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German Summary

Die Wachstumstheorie ist ein Zweig der Volkswirtschaftslehre, der untersucht,
welche Faktoren wie und wie stark die wirtschaftliche Entwicklung einer Ökonomie
beeinflussen. Ein viel beachtetes neoklassisches Wachstumsmodell ist das Ramsey-
Cass-Koopmans Modell, welches untersucht, wie viel des Einkommens der konsum-
ierende Sektor einer Ökonomie sparen sollte, um den maximalen Gesamtnutzen
zu erzielen. In diesem Modell wurde ursprünglich unterstellt, dass sich Produk-
tionsfaktoren nur durch die Zeit bewegen können, Kapital also durch die Spar-
entscheidungen eines Haushaltes in die Zukunft transferiert werden kann. Mit
dem Aufkommen der Geographical Economics wurde diese Annahme dahingehend
erweitert, dass auch Flüsse der Produktionsfaktoren durch (geographischen) Raum
modelliert werden.
Diese Arbeit befasst sich mit der Entwicklung und Analyse einer neuen Kapital-
akkumulationsgleichung für das räumliche Ramsey Modell. Kapitalflüsse durch
den Raum werden durch einen nichtlokalen Diffusionsoperator modelliert, welcher
Sprünge des Kapitalbestandes von einem Punkt zu einem anderen zulässt und
die Umverteilung von Heterogenitäten verzögert. Darüber hinaus wird ein endo-
gener Produktivitäts-Produktions-Operator vorgestellt, welcher den technologis-
chen Fortschritt einer Ökonomie darstellt. Dabei ist dieser abhängig von der Zeit
und der Verteilung des Kapitals im Raum.
Das resultierende mathematische Modell ist ein Optimalsteuerungsproblem unter
einer parabolischen partiellen Integro-Differentialgleichung, Anfangs- und Rand-
wertbedingungen sowie Boxconstraints an Zustands- und Steuerungsvariable. Im
Rahmen dieser Arbeit wird dieses Modell zum einen auf einem unbeschränkten und
zum anderen auf einem beschränkten Ortsgebiet untersucht. Beide Male wird ein
endlicher Zeithorizont betrachtet. Die Hauptresultate dieser Arbeit sind die Ex-
istenzbeweise einer schwachen Lösung der partiellen Integro-Differentialgleichung
unter einer gemischten lokal-nichtlokalen Diffusion, sowie einer optimalen Steuerung
im Modell auf unbeschränktem Ortsgebiet und der Nachweis der Existenz einer
schwachen Lösung der rein nichtlokalen Kapitalgleichung im nichtlokalen räum-
lichen Ramsey Modell mit endogenem Produktivitätswachstum auf beschränktem
Ortsgebiet.
Die Arbeit endet mit der numerischen Umsetzung des neuen nichtlokalen Wachs-
tumsmodells und einer ökonomischen Auswertung.
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English Summary

‘How much of it’s income should a nation save?’ (Ramsey, 1928, p.543)

Economic growth models are of huge interest in macroeconomic research. They
aim to determine how long-run economic growth, which can be measured for exam-
ple in the percentage change of various indicators such as gross domestic product
(GDP) or GDP per capita, is generated, analyze how it can last, and in that way
explain the observable differences in output levels and growth rates across different
countries or different times. Especially in the Neoclassical Growth Theory which
was developed in the last century, three factors are assumed to be responsible for
economic growth: capital, labor, and technology. Most neoclassical growth models
are equilibrium models and claim that adjusting the three growth driving factors
appropriately, a temporary equilibrium can be achieved.
In the last decades, a new trend has significantly changed the economic view on
economic growth, namely the Geographic Economics. In these models, the accu-
mulation of growth driving factors is not considered as a purely time-depending
process anymore, but also spatial agglomeration effects are taken into account.

In this thesis, we focus on one seminal neoclassical growth model, the Ramsey-
Cass-Koopmans model. As a prime example of a neoclassical growth model, it has
become a corner stone in macroeconomics since its development in 1928. Though
originally only time-depending, it also has been spatialized in the previous years.
This spatial Ramsey model analyzes which distribution of capital and labor over
time and space maximizes the welfare of an economy.
Especially when production factors are not only mobile through time, but also
through space, when the optimal saving decisions in the consuming sector of an
economy are determined within the accumulation process itself, or when endoge-
nous technology change is considered, these models become quite complex - from
an economic and mathematical point of view.
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In this monograph, we develop a new spatial Ramsey model, including nonlocal
diffusion effects in the capital accumulation equation to describe the mobility of
this production factor across space. Moreover, we consider an endogenous produc-
tivity growth which is mainly driven by spillover effects in time and the amount
of capital in a location and the respective surrounding. The resulting Ramsey
equilibrium is given as the solution of an optimal control problem with a convex
objective function under a semilinear parabolic partial integro-differential equa-
tion. We consider the problem on bounded and unbounded spatial domains. Both
cases are important for the application, since boundaries and interactions between
different countries always affect economies and hence economic growth.

This thesis can be divided into three parts. In the first part, we start with an
introduction to economic growth models in general in Chapter 2.1. Here, we give
a short historical overview on economic growth models and differentiate the clas-
sical from the neoclassical growth theory. Afterwards, we introduce the Ramsey-
Cass-Koopmans model in discrete time, which is one of the oldest versions of this
model. As in many other equilibrium models, Ramsey considers an economy with
two sectors, namely the producing sector, consisting of the firms, and the consum-
ing sector, which is composed by the households. The seminal idea in Ramsey’s
work is the lifetime utility maximization approach in the consuming sector. Like
other neoclassical growth models, also in his model firms are assumed to tend to
maximize their gain in every point in time. Groundbreaking in economic growth
theory was his idea of an endogenous saving rate that directly affects the capi-
tal distribution over time and that is determined via the consumers’ ambition to
maximize their utility over all points in time. Though already rather challenging
from an economic point of view due to this endogenous character of the model, the
equilibrium is given as solution of a nonlinear optimization problem with equality
constraints when time is considered in discrete periods, or as an optimal control
problem under an ordinary differential equation, if time is continuous.
The Ramsey model is quite abstract and universal which gives rise to several more
specific applications. In Chapter 2.3, we summarize several modifications of the
Ramsey model, such as including technological progress in the model, or to con-
sider a set of heterogeneous agents to motivate the spatial extension.
In Chapter 3, we give an introduction to the Geographic Economics which deal
with spatial extensions of economic growth models. After providing all important
mathematical background information to analyze the spatial models according to
well-posedness in Chapter 3.2, we follow the derivation of the common spatial
Ramsey model according to Brito (2001) in Chapter 3.3. In this local spatial Ram-
sey model, as we will call it throughout this thesis, capital mobility across space
is modeled as Laplace operator. This (local) diffusion operator implies an infinite
adjustment speed of the production factor and denies any impact of the welfare of
areas ‘far away’ on the capital stock in a respective location.
To our knowledge, we are the first who impeach the validity of this assumption.
In Chapter 3.4, we derive a new extension of the spatial Ramsey model, includ-
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ing nonlocal diffusion effects and endogenous productivity growth. Such nonlocal
diffusion effects are modeled as integral operators which describe slower adjust-
ment speed in the diffusion process and also jumps. We assume that technological
progress, which we identify with an increase of productivity, rises in time and
moreover depends on the capital stock in a respective location and the welfare of
the surrounding. The equilibrium in this nonlocal spatial Ramsey model is finally
given as the solution of an optimal control problem with a quite general, convex
objective function under a semilinear parabolic partial integro-differential equa-
tion.
Although Ramsey himself considers an infinite time horizon in his model which is
convenient in economic terms, we do have to restrict the time horizon to a finite
terminal date in order to derive some existence results. However, we introduce a
terminal condition, that captures the infinite time horizon character of the Ramsey
model, if chosen properly.

In the second part of this thesis, which is mainly the fourth chapter, we analyze
the nonlocal spatial Ramsey model with endogenous productivity growth over an
unbounded spatial domain. Unbounded spatial domains are of special interest in
economic growth theory as they can be interpreted as one closed economy that
does not interact with any other economy. There is no need to introduce any
boundary conditions which also affect the optimal capital and labor distribution.
In Chapter 4.1, we derive an abstract existence result of a weak solution of a
linear but homogeneous partial integro-differential equation with a local-nonlocal
diffusion operator. Then, we apply this result to show existence of a solution in
weak sense of the capital accumulation equation in the nonlocal Ramsey model
with endogenous productivity growth. Here, we exploit the Lipschitz continuity
assumption on the production function and the uniform boundedness of the pro-
ductivity operator to show that the solution operator, that maps a right-hand side
to the solution of such a PIDE, is a contraction on small time intervals. Since
we only consider a finite time horizon in our model, we can construct the weak
solution on the whole time-space cylinder after finitely many steps.
After we stated the existence result, we study the weak solution with respect to
some stronger regularities. In the one-dimensional, spatially unbounded setting,
we are indeed able to prove the overall boundedness and continuity of the weak
solution in time and space. Here, we apply a result that guarantees the continuity
of a weak solution of a semilinear parabolic differential equation under some reg-
ularity assumptions on the initial condition on compact subsets of the domain of
interest and extend it to the whole unbounded space domain.
Following this result on the regularity of the weak solution, we prove the exis-
tence of the equilibrium in the nonlocal spatial Ramsey model with endogenous
productivity growth in Chapter 4.2. We follow a common technique to prove the
existence of an optimal control under a semilinear parabolic differential equation
on bounded spatial domains and exploit the property of the kernel function in the
nonlocal integral operator to vanish towards the edges. In this way, this kernel
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induces very naturally a weight and allows us to work in ‘ordinary’ Sobolev spaces
instead of weighted function spaces that are usually considered in the context of
unbounded space domains. The existence of an optimal control in our growth
model over unbounded spatial domains is one of the main results in this thesis.

The last part of this monograph is provided in Chapters 5 and 6. Here, we an-
alyze the nonlocal spatial Ramsey model with endogenous productivity growth
over a bounded spatial domain with respect to the existence of a weak solution
and implement the capital accumulation equation and the optimal control problem
numerically. In this setting, we have to define some boundary conditions which
are given as volume constraints acting on a set with nonzero volume in contrary
to ordinary boundary conditions that are only defined on the surface of the set
of interest. These volume constraints describe the interaction of the considered
economy with the surrounding. Since the economy in this setting is still bounded
but not closed any more, the transitional dynamics of the solution are important
application results in these chapters. Moreover, we study how pure nonlocal diffu-
sion affects the capital accumulation in contrast to the previous chapter, where we
considered a combined local-nonlocal diffusion. Analyzing the model with respect
to the existence of a weak solution of the capital accumulation equation, we need
a different theory in order to derive some existence results, since the considered
capital equation, we consider in this chapter, is a pure integral equation with differ-
entiation only in time direction. Hence, we begin Chapter 5 with an introduction
to the nonlocal vector calculus by Du et al. (2012a) in Section 5.1. This theory
provides some important results such as the nonlocal version of Green’s identities
and allows us to apply an existence result for a weak solution of a linear nonlocal
differential equation of parabolic type to our semilinear case.
Modeling the capital accumulation over space as a pure nonlocal diffusion process
is convenient for the application. However, the lack of derivatives in space direc-
tion in the capital accumulation equation leads to weak regularities of the weak
solution. We point out that we can increase the regularity of the weak solution in
the interior of the set of interest when we consider higher regular initial conditions
and inhomogeneities, however we do not gain any smoothness across the boundary.
This makes it very difficult to prove the existence of a Ramsey equilibrium also
in the spatially bounded case, or an optimal control respectively. We will further
discuss this challenge in Chapter 5.3.

Nevertheless, we solve the nonlocal spatial Ramsey model with endogenous pro-
ductivity growth on bounded spatial domains numerically and construe the results.
We introduce two approaches to implement an optimal control problem, namely
the first discretize, then optimize and the first optimize, then discretize approach.
But first of all, we illustrate the impact of the nonlocal diffusion and the produc-
tivity operator on the capital accumulation process in time and space by solving
the integro-differential equation in Chapter 6.2.
In Chapter 6.3, we consider the numerical solution of the optimal control problem.
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We implement the first discretize approach using a Crank-Nicolson scheme and a
Gaussian quadrature rule and interpret the solutions in Section 6.3.1.
We do not implement the first optimize approach, but analyze the Ramsey model
with respect to Fréchet differentiability and derive the necessary first order con-
ditions in Section 6.3.2. These are given as a system of a semilinear and a linear
inhomogeneous and nonlocal integro-differential equations.
We conclude this monograph with a comparison of the numerical solutions of the
common local spatial model with the ones of our new nonlocal modification in
Chapter 6.4.
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CHAPTER 1

Introduction and Outline

’Individual wealth [...] varies greatly within countries. Indeed at the sub-national
level, individual wealth can vary across provinces, regions, cities and urban and

rural classifications.’ (Morrissey et al., 2011, p.80)

The Brexit may be one of the most revolutionizing decisions in the European Union
since its foundation. Once founded as a customs union, the EU of today is a

Figure 1.1: Geographical Differences in
Brexit Vote, Mirrorme22
et al. (2016)

political and economic union of currently 28 mem-
ber states. This economic and political coalition
has a huge impact on the economy and the welfare
of the participating countries. Considering the re-
sults of the Brexit vote, as illustrated in Figure 1.1,
the almost strict disjunction between Brexit sup-
porters located in the south and Brexit opponents
in the north seems rather exceptional. Actually,
this strict line exists in Britain not only with re-
spect to the political attitude. Indeed, the United
Kingdom is divided into north and south in many
different fields which is a unique feature among the
north-western European countries, at least accord-
ing to Gordon Brown, the former Prime Minister
of the UK (c. Brown, 2016). Although the
discussion on the gap between incomes, employ-
ment rates, education standards, and the health
system in northern and southern Britain is not
new (cf. Armstrong and Riley, 1987, Green, 1988,
and Martin, 1988), the recent British paper press
reveals that this inequality is still an up-to-date

topic (cf. ‘Britain’s North-South Divide: How it affects education, economy and
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1 Introduction and Outline

gender pay-gap?’, Barnett, 2016).

This North-South Divide is not in line with the neoclassical competitive equilib-
rium theory (cf. Blackaby and Manning, 1990, p.1), where capital and labor flows
should delete such disparities over time. Such neoclassical competitive equilibrium
models appear in the economic growth theory, which tries to understand how eco-
nomic growth, which has to be understood as the increase of the gross domestic
product (GDP) or GDP per capita, is generated and how it can last. The neo-
classical equilibrium models have become a working horse in this macroeconomic
field, due to their abstract, universal structure.
One neoclassical growth model that is widely used is the Ramsey-Cass-Koopmans
model, for short Ramsey model, which can be traced back to Ramsey (1928) and
was further developed by Cass (1965) and Koopmans (1965), independently from
each other. In contrast to others, the Ramsey model suggests not only an opti-
mization intension in the producing sector of an economy, but considers a lifetime
utility maximization approach in the consuming sector as well. The optimal saving
decisions that generate the maximal welfare of an economy are defined endoge-
nously in the so called Ramsey equilibrium, the state in which both optimization
approaches are satisfied and all markets are cleared.
Originally, the flows of capital, labor, and production goods in the Ramsey econ-
omy were modeled only in time. But with the development of the so called New
Economic Geography, spatial extensions of this model have been introduced. In
these spatialized versions, production factors and goods move likewise through
time and space. In the common spatial Ramsey models, going back to Brito
(2001), the mobility of production factors through space is described as a (local)
diffusion. This leads to an even capital and labor (or per capita capital) distribu-
tion across space, independent of the initial capital distribution. Moreover, these
spatial models ignore technological progress which is also a driving factor of eco-
nomic growth. Aldashev et al. (2014, p.14) point out, that the capital equation in
the spatial Ramsey model by Brito (2001) is not appropriate. In addition to that,
most neoclassical growth models do either not consider any heterogeneity at all
or enforce any initial heterogeneity to disappear over time. Neither the Ramsey
model nor its spatial extension are an exception. However, the example of the
UK shows that the Heterogeneity matters for the progress of economic growth and
political decisions, and thus should be taken into account.

In this thesis, we develop a new capital accumulation equation of the spatial Ram-
sey model. We consider a nonlocal diffusion effect that describes the capital mo-
bility across space. In that way, we are able to model jumps of capital stocks and
to preserve heterogeneities in initial capital distributions. Moreover, we introduce
a new productivity-production operator that describes the technological progress
of the considered economy. We claim that the increase of an initial productivity
distribution is exponential in time and depends on the capital distribution in the
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surrounding of a respective location. Both adjustments of the capital equation
in this neoclassical model aim to complete the accumulation process of capital in
time and space, which is mainly driven by the interaction of diffusion and agglom-
eration effects (cf. Camacho et al., 2008), and to take any heterogeneity in an
initial spatial welfare distribution into account.

The outline of this thesis is as follows:

In Chapter 2, we give a short introduction to neoclassical growth models. These
economic models are competitive equilibrium models that determine the market
clearing prices and the optimal allocation of production factors and goods as the
result of the interaction of supply and demand in an economy. In general, these
models consider an economy that is described by two sectors, the producing and
the consuming sector. Neoclassical growth models are characterized by the special
form of the production function that models the producing side of the economy
and of the utility function which describes the consuming sector. These functions
exhibit constant returns to scale and diminishing returns.

We introduce the Ramsey model in discrete time. The Ramsey equilibrium in this
setting is given as the solution of a nonlinear optimization problem,

max
c,k

∞∑
0

βtu(ct)

s.t. kt+1 + δkt − p(kt) = −ct, t = 0, 1, 2...

kt+1, ct ≥ 0, t = 0, 1, 2...

k0 > 0 given.

(1.1)

Based on the economic welfare theorems, the solution of this optimization problem
is indeed the market equilibrium in this economy. We end this chapter with a
short overview on existing applications, where we focus on borrowing constraints,
heterogeneities in the consuming sector, and the modeling of technological change.

We continue the introduction of the economic background of this thesis with a short
presentation of the Geographical Economics in Chapter 3, a field of economic
growth theory that considers mobility of production factors and goods also through
space and not only through time. We focus on the spatial extensions of the Ramsey
model and discuss the capital accumulation equations in these models.
After giving the basic background information on partial differential equations, we
derive the common spatial Ramsey model following Brito (2001). In this spatial
expansion, the Ramsey equilibrium is defined as the solution of an optimal control
problem under a parabolic partial differential equation,

max
k,c
J (k, c) :=

∫ ∞
0

∫
R
U(c(y, t))e−τt−γ|x|dtdy,

3



1 Introduction and Outline

subject to

∂k

∂t
− ∂2k

∂x2
+ δk − Ap(k) = −c on R× R+

lim
x→±∞

∂k

∂x
= 0 in R+

k(·, 0) = k0(·) > 0 in R

k, c ≥ 0 on R× R+

for discount factors τ, γ > 0, a productivity growth factor A which may either
be a constant in R+, or a nonnegative, real valued function in x and/or t, and
a depreciation rate δ > 0. Here, the function k denotes the (per capita) capital
stock of an agent located in x at time t and c stands for the consumption. By R+,
we mean all nonnegative real numbers. We discuss the choice of the infinite time
horizon and an unbounded spatial domain.
The capital accumulation equation in this (local) spatial Ramsey model exhibits
some weaknesses which motivate the definition of a new, nonlocal capital constraint
in the spatial Ramsey model. We give a detailed derivation of our expanded ver-
sion of this equation, introducing a nonlocal diffusion operator and a nonlinear,
nonlocal operator that describes the technological progress in the economy. In
contrast to other models, the productivity operator in our version determines the
technological change endogenously.

In Chapter 4, we analyze the well-posedness of our nonlocal spatial Ramsey model
with endogenous productivity growth for a finite time horizon and on unbounded
spatial domains. The choice of such an unbounded domain is convenient for the
application, since the absence of any boundary conditions allows the analysis of
the economy without any interaction with other economies, or some abstract sur-
rounding.

We show that, under appropriate assumptions, the nonlocal capital accumulation
equation,

kt − L(k) + δk − P(k) = −c on Rn × (0, T )

k(·, 0) = k0(·) > 0 in Rn,

admits a unique weak solution k ∈ W (0, T ) for initial data c ∈ L2(0, T ;H−1(Rn))
and k0 ∈ L2(Rn).
In the setting of an unbounded spatial domain, we define the local-nonlocal diffu-
sion operator L as

4



L(k)(x, t) := α ∆k(x, t) + β

∫
Rn

(k(y, t)− k(x, t))Γε(x, y) dy

for coefficients α, β > 0 and ε > 0, and the kernel as the density function of the
multivariate normal distribution,

Γν(x, y) :=
1√

(2πν2)n
exp

(
−1

2
(x− y)TΣ−1

ν (x− y)

)
for given constants ν ∈ {ε, µ} with 0 < µ < ε and a covariance matrix Σν ∈ Rn×n

with det Σν = ν2n. The nonlocal operator P on the left-hand side describes the
production of the economy and is given as

P(k)(x, t) : = P (k)(x, t) p(k(x, t))

= A0(x) exp

( ∫
Rn φ(k(y, t))Γµ(x, y)dy∫

Rn φ(k(y, t))Γε(x, y)dy + ξ
t

)
p(k(x, t)),

where A0 : Rn → R+ denotes the initial productivity distribution over space, ξ > 0
is a constant, and φ : R → R+ is a continuous function such that the integrals
exist. We will refer to φ as the nominal function.

Moreover, we prove the a priori estimates

‖k‖L2(0,T ;H1(Rn)) + C1‖k‖L∞(0,T ;L2(Rn)) ≤ C2

(
‖c‖L2(0,T ;L2(Rn)) + ‖k0‖L2(Rn) + 1

)
and

‖k‖W (0,T ) ≤ C3(‖c‖L2(0,T ;L2(Rn)) + ‖k0‖L2(Rn) + 1),

for some constants C1, C2, C3 > 0.

One of the main results in this chapter is the proof of the continuity and the es-
sential boundedness of the weak solution. This seminal result enables us to finally
show the existence of an optimal control of the nonlocal spatial Ramsey model on
unbounded spatial domains, which yields the existence of a competitive market
equilibrium.

Since most economies are not completely autarkic, it is also of interest to study the
nonlocal Ramsey model with endogenous productivity growth on a bounded spatial
domain Ω. This is done in Chapter 5. In this setting, we need to define so called
volume constraints which model the interaction of the considered economy with its
surrounding. We consider a pure nonlocal diffusion model, hence do not include
any local diffusion operator in the capital accumulation equation. We truncate
the action of the kernel function Γν to a ν-surrounding of a respective location of
interest, which enables us to embed our model in the nonlocal vector calculus of
Du et al. (2012a). For initial data c ∈ L2(0, T ;V ′c (Ω)) and k0 ∈ Vc(Ω), we derive an
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1 Introduction and Outline

existence result of a weak solution k ∈ C(0, T ;Vc(Ω ∪ ΩI)) ∩H1(0, T ;Vc(Ω ∪ ΩI))
of the PIDE constraint. Moreover, for a constant C∞ > 0, we show the a priori
estimate

‖k‖H1(0,T ;Vc(Ω∪ΩI)) ≤ C∞
(
‖c‖L2(0,T ;L2(Ω)) + ‖k0‖L2(Ω) + 1

)
.

In the last chapter of this thesis, Chapter 6, we implement the nonlocal spatial
Ramsey model with endogenous productivity growth as introduced and analyzed
in Chapter 5. We introduce a quadrature-based finite difference method to dis-
cretize the PIDE and compare it to a finite element solution. We point out the
agglomerative effect of the productivity-production operator and the ability of the
nonlocal diffusion operator for preserving heterogeneities and discontinuities in the
initial data.
In addition to that, we implement the first discretize, then optimize approach to
solve the whole optimal control problem and discuss the Fréchet differentiability
of the nonlinearity and the state-solution operator in order to derive the necessary
first order conditions.
We complete this chapter and this monograph with a detailed comparison of the
numerical solution of the new, nonlocal spatial Ramsey model with endogenous
productivity growth and of the local model by Brito (2001).
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CHAPTER 2

Fundamentals of Neoclassical Growth Theory

‘The process of economic growth and the sources of differences in economic
performance across nations are some of the most interesting, important, and

challenging areas in modern social science.’ (Acemoglu, 2009, p.XV)

The Ramsey model is a widely used neoclassical growth model, which aims in
analyzing how economic growth is generated and under what circumstances it can
be persistent. In this chapter, we provide a short introduction to the (neoclassical)
economic growth theory in Section 2.1. Afterwards, we derive the equilibrium
problem of the Ramsey model in discrete time in Section 2.2 in order to explain
the dynamic and endogenous character of the model. We end this introduction
with a summary of some interesting applications and modifications of the original
model in Section 2.3.

2.1 Economic Growth and Equilibrium Models

Economic growth is a dynamic process where output, capital, consumption, and
population patterns change over time. Of course, there is a great interest in un-
derstanding how growth, which is to be understood as the increase of economic
quantities such as income per capita, is generated and under which conditions it is
persistent (cf. Acemoglu, 2009). The analysis of differences and interdependencies
across countries relates to this field of interest (cf. Barro and Sala-i Martin, 1995,
Acemoglu, 2009). Theoretical models have been developed that explain economic
growth and in this way, give not only insight, but also policy advice to fields like
development economics.

The origin of the modern growth theory may go back to the late 1770th, when
Adam Smith published his outstanding work about ‘The Wealth of Nations’ (Smith,
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2 Fundamentals of Neoclassical Growth Theory

1776). In the following two centuries, many other impressive economists like Ri-
cardo (1891), Young (1928), Schumpeter (1939), and Knight (1944) further devel-
oped Smiths’ theories and expanded the so called classical growth theory, which
can be characterized mainly by the ground-breaking assumptions of ‘competitive
behavior and equilibrium dynamics, the role of diminishing returns and its relation
to the accumulation of physical and human capital, the interplay between per capita
income and the growth rate of population, the effects of technological progress in the
form of increased specialization of labor and discoveries of new goods and methods
of production, and the role of monopoly power as an incentive for technological
advance’ (Barro and Sala-i Martin, 1995, p.9).

The turning point from classical to neoclassical growth theory was reached in the
1950th, when Solow (1956) and Swan (1956) independently developed a relatively
simple growth model, an equilibrium model that also took productivity growth
and savings as economic growth driving factors into account. ‘The key aspect of
the Solow-Swan model is the neoclassical form of the production function, a speci-
fication that assumes constant returns to scale, diminishing returns to each input,
and some [...] elasticity assumptions’ (Barro and Sala-i Martin, 1995, p.10). In
this model, economic growth is driven by four factors: labor, capital, savings, and
technology (or productivity). The saving rate in the consuming sector is assumed
to be given exogenously. The purpose of the Solow-Swan model is to detemine the
appropriate factor constellation that generates a so called (economic) equilibrium.

Equilibrium models are literally workhorses in macroeconomics. ‘Based on the
Walrasian tradition, [...] equilibrium models describe the allocation of resources in
a market economy as the result of the interaction of supply and demand, leading to
equilibrium prices. The building blocks of these models are equations representing
the behavior of the relevant economic agents’ (Borges, 1986, p.8). According to
Magill and Quinzii (1998, pp.29-30), five ingredients are needed to built such an
equilibrium model:

1. The time-uncertainty setting describes the commodity space and how time
and uncertainty is modeled.

2. The real side of economy describes goods, agents, resources, preferences, and
technology.

3. The market structure describes all trading arrangements between the agents.

4. The behavior of agents describes how agents make their decisions.

and finally

5. The concept of equilibrium, ‘which describes the conditions under which the
agents’ decisions are mutually consistent’.

8



2.2 The Ramsey Model

The most common conditions that are stated in the context of neoclassical growth
models are market clearing conditions and the compatibility of expectations of all
agents (Magill and Quinzii, 1998, p.36). Hence, the underlying consideration in
these models is the assumption that market forces will lead to an equilibrium be-
tween demand and supply. These equilibrium models enable the calculation of
equilibrium prices under which all markets clear (Borges, 1986, p.8).
The study of market equilibria is a central aspect of economic analysis, as well
as the exploration of optimality. The notion of market equilibrium and the so
called Pareto-optimality are closely inter-related. In economics, optimality usu-
ally has to be understood in the sense of Pareto. In mathematical and economic
terms, a Pareto optimal state is defined as the state, or allocation of resources,
where no agent or preference criterion can be made better off, without making any
other agent or preference criterion worse off. Adam Smith already recommended
that any market equilibrium is also ‘socially optimal’, but he did neither give a
precise definition, nor did he study this fact analytically. The so called welfare
theorems, proven by Arrow (1951) and Debreu (1951), state that market equilibria
and Pareto optima are indeed equivalent under certain assumptions. For a formal
treatment of this equivalence due to Lerner and Lange, see for example Samuel-
son (1947). Moreover, a good summary of all necessary assumptions under which
either a market equilibrium is Pareto optimal, or under which any Pareto-optimal
state of an economy can be achieved via a market clearing choice of prices and
a reallocation of income, can be found in the book of Acemoglu (2009, pp.164-176).

A neoclassical equilibrium growth model, which has been quite unnoticed until
the 1960s, is the model introduced by Frank P. Ramsey in 1928. His model was
‘mathematically quite demanding and surely in advance of his time’ (Heinemann,
2015, p.57). The combination of Ramsey’s idea of an endogenous saving rate with
the simpler Solow growth model, as introduced in two path-breaking works by
Cass (1965) and Koopmans (1965), made the so called Ramsey-Cass-Koopmans
model become a cornerstone in neoclassical growth theory.
The essential difference between the Solow model and the Ramsey model is that
the latter also takes the households’ utility optimization into account. Instead of
exogenously committing a fixed saving rate, households seek to maximize their
lifetimes’ utility. In this way, the saving rate is endogenously determined, whereas
it is exogenously given in the Solow model. The optimization approach in the
households’ sector is the reason why the Ramsey model is also known as the
‘model of optimal growth’ (Heinemann, 2015, p.57).

2.2 The Ramsey Model

The Ramsey model is one of the standard models in the neoclassical growth theory.
It has to reduce the complexity in a real economy to a level where the dynam-
ics in such an economy can be caught by mathematical equations. Nevertheless,
‘the theoretical superiority of the general equilibrium approach, [that is used in the
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2 Fundamentals of Neoclassical Growth Theory

Ramsey model], has always been accepted’ (Borges, 1986, p.9).

Considering a general market economy, the simplifications in the Ramsey model
concern the number and heterogeneity of agents, the supply of available and trad-
able goods, and multiple social interactions. Like the Solow model mentioned
above, the Ramsey model considers a simple one-good and closed economy (cf.
Acemoglu, 2009, p.27). Time can be measured in discrete periods, t = 1, 2, ..., or as
a continuous interval and the time horizon can either be infinite (t ∈ R+), or finite
(t ∈ [0, T ], T ∈ N). In the original model, Ramsey considers an infinite-horizon
economy in continuous time. Although individuals have finite lifetimes, the as-
sumption of immortal households is appropriate if these correspond ‘to finite-lived
individuals who are connected via pattern of operative intergenerational transfers
that are based on altruism’ (Barro and Sala-i Martin, 1995, p.60). Since this the-
sis deals with finite time horizon economies only, the introduction in this chapter
will be limited to finite time modeling. We will argue below that we can force a
solution of our spatial Ramsey model to have infinite time horizon-character when
we introduce a sustainable terminal condition on the capital stock.

Many economic growth models have the same underlying general equilibrium struc-
ture. An economy is described as a two-sector model with one consuming and one
producing sector. The consuming side can either be described by a single so called
representative household (cf. Acemoglu, 2009 or Barro and Sala-i Martin, 1995) or
by a set of heterogeneous households that differ according to their time and utility
preferences (see for example Becker, 1980 or Becker and Foias, 1987). Representing
the production side in the economy by one representative firm does not require as
stringent assumptions on the structure of the production side as it is the case in
the consuming sector. Hence, ‘the entire production side of the economy [is] rep-
resented by an aggregated production possibility set’ without any loss of generality
(Acemoglu, 2009, p.158).

As we only aim to give a broad description of the Ramsey model in this section,
the heterogeneity in the individuals’ preferences is excluded in this context. In-
stead, the existence of one normative representative household is assumed, whose
saving and consumption decisions reflect the decisions of a set of heterogeneous
households. In the case that all households have so called Gorman preferences,
which means that preferences ‘can be represented by [some] special linear indirect
utility functions’ (Acemoglu, 2009, p.151), the existence of such a representative
household is not as implausible as it may appear at first glance. For further infor-
mation see Acemoglu (2009, pp.147–155).

In the following, the time horizon is assumed to be finite, hence T ∈ N and time
is measured in discrete periods, t ∈ T0 := {0, 1, ..., T}.
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2.2 The Ramsey Model

The Producing Sector

The production side in the Ramsey economy is modeled via a so called neoclassical
production function. The form of the production function gives its name to the
whole theory that tries to analyze economic growth in such settings. As already
mentioned, the firms, that constitute the production side, use aggregated quanti-
ties, i.e. aggregated capital and aggregated labor, which they demand from the
households. Throughout this chapter, capital letters will refer to such aggregated
variables, whereas small letters will be used for variables of single agents. In this
frame, let the aggregated capital stock in a period t ∈ T0 be defined by

Kt ∈ R+

and the aggregated labor by
Lt ∈ R+.

The production side is described by a neoclassical production function,

F : R2
+ → R, (K,L) 7→ F (K,L),

which satisfies the following assumptions:

Assumption 2.1 (Neoclassical Production):
The production function F is continuous on R+ and twice continuously differen-
tiable on R+\{0} with

FK(K,L) =
∂F (K,L)

∂K
> 0, FL(K,L) =

∂F (K,L)

∂L
> 0,

FKK(K,L) =
∂2F (K,L)

∂K2
< 0, FLL(K,L) =

∂2F (K,L)

∂L2
< 0,

for all K,L ∈ R+\{0} and it satisfies the Inada conditions

lim
K→0

FK(K,L) =∞ and lim
K→∞

FK(K,L) = 0 for all L > 0,

lim
L→0

FL(K,L) =∞ and lim
L→∞

FL(K,L) = 0 for all K > 0.

Moreover, F (0, L) = 0 = F (K, 0) for all K,L ≥ 0 and it exhibits constant returns
to scale in K and L (cf. Acemoglu, 2009, p.29).

All components of Assumption 2.1 are important: The requirement that F is
strictly concave in every variable means that the marginal products of both capital
and labor are diminishing, hence ‘more capital, holding everything else constant,
increases output less and less. And the same applies to labor. This property is [...]
referred to as “diminishing returns” to capital and labor’ (Acemoglu, 2009, p.29).
The property of diminishing returns is what characterizes this production function
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2 Fundamentals of Neoclassical Growth Theory

as neoclassical. The constant returns to scale assumption is equivalent to F being
linearly homogeneous, which means homogeneous of degree one in both variables.

Definition 2.2:
Let n ∈ N be a given dimension. A function g : Rn → R is homogeneous of degree
m ∈ R+ in x ∈ Rn if

g(λx) = λmg(x) for all λ ∈ R.

The following theorem is important while rewriting the output function in terms
per capita:

Theorem 2.3 (Euler’s Theorem for Homogeneous Functions):
Let g : Rn+2 → R be differentiable in the first two arguments x, y ∈ R with partial
derivatives denoted by gx and gy and homogeneous of degree m ∈ R+ in x, y. Then

mg(x, y, z) = gx(x, y, z)x+ gy(x, y, z)y for all x, y ∈ R and z ∈ Rn.

Moreover, gx(x, y, z) and gy(x, y, z) are homogeneous of degree m− 1 in x and y.

For the proof, see for example Acemoglu (2009, p.30).

Given an aggregated production function, meaning a production function whose
input variables are aggregated labor and capital, and assuming that the representa-
tive firm can buy labor and capital on some factor markets, the firm’s optimization
problem can be stated as follows:

For given factor prices Rt = (1 + rt) and ωt, the profit maximization problem of
the representative firm in period t ∈ T0 is given by the following static problem

max
K≥0,L≥0

F (K,L)−RtK − ωtL

(cf. Acemoglu, 2009, p.32).
This optimization problem does not have a well-defined solution due to Assumption
2.1. Since F has constant returns to scale, there may not exist any solution
(K,L) ∈ R2

+ that maximizes the firm’s profit, or the solution may not be unique
(Acemoglu, 2009, p.32). Remark that this representation does not need any prices
for the final good since the price of the final good has been normalized to one, what
is without any loss of generality. Moreover, the firm is taking the factor prices Rt

and ωt, which are to be understood as in terms of the final good, as given. This
implies that there exist some competitive markets that will be described further in
the following.
The constant returns to scale feature of the production function enables to write
the optimization problem in terms per capita, which makes notation easier in the
equilibrium case. The output in period t ∈ T0, defined as Yt = F (Kt, Lt), can be
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rewritten as
yt = f(kt), (2.1)

where yt := Yt
Lt

, kt = Kt
Lt

and f(kt) = F (Kt
Lt
, 1), where the function f : R+ → R still

satisfies the Inada conditions and the constant returns to scale requirement.

Finally, the optimization problem in the producing sector in terms per capita is
defined as

max
kt∈R+

f(kt)−Rtkt − ωt. (2.2)

The Consuming Sector

The main aspect in the Ramsey-Cass-Koopmans model is the endogenous saving
rate that is determined via the households’ utility optimization. The consuming
sector in neoclassical growth models can either be characterized as ‘a unit measure
of households, [which means as an] uncountable number of households with total
measure normalized to one’ (Acemoglu, 2009, p.147), i.e. the unit interval, or as
an infinite but countable set of households, i.e. the set of natural numbers N, or
as a finite set H := {1, ...H}, H ∈ N (cf. Becker and Foias (1987)).

Like in the basic general equilibrium theory, the preference ordering of every house-
hold h ∈ H is represented by a so called felicity function or utility function denoted
by Uh : RT+1

+ → R that captures the utility which an individual (or household)
derives from consumption in all points of time. It is commonly assumed that
this felicity function is time-separable and stationary, which means that the utility
at any date is independent from consumption in all former and future dates and
that the instantaneous utility function is the same in all periods. Moreover, it
is assumed that the households discount future utility exponentially. Hence, the
lifetime utility of a household h is given as

Uh(c
(h)
0 , c

(h)
1 , ..., c

(h)
T ) =

T∑
t=0

(β(h))tuh(c
(h)
t ), (2.3)

where β(h) ∈ (0, 1) is the time discount rate that discounts future utility and
uh : R+ → R denotes the instantaneous utility function of the hth household (Ace-

moglu, 2009, p.148). The variable c
(h)
t ∈ R+ denotes the consumption of household

h at time t. The notation c(h) will be used in the following in order to refer to the
whole vector (c

(h)
0 , ..., c

(h)
T ) ∈ RT+1

+ .
Ramsey (1928) was the first who hypothesizes an economic behavior in the con-
suming sector. It was his seminal idea of a lifetime utility maximization in the
households’ sector that led to a new comprehension of economic growth.

In the Ramsey-Cass-Koopman model (as in many other growth models) the exis-
tence of competitive markets is assumed. ‘In competitive markets, households and
firms act in a price-taking manner and pursue their own objectives, and prices
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clear markets’ (Acemoglu, 2009, p.30). Moreover, it is supposed that all produc-
tion factors, i.e. labor and capital, are owned by the households. It is a common
assumption that labor is supplied inelastically, which means that the whole endow-
ment of labor in an economy is supplied independently of the factor price, which is
the wage rate in this case, as long as it is nonnegative. This labor market clearing
condition can be written as a complementary slackness condition

Lt ≤ Lt, ωt ≥ 0 and (Lt − Lt)ωt = 0,

where ωt ≥ 0 denotes the wage rate, Lt the endowment of labor in the economy,
and Lt the demand for labor at time t, or as equation

Lt = Lt.

The households hold all capital in this economy and lend it to the firms. In return,
they get interest payments. The capital market clearing condition is analog to the
labor market clearing condition, hence

Kt = Kt,

where Kt denotes the whole capital stock of the economy and Kt stands for the
capital that the firms demand in the respective period. The factor price for the
capital is the interest rate which is denoted by Rt ≥ 1.

As already mentioned above, we assume the existence of one representative house-
hold. This means that the consuming side of the economy is structured such that
all aggregated consuming and saving decisions, as well as all aggregated labor sup-
ply decisions, can be represented by the decisions of one single (fictive) household.
An elementary example for an economy with one representative household is an
economy where all households are identical, which means they have the same time
and utility preferences and equal labor endowments.

For a given (representative) utility function U : RT+1
+ → R of the form (2.3), that

is increasing and concave, the households’ side of the economy is represented by
the following maximization problem:

max
c
U(c), (2.4)

where c ∈ RT+1
+ denotes the consumption stream of the representative household

(Acemoglu, 2009, p.150).
Households gain utility by consuming. They finance consumption with income,
which they receive from the firms for offering labor and capital. Hence, they get
an income stream and have to decide how much of their income they spend on
consumption and how much they save in order to transfer capital to future dates.
These saving decisions link the capital assets of one period t to the asset of the
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following period t+ 1 as described, for example by Acemoglu (2009, p.220), in the
following way: Assuming that the representative household offer one unit of labor
in every period and that an initial capital endowment k0 > 0 is given, its capital
stock in period t+ 1 is recursively defined as

kt+1 = Rtkt + ωt − ct for t ∈ T0, (2.5)

where kt denotes the capital asset or capital stock of the representative household
in time t. In order to ensure that kt does not reach negative infinity, the capital
assets are often bounded from below. A common budget or borrowing constraint
states

kt+1 ≥ 0 for t ∈ T0 (2.6)

(cf. Becker (1980), Cass (1965), or Lucas and Stokey (1984)). This constraint
means that the household is not allowed to hold negative assets at any point in
time. Alternative constraints consider nonnegative lifetime budgets (cf. Acemoglu,
2009, pp.175), or allow to incur debt as long it can be repayed in a fixed number
of future periods (cf. Becker et al., 2015, pp.5).

Not only the production function, but also the utility function has to satisfy some
conditions:

Assumption 2.4 (Neoclassical Preferences):
u : R+ → R is a strictly increasing function, it is concave and twice continuously
differentiable with u′(c) > 0 and u′′(c) < 0 for all c ∈ R+\{0}. Moreover, it
satisfies the Inada-conditions:

u(0) = 0, lim
c→∞

u′(c) = 0 and lim
c→0

u′(c) =∞

(cf. Acemoglu, 2009, p.287).

Then, the optimization intention in the consuming sector yields the following max-
imization problem: The representative household tends to maximize its lifetime
utility (2.4) making those consumption and saving decisions that satisfy (2.5) and
(2.6).

The Equilibrium

The main aspect in the Ramsey model is the (competitive) equilibrium, which is
in neoclassical growth theory defined as the allocation of labor and capital and
the time paths of factor prices such that both optimization approaches in the
households’ and firms’ sector are satisfied and all markets are cleared. The follow-
ing definition makes clear, that the households and firms both behave price-taking:
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Definition 2.5 (Competitive Equilibrium):
A competitive equilibrium [...] consists of paths of consumption, capital stock,
wage rates, and rental rates of capital, {Ct, Kt+1, ωt, Rt}Tt=0, such that the rep-
resentative household maximizes its utility given an initial capital stock K0 and
taking the time path of prices {ωt, Rt} as given; firms maximize profits taking the
time path of factor prices {ω,Rt}T+1

t=1 as given; and factor prices are such that all
markets clear (Acemoglu, 2009, p.293).

In the equilibrium, the factor prices are determined via the firms’ optimization as

Rt = f ′(kt)

and
ωt = f(kt)− ktf ′(kt),

where f is the neoclassical production function defined in (2.1). Together with the
market clearing conditions, the competitive equilibrium problem in the Ramsey
model with one representative household and firm and the no-debt borrowing
constraint is given by the following nonlinear optimization problem

max
c,k

T∑
t=0

βtu(ct)

s.t. kt+1 = f(kt)− ct,
kt+1, ct ≥ 0 for t ∈ T0, k0 > 0 given.

