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Chapter 1
Introduction

Our aim is to develop a theory of arbitrage bounds for prices of contingent claims
considering transaction costs, but regardless of other conceivable market frictions.
However, we want to hold our assumptions on the market as general as convenient

for the deduction of meaningful results that make good economic sense.

The main problems we have to deal with are how to

e model transaction costs?
e formulate a Fundamental Theorem of Asset Pricing under transaction costs?

e develop a dual characterization of arbitrage bounds under transaction costs ?

Of course we are not the first to adress these problems. Before we give a short survey
of existing theory on arbitrage pricing and transaction costs, let us first explain the

basic theoretical notions.

1.1 Basic Notions

A financial derivative is a  financial instrument, i.e., a security or standardized
financial contract, whose value and characteristics are derived in part from the
value and characteristics of one or more other financial instruments or assets, the
underlyings. In other words, a financial derivative is characterized by the fact that

the claim resulting from an engagement in a financial derivative is contingent upon



the prices or values of other, more basic financial instruments. Therefore, financial

derivatives are also known as contingent claims.

Options and futures on stocks or currencies are familiar examples for financial deriva-
tives. There is also a great diversity of more exotic products (see e.g. Hull, 1997).
Possible underlyings are marketable commodities, securities, currencies or financial
indices such as stock market indices, interest rates or any other standardized data,
e.g. quoted temperatures. Moreover, marketable derivative instruments like options
or future contracts can also serve as underlyings for more exotic derivatives such as

options on futures or options on options.

The simplest example for a financial derivative according to our definition is a cer-
tificate on a stock market index or a certificate on any other basket of stocks. In
fact, the value of such a security is derived in a straightforward way from the value
of the underlying securities at any given time. Consequently, at any time one is able
to calculate the current fair price of such a certificate as the weighted sum of the

underlyings’ current prices.

Unfortunately, typical financial derivatives such as futures and options lack this
convenient feature. As these derivatives are essentially a bet on which way the value
of the underlying instrument is going in the future, one has to await the issue of the
bet at the so called maturity date. It is only then that the derivative’s value can

indeed be derived from the underlyings’ prices in a definitely manner.

Thus the question arises, at which price a financial derivative should be traded before
maturity. In other words, what is the fair market value? As fair market value we
understand a price, at which an interested but not desperate seller could expect
to find an interested but not desperate buyer or vice versa. So, the answer might
depend upon the buyer’s or seller’s knowledge and assumptions on the underlyings’

characteristics.

If one “knows” the possible values and the joint probability distribution of the under-
lyings, then one is able, at least theoretically, to derive the corresponding probability
distribution for the payoffs from an investment in the derivative. Consequently, one
can consider this investment as a fair game, if the expected payoff is greater or equal

to the payoff from a secure investment until maturity.

But suppose that one party, say the buyer, can engage in a trading strategy in
the underlyings that would yield a payoff pattern identical equal to that from the

derivative investment. By a trading strategy we mean a sequence of financial transac-
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tions. Assume moreover that this strategy may be performed starting with a certain
amount of initial capital and without adding or withdrawing any capital until ma-
turity. Such a strategy is called a (replicating) hedge for the derivative. Then the
buyer will compare the capital necessary to perform this hedge to the price to be
paid for the derivative investment. If the initial capital for the hedge is less than the
price of the corresponding derivative, then he will certainly not buy the derivative.
This yields an upper bound for the price, that the buyer is willing to pay. It is
remarkable that this bound is independent of the buyer’s assumptions about the
underlyings’ probability distribution in as much as it does only depend on which
prices are likely to occur. So this price bound is invariant to equivalent changes of

measure.

A systematic treatment of price bounds induced by hedging strategies requires to
allow for a larger class of trading strategies. If a strategy, starting with some inital
capital, does not include the use of additional capital but provides for withdrawing
capital and at all events yields a greater payoff than the derivative investment, then
it is called a super hedge for the derivative. With these notions on hand we are now

able to explain the concept of pricing by arbitrage.

1.2 Pricing by Arbitrage

Suppose that for a contingent claim there exists at least one super hedge. Provided
that a buyer of the claim acts rationally, the maximum price at which he is willing
to engage in the derivative investment will then equal the lowest amount of initial
capital needed to perform himself a super hedge on this contingent claim. Under
homogeneous trading conditions this maximum price will equal the lowest amount
of intitial capital needed by the seller to perform a super hedge on the contingent
claim. We call homogenous trading conditions the situation where every trader on
the market acts under identical conditions, particularly with regard to trading and
transaction costs. So in this situation, the maximum price that the buyer is willing
to pay is equal to the lowest amount of capital that the seller of a claim needs in
order to super-hedge his liability. Therefore this price is called the seller’s price.
In other words, if the seller achieved a higher price than the seller’s price, then
he would have the possibility to make a riskless profit, This is called an arbitrage
opportunity. According to the above argumentation such an arbitrage opportunity

should not exist on a market with homogeneous trading conditions. Therefore, the



seller’s price is an upper arbitrage bound for the fair price of a contingent claim on
such a market. Because it is defined via super-hedging, the seller’s price of a claim

is also called its super-hedging price.

Analogously, a lower arbitrage bound, the so called buyer’s price, can be found by
the following argumentation. Suppose that at present date somebody has overdrawn
his bank account by a certain amount of debt. Assume moreover that he has the
opportunity to sell a certain contingent claim and reduce his debt with the proceeds.
In other words, he is able to convert a part of this debt into the liability resulting
from selling the claim. If he did so, then his liability as the seller of the claim would
correspond to holding the negative claim. Suppose that alternatively the seller could
also perform a super hedge on the negative of the claim. Let us assume that the
initial “capital” for the super hedge (which would be negative in fact) was lower
than the negative of the price for the claim. Then by performing the super hedge
a greater part of debt could be turned into a liability that is not greater than that
from selling the claim. Consequently he would decide not to sell the claim, but to

perform the super hedge. This yields the following conclusion.

If the negative of a certain claim is super-hedgeable, then the minimum price that
a seller could accept is given by the negative of the lowest amount of initial “capi-
tal” that is needed to super-hedge the negative of the claim. This means, that the
minimum price equals the highest amount of debt satisfying the follwoing condition.
Starting with the debt, one is able to perform a trading strategy resulting in a lia-
bility pattern, that is not worser than that resulting from selling the claim. Thus,
under homogeneous trading conditions this minimum price corresponds to the high-
est amount of money that a buyer could lend against the claim as a secure garanty.
This is true because by bearing a debt equal to the minimum price, holding the
claim and performing the superhedge on the negative of the claim the buyer would
end up without any debt at maturity. But if the price was lower than this price, then

the buyer had an arbitrage opportunity. This reveals the lower arbitrage bound.

Pricing by arbitrage is only meaningful for financial derivatives whose underlyings
are prices of marketable securities. Otherwise there is no way of super-hedging.
Thus, before calculating arbitrage bounds, one has to think about a model of the
underlying financial market. The first decision is, weather trading takes place in
discrete or continuous time, i.e., at finitely many time points or continuously within
a time interval. Moreover, one has to model the movement of prices and the trans-

actions in the underlyings. The standard market models such as the Cox-Ross-



Rubinstein model in discrete time or the Black-Scholes model in continuous time
are socalled frictionless complete market models. Henceforth we often simply speak

“market models”. A market is called frictionless, if there

of “markets” instead of a
are no such things as restrictions on trading, like prohibition of short selling, or
different interest rates on borrowing and lending or transactions costs. A market is
called complete, if every contingent claim is hedgeable (by a replicating hedge). For
frictionless markets there exists a well developed theory of pricing by arbitrage. We
refer to the textbooks of Karatzas (1997), Musiela, Rutkowksi(1997), Elliott, Kopp

(1999), Karatzas, Shreve (1998) and Shiryaev (1999).

Frictionless complete markets are quite far away from reality. Due to the the fol-
lowing appealing property, however, they are very popular. In such markets, the
upper and lower arbitrage bounds for the price of each contingent claim coincide, i.e.,
the seller’s price equals the buyer’s price. Consequently, in a frictionless complete
financial market contingent claims are priceable by calculating the lowest initial
amount of capital necessary in order to hedge the claim. These hedging strate-
gies are constructed in such a way that the value of the portfolio resulting from
the hedging strategy exactly equals the payoff of the contingent claim at maturity.
Thus, the hedging strategy enables the writer of a contingent claim to eliminate the
financial risk he would have to bear otherwise. In some not very complex discrete
time models one can take advantage of this fact for a simultaneous calculation of
price and strategy by a method called backward induction. This is possible in the
Cox-Ross-Rubinstein model, where the price movement of a single underlying is
modeled as a binomial tree. However the situation becomes more complex, if one
has to model several underlyings or if one assumes continuous trading. Although
in a discrete time model with several underlyings it is still possible to make use of
backward induction, there is a much more efficient way of caculating prices. For this
purpose, the initial optimization problem of finding the lowest intial capital for a
hedge is transfromed into the dual problem which yields a pricing formula in terms
of a dual characterization. The benefit of such a dual characterization of prices is
that it theoretically allows to calculate prices using martingale methods because the
dual variables are equivalent martingale measures. A probability measure is called
a martingale measures for a (price) process, if the (price) process is a martingale.
Given a financial market model for some underlyings, we call a probability mea-
sure simply equivalent martingale measure, if under this probability measure the
price process of each underlying is a martingale and this measure is equivalent to

the model’s original probability measure. The famous Black-Scholes formula, for

7



example, is such a dual characterization, although it has been derived in another
way (c.f. Black, Scholes (1972,1973)). The set of admissible dual variables in the

Black-Scholes formula consists of the unique equivalent martingale measure.

Dual characterizations may also be used to derive formulas for the sellers and the
buyers prices in incomplete frictionless markets. A very elegant approach in this con-
text is the concept of the optional decomposition of supermartingales (see Kramkov,
1996, Follmer, Kabanov, 1998). It is also applicable in the case of certain restric-
tions on trading (see Follmer, Kramkov, 1997). However, in every case, these pricing
formulas rely on the existence of an equivalent martingale measure for the under-
lying asset price processes (or a probability measure with similar properties). But
this existence assumption lacks an immediate economic justification. Hence the
need arises to characterize the existence of equivalent martingale measures in terms
of necessary and sufficient conditions that admit a direct economic interpretation.
This is supplied by a certain type of theorems, that are called Fundamental The-
orems of Asset Pricing. There is a multitude of Fundamental Theorems of Asset
Pricing in different versions. Each of them states, that under certain premises the
existence of an equivalent martingale measure is equivalent to the absence of some
kind of arbitrage opportunities. These theorems mainly differ in assumptions on
asset price processes, the time horizon of traders, admissible trading strategies and

the definition of arbitrage opportunities.

The first theorems of this kind go back to Harisson, Kreps (1979), Kreps (1981) and
Harrison, Pliska (1981) who introduced the notion of “no free lunch” with “simple
trading strategies” in continuous time with finite horizon. Simple trading strategies
are piecewise constant with a predetermined number of jumps. Their theory in con-
tinuous time heavily relies on postulations on consumer preferences. Without using
such postulations, Harrison, Pliska (1981) already show the equivalence of the even
weaker “no arbitrage” condition with the existence of a martingale measure for a
finite state market in finite discrete time. Dalang et al. (1990), Kabanov, Kramkov
(1994), Jacod, J., Shiryaev, A.N. (1998) and Shiryaev(1999) generalized this state-
ment to arbitrary price processes in finite discrete time. Frittelli, Lakner (1995) give
a Fundamental Theorem in a general continuous time financial market model. They
characterize the existence of an equivalent martingale measure in terms of a “no free
lunch” condition involving the topological closure of the “set of achievable gains”
instead of taking limits of convergent sequences in this set. Delbaen (1992) and

Schachermayer (1993) introduced the notion of “no free lunch with bounded risk”
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and stated their theorems in terms of simple trading strategies and limits of se-
quences. Their results refer to discrete, but infinite time sets (Schachermayer, 1993)
and to continuous time when price processes are continuous and bounded (Delbaen,
1992). In order to achieve similar results for general semimartingale market models
they introduced the notion of “no free lunch with vanishing risk” and applied it in
a series of papers that culminated in Delbaen, Schachermayer (1998). In this latest
paper they had to extend the class of equivalent martingale measures to the class of
equivalent measures under which the price process is a so called “sigma-martingale”
, a certain kind of martingale transform. With this definition they could show that
if the price process is a semimartingale under a measure P, then the condition of
“no free lunch with vanishing risk” is equivalent to the existence of an equivalent
probability measure @) in that extended class. For the class of equivalent (local)
martingale measures Delbaen, Schachermayer (1994) could prove this equivalence
only in the case when the price process is a (locally) bounded semi-martingale. In
summary, the Fundamental Theorems of Shiryaev(1999), Lakner (1995) and Del-
baen, Schachermayer (1994, 1998) can be regarded as the current state of the art

for frictionless markets.

1.3 Transaction Costs

The problem of transaction costs in the pricing of contingent claims is clearly mo-
tivated by practical considerations. Because of the lack of convenient pricing and
hedging methods, however, transaction costs have been and still are neglected in the
most part of pricing and hedging practice. The price of a European Call is often
calculated in accordance with the concept of Black and Scholes, at times with some
refinements concerning volatility, dividends, interest rates or alternative probability
distributions of stock returns (c.f. Hull 1997), but regardless of transaction costs.
Then one tries to approximate the theoretical replicating hedge by the following
procedure. At the beginning one determines the number of underlyings in the hedge
portfolio by calculating the Black-Scholes Delta-ratio, i.e. the first derivative of
the Balck-Scholes price with respect to the underlying’s price. Thereafter, as time
passes and prices change, one recalculates the Black-Scholes Delta-ratio, but the
portfolio is only adjusted if this ratio differs too much from the current proportion
in the hedge portfolio. This discrete adjustment of hedges has already been sug-
gested and analysed by Black, Scholes (1972) themselves in that paper in which
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they proposed their prominent pricing formula. Of course they also realized the
important consequence, that if stock prices evolve according to their assumptions,
then this hedging practice does not result in a replicating hedge and no super hedge
either. Hence the final hedge return from a short position in an option and the
hedge portfolio is not zero but becomes risky. However, Black and Scholes back up
their method with the justified expectation, that in mean the hedging error turns to
zero, at least if transaction costs are ignored. Some additional empirical research on
the distribution of the returns of discretely adjusted option hedges has been done
by Boyle, Emanuel (1980), who do not take account of transaction costs either.
However, one of the practical reasons behind this strategy are obviously transaction
costs such as commission fees and bid-ask spreads. Since at least for large transac-
tions, things like minimum commission fees and fixed costs are neglegigible, the cost
associated with a large transaction is approximately proportional to the traded
volume, i.e., the quantity of money that is involved in the transaction. Thus it is
quite self-suggesting to consider models with proportional transaction costs. The

implementations of such models will be discussed in detail in the next chapter.

The first analysis of a discrete hedging strategy in a Black-Scholes world in account of
transaction costs is by Leland (1985) and has been updated by Kabanov, Safarian
(1997). They consider a stock market where the cost of a single transaction is
a fixed fraction of its trading volume, i.e. number of shares times price for one
share. Their objective is to calculate the limit hedging error, when the length of
time intervals goes to zero. However such hedges always have to remain risky, since
in the Black-Scholes model with proportional transaction costs it is impossible to
replicate a European Call option. The reason is that necessary trading strategies,
even if they were processes of bounded variation, are not of uniformly (in almost
every w) bounded variation and hence there is no almost sure bound for the resulting
transaction costs. However, the writer of a European Call option could avoid any
loss from selling the option, if he simply would sell the option for a price equal to the
amount of money required for buying the underlying, then buy this underlying and
hold it until maturity of the option. This trivial strategy is an example for a super
hedge that is applicable to any market. It was first conjectured by Clark and Davis
(1995) that this trivial strategy is the cheapest way of super-hedging the European
Call option in the Black Scholes model with volume proportional transaction costs.
In fact this conjecture has been confirmed in three different proofs (Soner et al.,
1995, Leventhal, Skorohod, 1997, Cvitani¢ et al. 1999).
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Leventhal, Skorohod (1997) actually work with a model where the price process
of the underlying is a continuous semimartingale with a cad (continue a droite)
filtration. Consequently the super-hedging price of the European Call option is
higher than that of the underlying. Touzi (1999) has extended this result to a more
general class of claims in a multidimensional Black-Scholes model. He considers
claims whith payoffs that are a lower semicontinuous, bounded from below function
of the price of one or several assets at a certain single date. For such claims the

cheapest buy and hold super hedge is shown to be the optimal super hedge.

Although it is clear that these negative results do not apply for path-dependent
options in general, it is obvious that, at least within the Black-Scholes model, super-
hedging prices cannot be used for market making. However they are worth to be
studied because they are fundamental for other more realistic hedging concepts such
as quantile-hedging (see Follmer and Leukert, 1999) or wutility mazimization (see
Karatzas 1997, Kabanov, 1999 ). An application to quantile-hedging will be given in
Chapter 9, where we also extend some results of Follmer, Leukert (1999) to models
with proportional transaction costs. Among others it will be shown, that quantile-
hedging is about hedging path-dependent knock-out options. Consequently, the
result of Touzi (1999) does not apply and one can expect to find better hedging
schemes than buy and hold strategies. In Chapter 10 finally, we describe a class of
security price processes in continuous time that we call log-Lipschitz processes. We
show that log-Lipschitz price processes yield non-trivial super hedges in the presence
of transaction costs. In particular, we prove the existence of non-trivial super hedges
for the European Call option in continuous time markets with log-Lipschitz price

processes.

Calculating the seller’s price of a knock-out option in general is apparently not as
simple as finding a buy and hold strategy. Therefore, despite of the above cited neg-
ative results, it seems useful to look for dual characterizations of arbitrage bounds
in order to calculate them by martingale techniques. In the same view Cvitanic,
Karatzas (1996) and Cvitani¢ (1997) derived a dual characterization of the seller’s
price of a claim in the Black Scholes model with proportional transaction costs, even
though they already knew the above negative results on super-hedging. Kabanov
(1999) then was the first who formulated a dual characterization of super-hedging
initial endowments in a semimartingale model for a currency market with propor-
tional transaction costs in continuous time. Super-hedging initial endowments can

be understood as a generalization of super-hedging prices in that the initial amount
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of capital needed for a trading strategy can be held as a portfolio of assets traded in
the market and needs not to be held as money only. His essential assumptions are
the existence of dual variables, i.e. some kind of martingale measure, and the conti-
nuity of price processes together with some conditions on their variation over time.
These assumptions are certainly satisfied for the multidimensional Black-Scholes
model. Nevertheless it would be nice to have a dual characterization that is valid in
a general semimartingal modell with much weaker conditions on the price processes.

We are going to derive such a result in Chapter 8.

Moreover, one would like to have a Fundamental Theorem of Asset Pricing for gen-
eral continuous time models in order to correlate the existence of the dual variables

to the absence of arbitrage opportunities.

Up to now, such Fundamental Theorems have only been proven by Jouini (1996)
and Jouini, Kallal (1995a). They deal with a security market model similar to that
in Harrison, Kreps (1979), but with proportional transaction costs caused by bid-
ask spreads. However their results are not completely satisfactory for the following
reasons. First of all, their results are only valid for stock markets, where no direct
exchange between assets is possible, but only buying and selling. Moreover they
work in a general adapted price process framework and therefore can only allow for
simple trading strategies. In addition they need unnatural integrability conditions
on the prices process and on trading strategies. By the way, we do not know of any
Fundamental theorem for a continuous time curreny market model that includes

proportional transaction costs.

We intend to close this gap in chapter 7. There we develop two Fundamental The-
orems, involving several notions of “free lunches”, for a continuous time market
where trading is restricted by differential cone constraints. These constraints in-
clude the case of self-financing with or without proportional transaction costs on
stock or currency markets with a bid-ask spread or a cost structure like in Kabanov
(1999). The notions of free lunch we introduce are defined in terms of convergent
sequences in various topologies. Inspired from the papers of Jouini, Kallal (1995a)
and Pham, Touzi (1999), who consider convergence in L*(P) resp. L'(P) for a
given probability measure P, we introduce L? free lunches for 1 < p < oo, but for
a class Q of P-equivalent measures. The advantage of this approach in comparison
to that of Jouini, Kallal and Pham, Touzi is, that our L? free lunches do not depend
on the arbitrary choice of a probability measure P. Moreover unlike Jouini, Kallal

(1995a) or Jouini (1996) we do not need any integrability or topological conditions
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on the price process. This could also be achieved by further development of ideas we
found in Clark (1993), that we also applied with another notion of arbitrage, that
we call L*-bounded free lunches. These are free lunches in terms of convergence
in probability, but with an additional feature, that relates them to convergence in
the o(L>, L')- topology. In fact L*®-bounded free lunches are comparable to “free
lunches with bounded risk” or “free lunches with vanishing risk” (see above). Their
consideration was inspired by a Theorem in Delbaen, Schachermayer (1994, The-
orem 2) that we have reformulated in a more general version (see Theorem A.9).
Since our results are also valid for the classic frictionless markets, it is worth noting,
that our proofs remain rather short and comprehensible in comparison to those of
Delbaen, Schachermayer (1994, 1998) although our assumptions on price processes
are weaker. This could only be achieved by using a different notion of arbitrage.
While Delbaen, Schachermayer (1994, 1998) work with “no free lunch with vanish-
ing risk” we have to rely on the “no L*°-bounded free lunch” condition and a finite
time horizon. Moreover our L*°-bounded free lunches are defined with respect to the
units of the different assets held in the portfolio whereas Delbaen, Schachermayer
(1994, 1998) just consider the value of a portfolio. Their “no arbitrage condition”
as well as their “no free lunch with vanishing risk” condition only refers to terminal
portfolios with values in L. This has a severe consequence whenever price processes
are not in L>. In fact in this very common case, the “no free lunch with vanishing
risk” condition is not sufficient for ruling out arbitrage opportunities or free lunches
that rely on simple buy and hold strategies. In constrast such free lunches are not
possible if there is “no L*>*-bounded free lunch”. All this led us to the supposition,
that our L*°-bounded free lunches are very well suited for the derivation of funda-
mental theorems, if one intends to hold assumptions on the price process as weak as
possible. In fact, only for stochastic integration issues we have to impose that the

price process is a semimartingale.

Another main advantage of our approach is that it covers stock markets as well
as currency markets with or without arbitrary proportional transaction costs in
continuous time. Besides the shortness and relative simplicity of proofs our main
progress for frictionless markets is that we can characterize the existence of an
equivalent martingale measure by “no free lunch”-conditions in terms of convergent
sequences without any particular restrictions on the price process. This was achieved
by some elementary techniques and a favorable application of the Halmos-Savage
Theorem, similar to that in the proof of Theorem 7 in Clark (1993). Moreover the

results remain valid, if we consider general processes in combination with simple
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trading strategies. In general, it will turn out that the choice of a suitable class of
admissible trading strategies is related to the model for the price process. But this
class will always include those simple trading strategies that satisfy a certain tame

condition (see Lemma 6.10).

Surprisingly there is still a gap in theory for market models in discrete time, too.
The theory is quite complete for security market models with a finite probability
space (c.f. Naik, 1995 ). The Fundamental theorems of Jouini (1996) and Jouini,
Kallal (1995a) also comprise the case of a discrete time security market with un-
countable probability space. However they impose several technical assumptions
such as integrability assumptions and other (see above) that we wish to relax. For a
finite currency market Kabanov, Stricker (1999) show a Fundamental Theorem with
proportional transaction costs. By the way, they do not model transaction costs by
means of bid ask spreads but they use transaction cost factors that are applied to

unique spot prices.

Pham, Touzi (1999) treat a stock market with uncountable probability space. They
consider proportional transaction costs in addition to cone constraints on trading
strategies, as for example the exclusion of short-sales. Note that their cone con-
straints are not differential cone constraints, as we are going to set up. They intend
to complete the theory of Jouini (1996) and Jouini, Kallal (1995a) in that they want
to prove a Fundamental Theorem using the “no arbitrage” condition instead of the
stronger “no free lunch” condition. However, their technique of proof fails in multi-
period settings. So their result is only valid for a one period market. In Chapter 4
we are going to show a multiperiod version of this result in a more general security
market with a very different technique of proof, but very similar non-degeneracy
assumption on the price process. Before this, we develop Fundamental Theorems
for a general security market with proportional transaction costs, including stocks
and currency markets. First we state a condition sufficient in order to generalize
the theorem of Dalang et. al.(1990) and Kabanov, Kramkov (1994) to markets with
transaction costs. It will turn out that this condition is satisfied, only if transaction
costs are small in comparison to maximal price changes. Besides, this will reveal
that in a frictionless market the “no arbitrage” condition is equivalent to a “no
certain loss” condition. And this equivalence is preserved under the condition of
“small transaction costs”. For the general case we prove Fundamental Theorems
using several “no free lunch” conditions, similar to that in the continuous time case

(see above).
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In chapter 5 we derive a dual characterization of superhedging initial endowments
in a general discrete time market model with infinite state space. Additionally we
state a stronger dual characterization under the already mentioned non-degeneracy
assumption. We did so in order to complement the numerous studies of superhedging
in binomial and multinomial or other finite security markets. Especially for the Cox-
Ross-Rubinstein model with proportional transaction costs super-hedging prices are
not as unrealistic as in the Black Scholes model. In fact, most papers about super-
hedging under proportional transaction costs deal with this model (see Bensaid et
al., 1992, Boyle, Vorst, 1992, Ediringshe, 1993, Mercurio, Vorst, 1997). It is only
if the set of trading dates tends to infinity, that the initial capital for the cheapest
super hedge converges to the capital needed for the cheapest static super hedge.
This has been shown by Koehl, Pham, Touzi (1999) and Touzi (1999).

As we have outlined, most attention in research has been devoted to markets with
proportional transaction costs. One of the reasons therefore is simply that the
theoretical results, that can be expected, will depend on how transaction costs are
modelled. In practice, apart from time and effort, there are two kinds of costs that
arise with trading securities. First there is a spread between ask and bid price,
which results from the fact that everyone would like to buy at low price and sell
at a high price. This spread in fact causes transaction costs that are proportional
to the traded volume. Second, there are such things as commission fees etc., which
typically consist of a fixed part, i.e. a minimum fee, and a variable part, that is
somehow proportional to the traded volume. Hence it seems appropriate to model
transaction costs by a function that is piecewise affine linear and concave in the

traded volume, with a jump at zero.

But it is easy to see that with such a model, the arbitrage bounds for the price
per unit of a certain derivative could depend on how many units are going to be
traded. For example if one introduces such a transaction cost structure into the
Black-Scholes model, then the seller’s price of x units of a European Call option
on a certain security would equal the price of x units of the stock plus transaction
costs. Consequently the price of a unit of the Call, net of transaction costs, would
depend on how many Calls one buys at one time. One might call it an irony, that
the assumption of proportional transaction cost seems to deliver more suggestive
results than a modeling that is nearer to reality. This is the main reason, why we
consider solely proportional transaction costs, since moreover for sufficiently large

transactions the associated costs are indeed almost proportional.
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Chapter 2

Modelling Proportional

Transaction Costs

Existing literature proposes several distinct models for different market situations,
such as stock vs. currency markets or constant proportional transaction cost factors
vs. bid-ask spreads. Similar are we going to model proportional transaction costs
in different market situations such as stock or currency markets with or without
transaction costs, that may be deterministic or random. However we will find that
in each of these situations the set of feasible transactions is always characterized by
certain cone constraints. Although each different situation will result in a different
cone, these cones have a lot of similarities. Thus, by only using the common features
of the different cones, that correspond to different market situations, we are able
to study these different market situations at the same time. This is indeed a great

advantage of our conception.

To provide a clear arrangement of statements and calculations we apply the following

symbols and notations:
TxY = (xiyi)ie{O,...,d}

for componentwise multiplication of vectors z,y € R*™!,

d
Ty =) Ty,
i=0

for the usual scalar product z,y € R4,
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p"i=max(p,0) , p =max(—p,0)

for the positive respectively negative part of a real number p € IR .

2.1 General Framework

We consider a market where d + 1 financial assets i = 0, 1,...,d are traded at time
points t € 7 C [0,T], T € IR,. Within this chapter, we need not to specify wether
7T is a discrete or continuous time set, because we just study transactions at a single
arbitrary time point ¢t € 7. However in subsequent chapters, when analyzing trading
strategies, we will have to distinguish between discrete and continuous time trading.

Part IT will deal with discrete time trading while Part III covers continuous time.

Asset 0 is always taken as a numeraire in the market. The other assets play the
role of underlyings for contingent claims, and will be referred to as securities. These
securities may be stocks, currencies or any other financial assets for which at time ¢ €
T there is a quoted market price. As usual, uncertainty and information structure
in this market are modelled as a probability space (2, F, P) with a filtration IF :=
(F(t))ter. For every asset i = 1,...,d there will be something like a spot price
process X;(w,t) that quotes the price of asset 7 in units of the numeraire asset 0 at
(w,t). For convenience, we also define ¥(w,t) : Xo(w,t) = 1. The interpretation of
X;(w, t) will result from its concrete definition and the characteristics of the specific
market. Exemplary models are discussed in sections 2.2 to 2.6. Since it is in the
nature of a spot price to be revealed not later than at time ¢, we postulate that
for each t € T the map X; := X;(.,t) is a F(t)-measurable random variable on
(Q,F, P). The definition

(2.1) X(w,t) = (Xi(w,1))icfo,.at »(w,t) €QXT

then yields the R4 '-valued IF-adapted price process X = (X (t));c7. Securities are

always quoted at a positive price. Hence it is reasonable to assume
(2.2) V(w,t) € Qx TVi € {0,...,d} : X;(w,t) >0 .

We prefer the pointwise formulation (2.2) to an “almost sure” statement for the
only reason, that we want to beware of fruitless elaborations on trivial items, such
as avoidance of divisions by zero on null sets. In some market models, e.g., if asset 0

represents a bank account, a bond or any other kind of asset that is bearing interest,
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it may be necessary to allow for something like a price change in asset 0. In such a
case, we propose to introduce the strictly positive IF-adapted process Sy = (So(t))ser
in order to model this price change. So Sy(w,t) > 0 stands for the price of asset 0

at (w,t) in units of “money”. The price process S = (5;)i—o,..q is then defined by

where S;(t) denotes the price of the i—th asset (i = 0,...d) in units of “money”

at time ¢. The transformation of prices from units of money to units of asset 0 is
a kind of discounting. Hence X = —S is also called the discounted price process,

0
because it quotes the values of assets 7 = 0, ..., d in units of asset 0. When using X

instead of S we speak of the discounted market.

Henceforth we always consider the discounted market in order to simplify the rep-
resentation of results and proofs. By discounting price processes, we transform the
original market into a market with a riskless asset. Therefore, one must not forget
this transformation, because it may change some features of financial instruments,
if asset 0 is not riskless before the transformation (an example is given below). A
collection of financial assets is called a portfolio. Translated from common speach
into our market model, a portfolio is a d + 1-tuple h = (h;)ico,...ay € R4 where
h; represents the number of units of asset ¢ that the trader holds. Of course, at a
given time ¢ it might be favorable to hold different portfolios at different “market
states” w € Q. A random portfolio at time ¢ is a IR”™ -valued F(t)-measurable ran-
dom variable H(t). Portfolio processes will be introduced in subsequent chapters,
because their definition is related to the specific set of trading dates 7. The notion
of a Furopean contingent claim maturing at time 7', however, is independent of the
specific 7. In fact, such a claim is nothing else than a random portfolio at time
T, i.e., a R*'-valued F(T')-measurable random variable C = (C;);c(o,1,..ap- Since
we are not going to consider contingent claims other than European, we will simply
call them claims. A component C; , i =0,...,d, is interpreted as the units of asset
1, that the seller of the claim will supply to the buyer. There, supply of negative
quantities means delivery from buyer to seller. For a European Call on security 1

with strike K and real delivery of the asset we have
Co=—Kls,>ky, C1=1ligsgyand Vi>2:0; =0,
whereas with cash settlement we have
Co=(Si(T)-K)" and Vi>1: C;=0
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Let us see which features of a contingent claim may change under the discount-
ing transformation. Consider once more the European Call option on security 1
with cash-settlement maturing at 1" with deterministic strike K. For simplicity of
their structure such Options are labeled as ” Vanilla” options in distinction to more
“exotic” options. In the original market the payoff from the Call at maturity is
(S1(T) — K)*. However, in the discounted market this payoff becomes
(S =) gy K
So(T) So(T)

)-I—

Consequently, if asset 0 has not been riskless before discounting, then discounting
changes the Vanilla Call in an exotic Call with stochastic strike. So we have to be
careful about weather the riskiness of component 0 of a certain random portfolio

will change by discounting.

2.2 Security Market without Transaction Costs

In this section we want to give a first example for how feasible transactions can
be characterized by differential cone constraints. Since for the moment, we are
just dealing with a simple frictionless security market model, many of the following
explanations may seem to be needless at first glance. However, we do so in order to
elucidate the frictionless market model as a special case of each of the transaction

cost models in sections 2.3 to 2.6.

Given a security market with a numeraire, represented by asset 0, and d securities,
represented by assets ¢+ = 1,...,d, suppose that trading does not cause any trans-
action costs. This means, there are no bid-ask spreads or commission fees. Instead,
every security may be bought or sold at it’s spot price. Denote X;(w,t) the spot price
of security i € {1,...,d} at (w,t) € Qx T in units of asset 0. Let X = (X})icqo,....4},
be the d+1-dimensional, IF-adapted, discounted spot price process defined according
to (2.1) and satisfying (2.2).

For one unit of asset i given to the market at (w,t), one can expect to receive
X;(w,t) units of asset 0 and vice versa. Consequently, if one holds a portfolio
h = (ho, hi,...,hs) € R*™ and decides to liquidate it at (w,t), i.e., to sell h;” and

to buy h; quantities of each asset 7, he can expect to get

hX(w, t) = zd: hiXZ-(w, t)

1=0
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units of asset 0. This is the same quantity, that would be necessary in order to build
the portfolio h. Moreover given hX (w,t) units of asset 0 we could build any other
portfolio h € R*! that satisfies the equation

(2.3) hX (w,t) = hX (w,1) .

Instead of only liquidating or building a portfolio we could also be interested in
rebalancing it by means of several transactions at (w,t). By rebalancing we mean
that the portfolio A is changed into another portfolio h without adding or withdraw-
ing any capital, i.e., the transactions within the rebalancement are self-financing.
If we also allow for withdrawing capital, then we call this a rebalancement with

consumption.

Given a portfolio h, which portfolios h can we obtain then by rebalancements? It is
easy to see that after liquidating portfolio i we are able to build any portfolio A that
satisfies (2.3). Since there are no transaction costs it makes no difference weather for
example we sell h; units of asset 7 and buy I~12 < h; units of the same asset at the same
time or simply sell h; — h; units of asset i. Hence equation (2.3) characterizes the
entire set of portfolios that are attainable by rebalancements (without consumption)
given h. Moreover, if we allow for consumption, then we simply have to replace “="
by “>” in (2.3).

Of course, in the presence of transaction costs we would not always liquidate h before
building h. Instead, we would calculate the difference i — h and then perform the
transactions necessary to build the differential portfolio h — h. Hence another way
to characterize the set of feasible rebalancements is to say, that we need no capital
in order to build the differential portfolio h — h. If we allow for consumption, this
yields the condition

(2.4) 0> (h—h)X(w,t),

which of course is only a reformulation of (2.3) (with “=” replaced by “>" ). Multi-
plying (2.4) by —1, we see that this is the same as saying that liquidation of portfolio
h— h yields a non-negativ amount of asset 0. Since this is a characterzation of feasi-
ble rebalancements, that will not change by taking account of transaction costs, we
are going to focus on the set of portfolios with non-negative liquidation value. For
every (w,t) € Q x T this set is defined by

K(w,t) = {h € R"": hX(w,t) >0} .
(2.2) implies that for P-almost every (w,t) € Q@ x T we have R C K (w, ). Given

K (w,t), one may ask, how much prices X (w,t) can vary without changing K (w, t).
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We are going to consider variations of the form 7 X (w, ) with r € IR“™ constrained
to g = 1, because it is senseless to change the numeraire. This motivates us to

consider the compact convex sets

Ki(w,t):={re {1} xR*: inf h(r«X(w,t)) >0} ,(w,t)eQxT.

heK (w,t)
Indeed, it is easy to see that for every (w,t) € Q x T we have
Ko(w, 1) = {(1)""} .

Of course the situation will slightly change, when we introduce transaction costs.
However K| (w,t) will remain a compact convex set and prove useful in order to

characterize K (w,t), since, as we are going to see, we have
K(w,t) ={h € R :Vr € K}(w,t) : h(rx X (w,t)) >0} .

