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Abstract

A basic assumption of standard small area models is that the statistic of interest
can be modelled through a linear mixed model with common model parameters
for all areas in the study. The model can then be used to stabilize estimation.
In some applications, however, there may be different subgroups of areas, with
specific relationships between the response variable and auxiliary information. In
this case, using a distinct model for each subgroup would be more appropriate
than employing one model for all observations. If no suitable natural clustering
variable exists, finite mixture regression models may represent a solution that ’lets
the data decide’ how to partition areas into subgroups. In this framework, a set of
two or more different models is specified, and the estimation of subgroup-specific
model parameters is performed simultaneously to estimating subgroup identity, or
the probability of subgroup identity, for each area. Finite mixture models thus
offer a flexible approach to accounting for unobserved heterogeneity.

Therefore, in this thesis, finite mixtures of small area models are proposed to ac-
count for the existence of latent subgroups of areas in small area estimation. More
specifically, it is assumed that the statistic of interest is appropriately modelled
by a mixture of K linear mixed models. Both mixtures of standard unit-level
and standard area-level models are considered as special cases. The estimation
of mixing proportions, area-specific probabilities of subgroup identity and the K
sets of model parameters via the EM algorithm for mixtures of mixed models
is described. Eventually, a finite mixture small area estimator is formulated as
a weighted mean of predictions from model 1 to K, with weights given by the
area-specific probabilities of subgroup identity.

Finite mixture models have been extended to include additional covariates to
model the mixture weights. This is particularly useful if the aim is not only
to control for heterogeneity as a nuisance in the data but also to identify and char-
acterize the subgroups in a meaningful way. If suitable covariates are available,
the submodel also supports the assignment to subgroups. Moreover, it can be
used to classify new observations on the basis of the covariates alone. Therefore,
a corresponding extension for the finite mixture of small area models is also con-
sidered. In addition to the advantages listed above, in a small area context, the
improved assignment to subgroups also enhances the accuracy of the estimation
of the statistic of interest. Furthermore, the option of assigning new observations



to subgroups based on the estimated submodel and the covariates only can be em-
ployed to predict the statistic of interest for unsampled areas in a heterogeneous
population.

The approach suggested in this work is inspired by an attempt to estimate regional
rental prices in Germany on the basis of the German Mikrozensus. This important
household survey, which is conducted by the Federal Statistical Institute, periodi-
cally contains a special section on housing. It therewith provides otherwise scarce
nationwide information on rental prices. Due to precision requirements, however,
results on average rents are only published at the level of the German Länder. As
rental prices vary significantly between regions, this level of aggregation is far too
high for many purposes. Therefore, in a first step, a standard area-level model
was estimated in order to use the information provided by the survey efficiently.
Regional indicators such as the population growth rate, the prevalence of rented
housing and the price of building land where used as covariates. Overall, reliable
results on average rental prices on district level were obtained. The application
did, however, raise doubts as to whether it is appropriate to assume one model for
all areas. Factors that drive rental markets very likely vary between different types
of areas, such as rural and urban districts. These concerns motivated the proposal
of a mixture-based approach to small area estimation. Furthermore, the need to
gain a deeper understanding of the segmentation, inspired the incorporation of a
submodel for the mixture weights into the framework.

While the proposal is motivated by this specific application, it could also be an
appropriate method in any application in which small area estimates for hetero-
geneous subentities are of interest. Furthermore, the suggested estimator could
also be interpreted as a flexible approach when the distribution of the statistic of
interest is unknown and the usual normality assumption of the basic small area
models seems inappropriate.

The proposed method is evaluated in model-based simulation studies. It is then
applied to the problem of estimating rental prices at the district level in Germany.



Zusammenfassung

Eine zentrale Annahme small-area-statistischer Standardmodelle ist, dass die in-
teressierende Variable durch ein Lineares Gemischtes Modell modelliert werden
kann. Die Modellparameter sind dabei für alle areas gleich. In einigen Anwendun-
gen scheint es jedoch plausibler, dass es verschiedene Gruppen von areas mit jew-
eils spezifischem Zusammenhang zwischen interessierender Variable und Kovari-
ablen gibt. In einem solchen Fall unbeobachteter Heterogenität wäre ein eigenes
Modell für jede Gruppe angemessener als ein gemeinsames Modell für alle areas.
Wenn die Gruppen jedoch unbeobachtet sind und es keine geeignete natürliche
Clustering-Variable gibt, kann die Schätzung eines Finite Mixture Models eine
geeignete Methode sein, um die Regionen auf Grundlage der verfügbaren Daten
in Gruppen zu unterteilen. Dazu werden zwei oder mehr verschiedene Modelle
spezifiziert. Die Schätzung der gruppenspezifischen Modellparameter sowie der
Gruppenzugehörigkeit der einzelnen areas erfolgt dann simultan. Finite Mixture
Models sind damit ein flexibler methodischer Ansatz um unbeobachtete Hetero-
genität zu berücksichtigen.

In dieser Arbeit wird daher eine Finite Mixtures von Small Area Modellen
vorgeschlagen, um latente Gruppen in small-area-statistischen Anwendungen
zu berücksichtigen. Konkret wird angenommen, dass die interessierende Vari-
able durch eine Mischung von K gemischten Modellen modelliert werden kann.
Sowohl das Standard Unit-Level als auch das Standard Area-Level Modell wer-
den als Spezialfälle betrachtet. Die Schätzung der Mischungsgewichte, der area-
spezifischen Wahrscheinlichkeiten für Gruppenzugehörigkeit und der K Vektoren
der Modellparameter erfolgt über den EM-Algorithmus. Schließlich, wird ein Fi-
nite Mixture Small Area Schätzer als gewichtetes Mittel der Prädiktionen aus
den Modellen 1 bis K formuliert. Die Gewichte sind dabei die area-spezifischen
Wahrscheinlichkeiten für Komponentenzugehörigkeit.

Finite Mixture Models können um ein Modell für die Mischungsgewichte erweit-
ert werden. Das ist vor allem dann sinnvoll, wenn es nicht nur um eine Kon-
trolle von unbeobachteter Heterogenität als Störung in den Daten geht, sondern
die Gruppen auch identifiziert und inhaltlich interpretiert werden sollen. Wenn
geeignete Kovariablen verfügbar sind, unterstützt das Untermodell auch die Zuord-
nung zu den Komponenten. Außerdem kann es verwendet werden, um neue
Beobachtungen auf Grundlage der Kovariablen zu klassifizieren. Daher wird eine
entsprechende Erweiterung auch für Finite Mixtures von Small Area Modellen be-
trachtet. Zusätzlich zu den bereits genannten Vorzügen, wirkt sich die verbesserte



Schätzung der Komponentenzugehörigkeiten im Small Area Kontext auch posi-
tiv auf die Präzision der Prädiktion der interessierenden Variable aus. Außerdem
kann die Zuordnung neuer Beobachtungen auf Basis der verfügbaren Kovariablen
genutzt werden, um die interessierende Variable von areas mit einem Stichprobe-
numfang von null in einer heterogenen Population zu prädizieren.

Der vorgeschlagene Ansatz ist durch eine Anwendung small-area-statistischer Ver-
fahren für die Schätzung von Mietpreisen auf Grundlage des Mikrozensus inspiri-
ert. Dieser wichtige Haushaltssurvey des Statistischen Bundesamtes enthält alle
vier Jahre eine Zusatzerhebung zur Wohnsituation und stellt damit ansonsten
nicht verfügbare, flächendeckende Informationen zu Bestandmieten in Deutsch-
land zur Verfügung. Aufgrund von Präzisionsanforderungen werden Auswertun-
gen über mittlere Mieten jedoch nur auf Ebene der Bundesländer zur Verfügung
gestellt. Mietpreise schwanken allerdings deutlich zwischen den Regionen, so dass
dieses Aggregationslevel für viele Verwendungszwecke deutlich zu hoch ist. Daher
wurde in einem ersten Schritt ein Standard Area-Level Modell geschätzt, um die
im Mikrozensus verfügbaren Informationen effizient zu nutzen. Als Kovariablen
wurden Regionalindikatoren wie die Bevölkerungsentwicklung, die Bedeutung des
Mietmarktes und Baulandpreise verwendet. Insgesamt konnten verlässliche Ergeb-
nisse über durchschnittliche Mieten auf Kreisebene gewonnen werden. Die An-
wendung ließ aber zweifeln, ob die Annahme eines gemeinsamen Modells für alle
areas angemessen ist: Es scheint plausibler, dass Determinanten der Mietpreis-
bildung zwischen verschiedenen Typen von areas, zum Beispiel zwischen urba-
nen und ländlichen Kreisen, divergieren. Diese Bedenken motivierten einen mis-
chungsbasierten Ansatz für Small Area Statistik. Das Interesse an einem tieferen
Verständnis der Segmentierung inspirierte die Erweiterung um ein Untermodell für
die Mischungsgewichte.

Obwohl der vorgeschlagene Ansatz durch diese spezifische Anwendung motiviert
worden ist, können Finite Mixtures von Small Area Modellen selbstverständlich
auch in anderen Anwendungen, in denen Small Area Schätzungen für eine hetero-
gene Population interessieren, eine geeignete Methode darstellen. Der vorgeschla-
gene Schätzer kann außerdem als ein flexibler Ansatz für Anwendungen inter-
pretiert werden, in denen die Verteilung der interessierenden Variable unbekannt
ist und die üblichen Normalverteilungsannahmen von Standardmodellen der Small
Area Statistik nicht angemessen erscheinen.

Der vorgeschlagene Ansatz wird in modellbasierten Simulationsstudien evaluiert.
Anschließend wird das Verfahren auf die Schätzung von regionalen Mietpreisen in
Deutschland angewendet.
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Chapter 1

Introduction

When analysing survey data in order to gain insights into social or economic phe-
nomena, the aim may not only be to make statistical inferences about the entire
target population but also to obtain reliable information regarding certain suben-
tities. Such subentities may be, for example, smaller areas in a region under study
or demographic subgroups in a population. However, researchers are frequently
confronted with the problem that the spatial or thematic disaggregation of the
available sample results in small subsamples for the subentities of interest, which
causes a lack of accuracy when using conventional direct estimators. Model-based
Small Area Estimation (SAE) techniques, that are designed to produce reliable
information even for small subsamples, may represent a solution. These methods
are aimed at improving the efficiency of estimation in the case of small subsamples
by means of an explicit statistical model. The intuition is that part of the vari-
ation in these statistics can be explained by a relationship between the variable
of interest and a certain set of covariates that is valid for all areas under con-
sideration. Thus, it can be estimated using the data points from all subsamples.
The specified relationship can then be employed to stabilize the prediction of the
variable of interest.

In many applications, however, it is plausible to assume that the relationship be-
tween the variable of interest and given auxiliary information will differ by area. It
then seems reasonable to consider different subgroups of areas, and the estimation
of subgroup-specific models might be more appropriate than using one model for
all areas. There might be a natural clustering variable, which could be used to
segment areas into two or more subgroups. If this is not the case, the definition of
subgroups becomes a crucial task in the estimation process and appropriate tech-
niques to partition the areas have to be applied. Finite mixture regression models
seem to represent a natural solution to this problem. In this framework, a set of

1



Chapter 1. Introduction 2

two or more different models is specified, and the estimation of model parameters
is performed simultaneously to estimating subgroup identity, or the probability of
subgroup identity, for each area. Mixture models thus offer a flexible, integrated
approach to accounting for latent subgroups in the population.

The objective of this thesis is to propose mixture-based small area estimators to
account for the existence of unobserved subgroups of areas. More specifically, it is
assumed that the observed values of a target statistic are appropriately modelled by
a finite mixture of K small area models. Subgroup-specific model parameters and
area-specific probabilities of subgroup membership are estimated simultaneously
using the Expectation-Maximization (EM) algorithm. An estimator of the target
statistic is then obtained as a weighted average of the predictions from the K
component models. Weights are given by the area-specific probability of subgroup-
membership. In a second step, the model is extended to include a (concomitant
variable) submodel for the mixture weights in order to support clustering and
to gain further insights into the clustered structure. Based on an investigation
into relevant theory from the fields of both model-based SAE and finite mixture
models (FMM), details on relevant model specifications, parameter estimation,
and prediction are presented. More specifically, both mixture of unit-level and of
area-level models, and respective estimators, are proposed. Furthermore, suitable
approaches for determining the number of components are discussed.

The primary objective of the approaches suggested in this work is to improve
estimation performance in cases of a clustered population by providing a model
that fits the data structure. In addition, the model-based probabilistic clustering
of areas, which is obtained as a by-product of the estimation process, may provide
valuable insights into underlying patterns. It therefore furthers the understanding
of the data at hand.

The proposal is inspired by and employed to the problem of estimating regional
rental prices in Germany. Measuring rental prices is of high practical relevance, as
they make up an important share of private households’ living expenses and, as
such, constitute a crucial determinant of consumer price indices. Moreover, rental
prices provide valuable information concerning the situation of the housing market
and thus indicate demand for political action and regional development planning.
As regional rental markets develop in a highly heterogeneous manner, there is an
interest in measuring prices at the local level. However, a comprehensive regional
differentiation other than that at the level of the German Länder is usually not
provided, as the ability to provide estimates at a higher level of disaggregation is
restricted by rather small sample sizes for regional subentities. An exception are
the quoted rents at district level, which are calculated by the BBSR (Bundesin-
stitut für Bau-, Stadt- und Raumforschung (BBSR), 2012). Therefore,
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estimating regional rental prices constitutes a natural application for SAE.

The analysis in this thesis is based on data provided by the German Mikrozen-
sus, an important household survey conducted by the Federal Statistical Institute,
which contains a special section on housing every fourth year. It thus provides
otherwise scarce nationwide information on rental prices. It is routinely evaluated
by the Federal Statistical Office at the level of the German Länder. In the study
provided here, model-based SAE techniques are applied to obtain estimates for
the far-lower level German districts. As a first step, a standard Fay Herriot (FH)
model was estimated, using regional indicators such as the population growth rate,
the prevalence of rented housing and the price of building land as covariates. How-
ever, when this approach was discussed the approach with practitioners who work
with rental price data on a daily basis, they decisively rejected the concept of a
common relationship between rental prices and auxiliary information for all areas.
They instead emphasized that the factors driving rental markets differ between
different types of areas, such as rural and urban districts. They thus implicitly
criticized the basic assumption of the Fay-Herriot model, i.e. a common relation-
ship between the statistic of interest and the covariates for all areas, as being
inappropriate. It was this criticism that motivated the extension of the standard
small area model. The suggested approach of using a finite mixture of small area
models may, however, prove appropriate in any application in which small area
estimates for heterogeneous subentities are of interest.

This thesis is organized as follows: Chapter 2 and Chapter 3 are dedicated to in-
troducing the two fields of basic theory that are relied upon in developing the pro-
posal of a mixture of small area models. More specifically, Chapter 2 provides an
overview of model-based SAE, including a general account of linear mixed models
and a description of the basic unit- and area-level model as special cases. Chapter
3 introduces the basic theory of finite mixture models and presents relevant model
definitions. This chapter also addresses the extension of a mixture model with a
concomitant-variable submodel for the mixture weights. Furthermore, the choice
of the number of components and the estimation of mixture models are discussed.
In Chapter 4, the two fields introduced in Chapters 2 and 3 are brought together,
and an estimator based on a finite mixture of small area models is presented. Cor-
responding to the structure of Chapter 2, the unit-level and the area-level model
are introduced as special cases of a finite mixture of general linear mixed models.
The topics of parameter estimation and prediction are also addressed. The pro-
posed method is then evaluated in two model-based simulation studies discussed
in Chapter 5. It is then applied to the problem of estimating rental prices at the
district level in Germany. The thesis concludes with a summarizing evaluation of
the proposed method and an outlook on future research.



Chapter 2

Model-based Small Area
Statistics

2.1 Introduction

When a survey is conducted, there often is not only an interest in making statistical
inferences about the entire population under study but also in obtaining reliable
information for specified subentities. Then the following setting (see Münnich,
Burgard and Vogt, 2013) is considered: A population U of size N is divided
into m pairwise disjoint subpopulations Ui, i = 1, . . . ,m. These subpopulations are
called areas or domains depending on whether the disaggregation of the population
is by region or by content.1 A sample S of size n is drawn, with Si = S ∩ Ui
designating the sample realized in Ui and ni being the area-specific sample size.
Now the aim is to simultaneously estimate a vector of m area-specific parameters
θ = (θ1, . . . , θm)T , e.g. means µ.

When making inferences at the disaggregated level of the areas, researchers are
commonly confronted with the problem of small sample sizes for the subentities.
This is particularly true when the evaluation of a survey at a disaggregated level
was not taken into account in the planning phase. But even if the sampling
design and the area-specific sample sizes are thoroughly planned, practical or bud-
getary restrictions might lead to small subsamples for some or all areas (Jiang
and Lahiri, 2006, p. 2). In this case, conventional direct estimators (which, by
definition, only use the information from the area under consideration (Rao and
Molina, 2015, p. 1)), might lead to large standard errors. Model-based SAE

1For the sake of brevity and simplicity, only the term area is used in the following discussion.
In all theoretical considerations, the concepts are interchangeable.

4
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methods are designed to produce reliable estimates, even for very small subsam-
ples. Following Rao and Molina (2015, p.2), and corresponding to this aim, the
eponymous small area is defined as an area with a subsample size that is too small
to yield direct estimates of adequate precision. The strategy is to apply indirect
techniques that make use of additional information such as, for example, sampled
information from other areas. This additional information is included through a
model. The intuition is that part of the (inter-area) variation of the statistic of
interest can be explained by its relationship to a set of covariates valid for all areas
under consideration. A model can, thus, be estimated using the data points from
all subsamples. The specified relationship can then be employed to stabilize esti-
mation. In the literature, this strategy is often referred to as ”borrowing strength”
(Ghosh and Rao, 1994).

Whereas classical direct estimators are generally design-unbiased, the unbiasedness
of model-based estimators crucially depends on the validity of the assumed model.
However, whenever direct estimators cannot be employed because some or all
sample sizes are too small to yield estimates of adequate precision, the employment
of model-based techniques is commonly regarded as best practice (Jiang and
Lahiri (2006, p. 4), Pfeffermann (2002, p. 128), Rao and Molina (2015, p.
5), see Rao and Molina (2015, Chapter 3) for an account of competing design-
based indirect approaches to SAE). As Pfeffermann (2002, p. 128) states,
”SAE is widely recognized as one of the few problems in survey sampling where
the use of models is often inevitable”.

The standard approach is to estimate a linear mixed model, either at the level of
the observation units or at the aggregated level of the areas. While the fixed part of
the model establishes the above-mentioned constant relationship, which is used to
stabilize the prediction, the random effect captures the variation between the areas
that can not be explained by the covariates included in the model (see Jiang and
Lahiri, 2006, p. 4). The standard area-level model was introduced by Fay and
Herriot (1979). The unit-level model was first suggested by Battese, Harter
and Fuller (1988). Both models are simple, special forms of the General Linear
Mixed Model (GLMM). Therefore, the GLMM is introduced in Section 2.3. Then
the standard area and the unit-level models are presented as special cases.

2.2 Literature Review

Small area estimation has atttracted much attention over the last decades, and
standard methods are well established nowadays. An extensive overview is pro-
vided in the standard work by Rao (2003) and its second edition by Rao and
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Molina (2015). Review papers focused on model-based SAE have been pub-
lished by Jiang and Lahiri (2006), Pfeffermann (2002) and Pfeffermann
(2013). Münnich et al. (2013) provide a German-language overview. A study
that is thematically related to the application considered in this thesis has been
published by Pereira and Coelho (2013), who estimated average house prices
in Portugal by applying several small area estimators.

Concerning to the use of mixture models in SAE, a variety of suggestions, with dif-
ferent motives, have been made. Mixtures have been employed in order to relax re-
stricting distributional assumptions or to model specific distributional shapes (see
Chandra and Chambers, 2016; Elbers and van der Weide, 2014; Maiti,
2003), as well as in robust SAE (see Datta and Lahiri, 1995; Gershunskaya,
2010). Recently, Datta and Mandal (2015) proposed a mixture of a degenerate
distribution localized at zero and the usual normal distribution for the random
effects in an area-level mixed model. They, therewith, suggest a flexible SAE
strategy, wherein random effects are only included for those areas for which the
statistic of interest is not sufficiently well explained by the covariates included in
the fixed part of the model. The proposal made in this thesis differs from all of
these approaches with respect to its motivation and underlying intuition and, in
particular, in the form in which mixtures are included in the framework. In this
work, a mixture of mixed-effects regression models employed for the prediction of
the statistic of interest in model-based SAE is considered.

With regard to clustering in SAE, Fabrizi, Montanari and Ranalli (2016)
recently proposed latent class regression models for the classification of individual
observations. Furthermore, clustering-based small area prediction, i.e. approaches
that account for the existence of different subgroups of areas with subgroup-specific
patterns when predicting the variable of interest, has also recently been considered:
Torkashvand, Jafari Jozani and Torabi (2017) proposed area-level models
in which the random effect distribution is allowed to vary between subgroups iden-
tified via hierarchical clustering based on the covariates. Maiti, Ren, Dass, Lim
and Maier (2014) (see also Ren, 2011) considered an approach that allows both
fixed and random effects to vary between clusters. The authors used the model-
based clustering algorithm proposed by Booth, Casella and Hobert (2008)
to partition areas into subgroups. Small area estimates are then obtained using
cluster-specific Fay-Herriot models. In contrast, instead of a two-step procedure,
this thesis considers an integrative approach that uses finite mixture models.
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2.3 Linear Mixed Models

2.3.1 The Model

The GLMM (see Demidenko, 2004; Searle, Casella and McCulloch, 1992,
p. 138-140) is given by

y = Xβ +Uv + ε (2.1)

with (
v
ε

)
∼ N

((
0
0

)
,

(
D 0
0 Σ

))
, (2.2)

where y is an n× 1 vector of responses, X is an n× p design matrix of p known
covariates and β is an p × 1-vector of fixed effects. v denotes the s × 1-vector of
random effects and U is an n × s design matrix that defines in which form the
random effects enter the model. ε denotes the n×1-vector of error terms. v and ε
are assumed to be independently distributed with mean 0 and covariance matrices
D and Σ, respectively.

Equations (2.1) and (2.2) imply the following (marginal) distribution of y:

y ∼ N (Xβ,V ), (2.3)

V = UDUT + Σ.

D and Σ, and thus V , are specified up to a vector of variance parameters ϑ =
(ϑ1, . . . , ϑq)

T . To make the dependence on ϑ explicit, the notation V (ϑ) is used
whenever it clarifies the presentation.

The specification of the variance-covariance matrices D and Σ defines how corre-
lation structures in the data are captured by the model. The usual assumptions of
independently and identically distributed error terms ε are frequently made, such
that Σ = σ2

eIn, where In is an n× n identity matrix.

The general formulation presented in (2.1) comprises a large family of different
models. An important special case is the (multilevel or hierarchical) formulation
for nested data, such as observations from repeated measurements in a longitudi-
nal study or data comprising individual units grouped in contextual or regional
aggregates as in SAE. Given such a data structure, mixed models are a device
for taking correlations between observations from one individual or within clusters
into account.
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Consider m clusters of size Ni, i = 1, . . . ,m, with ni sampled units in each cluster,
where n =

∑m
i=1 ni. Let yi = (yi1, . . . , yini

)T denote the ni×1 vector of observations
for cluster i and X i is the corresponding ni × p matrix of covariates. Partitioning
y, ε,v and X into

y = (yT1 , . . . ,y
T
m)T , ε = (εT1 , . . . , ε

T
m)T , v = (vT1 , . . . ,v

T
m)T (2.4)

and

X =

 X1
...
Xm


as well as specifying2 U = diag(U 1, . . . ,Um) and setting Σ = diag(R1, . . . ,Rm)
as well as D = diag(G, . . . ,G), yields the two-level Linear Mixed Model (LMM)
(Demidenko (see 2004, p. 48-49) and Rao and Molina (2015, p. 108)), which
can be decomposed into m submodels

yi = X iβ +U ivi + εi, i = 1, . . . ,m

(2.5)(
vi
εi

)
∼ N

((
0
0

)
,

(
G 0
0 Ri

))
.

vi is a r-vector, with r = s/m. This specification implies V i = U iGU
T
i +Ri and

V = diag(V 1, . . . ,V m) (2.6)

i.e. a block diagonal covariance matrix, implying that observations from different
clusters are uncorrelated. All small area models considered in the context of this
thesis are special cases of (2.5).

2.3.2 Parameter Estimation

Parameter estimation for LMM requires both estimation of fixed effects β and
of variance parameters ϑ. Commonly Maximum Likelihood (ML) or Restricted
Maximum Likelihood (REML) estimation is employed to derive estimators for the
model parameters. ML was first applied to LMM estimation by Hartley and
Rao (1967). An extensive account is given by Demidenko (2004, Chapter 2) or
Searle et al. (1992, Chapter 6).

2A simple but important special case is U i = 1ni
, so that U is an n×m identity matrix, i.e.

a common random intercept is assumed for observations within one cluster.
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The likelihood function L(β,ϑ) is obtained by considering the joint density of y
as a function of the unknown parameters β and ϑ given the data y

L(β,v) =
exp

(
−1

2
(y −Xβ)TV −1(y −Xβ)

)
(2π)n/2|V |1/2

, (2.7)

with corresponding log-likelihood

l(β,ϑ) = log(L(β,ϑ)) (2.8)

=− 1

2
(y −Xβ)TV −1(y −Xβ)− 1

2
log |V | − n

2
log 2π.

|V | denotes the determinant of V . Maximizing (2.8) with respect to β by setting
the partial derivative to zero yields the well-known Generalized Least Squares
(GLS) estimator of β:

β̃ = (XTV −1X)−1XTV −1y. (2.9)

See McCulloch, Searle and Neuhaus (2008, pp. 163–164) and Searle et al.
(1992, Appendix S.2.). It can be shown that (2.9) is the Best Linear Unbiased
Estimator (BLUE) of β.

Calculating β̃ requires knowledge of V (ϑ), more specifically of ϑ, i.e. the q × 1
vector of variance parameters it depends on. ϑ is, however, usually unknown and
has to be estimated from the data as well. To obtain a ML estimator of ϑ the
log-likelihood function has to be maximized with respect to the q elements in ϑ,
too. Differentiating (2.8) and setting the partial derivative to zero gives

∂l(β,ϑ)

∂ϑi
=

1

2

{
(y −Xβ)TV −1

∂V

∂ϑi
V −1(y −Xβ)− tr

(
V −1

∂V

∂ϑi

)}
= 0, (2.10)

i = 1, . . . , q.

as first order condition for a maximum. Using Xβ = X(XTV −1X)−1XTV −1y
in (2.10) results in the following condition:

tr

(
V −1

∂V

∂ϑi

)
= yTP

∂V

∂ϑi
Py, i = 1, . . . , q, (2.11)

with

P = V −1 − V −1X(XTV −1X)−1XTV −1 (2.12)

(see Jiang (2007, p. 10), McCulloch et al. (2008, p. 165), and Searle et al.
(1992, Chapter 6.2)). Finding the ML estimator ϑ̂ML requires solving (2.11) within
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the parameter space (which is a restrictive requirement in the case of variance com-
ponents) and second derivative tests to check whether the identified critical points
indeed are maxima (see Searle et al., 1992, Chapter 6.3). The solution usually
requires iterative procedures such as the Fisher-scoring algorithm (also denoted
as Method of Scoring or Scoring algorithm) or the Newton-Raphson algorithm.
See Rao and Molina (2015, p. 102) and Searle et al. (1992, p. 295) for the
Fisher-scoring algorithm and Demidenko (2004, Chapter 2.8 – 2.15) or Searle
et al. (1992, Chapter 8) for a comprehensive overview on numerical methods for
computing ML estimates. Sometimes also the EM algorithm is employed to com-
pute ML estimates. As this procedure is relied upon in the estimation of mixtures
of mixed models in Chapter 4 it is described in detail in Section 2.3.5.

Once ϑ is estimated from the data, an estimator for β is obtained calculating β̃
from (2.9) substituting V (ϑ) by an estimate V̂ = V (ϑ̂ML), i.e. β̂ML = β̃(ϑ̂ML)
(Rao and Molina (2015, p. 102), Searle et al. (1992, Chapter 6.7)). Under
the LMM as introduced in (2.5) (i.e. with normally distributed error terms), the
estimator of β, β̂ML, remains unbiased. For a more detailed discussion of properties
see Demidenko (2004, Chapter 3.6).