(2.7)

Defining the equilibrium in the Ramsey model by determining the factor prices via
the equilibrium relationship is mathematically more convenient. However, Defini-
tion 2.5 gives an conceptual insight.

As already mentioned, there is a close relation between the competitive equilib-
rium, which is defined as the solution of the optimization problem (3.14), and
the Pareto optimal factor distribution in the considered economy. This relation
is based on the first and second welfare theorems of economics. The first theorem
states that every market equilibrium is Pareto optimal whenever all households
are nonsatiated and the aggregated price for the production factors is finite. Or
vice versa, the second theorem says that every Pareto optimal factor distribution
is a market equilibrium whenever every production set is convex and every pref-
erence relation is convex and nonsatiated (a more detailed version and the proofs
of both welfare theorems can be found for example in Acemoglu, 2009, pp.163-171).

Ramsey (1928) introduces this model originally as continuous in time, but the dis-
crete time-points make the whole derivation of the model, with focus on the sepa-
rability assumptions on u and the homogeneity assumption on f , easier. Moreover,
the discrete version is widely used in economic applications. When we consider
time to be continuous, the nonlinear problem in (2.7) becomes an optimal control
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problem with ordinary differential equation (ODE) and state constraint, as de-
scribed amongst others by Acemoglu (2009, p.299). In that case, the variables are
functions, the production function in (2.1) and the utility function in Assumption
2.4 become superposition operators (see Definition 6.6), and the resulting optimal
control problem is given as

max
c,k

∫ T

0

eβtu(c(t))dt

s.t. kt = f(k(t))− δk(t)− c(t),
k, c ≥ 0

(2.8)

with k(0) > 0 given. Here, a new parameter, δ > 0, is introduced that describes
the depreciation of capital through time.

2.3 Applications of the Ramsey Model

The neoclassical growth model developed by Ramsey, Cass, and Koopmans in the
last century has been modified and analysed a lot. A vast literature, dealing with
different types of equilibrium, with finite or infinite time horizons in a continu-
ous or a discrete setting, exists. The alpplications of this model vary from the
consideration of taxation (cf. Sorger, 2002) over the impact of tax-funded public
spending (amongst others in Barro, 1990) to a growing population (cf. Acemoglu
(2009)). Some models consider a central planning authority (Cass, 1965) whereas
some others study the existence of Pareto optima or even Nash equilibria in mod-
els with a set of households with different preferences (as mainly done by Becker,
1980, or Van and Vailakis, 2003). We do not consider to give an overview of all
existing modifications of the Ramsey model, however we want to discuss the flex-
ibility of the model and list some seminal works.

A Ramsey economy is usually described as a two-sector model with one consuming
and one producing sector. As already mentioned, the consuming side can either be
described by a single so called representative household (like in Acemoglu, 2009;
Barro and Sala-i Martin, 1995; Brock et al., 2014; Heinemann, 2015; Ramsey, 1928;
Weil, 2013, and Young, 1928) or by a set of heterogeneous households that differ
according to their time and utility preferences (cf. Becker, 1980; Becker and Foias,
1987; Borissov and Dubey, 2015; Lucas and Stokey, 1984; Sorger, 2002, and Van
and Vailakis, 2003). To our knowledge, Becker (1980) was the first who considered
a set of distinct households with heterogeneous preferences in the Ramsey model.
In his model, the consuming sector is described by a finite, or at least countable,
set of different utility functions, each indexed by a respective household. This
can either be interpreted as an economy with only finitely many households or as
an economy where households with homogeneous preferences form finitely many
heterogeneous unions. He shows that the Ramsey equilibrium in his model, which
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is given as the solution of a nonlinear multicriteria optimization problem, is indeed
Pareto optimal.
A direct implication of Becker’s model is that not only the utility preferences, but
also the optimal capital and consumption paths are heterogeneous. In that way,
it can be seen as a first attempt to spatialize the Ramsey model.

The most interesting part in the Ramsey model is the endogenous saving rate that
is determined by the welfare optimization of the households’ sector. Since the
saving rate is directly related to the capital stock via the capital constraint, any
budget or borrowing constraint affects the equilibrium. Ramsey himself does not
restrict the capital stock held by one of the individuals in the respective economy.
He distinguishes between several possible constellations how, and under which
circumstances the maximum obtainable rate of enjoyment or utility - he calls it
Bliss - can be reached, if it is reached at all (Ramsey, 1928, p.545). However, in
order to ensure the existence of a solution of the households’ optimization problem
(and its uniqueness) and to simplify, the capital stock of the households is often
restricted. So called borrowing constrains are introduced, which are huge market
imperfections in the context of economics. The most common way to restrict the
households’ capital stock is to bound it from below by zero,

kt ≥ 0, for all t,

respectively in a setting of heterogeneous households,

kht ≥ 0, for all h, t,

see amongst others Alt (2002), Becker (1980), Becker and Foias (1987) and Sorger
(2002). Becker et al. (1991) weaken this condition by restricting only the aggre-
gated capital stock, ∑

h

kht ≥ 0, for all t.

In the context of an infinite time horizon this market imperfection can be replaced
by the so called no-Ponzi-game condition, which states that ‘the present value
of lifetime consumption must not exceed the present value of lifetime earnings’
(Sorger, 2002, p.229),

lim
t→∞

k(t)
t−1∏
s=1

1

R(t)
≥ 0,

(cf Acemoglu, 2009, p.305). This inter-temporal budget constraint ensures that
‘the individual does not asymptotically tend to negative wealth’ (Acemoglu, 2009,
p.291) and prevent imperfection (Sorger, 2002, p.229).
Other budget constraints in the Ramsey model try to weaken the market imper-
fection which is a direct consequence of any borrowing constraints. Becker et al.
(2015) for example introduce a liberal borrowing constraint to the Ramsey model
in discrete time where single households are ‘able to borrow against their future
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wage incomes for finitely many time periods’ (Becker et al., 2015, p.3). This ver-
sion is an extension of the model by Borissov and Dubey (2015), who relax the
no-debt condition by allowing the households to borrow against their next period
wage income.

Besides some modifications on the budget constraints, the literature provides also
many modifications of the capital equation of the Ramsey model, including taxa-
tion or public spendings. A summary is given by Acemoglu et al. (2011). In this
paper, the authors extend the common Ramsey model by a government budget
constraint, which is linked to the budget constraint of the households. They study
the dynamic taxation of capital and labor with linear taxation rates τk and τl, and
derive a competitive equilibrium. The latter is given as the solution of the coupled
optimization problem consisting of the optimization problems of the households,

max
ch,kh,lh,bh

∞∑
t=0

βt(u(ch,t)− v(lh,t))

s.t. ch,t + kh,t + qt+1bh,t+1 ≤ (1− τl,t)ωtlh,t + (1− τk,t)rtkh,t + ιtbh,t

ch,t ≥ 0, kh,t+1 ≥ 0, lh,t+1 ≥ 0, bh,t+1 ≥ 0, ∀ t, h ∈ H,

and the decision problem of the elected politician,

max
τ,q,ι,x

∞∑
t=0

δtν(xt)

s.t. xt + ιtbt ≤ τk,trtKt + τl,tωtLt + qt+1bt+1,

xt ≥ 0, ∀ t.

Here, the authors consider a finite continuum of households, h ∈ H, and model
labor supply separately from the capital. The function v describes the preferences
with respect to free time of the household and is assumed to satisfy the Inada
conditions and to be strictly convex and continuous. As usual, kh,t denotes the
capital stock of a household h at time t, ch,t the consumption demand, and lh,t the
labor supply. The variable bt denotes the government debt, ι ∈ {0, 1} the debt
default decision, and bh,t the government bond holding of the respective household
at time t.
In contrast to that, Barro (1990) considers ‘public services as an input to private
production’ (Barro, 1990, p.106), hence he adapts the production function itself.
His model is continuous in time, and given as

max
c,k

∫ ∞
0

u(c)e−βtdt

s.t. kt = f(k(t), g(t))− c(t),
g(t) = τf(k(t), g(t)),
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where the production function f depends on the capital stock k and the public
service g. The additional constraint states that this governmental spending is fi-
nanced via taxations with taxation rate τ .

Amongst others, Brida and Accinelli (2007) consider a population growth in the
Ramsey economy. They extend the ODE constraint in the continuous Ramsey
model by an additional ODE, describing a logistic population growth law.

In economic growth theory, it was recognized at an early stage that not only
savings, population development, or taxation, but also technological change over
time drives economic growth. Especially in the Ramsey model, where agents try
to maximize their welfare or profit, it would be convenient to link technological
progress to intentional, endogenous determined investment decisions. However,
most models insinuate an exogenous, even constant technology growth rate (see
AK models in Acemoglu, 2009, Chapter 8). Romer (1986) ‘started the endogenous
growth literature’ (Acemoglu, 2009, p.387). In his model, he equalizes technological
progress with knowledge accumulation, where the latter is defined as a by-product
of capital accumulation. He models so called spillover effects, which work through
human capital. The production function in this model is given as

Y (t) = F (K(t);A(t)L(t)),

with
A(t) = BK(t),

which means that the stock of technology is proportional to the capital stock.
Acemoglu (2009, p.399) interprets this assumption as ‘learning-by-doing’, since
investments increase productivity in this framework.

All in all, there exists a vast literature on modified Ramsey models. We picked out
some few applications to make clear that the spatialized Ramsey models, or at least
models that consider a continuum of agents in the consuming sector and models
with dynamic technological progress, have been studied for a long time. Thus, our
research on a new capital accumulation equation in the spatialized Ramsey model,
that takes endogenous technological progress into account, is in line with former
and on-going research in economic growth theory.
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CHAPTER 3

The Spatial Economics and Optimal Control

Theory

‘Why are some countries so rich and others so poor? Does it have to be this
way?’ (Weil, 2013, p.21)

Various neoclassical growth models, based on the fundamental works of Ramsey
(1928) or Solow (1956), are spatially homogeneous, which means they do not con-
sider any motion of capital or labor across space, but only through time. However,
observations of differences regarding population development, income distribution,
and even education or technological deployment across space signalize that there is
a gap between the economic growth theory and these observations. This could ex-
plain, why we observe a growing interest in the so called Geographical Economics
over the last few years. Starting with the monograph Geography and Trade by
Krugman (1991), this branch of economics has developed rapidly in the last three
decades. Here, the models do not only consider changes in production factors
over time, but also across space. These new economic geography models are gen-
eral equilibrium models that tend to explain consumption, price formation, and
production in the whole economy and they are based on assumptions considering
market structure and mobility of production factors (Camacho et al., 2008, p.1).
The approach of Krugman is based mainly on agglomeration effects which rely
on increasing returns and transportation costs (c. Krugman, 2011, p.3). We do
not consider such an approach in this thesis but stay in the neoclassical context.
However, we follow the new geographical economy by modeling the spatial ag-
glomeration effects by spillover effects and the autonomous mobility of production
factors through space.

In this chapter, an introduction to the spatial economic growth theory is provided.
We begin in Section 3.1 with a broad literature overview of spatially heterogeneous
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Ramsey models. Since the resulting equilibrium problems in continuous time are
optimal control problems with PDE constraints, we give some basic information
on (parabolic) PDEs in Section 3.2. Afterwards, we introduce the local spatial
Ramsey model by Brito (2001) in Section 3.3. The main part of this chapter
deals with the derivation of the nonlocal spatial Ramsey model with endogenous
productivity growth in Section 3.4.

3.1 The Spatial Growth Models

Since the Geographical Economics have become increasingly important in recent
times, also the neoclassical growth theory has been spatialized. There are two
hegemonial approaches on how to include the spatial component in a neoclassical
growth model: The first one is a discrete extension of the model as seen in Bala
and Sorger (2001), or Fujita et al. (1999). The other one is to embed a continuous
space dependence into the considered model, as mainly done by Brito (2001, 2004),
Boucekkine et al. (2009), and Camacho et al. (2008) in the earlier past.

The model introduced by Bala and Sorger (2001) is based on a discrete set of
agents indexed by time and by family. Here, the direct neighborhood of agents is
essential for the growth rate of the economy. Stationary equilibria are studied in a
framework where productivity and investment are driven by local spillover effects
of human capital and global market participation.
Pavilos and Wang (1996) model the space dimension via transportation costs for
production factors and knowledge. Hence, their model stays only time dependent,
however, a dependence of economic development on spatial distances is no longer
denied.
We also note the modifications of the Ramsey model where a continuum of het-
erogenous households is considered. As already mentioned in Chapter 2.3, such
models are for example described by Becker (1980), Becker and Foias (1987),
Becker et al. (1991), and Sorger (2002). The heterogeneity in the preference in the
consuming sector can be interpreted as a first step towards spatial extensions of
the growth model.

To our knowledge, Brito (2001) was the first who introduced a continuous spa-
tial extension of the established Ramsey-Cass-Koopmans model of optimal capital
accumulation. In this framework, the spatial capital dynamics are driven by dif-
ferences in access to productivity factors and economic variables. Camacho et al.
(2008, p.1) point out that the ‘alternative of a continuous space structure fits bet-
ter modern economics, since this structure implies that all locations have access to
goods’. The process of optimal time-space accumulation of capital in the Ramsey
model with a central planner is described by an optimal control problem with a
semilinear parabolic partial differential equation over a bounded spatial domain
and an infinite time horizon. As shown in Boucekkine et al. (2009), applying
Pontryargin’s maximum principle may lead to a dynamic system of PDE’s that
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is ill-posed in the sense of Hadamard under certain conditions. Boucekkine et al.
(2009) study a Benthamian Ramsey model with a spatial discounting and linear
utility functions of the households to circumvent this problem, whereas Camacho
et al. (2008) consider an analogue optimal growth model but with a finite time
horizon. Desmet and Rossi-Hansberg (2009) randomize the spatial growth model.
They assume that realizations of local innovations are random and in this way
extend the spatial model a bit further.
A more general mathematical approach to spatial growth theory can be found in
the paper of Brock et al. (2014). They make use of operator theory in order to
derive local and global equilibria in a Ramsey type capital accumulation problem
with geographical spillovers. They are - to our knowledge - the first who take
nonlocal spillover effects in technology into account, but still deny any capital ag-
glomeration across space independent of these spillover effects.
Boucekkine et al. (2013), as well as Aldashev et al. (2014), develop the spatial
optimal growth model with continuous space and time for an AK growth model
in which the production technology is linear in capital, returns on capital are con-
stant, and where technology changes by a constant and given factor over time. For
further information on AK-models, see amongst others Acemoglu (2009, pp.388-
408). As stated by Brito (2001), the resulting partial differential equations are
(parabolic) diffusion equations. Aldashev et al. (2014) are able to generalize the
model in Boucekkine et al. (2013) concerning the objective function of the social
planner.

Although there already exists an extensive collection of spatial Ramsey models,
taking many different parameters of economic growth into account, a rigorous
mathematical analysis of the existence of solutions of the capital accumulation
equations or the equilibrium problem is missing in most of the cases, or the models
are restricted to quite simple modifications in order to fit the theory of classical
solutions of differential equations. We will analyze the nonlocal spatial Ramsey
model, that will be introduced below, in a more general mathematical context,
namely in the weak solution theory. We first give a short introduction to weak
solutions of partial differential equations in the next section.

3.2 On Partial Differential Equations, Sobolev

Spaces and Embedding Theorems

This section aims to provide a compact overview of the theory of parabolic dif-
ferential equations, the concept of weak solutions, and the corresponding function
spaces. Essential is the notion of weak derivatives and embeddings between the
considered function spaces, which will be of great importance when it comes to
existence results of weak solutions of parabolic differential equations, or optimal
controls.
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Throughout this thesis, Ω ⊆ Rn denotes an open and connected set, a so called
domain. Whether it is also bounded or not, is stated explicitly or made clear in
the context. We always consider a finite time horizon T ∈ N, although Ramsey
himself defined his model with an infinite time horizon. This infinite time horizon
may be meaningful in economic terms, however it makes a mathematical analy-
sis of the economic model even more complicated. We will later on introduce a
suitable terminal condition in order to be on one hand able to capture the infinite
time horizon character of the original model and, on the other hand, to make the
model tractable.
The partial differential equations, which we consider here, are semilinear, parabolic,
and nonlocal. Most practical applications lead to semilinear, or even nonlinear dif-
ferential equations, however, a theoretical treatment is quite complicated. Thus,
we have to make some rather strong assumptions on the appearing nonlinearities,
such as Lipschitz continuity, or uniformly boundedness in order to prove existence
or to state some regularity results of the weak solutions. Nevertheless, we are able
to keep the Ramsey model, that we will introduce in this thesis, as universal as
possible.

In general, a partial differential equation (PDE) is an equation involving an un-
known function and some of its partial derivatives. An expression of the form

F (Dmu(x), Dm−1u(x), ..., Du(x), u(x), x) = 0 (x ∈ Ω), (3.1)

is called a mth-order partial differential equation, where

F : Rnm × Rnm−1 × . . .× Rn × R× Ω→ R

is a given functional and u : Ω→ R is the unknown function (compare for example
Evans (1997, p.1)). Here, Dmu(x) denotes the mth total derivative of u, m ∈ N.

There are several types of differential equations, depending on how the derivatives
appear in it. As already said, we will only focus on semilinear PDE, where all but
the highest order derivative may appear nonlinearly. For a more detailed definition
see for example Evans (1997, p.2). Whenever a differential equation can be written
as

ut = F (x, t, u, uxi , uxixj) on Ω× (t0, T ),

with F elliptic and 0 ≤ t0 < T , this PDE is called parabolic (Jost, 2013, p.5).

A function u solves the PDE, if it satisfies the equation (3.1). However, when it
comes to the solution of partial differential equations, it is not that clear how a ‘so-
lution’ of such a PDE should look like. For sure, it should fulfill some smoothness
assumptions such that the equation (3.1) makes sense at all. A solution of (3.1),
which is at least m times continuously differentiable, is called a classical solution.
But, in most of the cases, the PDEs that are considered in applications cannot
be solved in the classical sense. That is why there is a need for a new, general-
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ized or weak notion of solutions in the context of PDEs (cf. Evans, 1997, p.8-9).
Appropriate function spaces, that may contain such weak solutions of PDEs, are
the so called Sobolev spaces, which contain less smooth functions and moreover, do
have nice structure. Before we can define a Sobolev space, it is necessary to define
the so called weak derivatives as below. The function spaces, which are needed in
the following, are the spaces of continuous and continuously differentiable func-
tions and Lebesgue spaces. According to Wloka (1982, p.12), we denote the space
of continuous and bounded functions ϕ : Ω → R on Ω by C(Ω). The space of
functions which have bounded derivatives up to order m ∈ N on Ω is denoted by
Cm(Ω). Endowed with the norm

‖ϕ‖C := sup
x∈Ω
|ϕ(x)|,

the space (C(Ω), ‖ · ‖C) is a Banach space. If Cm(Ω) is endowed with the norm

‖ϕ‖Cm = sup
|α|≤m
x∈Ω

|Dαϕ(x)|,

it is a Banach space as well. Here, the notation Dαϕ denotes the partial derivative
of ϕ with respect to the multiindex α. We define according to Wloka (1982, p.12)

|α| :=
n∑
i=1

αi ≤ m.

Although the notation Cmb is common for bounded and continuous functions, we
will follow the notation in Wloka throughout this monograph and suppress the b.
The term C∞0 (Ω) denotes the set of infinitely often differentiable functions ϕ : Ω→
R, with compact support in Ω. Endowed with the appropriate topology, this space
will be referred to as the space of test functions later on.
The space of functions ϕ ∈ Cm(Ω) for which Dαϕ is not only bounded, but also
uniformly continuous on Ω for 0 ≤ |α| ≤ m, is denoted according to Adams and
Fournier (2003, p.10) as Cm(Ω). Note, that this notation may be misleading in
the case where Ω is unbounded. For example it is Cm(Rn) 6= Cm(Rn) although
Rn = Rn (Adams and Fournier, 2003, p.10). However, especially for m = 0 and
on bounded domains, the notation is uncomplicated (cf. Adams and Fournier,
2003, 1.30, p.11). Since Cm(Ω) is a closed subspace of Cm(Ω), it is a Banach space
endowed with the same norm as Cm(Ω).
Another important function space is the space of Hölder continuous functions with
exponent λ, Cm,λ(Ω). This space consists of all functions ϕ ∈ Cm(Ω) whose partial
derivatives of order m satisfy the Hölder condition of exponent λ in Ω, hence for
which there exists a constant K such that

|Dαϕ(x)−Dαϕ(y)| ≤ K|x− y|λ, x, y ∈ Ω.
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Provided the norm

‖ϕ‖Cm,λ(Ω) := ‖ϕ‖Cm(Ω) + max
0≤|α|≤m

[Dαϕ]C0,λ(Ω),

where [·]C0,λ(Ω) denotes the λ-th Hölder seminorm

[Dαϕ]C0,λ(Ω) := sup
x,y∈Ω
x 6=y

|Dαϕ(x)−Dαϕ(y)|
|x− y|λ

,

(Cm,λ(Ω), ‖ · ‖Cm,λ(Ω)) is a Banach space (Evans, 1997, pp.240).

These spaces of well-behaved functions are usually no suitable function spaces for
PDE theory due to their strong requirements on differentiability. Moreover, they
are only Banach spaces and do not have any Hilbert space property. Adams and
Fournier (2003, p.23-24) give the following definition of Lebesgue spaces spaces
that contain less smooth functions, but do have the required structural properties:

Definition 3.1 (Lebesgue Spaces):
Let Ω be a domain in Rn. For 1 ≤ p <∞, let

Lp(Ω) := {u : Ω→ R measurable :

∫
Ω

|u(x)|pdy <∞}

denote the space of all p-Lebesgue measurable functions on Ω. Moreover, define

N (Ω) := {g : Ω→ R : g = 0 a.e.} ⊂ Lp.

Then, the Lebesgue space Lp(Ω) consists of all (equivalence classes of) p-Lebesgue
measurable functions,

Lp(Ω) := Lp(Ω)/N (Ω).

In the case p =∞, L∞(Ω) captures all essentially bounded functions u with

ess sup
x∈Ω
|u(x)| <∞.

The space L∞(Ω) is defined as L∞(Ω)/N (Ω).
The space Lploc(Ω) denotes the space of all p-locally integrable functions on Ω, hence

Lploc(Ω) = {u : Ω→ R measurable : u|K ∈ Lp(K) ∀ K b Ω compact}.

In the following, we lways identify a function u ∈ Lp(Ω) as the whole equivalence
class. A very important property of the Lebesgue spaces is their completeness:
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Corollary 3.2:
Endowed with the norm

‖u‖Lp(Ω) :=

(∫
Ω

|u(x)|pdx
) 1

p

, 1 ≤ p <∞,

respectively
‖u‖L∞(Ω) := ess sup

x∈Ω
|u(x)|, p =∞,

Lp(Ω) is a Banach space for 1 ≤ p ≤ ∞.

The proof can be found for example in Adams and Fournier (2003, p.29). Espe-
cially for p = 2, L2(Ω) is a separable Hilbert space with inner product

〈u, v〉 =

∫
Ω

u(x)v(x)dx,

which is relevant in the following.

We define the space of the so called test functions, which is of great importance
when it comes to the weak formulation of a PDE, according to Adams and Fournier
(2003, p.20) in distributional sense:

Definition 3.3 (Space of test functions):
Let Ω be a domain. A sequence {ϕj} of functions in C∞0 (Ω) is said to converge in
the sense of D(Ω) to a function ϕ ∈ C∞0 (Ω) provided the following conditions are
satisfied,

• There exists K b Ω such that supp(ϕj − ϕ) ⊂ K for all j.

• limj→∞D
αϕj(x) = Dαϕ(x) uniformly on K for each multi-index α.

There exists a finest locally convex topology T on C∞0 (Ω) with respect to which a
linear functional T is continuous if

ϕj → ϕ (in the sense of D(Ω)) ⇒ T (ϕj)→ T (ϕ) in R.

The locally convex topological vector space (C∞0 (Ω), T ) defines the space of test
functions, which will be denoted by D(Ω).

Remark 3.4:
Whenever we use the notion C∞0 , this has to be understood in distributional sense.
This is convenient since we did not further define the topology T .

Definition 3.5 (Distributions):
A linear map T : D(Ω) → R is called a distribution on Ω, if for all sequences
ϕi → 0 (in the sense of D(Ω)) it holds T (ϕi)→ 0 (in R). The space of distributions
is denoted by D′(Ω).
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An analog definition is stated as Theorem 1.4 in Wloka (1982, p.21). An example
of a distribution is the following integral operator: Corresponding to every function
u ∈ L1

loc(Ω) there is a distribution Tu ∈ D′(Ω) defined by

Tu(ϕ) =

∫
Ω

u(x)ϕ(x)dx, ϕ ∈ D(Ω).

The mapping u 7→ Tu is injective (Wloka, 1982, p.21), so we can identify the
distribution Tu with the function u. With this example in mind, we can state the
definition of a weak derivative.

Definition 3.6:
Let Ω be a domain in Rn and suppose that u, vα ∈ L1

loc(Ω). The function vα is
called the αth- weak partial derivative of u, in notation Dαu = vα, if Tvα = DαTu
in D′(Ω), or ∫

Ω

uDαϕdx = (−1)|α|
∫

Ω

vαϕdx, (3.2)

for all test functions ϕ ∈ D(Ω).

It should be noticed that if a weak derivative of u is considered, u does not have to
be an element in Cm(Ω) with m = |α|. There only has to exist a locally summable
function vα for which the formula (3.2) is valid (Evans, 1997, p.242). If such a
function vα exists, it is uniquely defined up to a set of measure zero (Evans, 1997,
p.243). Since the m-th weak derivative is equal to the classical derivative whenever
u is m-times differentiable in the classical sense, it is convenient to use the same
symbol for both kinds of derivatives. For further details see for example Theorem
1.7. by Wloka (1982, p.26).

In the following, the parameters 1 ≤ p ≤ ∞ and m ∈ N0 are fixed. Now, we
finally are able to define the function spaces named after Sergei Sobolev. These
‘Sobolev spaces are vector spaces whose elements are functions defined on domains
in n-dimensional Euclidean space Rn and whose partial derivatives satisfy certain
integrability conditions’ (Adams and Fournier, 2003, p.1). In mathematical terms,
we define the following:

Definition 3.7:
Let Ω ⊆ Rn be a domain. The Sobolev space Wm,p(Ω) consists of all (locally)
summable functions u : Ω→ R such that for each multiindex α with |α| ≤ m, Dαu
exists in the weak sense and belongs to the Lebesgue space Lp(Ω), hence

Wm,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), 0 ≤ |α| ≤ m}.

The following theorem states the most important properties of Sobolev spaces,
which make the mathematical treatment of weak solutions possible:

28



3.2 On Partial Differential Equations, Sobolev Spaces and Embedding
Theorems

Theorem 3.8:
For m ∈ N and 1 ≤ p ≤ ∞, the Sobolev space Wm,p(Ω), endowed with the norm

‖u‖Wm,p(Ω) :=


(
Σ|α|≤m

∫
Ω
|Dαu|pdx

) 1
p (1 ≤ p <∞)

Σ|α|≤mess supΩ |Dαu| (p =∞)
, (3.3)

is a Banach space. If p = 2, Wm,2(Ω) is a separable Hilbert space, hence it is often
denoted by Hm(Ω).

The proof is amongst others given by Evans (1997, p.249) or Wloka (1982, p.69).

Remark 3.9:
The Sobolev spaces are closely related to the space of test functions. The space
Wm,p

0 (Ω) is defined as the closure of C∞0 (Ω) in Wm,p(Ω). In the context of PDE,
also the dual spaces of the considered function spaces are of great importance. The
dual space of H1(Ω) is denoted by H−1(Ω).

In the following part of this section, we will introduce some important embedding
theorems, that will play an important role for the existence theory of weak solutions
and optimal controls of the spatial Ramsey model the following chapters. We will
mainly follow the books of Adams and Fournier (2003) and Wloka (1982). We
start with the following definition as taken from Adams and Fournier (2003, p.68).

Definition 3.10:
A domain Ω satisfies the segment condition if every x ∈ ∂Ω has a neighborhood Ux
and a nonzero vector yx such that if z ∈ Ω ∩ Ux, then z + λyx ∈ Ω for 0 < λ < 1.

Theorem 3.11:
If Ω satisfies the segment condition, then the set of restrictions to Ω of functions
in C∞0 (Rn) is dense in Wm,p(Ω) for 1 ≤ p <∞.

The result is taken from Adams and Fournier (2003, p.68), and the proof can be
found on the following page of this book. A very useful connection exists between
the Sobolev spaces and Lebesgue spaces as defined above. Before we can state the
respective theorem, we have to give further properties of a domain in Rn.

Definition 3.12:
Ω ⊆ Rn satisfies the so called cone condition, if there exists a finite cone C, such
that each x ∈ Ω is the vertex of a finite cone Cx contained in Ω, and congruent to
C.

The following Sobolev embedding theorem enables us to state some fundamental
results on the existence of weak solutions and optimal controls:
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Theorem 3.13 (The Sobolev Embedding Theorem):
Suppose that Ω ⊆ Rn satisfies the cone condition, let 1 ≤ p ≤ q ≤ ∞ and 1 ≤ k ≤
n. If either mp ≥ n or m = n and p = 1, then

Wm,p(Ω) ↪→ Lq(Ω).

If mp < n and either n−mp < k ≤ n or p = 1 and n−m ≤ k ≤ n, then

Wm,p(Ω) ↪→ Lq(Ω)

for p ≤ q ≤ p∗ = np/(n−mp) (Adams and Fournier, 2003, p. 85).
Here, ↪→ denotes a continuous embedding, ↪→c will stand for a compact embedding.

Other important connections which exist between the spaces of continuous func-
tions are shown by Adams and Fournier (2003, pp.11-12).

Theorem 3.14:
Let m be a nonnegative integer and let 0 < ν < λ ≤ 1. Then the following
embeddings exist

Cm+1(Ω) ↪→ Cm(Ω),

Cm,ν(Ω) ↪→ Cm(Ω),

Cm,λ(Ω) ↪→ Cm,ν(Ω).

If Ω is bounded, the last two embeddings are compact.

Remark 3.15:
For a bounded Ω and the case that m = 0, a function ϕ ∈ C0(Ω) has to be under-
stood as the unique continuous extension of ϕ to the closure of Ω. In particular
that means, that the space of Hölder continuous functions with exponent ν is com-
pactly embedded into the space of continuous functions (see amongst others 1.30
in Adams and Fournier (2003, p.11)).

A term, that describes the interaction between the function spaces involved in
PDE theory, and which is of great importance when it comes to the existence of
weak solutions, is a so called Gelfand triple. According to Wloka (1982, p.253),
a reflexive Banach space V and a Hilbert space H such that V is continuously,
injectively, and densely embedded in H form a Gelfand triple

V ↪→ H ↪→ V ′.

Lemma 3.16:
Let Ω ⊆ Rn satisfy the cone condition. The Sobolev space H1(Ω) and the Lebesgue
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space L2(Ω) form a Gelfand triple, hence the embeddings

H1(Ω) ↪→ L2(Ω) ↪→ H−1(Ω)

are dense and continuous.

Proof. The proof can directly be derived from Theorem 3.13 and the fact that
every Hilbert space is reflexive.

The dynamics of the spatial Ramsey model do not only depend on space, but
also on time. Hence, the capital accumulation equation has to be solved in the
space-time cylinder. Thus, when it comes to parabolic differential equations, an
appropriate function space has to be defined. We follow the general definition of
Wloka (1982, pp.378-381).

Definition 3.17:
Let V,H be two separable Hilbert spaces such that V ↪→ H ↪→ V ′ built a Gelfand
triple. Let 0 < T <∞ be given. For p ∈ N, we define the space

W 1,p(0, T ;V ) := {f ∈ Lp(0, T ;V ) :
∂f

∂t
∈ Lp(0, T ;V ′)} (3.4)

where for p ≥ 1 the Lebesgue space of functions with values in a Hilbert space is
defined as Lp(K;V ) := {f : K → V : f weakly measurable and

∫
K
‖f(s)‖pV ds <

∞}.

Remark that Lp(K;V ) is a Banach space for all p ≥ 1. Moreover, in the case of
p = 2, L2(K;V ) is a Hilbert space endowed with the scalar product

〈x, y〉L2(K;V ) :=

∫
K

〈x(s), y(s)〉V ds.

In the following, we will shorten the expression for W 1,2(0, T ;V ) and will denote
it by W (0, T ), where V is always made clear in the context. The next theorem
points out the nice structure of the considered function space.

Theorem 3.18:
Let V,H be two separable Hilbert spaces such that V ↪→ H ↪→ V ′ built a Gelfand
triple. Let 0 < T <∞ be given.

(a) Endowed with the scalar product

〈f, g〉L2(0,T ;V ) :=

∫ T

0

〈f(t), g(t)〉V dt,

L2(0, T ;V ) is a Hilbert space.
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(b) Endowed with the scalar product

〈f, g〉W :=

∫ T

0

〈f(t), g(t)〉V dt+

∫ T

0

〈∂f(t)

∂t
,
∂g(t)

∂t
〉V ′dt

W (0, T ) is a Hilbert space.

(c) All functions in W (0, T ) are continuous with values in H, hence f ∈ W (0, T )
implies that

f : [0, T ]→ H is continuous

(cf. Wloka, 1982, pp.380-382). In particular, (c) implies that there exists a con-
stant cE such that

‖u‖C([0,T ];H) ≤ cE‖u‖W (0,T ).

Throughout this thesis, we will only consider domains Ω ⊆ Rn which satisfy the
segment and cone condition. Hence, we can revert to the Gelfand triple and
embedding theorems.

3.3 The Local Ramsey Model - Optimal Control

with PDE Constraint

In this section, we introduce the spatial Ramsey-Cass-Koopmans model as first
modeled by Brito (2001) and analysed, respectively modified in the following years
mainly by Brito (2004, 2012) himself, Boucekkine et al. (2009, 2013), and Camacho
et al. (2008). As the name hypothesizes, the main difference between the common
Ramsey model and its spatial version is that in the latter, the capital accumulation
is a process depending not only on time but also on space. In the spatial Ramsey
models, the households do not only have the possibility to shift capital towards
future dates in time by saving, but there are also capital flows among different
locations or regions allowed. The spatial domain, which we denote by Ω ⊆ Rn

in the following, may either be interpreted as heterogeneity in the continuum of
households if n is equal to one, or as geographical space in case n is two. Ramsey
himself considered an infinite time horizon. However, especially when the spatial
domain is unbounded, a mathematical analysis of the spatial model with respect
to existence and uniqueness of solutions is difficult. Nevertheless, most spatial
Ramsey models also consider an infinite time horizon (see amongst others Brito,
2001, 2004, 2012, Brock and Xepapadeas, 2006, Brock et al., 2014, 2012, 2013, or
Boucekkine et al., 2009, 2013). An exception is the model introduced by Camacho
et al. (2008), who introduce a finite time horizon T ∈ N and define a terminal
condition on the capital stock. We will point out the advantage of such a terminal
condition later and only consider the infinite time horizon models in this section,
hence t ∈ R+.
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In the spatial Ramsey models, it is assumed that there exists a continuum of
‘potentially heterogeneous and interacting households’ whose support is identified
with the spatial domain (Brito, 2004, p.6). Moreover, these households should
be evenly distributed over space. Every household is naturally endowed with
labor and capital such that these production factors, or the capital-labor ratio,
become space dependent. Moreover, also consumption and production depend
on the respective location or the household. The common assumption of one
homogeneous production good is transferred from the only time depending model.
The capital-labor ratio and consumption are described by functions

k : Ω× R+ → R, (x, t) 7→ k(x, t),

c : Ω× R+ → R, (x, t) 7→ c(x, t).
(3.5)

Here, c(x, t) stands for the consumption and k(x, t) for the respective capital stock
of the households located in x ∈ Ω at time t ∈ R+.
The assumption of a homogeneous production leads to the definition of a produc-
tion function p, which is a neoclassical production function and, as in the original
only time depending model, depends on the capital-labor ratio only

p : R→ R, k 7→ p(k).

All variables are in terms per capita, which means that labor force is already nor-
malized to one.

In the recent literature, some variants considering technology in the spatial Ram-
sey model can be found. In the model of Brito (2001, 2004), technology is assumed
to be space independent. He defines a productivity factor A ∈ R+, which is mul-
tiplied with the production function and is given exogenously. Boucekkine et al.
(2009) generalize this model. Here, the total factor productivity may be heteroge-
neous in space and time, but still is pre-determined as a function A : Ω×R+ → R+.
In contrast to these models listed above, where the production is described as the
product of a productivity factor and the production function, Brock and Xepa-
padeas (2006) and Brock et al. (2012, 2013, 2014) consider spillover effects to
endogenize productivity and to drive capital agglomeration. However, they do not
consider any diffusion effects in the capital equation and therefore can be assigned
to a different type of spatial Ramsey models.

A common assumption in spatial economic growth models is that ‘households
increase the scale of production by accumulating physical capital’ (Brito, 2001,
p.2). The gross investment in location x at time t is modeled as the derivative
of the capital function with respect to time, which should satisfy the following
budget constraint

∂k

∂t
(x, t) = Ap(k(x, t))− c(x, t)− τ(x, t), (x, t) ∈ Ω× R+. (3.6)
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The function τ : Ω × R+ → R describes the trade balance which ‘is equal to the
net lending capacity’ (Brito, 2001, p.2). According to Brito (2001), assuming the
aggregate economy to be closed yields∫

Ω

(
∂k(x, t)

∂t
+ c(x, t)− Af(k(x, t)) + τ(x, t)

)
dx = 0, ∀t. (3.7)

Due to (3.6), the equation (3.7) is also true for subsets O of the spatial domain Ω∫
O

(
∂k(x, t)

∂t
+ c(x, t)− Af(k(x, t)) + τ(x, t)

)
dx = 0, ∀t.

The term ∫
O
τ(x, t)dx

describes the net trade balance in a region O at time t. The central assumption in
this local Ramsey model, as it will be called in the following, is that ‘capital flows
from regions with lower marginal productivity of capital to higher ones’ (Boucekkine
et al., 2009, p.6). According to Boucekkine et al. (2009) and Brito (2004), this
is equivalent to ‘assuming that capital flows from regions which are abundant in
capital towards regions which are relatively scarce’ (Boucekkine et al., 2009, p.4).
Neglecting any institutional barriers to capital flows and adjustment speed, the
trade balance is equal to the capital flow through O, hence∫

O
τ(x, t)dx = −

∫
O

∂2k(x, t)

∂x2
dx.

Brito (2001) also assumes that capital movements will eliminate all inter-regional
arbitrage opportunities, which motivates

−
∫
O

∂2k(x, t)

∂x2
dx = 0.

The aggregated budget constraint in the local spatial Ramsey model is then de-
scribed by∫

O

(
∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
− Af(k(x, t)) + c(x, t)

)
dx = 0, ∀t.

For small regions O, the accumulation process of capital in time and space is then
given by the following semilinear parabolic differential equation

∂k(x, t)

∂t
=
∂2k(x, t)

∂x2
+ Af(k(x, t))− c(x, t) on Ω× R+.
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3.3 The Local Ramsey Model - Optimal Control with PDE Constraint

Moreover, the capital stock should satisfy an initial value condition, hence

k(x, 0) = k0(x) > 0 ∀x ∈ Ω.

Analog to the original only time depending model, the existence of a social central
planner, who tries to maximize the households’ lifetime utility benevolently, is
also assumed in the spatial Ramsey models. In this ethical framework, the best
action the central planner can choose is the one that maximizes the common
welfare. For example, Brito (2001) assumes a Benthamian utility function, which
is given as unweighted sum of the individual intertemporal utility functions for
every household located in every x ∈ Ω:∫

R+

∫
Ω

U(c(x, t))e−τtdxdt.

Such an objective is the most common functional to model a social central planner.
The households discount future utility exponentially with a time discount factor
τ ∈ (0, 1). Although time is discounted, the integral over the space domain does
not necessarily exist if Ω is not bounded. Brito (2004) introduces some poten-
tial remedies: For example, he considers not only a time discounting, but a space
discounting as well, which leads to a ‘symmetry between time and space, by penal-
izing dates and locations far away from the origin’ (Brito, 2004, p.13). However,
according to Brito (2004) and Camacho et al. (2008), there may be no meaning-
ful evidence for punishing distances from the origin in economic interpretation.
Therefore, Brito (2004) considers an alternative in order to guarantee the exis-
tence of the objective integral. He introduces a so called spatial averaging where
all locations x ∈ Ω are weighted by the inverse of their relative distance to the
origin. Considering a so called Millian intertemporal utility function,

V (x, t) := lim
x→∞

1

2x

∫ x

−x

∫ ∞
0

u(c(y, t))e−βtdtdy,

he can make sure that the integral will be bounded for the ‘steady state spatially
symmetric distributions of consumption’ (Brito, 2004, 14). However, this kind of
objective functions is not of Benthamian type.
Boucekkine et al. (2009) point out that they are able to stay in the social central
planner setting, even without any spatial discounting in the objective. However,
they have to assume that the utility function is linear and introduce some free
boundary conditions.

Solving the partial differential equation on bounded spatial domains requires the
definition of such boundary conditions. Also in the spatially unbounded case
Ω = R, Brito (2004), Boucekkine et al. (2009), and Camacho et al. (2008) claim
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that the capital flow vanishes far away from the origin, hence

lim
x→±∞

∂k(x, t)

∂x
= 0, ∀t ∈ R+.

Combining the social central planner’s objective, the budget constraint, and the
capital flow constraint yields the following optimal control problem, which defines
the local spatial Ramsey model:

max
k,c
J (k, c) :=

∫ ∞
0

∫
R
U(c(t, y))e−τt−γ|x|dtdy, (3.8)

subject to

∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
− Af(k(x, t)) + δk(x, t) = −c(x, t) on R× R+

lim
x→±∞

∂k(x, t)

∂x
= 0, in R+

k(0, ·) = k0(·) > 0, in R

k, c ≥ 0 on R× R+

(3.9)

for discount factors τ, γ > 0, a productivity factor A which may either be a con-
stant in R+ or a nonnegative, real valued function and a depreciation rate δ > 0.

As already mentioned, studying existence and uniqueness of the solution of the
PDE constraint (3.9) and the optimal control problem (3.8)-(3.9) is a rather chal-
lenging task mostly due to the unbounded space and the inifinite time horizon.
Indeed, most of the available existence results are stated for spatial models on
bounded spatial domains. Aldashev et al. (2014) and Boucekkine et al. (2013) de-
fine the spatial domain as unit circle in Rn. According to Boucekkine et al. (2013),
‘the choice of the unit circle to represent space is not innocuous’, however it is a
traditional modeling of space in economics and it ‘allows to avoid the specification
of boundary conditions’ (Boucekkine et al., 2013, p.2, p.5).
Camacho et al. (2008, p.8) state an existence result for a classical solution of the
PDE constraint on unbounded space but with finite time horizon. They derive the
necessary first order conditions applying Pontryagin’s maximum principle. How-
ever, the well-posedness of the resulting system of PDE is only guaranteed under
some strong assumptions such as the boundedness of the consumption path and
that the capital stock is positive on the whole time-space cylinder, including the
terminal point in time.
Boucekkine et al. (2009, p.13) admit that their optimal control model in infinite
time and unbounded space is ill-posed. However, they are able to derive an exis-
tence result for a linear utility function
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J (k, c) :=

∫ ∞
0

∫
R
c(x, t)ψ(x)e−τtdxdt

for a function ψ : R→ R+\{0} with∫
R
ψ(x)dx = 1.