A very similar characterization is obtained if instead of K{(w,t) for every (w,t) €

Q) x T we consider the convex cone
Kl(wat) = —IF{+K(')(w,t)
= {z=1(20,...,20) ER™ :Fr € K}(w,t)I2zo € Ry : 2 = —z1} .

From the definition of K{(w,?) it is evident that for all (w,t) € Q x T the cone
K'(w, t) satisfies

(2.5) K'(w,t)={z € R™ : sup h(zxX(w,t)) <0} .
heK (w,t)

For each (w,t) € Q x T equation (2.5) reveals K'(w,t) as the dual cone of K(w, 1)
with respect to the scalar product < .,. > (w,t) defined by

(2.6)  <h,z>(w,t):=h(zxX(w,t) = hizX;(wt) , hzeR".

In Convex Analysis dual cones are sometimes referred to as polar cones (see Rock-
afellar, 1970, p.121). The set

—K'(w,t) = Ry Kj(w,t) ¢ R

is the dual positive cone of K(w,t). We also consider —K'(w, t), because in some

situations this convex cone is easier to tract than the compact convex set Kj(w,1).
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2.3 Stock Market with Constant Transaction

Cost Factors

Suppose the IRf“l—valued [F-adapted process X defined according to (2.1) and sat-
isfying (2.2) is the discounted spot price process of a stock market. However,
there are constant, volume proportional transaction costs. This means, for every
i € {1,...,d} there are constant transaction cost factors \;, y;, that impinge on ask
(buying) and bid (selling) prices in the following way. If at (w,t) somebody wants
to buy h; units of asset 7, then he has to pay h;(1 + \;)X; units of asset 0 and if he
sells h; units of asset i, then he gets h;(1 — u;)X; units of asset 0.

Suppose that we hold a portfolio h € IR4™' which we want to rebalance at (w, t).
Which portfolios are attainable by a rebalancement? As we have also explained in
the case of no transaction costs, a portfolio h is obviously attainable by a rebal-
ancement (with consumption) if we need no capital in order to build the differential
portfolio 4 — h. Let us look which transactions are necessary for this purpose. For
every i we have to buy (h; —h;)* quantities of asset i and to sell (h; —h;)~ quantities
of asset 7. Suppose we have given the negative of the differential portfolio, i.e., we
hold A — h. Then the transactions necessary in order to liquidate h — h would be
exactly the same as that in order to build A — h. So we can conclude that a portfolio
h is attainable by a rebalancement of h (with consumption), if and only if the port-
folio h — h has non-negative liquidation value. Again we only need to focus on the
set K (w,t) of portfolios with non-negative liquidation value at (w,t). By analyzing

the transactions necessary in order to liquidate a portfolio we get
d
K(w,t) = {h € R"": h,+Zh, (1— )X Z (1+ X)X, (w,t) >0} .
j=1 j=1

In fact, given a portfolio h € K(w,t), one may sell A} units of asset j and buy h;
units of asset j for every j € {1,...,d} which, together with the hy units of money
that one already holds, will yield exactly

d

h0+2h (1—p)X Z (L4 X)) X;(w,t) >0
7=1 j=1

units of asset 0. We see immediately that this yield does not decrease, if we replace

1 —pand 1+ A by some

(2.7) re {1} X [1—p, 14+ A] X oo X [1— g, 1+ A -
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Moreover for any r not satisfying (2.7) it is easy to find h € K(w,t) such that
h(r = X(w,t)) < 0. Consequently for

Ki(w,t):={re {1} x R?: 1nf h(r*X(w,t)) >0} ,(w,t) € QxT

heK (w,t)

we have
Kj(w,t)={r=(1,ry,...,7q) ER™ Vi€ {1,....d}: 1—p; <r; <1+ N}
Hence K{(w,t) is compact and independent of w € Q2. Moreover we see that
d
K(w,t) = {heR": h,+Zh, (1— )X Z (1+ X)X, (w,t) >0}
j=1 j=1
= {he R™ :Vr € Kj(w,t): h(rxX(w,t)) >0} .

From the definition of K (w,t) it is evident, that for every (w,t) € Q x T the cone
—K'(w,t) == Ry K{(w, t) satisfies

- ! — d+1 . >
K'(w,t)={z e R .he}?(f;}t) h(zx X (w,t) >0} .

For each (w,t) € Q x T this again reveals —K'(w,t) as the dual positive cone of
K (w, t) with respect to the scalar product < .,. > (w,t) defined like in (2.6). Note
also, that (2.2) implies that for every (w,t) € Q x T we have R4 C K(w,t).

2.4 Stock Market with Bid-Ask Spread

In this section we model a stock market with a bid-ask spread, by assuming that there
gy and X = (Xi)ieqo, .y,
where X;(w,t) is the bid price of asset i at (w,t) and X;(w,t) is the corresponding

are two ]Rff’l—valued IF-adapted processes X = (X)icqo,...,
ask price. Securities are always bought and sold at a positive price. Moreover the
ask price of a security cannot be lower than it’s bid price. Hence it is reasonable to

assulne

(2.8) V(w,t) € Qx T Vie{0,...,d}:0< X,;(w,t) < X;(w,t) .

As we have pointed out in the two previous sections, a portfolio h can be changed
into a portfolio i by a rebalancement with consumption at (w, t), if and only if the
portfolio h — h has a non-negative liquidation value at (w,t). The set of portfolios

h that have non-negative ligidation value at (w,t) is obviously given by

ISH

d
K(w,t)={h e R"" :hg+ > hf X;(w,t) - Z i(w,t) >0} .
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From (2.8) it is clear, that for every (w,t) € Q x T we have R C K(w,t). Let us
define an artificial spot price process by setting X := X. Then like in section 2.3 it

is easy to see that with the compact convex set
K{)(w,t) = {’I“ = (1,7”1,...,7"d) € Rd+1 VJ € {1,,d} X] S Tij S 7]}
and the convex cone —K'(w,t) := R, K}(w,t), we have

K(w,t)={h e R™": inf h(r+X(w,t)) >0}

reK{(w,t)
—K'(w,t) ={z e R™": inf h(zxX(w,t)>0}.
(1) = { Ll B x X (w,0) 2 0)
The interpretation is anologous to that in the previous example. Note also that for
every r € IR*! and every t € T we obviously have {w € Q:r € K}(w,t)} € F(t).

2.5 Currency Market with Constant Transaction

Cost Factors

In this example we turn to a currency market with volume proportional transaction
cost factors. Suppose there are d + 1 assets where asset 0 deserves as a numeraire,
we may think of the domestic currency. Let X be a ]Ri“—valued [F-adapted process,
defined according to (2.1) and satisfying (2.2), where X;(w,t) denotes the “spot”
price of asset ¢ in units of asset 0. Since on a currency market every currency is

exchangeable with any other currency, there will be two matrices

d+1)x (d+1 d+1)x (d+1

A= (Nij)ijefo,..ap € RNy = (1if)ijeto,...ay € R
of proportional transaction cost factors, that will be applied on spot prices in the
following way. If at (w,t) somebody wants to buy h; units of asset ¢, then he has to
pay

Xi
units of asset j, which is the same as to say that if he sells h; units of asset j, then

he gets

X
hi = hy(1 = )

units asset 2. Consequently, in order to avoid contradictions, we have to assume
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It is self-suggesting to set

Suppose again, that we have given a portfolio h of currencies, that we want to
rebalance at (w,t). In order to change portfolio h into a portfolio h we have to build
the differential portfolio & — h. If instead of A we end up with a portfolio i + & with
¢ € ]Rff’l, then we may consume £. So, if we allow for consumption not only of
currency 0, but also of any other currency, then we can say that a portfolio h may
be obtained by a rebalancement of portfolio h at (w,t) with consumption, if and
only if there exists a ¢ € IR, such that we could change portfolio 0 € R into
portfolio h + € — h by a rebalancement without consumption at (w,t). What are
the necessary transactions? This is not so easy to answer as in the case of a stock
market, because now, all assets are directly interchangable. However it is clear that
in order to build portfolio h—+& — h from starting with 0, we have to perform exactly
the same transactions, as for the liquidation of portfolio h — h — £. Suppose that we
perform this transactions, but starting with portfolio h — h= (h— h— €)+&. Then
since we “ignore” &, we end up with portfolio £, a portfolio that is non-negative in

every component.

Let us summarize the results of the above thoughts in one sentense: In order to
change a given portfolio h into another portfolio h by a rebalancement (with con-
sumption), we have to perform exactly the same transactions as if we wanted to
rebalance the portfolio A — A in order to get a portfolio that is non-negative in every

component. So we just have to focus on the closed convex cone

K(w,t) = {heR"™ 3¢ IR‘_fflElh = (hy) € R(A+1)x(d+1)

_Xj(w,t)

; 7 i\W

This is true, because by (2.9) we can understand K (w,t?) as the set of portfolios,
that may be transformed by selffinancing transactions into a new portfolio ¢ without

any short position. In fact, if we hold a portfolio h € R! satisfying

Xj(w, t)

(2.10) VZ,] : hl =¢€;+ Zh:; — Zh;], h:; = (1 + )\Zj)h;lm .
J j VA )

with ¢ € R4 and h = (hy;) € R then for every i, j we can sell hj; units
of asset 7 in exchange for h;; units of asset j and buy h;; units of asset 7 in exchange

for h;ri units of asset j. This transactions will result in the new portfolio ¢ € IIF{‘_jll:r1
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without any short position. Again, (2.2) implies that for every (w,t) € Q x T we
have R C K (w, t).

In order to find a simpler characterization of K(w,t), we define the convex sets

Kj(w,t) == {r=(1,r,...,rq) € R :Vi,jc{0,....d}:r; — (1 + \j)r; <0}
—K'(w,t) = RK)(w,t)
K(w,t) = {heR™ :Vr e Kj(w,t): h(rxX(w,t))>0}.

This notation is appropriate, because —K'(w,t) is indeed the dual positive cone
of K(w,t) with respect to the scalar product defined like in (2.6). In fact by its
definition, K(w,t) is the dual positive cone of —K'(w,t), and since —K'(w,t) is
certainly nonempty and closed we have K(w,t) = —(—K')'(w,t) according to a
theorem in Rockafellar (1970, Theorem 14.1). Note K/(w,t) independent of w € €.

We are going to show
(2.11) V(w,t) € Ax T : K(w,t) = K(w,t) .
In order to do this, we also consider
(2.12)  Kj(w,t):={r e {1} x R :Vh € K(w,t) : h(r « X (w,t)) > 0}
and the dual positive cone of K (w,t), i.e.,
—K'(w,t) = Ry Kj(w,t) = {z € R*™ :Vh € K(w,t): h(zx X (w,t)) >0} .

Since K (w,t) and K(w,t) are closed convex cones, Theorem 14.1 in Rockafellar
(1970) implies that (2.11) is equivalent with

(2.13) V(w,t) €Ax T : —K'(w,t) = —K'(w,1) .

In order to show the inclusion ”C” in (2.13), fix an arbitrary (w,t) and consider a
z € —K'(w,t). Then we have

h(zx X(w,t)) >0

for every h € K(w,t), i.e., for every h € IR“*! for which there exist ¢ € R and
h = (hi;) € RHDXEHD gatisfying (2.10). This means, that for every ¢ € ]R‘_Jll:r1 and
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h = (hy;) € R gatisfying (2.10) we have
0 < Zzzs, Zh Zhi_j)th
J

= Zzzez (w, 1) +Zzzh X (w, t) Zzlh X (w,t)

— Zz,sz (w, ) + > 2 1+A”)hﬁ))§$ g Zz,h, - Xi(w, 1)
Zj ? 9
= Zzzez (w, 1) +Zzz + Aij) h X( szhﬂX (w,t)

]Z

= Zzzez (W, 1) + D (21 + Nij) — 25)h; X (w, 1) .

]

Hence it follows
Vi,jE{O,...,d}i zl(l—i—)\l])—z’]ZO

which is equivalent with z € RK}(w,t) = —K'(w,t). The above calculation may

also be used to verify the converse inclusion.

Since(2.11) also implies
V(w,t) € Qx T : —Kj(w,t) = =K} (w,t) ,

we conclude that every r € —K|(w,t) satisfies the following inequlities for every
(w,t) eQxT:

To
14+ X

Vie{la"'ad}: §7"z'§(1+)\j0)7"0

This shows that —K|(w, t) is compact for every (w,t) € Q x T.

2.6 Currency Market with Bid-Ask Spreads

This section deals with a currency market with bid-ask spreads. Suppose there
are d + 1 assets (currencies) where asset 0 deserves as a numeraire. Let X =
(X5))ijeqo,...ay and X = (Yij)i,je{o,...,d} be R@HD*@HD_yalued F-adapted processes,
where X;;(w,t) denotes the bid price and X;;(w,t) denotes the ask price of asset i
in units of asset j at (w,t). This means that if at (w,¢) somebody wants to buy h;

units of asset ¢, then he has to pay h; = hiyij (w,t) units of asset j, which is the
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same as to say that if he sells h; units of asset j, then he gets h; = h;X ;;(w,t) units

of asset 7. Thus in order to keep symmetry, we have to assume

It is self-suggesting to introduce the convention

Vie{0,...,d}: X, =X

1.

Currencies are always bought and sold at a positive exchange rate. Moreover the
ask rate of a currency cannot be lower than it’s bid rate. Hence, it is reasonable to

assume
(2.14) V(w,t) € Qx T Vi,i € {0,...,d} : 0 < X;;(w,t) < Xij(w, ).
Let us define the spot price process X = (Xp, X1,...,Xy) by Xo =1 and X; = X,
for i = 1,...,d. This definition is somehow arbitrary. In fact, any IF-adapted
process X satisfying

Vi € {07---7d}:Xi0 SXZ SYZU
could serve as spot price process without changing the quality of results. For the

same reasons as in the case with constant transaction cost factors we are interested

in the closed convex cone

K(w,t) = {he R :3 € RT"'3h = (h;;) € RUI*EHD

(2.15) Vi jhi =i+ 3 by =D hig by =h; X}
j j

of portfolios, that can be transformed by self-financing transactions into a new
portfolio ¢ without any short position. In fact, if we hold a portfolio h € IR**!
satisfying (2.15) at (w,t) with e € R4 and h = (h;;) € RUD*EHD “then for every
17,7 we can sell h;“j units of asset ¢ in exchange for h; units of asset j and buy h;;
units of asset 7 in exchange for hji units of asset j. This transactions will result in
the new portfolio € € IR‘_f“l without any short position. From (2.14) it is clear, that

for every (w,t) € Q x T we have RY™ € K (w, ).

Like in the previous sections, we want to find a simpler characterization of K (w,t).

Therefore we define

Ki(w,t) == {r=(1,r,...,rq) € R™ : Vi je{0,...,d}:
Xj(w,t)rj — in(w,t)Xi(w,t)ri < 0}
—K'(w,t) = RK}(w,1)

K(w,t) = {heR"' :vre Kj(w,t): h(r+X(w,t) >0} .
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This notation is appropriate, because — K’ (w, t) is indeed the dual positive cone of
K (w,t) with respect to the scalar product defined like in (2.6) (c.f. Section 2.5).

Note also that for every r € R*"! and every t € T we obviously have
{weQ:reKiwt)eF).
We are going to show
(2.16) V(w,t) € (Q,7): K(w,t) = K(w,t) .
Therefore, we consider
Ki(w,t) == {re {1} x R*:Vh € K(w,t): h(r+X(w,t)) >0}
—K'(w,t) = RiKj(w,t).

Since K (w, t) and K (w,t) obviously are closed convex cones, Theorem 14.1 in Rock-
afellar (1970) implies that (2.16) holds, if and only if

V(w,t) € (Q,T): —K'(w,t) = —K'(w, 1) .

In order to show K'(w,t) C K'(w,t) fix an arbitrary (w,t) and consider a z €
—K'(w,t). Then this z satisfies

for every h € K(w,t), i.e. for every h € R*™, for that there exist ¢ € IIF{‘_jll:r1
and h = (h;;) € REFDEHD gatisfying (2.15). Hence for every ¢ € R4 and
h = (hy;) € R gatisfying (2.15) we have

0 < D zilei+ Y hfi—=> hij)Xi(w,t
( J J
= Zziein-(w,t)jLZzlh Xi(w,t) Zzzh Xi(w, t)
= ZzlethnLZzl ]Zwt Zzthwt

= ZzleX (w, ) +Zzl Xji(w, ) Xi(w, t) =Y 2h;; Xj(w, t)

]7,

]
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Hence it follows

Vi, j € {0, Cee d} : Zini(w, t)Xl(w,t) - Zij(w,t) >0
which is equivalent with z € IRK)(w,t) = —K'(w,t). The above calculation also

may be used to verify the converse inclusion.

Since (2.16) also implies
V(w,t) € Qx T : —K}(w,t) = —Kj(w, 1) ,

we conclude that every r € —K{(w,t) satisfies the following inequlities for every
(w, ) eQxT:

Vie{l,...,d}: X,(w,t)= M < X;(w, t)r; < Xio(w, t) Xo(w, t)ro = 1.

This shows that —K|(w,t) is compact for every (w,t) € Q x T.

2.7 Differential Cone Constraints

In Sections 2.2 to 2.6 we introduced models for trading in stock and currency mar-
kets with different kinds of proportional transaction costs. The focus was layed on
characterizing the set of feasible transactions at each single (w,t) € Q@ x 7. We
supposed that at (w,t) we had given a certain portfolio h € IR that we wanted to
rebalance by means of self-financing transactions (with consumption). The question
was, which portfolios A we could achieve. We found, that at (w,t) a portfolio A is
attainable by a rebalancement of a given portfolio A, if and only if the difference
portfolio h — h lies in a certain closed convex cone K (w,t) with R C K(w,t).
This cone describes the set of portfolios, that may be rebalanced at (w,t) in such a
way, that every component becomes non-negative. In each market model we char-
acterized K (w,t) by means of a compact convex set K|(w,t) whose elements could
be interpreted as modified prices. The closed convex cone —K'(w,t) := R K{(w,t)
turned out to be the dual positive cone of K(w,t) with respect to a scalar prod-
uct < .,. > (w,t) defined like in (2.6). In fact, in every market model we got the

following dual characterizations for every (w,t) € Q x T :
(2.17) K(w,t) = {heR™ :V¥r e K}(w,t): h(rxX(w,t)) >0}

= {he R :Vz e —K'(w,t): h(zx X (w,t)) > 0}
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(2.18) Ry K}(w,t) = —K'(w,t) = {z € R*™ : Vh € K(w,1) : h(z x X (w, 1)) > 0}.

Moreover, we always had
(2.19) Vte TVr e R {weQ:re Kjw,t)} € F(t) .
(2.20) Vic TVh e R : {weQ:he Kw,t)} € F(t) .

These similarities lead us to consider market models, where trading is restricted
by abstract differential cone constraints within the general framework presented in
Section 2.1. In order to define admissible portfolio strategies in subsequent chapters,
we will have to deal with rebalancements of random portfolios. Therefore we want
to state the general definition of admissible rebalencements in terms of random
portfolios. The following definitions and assumptions are postulated to hold for the

remainder of this section as well as throughout all subsequent chapters.

Definitions and Assumptions 2.1 Assume the general market framework of sec-
tion 2.1. For every (w,t) € Q x T let K(w,t) € R be a closed convex cone
satisfying

(2.21) R € K(w,t)

and K}(w,t) € {1} x R? a compact convex set satisfying the dual characterization
(2.17). For every (w,t) € Q x T define the dual positive cone

R Ko(w,t) = =K'(w,1)

according to (2.18). Assume moreover that the measurability conditions (2.19)
and (2.20) hold. Then we understand K(w,t) as the the set of portfolios, that
may be rebalanced at (w,t) in such a way, that every component becomes non-
negative. In accordance with this interpretation of K(w,t), a random portfolio
H(t) € (L°(F(t)))! is attainable by a rebalancement of a given random portfo-
lio H(t—) € (L°(F(t)))* at time t € T, if and only if for P-almost every w €
the differential portfolio H(t—) — H (t) satisfies the differential cone constraint

(2.22) H(w,t—) — H(w,t) € K(w,t) .

Note that for the moment, the notation H(t—) is only used in order to connote that
portfolio H(t—) may have been built some time before t, but this notation has no

technical meaning so far.
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Using the dual characterization (2.17) of K(w,t), we can reformulate (2.22) as

0 < inf (H(w,t—)— H(w,t))(r*xX(w,t))

=  inf (H(w,t=)— H(w,1)(z% X(w,1)) .
By introducing the sets of measurable selections
K(t):={U e (L"F®)"":U()e K(.,t) P—a.s.},
Ky(t) :={V e (L°(F®)"' : V() € Ki(.,t) P —a.s.},
K'(t) == {W e (L(F@&))* - W() e K'(,t) P —a.s.} ,

the almost sure validity of the differential cone constraint (2.22) becomes equivalent

to any of the following constraints:
H(t—) — H(t) € K(t)

VR(t) € Ko(t) : (H(t—) — H(t))(R(t) « X(t)) = 0

VZ(t) e K'(t): (H(t—) — H(t))(R(t)*x X (1)) <0 .

Denote R the class of R -valued processes R = (R(t))icr such that there exists a
F € F with P(F) =1 and

(2.23) V(w,t) € FXT: R(w,t)e Ky(w,t) .

o

Of course, the models introduced in Sections 2.2 to 2.6 may be refined in some
directions. One may think of modelling interconnected stock and currency markets
with proportional transactions costs. While the definitions of K(w,t) and K{(w, 1)
then will get a little more complex, the properties postulated in Definitions and
Assumptions (2.1) will still be satisfied as long as there are no frictions on the
market other than proportional transaction costs or restrictions on which assets are

direct interchangeable.

Remark 2.2 According to (2.18) the condition (2.21) is equivalent to
(2.24) vy € R Vr € K{(w,t) :yr > 0.
Moreover we always have R4 N — K (w, t) = {0}.

o
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Remark 2.3 According to Corollary 1D in Rockafellar (1976) condition (2.20) im-
plies that for every ¢ € 7 the multifunction

K(,t):wr— K(w,t)

is F(t)-measurable. The same ist true for the multifunction K{(.,?).

&

Proposition 2.4 Suppose (w,t) € Q@ x T, h € R*'. Then we have h € 0K (w, 1),
if and only if h € K(w,t) and there exists a r € K{(w,t) satisfying

(2.25) h(r« X(w,t))=0.

Proof. Denote 14,1 the d 4+ 1-dimensional vector with all components equal to 1.

i) “=”: Suppose h € OK(w,t). Then there is a sequence (A")nen in R*™ that
converges to h and satisfies h" ¢ K(w,t) for every n. This implies that for every
n € IN there exists " € K{(w,t) such that A"(r™ * X (w,t)) < 0. Since K{(w,1)
is compact by definition, there is a subsequence (rk(”))kelN converging to some r €

K{(w,t) and consequently we have

0 < h(rxX(w,t)) = lim ¥ (FM 5« X (w, 1)) <0

k—o00
which implies (2.25).

ii) “<=”: Suppose h € K (w,t) and r € K}(w,t) C {1} x R% satisfy (2.25). Remem-
bering (2.2) then, we have

Ve>0: (h—elg)(r*X(w,t))=—clgi(rxX(w,t)) <0

thus (h —elg1) ¢ K(w,t) for any € > 0. This shows h € 0K (w, t).
¢

Lemma 2.5 Let (w,t) € Qx T. Define the multifunctions ®(.,w,t), Y(.,w,t) from

IR,d+1 to ]:Rd+1 by
®(h,w,t) == 0K (w,t) N (h— RL)

Y(h,w,t) :={r € Kyw,t) : h(r*X(w,t)) =0}
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Then these multifunctions satisfy
(2.26) Vhe K(w,t):  ®(h,w,t) #0

(2.27) Vh € 0K (w,t) . Y(h,w,t) £0 .

The multifunctions ®(.,w,t) and Y(.,w,t) are convexr-valued, closed-valued and

B -measurable.
Proof. (2.27) is a direct implication of Proposition 2.4. For h € 0K (w,t) the
assertion (2.26) is trivial. Suppose h € K(w,t) \ 0K (w,t) and
OK (w,t) N (h — R = ®(w,t) = 0.
Then because of h € K(w,t), we had
~R ch— R C K(w,t)

which is a contradiction to Remark 2.2.

Since the sets 9K (w,t) and h — IR are closed and convex, ®(h,w, t) is also closed

and convex. The set Y (h,w,t) is obviously closed by definition.

In order to proof the measurability of ®(.,w,t) and Y(.,w,t) we use Corollary 1D in
Rockafellar (1976,p. 164). According to this corollary, since ®(.,w,t) and Y(.,w, ?)

are convex- and closed-valued, it suffices to show, that
(., w,t)(9) = {h e R : g € B(h)}

and Y~ 1(.,w,t)(g) are B -measurable. For g ¢ 0K (w,t) we have ® (., w,t)(g) =
(). For g € 0K (w,t) we have

' (w,t)(g)={h:g€h—RH"} =g+ R € B*".

Thus ®(.,w,t) is B -measurable. For r ¢ K/}(w,t) we have T (., w,t)(r) = 0.
For r € K{(w,t) the set

T (,w,t)(r) = {h € R : h(r+ X (w,t)) =0}

is closed by definition and hence IB¢'-measurable.

o
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Lemma 2.6 Lett € T and V € K(t). For every omega € Q define the multi-
function ®(.,w,t) as in Lemma 2.5. Define also the multifunction V(.,t) from Q to
IRd+1 by

U(w,t) = o(V(w,t),w,t) .
Then (., t) is F(t)-measurable. Moreover there exist a V € K(t) and a W € KJ(t)
satisfying
(2.28) Vie {0,1,...,d}: V; <V

(2.29) V(W *X(t) =0.

Note that (2.29) is equivalent to

V(t) € 0K(t) :={U € K(t) : U € 0K (.,t) a.s.} .

Proof. As we know from Lemma 2.5, the multifunction ®(.,w,t) is convex- and
closed-valued. Hence, we can apply Corollary 1D of Rockafellar (1976,p. 164) and
only have to show that for arbitrary g € R*™ we have U~'(.,¢)(g) € F(t). Since the
random vector V' and the multifunctions K(.,¢) are F(¢)-measurable (c.f. Remark
2.2) the calculation

U, t)(9) = {weQ:gedK(wt)N (V(w,t)— RN}
= {weQ:gedK(w)N{we:geV(wt)—RI} e F(t)
shows that W(.,t) is F(t)-measurable. Moreover according to Lemma 2.5, for almost

every w € ) we have
U(w,t) = B(V(w, 1), 0,1) £ 0

because V(w,t) € K(w,t).

By a measurable selection theorem (see Rockafellar, 1976, Theorem 1B, p.163) there

exists an F(t)-measurable V such that for almost every w € Q

V(w) € U(w,t) = 0K (w,t) N (V(w,t) — RET) .

This implies V € K (t) and (2.28). For V we define (almost everywhere) the multi-

function = from Q to R**! by
E(w,t) = TY(V(w,t),w,t) = {r e Kjw,t): V(w,t)(r+X(w,t)) =0}
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where T is defined as in Lemma 2.5 . It is clear that =(.,¢) is convex- and closed-

valued. Hence again, from
=) = {weQ:ire K(w,t),Viw,t)(rxX(w,t)) =0}
= {weQ:reKj(wt)}n{weQ: Vw)(r+X(w,t) =0}

we see that Z(., ) is F(t)-measurable, because K}(.,t) and V are F-measurable. By

the measurable selection theorem, already cited above, we can choose W as desired.

o
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Part 11

Discrete Time
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Chapter 3

The Discrete Time Market

In this chapter we restrict the general framework of Chapter 2 to the case of discrete
time trading. That means, we consider a financial market where d+1 primary finan-
cial assets i = 0,1,...,d are traded at discrete time points t € T = {0,1,...,T},
0 < T € IN. Let us shortly recall some technical assumptions. Uncertainty and
information structure in this market are modelled as a probability space (£, F, P)
with a filtration IF := (F;)c7. We assume that the prices of assets i € {0,...d} in
units of asset 0 are given by a Ri“—valued [F-adapted process X defined according

to (2.1) and satisfying (2.2). Moreover we assume that
Vwe Q: Xj(w,0)=x;>0.

Note also, that s = 1 and Xy(¢) =1 for every t € T.

In Chapter 2, particularly section 2.7, we have seen, that in the presence of transac-
tion costs, self-financing rebalancements of portfolios are easily described by certain
cone constraints. This coherence is formulated in Definitions and Assumptions
2.1, which we always take for granted. The concerning cone K (w,t) is interpreted as
the set of portfolios, that can be rebalanced at (w,t) in such a way that every com-
ponent is non-negative. It is this property that is connoted by the term “solvency

cone”.

Definition 3.1 A portfolio process consists of an initial portfolio h = (h;)icqo,..ay €
R and a R**-valued IF-adapted process H = (Hi)ieqo,...ay- Denote H the set of
portfolio processes. For every portfolio process (h, H) € H we define the process
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H(O0—-) = h

H(t—) = H(t—1) ,t>0.
Note that H(.—) is IF-predictable.
We define the process AH = (AH;)icqo,...ap by
(3.1) AH;:=H;— H/(.—) ,i=0,...,d,

and understand H;(t) as number of units of asset i held after all transactions at time
t whereas H;(t—) represents the number of units of asset i before all transactions at
time t. In particular H;(0—) = h is the initial holding in asset i, i.e., before any

transaction is settled.

Definitions 3.2 Let G = (Gy,...,Gg) and Y = (Yy,...,Yy) be two R™™ -valued,
IF-adapted processes. Then the IF-adapted process

G(—) oY = (G(.—) e Y(1))ier

15 defined by
G(.—)eY(t):=) Gj(.—)eY;(t) teT
J
with G; @ Y;(t) := ¥t G;(s—)AY}(s) and the convention G(.—) ¢ Y (0) = 0. The
IF-adapted process
YeG=Y(—-)eG+AY e G

15 defined in a similar way by
t
AY'] ® Gj(w,t) = Z AY}(S)AG](S) .
s=1
The product GY given by
GY =G0)Y(0)+G(.—)eY +Y o

15 also IF-adapted.
&
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For the IR !-valued, IF-adapted process X and a portfolio process (h,H) € H, the
processes H;(.—) e X; and

satisfy

This yields the formula
HX =H(0)X(0)+H(.—)e X+ XeoH.

In this formula H(.—) ¢ X represents the change of portfolio value due to price

changes and X e H decribes the changes of portfolio value due to transactions.

In our introduction, we have already explained why we are interested in so called
self-financing trading strategies. In fact, we are more concerned with the admis-
sible portfolio processes resulting from such strategies. Hence, we define the set
of admissible portfolio processes by only allowing for self-financing rebalancements
(with consumption) instead of admitting arbitrary transactions. This is formalized

as follows.

Definitions 3.3 Let A, the class of admissible portfolio processes, consist of all

(h, H) € H satisfying the differential cone constraints
Vie T :—AH(t) e K(t) .

Using the class R introduced in Definitions and Assumptions 2.1 it is straight
forward to wverify that (h,H) € H, if and only if for every R € R the process
(Rx X) e H is decreasing and (R X)AH(0) < 0.

Denote

A% = {(h, H) € H : (H(T))~ € (L=(F(T), P))*'}

the set of “tame” admissible portfolio processes. We have (h, H) € A*, if and only
if the short positions of H(T) are P-almost surely bounded. This means that one
15 not allowed to borrow an “infinite” sum of money or to sell short “infinitely”
many units of an asset. It is not very audacious to state, that this assumption does
always apply in practice. Note also that our tame condition only refers to terminal

positions, whereas the tame conditions usually used troughout literature refer to the

set T .
&
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Remark 3.4 It is straight forward to show that for every ¢t € T the set K(t) is a

convex cone. Thus, it is easy to verify that A and A> are convex cones in H.

¢

Theorem 3.5 For every (h, H) € A there exist a (h, H) € A and a R € R satisfy-
mng

Vte T Vie{0,...,d}: Ht) > Hy(t) ,

(3.2) Ve T o (R() « X(£)AH() =0 .

Note that (3.2) is equivalent with

VteT: —AH(t) € 0K (t) ={U € K(t) : U € 0K (.,t)as.} .

Proof. If (h,H) € A, then for every t € T we have —AH(t) € K(t). Hence
according to Lemma 2.6, for every ¢t € T there exist a V(t) € K(t) and a W(t) €
K| () satistying

V()W (t)*X(t) =0

Vie{0,...,d}: Vi(t) < —AH(t).

If we define R := (R(t));er by R(t) :==W(t),t € T and H = (H(t)),er by H(0) :=
h—V(0) and

H(t):=H({t—-1)-V(t), t=1,...T
then it easy to verify that R and H have the desired properties.

&

Definitions 3.6 Denote P the class of all pairs (Q, R) satsifying the following con-

ditions:

(P1) Q is a probability equivalent to P on F(T),
(P2) Re R,
(P3) the process R* X is a Q-Martingale.
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Define

AP = {(h,H) € A:Y(Q,R) € P: H(R*X) is a () — supermartingal}
if P # 0 and otherwise A” = ().
o

Lemma 3.9 will explain this definitions further. Chapter 4 will be contributed to

necessary and sufficient conditions for P # ().

Remark 3.7 If P # (), then
AP ={(h,H) € A:V(Q,R) € PVt [0,T]: HRxX) € L}(Q)} .

Hence, this is an alternative to the above definition of A”.

¢

Definitions 3.8 Denote C := (L°(F(T)))%*" the set of contingent claims. We call
(h,H) € A a super hedge for C € C, if and only if H(T) — C € K(T'). We call
a claim C super-hedgeable (by (h, H)), if there exists a super hedge (h,H) for C.

Denote
ch = {CeC:3H: (hyH)e A, HT)-C e K(T)} ,

the set of claims that are super-hedgeable with initial portfolio h € R and define

Ct:={CeK(T):3A€ F(T), P(A) >0, Vwe A: C(w) € intK(w,T)} .

For a subclass B C A we write
cC"B:={CecC'":3H:(h,H)eB, HT)-Cec K(T)} .

o

Lemma 3.9 Let (Q,R) € P # 0 and C € C be a contingent claim satisfying
Eg[(C(R(T) % X(T)))"] < co. Suppose (h,H) € A is a super hedge for C. Then
the process H(R % X) is a Q-supermartingale and

EQ[H(T)(R(T) x X(T))] < h(R(0) x X (0)) .
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Proof. Let (Q,R) € P # 0 . If (h,H) € A is a super hedge for C' with
Eo[min{C(R(T) » X(T)),0}] > —oo then from (H(T) — C)(R(T) » X(T)) > 0
we get
Egmin{H(T)(R(T)+ X(T)),0}] > —oo .

Let us first show that H(.—) e (R * X) is a Q-Martingale. Since we are dealing
with a finite discrete time set 7 and (R x X)) is a Q-martingale by assumption, the
martingale transform H(.—) e (R % X) is a local @Q-Martingale. Because of R € R,
the process (R X ) e H is decreasing and (R* X)AH(0) < 0. Hence from
H(RxX) = H(0—)(R(0)xX(0))+(R(0)xX(0))AH(0)+H(.—)o(R*X)+(RxX)e H
we see that

H(.—) e (RxX)(T) = H(R+X)(T) = H(0-)(R(0) » X(0))(T)
and hence

Egmin{H(.—) ¢ (Rx X)(T),0}] > —o0

which implies that H(.—) @ (Rx X) is a ()-Martingale. We still have to show, that
(RxX) e H is a Q-supermartingale and

(R(0)x X(0)AH(0) € LY(Q) ,  Eql(R(0) x X(0))AH(0)] < 0.
Since the process (R * X) e H is decreasing we have

VieT: 0> (RxX)eH(t)
and thus Fg[(Rx X) e H(t)] <0 is defined for every ¢. Analogously from
(RxX)AH(0) <0

we conclude

Eq[(R(0) x X (0))AH(0)] <0

Because H(.—) @ RX is a (Q-supermartingale, the following calculation is valid for
every t € T

h(R(0) = X(0)) = h(R(0) x X(0)) + Eo[(R(0) » X (0))AH (0)]
+EQ[H(.—) o (Rx X)(1)] + Eq[(R* X) e H(t)]
> h(R(0) % X(0)) + Eg[(R(0) x X(0))AH (0)]
+EQ[H(.—) o (R X)(T)] + Eq[(R* X) e H(T)]
= EQ[H(T)(R(T) » X(T))]

Y

Eq[min{H(T)(R(T) x X(T)),0}] > —
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Hence (RX) e H is a ()-supermartingale.
&

Remark 3.10 Suppose P # (). Then we have 4 N A C AP. This is a direct

implication of Lemma 3.9.
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Chapter 4

Fundamental Theorems of Asset

Pricing in Discrete Time

In this chapter we develop Fundamental Theorems of Asset Pricing in discrete time
under varying assumptions on price processes. We are going to treat the cases of
finite and infinite state space () separately, because the two cases involve different
techniques of proofs. Since in every case, we have to rely on the same definition of

“arbitrage”, however, this will be discussed in advance.