It is known from more general results on ML estimation, that under suitable con-
ditions the ML estimator for ϑ is consistent and asymptotically normal distributed
(see Demidenko (2004, Chapter 3.6)). The asymptotic covariance matrix V of
β̂ML and ϑ̂ML is equal to the inverse of the Fisher information matrix I. Under
certain regularity conditions, the Fisher information matrix is given by (see Jiang
(2007, p. 11), Rao and Molina (2015, p. 102), Searle et al. (1992, Chapter
6.3))

I
(
β
ϑ

)
= −E


∂2l(β,ϑ)

∂β∂βT
∂2l(β,ϑ)

∂β∂ϑT

∂2l(β,ϑ)

∂ϑ∂βT
∂2l(β,ϑ)

∂ϑ∂ϑT

 . (2.13)

Assuming that V is twice continuously differentiable, the following expressions
can be derived (Jiang (2007, p. 11), Searle et al. (1992, Chapter 6.3):

−E
(
∂2l(β,ϑ)

∂β∂βT

)
= XTV −1X, (2.14)

−E
(
∂2l(β,ϑ)

∂β∂ϑT

)
= −E

(
∂2l(β,ϑ)

∂ϑ∂βT

)
= 0 (2.15)

and−E
(
∂2l(β,ϑ)

∂ϑ∂ϑ

)
= I(ϑ), with I(ϑ) being a q×q-matrix with (i, j)-th element



Chapter 2. Model-based Small Area Statistics 11

given by

−E
(
∂2l(β,ϑ)

∂ϑi∂ϑj

)
=

1

2
tr(V −1

∂V

∂ϑ i
V −1

∂V

∂ϑ j
), 1 ≤ i, j ≤ q. (2.16)

The asymptotic covariance matrix of β̂ML and ϑ̂ML, thus, has block-diagonal struc-
ture,

V

(
β̂ML

ϑ̂ML

)
= diag((XTV −1X)−1,I(ϑ)−1). (2.17)

ML estimation of ϑ does not take into account the degrees of freedom lost due
to the estimation of β (Rao and Molina (2015, p. 102), Searle et al. (1992,
Chapter 6.6)) and the result for the variance parameters depends on the fixed
effects, which are sometimes considered as nuisance parameters and, thus, are of
subordinate interest (Jiang, 2007, p. 12). Further, the estimator looses the prop-
erty of consistency when the number of parameters in the model increases with
the sample size (Jiang, 2007, p. 12, p. 40). An alternative estimation approach
proposed by Patterson and Thompson (1971) and later Harville (1974) that
overcomes these issues is REML estimation. Instead of the log-likelihood function
for y ∼ N (Xβ,V ), REML estimation maximizes the log-likelihood of the trans-
formed data y̌ = ATy, whereA is any n×(n−p) matrix composed of n−p linearly
independent vectors a1, . . . ,an−p that fulfill aTi X = 0T for all i = 1, . . . , n−p, with
p = rank(X) (Rao and Molina (2015, p. 102–103), Searle et al. (1992, Chap-
ter 6.6)). The resulting distribution of the transformed data is y̌ ∼ N (0,ATV A),
i.e. it does not depend on β. Thus, the fixed effects are ”eliminated” (Jiang,
2007, p. 13) from the data.

The log-likelihood for y̌, often denoted as ”restricted” log-likelihood lR, is given
by

lR(ϑ) = −1

2
y̌T (ATV A)−1y̌ − 1

2
log |ATV A| − (n− p)

2
log 2π. (2.18)

Differentiating (2.18) with respect to the q elements of ϑ, setting the derivatives
to zero and expressing the result in terms of y yields

∂lR(ϑ)

∂ϑi
=

1

2

{
yTP

∂V

∂ϑi
Py − tr

(
P
∂V

∂ϑi

)}
= 0, i = 1, . . . , q, (2.19)

where P = A(ATV A)−1AT = V −1 − V −1X(XTV −1X)−1XTV −1, as in (2.12)
(Jiang, 2007, p. 13). The REML equations are, thus, given by

tr

(
P
∂V

∂ϑi

)
= yTP

∂V

∂ϑi
Py, i = 1, . . . , q, (2.20)
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i.e. they differ from the respective ML equations (2.11) only insofar that V −1 on
the left-hand side is replaced by P . The REML estimator ϑ̂REML is given by the
solution of (2.20). As in the case of ML estimation, solving (2.20) requires iterative
procedures. See Demidenko (2004, Chapter 2.14) and Rao and Molina (2015,
p. 103) for details on the Fisher-Scoring algorithm for REML.

REML estimation does not provide an estimator for the fixed effect. As in ML
estimation, a REML-estimator for β can, however, be obtained by substituting
V (ϑ) in (2.9) by an estimate V̂ = V (ϑ̂REML), so that β̂REML = β̃(ϑ̂REML) (Rao
and Molina (2015, p. 103), Searle et al. (1992, Chapter 6.7)). For the LMM
as defined in (2.5) the estimator of β, β̂REML, again remains unbiased.

Under suitable conditions ϑ̂REML is a consistent estimator for ϑ. It also is asymp-
totically normal. See Demidenko (2004, Chapter 3.6) and Jiang (2007, Chapter
1.8) for a more detailed discussion of statistical properties. If the number of fixed
effects is fixed, the asymptotic covariance matrix is asymptotically equal to (2.17)
(Rao and Molina, 2015, p. 103). Further, under the same condition, ML and
REML are asymptotically equivalent (see Demidenko (2004, Chapter 3.6), Jiang
(2007, p. 12, p. 40)). As Jiang (2007, p.40) points out, the true superiority of
REML over ML estimation is, thus, revealed when considering a case where the
number of fixed effects is large relative to the sample size. Additionally, it has been
considered an advantage of REML that the estimates of the variance components
are independent from the results obtained for the fixed effects and that, in the case
of balanced data, REML solutions are equivalent to ANOVA estimators (McCul-
loch et al., 2008, Chapter 6.10). There, thus, has evolved a certain preference
for REML, which is also the default setting in standard R-packages for estimat-
ing Mixed Models, lme4 (Bates, Mächler, Bolker and Walker, 2015) and
nlme (Pinheiro, Bates, DebRoy, Sarkar and R Core Team, 2017), and the
standard package for SAE, sae (Molina and Marhuenda, 2015).

2.3.3 Mixed Model Prediction

In SAE and in many other applications of mixed models, the prediction from the
mixed model, i. e. one that involves both the fixed effect and the realized value
of the random effect, is of interest (Harville, 1976; Harville and Jeske, 1992;
Henderson, 1975; Jiang and Lahiri, 2006; Rao and Molina, 2015). The
respective general linear combination of both fixed and random effects of the form
η = lTβ+mTv, where l and m are given vectors of constants, (Jiang and Lahiri
(2006, Chapter 3.2), Rao and Molina (2015, Chapter 5.2)) is sometimes referred
to as ”mixed effect” (Jiang and Lahiri, 2006, p. 12).

Obviously, mixed model prediction requires assigning values to the (unobservable)
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random effects, i.e. estimating the realized (but unobservable) value of the random
variable v given the data (McCulloch et al., 2008, Chapter 1.7). Although this
implies estimating a ”thing [that] has already occurred” (Robinson, 1991, p.
28), this task has evolved to be commonly referred to as prediction of random
effects (Robinson, 1991). As usual in the respective literature, in the following
account, it is first assumed that all parameters of the model are known. It then is
easy to show that the Best Predictor (BP) for v, i.e. the one that minimizes the
Mean Square Error (MSE) of prediction MSE(ṽ) = E(ṽ − v)2 with ṽ denoting a
predictor, is the conditional expectation of v given the observed data y:

ṽ = BP (v) = E(v|y). (2.21)

For the LMM with normally distributed errors as defined in (2.5), E(v|y) and
therewith the BP ṽ can straightforwardly be deduced from the multivariate normal
joint distribution of v and y and respective standard results on the conditional
distribution of v given y (see Searle et al., 1992, Chapter 7.3 and appendix S.3.)
as

ṽ = E(v|y) = DUTV −1(y −Xβ). (2.22)

Note that the same result is obtained when the Best Linear Predictor (BLP) is
of interest, i.e. when the MSE is minimized for a linear predictor of the form
ṽ = a + By where a and B denote some vector and matrix, respectively. The
derivation then does not require the assumption of normality (see Searle et al.,
1992, Chapter 7.3). For the linear combination η = lTβ + mTv, the BP under
normality is derived, correspondingly, as η̃ = E(η|y) = lTβ + mT ṽ. Again this
estimator is also the BLP without requiring any distributional assumption (Rao
and Molina, 2015, Chapter 5.2.1).

Of course, model parameters are usually unknown. If the fixed effects have to be
inferred from the data, but variance parameters ϑ are still known, β is commonly
replaced by its GLS estimator β̃, ie. the BLUE of β as given in (2.9), such that a
predictor for η is given by

η̃BLUP = lT β̃ +mTDUTV −1(y −Xβ̃). (2.23)

This estimator was proposed by Henderson (1950) and is commonly referred to
as the Best Linear Unbiased Predictor (BLUP) for η, a label first used by Gold-
berger (1962). The famous acronym BLUP was later coined by Henderson
(1973). Note that

ṽBLUP = DUTV −1(y −Xβ̃), (2.24)
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i.e. ṽ with β replaced by β̃, also is denoted the BLUP for v (Demidenko, 2004,
Chapter 3.7).

The BLUP given in (2.23) is a linear function of y. It also is best in the sense that it
minimizes the MSE of prediction and unbiased in the sense that E(η̂BLUP ) = E(η).
Note that the meaning of these concepts thus differs from their definitions in the
context of estimation of a fixed value: As now a random variable is predicted, the
MSE is minimized instead of the variance and the relevant notion of unbiasedness
is that the expected value of the predictor equals the expected value of the random
variable instead of the fixed quantity to be estimated (Robinson (1991), Searle
et al. (see 1992, Chapter 7.2)). A proof of these properties is given in Hender-
son (1963) or Rao and Molina (2015, Chapter 5.6.1) and Searle et al. (1992,
Chapter 7.4).

The BLUP was first derived by Henderson. In search of what he called ”joint
maximum likelihood estimates”, Henderson (1950) simultaneously maximized
the joint density of y and v with respect to β and v. Setting the partial deriva-
tives to zero results in the following system of equations (Henderson, 1950;
Henderson, Kempthorne, Searle and von Krosigk, 1959)[

XTΣ−1X XTΣ−1U
UTΣ−1X UTΣ−1U +D−1

] [
β̃
ṽ

]
=

[
XTΣ−1y
UTΣ−1y

]
. (2.25)

They have come to be known as Henderson’s Mixed Model Equations. The solutions
of (2.25) correspond to (2.9) and (2.24). These equations are often computationally
more economic than the standard BLUE and BLUP equations because inversion
of Σ and D is often easier than of V (Henderson et al. (1959), Searle et al.
(1992, Chapter 7.6)).

As Rao points out, the above considerations can straightforwardly be extended to
the case where two or more linear combinations are to be estimated simultaneously,
i.e. where the estimation of η = Lβ+Mv is of interest (Rao and Molina (2015,
p. 100), see Searle et al. (1992, Chapter 7.4) for a corresponding presentation of
the topic).

So far it was assumed that the variance parameters ϑ are known. In practice,
however, they usually have to be estimated from the data as well and ϑ in (2.23)
is replaced by an estimator ϑ̂. The resulting (two-stage) estimator (Kackar and
Harville (1981, p. 1256), Rao and Molina (2015, p. 101)) η̂ is referred to as
empirical BLUP or Empirical Best Linear Unbiased Predictor (EBLUP). Kackar
and Harville (1981) showed that the EBLUP remains an unbiased estimator of
η under the conditions that ϑ̂ is a translation-invariant estimator of ϑ and an
even function of the data, v and ε are both distributed symmetrically around 0,
and E(η̂) exists. They further showed that standard estimators of ϑ, including
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both ML and REML estimators, are even and translation-invariant (Kackar and
Harville, 1981).

2.3.4 MSE Estimation

To assess the accuracy of the EBLUP η̂, the MSE of prediction, i.e. MSE(η̂) =
E(η̂ − η)2, is considered. This task is highly complex, particularly because it
requires assessing the variability caused by the estimation of ϑ.

Ignoring the added variation due to the estimation of variance parameters, the
MSE of the EBLUP is sometimes approximated by using the expression for the
MSE of the BLUP, MSE(η̃BLUP), which is known to be (see Henderson (1975),
Rao and Molina (2015, Chapter 5.2.2))

MSE(η̃BLUP) = g1(ϑ) + g2(ϑ), (2.26)

with

g1(ϑ) = mT (D −DUTV −1UD)m (2.27)

g2(ϑ) = (l−XTV −1UDm)T (XTV −1X)−1(l−XTV −1UDm)T , (2.28)

and replacing ϑ by its estimate ϑ̂. This naive estimator might, however, underes-
timate the MSE to a considerable degree. Kackar and Harville (1984) showed
that, for normally distributed error terms and provided ϑ̂ is a translation-invariant
estimator, the MSE of the EBLUP can be decomposed as follows:

MSE(η̂) = MSE(η̃BLUP) + E(η̂ − η̃BLUP)2. (2.29)

Using (2.26) as an estimator, thus, implies neglecting the second term of (2.29),
which represents the contribution to the MSE due to the estimation of ϑ. This
underestimation, which might be significant if the variation of ϑ̂ is large and η̂
varies strongly with ϑ (Rao and Molina, 2015, Chapter 5.2.5), might not be
acceptable in practice.

With very few exemptions, E(η̂ − η̃BLUP)2 is, however, intractable (Rao and
Molina, 2015, Chapter 5.2.5) and an approximation

g3(ϑ) ≈ E(η̂ − η̃BLUP)2 (2.30)

is required. A path-breaking contribution to this research task was made by
Prasad and Rao (1990). They derived an approximation for the FH-model
(see Section 2.4) and the nested error regression model (see Section 2.5) and pro-
vided results on its accuracy. Datta and Lahiri (2000) presented more general
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results for the LMM with block-diagonal covariance structure (as defined in (2.5))
with variance components estimated by ML and REML. Das, Jiang and Rao
(2004) further extended this work by considering a general GLMM as in (2.1).
See Das et al. (2004) or Rao and Molina (2015, Chapter 5.2.5) for the respec-
tive expression for g3(ϑ). Results for the special cases of the FH- and the nested
error regression models are given in Section 2.4 and 2.5, respectively. All three
approximations neglect terms of order o(m−1), such that a second-order unbiased
estimator for MSE(η̂) is given by

MSE(η̂) ≈ MSE(η̃BLUP) + g3(ϑ) (2.31)

≈ g1(ϑ) + g2(ϑ) + g3(ϑ).

In practice, an estimator M̂SE(η̂) for MSE(η̂) has to be obtained. g2(ϑ) and g3(ϑ)
can generally be approximated by g2(ϑ̂) and g3(ϑ̂), respectively. Further, when
variance components are estimated by REML estimation,

g1(ϑ) ≈ E(g1(ϑ̂) + g3(ϑ̂)). (2.32)

An estimator for MSE(η̂) with bias of order o(m−1) is then derived as

M̂SEREML(η̂) ≈ g1(ϑ̂) + g2(ϑ̂) + 2g3(ϑ̂). (2.33)

For the ML estimator of variance components, the following approximation holds:

M̂SEML(η̂) ≈ g1(ϑ̂)− bT (ϑ̂;ϑ)
∂g1(ϑ)

∂ϑ
+ g2(ϑ̂) + 2g3(ϑ̂), (2.34)

where bT (ϑ̂;ϑ) is an approximation of the bias of ϑ̂. An expression of the addi-
tional bias correction term for the special case of a standard area-level model is
given in Sections 2.4. See Rao and Molina (2015, Chapter 5.2.6) and Das et al.
(2004) for details.

2.3.5 The EM Algorithm for Mixed Models

In Section 2.3.2 it was stated that ML and REML estimates for the LMM are
calculated employing numerical procedures such as the Fisher scoring or Newton-
Raphson algorithm. A third algorithm commonly employed is the EM algo-
rithm, a multi-purpose estimation algorithm introduced generally in Appendix
A.1 (see Demidenko, 2004, Chapter 2.8 for a comparative overview of the three
approaches). The EM algorithm was applied early for maximum likelihood infer-
ence for linear mixed models (Jennrich and Schluchter, 1986; Laird, Lange
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and Stram, 1987; Laird and Ware, 1982; Lindstrom and Bates, 1988). See
Searle et al. (1992, Chapter 8.3) and McLachlan and Krishnan (2008, Chap-
ter 5.9) for an overview. As this algorithm is relied upon and extended in the con-
text of estimation of a mixture of mixed models, the calculation of ML estimates
for the LMM via the EM algorithm is briefly presented here (for calculation of
REML estimates see e.g. Searle et al. (1992, Chapter 8.3)). As only the spe-
cial case of a LMM with block-diagonal covariance-structure (as defined in (2.5))
and independently distributed error terms, i.e. Ri = σ2

eIni
, is of interest in the

context of this thesis, the presentation is restricted to a model with this simplified
covariance structure.

Consistent with the approach described in Appendix A.1, for estimating the LMM
via the EM-algorithm, the model is interpreted as a missing data situation. More
specifically, the random effects vi, i = 1 . . . ,m are treated as missing values, ex-
ploiting the fact that estimation of model parameters would be trivial if they were
observed (Searle et al. (1992, Chapter 8.3)).

The joint distribution of the complete-data vector of area i, (yTi ,v
T
i )T is the mul-

tivariate normal density(
yi
vi

)
∼ N

((
Xiβ

0

)
,

(
V i U iG
GUT

i G

))
, (2.35)

where V i = U iGU
T
i + σ2

eIni
. Denoting the variance covariance matrix by Σi,

defining the vector

di =

(
yi −Xiβ
vi − 0

)
, (2.36)

and using the fact that for any i 6= j, Cov(yi,y
T
j ) = 0, Cov(vi,v

T
j ) = 0 and

Cov(yi,v
T
j ) = 0, the log-likelihood based of the complete-data vector (yT ,vT )T =

(yTi , . . . ,y
T
m,v

T
i , . . . ,v

T
m)T is accordingly given by

lc(ψ) = −1

2

m∑
i=1

(
dTi Σ−1i di + log |Σi|+ (ni + s) log(2π)

)
. (2.37)

where s is the length of the random effect-vector vi. ψ is the vector of unknown
parameters comprising β, σ2

e and the vector of variance parameters ϑv, G depends
on, i.e. ψ = (βT , σ2

e ,ϑ
T
v )T .

As the random effects are, of course, not observable so that (2.37) cannot be
formed, the EM algorithm alternatively works on the expectation of lc(ψ), i.e.

Q(ψ; ψ̂
(t−1)

) = E
ψ̂

(t−1) [lc(ψ)]. Deriving Q requires the conditional distribution of
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vi given yi, which from standard multivariate normal theory (see e.g. Fahrmeir,
Kneib, Lang and Marx, 2013, Theorem B.6 on p. 649) is known to be

vi|yi ∼ N
(
GUT

i V
−1
i (yi −X iβ),G−GUT

i V
−1
i U iG

)
. (2.38)

Using V i = U iGU
T
i + σ2

eIni
it can also be expressed as (see McLachlan and

Krishnan, 2008, Chapter 5.9)

vi|yi ∼ N
(
(UT

i U + σ2
eG
−1)−1UT

i (yi −X iβ), ((σ2
e)
−1UT

i U i +G−1)−1
)
. (2.39)

Using (2.37)–(2.39), the EM algorithm is performed applying the following steps
(see Appendix A.1 for more details and a general description of the algorithm):

• Specification of starting values ψ̂
(0)

• E-step in iteration (t)

Deriving Q(ψ; ψ̂
(t−1)

) particularly requires deriving the conditional expecta-
tion of the sufficient statistics vi and viv

T
i given yi (see e.g. de Leeuw and

Meijer, 2008, Appendix 1.D.) using estimates σ̂
(t−1)2
e , Ĝ

(t−1)
= G(ϑ̂

(t−1)
v )

and β̂
(t−1)

of σ2
e , G and β obtained in the last iteration:

ŝ
(t−1)
1i = E

ψ̂
(t−1)(vi|yi) (2.40)

= (UT
i U i + σ̂2(t−1)

e Ĝ
(t−1)−1

)−1UT
i (yi −X iβ̂

(t−1)
),

and

Ŝ
(t−1)
2i = E

ψ̂
(t−1)(viv

T
i |yi) (2.41)

= Cov
ψ̂

(t−1)(vi|yi) + ŝ
(t−1)
1i ŝ

(t−1)T
1i

= ((σ2(t−1)

e )−1UT
i U i + Ĝ

(t−1)−1

)−1 + ŝ
(t−1)
1i ŝ

(t−1)T
1i .

Here and in the following, E
ψ̂

(t−1) denotes expectation parameterized by

ψ(t−1), where ψ̂
(t−1)

is the vector of estimates obtained in the last iteration
step (t− 1).

• M-step

An updated estimate of σ2
e , G and β is derived by maximizing Q(ψ; ψ̂

(t−1)
),

i.e. the maximum likelihood estimates of the complete-data log-likelihood
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(2.37) are calculated substituting the (unknown) sufficient statistics with
their conditional expected values obtained in the E-step. Thus,

β̂
(t)

= (
m∑
i=1

XT
i X i)

−1
m∑
i=1

XT
i (yi −U iŝ

(t−1)
1i ), (2.42)

Ĝ
(t)

=
1

m

m∑
i=1

Ŝ
(t−1)
2i , (2.43)

and

σ̂2(t)
e =

1

n

m∑
i=1

E
ψ̂

(t−1)(εTi εi|yi). (2.44)

With

ε̂
(t−1)
i = E

ψ̂
(t−1)(εi|yi) = yi −X iβ̂

(t−1)
−Uiŝ(t−1)1i , (2.45)

and

Cov
ψ̂

(t−1)(εi|yi) = Cov
ψ̂

(t−1)(Uivi|yi) (2.46)

= U i((σ̂
2(t−1)

e )−1UT
i U i + Ĝ

(t−1)−1

)−1UT
i

using standard results on the expected value of quadratic forms (see e.g.
McCulloch et al., 2008, Appendix S.1) this yields

σ̂2(t)

e =
1

n

m∑
i=1

[ε̂
(t−1)T
i ε̂

(t−1)
i (2.47)

+ tr

(
UT
i U i((σ̂

2(t−1)

e )−1UT
i U i + Ĝ

(t−1)−1

)−1
)

].

See McLachlan and Krishnan (2008, Chapter 5.9).

• Termination
Both steps are repeated until convergence (see Appendix A.1).

2.4 The Fay-Herriot Model

Assume that the true area mean µi is appropriately modelled by a linear model
µi = xT

i β + vi (linking model), where vi is an area-specific random effect, with
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vi
i.i.d∼ N (0, σ2

v). x
T
i denotes the vector of auxiliary information for area i and β

is a vector of corresponding regression coefficients. Furthermore, direct estimates
µ̂Dir
i , calculated from the sample realized in area i , i = 1, . . . ,m, are assumed to be

related to µi in the form µ̂Dir
i = µi + ei (sampling model), where ei is the sampling

error of the direct estimate, ei
ind∼ N (0, σ2

e,i), with known design variance σ2
e,i.

Combining these assumptions yields

µ̂Dir
i = xT

i β + vi + ei for i = 1, . . . ,m (2.48)

vi
i.i.d∼ N (0, σ2

v)

ei
ind∼ N (0, σ2

e,i).

It is assumed that vi and ei are independent.

(2.48) was introduced by Fay and Herriot (1979) in the context of estimating
per capita income for small areas in the USA and is, therefore, commonly referred
to as Fay-Herriot (FH) model. Since then, it has become a standard model for
small area estimation.

Note that (2.48) is a simple special case of the LMM with block-diagonal covariance
structure as defined in (2.5), where

yi = µ̂Dir
i , X i = xTi , U i = 1, (2.49)

vi = vi, εi = ei, G = σ2
v , Ri = σ2

e ,

and thus

V i = σ2
e,i + σ2

v . (2.50)

The following brief account of parameter estimation, prediction and MSE estima-
tion for the FH model can thus heavily draw on the details given for the general
model in the preceding sections 2.3.2 – 2.3.4.

Along the lines of Rao and Molina (2015, Chapter 6.1.1), the BLUP for the
parameter of interest µ under this model can easily be deduced from the general
expressions for the BLUP of η and the BLUE for β by making the corresponding
substitutions in (2.23) and (2.9). Noting that µi is a special case of the general
mixed effect ηi = lTi β +mT

i vi, where li = xi and mi = 1 this yields

µ̃FH
i = xTi β̃ + ṽBLUP

i (2.51)

= xTi β̃ + γi(µ̂
Dir
i − xTi β̃)

= γiµ̂
Dir
i + (1− γi)xTi β̃
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with

γi =
σ2
v

σ2
e,i + σ2

v

. (2.52)

and

β̃ =

(
m∑
i=1

xix
T
i

σ2
e,i + σ2

v

)−1( m∑
i=1

xiµ̂
Dir
i

σ2
e,i + σ2

v

)
. (2.53)

(2.51) is called the Fay Herriot (FH) estimator for the parameter of interest. Note
that it can be expressed as a composite estimator of the synthetic estimator xTi β̃,
obtained from the fixed part of the model, and the direct estimator µ̂Dir

i . Weights
are given by the area-specific shrinkage factor γi, that sets the model variance σ2

v

in relation to the total variance σ2
e,i + σ2

v . If the model variance is small compared
to the design variance, γi is close to zero and the synthetic estimator dominates.
Intuitively, γi can be understood as a relative measure of confidence in the model-
and the design-based estimator (see Rao and Molina, 2015, Chapter 6.1.1).

As in Section 2.3.3, the EBLUP is obtained from the BLUP by replacing the
typically unknown variance components by an estimate ϑ̂. In the case of the FH
model ϑ = σ2

v and the EBLUP is given by

µ̂FH
i = xTi β̂ + γ̂i(µ̂

Dir
i − xTi β̂), (2.54)

with

γ̂i =
σ̂2
v

σ2
e,i + σ̂2

v

(2.55)

and β̂ = β̃(σ̂2
v).

As in the general case (see Section 2.3.2), the variance parameter σ2
v can be es-

timated via ML or REML estimation. Again, iterative procedures are applied
for computation. See Rao and Molina (2015, Chapter 6.1.2) for details on the
Fisher-scoring algorithm for the special case of the FH model. ML and REML
estimates can also be derived employing the EM algorithm (see Section 2.3.5).
Alternatively, σ2

v can also be estimated by the method of moments (Fay and
Herriot (1979), Prasad and Rao (1990)). This was the estimation approach,
Fay and Herriot (1979) originally employed in their seminal paper introducing
the FH model. As described in Section 2.3.3, the asymptotic variances of ML and
REML estimators are obtained as the inverse of the Fisher-information (I(σ2

v))
−1.
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It is given by

V (σ̂2
v,ML) = V (σ̂2

v,REML) = 2

(
m∑
i=1

1

(σ2
v + σ2

e)
2

)−1
. (2.56)

For results for the asymptotic variances of moment estimators see Prasad and
Rao (1990) and Datta, Rao and Smith (2005).

Regarding the MSE of the FH estimator, MSE(µ̂FH
i ) = E(µ̂FH

i − µi)
2, general

results from Section 2.3.4 can be relied upon. In accordance with (2.31), the MSE
of µ̂FH

i is approximated by

MSE(µ̂FHi (σ2
v)) = g1i(σ

2
v) + g2i(σ

2
v) + g3i(σ

2
v). (2.57)

g1 and g2 can be obtained from the expressions (2.27) and (2.28), respectively. It
is

g1i(σ
2
v) =

σ2
vσ

2
e,i

σ2
v + σ2

e,i

, (2.58)

g2i(σ
2
v) =

(
σ2
e,i

σ2
v + σ2

e,i

)2

xTi

(
m∑
j=1

xjx
T
j

(σ2
e,j + σ2

v)

)−1
xi. (2.59)

Further, as discussed in Section 2.3.5, based on work by Prasad and Rao (1990),
Datta and Lahiri (2000) provided a second order approximation of g3 for σ2

v

estimated by ML or REML given by

g3i(σ
2
v) =

σ4
e,i

(σ2
v + σ2

e,i)
3

2∑m
j=1

1
(σ2

v+σ
2
e,j)

2

. (2.60)

Finally, in line with the general results, an estimator for MSE(µ̂FHi ) with bias of
order o(m−1) can be obtained by estimating g2i(σ

2
v) and g3i(σ

2
v) by g2i(σ̂

2
v), respec-

tively. For σ2
v estimated by REML g3i(σ̂

2
v), furthermore g1i(σ

2
v) can be estimated

by g1i(σ̂
2
v) + g3i(σ̂

2
v) so that M̂SEREML(µ̂FHi ) = g1i(σ̂

2
v) + g2i(σ̂

2
v) + 2g3i(σ̂

2
v). If σ2

v is

estimated by ML, M̂SEML(µ̂FHi ) can be obtained as

M̂SEML(µ̂FHi ) =g1i(σ̂
2
v) + g2i(σ̂

2
v) + 2g3i(σ̂

2
v) (2.61)

−
(

σ2
e,i

σ2
v + σ2

e,i

)2
(

m∑
j=1

1

(σ2
v + σ2

e,j)
2

)−1

× tr

( m∑
j=1

xjx
T
j

(σ2
e,j + σ2

v)

)−1( m∑
j=1

xjx
T
j

(σ2
e,j + σ2

v)
2

) .

