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German Summary
(Zusammenfassung in deutscher Sprache)

Ein wichtiges Themengebiet der angewandten Mathematik ist die Simulation komplexer
finanzmathematischer, mechanischer, chemischer, physikalischer oder medizinischer Prozesse
mit mathematischen Modellen. Neben der reinen modellhaften Abbildung der Prozesse
ist die gleichzeitige Optimierung einer Zielfunktion durch Änderung der Modellparameter
das eigentliche Ziel. Modelle in Bereichen der Finanzmathematik, Biologie und Medizin
profitieren von dieser Parameteroptimierung.

Während viele Prozesse mit gewöhnlichen Differentialgleichungen abgebildet werden kön-
nen, bedarf es partieller Differentialgleichungen zur Optimierung von Wärmeleitungs- und
Strömungseigenschaften, der Ausbreitung von Tumorzellen oder auch von Optionspreisbe-
rechnungen. Eine partielle Integro-Differentialgleichung ist eine Differentialgleichung mit
nicht-lokalen Termen in den Ortsvariablen, z. B. einer Faltung mit einem Integralkern.
Zur Modellierung von adhäsiven Kräften zwischen Zellen oder zur Simulation sprunghafter
Optionen werden beispielsweise partielle Integro-Differentialgleichungen benötigt.

In beiden Teilen dieser Dissertation untersuchen wir eine partielle Integro-Differentialglei-
chung. Im ersten Teil stellen wir notwendige Optimalitätsbedingungen für Steuerungspro-
bleme mit semilinearen partiellen Integro-Differentialgleichungen in der Nebenbedingung
auf. Im zweiten analysieren wir eine lineare partielle Integro-Differentialgleichung, die eine
Faltung mit dem Gaußkern enthält.

Necessary Optimality Conditions for Semilinear Partial
Integro-Differential Equations

Im ersten Teil dieser Arbeit beschäftigen wir uns mit Steuerungsproblemen einer bestimm-
ten Klasse von Integro-Differentialgleichungen, den semilinearen parabolischen Integro-
Differentialgleichungen, und greifen für die Anwendung auf ein Modell aus Armstrong et al.
(2006) zurück, das die Aggregation von zwei Zelltypen unter Berücksichtigung adhäsiver
Kräfte beschreibt.

VII



German Summary

Die Frage nach der Optimalität einer Steuerungsfunktion ist wesentlich. Es gilt also not-
wendige Bedingungen zu finden, die von optimalen Steuerungen erfüllt werden. Wir werden
in dieser Arbeit Bedingungen an die Modellparameter stellen, unter denen zwei Zellarten eine
vorgegebene Aggregation bilden. Dabei werden Armstrongs Modellparameter, die konstant
und zeitinvariant gewählt sind, durch zeitabhängige Steuerungsfunktionen ersetzt.
Ziel des ersten Teils der vorliegenden Arbeit ist es also, notwendige Optimalitätsbedin-

gungen an die Steuerungsfunktion eines partiellen Integro-Differentialgleichungssystems zu
stellen, so dass dessen Lösung zum Zeitpunkt T einen beobachteten Zustand möglichst ge-
nau abbildet. Dazu benötigen wir zunächst Existenz- und Eindeutigkeitsaussagen bezüglich
einer Lösung des betrachteten partiellen Integro-Differentialgleichungssystems. Wir bedie-
nen uns hierzu der Halbgruppen Theorie und verwenden das Konzept der milden Lösung
einer Evolutionsgleichung. Wir stellen mit Hilfe der Ajungiertengleichung die notwendigen
Optimalitätsbedingungen in Banach Räumen auf und wenden dieses Resultat anschließend
auf das Zell-Adhäsionsmodell an.

On the Gaussian Kernel: Diffusive Effect, Spectrum and
Discretization
Im zweiten Teil der Arbeit untersuchen wir verschiedenen Aspekte des Gaußkerns. Dieser fin-
det in unterschiedlichen Themengebieten der Mathematik Anwendung: als Normalverteilung
in der Wahrscheinlichkeitstheorie, als Gausscher Unschärfefilter in der Bildbearbeitung oder
als Faltungskern zur Preisberechnung von sprunghaften Optionen in der Finanzmathematik.
Ein Beispiel des letztgenannten Anwendungsfeldes ist das Modell von Merton, das sich

als partielle Integro-Differentialgleichung darstellen lässt. Das durch die Diskretisierung des
Merton Modells entstehende Gleichungssystem ist auf Grund des Faltung mit dem Gaußkern
dicht besetzt. Zur effizienten Berechnung wird ein geeigneter Präkonditionierer benötigt.
Die Betrachtung des Gaußkerns in dieser Arbeit wurde durch zwei Resultate motiviert:

Das erste ist der Vergleich zweier verschiedener Präkonditionierer in Ye (2013). Der Autor
zeigt, dass ein tridiagonaler Präkonditionierer, der nur auf den diffusiven Term wirkt, den
Präkonditionierer von Strang (1986) hinsichtlich der Effizenz übertrifft. Dieses Ergebnis
unterstützt die intuitive Einschätzung, dass der Integralterm auf Grund seiner glättenden
Eigenschaft keine Präkonditionierung benötigt. Das zweite Ergebnis ist Proposition 6.1 aus
Briani et al. (2004), welches besagt, dass der verwendete Integralterm die zweite Ableitung im
Fall δ � 1 approximiert. Dieses Ergebnis steht in Kontrast zu dem von Ye und führt zu der
Vermutung, dass der Integralterm für kleine δ analog zum Laplace Operator präkonditionert
werden sollte.

Wir zeigen in dieser Arbeit zwei Erweiterungen des Ergebnisses von Briani et al. und
analysieren anschließend das Eigenwertspektrum des diskretisierten Integralterms in Ab-
hängigkeit von δ. Darüber hinaus regen wir ein alternatives Diskretisierungsschema für die
numerische Berechnung der Faltung mit dem Gaußkern an.
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Introduction

An important field of applied mathematics is the simulation of complex financial, mechanical,
chemical, physical or medical processes with mathematical models. In addition to the pure
modeling of the processes, the simultaneous optimization of an objective function by changing
the model parameters is often the actual goal. Models in fields such as finance, biology or
medicine benefit from this optimization step. Such an optimization problem is of the from

min
λ∈Λ

J(u, λ)

s.t. G(u, λ) = 0, (u, λ) ∈ Z × Λ,

with objective functional J , state function u and control function λ.
While many processes can be modeled using an ordinary differential equation (ODE), par-

tial differential equations (PDEs) are needed to optimize heat conduction and flow character-
istics, spreading of tumor cells in tissue as well as option prices. A partial integro-differential
equation (PIDE) is a parital differential equation involving an integral operator, e.g., the
convolution of the unknown function with a given kernel function. PIDEs occur for example
in models that simulate adhesive forces between cells or option prices with jumps.
In order to check whether a function satisfies a PIDE at a particular point x ∈ Ω, not

only the values of the function and its derivatives at x are required. On the contrary, the
function needs to be evaluated for all points y that lie within a sensing radius R around x.
The evaluation of the neighborhood UR(x) has an impact on the numerical analysis as well
as the numerical calculation of PIDE models.
PIDEs are a generalization of partial differential equations. A calculus for pure nonlocal

models, i.e., models that involve no (spatial) derivatives at all, has been developed, see
Gunzburger and Lehoucq (2010); Burch and Lehoucq (2011); Du et al. (2013b). Pure
nonlocal models have been considered in applications in Zhou and Du (2010); Du and Zhou
(2011); Du et al. (2013a); Emmrich et al. (2013); Lehoucq et al. (2014).

In each of the two parts of this thesis, a certain PIDE is the main object of interest. In
the first part, we study a semilinear PIDE-constrained optimal control problem with the
aim to derive necessary optimality conditions. In the second, we analyze a linear PIDE that
includes the convolution of the unknown function with the Gaussian kernel.

1



Introduction

Necessary Optimality Conditions for Semilinear Partial
Integro-Differential Equations
Checking whether a control function λ is indeed optimal is the core task that has to be solved
in control problems. It is therefore inevitable to find necessary conditions that are met by
optimal control functions. The research literature on PDE-constrained optimal control is
extensive. A comprehensive introduction can be found in Tröltzsch (2009).
In this part, we consider optimal control problems of a particular class of PIDEs: the

semilinear parabolic integro-differential equations. The continuous cell-cell adhesion model
by Armstrong et al. (2006) serves in the following as an example. The model describes the
aggregation of two cell types taking into account adhesive forces. The adhesion parameters,
which are constant and time-invariant, are considered as time-dependent control functions
in this work. We choose a least squares function and obtain the following control problem
for the control function λ = (Su, Sv, C) on the domain Ω = (a, b) with a, b ∈ R, a < b:

min
λ∈Λ

1
2

∫
Ω

(
u(T, x;λ)− uobs(x)

)2 +
(
v(T, x;λ)− vobs(x)

)2 dx. (0.1)

The functions u(·, ·) and v(·, ·) solve the initial value problem

ut = uxx − (uKu(u, v))x, u(0, x) = u0(x), u(t, a) = u(t, b),
vt = vxx − (vKv(u, v))x, v(0, x) = v0(x), v(t, a) = v(t, b),

(0.2)

with periodic boundary conditions and integral operators

Ku(u, v)(t, x) =
∫ 1

−1
Su(t)u(t, x+ y)ω(y) + C(t)v(t, x+ y)ω(y) dy,

Kv(u, v)(t, x) =
∫ 1

−1
Sv(t)v(t, x+ y)ω(y) + C(t)u(t, x+ y)ω(y) dy,

where ω ∈ L1([−1, 1]) is a given odd function and u0, v0 ∈ H1(Ω) are initial values. The
functions uobs and vobs are cell aggregations that have been observed at time T . The goal is
to choose the parameter functions Su, Sv and C in such a way that the solutions u and v
are closest to the observed cell aggregations at time T .
First, we prove that a unique solution of the model exists. We do so by utilizing the

theory of analytic semigroups. We reformulate the model at hand as an evolution equation

ν ′(t) +Aν(t) = F (ν(t)λ(t)), t ∈ (0, T ), u(0) = u0,

and consider its state solution ν = (u, v) ∈ X and control λ = (Su, Sv, C) ∈ Λ as abstract
functions in Banach spaces. In order to allow discontinuous parameter functions for the
calibration, we consider the mild solution ν ∈ C([0, T ], X) of the evolution equation, which
is given by the integral equation

ν(t) = e−tAν0 +
∫ t

0
e−(t−s)AF (ν(s),λ(s)) ds, t ∈ [0, T ],

2



Introduction

where T = {e−tA}t≥0 ⊂ L(X) is the analytic semigroup generated by −A.
The abstract calibration problem is then given by

min
λ∈Λ

J(ν,λ) = 1
2
∥∥ν(T ;λ)− νobs

∥∥2
(L2(Ω))2

s.t. G(ν,λ) = ν − e−·Aν0 −
∫ ·

0
e−(·−s)AF (ν(s),λ(s)) ds = 0

(ν,λ) ∈ C([0, T ], (H1(Ω))2)× Λ,

with Λ being a closed and convex set of essentially bounded and integrable functions.
We apply well-known results from Zowe and Kurcyusz (1979) and use the adjoint approach

to formulate the necessary optimality conditions in Banach spaces,∫ T

0

(
Fλ(t)∗[p(t)] + gλ(t), λ(t)− λ̄(t)

)
dt ≥ 0, λ ∈ Λ,

where p ∈ Z∗ solves

p(s) = e−(T−s)A∗∇h+
∫ T

s
e−(t−s)A∗(Fu(t)∗[p(t)] + gu(t)) dt.

Finally, we apply the previous results to provide necessary optimality conditions for the
continuous cell-cell adhesion model. Preliminary results on necessary optimality conditions
have been published Frerick et al. (2015).

On the Gaussian Kernel: Diffusive Effect, Spectrum and
Discretization
In Part II of the thesis, we study different aspects of the one-dimensional Gaussian kernel
Γδ : R→ R,

Γδ(x) = 1√
2πδ

e−
|x|2

2δ2 .

The Gaussian kernel is used in various fields of mathematics, e.g., the Gaussian (or normal)
distribution in probability theory, the Gaussian blur filter in image processing or as a
convolution kernel for simulating option prices with jump diffusion models in finance.
An example in finance is Merton’s jump-diffusion model, which can be formulated as

a PIDE. The system resulting from the discretization of that model is dense due to the
integral term. A suitable preconditioner is required for an efficient computation.
The motivation to analyze the Gaussian kernel was triggered by two results: The first

is the comparison of two different types of preconditioners for the jump-diffusion model
conducted in Ye (2013). The author shows that a tridiagonal preconditioner that only acts
on the diffusive part of the model outperforms Strang’s preconditioner. This result supports
the intuitive assessment, that the integral term

Γδ ∗ u− u (0.3)

3
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does not need preconditioning due to its smoothing nature. The second is Proposition 6.1
in Briani et al. (2004) which states for δ � 1, that the integral term (0.3) approximates the
diffusion term uxx. This result is in contrast to the result of Ye and leads to the conjecture,
that the discretization of Γδ ∗ u − u needs preconditioning for small values of δ as the
discretized Laplace operator does.
We show two extensions to the result of Briani et al. and then analyze the eigenvalue

spectrum of the discretized integral term with respect to the width δ of the Gaussian kernel.
Further, we propose an alternative discretization scheme for the numerical computation of
the integral term (0.3).

Structure of the Thesis

In Chapter 1, we first compile elementary results. We cite the theorem on implicit functions
and Banach’s fixed-point theorem since they will serve as important tools in later proofs. The
function spaces on which the partial integro-differnential equations will act are introduced
in Section 1.3, especially the Sobolov spaces Wm,p

k and Hm
k . In Section 1.4, we introduce

evolution equations using the concept of abstract functions. C([a, b], X) is the space of
continuous abstract functions and Lp([a, b];X) is the space of p-integrable abstract functions
with values in the Banach space X. To make the concept of abstract functions tangible, we
conclude this chapter by applying this concept to the one-dimensional heat equation.
Chapter 2 treats the semigroup theory. We use the concept of mild solutions to present

existence and uniqueness results for semilinear evolution equations,

u′(t) +Au(t) = F (t, u), t ∈ (0, T ), u(0) = u0,

with sectorial operator A and semilinear operator F . For the sake of self-containedness, we
first introduce C0-semigroups and then analytic semigroups. We also differentiate between C0-
semigroups and analytic semigroups in Section 2.4.2 to present several regularity conditions
for the nonlinear function F . Theorem 2.27 shows that the domain of fractional powers of
sectorial operators Xα := D(Aα) is a Banach-space and Theorem 2.29 provides an analogous
statement of Sobolev’s embedding theorem for these spaces. We show for 2α ∈ N0, that the
spaces D(−∆α) and the Sobolov spaces coincide. In Theorem 2.51, we use the characteristics
of Xα and the Banach fixed-point theorem to show, under certain conditions on F : Xα → X,
the local existence and uniqueness of a mild solution

u(t) = e−tAu0 +
∫ t

0
e−(t−s)AF (s, u(s)) ds,

of the semilinear evolution equation on [0, T ) with initial value u0 ∈ Xα. We conclude
this chapter with a result from Amann (1988) that provides a mild solution to evolution
equations with semilinear boundary conditions.

Chapter 3 is dedicated to the derivation of necessary optimality conditions. In Section 3.1,

4
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we formulate a control problem in an infinite Banach space,

min
λ∈Λ

J(u, λ) =
∫ T

0
g(t, u(t), λ(t)) dt+ h(u(T ))

s.t. G(u, λ) = 0, (u, λ) ∈ Z × Λ,

subject to a semilinear evolution equation

u′(t) +Au(t) = F (u(t), λ(t)), t ∈ (0, T ), u(0) = u0.

We derive a general approach to formulate the necessary optimality conditions for the control
function λ using the adjoint equation in Banach spaces. The results from Theorem 3.3 and
Theorem 3.5 meet the prerequisites of Theorem 4.1 from Zowe and Kurcyusz (1979) which
is key in the proof of Theorem 3.6. Our main results in Part I is then Theorem 3.9, which
provides a representation of the linear functional l ∈ Z∗. Using that representation, we
conclude this section with the necessary optimality conditions,∫ T

0

(
Fλ(t)∗[p(t)] + gλ(t), λ(t)− λ̄(t)

)
dt ≥ 0, λ ∈ Λ,

where p ∈ Z∗ satisfies

p(s) = e−(T−s)A∗∇h+
∫ T

s
e−(t−s)A∗(Fu(t)∗[p(t)] + gu(t)) dt.

Section 3.2 serves as an intermezzo and extends the result from the previous section to a
control problem with boundary control. We do that along the lines of Tröltzsch (1989).

In Section 3.3, we first take a closer look at our motivating example, the cell-cell adhesion
model of Armstrong et al. (2006) and discuss structural similarities to the nonlocal swarm
model of Mogilner and Edelstein-Keshet (1999). Then, we apply the theory developed in
the previous sections to the cell-cell adhesion model. This section provides our main result,
the computation of the necessary optimality conditions for the two population adhesion
model in one dimension. We formulate the cell-cell adhesion model in the abstract setting of
Section 3.1 and show that Assumption 3.1 is met. Lemma 3.21 then yields a representation
of the linear functional,

l(ν) = −
∫ T

0

∫
Ω

(
π(t) +K(ν̄(t), λ̄(t))Dxπ(t, x)−K(Dxπ(t)� ν̄(t), λ̄(t))id

)T
ν(t, x) dx dt

−
∫

Ω
(ν̄(T, x)− νobs(x))T ν(T, x) dx,

where the adjoint state π = (p, q) ∈ L2(0, T ; (H1(Ω))2) is the mild solution of the terminal
value problem

−π′(t) = Dxxπ(t) +K(ν̄(t), λ̄(t))Dxπ(t)−K(Dxπ(t)� ν̄(t), λ̄(t))id
π(T ) = ν̄(T )− νobs

5
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for all t ∈ (0, T ). Then, Corollary 3.22 provides the necessary optimality conditions for
Equation (0.1). If ū and v̄ are solutions to Equation (0.2) and S̄u, S̄v and C̄ are optimal
controls of Equation (0.1), then the following inequality holds for all admissible controls Su,
Sv and C∫ T

0

∫
Ω
p(t, x)

(
ū(t, x)K̂u(ū, v̄)(t, x)

)
x

+ q(t, x)
(
v̄(t, x)K̂v(ū, v̄)(t, x)

)
x

dx dt ≥ 0,

with

K̂u(u, v)(t, x) =
∫ 1

−1

(
Su(t)− S̄u(t)

)
u(t, x+ y)ω(y) +

(
C(t)− C̄(t)

)
v(t, x+ y)ω(y) dy

and

K̂v(u, v)(t, x) =
∫ 1

−1

(
Sv(t)− S̄v(t)

)
v(t, x+ y)ω(y) +

(
C(t)− C̄1(t)

)
u(t, x+ y)ω(y) dy,

where p(·, ·) and q(·, ·) solve the terminal value problem

−pt = pxx + pxKu(ū, v̄)−Ku(pxū, qxv̄), p(T, x) = ū(T, x)− uobs(x), p(t, a) = p(t, b),
−qt = qxx + qxKv(ū, v̄)−Kv(pxū, qxv̄), q(T, x) = v̄(T, x)− vobs(x), q(t, a) = q(t, b).

Chapter 4 introduces Part II and we start this chapter by establishing a connection to the
first part of this thesis: The convolution with the Gaussian kernel Γδ itself is a semigroup
that solves the heat equation uδ = uxx, with δ being the temporal variable. Section 4.1 is
motivated by Proposition 6.1 in Briani et al. (2004), which shows a diffusive effect of the
Gaussian kernel. If the integral term Γδ ∗ u− u in a partial differential equation is replaced
locally by the diffusion term δ2

2 uxx, the resulting error in the solution of the PDE can be
expressed in terms of δ2. In the course of this section, we obtain similar results with respect
to the operators Λδ − id− δ2

2 ∆, with Λδu = Γδ ∗ u. Theorem 4.2 provides an estimate in the
space of three-times differentiable functions and Theorem 4.5 gives an error estimation in
the Fourier space.
In Chapter 5, we briefly present the Merton model as an application which employs the

Gaussian kernel in its PIDE representation, but focus on the integral term and subsequently
analyze

ut(t, x) + λ
(
u(t, x)−

∫ ∞
−∞

u(t, x)Γδ(z − x) dz
)

= 0 on (0, T ]× R.

The discretization scheme proposed in Sachs and Strauss (2008) results in a Toeplitz system

Tnu
p = bp

for every time step p. After a brief introduction to the special structure and characteristics
of Toeplitz matrices, we derive an estimate for the spectrum of the coefficient matrix Tn
in Section 5.1 by analyzing the range of the generating function g(n). The combination of
results from Brown and Hewitt (1984) and Gawronski and Stadtmüller (1982) sharpens the

6
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Figure: Increasing discretization error of the Gaussian kernel.

estimate of Ye (2013) for small values of δ. In Section 5.3, we illustrate the increasing error
of the discretization scheme for decreasing values of δ. Then, we propose an alternative
discretization scheme, that also results in second order accuracy. We use the implementation
of the error function for the numerical integration instead of quadrature rules to overcome
increasing discretization errors at Γδ(0) for δ → 0. We conclude the chapter with some
numerical experiments in Section 5.4.
The final chapter offers a reflection of the major results. Furthermore, some possibilities

for subsequent work within the scope of this thesis are presented.
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Chapter1
Preliminaries

In this chapter, we provide elementary results and notations that are used in the course of
this part. We cite relevant theorems from analysis, introduce the required function spaces
and the concept of abstract functions.

1.1 Theorems from Analysis
To start, we recite well-known theorems from analysis that we will use later in this thesis.

Definition 1.1. Let X and E be linear normed spaces and let U ⊂ X be an open subset.
Furthermore, let x0 ∈ U , a map f : U → E as well as a map df(x0) : X → E be given. We
call f Fréchet-differentiable in x0 with Fréchet-derivative df(x0), if df(x0) is continuous and
linear and if

lim
‖h‖→0

‖f(x0 + h)− f(x0)− df(x0)[h]‖E
‖h‖

= 0.

We define analogously to the real-valued case the partial Fréchet-differential:

Definition 1.2. Let X, Y and E be linear normed spaces, U ⊂ X × Y be open and
f : U → E be Fréchet-differentiable. We define

dxf(x, y)[r] := df(x, y)[r, 0], r ∈ X

as the partial Fréchet-differential with respect to x and

dyf(x, y)[s] := df(x, y)[0, s], s ∈ Y

as the partial Fréchet-differential with respect to y. From the linearity of the Fréchet-
derivative df(x, y) follows

df(x, y)[r, s] = dxf(x, y)[r] + dyf(x, y)[s], (r, s) ∈ X × Y.

11



1. Preliminaries

Theorem 1.3 (Implicit function theorem). Let X, Y and E be Banach spaces, U ⊂ X × Y
be open and (x0, y0) ∈ U . Moreover, let g : U → E be continuously Fréchet-differentiable
with g(x0, y0) = 0 such that dyg(x0, y0) : Y → E is isomorphic. Then there are constants
ε, δ > 0 and a continuously differentiable operator f : Uδ(x0)→ Uε(y0) such that

i) y = f(x) is the unique solution of g(x, y) = 0 for all x ∈ Uδ(x0),

ii) df(x0) = −dyg(x0, y0)−1 ◦ dxg(x0, y0).

In other words: If f(x) = y holds for x ∈ Uδ(x0) and y ∈ Uε(y0), then g(x, y) = 0 holds.
Otherwise if (x, y) ∈ Uδ(x0)× Uε(y0) solves g(x, y) = 0, y = f(x) follows.

The implicit function theorem is used in optimal control theory to obtain a operator, that
yields a solution to the constraint equation for a given control.

We conclude this section with the Banach fixed-point theorem, which is key for the proof
of the existence and uniqueness of a solution for an evolution equation.

Theorem 1.4 (Banach fixed-point theorem). Let X be a nonempty Banach space and
φ : X → X a contraction, i.e., there is a γ < 1 such that ‖φ(x)− φ(y)‖ ≤ γ‖x− y‖ for all
x, y ∈ X. Then φ admits a unique fixed-point x∗ ∈ X, therefore φ(x∗) = x∗.

1.2 Partial Differential Equations

Let Ω ⊂ Rn be open, with n ≥ 2. Let F : Ω× C× Cn × (Cn×n)× · · · × (Cn×···×n)→ C be
continous. We call

F
(
x, u(x), (∂1u(x), · · · , ∂nu(x)), (∂αu(x))|α|=2, · · · , (∂αu(x))|α|=m

)
= 0 (1.1)

a partial differential equation of order m and u : Ω→ C a (classical) solution to the partial
differential equation, if u satisfies (1.1) for all x ∈ Ω. We provide fundamentals of partial
differential equations in this section.
We begin with the definition of a linear differential operator and declare the symbol of

such an operator afterwards.
The tuple α = (α1, · · · , αn), with α ∈ Nn0 , is a multi-index of order |α| :=

∑n
j=1 αj with

factorial α! :=
∏n
j=1 αj !. For an m times continuously differentiable function f ∈ Cm(Ω), a

multi-index α ∈ Nn0 with |α| ≤ m and x ∈ Ω ⊂ Rn we define

f (α)(x) := ∂|α|

∂α1
x1 · · · ∂α

n

xn

f(x).

For the sake of brevity we set ∂j := ∂
∂xj

, ∂2
jk := ∂j∂k as well as ∂ = (∂1, · · · , ∂n) and

∂α := ∂α1
1 · · · ∂αnn resulting in the notation f (α) = ∂αf . It follows that ∂α : Cm(Ω)→ C(Ω),

u 7→ ∂αu is well defined and linear.

12
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Definition 1.5. Let aα ∈ C(Ω) be a continuous function for α ∈ Nn0 with |α| ≤ m. Then,

L : Cm(Ω)→ C(Ω), u 7→
∑
|α|≤m

aα∂
αu

is a linear differential operator (of orderm) with continuous coefficients. If all aα are constant,
we call L a linear differential operator with constant coefficients.

The next definition justifies the characterization of a polynomial as a linear differential
operator with constant coefficients.

Definition 1.6. Let L be a linear differential operator. Then we denote by

P : Ω× Cn → C, (x, ξ) 7→
∑
|α|≤m

aα(x)i|α|ξα

the symbol of L and Pm(x, ξ) :=
∑
|α|=m aα(x)imξα the leading symbol. If L is a linear

differential operator with constant coefficients, then P maps from Cn to C.

Remark 1.7. Let L be a linear differential operator and P its symbol. Then the Fourier
transformation F yields L = F−1PF . Indeed, from the differentiation property of the
Fourier transform follows

∂αu(x) = F−1(F(∂αu))(x) = F−1(i|α|(·)αF(u))(x).

Alternatively, with D̃j := 1
i ∂j and D̃α := D̃α1

1 · · · D̃αn
n = 1

i|α|
∂α as well as applying the

symbol P to D̃ instead of ξ, we receive L(u) = P (D̃)u for linear differential operators with
constant coefficients.

We summarize the remark above in the following theorem.

Theorem 1.8. Let L =
∑
|α|≤m aα∂

α be a linear differential operator with constant coef-
ficients and symbol P . We denote by V (P ) := {ζ ∈ Cn : P (ζ) = 0} the set of its roots.
The function eζ : Ω → C, x 7→ exp(i〈x, ζ〉) is a solution to the homogeneous differential
equation 0 = L(u) = P (D̃)(u) for ζ ∈ V (P ).

Proof. Let ζ ∈ V (P ). Then, with eζ as above we have

L(eζ)(x) =
∑
|α|≤m

aα∂
α exp(i〈x, ζ〉) =

∑
|α|≤m

aαi
|α|ζα exp(i〈x, ζ〉)

=
∑
|α|≤m

aαi
|α|ζαeζ(x) = P (ζ)eζ(x) = 0,

since ζ is a root of P .

13



1. Preliminaries

From now on, we assume L to be a linear differential operator of second order with constant
coefficients. We use the leading symbol for a classification of linear differential operators.

With Schwarz’s theorem (see Rudin, 1976, 9.41 Theorem), a linear differential operator L
can be written as

L(u) =
∑
|α|≤2

aα∂
αu =

n∑
j,k=1

aj,k∂
2
jku+

n∑
j=1

bj∂ju+ cu,

whereas aj,k = ak,j , i.e., the matrix A := (aj,k)nj,k=1 is symmetric.

