2 0

0 2

)
︸ ︷︷ ︸

C

=

(
4 0

0 4

)
︸ ︷︷ ︸

F

,

120

8.2 General Nonnegative Matrix Factorization

where Q 6∈ O2. But Q ∈ R2×2 is a nonsingular matrix with BQ = D and Q−1D = F .

This now motivates the following results. Similar to Section 3.3 and especially to the results in

Lemmas 3.10 and 3.11, we need the following properties to show that nonsingular matrices will

replace orthogonal matrices in this setting. From now on, we assume that k ≤ min{n,m}.

Lemma 8.9. Let B,D ∈ Rn×k and C,F ∈ Rk×m with BC = DF . Further assume that all four

matrices are of rank k. For i = 1, . . . , n, let Bi∗, Di∗, (BC)i∗ resp. (DF)i∗ denote the i-th rows

of B, D, BC resp. DF . In the same way, for j = 1, . . . ,m, let C∗j , F∗j , (BC)∗j resp. (DF)∗j

denote the j-th column of C, F , BC resp. DF . Further let R(B) ⊆ Rk resp. R(D) ⊆ Rk denote

the subspaces spanned by the rows of B and D, respectively. And in the same way, let S(C) ⊆ Rk

resp. S(F) ⊆ Rk denote the subspace spanned by the columns of C and F , respectively. Then:

(a)

Bn∗ =

n−1∑
i=1

λiBi∗ if and only if (BC)n∗ =

n−1∑
i=1

λi (BC)i∗ , (62)

with the same scalar values λi (i = 1, . . . , n) in both equations.

(b)

C∗m =
m−1∑
j=1

λjC∗j if and only if (BC)∗m =
m−1∑
j=1

λj (BC)∗j , (63)

with the same scalar values λj (j = 1, . . . ,m) in both equations.

(c) There exists a linear map f : R(B)→ R(D) such that f(Bi∗) = Di∗ for all i = 1, . . . , n.

(d) There exists a linear map g : S(C)→ S(F) such that g(C∗j) = F∗j for all j = 1, . . . ,m.

Proof. Although we will find some similarities in the proofs of parts (a) and (b), and as well as

in (c) and (d), the complete proof of each part will be given for the reader’s convenience.

(a) We will prove both directions separately. To show that the right hand side in (62) is necessary,

we assume that the left hand side holds and we consider the last row (BC)n∗ of BC. Thus,

we have

(BC)n∗ = Bn∗C =

(
n−1∑
i=1

λiBi∗

)
C =

n−1∑
i=1

λiBi∗C =
n−1∑
i=1

λi (BC)i∗ ,

such that the equation on the right hand side in (62) holds.

Conversely, assume that the equation on the right hand side of (62) holds. Since (BC)ij =

Bi∗C∗j for every i = 1, . . . , n and j = 1, . . . ,m, we have for any entry (BC)nj of the row

(BC)n∗ that

Bn∗C∗j = (BC)nj =

n−1∑
i=1

λi (BC)ij =

n−1∑
i=1

λiBi∗C∗j

121

8 Nonnegative Matrix Factorization

for every j = 1, . . . ,m. This gives(
Bn∗ −

n−1∑
i=1

λiBi∗

)
C∗j = 0 for every j = 1, . . . ,m.

Thus, we get (
Bn∗ −

n−1∑
i=1

λiBi∗

)
C = 0.

Moreover, since C is of full row-rank, the Moore-Penrose-inverse C+ is a right inverse of C,

cf. Lemma A.3, and we get(
Bn∗ −

n−1∑
i=1

λiBi∗

)
CC+ = 0 · C+ ⇔

(
Bn∗ −

n−1∑
i=1

λiBi∗

)
= 0.

This now proves the equality on the left hand side in (62).

(b) Again, we will prove both directions separately. To show that the right hand side in (63) is

necessary, we assume that the left hand side holds and we consider the last column (BC)∗m
of BC. Thus, we have

(BC)∗m = BC∗m = B

m−1∑
j=1

λjC∗j

 =
m−1∑
j=1

λjBC∗j =
m−1∑
j=1

λj (BC)∗j ,

such that the equation on the right hand side in (63) holds.

Conversely, assume that the equation on the right hand side of (63) holds. Since (BC)ij =

Bi∗C∗j for every i = 1, . . . , n and j = 1, . . . ,m, we have for any entry (BC)im of the

column (BC)∗m that

Bi∗C∗m = (BC)im =

m−1∑
j=1

λj (BC)ij =

m−1∑
j=1

λjBi∗C∗j = Bi∗

m−1∑
j=1

λjC∗j

for every i = 1, . . . , n. This gives

Bi∗

C∗m − m−1∑
j=1

λjC∗j

 = 0 for every i = 1, . . . , n. (64)

Thus, we get

B

C∗m − m−1∑
j=1

λjC∗j

 = 0.

Moreover, since B is of full column-rank, the Moore-Penrose-inverse B+ is a left inverse

122

8.2 General Nonnegative Matrix Factorization

of B, cf. Lemma A.3, and we get

B+B

C∗m − m−1∑
j=1

λjC∗j

 = B+ · 0 ⇔

C∗m − m−1∑
j=1

λjC∗j

 = 0.

This now proves the equality on the left hand side in (63).

(c) If k = n, there is nothing to prove. Thus, we assume that k = n−1 and without loss of gener-

ality, we assume that the last rowBn∗ ofB is linearly dependent on the rowsB1∗, . . . , B(n−1)∗.

Thus, we have

Bn∗ =

n−1∑
i=1

λiBi∗, (65)

for some scalar values λ1, . . . , λn−1. Let f denote the unique linear function with

f(Bi∗) = Di∗ for all i = 1, . . . , n− 1.

It remains to show that f(Bn∗) = Dn∗. Applying part (a) to equation (65) shows

(BC)n∗ =

n−1∑
i=1

λi(BC)i∗ =

n−1∑
i=1

λi(DF)i∗,

where the last equality holds since BC = DF . Moreover,

(BC)n∗ = (DF)n∗

and again with part (a), we get

Dn∗ =

n−1∑
i=1

λiDi∗,

with the same scalar values λi, . . . , λn−1. Finally, we get

f(Bn∗) = f

(
n−1∑
i=1

λiBi∗

)
=

n−1∑
i=1

λif (Bi∗) =
n−1∑
i=1

λiDi∗ = Dn∗,

concluding the case k = n− 1.

If k < n − 1, we can apply the same technique such that the linear map f exists for any

k ∈ {1, . . . , n}. This eventually proves the existence of f in part (c).

(d) Similar to part (c), if k = m, there is nothing to prove. We therefore assume that k = m− 1

and without loss of generality, we assume that the last column C∗m of C is linearly dependent

on the columns C∗1, . . . , C∗(m−1). Thus, we have

C∗m =
m−1∑
j=1

λjC∗j , (66)

123

8 Nonnegative Matrix Factorization

for some scalar values λ1, . . . , λm−1. Let g denote the unique linear function with

g(C∗j) = F∗j for all j = 1, . . . ,m− 1.

It remains to show that g(C∗m) = F∗m. Applying part (b) to equation (66) shows

(BC)∗m =
m−1∑
j=1

λj(BC)∗j =
m−1∑
j=1

λj(DF)∗j ,

where the last equality holds since BC = DF . Moreover,

(BC)∗m = (DF)∗m

and again with part (b), we get

F∗m =
m−1∑
j=1

λjF∗j ,

with the same scalar values λj , . . . , λm−1. Finally, we get

g(C∗m) = g

m−1∑
j=1

λjC∗j

 =
m−1∑
j=1

λjg (C∗j) =
m−1∑
j=1

λjF∗j = F∗m,

concluding the case k = m− 1.

If k < m − 1, we can apply the same technique such that the linear map g exists for any

k ∈ {1, . . . ,m}. This eventually proves the existence of g in part (d).

Now we can prove the following general result.

Lemma 8.10. Let B,D ∈ Rn×k, both of rank k, and C,F ∈ Rk×m, again both of rank k. Then

we have BC = DF if and only if there exists a nonsingular matrix Q ∈ Rk×k such that BQ = D

and Q−1C = F .

Proof. We will prove both directions separately. For the if part, let Q ∈ Rk×k be nonsingular

with BQ = D and Q−1C = F . Then we have DF = BQQ−1C = BC. For the reverse part,

let Bi∗ resp. Di∗ denote the i-th rows of B resp. D. Further let R(B) ⊆ Rk resp. R(D) ⊆ Rk

denote the subspaces spanned by the rows of B and D, respectively. Since B and D are of the

same rank, Lemma 8.9 (c) shows that there exists a linear map f : R(B) → R(D), xT 7→ xTAf

such that f(Bi∗) = Bi∗Af = Di∗ for all i ∈ {1, . . . , n}. Moreover, for i = 1, . . . ,m, let C∗j
resp. F∗j denote the columns of C resp. F . Further let S(C) ⊆ Rk resp. S(F) ⊆ Rk denote

the subspaces spanned by the columns of C and F , respectively. Since C and F are of the same

rank, Lemma 8.9 (d) shows that there exists a linear map g : S(C) → S(F), y 7→ Agy such that

g(C∗j) = AgC∗j = F∗j for all j ∈ {1, . . . ,m}. Due to the equality BC = DF , we have

Bi∗C∗j = Di∗F∗j for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. (67)

124

8.2 General Nonnegative Matrix Factorization

Furthermore, since rank(B) = rank(D) = k, the matrix Af is nonsingular and f is bijective,

such that we have for every i, j

Bi∗C∗j = f−1(Di∗)C∗j = Di∗A
−1
f C∗j and Di∗F∗j = Di∗AgC∗j .