It it remarkable, that most analysis considering the existence of a solution of the
optimal control problem (3.8)-(3.9) are based on the theory of classical solutions.
Especially for semilinear differential equations, this may not be appropriate. In
the following, we consider weak solutions of the underlying PDE constraints. In
that way, we are much freer in the choice of our nonlinearities and the shape of the
objective function. Moreover, we can stay in the setting of a social central planner,
which is one of the highlighted advantages stated in the paper of Camacho et al.
(2008).

3.4 The Nonlocal Spatial Ramsey Model with

Endogenous Productivity Growth

In the recent literature dealing with continuous spatial Ramsey models, the capital
accumulation process via time and space is modeled as a parabolic differential
equation. In the models introduced by Brito (2001, 2004, 2012), Camacho et al.
(2008), and Boucekkine et al. (2009), the mobility of capital over space is described
by a Laplace operator. In order to compute the derivatives at a point (x, t), the
function k, that describes the capital distribution in time and space, has to be
known only in the respective point and in an arbitrary small neighborhood. Such
(local) diffusion equations play a mayor role in mathematical modeling, describing
phenomena in physics, chemistry, or finance. A prime example is the heat equation,
which models the motion of heat in a homogeneous and isotropic medium Ω,

ut −∆u = 0 on Ω,

where the function u describes the temperature.
Considering the mobility of capital and labor force across space, local diffusion
effects are no longer sufficient to model the process of accumulation and diffusion
of capital and labor close to reality. Coming back to the example of the heat equa-
tion, this becomes quite obvious: Temperature, as well as odor or color molecules
in the air or in liquids, always need physical contact to the direct surrounding to
move from one location to another. If we think about labor force, agents endowed
with labor may move from one location to another without undertaking work in
every single location they pass through on their way. The same behavior is ob-
servable for the dispersion of capital. Investments arise only on some separate
locations, they do of course affect the surrounding but do not spread evenly from
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one point to another. Capital, as well as labor force, can literally ‘jump’ through
space.

So called jump diffusion models have mainly been studied in financial mathemat-
ics because they are able to capture sudden, discontinuous changes in asset prices.
Other fields of application are physics (modeling heat diffusion over a crack in the
isotropic medium), or biology (population and swarm simulation models). The
nonlocal diffusion equation we will consider here arises naturally from a proba-
bilistic process in which capital moves randomly in space, subject to a probability
that allows long jumps. However, the model is not stochastic, but deterministic as
we consider an economy with a central planner, who observes any spatial consump-
tion distribution in all points of time, and can determine the capital distribution
according to the capital accumulation process.
Another motivation for introducing those jump diffusion effects to the Ramsey
model is that the heat equation insinuates an infinite adjustment speed of the
molecules. The accumulation of capital or labor is much slower in real world ob-
servations. Moreover, the local diffusion operator enforces an even distribution of
molecules or heat in the medium and does neither allow slow adjustment speed,
nor the conservation of heterogeneity, or even discontinuities. Especially when
modeling initial capital distributions that exhibit gaps or cracks, the models as in-
troduced by Brito (2001) and others lead to even capital distributions and smooth
out every disparities.
To our knowledge, we are the first who introduce such nonlocal diffusion effects
in the spatial Ramsey model. We add an additional nonlocal diffusion operator,
complementing the (local) Laplace operator. Thus, in our version of this economic
growth model, capital mobility in a location does not only depend on the respec-
tive one but also on ‘far away’ locations.

We consider a domain of interest as a bouned or unbounded subset Ω ⊆ Rn. Ac-
cording to Brock et al. (2012), we can interpret Ω either geographically, which
means as physical space and would motivate to choose n = 2, or as economic
space, where the location has to be understood as a set of ‘attributes related to
economic quantities of interest’ (Brock et al., 2012, p.3). Analog to Brito (2004),
we assume that the population or attributes are evenly distributed across space,
which legitimates the assumption on Ω to be a connected set.
We consider a function k : Ω × [0, T ] → R, which describes the capital stock
distribution in time and space. Although the capital distribution is in this way
heterogeneous in time and space, we only consider one single capital distribution
function. This is in line with our procedure to consider only one single agent who
makes decisions. We are aware of the criticism against this representative agent
approach, see for example Kirman (1992) or Stiglitz (2018). However, our main
interest in the context of this monograph lies in questions of existence and com-
putability of economic growth in time and space and how nonlocal diffusion effects
in the capital accumulation process and endogenous productivity growth influence
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it. We recommend a research on decentralization and distributional issues on our
nonlocal Ramsey model for future research.

For an only space dependent function k : Rn → R, the nonlocal diffusion operator
is given as an integral operator,

NL(k)(x) :=

∫
Rn

(k(y)− k(x))γ(x, y)dy

(cf. Burch and Lehoucq, 2011; Du et al., 2014; Gunzburger and Lehoucq, 2010;
D’Elia and Gunzburger, 2014). The function γ is a so called kernel function and
throughout this thesis it is assumed to be a nonnegative and symmetric function.
If we can rewrite γ as γ̂ : Rn × Rn → R, x, y 7→ γ̂(x− y), and if moreover, γ̂ is a
probability density such that ∫

Rn
γ̂(s)ds = 1,

the rate of diffusion can be interpreted as ‘the difference in the rate at which k
enters x [from all other locations],

∫
Rn k(y, t)γ(x, y)dy, and the rate at which k

departs x [to all other locations], k(x)’ (Burch and Lehoucq, 2011, p.32). Here,
the value γ̂(x−y) is thought of as the probability of k jumping from y to x (Chas-
seigne et al., 2006, p.1). It is obvious by the definition, that this operator does have
smoothing effects. Briani et al. (2004) indeed prove that, for an appropriate kernel
function γ, the integral operator behaves like a weak Laplace operator, which is
one of the reasons why discontinuities can be preserved. Moreover, this operator
reduces the adjustment speed of capital in space, as compared to the local model.
The kernel function, which we will consider in our nonlocal Ramsey model, is the
Gaussian probability density function with a given variance or covariance matrix
and a mean value x. We will analyze the Ramsey model on bounded and un-
bounded spatial domains. We define the kernel function, depending on Ω, as the
multivariate Gaussian probability density function,

Γν(x, y) : =


1√

(2πν2)n
exp

(
−1

2
(x− y)TΣ−1

ν (x− y)
)

Ω = Rn,

1√
(2πσ2)n

exp
(
−1

2
(x− y)TΣ−1

σ (x− y)
)
1Bν(x)(y) Rn\Ω 6= ∅,

(3.10)

where we choose ν ∈ {µ, ε} for two constants 0 < µ < ε and σ > 0. Bν(x) denotes
the multidimensional ball with radius ν and center x.
When we consider a bounded spatial domain, it is appropriate to consider differ-
ent parameters σ, which describes the covariances of the spatial directions, and ν,
which denotes the interaction radius. Both parameters affect the diffusive effect of
the nonlocal operator NL, but contrariwise. We will point out in Chapter 6, that
an increasing interaction radius ν increases the diffusive effect, whereas a smaller
σ drives diffusion.

39



3 The Spatial Economics and Optimal Control Theory

The matrices Σν ∈ Rn×n and Σσ ∈ Rn×n are covariance matrices, hence positive
semidefinite and symmetric, with determinants det(Σν) = ν2n and det(Σσ) = σ2n.
We can control the interdependency of the spatial directions with the entries next
to the diagonals. Whenever the covariance matrix has diagonal structure, this
means that capital can move through space completely uncorrelated. Moreover,
the entries on the diagonal reflect the central planners priorities with respect to
the space directions.
The choice of this density function is application driven. First of all, we are in this
case in the setting of Briani et al. (2004) such that we can motivate the assump-
tion of weak diffusion effects to drive capital accumulation in space. Second, the
Gaussian density function has a special shape, weighting points near the expected
value x higher than points far away, and moreover is rapidly decreasing towards
the edges. In economic terms, this means that the probability of capital and la-
bor force jumping to ‘near by’ areas is higher than moving suddenly to far away
locations. By varying the value of the parameter ν, we can make the area where
capital or labor movements are more likely, bigger or smaller. This characteristic
is in line with the assumption of a central planner, who can decide in what areas
jumps of production factors are more likely or appropriate.

A groundbreaking innovation of the Ramsey model is the endogenous saving rate,
which means that the optimal saving rate, that maximizes the welfare of the econ-
omy, is determined via the households’ lifetime maximization intention during the
optimization process within the model itself. In that point, the Ramsey model dif-
fers from many other neoclassical growth models. As already mentioned, economic
growth is also driven by technological progress, or the increase of productivity,
which can both be modeled by so called spillover effects. In the common (local)
Ramsey model, this productivity growth is assumed to be growing at a constant
rate A (compare equation (3.6)). In our opinion, this exogenously pre-defined pro-
ductivity growth rate sets the endogenous character of the Ramsey model aside.
We introduce a new, nonlocal productivity operator P , that aims to endogenize
the process of productivity growth, and in that way, preserves the self-contained
character of the Ramsey model. We assume that there is a correlation between the
development (meaning an increase) of productivity and the state of the system,
namely the capital stock in a surrounding of a respective location. Moreover, we
assume that productivity naturally increases over time. We model the productiv-
ity growth as integral term as well. Inspired by a paper of Olson Jr. et al. (2000),
we assume that the productivity growth is exponentially in time in all locations,
depending on an initial level of productivity in the respective location and on the
distribution of capital in space. Combining all intentions, we define the nonlocal
productivity growth operator at a location x and at time t as

P (k)(x, t) := A0(x) exp

( ∫
Rn φ(k(y, t))Γµ(x, y)dy∫

Rn φ(k(y, t))Γε(x, y)dy + ξ
t

)
, (3.11)

with a continuous and nonnegative function φ : R→ R+ and ξ > 0. Examples for
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φ we have in mind are the absolute value function or a differentiable approxima-
tion. We will refert to φ as the nominal function and assume throughout that the
integrals in (3.11) are welldefined. Following Olson Jr. et al. (2000), A0 denotes a
given initial productivity distribution that is compounded over time. In contrast
to a simple AK-model as studied in Boucekkine et al. (2013), we consider a nonlin-
ear production function that is multiplied with the productivity growth operator.
Hence, the production side in the nonlocal spatial Ramsey model is modeled as
nonlinear and nonlocal productivity-production operator

P(k)(x, t) := P (k)(x, t)p(k(x, t)), (3.12)

where p denotes the neoclassical production function defined in (2.1).
The idea of such spillover effects that drive productivity growth was already stud-
ied in Brock et al. (2012). In their paper, the authors distinguish two cases: a
deterministic, exogenous defined spillover effect and a spillover effect that is en-
dogenously determined by the state of the system. The latter case is within our
framework. However, in contrast to our model, Brock et al. (2012) insert the non-
local spillover effect in the production function p and do not consider it as a rate
to compound time and capital to an initial productivity distribution. Moreover,
and this is crucial, the authors model the capital agglomeration in space to be
only driven by the geographical spillovers. Thus, although depending on space,
the capital accumulation equation in Brock et al. (2012) is an ordinary differential
equation.

Based on the second welfare theorem, the representative agent approach allows us
to consider the competitive equilibrium in the spatial Ramsey model with nonlocal
capital diffusion and endogenous productivity growth as a solution of the following
optimal control problem. Thus, the social optimum of the economy in our setting
is defined as the minimum of

J (k, c) := −
∫ T

0

∫
Ω

U(x, t, c(x, t))dxdt+
1

ρ
‖k(T )− kT‖2

L2(Ω), (3.13)

where kT : Ω → R is a given terminal condition on the capital stock k and ρ > 0
denotes the penalty parameter, such that the capital accumulation equation

∂k

∂t
− α∆k − βNL(k) + δk = P(k)− c (3.14)

holds on Ω× [0, T ], with constants α, β, δ ≥ 0, where δ is as usual a given depre-
ciation rate.
The function U : Ω× [0, T ]×R→ R is a neoclassical utility function as in Assump-
tion 2.4. We assume a central planner, hence both preferences and production are
homogeneous in space. This is analog to the setting in Brito (2001). Neverthe-
less, our model differs according to the economic structure of accumulation and
heterogeneity. Brito considers ’the simplest economic structure in which the only
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difference as far as space is concerned is related to the level of the (local) economic
variables’ (Brito, 2001, p.2). By introducing the nonlocal diffusion operator NL
and the productivity growth operator P , the cross-sectional heterogeneity in our
spatial Ramsey model is driven by endogenous and nonlocal effects that change
across space.
Consistent with many common economic models, we will introduce a time dis-
counting for a discount rate τ > 0. This time discounting means, that the central
planner values a contemporary gain of utility higher than future consumption.
Whenever we consider an unbounded spatial domain, we also consider a space
discounting analog to Camacho et al. (2008). This is again within the framework
of a central planner and models a population density, or a political decision of the
Benthamain planner. Moreover, the preferences of the decision maker impose a
pre-ordering of the set of consumption bundles, which differ with respect to time
and space.
We assume a finite time horizon T and introduce a terminal capital function
kT ≥ 0. In that way, we are able to consider a larger (also infinite) time hori-
zon, as long as we are able to meaningfully determine kT . This terminal condition
could be understood as a sustainability condition.

The capital accumulation equation (3.14) is to be interpreted like in the local
model. We assume that the households can decide on their own, how much of their
salary they spent for consumption and how much they save or invest. Analog to
Camacho et al. (2008), the households can invest in all firms in space. These firms
are assumed to be represented by one representative production function p, hence
are equal in every point x ∈ Ω. This is in line with the homogeneous production
assumption. Nevertheless, due to the (non-constant) productivity operator, we
generate a heterogeneous distribution of investment returns. The households are
allowed to choose the most profitable location for investment. The investment in
any location x at time t is given as

i(x, t) = P(k)(x, t)− δk(x, t)− c(x, t),

and can be positive or negative.
Analog to the local model, we denote by c : Ω × [0, T ] → R the consumption
distribution in time and space. In this monograph, we consider one single good,
which is produced and consumed.
We introduce the initial value constraint

k(x, 0) = k0(x), (3.15)

which should be satisfied in Ω. We will consider weak solutions of the PIDE con-
straint (3.14), hence the highest regularity we should assume on k0 will be L∞.
This is especially interesting for the economic application, since we are allowed to
start with a discontinuous initial capital distribution across space. We will point
out in the numerical results, that the nonlocal diffusion operator preserves any
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heterogeneity and even discontinuities over time much longer than the pure local
model.
Depending on whether we consider a bounded or unbounded spatial domain, we
have to introduce boundary or volume constraints in order to make the problem
well-posed. Common boundary conditions describe the function only on the sur-
face ∂Ω of the bounded set Ω. In the context of nonlocal diffusion effects such
surface constraints are not sufficient any more. Natural extensions of such bound-
ary conditions are so called volume constraints, that act on a non-zero volume
domain. Analogously to the local case, several types of these constraints are dis-
tinguished. Here, we consider Dirichlet- and Neumann-type volume constraints
which both have an economic meaning in the Ramsey economy with a central
planner.
In order to avoid that every household runs into debts, economists often introduce
a so called no Ponzi game condition (cf. Brito, 2001, p.7). Under that constraint,
the agents are not allowed to get into debt under multilevel selling. Since we are
only considering a finite time horizon, we can reduce this condition with out any
loss of generality to the state constraint

k(x, t) ≥ 0, ∀(x, t) ∈ Ω× [0, T ]. (3.16)

Moreover, it is commonly assumed that also the consumption is bounded from
below by zero since negative consumption means that the agent is starving, hence
we additionally assume

c(x, t) ≥ 0, ∀(x, t) ∈ Ω× [0, T ]. (3.17)

Boucekkine et al. (2009, p.3) confess that their spatial Ramsey model with local
diffusion effects in the capital agglomeration equation is ill-posed in the sense of
Hadamard, which means they cannot prove neither existence nor uniqueness of a
solution. Although the model of Boucekkine et al. (2009), like the one of Brito
(2001), can be seen as a special case of our nonlocal spatial Ramsey model, we are
able to overcome this ill-posedness. In the following chapters, we will analyze the
nonlocal spatial Ramsey model (3.13)-(3.17) according to well-posedness and solve
it numerically. We will distinguish between two settings and consider the model
on a bounded and an unbounded spatial domain. Both settings have meaningful
interpretations and give interesting insights from application and mathematical
points of view.
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CHAPTER 4

The Nonlocal Spatial Ramsey Model on

Unbounded Spatial Domains

‘In some instances boundaries can be classified as significant borders, that is, as
places where the economic conditions change abruptly because of some change, for
example in the tax system, or in transport costs. In other instances we can speak

of irrelevant borders, where nothing actually happens from an economic
standpoint.’ (Arbia, 2001, p.415)

In the originally space independent model, Ramsey (1928) himself considered an
infinite time horizon. This assumption is appropriate from an economic point of
view. Although no agent lives forever, this non-terminated time naturally intro-
duces a sustainability condition. In some discrete models, as for example intro-
duced by Acemoglu (2009, Chapter 6), an immortal agent is explicitly interpreted
as a dynasty, where single individuals have the incentive to pass a non-zero capi-
tal stock to future generations. Whenever a space dimension is introduced to the
Ramsey model, it is necessary to decide whether the spatial domain should be
bounded or not. The combination of an infinite time horizon and an unbounded
spatial domain holds some difficulties concerning the well-posedness of the spatial
model (cf. Boucekkine et al., 2009, p.3). As already pointed out in Chapter 3.4,
we circumvent these difficulties by introducing a terminal capital distribution kT
that should not be undercut. In this way, we mimic an infinite time horizon, but
do only have to deal with a finite terminal time. Moreover, we introduce a spa-
tial discounting in the objective function, which is convenient in the setting of a
central planner. These additional constraints on the state variable and the spe-
cial structure of the objective function allow us to consider an unbounded spatial
domain in the nonlocal spatial Ramsey model. Such infinite space domains are of
interest because they can be interpreted as one single and closed economy, where
no flows of production factors to, or interactions with any other economies take
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place. Moreover, due to the spatial discounting, we do not need to define any
boundary conditions in order to guarantee well-posedness of the model. Several
types of boundary conditions, such as Neumann, Dirichlet, or Cauchy conditions
and their economic meaning are for example discussed by Brito (2004, p.14). Here,
it becomes obvious that the choice of the appropriate type of boundary conditions
is not an easy task and that it heavily influences the solution of the underlying par-
tial differential equation. Camacho et al. (2008) also consider a finite time horizon
and unbounded spatial domain, but they disclaim any spatial discounting. This
is the reason why they have to introduce free boundary conditions that enforce
the capital distribution to become flat towards infinity, what restricts the set of
possible solutions of the partial differential equation too much.

In this chapter, we provide an existence result of a weak solution of the capital
equation over unbounded spatial domains and derive some regularity statements
in Section 4.1. Moreover, we prove the existence of an optimal control in the non-
local spatial Ramsey model. The latter is the main result of Section 4.2.

The capital accumulation equation, which we consider in the following, is a mixed
local-nonlocal diffusion equation, i.e. the weights α, β in equation (3.14) are both
positive. We see later that we can indeed choose α, which is the weight of the local
diffusion term, very small, but that we cannot neglect it. Due to the unbounded
spatial domain, we do not have to introduce any boundary, or volume constraints.
Moreover, we do not have to truncate the kernel function in the nonlocal diffusion
operator in this setting, but are able to analyze the dynamics of the Ramsey
model on the whole, unbounded, and untruncated spatial domain. We fix the
finite time horizon T ∈ N and the unbounded and open domain Ω ⊆ Rn. The
capital accumulation equation, which we consider in the spatially unbounded case,
is hence defined according to (3.14) as

kt − L(k) + δk − P(k) = −c on Ω× (0, T ),

k(·, 0) = k0(·) > 0 in Ω,
(4.1)

where the local-nonlocal diffusion operator L is defined as

L(k)(x, t) := α ∆k(x, t) + β

∫
Ω

(k(y, t)− k(x, t))Γε(x, y)dy, (4.2)

for coefficients α, β > 0 and ε > 0. The kernel function is given according to
equation (3.10) as the density function of the multivariate normal distribution,

Γε(x, y) :=
1√

(2πε2)n
exp

(
−1

2
(x− y)TΣ−1

ε (x− y)

)
, (4.3)

for a given covariance matrix Σε with det(Σε) = ε2n, ε > 0. In the following, we
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assume that the matrix Σε is a diagonal matrix with constant entries,

Σε =


ε2

. . .

ε2

 ∈ Rn×n.

This assumption is application driven. We assume that capital can move through
space without any barriers, or transition costs, thus capital flows are absolutely
free in space. Moreover, the central planner does not prioritize any space direc-
tion, but weights them all equally. Hence, the spatial directions in the spatialized
Ramsey model are completely uncorrelated and the variances are equal.
Given this special form of the covariance matrices, we can rewrite the kernel func-
tion as

Γε(x, y) =
1√

(2πε2)n
exp

(
−‖x− y‖

2
2

2ε2

)
, (4.4)

where ‖ · ‖2 denotes the Euclidean norm.

The nonlocal operator P on the left-hand side describes the production of the
economy and is given according to equation (3.12) as

P(k)(x, t) : = P (k)(x, t) p(k(x, t))

= A0(x) exp

( ∫
Ω
φ(k(y, t))Γµ(x, y)dy∫

Ω
φ(k(y, t))Γε(x, y)dy + ξ

t

)
p(k(x, t)),

(4.5)

where A0 : Rn → R denotes the initial productivity distribution over space,
φ : R → R+ is the continuous nominal function, and p : R → R+ denotes the
productivity function. The kernel function Γµ is defined analogously to (4.4) for a
parameter 0 < µ < ε. The boundedness of the fraction in the exponential function
is an important property, that we will exploit very often in this chapter. We state
this property in the next lemma.

Lemma 4.1:
Let Ω ⊆ Rn be an unbounded domain, let φ : R → R+ generate a nonnegative
superposition operator, ξ > 0, and let the kernel functions Γµ and Γε for parameters
0 < µ < ε be defined according to equation (4.4). Then the estimate∫

Ω
φ(k(y, t))Γµ(x, y)dy∫

Ω
φ(k(y, t))Γε(x, y)dy + ξ

≤
(
ε

µ

)n
(4.6)

holds for all x ∈ Ω.

Proof. Without any loss of generality, we choose x = 0. As x is by definition the
expected value of Γν , ν ∈ {µ, ε}, the proof will be analog for every other x, but
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with translational displaced Γν . We define Γν(0, y) =: Γν(y). The inequality (4.6)
can be rewritten as∫

Ω

φ(k(y, t))Γµ(y)dy ≤
(
ε

µ

)n(∫
Ω

φ(k(y, t))Γε(y)dy + ξ

)
.

Subtracting the left term, we get

0 ≤
∫

Ω

φ(k(y, t))

((
ε

µ

)n
Γε(y)− Γµ(y)

)
dy +

(
ε

µ

)n
ξ,

which is in particular true whenever(
ε

µ

)n
Γε(y)− Γµ(y) ≥ 0

for all y ∈ Ω, since we assume φ to be nonnegative. But this inequality follows with
the monotonicity of the exponential function. Let therefore y ∈ Ω be arbitrary,
then it holds(

ε

µ

)n
Γε(y)− Γµ(y) =

(
ε

µ

)n
1√

(2πε2)n
exp

(
−‖y‖

2
2

2ε2

)
− 1√

(2πµ2)n
exp

(
−‖y‖

2
2

2µ2

)
=

1√
(2πµ2)n

(
exp

(
−‖y‖

2
2

2ε2

)
− exp

(
−‖y‖

2
2

2µ2

))
≥ 0,

whenever

−‖y‖
2
2

2ε2
≥ −‖y‖

2
2

2µ2
,

which completes the proof.

4.1 The Weak Solution over Unbounded Spatial

Domains

In this section, we give an existence and uniqueness result of a weak solution of the
capital accumulation equation of the nonlocal spatial Ramsey model with endoge-
nous productivity growth over unbounded spatial domains, as defined in equation
(4.1). Before we consider the economic application, we introduce an abstract exis-
tence result of a weak solution of a linear, but inhomogeneous nonlocal parabolic
differential equation applying an argument from Wloka (1982). We will then ex-
tend this result to the semilinear case as the application to our nonlocal spatial
Ramsey model with productivity growth.
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We consider the following abstract, nonlocal, and linear initial value problem

kt − a ∆k − b
∫

Ω

(k(y, ·)− k(·, ·))γ(·, y)dy + c k = f on Ω× (0, T ),

k(·, 0) = k0(·) in Ω,

(4.7)

where a, b, c are either time depending functions, mapping between (0, T ) and R+,
or fixed coefficients in R+. The function γ : Ω×Ω→ R denotes a kernel function.

Definition 4.2:
Consider the Gelfand triple H1(Ω) ↪→ L2(Ω) ↪→ H−1(Ω). A function k ∈ W (0, T )
is called a weak solution of (4.7) if

• for all v ∈ H1(Ω) yields

〈kt(·), v〉L2(Ω) +

∫
Ω

a(·) ∇xk(x, ·)T∇xv(x) + c(·) k(x, ·)v(x) dx

− b(·)
∫

Ω

(k(y, ·)− k(x, ·))γ(x, y)dy v(x) dx =

∫
Ω

f(x, ·)v(x) dx,

(4.8)

in the sense of D′(]0, T [),

• k(·, 0) = k0(·) almost everywhere on Ω.

The weak formulation (4.8) motivates the definition of the bilinear form
l : H1(Ω)×H1(Ω)× [0, T ]→ R,

l(k, v)(t) = a(t)

∫
Ω

∇xk(x)T ∇xv(x) dx+ c(t)

∫
Ω

k(x)v(x) dx

− b(t)
∫

Ω

∫
Ω

(k(y)− k(x))γ(x, y)dy v(x) dx.

(4.9)

Assumption 4.3:
Let the following assumptions hold for l:

(a) The bilinear form l(u, v)(·) is measurable on [0, T ] (for fixed u, v).

(b) l(·, ·)(t) is continuous, hence there exists a constant c1 > 0 (independent of
t), such that

|l(u, v)(t)| ≤ c1‖u‖H1(Ω)‖v‖H1(Ω),

for all t ∈ [0, T ] and u, v ∈ L2(Ω).

(c) There exist some constants c2 ≥ 0 and c3 > 0 (independent of t), such that
l satisfies the G̊arding inequality

l(u, u)(t) + c2‖u‖2
L2(Ω) ≥ c3‖u‖H1(Ω),
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for all t ∈ [0, T ] and u ∈ L2(Ω).

We hide the nonlocality inside the bilinear form. Since the result of Wloka (1982) is
quite abstract and the bilinear form l is assumed to satisfy all necessary conditions,
we get the following quite abstract existence result for a linear nonlocal partial
differential equation.

Theorem 4.4:
Let f ∈ L2(0, T ;H−1(Ω)) and k0 ∈ L2(Ω) be given functions, and suppose that
the bilinear form l satisfies Assumption 4.3. Then the problem (4.7) has a unique
weak solution k ∈ W (0, T ).

The proof by Wloka (1982, pp.384-389) can be adapted one to one to the bilinear
form defined in (4.9).

We apply the result for linear PIDEs to the semilinear case, exploiting the Lipschitz
continuity of the nonlinearity p and the boundedness of the exponential term. The
spatial domain, which we consider in the following, is the untruncated Rn, n ∈ N.
First, we derive the weak formulation of the PIDE (4.1), multiplying the equation
with a function v ∈ H1(Rn) and integrating over Rn. Integrating by parts, we get

∫
Rn
kt(x, ·) v(x) dx +

∫
Rn

(α ∇xk(x, ·)T∇xv(x) + δk(x, ·) v(x)) dx

− β
∫
Rn

∫
Rn

(k(y, ·)− k(x, ·))Γε(x, y)dy v(x) dx =

∫
Rn

(P(k)(x, ·) − c(x)) v(x) dx,

where the equality has to be understood in distributional sense with respect to t.

This weak formulation motivates the following definition of a bilinear form.

Definition 4.5:
We define the bilinear form a : H1(Rn)×H1(Rn)→ R as

a(u, v) : = α

∫
Rn
∇xu

T∇xv dx + δ

∫
Rn
u v dx

− β
∫
Rn

∫
Rn

(u(y)− u(x))Γε(x, y) dy v(x) dx.

(4.10)

In order to apply Theorem 4.4, we have to show that a is continuous and weakly
coercive. Note that this bilinear form is independent of time, since we have chosen
α and β to be constants.
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Lemma 4.6:
There exist some constants c1, c3 > 0, and c2 ≥ 0 such that the bilinear form a as
defined in (4.10) satisfies the following properties for all functions u, v ∈ H1(Rn):

(i)Continuity: |a(u, v)| ≤ c1‖u‖H1(Rn)‖v‖H1(Rn),

(ii)G̊arding Inequality: a(u, u) + c2‖u‖2
L2(Rn) ≥ c3‖u‖2

H1(Rn).
(4.11)

Proof.
(i) For the first and second term of the bilinear form defined in (4.10), it is true
that∣∣∣∣∫

Rn

(
α ∇xu

T∇xv + δ uv
)
dx

∣∣∣∣ ≤ (α + δ)‖u‖H1(Rn)‖v‖H1(Rn) ∀ u, v ∈ H1(Rn),

using the Hölder inequality two times and the definition of the H1(Rn) norm.
In order to estimate the nonlocal term, a little more work has to be done. We
rewrite the term for y := x − z and apply the fundamental theorem of calculus.
This yields

∣∣∣∣∣
∫
Rn

∫
Rn

(u(x− z)− u(x))
1√

(2πε2)n
exp

(
−‖z‖

2
2

2ε2

)
dz v(x) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rn

∫
Rn

∫ 1

0

∇xu(x− ξz)T zdξ
1√

(2πε2)n
exp

(
−‖z‖

2
2

2ε2

)
dz v(x) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

∫
Rn

∫
Rn
∇xu(x− ξz)v(x) dx z

1√
(2πε2)n

exp

(
−‖z‖

2
2

2ε2

)
dzdξ

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 1

0

∫
Rn

(∫
Rn
|∇xu(x− ξz)|2dx

)1/2

‖v‖L2(Rn) z
1√

(2πε2)n
exp

(
−‖z‖

2
2

2ε2

)
dzdξ

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

∫
Rn

(∫
Rn
|∇xu(y)|2 dy

)1/2

‖v‖L2(R) z
1√

(2πε2)n
exp

(
−‖z‖

2
2

2ε2

)
dzdξ

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Rn
‖∇xu‖L2(Rn)‖v‖L2(Rn) z

1√
(2πε2)n

exp

(
−‖z‖

2
2

2ε2

)
dz

∣∣∣∣∣
≤‖∇xu‖L2(Rn)‖v‖L2(Rn)

∣∣∣∣∣
∫
Rn

z
1

(
√

2πε2)n
exp

(
−‖z‖

2
2

2ε2

)
dz

∣∣∣∣∣
≤κ‖∇xu‖L2(Rn)‖v‖L2(Rn)

≤κ‖u‖H1(Rn)‖v‖H1(Rn),

with

0 ≤ κ :=

∫
Rn
|z| 1√

(2πε2)n
exp

(
−‖z‖

2
2

2ε2

)
dz.
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Note that this integral is finite, since
∫
Rn |x| exp(−a‖x‖2

2) dx is bounded whenever
a is positive.

Combining all estimates, the continuity of a,

|a(u, v)| ≤ c1‖u‖H1(Rn)‖v‖H1(Rn) ∀ u, v ∈ H1(Rn),

where 0 ≤ c1 := α + δ + βκ, is proven.

(ii) To prove the weak coercivity of a, the procedure is the same as in (i), hence
every term is estimated separately. For the first term, we have∫
Rn

(α |∇xu|2+δ u2) dx = α‖∇xu‖2
L2(Rn)+δ‖u‖2

L2(Rn) = α‖u‖2
H1(Rn)+(δ−α)‖u‖2

L2(Rn).

We use an estimation from (i), which leads to the following estimation for the last
term:

− β
∫
Rn

∫
Rn

(u(x− z)− u(x))Γε(z)dz u(x) dx ≥ −βκ‖∇xu‖L2(Rn)‖u‖L2(Rn).

Using Young’s inequality for an arbitrary c > 0, we get

−βκ‖∇xu‖L2(Rn)‖u‖L2(Rn) ≥ −
c

2
‖∇xu‖2

L2(Rn) −
(βκ)2

2c
‖u‖2

L2(Rn).

Combining both estimates then completes the proof,

a(u, u) ≥ α‖u‖2
H1(Rn) −

(
α +

(βκ)2

2c
− δ
)
‖u‖2

L2(Rn) −
c

2
‖∇xu‖2

L2(Rn)

which is equivalent to

a(u, u) +

(
α +

(βκ)2

2c
− δ
)
‖u‖2

L2(Rn) ≥
(
α− c

2

)
‖u‖2

H1(Rn).

Remark 4.7:
At the end of the proof of Lemma 4.6 (ii), we can choose c > 0 small enough such
that

c3 :=
(
α− c

2

)
> 0 and c2 :=

(
α +

(βκ)2

2c
− δ
)
≥ 0.

In that case, we get the G̊arding inequality

a(u, u) + c2‖u‖2
L2 ≥ c3‖u‖2

H1 .
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Instead of considering k ∈ W (0, T ) satisfying the capital accumulation equation,
we can consider a function

z(t) = k(t) exp(−c2t) ∈ W (0, T ),

which has to satisfy the same equation (with a slightly modified right-hand side)
and whose corresponding bilinear form is strictly coercive. Hence, we can interpret
the bilinear forms in the proofs below as the one of z and assume the coercivity of
a without any loss of generality (cf. Wloka, 1982, p.384). We point that out later.

Remark 4.8:
Note that at the end of the proof, we need the parameter α, which is the weighting
parameter of the local diffusion operator, to be positive such that α− c

2
is positive.

The constant c, which comes from Young’s inequality, is positive, so we cannot
choose α = 0 = c. Hence, at this point it becomes obvious why we need the local
diffusion term in the Ramsey model on unbounded spatial domains. In the case
of bounded spatial domains and volume constraints, we are able to apply Green’s
identity as introduced in the nonlocal vector calculus developed in Du et al. (2012a)
and Du et al. (2012b). Thus we change the sign in front of the nonlocal diffusion
operator. Here, no Green formula is available. Nevertheless, we can choose c to
be very small and so are able to minimize the local diffusion effect in the spatial
Ramsey model over unbounded spatial domains.

In order to prove the existence of a weak solution of the semilinear PIDE, we
have to make some assumptions on the nonlinearities which are stated below.
Although these may seem quite restrictive, we justify later that the assumptions
are appropriate in the context of the Ramsey model.

Assumption 4.9:
The nonlinear functions in the nonlocal spatial Ramsey model with endogenous
productivity growth are assumed to satisfy the following properties:

• The production function p : R → R is concave and Lipschitz continuous,
hence there exists a constant Lp > 0, such that

|p(x)− p(y)| ≤ Lp|x− y|, ∀ x, y ∈ R.

• The production function p is bounded, hence there exists a constant Mp > 0,
such that

|p(x)| ≤Mp, ∀ x ∈ R.

• The production function satisfies

p(0) = 0.

• The initial productivity distribution satisfies A0 ∈ L2(Rn) ∩ L∞(Rn).
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• The nominal function φ : R → R+ is Lipschitz continuous with Lipschitz
constant Lφ > 0, hence

|φ(x)− φ(y)| ≤ Lφ|u− v|, ∀ x, y ∈ R

and satisfies for some a0, a1 ≥ 0

φ(x) ≤ a0 + a1 |x| for all x ∈ R.

We want to apply the existence result stated in Theorem 4.4 for linear differential
equations. Therefore, we need to show the following regularity of the productivity-
production operator P .

Lemma 4.10:
Let Assumption 4.9 be valid. The functional P is bounded between L2(0, T ;L2(Rn))
and L2(0, T ;L2(Rn)).

Proof. Let k be a function in L2(0, T ;L2(R)). Then, we estimate

‖P(k)‖2
L2(0,T ;L2(Rn)) =

∫ T

0

∫
Rn
|P(k)(x, t)|2 dxdt

=

∫ T

0

∫
Rn

∣∣∣∣A0(x) exp

( ∫
Rn φ(k(y, t))Γµ(x, y) dy∫

Rn φ(k(y, t))Γε(x, y) dy + ξ
t

)
p(k(x, t))

∣∣∣∣2 dxdt

≤‖A0‖2
L∞(Rn)

∫ T

0

∫
Rn

∣∣∣∣exp

(
2t

∫
Rn φ(k(y, t))Γµ(x, y) dy∫

Rn φ(k(y, t))Γε(x, y) dy + ξ

)
p2(k(x, t))

∣∣∣∣ dxdt
≤‖A0‖2

L∞(Rn)

∫ T

0

∫
Rn

∣∣∣∣exp

(
2tεn

µn

)
p2(k(x, t))

∣∣∣∣ dxdt
≤‖A0‖2

L∞(Rn)e
2Tεn

µn

∫ T

0

∫
Rn
|p(k(x, t))|2 dxdt

=‖A0‖2
L∞(Rn)e

2Tεn

µn

∫ T

0

∫
Rn
|p(k(x, t))− p(0)|2 dxdt

≤‖A0‖2
L∞(Rn)e

2Tεn

µn L2
p

∫ T

0

∫
Rn
|k(x, t)|2 dxdt

=‖A0‖2
L∞(Rn)e

2Tεn

µn L2
p‖k‖2

L2(0,T ;L2(Rn)) <∞.

In particular, we have proven that P(k) is an element of L2(0, T ;H−1(Rn)), since
L2(0, T ;L2(Rn)) ↪→ L2(0, T ;H−1(Rn)). Now we have all at hand to proof the
existence and uniqueness of a weak solution of the PIDE constraint in our nonlocal
Ramsey model, as stated in the next theorem.
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Theorem 4.11:
Let k0 ∈ L2(Rn), c ∈ L2(0, T ;H−1(Rn)) and let the functions p, φ, and A0 satisfy
Assumption 4.9. Then the capital accumulation equation in the nonlocal spatial
Ramsey model with endogenous productivity growth (4.1) admits a unique weak
solution k ∈ W (0, T ).

Proof. We give the proof to Theorem 4.11, following a common technique, which
is based on Banach’s fixed point theorem and the Lipschitz continuity of the non-
linearity. We exploit the boundedness of the productivity growth operator

P (k)(x, t) = A0(x) exp

( ∫
Rn φ(k(y, t))Γµ(x, y)dy∫

Rn φ(k(y, t))Γε(x, y)dy + ξ
t

)
in L∞(Rn) and L2(Rn), the Lipschitz continuity of the functions p, φ, and the local
Lipschitz continuity of the exponential function to derive the Lipschitz continuity
of the whole productivity-production operator.
First, we fix T ∗ ∈ (0, T ). We show that the solution mapping, which maps a right-
hand side to the solution of the linearized differential equation, is a contraction
for T ∗ sufficiently small.
Let v ∈ C([0, T ∗];L2(Rn)), for short C(0, T ∗;L2(Rn)). As proven in Lemma 4.10,
P(v) ∈ L2(0, T ∗;L2(Rn)), where we have used the inequality

‖v‖L2(0,T ∗;L2(Rn)) ≤ ‖v‖L∞(0,T ∗;L2(Rn))

for all finite T ∗. According to Theorem 4.4, there exists a unique weak solution
u ∈ W (0, T ∗) of

ut − L(u) + δu = P(v)− f in Rn × (0, T ∗),

with u(·, 0) = k0(·) on Rn. Theorem 3.18 (c) then guarantees that u is an element
of C(0, T ∗;L2(Rn)). This defines the operator

S : C(0, T ∗;L2(Rn))→ C(0, T ∗;L2(Rn)), S(v) = u.

In the following, we prove that S is a contraction. Consider the difference
S(v1)−S(v2) for two arbitrary functions v1, v2 ∈ C(0, T ∗;L2(Rn)) with S(v1) = u1

and S(v2) = u2. We choose the function u := u1 − u2 ∈ W (0, T ∗) and deduce the
weak formulation as∫ t

0

∫
Rn
ut(x, s)u(x, s) dx+ a(u, u)(s) ds =∫ t

0

∫
Rn

(P(v1)(x, s)− P(v2)(x, s))u(x, s) dxds,

for all t ∈ [0, T ∗].
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We can estimate the left-hand side (LHS) using a calculation from Lemma 4.6 (i):

LHS ≥
∫ t

0

∫
Rn
ut(x, s)u(x, s) dxds+ α

∫ t

0

∫
R
|∇xu|2(x, s) dxds

+ δ

∫ t

0

∫
Rn
u2(x, s) dxds− κ1

∫ t

0

‖∇xu(s)‖L2(Rn)‖u(s)‖L2(Rn)ds,

where

0 ≤ κ1 := β

∫
Rn
|z| 1√

(2πε2)n
exp

(
−‖z‖2

2

2ε2

)
dz.

Applying Young’s inequality for an arbitrary η > 0, we get

LHS ≥
∫ t

0

∫
Rn
ut(x, s)u(x, s) dxds+ α

∫ t

0

∫
Rn
|∇xu|2(x, s) dxds

+ δ

∫ t

0

∫
Rn
u2(x, s) dxds−

∫ t

0

η

2
‖∇xu(s)‖2

L2(Rn) +
κ2

1

2η
‖u(s)‖2

L2(Rn) ds.

We choose η ≤ 2α, which yields together with the identity∫ t

0

∫
Rn
ut(x, s)u(x, s) dxds =

1

2
‖u(·, t)‖2

L2(Rn)

the following estimate for the left-hand side

LHS ≥ 1

2
‖u(·, t)‖2

L2(Rn) +

∫ t

0

δ‖u(·, s)‖2
L2(Rn) +

κ2
1

2η
‖u(·, s)‖2

L2(Rn) ds.

For the right-hand side (RHS), we get∫ t

0

∫
Rn

(P(v1)(x, s)− P(v2)(x, s)) u(x, s) dxds

≤
∫ t

0

‖P(v1)(·, s)− P(v2)(·, s)‖L2(Rn)‖u(·, s)‖L2(Rn)ds

=

∫ t

0

‖P(v1)(·, s)− P (v1)(·, s)p(v2(·, s)) + P (v1)(·, s)p(v2(·, s))− P(v2)(·, s)‖L2(Rn)

‖u(·, s)‖L2(Rn)ds

≤
∫ t

0

‖P(v1)(·, s)− P (v1)(·, s)p(v2(·, s))‖L2(Rn) ‖u(·, s)‖L2(Rn)ds

+

∫ t

0

‖P (v1)(·, s)p(v2(·, s))− P(v2)(·, s)‖L2(Rn) ‖u(·, s)‖L2(Rn)ds.

To estimate the first term, we exploit the Lipschitz continuity of the production
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function p and the boundedness of the productivity growth operator P and get

‖P(v1)(·, s)− P (v1)(·, s)p(v2(·, s))‖L2(Rn)

= ‖P (v1)(·, s)(p(v1(·, s))− p(v2(·, s)))‖L2(Rn)

≤ ‖P (v1)(·, s)‖L∞(Rn)‖p(v1(·, s))− p(v2(·, s))‖L2(Rn)

≤ Lp ‖P (v1)(·, s)‖L∞(Rn)‖v1(·, s)− v2(·, s)‖L2(Rn),

where we deduce from (4.6)

‖P (v)(·, s)‖L∞(Rn) : = ess sup
x∈Rn

∣∣∣∣A0(x) exp

( ∫
Rn φ(v(y, s))Γµ(x, y)dy∫

Rn φ(v(y, s))Γε(x, y)dy + ξ
s

)∣∣∣∣
= ‖A0‖L∞(Rn)e

sεn

µn

=:
κ2

Lp
e
sεn

µn <∞,

for all s ∈ [0, t]. Estimating the second term yields

‖P (v1)(·, s)p(v2(·, s))− P(v2)(·, s)‖L2(Rn)

= ‖p(v2(·, s))(P (v1)(·, s)− P (v2)(·, s))‖L2(Rn)

≤ ‖p(v2(·, s))‖L∞(Rn)‖P (v1)(·, s)− P (v2)(·, s)‖L2(Rn)

≤ Mp‖P (v1)(·, s)− P (v2)(·, s)‖L2(Rn).