See Datta and Lahiri (2000), Datta et al. (2005) and Rao and Molina (2015,
Chapter 6.2.1) for details.
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2.5 The Nested Error Regression Model

While the FH-model presented in the preceding section uses only information on
area-level, the second standard SAE model directly models the individual obser-
vations. Let yij be the observation for the jth of ni elements in area i, i = 1, . . . ,m
and assume that a data set containing both the variable of interest yij and a
set of unit-level auxiliary information xij = (xij1, . . . , xijp)

T is available for the
n =

∑m
i=1 ni elements in the sample S. Additionally, the p-vector of population

means xiP = 1/Ni

∑Ni

j=1 xij of the covariates is known. Commonly the follow-
ing model, which is assumed to hold for both the population and the sample, is
employed to make inferences on area-level statistics:

yij = xTijβ + vi + eij, i = 1, . . . ,m, j = 1, . . . , ni (2.62)

vi
i.i.d∼ N (0, σ2

v)

eij
i.i.d.∼ N (0, σ2

e).

It is assumed that the random effect vi and the individual error terms eij are
uncorrelated. (2.62) is a simple two-level linear mixed model with an area-specific
random intercept vi. In the context of SAE it is commonly denoted as the (one-
fold) nested error regression model or the Battese Harter Fuller (BHF) model after
the authors who first applied it to a problem of the discipline (Battese et al.,
1988).

The parameters of interest are area-level statistics, e.g. the area means Y i =
1/Ni

∑Ni

j=1 yij. Under the model specified above, they are given by

Y i = 1/Ni

Ni∑
j=1

(xTijβ + vi + eij) = xTiPβ + vi + ei, (2.63)

with ei = 1/Ni

∑Ni

j=1 eij. However, in case of large Ni the average error ei ≈ 0, so

that the target statistic is often defined as µi = E(Y i|vi) = xTiPβ + vi (Battese
et al. (1988), Pfeffermann (2013), Rao and Molina (2015, Chapter 7.1.1)).
Rao and Molina (2015, Chapter 7.1.3) further point out that for small sampling
fractions ni/Ni the EBLUP of Y i approaches the EBLUP of µi, thereby giving
an additional justification for this simplifying assumption. They also provide an
estimator for the case where the sampling fraction is non-negligible.

To deduce details on parameter estimation, prediction and MSE estimation from
the results for the general model, the nested error regression model is presented as
a special form of the GLMM presented in Section 2.3. It is (see Rao and Molina,
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2015):

yi = (yi1, . . . , yini
), X i = [xi1, . . . ,xini

]T , U i = 1ni
(2.64)

vi = vi, εi = (ei1, . . . , eini
)T , G = σ2

v , Ri = σ2
eIni

,

and thus

V i = σ2
eIni

+ σ2
v1ni

1Tni
and V −1i =

1

σ2
e

(
Ini
− σ2

v

σ2
e + niσ2

v

1ni
1Tni

)
.

As in the case of the FH-model, the parameter of interest µi = xTiPβ + vi is a
special case of the general parameter ηi = lTi β +mT

i v with li = xTiP and mi = 1.
Making the corresponding substitutions in (2.23) the BLUP for µ can, thus, be
derived as

µ̃BHF
i = xTiP β̃ + ṽBLUP

i (2.65)

= xTiP β̃ + γi(yi − xTiSβ̃) (2.66)

= γ̂i

(
yi + (xiP − xiS)T β̃

)
+ (1− γi)xTiP β̃, (2.67)

where

γi =
σ2
v

σ2
v + σ2

e

ni

, (2.68)

and xiS = 1/ni
∑ni

j=1 xij denotes the p-vector of means of covariates for elements
in Si. Further, (2.9) simplifies to

β̃ =

(
m∑
i=1

XT
i V

−1
i X i

)−1( m∑
i=1

XT
i V

−1
i yi

)
, (2.69)

with

XT
i V

−1
i X i =

1

σ2
e

(
ni∑
j=1

xijx
T
ij − γinixiSxTiS

)
, (2.70)

XT
i V

−1
i yi =

1

σ2
e

(
ni∑
j=1

xijyij − γinixiSyiS

)
, (2.71)

and yiS = 1
ni

∑ni

j=1 yij.



Chapter 2. Model-based Small Area Statistics 25

Equation (2.67) shows that as the FH-estimator, the BHF-estimator can also be
interpreted as a composite estimator. It is a linear combination of the survey
regression estimator and a synthetic regression estimator. Weights are given by
γi, i.e. by the share of model variance from the overall variance.

Note, that the BLUP in unsampled areas, i.e. areas with ni = 0, is µ̃BHF
i = xTiP β̃.

It thus requires xTiP to be available for unsampled areas, too.

The EBLUP µ̂BHF
i is obtained from (2.62) by replacing the variance components

ϑ = (σ2
v , σ

2
e)
T by an estimate ϑ̂. As in the general case, variance components can

be estimated by ML or REML. The asymptotic covariance matrix V of ϑ̂ML and
ϑ̂REML is obtained as the inverse of the Fisher information matrix I, which in the
case of the nested error regression model is a 2× 2-matrix. It is

V (ϑ̂
2

ML) = V (ϑ̂
2

REML) = I−1 =

(
Ivv Ive

Iev Iee

)
, (2.72)

with (Datta and Lahiri, 2000)

Ivv =
2

a

m∑
d=1

(
nd − 1

σ4
e

+
1

h2d

)
, (2.73)
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See Rao and Molina (2015, Chapter 7.1.2) for alternative estimation approaches
for ϑ and respective results for the covariance matrix.

The MSE of the BHF estimator, MSE(µ̂BHF
i ) = E(µ̂BHF

i − µi)2, can be obtained
based on general results from 2.3.4. As above (see (2.31)), the MSE of µ̂BHF

i is
approximated by (Prasad and Rao, 1990)

MSE(µ̂BHF
i (σ2

v , σ
2
e)) = g1i(σ

2
v) + g2i(σ

2
v) + g3i(σ

2
v). (2.76)
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with

g1i(σ
2
v , σ

2
e) = (1− γi)σ2

v , (2.77)

g2i(σ
2
v , σ

2
e) = (xiP − γixiS)T

(
m∑
i=1

XT
i V

−1
i X i

)−1
(xiP − γixiS). (2.78)

A second order approximation of g3 for σ2
v estimated by ML or REML was provided

by Datta and Lahiri (2000) as
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eσ

2
vI

ve). (2.79)

Finally, in analogy to the area-level case, a second-order unbiased estimator with

MSE(µ̂BHFi ) for σ2
v estimated by REML is given by M̂SE(µ̂BHF

i ) = g1i(σ̂
2
v , σ̂

2
e) +

g2i(σ̂
2
v , σ̂

2
e) + 2g3i(σ̂

2
v , σ̂

2
e). See Datta and Lahiri (2000) for details and Rao and

Molina (2015, Chapter 7.2.2) for results for other estimation methods.



Chapter 3

Finite Mixture Models

3.1 Introduction

Finite Mixture Model (FMM) are a large and rapidly evolving research area. The
general framework comprises a broad variety of models, that are applied to statisti-
cal problems in diverse disciplines such as biometrics, medicine, genetics, machine
learning, marketing, economics and finance. With this wide application in dif-
ferent disciplines, often with specific focusses and diverse naming and notation
of central concepts, the field of FMM has evolved to be a vast and often hardly
connected research area. See Lindsay (1995) for an overview of different ”names”
and conceptualizations of the mixture framework.

In their most natural and accessible interpretation, FMM offer an intuitively ap-
pealing approach when it is plausible to assume that there is a certain number of
– actually existing – subgroups in the population yet subgroup identity is unob-
served for all observations (see e.g. Frühwirth-Schnatter (2006, Chapter 1.1),
Lindsay (1995, Chapter 1.1), McLachlan and Peel (2000, Chapter 1.4)). The
aim of mixture modelling then might either be to appropriately model the distri-
bution of this heterogeneous population or to estimate a model for each subgroup
as well as to infer the relative subgroup sizes from the data. In some applications,
there might also be an interest in clustering, i.e. in attributing subgroup-identity
or a probability of subgroup identity to specific observations. With this intuitive
background of a priori existing, latent subgroups, the framework of finite mixture
modelling is usually conceptualized as a missing data problem, where the real-
izations of a multinomial variable indicating class membership is missing for all
observations (see McLachlan and Peel, 2000, pp. 7, 19–20).

Yet, the assumed components of the mixture distribution do not necessarily cor-

27
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respond with actually existing subgroups. Alternatively, FMM can be interpreted
and employed as a flexible semi-parametric way to model unknown or unsmooth
distributional shapes without attributing it to an underlying grouping structure
(see Frühwirth-Schnatter (2006, pp. 5–6), McLachlan and Peel (2000,
pp. 7–8)). Mixtures are apt to capture features possibly present in real data sets,
such as heavy tails, skewness or multimodality (see Marron and Wand, 1992,
for a presentation of the broad spectrum of shapes a mixture of univariate normal
densities can take).

The gain in flexibility, naturally, comes with a price. While mixtures as a mod-
elling framework are an intuitively appealing extension of standard statistical mod-
els, they have certain peculiar properties that complicate inference. Wasserman
(2012, August 4), therefore, concludes that mixture models are ”strange beasts”
and jokes that ”they should be avoided at all cost”. While the peculiarities of
the modelling approach should obviously be borne in mind, there are, however,
workable and well-established solutions for most of the issues that arise with em-
ploying mixture models. The wide use of mixtures in many different areas show
that authors are willing to embrace the additional complexity for the advantages
of a flexible and intuitive modelling framework.

In the following sections, the framework of finite mixture models and finite mixture
regression models is introduced.

3.2 Literature Review

Most notably since the introduction of the EM algorithm by Dempster, Laird
and Rubin (1977) (see McLachlan and Krishnan, 2008), finite mixture
model theory has received growing attention. See Everitt and Hand (1981),
Frühwirth-Schnatter (2006), Lindsay (1995), McLachlan and Basford
(1988), McLachlan and Peel (2000), and Titterington, Smith and Makov
(1985) for extensive overviews of the theoretical and practical aspects of finite
mixture modelling.

With the approach proposed in this thesis, a finite mixture of mixed-effects regres-
sion models is considered. Therefore, several works that have previously combined
these two modelling approaches can be relied upon in the development of the
suggested method. Mainly in the fields of biology and the health sciences, but
also in that of marketing, there are a number of applications in which mixtures
of mixed-effects models have been utilized (Celeux, Martin and Lavergne,
2005; Lenk and DeSarbo, 2000; Martella, Vermunt, Beekman, Westen-
dorp, Slagboom and Houwing-Duistermaat, 2011; Martinez, Lavergne
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and Trottier, 2009; McLachlan, Ng and Wang, 2008; Ng and McLach-
lan, 2014; Ng, McLachlan, Wang, Ben-Tovim Jones and Ng, 2006; Wang,
Ng and McLachlan, 2012; Yau, Lee and Ng, 2003). Verbeke and Lesaf-
fre (1996) and Xu and Hedeker (2001) analysed linear mixed models in which
the random effects are distributed according to a mixture of normal distributions
(also see Verbeke and Molenberghs, 2000, Chapter 12). Scharl, Grün and
Leisch (2010) compared the performance of mixtures of linear regression mod-
els, both with and without random effects, in a simulation study. Celeux et al.
(2005) and Grün (2008) provide an EM algorithm for the estimation of mixtures
of mixed models. In a recent paper, Du, Kahili, Neslehova and Steele (2013)
proposed a penalized likelihood approach to model selection for finite mixtures of
linear mixed models. Note that, in both these applications and theoretical discus-
sions of finite mixture models, the interest usually lies either in clustering or, less
frequently, in the interpretation of component-specific model coefficients, whereas
the approach presented in this thesis focuses on predicting a statistic from the
estimated model.

Prediction using mixture models has generally received little systematic theoretical
consideration. Recently, Cole and Bauer (2016) discussed what they referred
to as individual prediction from mixture models. Borrowing concepts from mixed
model theory (Skrondal and Rabe-Hesketh, 2009), the authors distinguish
between (1) marginal prediction, which averages over unobserved class member-
ship to derive an ”overall prediction” (Cole and Bauer, 2016, p. 617), and (2)
individual or conditional prediction, which takes individual predictions for latent
class membership into account. In an SAE application of mixture models, as
proposed in this thesis, these conditional predictions are of interest because mix-
tures are employed to model areas from actually existing but unobserved groups,
each of which has a specific relationship between response variable and covariates.
Furthermore, the interest lies in making an area-specific prediction, using all of
the information available concerning the area in question. Prediction should thus
clearly take the (predicted) area-specific group-membership into account.

Finite mixture models have been extended to include covariates to model the
mixture weights (see Dayton and Macready (1988); Farewell (1982); Ja-
cobs, Jordan, Nowlan and Hinton (1991). In addition, see Gormley and
Murphy (2011); Ng and McLachlan (2014); Peng, Jacobs and Tanner
(1996); Thompson, Smith and Boyle (1998); Wedel (2002); Wedel and Ka-
makura (2000); Yuksel, Wilson and Gader (2012)). Mainly in the context
of market segmentation (Kopsch (2001); Leeflang, Wittink, Wedel and
Naert (2000); Wedel (2002); Wedel and Kamakura (2000)), but also in
other research areas (Grilli, Rampichini and Varriale, 2015; Grün, 2008;
Thompson et al., 1998), the submodels for the mixture weights are referred
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to as concomitant variable models, and the approach is referred to as the con-
comitant variable mixture (regression) model. Mixtures of regression models with
covariate-dependent mixture weights are alternatively well-known as mixture-of-
experts models (Frühwirth-Schnatter, 2006; Gormley and Murphy, 2011;
Peng et al., 1996; Yuksel et al., 2012)), which were originally introduced in
the neural network literature by Jacobs et al. (1991). Regardless of its name,
this extended approach is particularly useful if the interest lies not only in con-
trolling for heterogeneity as a nuisance in the data but also in identifying and
characterizing subgroups in a meaningful way (Leeflang et al., 2000; Wedel
and Kamakura, 2000). If suitable covariates are available, this approach also
supports the assignment to subgroups. Moreover, the results of the submodel can
be used to classify new observations on the basis of the covariates alone (Wedel
and Kamakura, 2000). In this thesis, a corresponding extension of finite mixture
regression models for SAE is also provided. In addition to the advantages listed
above, the improved assignment to subgroups also enhances estimation accuracy.
Furthermore, the option of assigning new observations to subgroups based only
on the estimated submodel and the covariates, can be employed to predict the
statistic of interest for unsampled areas in a heterogeneous population.

3.3 Model Definitions

3.3.1 Finite Mixture Models

Consider a random vector y. y is said to arise from a K-component finite mixture
distribution if the respective density can be represented by a weighted sum of K
component-specific densities fk(y), i.e.

f (y) =
K∑
k=1

λkfk(y). (3.1)

Here, λk are the mixing proportions or mixture weights with
∑K

k=1 λk = 1 and
λk > 0 for all k = 1, . . . , K. Typically (but not necessarily), the K component
densities fk(y) are assumed to arise from the same parametric distribution fam-
ily parametrized by θ = (θT1 , . . . ,θ

T
K)T , where θ1, . . . ,θK are the K vectors of

component-specific model parameters:

f (y|ψ) =
K∑
k=1

λkf (y|θk). (3.2)
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ψ = (λ1, . . . , λK−1,θ
T
1 , . . . ,θ

T
K)T is a vector containing all the unknown parameters

in the mixture distribution. An important and prominent example is a mixture of
K multivariate normal distributions N (µk,Σk) with component-specific mean µk
and covariance-matrix Σk. Then fk in (3.1) is fN (y;µk,Σk), where fN (y;µk,Σk)
denotes the density of the multivariate normal distribution for component k.

As stated previously, the framework of FMM is often conceptualized as a missing-
data situation that arises when y is sampled from a population that consists of a
certain number of subgroups and subgroup membership is unobserved for all obser-
vations (see Frühwirth-Schnatter (2006, Chapter 1), McLachlan and Peel
(2000, Chapter 1.4 and 1.9)): Consider a heterogeneous population consisting of
K (actually existing) classes and assume that a sample of size n is drawn. Denote
the n-dimensional vector of observations by y = (y1, . . . , yn)T . For i = 1, . . . , n let
there, further, be a random subgroup-label vector zi = (zi1, . . . , ziK)T indicating
class membership of observation i by taking the value 1 if yi stems from compo-
nent k and 0 otherwise. zi follows a multinomial distribution consisting of one
draw from the categories 1, . . . , K with probabilities λ1, . . . , λK . Note that in this
framework the mixing proportions λk can be interpreted as the relative subgroup
sizes. They alternatively might be understood as the unconditional probability
that an observation belongs to class k, that is λk = Pr(zik = 1) for all i. For
completeness, define z = (zT1 , . . . ,z

T
n )T .

Assume that the conditional density of y given zik = 1 can be represented by the
component-specific density fk(y). Then, the marginal density of y is given by
the mixture density as specified in (3.1). The mixture framework, thus, naturally
arises if the component labels are unobserved, i.e. zi is missing for all observations
in the sample, and only y is recorded.

3.3.2 Finite Mixtures of Regression Models

An obvious extension of FMM are Finite Mixtures of Linear Regression Models.
Standard regression models assume a constant linear relationship between response
variable and covariates. This assumption might, however, be overly restrictive.
If so, Finite Mixtures of Linear Regression Models, that allow for different sets
of regression parameters between a fixed number of different unobserved (or un-
specified) subgroups of observations in statistical modelling, might be a suitable
framework.

Early examples of this model class can be found in biology (Hosmer, 1974),
marketing (DeSarbo and Cron, 1988) and economics (Fair and Jaffee, 1972;
Quandt, 1972; Quandt and Ramsey, 1978). Due to their flexibility, Finite
Mixtures of Regression Models, nowadays, are in wide use in a broad range of
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disciplines. Depending on the specific research area, they are also referred to as
switching regression models, finite regression mixtures and latent class regression
models. See Frühwirth-Schnatter (2006, Chapter 8), Grün and Leisch
(2008) and Wedel and Desarbo (2002) for reviews. R-packages for fitting and
analyzing mixtures of regression models are provided with flexmix (Grün and
Leisch, 2007; Leisch, 2004) and mixtools (Benaglia, Chauveau, Hunter
and Young, 2009).

Assume that the observed values y = (yi, . . . , yn)T depend on a set of covariates
X in a linear way

y = Xβ + ε, ε ∼ N (0,Σ). (3.3)

to obtain a standard linear regression model. Now loose the assumption of fixed
regression coefficients for all observations: Let there be K different sets of model
parameters, θk = (βTk ,ϑ

T
k )T , each valid in a subgroup of the population. For

each observation i, let there further be a latent random subgroup-label vector zi,
that determines subgroup membership of i and, thus, the set of model parameters.
Under this scenario, the conditional density of y given X is a mixture of the K
component densities fN (y;Xβk,Σk):

f (y|X,ψ) =
K∑
k=1

λkfN (y;Xβk,Σk) (3.4)

Note that (3.4) is a special form of the mixture of multivariate gaussians with
covariate-dependent mean vector µk = Xβk.

3.3.3 Modelling the Mixture Weights

Finite Mixture Models have been extended to include covariates for the mixture
weights, λk. See Dayton and Macready (1988), Farewell (1982), Jacobs
et al. (1991) for early suggestions under different names, Ng and McLachlan
(2014); Peng et al. (1996); Thompson et al. (1998) for examples of applications
and Gormley and Murphy (2011), McLachlan and Peel (2000, Chapter
5.5.1), Wedel and Kamakura (2000), Wedel (2002), Yuksel et al. (2012))
for reviews. This supports partitioning the observations into subgroups when the
span of the covariates is different between the components. Further, it helps to
characterize and analyse the subgroups in a meaningful way thereby providing
insights into the structures present in the data (Leeflang et al., 2000; Wedel
and Kamakura, 2000). Finally, the submodel allows for an out-of-sample predic-
tion of subgroup membership for new observations on basis of the covariates only
(Wedel and Kamakura, 2000).
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The covariates for the mixture weights, which might or might not be distinct to
the covariates in the component model, are frequently denoted as concomitant
variables (Grilli et al., 2015; Grün, 2008; Thompson et al., 1998; Wedel,
2002). Correspondingly, the approach is commonly referred to as concomitant
variable mixture model or concomitant variable mixture regression models, if the
component densities are covariate-dependent, too. In this latter form, the frame-
work is also well-known as mixtures-of-experts model (Frühwirth-Schnatter
(2006); Gormley and Murphy (2011); McLachlan and Peel (2000); Peng
et al. (1996); Yuksel et al. (2012, Chapter 5.13.1)). This model from the neural
network literature dates back to Jacobs et al. (1991). In the respective literature,
the component models are referred to as experts and the models for the mixing
proportions are known as gating networks. See Gormley and Murphy (2011)
or Yuksel et al. (2012) for a review.

In what follows a finite mixture regression model with concomitant variables is
considered, i.e. the mixture regression model as defined in (3.4) is extended to
include covariates for the mixture weights:

f(yi|xi,wi,ψ) =
K∑
k=1

λk(wi,α)fN (y;xi,θk), i = 1, . . . , n. (3.5)

λk(wi,α) = λi,k with
∑K

k=1 λk(wi,α) = 1 and λk(wi,α) > 0 for all k denotes the
mixture weight or the prior probability that an observation i belongs to component
k. These weights are assumed to be functionally related to a set of auxiliary
information wi through a submodel, typically a multinomial logit model

λi,k = λk(wi,α) =
exp(wT

i αk)∑K
j=1 exp(wT

i αj)
, (3.6)

where α = (αT1 , . . . ,α
T
K−1)

T and αK = 0 for identifiability. Thus, ψ, i.e. the
vector containing all parameters in the mixture distribution, now contains both
the parameters of the sub- and the main model: ψ = (αT ,θT1 , . . . ,θ

T
K).

Note that the extended mixture regression model with submodel for the mixture
weights contains the mixture regression model as a special case: When wi = 1
for all i, λk(wi,αk) = λk is just a component-specific weight as in the standard
mixture regression model defined in (3.4)

As detailed above, the motivation for estimating a mixture model with concomitant
variables might be to further analyse and describe the derived partition of the data
into clusters. In this case, instead of the integrated approach of simultaneously
estimating the mixture components and modelling the mixture weights as functions
of concomitant variables a stepwise procedure can be applied to characterize the
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subgroups. After fitting a standard finite mixture regression model, either the
estimated posterior probabilities or predicted subgroup assignments based on these
posterior probabilities can be regressed on the covariates in a subsequent step
(Gudicha and Vermunt, 2013; Wedel, 2002). This approach does not account
for neither the estimation error of the posterior probabilities nor the classification
error, if the observations are clustered using some clustering rule (Gudicha and
Vermunt, 2013; Leeflang et al., 2000). Furthermore, the submodel for the
component membership is estimated independently of the component densities,
optimizing the sum of squared errors in ξi,k instead of the mixture likelihood.
As Leeflang et al. (2000) point out, the assignment derived, therefore, ”[does]
not possess an ’optimal’ structure with respect to [its] profile on the concomitant
variables”. Consequently, the effects of the covariates in the submodel are severely
underestimated (see Gudicha and Vermunt, 2013, for simulation results). Note,
however, that the estimation of parameters in the submodel is not necessarily of
first priority in the intended application of mixture models in SAE. The assessment
of the competing methods in this context also has to include their performance
with respect to assigning the observations into subgroups and, most importantly,
predicting the variable of interest.

3.4 Identifiability

Meaningful inference on a model’s parameters is only possible if the model is
identifiable. Generally, a parametric family of distributions, represented by the
corresponding family of densities {f(y|ψ) : ψ ∈ Ω}, where Ω denotes the param-
eter space, is said to be identifiable if distinct values of the parameter determine
distinct members of the family. Put differently, for two parameters ψ and ψ∗,
f(y|ψ) and f(y|ψ∗) are identical for almost every y, if and only if ψ = ψ∗. Thus,
if an infinite number of realizations from the model could be observed, it would
be possible to learn the true (and unique) values of the parameters.

In the case of finite mixture models, the question of identifiability is somehow more
complex. Three different types of identifiability problems can be distinguished:

A first type of nonidentifiability is due to a possible rearrangement or relabeling
of components. As noted by Redner and Walker (1984) the mixture density is
invariant to the change of component labels in (θ1, . . . ,θK) and (λ1, . . . , λK) if the
component densities belong to the same parametric family. In fact, for a mixture
of K components from the same parametric family there are K! different ways
of arranging the components, each giving rise to the same mixture distribution
(see Frühwirth-Schnatter (2006, Chapter 1.3) and McLachlan and Peel
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(2000) for further details). Therefore, finite mixture models are not identifiable in
the strict sense of the general definition given above and commonly an adapted,
weaker definition of identifiability is applied (see e.g. Frühwirth-Schnatter,
2006; McLachlan and Peel, 2000; Yakowitz and Spragins, 1968): A FMM is
said to be identifiable if for any two vectors of parameters ψ,ψ∗ ∈ Ω the equality

K∑
k=1

λkfk(y|θk) =
K∗∑
k=1

λ∗kfk(y|θ∗k) (3.7)

for almost every y, implies that K = K∗ and that ψ∗ can be permuted such that
ψ = ψ∗.

Note that nonidentifiability due to the rearrangement of component labels can be
considered as an inconvenience that has to be borne in mind by the researcher, but
does not really pose a problem in standard applications as long as a frequentist
estimation approach is taken. It might however cause difficulties in a Bayesian
framework when inferences are obtained using posterior simulations. The same is
true for simulation studies carried out to evaluate the performance of competing
statistical methods as in Chapter 5. The issue is sometimes solved by imposing an
adequate constraint on the solution such as requiring λ1 < λ2 < . . . < λk (Aitkin
and Rubin, 1985) or by imposing an order constraint on a selected element of
the component parameter vectors θk. Obviously, such a restriction has to be
chosen carefully in order to fulfil its purpose in all possible constellations (see
Frühwirth-Schnatter, 2006, Chapter 1.33 for a critical discussion). In the
simulations studies carried out in the course of this work, the issue was solved by
ordering the components according to the size of the estimated intercepts.

A second source of lack of identifiability is commonly discussed as nonidentifiability
due to overfitting. As noted by Crawford (1994), any finite mixture model with
K components can also be represented by a mixture of K + 1 components, where
either one component is empty (i.e. λk = 0) or two components have the identical
set of parameters (see Frühwirth-Schnatter, 2006, Chapter 1.3.2 for details).
This kind of unidentifiability problem can, however, be easily solved by imposing
adequate constraints on the parameters: It is usually required that the mixture
weights are larger than zero and that the K sets of component parameters are
distinct in the weak sense that any two parameter vectors θ and θ∗ differ in at
least one element (see Frühwirth-Schnatter, 2006, Chapter 1.3.3).

Finally, there is a third type of identifiability problem, i.e. the lack of what is
sometimes denoted as ”generic identifiability” (Frühwirth-Schnatter, 2006,
p. 22): Finite mixture models might still be unidentifiable, even after impos-
ing adequate constraints on the mixture weights and under the weak definition
given above. For example, as first pointed out by Teicher (1961), mixtures of
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uniform distributions are generally unidentifiable. Some literature is devoted to
identifiability or conditions of identifiability for specific families of FMM (Ahmad,
1988; Feller, 1943; Holzmann, Munk and Gneiting, 2006; Teicher, 1961,6;
Yakowitz and Spragins, 1968). The identifiability of mixtures of multivariate
normal distributions was proved by Yakowitz and Spragins (1968). Hennig
(2000) showed that the identifiability of mixtures of linear regression models with
normally distributed errors does not readily follow from this result. He did, how-
ever, demonstrate that mixtures of linear regression models are identifiable under
sufficient conditions easily fulfilled in many applications. More specifically, a mix-
ture of linear regression models is identifiable if the number of components is
smaller than the minimum number of (hx−1)-dimensional hyperplanes formed by
the design points, with hx denoting the number of predictors in X excluding the
intercept. Based on this result, Du et al. (2013) accordingly formulate the suffi-
cient condition for the identifiability of mixtures of regression models with mixed
effects: A mixture of LMMs with design matrices X and U is identifiable if the
number of mixture components is smaller than the number of (hQ−1)-dimensional
hyperplanes required to cover the design points inQ, whereQ is the matrix formed
by the distinct columns of the matrix [X,U ] and hQ is the number of columns
in Q. Thus, identifiability problems might arise if the variability of the design
points is low. As Hennig (2000) points out, the identifiability condition is usually
fulfilled in practical applications. He further argues, that it might be problematic
if the covariates can take only a limited number of values, i.e. if dummy variables
or answers from a questionnaire with a small number of possible answers are con-
sidered as covariates. Finally, Jiang and Tanner (1999) study the identifiability
of mixture models with submodel for the mixture weights. They show that models
in this class are identifiable under certain regularity conditions, provided αK = 0
is assumed. They further prove that the conditions are fulfilled for mixtures with
univariate normal components.