By equation (67), we therefore get

Di∗A
−1
f C∗j = Di∗AgC∗j , (68)

for every i = 1, . . . , n and j = 1, . . . ,m. Moreover, C is of full row-rank such that the Moore-

Penrose-inverse C+ is a right inverse of C, cf. Lemma A.3. The matrix D is of full column-rank

such that D+ is a left inverse of D. Thus, equation (68) can be rewritten as

DA−1
f C = DAgC ⇔ D+DA−1

f CC+ = D+DAgCC
+ ⇔ A−1

f = Ag,

such that Af is the inverse of Ag and vice versa, which completes the proof.

This lemma therefore shows that instead of using orthogonal matrices to transform one ma-

trix factorization of type A = BC into another one, we will apply the generalized result of

Lemma 8.10 and we will therefore work with nonsingular matrices. It may become important

to make sure that a given matrix is nonsingular. To ensure this, we can use the following approach.

Lemma 8.11. Consider a singular matrix A ∈ Rn×n and its singular value decomposition

A = UΣV T . Then there exists Σ̃ ∈ Rn×n such that U Σ̃V T is nonsingular.

Proof. Since A is singular, some of the diagonal entries of Σ are equal to zero. Further let

σmin := min{Σii | Σii 6= 0}. Then we construct a diagonal matrix Σ̃ with

Σ̃ii =

Σii, if Σii > 0

σmin, if Σii = 0.

Having this, we define Ã := U Σ̃V T and it follows that

det(Ã) = det(U Σ̃V T) = det(U)︸ ︷︷ ︸
∈{−1,1}

det(Σ̃)︸ ︷︷ ︸
>0

det(V T)︸ ︷︷ ︸
∈{−1,1}

6= 0

and Ã is therefore nonsingular.

This regularization is optimal in the sense that A is the best low-rank approximation of Ã of

fixed rank according to Theorem 8.2.

Now we can formulate the main result of this section, which will motivate the algorithm for

nonnegative matrix factorization later on. For this, we define the polyhedral cones

PB := {Q ∈ Rk×k | BkQ ≥ 0} and

PC := {Q ∈ Rk×k | Q is nonsingular and Q−1Ck ≥ 0}.
(69)

125

8 Nonnegative Matrix Factorization

Based on these definitions, we now get the following theorem.

Theorem 8.12. Let A ∈ Rn×m and k ≤ min{n,m}. Consider the best rank-k approximation Ak
of A and its initial factorization Ak = BkCk as introduced in (61). Then, to obtain a nonnegative

matrix factorization of A of rank k, it is sufficient to find a matrix Q ∈ Rk×k in the intersection

PB ∩ PC .

Proof. If Q ∈ PB ∩ PC , we know that Q is nonsingular by definition of PC . Moreover, we have

Ak = BkCk = (BkQ)(Q−1Ck).

By definition of PB and PC , we get with Lemma 8.7:

Ak = (BkQ)︸ ︷︷ ︸
≥0

(Q−1Ck)︸ ︷︷ ︸
≥0

is a nonnegative matrix factorization of A, completing the proof.

We can therefore reduce the problem of finding a nonnegative matrix factorization to solving

the problem

find Q ∈ PB ∩ PC , (70)

as a generalization of the problem in (55).

We can now extend the results for the alternating projections method to generate cp-factoriza-

tions, presented in Chapter 6, to the framework of nonnegative matrix factorization. Here we

will see in the following sections that it is possible to derive an algorithmic approach to obtain a

nonnegative matrix factorization, based on the tools we introduced to obtain cp-factorizations.

8.2.2 Exact Projection Algorithm for Nonnegative Matrix Factorization

There already exist several update rules to compute a nonnegative matrix factorization. A survey

on several update rules and algorithms can be found for example in [47, Chapter 6], [59, Chapter 3]

or in [69, Chapters 4-5].

For our approach, we will go back to the problem in (70) to find a matrix Q in the intersection

PB ∩ PC . Here a first thing to analyse is how to project onto the sets PB and PC introduced

in (69). Here we can use the result in Lemma 6.1, proving that the projection onto PB is unique

and can be computed by solving a certain second order cone problem.

Unfortunately, this does not hold for the set PC since this set is not even closed (due to the fact

that the set of nonsingular matrices is not closed), such that we can not project onto PC .

In the following, we will show that it is possible to apply a different approach to obtain a matrix

in the set PC . For this, we will extend the results in Section 6.2 to the framework of nonnegative

matrix factorization. This generates a modified and applicable algorithm, which is introduced in

the following section.

126

8.2 General Nonnegative Matrix Factorization

8.2.3 Modified Algorithm for Nonnegative Matrix Factorization

To obtain an applicable algorithm to compute a general nonnegative matrix factorization, we will

start with some initial nonsingular matrix Q0. Similar to the method in Section 6.2, we will use

the projection of the product BkQ0 onto the nonnegative orthant, where Bk is as defined in (61).

So, we define the matrix D ∈ Rn×k entrywise as

Dij := max {(BkQ0)ij , 0} for all i = 1, . . . , n and j = 1, . . . , k. (71)

Due to the lack of symmetry in this setting, we also need to project Q−1
0 Ck onto the nonnegative

orthant, where Ck is as defined in (61). Dropping the inverse of the matrix first, we define the

matrix F ∈ Rk×m entrywise as

Fij := max {(Q0Ck)ij , 0} for all i = 1, . . . , k and j = 1, . . . ,m. (72)

Since the nonnegative orthant of the matrix space Rn×k (resp. Rk×m) is convex, these projections

are always unique. Moreover, it will be necessary to solve the equations BkX = D for X and

Y Ck = F for Y . For this, we will apply a method which is similar to the approach in Lemma 6.7.

To be more precise, we have the following result.

Lemma 8.13. Let Bk and Ck be as introduced in (61). Further let D,F be as defined in (71)

and (72). Consider the equation BkX = D. Then ‖BkX − D‖F is minimal if and only if

X = B+
k D. Furthermore, consider the equation Y Ck = F . Then ‖Y Ck −F‖F is minimal if and

only if Y = FCk
+. Here B+

k respectively C+
k denotes the Moore-Penrose-inverse of Bk and Ck,

respectively.

Proof. We will prove this result separately for Bk and Ck. First, we focus on the equation

BkX = D and assume that there exists a solution X . According to Lemma 6.7, the complete

set of solutions of this equation is the set{
X = Bk

+D + (I −B+
k Bk)A

∣∣∣ A ∈ Rk×k
}
⊆ Rk×k. (73)

Moreover, we know that rank(A) ≥ k and by construction, this implies rank(Bk) = k. Thus, Bk
is of full column rank and due to the properties of the Moore-Penrose-inverse, we get B+

k Bk = I ,

such that the solution set in (73) boils down to the singleton {B+
k D}. In this case, we therefore

have ‖BkX − D‖F = 0 if and only if X = B+
k D. On the other hand, for the case where there

doest not exist a solution X of BkX = D, Lemma 6.7 shows that the residual ‖BkX − D‖F is

minimal if and only if X = B+
k D.

If we focus on the equation Y Ck = F on the other hand, we know that the complete set of

solutions is given as the set{
Y = FC+

k +A(I − CkCk+)
∣∣∣ A ∈ Rk×k

}
⊆ Rk×k, (74)

again due to Lemma 6.7. Similar to the first case, we have that Ck ∈ Rk×m is of rank k

127

8 Nonnegative Matrix Factorization

and therefore of full row rank. This yields CkC+
k = I due to the properties of the Moore-

Penrose-inverse. Hence, the solution set in (74) boils down to the singleton {FC+
k }. Thus,

‖Y Ck − F‖F = 0 if and only if Y = FC+
k . For the case where there doest not exist a solu-

tion Y of Y Ck = F , the statement follows again by applying Lemma 6.7.

With this result, we can now give an approximation to Q in PB respectively PC , which can be

computed easily.

Lemma 8.14.

(a) Let D be the projection of BkQ onto Rn×k+ . If D = BkQ, then Q = PPB
(Q) ∈ PB . If on the

other hand D 6= BkQ and the equation BkX = D is solvable for X , then B+
k D ∈ PB .