Here, it is

‖P (v1)(·, s)− P (v2)(·, s)‖L2(Rn) =∥∥∥∥A0(·)
[
exp

( ∫
Rn φ(v1(y, s))Γµ(·, y)dy∫

Rn φ(v1(y, s))Γε(·, y)dy + ξ
s

)
− exp

( ∫
Rn φ(v2(y, s))Γµ(·, y)dy∫

Rn φ(v2(y, s))Γε(·, y)dy + ξ
s

)]∥∥∥∥
L2(Rn)

.

We shorten the expression in the following and define for ν ∈ {ε, µ} the operator

Φν(v)(x, s) :=

∫
Rn
φ(v(y, s))Γν(x, y)dy.

We exploit the boundedness of the fraction according to the inequality (4.6),∣∣∣∣ Φµ(v1)(x, s)

Φε(v1)(x, s) + ξ
s− Φµ(v2)(x, s)

Φε(v2)(x, s) + ξ
s

∣∣∣∣ ≤ 2
εn

µn

for all v1, v2, so we can use the local Lipschitz continuity of the exponential function
with Lipschitz constant Lexp > 0 and get
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∥∥∥∥A0(·)
[
exp

(
Φµ(v1)(·, s)

Φε(v1)(·, s) + ξ
s

)
− exp

(
Φµ(v2)(·, s)

Φε(v2)(·, s) + ξ
s

)]∥∥∥∥
L2(Rn)

≤ sLexp

∥∥∥∥A0(·)
[

Φµ(v1)(·, s)
Φε(v1)(·, s) + ξ

− Φµ(v2)(·, s)
Φε(v2)(·, s) + ξ

]∥∥∥∥
L2(Rn)

.

The calculation

∣∣∣∣Φµ(v1)(Φε(v2) + ξ)− Φµ(v2)(Φε(v1) + ξ)

(Φε(v1) + ξ)(Φε(v2) + ξ)

∣∣∣∣
=

∣∣∣∣Φµ(v1)Φε(v2) + Φµ(v1)ξ − Φµ(v2)Φε(v1)− Φµ(v2)ξ

(Φε(v1) + ξ)(Φε(v2) + ξ)

∣∣∣∣
=

∣∣∣∣Φµ(v1)Φε(v2)− Φµ(v1)Φε(v1) + Φµ(v1)Φε(v1)− Φµ(v2)Φε(v1) + Φµ(v1)ξ − Φµ(v2)ξ

(Φε(v1) + ξ)(Φε(v2) + ξ)

∣∣∣∣
≤
∣∣∣∣ Φµ(v1)

(Φε(v1) + ξ)(Φε(v2) + ξ)

∣∣∣∣ |(Φε(v1)− Φε(v2))|

+

(∣∣∣∣ Φε(v1)

(Φε(v1) + ξ)(Φε(v2) + ξ)

∣∣∣∣+

∣∣∣∣ ξ

(Φε(v1) + ξ)(Φε(v2) + ξ)

∣∣∣∣) |(Φµ(v1)− Φµ(v2))|

≤ εn

µnξ
(Φε(v1)− Φε(v2)) +

2

ξ
(Φµ(v1)− Φµ(v2)),

yields

∥∥∥∥A0(·)
[

Φµ(v1)(·, s)(Φε(v2)(·, s) + ξ)

(Φε(v1)(·, s) + ξ)(Φε(v2)(·, s) + ξ)
− Φµ(v2)(·, s)(Φε(v1)(·, s) + ξ)

(Φε(v1)(·, s) + ξ)(Φε(v2)(·, s) + ξ)

]∥∥∥∥
L2(Rn)

≤ 2

ξ
‖A0(·) [Φµ(v1)(·, s)− Φµ(v2)(·, s)]‖L2(Rn) +

εn

ξµn
‖A0(·) [Φε(v1)(·, s)− Φε(v2)(·, s)]‖L2(Rn) .

Here, we have estimated the term∣∣∣∣ Φµ(v1)

(Φε(v1) + ξ)(Φε(v2) + ξ)

∣∣∣∣ ≤ 1

ξ

∣∣∣∣ Φµ(v1)

(Φε(v1) + ξ)

∣∣∣∣ ≤ 1

ξ

(
ε

µ

)n
,

applying the inequality (4.6) and (Φε(v1)+ξ)Φε(v2) ≥ 0 by assumption. The other
terms are estimated in a similar way.
We now apply the Lipschitz continuity of the function φ and get
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‖A0(·) [Φν(v1)(·, s)− Φν(v2)(·, s)]‖L2(Rn)

=

∥∥∥∥A0(·)
[∫

Rn
φ(v1(y, s))Γν(·, y)dy −

∫
Rn
φ(v2(y, s))Γν(·, y)dy

]∥∥∥∥
L2(Rn)

=

(∫
Rn

∣∣∣∣A0(x)

∫
Rn

(φ(v1(y, s))− φ(v2(y, s)))Γν(x, y)dy

∣∣∣∣2 dx
) 1

2

≤
(∫

Rn

(∫
Rn

(φ(v1(y, s))− φ(v2(y, s)))2dy

)(∫
Rn
A0(x)2Γ2

ν(x, y)dy

)
dx

) 1
2

≤ Lφ‖v1 − v2‖L2(Rn)

(∫
Rn

∫
Rn
A2

0(x)Γ2
ν(x, y)dydx

) 1
2

,

for ν ∈ {ε, µ}.

Note that, since the kernel function Γν is a multivariate Gaussian probability
density function, it holds

ess sup
x∈Rn

∫
Rn

1

(2πν2)n
exp

(
−‖x− y‖

2
2

ν2

)
dy =

1

(2ν
√
π)n

<∞.

Since we have assumed
‖A0‖L2(Rn) <∞,

we can finally deduce

‖P (v1)(·, s)− P (v2)(·, s)‖L2(Rn) ≤ sκ3‖v1(·, s)− v2(·, s)‖L2(Rn),

with a positive constant

κ3 : = 2MpLexpLφ‖A0‖L2(Rn) max

{
2

ξ
‖Γµ‖L∞(Rn)×L2(Rn),

εn

ξµn
‖Γε‖L∞(Rn)×L2(Rn)

}
= 2MpLexpLφ‖A0‖L2(Rn) max

{
2

ξ
√

(2
√
πµ)n

,
εn

ξµn
√

(2
√
πε)n

}
<∞.

Combining both estimates, we have
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∫ t

0

∫
Rn

(P(v1)(x, s)− P(v2)(x, s))(u(x, s)) dxds

≤
∫ t

0

e
εns
µn κ2‖v1(·, s)− v2(·, s)‖L2(Rn)‖u(·, s)‖L2(Rn)ds

+

∫ t

0

sκ3‖v1(·, s)− v2(·, s)‖L2(Rn)‖u(·, s)‖L2(Rn)ds

≤max{κ2, κ3}
∫ t

0

(s+ e
εns
µn )‖v1(·, s)− v2(·, s)‖L2(Rn)‖u(·, s)‖L2(Rn)ds.

Applying Young’s inequality for a ς > 0 and denoting by κ∞ := max{κ2, κ3} yields

κ∞

∫ t

0

(s+ e
εns
µn )‖v1(·, s)− v2(·, s)‖L2(Rn)‖u(·, s)‖L2(Rn)ds

≤κ
2
∞

2ς

∫ t

0

(s+ e
εns
µn )2‖v1(·, s)− v2(·, s)‖2

L2(Rn)ds+
ς

2

∫ t

0

‖u(·, s)‖2
L2(Rn)ds.

All in all, we have

1

2
‖u(·, t)‖2

L2(Rn) +

∫ t

0

δ‖u(·, s)‖2
L2(Rn) +

κ2
1

2η
‖u(·, s)‖2

L2(Rn) ds

≤ κ2
∞

2ς

∫ t

0

(s+ e
εns
µn )2‖v1(·, s)− v2(·, s)‖2

L2(Rn)ds+
ς

2

∫ t

0

‖u(·, s)‖2
L2(Rn)ds.

Sorting the inequality leads to

1

2
‖u(·, t)‖2

L2(Rn) ≤
(
ς

2
− κ2

1

2η
− δ
)∫ t

0

‖u(·, s)‖2
L(Rn)ds

+
κ2
∞

2ς

∫ t

0

(s+ e
εns
µn )2‖v1(·, s)− v2(·, s)‖2

L2(Rn)ds,

where we can choose the parameters ς and η, such that (ς/2 − κ2
1/2η − δ) ≥ 0.

Taking the maximum for all t ∈ [0, T ∗], we end up with

1

2
‖u1 − u2‖2

L∞(0,T ∗;L2(Rn))

≤ T ∗
(
ς

2
− κ2

1

2η
− δ
)
‖u1 − u2‖2

L∞(0,T ∗;L2(Rn)) +
κ2
∞

2ς

∫ T ∗

0

(s+ e
εns
µn )2ds‖v1 − v2‖2

L∞(0,T ∗;L2(Rn))

as δ, κ2 ≥ 0. Hence, we have

‖u1 − u2‖2
L∞(0,T ∗;L2(Rn)) ≤ C(T ∗) ‖v1 − v2‖2

L∞(0,T ∗;L2(Rn)), (#)
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with

C(T ∗) :=
κ̂∞(T

∗3

3
+ µn

2εn
e

2T∗εn
µn − µn

2εn
+ µn

εn
e
εnT∗
µn T ∗ − µ2n

ε2n
e
εnT∗
µn + µ2n

ε2n
)

1
2
− T ∗

(
ς
2
− κ2

1

2η
− δ
) .

Taking the limit T ∗ → 0 yields

C(T ∗)→ 0.

Especially, the exists a T ∗ ∈ R+, such that C(T ∗) < 1.

Note that we can divide by 1
2
− T ∗

(
ς
2
− κ2

1

2η
− δ
)

, because we can choose ς, η ap-

propriately, such that the term is positive, at least for small T ∗. So, all in all,
we have shown that S is a contraction for T ∗ small enough and we can apply the
fixed point theorem of Banach which yields the existence of a unique fixed point
S(u) = u on W (0, T ∗). Now, we have to construct a solution k on the whole time-
space-cylinder, but since the local solution u is independent of the time horizon
T ∗, we can proceed on the interval [T ∗, 2T ∗] using the same arguments as above
with a new initial condition u(·, T ∗). After finitely many steps, we can construct
a weak solution k ∈ W (0, T ) of (4.1). Moreover, this solution is unique, which
follows from the inequality (#).

Lemma 4.12:
Let c ∈ L2(0, T ;L2(Rn)). If the bilinear form a is coercive, then there exist two
constants C1,C2 > 0 such that the solution k ∈ W (0, T ) of (4.1) satisfies the
following a priori estimate:

‖k‖L2(0,T ;H1(Rn)) + C1‖k‖L∞(0,T ;L2(Rn))

≤ C2

(
‖k0‖L2(Rn) + ‖c‖L2(0,T ;L2(Rn)) + 1

)
.

(4.12)

Proof. The coercivity assumption on a yields a constant ccoer > 0 such that
a(k, k) ≥ ccoer‖k‖2

H1(Rn) for all k ∈ H1(Rn). Now, we fix a t ∈ [0, T ] and derive the

weak formulation of (4.1) for the test function k ∈ W (0, T ). We then have∫ t

0

∫
Rn

∂k

∂s
k dxds+

∫ t

0

a(k(s), k(s)) ds =

∫ t

0

∫
Rn
P(k)k dxds−

∫ t

0

∫
Rn
c k dxds.

To estimate the right-hand side, we exploit the Lipschitz continuity of p, p(0) = 0,
and the boundedness of the fractional term in the productivity growth operator
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(4.6). Altogether, this yields

RHS ≤
∫ t

0

‖P(k)‖L2(Rn)‖k‖L2(Rn)ds+

∫ t

0

‖c‖L2(Rn)‖k‖L2(Rn)ds

≤ ‖A0‖L∞(Rn)

∫ t

0

(∫
Rn

(e
sεn

µn p(k))2dx

) 1
2
(∫

Rn
|k|2dx

) 1
2

ds+

∫ t

0

‖c‖L2(Rn)‖k‖L2(Rn)ds

≤ ‖A0‖L∞(Rn)Lp

∫ t

0

e
sεn

µn ‖k‖2
L2(Rn)ds+

∫ t

0

‖c‖L2(Rn)‖k‖L2(Rn)ds.

In order to estimate the left-hand side, we use the coercivity assumption for a,

LHS =

∫ t

0

∫
Rn

∂k

∂s
k dxds+

∫ t

0

a(k, k)ds

≥
∫ t

0

∫
Rn

∂k

∂s
k dxds+ ccoer

∫ t

0

‖k‖2
H1(Rn)ds

=
1

2
‖k(t)‖2

L2(Rn) −
1

2
‖k0‖2

L2(Rn) + ccoer

∫ t

0

‖k‖2
H1(Rn)ds.

Combining both estimates and applying Young’s inequality with η1, η2 > 0, we get

1

2
‖k(t)‖2

L2(Rn) + ccoer

∫ t

0

‖k‖2
H1(Rn)ds

≤‖A0‖L∞(Rn)Lp

(
η1µ

n

4εn

(
e

2εnt
µn − 1

)
+

1

2η1

∫ t

0

‖k‖2
L2(Rn)ds

)
+
η2

2

∫ t

0

‖c‖2
L2(Rn)ds+

1

2η2

∫ t

0

‖k‖2
L2(Rn)ds+

1

2
‖k0‖2

L2(Rn).

Taking the maximum of all t ∈ [0, T ], we have

1

2
‖k‖2

L∞(0,T ;L2(Rn)) + ccoer‖k‖2
L2(0,T ;H1(Rn))

≤‖A0‖L∞(Rn)Lp

(
η1µ

n

4εn

(
e

2Tεn

µn − 1
)

+
1

2η1

‖k‖2
L2(0,T ;H1(Rn))

)
+
η2

2
‖c‖2

L2(0,T ;L2(Rn)) +
1

2η2

‖k‖2
L2(0,T ;H1(Rn)) +

1

2
‖k0‖2

L2(Rn).

We multiply with 2, sort all terms, and end up with

‖k‖2
L∞(0,T ;L2(Rn)) +

(
2ccoer −

‖A0‖L∞(Rn)Lp
η1

− 1

η2

)
‖k‖2

L2(0,T ;H1(Rn))

≤ η1 ‖A0‖L∞(Rn)Lp
µn

2εn

(
e

2εn T
µn − 1

)
+ η2‖c‖2

L2(0,T ;L2(Rn)) + ‖k0‖2
L2(Rn).
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Since η1, η2 > 0 were arbitrary, we choose both constants large enough such that(
2ccoer −

‖A0‖L∞(Rn)Lp
η1

− 1

η2

)
> 0,

which completes the proof.

As already mentioned, the coercivity assumption on the bilinear form a is not as
restrictive as it may seem. We have already shown in Lemma 4.6 that the corre-
sponding bilinear form of the capital accumulation equation in the Ramsey model
is continuous in H1(Rn). According to Wloka (1982, Theorem 17.9, p.264 and
(28), p.265), this yields the existence of a unique, bijective, linear, and continuous
operator L : H1(Rn)→ H−1(Rn) with

a(u, v) = 〈L(u), v〉L2(Rn).

Hence, we can rewrite the nonlocal PIDE problem as follows.
For k0 ∈ L2(Rn) and c ∈ L2(0, T ;H−1(Rn)), find a function k ∈ W (0, T ) such that
k(·, 0) = k0(·) on Rn and

L(k) +
∂k

∂t
= P(k)− c.

We now assume that this equation has a solution k ∈ W (0, T ). We define

z(t) = k(t) exp(−c2t),

where c2 is the constant of the G̊arding inequality in Lemma 4.6. Differentiating
z after t yields

∂z

∂t
=
∂k

∂t
exp(−c2t)− c2k(t) exp(−c2t) =

∂k

∂t
exp(−c2t)− c2z(t).

Substituting k(t) = z(t) exp(c2t) in the PIDE, we get

∂z

∂t
+ (L(z) + c2E)z(t) = exp(−c2t)P(z(t) exp(c2t))− exp(−c2t)c.

We define a new linear and continuous operator L̂ := L+ c2E, which yields a new
bilinear form â, derived analogously to (4.10). This bilinear form is coercive, since

â(u, u) = 〈L̂u, u〉L2(Rn) = 〈Lu+ c2Eu, u〉L2(Rn)

= 〈Lu, u〉L2(Rn) + 〈c2Eu, u〉L2(Rn)

= 〈Lu, u〉L2(Rn) + c2‖u‖2
L2(Rn)

≥ c3‖u‖2
H1(Rn),

with c3 > 0 as in Lemma 4.6. Hence, we can interpret any solution k as a solution
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z with c2 = 0.

The following a priori estimate of the weak solution is crucial for the proof of
existence of an optimal control.

Lemma 4.13:
There exists a constant C̃ > 0 such that weak solution of (4.1) satisfies

‖k‖W (0,T ) ≤ C̃(‖c‖L2(0,T ;L2(Rn)) + ‖k0‖L2(Rn) + 1). (4.13)

Proof. We follow the proof of Theorem 3.13 by Tröltzsch (2005, p.121). First note
that

‖k‖2
W (0,T ) = ‖k‖2

L2(0,T ;H1(Rn)) + ‖kt‖2
L2(0,T ;H−1(Rn)).

For the first term, we have already proven in Lemma 4.12 that there exists a
constant C > 0 such that the inequality

‖k‖2
L2(0,T ;H1(Rn)) ≤ C

(
‖k0‖L2(Rn) + ‖c‖L2(0,T ;L2(Rn)) + 1

)2

holds true. In order to estimate the second term, a bit more work has to be done.
First, we define the linear functionals Fi(t) : H1(Rn)→ R, i = 1, ..., 5 as

F1(t) : v 7→ 〈α∇xk(t),∇xv〉L2(Rn),

F2(t) : v 7→ 〈β
∫
Rn

(k(y, t)− k(·, t))Γε(·, y)dy, v〉L2(Rn),

F3(t) : v 7→ 〈δk(t), v〉L2(Rn),

F4(t) : v 7→ 〈P(k)(t), v〉L2(Rn),

F5(t) : v 7→ 〈c(t), v〉L2(Rn).

The weak formulation of the PIDE then yields

‖kt‖L2(0,T ;H−1(Rn)) ≤
5∑
i=1

‖Fi‖L2(0,T ;H−1(Rn)).

We estimate all summands separately. It holds

|F1(t)v| = |α〈∇xk(t),∇xv〉L2(Rn)| ≤ α‖∇xk(t)‖L2(Rn)‖∇xv‖L2(Rn)

≤ α‖k(t)‖H1(Rn)‖v‖H1(Rn),

hence

‖F1‖2
L2(0,T ;H−1(Rn)) ≤

∫ T

0

‖F1(t)‖2
H−1(Rn)dt ≤

∫ T

0

ĉ‖k(t)‖2
H1(Rn)dt = ĉ‖k‖2

L2(0,T ;H1(Rn)).
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for a constant ĉ ≥ 0. Finally, from Lemma 4.12 we know that

‖F1‖2
L2(0,T ;H−1(Rn)) ≤ ĉ‖k‖2

L2(0,T ;H1(Rn)) ≤ C
(
‖c‖L2(0,T ;L2(Rn)) + ‖k0‖L2(Rn) + 1

)2
.

with C > 0. For the other summands we proceed analogously and deduce

|F2(t)v| ≤ βκ‖k(t)‖H1(Rn)‖v‖H1(Rn),

|F3(t)v| ≤ δ‖k(t)‖H1(Rn)‖v‖H1(Rn),

|F4(t)v| ≤ ‖P(k)(t)‖L2(Rn)‖v‖L2(Rn) ≤ ĉ(t)‖k(t)‖H1(Rn)‖v‖H1(Rn),

for contants which we have already derived in the proof of Lemma 4.12. For the
last term, it holds

|F5(t)v| ≤ ‖c(t)‖L2(Rn)‖v‖H1(Rn).

Taking the maximum of all t ∈ [0, T ] and combining all estimates for Fi, i = 1, ..., 5
we get

‖kt‖2
L2(0,T ;H1(Rn)) ≤ Ĉ

(
‖c‖L2(0,T ;L2(Rn)) + ‖k0‖L2(Rn) + 1

)2
,

and together with the a priori estimate in Lemma 4.12, we finally have

‖k‖2
W (0,T ) = ‖k‖2

L2(0,T ;H1(Rn)) + ‖kt‖2
L2(0,T ;H−1(Rn))

≤ C̃
(
‖c‖L2(0,T ;L2(Rn)) + ‖k0‖L2(Rn) + 1

)2
.

With this inequality, we have amongst others shown the uniform boundedness of
all solutions k in W (0, T ) for any c ∈ Uad, if Uad is bounded and closed. This will be
of importance in the proof of Theorem 4.19, when we derive the weak convergence
of a sequence of states in the proof of the existence of an optimal control.

4.2 Existence of an Optimal Control

In this section, we finally have all at hand to prove the existence of an optimal
control in the spatial Ramsey model with endogenous productivity growth. This
optimal control and the corresponding state variable define the market equilibrium
according to the second welfare theorem of economics.

Consider the following optimal control problem

min
k,c

∫ T

0

∫
Rn
−U(c(x, t))e−τt−γ‖x‖

2
2 dxdt

+
1

2ρ1

‖k(·, T )− kT (·)‖2
L2(Rn) +

1

2ρ2

‖min{0, k}‖2
L2(0,T ;L2(Rn)),

(4.14)
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s.t.
∂k

∂t
− L(k) + δk − P(k) = −c on Rn × (0, T ),

k(x, 0) = k0(x) on Rn,

c ∈ Uad.

(4.15)

Here, we have replaced the box constraint on the state variable in (3.16), k ≥ 0 in
Rn × (0, T ), by a Moreau-Yosida penalty function as in Pearson et al. (2011) and
introduced the penalty parameters ρ1, ρ2 > 0.
Before we begin, we have to state some assumptions on the utility function U
and the set of feasible controls c ∈ Uad. First note that we need the set of fea-
sible controls to be bounded. Hence, we have to introduce a maximal aggregated
consumption level C. Although this might seem quite restrictive considering the
economic interpretation, this assumption is not as prohibitive as one would think.
Since the production function p is, according to Assumption 4.9, assumed to be
bounded in order to guarantee the existence of a weak solution of the capital ac-
cumulation equation, an infinite consumption is never possible. We can justify
the boundedness assumption of the production function economically, for example
with the boundedness of space on earth. Thus, any utopian but finite upper bound
on the consumption will do.
The assumption on p to be zero for a zero input is also economically driven. It
states that the producing sector can only generate positive output, if it can devote
any production factors. The assumption on the Lipschitz continuity is not in line
with the neoclassical theory, since Lipschitz continuous functions do not satisfy
the Inada condition, as p′(x) 9∞, x→ 0. However, we can choose the Lipschitz
constant Lp arbitrarily large and so approximate the Inada condition in 0. Note
that the boundedness assumption on p still is in line with the neoclassical theory.

We denote the set of feasible controls as Uad. The first assumption, which we need
to make in order to prove the existence of an optimal control in the nonlocal spatial
Ramsey model, is:

(1) Uad is a bounded, closed, and convex subset of L2(0, T ;L2(Rn)).

For example, for a given maximal consumption function cmax ∈ L2(Rn × (0, T )) ∩
L∞(Rn × (0, T )) and a maximum aggregated consumption level C ∈ R+, we con-
sider

Uad := {c ∈ L2(0, T ;L2(Rn)) : 0 ≤ c ≤ cmax ∧ ‖c‖L2(0,T ;L2(Rn)) ≤ C}.

The nonlocal diffusion operator L and the productivity-production operator P
are defined as in Chapter 3.4. The assumptions concerning the Lipschitz continu-
ity and the uniform boundedness of the production function p and the essential
boundedness of the initial productivity distribution A0 remain.
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(2) The production function p and the initial productivity distribution A0 satisfy
Assumption 4.9. As in (4.2), the diffusion operator is defined as

L(k)(x, t) := α∆k(x, t) + β

∫
Rn

(k(y, t)− k(x, t))Γε(x, y)dy,

for some weights α, β > 0 and ε > 0 and the productivity-production operator
is given as in (4.4) by

P(k)(x, t) := A0(x) exp

(∫
Rn φ(k(y, t))Γµ(x, y)dy∫
Rn φ(k(y, t))Γε(x, y)dy

t

)
p(k(x, t)).

Here, the necessary properties of φ motivate the next assumption:

(3) The nominal function φ is (Lipschitz) continuous. We assume that φ(k) > 0
for all k.

In the following we assume that φ denotes a continuous approximation of the
absolute value function. The example that we have in mind is

φ(k) =
√
k2 + η,

which depends on a parameter η. We assume this parameter to be a priori defined
and fixed, so it is convenient to omit the dependence of φ = φ(η) on this parame-
ter. However, for the proof of the existence of an optimal control, any continuous
and positive function φ is sufficient.

Considering the objective function, we assume the following.

(4) The utility function U : R→ R is bounded and locally Lipschitz continuous,
hence there exists a constant K, such that

|U(0)| ≤ K,

and a constant L(M), such that for all c1, c2 ∈ [−M,M ]

|U(c1)− U(c2)| ≤ L(M)|c1 − c2|.

Moreover, we assume that U is concave.

It is worth to mention once more, that U is the utility function which describes the
consuming sector in the Ramsey economy. Hence, the concavity is essential for the
economic interpretation. The assumptions on U , together with the measurability
of the function (x, t) 7→ e−τt−γ‖x‖

2
2 for τ, γ > 0, are necessary in order to guarantee

that the objective function J is convex, continuous, and bounded from below on
Uad.
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The following Lemma is crucial for the proof of existence of an optimal control.
In contrast to the spatially bounded case, that we study in the following chapters,
we are able to derive much stronger regularity statements on the weak solution of
the nonlocal capital accumulation equation for controls in L2:

Lemma 4.14:
We consider the case n = 1. Let Lp be the Lipschitz constant of the production
function p and let the assumptions (1) − (4) hold. Assume that the initial value
function k0 ∈ L2(R) is also Hölder continuous of exponent λ > 0 on R. Let Uad
and k0 be chosen such that there exists a constant θ > 0 satisfying

(i) 4L2
p ≤ θ and

(ii) |k0(x)|+
∫ T

0

|c(x, s)|2ds < 1

16LpTeθT/2
∀c ∈ Uad.

(4.16)

Then, the weak solution of the spatial nonlocal Ramsey model (4.15) is bounded
and continuous on R× [0, T ] for every c ∈ Uad.

Proof. The boundedness of the weak solution is a direct application of Theorem
3.1 by Ran and Zhang (2010, p.956). We can interpret the nonlocal diffusion term
as compact perturbation of the right-hand side and use the boundedness of the
productivity operator P . By assumption, k0 and c ∈ Uad are chosen such that
(4.16) is satisfied. Hence, the theorem mentioned above yields that there exists a
constant 0 < M(c) := M <∞, such that ‖k‖L∞(R×[0,T ]) ≤M .

In order to prove the continuity of the weak solution on R × [0, T ], a bit more
work has to be done. We want to apply a result from Ladyženskaya et al. (1968),
where the authors prove the local Hölder continuity of any essentially bounded
weak solution of a quasi-linear differential equation of parabolic type on Ω× [0, T ].
Although Ladyženskaya et al. (1968) assumed a bounded and open domain Ω ⊂
Rn, we can adapt the statement to our case. Since the result does not require
any boundary conditions on ∂Ω, we can apply Theorem 1.1 in Ladyženskaya et al.
(1968, p.419) also to the spatially unbounded case and get the Hölder continuity of
exponent λ1 > 0 of the weak solution on all compact subsets K×[t1, t2] b R×(0, T )
with K ⊂ R compact and 0 < t1 < t2 < T . The Hölder constant λ1 depends only
on M and the coercivity constant of the bilinear form (4.10), ccoer > 0.
Since the initial value function k0 is assumed to be Hölder continuous of exponent
λ, we can apply the extended result of Theorem 1.1 in Ladyženskaya et al. (1968,
p.419) and get the local Hölder continuity of exponent λ2 > 0 depending on
M, ccoer and λ of the weak solution also in t = 0. Remark that we can extend
our left-hand sides c and P to [0, T + ε] for any ε > 0, so we can assume the local
Hölder continuity of the weak solution also in T without any loss of generality.
Note that we have all assumptions in Ladyženskaya et al. (1968, p.418) fulfilled
since the solution k is bounded and the constants α and β in (4.2) are positive.

68



4.2 Existence of an Optimal Control

Hence, we have
k ∈ Cλ′,λ′/2(K × [0, T ]) ∀K b R,

with some positive λ′ depending only on M, T, ccoer, and λ. Every Hölder con-
tinuous function is also continuous, hence we have

k ∈ C(K × [0, T ]) ∀K b R.

Considering the exhaustion by compact sets of R, meaning a sequence of compact
sets {Km}m∈N with Km ⊂ K̊m+1 and

⋃
m∈NKm = R, we can extend the local result

to the whole unbounded R due to the locality of continuity. This means, for every
x0 ∈ R, there exists a m large enough such that (x0, t) ∈ K̊m × [0, T ], where K̊
denotes the interior of a set K.

Remark 4.15:
The fundamental result from Ladyženskaya et al. (1968) can also be found in a
slightly different version in DiBenedetto (1993, p.41). Moreover, in Remark 1.1,
p.17, DiBenedetto (1993) points out that, in the L2 setting, even a locally bounded
weak solution of a non-degenerate parabolic differential equation is locally Hölder
continuous. Hence, the assumptions on k0 and Uad, that guarantee the global (es-
sential) boundedness of the weak solution in the spatial Ramsey model with en-
dogenous productivity growth, may already be too strong. However, we do not have
any restrictions on the choice of our feasible controls or the initial capital distri-
bution for application reasons. Thus, we do not study how we could weaken the
assumptions on c or k0 in this thesis, but leave that question to further research.

Before we can state the most important result in this chapter, namely the existence
result of an optimal control, we show that the nonlocal diffusion operator is con-
tinuous from L2(0, T ;L2(R)) to L2(0, T ;L2(R)). Therefore, we need the following
proposition:

Proposition 4.16 (Young’s Inequality for Convolution):
Let p, q, r ≥ 1. If (1/p) + (1/q) = 1 + (1/r) and if u ∈ Lp(Rn) and v ∈ Lq(Rn),
then u ∗ v ∈ Lr(Rn) and

‖u ∗ v‖Lr(Rn) ≤ ‖u‖Lp(Rn)‖v‖Lq(Rn).

The result and proof can for example be found in Adams and Fournier (2003,
p.34).

Remark 4.17:
Note that, as special case, we have for u ∈ L1(Rn) and v ∈ L2(Rn)

‖u ∗ v‖L2(Rn) ≤ ‖u‖L1(Rn)‖v‖L2(Rn).
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Lemma 4.18:
The nonlocal diffusion operator

NL(·)(x, t) : k 7→
∫
R
(k(y, t)− k(x, t))Γε(x, y)dy

is continuous from L2(0, T ;L2(R)) to L2(0, T ;L2(R)).

Proof. We proceed as in Lemma 4.10. Since L2(0, T ;L2(R)) is a vector space,
we can estimate the two terms separately. To estimate the first term, we apply
Young’s inequality for convolution and recall that the kernel function Γε indeed
has the form Γε(x, y) = Γε(x− y). Since∫

R
Γε(x)dx = 1,

we can deduce∥∥∥∥∫
R
k(y, t)Γε(x− y)dy

∥∥∥∥2

L2(0,T ;L2(R))

=

∫ T

0

‖k(·, t) ∗ Γε(· − y)‖2
L2(R)dt

≤
∫ T

0

‖k(·, t)‖2
L2(R)‖Γε‖2

L1(R)dt

= ‖k‖2
L2(0,T ;L2(R)),

The estimation of the second term yields∥∥∥∥∫
R
k(x, t)Γε(x, y)dy

∥∥∥∥2

L2(0,T ;L2(R))

=

∫ T

0

∫
R

(∫
R
k(x, t)Γε(x, y)dy

)2

dxdt

=

∫ T

0

∫
R
k(x, t)2

(∫
R

Γε(x, y)dy

)2

dxdt

≤ ‖k‖2
L2(0,T ;L2(R)),

again exploiting
∫
R Γε(x, y)dy = 1 for all x ∈ R by definition.

In particular, this yields NL(k) ∈ L2(0, T ;H−1(R)) for every k ∈ L2(0, T ;L2(R))
with the same arguments as in Lemma 4.10.

Now, we finally have all at hand to state the following theorem:

Theorem 4.19:
Consider the case n = 1. Let the assumptions (1)−(4) hold. Moreover, assume that
k0 ∈ L2(R)∩Cλ(R) for some λ > 0 and Uad fulfill the assumptions of Lemma 4.14,
hence are given such that the weak solution of the capital accumulation equation
is bounded and continuous. Then, there exist an optimal control c ∈ Uad and a
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corresponding optimal state k ∈ W (0, T ) of the spatial nonlocal Ramsey model
(4.14) and (4.15).

Proof. As already shown in Theorem 4.11, the state equation has a unique weak
solution k := k(c) ∈ W (0, T ) for every control c ∈ Uad and k0 ∈ L2(R). The
additional assumptions on the initial value function k0 then yield, according to
Lemma 4.14, the uniform boundedness of this weak solution, i.e. the existence of
a constant 0 < M := M(c) <∞ such that

‖k‖L∞(R×[0,T ]) ≤M,

for all states corresponding to a control c ∈ Uad and the continuity of k, i.e.
k ∈ C(R× [0, T ]).

Due to the boundedness of Uad, the uniform boundedness of k in W (0, T ) according
to Lemma 4.13, and the assumption on the objective, there exists a finite infimum
Jinf of J . Since L2(0, T ;L2(R)) is reflexive, we can choose a minimizing sequence
(cm)m∈N in Uad that has a weak convergent subsequence (cmj)j∈N with limit c ∈
L2(0, T ;L2(R)). Without any loss of generality, we can identify this subsequence
with (cm)m∈N. Assumption (1) states that Uad is closed and convex, thus weakly
sequentially closed, which guaranties that c ∈ Uad. Hence, we get

cm ⇀ c ∈ Uad, m→∞.

This sequence of controls defines a sequence of corresponding states
(km)m∈N := (k(cm))m∈N. We define

ρm := P(km) and κm :=

∫
R
(km(y, t)− km(x, t))Γε(x, y)dy.

As already shown in the Lemmas 4.10 and 4.18, ρm and κm are elements of
L2(0, T ;L2(R)) for km ∈ L2(0, T ;L2(R)). Moreover, the continuity of P and NL
in L2(0, T ;L2(R)) yields the uniform boundedness of the sequences due to the
uniform boundedness of (km)m∈N in W (0, T ). Here, we have applied Lemma 4.13
and recalled that Uad is assumed to be bounded in L2(0, T ;L2(R)). Hence, we
can assume that there exist some subsequences, again denoted by (ρm)m∈N and
(κm)m∈N without any loss of generality, that converge weakly to some ρ and κ in
L2(0, T ;L2(R)).

Now, we consider the linear parabolic initial value problems given by

∂km
∂t
− α∆km + δkm = pm + κm − cm on R× (0, T ]

km(·, 0) = k0 on R

for m ∈ N. We know that the right-hand side converges weakly towards p +
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κ − c in L2(0, T ;L2(R)), hence also in L2(0, T ;H−1(R)) since the embedding
L2(0, T ;L2(R)) ↪→ L2(0, T ;H−1(R)) is continuous. Due to the continuity of the
solution mapping, that maps a right-hand side and an initial value function to the
solution of a linear parabolic differential equation (c. Wloka, 1982, p.382), this
mapping is also weakly continuous from L2(0, T ;H−1(R)) × L2(R) to W (0, T ).
Thus we get the weak convergence of the left-hand side as well. We have

km ⇀ k in W (0, T ), m→∞.

Moreover, the continuity of the solution mapping guarantees that k ∈ W (0, T ).
With the same arguments as used in the proof of Lemma 4.14, we get

km ⇀ k in Cλ′,λ′/2(K × [0, T ]), m→∞,

for all compact subsets K of R and an λ′ > 0, depending on M, T, coer, and λ.
It is true that

Cλ′,λ′/2(K × [0, T ]) ↪→c C(K × [0, T ]),

(cf. Adams and Fournier, 2003, p.12), thus we get the strong convergence of the
sequence of states in the space of continuous functions on all compact subsets
K × [0, T ] of R× [0, T ].

Now, we need to show the convergence of the integrals in the weak formulation.
So far, we have derived

(i) cm ⇀ c in L2(0, T ;L2(R)),

(ii) km ⇀ k in W (0, T ),

(iii) km → k in C(K × [0, T ]) for all K b R.
(4.17)

Due to the a priori estimates in (4.12) and (4.13) and the weak (or weak star)
compactness of unit balls in the spaces L2(0, T ;H1(R)), L∞(0, T ;L2(R)), and
L2(0, T ;H−1(R)), we can adapt the arguments by Dautray and Lions (1992, p.515)
and extract a subsequence (km)m∈N with

(i) km ⇀ k in L2(0, T ;H1(R)),

(ii) km ⇀∗ k in L∞(0, T ;L2(R)).
(4.18)

Note that the embedding W (0, T ) ↪→ L2(0, T ;H1(R)) is continuous, hence weakly
continuous, which guarantees that the subsequence (km)m∈N converges to the same
limit in L2(0, T ;H1(R)) as (km)m∈N in W (0, T ).

For now, we choose the test functions ψ := ϕ⊗ v for ϕ ∈ C∞0 ([0, T [) with ϕ(0) 6= 0
and v ∈ C∞0 (R). We derive the weak formulation of the capital accumulation
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equation as

−
∫ T

0

〈km(t), ψt(t)〉L2(R)dt+

∫ T

0

a(km(t), ψ(t)) dt−
∫ T

0

〈P(km)(t), ψ(t)〉L2(R)dt

= −
∫ T

0

〈cm(t), ψ(t)〉L2(R)dt+ 〈k0, ψ(0)〉L2(R),

ψ = ϕ⊗ v, ∀ϕ ∈ C∞0 ([0, T [), ϕ(0) 6= 0, v ∈ C∞0 (R),

with the definition of the bilinear form in 4.10.
From (4.17)(i), we can deduce∫ T

0

〈cm(t), ψ(t)〉L2(R)dt→
∫ T

0

〈c(t), v〉L2(R)ϕ(t) dt, m→∞

and from (4.18)(i), we get∫ T

0

〈km(t), ψ′m(t)〉L2(R)dt→
∫ T

0

〈k(t), ψ′(t)〉L2(R)dt, m→∞.

We can rewrite the bilinear form a(k, ψ) in verctorial form as 〈Ak, ψ〉H1(R) with
Ak(·) ∈ L2(0, T ;H−1(R)) (cf. Dautray and Lions, 1992, p.515), hence (4.18)(i)
implies ∫ T

0

a(km(t), ψ(t))dt→
∫ T

0

a(k(t), ψ(t))dt for m→∞.

So far, we were able to use the same arguments as Dautray and Lions (1992, p.515).
The convergence of the nonlinear productivity term needs some further analysis.
We exploit the strong convergence of the sequence of states on compact sets,
(4.17)(iii) and the properties of the kernel function Γε, respectively Γµ. We start
with the exponential term. Due to the boundedness of every km in L∞(R× [0, T ]),
the continuity of φ, and the property of Γε to be decreasing for large absolute
values of input variables, we can choose a radius R > 0 large enough such that∫

R\BR(0)

φ(km(y, t))Γε(x, y)dy ≤ ε̃/4

for all m ∈ N and an ε̃ > 0. l Then it is also∫
R\BR(0)

φ(km(y, t))Γµ(x, y)dy ≤ ε̃/4

for µ < ε. With this, we get
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∣∣∣∣∫
R
φ(km(y, t))Γε(x, y)dy −

∫
R
φ(k(y, t))Γε(x, y)dy

∣∣∣∣
≤
∣∣∣∣∫
BR(0)

(φ(km(y, t))− φ(k(y, t)))Γε(x, y)dy

∣∣∣∣
+

∣∣∣∣∫
R\BR(0)

φ(km(y, t))Γε(x, y)dy

∣∣∣∣+

∣∣∣∣∫
R\BR(0)

φ(k(y, t))Γε(x, y)dy

∣∣∣∣
≤
∣∣∣∣∫
BR(0)

(φ(km(y, t))− φ(k(y, t)))Γε(x, y)dy

∣∣∣∣+ ε̃/2.

By assumption, φ is continuous, hence there exists a N ∈ N such that if |km−k| ≤ δ
for m ≥ N , it is |φ(km(y, t))− φ(k(y, t))| ≤ ε̃(N). This yields∫

BR(0)

|(φ(km(y, t))− φ(k(y, t)))|Γε(x, y)dy ≤ ε̃(N)

∫
BR(0)

Γε(x, y)dy.

We can choose N large enough such that ε̃(N) ≤ ε̃/2 and end up with∣∣∣∣∫
R
φ(km(y, t))Γε(x, y)dy −

∫
R
φ(k(y, t))Γε(x, y)dy

∣∣∣∣ ≤ ε̃,

since
∫
BR(0)

Γε(x, y)dy ≤ 1.

According to (4.6), the exponential term is bounded by

exp

(∫
R φ(km(y, t))Γµ(x, y)dy∫
R φ(km(y, t))Γε(x, y)dy

t

)
≤ e

Tε
µ

for all km. Hence, we can exploit the property of the chosen test function v having
compact support on R. We can finally show the convergence∫ T

0

〈P(km)(t), ψ(t)〉L2(R)dt→
∫ T

0

〈P(k)(t), ψ(t)〉L2(R)dt, m→∞,

since km → k strongly on all compact sets K × [0, T ]. Combining all limits for
m→∞ in the weak formulation,we obtain

−
∫ T

0

〈k(t), v〉L2(R)ϕ
′(t)dt+

∫ T

0

a(k(t), v)ϕ(t)dt−
∫ T

0

〈P(k)(t), v〉L2(R)ϕ(t)dt

= 〈k0, ψ(0)〉L2(R) − 〈c(t), v〉L2(R)ϕ(t)dt.

Since this equality has to hold for every ϕ ∈ C∞0 ([0, T [) with ϕ(0) 6= 0 and
v ∈ C∞0 (R), we have finally shown that k ∈ W (0, T ) is indeed a weak solution
of the capital accumulation equation in the nonlocal spatial Ramsey model with
endogenous productivity growth.
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The only thing left to show in order to finish this proof of existence of an optimal
control is the optimality of (c, k). But this follows immediately from the convexity
and continuity of the objective function: Recall that every continuous and convex
function is lower semicontinous. Hence, for

J(c, k) =

∫ T

0

∫
R
−U(c(x, t))e−τt−γx

2

dxdt

+
1

2ρ1

‖k(·, T )− kT (·)‖2
L2(R) +

1

2ρ2

‖min{0, k}‖2
L2(0,T ;L2(R))

:= F (c) +Q(k)

it follows

Jinf = lim
m→∞

J(cm, km) = lim
m→∞

F (cm) + lim
m→∞

Q(km) ≥ F (c) +Q(k) = J(c, k).

Since Jinf was the infimum of J , we get the equality.