In all theoretical elaborations that follow, it is assumed that the mixture model
under consideration is identifiable in the weaker sense commonly applied in the
context of FMM.

3.5 Parameter Estimation

Parameter estimation is performed using the the frequentist approach of ML es-
timation. Alternatively, a Bayesian approach can be adopted. See McLachlan
and Peel (2000, Chapter 4) or Frühwirth-Schnatter (2006, Chapter 3 and
5) for an overview of Bayesian inference for FMM.
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The likelihood function for ψ under a finite mixture model is obtained from the
joint density of y as

L(ψ) =
n∏
i=1

K∑
k=1

λkf (yi|θk). (3.8)

The corresponding log-likelihood l(ψ) is given by

l(ψ) = log(L(ψ)) =
n∑
i=1

log

(
K∑
k=1

λkf (yi|θk)

)
. (3.9)

Maximum likelihood estimates for the parameters θk as well as the model prob-
abilities λk are obtained by maximizing this log-likelihood given the observed re-
alizations for y. However, optimization of (3.9) can not be done directly because
the log of a sum in the function makes its derivative computationally intractable.
Maximum likelihood estimates are, therefore, obtained using the EM-algorithm,
a general-purpose optimization algorithm generally introduced in Appendix A.1.
See McLachlan and Peel (2000) and McLachlan and Krishnan (2008) for
an extensive overview of parameter estimation via the EM algorithm for FMM.

In this estimation context, the FMM framework is interpreted as a missing data
problem. As described in Section 3.3.1, this implies the notion that each observa-
tion yi belongs to one of the K classes with zi indicating the true class membership
for observation yi. The complete data set would, thus, contain n realizations of yi
and zi and the complete-data log-likelihood lc is given by

lc(ψ) =
n∑
i=1

log

(
K∑
k=1

zik λkf (yi|θk)

)
, (3.10)

which can be rearranged1 as

lc(ψ) =
n∑
i=1

K∑
k=1

zik(log λk + log f (yi|θk)). (3.11)

Maximizing lc with respect to the model parameters θk, the model probabilities
λk as well as the latent variable z is performed iteratively by altering between
the E-step, where a conditional expectation Q of lc(ψ), given y and parametrized

1For any i, zi = (zi1, . . . , ziK) takes the value 0 in K − 1 cases and the inner sum∑K
k=1 zik (λk(wi,αk)f (yi|θk)) reduces to a single term λk(wi,αk)f (yi|θk) with corresponding

log given by log λk(wi,αk) + log f (yi|θk)).
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by the current estimates of the unknown parameters in ψ is derived and the M-
step where an updated estimate for ψ is obtained by maximizing this conditional
expectation of lc.

More detailed, in the context of FMM the following algorithm is applied:

• Specification of starting values
To begin, an initial choice of starting values is made. This can either be an
initial assumption for the parameters ψ or a partition of observations into K
groups. See McLachlan and Peel (2000, Chapter 2.12) for a discussion
of different initialization strategies and related convergence properties.

• E-step
The conditional expectation of the complete-data log-likelihood lc(ψ) given
y under the current estimate for ψ is derived as

Q(ψ; ψ̂
(t−1)

) = E
ψ̂

(t−1) [lc(ψ)|y] (3.12)

= E
ψ̂

(t−1)

[
n∑
i=1

K∑
k=1

zik(log λk + log fk (yi|θk))

∣∣∣∣∣y
]

=
n∑
i=1

K∑
k=1

ξ̂
(t−1)
i,k (log λk + log fk (yi|θk)),

where ξ̂
(t−1)
i,k denotes the conditional expectation for zik = 1 given yi and the

current estimate for ψ. They are calculated using ψ̂
(t−1)

, i.e. the estimates
for θk and λk obtained in the last iteration step (t − 1) (or, in the first
iteration, the chosen starting values):

ξ̂
(t−1)
i,k = Pr

ψ̂
(t−1)(zik = 1|yi) (3.13)

=
λ̂
(t−1)
k f(yi|θ̂

(t−1)
k )∑

k′∈K λ̂
(t−1)
k′ f(yi|θ̂

(t−1)
k′ )

• M-step

In the M-step an updated estimate ψ̂
(t)

for ψ is obtained by maximizing
Q as derived in the E-step. Estimation of θk can be done for each com-
ponent model separately by maximizing the weighted component-specific
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log-likelihood
∑m

i=1 ξ̂
(t)
i,k log f (yi|θk). Deriving an update for λk requires max-

imizing
∑n

i=1

∑K
k=1 ξ̂

(t)
i,k log λk under the constraint

∑K
k=1 λk = 1. The result

is

λ̂
(t)
k =

1

n

n∑
i=1

ξ̂
(t−1)
i,k , (3.14)

i.e. λ̂
(t)
k is obtained by taking the average of ξ̂

(t−1)
i,k over all observations.

• Termination
Both steps are repeated until convergence (see Appendix A.1)

The EM algorithm can also be applied if a submodel for the mixture weights
as introduced in Section 3.3.3 is assumed. In this case, λk in lc is replaced by
λi,k = λk(wi,α). The expectation of the complete data log-likelihood is then
given by

Q(ψ; ψ̂
(t−1)

) =
n∑
i=1

K∑
k=1

ξ̂
(t−1)
i,k (log λk(wi,αk) + log f (yi|xi,θk)), (3.15)

where ψ now contains both the parameters of the sub- and the main model, i.e.
ψ = (αT ,θT1 , . . . ,θ

T
K). ξ̂

(t−1)
i,k , the conditional expectation of class membership is

derived using the current fit of individual mixture weights λ̂i,k = λk(wi, α̂) instead

of λ̂k, i.e.

ξ̂
(t−1)
i,k =

λ̂k(wi, α̂
(t−1)
k )f(yi|θ̂

(t−1)
k )∑

k′∈K λ̂k′(wi, α̂
(t−1)
k′ )f(yi|θ̂

(t−1)
k′ )

(3.16)

Updating the current parameter fit in the M-step also requires obtaining an esti-
mate for α. It is obvious from (3.15) that optimization for the submodel and the
main model can be done separately.

If a multinomial logit submodel as defined in (3.6) is assumed to hold for the
mixture weights, its parameters, α, are estimated employing maximum likelihood
estimation of generalized linear model, using ξ̂

(t)
i,k as response vector ((Dang and

McNicholas, 2015; Grün, 2008; McLachlan and Peel, 2000; Thompson
et al., 1998; Wedel and Kamakura, 2000). λ̂

(t)
i,k is then predicted from the fitted

model. For all calculations in this thesis multinom from the R-package nnet for
parameter estimation (see Venables and Ripley, 2002) was employed for this
purpose.
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As stated in Appendix A.1, in case of multimodal distributions the EM algorithm
might converge to a local maximum depending on the chosen starting values. It
is therefore often performed repeatedly with different starting values. In both the
simulation study and the application presented below this simple strategy was
adopted.

3.6 Estimating the Number of Components

A crucial and much discussed question in estimating finite mixture models is the
choice of K. In fact, standard estimation techniques for mixtures are based on the
assumption of a known number of components. There are practical applications
where the number of subgroups in the population is known a priori, but usually K
has to be selected based on the available data. Note that this particular question
of model selection includes the essential decision between K = 1 or K > 1, i.e. the
question whether it is appropriate to assume latent heterogeneity and to accept
the larger complexity of employing a mixture model in the first place.

Before a selection of measures for the choice of K is discussed in detail, note that
the examination of the histogram of the sampled data, a simple informal method
that might be inspired by striking plots in introductory chapters of monographs
on mixtures (see for example the famous fishery data example given in Titter-
ington et al. (1985, p. 10)) and its representation in reviews on mixture models
(e.g. Frühwirth-Schnatter, 2006, p. 2), might be misleading (Everitt and
Hand, 1981, p. 208). Not only can this lead to erroneously assuming a mix-
ture distribution in case of spurious subgroups as McLachlan and Peel (2000,
Chapter 1.8) elaborate based on Day (1969). The number of modes in the mixture
distribution also does not necessarily correspond to the number of components and
in fact there are many examples where it does not. Some families of finite mixture
distributions, e.g. mixtures of exponentials, are always unimodal and the number
of modes in mixtures of normal distributions depends on the mixture weights and
the distance between the component distributions (see McLachlan and Peel
(2000, Chapter 1.5) for some instructive examples and Frühwirth-Schnatter
(2006, Chapter 1.2.2) or Titterington et al. (1985, Chapter 5.6) for an account
of conditions for the number of modes in mixtures of Gaussians).

As Frühwirth-Schnatter (2006, p. 99) points out, estimating K is a difficult
problem. The procedure commonly applied is to calculate a suitable criterion, let-
ting K grow. This procedure, obviously, requires inference for an overfitting model,
i.e. for a model with more than the true number of components. In this case, the
parameters are not identifiable, i.e. central regularity conditions at the heart of
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statistical theory underlying frequentist inference are not fulfilled. Thus, the theo-
retical foundation of model selection techniques commonly used in other contexts
do not apply in this particular case (see Frühwirth-Schnatter (2006, Chapter
4.2) or McLachlan and Peel (2000, Chapter 6.4) for details). Selecting K is,
however, deemed a central question of estimating finite mixture models so that,
despite of these theoretical difficulties, much attention is paid to the task of finding
satisfying solutions. As a result, there is a broad variety of different approaches to
the question of selecting K and a wide range of measures has been suggested in the
literature. See Fonseca and Cardoso (2007); Frühwirth-Schnatter (2006);
McLachlan and Peel (2000) and McLachlan and Rathnayake (2014) for
reviews. Simulation studies comparing different measures, which due to the lack
of thorough theoretical justification of criteria in common use play a vital role
in this research field, are given in Biernacki, Celeux and Govaert (1998);
Fonseca and Cardoso (2007); Hawkins, Allen and Stromberg (2001);
Hettmansperger and Thomas (2000); McLachlan and Ng (2000); Roeder
and Wasserman (1997); Sarstedt and Schwaiger (2008) and Windham and
Cutler (1992).

Biernacki et al. (1998), Frühwirth-Schnatter (2006, Chapter 7.1.4),
McLachlan and Peel (2000, Chapter 6.1) and McLachlan and Rathnayake
(2014) argue that the choice of an adequate criterion depends on the purpose of
employing a finite mixture model: As stated in the introductory section of this
chapter, mixtures can either be seen as a flexible, semiparametric approach to
model unknown distributional shapes or as a suitable framework for model-based
clustering. In the first case, standard criteria as the Bayesian Information Cri-
terion (BIC) are commonly deemed adequate. If mixture models are applied for
model-based clustering, the BIC however tends to overestimate the number of sub-
groups. As Frühwirth-Schnatter (2006) writes, in this context, a measure is
more adequate that takes into account that the ”mixture model is fitted with the
hope of finding a good partition of the data” (Frühwirth-Schnatter, 2006, p.
213). Thus, in this case a criterion which penalizes poorly separated subgroups, is
more suitable.

The objective of the suggested application of mixture models in SAE lies some-
where in between these two purposes: The approach is motivated by the assumed
existence of different subgroups of areas. One aim definitely is identifying and
describing these groups and a meaningful result in this regard intuitively supports
the employment of this more complex modelling approach instead of a standard
SAE model. First and foremost, the interest, however, lies in finding a model that
matches the data in the case of a heterogeneous population in order to make valid
inferences on the statistic of interest. A sharp separation of areas into meaningful
subgroups is not necessarily a precondition for this.



Chapter 3. Finite Mixture Models 42

Based on these deliberations, suitable measures for each of the two purposes is
chosen for further consideration in the present context of selecting the number of
components in an application of mixtures of Gaussians in SAE. When conflicting
results are obtained, an informed decision considering the larger picture of the
specific application has to be made. Given the unresolved issues in the research
area, a similar strategy of evaluating and balancing suggestions from different
criteria in light of the data situation at hand has for example been recommended
by Bauer and Curran (2004) and Nagin (2005).

A common approach to selecting K for the first purpose of density estimation is
the consideration of different information criteria (e.g. see Burnham and Ander-
son, 2002, for a general review of the information-theoretical approach to model
selection). See McLachlan and Peel (2000, Chapter 6.8) and McLachlan
and Rathnayake (2014) for an overview and discussion of the broad range of
respective measures suggested for selecting the number of components. A spe-
cific criterion commonly applied is the well-known BIC. It was first suggested by
Schwarz (1978) as an approximation to the log integrated likelihood and has
evolved to be a standard criterion for model selection.

In the present context of choosing the number of components it can be expressed
as

BIC = −2 logL(ψ̂) + d logn, (3.17)

where ψ̂ denotes the estimated parameter vector and d is the dimension of ψ̂,
i.e. the number of parameters in the model. The first term accounts for the
goodness-of-fit of the model under consideration, while the second term is a penalty
for model complexity, which increases as the sample size increases. K is chosen
to minimize (3.17). A sample-sized adjusted version of the BIC (Sample-Size
Adjusted Bayesian Information Criterion (BICadj)) has been proposed by Sclove
(1987). It replaces logn in the second term of (3.17) by log ((n + 2)/24), thereby
reducing the sample size penalty.

The theoretical derivation of the BIC as an approximation to the log integrated
likelihood relies on identifiability of the model parameters and, therewith, on reg-
ularity conditions that are not fulfilled in the present context (see McLachlan
and Peel, 2000, Chapter 6.9). Leroux (1992) showed that under mild condi-
tions the BIC does not underestimate K asymptotically. Extending this work and
particularly focussing on a potential overestimation of K, Keribin (2000) proved
the consistency of the BIC as an estimator of the true number of components
under stronger regularity conditions. Moreover, the BIC has proved to perform
well in simulation studies (Biernacki et al., 1998; Dasgupta and Raftery,
1998; Roeder and Wasserman, 1997) and there is some support for its usage
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in this context (Fraley and Raftery, 2002). Good results for the sample-size
adjusted BIC were obtained by Yang and Yang (2007). It further proved to be
the most promising selection criterion in a simulation study on choosing K for
mixtures of regression models (Sarstedt and Schwaiger, 2008). Both the BIC
and its sample-size adjusted version are considered as criteria for selecting K in
the context of this thesis.

Secondly, a much considered criterion for choosing K in the context of mixture-
based clustering was proposed by Biernacki et al. (1998) based on work of
Biernacki and Govaert (1997): They derive a measure based on the inte-
grated complete-data likelihood (also classification likelihood in this context) in-
stead of the likelihood based on the observed data. The resulting criterion, the
so-called Integrated Classification Likelihood (ICL), takes the separation of com-
ponents into account and overcomes the theoretical shortcomings of the BIC. See
McLachlan and Peel (2000, Chapter 6.10) and Biernacki et al. (1998) for
a more detailed discussion. Let z̃ be an estimator of the true component-label

vector z and θ̃ = (θ̃
T

1 , . . . , θ̃
T

K)T denote the complete-data estimator maximizing
log p(y|z̃,θ). The ICL for a mixture with K components is given by:

ICL = −2 log p(y|z̃, θ̃) + dc logn− 2 log
Γ(K/2)

∏K
k=1 Γ(ñk + 1

2
)

Γ(n+ K
2

)Γ(1
2
)K

, (3.18)

where dc denotes the number of distinct elements in θ = (θT1 , . . . ,θ
T
K)T and ñk

is an estimate of nk =
∑n

i=1 zik, i.e. the number of elements in k, k = 1, . . . , K,
based on z̃. Γ denotes the gamma function.

McLachlan and Peel (2000, Chapter 6.10) provide an expression of the ICL

for the special case of z̃ = ξ̂, where ξ̂ = (ξ̂
T

1 , . . . , ξ̂
T

n )T and ξ̂i = (ξ̂i,1, . . . , ξ̂i,K)T .
Thus, they replace the (estimated) hard component-labels by the respective ML
estimates of the conditional expectations of component membership. In this case,
maximizing log p(y|z̃,θ) yields the ML estimator θ̂, such that θ̃ = θ̂, and the ICL
can be formulated as

ICL =− 2 logL(ψ̂) + 2 EN(ξ̂) + 2n
K∑
k=1

λ̂klogλ̂k + dc logn (3.19)

− 2 log
Γ(K/2)

∏K
k=1 Γ(nλ̂k + 1

2
)

Γ(n+ K
2

)Γ(1
2
)K

Note that now ñk = nλ̂k.

Biernacki et al. (1998) derive an approximation to the ICL in case of large enough
nk, showing that the ICL reduces to an ”à la BIC approximation” (Biernacki
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et al., 1998, p. 10) of the logarithm of the complete data integrated likelihood.
McLachlan and Peel (2000, Chapter 6.10) provide the respective expression
for their ML-version of the ICL (for the general approximation for z̃ and θ̃ see
Biernacki et al. (1998, p. 10)) and denote it by ICL-BIC:

ICL ≈ ICL-BIC = −2 logL(ψ̂) + d logn+ 2 EN(ξ̂) (3.20)

= BIC + 2 EN(ξ̂),

where

EN(ξ) = −
K∑
k=1

n∑
i=1

ξi,k log ξi,k (3.21)

denotes the entropy of the n×K fuzzy classification matrix C = (ξi,k) and EN(ξ̂)

denotes the respective estimate based on ξ̂. It is a measure for the goodness of
the partition of the data into clusters: If subgroups are well separated, EN(ξ̂) is
close to zero while it takes large values for poorly separated clusters (see Celeux
and Soromenho, 1996, who considered the normalized entropy as a criterion for
selecting K).

The ICL and its approximation, additional to model complexity, penalize poorly
separated components. They, thus, favour a choice of K that leads to a partition
of the data into well-separated clusters. These criteria are, therefore, particularly
suitable in a clustering context. In the context of this thesis, the ICL-BIC, as de-
fined in (3.20), i.e. the asymptotic version of the measure for ML estimates is con-
sidered. Favourable simulation results for this version can be found in McLach-
lan and Ng (2000). Further, in a simulation study performed by Biernacki
et al. (1998), the approximation for large nk yielded no different results than the
ICL in its more accurate form.

3.7 Clustering via Finite Mixture Models

In many applications of FMM there is an interest in classifying the set of n observa-
tions yi into K subgroups. Like in the missing data interpretation of mixtures given
in Section 3.3.1, in such a clustering framework, the components of the mixture
are assumed to correspond to K subgroups. Observations from subgroup k are
distributed according to a component-specific distribution, characterized by the
component-density fk. In comparison to heuristic clustering approaches in com-
mon use, model-based clustering employing mixture distributions has the advan-
tage of making underlying (model-)assumptions explicit and allowing for inference
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within the framework of well-established statistical theory (see McLachlan and
Peel (2000, Chapter 1.15) or Fraley and Raftery (2002) for a short discus-
sion of advantages of model-based clustering and further references). Accordingly,
there is a large number of applications of FMM to clustering from different research
areas. See Fraley and Raftery (2002), Frühwirth-Schnatter (2006, Chap-
ter 7.1), McLachlan and Basford (1988) and McLachlan and Peel (2000,
Chapter 1.15) for reviews and detailed discussions of clustering via FMM.

From Bayes’ rule, the conditional or posterior probability that observation i be-
longs to component k is given by

ξi,k = Pr(zik = 1|yi,ψ) =
λkf(yi|θk)∑

k′∈K λk′f(yi|θk′)
. (3.22)

ξi,k is, hence, an observation-specific measure of component-membership, which
can also be interpreted as the degree to which observation yi is consistent with
component-model k. Note, however, that the mixture model as defined in (3.1) is
based on the assumption that each observation exclusively belongs to one compo-
nent. The conditional probabilities, thus, reflect an uncertainty about component
membership and not some kind of true partial subgroup-membership. An estima-
tor of ξi,k is given by ξ̂i,k.

ξi,k can be used to classify the observations into K hard clusters: A common alloca-
tion rule denoted as Bayes’ rule (McLachlan and Peel, 2000, p. 31), maximum
a posterior estimator (Gormley and Murphy, 2011, p. 104) or näıve Bayes’
classifier (Frühwirth-Schnatter, 2006, p. 27) is to assign each observation to
the component to which it most probably belongs to considering ξi,k. Thus, the
component-label vector zi is estimated by z̃i = (z̃i1, . . . , z̃iK)T , where

z̃ik =

{
1 if argmaxk(ξi,k)

0 otherwise.
(3.23)

This rule is optimal in the sense that it minimizes the expected risk of misclas-
sification under a simple 0/1 loss function that assumes no cost for a correct as-
signment and equal cost for all possible misallocations (Frühwirth-Schnatter
(2006, Chapter 7.1.7), McLachlan and Peel (2000, Chapter 1.15), also see the
seminal paper on a decision-theoretic approach to clustering by Binder (1978)).
Obviously, ξi,k is unknown and has to be estimated from the data. Let ψ̂ be

an estimate of the vector of model parameters and ξ̂i,k = Pr(zik = 1|yi, ψ̂) be
the estimated posterior probability of class-membership, obtained by replacing
ψ in (3.22) by ψ̂. Then commonly the so-called plug-in version of Bayes’ rule
(McLachlan and Peel, 2000, p. 31) is applied, which is derived by simply
considering argmaxk(ξ̂i,k) instead of argmaxk(ξi,k) in (3.23).
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Finite Mixture Models for Small
Area Estimation

4.1 Introduction

As described in Chapter 2, model-based small area estimators use an explicit
statistical model to improve estimation by exploiting the relationship between
a set of covariates and the statistic of interest. In some applications, it may,
however, be plausible to assume that this relationship differs between different
types of units or areas. Given a large enough number of observations, it may
then be plausible to estimate different models for different subgroups of units or
areas. Then next the questions arises of how to compose sensible subgroups. If
no appropriate natural clustering variable is available, FMM might be a suitable
framework to ”let the data decide” on how to partition the observations into K
subgroups and to simultaneously estimate the K subgroup-specific models. In the
following sections corresponding mixture-based estimators for SAE are proposed.
The predominant aim is to improve the estimation of the statistic of interest by
employing a better-fitting model in case of unobserved heterogeneity. Additionally,
the fuzzy or hard allocation of observations to subgroups derived as a by-product
of the estimation process can provide valuable insights into underlying structures.

The suggested models are further extended to include covariates for the mixture
weights. See Section 3.3.3 where the FMM with model for the mixture weights
has been introduced in a general framework. As already sketched in the review
provided there, this supports the classification of observations when the span of co-
variates differs between the components. It also provides valuable insights into the
clustered structure of the data, thereby intuitively supporting the decision of apply-

46
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ing a mixture-based approach. It further allows to predict subgroup-membership
for unsampled areas. Additionally to these advantages, that are also relevant in the
general context, in an SAE-application, it can also be expected that the improved
assignment to subgroups enhances estimation accuracy for the statistic of inter-
est. Furthermore, the option of assigning new observations to subgroups based on
the estimated submodel and the covariates only, can be employed to predict the
statistic of interest for unsampled areas in a heterogeneous population.

The novel approach of accounting for the existence of unobserved subgroups of
areas via finite mixture models in SAE can draw on literature on mixtures of mixed
effects model. Thereby it relies on mixed model and finite mixture model theory
as covered in Chapter 2 and 3, respectively. More specifically, in the following
sections, the mixture-based small area models are presented as special cases of
Finite Mixtures of Mixed Models. Thereby the framework is transferred into the
specific language and notation of SAE. Further, theoretical peculiarities and the
specific purpose of SAE are accounted for.

4.2 Mixtures of Small Area Models: Framework

and Notation

Mixtures of Small Area Models as considered in this thesis are a special case of
Finite Mixtures of LMMs. Models of these class have been introduced as an impor-
tant extension of mixtures of regression models considered in 3.3.2. They offer the
possibility to flexibly model correlation between repeated measurements or units
from one cluster and at the same time account for unobserved heterogeneity in
the population. As such they have been applied in disciplines such as biology, the
health sciences and in marketing research (Celeux et al. (2005); Lenk and De-
Sarbo (2000); Martella et al. (2011); Martinez et al. (2009); McLachlan
et al. (2008); Ng and McLachlan (2014); Ng et al. (2006); Wang et al. (2012);
Yau et al. (2003), also see Grün (2008)).

Mixtures have been introduced into the mixed model framework in various ways.
See Ng and McLachlan (2014) for a discussion of some approaches. In the
present context, a mixture of LMM for clustered data as specified in equation
2.5 from Section 2.3 is of interest, where both the fixed coefficients β and the
covariance matrices of the random effect and the error term, G andRi, are allowed
to differ between the components. Under this model the conditional density of yi
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given X i and U i is given by

f(yi|X i,U i,ψ) =
K∑
k=1

λkfN (yi;X iβk,V i,k), (4.1)

with V i,k = U iGkU
T
i +Ri,k.

As outlined in the introduction of this chapter, in the context of this thesis Mix-
tures of LMM are employed as a device to account for the existence of a specified
number of different subgroups in the population, each with a distinct relationship
between covariates and response variable. At the same time individual observa-
tions, i.e. units, are nested in areas with area-specific deviations from the fixed-
effect relationship valid in the subgroups (which can also be seen as within-area
correlation):

Thus, consider an SAE-setting as introduced in Chapter 2 where n units sampled
from a population of size N are nested in m areas, i = 1, . . . ,m. Let yi denote the
ni × 1 of observations yij, j = 1, . . . , ni for area i, which is related to a set of co-
variates X i through a linear model. Now, additionally assume that the population
is segmented into K non-overlapping, latent subgroups k = 1, . . . , K, also called
classes or components. In each subgroup there is a specific relationship between the
variable of interest and auxiliary variables. The notational framework is completed
by introducing a latent K-dimensional binary component-label vector indicating
subgroup membership for area i (see Section 3.3.1). It is zi = (zi1, . . . , ziK), with
kth element zik = 1 if area i belongs to class k and zik = 0 otherwise.

Note that two different cases might be of relevance:

• Case 1: Heterogeneity on area-level
The component membership of units in an area is constant. All units in an
area share the same fixed and random effects. There are K subgroups of
areas.

• Case 2: Heterogeneity on unit-level
The component membership varies between units, regardless of area mem-
bership. Units in an area might have different random and fixed effects but
share effects with units from other areas. There are K subgroups of units.

Both scenarios can be accounted for by assuming a mixture of K LMM as specified
in equation 2.5 from Section 2.3. In the following, the assumption of constant
subgroup membership for all units in an area i is drawn, i.e. a case 1-scenario is
considered. Note that for this scenario of similarity at the unit level, βk and V i,k

are constant for all units within an area.
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4.3 Parameter estimation

The log-likelihood function for a mixture of mixed model is straightforwardly ob-
tained from the results presented in Sections 2.3, 3.5 and 4.2 by plugging the
density of the component models f(yi|θk) = fN (yi;X iβk,V i,k) into the log-
likelihood-function for a general FMM. Thus,

l(ψ) =
m∑
i=1

log

(
K∑
k=1

λk
exp

(
−1

2
(yi −X iβk)

TV −1i,k (yi −X iβk)
)

(2π)ni/2(|V i,k|)1/2

)
. (4.2)

As common in the mixture model framework, the estimation problem is solved via
the EM algorithm (see Section 3.5 and Appendix A.1). Generally, there are two
possible approaches, differing with respect to the formulation of the complete data
vector. In a first version of the EM algorithm for mixtures of mixed models, both
the random effects and the class membership are treated as missing. In this thesis,
this approach is taken for the mixture of unit-level models. Alternatively, as in the
general EM algorithm for mixture models, it is also possible to only consider the
variable indicating class membership as missing information. The finite mixtures
of area-level models considered in this work are estimated employing this second
strategy. Based on the accounts of the EM algorithm for mixed models described
in Section 2.3.5 and for standard finite mixture models discussed in Section 3.5,
now respective details for both versions are given. See Celeux et al. (2005),
Grün (2008) and Ng and McLachlan (2014), who also provide presentations
of the EM algorithm for mixtures of mixed models, partly with slightly different
specifications of the underlying model.

4.3.1 Version 1

In the most common version of the EM algorithm for mixtures of mixed models,
both the random effects and the class membership are treated as missing. The
complete data vector is thus given by (yT ,vT , zT )T , where the missing data vector
has the form (vT , zT )T . Using results from Section 2.3.5 and 3.5 the complete-data
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log-likelihood is given by:

lc(ψ) =
m∑
i=1

K∑
k=1

zik(log λk + log f (yi,vi|xi,θk)) (4.3)

=
m∑
i=1

K∑
k=1

zik log λk+ (4.4)

m∑
i=1

K∑
k=1

zik

(
−1

2

(
dTi Σ−1i di + log |Σi|+ (ni + s) log(2π)

))
,

where

di =

(
yi −Xiβ
vi − 0

)
, (4.5)

and

Σi =

(
U iGU

T
i + σ2Ini

U iG
GUT

i G

)
(4.6)

being the variance covariance matrix of the joint distribution of (yTi ,v
T
i )T .