Definition 1.9. A linear differential operator L given in the notation above is called

i) elliptic, if A is definite,

ii) parabolic, if A is semidefinite, but not definite,

iii) hyperbolic, if A is indefinite and has n− 1 positive or n− 1 negative eigenvalues,

iv) ultrahyperbolic for the remaining cases.

1.3 Function Spaces
In this section, we provide the function spaces which we will use in the following chapters.
Throughout this section, let Ω ⊂ Rn (n ∈ N) be open and bounded and k ∈ N. First, we
define Lebesgue spaces and their dual spaces. Then, we introduce Sobolev spaces using weak
derivatives.

Definition 1.10. Let k ∈ N. The Lebesgue space Lp(Ω)k is defined as

Lp(Ω)k := Lp(Ω,Rk) := {f : Ω→ Rk measurable : |f |p Lebesgue integrable}

for 1 ≤ p <∞ and

L∞(Ω)k := L∞(Ω,Rk) := {f : Ω→ Rk measurable : f essentially bounded},

where we call a measurable function f : Ω→ Rk essentially bounded, if

ess sup
Ω
|f | := sup

x∈Ω
|f(x)| <∞

holds almost everywhere, i.e., except on a set N of measure zero. If Ω is clear from context,
we briefly write (Lp)k.

The Lebesgue space Lp(Ω)k equipped with the norm

‖f‖Lp(Ω)k :=
( ∫

Ω
|f(x)|p dx

) 1
p , 1 ≤ p <∞, ‖f‖L∞(Ω)k := ess sup

Ω
|f(x)|

14
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is a Banach space (see Meise and Vogt, 1997, Riesz-Fischer theorem 13.5).
Let p, q ∈ R with p, q ≥ 1. Then p and q are conjugate exponents if 1

p + 1
q = 1 holds;

furthermore, 1 and ∞ are conjugate exponents. Let p and q be conjugate exponents, then
Lq(Ω)k is the dual space of Lp(Ω)k, whereas the dual space of a real normed space X is
defined as the space L(X,R) of continuous linear functionals from X to R. This relationship
follows from the Riesz representation theorem.

Theorem 1.11 (Riesz representation theorem for Lp(Ω)). Let 1 ≤ p <∞ and q such that p
and q are conjugate exponents. Let T ∈ (Lp(Ω)k)∗ = (Lp(Ω)∗)k. Then a unique f ∈ Lq(Ω)k
exists with

T (g) =
∫

Ω
f(x)g(x) dx for all g ∈ Lp(Ω)k.

The norms of both spaces satisfy ‖f‖Lq(Ω)k = ‖T‖(Lp(Ω)∗)k .

Definition 1.12. Let X and Y be normed spaces and T ∈ L(X,Y ). The adjoint operator
T ∗ : Y ∗ → X∗ is then defined as (T ∗y∗)(x) = y∗(Tx).

The special case p = 2 yields that L2(Ω)k is a Hilbert space with inner product

(f, g) =
∫

Ω
f(x)g(x) dx.

Let φ ∈ D(Ω) be a test function, whereas

D(Ω) := {φ ∈ C∞(Ω): supp(φ) := {x : φ(x) 6= 0} ⊂ Ω compact}

and f ∈ C1(Ω). With partial integration we then obtain∫
Ω
f(x)φ′(x) dx = (−1)

∫
Ω
f ′(x)φ(x) dx,

since φ vanishes on the border of Ω due to its compact support. These considerations
motivate the definition of a weak derivative that generalizes the classical derivative.

Definition 1.13. Let f , fα ∈ Lp(Ω)k and α ∈ Nn0 . The function fα is called α-th weak
derivative of f in Ω, if ∫

Ω
f(x)∂αφ(x) dx = (−1)|α|

∫
Ω
fα(x)φ(x) dx

holds for all test functions φ ∈ D(Ω), The weak derivative is unique and equal to the classical
derivative if the latter exists. Thus, we denote the weak derivative also by ∂α as well.

We can now define Sobolev spaces:

Definition 1.14. Let m ∈ N0, 1 ≤ p ≤ ∞. The space

Wm,p(Ω)k := {f ∈ Lp(Ω)k : ∂αf ∈ Lp(Ω)k for all |α| ≤ m}

is called Sobolev space. If Ω is given by context, we briefly write (Wm,p)k. For m = 0 we
obviously obtain W 0,p(Ω)k = Lp(Ω)k.
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Equipped with the norm ‖·‖(Wm,p)k , given by

‖f‖(Wm,p)k :=
( ∑
|α|≤m

‖∂αf‖p(Lp)k
)1/p

, 1 ≤ p <∞,

‖f‖(Wm,∞)k :=
∑
|α|≤m

‖∂αf‖(L∞)k , p =∞,

the Sobolev space (Wm,p)k is a Banach space as well. In the case p = 2 the Sobolev space
Hm(Ω)k := Wm,2(Ω)k is again a Hilbert space with inner product

(f, g)Hm(Ω)k =
∑
|α|≤m

∫
Ω
∂αf∂αg dx

(see Dobrowolski, 2010, Satz 5.10 and Korollar 5.11).
Substantial for Part I is the following theorem (Kaballo, 2011, Satz 5.12 ).

Theorem 1.15 (Sobolev embedding theorem). Let Ω := (a, b) ⊂ R be a real interval. Then
it follows:

(i) The inclusion Wm,1(Ω)k → Cm−1(Ω)k is continuous for m ∈ N.

(ii) For conjugate exponents 1 < p, q <∞ the inclusion

Wm,p(Ω)k → C
m−1, 1

q (Ω)k ⊂ Cm−1(Ω)k

is continuous.

Remark 1.16. The space Cm−1, 1
q (Ω)k, defined as

Cm,θ(Ω)k := {f ∈ Cm(Ω)k : sup{|∂
αf(x)− ∂αf(y)|
|x− y|θ

: x 6= y ∈ Ω} <∞ for all |α| = m},

with θ ∈ (0, 1] is called Hölder space. With ν = m+ θ we briefly write (Cν)k for (Cm,θ)k. If
m = 0 we write Cθ(Ω)k instead of Cm,θ(Ω)k.

1.4 Evoluation Equations and Abstract Functions
Evolution equations are temporally unsteady equations that assign the temporal change
of an abstract function at time t ∈ (a, b) to that time t. Frequently, evolution equations
represent partial differential equations describing the temporal change of a spatial quantity,
e.g., the heat in an object or the concentration of a substance in a body. For this purpose,
the domain Q ⊂ Rn+1 of such a partial differential equation is considered as the product of
the time interval [a, b] and the spatial domain Ω ⊂ Rn. The function, which is the solution
to the partial differential equation, is conceived as an abstract function.
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In the subsequent, let [a, b] be a real interval. A map from [a, b] to a Banach space
X = X(Ω) is called an abstract or vector-valued function. If we choose the real axis R as the
Banach space X, we obtain the real functions of one variable. If, however, we choose the
Banach space Hm(Ω), then the value of an abstract function f is a function itself for every
t ∈ [a, b]: x 7→ f(t, x) ∈ Hm(Ω). Choosing X = (Hm(Ω))k, yields x 7→ f(t, x) ∈ (Hm(Ω))k
and f(t) is a function that maps to any x ∈ Ω to a vector in Rk.

We now introduce function spaces of abstract functions that are relevant for the subsequent
chapter.

Definition 1.17. Let X be a real Banach space with norm ‖·‖X . C([a, b], X) is then the
space of continuous abstract functions f : [a, b]→ X which, equipped with the norm

‖f‖C([a,b],X) = max
t∈[a,b]

‖f(t)‖X ,

is a Banach space itself.

Defining measurable functions analogously to the case X = R, we can formulate Lebesgue
spaces for abstract functions.

Definition 1.18. Let X be a Banach with norm ‖·‖X . We define the Lebesgue spaces
Lp(a, b;X) on X as

Lp(a, b;X) := {f : [a, b]→ X measurable :
∫ b

a
‖f(t)‖pX dt <∞}, 1 ≤ p <∞,

L∞(a, b;X) := {f : [a, b]→ X measurable : ess sup
[a,b]

‖f(t)‖X <∞}.

Equipped with the corresponding norm ‖·‖Lp([a,b],X),

‖f‖Lp(a,b;X) :=
( ∫ b

a
‖f(t)‖pX dt

)1/p
, 1 ≤ p <∞,

‖f‖L∞(a,b;X) := ess sup
[a,b]

‖f(t)‖X ,

the Lp spaces of abstract functions are also Banach spaces (see Tröltzsch, 2009, p. 114 f.).

Example 1.19 (cf. Tröltzsch, 2009, p. 115). A map f ∈ L2([0, T ], (H1(Ω))k) can be
considered as an abstract square-integrable function with values f(t) in (H1(Ω))k or as a
function f : [0, T ]× Ω→ Rk, (t, x) 7→ f(t, x). It follows

‖f‖L2([0,T ],(H1(Ω))k) =
( ∫ T

0
‖f(t)‖2(H1(Ω))k dt

) 1
2

=
( ∫ T

0

∫
Ω

(|f(t, x)|2 + |∇xf(t, x)|2) dx dt
) 1

2 .

The (one-dimensional) heat equation

ut(t, x) = auxx(t, x)
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1. Preliminaries

can be interpreted as an evolution equation with operator A ∈ L(L2(Ω)), Au(t) = auxx(t)
applied to an abstract function u ∈ C([0, T ], H2(Ω)). On the other hand, it can be treated
as a partial differential equation involving a function u : [0, T ]× Ω→ R.

18



Chapter2
Semigroup Theory

The semigroup theory can be interpreted as a generalization of the theory of ordinary
differential equations. One of their aims is the investigation of linear and nonlinear partial
differential equations and the existence, uniqueness, and regularity of their solutions. For
this purpose, partial differential equations are interpreted as abstract evolution equations.
We are particularly interested in the existence and uniqueness of the solution of semilinear
evolution equations of the form

u′(t) +Au(t) = F (t, u), t ∈ (0, T ), u(0) = u0.

We start with the definition of strongly continuous semigroups and then consider the most
important class of semigroups, the analytic semigroups. We introduce fractional powers
of the generators of analytic semigroups and utilize them in the results on the existence
and uniqueness of solutions of semilinear evolutionary equations. The results presented in
this chapter are mostly taken from Pazy (1983), Engel and Nagel (2001), Henry (1981) and
Haase (2006).
Throughout this chapter, let X := X(Ω) with Ω ⊂ Rn open, n ∈ N, be a Banach space

with norm ‖·‖.

2.1 Strongly Continuous Semigroups

Definition 2.1. A family T = {T (t)}t≥0 ⊂ L(X) is called a strongly continuous semigroup
or C0-semigroup if

(i) T (0) = I, (I is the identity operator on X),

(ii) T (t+ s) = T (t)T (s) for all t, s ≥ 0 (the semigroup property),

(iii) limt→0+ T (t)x = x for every x ∈ X (the strong continuity property).
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The semigroup property means that in evolution processes there is no difference between
directly evolving from the initial state to the state in t+ s or evolving t time units first and
then s time units in a second step.

Another way of ensuring the strong continuity property is given in the following lemma.

Lemma 2.2 (Engel and Nagel, 2001, Proposition I.5.3). The strong continuity property
(Property (iii)) in Definition 2.1 is equivalent to the existence of δ > 0, M ≥ 1, and a dense
subset D ⊂ X such that

(i) ‖T (t)‖L(X) ≤M for all t ∈ [0, δ],

(ii) limt→0+ T (t)x = x for all x ∈ D.

Remark 2.3. The uniform boundedness of the operators T (t) for t ∈ [0, δ] is obvious in
most cases. Therefore, it is sufficient to only check the (right) continuity of the orbit map
ξx at t = 0 for a dense set D ⊂ X in order to obtain the strong continuity of the semigroup
T . See Remark 2.8 for the definition of the orbit map.

Definition 2.4. The infinitesimal generator A : D(A) ⊂ X → X of a C0-semigroup T ,
T = {T (t)}t≥0, is defined by

Ax = lim
t→0+

1
t
(T (t)x− x)

with domain D(A) = {x ∈ X : limt→0+
1
t (T (t)x− x) <∞}.

Theorem 2.5 (Pazy, 1983, Corollary 1.2.5, Theorem 1.2.6). The generator (A,D(A)) of a
strongly continuous semigroup T = {T (t)}t≥0 is a closed and densely defined linear operator
that determines the semigroup uniquely.

Theorem 2.6 (Pazy, 1983, Theorem 1.2.2; Engel and Nagel, 2001, Definition I.3.11, Defini-
tion I.5.6). Let T = {T (t)}t≥0 be a C0-semigroup. Then {T (t)}t≥0 is exponentially bounded,
i.e., there exist constants ω ∈ R and M ≥ 1 such that ‖T (t)‖L(X) ≤ Meωt for t ∈ R+. We
say that the C0-semigroup is

(i) bounded, if ω = 0,

(ii) contractive, if ω = 0 and M = 1 and

(iii) exponentially stable, if ω < 0.

Theorem 2.7 (Pazy, 1983, Theorem 1.2.4). Let T = {T (t)}t≥0 be a C0-semigroup and
(A,D(A)) its generator. For x ∈ D(A) and t ≥ 0 we have that T (t)x ∈ D(A), t 7→ T (t)x is
continuously differentiable and

T ′(t)x = AT (t)x = T (t)Ax.

Remark 2.8. Let T = {T (t)}t≥0 be a C0-semigroup and x ∈ X. We define the orbit map
as ξx : [0,∞) → X, x 7→ T (t)x. The orbit map ξx is a continuous function. We derive the
generator A of the C0-semigroup as the derivative of the orbit map at t = 0, i.e., Ax = ξ′x(0).
Its domain includes every x ∈ X such that ξx is differentiable.
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2.2 Sectorial Operators and Analytic Semigroups
If we look for semigroups that accept not only real nonnegative parameters but can also
be extended into certain domains in the complex plane, we will find analytic semigroups.
Remark 2.18 will elucidate the difference between C0-semigroups and analytic semigroups.
The generator of an analytic semigroup is called a sectorial operator, which is not uniformly
defined in the literature. Throughout this thesis we will use the definition provided in Henry
(1981) which is also applied in Haase (2006). On Banach spaces, sectorial operators concur
with the concept of nonnegative operators (see Haase, 2006, Section 2.8). We start this
section with said definition. For that, we recall the definition of a sector of angle θ.

Definition 2.9. For θ ∈ (0, π] and ω ∈ R we call

Σω,θ := {λ ∈ C \ {ω}; |arg(λ− ω)| < θ}

a sector of angle θ at ω. We denote by Σ−ω,θ the reflection of that sector along a line through
ω parallel to the y-axis, i.e.,

Σ−ω,θ = {λ ∈ C \ {ω}; θ < |arg(λ− ω)| ≤ π}.

If ω = 0, we denote the sector Σ0,θ by Σθ and its reflection Σ−0,θ by Σ−θ for short.

Definition 2.10. Let A : D(A) ⊂ X → X be a closed linear operator with dense domain
D(A) in a Banach space X. A is called a negative quasi-sectorial operator (of angle δ), if
there exist ω ∈ R, δ ∈ (0, π2 ] and M > 0 such that

(i) the sector Σω,π2 +δ is contained in the resolvent set of ρ(A),

(ii) the resolvent R(λ,A) = (λ−A)−1 satisfies

‖R(λ,A)‖L(X) ≤
M

|λ− ω|
, forλ ∈ Σω,π2 +δ.

An operator A is called negative sectorial (of angle δ) if ω = 0 is possible. A is called a
(quasi-)sectorial operator, if −A is a negative (quasi-)sectorial operator.

Remark 2.11. (i) The definition above yields that the spectrum of a sectorial operator A
is contained in the sector Σπ

2−δ, i.e., |arg(σ(A))| ≤ π
2 − δ. Hence, we have Reσ(A) ≥ 0.

Moreover, Σ−π
2−δ
⊂ ρ(A) and a similar estimate for the resolvent is satisfied: If λ ∈ Σ−π

2−δ
,

then −λ ∈ Σπ
2 +δ. Since −A is negative sectorial, we have

‖R(−λ,−A)‖L(X) = ‖(−λ+A)−1‖L(X) ≤
M

|−λ|
,

which is equivalent to ‖(λ−A)−1‖L(X) ≤ M
|λ| . Thus, ‖R(λ,A)‖L(X) ≤ M

|λ| for λ ∈ Σ−π
2−δ

.
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(ii) In Pazy (1983) and Engel and Nagel (2001), a sectorial operator is defined in the way
we define a negative sectorial operator.

Definition 2.12. A family T = {T (t)}t∈Σδ∪{0} ⊂ L(X) of continuous linear operators is
called an analytic semigroup (of angle δ ∈ (0, π2 )), if

(i) T (0) = I and T (t)T (s) = T (t+ s) for t, s ∈ Σδ,

(ii) t 7→ T (t) ∈ L(X) is analytic in Σδ,

(iii) limΣδ3t→0 T (t)x = x for all x ∈ X.

The (infinitesimal) generator (A,D(A)) of T is defined the same way as in Definition 2.4.

Remark 2.13. The restriction of an analytic semigroup to (0,∞) is a C0-semigroup.

Theorem 2.14 (Engel and Nagel, 2001, Section II.4.a). The linear operator A generates
an analytic semigroup of angle δ, if and only if A is negative sectorial of angle δ > 0.

Remark 2.15. If A would be negative sectorial of angle δ = 0, i.e., only the right half plane
is contained in the resolvent set ρ(A), then A is the generator of a C0-semigroup.

We will define fractional powers of sectorial operators in the next section. Therefore, we
consider from now on sectorial operators (A,D(A)) (of angle δ) and analytic semigroups T (t)
generated by −A and write T (t) = e−tA. We give that expression a meaning by the functional
calculus of sectorial operators—that is, roughly speaking, f(A) = 1

2πi
∫

Γ f(λ)R(λ,A) dλ,
where the function f is holomorphic in Σπ

2−δ′ , 0 < δ′ < δ, and has rapid decay at ∞ and Γ
is a suitable positive oriented path around Σπ

2−δ passing through ∞, cf. Haase (2006).

Theorem 2.16 (Henry, 1981, Theorem 1.3.4). Let (A,D(A)), A : D(A) ⊂ X → X be a
sectorial operator of angle δ. For t ∈ Σδ, the analytic semigroup T (t) generated by −A is
given as

T (t) = e−tA := 1
2πi

∫
Γ
(λ+A)−1eλt dλ = 1

2πi

∫
Γ
R(λ,−A)eλt dλ,

where Γ is any piecewise smooth curve in Σπ
2 +δ ⊂ ρ(−A) with arg λ→ ±π

2 + δ′ as |λ| → ∞
for some δ′ ∈ (0, δ).

We summarize basic properties of analytic semigroups in the following theorem

Theorem 2.17 (Henry, 1981, Theorem 1.3.4; Engel and Nagel, 2001, Theorem II.4.3). Let
the operator (A,D(A)), A : D(A) ⊂ X → X be sectorial of angle δ.

(i) ‖e−zA‖L(X) is uniformly bounded for z ∈ Σδ′ if 0 < δ′ < δ.

(ii) If Reσ(A) > ω, a constant C > 0 exists such that

‖e−tA‖L(X) ≤ Ce−ωt, t ≥ 0,

‖Ae−tA‖L(X) ≤
C

t
e−ωt, t > 0.

Hence, if Reσ(A) > 0 the estimates read ‖e−tA‖L(X) ≤ C and ‖Ae−tA‖L(X) ≤ C
t for

t > 0.
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(iii) T ′(t) = d
dte
−tA = −Ae−tA for t > 0.

(iv) e−tAx ∈ D(A) for all t > 0 and x ∈ X.

Remark 2.18. We note that for a C0-semigroup T = {T (t)}t≥0 we have T (t)x ∈ D(A) only
for x ∈ D(A). If T (t)x ∈ D(A) for t > 0 and all x ∈ X, T is bounded, i.e., ‖T (t)‖L(X) ≤ C,
and ‖AT (t)‖L(X) ≤ C

t , then T is an analytic semigroup.

Example 2.19. As a final example we show that the negative Laplace-operator −∆ on
L2(Rn) is a sectorial operator and derive a representation of the generated analytic semigroup
et∆ (cf. Engel and Nagel, 2001, Example II.4.9). The symbol

a(ξ) =
∑
|α|=2

aαi
|α|ξα =

n∑
j=1

ξ2
i = |ξ|2

of −∆ implies

ξ 6= 0⇒ a(ξ) 6= 0,
−1 /∈ a(Rn)

and from (Haase, 2006, Theorem 8.2.1) follows, that −∆ is a sectorial operator with angle
δ = π

2 , spectrum σ(A) = a(Rn) = [0,∞) and domain D(−∆) = H2(Rn). Theorem 2.14
yields that ∆ generates the analytic semigroup {et∆}t≥0 that can be continued analytically
into the sector Σπ

2
. We either obtain a representation of the semigroup by convolution with

the Gauss-Weierstrass kernel Gt ∈ L1(Rn),

Gt(x) = 1
(4πt)

n
2
e−
|x|2
4t ,

which yields the Gauss-Weierstrass semigroup

et∆x = Gt ∗ x, Re t > 0, x ∈ L2(Rn)

or by using the Fourier transformation F : L2(Rn)→ L2(Rn):

et∆x = F−1(e−t|ξ|2F(x)), Re t > 0, x ∈ L2(Rn),

cf. Remark 1.7 and (Haase, 2006, Proposition 8.3.1). The solution of the heat equation

ut(t, x)− uxx(t, x) = 0, u(0, x) = u0(x),

with initial data u0 is then given by

u(t, x) = et∆u0(x) = Gt ∗ u0(x) = 1
(4πt)

n
2

∫
Rn
e−
|x−y|2

4t u0(y) dy.
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2.3 Fractional Powers of Sectorial Operators
For a sectorial operator A with Reσ(A) > 0 and α > 0, the functional calculus for sectorial
operators (see Haase, 2006) yields the following representation for fractional powers A−α of
sectorial operators,

A−α = 1
2πi

∫
Γ
λ−αR(λ,A) dλ.

Since −A is the generator of an analytic semigroup, another representation of A−α can be
obtained. We will use that representation in the subsequent.

Definition 2.20. For a sectorial operator A : D(A) ⊂ X → X with Reσ(A) > 0 and α > 0
we define

A−α : D(A−α)→ X, A−α = 1
Γ(α)

∫ ∞
0

tα−1e−tA dt.

Theorem 2.21 (Henry, 1981, Theorem 1.4.2). Let A : D(A) ⊂ X → X be a sectorial
operator with Reσ(A) > 0 and α ∈ (0, 1). Then we can represent A−α using the resolvent
R(λ,−A) as

A−α = sin(πα)
π

∫ ∞
0

λ−α(λ+A)−1 dλ = sin(πα)
π

∫ ∞
0

λ−αR(λ,−A) dλ.

We state basic properties of fractional powers of sectorial operators.

Theorem 2.22 (Pazy, 1983, Lemma 2.6.2 to Lemma 2.6.4). Let A : D(A) ⊂ X → X be a
sectorial operator with Reσ(A) > 0.

(i) For any α > 0, A−α is a bounded linear operator which is one-to-one.

(ii) A−αA−β = A−(α+β) for all α, β > 0.

(iii) There exists a constant C such that ‖A−α‖L(X) ≤ C for α ∈ (0, 1).

(iv) limα→0A
−αx = x for every x ∈ X.

Corollary 2.23 (Engel and Nagel, 2001, Theorem II.5.29). We conclude from Theorem 2.22
that the family {A−t}t≥0 is a C0-semigroup of bounded linear operators on D(A).

Definition 2.24. Let A : D(A) ⊂ X → X be a sectorial operator with Reσ(A) > 0.

(i) For α > 0 we define

Aα : D(Aα) = R(A−α)→ X, Aα = (A−α)−1

and Aα = I for α = 0.

(ii) For α ≥ 0 and x ∈ D(Aα) the graph norm of D(Aα) is defined as

|||x|||α := |||Aαx||| := ‖x‖+ ‖Aαx‖ = ‖x‖+ ‖x‖α.
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Remark 2.25. For x ∈ D(A) ⊂ D(Aα), α ∈ (0, 1), we have an explicit representation for
Aαx using Theorem 2.21,

Aα = sin(πα)
π

∫ ∞
0

λα−1A(λ+A)−1 dλ = sin(πα)
π

∫ ∞
0

λα−1AR(λ,−A) dλ.

The domain D(Aα) equipped with its graph norm is a Banach space. The graph norm
|||·|||α of D(Aα) is equivalent to the norm ‖·‖α since Aα is invertible. Thus, D(Aα) endowed
with ‖·‖α is a Banach space which we denote by Xα. The spaces Xα will provide the basic
topology for the solution of semilinear evolution equations. Therefore, we assume without
loss of generality Reσ(A) > 0 for the rest of this section.

Remark 2.26. If A does not meet the condition Reσ(A) > 0, let Xα = D(Aαω), with
Aω := A + ω and ω > 0 being the smallest value satisfying Reσ(Aω) > 0. For different
values of ω, the norms ‖·‖α are equivalent (see Henry, 1981, Definition 1.4.7, Theorem 1.4.6).

The above-defined spaces Xα are indeed Banach spaces.

Theorem 2.27 (Henry, 1981, Theorem 1.4.8). Let A : D(A) ⊂ X → X be a sectorial
operator. The space Xα, equipped with the norm ‖·‖α, is a Banach space for α ≥ 0. For
α > β ≥ 0, Xα is dense in Xβ with continuous inclusion. If A has compact resolvent, the
inclusion Xα ⊂ Xβ is compact when α > β ≥ 0.

The following theorem shows a regularization effect of sectorial operators, which we utilize
in the proof of the local existence and uniqueness of a solution to semilinear evolution
equations see Henry, 1981, Theorem 1.4.3 and 1.4.4:

Theorem 2.28. Let A : D(A) ⊂ X → X be a sectorial operator with Reσ(A) > ρ > 0.

(i) For α ≥ 0, t > 0 a constant Cα <∞ exists such that

‖e−tA‖L(Xα) = ‖Aαe−tA‖L(X) ≤ Cαt−αe−ρt ≤ Cαt−α,

i.e., the operator Aαe−tA is bounded. If α ∈ (0, 1] and x ∈ D(Aα) we have

‖(e−tA − 1)x‖ ≤ 1
α
C1−αt

α‖Aαx‖ = 1
α
C1−αt

α‖x‖α.

(ii) For α ∈ [0, 1], x ∈ D(A) the interpolation inequality

‖x‖α = ‖Aαx‖ ≤ C‖Ax‖α‖x‖1−α = C‖x‖α1 ‖x‖1−α

holds with a positive C independent of α.

Similar to Sobolev spaces and Theorem 1.15, various embedding properties can be shown
for the Banach spaces Xα (see Henry, 1981, Theorem 1.6.1):
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Theorem 2.29 (Embedding theorem forXα). Assume that Ω ⊂ Rn is an sufficiently smooth
open set, 1 ≤ p < ∞, and A : D(A) ⊂ X → X = Lp(Ω) is a sectorial operator. If m ≥ 1
exists such that D(A) = X1 ⊂Wm,p(Ω), then we have for α ∈ [0, 1]

Xα ⊂W k,q(Ω) when k − n

q
< mα− n

p
, q ≥ p,

Xα ⊂ Cν(Ω) when 0 ≤ ν < mα− n

p
.

Example 2.30. Let X := L2(Rn). We calculate the spaces Xα for the negative Laplace
operator. Since 0 ∈ σ(−∆), fractional powers of −∆ are not defined. Thus, we consider
−∆ + 1 instead of −∆. From Remark 1.7 follows (1−∆)α = F−1(1 + |ξ|2)αF (see Haase,
2006, p. 225). Since F is an isometric isomorphism on L2(Rn) (see Werner, 2007, Korollar
V.4.14), we have ‖F−1(1 + |ξ|2)αFu‖2 = ‖(1−∆)αu‖2 <∞. We define the Bessel potential
space

Ĥs(Rn) = {x ∈ L2(Rn) : F−1(1 + |ξ|2)
s
2Fx ∈ L2(Rn)}

and see, that if x ∈ Xα, then x ∈ Ĥ2α(Rn). Moreover, we receive that D(−∆) = H2(Rn)
and D(−∆

1
2 ) = H1(Rn) due to the result of A. P. Calderón, that the Bessel potential spaces

for s ∈ N coincide with the Sobolev spaces (see Adams and Hedberg, 1996, Theorem 1.2.3).

2.4 Existence and Uniqueness of Solutions for Evolution
Equations

We start this section with results on the existence and uniqueness of solutions for linear
abstract Cauchy problems using C0-semigroups. These results can be extended to semilinear
evolution equations if the nonlinear function meets certain prerequisites. We then show that
these prerequisites can be weakened for equations that involve sectorial operators if we use
the theory of analytic semigroups.