The proof of existence of an optimal control is crucial, not only for the mathe-
matical study. From an economic point of view, this means that there exists a
competitive market equilibrium in the closed spatialized Ramsey economy, where
households may be heterogeneous in their initial capital distribution, productivity
is heterogeneous in space and time, and no interaction with the surrounding takes
place. Due to its complexness, the nonlocal spatial Ramsey model with endoge-
nous productivity growth is quite general. Brito (2001, 2004, 2012), Boucekkine
et al. (2009, 2013), and Camacho et al. (2008) admit that their spatial versions of
the Ramsey model are not well-posed in the sense of Hadamard, at least if they
consider a quite general, convex utility function and no further restrictions on the
set of interest. As already mentioned, all approaches analyzing the (local) model
with respect to existence of an optimal control are based on the theory of classical
solutions. We considered a weaker notion of solution and were able to proof not
only the existence of a weak solution of the capital accumulation equation but
also the existence of an optimal control. Since our model is very general, we can
capture the dynamics of the local model by Brito as a special case (for example
by setting β = 0, µ = ε). Hence, we have enhanced the economic theory on the
spatial Ramsey model and provided not only a proof of existence for our model,
but also for the common spatial Ramsey models.

75





CHAPTER 5

The Nonlocal Spatial Ramsey Model on

Bounded Spatial Domains

‘Freedom of movement is a fundamental characteristic of human beings and
human values [...]. Barriers of movement [defined as discontinuities in the

interaction between two countries] may concern people, goods, capital but also
ideas, cultural standards, regulations, or intangible items.’ (Topaloglou and

Petrakos, 2008, p.3)

Economic geography depends not only on space, but also on the spreading behavior
of production factors between several disjoint economies. In times of globalization
and international trade agreements, it is also important in geographic economics
to consider cross-border dependencies of production factors and economic welfare.
By restricting the spatial domain of interest to a bounded domain Ω ⊂ Rn, we have
naturally defined a border of an economy. Such a bounded economy could be seen
as a country or a trade association. In contrast to the previous chapter, where we
considered an unbounded spatial domain, we now have to introduce some bound-
ary conditions in order to make the Ramsey problem well defined. As already
mentioned in the introduction to the nonlocal spatial Ramsey model in Section
3.4, these boundary constraints do not only act on the surface of the domain Ω,
but on a non-zero volume, the so called interaction, domain ΩI . We refer to these
constraints acting on the interaction domain as volume constraints. Whenever we
understand the domain Ω as a bounded economy, ΩI can be interpreted either as
a border area or region, where the central planner controls the production factor
distribution, or as a trade-off set of production factors, where the exchange of
production factors takes place naturally and independently. The meaning of the
interaction domain ΩI hereby depends on the type of the volume constraints. A
Dirichlet-type volume constraint, where the state variable is fixed on the interac-
tion domain, corresponds to the central planner, who forces the production factor
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distribution to some value. By considering Neumann-type volume constraints, we
assume that the exchange of production factors between Ω and ΩI follows some
balancing law. Here, we only allow capital and labor to leave the economy Ω and
be replaced by the production factors in ΩI . Moreover, we assume that neither
production goods leave the economy nor consumption goods can be traded in the
interaction set and that there is no production in ΩI , hence A0 = 0 on ΩI .

We are not the first who restrict the spatial domain to a bounded set. For example,
Boucekkine et al. (2013) define the spatial domain as the unit ball and Aldashev
et al. (2014), following Boucekkine et al. (2013), consider the parameterized circle
as the interval [0, 2π]. They do not define any boundary conditions but interpret
the unit circle as the global economy. Brock et al. (2014) and Brock et al. (2013)
consider a nonlocal model on an (arbitrary) compact interval. In their model, they
do not consider any diffusion effects of the state variable but only time dependent
spillover effects and thus do not need to define any boundary conditions. A model
close to our setting is described in Aniţa et al. (2013). Here, the authors consider
a bounded space domain and introduce homogeneous Neumann boundary condi-
tions. In the optimal control problem, they restrict the time line to a finite time
horizon. Although their model is nonlocal as well, the quality of the nonlocality
is different. Instead of considering nonlocal diffusion effects to model the mobility
of capital, they include a pollution function in the capital accumulation equation.
This pollution function is modeled as a partial differential equation with an inte-
gral term depending only on the capital function as right-hand side. However, the
works listed above show that considering a bounded spatial domain and a finite
time horizon is convenient for the economic application.

This chapter is organized as follows: We start with a short introduction to the
nonlocal vector calculus developed by Du et al. (2012a) in Section 5.1. This the-
ory provides all tools to analyze the nonlocal capital accumulation equation with
pure nonlocal diffusion and Dirichlet-type volume constraints with respect to the
existence of weak solutions and the regularity of these solutions. The results are
stated and proved in Section 5.2. We conclude this chapter with an overview of
the difficulties which arise when we consider the existence of an optimal control in
this setting in Section 5.3.

5.1 A Nonlocal Vector Calculus

The fundamental theorem of calculus combines the concepts of the differential
calculus and the integral calculus (cf. Elstrodt, 2005, p.304). Du, Gunzburger,
Lehoucq, and Zhou introduce a new, nonlocal vector calculus. This theory aims at
defining an analogon to the well known vector calculus for differential equations.
In their papers, Du et al. (2012b,a, 2014) and Gunzburger and Lehoucq (2010)
derive a notion of nonlocal divergence and gradient operators and some funda-
mental relationships between the nonlocal operators and their derivatives. They
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are able to mimic the classical differential calculus to the framework of nonlocal
operators and they prove identities like the Gaussian theorem or Green’s identi-
ties for nonlocal diffusion equations. In that way, they make it possible to use
the techniques of the analysis of common differential equations in the context of
partial integro-differential equations.

In this section, we introduce the nonlocal vector calculus developed by Du et al.
(2012a,b) and Gunzburger and Lehoucq (2010). We follow the notation in Du
et al. (2012a,b) and D’Elia et al. (2014), and denote by Ω ⊂ Rn an open and
bounded domain with sufficiently smooth boundary. Throughout this chapter, we
assume Ω to be a Lipschitz domain.
The nonlocal vector calculus exploits the form of the nonlocal divergence and
gradient operators. It is crucial to understand the nonlocal diffusion operator,
commonly defined for a function u : Rn → R as

NLu(x) :=

∫
Rn

(u(y)− u(x))γ(x, y)dy for x ∈ Ω, (5.1)

where Ω has nonzero volume and γ denotes a nonnegative and symmetric kernel
function, as a composition of divergence and gradient operators, like in the local
case. In the following, we consider the two vector mappings ν, α : Rn×Rn → Rm,
with α antisymmetric. The nonlocal divergence operator D on ν, D(ν) : Rn → R,
is then defined as

D(ν)(x) :=

∫
Rn

(ν(x, y) + ν(y, x))Tα(x, y)dy for x ∈ Rn (5.2)

(c. Du et al., 2012b, p.10).
For a given mapping u : Rn → R, Du et al. (2012b) derive the the adjoint operator
D∗ corresponding to D with respect to the standard L2 duality pairing as

D∗(u)(x, y) = −(u(y)− u(x))α(x, y) for x, y ∈ Rn. (5.3)

The function D∗(u) maps from Rn × Rn to Rm. The nonlocal adjoint operator
−D∗ can be interpreted as nonlocal gradient operator. Now, if the kernel function
γ in (5.1) is given as

γ = αT (Θα),

for a symmetric second order tensor Θ, the nonlocal diffusion operator in (5.1) can
be represented as

NL(u) = −1

2
D(ΘD∗u).

‘Thus, the operator NL is a composition of nonlocal divergence and gradient op-
erators so that if Θ is the identity tensor, NL can be interpreted as a nonlocal
Laplacian operator.[...] if Θ is also positive definite, the operator −NL is nonneg-
ative’ (Du et al., 2012b, p.676).
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Below, Θ is always assumed to be the identity tensor thus we can skip it in the
notation.

The operator NL is called ‘nonlocal because the value of NL(u) at a point x
requires information about u at points y 6= x; this should be contrasted with local
operators, e.g. the value of ∆u at a point x requires information about u only on
x’ (Du et al., 2012a, p.2). Due to this nonlocal character of NL, it is not sufficient
to consider boundary conditions that only act on the boundary ∂Ω of the set of
interest, which is only a surface in Rn. Instead and as already mentioned before,
we have to introduce so called volume constraints which act on an interaction
domain with nonzero volume. This interaction domain, denoted by ΩI ⊂ Rn,
is the natural nonlocal extension of the surface-boundary of Ω. Throughout this
thesis, we require that ΩI∩Ω = ∅. Du et al. (2012b) define the interaction domain
as

ΩI := {y ∈ Rn\Ω : α(x, y) 6= 0 for some x ∈ Ω},

‘so that ΩI consists of those points outside of Ω that interact with points in Ω’ (Du
et al., 2012b, p.16). Note that there is no assumption made about the geometric
relation between the two sets Ω and ΩI . The figure below is taken from Du et al.
(2012b, p.16) and illustrates some possible constructions of Ω and ΩI .

Figure 5.1: Configurations for Ω and ΩI

The interaction of points in the domain of interest Ω with points in the interaction
domain ΩI is modeled by a so called nonlocal interaction operator V , an analogon
to the local flux operator ∂u/∂−→n . For a function ν : Rn ×Rn → Rm, it is defined
as

V(ν)(x) := −
∫

Ω∪ΩI

(ν(x, y) + ν(y, x))Tα(x, y)dy,

where x is an element in ΩI . This operator can be interpreted as nonlocal flux
from Ω into ΩI .

For two functions u, v : Rn → R and ν : Rn×Rn → Rm, Du et al. (2012a) are able
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to prove the nonlocal Gauss’ theorem∫
Ω

D(ν) dx =

∫
ΩI

V(ν) dx,

the nonlocal integration by parts formula,∫
Ω

uD(ν) dx−
∫

Ω∪ΩI

∫
Ω∪ΩI

D∗(u)Tν dydx =

∫
ΩI

uV(ν) dx,

the nonlocal Green’s first identity∫
Ω

vD(D∗(u)) dx−
∫

Ω∪ΩI

∫
Ω∪ΩI

D∗(v)T (D∗(u)) dydx =

∫
ΩI

vV(D∗(u)) dx, (5.4)

and the nonlocal Green’s second identity∫
Ω

uD(D∗(v)) dx−
∫

Ω

vD(D∗(u)) dx =

∫
ΩI

uV(D∗(v)) dx−
∫

ΩI

vV(D∗(u)) dx.

Not only does the nonlocal vector calculus theory provides some tools to ana-
lyze differential equations with nonlocal diffusion, the construction of the nonlocal
diffusion operator as the composition of the nonlocal gradient and divergence op-
erator leads to the definition of a function space that is - under some circumstances
- equivalent to the volume-constraint space of quadratic Lebesgue integrable func-
tions

L2
c(Ω ∪ ΩI) := {u ∈ L2(Ω ∪ ΩI) : Ec(u; 0) = 0},

where the constraint functional Ec is defined below in (5.7). As appropriate func-
tion space for the (weak) solutions of the nonlocal (differential) equations, we
consider the so called nonlocal energy space

V (Ω ∪ ΩI) := {u ∈ L2(Ω ∪ ΩI) : |||u||| <∞}

as defined by Du et al. (2012a), endowed with the nonlocal energy norm

|||u||| :=
(

1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u)(x, y)T (D∗(u)(x, y)) dydx

) 1
2

.

Dealing with volume constraints, the nonlocal volume-constrained energy space is
then defined as

Vc(Ω ∪ ΩI) := {u ∈ V (Ω ∪ ΩI) : Ec(u; 0) = 0}, (5.5)

where Ec denotes the constraint functional in (5.7).
Du et al. (2012a) introduce two types of volume constraints, Dirichlet- and Neumann-
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type. Let ΩId ⊆ ΩI denote the Dirichlet interaction set. The Dirichlet volume
constraints are defined analogously to the local case as

u = gd on ΩId

for a given data function gd : ΩId → R. Let the Neumann interaction set be
denoted by ΩIn , then the Neumann-type volume constraints are given as

−V(D∗u) = gn on ΩIn

with gn : ΩIn → R. Calculating V(D∗u) yields

−
∫

Ω∪ΩI

(u(y)− u(x))γ(x, y) dy = gn on ΩIn . (5.6)

The type of the volume constraints determine the constraint functional Ec. In the
case of Dirichlet volume constraints, that is ∅ 6= ΩId ⊆ ΩI , Du et al. (2012a, p.680)
set

Ec(u; g) = Ec(u; gd) =

∫
ΩId

(gd − u)2dx. (5.7)

If ΩI = ΩIn , the constraint functional Ec is given as

Ec(u; g) = Ec(u; gn) =

(
gn −

∫
Ω∪ΩI

u dx

)2

. (5.8)

These constraint functionals characterize the solution space and ensure the unique-
ness of the solution (Du et al., 2012a, pp.679).

We have a closer look at the circumstances under which the nonlocal constrained
energy space is equivalent to the L2

c . According to D’Elia et al. (2014), the kernel
function γ in (5.1) or (5.6) has to have the following properties:

Proposition 5.1:
For x ∈ Ω, let Bε(x) := {y ∈ Rn : ‖y − x‖2 ≤ ε} be the n-dimensional ball with a
given radius ε > 0. Let the kernel function γ satisfy the following properties:

1. γ(x, y) ≥ 0 for all y ∈ Bε(x).

2. γ(x, y) ≥ γ0 > 0 for all y ∈ Bε/2(x).

3. γ(x, y) = 0 for all y ∈ (Ω ∪ ΩI)\Bε(x).

4. There exists a constant γ1 > 0 such that

γ1 ≤
∫

(Ω∪ΩI)∩Bε(x)

γ(x, y) dy ∀x ∈ Ω.
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5. There exists a constant γ2 > 0 such that∫
Ω∪ΩI

γ2(x, y) dy ≤ γ2
2 ∀x ∈ Ω.

Then, the nonlocal volume-constrained energy space Vc(Ω∪ΩI) is equivalent to the
volume constrained Lebesgue space,

L2
c(Ω ∪ ΩI) := {u ∈ L2(Ω ∪ ΩI) : Ec(u; 0) = 0}.

Hence, there exist some constants C1 and C2, both positive, such that

C1‖u‖L2(Ω∪ΩI) ≤ |||u||| ≤ C2‖u‖L2(Ω∪ΩI) ∀u ∈ Vc(Ω ∪ ΩI). (5.9)

Moreover, Vc(Ω ∪ ΩI) endowed with the norm ||| · ||| is a Hilbert space.

The proof is given by Du et al. (2012a, p.684).

The dual space of Vc(Ω ∪ ΩI) with respect to the standard L2(Ω ∪ ΩI) pairing is
denoted by V ′c (Ω ∪ ΩI). If γ satisfies all properties of Proposition 5.1, this dual
is equivalent to L2

c(Ω ∪ ΩI) as well. The norm on V ′c (Ω ∪ ΩI) can naturally be
defined as

‖f‖V ′c (Ω∪ΩI) := sup
u∈Vc(Ω∪ΩI), u6=0

∫
Ω∪ΩI

fu dx

|||u|||
.

Especially for the kernel function considered in this context, it is true that V ′c (Ω∪
ΩI) is equivalent to L2

c(Ω∪ΩI) such that Ĉ1‖f‖V ′c (Ω∪ΩI) ≤ ‖f‖L2(Ω∪ΩI) (c. D’Elia
and Gunzburger, 2014, p.248).

The spatial Ramsey model is defined over a space-time cylinder, hence we have to
consider the time dependent spaces

L2(0, T ;Vc(Ω ∪ ΩI)) := {u(·, t) ∈ Vc(Ω ∪ ΩI) : |||u(·, ·)||| ∈ L2(0, T )},

and

L2(0, T ;V ′c (Ω ∪ ΩI)) := {u(·, t) ∈ V ′c (Ω ∪ ΩI) : ‖u(·, ·)‖V ′c ∈ L
2(0, T )},

for T > 0 respectively (D’Elia et al., 2014, p.10).
For functions that are weakly differentiable according to time, we define the space

H1(0, T ;Vc(Ω ∪ ΩI)) := {u ∈ L2(0, T ;Vc(Ω ∪ ΩI)) :
∂u

∂t
∈ L2(0, T ;V ′c (Ω ∪ ΩI))}.

We can conclude later that the weak solution of our problem is not only weakly
differentiable, but also continuous in the time variable. Hence, the function space
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where we expect our weak solution to live in, is

C(0, T ;Vc(Ω ∪ ΩI)) ∩H1(0, T ;Vc(Ω ∪ ΩI)).

This intersection has to be understood as subspace of C(0, T ;Vc(Ω ∪ ΩI)).

5.2 The Weak Solution over Bounded Spatial

Domains

We now transfer the nonlocal spatial Ramsey model on bounded spatial domains
as introduced in Chapter 3.4 to the nonlocal vector calculus. We base our assump-
tions on the papers of D’Elia and Gunzburger (2014) and D’Elia et al. (2014).
First, we discuss the nonlocal vector calculus with respect to applicability to our
model. Afterwards, we derive an existence and several regularity results of the
weak solution of the nonlocal spatial Ramsey model on bounded domains.

5.2.1 Embedding the Nonlocal Spatial Ramsey Model in
the Nonlocal Vector Calculus

We assume that the domain Ω ⊂ Rn has a (at least piecewise) smooth boundary
and satisfies the cone condition as stated in Definition 3.12. The interaction do-
main ΩI and the nonlocal closure Ω∪ΩI are assumed to have the same properties.
We choose the nonlocal interaction domain as

ΩI := {y ∈ Rn\Ω : ‖y − x‖2 < ε for x ∈ Ω}.

The parameter ε will be referred to as the interaction radius.
We set α : Rn × Rn → R,

αε(x, y) := sign(‖x‖2−‖y‖2)

(
1√

(2πσ2)n
exp

(
−1

2
(x− y)TΣ−1

σ (x− y)

)
1Bε(x)(y)

) 1
2

,

for ε, σ > 0, and a covariance matrix Σσ ∈ Rn×n. Note, that we do explicitly
allow to choose σ 6= ε. But since ε is the only parameter that is important for
estimates and the calculations below, we only keep the dependence of αε on σ in
mind and do not use it in the notation.
The function αε is obviously antisymmetric and we can easily calculate that the
kernel function in the nonlocal Ramsey model indeed has the form

Γε(x, y) = α2
ε(x, y) =

1√
(2πσ2)n

exp

(
−1

2
(x− y)TΣ−1

σ (x− y)

)
1Bε(x)(y).
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We assume that the covariance matrix is a diagonal matrix with equal entries,

Σσ :=


σ2

. . .

σ2

 ,
such that det(Σσ) = σ2n. Again, this means that capital can move through space
without any barriers or transition costs and that the central planner does not
prioritize any space direction, but weights them all equally. Then, the kernel
function satisfies all properties required in order to fit the nonlocal vector calculus.

Lemma 5.2:
The kernel function Γε satisfies all properties of Proposition 5.1.

Proof. The kernel function Γε is given by

Γε(x, y) :=
1√

(2πσ2)n
exp

(
−‖x− y‖

2
2

2σ2

)
1Bε(x)(y),

which is obviously symmetric. We go on checking all properties as in Proposition
5.1.

(1) ,(2) Let 0 < η ≤ ε. For all y ∈ Bη(x) it is true that

Γε(x, y) ≥ 1√
(2πσ2)n

exp

(
− η2

2σ2

)
> 0

(3) The third property follows with the definition of the indicator function.

(4) For x ∈ Ω, we calculate

∫
(Ω∪ΩI)∩Bε(x)

Γε(x, y) dy =

∫
Bε(x)

1√
(2πσ2)n

exp

(
−‖x− y‖

2
2

2σ2

)
dy

≥
∫
Bε(x)

1√
(2πσ2)n

exp

(
− ε2

2σ2

)
dy

= cnε
n 1√

(2πσ2)n
exp

(
− ε2

2σ2

)
> 0

where cn denotes the volume of the unit sphere in Rn.
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(5) For the last property, we calculate for x ∈ Ω,∫
Ω∪ΩI

Γ2
ε(x, y) dy =

∫
Ω∪ΩI

1

(2πσ2)n
exp

(
−‖x− y‖

2
2

σ2

)
1Bε(x)(y) dy

=

∫
Bε(x)

1

(2πσ2)n
exp

(
−‖x− y‖

2
2

σ2

)
dy

≤
∫
Bε(x)

1

(2πσ2)n
exp

(
− 0

σ2

)
dy

=
cnε

n

(2πσ2)n
<∞,

which completes the proof.

We now have all at hand to define the nonlocal spatial Ramsey model with endoge-
nous productivity growth under a finite time horizon and an open, but bounded
spatial domain. We restrict the consideration to homogeneous Dirichlet volume
constraints, which means that the central planner in the considered economy en-
forces the value of the capital stock in the interaction domain to zero. Hence,
for a given initial condition k0 ∈ Vc(Ω), the central planner faces the problem
to find an optimal control c∗ ∈ Uad ⊂ L2(0, T ;V ′c (Ω)) and an optimal state
k∗ ∈ C(0, T ;Vc(Ω ∪ ΩI)) ∩H1(0, T ;Vc(Ω ∪ ΩI)), such that

J (k, c) :=

∫ T

0

∫
Ω

−U(c(x, t))e−τt−γ‖x‖
2
2 dxdt+

1

2ρ

∫
Ω

(k(x, T )− kT (x))2 dx

(5.10)

is minimized subject to k and c satisfying

∂k

∂t
− βNLε(k) + δk = P(k)− c on Ω× (0, T ),

k = 0 on ΩI × (0, T ),

c ∈ Uad, k ≥ 0 on Ω× (0, T ),

k(·, 0) = k0 > 0 in Ω,

(5.11)

where NLε is given as in (5.1) with the kernel function γ := Γε and the nonlocal
productivity-production operator P is defined analogously to (3.12) as

P(k)(x, t) := A0(x) exp

( ∫
Ω∪ΩI

φ(k(y, t))Γµ(x, y) dy∫
Ω∪ΩI

φ(k(y, t))Γε(x, y) dy + ξ
t

)
p(k(x, t))
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for a non-negative, real valued function φ, ξ > 0, and 0 < µ < ε. The set Uad
denotes the set of feasible controls, which will be described in more detail later.

Remark 5.3:
Note that the definition of the kernel function as a truncated Gaussian density
function, depending on an indicator function which is determined by the parameters
µ and ε, guarantees that ∫

Ω∪ΩI
φ(k(y, t))Γµ(x, y) dy∫

Ω∪ΩI
φ(k(y, t))Γε(x, y) dy + ξ

≤ 1.

5.2.2 Existence of a Weak Solution

The main part of this section will be the proof of the existence of a weak solution
of the problem (5.11). We apply the fixed point theorem of Banach. To do so,
we exploit the Lipschitz continuity of the productivity-production operator P and
refer to a result by Du et al. (2012a, p.686) which states that the linear nonlocal
diffusion problem with homogeneous Dirichlet boundary constraints has a unique
weak solution.
Throughout this section, we assume that the depreciation rate δ > 0 and that
the initial productivity distribution function A0, the nominal function φ, and the
nonlinear production function p satisfy the following assumptions:

Assumption 5.4:
Consider the functions p : R → R+, φ : R → R+, and A0 : Rn → R+. Then, we
assume

• The production function p is continuous and satisfies the Inada conditions.

• The production function satisfies p(0) = 0.

• The production function p is Lipschitz continuous with Lipschitz constant
Lp > 0.

• The production function p is bounded from above by a constant Mp > 0.

• The nominal function φ is Lipschitz continuous with constant Lφ > 0.

• The initial productivity distribution function A0 is in L∞(Ω).

We derive the weak formulation of the system (5.11), i.e. we multiply the state
equation with a test function ϕ ∈ C(0, T ;Vc(Ω∪ΩI)) and integrate over Ω× (0, T )
which yields
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∫ T

0

∫
Ω

ktϕ dxdt−
∫ T

0

∫
Ω

NLε(k) ϕ dxdt+ δ

∫ T

0

∫
Ω

kϕ dxdt

=

∫ T

0

∫
Ω

(P(k)− c)ϕ dxdt.

(5.12)

Applying the nonlocal Green’s first identity (5.4) and the homogeneous volume
constraint then give us

∫ T

0

∫
Ω

ktϕ dxdt+
1

2

∫ T

0

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(k)TD∗(ϕ) dydxdt+ δ

∫ T

0

∫
Ω

kϕ dxdt

=

∫ T

0

∫
Ω

(P(k)− c)ϕ dxdt.

(5.13)

Analogously to the spatially unbounded case, this weak formulation of the capital
accumulation equation gives rise to the following definition of a bilinear form

a : Vc(Ω ∪ ΩI)× Vc(Ω ∪ ΩI)→ R,

a(u, v) :=
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u)TD∗(v) dydx+ δ

∫
Ω

u v dx. (5.14)

We prove the coercivity and continuity of a in the following Lemma.

Lemma 5.5:
The bilinear form a is coercive and continuous, hence there exist constants c1 > 0
such that

(i) |a(u, v)| ≤ c1|||u||| |||v|||,

(ii) a(u, u) ≥ |||u|||2.

Proof. (i) Choose u, v ∈ Vc(Ω ∪ ΩI). Then,

|a(u, v)| =
∣∣∣∣12
∫

Ω∪ΩI

∫
Ω∪ΩI

D∗(u)(x, y)TD∗(v)(x, y) dydx+ δ

∫
Ω

u v dx

∣∣∣∣
≤ 1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

|D∗(u)(x, y)TD∗(v)(x, y)| dydx+ δ

∫
Ω

|uv| dx.

We use the Cauchy Schwartz inequality which yields together with the norm
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equivalence (5.9),

|a(u, v)| ≤ |||u||| |||v|||+ δ

∫
Ω

|u v| dx

≤ |||u||| |||v|||+ δ‖u‖L2(Ω)‖v‖L2(Ω)

≤
(

1 +
δ

C2
1

)
|||u||| |||v|||

for the constant C1 > 0 from (5.9).

(ii) Applying the Poincare inequality, we have

a(u, u) =
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

(D∗(u)(x, y))2 dydx+ δ

∫
Ω

u2(x) dx

≥ |||u|||2 + δ‖u‖2
L2(Ω)

≥ |||u|||2,

exploiting δ > 0.

Proceeding as in Chapter 4.1, we can now prove the existence of a weak solution of
the capital accumulation equation. We again apply Banach’s fixed point theorem
and an existence result for a linear but inhomogeneous nonlocal diffusion equation
given by Du et al. (2012a, Theorem 5.1, p.686).

Theorem 5.6:
For a given c ∈ L2(0, T ;V ′c (Ω)) and k0 ∈ Vc(Ω), the problem 5.13 with
k(x, 0) = k0(x) on Ω and k = 0 on ΩI × (0, T ), has a unique weak solution
k∗ ∈ C(0, T ;Vc(Ω ∪ ΩI)) ∩H1(0, T ;Vc(Ω ∪ ΩI)).

Proof. Let S : C(0, T ;Vc(Ω∪ΩI))∩H1(0, T ;Vc(Ω∪ΩI))→ C(0, T ;Vc(Ω∪ΩI))∩
H1(0, T ;Vc(Ω∪ΩI)) be the operator that maps a function v to the unique function
k that satisfies k(x, 0) = k0(x) on Ω, k = 0 on ΩI× (0, T ) and that solves the weak
formulation of the linear equation∫ T

0

∫
Ω

kt(x, t)ϕ(x, t) dxdt+

∫ T

0

a(k(·, t),ϕ(·, t))dt =∫ T

0

∫
Ω

(P(v)(x, t)− c(x, t))ϕ(x, t) dxdt,

for all ϕ ∈ C(0, T ;Vc(Ω ∪ ΩI)). We fix T ∗ ∈ (0, T ) sufficiently small, and consider
the difference S(v1) − S(v2) for two arbitrary functions v1, v2 ∈ C(0, T ∗;Vc(Ω ∪
ΩI)) with S(v1) = k1 and S(v2) = k2. We choose the test function k1 − k2 ∈
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C(0, T ∗;Vc(Ω ∪ ΩI)) ∩H1(0, T ∗;Vc(Ω ∪ ΩI)). Then, k1 − k2 solves∫ t

0

∫
Ω

(k1 − k2)t(x, s)(k1 − k2)(x, s) dx+ a(k1 − k1, k1 − k2)(s)ds =∫ t

0

∫
Ω

(P(v1)(s, x)− P(v2)(x, s)) (k1 − k2)(x, s) dxds,

for all t ∈ [0, T ∗] according to Du et al. (2012a, p.686).
We estimate the left-hand side using the coercivity property of the bilinear form
a according to Lemma 5.5:∫ t

0

∫
Ω

(k1 − k2)t(x, s)(k1 − k2)(x, s) dx+ a(k1 − k1, k1 − k2)(s)ds

≥
∫ t

0

∫
Ω

(k1 − k2)t(x, s)(k1 − k2)(x, s) dx+ |||k1 − k2(s)|||2ds

=
1

2
‖k1 − k2(t)‖2

L2(Ω) +

∫ t

0

|||k1 − k2(s)|||2ds.

For the right-hand side, we exploit the Lipschitz property of P on bounded spatial
domains as follows: First, we apply the Hölder inequality,

∫ t

0

∫
Ω

(P(v1)(x, s)− P(v2)(x, s)) (k1(x, s)− k2(x, s)) dxds

≤
∫ t

0

‖P(v1)(·, s)− P(v2)(·, s)‖L2(Ω)‖k1(·, s)− k2(·, s)‖L2(Ω)ds := (#).

Now, we add a ‘clever zero’ and calculate

(#) =

∫ t

0

‖P(v1)(·, s)− P (v1)(·, s)p(v2(·, s)) + P (v1)(·, s)p(v2(·, s))− P(v2)(·, s)‖L2(Ω)

· ‖k1(·, s)− k2(·, s)‖L2(Ω)ds

≤
∫ t

0

‖P(v1)(·, s)− P (v1)(·, s)p(v2(·, s))‖L2(Ω)‖k1(·, s)− k2(·, s)‖L2(Ω)ds

+

∫ t

0

‖P (v1)(·, s)p(v2(·, s))− P(v2)(·, s)‖L2(Ω)‖k1(·, s)− k2(·, s)‖L2(Ω)ds

≤
∫ t

0

‖P (v1)(·, s)‖L∞(Ω)‖p(v1(·, s)− p(v2(·, s))‖L2(Ω)‖k1 − k2(s)‖L2(Ω)ds

+

∫ t

0

‖p(v2(·, s))‖L∞(Ω)‖P (v1)(·, s)− P (v2)(·, s)‖L2(Ω)‖k1(·, s)− k2(·, s)‖L2(Ω)ds
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≤
∫ t

0

Lp‖P (v1)(·, s)‖L∞(Ω)‖v1(·, s)− v2(·, s)‖L2(Ω)‖k1(·, s)− k2(·, s)‖L2(Ω)ds

+

∫ t

0

M ‖P (v1)(·, s)− P (v2)(·, s)‖L2(Ω)‖k1 − k2(s)‖L2(Ω)ds.

We have a closer look at the terms ‖P (v1)(·, s)‖L∞(Ω) and ‖P (v1)(·, s)−P (v2)(·, s)‖L2(Ω).
Again, we exploit the boundedness of the fraction in the exponential term of P ,
which is bounded by ∫

Ω∪ΩI
φ(v(y, s))Γµ(x, y) dy∫

Ω∪ΩI
φ(v(y, s))Γε(x, y) dy + ξ

≤ 1

by the definition of the indicator function, and the monotonicity of the integral.
Hence, we can estimate

‖P (v)(·, s)‖L∞(Ω) = ess sup
x∈Ω
|P (v)(x, s)|

= ess sup
x∈Ω

∣∣∣∣∣A0(x) exp

( ∫
Ω∪ΩI

φ(v(y, s))Γµ(x, y) dy∫
Ω∪ΩI

φ(v(y, s))Γε(x, y) dy + ξ
s

)∣∣∣∣∣
≤ ‖A0‖L∞(Ω) exp(s),

and

‖P (v1)(·, s)− P (v2)(·, s)‖L2(Ω) ≤ ‖A0‖L∞(Ω)

∥∥∥∥∥exp

( ∫
Ω∪ΩI

φ(v1(y, s))Γµ(·, y) dy∫
Ω∪ΩI

φ(v1(y, s))Γε(·, y) dy + ξ
s

)

− exp

( ∫
Ω∪ΩI

φ(v2(y, s))Γµ(·, y) dy∫
Ω∪ΩI

φ(v2(y, s))Γε(·, y) dy + ξ
s

)∥∥∥∥∥
L2(Ω)

In order to keep a compact representation, we define the operator

Φν(v)(x, s) :=

∫
Ω∪ΩI

φ(v(y, s))Γν(x, y) dy,

for ν ∈ {µ, ε}. The exponential function is Lipschitz continuous on compact sets
and due to the boundedness of the fractions occurring in the nonlocal productivity-
production operator, we can estimate
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∥∥∥∥exp

(
Φµ(v1)(·, s)

Φε(v1)(·, s) + ξ
s

)
− exp

(
Φµ(v2)(·, s)

Φε(v2)(·, s) + ξ
s

)∥∥∥∥
L2(Ω)

≤ Lexp s

∥∥∥∥ Φµ(v1)(·, s)
Φε(v1)(·, s) + ξ

− Φµ(v2)(·, s)
Φε(v2)(·, s) + ξ

∥∥∥∥
L2(Ω)

= Lexp s

∥∥∥∥ Φµ(v1)(·, s) (Φε(v2)(·, s) + ξ)

(Φε(v1)(·, s) + ξ) (Φε(v2)(·, s) + ξ)
− (Φε(v1)(·, s) + ξ) Φµ(v2)(·, s)

(Φε(v1)(·, s) + ξ) (Φε(v2)(·, s) + ξ)

∥∥∥∥
L2(Ω)

≤ Lexp s

(∫
Ω

[∣∣∣∣ Φµ(v1)(x, s)Φε(v2)(x, s)

(Φε(v1)(x, s) + ξ) (Φε(v2)(x, s) + ξ)

− Φµ(v1)(x, s)Φε(v1)(x, s)

(Φε(v1)(x, s) + ξ) (Φε(v2)(x, s) + ξ)

∣∣∣∣
+

∣∣∣∣ Φµ(v1)(x, s)Φε(v1)(x, s)

(Φε(v1)(x, s) + ξ) (Φε(v2)(x, s) + ξ)
− Φµ(v2)(x, s)Φε(v1)(x, s)

(Φε(v1)(x, s) + ξ) (Φε(v2)(x, s) + ξ)

∣∣∣∣
+

∣∣∣∣ ξ (Φµ(v1)(x, s)− Φµ(v2)(x, s))

(Φε(v1)(x, s) + ξ) (Φε(v2)(x, s) + ξ)

∣∣∣∣]2

dx

) 1
2

≤ Lexp s

(∫
Ω

(
1

ξ
|Φε(v1)(x, s)− Φε(v2)(x, s)|+ 2

ξ
|Φµ(v1)(x, s)− Φµ(v2)(x, s)|

)2

dx

) 1
2

,

since

∣∣∣∣ Φµ(v1)(x, s)

(Φε(v1)(x, s) + ξ) (Φε(v2)(x, s) + ξ)

∣∣∣∣ ≤ ∣∣∣∣ Φε(v1)(x, s)

(Φε(v1)(x, s) + ξ) (Φε(v2)(x, s) + ξ)

∣∣∣∣ ≤ 1

ξ
,

and ∣∣∣∣ ξ

(Φε(v1)(x, s) + ξ) (Φε(v2)(x, s) + ξ)

∣∣∣∣ ≤ 1

ξ
,

for all v1, v2 ∈ C(0, T ∗;Vc(Ω ∪ ΩI)) and (x, s) ∈ Ω× [0, T ].

Applying the Minkowski and the Hölder inequalities and exploiting the Lipschitz
continuity of φ, we end up with
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∥∥∥∥∥exp

( ∫
Ω∪ΩI

φ(v1(y, s))Γµ(·, y) dy∫
Ω∪ΩI

φ(v1(y, s))Γε(·, y) dy + ξ
s

)

− exp

( ∫
Ω∪ΩI

φ(v2(y, s))Γµ(·, y) dy∫
Ω∪ΩI

φ(v2(y, s))Γε(·, y) dy + ξ
s

)∥∥∥∥∥
L2(Ω)

≤ sK ‖v1(·, s)− v2(·, s)‖L2(Ω∪ΩI)

with

K :=
1

ξ

(
LexpLφ‖Γε‖L2(Ω×(Ω∪ΩI)) + 2LexpLφ‖Γµ‖L2(Ω×(Ω∪ΩI))

)
<∞.

Note that on the bounded domain Ω ∪ ΩI , we have

‖Γν‖L2(Ω×(Ω∪ΩI)) <∞

for all ν > 0. Thus, we can estimate

‖P (v1)(·, s)− P (v2)(·, s)‖L2(Ω) ≤ sK‖A0‖L∞(Ω)‖v1(·, s)− v2(·, s)‖L2(Ω∪ΩI).

Combining both estimates for the left- and right-side of the PIDE and applying
Young’s inequality for a constant β > 0, we get

1

2
‖k1 − k2(t)‖2

L2(Ω) +

∫ t

0

|||k1 − k2(s)|||2ds

≤
∫ t

0

L(s)2

2β
‖v1 − v2(s)‖2

L2(Ω∪ΩI) +
β

2
‖k1 − k2‖2

L2(Ω)ds

with L(s) := ‖A0‖L∞(Ω)(Lp exp(s) +MKs).

We choose 2C1 < β < 2C1

(
1

2C2
+ 1
)
, where C1 and C2 are the constants from

(5.9). Then, again with (5.9), we can interpret the inequality in terms of the
Vc(Ω ∪ ΩI)-norm as follows

1

2C2

|||k1 − k2(t)|||2 ≤
∫ t

0

(
L(s)2

2βC1

|||v1 − v2(s)|||2 +

(
β

2C1

− 1

)
|||k1 − k2|||2

)
ds.

Note that we have once more exploited the Dirichlet volume constraints in order
to rewrite

‖k1 − k2(t)‖L2(Ω) = ‖k1 − k2(t)‖L2(Ω∪ΩI)
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Taking the maximum over all t ∈ [0, T ∗] and sorting the terms, we have

1

2C2

‖k1 − k2‖2
L∞(0,T ∗;Vc(Ω∪ΩI)) + (1− β

2C1

)T ∗‖k1 − k2‖2
L∞(0,T ∗;Vc(Ω∪ΩI))

≤ C(T ∗)‖v1 − v2‖2
L∞(0,T ∗;Vc(Ω∪ΩI)),

where

C(T ∗) :=
1

2βC1

ess sup
t∈[0,T ∗]

∫ t

0

L(s)2ds.

Taking the limit T ∗ → 0, we obtain C(T ∗)→ 0 since

∫ t

0

L(s)2ds ≤
∫ T ∗

0

L(s)2ds ≤ C̃

∫ T ∗

0

(exp(s) + s)2ds

= C̃

(
1

2
exp(2T ∗)− 1

2
+

1

3
T ∗

2

+ exp(T ∗)(T ∗ − 1) + 1

)
→ 0.

Thus, we conclude that there exists a T ∗ small enough such that

C(T ∗)(
1

2C2
+ (1− β

2C1
)T ∗
) < 1.

Note that in particular (
1

2C2

+ (1− β

2C1

)T ∗
)
> 0

for T ∗ ≤ 1 by the choice of β. Hence, we have shown that S is a contraction on a
sufficiently small time interval. According to Banach’s fixed point theorem, S has a
unique fixed point on every bounded set. Since the local solution k is independent
of the time horizon T ∗, we can proceed on the interval [T ∗, 2T ∗] using the same
arguments as above but with a new initial condition k(·, T ∗). After finitely many
steps, we can construct a weak solution of (4.1) on the whole time space cylinder
after finitely many steps. Moreover, this solution is unique.

Now, we have a closer look at the regularity of the weak solution k. We start
calculating an a priori estimate, which depends only on the initial value condition
and the inhomogeneity.

Corollary 5.7:
There exists a constant C∞ > 0 independent of the data c and k0 such that the
weak solution of (5.11) satisfies the following a priori estimate

‖k‖H1(0,T ;Vc(Ω∪ΩI)) ≤ C∞
(
‖c‖L2(0,T ;L2(Ω)) + ‖k0‖L2(Ω) + 1

)
.
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In particular, this estimate gives us the continuity of the solution operator

G : L2(0, T ;L2(Ω))× L2(Ω)→ H1(0, T ;Vc(Ω ∪ ΩI))

that maps any inhomogeneity c and initial condition k0 to the solution of (5.11)
(cf. Tröltzsch, 2005, p.112).

Proof. First, we recall that

‖k‖2
H1(0,T ;Vc(Ω∪ΩI)) = ‖k‖2

L2(0,T ;Vc(Ω∪ΩI)) + ‖kt‖2
L2(0,T ;V ′c (Ω∪ΩI)).

We estimate the first term exploiting the coercivity of the bilinear form a. We
choose a t ∈ [0, T ] and derive the weak formulation of the capital equation for the
test function k ∈ H1(0, T ;Vc(Ω ∪ ΩI)) ∩ C(0, T ;Vc(Ω ∪ ΩI)) which yields∫ t

0

∫
Ω

∂k

∂t
k dxds+

∫ t

0

a(k, k)ds =

∫ t

0

∫
Ω

(P(k)− c)k dxds.

As already proven in Lemma 5.5, a(k, k) ≥ |||k|||2. Hence, we can estimate the
left-hand side as

LHS =

∫ t

0

∫
Ω

∂k

∂t
k dxds+

∫ t

0

a(k, k)ds

≥
∫ t

0

∫
Ω

∂k

∂t
dxds+

∫ t

0

|||k(s)|||2ds

=
1

2
‖k(t)‖2

L2(Ω) −
1

2
‖k0‖2

L2(Ω) +

∫ t

0

|||k(s)|||2ds

for all t ∈ [0, T ]. In order to derive an upper bound for the right-hand side, we
exploit the Lipschitz continuity and the boundedness of the production function
p, p(0) = 0, and the boundedness of the fraction∫

Ω∪ΩI
φ(k(y, t))Γµ(x, y) dy∫

Ω∪ΩI
φ(k(y, t))Γε(x, y) dy + ξ

≤ 1

for all x ∈ Ω and t ∈ [0, T ]. With these properties, we get

RHS =

∫ t

0

∫
Ω

(P(k)− c)k dxds

≤
∫ t

0

‖P(k)(s)‖L2(Ω)‖k(s)‖L2(Ω)ds+

∫ t

0

‖c(s)‖L2(Ω)‖k(s)‖L2(Ω)ds

≤ ‖A0‖L∞(Ω)

∫ t

0

(∫
Ω

|esp(k(s))|2 dx

) 1
2
(∫

Ω

|k(s)|2 dx
) 1

2

ds
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+

∫ t

0

‖c(s)‖L2(Ω)‖k(s)‖L2(Ω)ds

≤ ‖A0‖L∞(Ω)Mp|Ω|
(∫ t

0

e2sds

) 1
2
(∫ t

0

‖k(s)‖2
L2(Ω)ds

) 1
2

+

∫ t

0

‖c(s)‖L2(Ω)‖k(s)‖L2(Ω)ds

≤ ‖A0‖L∞(Ω)Mp|Ω|
(
e2t

2
− 1

2

) 1
2

‖k‖L2(0,t;L2(Ω)) +

∫ t

0

‖c(s)‖L2(Ω)‖k(s)‖L2(Ω)ds.