(b) Let F be the projection of QCk onto Rk×m+ . If QCk = F and Q is nonsingular, then

Q−1 = PPC
(Q−1) ∈ PC . On the other hand, let F 6= QCk and assume that the matrix

FC+
k is nonsingular. Further assume that the equation Y Ck = F is solvable for Y . Then we

have (FC+
k)−1 ∈ PC .

Proof. We will prove both parts separately.

(a) If D = BkQ, then BkQ ≥ 0, i.e., Q ∈ PB and Q is therefore its projection onto PB .

Otherwise, let D 6= BkQ and assume that the equation BkX = D is solvable for X .

Then Lemma 8.13 yields X = B+
k D. Therefore, B+

k D is the projection of Q onto the set

{X ∈ Rk×k | BkX = D}. Since D ≥ 0, we get B+
k D ∈ PB .

(b) If QCk = F and Q is nonsingular, then QCk ≥ 0 and Q−1 ∈ PC by definition. Moreover, in

this case, Q−1 is its projection onto PC . Otherwise, let F 6= QCk and assume that Y Ck = F

has a solution Y . Hence, Y = FC+
k due to Lemma 8.13. Thus, FC+

k is the projection of Q

onto the set {Y ∈ Rk×k | Y Ck = F}. Since FC+
k is nonsingular by assumption and F ≥ 0

by definition, we get (FC+
k)−1 ∈ PC .

In addition, if the equation BkX = D does not have a solution, then X := B+
k D minimizes the

residual ‖BkX −D‖F . In this case, we get BkX = BkB
+
k D. Here BkB+

k 6= I in general since

Bk is not of full row-rank. Thus, it may happen that B+
k D /∈ PB , however this does not seem to

impair the good numerical performance.

If on the other hand the equation Y Ck = F does not have a solution, we get with Lemma 8.13

that Y := FC+
k minimizes the residual ‖Y Ck − F‖F . Thus, Y Ck = FC+

k Ck. In this equation

we have C+
k Ck 6= I in general since Ck is not of full column rank. Hence, even if FC+

k is

nonsingular, it may happen that (FC+
k)−1 /∈ PC . However, this does not seem to impair the good

numerical performance either.

If we combine the results in Lemmas 8.13 and 8.14, it is possible to derive matrices in PB or

PC without solving an SOCP. Moreover, in Lemma 8.14, we assumed that FC+
k is a nonsingular

matrix. This is equivalent to a certain rank assumption for F , as the following lemma shows. Here

in addition, a similar result for B+
k D holds and will be used for the algorithmic approach.

128

8.2 General Nonnegative Matrix Factorization

Lemma 8.15.

(a) In our setting, the matrix FC+
k ∈ Rk×k is nonsingular if and only if F ∈ Rk×m is of rank k.

(b) In addition, the matrix B+
k D ∈ Rk×k is nonsingular if and only if D ∈ Rn×k is of rank k.

Proof. (a) First observe that by Sylvester’s inequality, cf. [12, Corollary 2.5.10], we have

rank(F) + rank(C+
k)− k ≤ rank(FC+

k) ≤ min{rank(F), rank(C+
k)}.

Since rank(C+
k) = rank(Ck) = k, this yields

rank(F) ≤ rank(FC+
k) ≤ min{rank(F), k}. (75)

Now observe that FC+
k is nonsingular if and only if rank(FC+

k) = k. Due to (75), this is
true if and only if rank(F) = k.

(b) Analogue to the first part, since rank(B+
k) = k, Sylvester’s inequality yields

rank(D) ≤ rank(B+
k D) ≤ min{k, rank(D)},

such that rank(B+
k D) = k if and only if rank(D) = k.

From now on, we will take B+
k D respectively (FC+

k)−1 as an approximation of PPB
(Q), re-

spectively PPC
(Q). This reasoning leads to Algorithm 9.

Algorithm 9 Modified algorithm for nonnegative matrix factorization
Input: A ∈ Rn×m with its singular value decomposition A = UΣV T ; k ≤ min{n,m}; initial
nonsingular matrix Q0 ∈ Rk×k

1: Ak ←
k∑
i=1

σiuiv
T
i

2: [Uk,Σk, Vk]← svd(Ak)
3: Bk ← Uk

√
Σk ∈ Rn×k and Ck ←

√
ΣkV

T
k ∈ Rk×m

4: i← 0
5: while BkQi 6≥ 0 or Q−1

i Ck 6≥ 0 do
6: D ← max{BkQi, 0} entrywise
7: QD ← Bk

+D
8: if rank(D) < k then
9: Regularize QD

10: end if
11: F ← max{Q−1

D Ck, 0} entrywise
12: QF ← FCk

+

13: if rank(F) < k then
14: Regularize QF
15: end if
16: Qi+1 ← Q−1

F

17: i← i+ 1
18: end while
Output: Nonsingular matrix Qi and a nonnegative matrix factorization (BkQi)(Q

−1
i Ck) of A.

129

8 Nonnegative Matrix Factorization

In Algorithm 9, the first 3 steps calculate exactly the initial factorization A = BkCk as intro-

duced in (61). In step 5, the main while loop of the algorithm starts. As long as our factorization

matrices BkQi and Q−1
i Ck have some negative entries, we at first define D as the entrywise max-

imum introduced in (71). In step 7, we then look for a solution QD of min ‖BkQD − D‖F . As

shown in Lemma 8.14, we know that B+
k D is the unique solution. Moreover, if the equation

BkQ = D is solvable for Q, we get that B+
k D ∈ PB . To obtain a matrix in PB ∩ PC , and since

the set PC is based on the inverse of the considered matrices, we check in step 8 whether B+
k D

is nonsingular, based on the result in Lemma 8.15. If this is not the case, we use the regulariza-

tion approach in Lemma 8.11 to make sure that the generated matrix is nonsingular and we can

compute its inverse. Using this inverse matrix as the matrix Q0 in (72), we obtain the matrix F in

step 11 as the introduced entrywise maximum. In step 12, we then look for a solution QF of the

problem min ‖QFCk − F‖F . Due to Lemma 8.14, the solution is given as FC+
k . Then in step

13, we check whether the matrix FC+
k is nonsingular, again based on the result in Lemma 8.15.

According to Lemma 8.14, we know that if FC+
k is nonsingular and the equation QCk = F is

solvable, we have (FC+
k)−1 ∈ PC . Then we take (FC+

k)−1 as our next iterate Qi+1. If on the

other hand the matrix FC+
k is singular, we again apply the regularization technique in Lemma 8.11

to obtain the inverse of the regularized matrix as our next iterate Qi+1 in step 16. Then a new loop

starts as long as we have not reached a nonnegative matrix factorization.

For the numerical implementation, we further add a maximum number of iterations to make

sure that the algorithm terminates. In the following section, we will have a closer look at the

numerical performance of Algorithm 9.

8.2.4 Numerical Results for Nonnegative Matrix Factorization

As before, the numerical results were carried out on a computer with 88 Intel Xenon ES-2699 cores

(2.2 Ghz each) and a total of 0.792 TB RAM. Algorithm 9 was implemented in MatlabR2017a.

For randomly generated matrices, again the Matlab command randn was used. Numerically, the

algorithm terminates successfully if it returns matrices (BkQi) and (Q−1
i Ck) which are entrywise

greater than or equal to −10−12 and it terminates without success if these conditions are not

fulfilled and the maximum number of iterations is reached.

For a first example, consider the following randomly generated matrix

A =


7 3 5 4 13 1 1 4

6 2 2 4 10 16 8 2

9 11 1 9 9 5 3 14

3 10 1 13 19 7 0 13

21 4 2 2 20 6 4 3

 ∈ R5×8 (76)

and the low-rank parameter k, fixed to 3 in this example. Then at first, we compute the best rank-3

130

8.2 General Nonnegative Matrix Factorization

approximation A3 to A, as shown in Theorem 8.2. We get

A3 =


8.9667 4.2210 1.5947 3.5945 11.1316 1.6312 0.8958 4.8216

6.0643 2.0481 1.4711 3.9834 10.0323 16.0878 7.8358 1.9519

5.5122 8.9454 1.4337 9.6742 13.5665 4.7817 1.0274 11.5364

5.1814 11.2683 1.5752 12.5851 15.9546 7.0005 1.5595 14.6929

20.5074 3.6837 3.3835 2.1058 20.3494 5.7566 4.2303 2.8895

 .

To generate a nonnegative matrix factorization with k = 3 for the matrix A, we start with the
following initial factorization, based on the technique introduced in (61). More precisely, we have
A3 = B3C3 with

A3 =

(−2.2164 0.3624 1.0742
−2.4818 1.1425 −3.2988
−3.1257 −1.7305 0.3226
−3.7949 −2.4724 −0.0604
−3.8469 2.8992 1.3067

)
︸ ︷︷ ︸

B3∈R5×3

(−3.0116 −1.9850 −0.6127 −2.0773 −4.6122 −2.1422 −0.9359 −2.3673
2.4952 −1.5193 0.3004 −1.8944 0.6106 0.5318 0.8395 −2.3186
1.2916 0.3463 0.1190 −0.3008 0.6402 −3.0811 −1.3805 0.3863

)
︸ ︷︷ ︸

C3∈R3×8

.