2.4.1 Linear Abstract Cauchy Problems
The homogeneous abstract Cauchy problem

u′(t) = Au(t), t ∈ (0, T ), u(0) = u0 (2.1)

is given by a closed and densely defined linear operator A : D(A) ⊂ X → X, an initial value
u0 ∈ X and a time period (0, T ), whereby T =∞ is permitted.

Definition 2.31. A function u ∈ C([0, T ), X)∩C1((0, T ), X) with u(t) ∈ D(A) for t ∈ (0, T )
satisfying (2.1) on [0, T ) is called a (classical) solution of Equation (2.1).

For u0 ∈ D(A) follows from Theorem 2.7 that u(t) = T (t)u0 is a solution of Equation (2.1)
with T (t) being the C0-semigroup generated by A. It remains to show the uniqueness of the
solution: Let ũ be another solution of Equation (2.1) on (0, T ) with the same u0 ∈ D(A).
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For 0 ≤ s ≤ t < T we define y(t, s) := T (t− s)ũ(s). Then s 7→ y(t, s) is continuous on [0, t]
and differentiable on (0, t). Since ũ solves Equation (2.1), we have

ys(t, s) = −AT (t− s)ũ(s) + T (t− s)ũ′(s) = −AT (t− s)ũ(s) +AT (t− s)ũ(s) = 0

for s ∈ (0, t]. Hence, s 7→ y(t, s) is constant and y(t, 0) = y(t, t) in particular. Thus,
u(t) = T (t)u0 = T (t)ũ(0) = y(t, 0) = y(t, t) = ũ(t) (cf. Henry, 1981, p. 50).
Remark 2.32. For u0 /∈ D(A) the existence of a (classical) solution is not guaranteed if
A generates a C0-semigroup that cannot be extended analytically. In this case, we call
t→ T (t)u0 a mild solution (for u ∈ D(A) the mild solutions is the (classical) solution). If A
can be extended analytically, i.e A is a negative sectorial operator, then u(t) = T (t)u0 is the
unique (classical) solution of Equation (2.1) for every x ∈ X. We will define the concept of
mild solutions in the following for inhomogeneous abstract Cauchy problems and semilinear
evolution equations and leave this concept for the homogeneous abstract Cauchy problem
without a definition.

We consider in the following the inhomogeneous abstract Cauchy problem

u′(t) = Au(t) + f(t), t ∈ (0, T ), u(0) = u0, (2.2)

which involves an inhomogeneous term f : [0, T )→ X.
Let u be a classical solution of Equation (2.2) and T (t) the C0-semigroup generated by A.

We define y(s) := T (t− s)u(s), then y′(s) = T (t− s)f(s) and if f ∈ L1(0, T ;X) integration
from 0 to t provides

u(t) = T (t)u0 +
∫ t

0
T (t− s)f(s) ds.

As in the homogeneous case, depending on the initial data but also depending on the char-
acteristics of f , a (classical) solution of Equation (2.2) does not necessarily exist. Therefore,
we introduce a weaker concept, the mild solution.
Definition 2.33. Let A be the generator of a C0-semigroup T (t) on X. Let u0 ∈ X and
f ∈ L1(0, T ;X). The function u ∈ C([0, T ], X) given by

u(t) = T (t)u0 +
∫ t

0
T (t− s)f(s) ds, t ∈ [0, T ],

is the mild solution of the initial value problem (2.2) on [0, T ].
For f ∈ L1(0, T ;X), Equation (2.2) has a unique mild solution by definition. We will now

collect conditions on f such that the mild solution of Equation (2.2) becomes the (classical)
solution for every x ∈ D(A).
Theorem 2.34 (Pazy, 1983, Theorem 4.2.4). Let A be the generator of a C0-semigroup
T (t) on X, let f ∈ L1(0, T ;X) be continuous on (0, T ) and define

F (t) =
∫ t

0
T (t− s)f(s) ds, t ∈ [0, T ].

Equation (2.2) has a solution u on (0, T ) for every u0 ∈ D(A) if one of the following
conditions is satisfied:
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(i) F ∈ C1((0, T ), X),

(ii) F (t) ∈ D(A) for t ∈ (0, T ) and AF (t) is continuous on (0, T ).

If Equation (2.2) has a solution u on [0, T ) for some u0 ∈ D(A) then F satisfies both
conditions (i) and (ii).

Corollary 2.35 (Pazy, 1983, Corollary 4.2.5). Let A be the generator of a C0-semigroup
T (t) on X. If f ∈ C1((0, T ), X) then Equation (2.2) has a solution u on [0, T ) for every
u0 ∈ D(A).

Corollary 2.36 (Pazy, 1983, Corollary 4.2.6). Let A be the generator of a C0-semigroup T (t)
on X and f ∈ L1(0, T ;X)∩C((0, T ), X). If f(t) ∈ D(A) for t ∈ (0, T ) and Af ∈ L1(0, T ;X)
then Equation (2.2) has a solution u on [0, T ) for every u0 ∈ D(A).

We can pose some more conditions on f if we consider another concept of solution, the
strong solution.

Definition 2.37. Let the function u be differentiable almost everywhere on [0, T ] such that
u′ ∈ L1(0, T ;X). Then u is called a strong solution of Equation (2.2) if u(0) = u0 and
u′(t) = Au(t) + f(t) almost everywhere on [0, T ].

Theorem 2.38 (Pazy, 1983, Theorem 4.2.9). Let A be the generator of a C0-semigroup
T (t) on X, let f ∈ L1(0, T ;X) and define

F (t) =
∫ t

0
T (t− s)f(s) ds, t ∈ [0, T ].

Equation (2.2) has a strong solution u on [0, T ] for every u0 ∈ D(A) if one of the following
conditions is satisfied:

(i) F is differentiable almost everywhere on [0, T ] and F ′ ∈ L1(0, T ;X),

(ii) F (t) ∈ D(A) almost everywhere on [0, T ] and AF ∈ L1(0, T ;X).

If Equation (2.2) has a strong solution u on [0, T ] for some u0 ∈ D(A) then F satisfies both
conditions (i) and (ii).

Corollary 2.39 (Pazy, 1983, Corollary 4.2.10). Let A be the generator of a C0-semigroup
T (t) on X. If f is differentiable almost everywhere on [0, T ] and f ∈ L1(0, T ;X) then
Equation (2.2) has a strong solution u on [0, T ] for every u0 ∈ D(A).

Corollary 2.40 (Pazy, 1983, Corollary 4.2.11). Let X be a reflexive Banach space and let A
generate a C0-semigroup T (t) on X. If f is Lipschitz continuous on [0, T ] then Equation (2.2)
has a strong solution u on [0, T ] for every u0 ∈ D(A).
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As in the homogeneous case, u0 ∈ D(A) is necessary for the existence of a classical or
strong solution, ifA generates a C0-semigroup that cannot be extended analytically. However,
if A is negative sectorial, i.e., it generates an analytic semigroup, we collect conditions on f
under that Equation (2.2) has a unique solution u on [0, T ) for all u0 ∈ X. One condition
is, that f is Hölder continuous.
We start with a condition on the modulus of continuity of f .

Theorem 2.41 (Pazy, 1983, Theorem 4.3.1). Let A be the generator of an analytic semigroup
T (t) on X. Let f ∈ L1(0, T ;X) and suppose that for every t ∈ (0, T ) there is a δt > 0 and
a continuous function wt : [0,∞)→ [0,∞) such that

‖f(t)− f(s)‖ ≤ wt(|t− s|)

and ∫ δt

0

wt(τ)
τ

dτ <∞.

Then the mild solution of Equation (2.2) is a (classical) solution for every x ∈ X.

As a direct consequence, we receive the already indicated Hölder continuity condition.

Corollary 2.42 (Pazy, 1983, Corollary 4.3.3). Let A be the generator of an analytic semi-
group T (t) on X. If f ∈ L1(0, T ;X) is locally Hölder continuous on (0, T ] then Equation (2.2)
has a unique solution for every x ∈ X.

Remark 2.43. The prerequisite on f in the Corollary above can be weakened such that f
needs to be integrable on an interval [0, t1] for some t1 > 0 instead of f ∈ L1(0, T ;X) (cf.
Henry, 1981, Theorem 3.2.2).

Theorem 2.44 (Pazy, 1983, Theorem 4.3.6). Let A be the generator of an analytic semigroup
T (t) on X and let 0 ∈ ρ(A). If f(t) is continuous, f(t) ∈ D((−A)α), α ∈ (0, 1] and ‖f(t)‖α
is bounded, then the mild solution of Equation (2.2) is a (classical) solution for every x ∈ X.

We conclude this subsection with a regularity result for the case where A generates an
analytic semigroup and f is Hölder continuous.

Theorem 2.45 (Pazy, 1983, Theorem 4.3.5). Let A be the generator of an analytic semigroup
T (t) on X and let f ∈ Cθ([0, T ], X). If u is the solution of Equation (2.2) on [0, T ] then,

(i) for every δ > 0, Au ∈ Cθ([δ, T ], X) and u′ ∈ Cθ([δ, T ], X),

(ii) if u0 ∈ D(A) then Au and u′ are continuous on [0, T ],

(iii) if u0 = 0 and f(0) = 0 then Au, u′ ∈ Cθ([0, T ], X).
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2.4.2 Semilinear Evolution Equations
In the following, let X := X(Ω) with Ω ⊂ Rn open and sufficiently smooth, n ∈ N, be a
Banach space with norm ‖·‖. We consider the following semilinear evolution equation:

u′(t) +Au(t) = F (t, u(t)), t ∈ (0, T ), u(0) = u0, (2.3)

where −A : D(A) ⊂ X → X is the generator of a C0-semigroup and F : [0, T ]×X → X is
continuous in t and Lipschitz continuous in u.

Analogously to Definition 2.33 we define the mild solution of Equation (2.3) as the function
u ∈ C([0, T ], X) given by

u(t) = T (t)u0 +
∫ t

0
T (t− s)F (s, u(s)) ds, t ∈ [0, T ].

We now state results assuring the existence of mild solutions of Equation (2.3). Essential
in those results is the Lipschitz continuity of f .

Theorem 2.46 (Pazy, 1983, Theorem 6.1.2, Corollary 6.1.3). Let −A be the generator of
a C0-semigroup T (t) on X and let F be continuous in t on [0, T ] and uniformly Lipschitz
continuous on X. Then, for every u0 ∈ X, there exist a unique (global) mild solution
u ∈ C([0, T ], X) of Equation (2.3). Moreover, the mapping u0 7→ u is Lipschitz continuous
from X into C([0, T ], X). In general, the integral equation

w(t) = g(t) +
∫ t

0
T (t− s)F (s, w(s)) ds

has a unique solution w ∈ C([0, T ], X) for every g ∈ C([0, T ], X).

The local Lipschitz continuity in u is sufficient for the existence of a unique (local) mild
solution.

Theorem 2.47 (Pazy, 1983, Theorem 6.1.4). Let −A be the generator of a C0-semigroup
T (t) on X and let F : [0,∞) × X → X be continuous in t for t ≥ 0 and locally Lipschitz
continuous in u, uniformly in t on bounded intervals. Then for every u0 ∈ X there is a
tmax ≤ ∞ such that Equation (2.3) as a unique mild solution u on [0, tmax]. Moreover, if
tmax <∞ then

lim
t→tmax

‖u(t)‖ =∞.

We are now interested in checking whether such a mild solution is also a classical or strong
solution. In general, that is not the case.

Theorem 2.48 (Pazy, 1983, Theorem 6.1.5, Theorem 6.1.6). (i) Let −A be the genera-
tor of a C0-semigroup T (t) on X. If F ∈ C1([0, T ]×X,X), then the mild solution of
Equation (2.3) with u0 ∈ D(A) is a (classical) solution.

(ii) If F is just Lipschitz continuous in both t and u and X is reflexive, then the mild
solution of Equation (2.3) with u0 ∈ D(A) is a strong solution.
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We denote by X1 the domain D(A) endowed with the graph norm |||·|||1 which is a Banach
space. Then we receive the following result:

Theorem 2.49 (Pazy, 1983, Theorem 6.1.7). Let −A be the generator of a C0-semigroup
T (t) on X.

(i) Let F : [0, T ]×X1 → X1 be uniformly Lipschitz in u and for every x ∈ X1 let F (t, x)
be continuous from [0, T ] into X1. Then the mild solution of Equation (2.3) with
u0 ∈ D(A) is a (classical) solution on [0, T ].

(ii) If F is just locally Lipschitz continuous in u uniformly in t on [0, T ], then the mild so-
lution of Equation (2.3) with u0 ∈ D(A) on a maximal interval [0, tmax) is a (classical)
solution. If tmax <∞ then

lim
t→tmax

‖u(t)‖+ ‖Au(t)‖ =∞.

Similar to the linear case, we can further reduce the requirements on the regularity of F if
we consider analytic semigroups. Therefore, let us now assume that A is a sectorial operator.
Thus, −A generates an analytic semigroup.

According to Section 2.3, Aα is well defined for α ∈ [0, 1) and Xα = D(Aα) is a Banach
space dense in X. Note, that if A does not meet the condition Reσ(A) > 0, let Xα

be the domain D(Aαω) of the operator Aω := A + ωI, see Remark 2.26. We now adjust
the definition of the classical and mild solution to incorporate the space Xα: A solution
u ∈ C([0, T ), Xα)∩C1((0, T ), X) of Equation (2.3) on (0, T ) with u(t) ∈ D(A) for t ∈ (0, T )
is called a (classical) solution. A function u ∈ C((0, T ), Xα) is called a mild solution of
Equation (2.3) on (0, T ) if it solves the integral equation

u(t) = e−tAu0 +
∫ t

0
e−(t−s)AF (s, u(s)) ds (2.4)

for all t ∈ (0, T ).
We show the existence and uniqueness of a mild solution of Equation (2.3) and specify

conditions for the mild solution to be also the classical solution. Therefore, we impose the
following prerequisites on F .
We are mostly interested in assumptions on F that are sufficient for the existence of a

mild solution of Equation (2.3).

Assumption 2.50. We suppose F ∈ L1((0, T ), C(Xα, X)), i.e., F is a map from (0, T )×Xα

to X which is

(i) locally integrable with respect to t, i.e., there is t0 > 0 such that∫ t0

0
‖F (s, u(s))‖ ds <∞,
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(ii) locally Lipschitz-continuous with respect to u with Lipschitz constant C independent
from t, i.e., for all u0 ∈ Xα there is a δ > 0 and a constant C such that for all
u, v ∈ Uδ(u0) and t ∈ (0, T ), the inequality ‖F (t, u)− F (t, v)‖ ≤ C‖u− v‖α holds.

Since D(A) = X1 ⊂ Xα = D(Aα), F is of lower order than A and thus Equation (2.3)
remains semilinear.

Given an initial value u0 ∈ Xα, the following result provides the local existence of a mild
solution:

Theorem 2.51. Let −A be the generator of an analytic semigroup and u0 ∈ Xα. Suppose
that F satisfies Assumption 2.50. Then there exist a T ′ ∈ (0, T ) and a unique mild solution
u ∈ C([0, T ′], Xα) of Equation (2.3) in (0, T ′).

Proof. Most of the literature on semigroups postulate assumptions for the existence of a
(classical) solution in the prerequisites of the existence theorem. Therefore, we present the
proof for the case that F satisfies only Assumption 2.50.

Let δ > δ′ > 0, T ′′ > 0 andM := supt∈[0,T ′′]‖F (t, u0)‖. From the local Lipschitz continuity
with respect to u follows

‖F (t, u1)− F (t, u2)‖ ≤ L‖u1 − u2‖α

for t ∈ [0, T ′′) and u1, u2 ∈ Xα with ‖ui − u0‖α < δ (i = 1, 2). We choose T ′ ∈ (0, T ′′)
sufficiently small such that

‖(e−tA − I)Aαu0‖ ≤
δ′

2 , t ∈ [0, T ′],

Cα(Lδ′ +M)
∫ t

0
(t− s)−α ds ≤ δ′

2 , t ∈ [0, T ′]
(2.5)

with Cα from Theorem 2.28.
Consider B := Bδ′(u0) ⊂ C([0, T ′], Xα) =: Z. As B is a closed subset of the Banach space

Z, it is a Banach space itself (cf. Rudin, 1976, Theorem 3.11). We define the mapping
G : B → B by

G(w)(t) = e−tAu0 +
∫ t

0
e−(t−s)AF (s, w(s)) ds.

If we can show that G is a contraction, the Banach fixed-point theorem is applicable which
then provides a unique mild solution for Equation (2.3).
We first show that G is a self mapping of B and then prove that G is a contraction. For

w ∈ B we have

‖F (s, w(s))‖ ≤ ‖F (s, w(s))− F (s, u0)‖+ ‖F (s, u0)‖
≤ L‖w(s)− u0‖α +M ≤ Lδ′ +M
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and it follows that

‖G(w)(t)− u0‖α ≤ ‖(e−tA − I)u0‖α +
∫ t

0
‖e−(t−s)AF (s, w(s))‖α ds

≤ ‖(e−tA − I)Aαu0‖+
∫ t

0
‖Aαe−(t−s)A‖L(X)‖F (s, w(s))‖ ds

≤ ‖(e−tA − I)Aαu0‖+
∫ t

0
‖Aαe−(t−s)A‖L(X)(Lδ′ +M) ds.

From Theorem 2.28 and Reσ(A) > ρ > 0 we obtain

(Lδ′ +M)
∫ t

0
‖Aαe−(t−s)A‖L(X) ds ≤ (Lδ′ +M)

∫ t

0
Cα(t− s)−αe−ρ(t−s) ds

≤ Cα(Lδ′ +M)
∫ t

0
(t− s)−α ds.

Finally, Equation (2.5) provides ‖G(w)(t) − u0‖α ≤ δ′ for t ∈ [0, T ′]. Since (t − s)α is
integrable and F (·, w(·)) : [0, T ′]→ X is so by assumption the continuity of G(w) is obtained.
Thus, G(w) ∈ B.

It remains to show the contraction property: Let v, w ∈ B and t ∈ [0, T ′]. Then

‖G(w)(t)−G(v)(t)‖α ≤
∫ t

0
‖Aαe−(t−s)A‖L(X)‖F (s, w(s))− F (s, v(s))‖ ds

≤ Cα
∫ t

0
(t− s)α ds sup

s∈[0,T ′]
‖F (s, w(s))− F (s, v(s))‖

≤ CαL
∫ t

0
(t− s)α ds sup

s∈[0,T ′]
‖w(s)− v(s)‖α

≤ CαL
∫ t

0
(t− s)α ds ‖w − v‖Z

≤ δ′

2 ‖w − v‖Z < ‖w − v‖Z .

Hence, G is a contraction and admits a unique fixed-point G(w) = w which is the mild
solution of Equation (2.3) by definition of G.

The local Lipschitz-continuity yields only the existence of a solution on a rather short
time interval (0, T ). In general, one can extend the solution to a maximal existence interval
(0, T̂ ), i.e., no solution exists on the interval (T̂, T̃ ) with T̃ > T̂ . We state a condition on F
such that the solution can either be extended on (0,∞) or is unbounded:

Theorem 2.52 (Henry, 1981, Theorem 3.3.4). If the prerequisites of Theorem 2.51 are
given and if F maps every closed and bounded set B ⊂ U onto a bounded set F (B) ⊂ X,
then the solution u either has a maximal existence interval (0, T̂ ) with T̂ =∞ or there is a
sequence Tk with Tk ↗ T̂ and (Tk, u(Tk))→ ∂U , i.e., ‖u(Tk)‖α →∞ for Tk ↗ T̂ .
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We reformulate the condition on F so that the solution exists for all times if the condition
holds.

Corollary 2.53 (Henry, 1981, Corollary 3.3.5). Let A and F be given as in Theorem 2.51.
If there is a continuous κ : [0,∞)→ R with

‖F (t, u)‖ ≤ κ(t)(1 + ‖u‖α),

then the solution u exists on (0,∞).

If we add to the prerequisites of the previous theorems that F : (0, T )×Xα → X is locally
Hölder-continuous with respect to t, then the mild solution u of Equation (2.3) is also a
(classical) solution (see Henry, 1981, Lemma 3.3.2). Let F be defined on an open set U with
(0, u0) ∈ U ⊂ R×Xα.

Theorem 2.54 (Henry, 1981, Theorem 3.3.3). Let A be the generator of an analytic semi-
group, α ∈ [0, 1) and let F : U → X satisfy Assumption 2.50 and be locally Hölder-continuous
with respect to t. Then for each (0, u0) ∈ U there exists a T > 0 such that Equation (2.3) has
a unique (classical) solution u ∈ C([0, T ), Xα) on (0, T ) with initial value u(0) = u0 ∈ Xα.

With the additional prerequisite that F is locally Hölder-continuous with respect to t, the
results from Theorem 2.52 and Corollary 2.53 yield the unique classical solution.

2.4.3 Semilinear Initial Boundary Value Problems
In many applications, evolution equations represent partial differential equations in an
abstract setting. The initial value of the partial differential equation serves as the initial
value of the evolution equation. However, the evolution equation itself is not equipped
with boundary conditions. For a (linear) boundary condition, e.g., Neumann or Dirichlet
boundary condition, the domain of the linear operator is restricted to functions satisfying the
boundary condition. That approach is not practicable for semilinear boundary conditions.
We present a generalized variation of constants formula, derived heuristically in Amann
(1986) and proved in Amann (1988), that represents the mild solution satisfying semilinear
boundary conditions.

We consider equations of the form

u′(t) +Au(t) = F (t, u(t)), Bu(t) = G(t, u(t)), t ∈ (0, T ), u(0) = u0 (2.6)

where −A is the generator of an analytic semigroup, B : D(B)→ Y is a linear operator with
D(B) = D(A), F meets Assumption 2.50 and G : (0, T )×Xα(Γ)→ Y . The Banach space
Y is defined over Γ = ∂Ω. Its specific definition depends on the definition of X and D(A),
e.g., X = L2(Ω) and D(A) = H2(Ω) yield Y = H1/2(Γ) (Amann, 1986, Section 3).

In the case of linear boundary conditions, i.e., G = 0, we restrict the domain of A to those
functions, that satisfy Bu = 0 and consider the operator AB := A| ker(B) : ker(B) → X
with domain D(AB) = {u ∈ D(A); Bu = 0}. Then, the mild solution of

u′(t) +ABu(t) = F (t, u(t)), t ∈ (0, T ), u(0) = u0
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is given by Equation (2.4) with A replaced by AB. For semilinear boundary conditions, we
assume that both operators share the same domain

W := D(A) = D(B) ↪−→ X,

which is by Theorem 2.27 a Banach space that is continuously embedded in X. We write
WA and WB instead of ker(A) and ker(B), respectively. Moreover, we assume that B is
surjective and AB is an isomorphism. Amann shows that RB := (B|WA)−1 : Y →WA is an
isomorphism and that the mild solution of Equation (2.6) is given by

u(t) = e−tABu0 +
∫ t

0
e−(t−s)AB

(
F (s, u(s))−ABRBG(s, u(s))

)
ds.

A detailed proof can be found in Amann (1988).
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Chapter3
Neccessary Optimality Conditions

We consider optimal control problems of the form

min
λ∈Λ

J(u, λ) =
∫ T

0
g(t, u(t), λ(t)) dt+ h(u(T ))

s.t. G(u, λ) = 0, (u, λ) ∈ Z × Λ,

where G = 0 satisfies a semilinear evolution equation

u′(t) +Au(t) = F (u(t), λ(t)), t ∈ (0, T ), u(0) = u0, (3.1)

with an abstract function u with u(t) ∈ X and control function λ ∈ Λ. We present assump-
tions under which necessary first order optimality conditions can be formulated in Banach
spaces. The formulation of those conditions itself follows the adjoint approach.
To ensure the well-posedness of the control problem, we apply the theory presented in

Chapter 2. Therefore, let A : D(A) ⊂ X → X be a sectorial operator and hence, the
generator of an analytic semigroup. According to Remark 2.26, we can define A such that
the real part of its spectrum, Reσ(A), is positive. We can define Xα = D(Aα) for α ∈ [0, 1)
and obtain the Banach space (Xα, ‖·‖α) with ‖u‖α := ‖Aαu‖, see Section 2.3 for details. Let

F : Xα × Rd → X (3.2)
be a semilinear mapping depending on the values of the state u(t) and the control λ(t).
We know from Section 2.4.2 that the local solution u for Equation (3.1) with initial value
u0 ∈ Xα is contained in C0([0, T ), Xα) and u(t) ∈ D(A) for t ∈ [0, T ). If we can show that
the local solution is also a global solution that can be extended to the nonnegative real axis,
the above statements hold for the compact interval [0, T ] (see Corollary 2.53).

3.1 Necessary Optimality Conditions in Banach Spaces
In the following, let X be a real Banach space over a bounded domain Ω ∈ Rn with norm
‖·‖ and L be a real Banach spaces over a given time interval [0, T ] with norm ‖·‖L. X is
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the range space of the abstract function u, L is the space of the control function λ and
Λ ⊂ L = L1([0, T ],Rd) is a nonempty, closed and convex set of admissible control functions.
Moreover, let an initial value u0 ∈ Xα be given.
Let Z := C([0, T ], Xα) be the Banach space of continuous functions u : [0, T ]→ Xα and

Z ′ := C([0, T ], X), both equipped with their corresponding uniform norm,

‖u‖Z = sup
t∈[0,T ]

‖u(t)‖α and ‖u‖Z′ = sup
t∈[0,T ]

‖u(t)‖,

respectively.
We obtain the control problem

min
λ∈Λ

J(u, λ) =
∫ T

0
g(t, u(t), λ(t)) dt+ h(u(T ))

s.t. G(u, λ) = 0, (u, λ) ∈ Z × Λ,
(3.3)

with a continuous and convex objective functional J : Z × L → R with terminal costs
function h : Xα → R and running costs function g : [0, T ] ×Xα × Rd → R. The constraint
G : Z × L→ Z,

G(u, λ)(t) = u(t)− e−tAu0 −
∫ t

0
e−(t−s)AF (u(s), λ(s)) ds = 0,

represents the mild solution of Equation (3.1).
To formulate the necessary optimality conditions, we assume the following:

Assumption 3.1. (i) J is Fréchet-differentiable on Z × L.

(ii) F is continuously Fréchet-differentiable on Xα × Rd.

(iii) F satisfies Assumption 2.50, i.e., F is locally integrable with respect to t and locally
Lipschitz-continuous with respect to u.

(iv) There exists a κ ∈ C([0,∞),R) such that for every t > 0 and u(t) ∈ Xα

‖F̃ (t, u(t))‖ = ‖F (u(t), λ(t))‖ ≤ κ(t)(1 + ‖u(t)‖α),

with F̃ : [0, T )×Xα → X (see the prerequisites of Corollary 2.53).

Remark 3.2. Assumption 3.1 (iii) yields the local existence and uniqueness of a mild
solution of (3.1). Indeed, we define F̃λ : (0, T ) × Xα → X, F̃λ(t, u(t)) = F (u(t), λ(t)) for
fixed λ ∈ L and consider the evolution equation u′(t) +Au(t) = F̃λ(t, u(t)) which coincides
with Equation (2.3). The global existence follows directly from Assumption 3.1 (iv) by the
same argument as above.

Theorem 3.3. Assumption 3.1 (ii) yields the continuous Fréchet-differentiability of G on
Z × L with derivative dG(u, λ) : Z × L→ Z,

dG(u, λ)[∆u,∆λ](t) = ∆u(t)−
∫ t

0
e−(t−s)AdF (u(s), λ(s))[∆u(s),∆λ(s)] ds. (3.4)
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Proof. G is Fréchet-differentiable in (u, λ) if and only if

1
‖(∆u,∆λ)‖Z×L

∥∥G(u+ ∆u, λ+ ∆λ)−G(u, λ)− dG(u, λ)[∆u,∆λ]
∥∥
Z
−→ 0

follows from ‖(∆u,∆λ)‖Z×L → 0.
For (∆u,∆λ) ∈ Z × Λ we obtain

G(u+ ∆u, λ+ ∆λ)(t)−G(u, λ)(t)

= u(t) + ∆u(t) + e−tAu0 −
∫ t

0
e−(t−s)AF (u(s) + ∆u(s), λ(s) + ∆λ(s)) ds

− u(t)− e−tAu0 +
∫ t

0
e−(t−s)AF (u(s), λ(s)) ds

= ∆u(t)−
∫ t

0
e−(t−s)A

(
F (u(s) + ∆u(s), λ(s) + ∆λ(s))− F (u(s), λ(s))

)
ds.