4.1 Arbitrage

Definition 4.1 A portfolio process (h, H) € A is called an arbitrage, if —h € K(0)
and H(T) € C+.

The following lemma states a sufficient condition for the absence of arbitrage in
a general discrete time market. The converse implication does not hold in this

generality, but in many cases, as will be revealed in the subsequent sections.
Lemma 4.2 Suppose P # (). Then there is no arbitrage in A.

Proof. Let (Q,R) € P # 0 and (h,H) € A with —h € K(0) and H(T) € K(T).
We only need to show H(T) ¢ C*. From H(T) € K(T') we have

H(T)(R(T) = X(T)) 2 0 .
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Thus, if we define the claim C' := H(T) then we have
EQ[C(R(T) » X(T))] = E[H(T)(R(T) » X(T))] = 0 .

Since this clearly implies Eg[(C'(R(T) » X(T')))"] < oo, we are in the situation
of Lemma 3.9. According to this lemma then, the process (Rx X) @ H is a Q-

supermartingale and we get
0 > h(R(0) x X(0)) > EQ[H(T)(R(T) » X(T))] > 0.

Thus we have Eg[H(T)(R(T) = X(T))] = 0. Because of H(T)(R(T)* X (T)) > 0
this implies

H(T)(R(T) % X(T)) =0 .

Applying Proposition 2.4 we conclude that for almost every w € €2 we have
H(w,T) € 0K (w,T)

and thus H(T) ¢ C™.

&

4.2 Finite Case

In this section we deal with the simple, but often treated case of finite {2 as it occurs
for example with the Cox Ross Rubinstein model. For such markets Harrison, Pliska
(1981) already show the equivalence of the “no arbitrage” condition and the “no free
lunch” condition in a frictionless market. Kabanov, Stricker(1999) have developed
a Fundamental Theorem for a currency market with proportional transaction costs,
when () is finite. Below we give a proof, that adopts their ideas, but the notions
and the techniques are modified in order to support the generalization to infinite 2
in the Section 4.4. Note also that the subsequent results for finite 2 also hold for
finite F.

Theorem 4.3 Suppose Q = {wy,...,w,}. If there is no arbitrage in A, then P # ().

Proof. For i = 0,...,d we define the measures X;(7") P by

dX;(T)P

P Xi(T)
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and write

L% = X, alP(XiP) , pe{0}U][l,00).

.....

Since Q is finite we have LS = L% for every p > 1. Define
Ct:={CeC":Ep[CX]=1}.
The absence of arbitrage in A obviously implies
ctnc’=90.

It is easy to see that

T

C'=0+> K(t)

=0
is a convex cone containing the claim V = 0. Using the finiteness of €2 and the
closedness of every K (w) , w € , one can show that C° is LY (F(T))-closed. This
is true, because the closedness of K(w) , w € Q, implies the closedness of 0 +

I K(w,t), w € Q. The set C* is convex and L% (F(T))-closed. Thus according

to a separating hyperplane theorem there exists a Z(T') € L (F(T)) such that

(4.1) sup Ep[C(Z(T)* X (T))] =0 < inf Ep[C(Z(T)*X(T))] .
ceco Cect

From —K(T) C C° we have Z(T) € —K'(T). Otherwise there would exist a C' €

K(T) with P(C(Z(T)* X(T)) < 0) > 0. Defining F := {C(Z(T) x X(T)) < 0}

then, we had Clp € K(T') and Ep[1pC(Z(T) x X)] < 0, thus a contradiction to

(4.1).

Moreover we have Zo(T) > 0. In fact, for arbitrary F € F(T) with P(F) > 0 the
1

W(L 0,...,0) is an element of C* and consequently

claim CF =
1pZ(T) Ep[1pZy(T)]

0 < EplC"(Z(T)» X(T))] = Ep| P(F) I= P(F)

for all F € F(T) with P(F) > 0. Remembering Xo(7T) = 1, we can renormalize
ZC(T) in order to get Eg[Z§(T)] = 1.

.....




With this definition the process Z x X is a P-martingale. We want to show now that
(4.2) VieT:Z(t)e —K'(t) .

We already know Z(T) € —K'(T). For a fixed s € T \ {T'} we take an arbitrary
G(s) € K(s). Now we consider an arbitrary nonnegative £ € L°(P, F(s)) and the
buy and hold strategy (0, H) defined by

H(w,t) = —&§(w)G(w, s) 1,1y (w, )

Since —AH(t) € K(t) for every t € T, we have (0,H) € A and moreover the
strategy (0, H) is a super hedge for the claim

C = H(T) = —£G(s)

and hence C' € C°. Consequently, the separating inequality (4.1) together with the

tower properties of conditional expectations yield
0 > Ep[C(Z(T)* X(T)] > —Epl¢G(s)(Z(T) « X(T))]
— —BplEp[EG() (Z(T)
— —EplEEp[G(s)(Z(T)
— —EpléG(s)Epl(Z(T)
— —Ep[eG(s)(Z(s)  X(5))] -
Since ¢ was arbitrary chosen, we conclude G(s)Z(s) > 0. For Z(s) € —K'(s), it is

sufficent that for almost every w we have

(

X(T)|F ()]
X(T)IF ()]
X(T)IF ()]

Vh € K(w,s): hZ(w,s) > 0.

But since G(s) € K (s) was arbitrary chosen and so was s, this is proven now. Hence

we have (4.2). Since 7 is finite, this implies that for almost every w we have

(4.3) VieT: Zw,t) e —K'(w,t) .
The measure () defined by

dQ

— = 7Zu(T

ap = 2D

is equivalent to P on F(T') and because of (4.3) the process R := ZLOZ is an element
of R. The process Zy(T)(R % X) is a P-martingale. Thus R+ X is a Q-martingale.
So finally we have found a (@, R) € P.

&
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4.3 Small Transaction Costs

Dalang et al. (1989), Kabanov, Kramkov (1994), Irle (1998, Chapter 5) and Shiryaev
(1999) prove Fundamental Theorems for frictionless markets with arbitrary € in
finite discrete time. They make use of the equivalence of “no arbitrage” and “no
local no arbitrage” that also holds in our general framework. “No local arbitrage”

means that for every ¢ and for every V € (LY(F(t — 1)))4*'we have the implication
VAX()>0 = VAX(t)=0.

In order to adopt the proofs of Dalang et alia (1989), Kabanov, Kramkov (1994),
Irle (1998, Chapter 5) and Shiryaev (1999) to our general framework we would need
the following Assumption 4.4.

Assumption 4.4 There is a R € R such that for every t € {1,...,T} and for
every V € (L°(F(t — 1)))4"! we have the implication

VARxX(t) >0 = VARxX(t)=0.
¢
It is easy to see that with Assumption 4.4 the proofs of Dalang et alia (1989), Ka-
banov, Kramkov (1994), Irle (1998, Chapter 5) and Shiryaev (1999) can be applied
to the process R+ X instead of X in order to prove that P # (). However, Assump-

tion 4.4 will not be satisfied in general since the “no local arbitrage” condition in

our framework corresponds to the following Assumption 4.5 that is in fact weaker.
Assumption 4.5 (No local Arbitrage) For everyt € {1,...,T} and for every V €
—K(t — 1)we have the implication

VeK(t) = VeoK().

An equivalent formulation involving R is:

For every t € {1,..., T} and for every V. € LY(F(t — 1)) such that for every
R € R satisfying

VIRE—1)*xX(t—1))<0 , V(RE)xX(t) >0
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there is a R € R such that
V(Rt)*X(t)=0.

&

Assumption 4.5 is weaker than Assumption 4.4, because R in Assumption 4.5 de-
pendson V € LY(F(t—1)))4", whereas it is the crucial point of Assumption 4.4 that
the R is the same for every ¢t € {1,...,T} and every V € L°(F(t — 1)))*"'. Since
the “no (local) arbitrage” condition in our general framework is in fact equivalent

to Assumption 4.5, this leads us to the following conclusion:

Assumption 4.4 actually states, that there is no local arbitrage, if and only if there

is no local arbitrage in a frictionless market with price process R x X instead of X.

We claim that Assumption 4.4 cannot hold, unless the transaction costs on the
market are small in comparison to possible price changes. This is easy seen from a
simple counter example. In fact, suppose at time ¢ — 1 you buy a certain security
at a price X;(¢ —1) with transaction costs \; X;(t —1), i.e., you pay (1+ X)) X;(t—1).
At time t you are going to sell the security at a price X;(¢) under transaction costs
piXi(t), i.e., you will get (1 — ;) X;(¢). Your self-financing portfolio strategy (0, H)

with trading only in security 7 and at time points ¢ — 1, ¢ is clearly given by
Hy(t—-1)=—1+X\)X;(t—1) , Hit—1)=1.
Ho(t) = (1 — ) Xi(t) — (L + X)) X(t—1) , Hi(t)=0.
Now suppose that (P-almost surely) we have
(1= pa) Xa(t) < (T+ X)Xt —1) .

Then you are going to make a certain loss, because even if the price of security i
increases to the highest possible values, you lose money because of transaction costs.

Moreover for any R € R we have

Thus, whatever R € R we choose, Assumption 4.4 is not satisfied for
V = —H(t — 1) = —1. Consequently a necessary condition for Assumption 4.4

to hold is: There is no certain loss because of transaction costs, i.e., transaction
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costs are small in comparison to price changes. In other words, if Assumption 4.4
holds, then this implies that transaction costs are negligible in as much as arbitrage

is concerned.

Of course one could ask, how small transaction costs have to be for Assumption 4.4
to hold. But we are not that much interested in sufficient conditions for Assump-
tion 4.4, because the next section will treat the general case without additional

assumptions.

4.4 (General Case

In a general market situation, i.e., when 2 is arbitrary, it is convenient to introduce
some notions of arbitrage opportunities weaker than that in Definition 4.1. One
speaks of a free lunch, if there is an asymptotic arbitrage with respect to a suitable
topology. The classical free lunches are defined with respect to the topology in
probability P (see Definition 4.6).

Free lunches will also apply to continuous time trading (for a further discussion
compare also for Chapter 7). Therefore, the content of this section is for the most
part almost identique with that of Chapter 7. Nevertheless, in order to provide
a closed representation for discrete as well as for continuous time, we are going
to present results and proofs separately for both cases. Of course this inavoidably
involves many redundancies which we deliberately accept, as they are not completely
needless. In fact, Theorems 4.14 and 4.17 are slighthly stronger than their continuous

time counterparts.

The notions of free lunches that we consider apart from classical free lunches can
be ranged in two classes. The first class consists of so called L*°-bounded free
lunches in terms of uniformly bounded sequences converging in probability P. This
convergence is invariant to an equivalent change of the probability measure. The
second class consists of free lunches in terms of sequences converging in some L?(Q),
1 < p < oo. Since this convergence obviously depends on the choice of (), it would
be dissatisfactory to define free lunches only with respect to convergence in a single
LP(Q) for some Q@ ~ P or () = P. Because then, the notion of arbitrage would
depend on the choice of an arbitrary probability measure () ~ P. In order to avoid

this arbitrariness we consider the class
Q:={Q~P:Vic{0,....,d}: X; € L'(Q)} .
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From Lemma A.8 we know that this class is not empty.
For @) ~ P we define the measures X;(7)Q by

dX(T)Q _ .
T—Xl(T) ,Z—O,...,d.

It is worth noting, that for @@ € Q the measures X;(7T)Q are finite and we have
X;(T)Q ~ P forevery i € {0,...,d}. The latter is a consequence of condition (2.2).
We denote

L = (L(F)*™

the space of F(T')-measurable random vectors,
L = (L®(F(T), P))**
the space of P-almost surely bounded random vectors and
Lhq = Xizo,.dlP(F(T),X;Q) ,1<p<oo, Q€Q

the space of random vectors V' = (Vg,...,V,) € L° such that V;X; € L?(Q, F(T))
for every i € {0,...,d}.

For O C LY we denote O the closure of O in with respect to the topology of
(componentwise) convergence in probability () ~ P, which is independent of @
because of () ~ P.

For O C L%, 1 < p < oo, we write O%,, for the closure of O in the L%,-norm
topology of L.

Although L* is independent of the choice of ) ~ P, we will deal with different
weak* topologies on L depending on Q. For @ ~ P let o(L®, L}(Q) denote the
locally convex topology on L* induced by the semi-norms

d
y: I® S TR, C’»—>2|/QCiZZ-XidQ| L Zelly,.

Then we write 6?@ for the closure of O in the o(L>, Lk )-topology of L>*(F(T)).

Definitions 4.6 A sequence (h", H")ew in A is called a (classical) free lunch, if
and only if for every n € IN we have —h™ € K(0) and there exists a C € CT such
that H™(T) converges to C' in probability. If in addition we have

Vn € N:max |H'(T)| <p P —a.s.
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for some B > 0, then we call this a L>®-bounded free lunch.

For1 <p < oo a sequence (K", H") e in A is called a LP-free lunch, if there exist
a probability measure Q € Q and a claim C € C* N LA, such that

Vn € N: HYT) € Lq, —h" € K(0)
and H™(T) converges to C in L.
¢

Proposition 4.7 Suppose B C A. Then there is no arbitrage in B, if and only if
VYhe —K(0): (C"B)nCct =0

Proof. Suppose there exists h € —K(0) such that (C"|B) N CT # (). Then there is
a (h,H) € B with —h € K(0) and H(T) € C*, thus an arbitrage in B.

Conversely, suppose there is an arbitrage (h, H) € B. Then we have h € —K(0) and
chByNnCt £0.

o

Proposition 4.8 Suppose B C A. Then there is no free lunch in B, if and only if
Vhe —K(0): (CPB) nct =0 .
Proof. Suppose h € —K(0) and (Ch|B)0 NC* # (). Then there exist a sequence

(R", H")pew in B and a claim C € C* N LY such that H*(T) converges to C in
probability P. Hence the sequence (h, H"),cn is a free lunch in B.

Conversely, suppose there is a free lunch in B. Then
CIB)’ nct £0 .

o

Proposition 4.9 Suppose B C A and let 1 < p < 0o. There is no LP-free lunch in
B, if and only if

14

XQmC+:Q).

VQ € Q Vh € —K(0) : ((C"|B) N L)

57



Proof. Suppose h € —K(0), Q € Q and

(CHB) N Liq) o NCH #10.

Then there exist a sequence (h", H")ne in B and a claim C' € C* N L% such that
for every n € IN we have H™(T) € L%, and H"(T) converges to C' in L’ ,. Hence

the sequence (h, H"),en is a LP-free lunch in B.

Conversely, suppose there is a LP-free lunch in B. Then there exists a ) € Q with

(CO1B) N Liq) o NCT #0 .

&

Remark 4.10 For a characterization of the absence of L*°-bounded free lunches
similar to Proposition 4.9 we will need to know that L, = Lo (F(T)) is separable
for every () € Q. This assumption is also necessary in so far as it is necessary for
the weak® topology of the closed unit sphere of L> to be metrizable (see Holmes,
1975, p. 72, Corollary 2). This property is needed to assure equivalence of weak*
closedness and weak* sequential closedness. Although the separability assumption
on L}(Q seems to be quite restrictive at first sight, it is in fact always satisfied in
our discrete time model, if F(T') is generated by o(X;(t) : i € {0,1,...,d},t € T)
and the P-null sets of F. This is true, because for any probability space (2, F, P)
the space L'(P, F) is separable, if and only if there is a separable F C F such that

VFe F\F: P(F)e{0,1}.

There F is separable, if and only if it is generated by a countable subset £ C F.
&

Proposition 4.11 Suppose F(T) is separable (c.f. Remark 4.10 ) and let B C A.
Then there is no L*-bounded free lunch in B, if and only if

VQ € Qvh € —K(0) : (CHB)NL®)x,NCT =0

Proof.

i) Suppose there exists a h € —K(0) and a Q € Q satisfying

(CMB) N L®) 5o NCT #£0 .
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Then there is a A > 0 such that the intersection of ((C*|B) N LOO;OQ NC* with

AS® = {C € L™ :esssup Y _ |C;] < A}

is not empty. The intersection

AS™® N ((C"B) N L®) 5,

is closed with respect to the (8%, L)-topology (c.f. the Krein-Smulian Theo-
rem in Dunford, Schwartz, 1958, p.429, Theorem 7). Since L}(Q is separable, the
o(AS>, LkQ)—topology is metrizable (c.f. Dunford, Schwartz, 1958, p.426, Theorem
1 or Holmes, 1975, p. 72, Corollary 2). Hence, for

C e XS N((CPB)NL®)y,NC*

there exists a sequence (H"),en such that for every n € IN we have (h, H") € B,
H™(T) € A8* and H™(T) converges to C' in the o(AS*, L)-topology. Like in
part ii) of the proof of Theorem A.9 we conclude that the sequence (H"(T))nen
converges to (' in probability . Moreover, it is uniformly bounded by A. Hence we

have an L*®-bounded free lunch.

ii) Conversely, suppose there is a L°-bounded free lunch, i.e., a sequence
(h™, H")pew, a claim C € Ct N L and a > 0 with (h", H") € B, h" € K(0),

ess sup 3" [H(T)| < 8

and H"(T) converges to C' in probability P. Note that from A™ € K(0) it is straight
forward that H™(T) € C°. Suppose @ € Q and for arbitrary Z € LY, define the
measures Z;X;Q, ¢+ = 0,...,d, in the usual way. Then it is clear that for every
i € {0,...,d} the sequence (|H!(T)|)nen is uniformly Z;X;Q-integrable. Hence
(|H™M(T)|)new converges to C' in L'(Z;X;Q) which implies

n—o0

lim 3 /Q HMNT)ZidXQ = Y /Q CiZidXQ .

Since Z was chosen arbitrary in L, , we conlcude that H™(T') converges to C' in

o(L>®, Lg). Hence we have

(CB)NL®)onCt #£0.
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Remarks 4.12 Let B C A and suppose there is no free Lunch in B. Then there is
no LP-free lunch in B. In fact, if (™, H"),en and C constitute a LP-free lunch, then,

because LP-convergence implies convergence in probability, there is a free lunch.

Proposition 4.8 implies that the postulation of no arbitrage in B C A is equivalent
with the postulation of no free lunch in B, if and only if the set (C"|B) is closed in the
topology of (componentwise) convergence in probability P. Analogues statements

result from Propositions 4.9 and 4.11.

¢

Definition 4.13 For Q € Q and 1 < g < oo define

» 49

Py ={Q:3ReR:(Q,R) € @

R(T) € Lo}

Theorem 4.14 Let1§p<oo,q:p%1forl<p, and ¢ = oo forp=1. If
VQ € Q:PHL#D,

then there is no LP-free lunch in A.

Proof. Let C' € K(T') N L, be a contingent claim and (h", H"),en a sequence in
A such that —h" € K(0) and H"(T) € L%, converges to C in L, for some Q € Q.
Choose an arbitrary (Q R) € 7332 Applying componentwise the Holder inequality
in account of R(T) 4Q ¢ L we get

| (H*(T) = C(T)] + R(T)) X(T)dQ

dQ

a0

= % [ 1HI (D) = GO R(T) Xi(T)

IN

2 (fpeen -cene xena)’ ([ ey xorwa)

This inequality is also valid in the case ¢ = oo with the convention
dQ dQ
dQ dQ

The above inequality and the convergence of H™(T) to C' in L%, imply that
(H™(T) x R(T))pen converges to C' in L;Q (remember that R(T) takes values in

/(R(T) ) X,(T )dQ:zesssup(R() >ER+.
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{1} x ]Ri). Because for every n € IN the portfolio process (h", H") € A is a super
hedge for H*(T') € L%, Lemma 3.9 implies, that H"(R+X) is a Q-supermartingale.
Consequently we have

0 > h(R(0)xX(0)) > Eg[H(T)(R(T)  X(T))] .

Thus we have

02 lim Bo[(H"(T) % R(T))X (T))] = Egl(C * R(T)) * X(T)] = 0
which in account of (C'x R(T))* X (T) > 0 results in

C(R(TYxX(T))=0.
Hence, for almost every w we have

Cw)(R(w, T)* X (w,T)=0,
which according to Proposition 2.4 implies that for almost every w
C(w) € 0K (w,T)

and thus C' ¢ C*.
¢

Theorem 4.15 Let 1 < p < oo, g = ﬁ for 1 <p, and g = oo for p =1. Suppose

there is no LP-free lunch in A. Then

VQ € Q:PYA£D .

Proof. Because A is convex in H, it is clear that for any Q € Q the set

(CONI%y), o

a convex cone in L%, (F(T)). Fix an arbitrary @ € Q. According to Proposition

in L% (F(T)) is a convex cone containing 0. The set C* N L%, is also

4.9 the absence of a LP-free lunch in A implies

(CON Liq) o NCr =0

Thus according to a separating hyperplane theorem, for every C' € C* N L‘S’(Q there
exists a Z°(T') € Lo (F(T)) satisfying

sup  Bo[B(Z°(T) » X(T))] = 0 < BqlC(2°(T) « X(T))]

BecnLh
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From

~K(T) c C°(T)
we have Z¢(T) € —K'(T). Otherwise there would exist a B € K(T) such that
Q(B(Z9(T)« X (T)) <0)>0.
Defining
F={B(Z(T)» X(T)) < 0} ,

we had —Blp € —K(T) and there would exist a F(T)-measurable F C F with
—Blp € K(T) N L%. Then we had Eg[—1zB(Z(T)» X(T))] > 0, thus a contra-

diction to the separating inequality. Hence, we conclude Z§(T') > 0.

Remembering Xo(7T') = 1, we can renormalize Z°(T') in order to get Fo[Z§ (T)] =1
and define a -dominated probability measure Q¢ by

dQ° _

=75 (T) .
dQ 0( )
In summary, for every C' € C* N L%, there exists a Z9(T) € —K'(T) N L%, and a
d
P-dominated probability measure Q¢ with d—g = Z§(T).

Denote M the set of P-dominated probability measures Q¢, C € Cf N L’)’(Q. For
every F' € F(T) with Q(F) > 0 there exists a C' € Cf N L%, with Q°(F) > 0. In
fact, the claim C':= 1x(1,0,...,0) is an element of C* N L, satisfying

0 < E[C(Z°(T) » X(T))] = Eql1rZy (T)] = Q°(F) .

Thus (2, F(T),Q) and M meet the assumptions of the Halmos-Savage Theorem.
According to this theorem, there is a countable subfamily N C M that is equivalent
to P. This means, there exist a sequence (C"),en in Cf N Lk, and a sequence
(A")pew in R with Vn : A, > 0 such that 3, A, = 1 and Q = 3, \"QY is equivalent
with P, i.e.,

(4.4) S AZE > 0.

Since for every n € IN we have Z% € L%, there exists a sequence (¢,)pen in Ry
such that

Yn e NVie{0,...,d}: 0<||Z%]|, < cn -
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There, ||.|[; denotes the norm in L%, defined by
IVl = S50 irxaQ) .

Define \n
Z(T):= Z C—Z"(T)

in terms of convergence in the Banach space L%g. Then we have 0 < 1Z(T)|], < 1
and Z(T) € F(T). Moreover, since for every w € Q the cone —K'(w,T) is closed,

n k
it follows by almost sure convergence of a subsequence of (Y —Z*(T)),en, that

Z(T) € —K'(T). Tn addition, because of (4.4) we have =
0< X 22T Z(T) € (@)
Thus, if we define
Z(T) := ﬂ : @ = Zy(T) ,
Eq[2o(T)] dQ

we obtain a P-equivalent probability measure (). The definition of Z (T) also yields

(4.5) sup Eg[B(Z(T)* X(T))] =0 .

BeCo
Moreover we have Z(T') € L.
Let us define the process Z = (Z;)icqo,....a} by

Eq[Zi(T)Xi(T)|F(t)])
X () ’

Z;(t) = (t=0,....,T—1).

With this definition the process Z x X is a ()-martingale .
We want to show now that
(4.6) VieT:Z(t) e —K'(t) .

We already know that Z(T) € —K'(T). For a fixed s € T\ {T'} we take an arbitrary
G(s) € K(s). Now we consider an arbitrary nonnegative £ € L*(Q, F(s)) and the
sequence of buy and hold strategies (0, H"),en defined by

Hn(wat) = —f(w)G(w, 5)1{maxi|Gi(s)|§n}(w7t)1{s ..... T}(wat)
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Since —AH"(t) € K(t) for all t € T, we have (0, H") € A. Moreover, the strategy
(0, H™) is a super hedge for the claim

C™ = H™(T) = —£G(5) L {max, () <n} (@, 1)

and hence C" € C°. Tt is clear that C™ € L, (F(T)) . Since XQ is a finite mea-
sure, (4.5) and the tower properties of conditional expectations yield the following

calculation for every n € IN:

0

v

Ep[C™(Z(T) » X(T)] 2 =Epl§G(5) 1 max; |cu(s)<n} (Z(T) x X(T)))]
= —Ep[Ep[EG(5) 1 max, c:(s)<n} (Z(T) x X (T)) | F (s)]]
= —Ep[¢Ep[G(5) L max, 6:(s)<n} (Z(T) x X (T)) | F (s)]]
= —Ep[EG(5) 1 max; (6i(s)<n} EPI(Z(T) x X(T)) | F (s)]]
= —Ep[€G(s) L maxi 16i(s)|<n} (Z(5) x X (3))] -

Since { was arbitrary chosen, this implies G(s)1max, |G;(s)|<n}Z(s) > 0 for every
n € IN and thus G(s)Z(s) > 0. In order to conclude Z(s) € —K'(s), it is sufficent

to show that for almost every w we have
Vh € K(w,s): hZ(w,s) > 0.

But since G(s) € K(s) was arbitrary chosen and so was s, this is proven now and

we have (4.6). Because 7 is finite (4.6) implies that for almost every w we have

(4.7) Vte T: Z(w,t) € —K'(w,1) .

As seen above, the measure Q defined by % = Zy(T) is equivalent to Q ~ P on

|
F(T). Because of (4.7), the process R := 7Z is an element of R satisfying
0

dQ
Q

The process Zo(T)(R « X) is a Q-martingale and thus R « X is a Q-martingale.
So finally we have found a (Q,R) € Pg. Since Q € Q was arbitrary chosen, we
conclude that for every @ € Q we have P}, # 0.

&

R(T) = Z(T) € Lkq
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Theorem 4.16 Let 1 < p < o0, ¢ = p%l for 1 <p and g = oo for p=1. There is
no LP-free lunch in A, if and only if

VQ € Q: Py A£D .

Proof. Suppose there is no L? free lunch in A. Then according to Theorem 4.15
we have P # (). For the other implication see Theorem 4.14.

o

Theorem 4.17 If P # (), then there is no L>®-bounded free lunch in A.

Proof. Let C' € K(T)NL*> be a contingent claim and (h™, H") a sequence in A such
that —h" € K(0), ||[H"(T)||oo < B for some § > 0, and H"(T) converges to C' in
probability P. Choose an arbitrary (Q, R) € P. From R(T) € L}(Q we see that for
every i € {0,...,d} the measure R;X;( is finite. Hence, for every i € {0,...,d} the
uniformly boundedness of the sequence (H(T)),ew and the convergence of H'(T)
in probability imply that (H"(T)),ew converges to C' in
LzR*X)Q = X, gLl (R XQ) .
Since for every n € IN the portfolio process (h™, H") € A is a super hedge for

H™(T) € L;Q, Lemma 3.9 implies, that H"(R+ X) is a Q-supermartingale and we

have
0 > h(R(0)* X(0) > E[H(T)(R(T)  X(T))] .
This implies

0> lim Eg[H™(T)(R(T) » X(T))] = B5[C(R(T) % X(T))] > 0

which in account of C'(R(T) » X(T')) > 0 results in
C(R(TYxX(T))=0.
Hence for almost every w we have
Cw)(R(w, T)* X(w, T)=0.
According to Proposition 2.4 then for almost every w we have
C(w) € 0K (w,T)
and thus C ¢ C*.
¢
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Theorem 4.18 Suppose F(T) is separable (c.f. Remark 4.10 ). If there is no
L>®-bounded free lunch in A, then P # (.

Proof. Because A is convex in H, for any () € Q the set W;Q is obviously
a convex cone in L containing 0. The set C* N L™ is also a convex cone in L* .
Fix an arbitrary () € Q. According to proposition 4.11 the absence of L*°-bounded
free lunches in A implies

CnI=) g, nct =10
Thus according to a separating hyperplane theorem, for every C' € C*t N L* there

exists a Z°(T') € Ly (F(T)) satisfying

(4.8) sup  Ego[B(Z°(T)* X(T))] =0 < EQ[C(Z°(T) x X(T))] .

BeCOnLee

From

~K(T)cc®
we have Z9(T) € —K'(T). Otherwise there would exists a B € K(T) with
Q(B(Z°(T)* X(T)) < 0) > 0. Defining
F:={b< B(Z(T)*X(T) < 0}

then, we had —Blp € —K(T) and there would exist a F(T)-measurable F C F
with —B1; € K(T)NL® C Lkq. Then we had Eg[—1;B(Z(T)x X (T))] > 0, thus

a contradiction to the separating inequality (4.8). Hence we conclude Z§(T) > 0.

Remembering X((T) = 1 we can renormalize Z%(T) in order to get Fo[Z§(T)] =1
and define a Q-dominated probability measure Q¢ by % = Z&(T).

In summary, for every C'€ C* N L™ there exist an Z9(T) € —K'(T) N L and a
P-dominated probability measure Q¢ with % = Z¢(T).

Define
Cy={CeCt:Vi>1:C;=0}

and deonte M the set of P-dominated probability measures Q¢, C' € Cf N L*°.

Then for every F € F(T) with Q(F) > 0 there exists a C' € Cj NL> with Q°(F) > 0.
In fact, the claim C' := 1p(1,0,...,0) is an element of C* N L™ satisfying

0 < Eo[C(Z°(T)  X(T))] = Eq[1rZg (T)] = Q°(F) .
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Thus (2, F(T), Q) and M satisfy the assumptions of the Halmos-Savage Theorem.
According to this theorem there is a countable subfamily A C M that is equivalent
to P. Thus, there exist a sequence (C™),en in Cf N L™ and a sequence (A\"),en in
IR with )\, > 0 for every n € IN such that >, A\, = 1 and Q = 3, \"Q¢ is equivalent
with P, i.e.,

(4.9) S AZEm > 0.

Since for every n € IN we have Z% € L}(Q there exists a sequence (¢,)nen in Ry
such that
VneIN: 0<||Z% <c,

where ||.||; denotes the norm in Lx,.

Define then 3\
2(1) = ¥ 527 (T)
in terms of convergence in the Banach space L}(Q. Then we have
0<|IZ(T)lL <1

and Z(T) € F(T). In addition, since for every w € Q the cone —K'(w,T) is closed,
n \k

it follows by almost sure convergence of a subsequence of (Y “—Z*(T)),ew that
k=1 Ck

Z(T) € —K'(T). Moreover we have 0 < Zy(T) € L'(Q), because of (4.9). Thus, if

we define

Z(T dQ
Z(T) = # , aQ = Zo(T)
EqlZy(T)] ~ d@

we get a P-equivalent probability measure Q Moreover from the separating in-
equality (4.8) we have

(4.10) sup Eg[B(Z(T)+~X(T))]=0.

BeCOnLe>
Like in the proof of Theorem 4.15 we define a ()-martingale Z x X and the following

assertions can be proved by copying the corresponding parts of the proof of Theorem
4.15.

- dO
The measure (), defined by

% = Zy(T), is equivalent to Q ~ P on F(T') and since

for almost every w we have
VteT: Z(w,t) € —K'(w,t),
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the process R := Z%)Z is an element of R satisfying
dQ
dQ
The process Zo(T)(R % X) is a @-martingale and thus R x X is a Q-martingale. So
finally we have found a (Q, R) € P.

¢

R(T) Z(T) € Ly -

Theorem 4.19 There is no L®-bounded free lunch in A, if and only if P # ().

Proof. Suppose there is no L*-bounded free lunch in A. Then according to Theo-
rem 4.18 we have P # (). For the other implication see Theorem 4.17.

&

4.5 Non-Degeneracy Assumption

As we have already stated in Remarks 4.12, the condition of no arbitrage in A is
equivalent to the condition of no free lunch in B, if and only if the set C" is closed
in the topology of (componentwise) convergence in probability P. We show that
the latter condition holds, if the price process X satisfies a certain non-degeneracy
condition. For frictionless complete discrete time markets with finite 2, this as-
sumption on the price process will reduce to the no-arbitrage condition. Hence this
non-degeneracy condition is not very restrictive. In fact we will show that it is sat-
isfied for standard market models such as the Cox-Ross-Rubinstein or a discretized
Black-Scholes model. Unfortunately, keeping the non-degeneracy condition as weak
as possible requires an elaborate formulation of this condition that may seem a
little obscure at first glance. But we will state a Lemma that helps to verify the

non-degeneracy condition for standard market models.

Let us first introduce some usefull notation. For every w € 2 and every s € T, like
Koehl et al. (1999), we define the set

.....

There the process Y° = (Y*(t))i=o,..r denotes the process Y stopped at time s,
defined as
Vi(w,t) =Y (w,min{s,t}) , (w,t) € Q2xT .
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=U,...,

often throughout this section , we assume IF = IF¥X, i.e.,
(4.11) VvieT: FX@t)=F(@).

Condition (4.11) poses actually no additional restrictions on trading, if at time ¢t € T

traders’ informations about future security prices are completely “mapped” in the
conditional distribution P~ (.|FX(t)).

We also need an additional assumption on the differential cones. But this assumption
will be seen to hold for the stock and currency markets featured in Sections 2.2 to
2.6.

Assumption 4.20 For everyt € T the (according to Remark 2.3) F(t)-measurable
multifunction K (.,t) is polyhedral the sense of Lemma B.8. Thus for every t € T
the number of extreme points and extreme directions of K (w,t) is uniformly bounded
in w € Q. For definitions see Rockafellar(1970, Section 19).

Observe that by Corollary 19.2.2 and Theorem 19.1 in Rockafellar (1970) this as-
sumption is equivalent to the assumption that (w,t) € Q x T the dual cone mul-
tifunction K'(.,t) is polyhedral and for every t € T the number of extreme points
and extreme directions of K'(w,t) is uniformly bounded in w € Q. (Note that in

Rockafellar (1970) our dual cones are called polar cones.).
¢

Remark 4.21 Assumption 4.20 is satisfied for the stock and currency markets fea-
tured in Sections 2.2 to 2.6. Omne only needs to look up the definitions of the
corresponding K/ (w, ), —K'(w,t) and/or K}(w,t), —K'(w,t) in order to verify this
fact.

The following non-degeneracy assumption on the price process is a generalization of
a no arbitrage condition known for finite frictionless complete markets in discrete
time (c.f. Elliott, Kopp, 1999, Proposition 3.3.4).

Assumption 4.22 There ezist a set F € F with P(F) = 1 and a F*-adapted
process R € R, such that for every G € F with G C F, P(G) = 1 and every
t€{0,1,...,T — 1} there exist random vectors

XP(t), RP(t) : (0, FX(t)) — (R, B™) | p=0,...,d
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such that the following conditions are satisfied for every w € G:
XP(w,t) € X(X(w,t)NG,t+1)
RP(w,t) € RN (w,t) NG, t+1)
span(RP(w,t) * XP(w,t) : p=0,...,d) = R*™
R(w,t) * X (w,t) € strconv(RP(t) x XP(w,t) :p=0,...,d) .
There, strconv(RP(t) x XP(w,t) : p = 0,...,d) denotes the set of strict convex

combinations

d
S ONRP(t) % XP(w,t) : Vpe{0,...,p}: A >0.

p=0

&

In order to elucidate Assumption 4.22 let us look for an interpretation. For given t €
{0,1,...,T — 1} the random vectors X?(t) are nothing else, but F*~ (¢)- measurable
selections from the multifunction G > w +— X (X (w,t) N G,t+ 1) C R The
same is true for the random vectors RP(t). Assumption 4.22 then postulates that
one may select X?(t) and RP(t) , p = 0,...,d, in such a way that RP(t) » X?(¢),
p=0,...,d, are linearly independent and R(t)* X (¢) is a strict convex combination
of them. This means, that starting from R(¢) x X (¢) at a certain time point ¢ the
modified price may move in one of d + 1 directions to some RP(t) » X?(t). The span
of these directions has dimension d. The dimension is not d + 1, because X, does

not change.