Since rank(A) = 5, we have rank(B3) = rank(C3) = 3 by definition. As an initial nonsingular

matrix, we take

Q0 =

0.4397 0.0464 0.2059

0.3518 0.8796 0.0828

0.2594 0.3400 0.4412

 .

Based on these input variables, Algorithm 9 takes 153 iterations and 0.0144 seconds to provide

entrywise nonnegative matrices B̃3 and C̃3 such that

A3 =

(
0.7170 0.0226 0.0047
0.2196 1.3784 0.0020
0.4051 0.1073 0.0128
0.3506 0.2145 0.0165
1.5761 0.4598 0.0014

)
︸ ︷︷ ︸

B̃3∈R5×3
+

(
12.2890 1.6756 1.9019 0.1499 10.9775 0.1221 1.0755 1.0565
2.4108 0.2940 0.6981 1.8080 4.5600 11.2559 5.5133 0.0000
21.5553 644.1498 46.0188 736.7893 675.0740 275.6546 0.0000 868.9005

)
︸ ︷︷ ︸

C̃3∈R3×8
+

.

Due to Theorem 8.2, we have

‖A−A3‖F = ‖A− B̃3C̃3‖F ≤ ‖A−X‖F ,

for every matrix X ∈ Rn×m with rank(X) ≤ 3. Combined with the fact that the matrices B̃3

and C̃3 are entrywise nonnegative, we eventually get that B̃3C̃3 is the desired nonnegative matrix

factorization of A of rank 3.

Moreover, in the following experiment, we will have a closer look at the influence of the param-

eter k for a given matrix A ∈ Rm×n.

To this end, we consider the matrix

A =


16 40 29 9 42 36 24 26

19 41 30 11 26 31 22 30

24 34 50 36 25 42 41 48

13 24 26 25 16 34 28 35

9 39 29 18 19 39 19 38

 ∈ R5×8.

131

8 Nonnegative Matrix Factorization

This matrix is generated as the product of two entrywise nonnegative matrices A1 ∈ N5×5 and

A2 ∈ N5×8, which are randomly generated. For the experiment, we test the performance of

100 starting points Q0 with a maximum of 3000 iterations per starting point in Algorithm 9 for

different values of k. The results are collected in Figure 8.5.

Figure 8.5: Success rate of Algorithm 9 for a given matrix of order 5× 8 and different values of k.

0 500 1000 1500 2000 2500 3000

number of iterations

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
s
ta

rt
in

g
 p

o
in

ts
 g

iv
in

g
 a

 n
o

n
n

e
g

a
ti
v
e

 f
a

c
to

ri
z
a

ti
o

n
in

 l
e

s
s
 t

h
a

n
 x

 i
te

ra
ti
o

n
s

k=2
k=3
k=4
k=5

As we notice in Figure 8.5, the performance of Algorithm 9 depends on the choice of k. Whereas

for k = 2 nearly every starting point returns a nonnegative matrix factorization, the success rate

decreases for higher values of k. Taking k = 4 still returns a success rate of more than 90%. For

k = 5, it is still possible to derive a nonnegative matrix factorization of A. This therefore shows

that it is not necessary to add a low-rank constraint to obtain a nonnegative matrix factorization.

Nevertheless, in most applications, the low-rank approach is part of the nonnegative matrix fac-

torization. Figure 8.5 therefore substantiates the good performance of Algorithm 9 for different

choices of k for the same matrix.

Clearly, the performance depends on the best rank-k approximation Ak of A, as the following

remark states.

Remark 8.16. Consider the best rank-k approximation Ak of the given matrix A. Then Algo-

rithm 9 will terminate successfully for the parameter k only if there exists an exact factorization

Ak = BkCk with Bk ∈ Rn×k+ and Ck ∈ Rk×m. Clearly, this can only be true if Ak ∈ Rn×m+ .

Similar to the symmetric case of nonnegative matrix factorization in Section 8.1.2, we will

analyse the influence of the order of the given matrix A on the performance of Algorithm 9. To

this end, we consider randomly generated matrices A ∈ Rn×m for different values of n and m.

The instances are generated as follows: Given the values n,m, we define l := min{n,m} and

with this, we construct matrices B ∈ Rn×l and C ∈ Rl×m using the Matlab command randn.

132

8.2 General Nonnegative Matrix Factorization

Then we take the absolute value of the entries ofB and C to make sure that the generated matrices

are entrywise nonnegative. Eventually, we define A = BC as our test matrix A.

For each matrix generated this way, we set k = b0.7lc and analyse the success rate of 100 ran-

domly generated initial nonsingular matrices Q0. For every Q0, we allow at most 3000 iterations.

The performance of Algorithm 9 in this setting is illustrated in Figure 8.6.

Figure 8.6: Success rate of Algorithm 9 for matrices of variable order n × m and k fixed to
b0.7 ·min{n,m}c.

0 500 1000 1500 2000 2500 3000

number of iterations

0

10

20

30

40

50

60

70

80

90

100

%
 o

f s
ta

rt
in

g
po

in
ts

 g
iv

in
g

a
no

nn
eg

at
iv

e
fa

ct
or

iz
at

io
n

in
 le

ss
 th

an
 x

 it
er

at
io

ns

n=4,m=5,k=2
n=5,m=4,k=2
n=6,m=8,k=4
n=8,m=6,k=4
n=8,m=10,k=5
n=10,m=8,k=5

Here a first thing to mention is that the algorithm terminates successfully in every case. So, the

success in total is independent of the order of the initial matrix A. Moreover, it does not make

a difference if m > n or m < n. Especially for small dimensions like n = 4, m = 5 and

n = 5, m = 4, plotted as the solid blue and the dashed red line, it turns out that the algorithm

terminates successfully for around 90% of the initial nonsingular matrices. Furthermore, if the

algorithm terminates successfully for one of the initial nonsingular matrices, a nonnegative ma-

trix factorization is provided in less than 100 iterations. Increasing values of m and n do not

seem to influence the success rate in less then 3000 iterations, but it takes more iterations on av-

erage to return a nonnegative matrix factorization. Here especially the green line, representing

n = 8, m = 10, illustrates this behaviour. Altogether, Figure 8.6 shows that the here presented

method to derive nonnegative matrix factorizations works well for matrices A, which are gener-

ated via the above mentioned approach. Clearly, this proves that the generalized techniques in

Section 8.2.1, which are motivated by the techniques in Section 6.1 to obtain cp-factorizations,

can be used in Algorithm 9 to derive nonnegative matrix factorizations of given rank k.

In the last section, we will now collect the results and approaches introduced in this thesis.

133

9 Conclusion and Further Remarks

In this thesis, we introduced methods to derive completely positive and nonnegative matrix factor-

izations. To be more precise, in the first part, we saw some fundamental facts on the completely

positive matrix cone and especially some applications of completely positive programming. For

these approaches, it is necessary to prove whether a given matrix is completely positive, a task

which is known to be NP-hard. Moreover, we saw that beside proving the membership to the com-

pletely positive cone, having an explicit cp-factorization is important to obtain the optimal solution

in some applications. Not least because of this motivation, we introduced some relevant definitions

and properties for factorizations of completely positive matrices, here notably the cp-rank.

Based on the fact that factorizations for completely positive matrices are not unique, we anal-

ysed in Chapter 3 the relation of different cp-factorizations of the same matrix. As it turned out,

orthogonal matrices can be used to transform one cp-factorization into another one. Nevertheless,

for this result, it is necessary to have two factorizations of equal order. In this context we saw

that it is possible to extend the number of columns in a given cp-factorization arbitrarily, without

loosing the key properties.

This approach can also be applied to any factorization A = BBT , where B is not necessarily

entrywise nonnegative. Based on this fact, we could show that proving the membership to the

completely positive cone boils down to a feasibility problem of two intersecting sets in Chapter 4.

Furthermore, we saw that these results can also be extended to prove the membership of a matrix

to the interior of the completely positive cone.

The resulting feasibility problems now motivated to study the well known approach of alternat-

ing projections to obtain a point in the intersection of two sets. Here an introduction to this topic

for several types of sets was given. We especially focused on convergence results and results on

the convergence rate of this approach in several settings. Considering more than two sets led us

to the cyclic projections approach. Here again, some known facts on the convergence rate were

given. Moreover, in Section 5.4, we saw that the convergence results for alternating projections be-

tween manifolds can be extended to convergence results for cyclic projections among a sequence

of manifolds. We further saw, considering the results in [41], that alternating projections can also

be applied to semialgebraic sets.