Together with (3.4), this yields

G̃(t) = −
∫ t

0
e−(t−s)AF̃ (s) ds,

with
G̃(t) := G

(
u+ ∆u, λ+ ∆λ

)
(t)−G

(
u, λ

)
(t)− dG

(
u, λ

)
[∆u,∆λ](t)

and

F̃ (s) := F
(
u(s) + ∆u(s), λ(s) + ∆λ(s)

)
− F

(
u(s), λ(s)

)
− dF

(
u(s), λ(s)

)
[∆u(s),∆λ(s)].

We consider on both sides of the equation the corresponding norm and apply Theorem 2.28.
Thus, we can estimate

‖G̃‖Z = ‖
∫ ·

0
e−(·−s)AF̃ (s) ds‖Z = sup

t∈[0,T ]
‖
∫ t

0
e−(t−s)AF̃ (s) ds‖α

≤ sup
t∈[0,T ]

∣∣ ∫ t

0
‖e−(t−s)AF̃ (s)‖α ds

∣∣ ≤ sup
t∈[0,T ]

∣∣ ∫ t

0
‖Aαe−(t−s)AF̃ (s)‖ ds

∣∣
≤ sup

t∈[0,T ]

∣∣ ∫ t

0
‖Aαe−(t−s)A‖L(X)‖F̃ (s)‖ ds

∣∣ 2.28(i)
≤ sup

t∈[0,T ]

∣∣ ∫ t

0
C(t− s)−α‖F̃ (s)‖ ds

∣∣
≤ sup

t∈[0,T ]
sup
s∈[0,t]

‖F̃ (s)‖
∫ t

0
C(t− s)−α ds ≤ sup

s∈[0,T ]
‖F̃ (s)‖ sup

t∈[0,T ]

∫ t

0
C(t− s)−α ds︸ ︷︷ ︸

=:C̃<∞

≤ C̃‖F̃‖Z′ .

The estimate for C̃ holds due to the integrability of C(t − s)−α for α ∈ [0, 1). As-
sumption 3.1 (ii) and (Henry, 1981, Lemma 3.4.3) yield the Fréchet-differentiability of
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F : Z × L→ Z ′, F(u, λ)(t) = F (u(t), λ(t)) on Z × L. Finally, we have

1
‖(∆u,∆λ)‖Z×L

∥∥G(u+ ∆u, λ+ ∆λ)−G(u, λ)− dG(u, λ)[∆u,∆λ]
∥∥
Z

≤ C̃

‖(∆u,∆λ)‖Z×L
∥∥F(u+ ∆u, λ+ ∆λ)−F(u, λ)− dF(u, λ)[∆u,∆λ]

∥∥
Z′

−→ 0, ‖(∆u,∆λ)‖Z×L → 0

Remark 3.4. To be precise, we observe that (Henry, 1981, Lemma 3.4.3) only yields the
differentiability of F on Z. The extension of that result to the differentiability on Z × L
can easily be shown. For a given (u, λ) ∈ Z × L we have

‖(u(t), λ(t))‖2Xα×Rd = ‖u(t)‖2α + |λ(t)|2 ≤ sup
t∈[0,T ]

‖u(t)‖2α + sup
t∈[0,T ]

|λ(t)|2

= ‖u‖2Z + ‖λ‖2L = ‖(u, λ)‖Z×L

for all t ∈ [0, T ]. And further follows

1
‖(∆u,∆λ)‖Z×L

∥∥F̃(t)
∥∥ ≤ 1
‖(∆u(t),∆λ(t))‖Xα×Rd

∥∥F̃(t)
∥∥ −→ 0,

‖(∆u,∆λ)‖Xα×Rd → 0, (3.5)

with F̃(t) being defined analogously to G̃(t) and F̃ (s).
Equation (3.5) still holds if we consider the supremum of all t ∈ [0, T ] due to the compact-

ness of [0, T ]. The same argument yields ‖(∆u,∆λ)‖Z×L → 0 from ‖(∆u,∆λ)‖Xα×Rd → 0.
Both result in

1
‖(∆u,∆λ)‖Z×L

∥∥F̃(t)
∥∥
Z′
−→ 0, ‖(∆u,∆λ)‖Z×L → 0.

We obtain for the partial derivative with respect to u the following result.

Theorem 3.5. Let Assumption 3.1 (ii) be true. Then the partial derivative

duG(u, λ) : Z → Z, duG(u, λ)[v] = v −
∫ ·

0
e−(·−s)AduF (u(s), λ(s))[v(s)] ds,

is an isomorphism.

Proof. Consider for given right-hand side w ∈ Z the inhomogeneous equation

v =
∫ ·

0
e−(·−s)AduF (u(s), λ(s))[v(s)] ds+ w. (3.6)
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If w = 0, then the uniqueness of solutions yields that v = 0 is the only solution. For
0 6= w ∈ Z we look at

y =
∫ ·

0
e−(·−s)AduF (u(s), λ(s))[y(s) + w(s)] ds. (3.7)

Define the mapping F̃ : (0, T )×Xα → X, F̃ (t, y) = duF (u, λ)[y+w(t)], which is continuous
and linear, hence, Lipschitz-continuous in y. Thus, a unique mild solution y ∈ Z exists and
replacing v := y + w in (3.7) shows that v satisfies Equation (3.6). Therefore, duG(u, λ) is
an isomorphism.

We derive the necessary optimality conditions based on a result in Zowe and Kurcyusz
(1979).

Theorem 3.6. Let Assumption 3.1 be true for the optimal state and control (ū, λ̄) ∈ Z ×Λ,
then 〈

dλJ(ū, λ̄) + dλG(ū, λ̄)∗[l], λ− λ̄
〉
L∗,L
≥ 0, λ ∈ Λ, (3.8)

where l ∈ Z∗ is the unique solution of the adjoint equation

duG(ū, λ̄)∗[l] = −duJ(ū, λ̄). (3.9)

Alternatively, l ∈ Z∗ is uniquely defined by

l(v) = −
〈
duJ(ū, λ̄), duG(ū, λ̄)−1[v]

〉
Z∗,Z

for all v ∈ Z. (3.10)

Proof. The authors consider in Zowe and Kurcyusz (1979) the following optimization problem

min f(x), x ∈ C, g(x) ∈ K

where f : X → R, g : X → Y with a closed convex set C ⊂ X and a cone K ⊂ Y . In our
case this reads as

min J(u, λ), λ ∈ Λ, G(u, λ) = 0,

with J : Z × L→ R, G : Z × L→ Z, Λ ⊂ L is a closed convex set and

X = Z × L, Y = Z, C = Z × Λ, K = {0Z}.

A point x̄ is a regular point in the sense of Zowe and Kurcyusz, if

g′(x̄)C(x̄)−K(g(x̄)) = Y

where
C(x̄) = {λ(c− x̄) : c ∈ C, λ ≥ 0}, K(y) = {k − λy : k ∈ K,λ ≥ 0}.

In our case we have
C(ū, λ̄) = Z × Λ(λ̄), K(G(ū, λ̄)) = 0Z .
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This means that we have a regular point (ū, λ̄), if

duG(ū, λ̄)[Z] + dλG(ū, λ̄)[Λ(λ̄)] = Z.

In other words, for each v ∈ Z we have to find a u ∈ Z and µ ∈ Λ(λ̄) such that

duG(ū, λ̄)[u](t) = v(t)− dλG(ū, λ̄)[µ](t). (3.11)

Choosing, for example, µ = 0, this holds due to Theorem 3.5.
By (Zowe and Kurcyusz, 1979, Theorem 4.1) there exists a Lagrange multiplier y∗ ∈ Y ∗,

i.e., by definition (Zowe and Kurcyusz, 1979, (1.1)), we have

(i) y∗ ∈ K+ = {y∗ ∈ Y ∗ : 〈y∗, k〉 ≥ 0 for all k ∈ K},

(ii) 〈y∗, g(x̄)〉 = 0,

(iii) f ′(x̄)− g′(x̄)∗y∗ ∈ C(x̄)+.

In our case this leads to an l̃ ∈ K+ = Z∗ where (ii) holds trivially since g(x̄) = 0. For the
third condition note that

C(ū, λ̄)+ = Z+ × Λ(λ̄)+ = {0Z} × {λ∗ ∈ L∗ : 〈λ∗, λ− λ̄〉 ≥ 0 for all λ ∈ Λ}.

Hence,
duJ(ū, λ̄)− duG(ū, λ̄)∗[l̃] = 0

and 〈
dλJ(ū, λ̄)− dλG(ū, λ̄)∗[l̃], λ− λ̄

〉
L∗,L
≥ 0 for all λ ∈ Λ.

Setting l = −l̃ ∈ K− = Z∗ concludes the proof of Equations (3.8) and (3.9).
With u and v from Equation (3.11) (with µ = 0) and the invertibility of duG(ū, λ̄) we

obtain

−
〈
duJ(ū, λ̄), duG(ū, λ̄)−1[v]

〉
Z∗,Z

= −
〈
duJ(ū, λ̄), u

〉
Z∗,Z

=
〈
duG(ū, λ̄)∗[l], u

〉
Z∗,Z

=
〈
l, duG(ū, λ̄)[u]

〉
Z∗,Z

=
〈
l, v
〉
Z∗,Z

= l(v).

Remark 3.7. Zowe and Kurcyusz provide in (Zowe and Kurcyusz, 1979, Theorem 4.1) the
existence of a nonempty bounded set of Lagrange multipliers for a regular point x̄. To apply
their result to our control problem (3.3), the surjectivity of duG(ū, λ̄) would be sufficient.
However, the injectivity implies the uniqueness of the Lagrange multiplier l ∈ Z∗.
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Remark 3.8. A different approach to retrieve the Lagrange multiplier l is using the implicit
function theorem: Given Assumption 3.1, we can apply the implicit function theorem on a
pair (ū, λ̄) ∈ Z × Λ with G(ū, λ̄) = 0. Thus, there exist ε, δ > 0, neighborhoods Uδ(λ̄) ⊂ Λ
and Uε(ū) ⊂ Z and a continuously Fréchet-differentiable function s : Uδ(λ̄) → Uε(ū) with
derivative ds(λ) ∈ L(Λ, Z) such that u = s(λ) ∈ Uε(ū) is the unique solution of the constraint
G(u, λ) = 0 and for λ ∈ Uδ(λ̄) the equation

duG(s(λ), λ) ◦ ds(λ) = −dλG(s(λ), λ) (3.12)

holds. Hence, we can represent (3.3) as an unconstrained control problem

min
λ∈Λ

f(λ) = J(s(λ), λ).

The first derivative of f includes the derivative of s, which is only given by an implicit
definition. However, with the use of (3.12), a representation of the linear functional df(λ)
that does not rely on the implicit function s can be derived. That representation concurs
with the result of Theorem 3.6, cf. Tröltzsch (1984) and Tröltzsch (2009).

For the optimal pair (ū, λ̄) we write in the following Gu(t), Gλ(t), Fu(t), Fλ(t), Ju(t), Jλ(t),
gu(t), gλ(t), ∇h instead of duG(ū, λ̄)(t), dλG(ū, λ̄)(t), duF (t, ū(t), λ̄(t)), dλF (t, ū(t), λ̄(t)),
duJ(ū, λ̄)(t), dλJ(ū, λ̄)(t), dug(t, ū(t), λ̄(t)), dλg(t, ū(t), λ̄(t)), dh(ū(T )), respectively. Fur-
thermore,

〈
·, ·
〉
is the duality product between X∗α and Xα,

〈
·, ·
〉
X∗α,Xα

, i.e.,
〈
F, u

〉
refers to

the value of F ∈ X∗α applied to u ∈ Xα, and
(
·, ·
)
is the scalar product in Rd.

In the following theorem, we give a representation of the linear functional l ∈ Z∗.

Theorem 3.9. The linear functional l ∈ Z∗ in the setting outlined above is given by

l(v) = −
∫ T

0

〈
Fu(t)∗[p(t)], v(t)

〉
dt−

〈
∇h, v(T )

〉
−
∫ T

0

〈
gu(t), v(t)

〉
dt (3.13)

where p ∈ Z∗,

p(s) = e−(T−s)A∗∇h+
∫ T

s
e−(t−s)A∗(Fu(t)∗[p(t)] + gu(t)) dt, (3.14)

is the (mild) solution of the terminal value evolution equation

−p′(t) +A∗p(t) = Fu(t)∗[p(t)] + gu(t), t ∈ (0, T ), p(T ) = ∇h. (3.15)

Proof. Let v ∈ Z be given and let u ∈ Z be the solution of

u(t) =
∫ t

0
e−(t−s)AFu(s)[u(s)] ds+ v(t). (3.16)

From Equation (3.10) follows

l(v) = −
〈
duJ(ū, λ̄), u〉Z∗,Z = −

∫ T

0

〈
gu(t), u(t)

〉
dt−

〈
∇h, u(T )

〉
. (3.17)
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We use Equation (3.16) to show that Equation (3.13) is equal to Equation (3.17).

l(v) = −
∫ T

0

〈
Fu(t)∗[p(t)], v(t)

〉
dt−

〈
∇h, v(T )

〉
−
∫ T

0

〈
gu(t), v(t)

〉
dt

=
∫ T

0

〈
− Fu(t)∗[p(t)], u(t)−

∫ t

0
e−(t−s)AFu(s)[u(s)] ds

〉
dt

+
〈
∇h,

∫ T

0
e−(T−s)AFu(s)[u(s)] ds

〉
+
∫ T

0

〈
gu(t),

∫ t

0
e−(t−s)AFu(s)[u(s)] ds

〉
dt

−
〈
∇h, u(T )

〉
−
∫ T

0

〈
gu(t), u(t)

〉
dt.

(3.18)

We isolate u in every term of Equation (3.18) and use Equation (3.10). We have

〈
∇h,

∫ T

0
e−(T−t)AFu(t)[u(t)] dt

〉
=
∫ T

0

〈
Fu(t)∗[e−(T−t)A∗∇h], u(t)

〉
dt.

Fubini’s theorem yields∫ T

0

〈
Fu(t)∗[p(t)],

∫ t

0
e−(t−s)AFu(s)[u(s)] ds

〉
dt

=
∫ T

0

〈 ∫ T

t
e−(s−t)A∗Fu(s)∗[p(s)] ds, Fu(t)[u(t)]

〉
dt

=
∫ T

0

〈
Fu(t)∗[

∫ T

t
e−(s−t)A∗Fu(s)∗[p(s)] ds], u(t)

〉
dt

and ∫ T

0

〈
gu(t),

∫ t

0
e−(t−s)AFu(s)[u(s)] ds

〉
dt

=
∫ T

0

〈 ∫ T

t
e−(s−t)A∗gu(s) ds, Fu(t)[u(t)]

〉
dt

=
∫ T

0

〈
Fu(t)∗[

∫ T

t
e−(s−t)A∗gu(s) ds], u(t)

〉
dt.

Hence,

l(v) = −
〈
∇h, u(T )

〉
−
∫ T

0

〈
gu(t), u(t)

〉
dt

+
∫ T

0

〈
Fu(t)∗

[{
− p(t) + e−(T−t)A∗∇h

+
∫ T

t
e−(s−t)A∗(Fu(s)∗[p(s)] + gu(s)) ds

}]
, u(t)

〉
dt.

(3.19)

Comparing (3.19) to (3.17), we receive that the term in curly brackets must be equal to
zero, which is true if and only if Equation (3.14) holds.
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We have not yet defined a solution concept for an adjoint system. In Tröltzsch (1989), the
author shows in Theorem 3 that p is a mild solution of (3.15) in the sense that q(t) = p(T−t)
is a mild solution to the corresponding initial value evolution equation

q′(t) +A∗q(t) = Fu(T − t)∗[q(t)] + gu(T − t), t ∈ (0, T ), q(0) = ∇h.

We can now insert the result of Theorem 3.9 into Equation (3.8) and state the necessary
optimality conditions for an optimal pair (ū, λ̄) ∈ Z × Λ.

Theorem 3.10. Let Assumption 3.1 be true for the optimal state and control (ū, λ̄) ∈ Z×Λ,
then ∫ T

0

(
Fλ(t)∗[p(t)] + gλ(t), λ(t)− λ̄(t)

)
dt ≥ 0, λ ∈ Λ, (3.20)

where p ∈ Z∗ satisfies Equation (3.14).

Proof. We set µ = λ− λ̄ and calculate l(Gλ[µ]):

l(Gλ[µ]) =
∫ T

0

〈
Fu(t)∗[p(t)],

∫ t

0
e−(t−s)AFλ(s)[µ(s)] ds

〉
dt

+
〈
∇h,

∫ T

0
e−(T−s)AFλ(s)[µ(s)] ds

〉
+
∫ T

0

〈
gu(t),

∫ t

0
e−(t−s)AFλ(s)[µ(s)] ds

〉
dt

=
∫ T

0

(
Fλ(t)∗[

∫ T

t
e−(s−t)A∗Fu(s)∗[p(s)] ds], µ(t)

)
dt

+
∫ T

0

(
Fλ(t)∗[e−(T−t)A∗∇h+

∫ T

t
e−(s−t)A∗gu(s) ds], µ(t)

)
dt

=
∫ T

0

(
Fλ(t)∗[e−(T−t)A∗∇h+

∫ T

t
e−(s−t)A∗(Fu(s)∗[p(s)] + gu(s)) ds], µ(t)

)
dt

=
∫ T

0

(
Fλ(t)∗[p(t)], µ(t)

)
dt.

It is easy to see that
〈
Jλ, µ

〉
L∗,L

=
∫ T

0
(
gλ(t), µ(t)

)
dt, which concludes the proof.

3.2 Intermezzo on Semilinear Boundary Control
In this section we extend the control problem (3.3) with boundary control and derive nec-
essary optimality conditions for the boundary control problem. Such a boundary control
problem is the following model problem (cf. Tröltzsch, 1989):

min J(u, λ) =
∫ T

0

∫
Ω
g̃(t, u(t, x), λ(t)) dx dt

+
∫ T

0

∫
Γ
g̃b(t, u(t, x), λb(t)) dSx dt+ h(u(T, ·))

(3.21)
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subject to

ut(t, x) = (∆u)(t, x) + f(u(t, x), λ(t)) in (0, T ]× Ω,
u(0, x) = u0(x) on Ω,
∂u(t, x)
∂n

= b(u(t, x), λb(t)) on (0, T ]× Γ,
(3.22)

with control functions λ, λb ∈ R([0, T ],R) bounded by upper and lower bounds,

¯
λ ≤ λ(t) ≤ λ̄,

¯
λb ≤ λb(t) ≤ λ̄b. (3.23)

Here, R([0, T ],R) denotes the space of regulated functions. Let Ω ∈ Rn be a bounded
domain with sufficient smooth boundary Γ. We denote by ∆ the Laplace operator and
∂u/∂n is the conormal derivative. The terminal costs h ∈ C1(Lp(Ω),R) and running costs
g̃ : [0, T ] × R × [

¯
λ, λ̄] → R are real functions analogously to the previous section. The

real function g̃b : [0, T ] × R × [
¯
λb, λ̄b] → R represents running costs on the boundary. The

semilinear real functions f and b are defined on R× [
¯
λ, λ̄] and R× [

¯
λb, λ̄b], respectively.

The solution to the problem (3.22) is the mild solution u ∈ C([0, T ],W σ,p(Ω)), where p
and σ are chosen such that p > n − 1 and n/p < σ < 1 + 1/p. The existence of such a
solution is guaranteed by the following assumption.

Assumption 3.11. The functions g̃, g̃b, f, b satisfy the Carathéodory type condition: They
are continuously partially differentiable with respect to u, λ, λb for fixed (t, x) and t and
they and their derivatives are measurable with respect to (t, x) and t for fixed (u, λ) and
(u, λb). Moreover, these functions and their derivatives are supposed to be bounded if (u, λ)
and (u, λb) run through a bounded subset of R2 (cf. Tröltzsch, 1989).

As in the previous section, (·, ·)D is the pairing between Lp(D) and Lq(D), (1/p+1/q = 1),
and 〈f, x〉X∗,X is the value of f ∈ X∗ applied to x ∈ X.

The derivation of the abstract representation is along the lines of Tröltzsch (1989), adjusted
to fit into the general setting of Section 3.1. To formulate the problem (3.21) – (3.23) in the
abstract setting, we define the linear operator A in X = Lp(Ω) by

D(A) = {u ∈W 2,p(Ω); ∂u
∂n

= 0 on Γ}, Au = −∆u+ au on D(A),

with 0 < a ∈ R such that Reσ(A) > 0. Thus, the results of Chapter 2 and especially
Section 2.3 can be applied. Note, that in case of Dirichlet boundary control the domain
D(A) would be defined accordingly.

We define the mappings F : W σ,p(Ω)×R→ Lp(Ω) andB : [0, T ]×W σ−1/p,p(Γ)×R→ Lp(Γ)
by

F (u(t, ·), λ(t))(x) = f(u(t, x), λ(t)) + au(t, x),
B(u(t, ·), λb(t))(x) = b(u(t, x), λb(t))
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3.2. Intermezzo on Semilinear Boundary Control

Then, we have that u ∈ C([0, T ],W σ,p(Ω)),

u(t) = e−tAu0 +
∫ t

0
e−(t−s)AF (u(s), λ(s)) ds+

∫ t

0
Ae−(t−s)ANB(τu(s), λb(s)) ds, (3.24)

is a mild solution of (3.22). Here, τ : W σ,p(Ω) → W σ−1,p(Γ) is the trace operator and
N : Lp(Γ)→W σ,p(Ω) assigns to b ∈ Lp(Γ) the solution u of

∆u− au = 0 on Ω, ∂u

∂n
= b on Γ.

To express the objective functional in the abstract setting, we define

g(t, u(t), λ(t)) =
∫

Ω
g̃(t, u(t, x), λ(t, x)) dx (u(t), λ(t)) ∈W σ,p(Ω)× R

gb(t, u(t), λb(t)) =
∫

Γ
g̃b(t, u(t, x), λb(t, x)) dSx (u(t), λ(t)) ∈W σ−1/p,p(Γ)× R

and obtain the optimal control problem

min J(u, λ) =
∫ T

0
g(t, u(t), λ(t) dt+

∫ T

0
gb(t, u(t), λb(t) dt+ h(u(T ))

s.t. G(u, λ) = u(t)− e−tAu0 −
∫ t

0
e−(t−s)AF (u(s), λ(s)) ds

−
∫ t

0
Ae−(t−s)ANB(τu(s), λb(s)) ds = 0.

(3.25)

We derive the surjectivity of Gu with the following general linear result by Tröltzsch
(1989), general in the sense that p is replaced by 1 < r <∞.

Lemma 3.12. Given F ∈ L∞(0, T ;L(Lr(Ω))), B ∈ L∞(0, T ;L(Lr(Γ))) and an abstract
function v : [0, T ]→W σ

r (Ω), 1/r < σ < 1+1/r. Further we have either v ∈ Lr(0, T ;W σ
r (Ω))

or v ∈ C([0, T ],W σ
r (Ω)). Then the integral equation

u(t) = v(t) +
∫ t

0
e−(t−s)ArF (s)u(s) ds+

∫ t

0
Are

−(t−s)ArNrB(s)τu(s) ds

has a unique solution in Lr(0, T ;W σ
r (Ω)), which is continuous on [0, T ] if v is continuous

on [0, T ].

Lemma 3.13 (Adjoint operators). The adjoints of the operators that occur in the boundary
control problem are as follows

(i) A∗ = Aq and e−tA∗ = e−tAq , with 1/p+ 1/q = 1

(ii) (τAe−tAN)∗ = τAqe
−tAqNq ∈ L(Lq(Γ))

(iii) (Ae−tAN)∗ = τe−tAq ∈ L(Lq(Ω), Lq(Γ))
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(iv) (τe−tA)∗ = Aqe
−tAqNq ∈ L(Lq(Γ), Lq(Ω)

Proof. See (Tröltzsch, 1989, Lemma 2 – Lemma 4)

Let in the following the triple (ū, λ̄, λ̄b) be locally optimal. We use the shorter notation
for the Fréchet-derivatives, e.g., we write gu(t) for dug(t, ū(t), λ̄(t)), cf. Section 3.1. For the
boundary control problem (3.21) – (3.23), the linear functional l ∈ C([0, T ],Wω,p(Ω))∗ from
Theorem 3.9 is given by

l(v) = −
∫ T

0

(
Fu(t)∗[p(t)] + gu(t), v(t)

)
Ω dt−

(
∇h, v(T )

)
Ω

−
∫ T

0

(
Bu(t)∗[τp(t)] + gbu(t), τv(t)

)
Γ dt,

where p ∈ C([0, T ],Wω,p(Ω))∗ solves

p(s) = e−(T−s)Aq∇h+
∫ T

s
e−(t−s)Aq(Fu(t)∗[p(t)] + gu(t)) dt

+
∫ T

s
Aqe

−(t−s)AqNq(Bu(t)∗[τp(t)] + gbu(t)) dt.
(3.26)

Proof. We recall Equation (3.10): For v ∈ Z we have the representation

l(v) = −
(
∇h, u(T )

)
Ω −

∫ T

0

(
gu(t), u(t)

)
Ω +

(
gbu(t), τu(t)

)
Γ dt, (3.27)

where u ∈ C([0, T ],Wω,p(Ω)) solves the equation

u(t) = v(t) +
∫ t

0
e−(t−s)AFu(s)[u(s)] ds+

∫ t

0
Ae−(t−s)ANBu(s)[τu(s)] ds.
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Analogously to the proof of Theorem 3.9, we calculate

l(v) = −
∫ T

0

(
Fu(t)∗[p(t)] + gu(t), v(t)

)
Ω dt−

(
∇h, v(T )

)
Ω

−
∫ T

0

(
Bu(t)∗[τp(t)] + gbu(t), τv(t)

)
Γ dt

= −
∫ T

0

(
Fu(t)∗[p(t)] + gu(t), u(t)−

∫ t

0
e−(t−s)AFu(s)[u(s)] ds

)
Ω dt

+
∫ T

0

(
Fu(t)∗[p(t)] + gu(t),

∫ t

0
Ae−(t−s)ANBu(s)[τu(s)] ds

)
Ω dt

−
(
∇h, u(T )−

∫ T

0
e−(T−t)AFu(t)[u(t)] dt−

∫ T

0
Ae−(T−t)ANBu(t)[τu(t)] dt

)
Ω

−
∫ T

0

(
Bu(t)∗[τp(t)] + gbu(t), τu(t)−

∫ t

0
τe−(t−s)AFu(s)[u(s)] ds

)
Γ dt

+
∫ T

0

(
Bu(t)∗[τp(t)] + gbu(t),

∫ t

0
τAe−(t−s)ANBu(s)[τu(s)] ds

)
Γ dt

= −
(
∇h, u(T )

)
Ω −

∫ T

0

(
gu(t), u(t)

)
Ω +

(
gbu(t), τu(t)

)
Γ dt

−
∫ T

0

(
Fu(t)∗[p(t)], u(t)

)
Ω dt

+
∫ T

0

(
Fu(t)∗[p(t)],

∫ t

0
e−(t−s)AFu(s)[u(s)] ds

)
Ω dt

+
∫ T

0

(
gu(t),

∫ t

0
e−(t−s)AFu(s)[u(s)] ds

)
Ω dt

+
∫ T

0

(
Bu(t)∗[τp(t)],

∫ t

0
τe−(t−s)AFu(s)[u(s)] ds

)
Γ dt

+
∫ T

0

(
gbu(t),

∫ t

0
τe−(t−s)AFu(s)[u(s)] ds

)
Γ dt

+
(
∇h,

∫ T

0
e−(T−t)AFu(t)[u(t)] dt

)
Ω

−
∫ T

0

(
Bu(t)∗[τp(t)], τu(t)

)
Γ dt

+
∫ T

0

(
Fu(t)∗[p(t)],

∫ t

0
Ae−(t−s)ANBu(s)[τu(s)] ds

)
Ω dt

+
∫ T

0

(
gu(t),

∫ t

0
Ae−(t−s)ANBu(s)[τu(s)] ds

)
Ω dt

+
∫ T

0

(
Bu(t)∗[τp(t)],

∫ t

0
τAe−(t−s)ANBu(s)[τu(s)] ds

)
Γ dt

+
∫ T

0

(
gbu(t),

∫ t

0
τAe−(t−s)ANBu(s)[τu(s)] ds

)
Γ dt

+
(
∇h,

∫ T

0
Ae−(T−t)ANBu(t)[τu(t)] dt

)
Ω.