• E-step:
In the E-step the conditional expectation of the complete-data log-likelihood

Q(ψ; ψ̂
(t−1)

) = E
ψ̂

t−1 [lc(ψ|y)] is obtained. It can be seen from (4.3) that

this requires deriving the following conditional moments of the missing data:
The conditional expectation for class membership, i.e. ξi,k (compare Section
3.5), and the conditional expectation of the sufficient statistics vi and viv

T
i

(compare Section 2.3.5). It is

ξ̂
(t−1)
i,k = Pr

ψ̂
(t−1)(zik = 1|yi) (4.7)

=
λ̂
(t−1)
k fN (yi|xi, θ̂

(t−1)
k )∑

j∈K λ̂
(t−1)
j fN (yi|xi, θ̂

(t−1)
j )

ŝ
(t−1)
1i,k = E

ψ̂
(t−1)(vi|yi) (4.8)

= (UT
i U i + σ̂2(t−1)

e,k Ĝ
(t−1)−1

)−1UT
i (yi −X iβ̂

(t−1)
k )

Ŝ
(t−1)
2i,k = E

ψ̂
(t−1)(viv

T
i |yi) (4.9)

= Cov
ψ̂

(t−1)(vi|yi) + ŝ
(t−1)
1i,k ŝ

(t−1)T
1i,k

= ((σ̂2(t−1)

e,k )−1UT
i U i + Ĝ

(t−1)−1

)−1 + ŝ
(t−1)
1i,k ŝ

(t−1)T
1i,k ,
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• M-step:
It is obvious from the complete-data log-likelihood (4.3), that optimization
for the mixture weights (or the submodel for the mixture weights in case
of a mixture with concomitant variables) and the parameters in the main
model can be done separately, i.e. estimation of λk (or α) is independent of
the form of the component densities. Therefore, for these parameters results
from the general representation of the EM algorithm for mixture models in
3.5 apply.

As there are no parameters that are fixed over the components, estimation
of parameters in the main model can be performed for each component sep-
arately. Maximizing Q with respect to the component-specific parameters
yields:

β̂
(t)

k =
1∑m

i=1 ξ̂
(t−1)
i,k

(
m∑
i=1

ξ̂
(t−1)
i,k XT

i X i)
−1

m∑
i=1

ξ̂
(t−1)
i,k XT

i (yi −U iŝ
(t−1)
1i,k ), (4.10)

Ĝ
(t)

k =
1∑m

i=1 ξ̂
(t−1)
i,k

m∑
i=1

ξ̂
(t−1)
i,k Ŝ

(t−1)
2i , (4.11)

σ̂
2(t)
e,k =

1∑m
i=1 ξ̂

(t−1)
i,k ni

m∑
i=1

ξ̂
(t−1)
i,k [(ε

(t−1)T
i,k ε

(t−1)
i,k ), (4.12)

+ tr

(
UT
i U i

(
(σ̂

2(t−1)
e,k )−1UT

i U i + Ĝ
(t−1)−1

)−1)
], (4.13)

where

ε̂
(t−1)
i,k =yi −X iβ̂

(t−1)
k −Uiŝ(t−1)1i,k . (4.14)

4.3.2 Version 2

Alternatively, a straightforward application of the EM algorithm for FMM as pre-
sented in Section 3.5 can be applied (Grün, 2008). In this framework only the
subgroup membership is treated as missing. As described in the presentation of
the M-step in Section 3.5, this requires maximizing the weighted log-likelihood
for each of the mixture components. As Grün (2008) points out, software for
weighted maximum likelihood estimation for linear mixed models that also al-
lows for varying covariance matrices for the error term is, however, not readily
available. For certain simple model specifications, she, therefore, proposes a trans-
formation to the data which allows to maximize the unweighted log-likelihood
instead of the weighted one: If U i = U for all i = 1, . . . ,m, the solution to un-
weighted ML estimation for the transformed data y̌ =

√
ξiyi and x̌ =

√
ξixi,
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where ξi = (ξi,1, . . . , ξi,K)T , is equal to the results obtained from weighted ML on
the original data. See Grün (2008) for proofs and further details. In the con-
text of this thesis, the function maxLik from the maxLik package (Henningsen
and Toomet, 2011) was employed in order to solve the maximization problem
numerically.

4.4 Prediction from Mixtures of Small Area

Models

As described in Section 2.3.3, in the mixed model context commonly prediction of
a general linear combination ηi = lTi β +mT

i vi involving both fixed and random
effects is of interest. Relying on the concepts and notation introduced there, now
a corresponding predictor under a mixture of LMM is developed.

Under the drawn assumption of a population segmented into K disjoint subgroups
with component-specific model parameters, for an area i belonging to component
k, ηi is given by ηi|(zik = 1) = ηik = lTi βk + mT

i vi,k. Introducing η∗ik = lTi βk +
mT

i vi,k, k = 1, . . . , K, the true value ηi for areas from cluster 1 to K can, thus, be
written more generally as

ηi =
K∑
k=1

zikη
∗
ik (4.15)

=
K∑
k=1

zik(l
T
i βk +mT

i vi,k)

Note that for an area belonging to k, η∗ik is the true value of the mixed effect ηik,
while for all other components it is a theoretical construct without meaningful
interpretation, introduced for the sake of a compact representation of ηi valid for
areas from all components. This representation will be drawn upon in developing
a predictor for ηi.

As in the standard framework of SAE, interest is in a prediction that takes the
realized value of the random effect into account (see 2.3.3). Further, in the in-
troduced setting of a segmented population the individual subgroup membership
should be factored in, i.e. the realized value of the multinomial variable indicating
cluster membership is of interest, too. Thus, focus is on a conditional prediction
instead of a marginal prediction that averages over the unobserved random vari-
ables v and z. To date, there seems to be no systematic treatment of conditional
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or individual prediction from mixture models in the literature. See Cole and
Bauer (2016) for the only recent exemption.

The best predictor for a random variable is its conditional expectation given the
observed data. Assuming all model parameters are known, the conditional expec-
tation of ηi given yi and li is

E(ηi|yi, li) = E(
K∑
k=1

zikη
∗
ik|yi, li) (4.16)

=
K∑
k=1

E(zik|yi, li) · E(η∗ik|yi, li) + Cov(zikη
∗
ik|yi, li)

η∗ik = lTi βk +mT
i vi,k, so that η∗ik|li varies only by mT

i vi,k. Thus, assuming inde-
pendence between the random effects and zi implies that Cov(zikη

∗
ik|yi, li) = 0.

It is (compare Section 2.3.3)

E(η∗ik|yi, li) = η̃∗ik = lTi βk +mT
i ṽi,k, (4.17)

with

ṽi,k = E(vi,k|yi, li) = GkU
T
i V

−1
i,k (yi −X iβk) (4.18)

and (compare Section 3.7)

E(zik|yi, li) = Pr(zik = 1|yi, li) = ξi,k, (4.19)

where

ξi,k =
λkfN (yi;X iβk,V i,k)∑K

k′=1 λk′fN (yi;X iβk′ ,V i,k′)
, (4.20)

which is the posterior or conditional probability that area i belongs to class k
already introduced in Section 3.7 and in the context of the EM algorithm for
mixture models in Section 3.5. Thus,

E(ηi|yi, li) =
K∑
k=1

ξi,kη̃
∗
ik. (4.21)

Plugging in the ML-estimates of the model parameters yields the following predic-
tor for ηi that accounts for the existence of unobserved subgroups of areas:

η̂mix
i =

K∑
k=1

ξ̂i,kη̂
∗
ik (4.22)

=
K∑
k=1

ξ̂i,k(l
T
i β̂k +mT

i v̂i,k), (4.23)
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where η̂∗i and ξ̂i,k are derived from η̃∗i and ξi,k, respectively, by replacing the true

parameter values ψ by ψ̂. Thus, ηi is estimated as a weighted mean of predicts
from the K models, where the area-specific weights are given by the conditional
probabilities that area i belongs to model k.

If a submodel for the mixture model is applied, respective results are obtained
accordingly by additionally conditioning onwi, i.e. the covariates in the submodel:

E(ηi|yi, li,wi) =
K∑
k=1

ξci,kη̃
∗
ik, (4.24)

where

ξci,k =
λk(wi,αk)fN (yi;X iβk,V i,k)∑K

k′=1 λk′(wi,αk′)fN (yi;X iβk′ ,V i,k′)
. (4.25)

Plugging in estimated model parameters yields

ηmix,c
i =

K∑
k=1

ξ̂ci,kη̂
∗
ik (4.26)

as before, only with the modified expression for ξi,k.

Applying a model-based approach to small area estimation, opens up the option of
calculating estimates for unsampled areas, i.e. areas for which no direct estimate
can be obtained for the statistic of interest. In what follows a predictor for out-
of-sample prediction is derived. This is especially promising if a mixture model
with submodel for the mixture weights is considered because it allows to predict
an area-specific mixture weight from the submodel based on the covariates only.

Starting again from (4.15) and taking the expectation of ηi given li and the co-
variates in the submodel, wi, yields

E(ηi|li,wi) = E(
K∑
k=1

zikη
∗
ik|li,wi) (4.27)

=
K∑
k=1

λi,kl
T
i βk.

Note that λi,k = λk if no submodel for the mixture weights is assumed.

As before, a predictor is derived by replacing the true model parameters ψ by
their ML estimate ψ̂:

η̂mix.oos
i =

K∑
k=1

λ̂i,kl
T
i β̂k. (4.28)
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Based on the estimated model and available covariates w and l, an out-of-sample
prediction for the statistic of interest is, thus, derived as a weighted mean of syn-
thetic estimates from the component models where individual weights are predicted
from the submodel.

4.5 A Mixture of Area-level Models

Similar to the approach taken in Chapter 2, where the Fay-Herriot model was
introduced as a special case of a general LMM, in this section a finite mixture of
area-level models is presented as a special case of the Finite Mixture of LMMs.

Starting from the framework introduced in Section 2.4, now consider a scenario
where the m areas are divided into K disjoint classes, each with a specific re-
lationship between response variable and covariates. Extending the setting from
the standard model, it is therefore assumed that the observed direct estimate
for a given area i from subgroup k is appropriately modelled by a Fay-Herriot-
type LMM with component-specific fixed coefficients βk and model variance σ2

v,k,
i.e. µ̂Dir

i |(zik = 1) = µik + ei, where µik = µi|(zik = 1) = xTi βk + vi,k with

vi,k
i.i.d∼ N (0, σ2

v,k) denotes the true area mean for areas in k. As before, ei is the
sampling error following a normal distribution with known design variance σ2

e,i.
Thus, the conditional distribution of µ̂Dir

i given zik = 1 is a univariate normal
distribution characterized by the density fN (µ̂Dir

i ;xTi βk, σ
2
e,i + σ2

v,k).

The marginal density of µ̂Dir
i then is a finite mixture of K Fay-Herriot-type LMM,

i.e.

f(µ̂Dir
i ) =

K∑
k=1

λkfN (µ̂Dir
i ;xTi βk, σ

2
e,i + σ2

v,k), i = 1, . . . ,m. (4.29)

This model is a special case of the finite mixture of LMM obtained from (4.1)
by making the replacements given in (2.49) and (2.50), only that now vi,k = vi,k,
Gk = σ2

v,k and V i,k = σ2
e,i + σ2

v,k.

Estimates for the component-specific parameters θk =
(βT1 , . . . ,β

T
K , σ

2
v,1, . . . , σ

2
v,K)T and the mixing proportions λ1, . . . , λK are ob-

tained via the EM algorithm for mixtures of LMM. In Section 4.3 two versions
of the algorithm were described. In what follows this general account is com-
plemented by providing details for the specific case of a mixture of area-level
models.

For the first version, commonly applied for the estimation of mixtures of LMM,
both the component membership and the random effects are treated as missing.
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Expressions for the E-step and the M-step for the specific case of the mixture of
area-level models are as follows:

• E-step
An updated estimate for the conditional expectation of subgroup member-
ship, ξi,k, is obtained as

ξ̂
(t−1)
i,k =

λ̂
(t−1)
k fN (µ̂Dir

i |xi, θ̂
(t−1)
k )∑

j∈K λ̂
(t−1)
j fN (µ̂Dir

i |xi, θ̂
(t−1)
j )

(4.30)

The expressions for the conditional moments of the random effect in the
E-step simplify to:

ŝ
(t−1)
1i,k = E

ψ̂
(t−1)(vi,k|µ̂Dir

i ) (4.31)

=
σ̂2(t−1)

v,k

σ2
e,i + σ̂2(t−1)

v,k

(µ̂Dir
i − xTi β̂

(t−1)
k )

Ŝ
(t−1)
2i,k = E

ψ̂
(t−1)(v2i,k|µ̂Dir

i ) (4.32)

=
σ2
e,iσ̂

2(t−1)

v,k

σ2
e,i + σ̂2(t−1)

v,k

+ ŝ
(t−1)
1i,k ŝ

(t−1)
1i,k

• M-step
The expressions for deriving an updated fit for the model parameters in the
M-step are obtained as:

β̂
(t)

k =
1∑m

i=1 ξ̂
(t−1)
i,k

(
m∑
i=1

ξ̂
(t−1)
i,k xix

T
i )−1

m∑
i=1

ξ̂
(t−1)
i,k xi(µ̂

Dir
i − ŝ

(t−1)
1i,k ). (4.33)

σ̂
2(t)
v,k =

1∑m
i=1 ξ̂

(t−1)
i,k

m∑
i=1

ξ̂
(t−1)
i,k Ŝ

(t−1)
2i (4.34)

With the second version an alternative algorithm was presented, where only the
component membership is treated as missing. This requires the maximization of
the weighted log-likelihood of a mixed model in the M-step. For the mixture of
area-level models, this second approach was taken and the maximization problem
was solved numerically using maxLik from the maxLik package (Henningsen and
Toomet, 2011).

Finally, the mixture-based estimator for the true area mean is derived from the
general predictor developed in Section 4.4. Corresponding to the approach taken
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in the preceding section, introduce µi =
∑K

k=1 zikµ
∗
ik, where µ∗ik = (xTi βk+vi,k), i =

1, . . . , K. Note that µi under the mixture model, thus, is a special case of ηi as
considered in 4.4 (also compare Section 2.4). Making the relevant replacements in
(4.22) yields

µ̂FHmix
i =

K∑
k=1

ξ̂i,kµ̂
∗FH
ik (4.35)

=
K∑
k=1

ξ̂i,k(x
T
i β̂k + γ̂i,k(µ̂

Dir
i − xTi β̂k), (4.36)

with

γ̂i,k =
σ̂2
v,k

σ2
e,i + σ̂2

v,k

. (4.37)

µ̂∗FHik denotes the predict for µi derived from model k.

The mixture-based estimator can be rearranged as follows:

µ̂FHmix
i =

K∑
k=1

ξ̂i,k · µ̂∗FHik (4.38)

=
K∑
k=1

ξ̂i,kx
T
i β̂k +

K∑
k=1

ξ̂i,kv̂i,k

=
K∑
k=1

ξ̂i,kx
T
i β̂k︸ ︷︷ ︸ +

K∑
k=1

ξ̂i,kγ̂i,k(µ̂
Dir
i − xTi β̂k)︸ ︷︷ ︸ .

Synthetic estimator Correction of synthetic estimator

The FHmix-estimator, thus, can be formulated as a synthetic estimator obtained as
the weighted mean of predicts from the fixed parts of the K models and an area-
specific correction factor, that adjusts the synthetic estimator. This correction
factor is a convex combination of component-specific corrections.

Second, the FHmix-estimator can simply be interpreted as a convex combination
of K composite estimators.

µ̂FHmix
i =

K∑
k=1

ξ̂i,k · µ̂∗FHik (4.39)

=
K∑
k=1

ξ̂i,k

(
γ̂i,kµ̂

Dir
i + (1− γ̂i,k)xTi β̂k

)
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Further pursuing the notion of a composite estimator that yields an area-specific
compromise between the influence of the direct estimator and the synthetic esti-
mator, the FHmix-estimator can finally be interpreted the following way:

µ̂FHmix
i =

K∑
k=1

ξ̂i,k
(
γ̂i,kµ̂

Dir
i

)
+

K∑
k=1

ξ̂i,k

(
(1− γ̂i,k)xTi β̂k

)
. (4.40)

It can, thus, be written as the sum of (1) a convex combination of contributions
from the direct estimator in the predicts from model 1 to K and (2) the respective
weighted sum of contributions of the synthetic estimator.

4.6 A Mixture of Unit-level Models

Corresponding to the approach taken in the preceding section, now a mixture of
unit-level models is introduced as a special case of the mixture of LMMs.

Consider the small area scenario as defined in Section 2.5. Now, as described in
Section 4.2 the framework is extended by assuming the existence of K latent classes
of areas, each with distinct model parameters θk = (βTk , σ

2
v,k, σ

2
e,k)

T . Thus, for a
given area i in subgroup k the relevant model that links the unit-level observations
of the statistic of interest to a set of auxiliary information is given by

yij|(zik = 1) = xTijβk + vi,k + eij,k, i = 1, . . . ,m, j = 1, . . . , ni (4.41)

vi,k
i.i.d∼ N (0, σ2

v,k)

eij,k
i.i.d.∼ N (0, σ2

e,k).

Under this model, the conditional density of the statistic of interest given zik = 1
is fN (yi;X iβk, σ

2
e,kIni

+σ2
v,k1ni

1Tni
) and the marginal density is given by the finite

mixture

f(yi|X i,U i,ψ) =
K∑
k=1

λkfN (yi;X iβk, σ
2
e,kIni

+ σ2
v,k1ni

1Tni
), (4.42)

which is a special case of (4.1) with covariance matrix V i,k = σ2
e,kIni

+ σ2
v,k1ni

1Tni
.

As described in Section 4.3, ML estimates for this model class are commonly
derived using the EM algorithm and treating both the random effects and the
subgroup membership as missing (Version 1). This approach was adopted for the
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estimation of mixtures of unit-level models in this thesis. Corresponding equations
are derived straightforwardly from the general equations by setting U i = 1ni

,
Gk = σ2

v,k and Ri = Ini
(compare Section 2.5):

• E-step
Expressions for the conditional moments in the E-step simplify to

ŝ
(t−1)
1i,k = E

ψ̂
(t−1)(vi|yi) (4.43)

= γ̂
(t−1)
i,k (yi − xTiSβ̂

(t−1)
k ),

where

γ̂
(t−1)
i,k =

σ̂2(t−1)

v,k

σ̂2(t−1)

v,k +
σ̂2(t−1)

e,k

ni

, (4.44)

and

Ŝ
(t−1)
2i,k = E

ψ̂
(t−1)(viv

T
i |yi) (4.45)

=

(
1

σ̂2(t−1)

e,k

ni +
1

σ̂2(t−1)

v,k

)−1
+ ŝ

(t−1)
1i,k ŝ

(t−1)
1i,k ,

=
1

ni

σ̂2(t−1)

e,k σ̂2(t−1)

v,k

σ̂2(t−1)

v,k +
σ̂2(t−1)

e,k

ni

+ ŝ
(t−1)
1i,k ŝ

(t−1)
1i,k .

• M-step
Updated estimates in the M-step are obtained as

β̂
(t)

k =
1∑m

i=1 ξ̂
(t−1)
i,k

(
m∑
i=1

ξ̂
(t−1)
i,k

ni∑
j=1

xijx
T
ij)
−1

m∑
i=1

ξ̂
(t−1)
i,k

ni∑
j=1

xij(yij − ŝ(t−1)1i,k ),

(4.46)

σ̂2(t)

v,k =
1∑m

i=1 ξ̂
(t−1)
i,k

m∑
i=1

ξ̂
(t−1)
i,k Ŝ

(t−1)
2i , (4.47)

σ̂2(t)

e,k =
1∑m

i=1 ξ̂
(t−1)
i,k ni

m∑
i=1

ξ̂
(t−1)
i,k

 ni∑
i=1

ε
(t−1)
ij,k ε

(t−1)
ij,k +

σ̂2(t−1)

e,k σ̂2(t−1)

v,k

σ̂2(t−1)

v,k +
σ̂2(t−1)

e,k

ni

 , (4.48)

where

ε̂
(t−1)
ij,k =yij − xTi β̂

(t−1)
k − ŝ(t−1)1i,k . (4.49)
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Once estimates for the model parameters are obtained, the mixture-based predictor
for the statistic of interest is derived. As discussed in Section 2.5, commonly the
expected value of the area mean is considered as the target statistic. Under the
assumed mixture model, for an area belonging to class k it is given by µi|(zik =
1) = xTiPβk + vi,k. As before (compare Section 4.4) define µi =

∑K
k=1 zikµ

∗
ik, where

µ∗ik = xTiPβk + vi,k, i = 1, . . . , K, which is a special case of ηi under the mixture
model as introduced in (4.15). A predictor is derived from the general predictor
developed in Section 4.4 by making the relevant replacements in (4.22). It is

µ̂BHFmix
i =

K∑
k=1

ξ̂i,kµ̂
∗BHF
ik (4.50)

=
K∑
k=1

ξ̂i,k(x
T
iP β̂k + γ̂i,k(yi − xTiSβ̂k), (4.51)

with

γ̂i,k =
σ̂2
v,k

σ̂2
v,k +

σ̂2
e,i

ni

. (4.52)

µ̂∗BHF
ik denotes the predict for µi derived from model k.

4.7 MSE Estimation

A potential measure of uncertainty can be obtained as MSE(η̂mix
i |η̂Dir

i ) := E[(η̂mix
i −

ηi)
2|yi], i.e. as the conditional expectation of the MSE given the observed data (see

Jiang, 2017, p. 148 and references therein for a similar conditional uncertainty
measure for the EBLUP). In what follows, an approximation of MSE(η̂mix

i |η̂Dir
i )

for the special case of a mixture of area-level models is presented (Articus and
Burgard, forthcoming). To obtain it, the conditional MSE is expressed in a
way that allows to approximate its terms by known expressions. More precisely,
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MSE(µ̂mix
i |µ̂Dir

i ) := E[(µ̂mix
i − µi)2|µ̂Dir

i ] can be transformed as follows:

MSE(µ̂mix
i |µ̂Dir

i ) :=E[(µ̂mix
i − µi)2|µ̂Dir

i ] (4.53)

=E
[
E[(µ̂mix

i − µi)2|µ̂Dir
i , zi]|µ̂Dir

i

]
=

K∑
k=1

Pr(zik = 1|µ̂Dir
i )× E

[
(µ̂mix

i − µi)2|µ̂Dir
i , zik = 1

]
=

K∑
k=1

ξik × E
[
(µ̂mix

i − µ∗ik + µ∗ik − µi)2|µ̂Dir
i , zik = 1

]
=

K∑
k=1

ξik × E
[
(µ̂mix

i − µ∗ik)2

+ 2(µ̂mix
i − µ∗ik)(µ∗ik − µi) + (µ∗ik − µi)2|µ̂Dir

i , zik = 1
]

=
K∑
k=1

ξik ×
(
E
[
(µ̂mix

i − µ∗ik)2|µ̂Dir
i , zik = 1

]
+ 2E

[
(µ̂mix

i − µ∗ik)(µ∗ik − µi)|µ̂Dir
i , zik = 1

]
+ E

[
(µ∗ik − µi)2|µ̂Dir

i , zik = 1
])

The following approximations are suggested:

E
[
(µ̂mix

i − µ∗ik)2|µ̂Dir
i , zik = 1

]
≈ M̂SEk (4.54)

2E
[
(µ̂mix

i − µ∗ik)(µ∗ik − µi)|µ̂Dir
i , zik = 1

]
≈ 0 (4.55)

E
[
(µ∗ik − µi)2|µ̂Dir

i , zik = 1
]
≈ (µ̂∗FHik − µ̂mix

i )2 (4.56)

Note that (4.54) can be understood as some kind of within error, i.e. the prediction

error within a component. It is approximated by M̂SEk, which, in accordance to
the MSE estimator of the EBLUP for variance components estimated by ML (see
Section 2.3.4 and 2.4), is obtained as

M̂SEk ≈ g1(σ̂
2
v,k) + g2(σ̂

2
v,k) + 2g3(σ̂

2
v,k) (4.57)

−

(
σ2
e,i

σ2
v,k + σ2

e,i

)2( m∑
j=1

1

(σ2
v,k + σ2

e,j)
2

)−1

× tr

( m∑
j=1

xjx
T
j

(σ2
e,j + σ2

v,k)

)−1( m∑
j=1

xjx
T
j

(σ2
e,j + σ2

v,k)
2

) .
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Further, (4.56) might be interpreted as a measure of the difference between the
components. Replacing ξik by an estimate, finally, the following approximation is
obtained:

M̂SE(µ̂mix
i |µ̂Dir

i ) ≈
K∑
k=1

ξ̂ikM̂SEk +
K∑
k=1

ξ̂ik(µ̂
∗FH
ik − µ̂mix

i )2 (4.58)



Chapter 5

Simulation Studies

5.1 Introduction

A common tool to evaluate the performance of a new estimator is to perform a
simulation study. Generally, Monte Carlo (MC) simulation studies are the ”pro-
cess of sampling repeatedly from either a fixed population or a statistical model”
(Zimmermann, 2015). In each run, selected results, e.g. point or variance esti-
mates, are obtained from the estimator of interest and a selection of competing
approaches. The distribution of results over the simulation runs (MC-distribution)
can then be used to assess the performance of the estimator. Overall, this allows
to evaluate estimation methods in a controlled environment, i.e. under specific
well-chosen scenarios. This can be the only viable approach to assess the prop-
erties of an estimator if analytical solutions are not obtainable. But even if such
solutions exist, simulation studies can result in surprising findings and shed light
on peculiarities of an estimator that otherwise might have been missed (Alfons,
Filzmoser, Hulliger, Kolb, Kraft, Münnich and Templ, 2011). Overall,
simulations help to arrive at a informed judgement on the suitability of an estima-
tor in a specific setting. With the rising availability of computational power they
have increasingly become feasible and are a standard tool of studies in small area
estimation. See Burgard, Münnich and Zimmermann (2016); Chandra and
Chambers (2016); Molina and Rao (2010); Salvati, Chandra, Ranalli and
Chambers (2010); Schmid, Tzavidis, Münnich and Chambers (2016) and
Wagner, Münnich, Hill, Stoffels and Udelhoven (2017) for some exam-
ples.

Broadly two different frameworks for MC-simulations can be distinguished: model-
based and design-based simulation studies. While in a model-based simulation

63
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study, observations are generated from the model in each run, in a design-based
study the samples are drawn from a fixed population. Randomisation is thus with
respect to the design (See Zimmermann (2015), Münnich (2014), or Burgard
(2013) for a more elaborate taxonomy, differentiating between four and six types
of simulation studies, respectively).

Generally, model-based simulation studies are deemed the adequate approach to
test the performance of new model-based estimators under different assumptions
for the population. This, of course, implies both an assessment of the quality of the
estimator when model assumptions are fulfilled and an evaluation of consequences
of controlled violations of central assumptions (Chandra and Chambers, 2016;
Zimmermann, 2015). They can be considered as a ”check whether [a] new pro-
cedure really works” (Zimmermann, 2015).

Of course all estimators eventually are meant to be applied to real data. Then
all models are only approximations of the reality. Additionally, practitioners are
confronted with one single sample from a finite population, usually resulting from
a complex survey process. This situation is mimicked with a design-based simula-
tion, which therefore is a valuable device to judge the performance of an estima-
tion strategy in a real-data application. It allows to evaluate the performance of
a model-based estimator in a design-based framework, e.g. including assessments
of the interplay of estimation method and sampling design. Moreover, a design-
based simulation set-up implies that features of areas are held fixed (Salvati
et al., 2010) so that no averaging over peculiarities veils the performance of the
estimators for extreme cases. Results can vary significantly from those obtained
in a model-based simulation (Burgard, Kolb, Merkle and Münnich, 2017)
and reveal surprising features of the methods at hand (Alfons et al., 2011).
If the aim is to evaluate the estimator in a close-to-reality scenario, the study
however requires careful planning to build a set-up that is able to appropriately
reproduce the complex interplay of characteristics of the population, the sampling
design and data processing in a real survey (see Alfons et al. (2011); Münnich,
Schürle, Bihler, Boonstra, Knottnerus, Nieuwenbroek, Haslinger,
Laaksonen, Wiegert, Eckmair, Quatember, Wagner, Renfer and Oet-
liker (2003) and Burgard et al. (2017) as well as references therein for further
discussions and sophisticated examples of synthetic datasets for design-based sim-
ulation studies).

In what follows, two model-based simulation studies are performed in order to
arrive at a judgement of the general functionality and appropriateness of the sug-
gested estimators. A more demanding design-based study in a complex close-to-
reality setting to complement the findings is an important task for future research.