Now let us show that Assumption 4.22 is weaker in content than the non-degeneracy
conditions used by Pham, Touzi (1999) and Pham (2000) although their results
are not as strong as ours are going to be. For a stock market with proportional
transaction cost factors, Pham, Touzi (1999, Lemma 3.2) prove that there is no local
arbitrage, if and only if there is no local free lunch (c.f. Section 4.3). They require
that the conditional covariance matrix Varp(X (¢)|F(t — 1)) exists and is invertible.
Moreover their result is only locally valid. That means their result actually applies
only to the two time points market X (¢ — 1), X(¢). The reason for this is that “no
local free lunch” is not equivalent to “no free lunch” in general. According to Touzi
(2000, Remark 3.2), if Viarp(X (¢)|F(t — 1)) exists and is invertible, then this yields

the implication
(4.12) ¥V € (LX(F(t - 1)) (VAX (1) =0 = Vie{l,....d}: Vi=0).
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By the way, note that although the title of Touzi (2000) contains the words “cone
contraints” these constraints refer to constraints such as “no shortselling” and are

not comparable with our differential cone constraints.

Let us now turn to Condition (4.12) that has a straightforward interpretation. It
states that whenever one holds a portfolio A at time ¢ — 1 with non-zero positions in
at least one security i € {1,...,d}, then the spot value of this portfolio will change
from time £ — 1 to time ¢ with positive probability. Moreover if transaction costs
are “small”, then the absence of arbitrage implies that there is clearly a positive
probability for an increase as well as for a decrease of the portfolio’s value. Hence,
the only way to stay on the safe side is to hold all the capital in the riskless asset 0.
Obviously condition (4.12) agrees with what everybody experiences when investing

in securities. Let us state this formally as

YV e (L°(F(t —1)))*, Z Vil £ 0 :

(4.13) P(VAX(H) >0 | F(t—1)) P(VAX(t) <0 | F(t—1)) > 0.

The following argumentation is to show that in the absense of arbitrage, condition
(4.13) is stronger “in content” than Assumption 4.22. Only because of measurable
selection questions, we are not able to derive Assumption 4.22 from condition (4.13)
in due form. But the argumetation will reveal, that this is only a matter of technique,

that will vanish when considering concrete models.

Assume now, that there is no (local) arbitrage opportunity and condition (4.13)
holds for two fixed time points ¢ — 1,¢. Consider the class V of portfolios V €
(L°(F(t — 1)))%*! such that for almost every w € Q we have

Vie{l,...}: Vi(w) e {-1,0,+1} .
Then for every V € V we have
VAX Z szgn Z l{V >0}AX Z 1{V<0}AX ( )
=1 =1
According to condition (4.13) then, every V' € V satisfies

<Z1{V>U}AX Zl{v<0}AX \ft—1)> >0

=1

71



as well as

d d

P (Z 1{\/i>0}AXi(t) < Z 1{Vi<0}AXi(t) ‘ F(t— 1)) >0.

i=1 i=1
Thus we conclude that for every B = {0} x By X...x By with B; € {(—o0,0), (0,00)},
i€{l,...,d}, we have

P(AX(t) e B|F(t—1)) >0.

From there it is clear that for almost every w € Q there exist X?(w,t), p=0,...,d,

such that
XP(w,t) € X(EF (w,t),t+1)

span(XP(w,t) :p=0,...,d) = R
X (w,t) € streonv(XP(w,t) :p=0,...,d) .

Defining then R = (R(t))we7 by R(t) :=1,t € T, we nearly have reached Assump-
tion 4.22 except for some technical matters. In order to see this define

B:={B={0} xB; x...xBg:Vie{l,...,d}: B; € {(—00,0),(0,00)}} .

Every B € B is convex. Moreover, for every B € B and for every w € () there is a

closed convex set B (w) C B such that for almost every w € Q we have
P(AX(t) € B(w)|F(t—1))(w) > 0.

However, we do not know, wether we can choose B(w), w € € in such a way that the
multifunction w — B(w) is F* (t—1)-measurable. If we knew this, then we would be

able to derive Assumption 4.22 in due form. This is stated by the following Lemma.

Lemma 4.23 Suppose that for every t € {0,...,T —1} there are F* (t)-measurable
closed- and convez-valued multifunctions BP(t), p = 0,...,d, from Q to R4 such

that the following conditions hold for almost every w € §2:

(4.14) Vp € {0,...,d} : P(X(t+1) € B*(w,t)| F*(t))(w) >0

Vo= @°...,v%) € Bw,t) x...x BYw,t): X(w,t) € strconv(v? : p=0,...,d) ,
Vo = (v°,...,vY) € Bw,t) x ... x B¥w,t): span(v’ :p=0,...,d) = R*" .

Then Assumption /.22 holds.

Note, that X (@0,t+ 1) € BP(w,t) is possible for & # w and therefore ( 4.14) makes

sense.
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Proof. For every ¢t € {0,...,7 — 1} there is a set F(t) € F(t) with P(F) =1
such that the almost sure conditions hold for every w € F(t). Define F =
Neego,...,r—13 F(t). Suppose G C F with P(G) = 1. Then for w € G the condi-
tions hold for every ¢ € {0,...,7 — 1}. Since the multifunctions

w BP(w,t) , p=0,...,d,

are FX (t)-measurable closed- and convexvalued, there exist F* (¢)-measurable se-
lections X?(t), p=0,...,d, such that

Vwe G : XP(w,t) € B (w,t) .
Choosing R = (R(t))er as R(t) = 1 and
VieT: RI(t)y=1 ,p=0,...,d,i=0,...,d.

The remainder is obvious.

¢

In order to illustrate Assumption 4.22 further we are going to verify it explicitely
for two established standard market models. Our first example is very simple, but

it has a little surprise in store.

Exampel 4.24 (CRR-Model with transaction costs factors) Consider a stock mar-
ket as pictured in Section 2.3 with only two assets, i.e., d = 1. Let T' € IN and the

price processes Xy, X; starting with

Xo(0)=1, X;(0)=2z>0
and then evolving according to

Xo(t)y=1 ,te{l,...,T}

Xi(t) = X, (t—DE@W) , te{l,...,T}

There let £(t),t € {1,...,T} be mutually independent random variables on (Q2, F, P)
with distribution



Let F(0) = {Q,0} and F(t) = o(&(s) : s < t) for every t € {t,...,T}. Define
IF := (F(t))ieqo,..,r}- Then the two-dimensional price process X = (X, X;) is IF-
adapted. Let us look for necessary and sufficient conditions on transaction costs
and price processes for Assumption 4.22 to be satisfied in this market. First of all

it seems sensible to define for every ¢

X'(t)=X(t)u .

Let us define K{(w, t) according to Section 2.3 and R according to Definitions and
Assumptions 2.1. Then we have R € R if and only if

V(w,t) € QX T : Ry(w,t) =1, 1 —p1 < Ry(w,t) <14 A .

It is clear now that in the case d < 1 < u we only need to choose Rj(t) = 1 for
p=0,1,7 =0,1, t € T, in order to satisfy Assumption 4.22. But if we have
transaction costs, we do not really need to have d < 1 < u for Assumption 4.22 to
hold. In order to see this, observe first that

RY(t) » X°(t) = (1, R%(t) X, (t)d)

RY ()« X°(t) = (1, R{ () X1 (t)u) .

Thus the condition
span{R°(t) » X°(t), R'(t) » X' ()} = IR?

is equivalent with
(4.15) RV X, (t)d # Ry (1) X1 (t)u .

Moreover, the condition
Ry (t) % X1 (t) € streconv(RY(1) X, (t)d, R{ ()X, (t)u) ,
is equivalent with the existence of a 0 < & < 1 such that
(4.16) Ri(t)x X1(t) = eR)(t) » X1 (t)d + (1 — &) Ri (t) x X1 (t)u .
From (4.15) and (4.16) we see that the inequalities
(4.17) VieT: (1+X0)Xi(t) > (1 —p)Xi(t)d
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(4.18) VEeET: (1—WXi(t) < 1+ X0 .

are sufficient for Assumption 4.22 to hold for any choice R € R. Surprisingly,
conditions (4.17) and (4.18) are also necessary for the absence of arbitrage. Indeed
if one of these conditions is violated, then it is easy to construct an arbitrage strategy.
For A = p = 0 conditions (4.17) and (4.18) correspond exactly to the no-arbitrage
condition d < 1 < u known for the frictionless CRR-Model.

¢

Exampel 4.25 (Black-Scholes-Model with transaction costs, observed at equidis-
tant time points) Consider a stock market with two assets, i.e., d = 1. Let T € IN

and the price processes Xy, X; starting with
Xo(0)=1, X;(0)=2z>0
and evolving aacording to
Xot)y=1 ,te{1,...,T}

Xl(t):Xl(t_l)g(t) ) tE{l,...,T} :
There £(t),t € {1,...,T} are identically distributed, mutually independent random
variables on (€2, F, P) with logarhythmic normal distribution
o2
me(t) ~ N~ Z0)
Let F(0) = {Q,0} and F(t) = o(&(s) : s < t) for every t € {1,...,T}. Define

.....

adapted. Choose an arbitrary G € F with P(G) = 1. Since the T-dimensional
random vector £ = (£(1),...,&(T)) has a T-dimensional log-normal distribution,

there obviously exist some
O<di<up<oo ,t=1,...,T,

such that the following conditions i) and ii) are satisfied:

i) For every y = (y1,...,yr) € {d1,u1} X ... x {dp,ur} we have

ye& (@) .
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ii) For every t € {1,...,T} we have
(1+ X)X (t) > (1 — p)X:(t)d,

(1—p)X1(t) < (14+ X)X (t)uy

From the previous Example 4.24 it is clear then, that Assumption 4.22 is satisfied.
&

The above discussion and illustration has shown that Assumption 4.22 is simply
a quite natural non-degeneracy condition for the price process X in as much as it
demands a certain minimum standard for modelling the uncertainty of asset price
movements. Loosely spoken, the more “uncertain” prices evolve the more “likely”
to hold is Assumption 4.22.

Our aim now is to proof, that under Assumption 4.22 the set C° is L°-closed in the
topology of componentwise convergence in probability. This is done in Theorem
4.33. By Theorem 4.32 we are actually going to show that C° is even closed with
respect to almost sure convergence. In order to do this we first need to prove a

lemma of convex analysis.

Lemma 4.26 Suppose B C R" is a bounded set and K C IR" is a conver cone
containing 0 and with full dimension (this implies intK # (). Then there exists
x € R" such that B C x + K.

Proof. As for given z € IR" we have B C x + K, if and only if

T € ﬂ(b_K)a

beB

we only need to show

M- K) £0.

beB
Because B is bounded, we can find a cube ) with B C (). Thus we actually have

to prove

Ng—K)#0.

q€Q
It is easy to verify that for ¢;, ¢, € @ and X € [0, 1] we have

(1 —K)N(@-K)CMa—K)+(1-MN(g@-K)=A+(1-Ng - K.

76



In fact, t = ¢ — k1 = ¢ — k2 € (@1 — K) N (g2 — K) implies
z=Mq — k1) +(1=N(g2— k) € M1 — K) + (1 = MN)(g2 — K) .

Given the 2" corners ¢;, ©+ = 1,...,2", of the cube ), we have the representation
Q =conv({g :i=1,...,2"}) and thus

N @-K)c ((¢g—-K).

i=1,...,2" qeQ
Hence it suffices to show

(1.19) N @-K)#0.

Now observe that (4.19) holds if and only if there exist A; > 0 and k; € K, i =
1,...,2" such that
Vi:iq — Mk = q — Nk

This is equivalent to
Vi: Mk — ANk =q — G -

Hence (4.19) is true, if and only if there exist A\; > 0 and k; € K such that
Vilql—(jiEAlkl—K .

But this is always true, because K is full dimensional and hence for every k €
int K # () one has
R"={Me:A>0} - K.

¢

Theorem 4.27 Assume I = F*. Suppose Assumption 4.20 is satisfied, As-
sumption 4.22 holds with F € F, P(F) = 1 and let A € F such that A C F,
P(A) = 1. Fizrat € {0,...,T — 1} and assume V(t) € (L°(F(t)))*" and
V(T) € (LY(F(T)))".

Denote HY (A) the subclass of admissible portfolio strategies (h, H) € A satisfying
Vwe A: Hw,T)=V(w,T) ,

Vwe A:V(w,t) — H(w,t) € K(w,t)
(4.20) Viw,s) e Ax{t+1,....,T}: —AH(w,s) € K(w,s) .
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Then the set
’HV(A,t) ={H(t): (h,H) € ’HV(A)}

is F(t)-measurable bounded on A, in the following sense: There ezists a closed-
valued, F(t)-measurable multifunction A with bounded values A(w) CIR forwe A
and satisfying

Vwe A: {H(w,t): Ht) e H (4,t)} C Aw) .
Moreover A is polyhedral in the sense of Lemma B.8 and hence the closed-valued

multifunction extrA is F(t)-measurable .

Proof. Since this proof is geometric in principle, we could not always achieve a
pleasantly compact notation. Therefore we want to apologize in advance for the

sometimes proliferating notation.

As a starting point for the proof, observe that (4.31) implies
T
Vwe A:HY (w,t) = (V(wt) = Kw, )N [V(w,T)+ > K(w,s)]| .
If for w € A we define
T
Aw) :={h V' €l(w,t): he (V(,t)— KW', )N (V(w',T) + > K(W, s))}

then since every H(t) € HY (A, t) is constant on the sets ¢(w,t), we obtain
Vw e A: {H(w,t): H(t) € HV (A, 1)} C Aw) .

Starting from A, we are going to construct a closed-valued multifunction A from Q
to IR such that for arbitrary @ € A we have

A@) Cc A@)

and A(@) is bounded. Moreover A will be F(k)-measurable, i.e., for every closed set
B c R we have

~ ~

(4.21) A (B)={wecA: Aw)NB#0} € F(t) .
The assertions on ea:trf&(w) are going to be revealed occasionally.

Construction of A: Let R € R be the process as supposed in Assumption 4.22.

Then the following statements are true:
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e For every p € {0,...,d} there exist
XP(t) 1 (Q, F(1) = (RT, B

RP(t) : (, F(t)) — (R, B™Y)

such that
Vw € A: XP(w,t) € XX (w,t)NAt+1),

Vw € A: RP(w,t) € R(X(w,t) N At +1) .
e For allw € A C F we have
span (RP(w,t) * XP(w,t) : p=0,...,d) = R*"!

R(@,t) x X (w,t) € strconv (RP(@,t) x XP(©,t) :p=0,...,d) .

Henceforth, we are going to use the notation

(Rx X)(w,t) = R(w,t) * X(w,1) .

. t+1 t+1
Now, for every p'™' = 0,...,d and every choice of X?"" | RF"" we are able to choose

a function (p'™!, &) — w(p'*! @) form Q to Q such that for every @ € A we have
wp™t o) e X (o, )N A .
Then for these functions we have
X(w@™w),t+1) = X7 (@,1),

Rw(p™,@),t+1) = R*" (&,1)

and consequently
(4.22) span((R* X)(w(p™, ), t +1) :p =0,...,d) = R

(4.23) (Rx X)(w,t) € strconv ((R*X)(w(pt“,@),t—i— D:ptt=o,..., d) .

If we pursue this procedure inductively along the time index, then for every
wp™, . pf),@) € K (wh ™t p L e),s—1)NA

we obtain



such that
(4.24)  span((Rx X)(w®™, ..., p*™ @), s+ 1) :p" =0,...,d) = R*!
and

(Rx X)(w(p™™,...,p%,®),s)

(4.25) € streonv ((R*X)(w(p“’l, LLptth ), s+ 1) pttt =0, d) )

With this choice now, in account of
{wp™, .. .,p%0):p*€{0,...,d},s=t+1,...,T} C {(w, k)
we define for every w € A

Aw) = (V(w,t) — K(w,t)) N

s=t+1

T
ﬂ(pt+1 ..... pT)e{0,...,d}T—t-1 (V(w(p”l, cee ,pT, (I)), T) + Z K(w(pt+1, cee ,ps, (D), S))) .

From this construction it is clear that A(@) C A(@) for every @ € A. Moreover in
account of Assumption 4.20 we see that for every w € A the set A(w) is polyhedral
and the number of extreme points and extreme directions of A(w) is uniformly
bounded in @ € A. In particular, A is a polyhedral multifunction in the sense of

Lemma B.8 (for the measurability conditions see below).
Boundedness of A: For this purpose we need a notion of convex analysis:

If K is a nonempty convex set, then its recession cone is defined as the set (c.f.
Rockafellar, 1970, Theorem 8.1 )

0"K:={ye K:Vke K:y+ Ke K} .

Obviously, if K is a convex cone containing 0, then it’s recession cone coincides with
K.
Observe that every
T
Vw@E™),T)+ Y Kw@™,....p"),s))
s=t+1
is a closed convex set with recession cone EsttH K(w(p'™,...,p%),s)) whereas the

closed convex set V(w,k) — K (@, k) has the recession cone —K(w,k). According
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to a corollary and a theorem in Rockafellar (1970, Corollary 8.3.3, Theorem 8.4) a
nonempty intersection of closed convex sets is bounded, if and only if the intersection

of all their recession cones consists of {0}. Hence we need only to prove
T
(4.26) (—K(@,1)) N Y Kw@™,...,p%),s)) = {0}.
(pt+l ..... pT)E{O ..... d}T—t—l s=t+1

At this point it is usefull to observe, with the equality

K(w,s)={h e R*"": inf h(rxX(w,s))>0}

reKj(w,s)

in mind, that for every 7 € K{(w, s) we have
(4.27) K(w,s) C {h € R : h(rx X (w,s)) > 0} .

We claim that the set

ﬂ Z K(W(pt+17"'7p57@)78))

(pt+1,...pT)e{0,..., d}T—t=1  s=t+1

is a subset of

{he R vp®™ e {0,...,d} : h(Rx X)(w(p'™,@),t) > 0}

In fact for given (pt*!,...,pT—1), because of (4.27), (4.22) and (4.25), we have the

inclusion

N Kw@™,...,p",0),T))

(pt+l7"'7pT):(pt+17"'7pT_1):(pt+l7"'7pT_1)

= { h € Rd+1 :v(pt-l—l, s '7pT)7 (pt+17' s 7pT_1) - (pt+1,. .. ,prl) :

h(Rx X)(w(®™,...,p", @), T) > 0}

C { heR* : h(Rx X)W, @), T~ 1) >0} .

Analogously, for given (pt+1,... pT=2) we have

ﬂ K(w(pt“,...,pT*l,@),T—1))

(ptHh,.pT):(pt e, pT—2)=(pt+1,... pT—2)

c {h e R*™ : h(R* X)(w(p™t, ..., pT-2,@), T —2) >0}
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and also

{ h E ]R'd+1 :\v/(pt+17"'7pT_1)7 (pt+17"'7pT_2) = (pt+17"'7pT_2) :

M(R* X) (@@, .., p" @), T - 1) > 0}

C {he R™ R+ X)(w(p™!,....pT2,w),T - 2) >0} .

This implies

N > KW@, ptw),s))

(pt+1’...’pT):(pt+1,_“,pT72):(pt+1,_“’pT72) SZT_I

C {h e R : h(Rx X)(w(pH!,...,pT—2,w), T - 2) > 0} .

Repeating this argumentation for 7'— 3, ...,t+ 1 one can deduce the desired state-

ment. Because of
~K(w, k) C {h € R*™ : h(R* X)(w, k) <0}

we conclude that

(—K (@, k) N N i K(w@™',....p\0),0)
(PFH . pT) {0500 d} T—E 1 1=+ 1
is a subset of
{0} = {heR“™ :vp*ec{o,...,d}: h(RxX)(w(p™t a),t)>0
h(R* X)(@,k) <0} .
There the equality to {0} is a consequence of (4.22) and (4.23). In fact
h(RxX)(@,k) <0

by (4.23) implies that there exist A\y+1 > 0, p'™* =0,...,d, such that
d
> Apsh(R* X)(w(p™ w), ) <0 .
pt+1:0

Then from
vpitt e {0,...,d} : h(R* X)(w(p', @), 1) >0

we have

S Ay h(Rx X)(w(p™h, @), 1) =0 .

pt+1:0
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Consequently, (4.22) implies h = 0. This shows (4.26).

F(k)-measurability of A: We have to show (4.21). According to it’s definition,

the multifunction A is the intersection of the multifunction
W Vo, t) — K(w,t)

and the finitely many multifunctions

T
W= V(w(pt+17 s ,pT,@),T) + Z K(w(pt+17 s ,ps,a)), S)
s=t+1

where (p'*L,...,pT) € {0,...,d}T 1. According to Assumption 4.20 each multi-
function K (., s) is F(s)-measurable and polyhedral in the sense of Lemma B.8. This
means every K (., s) is the solution set of a system of finitely many inequalities with

some F(s)-measurable coefficients Y(s), i =1,...,m.

In order to prove the F(t)-measurability of A we proceed as follows. We show first
that the functions

o X(wp™th, . phao),s) L, s=t+1,...,T

are F(t)-measurable. Because of IF* = IF we know then that the other coefficient
functions
o Yi(wp™, .. pte),s) ,s=t+1,...,T

are also F(t)-measurable and the same is true for the functions
o Vet . p" o), T) .

From Theorem 2J in Rockafellar (1976) then we know that the multifunctions
K(w(p'™,...,p%.),s) are F(t)-measurable. Using Corollary 1K, Proposition 1J
and Theorem 1M in Rockafellar (1976) we can finally conclude that A is F(¢)-

measurable.

Now we still have to show that the functions
& X, ph @), ]

are JF(k)-measurable. This is done by induction along the index I.

For s=t+ 1 and B € B%! we have
(X(w(p*,.),5) 7 (B) = {2 € A+ X(w(p'™,3), +1) € B)
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—{weA: X" (@,t) e B} = (X*" (., 1)) "'(B) € F(t) .

Suppose the assertion is true for t +1,...,s and let B € B%"' . Then for s+1<T

and B € B! we have

(X (@™ 5™, )5 + 1)) (B)

= {weAd: X(w(pt,...

= {wed: X" (wh, ...

= {oeA:wp™,...

@), t+1) € BY

,p°,w), s) € B}

p,@) € (X7 (s)) (B)} -

Because of (X?""' (5))"1(B) € F¥(s) there exists a B € (IB*")* such that

(X(0),...
Hence we have

(X (@™, 5™, )5+ 1)) (B

= {wed:

= {weAd: (Xwp™. ..  p'hw),0

= {eAd:(X(@0),...,X(@1),

X(w(pt,@),t+1), .

Since, by assumption, the functions

o X(wp™t ...

)
w( (

= {@eA:wp™,...,p,a) € (X(0),...
)

X(wp™, .

X(s)7H(B) = (X7 (s))1(B) -

P @) € (X7 ()7 (B))

X () " (B)}
L X (w(™h L pfw), ) € B}

p',@),) )€ B} .

P w), t+ 1)

are F(t)-measurable for ¢t + i < s, we conclude that the set

(X (w(™, .. p* ), s+ 1) 1(B)

= {w eA:(X(@,O),...,X(@,t),

X(w(p, @), ¢+ 1),.

is an element of F(t), q.e.d..
¢
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Corollary 4.28 Assume IF = IFX. Suppose Assumption 4.20 is satisfied and As-
sumption 4.22 holds with F', P(F) =1, and let A C F € F with P(A) = 1. For
v € R*™ and V(T) € L°(F(T)) consider the class HY (A) of portfolio processes
(h,H) € A satisfying

and
(4.28) V(w,s) e AxT: —AH(w,s)€ K(w,s) .

Then for every t € {0,...,T — 1} the set
HY (A t) = {H(t): (h, H) € HV(A)}

is F(t)-measurable bounded on A, in the sense that there exists a closed-valued,
F(t)-measurable, multifunction A(.,t) from Q to R4 with bounded values A(w,t),
w € A satisfying

(4.29) Vw e A: {H(w,t): HE) € HV (A, 1)} C A(w, k) .

Moreover A(.,t) is polyderal in the sense of Lemma B.8. Hence sup, 4 |extrA(w,t)|
is finite and the multifunction extrA(k) : w — extrA(w,t) is also F(t)-measurable.

Proof. The proof is done via induction over the time index. For k£ = 0 the assertion
follows by Theorem 4.27.

Suppose the assertion is true for s < ¢, then H" (A, t) is F(t)-measurable bounded by
A(w, ), i.e., for each w € A the set {H(w,t) : H(t) € H (A, 1)} is bounded by A(w, t)
and A(.,t) is a F(t)-measurable, closed-valued, polyhedral multifunction. Moreover

sup, 4 lextrA(w, t)| is finite and the multifunction extrA(.,t) : w — extri(w,t) is

also F(t)-measurable.

According to Theorem 1B in Rockafellar (1976) and Lemma B.8 there are finitely
many Wi(.,t) € LO(F ()%, i =1,...,m, m € IN such that

Vw e A:extrA(w,t) = {Wiw,t):i=1,...,m} .

Because for ever w € A the cone —K(w,t + 1) D R4 has full dimension and
contains 0 and since A(w, t) is a bounded set, we can apply Lemma 4.26. According

to this lemma we have
Vwe AV (w,t+1t) e R™: Aw,t) CV(w,t+1) — K(w,t+1) .
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This means the multifunction
w— OWw) :={he R" 1 A(w,t) C h— K(w,t+1)}
has non-empty values on A. Observe now that we have

(4.30) Ow)= (] g+K(w,t+1).

geA(w,t)

In fact h € O(w) is equivalent to
Vge Aw,t): geh—K(w,t+1)
which in turn is equivalent to
VgeAw,t): heg+K(wt+1).
Thus (4.30) is true. Consequently, because of
Aw, k) = conv(extr(A)(w,t)) = conv(Wi(w,t),i=1,...,m)

we have

Ow)= [ W' wt)+K(w,t+1).

i=1,..m
Because every W(.,t)),i=1,...,m, is F(t) C F(t+1)-measurable and K(.,t+1)
is F(t + 1)-measurable, Corollary 1K and Theorem 1M in Rockafellar (1976) tell us
that the multifunction © is F (¢ + 1)-measurable. Hence according to Corollary 1C
in Rockafellar (1976) we can select a F (¢ + 1)-measurable random vector V (., ¢+ 1)
such that

VweA: V(w,t+1) € Ow) .

Denote H"+DVT)(A) the subclass of admissible portfolio strategies (h, H) € A
satisfying
VweA: Hw,T)=V(w,T),

VweA:V(wt+1)—H(w,t+1) € K(w,t+1),
(4.31) V(w,s) e Ax{t+2,...,T}: —AH(w,s) € K(w,s) .
Then according to Theorem 4.27 the set

HV(t—l—l),V(T)(A,t_'_ 1):={H({t+1): (h,H) e HV(HI),V(T)(A)}
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is F(t 4+ 1)-measurable bounded on A, in the following sense: There exists a closed-
valued, F(t 4+ 1)-measurable multifunction A(.,# + 1) with bounded values A(w,t +
1) C R for w € A and satisfying

Vwe A: {H(w,t+1): Hit+1) ¢ H/EDVIO (At +1)} € Aw, t+1) .

Moreover A(, t + 1) is polyhedral in the sense of Lemma B.8 and hence the closed-
valued multifunction extrA(.,t + 1) is F(¢ + 1)-measurable .

Hence we only need to show that
(4.32) HY (At +1) C HYEDVD (A ¢4 1)
in order to conclude the desired assertions for H" (A, t + 1).
In order to verify (4.32) suppose (h, H) € H" (A). Then we have

Vwe A: Hw,t)— Hw,t+1) € K(w,t+1)
but according to the definition of V' (., + 1) we also have

VweA: V(wk+1)— H(w, k) € K(w,t+1) .
Because every K (w,t) is a convex cone, this implies

VweA: V(wk+1)— Hw,t+1) € K(w,t+1).

This shows (4.32) and so the proof is done.
&

Lemma 4.29 Assume IF = IFX. Suppose Assumption 4.20 and Assumption 4.22
are satisfied. Let v € R and V(T) = C € F(T) be a contingent claim. Suppose
(h™, H") e 1S a sequence of super hedges for C'. Then there exists a set A that

meets all the assumptions of Corollary 4.28.

Proof. First, from the definition of super hedges and because we are working in a
discrete time frame, it is easy to see that for every single (", H") we can choose A"
so as to meet the required assumptions. But then it is clear that A = N,,cn A, also

meets these assumptions.

o
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Lemma 4.30 Suppose Assumption 4.20 and Assumption 4.22 are satisfied. Let
(C™)nen be a sequence of claims converging to C' almost surely. Then there exists a
claim C' such that almost surely C — C € K(T) and

VneIN:C"—~C e K(T) .

Proof. Define the multifunction
Aw):={h e R*"" :Vic{0,...,d}: ||hi] < max(rnez%l%(C’?,C’i)} .

Then A is a F(T')-measurable polyhedral multifunction and almost surely bounded.
Thus Lemma B.8 applies to A. So there exist measurable selections Vi(T), i =
1,...,m, from extr(A(.)) such that

defines a F(T')-measurable multifunction from that we can select a F(T")-measurable

random vector C' as required (c.f. the proof of Lemma 4.26).

¢
Lemmata 4.29 and 4.30 yield the following

Proposition 4.31 Assume IF = IFX. Let Assumption /.20 and Assumption /.22
be satisfied. Suppose (C™)nen is a sequence of claims converging almost surely to C
and (h", H")pe i a sequence in A, such that for every n € IN the portfolio process
(h™, H™) is a super hedge for C™. Then there ezist a claim C = V(T) and a set A

that meets all the assumptions of corollary 4.28.

&

Theorem 4.32 Assume I = IFX and suppose Assumption 4.20 and Assumption

4.22 are satisfied. Then the set C° is closed with respect to almost sure convergence.

Proof. Let (C™"),cn be a sequence in C° converging almost surely to C. We have
to show C € C°.

For every n € IN let (0, H") € A be a super hedge for C". From Lemma 4.30 and
Proposition 4.31 we know that we can find and a set A and a claim V(T) = C such
that C' — C' € K(T) and

VneIN:C"—C e K(T)
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so as to meet all the assumptions of Corollary 4.28. According to this Corollary, for

every w € A the sequence

y(w) = (0, H"(w,0),..., H"(w,T))

nelN

is bounded. Hence if we denote =(y) the set of limit points of a sequence y = (y")
with 4" = () == (Uh)icqo,..a), ter € REFDXTHD

E(yw)) # 0.

We want to choose now a (h, H) such that

, then for all w € A we have

Vwe A:  (h,Hw,0),...,Hw,T)) € Z(y*)
and H is [F-adapted. Then the proof is done.

In order to choose (h, H) as desired, it is convenient to focus on the limit points of
every single component. For (i,t) € {0,...,d} x T, we denote Z;(y;;) the set of

limit points of a sequence y;; = (Y2 )new € R™.

We observe that

R otherwise

T (i) :{ Zir(y) Blya) # 0

defines a set-valued function from (IR)™ to IR in the sense of Luschgy (1989). Since
IR is metrizable and o-compact we are in the situation of Proposition 1 in Luschgy
(1985). According to this Proposition, for each (i,t) € {0,...,d} x T there exists a
measurable selection of Y;;. This means for each (i,t) € {0,...,d} x T there exists
a (IB]N, ]B) -measurable mapping v;; : RY — IR such that

Vi € RN : viu(yar) € Yir(yar) -
Consequently, the mapping ~ : (IR(‘HI)X(HI))]N — IR™ defined by
V(Q) = (%‘t(yit))z'e{o ..... d}, teT

is ((IB]N) (d+1)x (T+1)

,]B]N>— measurable and because of

(]B]N) (d+)x(T+1) _ (IB(d+1)><(T+1))]N

=U,...,

Hi(w, 1) = 7ie(y(w)) -
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We still have to show that H is IF-adapted and (0, H) € A.

Therefore, let B € IB. Then we have v;,'(B) € IBYN. The mapping w + y;;(w)
is (F(t), BY)-measurable, because every HI(t) is (F(t), IB)-measurable. Thus we
have

(Hi()™'(B) = yii (i (B)) € F(1) -
Hence H is IF-adapted.

In account of P(A) =1, (0, H) € A will hold, if both of the following (sufficient)
conditions (4.33) and (4.34) are satisfied:

(4.33) Vwe A vt e {0,...,T}: —AH(w,t) € K(w,k)
(4.34) Vwe A: H(w,T)-Cw,T) € K(w,T) .
In order to verify these conditions, let w € A. Then for every t € T and all n € IN
we have
AH"(w,t) € K(w, k)
H"(w,T) - C"(w,T) € K(w,T)
and according to the construction of H there exists a subsequence (H™™ (w))men

(dependent on w) such that H(w) = lim,, ,o, H"™(w). Hence (4.33) and (4.34)

follow from the closedness of the convex cones K (w,t),t € {0,...,T}.

¢

Theorem 4.33 Assume F = IFX and suppose Assumption 4.20 and Assumption
4.22 are satisfied. Then the set C° is L°(F(T))-closed. Hence there is no free lunch
in A if and only if there is no arbitrage in A.

Proof. We are going to show that

C"={CeC:3H:(0,H) € A, H(T)=C}
is LY(F(T))-closed. Let (C™),en be a sequence in C° converging in L°(F(T)) to C
with corresponding super hedges (0, H"),ew We have to show C' € C°.

Since convergence in L° means (componentwise) convergence in probability, there
exists a subsequence (C™™),,cix, such that (C™™),, o converges almost surely to
C. The strategy (0, H™™) is a super hedge for C™™. From Theorem 4.32 we
conclude then, that C' € C° and the proof is done.

¢
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Chapter 5

Dual Characterization of

Super-Hedging Prices

Super-hedging a contingent claim is an extension of classical hedging in so far as the
value of the terminal portfolio resulting from a superhedging strategy needs not to
equal but only to dominate the payoff of the claim at maturity. The super-hedging
price for a claim is the minimum initial amount of money needed to super-hedge
the claim. In fricitionless markets it does not matter wether the initial capital
of a trading strategy is held as a portfolio of assets or as money alone. Since
this is different in the presence of transaction costs, it becomes usefull to consider
super-hedging initial endowments. Unfortunately, the set of claims that are super-
hedgeable with a given initial portfolio A is not L°-closed in general. For this reason

we introduce approximate super-hedging initial endowments (see Definitions 5.4).

We are going to derive a dual characterization of the set of approximate super-
hedging initial endowments for a European claim C' in a discrete time market with
differential cone constraints. Then we show that under the non-degeneracy Assump-
tion 4.22, the set of claims that are super-hedgeable without any initial capital is
closed with respect to a suitable topology. This enables us to prove that the sets
of approximate and exact super-hedging intial endowments are equal. As a conse-
quence, the expectation representation formula for the approximate super-hedging
price for C' then is also valid for exact super-hedging. Moreover this implies, that
under our assumptions the definition of super-hedging given in Jouini (1995) and
the usual definition of exact super-hedging are equivalent. The latter result can be

seen as a significant extension of a similar proposition that as been proven by Koehl
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et. al. (1999). In fact, they proofed the equality of superhedging-prices prices in
the sense of Jouini (1995) and exact super-hedging prices only for claims that are

classical hedgeable in a discret time market with two assets.

In Section 5.3 we shortly discuss the question wether there exists an analogue to
the Optional Decomposition Theorem by Kramkov (1996). Indeed we can deduce
an assertion that resembles somehow an Optional Decomposition Theorem, but

unfortunately this resemblance brings only little returns.

5.1 General Case

Definitions 5.1 A claim C € C = L° = (L°(F(T)))™! is called marketable, if the
claim C is super-hedgeable by some (h°, HY) € A" and the claim —C is super-
hedgeable by some (h~¢, H %) € AY. Denote C™ the class of marketable claims.

For (Q,R) € P and i € {0,...,d} we define the measures R;(T)X;(T)Q by

Q
P

dRi(T)X:(T)Q

P = R;(T)Xi(T)

and write shortly

Ligw = @ LNR(TX(T)QF(T)).

Remarks 5.2 If C' € N ryep L{g,r) and (h, H) € A is a super-hedge for C', then
from Theorem 3.9 we have (h, H) € A", i.e., H(R % X) is a Q-supermartingale for
every (@, R) € P and moreover

(5.1) S BglC(R(T) » X(T)] < h(RO)X(0))

If C' € LY is super-hedgeable by some (h, H) € A”, then for all (Q, R) € P we have
(5.2) EQ[C(R(T) » X(T))] < h(R(0) x X(0)) < o0 .
Thus from the definition of C™ we conclude that for all (@, R) € P and for all
cecm:

—00 < Eg[C(R(T)*x X(T))] < o0
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which means that
V(Q,R) e PVC eC™:C(R(T)x X(T)) € LI(Q) .

However, we point out that this conclusion would be false, if we replaced A7 by A
in the definition of C". This is seen from Example 5.3 were we consider a claim that
is superhedgeable by a strategy (h, H) € A\ A (also c.f. Remark 3.10).