(3.28)
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Now we show that Equation (3.27) and Equation (3.28) are the same. To do so, we isolate
u and τu in every term of Equation (3.28) and use Equation (3.26). We only present those
terms that have not been covered in the proof of Theorem 3.9. From Lemma 3.13 (iv) and
Fubini’s theorem follows∫ T

0

(
Bu(t)∗[τp(t)],

∫ t

0
τe−(t−s)AFu(s)[u(s)] ds

)
Γ dt

=
∫ T

0

(
Fu(t)∗[

∫ T

t
Aqe

−(s−t)AqNqBu(s)∗[τp(s)] ds], u(t)
)
Ω dt

and∫ T

0

(
gbu(t),

∫ t

0
τe−(t−s)AFu(s)[u(s)] ds

)
Γ dt

=
∫ T

0

(
Fu(t)∗[

∫ T

t
Aqe

−(s−t)AqNqG
2
u(s) ds], u(t)

)
Ω dt.

From Lemma 3.13 (iii) follows

(
∇h,

∫ T

0
Ae−(T−t)ANBu(t)[τu(t)] dt

)
Ω =

∫ T

0

(
Bu(t)∗[τe−(T−t)Aq∇h], τu(t)

)
Γ dt

and together with Fubini’s theorem we derive∫ T

0

(
Fu(t)∗[p(t)],

∫ t

0
Ae−(t−s)ANBu(s)[τu(s)] ds

)
Ω dt

=
∫ T

0

(
Bu(t)∗[τ

∫ T

t
e−(s−t)AqFu(s)∗[p(s)] ds], τu(t)

)
Γ dt

and∫ T

0

(
gu(t),

∫ t

0
Ae−(t−s)ANBu(s)[τu(s)] ds

)
Ω dt

=
∫ T

0

(
Bu(t)∗[τ

∫ T

t
e−(s−t)AqG1

u(s) ds], τu(t)
)
Γ dt.

Finally, Lemma 3.13 (ii) yields∫ T

0

(
Bu(t)∗[τp(t)],

∫ t

0
τAe−(t−s)ANBu(s)[τu(s)] ds

)
Γ dt

=
∫ T

0

(
Bu(t)∗[τ

∫ T

t
Aqe

−(s−t)AqNqBu(s)∗[τp(s)] ds], τu(t)
)
Γ dt

and∫ T

0

(
gbu(t),

∫ t

0
τAe−(t−s)ANBu(s)[τu(s)] ds

)
Γ dt

=
∫ T

0

(
Bu(t)∗[τ

∫ T

t
Aqe

−(s−t)AqNqG
2
u(s) ds], τu(t)

)
Γ.
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Hence,

l(v) = −
(
∇h, u(T )

)
Ω −

∫ T

0

(
gu(t), u(t)

)
Ω +

(
gbu(t), τu(t)

)
Γ dt

+
∫ T

0

(
Fu(t)∗

[{
e−(T−t)Aq∇h+

∫ T

t
e−(s−t)Aq(Fu(s)∗[p(s)] + gu(s)) ds

+
∫ T

t
Aqe

−(s−t)AqNq(Bu(s)∗[τp(s)] + gbu(s)) ds− p(t)
}]
, u(t)

)
dt

+
∫ T

0

(
Bu(t)∗

[
τ
{
e−(T−t)Aq∇h+

∫ T

t
e−(s−t)Aq(Fu(s)∗[p(s)] + gu(s)) ds

+
∫ T

t
Aqe

−(s−t)AqNq(Bu(s)∗[τp(s)] + gbu(s)) ds− p(t)
}]
, τu(t)

)
Γ

dt.

(3.29)

Comparing the equation above with Equation (3.27) we conclude that the term in the curly
brackets must be zero, which is equivalent to Equation (3.26).

Theorem 3.14. For an optimal triple (ū, λ̄, λ̄b) we have∫ T

0
(Fλ(t)∗[p(t)] + gλ(t))(λ(t)− λ̄(t))

+ (Bλ(t)∗[τp(t)] + gbλ(t))(λb(t)− λ̄b(t)) dt ≥ 0.

Proof. We need to calculate I ≡ l
(
−
∫ ·

0 e
−(·−s)AFλ(s)[µ(s)] + Ae−(·−s)ANBλ(s)[µb(s)] ds

)
Ω

with (µ, µb) = (λ− λ̄, λb− λ̄b) and (λ, λb) ∈ Uad ⊂ R([0, T ],R)×R([0, T ],R). We apply the
same techniques as in the proof above and receive

I =
∫ T

0

(
Fu(t)∗[p(t)] + gu(t),

∫ t

0
e−(t−s)AFλ(s)[µ(s)] ds

)
Ω

+
(
Fu(t)∗[p(t)] + gu(t),

∫ t

0
Ae−(t−s)ANBλ(s)[µb(s)] ds

)
Ω

+
(
∇h, e−(T−t)AFλ(t)[µ(t)]

)
Ω +

(
∇h,Ae−(T−t)ANBλ(t)[µb(t)]

)
Ω

+
(
Bu(t)∗[τp(t)] + gbu(t),

∫ t

0
τe−(t−s)AFλ(s)[µ(s)] ds

)
Γ

+
(
Bu(t)∗[τp(t)] + gbu(t),

∫ t

0
τAe−(t−s)ANBλ(s)[µb(s)]

)
Γ dt

=
∫ T

0
Fλ(t)∗[

∫ T

t
e−(s−t)Aq(Fu(s)∗[p(s)] + gu(s)) ds]µ(t)

+Bλ(t)∗[τ
∫ T

t
e−(s−t)Aq(Fu(s)∗[p(s)] + gu(s)) ds]µb(t)

+ Fλ(t)∗[e−(T−t)Aq∇h]µ(t) +Bλ(t)∗[τe−(T−t)Aq∇h]µb(t)

+ Fλ(t)∗[
∫ T

t
Aqe

−(s−t)AqNq(Bu(s)∗[τp(s)] + gbu(s)) ds]µ(t)
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+Bλ(t)∗[τ
∫ T

t
Aqe

−(s−t)AqNq(Bu(s)∗[τp(s)] + gbu(s)) ds]µb(t) dt

=
∫ T

0
Fλ(t)∗

[{
e−(T−t)Aq∇h+

∫ T

t
e−(s−t)Aq(Fu(s)∗[p(s)] + gu(s)) ds

+
∫ T

t
Aqe

−(s−t)AqNq(Bu(s)∗[τp(s)] + gbu(s)) ds
}]
µ(t)

+Bλ(t)∗
[
τ
{
e−(T−t)Aq∇h+

∫ T

t
e−(s−t)Aq(Fu(s)∗[p(s)] + gu(s)) ds

+
∫ T

t
Aqe

−(s−t)AqNq(Bu(s)∗[τp(s)] + gbu(s)) ds
}]
µb(t) dt

=
∫ T

0
Fλ(t)∗[p(t)]µ(t) +Bλ(t)∗[τp(t)]µb(t) dt.

Adding the above to (Jλ(u, λ), (µ, µb)) =
∫ T

0 gλ(t)µ(t)+gbλ(t)µb(t) dt concludes the proof.

3.3 Necessary Optimality Conditions for a Class of Partial
Integro-Differential Equations

Nonlocal models in the form of a partial integro-differential equation (PIDE) arise in various
fields and become more and more important. In mechanics, the peridynamics theory was
introduced in order to model surfaces with cracks. In finance, in particular for option
pricing, existing models were extended with Lévy processes in order to model jumps, like
those that occurred during the financial crisis in 2007. Recent work on numerical treatment
of such jump-diffusion PIDEs or the corresponding calibration problems can be found, for
example, in Andersen and Andreasen (2000), Matache et al. (2004), Cont and Voltchkova
(2005), Briani et al. (2007), Sachs and Strauss (2008), or Schu (2012). Many biological
models benefit from nonlocal terms. Biological applications of PIDEs are discussed, for
example, in Armstrong et al. (2006), Anderson et al. (2000), Gerisch (2010), or Mogilner
and Edelstein-Keshet (1999).
First, we take a closer look at a motivating example: In biology, cell adhesion describes

the binding between two cells or between a cell and the extracellular matrix through certain
proteins, called cell-adhesion molecules. Cell adhesion is responsible for tissue formation,
tissue stability and—in case of loss of the adhesion—cell breakdown. In 1962, Steinberg
showed that two different cell populations can aggregate in four different ways: mixing,
engulfment, partial engulfment and complete sorting, Armstrong et al. (2006).

Armstrong et al. simulate that process with a continuous model, while they stress that all
previous models where discrete ones. They model the adhesion driven cell-movement with
a nonlocal term, which results in an integro-differential equation.

Without considering cell birth and cell death, mass conservation implies

ut(t, x) = −Jx(t, x)
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for the variation of cell concentration u in x over time. Armstrong et al. split up the flux J
of the cells in

random diffusion J (d) = −D(ux) and adhesive forces J (a) = φ

R
uF,

where D is the diffusion coefficient, φ is a viscosity related constant, R is the sensing radius
of the cells and F is the force that is acting on the cells within that radius. The force acting
on the cell at x, that is created by a cell at position x+ y, is given by

f(x) = αg(u(x+ y))ω(y), (3.30)

where g describes the nature of the forces and their dependence on the local cell density at
x+ y. The authors provide two possible examples for g: a simple linear one (g(u) = u) and
one of logistic form (g(u) = u(1 − u/M) for u < M and 0 otherwise). The function ω(y)
describes how the direction and magnitude of the force alters according to y (thus, ω is an
odd function), a simple example would be ω(y) = sign(y). In that case, ω only provides the
direction, not the magnitude of the force. α is a positive parameter reflecting the strength of
adhesive force between the cells. The total force F is derived as the sum of the local forces

F (x) =
∫ R

−R
αg(u(x+ y))ω(y) dy.

Together with random diffusion, we obtain the model of Armstrong et al. in one dimension
and for one population:

ut = Duxx − (uK(u))x = Duxx − uxK(u)− uKx(u) (3.31)

with
K(u)(x) = φ

R

∫ R

−R
αg(u(x+ y))ω(y) dy.

With two transformations, τ := D
R2 t and ξ := x

R , a nondimensional version can be formu-
lated (see Armstrong et al., 2006, Section 2): If u solves (3.31), then

v(τ, ξ) := Rφ

D
u(R

2

D
τ,Rξ)

is the solution of
vτ = vξξ − (vκ(v))ξ, (3.32)

with
κ(v)(ξ) = α

∫ 1

−1
g(v(ξ + ζ))ω(ζ) dζ.

The remaining nondimensional parameter α is a measure for the adhesion strength. Arm-
strong et al. showed that, if α is below a certain threshold, no cell aggregation will occur.
When observing two cell populations, a distinction is made between homogeneous and

heterogeneous cell adhesion. The parameters Su, Sv and C represent the self-adhesive
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strength of u, the self-adhesive strength of v and the cross-adhesive strength between u and
v, respectively. Armstrong et al. find suitable parameter combinations for a system of two
cell populations to model all four different cell aggregations that Steinberg proposed, i.e.,
mixing, engulfment, partial engulfment and complete sorting (cf. Armstrong et al., 2006,
Fig. 7).

Remark 3.15. In their nonlocal model for a swarm, the authors model the nonlocal term
very similar in Mogilner and Edelstein-Keshet (1999). Instead of a smaller sensing radius,
the whole domain Ω serves as the sensing radius and instead of an odd function an even
kernel function ω is applied. However, the authors also discuss the effects of the nonlocal
force in case of an odd kernel function (Equations (3.35) and (3.36) yield how the nonlocal
term in the adhesion model (3.32) can be expressed as a convolution). This shows that the
nonlocal term involved in both models is of universal nature.

Given the results of the previous section, our aim in this section is to calculate the
necessary optimality conditions for the nonlocal adhesion model for two populations in one
space dimension. The objective of the control problem is to determine the optimal adhesion
parameters to model an observed cell aggregation. Instead of constant adhesion parameters,
we consider them to be time-dependent.

Armstrong et al. simulate the model on an interval with periodic boundary conditions.
Hence, we choose Ω = (a, b) with a, b ∈ R, −∞ < a < b < ∞. We choose a least squares
type function for the objective function, which results in the following control problem:

1
2

∫
Ω

(
u(T, x)− uobs(x)

)2 +
(
v(T, x)− vobs(x)

)2 dx. (3.33a)

The functions u(·, ·) and v(·, ·) solve the initial value problem

ut = uxx − (uKu(u, v))x, u(0, x) = u0(x), u(t, a) = u(t, b),
vt = vxx − (vKv(u, v))x, v(0, x) = v0(x), v(t, a) = v(t, b),

(3.33b)

with periodic boundary conditions and integral operators

Ku(u, v)(t, x) =
∫ 1

−1
Su(t)u(t, x+ y)ω(y) + C(t)v(t, x+ y)ω(y) dy,

Kv(u, v)(t, x) =
∫ 1

−1
Sv(t)v(t, x+ y)ω(y) + C(t)u(t, x+ y)ω(y) dy,

where ω ∈ L1([−1, 1]) is an odd function and u0, v0 ∈ H1(Ω) are initial values.
The functions uobs and vobs are cell aggregations that have been observed at time T . The

objective is to choose the parameter functions Su, Sv and C in such a way that the solutions
u and v of the integro-differential equation system (3.33b) are closest to the observed cell
aggregations at time T .
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3.3.1 Abstract Setting
In order to be able to compute the optimal parameters, we need to formulate the necessary
optimality condition. We set

X := (L2(Ω))2, L := (L1(0, T ))3

and choose Λ ⊂ (L1(0, T ))3 as a closed and convex set of essentially bounded functions
λ ∈ (L1(0, T ))3. Further, we set α = 1

2 .
Let the operator A : D(A) ⊂ (L2(Ω))2 → (L2(Ω))2 be defined as the self-adjoint extension

of 1 − Dxx with domain of definition D(A) = (H2(Ω))2 ⊂ (L2(Ω))2. Then, −A is the
generator of an analytic semigroup. Since Reσ(−Dxx) ≥ 0, fractional powers of −Dxx are
not defined and thus, we consider 1 −Dxx instead of −Dxx. We are now able to consider
X1/2 = D(A1/2) = (H1(Ω))2, see Example 2.30. Therefore, we set

Z = C([0, T ], (H1(Ω))2).

Let ν := (u, v) ∈ Z be a vector of the functions u and v and let λ := (Su, Sv, C) ∈ L be a
vector of time-dependent adhesion parameters. The operatorK : (L2(Ω))2×R3 → (L2(Ω))2×2

is defined as
K(ν,λ) =

(
K(u, v, Su, C) 0

0 K(u, v, C, Sv)

)
,

with K : (L2(Ω))2 × R2 → L2(Ω),

K(u, v, S, C)(x) =
∫ 1

−1
Su(x+ y)ω(y) + Cv(x+ y)ω(y) dy.

Finally, we define the semilinear mapping F : (H1(Ω))2 × R3 → (L2(Ω))2 as set in (3.2)
as

F (ν(t),λ(t)) := ν(t)−Dx
(
K(ν(t),λ(t))ν(t)

)
. (3.34)

Remark 3.16. Operators of the form K̃(u)(x) =
∫ 1
−1 u(x+ y)ω(y) dy are not well defined

for x ∈ [a, a+ 1] ∪ [b− 1, b]. Due to the boundary condition we can extend u periodically to
R such that u(t, x) = u(t, b− a+ x) = u(t, a− b+ x) for x ∈ R. For x ∈ [a, a+ 1] we then
have

K̃(u)(x) =
∫ a−x

−1
u(b− a+ x+ y)ω(y) dy +

∫ 1

a−x
u(x+ y)ω(y) dy

and accordingly for x ∈ [b− 1, b]

K̃(u)(x) =
∫ b−x

−1
u(x+ y)ω(y) dy +

∫ 1

b−x
u(a− b+ x+ y)ω(y) dy.

This representation has no effect on the derivative K̃(u)x, since from Leibniz’ integral rule
follows for x ∈ [a+ 1, b− 1] that

K̃(u)x(x) =
∫ 1

−1
ux(x+ y)ω(y) dy
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and for x ∈ [a, a+ 1] we have

K̃(u)x(x) = u(b− a+ x+ a− x)ω(a− x)(−1) +
∫ a−x

−1
ux(b− a+ x+ y)ω(y) dy

− u(x+ a− x)ω(a− x)(−1) +
∫ 1

a−x
ux(x+ y)ω(y) dy

=
∫ a−x

−1
ux(b− a+ x+ y)ω(y) dy +

∫ 1

a−x
ux(x+ y)ω(y) dy

− u(b)ω(a− x) + u(a)ω(a− x)

=
∫ a−x

−1
ux(b− a+ x+ y)ω(y) dy +

∫ 1

a−x
ux(x+ y)ω(y) dy.

Analogously, we obtain the corresponding result for x ∈ [b − 1, b]. These considerations
justify to write

K̃(u)(x) =
∫ 1

−1
u(x+ y)ω(y) dy

for all x ∈ [a, b].

Lemma 3.17. The mappings

K : (L2(Ω))2 × R2 → L2(Ω) and K : (H1(Ω))2 × R2 → H1(Ω)

are well defined and linear.

Proof. In this proof we omit the argument t in the functions u, v, Su, Sv, C for the sake of
readability. We extend ω from [−1, 1] to [a, b] with 0, hence∫ 1

−1
u(x+ y)ω(y) dy =

∫
Ω
u(x+ y)ω(y) dy.

Since ω is an odd function, we obtain∫
Ω
u(x+ y)ω(y) dy =

∫
Ω
u(x− y)ω(−y) dy = −

∫
Ω
u(x− y)ω(y) dy = −u~ ω(x). (3.35)

Thus, we can represent K(u, v, Su, Sv, C) as a sum of two convolutions

K(u, v, Su, Sv, C) = −Su(u~ ω)− C(v ~ ω). (3.36)

Where ~ is the convolution on a torus, which is well-defined due to the periodic boundary
condition on u, whereby ux is periodic as well, cf. Remark 3.19 (ii). With Young’s convolution
inequality (see Meise and Vogt, 1997, p. 117f), u ∈ L2(Ω) and ω ∈ L1(Ω), we have

‖u~ ω‖L2(R) ≤ ‖u‖L2(R)‖ω‖L1(R). (3.37)
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For u, v ∈ H1(Ω) follows
DxK(u, v, Su, Sv, C)(x) = −SuDx(ω ~ u)(x)− CDx(ω ~ v)(x)

= −Su(ω ~Dxu)(x)− C(ω ~Dxv)(x) for all x ∈ Ω
and thus
‖DxK(u, v, Su, Sv, C)‖L2(Ω) ≤ |Su|‖ω‖L1(Ω)‖Dxu‖L2(Ω) + |C|‖ω‖L1(Ω)‖Dxv‖L2(Ω) <∞.

Therefore, DxK(u, v, Su, Sv, C) ∈ L2(Ω) and we receive that K : (H1(Ω))2 × R2 → H1(Ω)
is well-defined. The linearity of K follows directly from the linearity of the convolution
operator ~.

Lemma 3.18. The mappings
K : (L2(Ω))2 × R3 → (L2(Ω))2×2, K : (H1(Ω))2 × R3 → (H1(Ω))2×2

and
F : (H1(Ω))2 × R3 → (L2(Ω))2

are well defined. F is locally Lipschitz-continuous with respect to ν and continuously Fréchet-
differentiable on (H1(Ω))2 × R3 with

dF (ν̄, λ̄)(ν,λ) = ν −Dx
(
K(ν̄, λ̄)ν

)
−Dx

(
K(ν, λ̄)ν̄

)
−Dx

(
K(ν̄,λ)ν̄

)
.

Proof. As in the previous proof, we omit the argument t in the functions u, v, Su, Sv, C for
the sake of readability. Before we start with the proof, we carry out some calculations. We
know from Theorem 2.29 that u ∈ H1(Ω) yields u ∈ C(Ω̄). We consider

‖u−Dx
(
(Su(t)

∫ 1

−1
u(·+ y)ω(y) dy + C(t)

∫ 1

−1
v(·+ y)ω(y) dy)u(·)

)
‖L2(Ω)

≤ ‖u‖L2(Ω) + ‖Su(t)
∫ 1

−1
ux(·+ y)ω(y) dy u‖L2(Ω) + ‖C(t)

∫ 1

−1
vx(·+ y)ω(y) dy u‖L2(Ω)

+ ‖Su(t)
∫ 1

−1
u(·+ y)ω(y) dy ux‖L2(Ω) + ‖C(t)

∫ 1

−1
v(·+ y)ω(y) dy ux‖L2(Ω)

= ‖u‖L2(Ω) + I1,u + I1,v + I2,u + I2,v. (3.38)
We start with the first term and receive

I1,u ≤‖
(
Su(t)

∫ 1

−1
ux(·+ y)ω(y) dy max

x∈Ω̄
u
)
‖L2(Ω)

≤ max
x∈Ω̄
|u||Su(t)|‖

∫ 1

−1
ux(·+ y)ω(y) dy‖L2(Ω)

≤ ‖u‖C(Ω̄)|Su(t)|‖
∫

Ω
ux(·+ y)ω(y) dy‖L2(Ω)

≤ ‖u‖C(Ω̄)|Su(t)|‖ux ~ ω‖L2(Ω)

≤ ‖u‖C(Ω̄)|Su(t)|‖ω‖L1(Ω)‖ux‖L2(Ω)

≤ ‖u‖C(Ω̄)|Su(t)|‖ω‖L1(−1,1)‖ux‖L2(Ω)

≤ ‖u‖C(Ω̄)|Su(t)|‖ω‖L1(−1,1)‖u‖H1(Ω)

(3.39)
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using Equations (3.35) to (3.37) from the proof of Lemma 3.17. Analogously, it follows that

I1,v ≤ ‖u‖C(Ω̄)|C(t)|‖ω‖L1(−1,1)‖v‖H1(Ω). (3.40)

For the second term we obtain

I2,u ≤ ‖
(
Su(t)

∫ 1

−1
max

z∈[−1,1]
u(·+ z)ω(y) dy ux

)
‖L2(Ω)

≤ ‖
(
Su(t)

∫ 1

−1
ω(y) dy max

z∈[−1,1],x̃∈Ω̄
u(x̃+ z)ux

)
‖L2(Ω)

≤ |Su(t)|‖ω‖L1(−1,1) max
x∈Ω̄
|u(x)|‖ux‖L2(Ω)

≤ |Su(t)|‖ω‖L1(−1,1)‖u‖C(Ω̄)‖ux‖L2(Ω)

≤ |Su(t)|‖ω‖L1(−1,1)‖u‖C(Ω̄)‖u‖H1(Ω).

(3.41)

And again it follows analogously that

I2,v ≤ |C(t)|‖ω‖L1(−1,1)‖v‖C(Ω̄)‖u‖H1(Ω). (3.42)

Hence,

‖
(
ν −Dx

(
K(ν,λ(t))ν

))
1
‖L2(Ω) ≤ ‖u‖L2(Ω) + ‖u‖C(Ω̄)|Su(t)|‖ω‖L1(−1,1)‖u‖H1(Ω)

+ ‖u‖C(Ω̄)|C(t)|‖ω‖L1(−1,1)‖v‖H1(Ω)

+ |Su(t)|‖ω‖L1(−1,1)‖u‖C(Ω̄)‖u‖H1(Ω)

+ |C(t)|‖ω‖L1(−1,1)‖v‖C(Ω̄)‖u‖H1(Ω)

≤ C1‖u‖H1(Ω) + C1,u|Su(t)|‖u‖H1(Ω)

+ C1,v|C(t)|‖v‖H1(Ω) + C1,uv|C(t)|‖u‖H1(Ω)

≤ (C1 + C1,u|Su(t)|+ C1,uv|C(t)|)‖u‖H1(Ω)

+ C1,v|C(t)|‖v‖H1(Ω)

≤ C1,νκ1(t)(‖u‖H1(Ω) + ‖v‖H1(Ω)),

(3.43)

where κ1 ∈ C(R) with C1,νκ1(t) ≥ C1 + C1,u|Su(t)|+ (C1,uv + C1,v)|C(t)| for t ∈ [0, T ] and
C1,ν depends on ν. With the same considerations and calculations applied to the second
component of F follows

‖
(
ν(t)−Dx

(
K(ν(t),λ(t))ν

))
2
‖L2(Ω) ≤ C2‖v‖H1(Ω) + C2,u|C(t)|‖u‖H1(Ω)

+ C2,v|Sv(t)|‖v‖H1(Ω) + C2,uv|C(t)|‖v‖H1(Ω)

≤ (C2 + C2,v|Sv(t)|+ C1,uv|C(t)|)‖v‖H1(Ω)

+ C2,u|C(t)|‖u‖H1(Ω)

≤ C2,νκ2(t)(‖u‖H1(Ω) + ‖v‖H1(Ω)),
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where κ2 ∈ C(R) with C2,νκ2(t) ≥ C2 + C2,v|Sv(t)| + (C2,uv + C2,u)|C(t)| for t ∈ [0, T ]
and C2,ν depends on ν. Before we combine the previous results, we recall the elementary
inequality 2ab ≤ a2 + b2 for real a, b > 0 and obtain

(‖u‖H1(Ω) + ‖v‖H1(Ω))2 = ‖u‖2H1(Ω) + ‖v‖2H1(Ω) + 2‖u‖H1(Ω)‖v‖H1(Ω)

≤ 2(‖u‖2H1(Ω) + ‖v‖2H1(Ω)).
(3.44)

Finally, we choose κ ∈ C(R) with Cνκ(t) ≥
√

2(C2
1,νκ1(t)2 + C2

2,νκ2(t)2) and obtain

‖ν −Dx
(
K(ν,λ(t))ν

)
‖2L2(Ω) ≤ (C2

1,νκ1(t)2 + C2
2,νκ2(t)2)(‖u‖H1(Ω) + ‖v‖H1(Ω))2

≤ C2
νκ(t)2(‖u‖2H1(Ω) + ‖v‖2H1(Ω))

= C2
νκ(t)2‖ν‖2(H1(Ω))2 .

(3.45)

Well-defined: With Lemma 3.17 we receive

‖K(ν,λ)‖2(L2(Ω))2×2 = ‖(K(u, v, Su, Sv, C), 0)T‖2(L2(Ω))2 + ‖(0,K(v, u, Sv, Su, C))T‖2(L2(Ω))2

= ‖K(u, v, Su, Sv, C)‖2L2(Ω) + ‖K(v, u, Sv, Su, C)‖2L2(Ω) <∞,

and analogously

‖DxK(ν,λ)‖2(L2(Ω))2×2 = ‖K(Dxν,λ)‖2(L2(Ω))2×2 <∞.

Theorem 2.29 yields u ∈ C(Ω̄) for u ∈ H1(Ω) and we obtain with the calculation above

‖F (ν,λ)‖(L2(Ω))2 = ‖ν −K(ν,λ)Dxν −K(Dxν,λ)ν‖(L2(Ω))2

≤ ‖ν‖(L2(Ω))2 + ‖K(ν,λ)Dxν‖(L2(Ω))2 + ‖K(Dxν,λ)ν‖(L2(Ω))2

≤ Cνκ(t)‖ν‖(H1(Ω))2 <∞.

Lipschitz-continuity with respect to ν: Let r > 0 and let any ν1,ν2 ∈ Ur(ν0) ⊂ (H1(Ω))2

be given. We have to show that there exists a constant c > 0 with

‖F (ν1,λ)− F (ν2,λ)‖(L2(Ω))2 ≤ c‖ν1 − ν2‖(H1(Ω))2 .

We consider the first component of F , the same result for the second component is obtained
analogously. Let ν1 = (u1, v1),ν2 = (u2, v2) ∈ Ur(ν0), ũ = u1 − u2, ṽ = v1 − v2 and λ ∈ Λ.
Since ν1,ν2 ∈ Ur(ν0), we have

‖Dxũ‖L2(Ω) ≤ ‖ũ‖H1(Ω) < 2r, ‖Dxṽ‖L2(Ω) ≤ ‖ṽ‖H1(Ω) < 2r. (3.46)

We begin the proof with the following basic estimate

‖
(
F (ν1,λ)

)
1 −

(
F (ν2,λ)

)
1‖L2(Ω) ≤ ‖ũ‖L2(Ω) + ‖K(ũ, ṽ, Su, C)Dxũ‖L2(Ω)

+ ‖K(Dxũ, Dxṽ, Sv, C)ũ‖L2(Ω)

≤ ‖ũ‖L2(Ω) + I2,ũ + I2,ṽ + I1,ũ + I1,ṽ

≤ C1,ν̃κ1(t)(‖ũ‖H1(Ω) + ‖ṽ‖H1(Ω)).
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The terms Ii,j (i = 1, 2, j = ũ, ṽ) are defined accordingly to the terms Ii,j in Equation (3.38).
With Equation (3.44) follows

‖
(
F (ν1,λ)

)
1 −

(
F (ν2,λ)

)
1‖L2(Ω) ≤ C1,ν̃κ1(t)‖ν1 − ν2‖H1(Ω)2 .