Using Young’s inequality for two constants η1, η2 > 0, we have

RHS ≤ ‖A0‖L∞(Ω)Mp|Ω|
(
η1

2

(
e2t

2
− 1

2

)
+

1

2η1

‖k‖2
L2(0,t;L2(Ω))

)
+
η2

2
‖c‖2

L2(0,t;L2(Ω)) +
2

η2

‖k‖2
L2(0,t;L2(Ω))

≤ ‖A0‖L∞(Ω)Mp|Ω|
(
η1

2

(
e2t

2
− 1

2

)
+

1

2η1

‖k‖2
L2(0,t;Vc(Ω∪ΩI))

)
+
η2

2
‖c‖2

L2(0,t;L2(Ω)) +
2

η2

‖k‖2
L2(0,t;Vc(Ω∪ΩI)).

Combining both estimates yields

1

2
‖k(t)‖2

L2(Ω) +

∫ t

0

|||k(s)|||2ds

≤ 1

2
‖k0‖2

L2(Ω) + ‖A0‖L∞(Ω)Mp|Ω|
(
η1

2

(
e2t

2
− 1

2

)
+

1

2η1

‖k‖2
L2(0,t;Vc(Ω∪ΩI))

)
+
η2

2
‖c‖2

L2(0,t;L2(Ω)) +
2

η2

‖k‖2
L2(0,t;Vc(Ω∪ΩI)).

Taking the maximum over all t ∈ [0, T ] finally gives us

1

2
‖k‖2

L∞(0,T ;L2(Ω)) + ĉ‖k‖2
L2(0,T ;Vc(Ω∪ΩI)) ≤ C

(
‖k0‖L2(Ω) + ‖c‖L2(0,T ;L2(Ω)) + 1

)2

with

ĉ := 1−
‖A0‖L∞(Ω)Mp|Ω|

2η1

− 2

η2

> 0

for η1, η2 > 0 sufficiently large.
In order to estimate the second term, we define some linear functionals analogously
to Tröltzsch (2005, pp.119), namely
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5.2 The Weak Solution over Bounded Spatial Domains

F1(t) : v 7→ 〈k(t), v〉V (Ω∪ΩI) F2(t) : v 7→ 〈δk(t), v〉L2(Ω)

F3(t) : v 7→ 〈P(k)(t), v〉L2(Ω) F4(t) : v 7→ 〈c(t), v〉L2(Ω)

These functionals are continuous since

|F1(t)v| ≤ |||k(t)||| |||v||| and |F2(t)v| ≤ δ|||k(t)||| |||v|||

using the Cauchy-Schwartz inequality. For the third and fourth functional we get

|F3(t)v| ≤ const(t)|||k(t)||| |||v||| and |F4(t)v| ≤ ‖c(t)‖L2(Ω)|||v|||

using the estimates of the proof of Lemma 5.5. Here we denote by const(t) a
constant depending only on t. For fixed k and c, we can interpret the values |||k(t)|||
and ‖c(t)‖L2(Ω) as constants of the definition of the continuity of Fi, i = 1, ..., 4.
According to Tröltzsch (2005, p.120), we can find a constant ĉ such that

‖Fi(t)‖Vc(Ω∪ΩI)′ ≤ ĉ|||k(t)|||, i = 1, 2, 3 and ‖F4(t)‖V ′c (Ω∪ΩI) ≤ ĉ‖c(t)‖L2(Ω).

From the weak formulation, we know that

‖kt‖2
L2(0,T ;V ′c (Ω∪ΩI)) ≤

4∑
i=1

‖Fi‖L2(0,T ;V ′c (Ω∪ΩI)).

Using the estimation for k,

‖k‖2
L2(0,T ;Vc(Ω∪ΩI)) ≤ C

(
‖k0‖L2(Ω) + ‖c‖L2(0,T ;L2(Ω)) + 1

)2
,

we have

‖kt‖2
L2(0,T ;V ′c (Ω∪ΩI)) ≤ C̃

(
‖k0‖L2(Ω) + ‖c‖L2(0,T ;L2(Ω)) + 1

)2
.

Summing up both estimates, we finally achieve

‖k‖2
L2(0,T ;Vc(Ω∪ΩI)) + ‖kt‖2

L2(0,T ;V ′c (Ω∪ΩI)) ≤ C2
∞
(
‖k0‖L2(Ω) + ‖c‖L2(0,T ;L2(Ω)) + 1

)2

which completes the proof.

So far, we have only considered the initial data and the right-hand side of the PIDE
to be L2(Ω× [0, T ]) functions. The highest regularity, we can achieve in that case,
is C(0, T ;L2(Ω∪ΩI)). We cannot expect a higher regularity in the space direction,
since there is no operator, such as the differential operator, that drives regularity.
Nevertheless, we would expect a higher regularity of the weak solution, whenever
we choose a higher regularity for the data. The following theorem shows, that the
weak solution of the nonlocal capital accumulation has indeed the same regularity
as the data.
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5 The Nonlocal Spatial Ramsey Model on Bounded Spatial Domains

Theorem 5.8:
Let all assumptions of Theorem 5.6 hold, and let k0 ∈ L∞(Ω) and c ∈ L∞(Ω ×
[0, T ]). Then, the weak solution of the capital accumulation equation (5.11) is
C(0, T ;Vc(Ω ∪ ΩI)) ∩H1(0, T ;L∞(Ω)).

Remark 5.9:
By the intersection C(0, T ;Vc(Ω ∪ΩI)) ∩H1(0, T ;L∞(Ω)), we mean a subspace of
the C([0, T ];Vc(Ω ∪ ΩI)) space. We define the Banach space

V∞ := {u ∈ C([0, T ];Vc(Ω ∪ ΩI)) : ess sup
(x,t)∈Ω×(0,T )

|u(x, t)| <∞}

endowed with the norm

‖u‖V∞ := ‖u‖C([0,T ];Vc(Ω∪ΩI)) + ‖u‖L∞(Ω×(0,T ))

and refer to V∞ whenever we consider the intersection space.

Proof. Consider the solution k∗ ∈ C([0, T ];Vc(Ω∪ΩI)) of the capital accumulation
equation. For such k∗, the production-productivity operator P maps to L∞ since
we have assumed A0 to be a L∞(Ω) function and the production function p to be
bounded. We can calculate

‖P(k∗)‖L∞(Ω×[0,T ]) = ‖A0‖L∞(Ω)e
T Mp,

where Mp denotes the uniform upper bound of p. Moreover, we know that∫
Ω∪ΩI

Γε(x, y) dy =: Γ̂ε(x) ≤ 1

and using Hölder’s inequality, it follows that∫
Ω∪ΩI

k∗(y, t)Γε(x, y) dy <∞

for all x ∈ Ω. For a fixed x ∈ Ω, we consider the capital accumulation equation

∂k

∂t
(x, t)−NL(k)(x, t) + δk(x, t)− P(k)(x, t) = −c(x, t) on (0, T )

k(x, 0) = k0(x).

We rewrite the equation as

∂k

∂t
(x, t)+(Γ̂ε(x)+δ)k(x, t) =

∫
Ω∪ΩI

k(y, t)Γε(x, y) dy+P(k)(x, t)−c(x, t) on (0, T ).

We neglect the dependence of k of the right-hand side, since it maps every k to
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L∞, and define

gx(t) :=

∫
Ω∪ΩI

k(y, t)Γε(x, y) dy + P(k)(x, t)− c(x, t) ∈ L∞(Ω× [0, T ]).

Note, that the regularity of gx is determined by the regularity of c. Now, we
consider the inhomogeneous linear ordinary differential equation

∂kx
∂t

+ (Γ̂x,ε + δ) k = gx

depending on the parameter x. We know that gx is continuous in t. Hence, the
equation has a solution k given as

kx(t) = e−t(Γ̂x,ε+δ)
(
k0,x +

∫ t

0

gx(s)e
s(Γ̂x,ε+δ)ds

)
which is bounded for every x ∈ Ω. Thus, we conclude

k ∈ L∞(Ω× [0, T ]).

Since the solution of the capital accumulation equation is unique we get k∗ = k,
which ends the proof.

5.3 Discussion of the Existence of an Optimal

Control

So far, we have derived the existence of a weak solution of the capital accumula-
tion equation in the nonlocal spatial Ramsey model with endogenous productivity
growth on a bounded spatial domain. The next, natural step would be to analyze
the model (5.10) and (5.11) with respect to the existence of an optimal control c∗

and the corresponding optimal state k∗. However, this task is quite difficult - at
least to the best of our knowledge and judgment.
In contrast to Chapters 3.4 and 4, where we introduced a very general version of
the nonlocal spatial Ramsey model, we decided to not consider any local diffusion
effects in the model analyzed above. The main motivation was to analyze how
pure nonlocal diffusion affects the accumulation of capital over space. This was an
application-driven decision since any movement of capital and labor across space
is in fact a nonlocal process. Another consideration was simplicity. Combining
both effects -local and nonlocal diffusion- on bounded spatial domains, we would
have had to introduce some boundary conditions, acting on the surface ∂Ω as well
as the volume constraints, living on a set of non-zero volume ΩI . But the com-
bination of surface and volume constraints is a topic that is not well studied yet.
Even defining the appropriate nonlocal volume constraints is a task that is not
easy to do in practice (D’Elia et al., 2016, p.2).
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5 The Nonlocal Spatial Ramsey Model on Bounded Spatial Domains

Moreover, the literature on such coupled boundary (surface or volume type) con-
ditions for local-nonlocal models is quite rare. Though, a field called Local-to-
Nonlocal Coupling Strategies has focused on the combination of local and nonlocal
diffusion effects, whereupon the motivation for this topic is different to our case.
The idea is to exploit the computational efficiency of PDEs, also in fields, where
nonlocal models are needed. One paper which we want to mention in this con-
text and where the basic idea of those coupling strategies becomes quite obvious
is ‘A coupling strategy for nonlocal and local diffusion models with mixed volume
constraints and boundary conditions’ by D’Elia et al. (2016). Here, the authors
consider an application from physics. They are in a setting where they need to
model processes like heat flow in a medium with cracks, where local-nonlocal diffu-
sion models turned out to be the most appropriate. Nevertheless, the situation is
different to our case. D’Elia et al. (2016) are able to confine two separated spatial
domains which only share the boundary. On those domains, they consider a local
and a nonlocal diffusion problem separately, such that they end up with two (not
completely independent) problems, one with integral operator and volume con-
straints, and the other with Laplace operator and common boundary constraints.
In that way, they circumvent the combination of both types of boundary con-
straints in one single problem.
Another field where models with both, Laplace and space-integral, operators occur
rather often is Financial Mathematics. When considering stochastic jump diffu-
sion models with Lévy processes for option pricing problems, the transformation
of stochastic differential equations into deterministic partial differential equations
via Itō’s lemma and the Feynman-Kac formula leads to partial integro-differential
equations that have the same form as the capital accumulation equation in (3.14).
However, a characteristic of these types of models is the unbounded spatial domain.
The space variable in these models describes the price of an underlying asset and
is usually not restricted a priori. A paper we want to mention here as an example
is ‘Convergence of numerical schemes for viscosity solutions in integro-differential
degenerate parabolic problems arising in financial theory’ by Briani et al. (2004)
which we have mentioned before. Here, the authors consider the Rn as spatial do-
main, which makes the definition of boundary conditions unnecessary. Especially
in the application considered in that paper, they show that the error, which they
produce when truncating the spatial domain in order to solve the equation numer-
ically, is small and hence negligible. Other models with both, local and nonlocal
diffusion, and unbounded spatial domain, hence without any boundary conditions,
are written for example by Chandra and Mukherjee (2016), Cont and Voltchkova
(2005), Matache et al. (2004), or Sachs and Strauss (2008).

From an economic point of view, it is justifiable (or even necessary) to neglect any
local diffusive effects in the capital accumulation process across space. However,
this decision now takes its toll when it comes to proving existence of an optimal
control. Since we do not need any derivative of the state function in space direc-
tion, the regularity of the solution of the PIDE in the spatial Ramsey model is
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much weaker than if we had considered local diffusion as well. The highest regu-
larity we can expect in the space direction is L∞, at least for data k0 and c in L∞,
and this regularity is only valid in the interior of the set of interest. We do not
gain any information on the regularity inside the interaction domain or between
Ω and ΩI . For data with less regularity, also the regularity of the weak solution
is weaker. Most techniques which are used to derive the existence of an optimal
control under semilinear differential equations require much higher regularity on
k, for example continuity (cf. Casas, 2006; Tröltzsch, 2005; Lions, 1971). However,
the weak solutions in our model are not necessarily continuous. On the contrary,
we will point out in the next chapter, that one advantage of our model is to con-
serve any discontinuity of a given initial capital distribution.

For optimal control problems subject to semilinear parabolic differential equations,
Lions (1971), Tröltzsch (2005), and Casas (2006) have shown existence results. The
approach is the same in all three works and as already mentioned, the regularity
of the weak solution of the state equation is crucial for this theory. The proof uses
some convergence arguments of sequences of controls and states, and embedding
theorems of the considered function spaces. The basic idea, as already described in
detail in Chapter 4.2, is to consider a minimizing sequence of controls that exists
under appropriate assumptions on the objective and the set of feasible controls.
Then, the semilinear state equations are linearized in order to derive a convergent
sequence of states in an appropriate norm and it is shown that the limit of this
sequence solves the PDE constraint. After showing that the limit of the control
and state sequence minimizes the cost functional, the proof is concluded.

Although solutions of such nonlocal equations as considered in the nonlocal vector
calculus are much less regular, compared to the weak solutions of local PDEs with
derivatives in space direction, it is not impossible to prove the existence of opti-
mal controls in this setting. In the paper ‘Optimal Distributed Control of Nonlocal
Steady Diffusion Problems’ by D’Elia and Gunzburger (2014), the authors consider
a model for which they can show the existence of an optimal control straightfor-
wardly. They consider an elliptic, inhomogeneous, though linear nonlocal differ-
ential constraint equation and a quadratic matching functional as objective. The
authors are able to exploit the special structure of the objective functional by
rewriting the reduced cost functional as a sum of a symmetric, continuous, and
coercive bilinear form and a continuous and linear functional. Applying the Lax-
Milgram theorem then completes the proof, although the regularity of the weak
solution is only L2.
However, our cost functional does not have any matching type structure, but is
a quite general, convex function which we cannot rewrite in that way. Moreover,
our state equation is parabolic and semilinear, thus we cannot proceed similarly
to D’Elia and Gunzburger (2014).

We expect that the weak solution of our nonlocal spatial Ramsey model is con-
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5 The Nonlocal Spatial Ramsey Model on Bounded Spatial Domains

tinuous in the interior of the set of interest Ω for appropriate (i.e. continuous)
data, since the integral operator does not weaken any initial regularity over time
and space. The transition between Ω and ΩI has to be analyzed further, also the
impact of the regularity of the weak solution in the interaction domain on the
existence of an optimal control. However, we recommend this to further research.
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CHAPTER 6

Numerical Results and Economic Evaluation

‘The disparities between cities and regions are generally more stable [...], even at
times of growth and structural change. But it is also true that disparities can be
substantial and persistent, lasting many decades.’ (Breinlich et al., 2014, p.1)

This chapter is dedicated to the numerical solution of the nonlocal spatial Ramsey
model with endogenous productivity growth. We start the numerical treatment
illustrating the impact of the kernel function in the nonlocal diffusion operator on
the quality of the diffusion in Section 6.1. After that we discuss the implementation
of the capital accumulation equation (5.11) in Section 6.2.
In contrast to Chapter 5, we consider a Neumann-type volume constraint for the
numerical implementation, hence we consider the case ΩI = ΩIn . Throughout this
numerical realization, we ignore the constraint on the accumulated capital stock∫

Ω∪ΩI

k(x, t) dx = g(t) on (0, T ),

which defines the constraint functional in (5.8) and was only introduced to ensure
the uniqueness of the weak solution. This is convenient as we are only interested
in one solution, not a particular one. However, this constraint would lead to an
additional linear equality constraint, which could be implemented quite forward
using a quadrature rule. As already mentioned, a Neumann-type volume con-
straint refers to a natural exchange of production factors between the considered
(bounded) economy and its surrounding, independent of the preferences of a cen-
tral planner, which is an other interesting scenario for the application.
The numerical solution of partial integro-differential equations is often a rather
challenging task. Thereby, the most problematic term is the integral part of the
PIDE. Depending on the kernel function, many spatial discretization schemes like
finite elements or finite differences combined with quadrature rules lead to dense
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matrices. Hence, a fully implicit time discretization is very expensive in terms of
memory capacity and computation time. There exist some techniques to reduce
computational cost. Anderson and Anderson (2000) consider an alternating direc-
tions implicit method (ADI) combined with a fast Fourier transformation. In the
ADI, every time step in the discretization is split in two. In the first half-step,
the dense part of the discretized problem is treated with an explicit Euler scheme,
whereas the sparse part is discretized with an implicit Euler scheme. In the sec-
ond half-step, the time discretization methods are swapped. Other approaches are
splitting schemes (see amongst others Briani et al., 2004; Cont and Voltchkova,
2005), where the discretization matrix of the PIDE is split into a dense and a
sparse part. Then, the dense part is treated explicitly with respect to the time
discretization, whereas the sparse part can be discretized with a higher order im-
plicit scheme.
In the context of the nonlocal vector calculus, the kernel function enables us to
reduce the computational cost as well, at least if the parameter in the kernel is
chosen appropriately. The kernel function, which we introduced in the previous
chapter, is a truncated Gaussian probability density function. If the set where
it is truncated to, is smaller than the set of interest, the discretization matrices
are not dense but do have band structure and are symmetric. Moreover, depend-
ing on the discretization scheme, the coefficient matrices have Toeplitz structure,
which reduces the memory capacity of an M × N matrix from order O(MN) to
O(M +N). We can exploit this structure in our numerical implementation of the
optimal control problem.
For the numerical solution of the state equation, we implement a finite element
method and study another quite direct discretization, based only on quadrature
rules and finite differences as introduced by Lin and Tait (1993) and further de-
veloped in Tian and Du (2013). We will discuss both approaches with respect to
applicability to our model in Section 6.2.
In Section 6.3, we introduce two approaches for solving the optimal control prob-
lem. The first, more direct approach is the first discretize, then optimize (FDTO)
approach. Here, the optimization problem is discretized using a product-quadrature
rule to approximate the involved two-dimensional integrals and the finite differ-
ences to approximate the PIDE constraint. We solve the resulting discrete nonlin-
ear optimization problem with a Matlab solver based on a SQP method.
The second procedure to solve an optimal control problem is the first optimize,
then discretize (FOTD) approach. In contrast to the FDTO approach, the FOTD
approach requires the continuous solution of the minimization problem and af-
terwards the discretization of the resulting optimality system. In that way, the
FOTD approach yields a coupled system of semilinear nonlocal partial differential
equations. In this context, we show the Fréchet differentiability of the control-
solution operator which is crucial for this approach. We heuristically derive the
necessary first order conditions in order to give a broad insight into the structure
of our Ramsey model, however we do not implement it. We recommend to solve
this system using a gradient projection method as in Sachs and Strauss (2008) or
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Tröltzsch (2005, pp.233) and leave this to further studies.
We conclude this chapter in Section 6.4 with a detailed comparison of the local
model as introduced in Chapter 3.3 and our nonlocal model with endogenous pro-
ductivity growth.

It is worth to mention, that we restrict our numerical implementation to the spa-
tially one dimensional case. This is convenient for the application. We can inter-
pret any space interval as a continuum of households, which are sorted according
to their initial income, and not according to their actual geographic position.

In order to guarantee the convergence of our numerical schemes, we have to adjust
the nonlocal model analyzed in the previous chapter. We use a Moreau-Yosida
penalty function with a penalty parameter ρ1 > 0 to substitute the state con-
straint k ≥ 0. Moreover, we replace the quite general, continuous function φ in
the productivity growth operator P by a differentiable approximation of the ab-
solute value function. In that way, we make sure that P is Frechet-differentiable
with respect to the state variable. The resulting optimal control problem, that we
will consider here, is then given as follows:

For an open domain Ω ⊂ R and T ∈ N, find the optimal control function c ∈ Uad
and the corresponding optimal state function k which satisfy

min
c,k
J (k, c) := −

∫ T

0

∫
Ω

U(c(x, t))e−τt−γx
2

dxdt +
1

2ρ1

‖min{0, k}‖2
L2(0,T ;L2(Ω))

+
1

2ρ2

‖k(·, T )− kT (·)‖2
L2(Ω)

(6.1)

such that the state equation

∂k

∂t
− β

∫
Ω∪ΩI

(k(y, t)− k(x, t))Γε(x, y)dy + δk − P(k) = −c, (6.2)

holds on Ω× (0, T ), the Neumann-type volume constraints

− β
∫

Ω∪ΩI

(k(y, t)− k(x, t))Γε(x, y)dy = 0 (6.3)

are valid on the interaction domain-time cylinder ΩI × (0, T ), and such that the
initial value constraint

k(x, 0) = k0(x) > 0 (6.4)
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is satisfied on Ω.

For our numerical realization, we choose Ω = (1, 3) and T = 2. We define the
interaction domain ΩI as

ΩI := (1− ε, 1] ∪ [3, 3 + ε)

for an interaction radius ε > 0. Whenever the value of this interaction radius is
not clearly defined by the context, we fixed ε := 0.5 and the interaction radius in
the productivity-operator as µ := 0.3. Considering the set of feasible controls Uad,
which we assumed throughout to be convex and bounded, we requested that the
discretized variable is pointwise bounded by 0 and an utopian upper bound. We
choose the variance of the kernel function,

Γν(x, y) :=
1√

2πσ2
exp

(
−(x− y)2

2σ2

)
1Bν(x)(y), ν ∈ {µ, ε},

relatively small to achieve fairly high diffusive effects. Whenever not stated ex-
plicitly, we chose σ = 0.2 in the following examples.
We consider the nonlinearity defined in (3.12),

P(k)(x, t) = A0(x) exp

( ∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy + ξ
t

)
p(k(x, t)), (6.5)

where the function φη : R→ R+\{0} is defined as

φη(k) := (
√
k2 + η),

depending on a parameter η > 0. Since η is a fixed parameter, we do not further
mention the dependence of P in the notation. Moreover, for any k ∈ R we have

||k| − φη(k)| ≤ √η,

but in contrast to the absolute value function, φη is differentiable. Note that in
this case, we can drop the additional parameter ξ > 0 in the denominator. We
had to introduce this parameter to make sure that we do not divide by zero. Since
φη is always bounded from below by

√
η > 0, it is not necessary any more.

We consider the production function

p(k) :=

{
kρ, x > 0.01,

0.01ρ−1k, x ≤ 0.01.
(6.6)

This function is a Lipschitz continuous approximation to the Cobb-Douglas produc-
tion function for ρ ∈ (0, 1), which is a standard production function in economics.
The Cobb-Douglas function satisfies the Inada conditions and is the prime exam-
ple of a neoclassical production function with decreasing returns to scale.
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6.1 Nonlocal Diffusion - The Role of the Kernel Function

As an objective function U , we consider a constant relative risk aversion (CRRA)
utility function. This type of function is commonly used in economic applications.
These CRRA functions are characterized by a constant Arrow-Pratt coefficient,
which is defined for a twice differentiable and strictly concave function u as

APC := −u
′′(c)c

u′(c)
.

Integrating gives the family of CRRA utility functions as

u(c) =

{
c1−θ−1

1−θ , 0 ≤ θ < 1,

log(c), θ = 1,

(cf. Acemoglu, 2009, p.308). Since we stated in assumption 2.4 that the utility
function is neoclassical, we consider the slightly adapted function

U(c) := log(c+ 1).

Before we start the numerical implementation of the nonlocal Ramsey model,
we point out the diffusive effect of the nonlocal diffusion operator. The following
section aims in giving an insight, which parameters are responsible for the strength
of diffusion and how the dispersion of the capital stock in the considered economy
can be controlled.

6.1 Nonlocal Diffusion - The Role of the Kernel

Function

The development of the capital distribution across space over time should be driven
by a combination of agglomerative and dispersive effects (cf. Aldashev et al., 2014,
p.11). In our model, the agglomerative effects are given by the nonlocal, nonlinear
production operator which is heterogeneous in space whenever the initial capital or
productivity distribution is heterogeneous in space and which, moreover, depends
on time. In contrast to the common spatial Ramsey models, we describe the
dispersive effects on the capital distribution over space as integral operator

NL(k)(x, t) =

∫
Ω∪ΩI

(k(y, t)− k(x, t))Γε(x, y)dy, (x, t) ∈ Ω× (0, T ).

In this section, we want to illustrate the diffusive effect of this operator which is
highly dependent on the kernel function of the nonlocal integral operator NL,

Γε(x, y) :=
1√

2πσ2
exp

(
−(x− y)2

2σ2

)
1Bε(x)(y).
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6 Numerical Results and Economic Evaluation

The shape of this kernel function, and hence the strength of the diffusion, depends
on the variance σ and the interaction radius ε. Thus, by varying these two pa-
rameters, we are able to picture a much larger set of scenarios than the stringent
Laplace operator, which is used in the common spatial Ramsey model.

We get a first expectation on how the diffusive impact of the integral operator on
the state varibale depends on the variance σ from a result of Briani et al. (2004).
In their paper, the authors compare two differential equations,

ut + aux − buxx + cu = λ

∫
R
(u(x+ z, t)− u(x, t))γσ(z)dz (6.7)

and

vt + avx − bvxx + cv =
λσ2

2
vxx, (6.8)

with the same initial condition

u(x, 0) = v(x, 0) = f0(x), x ∈ R.

Briani et al. (2004) define the kernel function γσ as the Gaussian probability density

γσ(z)dz =
1√

2πσ2
exp

(
− z2

2σ2

)
.

In this framework, they prove that the difference of the solutions of both equations
is of order O(Tσ3), i.e. that the solutions are close for a small variance σ.

Lemma 6.1 (Briani et al., 2004):
Let u be the solution of (6.7) and v the solution of (6.8) with the same initial
condition f0 ∈ L1(R) ∩ L∞(R). Then, if σ � 1,

‖u− v‖L∞(0,T ;L1(R)) ≤ O(Tσ3).

In other words, the smaller the variance in the kernel function gets, the closer are
the solutions of the two differential equations (6.8) and (6.7). Note that we can
in particular choose the parameters a = 0 = b, and that the Laplace operator on
the right-hand side in (6.8) is weighted with the variance σ. Whenever we choose
a nonzero variance, we expect any heterogeneity of the initial value function to
be conserved longer in our nonlocal Ramsey model as compared to the local one.
The bigger σ, the stronger is the preservation of the inequalities in the initial data.
Moreover, we have already pointed out in section 5.3 that the solution of the pure
nonlocal equation does not even need to be continuous. Thus, the bigger we choose
the variance, the sharper should these discontinuities appear over time. However,
the variance should not be chosen too small, since the diffusive effect vanishes for
σ → 0.
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6.1 Nonlocal Diffusion - The Role of the Kernel Function

When we consider the impact of the nonlocal diffusion operator with respect to
the interaction radius ε, we make an initial guess based on the following result
of Du et al. (2012a, p.686). In order to apply it directly to our one-dimensional
examples, we adapt it to the one-dimensional case.

Lemma 6.2:
Let Ω ⊂ R denote a bounded domain, independent of the interaction radius ε of
the kernel function γε. Denote the second moment of γε as C := limε→0Cε, where

Cε =

∫
Bε(0)

z2γε(|z|)dz.

Then, if the kernel function γε satisfies the properties 1. and 2. of Proposition 5.1
such that γε(|z|) = 0 for |z| > ε,

lim
ε→0

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗vTD∗udydx = C

∫
Ω

vx ux dx,

holds for any u, v ∈ H1(Ω ∪ ΩI) with support in Ω.

Note that Cε lies in the interval [0, σ2] by definition of the kernel function as Gauss
probability density function and that in our case C → 0 as ε→ 0. Hence, we can
conclude that the smaller ε gets, the smaller is the diffusive effect of NLε.

We want to make both conjectures on how the parameters σ and ε affect the action
of the nonlocal diffusion operator clear in some numerical examples, that should
illustrate the impact of both parameters and give a hint, how to choose them in
applications. We compare the terminal capital distributions of our nonlocal model
with the ones of the local diffusion model by Brito (2001) under varied parameters
σ and ε. We consider a homogeneous equation, hence A0, c ≡ 0 on Ω, respectively
Ω× (0, T ), and δ = 0. This yields the capital equation

∂k(x, t)

∂t
=
∂2k(x, t)

∂x2
on Ω× (0, T )

with homogeneous Neumann boundary conditions for the local model. The non-
local capital equation is then given as

∂k(x, t)

∂t
=

∫
Ω∪ΩI

(k(y, t)− k(x, t))Γε(x, y)dy on Ω× (0, T ),

under homogeneous Neumann-type volume constraints,

−
∫

Ω∪ΩI

(k(y, t)− k(x, t))Γε(x, y)dy = 0 on ΩI × (0, T ).
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6 Numerical Results and Economic Evaluation

The two Lemmas 6.1 and 6.2 explain the impact of the variance parameter in
the kernel function on the strength of the diffusive effect in the nonlocal model.
An additional effect of the interaction radius ε becomes clear by definition: The
bigger ε is, the wider is the area where smoothing appears. The combination of
both parameters generates the distributive effect of the nonlocal diffusion operator.
Therefore, the choice of both parameters is crucial for the solution of the nonlocal
capital accumulation equation.
For illustration, we consider an extreme initial capital distribution,

k0(x) :=

{
100, x ∈ B1/100(2)

0, otherwise.

As illustrated in the figures below, the terminal capital distribution in the local
model is evenly distributed across space, thus any heterogeneity of the initial
distribution has been smoothed out completely over time.
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Figure 6.1: Impact of the Variance σ

In contrast to that, the smoothing effects in the nonlocal model are much weaker
but increase in the length of the interaction radius and decrease in the variance.
Especially when we choose a high value for the variance, e.g. σ = 1, combined with
a small interaction radius like ε = 0.1, there is almost no diffusive effect observable
(see Figure 6.1a).
Compared to that, a smaller variance causes a much higher diffusive effect for a
fixed ε as illustrated in Figure 6.1b. Thus, we do not only observe a spreading of
capital towards the edges of Ω, such that a kind of basis is generated underneath
the peak of the initial capital distribution, but the absolute value of the capital
stock in the center of Ω is reduced as well.
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6.1 Nonlocal Diffusion - The Role of the Kernel Function
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Figure 6.2: Impact of the Interaction Radius ε

When we keep the small value of the variance of Γε and increase the interaction
radius further, the smoothing effect of the integral operator increases again. The
absolute value of the capital stock in the center is reduced and the basis is much
wider in Figure 6.2b, as compared to Figure 6.2a.
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and interaction radius ε = 0.5

Figure 6.3: Two Moderate Scenarios

For a moderate choice of the two diffusion parameters, we obtain two interesting
cases. In Figure 6.3a, the center is still much richer as compared to the rest in
Ω, but the terminal capital distribution has increased in a quite wide interval
around x = 2 and has reached the level of the solution of the local model almost
everywhere. The case considered in Figure 6.3b appears as the most applicable
parameter constellation for a general study of the nonlocal model. The diffusive
effect of the nonlocal operator is quite high, since the width of the basis is quite
big, and the absolute value of the capital stock in the center point is much smaller
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6 Numerical Results and Economic Evaluation

as at the initial point in time. Thus, if not stated otherwise, we always choose the
parameters

ε = 0.5 and σ = 0.2,

for the kernel function in the following examples. Although the solution of the
capital accumulation equation in our model is highly sensitive to the choice of
these parameters, we leave a better calibration of the kernel function to real life
applications to further research.

6.2 Solving the Partial Integro-Differential

Equation

Considering the discretization of a parabolic initial-boundary problem with finite
elements or finite differences, it can be useful to first discretize either after time
or after space, not after both variables at once. Such an approach is called semi-
discretization or method of lines. In general, the vertical and the horizontal method
of lines are distinguished. In the first case, the parabolic differential equation is
discretized in space. The resulting system of ordinary differential equations is then
discretized in time with appropriate schemes like Runge-Kutta or multi-step meth-
ods (cf. Grossmann and Roos, 2005, p.317). In contrast to that, in the horizontal
method of lines the parabolic differential equation is first discretized in time. In
these, so called Rothe methods, the PDE is approximated by a sequence of elliptic
differential equations, which are solved afterwards (cf. Grossmann and Roos, 2005,
p.337).
In this section, we introduce two different approaches to solve the seminlinear PIDE
in the nonlocal spatial Ramsey model. We first consider a horizontal method of
lines, discretizing the time dimension with a semi-implicit scheme as introduced by
Tröltzsch (2005, p.234) and solving the resulting elliptic equations with a (stan-
dard) finite element method. The second alternative that we introduce here, is
a vertical method of lines. We discretize the PIDE in space direction, using a
quadrature-based finite difference scheme and consider a fully implicit time dis-
cretization to approximate the time derivative.

6.2.1 Finite Element Method

The capital accumulation equation in this nonlocal spatial Ramsey model is semi-
linear. In contrast to semilinear elliptic differential equations, the numerical re-
alization of semilinear parabolic PDE is rather easy. Instead of using a complete
implicit scheme for the time discretization, we apply a semi-implicit scheme (cf.
Tröltzsch, 2005, p.234). This means, that we will approximate the nonlinearity P
at time step ti+1 by the evaluation in time step ti. By doing so, we get a system of
linear elliptic differential equations, which then can be solved applying a standard
finite element scheme.
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6.2 Solving the Partial Integro-Differential Equation

The finite element method makes use of the weak formulation of a PDE. Hence,
there is no requirement on the strong formulation of a PDE to be satisfied point-
wise. On the contrary, ‘the finite element method is a particular case of the vari-
ational approximation’ and therefore fits the theory of weak solutions best (cf.
Dautray and Lions, 1985, p.160-166). This is the reason, why we start our numer-
ical realization with a finite element method.
We use a Galerkin approach to discretize the PIDE in the nonlocal spatial Ramsey
model. We consider the standard piecewise linear hat functions

φi(x) =


(x− xi−1)/h, for x ∈ (xi−1, xi),

(xi+1 − x)/h, for x ∈ [xi, xi+1),

0, otherwise

for i ∈ IΩ∪ΩI , which denotes the index set of the spatial discretization.
To approximate the integrals over the kernel functions Γε and Γµ, we use a Gaus-
Legendre quadrature. Note, that this quadrature rule does not have equidistant
steps in space direction.
Since the initial capital distribution k0 is only given in Ω, we have to start any
routine to solve the capital equation with the determination of k(x, 0) on ΩI ,
exploiting the Neumann volume constraint. We can extend the initial capital
distribution on the whole nonlocal closure by solving the linear system

Bk0
ΩI

= bΩ,

where B ∈ R2N×2N is the sum of a diagonal matrix and a block matrix of the formB1 0N

0N B2


for two dense matrices B1, B2 ∈ RN×N and k0 denote the discrete approximation
on k0. The integer N denotes the number of steps in the interaction domain.

The Figures 6.4-6.6 below illustrate the distribution of the capital stock across
space and over time under a given and constant consumption c. In the following
examples, we fix the depreciation rate δ = 0.01, the parameter of the production
function ρ = 0.6, and c ≡ 0. If the value of c is chosen nonzero, it should be
less than the initial value of k. We compare the solutions of the PIDE for varying
initial capital and productivity distributions k0 and A0.

For a constant initial capital distribution k0 ≡ 1 and a constant initial productiv-
ity distribution A0 ≡ 0.4 (here, ‘constant’ means homogeneous in space), we can
observe an even growth of capital across space over time (see Figure 6.4). The in-
tersection between Ω and ΩI is very smooth and there is no difference between the
capital development in the domain of interest or the one in the interaction domain.
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Figure 6.4: Finite Element Solution: Constant Initial Productivity, Constant Initial Capital Distribution

Although the comparison with the local model is the topic of Chapter 6.4, it is
worth to mention at this point that for constant initial data the solution of the
nonlocal and local capital accumulation equations are very similar. The explana-
tion is quite forward: Since there is no heterogeneity at all, neither the preserving,
nor the smoothing effect of the integral, respectively the differential operator arise.
Moreover, since the productivity is homogeneous in space, the agglomerative effect
of the nonlinear term is insignificant as well.

The situation is different if we choose the same initial productivity distribution, but
start with a continuous, non-constant initial capital distribution. In all examples
below, we always choose

k0(x) =
1

3
(2 + arctan(x− 2)) (6.9)
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6.2 Solving the Partial Integro-Differential Equation

whenever we refer to a continuous but heterogeneous initial condition.

As it becomes obvious in Figure 6.5a, the Neumann volume constraints leads to
an uneven transition between Ω and ΩI . The oscillations appear du to the choice
of the standard continuous piecewise linear hat basis functions. These functions
are continuous over the boundaries of single elements and hence cannot capture
discontinuous solutions. At least in t = 0, the oscillations are within the limits of
the discretization error.
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Figure 6.5: Finite Element Solution: Constant Initial Productivity, Heterogeneous but Continuous Initial Cap-
ital Distribution

An advantage of the nonlocal model is that any heterogeneities and even discon-
tinuities, that appear over time in the spatial capital distribution, are preserved.
However, this property is at the same time a disadvantage, since also numerical
inaccuracies are preserved and even increased over time. This leads to numerical
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results which distort the solution of the model and thus impede any economic in-
terpretation. Nevertheless, Figure 6.5 illustrates that the initial heterogeneity in
the capital distribution is perfectly conserved over time. Moreover, we observe a
small increase of the heterogeneity in the spatial distribution of the state variable,
meaning that the curvature of the terminal capital distribution is stronger than
the one of k0. This increase may be driven by the nonlinearity.
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Figure 6.6: Finite Element Solution: Constant Initial Productivity, Piecewise Constant but Discontinuous Initial
Capital Distribution

As already mentioned, one advantage of our model is the possibility to preserve not
only heterogeneities, but also discontinuities in the initial data. This conjecture is

116



6.2 Solving the Partial Integro-Differential Equation

illustrated in Figure 6.6 for a discontinuous initial capital distribution,

k0(x) :=

{
4, x ∈ (1, 2]

5, x ∈ (2, 3)
. (6.10)

The previous examples lead to the hypothesis that the pure nonlocal diffusion,
weighted with β = 1, has very little smoothing effects. Indeed, this is confirmed
by the result of Briani et al. (2004) which we stated in Lemma 6.1.

As already recommended by Aldashev et al. (2014) or Barro (1990), these few
examples already illustrated that any increase of technology, that is heterogeneous
over space and depends on time, has agglomerative effects on the capital distri-
bution. We will discuss the interplay of the accumulation effect, driven by the
nonlocal productivity-production operator, and the diffusion effects, which are
modeled by the nonlocal diffusion operator, in the nonlocal spatial Ramsey model
in the following sections.

6.2.2 Quadrature-Based Finite Difference Method

Especially the example illustrated in Figure 6.6 and the boundaries between Ω
and ΩI in Figure 6.5 indicate that the simple FEM discretization we used is not
appropriate since it cannot handle discontinuities. The discretization errors at the
discontinuities are even increased due to the productivity-production operator over
time. Since the integral operator has only little smoothing effects, the oscillations
do not vanish, but become huge over time. This makes an economic analysis and
interpretation of the numerical results rather complicated.
The discontinuities at the boundaries between Ω and ΩI are per se expectable.
Since we chose the volume of the interaction domain ΩI much smaller than the
volume of the set of interest Ω (in relation 1:3), the homogeneous Neumann-type
volume constraint causes jumps of the initial capital distribution between ΩI and
Ω. This is in line with the economic interpretation of the Neumann volume con-
straint since the capital flows from Ω to ΩI and vice versa must be balanced. Thus,
the smaller the interaction domain is, the more capital must be available in ΩI in
order to counterbalance the flows from Ω.
However, the FEM scheme we introduced above is not the best choice to solve our
state constraint. We want to transpire the property of our model to keep and even
create discontinuities without any agglomeration of oscillations that are caused by
discretization errors. One possibility would be to use a Galerkin approach with
discontinuous basis functions in the FEM discretization. A nice introduction is for
example given by Chen and Gunzburger (2011).

An alternative method to the FEM is to solve the PIDE with a finite differences
method and a quadrature rule. This may be considered as a direct approach, since
we discretize the PIDE itself and do not use the variational formulation. We dis-
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cretize the integral operator with a Riemann quadrature following the approach
of Tian and Du (2013). We use a θ-scheme to approximate the derivative in time.

The idea of the quadrature-based finite differences method (QBFDM) is quite
simple. Since we have truncated the kernel function in the nonlocal diffusion
operator to an ε-interval, we can exploit the additivity of the integral and the
symmetry of the kernel function in the following manner:
Let Ω := (x0, xf ) and ΩI := (x0−ε, x0]∪ [xf , xf +ε). Given a parameter α ∈ [0, 2]
, we consider the nonlocal diffusion operator with truncated support and calculate

NLε(k)(x) =

∫ x+ε

x−ε
(k(y)− k(x))Γε(x− y)dy

=

∫ ε

−ε
(k(x+ s)− k(x))Γε(s)ds

=

∫ ε

0

k(x− s)− 2k(x) + k(x+ s)

sα
sαΓε(s)ds.

This reformulation makes clear that the nonlocal operator NL can be viewed
as a ‘weighted average of second order difference operators’ (Tian and Du, 2013,
p.3462).

We consider N + 1 discretization points in Ω and define h = (xf − x0)/N . For
the time interval [0, T ], we choose M + 1 discretization points and define the step
size ∆t = T/M . We set the parameter ε = rh for a nonnegative integer r < N/2,
which guarantees that the volume of the interaction set is smaller than the one of
the set of interest. Moreover, we define µ = qh for a nonnegative integer q < r.
We denote the set of grid points in Ω ∪ ΩI by

{xn := x0 − ε+ nh} N+r+1
n=−r+1.

According to Tian and Du (2013, p.3461), we define Ij = ((j − 1)h, jh) for
1 ≤ j ≤ r.

Using a simple Riemann sum to approximate the integrals yields the following
approximation of the nonlocal diffusion operator in kn := k(xn):

NLh(kn) =
r∑
j=1

kn−j − 2kn + kn+j

(jh)α

∫
Ij

sαΓε(s)ds, n = 1, ..., N + 1, α ∈ [0, 2].

This is only well defined if sαΓε(s) is integrable for α ∈ [0, 2]. In our case, Γε is the
truncated density function of the Gaussian probability, hence the second moment
is bounded by the variance σ2 < ∞. The quadrature order is O(h) for a fixed ε.
As mentioned in Tian and Du (2013), higher order quadrature rules lead to better
accuracy, however the choice is limited to quadrature rules with equidistant step

118



6.2 Solving the Partial Integro-Differential Equation

sizes.
We calculate the weight ∫

Ij

(
s

j

)α
Γε(s)ds

for every j using a Gauss-Legendre quadrature to improve accuracy. To discretize
the nonlinearity, we use a trapezoidal rule to approximate the integrals.
The complete discretization of the nonlocal diffusion operator yields a matrix

Aε ∈ R(N+1)×(N+2r+1),

whose entries are given as

Aε[i,n] =


− 2
hα

∑r
l=1

∫
Il

sα

lα
Γε(s)ds, i = n

1
hα

∫
Im

sα

mα
Γε(s)ds, 1 ≤ |i− n| ≤ r

0, otherwise

for i = 1, ..., N + 1 and n = 1− r, ..., N + 1 + r. Here, we denote the entry in the
i-th row and n-th column of the matrix by Aε[i,n]. For r < N/2, this matrix is a
Toeplitz matrix with band structure of the form

Aε =


t0 t1 t2 . . . t2r 0 . . . 0

0 t0 t1 t2 . . . t2r
. . .

...
...

. . . . . . . . . . . . . . .
. . . 0

0 . . . 0 t0 t1 t2 . . . t2r

 .