¢
Exampel 5.3 Consider a market with two assets ¢ = 0,1 that are traded at time
points t € T = {0,1,2}. Let
K,t)={(1,1)} ,¢t=0,1,2,
which means, that there are no transaction costs and suppose P # (). Then
V(Q,R)e PVteT: R(t)=1.

Denote X (t) the price of asset 1 at time ¢ € T in units of asset 0. Suppose that
there is a (@, R) € P such that

L'(AX:(2)Q) # L°(F(1)) .
Choose an arbitrary G € L°(F(1)) \ L'(AX(2)Q). Then the claim
C:=(-GX4(1),G)
is super-hedgeable by the portfolio processes (h, H) € A with
0=h=H(0) , C=H(1)=H(2).

Moreover, the claim —C' is hedgeable by (0,—H). It is obvious that (0, H) and
(0, —H) are the cheapest super-hedges for C resp. —C'. So, if we can show, that
(0,H),(0,—H) ¢ A", then we are sure that C' ¢ C™. In fact, because of G €
LO(F(1))\ L' (AX,(2)Q) we have

CX(2) = H(2)X(2) = Ho(2) + Hi(2)X1(2) = GAX,(2) ¢ L'(AX,(2)Q)

for some @ with (@, R) € P. This implies (0, H), (0,—H) ¢ A" and according to
Remark 5.2 we have C' ¢ Mg, p)er Lo p)-

¢
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Definitions 5.4 Define the multifunction T' from L° to R by
NO):={he R*™ :3(h,H) € A: H(T) - C € K(.,,T) as.},

the set of super-hedging initial endowments for a claim C € L.

For (Q, R) € P we define the multifunction f‘(QyR) from L%Q,R) to R by

A It
Dior)(C) == {h € R : 3(C™, A")pew : b € T(C™),C™ € Lig ), C" 25 C,h" — h} .

The multifunction T from N.ryer Lig.r) to R is defined by

We understand f(C’) as the set of approrimate super-hedging initial endowments for

a claim C € L%Q’R). In a smilar way we also define the multifunctions D ry from
Lig.r) to R by

Diqp(C) = {h € R*" : Eg[C(R(T) » X(T))] < h(R(0)X(0))} ,

and D from Mg, ryer Lig.r) o R by

¢

Remark 5.5 Note that ['(C') # 0, if and only if C' is super-hedgeable. Moreover
we have

vC € ﬂ L%Q,R) . F(C) g f(Q,R)(C) .
(Q,R)eP

This is true, because for h € I'(C') we could choose (C™, h"™) = (C, h) for all n € N,

whereas in the case I'(C') = () the inclusion is trivial.

From the definitions of [ and I' it is also clear that both multifunctions coincide, if

Q2 or F has finitely many elements.

One reason for the consideration of f(Q,R)(C’) is, that in general markets the multi-
function f(Q,R)(C) is always closed (see the appendix on multifunctions for defini-

tions), whereas I' is neither closed-valued nor closed, in general. However, we will
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see that under the non-degeneracy Assumption 4.22 the multifunction I'~! is L%Q,R)'
closed for every (@, R) € P. This property will enable us to prove I'(C') = D(C) for

every C' € L%Q,R) in the subsequent section. Our aim in this section is to show

(5.3) VCe () Liggr: I(C)=D(C).
(Q,R)eP

We proceed as follows. Starting from the obvious inclusion
V(Q,R) e PYC € Ligr: T CDC Dgpr
we show
V(Q, R) € P O & L%Q,R) : F(Q,R) g D(Q,R)

by demonstrating that f‘(@ r) is the smallest L%Q p)-closed multifunction containing
['. This then implies r C D on Ng,rer L%Q,R)' The inclusion D C T will result
from

V(Q,R) € PVC € Lig p : D(C) CT(on)(C) .

This is obtained by applying for each (Q), R) € P a separating hyperplane theorem
to the disjoint sets f(_Ql’R)(O) and {C' — h} with h ¢ f(QyR)(C’).

Remark 5.6 For (Q, R) € P we have I' C D C D(q gy on L%Q,R)'

In fact, suppose C' € L%Q’R) and h € ['(C). Then there exists a portfolio process
(h, H) € A that super-hedges C'. Then the assertion follows from Lemma 3.9. The
case I'(C') = () is trivial.

¢

Lemma 5.7 For every (Q, R) € P the multifunction f’(Q,R) is the smallest L%Q,R)—

closed multifunction containing T.

Proof. i) The L%Q,R)—closedness of f‘(QyR) is a consequence of Proposition B.2.

ii) For every L%QyR)—Closed multifunction F' containing I' we have f‘(Q,R) C F: If we
have f‘(Q,R)(C’) = () for some C' € L%QyR), then according to Remark 5.5 this results
in I'(C') = () and there is nothing to show for this C'. In the case I'(C') # () we can
choose h € f(QyR)(C’). Then there exists a sequence (C", h")pen in Lg gy such that

Vne: A"el(C") CF([C"),
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and .
L
cr Yo o h.
From the closedness of F' and Remark B.3 then, we conclude h € F(C).
%

Remark 5.8 According to Remark B.3, the L}Q R)—closedness of f(Q,R) implies that

f(Q,R) and f(_Ql R) are closed-valued.

¢

Lemma 5.9 We have [ C D on No,r)cr L%Q’R). In particular, we have

A

Y(Q,R) € PYC € L}Q,R) : Tor)(C) C Digr(0)

Proof. According to Remark 5.6 we have I' C D gy for every (Q,R) € P. It
is straighforward to verify that every D g is L%QyR)—closed. Thus according to
Lemma 5.7 we have f(Q,R) C Dg,r) for every (Q, R) € P. This finally implies

= () Tern< () Dew=D.
(Q,R)EP (Q,R)EP

&

Theorem 5.10 We have D C T on N L%QyR) .
(Q,R)eP

Proof. This proof actually is a discrete time version of the proof of Theorem 8.10.

The two proofs differ only in some technical matters.

Suppose C' € ﬂ L%Q,R).

(Q,R)eP
i) First, we consider the case I'(C') # 0 and prove that for every (Q, R) € P we have
D(C) C T'g.r)(C). For the case ['(C) = () see ii).

For a fixed but arbitrary (Q, R) € P let us choose an arbitrary h ¢ f(Q,R)(C’). We

are going to show

h¢ D(C)= (] Dnrl(C)
(Q,R)EP
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by specifying a (Q, R) € P satisfying

Eg[C(R(T) * X(T))] > h(R(0) « X(0)) .

From h ¢ f‘(Q,R)(C) we have C' ¢ f‘(’Ql,R)(h). This is equivalent to C' — h ¢

f(_Ql’R)(O). According to Remark 5.8, the convex set f(blﬁ)(x) is L%Q,R)-closed
for every € IR, Hence {(C — h)} and F(’Ql R)(O) are strictly separated by

some p = (po,...,pa) € L® = (L>®°(P,F(T)))*"'. This means there exists a
p=(po,---,pq) € L™ such that

(54)  sup  Ep[(V(R(T)* X(T)* p)] < Egl(C — h)(R(T)* X(T) % p)] .

A—1
VGF(Q,R)(O)

Since V € f‘(’Ql’R)(O) is equivalent with 0 € f‘(QR)(V) and because of f‘(Q,R)(V) C

Dg r)(V) (see Lemma 5.9) we have

sup ( )EQ[V(T)(R(T) * X(T) % p(T)] <0 .
VEF(Q,R) 0

-1

As the claim V' = 0 obviously is an element of f(Q R)(O), we actually have equality.

From
Vwe Q: R C K(w,T)
and —K(T) C f(_é’}—z)(()) we see that
Vie {0,...,d}: pi>0
is a necessary condition for (5.4) to hold.

If we define

then we have Z(T') x X(T) € Ly,.
Let us define a IR*™'-valued process Z = (Z(t));e7 by

EqZi(T)Xi(T)|F (1))

,teT,ie{0,...,d}.
Then the separation inequality (5.4) can be written as

(5.5) 0= sup Ep[V(T)(Z(T)*X(T))] < Ep[(C = h)(Z(T)» X(T))] -

-1
VGF(Q,R)(O)
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Note also that in account of

sup  Ep[(V = h)(R(T)x X(T)*p)l =  sup  Eg[(V(R(T)* X(T)p)]

A A1
VGF(Q’R)(h) VGF(Q,R)(O)

the inequality (5.4) is equivalent to

(5.6) sup  Bp[V(T)(Z(T) % X(T))] < EplC(Z(T) % X(T))] .

-1
VGF(Q,R)(h)

We want to show
(5.7) VieT:Z(t)e -K'(t) .

For a fixed s € T we take an arbitrary G(s) € K(s). Then for almost every w € Q we
have G(w, s) € K(w, s). Now we consider an arbitrary nonnegative £ € L*(Q, F(s))
and the sequence of buy and hold strategies (0, H"),en in A defined by

H”(w,t) = —§(w)G(w, 5)1{maxi\Gi(s)\gn}(w,t)l{s ..... T}(w,t) ,teT

in the case s < T and

H"w,t):=0 ,teT
in the case s = 7. Then we have
Vie{0,....d} : |HNT)| < ||¢|leon , n €N
and consequently (0, H") € A®$ foreveryn € IN. Because of
VieT:—AH"(t) e K(t),

we conclude

(0, H") € AN A® C A7 .
Moreover, the strategy (0, H™) is a super hedge for the claim
V"= —€G(5) L max; |Gi(s) <n} (@, T) -

This is true because in the case s < T we have V* = H"(T') and in the case s =T

we have

H"(T) = V" = £G(T) L max; |6:(1)|<n}y € K(T) -
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This S}AIOWS 0 € T(V™). Moreover, we have V" € (L% ) (F(T)))**"{, p) and hence
Vr e F(_Ql R)(O)' Consequently, inequality (5.5) and the tower properties of condi-

tional expectations admit the following calculation for every n € IN
0 > Ep[VM(Z(T)*X(T)] > —Ep[€G ()L tmax; |6:(5)1<n} (Z(T) % X (T))]
= —Ep|[Ep[EG(8) L max; |6:(s)1<n} (Z(T) x X (T))|F(s)]]
= —EplEEp[G ()L max; (:(s)<n} (Z(T) x X (T))|F(s)]]
= —Ep[€G(5) Limax: (6i(s) <} EP[(Z(T) x X(T)) | F (5]
= —Ep€G(5) 1 {maxi (6i(s)|<n} (Z(5) x X (5))] -

Since  was arbitrary chosen, it follows G ()1 max; |c;(s)|<n} Z (5) > 0 for every n € IN
and thus G(s)Z(s) > 0. In order to conclude that Z(s) € —K'(s), it suffices to show

that for almost every w we have
Vh € K(w,s):hZ(w,s) > 0.

But since G(s) € K(s) was arbitrary chosen and so was s, this is proven now. Thus
(5.7) is true.

However, we do not know wether Zy(T) > 0. For the construction of a pair (Q, R) €
P choose an arbitrary (Q, R) € P and define the process Z¢ by

Z5(t) == (1 — &) Z(t) +5Ep[3—g|}"(t)]R(t) teT.

Since for every t € T —K'(t) is a convex cone and Ep[92|F()|R(t) € K'(t), we
conclude Z(t) € —K'(t) for every t € T. Moreover since ) ~ P we have Z5(T') > 0.

For ()¢, R®) defined by
leE .

Z; (t)
R:(t) == =
we have R;(t) € K{(t) for every t € T. Moreover the process R® = (R:(t))ier is
[F-adapted. Since 7 has a finite number of elements this implies then (Q°, R*) € P

for every ¢ > 0. Because of

(t) ,teT,

sup  Ep[V(T)(Z(T)xX(T))] < (1—¢) sup Ep[V(T)(Z(T)*X(T))]

VEF(QIR)( ) VeI‘(QlR)( )
dQ
+e  sup  Ep[V(T)(R(T)» 5 X (T))]
VeF(QlR)( )
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there exists a ¢ > 0 such that the separating inequality (5.6) is satisfied with Z¢
instead of Z. We define (Q, R) := (Q°,R°) € P. Applying (5.6) to the claims C
and V :=h e f(_Ql R)(h), we finally get

h(R(0) x X(0)) = Eglh(R(T) x» X(T))] < EglC(R(T) = X(T))] .

ii) For the case ['(C') = 0 we show D(C) = 0: Assume D(C) # (. Then for
h € R\ T(C) = R there exists a (Q,R) € P such that h ¢ T'gr) (C). By
copying part i) of this proof, with the only difference that maybe f(Q,R)(C) =0
which does not matter, one can verify that there exists a (Q, R) € P such that

Eg[C(R(T)* X(T)] > h(R(0) x X(0)) .

Since R(0) € K}(0) C (L°(F(0)))¥! and Kj(w,t) C {1} x R (see Definitions
and Assumptions 2.1) we almost surely have R(0) = 1. Since h € R*"! was
arbitrary chosen, we can define the sequence (h")new by h" = (n,0,...,0) € R4
and conclude that for every n there is a (Q", R”) € P such that almost surely

Eg. [C(R(T) % X (T))] > h™(R"(0) * X (0)) = nR(0)Xo(0) = n .
This obviously implies

sup Eg[C(R(T)* X(T))] =00 .
(Q,R)eP

and thus D(C') = () which is a contradiction.
¢

From Lemma 5.9 and Theorem 5.10 we deduce

Theorem 5.11 For all C' € Ng,p)epr Ligr we have I'(C) = D(C). Moreover
C € Ng,r)er L%Q’R) is approximately super-hedgeable if and only if

sup Eo[C(R(T)*X(T))] < oo .
(Q,R)eP

&

From the equality of sets in Theorem 5.11 that gives a dual characterization of super-
hedging intial endowments, one can derive a dual characterization of super-hedging

prices. For C € | L%QyR) we define
(Q,R)EP

~

TI(C, hy, ..., ha) = inf{hg : h = (ho, hu, . .., hg) € T(C)}
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and understand I1(C) :=II(C,0, ..., 0) as the approximate super-hedging price for C
inasmuch as in the case —oco < II(C') < oo it is equal to the minimum initial amount
of money necessary to super hedge C' approximately. In fact, if —oo < II(C) < oo,
then, because I'(C) is closed, we have

I1(C, hy, ..., hg) :=min{hg : b = (ho, b1, ..., hg) € D(C)} .

By contrast, the exact super-hedging price for C'is given by II(C,0,...,0) where
I1(C, hy, ..., hg) :==inf{hg : h = (ho, ha,..., hg) € T(C)} .

It is clear that in the case I'(C') = D(C) = I'(C) exact and approximate superhedg-
ing prices are equal.

Remark 5.12 For a super-hedgeable claim C the price II(C, 0, ..., 0) is often called
the seller’s price of C' and the buyer’s price is given by —f[(—C’, 0,...,0) provided
that —C' is superhedgable. As we explained in Chapter 1 Section 1.1, the buyers
price —l:I(—C’, 0,...,0) corresponds to the maximal amount of debt that an investor
may borrow in order to buy the claim C' and then perform a self-financing trading

strategy, that enables him to compensate his debts at maturity of the claim.

o

From the definition of IT and remembering that for every (@, R) € P the process
RX is a ()-martingale, we get

Theorem 5.13 The following dual characterization for approrimate super-hedging

prices holds for all C € ﬂ L%QyR) :
(Q.R)EP

H(C, h,l, .. .,h,d) = 1nf{h,0 h = (ho, .. .,hd) € D(C) = ﬂ D(QyR)(C)}
= inf{ho : h = (ho, h1, ..., hs) € R :

(ng)pep Eq[C(R(T) » X(T))] — ;hiRz-(O)XZ-(O) < ho}

d
= sup Eg[Co+ Y (Ci — hi)Ri(T)Xi(T)]
(Q,R)eP i=1
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The following proposition justifies Il as an approximate super-hedging price. In
discrete time this price coincides with the free lunch price defined as in Jouini,
Kallal (1995) and Jouini (1997).

Proposition 5.14 ForallC € ) L%QyR) we have
(Q,R)EP

Ll
(C, hy,..., hg) = inf{z € R:VY(Q,R) e PIC" h"):h"eT(C"),c" 5 C,

z = liminfhg, b = hi} .

Proof. The proof is litterally identique to the Proof of Proposition 8.13 (see there).
&

5.2 Non-Degeneracy Assumption

Our aim in this section is to proof, that under Assumption 4.22 we have I'(C) =
D(C) on Ng,r)ep L%Q,R). This then implies the equality of approximate and exact

super-hedging prices.

Theorem 5.15 Assume IF = IFX and suppose Assumptions 4.20 and 4.22 are sat-
isfied. Then for every (Q, R) € P the set T~(0) is Lig p)-closed.

Proof. Let (Q, R) € P and suppose (C"),en is a sequence in I'"1(0) converging to
C'in L{g gy- We have to show C'€ I'"1(0).

Observe first that according to Definitions 5.4 and Definition 3.8 we actually have
r0)=c’.
Because of
R(T)X,(T)>0 ,i=0,...,d,
each of the measures R;(T)X;(T)Q, i = 0,...,d is equivalent to P. Thus there

exists a subsequence (C™™),, v in I71(0) = C°, such that (C™™),,c converges

to C' almost surely. According to Theorem 4.32 this implies C' € C°.
&
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Corollary 5.16 Assume F = ¥ and suppose Assumptions 4.20 and 4.22 are
satisfied. Then for every x € R*™ and every (Q,R) € P the set I () is L%Q,R)—

closed.

Proof. This follows from

Cel'(z)e C—-2eclH0)
and Theorem 5.15.
¢

Theorem 5.17 Assume IF = X and suppose Assumptions 4.20 and 4.22 are sat-
isfied. Then the equality
I(C) = D(C) =T(C)

holds for all C' € Ng,ryep L%Q,R). Moreover C' € N(q,r)cp L%Q’R) is super-hedgeable,
if and only if

sup Eg[C(R(T)*X(T))] < oo .
(Q,R)eP

Proof. Suppose C' € Mg rycp L%Qﬂ). Then according to Lemma 5.9 we have
['(C) € D(C). Thus we have only to prove D(C') C T'(C). Note first that we
cannot simply apply Theorem 5.10, because from Corollary 5.16 we only know that
the multifunction I' ! is close-valued. However in most parts, this proof is literally
identique to that of Theorem 5.10. Hence for these parts we are going to refer to
the proof of Theorem 5.10.

i) We consider first the case T'(C') # () and prove that we have D(C) C T'(C). For a
fixed (Q,R) € P we choose a h ¢ I'(C) and show

h¢ D(C)= () Dr(C)
(Q,R)eP

by specfying some (@, R) with
EQ[; Cili(T)X,(T)] > zZ: hiR2;(0)X;(0) .
From h ¢ T'(C') we have C' ¢ T'"'(h) N L ) Which is equivalent to
C—h¢T(0)N Ligp -
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Since for every x € IR™™ the convex set I'~'(z) is Lig pyclosed (see Theorem 5.15
and Corollary 5.16), the sets {C' — h} and T"'(h) N L{g gy are strictly separated
by a p = (po,...,pa) in L® = (L®(P,F(T)))*. This means there exists a p =

(poy - .-, pa) € L*®(P) such that

sup Z EQ[Ri(T)Xi(T)ini(T)] < ZEQ[Ri(T)Xi(T)pi(Ci(T) — hy)] .

-1 1 -
VEr-1(0nLf, o

The remainder of the proof is then identique to the proof of Theorem 5.10 with the

only exception that we have to substitute -t by I'"!. The same applies for the case

r(C) = 0.
o

From Theorem 5.17 and Theorem 5.13 we get the following dual characterization of

exact super hedging prices.

Theorem 5.18 Suppose Assumptions 4.20 and /.22 are satisfied. Then for every

Ce L%Q,R) we have
(Q.R)eP

d
H(C, hl, ey hd) = Sup EQ[CO + Z(Cl - hZ)Rl(T)Xl(T) ] .
(Q,R)eP i=1

Hence the approxzimate and exact super-hedging price coincide on (Vg pycp L%QyR).

¢

According to Theorem 5.17 we have I'(C') = ['(C) for every C' € N L%Qﬁ). Thus

in the case —co < II(C, hy, ..., hg) < 00, the closedness of ['(C') = I'(C') implies
I(C,hy,...,hg) = min{hy € R :h = (ho, hi,...,hg) € T(C)} .

This means that TI(Chy, ..., hg)) = is not only the infimum but also the minimum
over all hy such that C is super-hedgeable with initial capital hy. Or in other words,
if we are given the initial portfolio h = (II(C, hy, ..., hq), b1, ..., hq), then we can
find a (h, H) that super-hedges C.
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5.3 Optional Decomposition

In a frictionless market the class P only consists of elements (@), R) such that
vt e {0,...,T}vie{0,...,d}: R;(t) =1.

Thus P is the class of all martingale measures for X. Let us extend P to the class
of local martingale measures P. A claim in a frictionless market like in Kramkov

(1996) is simply a positive random variable f such that

sup Eg[f] < oc.
(Q)eP

For such claims Kramkov (1996, Theorem 3.2) showed his Optional Decomposition
Theorem. According to this theorem - adapted to our notation - there exist a
portfolio process (h, H) € A" and a non-decreasing consumption process G such
that

H(t—)X(t) = hX(0) + H(t—) ¢ X (t) — G(t) = ess sup Eolf|F(1)] .

For our transaction cost framework, we know sofar that for every claim C' €

ﬂ(QvR)EP L%Q,R), Satisfying

sup Eg[C(R(T)xX(T)] < o0
(Q,R)eP

there exists a super hedge (h, H) € A” such that
d
ho = Ssup EQ[C@ + Z(CZ - hl)RZ(T)XZ(T)] .
(Q7R)€P =1

It is possible to show, that the strategy (h, H) satisfies

(5.8) Hy(t) —G(t) =ess sup Eg[Cp+ Z(Cl — H;(t))R;(T)X;(T)] ,

(Q,R)eP i=1
d
Ho(t)—G(t) = ess sup Eq[Ho(t+1)+> (H;(t+1)—H;(t))R;(t+1)X;(t+1)],
(Q,R)eP i=1

(5.9)
with a non-decreasing consumption process GG. It might also be shown, that there
exists a R* € {R : (Q, R) € P} such that the process Y%, H; X; R} is a Q-martingale
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for all @ with (@, R*) € P. But such propositions are of no general use for so long

as we do not know wether

sup E(Q,R)[. . ] = sup E'(Q,R*)[. . ] .
(Q,R)eP Q:(Q,R*)EP

And this question does not seem to have a positive answer. However, in some special
situations it might be administrable to apply equations (5.8) and (5.9) in order to
calculate a super hedge by a kind of backward induction.
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Part 111

Continuous Time
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Chapter 6

The Continuous Time Market

In this chapter the general framework of Chapter 2 is worked out for trading in
continuous time. We consider a financial market where d+1 primary financial assets
i =0,1,...,d are traded continuously within a time intervall 7 = [0,T],7 > 0.
Uncertainty and information structure in this market are modelled as a probability
space (£, F, P) with a right continuous filtration IF := (F;).cpo,r). We assume that
the prices of assets i € {0,...d} in units of asset 0 are given by a ]Rff’l—valued
[F-semimartingale X defined according to (2.1) and satisfying (2.2). Moreover we

assume that

Vwe Q: Xj(w,0)=x;>0.

Recall, that zp = 1 and Xy(¢) = 1 for every ¢ € 7. Following the definitions of
Elliott (1982) or Jacod and Shiryaev (1987) every semimartingale is assumed to
be cadlag, i.e., almost every sample path is right continuous and admits left-hand

limits.

The following Lemma 6.1 shows, that it is no real restriction to assume that the
o-algebra F(T') is separable. This assumption is needed later, in order to prove
Theorem 7.15.

Lemma 6.1 Suppose Y = (Y (t))co,r7, T > 0, is a R"-valued (cadlag) process on
(2, F, P). Consider the filtration I = (F(t))icio,r), defined by

Ft):=oY(s):s€[0,f]) ,te0,T),

i>t

109



and F(T) = o(Y(s) : s € [0,T]). Then there is a (cadlag) modification Y of Y
satisfying Y (Q) C Y/(Q) and generating the filtration G := (G(t))ecro,r, defined by

Gty =No(Y(s):s€0,4]) ,te[0,7T)
i>t
and G(T) = o(Y (s) : 5 € [0,T]), with the following properties.
The o-algebra G(T') is separable and so is any LP(G, P), p € {0} U[1,00]. For every
t € [0,T) the o-algebras F(t) and G(t) are equal up to sets of probability zero or one,

Vie [0, T|VAe (Gt)\F@)U(F)\Gt): PAPKQ\A)=0.

Consequently, LP(F, P) is separable for any p € {0} U[1,00]. Moreover, if Y is a

IF-semimartingale, then Y s a G-semimartingale.

Proof. The map Y : w + Y (w,.) takes values in (IR")[®>7] and we obviously have
F(T) =Y '((B")*").

Since the process Y is cadlag, there is a A € F(T') with P(A) = 1 such that Y (w,.)
is a cadlag function for every w € A. The restriction Y|A of Y to A takes values in
the Skorohod space D(IR"),i.e., the space of cadlag functions on [0, 7T]. Choose an
arbitrary @ € A and let us define the process Y by

Y(w,t) =Y (w, t)1a(w) + Y (w0, t)1lga(w) .

Denote D(T') the Borel o-algebra generated by the open sets of the Skorohod-
Topology on D(IR") (for definitions and properties on the Skorohod-Topoloy see
Jacod, Shiryaev (1987)). D(T') is generated by all projections

II(t) : f € DOR™) — f(t) e R", t € [0,T] .
Consequently, as the map ¥ : w — f’(w, .) takes values in D(IR"), we have
G(T) =Y '(D(T)) .

Since D(T) is the trace o-algebra of (IB™)[%"] in D(IR™), it is easy to see that
(Y]A)"Y(D(T)) is equal to AF(T) ={ANF : F € F(T)}, i.e., the trace of F(T') in
A C Q. Since for B € D(T') we have

. YY(B)u@Q\4) : weXY(B)
Y YB) : otherwise
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it follows
(6.1) G(T) = o((Y[A)"HD(T)), {A}) = o(AF(T),{A}) .

This shows that G(7) and F(T) only differ about sets of probability zero or one.
Analogously, for ¢ € [0,7) we have

G(t) = o(AF(1),{A}) .
Since D(T') is separable, so is G(T) according to (6.1).

Assume that Y is a IF-semimartingale. In order to show that Y is aG-semimartingale
we define the filtration IF* := (FA(t));co,r] Where

FAUt) = o(F(t),{A}) .

Then according to Jacod (1979, p.297, Theoreme 9.36) Y is a IF“-semimartingale.
Since Y is a cadlag modification of ¥, the same is true for Y. As a cadlag G-adapted
process, Y is G-optional in particular. According to Jacod (1979, p.287, Theoreme

9.19)then, the process Y is a G-semimartingale

¢

We have seen in Chapter 2, how self-financing rebalancements of portfolios are de-
scribed by certain cone constraints. The solvency cone K (w,t) is interpreted as the
set of portfolios, that can be rebalanced at (w,t) in such a way that every compo-
nent is non-negative. This coherence formulated in Definitions and Assumptions
2.1 is valid independent of wether 7 is a finite time set or a time intervall. How-
ever in continuous time, we have to impose some additional technical assumptions

concerning K| (w,t).

Assumption 6.2 Assume that for every (w,t) € Q x [0,T] the compact convex set
Kj(w,t) C {1} x IRi has the following property: For every R™™ -valued IF-adapted

cadlag process R the condition

(6.2) Vit € [0,T]: R(t) € Ky(t)

implies R € R.

Proposition 6.3 Let Y be a Y-valued IF-adapted cadlag process on (Q, F,P),Y C

RY, and f = (fi,..., fx) : R x Y — R" a continuous function. If for every
(w,t) € Q x T we have

Kj(w,t)={re {1} xR¢:Vie {1,...,N}: fi(r,Y(w,t)) <0},
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then Assumption 6.2 is satisfied.

Proof. Suppose R is a R%™-valued IF-adapted cadlag process satisfying (6.2). Then
for every t € [0, T] there exists a set A(t) € F(t) with P(A) =1 and

Vwe A(t)Vie {1,...,N}: fi(R(w,t),Y(w,t)) <0.
Define S :=Q N [0,7)U{T} and

A= {weA@)Vie{l,....,N}: fi(R(w,t),Y (w,t)) <0} .

tes

Then we have A € F and P(A) = 1. Moreover, there exists a set B € F with
P(B) = 1such that Y (w,.) and R(w, .) are cadlag for every w € B. Since P(ANB) =
1, we only need to show, that for all w € AN B we have

Vie TVie{l,...,N}: fi(R(w,t),Y(w,t) <0.

In order to show this, choose w € AN B and ¢t € T \ S arbitrarily. Then there is a

sequence (t,)pew in S with ¢, N\, t. For every n € IN we have
Vie{l,...,N}: fi(R(w,t,),Y(w,t,)) <0 .
Since Y (w,.) and R(w,.) are cadlag and f is continuous, this implies
Vie{l,...,N}: fi(R(w,t),Y(w,t)<0.

¢

Remark 6.4 It is easy to see, that each of the compact convex multifunctions
(w,t) — Ky(w,t) corresponding to the exemplary models given in Sections 2.2 to
2.6 satisfies the assumptions on Ky(w,t) given in Proposition 6.3. Thus, if the con-
cerning ask, bid and spot price processes are assumed to be cadlag, then, according
to Proposition 6.3, Assumption 6.2 is satisfied. Hence Assumption 6.2 is not really

a restriction. <

Definitions 6.5 A portfolio process consists of an initial portfolio h =
(hs)icqo,...ay € R and a R -valued IF-adapted cadlag process H = (Hy)iego,....ay
of finite variation. This means, for each i € {0,...,d} the process H; is (almost

surely) of finite variation, i.e., almost every sample path of H; is of finite variation
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on each compact subset of [0, c0[. This implies, that H is a [F-semimartingale with

a “deterministic martingale component”.

The finite variation property is a natural assumption since otherwise we had to be
alert to infinitely high transaction costs. Denote H the set of portfolio processes.
For every portfolio process (h, H) € H we define the process H(.—) = (H (t—))sc[o,1]
by H(0—) := h and

H(t=) :=lim H(s) 1> 0.

Note that the finite variation property already implies the existence of limits on the
right and on the left for H; (see Natanson, S. 245, Folgerung 2) , whereas from the
continuity on the left it follows that H;(.—) is predictable.

AHZ:Hl—H(—)Z ,iE{O,...,d},

and understand H;(t) as number of units of asset i held after all transactions at time
t whereas H;(t—) represents the units of asset i before all transactions at time ¢ .
In particular H;(0—) is the initial holding in asset i, i.e., before any transaction is
settled.

¢

Definitions 6.6 Let G = (Gy,...,Gy) and Y = (Yy,...,Yy) be two R* -valued
(cadlag) semimartingales and assume that G is a process of bounded variation. Then
any of the following integrals is well defined by the Ito formula (c.f. Elliott Theorem
12.21). The process G(.—) Y = (G(.—) @ Y (t))ico,17 is defined by the stochastic

integrals

G(.—) oY (1) := 3 G;(.—) » Yi(t)

with G; @ Y;(t) == [3 G;(s—)dY;(s). The process Y ¢ G =Y (.—) e H+ AY o H is
defined in a similar way, but pathwise by the Stieltjes Integrals

Vim0 Gilw,0) == [ Vi) (w, $)dGsu(w, )

and
AY} oGj(w,t) = Z AY}(S)AG](S) .

0<s<t
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The product GY', given by
GY =G0)Y(0)+G(.—)eY +Y oG,

is a semimartingale (c.f. Elliott, 1982, Corollaries 12.22 and 12.23).
&

For the R*"!-valued semimartingal X and a portfolio process (h,H) € H, where H is
a (d+1)-dimensional semimartingale of bounded variation, the processes H;(.—)eX;
and

X,oH;,=X;,(.—)e H;+ AX; e H,

are well defined according to Definition 10. They also satisfy
HX;,=HX;0)+H(—-)eX;,+X;¢H;, ,ic{0,...,d}.
This yields the partial integration formula
HX =H0)X(0)+ H(—)eX +XeH.

In this partial integration formula H(.—) e X represents the change of portfolio
value due to price changes and X e H decribes the changes of portfolio value due to

transactions.

Similar as in the discrete time framework, we are interested in the admissible port-
folio processes resulting from self-financing trading strategies. Again, we define the
set of admissible portfolio processes by only allowing for self-financing rebalance-
ments (with consumption) instead of admitting arbitrary transactions. However, in
continuous time, we also have to take account of “continuous trading flows”. Such
flows are possible in theory because we do not account for fixed costs in trading.
Therefore, the involved differential cone constraints have to be interpreted as kind

of “stochastic differential inclusions”. This is formalized as follows.

Definitions 6.7 Let A® be the class of portfolio processes (h, H) € H such that for
every process R € R we have (R X)(0)AH (0) < 0 and the process (R X) e H is

decreasing, i.e., for P-almost every w € €2 we have
Vs, t € [0,T], s<t: (RxX)eH(w,s)>(RxX)eH(w,t).

114



In a short notation this condition may be written as a stochastic differential inclusion
of the form
Vt e [0,T): —dH(t) € K(t) ,

hence a differential cone constraint.

Denote A° the class of portfolio processes (h, H) such that H is piecewise constant
on [0, T] and has a finit number of jumps. This means that H € A*, if and only if
there is a time set T(H) = {to,t1,...,txn} C [0,T], n € IN such that

\V/kE{l,,N} Vtiog <t<t;Vwe): H(w,t):H(w,ti_l) .

Processes in A° are called simple.

Denote
A% = {(h, H) € H : (H(T))~ € (L=(F(T), P))*'}

the set of “tame” portfolio processes. We have (h, H) € A, if and only if the short
positions of H(T) are P-almost surely bounded. This means that one is not allowed
to borrow an “infinite” sum of money or to sell short “infinitely” many units of an
asset. This assumption actually always applies in practice. Note also that our tame
condition only refers to terminal positions, whereas the tame conditions usually used

troughout literature refer to the set T.

Let us denote A C H the class of admissible portfolio processes. The definition of
this class should correspond somehow to the given model for the price process. Since
we do not intend to confine to a particular asset price model, we avoid a more exact
definition of A. However we postulate that A is a conver cone and we will always

assume

(6.3) ANARNA® C AC AR .
o

Remark 6.8 According to it’s definition the class A? is obviously a convex cone in
H. Moreover it is straight forward to show that for every ¢ € [0, T the set K(t) is a
convex cone in (LY(F(t)))4*!. Thus, it is easy to verify that AR and A are convex
cones, too. So (6.3) and the assumption that A is a convex cone will not result in

contradictions .

¢

115



Definitions 6.9 Let P be the class of all pairs (Q, R) satsifying the following con-

ditions:

(P1) Q is a probability measure equivalent to P on F(T),
(P2) Re R,

(P3) the process R* X is a (cadlag) Q-Martingale.

Define

AP .= {(h,H) € A" :¥(Q,R) € P: H{RxX) is a Q — supermartingal }
if P # 0 and otherwise AT = ().
&

Lemma 6.12 will explain this definition further. There the condition that
H(.—) e (R % X) should be a @Q-supermartingale is used to rule out “doubling”
strategies. The next chapter then will be contributed to necessary and sufficient
conditions for P # ().

Lemma 6.10 If P # (), then we have
AN ARNA® C A7 C AR .

Proof. Suppose (h, H) € A* N A% N A* with corresponding T (H) := {to,...,In}.
Let us define the filtration

IF(T(H)) := (F(t))keqo,..N}

and consider the market with trading restricted to the discrete time set 7 (H). Since
the sets K (t), K'(t) and K| (t) are well defined for t € T(H), we can define R(7T (H)),
A(T(H)), A®(T(H)) and AP(T(H)) according to the definitions in discrete time
(see Chapter 3). Then we have

(h, H) € A(T(H)) N A=(T(H))

and by Remark 3.10 this implies (h, H) € A7(T (H)). Comparing the definitions of
AP(T(H)) and A” we finally see that (h, H) € A”.

&
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Definitions 6.11 Denote C := (L°(F(T)))4*! the set of contingent claims. We call
(h,H) € A a super hedge for a C € C, if and only if we have H(T) — C € K(T).
We call a claim C € C super-hedgeable (by (h, H)), if there exists a super hedge
(h, H) for C. Denote

Ch:={CecC:3H:(h,H) e A H(T)-C € K(T)}
the set of claims, that are super-hedgeable with initial portfolio h € R and define
Ct:={CeK(T):3A4€ F(T), P(A) >0, Vwe A: C(w) € intK(w,T)}

where for w € Q the set intK (w,T) is the interior of K(w,t) in the metric topology
Of IRd+1 )

For a subclass B C A C A® we write

c"B:={CecC":3H:(h,H)e B, HT)-C € K(T)} .