Analogously follows for the second component

‖
(
F (ν1,λ)

)
2 −

(
F (ν2,λ)

)
2‖L2(Ω) ≤ C2,ν̃κ1(t)‖ν1 − ν2‖H1(Ω)2 .

Finally, we obtain

‖F (ν1,λ)− F (ν2,λ)‖L2
2(Ω) ≤ Cν̃κ1(t)‖ν1 − ν2‖H1(Ω)2 .

Fréchet-differentiability: For u ∈ H1, v ∈ L2 and ω ∈ L1 follows

‖(ω ∗ u)v‖L2(Ω) =
( ∫

Ω

( ∫
R
u(x− y)ω(y) dy v(x)

)2 dx
) 1

2

=
( ∫

Ω

( ∫
R
u(x− y)ω(y) dy

)2(
v(x)

)2 dx
) 1

2

≤
(

sup
x∈Ω

∫
R
|u(x− y)ω(y)| dy

)( ∫
Ω
v(x)2 dx

) 1
2

≤ sup
x∈Ω
|u(x)|

∫
R
|ω(y)|dy‖v‖L2(Ω)

≤ ‖u‖C(Ω)‖ω‖L1(Ω)‖v‖L2(Ω).

(3.47)

We set z := (ν,λ) ∈ (H1(Ω))2 × R3 with ‖z‖ :=
(
‖ν‖2(H1(Ω))2 + |λ|2

) 1
2 . For Su ∈ R and

u ∈ H1(Ω) we have then

|Su| ≤ |λ| ≤ ‖z‖, ‖u‖H1(Ω) ≤ ‖ν‖(H1(Ω))2 ≤ ‖z‖ (3.48a)

and
|λ|‖u‖H1(Ω) ≤ |λ|‖ν‖(H1(Ω))2 ≤ |λ|2 + ‖ν‖2(H1(Ω))2 ≤ ‖z‖2, (3.48b)

since for a, b ∈ R either |a||b| ≤ |a|2 or |a||b| ≤ |b|2 holds. We need to show, that with

dF (ν,λ)[∆ν,∆λ] = ∆ν −K(ν,λ)Dx∆ν −K(∆ν,λ)Dxν −K(Dxν,λ)∆ν
−K(Dx∆ν,λ)ν −K(ν,∆λ)Dxν −K(Dxν,∆λ)ν

(3.49)

the estimate

‖F (ν + ∆ν,λ+ ∆λ)− F (ν,λ)− dF (ν,λ)[∆ν,∆λ]‖(L2(Ω))2 ≤ o(‖∆z‖)

holds. We consider the left side of the inequality, which we denote by r(∆z), component-wise
and obtain
‖
(
r(∆z)

)
1‖L2(Ω) = ‖K(∆u,∆v,∆Su,∆C)Dxu+K(∆u,∆v,∆Su,∆C)Dx∆u

+K(∆u,∆v, Su, C)Dx∆u+K(u, v,∆Su,∆C)Dx∆u
+K(Dx∆u,Dx∆v,∆Su,∆C)u+K(Dx∆u,Dx∆v,∆Su,∆C)∆u
+K(Dx∆u,Dx∆v, Su, C)∆u+K(Dxu,Dxv,∆Su,∆C)∆u‖(L2(Ω))2 .
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We estimate each term separately; to do that, we use Equations (3.36), (3.37), (3.39) to (3.43),
(3.47) and (3.48). For the sake of readability, we omit the domain Ω in the norm. With
constants c, that depend only on ν, λ and ω respectively, follows

‖K(∆u,∆v,∆Su,∆C)Dxu‖L2 ≤ |∆Su|‖(ω ∗∆u)Dxu‖L2 + |∆C|‖(ω ∗∆v)Dxu‖L2

≤ |∆λ|‖Dxu‖L2‖ω‖L1

(
‖∆u‖C + ‖∆v‖C

)
≤ 2c‖∆z‖‖∆ν‖(C)2 ≤ o(‖∆z‖),

‖K(u, v,∆Su,∆C)Dx∆u‖L2 ≤ |∆λ|‖Dx∆u‖L2‖ω‖L1

(
‖u‖C + ‖v‖C

)
≤ c|∆λ|‖∆ν‖H1

2
≤ c‖∆z‖2 ≤ o(‖∆z‖),

‖K(∆u,∆v, Su, C)Dx∆u‖L2 ≤ |λ|‖Dx∆u‖L2‖ω‖L1

(
‖∆u‖C + ‖∆v‖C

)
≤ c‖∆u‖H1

2

(
‖∆u‖C + ‖∆v‖C

)
≤ 2c‖∆z‖‖∆ν‖(C)2 ≤ o(‖∆z‖),

‖K(∆u,∆v,∆Su,∆C)Dx∆u‖L2 ≤ |∆λ|‖Dx∆u‖L2‖ω‖L1

(
‖∆u‖C + ‖∆v‖C

)
≤ 2c‖∆z‖2‖∆ν‖(C)2 ≤ o(‖∆z‖),

‖K(Dx∆u,Dx∆v,∆Su,∆C)u‖L2 ≤ ‖u‖C |∆λ|‖ω‖L1

(
‖Dx∆u‖L2 + ‖Dx∆v‖L2

)
≤ c|∆λ|

(
‖∆ν‖H1

2
+ ‖∆ν‖H1

2

)
≤ 2c|∆λ|‖∆ν‖H1

2

≤ 2c‖∆z‖2 ≤ o(‖∆z‖),

‖K(Dxu,Dxv,∆Su,∆C)∆u‖L2 ≤ ‖∆u‖C |∆λ|‖ω‖L1

(
‖Dxu‖L2 + ‖Dxv‖L2

)
≤ c|∆λ|‖∆ν‖C0

2
≤ ‖∆z‖‖∆ν‖(C)2 ≤ o(‖∆z‖),

‖K(Dx∆u,Dx∆v, Su, C)∆u‖L2 ≤ ‖∆u‖C |λ|‖ω‖L1

(
‖Dx∆u‖L2 + ‖Dx∆v‖L2

)
≤ 2c‖∆ν‖C0

2
‖∆ν‖H1

2
≤ 2c‖∆z‖‖∆ν‖(C)2 ≤ o(‖∆z‖)

and

‖K(Dx∆u,Dx∆v,∆Su,∆C)∆u‖L2 ≤ ‖∆u‖C |∆λ|‖ω‖L1

(
‖Dx∆u‖L2 + ‖Dx∆v‖L2

)
≤ 2c‖∆z‖2‖∆ν‖(C)2 ≤ o(‖∆z‖).

We show ‖
(
r(∆z)

)
2‖L2(Ω) ≤ o(‖∆z‖) with the same approach and conclude the proof.
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Remark 3.19. (i) The boundedness of the control functions comes here into play, because
it ensures

∫ t0
0 |F (ν(s),λ(s))|ds < ∞, and with the results of Section 2.4.2 we derive

the local existence of a unique solution of (3.33b).

(ii) The periodic boundary conditions of (3.33) have also to be included in the definition
of the spaces. Consider for k ∈ N (Hk

Ω)2 the space of |Ω|-periodic functions whose
restrictions to Ω are in (Hk(Ω))2. Without loss of generality, let Ω = [−π, π]. For
s ≥ 0 the Sobolev-space of 2π-periodic functions is defined as

(Ĥs
2π)2 := {ν ∈ (L2

2π)2 : ‖ν‖(Ĥs
2π)2 :=

∞∑
k=−∞

(1 + |k|2)s|ν̂(k)|2 <∞},

where ν̂ is the Fourier transform of ν. Since the Fourier transform is an isometry,
(Ĥs

2π)2 is a Hilbert-space for s ≥ 0 and (Ĥk
2π)2 = (Hk

2π)2 for k ∈ N (cf. Kaballo,
2011, p. 114 and Satz 6.7). We obtain that (H1(Ω))2 is together with the boundary
conditions equal to (Ĥ1

2π)2 and (H1
Ω)2.

We can now formulate (3.33) in the framework of (3.3):

min
λ∈Λ

J(ν,λ) = 1
2‖ν(T ;λ)− νobs‖2(L2(Ω))2

s.t. G(ν,λ) = ν − e−·Aν0 −
∫ ·

0
e−(·−s)AF (ν(s),λ(s)) ds = 0

(ν,λ) ∈ C([0, T ], (H1(Ω))2)× Λ.

(3.50)

It is easy to see that Assumption 3.1 (i) is satisfied for a tracking type objective function
with

dJ(ν̄, λ̄)[ν,λ] =
∫

Ω

(
ν̄(T, x;λ)− νobs(x)

)T
ν(T, x) dx. (3.51)

Assumption 3.1 (ii) and (iii) are met by Lemma 3.18 and we obtain the partial derivatives

Gν(ν̄, λ̄)[ν] = ν +
∫ ·

0
e−(·−s)A[Dx

(
K(ν̄, λ̄)ν

)
+Dx

(
K(ν, λ̄)ν̄

)
] ds

and
Gλ(ν̄, λ̄)[λ] =

∫ ·
0
e−(·−s)ADx

(
K(ν̄,λ)ν̄

)
ds.

3.3.2 Global Existence
Assumption 3.1 (iii) and Theorem 2.51 guarantee only local existence of a solution of
Equation (3.33b) on an interval (0, T ′) with possibly T ′ < T . In order to receive global
existence (and thus existence on [0, T ]), we need to verify Assumption 3.1 (iv). Hence, we
need to show the existence of a continuous κ : R→ R such that

‖ν(t)−Dx
(
K(ν(t),λ(t))ν(t)

)
‖(L2(Ω))2 ≤ κ(t)(1 + ‖ν(t)‖(H1(Ω))2)
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for all t > 0 and ν(t) ∈ (H1(Ω))2.
A first attempt would be to use the calculations we carried out at the beginning of the

proof of Lemma 3.18 (Equations (3.38) to (3.45)). However, this would result in

‖F (ν(t),λ(t))‖(L2(Ω))2 ≤ Cνκ(t)‖ν(t)‖(H1(Ω))2 ,

with Cν depending on ν—this is due to the fact that there exist no upper bound for
‖ν(t)‖C(Ω)2 for all ν and t. Therefore, Assumption 3.1 (iv) would not hold.
A second attempt would be to modify the force function g in Equation (3.30), e.g., we

could use the logistic type function given in the model introduction or even just

g(u(x)) =


0 for u(x) < 0
u(x) for 0 ≤ u(x) < M

0 for u(x) ≥M,

with sufficiently big M ∈ R. Then, for u(x) ∈ (0,M), the derivative of g with respect to x is
given by gx(u(x)) = ux(x). Since ux can be unbounded for bounded u we would not obtain
an upper bound of gx for all u. Thus, the estimates of I1,u and I1,v from Equation (3.38)
would still contain constants that depend on ν—furthermore, we would need to smooth out
the nondifferentiability at u(x) = 0 and u(x) = M , e.g., with suitable polynomials, so that
Assumption 3.1 (ii) and (iii) remains satisfied.

Therefore, we rewrite Equation (3.34) as

F (ν(t),λ(t)) = ν(t)−K(Dxν(t),λ(t))ν(t)−K(ν(t),λ(t))Dxν(t)

with
K(ν,λ) =

(
K̃(u, v, Su, C) 0

0 K̃(u, v, C, Sv)

)
and K̃ : (L2(Ω))2 × R2 → L2(Ω),

K̃(u, v, S, C)(x) =


0 if minz∈[x−1,x+1]{Su(z) + Cv(z)} ≤ 0,
0 if maxz∈[x−1,x+1]{Su(z) + Cv(z)} ≥ (S + C)M,

K(u, v, S, C)(x) otherwise,

with M ∈ R big enough. For the sake of readability, we write u and v instead of u(t) and
v(t) in the following. The definition of K̃ implies that K̃(u, v, Su(t), C(t))(x) is nonzero if
0 < S(t)u(z) +C(t)v(z) < (S(t) +C(t))M for all z ∈ [x− 1, x+ 1]. This yields for all x ∈ Ω
the estimate

K̃(u, v, S(t), C(t))(x) =
∫ 1

−1
S(t)u(x+ y)ω(y) + C(t)v(x+ y)ω(y) dy

≤
∫ 1

−1
|ω(y)|dy (S(t) + C(t))M

≤ cωM(S(t) + C(t)).

(3.52)
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We have

‖K(Dxν,λ(t))ν‖2(L2(Ω))2 = ‖K̃(ux, vx, Su(t), C(t))u‖2L2(Ω) + ‖K̃(ux, vx, C(t), Sv(t))v‖2L2(Ω)

≤ c2
ωM

2(|Su(t) + C(t)|2‖u‖2L2(Ω) + |C(t) + Sv(t)|2‖v‖2L2(Ω))

≤ 1
3κ

2(t)(‖u‖2H1(Ω) + ‖v‖2H1(Ω))

≤ 1
3κ

2(t)‖ν‖2(H1(Ω))2 ,

where κ(t) ≥ 3 max{cΩ, 2cω max{1, cΩ}M |λ(t)|} and cΩ is the Poincaré constant. With the
same arguments, we obtain

‖K(ν,λ(t))Dxν‖2(L2(Ω))2 = ‖K̃(u, v, Su(t), C(t))ux‖2L2(Ω) + ‖K̃(u, v, C(t), Sv(t))vx‖2L2(Ω)

≤ 1
3κ

2(t)‖Dxν‖2(L2(Ω))2

≤ 1
3κ

2(t)‖ν‖2(H1(Ω))2 ,

Hence,

‖F (ν,λ(t))‖(L2(Ω))2 ≤ ‖ν‖(L2(Ω))2 + 2
3κ(t)‖ν‖(H1(Ω))2

≤ κ(t)‖ν‖(H1(Ω))2 .

In order for Assumption 3.1 (ii) and (iii) remaining satisfied, suitable smoothing functions
need to be applied to K̃ around the nondifferentiability and noncontinuity points and the
proofs of Lemma 3.17 and Lemma 3.18 need to be adapted accordingly. However, this is
not in the scope of this thesis and we leave that for potential future research.
In Rankin (1993) assumptions are presented under which semilinear evolution equations

of the form u′(t) + Au(t) = F (u(t)) with F = AαG are solved both locally and globally.
Extending that result to permit controls λ(t) as an additional argument of F and G is a
direction of future research.

3.3.3 Adjoint Operators and the Adjoint Equation
For the rest of this chapter, let ν̄ ∈ C([0, T ], (H1(Ω))2) and λ̄ ∈ (L1(0, T ))3 be an opti-
mal state and optimal control, respectively. In order to apply Theorems 3.9 and 3.10 to
Equation (3.50) we first calculate the adjoints of the partial derivatives of F (ν̄(t), λ̄(t)) and
use the relations ((L2(Ω))2)∗ = (L2(Ω))2 and ((H1(Ω))2)∗ = (H1(Ω))2. With respect to
the notation in Section 3.1, we write Fν(t) instead of Fν(ν̄(t), λ̄(t)) and Fλ(t) instead of
Fλ(ν̄(t), λ̄(t)) and use the notations

〈·, ·〉 = (·, ·)(H1(Ω))2 and (·, ·) = (·, ·)R3 .

Theorem 3.20. We have the following adjoints
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(i) Fν(t)∗ : (L2(Ω))2 → (H1(Ω))2 is given by

Fν(t)∗ = id(H1(Ω))2 +K(ν̄(t), λ̄(t))Dx −K(Dx(·)� ν̄(t), λ̄(t))id.

(ii) Fλ(t)∗ : (L2(Ω))2 → R3 is given by

Fλ(t)∗ = 〈K̂(ν̄(t)), ·〉,

whereas id is the identity in (H1(Ω))2 and a � b is the Hadamard product or elementwise
product of two vector valued functions a and b, K̂(ν) ∈ (L2(Ω))3×2 is defined as

K̂(ν) =

 Dx
(
uK(u, v, 1, 0)

)
0

0 Dx
(
vK(v, u, 1, 0)

)
Dx
(
uK(u, v, 0, 1)

)
Dx
(
vK(v, u, 0, 1)

)


and

〈K̂(ν),π〉 =

 〈Dx
(
uK(u, v, 1, 0)

)
, p〉

〈Dx
(
vK(v, u, 1, 0)

)
, q〉

〈Dx
(
uK(u, v, 0, 1)

)
, p〉+ 〈Dx

(
vK(v, u, 0, 1)

)
, q〉

 .
Proof. In this proof, we omit the dependence on t for the sake of readability. Let some
π = (p, q)T ∈ (H1(Ω))2 be given.

(i) Consider

〈π, Fν(ν̄, λ̄)[ν]〉 = 〈π,ν −Dx

(
K(ν̄, λ̄)ν +K(ν, λ̄)ν̄

)
〉.

It is well known, that Dx is a skew-adjoint operator. Moreover, K(ν̄, λ̄) is symmetric. Hence,

〈π,ν −Dx

(
K(ν̄, λ̄)ν +K(ν, λ̄)ν̄

)
〉 = 〈π,ν〉+ 〈Dxπ,K(ν̄, λ̄)ν +K(ν, λ̄)ν̄〉

= 〈π,ν〉+ 〈K(ν̄, λ̄)Dxπ,ν〉+ 〈Dxπ,K(ν, λ̄)ν̄〉.

It remains to isolate ν in 〈Dxπ,K(ν, λ̄)ν̄〉. With∫
Ω
f(x)g(x+ y) dx =

∫
y+Ω

f(z − y)g(z) dz =
∫

Ω
f(x− y)g(x),

for f , g ∈ L2(Ω) (the last equality is due to the periodic boundary conditions, see Re-
mark 3.19 (ii)) and with the antisymmetry of ω, we derive∫ 1

−1

∫
Ω
Dxp(x)Suū(x)u(x+ y)ω(y) dx dy

=
∫ 1

−1

∫
Ω
Dxp(x− y)Suū(x− y)u(x)ω(y) dx dy

= −
∫

Ω
u(x)

∫ 1

−1
SuDxp(x+ y)ū(x+ y)ω(y) dy dx.
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Therefore, ∫
Ω
Dxp(x)ū(x)K(u, v, Su, C)(x) dx

= −
∫

Ω
u(x)

∫ 1

−1
SuDxp(x+ y)ū(x+ y)ω(y) dy

+ v(x)
∫ 1

−1
CDxp(x+ y)ū(x+ y)ω(y) dy dx.

(3.53)

Overall, we have

〈Dxp,
(
K(ν, λ̄)ν̄

)
1
〉 = −

∫
Ω
u(x)

∫ 1

−1
SuDxp(x+ y)ū(x+ y)ω(y) dy

+ v(x)
∫ 1

−1
CDxp(x+ y)ū(x+ y)ω(y) dy dx,

〈Dxq,
(
K(ν, λ̄)ν̄

)
2
〉 = −

∫
Ω
v(x)

∫ 1

−1
SvDxq(x+ y)v̄(x+ y)ω(y) dy

+ u(x)
∫ 1

−1
CDxq(x+ y)v̄(x+ y)ω(y) dy dx.

After some rearrangements, we receive

〈Dxπ,K(ν, λ̄)ν̄〉 = −〈K(Dxπ � ν̄, λ̄)id,ν〉.

And finally, Fν(ν̄, λ̄)∗[π] = π +K(ν̄, λ̄)Dxπ −K(Dxπ � ν̄, λ̄)id.
(ii) We start with

〈π, Fλ(ν̄, λ̄)[λ]〉 = 〈π,−Dx(K(ν̄,λ)ν̄)〉.

The first component yields∫
Ω
p(x)

(
Dx
(
ū(x)K(ū, v̄, Su, C)(x)

))
dx

=
(∫

Ω

∫ 1

−1
p(x)Dx

(
ū(x)ū(x+ y)

)
ω(y) dy dxSu

+
∫

Ω

∫ 1

−1
p(x)Dx

(
ū(x)v̄(x+ y)

)
ω(y) dy dxC

)
=
( ∫

Ω
p(x)K̂u(ν̄)(x) dx,λ

)
=
(
〈K̂u(ν̄), p〉,λ

)
.

Analogously, for the second component holds∫
Ω
q(x)

(
Dx
(
v̄(x)K(v̄, ū, Sv, C)(x)

))
dx =

(
〈K̂v(ν̄), q〉,λ

)
,
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with K̂u(ν) and K̂v(ν) being the first and second column of K̂(ν), respectively. Hence,

〈π, Fλ(ν̄, λ̄)[λ]〉 =
(
〈K̂(ν̄),π〉,λ

)
.

Theorem 3.10 provides a Lagrange functional l and we can formulate the necessary op-
timality conditions for the control problem (3.50). First, we present a representation of
the functional l ∈ Z∗ =

(
C([0, T ], (H1(Ω))2)

)∗. The embedding of C([0, T ], (H1(Ω))2) into
L2(0, T ; (H1(Ω))2) is continuous with dense image. Thus, we obtain the smaller dual space(
L2(0, T ; (H1(Ω))2)

)∗. We further assume, that l can be represented with the adjoint function
π ∈ L2(0, T ; (H1(Ω))2).

Lemma 3.21. The linear functional l ∈
(
C([0, T ], (H1(Ω))2)

)∗ in the setting outlined above
is given by

l(ν) = −
∫ T

0

∫
Ω

(
π(t) +K(ν̄(t), λ̄(t))Dxπ(t, x)−K(Dxπ(t)� ν̄(t), λ̄(t))id

)T
ν(t, x) dx dt

−
∫

Ω
(ν̄(T, x)− νobs(x))T ν(T, x) dx,

(3.54)

where the adjoint state π = (p, q) ∈ L2(0, T ; (H1(Ω))2) is the mild solution

π(t) = e−(T−t)A (ν̄(T )− νobs)

+
∫ T

t
e−(s−t)A

(
π(s) +K(ν̄(s), λ̄(s))Dxπ(s)−K(Dxπ(s)� ν̄(s), λ̄(s))id

)
ds

(3.55)

of the terminal value problem

−π′(t) = Dxxπ(t) +K(ν̄(t), λ̄(t))Dxπ(t)−K(Dxπ(t)� ν̄(t), λ̄(t))id
π(T ) = ν̄(T )− νobs

for all t ∈ (0, T ), with id being the identity in (H1(Ω))2 and � being the Hadamard product.

Proof. From Theorem 3.9 we have

π(t) = e−(T−t)A (ν̄(T )− νobs) +
∫ T

t
e−(s−t)AFν(ν̄(s), λ̄(s))∗[π(s)] ds, t ∈ (0, T ),

since A = 1−Dxx = A∗ is a self-adjoint operator in (L2(Ω))2. Theorem 3.20 (i) concludes
the proof.

With Theorem 3.10, we obtain the necessary optimality conditions for the control problem
(3.50).
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Corollary 3.22. Given optimal control λ̄ ∈ Λ and optimal state ν̄ ∈ L2(0, T ; (H1(Ω))2),
then the equation ∫ T

0

(
〈K̂(ν̄(t)),π(t)〉,λ(t)− λ̄(t)

)
≥ 0 (3.56)

holds for all λ ∈ Λ, where π ∈ L2(0, T ; (H1(Ω))2) is the mild solution given by Equa-
tion (3.55).

Proof. We set µ = λ − λ̄. The corollary follows then directly from Jλ(ν̄, λ̄)(λ) = 0,
Theorem 3.20 (ii) and Theorem 3.10

3.3.4 Necessary Optimality Conditions for the Partial Integro-Differential
Equation

With the results on the abstract version of Equation (3.33) we are now able to postulate
necessary optimality conditions on the PIDE version that we restate here for the sake of
completeness. Let the time dependent control problem with the least squares type objective
functional

1
2

∫
Ω

(
u(T, x)− uobs(x)

)2 +
(
v(T, x)− vobs(x)

)2 dx,

be given. The functions u(·, ·) and v(·, ·) solve the initial value problem

ut = uxx − (uKu(u, v))x, u(0, x) = u0(x), u(t, a) = u(t, b)
vt = vxx − (vKv(u, v))x, v(0, x) = v0(x), v(t, a) = v(t, b)

with
Ku(u, v)(t, x) =

∫ 1

−1
Su(t)u(t, x+ y)ω(y) + C(t)v(t, x+ y)ω(y) dy

and
Kv(u, v)(t, x) =

∫ 1

−1
Sv(t)v(t, x+ y)ω(y) + C(t)u(t, x+ y)ω(y) dy.

Moreover, let optimal control functions S̄u(t), S̄v(t) and C̄(t) and optimal state functions ū(t)
and v̄(t) be given. It then follows from Lemma 3.21 and Corollary 3.22, that all admissible
control functions Su(t), Sv(t) and C(t) satisfy∫ T

0

∫
Ω
p(t, x)

(
ū(t, x)K̂u(ū, v̄)(t, x)

)
x

+ q(t, x)
(
v̄(t, x)K̂v(ū, v̄)(t, x)

)
x

dx dt ≥ 0

with

K̂u(u, v)(t, x) =
∫ 1

−1

(
Su(t)− S̄u(t)

)
u(t, x+ y)ω(y) +

(
C(t)− C̄(t)

)
v(t, x+ y)ω(y) dy

and

K̂v(u, v)(t, x) =
∫ 1

−1

(
Sv(t)− S̄v(t)

)
v(t, x+ y)ω(y) +

(
C(t)− C̄(t)

)
u(t, x+ y)ω(y) dy,
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where p(·, ·) and q(·, ·) solve the terminal value problem

−pt = pxx + pxKu(ū, v̄)−Ku(pxū, qxv̄), p(T, x) = ū(T, x)− uobs(x), p(t, a) = p(t, b),
−qt = qxx + qxKv(ū, v̄)−Kv(pxū, qxv̄), q(T, x) = v̄(T, x)− vobs(x), q(t, a) = q(t, b).
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Part II.

On the Gaussian Kernel: Diffusive Effect,
Spectrum and Discretization
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Chapter4
Aspects of the Gaussian Kernel

In this chapter, we study characteristics of the Gaussian kernel for diminishing widths. The
one dimensional Gaussian kernel is defined as

Γδ(x) = 1√
2πδ

e−
x2
2δ2 , (4.1)

where δ specifies its width. Throughout this chapter, we provide results showing that the
equation

ut(t, x) = Γδ ∗ u(t, x)− u(t, x) (4.2)

is well approximated by the heat equation with initial data u0(x) for small values of δ.
Before we do so, we establish a connection to the first part of this thesis by recalling

the Gauss-Weierstrass semigroup {(et∆)Re t>0} that we introduced in Example 2.19. The
Gauss-Weierstrass semigroup solves the heat equation, ut(t, x) = uxx(t, x), with initial data
u0(x) and diffusion constant d = 1. The solution u ∈ C1,2((0, T ]× R) ∩ C0([0, T ]× R) can
be represented by the convolution of the initial data with the Gauss-Weierstrass kernel Gt,

u(t, x) = Gt ∗ u0(x),

where Gt is defined as
Gt(x) = 1√

4πt
e−

x2
4t .

In case of an arbitrary diffusion constant d, we use an adapted version of the Gauss-
Weierstrass kernel G̃t,d(x) = Gtd(x). Hence, for the diffusion constant δ2

2 the solution
to ut(t, x) = δ2

2 uxx(t, x) with initial data u0 is then

u(t, x) = G̃
t, δ

2
2
∗ u0(x) = G

t δ
2
2
∗ u0(x) = 1√

2πtδ

∫
R
u0(y)e−

(x−y)2

2tδ2 dy.

If we set t = δ2/2, the Gauss-Weierstrass kernel Gδ2/2 becomes the Gaussian kernel. We
consider the partial differential equation vδ(δ, x) = δvxx(δ, x) with the same initial data
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4. Aspects of the Gaussian Kernel

u0(x). Then, v(δ, x) = Γδ ∗ u0(x) is the solution to this equation. Indeed, it is obvious that
v(δ, x) = Gδ2/2 ∗ u0(x) = u(δ2/2, x). Therefore,

vδ(δ, x) = δut(δ2/2, x), vx(δ, x) = ux(δ2/2, x), vxx(δ, x) = uxx(δ2/2, x),

and since u is the solution to the heat equation, we receive vδ(δ, x) = δvxx(δ, x).
If the convolution with Γδ was a semigroup generated by δ∆, then the definition of the

generator would yield

lim
δ→0

Γδ ∗ u0 − u0
δ

= δ∆u0

and
lim
δ→0

Γδ ∗ u0 − u0 − δ2∆u0 = 0;

but since the operator A of the corresponding evolution equation depends on δ, A(δ) = δ∆,
the theory of quasi-linear evolution equations would need to be applied here in order to get
a sophisticated solution. Nevertheless, this lax calculation and the result on the diffusive
effect of the Gaussian kernel by Briani et al. (2004) motivate for the following considerations
of this chapter.