This fact was then used to construct a first algorithm to prove the membership of a given matrix

to the completely positive cone in Chapter 6. Furthermore, it was possible to derive a local con-

vergence result for this approach. For this first algorithm, it was necessary to solve a second order

cone problem in every projection step. Although the solution of these problems can be obtained in

polynomial time, it was possible to modify the first algorithm in order to achieve even lower com-

putation times. Another possibility to decrease the computation time, which was not shown in this

135

9 Conclusion and Further Remarks

thesis, would be to use parallel computing. Here it should be mentioned that both Algorithms 1

and 2 are easy to run in parallel since for a given starting point the computation runs completely

independent of any other run. The same holds for the other algorithms introduced in this thesis,

which are based on the methods in Algorithm 1 or 2.

Nevertheless, we saw in Chapter 7 that especially the modified approach works very fast in most

instances. Again we distinguished between matrices at the boundary and in the interior of the

completely positive cone. Whereas for the interior the algorithms terminated for any instance, the

algorithms could not provide a cp-factorization for certain matrices at the boundary. Nevertheless,

slight perturbations of these matrices were sufficient to ensure a successful termination. All in all,

it was possible to factorize matrices of order up to 2000.

As we showed in Chapter 8, it is possible to use the approaches for cp-factorizations also in

the setting of nonnegative matrix factorizations, albeit with some further adjustments. Especially

in the context of symmetric nonnegative matrix factorization, we saw that the generated results

extend to this setting in a very similar way. For the case of general nonnegative matrix factorization

on the other hand, it was necessary to replace orthogonal matrices with nonsingular matrices to

obtain a factorization algorithm. Furthermore, we saw that the resulting feasibility problems are

now based on nonclosed sets, such that it became necessary to compute approximations to these

sets in order to obtain an applicable algorithm. Numerical experiments showed that it is possible

to use the key tools of the completely positive factorization approaches as well in this setting.

Thus, the presented methods throughout this thesis can be applied to various settings, whenever

a completely positive or nonnegative factorization is needed.

136

Appendix: Singular Value Decomposition
and Pseudoinverse Matrices

For the reader’s convenience, we will have closer look at some properties of the singular value

decomposition and the Moore-Penrose-inverse in this appendix. For a short survey on this area

and for small dimensional concrete examples, the reader is for example referred to [49].

First, we define the singular values of a matrix and its singular value decomposition, cf. [12,

Definition 5.6.1 and Theorem 5.6.3].

Theorem A.1. Let A ∈ Rn×m be nonzero and let r = rank(A). Then the eigenvalues of AAT

are nonnegative and they are equal to the eigevalues of ATA. Hence, the square roots of the

eigenvalues are real numbers.

The singular values σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σmin{n,m} = 0 of A are then defined

as the square root of the eigenvalues of ATA and AAT .

For the so called singular value decomposition, there exist orthogonal matrices U ∈ Rn×n and

V ∈ Rm×m such that

A = U

(
Σr×r 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

)
V T ,

where Σr×r = Diag(σ1, . . . , σr) ∈ Rr×r is a diagonal matrix containing the positive singular

values of A and 0k×l is a zero matrix of order k × l.

For the singular value decomposition of A, we shortly write A = UΣV T . This can also be

written as

A =

r∑
i=1

σiuiv
T
i ,

where rank(A) = r and ui respectively vi is the i-th column of the matrix U respectively V for

every i ∈ {1, . . . , r}.
The singular value decomposition can be used to derive the best rank-k approximation, in

Frobenius-norm sense, to a given matrix A ∈ Rn×m with k ≤ min{m,n}. This result, known as

the Eckart-Young-Mirsky Theorem, can also be found more detailed in Theorem 8.2.

Theorem A.2. Let A ∈ Rn×m be of rank r and consider its singular value decomposition

A = UΣV T . Thus, A can be written as

A =

r∑
i=1

σiuiv
T
i ,

137

Appendix: Singular Value Decomposition and Pseudoinverse Matrices

where ui respectively vi is the i-th column of the matrix U respectively V for every i ∈ {1, . . . , r}.
Then for k ≤ r = rank(A), the best rank-k approximation (in the Frobenius norm) of A is given

by

Ak :=

k∑
i=1

σiuiv
T
i .

To be more precise, we have

Ak = argmin
{
‖A−X‖2F

∣∣ X ∈ Rn×m with rank(X) ≤ k
}
,

with corresponding minimal value

‖A−Ak‖2F =
∑
i>k+1

σ2
i .

Moreover, if σk > σk+1, then Ak is the unique global minimizer.

In the following, we will see that the singular value decomposition can also be used to derive

the so called Moore-Penrose-inverse of a matrix A ∈ Rn×m. We introduce the definition of a

generalized Inverse of a matrix first.

The Moore-Penrose-inverse A+ of a real matrix A is the unique matrix that satisfies the follow-

ing conditions, see for example [46]:

(a) AA+A = A.

(b) A+AA+ = A+.

(c) (AA+)T = AA+.

(d) (A+A)T = A+A.

Moreover, the Moore-Penrose-inverse exists for any matrix A ∈ Rm×n. If A is square and non-

singular, the inverse A−1 fulfills the properties (a)-(d), such that A+ = A−1. So in this case, A+

is unique. This also holds in general, see for example [72, Theorem 3.2].

In addition, we have that A+ can be a left or right inverse of A, as the following lemma shows.

This result can be found for example in [8, Chapter 1.3, Lemma 2].

Lemma A.3. Let A ∈ Rn×m. Then:

(a) If n ≤ m and A is of full row-rank, we have AA+ = In.

(b) If n ≥ m and A is of full column rank, we have A+A = Im.

The Moore-Penrose-inverse can now be computed via the singular value decompostion of A, as

shown for example in [55]. More precisely, we have the following result.

Lemma A.4. Consider A ∈ Rn×m and its singular value decomposition A = UΣV T . Then

A+ = V Σ+UT = V

(
Σ−1
r×r 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

)T
UT = V

(
Σ−1
r×r 0(n−r)×r

0r×(m−r) 0(n−r)×(m−r)

)
UT .

138

In Matlab this approach is already implemented in the command pinv and is used for the

computations in Algorithms 2 and 5. We can use the Moore-Penrose-inverse of a matrix A to

obtain solutions x to the problem minx ‖Ax − b‖, as shown in Lemma 6.7. This is the main

advantage of using this generalized inverse in this setting. With the properties presented in this

Appendix, it is possible to derive the results in this thesis, which are based on the singular value

decomposition or the Moore-Penrose-inverse.

139

List of Algorithms

1 Alternating projections between P and Or . 81

2 Modified algorithm for completely positive matrix factorizations 84

3 Alternating projections between Pε,1 and Or . 86

4 Alternating projections between Pε,2 and Or . 86

5 Modified algorithm for the interior of the completely positive cone 88

6 The algorithm by Ding et al. [39] . 100

7 Symmetric nonnegative matrix factorization based on Algorithm 1 112

8 Symmetric nonnegative matrix factorization based on Algorithm 2 113

9 Modified algorithm for nonnegative matrix factorization 129

141

List of Figures

5.1 Alternating projections for two linear subspaces in R2 46

5.2 Alternating projections for two convex sets in R2 52

5.3 Alternating projections for two nonintersecting convex sets in R2 52

5.4 Cyclic projections approach for four noninterseting convex sets in R2 54

5.5 The polar cone and ε-polar cone are different in general 57

5.6 ε-polar cones for different values of ε . 57

5.7 Transversality for manifolds. An example in R2 62

5.8 Alternating projections for two one-dimensional manifolds in R2 69

5.9 Alternating projections between closed sets . 76

7.1 Success rate of Algorithm 2 for Example 7.1 with different values of n. 90

7.2 Success rate of Algorithm 2 for the matrix A6 from Example 7.1 using different

values of r ≥ cpr(A6) = 6. 92

7.3 Success rate of Algorithm 2 for the matrix A10 from Example 7.1 using different

values of r ≥ cpr(A10) = 10. 92

7.4 Success rates of Algorithms 1 and 2 in comparison. 95

7.5 Success rate of Algorithm 2 for column replication vs appending zero columns. . 96

7.6 Success rate of Algorithm 5 for Example 2.22. 108

8.1 Success rates of Algorithms 7 and 8 for Example 2.43 with k = 2 for the same

starting points. 115

8.2 Success rates of Algorithms 7 and 8 for Example 2.22 with k = 2 for the same

starting points. 116

8.3 Success rate of Algorithm 8 for random matrices A of order 10 × 10 for several

values of k and 100 randomly chosen starting points for each k. 117

8.4 Success rate of Algorithm 8 for random matrices of order n× n with k = b0.7nc. 117

8.5 Success rate of Algorithm 9 for a given matrix of order 5× 8 and different values

of k. 132

8.6 Success rate of Algorithm 9 for matrices of variable order n ×m and k fixed to

b0.7 ·min{n,m}c. 133

143

List of Tables

7.1 Performance of Algorithm 2 on the boundary and in the interior of CPn 97

7.2 Performance of Algorithm 2 for randomly generated matrices of higher order . . 99

7.3 Performance of Algorithm 6 applied to Example 2.22. 101

7.4 Performance of Algorithm 2 applied to Example 2.22. 101

7.5 Performance of Algorithm 6 applied to Example 7.3 102

7.6 Performance of Algorithm 2 applied to Example 7.3. 102

7.7 Performance of Algorithm 1 applied to Example 7.3. 102

7.8 Quality of the approximation of the approach by Jarre and Schmallowsky applied

to Example 2.27. 104

7.9 Performance of the approach by Jarre and Schmallowsky for randomly generated

matrices of higher order . 105

145

Nomenclature

Scalars

α(V1, V2) Friedrichs angle between two subspaces V1, V2.