Common measures for the evaluation of results are the MC Relative Bias (RBIAS)
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as well as the MC Relative Root Mean Square Error (RRMSE) (see Burgard,
2013; Zimmermann, 2015, for a more comprehensive discussion of quality mea-
sures for simulation studies in SAE).

For a simulation study with R MC-replications, the RBIAS of an estimator µ̂ is
defined as

RBIASi :=
1

R

R∑
r=1

(µ̂i,r − µi,r)
µi,r

. (5.1)

µ̂i,r denotes the estimate obtained for area i in replication r and µi,r is the respec-
tive true value. RBIASi takes values in (−∞,∞). Obviously, a result close to zero
is desirable.

Further, the RRMSE is given by

RRMSEi :=

√√√√ 1

R

R∑
r=1

(µ̂i,r − µi,r)2
µ2
i,r

(5.2)

The RRMSE takes values in (0,∞). Again, an RRMSE close to 0 is the desired
result.

Alternatively, the MC Bias (BIAS)

BIASi :=
1

R

R∑
r=1

(µ̂i,r − µi,r) (5.3)

and Root Mean Square Error (RMSE)

RMSEi :=

√√√√ 1

R

R∑
r=1

(µ̂i,r − µi,r)2 (5.4)

can be reported instead of the relative measures introduced above. This might
be sensible if some of the true values are close to zero such that the considered
measure takes a large value even for a small deviation between estimate and true
value.

Additionally, to these area-specific measures, sometimes averages over all areas
are considered. This allows to summarize results in an even compacter way and
focusses on the overall performance in cases where compared estimators have



Chapter 5. Simulation Studies 66

strengths or weaknesses for some specific areas. Relevant performance measures
are the Mean Absolute Relative Bias (MARB)

MARB :=
1

m

m∑
i=1

|RBIASi| (5.5)

and the Average Relative Root Mean Square Error (ARRMSE)

ARRMSE :=
1

i

m∑
i=1

RRMSEi. (5.6)

5.2 Area-level Simulation

5.2.1 Setting

The proposed estimators based on a mixture of area-level models with or without
concomitant variables were tested in a model-based simulation study with 1000
runs. In each MC-iteration, the subgroup-label vector zi was generated by drawing
once from the categories 1 to K with probabilities λ1, . . . , λK and the true mean
µi = xT

i βk+vi,k, i = 1, . . . , 200 was then generated from the respective component-
model. The covariates X were held fixed over the simulation runs. An m-vector of
design variances σ2

e,i was generated from σ2
e,i ∼ unif(0.6, 0.24) in each run and the

direct estimate was obtained as µDir
i = µi + ei with ei

ind∼ N (0, σ2
e,i). Additionally,

50 areas where only the auxiliary information xi and wi are given were generated
in order to also evaluate the performance of the suggested methods in case of
non-sampled areas, i.e. areas for which no direct estimate is available. Finally,
additional covariates w for the submodel for the mixture weights were generated in
order to analyse the performance of the mixture-based estimator with concomitant
variables.

Overall, four populations (Population 1 to 4) and two different settings with re-
spect to w (Setting A and B) were considered: The populations were designed to
represent different scenarios with respect to the clustered structure: While popu-
lation 1 is a homogeneous population with K = 1, with population 2 and 3 two
settings were considered where the areas actually are segmented into two equally
sized subgroups. The component densities in populations 2 are clearly separated
whereas the components in population 3 were designed as partly overlapping. With
population 4 a scenario with unequally sized clusters was considered. Table 5.1
gives an overview.
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Table 5.1: Populations in the simulation study

Population 1 Population 2 Population 3 Population 4

homogeneous population clearly separated components partly overlapping components unequally sized clusters

K = 1 K = 2

λk = 1/K for all k λ1 = 0.15, λ2 = 0.85

βk=1 = (8.5, 0.2, 0.2) βk=1 = (9, 0.5,−0.25) βk=1 = (11.5, 0.2,−0.1) βk=1 = (9, 0.5,−0.25)

βk=2 = (8.5,−0.5, 0.4) βk=2 = (5,−0.2, 0.3) βk=2 = (8.5,−0.5, 0.4)

σ2
u = 0.7 σ2

u,k = 0.7 for all k

x1 = 1,x2 ∼ N (−4, 2) and x3 ∼ N (3, 2)

σ2
e,i ∼ unif(0.24, 0.6)
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Additional to the four distinct scenarios, two different settings (Setting A and
B) with respect to the concomitant variable w were considered. For the first
setting (Setting A), w was designed to be highly correlated with the true cluster
membership in the clustered populations 2 to 4. Further, the consequences of
modelling the mixture weights through covariates without explanatory power of a
given clustering structure were analysed (Setting B). For both cases an m×2 set of
possible covariate values was constructed once. This was done by drawing an m-
vector w1 from SN (−0.6, 0.275, 3) and an m-vector w2 from SN (0.6, 0.275,−3),
where SN (κ, ω, ρ) denotes the skew normal distribution with location κ, scale ω
and skewness parameter ρ, respectively. For this purpose, rsnorm from the package
fGarch was used.

For Setting A the values were assigned according to the respective component
membership of the areas without error, i.e. for an area i in component k, wi was
set to be the ith value inwk. For Setting B, wi was drawn randomly from the vector
of K candidate values for area i. Figure 5.1 illustrate the resulting histograms of
w for one exemplary run in a 2-component scenario.1 This strategy of course is
meaningless for the homogeneous population 1 where component membership is
the same for all areas. Therefore, a slightly different specification of the two setting
was chosen. In Setting A, an artificial clustering structure was imposed, i.e. each
area was assigned to one of K clusters with probability λk. As in the clustered
populations, wi was then accordingly chosen from the vector of candidate values.
This results in a bimodal distribution of w and thus implies the case of imposing
information on a clustered pattern in case of a population that is homogeneous
with respect to the main model. For Setting B, wi was drawn from a uniform
distribution unif(−1, 1) to model a case where the concomitant variable does not
introduce any additional clustering information.

1Note that while the m×K-matrix of possible candidate values is fixed over MC-replications,
the resulting vector of concomitant variables w is not, because component membership of areas
is random.



Chapter 5. Simulation Studies 69

Histogram of w

w

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

w for areas in class 1

w

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

w for areas in class 2

w

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

Overlaying histograms of w

w

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0
0

10
20

30
−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

−1.0 −0.5 0.0 0.5 1.0
0

10
20

30

Setting A

Histogram of w

w

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

w for areas in class 1

w

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

w for areas in class 2

w

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

Overlaying histograms of w

w

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

Setting B

Figure 5.1: Histograms of w for exemplary MC-run (K = 2)
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Overall, the simulation study is designed to reflect a scenario where the areas
are clustered into K actually existing but latent subgroups with a true subgroup-
specific functional relationship between µi and main-model covariates x. Corre-
spondingly, the direct estimates are generated according to the assumptions drawn
for the component they belong to. There is a second set of covariates w available,
which is employed to model the mixing proportions in the submodel in order to
support segmentation and characterize the clusters. This submodel can be under-
stood as an a-posteriori tool utilized to understand the data. It is not however
some kind of true data-generating process in the sense that there is a true area-
specific mixture weight λ explicitly defined through the submodel. This simulation
scenario matches the intended purpose of the submodel in the context of small area
estimation in the case of latent subgroups.

Note that by construction, X contains no systematic information about compo-
nent membership. In practical applications it might often be reasonable to assume,
that auxiliary information vary between different subgroups of areas. This can be
expected to further support the identification of subgroups in the estimation pro-
cess. Thus, the chosen setting of drawing the covariates from a single distribution,
can be regarded as a conservative simulation approach.

Table 5.2: Estimators in the simulation study

DIR Direct estimator

FH Standard FH-estimator

FHmix Mixture-based FH estimator without concomitant
variables

FHmixconc Mixture-based FH with concomitant variables

clustFH.k K-means clustering-based FH estimator. Obtained
by (1) k-means clustering of observations based on
w and (2) subsequent estimation of cluster-specific
FH-models

clustFH.mix Cluster-based FH estimator. Obtained by (1) clus-
tering of observations based on ξi,k and (2) subse-
quent estimation of cluster-specific FH-models

An overview of estimators considered in the study is given in Table 5.2 and Ta-
ble 5.2. Table 5.2 lists the estimating approaches considered for the sampled
areas. Additional to the proposed mixture-based area-level estimators (FHmix)
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and (FHmixconc), the standard FH-estimator (FH) is included in the study as
a benchmark. Further, with clustFH.k and clustFH.mix two alternative cluster-
based approaches are considered. Parameter estimation for the mixture-based
approaches was performed applying Version 1 of the EM algorithm described in
Section 4.3 and 4.5.

In Section 4.4, a concomitant variable mixture model-based estimator for out-of-
sample prediction was discussed as a possible approach for unsampled areas. Its
performance for out-of-sample prediction is evaluated against reference approaches
based on the standard FH-model, FHmix and clustFH.k. Respective details can
be taken from Table 5.3.

Table 5.3: Estimation strategies for unsampled areas

FH.oos Synthetic estimator

FHmix.oos Weighted mean of synthetic estimators, where
the weights are the estimated (fixed) mixing-
proportions λk

FHmixconc.oos Weighted mean of synthetic estimators, where
weights are given by the area-specific out-of-
sample predicts from the sub-model

clustFH.k.oos clustFH.k as cluster-specific synthetic estimator,
where unsampled areas are assigned to one of K
clusters by k-means clustering based on w.

Additionally, the performance of two different criteria for estimating K, namely
the ICL-BIC and the BIC, was evaluated. For this purpose, each criterion was
obtained for FHmix and FHmixconc in Setting A and B letting K grow from 1 to
5 and K̂ was chosen as the specification minimizing the respective criterion (see
Section 3.6).

5.2.2 Results

A first step in each application of mixture models is assessing the number of com-
ponents in the population. Table 5.4 evaluates the performance of the suggested
model selection criteria ICL-BIC and BIC in this regard. In each simulation run,
K, was estimated by calculating the BIC and the ICL-BIC letting K grow from 1
to 4 (compare Section 3.6). Table 5.4 presents the percentage of simulation runs
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where the respective estimate K̂ for K was obtained. First considering results for
FHmix, it can be seen that for the homogeneous population 1 as well as for the
clearly clustered populations 2 and 4 both criteria obtain reasonably good results.
The performance of the BIC in detecting present clusters is, however, notably bet-
ter. For population 3 the results of the criteria differ in a way consistent with
the properties of ICL-BIC and BIC described in Section 3.6. The ICL-BIC, which
penalizes poorly separated components and is thus the appropriate criterion in a
clustering context, results in K̂ = 1. The BIC, which is generally considered to be
a suitable measure if the aim is density estimation for a heterogeneous population,
estimates the true number of components, i.e. K = 2, at least in 78.6 percent of
simulation runs. As discussed in Section 3.6, the foremost motivation of applying
mixtures in SAE is to find a model that suits the data well in order to predict the
statistic of interest in a heterogeneous population. Identifying distinct clusters is
of secondary interest. Thus, it seems recommendable to follow the result of the
BIC. It can, nevertheless be insightful to consider the ICL-BIC as well: A con-
flicting result of the two measures might hint at a scenario of poorly separated,
but nevertheless existent, clusters.

Results for FHmixconc in Setting A, show that including further information on
a clustered population in the estimation process heightens the probability of cor-
rectly estimating K in case of a clustered population. This is especially true for
the partly overlapping components in population 3 where now both criteria almost
certainly correctly result in K̂ = 2. The performance of the ICL-BIC in population
2 and 4 is also notably improved. Setting B reveals the consequences of imposing a
”false clustering structure”. Both criteria still perform almost equally well as in an
approach without concomitant variables. Thus, while the inclusion of suitable in-
formation does improve the estimation performance, the inclusion of an additional
”wrong” clustered pattern through the submodel does not seem to ”mislead” the
model selection criteria into assuming a clustered structure for the main model,
too.
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Table 5.4: Simulation results for estimating K

Population Criterion Result (Percentage of 1000 MC-runs)

FHmix FHmixconc Setting A FHmixconc Setting B

K̂ = 1 K̂ = 2 K̂ = 3 K̂ = 4 K̂ = 1 K̂ = 2 K̂ = 3 K̂ = 4 K̂ = 1 K̂ = 2 K̂ = 3 K̂ = 4

Population 1 ICL-BIC 100 0 0 0 100 0 0 0 100 0 0 0
BIC 100 0 0 0 100 0 0 0 100 0 0 0

Population 2 ICL-BIC 6.5 93.5 0 0 0 100 0 0 5.6 94.4 0 0
BIC 0 100 0 0 0 99.9 0.1 0 0 99.9 0.1 0

Population 3 ICL-BIC 100 0 0 0 0 99.6 0.4 0 100 0 0 0.1
BIC 21.4 78.6 0 0 0 99.9 0.1 0 20.6 79.4 0 0

Population 4 ICL-BIC 9.1 90.9 0 0 0 100 0 0 9.1 90.9 0.4 0
BIC 0 99.5 0.5 0 0 100 0 0 0 99.1 0.9 0
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Table 5.5 and 5.6 present summarizing statistics for the estimated model param-
eters of the main model in Setting A and Setting B, respectively. Listed are
the mean and standard deviation of estimation results over the simulation runs.
Note that, due to the label-switching problem described in Section 3.4, a mean-
ingful representation of component- or cluster-specific parameter estimates for the
mixture- and cluster-based estimators requires ordering and subsequent relabelling
of estimation results for the two components. This was achieved by imposing the
restriction β̂1,k=1 > β̂1,k=2, a strategy that has proven to serve well in the present
context.

It can be taken from these tables, that the estimation results obtained for the mix-
ture based estimators in the clustered populations are generally quite accurate. As
to be expected, results are best for the clearly clustered and balanced population
2 and for the larger cluster (k = 2) in population 4, but the performance for
population 2 and component 1 in population 4 is also good. In the homogeneous
population 1 the mixture-based estimators seem to artificially reduce the true
model variance be separating observations into two homogeneous subgroups. Fur-
ther, regarding results for FHmixconc it can be seen that the inclusion of suitable
concomitant variables (Setting A in Table 5.5) tends to support the separation
of components and to stabilize the estimation of model parameters. This is most
obvious in population 3 and the unbalanced population 4, where results for the
smaller component 1 are improved. Considering results for FHmixconc obtained
in Setting B, it can be seen that the inclusion of uncorrelated covariates in the
submodel does not negatively affect results. FHmixconc performs equally well as
FHmix.

Considering the benchmark approach of FH, it can be seen that it performs well in
the homogenous population 1 but, as to be expected, results in a large estimated
model variance in all clustered populations.
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Table 5.5: Estimated parameters (Setting A): Mean and standard deviation over simulation runs

k = 1 k = 2
Population 1

σ̂v
2 Icept β1 β2 σ̂v

2 Icept β1 β2
mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd

FH 0.67 0.21 8.52 0.28 0.20 0.05 0.20 0.06
FHmix 0.48 0.45 8.97 0.77 0.31 0.11 0.19 0.17 0.45 0.45 8.07 0.74 0.10 0.10 0.20 0.16
FHmixconc 0.46 0.47 9.00 0.76 0.32 0.11 0.19 0.16 0.42 0.45 8.03 0.78 0.09 0.10 0.20 0.17
FHclust.k 0.65 0.28 8.69 0.37 0.24 0.06 0.20 0.08 0.64 0.29 8.33 0.37 0.16 0.06 0.20 0.08
FHclust.mix 0.30 0.70 9.29 1.29 0.38 0.18 0.21 0.27 0.27 0.71 7.73 1.34 0.02 0.18 0.19 0.28

Population 2
σ̂v

2 Icept β1 β2 σ̂v
2 Icept β1 β2

mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd
FH 9.64 0.68 8.77 0.61 0.01 0.12 0.07 0.14
FHmix 0.64 0.35 9.02 0.52 0.50 0.08 -0.25 0.09 0.62 0.35 8.52 0.51 -0.50 0.09 0.40 0.09
FHmixconc 0.63 0.29 8.99 0.43 0.49 0.08 -0.25 0.08 0.62 0.29 8.54 0.42 -0.50 0.07 0.39 0.08
FHclust.k 1.74 0.78 8.93 0.53 0.47 0.08 -0.21 0.11 1.89 0.70 8.43 0.43 -0.45 0.08 0.42 0.09
FHclust.mix 0.43 0.29 8.78 0.61 0.47 0.10 -0.24 0.09 0.42 0.29 8.76 0.59 -0.47 0.10 0.38 0.09

Population 3
σ̂v

2 Icept β1 β2 σ̂v
2 Icept β1 β2

mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd
FH 4.21 0.46 8.24 0.55 -0.00 0.09 0.10 0.09
FHmix 0.71 0.58 11.56 0.60 0.21 0.10 -0.11 0.11 0.70 0.54 4.96 0.59 -0.22 0.10 0.31 0.12
FHmixconc 0.57 0.28 11.51 0.42 0.20 0.08 -0.09 0.08 0.55 0.28 5.03 0.43 -0.19 0.07 0.30 0.08
FHclust.k 1.07 0.43 11.26 0.46 0.19 0.08 -0.07 0.08 1.21 0.43 5.31 0.45 -0.19 0.08 0.27 0.08
FHclust.mix 0.26 0.34 11.46 0.65 0.18 0.11 -0.07 0.12 0.26 0.31 5.06 0.62 -0.18 0.10 0.27 0.13

Population 4
σ̂v

2 Icept β1 β2 σ̂v
2 Icept β1 β2

mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd
FH 5.25 0.92 8.61 0.48 -0.35 0.09 0.30 0.11
FHmix 0.87 1.46 9.30 1.33 0.52 0.23 -0.26 0.23 0.62 0.37 8.50 0.37 -0.50 0.06 0.40 0.08
FHmixconc 0.60 0.54 9.10 0.97 0.50 0.16 -0.27 0.17 0.66 0.23 8.53 0.31 -0.50 0.06 0.39 0.06
FHclust.k 6.46 2.18 8.73 1.12 0.28 0.24 -0.03 0.25 0.90 0.72 8.49 0.36 -0.50 0.06 0.39 0.08
FHclust.mix 0.56 1.31 8.43 1.37 0.42 0.22 -0.20 0.22 0.57 0.36 8.48 0.37 -0.51 0.06 0.40 0.08
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Table 5.6: Estimated parameters (Setting B): Mean and standard deviation over simulation runs

k = 1 k = 2
Population 1

σ̂v
2 Icept β1 β2 σ̂v

2 Icept β1 β2
mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd

FH 0.67 0.21 8.52 0.28 0.20 0.05 0.20 0.06
FHmix 0.48 0.45 8.97 0.77 0.31 0.11 0.19 0.17 0.45 0.45 8.07 0.74 0.10 0.10 0.20 0.16
FHmixconc 0.46 0.46 9.00 0.78 0.31 0.11 0.19 0.17 0.43 0.46 8.04 0.78 0.09 0.10 0.20 0.17
FHclust.k 0.64 0.28 8.69 0.37 0.24 0.06 0.19 0.08 0.65 0.29 8.35 0.37 0.16 0.06 0.20 0.08
FHclust.mix 0.30 0.70 9.29 1.29 0.38 0.18 0.21 0.27 0.27 0.71 7.73 1.34 0.02 0.18 0.19 0.28

Population 2
σ̂v

2 Icept β1 β2 σ̂v
2 Icept β1 β2

mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd
FH 9.64 0.68 8.77 0.61 0.00 0.12 0.07 0.15
FHmix 0.63 0.35 9.02 0.52 0.50 0.09 -0.25 0.09 0.62 0.35 8.52 0.51 -0.50 0.09 0.40 0.09
FHmixconc 0.63 0.35 9.02 0.52 0.50 0.09 -0.25 0.09 0.62 0.35 8.52 0.51 -0.50 0.09 0.39 0.09
FHclust.k 9.42 1.05 9.12 0.79 0.10 0.14 0.06 0.20 9.49 1.07 8.43 0.81 -0.09 0.15 0.09 0.21
FHclust.mix 0.43 0.29 8.78 0.61 0.47 0.10 -0.24 0.09 0.42 0.29 8.76 0.60 -0.47 0.10 0.38 0.09

Population 3
σ̂v

2 Icept β1 β2 σ̂v
2 Icept β1 β2

mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd
FH 4.21 0.46 8.24 0.55 -0.00 0.09 0.10 0.09
FHmix 0.71 0.59 11.56 0.61 0.22 0.10 -0.11 0.11 0.71 0.57 4.97 0.60 -0.22 0.10 0.31 0.11
FHmixconc 0.73 0.62 11.55 0.63 0.22 0.11 -0.11 0.12 0.72 0.61 4.97 0.62 -0.22 0.10 0.31 0.12
FHclust.k 4.11 0.66 8.60 0.72 0.07 0.11 0.09 0.13 4.14 0.67 7.90 0.70 -0.07 0.11 0.11 0.13
FHclust.mix 0.26 0.36 11.47 0.62 0.18 0.11 -0.07 0.12 0.27 0.33 5.06 0.61 -0.18 0.10 0.27 0.12

Population 4
σ̂v

2 Icept β1 β2 σ̂v
2 Icept β1 β2

mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd
FH 5.29 0.92 8.63 0.48 -0.34 0.09 0.30 0.11
FHmix 0.86 1.42 9.29 1.33 0.52 0.23 -0.26 0.23 0.61 0.28 8.51 0.37 -0.50 0.06 0.40 0.08
FHmixconc 0.90 1.49 9.31 1.32 0.52 0.23 -0.26 0.23 0.61 0.29 8.51 0.36 -0.50 0.06 0.40 0.08
FHclust.k 5.57 1.25 8.90 0.64 -0.27 0.11 0.28 0.16 4.77 1.27 8.36 0.61 -0.42 0.11 0.31 0.15
FHclust.mix 0.55 1.24 8.44 1.37 0.42 0.22 -0.20 0.22 0.56 0.25 8.49 0.36 -0.50 0.06 0.40 0.08
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The RRMSE and RBIAS of point estimates are illustrated in 5.2 and 5.3.
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Figure 5.2: RBIAS

From the depiction of the RBIAS in Figure 5.2, it can be taken that application
of small area techniques introduces bias compared to the design based direct es-
timator. This is an expected result and is, generally, accepted as a price to be
paid for the reduction in variance. The RRMSE in Figure 5.3 reveals the perfor-
mance of the considered estimators regarding these conflicting objects. Overall,
the employment of small area methods reduces the median and mean RRMSE.
An exemption is Population 4, where the improvement realized for some areas,
which is expressed in a reduction of the median of the distribution, is outweighted
by a large RRMSE for some outlying areas. This said, it obviously is of larger
interest how the employment of the mixture-based estimators FHmix and FHmix-
conc compares to the application of the standard FH estimator and competing
cluster-based approaches.

First of all, results for population 1 can be used to analyse the consequences of
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incorrectly assuming a mixture distribution when the population actually is ho-
mogeneous. A crucial result was obtained: Even with this kind of misspecification
the reduction of RRMSE, realized through the application of small area techniques
instead of the employment of the direct estimator, is largely retained (see Figure
5.3). FHmix and FHmixconc perform almost equally well as FH. Even more im-
portantly, Figure 5.2 shows that the employment of a mixture-based estimator
in a homogeneous setting does not cause additional bias, i.e the mixture-based
estimators FHmix and FHmixconc perform similar to the standard FH.

Regarding the clustered populations 2 to 4, the standard FH estimator tends to
slightly overestimate the true value. Overall this bias is quite modest for the ma-
jority of areas, but there are few outlying areas with larger RBIAS. Further, there
is almost no reduction of RRMSE compared to the direct estimator. This can be
explained by the large estimated model variance (compare (Table 5.5 and 5.6) that
leads to large shrinkage factors and, thus, a strong reliance on the design-based
part of the small area estimator. Results can be improved when applying FHmix.
This is especially true for the clearly clustered populations 2 and 4 and most strik-
ingly visible in the upper tail of the distribution. Regarding the RRMSE, it can
be seen that the introduction of mixture-based small area methods instead of the
standard FH also generally reduces the RRMSE. As expected the realized improve-
ment is larger in the clearly clustered populations 2 and 4 and less pronounced in
population 3.

Regarding the inclusion of concomitant variables into the framework it can first
be taken from Setting B that the inclusion of ”wrong” covariates in the submodel
does not negatively affect the prediction performance: FHmix and FHmixconc
perform equally well in all scenarios, both in terms of RBIAS and RRMSE. If
suitable concomitant variables are introduced into the framework (Setting A), a
further reduction of the ARRMSE and MARB can be realized in all clustered
populations. This is especially true for the overlapping components of mixpop 3.
It however comes with the price of a larger RBIAS and RRMSE for some outlying
areas.

While clustFH.k in Setting A also slightly reduces the MARB compared to FH-
mix, it results in a unacceptably large RBIAS for some areas. This is especially
true in population 2. Regarding the RRMSE, it yields better results than FHmix
for most areas, but again there are few areas for which the performance seems
unacceptable. Further, clustFH.k never performs better than FHmixconc. In Set-
ting B, clustFH.k performs similar to FH in all populations while FHmixconc still
maintains the improvement realized through accounting for the clustered structure
disregarding of the ”false” clustering structure imposed through the submodel.
Overall clustFH.k is, thus, clearly outperformed by the suggested mixture-based
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estimators. clustFH.mix yields similar results as FHmix in the clearly clustered
populations 2 and 4 but performs worse in population 3 and more pronounced in
population 1.

RRMSE
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Figure 5.3: RRMSE

Note that, according to the standard model assumptions for finite mixture models,
class membership was treated as random, i.e. zi was drawn in each run. Sum-
marizing statistics as the RBIASi and the RRMSEi for i, thus, average over the
component membership, veiling possible patterns in the estimation errors. An esti-
mator that is unbiased in this marginal representation, is not necessarily unbiased
when conditioning on z. As in a real-data application, researchers are confronted
with one single realisation, respective patterns are of great interest. Therefore,
the analysis of simulation results is complemented by BIASi,k, which is defined as
follows:
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BIASi,k := BIASi|(zik = 1) :=
1

#(r∗k)

∑
r∈r∗k

(µ̂i,r − µi,r), (5.7)

where r∗k is a subset of the index of simulation runs containing all repetitions
where i is generated from component model k such that zik = 1, and #(r∗k) is the
cardinality of r∗k. Note that E(#(r∗k)) = λk × R, i.e. for populations 2 and 3 this
measure on average is only based on 500 simulation runs. The BIAS is considered
instead of the RBIAS because the differences in xTi βk otherwise complicate the
comparison of component-specific results.

Figure 5.4 illustrates the results. For each estimator now two subgroup-specific
results are depicted: FHmix1, for example, denotes the respective result for cluster
1, i.e. the BIASi,1 for the estimator FHmix. First regarding results for the clustered
populations 2 and 3, it can be seen that there indeed is a subgroup-specific bias:
In population 2, for example, all model-based clearly tend to overestimate the
target statistic in subgroup 1 and to underestimate it in subgroup 2. FH performs
worst. Results can be clearly improved if the clustered structure is appropriately
accounted for. This is true for FHmix and – in Setting A – most strikingly for
FHmxconc, that is able to reduce the mean absolute bias to almost zero. clustFH.k
also yields good results, if suitable covariates w are available, but, obviously, fails
to improve estimation results if no fitting covariates are available (Setting B).

Note that there is no true clustered structure in population 1. Thus, in conditioning
on the subgroup-membership, here the ”false” clustering structure imposed trough
the concomitant variable w in Setting A was used. Again, this was meant to reveal
possible hazardous consequences of including this additional information into the
estimation framework. There are, however, no noticeable patterns in the results
for FHmixconc and clustFH.k, the two estimators that use w.
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BIAS|z
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Figure 5.4: BIAS conditional on z

Table 5.7 evaluates the clustering performance of the proposed method. It shows
the average number of correctly assigned areas over the simulation runs (mean and
standard deviation over 1000 runs). It can be seen that FHmixconc and FHmix
perform almost equally well in the case of an uncorrelated auxiliary variable for
the submodel (Setting B). As to be expected, they clearly outperform clustFH.k,
where clustering is solely based on w. When strong covariates are available (Set-
ting A), FHmixconc yields much better results than FHmix and results in almost
perfect clustering even for the overlapping clusters of population 3. Thus, cluster-
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ing results can be improved considerably be introducing concomitant variables into
the framework. At the same time, the approach again proves to be quite robust
against misspecification in the sense that the inclusion of unfitting covariates in
the submodel does not deteriorate clustering results.