4.1 The Diffusive Effect of the Gaussian Kernel

To apply Proposition 6.1 from Briani et al. (2004), which shows a diffusive effect of the
Gaussian kernel, we perform a simple transformation of Equation (4.2). A similar result is
then established for both right-hand side operators in the Fourier space.
We denote by Λδ the convolution with the Gaussian kernel, Λδu(x) = Γδ ∗ u(x). With

z = −y, the symmetry of Γδ and the unity of
∫
R Γδ(z) dz we obtain

Λδu(t, x)− u(t, x) =
∫ ∞
−∞

u(t, x− y)Γδ(y) dy − u(t, x)

=
∫ −∞
∞
−u(t, x+ z)Γδ(−z) dz − u(t, x)

=
∫ ∞
−∞

u(t, x+ z)Γδ(z) dz − u(t, x)

=
∫ ∞
−∞

[u(t, x+ z)− u(t, x)]Γδ(z) dz.

(4.3)

We can now apply (Briani et al., 2004, Proposition 6.1) which shows a diffusive effect of the
Gaussian kernel.

Theorem 4.1 (Briani et al., 2004, Proposition 6.1). Let u(t, x) be the solution to

ut(t, x) + aux(t, x)− buxx(t, x) + cu(t, x) =
∫ ∞
−∞

[u(t, x+ z)− u(t, x)]Γδ(z) dz (4.4)
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4.1. The Diffusive Effect of the Gaussian Kernel

and v(t, x) be the solution to

vt(t, x) + avx(t, x)− bvxx(t, x) + cv(t, x) = δ2

2 vxx(t, x)

on (0, T )×R with the same initial condition u0(x) = u(0, x) = v(0, x), u0 ∈ L1(R)∩L∞(R).
Then, if δ � 1, there holds

‖u− v‖L∞(0,T ;L1(R)) ≤ O(Tδ3).

We obtain an analogous result for the operator

Λδ − id−δ
2

2 ∆ (4.5)

in the space of three-times differentiable functions.

Theorem 4.2. The operator norm of Λδ − id− δ2

2 ∆ on C3(R) satisfies the estimate

‖Λδ − id−δ
2

2 ∆‖C3(R)→C1(R) ≤
1√
2π

2
3δ

3 = O(δ3).

Proof. Let φ ∈ C3(R) be a three-times differentiable function and x, y ∈ R be given. Taking
the Taylor expansion of φ(x+ y) around x leads to

φ(x+ y) = φ(x) + yφx(x) + y2

2 φxx(x) + y3

6 φxxx(ξ)

with a ξ ∈ [x, x+ y]. Equation (4.3) then yields

Λδφ(x)− φ(x)− δ2

2 ∆φ(x) =
∫ ∞
−∞

[φ(x+ y)− φ(x)− δ2

2 φxx(x)]Γδ(y) dy

=
∫ ∞
−∞

[
yφx(x) + y2 − δ2

2 φxx(x) + y3

6 φxxx(ξ)
]
Γδ(y) dy.

With simple calculations, we obtain∫ ∞
−∞

[
yφx(x) + y2 − δ2

2 φxx(x)
]
Γδ(y) dy = 0

and
∣∣ ∫ ∞
−∞

y3

6 φxxx(ξ)Γδ(y) dy
∣∣ ≤ 1√

2π
‖φ‖C3(R)

∫ ∞
−∞

|y|3

6δ e
− y2

2δ2 dy = δ3
√

2π
2
3‖φ‖C3(R).

Indeed, L’Hôpital’s rule yields∫ ∞
−∞

[
yφx(x) + y2 − δ2

2 φxx(x)
]
e−

y2

2δ2 dy = lim
R→∞

(
− δ2e−

y2

2δ2
(
φx(x) + y

2φxx(x)
)∣∣∣R
−R

)
= 0
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4. Aspects of the Gaussian Kernel

and with standard calculus we receive∫ ∞
−∞

|y|3

δ
e−

y2

2δ2 dy =
∫ ∞

0

y3

δ
e−

y2

2δ2 dy −
∫ 0

−∞

y3

δ
e−

y2

2δ2 dy

= lim
R→∞

(
− δ(2δ2 + y2)e−

y2

2δ2
∣∣∣R
0

+ δ(2δ2 + y2)e−
y2

2δ2
∣∣∣0
−R

)
= 4δ3.

Hence,

‖Λδφ− φ−
δ2

2 ∆φ‖C1(R) ≤
δ3
√

2π
2
3‖φ‖C3(R),

which concludes the proof.

For the next result, we apply the Fourier transform to the operator Λδ − id− δ2

2 ∆ and
study its behavior with respect to δ → 0. For the calculation of the Fourier transform of
I − Λδ, we need the following lemma.

Lemma 4.3. The Fourier transform of Γδ(x) = 1√
2πδe

−x2
2δ2 is given by

F(Γδ)(ξ) = 1√
2π
e−

δ2
2 ξ

2
.

Whether we first apply the Fourier transform to Γδ and then consider the limit as δ approaches
zero or first let δ approach zero and then apply the Fourier transform, we obtain the same
result, which allows us to draw the commutative diagram, where δ0 is the Dirac delta function:

Γδ

δ→0
��

F// 1√
2πe
− δ

2
2 (·)2

δ→0
��

δ0 F
// 1√

2π1R

Proof. We present two different approaches to derive the Fourier transform of the Gaussian
kernel. The first approach makes use of differential polynomials. We define the polynomial
PΓ as

PΓ(x) = x

δ2 .

Γδ solves the ordinary differential equation

Γ′δ + x

δ2 Γδ = 0, Γδ(0) = 1√
2πδ

.

Applying the Fourier transform to both sides of the equation and using (Folland, 1992,
Theorem 7.5) we obtain

0 = F(0)(ξ) = F(Γ′δ + x

δ2 Γδ)(ξ) = F(Γ′δ)(ξ) + F( x
δ2 Γδ)(ξ)

= δ2F(PΓ(δ)Γδ)(ξ) + F(PΓ(x)Γδ)(ξ) = δ2i ξ
δ2 Γ̂δ(ξ) + i

δ2 Γ̂′δ(ξ) = iξΓ̂δ(ξ) + i
δ2 Γ̂′δ(ξ).
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Consequently, Γ̂δ solves the ordinary differential equation

Γ̂′δ + δ2ξΓ̂δ = 0, Γ̂δ(0) = 1√
2π

∫ ∞
−∞

Γδ(x) dx = 1√
2π

which yields
Γ̂δ(ξ) = 1√

2π
e−

δ2
2 ξ

2
.

The second approach is a direct calculation of the Fourier transform. By definition, we have

F(Γδ)(ξ) = 1√
2π

∫ ∞
−∞

1√
2πδ

e−
x2
2δ2 e−iξx dx

= 1
2πδ

∫ ∞
−∞

e−
x2
2δ2−iξx dx.

We note, that −( x2

2δ2 + iξx) = −( x√
2δ + i

√
2δ ξ2)2 − δ2ξ2

2 by completing the square. Thus,

Γ̂δ(ξ) = 1
2πδ

∫ ∞
−∞

e
−( x√

2δ
+i
√

2δ ξ2 )2− δ
2ξ2
2 dx.

Substituting β = x√
2δ + i

√
2δ ξ2 we obtain

Γ̂δ(ξ) =
√

2δ
2πδ e

− δ
2ξ2
2

∫ ∞
−∞

e−β
2
dβ

= 1√
2π
e−

δ2ξ2
2
√
π

= 1√
2π
e−

δ2
2 ξ

2
.

In order to proof that the commutative diagram is well defined, we need to proof the
convergence of Γδ for δ → 0, since Fδ0 =

√
2π1R is a well-known result. We consider Γδ as

a distribution and apply it to a test function φ ∈ D,

Γδ(φ) =
∫ 1√

2πδ
e−

x2
2δ2 φ(x) dx.

With the substitution x = δy we have

lim
δ→0

Γδ(φ) = lim
δ→0

∫ 1√
2π
e−

y2
2 φ(δy) dy = 1√

2π

∫
δ→0

e−
y2
2 dy φ(0) = φ(0) = δ0(φ).

Theorem 4.4. The Fourier transform of the operators at hand, δ2

2 ∆ and Λδ − id, are given
by

F
(δ2

2 ∆u
)
(ξ) = − δ2

2 ξ
2û(ξ), (4.6)

F
(
Λδu− u

)
(ξ) = e−

δ2
2 ξ

2
û(ξ)− û(ξ). (4.7)
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Proof. In order to calculate the Fourier transform of δ2

2 ∆ we define the polynomial P∆ as

P∆(x) = δ2

2 x
2, P∆(∂)u = δ2

2 u
′′

and with (Folland, 1992, Theorem 7.5) we conclude

F
(δ2

2 ∆u
)
(ξ) = F

(
P∆(∂)u

)
(ξ) = P∆(iξ)û(ξ) = −δ

2

2 ξ
2û(ξ).

With Lemma 4.3 we receive
F(Λδu− u)(ξ) = F(Λδu)(ξ)−F(u)(ξ) = F(Γδ ∗ u)(ξ)−F(u)(ξ)

=
√

2πF(Γδ)(ξ)F(u)(ξ)−F(u)(ξ) = e−
δ2
2 ξ

2
û(ξ)− û(ξ)

We next derive a result on the L2 operator norm of the Fourier transform of Equation (4.5)
on a specific interval.

Theorem 4.5. Let δ � 1 and I := [−1
δ ,

1
δ ]. Then for the operator given by Equation (4.5),

the following estimate holds

‖F
(
Λδ − id−δ

2

2 ∆
)
‖L2(I)→L2(I) = O(δ4).

Proof. Let us first examine the Fourier transform of (Λδ − id)u − δ2

2 ∆u in L2(R) and use
the series expansion of the exponential function. Let ξ ∈ I be given, then

F
(
(Λδ − id−δ

2

2 ∆)u
)
(ξ) =

(
e−

δ2
2 ξ

2 − 1 + δ2

2 ξ
2)û(ξ) =

∞∑
ν=2

(− δ2

2 ξ
2)ν

ν! û(ξ),

and

‖
∞∑
ν=2

(− δ2

2 (·)2)ν

ν! û‖L2(I) ≤ sup
ξ∈I

∣∣∣∣∣
∞∑
ν=2

(− δ2

2 ξ
2)ν

ν!

∣∣∣∣∣ ‖û‖L2(I),

since
∞∑
ν=2

(− δ2

2 ξ
2)ν

ν! < e−
δ2
2 ξ

2

for all ξ ∈ I and the series converges on that interval. So,

‖F
(
Λδ − id−δ

2

2 ∆
)
‖L2(I)→L2(I) ≤ sup

ξ∈I

∣∣∣∣∣
∞∑
ν=2

(− δ2

2 ξ
2)ν

ν!

∣∣∣∣∣
≤ sup

ξ∈I

δ4ξ4

8 +
∣∣∣∣∣
∞∑
ν=3

(− δ2

2 ξ
2)ν

ν!

∣∣∣∣∣
= O(δ4).

78



Chapter5
The Gaussian Kernel in a Partial
Integro-Differential Equation

The Black-Scholes model, that simulates the price for European call options, has been
extended in many ways since its release by Black and Scholes (1973). One extension among
others is the jump-diffusion model in Merton (1976). Under certain assumptions this model
leads to a partial integro-differential equation that involves the Gaussian kernel as the
nonlocal integral term.
With a variable transformation, the authors overcome in Sachs and Strauss (2008) the

numerical instability caused by the model’s convection term. This transformation results in
an equivalent problem with the aim to find a solution w ∈ C1,2((0, T ]× R) ∩ C0([0, T ]× R)
to the partial integro-differential equation

wt −
1
2σ

2wxx + (r + λ)w − λ
∫ ∞
−∞

w(t, z)Γδ(z − x) dz = 0 on (0, T ]× R,

w(0, x) = H(ex), for all x ∈ R,
(5.1)

where H(x) = max{0, x−K} is the payoff function with strike price K and σ, λ, T > 0 as
well as r ≥ 0 are constants, cf. Sachs and Strauss (2008) for more details.

The numerical solution of Equation (5.1) requires the computation of linear systems with
dense coefficient matrices. Due to the structure of those coefficient matrices, the conjugate
gradient (CG) method can be used. The convergence behavior of the CG method relies on
the condition of the coefficient matrix and therefore circulant preconditioners are used in
Sachs and Strauss (2008). In Ye (2013), the author suggests a tridiagonal preconditioner
that only acts on the PDE part of the coefficient matrix.
In this chapter, we focus on the integral part of Equation (5.1) and study the equation

ut(t, x) + λ
(
u(t, x)−

∫ ∞
−∞

u(t, x)Γδ(z − x) dz
)

= 0 on (0, T ]× R,

u(0, x) = h(x), for all x ∈ R,
(5.2)
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with some initial function h ∈ C(R). We not that Equation (5.2) is equal to Equation (4.2) for
λ = 1. In the first section, we discuss the numerical discretization and analyze the spectrum of
the resulting coefficient matrix. In the second section, we discuss the need for preconditioning
and compare the eigenvalue spectra of the linear system and the preconditioned system for
different values of δ. In the third section, we focus on the discretization of the term in
brackets of Equation (5.2) and propose an alternative discretization scheme that is more
suitable for small values of δ. We conclude this chapter by providing some numerical results.

5.1 Discretization and Spectrum of the Coefficient Matrix
To solve Equation (5.2) numerically, we need to use a proper truncation and discretization
of R. We restrict the domain to Ω := (−R,R) with R sufficiently large. For a given ε > 0
the sensing radius Rδ of Γδ around x = 0 is given by Rδ =

√
−2δ2 ln(εδ

√
2π), which is

derived by simple calculation, i.e., Γδ < ε for |x| > Rδ. For the subsequent discussion, we
set R� Rδ and impose Dirichlet boundary conditions, i.e., u(t, x)→ 0 for x→ ±∞. That
results in

ut(t, x) + λu(t, x)− λ
∫ R

−R
u(t, z)Γδ(z − x) dz = λR̂(t, x,R), on (0, T ]× Ω, (5.3)

with R̂(t, x,R) =
∫∞
R u(t, z)Γδ(z−x)+u(t,−z)Γδ(−z−x) dz. Due to the boundary conditions

and the sensing radius Rδ of Γδ the truncation error R̂ is negligible for our subsequent
discussion.

We follow the discretization scheme that is used in Sachs and Strauss (2008): We set

xi := −R+ (i− 1)h with i = 1, . . . , n+ 2, h = 2R/(n+ 1),
tp := pτ with p = 1, ...,m, τ = T/m,

with n ∈ N odd and denote by upi the approximation of the true solution u(tp, xi). To obtain
second order accuracy and stability in time, we use a backward difference formula of second
order (BDF2) for p ≥ 2, which is

ut(tp, xi) ≈
{

(3
2u

p
i − 2up−1

i + 1
2u

p−2
i )/τ, for p ≥ 2,

(upi − u
p−1
i )/τ, for p = 1,

and use the composite trapezoidal rule to approximate the integral on Ω,∫ R

−R
u(tp, z)Γδ(z − xi) dz ≈h2 (u(tp, x1)Γδ(x1 − xi) + 2

n+1∑
j=2

u(tp, xj)Γδ(xj − xi)

+ u(tp, xn+2)Γδ(xn+2 − xi)).
(5.4)

Using the boundary conditions to eliminate the first and last equation of the resulting linear
system and re-indexing the subscripts, i.e., xi = −R + ih with i = 1, . . . , n, we receive a
n× n Toeplitz system

Tnu
p = bp, (5.5)

80



5.1. Discretization and Spectrum of the Coefficient Matrix

with bp = 2up−1 − 1
2u

p−2 for p ≥ 2 and b1 = up−1. Without loss of generality, we assume
p ≥ 2 in the following. The 2n− 1 coefficients of the Toeplitz matrix Tn are given by

t0 = 3
2 + λτ − λτh√

2πδ
,

ti = t−i = − λτh√
2πδ

e−i
2h2/(2δ2),

(5.6)

with i = 1, . . . , n− 1. Depending on the context, we will formulate the coefficients in terms
of n and m,

t0 = 3
2 + λT

m
− λTα

(n+ 1)mδ ,

ti = t−i = − λTα

(n+ 1)mδe
−βi2/((n+1)δ)2

,

(5.7)

with α = 2R/
√

2π and β = (2R)2/2. A third way we will consider the Toeplitz matrix Tn is
as the sum

Tn = 3
2I + λτ(I −Dn), (5.8)

where I is the identity matrix and D = (dij)ni,j=1 with

dij = h√
2πδ

e−(i−j)2h2/(2δ2).

Toeplitz Matrices

We provide a brief introduction to Toeplitz matrices and their generating functions in this
subsection.

Definition 5.1. A matrix Tn ∈ Cn×n is called Toeplitz, if Tn is determined by the 2n − 1
scalars t−(n−1), . . . , t−1, t0, t1, . . . , tn−1 with Tij = ti−j , i.e., the Toeplitz matrix is of the
following form:

Tn =



t0 t−1 · · · t2−n t1−n

t1 t0
. . . t2−n

... . . . . . . . . . ...

tn−2
. . . . . . t−1

tn−1 tn−2 · · · t1 t0


. (5.9)

The function g : [−π, π]→ R, defined by the Fourier series

g(x) =
∞∑

j=−∞
tje
−ijx, (5.10)
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5. The Gaussian Kernel in a Partial Integro-Differential Equation

is called a generating function of the indefinite Toeplitz matrix T∞. In other words, the
entries of T∞ are given by

tj = 1
2π

∫ π

−π
g(x)eijx dx, j = 0,±1,±2, . . . . (5.11)

If g is real-valued, we have

t−j = 1
2π

∫ π

−π
g(x)e−ijx dx = t̄j , j = 0,±1,±2, . . . , (5.12)

and hence, T∞ must be Hermitian. If g is also an even function, i.e., g(−x) = g(x), then
T∞ is also real and symmetric.
For finite matrices Tn we set tk = 0 for k ≥ n, which results in a finite series for the

generating function

g(n)(x) =
n−1∑

j=−(n−1)
tje
−ijx.

Theorem 5.2 (Grenander and Szegö, 1984). Let g be a real-valued function in L1[−π, π].
Then the spectrum σ(Tn) of Tn satisfies

σ(Tn) ⊂ [gmin, gmax], for all n ≥ 1,

where gmin and gmax are the essential infimum and the essential supremum of g, respectively.
Moreover, if gmax > gmin, then

gmin < λmin(Tn) ≤ λmax(Tn) < gmax.

In particular, if gmin > 0, then T is positive definite for all n ∈ N.

Definition 5.3. Let g be a real-valued function in L1[−π, π]. A sequence (α(n)
k ) is said to

be equally distributed as g if

lim
n→∞

1
n

n∑
k=1

F (α(n)
k ) = 1

2π

∫ π

−π
F (g(x)) dx

for any continuous function F with bounded support.

Theorem 5.4 (Grenander and Szegö, 1984). Let g ∈ L2[−π, π]. Then the singular values of
the matrices Tn generated by g are equally distributed as |g(x)|. In particular, for real-valued
g, the eigenvalues of Tn are equally distributed as g(x). Thus, for g Riemann integrable, the
sets of values

{λi(Tn)}ni=0 and
{
g

(
−π + 2iπ

n+ 1

)}n
i=0

are equally distributed, i.e., for every eigenvalue λi(Tn) exists a ξi ∈ [0, π] with g(ξi) = λi(Tn).
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5.1. Discretization and Spectrum of the Coefficient Matrix

Analysis of the Spectrum
The generating function g(n) of the matrix Tn is given by

g(n)(x) = 3
2 + λτ

(
1− h√

2πδ

(
1 + 2

n−1∑
j=1

e−j
2h2/(2δ2)cos(jx)

))
. (5.13)

In order to get an estimate of the spectrum σ(Tn), we will calculate upper and lower bounds
of the corresponding generating function g(n) on [−π, π] and apply Theorem 5.2.
Adjusting the estimate of Ye (2013) to the generating function (5.13) we receive

g(n)(x) ≥ 3
2 + λτ

(
1− h√

2πδ
− erf

((n− 1)h√
2δ

))
≥ 3

2 − λτ
h√
2πδ

,

g(n)(x) ≤ 3
2 + λτ

(
1− h√

2πδ
+ erf

((n− 1)h√
2δ

))
≤ 3

2 + λτ(2− h√
2πδ

),
(5.14)

where
erf(x) = 2√

π

∫ x

0
e−y

2 dy

is the Gauss error function.

Remark 5.5. The above argument of the error function is independent of n due to the
definition of h and only depends on δ. For δ � 1, we have

erf
((n− 1)h√

2δ

)
= erf

( (n− 1)
(n+ 1)δ

√
β
)
≈ 1

for any h, which yields the estimate

σ(Tn) ⊂ 3
2 + λτ [− h√

2πδ
, 2− h√

2πδ
];

this is equal to
σ(Tn) ⊂ 3

2 + λT

m
[− α

(n+ 1)δ , 2−
α

(n+ 1)δ ]

in terms of n and m. Thus, the matrix Tn is positive definite if (n+ 1)δ or m is sufficiently
large.

In the subsequent of this subsection, we want to improve the estimate of σ(Tn) for δ � 1.
To this end, we first present two results that we will use to estimate the range of

g
(n)
D (x) = h√

2πδ

(
1 + 2

n−1∑
j=1

e−j
2h2/(2δ2)cos(jx)

)
,

which is the generating function of the Toeplitz matrix Dn from Equation (5.8).
The first result is from Brown and Hewitt and provides an estimate for certain cosine

sums.
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5. The Gaussian Kernel in a Partial Integro-Differential Equation

Theorem 5.6 (Brown and Hewitt, 1984). Suppose that (ak)∞k=0 is a nonincreasing sequence
of nonnegative real numbers such that a0 > 0 and

a2k ≤
2k

2k + 1a2k−1, for k = 1, 2, 3, . . . . (5.15)

Then, for all positive integers N , we have

a0 + a1 cos θ + a2 cos 2θ + · · ·+ an cosNθ > 0 for 0 ≤ θ < π. (5.16)

The second result is by Gawronski and Stadtmüller. The authors use the Fourier series
expansion of a certain theta series and reformulate an identity that can be found for example
in Butzer and Nessel (1971) or Becker et al. (1976).

Lemma 5.7 (Gawronski and Stadtmüller, 1982). The functions

ḡj,n(x) := 1√
2πnδn

exp(−(j − nx)2

2n2δ2
n

)

with j ∈ Z, n ∈ N, x ∈ R and δn > 0 satisfy the identity

ḡ(n)(x) =
∞∑

j=−∞
ḡj,n(x)

=
∞∑

ν=−∞
e−2π2ν2n2δ2

ne2πiνxn

= 1 + 2
∞∑
ν=1

e−2π2ν2n2δ2
n cos(2πνxn).

(5.17)

We are now able to formulate the following Lemma, which is our main result in this
subsection.

Lemma 5.8. Let Dn be the Toeplitz matrix defined in Equation (5.8) and

δ ≤ h√
2 ln 2

, (5.18)

then
σ(Dn) ⊂ (0, 1 + c], (5.19)

with c = 2 e−2π2(δ/h)2

1−e−2π2(δ/h)2 . If we choose δ = γh√
2 ln 2 with γ ∈ (0, 1], i.e., for decreasing values of

δ we proportionally increase n, then c is independent of n.

Proof. We first proof the lower bound. Let a0 = 1, ak = 2e−k2h2/(2δ2) for 1 ≤ k ≤ n− 1 and
ak = 0 for k ≥ n. We show that the coefficients ak satisfy the prerequisites of Theorem 5.6
and receive g(n)

D (x) > 0.
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5.1. Discretization and Spectrum of the Coefficient Matrix

It can be easily seen that ai ≥ aj for 1 ≤ i < j and a0 ≥ a1 follows directly from
Equation (5.18),

δ ≤ h√
2 ln 2

⇒ δ2 ≤ h2

2 ln 2 ⇔ −
h2

2δ2 ≤ ln(1
2)⇔ e−

h2
2δ2 ≤ 1

2 .

Hence, the sequence (ak)∞k=0 is nonincreasing and it is left to show that Equation (5.15)
holds. For x > 1

4 we define f(x) := 4x−1
2 ln(1+1/(2x)) and notice that Equation (5.18) can be

written as δ ≤ h
√
f(1

2). It is obvious, that (5.15) holds for 2k ≥ n. For 1 ≤ 2k ≤ n− 1 we
have

2e−
(2k)2h2

2δ2 ≤ 2k
2k + 12e−

(2k−1)2h2

2δ2

⇔ − (2k)2h2

2δ2 ≤ ln
( 2k

2k + 1

)
− (2k − 1)2h2

2δ2

⇔ ln
(2k + 1

2k

)
≤ (2k)2h2

2δ2 − (2k − 1)2h2

2δ2

⇔ ln
(

1 + 1
2k

)
≤ h2

2δ2 (4k − 1)

⇔ δ2 ≤ h2 4k − 1
2 ln(1 + 1/(2k))

⇔ δ ≤ h
√

4k − 1
2 ln(1 + 1/(2k))

⇔ δ ≤ h
√
f(k).

With simple calculations, it can be shown that f(x) is positive and increasing for x > 1
4 .

Thus, (5.15) holds for 2k ≥ n.
To proof the upper bound of the estimate, we notice that the function g(n)

D has its maximum
at x = 0. By setting δn = δ̄ = δ/(2R) for all n ∈ N and using h = 2R

n+1 , we receive that
g

(n)
D (0) =

∑n−1
j=−n+1 ḡj,n+1(0) with ḡj,n+1 as in Lemma 5.7 and g(n)

D (0) ≤ ḡ(n+1)(0) follows.
For all n ∈ N and δ̄ > 0, we have e−2π2n2δ̄2

< 1 resulting in e−2π2n2δ̄2ν2 ≤ e−2π2n2δ̄2ν for
ν ≥ 1. Consequently, we can estimate

g
(n)
D (0) ≤ 1 + 2

∞∑
ν=1

e−2π2ν2(n+1)2δ̄2

≤ 1 + 2
∞∑
ν=1

e−2π2(n+1)2δ̄2ν

= 1 + 2 e−2π2(n+1)2δ̄2

1− e−2π2(n+1)2δ̄2

= 1 + 2 e−2π2(δ/h)2

1− e−2π2(δ/h)2

= 1 + c.

(5.20)
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5. The Gaussian Kernel in a Partial Integro-Differential Equation

On the other hand, estimate (5.20) for the upper bound is sharp as g(n)
D (x) > 1 for some

x ∈ [−π, π].

As a direct consequence from this lemma, we obtain the following corollary.

Corollary 5.9. Let Tn be the Toeplitz matrix defined in Equation (5.6) and

δ ≤ h√
2 ln 2

,

then
σ(Tn) ⊂ 3

2 + λτ [−c, 1), (5.21)

with c = 2 e−2π2(δ/h)2

1−e−2π2(δ/h)2 .

Remark 5.10. From (Ye, 2013, Lemma 3.1.6) we know that ‖Dn‖2 < α
( 1

2δ +
√

π
β

)
, which

is independent from n but is also unbounded for δ → 0. If we adjust the estimates in the
proof of the Lemma, we obtain

‖Dn‖2 <
h

δ
+ 1.

Thus, ‖Dn‖2 is bounded for any value of h. In order to bound the norm of the coefficient
matrix for δ → 0, we need to decrease h accordingly, which leads to an increased compu-
tational effort due to a higher dimensional system. Therefore, instead of solving a higher
dimensional system, preconditioning might be a suitable alternative.