c(V1, . . . , Vk) Cosine of the Friedrichs number between subspaces V1, . . . , Vk.

ci(A1, A2; ε) Cosine of the i-th ε-angle between convex sets A1, A2.

ci(A1, . . . , Ak; ε) Cosine of the i-th ε-angle between the convex sets A1, A2, . . . , Ak.

c(M,N ;x) Cosine of the angle between two manifolds M,N at x ∈M ∩N .

codim(A) Codimension of a vector space A.

cpr(A) cp-rank of a matrix A.

cpr+(A) cp+-rank of a matrix A.

d(A,B) Minimal distance between two convex sets A and B.

dim(A) Dimension of a vector space A.

rank(A) Rank of a matrix A.

ρ(A) Spectral radius of a matrix A.

trace(A) Trace of a matrix A.

Vectors

e All-ones vector.

ei i-th unit vector.

∇f(x) Gradient or Jacoby matrix of a function f at point x.

Rn+ Set of entrywise nonnegative vectors of order n.

Rn++ Set of entrywise strictly positive vectors of order n.

vec(A) Vectorization of a matrix A (stacks the columns of A on top of one another).

147

Nomenclature

Matrices

COPn Cone of copositive matrices of order n.

CPn Cone of completely positive matrices of order n.

DNN n Set of doubly nonnegative matrices of order n.

Dn Set of diagonal matrices of order n.

Nn Cone of entrywise nonnegative matrices of order n.

On Set of orthogonal matrices of order n.

Rn×m+ Set of entrywise nonnegative matrices of order n×m.

Sn Set of symmetric matrices of order n.

S+
n Cone of positive semidefinite matrices of order n.

〈A,B〉 Inner product of two matrices A,B.

A ≥ 0 The matrix A is entrywise nonnegative.

A > 0 The matrix A is entrywise strictly positive.

A⊗B The Kronecker Product of two matrices A and B.

A+ The Moore-Penrose-inverse of a matrix A.

A < 0 The matrix A is positive semidefinite.

A � 0 The matrix A is positive definite.

A∗j The j-th column of a matrix A.

Ai∗ The i-th row of a matrix A.

Aij The entry of matrix A at position i, j.

Diag(x) Diagonal matrix with diagonal entries equal to the entries of the vector x.

En×m All-ones matrix of order n×m.

Eε Matrix with first column entrywise equal to ε and all the other entries are 0.

In Identity matrix of order n× n.

max(A,B) Entrywise maximum of two matrices A,B.

0n×m Zero matrix of order n×m.

148

Sets

Br(x) The closed ball in Rn of radius r with center equal to the vector x ∈ Rn.

bd(C) Boundary of a set C.

C◦,ε ε-polar cone of a closed convex set C.

C◦ Polar cone of a closed convex set C.

Ck Differentiability class of degree k with k ∈ [0,∞].

C⊥ Orthogonal complement of a set C.

cl(C) Closure of a set C.

cone(C) Conic hull of a set C.

conv(C) Convex hull of a set C.

E Euclidean space.

ext(C) Extreme rays of a set C.

Fix(f) Set of fixed points of a function f .

int(C) Interior of a set C.

K∗ Dual cone of a cone K.

ker(f) Kernel of a function f .

NM (x) Normal space to a manifold M in x ∈M .

NQ(x) Normal cone to a closed set Q in x ∈ Q.

Np
Q(x) Proximal normal cone to a closed set Q in x ∈ Q.

SOC Second order cone.

span(x1, . . . , xn) Linear hull of the vectors x1, . . . , xn.

supp(x) Support of a vector x.

TM (x) Tangent space to a manifold M in x ∈M .

Problems

SOCP Second order cone problem.

STQP Standard quadratic problem.

149

Bibliography

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds.
Princeton University Press, Princeton, NJ, 2008.

[2] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Programming,
95(1, Ser. B):3–51, 2003.

[3] K. Anstreicher, S. Burer, and P. Dickinson. An algorithm for computing the cp-factorization
of a completely positive matrix. Working paper, 2015.

[4] C. Badea, S. Grivaux, and V. Müller. A generalization of the Friedrichs angle and the method
of alternating projections. Comptes Rendus Mathématique, 348(1-2):53–56, 2010.

[5] C. Badea, S. Grivaux, and V. Müller. The rate of convergence in the method of alternating
projections. St. Petersburg Mathematical Journal, 23(3):413–434, 2012.

[6] H. H. Bauschke and J. M. Borwein. On the convergence of von Neumann’s alternating
projection algorithm for two sets. Set-Valued Analysis, 1(2):185–212, 1993.

[7] H. H. Bauschke and J. M. Borwein. Dykstra’s alternating projection algorithm for two sets.
Journal of Approximation Theory, 79(3):418–443, 1994.

[8] A. Ben-Israel and T. N. E. Greville. Generalized inverses: Theory and applications, vol-
ume 15 of CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer-
Verlag, New York, second edition, 2003.

[9] A. Berman. Cones, matrices and mathematical programming. Springer-Verlag, Berlin-New
York, 1973. Lecture Notes in Economics and Mathematical Systems, Vol. 79.

[10] A. Berman, M. Dür, and N. Shaked-Monderer. Open problems in the theory of completely
positive and copositive matrices. Electronic Journal of Linear Algebra, 29:46–58, 2015.

[11] A. Berman and N. Shaked-Monderer. Completely positive matrices. World Scientific Pub-
lishing Co., Inc., River Edge, NJ, 2003.

[12] D. S. Bernstein. Matrix mathematics: Theory, facts, and formulas. Princeton University
Press, Princeton, NJ, second edition, 2009.

[13] I. M. Bomze. Copositive optimization—recent developments and applications. European
Journal of Operational Research, 216(3):509–520, 2012.

[14] I. M. Bomze. Building a completely positive factorization. Central European Journal of
Operations Research, 26(2):287–305, 2018.

[15] I. M. Bomze, P. J. C. Dickinson, and G. Still. The structure of completely positive matrices
according to their CP-rank and CP-plus-rank. Linear Algebra and its Applications, 482:191–
206, 2015.

151

Bibliography

[16] I. M. Bomze and W. Schachinger. Multi-standard quadratic optimization: interior point meth-
ods and cone programming reformulation. Computational Optimization and Applications.,
45(2):237–256, 2010.

[17] I. M. Bomze, W. Schachinger, and R. Ullrich. From seven to eleven: completely positive
matrices with high cp-rank. Linear Algebra and its Applications, 459:208–221, 2014.

[18] I. M. Bomze, W. Schachinger, and R. Ullrich. New lower bounds and asymptotics for the
cp-rank. SIAM Journal on Matrix Analysis and Applications, 36(1):20–37, 2015.

[19] R. Borhani, J. Watt, and A. Katsaggelos. Fast and effective algorithms for symmetric non-
negative matrix factorization. arXiv preprint arXiv:1609.05342, 2016.

[20] S. Bundfuss. Copositive matrices, copositive programming, and applications. PhD thesis,
TU Darmstadt, 2009.

[21] S. Burer. On the copositive representation of binary and continuous nonconvex quadratic
programs. Mathematical Programming, 120(2, Ser. A):479–495, 2009.

[22] E. Canhasi and I. Kononenko. Automatic extractive multi-document summarization based
on archetypal analysis. In G. R. Naik, editor, Non-negative Matrix Factorization Techniques:
Advances in Theory and Applications, pages 75–88. Springer Berlin Heidelberg, 2016.

[23] G. Casalino, N. Del Buono, and C. Mencar. Nonnegative matrix factorizations for intelli-
gent data analysis. In G. R. Naik, editor, Non-negative Matrix Factorization Techniques:
Advances in Theory and Applications, pages 49–74. Springer Berlin Heidelberg, 2016.

[24] A. Cegielski. Iterative methods for fixed point problems in Hilbert spaces, volume 2057 of
Lecture Notes in Mathematics. Springer, Heidelberg, 2012.

[25] W. Cheney and A. A. Goldstein. Proximity maps for convex sets. Proceedings of the Ameri-
can Mathematical Society, 10(3):448–450, 1959.

[26] P. L. Combettes and H. J. Trussell. Method of successive projections for finding a common
point of sets in metric spaces. Journal of Optimization Theory and Applications, 67(3):487–
507, 1990.