Lemma 6.12 Suppose (Q,R) € P # 0 and let C € C be a contingent claim with
EQ[(C(R(T)» X(T))) ] < o0 .

Suppose (h,H) € AR is a super hedge for C and H(.—) @ (R x X) is a Q-

supermartingale. Then the process H(R* X) is a Q-supermartingale and

EqQ[C(R(T) x X(T))] < EQ[H(T)(R(T) » X(T))] < h(R(0) % X(0)) -

Proof. Because of
H(R%X) = H(0—)(R(0)%X (0))+(R(0)*X (0)AH (0)+H(.—)o(RxX)+(RxX)o H
there is only to show that (Rx X) e H is a (Q-supermartingale and

(R(0) x X(0)AH(0) € L'(Q) , Eg[(R(0)x X(0))AH(0)] <0

First of all note, that because of R € R, the process (Rx X) e H is decreasing and
(Rx X)AH(0) <0. Consequently we have

Vie[0,7]: 0> (R*X)eH(t)
and thus 0 > Eg[(R+ X) e H(t)] is defined for every ¢ and analogously
Eq[(R(0) x X (0))AH(0)] <0
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We still have to show that Eg[(Rx X) e H(t)] > —oo for every t and
Eo[(R(0) x X (0))AH(0)] > —o0 .
Because (h, H) € H is a super hedge for C' we have
H(T)(R(T)* X(T)) = C(R(T) = X(T)) .

Taking into account that H(.—) ¢ RX is a (Q-supermartingale, the following calcu-
lation is feasible for every t € [0, T]:

h(R(0)x X(0)) = h(R(0)  X(0)) + Eq[(R(0) X (0))AH (0)]
+EQ[H(.—) o (Rx X)(1)] + Eq[(R* X) e H(t)]

> h(R(0) % X(0)) + Eo[(R(0) x X(0))AH(0)]
+EQ[H(.—) o (R X)(T)] + Eq[(R* X) e H(T)]

= EQ[H(T)(R(T)» X(T))] = EQ[C(R(T) » X(T))

> Eolmin{C(R(T)* X(T)),0}] > —oc .

Hence (RX) e H is a Q-supermartingale. <

Remark 6.13 If (h, H) € A® and (Q, R) € P, then the process H(.—) e (R% X) is
always a local martingal. In fact, since H is a [F-adapted cadlag process, it is optional
(see Elliott, 1982, Theorem 6.35). This implies that H(.—) is locally bounded (see
Elliott, 1982, Lemma 11.48) and H(.—) ® (Rx X) is a local martingale.

¢
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Chapter 7

Fundamental Theorems of Asset

Pricing in Continuous Time

In this Chapter we approach the question, how to characterize the condition P # ()
by the absense of arbitrage opportunities. The main results are stated in Funda-
mental Theorems 7.12 and 7.15.

We are going to introduce three different notions of arbitrage opportunities. The first
consists of the classical free lunches in terms of sequences converging in probability
P. The research of Lakner (1995) and Delbaen, Schachermayer (1994, 1998), who
introduced different notions of free lunches, already reveals that even for frictionless
markets the classical notion of free lunches is not well suited for deriving Fundamen-
tal Theorems. Instead of free lunches with vanishing risk considered by Delbaen,
Schachermayer (1994, 1998) we introduce L>-bounded free lunches in terms of uni-
formly bounded sequences converging in probability P. This convergence is invariant
to equivalent changes of probability measure. In addition, we introduce free lunches
in terms of sequences converging in some LP(Q) , 1 < p < 0o. Since this convergence
obviously depends on the choice of @) it is dissatisfactory in our opinion, to define
free lunches only with respect to convergence in a single LP(Q) for some @ ~ P or P
itself like it was done by Jouini, Kallal (1995a) with p = 2 and Pham, Touzi (1999)
in discrete time with p = 1. In fact, if one does so, the notion of arbitrage depends
on the arbitrary choice of a probability measure. In order to avoid this arbitrariness

we consider the class

Q:={Q~P:¥iec{0,...,d}: X; € L'(Q)} .

119



From Lemma A.8 we know that this class is not empty for any given probability P.
For @) ~ P we define the measures X;(7)Q by

dXi(T)Q
dQ

It is worth noting, that for @@ € Q the measures X;(T)Q are finite and we have
X;(T)Q ~ P forevery i € {0,...,d}. The latter is a consequence of condition (2.2).
We denote

L := (L(F(T))™!

the space of F(T')-measurable random vectors,
L% = (L (F(T), P))*!
the space of P-almost surely bounded random vectors and
L%q = Xizo,.alP(F(T),X;Q) ,1<p<oo, Q€Q

the space of random vectors V = (Vj, ..., Vy) € L? such that V;X; € LP(Q) for every
i € {0,...,d}.

For O C LY(F(T)) we denote O° the closure of O in with respect to the topology
of (componentwise) convergence in probability () ~ P, which is independent of @
because of () ~ P.

For O C L% (F(T)), 1 < p < oo, we write 6@(@ for the closure of O in the L% ,-
norm topology of Lk, (F(T)).

Although L is independent of the choice of @) € O, we will deal with different
weak* topologies on L depending on ). For Q € Q let J(L°°,L§(Q) denote the

locally convex topology on L* induced by the semi-norms
d
lz: L% SR, C s Z|/QOiZZ-XidQ| L ZeTk,.
i=0

Then we write 6;062 for the closure of O in the o (L, L}(Q)—topology of L.

Definitions 7.1 A portfolio process (h, H) € A is called an arbitrage, if —h € K(0)
and H(T) € C*.
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A sequence (", H") e in A is called a free lunch, if and only if for every n € IN
we have —h"™ € K(0) and there ezists a C' € C* such that H"(T) converges to C in
probability P. If in addition we have

Vn € N:max |H' (T)| <c¢ P—a.s.

for some ¢ > 0, then we call this a L*-bounded free lunch.

For1 <p < oo a sequence (h", H")pew in A is called a LP-free lunch, if there exist
a probability measure Q € Q and a claim C € CT N L’)’(Q such that

Vn € IN: H"(T) € Lkq, —h" € K(0)

and H"(T) converges to C' in L.

o

Proposition 7.2 Suppose A C A¥. Then there is no arbitrage in A.

Proof. If P = () then A C A” = () and there is nothing to prove.

Suppose P # (). Let (h,H) € A C A” such that —h € K(0) and H(T) € K(T).
Then for any (@, R) € P we have

0 > h(R(0)*X(0)) > Eg[H(T)(R(T)x X(T))] .
In account of H(T)(R(T) X (T)) > 0 this results in
H(T)(R(T)*X(T))=0.
Hence for almost every w we have
H(w, T)(R(w, T)* X(w,T))=0.
According to Proposition 2.4 this implies that for almost every w
Hw,T) € 0K(w,T)
and thus H(T) ¢ C*.
¢
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Proposition 7.3 Suppose B C A. Then there is no arbitrage in B, if and only if
VYhe —K(0): (C"B)nCt =90 .

Proof. Suppose there exists a h € —K(0) such that (C"|B) NCT # 0. Then there
is a (h, H) € B satistying —h € K(0) and H(T) € C*, thus an arbitrage in B.

Conversely, suppose there is an arbitrage (h, H) € B. Then we have h € —K(0) and
cB)yNCt#0 .

&

Proposition 7.4 Suppose B C A. Then there is no free lunch in B, if and only if
Vh e —K(0): (CPB) NnC* =0 .

Proof. Suppose h € —K(0) and (Ch|l’>’)0 NCT # (). Then there exist a sequence
(H"),ex and a claim C' € CTYN LY such that (h, H") € B for every n € IN and H"(T)

converges to C' in probability P. Thus, the sequence (h, H"),c is a free lunch in

B.
Conversely, suppose there is a free lunch in B. Then we have (CO|Z’>’)0 NCt #10.
&

Proposition 7.5 Suppose B C A and let 1 < p < oo. There is no LP-free lunch in
B, if and only if

VQ € Q Vh € —K(0) : ((CPB) N k), NCT =0

Proof. Suppose h € —K(0), Q € Q and

((CHB) N Liq)y o NCH #10.

Then there exist a sequence (H"),en and a claim C' € C* N L%, such that for every
n € IN we have (h, H") € B, H*(T) € L%, and H"(T) converges to C' in L.
Hence the sequence (h, H"®),c is a LP-free lunch in B.

Conversely, suppose there is a LP-free lunch in B. Then there exists a () € Q such
that

(CO1B) N Ihg) o NCT #10.

&
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Remark 7.6 For a similar characterization of the absence of L*>-bounded free
lunches we will need the additional assumption that L}(Q is separable for every
@ € Q. This assumption is also necessary in as much as it is necessary for the
weak™® topology of the closed unit sphere of L> to be metrizable (see Holmes, 1975,
p. 72, Corolarry 2). This property is needed to assure equivalence of weak* closed-
ness and weak* sequential closedness. The separability assumption is in fact no real

restriction for the cadlag price process X. This was shown in Lemma 6.1.

¢

Proposition 7.7 Let B C A and suppose that for every Q € Q the space LkQ is
separable (c.f. Remark 7.6). Then there is no L>®-bounded free lunch in B, if and

only if

VQ € QVh € —K(0) : (CHB) N L®)x,NCH =0 .

Proof. The Proof is literally the same as that of Proposition 4.11.
¢

Remarks 7.8 Let B C A and suppose there is no free Lunch in B. Then there is
no LP-free lunch in B. In fact, if (h", H"),ew and C constitute an LP-free lunch then

because LP-convergence implies convergence in probability there is a free lunch.

Proposition 7.4 implies that the postulation of no arbitrage in B C C is equivalent
with the postulation of no free lunch in B, if and only if the set ((C"|B) N L°) is
closed in the topology of (componentwise) convergence in probability P. Analogues

statements result from propositions 7.5 and 7.7.

o

Definition 7.9 For Q € Q and 1 < q < oo define

dQ

7?32 = {Q:HRER: (Q,R) EP,R(T)@

€ Lo} -

Theorem 7.10 Let 1 <p < oo, ¢ = 1% for 1 <p, and ¢ = oo for p = 1. Suppose
Ac AP, If
VQEQ: Py A0,

then there is no LP-free lunch in A.
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Proof. Let C' € K(T) N L be a contingent claim and (h", H"),ec @ sequence in
A such that —h" € K(0) and H*(T) € L’ converges to C'in L, for some Q € Q.
Choose an arbitrary (Q, R) € P4 Applying componentwise the Holder inequality
in account of R(T) 9Q ¢ Lo we get

| (H*(T) = C(T)] + R(T)) X(T)dQ

dQ

QQ

= % [ 1HI (1) = GDR(T) Xi(T)

< S ([ 1 - cmr X)) (/( (T >Zg> i<T>dQ)%

i
This inequality is also valid in the case ¢ = oo with the convention

/(R( )jg) Xi(T)dQ = ess sup <R( )jg

The above inequality and the convergence of H"™(T) in L%, imply that
(H™(T) % R(T))pen converges to C' in L;Q. Because of (h", H"),ew € A C A7

we have

Jem..

0 > h(R(0)*X(0)) > Eg[H"(T)(R(T) x X(T))]
and consequently

02 lim Eo[H"(T)(R(T) + X(T)] = EglC(R(T) » X(T))] 2 0.
In account of C(R(T) x X (T)) > 0 this results in
C(R(TY*X(T))=0.
Hence for almost every w we have
Cw)(R(w, T)* X(w,T))=0.

According to Proposition 2.4 this implies that for almost every w

C(w) € 0K (w,T)
and thus C' ¢ C™.
¢
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Theorem 7.11 Let 1 < p < oo, ¢ = p%l for 1 < p, and g = oo for p = 1. Suppose
there is no LP-free lunch in A* N AR N A>®. Then

VQ e Q:PLAD.

Proof. Because A" := A°*N AR N A™ is convex, it is obvious that for any Q € Q

the set, ((C0|.AsR>*) N L’/’YQ);Q

CT N L% is also a convex cone in Lo (F(T)) . Fix an arbitrary @ € Q. According

is a convex cone in L%, (F(T')) containing 0. The set

to Proposition 7.5, the absence of LP-free lunches in A*®* implies

(COJAR®) N L) uNCT =0 .

Thus, according to a separating hyperplane theorem, for every C' € C*t N L’)’(Q there
exists a Z9(T) € L o(F(T)) satisfying

sup EQ[B(Z°(T) » X(T))] = 0 < Eq[C(Z°(T) » X(T))] -

BG(C0|ASR°°)QL§(Q

From

—K(T) N L>® C (C°(T)|A)
we have Z9(T) € —K'(T). In fact, suppose we had Z¢(T) ¢ —K'(T). Then in
account of the definition of —K (T) there would exist a B € K(T') such that
Q(B(Z°(T)*X(T)) <0)>0.
Defining
F:={B(Z(T)xX(T)) <0},
we had —Blp € —K(T) and there would exist a F(T)-measurable ' C F such that
—Bl; € —K(T)NL>® C —K(T) N Tk, .
Because of F' C F' this would result in
Eql-1:B(Z(T) + X(T))] > 0,

a contradiction to the separating inequality.

From Z(T) € —K'(T) we have Z§(T) > 0. Moreover, remembering X,(7) = 1 we
can renormalize Z°(T') in order to get Eg[Z§(T)] = 1 and define a Q-dominated

probability measure Q¢ by
dQ° B
aQ
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In summary, for every C' € C* N L%, there exists a Z9(T) € —K'(T) N L%, and a

d c
P-dominated probability measure Q¢ with % = Z&(T). Define

Cy={CelC":Vi>1:C;=0}

and denote M the set of P-dominated probability measure Q°, C' € Cj" N L% - For
every F' € F(T) with Q(F) > 0 there exists a C' € Cf N L, with Q°(F) > 0. In
fact, the claim C':= 1x(1,0,...,0) is an element of C* N L%, satisfying

0 < E[C(Z(T) x X(T))] = Eql1rZ5 (T)] = Q°(F) .

Thus (2, F(T),Q) and M meet the assumptions of the Halmos-Savage Theorem.
According to this theorem, there is a countable subfamily N C M that is equivalent
to P. So there exist a sequence (C")nen in Cj” N L% and a sequence (A\")pen in R
with Vn : A, > 0 such that 3, A\, =1 and Q = 3, \"QY is equivalent with P, i.e.,

S AZE > 0.

Since for every n € IN we have Z% € L%, there exists a sequence (¢,)pen in Ry
with
VYn € NVi € {0,...,d}: 0 < ||Z9]||, < ca

There, ||.||; denotes the norm in L%, defined by
V1l = S2( ) WilxdQ)s

Define \n
Z(T) := Z -

n

7'(T)

Cn

in terms of convergence in the Banach space L%,. Then we have 0 < 1Z(T)]|, < 1

and Z(T) € F(T). Moreover, since for every w € Q the cone —K'(w,T) is closed,
n k

it follows by almost sure convergence of a subsequence of (Y~ —Z*(T)),en, that
k=1 “k

Z(T) € —K'(T). In addition, we have 0 < Zy(T) € LY(Q) because of X,(T') = 1.

Thus, if we define

ZET) dQ

Z(T) = , — :=Zy(T) ,

 EqlZy(T)]
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we obtain a P-equivalent probability measure (). The definition of Z (T) also yields

(7.1) sup Eo[B(Z(T)* X(T))] =0 .
Be(COlASNARNA®)

Moreover we have Z(T) € L. Thus, according to Theorem 1.42 in Jacod, Shiryaev
(1987, p. 11) there exists a uniformly integrable cadlag Q-martingale Zx X satisfying
Vie{0,...,d} : P(Vt € [0, T : (Z % X);(t) = EqZ:(T) X:(T)|F(t)]) =
Let us define the cadlag process Z by
(Z x X);(t)
Xi(t)

The redefinition of Z(T') is clearly irrelevant, because it only affects an evascent set.

Zi(t) == €[0,7), i € {0,...,d} .

We want to show now that
(7.2) Vi e [0,T): Z(t) € —K'(t) .

We already know Z(T) € —K'(T). For a fixed s € [0,7T) we choose an arbitrary
G(s) € K(s). Then for almost every w € Q we have G(w,s) € K(w,s). Now we
consider an arbitrary nonnegative £ € L*>(Q, F(s)) and the sequence of buy and
hold strategies (0, H"),en in A® defined by

H"(w,1) 1= —€(w)G(w, )L max; [Gi(s) <n} (W, 15,17 (w0, T) -

We have

Vie {0,...,d}: |[HNT)| < ||¢]lon , n €N
and consequently (0, H") € A for every n € IN. Because of V¢t € [0,T] : —dH"(t) €
K(t) , we conclude (0, H") € A*®*. Moreover, the strategy (0, H") is a super hedge
for the claim

C" = HY(T) = =£G(8) 1 max; [61(s) | <n} (5 ) -
This shows C™ € (C°|A*R>). 1t is clear that C™ € L¥,(F(T)). Consequently, since
the measures X;(7)Q, i = 0,...,d are finite , equation (7.1) and the tower properties

of conditional expectations admit the following calculation for every n € IN

0 = Ep[C"(Z(T)* X(T)] =2 —Ep[£G () {max; ()| <n} (Z(T) % X(T))]
= —Ep[Ep[€G ()L max 16:(5)1<n} (Z(T) x X (T))| F(s)]]
= —Ep[CEP|G(8) 1 max; |6:(s))<n} (Z(T) x X(T))| F(s)]]
= —Ep[¢G () {maxi [G:(s)<n} EP[(Z(T) x X(T))| F(5)]]

= —FEp[{G(5) 1 max: |Gi(s))<n} (Z(5) * X (5))] -
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Since § was arbitrary chosen, it follows G/(5)1{max; |Gi(s)|<n} £ (5) > 0 for every n € IN
and thus G(s)Z(s) > 0. In order to conclude that Z(s) € —K'(s), it suffices to show

that for almost every w we have
Vh € K(w,s): hZ(w,s) >0 .

But since G(w,s) € K(s) was arbitrary chosen and so was s, this is proven now.
Thus we have (7.2).

- dO
As seen above, the measure () defined by % = Zy(T) is equivalent to @) ~ P on
F(T). In account of (7.2) the definition R := Z%)Z yields a cadlag process satisfying

Vt € [0,T]: R(t) € Ky(t) -
Assumption (6.2) then implies R € R. Note also that
dQ
dQ
The process Zo(T)(R x X) is a @-martingale and thus R+ X is a Q-martingale.

So finally we have found a (Q,R) € P, Since Q € Q was arbitrary chosen, we
conclude that for all @ € Q we have Pf, # 0.

&

R(T) = Z(T) € Lkq -

Theorem 7.12 (Fundamental Theorem of Asset Pricing) Let 1 < p < oo, ¢ = p%l
for1 < p and q = oo for p = 1. There is no LP-free lunch in A*NARNA® | if and
only if

(7.3) VQ e Q:PYAD .

Proof. Suppose there is no LP-free lunch in A* N A® N A*®. Then according to
Theorem 7.11 we have (7.3).

Conversely, assume (7.3) is satisfied. Then in account of Lemma 6.10 Theorem 7.10
imlpies that there is no LP-free lunch in A* N AR N A>.

&

Theorem 7.13 Suppose A C AP. If P # 0, then there is no L®-bounded free
lunch in A.
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Proof. Let C' € K(T) N L*> be a contingent claim and (h™, H") a sequence in
A such that —h™ € K(0), ||[H"(T)||soc < S for some g > 0, and H"(T') converges
to C' in probability P. Choose an arbitrary (Q,R) € P. Because of R(T) €
L}YQ, the measure R;X;(Q is finite for every i € {0,...,d}. Hence for every i the
uniformly boundedness of the sequence (H(T)),ew and the convergence of H'(T)

)

in probability imply, that (H"(T)),ew converges to C' in

Because of (h", H") € A C A" we have
0 > A"(R(0)*X(0)) > Eq[H"(T)(R(T)~ X(T))] -
This and C' € K(T) N L™ imply
0= limy EqlH"(T)(R(T) » X(T))] = Eq[C(R(T)  X(T))] 2 0
which in account of C'(R(T) » X(T')) > 0 results in
C(R(TYxX(T))=0.
Hence for almost every w we have
Cw)(R(w,T)* X(w,T) =0,
which according to Proposition 2.4 implies that for almost every w
C(w) € 0K (w,T)
and thus C' ¢ C*.
¢

Theorem 7.14 Suppose there is no L®-bounded free lunch in A* N AR N A® and
assume that for every (Q € Q the space LkQ is separable. Then P # ().

Proof. Because AR := AN AR N A is a convex cone in H, it is obvious that
for any @) € Q the set ((C°|A*R>®) N LOO);OQ is a convex cone containing 0. The set

CT N L% is also a convex cone. Fix an arbitrary Q € Q. According to proposition

7.7 the absence of an L*-bounded free lunch in A* implies

(CTAR=) A T=) 5Nt =0
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Thus according to a separating hyperplane theorem, for every C' € CT N L* there
exists a Z9(T) € L q(F(T)) satisfying

sup Eq[B(Z°(T) » X(T))] = 0 < Eq[C(Z°(T) » X(T))] -

Be(CO|AsRoo)NL 0

From

—K(T) N L™ C (C°(T)|A")
we have Z¢(T) € —K'(T). In fact, suppose we had Z(T) ¢ —K'(T). Then in
account of the definition of —K (T') there would exist a B € K(T') such that
Q(B(Z9(T)« X(T)) <0)>0.
Defining
F:={B(Z(T)xX(T)) <0},
we had —Blp € —K(T) and there would exist a F(T)-measurable ' C F such that

—Bljye —K(T)NL*® C —K(T)N Lk, -
Because of F' C F' this would result in
Eol~1:B(Z(T) « X(T))] > 0,

a contradiction to the separating inequality.

Consequently, we have Z§' (T) > 0. Moreover, remembering Xo(7') = 1 we can renor-
malize Z%(T) in order to get Eg[Z{ (T)] =1 and define a Q-dominated probability
measure Q¢ by

dQ° c

—— =7,(T) .

dQ 0 ( )

In summary, for every C' € C* N L™ there exists a Z9(T) € —K'(T) N L, and a
de)

P-dominated probability measure Q¢ with 5= Z§(T).

Define
Cy={CeCt:Vi>1:C;=0}

and denote M the set of P-dominated probability measures Q, C' € Cf N L*.

Then for every F € F(T) with Q(F) > 0 there exists a C' € Cj NL*> with Q°(F) > 0.
In fact, the claim C := 15(1,0,...,0) is an element of C* N L satisfying

0 < Eo[C(Z°(T)  X(T))] = Eq[1rZ (T)] = Q°(F) .
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Thus (2, F(T), Q) and M satisfy the assumptions of the Halmos-Savage Theorem.
According to this theorem, there is a countable subfamily N C M that is equivalent
to P. So there exist a sequence (C™),en in Cy N L and a sequence (A"),en in IR
with Vn : A, > 0 such that ¥, \, =1 and Q = 3, \*QY is equivalent with P, i.e.,

S AZim>0.

nelN

Since for every n we have Z“* € L, there exists a sequence (¢,)nen in IRy such
that
vneN: 0<||Z<c,.

There ||.||; denotes the norm in Lk . Define then
B} P
21 = X )

in terms of convergence in the Banach space L. This yields 0 < 1Z(T)||, <1
and Z(T) € F(T). Since for every w € Q the cone —K'(w, T) is closed, it follows by

n )\k _
almost sure convergence of a subsequence of (Y~ —Z"(T)),ew that Z(T) € —K'(T).
k=1 Ck
Moreover, we have 0 < Zy(T) € L'(Q), because Xo(T) = 1. Thus, if we define
ZT)  dQ _

Z(T) :

Bz e

we get a P-equivalent probability measure Q. Moreover we have

(7.4) sup  Eo[B(Z(T)* X(T))] =0.

Be(CO(T)| AsRo)

Like in the proof of Theorem 7.11 we define a ()-martingale Z x X and a cadlag
process Z. Then the following assertions can be proven by copying the corresponding
parts of the proof of Theorem 7.11:

The measure Q is equivalent to Q ~ P on F(T') and we have
Vi€ [0,T]: Z(t) € —=K'(t) ,
the process R := ZLOZ is an element of R satisfying
i
W p
dQ)

The process Zo(T)(R* X) is a @-martingale and thus R+ X is a Q-martingale. So
finally we have found a(Q, R) € P.

o

(T)=Z(T) € Lk .
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Theorem 7.15 (Fundamental Theorem of Asset Pricing) Suppose that for every
Q € Q the space L}(Q is separable. Then there is no L*-bounded free lunch in
AN AR N A>®, if and only if

P#0.

Proof. Suppose there is no L*°-bounded free lunch in A°N.ARNA>. Then according
to Theorem 7.14 we have (7.3).

Conversely, assume (7.3) is satisfied. Then in account of Lemma 6.10 Theorem 7.13
imlpies that there is no L>®-bounded free lunch in A* N AR N A>.

&

The most important conclusions of this chapter are stated by the following

Remarks 7.16 Theorem 7.15 shows that the “no L*°-bounded free lunch” condi-
tion is very well suited for characterizing P # (). In fact, we see that with L>-
bounded free lunches we only need to consider trading strategies in A* N A% N A,
Note that this feature would not change, if we considered trading in [0, co) instead
of [0,7]. Thus, our Theorems 7.15 and 7.12 disprove the conventional wisdom,
that the class of “simple processes” is too “thin”, in order to state a Fundamen-
tal Theorem in continuous time with semimartingale price processes (c.f. Delbaen,
Schachermayer, 1994, Shiryaev, 1999, pp. 648). However, this is indeed true, if
one considers free lunches with bounded or vanishing risk like in Delbaen, Schacher-
mayer (1994,1998). But in account of our Fundamental Theorems this fact shows
that free lunches with bounded or vanishing risk are simply less suitable in order to
characterize the existence of an equivalent martingale measure than our notions of
free lunch are. This is also confirmed by the fact, that in the case of discontinuous
semimartingale price processes Delbaen, Schachermayer (1998) had to introduce the

greater class of equivalent o-martingale measures.

Note finally, what is the reason why the counterexamples of Delbaen, Schachermayer
(1994, Example 7.5, Example 7.7) do not apply for our free lunches. They construct
a market, where their “no free lunch condition with bounded resp. vanishing risk” is
trivially satisfied within the class of simple portfolio processes. The reason therefore
is, that their boundedness and risk conditions refer to the value process H e X of a
portfolio strategy H. Our boundedness conditions, in contrast, are not imposed on

the value process H @ X but only on the portfolio process H. This is, why within our
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framework, we only need to consider simple portfolio processes. It is obvious that
this in turn is the very reason for the simplicity of our proofs in contrast to that of

Delbaen, Schachermayer (1994,1998), although we even allow for transaction costs.

¢
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Chapter 8

Dual Characterization of

Super-Hedging Prices

Assumption 8.1 Throughout this chapter we always assume P # (). This implies
AP #£ 0. Lemma 6.10, Lemma 6.12, Remark 6.13, Proposition 7.2 and Theorem
7.13 lead us to postulate A = A”.

¢

Remarks 8.2 The postulation 4 = A” in Assumption 8.1 does not substantially
differ from Kabanov’s (1999) assumption on admissible strategies. This assumption
is needed, because the supermartingale property excludes so called “doubling strate-
gies”, that could yield arbitrage opportunities. Usually these strategies are excluded
by “tame conditions” postulating that H e X is bounded from below. However, we
find that these tame conditions are too restrictive, because they exclude simple “sell
and hold” strategies. Clearly, the usual definitions of admissible trading strategies
used troughout literature on (super-) hedging in continuous time always result in
value processes, that are super-martingales. In our notation this means A C A”.

Hence by choosing A = A7, we certainly impose no severe restrictions on trading.

¢

Under Assumption 8.1 we are going to derive a dual characterization of the set of
“approximate” super-hedging initial endowments for a European claim C. As a
result we obtain an expectation representation formula for the approximate super-
hedging price for C'. This price is defined as the minimum of all hy € R such that
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for every (@, R) € P there exists an arbitrary good L%Q7 r)-approximation of C' that
is super-hedgeable with initial capital hg (for the Definition of L, ) see (8.4)). The
family P plays the same role as the martingale measures in the frictionless market
models. The consideration of approximate instead of exact super-hedging makes it
possible to derive the results under the only two conditions that the price process is
a semimartingale and that P is not empty. Moreover, the expectation representation
formula is a direct generalization of the expectation representation formula known
for frictionless incomplete markets. However, we could not get any analogue to the

optional decomposition theorem.

Our aim is the same as that of Kabanov (1999) who derives a dual characterization
of super-hedging initial endowments for contingent claims in a financial market
with proportional transaction costs where prices are given by semimartingales. We
also have drawn some inspirations from the papers of Jouini (1995), Cvitani¢ and
Karatzas(1996).

Dual characterizations of convex optimization problems are usually obtained by
the use of separating hyperplane theorems for two disjoint closed convex sets. In
Kabanov (1999) the first set consists of the claim C' to be priced and the second set
consists of all claims that are super-hedgeable with a certain initial endowment not
sufficient to super-hedge C'. Since the second set will not be closed with respect to
L%Q7 r) in general, Kabanov looks for sufficient conditions for the market that assure
the closedness of this set. This conditions cover some models with continuous price

processes but do not extend to point process models for example.

13

Our strategy in contrast is to look for a “weaker” definition of super-hedging prices
such that these prices still have the nice property to be invariant against equiva-
lent changes of probabilities while they are still calculable with the use of a dual
characterization. This all should be done in more general market situations than
those in Kabanov (1999). From the paper of Jouini, Kallal (1995) we got the idea
to introduce approximate super-hedging prices. We have extended this concept in
such a way, that we can define an approximate super-hedging price for a larger class
of claims than Jouini, Kallal (1995). This new price concept enables us to derive a
dual characterization of super-hedging prices similar to that in Cvitani¢, Karatzas

(1996), but in more general situations.

In currency markets it is more natural to consider super-hedging bundles instead
of super-hedging prices. Therefore, we introduce approximate super-hedging initial

endowments and obtain a similar dual characterization result as Kabanov (1999).
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However, our result comprises a greater class of claims and is valuable without ad-
ditional conditions on price processes. The dual characterization for super-hedging
prices is then obtained by applying a functional operation on the set of approximate

super-hedging bundles.

Definition 8.3 We call a claim C € L°(F(T))4™ marketable, if both the claim C

and —C' are super-hedgeable and denote by C™ the class of marketable claims.

¢

From the dual characterization of K(T') by K{(T) we know, that if (h, H) is a super
hedge for C, then for every R(T') € K|(T') we have

(8.1) H(T)(R(T) » X(T)) = C(R(T) x X (T))

Thus, if C' is super-hedgeable by some (h, H) € A, then according to the definition
of A= A" for every (Q, R) € P we have

(8.2) Eq[C(R(T) x X(T))] < E[H(T)(R(T) * X(T))] < h(R(0) » X(0)) < oo .
This implies

(8.3) VC €CmY(QR) €P: —o0 < EglY GiRy(T)Xi(T)] < oo .

For (@, R) € P let us define the measures R;(T)X;(T)Q,i=0,...,d, by

dR;(T)X;(T d
DD _ gy s
and write simply
(8.4) L%Q,R) = Xizo,., dLl(Ri(T)Xi(T)Q) .

Remark 8.4 By (8.3) every marketable cash settlement claim is an element of

1
N Ligr:
(@.R)eP

¢

Unlike Kabanov (1999) we do not focus on
NC):={he R :3(h,H) e A: HT)—C € K(T)}
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the set of super-hedging initial endowments for a claim C'. Instead we examine
approximate super-hedging initial endowments. For (Q, R) € P and C € L%Qﬂ) the

set, of L%Q, r)-@pproximate super-hedging initial endowments is defined by

A~ Ll
Lo (C) = {h e R : 3(C", h")pew : A" € T(C"),C" € L gy, C" =¥ C,h" — h}.

One reason for the consideration of f‘(Q,R)(C) is that, as will be seen later, f‘(Q,R) :
C  Tor(0) is a L{g,r)-closed multifunction from L{g g to R™! (see the ap-
pendix on multifunctions for definitions). The multifunction I'(C) : C' — I'(C) is

neither closed-valued nor L%Q7 r)-closed, in general.
For each (@, R) € P we also define the multifunction Dg gy : C +— from L(Q r)
R*! by

Diq.n(C) = {h € R+ Bo[C(R(T)  X(T))] < h(R(0) x X (0))} -

Finally, the multifunctions T' : ' — I'(C) and D : C' +— D(C) from N L%Q,R) to
(Q,R)EP
R are defined by

=

@) (0)

)
D(C)= (] Dwmr(C).
Q,R)eP

Remarks 8.5 We have I'(C) # (), if and only if C' is super-hedgeable.

The inclusion T'(C') C T'g,r)(C) holds for every C € Lig.r): (@, R) € P. In fact,
for h € T'(C) we can define (C™,h™) = (C,h), n € IN, whereas for I'(C) = ) the

inclusion is trivial.

¢

Our aim now is to show

Ve e () Ligr: T(C)=D(C).
(Q,R)EP

We will proceed as follows. Starting from the obvious inclusion I' € D C Dqg,g),
that holds for all (Q, R) € P, we show

V(Q,R) € P . f(Q,R) g D(Q,R) .
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This is done by demonstrating that f‘(Q, r) 1s the smallest L%Q7 r)-closed multifunction
containing I" which implies then I' C D. The inclusion D C I' is obtained by the
inclusions D C f(QyR) which follow from a separating hyperplane theorem applied
to the disjoint sets {C' — h}, h ¢ f‘(QyR)(C’) and f‘(_QI,R)(O).

Remark 8.6 For (Q,R) € P we have I' € D C D(qr) on Li,p. In fact, for
h € T'(C) there exists a super hedge (h, H) for C' such that h is the corresponding
initial endowment. Then everything follows from (8.2). The case I'(C') = () is trivial.

¢

Lemma 8.7 For every (Q, R) € P the multifunction f’(Q,R) is the smallest L%Q,R)—

closed multifunction containing .

Proof. i) By Proposition B.2 the multifunction f‘(QyR) is the L%Q,R)—Closure of I' and
thus L{, p-closed.

ii) For every L%Q7 R)—closed multifunction F' containing I we have f‘(@ r) C I

In fact, if for some C € we have f(QyR)(C’) = (), then according to Remark 8.5 this
results in I'(C') = () and there is nothing to show for this C.

In the case I'(C') # 0, choose an arbitrary h € f(Q,R)(C). Then there exists a
sequence (C™, h™),en such that

1

Lo
R er(C")CF(C"), C" —=C, h"—h.
The closedness of F' and Remark B.3 then result in h € F(C).
&

Remark 8.8 From the L%Q R)—closedness of f(QyR) and Remark B.3 we conclude
that f‘(Q, r) and f‘(_Ql r) are closed-valued.

Lemma 8.9 We have I’ CD.

Proof. It is easy to see that Dg g is L%QyR)—closed. Moreover we have I' C D(q g,
as was seen in Remark 8.6 . Thus, by Lemma 8.7 we conclude

~

V(Q, R) & P . F(Q,R) g D(Q,R) .
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In sum we have

¢

Theorem 8.10 We have D C T on N L%QyR) .
(Q,R)eP

Proof. Throughout this proof suppose C € ﬂ L%Q,R) )

(Q,R)EP
i) First, we consider the case ['(C') # ) and prove that for every (Q, R) € P we have
D(C) C T'g.r)(C). For the case ['(C) = () see ii).

For a fixed but arbitrary (Q, R) € P let us choose an arbitrary h ¢ f‘(Q,R)(C’). We
are going to show

h¢ D(C)= (] Dnr(C)
(Q,R)eP

by specifying a (Q, R) € P satisfying
Es[C(R(T)  X(T))] > h(R(0)  X(0)) .

Since h ¢ f(ng)(C’) we have C' ¢ f(’Ql’R)(h). This is equivalent to C' — h ¢ f(’Ql’R)(O).

According to Remark 8.8 the convex set f‘(’Ql’R) (x)is L%QR)—Closed for every x € R

Hence {(C' — h)} and f(_Ql’R)(O) are strictly separated by some p = (po,...,pq) €
(L°°(P))4*L. This means there exists a p = (po, ..., pq) € (L°(P))4! such that

(8.5)  sup  Ep[(V(R(T)* X(T)x p)] < Eg[(C — h)(R(T) » X(T') % p)] .

A—1
Vel 40

Since V' € f‘(’Ql’R)(O) is equivalent with 0 € f‘(QR)(V), the inclusion f‘(Q,R)(V) C

D(g,ry(V) results in

P Eg[V(T)(R(T) x X (T) % p(T))] < 0.

Because the claim V' = 0 obviously is an element of f(_Ql R)(O), we actually have
equality. From

Vwe Q: R C K(w,T)
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(0) we see that
Vie{0,...,d} :p; >0

is a necessary condition for (8.5) to hold.