5.2 Preconditioning

Motivated by the numerical experiments in Sachs and Strauss (2008), the author theoreti-
cally shows in Ye (2013) the need for preconditioning the linear system that is obtained after
the discretization of Equation (5.1). He provides estimates for the condition number of the
unpreconditioned coefficient matrix Tn as well as the condition number of two differently
preconditioned systems, T̂−1

n Tn and D−1
n Tn. One is preconditioned with Strang’s precondi-

tioner, the other with a tridiagonal matrix, where the latter acts only on the elliptic part
of the coefficient matrix while the dense coefficients obtained by the integral part remains
unpreconditioned. Numerical experiments show that using the tridiagonal preconditioner,
the CG solver requires less iterations and less CPU time, due to less numerical effort.
From Chapter 4 we know that the Gaussian kernel approximates the Laplace operator

for δ → 0. Therefore, we want to analyze the eigenvalue spectra with respect to δ of the
unpreconditioned coefficient matrix, the Strang preconditioned coefficient matrix and the
preconditioned coefficient matrix using two different tridiagonal preconditioner: one consists
of the main and secondary diagonals of Tn, the other one is the discretized Laplace operator
with coefficient δ2

2 .
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5.2. Preconditioning

5.2.1 Circulant Preconditioners
By T̂n we denote the preconditioner constructed in Strang (1986), whose entries on the
diagonals are given by

sk =


tk, 0 ≤ k ≤ floor(n/2),
tk−n, floor(n/2) < k < n,

sn+k, 0 < −k < n,

(5.22)

where floor(x) = max{i ∈ Z : i ≤ x}. For n = 2l + 1(l ∈ N), we have

T̂n =



t0 t−1 · · · t−l tl · · · t1

t1 t0
. . . . . . . . . ...

... . . . . . . . . . . . . tl

tl
. . . . . . . . . t−l

t−l
. . . . . . . . . . . . ...

... . . . . . . . . . t0 t−1
t−1 · · · t−l tl · · · t1 t0


.

This preconditioner is optimal in the following sense:

Theorem 5.11 (Chan, 1989). Let Tn be a Hermitian Toeplitz matrix. The circulant matrix
T̂n whose entries are given by (5.22) minimizes ‖Cn − Tn‖1 = ‖Cn − Tn‖∞ over all possible
Hermitian circulant matrices Cn.

Theorem 5.12 (Chan, 1989). Let g be a positive function in the Wiener class, that means
its Fourier coefficients are absolutely summable. Then for large n the circulant matrices T̂n
and T̂−1

n are bounded in the l2-norm. In fact, for large n, the spectrum σ(T̂n) of T̂n satisfies

σ(T̂n) ⊂ [gmin, gmax].

By construction, T̂n is symmetric if Tn is. Furthermore, if Tn has a positive generating
function, the theorem above yields that T̂n is positive definite, which makes it suitable as a
preconditioner.

Theorem 5.13 (Chan, 1989). Let g be a positive function in the Wiener class and {Tn} be
the sequence of Toeplitz matrices generated by g. Then for all ε > 0, there exists N > 0 such
that for all n > N , at most 2N eigenvalues of T̂n − Tn have absolute values exceeding ε.

Combining the last two theorems and using the identity

T̂−1
n Tn − In = T̂−1

n (Tn − T̂n),

we receive the following result on the eigenvalue distribution of the preconditioned matrix
T̂−1
n Tn − In.
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5. The Gaussian Kernel in a Partial Integro-Differential Equation

Corollary 5.14 (Chan, 1989). Let g be a positive function in the Wiener class, then for
all ε > 0, there exists N > 0 such that for all n > N , at most 2N eigenvalues of T̂−1

n Tn− In
have absolute values exceeding ε.

In Sachs and Strauss (2008) various other circulant preconditioners have been considered,
all of which are optimal in a different sense and cluster most eigenvalues of the preconditioned
coefficient matrix around 1. Those preconditioners and the optimality proofs can be found in
Chan (1988); Chan et al. (1991a,b); Chan and Jin (2007); Tismenetsky (1991); Tyrtyshnikov
(1992); Huckle (1992, 1993). We confine our analysis to Strang preconditioned systems, since
it is almost free to construct and outperforms in numerical experiments with Merton’s model,
see Sachs and Strauss (2008).

5.2.2 Preconditioning of the Gaussian Kernel
We show corresponding results for the Strang preconditioned system with Tn given by
Equation (5.6) adjusting the results in Ye (2013) and expressing the result with respect to
δ.

Lemma 5.15. If the Toeplitz matrix Tn is defined by (5.6) and T̂n is the corresponding
Strang preconditioner, then ‖T−1

n ‖∞ < 1 and ‖T̂−1
n ‖∞ < 1

Proof. (cf. Ye, 2013, Lemma 3.1.21) It can easily be seen that

ξ := min
k
{|tkk| −

∑
j 6=k
|tkj |} >

3
2 + λτ(1− ‖Dn‖∞) = 3

2 − λτ
h

δ
.

Thus, ξ > 1 if 1
2 > λτ hδ which can be obtained for sufficiently small τ . With results from

Varah (1975), we receive ‖T−1
n ‖∞ < 1, with similar calculations we obtain ‖T̂−1

n ‖∞ < 1.

Theorem 5.16 (Ye, 2013, Theorem 3.1.22). Let τ be sufficiently small. For all ε > 0, there
exists N(ε) > 0 such that for all n ≥ N(ε), at most 2N(ε) eigenvalues of T̂−1

n Tn be outside
of the interval (1− ε, 1 + ε). Here N(ε) is given by

N(ε) =

1, if λτ
2 < ε,

ceil
(√

2δ
h erf−1

(
1− 2ε

λτ

))
, otherwise,

(5.23)

where ceil(x) = min{i ∈ Z : i ≥ x}.

Remark 5.17. (i) The essential prerequisite for Theorem 5.16 is λτ hδ < 1
2 , which is

satisfied if δ > 2λτh. Moreover, the prerequisite for Lemma 5.8 is δ ≤ h√
2 ln 2 . Hence,

2λτh < δ ≤ h√
2 ln 2

.

This can only hold if 2λ
√

2 ln 2τ < 1 or m > 2
√

2 ln 2λT , respectively. However, this
is true for almost all numerical settings. On the other hand, if δ > h, Lemma 5.8 is
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not applicable and we have no estimate for σ(Tn). We don’t know if the matrix Dn is
positive definite on its own. Nevertheless, with a sufficiently large m, the matrix Tn
remains positive definite and the Strang preconditioned system still has most of its
eigenvalues clustered around 1 (if λτ < 2ε all except two).

(ii) A tridiagonal preconditioner is proposed in Ye (2013) and it outperforms Strang’s
preconditioner for a given parameter set that is used in the numerical experiments. By
T̄n we denote the matrix consisting of the first and secondary diagonals of Tn:

T̄n =



t0 t−1 0 · · · 0

t1 t0 t−1
. . . ...

0 . . . . . . . . . 0
... . . . t1 t0 t−1
0 · · · 0 t1 t0


.

In Section 5.4 we study the eigenvalue spectrum of the Strang preconditioned system
and the system preconditioned by the tridiagonal matrix T̄ . In addition to that, we
consider the discretized Laplace operator as a preconditioner due to the results in
Section 4.1.

5.3 Alternative Discretization Scheme
In this section we consider the right-hand side of Equation (4.2) and discuss its numerical
discretization. Since Γδ(z − x) = Γδ(x− z), we are able to rewrite u(x)− Γδ ∗ u(x) = 0 as

u(x)−
∫ ∞
−∞

u(z)Γδ(z − x) dz = 0, x ∈ R, (5.24)

in order to align with the notation in Equation (5.2).
For the numerical calculation of the integral∫

Ω
u(z)Γδ(z − xi) dz,

we started with the composite trapezoidal rule and received

h

2 (u(x1)Γδ(x1 − xi) + 2
n+1∑
j=2

u(xj)Γδ(xj − xi) + u(xn+2)Γδ(xn+2 − xi)),

with xj = −R+(j−1)h for j = 1, . . . , n+2. By using the boundary condition, we eliminated
the first and last equation of the resulting linear system and after re-indexing the subscripts,
i.e., xj = −R+ jh for j = 1, . . . , n, we obtained the composite midpoint rule,

h
n∑
j=1

u(xj)Γδ(xj − xi),
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5. The Gaussian Kernel in a Partial Integro-Differential Equation

for the interval I := (−R+ h/2, R− h/2); see Figure 5.1 for an illustration.
However, for δ → 0 (and fixed n), the weight hΓδ(0) gets more and more inaccurate, since

the value Γδ(0) rapidly increases and so does the descent at x = 0. Hence,

hΓδ(0) > 1√
2πδ

∫ h/2

−h/2
e−z

2/(2δ2) dz

and this error contributes most to the discretization error, see Figure 5.2.
An adaptive step size control could handle that problem, but we would lose the Toeplitz

structure of the matrix Tn, while a dense matrix without a special structure would remain.
Since the critical interval is around x = 0, we could adjust the step size to a smaller h′ � h
only in the interval (−2h, 2h). For h′ = 1

2h, this would yield

h
∑

j<dn2 e−2
j>dn2 e+2

Γδ(xj) + h′
7∑

k=1
Γδ(x′k) + h+h′

2 (Γδ(xdn2 e−2) + Γδ(xdn2 e+2))

as an approximation for
∫
I Γδ(z) dz, with x′k = −2h+ kh′, k = 1, . . . , 7 (cf. Figure 5.3). Yet,

the approximation of
∫
I u(z)Γδ(z − xi) would be

h
∑

j<dn2 e−2
j>dn2 e+2

u(xj)Γδ(xj − xi) + h′
7∑

k=1
u(x′k)Γδ(x′k − xi)

+h+ h′

2 (u(xdn2 e−2)Γδ(xdn2 e−2 − xi) + u(xdn2 e+2)Γδ(xdn2 e+2 − xi)).

Hence, the structure of the integrand would lead to a finer discretization of u around x = 0,
the function Γδ would be evaluated with the finer step size h′ around xi and this approach
would only work for xi = 0. And as mentioned above, the resulting matrix Tn,h′ would lose
its Toeplitz structure.
Instead of using the composite midpoint rule and receiving the weights hΓδ(xj), we use

the error function to approximate the integral of Γδ on the interval Ij = (xj −h/2, xj +h/2).
For the critical point xj = 0, that approach yields the weight

1√
2πδ

∫ h/2

−h/2
e−

x2
2δ2 dx = 2√

2πδ

∫ h/2

0
e−

x2
2δ2 dx = 2√

π

∫ h

2δ
√

2

0
e−y

2 dy = erf
(

h

2δ
√

2

)
.

For any other discretization point xj > 0 follows

1√
2πδ

∫ xj+h/2

xj−h/2
e−

x2
2δ2 dx = 1√

π

∫ xj+h/2
δ
√

2

0
e−y

2 dy − 1√
π

∫ xj−h/2
δ
√

2

0
e−y

2 dy

=1
2

(
erf
(
xj + h/2
δ
√

2

)
− erf

(
xj − h/2
δ
√

2

))
=1

2

(
erf
(−2R+ (2j + 1)h

2δ
√

2

)
− erf

(−2R+ (2j − 1)h
2δ
√

2

))
.
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(a) Composite trapezoidal rule
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(b) Representation with rectangles of
height 1

2 (Γδ(xi)+Γδ(xi+1)) and width
h.

−4 −2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

(c) Representation with rectangles of
height Γδ(xi) and width h or h/2 for
|xi| 6= R or |xi| = R, respectively.
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(d) Composite midpoint rule for the inter-
val I.

Figure 5.1.: Discretization of the Gaussian kernel using the composite trapezoidal rule on
Ω, (a)–(c), and the composite midpoint rule on I, (d), with R = 3, n = 11,
h = 0.5 and δ = 1. The approximations shown in (a)–(c) are equivalent,
but (c) illustrates the transition from the composite trapezoidal rule to the
composite midpoint rule best. The first and last row of the resulting linear
system corresponds to the first and last rectangle in (c). Their elimination then
leads to the composite midpoint rule visualized in (d).
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(a) δ = 1
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(b) δ = 0.5
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(c) δ = 0.25
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(d) δ = 0.125

Figure 5.2.: Discretization of the Gaussian kernel using the composite midpoint rule on I
with R = 3, n = 11, h = 0.5 and decreasing values of δ.

We receive the same weights for xj < 0 and finally, we obtain the discretization scheme∫
I
u(z)Γδ(z − xi) dz ≈ u(xi) erf

(
h

2δ
√

2

)
+

n∑
j=1
j 6=i

u(xj)
1
2

(
erf
((2|j − i|+ 1)h

2δ
√

2

)
− erf

((2|j − i| − 1)h
2δ
√

2

))
.

(5.25)
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Figure 5.3.: Discretization of the Gaussian kernel using the composite midpoint rule on I
using a finer step size h′ = h/2 in (−2h, 2h) with R = 3, n = 11, h = 0.5 and
δ = 1.

The change of the discretization scheme does not change the order of accuracy.

Lemma 5.18. Both discretization schemes, the midpoint rule presented in Section 5.1 as
well as the alternative discretization scheme given by Equation (5.25), result in second order
accuracy. The errors EM and Eerf differ only by constants

CM = max
x∈I
|(u(x)Γδ(x− xi))′′|

and
Cerf = max

x∈I
|u
′′(x)√
2πδ
|.

Proof. We calculate the error EM produced by the midpoint rule

EM =
∫ R−h/2

−R+h/2
u(x)Γδ(x− xi) dx− h

n∑
j=1

u(xj)Γδ(xj − xi).

First, we calculate the discretization error for each subinterval Ij by using the Taylor expan-
sion of u(x)Γδ(x− xi) around xj ,∫

Ij

u(x)Γδ(x− xi) dx

=
∫
Ij

u(xj)Γδ(xj − xi) + (x− xj)
(
u(xj)Γδ(xj − xi)

)′ + (x− xj)2

2
(
u(ξ)Γδ(ξ − xi)

)′′ dx
=hu(xj)Γδ(xj − xi) +

∫
Ij

(x− xj)2

2
(
u(ξ)Γδ(ξ − xi)

)′′ dx,
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with ξ ∈ Ij depending on x. Note that
∫
Ij

(x − xj) dx = 0, due to the antisymmetry of
(x− xj) in Ij . Thus, we have for the interval Ij the estimate

‖
∫
Ij

u(x)Γδ(x− xi) dx− hu(xj)Γδ(xj − xi)‖

≤1
2‖
∫
Ij

(x− xj)2(u(ξ)Γδ(ξ − xi))′′ dx‖

≤CM6 ((xj + h

2 − xj)
3 − (xj −

h

2 − xj)
3)

=CM
24 h3,

with CM = maxx∈I |(u(x)Γδ(x− xi))′′|. The discretization error for the interval I is then

‖
∫ R−h/2

−R+h/2
u(x)Γδ(x− xi) dx−

n∑
j=1

hu(xj)Γδ(xj − xi)‖

≤‖
n∑
j=1

∫ xj+h/2

xj−h/2
u(x)Γδ(x− xi) dx− hu(xj)Γδ(xj − xi)‖

=
n∑
j=1

CM
24 h3 = CM

24 nh3

= n

n+ 1
2RCM

24 h2 = O(h2).

Now, we estimate the error Eerf of the alternative discretization scheme

Eerf =
∫ R−h/2

−R+h/2
u(x)Γδ(x− xi) dx−

n∑
j=1

u(xj)
∫ xj+h/2

xj−h/2
Γδ(x− xi) dx.

Again, we start with the calculation of the discretization error for each subinterval Ij . This
time we perform the Taylor expansion around xj only on u,

∫
Ij

u(x)Γδ(x− xi) dx

=
∫
Ij

u(xj)Γδ(x− xi) + (x− xj)u′(xj)Γδ(x− xi) + (x− xj)2

2 u′′(ξ)Γδ(x− xi) dx

=u(xj)
∫
Ij

Γδ(x− xi) dx+ u′(xj)
∫
Ij

(x− xj)Γδ(x− xi) dx+

+
∫
Ij

(x− xj)2

2 u′′(ξ)Γδ(x− xi) dx,
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with ξ ∈ Ij depending on x. For the interval Ij , we have the estimate

‖
∫
Ij

u(x)Γδ(x− xi) dx− u(xj)
∫
Ij

Γδ(x− xi) dx‖

≤|u′(xj)Γδ(0)
∫
Ij

(x− xj) dx|+ 1
2‖
∫
Ij

(x− xj)2u′′(ξ)Γδ(x− xi) dx‖

≤1
2‖
∫
Ij

(x− xj)2u′′(ξ)Γδ(0) dx‖

≤Cerf6 ((xj + h

2 − xj)
3 − (xj −

h

2 − xj)
3)

=Cerf
24 h3,

with Cerf = maxx∈I |u′′(x)|Γδ(0) = maxx∈I |u
′′(x)√
2πδ |. Thus, the discretization error for the

interval I is

‖
∫ R−h/2

−R+h/2
u(x)Γδ(x− xi) dx−

n∑
j=1

u(xj)
∫ xj+h/2

xj−h/2
Γδ(x− xi) dx‖

=‖
n∑
j=1

∫ xj+h/2

xj−h/2
u(x)Γδ(x− xi) dx− u(xj)

∫ xj+h/2

xj−h/2
Γδ(x− xi) dx‖

≤
n∑
j=1

Cerf
24 h3 = Cerf

24 nh3

= n

n+ 1
2RCerf

24 h2 = O(h2).

We conclude that both discretization schemes result in second order accuracy.

The alternative discretization scheme yields the Toeplitz matrix T erfn with coefficients

terf0 = 1− erf
(

h

2δ
√

2

)
,

terfj = −1
2
(

erf
((2j + 1)h

2δ
√

2

)
− erf

((2j − 1)h
2δ
√

2

))
,

terf−j = terfj ,

(5.26)

with j = 1, . . . , n− 1. The generating function g(n)
erf of the matrix T erfn is given by

g
(n)
erf (x) = 1−

(
erf
(

h

2δ
√

2

)
+
n−1∑
j=1

(
erf
((2j + 1)h

2δ
√

2

)
− erf

((2j − 1)h
2δ
√

2

))
cos(jx)

)
.

Tian and Du propose similar discretization schemes in Tian and Du (2013) for nonlocal
diffusion equations. Those equations involve symmetric nonlocal kernels γδ(x, y) : Ω×Ω→ R
with compact support, i.e., γδ(x, y) = γδ(y, x) and γδ(x, y) = 0 if y /∈ Bδ(x). They show the
convergence of the discrete schemes to the nonlocal problem as h→ 0 with δ fixed and the
convergence of the discrete schemes to the corresponding local problem as h and δ vanish.
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5.4 Numerical Results
The results of our numerical experiments support the analytic results from Part II. We
show the eigenvalue distribution of Dn from Equation (5.8) for decreasing values of δ in
comparison to the eigenvalue distribution of the discretized Laplace operator. Then we
plot the smallest and largest eigenvalue with the minimum and maximum of the generating
function as a numerical illustration of Lemma 5.8. We then present the spectral properties
of the preconditioned systems. We conclude this section with numerical experiments on
the alternative discretization scheme (5.25). To be able to compare this scheme with the
midpoint rule scheme, we apply it to Merton’s model, since a semi-closed form solution
exists.

Analysis of the Spectrum
For the discretization of the Laplace operator we use the second order central difference
scheme,

vxx(xi) ≈
1
h2 (vi+1 − 2vi + vi−1),

and obtain the system ∆nv = 0 as the discretization of − δ2

2 vxx = 0. The matrix ∆n is a
symmetric tridiagonal matrix with constant diagonal δ2

h2 and constant subdiagonals − δ2

2h2 .
It is well known, that the eigenvalues λk of the Laplace operator with Dirichlet boundary
conditions are given by λk = k2π2 and the spectrum σ(−∆) ⊂ [π2,∞) is unbounded. For
∆n we have λk = 2δ2

h2 sin2(kπh2 ) and σ(−∆n) ⊂ [0, δ2

R2 (n+ 1)2].
The distribution of the eigenvalues of I −Dn along with its generating function 1− g(n)

D

is shown in Figure 5.4 for decreasing values of δ next to the eigenvalue distribution and
the generating function of − δ2

2 ∆n. For larger values of δ the eigenvalues of I −Dn cluster
around 1, e.g., for δ = 1 there are only three exceptions, whereas the eigenvalue distribution
approaches the eigenvalue distribution of − δ2

2 ∆n for decreasing values of δ. Moreover, the
plots illustrate that Equation (5.19) is a good estimate for the given parameter set even for
δ > h√

2 ln 2 .
Figure 5.5 shows the improvement of estimate (5.19) over (5.14) for small values of δ,

but also shows the advancement of (5.14) for larger values of δ. As a takeaway from this
experiment, we consider the estimate

σ(Tn) ⊂ 3
2 + λτ

[
max

{
−c, 1− h√

2πδ
− erf

((n− 1)h√
2δ

)}
, 1
]
, (5.27)

which is independent of δ. Although Equation (5.19) is only valid if δ ≤ h√
2 ln 2 , Table 5.1

indicates a negligible deviation if δ > h√
2 ln 2 . The table shows the corresponding values for

Dn since the values for Tn are scaled by τ = T/m and therefore less meaningful.
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(a) I −Dn with δ = 1
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(b) I −Dn with δ = 0.5
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(c) I −Dn with δ = 0.1
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(d) I −Dn with δ = h
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(e) I −Dn with δ = h/
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Figure 5.4.: Generating function (green) and eigenvalues of I − Dn (blue), (a)–(e), with
different values of δ and generating function (green) and eigenvalues of − δ2

2 ∆n

(red), (f), with δ = h/
√

2; n = 1000, m = 10 and T = 1 in all six plots. The
black dashed lines mark the interval [−c, 1] with c from Lemma 5.8.
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Figure 5.5.: Eigenvalue spectrum ofDn, (a), and Tn, (b), (blue cross), as well as the minimum
and maximum of the corresponding generating functions g(n)

D and g(n) (red
circle), the estimates from Lemma 5.8 and Corollary 5.9, (red cross), and the
estimates in Equation (5.14) (green circle); with n = 1000, m = 10 and T = 1
in both plots.
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5.4.
N
um

ericalR
esults

δ g
(n)
D,min 0 min g(n)

D (x) min gD(x) eig(Dn)1 eig(Dn)n max gD(x) max g(n)
D (x) 1 + c g

(n)
D,max

1.000 -0.68132 0 -1.317e-02 -9.889e-15 -1.152e-16 0.36886 1.00000 0.68245 1.00000 0.68212

0.500 -0.95327 0 -1.053e-02 -4.542e-15 -2.006e-16 0.61586 1.00000 0.95439 1.00000 0.95486

0.100 -0.99601 0 -1.820e-15 -1.823e-15 -2.280e-16 0.96113 1.00000 1.00000 1.00000 1.00399

0.010 -0.96015 0 -3.192e-16 -3.192e-16 -3.338e-16 0.99952 1.00000 1.00000 1.00000 1.03985

h -0.60106 0 0.01438 0.01438 0.01438 1.00000 1.00000 1.00000 1.00000 1.39894
h√
2 -0.53028 0 0.05689 0.05689 0.05690 1.00000 1.00000 1.00000 1.00000 1.46972

h√
2 ln 2 -0.43581 0 0.16961 0.16961 0.16961 1.00010 1.00010 1.00010 1.00010 1.56419
h

2
√

2 ln 2 -0.06056 0 0.82204 0.82204 0.82204 1.05690 1.05690 1.05690 1.05856 1.93944

Table 5.1.: Smallest and largest eigenvalue of Dn (eig(Dn)1 and eig(Dn)n), minimum and maximum of the corresponding
generating function (min g(n)

D (x) and max g(n)
D (x)) and of a modified generating function with infinite sum

(min gD(x) and max gD(x)) as well as upper and lower bounds of the eigenvalue spectrum estimates given by
Equation (5.19) (0 and 1 + c with c from Lemma 5.8) and by Equation (5.14) adjusted to Dn (g(n)

D,min and
g

(n)
D,max), each for different values of δ and with n = 1000, m = 10 and T = 1. Equation (5.19) seems to hold for
δ ∈ ( h√

2 ln 2 , h], although we have no theoretical proof. For δ > h the smallest eigenvalue of Dn is only slightly

below 0. For δ > 1
2 the table shows that g(n)

D,max is more accurate than 1 + c as an estimate for the upper bound
of σ(Dn).
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5. The Gaussian Kernel in a Partial Integro-Differential Equation

Preconditioning
In numerical experiments Ye shows that a tridiagonal preconditioner that only acts on the
differential terms of the Merton model outperforms Strang’s preconditioner with respect to
the iteration number of the preconditioned CG method. The previous results show, that
the spectrum of Tn is evenly distributed for decreasing values of δ. Consequently we assume
that preconditioning is crucial for small values of δ.
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1 1.02 1.04 1.06

δ = h

2
√

2 ln(2)

δ = h√
2

δ = h√
2 ln(2)

δ = h

δ = 0.01
δ = 0.10
δ = 0.50
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(c) ( δ
2

2 ∆n)−1Tn

Figure 5.6.: Eigenvalue spectrum of preconditioned system with three different precondi-
tioner for different values of δ; n = 1000, m = 10 and T = 1.

The eigenvalue spectra of the preconditioned systems T̂−1
n Tn, T̄−1

n Tn and ( δ2

2 ∆n)−1Tn are
plotted in Figure 5.6. We see the expected clustering around 1 except few outliers in the
spectrum of the Strang preconditioned systems. For δ < h the tridiagonal preconditioner
also clusters the eigenvalues around 1, however, the eigenvalues remain distributed. If we
use δ2

2 ∆n as a preconditioner, the eigenvalue spectrum gets worse compared to that of Tn
for δ > h√

2 ln 2 and we omit the corresponding plots, but for δ < h√
2 ln 2 the eigenvalues

approaches 1 from the right. Nonetheless, the eigenvalue spectrum has the largest distance
between the smallest and largest eigenvalue compared to Strang’s preconditioner and the
tridiagonal preconditioner.

Alternative Discretization Scheme
In our last numeric experiment we compare the midpoint rule for the numerical integration
from Section 5.1 with the alternative scheme given by Equation (5.25). We apply both
schemes to the Merton model (5.1) using the same discretization for the time and spatial
derivatives. We use the Merton model, because a semi-closed form solution is available:

∞∑
k=0

e−λητ (λητ)k

k
VBS(S, σk, rk, τ,K), (5.28)
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with the call option’s Black-Scholes price VBS (cf. Black and Scholes, 1973), price S, strike
price K, time to maturity τ = T − t, σk =

√
σ2 + kδ2/τ , rk = r − λ(η − 1) + k ln η/τ and

η = e
δ2
2 . The derivation of pricing formula (5.28) can be found in (Joshi, 2003, Chapter

15.3). The differences between the numerical solutions and the semi-closed form solution
are shown in Figure 5.7.
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Figure 5.7.: Difference between discretization scheme from Section 5.3 and pricing formula
(5.28) (blue) and difference between discretization scheme from Section 5.1 and
pricing formula (5.28) (red) for different values of δ with parameters n = 128,
m = 10, T = 1, K = 1, r = 0.07, σ = 0.01, λ = 1; the infinite sum in
Equation (5.28) has been cut off at k = 100. The alternative discretization
scheme seems to be more accurate for decreasing values of δ. The solutions
obtained with the standard discretization scheme tend to be smaller than the
semi-closed form solution whereas the solutions received by the alternative
discretization scheme tend to be larger.
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Conclusion

The aim of Part I was to derive necessary optimality conditions for the control of a class of
semilinear partial integro-differential equations. Therefore, we introduced a PIDE system
as it appears in an application in biology. We considered a PIDE-constrained optimization
problem, where the objective function is a tracking type functional and the controls are
certain time-dependent adhesion control functions. In the sequel, we first derived necessary
optimality conditions for semilinear evolution equations in Banach spaces and extended our
work that has been published in Frerick et al. (2015). The key result of Part I is Theorem 3.9.
From that we deduced the optimality conditions for an optimal point of the PIDE system
which include adjoint differential equations. These are also of a partial integro-differential
equation type which run backwards in time with final conditions coming from the tracking
type of the objective function. While we proved the existence and uniqueness of a solution
of the PIDE system, the existence of optimal control functions is left for future research.
Possible approaches are provided in Tröltzsch (2009) and Hinze et al. (2009).

The major result of Part II is Lemma 5.8, which provides a sharp estimate of the eigenvalue
spectrum of the convolution with the Gaussian kernel. Numerical results on the eigenvalue
spectra of different preconditioned systems correspond to the iteration number of the pre-
conditioned conjugate gradient method shown in Table 5.2.

δ iter Tn iter T̂−1
n Tn iter ( δ2

2 ∆n)−1Tn
0.5 15 11 277
0.25 26 13 214
0.05 102 13 66

Table 5.2.: Iterations for solving Equation (5.5) using the cg-Method and the preconditioned
cg-Method with Strang’s preconditioner and the discretized Laplace operator as
preconditioner for different values of δ; n = 500, m = 10 and T = 1.

Further, we proposed an alternative discretization scheme for the convolution with the
Gaussian kernel to overcome numerical errors in case of small values of δ. The numerical
results are encouraging. A thoroughful analysis of that discretization scheme is of great
interest and in the direction of future research.
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