[27] D. Cooley and E. Thibaud. Decomposition and dependence for high-dimensional extremes.
arXiv preprint arXiv:1612.07190, 2016.

[28] E. de Klerk. Aspects of semidefinite programming, volume 65 of Applied Optimization.
Kluwer Academic Publishers, Dordrecht, 2002. Interior point algorithms and selected appli-
cations.

[29] E. de Klerk and D. V. Pasechnik. Approximation of the stability number of a graph via
copositive programming. SIAM Journal on Optimization, 12(4):875–892, 2002.

[30] J. Demmel, J. Nie, and V. Powers. Representations of positive polynomials on noncompact
semialgebraic sets via KKT ideals. Journal of Pure and Applied Algebra, 209(1):189–200,
2007.

[31] F. Deutsch. The method of alternating orthogonal projections. In S. P. Singh, editor, Approxi-
mation theory, spline functions and applications (Maratea, 1991), volume 356 of NATO Adv.
Sci. Inst. Ser. C Math. Phys. Sci., pages 105–121. Kluwer Acad. Publ., Dordrecht, 1992.

152

Bibliography

[32] F. Deutsch. Best approximation in inner product spaces, volume 7 of CMS Books in Mathe-
matics/Ouvrages de Mathématiques de la SMC. Springer-Verlag, New York, 2001.

[33] F. Deutsch and H. Hundal. The rate of convergence for the cyclic projections algorithm. I.
Angles between convex sets. Journal of Approximation Theory, 142(1):36–55, 2006.

[34] P. H. Diananda. On non-negative forms in real variables some or all of which are non-
negative. Mathematical Proceedings of the Cambridge Philosophical Society, 58:17–25,
1962.

[35] P. J. C. Dickinson. An improved characterisation of the interior of the completely positive
cone. Electronic Journal of Linear Algebra, 20:723–729, 2010.

[36] P. J. C. Dickinson. The copositive cone, the completely positive cone and their generalisa-
tions. PhD thesis, University of Groningen, 2013.

[37] P. J. C. Dickinson and M. Dür. Linear-time complete positivity detection and decomposition
of sparse matrices. SIAM Journal on Matrix Analysis and Applications, 33(3):701–720,
2012.

[38] P. J. C. Dickinson and L. Gijben. On the computational complexity of membership problems
for the completely positive cone and its dual. Computational Optimization and Applications,
57(2):403–415, 2014.

[39] C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix factorization
and spectral clustering. In Proceedings of the 2005 SIAM International Conference on Data
Mining, pages 606–610. SIAM, 2005.

[40] J. H. Drew, C. R. Johnson, and R. Loewy. Completely positive matrices associated with
M -matrices. Linear and Multilinear Algebra, 37(4):303–310, 1994.

[41] D. Drusvyatskiy. Slope and geometry in variational mathematics. PhD thesis, Cornell Uni-
versity, 2013.

[42] D. Drusvyatskiy, A. D. Ioffe, and A. S. Lewis. Transversality and alternating projections for
nonconvex sets. Foundations of Computational Mathematics, 15(6):1637–1651, 2015.

[43] M. Dür. Copositive programming – a survey. In M. Diehl, F. Glineur, E. Jarlebring, and
W. Michiels, editors, Recent Advances in Optimization and its Applications in Engineering,
pages 3–20. Springer Berlin Heidelberg, 2010.

[44] M. Dür and G. Still. Interior points of the completely positive cone. Electronic Journal of
Linear Algebra, 17:48–53, 2008.

[45] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psy-
chometrika, 1(3):211–218, 1936.

[46] J. A. Fill and D. E. Fishkind. The Moore-Penrose generalized inverse for sums of matrices.
SIAM Journal on Matrix Analysis and Applications, 21(2):629–635, 1999.

[47] N. Gillis. Introduction to nonnegative matrix factorization. SIAG/OPT Views and News,
25(1), 2017.

[48] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.

153

Bibliography

[49] G. Gregorcic. The singular value decomposition and the pseudoinverse. Technical report,
University College Cork, Ireland, 2001. https://www.cs.bgu.ac.il/˜na131/
wiki.files/SVD_application_paper.pdf.

[50] P. Groetzner and M. Dür. A factorization method for completely positive matri-
ces. Preprint, http://www.optimization-online.org/DB_HTML/2018/03/
6511.html, 2018.

[51] L. Gubin, B. Polyak, and E. Raik. The method of projections for finding the common point
of convex sets. USSR Computational Mathematics and Mathematical Physics, 7(6):1–24,
1967.

[52] V. Guillemin and A. Pollack. Differential topology. AMS Chelsea Publishing, Providence,
RI, 2010. Reprint of the 1974 original.

[53] M. Hall, Jr. and M. Newman. Copositive and completely positive quadratic forms. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 59:329–339, 1963.

[54] I. Halperin. The product of projection operators. Acta Scientiarum Mathematicarum
(Szeged), 23(1-2):96–99, 1962.

[55] R. E. Hartwig. Singular value decomposition and the Moore-Penrose inverse of bordered
matrices. SIAM Journal on Applied Mathematics, 31(1):31–41, 1976.

[56] Z. He, S. Xie, R. Zdunek, G. Zhou, and A. Cichocki. Symmetric nonnegative matrix fac-
torization: Algorithms and applications to probabilistic clustering. IEEE Transactions on
Neural Networks, 22(12):2117–2131, 2011.

[57] C. Helmberg. Semidefinite programming for combinatorial optimization. Habilitation,
Konrad-Zuse-Zentrum für Informationstechnik Berlin, 2000.

[58] N. J. Higham. Matrix nearness problems and applications. In M. J. C. Gover and S. Barnett,
editors, Applications of matrix theory (Bradford, 1988), volume 22 of Institute of Mathe-
matics and its Applications Conference Series, pages 1–27. Oxford Univ. Press, New York,
1989.

[59] N.-D. Ho. Nonnegative matrix factorization algorithms and applications. PhD thesis, Uni-
versité catholique de Louvain, 2008.

[60] M. James. The generalised inverse. The Mathematical Gazette, 62(420):109–114, 1978.

[61] F. Jarre and F. Rendl. An augmented primal-dual method for linear conic programs. SIAM
Journal on Optimization, 19(2):808–823, 2008.

[62] F. Jarre and K. Schmallowsky. On the computation of C∗ certificates. Journal of Global
Optimization, 45(2):281–296, 2009.

[63] R. M. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum, New York, 1972.

[64] S. Kayalar and H. L. Weinert. Error bounds for the method of alternating projections. Math-
ematics of Control, Signals, and Systems, 1(1):43–59, 1988.

[65] V. L. Klee, Jr. Convex bodies and periodic homeomorphisms in Hilbert space. Transactions
of the American Mathematical Society, 74:10–43, 1953.

154

https://www.cs.bgu.ac.il/~na131/wiki.files/SVD_application_paper.pdf
https://www.cs.bgu.ac.il/~na131/wiki.files/SVD_application_paper.pdf
http://www.optimization-online.org/DB_HTML/2018/03/6511.html
http://www.optimization-online.org/DB_HTML/2018/03/6511.html

Bibliography

[66] D. Kuang, C. Ding, and H. Park. Symmetric nonnegative matrix factorization for graph
clustering. In Proceedings of the 2012 SIAM international conference on data mining, pages
106–117. 2012.

[67] T. Laudadio, A. C. Sava, Y. Li, N. Sauwen, D. Sima, and S. Van Huffel. NMF in MR spec-
troscopy. In G. R. Naik, editor, Non-negative Matrix Factorization Techniques: Advances in
Theory and Applications, pages 161–177. Springer Berlin Heidelberg, 2016.

[68] C. Lazar and A. Doncescu. Non negative matrix factorization clustering capabilities; ap-
plication on multivariate image segmentation. In L. Barolli, F. Xhafa, and H. Hsu, editors,
International Conference on Complex, Intelligent and Software Intensive Systems, 2009. CI-
SIS’09., pages 924–929. IEEE, 2009.

[69] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In T. K. Leen,
T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems
13, pages 556–562. MIT Press, 2001.

[70] A. S. Lewis and J. Malick. Alternating projections on manifolds. Mathematics of Operations
Research, 33(1):216–234, 2008.

[71] Y. Ma, X. Hu, T. He, and X. Jiang. A robust symmetric nonnegative matrix factorization
framework for clustering multiple heterogeneous microbiome data. Preprint, https://
www.preprints.org/manuscript/201704.0105/v1, 2017.

[72] R. MacAusland. The Moore-Penrose inverse and least squares. Math 420: Advanced Topics
in Linear Algebra, pages 1–10, 2014.

[73] J. E. Maxfield and H. Minc. On the matrix equationX ′X = A. Proceedings of the Edinburgh
Mathematical Society (2), 13:125–129, 1962/1963.

[74] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. The Quarterly Journal
of Mathematics. Oxford. Second Series, 11:50–59, 1960.