If we define
Z(T):=R(T)*p

then we have Z(T) x X(T) € Lb. According to Theorem 1.42 in Jacod, Shiryaev
(1987, p. 11) there exists a uniformly integrable cadlag Q-martingale Zx X satisfying

Vi€ {0,...,d}: POVt € [0,T]: (Z % X)i(t) = Eo[Z/(T)X:(T)|F(t)]) = 1

Let us define the cadlag process Z by

(Z % X)i(t)

,te[0,T], ie{0,...,d}.

The redefinition of Z(T) is clearly irrelevant, because it only affects an evascent set.

The separation inequality (8.5) now is equivalent to

(86) 0= sup Ep[V(T)(Z(T)x X(T))] < Epl(C — W)(Z(T) » X(T))] .

-1
VGF(Q,R)(O)

Note also that in account of

sup ( )EQ[(V —W)(R(T)x X(T)xp)] =  sup ( )EQ[(V(R(T) * X(T) % p)]
VEF(_Q,R) h VGF(_Q,R) 0

the inequality (8.5) is equivalent to

(8.7) sup  BplV(T)(Z(T) + X (T))] < Ep[C(Z(T) X (T))] .

A—1
VEF(Q,R)(h)

We want to show
(8.8) Vi e [0,T]: Z(t) € —K'(t) .

For a fixed s € [0,7] we take an arbitrary G(s) € K(s). Then for almost every
w € Q we have G(w,s) € K(w,s). Now we consider an arbitrary nonnegative
¢ € L*(Q,F(s)) and the sequence of buy and hold strategies (0, H")pen in A°
defined by

H"(w,t) = —S(w)G(w, S)l{maxi ‘Gi(s”gn}(w,t)l[s,T](w,t) , L€ [O,T]
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in the case s < T and
H"w,t):=0 , tel0,T]

in the case s = 7. We have
Vie {0,...,d} : |H'T)| < ||¢|ln , n €N
and consequently (0, H") € A for every n € IN. Because of
Vi€ [0,T): —dH"(t) € K(t) ,

we conclude

(0, H)Y e ANARNA*Cc A" = A .
Moreover, the strategy (0, H™) is a super hedge for the claim

V= =G (5) Lmaxi Gi(l<n) (0, T) -

This is true because in the case s < T we have C" = H™(T') and in the case s =T

we have

H"(T) = V" = £G(T) Limaxi |Gi(1)<n} € K(T) .

This shows 0 € I'(V"). Moreover, it is clear that V" € L p(F(T)) C
Lig.r)(F(T)). So we have indeed V" € f(_QI,R)(O). Consequently, inequality (8.6)
and the tower properties of conditional expectations admit the following calculation

for every n € IN

0

v

Ep[V™"(Z(T) * X(T)] 2 —Ep[€G(5) Limax; ci(s)|<n} (£ (1) % X(T))]
= —Ep[Epl§G ()] fmax; [:(s)1<n} (Z(T) x X (T))| F (s)]]
= —Ep[¢EP[G(8) L max; [Gi(s)1<n} (Z(T) x X(T))| F (s)]]
= —Ep[EG(5) L max; |ci(9) <n} EP[(Z(T) x X (T))| F (s)]]
= —Ep[EG(5)1{max; |ci(s)|<n} (Z(5) x X (5))] .

Since  was arbitrary chosen, it follows G/(5)1max; |Gi(s)|<n} Z(s) > 0 for every n € IN
and thus G(s)Z(s) > 0. In order to conclude that Z(s) € —K'(s), it suffices to show

that for almost every w we have
Vh € K(w,s): hZ(w,s) >0 .

But since G(s) € K(s) was arbitrary chosen and so was s, this is proven now. Thus
(8.8) is true.
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The problem now is that we do not know, wether Z,(7T") > 0. For the construction
of a pair (Q, R) € P choose an arbitrary (Q, R) € P and define the process Z° by

Z5(t) == (1 —5)Z(t)+5Ep[j—g|f(t)]R(t) L te0,T].

There we take a cadlag version of the process (Ep[%2|F(t)])iep.r) in order to make
Z® a cadlag process. Since for every t € T —K'(t) is a convex cone and because of
Ep[%L|F(t)|R(t) € —K'(t), we conclude Z(t) € —K'(t) for every t € T. Moreover
from @@ ~ P we have Z5(T) > 0. For (@, R®) defined by

we have R:(t) € K| (t) for every t € T. Of course, the process R = (R (t)):c7 is also
[F-adapted and cadlag. According to Assumption 6.2 this implies then (Q°, R*) € P

for every € > 0. Because of

sup  Ep[V(T)(Z(T)xX(T))] < (1—¢) sup Ep[V(T)(Z(T)*X(T))]

Vef“(_Ql,R)(h) Vef(—Q{R)(h)
d@
+e  sup  Ep[V(T)(R(T)* —=X(T))]
Vef(—éj)(h) dpP

there exists a ¢ > 0 such that the separating inequality (8.7) is satisfied with Z°¢
instead of Z. We define (Q, R) := (Q°, R°) € P. Applying (8.7) to the claims C
and V := h in account of V € f(_Ql R)(h), we finally get

h(R(0) x X(0)) = Eg[h(R(T) » X(T))] < Eg[C(R(T) = X(T))] .

ii) For the case ['(C) = 0 we prove D(C) = §: Assume D(C) # 0. Then for
h € R\ T(C) = R there exists a (Q, R) € P such that h ¢ T'q.r)(C). By
copying part i) of this proof, with the only difference that maybe f(Q,R)(C) =10
which does not matter, one can verify that there exists a (Q, R) € P such that

Es[C(R(T) x X(T)] > h(R(0) * X(0)) .

Since R(0) € Kj(0) C (L°(F(0)))™" and Kj(w,t) C {1} x R4 (see Definitions
and Assumptions 2.1) we almost surely have R(0) = 1. Since h € R was
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arbitrary chosen, we may define a sequence (h"),ew by ™ = (n,0,...,0) € R

and conclude that for every n there is a (Q™, R") € P such that almost surely
Egu[C(R™(T) x X(T)] > h"(R"(0) x X (0)) = nRRg(0)Xo(0) =n .
This obviously implies

sup Eg[C(R(T)* X(T))] =00 .
(Q,R)eP

and thus D(C') = () which is a contradiction.

&

From Lemma 8.9 and Theorem 8.10 we deduce

Theorem 8.11 Under Assumption 8.1 we have the following dual characterization

of super-hedging initial endowments:

VCe () Ligr: L(C)=D(C).
(Q,R)eP

Moreover, a claim C € (g r)ep L%QyR) s approximately super-hedgeable, if and only
if
sup Eo[C(R(T)*X(T))] < oo .
(Q,R)eP

¢

From the equality of sets in Theorem 8.11 that gives a dual characterization of
super-hedging initial endowments, it is possible to derive a dual characterization of

super-hedging prices. For C € ﬂ L%Q,R) we define
(Q,R)eP

A

II(C, hy, ..., hg) :=inf{hy : h = (ho, h1,...,hg) € T(C)}
and understand IT1(C) := II(C, 0, ..., 0) as the approximate super-hedging price for C'
inasmuch as in the case —oo < II(C') < oo it is equal to the minimum initial amount

of money needed for super-hedging C' approximately. In fact, if —oo < II(C) < oo,

then, because I'(C) is closed, we have

~

H(C, hl, .. .,hd) = min{ho th= (hg,hl, .. .,hd) € F(O)} .
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By contrast, the exact super-hedging price for C' is given by 1:I(C, 0,...,0) where
T(C, hy, ..., ha) == inf{hg : h = (ho, hy,..., hg) €ET(C)} .

From the convexity of I'(C) it follows by Theorem 5.3 in Rockafellar (1970) that
IT is convex in hy,...,hy. It can be shown that II is also convex in C. From the
definition of IT and remembering that for every (@, R) € P the process R X is a

@-martingale, we get

Theorem 8.12 The following dual characterization for approrimate super-hedging

prices holds for all C € [ L%QyR) :
(Q,R)EP

I(C, hy,...,hq) = inf{hg:h = (he,...,hs) € D(C)= () Do.r(C)}

= inf{hg: h = (ho, h1,..., hg) € R
S EQ[C(R(T) * X(T))] — h(R(0) x X(0)) < ho}
= (ng)pe N Eq[Co + ;(OZ- — hi)Ri(T)X(T)] .

o

The following proposition justifies II as an approximate super-hedging price that is
defined similar to the free lunch price in Jouini, Kallal (1995) and Jouini (1997).
Note however, that Jouini does not work in a semimartingale framework. He only

allows for “simple” trading strategies, that are piecewise constant.

Proposition 8.13 For allC € () L%Q,R) we have
(Q.R)EP

(C, hi,...,hy) = inf{lz € R:¥(Q,R) € P I(C™ k") : Vie{l,...d}: hi=h",
n n m Mo o em
h"eT(C"), C" == C, z =liminfhg, } .

Proof. i) “>”: The case II(C,hy,...,hq) = oo is trivial. Suppose
II(C, hy,...,hg) < oo. Then by definition of II there exists a hg > II(C, hy, ..., hy)
such that h = (hy, ..., hy) € T(C). This is equivalent to

~ ~ ~ Liy g
V(Q,R) € P 3(C", h"),h" e T(C™): C™ LY C b = h.
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~ L}
Defining the sequence (C™),en by C™ := C™ 4+ h — h™, we have C" L Cand h e
['(C™) for every n € IN. This shows that hy belongs to the set on the right side of the
equality in question. Since this holds for all hy € R*™ with hy > II(C, hy, ..., hy)

we are done.

ii) “<”: Again the case inf{...} = oo is trivial. For the other case, suppose
there exists an element h of the set on the right side of the equality such that
II(C, hy,...,hg) > hy and let (h"),en the corresponding sequence. Then there ex-
ists a subsequence of (h™),cn converging to h. Thus we have h € I'(C), which is a

contradiction.

&

Remark 8.14 The proof of Proposition 8.13 shows that in the case
—oo < II(C, hy, ..., hg) < oo we can simplify IT to

1(C, hy,...,ha) = min{ho € R:¥(Q,R) € PIC":
Lig.p)
h=(ho,hi, ..., ha) € D(C™),0" 2% o

This means the approzimate super-hedging price II(C') for a claim C' is the minimum
over all hy such that for every (Q,R) € P there exists an arbitrary good L%QyR)—
approximation of C' that is hedgeable with initial capital hy. Or in other words,
if we are given the initial portfolio h = (II(C, hy, ..., hqg), h1,...,hq), then for any
(Q, R) € P we can find a sequence of portfolio processes (h, H")pex and a sequence

of claims (C™)pew converging to C' in L%QyR) such that

Vne N: HY(T)—-C"(T) e K(T) .
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Part 1V

Application
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Chapter 9
Quantile-Hedging

Quantile-hedging was introduced by Follmer, Leukert (1999) who deal with an in-
complete, but frictionless continuous time market with a riskless bond and a risky
security. For given 0 < o < 1, the a-quantile-hedging price of a contingent claim C
is the minimum amount of initial capital needed in order to super-hedge the claim
with probability a. In particular, a 1-quantile hedge is nothing else than a super
hedge. Follmer, Leukert (1999) derive a dual characterization of a-quantile-hedging
prices. They find that for every claim C with non-negative payoff at maturity and
given 0 < a < 1 there exists a set A € F(T) with P(A) > « such that the a-
quantile-hedging price of C' equals the super-hedging price of the knock-out claim
C1,4. Thus the dual characterization of the a-quantile-hedging price is obtained
from the dual characterization of the super-hedging price for C'1 4. However, except
for special cases one does not know how to choose the set A. Moreover, Follmer,
Leukert (1999) approach also the question, how to maximize the probability of a

succesfull super hedge, if one has given a certain amount of initial capital.

Our aim in this chapter is to generalize the results on quantile-hedging of Follmer,
Leukert (1999) to our general multi-asset framework with differential cone con-
straints. We will focus on the dual characterization of quantile-hedging-prices for
claims with non-negative cash value. This may give a hint, how to generalize the

corresponding results on maximizing the probability of a succesfull super hedge.

Since we are going to apply our results on the dual characterization of super-hedging
prices, we will work in the framwork of Chapter 8 including Assumption 8.1. Of
course, analogues results will also hold for discrete time markets as considered in
Chapter 5.
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For similar reasons as Foéllmer, Leukert (1999) we only deal with claims C' € K(T).
According to the interpretation of K (7T'), such claims have a non-negative cash-value
at maturity. For cash-settlement claims this is equivalent to returning a non-negative
payoff at maturity. If a claim does not have a non-negative cash-value it might be
possible to shift it in such a way, that the condition is satisfied for the shifted claim.

As we often will be concerned with sets of the form
{weQ:Hw,T)—-Cw) € K(w,T)}

we start with a remark on the measurability of such sets.

Remark 9.1 Suppose H(t) is a F(t)-measurable IR*"*-valued random vector for
t € T. Then the set {w € Q: H(w,t) € K(w,t)} is F(t)-measurable.

In fact, according to Definitions and Assumptions 2.1 and Remark 2.3, the
multifunction w — K (w,t) is closed-valued and F(t)-measurable. Since the multi-
function w — {H(w,t)} is also closed-valued and F(t)-measurable, Theorem 1M in
Rockafellar (1976) implies that the intersection

{H(L,O)}NK(,t) :w— {H(w,t)} N K(w,t)
is closed valued and F(t)-measurable. Thus the set

{weQ:Hw,t) € K(w,t)} = {weQ:({H(,H}NK(,1))(w)#0}
= ({H®}N K@) (R,

is F(t)-measurable.

¢

Definitions 9.2 Given a contingent claim C € K(T) and a probability level 0 <
a <1, wecall (h,H) € A an a-quantile hedge for C, if (h, H) satisfies the following
two conditions

(9.1) PH(.,T)-C() e K(,T)) >«
(9.2) H(T) € K(T) .

A claim C € K(T) is called a-quantile-hedgeable (by (h,H)), if there exists an
a-quantile hedge (h, H) for C.

&
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Condition (9.1) states that (h, H) super-hedges the claim C' with a probability
greater or equal to a while (9.2) is a kind of tame or solvency condition. In fact, it

garanties that a loss from the final portfolio H(T) — C' is only generated by C.

Condition (9.2) enables us to characterize the class of a-quantile hedges for a claim
C' by the class of super hedges for the knock-out claim C1, with P(A) > «. This
will be done in Lemma 9.3. Note also that in the frictionless case condition (9.2)

reduces to
H(T)X(T)>0

This condition is at least not stronger than that imposed by Follmer, Leukert (1999)
who actually impose
Vte [0,T]: H(t)X(t) > 0.

Lemma 9.3 Suppose C € K(T) is a contingent claim, 0 < « < 1 a probability level
and (h, H) € A is a portfolio process. Then (h, H) is an a-quantile hedge for C, if
and only if there exists an A € F(T) with P(A) > « such that (h, H) super-hedges
the claim C14.

Proof. i) If (h, H) is an a-quantile-hedging for C, then, according to Condition (9.1)
and Remark 9.1 there exists an A € F(T') with P(A) > a such that (H(T)—C)14 €
K(T). But because of H(T) € K(T') we have indeed H(T) — C14 € K(T). Thus
(h, H) super-hedges the claim C'14.

ii) Let A € F(T) with P(A) > «a. If (h, H) super-hedges the claim C14, then we
have H(T) — C14 € K(T). Because of 0 € K(w,T) for all w € €, this yields

(H(T) = C)1a € K(T)

which implies Condition (9.1). Moreover, since the set K(T') is a convex cone, we

have
H(T)=(H(T)-Cla)+Cly€ K(.,T) .

Thus (h, H) also satisfies condition (9.2).

¢

For claims C' ¢ K (T') whose cash value at maturity is bounded from below one can

easily prove the following
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Corollary 9.4 Let | € ]Rff“l. Suppose C € —l + K(T) is a contingent claim,
(h, H) € A is a portfolio process and 0 < o < 1 is a probability level. Then we have

(9.3) P(H(.,T)-C() € K(,T)) > a,

(9.4) H(T) € —I+ K(T) ,

if and only if there exists an A € F(T) such that (h,H) super-hedges the claim
ClA — l]_Q\A = (C + l)lA — 1.

Proof. Apply Lemma 9.3 to the claim C' = C' + [. Then deduce the assertions for
the claim C' = C' — .

&

Our aim now is to find a dual characterization of the set of quantile hedging initial

endowments
r“C):= { he R":3A ¢ F(T),P(A) > a,3(h,H) € A: H(T) — Cl, € K(T)} .
According to Lemma 9.3 we have

re(C) = T(ClL) .
AeF(T):P(A)>a

For the same reasons as with super-hedging, we are going to consider the set of

approximate quantile-hedging endowments, which we define as

) = U ['(C1,)

AeF(T):P(A)>«
= {heR*™:3Ac F(T),P(A) >a: YQ,R)cPIh,C")nen :
Lig.p)
r* e T(C™),C" € L%QyR),C’” — C1a,h" — h} .
From Theorem &8.11 we conclude

)= |J  D(CL).

A€eF(T):P(A)>a

If we define

~

Ha(C’, hla .. -;hd) = 1nf{h0 celR:h= (hg,hl, .. .,hd) € Fa(C)} y
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then similar as in Theorem 8.12 we get

HO‘(C’,hl,...,hd):inf{hOE]R:th(ho,...,hd) € U D(ClA)}

A€ F(T):P(A)>a
= inf{hg € R:3A € F(T),P(A) > a,3h = (hy,...,hq) € D(C14)}
= inf{hg € R:3h = (ho, hy,..., hy) € R'IA € F(T),P(A) > a

= inf (( sup Eg[Cols + Xd:(CiIA — hi)Ri(T)Xi(T)]>

AEF(T):P(A)>a \ (Q,R)eP i=1

We understand I1* := I1*(C, 0, ...,0) as the approximate a-quantile-hedging price
for C. Not better than Follmer, Leukert (1999), we do not know under which

conditions the optimization problem

d
9.5 inf sup  EglCola + S (Cila — h) Ri(T)Xo(T
03 it ( o0, BlCuta+ SCL~ mR (XD

admits an optimal solution A € F(T') : P(A) > a. Therefore, in the style of Follmer,
Leukert (1999), we relax the restrictions of (9.5) by extending the admissible controls
from the class of “non-randomized tests” 1, to the larger class of randomized tests
. We will see that for this modification of (9.5) there exists an optimal solution ¢

in the class of randomized tests.

Thus the set {A € F(T) : P(A) > «} is replaced by the set of randomized tests
P :={pe L°(Q,F(T)):0< ¢ <1,Epp>a}

and we study the price

1) = nf  sup Eolcus +3-(Civ ~ (1))
06 = (s Felo (I < X(M) - S RRDND)

Remark 9.5 For every (@, R) € P the linear function
Four : L*(QLF(T) - R,
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v = Eqle (C(R(T) x X(T))) - ; hiRi(T) Xi(T)]

is convex in particular. Because the supremum of convex functions is a convex

function, so is consequently the (non-linear) function

o= sup Fr(p) .
(Q,R)EP

Moreover, because ®* is a convex set, the optimization problem (9.6) is in fact a

convex program.

¢

The convex program (9.6) corresponds to calculating (approximate) super-hedging

prices for claims of the type ¢C. What does this mean? Denote
o= ) o~.

0<a<1
the set of randomized tests. If we define the function ¢ : & x A — ® by
P(p, H) := Lnry-cer(,ry + ©liacr-ce¢x ()}

then we have

Proposition 9.6 Let (h,H) € A and ¢ € ®. Then H(T) — oC € K(T), if and
only if H(T) — ¢(o, H)C € K(T).

Proof. If H(T) — ¢C € K(.,T) then one can easily verifiy that we have H(T) —
P(p, H)C € K(.,T).

The other inclusion is trivial because 0 < ¢ < 1.

¢

As a consequence of Proposition 9.6, every ¢ € ® satisfies
I(pC)={h e R"" :3(h,H) € A: H(T) — $(p, H)C € K(T)} .

So, if we super-hedge ¢C by (h, H) for ¢®“, we super-hedge C' only with probability
&:=P(H(T)—-C € K(T)) < a. For the loss of probability & — & however, we are
rewarded with the partial superhedge of C'on {H(.,T)—C ¢ K(.,T)}, on which set
our loss is bounded by the cash value of (1 — ¢)C'". In this way ¢ can be interpreted
as a succes ratio of the hedge and the condition Fy > « is a restricition on the

average succes ratio of a hedge.
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Theorem 9.7 For every claim C € No,r)cPr L%Q,R) and 0 < o < 1 there exists a
randomized test p* € ¢ satisfying

(9.7) I*(C) = (¢"C)

Proof. According to the definition of II%(C') there exists a sequence (¢, )pen in @
such that

f%(C) = lim T(p,C) = sup FplpC(R(T) « X(T) %2
n—00 (Q,R)eP dP

Since @ is weak*-compact in L'(P) (see Witting, 1985, p.205), there exist a subse-
quence (@) )nen and a p* € ® such that
98) Vf e LY(P): lim Eplpymf] = Ep[o*f] .
This implies
Epp* = lim Epppm) > o,

thus ¢* € ®*. Consequently we have

[I%(C) = inf II(pC) < (p*C) .

pede

Moreover we can apply (9.8) to C(R(T) X (T))42 € L*(P) wich yields

' dQ
Eplp*C(R(T) » X(T)) ]
= lim Ep| C’(R(T)*X(T))@
=" Ph(n) dP
: dQ
< lim sup Ep[pymC(R(T)* X(T))—
n—00 (Q,R)eP dP
= lim TI(ipyC) = 1%(C) -
And in this way we also get
* * d dQ O
[I(p*C) = sup Eplyp ZCiRi(T)Xi(T)d—P] < %(C) .
(Q,R)EP i=0

¢

In order to see the relation between quantile-hedging and value at risk, imagine to

face the following problem. Given a contingent claim C', that we have taken short,
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we are interested about the initial endowments necessary for a hedge such that our
final portfolio has a given Value At Risk at time 7. This means that for a given
confidence level 0 < o« < 1 and a given level of loss [ < 0 we look for a portfolio
process (h, H) € A such that the cash value of the portfolio H(T) — C at time T is
greater than —[ with probability at least «, i.e.,

P(H(T) - C+1e" € K(.,T)) >«

where €® = (1,0,...,0) € R’ What we need then is nothing else than an a-
quantile-hedging for the claim C' — le. So indeed quantile hedging is a dynamic
version of the Value-At-Risk concept.

As Value-At-Risk is often difficult to deal with, there is another concept widely
used in practice called Maximum Loss. The difference to Value-At-Risk is that
with Maximum Loss one predefines a “reasonable” trust region Ar € F(T) with
P(A7) > « and tries to find a portfolio such that the loss at maturity does not
exceed a given level [ on Ap. The existing literature (c.f. Luethi, Studer (1996) and
Studer, G. (1999)) mainly deals with static Maximum Loss, i.e., Ay € o(X(T)). In
our hedging context however, we could consider a dynamic version, i.e., Ay should
also depend on the path of X. For a given claim C', a loss level [ and the predefined
set Ay with P(A7) > « of maximum-loss hedging is equivalent to super-hedging the
claim (C — [€°)14,. Hence this could yield another field of application for super-
hedging.
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Chapter 10

Nontrivial Super Hedges with

Log-Lipschitz Processes

There are three different proofs (Soner et al., 1995, Leventhal, Skorohod, 1997,
Cvitani¢ et al. 1999) confirming the conjecture of Clark and Davis (1995) that the
trivial super hedge for a European Call option is optimal in the Black Scholes model
with volume proportional transaction costs. Touzi (1999) has extended this result

to a more general class of claims in a multidimensional Black-Scholes model.

From these negative results one can draw two alternative conclusions depending to
which paradigm one has a stronger disposition: the Black Scholes model or Pricing

by Arbitrage.

If one leans towards the Black Scholes model, it appears consequential to look for

alternatives of super-hedging such as quantile-hedging or utility maximization.

If one is convinced that Pricing by Arbitrage is the right way to value contingent
claims, then the conclusion is to model stock prices by stochastic processes that

result in reasonable hedging schemes and arbitrage bounds.

Our main intension in this chapter is to show, that there are reasonable security
price models in continuous time that yield non-trivial super hedges in the presence
of transaction costs. The idea is to generalize discrete time multinomial models in

a non-trivial way to continuous time.

We will need the componentwise quotient of vectors. Thus we introduce the notation

T Tk
— = (" )k=0,....d
Y (yk)
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for the componentwise quotient of x = (z,...,74) € R and y = (yo,...,v4) €

(0, OO)d+1.

Definition 10.1 Suppose T = [0,T] C R or T = {0,...,T} € IN. Let X =
(Xi())ieT icq1,...ay, be a F-adapted, ]Ri—valued stochastic process on (2, F,TF, P).
Assume that

Vie{l,...,d} V(w,t) e A xT: X;(w,t)>0.
If there exists a polytope
B = conv{b’,...,b"} C (0,00)*

with b* € (0,00)¢, i =1,...,d, such that almost surely

X(t) B B
10.1 Vs. t t: =\ [t—s|In B — B\t s|
(10.1) s, teT, s< ) €e ,

then we call X a (uniformly) log-Lipschitz process. We choose this denomination,
because (10.1) obviously implies that there is a F € F with P(F) =1 such that the
paths of

are uniformly Lipschitz (continuous), i.e.,

(10.2) Vs, t € T, s <t: .n%axd|lan(w,t) —In X;(w,s)| < |t — s|maxInb} .
J=1 (2Y)

Conversely, if almost every path In X (w, .) is uniformly Lipschitz in the usual sense
and the Lipschitz constant can be chosen indepent of w, then one is certainly able to
find a polytope B such as to satisfy condition (10.1) (c.f. the proof of Proposition
10.2 ). Despite this equivalence, we prefer condition (10.1), because it is (10.1) that

we are going to rely on later.

¢

Proposition 10.2 Suppose Y = (Y(t))icT icf1,..,aqy 5 a progressive measurable,
IR‘fl—valued stochastic process on (Q, F,IF, P). Assume moreover that Y is almost

surely bounded, i.e., there is a constant 5 > 0 such that almost surely
VteT: supicq,.ay|Yi(t)| < B .
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Then the process X defined by
X(0) :=z € (0,00)" |
t
Xz-(t):exp(/ Yi(s)ds) ,i=1,....d, teT\{0}
0

s a log-Lipschitz process.

Proof. According to it’s defintion, the process X satisfies
1n X;(t) — In X;( |_|/ (s)ds| < B(t—s) ,s<t i=1,...,d.

Defining 3 := e % and 3 := €” then, we get

LX) = .
Bet™s < <Bett L s<ti=1,...,d
- Xi(s) ©
Let us define 8°, ..., 0% € R4 by
bozé ,j:]_,...,d,

J

and B = conv({1°,...,b%} C IR". Then with these definitions, it is straightforward
to verify condition (10.1).

o

There is certainly much more to say about the construction of log-Lipschitz processes
than is stated in Proposition 10.2. However, this would go beyond the scope of this
chapter. Instead, we confine ourselfes to some examples for the case d = 1. From
these examples and Proposition 10.2 it is clear then, how to construct examples of
IR%valued log-Lipschitz processes with d > 1. Note however, that in Proposition
10.2 the polytope B was only chosen to serve the purpose of the proof. For other
purposes one may try to choose the polytope B as “small as possible” (see below).
In the case d = 1 however, the polytope reduces to an intervall and thus the choice

is straightforward.

Remark 10.3 Suppose (Y'(Z))co,17 is a progressive measurable, IR-valued process
on (Q, F,IFY P). Let B = [1°,b'] C (0,00) be an intervall and f : IR — B a Borel-

measurable function. Then the process In f(Y) = (In f(Y(t)))tcpo,r) is progressive
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measurable and takes values in [In %, Inb']. Thus according to Proposition 10.2, the
process X defined by
X(0) :=z € (0,00) ,

t
X(1) :exp(/ InY(s)ds) , te(0,7]
0
is log-Lipschitz.
%

Exampel 10.4 Suppose (W (t)).cpo. is a Brownian motion on (2, F,IF", P). Let
B =[t°,b'] € R be an intervall and f : IR — B a Borel-measurable function. Then
according to Remark 10.3 the process X; defined by

X1(0) :=2 € (0,00) ,

t
Xi(t) = exp( [ In f(W(s))ds) , t € (0.7]
0
is log-Lipschitz.
Moreover if f is continuous, then almost every path X (w,.) is differentiable and

o aXl(wat)
Ot

The process (X, W) is Markov. In fact, we have

X (w,.): = Xi(w,t)In f(W(t)) .

In X, (f) — In X, (s) — /stlnf(W(r))dr

= [ (w(s))dr + /: In (W (r)) — In £(W(s))dr

s
t

= (t=9)InfW(s))+ [ Inf(W(r))—Inf(W(s))dr,

which yields
Ep[ln X (t)|FV(s)] = InXy(s)+ (t — s)In f(W(s))
B[ [ 10 F( (1) = I FV(5))drl 7 (5)]
= InX;(s)+ (t—s)In f(W(s))

B[ 0 0V (1) 0 £V ())dr]
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Suppose now that f is continuous and X (¢) describes the spot price process of a
security. If there are no transaction costs, it is easy to construct a simple arbitrage
strategy whenever there is a A € F(s) with P(A) > 0 such that for every at w € A

we have
Xi(w,)(s) #0
In fact, if there is a A € F(s) with P(A) > 0 such that for every at w € A we have

Xi(w,)(s)>0

then we can buy the security at (w, s) € (4, s) and hold it untill 7 AT = min{7, T}
where
T(w) :=inf{T <t>s: X|(w,.)(t(w) =0} , weQ,

is a stopping time (with the usual convention inf() = co). From the Intermediate

Value Theorem we know that the following two conditions hold
Vwe A: 1(w)>s
V(w, t) € Ax[s,7(w)AT): Xi(w,.)(t)>0.
Thus, if we sell the security at time 7AT', then we have certainly gained the difference
TAT
X (w,7) — X(w, 5) :/ X! (w, )(t)dt > 0 .

This means we have realized an arbitrage opportunity.

If there are transaction cost factors A for buying and u for selling then the above
arbitrage opportunity vanishes, provided there is a subset A ¢ A, A ¢ F(s) with
P(A > 0 such that every w € A we have

(1—p)Xi(w,7) = (1+M)X;(w,s) <0.

Hence in this case it seems to be possible to choose a continuous f in such a way
that there are no (simple) arbitrage opportunities with the consequence P # () (see
Theorems 7.15 and 7.12).

o

Example 10.4 shows that differentiable processes are not that suitable for modelling
security prices, because the derivative of the price gives a hint, how to make a riskless

profit, at least if transaction costs are negligable.
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However, suppose the price process X; of security 1 is only piecewise differentiable
on stochastic intervalls (74, 7x41),k € IN. But in 73, k£ € IN the process may suddenly
change it’s “direction” in the sense that at 7, £ € IN, the algebraic sign of the
derivative will change with positive probability and non of the 7, £ € IN, except
for 79 = 0 is predictable. Then one can never be sure wether the price will rise or
fall within the next seconds. This feature is modelled in the simplest possible way

in the following

Exampel 10.5 Suppose 7;, j € IN, are the jump times of a IF-adapted Poisson
process J on (2, F,IF, P) (stopped at T'). Define the process Y = (Y(t)):co,r] by
Y(0) =Y (7)) =1 and
V()= ()"

Let b = [d,u] C (0,00) with d < w and f: R — {d,u} Borel-measurable and such
that

f(y) = dl—s0)(y) + uljo,c0)(y) -
Define then the process Xy = (X;(%)):co,7 by X1(0) =2 > 0 and

Y - 6/0 nf(V(s)ds

o0 t 0 t
= exp <Z /0 Lrgoronsa) (8) Inuds + > /0 Lrgpss mogeany] (8) In dds)
k=0 k=0

_ uZIiozo Tzk+1/\t772k/\tdzljo:0 72(k+1)/\t77'2k+1/\t .

(0,71

From this representation we see that X is generated by a “binomial tree” with
random ramifications. Since multinomial trees as in the Cox-Ross-Rubinstein model
have poved usefull for modelling stock price movements, the same can be expected

for multinomial trees with random ramifications or other log-Lipschitz tree processes.

From now on we make us of the following

Definitions and Assumptions 10.6 Suppose X = (X;(t))ico,, icfo,...ay S the
R valued, cadlag spot price process on (Q, F,IF, P) within the framework of Chap-
ter 6. Then the process (Xi(t))ico,r), ic{1,..a} 5 assumed to be log-Lipschitz with
respect to a polytope

B = conv{t’,...,b"} C (0,00)*
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with bl € (0,00)%, i =1,...,d (remember that X,(t) = 1 for every t € [0,T]).
Denote TI the class of all T = {ty,...,tn} C [0,T] such that

. T
VZE{l,...,N}i tz_tzflzﬁ

We assume that for each T = {to,...,txy} € T and for every i € {1,...,N} there
is a F(t;)-measurable R -valued random vector

T
N

Y(t): Q= ({1} x {8°,...,0%})

such that

2|8

vjie{o,....d}: PY(t)=(1,V)¥)>0

and Y (t;) is independent of F(t;_1). Note that this assumption certainly holds, if the
filtration IF was generated by a d-dimensional Brownian motion or a d-dimensional
Poisson process (c.f. Examples 10.4 and 10.5 ).

Suppose T € T and Y (t;),i=1,...,N, as above. Then for everyn € {0,..., N—1}

we define the process X'n = (Xt” (75))%[0 - by
X(t) L t<t,
(10.3) Xt = X(t;iy) Doty <tisg <t <t

Y(t)* X(tis) @ ty<t=t
Thus each X', i =1,..., N, is F-adapted, cadlag and satisifies
Vte[0,T): Xk(t)=1.

Moreover the process X := X' is IF7 -Markov with F7 := (F(t;))i=o...n. In fact,
X is a multinomial tree process. Of course the definitions of the processes X',
i = 1,...,N depend on T € TI. While we do not include this dependence into

notation, we should bear it in mind howeuver.

For simplicity of exposition assume
(10.4) V(w,t) e 2 x[0,T]: Kjw,t)=Ky,

like it is the case in stock or currency markets with constant transaction cost factors
(see Section 2.3 resp. 2.5).

163



For z € (0,00)%*" we define the closed convexr cone K(z) by
(10.5) K(z) :={h e R*™ :Vr € K} : h(rxx) >0} .

We need this definition, because we have to deal simultaneously with several price

processes simultaneously. In particular, for every w €  we have
K(X(w,t)={h e R :Vr € K} : h(rx X(w,t)) > 0} = K(w, 1)

whereas K (X' (w,t)) is the corresponding cone for the price process X'. Without
condition (10.4) and the definition (10.5) we would have to introduce different cones
KX for the several price processes. In these premises condition (10.4)and the
definition (10.5) actually state that the transaction cost factors do not depend on

the price process, which is a reasonable assumption.

Analoguously, for a random vector W (t) € (L°(F ()™ we define
KW () :=={V(t) € (LY(Ft)" : V(w,t) € K(W(w,t))} .
In particular for W (t) = X (t), because of K(X (w,t)) = K(w,t), we have

K(X(1) ={V(t) € (L°(FW)™ : V(w, 1) € K(X(w, 1)} = K(t) .
¢

For given 7 € T we will have to deal with claims C(t;) € (L°(F(1)))4, t; €
{to,...,tn} of the followig type. For a convex function f : R — IR the claim
C=Cl=(Cy,...,C,) is defined by

Co(t:) = f(X (1))
(C1(1), ..., Cq(t)) € (LO(F(t;1)))".
We imagine that a claim C'(¢) matures at time ¢.

For claims of this type we need to define the following (dynamic) superhedging

endowments.