Though the matrix may not be sparse, especially for large r, the Toeplitz structure
reduces the computational cost as well. The memory capacity of such a matrix is
of order O((N + 1) + (N + 2r+ 1)) since it is uniquely defined by its first row and
column.

To discretize the remaining linear part of the PIDE, we define the matrices Mk

and M c as

Mk :=
[
0(N+1)×r (1− δ)IN+1 0(N+1)×r

]
∈ R(N+1)×(N+2r+1),

and
M c :=

[
0(N+1)×r IN+1 0(N+1)×r

]
∈ R(N+1)×(N+2r+1).

Here, 0n×m denotes the zero matrix in Rn×m and In the unit matrix in Rn×n.
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To disretize the nonlinearity, we define the vector

Φk := (φ(k1−r), ..., φ(kN+r+1))′ ∈ RN+2r+1,

and the matrix

Bµ :=
[
0(N+1)×(r−q) Γµ 0(N+1)×(r−q)

]
∈ R(N+1)×(N+2r+1),

where Γµ ∈ R(N+1)×(N+2q+1) is the Toeplitz matrix with first column

Γµ
[:,1] :=

(
h

2
Γµ(µ), 0, . . . , 0

)′
and first row

Γµ
[1,:] :=

(
h

2
Γµ(µ), hΓµ(µ− h), ..., hΓµ(−µ+ h),

h

2
Γµ(−µ), 0, . . . , 0

)
.

Moreover, we define the matrix Bε := Γε ∈ R(N+1)×(N+2r+1), where Γε is con-
structed analogously to Γµ, and the vector

A0 = (0r, A0(x1), ..., A0(xN+1),0r)
′ ∈ RN+2r+1,

where 0r denotes the zero vector in Rr. Note that the vector product

Bν
[n,:]Φ

km ,

with
km = (km1−r, k

m
2−r, ..., k

m
1 , ..., k

m
N+1, ..., k

m
N+r+1)′,

where as usual kmn denotes the approximation of k(xn, tm), is a positive real value
for all n and ν ∈ {µ, ε}. Combining the discretizations of all components of the
operator P , the discretization of the nonlinearity yields a time dependent vector

P (tm,km) ∈ RN+2r+1

with entries

P
(tm,km)
[n] := A0,[n] exp

(
(Bµ

[n,:]Φ
km)(Bε

[n,:]Φ
km)−1tm

)
p(km[n]),

for n = 1− r, ..., N + r+ 1, m = 0, ...,M. Since P (tm,km) depends not only on time,
but also on the current iterate km, it has to be calculated in every step in time
during the iteration process.

Finally, for given θ ∈ [0, 1], tm := m∆t, and vectors km, cm ∈ RN+2r+1, (m =
0, ...,M), the fully discretized system is given for the matrices Mk, M c, Aε ∈
R(N+1)×(N+2r+1) and the vectors P (tm,km) ∈ RN+2r+1 (m = 0, ...,M) by
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6.2 Solving the Partial Integro-Differential Equation

(Mk −∆tθAε)km+1 −∆tθP (tm+1,km+1) −∆tθM ccm+1 =

(Mk + ∆t(1− θ)Aε)km + ∆t(1− θ)P (tm,km) −∆t(1− θ)M ccm

Aεk0 =0.

(6.11)

In the examples below, we want to highlight that, if we use this discretization
scheme, the oscillations near the discontinuities do not appear. Moreover, we dis-
cuss the economic meaning of the numerical solutions.
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Figure 6.7: Finite Differences Solution: Constant Initial Productivity, Heterogeneous but Continuous Initial
Capital Distribution
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Figure 6.7 illustrates the time-space development of the capital distribution for
zero consumption under the constant initial productivity distribution

A0(x) :=

{
0.4, x ∈ (1, 3),

0, x ∈ (1− ε, 1] ∪ [3, 3 + ε)

and the heterogeneous initial capital distribution as defined in (6.9). The dis-
continuities between Ω and ΩI are sustained over time and oscillations do not
appear.

Economic Interpretation of Figure 6.7:
The households in this economy are ordered from poor to rich. In economic terms,
the monotone initial capital distribution means that the heterogeneity in the initial
income distribution is evenly distributed over space. The constant productivity
distribution A0 implies that all agents in the economy are endowed with the same
level of initial knowledge or production skills. Since we assume a zero consumption
level, which corresponds to a saving rate of 100%, and a small capital depreciation
rate (δ = 0.01) the capital stock naturally increases in every location over time.
The discontinuities between the set of interest Ω and the interaction domain ΩI
are important for the economic meaning. The capital stock in ΩI is almost equally
high on the left-hand and the right-hand side of Ω. However, the impact of the
interaction of agents located at the left-hand side of Ω with the interaction domain
is positive, whereas it is negative on the right-hand side. This means, that the value
of k(·, t) in Ω−I := (0.5, 1] is higher than the value of k(1, t) for all points in time
t ∈ (0, T ). Thus, interactions with the outside increase the value of capital on the
left-hand side of the economy. In contrast to that, the initial capital distribution
k(3, t) is much higher than the capital in Ω+

I := [3, 3, 5) for all points in time.
This implies that the value of the capital stock decreases in the richer part of
the economy whenever any interaction with Ω+

I takes place. Thus, the interaction
of the poorer households with the outside of Ω is of a different quality than the
exchange of production factors on the richer side of the economy. In other words,
the poorer agents benefit more from the interaction with the outside of the economy
than the richer agents do.
The impact of the interaction domain combined with the weak smoothing effect
of the nonlocal diffusion operator leads to a slightly vanishing heterogeneity over
time, but the initial disparities do not vanish completely. The slightly catch up
of the poorer households can be explained by the dispersive effects of the capital
accumulation process over time and the positive impact of the interaction with ΩI ,
and not by the agglomerative effect of the production operator, since productivity
is equally distributed over space.
In the next example illustrated in Figure 6.8, we observe a similar effect.
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Figure 6.8: Finite Differences Solution: Constant Initial Productivity, Piecewise Constant but Discontinuous
Initial Capital Distribution

Here, we again start with a constant initial productivity distribution, but consider
the discontinuous initial capital distribution defined in 6.10.

Economic Interpretation of Figure 6.8:
In this economy, there are two distinct, but equally large unions of homogeneous
agents. One unit is endowed with a much higher initial capital distribution, but
all agents are equally productive in t = 0. At first glance, it is obvious that the
gap between rich and poor does not vanish over time. It is not evenly smoothed
out, but it becomes smaller after time since the poorer agents gain capital faster
than the richer ones. Again, the capital stock in the interaction domain is almost
equally high in the left part Ω−I and the right part Ω+

I . The positive impact of the
interaction domain on the left-hand side of the economy is once more one reason
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6 Numerical Results and Economic Evaluation

for the decreasing disparity between rich and poor.

If we consider a heterogeneous initial capital distribution and a non-constant, bell-
shaped initial productivity distribution such as

A0(x) := 0.4

(
1 + exp

(
−(x− 2)2

0.08

))
, (6.12)

we can observe the severe agglomerate impact of the nonlinear inhomogeneity on
the capital stock in Figure 6.9a. Combined with the preservative character of the
nonlocal diffusion operator, this leads to a huge increase of capital in locations
with higher initial productivity.

Economic Interpretation of Figure 6.9:
This figure illustrates that, under some certain parameter constellations, the ag-
glomerative effect of the technology progress is much stronger than the diffusive
effect of the nonlocal operator. The initial productivity distribution A0 (see Figure
6.9a) describes an economy with one urban center, such as a city or huge industrial
area, and its rural surrounding. The households are again ordered from poor to
rich. Although the integral operator conserves the heterogeneity in the initial cap-
ital distribution, the shape of A0 has the most significant impact on the space-time
development of the capital distribution.
From an economic point of view, this means for a given depreciation and diffusion
rate that the increase of capital is higher in more productive areas. Or in other
words, for the appearance of wealth, the initial distribution of capital is not as
important as the efficiency in production.
This is in line with the observations of Camacho et al. (2008, p.15). The authors
also consider a heterogeneous initial capital distribution and a bell-shaped initial
technology distribution, similar to our example. Following the model of Brito,
Camacho et al. (2008) model the capital mobility across space as a local diffusion
process. This implies that the initial disparity in capital does not have any mean-
ing over time. However, they see that the time depending technology preserves
the heterogeneity and that its impact on the capital distribution is much stronger
than the diffusive effect of the Laplace operator.

It is remarkable in Figure 6.9, that not only the initial heterogeneity in capital,
but also the associated differences in the interaction with ΩI appears to vanish
over time. Whereas the capital stock in Ω−I is much higher than the capital at the
left boundary of Ω over the whole time period, the relation of the capital located
at the right boundary of Ω and the capital in Ω+

I is reversed in the end. In t = T ,
the impact of the interaction with the outside is the same, on the left- and the
right-hand side of the economy.
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Figure 6.9: Finite Differences Solution: Bell-shaped Initial Productivity, Heterogeneous but Continuous Initial
Capital Distribution

6.3 Solving the Optimal Control Problem

When it comes to the numerical solution of an optimal control problem, there is
the choice between two essentially different approaches, the first discretize, then
optimize (FDTO) and the first optimize, then discretize (FOTD) approach. The
FDTO approach is also known as direct approach. The control problem, which
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6 Numerical Results and Economic Evaluation

is an optimization problem in a function space, is discretized ‘by means of para-
metric functions with local support, and then the resulting nonlinear program in
finitely many optimization variables is solved’ (Sager, 2009, p.6). This approach is
straight forward and widely used in practical applications. However, it produces
less accurate solutions than the indirect methods. In the indirect approach, the
FOTD, the necessary first order conditions (NFOC) are derived which are given
as a coupled boundary value problem. These NFOC are then solved applying an
appropriate discretization. In this approach it is notably possible to exploit the
structure of the optimal control problem. The state and adjoint equation may
have special structures, which can be exploited to reach higher accuracies or to
save computational cost. However, the latter approach demands the differentia-
bility of the optimal control problem, which is often hard to prove.

We start this section with a detailed economic analysis of the numerical results
which we achieved with the FDTO approach in Section 6.3.1. Since the main focus
of the thesis is the development of a new capital constraint equation for the spatial
Ramsey model, we do not pay attention on efficient numerical implementation or
advanced optimization techniques.
In Section 6.3.2, we analyze the optimal control problem with respect to Fréchet
differentiability of the control-solution operator. We derive the necessary first or-
der conditions, but do not regard any numerical solution of the resulting system
of coupled partial integro-differential equations.

6.3.1 First Discretize, Then Optimize

The biggest advantage of the FDTO approach is that there is no need to study
the structure of the problem, but the numerical implementation can be started
right away. We apply the product rule based on univariate trapezoidal quadrature
rules to discretize the double integrals in the objective function. We do not define
any terminal condition at kT . However, we expect that the optimal value of kT is
equal to 0, because the agents do not gain any utility by holding capital over the
finite time horizon, but by spending capital on consumption goods. We solve the
discretized nonlinear optimization problem with nonlinear equality and inequality
constraints using the Matlab solver fmincon. The box constraints on the control
variable are consigned to the solver as well.

The following Figure 6.10 illustrates the optimal time-space capital and consump-
tion distributions in an economy with equally distributed poor and rich households.
The initial capital distribution is continuous, but strictly monotone and the agents
are equally productive over space. Note that the time lines in the Figures 6.10c
and 6.10d are shifted from 2 to 0, and space and time axis are interchanged.
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Figure 6.10: Market Equilibrium: Constant Initial Productivity and Heterogeneous but Continuous Initial Cap-
ital Distribution

Economic Interpretation of Figure 6.10:
As expected, we observe that the optimal capital path falls down to zero at the
end of time. As it can be seen in Figure 6.10d, the capital stock of the poorer
households located near x = 1 increases at the beginning and starts sinking down
to zero after a short time (almost at t = 0.5), whereas the capital stock of the
richer agents is decreasing over the whole time period.
The consumption distribution over space increases everywhere, until it reaches its
zenith after almost half of the time. Though, the consumption level depends on
the capital distribution: The richer the agent is, the higher is the consumption.
As capital decreases, the consumption level falls down to zero as well, since it has
to be financed and households are not allowed to incur debt, implied by the state
constraint k ≥ 0 in every point of time and location in space.
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The most important observation in this example is that the heterogeneity in the
initial capital distribution is not only preserved in the pure capital accumulation
process, as already discussed in the previous section, but is also visible in the
optimal capital and consumption distributions. Although the optimal capital dis-
tribution becomes more and more homogeneous across space, until it is equally
small, the saving behavior of the agents is as heterogeneous as the initial capital
distribution. The poorer the agent is, the more capital is saved. This leads to an
almost equally distributed consumption level towards the end of the time horizon.
However, the absolute consumption is much higher in the locations, where the
households are endowed with a higher initial capital stock.
The productivity does not have a big impact on the heterogeneity of the capital
and consumption distributions, since it is constant at the beginning.
The optimal solutions depend on the choice of the time and space discount rate.
The smaller we choose the time discount rate, the more patient are the agents, and
vice versa. We chose the time discount rate in this example as τ = 0.01, which is
quite small. This means that the agents are patient enough to save some capital
and spend it on consumption after almost the half of time. However, consumption
in t = 1 is of higher interest than towards the end of time. Thus, the time dis-
counting is essential for the tunnel shaped surface of the consumption distribution
in time direction.

When we consider a discontinuous initial capital distribution, we do not expect
the discontinuity to disappear. In contrast to the local model, where the mobility
of capital over space is modeled as a common diffusion effect, we have shown in
Section 5.2 that the regularity of the solution of the capital accumulation equation
is of the same quality as the initial data. However, we have already pointed out
that the nonlocal diffusion effect does have some smoothing, or spreading impact
on the state variable. Thus, we expect that on one hand any discontinuity of the
initial capital distribution is preserved, but on the other hand that the disparity
between richer and poorer households vanishes slightly.

Economic Interpretation of Figure 6.11:
Indeed, in Figure 6.11b it is shown that the gap between the poorer households at
the left-hand side of the economy (x ∈ (1, 2]), and the richer ones at the right-hand
side (x ∈ (2, 3)), decreases in time, but persists. We will point out below, that the
constant initial productivity distribution is crucial for this result.
For the economic application, this example illustrates that disparities in the ini-
tial endowment of production factors, given an equally distributed productivity,
are weakened over time, but do not vanish completely. At least in a short time
horizon, the lead of the richer households is impossible to be overhauled by the
poorer ones, when all other external circumstances are equal.
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Figure 6.11: Market Equilibrium: Constant Initial Productivity and Piecewise Constant but Discontinuous
Initial Capital Distribution

The last example, that we will consider here, illustrates the impact of the initial
productivity distribution and the time depending productivity-production oper-
ator. We consider the same initial distributions as in the example illustrated
in Figure 6.9. It is remarkable, that the characteristic bell-shape of the initial
productivity distribution is carried over to the optimal capital and consumption
distributions.

Economic Interpretation of Figure 6.12:
The agents are again evenly distributed from poor to rich across space and there
exists an urban center in location 2 with rural surroundings. The benefiting area
of the highly productive center is relatively narrow, it reaches from the center in
x = 2 to x = 1.5 to the left, and to x = 2.5 to the right.
The productivity-production operator depends on time and on the capital stock
in a µ-surrounding of a location x compared to the capital stock in the respective
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ε surrounding. The time discount rate in this example is again chosen as τ = 0.01.
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Figure 6.12: Market Equilibrium: Bell-shaped Initial Productivity and Heterogeneous but Continuous Initial
Capital Distribution

In contrast to the example with constant initial productivity, the capital- and time-
depending production induces all agents, not only the poorest, to save money at
the beginning. Moreover, the increase of capital in the regions with higher initial
productivity is the greatest. The most productive agents do not only save the
most capital, but they also consume the most towards the end of time. Even at
time t = T , the consumption level of the agents located in the urban center is
strictly positive. The delayed consumption can be much higher, since the capital
stock can increase more over time due to the increasing productivity. Due to the
time depending increase of productivity, the agents do have an incentive to save
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money, and to shift consumption into the future. The social planner is absolutely
aware of the initial productivity distribution and how it develops over time, and
can determine the optimal saving rates of the agents straight from the beginning.

The numerical examples, which we have considered in this section and also in the
previous one, illustrate that the market equilibrium in the nonlocal spatial Ramsey
model with endogenous productivity growth depends on many parameters and on
the interplay of several components of the model. The complexity of the model
makes a rigorous calibration with respect to the initial data, the interaction radii
ε and µ, and the variance of the kernel function σ inevitable for every application.

6.3.2 First Optimize, Then Discretize

The FOTD approach is based on the calculus of variations or the maximum prin-
ciple. The optimal state and control trajectories are given as the solution of the
necessary first order conditions, a two-point (or even multiple-point) boundary
value problem. This so called indirect method provides solutions with high accu-
racy, as it can exploit the structure of the problem better than direct methods,
and is of less computational effort. An additional advantage of the FOTD ap-
proach for solving an optimal control problem is that these methods ‘provide a
better insight into the core of the optimization process in the theory of economic
growth’ (c. Ratković, 2016, p.43). However they are sometimes very difficult to
solve, especially for complex problems, and require a more elaborate analysis of
the optimal control problem.

In this subsection, we want to give an insight into the structure of the nonlocal
spatial Ramsey model with endogenous productivity growth. In order to derive
the necessary first order conditions of the optimal control problem (6.1)-(6.4), we
have to analyze whether the control-state operator, which maps a right-hand side
c to the solution of the capital accumulation equation (6.2)-(6.4), is differentiable
with respect to the state variable. We discuss here the Fréchet differentiability of
this operator. Afterwards, we heuristically derive the necessary first order condi-
tions. We do neither consider the well-posedness of the adjoint system, nor do we
implement it. Moreover, we do not pay attention to the appropriate space of the
adjoint variable. We follow the Lagrangian approach in Lebherz et al. (2018) to
derive a representation of the derivative of the unconstrained optimization prob-
lem which we derive from (6.1)-(6.4). This is convenient in this context, since we
only want to provide a short outlook to future research.

On the Fréchet Differentiability of the Operators in the Nonlocal
Spatial Ramsey Model

We start this analysis with a short introduction to Fréchet differentiability and
superposition operators, which play an important role in our optimal control prob-
lem. According to Rudin (1973, p.248), we define the Fréchet differential in Banach
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spaces as follows:

Definition 6.3 (Fréchet Derivative):
Let X, Y be two Banach spaces, A be an open subset of X and F : A → Y . Let
a ∈ A. If there exists Λ ∈ B(X, Y ), where B(X, Y ) denotes the Banach space of
all bounded and linear functionals on X into Y , such that

lim
‖x‖X→0

‖F (a+ x)− F (a)− Λx‖Y
‖x‖X

= 0,

then Λ is called a Fréchet derivative of F at a. We will use ∂F (a) for the notation.
If ∂F (a) exists for every a ∈ A, and if

a→ ∂F (a)

is a continuous mapping of A into B(X, Y ), then F is said to be continuously
differentiable.

The following lemma by makes clear that the Fréchet derivative reflects the idea
of a linear approximation of F .

Lemma 6.4 (Werner (2007), p.113):
Let X, Y and A be defined as in Definition 6.3. F : A → Y is Fréchet differen-
tiable in a ∈ A with derivative ∂F (a) if and only if

F (a+ x) = F (a) + ∂F (a)(x) + r(x) with lim
‖x‖X→0

r(x)

‖x‖X
= 0.

Remark that the Fréchet derivative is unique, if it exists. The next corollary states
some fundamental properties and calculation rules of the Fréchet derivative.

Corollary 6.5 (Werner (2007), p.120):
Let X, Y and Z be Banach spaces and A ⊂ X, B ⊂ Y be two open sets.

(a) If F, G : A → Y are Fréchet differentiable in a ∈ A, then F + G and λF
(λ ∈ R) are Fréchet differentiable in a ∈ A with derivatives given by

∂(F +G)(a) = ∂F (a) + ∂G(a), ∂(λF )(a) = λ∂F (a).

(b) Let F : A → Y and G : B → Z with F (A) ⊂ B be Fréchet differentiable in
a ∈ A and F (a) ∈ B. Then, G ◦ F is Fréchet differentiable in a ∈ A with
derivative

∂(G ◦ F )(a) = ∂G(F (a)) ◦ ∂F (a).

The PIDE (6.2) is semilinear. Hence, we have to deal with the nonlinearities
when studying (Fréchet) differentiability. The nonlinearity P can be understood
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as a composition of integral operators and oprators which are generated by real
valued functions. For the latter operators an elaborate theory on their differentia-
bility exists. We will shortly state some fundamental properties of these so called
superposition or Nemyzki operators in Lebesgue spaces as stated in Appell and
P.P.Zabrejko (1990), which will be crucial for the analysis of the differentiability
of P and the control-state operator later on.

Definition 6.6 (Superposition Operator):
Let Ω be an arbitrary set and let f = f(s, u) be a function defined on Ω × R
mapping to R. Applying f on a given a function x : Ω → R defines the so called
superposition or Nemyzki operator

Fx(s) = f(s, x(s)).

Theorem 6.7 (Fundamental Theorem on Superposition Operators in Lebesgue
Spaces):
The superposition operator F generated by f maps Lp(Ω) into Lq(Ω) if and only
if there exists a function α ∈ Lq(Ω) and a constant β ≥ 0, such that

|f(s, u)| ≤ α(s) + β|u|
p
q (6.13)

for all (s, q) ∈ Ω× R.

Following Appell and P.P.Zabrejko (1990, p.67), we will refer to the equation (6.13)
as acting condition.

Theorem 6.8:
Let f be a measurable function and suppose that the superposition operator F
generated by f acts from Lp(Ω) to Lq(Ω). Then, F is continuous if and only if f
is a Carathéodory function.

Appell and P.P.Zabrejko (1990) give a more general version of this theorem, in-
volving functions f that are superpositionally equivalent to some Carathéodory
functions, but since we only work with Carathéodory functions, we will keep the
theorems and definitions more specified.

Theorem 6.9 (Appell and P.P.Zabrejko (1990), p.75):
Let f be a Carathéodory function and suppose that the superposition operator F
generated by facts from Lp(Ω) to Lq(Ω) with p ≥ q. Then, the following conditions
are equivalent:

(i) The operator F satisfies a (local) Lipschitz condition

‖Fx1 − Fx2‖Lq(Ω) ≤ h(r)‖x1 − x2‖Lp(Ω), x1, x2 ∈ Br(Lp(Ω)).
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(ii) The function f satisfies a (local) Lipschitz condition

|f(s, u1)− f(s, u2)| ≤ g(s, v)|u1 − u2|, (|ui| ≤ w, i = 1, 2),

where the function g generates a superposition operator that maps the ball
Br(Lp) into the ball Br(Lq/Lp). Here, Lq/Lp has to be understood as the
multiplicator space

Lq/Lp = Lpq/(p−q).

In the case p = q, the function g is essentially bounded.

A nice property of superposition operators is the fact that differentiability of the
generating function can be carried over under some circumstances:

Theorem 6.10 (Appell and P.P.Zabrejko (1990), p.78):
Let f be a Carathéodory function and 1 ≤ q ≤ p < ∞. Suppose that the superpo-
sition operator F generated by f acts from Lp(Ω) to Lq(Ω) and let a ∈ Lp(Ω). If
the superposition operator G generated by

g(s, u) =

{
1
u
(f(s, x(s) + u)− f(s, x(s)) , if u 6= 0

a(s) , if u = 0,

acts from Lp(Ω) into Lq/Lp and is continuous at the zero-operator, then F is
differentiable at x with

∂F (x)h(s) = a(s)h(s).

Remark 6.11:
A more intuitive version of it is given by Tröltzsch (2005, p.153). The latter
version states that, if the function f is Carathéodory, if the generated superposition
operator F maps from Lp(Ω) to Lq(Ω) with 0 ≤ q < p < ∞, if the function f is
partially differentiable after x for almost every s ∈ Ω, and if moreover the by fu
generated superposition operator acts from Lp(Ω) to Lq/Lp, then F is differentiable
from Lp(Ω) to Lq(Ω) with

∂F (x)h(s) = fx(s, x(s))h(s). (6.14)

This version gives us an explicit formula for the calculation of ∂F .

Especially for p = ∞, the differentiability of superposition operators can be con-
cluded straight forward according to the next lemma:

Lemma 6.12 (Tröltzsch (2005), p. 151):
Let f be a Carathéodory function and partially differentiable with respect to x.
If f and ∂xf are moreover bounded in x = 0 and locally Lipschitz continuous,
then the generated superposition operator F is Frécht differentiable in L∞(Ω) with
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derivative according to equation 6.14).

Now, we have all at hand to start the analysis of differentiability of the control-state
operator of the semilinear PIDE (6.2), presupposed the problem has a solution.
We start with the analysis of the nominal function, defined as the approximated
absolute value function φη : R → R+\{0}, k 7→

√
k2 + η, η > 0, which generates

the superposition operator

Φη(k)(x, t) :=
√
k(x, t) + η, (x, t) ∈ R× [0, T ].

Lemma 6.13:
The superposition operator Φη generated by φη maps from L2((Ω∪ΩI)× (0, T )) to
L2((Ω ∪ ΩI) × (0, T )) and is Fréchet differentiable from L2((Ω ∪ ΩI) × (0, T )) in
L1((Ω ∪ ΩI)× (0, T )) with

(∂Φη(k)λ)(x, t) =
k(x, t)√
k(x, t)2 + η

λ(x, t).

In addition to that, Φη and ∂Φη(k) are also locally Lipschitz continuous.

Proof. First, we prove that Φη satisfies the acting conditions for L2((Ω ∪ ΩI) ×
[0, T ]). This is quite forward since for all η > 0 it is true that

|φη(k)| = |
√
k2 + η| ≤

√
k2 +

√
η = α + |k|,

for α ≡ √η. Here, we exploited the concavity of the root function.

The function φη : k →
√
k2 + η is a Carathéodory function which implies together

with the acting condition and Theorem 6.8 the continuity of Φη.
If the operator Φη has a Fréchet derivative, we can calculate this as the Gâteaux
derivative of the operator Φη as follows:

(∂Φη(k)λ)(y) := lim
s→0

1

s
(φη(k(y)) + sλ(y))− φη(k(y)))

= lim
s→0

1

s

(√
(k(y) + sλ(y))2 + η −

√
k2(y) + η

)
= lim

s→0

1

s

(√
(k(y) + sλ(y))2 + η −

√
k2(y) + η

)(√(k(y) + sλ(y))2 + η +
√
k2(y) + η√

(k(y) + sλ(y))2 + η +
√
k2(y) + η

)

= lim
s→0

2k(y)λ(y) + sλ(y)2√
(k(y) + sλ(y))2 + η +

√
k2(y) + η

=
k(y)√
k2(y) + η

λ(y), y ∈ (Ω ∪ ΩI)× [0, T ].

This operator is continuous, since it is a linear operator in λ and the fraction in k
is always bounded by one. Hence,

(∂Φη(k)λ)(x, t) =
k(x, t)√
k(x, t)2 + η

λ(x, t)
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defines the Gâteaux derivative of Φη. In a next step, we show that ∂Φη(·) is contin-
uous as a map between L2((Ω∪ΩI)× (0, T )) and B(L2((Ω∪ΩI)× (0, T )), L1((Ω∪
ΩI)× (0, T ))) which then implies the Fréchet differentiability. Therefore, we con-
sider a sequence

kn → k0 in L2((Ω ∪ ΩI)× (0, T ))

and estimate the operator norm in B(L2((Ω∪ΩI)× (0, T )), L1((Ω∪ΩI)× (0, T )))
as follows

‖∂Φη(kn)− ∂Φη(k0)‖B(L2((Ω∪ΩI)×(0,T )),L1((Ω∪ΩI)×(0,T )))

= sup
‖λ‖L2((Ω∪ΩI)×(0,T ))≤1

‖∂Φη(kn)λ− ∂Φη(k0)λ‖L1((Ω∪ΩI)×(0,T ))

≤ sup
‖λ‖L2((Ω∪ΩI)×(0,T ))≤1

‖∂Φη(kn)− ∂Φη(k0)‖L2((Ω∪ΩI)×(0,T ))‖λ‖L2((Ω∪ΩI)×(0,T ))

=

∫ T

0

∫
Ω∪ΩI

(
kn(x, t)√
k2
n(x, t) + η

− k0(x, t)√
k2

0(x, t) + η

)2

dxdt

 1
2

!−→ 0.

We show the convergence with a contradiction, exploiting the almost everywhere
convergence of a subsequence of kn to k0. Therefore, we assume that there exists
a sequence kn → k0 in L2((Ω ∪ ΩI)× (0, T )) such that

‖∂Φη(kn)− ∂Φη(k0)‖B(L2((Ω∪ΩI)×(0,T )),L1((Ω∪ΩI)×(0,T ))) 9 0.

Then, we can choose a subsequence (w.l.o.g) kn → k0 in L2((Ω∪ΩI)× (0, T )) and
kn → k0 almost everywhere. For this subsequence, we estimate∫ T

0

∫
Ω∪ΩI

(
kn(x, t)√
k2
n(x, t) + η

− k0(x, t)√
k2

0(x, t) + η

)2

dxdt

≤
∫ T

0

∫
Ω∪ΩI

(
kn(x, t)√
k2
n(x, t) + η

− k0(x, t)√
k2
n(x, t) + η

)2

dxdt

+

∫ T

0

∫
Ω∪ΩI

(
k0(x, t)√
k2
n(x, t) + η

− k0(x, t)√
k2

0(x, t) + η

)2

dxdt.
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For the second term it is true that∫ T

0

∫
Ω∪ΩI

(
k0(x, t)√
k2
n(x, t) + η

− k0(x, t)√
k2

0(x, t) + η

)2

dxdt

=

∫ T

0

∫
Ω∪ΩI

|k0(x, t)|2
∣∣∣∣∣ 1√

k2
n(x, t) + η

− 1√
k2

0(x, t) + η

∣∣∣∣∣
2

dxdt

≤
∫ T

0

∫
Ω∪ΩI

k2
0(x, t)

∣∣∣∣∣ 1
√
η
− 1√

k2
0(x, t) + η

∣∣∣∣∣
2

dxdt

≤
∫ T

0

∫
Ω∪ΩI

k2
0(x, t)

η
dxdt

and we can follow the convergence of∫ T

0

∫
Ω∪ΩI

(
k0(x, t)√
k2
n(x, t) + η

− k0(x, t)√
k2

0(x, t) + η

)2

dxdt→ 0 (n→∞)

with Lebesgue’s dominated convergence theorem and the point-wise convergence
of kn → k0. The first term also yields∫ T

0

∫
Ω∪ΩI

∣∣∣∣∣ kn(x, t)√
k2
n(x, t) + η

− k0(x, t)√
k2
n(x, t) + η

∣∣∣∣∣
2

dxdt

=

∫ T

0

∫
Ω∪ΩI

∣∣∣∣∣ 1√
k2
n(x, t) + η

∣∣∣∣∣
2

|kn(x, t)− k0(x, t)|2dxdt

≤
∫ T

0

∫
Ω∪ΩI

1

η
|kn(x, t)− k0(x, t)|2dxdt,

which converges to 0 for n→∞ as kn → k0 in L2((Ω ∪ ΩI)× (0, T )) for n→∞.
Hence, we have

∫ T

0

∫
Ω∪ΩI

(
kn(x, t)√
k2
n(x, t) + η

− k0(x, t)√
k2

0(x, t) + η

)2

dxdt→ 0 (n→∞),

which is a contradiction to

‖∂Φη(kn)− ∂Φη(k0)‖B(L2((Ω∪ΩI)×(0,T )),L1((Ω∪ΩI)×(0,T ))) 9 0.

Thus, we can conclude that ∂Φη(k) is continuous between L2((Ω ∪ ΩI) × (0, T ))
and B(L2((Ω ∪ ΩI) × (0, T )), L1((Ω ∪ ΩI) × (0, T ))), which yields that ∂Φη(k) is
not only the Gâteaux but also the Fréchet derivative of Φη.
In order to prove the Lipschitz continuity, we exploit the Lipschitz continuity of
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the root function on [η,∞) for every η > 0 and calculate for k1, k2 ∈ [−M,M ],

|φη(k1)− φη(k2)| = |
√
k2

1 + η −
√
k2

2 + η|

≤ L|k2
1 + η − (k2

2 + η)|
= L|k2

1 − k2
2| = L|(k1 − k2)(k1 + k2)|

≤ L1|k1 − k2|

where L denotes the Lipschitz constant of the root function and L1 := 2ML. In
order to prove the Lipschitz continuity of the derivative, we estimate for every
η > 0 and k1, k2 ∈ [−M,M ],

∣∣φ′η(k1)− φ′η(k2)
∣∣

=

∣∣∣∣∣ k1√
k2

1 + η
− k2√

k2
2 + η

∣∣∣∣∣ =

∣∣∣∣∣
√
k2

2 + η k1 −
√
k2

1 + η k2√
k2

1 + η
√
k2

2 + η

∣∣∣∣∣
≤ 1

η

∣∣∣∣√k2
2 + ηk1 −

√
k2

1 + ηk2

∣∣∣∣
=

1

η

∣∣∣∣(√k2
2 + η −

√
k2

1 + η)(k1 − k2)− k1

√
k2

1 + η + k2

√
k2

2 + η

∣∣∣∣
≤ 2

√
M2 + η

η
|k1 − k2|+

∣∣∣∣k1

√
k2

1 + η − k2

√
k2

1 + η + k2

√
k2

1 + η − k2

√
k2

2 + η

∣∣∣∣
≤ 2

√
M2 + η

η
|k1 − k2|+

∣∣∣∣(k1 − k2)
√
k2

1 + η

∣∣∣∣+

∣∣∣∣(√k2
1 + η −

√
k2

2 + η

)
k2

∣∣∣∣
≤ 2

√
M2 + η

η
|k1 − k2|+

√
M2 + η|k1 − k2|+ML1|k1 − k2|

≤ L2|k1 − k2|

for L2 ≥
2
√
M2+η

η
+
√
M2 + η+ML1. Applying Theorem 6.9 concludes the proof.

For initial data c ∈ L2(Ω × (0, T )), the highest regularity of the weak solution of
our nonlocal capital accumulation equation that we can expect on the union of Ω
and ΩI is C([0, T ];Vc(Ω∪ΩI)), where Vc is equivalent to the L2, since the nonlocal
volume constraints are in integral form and do not drive the regularity of the
solution. Analyzing the productivity-production operator P according to Fréchet
differentiability would hence be meaningful in L2((Ω ∪ ΩI) × (0, T )). According
to Appell and P.P.Zabrejko (1990, p.64), the operator P must be affine if it was
Fréchet differentiable from L2 to L2. This is not the case. We could try to show
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the differentiability of P from L2((Ω∪ΩI)× (0, T )) to L1((Ω∪ΩI)× (0, T )), which
would not be appropriate with respect to the differentiability of the control-state
operator. However, we have shown in Theorem 5.8 that in the case of Dirichlet-
type volume constraints, the weak solution of the capital accumulation equation
is L∞ on Ω and L2-regular only on ΩI for c ∈ L∞(Ω × (0, T )). For the problem
with Neumann-type volume constraints we expect the same regularity, since the
integral operator on ΩI does neither drive nor reduce the regularity of the solution.
Thus, we prove the Fréchet differentiability between the solution space V∞ and
L∞(Ω× (0, T )), where we have defined the Banach space

V∞ := {u ∈ C([0, T ];Vc(Ω ∪ ΩI)) : ess sup
(x,t)∈Ω×(0,T )

|u(x, t)| <∞},

endowed with the norm

‖u‖V∞ := ‖u‖C([0,T ];Vc(Ω∪ΩI)) + ‖u‖L∞(Ω×(0,T ))

in Remark 5.9.

Lemma 6.14:
If the (Carathéodory) production function p = p(k) : R → R is differentiable with
respect to k, locally Lipschitz continuous, and bounded, then it is true that the
productivity operator P is Fréchet differentiable from V∞ to L∞(Ω× (0, T )).

Proof. The proof is straight forward. In a first step, we show that the composition

k(·) 7→ exp

(∫
Ω∪ΩI

φη(k(y, ·))Γµ(·, y)dy∫
Ω∪ΩI

φη(k(y, ·))Γε(·, y)dy
·

)

is Fréchet differentiable between V∞ to L∞(Ω×(0, T )). First note that the integral
operator

k 7→
∫

Ω∪ΩI

k(y, ·)Γν(x, y)dy, x ∈ Ω

is linear and continuous from L1((Ω∪ΩI)×(0, T ))→ L∞(Ω×(0, T )) for ν ∈ {µ, ε}
and hence Fréchet differentiable.
We have already shown that Φη(k) = φη(k(·, ·)) defines a Fréchet differentiable
superposition operator that maps V∞ to L2((Ω∪ΩI)×(0, T )) and which is Fréchet
differentiable from V∞ to L1((Ω ∪ ΩI) × (0, T )). Since compositions of Fréchet
differentiable operators are Fréchet differentiable,

k 7→
∫

Ω∪ΩI

φη(k(y, ·))Γν(x, y)dy, x ∈ Ω, ν ∈ {µ, ε},
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is Fréchet differentiable from V∞ to L∞(Ω× (0, T )) with derivative

k̂ 7→
∫

Ω∪ΩI

φ′η(k(y, ·))(k̂(y, ·))Γν(x, y)dy, k ∈ V∞, x ∈ Ω, ν ∈ {µ, ε}.

The superposition operator

k 7→ 1

k + ε

is Fréchet differentiable in L∞(Ω × (0, T )) to L∞(Ω × (0, T )) for every ε > 0
according to Lemma 6.12. The exponential function also generates a superposition
operator between L∞(Ω× (0, T )) and L∞(Ω× (0, T )). Since we have chosen µ and
ε such that the fraction ∫

Ω∪ΩI
φη(k(y, t))Γµ(x, y)dy∫

Ω∪ΩI
φη(k(y, t))Γε(x, y)dy

is always bounded by 1, we can exploit the boundedness and local Lipschitz conti-
nuity of the exponential function on compact sets. This yields the differentiability
of the generated superposition operator according to Lemma 6.12. Thus, we can
conclude the Fréchet differntiability of the composition

k(x, t) 7→ exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
t

)

in k with derivative

k̂(x, t) 7→ exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
t

)
·

[∫
Ω∪ΩI

φ′η(k(y, t))k̂(y, t)Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy

−
∫

Ω∪ΩI
φη(k(y, t))Γµ(x, y)dy

∫
Ω∪ΩI

φ′η(k(y, t))k̂(y, t)Γε(x, y)dy(∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
)2

 .
Since we assumed p to be a differentiable and Lipschitz continuous Carathéodory
function, the generated superposition operator p(k) is also Fréchet differentiable
between L∞(Ω× (0, T )) and L∞(Ω× (0, T )), especially between V∞ and L∞(Ω×
(0, T )). Since every composition and product of Fréchet differentiable operators is
Fréchet differentiable according to Corollary 6.5, we can conclude the proof.

The derivatives derived in the proof allow to construct the Fréchet derivative of
the productivity-production operator straightforwardly.

Remark 6.15:
According to Corollary 6.5(b), we can calculate the Fréchet derivative of P with
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respect to k in direction k̂ ∈ V∞ applying the chain rule. Note that ∂P(k) is indeed
linear in k̂, though nonlocal:

∂P(k)(k̂)[x, t] = A0(x) exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
t

)
p′(k(x, t))k̂(x, t)

+ t A0(x) exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
t

)
p(k(x, t))

·

[∫
Ω∪ΩI

φ′η(k(y, t))k̂(y, t)Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy

−
∫

Ω∪ΩI
φη(k(y, t))Γµ(x, y)dy

∫
Ω∪ΩI

φ′η(k(y, t))k̂(y, t)Γε(x, y)dy(∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
)2

 ,
(x, t) ∈ Ω× (0, T ).

In order to derive the necessary first order conditions, we have to show that the
control-state operator, that maps a control to the solution of the capital accu-
mulation equation in the nonlocal spatial Ramsey model on bounded domains, is
Féchet differentiable. A fundamental theorem, which we use in the proof, is the
theorem on implicit functions in Banach spaces.

Theorem 6.16 (Implicit Function Theorem in Banach Spaces):
Let X, Y , and W be three Banach spaces, k ≥ 1, A ⊂ X × Y an open set, let
(x0, y0) ∈ A and f : A → W be a Ck map such that f(x0, y0) = 0. Assume that
Dyf(x0, y0) : Y → W is a bounded invertible linear transformation. Then there is
an open neighborhood U0 of x0 in X such that for all connected open neighborhoods
U of x0 contained in U0, there is a unique and continuous u : U → Y such that
u(x0) = y0, (x, u(x)) ∈ A and f(x, u(x)) = 0 for all x ∈ U . Moreover u is
necessarily Ck and

Du(x) = −Dyf(x, u(x))−1Dxf(x, u(x)) for all x ∈ U

(cf. Driver, 2003, p.436).

Remark 6.17:
Tröltzsch (2005) outline two different approaches how to derive the Fréchet differ-
entiability of the control-state operator

G : L∞(Ω× (0, T ))→ V∞, c 7→ k,

that maps a control c to the solution of the nonlocal capital accumulation equation
(6.2)-(6.4). The first approach exploits the Lipschitz continuity of the operator G.
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Crucial for this is the boundedness and monotonicity of the nonlinearity. Consid-
ering the formula for ∂P(k) given in Remark 6.15, we cannot state if the derivative
is nonnegative or not.
The second approach uses the implicit function theorem. We will not be able to
apply the Fredholm alternative in the setting of the L∞ spaces in order to confirm
that all assumptions of Theorem 6.16 are satisfied. However, we can apply the
Lemma of the Neumann series (cf. Werner, 2007, Theorem II.1.11, p.56):

Lemma 6.18 (Neumann Series):
Let X be a normed space and T : X → X linear and continuous. If the Neumann
series converges in the operator norm, then Id − T is invertible. Especially when
X is a Banach space, this holds true whenever ‖T‖ < 1.

We recall that we have denoted the Lipschitz constant and the uniform upper
bound of the production function p by Lp and Mp. The parameter η > 0 char-

acterizes the function φη : k →
√
k2 + η. By GΩ, we denote the control-state

operator that maps the control c ∈ L∞(Ω × (0, T )) to the solution k ∈ V∞ of
the homogeneous nonlocal Neumann volume constrained problem with zero ini-
tial condition. The norm ‖ · ‖op defines the operator norm on V∞. With these
definitions, we can finally state the following theorem:

Theorem 6.19:
Let the assumptions of Lemma 6.14 hold and let the initial productivity distribution
A0 satisfy

‖A0‖L∞(Ω) < Θ(T, Lp,Mp, η,Γµ,Γε, GΩ),

where Θ ∈ R denotes a sufficiently small constant depending on the parameters
T, Lp, Mp, η, the kernel functions Γµ and Γε, and the norm of the operator GΩ.
Then, the control-state operator G, that maps a control c to the state k = k(c) as
the solution of the capital accumulation equation in the nonlocal spatial Ramsey
model (6.2) - (6.4), is Fréchet differentiable from V∞ to V∞.

Proof. For given data u ∈ L∞(Ω × (0, T )), v ∈ C(0, T ), and initial condition
w ∈ L∞(Ω), we consider the linear nonlocal problem with homogeneous Neumann
volume constraints

kt −NL(k) + δk = u on Ω× (0, T )

−NL(k) = 0 on ΩI × (0, T )∫
Ω∪ΩI

k(y, t)dy = v on (0, T )

k(x, 0) = w on Ω.

(6.15)

Assuming that the Neumann-constrained spatial Ramsey problem has a solution,
we define the linear and continuous solution operators of (6.15) as
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GΩ : L∞(Ω× (0, T ))→ V∞

corresponding to the linear problem with w = 0 and

G0 : L∞(Ω)→ V∞

corresponding to the linear problem with u = 0.