[75] S. K. Mohamad and Z. Tasir. Educational data mining: A review. Procedia-Social and
Behavioral Sciences, 97:320–324, 2013.

[76] T. S. Motzkin and E. G. Straus. Maxima for graphs and a new proof of a theorem of Turán.
Canadian Journal of Mathematics, 17:533–540, 1965.

[77] G. R. Naik. Non-negative Matrix Factorization Techniques: Advances in theory and appli-
cations. Springer, 2016. Signals and communcation Technology.

[78] National Bureau of Standards. Report 1818. Quarterly Report, April through June 1952.

[79] J. Nie. The A-truncated K-moment problem. Foundations of Computational Mathematics,
14(6):1243–1276, 2014.

[80] M. Planitz. Inconsistent systems of linear equations. The Mathematical Gazette,
63(425):181–185, 1979.

[81] R. J. Plemmons. M -matrix characterizations. I. Nonsingular M -matrices. Linear Algebra
and Applications, 18(2):175–188, 1977.

[82] J. C. Preisig. Copositivity and the minimization of quadratic functions with nonnegativity
and quadratic equality constraints. SIAM Journal on Control and Optimization, 34(4):1135–
1150, 1996.

155

https://www.preprints.org/manuscript/201704.0105/v1
https://www.preprints.org/manuscript/201704.0105/v1

Bibliography

[83] R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317. Springer Science &
Business Media, 2009.

[84] J. Saunderson, P. A. Parrilo, and A. S. Willsky. Semidefinite descriptions of the convex hull
of rotation matrices. SIAM Journal on Optimization, 25(3):1314–1343, 2015.

[85] B. Shader, N. Shaked-Monderer, and D. B. Szyld. Nearly positive matrices. Linear Algebra
and its Applications, 449:520–544, 2014.

[86] N. Shaked-Monderer, A. Berman, I. M. Bomze, F. Jarre, and W. Schachinger. New results on
the cp-rank and related properties of co(mpletely)positive matrices. Linear and Multilinear
Algebra, 63(2):384–396, 2015.

[87] K. T. Smith, D. C. Solmon, and S. L. Wagner. Practical and mathematical aspects of the
problem of reconstructing objects from radiographs. Bulletin of the American Mathematical
Society, 83(6):1227–1270, 1977.

[88] W. So and C. Xu. A simple sufficient condition for complete positivity. Operators and
Matrices, 9(1):233–239, 2015.

[89] J. Sponsel and M. Dür. Factorization and cutting planes for completely positive matrices by
copositive projection. Mathematical Programming, 143(1-2, Ser. A):211–229, 2014.

[90] G. W. Stewart. Introduction to matrix computations. Academic Press [A subsidiary of Har-
court Brace Jovanovich, Publishers], New York-London, 1973. Computer Science and Ap-
plied Mathematics.

[91] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11/12(1-4):625–653, 1999. Interior point methods.

[92] K. C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3—a MATLAB software package for
semidefinite programming, version 1.3. Optimization Methods and Software, 11/12(1-
4):545–581, 1999.

[93] K.-C. Toh, M. J. Todd, and R. H. Tütüncü. On the implementation and usage of SDPT3—
a Matlab software package for semidefinite-quadratic-linear programming, version 4.0. In
M. F. Anjos and J. B. Lasserre, editors, Handbook on Semidefinite, Conic and Polynomial
Optimization, volume 166 of International Series in Operations Research and Management
Science, pages 715–754. Springer US, Boston, MA, 2012.

[94] J. Tura, A. Aloy, R. Quesada, M. Lewenstein, and A. Sanpera. Separability of diagonal
symmetric states: a quadratic conic optimization problem. Quantum, 2:45, 2018.

[95] J. von Neumann. Functional Operators. II. The Geometry of Orthogonal Spaces. Annals of
Mathematics Studies, no. 22. Princeton University Press, Princeton, N. J., 1950.

[96] C. Xu. Completely positive matrices. Linear Algebra and its Applications, 379:319–327,
2004.

[97] Z.-Y. Zhang. Nonnegative matrix factorization: Models, algorithms and applications. In
D. E. Holmes and L. C. Jain, editors, Data Mining: Foundations and Intelligent Paradigms:
Volume 2: Statistical, Bayesian, Time Series and other Theoretical Aspects, pages 99–134.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

156

Index

CPn
boundary of CPn, 17
definition completely positive, 3
extreme rays of CPn, 3
interior of CPn, 10

ε-angle
between two convex sets, 58
for more than two convex sets, 59

angle
angle between manifolds, 63
Friedrichs angle, 48
Friedrichs number, 49

best approximation, 60

clique, 20
clique number, 19

codimension, 60
complement graph, 20
cone

ε-polar cone, 56
dual cone, 4
normal cone, 75
pointed cone, 3
polar cone, 56
proximal normal cone, 75
second order cone, 19

second order cone problem, 19
conic program, 19
convex hull

convex hull of orthogonal matrices, 26
convex hull of rotation matrices, 29

cp+-rank, 12
cp-rank, 12

DJL conjecture, 17

generalized inverse matrix, 138

kernel of a function, 61

manifolds, 60
matrix

adjacency matrix, 19
comparison matrix, 8

copositive matrix, 4
diagonal matrix, 6
doubly nonnegative matrix, 5
entrywise nonnegative matrix, 4
M-matrix, 8
nearly positive matrix, 33
orthogonal matrix, 25

reflection matrix, 25
rotation matrix, 25

permutation matrix, 6
positive semidefinite matrix, 4

minimal distance between two sets, 51

nonnegative matrix factorization, 118
symmetric nonnegative matrix factoriza-

tion, 109
normal space, 61
normals, 75

proximal normals, 75

polar decomposition, 80
projection, 45

semialgebraic set, 76
singular values, 137

singular value decomposition, 137
stability number, 19
stable set, 19
standard quadratic problem, 20

multiple standard quadratic problem, 21

tangent space, 61
transversal intersection

intrinsic transversal intersection for closed
sets, 75

transversal intersection for closed sets,
75

transversal intersection for manifolds, 61

von neumann sequence, 46
alternating von neumann sequence, 46

157

	Short Summary
	Introduction
	The Copositive and the Completely Positive Cone
	Complexity and Theoretical Certificates for Complete Positivity
	The Interior of the Completely Positive Cone
	The cp-rank and the cp+-rank for Completely Positive Matrices
	Matrices of High cp-rank
	The Boundary of the Completely Positive Cone
	Conic Programming and Applications

	Factorizations for Completely Positive Matrices
	Related Work
	CP-Factorizations are not Unique
	The Role of Orthogonal Matrices
	Nearly Positive Matrices
	Further Conditions for Complete Positivity
	Generating Initial Factorizations of Arbitrary Order
	Generating Factorizations for Matrices in the Interior via Maximization Problems

	The Factorization Problem as a Nonconvex Feasibility Problem
	Feasibility Problems to Verify Complete Positivity
	Feasibility Problems for Matrices in the Interior of the Completely Positive Cone

	Alternating Projections
	Alternating Projections on Subspaces
	Alternating Projections on Convex Sets
	Cyclic Projections Among a Sequence of Convex Sets
	Alternating Projections and the Angle Between Convex Sets

	Alternating Projections on Manifolds
	Cyclic Projections Among a Sequence of Manifolds
	Alternating Projections on Closed Sets and on Semialgebraic Sets

	Applying Alternating Projections to Construct CP-Factorizations
	An Alternating Projections Approach for CP-Factorizations
	Modifying the Alternating Projections Method
	Algorithms for Matrices in the Interior of the Completely Positive Cone

	Numerical Results
	A Specifically Structured Example in Different Dimensions
	The Influence of the Parameter r
	A Low cp-rank Matrix Without Known Factorization
	A Concrete Example for Algorithm 1
	Algorithms 1 and 2 in Comparison
	Column Replication Versus Appending Zero Columns
	Performance of Algorithm 2 on the Boundary and in the Interior of CPn
	Other Difficult Instances
	Randomly Generated Examples of Higher Order
	Comparison with an Algorithm by Ding et al.
	Comparison with a Method by Jarre and Schmallowsky
	A Real Life Application in Statistics
	Examples for Algorithms 4 and 5

	Nonnegative Matrix Factorization
	Symmetric Nonnegative Matrix Factorization
	Algorithms for Symmetric Nonnegative Matrix Factorization
	Numerical Results for Symmetric Nonnegative Matrix Factorization

	General Nonnegative Matrix Factorization
	Generalizing the Results to the Framework of Nonnegative Matrix Factorization
	Exact Projection Algorithm for Nonnegative Matrix Factorization
	Modified Algorithm for Nonnegative Matrix Factorization
	Numerical Results for Nonnegative Matrix Factorization

	Conclusion and Further Remarks
	Appendix: Singular Value Decomposition and Pseudoinverse Matrices
	List of Algorithms
	List of Figures
	List of Tables
	Nomenclature
	Bibliography
	Index