For z € (0,00)*", (c1,...,cq) € RY t; € {ty,...,tn_1} and a convex function

f: R 5 R, we define the t;-local super-hedging endowments
U(x, f, (ci)iz1,.arti) = {veR™ :Fhe R"™ :v—he K(z),
h—(f(Y(ti1) x2),c1,- .- ca) € K(Y (tig1) x2) }-
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In addition for (vy,...,vq) € real?, we define the t;-local super-hedging price

=0,...,d - v E F(l‘, f7 (Ci)izl

Analogously, we need to define these notions in account of measurability conditions
and the price process. For t; € {tg,...,tx 1}, (C1,...,Cq) € (L°(F(t;)))4, and a
function f : R™! — IR, we define the local super-hedging endowments

DY (£, (Chictar ti) = {V € (LO(F (1)) - 3H(1:) € (L°(F (1)) -
V —H(t;) € K(X(1:), H(t;) = (f(X(t:41)), C1,- .., Ca) € K(X(t:11)}
DY (f, (Coimtar ta) = {V € (L(F ()™ : 3H(t;) € (L (f(ta))d“:

V= H(t) € K(X (1), H(t:) — (F(X"(ti21)), O, .., Ca) € K(X"(ti1))}
DX (F (Cilizynas ta) = {V € (L(F(8))™ 1 3H(4) € (L(F ()™ -
(

V — H(t:) € K(X(t:), H(t:) — (f(X(tir1), O, ..., Ca) € K (X (tis1)}
In addition for (V;);=1.. 4 € (L°(F(t;)))¢ we define the super-hedging price

I (f, (C)izt.ds (Vi)izt,..ds ti)
=essinf{Vp € R : 3V = (V)=

Lemma 10.7 Let T = {to, R ,tN—l} e T, t; € {to, R atN—l}; (Cl, cee Cd) S
(LO(F (). Suppose the function f: R — R is convex. Then we have

Ff(ti(fa (Ci)izt,as ti) C T (f (Ci)iz,ar ti) -

=1,00y



Proof. Suppose V(t;) € TX"(f,(Cy)iz1...art;). Then there exists a H(t;) €
(L°(F(t;)))4! such that V(¢;) — H(t;) € K(X(¢;)) and
H(t;) = (f(X"(tin1)), Cr, .., Ca) € K(X"(ti11)) = K (Y (tign) x X (1)) -

This implies that for every r € K, C {1} x IR we have

d

Hy(t:) = f(Y (ti2) * X (& ))+I;(Hk(t) Cr(ti))riYe(tiv1) Xe(ti) 2 0 .

Since Y(t;4+1) is independent of F(¢;41) we conclude
Vi e{0,...,d}Vr € K :
(10.6)  Ho(t:) = f((L,6) % X (1) + D (Hilts) — Culta) re(b) ¥ X(t)) 2 0.

Because we almost surely have

X(tz-l-l) 0 AL
m ({1} x conv{b”,... b }N)

there exits a )\(ti+1) = ()\j(ti+1))j:0 ..... d € (Lo(f(tprl)))d-'_l with

V]E{O,,d}og)\](tHl)Sl , zd:)\](tHl):l
such that
(ZA ) (LD) —) X () = 3 Aylh) (16)F 5 X (1)

Because the function f : R — IR is convex, we get

d
F(X (tig) (ZA tit1 (1 D)V« X z)) Z (tit1) (1 V)
In account of (10.6) this implies that for every r € K|, we have

Hy(t;) — f(X (tir1) + > d(He(t:) — Cr(t))raYi(tivn) X (t:)

k=1

ZIH
><
—
~
5
N——"

Z (tiv1) (1 V) x X (t; )+Zd Hy(t:) — Cr(t:)) Ve (tivr) Xe(t:)

:;])\ i(tis) (Ho( i) — f((1 ) % X (¢; )+I€Zd (Hy(t;) — Ok(ti))rkyk(tiﬂ)xk(ti))
>0 .
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thus we have
H(t;) — (f(X(tir1), (Ci)izi,...a) € K(X (%))

Because of V (t;) — H(t;) € K(X(t;)) and the convexity of the cone K (X (¢;)) this

yields the desired assertions in account of the involved definitions.

¢

Lemma 10.8 Let (c1,...,cq) € R T = {to,...,tn_1} € T, ti € {to,...,tn_1},
(v1,...,vq) € real and f : R — R a conver function. Then there is a conver
function g : (0,00)4" — IR such that

Vz € (0, OO)d+1 o Mz, f, (Gi)izt,ds (Vi)iz1,. 0, ti) = g(2) .

Proof. First, recall that

(z, f, (¢i)i=t,...as (Vi)i=1,..d, ti)

=inf{vy € R: Jv = (vy)iz0,..a: v € I'(z, f,(¢i)i=1,..a,ti) }

U(z, f,(¢)im1...arti) = { ¥ €real™ : I e R™ : 5 — h € K(z),

h— (F(Y (tig1) % 2), €1, cq) € K (Y (1) % 7))

We are going to apply our results on super-hedging in discrete time to the two time

point market with the “price process” (z,Y (tiy1) * x).

Therefore, we define the class P of all pairs (Q, R) satsifying the following conditions:

(P1) Q is a probability equivalent to P on o(Y (t;y1)),
(P2) R = (7, R(ti11)) € K} x K} (as.),

(P3) Eg[R(tix1) * Y (tiy1) *xx] = Fxx.

Observe now that our two time points market is actually finite because o (Y (t;41))

has finitely many elements. In account of Remark 5.5 we can apply Theorem 5.13
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g(z) = Iz, f,(ci)i=1,..a, (Vi)i=1,..a: ti)
= sup EQ[f(Y Z+1 *x + Z R; z+1)Y;'(tz'+1)xi]
(Q,R)eP
d d T T
= > (e —v)Fw;+  su Z (tip1) = (1,6)) %) F((1,0)¥ % )
i=1 (Q R =0

is convex in x. Thus g : x — g¢(z) is convex, because it consists of a finite sum of
linear functions plus the pointwise supremum of a familiy of convex functions (c.f.
Rockafellar, 1970, Theorem 5.2, Theorem 5.5).

&

Lemma 10.9 Let T = {to,...,tn—1} € T. Then for every t; € {to,...,ty_1} and

for P-almost every w € Q we have

X(w, ;) € conv(X () .

Proof. For simplicity of exposition and without loss of generality assume T'= N.
For t; the assertion is trivial.
Supose the assertion is true for ¢;. Then we have
X(w,tiv1) € conv(Y(Q,tiq1) * X(w, t;))
C conv ( (Q ti+1)*conv()~((§2,ti)))
= conv(X (ti41)) -

There we have used the notation

AxA:={axa:acAacA} , A AcCR" .
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Lemma 10.10 Let T = {t[],---,tN—l} € 77-, ti € {to,...,tN,l}, (Cl,...,(]d) €
(LO(F(ti21)))?.  Suppose the function f : R — R is conver. Then for every
(Vi)izt,.a € (LY(F(ti=1)))* we have

IR (f, (Ci)izt,as (Vi)iz1,.ar ti) < CO?"W(HX(f, (C)izt,...dr Vi)iz1,..a: i) () .

.....

in the sense that for P-almost every w € Q and every

v € conv(IT* (f, (Cy)izt,.as (Vi)izt,.a» ti) ()

we have

Proof. Observe first that according to Lemma 10.9, for P-almost every w € {2 we

have
Xt (w,t;) = X(w,t;) € conv()N((Q,ti)) )
Since X% (t;y1) = Y (tip1) * X(t;) and Y (t;41) is independent of F(t;), it suffices to

show the assertion for given (¢;)i=1,.. 4, (vi)i=1,..d € R? “conditional on”

{(Ci)izl,...,d = (Ci)i:1,...,d, (Vi)i:1,...,d = (Ui)izl,...,d} € -7:(151'—1)

for varying 2 € X% (,t;) = X (€,¢;). In this way, the assertion follows by combining
Lemma 10.9 with Lemma 10.8.

¢

Definition 10.11 For a subset T = {to,...,tn} € T we define the class AT of
portfolio processes (h, H) € H such that for every i € {1,..., N} the process H(.)
is constant on [t; 1,t;| and

Vie{0,...,d}: —AH(t;) e K(X(t;)) -
Analogously we define the classes ATX and ATX" i=1,...,N.
¢

Theorem 10.12 Suppose T = {to,t1,t2} € T, i.e. to =0, t, = 3T, to =T. Let
f:(0,00)%* = R be a convex function. Let (FL, H) ¢ ATX pe g super hedge for the
claim (f(X (t2),0,...,0) with respect to the price process X. Then there is a portfolio
process (h, H) € AT~ with h = h that super-hedges the claim (f(X(t2)),0,...,0)

with respect to the price process X.
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Proof. Suppose (b, H) € A7~ is a super hedge for the claim (f(X(t,),0,...,0)
with respect to the price process X. Define h = h and H(ty) = H(to). Then because
of X (to) = X(to) and (h, H) € AT¥, we have

h—H(ty) = h — H(ty) € K(X(ty)) = K(X(to) .
Since (h, H) € A7~ is a super hedge for the claim (f(X(t,),0,...,0) we have

Hy(to) > Hi(fa (0:)i=1,....d» (Hi(to))i=1,...d, T1)

where
LY, (0)iztnar tt) = {V € (LO(F ()" - 3H (1) € (LO(F(t:)))* -
V —H(t)) € K(X(t;)),H(t1) — (f(X(t2)),0,...,0) € K(X(t2)} .
In account of Lemma 10.10 and Lemma 10.7 this implies
Hy(to) > X" (f,(0,...,0), (Hi(t0))i=1, .art1) > T (£, (0:)i=1,...a> (Hi(t0))i=1..a, t1) -
According to the definition of TT* this implies
1t} -

This in turn implies that there exists a H(t;) € (L°(F(t1)))*"! satisfying

H{(to) € TX(f, (0;);

H(ty) — H(t1) € K(X(t1)) ,
H(t) — (f(X(t)),0,...,0) € K(X(t) .

Finally we can choose H (t2) = (f(X(t2)),0,...,0). It is clear then that the strategy
H super hedges (f(X(t2)),0,...,0) with respect to the price system X.

¢

Corollary 10.13 Suppose T = {to, t1,t2} € T, i.e. o =0, 8, = 3T, to =T. Let
f:(0,00)2 = R, f(z) = (x1 — k)T, be the payoff function of a (cash settlement)
European Call option on asset 1 with exercise price k > 0. Let (iL, H) € ATX pe g
super hedge for the claim

(Xi(t2) = k) F,0)
with respect to X. Then there is a portfolio process (h, H) € AT with h = h that
super hedges the claim ((X1(t2) — k)™, 0) with respect to X.
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Proof. Since the function (zg, 1) — f(x) = (r1 — k)" is convex, the assertion is a

direct consequence of Theorem 10.12.

¢
It is possible to prove Theorem 10.12 and Corollary 10.13 for arbitrary 7 € 7.

Unfortunately, this proof is more delicate, because for this purpose one needs to
show mutliperiod versions of Lemma 10.10 and Lemma 10.7. Such a theorem could
be usefull in order to calculate good upper bounds for super-hedging prices. For
this purpose the polytope B should be chosen as small as possible. There are
many other interseting questions concerning log-Lipschitz price processes and super-
hedging prices. However, our main intension within this chapter was to show the
existence of non-trivial super hedges for the European Call option in continuous

time markets with log-Lipschitz price processes. The results are statet in our final

Remarks 10.14 The price process (X (t))ier , T = {to,t1,t2} € TT, in Theorem
10.12 is a multinomial tree process. In particular, the price process (X (t))icr in
Corollary 10.13 is nothing else than a two period (i.e. three time points) Cox-Ross-
Rubinstein price process. In this market, a portfolio strategy is non-static, if it allows
for trading at time ¢;. It is well known, that in the Cox-Ross-Rubinstein model with
proportional transaction costs, there are non-trivial, non-static super hedges (even
replicative hedges) for the European Call option that are cheaper than the simple
buy and hold strategy, at least if transaction costs are within reasonable bounds in
comparison to stock price movements (c.f. e.g. Boyle, Vorst (1992), Edirisinghe et
al. (1993), Kusuoka (1995), Mercurio, Vorst (1997) ). In the context of Corollary
10.13 this means that there is a non-static super hedge (b, H) € A7X with hy; = 0
and
ho < (14 X)X(to) -

According to Corollary 10.13 then, hg is an upper bound for the super-hedging price
of the same European Call option but with respect to the price process X. Since
this super-hedging price lies strictly below the price that we would have to pay for
buying asset 1 at time ty, the trivial buy and hold strategy is not optimal with

respect to the price process X either.

Moreover, as (iL, PNI) e ATX is non-static, it may prove true in many cases, that there
is not only a non-trivial but also a non-static super hedge (h, H) € A7* with respect
to X. However, this conjecture will only hold subject to suitable implementations

of the price process X.
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At least for the price process of Example 10.5 one is able to verify this directly, be-
cause the binomial tree structure makes it possible to calculate the portfolio process
(h,H) € ATX similar as in the Cox-Ross-Rubinstein model. In addition, provided
that Theorem 10.12 respectively Corollary 10.13 hold for arbitrary 7 € 7T, one can
calculate an upper bound for the super-hedging price with respect to every 7 € 7.
Because of transaction costs then, one can expect that there is something like an
optimal 7. In fact, if the number of trading dates tends to infinity, it will not
be efficient to trade at every date, because the transaction costs become relatively
high compared to maximal possible price changes within a time period. Observe that
this feature is characteristic for log-Lipschitz models in contrast to the Black-Scholes

model.

This also elucidates, why trivial super-hedging is optimal within the Black-Scholes
model under proportional transaction costs. The reason is simply that within the
Black-Scholes model it seems useless to trade at a time point ¢1,0 = tg < t; <ty =T,
because the maximal possible price change from ¢, to ¢; is as large as that from t,
to to. It is clear then, that this conclusion devolves to all time sets 7 € 7. The
only way out could be given by super hedges with trading at infinitely many time
points. But because of transaction costs such strategies seem to be more expensive
than the trivial super hedge. Because of these absurd observations we were looking
for a class of processes with more plausible features. This finally lead us to consider

log-Lipschitz processes.

¢
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Zusammenfassung

Die Arbeit entwickelt eine Arbitrage-Preistheorie fiir Finanzderivate unter
Berticksichtugung von Transaktionskosten. Andere mogliche Marktreibungen wer-
den ausgeschlossen. Ansonsten werden nur solche Annahmen an den Markt gestellt,
die notig sind, um oOkonomisch sinnvolle, aussagekriftige Ergebnisse herzuleiten.

Speziellere Annahmen wollten wir weitgehend vermeiden.

Die Arbeit trigt unter anderem zu folgenden Themen bei:

e Modellierung von Transaktionskosten,

Fundamentalsatz der Preistheorie (mit und ohne Transaktionskosten) in

diskreter und stetiger Zeit,

Duale Charakterisierung von Arbitrage-Preisen (Superhedging-Preisen) unter

Transaktionskosten,

Quantile-Hedging unter Transaktionskosten,

Alternativen zum Black-Scholes Modell in stetiger Zeit (unter Transaktions-

kosten).

In der Einleitung werden zunéchst die theoretischen Grundbegriffe fiir die Ana-
lyse von Finanzderivaten eingefiihrt. Danach werden das Prinzip der Arbitrage-
freien Bewertung erldutert und ein Uberblick iiber die bestehende Preistheorie fiir
reibungslose Mérkte gegeben. Anschlielend diskutieren wir die bestehende Theo-
rie fiir Markte mit (proportionalen) Transaktionskosten unter Einbeziehung unserer
Resultate. Sowohl theoretische als auch Praxis-bezogene Uberlegungen fiihren uns

zu dem Schluss, dass man Transaktionskosten Volumen-proportional modellieren
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sollte. Man unterstellt damit, dass die mit einer Order verbundenen Transaktions-
kosten proportional zu Menge x Stiick-Preis sind. Diese Annahme ist fiir die Praxis -

zumindest bei Transaktionen ab einer gewissen Mindestgrofe - durchaus zutreffend.

In Kapitel 2 stellen wir unseren allgemeinen Modellrahmen vor. In diesen Rah-
men lassen sich Aktien- und Wahrungsmérkte mit oder ohne Transaktionskosten
einordnen. Die Kostenstruktur kann dabei deterministisch oder zufillig sein.
Damit beriicksichtigen wir sowohl im voraus berechenbare Transaktionsgebiihren
wie auch zufallige Differenzen zwischen Geld- und Briefkursen. Trotz dieser gerin-
gen Einschrankungen konnen wir die zulassigen Transaktionen einheitlich durch
differentielle Kegelrestriktionen beschreiben. Zwar sind die auftretenden Kegel
bei Wahrungsmarkten andere als bei Aktienmérkten und bei deterministischen
Transaktionskosten andere als bei schwankenden Differenzen zwischen Geld- und
Briefkursen, doch diese Kegel haben wesentliche Gemeinsamkeiten. Indem wir uns
im Rest der Arbeit nur auf die gemeinsamen Eigenschaften dieser Kegel beziehen,
konnen wir erstmals ohne zusatzliche Fallunterscheidungen eine Theorie fir alle
genannten Marktsituationen gleichzeitig entwickeln. Allerdings miissen wir hin-
sichtlich der moglichen Handelsstrategien eine Unterscheidung zwischen Markten
mit diskreten Handelszeitpunkten und solchen mit kontinuierlichem Handel treffen.
Aus technischen Griinden konnen fiir den Handel in diskreter Zeit teilweise inhaltlich

stiarkere Aussagen abgeleitet werden als in stetiger Zeit.

In Kapitel 3 wird der in Kapitel 2 dargestellte allgemeine Rahmen auf den Handel
zu diskreten Zeitpunkten eingeschrankt. Wir fiihren den Begriff eines Portfolio-
Prozesses ein. Portfolio-Prozesse beschreiben, wieviele Einheiten der am Markt
gehandelten Wertpapiere sich zu welchen Zeitpunkten im Portfolio befinden. Der
Marktwert eines Portfolios kann sich sowohl durch Preisinderungen der Anlagen
als auch durch Transaktionskosten verandern. Dagegen kann sich die Zahl einer
bestimmten Wertpapierart im Portfolio nur durch Kauf oder Verkauf dieses Wert-
papieres verandern. Diese Eigenschaft macht es moglich, die Portfolioprozesse, die
aus selbstfinanzierenden Handelsstrategien resultieren, allein durch die in Kapitel 2

eingefiihrten differentiellen Kegelbedingungen zu beschreiben.

In Kapitel 4 fiihren wir mehrer Definitionen fiir Arbitragegelegenheiten ein.
Dabei handelt es sich um assymptotische Arbitragemoglichkeiten, sogenannte Free
Lunches. Wir unterscheiden zwischen LP-und L*-Free Lunches. Dazu korre-
spondierend beweisen wir je einen Fundamentalsatz der Preistheorie ohne zusétzliche

Vorussetzungen an das Marktmodell. Die Abwesenheit von LP-oder L*-Free
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Lunches impliziert die Abwesenheit von klassischen Arbitragemoglichkeiten. Die
umgekehrte Implikation gilt auf Markten mit Transaktionskosten im allgemeinen
nicht. Wir konnen sie aber fiir den Fall nachweisen, dass der Preisprozess eine
zusatzliche Nicht-Degeneriertheitsbedingung erfiillt. Bisher war ein vergleichbares
Resultat nur fiir Markte mit zwei Handelszeitpunkten bekannt (Pham, Touzi ,1999).

In Kapitel 5 leiten wir schlielich noch eine duale Charakterisierung fiir approximative
Super-Hedging-Biindel und Super-Hedging-Preise her. Wir konnen zeigen, dass ap-
proximative und exakte Super-Hedging-Biindel und Super-Hedging-Preise identisch
sind falls die Nicht-Degeneriertheitsbedingung gilt.

Zeitkontinuierliche Markte werden in Kapitel 6 dargestellt. Die zulassigen Port-
folioprozesse werden ahnlich wie in diskreter Zeit allein durch die in Kapitel 2
eingefiihrten differentiellen Kegelbedingungen beschrieben. Zusatzliche Aufmerk-
samkeit legen wir jedoch auf sogenannte einfache Portfolioprozesse (Simple Portfolio
Processes) und solche, die eine gewisse Beschranktheitsbedingung ( Tame Condition

erfiillen.

Mit Hilfe dieser einfachen, beschrinkten Portfolioprozesse gelingt es uns, in Kapitel
7 je einen Fundamentalsatz der Preistheorie fiir LP-und L*>-Free Lunches in stetiger
Zeit ohne zusétzliche Annahmen an den Preisprozess zu beweisen. Da wir aufgrund
geschickter Definitionen mit einfachen Portfolioprozessen auskommen, ist unser Be-
weis weit weniger aufwendig als die Beweise der vergleichbaren Fundamentalsitze
fiir sogenannte Free Lunches with Vanishing Risk von Delbaen und Schachermayer
(1994, 1998).

In Kapitel 8 leiten wir schliellich noch eine duale Charakterisierung fiir approxima-
tive Super-Hedging-Biindel und Super-Hedging-Preise her. Dieses Ergebnis stelt
eine Verallgemeinerung der Resultate von Kabanov (1999) dar. Dieser beweist
eine duale Charakterisierung fiir exakte Super-Hedging-Biindel und Super-Hedging-
Preise, setzt dabei aber die Stetigkeit des Preisprozesses voraus. Diese Bedingung
konnten wir durch den Ubergang zu approximativen Super-Hedging-Biindeln und

Super-Hedging-Preisen vermeiden.

Die duale Charakterisierung fiir approximative Super-Hedging-Preise wird in Kapi-
tel 9 verwendet um eine duale Charakterisierung von Quantile-Hedging-Preisen
herzuleiten. Damit iibertragen wir das entsprechende Resultat fiir reibungslose
Mirkte von Follmer und Leukert (1999) auf Mirkte mit Transaktionskosten.

In Kapitel 10 kommen wir auf die bekannte Vermutung von Clark und Davis zu
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sprechen, die inzwischen dreifach bewiesen ist (Soner et al., 1995, Leventhal, Sko-
rohod, 1997, Cvitani¢ et al., 1999). Diese (bewiesene) Vermutung besagt, dass
unter den Annahmen von Black und Scholes der optimale Super Hedge fiir jede Eu-
ropdische Call Option in folgender trivialen Kaufen- und Halten-Strategie besteht:
Bei Emission einer Call-Option erwirbt man gleichzeitig das Underlying und hélt es
bis zum Austibungstag. Folglich ist der Super-Hedging-Preis einer Call Option exakt
so hoch wie der Preis des Underlyings - ein absurdes Resultat. Wir ziehen daraus
den Schluss, dass sich das Black-Scholes Modell zumindest unter Beriicksichtigung
von Transaktionskosten nicht zur Arbitragefreien Bewertung von Optionen eignet.
Als eine mogliche Alternative schlagen wir eine Klasse von Prozessen vor, deren loga-
rhythmierte Pfade gleichméafig Lipschitz-stetig sind. Solche Log-Lipschitz Prozesse
stellen im wesentlichen eine nichttriviale zeitstetige Verallgemeinerung von zeit-
diskreten Prozessen mit multinomialen logarhythmierten Zuwachsen dar. Insbeson-
dere lassen sich die Pfade von log-Lipschitz Prozessen durch Pfade geeigneter zeit-
diskreter Prozesse mit multinomialen logarhythmierten Zuwachsen “eingrenzen”.
Diese Eigenschaft kann genutzt werden, um nicht-triviale obere Schranken fiir Super-
Hedging-Preise von Finanzderivaten mit konvexer Auszahlungsfunktion herzuleiten,
wie etwa einer Européischen Call Option. In d&hnlicher Weise lassen sich damit auch

nicht-triviale Super Hedges berechnen.
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Appendix A

Banach Spaces

Let X be a Banach-space with norm ||.|| and X™* the dual space of X, i.e. the space

of ||.||-continous linear functionals on X equipped with the norm
IfI} = sup |f(z)].
llzl]<1

Then with this norm AX™* is a Banach-space (see Dunford-Schwartz, 1958, p. 60,
Corollary 9). The closed unit balls of X resp. X* are the sets

S={zxeX:|lz|]| <1}

S = {fex s |fl <1},
The weak topology o(X, X*) is the locally convex topology on X induced by the

family of semi-norms
l.lf: X =R, z—|f(x)], feX*.

The weak™ topology o(X*, X) is the locally convex topology on X induced by the

semi-norms

et X" SR, o @), weX.

Theorem A.1 (Krein-Smulian Theorem, see Dunford-Schwartz, 1958, p. 429,
Theorem 7) A convex set in X* is o(X*, X)-closed, if and only if its intersection
with every positive multiple of 8* is o(X*, X)-closed.

The following Lemma is an exercise in Dunford-Schwartz (1958).
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Lemma A.2 (see Dunford-Schwartz, 1958, p. 437, Ezercise 16) If X is a separable
Banach-space, a convex subset A C X* is o(X*, X)-closed, if and only ifVn : f, € A
and Vr € X : lim,_,o fn(x) = f(x) imply f € A.

A Theorem similar to Lemma A.2 can be proofed, if we admit X to be a weakly

compactly generated Banach space, which is a weaker assumption than separability.

Definition A.3 (see Diestel, 1975, p.143) A Banach space X is said to be weakly
compactly generated whenever there exists a weakly compact subset I C X such that

the linear span of K is dense in X.

Theorem A.4 (see Diestel, 1975, p.163, Theorem /) If X is a weakly compactly
generated Banach space and Z is a closed linear subspace o X, then the closed unit

ball of Z* is weak™ sequentially compact.

Corollary A.5 Let (0, F,P) be a probability space and (ug, pi1, ..., pg) a d + 1-
tuple of P-equivalent o-finite measures on (Q, F). Write L' := X;—,_4L"(11;) and
L*® = X, aL™®(u;) and let (L, L*®) be the weak topology on L' and o(L>, L')

the weak® topology on L*°. Then the closed unit ball

S*:={CelL>: €SSSUP;—o,....d i) <1}

is o(L>®, L') sequentially compact.

Proof. According to an example in Diestel (1975, p.143) the space L'(u) is weakly
compactly generated for any o-finite measure p. Thus in our case, since the weak
topology on a product space coincides with the product of the weak topologies, L'

is also weakly compactly generated. Hence the assertion follows by Theorem A.4.

&

Lemma A.6 Suppose (Q,F,u) is a o-finite measure space. Then there exists a
probabiltiy measure P ~ p with Radon-Nikodym densitiy ‘3—5 € LP(u) for every

1 <p<oo.
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Proof. The proof is almost identic with that of Lemma 17.6 in Bauer (1992).
Although the assertion there is slightly weaker, Bauer’s proof in fact covers our

stronger assertion.

o

Lemma A.7 Suppose (0, F, P) is a probability space and X is a R-valued random
variable with X > 0 P-a.s.. Then there exists a probability measure P ~ P with
Radon-Nikodym density % € L®(P) for every 1 < q < 0o and satisfying X € LI(IS).

Proof. Consider the measure X P ~ P defined by df}f := X. Then as a result from

the Radon-Nykodym theorem, since X is IR-valued, the measure X P is o-finite.
Then according to Lemma A.6 there exists a probability measure () ~ X P with
Radon Nikodym density f = % € L®(XP for every 1 < g < co. We define the
probability measure P ~ P by

Note that 3;113 € L*(P). We calulate

/QXdﬁ:/QX I ap

Epl]]

1 40
Erlf] Joaxp

1 dQ o
Bolf] Jo ax P T B

and see that X € L(P).
¢

Lemma A.8 Suppose (2, F,P) is a probability space and X = (X;)i—o,..
IR —valued random vector with X; > 0 P-a.s. for everyi € {0,...,d}. Then there
exists a probability measure P ~ P with Radon-Nikodym density % € L*(P) and

X; € L'(P) for every i € {0,...,d}.

Proof. According to Lemma A.7, for i € {0,...,d} there exist probability measures
P; sucht that X; € L'(P)) and 4% ¢ [*~(P). Hence if we define a finite measure
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i~ P with j—l’i € L>®(P) for every 1 < ¢ < oo by

dp . dP,
—— = min

dP = ic{o,...d} dP

and then define P ~ P by
1 du

P
P u(Q)dP
P

we get a probabiltiy measure P ~ P as desired.

&

Theorem A.9 Let (2, F,P) be a probability space and (po, pt1,- -, 1a) o d + 1-
tuple of P-equivalent o-finite measures on (Q, F). Write L' := X,—q. aL*(p;) and
L>® = X4l (u;) and denote o(L', L™) the weak topology on L' and o(L>, L*)
the weak* topology on L. If K is a convex cone in L™, then K is closed in o(L>, L')
if and only if for every sequence (C™)new in K that is uniformly bounded and with
every component (CM)pen , @ = 0,1..., converging in probability P to a C; € L™,

)

we have C = (C})i=o,...a € K.

Proof.

Suppose K is a convex cone in L*°. According to the Krein-Smulian Theorem, I is

o(L*>, L") closed if and only if it’s intersection with every positive multiple of

.....

is o(L>, L')-closed. Define A(\) := KNAS™ for A > 0. According to Corollary A.5,
the set 8 is o(L*>, L') sequentially compact. Consequently K is closed, if and only
if A(\)is o(L>®, L") compact for every X > 0. In fact if K is o(L*, L") closed then,
since AS™ is o(L>, L") sequentially compact, every sequence in A(\) C AS™ has
a o(L*®, L") convergent subsequence with limit in A()\), because A()) is o(L>°, L")

closed. The converse assertion is a direct implication of the Krein-Smulian theorem.

i)” = 7. Suppose K is a convex o(L>, L') closed cone and let (C™),cix be a sequence
in K that is uniformly bounded and with every component (C"),cn converging in
probability P to a C; € L* , i = 0,1...,d. Since for every i we have u; ~ P,
every component (C!"),en also converges in measure p; to this C; € L. Let Y =

(Y)i=o...a be an arbitrary element of L'. Then for every i the uniformly bounded
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sequence (C"),en is uniformly integrabel with respect to the finite measures Y;" y;

and Y, p; defined by

dY;"
lei'u := max{Y;, 0}
dY; p;
i Hi_ —min{Y;, 0}
dp;

and hence converging to C; in L'(Y;"p;) and in L*(Y;” ;) . Consequently, for ev-
ery i € {0,...,d} the sequence ([, C!Y;dp;)nen converges to [, C;Yidpu,;. Since Y
was arbitrary chosen, we conclude that (C™),cn converges to C' in the o(L*°, L')
topology. Thus C' € K, because otherwise KL would not be closed with respect to
o(L>=,LY).

ii) 7 < 7. Suppose K is a convex cone in L>*. We have to show that A()\) is
sequentially o(L*, L') compact for every A > 0. For arbitrary A > 0 let (C"),en
be a sequence in A(\) C A8®. Since A\S™ is o(L*>, L') sequentially compact there
is a o(L>®, L') convergent subsequence (C*™), .y with limit C' € L™, i.e.

d d
WY eL': lim Y / CEIY dp = / C.Ydp;
—07/0 i—0 7

k—)ooz.
which implies
Vi € {0,...,d\VY; € L'() : lim / C’f(")Ydui:/ CYdu; .
k—oo JQ Q

Let i € {0,...} and B € F with p;(B) < oo be arbitrary but fixed. Then consider
the sets
AF.=Bn{Cfn)-C; >0} e F
and define
IT:={I=(I":VkeN:I"e {A¥ B\ 4*}} .

keN
Let I € Z. Then for every k € IN we either have (C¥—C;)1x > 0or (C¥—Ci)1 < 0.
Having this in mind, by eventually separating (C’k("))kelN into two subsequences it
is easy to verify that

lim [ (CF™ — C)1pdp; =0

k—oo Jo© "
implies
kll)r{)lo/Q |C’f(n) — Ci|1rdp; =0 .
Since Z is countable by construction and because of B = U7/, the o-finiteness of
4 implies
lim /Q|cf<"> — Cillpdpi =0 .

k—00
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Since B and ¢ were arbitrary chosen, we are able to conclude the following. For each
i € {0,...,d} and for every B € F with p;(B) < oo we have for every o > 0:

Jim ({65 =Gl > 0} 0 B) = lim pu(ICF = Cille > o)
— 00 — 00
< lim = | |CF™ — Cy1pdpu; = 0.
k—oo ¢ JQ

There we have used the Chebyshev-Markov inequality. Hence every component
(Cf("))nem ,i=0,1..., of the uniformly bounded sequence (C*™), in K con-
verges in probability P ~ p; to a C; € L. Thus we have C' = (C});—

¢

.....
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Appendix B

Multifunctions

Definition B.1 Suppose C and X are two sets and let F' be a multifunction from C
to X, that maps C € C to a subset F(C) C X. The inverse F~1 of F is defined by

Fllz)={CeC:2eFCO)},xeX.

In addition we define
FB):=|J F(C) ,BcC
ceB

F'Y) = F'@)={CeC:FO)NY#0} ,YycCx.
z€eY
If X is a metric space, then a multifunction F s called closed-valued, if for all C' the

set F(C') is closed (comp. Rockafellar 1976, p.159). The graph of a multifunction
is defined as

graph(F) ={(C,z) :z € F(C)} .
Given a metric space (C,T) we call a multifunction F from (C,T) to R closed,
if it’s graph is closed (comp. Rockafellar, 1970, p. 415). (Rockafellar (1970) only
considers conver-valued multifunctions from IR"™ to IR™ and calls them convex pro-
cesses.) For two multifunctions Fy, Fy, we define as a short notation the partial

ordering

F1 g F2 =& € C: Fl(C) g FQ(C)

Proposition B.2 If F is a multifunction from a metric space C to R (or another

metric space) then the multifunction F defined by
F(C)={heR¥ :3(C" k") : k" € F(C"),h™ — h,C™ — C}

is closed. F is called the closure of F.
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Proof. Suppose (C", h"),cn is a sequence such that h™ € F(C™) for every ninIN
and h™ — h, C"™ — C. Then for every n there exists a sequence (C™", h"™" ) ninN
such that h™ € F(C™") for every m,ninIN and h™ — h"™ and C™ — C"
for every ninIN. It is then possible by diagonal extraction to choose a sequence
(C™m) pmM) e such that h™™ € F(C™™) for every ninIN and C™™ — C,
B — b This shows h € F(C).

¢

Remark B.3 If F'is a closed multifunction, then
(2.1)  F(O)={heR""':3(C™,h"): h" € F(C™),h™ — h,C" — C}.

In fact, if F'is closed, then the inclusion F'(C') C ... is trivial and the other inclusion

follows from the closedness of the graph.

(2.1) also implies that F' and F~" are closed-valued. To verify this for F' take a
sequence h" € F(C) converging to some h € IR*™. For every n there exists a
sequence (C™" h™"™"),.cn such that h™" € F(C™") for every m € IN and C™" —
C,h™" — h. The remainder again is done by diagonal extraction. For F~! the

argumentation is similar.

&

Definition B.4 (c.f. Rockafellar, 1976, p.159 f.) A closed-valued multifunction F
from a measurable space (2, F) into R"™ is said to be F-measurable, if for every
closed set B C IR™ we have

FYB)eF.

Proposition B.5 (c.f. Rockafellar, 1976, Proposition 1A) For a closed-valued mul-
tifunction F from a measurable space (2, F) into R" the following properties are

equivalent:
i) F is measurable;

ii) for each z € R" the function w — dist(z, F(w)) is F-measurable.

Definition B.6 Let (2, F) be a measurable space. A function f: Q x R" — R™
is called a Caratheodory mapping if for every x € R" the function F(.,x) is

(F, B™)-measurable and for every w € Q the function F(w,.) is continuous.
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Theorem B.7 (c.f. Rockafellar, 1976, Theorem 2.J) Let be (Q,F) is a measurable
space and suppose f: Q x R" — IR™ is a Caratheodory mapping. For every w € )

consider the set convex set
®(w) :={x € real" : f(w,x) <0} .

Then the multifunction ® is F-measurable, and hence ® has a measurable selection

where it s nonempty-valued.

The following Lemma is actually a Corollary of Theorem 2J in Rockafellar (1976),
although it is not straightforward.

Lemma B.8 Let (2, M) be a measurable space and = a M-measurable polyhedral
multifunction with conver values Z(w) C R"™ ,w € Q2. This means there are measur-

able vectors
Wi:(Wij)j:0,1 ..... n:Q%RTH_I 7i:17"'7m7 mem

such that
(2.2) Ew)={zeR": > z;W;(w) < Wy(w)} .
j=1
(Note that = is measurable according to Theorem 2J in Rockafellar (1976).) Denote
extr=(w) the set of extreme points of Z(w). Then extrZ : w — extr=(w) is a

M-measurable multifunction.

Proof. From (2.2) we see that for every w € 2 we have z € extr=(w), if and only
if z € Z(w) and there is a suitable subset I C {1,...,m} with |/| = n such that z

is the unique solution of the system of linear equations

j=1
For W; = (Wij)j=01,..n let W, = (Wij)j=1,..n- Denote T the set of subsets I C
{1,...,m} with |I| = n. Observe that Z has finitely many elements. For every
I € T the set

~

M(I) :={weQ:det(W;:iel)=0}
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is M-measurable, because the determinant det(.) is a IB™*™-measurable function.
For every I € Z let us define the multifunction Y! from Q to R™ by T!(w) = 0 for
w € M(I) and

T (w)={z € R": Xn;x,Wl(w) < Wy(w) ,iel}.

Then from Theorem 1B and Theorem 2J in Rockafellar (1976) we know that Y7 is

M-measurable.

Now it is clearly evident that for every w € €2 we have

extrE(w) = |J Y (w) NE(w) .

IeT

Hence, according to Propostion 1L and Theorem 1M in Rockafellar (1976), the

multifunction extr= is M-measurable.

¢
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