Now, we rewrite the PIDE (6.2) - (6.4) as

kt −NL(k) + δk = P(k)− c on Ω× (0, T )

−NL(k) = 0 on ΩI × (0, T )

k(x, 0) = k0 on Ω.

Note that we have dropped the constraint on the aggregated capital stock, since
this information is already put in the considered solution space Vc. The solution
of (6.2)-(6.4) is then of the form

k = GΩ(P(k)− c) +G0(k0).

We rewrite this equation and define the operator F : V∞ ×L∞(Ω× (0, T ))→ V∞
as

0 = k −GΩ(P(k)− c)−G0(k0) =: F (k, c).

As already shown in Lemma 6.14, the nonlinear productivity-production operator
P is Fréchet differentiable from V∞ to L∞(Ω × (0, T )). Moreover, the operators
GΩ and G0 are linear and continuous, hence Fréchet differentiable. This yields the
Fréchet differentiability of the operator F as a composition of Fréchet differentiable
operators.
In order to derive the differentiability of G, we have to prove that ∂kF is invertible.
The derivative of F with respect to k is exactly of the form

∂kF (k, c) = Id− T (k, c),

where T (k, c) := GΩ(∂kP(k)) is a linear and continuous operator. According to
the Lemma on Neumann series 6.18, we have to prove that

‖T (k, c)‖op < 1,

which is equivalent to show

‖∂kP(k)‖op < ‖GΩ‖−1
op .

For ∂kP(k) : V∞ → L∞(Ω× (0, T )) given in Remark 6.15, we estimate for k̂ ∈ V∞
with ‖k̂‖V∞ ≤ 1:
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∥∥∥∂kP(k)(k̂)
∥∥∥
L∞(Ω×(0,T ))

= ess sup
(x,t)∈Ω×(0,T )

∣∣∣∣∣A0(x) exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
t

)
p′(k(x, t))k̂(x, t)

+t A0(x) exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
t

)
p(k(x, t))

·

[∫
Ω∪ΩI

φ′η(k(y, t))k̂(y, t)Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy

−
∫

Ω∪ΩI
φη(k(y, t))Γµ(x, y)dy

∫
Ω∪ΩI

φ′η(k(y, t))k̂(y, t)Γε(x, y)dy(∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
)2


∣∣∣∣∣∣∣

We analyze the three terms separately. For the first term it holds

ess sup
(x,t)∈Ω×(0,T )

∣∣∣∣∣A0(x) exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
t

)
p′(k(x, t))k̂(x, t)

∣∣∣∣∣
≤‖A0‖L∞(Ω)e

TLp‖k̂‖L∞(Ω×(0,T )) ≤ ‖A0‖L∞(Ω)e
TLp‖k̂‖V∞

by the definition of the V∞-norm. The estimation of the second term yields

ess sup
(x,t)∈Ω×(0,T )

∣∣∣∣∣t A0(x) exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
t

)
p(k(x, t))

·
∫

Ω∪ΩI
φ′η(k(y, t))k̂(y, t)Γµ(x, y)dy∫

Ω∪ΩI
φη(k(y, t))Γε(x, y)dy

∣∣∣∣∣
≤ CT‖A0‖L∞(Ω)e

TMp
1
√
η
‖k̂‖L∞(0,T ;L2(Ω∪ΩI))

≤ ĈT‖A0‖L∞(Ω)e
TMp

1
√
η
‖k̂‖V∞ ,

where we have used Hölder’s inequality and exploited k2, η > 0 in order to estimate
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ess sup
(x,t)∈Ω×(0,T )

∣∣∣∣∣
∫

Ω∪ΩI
φ′η(k(y, t))k̂(y, t)Γµ(x, y)dy∫

Ω∪ΩI
φη(k(y, t))Γε(x, y)dy

∣∣∣∣∣
≤ ess sup

(x,t)∈Ω×(0,T )

∫
Ω∪ΩI

|φ′η(k(y, t))Γµ(x, y)| |k̂(y, t)|dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy

≤ ess sup
(x,t)∈Ω×(0,T )

(∫
Ω∪ΩI

|φ′η(k(y, t))Γµ(x, y)|2dy
) 1

2∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
‖k̂(·, t)‖L2(Ω∪ΩI)

= ess sup
(x,t)∈Ω×(0,T )

(∫
Ω∪ΩI

|k(y,t)|2
k(y,t)2+η

Γ2
µ(x, y)dy

) 1
2∫

Ω∪ΩI

√
k(y, t)2 + η Γε(x, y)dy︸ ︷︷ ︸

=:#

‖k̂(·, t)‖L2(Ω∪ΩI).

For the term # it holds true that

# ≤

(∫
Ω∪ΩI

Γ2
µ(x, y)dy

) 1
2∫

Ω∪ΩI

√
k(y, t)2 + η Γε(x, y)dy

≤ 1
√
η

(∫
Ω∪ΩI

Γ2
µ(x, y)dy

) 1
2∫

Ω∪ΩI
Γε(x, y)dy

.

We define

0 < C(x) :=

(∫
Ω∪ΩI

Γ2
µ(x, y)dy

) 1
2∫

Ω∪ΩI
Γε(x, y)dy

.

Note that we have already shown in Lemma 5.2(5), that

C := ess sup
x∈Ω

C(x) <∞.

We define Ĉ := C1C, where C1 is the constant in 5.9. An analogous estimate yields
for the third term

ess sup
(x,t)∈Ω×(0,T )

∣∣∣∣∣t A0(x) exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
t

)
p(k(x, t))

·
∫

Ω∪ΩI
φη(k(y, t))Γµ(x, y)dy

∫
Ω∪ΩI

φ′η(k(y, t))k̂(y, t)Γε(x, y)dy(∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
)2

∣∣∣∣∣∣∣
≤ C̃T‖A0‖L∞(Ω)e

TMp
1
√
η
‖k̂‖V∞ ,
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for a constant ∞ > C̃ ≥ Ĉ.
Combining all estimates leads to

sup
‖k̂‖V∞≤1

‖∂kP(k)(k̂)‖L∞(Ω×(0,T ))

≤ sup
‖k̂‖V∞≤1

‖A0‖L∞(Ω) max{Lp,Mp}eT
(
‖k̂‖V∞ +

2C̃T
√
η
‖k̂‖V∞

)

≤‖A0‖L∞(Ω) max{Lp,Mp}eT
(

1 +
2C̃T
√
η

)
.

We define the constant θ such that

‖A0‖L∞(Ω) max{Lp,Mp}eT
(

1 +
2C̃T
√
η

)
< ‖GΩ‖−1

op ,

which yields
‖T (k, c)‖op < 1.

According to theorem 6.16, the operator F is Fréchet differentiable. Thus, we
can conclude that also the control-solution operator G is differentiable as one
representation of a solution of (6.2)-(6.4).

Remark 6.20:
An analogous procedure to prove the Fréchet differentiability of the control-state
operator can be found in the paper of Casas et al. (2013, pp.10–12). In this paper,
the considered PDE constraint is transformed with a weight eλt. This transfor-
mation leads to a substitution of the original state variable y by a new, weighted
variable v = e−λty. The idea behind this transformation is that for sufficiently
large λ, the right-hand side of the seminlinear equation becomes small enough. We
could follow the same approach instead of restricting the initial productivity distri-
bution A0. However, our derivation allows a better insight in the structure of the
optimal control problem.

The Necessary First Order Conditions

We have finally all at hand to heuristically derive the necessary first order condi-
tions of the nonlocal spatial Ramsey model with endogenous productivity growth.
We assume there exists a (locally) optimal pair (k, c), where c denotes the op-
timal control belonging to a convex set of feasible controls Uad and k = k(c) is
the corresponding optimal state. We have already shown that the control-state
operator

G : L∞(Ω× (0, T ))→ V∞, c 7→ G(c) = k(c)
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is continuous and differentiable. The assumptions on the objective J defined in
(6.1) (U Inada and bounded) make sure that J : V∞ × L∞(Ω × (0, T )) → R is
Fréchet differentiable. Thus also the composition

f(c) := J (G(c), c)

is Fréchet differentiable as well. Since the set of feasible controls Uad is assumed to
be convex, this yields the necessary first order conditions in form of the variational
inequality

f ′(c)(c− c) ≥ 0 ∀ c ∈ Uad (6.16)

(cf. Tröltzsch, 2005, p.211).

In order to derive a representation of the derivative f ′(c), we follow the adjoint
approach as outlined by Lebherz et al. (2018, Theorem 2.5, p.5). Therefore, we
define the Lagrange function of the model for an appropriate Lagrangian parameter
λ ∈ Z∗ (where we do not pay attention to the function space Z∗ of the variable λ,
since we only aim to give a broad insight in the structure of the optimal control
problem) as

L(k, c, λ)(x, t) := −
∫ T

0

∫
Ω

U(c(x, t))e−τt−γ‖x‖
2
2 dxdt

+
1

2ρ1

‖k(·, T )− kT‖2
L2(Ω) +

1

2ρ2

‖min{0, k}‖2
L2(0,T ;L2(Ω))

+

∫ T

0

∫
Ω

(
kt −

∫
Ω∪ΩI

(k(y, t)− k(x, t))Γε(x, y)dy + δk + c− P(k)(x, t)

)
λ(x, t) dxdt

−
∫ T

0

∫
ΩI

∫
Ω∪ΩI

(k(y, t)− k(x, t))Γε(x, y)dy λ(x, t) dxdt+

∫
Ω

(k(x, 0)− k0(x))λ(x, 0) dx.

and get

L(k, c, λ)(x, t) = −
∫ T

0

∫
Ω

U(c(x, t))e−τt−γ‖x‖
2
2 dxdt

+
1

2ρ1

∫
Ω

(k(x, T )− kT (x))2 dx+
1

2ρ2

∫ T

0

∫
Ω

min
x,t
{0, k(x, t)}2 dxdt

−
∫ T

0

∫
Ω

k(x, t) (λt(x, t)− δλ(x, t))− cλ(x, t) dxdt

−
∫ T

0

∫
Ω∪ΩI

k(x, t)

∫
Ω∪ΩI

(λ(y, t)− λ(x, t))Γε(x, y)dy dxdt

−
∫ T

0

∫
Ω

P(k)(x, t)λ(x, t) dxdt+

∫
Ω

k(x, T )λ(x, T )dx−
∫

Ω

k0(x)λ(x, 0) dx.
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We have integrated by parts and used a variable shift in the linear nonlocal term,
to shift the operation to the Lagrange variable λ. Theorem 2.5 in Lebherz et al.
(2018) states that for a control c ∈ L∞(Ω× (0, T )), the derivative of the operator
f can be represented by

f ′(c) = Lc(G(c), c, λ),

where the variable λ is defined as the solution of the adjoint equation, which can
be expressed by the identity

Lk(k, c, λ) = 0.

We heuristically differentiate the Lagrangian with respect to c in direction ĉ and
get

Lc(k, c, λ)(ĉ)(x, t) =

∫ T

0

∫
Ω

(U ′(c(x, t))e−τt−γ‖x‖
2
2 + λ(x, t)) ĉ(x, t) dxdt

for (x, t) ∈ Ω× (0, T ).

We calculate the directional derivative Lk in direction k̂ using the formula of the
derivative of P . We get

Lk(k, c, λ)(k̂)(x, t) =

1

ρ1

∫
Ω

(k(x, T )− kT (x))k̂(x, T ) dx+
1

ρ2

∫ T

0

∫
Ω

min{0, k(x, t)}k̂(x, t) dxdt

−
∫ T

0

∫
Ω

k̂(x, t) (λt(x, t)− δλ(x, t)) dxdt+

∫
Ω

k̂(x, T )λ(x, T ) dx

−
∫ T

0

∫
Ω∪ΩI

k̂(x, t)

∫
Ω∪ΩI

(λ(y, t)− λ(x, t))Γε(x, y)dy dxdt

−
∫ T

0

∫
Ω

A0(x) exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
t

)
p′(k(x, t))λ(x, t)k̂(x, t) dxdt

−
∫ T

0

∫
Ω

t A0(x) exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
t

)
p(k(x, t))λ(x, t)

·

[∫
Ω∪ΩI

φ′η(k(y, t))Γµ(x, y)k̂(y, t)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy

−
∫

Ω∪ΩI
φη(k(y, t))Γµ(x, y)dy

∫
Ω∪ΩI

φ′η(k(y, t))Γε(x, y)k̂(y, t)dy

(
∫

Ω∪ΩI
φη(k(y, t))Γε(x, y)dy)2

]
dxdt,

for (x, t) ∈ Ω× (0, T ). Exploiting the equality of
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∫
Ω∪ΩI

k(x) dx =

∫
Ω

k(x) dx+

∫
ΩI

k(x) dx

since Ω ∪ ΩI = ∅ and subtly choosing the variable λ, we obtain the linear but
nonlocal adjoint equation on Ω× (0, T ) as

−λt =

∫
Ω∪ΩI

(λ(y, t)− λ(x, t))Γε(x, y)dy − δλ

+ A0(x) exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(x, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(x, y)dy
t

)
p′(k(x, t))λ(x, t)

+ φ′η(k(x, t))

∫
Ω

R1(k)(z, t)Γµ(x, z)λ(z, t)dz

− φ′η(k(x, t))

∫
Ω

R2(k)(z, t)Γε(x, z)λ(z, t)dz,

(6.17)

with volume constraints

−
∫

Ω∪ΩI

(λ(y, t)− λ(x, t))Γε(x, y)dy = φ′η(k(x, t))

∫
Ω

R1(k)(z, t)Γµ(x, z)λ(z, t)dz

− φ′η(k(x, t))

∫
Ω

R2(k)(z, t)Γε(x, z)λ(z, t)dz,

(6.18)

acting on ΩI × (0, T ), and the terminal condition

λ(x, T ) =
1

ρ1

(kT (x)− k(x, T )) (6.19)

on Ω. We shortened the expressions, introducing some nonlocal operators R1 and
R2 as

R1(k)(z, t) := t A0(z) exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(z, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(z, y)dy
t

)
p(k(z, t))∫

Ω∪ΩI
φη(k(y, t))Γε(z, y)dy

and

R2(k)(z, t) := t A0(z) exp

(∫
Ω∪ΩI

φη(k(y, t))Γµ(z, y)dy∫
Ω∪ΩI

φη(k(y, t))Γε(z, y)dy
t

)

· p(k(z, t))

∫
Ω∪ΩI

φη(k(y, t))Γµ(z, y)dy

(
∫

Ω∪ΩI
φη(k(y, t))Γε(z, y)dy)2
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Thus, we can finally state the (heuristic) necessary first order conditions as follows:

Theorem 6.21 (Necessary First Order Conditions):
Let there exist a (locally) optimal control c ∈ Uad with corresponding optimal state
k of (6.1)-(6.4) and assume that the adjoint system (6.17)-(6.19) has a unique
solution λ. Under the assumptions of Theorem 6.19, every locally optimal control
satisfies the variational inequality∫ T

0

∫
Ω

(
U ′(c(x, t))e−τt−γ‖x‖

2
2 + λ(x, t)

)
(c(x, t)− c(x, t)) dxdt ≥ 0 ∀ c ∈ Uad.

(6.20)

When it comes to the numerical implementation of the FOTD approach, we have
to solve the coupled system of nonlocal partial differential equations, the state
equation (6.2)-(6.4), the adjoint equation (6.17)-(6.19), and the design inequality
(6.20). As already mentioned, we do not implement this coupled system in the
context of this thesis, but recommend a rigorous numerical treatment of this ap-
proach to future research.
Considering the adjoint equation, we suggest to solve the problem (6.17)-(6.19)
sequentially time. The terminal condition (6.19) defines the adjoint variable in
the set of interest Ω. Analogously to the initial condition of the state variable,
we can determine the adjoint on the interaction domain making use of the volume
constraint (6.18). Note that in order to calculate the right hand side of the equa-
tion (6.18), we only have to know the adjoint variable in Ω. Then, we solve the
equation (6.17), where we need to know the values of λ on the nonlocal closure
Ω ∪ ΩI . Going backwards in time, we can determine the adjoint on the whole
space-time cylinder.
The adjoint equation has a very similar structure as the state equation. We do have
a nonlocal diffusion term, Neumann volume constraints, and a terminal conditions
that is only defined in the set of interest. Moreover, the adjoint equation is linear,
hence less complex. Except of the time shift in this equation, the second disparity
between the state system and the adjoint system lies in the volume constraints.
We do not have homogeneous Neumann constraints anymore, but the interaction
with ΩI depends also on the aggregated value of λ in Ω. This makes an analysis
regarding the existence of a solution of (6.17)-(6.19) quite complicated. However,
if there exists a solution, we suggest that λ ∈ V∞ as well.
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6.4 Comparison with the Local Model

6.4.1 Comparison of the Capital Accumulation Equations

The major result in the papers of Brito (2001, 2004, 2012), Boucekkine et al.
(2009), and Boucekkine et al. (2013) is the ‘asymptotic disappearance of spatial
inequality, i.e. convergence of the capital stock over time to the same level in all
regions, despite the initially heterogeneous spatial distribution of capital’ (Aldashev
et al., 2014, p.2). On one hand, this is expectable due to the shape of the neoclas-
sical production function in the Ramsey model, which enforces diminishing returns
on capital, and due to the local diffusion effect that smoothes out heterogeneity
very quickly. On the other hand, this is in line with the economic intuition that
capital flows from capital-abundant to poorer regions. This behavior conjoins the
assumption of a social central planner, who maximizes the welfare of the economy
as a whole and does not consider any individual preferences. However, as Breinlich
et al. (2014) points out, the smoothing effects in the capital distributions between
rich and poorer regions is much slower in reality. It is crucial, also for economic
growth models, to describe reality as good as possible in order to give meaningful
policy advices. As Aldashev et al. (2014, p.11) state, a pure local diffusion effect,
which models the mobility of capital across space, may not be sufficient to capture
the dynamics of capital flows.
The local diffusion operator, which describes the capital mobility over space in
the common spatial Ramsey model, is not the only driving factor, that generates
the homogeneous optimal capital and consumption distribution over space. Fur-
thermore, every technological progress is assumed to be constant in all the spatial
models listed above. Not only Aldashev et al. (2014, p.11), but also Camacho
et al. (2008, p.3) propose that differences in technology induce an agglomerational
effect on the capital accumulation process, which should not be denied and which
may cause heterogeneities in capital and consumption behavior in time.
In our nonlocal spatial Ramsey model with endogenous productivity growth, we
combine both suggestions, the diffusive and agglomerative effect, to enrich the
model of the capital accumulation across time and space. And indeed, as the
first numerical results may hypothesize, the combination of nonlocal diffusion and
space-time-depending technological progress enables us to conserve and create het-
erogeneities and disparities between different locations. Also the optimal consump-
tion distribution reflects this property of our capital accumulation equation.

In this section, we finally compare the numerical solution of the capital accumula-
tion equation and the optimal saving decisions of the households in the local model
by Brito (2001) with the ones in our nonlocal spatial Ramsey model. In a first
approach, we want to illustrate, how the nonlocal diffusion operator changes the
capital accumulation in space and time compared to the pure diffusion model. In
order to keep the models comparable, we extend also the local model by the nonlo-
cal productivity-production operator. Thus, we compare the capital accumulation
equation of our nonlocal model

151



6 Numerical Results and Economic Evaluation

kt −
∫

Ω∪ΩI

(k(y, t)− k(x, t))Γε(x, y)dy + δk − P(k) = 0 on Ω× (0, T ),

−
∫

Ω∪ΩI

(k(y, t)− k(x, t))Γε(x, y)dy = 0 in ΩI ,

k(x, 0) = k0(x) in Ω,

with the capital accumulation equation with local diffusion

kt −∆k + δk − P(k) = 0 on Ω× (0, T ),

−
∫

Ω∪ΩI

(k(y, t)− k(x, t))Γε(x, y)dy = 0 in ΩI ,

k(x, 0) = k0(x) in Ω.

We consider the volume constraints in the local diffusion model as well, since the
nonlocal production-productivity operator requires information on the state vari-
able k also in ΩI .

We start our comparison with the spatially homogeneous case, as illustrated in
Figure 6.13. Here, we choose the constant initial capital and productivity distri-
butions k0 ≡ 1 and A0 ≡ 0.4 in Ω.
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Figure 6.13: Comparison: Capital Accumulation across Space and Time under Constant Initial Capital and
Productivity Distribution

As we expected, there is no difference in the solutions of the two capital equations.
The reason is that there is neither any heterogeneity which could be smoothed out
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in the initial income distribution, nor any uneven agglomeration of capital due to
production. Since capital and productivity are evenly distributed in space in all
points in time, no diffusive effect appears.

The difference between the two models becomes clearer, whenever we face hetero-
geneities in the initial capital or productivity distribution. .
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Figure 6.14: Comparison: Capital Accumulation across Space and Time under Constant Initial Productivity
and Heterogeneous but Continuous Initial Capital Distribution

If we consider the continuous, but not constant initial capital distribution k0 de-
fined in (6.9) and a constant initial productivity A0 ≡ 0.4, we see in Figure 6.14
that the heterogeneity vanishes in short time in the local model, whereas it is well
preserved in our nonlocal setting.
If we even start with a discontinuous initial capital distribution as shown in Figure
6.15, it becomes obvious that the solution of the capital equation in the nonlocal
model can be discontinuous whereas the local diffusion effect smoothes out this
discontinuity very quickly.

As already seen in Section 6.2, not only inhomogeneous initial capital distributions,
but also non-constant productivity distributions lead to space-heterogeneous solu-
tions of the PIDE. We illustrate this conjecture in Figure 6.16.
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Figure 6.15: Comparison: Capital Accumulation across Space and Time under Constant Initial Productivity
and Discontinuous Initial Capital Distribution

Also in the local model, we would expect an increasing heterogeneity, driven by the
agglomerative effects of an increasing technological progress over time. Since we
added the nonlocal productivity-production operator to the local model by Brito
(2001), the figures in this section really illustrate the impact of the different types
of diffusion operators. We consider the bell-shaped initial productivity distribution
in Figure 6.16.
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Figure 6.16: Comparison: Capital Accumulation across Space and Time under Bell-shaped Initial Productivity
and Heterogeneous but Continuous Initial Capital Distribution

In line with a result of Camacho et al. (2008), we observe that the capital distribu-
tion shapes analogously to A0, also in the local model (see Figure 6.16b). However,
due to the fast spreading effects of the local diffusion operator, the capital distri-
bution k is more flat than the initial productivity distribution A0 and the overall
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agglomeration in the local is much weaker than compared to our pure nonlocal
model.

6.4.2 Compensating Effects of Initial Capital and
Productivity Distributions

From an economic point of view, a heterogeneous terminal capital distribution
may not be in line with the assumption of a benevolent planner. The Figures 6.17
and 6.18 below illustrate, that our nonlocal model with nonlinear productivity is
general enough, to describe not only economies with heterogeneous capital and
consumption distributions over time and space, but that we can also model a
capital distribution which becomes homogeneous in space over time, without any
action of the central planner. The figures on the left-hand side illustrate the initial
capital and productivity distributions and the terminal capital distribution.
It becomes obvious by means of the terminal capital distribution and of the time-
space capital distribution on the right-hand side that A0 and k0 have compensating
effects. Thus, an appropriate choice of the data may hence enable us to mimic the
dynamics of the local model and mimic an benevolent planner who homogenizes
wealth across space.
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Figure 6.17: Compensating Effects in the Nonlocal Model: Linear Initial Capital and Nonlinear Initial Produc-
tivity Distribution

In Figure 6.17, the initial capital and productivity distributions are given as

k0(x) :=
1

3
x, and A0(x) :=

3

2.7 + x
, x ∈ Ω.

The function A0 is only a guess, how the productivity should be distributed in
order to compensate the initial capital distribution. To increase the compensating
effects such that the terminal capital distribution is truly constant, we suggest to
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calibrate the data with an additional optimal control problem. Nevertheless, this
initial guess is appropriate for our purpose. We only intend to point out that we
can choose the initial data such that the terminal condition kT is almost constant
in space.

We can observe the same compensating effects of the initial capital and produc-
tivity distribution also for discontinuous initial data,

k0(x) :=

{
4, x ∈ (1, 2]

5, x ∈ (2, 3)
and A0(x) :=

{
0.61, x ∈ (1, 2]

0.4, x ∈ (2, 3)
,

as illustrated in Figure 6.18.
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Figure 6.18: Compensating Effects in the Nonlocal Model: Discontinuous Initial Capital and Reversed Initial
Productivity Distribution

Economic Interpretation of Figures 6.17 and 6.18:
The initial capital distributions describe an economy with richer and poorer agents.
The poorer agents are more productive, which means that they generate welfare
more efficiently with the available production factors than the richer ones. Thus,
after the finite time horizon, they have overcome any disparity in the initial wel-
fare. If time goes on, the agents with higher efficiency will become even richer
and, at some point, overtake the initially richer households such that the capital
distribution is reversed.
For the economic application, this means that the productivity has a bigger im-
pact on the welfare of an economy than the inital capital distribution. This is once
more in line with the result in Camacho et al. (2008) and also expectable, since
the production is a time depending process, which affects the capital stock of the
economy in every point in time and not only at the beginning.
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6.4.3 Comparison of the Ramsey Equilibria

In a last study, we compare the solutions of the optimal control problems, on one
hand with an underlying local PDE constraint and on the other hand with the
nonlocal diffusion equation. We implement the local model according to Brito
(2001, 2004), hence we assume a constant productivity growth rate which is inde-
pendent of time. We consider the nonlinear production function p instead of the
simple AK-model which is studied in Brito (2012), such that the production side
of the economy is modeled as

y(x, t) = A0(x)p(k(x, t)) (x, t) ∈ Ω× (0, T ),

where as usual k denotes the capital stock in a point (x, t). We have to admit
that the model by Brito and our model with time depending productivity growth
are barely comparable. However, we want to point out with the following illus-
trations, how much more flexible our model is compared to the common spatial
Ramsey model. We consider the same initial data for the numerical realization of
Brito’s model, as we have used in the examples illustrated in Figures 6.10, 6.11,
and 6.12.

We start our study with the continuous, but heterogeneous initial capital distri-
bution defined in (6.9) and a constant productivity growth rate A0. We illustrate
the optimal consumption path and the corresponding optimal capital stock distri-
bution of Brito’s model in Figure (6.19). The shape of the optimal consumption
distribution in this local model is highly dependent on the discount rates in time
and space. In the following examples, we assume that the central planner does not
have any spatial priorities, thus we set the space discount rate γ = 0. The time
discount rate is fixed as τ = 0.1, which means that the central planner prefers
consumption today over future consumption, or in other words, an equal gain in
utility at a future date, compared to the gain of utility today, requires a higher
consumption level.
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Figure 6.19: The Dynamics of Brito’s Ramsey Model: Continuous but Heterogenous Initial Capital Distribution
and Constant Initial Productivity

Not only that the capital distribution becomes homogeneous in space over time,
when we consider a constant consumption level of the agent (Figure 6.19b, or
6.20b), it is obvious at first glance that the optimal consumption distribution in
Brito’s model in time and space differs a lot from the optimal solution in our non-
local model. Whereas in Figures 6.10, 6.11, and 6.12, the level of consumption is
the highest in locations where the initial capital distribution or productivity is the
highest, the central planner in the local model tends to homogenize the consump-
tion distribution over space in all examples illustrated in the Figures 6.19, 6.20,
and 6.22.
The explanation for equally high consumption levels across space is the choice of
a zero space discount rate. This means that the central planner weights every lo-
cation equally. As we have expected, the consumption increases a bit towards the
end of time, which we can explain by the time discounting of the central planner.

In contrast to the consumption distribution, the shape of the capital stock’s surface
depends on the initial data, however the impact of the initial capital distribution
seems to be stronger than the impact of the given productivity distribution A(x),
x ∈ Ω, which is in this model only dependent on space and not on time. Like in
our nonlocal model, the optimal capital distribution falls down to zero towards the
terminal date in all considered examples, since the agents do not gain any utility
by holding capital.

Especially in Figure 6.20, it becomes clear that the optimal capital distribution
is influenced by the initial capital distribution, although the discontinuity in k0 is
smoothed out very quickly in the first time steps.

158



6.4 Comparison with the Local Model

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Space

4

4.2

4.4

4.6

4.8

5

C
a
p
it
a
l

Initial Capital Distribution

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Space

-1

-0.5

0

0.5

1

1.5

P
ro

d
u
c
ti
v
it
y

Initial Productivity Distribution

a) Initial data

4

2.5

4.5

2 3

5

C
a
p
it
a
l

1.5 2.5

Capital Development under Constant Consumption - Brito Model

5.5

Time Space

1 2

6

0.5 1.5

0 1

b) Capital stock under constant consumption in Brito’s
model

2

3

2.5

2.5

3

C
o
n
s
u
m

p
ti
o
n

0

3.5

Space

Optimal Consumption - Brito Model

2
0.5

4

Time

11.5
1.5

1 2

c) Optimal consumption path in Brito’s model

0

3

1

2

2.5

C
a
p
it
a
l 3

0

4

Optimal Capital Stock - Brito Model

Space

2 0.5

5

1

Time

1.5 1.5
2

1 2.5

d) Optimal capital stocks in Brito’s model

Figure 6.20: The Dynamics in Brito’s Ramsey Model: Constant Initial Productivity and Piecewise Constant
but Discontinuous Initial Capital Distribution

It is worth to mention that, whenever we consider a nonzero space discount rate
γ = 0.1, the over-time-aggregated consumption is homogeneous as well. By the
over-time-aggregated consumption level, we mean the integral over time of the
consumption function c(x, ·) for a fixed x ∈ Ω, multiplied with the respective time
and space discount rates. We show an example in Figure 6.21, where we solved
the model with the same initial data as shown in Figure 6.19a.
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Figure 6.21: The Impact of Spatial Discounting in the Local Ramsey Model

This Figure 6.21 illustrates once more that the preference ordering of the central
planner has bigger impact on the optimal consumption distribution than the initial
data. Furthermore, the shape of the consumption paths seem to be independent
of the initial capital distribution, or the constant productivity growth rate in all
examples. Only the absolute values depend on the values of k0.
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Figure 6.22 makes clear, that the heterogeneity of the time-constant productivity
growth rate has almost no impact, neither on the capital stock development under
constant consumption, nor on the optimal solution of Brito’s model.
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Figure 6.22: The Dynamics in Brito’s Ramsey Model: Bell-shaped Initial Productivity and Continuous but
Heterogenous Initial Capital Distribution

When we compare the market equilibria, by which we mean the solution of the
optimal control problems, as illustrated in Figures 6.19, 6.20, and 6.22, to the solu-
tions of our nonlocal spatial Ramsey model with endogenous productivity growth
pictured in the Figures 6.10, 6.11 and 6.12, we see at first glance, that our model is
able to capture the heterogeneity in the initial data. In that way, our model con-
siders the Heterogeneity inside a single economy or between two distinct countries
as an important factor for the establishment of policy advises.

161





CHAPTER 7

Summary and Conclusion

In this monograph, we have developed and studied a nonlocal extension of the
spatial Ramsey model, a neoclassical growth model from economics, whose spatial
extension was first studied by Brito (2001). We introduced a nonlocal diffusion
operator to describe the mobility of the production factors across space. Moreover,
we endogenized the productivity growth in order to preserve the self-complete char-
acter of the Ramsey model. We were able, based on the second welfare theorem, to
describe the competitive equilibrium in the resulted economy as the solution of an
optimal control problem under a semilinear partial integro-differential equation.
We analyzed the model with respect to well-posedness in two different settings.
In Chapter 4, we derived an existence and uniqueness result of a weak solution
of the capital accumulation equation in the nonlocal spatial Ramsey model with
endogenous productivity growth over an unbounded spatial domain. We derived
some strong regularity results, based on the fundamental works of DiBenedetto
(1993) and Ladyženskaya et al. (1968), and were able to prove the existence of a
market equilibrium. In this setting, the structure of our model allowed us to over-
come the difficulties, which appear when considering unbounded spatial domains
in PDE optimization, without the need of weighted Sobolev spaces.
In Chapter 5, we considered a pure nonlocal diffusion operator to model the cap-
ital mobility across space. We embedded the nonlocal spatial Ramsey model in
the nonlocal vector calculus by Du et al. (2012a) and showed the existence and
uniqueness of a weak solution of the capital accumulation equation under homo-
geneous Dirichlet-type volume constraints. Furthermore, we derived some a priori
estimates and regularities of the weak solution.
Finally, we have implemented the spatial growth model for the scenario of an in-
teracting economy. In a first analysis, we illustrated the impact of the nonlocal
diffusion operator, considering the numerical solution of the (uncontrolled) capital
accumulation equation. We implemented the optimal control problem with a first
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7 Summary and Conclusion

optimize, then discretize approach. We concluded the numerical study with a com-
parison of the common local spatial Ramsey model and our nonlocal, endogenous
version. Here, we have seen that the dynamics of the common spatial Ramsey
model are almost independent of the initial data. The central planner tends to
homogenize the overall consumption distribution, or to distribute it according to
his preferences, taking neither the initial welfare of an agent nor his productivity
into account. Moreover, the stringent local diffusion homogenized the capital stock
across space, even with no intervention of the central planner. Thus, as already
pointed out by Aldashev et al. (2014), the capital accumulation equation may be
too poor to study the economic growth dynamics of a heterogeneous economy.

With our model, we have overcome this weakness. In our nonlocal version, the
market equilibrium can be heterogeneous in space and time, depending on the ini-
tial state of the economy. We are able to control the dependence on the initial data
and the quality of the heterogeneity in the capital and consumption distributions
by the choice of several parameters, such as the interaction radius in the kernel
function of the nonlocal diffusion operator, or the proportion of the areas, whose
public welfare has impact on the productivity growth. Moreover, considering weak
solutions in the analytical study, we were able to show that the spatial Ramsey
model is well-posed (in weak sense). Thus, we were not only able to enrich the
dynamics of production factor mobility in the Ramsey economy, but we also closed
the gap in the literature, considering the question of existence of a market equi-
librium in the spatial Ramsey model in a very general setting.

When studying a single economy, which is quite heterogeneous with respect to the
income distribution, or infrastructure and productivity, such as the United King-
dom, which we referred to in the introduction, a more complex model may capture
real life observations better than the common spatial Ramsey model. Depending
on this intention, our nonlocal model may be a better choice to give policy advises.
Especially as mentioned in Section 6.4.2, a rigorous calibration of the initial pro-
ductivity distribution may give an insight, how policy makers can compensate an
existing, or even growing disparity in the spatial welfare distribution of an economy.

With this monograph, we have provided a cornerstone for a rigorous study of
heterogeneities inside single closed and interacting economies, and of cross-border
disparities. We recommend a more extensive numerical study of our nonlocal
model. The efficient numerical solution of partial integro-differential equations is a
rather challenging task, with respect to computational storage costs and computing
time. Moreover, we only heuristically derived the necessary first order conditions.
Although the broad numerical examples, which we introduced in this context, give
an insight on how the initial data, or the central planner’s preferences, influence
the optimal capital and consumption distributions in time and space, we suggest
a rigorous sensitivity analysis and a numerical treatment of the adjoint system to
future research.
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Nomenclature

Functions

A0 . . . . . . . . . . . . . . . . . . . . . . . . : Rn → R, initial productivity distribution

c . . . . . . . . . . . . . . . . . . . . . . . . . : Rn × R+ → R, consumption per capita

F . . . . . . . . . . . . . . . . . . . . . . . . : R× R→ R, aggregated neoclassical production func-

tion, see Assumption 2.1

Γν . . . . . . . . . . . . . . . . . . . . . . . . Gaussian probability density function, see equation (3.10)

J . . . . . . . . . . . . . . . . . . . . . . . . real valued objective function, see equation (3.13)

k . . . . . . . . . . . . . . . . . . . . . . . . . : Rn × R+ → R, capital per capita

k0 . . . . . . . . . . . . . . . . . . . . . . . . : Rn → R+, initial capital distribution

kT . . . . . . . . . . . . . . . . . . . . . . . . : Rn → R+, terminal capital distribution, sustainability

condition

L . . . . . . . . . . . . . . . . . . . . . . . . . Lagrange Function

p . . . . . . . . . . . . . . . . . . . . . . . . . : R→ R, neoclassical production function, see (2.1)

φ . . . . . . . . . . . . . . . . . . . . . . . . . : R→ R+, Lipschitz continuous nominal function

φη . . . . . . . . . . . . . . . . . . . . . . . . : R→ R+ continuous and differentiable function depen-

ding on η > 0, i.e. k 7→
√
k2 + η

U . . . . . . . . . . . . . . . . . . . . . . . . : Rn × R+ × R→ R, neoclassical instantaneous utility

function, see Assumption 2.4
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Function Sets/Spaces

C(Ω) . . . . . . . . . . . . . . . . . . . . . space of bounded and continuous functions ϕ : Ω→ R

Cm(Ω) . . . . . . . . . . . . . . . . . . . . space of m times continuously differentiable functions

ϕ : Ω→ R with bounded derivatives up to order m ∈ N

Cm(Ω) . . . . . . . . . . . . . . . . . . . . space of functions with bounded and uniformly continuous

derivatives up to order m on Ω

Cm,λ(Ω) . . . . . . . . . . . . . . . . . . . space of Hölder continuous functions up to order m ∈ N

of exponent λ ∈ (0, 1]

C∞0 (Ω) . . . . . . . . . . . . . . . . . . . . set of test functions, set of infinitely often continuously

differentiable functions with compact support on Ω

D(Ω) . . . . . . . . . . . . . . . . . . . . . topological space of test functions (C∞0 , T ), see Definition

3.3

D′(Ω) . . . . . . . . . . . . . . . . . . . . set of distributions on Ω, see Definition 3.5

Lp(Ω) . . . . . . . . . . . . . . . . . . . . space of equivalence classes of p-Lebesgue integrable

functions on Ω, 1 ≤ p <∞, see Definition 3.1

Lploc(Ω) . . . . . . . . . . . . . . . . . . . space of p−locally integrable functions on Ω,

see Definition 3.1

L∞(Ω) . . . . . . . . . . . . . . . . . . . . space (of equivalence classes of) functions that are

essentially bounded on Ω, see Definition 3.1

Wm,p(Ω) . . . . . . . . . . . . . . . . . . Sobolev space of up to order m ∈ N weak differentiable,

p−Lebesgue integrable functions on Ω whose partial

derivatives up to order m are p-Lebesgue integrable on Ω,

see Definition 3.7

Hm(Ω) . . . . . . . . . . . . . . . . . . . Wm,2(Ω)

Vc(Ω ∪ ΩI) . . . . . . . . . . . . . . . nonlocal volume-constrained energy space, see equation

(5.5)

V∞ . . . . . . . . . . . . . . . . . . . . . . . high regularity solution space, see Remark 5.9

W (0, T ) . . . . . . . . . . . . . . . . . . shortcut for W 1,2(0, T ;V ), see equation (3.4)
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Mathematical Symbols

N . . . . . . . . . . . . . . . . . . . . . . . . . set of natural numbers

N0 . . . . . . . . . . . . . . . . . . . . . . . . N ∪ {0}

R . . . . . . . . . . . . . . . . . . . . . . . . . set of real numbers

Rn . . . . . . . . . . . . . . . . . . . . . . . n−dimensional space of vectors with n real entries

R+ . . . . . . . . . . . . . . . . . . . . . . . set of nonnegative real numbers

Rn
+ . . . . . . . . . . . . . . . . . . . . . . . set of all vectors with n nonnegative real entries

Ω . . . . . . . . . . . . . . . . . . . . . . . . . set of interest, Ω ⊆ Rn open and connected

ΩI . . . . . . . . . . . . . . . . . . . . . . . . interaction domain, ΩI ⊆ Ωc

Norms

‖ · ‖2 Euclidean norm

‖ · ‖Cmb (Ω) . . . . . . . . . . . . . . . . . ‖ϕ‖C(Ω) := sup |α|≤m
x∈Ω
|Dαϕ(x)|, m ∈ N0

‖ · ‖Cm,λ(Ω) . . . . . . . . . . . . . . . . ‖ϕ‖Cm,λ(Ω) := ‖ϕ‖Cm(Ω) + max0≤|α|≤m[Dαϕ]C0,λ(Ω)

[·]C0,λ(Ω) . . . . . . . . . . . . . . . . . . . [Dαϕ]C0,λ(Ω) := supx,y∈Ω
x6=y

|Dαϕ(x)−Dαϕ(y)|
|x−y|λ , λ-th Hölder

seminorm

‖ · ‖Lp(Ω) . . . . . . . . . . . . . . . . . . ‖u‖Lp(Ω) :=
(∫

Ω
|u(x)|pdx

) 1
p , 1 ≤ p <∞

‖ · ‖L∞(Ω) . . . . . . . . . . . . . . . . . ‖u‖L∞(Ω) := ess supx∈Ω |u(x)|

‖ · ‖Wm,p(Ω) . . . . . . . . . . . . . . . ‖u‖Wm,p(Ω) :=
(
Σ|α|≤m

∫
Ω
|Dαu|pdx

) 1
p (1 ≤ p <∞)

‖ · ‖Wm,∞(Ω) . . . . . . . . . . . . . . . ‖u‖Wm,∞(Ω) := Σ|α|≤mess supΩ |Dαu|

‖ · ‖W (0,T ) . . . . . . . . . . . . . . . . . ‖u‖2
W (0,T ) := ‖u‖2

L2(0,T ;H1(Ω)) + ‖ut‖2
L2(0,T ;H−1(Ω))

||| · ||| . . . . . . . . . . . . . . . . . . . . . := ‖u‖Vc(Ω∪ΩI)

=
(

1
2

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u)(x, y)T (D∗(u)(x, y)) dydx
) 1

2

‖ · ‖V∞ . . . . . . . . . . . . . . . . . . . . ‖u‖V∞ := ‖u‖C([0,T ];Vc(Ω∪ΩI)) + ‖u‖L∞(Ω×(0,T ))
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Operators

∆ . . . . . . . . . . . . . . . . . . . . . . . . Laplace operator, ∆f = div(grad(f))

D . . . . . . . . . . . . . . . . . . . . . . . . nonlocal divergence operator, see equation 5.2

−D∗ . . . . . . . . . . . . . . . . . . . . . . nonlocal gradient operator, see equation 5.3

L . . . . . . . . . . . . . . . . . . . . . . . . . local-nonlocal diffusion operator, see equation (4.2)

NL . . . . . . . . . . . . . . . . . . . . . . nonlocal diffusion operator, see equation (5.1)

P . . . . . . . . . . . . . . . . . . . . . . . . productivity operator, see equation (3.11)

P . . . . . . . . . . . . . . . . . . . . . . . . productivity-production operator, see equation (3.12)

Parameters

α . . . . . . . . . . . . . . . . . . . . . . . . . > 0, local diffusion weight

β . . . . . . . . . . . . . . . . . . . . . . . . . ≥ 0, nonlocal diffusion weight

γ . . . . . . . . . . . . . . . . . . . . . . . . . > 0, space discount rate

δ . . . . . . . . . . . . . . . . . . . . . . . . . > 0, capital depreciation rate

η . . . . . . . . . . . . . . . . . . . . . . . . . > 0, parameter of the function φη

ε . . . . . . . . . . . . . . . . . . . . . . . . . > 0, radius of interest

µ . . . . . . . . . . . . . . . . . . . . . . . . . ∈ (0, ε), productivity radius

T . . . . . . . . . . . . . . . . . . . . . . . . . ∈ N, finite time horizon

τ . . . . . . . . . . . . . . . . . . . . . . . . . > 0, time discount rate

ξ . . . . . . . . . . . . . . . . . . . . . . . . . > 0
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