Table 5.7: Number of areas correctly assigned to clusters (m = 200): Mean and
standard deviation over simulation runs

Setting A Setting B
mean std.dev mean std.dev

Population 2
FHmixconc 197.9 0.22 185.5 3.55
FHmix 185.5 3.51 185.5 3.53
clustFH.k 193.0 1.86 101.9 6.64

Population 3
FHmixconc 195.9 2.05 171.9 9.48
FHmix 172.6 10.21 172.3 8.77
clustFH.k 193.9 1.85 100.82 6.87

Population 4
FHmixconc 198.4 1.15 191.6 9.12
FHmix 191.5 10.21 191.7 9.23
clustFH.k 189.5 14.97 101.4 6.82

Results for out-of-sample prediction are illustrated in Figure 5.5 and 5.6. Again an
important result is obtained from population 1: FHmix and FHmixconc perform
as good as the standard small area method FH both in terms of RBIAS and of
RRMSE. If, on the other hand, the population actually is heterogeneous, out-
of-sample prediction using FH and FHmix results in a considerable bias and a
large RRMSE. Given suitable information, the prediction result in this case can
be improved considerably by employing FHmixconc or clustFH.k.
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RBIAS
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Figure 5.5: RBIAS for out-of-sample prediction
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RRMSE
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Figure 5.6: RRMSE for out-of-sample prediction

Finally, results for the suggested MSE estimator are evaluated. Figure 5.7 il-
lustrates the BIAS of MSE estimation for the standard FH estimator and the
mixture-based estimators FHmix and FHmixconc. The plot reveals that the sug-
gested MSE approximation for FHmix and FHmixconc underestimates the true
MSE. To put the observed bias in relation, Table 5.8 gives an overview of the
average MSE, MSEi := 1

R

∑R
r=1(µ̂i,r − µi,r)2. Listed are the mean and standard

deviation of MSEi over the areas. In population 2 and setting A for example, a
bias of around 0.05 roughly corresponds to 9% of the mean average MSE. While
this may be considered as a good starting point, there is still room for improve-
ment and further research seems necessary. It should most importantly include the
assessment of the uncertainty introduced through the estimation of the posterior
probabilities of component membership.
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Figure 5.7: BIAS MSE estimator

Setting A Setting B
mean std.dev mean std.dev

FH MSE 0.488 0.027 0.488 0.030
Population 1 FHmix MSE 0.527 0.042 0.526 0.045

FHmixconc MSE 0.519 0.040 0.520 0.043
FH MSE 1.281 0.140 1.282 0.137

Population 2 FHmix MSE 0.566 0.158 0.800 0.154
FHmixconc MSE 0.798 0.155 0.799 0.153
FH MSE 1.094 0.152 1.093 0.152

Population 3 FHmix MSE 0.595 0.143 0.961 0.098
FHmixconc MSE 0.958 0.097 0.961 0.097
FH MSE 1.151 0.178 1.146 0.181

Population 4 FHmix MSE 0.552 0.186 0.706 0.101
FHmixconc MSE 0.707 0.105 0.704 0.100

Table 5.8: Mean and standard deviation of average MSE
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5.3 Unit-level Simulation

5.3.1 Setting

For evaluating the performance of the mixture of unit-level models under different
scenarios, a finite population model-based simulation study (Zimmermann, 2015)
with 1.000 MC-runs was performed. In each run, a population of 30,000 units,
nested in 100 areas, was drawn from different population models. The nesting
structure of units in areas was constant throughout the simulation, which also
implies fixed area sizes Ni over the runs. They ranged from Ni = 255 to Ni = 343
with average area size of 300. Further, the covariates X were held fixed over
all runs. As in the area-level study, additional covariates w were generated as
submodel for the mixture weights. The corresponding K×m matrix was generated
once. In each run, one sample of size n = 600 was drawn by simple random
sampling, imposing the constriction that ni ≤ 2 for all areas i = 1, . . . ,m.

Seven different population models were considered to study the performance of
the suggested approach under different scenarios (Population 1 to 7). Table 5.9
provides an overview. As in the study in the previous Section, populations were
designed to represent different scenarios with respect to the existence of subgroups,
that might possibly be encountered in real-data applications: First, with popula-
tion 1 a homogeneous population with K = 1 is considered. Populations 2 and 3
are constructed to reflect a setting where the areas are segmented into two equal
sized subgroups. The clusters in populations 2 are clearly separated whereas the
subgroups in population 3, were designed as partly overlapping. Further, with
population 4 and 5 two scenarios are considered where the subgroups are of un-
equal size. Population 6 is a highly clustered population with four equally sized
subgroups of areas. In population 7, the covariates in the main model have no ex-
planatory power in one of the two components. See Appendix A.2 for exemplary
illustrations of the data.

Additional to the seven population models, two different settings (Setting A and
B) with respect to the concomitant variable w were considered. For the first
setting (Setting A) w was designed to be highly correlated with the true clus-
ter membership. Further, the consequences of modelling the mixture weights
through covariates without explanatory power of cluster membership were anal-
ysed (Setting B). For both cases an m × K set of possible covariate values was
constructed once. For populations with K = 2 this was done by drawing an m-
vector w1 from SN (−0.6, 0.275, 3) and an m-vector w2 from SN (0.6, 0.275,−3),
where SN (κ, ω, ρ) denotes the skew normal distribution with location κ , scale
ω and skewness parameter ρ, respectively. For this purpose, rsnorm from the
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package fGarch was used. For population 6 with K = 4, w1,w2,w3 and w4

were drawn from N (−0.6, 0.04), N (−0.2, 0.04), N (0.2, 0.04) and N (0.6, 0.04), re-
spectively. For the homogeneous population 1, w was drawn from the normal
distribution N (−0.6, 0.04).

For Setting A the values were assigned according to the respective component
membership of the areas without error, i.e. for an area i in component k, wi
was set to be the ith value in wk. For Setting B, wi was drawn randomly from
the vector of K candidate values for area i. Figure 5.8 illustrates the resulting
histograms of w for one exemplary run in a 2-component scenario. Figure 5.9
shows the respective plots for population 6 with 4 components.
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Figure 5.8: Histograms of w for exemplary MC-run (K = 2)
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Figure 5.9: Histograms of w for exemplary MC-run (K = 4)
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As in the area-level study, the observed values in the simulation study are gen-
erated from the main model assumed for the component they belong to. On the
contrary, the submodel for the mixture weights is conceptualized as an a-posteriori
tool utilized to understand the data, not as some kind of true data-generating
process in the sense that there is a true area-specific mixture weight λ explicitly
defined through the submodel. Also note that, as before, X contains no systematic
information about component membership.
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Table 5.9: Populations in the simulation study

Population 1 Population 2 Population 3 Population 4 Population 5 Population 6 Population 7

homogeneous clearly separated partly overlapping unequal size,

clearly separated

unequal size,

partly overlapping

highly clustered different expla-

natory power

K = 1 K = 2 K = 2 K = 2 K = 2 K = 4 K = 2

λk = 0.5 ∀ k λk = 0.5 ∀ k λ1 = 0.8, λ1 = 0.8, λk = 0.25 ∀ k λk = 0.5 ∀ k

λ2 = 0.2 λ2 = 0.2

β =

(
6.5
1.5

)
β1 =

(
4
2

)
β1 =

(
4

0.75

)
β1 =

(
4
2

)
β1 =

(
4

0.75

)
β1 =

(
2
1

)
β1 =

(
4
2

)

β2 =

(
9
−2

)
β2 =

(
5.5
−0.75

)
β2 =

(
9
−2

)
β2 =

(
5.5
−0.75

)
β2 =

(
4.5
−2.5

)
β2 =

(
9
0

)

β3 =

(
6
3

)

β4 =

(
8.5
−0.5

)
σ2u = 1 σ2u,k = 1 ∀ k

σ2e = 6 σ2e,k = 6 ∀ k

x1 = 1, x2 ∼ N (4, 0.75)
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The following estimators were considered:

Table 5.10: Estimators in the simulation study

DIR Sample mean

BHF Standard BHF-estimator

clustBHF.mix Cluster-based BHF estimator. Obtained by (1)
clustering of observations based on ξi,k and (2) sub-
sequent estimation of cluster-specific BHF-models

BHFmixhard Mixture-based estimator with hard cluster-
weights. (Obtained from the model, i most likely
belongs to, i.e. µ̂BHFmixhard

i =
∑K

k=1 z̃ikµ̂
∗
ik, where

zik is the estimated component label vector (see
Section 3.7))

BHFmix Mixture-based BHF estimator

BHFmixconc Mixture-based BHF estimator with concomitant
variables

Parameter estimation for the mixture-based approaches was performed applying
Version 2 of the EM algorithm described in Section 4.3 and 4.6.

Additionally, the performance of different criteria for estimating the number of
components K were considered, namely the BIC, its sample-sized adjusted alter-
native BICadj and the ICL-BIC (compare Section 3.6).

5.3.2 Results

As described in Appendix A.1, the solution of the EM algorithm might depend on
the chosen starting values. While the likelihood is never decreased in an iteration
of the algorithm, there is nothing to prevent it from converging to a local max-
imum depending on the initial values. Thus, the algorithm is commonly started
repeatedly and the result with the largest likelihood is taken as the final result.
With Figure 5.10 convergence issues are analysed for selected populations. The
plots show model predicts for area i = 1, . . . ,m for 10 repeated applications of
the EM algorithms for different populations and specifications with respect to the
assumed number of components. The result with the highest likelihood, i.e. the
solution that is returned as result of the algorithm, is indicated by red dots. The
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illustration shows, that instability of results due to convergence issues is not a
large problem in the present setting. Overall, prediction results are stable. An
exemption is population 6, where results get increasingly dependent of the initial
values as the assumed number of components grows. This is not only true for the
overfitting specification with K = 5 but also if the correct number of components
is assumed. In a setting like this, it, thus, is recommendable to chose a large
enough number of repeated initializations in order to obtain a satisfactory result.
It, however, has to be kept in mind, that the sample size for population 6, which
is clustered into four components, is the same as for the other six populations
consisting of only two or one component. Thus, the average number of data points
for each component is much smaller. It can be expected that stability of results
increases as the number of data points in each cluster rises.
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Figure 5.10: Evaluation of convergence
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Table 5.11: Simulation results for estimating K

Population Criterion Result (Percentage of 1000 MC-runs)

K̂ = 1 K̂ = 2 K̂ = 3 K̂ = 4 K̂ = 5

Population 1 ICL-BIC 100 0 0 0 0
BIC 100 0 0 0 0
BICadj 98.7 1.2 0.1 0 0

Population 2 ICL-BIC 0 99.0 0.9 0 .1 0
BIC 0 99.0 1.0 0 0
BICadj 0 96.9 3.1 0 0

Population 3 ICL-BIC 72.7 27.3 0 0 0
BIC 19.5 79.9 0.6 0 0
BICadj 3.4 85.1 10.6 0.9 0

Population 4 ICL-BIC 0 100 0 0 0
BIC 0 100 0 0 0
BICadj 0 97.3 2.5 0.2 0

Population 5 ICL-BIC 78.6 21.4 0 0 0
BIC 32.5 67.3 0.2 0 0
BICadj 4.0 87.9 7.7 0.4 0

Population 6 ICL-BIC 1.5 0.6 88.1 7.3 2.5
BIC 0.1 2.1 88.0 7.4 2.4
BICadj 0 1.2 85.2 10.7 2.9

Population 7 ICL-BIC 95.7 4.3 0 0 0
BIC 24.6 75.6 0 0 0
BICadj 2.1 94.0 3.6 0.2 0

In each simulation run the number of components in the population, K, was
estimated by calculating the BIC, the sample size adjusted BIC (BICadj) and the
ICL-BIC letting K grow from 1 to K (compare Section 3.6). For each population,

table 5.11 presents the percentage of MC-runs where the respective estimate K̂ for
K was obtained. Results in the column corresponding to the true K are indicated
by bold print. It can be seen that for the homogeneous population 1 as well as
for the clearly separated populations 2 and 4 all measures estimate the correct
number of components with high certainty. As results for population 4 show, this
is also true if components are of unequal size. For populations 3 and 5 results for
the three measures differ in a way consistent with their properties described in
Section 3.6: The ICL-BIC, which penalizes poorly separated components, tends
to result in K̂ = 1, especially if components are of unequal size. The BIC, on
the other hand, detects the overlapping components with relatively high certainty
and results in K̂ = 2 in most MC-repetitions. This is particularly true if they
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are of equal size, but performance in population 5 is also satisfactory. None of
the considered measures is reliable to select the true number of components in the
highly clustered population 6. Again it has to be kept in mind that the sample
size for this population which is clustered into four components, is the same as for
the other six populations consisting of only two or one component. Results might
improve considerably if the sample size was risen proportionally. Overall, BICadj
is clearly outperformed by the other two measures. Compared to the competing
criteria it has a slight tendency to overestimate K and performs worse than the
unadjusted BIC in almost all scenarios.

Figure 5.11 and 5.12 illustrate the BIAS and the RMSE for all considered popu-
lations and estimators.

As in the area-level simulation in the preceding section, population 1 was intro-
duced to test for the consequences of assuming a clustered structure when the
population actually is homogeneous. The same crucial result is obtained: The re-
duction of RMSE, realized through employing small area estimation techniques, is
retained when applying the suggested mixture-based estimators FHmix and FH-
mixconc in a homogeneous setting. The estimators seem to be robust against
this kind of misspecification. This result is obtained both in Setting A and B,
i. e. imposing a clustered structure through the submodel in FHmixconc has no
hazardous consequences, either. The two-step procedure clustBHF.mix is clearly
outperformed. BHFmixhard, too, does yield slightly worse results in terms of
RMSE.

Population 2 reveals the performance of the compared approaches in a population
that actually is clustered. It is obvious that BHF, while not causing any bias
compared to DIR, is not able to reduce the RMSE of prediction. This can easily
be explained by considering the estimate for the model variance σ2

v , which are
quite large and result in average shrinking factors γMC

i = 1/R
∑R

r=1 γ̂i,r ranging
from 0.9433 to 0.9574 with mean 0.951. All mixture-based estimators are able to
notably reduce the RMSE without causing additional bias: The only exemption
is BHFmixconc in Setting A where the inclusion of the submodel, while slightly
reducing the RMSE even further, causes a larger bias for few outlying areas. Es-
timating FHmixconc instead of FHmix, here, does thus not seem to be necessary.
The small gain in accuracy does not justify the risk of additional bias. Further, the
suggested estimators do not perform better than the alternative two-step approach
of clustBHF.mix or the hard-clustering strategy of FHmixhard. Only clustBHF.k
is clearly outperformed, even in Scenario A. Thus, judging from population 2 it
is recommendable to account for the clustered structure, but there is no evidence
that the suggested approaches of BHFmix and BHFmixconc are more suitable than
the considered competing estimators. Further, the inclusion of a submodel does
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not seem recommendable as the additional further improvement realized through
applying BHFmixconc instead of BHFmix is really small.

Population 3, however, sheds light on the performance of the different esti-
mators in the case of less clearly separated components. Here, BHFmix and
BHFmixconc outperform the mixture-based alternatives. This is especially true
for clustBHF.mix, which is not even able to improve estimation results compared
to the benchmark approach of BHF. Further, the inclusion of a submodel, while
causing some bias for few areas, now is able to considerably reduce the ARMSE if
the covariates are suitable (Setting A). At the same time, the inclusion of unrelated
auxiliary information in the model of the mixture weights does not cause any ad-
ditional bias and does and only slightly diminishes the gain in accuracy compared
to FHmix – FMmixconc still performs better than all competing approaches.

Population 4 and 5 repeat the settings of population 2 and 3, with the only dif-
ference that clusters are now unbalanced. By and large the same result as before
is obtained, i.e. the fact that components are of unequal size has no influence on
the performance of the compared estimators. Results for population 6 reveal that
the suggested estimators also perform well in a highly clustered scenario.

Overall a strong result is obtained: Different to BHFmixhard and clustBHF.mix,
the suggested estimators are robust against misspecification with respect to the
actual number of components. At the same time they perform better in a sce-
nario of overlapping components. Moreover, they never perform worse than the
benchmark approach of a standard BHF estimator. Summarizing these findings,
the suggested approaches flexibly adjust to the data structure at hand, improving
estimation results in the case of a clustered population while never deteriorating
it. This robustness is a desirable feature of a small area estimator considering that
in any real-data-application the true structure is unknown.

Comparing BHFmix and BHFmixconc, it is obvious from population 3 and 5 that
estimation results can be further improved through introduction of a submodel
that supports subgroup assignment in case of overlapping components. This po-
tential for additional gains in accuracy comes at a rather low price as BHFmix-
conc generally seems to yield comparable results to BHFmix in Setting A (with
the exemption of very few outlying areas in scenario 2 and 4) and also performs
reasonably well in case of unfitting covariates. Again, the approach seems to be
quite robust against false assumptions regarding the underlying clustering pattern
and its determinants.
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BIAS
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Figure 5.11: BIAS
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RMSE
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With Table 5.12 the clustering performance of the proposed estimators is eval-
uated and compared to the competing approach of clustering via k-means clus-
tering based on w. It shows the average percentage of correctly assigned areas
over the MC-replications, i.e. mean and standard deviation over 1000 runs. As
described in Section 3.7, clustering for BHFmix and BHFmixconc is performed by
k = argmaxk(ξ̂i,k). It can be seen that BHFmix and BHFmixconc perform almost
equally well in the case of an uncorrelated auxiliary variable for the submodel (Set-
ting B). This substantiates the result already obtained with respect to prediction
performance: Using weak or even misleading information in the submodel for the
mixture weights does not cause a deterioration of the estimation results. As to
be expected, both mixture based approaches clearly outperform clustFH.k, where
clustering is solely based on the concomitant variable w. Furthermore, the mix-
ture based approaches still outperfrom k-means clustering when strong covariates
are available (Setting A). This is not only true for BHFmixconc, that uses the sup-
plementary information, but also for BHFmix. The only exemption is population
7, where the assumed main model is misspecified for one of two components. The
comparison between BHFmix and BHFmixconc reveals that the submodel for the
mixture weights supports clustering in cases where the components are not clearly
separated. This can be seen in the results for population 3,5 and 7, where the
average percentage of correctly assigned areas rises when including concomitant
variables.
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Table 5.12: Percentage of areas correctly assigned to clusters: Mean and standard
deviation over MC-runs

Setting A Setting B
mean std.dev mean std.dev

Population 2
BHFmix 99.72 1.65 99.82 1.36
BHFmixconc 99.84 0.50 99.71 1.73
BHFclust.k 96.34 1.53 50.94 4.84

Population 3
BHFmix 85.29 20.03 86.26 19.48
BHFmixconc 89.49 27.94 86.54 14.51
clust.k 84.99 30.43 50.38 4.91

Population 4
BHFmix 99.95 0.22 99.73 4.48
BHFmixconc 99.67 0.65 99.63 0.93
clust.k 90.44 13.77 51.03 4.84

Population 5
BHFmix 80.18 28.60 80.81 28.00
BHFmixconc 91.42 13.74 83.37 12.25
clust.k 76.01 33.88 50.56 4.92

Population 7
BHFmix 85.04 6.70 85.23 6.43
BHFmixconc 97.62 1.80 85.45 5.84
clust.k 96.34 1.53 51.15 4.79
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Application: Estimating Rental
Prices for German Districts

The suggested method was motivated by the intention to estimate rental prices for
Germany at the district level (NUTS-3). Direct estimates for this purpose were
obtained from the German Mikrozensus 2010, a 1%-household survey conducted
by the Federal Statistical Institute (Statistisches Bundesamt (2011), Statis-
tisches Bundesamt (2012)). The Mikrozensus is the only nation-wide survey
providing estimates of regional rental prices. It moreover delivers these informa-
tion on a regular basis so that it is a valuable source of information. Albeit being
the largest regular household survey in Germany, the Mikrozensus is however not
designed to be evaluated at a regional level (Statistisches Bundesamt, 2011).
Accordingly, results on average rental prices are only published for the 16 German
Länder and, in some cases, for 38 regions (NUTS-2). For the application at hand,
a special evaluation was provided on a far stronger regional disaggregation level:
It contained average rents per square meter at the district level for 13 of the 16
German Länder, i.e. for 246 of 412 districts. Additional to the average rental
prices, district-specific sample sizes ni as well as the estimated design variances of
the direct estimates were provided. As frequently done in practical applications,
it was assumed that σ̂2

e,i = σ2
e,i, i.e. the estimates were used as the presumably

known variances of the direct estimates. This implies ignoring the variability of
the estimates (For a discussion of the implications of this assumption, see Bell
(2008)). Auxiliary information was obtained from a broad range of regional in-
dicators on district level provided by official statistics in Germany and openly
available at http://www.inkar.de (see Bundesinstitut für Bau-, Stadt-
und Raumforschung (BBSR), 2017).

Direct estimates were based on a total of 112.142 observations, with area-specific
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sample sizes ranging from 51 to as much as 12.008 units (average sample size
n̄i = 455.9). Accordingly, estimated coefficients of variation (CVs) range from
0.007 to 0.25, with mean 0.06. Only 18 areas have a CV larger than 0.10. Figure
6.1 shows area-specific sample sizes and the estimated standard deviations against
estimated rental prices. The large variation in sample sizes and consequently in CV
clearly reveals, that the design of the survey was not optimized for an evaluation
on district level. Of course, CVs for most areas are nevertheless atypically low for
an application of small area techniques. As stated above, the Federal Statistical
Office does, however, not publish design-based results on district level, claiming
that they do not fulfil precision requirements. Small area estimation, thus, seems
to be a natural solution.
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Figure 6.1: Sample sizes and standard deviation of direct estimates
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Starting point for the application was the estimation of a standard FH-model (see
Articus, 2014). Variable selection was performed by pursuing a literature-based
analysis of important driving factors of rental prices as well as by applying simple
stepwise selection procedures. As model selection criterion the conditional AIC as
suggested by Vaida and Blanchard (2005) was employed. Based on the results,
a model including six indicators, namely population growth rate (PGRO), preva-
lence of rented housing (RENT), vacancy rate (VACQ), employment rate (EMPL),
net migration rate (MIGR), price of building land (LAND)) was chosen. See Ap-
pendix A.3 for details on all auxiliary information considered in this study. As
stated above, the assumption of a common fixed part of the model for all districts
drawn in the standard model, however, seemed inappropriate in the application
of estimating regional rental prices. When presenting the model to practitioners
it was decisively rejected. Instead, they argued convincingly that one should dif-
ferentiate between rural and urban areas. This criticism motivated the proposal
of the estimators suggested in this thesis as well as the search for adequate proce-
dures to test for the existence of subgroups in the population. Building upon the
above mentioned study, now the suggested mixture-based estimators are applied
for the estimation of regional rental prices.

To assess the number of clusters, both the ICL-BIC and the BIC were considered.
Note that this includes the essential decision between K = 1 or K > 1, i.e. the
question whether it is appropriate to assume the existence of latent subgroups and
to accept the larger complexity of employing a mixture model in the first place.
While the ICL-BIC resulted in K̂ = 1, the BIC suggested two clusters. Regarding
the results from the simulation study (and corresponding to the features of the
two criteria discussed in 3.6) this indicates the existence of poorly separated but
nevertheless existent clusters. Therefore, the suggested approach was adopted and
a finite mixture of Fay-Herriot models (FHmix) with K = 2 and the same set of
covariates as in the standard model for both components was estimated. Further,
to support subgroup assignment and gain insights into the clustering structure,
FHmix was extended to include covariates for the mixture weights (FHmixconc).
Because of the motivating notion that determinants of rental prices vary between
rural and urban areas, settlement density (DENS) was used as covariate for the
submodel. As reference approaches, the standard Fay-Herriot model (FH) as well
as the spatial extension of the Fay-Herriot model (FHS) (see Molina, Salvati
and Pratesi, 2009; Pratesi and Salvati, 2008) were considered. Additionally,
a mixture model with DENS as further covariate in the main model was estimated
as a competing approach to FHmixconc.

Estimated coefficients are given in Table A.2 in Appendix A.3.2. It can be taken
from these results, that the estimated model variance σ2

v can clearly be reduced
with the more complex approaches: While it is 0.081 for the FH, it is only 0.039 for
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FHS. All mixture-based approaches result in two components with quite different
design variances σ̂2

v,k. Component 1 has an estimated design variance of 0.033 for
FHmix, 0.025 for FHmixconc and 0.036 for FHmixDENS. These values are quite
close to the result obtained with FHS. There is, however, a second component,
i.e. component 2, with a model variance that is considerably smaller: σ̂k,1 is
0.0055 for FHmix, 0.0069 for FHmixconc and even 1.74 × 10−7 for FHmixDENS.
For all estimators, the estimated prior probability for this second component is
slightly larger than for component 1. It is λ̂2 = 0.59 for FHmix and λ̂2 = 0.62 for
FHmixDENS. In the case of FHmixconc there are area-specific prior probabilities
λ̂i,2 ranging from 0.08 to 0.88 with mean λ2 = 0.69.

Smaller estimated model variances, of course, imply that model-based estima-
tors which are a convex combination of a direct and a synthetic estimator (see
e.g. Section 2.4) rely more heavily on the synthetic estimator. Figure 6.2 shows
the resulting distribution of shrinkage factors γ̂i for the competing estimation ap-
proaches. For the mixture-based approaches in the lower two plots of the panel the
distribution of the component-specific shrinkage factors γ̂i,k are depicted. Because
area-specific estimates are convex combinations of predicts from all component
models, additionally, boxplots for the weighted average

∑K
k=1 ξ̂i,kγ̂i,k are depicted.

This can be interpreted as the relevant weight of synthetic estimation in the re-
sulting mixture-based estimator (compare Section 2.4). It is obvious from this plot
that the overall reliance on the model is larger for the mixture-based approaches.
Given the larger flexibility of the modelling approach, this is an expected result.
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Figure 6.2: Shrinkage factors

In Figure 6.3 small area estimates from all competing models were plotted against
the available direct estimates. Thus, the unbiased but imprecise direct estimates
obtained from the sample are deployed to judge the bias of model-based estimates.
This simple plot has been suggested as a tool for bias diagnostic by Brown,
Chambers, Heady and Heasman (2001). To further analyse the cluster-based
estimators, points are coloured according to their assignment to one of the two
component- or cluster-models. For the mixture-based estimators, blue and red
corresponds to a strong conditional probability of belonging to component 1 or
2, i.e. to ξ̂i,1 ≈ 1 and ξ̂i,1 ≈ 0, respectively. Shades on the range between these

to colors accordingly indicate values for ξ̂i,1 on the scale between 1 and 0. For
the cluster-based estimator FHclust, colors indicate the corresponding result of
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hard clustering. To complement the findings by supporting the comparison of the
competing approaches, a scatterplot matrix of estimation results for all model-
based estimators is provided with Figure 6.4. The plots indicate that all models
tend to overestimate rental prices on the lower tail of the distribution. This is true
for the reference approach of FH and even more pronounced for the mixture based
estimators. Note, however, that sample sizes for the low-priced, usually small and
rural regions, are small. As Figure 6.1 shows, there are particularly large design
variances of direct estimates in these regions and direct estimates are of limited
reliability. FH and FHS also seem to systematically underestimate prices in the
highest-priced regions. Here, the performance of the mixture-based estimators is
clearly better.

A natural question arising with the application of the the mixture-based estimator
is whether the estimated conditional probabilities of subgroup membership hint
at the existence of two meaningful clusters of areas. Further, it is of interest
whether these results change if a submodel for the mixture weights is assumed. To
approach these questions, the estimates for ξ̂i,1 for FHmix and FHmixconc were

plotted in a map (see Figure 6.5). As ξ̂i,1 + ξ̂i,2 = 1, the illustration of conditional

probabilities for model 2 is redundant. The spatial representation of ξ̂i,1 reveals
some kind of an agglomeration effect: Both the districts around Hamburg and
the Rhineland-region with cities as Köln, Bonn, Düsseldorf and the cities of the
Ruhr region are strongly assigned to model 1. The same is true for cities such
as Bremen, Hannover, Münster, Osnabrück, Kiel, Mainz, Rostock, Cottbus and
Kaiserslautern. Exemptions are Dresden, Leipzig, Bielefeld and – most strinkingly
– Berlin, which is strongly assigned to component 2. At the same time, rural areas
mostly have a low estimated conditional probability of belonging to this model.
A noticeable exemption is the Vogtlandkreis, a rural district in Saxony. Despite
these exemptions, the model indeed seems to roughly differentiate between rural
and urban regions. FHmixconc further supports this distinction mainly in the
sense of resulting in conditional probabilities that are closer to 0 or 1 and thus less
ambiguous. Only very few areas change their subgroup assignment, among them
Leipzig and Kaiserslautern, which now are strongly assigned to model 1, too.
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Figure 6.3: Comparison of direct estimates and model-based estimates
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The aim of applying methods of SAE is to realize a gain in accuracy in the context
of small subsamples and, hence, to overcome large standard errors of traditional
direct estimates. With Figure 6.6 the performance of the suggested approach is
evaluated in this regard. It depicts boxplots for the distribution of the estimated
RRMSE of the proposed mixture based estimates and the standard and spatial FH
estimates as well as of the Coefficient of Variation (CV) of the direct estimates. The
asterisks mark the respective average RRMSE and CV over the areas. As in the
simulation study, the MSE for the mixture based estimators was obtained as the
approximation suggested in Section 4.7. The plot shows that a significant gain in
accuracy can be realized when applying SAE methods instead of direct estimation.
The more complex spatial extension of the FH model yields better results than
the standard model. Comparing the proposed estimator and the model-based
reference approaches, a considerable further improvement can be made for almost
all areas when applying mixture based estimators. The estimated RRMSE for
FHmixconc is even smaller than for FHmix. This is in accordance with the finding
from the analysis of shrinkage factors, which showed that the overall reliance on
the synthetic part of the estimator is particularly strong for this estimator. It is
however important to bear in mind that the suggested MSE approximation for the
mixture based estimators seems to underestimate the true MSE. Further research
is necessary to develop a more reliable uncertainty measure.
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Figure 6.6: Estimated RRMSE for competing estimators

Finally, the results for rental prices on district level for 2010 obtained from both
FHmix and FHmixconc are illustrated in Figure 6.7. Results for FHmix and FH-
mixconc are similar with the only exemption, that FHmix yields a slightly higher
result for some of the lower-priced regions in Lower Saxony and Mecklenburg-
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Vorpommern. Figure A.7 in Appendix A.3.3 contains a spatial representation of
quoted rents on district-level for the year 2011, published by the Bundesinstitut
für Bau-, Stadt- und Raumforschung (BBSR) (2012) based on the study
already mentioned in the introduction. While quoted rents have some methodolog-
ical shortcomings and are generally higher than those actually paid by residents,
they can be expected to be highly correlated with the values obtained here. They
can, thus, be employed for external validation of the estimation results. The com-
parison of the maps shows that regional patterns indeed are quite similar, the only
striking exemption being the region surrounding Berlin.

Estimated prices range from approximately 3.70 to slightly more than 7.00 Euro
per square meter. As expected, the map clearly shows the particularly high prices
in large cities such as Hamburg, Köln, Düsseldorf, and Mainz. It also reveals
that the price levels in these cities also affect surrounding regions. Rural districts
in Eastern Germany, especially Saxony-Anhalt and Saxony, and some areas in
Rhineland-Palatinate and Lower Saxony are identified as especially low-priced.
The example of Berlin and the very large districts in Brandenburg show that the
level of analysis still is to large to adequately represent rental price levels. A single
price level for Berlin gives the misleading impression of moderate prices in the
city. All the same, the averaging of results for districts in Brandenburg masks the
influence of the capital’s rental market on the surrounding regions. This is revealed
by comparison with the BBSR-study that in these districts differentiates between
an infra-structurally integrated area and a less integrated region. It is obvious
from this example and also from registering the large differences of the layout of
districts between federal states that the considered districts are historically grown
entities of administration with regional particularities and not areas designed for
statistical analysis.
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Conclusion

In this thesis, mixture-based small area models were suggested to account for the
existence of unobserved subgroups within the population. Based on an account
of relevant theory from the fields of SAE and FMM, both a finite mixture of
unit-level and area-level models were proposed as special cases of a mixture of
linear mixed regression models. In addition, the models were extended to include
(concomitant variable) submodels for the mixture weights. At the same time, the
framework was transferred into the specific language and notation of SAE, and the
particularities and distinct focus of the discipline were accounted for. Estimation
of model parameters was discussed alongside relevant criteria for estimating the
number of components. Finally, a mixture-based estimator for SAE was derived
in the form of a plug-in estimator based on the BP for a suitably formulated true
area mean. This estimator predicts the statistic of interest as a weighted average
of the predictions from the component-models. To assess the prediction error, an
approximation of the conditional MSE was suggested. The proposed estimators
were evaluated in two model-based simulation studies and then applied to the
problem of estimating regional rental prices in German districts.

Simulation studies were conducted to analyse the performance of the suggested es-
timators under different scenarios. They showed that the mixture-based estimators
are indeed able to improve estimation accuracy in cases of clustered populations
and, in that, overall outperform competing cluster-based approaches. Further-
more, they never demonstrate performance that is inferior to that of standard
models, even if the assumption of a clustered population is false, i.e. the true
number of components is one. This robustness against misspecification is a strong
feature of an estimator that is intended to be applied in a real-data-application,
in which the true structure of the data to be investigated remains unknown. The
simulations also demonstrated that the estimators’ performance can be further
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improved by including suitable concomitant variables for modelling the mixture
weights. This is particularly true if the main model components are not well sep-
arated, so that there is a potential or need to support the clustering. Again, the
approach is strikingly robust against misspecification in the sense that imposing
a false clustering structure through the submodel does not seem to negatively in-
fluence estimation results. Finally, the performance of the suggested uncertainty
measure was evaluated. Simulations showed, that it tends to underestimate the
true MSE and thus indicated the need of further research.

The suggested area-level estimators were employed to estimate regional rental
prices in German districts. While the study revealed that the layout of these dis-
tricts is not optimal for an analysis of rental price levels, plausible results could
nevertheless be obtained. Overall, model variance was considerably reduced by em-
ploying the flexible mixture models. This, corresponding to the trade-off generally
faced in model-based SAE, comes at the price of some additional bias. Analysis
of the clustering structure indicated some kind of agglomeration effect, confirm-
ing the existence of rural and urban particularities that initially motivated the
proposal of a mixture model.

In summary, the results are promising. Most importantly, the suggested estimator
is indeed able to improve estimation performance in cases involving unobserved
subgroups. The model selection criteria discussed for the choice of K function
reasonably well, thus allowing researchers to assess this crucial question of model
specification in practical applications. Moreover, as a by-product of the estima-
tion process, the suggested approach yields area-specific probabilities of subgroup
assignment that can be employed to partition areas into clusters. In addition,
probabilistic subgroup assignments provide further insights into underlying data
structures and help to understand the data situation at hand. Given that the
mixture-based approach is also intuitively appealing, it may prove to be an at-
tractive estimation strategy in any application in which areas are suspected to be
divided into a number of latent subgroups. And while, in this thesis, the use of
mixtures was motivated by the existence of actually existent subgroups, the sug-
gested approach can, of course, also be used in settings in which components do
not correspond to clusters that are existent in some physical sense. As McLach-
lan and Peel (2000) emphasize, mixture models can be interpreted more broadly
as a framework to flexibly account for heterogeneity in a population or to semi-
parametrically model unknown or unsmooth distributional shapes. This opens up
a wide range of possible uses in SAE.

It thus seems worthwhile to pursue the approach further. Future research might
include a more thorough analysis of the estimators as well as complementing them
with tools intended to facilitate their use in real-data applications. More particu-
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larly, the following questions are regarded as important tasks for future work:

To complement the findings of the simulation study and to further analyse the fea-
tures, strengths and weaknesses of the suggested estimators, a design-based sim-
ulation study, set in a close-to-reality setting, should be conducted. This might
reveal any unexpected peculiarities of the estimators and, thus, help to better
understand their functioning and judge their suitability in real-data applications.
Building on the results of the simulations, a further central topic of future research
is assessing the properties of the mixture-based estimators theoretically. In addi-
tion to the standard catalogue of relevant properties, it might also be interesting to
theoretically analyse the robustness of the estimators against misspecification with
regard to the assumed number of components and the submodel for the mixture
weights.

Furthermore, the list of central issues for future research clearly includes the topic
of MSE estimation. The suggested approximation may prove to be a good starting
point for improvements: It seems worth to further pursue the adopted strategy of
approximating a suitably expressed MSE through known terms. It may, however,
be necessary to also account for the uncertainty introduced through the estimation
of the posterior probabilities of subgroup membership. Additionally, a suitable
estimator has to be implemented for the mixture of unit levels, too.

If the suggested estimators are intended to be used in real-data applications,
model selection and diagnostics are further important tasks for future research.
While useful criteria for selecting the number of components could be provided,
researchers also require guidelines on how to specify the component models. It is
important to note that the suggested estimators generally allow for different sets
of covariates in the K component models. This is clearly a potential strength of
the approach, but adequate procedures have to be found to support the decision
between component-specific or fixed sets of covariates and the subsequent selec-
tion of predictors. Improved procedures in this regard might also help to further
enhance the results obtained in the application presented in this thesis.

Finally, it may prove interesting to investigate extensions to the suggested ap-
proach. Theoretically, mixtures of any kind of distributions are possible. More
specifically, it might, for example, be interesting to estimate mixtures of a stan-
dard small area model and a spatial small area model.
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A.1 EM Algorithm

The EM algorithm introduced by Dempster et al. (1977) is an general-purpose
numerical algorithm for calculating maximum likelihood estimates in the case of in-
complete data or in cases that in a broad sense can be interpreted as a missing data
situation in order simplify the estimation problem. It exploits the fact that maxi-
mum likelihood estimation would often be straightforward if the suitably defined
complete (or augmented) data were observed and a complete-data log-likelihood
could be formed. The algorithm imitates the simplified estimation problem by
alternatively working on the expectation of the complete-data log-likelihood. See
McLachlan and Krishnan (2008) for an comprehensive overview on the EM
algorithm and its numerous extensions.

Let y = (y1, . . . , yn)T be an n-dimensional vector of observations from a random
variable with density f (y|ψ). The likelihood function L(ψ) is formed from the
joint density by considering it as a function of the unknown parameters ψ for given
realizations y, i.e. L(ψ) = f(y|ψ). The corresponding log-likelihood log(L(ψ)) is
denoted as l(ψ). Now, let there be a suitably defined complete-data vector x, that
contains both the observed values y and some additional data z. Note that this
might either be missing data in the classical sense or some well-chosen hypothetical
information. Either way, the complete-data log-likelihood that could be formed if
the complete data was observable is given by

lc(ψ) = log(Lc(ψ)) = log fc(x|ψ).

To solve the incomplete-data log-likelihood, the EM algorithm proceeds by alter-
natively working on this complete data log-likelihood, alternating between two
eponymous steps (McLachlan and Krishnan, 2008): The expectation step (E-
step) and the maximization step (M-step). Generally, the following procedure is
applied:
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• Specification of starting values

Choice of ψ̂
(0)

as initial value for ψ̂.

• Expectation-step (E-step)
An expectation Q of the complete-data log-likelihood lc(ψ) is obtained, using

the current estimates (or in the first step some initial value ψ̂
(0)

) of the
model parameters ψ. This particularly requires deriving the conditional
expectation of the latent variable z given y. It is

Q(ψ; ψ̂
(t−1)

) = E
ψ̂

(t)(lc(ψ)|y). (A.1)

Here and in the following E
ψ̂

(t−1) denotes expectation parametrized by ψ̂
(t−1)

,

where ψ̂
(t−1)

is the vector of parameter estimates obtained in the previous
iteration step (t− 1).

• Maximization-step (M-step),

where an updated estimate ψ̂
(t)

is obtained by maximizing Q with respect
to ψ over the parameter space, i.e.

ψ̂
(t)

= argmaxψQ(ψ; ψ̂
(t−1)

). (A.2)

The solution often exists in closed form. For cases where global maximization
of Q is still infeasible, Dempster et al. (1977) suggested the generalized

EM algorithm, which only requires a choice of ψ̂
(t)

so that Q(ψ̂
(t)

; ψ̂
(t−1)

) ≥
Q(ψ̂

(t−1)
; ψ̂

(t−1)
) is fulfilled (McLachlan and Krishnan, 2008, Chapter

1.5.5).

• Termination:
Both steps are repeated until the likelihood improvement in a step is smaller
than an ex ante specified threshold ε, that is until L(ψ(t))− L(ψ(t−1)) < ε.

Dempster et al. (1977) showed that the likelihood L(ψ) is never decreased af-
ter an iteration step so that – for a sequence of likelihood values bounded above
– convergence of the algorithm is guaranteed. For multimodal distributions this
might, however, be convergence to a local maximum. The estimation result ob-
tained then depends on the initial values. To overcome this issue, the algorithm
is usually applied repeatedly with different starting values. For a detailed account
of convergence properties of the EM algorithm see Dempster et al. (1977), Wu
(1983) and McLachlan and Krishnan (2008).
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Compared to alternative iterative procedures such as the Fisher-scoring algorithm
or the Newton-Raphson algorithm, the EM algorithm is relatively robust to the
choice of initial values (Demidenko, 2004, Chapter 1.7). It is, however, known
to converge slowly, i.e. to need a larger number of iteration steps than compet-
ing algorithms. The calculation time for an iteration is, however, usually low
which offsets this disadvantage. An overview over methods proposed to speed up
convergence is given by McLachlan and Krishnan (2008, Chapter 4 and 5).
Another commonly stated drawback of the EM algorithm is that, different to both
the Fisher-scoring and the Newton-Raphson algorithm, no asymptotic covariance
matrix of the estimated parameters is obtained as a by-product of the estimation
process. See McLachlan and Krishnan (2008, Chapter 4) for an extended re-
view of methods to obtain the covariance matrix of ML estimates calculated using
the EM algorithm.
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A.2 Simulation Studies: Supplementary Mate-

rial
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Figure A.1: Population 2
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Figure A.2: Population 3
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Figure A.3: Population 4
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Figure A.4: Population 5
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Figure A.5: Population 6
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Figure A.6: Population 7
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A.3 Application: Supplementary Material

A.3.1 Auxiliary Information

The regional indicators employed in the application mostly stem from the data col-
lection INKAR (Bundesinstitut für Bau-, Stadt- und Raumforschung
(BBSR), 2017), which is provided by German official statistics and openly acces-
sible under http://www.inkar.de. Additionally, results from the German Zensus
2011 (Bayerisches Landesamt für Statistik, 2018), which can be retrieved
from https://ergebnisse.zensus2011.de, are used. In what follows, brief de-
scriptions of the indicators, their construction and the underlying data are given.
If not stated otherwise, all information is based on the metadata provided with
the data. Table A.1 contains descriptive statistics for all indicators.

Table A.1: Descriptive statistics for covariates

Mean SD Median Min Max
PGRO -2.32 3.00 -2.10 -9.40 6.30
RENT 48.73 13.59 45.85 24.10 82.50
VACQ 5.23 2.59 4.70 1.50 13.90
EMPL 50.53 3.85 50.60 37.90 61.00
MIGR -1.59 4.50 -1.60 -11.20 22.10
LAND 94.13 77.92 70.65 4.80 497.20
DENS 1780.13 976.25 1471.55 512.40 5503.30

PGRO

The population growth rate (PGRO) measures the increase in the number of
a district’s residents between 2004 and 2009 in percent. It is based on the
intercensal population updates annually provided by official statistics (for details
on the methodology see Statistisches Bundesamt, 2008a).

RENT

The indicator prevalence of rented housing (RENT) measures the importance
of rented housing in a district and is calculated as the ratio of dwellings rented
out for residential purposes (including rent-free) to all inhabited and uninhabited
dwellings in percent. It is based on data from the German Zensus 2011. See
Bayerisches Landesamt für Statistik (2018) for details.

http://www.inkar.de
https://ergebnisse.zensus2011.de
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VACQ

The vacancy rate (VACQ) is calculated as the ratio of uninhabited dwellings to
all inhabited and uninhabited dwellings in buildings with residential space in
percent. It is based on data from the German Zensus 2011 (see Bayerisches
Landesamt für Statistik (2018) for details).

EMPL

The employment rate (EMPL) is conceptualized as the ratio of employees subject
to social insurance contributions with residence in the respective district to the
district’s working age population (aged 15 to 65 years). Note that a share of
about 30% of the working population such as self-employed and civil servants
are not included in this measure. The information is derived from the federal
employment agencies register of all employees covered by social security (see
Bundesagentur für Arbeit (2012)). The working age population is retrieved
from the intercensal population updates described above.

MIGR

The net migration rate (MIGR) is the difference between the number of im-
migrants and the number of emigrants in a district, relative to the size of the
district’s resident population. It is reported per 1,000 residents over a period of
one year. The information is retrieved from the migration statistics of the Federal
Statistical Office, which is a register based on the registrations and deregistrations
recorded by the registration offices (see Statistisches Bundesamt (2008b)).

LAND

The price of building land (LAND) measures the average price of building land
per square meter. The indicator is based on the statistic on building land prices
provided by official statistics in Germany. This is a secondary-statistical register
based on information of the fiscal authorities and the Gutachterausschüsse für
Grundstückswerte (independent expert panels institutionalized by federal law
which monitor price development on the property market). See Statistisches
Bundesamt (2010b) for details.

DENS

The settlement density (DENS) measures the per square kilometre of land under
settlement and transport infrastructure (state of 31. December 2009). It is an
adjusted form of the population density, where only area under residential use is
considered. The number of inhabitants is obtained from the intercensal popula-
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tion updates (see above). The area under settlement and transport infrastructure
is available from the federal statistical office’s register on actual land use (see
Statistisches Bundesamt (2010a)).
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A.3.2 Estimated Parameters
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Table A.2: Estimated model parameters for competing estimators

FH FHS FHclust FHmix FHmixconc FHmix with DENS
k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2

σ̂2v 0.081 0.039 0.028 0.002 0.033 0.006 0.025 0.007 0.036 1.75 ×10−7

Intercept 2.823 2.758 2.566 3.44 2.169 3.472 2.126 3.59 1.891 3.036
PGRO 0.033 0.033 0.110 -3.25 ×10−5 0.094 0.008 0.120 -0.004 0.118 1.619 ×10−2

RENT 0.014 0.013 0.010 1.32 ×10−2 0.013 0.013 0.009 0.012 -0.001 2.016 ×10−2

VACQ -0.039 -0.030 -0.096 -2.01 ×10−2 -0.058 -0.017 -0.115 -0.015 -0.069 -2.70 ×10−3

EMPL 0.024 0.026 0.044 8.52 ×10−3 0.045 0.008 0.057 0.006 0.057 1.055 ×10−2

MIGR 0.021 0.019 0.021 1.40 ×10−2 0.035 0.009 0.001 0.029 0.040 6.24 ×10−3

LAND 0.004 0.003 0.003 1.97 ×10−3 0.004 0.002 0.003 0.002 1.57 ×10−4 5.41 ×10−3

DENS 3.94 ×10−4 -2.14 ×10−4

λ̂k 0.247 0.753 0.41 0.59 λi,1 = 0.303 λi,2 = 0.697 0.377 0.623



Appendix 133

A.3.3 External Validation: Quoted Rents by the BBSR

Figure A.7: Quoted rents by the BBSR



References

Ahmad, K. E. (1988): Identifiability of finite mixtures using a new transform.
Annals of the Institute of Statistical Mathematics, 40 (2), pp. 261–265.

Aitkin, M. and Rubin, D. (1985): Estimation and hypothesis testing in finite
mixture models models. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 47, pp. 67–75.

Alfons, A., Filzmoser, P., Hulliger, B., Kolb, J.-P., Kraft, S., Münnich,
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Burgard, J. P., Münnich, R. and Zimmermann, T. (2016): Impact of Sam-
pling Designs in Small Area Estimation with Applications to Poverty Mea-
surement. Pratesi, M. (editor) Analysis of Poverty Data by Small Area
Estimation, pp. 83–108, John Wiley & Sons.

Burnham, K. P. and Anderson, D. R. (2002): Model selection and multimodel
inference: a practical information-theoretic approach. New York: Springer,
2 ed.

Celeux, G., Martin, O. and Lavergne, C. (2005): Mixture of linear mixed

http://www.bbsr.bund.de/BBSR/DE/WohnenImmobilien/Immobilienmarktbeobachtung/ProjekteFachbeitraege/MietenPreise/Mieten/Mieten.html
http://www.bbsr.bund.de/BBSR/DE/WohnenImmobilien/Immobilienmarktbeobachtung/ProjekteFachbeitraege/MietenPreise/Mieten/Mieten.html
http://www.bbsr.bund.de/BBSR/DE/WohnenImmobilien/Immobilienmarktbeobachtung/ProjekteFachbeitraege/MietenPreise/Mieten/Mieten.html
http://inkar.de/


References 136

models for clustering gene expression profiles from repeated microarray ex-
periments. Statistical Modelling, 5, pp. 1–25.

Celeux, G. and Soromenho, G. (1996): An entropy criterion for assessing the
number of clusters in a mixture model. Journal of Classification, 13 (2), pp.
195–212.

Chandra, H. and Chambers, R. (2016): Small area estimation for semicon-
tinuous data. Biometrical Journal, 58 (2), ISSN 1521-4036.

Cole, V. T. and Bauer, D. J. (2016): A Note on the Use of Mixture Models for
Individual Prediction. Structural Equation Modeling, 23 (4), pp. 615–631.

Crawford, S. (1994): An application of the Laplace method to finite mixture
distributions. Journal of the American Statistical Association, 89, pp. 259–
267.

Dang, U. J. and McNicholas, P. D. (2015): Families of Parsimonious Finite
Mixtures of Regression Models. Morlini, I., Minerva, T. and Vichi, M.
(editors) Advances in Statistical Models for Data Analysis, pp. 73–84, Cham:
Springer International Publishing.

Das, K., Jiang, J. and Rao, J. N. K. (2004): Mean Squared Error of Empirical
Predictor. The Annals of Statistics, 32 (2), pp. 818–840.

Dasgupta, A. and Raftery, A. E. (1998): Detecting Features in Spatial Point
Processes with Clutter via Model-Based Clustering. Journal of the American
Statistical Association, 93 (441), pp. 294–302.

Datta, G. S. and Lahiri, P. (1995): Robust Hierarchical Bayes Estimation
of Small Area Characteristics in the Presence of Covariates and Outliers.
Journal of Multivariate Analysis, 54, pp. 310–328.

Datta, G. S. and Lahiri, P. (2000): A unified measure of uncertainty of es-
timated best linear unbiased predictors in small area estimation problems.
Statistica Sinica, 10, pp. 613–627.

Datta, G. S. and Mandal, A. (2015): Small Area Estimation with Uncertain
Random Effects. Journal of the American Statistical Association, 110 (512),
pp. 1735–1744.

Datta, G. S., Rao, J. N. K. and Smith, D. D. (2005): On measuring the vari-
ability of small area estimators under a basic area level model. Biometrika,
92 (1), pp. 183–196.

Day, N. E. (1969): Estimating the components of a mixture of two normal dis-
tributions. Biometrika, 56 (3), pp. 463–474.

Dayton, C. M. and Macready, G. B. (1988): Concomitant-Variable Latent-
Class Models. Journal of the American Statistical Association, 83 (401), pp.
173–178.

de Leeuw, J. and Meijer, E. (2008): Introduction to Multilevel Analysis.
de Leeuw, J. and Meijer, E. (editors) Handbook of Multilevel Analysis,



References 137

pp. 1–75, New York: Springer.
Demidenko, E. (2004): Mixed Models. Wiley series in probability and statistics,

Hoboken: John Wiley & Sons.
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977): Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 39 (1), pp. 1–38.

DeSarbo, W. S. and Cron, W. L. (1988): A maximum likelihood methodology
for clusterwise linear regression. Journal of Classification, 5 (2), pp. 249–282.

Du, Y., Kahili, A., Neslehova, J. G. and Steele, R. J. (2013): Simultaneous
fixed and random effects selection in finite mixture of linear mixed-effects
models. Canadian Journal of Statistics, 41 (4), pp. 596–616.

Elbers, C. and van der Weide, R. (2014): Estimation of Normal Mixtures
in a Nested Error Model with an Application to Small Area Estimation of
Poverty and Inequality. Technical report, World Bank Group.

Everitt, B. S. and Hand, D. J. (1981): Finite Mixture Distributions. London:
Chapman & Hall.

Fabrizi, E., Montanari, G. E. and Ranalli, M. G. (2016): A hierarchical
latent class model for predicting disability small area counts from survey data.
Journal of the Royal Statistical Society: Series A (Statistics in Society),
179 (1), pp. 103–131.

Fahrmeir, L., Kneib, T., Lang, S. and Marx, B. (2013): Regression. Models,
Methods and Applications. Heidelberg et al.: Springer.

Fair, R. C. and Jaffee, D. M. (1972): Methods of estimation for markets in
disequilibrium. Econometrica, 40 (3), pp. 497–514.

Farewell, V. T. (1982): The Use of Mixture Models for the Analysis of Survival
Data with Long-Term Survivors. Biometrics, 38 (4), pp. 1041–1046.

Fay, R. E. and Herriot, R. A. (1979): Estimates of Income for Small Places:
An Application of James-Stein Procedures to Census Data. Journal of the
American Statistical Association, 74 (366), pp. 269–277.

Feller, W. (1943): On a General Class of ”Contagious” Distributions. The An-
nals of Mathematical Statistics, 14 (4), pp. 389–400.

Fonseca, J. R. S. and Cardoso, M. G. M. S. (2007): Mixture-model Cluster
Analysis Using Information Theoretical Criteria. Intelligent Data Analysis,
11 (2), pp. 155–173.

Fraley, C. and Raftery, A. E. (2002): Model-Based Clustering, Discriminant
Analysis, and Density Estimation. Journal of the American Statistical Asso-
ciation, 97 (458), pp. 611–631.
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Sankhyā: The Indian Journal of Statistics, Series A (1961-2002), 62 (1), pp.
49–66.

Kopsch, A. (2001): Marktabgrenzung: Ein simultaner produkt- und nachfrager-
bezogener Ansatz. Wiesbaden: Springer.

Laird, N. M., Lange, N. and Stram, D. (1987): Maximum likelihood compu-
tations with repeated measures: application of the EM algorithm. Journal of
the American Statistical Association, 82 (397), pp. 97–105.

Laird, N. M. and Ware, J. J. (1982): Random-effects models for longitudinal
data. Biometrics, 38, pp. 963–974.

Leeflang, P., Wittink, D., Wedel, M. and Naert, P. (2000): Building Models
for Marketing Decisions. Boston et al.: Springer.

Leisch, F. (2004): FlexMix: A General Framework for Finite Mixture Models
and Latent Class Regression in R. Journal of Statistical Software, 11 (8), pp.
1–18.

Lenk, P. J. and DeSarbo, W. S. (2000): Bayesian inference for finite mixtures
of generalized linear models with random effects. Psychometrika, 65 (1), pp.
93–119.

Leroux, B. G. (1992): Consistent estimation of a mixing distribution. The An-
nals of Statistics, 20 (1), pp. 1350–1360.

Lindsay, B. G. (1995): Mixture Models: Theory, Geometry and Applications.
NSF-CMBS Regional Conference Series in Probability and Statistics, Hay-
ward: Institute of Mathematical Statistics.

Lindstrom, M. J. and Bates, D. M. (1988): Newton-Raphson and EM Algo-
rithms for Linear Mixed-Effects Models for Repeated-Measures Data. Journal
of the American Statistical Association, 83 (404), pp. 1014–1022.

Maiti, T. (2003): Modelling Small Area Effects using Mixture of Gaussians. The
Indian Journal of Statistics, 65, pp. 612–625.

Maiti, T., Ren, H., Dass, S. C., Lim, C. and Maier, K. S. (2014):
Clustering-Based Small Area Estimation: An Application to MEAP Data.
Calcutta Statistical Association Bulletin, 66, pp. 73–93.

Marron, J. S. and Wand, M. P. (1992): Exact Mean Integrated Squared Error.
The Annals of Statistics, 20 (2), pp. 712–736.



References 141

Martella, F., Vermunt, J. K., Beekman, M., Westendorp, R. G. J.,
Slagboom, P. E. and Houwing-Duistermaat, J. J. (2011): A mixture
model with random-effects components for classifying sibling pairs. Statistics
in Medicine, 30 (27), pp. 3252–3264.

Martinez, M. J., Lavergne, C. and Trottier, C. (2009): A mixture model-
based approach to the clustering of exponential repated data. Journal of Mul-
tivariate Analysis, 100, pp. 1938–1951.

McCulloch, C. E., Searle, S. R. and Neuhaus, J. M. (2008): Generalized,
Linear, and Mixed Models. Wiley series in probability and statistics, New
York: John Wiley & Sons, 2 ed.

McLachlan, G. J. and Basford, K. E. (1988): Mixture Models: Inference and
Applications to Clustering. New York/Basel: Marcel Dekker.

McLachlan, G. J. and Krishnan, T. (2008): The EM algorithm and exten-
sions. Hoboken: Wiley, 2 ed.

McLachlan, G. J., Ng, S. K. and Wang, K. (2008): Clustering via Mix-
ture Regression Models with Random Effects. COMPSTAT. Proceedings in
Computational Statistics, Physica-Verlag.

McLachlan, G. J. and Peel, D. (2000): Finite Mixture Models. Wiley series in
probability and statistics, New York: John Wiley & Sons.

McLachlan, G. J. and Rathnayake, S. (2014): On the number of components
in a Gaussian mixture model. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 4 (5), pp. 341–355.

McLachlan, N. G. and Ng, S. K. (2000): A comparison of some information
criteria for the number of components in a mixture model. Technical report,
Brisbane: Department of Mathematics.
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